xref: /openbmc/linux/fs/btrfs/tree-log.c (revision f5b06569)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 #include "compression.h"
30 #include "qgroup.h"
31 
32 /* magic values for the inode_only field in btrfs_log_inode:
33  *
34  * LOG_INODE_ALL means to log everything
35  * LOG_INODE_EXISTS means to log just enough to recreate the inode
36  * during log replay
37  */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40 
41 /*
42  * directory trouble cases
43  *
44  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45  * log, we must force a full commit before doing an fsync of the directory
46  * where the unlink was done.
47  * ---> record transid of last unlink/rename per directory
48  *
49  * mkdir foo/some_dir
50  * normal commit
51  * rename foo/some_dir foo2/some_dir
52  * mkdir foo/some_dir
53  * fsync foo/some_dir/some_file
54  *
55  * The fsync above will unlink the original some_dir without recording
56  * it in its new location (foo2).  After a crash, some_dir will be gone
57  * unless the fsync of some_file forces a full commit
58  *
59  * 2) we must log any new names for any file or dir that is in the fsync
60  * log. ---> check inode while renaming/linking.
61  *
62  * 2a) we must log any new names for any file or dir during rename
63  * when the directory they are being removed from was logged.
64  * ---> check inode and old parent dir during rename
65  *
66  *  2a is actually the more important variant.  With the extra logging
67  *  a crash might unlink the old name without recreating the new one
68  *
69  * 3) after a crash, we must go through any directories with a link count
70  * of zero and redo the rm -rf
71  *
72  * mkdir f1/foo
73  * normal commit
74  * rm -rf f1/foo
75  * fsync(f1)
76  *
77  * The directory f1 was fully removed from the FS, but fsync was never
78  * called on f1, only its parent dir.  After a crash the rm -rf must
79  * be replayed.  This must be able to recurse down the entire
80  * directory tree.  The inode link count fixup code takes care of the
81  * ugly details.
82  */
83 
84 /*
85  * stages for the tree walking.  The first
86  * stage (0) is to only pin down the blocks we find
87  * the second stage (1) is to make sure that all the inodes
88  * we find in the log are created in the subvolume.
89  *
90  * The last stage is to deal with directories and links and extents
91  * and all the other fun semantics
92  */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
97 
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 			   struct btrfs_root *root, struct inode *inode,
100 			   int inode_only,
101 			   const loff_t start,
102 			   const loff_t end,
103 			   struct btrfs_log_ctx *ctx);
104 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
105 			     struct btrfs_root *root,
106 			     struct btrfs_path *path, u64 objectid);
107 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
108 				       struct btrfs_root *root,
109 				       struct btrfs_root *log,
110 				       struct btrfs_path *path,
111 				       u64 dirid, int del_all);
112 
113 /*
114  * tree logging is a special write ahead log used to make sure that
115  * fsyncs and O_SYNCs can happen without doing full tree commits.
116  *
117  * Full tree commits are expensive because they require commonly
118  * modified blocks to be recowed, creating many dirty pages in the
119  * extent tree an 4x-6x higher write load than ext3.
120  *
121  * Instead of doing a tree commit on every fsync, we use the
122  * key ranges and transaction ids to find items for a given file or directory
123  * that have changed in this transaction.  Those items are copied into
124  * a special tree (one per subvolume root), that tree is written to disk
125  * and then the fsync is considered complete.
126  *
127  * After a crash, items are copied out of the log-tree back into the
128  * subvolume tree.  Any file data extents found are recorded in the extent
129  * allocation tree, and the log-tree freed.
130  *
131  * The log tree is read three times, once to pin down all the extents it is
132  * using in ram and once, once to create all the inodes logged in the tree
133  * and once to do all the other items.
134  */
135 
136 /*
137  * start a sub transaction and setup the log tree
138  * this increments the log tree writer count to make the people
139  * syncing the tree wait for us to finish
140  */
141 static int start_log_trans(struct btrfs_trans_handle *trans,
142 			   struct btrfs_root *root,
143 			   struct btrfs_log_ctx *ctx)
144 {
145 	int ret = 0;
146 
147 	mutex_lock(&root->log_mutex);
148 
149 	if (root->log_root) {
150 		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
151 			ret = -EAGAIN;
152 			goto out;
153 		}
154 
155 		if (!root->log_start_pid) {
156 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 			root->log_start_pid = current->pid;
158 		} else if (root->log_start_pid != current->pid) {
159 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
160 		}
161 	} else {
162 		mutex_lock(&root->fs_info->tree_log_mutex);
163 		if (!root->fs_info->log_root_tree)
164 			ret = btrfs_init_log_root_tree(trans, root->fs_info);
165 		mutex_unlock(&root->fs_info->tree_log_mutex);
166 		if (ret)
167 			goto out;
168 
169 		ret = btrfs_add_log_tree(trans, root);
170 		if (ret)
171 			goto out;
172 
173 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
174 		root->log_start_pid = current->pid;
175 	}
176 
177 	atomic_inc(&root->log_batch);
178 	atomic_inc(&root->log_writers);
179 	if (ctx) {
180 		int index = root->log_transid % 2;
181 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
182 		ctx->log_transid = root->log_transid;
183 	}
184 
185 out:
186 	mutex_unlock(&root->log_mutex);
187 	return ret;
188 }
189 
190 /*
191  * returns 0 if there was a log transaction running and we were able
192  * to join, or returns -ENOENT if there were not transactions
193  * in progress
194  */
195 static int join_running_log_trans(struct btrfs_root *root)
196 {
197 	int ret = -ENOENT;
198 
199 	smp_mb();
200 	if (!root->log_root)
201 		return -ENOENT;
202 
203 	mutex_lock(&root->log_mutex);
204 	if (root->log_root) {
205 		ret = 0;
206 		atomic_inc(&root->log_writers);
207 	}
208 	mutex_unlock(&root->log_mutex);
209 	return ret;
210 }
211 
212 /*
213  * This either makes the current running log transaction wait
214  * until you call btrfs_end_log_trans() or it makes any future
215  * log transactions wait until you call btrfs_end_log_trans()
216  */
217 int btrfs_pin_log_trans(struct btrfs_root *root)
218 {
219 	int ret = -ENOENT;
220 
221 	mutex_lock(&root->log_mutex);
222 	atomic_inc(&root->log_writers);
223 	mutex_unlock(&root->log_mutex);
224 	return ret;
225 }
226 
227 /*
228  * indicate we're done making changes to the log tree
229  * and wake up anyone waiting to do a sync
230  */
231 void btrfs_end_log_trans(struct btrfs_root *root)
232 {
233 	if (atomic_dec_and_test(&root->log_writers)) {
234 		/*
235 		 * Implicit memory barrier after atomic_dec_and_test
236 		 */
237 		if (waitqueue_active(&root->log_writer_wait))
238 			wake_up(&root->log_writer_wait);
239 	}
240 }
241 
242 
243 /*
244  * the walk control struct is used to pass state down the chain when
245  * processing the log tree.  The stage field tells us which part
246  * of the log tree processing we are currently doing.  The others
247  * are state fields used for that specific part
248  */
249 struct walk_control {
250 	/* should we free the extent on disk when done?  This is used
251 	 * at transaction commit time while freeing a log tree
252 	 */
253 	int free;
254 
255 	/* should we write out the extent buffer?  This is used
256 	 * while flushing the log tree to disk during a sync
257 	 */
258 	int write;
259 
260 	/* should we wait for the extent buffer io to finish?  Also used
261 	 * while flushing the log tree to disk for a sync
262 	 */
263 	int wait;
264 
265 	/* pin only walk, we record which extents on disk belong to the
266 	 * log trees
267 	 */
268 	int pin;
269 
270 	/* what stage of the replay code we're currently in */
271 	int stage;
272 
273 	/* the root we are currently replaying */
274 	struct btrfs_root *replay_dest;
275 
276 	/* the trans handle for the current replay */
277 	struct btrfs_trans_handle *trans;
278 
279 	/* the function that gets used to process blocks we find in the
280 	 * tree.  Note the extent_buffer might not be up to date when it is
281 	 * passed in, and it must be checked or read if you need the data
282 	 * inside it
283 	 */
284 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
285 			    struct walk_control *wc, u64 gen);
286 };
287 
288 /*
289  * process_func used to pin down extents, write them or wait on them
290  */
291 static int process_one_buffer(struct btrfs_root *log,
292 			      struct extent_buffer *eb,
293 			      struct walk_control *wc, u64 gen)
294 {
295 	int ret = 0;
296 
297 	/*
298 	 * If this fs is mixed then we need to be able to process the leaves to
299 	 * pin down any logged extents, so we have to read the block.
300 	 */
301 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
302 		ret = btrfs_read_buffer(eb, gen);
303 		if (ret)
304 			return ret;
305 	}
306 
307 	if (wc->pin)
308 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
309 						      eb->start, eb->len);
310 
311 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
312 		if (wc->pin && btrfs_header_level(eb) == 0)
313 			ret = btrfs_exclude_logged_extents(log, eb);
314 		if (wc->write)
315 			btrfs_write_tree_block(eb);
316 		if (wc->wait)
317 			btrfs_wait_tree_block_writeback(eb);
318 	}
319 	return ret;
320 }
321 
322 /*
323  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
324  * to the src data we are copying out.
325  *
326  * root is the tree we are copying into, and path is a scratch
327  * path for use in this function (it should be released on entry and
328  * will be released on exit).
329  *
330  * If the key is already in the destination tree the existing item is
331  * overwritten.  If the existing item isn't big enough, it is extended.
332  * If it is too large, it is truncated.
333  *
334  * If the key isn't in the destination yet, a new item is inserted.
335  */
336 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
337 				   struct btrfs_root *root,
338 				   struct btrfs_path *path,
339 				   struct extent_buffer *eb, int slot,
340 				   struct btrfs_key *key)
341 {
342 	int ret;
343 	u32 item_size;
344 	u64 saved_i_size = 0;
345 	int save_old_i_size = 0;
346 	unsigned long src_ptr;
347 	unsigned long dst_ptr;
348 	int overwrite_root = 0;
349 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
350 
351 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
352 		overwrite_root = 1;
353 
354 	item_size = btrfs_item_size_nr(eb, slot);
355 	src_ptr = btrfs_item_ptr_offset(eb, slot);
356 
357 	/* look for the key in the destination tree */
358 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
359 	if (ret < 0)
360 		return ret;
361 
362 	if (ret == 0) {
363 		char *src_copy;
364 		char *dst_copy;
365 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
366 						  path->slots[0]);
367 		if (dst_size != item_size)
368 			goto insert;
369 
370 		if (item_size == 0) {
371 			btrfs_release_path(path);
372 			return 0;
373 		}
374 		dst_copy = kmalloc(item_size, GFP_NOFS);
375 		src_copy = kmalloc(item_size, GFP_NOFS);
376 		if (!dst_copy || !src_copy) {
377 			btrfs_release_path(path);
378 			kfree(dst_copy);
379 			kfree(src_copy);
380 			return -ENOMEM;
381 		}
382 
383 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
384 
385 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
386 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
387 				   item_size);
388 		ret = memcmp(dst_copy, src_copy, item_size);
389 
390 		kfree(dst_copy);
391 		kfree(src_copy);
392 		/*
393 		 * they have the same contents, just return, this saves
394 		 * us from cowing blocks in the destination tree and doing
395 		 * extra writes that may not have been done by a previous
396 		 * sync
397 		 */
398 		if (ret == 0) {
399 			btrfs_release_path(path);
400 			return 0;
401 		}
402 
403 		/*
404 		 * We need to load the old nbytes into the inode so when we
405 		 * replay the extents we've logged we get the right nbytes.
406 		 */
407 		if (inode_item) {
408 			struct btrfs_inode_item *item;
409 			u64 nbytes;
410 			u32 mode;
411 
412 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
413 					      struct btrfs_inode_item);
414 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
415 			item = btrfs_item_ptr(eb, slot,
416 					      struct btrfs_inode_item);
417 			btrfs_set_inode_nbytes(eb, item, nbytes);
418 
419 			/*
420 			 * If this is a directory we need to reset the i_size to
421 			 * 0 so that we can set it up properly when replaying
422 			 * the rest of the items in this log.
423 			 */
424 			mode = btrfs_inode_mode(eb, item);
425 			if (S_ISDIR(mode))
426 				btrfs_set_inode_size(eb, item, 0);
427 		}
428 	} else if (inode_item) {
429 		struct btrfs_inode_item *item;
430 		u32 mode;
431 
432 		/*
433 		 * New inode, set nbytes to 0 so that the nbytes comes out
434 		 * properly when we replay the extents.
435 		 */
436 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
437 		btrfs_set_inode_nbytes(eb, item, 0);
438 
439 		/*
440 		 * If this is a directory we need to reset the i_size to 0 so
441 		 * that we can set it up properly when replaying the rest of
442 		 * the items in this log.
443 		 */
444 		mode = btrfs_inode_mode(eb, item);
445 		if (S_ISDIR(mode))
446 			btrfs_set_inode_size(eb, item, 0);
447 	}
448 insert:
449 	btrfs_release_path(path);
450 	/* try to insert the key into the destination tree */
451 	path->skip_release_on_error = 1;
452 	ret = btrfs_insert_empty_item(trans, root, path,
453 				      key, item_size);
454 	path->skip_release_on_error = 0;
455 
456 	/* make sure any existing item is the correct size */
457 	if (ret == -EEXIST || ret == -EOVERFLOW) {
458 		u32 found_size;
459 		found_size = btrfs_item_size_nr(path->nodes[0],
460 						path->slots[0]);
461 		if (found_size > item_size)
462 			btrfs_truncate_item(root, path, item_size, 1);
463 		else if (found_size < item_size)
464 			btrfs_extend_item(root, path,
465 					  item_size - found_size);
466 	} else if (ret) {
467 		return ret;
468 	}
469 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
470 					path->slots[0]);
471 
472 	/* don't overwrite an existing inode if the generation number
473 	 * was logged as zero.  This is done when the tree logging code
474 	 * is just logging an inode to make sure it exists after recovery.
475 	 *
476 	 * Also, don't overwrite i_size on directories during replay.
477 	 * log replay inserts and removes directory items based on the
478 	 * state of the tree found in the subvolume, and i_size is modified
479 	 * as it goes
480 	 */
481 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
482 		struct btrfs_inode_item *src_item;
483 		struct btrfs_inode_item *dst_item;
484 
485 		src_item = (struct btrfs_inode_item *)src_ptr;
486 		dst_item = (struct btrfs_inode_item *)dst_ptr;
487 
488 		if (btrfs_inode_generation(eb, src_item) == 0) {
489 			struct extent_buffer *dst_eb = path->nodes[0];
490 			const u64 ino_size = btrfs_inode_size(eb, src_item);
491 
492 			/*
493 			 * For regular files an ino_size == 0 is used only when
494 			 * logging that an inode exists, as part of a directory
495 			 * fsync, and the inode wasn't fsynced before. In this
496 			 * case don't set the size of the inode in the fs/subvol
497 			 * tree, otherwise we would be throwing valid data away.
498 			 */
499 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
500 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
501 			    ino_size != 0) {
502 				struct btrfs_map_token token;
503 
504 				btrfs_init_map_token(&token);
505 				btrfs_set_token_inode_size(dst_eb, dst_item,
506 							   ino_size, &token);
507 			}
508 			goto no_copy;
509 		}
510 
511 		if (overwrite_root &&
512 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
513 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
514 			save_old_i_size = 1;
515 			saved_i_size = btrfs_inode_size(path->nodes[0],
516 							dst_item);
517 		}
518 	}
519 
520 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
521 			   src_ptr, item_size);
522 
523 	if (save_old_i_size) {
524 		struct btrfs_inode_item *dst_item;
525 		dst_item = (struct btrfs_inode_item *)dst_ptr;
526 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
527 	}
528 
529 	/* make sure the generation is filled in */
530 	if (key->type == BTRFS_INODE_ITEM_KEY) {
531 		struct btrfs_inode_item *dst_item;
532 		dst_item = (struct btrfs_inode_item *)dst_ptr;
533 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
534 			btrfs_set_inode_generation(path->nodes[0], dst_item,
535 						   trans->transid);
536 		}
537 	}
538 no_copy:
539 	btrfs_mark_buffer_dirty(path->nodes[0]);
540 	btrfs_release_path(path);
541 	return 0;
542 }
543 
544 /*
545  * simple helper to read an inode off the disk from a given root
546  * This can only be called for subvolume roots and not for the log
547  */
548 static noinline struct inode *read_one_inode(struct btrfs_root *root,
549 					     u64 objectid)
550 {
551 	struct btrfs_key key;
552 	struct inode *inode;
553 
554 	key.objectid = objectid;
555 	key.type = BTRFS_INODE_ITEM_KEY;
556 	key.offset = 0;
557 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
558 	if (IS_ERR(inode)) {
559 		inode = NULL;
560 	} else if (is_bad_inode(inode)) {
561 		iput(inode);
562 		inode = NULL;
563 	}
564 	return inode;
565 }
566 
567 /* replays a single extent in 'eb' at 'slot' with 'key' into the
568  * subvolume 'root'.  path is released on entry and should be released
569  * on exit.
570  *
571  * extents in the log tree have not been allocated out of the extent
572  * tree yet.  So, this completes the allocation, taking a reference
573  * as required if the extent already exists or creating a new extent
574  * if it isn't in the extent allocation tree yet.
575  *
576  * The extent is inserted into the file, dropping any existing extents
577  * from the file that overlap the new one.
578  */
579 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
580 				      struct btrfs_root *root,
581 				      struct btrfs_path *path,
582 				      struct extent_buffer *eb, int slot,
583 				      struct btrfs_key *key)
584 {
585 	int found_type;
586 	u64 extent_end;
587 	u64 start = key->offset;
588 	u64 nbytes = 0;
589 	struct btrfs_file_extent_item *item;
590 	struct inode *inode = NULL;
591 	unsigned long size;
592 	int ret = 0;
593 
594 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
595 	found_type = btrfs_file_extent_type(eb, item);
596 
597 	if (found_type == BTRFS_FILE_EXTENT_REG ||
598 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
599 		nbytes = btrfs_file_extent_num_bytes(eb, item);
600 		extent_end = start + nbytes;
601 
602 		/*
603 		 * We don't add to the inodes nbytes if we are prealloc or a
604 		 * hole.
605 		 */
606 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
607 			nbytes = 0;
608 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
609 		size = btrfs_file_extent_inline_len(eb, slot, item);
610 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
611 		extent_end = ALIGN(start + size, root->sectorsize);
612 	} else {
613 		ret = 0;
614 		goto out;
615 	}
616 
617 	inode = read_one_inode(root, key->objectid);
618 	if (!inode) {
619 		ret = -EIO;
620 		goto out;
621 	}
622 
623 	/*
624 	 * first check to see if we already have this extent in the
625 	 * file.  This must be done before the btrfs_drop_extents run
626 	 * so we don't try to drop this extent.
627 	 */
628 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
629 				       start, 0);
630 
631 	if (ret == 0 &&
632 	    (found_type == BTRFS_FILE_EXTENT_REG ||
633 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
634 		struct btrfs_file_extent_item cmp1;
635 		struct btrfs_file_extent_item cmp2;
636 		struct btrfs_file_extent_item *existing;
637 		struct extent_buffer *leaf;
638 
639 		leaf = path->nodes[0];
640 		existing = btrfs_item_ptr(leaf, path->slots[0],
641 					  struct btrfs_file_extent_item);
642 
643 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
644 				   sizeof(cmp1));
645 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
646 				   sizeof(cmp2));
647 
648 		/*
649 		 * we already have a pointer to this exact extent,
650 		 * we don't have to do anything
651 		 */
652 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
653 			btrfs_release_path(path);
654 			goto out;
655 		}
656 	}
657 	btrfs_release_path(path);
658 
659 	/* drop any overlapping extents */
660 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
661 	if (ret)
662 		goto out;
663 
664 	if (found_type == BTRFS_FILE_EXTENT_REG ||
665 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
666 		u64 offset;
667 		unsigned long dest_offset;
668 		struct btrfs_key ins;
669 
670 		ret = btrfs_insert_empty_item(trans, root, path, key,
671 					      sizeof(*item));
672 		if (ret)
673 			goto out;
674 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
675 						    path->slots[0]);
676 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
677 				(unsigned long)item,  sizeof(*item));
678 
679 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
680 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
681 		ins.type = BTRFS_EXTENT_ITEM_KEY;
682 		offset = key->offset - btrfs_file_extent_offset(eb, item);
683 
684 		/*
685 		 * Manually record dirty extent, as here we did a shallow
686 		 * file extent item copy and skip normal backref update,
687 		 * but modifying extent tree all by ourselves.
688 		 * So need to manually record dirty extent for qgroup,
689 		 * as the owner of the file extent changed from log tree
690 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
691 		 */
692 		ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
693 				btrfs_file_extent_disk_bytenr(eb, item),
694 				btrfs_file_extent_disk_num_bytes(eb, item),
695 				GFP_NOFS);
696 		if (ret < 0)
697 			goto out;
698 
699 		if (ins.objectid > 0) {
700 			u64 csum_start;
701 			u64 csum_end;
702 			LIST_HEAD(ordered_sums);
703 			/*
704 			 * is this extent already allocated in the extent
705 			 * allocation tree?  If so, just add a reference
706 			 */
707 			ret = btrfs_lookup_data_extent(root, ins.objectid,
708 						ins.offset);
709 			if (ret == 0) {
710 				ret = btrfs_inc_extent_ref(trans, root,
711 						ins.objectid, ins.offset,
712 						0, root->root_key.objectid,
713 						key->objectid, offset);
714 				if (ret)
715 					goto out;
716 			} else {
717 				/*
718 				 * insert the extent pointer in the extent
719 				 * allocation tree
720 				 */
721 				ret = btrfs_alloc_logged_file_extent(trans,
722 						root, root->root_key.objectid,
723 						key->objectid, offset, &ins);
724 				if (ret)
725 					goto out;
726 			}
727 			btrfs_release_path(path);
728 
729 			if (btrfs_file_extent_compression(eb, item)) {
730 				csum_start = ins.objectid;
731 				csum_end = csum_start + ins.offset;
732 			} else {
733 				csum_start = ins.objectid +
734 					btrfs_file_extent_offset(eb, item);
735 				csum_end = csum_start +
736 					btrfs_file_extent_num_bytes(eb, item);
737 			}
738 
739 			ret = btrfs_lookup_csums_range(root->log_root,
740 						csum_start, csum_end - 1,
741 						&ordered_sums, 0);
742 			if (ret)
743 				goto out;
744 			/*
745 			 * Now delete all existing cums in the csum root that
746 			 * cover our range. We do this because we can have an
747 			 * extent that is completely referenced by one file
748 			 * extent item and partially referenced by another
749 			 * file extent item (like after using the clone or
750 			 * extent_same ioctls). In this case if we end up doing
751 			 * the replay of the one that partially references the
752 			 * extent first, and we do not do the csum deletion
753 			 * below, we can get 2 csum items in the csum tree that
754 			 * overlap each other. For example, imagine our log has
755 			 * the two following file extent items:
756 			 *
757 			 * key (257 EXTENT_DATA 409600)
758 			 *     extent data disk byte 12845056 nr 102400
759 			 *     extent data offset 20480 nr 20480 ram 102400
760 			 *
761 			 * key (257 EXTENT_DATA 819200)
762 			 *     extent data disk byte 12845056 nr 102400
763 			 *     extent data offset 0 nr 102400 ram 102400
764 			 *
765 			 * Where the second one fully references the 100K extent
766 			 * that starts at disk byte 12845056, and the log tree
767 			 * has a single csum item that covers the entire range
768 			 * of the extent:
769 			 *
770 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
771 			 *
772 			 * After the first file extent item is replayed, the
773 			 * csum tree gets the following csum item:
774 			 *
775 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
776 			 *
777 			 * Which covers the 20K sub-range starting at offset 20K
778 			 * of our extent. Now when we replay the second file
779 			 * extent item, if we do not delete existing csum items
780 			 * that cover any of its blocks, we end up getting two
781 			 * csum items in our csum tree that overlap each other:
782 			 *
783 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 			 *
786 			 * Which is a problem, because after this anyone trying
787 			 * to lookup up for the checksum of any block of our
788 			 * extent starting at an offset of 40K or higher, will
789 			 * end up looking at the second csum item only, which
790 			 * does not contain the checksum for any block starting
791 			 * at offset 40K or higher of our extent.
