xref: /openbmc/linux/fs/btrfs/tree-log.c (revision f2bb566f5c977ff010baaa9e5e14d9a75b06e5f2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24 
25 #define MAX_CONFLICT_INODES 10
26 
27 /* magic values for the inode_only field in btrfs_log_inode:
28  *
29  * LOG_INODE_ALL means to log everything
30  * LOG_INODE_EXISTS means to log just enough to recreate the inode
31  * during log replay
32  */
33 enum {
34 	LOG_INODE_ALL,
35 	LOG_INODE_EXISTS,
36 };
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 enum {
91 	LOG_WALK_PIN_ONLY,
92 	LOG_WALK_REPLAY_INODES,
93 	LOG_WALK_REPLAY_DIR_INDEX,
94 	LOG_WALK_REPLAY_ALL,
95 };
96 
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 			   struct btrfs_inode *inode,
99 			   int inode_only,
100 			   struct btrfs_log_ctx *ctx);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 			     struct btrfs_root *root,
103 			     struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 				       struct btrfs_root *root,
106 				       struct btrfs_root *log,
107 				       struct btrfs_path *path,
108 				       u64 dirid, int del_all);
109 static void wait_log_commit(struct btrfs_root *root, int transid);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	struct btrfs_root *tree_root = fs_info->tree_root;
145 	const bool zoned = btrfs_is_zoned(fs_info);
146 	int ret = 0;
147 	bool created = false;
148 
149 	/*
150 	 * First check if the log root tree was already created. If not, create
151 	 * it before locking the root's log_mutex, just to keep lockdep happy.
152 	 */
153 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
154 		mutex_lock(&tree_root->log_mutex);
155 		if (!fs_info->log_root_tree) {
156 			ret = btrfs_init_log_root_tree(trans, fs_info);
157 			if (!ret) {
158 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
159 				created = true;
160 			}
161 		}
162 		mutex_unlock(&tree_root->log_mutex);
163 		if (ret)
164 			return ret;
165 	}
166 
167 	mutex_lock(&root->log_mutex);
168 
169 again:
170 	if (root->log_root) {
171 		int index = (root->log_transid + 1) % 2;
172 
173 		if (btrfs_need_log_full_commit(trans)) {
174 			ret = BTRFS_LOG_FORCE_COMMIT;
175 			goto out;
176 		}
177 
178 		if (zoned && atomic_read(&root->log_commit[index])) {
179 			wait_log_commit(root, root->log_transid - 1);
180 			goto again;
181 		}
182 
183 		if (!root->log_start_pid) {
184 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
185 			root->log_start_pid = current->pid;
186 		} else if (root->log_start_pid != current->pid) {
187 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
188 		}
189 	} else {
190 		/*
191 		 * This means fs_info->log_root_tree was already created
192 		 * for some other FS trees. Do the full commit not to mix
193 		 * nodes from multiple log transactions to do sequential
194 		 * writing.
195 		 */
196 		if (zoned && !created) {
197 			ret = BTRFS_LOG_FORCE_COMMIT;
198 			goto out;
199 		}
200 
201 		ret = btrfs_add_log_tree(trans, root);
202 		if (ret)
203 			goto out;
204 
205 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
206 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
207 		root->log_start_pid = current->pid;
208 	}
209 
210 	atomic_inc(&root->log_writers);
211 	if (!ctx->logging_new_name) {
212 		int index = root->log_transid % 2;
213 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
214 		ctx->log_transid = root->log_transid;
215 	}
216 
217 out:
218 	mutex_unlock(&root->log_mutex);
219 	return ret;
220 }
221 
222 /*
223  * returns 0 if there was a log transaction running and we were able
224  * to join, or returns -ENOENT if there were not transactions
225  * in progress
226  */
227 static int join_running_log_trans(struct btrfs_root *root)
228 {
229 	const bool zoned = btrfs_is_zoned(root->fs_info);
230 	int ret = -ENOENT;
231 
232 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
233 		return ret;
234 
235 	mutex_lock(&root->log_mutex);
236 again:
237 	if (root->log_root) {
238 		int index = (root->log_transid + 1) % 2;
239 
240 		ret = 0;
241 		if (zoned && atomic_read(&root->log_commit[index])) {
242 			wait_log_commit(root, root->log_transid - 1);
243 			goto again;
244 		}
245 		atomic_inc(&root->log_writers);
246 	}
247 	mutex_unlock(&root->log_mutex);
248 	return ret;
249 }
250 
251 /*
252  * This either makes the current running log transaction wait
253  * until you call btrfs_end_log_trans() or it makes any future
254  * log transactions wait until you call btrfs_end_log_trans()
255  */
256 void btrfs_pin_log_trans(struct btrfs_root *root)
257 {
258 	atomic_inc(&root->log_writers);
259 }
260 
261 /*
262  * indicate we're done making changes to the log tree
263  * and wake up anyone waiting to do a sync
264  */
265 void btrfs_end_log_trans(struct btrfs_root *root)
266 {
267 	if (atomic_dec_and_test(&root->log_writers)) {
268 		/* atomic_dec_and_test implies a barrier */
269 		cond_wake_up_nomb(&root->log_writer_wait);
270 	}
271 }
272 
273 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
274 {
275 	filemap_fdatawait_range(buf->pages[0]->mapping,
276 			        buf->start, buf->start + buf->len - 1);
277 }
278 
279 /*
280  * the walk control struct is used to pass state down the chain when
281  * processing the log tree.  The stage field tells us which part
282  * of the log tree processing we are currently doing.  The others
283  * are state fields used for that specific part
284  */
285 struct walk_control {
286 	/* should we free the extent on disk when done?  This is used
287 	 * at transaction commit time while freeing a log tree
288 	 */
289 	int free;
290 
291 	/* pin only walk, we record which extents on disk belong to the
292 	 * log trees
293 	 */
294 	int pin;
295 
296 	/* what stage of the replay code we're currently in */
297 	int stage;
298 
299 	/*
300 	 * Ignore any items from the inode currently being processed. Needs
301 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
302 	 * the LOG_WALK_REPLAY_INODES stage.
303 	 */
304 	bool ignore_cur_inode;
305 
306 	/* the root we are currently replaying */
307 	struct btrfs_root *replay_dest;
308 
309 	/* the trans handle for the current replay */
310 	struct btrfs_trans_handle *trans;
311 
312 	/* the function that gets used to process blocks we find in the
313 	 * tree.  Note the extent_buffer might not be up to date when it is
314 	 * passed in, and it must be checked or read if you need the data
315 	 * inside it
316 	 */
317 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
318 			    struct walk_control *wc, u64 gen, int level);
319 };
320 
321 /*
322  * process_func used to pin down extents, write them or wait on them
323  */
324 static int process_one_buffer(struct btrfs_root *log,
325 			      struct extent_buffer *eb,
326 			      struct walk_control *wc, u64 gen, int level)
327 {
328 	struct btrfs_fs_info *fs_info = log->fs_info;
329 	int ret = 0;
330 
331 	/*
332 	 * If this fs is mixed then we need to be able to process the leaves to
333 	 * pin down any logged extents, so we have to read the block.
