xref: /openbmc/linux/fs/btrfs/tree-log.c (revision f519cd13)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 
22 /* magic values for the inode_only field in btrfs_log_inode:
23  *
24  * LOG_INODE_ALL means to log everything
25  * LOG_INODE_EXISTS means to log just enough to recreate the inode
26  * during log replay
27  */
28 enum {
29 	LOG_INODE_ALL,
30 	LOG_INODE_EXISTS,
31 	LOG_OTHER_INODE,
32 	LOG_OTHER_INODE_ALL,
33 };
34 
35 /*
36  * directory trouble cases
37  *
38  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
39  * log, we must force a full commit before doing an fsync of the directory
40  * where the unlink was done.
41  * ---> record transid of last unlink/rename per directory
42  *
43  * mkdir foo/some_dir
44  * normal commit
45  * rename foo/some_dir foo2/some_dir
46  * mkdir foo/some_dir
47  * fsync foo/some_dir/some_file
48  *
49  * The fsync above will unlink the original some_dir without recording
50  * it in its new location (foo2).  After a crash, some_dir will be gone
51  * unless the fsync of some_file forces a full commit
52  *
53  * 2) we must log any new names for any file or dir that is in the fsync
54  * log. ---> check inode while renaming/linking.
55  *
56  * 2a) we must log any new names for any file or dir during rename
57  * when the directory they are being removed from was logged.
58  * ---> check inode and old parent dir during rename
59  *
60  *  2a is actually the more important variant.  With the extra logging
61  *  a crash might unlink the old name without recreating the new one
62  *
63  * 3) after a crash, we must go through any directories with a link count
64  * of zero and redo the rm -rf
65  *
66  * mkdir f1/foo
67  * normal commit
68  * rm -rf f1/foo
69  * fsync(f1)
70  *
71  * The directory f1 was fully removed from the FS, but fsync was never
72  * called on f1, only its parent dir.  After a crash the rm -rf must
73  * be replayed.  This must be able to recurse down the entire
74  * directory tree.  The inode link count fixup code takes care of the
75  * ugly details.
76  */
77 
78 /*
79  * stages for the tree walking.  The first
80  * stage (0) is to only pin down the blocks we find
81  * the second stage (1) is to make sure that all the inodes
82  * we find in the log are created in the subvolume.
83  *
84  * The last stage is to deal with directories and links and extents
85  * and all the other fun semantics
86  */
87 enum {
88 	LOG_WALK_PIN_ONLY,
89 	LOG_WALK_REPLAY_INODES,
90 	LOG_WALK_REPLAY_DIR_INDEX,
91 	LOG_WALK_REPLAY_ALL,
92 };
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			   struct btrfs_root *root, struct btrfs_inode *inode,
96 			   int inode_only,
97 			   const loff_t start,
98 			   const loff_t end,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 
109 /*
110  * tree logging is a special write ahead log used to make sure that
111  * fsyncs and O_SYNCs can happen without doing full tree commits.
112  *
113  * Full tree commits are expensive because they require commonly
114  * modified blocks to be recowed, creating many dirty pages in the
115  * extent tree an 4x-6x higher write load than ext3.
116  *
117  * Instead of doing a tree commit on every fsync, we use the
118  * key ranges and transaction ids to find items for a given file or directory
119  * that have changed in this transaction.  Those items are copied into
120  * a special tree (one per subvolume root), that tree is written to disk
121  * and then the fsync is considered complete.
122  *
123  * After a crash, items are copied out of the log-tree back into the
124  * subvolume tree.  Any file data extents found are recorded in the extent
125  * allocation tree, and the log-tree freed.
126  *
127  * The log tree is read three times, once to pin down all the extents it is
128  * using in ram and once, once to create all the inodes logged in the tree
129  * and once to do all the other items.
130  */
131 
132 /*
133  * start a sub transaction and setup the log tree
134  * this increments the log tree writer count to make the people
135  * syncing the tree wait for us to finish
136  */
137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 			   struct btrfs_root *root,
139 			   struct btrfs_log_ctx *ctx)
140 {
141 	struct btrfs_fs_info *fs_info = root->fs_info;
142 	int ret = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 
146 	if (root->log_root) {
147 		if (btrfs_need_log_full_commit(trans)) {
148 			ret = -EAGAIN;
149 			goto out;
150 		}
151 
152 		if (!root->log_start_pid) {
153 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 			root->log_start_pid = current->pid;
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 	} else {
159 		mutex_lock(&fs_info->tree_log_mutex);
160 		if (!fs_info->log_root_tree)
161 			ret = btrfs_init_log_root_tree(trans, fs_info);
162 		mutex_unlock(&fs_info->tree_log_mutex);
163 		if (ret)
164 			goto out;
165 
166 		ret = btrfs_add_log_tree(trans, root);
167 		if (ret)
168 			goto out;
169 
170 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
171 		root->log_start_pid = current->pid;
172 	}
173 
174 	atomic_inc(&root->log_batch);
175 	atomic_inc(&root->log_writers);
176 	if (ctx) {
177 		int index = root->log_transid % 2;
178 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
179 		ctx->log_transid = root->log_transid;
180 	}
181 
182 out:
183 	mutex_unlock(&root->log_mutex);
184 	return ret;
185 }
186 
187 /*
188  * returns 0 if there was a log transaction running and we were able
189  * to join, or returns -ENOENT if there were not transactions
190  * in progress
191  */
192 static int join_running_log_trans(struct btrfs_root *root)
193 {
194 	int ret = -ENOENT;
195 
196 	mutex_lock(&root->log_mutex);
197 	if (root->log_root) {
198 		ret = 0;
199 		atomic_inc(&root->log_writers);
200 	}
201 	mutex_unlock(&root->log_mutex);
202 	return ret;
203 }
204 
205 /*
206  * This either makes the current running log transaction wait
207  * until you call btrfs_end_log_trans() or it makes any future
208  * log transactions wait until you call btrfs_end_log_trans()
209  */
210 void btrfs_pin_log_trans(struct btrfs_root *root)
211 {
212 	mutex_lock(&root->log_mutex);
213 	atomic_inc(&root->log_writers);
214 	mutex_unlock(&root->log_mutex);
215 }
216 
217 /*
218  * indicate we're done making changes to the log tree
219  * and wake up anyone waiting to do a sync
220  */
221 void btrfs_end_log_trans(struct btrfs_root *root)
222 {
223 	if (atomic_dec_and_test(&root->log_writers)) {
224 		/* atomic_dec_and_test implies a barrier */
225 		cond_wake_up_nomb(&root->log_writer_wait);
226 	}
227 }
228 
229 static int btrfs_write_tree_block(struct extent_buffer *buf)
230 {
231 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
232 					buf->start + buf->len - 1);
233 }
234 
235 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
236 {
237 	filemap_fdatawait_range(buf->pages[0]->mapping,
238 			        buf->start, buf->start + buf->len - 1);
239 }
240 
241 /*
242  * the walk control struct is used to pass state down the chain when
243  * processing the log tree.  The stage field tells us which part
244  * of the log tree processing we are currently doing.  The others
245  * are state fields used for that specific part
246  */
247 struct walk_control {
248 	/* should we free the extent on disk when done?  This is used
249 	 * at transaction commit time while freeing a log tree
250 	 */
251 	int free;
252 
253 	/* should we write out the extent buffer?  This is used
254 	 * while flushing the log tree to disk during a sync
255 	 */
256 	int write;
257 
258 	/* should we wait for the extent buffer io to finish?  Also used
259 	 * while flushing the log tree to disk for a sync
260 	 */
261 	int wait;
262 
263 	/* pin only walk, we record which extents on disk belong to the
264 	 * log trees
265 	 */
266 	int pin;
267 
268 	/* what stage of the replay code we're currently in */
269 	int stage;
270 
271 	/*
272 	 * Ignore any items from the inode currently being processed. Needs
273 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
274 	 * the LOG_WALK_REPLAY_INODES stage.
275 	 */
276 	bool ignore_cur_inode;
277 
278 	/* the root we are currently replaying */
279 	struct btrfs_root *replay_dest;
280 
281 	/* the trans handle for the current replay */
282 	struct btrfs_trans_handle *trans;
283 
284 	/* the function that gets used to process blocks we find in the
285 	 * tree.  Note the extent_buffer might not be up to date when it is
286 	 * passed in, and it must be checked or read if you need the data
287 	 * inside it
288 	 */
289 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 			    struct walk_control *wc, u64 gen, int level);
291 };
292 
293 /*
294  * process_func used to pin down extents, write them or wait on them
295  */
296 static int process_one_buffer(struct btrfs_root *log,
297 			      struct extent_buffer *eb,
298 			      struct walk_control *wc, u64 gen, int level)
299 {
300 	struct btrfs_fs_info *fs_info = log->fs_info;
301 	int ret = 0;
302 
303 	/*
304 	 * If this fs is mixed then we need to be able to process the leaves to
305 	 * pin down any logged extents, so we have to read the block.
306 	 */
307 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
308 		ret = btrfs_read_buffer(eb, gen, level, NULL);
309 		if (ret)
310 			return ret;
311 	}
312 
313 	if (wc->pin)
314 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
315 						      eb->len);
316 
317 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
318 		if (wc->pin && btrfs_header_level(eb) == 0)
319 			ret = btrfs_exclude_logged_extents(eb);
320 		if (wc->write)
321 			btrfs_write_tree_block(eb);
322 		if (wc->wait)
323 			btrfs_wait_tree_block_writeback(eb);
324 	}
325 	return ret;
326 }
327 
328 /*
329  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
330  * to the src data we are copying out.
331  *
332  * root is the tree we are copying into, and path is a scratch
333  * path for use in this function (it should be released on entry and
334  * will be released on exit).
335  *
336  * If the key is already in the destination tree the existing item is
337  * overwritten.  If the existing item isn't big enough, it is extended.
338  * If it is too large, it is truncated.
339  *
340  * If the key isn't in the destination yet, a new item is inserted.
341  */
342 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
343 				   struct btrfs_root *root,
344 				   struct btrfs_path *path,
345 				   struct extent_buffer *eb, int slot,
346 				   struct btrfs_key *key)
347 {
348 	int ret;
349 	u32 item_size;
350 	u64 saved_i_size = 0;
351 	int save_old_i_size = 0;
352 	unsigned long src_ptr;
353 	unsigned long dst_ptr;
354 	int overwrite_root = 0;
355 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356 
357 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 		overwrite_root = 1;
359 
360 	item_size = btrfs_item_size_nr(eb, slot);
361 	src_ptr = btrfs_item_ptr_offset(eb, slot);
362 
363 	/* look for the key in the destination tree */
364 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365 	if (ret < 0)
366 		return ret;
367 
368 	if (ret == 0) {
369 		char *src_copy;
370 		char *dst_copy;
371 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 						  path->slots[0]);
373 		if (dst_size != item_size)
374 			goto insert;
375 
376 		if (item_size == 0) {
377 			btrfs_release_path(path);
378 			return 0;
379 		}
380 		dst_copy = kmalloc(item_size, GFP_NOFS);
381 		src_copy = kmalloc(item_size, GFP_NOFS);
382 		if (!dst_copy || !src_copy) {
383 			btrfs_release_path(path);
384 			kfree(dst_copy);
385 			kfree(src_copy);
386 			return -ENOMEM;
387 		}
388 
389 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
390 
391 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 				   item_size);
394 		ret = memcmp(dst_copy, src_copy, item_size);
395 
396 		kfree(dst_copy);
397 		kfree(src_copy);
398 		/*
399 		 * they have the same contents, just return, this saves
400 		 * us from cowing blocks in the destination tree and doing
401 		 * extra writes that may not have been done by a previous
402 		 * sync
403 		 */
404 		if (ret == 0) {
405 			btrfs_release_path(path);
406 			return 0;
407 		}
408 
409 		/*
410 		 * We need to load the old nbytes into the inode so when we
411 		 * replay the extents we've logged we get the right nbytes.
412 		 */
413 		if (inode_item) {
414 			struct btrfs_inode_item *item;
415 			u64 nbytes;
416 			u32 mode;
417 
418 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 					      struct btrfs_inode_item);
420 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 			item = btrfs_item_ptr(eb, slot,
422 					      struct btrfs_inode_item);
423 			btrfs_set_inode_nbytes(eb, item, nbytes);
424 
425 			/*
426 			 * If this is a directory we need to reset the i_size to
427 			 * 0 so that we can set it up properly when replaying
428 			 * the rest of the items in this log.
429 			 */
430 			mode = btrfs_inode_mode(eb, item);
431 			if (S_ISDIR(mode))
432 				btrfs_set_inode_size(eb, item, 0);
433 		}
434 	} else if (inode_item) {
435 		struct btrfs_inode_item *item;
436 		u32 mode;
437 
438 		/*
439 		 * New inode, set nbytes to 0 so that the nbytes comes out
440 		 * properly when we replay the extents.
441 		 */
442 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 		btrfs_set_inode_nbytes(eb, item, 0);
444 
445 		/*
446 		 * If this is a directory we need to reset the i_size to 0 so
447 		 * that we can set it up properly when replaying the rest of
448 		 * the items in this log.
449 		 */
450 		mode = btrfs_inode_mode(eb, item);
451 		if (S_ISDIR(mode))
452 			btrfs_set_inode_size(eb, item, 0);
453 	}
454 insert:
455 	btrfs_release_path(path);
456 	/* try to insert the key into the destination tree */
457 	path->skip_release_on_error = 1;
458 	ret = btrfs_insert_empty_item(trans, root, path,
459 				      key, item_size);
460 	path->skip_release_on_error = 0;
461 
462 	/* make sure any existing item is the correct size */
463 	if (ret == -EEXIST || ret == -EOVERFLOW) {
464 		u32 found_size;
465 		found_size = btrfs_item_size_nr(path->nodes[0],
466 						path->slots[0]);
467 		if (found_size > item_size)
468 			btrfs_truncate_item(path, item_size, 1);
469 		else if (found_size < item_size)
470 			btrfs_extend_item(path, item_size - found_size);
471 	} else if (ret) {
472 		return ret;
473 	}
474 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 					path->slots[0]);
476 
477 	/* don't overwrite an existing inode if the generation number
478 	 * was logged as zero.  This is done when the tree logging code
479 	 * is just logging an inode to make sure it exists after recovery.
480 	 *
481 	 * Also, don't overwrite i_size on directories during replay.
482 	 * log replay inserts and removes directory items based on the
483 	 * state of the tree found in the subvolume, and i_size is modified
484 	 * as it goes
485 	 */
486 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 		struct btrfs_inode_item *src_item;
488 		struct btrfs_inode_item *dst_item;
489 
490 		src_item = (struct btrfs_inode_item *)src_ptr;
491 		dst_item = (struct btrfs_inode_item *)dst_ptr;
492 
493 		if (btrfs_inode_generation(eb, src_item) == 0) {
494 			struct extent_buffer *dst_eb = path->nodes[0];
495 			const u64 ino_size = btrfs_inode_size(eb, src_item);
496 
497 			/*
498 			 * For regular files an ino_size == 0 is used only when
499 			 * logging that an inode exists, as part of a directory
500 			 * fsync, and the inode wasn't fsynced before. In this
501 			 * case don't set the size of the inode in the fs/subvol
502 			 * tree, otherwise we would be throwing valid data away.
503 			 */
504 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
505 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 			    ino_size != 0) {
507 				struct btrfs_map_token token;
508 
509 				btrfs_init_map_token(&token, dst_eb);
510 				btrfs_set_token_inode_size(dst_eb, dst_item,
511 							   ino_size, &token);
512 			}
513 			goto no_copy;
514 		}
515 
516 		if (overwrite_root &&
517 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 			save_old_i_size = 1;
520 			saved_i_size = btrfs_inode_size(path->nodes[0],
521 							dst_item);
522 		}
523 	}
524 
525 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 			   src_ptr, item_size);
527 
528 	if (save_old_i_size) {
529 		struct btrfs_inode_item *dst_item;
530 		dst_item = (struct btrfs_inode_item *)dst_ptr;
531 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
532 	}
533 
534 	/* make sure the generation is filled in */
535 	if (key->type == BTRFS_INODE_ITEM_KEY) {
536 		struct btrfs_inode_item *dst_item;
537 		dst_item = (struct btrfs_inode_item *)dst_ptr;
538 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 			btrfs_set_inode_generation(path->nodes[0], dst_item,
540 						   trans->transid);
541 		}
542 	}
543 no_copy:
544 	btrfs_mark_buffer_dirty(path->nodes[0]);
545 	btrfs_release_path(path);
546 	return 0;
547 }
548 
549 /*
550  * simple helper to read an inode off the disk from a given root
551  * This can only be called for subvolume roots and not for the log
552  */
553 static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 					     u64 objectid)
555 {
556 	struct btrfs_key key;
557 	struct inode *inode;
558 
559 	key.objectid = objectid;
560 	key.type = BTRFS_INODE_ITEM_KEY;
561 	key.offset = 0;
562 	inode = btrfs_iget(root->fs_info->sb, &key, root);
563 	if (IS_ERR(inode))
564 		inode = NULL;
565 	return inode;
566 }
567 
568 /* replays a single extent in 'eb' at 'slot' with 'key' into the
569  * subvolume 'root'.  path is released on entry and should be released
570  * on exit.
571  *
572  * extents in the log tree have not been allocated out of the extent
573  * tree yet.  So, this completes the allocation, taking a reference
574  * as required if the extent already exists or creating a new extent
575  * if it isn't in the extent allocation tree yet.
576  *
577  * The extent is inserted into the file, dropping any existing extents
578  * from the file that overlap the new one.
579  */
580 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
581 				      struct btrfs_root *root,
582 				      struct btrfs_path *path,
583 				      struct extent_buffer *eb, int slot,
584 				      struct btrfs_key *key)
585 {
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 	int found_type;
588 	u64 extent_end;
589 	u64 start = key->offset;
590 	u64 nbytes = 0;
591 	struct btrfs_file_extent_item *item;
592 	struct inode *inode = NULL;
593 	unsigned long size;
594 	int ret = 0;
595 
596 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
597 	found_type = btrfs_file_extent_type(eb, item);
598 
599 	if (found_type == BTRFS_FILE_EXTENT_REG ||
600 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
601 		nbytes = btrfs_file_extent_num_bytes(eb, item);
602 		extent_end = start + nbytes;
603 
604 		/*
605 		 * We don't add to the inodes nbytes if we are prealloc or a
606 		 * hole.
607 		 */
608 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
609 			nbytes = 0;
610 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
611 		size = btrfs_file_extent_ram_bytes(eb, item);
612 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
613 		extent_end = ALIGN(start + size,
614 				   fs_info->sectorsize);
615 	} else {
616 		ret = 0;
617 		goto out;
618 	}
619 
620 	inode = read_one_inode(root, key->objectid);
621 	if (!inode) {
622 		ret = -EIO;
623 		goto out;
624 	}
625 
626 	/*
627 	 * first check to see if we already have this extent in the
628 	 * file.  This must be done before the btrfs_drop_extents run
629 	 * so we don't try to drop this extent.
630 	 */
631 	ret = btrfs_lookup_file_extent(trans, root, path,
632 			btrfs_ino(BTRFS_I(inode)), start, 0);
633 
634 	if (ret == 0 &&
635 	    (found_type == BTRFS_FILE_EXTENT_REG ||
636 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
637 		struct btrfs_file_extent_item cmp1;
638 		struct btrfs_file_extent_item cmp2;
639 		struct btrfs_file_extent_item *existing;
640 		struct extent_buffer *leaf;
641 
642 		leaf = path->nodes[0];
643 		existing = btrfs_item_ptr(leaf, path->slots[0],
644 					  struct btrfs_file_extent_item);
645 
646 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
647 				   sizeof(cmp1));
648 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
649 				   sizeof(cmp2));
650 
651 		/*
652 		 * we already have a pointer to this exact extent,
653 		 * we don't have to do anything
654 		 */
655 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
656 			btrfs_release_path(path);
657 			goto out;
658 		}
659 	}
660 	btrfs_release_path(path);
661 
662 	/* drop any overlapping extents */
663 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
664 	if (ret)
665 		goto out;
666 
667 	if (found_type == BTRFS_FILE_EXTENT_REG ||
668 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
669 		u64 offset;
670 		unsigned long dest_offset;
671 		struct btrfs_key ins;
672 
673 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
674 		    btrfs_fs_incompat(fs_info, NO_HOLES))
675 			goto update_inode;
676 
677 		ret = btrfs_insert_empty_item(trans, root, path, key,
678 					      sizeof(*item));
679 		if (ret)
680 			goto out;
681 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
682 						    path->slots[0]);
683 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
684 				(unsigned long)item,  sizeof(*item));
685 
686 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
687 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
688 		ins.type = BTRFS_EXTENT_ITEM_KEY;
689 		offset = key->offset - btrfs_file_extent_offset(eb, item);
690 
691 		/*
692 		 * Manually record dirty extent, as here we did a shallow
693 		 * file extent item copy and skip normal backref update,
694 		 * but modifying extent tree all by ourselves.
695 		 * So need to manually record dirty extent for qgroup,
696 		 * as the owner of the file extent changed from log tree
697 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
698 		 */
699 		ret = btrfs_qgroup_trace_extent(trans,
700 				btrfs_file_extent_disk_bytenr(eb, item),
701 				btrfs_file_extent_disk_num_bytes(eb, item),
702 				GFP_NOFS);
703 		if (ret < 0)
704 			goto out;
705 
706 		if (ins.objectid > 0) {
707 			struct btrfs_ref ref = { 0 };
708 			u64 csum_start;
709 			u64 csum_end;
710 			LIST_HEAD(ordered_sums);
711 
712 			/*
713 			 * is this extent already allocated in the extent
714 			 * allocation tree?  If so, just add a reference
715 			 */
716 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
717 						ins.offset);
718 			if (ret == 0) {
719 				btrfs_init_generic_ref(&ref,
720 						BTRFS_ADD_DELAYED_REF,
721 						ins.objectid, ins.offset, 0);
722 				btrfs_init_data_ref(&ref,
723 						root->root_key.objectid,
724 						key->objectid, offset);
725 				ret = btrfs_inc_extent_ref(trans, &ref);
726 				if (ret)
727 					goto out;
728 			} else {
729 				/*
730 				 * insert the extent pointer in the extent
731 				 * allocation tree
732 				 */
733 				ret = btrfs_alloc_logged_file_extent(trans,
734 						root->root_key.objectid,
735 						key->objectid, offset, &ins);
736 				if (ret)
737 					goto out;
738 			}
739 			btrfs_release_path(path);
740 
741 			if (btrfs_file_extent_compression(eb, item)) {
742 				csum_start = ins.objectid;
743 				csum_end = csum_start + ins.offset;
744 			} else {
745 				csum_start = ins.objectid +
746 					btrfs_file_extent_offset(eb, item);
747 				csum_end = csum_start +
748 					btrfs_file_extent_num_bytes(eb, item);
749 			}
750 
751 			ret = btrfs_lookup_csums_range(root->log_root,
752 						csum_start, csum_end - 1,
753 						&ordered_sums, 0);
754 			if (ret)
755 				goto out;
756 			/*
757 			 * Now delete all existing cums in the csum root that
758 			 * cover our range. We do this because we can have an
759 			 * extent that is completely referenced by one file
760 			 * extent item and partially referenced by another
761 			 * file extent item (like after using the clone or
762 			 * extent_same ioctls). In this case if we end up doing
763 			 * the replay of the one that partially references the
764 			 * extent first, and we do not do the csum deletion
765 			 * below, we can get 2 csum items in the csum tree that
766 			 * overlap each other. For example, imagine our log has
767 			 * the two following file extent items:
768 			 *
769 			 * key (257 EXTENT_DATA 409600)
770 			 *     extent data disk byte 12845056 nr 102400
771 			 *     extent data offset 20480 nr 20480 ram 102400
772 			 *
773 			 * key (257 EXTENT_DATA 819200)
774 			 *     extent data disk byte 12845056 nr 102400
775 			 *     extent data offset 0 nr 102400 ram 102400
776 			 *
777 			 * Where the second one fully references the 100K extent
778 			 * that starts at disk byte 12845056, and the log tree
779 			 * has a single csum item that covers the entire range
780 			 * of the extent:
781 			 *
782 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
783 			 *
784 			 * After the first file extent item is replayed, the
785 			 * csum tree gets the following csum item:
786 			 *
787 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
788 			 *
789 			 * Which covers the 20K sub-range starting at offset 20K
790 			 * of our extent. Now when we replay the second file
791 			 * extent item, if we do not delete existing csum items
792 			 * that cover any of its blocks, we end up getting two
793 			 * csum items in our csum tree that overlap each other:
794 			 *
795 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
797 			 *
798 			 * Which is a problem, because after this anyone trying
799 			 * to lookup up for the checksum of any block of our
800 			 * extent starting at an offset of 40K or higher, will
801 			 * end up looking at the second csum item only, which
802 			 * does not contain the checksum for any block starting
803 			 * at offset 40K or higher of our extent.
804 			 */
805 			while (!list_empty(&ordered_sums)) {
806 				struct btrfs_ordered_sum *sums;
807 				sums = list_entry(ordered_sums.next,
808 						struct btrfs_ordered_sum,
809 						list);
810 				if (!ret)
811 					ret = btrfs_del_csums(trans,
812 							      fs_info->csum_root,
813 							      sums->bytenr,
814 							      sums->len);
815 				if (!ret)
816 					ret = btrfs_csum_file_blocks(trans,
817 						fs_info->csum_root, sums);
818 				list_del(&sums->list);
819 				kfree(sums);
820 			}
821 			if (ret)
822 				goto out;
823 		} else {
824 			btrfs_release_path(path);
825 		}
826 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
827 		/* inline extents are easy, we just overwrite them */
828 		ret = overwrite_item(trans, root, path, eb, slot, key);
829 		if (ret)
830 			goto out;
831 	}
832 
833 	inode_add_bytes(inode, nbytes);
834 update_inode:
835 	ret = btrfs_update_inode(trans, root, inode);
836 out:
837 	if (inode)
838 		iput(inode);
839 	return ret;
840 }
841 
842 /*
843  * when cleaning up conflicts between the directory names in the
844  * subvolume, directory names in the log and directory names in the
845  * inode back references, we may have to unlink inodes from directories.