792 			 */
793 			while (!list_empty(&ordered_sums)) {
794 				struct btrfs_ordered_sum *sums;
795 				sums = list_entry(ordered_sums.next,
796 						struct btrfs_ordered_sum,
797 						list);
798 				if (!ret)
799 					ret = btrfs_del_csums(trans,
800 						      root->fs_info->csum_root,
801 						      sums->bytenr,
802 						      sums->len);
803 				if (!ret)
804 					ret = btrfs_csum_file_blocks(trans,
805 						root->fs_info->csum_root,
806 						sums);
807 				list_del(&sums->list);
808 				kfree(sums);
809 			}
810 			if (ret)
811 				goto out;
812 		} else {
813 			btrfs_release_path(path);
814 		}
815 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
816 		/* inline extents are easy, we just overwrite them */
817 		ret = overwrite_item(trans, root, path, eb, slot, key);
818 		if (ret)
819 			goto out;
820 	}
821 
822 	inode_add_bytes(inode, nbytes);
823 	ret = btrfs_update_inode(trans, root, inode);
824 out:
825 	if (inode)
826 		iput(inode);
827 	return ret;
828 }
829 
830 /*
831  * when cleaning up conflicts between the directory names in the
832  * subvolume, directory names in the log and directory names in the
833  * inode back references, we may have to unlink inodes from directories.
834  *
835  * This is a helper function to do the unlink of a specific directory
836  * item
837  */
838 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
839 				      struct btrfs_root *root,
840 				      struct btrfs_path *path,
841 				      struct inode *dir,
842 				      struct btrfs_dir_item *di)
843 {
844 	struct inode *inode;
845 	char *name;
846 	int name_len;
847 	struct extent_buffer *leaf;
848 	struct btrfs_key location;
849 	int ret;
850 
851 	leaf = path->nodes[0];
852 
853 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
854 	name_len = btrfs_dir_name_len(leaf, di);
855 	name = kmalloc(name_len, GFP_NOFS);
856 	if (!name)
857 		return -ENOMEM;
858 
859 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
860 	btrfs_release_path(path);
861 
862 	inode = read_one_inode(root, location.objectid);
863 	if (!inode) {
864 		ret = -EIO;
865 		goto out;
866 	}
867 
868 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
869 	if (ret)
870 		goto out;
871 
872 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
873 	if (ret)
874 		goto out;
875 	else
876 		ret = btrfs_run_delayed_items(trans, root);
877 out:
878 	kfree(name);
879 	iput(inode);
880 	return ret;
881 }
882 
883 /*
884  * helper function to see if a given name and sequence number found
885  * in an inode back reference are already in a directory and correctly
886  * point to this inode
887  */
888 static noinline int inode_in_dir(struct btrfs_root *root,
889 				 struct btrfs_path *path,
890 				 u64 dirid, u64 objectid, u64 index,
891 				 const char *name, int name_len)
892 {
893 	struct btrfs_dir_item *di;
894 	struct btrfs_key location;
895 	int match = 0;
896 
897 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
898 					 index, name, name_len, 0);
899 	if (di && !IS_ERR(di)) {
900 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
901 		if (location.objectid != objectid)
902 			goto out;
903 	} else
904 		goto out;
905 	btrfs_release_path(path);
906 
907 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
908 	if (di && !IS_ERR(di)) {
909 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
910 		if (location.objectid != objectid)
911 			goto out;
912 	} else
913 		goto out;
914 	match = 1;
915 out:
916 	btrfs_release_path(path);
917 	return match;
918 }
919 
920 /*
921  * helper function to check a log tree for a named back reference in
922  * an inode.  This is used to decide if a back reference that is
923  * found in the subvolume conflicts with what we find in the log.
924  *
925  * inode backreferences may have multiple refs in a single item,
926  * during replay we process one reference at a time, and we don't
927  * want to delete valid links to a file from the subvolume if that
928  * link is also in the log.
929  */
930 static noinline int backref_in_log(struct btrfs_root *log,
931 				   struct btrfs_key *key,
932 				   u64 ref_objectid,
933 				   const char *name, int namelen)
934 {
935 	struct btrfs_path *path;
936 	struct btrfs_inode_ref *ref;
937 	unsigned long ptr;
938 	unsigned long ptr_end;
939 	unsigned long name_ptr;
940 	int found_name_len;
941 	int item_size;
942 	int ret;
943 	int match = 0;
944 
945 	path = btrfs_alloc_path();
946 	if (!path)
947 		return -ENOMEM;
948 
949 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
950 	if (ret != 0)
951 		goto out;
952 
953 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
954 
955 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
956 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
957 						   name, namelen, NULL))
958 			match = 1;
959 
960 		goto out;
961 	}
962 
963 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
964 	ptr_end = ptr + item_size;
965 	while (ptr < ptr_end) {
966 		ref = (struct btrfs_inode_ref *)ptr;
967 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
968 		if (found_name_len == namelen) {
969 			name_ptr = (unsigned long)(ref + 1);
970 			ret = memcmp_extent_buffer(path->nodes[0], name,
971 						   name_ptr, namelen);
972 			if (ret == 0) {
973 				match = 1;
974 				goto out;
975 			}
976 		}
977 		ptr = (unsigned long)(ref + 1) + found_name_len;
978 	}
979 out:
980 	btrfs_free_path(path);
981 	return match;
982 }
983 
984 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
985 				  struct btrfs_root *root,
986 				  struct btrfs_path *path,
987 				  struct btrfs_root *log_root,
988 				  struct inode *dir, struct inode *inode,
989 				  struct extent_buffer *eb,
990 				  u64 inode_objectid, u64 parent_objectid,
991 				  u64 ref_index, char *name, int namelen,
992 				  int *search_done)
993 {
994 	int ret;
995 	char *victim_name;
996 	int victim_name_len;
997 	struct extent_buffer *leaf;
998 	struct btrfs_dir_item *di;
999 	struct btrfs_key search_key;
1000 	struct btrfs_inode_extref *extref;
1001 
1002 again:
1003 	/* Search old style refs */
1004 	search_key.objectid = inode_objectid;
1005 	search_key.type = BTRFS_INODE_REF_KEY;
1006 	search_key.offset = parent_objectid;
1007 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1008 	if (ret == 0) {
1009 		struct btrfs_inode_ref *victim_ref;
1010 		unsigned long ptr;
1011 		unsigned long ptr_end;
1012 
1013 		leaf = path->nodes[0];
1014 
1015 		/* are we trying to overwrite a back ref for the root directory
1016 		 * if so, just jump out, we're done
1017 		 */
1018 		if (search_key.objectid == search_key.offset)
1019 			return 1;
1020 
1021 		/* check all the names in this back reference to see
1022 		 * if they are in the log.  if so, we allow them to stay
1023 		 * otherwise they must be unlinked as a conflict
1024 		 */
1025 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1026 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1027 		while (ptr < ptr_end) {
1028 			victim_ref = (struct btrfs_inode_ref *)ptr;
1029 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1030 								   victim_ref);
1031 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1032 			if (!victim_name)
1033 				return -ENOMEM;
1034 
1035 			read_extent_buffer(leaf, victim_name,
1036 					   (unsigned long)(victim_ref + 1),
1037 					   victim_name_len);
1038 
1039 			if (!backref_in_log(log_root, &search_key,
1040 					    parent_objectid,
1041 					    victim_name,
1042 					    victim_name_len)) {
1043 				inc_nlink(inode);
1044 				btrfs_release_path(path);
1045 
1046 				ret = btrfs_unlink_inode(trans, root, dir,
1047 							 inode, victim_name,
1048 							 victim_name_len);
1049 				kfree(victim_name);
1050 				if (ret)
1051 					return ret;
1052 				ret = btrfs_run_delayed_items(trans, root);
1053 				if (ret)
1054 					return ret;
1055 				*search_done = 1;
1056 				goto again;
1057 			}
1058 			kfree(victim_name);
1059 
1060 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1061 		}
1062 
1063 		/*
1064 		 * NOTE: we have searched root tree and checked the
1065 		 * corresponding ref, it does not need to check again.
1066 		 */
1067 		*search_done = 1;
1068 	}
1069 	btrfs_release_path(path);
1070 
1071 	/* Same search but for extended refs */
1072 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1073 					   inode_objectid, parent_objectid, 0,
1074 					   0);
1075 	if (!IS_ERR_OR_NULL(extref)) {
1076 		u32 item_size;
1077 		u32 cur_offset = 0;
1078 		unsigned long base;
1079 		struct inode *victim_parent;
1080 
1081 		leaf = path->nodes[0];
1082 
1083 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1084 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1085 
1086 		while (cur_offset < item_size) {
1087 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1088 
1089 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1090 
1091 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1092 				goto next;
1093 
1094 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1095 			if (!victim_name)
1096 				return -ENOMEM;
1097 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1098 					   victim_name_len);
1099 
1100 			search_key.objectid = inode_objectid;
1101 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1102 			search_key.offset = btrfs_extref_hash(parent_objectid,
1103 							      victim_name,
1104 							      victim_name_len);
1105 			ret = 0;
1106 			if (!backref_in_log(log_root, &search_key,
1107 					    parent_objectid, victim_name,
1108 					    victim_name_len)) {
1109 				ret = -ENOENT;
1110 				victim_parent = read_one_inode(root,
1111 							       parent_objectid);
1112 				if (victim_parent) {
1113 					inc_nlink(inode);
1114 					btrfs_release_path(path);
1115 
1116 					ret = btrfs_unlink_inode(trans, root,
1117 								 victim_parent,
1118 								 inode,
1119 								 victim_name,
1120 								 victim_name_len);
1121 					if (!ret)
1122 						ret = btrfs_run_delayed_items(
1123 								  trans, root);
1124 				}
1125 				iput(victim_parent);
1126 				kfree(victim_name);
1127 				if (ret)
1128 					return ret;
1129 				*search_done = 1;
1130 				goto again;
1131 			}
1132 			kfree(victim_name);
1133 			if (ret)
1134 				return ret;
1135 next:
1136 			cur_offset += victim_name_len + sizeof(*extref);
1137 		}
1138 		*search_done = 1;
1139 	}
1140 	btrfs_release_path(path);
1141 
1142 	/* look for a conflicting sequence number */
1143 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1144 					 ref_index, name, namelen, 0);
1145 	if (di && !IS_ERR(di)) {
1146 		ret = drop_one_dir_item(trans, root, path, dir, di);
1147 		if (ret)
1148 			return ret;
1149 	}
1150 	btrfs_release_path(path);
1151 
1152 	/* look for a conflicing name */
1153 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1154 				   name, namelen, 0);
1155 	if (di && !IS_ERR(di)) {
1156 		ret = drop_one_dir_item(trans, root, path, dir, di);
1157 		if (ret)
1158 			return ret;
1159 	}
1160 	btrfs_release_path(path);
1161 
1162 	return 0;
1163 }
1164 
1165 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1166 			     u32 *namelen, char **name, u64 *index,
1167 			     u64 *parent_objectid)
1168 {
1169 	struct btrfs_inode_extref *extref;
1170 
1171 	extref = (struct btrfs_inode_extref *)ref_ptr;
1172 
1173 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1174 	*name = kmalloc(*namelen, GFP_NOFS);
1175 	if (*name == NULL)
1176 		return -ENOMEM;
1177 
1178 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1179 			   *namelen);
1180 
1181 	*index = btrfs_inode_extref_index(eb, extref);
1182 	if (parent_objectid)
1183 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1184 
1185 	return 0;
1186 }
1187 
1188 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1189 			  u32 *namelen, char **name, u64 *index)
1190 {
1191 	struct btrfs_inode_ref *ref;
1192 
1193 	ref = (struct btrfs_inode_ref *)ref_ptr;
1194 
1195 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1196 	*name = kmalloc(*namelen, GFP_NOFS);
1197 	if (*name == NULL)
1198 		return -ENOMEM;
1199 
1200 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1201 
1202 	*index = btrfs_inode_ref_index(eb, ref);
1203 
1204 	return 0;
1205 }
1206 
1207 /*
1208  * replay one inode back reference item found in the log tree.
1209  * eb, slot and key refer to the buffer and key found in the log tree.
1210  * root is the destination we are replaying into, and path is for temp
1211  * use by this function.  (it should be released on return).
1212  */
1213 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1214 				  struct btrfs_root *root,
1215 				  struct btrfs_root *log,
1216 				  struct btrfs_path *path,
1217 				  struct extent_buffer *eb, int slot,
1218 				  struct btrfs_key *key)
1219 {
1220 	struct inode *dir = NULL;
1221 	struct inode *inode = NULL;
1222 	unsigned long ref_ptr;
1223 	unsigned long ref_end;
1224 	char *name = NULL;
1225 	int namelen;
1226 	int ret;
1227 	int search_done = 0;
1228 	int log_ref_ver = 0;
1229 	u64 parent_objectid;
1230 	u64 inode_objectid;
1231 	u64 ref_index = 0;
1232 	int ref_struct_size;
1233 
1234 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1235 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1236 
1237 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1238 		struct btrfs_inode_extref *r;
1239 
1240 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1241 		log_ref_ver = 1;
1242 		r = (struct btrfs_inode_extref *)ref_ptr;
1243 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1244 	} else {
1245 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1246 		parent_objectid = key->offset;
1247 	}
1248 	inode_objectid = key->objectid;
1249 
1250 	/*
1251 	 * it is possible that we didn't log all the parent directories
1252 	 * for a given inode.  If we don't find the dir, just don't
1253 	 * copy the back ref in.  The link count fixup code will take
1254 	 * care of the rest
1255 	 */
1256 	dir = read_one_inode(root, parent_objectid);
1257 	if (!dir) {
1258 		ret = -ENOENT;
1259 		goto out;
1260 	}
1261 
1262 	inode = read_one_inode(root, inode_objectid);
1263 	if (!inode) {
1264 		ret = -EIO;
1265 		goto out;
1266 	}
1267 
1268 	while (ref_ptr < ref_end) {
1269 		if (log_ref_ver) {
1270 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1271 						&ref_index, &parent_objectid);
1272 			/*
1273 			 * parent object can change from one array
1274 			 * item to another.
1275 			 */
1276 			if (!dir)
1277 				dir = read_one_inode(root, parent_objectid);
1278 			if (!dir) {
1279 				ret = -ENOENT;
1280 				goto out;
1281 			}
1282 		} else {
1283 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1284 					     &ref_index);
1285 		}
1286 		if (ret)
1287 			goto out;
1288 
1289 		/* if we already have a perfect match, we're done */
1290 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1291 				  ref_index, name, namelen)) {
1292 			/*
1293 			 * look for a conflicting back reference in the
1294 			 * metadata. if we find one we have to unlink that name
1295 			 * of the file before we add our new link.  Later on, we
1296 			 * overwrite any existing back reference, and we don't
1297 			 * want to create dangling pointers in the directory.
1298 			 */
1299 
1300 			if (!search_done) {
1301 				ret = __add_inode_ref(trans, root, path, log,
1302 						      dir, inode, eb,
1303 						      inode_objectid,
1304 						      parent_objectid,
1305 						      ref_index, name, namelen,
1306 						      &search_done);
1307 				if (ret) {
1308 					if (ret == 1)
1309 						ret = 0;
1310 					goto out;
1311 				}
1312 			}
1313 
1314 			/* insert our name */
1315 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1316 					     0, ref_index);
1317 			if (ret)
1318 				goto out;
1319 
1320 			btrfs_update_inode(trans, root, inode);
1321 		}
1322 
1323 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1324 		kfree(name);
1325 		name = NULL;
1326 		if (log_ref_ver) {
1327 			iput(dir);
1328 			dir = NULL;
1329 		}
1330 	}
1331 
1332 	/* finally write the back reference in the inode */
1333 	ret = overwrite_item(trans, root, path, eb, slot, key);
1334 out:
1335 	btrfs_release_path(path);
1336 	kfree(name);
1337 	iput(dir);
1338 	iput(inode);
1339 	return ret;
1340 }
1341 
1342 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1343 			      struct btrfs_root *root, u64 ino)
1344 {
1345 	int ret;
1346 
1347 	ret = btrfs_insert_orphan_item(trans, root, ino);
1348 	if (ret == -EEXIST)
1349 		ret = 0;
1350 
1351 	return ret;
1352 }
1353 
1354 static int count_inode_extrefs(struct btrfs_root *root,
1355 			       struct inode *inode, struct btrfs_path *path)
1356 {
1357 	int ret = 0;
1358 	int name_len;
1359 	unsigned int nlink = 0;
1360 	u32 item_size;
1361 	u32 cur_offset = 0;
1362 	u64 inode_objectid = btrfs_ino(inode);
1363 	u64 offset = 0;
1364 	unsigned long ptr;
1365 	struct btrfs_inode_extref *extref;
1366 	struct extent_buffer *leaf;
1367 
1368 	while (1) {
1369 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1370 					    &extref, &offset);
1371 		if (ret)
1372 			break;
1373 
1374 		leaf = path->nodes[0];
1375 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1376 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1377 		cur_offset = 0;
1378 
1379 		while (cur_offset < item_size) {
1380 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1381 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1382 
1383 			nlink++;
1384 
1385 			cur_offset += name_len + sizeof(*extref);
1386 		}
1387 
1388 		offset++;
1389 		btrfs_release_path(path);
1390 	}
1391 	btrfs_release_path(path);
1392 
1393 	if (ret < 0 && ret != -ENOENT)
1394 		return ret;
1395 	return nlink;
1396 }
1397 
1398 static int count_inode_refs(struct btrfs_root *root,
1399 			       struct inode *inode, struct btrfs_path *path)
1400 {
1401 	int ret;
1402 	struct btrfs_key key;
1403 	unsigned int nlink = 0;
1404 	unsigned long ptr;
1405 	unsigned long ptr_end;
1406 	int name_len;
1407 	u64 ino = btrfs_ino(inode);
1408 
1409 	key.objectid = ino;
1410 	key.type = BTRFS_INODE_REF_KEY;
1411 	key.offset = (u64)-1;
1412 
1413 	while (1) {
1414 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1415 		if (ret < 0)
1416 			break;
1417 		if (ret > 0) {
1418 			if (path->slots[0] == 0)
1419 				break;
1420 			path->slots[0]--;
1421 		}
1422 process_slot:
1423 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1424 				      path->slots[0]);
1425 		if (key.objectid != ino ||
1426 		    key.type != BTRFS_INODE_REF_KEY)
1427 			break;
1428 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1429 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1430 						   path->slots[0]);
1431 		while (ptr < ptr_end) {
1432 			struct btrfs_inode_ref *ref;
1433 
1434 			ref = (struct btrfs_inode_ref *)ptr;
1435 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1436 							    ref);
1437 			ptr = (unsigned long)(ref + 1) + name_len;
1438 			nlink++;
1439 		}
1440 
1441 		if (key.offset == 0)
1442 			break;
1443 		if (path->slots[0] > 0) {
1444 			path->slots[0]--;
1445 			goto process_slot;
1446 		}
1447 		key.offset--;
1448 		btrfs_release_path(path);
1449 	}
1450 	btrfs_release_path(path);
1451 
1452 	return nlink;
1453 }
1454 
1455 /*
1456  * There are a few corners where the link count of the file can't
1457  * be properly maintained during replay.  So, instead of adding
1458  * lots of complexity to the log code, we just scan the backrefs
1459  * for any file that has been through replay.
1460  *
1461  * The scan will update the link count on the inode to reflect the
1462  * number of back refs found.  If it goes down to zero, the iput
1463  * will free the inode.