334 	 */
335 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
336 		ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
337 		if (ret)
338 			return ret;
339 	}
340 
341 	if (wc->pin) {
342 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
343 						      eb->len);
344 		if (ret)
345 			return ret;
346 
347 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
348 		    btrfs_header_level(eb) == 0)
349 			ret = btrfs_exclude_logged_extents(eb);
350 	}
351 	return ret;
352 }
353 
354 static int do_overwrite_item(struct btrfs_trans_handle *trans,
355 			     struct btrfs_root *root,
356 			     struct btrfs_path *path,
357 			     struct extent_buffer *eb, int slot,
358 			     struct btrfs_key *key)
359 {
360 	int ret;
361 	u32 item_size;
362 	u64 saved_i_size = 0;
363 	int save_old_i_size = 0;
364 	unsigned long src_ptr;
365 	unsigned long dst_ptr;
366 	int overwrite_root = 0;
367 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
368 
369 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
370 		overwrite_root = 1;
371 
372 	item_size = btrfs_item_size(eb, slot);
373 	src_ptr = btrfs_item_ptr_offset(eb, slot);
374 
375 	/* Our caller must have done a search for the key for us. */
376 	ASSERT(path->nodes[0] != NULL);
377 
378 	/*
379 	 * And the slot must point to the exact key or the slot where the key
380 	 * should be at (the first item with a key greater than 'key')
381 	 */
382 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
383 		struct btrfs_key found_key;
384 
385 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
386 		ret = btrfs_comp_cpu_keys(&found_key, key);
387 		ASSERT(ret >= 0);
388 	} else {
389 		ret = 1;
390 	}
391 
392 	if (ret == 0) {
393 		char *src_copy;
394 		char *dst_copy;
395 		u32 dst_size = btrfs_item_size(path->nodes[0],
396 						  path->slots[0]);
397 		if (dst_size != item_size)
398 			goto insert;
399 
400 		if (item_size == 0) {
401 			btrfs_release_path(path);
402 			return 0;
403 		}
404 		dst_copy = kmalloc(item_size, GFP_NOFS);
405 		src_copy = kmalloc(item_size, GFP_NOFS);
406 		if (!dst_copy || !src_copy) {
407 			btrfs_release_path(path);
408 			kfree(dst_copy);
409 			kfree(src_copy);
410 			return -ENOMEM;
411 		}
412 
413 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
414 
415 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
416 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
417 				   item_size);
418 		ret = memcmp(dst_copy, src_copy, item_size);
419 
420 		kfree(dst_copy);
421 		kfree(src_copy);
422 		/*
423 		 * they have the same contents, just return, this saves
424 		 * us from cowing blocks in the destination tree and doing
425 		 * extra writes that may not have been done by a previous
426 		 * sync
427 		 */
428 		if (ret == 0) {
429 			btrfs_release_path(path);
430 			return 0;
431 		}
432 
433 		/*
434 		 * We need to load the old nbytes into the inode so when we
435 		 * replay the extents we've logged we get the right nbytes.
436 		 */
437 		if (inode_item) {
438 			struct btrfs_inode_item *item;
439 			u64 nbytes;
440 			u32 mode;
441 
442 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
443 					      struct btrfs_inode_item);
444 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
445 			item = btrfs_item_ptr(eb, slot,
446 					      struct btrfs_inode_item);
447 			btrfs_set_inode_nbytes(eb, item, nbytes);
448 
449 			/*
450 			 * If this is a directory we need to reset the i_size to
451 			 * 0 so that we can set it up properly when replaying
452 			 * the rest of the items in this log.
453 			 */
454 			mode = btrfs_inode_mode(eb, item);
455 			if (S_ISDIR(mode))
456 				btrfs_set_inode_size(eb, item, 0);
457 		}
458 	} else if (inode_item) {
459 		struct btrfs_inode_item *item;
460 		u32 mode;
461 
462 		/*
463 		 * New inode, set nbytes to 0 so that the nbytes comes out
464 		 * properly when we replay the extents.
465 		 */
466 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
467 		btrfs_set_inode_nbytes(eb, item, 0);
468 
469 		/*
470 		 * If this is a directory we need to reset the i_size to 0 so
471 		 * that we can set it up properly when replaying the rest of
472 		 * the items in this log.
473 		 */
474 		mode = btrfs_inode_mode(eb, item);
475 		if (S_ISDIR(mode))
476 			btrfs_set_inode_size(eb, item, 0);
477 	}
478 insert:
479 	btrfs_release_path(path);
480 	/* try to insert the key into the destination tree */
481 	path->skip_release_on_error = 1;
482 	ret = btrfs_insert_empty_item(trans, root, path,
483 				      key, item_size);
484 	path->skip_release_on_error = 0;
485 
486 	/* make sure any existing item is the correct size */
487 	if (ret == -EEXIST || ret == -EOVERFLOW) {
488 		u32 found_size;
489 		found_size = btrfs_item_size(path->nodes[0],
490 						path->slots[0]);
491 		if (found_size > item_size)
492 			btrfs_truncate_item(path, item_size, 1);
493 		else if (found_size < item_size)
494 			btrfs_extend_item(path, item_size - found_size);
495 	} else if (ret) {
496 		return ret;
497 	}
498 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
499 					path->slots[0]);
500 
501 	/* don't overwrite an existing inode if the generation number
502 	 * was logged as zero.  This is done when the tree logging code
503 	 * is just logging an inode to make sure it exists after recovery.
504 	 *
505 	 * Also, don't overwrite i_size on directories during replay.
506 	 * log replay inserts and removes directory items based on the
507 	 * state of the tree found in the subvolume, and i_size is modified
508 	 * as it goes
509 	 */
510 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
511 		struct btrfs_inode_item *src_item;
512 		struct btrfs_inode_item *dst_item;
513 
514 		src_item = (struct btrfs_inode_item *)src_ptr;
515 		dst_item = (struct btrfs_inode_item *)dst_ptr;
516 
517 		if (btrfs_inode_generation(eb, src_item) == 0) {
518 			struct extent_buffer *dst_eb = path->nodes[0];
519 			const u64 ino_size = btrfs_inode_size(eb, src_item);
520 
521 			/*
522 			 * For regular files an ino_size == 0 is used only when
523 			 * logging that an inode exists, as part of a directory
524 			 * fsync, and the inode wasn't fsynced before. In this
525 			 * case don't set the size of the inode in the fs/subvol
526 			 * tree, otherwise we would be throwing valid data away.