846  *
847  * This is a helper function to do the unlink of a specific directory
848  * item
849  */
850 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 				      struct btrfs_root *root,
852 				      struct btrfs_path *path,
853 				      struct btrfs_inode *dir,
854 				      struct btrfs_dir_item *di)
855 {
856 	struct inode *inode;
857 	char *name;
858 	int name_len;
859 	struct extent_buffer *leaf;
860 	struct btrfs_key location;
861 	int ret;
862 
863 	leaf = path->nodes[0];
864 
865 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 	name_len = btrfs_dir_name_len(leaf, di);
867 	name = kmalloc(name_len, GFP_NOFS);
868 	if (!name)
869 		return -ENOMEM;
870 
871 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
872 	btrfs_release_path(path);
873 
874 	inode = read_one_inode(root, location.objectid);
875 	if (!inode) {
876 		ret = -EIO;
877 		goto out;
878 	}
879 
880 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
881 	if (ret)
882 		goto out;
883 
884 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
885 			name_len);
886 	if (ret)
887 		goto out;
888 	else
889 		ret = btrfs_run_delayed_items(trans);
890 out:
891 	kfree(name);
892 	iput(inode);
893 	return ret;
894 }
895 
896 /*
897  * helper function to see if a given name and sequence number found
898  * in an inode back reference are already in a directory and correctly
899  * point to this inode
900  */
901 static noinline int inode_in_dir(struct btrfs_root *root,
902 				 struct btrfs_path *path,
903 				 u64 dirid, u64 objectid, u64 index,
904 				 const char *name, int name_len)
905 {
906 	struct btrfs_dir_item *di;
907 	struct btrfs_key location;
908 	int match = 0;
909 
910 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
911 					 index, name, name_len, 0);
912 	if (di && !IS_ERR(di)) {
913 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
914 		if (location.objectid != objectid)
915 			goto out;
916 	} else
917 		goto out;
918 	btrfs_release_path(path);
919 
920 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
921 	if (di && !IS_ERR(di)) {
922 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
923 		if (location.objectid != objectid)
924 			goto out;
925 	} else
926 		goto out;
927 	match = 1;
928 out:
929 	btrfs_release_path(path);
930 	return match;
931 }
932 
933 /*
934  * helper function to check a log tree for a named back reference in
935  * an inode.  This is used to decide if a back reference that is
936  * found in the subvolume conflicts with what we find in the log.
937  *
938  * inode backreferences may have multiple refs in a single item,
939  * during replay we process one reference at a time, and we don't
940  * want to delete valid links to a file from the subvolume if that
941  * link is also in the log.
942  */
943 static noinline int backref_in_log(struct btrfs_root *log,
944 				   struct btrfs_key *key,
945 				   u64 ref_objectid,
946 				   const char *name, int namelen)
947 {
948 	struct btrfs_path *path;
949 	int ret;
950 
951 	path = btrfs_alloc_path();
952 	if (!path)
953 		return -ENOMEM;
954 
955 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
956 	if (ret < 0) {
957 		goto out;
958 	} else if (ret == 1) {
959 		ret = 0;
960 		goto out;
961 	}
962 
963 	if (key->type == BTRFS_INODE_EXTREF_KEY)
964 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
965 						       path->slots[0],
966 						       ref_objectid,
967 						       name, namelen);
968 	else
969 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
970 						   path->slots[0],
971 						   name, namelen);
972 out:
973 	btrfs_free_path(path);
974 	return ret;
975 }
976 
977 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
978 				  struct btrfs_root *root,
979 				  struct btrfs_path *path,
980 				  struct btrfs_root *log_root,
981 				  struct btrfs_inode *dir,
982 				  struct btrfs_inode *inode,
983 				  u64 inode_objectid, u64 parent_objectid,
984 				  u64 ref_index, char *name, int namelen,
985 				  int *search_done)
986 {
987 	int ret;
988 	char *victim_name;
989 	int victim_name_len;
990 	struct extent_buffer *leaf;
991 	struct btrfs_dir_item *di;
992 	struct btrfs_key search_key;
993 	struct btrfs_inode_extref *extref;
994 
995 again:
996 	/* Search old style refs */
997 	search_key.objectid = inode_objectid;
998 	search_key.type = BTRFS_INODE_REF_KEY;
999 	search_key.offset = parent_objectid;
1000 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1001 	if (ret == 0) {
1002 		struct btrfs_inode_ref *victim_ref;
1003 		unsigned long ptr;
1004 		unsigned long ptr_end;
1005 
1006 		leaf = path->nodes[0];
1007 
1008 		/* are we trying to overwrite a back ref for the root directory
1009 		 * if so, just jump out, we're done
1010 		 */
1011 		if (search_key.objectid == search_key.offset)
1012 			return 1;
1013 
1014 		/* check all the names in this back reference to see
1015 		 * if they are in the log.  if so, we allow them to stay
1016 		 * otherwise they must be unlinked as a conflict
1017 		 */
1018 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1019 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1020 		while (ptr < ptr_end) {
1021 			victim_ref = (struct btrfs_inode_ref *)ptr;
1022 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1023 								   victim_ref);
1024 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1025 			if (!victim_name)
1026 				return -ENOMEM;
1027 
1028 			read_extent_buffer(leaf, victim_name,
1029 					   (unsigned long)(victim_ref + 1),
1030 					   victim_name_len);
1031 
1032 			ret = backref_in_log(log_root, &search_key,
1033 					     parent_objectid, victim_name,
1034 					     victim_name_len);
1035 			if (ret < 0) {
1036 				kfree(victim_name);
1037 				return ret;
1038 			} else if (!ret) {
1039 				inc_nlink(&inode->vfs_inode);
1040 				btrfs_release_path(path);
1041 
1042 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1043 						victim_name, victim_name_len);
1044 				kfree(victim_name);
1045 				if (ret)
1046 					return ret;
1047 				ret = btrfs_run_delayed_items(trans);
1048 				if (ret)
1049 					return ret;
1050 				*search_done = 1;
1051 				goto again;
1052 			}
1053 			kfree(victim_name);
1054 
1055 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1056 		}
1057 
1058 		/*
1059 		 * NOTE: we have searched root tree and checked the
1060 		 * corresponding ref, it does not need to check again.
1061 		 */
1062 		*search_done = 1;
1063 	}
1064 	btrfs_release_path(path);
1065 
1066 	/* Same search but for extended refs */
1067 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1068 					   inode_objectid, parent_objectid, 0,
1069 					   0);
1070 	if (!IS_ERR_OR_NULL(extref)) {
1071 		u32 item_size;
1072 		u32 cur_offset = 0;
1073 		unsigned long base;
1074 		struct inode *victim_parent;
1075 
1076 		leaf = path->nodes[0];
1077 
1078 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1079 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1080 
1081 		while (cur_offset < item_size) {
1082 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1083 
1084 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1085 
1086 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1087 				goto next;
1088 
1089 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1090 			if (!victim_name)
1091 				return -ENOMEM;
1092 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1093 					   victim_name_len);
1094 
1095 			search_key.objectid = inode_objectid;
1096 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1097 			search_key.offset = btrfs_extref_hash(parent_objectid,
1098 							      victim_name,
1099 							      victim_name_len);
1100 			ret = backref_in_log(log_root, &search_key,
1101 					     parent_objectid, victim_name,
1102 					     victim_name_len);
1103 			if (ret < 0) {
1104 				return ret;
1105 			} else if (!ret) {
1106 				ret = -ENOENT;
1107 				victim_parent = read_one_inode(root,
1108 						parent_objectid);
1109 				if (victim_parent) {
1110 					inc_nlink(&inode->vfs_inode);
1111 					btrfs_release_path(path);
1112 
1113 					ret = btrfs_unlink_inode(trans, root,
1114 							BTRFS_I(victim_parent),
1115 							inode,
1116 							victim_name,
1117 							victim_name_len);
1118 					if (!ret)
1119 						ret = btrfs_run_delayed_items(
1120 								  trans);
1121 				}
1122 				iput(victim_parent);
1123 				kfree(victim_name);
1124 				if (ret)
1125 					return ret;
1126 				*search_done = 1;
1127 				goto again;
1128 			}
1129 			kfree(victim_name);
1130 next:
1131 			cur_offset += victim_name_len + sizeof(*extref);
1132 		}
1133 		*search_done = 1;
1134 	}
1135 	btrfs_release_path(path);
1136 
1137 	/* look for a conflicting sequence number */
1138 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1139 					 ref_index, name, namelen, 0);
1140 	if (di && !IS_ERR(di)) {
1141 		ret = drop_one_dir_item(trans, root, path, dir, di);
1142 		if (ret)
1143 			return ret;
1144 	}
1145 	btrfs_release_path(path);
1146 
1147 	/* look for a conflicting name */
1148 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1149 				   name, namelen, 0);
1150 	if (di && !IS_ERR(di)) {
1151 		ret = drop_one_dir_item(trans, root, path, dir, di);
1152 		if (ret)
1153 			return ret;
1154 	}
1155 	btrfs_release_path(path);
1156 
1157 	return 0;
1158 }
1159 
1160 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1161 			     u32 *namelen, char **name, u64 *index,
1162 			     u64 *parent_objectid)
1163 {
1164 	struct btrfs_inode_extref *extref;
1165 
1166 	extref = (struct btrfs_inode_extref *)ref_ptr;
1167 
1168 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1169 	*name = kmalloc(*namelen, GFP_NOFS);
1170 	if (*name == NULL)
1171 		return -ENOMEM;
1172 
1173 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1174 			   *namelen);
1175 
1176 	if (index)
1177 		*index = btrfs_inode_extref_index(eb, extref);
1178 	if (parent_objectid)
1179 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1180 
1181 	return 0;
1182 }
1183 
1184 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1185 			  u32 *namelen, char **name, u64 *index)
1186 {
1187 	struct btrfs_inode_ref *ref;
1188 
1189 	ref = (struct btrfs_inode_ref *)ref_ptr;
1190 
1191 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1192 	*name = kmalloc(*namelen, GFP_NOFS);
1193 	if (*name == NULL)
1194 		return -ENOMEM;
1195 
1196 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1197 
1198 	if (index)
1199 		*index = btrfs_inode_ref_index(eb, ref);
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * Take an inode reference item from the log tree and iterate all names from the
1206  * inode reference item in the subvolume tree with the same key (if it exists).
1207  * For any name that is not in the inode reference item from the log tree, do a
1208  * proper unlink of that name (that is, remove its entry from the inode
1209  * reference item and both dir index keys).
1210  */
1211 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1212 				 struct btrfs_root *root,
1213 				 struct btrfs_path *path,
1214 				 struct btrfs_inode *inode,
1215 				 struct extent_buffer *log_eb,
1216 				 int log_slot,
1217 				 struct btrfs_key *key)
1218 {
1219 	int ret;
1220 	unsigned long ref_ptr;
1221 	unsigned long ref_end;
1222 	struct extent_buffer *eb;
1223 
1224 again:
1225 	btrfs_release_path(path);
1226 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1227 	if (ret > 0) {
1228 		ret = 0;
1229 		goto out;
1230 	}
1231 	if (ret < 0)
1232 		goto out;
1233 
1234 	eb = path->nodes[0];
1235 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1236 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1237 	while (ref_ptr < ref_end) {
1238 		char *name = NULL;
1239 		int namelen;
1240 		u64 parent_id;
1241 
1242 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1243 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1244 						NULL, &parent_id);
1245 		} else {
1246 			parent_id = key->offset;
1247 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1248 					     NULL);
1249 		}
1250 		if (ret)
1251 			goto out;
1252 
1253 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1254 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1255 							       parent_id, name,
1256 							       namelen);
1257 		else
1258 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1259 							   name, namelen);
1260 
1261 		if (!ret) {
1262 			struct inode *dir;
1263 
1264 			btrfs_release_path(path);
1265 			dir = read_one_inode(root, parent_id);
1266 			if (!dir) {
1267 				ret = -ENOENT;
1268 				kfree(name);
1269 				goto out;
1270 			}
1271 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1272 						 inode, name, namelen);
1273 			kfree(name);
1274 			iput(dir);
1275 			if (ret)
1276 				goto out;
1277 			goto again;
1278 		}
1279 
1280 		kfree(name);
1281 		ref_ptr += namelen;
1282 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1283 			ref_ptr += sizeof(struct btrfs_inode_extref);
1284 		else
1285 			ref_ptr += sizeof(struct btrfs_inode_ref);
1286 	}
1287 	ret = 0;
1288  out:
1289 	btrfs_release_path(path);
1290 	return ret;
1291 }
1292 
1293 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1294 				  const u8 ref_type, const char *name,
1295 				  const int namelen)
1296 {
1297 	struct btrfs_key key;
1298 	struct btrfs_path *path;
1299 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1300 	int ret;
1301 
1302 	path = btrfs_alloc_path();
1303 	if (!path)
1304 		return -ENOMEM;
1305 
1306 	key.objectid = btrfs_ino(BTRFS_I(inode));
1307 	key.type = ref_type;
1308 	if (key.type == BTRFS_INODE_REF_KEY)
1309 		key.offset = parent_id;
1310 	else
1311 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1312 
1313 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1314 	if (ret < 0)
1315 		goto out;
1316 	if (ret > 0) {
1317 		ret = 0;
1318 		goto out;
1319 	}
1320 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1321 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1322 				path->slots[0], parent_id, name, namelen);
1323 	else
1324 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1325 						   name, namelen);
1326 
1327 out:
1328 	btrfs_free_path(path);
1329 	return ret;
1330 }
1331 
1332 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1333 		    struct inode *dir, struct inode *inode, const char *name,
1334 		    int namelen, u64 ref_index)
1335 {
1336 	struct btrfs_dir_item *dir_item;
1337 	struct btrfs_key key;
1338 	struct btrfs_path *path;
1339 	struct inode *other_inode = NULL;
1340 	int ret;
1341 
1342 	path = btrfs_alloc_path();
1343 	if (!path)
1344 		return -ENOMEM;
1345 
1346 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1347 					 btrfs_ino(BTRFS_I(dir)),
1348 					 name, namelen, 0);
1349 	if (!dir_item) {
1350 		btrfs_release_path(path);
1351 		goto add_link;
1352 	} else if (IS_ERR(dir_item)) {
1353 		ret = PTR_ERR(dir_item);
1354 		goto out;
1355 	}
1356 
1357 	/*
1358 	 * Our inode's dentry collides with the dentry of another inode which is
1359 	 * in the log but not yet processed since it has a higher inode number.
1360 	 * So delete that other dentry.
1361 	 */
1362 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1363 	btrfs_release_path(path);
1364 	other_inode = read_one_inode(root, key.objectid);
1365 	if (!other_inode) {
1366 		ret = -ENOENT;
1367 		goto out;
1368 	}
1369 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1370 				 name, namelen);
1371 	if (ret)
1372 		goto out;
1373 	/*
1374 	 * If we dropped the link count to 0, bump it so that later the iput()
1375 	 * on the inode will not free it. We will fixup the link count later.
1376 	 */
1377 	if (other_inode->i_nlink == 0)
1378 		inc_nlink(other_inode);
1379 
1380 	ret = btrfs_run_delayed_items(trans);
1381 	if (ret)
1382 		goto out;
1383 add_link:
1384 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1385 			     name, namelen, 0, ref_index);
1386 out:
1387 	iput(other_inode);
1388 	btrfs_free_path(path);
1389 
1390 	return ret;
1391 }
1392 
1393 /*
1394  * replay one inode back reference item found in the log tree.
1395  * eb, slot and key refer to the buffer and key found in the log tree.
1396  * root is the destination we are replaying into, and path is for temp
1397  * use by this function.  (it should be released on return).
1398  */
1399 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1400 				  struct btrfs_root *root,
1401 				  struct btrfs_root *log,
1402 				  struct btrfs_path *path,
1403 				  struct extent_buffer *eb, int slot,
1404 				  struct btrfs_key *key)
1405 {
1406 	struct inode *dir = NULL;
1407 	struct inode *inode = NULL;
1408 	unsigned long ref_ptr;
1409 	unsigned long ref_end;
1410 	char *name = NULL;
1411 	int namelen;
1412 	int ret;
1413 	int search_done = 0;
1414 	int log_ref_ver = 0;
1415 	u64 parent_objectid;
1416 	u64 inode_objectid;
1417 	u64 ref_index = 0;
1418 	int ref_struct_size;
1419 
1420 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1421 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1422 
1423 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1424 		struct btrfs_inode_extref *r;
1425 
1426 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1427 		log_ref_ver = 1;
1428 		r = (struct btrfs_inode_extref *)ref_ptr;
1429 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1430 	} else {
1431 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1432 		parent_objectid = key->offset;
1433 	}
1434 	inode_objectid = key->objectid;
1435 
1436 	/*
1437 	 * it is possible that we didn't log all the parent directories
1438 	 * for a given inode.  If we don't find the dir, just don't
1439 	 * copy the back ref in.  The link count fixup code will take
1440 	 * care of the rest
1441 	 */
1442 	dir = read_one_inode(root, parent_objectid);
1443 	if (!dir) {
1444 		ret = -ENOENT;
1445 		goto out;
1446 	}
1447 
1448 	inode = read_one_inode(root, inode_objectid);
1449 	if (!inode) {
1450 		ret = -EIO;
1451 		goto out;
1452 	}
1453 
1454 	while (ref_ptr < ref_end) {
1455 		if (log_ref_ver) {
1456 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1457 						&ref_index, &parent_objectid);
1458 			/*
1459 			 * parent object can change from one array
1460 			 * item to another.
1461 			 */
1462 			if (!dir)
1463 				dir = read_one_inode(root, parent_objectid);
1464 			if (!dir) {
1465 				ret = -ENOENT;
1466 				goto out;
1467 			}
1468 		} else {
1469 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1470 					     &ref_index);
1471 		}
1472 		if (ret)
1473 			goto out;
1474 
1475 		/* if we already have a perfect match, we're done */
1476 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1477 					btrfs_ino(BTRFS_I(inode)), ref_index,
1478 					name, namelen)) {
1479 			/*
1480 			 * look for a conflicting back reference in the
1481 			 * metadata. if we find one we have to unlink that name
1482 			 * of the file before we add our new link.  Later on, we
1483 			 * overwrite any existing back reference, and we don't
1484 			 * want to create dangling pointers in the directory.
1485 			 */
1486 
1487 			if (!search_done) {
1488 				ret = __add_inode_ref(trans, root, path, log,
1489 						      BTRFS_I(dir),
1490 						      BTRFS_I(inode),
1491 						      inode_objectid,
1492 						      parent_objectid,
1493 						      ref_index, name, namelen,
1494 						      &search_done);
1495 				if (ret) {
1496 					if (ret == 1)
1497 						ret = 0;
1498 					goto out;
1499 				}
1500 			}
1501 
1502 			/*
1503 			 * If a reference item already exists for this inode
1504 			 * with the same parent and name, but different index,
1505 			 * drop it and the corresponding directory index entries
1506 			 * from the parent before adding the new reference item
1507 			 * and dir index entries, otherwise we would fail with
1508 			 * -EEXIST returned from btrfs_add_link() below.
1509 			 */
1510 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1511 						     name, namelen);
1512 			if (ret > 0) {
1513 				ret = btrfs_unlink_inode(trans, root,
1514 							 BTRFS_I(dir),
1515 							 BTRFS_I(inode),
1516 							 name, namelen);
1517 				/*
1518 				 * If we dropped the link count to 0, bump it so
1519 				 * that later the iput() on the inode will not
1520 				 * free it. We will fixup the link count later.
1521 				 */
1522 				if (!ret && inode->i_nlink == 0)
1523 					inc_nlink(inode);
1524 			}
1525 			if (ret < 0)
1526 				goto out;
1527 
1528 			/* insert our name */
1529 			ret = add_link(trans, root, dir, inode, name, namelen,
1530 				       ref_index);
1531 			if (ret)
1532 				goto out;
1533 
1534 			btrfs_update_inode(trans, root, inode);
1535 		}
1536 
1537 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1538 		kfree(name);
1539 		name = NULL;
1540 		if (log_ref_ver) {
1541 			iput(dir);
1542 			dir = NULL;
1543 		}
1544 	}
1545 
1546 	/*
1547 	 * Before we overwrite the inode reference item in the subvolume tree
1548 	 * with the item from the log tree, we must unlink all names from the
1549 	 * parent directory that are in the subvolume's tree inode reference
1550 	 * item, otherwise we end up with an inconsistent subvolume tree where
1551 	 * dir index entries exist for a name but there is no inode reference
1552 	 * item with the same name.
1553 	 */
1554 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1555 				    key);
1556 	if (ret)
1557 		goto out;
1558 
1559 	/* finally write the back reference in the inode */
1560 	ret = overwrite_item(trans, root, path, eb, slot, key);
1561 out:
1562 	btrfs_release_path(path);
1563 	kfree(name);
1564 	iput(dir);
1565 	iput(inode);
1566 	return ret;
1567 }
1568 
1569 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1570 			      struct btrfs_root *root, u64 ino)
1571 {
1572 	int ret;
1573 
1574 	ret = btrfs_insert_orphan_item(trans, root, ino);
1575 	if (ret == -EEXIST)
1576 		ret = 0;
1577 
1578 	return ret;
1579 }
1580 
1581 static int count_inode_extrefs(struct btrfs_root *root,
1582 		struct btrfs_inode *inode, struct btrfs_path *path)
1583 {
1584 	int ret = 0;
1585 	int name_len;
1586 	unsigned int nlink = 0;
1587 	u32 item_size;
1588 	u32 cur_offset = 0;
1589 	u64 inode_objectid = btrfs_ino(inode);
1590 	u64 offset = 0;
1591 	unsigned long ptr;
1592 	struct btrfs_inode_extref *extref;
1593 	struct extent_buffer *leaf;
1594 
1595 	while (1) {
1596 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1597 					    &extref, &offset);
1598 		if (ret)
1599 			break;
1600 
1601 		leaf = path->nodes[0];
1602 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1603 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1604 		cur_offset = 0;
1605 
1606 		while (cur_offset < item_size) {
1607 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1608 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1609 
1610 			nlink++;
1611 
1612 			cur_offset += name_len + sizeof(*extref);
1613 		}
1614 
1615 		offset++;
1616 		btrfs_release_path(path);
1617 	}
1618 	btrfs_release_path(path);
1619 
1620 	if (ret < 0 && ret != -ENOENT)
1621 		return ret;
1622 	return nlink;
1623 }
1624 
1625 static int count_inode_refs(struct btrfs_root *root,
1626 			struct btrfs_inode *inode, struct btrfs_path *path)
1627 {
1628 	int ret;
1629 	struct btrfs_key key;
1630 	unsigned int nlink = 0;
1631 	unsigned long ptr;
1632 	unsigned long ptr_end;
1633 	int name_len;
1634 	u64 ino = btrfs_ino(inode);
1635 
1636 	key.objectid = ino;
1637 	key.type = BTRFS_INODE_REF_KEY;
1638 	key.offset = (u64)-1;
1639 
1640 	while (1) {
1641 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1642 		if (ret < 0)
1643 			break;
1644 		if (ret > 0) {
1645 			if (path->slots[0] == 0)
1646 				break;
1647 			path->slots[0]--;
1648 		}
1649 process_slot:
1650 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1651 				      path->slots[0]);
1652 		if (key.objectid != ino ||
1653 		    key.type != BTRFS_INODE_REF_KEY)
1654 			break;
1655 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1656 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1657 						   path->slots[0]);
1658 		while (ptr < ptr_end) {
1659 			struct btrfs_inode_ref *ref;
1660 
1661 			ref = (struct btrfs_inode_ref *)ptr;
1662 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1663 							    ref);
1664 			ptr = (unsigned long)(ref + 1) + name_len;
1665 			nlink++;
1666 		}
1667 
1668 		if (key.offset == 0)
1669 			break;
1670 		if (path->slots[0] > 0) {
1671 			path->slots[0]--;
1672 			goto process_slot;
1673 		}
1674 		key.offset--;
1675 		btrfs_release_path(path);
1676 	}
1677 	btrfs_release_path(path);
1678 
1679 	return nlink;
1680 }
1681 
1682 /*
1683  * There are a few corners where the link count of the file can't
1684  * be properly maintained during replay.  So, instead of adding
1685  * lots of complexity to the log code, we just scan the backrefs
1686  * for any file that has been through replay.
1687  *
1688  * The scan will update the link count on the inode to reflect the
1689  * number of back refs found.  If it goes down to zero, the iput
1690  * will free the inode.