1464  */
1465 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1466 					   struct btrfs_root *root,
1467 					   struct inode *inode)
1468 {
1469 	struct btrfs_path *path;
1470 	int ret;
1471 	u64 nlink = 0;
1472 	u64 ino = btrfs_ino(inode);
1473 
1474 	path = btrfs_alloc_path();
1475 	if (!path)
1476 		return -ENOMEM;
1477 
1478 	ret = count_inode_refs(root, inode, path);
1479 	if (ret < 0)
1480 		goto out;
1481 
1482 	nlink = ret;
1483 
1484 	ret = count_inode_extrefs(root, inode, path);
1485 	if (ret < 0)
1486 		goto out;
1487 
1488 	nlink += ret;
1489 
1490 	ret = 0;
1491 
1492 	if (nlink != inode->i_nlink) {
1493 		set_nlink(inode, nlink);
1494 		btrfs_update_inode(trans, root, inode);
1495 	}
1496 	BTRFS_I(inode)->index_cnt = (u64)-1;
1497 
1498 	if (inode->i_nlink == 0) {
1499 		if (S_ISDIR(inode->i_mode)) {
1500 			ret = replay_dir_deletes(trans, root, NULL, path,
1501 						 ino, 1);
1502 			if (ret)
1503 				goto out;
1504 		}
1505 		ret = insert_orphan_item(trans, root, ino);
1506 	}
1507 
1508 out:
1509 	btrfs_free_path(path);
1510 	return ret;
1511 }
1512 
1513 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1514 					    struct btrfs_root *root,
1515 					    struct btrfs_path *path)
1516 {
1517 	int ret;
1518 	struct btrfs_key key;
1519 	struct inode *inode;
1520 
1521 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1522 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1523 	key.offset = (u64)-1;
1524 	while (1) {
1525 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1526 		if (ret < 0)
1527 			break;
1528 
1529 		if (ret == 1) {
1530 			if (path->slots[0] == 0)
1531 				break;
1532 			path->slots[0]--;
1533 		}
1534 
1535 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1536 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1537 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1538 			break;
1539 
1540 		ret = btrfs_del_item(trans, root, path);
1541 		if (ret)
1542 			goto out;
1543 
1544 		btrfs_release_path(path);
1545 		inode = read_one_inode(root, key.offset);
1546 		if (!inode)
1547 			return -EIO;
1548 
1549 		ret = fixup_inode_link_count(trans, root, inode);
1550 		iput(inode);
1551 		if (ret)
1552 			goto out;
1553 
1554 		/*
1555 		 * fixup on a directory may create new entries,
1556 		 * make sure we always look for the highset possible
1557 		 * offset
1558 		 */
1559 		key.offset = (u64)-1;
1560 	}
1561 	ret = 0;
1562 out:
1563 	btrfs_release_path(path);
1564 	return ret;
1565 }
1566 
1567 
1568 /*
1569  * record a given inode in the fixup dir so we can check its link
1570  * count when replay is done.  The link count is incremented here
1571  * so the inode won't go away until we check it
1572  */
1573 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1574 				      struct btrfs_root *root,
1575 				      struct btrfs_path *path,
1576 				      u64 objectid)
1577 {
1578 	struct btrfs_key key;
1579 	int ret = 0;
1580 	struct inode *inode;
1581 
1582 	inode = read_one_inode(root, objectid);
1583 	if (!inode)
1584 		return -EIO;
1585 
1586 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1587 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1588 	key.offset = objectid;
1589 
1590 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1591 
1592 	btrfs_release_path(path);
1593 	if (ret == 0) {
1594 		if (!inode->i_nlink)
1595 			set_nlink(inode, 1);
1596 		else
1597 			inc_nlink(inode);
1598 		ret = btrfs_update_inode(trans, root, inode);
1599 	} else if (ret == -EEXIST) {
1600 		ret = 0;
1601 	} else {
1602 		BUG(); /* Logic Error */
1603 	}
1604 	iput(inode);
1605 
1606 	return ret;
1607 }
1608 
1609 /*
1610  * when replaying the log for a directory, we only insert names
1611  * for inodes that actually exist.  This means an fsync on a directory
1612  * does not implicitly fsync all the new files in it
1613  */
1614 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1615 				    struct btrfs_root *root,
1616 				    u64 dirid, u64 index,
1617 				    char *name, int name_len,
1618 				    struct btrfs_key *location)
1619 {
1620 	struct inode *inode;
1621 	struct inode *dir;
1622 	int ret;
1623 
1624 	inode = read_one_inode(root, location->objectid);
1625 	if (!inode)
1626 		return -ENOENT;
1627 
1628 	dir = read_one_inode(root, dirid);
1629 	if (!dir) {
1630 		iput(inode);
1631 		return -EIO;
1632 	}
1633 
1634 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1635 
1636 	/* FIXME, put inode into FIXUP list */
1637 
1638 	iput(inode);
1639 	iput(dir);
1640 	return ret;
1641 }
1642 
1643 /*
1644  * Return true if an inode reference exists in the log for the given name,
1645  * inode and parent inode.
1646  */
1647 static bool name_in_log_ref(struct btrfs_root *log_root,
1648 			    const char *name, const int name_len,
1649 			    const u64 dirid, const u64 ino)
1650 {
1651 	struct btrfs_key search_key;
1652 
1653 	search_key.objectid = ino;
1654 	search_key.type = BTRFS_INODE_REF_KEY;
1655 	search_key.offset = dirid;
1656 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1657 		return true;
1658 
1659 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1660 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1661 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1662 		return true;
1663 
1664 	return false;
1665 }
1666 
1667 /*
1668  * take a single entry in a log directory item and replay it into
1669  * the subvolume.
1670  *
1671  * if a conflicting item exists in the subdirectory already,
1672  * the inode it points to is unlinked and put into the link count
1673  * fix up tree.
1674  *
1675  * If a name from the log points to a file or directory that does
1676  * not exist in the FS, it is skipped.  fsyncs on directories
1677  * do not force down inodes inside that directory, just changes to the
1678  * names or unlinks in a directory.
1679  *
1680  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1681  * non-existing inode) and 1 if the name was replayed.
1682  */
1683 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1684 				    struct btrfs_root *root,
1685 				    struct btrfs_path *path,
1686 				    struct extent_buffer *eb,
1687 				    struct btrfs_dir_item *di,
1688 				    struct btrfs_key *key)
1689 {
1690 	char *name;
1691 	int name_len;
1692 	struct btrfs_dir_item *dst_di;
1693 	struct btrfs_key found_key;
1694 	struct btrfs_key log_key;
1695 	struct inode *dir;
1696 	u8 log_type;
1697 	int exists;
1698 	int ret = 0;
1699 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1700 	bool name_added = false;
1701 
1702 	dir = read_one_inode(root, key->objectid);
1703 	if (!dir)
1704 		return -EIO;
1705 
1706 	name_len = btrfs_dir_name_len(eb, di);
1707 	name = kmalloc(name_len, GFP_NOFS);
1708 	if (!name) {
1709 		ret = -ENOMEM;
1710 		goto out;
1711 	}
1712 
1713 	log_type = btrfs_dir_type(eb, di);
1714 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1715 		   name_len);
1716 
1717 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1718 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1719 	if (exists == 0)
1720 		exists = 1;
1721 	else
1722 		exists = 0;
1723 	btrfs_release_path(path);
1724 
1725 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1726 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1727 				       name, name_len, 1);
1728 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1729 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1730 						     key->objectid,
1731 						     key->offset, name,
1732 						     name_len, 1);
1733 	} else {
1734 		/* Corruption */
1735 		ret = -EINVAL;
1736 		goto out;
1737 	}
1738 	if (IS_ERR_OR_NULL(dst_di)) {
1739 		/* we need a sequence number to insert, so we only
1740 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1741 		 */
1742 		if (key->type != BTRFS_DIR_INDEX_KEY)
1743 			goto out;
1744 		goto insert;
1745 	}
1746 
1747 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1748 	/* the existing item matches the logged item */
1749 	if (found_key.objectid == log_key.objectid &&
1750 	    found_key.type == log_key.type &&
1751 	    found_key.offset == log_key.offset &&
1752 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1753 		update_size = false;
1754 		goto out;
1755 	}
1756 
1757 	/*
1758 	 * don't drop the conflicting directory entry if the inode
1759 	 * for the new entry doesn't exist
1760 	 */
1761 	if (!exists)
1762 		goto out;
1763 
1764 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1765 	if (ret)
1766 		goto out;
1767 
1768 	if (key->type == BTRFS_DIR_INDEX_KEY)
1769 		goto insert;
1770 out:
1771 	btrfs_release_path(path);
1772 	if (!ret && update_size) {
1773 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1774 		ret = btrfs_update_inode(trans, root, dir);
1775 	}
1776 	kfree(name);
1777 	iput(dir);
1778 	if (!ret && name_added)
1779 		ret = 1;
1780 	return ret;
1781 
1782 insert:
1783 	if (name_in_log_ref(root->log_root, name, name_len,
1784 			    key->objectid, log_key.objectid)) {
1785 		/* The dentry will be added later. */
1786 		ret = 0;
1787 		update_size = false;
1788 		goto out;
1789 	}
1790 	btrfs_release_path(path);
1791 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1792 			      name, name_len, &log_key);
1793 	if (ret && ret != -ENOENT && ret != -EEXIST)
1794 		goto out;
1795 	if (!ret)
1796 		name_added = true;
1797 	update_size = false;
1798 	ret = 0;
1799 	goto out;
1800 }
1801 
1802 /*
1803  * find all the names in a directory item and reconcile them into
1804  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1805  * one name in a directory item, but the same code gets used for
1806  * both directory index types
1807  */
1808 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1809 					struct btrfs_root *root,
1810 					struct btrfs_path *path,
1811 					struct extent_buffer *eb, int slot,
1812 					struct btrfs_key *key)
1813 {
1814 	int ret = 0;
1815 	u32 item_size = btrfs_item_size_nr(eb, slot);
1816 	struct btrfs_dir_item *di;
1817 	int name_len;
1818 	unsigned long ptr;
1819 	unsigned long ptr_end;
1820 	struct btrfs_path *fixup_path = NULL;
1821 
1822 	ptr = btrfs_item_ptr_offset(eb, slot);
1823 	ptr_end = ptr + item_size;
1824 	while (ptr < ptr_end) {
1825 		di = (struct btrfs_dir_item *)ptr;
1826 		if (verify_dir_item(root, eb, di))
1827 			return -EIO;
1828 		name_len = btrfs_dir_name_len(eb, di);
1829 		ret = replay_one_name(trans, root, path, eb, di, key);
1830 		if (ret < 0)
1831 			break;
1832 		ptr = (unsigned long)(di + 1);
1833 		ptr += name_len;
1834 
1835 		/*
1836 		 * If this entry refers to a non-directory (directories can not
1837 		 * have a link count > 1) and it was added in the transaction
1838 		 * that was not committed, make sure we fixup the link count of
1839 		 * the inode it the entry points to. Otherwise something like
1840 		 * the following would result in a directory pointing to an
1841 		 * inode with a wrong link that does not account for this dir
1842 		 * entry:
1843 		 *
1844 		 * mkdir testdir
1845 		 * touch testdir/foo
1846 		 * touch testdir/bar
1847 		 * sync
1848 		 *
1849 		 * ln testdir/bar testdir/bar_link
1850 		 * ln testdir/foo testdir/foo_link
1851 		 * xfs_io -c "fsync" testdir/bar
1852 		 *
1853 		 * <power failure>
1854 		 *
1855 		 * mount fs, log replay happens
1856 		 *
1857 		 * File foo would remain with a link count of 1 when it has two
1858 		 * entries pointing to it in the directory testdir. This would
1859 		 * make it impossible to ever delete the parent directory has
1860 		 * it would result in stale dentries that can never be deleted.
1861 		 */
1862 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1863 			struct btrfs_key di_key;
1864 
1865 			if (!fixup_path) {
1866 				fixup_path = btrfs_alloc_path();
1867 				if (!fixup_path) {
1868 					ret = -ENOMEM;
1869 					break;
1870 				}
1871 			}
1872 
1873 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1874 			ret = link_to_fixup_dir(trans, root, fixup_path,
1875 						di_key.objectid);
1876 			if (ret)
1877 				break;
1878 		}
1879 		ret = 0;
1880 	}
1881 	btrfs_free_path(fixup_path);
1882 	return ret;
1883 }
1884 
1885 /*
1886  * directory replay has two parts.  There are the standard directory
1887  * items in the log copied from the subvolume, and range items
1888  * created in the log while the subvolume was logged.
1889  *
1890  * The range items tell us which parts of the key space the log
1891  * is authoritative for.  During replay, if a key in the subvolume
1892  * directory is in a logged range item, but not actually in the log
1893  * that means it was deleted from the directory before the fsync
1894  * and should be removed.
1895  */
1896 static noinline int find_dir_range(struct btrfs_root *root,
1897 				   struct btrfs_path *path,
1898 				   u64 dirid, int key_type,
1899 				   u64 *start_ret, u64 *end_ret)
1900 {
1901 	struct btrfs_key key;
1902 	u64 found_end;
1903 	struct btrfs_dir_log_item *item;
1904 	int ret;
1905 	int nritems;
1906 
1907 	if (*start_ret == (u64)-1)
1908 		return 1;
1909 
1910 	key.objectid = dirid;
1911 	key.type = key_type;
1912 	key.offset = *start_ret;
1913 
1914 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1915 	if (ret < 0)
1916 		goto out;
1917 	if (ret > 0) {
1918 		if (path->slots[0] == 0)
1919 			goto out;
1920 		path->slots[0]--;
1921 	}
1922 	if (ret != 0)
1923 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1924 
1925 	if (key.type != key_type || key.objectid != dirid) {
1926 		ret = 1;
1927 		goto next;
1928 	}
1929 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1930 			      struct btrfs_dir_log_item);
1931 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1932 
1933 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1934 		ret = 0;
1935 		*start_ret = key.offset;
1936 		*end_ret = found_end;
1937 		goto out;
1938 	}
1939 	ret = 1;
1940 next:
1941 	/* check the next slot in the tree to see if it is a valid item */
1942 	nritems = btrfs_header_nritems(path->nodes[0]);
1943 	if (path->slots[0] >= nritems) {
1944 		ret = btrfs_next_leaf(root, path);
1945 		if (ret)
1946 			goto out;
1947 	} else {
1948 		path->slots[0]++;
1949 	}
1950 
1951 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1952 
1953 	if (key.type != key_type || key.objectid != dirid) {
1954 		ret = 1;
1955 		goto out;
1956 	}
1957 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1958 			      struct btrfs_dir_log_item);
1959 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1960 	*start_ret = key.offset;
1961 	*end_ret = found_end;
1962 	ret = 0;
1963 out:
1964 	btrfs_release_path(path);
1965 	return ret;
1966 }
1967 
1968 /*
1969  * this looks for a given directory item in the log.  If the directory
1970  * item is not in the log, the item is removed and the inode it points
1971  * to is unlinked
1972  */
1973 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1974 				      struct btrfs_root *root,
1975 				      struct btrfs_root *log,
1976 				      struct btrfs_path *path,
1977 				      struct btrfs_path *log_path,
1978 				      struct inode *dir,
1979 				      struct btrfs_key *dir_key)
1980 {
1981 	int ret;
1982 	struct extent_buffer *eb;
1983 	int slot;
1984 	u32 item_size;
1985 	struct btrfs_dir_item *di;
1986 	struct btrfs_dir_item *log_di;
1987 	int name_len;
1988 	unsigned long ptr;
1989 	unsigned long ptr_end;
1990 	char *name;
1991 	struct inode *inode;
1992 	struct btrfs_key location;
1993 
1994 again:
1995 	eb = path->nodes[0];
1996 	slot = path->slots[0];
1997 	item_size = btrfs_item_size_nr(eb, slot);
1998 	ptr = btrfs_item_ptr_offset(eb, slot);
1999 	ptr_end = ptr + item_size;
2000 	while (ptr < ptr_end) {
2001 		di = (struct btrfs_dir_item *)ptr;
2002 		if (verify_dir_item(root, eb, di)) {
2003 			ret = -EIO;
2004 			goto out;
2005 		}
2006 
2007 		name_len = btrfs_dir_name_len(eb, di);
2008 		name = kmalloc(name_len, GFP_NOFS);
2009 		if (!name) {
2010 			ret = -ENOMEM;
2011 			goto out;
2012 		}
2013 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2014 				  name_len);
2015 		log_di = NULL;
2016 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2017 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2018 						       dir_key->objectid,
2019 						       name, name_len, 0);
2020 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2021 			log_di = btrfs_lookup_dir_index_item(trans, log,
2022 						     log_path,
2023 						     dir_key->objectid,
2024 						     dir_key->offset,
2025 						     name, name_len, 0);
2026 		}
2027 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2028 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2029 			btrfs_release_path(path);
2030 			btrfs_release_path(log_path);
2031 			inode = read_one_inode(root, location.objectid);
2032 			if (!inode) {
2033 				kfree(name);
2034 				return -EIO;
2035 			}
2036 
2037 			ret = link_to_fixup_dir(trans, root,
2038 						path, location.objectid);
2039 			if (ret) {
2040 				kfree(name);
2041 				iput(inode);
2042 				goto out;
2043 			}
2044 
2045 			inc_nlink(inode);
2046 			ret = btrfs_unlink_inode(trans, root, dir, inode,
2047 						 name, name_len);
2048 			if (!ret)
2049 				ret = btrfs_run_delayed_items(trans, root);
2050 			kfree(name);
2051 			iput(inode);
2052 			if (ret)
2053 				goto out;
2054 
2055 			/* there might still be more names under this key
2056 			 * check and repeat if required
2057 			 */
2058 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2059 						0, 0);
2060 			if (ret == 0)
2061 				goto again;
2062 			ret = 0;
2063 			goto out;
2064 		} else if (IS_ERR(log_di)) {
2065 			kfree(name);
2066 			return PTR_ERR(log_di);
2067 		}
2068 		btrfs_release_path(log_path);
2069 		kfree(name);
2070 
2071 		ptr = (unsigned long)(di + 1);
2072 		ptr += name_len;
2073 	}
2074 	ret = 0;
2075 out:
2076 	btrfs_release_path(path);
2077 	btrfs_release_path(log_path);
2078 	return ret;
2079 }
2080 
2081 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2082 			      struct btrfs_root *root,
2083 			      struct btrfs_root *log,
2084 			      struct btrfs_path *path,
2085 			      const u64 ino)
2086 {
2087 	struct btrfs_key search_key;
2088 	struct btrfs_path *log_path;
2089 	int i;
2090 	int nritems;
2091 	int ret;
2092 
2093 	log_path = btrfs_alloc_path();
2094 	if (!log_path)
2095 		return -ENOMEM;
2096 
2097 	search_key.objectid = ino;
2098 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2099 	search_key.offset = 0;
2100 again:
2101 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2102 	if (ret < 0)
2103 		goto out;
2104 process_leaf:
2105 	nritems = btrfs_header_nritems(path->nodes[0]);
2106 	for (i = path->slots[0]; i < nritems; i++) {
2107 		struct btrfs_key key;
2108 		struct btrfs_dir_item *di;
2109 		struct btrfs_dir_item *log_di;
2110 		u32 total_size;
2111 		u32 cur;
2112 
2113 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2114 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2115 			ret = 0;
2116 			goto out;
2117 		}
2118 
2119 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2120 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2121 		cur = 0;
2122 		while (cur < total_size) {
2123 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2124 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2125 			u32 this_len = sizeof(*di) + name_len + data_len;
2126 			char *name;
2127 
2128 			name = kmalloc(name_len, GFP_NOFS);
2129 			if (!name) {
2130 				ret = -ENOMEM;
2131 				goto out;
2132 			}
2133 			read_extent_buffer(path->nodes[0], name,
2134 					   (unsigned long)(di + 1), name_len);
2135 
2136 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2137 						    name, name_len, 0);
2138 			btrfs_release_path(log_path);
2139 			if (!log_di) {
2140 				/* Doesn't exist in log tree, so delete it. */
2141 				btrfs_release_path(path);
2142 				di = btrfs_lookup_xattr(trans, root, path, ino,
2143 							name, name_len, -1);
2144 				kfree(name);
2145 				if (IS_ERR(di)) {
2146 					ret = PTR_ERR(di);
2147 					goto out;
2148 				}
2149 				ASSERT(di);
2150 				ret = btrfs_delete_one_dir_name(trans, root,
2151 								path, di);
2152 				if (ret)
2153 					goto out;
2154 				btrfs_release_path(path);
2155 				search_key = key;
2156 				goto again;
2157 			}
2158 			kfree(name);
2159 			if (IS_ERR(log_di)) {
2160 				ret = PTR_ERR(log_di);
2161 				goto out;
2162 			}
2163 			cur += this_len;
2164 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2165 		}
2166 	}
2167 	ret = btrfs_next_leaf(root, path);
2168 	if (ret > 0)
2169 		ret = 0;
2170 	else if (ret == 0)
2171 		goto process_leaf;
2172 out:
2173 	btrfs_free_path(log_path);
2174 	btrfs_release_path(path);
2175 	return ret;
2176 }
2177 
2178 
2179 /*
2180  * deletion replay happens before we copy any new directory items
2181  * out of the log or out of backreferences from inodes.  It
2182  * scans the log to find ranges of keys that log is authoritative for,
2183  * and then scans the directory to find items in those ranges that are
2184  * not present in the log.
2185  *
2186  * Anything we don't find in the log is unlinked and removed from the
2187  * directory.
2188  */
2189 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2190 				       struct btrfs_root *root,
2191 				       struct btrfs_root *log,
2192 				       struct btrfs_path *path,
2193 				       u64 dirid, int del_all)
2194 {
2195 	u64 range_start;
2196 	u64 range_end;
2197 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2198 	int ret = 0;
2199 	struct btrfs_key dir_key;
2200 	struct btrfs_key found_key;
2201 	struct btrfs_path *log_path;
2202 	struct inode *dir;
2203 
2204 	dir_key.objectid = dirid;
2205 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2206 	log_path = btrfs_alloc_path();
2207 	if (!log_path)
2208 		return -ENOMEM;
2209 
2210 	dir = read_one_inode(root, dirid);
2211 	/* it isn't an error if the inode isn't there, that can happen
2212 	 * because we replay the deletes before we copy in the inode item
2213 	 * from the log
2214 	 */
2215 	if (!dir) {
2216 		btrfs_free_path(log_path);
2217 		return 0;
2218 	}
2219 again:
2220 	range_start = 0;
2221 	range_end = 0;
2222 	while (1) {
2223 		if (del_all)
2224 			range_end = (u64)-1;
2225 		else {
2226 			ret = find_dir_range(log, path, dirid, key_type,
2227 					     &range_start, &range_end);
2228 			if (ret != 0)
2229 				break;
2230 		}
2231 
2232 		dir_key.offset = range_start;
2233 		while (1) {
2234 			int nritems;
2235 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2236 						0, 0);
2237 			if (ret < 0)
2238 				goto out;
2239 
2240 			nritems = btrfs_header_nritems(path->nodes[0]);
2241 			if (path->slots[0] >= nritems) {
2242 				ret = btrfs_next_leaf(root, path);
2243 				if (ret)
2244 					break;
2245 			}
2246 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2247 					      path->slots[0]);
2248 			if (found_key.objectid != dirid ||
2249 			    found_key.type != dir_key.type)
2250 				goto next_type;
2251 
2252 			if (found_key.offset > range_end)
2253 				break;
2254 
2255 			ret = check_item_in_log(trans, root, log, path,
2256 						log_path, dir,
2257 						&found_key);
2258 			if (ret)
2259 				goto out;
2260 			if (found_key.offset == (u64)-1)
2261 				break;
2262 			dir_key.offset = found_key.offset + 1;
2263 		}
2264 		btrfs_release_path(path);
2265 		if (range_end == (u64)-1)
2266 			break;
2267 		range_start = range_end + 1;
2268 	}
2269 
2270 next_type:
2271 	ret = 0;
2272 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2273 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2274 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2275 		btrfs_release_path(path);
2276 		goto again;
2277 	}
2278 out:
2279 	btrfs_release_path(path);
2280 	btrfs_free_path(log_path);
2281 	iput(dir);
2282 	return ret;
2283 }
2284 
2285 /*
2286  * the process_func used to replay items from the log tree.  This
2287  * gets called in two different stages.  The first stage just looks
2288  * for inodes and makes sure they are all copied into the subvolume.
2289  *
2290  * The second stage copies all the other item types from the log into
2291  * the subvolume.  The two stage approach is slower, but gets rid of
2292  * lots of complexity around inodes referencing other inodes that exist
2293  * only in the log (references come from either directory items or inode
2294  * back refs).