527 			 */
528 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
529 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
530 			    ino_size != 0)
531 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
532 			goto no_copy;
533 		}
534 
535 		if (overwrite_root &&
536 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
537 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
538 			save_old_i_size = 1;
539 			saved_i_size = btrfs_inode_size(path->nodes[0],
540 							dst_item);
541 		}
542 	}
543 
544 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
545 			   src_ptr, item_size);
546 
547 	if (save_old_i_size) {
548 		struct btrfs_inode_item *dst_item;
549 		dst_item = (struct btrfs_inode_item *)dst_ptr;
550 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
551 	}
552 
553 	/* make sure the generation is filled in */
554 	if (key->type == BTRFS_INODE_ITEM_KEY) {
555 		struct btrfs_inode_item *dst_item;
556 		dst_item = (struct btrfs_inode_item *)dst_ptr;
557 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
558 			btrfs_set_inode_generation(path->nodes[0], dst_item,
559 						   trans->transid);
560 		}
561 	}
562 no_copy:
563 	btrfs_mark_buffer_dirty(path->nodes[0]);
564 	btrfs_release_path(path);
565 	return 0;
566 }
567 
568 /*
569  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
570  * to the src data we are copying out.
571  *
572  * root is the tree we are copying into, and path is a scratch
573  * path for use in this function (it should be released on entry and
574  * will be released on exit).
575  *
576  * If the key is already in the destination tree the existing item is
577  * overwritten.  If the existing item isn't big enough, it is extended.
578  * If it is too large, it is truncated.
579  *
580  * If the key isn't in the destination yet, a new item is inserted.
581  */
582 static int overwrite_item(struct btrfs_trans_handle *trans,
583 			  struct btrfs_root *root,
584 			  struct btrfs_path *path,
585 			  struct extent_buffer *eb, int slot,
586 			  struct btrfs_key *key)
587 {
588 	int ret;
589 
590 	/* Look for the key in the destination tree. */
591 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
592 	if (ret < 0)
593 		return ret;
594 
595 	return do_overwrite_item(trans, root, path, eb, slot, key);
596 }
597 
598 /*
599  * simple helper to read an inode off the disk from a given root
600  * This can only be called for subvolume roots and not for the log
601  */
602 static noinline struct inode *read_one_inode(struct btrfs_root *root,
603 					     u64 objectid)
604 {
605 	struct inode *inode;
606 
607 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
608 	if (IS_ERR(inode))
609 		inode = NULL;
610 	return inode;
611 }
612 
613 /* replays a single extent in 'eb' at 'slot' with 'key' into the
614  * subvolume 'root'.  path is released on entry and should be released
615  * on exit.
616  *
617  * extents in the log tree have not been allocated out of the extent
618  * tree yet.  So, this completes the allocation, taking a reference
619  * as required if the extent already exists or creating a new extent
620  * if it isn't in the extent allocation tree yet.
621  *
622  * The extent is inserted into the file, dropping any existing extents
623  * from the file that overlap the new one.
624  */
625 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
626 				      struct btrfs_root *root,
627 				      struct btrfs_path *path,
628 				      struct extent_buffer *eb, int slot,
629 				      struct btrfs_key *key)
630 {
631 	struct btrfs_drop_extents_args drop_args = { 0 };
632 	struct btrfs_fs_info *fs_info = root->fs_info;
633 	int found_type;
634 	u64 extent_end;
635 	u64 start = key->offset;
636 	u64 nbytes = 0;
637 	struct btrfs_file_extent_item *item;
638 	struct inode *inode = NULL;
639 	unsigned long size;
640 	int ret = 0;
641 
642 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
643 	found_type = btrfs_file_extent_type(eb, item);
644 
645 	if (found_type == BTRFS_FILE_EXTENT_REG ||
646 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
647 		nbytes = btrfs_file_extent_num_bytes(eb, item);
648 		extent_end = start + nbytes;
649 
650 		/*
651 		 * We don't add to the inodes nbytes if we are prealloc or a
652 		 * hole.
653 		 */
654 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
655 			nbytes = 0;
656 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
657 		size = btrfs_file_extent_ram_bytes(eb, item);
658 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
659 		extent_end = ALIGN(start + size,
660 				   fs_info->sectorsize);
661 	} else {
662 		ret = 0;
663 		goto out;
664 	}
665 
666 	inode = read_one_inode(root, key->objectid);
667 	if (!inode) {
668 		ret = -EIO;
669 		goto out;
670 	}
671 
672 	/*
673 	 * first check to see if we already have this extent in the
674 	 * file.  This must be done before the btrfs_drop_extents run
675 	 * so we don't try to drop this extent.
676 	 */
677 	ret = btrfs_lookup_file_extent(trans, root, path,
678 			btrfs_ino(BTRFS_I(inode)), start, 0);
679 
680 	if (ret == 0 &&
681 	    (found_type == BTRFS_FILE_EXTENT_REG ||
682 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
683 		struct btrfs_file_extent_item cmp1;
684 		struct btrfs_file_extent_item cmp2;
685 		struct btrfs_file_extent_item *existing;
686 		struct extent_buffer *leaf;
687 
688 		leaf = path->nodes[0];
689 		existing = btrfs_item_ptr(leaf, path->slots[0],
690 					  struct btrfs_file_extent_item);
691 
692 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
693 				   sizeof(cmp1));
694 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
695 				   sizeof(cmp2));
696 
697 		/*
698 		 * we already have a pointer to this exact extent,
699 		 * we don't have to do anything
700 		 */
701 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
702 			btrfs_release_path(path);
703 			goto out;
704 		}
705 	}
706 	btrfs_release_path(path);
707 
708 	/* drop any overlapping extents */
709 	drop_args.start = start;
710 	drop_args.end = extent_end;
711 	drop_args.drop_cache = true;
712 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
713 	if (ret)
714 		goto out;
715 
716 	if (found_type == BTRFS_FILE_EXTENT_REG ||
717 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
718 		u64 offset;
719 		unsigned long dest_offset;
720 		struct btrfs_key ins;
721 
722 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
723 		    btrfs_fs_incompat(fs_info, NO_HOLES))
724 			goto update_inode;
725 
726 		ret = btrfs_insert_empty_item(trans, root, path, key,
727 					      sizeof(*item));
728 		if (ret)
729 			goto out;
730 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
731 						    path->slots[0]);
732 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
733 				(unsigned long)item,  sizeof(*item));
734 
735 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
736 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
737 		ins.type = BTRFS_EXTENT_ITEM_KEY;
738 		offset = key->offset - btrfs_file_extent_offset(eb, item);
739 
740 		/*
741 		 * Manually record dirty extent, as here we did a shallow
742 		 * file extent item copy and skip normal backref update,
743 		 * but modifying extent tree all by ourselves.