1691  */
1692 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1693 					   struct btrfs_root *root,
1694 					   struct inode *inode)
1695 {
1696 	struct btrfs_path *path;
1697 	int ret;
1698 	u64 nlink = 0;
1699 	u64 ino = btrfs_ino(BTRFS_I(inode));
1700 
1701 	path = btrfs_alloc_path();
1702 	if (!path)
1703 		return -ENOMEM;
1704 
1705 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1706 	if (ret < 0)
1707 		goto out;
1708 
1709 	nlink = ret;
1710 
1711 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1712 	if (ret < 0)
1713 		goto out;
1714 
1715 	nlink += ret;
1716 
1717 	ret = 0;
1718 
1719 	if (nlink != inode->i_nlink) {
1720 		set_nlink(inode, nlink);
1721 		btrfs_update_inode(trans, root, inode);
1722 	}
1723 	BTRFS_I(inode)->index_cnt = (u64)-1;
1724 
1725 	if (inode->i_nlink == 0) {
1726 		if (S_ISDIR(inode->i_mode)) {
1727 			ret = replay_dir_deletes(trans, root, NULL, path,
1728 						 ino, 1);
1729 			if (ret)
1730 				goto out;
1731 		}
1732 		ret = insert_orphan_item(trans, root, ino);
1733 	}
1734 
1735 out:
1736 	btrfs_free_path(path);
1737 	return ret;
1738 }
1739 
1740 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1741 					    struct btrfs_root *root,
1742 					    struct btrfs_path *path)
1743 {
1744 	int ret;
1745 	struct btrfs_key key;
1746 	struct inode *inode;
1747 
1748 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1749 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1750 	key.offset = (u64)-1;
1751 	while (1) {
1752 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1753 		if (ret < 0)
1754 			break;
1755 
1756 		if (ret == 1) {
1757 			if (path->slots[0] == 0)
1758 				break;
1759 			path->slots[0]--;
1760 		}
1761 
1762 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1763 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1764 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1765 			break;
1766 
1767 		ret = btrfs_del_item(trans, root, path);
1768 		if (ret)
1769 			goto out;
1770 
1771 		btrfs_release_path(path);
1772 		inode = read_one_inode(root, key.offset);
1773 		if (!inode)
1774 			return -EIO;
1775 
1776 		ret = fixup_inode_link_count(trans, root, inode);
1777 		iput(inode);
1778 		if (ret)
1779 			goto out;
1780 
1781 		/*
1782 		 * fixup on a directory may create new entries,
1783 		 * make sure we always look for the highset possible
1784 		 * offset
1785 		 */
1786 		key.offset = (u64)-1;
1787 	}
1788 	ret = 0;
1789 out:
1790 	btrfs_release_path(path);
1791 	return ret;
1792 }
1793 
1794 
1795 /*
1796  * record a given inode in the fixup dir so we can check its link
1797  * count when replay is done.  The link count is incremented here
1798  * so the inode won't go away until we check it
1799  */
1800 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1801 				      struct btrfs_root *root,
1802 				      struct btrfs_path *path,
1803 				      u64 objectid)
1804 {
1805 	struct btrfs_key key;
1806 	int ret = 0;
1807 	struct inode *inode;
1808 
1809 	inode = read_one_inode(root, objectid);
1810 	if (!inode)
1811 		return -EIO;
1812 
1813 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1814 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1815 	key.offset = objectid;
1816 
1817 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1818 
1819 	btrfs_release_path(path);
1820 	if (ret == 0) {
1821 		if (!inode->i_nlink)
1822 			set_nlink(inode, 1);
1823 		else
1824 			inc_nlink(inode);
1825 		ret = btrfs_update_inode(trans, root, inode);
1826 	} else if (ret == -EEXIST) {
1827 		ret = 0;
1828 	} else {
1829 		BUG(); /* Logic Error */
1830 	}
1831 	iput(inode);
1832 
1833 	return ret;
1834 }
1835 
1836 /*
1837  * when replaying the log for a directory, we only insert names
1838  * for inodes that actually exist.  This means an fsync on a directory
1839  * does not implicitly fsync all the new files in it
1840  */
1841 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1842 				    struct btrfs_root *root,
1843 				    u64 dirid, u64 index,
1844 				    char *name, int name_len,
1845 				    struct btrfs_key *location)
1846 {
1847 	struct inode *inode;
1848 	struct inode *dir;
1849 	int ret;
1850 
1851 	inode = read_one_inode(root, location->objectid);
1852 	if (!inode)
1853 		return -ENOENT;
1854 
1855 	dir = read_one_inode(root, dirid);
1856 	if (!dir) {
1857 		iput(inode);
1858 		return -EIO;
1859 	}
1860 
1861 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1862 			name_len, 1, index);
1863 
1864 	/* FIXME, put inode into FIXUP list */
1865 
1866 	iput(inode);
1867 	iput(dir);
1868 	return ret;
1869 }
1870 
1871 /*
1872  * take a single entry in a log directory item and replay it into
1873  * the subvolume.
1874  *
1875  * if a conflicting item exists in the subdirectory already,
1876  * the inode it points to is unlinked and put into the link count
1877  * fix up tree.
1878  *
1879  * If a name from the log points to a file or directory that does
1880  * not exist in the FS, it is skipped.  fsyncs on directories
1881  * do not force down inodes inside that directory, just changes to the
1882  * names or unlinks in a directory.
1883  *
1884  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1885  * non-existing inode) and 1 if the name was replayed.
1886  */
1887 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1888 				    struct btrfs_root *root,
1889 				    struct btrfs_path *path,
1890 				    struct extent_buffer *eb,
1891 				    struct btrfs_dir_item *di,
1892 				    struct btrfs_key *key)
1893 {
1894 	char *name;
1895 	int name_len;
1896 	struct btrfs_dir_item *dst_di;
1897 	struct btrfs_key found_key;
1898 	struct btrfs_key log_key;
1899 	struct inode *dir;
1900 	u8 log_type;
1901 	int exists;
1902 	int ret = 0;
1903 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1904 	bool name_added = false;
1905 
1906 	dir = read_one_inode(root, key->objectid);
1907 	if (!dir)
1908 		return -EIO;
1909 
1910 	name_len = btrfs_dir_name_len(eb, di);
1911 	name = kmalloc(name_len, GFP_NOFS);
1912 	if (!name) {
1913 		ret = -ENOMEM;
1914 		goto out;
1915 	}
1916 
1917 	log_type = btrfs_dir_type(eb, di);
1918 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1919 		   name_len);
1920 
1921 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1922 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1923 	if (exists == 0)
1924 		exists = 1;
1925 	else
1926 		exists = 0;
1927 	btrfs_release_path(path);
1928 
1929 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1930 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1931 				       name, name_len, 1);
1932 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1933 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1934 						     key->objectid,
1935 						     key->offset, name,
1936 						     name_len, 1);
1937 	} else {
1938 		/* Corruption */
1939 		ret = -EINVAL;
1940 		goto out;
1941 	}
1942 	if (IS_ERR_OR_NULL(dst_di)) {
1943 		/* we need a sequence number to insert, so we only
1944 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1945 		 */
1946 		if (key->type != BTRFS_DIR_INDEX_KEY)
1947 			goto out;
1948 		goto insert;
1949 	}
1950 
1951 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1952 	/* the existing item matches the logged item */
1953 	if (found_key.objectid == log_key.objectid &&
1954 	    found_key.type == log_key.type &&
1955 	    found_key.offset == log_key.offset &&
1956 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1957 		update_size = false;
1958 		goto out;
1959 	}
1960 
1961 	/*
1962 	 * don't drop the conflicting directory entry if the inode
1963 	 * for the new entry doesn't exist
1964 	 */
1965 	if (!exists)
1966 		goto out;
1967 
1968 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1969 	if (ret)
1970 		goto out;
1971 
1972 	if (key->type == BTRFS_DIR_INDEX_KEY)
1973 		goto insert;
1974 out:
1975 	btrfs_release_path(path);
1976 	if (!ret && update_size) {
1977 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1978 		ret = btrfs_update_inode(trans, root, dir);
1979 	}
1980 	kfree(name);
1981 	iput(dir);
1982 	if (!ret && name_added)
1983 		ret = 1;
1984 	return ret;
1985 
1986 insert:
1987 	/*
1988 	 * Check if the inode reference exists in the log for the given name,
1989 	 * inode and parent inode
1990 	 */
1991 	found_key.objectid = log_key.objectid;
1992 	found_key.type = BTRFS_INODE_REF_KEY;
1993 	found_key.offset = key->objectid;
1994 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1995 	if (ret < 0) {
1996 	        goto out;
1997 	} else if (ret) {
1998 	        /* The dentry will be added later. */
1999 	        ret = 0;
2000 	        update_size = false;
2001 	        goto out;
2002 	}
2003 
2004 	found_key.objectid = log_key.objectid;
2005 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2006 	found_key.offset = key->objectid;
2007 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2008 			     name_len);
2009 	if (ret < 0) {
2010 		goto out;
2011 	} else if (ret) {
2012 		/* The dentry will be added later. */
2013 		ret = 0;
2014 		update_size = false;
2015 		goto out;
2016 	}
2017 	btrfs_release_path(path);
2018 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2019 			      name, name_len, &log_key);
2020 	if (ret && ret != -ENOENT && ret != -EEXIST)
2021 		goto out;
2022 	if (!ret)
2023 		name_added = true;
2024 	update_size = false;
2025 	ret = 0;
2026 	goto out;
2027 }
2028 
2029 /*
2030  * find all the names in a directory item and reconcile them into
2031  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2032  * one name in a directory item, but the same code gets used for
2033  * both directory index types
2034  */
2035 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2036 					struct btrfs_root *root,
2037 					struct btrfs_path *path,
2038 					struct extent_buffer *eb, int slot,
2039 					struct btrfs_key *key)
2040 {
2041 	int ret = 0;
2042 	u32 item_size = btrfs_item_size_nr(eb, slot);
2043 	struct btrfs_dir_item *di;
2044 	int name_len;
2045 	unsigned long ptr;
2046 	unsigned long ptr_end;
2047 	struct btrfs_path *fixup_path = NULL;
2048 
2049 	ptr = btrfs_item_ptr_offset(eb, slot);
2050 	ptr_end = ptr + item_size;
2051 	while (ptr < ptr_end) {
2052 		di = (struct btrfs_dir_item *)ptr;
2053 		name_len = btrfs_dir_name_len(eb, di);
2054 		ret = replay_one_name(trans, root, path, eb, di, key);
2055 		if (ret < 0)
2056 			break;
2057 		ptr = (unsigned long)(di + 1);
2058 		ptr += name_len;
2059 
2060 		/*
2061 		 * If this entry refers to a non-directory (directories can not
2062 		 * have a link count > 1) and it was added in the transaction
2063 		 * that was not committed, make sure we fixup the link count of
2064 		 * the inode it the entry points to. Otherwise something like
2065 		 * the following would result in a directory pointing to an
2066 		 * inode with a wrong link that does not account for this dir
2067 		 * entry:
2068 		 *
2069 		 * mkdir testdir
2070 		 * touch testdir/foo
2071 		 * touch testdir/bar
2072 		 * sync
2073 		 *
2074 		 * ln testdir/bar testdir/bar_link
2075 		 * ln testdir/foo testdir/foo_link
2076 		 * xfs_io -c "fsync" testdir/bar
2077 		 *
2078 		 * <power failure>
2079 		 *
2080 		 * mount fs, log replay happens
2081 		 *
2082 		 * File foo would remain with a link count of 1 when it has two
2083 		 * entries pointing to it in the directory testdir. This would
2084 		 * make it impossible to ever delete the parent directory has
2085 		 * it would result in stale dentries that can never be deleted.
2086 		 */
2087 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2088 			struct btrfs_key di_key;
2089 
2090 			if (!fixup_path) {
2091 				fixup_path = btrfs_alloc_path();
2092 				if (!fixup_path) {
2093 					ret = -ENOMEM;
2094 					break;
2095 				}
2096 			}
2097 
2098 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2099 			ret = link_to_fixup_dir(trans, root, fixup_path,
2100 						di_key.objectid);
2101 			if (ret)
2102 				break;
2103 		}
2104 		ret = 0;
2105 	}
2106 	btrfs_free_path(fixup_path);
2107 	return ret;
2108 }
2109 
2110 /*
2111  * directory replay has two parts.  There are the standard directory
2112  * items in the log copied from the subvolume, and range items
2113  * created in the log while the subvolume was logged.
2114  *
2115  * The range items tell us which parts of the key space the log
2116  * is authoritative for.  During replay, if a key in the subvolume
2117  * directory is in a logged range item, but not actually in the log
2118  * that means it was deleted from the directory before the fsync
2119  * and should be removed.
2120  */
2121 static noinline int find_dir_range(struct btrfs_root *root,
2122 				   struct btrfs_path *path,
2123 				   u64 dirid, int key_type,
2124 				   u64 *start_ret, u64 *end_ret)
2125 {
2126 	struct btrfs_key key;
2127 	u64 found_end;
2128 	struct btrfs_dir_log_item *item;
2129 	int ret;
2130 	int nritems;
2131 
2132 	if (*start_ret == (u64)-1)
2133 		return 1;
2134 
2135 	key.objectid = dirid;
2136 	key.type = key_type;
2137 	key.offset = *start_ret;
2138 
2139 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2140 	if (ret < 0)
2141 		goto out;
2142 	if (ret > 0) {
2143 		if (path->slots[0] == 0)
2144 			goto out;
2145 		path->slots[0]--;
2146 	}
2147 	if (ret != 0)
2148 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2149 
2150 	if (key.type != key_type || key.objectid != dirid) {
2151 		ret = 1;
2152 		goto next;
2153 	}
2154 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2155 			      struct btrfs_dir_log_item);
2156 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2157 
2158 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2159 		ret = 0;
2160 		*start_ret = key.offset;
2161 		*end_ret = found_end;
2162 		goto out;
2163 	}
2164 	ret = 1;
2165 next:
2166 	/* check the next slot in the tree to see if it is a valid item */
2167 	nritems = btrfs_header_nritems(path->nodes[0]);
2168 	path->slots[0]++;
2169 	if (path->slots[0] >= nritems) {
2170 		ret = btrfs_next_leaf(root, path);
2171 		if (ret)
2172 			goto out;
2173 	}
2174 
2175 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2176 
2177 	if (key.type != key_type || key.objectid != dirid) {
2178 		ret = 1;
2179 		goto out;
2180 	}
2181 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2182 			      struct btrfs_dir_log_item);
2183 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2184 	*start_ret = key.offset;
2185 	*end_ret = found_end;
2186 	ret = 0;
2187 out:
2188 	btrfs_release_path(path);
2189 	return ret;
2190 }
2191 
2192 /*
2193  * this looks for a given directory item in the log.  If the directory
2194  * item is not in the log, the item is removed and the inode it points
2195  * to is unlinked
2196  */
2197 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2198 				      struct btrfs_root *root,
2199 				      struct btrfs_root *log,
2200 				      struct btrfs_path *path,
2201 				      struct btrfs_path *log_path,
2202 				      struct inode *dir,
2203 				      struct btrfs_key *dir_key)
2204 {
2205 	int ret;
2206 	struct extent_buffer *eb;
2207 	int slot;
2208 	u32 item_size;
2209 	struct btrfs_dir_item *di;
2210 	struct btrfs_dir_item *log_di;
2211 	int name_len;
2212 	unsigned long ptr;
2213 	unsigned long ptr_end;
2214 	char *name;
2215 	struct inode *inode;
2216 	struct btrfs_key location;
2217 
2218 again:
2219 	eb = path->nodes[0];
2220 	slot = path->slots[0];
2221 	item_size = btrfs_item_size_nr(eb, slot);
2222 	ptr = btrfs_item_ptr_offset(eb, slot);
2223 	ptr_end = ptr + item_size;
2224 	while (ptr < ptr_end) {
2225 		di = (struct btrfs_dir_item *)ptr;
2226 		name_len = btrfs_dir_name_len(eb, di);
2227 		name = kmalloc(name_len, GFP_NOFS);
2228 		if (!name) {
2229 			ret = -ENOMEM;
2230 			goto out;
2231 		}
2232 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2233 				  name_len);
2234 		log_di = NULL;
2235 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2236 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2237 						       dir_key->objectid,
2238 						       name, name_len, 0);
2239 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2240 			log_di = btrfs_lookup_dir_index_item(trans, log,
2241 						     log_path,
2242 						     dir_key->objectid,
2243 						     dir_key->offset,
2244 						     name, name_len, 0);
2245 		}
2246 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2247 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2248 			btrfs_release_path(path);
2249 			btrfs_release_path(log_path);
2250 			inode = read_one_inode(root, location.objectid);
2251 			if (!inode) {
2252 				kfree(name);
2253 				return -EIO;
2254 			}
2255 
2256 			ret = link_to_fixup_dir(trans, root,
2257 						path, location.objectid);
2258 			if (ret) {
2259 				kfree(name);
2260 				iput(inode);
2261 				goto out;
2262 			}
2263 
2264 			inc_nlink(inode);
2265 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2266 					BTRFS_I(inode), name, name_len);
2267 			if (!ret)
2268 				ret = btrfs_run_delayed_items(trans);
2269 			kfree(name);
2270 			iput(inode);
2271 			if (ret)
2272 				goto out;
2273 
2274 			/* there might still be more names under this key
2275 			 * check and repeat if required
2276 			 */
2277 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2278 						0, 0);
2279 			if (ret == 0)
2280 				goto again;
2281 			ret = 0;
2282 			goto out;
2283 		} else if (IS_ERR(log_di)) {
2284 			kfree(name);
2285 			return PTR_ERR(log_di);
2286 		}
2287 		btrfs_release_path(log_path);
2288 		kfree(name);
2289 
2290 		ptr = (unsigned long)(di + 1);
2291 		ptr += name_len;
2292 	}
2293 	ret = 0;
2294 out:
2295 	btrfs_release_path(path);
2296 	btrfs_release_path(log_path);
2297 	return ret;
2298 }
2299 
2300 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2301 			      struct btrfs_root *root,
2302 			      struct btrfs_root *log,
2303 			      struct btrfs_path *path,
2304 			      const u64 ino)
2305 {
2306 	struct btrfs_key search_key;
2307 	struct btrfs_path *log_path;
2308 	int i;
2309 	int nritems;
2310 	int ret;
2311 
2312 	log_path = btrfs_alloc_path();
2313 	if (!log_path)
2314 		return -ENOMEM;
2315 
2316 	search_key.objectid = ino;
2317 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2318 	search_key.offset = 0;
2319 again:
2320 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2321 	if (ret < 0)
2322 		goto out;
2323 process_leaf:
2324 	nritems = btrfs_header_nritems(path->nodes[0]);
2325 	for (i = path->slots[0]; i < nritems; i++) {
2326 		struct btrfs_key key;
2327 		struct btrfs_dir_item *di;
2328 		struct btrfs_dir_item *log_di;
2329 		u32 total_size;
2330 		u32 cur;
2331 
2332 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2333 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2334 			ret = 0;
2335 			goto out;
2336 		}
2337 
2338 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2339 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2340 		cur = 0;
2341 		while (cur < total_size) {
2342 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2343 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2344 			u32 this_len = sizeof(*di) + name_len + data_len;
2345 			char *name;
2346 
2347 			name = kmalloc(name_len, GFP_NOFS);
2348 			if (!name) {
2349 				ret = -ENOMEM;
2350 				goto out;
2351 			}
2352 			read_extent_buffer(path->nodes[0], name,
2353 					   (unsigned long)(di + 1), name_len);
2354 
2355 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2356 						    name, name_len, 0);
2357 			btrfs_release_path(log_path);
2358 			if (!log_di) {
2359 				/* Doesn't exist in log tree, so delete it. */
2360 				btrfs_release_path(path);
2361 				di = btrfs_lookup_xattr(trans, root, path, ino,
2362 							name, name_len, -1);
2363 				kfree(name);
2364 				if (IS_ERR(di)) {
2365 					ret = PTR_ERR(di);
2366 					goto out;
2367 				}
2368 				ASSERT(di);
2369 				ret = btrfs_delete_one_dir_name(trans, root,
2370 								path, di);
2371 				if (ret)
2372 					goto out;
2373 				btrfs_release_path(path);
2374 				search_key = key;
2375 				goto again;
2376 			}
2377 			kfree(name);
2378 			if (IS_ERR(log_di)) {
2379 				ret = PTR_ERR(log_di);
2380 				goto out;
2381 			}
2382 			cur += this_len;
2383 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2384 		}
2385 	}
2386 	ret = btrfs_next_leaf(root, path);
2387 	if (ret > 0)
2388 		ret = 0;
2389 	else if (ret == 0)
2390 		goto process_leaf;
2391 out:
2392 	btrfs_free_path(log_path);
2393 	btrfs_release_path(path);
2394 	return ret;
2395 }
2396 
2397 
2398 /*
2399  * deletion replay happens before we copy any new directory items
2400  * out of the log or out of backreferences from inodes.  It
2401  * scans the log to find ranges of keys that log is authoritative for,
2402  * and then scans the directory to find items in those ranges that are
2403  * not present in the log.
2404  *
2405  * Anything we don't find in the log is unlinked and removed from the
2406  * directory.
2407  */
2408 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2409 				       struct btrfs_root *root,
2410 				       struct btrfs_root *log,
2411 				       struct btrfs_path *path,
2412 				       u64 dirid, int del_all)
2413 {
2414 	u64 range_start;
2415 	u64 range_end;
2416 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2417 	int ret = 0;
2418 	struct btrfs_key dir_key;
2419 	struct btrfs_key found_key;
2420 	struct btrfs_path *log_path;
2421 	struct inode *dir;
2422 
2423 	dir_key.objectid = dirid;
2424 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2425 	log_path = btrfs_alloc_path();
2426 	if (!log_path)
2427 		return -ENOMEM;
2428 
2429 	dir = read_one_inode(root, dirid);
2430 	/* it isn't an error if the inode isn't there, that can happen
2431 	 * because we replay the deletes before we copy in the inode item
2432 	 * from the log
2433 	 */
2434 	if (!dir) {
2435 		btrfs_free_path(log_path);
2436 		return 0;
2437 	}
2438 again:
2439 	range_start = 0;
2440 	range_end = 0;
2441 	while (1) {
2442 		if (del_all)
2443 			range_end = (u64)-1;
2444 		else {
2445 			ret = find_dir_range(log, path, dirid, key_type,
2446 					     &range_start, &range_end);
2447 			if (ret != 0)
2448 				break;
2449 		}
2450 
2451 		dir_key.offset = range_start;
2452 		while (1) {
2453 			int nritems;
2454 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2455 						0, 0);
2456 			if (ret < 0)
2457 				goto out;
2458 
2459 			nritems = btrfs_header_nritems(path->nodes[0]);
2460 			if (path->slots[0] >= nritems) {
2461 				ret = btrfs_next_leaf(root, path);
2462 				if (ret == 1)
2463 					break;
2464 				else if (ret < 0)
2465 					goto out;
2466 			}
2467 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2468 					      path->slots[0]);
2469 			if (found_key.objectid != dirid ||
2470 			    found_key.type != dir_key.type)
2471 				goto next_type;
2472 
2473 			if (found_key.offset > range_end)
2474 				break;
2475 
2476 			ret = check_item_in_log(trans, root, log, path,
2477 						log_path, dir,
2478 						&found_key);
2479 			if (ret)
2480 				goto out;
2481 			if (found_key.offset == (u64)-1)
2482 				break;
2483 			dir_key.offset = found_key.offset + 1;
2484 		}
2485 		btrfs_release_path(path);
2486 		if (range_end == (u64)-1)
2487 			break;
2488 		range_start = range_end + 1;
2489 	}
2490 
2491 next_type:
2492 	ret = 0;
2493 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2494 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2495 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2496 		btrfs_release_path(path);
2497 		goto again;
2498 	}
2499 out:
2500 	btrfs_release_path(path);
2501 	btrfs_free_path(log_path);
2502 	iput(dir);
2503 	return ret;
2504 }
2505 
2506 /*
2507  * the process_func used to replay items from the log tree.  This
2508  * gets called in two different stages.  The first stage just looks
2509  * for inodes and makes sure they are all copied into the subvolume.
2510  *
2511  * The second stage copies all the other item types from the log into
2512  * the subvolume.  The two stage approach is slower, but gets rid of
2513  * lots of complexity around inodes referencing other inodes that exist
2514  * only in the log (references come from either directory items or inode
2515  * back refs).
2516  */
2517 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2518 			     struct walk_control *wc, u64 gen, int level)
2519 {
2520 	int nritems;
2521 	struct btrfs_path *path;
2522 	struct btrfs_root *root = wc->replay_dest;
2523 	struct btrfs_key key;
2524 	int i;
2525 	int ret;
2526 
2527 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2528 	if (ret)
2529 		return ret;
2530 
2531 	level = btrfs_header_level(eb);
2532 
2533 	if (level != 0)
2534 		return 0;
2535 
2536 	path = btrfs_alloc_path();
2537 	if (!path)
2538 		return -ENOMEM;
2539 
2540 	nritems = btrfs_header_nritems(eb);
2541 	for (i = 0; i < nritems; i++) {
2542 		btrfs_item_key_to_cpu(eb, &key, i);
2543 
2544 		/* inode keys are done during the first stage */
2545 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2546 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2547 			struct btrfs_inode_item *inode_item;
2548 			u32 mode;
2549 
2550 			inode_item = btrfs_item_ptr(eb, i,
2551 					    struct btrfs_inode_item);
2552 			/*
2553 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2554 			 * and never got linked before the fsync, skip it, as
2555 			 * replaying it is pointless since it would be deleted
2556 			 * later. We skip logging tmpfiles, but it's always
2557 			 * possible we are replaying a log created with a kernel
2558 			 * that used to log tmpfiles.
2559 			 */
2560 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2561 				wc->ignore_cur_inode = true;
2562 				continue;
2563 			} else {
2564 				wc->ignore_cur_inode = false;
2565 			}
2566 			ret = replay_xattr_deletes(wc->trans, root, log,
2567 						   path, key.objectid);
2568 			if (ret)
2569 				break;
2570 			mode = btrfs_inode_mode(eb, inode_item);
2571 			if (S_ISDIR(mode)) {
2572 				ret = replay_dir_deletes(wc->trans,
2573 					 root, log, path, key.objectid, 0);
2574 				if (ret)
2575 					break;
2576 			}
2577 			ret = overwrite_item(wc->trans, root, path,
2578 					     eb, i, &key);
2579 			if (ret)
2580 				break;
2581 
2582 			/*
2583 			 * Before replaying extents, truncate the inode to its
2584 			 * size. We need to do it now and not after log replay
2585 			 * because before an fsync we can have prealloc extents
2586 			 * added beyond the inode's i_size. If we did it after,
2587 			 * through orphan cleanup for example, we would drop
2588 			 * those prealloc extents just after replaying them.