2295  */
2296 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2297 			     struct walk_control *wc, u64 gen)
2298 {
2299 	int nritems;
2300 	struct btrfs_path *path;
2301 	struct btrfs_root *root = wc->replay_dest;
2302 	struct btrfs_key key;
2303 	int level;
2304 	int i;
2305 	int ret;
2306 
2307 	ret = btrfs_read_buffer(eb, gen);
2308 	if (ret)
2309 		return ret;
2310 
2311 	level = btrfs_header_level(eb);
2312 
2313 	if (level != 0)
2314 		return 0;
2315 
2316 	path = btrfs_alloc_path();
2317 	if (!path)
2318 		return -ENOMEM;
2319 
2320 	nritems = btrfs_header_nritems(eb);
2321 	for (i = 0; i < nritems; i++) {
2322 		btrfs_item_key_to_cpu(eb, &key, i);
2323 
2324 		/* inode keys are done during the first stage */
2325 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2326 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2327 			struct btrfs_inode_item *inode_item;
2328 			u32 mode;
2329 
2330 			inode_item = btrfs_item_ptr(eb, i,
2331 					    struct btrfs_inode_item);
2332 			ret = replay_xattr_deletes(wc->trans, root, log,
2333 						   path, key.objectid);
2334 			if (ret)
2335 				break;
2336 			mode = btrfs_inode_mode(eb, inode_item);
2337 			if (S_ISDIR(mode)) {
2338 				ret = replay_dir_deletes(wc->trans,
2339 					 root, log, path, key.objectid, 0);
2340 				if (ret)
2341 					break;
2342 			}
2343 			ret = overwrite_item(wc->trans, root, path,
2344 					     eb, i, &key);
2345 			if (ret)
2346 				break;
2347 
2348 			/* for regular files, make sure corresponding
2349 			 * orphan item exist. extents past the new EOF
2350 			 * will be truncated later by orphan cleanup.
2351 			 */
2352 			if (S_ISREG(mode)) {
2353 				ret = insert_orphan_item(wc->trans, root,
2354 							 key.objectid);
2355 				if (ret)
2356 					break;
2357 			}
2358 
2359 			ret = link_to_fixup_dir(wc->trans, root,
2360 						path, key.objectid);
2361 			if (ret)
2362 				break;
2363 		}
2364 
2365 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2366 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2367 			ret = replay_one_dir_item(wc->trans, root, path,
2368 						  eb, i, &key);
2369 			if (ret)
2370 				break;
2371 		}
2372 
2373 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2374 			continue;
2375 
2376 		/* these keys are simply copied */
2377 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2378 			ret = overwrite_item(wc->trans, root, path,
2379 					     eb, i, &key);
2380 			if (ret)
2381 				break;
2382 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2383 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2384 			ret = add_inode_ref(wc->trans, root, log, path,
2385 					    eb, i, &key);
2386 			if (ret && ret != -ENOENT)
2387 				break;
2388 			ret = 0;
2389 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2390 			ret = replay_one_extent(wc->trans, root, path,
2391 						eb, i, &key);
2392 			if (ret)
2393 				break;
2394 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2395 			ret = replay_one_dir_item(wc->trans, root, path,
2396 						  eb, i, &key);
2397 			if (ret)
2398 				break;
2399 		}
2400 	}
2401 	btrfs_free_path(path);
2402 	return ret;
2403 }
2404 
2405 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2406 				   struct btrfs_root *root,
2407 				   struct btrfs_path *path, int *level,
2408 				   struct walk_control *wc)
2409 {
2410 	u64 root_owner;
2411 	u64 bytenr;
2412 	u64 ptr_gen;
2413 	struct extent_buffer *next;
2414 	struct extent_buffer *cur;
2415 	struct extent_buffer *parent;
2416 	u32 blocksize;
2417 	int ret = 0;
2418 
2419 	WARN_ON(*level < 0);
2420 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2421 
2422 	while (*level > 0) {
2423 		WARN_ON(*level < 0);
2424 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2425 		cur = path->nodes[*level];
2426 
2427 		WARN_ON(btrfs_header_level(cur) != *level);
2428 
2429 		if (path->slots[*level] >=
2430 		    btrfs_header_nritems(cur))
2431 			break;
2432 
2433 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2434 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2435 		blocksize = root->nodesize;
2436 
2437 		parent = path->nodes[*level];
2438 		root_owner = btrfs_header_owner(parent);
2439 
2440 		next = btrfs_find_create_tree_block(root, bytenr);
2441 		if (IS_ERR(next))
2442 			return PTR_ERR(next);
2443 
2444 		if (*level == 1) {
2445 			ret = wc->process_func(root, next, wc, ptr_gen);
2446 			if (ret) {
2447 				free_extent_buffer(next);
2448 				return ret;
2449 			}
2450 
2451 			path->slots[*level]++;
2452 			if (wc->free) {
2453 				ret = btrfs_read_buffer(next, ptr_gen);
2454 				if (ret) {
2455 					free_extent_buffer(next);
2456 					return ret;
2457 				}
2458 
2459 				if (trans) {
2460 					btrfs_tree_lock(next);
2461 					btrfs_set_lock_blocking(next);
2462 					clean_tree_block(trans, root->fs_info,
2463 							next);
2464 					btrfs_wait_tree_block_writeback(next);
2465 					btrfs_tree_unlock(next);
2466 				}
2467 
2468 				WARN_ON(root_owner !=
2469 					BTRFS_TREE_LOG_OBJECTID);
2470 				ret = btrfs_free_and_pin_reserved_extent(root,
2471 							 bytenr, blocksize);
2472 				if (ret) {
2473 					free_extent_buffer(next);
2474 					return ret;
2475 				}
2476 			}
2477 			free_extent_buffer(next);
2478 			continue;
2479 		}
2480 		ret = btrfs_read_buffer(next, ptr_gen);
2481 		if (ret) {
2482 			free_extent_buffer(next);
2483 			return ret;
2484 		}
2485 
2486 		WARN_ON(*level <= 0);
2487 		if (path->nodes[*level-1])
2488 			free_extent_buffer(path->nodes[*level-1]);
2489 		path->nodes[*level-1] = next;
2490 		*level = btrfs_header_level(next);
2491 		path->slots[*level] = 0;
2492 		cond_resched();
2493 	}
2494 	WARN_ON(*level < 0);
2495 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2496 
2497 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2498 
2499 	cond_resched();
2500 	return 0;
2501 }
2502 
2503 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2504 				 struct btrfs_root *root,
2505 				 struct btrfs_path *path, int *level,
2506 				 struct walk_control *wc)
2507 {
2508 	u64 root_owner;
2509 	int i;
2510 	int slot;
2511 	int ret;
2512 
2513 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2514 		slot = path->slots[i];
2515 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2516 			path->slots[i]++;
2517 			*level = i;
2518 			WARN_ON(*level == 0);
2519 			return 0;
2520 		} else {
2521 			struct extent_buffer *parent;
2522 			if (path->nodes[*level] == root->node)
2523 				parent = path->nodes[*level];
2524 			else
2525 				parent = path->nodes[*level + 1];
2526 
2527 			root_owner = btrfs_header_owner(parent);
2528 			ret = wc->process_func(root, path->nodes[*level], wc,
2529 				 btrfs_header_generation(path->nodes[*level]));
2530 			if (ret)
2531 				return ret;
2532 
2533 			if (wc->free) {
2534 				struct extent_buffer *next;
2535 
2536 				next = path->nodes[*level];
2537 
2538 				if (trans) {
2539 					btrfs_tree_lock(next);
2540 					btrfs_set_lock_blocking(next);
2541 					clean_tree_block(trans, root->fs_info,
2542 							next);
2543 					btrfs_wait_tree_block_writeback(next);
2544 					btrfs_tree_unlock(next);
2545 				}
2546 
2547 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2548 				ret = btrfs_free_and_pin_reserved_extent(root,
2549 						path->nodes[*level]->start,
2550 						path->nodes[*level]->len);
2551 				if (ret)
2552 					return ret;
2553 			}
2554 			free_extent_buffer(path->nodes[*level]);
2555 			path->nodes[*level] = NULL;
2556 			*level = i + 1;
2557 		}
2558 	}
2559 	return 1;
2560 }
2561 
2562 /*
2563  * drop the reference count on the tree rooted at 'snap'.  This traverses
2564  * the tree freeing any blocks that have a ref count of zero after being
2565  * decremented.
2566  */
2567 static int walk_log_tree(struct btrfs_trans_handle *trans,
2568 			 struct btrfs_root *log, struct walk_control *wc)
2569 {
2570 	int ret = 0;
2571 	int wret;
2572 	int level;
2573 	struct btrfs_path *path;
2574 	int orig_level;
2575 
2576 	path = btrfs_alloc_path();
2577 	if (!path)
2578 		return -ENOMEM;
2579 
2580 	level = btrfs_header_level(log->node);
2581 	orig_level = level;
2582 	path->nodes[level] = log->node;
2583 	extent_buffer_get(log->node);
2584 	path->slots[level] = 0;
2585 
2586 	while (1) {
2587 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2588 		if (wret > 0)
2589 			break;
2590 		if (wret < 0) {
2591 			ret = wret;
2592 			goto out;
2593 		}
2594 
2595 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2596 		if (wret > 0)
2597 			break;
2598 		if (wret < 0) {
2599 			ret = wret;
2600 			goto out;
2601 		}
2602 	}
2603 
2604 	/* was the root node processed? if not, catch it here */
2605 	if (path->nodes[orig_level]) {
2606 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2607 			 btrfs_header_generation(path->nodes[orig_level]));
2608 		if (ret)
2609 			goto out;
2610 		if (wc->free) {
2611 			struct extent_buffer *next;
2612 
2613 			next = path->nodes[orig_level];
2614 
2615 			if (trans) {
2616 				btrfs_tree_lock(next);
2617 				btrfs_set_lock_blocking(next);
2618 				clean_tree_block(trans, log->fs_info, next);
2619 				btrfs_wait_tree_block_writeback(next);
2620 				btrfs_tree_unlock(next);
2621 			}
2622 
2623 			WARN_ON(log->root_key.objectid !=
2624 				BTRFS_TREE_LOG_OBJECTID);
2625 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2626 							 next->len);
2627 			if (ret)
2628 				goto out;
2629 		}
2630 	}
2631 
2632 out:
2633 	btrfs_free_path(path);
2634 	return ret;
2635 }
2636 
2637 /*
2638  * helper function to update the item for a given subvolumes log root
2639  * in the tree of log roots
2640  */
2641 static int update_log_root(struct btrfs_trans_handle *trans,
2642 			   struct btrfs_root *log)
2643 {
2644 	int ret;
2645 
2646 	if (log->log_transid == 1) {
2647 		/* insert root item on the first sync */
2648 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2649 				&log->root_key, &log->root_item);
2650 	} else {
2651 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2652 				&log->root_key, &log->root_item);
2653 	}
2654 	return ret;
2655 }
2656 
2657 static void wait_log_commit(struct btrfs_root *root, int transid)
2658 {
2659 	DEFINE_WAIT(wait);
2660 	int index = transid % 2;
2661 
2662 	/*
2663 	 * we only allow two pending log transactions at a time,
2664 	 * so we know that if ours is more than 2 older than the
2665 	 * current transaction, we're done
2666 	 */
2667 	do {
2668 		prepare_to_wait(&root->log_commit_wait[index],
2669 				&wait, TASK_UNINTERRUPTIBLE);
2670 		mutex_unlock(&root->log_mutex);
2671 
2672 		if (root->log_transid_committed < transid &&
2673 		    atomic_read(&root->log_commit[index]))
2674 			schedule();
2675 
2676 		finish_wait(&root->log_commit_wait[index], &wait);
2677 		mutex_lock(&root->log_mutex);
2678 	} while (root->log_transid_committed < transid &&
2679 		 atomic_read(&root->log_commit[index]));
2680 }
2681 
2682 static void wait_for_writer(struct btrfs_root *root)
2683 {
2684 	DEFINE_WAIT(wait);
2685 
2686 	while (atomic_read(&root->log_writers)) {
2687 		prepare_to_wait(&root->log_writer_wait,
2688 				&wait, TASK_UNINTERRUPTIBLE);
2689 		mutex_unlock(&root->log_mutex);
2690 		if (atomic_read(&root->log_writers))
2691 			schedule();
2692 		finish_wait(&root->log_writer_wait, &wait);
2693 		mutex_lock(&root->log_mutex);
2694 	}
2695 }
2696 
2697 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2698 					struct btrfs_log_ctx *ctx)
2699 {
2700 	if (!ctx)
2701 		return;
2702 
2703 	mutex_lock(&root->log_mutex);
2704 	list_del_init(&ctx->list);
2705 	mutex_unlock(&root->log_mutex);
2706 }
2707 
2708 /*
2709  * Invoked in log mutex context, or be sure there is no other task which
2710  * can access the list.
2711  */
2712 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2713 					     int index, int error)
2714 {
2715 	struct btrfs_log_ctx *ctx;
2716 
2717 	if (!error) {
2718 		INIT_LIST_HEAD(&root->log_ctxs[index]);
2719 		return;
2720 	}
2721 
2722 	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2723 		ctx->log_ret = error;
2724 
2725 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2726 }
2727 
2728 /*
2729  * btrfs_sync_log does sends a given tree log down to the disk and
2730  * updates the super blocks to record it.  When this call is done,
2731  * you know that any inodes previously logged are safely on disk only
2732  * if it returns 0.
2733  *
2734  * Any other return value means you need to call btrfs_commit_transaction.
2735  * Some of the edge cases for fsyncing directories that have had unlinks
2736  * or renames done in the past mean that sometimes the only safe
2737  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2738  * that has happened.
2739  */
2740 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2741 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2742 {
2743 	int index1;
2744 	int index2;
2745 	int mark;
2746 	int ret;
2747 	struct btrfs_root *log = root->log_root;
2748 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2749 	int log_transid = 0;
2750 	struct btrfs_log_ctx root_log_ctx;
2751 	struct blk_plug plug;
2752 
2753 	mutex_lock(&root->log_mutex);
2754 	log_transid = ctx->log_transid;
2755 	if (root->log_transid_committed >= log_transid) {
2756 		mutex_unlock(&root->log_mutex);
2757 		return ctx->log_ret;
2758 	}
2759 
2760 	index1 = log_transid % 2;
2761 	if (atomic_read(&root->log_commit[index1])) {
2762 		wait_log_commit(root, log_transid);
2763 		mutex_unlock(&root->log_mutex);
2764 		return ctx->log_ret;
2765 	}
2766 	ASSERT(log_transid == root->log_transid);
2767 	atomic_set(&root->log_commit[index1], 1);
2768 
2769 	/* wait for previous tree log sync to complete */
2770 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2771 		wait_log_commit(root, log_transid - 1);
2772 
2773 	while (1) {
2774 		int batch = atomic_read(&root->log_batch);
2775 		/* when we're on an ssd, just kick the log commit out */
2776 		if (!btrfs_test_opt(root->fs_info, SSD) &&
2777 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2778 			mutex_unlock(&root->log_mutex);
2779 			schedule_timeout_uninterruptible(1);
2780 			mutex_lock(&root->log_mutex);
2781 		}
2782 		wait_for_writer(root);
2783 		if (batch == atomic_read(&root->log_batch))
2784 			break;
2785 	}
2786 
2787 	/* bail out if we need to do a full commit */
2788 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2789 		ret = -EAGAIN;
2790 		btrfs_free_logged_extents(log, log_transid);
2791 		mutex_unlock(&root->log_mutex);
2792 		goto out;
2793 	}
2794 
2795 	if (log_transid % 2 == 0)
2796 		mark = EXTENT_DIRTY;
2797 	else
2798 		mark = EXTENT_NEW;
2799 
2800 	/* we start IO on  all the marked extents here, but we don't actually
2801 	 * wait for them until later.
2802 	 */
2803 	blk_start_plug(&plug);
2804 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2805 	if (ret) {
2806 		blk_finish_plug(&plug);
2807 		btrfs_abort_transaction(trans, ret);
2808 		btrfs_free_logged_extents(log, log_transid);
2809 		btrfs_set_log_full_commit(root->fs_info, trans);
2810 		mutex_unlock(&root->log_mutex);
2811 		goto out;
2812 	}
2813 
2814 	btrfs_set_root_node(&log->root_item, log->node);
2815 
2816 	root->log_transid++;
2817 	log->log_transid = root->log_transid;
2818 	root->log_start_pid = 0;
2819 	/*
2820 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2821 	 * in their headers. new modifications of the log will be written to
2822 	 * new positions. so it's safe to allow log writers to go in.
2823 	 */
2824 	mutex_unlock(&root->log_mutex);
2825 
2826 	btrfs_init_log_ctx(&root_log_ctx, NULL);
2827 
2828 	mutex_lock(&log_root_tree->log_mutex);
2829 	atomic_inc(&log_root_tree->log_batch);
2830 	atomic_inc(&log_root_tree->log_writers);
2831 
2832 	index2 = log_root_tree->log_transid % 2;
2833 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2834 	root_log_ctx.log_transid = log_root_tree->log_transid;
2835 
2836 	mutex_unlock(&log_root_tree->log_mutex);
2837 
2838 	ret = update_log_root(trans, log);
2839 
2840 	mutex_lock(&log_root_tree->log_mutex);
2841 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2842 		/*
2843 		 * Implicit memory barrier after atomic_dec_and_test
2844 		 */
2845 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2846 			wake_up(&log_root_tree->log_writer_wait);
2847 	}
2848 
2849 	if (ret) {
2850 		if (!list_empty(&root_log_ctx.list))
2851 			list_del_init(&root_log_ctx.list);
2852 
2853 		blk_finish_plug(&plug);
2854 		btrfs_set_log_full_commit(root->fs_info, trans);
2855 
2856 		if (ret != -ENOSPC) {
2857 			btrfs_abort_transaction(trans, ret);
2858 			mutex_unlock(&log_root_tree->log_mutex);
2859 			goto out;
2860 		}
2861 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2862 		btrfs_free_logged_extents(log, log_transid);
2863 		mutex_unlock(&log_root_tree->log_mutex);
2864 		ret = -EAGAIN;
2865 		goto out;
2866 	}
2867 
2868 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2869 		blk_finish_plug(&plug);
2870 		mutex_unlock(&log_root_tree->log_mutex);
2871 		ret = root_log_ctx.log_ret;
2872 		goto out;
2873 	}
2874 
2875 	index2 = root_log_ctx.log_transid % 2;
2876 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2877 		blk_finish_plug(&plug);
2878 		ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2879 						mark);
2880 		btrfs_wait_logged_extents(trans, log, log_transid);
2881 		wait_log_commit(log_root_tree,
2882 				root_log_ctx.log_transid);
2883 		mutex_unlock(&log_root_tree->log_mutex);
2884 		if (!ret)
2885 			ret = root_log_ctx.log_ret;
2886 		goto out;
2887 	}
2888 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2889 	atomic_set(&log_root_tree->log_commit[index2], 1);
2890 
2891 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2892 		wait_log_commit(log_root_tree,
2893 				root_log_ctx.log_transid - 1);
2894 	}
2895 
2896 	wait_for_writer(log_root_tree);
2897 
2898 	/*
2899 	 * now that we've moved on to the tree of log tree roots,
2900 	 * check the full commit flag again
2901 	 */
2902 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2903 		blk_finish_plug(&plug);
2904 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2905 		btrfs_free_logged_extents(log, log_transid);
2906 		mutex_unlock(&log_root_tree->log_mutex);
2907 		ret = -EAGAIN;
2908 		goto out_wake_log_root;
2909 	}
2910 
2911 	ret = btrfs_write_marked_extents(log_root_tree,
2912 					 &log_root_tree->dirty_log_pages,
2913 					 EXTENT_DIRTY | EXTENT_NEW);
2914 	blk_finish_plug(&plug);
2915 	if (ret) {
2916 		btrfs_set_log_full_commit(root->fs_info, trans);
2917 		btrfs_abort_transaction(trans, ret);
2918 		btrfs_free_logged_extents(log, log_transid);
2919 		mutex_unlock(&log_root_tree->log_mutex);
2920 		goto out_wake_log_root;
2921 	}
2922 	ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2923 	if (!ret)
2924 		ret = btrfs_wait_marked_extents(log_root_tree,
2925 						&log_root_tree->dirty_log_pages,
2926 						EXTENT_NEW | EXTENT_DIRTY);
2927 	if (ret) {
2928 		btrfs_set_log_full_commit(root->fs_info, trans);
2929 		btrfs_free_logged_extents(log, log_transid);
2930 		mutex_unlock(&log_root_tree->log_mutex);
2931 		goto out_wake_log_root;
2932 	}
2933 	btrfs_wait_logged_extents(trans, log, log_transid);
2934 
2935 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2936 				log_root_tree->node->start);
2937 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2938 				btrfs_header_level(log_root_tree->node));
2939 
2940 	log_root_tree->log_transid++;
2941 	mutex_unlock(&log_root_tree->log_mutex);
2942 
2943 	/*
2944 	 * nobody else is going to jump in and write the the ctree
2945 	 * super here because the log_commit atomic below is protecting
2946 	 * us.  We must be called with a transaction handle pinning
2947 	 * the running transaction open, so a full commit can't hop
2948 	 * in and cause problems either.
2949 	 */
2950 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2951 	if (ret) {
2952 		btrfs_set_log_full_commit(root->fs_info, trans);
2953 		btrfs_abort_transaction(trans, ret);
2954 		goto out_wake_log_root;
2955 	}
2956 
2957 	mutex_lock(&root->log_mutex);
2958 	if (root->last_log_commit < log_transid)
2959 		root->last_log_commit = log_transid;
2960 	mutex_unlock(&root->log_mutex);
2961 
2962 out_wake_log_root:
2963 	/*
2964 	 * We needn't get log_mutex here because we are sure all
2965 	 * the other tasks are blocked.