744 		 * So need to manually record dirty extent for qgroup,
745 		 * as the owner of the file extent changed from log tree
746 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
747 		 */
748 		ret = btrfs_qgroup_trace_extent(trans,
749 				btrfs_file_extent_disk_bytenr(eb, item),
750 				btrfs_file_extent_disk_num_bytes(eb, item),
751 				GFP_NOFS);
752 		if (ret < 0)
753 			goto out;
754 
755 		if (ins.objectid > 0) {
756 			struct btrfs_ref ref = { 0 };
757 			u64 csum_start;
758 			u64 csum_end;
759 			LIST_HEAD(ordered_sums);
760 
761 			/*
762 			 * is this extent already allocated in the extent
763 			 * allocation tree?  If so, just add a reference
764 			 */
765 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
766 						ins.offset);
767 			if (ret < 0) {
768 				goto out;
769 			} else if (ret == 0) {
770 				btrfs_init_generic_ref(&ref,
771 						BTRFS_ADD_DELAYED_REF,
772 						ins.objectid, ins.offset, 0);
773 				btrfs_init_data_ref(&ref,
774 						root->root_key.objectid,
775 						key->objectid, offset, 0, false);
776 				ret = btrfs_inc_extent_ref(trans, &ref);
777 				if (ret)
778 					goto out;
779 			} else {
780 				/*
781 				 * insert the extent pointer in the extent
782 				 * allocation tree
783 				 */
784 				ret = btrfs_alloc_logged_file_extent(trans,
785 						root->root_key.objectid,
786 						key->objectid, offset, &ins);
787 				if (ret)
788 					goto out;
789 			}
790 			btrfs_release_path(path);
791 
792 			if (btrfs_file_extent_compression(eb, item)) {
793 				csum_start = ins.objectid;
794 				csum_end = csum_start + ins.offset;
795 			} else {
796 				csum_start = ins.objectid +
797 					btrfs_file_extent_offset(eb, item);
798 				csum_end = csum_start +
799 					btrfs_file_extent_num_bytes(eb, item);
800 			}
801 
802 			ret = btrfs_lookup_csums_range(root->log_root,
803 						csum_start, csum_end - 1,
804 						&ordered_sums, 0, false);
805 			if (ret)
806 				goto out;
807 			/*
808 			 * Now delete all existing cums in the csum root that
809 			 * cover our range. We do this because we can have an
810 			 * extent that is completely referenced by one file
811 			 * extent item and partially referenced by another
812 			 * file extent item (like after using the clone or
813 			 * extent_same ioctls). In this case if we end up doing
814 			 * the replay of the one that partially references the
815 			 * extent first, and we do not do the csum deletion
816 			 * below, we can get 2 csum items in the csum tree that
817 			 * overlap each other. For example, imagine our log has
818 			 * the two following file extent items:
819 			 *
820 			 * key (257 EXTENT_DATA 409600)
821 			 *     extent data disk byte 12845056 nr 102400
822 			 *     extent data offset 20480 nr 20480 ram 102400
823 			 *
824 			 * key (257 EXTENT_DATA 819200)
825 			 *     extent data disk byte 12845056 nr 102400
826 			 *     extent data offset 0 nr 102400 ram 102400
827 			 *
828 			 * Where the second one fully references the 100K extent
829 			 * that starts at disk byte 12845056, and the log tree
830 			 * has a single csum item that covers the entire range
831 			 * of the extent:
832 			 *
833 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 			 *
835 			 * After the first file extent item is replayed, the
836 			 * csum tree gets the following csum item:
837 			 *
838 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
839 			 *
840 			 * Which covers the 20K sub-range starting at offset 20K
841 			 * of our extent. Now when we replay the second file
842 			 * extent item, if we do not delete existing csum items
843 			 * that cover any of its blocks, we end up getting two
844 			 * csum items in our csum tree that overlap each other:
845 			 *
846 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
847 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
848 			 *
849 			 * Which is a problem, because after this anyone trying
850 			 * to lookup up for the checksum of any block of our
851 			 * extent starting at an offset of 40K or higher, will
852 			 * end up looking at the second csum item only, which
853 			 * does not contain the checksum for any block starting
854 			 * at offset 40K or higher of our extent.
855 			 */
856 			while (!list_empty(&ordered_sums)) {
857 				struct btrfs_ordered_sum *sums;
858 				struct btrfs_root *csum_root;
859 
860 				sums = list_entry(ordered_sums.next,
861 						struct btrfs_ordered_sum,
862 						list);
863 				csum_root = btrfs_csum_root(fs_info,
864 							    sums->bytenr);
865 				if (!ret)
866 					ret = btrfs_del_csums(trans, csum_root,
867 							      sums->bytenr,
868 							      sums->len);
869 				if (!ret)
870 					ret = btrfs_csum_file_blocks(trans,
871 								     csum_root,
872 								     sums);
873 				list_del(&sums->list);
874 				kfree(sums);
875 			}
876 			if (ret)
877 				goto out;
878 		} else {
879 			btrfs_release_path(path);
880 		}
881 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
882 		/* inline extents are easy, we just overwrite them */
883 		ret = overwrite_item(trans, root, path, eb, slot, key);
884 		if (ret)
885 			goto out;
886 	}
887 
888 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
889 						extent_end - start);
890 	if (ret)
891 		goto out;
892 
893 update_inode:
894 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
895 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
896 out:
897 	iput(inode);
898 	return ret;
899 }
900 
901 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
902 				       struct btrfs_inode *dir,
903 				       struct btrfs_inode *inode,
904 				       const char *name,
905 				       int name_len)
906 {
907 	int ret;
908 
909 	ret = btrfs_unlink_inode(trans, dir, inode, name, name_len);
910 	if (ret)
911 		return ret;
912 	/*
913 	 * Whenever we need to check if a name exists or not, we check the
914 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
915 	 * that future checks for a name during log replay see that the name
916 	 * does not exists anymore.
917 	 */
918 	return btrfs_run_delayed_items(trans);
919 }
920 
921 /*
922  * when cleaning up conflicts between the directory names in the
923  * subvolume, directory names in the log and directory names in the
924  * inode back references, we may have to unlink inodes from directories.
925  *
926  * This is a helper function to do the unlink of a specific directory
927  * item
928  */
929 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
930 				      struct btrfs_path *path,
931 				      struct btrfs_inode *dir,
932 				      struct btrfs_dir_item *di)
933 {
934 	struct btrfs_root *root = dir->root;
935 	struct inode *inode;
936 	char *name;
937 	int name_len;
938 	struct extent_buffer *leaf;
939 	struct btrfs_key location;
940 	int ret;
941 
942 	leaf = path->nodes[0];
943 
944 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
945 	name_len = btrfs_dir_name_len(leaf, di);
946 	name = kmalloc(name_len, GFP_NOFS);
947 	if (!name)
948 		return -ENOMEM;
949 
950 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
951 	btrfs_release_path(path);
952 
953 	inode = read_one_inode(root, location.objectid);
954 	if (!inode) {
955 		ret = -EIO;
956 		goto out;
957 	}
958 
959 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
960 	if (ret)
961 		goto out;
962 
963 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), name,
964 			name_len);
965 out:
966 	kfree(name);
967 	iput(inode);
968 	return ret;
969 }
970 
971 /*
972  * See if a given name and sequence number found in an inode back reference are
973  * already in a directory and correctly point to this inode.