2589 			 */
2590 			if (S_ISREG(mode)) {
2591 				struct inode *inode;
2592 				u64 from;
2593 
2594 				inode = read_one_inode(root, key.objectid);
2595 				if (!inode) {
2596 					ret = -EIO;
2597 					break;
2598 				}
2599 				from = ALIGN(i_size_read(inode),
2600 					     root->fs_info->sectorsize);
2601 				ret = btrfs_drop_extents(wc->trans, root, inode,
2602 							 from, (u64)-1, 1);
2603 				if (!ret) {
2604 					/* Update the inode's nbytes. */
2605 					ret = btrfs_update_inode(wc->trans,
2606 								 root, inode);
2607 				}
2608 				iput(inode);
2609 				if (ret)
2610 					break;
2611 			}
2612 
2613 			ret = link_to_fixup_dir(wc->trans, root,
2614 						path, key.objectid);
2615 			if (ret)
2616 				break;
2617 		}
2618 
2619 		if (wc->ignore_cur_inode)
2620 			continue;
2621 
2622 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2623 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2624 			ret = replay_one_dir_item(wc->trans, root, path,
2625 						  eb, i, &key);
2626 			if (ret)
2627 				break;
2628 		}
2629 
2630 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2631 			continue;
2632 
2633 		/* these keys are simply copied */
2634 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2635 			ret = overwrite_item(wc->trans, root, path,
2636 					     eb, i, &key);
2637 			if (ret)
2638 				break;
2639 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2640 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2641 			ret = add_inode_ref(wc->trans, root, log, path,
2642 					    eb, i, &key);
2643 			if (ret && ret != -ENOENT)
2644 				break;
2645 			ret = 0;
2646 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2647 			ret = replay_one_extent(wc->trans, root, path,
2648 						eb, i, &key);
2649 			if (ret)
2650 				break;
2651 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2652 			ret = replay_one_dir_item(wc->trans, root, path,
2653 						  eb, i, &key);
2654 			if (ret)
2655 				break;
2656 		}
2657 	}
2658 	btrfs_free_path(path);
2659 	return ret;
2660 }
2661 
2662 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2663 				   struct btrfs_root *root,
2664 				   struct btrfs_path *path, int *level,
2665 				   struct walk_control *wc)
2666 {
2667 	struct btrfs_fs_info *fs_info = root->fs_info;
2668 	u64 root_owner;
2669 	u64 bytenr;
2670 	u64 ptr_gen;
2671 	struct extent_buffer *next;
2672 	struct extent_buffer *cur;
2673 	struct extent_buffer *parent;
2674 	u32 blocksize;
2675 	int ret = 0;
2676 
2677 	WARN_ON(*level < 0);
2678 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2679 
2680 	while (*level > 0) {
2681 		struct btrfs_key first_key;
2682 
2683 		WARN_ON(*level < 0);
2684 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2685 		cur = path->nodes[*level];
2686 
2687 		WARN_ON(btrfs_header_level(cur) != *level);
2688 
2689 		if (path->slots[*level] >=
2690 		    btrfs_header_nritems(cur))
2691 			break;
2692 
2693 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2694 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2695 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2696 		blocksize = fs_info->nodesize;
2697 
2698 		parent = path->nodes[*level];
2699 		root_owner = btrfs_header_owner(parent);
2700 
2701 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2702 		if (IS_ERR(next))
2703 			return PTR_ERR(next);
2704 
2705 		if (*level == 1) {
2706 			ret = wc->process_func(root, next, wc, ptr_gen,
2707 					       *level - 1);
2708 			if (ret) {
2709 				free_extent_buffer(next);
2710 				return ret;
2711 			}
2712 
2713 			path->slots[*level]++;
2714 			if (wc->free) {
2715 				ret = btrfs_read_buffer(next, ptr_gen,
2716 							*level - 1, &first_key);
2717 				if (ret) {
2718 					free_extent_buffer(next);
2719 					return ret;
2720 				}
2721 
2722 				if (trans) {
2723 					btrfs_tree_lock(next);
2724 					btrfs_set_lock_blocking_write(next);
2725 					btrfs_clean_tree_block(next);
2726 					btrfs_wait_tree_block_writeback(next);
2727 					btrfs_tree_unlock(next);
2728 				} else {
2729 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2730 						clear_extent_buffer_dirty(next);
2731 				}
2732 
2733 				WARN_ON(root_owner !=
2734 					BTRFS_TREE_LOG_OBJECTID);
2735 				ret = btrfs_free_and_pin_reserved_extent(
2736 							fs_info, bytenr,
2737 							blocksize);
2738 				if (ret) {
2739 					free_extent_buffer(next);
2740 					return ret;
2741 				}
2742 			}
2743 			free_extent_buffer(next);
2744 			continue;
2745 		}
2746 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2747 		if (ret) {
2748 			free_extent_buffer(next);
2749 			return ret;
2750 		}
2751 
2752 		WARN_ON(*level <= 0);
2753 		if (path->nodes[*level-1])
2754 			free_extent_buffer(path->nodes[*level-1]);
2755 		path->nodes[*level-1] = next;
2756 		*level = btrfs_header_level(next);
2757 		path->slots[*level] = 0;
2758 		cond_resched();
2759 	}
2760 	WARN_ON(*level < 0);
2761 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2762 
2763 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2764 
2765 	cond_resched();
2766 	return 0;
2767 }
2768 
2769 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2770 				 struct btrfs_root *root,
2771 				 struct btrfs_path *path, int *level,
2772 				 struct walk_control *wc)
2773 {
2774 	struct btrfs_fs_info *fs_info = root->fs_info;
2775 	u64 root_owner;
2776 	int i;
2777 	int slot;
2778 	int ret;
2779 
2780 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2781 		slot = path->slots[i];
2782 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2783 			path->slots[i]++;
2784 			*level = i;
2785 			WARN_ON(*level == 0);
2786 			return 0;
2787 		} else {
2788 			struct extent_buffer *parent;
2789 			if (path->nodes[*level] == root->node)
2790 				parent = path->nodes[*level];
2791 			else
2792 				parent = path->nodes[*level + 1];
2793 
2794 			root_owner = btrfs_header_owner(parent);
2795 			ret = wc->process_func(root, path->nodes[*level], wc,
2796 				 btrfs_header_generation(path->nodes[*level]),
2797 				 *level);
2798 			if (ret)
2799 				return ret;
2800 
2801 			if (wc->free) {
2802 				struct extent_buffer *next;
2803 
2804 				next = path->nodes[*level];
2805 
2806 				if (trans) {
2807 					btrfs_tree_lock(next);
2808 					btrfs_set_lock_blocking_write(next);
2809 					btrfs_clean_tree_block(next);
2810 					btrfs_wait_tree_block_writeback(next);
2811 					btrfs_tree_unlock(next);
2812 				} else {
2813 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2814 						clear_extent_buffer_dirty(next);
2815 				}
2816 
2817 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2818 				ret = btrfs_free_and_pin_reserved_extent(
2819 						fs_info,
2820 						path->nodes[*level]->start,
2821 						path->nodes[*level]->len);
2822 				if (ret)
2823 					return ret;
2824 			}
2825 			free_extent_buffer(path->nodes[*level]);
2826 			path->nodes[*level] = NULL;
2827 			*level = i + 1;
2828 		}
2829 	}
2830 	return 1;
2831 }
2832 
2833 /*
2834  * drop the reference count on the tree rooted at 'snap'.  This traverses
2835  * the tree freeing any blocks that have a ref count of zero after being
2836  * decremented.
2837  */
2838 static int walk_log_tree(struct btrfs_trans_handle *trans,
2839 			 struct btrfs_root *log, struct walk_control *wc)
2840 {
2841 	struct btrfs_fs_info *fs_info = log->fs_info;
2842 	int ret = 0;
2843 	int wret;
2844 	int level;
2845 	struct btrfs_path *path;
2846 	int orig_level;
2847 
2848 	path = btrfs_alloc_path();
2849 	if (!path)
2850 		return -ENOMEM;
2851 
2852 	level = btrfs_header_level(log->node);
2853 	orig_level = level;
2854 	path->nodes[level] = log->node;
2855 	atomic_inc(&log->node->refs);
2856 	path->slots[level] = 0;
2857 
2858 	while (1) {
2859 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2860 		if (wret > 0)
2861 			break;
2862 		if (wret < 0) {
2863 			ret = wret;
2864 			goto out;
2865 		}
2866 
2867 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2868 		if (wret > 0)
2869 			break;
2870 		if (wret < 0) {
2871 			ret = wret;
2872 			goto out;
2873 		}
2874 	}
2875 
2876 	/* was the root node processed? if not, catch it here */
2877 	if (path->nodes[orig_level]) {
2878 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2879 			 btrfs_header_generation(path->nodes[orig_level]),
2880 			 orig_level);
2881 		if (ret)
2882 			goto out;
2883 		if (wc->free) {
2884 			struct extent_buffer *next;
2885 
2886 			next = path->nodes[orig_level];
2887 
2888 			if (trans) {
2889 				btrfs_tree_lock(next);
2890 				btrfs_set_lock_blocking_write(next);
2891 				btrfs_clean_tree_block(next);
2892 				btrfs_wait_tree_block_writeback(next);
2893 				btrfs_tree_unlock(next);
2894 			} else {
2895 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2896 					clear_extent_buffer_dirty(next);
2897 			}
2898 
2899 			WARN_ON(log->root_key.objectid !=
2900 				BTRFS_TREE_LOG_OBJECTID);
2901 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2902 							next->start, next->len);
2903 			if (ret)
2904 				goto out;
2905 		}
2906 	}
2907 
2908 out:
2909 	btrfs_free_path(path);
2910 	return ret;
2911 }
2912 
2913 /*
2914  * helper function to update the item for a given subvolumes log root
2915  * in the tree of log roots
2916  */
2917 static int update_log_root(struct btrfs_trans_handle *trans,
2918 			   struct btrfs_root *log,
2919 			   struct btrfs_root_item *root_item)
2920 {
2921 	struct btrfs_fs_info *fs_info = log->fs_info;
2922 	int ret;
2923 
2924 	if (log->log_transid == 1) {
2925 		/* insert root item on the first sync */
2926 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2927 				&log->root_key, root_item);
2928 	} else {
2929 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2930 				&log->root_key, root_item);
2931 	}
2932 	return ret;
2933 }
2934 
2935 static void wait_log_commit(struct btrfs_root *root, int transid)
2936 {
2937 	DEFINE_WAIT(wait);
2938 	int index = transid % 2;
2939 
2940 	/*
2941 	 * we only allow two pending log transactions at a time,
2942 	 * so we know that if ours is more than 2 older than the
2943 	 * current transaction, we're done
2944 	 */
2945 	for (;;) {
2946 		prepare_to_wait(&root->log_commit_wait[index],
2947 				&wait, TASK_UNINTERRUPTIBLE);
2948 
2949 		if (!(root->log_transid_committed < transid &&
2950 		      atomic_read(&root->log_commit[index])))
2951 			break;
2952 
2953 		mutex_unlock(&root->log_mutex);
2954 		schedule();
2955 		mutex_lock(&root->log_mutex);
2956 	}
2957 	finish_wait(&root->log_commit_wait[index], &wait);
2958 }
2959 
2960 static void wait_for_writer(struct btrfs_root *root)
2961 {
2962 	DEFINE_WAIT(wait);
2963 
2964 	for (;;) {
2965 		prepare_to_wait(&root->log_writer_wait, &wait,
2966 				TASK_UNINTERRUPTIBLE);
2967 		if (!atomic_read(&root->log_writers))
2968 			break;
2969 
2970 		mutex_unlock(&root->log_mutex);
2971 		schedule();
2972 		mutex_lock(&root->log_mutex);
2973 	}
2974 	finish_wait(&root->log_writer_wait, &wait);
2975 }
2976 
2977 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2978 					struct btrfs_log_ctx *ctx)
2979 {
2980 	if (!ctx)
2981 		return;
2982 
2983 	mutex_lock(&root->log_mutex);
2984 	list_del_init(&ctx->list);
2985 	mutex_unlock(&root->log_mutex);
2986 }
2987 
2988 /*
2989  * Invoked in log mutex context, or be sure there is no other task which
2990  * can access the list.
2991  */
2992 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2993 					     int index, int error)
2994 {
2995 	struct btrfs_log_ctx *ctx;
2996 	struct btrfs_log_ctx *safe;
2997 
2998 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2999 		list_del_init(&ctx->list);
3000 		ctx->log_ret = error;
3001 	}
3002 
3003 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3004 }
3005 
3006 /*
3007  * btrfs_sync_log does sends a given tree log down to the disk and
3008  * updates the super blocks to record it.  When this call is done,
3009  * you know that any inodes previously logged are safely on disk only
3010  * if it returns 0.
3011  *
3012  * Any other return value means you need to call btrfs_commit_transaction.
3013  * Some of the edge cases for fsyncing directories that have had unlinks
3014  * or renames done in the past mean that sometimes the only safe
3015  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3016  * that has happened.
3017  */
3018 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3019 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3020 {
3021 	int index1;
3022 	int index2;
3023 	int mark;
3024 	int ret;
3025 	struct btrfs_fs_info *fs_info = root->fs_info;
3026 	struct btrfs_root *log = root->log_root;
3027 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3028 	struct btrfs_root_item new_root_item;
3029 	int log_transid = 0;
3030 	struct btrfs_log_ctx root_log_ctx;
3031 	struct blk_plug plug;
3032 
3033 	mutex_lock(&root->log_mutex);
3034 	log_transid = ctx->log_transid;
3035 	if (root->log_transid_committed >= log_transid) {
3036 		mutex_unlock(&root->log_mutex);
3037 		return ctx->log_ret;
3038 	}
3039 
3040 	index1 = log_transid % 2;
3041 	if (atomic_read(&root->log_commit[index1])) {
3042 		wait_log_commit(root, log_transid);
3043 		mutex_unlock(&root->log_mutex);
3044 		return ctx->log_ret;
3045 	}
3046 	ASSERT(log_transid == root->log_transid);
3047 	atomic_set(&root->log_commit[index1], 1);
3048 
3049 	/* wait for previous tree log sync to complete */
3050 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3051 		wait_log_commit(root, log_transid - 1);
3052 
3053 	while (1) {
3054 		int batch = atomic_read(&root->log_batch);
3055 		/* when we're on an ssd, just kick the log commit out */
3056 		if (!btrfs_test_opt(fs_info, SSD) &&
3057 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3058 			mutex_unlock(&root->log_mutex);
3059 			schedule_timeout_uninterruptible(1);
3060 			mutex_lock(&root->log_mutex);
3061 		}
3062 		wait_for_writer(root);
3063 		if (batch == atomic_read(&root->log_batch))
3064 			break;
3065 	}
3066 
3067 	/* bail out if we need to do a full commit */
3068 	if (btrfs_need_log_full_commit(trans)) {
3069 		ret = -EAGAIN;
3070 		mutex_unlock(&root->log_mutex);
3071 		goto out;
3072 	}
3073 
3074 	if (log_transid % 2 == 0)
3075 		mark = EXTENT_DIRTY;
3076 	else
3077 		mark = EXTENT_NEW;
3078 
3079 	/* we start IO on  all the marked extents here, but we don't actually
3080 	 * wait for them until later.
3081 	 */
3082 	blk_start_plug(&plug);
3083 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3084 	if (ret) {
3085 		blk_finish_plug(&plug);
3086 		btrfs_abort_transaction(trans, ret);
3087 		btrfs_set_log_full_commit(trans);
3088 		mutex_unlock(&root->log_mutex);
3089 		goto out;
3090 	}
3091 
3092 	/*
3093 	 * We _must_ update under the root->log_mutex in order to make sure we
3094 	 * have a consistent view of the log root we are trying to commit at
3095 	 * this moment.
3096 	 *
3097 	 * We _must_ copy this into a local copy, because we are not holding the
3098 	 * log_root_tree->log_mutex yet.  This is important because when we
3099 	 * commit the log_root_tree we must have a consistent view of the
3100 	 * log_root_tree when we update the super block to point at the
3101 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3102 	 * with the commit and possibly point at the new block which we may not
3103 	 * have written out.
3104 	 */
3105 	btrfs_set_root_node(&log->root_item, log->node);
3106 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3107 
3108 	root->log_transid++;
3109 	log->log_transid = root->log_transid;
3110 	root->log_start_pid = 0;
3111 	/*
3112 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3113 	 * in their headers. new modifications of the log will be written to
3114 	 * new positions. so it's safe to allow log writers to go in.
3115 	 */
3116 	mutex_unlock(&root->log_mutex);
3117 
3118 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3119 
3120 	mutex_lock(&log_root_tree->log_mutex);
3121 	atomic_inc(&log_root_tree->log_batch);
3122 	atomic_inc(&log_root_tree->log_writers);
3123 
3124 	index2 = log_root_tree->log_transid % 2;
3125 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3126 	root_log_ctx.log_transid = log_root_tree->log_transid;
3127 
3128 	mutex_unlock(&log_root_tree->log_mutex);
3129 
3130 	mutex_lock(&log_root_tree->log_mutex);
3131 
3132 	/*
3133 	 * Now we are safe to update the log_root_tree because we're under the
3134 	 * log_mutex, and we're a current writer so we're holding the commit
3135 	 * open until we drop the log_mutex.
3136 	 */
3137 	ret = update_log_root(trans, log, &new_root_item);
3138 
3139 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3140 		/* atomic_dec_and_test implies a barrier */
3141 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3142 	}
3143 
3144 	if (ret) {
3145 		if (!list_empty(&root_log_ctx.list))
3146 			list_del_init(&root_log_ctx.list);
3147 
3148 		blk_finish_plug(&plug);
3149 		btrfs_set_log_full_commit(trans);
3150 
3151 		if (ret != -ENOSPC) {
3152 			btrfs_abort_transaction(trans, ret);
3153 			mutex_unlock(&log_root_tree->log_mutex);
3154 			goto out;
3155 		}
3156 		btrfs_wait_tree_log_extents(log, mark);
3157 		mutex_unlock(&log_root_tree->log_mutex);
3158 		ret = -EAGAIN;
3159 		goto out;
3160 	}
3161 
3162 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3163 		blk_finish_plug(&plug);
3164 		list_del_init(&root_log_ctx.list);
3165 		mutex_unlock(&log_root_tree->log_mutex);
3166 		ret = root_log_ctx.log_ret;
3167 		goto out;
3168 	}
3169 
3170 	index2 = root_log_ctx.log_transid % 2;
3171 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3172 		blk_finish_plug(&plug);
3173 		ret = btrfs_wait_tree_log_extents(log, mark);
3174 		wait_log_commit(log_root_tree,
3175 				root_log_ctx.log_transid);
3176 		mutex_unlock(&log_root_tree->log_mutex);
3177 		if (!ret)
3178 			ret = root_log_ctx.log_ret;
3179 		goto out;
3180 	}
3181 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3182 	atomic_set(&log_root_tree->log_commit[index2], 1);
3183 
3184 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3185 		wait_log_commit(log_root_tree,
3186 				root_log_ctx.log_transid - 1);
3187 	}
3188 
3189 	wait_for_writer(log_root_tree);
3190 
3191 	/*
3192 	 * now that we've moved on to the tree of log tree roots,
3193 	 * check the full commit flag again
3194 	 */
3195 	if (btrfs_need_log_full_commit(trans)) {
3196 		blk_finish_plug(&plug);
3197 		btrfs_wait_tree_log_extents(log, mark);
3198 		mutex_unlock(&log_root_tree->log_mutex);
3199 		ret = -EAGAIN;
3200 		goto out_wake_log_root;
3201 	}
3202 
3203 	ret = btrfs_write_marked_extents(fs_info,
3204 					 &log_root_tree->dirty_log_pages,
3205 					 EXTENT_DIRTY | EXTENT_NEW);
3206 	blk_finish_plug(&plug);
3207 	if (ret) {
3208 		btrfs_set_log_full_commit(trans);
3209 		btrfs_abort_transaction(trans, ret);
3210 		mutex_unlock(&log_root_tree->log_mutex);
3211 		goto out_wake_log_root;
3212 	}
3213 	ret = btrfs_wait_tree_log_extents(log, mark);
3214 	if (!ret)
3215 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3216 						  EXTENT_NEW | EXTENT_DIRTY);
3217 	if (ret) {
3218 		btrfs_set_log_full_commit(trans);
3219 		mutex_unlock(&log_root_tree->log_mutex);
3220 		goto out_wake_log_root;
3221 	}
3222 
3223 	btrfs_set_super_log_root(fs_info->super_for_commit,
3224 				 log_root_tree->node->start);
3225 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3226 				       btrfs_header_level(log_root_tree->node));
3227 
3228 	log_root_tree->log_transid++;
3229 	mutex_unlock(&log_root_tree->log_mutex);
3230 
3231 	/*
3232 	 * Nobody else is going to jump in and write the ctree
3233 	 * super here because the log_commit atomic below is protecting
3234 	 * us.  We must be called with a transaction handle pinning
3235 	 * the running transaction open, so a full commit can't hop
3236 	 * in and cause problems either.
3237 	 */
3238 	ret = write_all_supers(fs_info, 1);
3239 	if (ret) {
3240 		btrfs_set_log_full_commit(trans);
3241 		btrfs_abort_transaction(trans, ret);
3242 		goto out_wake_log_root;
3243 	}
3244 
3245 	mutex_lock(&root->log_mutex);
3246 	if (root->last_log_commit < log_transid)
3247 		root->last_log_commit = log_transid;
3248 	mutex_unlock(&root->log_mutex);
3249 
3250 out_wake_log_root:
3251 	mutex_lock(&log_root_tree->log_mutex);
3252 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3253 
3254 	log_root_tree->log_transid_committed++;
3255 	atomic_set(&log_root_tree->log_commit[index2], 0);
3256 	mutex_unlock(&log_root_tree->log_mutex);
3257 
3258 	/*
3259 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3260 	 * all the updates above are seen by the woken threads. It might not be
3261 	 * necessary, but proving that seems to be hard.
3262 	 */
3263 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3264 out:
3265 	mutex_lock(&root->log_mutex);
3266 	btrfs_remove_all_log_ctxs(root, index1, ret);
3267 	root->log_transid_committed++;
3268 	atomic_set(&root->log_commit[index1], 0);
3269 	mutex_unlock(&root->log_mutex);
3270 
3271 	/*
3272 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3273 	 * all the updates above are seen by the woken threads. It might not be
3274 	 * necessary, but proving that seems to be hard.
3275 	 */
3276 	cond_wake_up(&root->log_commit_wait[index1]);
3277 	return ret;
3278 }
3279 
3280 static void free_log_tree(struct btrfs_trans_handle *trans,
3281 			  struct btrfs_root *log)
3282 {
3283 	int ret;
3284 	struct walk_control wc = {
3285 		.free = 1,
3286 		.process_func = process_one_buffer
3287 	};
3288 
3289 	ret = walk_log_tree(trans, log, &wc);
3290 	if (ret) {
3291 		if (trans)
3292 			btrfs_abort_transaction(trans, ret);
3293 		else
3294 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3295 	}
3296 
3297 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3298 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3299 	free_extent_buffer(log->node);
3300 	kfree(log);
3301 }
3302 
3303 /*
3304  * free all the extents used by the tree log.  This should be called
3305  * at commit time of the full transaction
3306  */
3307 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3308 {
3309 	if (root->log_root) {
3310 		free_log_tree(trans, root->log_root);
3311 		root->log_root = NULL;
3312 	}
3313 	return 0;
3314 }
3315 
3316 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3317 			     struct btrfs_fs_info *fs_info)
3318 {
3319 	if (fs_info->log_root_tree) {
3320 		free_log_tree(trans, fs_info->log_root_tree);
3321 		fs_info->log_root_tree = NULL;
3322 	}
3323 	return 0;
3324 }
3325 
3326 /*
3327  * Check if an inode was logged in the current transaction. We can't always rely
3328  * on an inode's logged_trans value, because it's an in-memory only field and
3329  * therefore not persisted. This means that its value is lost if the inode gets
3330  * evicted and loaded again from disk (in which case it has a value of 0, and
3331  * certainly it is smaller then any possible transaction ID), when that happens
3332  * the full_sync flag is set in the inode's runtime flags, so on that case we
3333  * assume eviction happened and ignore the logged_trans value, assuming the
3334  * worst case, that the inode was logged before in the current transaction.
3335  */
3336 static bool inode_logged(struct btrfs_trans_handle *trans,
3337 			 struct btrfs_inode *inode)
3338 {
3339 	if (inode->logged_trans == trans->transid)
3340 		return true;
3341 
3342 	if (inode->last_trans == trans->transid &&
3343 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3344 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3345 		return true;
3346 
3347 	return false;
3348 }
3349 
3350 /*
3351  * If both a file and directory are logged, and unlinks or renames are
3352  * mixed in, we have a few interesting corners:
3353  *
3354  * create file X in dir Y
3355  * link file X to X.link in dir Y
3356  * fsync file X
3357  * unlink file X but leave X.link
3358  * fsync dir Y
3359  *
3360  * After a crash we would expect only X.link to exist.  But file X
3361  * didn't get fsync'd again so the log has back refs for X and X.link.
3362  *
3363  * We solve this by removing directory entries and inode backrefs from the
3364  * log when a file that was logged in the current transaction is
3365  * unlinked.  Any later fsync will include the updated log entries, and
3366  * we'll be able to reconstruct the proper directory items from backrefs.
3367  *
3368  * This optimizations allows us to avoid relogging the entire inode
3369  * or the entire directory.