2966 	 */
2967 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2968 
2969 	mutex_lock(&log_root_tree->log_mutex);
2970 	log_root_tree->log_transid_committed++;
2971 	atomic_set(&log_root_tree->log_commit[index2], 0);
2972 	mutex_unlock(&log_root_tree->log_mutex);
2973 
2974 	/*
2975 	 * The barrier before waitqueue_active is implied by mutex_unlock
2976 	 */
2977 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2978 		wake_up(&log_root_tree->log_commit_wait[index2]);
2979 out:
2980 	/* See above. */
2981 	btrfs_remove_all_log_ctxs(root, index1, ret);
2982 
2983 	mutex_lock(&root->log_mutex);
2984 	root->log_transid_committed++;
2985 	atomic_set(&root->log_commit[index1], 0);
2986 	mutex_unlock(&root->log_mutex);
2987 
2988 	/*
2989 	 * The barrier before waitqueue_active is implied by mutex_unlock
2990 	 */
2991 	if (waitqueue_active(&root->log_commit_wait[index1]))
2992 		wake_up(&root->log_commit_wait[index1]);
2993 	return ret;
2994 }
2995 
2996 static void free_log_tree(struct btrfs_trans_handle *trans,
2997 			  struct btrfs_root *log)
2998 {
2999 	int ret;
3000 	u64 start;
3001 	u64 end;
3002 	struct walk_control wc = {
3003 		.free = 1,
3004 		.process_func = process_one_buffer
3005 	};
3006 
3007 	ret = walk_log_tree(trans, log, &wc);
3008 	/* I don't think this can happen but just in case */
3009 	if (ret)
3010 		btrfs_abort_transaction(trans, ret);
3011 
3012 	while (1) {
3013 		ret = find_first_extent_bit(&log->dirty_log_pages,
3014 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3015 				NULL);
3016 		if (ret)
3017 			break;
3018 
3019 		clear_extent_bits(&log->dirty_log_pages, start, end,
3020 				  EXTENT_DIRTY | EXTENT_NEW);
3021 	}
3022 
3023 	/*
3024 	 * We may have short-circuited the log tree with the full commit logic
3025 	 * and left ordered extents on our list, so clear these out to keep us
3026 	 * from leaking inodes and memory.
3027 	 */
3028 	btrfs_free_logged_extents(log, 0);
3029 	btrfs_free_logged_extents(log, 1);
3030 
3031 	free_extent_buffer(log->node);
3032 	kfree(log);
3033 }
3034 
3035 /*
3036  * free all the extents used by the tree log.  This should be called
3037  * at commit time of the full transaction
3038  */
3039 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3040 {
3041 	if (root->log_root) {
3042 		free_log_tree(trans, root->log_root);
3043 		root->log_root = NULL;
3044 	}
3045 	return 0;
3046 }
3047 
3048 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3049 			     struct btrfs_fs_info *fs_info)
3050 {
3051 	if (fs_info->log_root_tree) {
3052 		free_log_tree(trans, fs_info->log_root_tree);
3053 		fs_info->log_root_tree = NULL;
3054 	}
3055 	return 0;
3056 }
3057 
3058 /*
3059  * If both a file and directory are logged, and unlinks or renames are
3060  * mixed in, we have a few interesting corners:
3061  *
3062  * create file X in dir Y
3063  * link file X to X.link in dir Y
3064  * fsync file X
3065  * unlink file X but leave X.link
3066  * fsync dir Y
3067  *
3068  * After a crash we would expect only X.link to exist.  But file X
3069  * didn't get fsync'd again so the log has back refs for X and X.link.
3070  *
3071  * We solve this by removing directory entries and inode backrefs from the
3072  * log when a file that was logged in the current transaction is
3073  * unlinked.  Any later fsync will include the updated log entries, and
3074  * we'll be able to reconstruct the proper directory items from backrefs.
3075  *
3076  * This optimizations allows us to avoid relogging the entire inode
3077  * or the entire directory.
3078  */
3079 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3080 				 struct btrfs_root *root,
3081 				 const char *name, int name_len,
3082 				 struct inode *dir, u64 index)
3083 {
3084 	struct btrfs_root *log;
3085 	struct btrfs_dir_item *di;
3086 	struct btrfs_path *path;
3087 	int ret;
3088 	int err = 0;
3089 	int bytes_del = 0;
3090 	u64 dir_ino = btrfs_ino(dir);
3091 
3092 	if (BTRFS_I(dir)->logged_trans < trans->transid)
3093 		return 0;
3094 
3095 	ret = join_running_log_trans(root);
3096 	if (ret)
3097 		return 0;
3098 
3099 	mutex_lock(&BTRFS_I(dir)->log_mutex);
3100 
3101 	log = root->log_root;
3102 	path = btrfs_alloc_path();
3103 	if (!path) {
3104 		err = -ENOMEM;
3105 		goto out_unlock;
3106 	}
3107 
3108 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3109 				   name, name_len, -1);
3110 	if (IS_ERR(di)) {
3111 		err = PTR_ERR(di);
3112 		goto fail;
3113 	}
3114 	if (di) {
3115 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3116 		bytes_del += name_len;
3117 		if (ret) {
3118 			err = ret;
3119 			goto fail;
3120 		}
3121 	}
3122 	btrfs_release_path(path);
3123 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3124 					 index, name, name_len, -1);
3125 	if (IS_ERR(di)) {
3126 		err = PTR_ERR(di);
3127 		goto fail;
3128 	}
3129 	if (di) {
3130 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3131 		bytes_del += name_len;
3132 		if (ret) {
3133 			err = ret;
3134 			goto fail;
3135 		}
3136 	}
3137 
3138 	/* update the directory size in the log to reflect the names
3139 	 * we have removed
3140 	 */
3141 	if (bytes_del) {
3142 		struct btrfs_key key;
3143 
3144 		key.objectid = dir_ino;
3145 		key.offset = 0;
3146 		key.type = BTRFS_INODE_ITEM_KEY;
3147 		btrfs_release_path(path);
3148 
3149 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3150 		if (ret < 0) {
3151 			err = ret;
3152 			goto fail;
3153 		}
3154 		if (ret == 0) {
3155 			struct btrfs_inode_item *item;
3156 			u64 i_size;
3157 
3158 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3159 					      struct btrfs_inode_item);
3160 			i_size = btrfs_inode_size(path->nodes[0], item);
3161 			if (i_size > bytes_del)
3162 				i_size -= bytes_del;
3163 			else
3164 				i_size = 0;
3165 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3166 			btrfs_mark_buffer_dirty(path->nodes[0]);
3167 		} else
3168 			ret = 0;
3169 		btrfs_release_path(path);
3170 	}
3171 fail:
3172 	btrfs_free_path(path);
3173 out_unlock:
3174 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
3175 	if (ret == -ENOSPC) {
3176 		btrfs_set_log_full_commit(root->fs_info, trans);
3177 		ret = 0;
3178 	} else if (ret < 0)
3179 		btrfs_abort_transaction(trans, ret);
3180 
3181 	btrfs_end_log_trans(root);
3182 
3183 	return err;
3184 }
3185 
3186 /* see comments for btrfs_del_dir_entries_in_log */
3187 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3188 			       struct btrfs_root *root,
3189 			       const char *name, int name_len,
3190 			       struct inode *inode, u64 dirid)
3191 {
3192 	struct btrfs_root *log;
3193 	u64 index;
3194 	int ret;
3195 
3196 	if (BTRFS_I(inode)->logged_trans < trans->transid)
3197 		return 0;
3198 
3199 	ret = join_running_log_trans(root);
3200 	if (ret)
3201 		return 0;
3202 	log = root->log_root;
3203 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3204 
3205 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3206 				  dirid, &index);
3207 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3208 	if (ret == -ENOSPC) {
3209 		btrfs_set_log_full_commit(root->fs_info, trans);
3210 		ret = 0;
3211 	} else if (ret < 0 && ret != -ENOENT)
3212 		btrfs_abort_transaction(trans, ret);
3213 	btrfs_end_log_trans(root);
3214 
3215 	return ret;
3216 }
3217 
3218 /*
3219  * creates a range item in the log for 'dirid'.  first_offset and
3220  * last_offset tell us which parts of the key space the log should
3221  * be considered authoritative for.
3222  */
3223 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3224 				       struct btrfs_root *log,
3225 				       struct btrfs_path *path,
3226 				       int key_type, u64 dirid,
3227 				       u64 first_offset, u64 last_offset)
3228 {
3229 	int ret;
3230 	struct btrfs_key key;
3231 	struct btrfs_dir_log_item *item;
3232 
3233 	key.objectid = dirid;
3234 	key.offset = first_offset;
3235 	if (key_type == BTRFS_DIR_ITEM_KEY)
3236 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3237 	else
3238 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3239 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3240 	if (ret)
3241 		return ret;
3242 
3243 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3244 			      struct btrfs_dir_log_item);
3245 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3246 	btrfs_mark_buffer_dirty(path->nodes[0]);
3247 	btrfs_release_path(path);
3248 	return 0;
3249 }
3250 
3251 /*
3252  * log all the items included in the current transaction for a given
3253  * directory.  This also creates the range items in the log tree required
3254  * to replay anything deleted before the fsync
3255  */
3256 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3257 			  struct btrfs_root *root, struct inode *inode,
3258 			  struct btrfs_path *path,
3259 			  struct btrfs_path *dst_path, int key_type,
3260 			  struct btrfs_log_ctx *ctx,
3261 			  u64 min_offset, u64 *last_offset_ret)
3262 {
3263 	struct btrfs_key min_key;
3264 	struct btrfs_root *log = root->log_root;
3265 	struct extent_buffer *src;
3266 	int err = 0;
3267 	int ret;
3268 	int i;
3269 	int nritems;
3270 	u64 first_offset = min_offset;
3271 	u64 last_offset = (u64)-1;
3272 	u64 ino = btrfs_ino(inode);
3273 
3274 	log = root->log_root;
3275 
3276 	min_key.objectid = ino;
3277 	min_key.type = key_type;
3278 	min_key.offset = min_offset;
3279 
3280 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3281 
3282 	/*
3283 	 * we didn't find anything from this transaction, see if there
3284 	 * is anything at all
3285 	 */
3286 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3287 		min_key.objectid = ino;
3288 		min_key.type = key_type;
3289 		min_key.offset = (u64)-1;
3290 		btrfs_release_path(path);
3291 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3292 		if (ret < 0) {
3293 			btrfs_release_path(path);
3294 			return ret;
3295 		}
3296 		ret = btrfs_previous_item(root, path, ino, key_type);
3297 
3298 		/* if ret == 0 there are items for this type,
3299 		 * create a range to tell us the last key of this type.
3300 		 * otherwise, there are no items in this directory after
3301 		 * *min_offset, and we create a range to indicate that.
3302 		 */
3303 		if (ret == 0) {
3304 			struct btrfs_key tmp;
3305 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3306 					      path->slots[0]);
3307 			if (key_type == tmp.type)
3308 				first_offset = max(min_offset, tmp.offset) + 1;
3309 		}
3310 		goto done;
3311 	}
3312 
3313 	/* go backward to find any previous key */
3314 	ret = btrfs_previous_item(root, path, ino, key_type);
3315 	if (ret == 0) {
3316 		struct btrfs_key tmp;
3317 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3318 		if (key_type == tmp.type) {
3319 			first_offset = tmp.offset;
3320 			ret = overwrite_item(trans, log, dst_path,
3321 					     path->nodes[0], path->slots[0],
3322 					     &tmp);
3323 			if (ret) {
3324 				err = ret;
3325 				goto done;
3326 			}
3327 		}
3328 	}
3329 	btrfs_release_path(path);
3330 
3331 	/* find the first key from this transaction again */
3332 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3333 	if (WARN_ON(ret != 0))
3334 		goto done;
3335 
3336 	/*
3337 	 * we have a block from this transaction, log every item in it
3338 	 * from our directory
3339 	 */
3340 	while (1) {
3341 		struct btrfs_key tmp;
3342 		src = path->nodes[0];
3343 		nritems = btrfs_header_nritems(src);
3344 		for (i = path->slots[0]; i < nritems; i++) {
3345 			struct btrfs_dir_item *di;
3346 
3347 			btrfs_item_key_to_cpu(src, &min_key, i);
3348 
3349 			if (min_key.objectid != ino || min_key.type != key_type)
3350 				goto done;
3351 			ret = overwrite_item(trans, log, dst_path, src, i,
3352 					     &min_key);
3353 			if (ret) {
3354 				err = ret;
3355 				goto done;
3356 			}
3357 
3358 			/*
3359 			 * We must make sure that when we log a directory entry,
3360 			 * the corresponding inode, after log replay, has a
3361 			 * matching link count. For example:
3362 			 *
3363 			 * touch foo
3364 			 * mkdir mydir
3365 			 * sync
3366 			 * ln foo mydir/bar
3367 			 * xfs_io -c "fsync" mydir
3368 			 * <crash>
3369 			 * <mount fs and log replay>
3370 			 *
3371 			 * Would result in a fsync log that when replayed, our
3372 			 * file inode would have a link count of 1, but we get
3373 			 * two directory entries pointing to the same inode.
3374 			 * After removing one of the names, it would not be
3375 			 * possible to remove the other name, which resulted
3376 			 * always in stale file handle errors, and would not
3377 			 * be possible to rmdir the parent directory, since
3378 			 * its i_size could never decrement to the value
3379 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3380 			 */
3381 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3382 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3383 			if (ctx &&
3384 			    (btrfs_dir_transid(src, di) == trans->transid ||
3385 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3386 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3387 				ctx->log_new_dentries = true;
3388 		}
3389 		path->slots[0] = nritems;
3390 
3391 		/*
3392 		 * look ahead to the next item and see if it is also
3393 		 * from this directory and from this transaction
3394 		 */
3395 		ret = btrfs_next_leaf(root, path);
3396 		if (ret == 1) {
3397 			last_offset = (u64)-1;
3398 			goto done;
3399 		}
3400 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3401 		if (tmp.objectid != ino || tmp.type != key_type) {
3402 			last_offset = (u64)-1;
3403 			goto done;
3404 		}
3405 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3406 			ret = overwrite_item(trans, log, dst_path,
3407 					     path->nodes[0], path->slots[0],
3408 					     &tmp);
3409 			if (ret)
3410 				err = ret;
3411 			else
3412 				last_offset = tmp.offset;
3413 			goto done;
3414 		}
3415 	}
3416 done:
3417 	btrfs_release_path(path);
3418 	btrfs_release_path(dst_path);
3419 
3420 	if (err == 0) {
3421 		*last_offset_ret = last_offset;
3422 		/*
3423 		 * insert the log range keys to indicate where the log
3424 		 * is valid
3425 		 */
3426 		ret = insert_dir_log_key(trans, log, path, key_type,
3427 					 ino, first_offset, last_offset);
3428 		if (ret)
3429 			err = ret;
3430 	}
3431 	return err;
3432 }
3433 
3434 /*
3435  * logging directories is very similar to logging inodes, We find all the items
3436  * from the current transaction and write them to the log.
3437  *
3438  * The recovery code scans the directory in the subvolume, and if it finds a
3439  * key in the range logged that is not present in the log tree, then it means
3440  * that dir entry was unlinked during the transaction.
3441  *
3442  * In order for that scan to work, we must include one key smaller than
3443  * the smallest logged by this transaction and one key larger than the largest
3444  * key logged by this transaction.
3445  */
3446 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3447 			  struct btrfs_root *root, struct inode *inode,
3448 			  struct btrfs_path *path,
3449 			  struct btrfs_path *dst_path,
3450 			  struct btrfs_log_ctx *ctx)
3451 {
3452 	u64 min_key;
3453 	u64 max_key;
3454 	int ret;
3455 	int key_type = BTRFS_DIR_ITEM_KEY;
3456 
3457 again:
3458 	min_key = 0;
3459 	max_key = 0;
3460 	while (1) {
3461 		ret = log_dir_items(trans, root, inode, path,
3462 				    dst_path, key_type, ctx, min_key,
3463 				    &max_key);
3464 		if (ret)
3465 			return ret;
3466 		if (max_key == (u64)-1)
3467 			break;
3468 		min_key = max_key + 1;
3469 	}
3470 
3471 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3472 		key_type = BTRFS_DIR_INDEX_KEY;
3473 		goto again;
3474 	}
3475 	return 0;
3476 }
3477 
3478 /*
3479  * a helper function to drop items from the log before we relog an
3480  * inode.  max_key_type indicates the highest item type to remove.
3481  * This cannot be run for file data extents because it does not
3482  * free the extents they point to.
3483  */
3484 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3485 				  struct btrfs_root *log,
3486 				  struct btrfs_path *path,
3487 				  u64 objectid, int max_key_type)
3488 {
3489 	int ret;
3490 	struct btrfs_key key;
3491 	struct btrfs_key found_key;
3492 	int start_slot;
3493 
3494 	key.objectid = objectid;
3495 	key.type = max_key_type;
3496 	key.offset = (u64)-1;
3497 
3498 	while (1) {
3499 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3500 		BUG_ON(ret == 0); /* Logic error */
3501 		if (ret < 0)
3502 			break;
3503 
3504 		if (path->slots[0] == 0)
3505 			break;
3506 
3507 		path->slots[0]--;
3508 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3509 				      path->slots[0]);
3510 
3511 		if (found_key.objectid != objectid)
3512 			break;
3513 
3514 		found_key.offset = 0;
3515 		found_key.type = 0;
3516 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3517 				       &start_slot);
3518 
3519 		ret = btrfs_del_items(trans, log, path, start_slot,
3520 				      path->slots[0] - start_slot + 1);
3521 		/*
3522 		 * If start slot isn't 0 then we don't need to re-search, we've
3523 		 * found the last guy with the objectid in this tree.
3524 		 */
3525 		if (ret || start_slot != 0)
3526 			break;
3527 		btrfs_release_path(path);
3528 	}
3529 	btrfs_release_path(path);
3530 	if (ret > 0)
3531 		ret = 0;
3532 	return ret;
3533 }
3534 
3535 static void fill_inode_item(struct btrfs_trans_handle *trans,
3536 			    struct extent_buffer *leaf,
3537 			    struct btrfs_inode_item *item,
3538 			    struct inode *inode, int log_inode_only,
3539 			    u64 logged_isize)
3540 {
3541 	struct btrfs_map_token token;
3542 
3543 	btrfs_init_map_token(&token);
3544 
3545 	if (log_inode_only) {
3546 		/* set the generation to zero so the recover code
3547 		 * can tell the difference between an logging
3548 		 * just to say 'this inode exists' and a logging
3549 		 * to say 'update this inode with these values'
3550 		 */
3551 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3552 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3553 	} else {
3554 		btrfs_set_token_inode_generation(leaf, item,
3555 						 BTRFS_I(inode)->generation,
3556 						 &token);
3557 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3558 	}
3559 
3560 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3561 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3562 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3563 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3564 
3565 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3566 				     inode->i_atime.tv_sec, &token);
3567 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3568 				      inode->i_atime.tv_nsec, &token);
3569 
3570 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3571 				     inode->i_mtime.tv_sec, &token);
3572 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3573 				      inode->i_mtime.tv_nsec, &token);
3574 
3575 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3576 				     inode->i_ctime.tv_sec, &token);
3577 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3578 				      inode->i_ctime.tv_nsec, &token);
3579 
3580 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3581 				     &token);
3582 
3583 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3584 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3585 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3586 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3587 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3588 }
3589 
3590 static int log_inode_item(struct btrfs_trans_handle *trans,
3591 			  struct btrfs_root *log, struct btrfs_path *path,
3592 			  struct inode *inode)
3593 {
3594 	struct btrfs_inode_item *inode_item;
3595 	int ret;
3596 
3597 	ret = btrfs_insert_empty_item(trans, log, path,
3598 				      &BTRFS_I(inode)->location,
3599 				      sizeof(*inode_item));
3600 	if (ret && ret != -EEXIST)
3601 		return ret;
3602 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3603 				    struct btrfs_inode_item);
3604 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3605 	btrfs_release_path(path);
3606 	return 0;
3607 }
3608 
3609 static noinline int copy_items(struct btrfs_trans_handle *trans,
3610 			       struct inode *inode,
3611 			       struct btrfs_path *dst_path,
3612 			       struct btrfs_path *src_path, u64 *last_extent,
3613 			       int start_slot, int nr, int inode_only,
3614 			       u64 logged_isize)
3615 {
3616 	unsigned long src_offset;
3617 	unsigned long dst_offset;
3618 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3619 	struct btrfs_file_extent_item *extent;
3620 	struct btrfs_inode_item *inode_item;
3621 	struct extent_buffer *src = src_path->nodes[0];
3622 	struct btrfs_key first_key, last_key, key;
3623 	int ret;
3624 	struct btrfs_key *ins_keys;
3625 	u32 *ins_sizes;
3626 	char *ins_data;
3627 	int i;
3628 	struct list_head ordered_sums;
3629 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3630 	bool has_extents = false;
3631 	bool need_find_last_extent = true;
3632 	bool done = false;
3633 
3634 	INIT_LIST_HEAD(&ordered_sums);
3635 
3636 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3637 			   nr * sizeof(u32), GFP_NOFS);
3638 	if (!ins_data)
3639 		return -ENOMEM;
3640 
3641 	first_key.objectid = (u64)-1;
3642 
3643 	ins_sizes = (u32 *)ins_data;
3644 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3645 
3646 	for (i = 0; i < nr; i++) {
3647 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3648 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3649 	}
3650 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3651 				       ins_keys, ins_sizes, nr);
3652 	if (ret) {
3653 		kfree(ins_data);
3654 		return ret;
3655 	}
3656 
3657 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3658 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3659 						   dst_path->slots[0]);
3660 
3661 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3662 
3663 		if ((i == (nr - 1)))
3664 			last_key = ins_keys[i];
3665 
3666 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3667 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3668 						    dst_path->slots[0],
3669 						    struct btrfs_inode_item);
3670 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3671 					inode, inode_only == LOG_INODE_EXISTS,
3672 					logged_isize);
3673 		} else {
3674 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3675 					   src_offset, ins_sizes[i]);
3676 		}
3677 
3678 		/*
3679 		 * We set need_find_last_extent here in case we know we were
3680 		 * processing other items and then walk into the first extent in
3681 		 * the inode.  If we don't hit an extent then nothing changes,
3682 		 * we'll do the last search the next time around.
3683 		 */
3684 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3685 			has_extents = true;
3686 			if (first_key.objectid == (u64)-1)
3687 				first_key = ins_keys[i];
3688 		} else {
3689 			need_find_last_extent = false;
3690 		}
3691 
3692 		/* take a reference on file data extents so that truncates
3693 		 * or deletes of this inode don't have to relog the inode
3694 		 * again
3695 		 */
3696 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3697 		    !skip_csum) {
3698 			int found_type;
3699 			extent = btrfs_item_ptr(src, start_slot + i,
3700 						struct btrfs_file_extent_item);
3701 
3702 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3703 				continue;
3704 
3705 			found_type = btrfs_file_extent_type(src, extent);
3706 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3707 				u64 ds, dl, cs, cl;
3708 				ds = btrfs_file_extent_disk_bytenr(src,
3709 								extent);
3710 				/* ds == 0 is a hole */
3711 				if (ds == 0)
3712 					continue;
3713 
3714 				dl = btrfs_file_extent_disk_num_bytes(src,
3715 								extent);
3716 				cs = btrfs_file_extent_offset(src, extent);
3717 				cl = btrfs_file_extent_num_bytes(src,
3718 								extent);
3719 				if (btrfs_file_extent_compression(src,
3720 								  extent)) {
3721 					cs = 0;
3722 					cl = dl;
3723 				}
3724 
3725 				ret = btrfs_lookup_csums_range(
3726 						log->fs_info->csum_root,
3727 						ds + cs, ds + cs + cl - 1,
3728 						&ordered_sums, 0);
3729 				if (ret) {
3730 					btrfs_release_path(dst_path);
3731 					kfree(ins_data);
3732 					return ret;
3733 				}
3734 			}
3735 		}
3736 	}
3737 
3738 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3739 	btrfs_release_path(dst_path);
3740 	kfree(ins_data);
3741 
3742 	/*
3743 	 * we have to do this after the loop above to avoid changing the
3744 	 * log tree while trying to change the log tree.