974  *
975  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
976  * exists.
977  */
978 static noinline int inode_in_dir(struct btrfs_root *root,
979 				 struct btrfs_path *path,
980 				 u64 dirid, u64 objectid, u64 index,
981 				 const char *name, int name_len)
982 {
983 	struct btrfs_dir_item *di;
984 	struct btrfs_key location;
985 	int ret = 0;
986 
987 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
988 					 index, name, name_len, 0);
989 	if (IS_ERR(di)) {
990 		ret = PTR_ERR(di);
991 		goto out;
992 	} else if (di) {
993 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
994 		if (location.objectid != objectid)
995 			goto out;
996 	} else {
997 		goto out;
998 	}
999 
1000 	btrfs_release_path(path);
1001 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
1002 	if (IS_ERR(di)) {
1003 		ret = PTR_ERR(di);
1004 		goto out;
1005 	} else if (di) {
1006 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1007 		if (location.objectid == objectid)
1008 			ret = 1;
1009 	}
1010 out:
1011 	btrfs_release_path(path);
1012 	return ret;
1013 }
1014 
1015 /*
1016  * helper function to check a log tree for a named back reference in
1017  * an inode.  This is used to decide if a back reference that is
1018  * found in the subvolume conflicts with what we find in the log.
1019  *
1020  * inode backreferences may have multiple refs in a single item,
1021  * during replay we process one reference at a time, and we don't
1022  * want to delete valid links to a file from the subvolume if that
1023  * link is also in the log.
1024  */
1025 static noinline int backref_in_log(struct btrfs_root *log,
1026 				   struct btrfs_key *key,
1027 				   u64 ref_objectid,
1028 				   const char *name, int namelen)
1029 {
1030 	struct btrfs_path *path;
1031 	int ret;
1032 
1033 	path = btrfs_alloc_path();
1034 	if (!path)
1035 		return -ENOMEM;
1036 
1037 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1038 	if (ret < 0) {
1039 		goto out;
1040 	} else if (ret == 1) {
1041 		ret = 0;
1042 		goto out;
1043 	}
1044 
1045 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1046 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1047 						       path->slots[0],
1048 						       ref_objectid,
1049 						       name, namelen);
1050 	else
1051 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1052 						   path->slots[0],
1053 						   name, namelen);
1054 out:
1055 	btrfs_free_path(path);
1056 	return ret;
1057 }
1058 
1059 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1060 				  struct btrfs_root *root,
1061 				  struct btrfs_path *path,
1062 				  struct btrfs_root *log_root,
1063 				  struct btrfs_inode *dir,
1064 				  struct btrfs_inode *inode,
1065 				  u64 inode_objectid, u64 parent_objectid,
1066 				  u64 ref_index, char *name, int namelen)
1067 {
1068 	int ret;
1069 	char *victim_name;
1070 	int victim_name_len;
1071 	struct extent_buffer *leaf;
1072 	struct btrfs_dir_item *di;
1073 	struct btrfs_key search_key;
1074 	struct btrfs_inode_extref *extref;
1075 
1076 again:
1077 	/* Search old style refs */
1078 	search_key.objectid = inode_objectid;
1079 	search_key.type = BTRFS_INODE_REF_KEY;
1080 	search_key.offset = parent_objectid;
1081 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1082 	if (ret == 0) {
1083 		struct btrfs_inode_ref *victim_ref;
1084 		unsigned long ptr;
1085 		unsigned long ptr_end;
1086 
1087 		leaf = path->nodes[0];
1088 
1089 		/* are we trying to overwrite a back ref for the root directory
1090 		 * if so, just jump out, we're done
1091 		 */
1092 		if (search_key.objectid == search_key.offset)
1093 			return 1;
1094 
1095 		/* check all the names in this back reference to see
1096 		 * if they are in the log.  if so, we allow them to stay
1097 		 * otherwise they must be unlinked as a conflict
1098 		 */
1099 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1100 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1101 		while (ptr < ptr_end) {
1102 			victim_ref = (struct btrfs_inode_ref *)ptr;
1103 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1104 								   victim_ref);
1105 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1106 			if (!victim_name)
1107 				return -ENOMEM;
1108 
1109 			read_extent_buffer(leaf, victim_name,
1110 					   (unsigned long)(victim_ref + 1),
1111 					   victim_name_len);
1112 
1113 			ret = backref_in_log(log_root, &search_key,
1114 					     parent_objectid, victim_name,
1115 					     victim_name_len);
1116 			if (ret < 0) {
1117 				kfree(victim_name);
1118 				return ret;
1119 			} else if (!ret) {
1120 				inc_nlink(&inode->vfs_inode);
1121 				btrfs_release_path(path);
1122 
1123 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1124 						victim_name, victim_name_len);
1125 				kfree(victim_name);
1126 				if (ret)
1127 					return ret;
1128 				goto again;
1129 			}
1130 			kfree(victim_name);
1131 
1132 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1133 		}
1134 	}
1135 	btrfs_release_path(path);
1136 
1137 	/* Same search but for extended refs */
1138 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1139 					   inode_objectid, parent_objectid, 0,
1140 					   0);
1141 	if (IS_ERR(extref)) {
1142 		return PTR_ERR(extref);
1143 	} else if (extref) {
1144 		u32 item_size;
1145 		u32 cur_offset = 0;
1146 		unsigned long base;
1147 		struct inode *victim_parent;
1148 
1149 		leaf = path->nodes[0];
1150 
1151 		item_size = btrfs_item_size(leaf, path->slots[0]);
1152 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1153 
1154 		while (cur_offset < item_size) {
1155 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1156 
1157 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1158 
1159 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1160 				goto next;
1161 
1162 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1163 			if (!victim_name)
1164 				return -ENOMEM;
1165 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1166 					   victim_name_len);
1167 
1168 			search_key.objectid = inode_objectid;
1169 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1170 			search_key.offset = btrfs_extref_hash(parent_objectid,
1171 							      victim_name,
1172 							      victim_name_len);
1173 			ret = backref_in_log(log_root, &search_key,
1174 					     parent_objectid, victim_name,
1175 					     victim_name_len);
1176 			if (ret < 0) {
1177 				kfree(victim_name);
1178 				return ret;
1179 			} else if (!ret) {
1180 				ret = -ENOENT;
1181 				victim_parent = read_one_inode(root,
1182 						parent_objectid);
1183 				if (victim_parent) {
1184 					inc_nlink(&inode->vfs_inode);
1185 					btrfs_release_path(path);
1186 
1187 					ret = unlink_inode_for_log_replay(trans,
1188 							BTRFS_I(victim_parent),
1189 							inode,
1190 							victim_name,
1191 							victim_name_len);
1192 				}
1193 				iput(victim_parent);
1194 				kfree(victim_name);
1195 				if (ret)