3370  */
3371 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3372 				 struct btrfs_root *root,
3373 				 const char *name, int name_len,
3374 				 struct btrfs_inode *dir, u64 index)
3375 {
3376 	struct btrfs_root *log;
3377 	struct btrfs_dir_item *di;
3378 	struct btrfs_path *path;
3379 	int ret;
3380 	int err = 0;
3381 	int bytes_del = 0;
3382 	u64 dir_ino = btrfs_ino(dir);
3383 
3384 	if (!inode_logged(trans, dir))
3385 		return 0;
3386 
3387 	ret = join_running_log_trans(root);
3388 	if (ret)
3389 		return 0;
3390 
3391 	mutex_lock(&dir->log_mutex);
3392 
3393 	log = root->log_root;
3394 	path = btrfs_alloc_path();
3395 	if (!path) {
3396 		err = -ENOMEM;
3397 		goto out_unlock;
3398 	}
3399 
3400 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3401 				   name, name_len, -1);
3402 	if (IS_ERR(di)) {
3403 		err = PTR_ERR(di);
3404 		goto fail;
3405 	}
3406 	if (di) {
3407 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3408 		bytes_del += name_len;
3409 		if (ret) {
3410 			err = ret;
3411 			goto fail;
3412 		}
3413 	}
3414 	btrfs_release_path(path);
3415 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3416 					 index, name, name_len, -1);
3417 	if (IS_ERR(di)) {
3418 		err = PTR_ERR(di);
3419 		goto fail;
3420 	}
3421 	if (di) {
3422 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3423 		bytes_del += name_len;
3424 		if (ret) {
3425 			err = ret;
3426 			goto fail;
3427 		}
3428 	}
3429 
3430 	/* update the directory size in the log to reflect the names
3431 	 * we have removed
3432 	 */
3433 	if (bytes_del) {
3434 		struct btrfs_key key;
3435 
3436 		key.objectid = dir_ino;
3437 		key.offset = 0;
3438 		key.type = BTRFS_INODE_ITEM_KEY;
3439 		btrfs_release_path(path);
3440 
3441 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3442 		if (ret < 0) {
3443 			err = ret;
3444 			goto fail;
3445 		}
3446 		if (ret == 0) {
3447 			struct btrfs_inode_item *item;
3448 			u64 i_size;
3449 
3450 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3451 					      struct btrfs_inode_item);
3452 			i_size = btrfs_inode_size(path->nodes[0], item);
3453 			if (i_size > bytes_del)
3454 				i_size -= bytes_del;
3455 			else
3456 				i_size = 0;
3457 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3458 			btrfs_mark_buffer_dirty(path->nodes[0]);
3459 		} else
3460 			ret = 0;
3461 		btrfs_release_path(path);
3462 	}
3463 fail:
3464 	btrfs_free_path(path);
3465 out_unlock:
3466 	mutex_unlock(&dir->log_mutex);
3467 	if (ret == -ENOSPC) {
3468 		btrfs_set_log_full_commit(trans);
3469 		ret = 0;
3470 	} else if (ret < 0)
3471 		btrfs_abort_transaction(trans, ret);
3472 
3473 	btrfs_end_log_trans(root);
3474 
3475 	return err;
3476 }
3477 
3478 /* see comments for btrfs_del_dir_entries_in_log */
3479 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3480 			       struct btrfs_root *root,
3481 			       const char *name, int name_len,
3482 			       struct btrfs_inode *inode, u64 dirid)
3483 {
3484 	struct btrfs_root *log;
3485 	u64 index;
3486 	int ret;
3487 
3488 	if (!inode_logged(trans, inode))
3489 		return 0;
3490 
3491 	ret = join_running_log_trans(root);
3492 	if (ret)
3493 		return 0;
3494 	log = root->log_root;
3495 	mutex_lock(&inode->log_mutex);
3496 
3497 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3498 				  dirid, &index);
3499 	mutex_unlock(&inode->log_mutex);
3500 	if (ret == -ENOSPC) {
3501 		btrfs_set_log_full_commit(trans);
3502 		ret = 0;
3503 	} else if (ret < 0 && ret != -ENOENT)
3504 		btrfs_abort_transaction(trans, ret);
3505 	btrfs_end_log_trans(root);
3506 
3507 	return ret;
3508 }
3509 
3510 /*
3511  * creates a range item in the log for 'dirid'.  first_offset and
3512  * last_offset tell us which parts of the key space the log should
3513  * be considered authoritative for.
3514  */
3515 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3516 				       struct btrfs_root *log,
3517 				       struct btrfs_path *path,
3518 				       int key_type, u64 dirid,
3519 				       u64 first_offset, u64 last_offset)
3520 {
3521 	int ret;
3522 	struct btrfs_key key;
3523 	struct btrfs_dir_log_item *item;
3524 
3525 	key.objectid = dirid;
3526 	key.offset = first_offset;
3527 	if (key_type == BTRFS_DIR_ITEM_KEY)
3528 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3529 	else
3530 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3531 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3532 	if (ret)
3533 		return ret;
3534 
3535 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3536 			      struct btrfs_dir_log_item);
3537 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3538 	btrfs_mark_buffer_dirty(path->nodes[0]);
3539 	btrfs_release_path(path);
3540 	return 0;
3541 }
3542 
3543 /*
3544  * log all the items included in the current transaction for a given
3545  * directory.  This also creates the range items in the log tree required
3546  * to replay anything deleted before the fsync
3547  */
3548 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3549 			  struct btrfs_root *root, struct btrfs_inode *inode,
3550 			  struct btrfs_path *path,
3551 			  struct btrfs_path *dst_path, int key_type,
3552 			  struct btrfs_log_ctx *ctx,
3553 			  u64 min_offset, u64 *last_offset_ret)
3554 {
3555 	struct btrfs_key min_key;
3556 	struct btrfs_root *log = root->log_root;
3557 	struct extent_buffer *src;
3558 	int err = 0;
3559 	int ret;
3560 	int i;
3561 	int nritems;
3562 	u64 first_offset = min_offset;
3563 	u64 last_offset = (u64)-1;
3564 	u64 ino = btrfs_ino(inode);
3565 
3566 	log = root->log_root;
3567 
3568 	min_key.objectid = ino;
3569 	min_key.type = key_type;
3570 	min_key.offset = min_offset;
3571 
3572 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3573 
3574 	/*
3575 	 * we didn't find anything from this transaction, see if there
3576 	 * is anything at all
3577 	 */
3578 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3579 		min_key.objectid = ino;
3580 		min_key.type = key_type;
3581 		min_key.offset = (u64)-1;
3582 		btrfs_release_path(path);
3583 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3584 		if (ret < 0) {
3585 			btrfs_release_path(path);
3586 			return ret;
3587 		}
3588 		ret = btrfs_previous_item(root, path, ino, key_type);
3589 
3590 		/* if ret == 0 there are items for this type,
3591 		 * create a range to tell us the last key of this type.
3592 		 * otherwise, there are no items in this directory after
3593 		 * *min_offset, and we create a range to indicate that.
3594 		 */
3595 		if (ret == 0) {
3596 			struct btrfs_key tmp;
3597 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3598 					      path->slots[0]);
3599 			if (key_type == tmp.type)
3600 				first_offset = max(min_offset, tmp.offset) + 1;
3601 		}
3602 		goto done;
3603 	}
3604 
3605 	/* go backward to find any previous key */
3606 	ret = btrfs_previous_item(root, path, ino, key_type);
3607 	if (ret == 0) {
3608 		struct btrfs_key tmp;
3609 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3610 		if (key_type == tmp.type) {
3611 			first_offset = tmp.offset;
3612 			ret = overwrite_item(trans, log, dst_path,
3613 					     path->nodes[0], path->slots[0],
3614 					     &tmp);
3615 			if (ret) {
3616 				err = ret;
3617 				goto done;
3618 			}
3619 		}
3620 	}
3621 	btrfs_release_path(path);
3622 
3623 	/*
3624 	 * Find the first key from this transaction again.  See the note for
3625 	 * log_new_dir_dentries, if we're logging a directory recursively we
3626 	 * won't be holding its i_mutex, which means we can modify the directory
3627 	 * while we're logging it.  If we remove an entry between our first
3628 	 * search and this search we'll not find the key again and can just
3629 	 * bail.
3630 	 */
3631 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3632 	if (ret != 0)
3633 		goto done;
3634 
3635 	/*
3636 	 * we have a block from this transaction, log every item in it
3637 	 * from our directory
3638 	 */
3639 	while (1) {
3640 		struct btrfs_key tmp;
3641 		src = path->nodes[0];
3642 		nritems = btrfs_header_nritems(src);
3643 		for (i = path->slots[0]; i < nritems; i++) {
3644 			struct btrfs_dir_item *di;
3645 
3646 			btrfs_item_key_to_cpu(src, &min_key, i);
3647 
3648 			if (min_key.objectid != ino || min_key.type != key_type)
3649 				goto done;
3650 			ret = overwrite_item(trans, log, dst_path, src, i,
3651 					     &min_key);
3652 			if (ret) {
3653 				err = ret;
3654 				goto done;
3655 			}
3656 
3657 			/*
3658 			 * We must make sure that when we log a directory entry,
3659 			 * the corresponding inode, after log replay, has a
3660 			 * matching link count. For example:
3661 			 *
3662 			 * touch foo
3663 			 * mkdir mydir
3664 			 * sync
3665 			 * ln foo mydir/bar
3666 			 * xfs_io -c "fsync" mydir
3667 			 * <crash>
3668 			 * <mount fs and log replay>
3669 			 *
3670 			 * Would result in a fsync log that when replayed, our
3671 			 * file inode would have a link count of 1, but we get
3672 			 * two directory entries pointing to the same inode.
3673 			 * After removing one of the names, it would not be
3674 			 * possible to remove the other name, which resulted
3675 			 * always in stale file handle errors, and would not
3676 			 * be possible to rmdir the parent directory, since
3677 			 * its i_size could never decrement to the value
3678 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3679 			 */
3680 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3681 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3682 			if (ctx &&
3683 			    (btrfs_dir_transid(src, di) == trans->transid ||
3684 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3685 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3686 				ctx->log_new_dentries = true;
3687 		}
3688 		path->slots[0] = nritems;
3689 
3690 		/*
3691 		 * look ahead to the next item and see if it is also
3692 		 * from this directory and from this transaction
3693 		 */
3694 		ret = btrfs_next_leaf(root, path);
3695 		if (ret) {
3696 			if (ret == 1)
3697 				last_offset = (u64)-1;
3698 			else
3699 				err = ret;
3700 			goto done;
3701 		}
3702 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3703 		if (tmp.objectid != ino || tmp.type != key_type) {
3704 			last_offset = (u64)-1;
3705 			goto done;
3706 		}
3707 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3708 			ret = overwrite_item(trans, log, dst_path,
3709 					     path->nodes[0], path->slots[0],
3710 					     &tmp);
3711 			if (ret)
3712 				err = ret;
3713 			else
3714 				last_offset = tmp.offset;
3715 			goto done;
3716 		}
3717 	}
3718 done:
3719 	btrfs_release_path(path);
3720 	btrfs_release_path(dst_path);
3721 
3722 	if (err == 0) {
3723 		*last_offset_ret = last_offset;
3724 		/*
3725 		 * insert the log range keys to indicate where the log
3726 		 * is valid
3727 		 */
3728 		ret = insert_dir_log_key(trans, log, path, key_type,
3729 					 ino, first_offset, last_offset);
3730 		if (ret)
3731 			err = ret;
3732 	}
3733 	return err;
3734 }
3735 
3736 /*
3737  * logging directories is very similar to logging inodes, We find all the items
3738  * from the current transaction and write them to the log.
3739  *
3740  * The recovery code scans the directory in the subvolume, and if it finds a
3741  * key in the range logged that is not present in the log tree, then it means
3742  * that dir entry was unlinked during the transaction.
3743  *
3744  * In order for that scan to work, we must include one key smaller than
3745  * the smallest logged by this transaction and one key larger than the largest
3746  * key logged by this transaction.
3747  */
3748 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3749 			  struct btrfs_root *root, struct btrfs_inode *inode,
3750 			  struct btrfs_path *path,
3751 			  struct btrfs_path *dst_path,
3752 			  struct btrfs_log_ctx *ctx)
3753 {
3754 	u64 min_key;
3755 	u64 max_key;
3756 	int ret;
3757 	int key_type = BTRFS_DIR_ITEM_KEY;
3758 
3759 again:
3760 	min_key = 0;
3761 	max_key = 0;
3762 	while (1) {
3763 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3764 				ctx, min_key, &max_key);
3765 		if (ret)
3766 			return ret;
3767 		if (max_key == (u64)-1)
3768 			break;
3769 		min_key = max_key + 1;
3770 	}
3771 
3772 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3773 		key_type = BTRFS_DIR_INDEX_KEY;
3774 		goto again;
3775 	}
3776 	return 0;
3777 }
3778 
3779 /*
3780  * a helper function to drop items from the log before we relog an
3781  * inode.  max_key_type indicates the highest item type to remove.
3782  * This cannot be run for file data extents because it does not
3783  * free the extents they point to.
3784  */
3785 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3786 				  struct btrfs_root *log,
3787 				  struct btrfs_path *path,
3788 				  u64 objectid, int max_key_type)
3789 {
3790 	int ret;
3791 	struct btrfs_key key;
3792 	struct btrfs_key found_key;
3793 	int start_slot;
3794 
3795 	key.objectid = objectid;
3796 	key.type = max_key_type;
3797 	key.offset = (u64)-1;
3798 
3799 	while (1) {
3800 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3801 		BUG_ON(ret == 0); /* Logic error */
3802 		if (ret < 0)
3803 			break;
3804 
3805 		if (path->slots[0] == 0)
3806 			break;
3807 
3808 		path->slots[0]--;
3809 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3810 				      path->slots[0]);
3811 
3812 		if (found_key.objectid != objectid)
3813 			break;
3814 
3815 		found_key.offset = 0;
3816 		found_key.type = 0;
3817 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3818 				       &start_slot);
3819 		if (ret < 0)
3820 			break;
3821 
3822 		ret = btrfs_del_items(trans, log, path, start_slot,
3823 				      path->slots[0] - start_slot + 1);
3824 		/*
3825 		 * If start slot isn't 0 then we don't need to re-search, we've
3826 		 * found the last guy with the objectid in this tree.
3827 		 */
3828 		if (ret || start_slot != 0)
3829 			break;
3830 		btrfs_release_path(path);
3831 	}
3832 	btrfs_release_path(path);
3833 	if (ret > 0)
3834 		ret = 0;
3835 	return ret;
3836 }
3837 
3838 static void fill_inode_item(struct btrfs_trans_handle *trans,
3839 			    struct extent_buffer *leaf,
3840 			    struct btrfs_inode_item *item,
3841 			    struct inode *inode, int log_inode_only,
3842 			    u64 logged_isize)
3843 {
3844 	struct btrfs_map_token token;
3845 
3846 	btrfs_init_map_token(&token, leaf);
3847 
3848 	if (log_inode_only) {
3849 		/* set the generation to zero so the recover code
3850 		 * can tell the difference between an logging
3851 		 * just to say 'this inode exists' and a logging
3852 		 * to say 'update this inode with these values'
3853 		 */
3854 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3855 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3856 	} else {
3857 		btrfs_set_token_inode_generation(leaf, item,
3858 						 BTRFS_I(inode)->generation,
3859 						 &token);
3860 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3861 	}
3862 
3863 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3864 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3865 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3866 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3867 
3868 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3869 				     inode->i_atime.tv_sec, &token);
3870 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3871 				      inode->i_atime.tv_nsec, &token);
3872 
3873 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3874 				     inode->i_mtime.tv_sec, &token);
3875 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3876 				      inode->i_mtime.tv_nsec, &token);
3877 
3878 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3879 				     inode->i_ctime.tv_sec, &token);
3880 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3881 				      inode->i_ctime.tv_nsec, &token);
3882 
3883 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3884 				     &token);
3885 
3886 	btrfs_set_token_inode_sequence(leaf, item,
3887 				       inode_peek_iversion(inode), &token);
3888 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3889 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3890 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3891 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3892 }
3893 
3894 static int log_inode_item(struct btrfs_trans_handle *trans,
3895 			  struct btrfs_root *log, struct btrfs_path *path,
3896 			  struct btrfs_inode *inode)
3897 {
3898 	struct btrfs_inode_item *inode_item;
3899 	int ret;
3900 
3901 	ret = btrfs_insert_empty_item(trans, log, path,
3902 				      &inode->location, sizeof(*inode_item));
3903 	if (ret && ret != -EEXIST)
3904 		return ret;
3905 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3906 				    struct btrfs_inode_item);
3907 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3908 			0, 0);
3909 	btrfs_release_path(path);
3910 	return 0;
3911 }
3912 
3913 static int log_csums(struct btrfs_trans_handle *trans,
3914 		     struct btrfs_root *log_root,
3915 		     struct btrfs_ordered_sum *sums)
3916 {
3917 	int ret;
3918 
3919 	/*
3920 	 * Due to extent cloning, we might have logged a csum item that covers a
3921 	 * subrange of a cloned extent, and later we can end up logging a csum
3922 	 * item for a larger subrange of the same extent or the entire range.
3923 	 * This would leave csum items in the log tree that cover the same range
3924 	 * and break the searches for checksums in the log tree, resulting in
3925 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3926 	 * trim and adjust) any existing csum items in the log for this range.
3927 	 */
3928 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3929 	if (ret)
3930 		return ret;
3931 
3932 	return btrfs_csum_file_blocks(trans, log_root, sums);
3933 }
3934 
3935 static noinline int copy_items(struct btrfs_trans_handle *trans,
3936 			       struct btrfs_inode *inode,
3937 			       struct btrfs_path *dst_path,
3938 			       struct btrfs_path *src_path, u64 *last_extent,
3939 			       int start_slot, int nr, int inode_only,
3940 			       u64 logged_isize)
3941 {
3942 	struct btrfs_fs_info *fs_info = trans->fs_info;
3943 	unsigned long src_offset;
3944 	unsigned long dst_offset;
3945 	struct btrfs_root *log = inode->root->log_root;
3946 	struct btrfs_file_extent_item *extent;
3947 	struct btrfs_inode_item *inode_item;
3948 	struct extent_buffer *src = src_path->nodes[0];
3949 	struct btrfs_key first_key, last_key, key;
3950 	int ret;
3951 	struct btrfs_key *ins_keys;
3952 	u32 *ins_sizes;
3953 	char *ins_data;
3954 	int i;
3955 	struct list_head ordered_sums;
3956 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3957 	bool has_extents = false;
3958 	bool need_find_last_extent = true;
3959 	bool done = false;
3960 
3961 	INIT_LIST_HEAD(&ordered_sums);
3962 
3963 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3964 			   nr * sizeof(u32), GFP_NOFS);
3965 	if (!ins_data)
3966 		return -ENOMEM;
3967 
3968 	first_key.objectid = (u64)-1;
3969 
3970 	ins_sizes = (u32 *)ins_data;
3971 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3972 
3973 	for (i = 0; i < nr; i++) {
3974 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3975 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3976 	}
3977 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3978 				       ins_keys, ins_sizes, nr);
3979 	if (ret) {
3980 		kfree(ins_data);
3981 		return ret;
3982 	}
3983 
3984 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3985 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3986 						   dst_path->slots[0]);
3987 
3988 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3989 
3990 		if (i == nr - 1)
3991 			last_key = ins_keys[i];
3992 
3993 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3994 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3995 						    dst_path->slots[0],
3996 						    struct btrfs_inode_item);
3997 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3998 					&inode->vfs_inode,
3999 					inode_only == LOG_INODE_EXISTS,
4000 					logged_isize);
4001 		} else {
4002 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4003 					   src_offset, ins_sizes[i]);
4004 		}
4005 
4006 		/*
4007 		 * We set need_find_last_extent here in case we know we were
4008 		 * processing other items and then walk into the first extent in
4009 		 * the inode.  If we don't hit an extent then nothing changes,
4010 		 * we'll do the last search the next time around.
4011 		 */
4012 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
4013 			has_extents = true;
4014 			if (first_key.objectid == (u64)-1)
4015 				first_key = ins_keys[i];
4016 		} else {
4017 			need_find_last_extent = false;
4018 		}
4019 
4020 		/* take a reference on file data extents so that truncates
4021 		 * or deletes of this inode don't have to relog the inode
4022 		 * again
4023 		 */
4024 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4025 		    !skip_csum) {
4026 			int found_type;
4027 			extent = btrfs_item_ptr(src, start_slot + i,
4028 						struct btrfs_file_extent_item);
4029 
4030 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4031 				continue;
4032 
4033 			found_type = btrfs_file_extent_type(src, extent);
4034 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4035 				u64 ds, dl, cs, cl;
4036 				ds = btrfs_file_extent_disk_bytenr(src,
4037 								extent);
4038 				/* ds == 0 is a hole */
4039 				if (ds == 0)
4040 					continue;
4041 
4042 				dl = btrfs_file_extent_disk_num_bytes(src,
4043 								extent);
4044 				cs = btrfs_file_extent_offset(src, extent);
4045 				cl = btrfs_file_extent_num_bytes(src,
4046 								extent);
4047 				if (btrfs_file_extent_compression(src,
4048 								  extent)) {
4049 					cs = 0;
4050 					cl = dl;
4051 				}
4052 
4053 				ret = btrfs_lookup_csums_range(
4054 						fs_info->csum_root,
4055 						ds + cs, ds + cs + cl - 1,
4056 						&ordered_sums, 0);
4057 				if (ret) {
4058 					btrfs_release_path(dst_path);
4059 					kfree(ins_data);
4060 					return ret;
4061 				}
4062 			}
4063 		}
4064 	}
4065 
4066 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4067 	btrfs_release_path(dst_path);
4068 	kfree(ins_data);
4069 
4070 	/*
4071 	 * we have to do this after the loop above to avoid changing the
4072 	 * log tree while trying to change the log tree.
4073 	 */
4074 	ret = 0;
4075 	while (!list_empty(&ordered_sums)) {
4076 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4077 						   struct btrfs_ordered_sum,
4078 						   list);
4079 		if (!ret)
4080 			ret = log_csums(trans, log, sums);
4081 		list_del(&sums->list);
4082 		kfree(sums);
4083 	}
4084 
4085 	if (!has_extents)
4086 		return ret;
4087 
4088 	if (need_find_last_extent && *last_extent == first_key.offset) {
4089 		/*
4090 		 * We don't have any leafs between our current one and the one
4091 		 * we processed before that can have file extent items for our
4092 		 * inode (and have a generation number smaller than our current
4093 		 * transaction id).
4094 		 */
4095 		need_find_last_extent = false;
4096 	}
4097 
4098 	/*
4099 	 * Because we use btrfs_search_forward we could skip leaves that were
4100 	 * not modified and then assume *last_extent is valid when it really
4101 	 * isn't.  So back up to the previous leaf and read the end of the last
4102 	 * extent before we go and fill in holes.
4103 	 */
4104 	if (need_find_last_extent) {
4105 		u64 len;
4106 
4107 		ret = btrfs_prev_leaf(inode->root, src_path);
4108 		if (ret < 0)
4109 			return ret;
4110 		if (ret)
4111 			goto fill_holes;
4112 		if (src_path->slots[0])
4113 			src_path->slots[0]--;
4114 		src = src_path->nodes[0];
4115 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4116 		if (key.objectid != btrfs_ino(inode) ||
4117 		    key.type != BTRFS_EXTENT_DATA_KEY)
4118 			goto fill_holes;
4119 		extent = btrfs_item_ptr(src, src_path->slots[0],
4120 					struct btrfs_file_extent_item);
4121 		if (btrfs_file_extent_type(src, extent) ==
4122 		    BTRFS_FILE_EXTENT_INLINE) {
4123 			len = btrfs_file_extent_ram_bytes(src, extent);
4124 			*last_extent = ALIGN(key.offset + len,
4125 					     fs_info->sectorsize);
4126 		} else {
4127 			len = btrfs_file_extent_num_bytes(src, extent);
4128 			*last_extent = key.offset + len;
4129 		}
4130 	}
4131 fill_holes:
4132 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
4133 	 * things could have happened
4134 	 *
4135 	 * 1) A merge could have happened, so we could currently be on a leaf
4136 	 * that holds what we were copying in the first place.
4137 	 * 2) A split could have happened, and now not all of the items we want
4138 	 * are on the same leaf.
4139 	 *
4140 	 * So we need to adjust how we search for holes, we need to drop the
4141 	 * path and re-search for the first extent key we found, and then walk
4142 	 * forward until we hit the last one we copied.
4143 	 */
4144 	if (need_find_last_extent) {
4145 		/* btrfs_prev_leaf could return 1 without releasing the path */
4146 		btrfs_release_path(src_path);
4147 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
4148 				src_path, 0, 0);
4149 		if (ret < 0)
4150 			return ret;
4151 		ASSERT(ret == 0);
4152 		src = src_path->nodes[0];
4153 		i = src_path->slots[0];
4154 	} else {
4155 		i = start_slot;
4156 	}
4157 
4158 	/*
4159 	 * Ok so here we need to go through and fill in any holes we may have
4160 	 * to make sure that holes are punched for those areas in case they had
4161 	 * extents previously.
4162 	 */
4163 	while (!done) {
4164 		u64 offset, len;
4165 		u64 extent_end;
4166 
4167 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4168 			ret = btrfs_next_leaf(inode->root, src_path);
4169 			if (ret < 0)
4170 				return ret;
4171 			ASSERT(ret == 0);
4172 			src = src_path->nodes[0];
4173 			i = 0;
4174 			need_find_last_extent = true;
4175 		}
4176 
4177 		btrfs_item_key_to_cpu(src, &key, i);
4178 		if (!btrfs_comp_cpu_keys(&key, &last_key))
4179 			done = true;
4180 		if (key.objectid != btrfs_ino(inode) ||
4181 		    key.type != BTRFS_EXTENT_DATA_KEY) {
4182 			i++;
4183 			continue;
4184 		}
4185 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4186 		if (btrfs_file_extent_type(src, extent) ==
4187 		    BTRFS_FILE_EXTENT_INLINE) {
4188 			len = btrfs_file_extent_ram_bytes(src, extent);
4189 			extent_end = ALIGN(key.offset + len,
4190 					   fs_info->sectorsize);
4191 		} else {
4192 			len = btrfs_file_extent_num_bytes(src, extent);
4193 			extent_end = key.offset + len;
4194 		}
4195 		i++;
4196 
4197 		if (*last_extent == key.offset) {
4198 			*last_extent = extent_end;
4199 			continue;
4200 		}
4201 		offset = *last_extent;
4202 		len = key.offset - *last_extent;
4203 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4204 				offset, 0, 0, len, 0, len, 0, 0, 0);
4205 		if (ret)
4206 			break;
4207 		*last_extent = extent_end;
4208 	}
4209 
4210 	/*
4211 	 * Check if there is a hole between the last extent found in our leaf
4212 	 * and the first extent in the next leaf. If there is one, we need to
4213 	 * log an explicit hole so that at replay time we can punch the hole.