3745 	 */
3746 	ret = 0;
3747 	while (!list_empty(&ordered_sums)) {
3748 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3749 						   struct btrfs_ordered_sum,
3750 						   list);
3751 		if (!ret)
3752 			ret = btrfs_csum_file_blocks(trans, log, sums);
3753 		list_del(&sums->list);
3754 		kfree(sums);
3755 	}
3756 
3757 	if (!has_extents)
3758 		return ret;
3759 
3760 	if (need_find_last_extent && *last_extent == first_key.offset) {
3761 		/*
3762 		 * We don't have any leafs between our current one and the one
3763 		 * we processed before that can have file extent items for our
3764 		 * inode (and have a generation number smaller than our current
3765 		 * transaction id).
3766 		 */
3767 		need_find_last_extent = false;
3768 	}
3769 
3770 	/*
3771 	 * Because we use btrfs_search_forward we could skip leaves that were
3772 	 * not modified and then assume *last_extent is valid when it really
3773 	 * isn't.  So back up to the previous leaf and read the end of the last
3774 	 * extent before we go and fill in holes.
3775 	 */
3776 	if (need_find_last_extent) {
3777 		u64 len;
3778 
3779 		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3780 		if (ret < 0)
3781 			return ret;
3782 		if (ret)
3783 			goto fill_holes;
3784 		if (src_path->slots[0])
3785 			src_path->slots[0]--;
3786 		src = src_path->nodes[0];
3787 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3788 		if (key.objectid != btrfs_ino(inode) ||
3789 		    key.type != BTRFS_EXTENT_DATA_KEY)
3790 			goto fill_holes;
3791 		extent = btrfs_item_ptr(src, src_path->slots[0],
3792 					struct btrfs_file_extent_item);
3793 		if (btrfs_file_extent_type(src, extent) ==
3794 		    BTRFS_FILE_EXTENT_INLINE) {
3795 			len = btrfs_file_extent_inline_len(src,
3796 							   src_path->slots[0],
3797 							   extent);
3798 			*last_extent = ALIGN(key.offset + len,
3799 					     log->sectorsize);
3800 		} else {
3801 			len = btrfs_file_extent_num_bytes(src, extent);
3802 			*last_extent = key.offset + len;
3803 		}
3804 	}
3805 fill_holes:
3806 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3807 	 * things could have happened
3808 	 *
3809 	 * 1) A merge could have happened, so we could currently be on a leaf
3810 	 * that holds what we were copying in the first place.
3811 	 * 2) A split could have happened, and now not all of the items we want
3812 	 * are on the same leaf.
3813 	 *
3814 	 * So we need to adjust how we search for holes, we need to drop the
3815 	 * path and re-search for the first extent key we found, and then walk
3816 	 * forward until we hit the last one we copied.
3817 	 */
3818 	if (need_find_last_extent) {
3819 		/* btrfs_prev_leaf could return 1 without releasing the path */
3820 		btrfs_release_path(src_path);
3821 		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3822 					src_path, 0, 0);
3823 		if (ret < 0)
3824 			return ret;
3825 		ASSERT(ret == 0);
3826 		src = src_path->nodes[0];
3827 		i = src_path->slots[0];
3828 	} else {
3829 		i = start_slot;
3830 	}
3831 
3832 	/*
3833 	 * Ok so here we need to go through and fill in any holes we may have
3834 	 * to make sure that holes are punched for those areas in case they had
3835 	 * extents previously.
3836 	 */
3837 	while (!done) {
3838 		u64 offset, len;
3839 		u64 extent_end;
3840 
3841 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3842 			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3843 			if (ret < 0)
3844 				return ret;
3845 			ASSERT(ret == 0);
3846 			src = src_path->nodes[0];
3847 			i = 0;
3848 		}
3849 
3850 		btrfs_item_key_to_cpu(src, &key, i);
3851 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3852 			done = true;
3853 		if (key.objectid != btrfs_ino(inode) ||
3854 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3855 			i++;
3856 			continue;
3857 		}
3858 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3859 		if (btrfs_file_extent_type(src, extent) ==
3860 		    BTRFS_FILE_EXTENT_INLINE) {
3861 			len = btrfs_file_extent_inline_len(src, i, extent);
3862 			extent_end = ALIGN(key.offset + len, log->sectorsize);
3863 		} else {
3864 			len = btrfs_file_extent_num_bytes(src, extent);
3865 			extent_end = key.offset + len;
3866 		}
3867 		i++;
3868 
3869 		if (*last_extent == key.offset) {
3870 			*last_extent = extent_end;
3871 			continue;
3872 		}
3873 		offset = *last_extent;
3874 		len = key.offset - *last_extent;
3875 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3876 					       offset, 0, 0, len, 0, len, 0,
3877 					       0, 0);
3878 		if (ret)
3879 			break;
3880 		*last_extent = extent_end;
3881 	}
3882 	/*
3883 	 * Need to let the callers know we dropped the path so they should
3884 	 * re-search.
3885 	 */
3886 	if (!ret && need_find_last_extent)
3887 		ret = 1;
3888 	return ret;
3889 }
3890 
3891 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3892 {
3893 	struct extent_map *em1, *em2;
3894 
3895 	em1 = list_entry(a, struct extent_map, list);
3896 	em2 = list_entry(b, struct extent_map, list);
3897 
3898 	if (em1->start < em2->start)
3899 		return -1;
3900 	else if (em1->start > em2->start)
3901 		return 1;
3902 	return 0;
3903 }
3904 
3905 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3906 				struct inode *inode,
3907 				struct btrfs_root *root,
3908 				const struct extent_map *em,
3909 				const struct list_head *logged_list,
3910 				bool *ordered_io_error)
3911 {
3912 	struct btrfs_ordered_extent *ordered;
3913 	struct btrfs_root *log = root->log_root;
3914 	u64 mod_start = em->mod_start;
3915 	u64 mod_len = em->mod_len;
3916 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3917 	u64 csum_offset;
3918 	u64 csum_len;
3919 	LIST_HEAD(ordered_sums);
3920 	int ret = 0;
3921 
3922 	*ordered_io_error = false;
3923 
3924 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3925 	    em->block_start == EXTENT_MAP_HOLE)
3926 		return 0;
3927 
3928 	/*
3929 	 * Wait far any ordered extent that covers our extent map. If it
3930 	 * finishes without an error, first check and see if our csums are on
3931 	 * our outstanding ordered extents.
3932 	 */
3933 	list_for_each_entry(ordered, logged_list, log_list) {
3934 		struct btrfs_ordered_sum *sum;
3935 
3936 		if (!mod_len)
3937 			break;
3938 
3939 		if (ordered->file_offset + ordered->len <= mod_start ||
3940 		    mod_start + mod_len <= ordered->file_offset)
3941 			continue;
3942 
3943 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3944 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3945 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3946 			const u64 start = ordered->file_offset;
3947 			const u64 end = ordered->file_offset + ordered->len - 1;
3948 
3949 			WARN_ON(ordered->inode != inode);
3950 			filemap_fdatawrite_range(inode->i_mapping, start, end);
3951 		}
3952 
3953 		wait_event(ordered->wait,
3954 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3955 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3956 
3957 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3958 			/*
3959 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3960 			 * i_mapping flags, so that the next fsync won't get
3961 			 * an outdated io error too.
3962 			 */
3963 			btrfs_inode_check_errors(inode);
3964 			*ordered_io_error = true;
3965 			break;
3966 		}
3967 		/*
3968 		 * We are going to copy all the csums on this ordered extent, so
3969 		 * go ahead and adjust mod_start and mod_len in case this
3970 		 * ordered extent has already been logged.
3971 		 */
3972 		if (ordered->file_offset > mod_start) {
3973 			if (ordered->file_offset + ordered->len >=
3974 			    mod_start + mod_len)
3975 				mod_len = ordered->file_offset - mod_start;
3976 			/*
3977 			 * If we have this case
3978 			 *
3979 			 * |--------- logged extent ---------|
3980 			 *       |----- ordered extent ----|
3981 			 *
3982 			 * Just don't mess with mod_start and mod_len, we'll
3983 			 * just end up logging more csums than we need and it
3984 			 * will be ok.
3985 			 */
3986 		} else {
3987 			if (ordered->file_offset + ordered->len <
3988 			    mod_start + mod_len) {
3989 				mod_len = (mod_start + mod_len) -
3990 					(ordered->file_offset + ordered->len);
3991 				mod_start = ordered->file_offset +
3992 					ordered->len;
3993 			} else {
3994 				mod_len = 0;
3995 			}
3996 		}
3997 
3998 		if (skip_csum)
3999 			continue;
4000 
4001 		/*
4002 		 * To keep us from looping for the above case of an ordered
4003 		 * extent that falls inside of the logged extent.
4004 		 */
4005 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4006 				     &ordered->flags))
4007 			continue;
4008 
4009 		list_for_each_entry(sum, &ordered->list, list) {
4010 			ret = btrfs_csum_file_blocks(trans, log, sum);
4011 			if (ret)
4012 				break;
4013 		}
4014 	}
4015 
4016 	if (*ordered_io_error || !mod_len || ret || skip_csum)
4017 		return ret;
4018 
4019 	if (em->compress_type) {
4020 		csum_offset = 0;
4021 		csum_len = max(em->block_len, em->orig_block_len);
4022 	} else {
4023 		csum_offset = mod_start - em->start;
4024 		csum_len = mod_len;
4025 	}
4026 
4027 	/* block start is already adjusted for the file extent offset. */
4028 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4029 				       em->block_start + csum_offset,
4030 				       em->block_start + csum_offset +
4031 				       csum_len - 1, &ordered_sums, 0);
4032 	if (ret)
4033 		return ret;
4034 
4035 	while (!list_empty(&ordered_sums)) {
4036 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4037 						   struct btrfs_ordered_sum,
4038 						   list);
4039 		if (!ret)
4040 			ret = btrfs_csum_file_blocks(trans, log, sums);
4041 		list_del(&sums->list);
4042 		kfree(sums);
4043 	}
4044 
4045 	return ret;
4046 }
4047 
4048 static int log_one_extent(struct btrfs_trans_handle *trans,
4049 			  struct inode *inode, struct btrfs_root *root,
4050 			  const struct extent_map *em,
4051 			  struct btrfs_path *path,
4052 			  const struct list_head *logged_list,
4053 			  struct btrfs_log_ctx *ctx)
4054 {
4055 	struct btrfs_root *log = root->log_root;
4056 	struct btrfs_file_extent_item *fi;
4057 	struct extent_buffer *leaf;
4058 	struct btrfs_map_token token;
4059 	struct btrfs_key key;
4060 	u64 extent_offset = em->start - em->orig_start;
4061 	u64 block_len;
4062 	int ret;
4063 	int extent_inserted = 0;
4064 	bool ordered_io_err = false;
4065 
4066 	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4067 				   &ordered_io_err);
4068 	if (ret)
4069 		return ret;
4070 
4071 	if (ordered_io_err) {
4072 		ctx->io_err = -EIO;
4073 		return 0;
4074 	}
4075 
4076 	btrfs_init_map_token(&token);
4077 
4078 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4079 				   em->start + em->len, NULL, 0, 1,
4080 				   sizeof(*fi), &extent_inserted);
4081 	if (ret)
4082 		return ret;
4083 
4084 	if (!extent_inserted) {
4085 		key.objectid = btrfs_ino(inode);
4086 		key.type = BTRFS_EXTENT_DATA_KEY;
4087 		key.offset = em->start;
4088 
4089 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4090 					      sizeof(*fi));
4091 		if (ret)
4092 			return ret;
4093 	}
4094 	leaf = path->nodes[0];
4095 	fi = btrfs_item_ptr(leaf, path->slots[0],
4096 			    struct btrfs_file_extent_item);
4097 
4098 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4099 					       &token);
4100 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4101 		btrfs_set_token_file_extent_type(leaf, fi,
4102 						 BTRFS_FILE_EXTENT_PREALLOC,
4103 						 &token);
4104 	else
4105 		btrfs_set_token_file_extent_type(leaf, fi,
4106 						 BTRFS_FILE_EXTENT_REG,
4107 						 &token);
4108 
4109 	block_len = max(em->block_len, em->orig_block_len);
4110 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4111 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4112 							em->block_start,
4113 							&token);
4114 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4115 							   &token);
4116 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4117 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4118 							em->block_start -
4119 							extent_offset, &token);
4120 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4121 							   &token);
4122 	} else {
4123 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4124 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4125 							   &token);
4126 	}
4127 
4128 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4129 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4130 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4131 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4132 						&token);
4133 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4134 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4135 	btrfs_mark_buffer_dirty(leaf);
4136 
4137 	btrfs_release_path(path);
4138 
4139 	return ret;
4140 }
4141 
4142 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4143 				     struct btrfs_root *root,
4144 				     struct inode *inode,
4145 				     struct btrfs_path *path,
4146 				     struct list_head *logged_list,
4147 				     struct btrfs_log_ctx *ctx,
4148 				     const u64 start,
4149 				     const u64 end)
4150 {
4151 	struct extent_map *em, *n;
4152 	struct list_head extents;
4153 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4154 	u64 test_gen;
4155 	int ret = 0;
4156 	int num = 0;
4157 
4158 	INIT_LIST_HEAD(&extents);
4159 
4160 	down_write(&BTRFS_I(inode)->dio_sem);
4161 	write_lock(&tree->lock);
4162 	test_gen = root->fs_info->last_trans_committed;
4163 
4164 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4165 		list_del_init(&em->list);
4166 
4167 		/*
4168 		 * Just an arbitrary number, this can be really CPU intensive
4169 		 * once we start getting a lot of extents, and really once we
4170 		 * have a bunch of extents we just want to commit since it will
4171 		 * be faster.
4172 		 */
4173 		if (++num > 32768) {
4174 			list_del_init(&tree->modified_extents);
4175 			ret = -EFBIG;
4176 			goto process;
4177 		}
4178 
4179 		if (em->generation <= test_gen)
4180 			continue;
4181 		/* Need a ref to keep it from getting evicted from cache */
4182 		atomic_inc(&em->refs);
4183 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4184 		list_add_tail(&em->list, &extents);
4185 		num++;
4186 	}
4187 
4188 	list_sort(NULL, &extents, extent_cmp);
4189 	btrfs_get_logged_extents(inode, logged_list, start, end);
4190 	/*
4191 	 * Some ordered extents started by fsync might have completed
4192 	 * before we could collect them into the list logged_list, which
4193 	 * means they're gone, not in our logged_list nor in the inode's
4194 	 * ordered tree. We want the application/user space to know an
4195 	 * error happened while attempting to persist file data so that
4196 	 * it can take proper action. If such error happened, we leave
4197 	 * without writing to the log tree and the fsync must report the
4198 	 * file data write error and not commit the current transaction.
4199 	 */
4200 	ret = btrfs_inode_check_errors(inode);
4201 	if (ret)
4202 		ctx->io_err = ret;
4203 process:
4204 	while (!list_empty(&extents)) {
4205 		em = list_entry(extents.next, struct extent_map, list);
4206 
4207 		list_del_init(&em->list);
4208 
4209 		/*
4210 		 * If we had an error we just need to delete everybody from our
4211 		 * private list.
4212 		 */
4213 		if (ret) {
4214 			clear_em_logging(tree, em);
4215 			free_extent_map(em);
4216 			continue;
4217 		}
4218 
4219 		write_unlock(&tree->lock);
4220 
4221 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4222 				     ctx);
4223 		write_lock(&tree->lock);
4224 		clear_em_logging(tree, em);
4225 		free_extent_map(em);
4226 	}
4227 	WARN_ON(!list_empty(&extents));
4228 	write_unlock(&tree->lock);
4229 	up_write(&BTRFS_I(inode)->dio_sem);
4230 
4231 	btrfs_release_path(path);
4232 	return ret;
4233 }
4234 
4235 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4236 			     struct btrfs_path *path, u64 *size_ret)
4237 {
4238 	struct btrfs_key key;
4239 	int ret;
4240 
4241 	key.objectid = btrfs_ino(inode);
4242 	key.type = BTRFS_INODE_ITEM_KEY;
4243 	key.offset = 0;
4244 
4245 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4246 	if (ret < 0) {
4247 		return ret;
4248 	} else if (ret > 0) {
4249 		*size_ret = 0;
4250 	} else {
4251 		struct btrfs_inode_item *item;
4252 
4253 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4254 				      struct btrfs_inode_item);
4255 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4256 	}
4257 
4258 	btrfs_release_path(path);
4259 	return 0;
4260 }
4261 
4262 /*
4263  * At the moment we always log all xattrs. This is to figure out at log replay
4264  * time which xattrs must have their deletion replayed. If a xattr is missing
4265  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4266  * because if a xattr is deleted, the inode is fsynced and a power failure
4267  * happens, causing the log to be replayed the next time the fs is mounted,
4268  * we want the xattr to not exist anymore (same behaviour as other filesystems
4269  * with a journal, ext3/4, xfs, f2fs, etc).
4270  */
4271 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4272 				struct btrfs_root *root,
4273 				struct inode *inode,
4274 				struct btrfs_path *path,
4275 				struct btrfs_path *dst_path)
4276 {
4277 	int ret;
4278 	struct btrfs_key key;
4279 	const u64 ino = btrfs_ino(inode);
4280 	int ins_nr = 0;
4281 	int start_slot = 0;
4282 
4283 	key.objectid = ino;
4284 	key.type = BTRFS_XATTR_ITEM_KEY;
4285 	key.offset = 0;
4286 
4287 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4288 	if (ret < 0)
4289 		return ret;
4290 
4291 	while (true) {
4292 		int slot = path->slots[0];
4293 		struct extent_buffer *leaf = path->nodes[0];
4294 		int nritems = btrfs_header_nritems(leaf);
4295 
4296 		if (slot >= nritems) {
4297 			if (ins_nr > 0) {
4298 				u64 last_extent = 0;
4299 
4300 				ret = copy_items(trans, inode, dst_path, path,
4301 						 &last_extent, start_slot,
4302 						 ins_nr, 1, 0);
4303 				/* can't be 1, extent items aren't processed */
4304 				ASSERT(ret <= 0);
4305 				if (ret < 0)
4306 					return ret;
4307 				ins_nr = 0;
4308 			}
4309 			ret = btrfs_next_leaf(root, path);
4310 			if (ret < 0)
4311 				return ret;
4312 			else if (ret > 0)
4313 				break;
4314 			continue;
4315 		}
4316 
4317 		btrfs_item_key_to_cpu(leaf, &key, slot);
4318 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4319 			break;
4320 
4321 		if (ins_nr == 0)
4322 			start_slot = slot;
4323 		ins_nr++;
4324 		path->slots[0]++;
4325 		cond_resched();
4326 	}
4327 	if (ins_nr > 0) {
4328 		u64 last_extent = 0;
4329 
4330 		ret = copy_items(trans, inode, dst_path, path,
4331 				 &last_extent, start_slot,
4332 				 ins_nr, 1, 0);
4333 		/* can't be 1, extent items aren't processed */
4334 		ASSERT(ret <= 0);
4335 		if (ret < 0)
4336 			return ret;
4337 	}
4338 
4339 	return 0;
4340 }
4341 
4342 /*
4343  * If the no holes feature is enabled we need to make sure any hole between the
4344  * last extent and the i_size of our inode is explicitly marked in the log. This
4345  * is to make sure that doing something like:
4346  *
4347  *      1) create file with 128Kb of data
4348  *      2) truncate file to 64Kb
4349  *      3) truncate file to 256Kb
4350  *      4) fsync file
4351  *      5) <crash/power failure>
4352  *      6) mount fs and trigger log replay
4353  *
4354  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4355  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4356  * file correspond to a hole. The presence of explicit holes in a log tree is
4357  * what guarantees that log replay will remove/adjust file extent items in the
4358  * fs/subvol tree.
4359  *
4360  * Here we do not need to care about holes between extents, that is already done
4361  * by copy_items(). We also only need to do this in the full sync path, where we
4362  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4363  * lookup the list of modified extent maps and if any represents a hole, we
4364  * insert a corresponding extent representing a hole in the log tree.
4365  */
4366 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4367 				   struct btrfs_root *root,
4368 				   struct inode *inode,
4369 				   struct btrfs_path *path)
4370 {
4371 	int ret;
4372 	struct btrfs_key key;
4373 	u64 hole_start;
4374 	u64 hole_size;
4375 	struct extent_buffer *leaf;
4376 	struct btrfs_root *log = root->log_root;
4377 	const u64 ino = btrfs_ino(inode);
4378 	const u64 i_size = i_size_read(inode);
4379 
4380 	if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4381 		return 0;
4382 
4383 	key.objectid = ino;
4384 	key.type = BTRFS_EXTENT_DATA_KEY;
4385 	key.offset = (u64)-1;
4386 
4387 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4388 	ASSERT(ret != 0);
4389 	if (ret < 0)
4390 		return ret;
4391 
4392 	ASSERT(path->slots[0] > 0);
4393 	path->slots[0]--;
4394 	leaf = path->nodes[0];
4395 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4396 
4397 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4398 		/* inode does not have any extents */
4399 		hole_start = 0;
4400 		hole_size = i_size;
4401 	} else {
4402 		struct btrfs_file_extent_item *extent;
4403 		u64 len;
4404 
4405 		/*
4406 		 * If there's an extent beyond i_size, an explicit hole was
4407 		 * already inserted by copy_items().
4408 		 */
4409 		if (key.offset >= i_size)
4410 			return 0;
4411 
4412 		extent = btrfs_item_ptr(leaf, path->slots[0],
4413 					struct btrfs_file_extent_item);
4414 
4415 		if (btrfs_file_extent_type(leaf, extent) ==
4416 		    BTRFS_FILE_EXTENT_INLINE) {
4417 			len = btrfs_file_extent_inline_len(leaf,
4418 							   path->slots[0],
4419 							   extent);
4420 			ASSERT(len == i_size);
4421 			return 0;
4422 		}
4423 
4424 		len = btrfs_file_extent_num_bytes(leaf, extent);
4425 		/* Last extent goes beyond i_size, no need to log a hole. */
4426 		if (key.offset + len > i_size)
4427 			return 0;
4428 		hole_start = key.offset + len;
4429 		hole_size = i_size - hole_start;
4430 	}
4431 	btrfs_release_path(path);
4432 
4433 	/* Last extent ends at i_size. */
4434 	if (hole_size == 0)
4435 		return 0;
4436 
4437 	hole_size = ALIGN(hole_size, root->sectorsize);
4438 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4439 				       hole_size, 0, hole_size, 0, 0, 0);
4440 	return ret;
4441 }
4442 
4443 /*
4444  * When we are logging a new inode X, check if it doesn't have a reference that
4445  * matches the reference from some other inode Y created in a past transaction
4446  * and that was renamed in the current transaction. If we don't do this, then at
4447  * log replay time we can lose inode Y (and all its files if it's a directory):
4448  *
4449  * mkdir /mnt/x
4450  * echo "hello world" > /mnt/x/foobar
4451  * sync
4452  * mv /mnt/x /mnt/y
4453  * mkdir /mnt/x                 # or touch /mnt/x
4454  * xfs_io -c fsync /mnt/x
4455  * <power fail>
4456  * mount fs, trigger log replay
4457  *
4458  * After the log replay procedure, we would lose the first directory and all its
4459  * files (file foobar).