1196 					return ret;
1197 				goto again;
1198 			}
1199 			kfree(victim_name);
1200 next:
1201 			cur_offset += victim_name_len + sizeof(*extref);
1202 		}
1203 	}
1204 	btrfs_release_path(path);
1205 
1206 	/* look for a conflicting sequence number */
1207 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1208 					 ref_index, name, namelen, 0);
1209 	if (IS_ERR(di)) {
1210 		return PTR_ERR(di);
1211 	} else if (di) {
1212 		ret = drop_one_dir_item(trans, path, dir, di);
1213 		if (ret)
1214 			return ret;
1215 	}
1216 	btrfs_release_path(path);
1217 
1218 	/* look for a conflicting name */
1219 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1220 				   name, namelen, 0);
1221 	if (IS_ERR(di)) {
1222 		return PTR_ERR(di);
1223 	} else if (di) {
1224 		ret = drop_one_dir_item(trans, path, dir, di);
1225 		if (ret)
1226 			return ret;
1227 	}
1228 	btrfs_release_path(path);
1229 
1230 	return 0;
1231 }
1232 
1233 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1234 			     u32 *namelen, char **name, u64 *index,
1235 			     u64 *parent_objectid)
1236 {
1237 	struct btrfs_inode_extref *extref;
1238 
1239 	extref = (struct btrfs_inode_extref *)ref_ptr;
1240 
1241 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1242 	*name = kmalloc(*namelen, GFP_NOFS);
1243 	if (*name == NULL)
1244 		return -ENOMEM;
1245 
1246 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1247 			   *namelen);
1248 
1249 	if (index)
1250 		*index = btrfs_inode_extref_index(eb, extref);
1251 	if (parent_objectid)
1252 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1253 
1254 	return 0;
1255 }
1256 
1257 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1258 			  u32 *namelen, char **name, u64 *index)
1259 {
1260 	struct btrfs_inode_ref *ref;
1261 
1262 	ref = (struct btrfs_inode_ref *)ref_ptr;
1263 
1264 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1265 	*name = kmalloc(*namelen, GFP_NOFS);
1266 	if (*name == NULL)
1267 		return -ENOMEM;
1268 
1269 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1270 
1271 	if (index)
1272 		*index = btrfs_inode_ref_index(eb, ref);
1273 
1274 	return 0;
1275 }
1276 
1277 /*
1278  * Take an inode reference item from the log tree and iterate all names from the
1279  * inode reference item in the subvolume tree with the same key (if it exists).
1280  * For any name that is not in the inode reference item from the log tree, do a
1281  * proper unlink of that name (that is, remove its entry from the inode
1282  * reference item and both dir index keys).
1283  */
1284 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1285 				 struct btrfs_root *root,
1286 				 struct btrfs_path *path,
1287 				 struct btrfs_inode *inode,
1288 				 struct extent_buffer *log_eb,
1289 				 int log_slot,
1290 				 struct btrfs_key *key)
1291 {
1292 	int ret;
1293 	unsigned long ref_ptr;
1294 	unsigned long ref_end;
1295 	struct extent_buffer *eb;
1296 
1297 again:
1298 	btrfs_release_path(path);
1299 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1300 	if (ret > 0) {
1301 		ret = 0;
1302 		goto out;
1303 	}
1304 	if (ret < 0)
1305 		goto out;
1306 
1307 	eb = path->nodes[0];
1308 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1309 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1310 	while (ref_ptr < ref_end) {
1311 		char *name = NULL;
1312 		int namelen;
1313 		u64 parent_id;
1314 
1315 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1316 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1317 						NULL, &parent_id);
1318 		} else {
1319 			parent_id = key->offset;
1320 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1321 					     NULL);
1322 		}
1323 		if (ret)
1324 			goto out;
1325 
1326 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1327 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1328 							       parent_id, name,
1329 							       namelen);
1330 		else
1331 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1332 							   name, namelen);
1333 
1334 		if (!ret) {
1335 			struct inode *dir;
1336 
1337 			btrfs_release_path(path);
1338 			dir = read_one_inode(root, parent_id);
1339 			if (!dir) {
1340 				ret = -ENOENT;
1341 				kfree(name);
1342 				goto out;
1343 			}
1344 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1345 						 inode, name, namelen);
1346 			kfree(name);
1347 			iput(dir);
1348 			if (ret)
1349 				goto out;
1350 			goto again;
1351 		}
1352 
1353 		kfree(name);
1354 		ref_ptr += namelen;
1355 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1356 			ref_ptr += sizeof(struct btrfs_inode_extref);
1357 		else
1358 			ref_ptr += sizeof(struct btrfs_inode_ref);
1359 	}
1360 	ret = 0;
1361  out:
1362 	btrfs_release_path(path);
1363 	return ret;
1364 }
1365 
1366 /*
1367  * replay one inode back reference item found in the log tree.
1368  * eb, slot and key refer to the buffer and key found in the log tree.
1369  * root is the destination we are replaying into, and path is for temp
1370  * use by this function.  (it should be released on return).
1371  */
1372 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1373 				  struct btrfs_root *root,
1374 				  struct btrfs_root *log,
1375 				  struct btrfs_path *path,
1376 				  struct extent_buffer *eb, int slot,
1377 				  struct btrfs_key *key)
1378 {
1379 	struct inode *dir = NULL;
1380 	struct inode *inode = NULL;
1381 	unsigned long ref_ptr;
1382 	unsigned long ref_end;
1383 	char *name = NULL;
1384 	int namelen;
1385 	int ret;
1386 	int log_ref_ver = 0;
1387 	u64 parent_objectid;
1388 	u64 inode_objectid;
1389 	u64 ref_index = 0;
1390 	int ref_struct_size;
1391 
1392 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1393 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1394 
1395 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1396 		struct btrfs_inode_extref *r;
1397 
1398 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1399 		log_ref_ver = 1;
1400 		r = (struct btrfs_inode_extref *)ref_ptr;
1401 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1402 	} else {
1403 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1404 		parent_objectid = key->offset;
1405 	}
1406 	inode_objectid = key->objectid;
1407 
1408 	/*
1409 	 * it is possible that we didn't log all the parent directories
1410 	 * for a given inode.  If we don't find the dir, just don't
1411 	 * copy the back ref in.  The link count fixup code will take
1412 	 * care of the rest
1413 	 */
1414 	dir = read_one_inode(root, parent_objectid);
1415 	if (!dir) {
1416 		ret = -ENOENT;
1417 		goto out;
1418 	}
1419 
1420 	inode = read_one_inode(root, inode_objectid);
1421 	if (!inode) {
1422 		ret = -EIO;
1423 		goto out;
1424 	}
1425 
1426 	while (ref_ptr < ref_end) {
1427 		if (log_ref_ver) {
1428 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1429 						&ref_index, &parent_objectid);
1430 			/*
1431 			 * parent object can change from one array
1432 			 * item to another.