4214 	 */
4215 	if (ret == 0 &&
4216 	    key.objectid == btrfs_ino(inode) &&
4217 	    key.type == BTRFS_EXTENT_DATA_KEY &&
4218 	    i == btrfs_header_nritems(src_path->nodes[0])) {
4219 		ret = btrfs_next_leaf(inode->root, src_path);
4220 		need_find_last_extent = true;
4221 		if (ret > 0) {
4222 			ret = 0;
4223 		} else if (ret == 0) {
4224 			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4225 					      src_path->slots[0]);
4226 			if (key.objectid == btrfs_ino(inode) &&
4227 			    key.type == BTRFS_EXTENT_DATA_KEY &&
4228 			    *last_extent < key.offset) {
4229 				const u64 len = key.offset - *last_extent;
4230 
4231 				ret = btrfs_insert_file_extent(trans, log,
4232 							       btrfs_ino(inode),
4233 							       *last_extent, 0,
4234 							       0, len, 0, len,
4235 							       0, 0, 0);
4236 				*last_extent += len;
4237 			}
4238 		}
4239 	}
4240 	/*
4241 	 * Need to let the callers know we dropped the path so they should
4242 	 * re-search.
4243 	 */
4244 	if (!ret && need_find_last_extent)
4245 		ret = 1;
4246 	return ret;
4247 }
4248 
4249 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4250 {
4251 	struct extent_map *em1, *em2;
4252 
4253 	em1 = list_entry(a, struct extent_map, list);
4254 	em2 = list_entry(b, struct extent_map, list);
4255 
4256 	if (em1->start < em2->start)
4257 		return -1;
4258 	else if (em1->start > em2->start)
4259 		return 1;
4260 	return 0;
4261 }
4262 
4263 static int log_extent_csums(struct btrfs_trans_handle *trans,
4264 			    struct btrfs_inode *inode,
4265 			    struct btrfs_root *log_root,
4266 			    const struct extent_map *em)
4267 {
4268 	u64 csum_offset;
4269 	u64 csum_len;
4270 	LIST_HEAD(ordered_sums);
4271 	int ret = 0;
4272 
4273 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4274 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4275 	    em->block_start == EXTENT_MAP_HOLE)
4276 		return 0;
4277 
4278 	/* If we're compressed we have to save the entire range of csums. */
4279 	if (em->compress_type) {
4280 		csum_offset = 0;
4281 		csum_len = max(em->block_len, em->orig_block_len);
4282 	} else {
4283 		csum_offset = em->mod_start - em->start;
4284 		csum_len = em->mod_len;
4285 	}
4286 
4287 	/* block start is already adjusted for the file extent offset. */
4288 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4289 				       em->block_start + csum_offset,
4290 				       em->block_start + csum_offset +
4291 				       csum_len - 1, &ordered_sums, 0);
4292 	if (ret)
4293 		return ret;
4294 
4295 	while (!list_empty(&ordered_sums)) {
4296 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4297 						   struct btrfs_ordered_sum,
4298 						   list);
4299 		if (!ret)
4300 			ret = log_csums(trans, log_root, sums);
4301 		list_del(&sums->list);
4302 		kfree(sums);
4303 	}
4304 
4305 	return ret;
4306 }
4307 
4308 static int log_one_extent(struct btrfs_trans_handle *trans,
4309 			  struct btrfs_inode *inode, struct btrfs_root *root,
4310 			  const struct extent_map *em,
4311 			  struct btrfs_path *path,
4312 			  struct btrfs_log_ctx *ctx)
4313 {
4314 	struct btrfs_root *log = root->log_root;
4315 	struct btrfs_file_extent_item *fi;
4316 	struct extent_buffer *leaf;
4317 	struct btrfs_map_token token;
4318 	struct btrfs_key key;
4319 	u64 extent_offset = em->start - em->orig_start;
4320 	u64 block_len;
4321 	int ret;
4322 	int extent_inserted = 0;
4323 
4324 	ret = log_extent_csums(trans, inode, log, em);
4325 	if (ret)
4326 		return ret;
4327 
4328 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4329 				   em->start + em->len, NULL, 0, 1,
4330 				   sizeof(*fi), &extent_inserted);
4331 	if (ret)
4332 		return ret;
4333 
4334 	if (!extent_inserted) {
4335 		key.objectid = btrfs_ino(inode);
4336 		key.type = BTRFS_EXTENT_DATA_KEY;
4337 		key.offset = em->start;
4338 
4339 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4340 					      sizeof(*fi));
4341 		if (ret)
4342 			return ret;
4343 	}
4344 	leaf = path->nodes[0];
4345 	btrfs_init_map_token(&token, leaf);
4346 	fi = btrfs_item_ptr(leaf, path->slots[0],
4347 			    struct btrfs_file_extent_item);
4348 
4349 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4350 					       &token);
4351 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4352 		btrfs_set_token_file_extent_type(leaf, fi,
4353 						 BTRFS_FILE_EXTENT_PREALLOC,
4354 						 &token);
4355 	else
4356 		btrfs_set_token_file_extent_type(leaf, fi,
4357 						 BTRFS_FILE_EXTENT_REG,
4358 						 &token);
4359 
4360 	block_len = max(em->block_len, em->orig_block_len);
4361 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4362 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4363 							em->block_start,
4364 							&token);
4365 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4366 							   &token);
4367 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4368 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4369 							em->block_start -
4370 							extent_offset, &token);
4371 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4372 							   &token);
4373 	} else {
4374 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4375 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4376 							   &token);
4377 	}
4378 
4379 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4380 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4381 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4382 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4383 						&token);
4384 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4385 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4386 	btrfs_mark_buffer_dirty(leaf);
4387 
4388 	btrfs_release_path(path);
4389 
4390 	return ret;
4391 }
4392 
4393 /*
4394  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4395  * lose them after doing a fast fsync and replaying the log. We scan the
4396  * subvolume's root instead of iterating the inode's extent map tree because
4397  * otherwise we can log incorrect extent items based on extent map conversion.
4398  * That can happen due to the fact that extent maps are merged when they
4399  * are not in the extent map tree's list of modified extents.
4400  */
4401 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4402 				      struct btrfs_inode *inode,
4403 				      struct btrfs_path *path)
4404 {
4405 	struct btrfs_root *root = inode->root;
4406 	struct btrfs_key key;
4407 	const u64 i_size = i_size_read(&inode->vfs_inode);
4408 	const u64 ino = btrfs_ino(inode);
4409 	struct btrfs_path *dst_path = NULL;
4410 	u64 last_extent = (u64)-1;
4411 	int ins_nr = 0;
4412 	int start_slot;
4413 	int ret;
4414 
4415 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4416 		return 0;
4417 
4418 	key.objectid = ino;
4419 	key.type = BTRFS_EXTENT_DATA_KEY;
4420 	key.offset = i_size;
4421 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4422 	if (ret < 0)
4423 		goto out;
4424 
4425 	while (true) {
4426 		struct extent_buffer *leaf = path->nodes[0];
4427 		int slot = path->slots[0];
4428 
4429 		if (slot >= btrfs_header_nritems(leaf)) {
4430 			if (ins_nr > 0) {
4431 				ret = copy_items(trans, inode, dst_path, path,
4432 						 &last_extent, start_slot,
4433 						 ins_nr, 1, 0);
4434 				if (ret < 0)
4435 					goto out;
4436 				ins_nr = 0;
4437 			}
4438 			ret = btrfs_next_leaf(root, path);
4439 			if (ret < 0)
4440 				goto out;
4441 			if (ret > 0) {
4442 				ret = 0;
4443 				break;
4444 			}
4445 			continue;
4446 		}
4447 
4448 		btrfs_item_key_to_cpu(leaf, &key, slot);
4449 		if (key.objectid > ino)
4450 			break;
4451 		if (WARN_ON_ONCE(key.objectid < ino) ||
4452 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4453 		    key.offset < i_size) {
4454 			path->slots[0]++;
4455 			continue;
4456 		}
4457 		if (last_extent == (u64)-1) {
4458 			last_extent = key.offset;
4459 			/*
4460 			 * Avoid logging extent items logged in past fsync calls
4461 			 * and leading to duplicate keys in the log tree.
4462 			 */
4463 			do {
4464 				ret = btrfs_truncate_inode_items(trans,
4465 							 root->log_root,
4466 							 &inode->vfs_inode,
4467 							 i_size,
4468 							 BTRFS_EXTENT_DATA_KEY);
4469 			} while (ret == -EAGAIN);
4470 			if (ret)
4471 				goto out;
4472 		}
4473 		if (ins_nr == 0)
4474 			start_slot = slot;
4475 		ins_nr++;
4476 		path->slots[0]++;
4477 		if (!dst_path) {
4478 			dst_path = btrfs_alloc_path();
4479 			if (!dst_path) {
4480 				ret = -ENOMEM;
4481 				goto out;
4482 			}
4483 		}
4484 	}
4485 	if (ins_nr > 0) {
4486 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4487 				 start_slot, ins_nr, 1, 0);
4488 		if (ret > 0)
4489 			ret = 0;
4490 	}
4491 out:
4492 	btrfs_release_path(path);
4493 	btrfs_free_path(dst_path);
4494 	return ret;
4495 }
4496 
4497 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4498 				     struct btrfs_root *root,
4499 				     struct btrfs_inode *inode,
4500 				     struct btrfs_path *path,
4501 				     struct btrfs_log_ctx *ctx,
4502 				     const u64 start,
4503 				     const u64 end)
4504 {
4505 	struct extent_map *em, *n;
4506 	struct list_head extents;
4507 	struct extent_map_tree *tree = &inode->extent_tree;
4508 	u64 test_gen;
4509 	int ret = 0;
4510 	int num = 0;
4511 
4512 	INIT_LIST_HEAD(&extents);
4513 
4514 	write_lock(&tree->lock);
4515 	test_gen = root->fs_info->last_trans_committed;
4516 
4517 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4518 		/*
4519 		 * Skip extents outside our logging range. It's important to do
4520 		 * it for correctness because if we don't ignore them, we may
4521 		 * log them before their ordered extent completes, and therefore
4522 		 * we could log them without logging their respective checksums
4523 		 * (the checksum items are added to the csum tree at the very
4524 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4525 		 * outside of our range in the list, since we may have another
4526 		 * ranged fsync in the near future that needs them. If an extent
4527 		 * outside our range corresponds to a hole, log it to avoid
4528 		 * leaving gaps between extents (fsck will complain when we are
4529 		 * not using the NO_HOLES feature).
4530 		 */
4531 		if ((em->start > end || em->start + em->len <= start) &&
4532 		    em->block_start != EXTENT_MAP_HOLE)
4533 			continue;
4534 
4535 		list_del_init(&em->list);
4536 		/*
4537 		 * Just an arbitrary number, this can be really CPU intensive
4538 		 * once we start getting a lot of extents, and really once we
4539 		 * have a bunch of extents we just want to commit since it will
4540 		 * be faster.
4541 		 */
4542 		if (++num > 32768) {
4543 			list_del_init(&tree->modified_extents);
4544 			ret = -EFBIG;
4545 			goto process;
4546 		}
4547 
4548 		if (em->generation <= test_gen)
4549 			continue;
4550 
4551 		/* We log prealloc extents beyond eof later. */
4552 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4553 		    em->start >= i_size_read(&inode->vfs_inode))
4554 			continue;
4555 
4556 		/* Need a ref to keep it from getting evicted from cache */
4557 		refcount_inc(&em->refs);
4558 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4559 		list_add_tail(&em->list, &extents);
4560 		num++;
4561 	}
4562 
4563 	list_sort(NULL, &extents, extent_cmp);
4564 process:
4565 	while (!list_empty(&extents)) {
4566 		em = list_entry(extents.next, struct extent_map, list);
4567 
4568 		list_del_init(&em->list);
4569 
4570 		/*
4571 		 * If we had an error we just need to delete everybody from our
4572 		 * private list.
4573 		 */
4574 		if (ret) {
4575 			clear_em_logging(tree, em);
4576 			free_extent_map(em);
4577 			continue;
4578 		}
4579 
4580 		write_unlock(&tree->lock);
4581 
4582 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4583 		write_lock(&tree->lock);
4584 		clear_em_logging(tree, em);
4585 		free_extent_map(em);
4586 	}
4587 	WARN_ON(!list_empty(&extents));
4588 	write_unlock(&tree->lock);
4589 
4590 	btrfs_release_path(path);
4591 	if (!ret)
4592 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4593 
4594 	return ret;
4595 }
4596 
4597 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4598 			     struct btrfs_path *path, u64 *size_ret)
4599 {
4600 	struct btrfs_key key;
4601 	int ret;
4602 
4603 	key.objectid = btrfs_ino(inode);
4604 	key.type = BTRFS_INODE_ITEM_KEY;
4605 	key.offset = 0;
4606 
4607 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4608 	if (ret < 0) {
4609 		return ret;
4610 	} else if (ret > 0) {
4611 		*size_ret = 0;
4612 	} else {
4613 		struct btrfs_inode_item *item;
4614 
4615 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4616 				      struct btrfs_inode_item);
4617 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4618 		/*
4619 		 * If the in-memory inode's i_size is smaller then the inode
4620 		 * size stored in the btree, return the inode's i_size, so
4621 		 * that we get a correct inode size after replaying the log
4622 		 * when before a power failure we had a shrinking truncate
4623 		 * followed by addition of a new name (rename / new hard link).
4624 		 * Otherwise return the inode size from the btree, to avoid
4625 		 * data loss when replaying a log due to previously doing a
4626 		 * write that expands the inode's size and logging a new name
4627 		 * immediately after.
4628 		 */
4629 		if (*size_ret > inode->vfs_inode.i_size)
4630 			*size_ret = inode->vfs_inode.i_size;
4631 	}
4632 
4633 	btrfs_release_path(path);
4634 	return 0;
4635 }
4636 
4637 /*
4638  * At the moment we always log all xattrs. This is to figure out at log replay
4639  * time which xattrs must have their deletion replayed. If a xattr is missing
4640  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4641  * because if a xattr is deleted, the inode is fsynced and a power failure
4642  * happens, causing the log to be replayed the next time the fs is mounted,
4643  * we want the xattr to not exist anymore (same behaviour as other filesystems
4644  * with a journal, ext3/4, xfs, f2fs, etc).
4645  */
4646 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4647 				struct btrfs_root *root,
4648 				struct btrfs_inode *inode,
4649 				struct btrfs_path *path,
4650 				struct btrfs_path *dst_path)
4651 {
4652 	int ret;
4653 	struct btrfs_key key;
4654 	const u64 ino = btrfs_ino(inode);
4655 	int ins_nr = 0;
4656 	int start_slot = 0;
4657 
4658 	key.objectid = ino;
4659 	key.type = BTRFS_XATTR_ITEM_KEY;
4660 	key.offset = 0;
4661 
4662 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4663 	if (ret < 0)
4664 		return ret;
4665 
4666 	while (true) {
4667 		int slot = path->slots[0];
4668 		struct extent_buffer *leaf = path->nodes[0];
4669 		int nritems = btrfs_header_nritems(leaf);
4670 
4671 		if (slot >= nritems) {
4672 			if (ins_nr > 0) {
4673 				u64 last_extent = 0;
4674 
4675 				ret = copy_items(trans, inode, dst_path, path,
4676 						 &last_extent, start_slot,
4677 						 ins_nr, 1, 0);
4678 				/* can't be 1, extent items aren't processed */
4679 				ASSERT(ret <= 0);
4680 				if (ret < 0)
4681 					return ret;
4682 				ins_nr = 0;
4683 			}
4684 			ret = btrfs_next_leaf(root, path);
4685 			if (ret < 0)
4686 				return ret;
4687 			else if (ret > 0)
4688 				break;
4689 			continue;
4690 		}
4691 
4692 		btrfs_item_key_to_cpu(leaf, &key, slot);
4693 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4694 			break;
4695 
4696 		if (ins_nr == 0)
4697 			start_slot = slot;
4698 		ins_nr++;
4699 		path->slots[0]++;
4700 		cond_resched();
4701 	}
4702 	if (ins_nr > 0) {
4703 		u64 last_extent = 0;
4704 
4705 		ret = copy_items(trans, inode, dst_path, path,
4706 				 &last_extent, start_slot,
4707 				 ins_nr, 1, 0);
4708 		/* can't be 1, extent items aren't processed */
4709 		ASSERT(ret <= 0);
4710 		if (ret < 0)
4711 			return ret;
4712 	}
4713 
4714 	return 0;
4715 }
4716 
4717 /*
4718  * If the no holes feature is enabled we need to make sure any hole between the
4719  * last extent and the i_size of our inode is explicitly marked in the log. This
4720  * is to make sure that doing something like:
4721  *
4722  *      1) create file with 128Kb of data
4723  *      2) truncate file to 64Kb
4724  *      3) truncate file to 256Kb
4725  *      4) fsync file
4726  *      5) <crash/power failure>
4727  *      6) mount fs and trigger log replay
4728  *
4729  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4730  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4731  * file correspond to a hole. The presence of explicit holes in a log tree is
4732  * what guarantees that log replay will remove/adjust file extent items in the
4733  * fs/subvol tree.
4734  *
4735  * Here we do not need to care about holes between extents, that is already done
4736  * by copy_items(). We also only need to do this in the full sync path, where we
4737  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4738  * lookup the list of modified extent maps and if any represents a hole, we
4739  * insert a corresponding extent representing a hole in the log tree.
4740  */
4741 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4742 				   struct btrfs_root *root,
4743 				   struct btrfs_inode *inode,
4744 				   struct btrfs_path *path)
4745 {
4746 	struct btrfs_fs_info *fs_info = root->fs_info;
4747 	int ret;
4748 	struct btrfs_key key;
4749 	u64 hole_start;
4750 	u64 hole_size;
4751 	struct extent_buffer *leaf;
4752 	struct btrfs_root *log = root->log_root;
4753 	const u64 ino = btrfs_ino(inode);
4754 	const u64 i_size = i_size_read(&inode->vfs_inode);
4755 
4756 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4757 		return 0;
4758 
4759 	key.objectid = ino;
4760 	key.type = BTRFS_EXTENT_DATA_KEY;
4761 	key.offset = (u64)-1;
4762 
4763 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4764 	ASSERT(ret != 0);
4765 	if (ret < 0)
4766 		return ret;
4767 
4768 	ASSERT(path->slots[0] > 0);
4769 	path->slots[0]--;
4770 	leaf = path->nodes[0];
4771 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4772 
4773 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4774 		/* inode does not have any extents */
4775 		hole_start = 0;
4776 		hole_size = i_size;
4777 	} else {
4778 		struct btrfs_file_extent_item *extent;
4779 		u64 len;
4780 
4781 		/*
4782 		 * If there's an extent beyond i_size, an explicit hole was
4783 		 * already inserted by copy_items().
4784 		 */
4785 		if (key.offset >= i_size)
4786 			return 0;
4787 
4788 		extent = btrfs_item_ptr(leaf, path->slots[0],
4789 					struct btrfs_file_extent_item);
4790 
4791 		if (btrfs_file_extent_type(leaf, extent) ==
4792 		    BTRFS_FILE_EXTENT_INLINE)
4793 			return 0;
4794 
4795 		len = btrfs_file_extent_num_bytes(leaf, extent);
4796 		/* Last extent goes beyond i_size, no need to log a hole. */
4797 		if (key.offset + len > i_size)
4798 			return 0;
4799 		hole_start = key.offset + len;
4800 		hole_size = i_size - hole_start;
4801 	}
4802 	btrfs_release_path(path);
4803 
4804 	/* Last extent ends at i_size. */
4805 	if (hole_size == 0)
4806 		return 0;
4807 
4808 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4809 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4810 				       hole_size, 0, hole_size, 0, 0, 0);
4811 	return ret;
4812 }
4813 
4814 /*
4815  * When we are logging a new inode X, check if it doesn't have a reference that
4816  * matches the reference from some other inode Y created in a past transaction
4817  * and that was renamed in the current transaction. If we don't do this, then at
4818  * log replay time we can lose inode Y (and all its files if it's a directory):
4819  *
4820  * mkdir /mnt/x
4821  * echo "hello world" > /mnt/x/foobar
4822  * sync
4823  * mv /mnt/x /mnt/y
4824  * mkdir /mnt/x                 # or touch /mnt/x
4825  * xfs_io -c fsync /mnt/x
4826  * <power fail>
4827  * mount fs, trigger log replay
4828  *
4829  * After the log replay procedure, we would lose the first directory and all its
4830  * files (file foobar).
4831  * For the case where inode Y is not a directory we simply end up losing it:
4832  *
4833  * echo "123" > /mnt/foo
4834  * sync
4835  * mv /mnt/foo /mnt/bar
4836  * echo "abc" > /mnt/foo
4837  * xfs_io -c fsync /mnt/foo
4838  * <power fail>
4839  *
4840  * We also need this for cases where a snapshot entry is replaced by some other
4841  * entry (file or directory) otherwise we end up with an unreplayable log due to
4842  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4843  * if it were a regular entry:
4844  *
4845  * mkdir /mnt/x
4846  * btrfs subvolume snapshot /mnt /mnt/x/snap
4847  * btrfs subvolume delete /mnt/x/snap
4848  * rmdir /mnt/x
4849  * mkdir /mnt/x
4850  * fsync /mnt/x or fsync some new file inside it
4851  * <power fail>
4852  *
4853  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4854  * the same transaction.
4855  */
4856 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4857 					 const int slot,
4858 					 const struct btrfs_key *key,
4859 					 struct btrfs_inode *inode,
4860 					 u64 *other_ino, u64 *other_parent)
4861 {
4862 	int ret;
4863 	struct btrfs_path *search_path;
4864 	char *name = NULL;
4865 	u32 name_len = 0;
4866 	u32 item_size = btrfs_item_size_nr(eb, slot);
4867 	u32 cur_offset = 0;
4868 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4869 
4870 	search_path = btrfs_alloc_path();
4871 	if (!search_path)
4872 		return -ENOMEM;
4873 	search_path->search_commit_root = 1;
4874 	search_path->skip_locking = 1;
4875 
4876 	while (cur_offset < item_size) {
4877 		u64 parent;
4878 		u32 this_name_len;
4879 		u32 this_len;
4880 		unsigned long name_ptr;
4881 		struct btrfs_dir_item *di;
4882 
4883 		if (key->type == BTRFS_INODE_REF_KEY) {
4884 			struct btrfs_inode_ref *iref;
4885 
4886 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4887 			parent = key->offset;
4888 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4889 			name_ptr = (unsigned long)(iref + 1);
4890 			this_len = sizeof(*iref) + this_name_len;
4891 		} else {
4892 			struct btrfs_inode_extref *extref;
4893 
4894 			extref = (struct btrfs_inode_extref *)(ptr +
4895 							       cur_offset);
4896 			parent = btrfs_inode_extref_parent(eb, extref);
4897 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4898 			name_ptr = (unsigned long)&extref->name;
4899 			this_len = sizeof(*extref) + this_name_len;
4900 		}
4901 
4902 		if (this_name_len > name_len) {
4903 			char *new_name;
4904 
4905 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4906 			if (!new_name) {
4907 				ret = -ENOMEM;
4908 				goto out;
4909 			}
4910 			name_len = this_name_len;
4911 			name = new_name;
4912 		}
4913 
4914 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4915 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4916 				parent, name, this_name_len, 0);
4917 		if (di && !IS_ERR(di)) {
4918 			struct btrfs_key di_key;
4919 
4920 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4921 						  di, &di_key);
4922 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4923 				if (di_key.objectid != key->objectid) {
4924 					ret = 1;
4925 					*other_ino = di_key.objectid;
4926 					*other_parent = parent;
4927 				} else {
4928 					ret = 0;
4929 				}
4930 			} else {
4931 				ret = -EAGAIN;
4932 			}
4933 			goto out;
4934 		} else if (IS_ERR(di)) {
4935 			ret = PTR_ERR(di);
4936 			goto out;
4937 		}
4938 		btrfs_release_path(search_path);
4939 
4940 		cur_offset += this_len;
4941 	}
4942 	ret = 0;
4943 out:
4944 	btrfs_free_path(search_path);
4945 	kfree(name);
4946 	return ret;
4947 }
4948 
4949 struct btrfs_ino_list {
4950 	u64 ino;
4951 	u64 parent;
4952 	struct list_head list;
4953 };
4954 
4955 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4956 				  struct btrfs_root *root,
4957 				  struct btrfs_path *path,
4958 				  struct btrfs_log_ctx *ctx,
4959 				  u64 ino, u64 parent)
4960 {
4961 	struct btrfs_ino_list *ino_elem;
4962 	LIST_HEAD(inode_list);
4963 	int ret = 0;
4964 
4965 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4966 	if (!ino_elem)
4967 		return -ENOMEM;
4968 	ino_elem->ino = ino;
4969 	ino_elem->parent = parent;
4970 	list_add_tail(&ino_elem->list, &inode_list);
4971 
4972 	while (!list_empty(&inode_list)) {
4973 		struct btrfs_fs_info *fs_info = root->fs_info;
4974 		struct btrfs_key key;
4975 		struct inode *inode;
4976 
4977 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4978 					    list);
4979 		ino = ino_elem->ino;
4980 		parent = ino_elem->parent;
4981 		list_del(&ino_elem->list);
4982 		kfree(ino_elem);
4983 		if (ret)
4984 			continue;
4985 
4986 		btrfs_release_path(path);
4987 
4988 		key.objectid = ino;
4989 		key.type = BTRFS_INODE_ITEM_KEY;
4990 		key.offset = 0;
4991 		inode = btrfs_iget(fs_info->sb, &key, root);
4992 		/*
4993 		 * If the other inode that had a conflicting dir entry was
4994 		 * deleted in the current transaction, we need to log its parent
4995 		 * directory.