4460  * For the case where inode Y is not a directory we simply end up losing it:
4461  *
4462  * echo "123" > /mnt/foo
4463  * sync
4464  * mv /mnt/foo /mnt/bar
4465  * echo "abc" > /mnt/foo
4466  * xfs_io -c fsync /mnt/foo
4467  * <power fail>
4468  *
4469  * We also need this for cases where a snapshot entry is replaced by some other
4470  * entry (file or directory) otherwise we end up with an unreplayable log due to
4471  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4472  * if it were a regular entry:
4473  *
4474  * mkdir /mnt/x
4475  * btrfs subvolume snapshot /mnt /mnt/x/snap
4476  * btrfs subvolume delete /mnt/x/snap
4477  * rmdir /mnt/x
4478  * mkdir /mnt/x
4479  * fsync /mnt/x or fsync some new file inside it
4480  * <power fail>
4481  *
4482  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4483  * the same transaction.
4484  */
4485 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4486 					 const int slot,
4487 					 const struct btrfs_key *key,
4488 					 struct inode *inode,
4489 					 u64 *other_ino)
4490 {
4491 	int ret;
4492 	struct btrfs_path *search_path;
4493 	char *name = NULL;
4494 	u32 name_len = 0;
4495 	u32 item_size = btrfs_item_size_nr(eb, slot);
4496 	u32 cur_offset = 0;
4497 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4498 
4499 	search_path = btrfs_alloc_path();
4500 	if (!search_path)
4501 		return -ENOMEM;
4502 	search_path->search_commit_root = 1;
4503 	search_path->skip_locking = 1;
4504 
4505 	while (cur_offset < item_size) {
4506 		u64 parent;
4507 		u32 this_name_len;
4508 		u32 this_len;
4509 		unsigned long name_ptr;
4510 		struct btrfs_dir_item *di;
4511 
4512 		if (key->type == BTRFS_INODE_REF_KEY) {
4513 			struct btrfs_inode_ref *iref;
4514 
4515 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4516 			parent = key->offset;
4517 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4518 			name_ptr = (unsigned long)(iref + 1);
4519 			this_len = sizeof(*iref) + this_name_len;
4520 		} else {
4521 			struct btrfs_inode_extref *extref;
4522 
4523 			extref = (struct btrfs_inode_extref *)(ptr +
4524 							       cur_offset);
4525 			parent = btrfs_inode_extref_parent(eb, extref);
4526 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4527 			name_ptr = (unsigned long)&extref->name;
4528 			this_len = sizeof(*extref) + this_name_len;
4529 		}
4530 
4531 		if (this_name_len > name_len) {
4532 			char *new_name;
4533 
4534 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4535 			if (!new_name) {
4536 				ret = -ENOMEM;
4537 				goto out;
4538 			}
4539 			name_len = this_name_len;
4540 			name = new_name;
4541 		}
4542 
4543 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4544 		di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4545 					   search_path, parent,
4546 					   name, this_name_len, 0);
4547 		if (di && !IS_ERR(di)) {
4548 			struct btrfs_key di_key;
4549 
4550 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4551 						  di, &di_key);
4552 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4553 				ret = 1;
4554 				*other_ino = di_key.objectid;
4555 			} else {
4556 				ret = -EAGAIN;
4557 			}
4558 			goto out;
4559 		} else if (IS_ERR(di)) {
4560 			ret = PTR_ERR(di);
4561 			goto out;
4562 		}
4563 		btrfs_release_path(search_path);
4564 
4565 		cur_offset += this_len;
4566 	}
4567 	ret = 0;
4568 out:
4569 	btrfs_free_path(search_path);
4570 	kfree(name);
4571 	return ret;
4572 }
4573 
4574 /* log a single inode in the tree log.
4575  * At least one parent directory for this inode must exist in the tree
4576  * or be logged already.
4577  *
4578  * Any items from this inode changed by the current transaction are copied
4579  * to the log tree.  An extra reference is taken on any extents in this
4580  * file, allowing us to avoid a whole pile of corner cases around logging
4581  * blocks that have been removed from the tree.
4582  *
4583  * See LOG_INODE_ALL and related defines for a description of what inode_only
4584  * does.
4585  *
4586  * This handles both files and directories.
4587  */
4588 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4589 			   struct btrfs_root *root, struct inode *inode,
4590 			   int inode_only,
4591 			   const loff_t start,
4592 			   const loff_t end,
4593 			   struct btrfs_log_ctx *ctx)
4594 {
4595 	struct btrfs_path *path;
4596 	struct btrfs_path *dst_path;
4597 	struct btrfs_key min_key;
4598 	struct btrfs_key max_key;
4599 	struct btrfs_root *log = root->log_root;
4600 	struct extent_buffer *src = NULL;
4601 	LIST_HEAD(logged_list);
4602 	u64 last_extent = 0;
4603 	int err = 0;
4604 	int ret;
4605 	int nritems;
4606 	int ins_start_slot = 0;
4607 	int ins_nr;
4608 	bool fast_search = false;
4609 	u64 ino = btrfs_ino(inode);
4610 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4611 	u64 logged_isize = 0;
4612 	bool need_log_inode_item = true;
4613 
4614 	path = btrfs_alloc_path();
4615 	if (!path)
4616 		return -ENOMEM;
4617 	dst_path = btrfs_alloc_path();
4618 	if (!dst_path) {
4619 		btrfs_free_path(path);
4620 		return -ENOMEM;
4621 	}
4622 
4623 	min_key.objectid = ino;
4624 	min_key.type = BTRFS_INODE_ITEM_KEY;
4625 	min_key.offset = 0;
4626 
4627 	max_key.objectid = ino;
4628 
4629 
4630 	/* today the code can only do partial logging of directories */
4631 	if (S_ISDIR(inode->i_mode) ||
4632 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4633 		       &BTRFS_I(inode)->runtime_flags) &&
4634 	     inode_only == LOG_INODE_EXISTS))
4635 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4636 	else
4637 		max_key.type = (u8)-1;
4638 	max_key.offset = (u64)-1;
4639 
4640 	/*
4641 	 * Only run delayed items if we are a dir or a new file.
4642 	 * Otherwise commit the delayed inode only, which is needed in
4643 	 * order for the log replay code to mark inodes for link count
4644 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4645 	 */
4646 	if (S_ISDIR(inode->i_mode) ||
4647 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4648 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4649 	else
4650 		ret = btrfs_commit_inode_delayed_inode(inode);
4651 
4652 	if (ret) {
4653 		btrfs_free_path(path);
4654 		btrfs_free_path(dst_path);
4655 		return ret;
4656 	}
4657 
4658 	mutex_lock(&BTRFS_I(inode)->log_mutex);
4659 
4660 	/*
4661 	 * a brute force approach to making sure we get the most uptodate
4662 	 * copies of everything.
4663 	 */
4664 	if (S_ISDIR(inode->i_mode)) {
4665 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4666 
4667 		if (inode_only == LOG_INODE_EXISTS)
4668 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4669 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4670 	} else {
4671 		if (inode_only == LOG_INODE_EXISTS) {
4672 			/*
4673 			 * Make sure the new inode item we write to the log has
4674 			 * the same isize as the current one (if it exists).
4675 			 * This is necessary to prevent data loss after log
4676 			 * replay, and also to prevent doing a wrong expanding
4677 			 * truncate - for e.g. create file, write 4K into offset
4678 			 * 0, fsync, write 4K into offset 4096, add hard link,
4679 			 * fsync some other file (to sync log), power fail - if
4680 			 * we use the inode's current i_size, after log replay
4681 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4682 			 * (zeroes), as if an expanding truncate happened,
4683 			 * instead of getting a file of 4Kb only.
4684 			 */
4685 			err = logged_inode_size(log, inode, path,
4686 						&logged_isize);
4687 			if (err)
4688 				goto out_unlock;
4689 		}
4690 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4691 			     &BTRFS_I(inode)->runtime_flags)) {
4692 			if (inode_only == LOG_INODE_EXISTS) {
4693 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4694 				ret = drop_objectid_items(trans, log, path, ino,
4695 							  max_key.type);
4696 			} else {
4697 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4698 					  &BTRFS_I(inode)->runtime_flags);
4699 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4700 					  &BTRFS_I(inode)->runtime_flags);
4701 				while(1) {
4702 					ret = btrfs_truncate_inode_items(trans,
4703 							 log, inode, 0, 0);
4704 					if (ret != -EAGAIN)
4705 						break;
4706 				}
4707 			}
4708 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4709 					      &BTRFS_I(inode)->runtime_flags) ||
4710 			   inode_only == LOG_INODE_EXISTS) {
4711 			if (inode_only == LOG_INODE_ALL)
4712 				fast_search = true;
4713 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4714 			ret = drop_objectid_items(trans, log, path, ino,
4715 						  max_key.type);
4716 		} else {
4717 			if (inode_only == LOG_INODE_ALL)
4718 				fast_search = true;
4719 			goto log_extents;
4720 		}
4721 
4722 	}
4723 	if (ret) {
4724 		err = ret;
4725 		goto out_unlock;
4726 	}
4727 
4728 	while (1) {
4729 		ins_nr = 0;
4730 		ret = btrfs_search_forward(root, &min_key,
4731 					   path, trans->transid);
4732 		if (ret < 0) {
4733 			err = ret;
4734 			goto out_unlock;
4735 		}
4736 		if (ret != 0)
4737 			break;
4738 again:
4739 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4740 		if (min_key.objectid != ino)
4741 			break;
4742 		if (min_key.type > max_key.type)
4743 			break;
4744 
4745 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4746 			need_log_inode_item = false;
4747 
4748 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4749 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4750 		    BTRFS_I(inode)->generation == trans->transid) {
4751 			u64 other_ino = 0;
4752 
4753 			ret = btrfs_check_ref_name_override(path->nodes[0],
4754 							    path->slots[0],
4755 							    &min_key, inode,
4756 							    &other_ino);
4757 			if (ret < 0) {
4758 				err = ret;
4759 				goto out_unlock;
4760 			} else if (ret > 0 && ctx &&
4761 				   other_ino != btrfs_ino(ctx->inode)) {
4762 				struct btrfs_key inode_key;
4763 				struct inode *other_inode;
4764 
4765 				if (ins_nr > 0) {
4766 					ins_nr++;
4767 				} else {
4768 					ins_nr = 1;
4769 					ins_start_slot = path->slots[0];
4770 				}
4771 				ret = copy_items(trans, inode, dst_path, path,
4772 						 &last_extent, ins_start_slot,
4773 						 ins_nr, inode_only,
4774 						 logged_isize);
4775 				if (ret < 0) {
4776 					err = ret;
4777 					goto out_unlock;
4778 				}
4779 				ins_nr = 0;
4780 				btrfs_release_path(path);
4781 				inode_key.objectid = other_ino;
4782 				inode_key.type = BTRFS_INODE_ITEM_KEY;
4783 				inode_key.offset = 0;
4784 				other_inode = btrfs_iget(root->fs_info->sb,
4785 							 &inode_key, root,
4786 							 NULL);
4787 				/*
4788 				 * If the other inode that had a conflicting dir
4789 				 * entry was deleted in the current transaction,
4790 				 * we don't need to do more work nor fallback to
4791 				 * a transaction commit.
4792 				 */
4793 				if (IS_ERR(other_inode) &&
4794 				    PTR_ERR(other_inode) == -ENOENT) {
4795 					goto next_key;
4796 				} else if (IS_ERR(other_inode)) {
4797 					err = PTR_ERR(other_inode);
4798 					goto out_unlock;
4799 				}
4800 				/*
4801 				 * We are safe logging the other inode without
4802 				 * acquiring its i_mutex as long as we log with
4803 				 * the LOG_INODE_EXISTS mode. We're safe against
4804 				 * concurrent renames of the other inode as well
4805 				 * because during a rename we pin the log and
4806 				 * update the log with the new name before we
4807 				 * unpin it.
4808 				 */
4809 				err = btrfs_log_inode(trans, root, other_inode,
4810 						      LOG_INODE_EXISTS,
4811 						      0, LLONG_MAX, ctx);
4812 				iput(other_inode);
4813 				if (err)
4814 					goto out_unlock;
4815 				else
4816 					goto next_key;
4817 			}
4818 		}
4819 
4820 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4821 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4822 			if (ins_nr == 0)
4823 				goto next_slot;
4824 			ret = copy_items(trans, inode, dst_path, path,
4825 					 &last_extent, ins_start_slot,
4826 					 ins_nr, inode_only, logged_isize);
4827 			if (ret < 0) {
4828 				err = ret;
4829 				goto out_unlock;
4830 			}
4831 			ins_nr = 0;
4832 			if (ret) {
4833 				btrfs_release_path(path);
4834 				continue;
4835 			}
4836 			goto next_slot;
4837 		}
4838 
4839 		src = path->nodes[0];
4840 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4841 			ins_nr++;
4842 			goto next_slot;
4843 		} else if (!ins_nr) {
4844 			ins_start_slot = path->slots[0];
4845 			ins_nr = 1;
4846 			goto next_slot;
4847 		}
4848 
4849 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4850 				 ins_start_slot, ins_nr, inode_only,
4851 				 logged_isize);
4852 		if (ret < 0) {
4853 			err = ret;
4854 			goto out_unlock;
4855 		}
4856 		if (ret) {
4857 			ins_nr = 0;
4858 			btrfs_release_path(path);
4859 			continue;
4860 		}
4861 		ins_nr = 1;
4862 		ins_start_slot = path->slots[0];
4863 next_slot:
4864 
4865 		nritems = btrfs_header_nritems(path->nodes[0]);
4866 		path->slots[0]++;
4867 		if (path->slots[0] < nritems) {
4868 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4869 					      path->slots[0]);
4870 			goto again;
4871 		}
4872 		if (ins_nr) {
4873 			ret = copy_items(trans, inode, dst_path, path,
4874 					 &last_extent, ins_start_slot,
4875 					 ins_nr, inode_only, logged_isize);
4876 			if (ret < 0) {
4877 				err = ret;
4878 				goto out_unlock;
4879 			}
4880 			ret = 0;
4881 			ins_nr = 0;
4882 		}
4883 		btrfs_release_path(path);
4884 next_key:
4885 		if (min_key.offset < (u64)-1) {
4886 			min_key.offset++;
4887 		} else if (min_key.type < max_key.type) {
4888 			min_key.type++;
4889 			min_key.offset = 0;
4890 		} else {
4891 			break;
4892 		}
4893 	}
4894 	if (ins_nr) {
4895 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4896 				 ins_start_slot, ins_nr, inode_only,
4897 				 logged_isize);
4898 		if (ret < 0) {
4899 			err = ret;
4900 			goto out_unlock;
4901 		}
4902 		ret = 0;
4903 		ins_nr = 0;
4904 	}
4905 
4906 	btrfs_release_path(path);
4907 	btrfs_release_path(dst_path);
4908 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4909 	if (err)
4910 		goto out_unlock;
4911 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4912 		btrfs_release_path(path);
4913 		btrfs_release_path(dst_path);
4914 		err = btrfs_log_trailing_hole(trans, root, inode, path);
4915 		if (err)
4916 			goto out_unlock;
4917 	}
4918 log_extents:
4919 	btrfs_release_path(path);
4920 	btrfs_release_path(dst_path);
4921 	if (need_log_inode_item) {
4922 		err = log_inode_item(trans, log, dst_path, inode);
4923 		if (err)
4924 			goto out_unlock;
4925 	}
4926 	if (fast_search) {
4927 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4928 						&logged_list, ctx, start, end);
4929 		if (ret) {
4930 			err = ret;
4931 			goto out_unlock;
4932 		}
4933 	} else if (inode_only == LOG_INODE_ALL) {
4934 		struct extent_map *em, *n;
4935 
4936 		write_lock(&em_tree->lock);
4937 		/*
4938 		 * We can't just remove every em if we're called for a ranged
4939 		 * fsync - that is, one that doesn't cover the whole possible
4940 		 * file range (0 to LLONG_MAX). This is because we can have
4941 		 * em's that fall outside the range we're logging and therefore
4942 		 * their ordered operations haven't completed yet
4943 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4944 		 * didn't get their respective file extent item in the fs/subvol
4945 		 * tree yet, and need to let the next fast fsync (one which
4946 		 * consults the list of modified extent maps) find the em so
4947 		 * that it logs a matching file extent item and waits for the
4948 		 * respective ordered operation to complete (if it's still
4949 		 * running).
4950 		 *
4951 		 * Removing every em outside the range we're logging would make
4952 		 * the next fast fsync not log their matching file extent items,
4953 		 * therefore making us lose data after a log replay.
4954 		 */
4955 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4956 					 list) {
4957 			const u64 mod_end = em->mod_start + em->mod_len - 1;
4958 
4959 			if (em->mod_start >= start && mod_end <= end)
4960 				list_del_init(&em->list);
4961 		}
4962 		write_unlock(&em_tree->lock);
4963 	}
4964 
4965 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4966 		ret = log_directory_changes(trans, root, inode, path, dst_path,
4967 					    ctx);
4968 		if (ret) {
4969 			err = ret;
4970 			goto out_unlock;
4971 		}
4972 	}
4973 
4974 	spin_lock(&BTRFS_I(inode)->lock);
4975 	BTRFS_I(inode)->logged_trans = trans->transid;
4976 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4977 	spin_unlock(&BTRFS_I(inode)->lock);
4978 out_unlock:
4979 	if (unlikely(err))
4980 		btrfs_put_logged_extents(&logged_list);
4981 	else
4982 		btrfs_submit_logged_extents(&logged_list, log);
4983 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4984 
4985 	btrfs_free_path(path);
4986 	btrfs_free_path(dst_path);
4987 	return err;
4988 }
4989 
4990 /*
4991  * Check if we must fallback to a transaction commit when logging an inode.
4992  * This must be called after logging the inode and is used only in the context
4993  * when fsyncing an inode requires the need to log some other inode - in which
4994  * case we can't lock the i_mutex of each other inode we need to log as that
4995  * can lead to deadlocks with concurrent fsync against other inodes (as we can
4996  * log inodes up or down in the hierarchy) or rename operations for example. So
4997  * we take the log_mutex of the inode after we have logged it and then check for
4998  * its last_unlink_trans value - this is safe because any task setting
4999  * last_unlink_trans must take the log_mutex and it must do this before it does
5000  * the actual unlink operation, so if we do this check before a concurrent task
5001  * sets last_unlink_trans it means we've logged a consistent version/state of
5002  * all the inode items, otherwise we are not sure and must do a transaction
5003  * commit (the concurrent task might have only updated last_unlink_trans before
5004  * we logged the inode or it might have also done the unlink).
5005  */
5006 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5007 					  struct inode *inode)
5008 {
5009 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
5010 	bool ret = false;
5011 
5012 	mutex_lock(&BTRFS_I(inode)->log_mutex);
5013 	if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
5014 		/*
5015 		 * Make sure any commits to the log are forced to be full
5016 		 * commits.
5017 		 */
5018 		btrfs_set_log_full_commit(fs_info, trans);
5019 		ret = true;
5020 	}
5021 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
5022 
5023 	return ret;
5024 }
5025 
5026 /*
5027  * follow the dentry parent pointers up the chain and see if any
5028  * of the directories in it require a full commit before they can
5029  * be logged.  Returns zero if nothing special needs to be done or 1 if
5030  * a full commit is required.
5031  */
5032 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5033 					       struct inode *inode,
5034 					       struct dentry *parent,
5035 					       struct super_block *sb,
5036 					       u64 last_committed)
5037 {
5038 	int ret = 0;
5039 	struct dentry *old_parent = NULL;
5040 	struct inode *orig_inode = inode;
5041 
5042 	/*
5043 	 * for regular files, if its inode is already on disk, we don't
5044 	 * have to worry about the parents at all.  This is because
5045 	 * we can use the last_unlink_trans field to record renames
5046 	 * and other fun in this file.
5047 	 */
5048 	if (S_ISREG(inode->i_mode) &&
5049 	    BTRFS_I(inode)->generation <= last_committed &&
5050 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
5051 			goto out;
5052 
5053 	if (!S_ISDIR(inode->i_mode)) {
5054 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5055 			goto out;
5056 		inode = d_inode(parent);
5057 	}
5058 
5059 	while (1) {
5060 		/*
5061 		 * If we are logging a directory then we start with our inode,
5062 		 * not our parent's inode, so we need to skip setting the
5063 		 * logged_trans so that further down in the log code we don't
5064 		 * think this inode has already been logged.
5065 		 */
5066 		if (inode != orig_inode)
5067 			BTRFS_I(inode)->logged_trans = trans->transid;
5068 		smp_mb();
5069 
5070 		if (btrfs_must_commit_transaction(trans, inode)) {
5071 			ret = 1;
5072 			break;
5073 		}
5074 
5075 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5076 			break;
5077 
5078 		if (IS_ROOT(parent)) {
5079 			inode = d_inode(parent);
5080 			if (btrfs_must_commit_transaction(trans, inode))
5081 				ret = 1;
5082 			break;
5083 		}
5084 
5085 		parent = dget_parent(parent);
5086 		dput(old_parent);
5087 		old_parent = parent;
5088 		inode = d_inode(parent);
5089 
5090 	}
5091 	dput(old_parent);
5092 out:
5093 	return ret;
5094 }
5095 
5096 struct btrfs_dir_list {
5097 	u64 ino;
5098 	struct list_head list;
5099 };
5100 
5101 /*
5102  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5103  * details about the why it is needed.
5104  * This is a recursive operation - if an existing dentry corresponds to a
5105  * directory, that directory's new entries are logged too (same behaviour as
5106  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5107  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5108  * complains about the following circular lock dependency / possible deadlock:
5109  *
5110  *        CPU0                                        CPU1
5111  *        ----                                        ----
5112  * lock(&type->i_mutex_dir_key#3/2);
5113  *                                            lock(sb_internal#2);
5114  *                                            lock(&type->i_mutex_dir_key#3/2);
5115  * lock(&sb->s_type->i_mutex_key#14);
5116  *
5117  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5118  * sb_start_intwrite() in btrfs_start_transaction().