1433 			 */
1434 			if (!dir)
1435 				dir = read_one_inode(root, parent_objectid);
1436 			if (!dir) {
1437 				ret = -ENOENT;
1438 				goto out;
1439 			}
1440 		} else {
1441 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1442 					     &ref_index);
1443 		}
1444 		if (ret)
1445 			goto out;
1446 
1447 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1448 				   btrfs_ino(BTRFS_I(inode)), ref_index,
1449 				   name, namelen);
1450 		if (ret < 0) {
1451 			goto out;
1452 		} else if (ret == 0) {
1453 			/*
1454 			 * look for a conflicting back reference in the
1455 			 * metadata. if we find one we have to unlink that name
1456 			 * of the file before we add our new link.  Later on, we
1457 			 * overwrite any existing back reference, and we don't
1458 			 * want to create dangling pointers in the directory.
1459 			 */
1460 			ret = __add_inode_ref(trans, root, path, log,
1461 					      BTRFS_I(dir), BTRFS_I(inode),
1462 					      inode_objectid, parent_objectid,
1463 					      ref_index, name, namelen);
1464 			if (ret) {
1465 				if (ret == 1)
1466 					ret = 0;
1467 				goto out;
1468 			}
1469 
1470 			/* insert our name */
1471 			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1472 					     name, namelen, 0, ref_index);
1473 			if (ret)
1474 				goto out;
1475 
1476 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1477 			if (ret)
1478 				goto out;
1479 		}
1480 		/* Else, ret == 1, we already have a perfect match, we're done. */
1481 
1482 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1483 		kfree(name);
1484 		name = NULL;
1485 		if (log_ref_ver) {
1486 			iput(dir);
1487 			dir = NULL;
1488 		}
1489 	}
1490 
1491 	/*
1492 	 * Before we overwrite the inode reference item in the subvolume tree
1493 	 * with the item from the log tree, we must unlink all names from the
1494 	 * parent directory that are in the subvolume's tree inode reference
1495 	 * item, otherwise we end up with an inconsistent subvolume tree where
1496 	 * dir index entries exist for a name but there is no inode reference
1497 	 * item with the same name.
1498 	 */
1499 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1500 				    key);
1501 	if (ret)
1502 		goto out;
1503 
1504 	/* finally write the back reference in the inode */
1505 	ret = overwrite_item(trans, root, path, eb, slot, key);
1506 out:
1507 	btrfs_release_path(path);
1508 	kfree(name);
1509 	iput(dir);
1510 	iput(inode);
1511 	return ret;
1512 }
1513 
1514 static int count_inode_extrefs(struct btrfs_root *root,
1515 		struct btrfs_inode *inode, struct btrfs_path *path)
1516 {
1517 	int ret = 0;
1518 	int name_len;
1519 	unsigned int nlink = 0;
1520 	u32 item_size;
1521 	u32 cur_offset = 0;
1522 	u64 inode_objectid = btrfs_ino(inode);
1523 	u64 offset = 0;
1524 	unsigned long ptr;
1525 	struct btrfs_inode_extref *extref;
1526 	struct extent_buffer *leaf;
1527 
1528 	while (1) {
1529 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1530 					    &extref, &offset);
1531 		if (ret)
1532 			break;
1533 
1534 		leaf = path->nodes[0];
1535 		item_size = btrfs_item_size(leaf, path->slots[0]);
1536 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1537 		cur_offset = 0;
1538 
1539 		while (cur_offset < item_size) {
1540 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1541 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1542 
1543 			nlink++;
1544 
1545 			cur_offset += name_len + sizeof(*extref);
1546 		}
1547 
1548 		offset++;
1549 		btrfs_release_path(path);
1550 	}
1551 	btrfs_release_path(path);
1552 
1553 	if (ret < 0 && ret != -ENOENT)
1554 		return ret;
1555 	return nlink;
1556 }
1557 
1558 static int count_inode_refs(struct btrfs_root *root,
1559 			struct btrfs_inode *inode, struct btrfs_path *path)
1560 {
1561 	int ret;
1562 	struct btrfs_key key;
1563 	unsigned int nlink = 0;
1564 	unsigned long ptr;
1565 	unsigned long ptr_end;
1566 	int name_len;
1567 	u64 ino = btrfs_ino(inode);
1568 
1569 	key.objectid = ino;
1570 	key.type = BTRFS_INODE_REF_KEY;
1571 	key.offset = (u64)-1;
1572 
1573 	while (1) {
1574 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1575 		if (ret < 0)
1576 			break;
1577 		if (ret > 0) {
1578 			if (path->slots[0] == 0)
1579 				break;
1580 			path->slots[0]--;
1581 		}
1582 process_slot:
1583 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1584 				      path->slots[0]);
1585 		if (key.objectid != ino ||
1586 		    key.type != BTRFS_INODE_REF_KEY)
1587 			break;
1588 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1589 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1590 						   path->slots[0]);
1591 		while (ptr < ptr_end) {
1592 			struct btrfs_inode_ref *ref;
1593 
1594 			ref = (struct btrfs_inode_ref *)ptr;
1595 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1596 							    ref);
1597 			ptr = (unsigned long)(ref + 1) + name_len;
1598 			nlink++;
1599 		}
1600 
1601 		if (key.offset == 0)
1602 			break;
1603 		if (path->slots[0] > 0) {
1604 			path->slots[0]--;
1605 			goto process_slot;
1606 		}
1607 		key.offset--;
1608 		btrfs_release_path(path);
1609 	}
1610 	btrfs_release_path(path);
1611 
1612 	return nlink;
1613 }
1614 
1615 /*
1616  * There are a few corners where the link count of the file can't
1617  * be properly maintained during replay.  So, instead of adding
1618  * lots of complexity to the log code, we just scan the backrefs
1619  * for any file that has been through replay.
1620  *
1621  * The scan will update the link count on the inode to reflect the
1622  * number of back refs found.  If it goes down to zero, the iput
1623  * will free the inode.