4996 		 */
4997 		if (IS_ERR(inode)) {
4998 			ret = PTR_ERR(inode);
4999 			if (ret == -ENOENT) {
5000 				key.objectid = parent;
5001 				inode = btrfs_iget(fs_info->sb, &key, root);
5002 				if (IS_ERR(inode)) {
5003 					ret = PTR_ERR(inode);
5004 				} else {
5005 					ret = btrfs_log_inode(trans, root,
5006 						      BTRFS_I(inode),
5007 						      LOG_OTHER_INODE_ALL,
5008 						      0, LLONG_MAX, ctx);
5009 					btrfs_add_delayed_iput(inode);
5010 				}
5011 			}
5012 			continue;
5013 		}
5014 		/*
5015 		 * We are safe logging the other inode without acquiring its
5016 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5017 		 * are safe against concurrent renames of the other inode as
5018 		 * well because during a rename we pin the log and update the
5019 		 * log with the new name before we unpin it.
5020 		 */
5021 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5022 				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
5023 		if (ret) {
5024 			btrfs_add_delayed_iput(inode);
5025 			continue;
5026 		}
5027 
5028 		key.objectid = ino;
5029 		key.type = BTRFS_INODE_REF_KEY;
5030 		key.offset = 0;
5031 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5032 		if (ret < 0) {
5033 			btrfs_add_delayed_iput(inode);
5034 			continue;
5035 		}
5036 
5037 		while (true) {
5038 			struct extent_buffer *leaf = path->nodes[0];
5039 			int slot = path->slots[0];
5040 			u64 other_ino = 0;
5041 			u64 other_parent = 0;
5042 
5043 			if (slot >= btrfs_header_nritems(leaf)) {
5044 				ret = btrfs_next_leaf(root, path);
5045 				if (ret < 0) {
5046 					break;
5047 				} else if (ret > 0) {
5048 					ret = 0;
5049 					break;
5050 				}
5051 				continue;
5052 			}
5053 
5054 			btrfs_item_key_to_cpu(leaf, &key, slot);
5055 			if (key.objectid != ino ||
5056 			    (key.type != BTRFS_INODE_REF_KEY &&
5057 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5058 				ret = 0;
5059 				break;
5060 			}
5061 
5062 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5063 					BTRFS_I(inode), &other_ino,
5064 					&other_parent);
5065 			if (ret < 0)
5066 				break;
5067 			if (ret > 0) {
5068 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5069 				if (!ino_elem) {
5070 					ret = -ENOMEM;
5071 					break;
5072 				}
5073 				ino_elem->ino = other_ino;
5074 				ino_elem->parent = other_parent;
5075 				list_add_tail(&ino_elem->list, &inode_list);
5076 				ret = 0;
5077 			}
5078 			path->slots[0]++;
5079 		}
5080 		btrfs_add_delayed_iput(inode);
5081 	}
5082 
5083 	return ret;
5084 }
5085 
5086 /* log a single inode in the tree log.
5087  * At least one parent directory for this inode must exist in the tree
5088  * or be logged already.
5089  *
5090  * Any items from this inode changed by the current transaction are copied
5091  * to the log tree.  An extra reference is taken on any extents in this
5092  * file, allowing us to avoid a whole pile of corner cases around logging
5093  * blocks that have been removed from the tree.
5094  *
5095  * See LOG_INODE_ALL and related defines for a description of what inode_only
5096  * does.
5097  *
5098  * This handles both files and directories.
5099  */
5100 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5101 			   struct btrfs_root *root, struct btrfs_inode *inode,
5102 			   int inode_only,
5103 			   const loff_t start,
5104 			   const loff_t end,
5105 			   struct btrfs_log_ctx *ctx)
5106 {
5107 	struct btrfs_fs_info *fs_info = root->fs_info;
5108 	struct btrfs_path *path;
5109 	struct btrfs_path *dst_path;
5110 	struct btrfs_key min_key;
5111 	struct btrfs_key max_key;
5112 	struct btrfs_root *log = root->log_root;
5113 	u64 last_extent = 0;
5114 	int err = 0;
5115 	int ret;
5116 	int nritems;
5117 	int ins_start_slot = 0;
5118 	int ins_nr;
5119 	bool fast_search = false;
5120 	u64 ino = btrfs_ino(inode);
5121 	struct extent_map_tree *em_tree = &inode->extent_tree;
5122 	u64 logged_isize = 0;
5123 	bool need_log_inode_item = true;
5124 	bool xattrs_logged = false;
5125 	bool recursive_logging = false;
5126 
5127 	path = btrfs_alloc_path();
5128 	if (!path)
5129 		return -ENOMEM;
5130 	dst_path = btrfs_alloc_path();
5131 	if (!dst_path) {
5132 		btrfs_free_path(path);
5133 		return -ENOMEM;
5134 	}
5135 
5136 	min_key.objectid = ino;
5137 	min_key.type = BTRFS_INODE_ITEM_KEY;
5138 	min_key.offset = 0;
5139 
5140 	max_key.objectid = ino;
5141 
5142 
5143 	/* today the code can only do partial logging of directories */
5144 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5145 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5146 		       &inode->runtime_flags) &&
5147 	     inode_only >= LOG_INODE_EXISTS))
5148 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5149 	else
5150 		max_key.type = (u8)-1;
5151 	max_key.offset = (u64)-1;
5152 
5153 	/*
5154 	 * Only run delayed items if we are a dir or a new file.
5155 	 * Otherwise commit the delayed inode only, which is needed in
5156 	 * order for the log replay code to mark inodes for link count
5157 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5158 	 */
5159 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5160 	    inode->generation > fs_info->last_trans_committed)
5161 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5162 	else
5163 		ret = btrfs_commit_inode_delayed_inode(inode);
5164 
5165 	if (ret) {
5166 		btrfs_free_path(path);
5167 		btrfs_free_path(dst_path);
5168 		return ret;
5169 	}
5170 
5171 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5172 		recursive_logging = true;
5173 		if (inode_only == LOG_OTHER_INODE)
5174 			inode_only = LOG_INODE_EXISTS;
5175 		else
5176 			inode_only = LOG_INODE_ALL;
5177 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5178 	} else {
5179 		mutex_lock(&inode->log_mutex);
5180 	}
5181 
5182 	/*
5183 	 * a brute force approach to making sure we get the most uptodate
5184 	 * copies of everything.
5185 	 */
5186 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5187 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5188 
5189 		if (inode_only == LOG_INODE_EXISTS)
5190 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5191 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5192 	} else {
5193 		if (inode_only == LOG_INODE_EXISTS) {
5194 			/*
5195 			 * Make sure the new inode item we write to the log has
5196 			 * the same isize as the current one (if it exists).
5197 			 * This is necessary to prevent data loss after log
5198 			 * replay, and also to prevent doing a wrong expanding
5199 			 * truncate - for e.g. create file, write 4K into offset
5200 			 * 0, fsync, write 4K into offset 4096, add hard link,
5201 			 * fsync some other file (to sync log), power fail - if
5202 			 * we use the inode's current i_size, after log replay
5203 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5204 			 * (zeroes), as if an expanding truncate happened,
5205 			 * instead of getting a file of 4Kb only.
5206 			 */
5207 			err = logged_inode_size(log, inode, path, &logged_isize);
5208 			if (err)
5209 				goto out_unlock;
5210 		}
5211 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5212 			     &inode->runtime_flags)) {
5213 			if (inode_only == LOG_INODE_EXISTS) {
5214 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5215 				ret = drop_objectid_items(trans, log, path, ino,
5216 							  max_key.type);
5217 			} else {
5218 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5219 					  &inode->runtime_flags);
5220 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5221 					  &inode->runtime_flags);
5222 				while(1) {
5223 					ret = btrfs_truncate_inode_items(trans,
5224 						log, &inode->vfs_inode, 0, 0);
5225 					if (ret != -EAGAIN)
5226 						break;
5227 				}
5228 			}
5229 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5230 					      &inode->runtime_flags) ||
5231 			   inode_only == LOG_INODE_EXISTS) {
5232 			if (inode_only == LOG_INODE_ALL)
5233 				fast_search = true;
5234 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5235 			ret = drop_objectid_items(trans, log, path, ino,
5236 						  max_key.type);
5237 		} else {
5238 			if (inode_only == LOG_INODE_ALL)
5239 				fast_search = true;
5240 			goto log_extents;
5241 		}
5242 
5243 	}
5244 	if (ret) {
5245 		err = ret;
5246 		goto out_unlock;
5247 	}
5248 
5249 	while (1) {
5250 		ins_nr = 0;
5251 		ret = btrfs_search_forward(root, &min_key,
5252 					   path, trans->transid);
5253 		if (ret < 0) {
5254 			err = ret;
5255 			goto out_unlock;
5256 		}
5257 		if (ret != 0)
5258 			break;
5259 again:
5260 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
5261 		if (min_key.objectid != ino)
5262 			break;
5263 		if (min_key.type > max_key.type)
5264 			break;
5265 
5266 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
5267 			need_log_inode_item = false;
5268 
5269 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
5270 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5271 		    inode->generation == trans->transid &&
5272 		    !recursive_logging) {
5273 			u64 other_ino = 0;
5274 			u64 other_parent = 0;
5275 
5276 			ret = btrfs_check_ref_name_override(path->nodes[0],
5277 					path->slots[0], &min_key, inode,
5278 					&other_ino, &other_parent);
5279 			if (ret < 0) {
5280 				err = ret;
5281 				goto out_unlock;
5282 			} else if (ret > 0 && ctx &&
5283 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5284 				if (ins_nr > 0) {
5285 					ins_nr++;
5286 				} else {
5287 					ins_nr = 1;
5288 					ins_start_slot = path->slots[0];
5289 				}
5290 				ret = copy_items(trans, inode, dst_path, path,
5291 						 &last_extent, ins_start_slot,
5292 						 ins_nr, inode_only,
5293 						 logged_isize);
5294 				if (ret < 0) {
5295 					err = ret;
5296 					goto out_unlock;
5297 				}
5298 				ins_nr = 0;
5299 
5300 				err = log_conflicting_inodes(trans, root, path,
5301 						ctx, other_ino, other_parent);
5302 				if (err)
5303 					goto out_unlock;
5304 				btrfs_release_path(path);
5305 				goto next_key;
5306 			}
5307 		}
5308 
5309 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5310 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5311 			if (ins_nr == 0)
5312 				goto next_slot;
5313 			ret = copy_items(trans, inode, dst_path, path,
5314 					 &last_extent, ins_start_slot,
5315 					 ins_nr, inode_only, logged_isize);
5316 			if (ret < 0) {
5317 				err = ret;
5318 				goto out_unlock;
5319 			}
5320 			ins_nr = 0;
5321 			if (ret) {
5322 				btrfs_release_path(path);
5323 				continue;
5324 			}
5325 			goto next_slot;
5326 		}
5327 
5328 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5329 			ins_nr++;
5330 			goto next_slot;
5331 		} else if (!ins_nr) {
5332 			ins_start_slot = path->slots[0];
5333 			ins_nr = 1;
5334 			goto next_slot;
5335 		}
5336 
5337 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5338 				 ins_start_slot, ins_nr, inode_only,
5339 				 logged_isize);
5340 		if (ret < 0) {
5341 			err = ret;
5342 			goto out_unlock;
5343 		}
5344 		if (ret) {
5345 			ins_nr = 0;
5346 			btrfs_release_path(path);
5347 			continue;
5348 		}
5349 		ins_nr = 1;
5350 		ins_start_slot = path->slots[0];
5351 next_slot:
5352 
5353 		nritems = btrfs_header_nritems(path->nodes[0]);
5354 		path->slots[0]++;
5355 		if (path->slots[0] < nritems) {
5356 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5357 					      path->slots[0]);
5358 			goto again;
5359 		}
5360 		if (ins_nr) {
5361 			ret = copy_items(trans, inode, dst_path, path,
5362 					 &last_extent, ins_start_slot,
5363 					 ins_nr, inode_only, logged_isize);
5364 			if (ret < 0) {
5365 				err = ret;
5366 				goto out_unlock;
5367 			}
5368 			ret = 0;
5369 			ins_nr = 0;
5370 		}
5371 		btrfs_release_path(path);
5372 next_key:
5373 		if (min_key.offset < (u64)-1) {
5374 			min_key.offset++;
5375 		} else if (min_key.type < max_key.type) {
5376 			min_key.type++;
5377 			min_key.offset = 0;
5378 		} else {
5379 			break;
5380 		}
5381 	}
5382 	if (ins_nr) {
5383 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5384 				 ins_start_slot, ins_nr, inode_only,
5385 				 logged_isize);
5386 		if (ret < 0) {
5387 			err = ret;
5388 			goto out_unlock;
5389 		}
5390 		ret = 0;
5391 		ins_nr = 0;
5392 	}
5393 
5394 	btrfs_release_path(path);
5395 	btrfs_release_path(dst_path);
5396 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5397 	if (err)
5398 		goto out_unlock;
5399 	xattrs_logged = true;
5400 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5401 		btrfs_release_path(path);
5402 		btrfs_release_path(dst_path);
5403 		err = btrfs_log_trailing_hole(trans, root, inode, path);
5404 		if (err)
5405 			goto out_unlock;
5406 	}
5407 log_extents:
5408 	btrfs_release_path(path);
5409 	btrfs_release_path(dst_path);
5410 	if (need_log_inode_item) {
5411 		err = log_inode_item(trans, log, dst_path, inode);
5412 		if (!err && !xattrs_logged) {
5413 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5414 						   dst_path);
5415 			btrfs_release_path(path);
5416 		}
5417 		if (err)
5418 			goto out_unlock;
5419 	}
5420 	if (fast_search) {
5421 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5422 						ctx, start, end);
5423 		if (ret) {
5424 			err = ret;
5425 			goto out_unlock;
5426 		}
5427 	} else if (inode_only == LOG_INODE_ALL) {
5428 		struct extent_map *em, *n;
5429 
5430 		write_lock(&em_tree->lock);
5431 		/*
5432 		 * We can't just remove every em if we're called for a ranged
5433 		 * fsync - that is, one that doesn't cover the whole possible
5434 		 * file range (0 to LLONG_MAX). This is because we can have
5435 		 * em's that fall outside the range we're logging and therefore
5436 		 * their ordered operations haven't completed yet
5437 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5438 		 * didn't get their respective file extent item in the fs/subvol
5439 		 * tree yet, and need to let the next fast fsync (one which
5440 		 * consults the list of modified extent maps) find the em so
5441 		 * that it logs a matching file extent item and waits for the
5442 		 * respective ordered operation to complete (if it's still
5443 		 * running).
5444 		 *
5445 		 * Removing every em outside the range we're logging would make
5446 		 * the next fast fsync not log their matching file extent items,
5447 		 * therefore making us lose data after a log replay.
5448 		 */
5449 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5450 					 list) {
5451 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5452 
5453 			if (em->mod_start >= start && mod_end <= end)
5454 				list_del_init(&em->list);
5455 		}
5456 		write_unlock(&em_tree->lock);
5457 	}
5458 
5459 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5460 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5461 					ctx);
5462 		if (ret) {
5463 			err = ret;
5464 			goto out_unlock;
5465 		}
5466 	}
5467 
5468 	/*
5469 	 * Don't update last_log_commit if we logged that an inode exists after
5470 	 * it was loaded to memory (full_sync bit set).
5471 	 * This is to prevent data loss when we do a write to the inode, then
5472 	 * the inode gets evicted after all delalloc was flushed, then we log
5473 	 * it exists (due to a rename for example) and then fsync it. This last
5474 	 * fsync would do nothing (not logging the extents previously written).
5475 	 */
5476 	spin_lock(&inode->lock);
5477 	inode->logged_trans = trans->transid;
5478 	if (inode_only != LOG_INODE_EXISTS ||
5479 	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5480 		inode->last_log_commit = inode->last_sub_trans;
5481 	spin_unlock(&inode->lock);
5482 out_unlock:
5483 	mutex_unlock(&inode->log_mutex);
5484 
5485 	btrfs_free_path(path);
5486 	btrfs_free_path(dst_path);
5487 	return err;
5488 }
5489 
5490 /*
5491  * Check if we must fallback to a transaction commit when logging an inode.
5492  * This must be called after logging the inode and is used only in the context
5493  * when fsyncing an inode requires the need to log some other inode - in which
5494  * case we can't lock the i_mutex of each other inode we need to log as that
5495  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5496  * log inodes up or down in the hierarchy) or rename operations for example. So
5497  * we take the log_mutex of the inode after we have logged it and then check for
5498  * its last_unlink_trans value - this is safe because any task setting
5499  * last_unlink_trans must take the log_mutex and it must do this before it does
5500  * the actual unlink operation, so if we do this check before a concurrent task
5501  * sets last_unlink_trans it means we've logged a consistent version/state of
5502  * all the inode items, otherwise we are not sure and must do a transaction
5503  * commit (the concurrent task might have only updated last_unlink_trans before
5504  * we logged the inode or it might have also done the unlink).
5505  */
5506 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5507 					  struct btrfs_inode *inode)
5508 {
5509 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5510 	bool ret = false;
5511 
5512 	mutex_lock(&inode->log_mutex);
5513 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5514 		/*
5515 		 * Make sure any commits to the log are forced to be full
5516 		 * commits.
5517 		 */
5518 		btrfs_set_log_full_commit(trans);
5519 		ret = true;
5520 	}
5521 	mutex_unlock(&inode->log_mutex);
5522 
5523 	return ret;
5524 }
5525 
5526 /*
5527  * follow the dentry parent pointers up the chain and see if any
5528  * of the directories in it require a full commit before they can
5529  * be logged.  Returns zero if nothing special needs to be done or 1 if
5530  * a full commit is required.
5531  */
5532 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5533 					       struct btrfs_inode *inode,
5534 					       struct dentry *parent,
5535 					       struct super_block *sb,
5536 					       u64 last_committed)
5537 {
5538 	int ret = 0;
5539 	struct dentry *old_parent = NULL;
5540 
5541 	/*
5542 	 * for regular files, if its inode is already on disk, we don't
5543 	 * have to worry about the parents at all.  This is because
5544 	 * we can use the last_unlink_trans field to record renames
5545 	 * and other fun in this file.
5546 	 */
5547 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5548 	    inode->generation <= last_committed &&
5549 	    inode->last_unlink_trans <= last_committed)
5550 		goto out;
5551 
5552 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5553 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5554 			goto out;
5555 		inode = BTRFS_I(d_inode(parent));
5556 	}
5557 
5558 	while (1) {
5559 		if (btrfs_must_commit_transaction(trans, inode)) {
5560 			ret = 1;
5561 			break;
5562 		}
5563 
5564 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5565 			break;
5566 
5567 		if (IS_ROOT(parent)) {
5568 			inode = BTRFS_I(d_inode(parent));
5569 			if (btrfs_must_commit_transaction(trans, inode))
5570 				ret = 1;
5571 			break;
5572 		}
5573 
5574 		parent = dget_parent(parent);
5575 		dput(old_parent);
5576 		old_parent = parent;
5577 		inode = BTRFS_I(d_inode(parent));
5578 
5579 	}
5580 	dput(old_parent);
5581 out:
5582 	return ret;
5583 }
5584 
5585 struct btrfs_dir_list {
5586 	u64 ino;
5587 	struct list_head list;
5588 };
5589 
5590 /*
5591  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5592  * details about the why it is needed.
5593  * This is a recursive operation - if an existing dentry corresponds to a
5594  * directory, that directory's new entries are logged too (same behaviour as
5595  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5596  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5597  * complains about the following circular lock dependency / possible deadlock:
5598  *
5599  *        CPU0                                        CPU1
5600  *        ----                                        ----
5601  * lock(&type->i_mutex_dir_key#3/2);
5602  *                                            lock(sb_internal#2);
5603  *                                            lock(&type->i_mutex_dir_key#3/2);
5604  * lock(&sb->s_type->i_mutex_key#14);
5605  *
5606  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5607  * sb_start_intwrite() in btrfs_start_transaction().
5608  * Not locking i_mutex of the inodes is still safe because:
5609  *
5610  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5611  *    that while logging the inode new references (names) are added or removed
5612  *    from the inode, leaving the logged inode item with a link count that does
5613  *    not match the number of logged inode reference items. This is fine because
5614  *    at log replay time we compute the real number of links and correct the
5615  *    link count in the inode item (see replay_one_buffer() and
5616  *    link_to_fixup_dir());
5617  *
5618  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5619  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5620  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5621  *    has a size that doesn't match the sum of the lengths of all the logged
5622  *    names. This does not result in a problem because if a dir_item key is
5623  *    logged but its matching dir_index key is not logged, at log replay time we
5624  *    don't use it to replay the respective name (see replay_one_name()). On the
5625  *    other hand if only the dir_index key ends up being logged, the respective
5626  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5627  *    keys created (see replay_one_name()).
5628  *    The directory's inode item with a wrong i_size is not a problem as well,
5629  *    since we don't use it at log replay time to set the i_size in the inode
5630  *    item of the fs/subvol tree (see overwrite_item()).
5631  */
5632 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5633 				struct btrfs_root *root,
5634 				struct btrfs_inode *start_inode,
5635 				struct btrfs_log_ctx *ctx)
5636 {
5637 	struct btrfs_fs_info *fs_info = root->fs_info;
5638 	struct btrfs_root *log = root->log_root;
5639 	struct btrfs_path *path;
5640 	LIST_HEAD(dir_list);
5641 	struct btrfs_dir_list *dir_elem;
5642 	int ret = 0;
5643 
5644 	path = btrfs_alloc_path();
5645 	if (!path)
5646 		return -ENOMEM;
5647 
5648 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5649 	if (!dir_elem) {
5650 		btrfs_free_path(path);
5651 		return -ENOMEM;
5652 	}
5653 	dir_elem->ino = btrfs_ino(start_inode);
5654 	list_add_tail(&dir_elem->list, &dir_list);
5655 
5656 	while (!list_empty(&dir_list)) {
5657 		struct extent_buffer *leaf;
5658 		struct btrfs_key min_key;
5659 		int nritems;
5660 		int i;
5661 
5662 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5663 					    list);
5664 		if (ret)
5665 			goto next_dir_inode;
5666 
5667 		min_key.objectid = dir_elem->ino;
5668 		min_key.type = BTRFS_DIR_ITEM_KEY;
5669 		min_key.offset = 0;
5670 again:
5671 		btrfs_release_path(path);
5672 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5673 		if (ret < 0) {
5674 			goto next_dir_inode;
5675 		} else if (ret > 0) {
5676 			ret = 0;
5677 			goto next_dir_inode;
5678 		}
5679 
5680 process_leaf:
5681 		leaf = path->nodes[0];
5682 		nritems = btrfs_header_nritems(leaf);
5683 		for (i = path->slots[0]; i < nritems; i++) {
5684 			struct btrfs_dir_item *di;
5685 			struct btrfs_key di_key;
5686 			struct inode *di_inode;
5687 			struct btrfs_dir_list *new_dir_elem;
5688 			int log_mode = LOG_INODE_EXISTS;
5689 			int type;
5690 
5691 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5692 			if (min_key.objectid != dir_elem->ino ||
5693 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5694 				goto next_dir_inode;
5695 
5696 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5697 			type = btrfs_dir_type(leaf, di);
5698 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5699 			    type != BTRFS_FT_DIR)
5700 				continue;
5701 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5702 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5703 				continue;
5704 
5705 			btrfs_release_path(path);
5706 			di_inode = btrfs_iget(fs_info->sb, &di_key, root);
5707 			if (IS_ERR(di_inode)) {
5708 				ret = PTR_ERR(di_inode);
5709 				goto next_dir_inode;
5710 			}
5711 
5712 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5713 				btrfs_add_delayed_iput(di_inode);
5714 				break;
5715 			}
5716 
5717 			ctx->log_new_dentries = false;
5718 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5719 				log_mode = LOG_INODE_ALL;
5720 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5721 					      log_mode, 0, LLONG_MAX, ctx);
5722 			if (!ret &&
5723 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5724 				ret = 1;
5725 			btrfs_add_delayed_iput(di_inode);
5726 			if (ret)
5727 				goto next_dir_inode;
5728 			if (ctx->log_new_dentries) {
5729 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5730 						       GFP_NOFS);
5731 				if (!new_dir_elem) {
5732 					ret = -ENOMEM;
5733 					goto next_dir_inode;
5734 				}
5735 				new_dir_elem->ino = di_key.objectid;
5736 				list_add_tail(&new_dir_elem->list, &dir_list);
5737 			}
5738 			break;
5739 		}
5740 		if (i == nritems) {
5741 			ret = btrfs_next_leaf(log, path);
5742 			if (ret < 0) {
5743 				goto next_dir_inode;
5744 			} else if (ret > 0) {
5745 				ret = 0;
5746 				goto next_dir_inode;
5747 			}
5748 			goto process_leaf;
5749 		}
5750 		if (min_key.offset < (u64)-1) {
5751 			min_key.offset++;
5752 			goto again;
5753 		}
5754 next_dir_inode:
5755 		list_del(&dir_elem->list);
5756 		kfree(dir_elem);
5757 	}
5758 
5759 	btrfs_free_path(path);
5760 	return ret;
5761 }
5762 
5763 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5764 				 struct btrfs_inode *inode,
5765 				 struct btrfs_log_ctx *ctx)
5766 {
5767 	struct btrfs_fs_info *fs_info = trans->fs_info;
5768 	int ret;
5769 	struct btrfs_path *path;
5770 	struct btrfs_key key;
5771 	struct btrfs_root *root = inode->root;
5772 	const u64 ino = btrfs_ino(inode);
5773 
5774 	path = btrfs_alloc_path();
5775 	if (!path)
5776 		return -ENOMEM;
5777 	path->skip_locking = 1;
5778 	path->search_commit_root = 1;
5779 
5780 	key.objectid = ino;
5781 	key.type = BTRFS_INODE_REF_KEY;
5782 	key.offset = 0;
5783 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5784 	if (ret < 0)
5785 		goto out;
5786 
5787 	while (true) {
5788 		struct extent_buffer *leaf = path->nodes[0];
5789 		int slot = path->slots[0];
5790 		u32 cur_offset = 0;
5791 		u32 item_size;
5792 		unsigned long ptr;
5793 
5794 		if (slot >= btrfs_header_nritems(leaf)) {
5795 			ret = btrfs_next_leaf(root, path);
5796 			if (ret < 0)
5797 				goto out;
5798 			else if (ret > 0)
5799 				break;
5800 			continue;
5801 		}
5802 
5803 		btrfs_item_key_to_cpu(leaf, &key, slot);
5804 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5805 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5806 			break;
5807 
5808 		item_size = btrfs_item_size_nr(leaf, slot);
5809 		ptr = btrfs_item_ptr_offset(leaf, slot);
5810 		while (cur_offset < item_size) {
5811 			struct btrfs_key inode_key;
5812 			struct inode *dir_inode;
5813 
5814 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5815 			inode_key.offset = 0;
5816 
5817 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5818 				struct btrfs_inode_extref *extref;
5819 
5820 				extref = (struct btrfs_inode_extref *)
5821 					(ptr + cur_offset);
5822 				inode_key.objectid = btrfs_inode_extref_parent(
5823 					leaf, extref);
5824 				cur_offset += sizeof(*extref);
5825 				cur_offset += btrfs_inode_extref_name_len(leaf,
5826 					extref);
5827 			} else {
5828 				inode_key.objectid = key.offset;
5829 				cur_offset = item_size;
5830 			}
5831 
5832 			dir_inode = btrfs_iget(fs_info->sb, &inode_key, root);
5833 			/*
5834 			 * If the parent inode was deleted, return an error to
5835 			 * fallback to a transaction commit. This is to prevent
5836 			 * getting an inode that was moved from one parent A to
5837 			 * a parent B, got its former parent A deleted and then
5838 			 * it got fsync'ed, from existing at both parents after
5839 			 * a log replay (and the old parent still existing).