5119  * Not locking i_mutex of the inodes is still safe because:
5120  *
5121  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5122  *    that while logging the inode new references (names) are added or removed
5123  *    from the inode, leaving the logged inode item with a link count that does
5124  *    not match the number of logged inode reference items. This is fine because
5125  *    at log replay time we compute the real number of links and correct the
5126  *    link count in the inode item (see replay_one_buffer() and
5127  *    link_to_fixup_dir());
5128  *
5129  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5130  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5131  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5132  *    has a size that doesn't match the sum of the lengths of all the logged
5133  *    names. This does not result in a problem because if a dir_item key is
5134  *    logged but its matching dir_index key is not logged, at log replay time we
5135  *    don't use it to replay the respective name (see replay_one_name()). On the
5136  *    other hand if only the dir_index key ends up being logged, the respective
5137  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5138  *    keys created (see replay_one_name()).
5139  *    The directory's inode item with a wrong i_size is not a problem as well,
5140  *    since we don't use it at log replay time to set the i_size in the inode
5141  *    item of the fs/subvol tree (see overwrite_item()).
5142  */
5143 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5144 				struct btrfs_root *root,
5145 				struct inode *start_inode,
5146 				struct btrfs_log_ctx *ctx)
5147 {
5148 	struct btrfs_root *log = root->log_root;
5149 	struct btrfs_path *path;
5150 	LIST_HEAD(dir_list);
5151 	struct btrfs_dir_list *dir_elem;
5152 	int ret = 0;
5153 
5154 	path = btrfs_alloc_path();
5155 	if (!path)
5156 		return -ENOMEM;
5157 
5158 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5159 	if (!dir_elem) {
5160 		btrfs_free_path(path);
5161 		return -ENOMEM;
5162 	}
5163 	dir_elem->ino = btrfs_ino(start_inode);
5164 	list_add_tail(&dir_elem->list, &dir_list);
5165 
5166 	while (!list_empty(&dir_list)) {
5167 		struct extent_buffer *leaf;
5168 		struct btrfs_key min_key;
5169 		int nritems;
5170 		int i;
5171 
5172 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5173 					    list);
5174 		if (ret)
5175 			goto next_dir_inode;
5176 
5177 		min_key.objectid = dir_elem->ino;
5178 		min_key.type = BTRFS_DIR_ITEM_KEY;
5179 		min_key.offset = 0;
5180 again:
5181 		btrfs_release_path(path);
5182 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5183 		if (ret < 0) {
5184 			goto next_dir_inode;
5185 		} else if (ret > 0) {
5186 			ret = 0;
5187 			goto next_dir_inode;
5188 		}
5189 
5190 process_leaf:
5191 		leaf = path->nodes[0];
5192 		nritems = btrfs_header_nritems(leaf);
5193 		for (i = path->slots[0]; i < nritems; i++) {
5194 			struct btrfs_dir_item *di;
5195 			struct btrfs_key di_key;
5196 			struct inode *di_inode;
5197 			struct btrfs_dir_list *new_dir_elem;
5198 			int log_mode = LOG_INODE_EXISTS;
5199 			int type;
5200 
5201 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5202 			if (min_key.objectid != dir_elem->ino ||
5203 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5204 				goto next_dir_inode;
5205 
5206 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5207 			type = btrfs_dir_type(leaf, di);
5208 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5209 			    type != BTRFS_FT_DIR)
5210 				continue;
5211 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5212 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5213 				continue;
5214 
5215 			di_inode = btrfs_iget(root->fs_info->sb, &di_key,
5216 					      root, NULL);
5217 			if (IS_ERR(di_inode)) {
5218 				ret = PTR_ERR(di_inode);
5219 				goto next_dir_inode;
5220 			}
5221 
5222 			if (btrfs_inode_in_log(di_inode, trans->transid)) {
5223 				iput(di_inode);
5224 				continue;
5225 			}
5226 
5227 			ctx->log_new_dentries = false;
5228 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5229 				log_mode = LOG_INODE_ALL;
5230 			btrfs_release_path(path);
5231 			ret = btrfs_log_inode(trans, root, di_inode,
5232 					      log_mode, 0, LLONG_MAX, ctx);
5233 			if (!ret &&
5234 			    btrfs_must_commit_transaction(trans, di_inode))
5235 				ret = 1;
5236 			iput(di_inode);
5237 			if (ret)
5238 				goto next_dir_inode;
5239 			if (ctx->log_new_dentries) {
5240 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5241 						       GFP_NOFS);
5242 				if (!new_dir_elem) {
5243 					ret = -ENOMEM;
5244 					goto next_dir_inode;
5245 				}
5246 				new_dir_elem->ino = di_key.objectid;
5247 				list_add_tail(&new_dir_elem->list, &dir_list);
5248 			}
5249 			break;
5250 		}
5251 		if (i == nritems) {
5252 			ret = btrfs_next_leaf(log, path);
5253 			if (ret < 0) {
5254 				goto next_dir_inode;
5255 			} else if (ret > 0) {
5256 				ret = 0;
5257 				goto next_dir_inode;
5258 			}
5259 			goto process_leaf;
5260 		}
5261 		if (min_key.offset < (u64)-1) {
5262 			min_key.offset++;
5263 			goto again;
5264 		}
5265 next_dir_inode:
5266 		list_del(&dir_elem->list);
5267 		kfree(dir_elem);
5268 	}
5269 
5270 	btrfs_free_path(path);
5271 	return ret;
5272 }
5273 
5274 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5275 				 struct inode *inode,
5276 				 struct btrfs_log_ctx *ctx)
5277 {
5278 	int ret;
5279 	struct btrfs_path *path;
5280 	struct btrfs_key key;
5281 	struct btrfs_root *root = BTRFS_I(inode)->root;
5282 	const u64 ino = btrfs_ino(inode);
5283 
5284 	path = btrfs_alloc_path();
5285 	if (!path)
5286 		return -ENOMEM;
5287 	path->skip_locking = 1;
5288 	path->search_commit_root = 1;
5289 
5290 	key.objectid = ino;
5291 	key.type = BTRFS_INODE_REF_KEY;
5292 	key.offset = 0;
5293 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5294 	if (ret < 0)
5295 		goto out;
5296 
5297 	while (true) {
5298 		struct extent_buffer *leaf = path->nodes[0];
5299 		int slot = path->slots[0];
5300 		u32 cur_offset = 0;
5301 		u32 item_size;
5302 		unsigned long ptr;
5303 
5304 		if (slot >= btrfs_header_nritems(leaf)) {
5305 			ret = btrfs_next_leaf(root, path);
5306 			if (ret < 0)
5307 				goto out;
5308 			else if (ret > 0)
5309 				break;
5310 			continue;
5311 		}
5312 
5313 		btrfs_item_key_to_cpu(leaf, &key, slot);
5314 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5315 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5316 			break;
5317 
5318 		item_size = btrfs_item_size_nr(leaf, slot);
5319 		ptr = btrfs_item_ptr_offset(leaf, slot);
5320 		while (cur_offset < item_size) {
5321 			struct btrfs_key inode_key;
5322 			struct inode *dir_inode;
5323 
5324 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5325 			inode_key.offset = 0;
5326 
5327 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5328 				struct btrfs_inode_extref *extref;
5329 
5330 				extref = (struct btrfs_inode_extref *)
5331 					(ptr + cur_offset);
5332 				inode_key.objectid = btrfs_inode_extref_parent(
5333 					leaf, extref);
5334 				cur_offset += sizeof(*extref);
5335 				cur_offset += btrfs_inode_extref_name_len(leaf,
5336 					extref);
5337 			} else {
5338 				inode_key.objectid = key.offset;
5339 				cur_offset = item_size;
5340 			}
5341 
5342 			dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5343 					       root, NULL);
5344 			/* If parent inode was deleted, skip it. */
5345 			if (IS_ERR(dir_inode))
5346 				continue;
5347 
5348 			if (ctx)
5349 				ctx->log_new_dentries = false;
5350 			ret = btrfs_log_inode(trans, root, dir_inode,
5351 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5352 			if (!ret &&
5353 			    btrfs_must_commit_transaction(trans, dir_inode))
5354 				ret = 1;
5355 			if (!ret && ctx && ctx->log_new_dentries)
5356 				ret = log_new_dir_dentries(trans, root,
5357 							   dir_inode, ctx);
5358 			iput(dir_inode);
5359 			if (ret)
5360 				goto out;
5361 		}
5362 		path->slots[0]++;
5363 	}
5364 	ret = 0;
5365 out:
5366 	btrfs_free_path(path);
5367 	return ret;
5368 }
5369 
5370 /*
5371  * helper function around btrfs_log_inode to make sure newly created
5372  * parent directories also end up in the log.  A minimal inode and backref
5373  * only logging is done of any parent directories that are older than
5374  * the last committed transaction
5375  */
5376 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5377 			    	  struct btrfs_root *root, struct inode *inode,
5378 				  struct dentry *parent,
5379 				  const loff_t start,
5380 				  const loff_t end,
5381 				  int exists_only,
5382 				  struct btrfs_log_ctx *ctx)
5383 {
5384 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5385 	struct super_block *sb;
5386 	struct dentry *old_parent = NULL;
5387 	int ret = 0;
5388 	u64 last_committed = root->fs_info->last_trans_committed;
5389 	bool log_dentries = false;
5390 	struct inode *orig_inode = inode;
5391 
5392 	sb = inode->i_sb;
5393 
5394 	if (btrfs_test_opt(root->fs_info, NOTREELOG)) {
5395 		ret = 1;
5396 		goto end_no_trans;
5397 	}
5398 
5399 	/*
5400 	 * The prev transaction commit doesn't complete, we need do
5401 	 * full commit by ourselves.
5402 	 */
5403 	if (root->fs_info->last_trans_log_full_commit >
5404 	    root->fs_info->last_trans_committed) {
5405 		ret = 1;
5406 		goto end_no_trans;
5407 	}
5408 
5409 	if (root != BTRFS_I(inode)->root ||
5410 	    btrfs_root_refs(&root->root_item) == 0) {
5411 		ret = 1;
5412 		goto end_no_trans;
5413 	}
5414 
5415 	ret = check_parent_dirs_for_sync(trans, inode, parent,
5416 					 sb, last_committed);
5417 	if (ret)
5418 		goto end_no_trans;
5419 
5420 	if (btrfs_inode_in_log(inode, trans->transid)) {
5421 		ret = BTRFS_NO_LOG_SYNC;
5422 		goto end_no_trans;
5423 	}
5424 
5425 	ret = start_log_trans(trans, root, ctx);
5426 	if (ret)
5427 		goto end_no_trans;
5428 
5429 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5430 	if (ret)
5431 		goto end_trans;
5432 
5433 	/*
5434 	 * for regular files, if its inode is already on disk, we don't
5435 	 * have to worry about the parents at all.  This is because
5436 	 * we can use the last_unlink_trans field to record renames
5437 	 * and other fun in this file.
5438 	 */
5439 	if (S_ISREG(inode->i_mode) &&
5440 	    BTRFS_I(inode)->generation <= last_committed &&
5441 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5442 		ret = 0;
5443 		goto end_trans;
5444 	}
5445 
5446 	if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5447 		log_dentries = true;
5448 
5449 	/*
5450 	 * On unlink we must make sure all our current and old parent directory
5451 	 * inodes are fully logged. This is to prevent leaving dangling
5452 	 * directory index entries in directories that were our parents but are
5453 	 * not anymore. Not doing this results in old parent directory being
5454 	 * impossible to delete after log replay (rmdir will always fail with
5455 	 * error -ENOTEMPTY).
5456 	 *
5457 	 * Example 1:
5458 	 *
5459 	 * mkdir testdir
5460 	 * touch testdir/foo
5461 	 * ln testdir/foo testdir/bar
5462 	 * sync
5463 	 * unlink testdir/bar
5464 	 * xfs_io -c fsync testdir/foo
5465 	 * <power failure>
5466 	 * mount fs, triggers log replay
5467 	 *
5468 	 * If we don't log the parent directory (testdir), after log replay the
5469 	 * directory still has an entry pointing to the file inode using the bar
5470 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5471 	 * the file inode has a link count of 1.
5472 	 *
5473 	 * Example 2:
5474 	 *
5475 	 * mkdir testdir
5476 	 * touch foo
5477 	 * ln foo testdir/foo2
5478 	 * ln foo testdir/foo3
5479 	 * sync
5480 	 * unlink testdir/foo3
5481 	 * xfs_io -c fsync foo
5482 	 * <power failure>
5483 	 * mount fs, triggers log replay
5484 	 *
5485 	 * Similar as the first example, after log replay the parent directory
5486 	 * testdir still has an entry pointing to the inode file with name foo3
5487 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5488 	 * and has a link count of 2.
5489 	 */
5490 	if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5491 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5492 		if (ret)
5493 			goto end_trans;
5494 	}
5495 
5496 	while (1) {
5497 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5498 			break;
5499 
5500 		inode = d_inode(parent);
5501 		if (root != BTRFS_I(inode)->root)
5502 			break;
5503 
5504 		if (BTRFS_I(inode)->generation > last_committed) {
5505 			ret = btrfs_log_inode(trans, root, inode,
5506 					      LOG_INODE_EXISTS,
5507 					      0, LLONG_MAX, ctx);
5508 			if (ret)
5509 				goto end_trans;
5510 		}
5511 		if (IS_ROOT(parent))
5512 			break;
5513 
5514 		parent = dget_parent(parent);
5515 		dput(old_parent);
5516 		old_parent = parent;
5517 	}
5518 	if (log_dentries)
5519 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5520 	else
5521 		ret = 0;
5522 end_trans:
5523 	dput(old_parent);
5524 	if (ret < 0) {
5525 		btrfs_set_log_full_commit(root->fs_info, trans);
5526 		ret = 1;
5527 	}
5528 
5529 	if (ret)
5530 		btrfs_remove_log_ctx(root, ctx);
5531 	btrfs_end_log_trans(root);
5532 end_no_trans:
5533 	return ret;
5534 }
5535 
5536 /*
5537  * it is not safe to log dentry if the chunk root has added new
5538  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5539  * If this returns 1, you must commit the transaction to safely get your
5540  * data on disk.
5541  */
5542 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5543 			  struct btrfs_root *root, struct dentry *dentry,
5544 			  const loff_t start,
5545 			  const loff_t end,
5546 			  struct btrfs_log_ctx *ctx)
5547 {
5548 	struct dentry *parent = dget_parent(dentry);
5549 	int ret;
5550 
5551 	ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5552 				     start, end, 0, ctx);
5553 	dput(parent);
5554 
5555 	return ret;
5556 }
5557 
5558 /*
5559  * should be called during mount to recover any replay any log trees
5560  * from the FS
5561  */
5562 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5563 {
5564 	int ret;
5565 	struct btrfs_path *path;
5566 	struct btrfs_trans_handle *trans;
5567 	struct btrfs_key key;
5568 	struct btrfs_key found_key;
5569 	struct btrfs_key tmp_key;
5570 	struct btrfs_root *log;
5571 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5572 	struct walk_control wc = {
5573 		.process_func = process_one_buffer,
5574 		.stage = 0,
5575 	};
5576 
5577 	path = btrfs_alloc_path();
5578 	if (!path)
5579 		return -ENOMEM;
5580 
5581 	fs_info->log_root_recovering = 1;
5582 
5583 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5584 	if (IS_ERR(trans)) {
5585 		ret = PTR_ERR(trans);
5586 		goto error;
5587 	}
5588 
5589 	wc.trans = trans;
5590 	wc.pin = 1;
5591 
5592 	ret = walk_log_tree(trans, log_root_tree, &wc);
5593 	if (ret) {
5594 		btrfs_handle_fs_error(fs_info, ret, "Failed to pin buffers while "
5595 			    "recovering log root tree.");
5596 		goto error;
5597 	}
5598 
5599 again:
5600 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5601 	key.offset = (u64)-1;
5602 	key.type = BTRFS_ROOT_ITEM_KEY;
5603 
5604 	while (1) {
5605 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5606 
5607 		if (ret < 0) {
5608 			btrfs_handle_fs_error(fs_info, ret,
5609 				    "Couldn't find tree log root.");
5610 			goto error;
5611 		}
5612 		if (ret > 0) {
5613 			if (path->slots[0] == 0)
5614 				break;
5615 			path->slots[0]--;
5616 		}
5617 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5618 				      path->slots[0]);
5619 		btrfs_release_path(path);
5620 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5621 			break;
5622 
5623 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5624 		if (IS_ERR(log)) {
5625 			ret = PTR_ERR(log);
5626 			btrfs_handle_fs_error(fs_info, ret,
5627 				    "Couldn't read tree log root.");
5628 			goto error;
5629 		}
5630 
5631 		tmp_key.objectid = found_key.offset;
5632 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5633 		tmp_key.offset = (u64)-1;
5634 
5635 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5636 		if (IS_ERR(wc.replay_dest)) {
5637 			ret = PTR_ERR(wc.replay_dest);
5638 			free_extent_buffer(log->node);
5639 			free_extent_buffer(log->commit_root);
5640 			kfree(log);
5641 			btrfs_handle_fs_error(fs_info, ret, "Couldn't read target root "
5642 				    "for tree log recovery.");
5643 			goto error;
5644 		}
5645 
5646 		wc.replay_dest->log_root = log;
5647 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5648 		ret = walk_log_tree(trans, log, &wc);
5649 
5650 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5651 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5652 						      path);
5653 		}
5654 
5655 		key.offset = found_key.offset - 1;
5656 		wc.replay_dest->log_root = NULL;
5657 		free_extent_buffer(log->node);
5658 		free_extent_buffer(log->commit_root);
5659 		kfree(log);
5660 
5661 		if (ret)
5662 			goto error;
5663 
5664 		if (found_key.offset == 0)
5665 			break;
5666 	}
5667 	btrfs_release_path(path);
5668 
5669 	/* step one is to pin it all, step two is to replay just inodes */
5670 	if (wc.pin) {
5671 		wc.pin = 0;
5672 		wc.process_func = replay_one_buffer;
5673 		wc.stage = LOG_WALK_REPLAY_INODES;
5674 		goto again;
5675 	}
5676 	/* step three is to replay everything */
5677 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5678 		wc.stage++;
5679 		goto again;
5680 	}
5681 
5682 	btrfs_free_path(path);
5683 
5684 	/* step 4: commit the transaction, which also unpins the blocks */
5685 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5686 	if (ret)
5687 		return ret;
5688 
5689 	free_extent_buffer(log_root_tree->node);
5690 	log_root_tree->log_root = NULL;
5691 	fs_info->log_root_recovering = 0;
5692 	kfree(log_root_tree);
5693 
5694 	return 0;
5695 error:
5696 	if (wc.trans)
5697 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
5698 	btrfs_free_path(path);
5699 	return ret;
5700 }
5701 
5702 /*
5703  * there are some corner cases where we want to force a full
5704  * commit instead of allowing a directory to be logged.
5705  *
5706  * They revolve around files there were unlinked from the directory, and
5707  * this function updates the parent directory so that a full commit is
5708  * properly done if it is fsync'd later after the unlinks are done.
5709  *
5710  * Must be called before the unlink operations (updates to the subvolume tree,
5711  * inodes, etc) are done.
5712  */
5713 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5714 			     struct inode *dir, struct inode *inode,
5715 			     int for_rename)
5716 {
5717 	/*
5718 	 * when we're logging a file, if it hasn't been renamed
5719 	 * or unlinked, and its inode is fully committed on disk,
5720 	 * we don't have to worry about walking up the directory chain
5721 	 * to log its parents.
5722 	 *
5723 	 * So, we use the last_unlink_trans field to put this transid
5724 	 * into the file.  When the file is logged we check it and
5725 	 * don't log the parents if the file is fully on disk.
5726 	 */
5727 	mutex_lock(&BTRFS_I(inode)->log_mutex);
5728 	BTRFS_I(inode)->last_unlink_trans = trans->transid;
5729 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
5730 
5731 	/*
5732 	 * if this directory was already logged any new
5733 	 * names for this file/dir will get recorded
5734 	 */
5735 	smp_mb();
5736 	if (BTRFS_I(dir)->logged_trans == trans->transid)
5737 		return;
5738 
5739 	/*
5740 	 * if the inode we're about to unlink was logged,
5741 	 * the log will be properly updated for any new names
5742 	 */
5743 	if (BTRFS_I(inode)->logged_trans == trans->transid)
5744 		return;
5745 
5746 	/*
5747 	 * when renaming files across directories, if the directory
5748 	 * there we're unlinking from gets fsync'd later on, there's
5749 	 * no way to find the destination directory later and fsync it
5750 	 * properly.  So, we have to be conservative and force commits
5751 	 * so the new name gets discovered.
5752 	 */
5753 	if (for_rename)
5754 		goto record;
5755 
5756 	/* we can safely do the unlink without any special recording */
5757 	return;
5758 
5759 record:
5760 	mutex_lock(&BTRFS_I(dir)->log_mutex);
5761 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5762 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5763 }
5764 
5765 /*
5766  * Make sure that if someone attempts to fsync the parent directory of a deleted
5767  * snapshot, it ends up triggering a transaction commit. This is to guarantee
5768  * that after replaying the log tree of the parent directory's root we will not
5769  * see the snapshot anymore and at log replay time we will not see any log tree
5770  * corresponding to the deleted snapshot's root, which could lead to replaying
5771  * it after replaying the log tree of the parent directory (which would replay
5772  * the snapshot delete operation).
5773  *
5774  * Must be called before the actual snapshot destroy operation (updates to the
5775  * parent root and tree of tree roots trees, etc) are done.
5776  */
5777 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5778 				   struct inode *dir)
5779 {
5780 	mutex_lock(&BTRFS_I(dir)->log_mutex);
5781 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5782 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
5783 }
5784 
5785 /*
5786  * Call this after adding a new name for a file and it will properly
5787  * update the log to reflect the new name.
5788  *
5789  * It will return zero if all goes well, and it will return 1 if a
5790  * full transaction commit is required.
5791  */
5792 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5793 			struct inode *inode, struct inode *old_dir,
5794 			struct dentry *parent)
5795 {
5796 	struct btrfs_root * root = BTRFS_I(inode)->root;
5797 
5798 	/*
5799 	 * this will force the logging code to walk the dentry chain
5800 	 * up for the file
5801 	 */
5802 	if (S_ISREG(inode->i_mode))
5803 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5804 
5805 	/*
5806 	 * if this inode hasn't been logged and directory we're renaming it
5807 	 * from hasn't been logged, we don't need to log it
5808 	 */
5809 	if (BTRFS_I(inode)->logged_trans <=
5810 	    root->fs_info->last_trans_committed &&
5811 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5812 		    root->fs_info->last_trans_committed))
5813 		return 0;
5814 
5815 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5816 				      LLONG_MAX, 1, NULL);
5817 }
5818 
5819