5840 			 * Example:
5841 			 *
5842 			 * mkdir /mnt/A
5843 			 * mkdir /mnt/B
5844 			 * touch /mnt/B/bar
5845 			 * sync
5846 			 * mv /mnt/B/bar /mnt/A/bar
5847 			 * mv -T /mnt/A /mnt/B
5848 			 * fsync /mnt/B/bar
5849 			 * <power fail>
5850 			 *
5851 			 * If we ignore the old parent B which got deleted,
5852 			 * after a log replay we would have file bar linked
5853 			 * at both parents and the old parent B would still
5854 			 * exist.
5855 			 */
5856 			if (IS_ERR(dir_inode)) {
5857 				ret = PTR_ERR(dir_inode);
5858 				goto out;
5859 			}
5860 
5861 			if (ctx)
5862 				ctx->log_new_dentries = false;
5863 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5864 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5865 			if (!ret &&
5866 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5867 				ret = 1;
5868 			if (!ret && ctx && ctx->log_new_dentries)
5869 				ret = log_new_dir_dentries(trans, root,
5870 						   BTRFS_I(dir_inode), ctx);
5871 			btrfs_add_delayed_iput(dir_inode);
5872 			if (ret)
5873 				goto out;
5874 		}
5875 		path->slots[0]++;
5876 	}
5877 	ret = 0;
5878 out:
5879 	btrfs_free_path(path);
5880 	return ret;
5881 }
5882 
5883 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5884 			     struct btrfs_root *root,
5885 			     struct btrfs_path *path,
5886 			     struct btrfs_log_ctx *ctx)
5887 {
5888 	struct btrfs_key found_key;
5889 
5890 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5891 
5892 	while (true) {
5893 		struct btrfs_fs_info *fs_info = root->fs_info;
5894 		const u64 last_committed = fs_info->last_trans_committed;
5895 		struct extent_buffer *leaf = path->nodes[0];
5896 		int slot = path->slots[0];
5897 		struct btrfs_key search_key;
5898 		struct inode *inode;
5899 		int ret = 0;
5900 
5901 		btrfs_release_path(path);
5902 
5903 		search_key.objectid = found_key.offset;
5904 		search_key.type = BTRFS_INODE_ITEM_KEY;
5905 		search_key.offset = 0;
5906 		inode = btrfs_iget(fs_info->sb, &search_key, root);
5907 		if (IS_ERR(inode))
5908 			return PTR_ERR(inode);
5909 
5910 		if (BTRFS_I(inode)->generation > last_committed)
5911 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5912 					      LOG_INODE_EXISTS,
5913 					      0, LLONG_MAX, ctx);
5914 		btrfs_add_delayed_iput(inode);
5915 		if (ret)
5916 			return ret;
5917 
5918 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5919 			break;
5920 
5921 		search_key.type = BTRFS_INODE_REF_KEY;
5922 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5923 		if (ret < 0)
5924 			return ret;
5925 
5926 		leaf = path->nodes[0];
5927 		slot = path->slots[0];
5928 		if (slot >= btrfs_header_nritems(leaf)) {
5929 			ret = btrfs_next_leaf(root, path);
5930 			if (ret < 0)
5931 				return ret;
5932 			else if (ret > 0)
5933 				return -ENOENT;
5934 			leaf = path->nodes[0];
5935 			slot = path->slots[0];
5936 		}
5937 
5938 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5939 		if (found_key.objectid != search_key.objectid ||
5940 		    found_key.type != BTRFS_INODE_REF_KEY)
5941 			return -ENOENT;
5942 	}
5943 	return 0;
5944 }
5945 
5946 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5947 				  struct btrfs_inode *inode,
5948 				  struct dentry *parent,
5949 				  struct btrfs_log_ctx *ctx)
5950 {
5951 	struct btrfs_root *root = inode->root;
5952 	struct btrfs_fs_info *fs_info = root->fs_info;
5953 	struct dentry *old_parent = NULL;
5954 	struct super_block *sb = inode->vfs_inode.i_sb;
5955 	int ret = 0;
5956 
5957 	while (true) {
5958 		if (!parent || d_really_is_negative(parent) ||
5959 		    sb != parent->d_sb)
5960 			break;
5961 
5962 		inode = BTRFS_I(d_inode(parent));
5963 		if (root != inode->root)
5964 			break;
5965 
5966 		if (inode->generation > fs_info->last_trans_committed) {
5967 			ret = btrfs_log_inode(trans, root, inode,
5968 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5969 			if (ret)
5970 				break;
5971 		}
5972 		if (IS_ROOT(parent))
5973 			break;
5974 
5975 		parent = dget_parent(parent);
5976 		dput(old_parent);
5977 		old_parent = parent;
5978 	}
5979 	dput(old_parent);
5980 
5981 	return ret;
5982 }
5983 
5984 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5985 				 struct btrfs_inode *inode,
5986 				 struct dentry *parent,
5987 				 struct btrfs_log_ctx *ctx)
5988 {
5989 	struct btrfs_root *root = inode->root;
5990 	const u64 ino = btrfs_ino(inode);
5991 	struct btrfs_path *path;
5992 	struct btrfs_key search_key;
5993 	int ret;
5994 
5995 	/*
5996 	 * For a single hard link case, go through a fast path that does not
5997 	 * need to iterate the fs/subvolume tree.
5998 	 */
5999 	if (inode->vfs_inode.i_nlink < 2)
6000 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6001 
6002 	path = btrfs_alloc_path();
6003 	if (!path)
6004 		return -ENOMEM;
6005 
6006 	search_key.objectid = ino;
6007 	search_key.type = BTRFS_INODE_REF_KEY;
6008 	search_key.offset = 0;
6009 again:
6010 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6011 	if (ret < 0)
6012 		goto out;
6013 	if (ret == 0)
6014 		path->slots[0]++;
6015 
6016 	while (true) {
6017 		struct extent_buffer *leaf = path->nodes[0];
6018 		int slot = path->slots[0];
6019 		struct btrfs_key found_key;
6020 
6021 		if (slot >= btrfs_header_nritems(leaf)) {
6022 			ret = btrfs_next_leaf(root, path);
6023 			if (ret < 0)
6024 				goto out;
6025 			else if (ret > 0)
6026 				break;
6027 			continue;
6028 		}
6029 
6030 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6031 		if (found_key.objectid != ino ||
6032 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6033 			break;
6034 
6035 		/*
6036 		 * Don't deal with extended references because they are rare
6037 		 * cases and too complex to deal with (we would need to keep
6038 		 * track of which subitem we are processing for each item in
6039 		 * this loop, etc). So just return some error to fallback to
6040 		 * a transaction commit.
6041 		 */
6042 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6043 			ret = -EMLINK;
6044 			goto out;
6045 		}
6046 
6047 		/*
6048 		 * Logging ancestors needs to do more searches on the fs/subvol
6049 		 * tree, so it releases the path as needed to avoid deadlocks.
6050 		 * Keep track of the last inode ref key and resume from that key
6051 		 * after logging all new ancestors for the current hard link.
6052 		 */
6053 		memcpy(&search_key, &found_key, sizeof(search_key));
6054 
6055 		ret = log_new_ancestors(trans, root, path, ctx);
6056 		if (ret)
6057 			goto out;
6058 		btrfs_release_path(path);
6059 		goto again;
6060 	}
6061 	ret = 0;
6062 out:
6063 	btrfs_free_path(path);
6064 	return ret;
6065 }
6066 
6067 /*
6068  * helper function around btrfs_log_inode to make sure newly created
6069  * parent directories also end up in the log.  A minimal inode and backref
6070  * only logging is done of any parent directories that are older than
6071  * the last committed transaction
6072  */
6073 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6074 				  struct btrfs_inode *inode,
6075 				  struct dentry *parent,
6076 				  const loff_t start,
6077 				  const loff_t end,
6078 				  int inode_only,
6079 				  struct btrfs_log_ctx *ctx)
6080 {
6081 	struct btrfs_root *root = inode->root;
6082 	struct btrfs_fs_info *fs_info = root->fs_info;
6083 	struct super_block *sb;
6084 	int ret = 0;
6085 	u64 last_committed = fs_info->last_trans_committed;
6086 	bool log_dentries = false;
6087 
6088 	sb = inode->vfs_inode.i_sb;
6089 
6090 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6091 		ret = 1;
6092 		goto end_no_trans;
6093 	}
6094 
6095 	/*
6096 	 * The prev transaction commit doesn't complete, we need do
6097 	 * full commit by ourselves.
6098 	 */
6099 	if (fs_info->last_trans_log_full_commit >
6100 	    fs_info->last_trans_committed) {
6101 		ret = 1;
6102 		goto end_no_trans;
6103 	}
6104 
6105 	if (btrfs_root_refs(&root->root_item) == 0) {
6106 		ret = 1;
6107 		goto end_no_trans;
6108 	}
6109 
6110 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6111 			last_committed);
6112 	if (ret)
6113 		goto end_no_trans;
6114 
6115 	/*
6116 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6117 	 * (since logging them is pointless, a link count of 0 means they
6118 	 * will never be accessible).
6119 	 */
6120 	if (btrfs_inode_in_log(inode, trans->transid) ||
6121 	    inode->vfs_inode.i_nlink == 0) {
6122 		ret = BTRFS_NO_LOG_SYNC;
6123 		goto end_no_trans;
6124 	}
6125 
6126 	ret = start_log_trans(trans, root, ctx);
6127 	if (ret)
6128 		goto end_no_trans;
6129 
6130 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6131 	if (ret)
6132 		goto end_trans;
6133 
6134 	/*
6135 	 * for regular files, if its inode is already on disk, we don't
6136 	 * have to worry about the parents at all.  This is because
6137 	 * we can use the last_unlink_trans field to record renames
6138 	 * and other fun in this file.
6139 	 */
6140 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6141 	    inode->generation <= last_committed &&
6142 	    inode->last_unlink_trans <= last_committed) {
6143 		ret = 0;
6144 		goto end_trans;
6145 	}
6146 
6147 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6148 		log_dentries = true;
6149 
6150 	/*
6151 	 * On unlink we must make sure all our current and old parent directory
6152 	 * inodes are fully logged. This is to prevent leaving dangling
6153 	 * directory index entries in directories that were our parents but are
6154 	 * not anymore. Not doing this results in old parent directory being
6155 	 * impossible to delete after log replay (rmdir will always fail with
6156 	 * error -ENOTEMPTY).
6157 	 *
6158 	 * Example 1:
6159 	 *
6160 	 * mkdir testdir
6161 	 * touch testdir/foo
6162 	 * ln testdir/foo testdir/bar
6163 	 * sync
6164 	 * unlink testdir/bar
6165 	 * xfs_io -c fsync testdir/foo
6166 	 * <power failure>
6167 	 * mount fs, triggers log replay
6168 	 *
6169 	 * If we don't log the parent directory (testdir), after log replay the
6170 	 * directory still has an entry pointing to the file inode using the bar
6171 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6172 	 * the file inode has a link count of 1.
6173 	 *
6174 	 * Example 2:
6175 	 *
6176 	 * mkdir testdir
6177 	 * touch foo
6178 	 * ln foo testdir/foo2
6179 	 * ln foo testdir/foo3
6180 	 * sync
6181 	 * unlink testdir/foo3
6182 	 * xfs_io -c fsync foo
6183 	 * <power failure>
6184 	 * mount fs, triggers log replay
6185 	 *
6186 	 * Similar as the first example, after log replay the parent directory
6187 	 * testdir still has an entry pointing to the inode file with name foo3
6188 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6189 	 * and has a link count of 2.
6190 	 */
6191 	if (inode->last_unlink_trans > last_committed) {
6192 		ret = btrfs_log_all_parents(trans, inode, ctx);
6193 		if (ret)
6194 			goto end_trans;
6195 	}
6196 
6197 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6198 	if (ret)
6199 		goto end_trans;
6200 
6201 	if (log_dentries)
6202 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6203 	else
6204 		ret = 0;
6205 end_trans:
6206 	if (ret < 0) {
6207 		btrfs_set_log_full_commit(trans);
6208 		ret = 1;
6209 	}
6210 
6211 	if (ret)
6212 		btrfs_remove_log_ctx(root, ctx);
6213 	btrfs_end_log_trans(root);
6214 end_no_trans:
6215 	return ret;
6216 }
6217 
6218 /*
6219  * it is not safe to log dentry if the chunk root has added new
6220  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6221  * If this returns 1, you must commit the transaction to safely get your
6222  * data on disk.
6223  */
6224 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6225 			  struct dentry *dentry,
6226 			  const loff_t start,
6227 			  const loff_t end,
6228 			  struct btrfs_log_ctx *ctx)
6229 {
6230 	struct dentry *parent = dget_parent(dentry);
6231 	int ret;
6232 
6233 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6234 				     start, end, LOG_INODE_ALL, ctx);
6235 	dput(parent);
6236 
6237 	return ret;
6238 }
6239 
6240 /*
6241  * should be called during mount to recover any replay any log trees
6242  * from the FS
6243  */
6244 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6245 {
6246 	int ret;
6247 	struct btrfs_path *path;
6248 	struct btrfs_trans_handle *trans;
6249 	struct btrfs_key key;
6250 	struct btrfs_key found_key;
6251 	struct btrfs_key tmp_key;
6252 	struct btrfs_root *log;
6253 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6254 	struct walk_control wc = {
6255 		.process_func = process_one_buffer,
6256 		.stage = LOG_WALK_PIN_ONLY,
6257 	};
6258 
6259 	path = btrfs_alloc_path();
6260 	if (!path)
6261 		return -ENOMEM;
6262 
6263 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6264 
6265 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6266 	if (IS_ERR(trans)) {
6267 		ret = PTR_ERR(trans);
6268 		goto error;
6269 	}
6270 
6271 	wc.trans = trans;
6272 	wc.pin = 1;
6273 
6274 	ret = walk_log_tree(trans, log_root_tree, &wc);
6275 	if (ret) {
6276 		btrfs_handle_fs_error(fs_info, ret,
6277 			"Failed to pin buffers while recovering log root tree.");
6278 		goto error;
6279 	}
6280 
6281 again:
6282 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6283 	key.offset = (u64)-1;
6284 	key.type = BTRFS_ROOT_ITEM_KEY;
6285 
6286 	while (1) {
6287 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6288 
6289 		if (ret < 0) {
6290 			btrfs_handle_fs_error(fs_info, ret,
6291 				    "Couldn't find tree log root.");
6292 			goto error;
6293 		}
6294 		if (ret > 0) {
6295 			if (path->slots[0] == 0)
6296 				break;
6297 			path->slots[0]--;
6298 		}
6299 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6300 				      path->slots[0]);
6301 		btrfs_release_path(path);
6302 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6303 			break;
6304 
6305 		log = btrfs_read_fs_root(log_root_tree, &found_key);
6306 		if (IS_ERR(log)) {
6307 			ret = PTR_ERR(log);
6308 			btrfs_handle_fs_error(fs_info, ret,
6309 				    "Couldn't read tree log root.");
6310 			goto error;
6311 		}
6312 
6313 		tmp_key.objectid = found_key.offset;
6314 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6315 		tmp_key.offset = (u64)-1;
6316 
6317 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6318 		if (IS_ERR(wc.replay_dest)) {
6319 			ret = PTR_ERR(wc.replay_dest);
6320 
6321 			/*
6322 			 * We didn't find the subvol, likely because it was
6323 			 * deleted.  This is ok, simply skip this log and go to
6324 			 * the next one.
6325 			 *
6326 			 * We need to exclude the root because we can't have
6327 			 * other log replays overwriting this log as we'll read
6328 			 * it back in a few more times.  This will keep our
6329 			 * block from being modified, and we'll just bail for
6330 			 * each subsequent pass.
6331 			 */
6332 			if (ret == -ENOENT)
6333 				ret = btrfs_pin_extent_for_log_replay(fs_info,
6334 							log->node->start,
6335 							log->node->len);
6336 			free_extent_buffer(log->node);
6337 			free_extent_buffer(log->commit_root);
6338 			kfree(log);
6339 
6340 			if (!ret)
6341 				goto next;
6342 			btrfs_handle_fs_error(fs_info, ret,
6343 				"Couldn't read target root for tree log recovery.");
6344 			goto error;
6345 		}
6346 
6347 		wc.replay_dest->log_root = log;
6348 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6349 		ret = walk_log_tree(trans, log, &wc);
6350 
6351 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6352 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6353 						      path);
6354 		}
6355 
6356 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6357 			struct btrfs_root *root = wc.replay_dest;
6358 
6359 			btrfs_release_path(path);
6360 
6361 			/*
6362 			 * We have just replayed everything, and the highest
6363 			 * objectid of fs roots probably has changed in case
6364 			 * some inode_item's got replayed.
6365 			 *
6366 			 * root->objectid_mutex is not acquired as log replay
6367 			 * could only happen during mount.
6368 			 */
6369 			ret = btrfs_find_highest_objectid(root,
6370 						  &root->highest_objectid);
6371 		}
6372 
6373 		wc.replay_dest->log_root = NULL;
6374 		free_extent_buffer(log->node);
6375 		free_extent_buffer(log->commit_root);
6376 		kfree(log);
6377 
6378 		if (ret)
6379 			goto error;
6380 next:
6381 		if (found_key.offset == 0)
6382 			break;
6383 		key.offset = found_key.offset - 1;
6384 	}
6385 	btrfs_release_path(path);
6386 
6387 	/* step one is to pin it all, step two is to replay just inodes */
6388 	if (wc.pin) {
6389 		wc.pin = 0;
6390 		wc.process_func = replay_one_buffer;
6391 		wc.stage = LOG_WALK_REPLAY_INODES;
6392 		goto again;
6393 	}
6394 	/* step three is to replay everything */
6395 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6396 		wc.stage++;
6397 		goto again;
6398 	}
6399 
6400 	btrfs_free_path(path);
6401 
6402 	/* step 4: commit the transaction, which also unpins the blocks */
6403 	ret = btrfs_commit_transaction(trans);
6404 	if (ret)
6405 		return ret;
6406 
6407 	free_extent_buffer(log_root_tree->node);
6408 	log_root_tree->log_root = NULL;
6409 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6410 	kfree(log_root_tree);
6411 
6412 	return 0;
6413 error:
6414 	if (wc.trans)
6415 		btrfs_end_transaction(wc.trans);
6416 	btrfs_free_path(path);
6417 	return ret;
6418 }
6419 
6420 /*
6421  * there are some corner cases where we want to force a full
6422  * commit instead of allowing a directory to be logged.
6423  *
6424  * They revolve around files there were unlinked from the directory, and
6425  * this function updates the parent directory so that a full commit is
6426  * properly done if it is fsync'd later after the unlinks are done.
6427  *
6428  * Must be called before the unlink operations (updates to the subvolume tree,
6429  * inodes, etc) are done.
6430  */
6431 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6432 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6433 			     int for_rename)
6434 {
6435 	/*
6436 	 * when we're logging a file, if it hasn't been renamed
6437 	 * or unlinked, and its inode is fully committed on disk,
6438 	 * we don't have to worry about walking up the directory chain
6439 	 * to log its parents.
6440 	 *
6441 	 * So, we use the last_unlink_trans field to put this transid
6442 	 * into the file.  When the file is logged we check it and
6443 	 * don't log the parents if the file is fully on disk.
6444 	 */
6445 	mutex_lock(&inode->log_mutex);
6446 	inode->last_unlink_trans = trans->transid;
6447 	mutex_unlock(&inode->log_mutex);
6448 
6449 	/*
6450 	 * if this directory was already logged any new
6451 	 * names for this file/dir will get recorded
6452 	 */
6453 	if (dir->logged_trans == trans->transid)
6454 		return;
6455 
6456 	/*
6457 	 * if the inode we're about to unlink was logged,
6458 	 * the log will be properly updated for any new names
6459 	 */
6460 	if (inode->logged_trans == trans->transid)
6461 		return;
6462 
6463 	/*
6464 	 * when renaming files across directories, if the directory
6465 	 * there we're unlinking from gets fsync'd later on, there's
6466 	 * no way to find the destination directory later and fsync it
6467 	 * properly.  So, we have to be conservative and force commits
6468 	 * so the new name gets discovered.
6469 	 */
6470 	if (for_rename)
6471 		goto record;
6472 
6473 	/* we can safely do the unlink without any special recording */
6474 	return;
6475 
6476 record:
6477 	mutex_lock(&dir->log_mutex);
6478 	dir->last_unlink_trans = trans->transid;
6479 	mutex_unlock(&dir->log_mutex);
6480 }
6481 
6482 /*
6483  * Make sure that if someone attempts to fsync the parent directory of a deleted
6484  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6485  * that after replaying the log tree of the parent directory's root we will not
6486  * see the snapshot anymore and at log replay time we will not see any log tree
6487  * corresponding to the deleted snapshot's root, which could lead to replaying
6488  * it after replaying the log tree of the parent directory (which would replay
6489  * the snapshot delete operation).
6490  *
6491  * Must be called before the actual snapshot destroy operation (updates to the
6492  * parent root and tree of tree roots trees, etc) are done.
6493  */
6494 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6495 				   struct btrfs_inode *dir)
6496 {
6497 	mutex_lock(&dir->log_mutex);
6498 	dir->last_unlink_trans = trans->transid;
6499 	mutex_unlock(&dir->log_mutex);
6500 }
6501 
6502 /*
6503  * Call this after adding a new name for a file and it will properly
6504  * update the log to reflect the new name.
6505  *
6506  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6507  * true (because it's not used).
6508  *
6509  * Return value depends on whether @sync_log is true or false.
6510  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6511  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6512  *            otherwise.
6513  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6514  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6515  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6516  *             committed (without attempting to sync the log).
6517  */
6518 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6519 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6520 			struct dentry *parent,
6521 			bool sync_log, struct btrfs_log_ctx *ctx)
6522 {
6523 	struct btrfs_fs_info *fs_info = trans->fs_info;
6524 	int ret;
6525 
6526 	/*
6527 	 * this will force the logging code to walk the dentry chain
6528 	 * up for the file
6529 	 */
6530 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6531 		inode->last_unlink_trans = trans->transid;
6532 
6533 	/*
6534 	 * if this inode hasn't been logged and directory we're renaming it
6535 	 * from hasn't been logged, we don't need to log it
6536 	 */
6537 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6538 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6539 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6540 			BTRFS_DONT_NEED_LOG_SYNC;
6541 
6542 	if (sync_log) {
6543 		struct btrfs_log_ctx ctx2;
6544 
6545 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6546 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6547 					     LOG_INODE_EXISTS, &ctx2);
6548 		if (ret == BTRFS_NO_LOG_SYNC)
6549 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6550 		else if (ret)
6551 			return BTRFS_NEED_TRANS_COMMIT;
6552 
6553 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6554 		if (ret)
6555 			return BTRFS_NEED_TRANS_COMMIT;
6556 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6557 	}
6558 
6559 	ASSERT(ctx);
6560 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6561 				     LOG_INODE_EXISTS, ctx);
6562 	if (ret == BTRFS_NO_LOG_SYNC)
6563 		return BTRFS_DONT_NEED_LOG_SYNC;
6564 	else if (ret)
6565 		return BTRFS_NEED_TRANS_COMMIT;
6566 
6567 	return BTRFS_NEED_LOG_SYNC;
6568 }
6569 
6570