1624  */
1625 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1626 					   struct btrfs_root *root,
1627 					   struct inode *inode)
1628 {
1629 	struct btrfs_path *path;
1630 	int ret;
1631 	u64 nlink = 0;
1632 	u64 ino = btrfs_ino(BTRFS_I(inode));
1633 
1634 	path = btrfs_alloc_path();
1635 	if (!path)
1636 		return -ENOMEM;
1637 
1638 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1639 	if (ret < 0)
1640 		goto out;
1641 
1642 	nlink = ret;
1643 
1644 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1645 	if (ret < 0)
1646 		goto out;
1647 
1648 	nlink += ret;
1649 
1650 	ret = 0;
1651 
1652 	if (nlink != inode->i_nlink) {
1653 		set_nlink(inode, nlink);
1654 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1655 		if (ret)
1656 			goto out;
1657 	}
1658 	BTRFS_I(inode)->index_cnt = (u64)-1;
1659 
1660 	if (inode->i_nlink == 0) {
1661 		if (S_ISDIR(inode->i_mode)) {
1662 			ret = replay_dir_deletes(trans, root, NULL, path,
1663 						 ino, 1);
1664 			if (ret)
1665 				goto out;
1666 		}
1667 		ret = btrfs_insert_orphan_item(trans, root, ino);
1668 		if (ret == -EEXIST)
1669 			ret = 0;
1670 	}
1671 
1672 out:
1673 	btrfs_free_path(path);
1674 	return ret;
1675 }
1676 
1677 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1678 					    struct btrfs_root *root,
1679 					    struct btrfs_path *path)
1680 {
1681 	int ret;
1682 	struct btrfs_key key;
1683 	struct inode *inode;
1684 
1685 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1686 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1687 	key.offset = (u64)-1;
1688 	while (1) {
1689 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1690 		if (ret < 0)
1691 			break;
1692 
1693 		if (ret == 1) {
1694 			ret = 0;
1695 			if (path->slots[0] == 0)
1696 				break;
1697 			path->slots[0]--;
1698 		}
1699 
1700 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1701 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1702 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1703 			break;
1704 
1705 		ret = btrfs_del_item(trans, root, path);
1706 		if (ret)
1707 			break;
1708 
1709 		btrfs_release_path(path);
1710 		inode = read_one_inode(root, key.offset);
1711 		if (!inode) {
1712 			ret = -EIO;
1713 			break;
1714 		}
1715 
1716 		ret = fixup_inode_link_count(trans, root, inode);
1717 		iput(inode);
1718 		if (ret)
1719 			break;
1720 
1721 		/*
1722 		 * fixup on a directory may create new entries,
1723 		 * make sure we always look for the highset possible
1724 		 * offset
1725 		 */
1726 		key.offset = (u64)-1;
1727 	}
1728 	btrfs_release_path(path);
1729 	return ret;
1730 }
1731 
1732 
1733 /*
1734  * record a given inode in the fixup dir so we can check its link
1735  * count when replay is done.  The link count is incremented here
1736  * so the inode won't go away until we check it
1737  */
1738 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1739 				      struct btrfs_root *root,
1740 				      struct btrfs_path *path,
1741 				      u64 objectid)
1742 {
1743 	struct btrfs_key key;
1744 	int ret = 0;
1745 	struct inode *inode;
1746 
1747 	inode = read_one_inode(root, objectid);
1748 	if (!inode)
1749 		return -EIO;
1750 
1751 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1752 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1753 	key.offset = objectid;
1754 
1755 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1756 
1757 	btrfs_release_path(path);
1758 	if (ret == 0) {
1759 		if (!inode->i_nlink)
1760 			set_nlink(inode, 1);
1761 		else
1762 			inc_nlink(inode);
1763 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1764 	} else if (ret == -EEXIST) {
1765 		ret = 0;
1766 	}
1767 	iput(inode);
1768 
1769 	return ret;
1770 }
1771 
1772 /*
1773  * when replaying the log for a directory, we only insert names
1774  * for inodes that actually exist.  This means an fsync on a directory
1775  * does not implicitly fsync all the new files in it
1776  */
1777 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1778 				    struct btrfs_root *root,
1779 				    u64 dirid, u64 index,
1780 				    char *name, int name_len,
1781 				    struct btrfs_key *location)
1782 {
1783 	struct inode *inode;
1784 	struct inode *dir;
1785 	int ret;
1786 
1787 	inode = read_one_inode(root, location->objectid);
1788 	if (!inode)
1789 		return -ENOENT;
1790 
1791 	dir = read_one_inode(root, dirid);
1792 	if (!dir) {
1793 		iput(inode);
1794 		return -EIO;
1795 	}
1796 
1797 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1798 			name_len, 1, index);
1799 
1800 	/* FIXME, put inode into FIXUP list */
1801 
1802 	iput(inode);
1803 	iput(dir);
1804 	return ret;
1805 }
1806 
1807 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1808 					struct btrfs_inode *dir,
1809 					struct btrfs_path *path,
1810 					struct btrfs_dir_item *dst_di,
1811 					const struct btrfs_key *log_key,
1812 					u8 log_type,
1813 					bool exists)
1814 {
1815 	struct btrfs_key found_key;
1816 
1817 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1818 	/* The existing dentry points to the same inode, don't delete it. */
1819 	if (found_key.objectid == log_key->objectid &&
1820 	    found_key.type == log_key->type &&
1821 	    found_key.offset == log_key->offset &&
1822 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type)
1823 		return 1;
1824 
1825 	/*
1826 	 * Don't drop the conflicting directory entry if the inode for the new
1827 	 * entry doesn't exist.
1828 	 */
1829 	if (!exists)
1830 		return 0;
1831 
1832 	return drop_one_dir_item(trans, path, dir, dst_di);
1833 }
1834 
1835 /*
1836  * take a single entry in a log directory item and replay it into
1837  * the subvolume.
1838  *
1839  * if a conflicting item exists in the subdirectory already,
1840  * the inode it points to is unlinked and put into the link count
1841  * fix up tree.
1842  *
1843  * If a name from the log points to a file or directory that does
1844  * not exist in the FS, it is skipped.  fsyncs on directories
1845  * do not force down inodes inside that directory, just changes to the
1846  * names or unlinks in a directory.
1847  *
1848  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1849  * non-existing inode) and 1 if the name was replayed.
1850  */
1851 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1852 				    struct btrfs_root *root,
1853 				    struct btrfs_path *path,
1854 				    struct extent_buffer *eb,
1855 				    struct btrfs_dir_item *di,
1856 				    struct btrfs_key *key)
1857 {
1858 	char *name;
1859 	int name_len;
1860 	struct btrfs_dir_item *dir_dst_di;
1861 	struct btrfs_dir_item *index_dst_di;
1862 	bool dir_dst_matches = false;
1863 	bool index_dst_matches = false;
1864 	struct btrfs_key log_key;
1865 	struct btrfs_key search_key;
1866 	struct inode *dir;
1867 	u8 log_type;
1868 	bool exists;
1869 	int ret;
1870 	bool update_size = true;
1871 	bool name_added = false;
1872 
1873 	dir = read_one_inode(root, key->objectid);
1874 	if (!dir)
1875 		return -EIO;
1876 
1877 	name_len = btrfs_dir_name_len(eb, di);
1878 	name = kmalloc(name_len, GFP_NOFS);
1879 	if (!name) {
1880 		ret = -ENOMEM;
1881 		goto out;
1882 	}
1883 
1884 	log_type = btrfs_dir_type(eb, di);
1885 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1886 		   name_len);
1887 
1888 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1889 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1890 	btrfs_release_path(path);
1891 	if (ret < 0)
1892 		goto out;
1893 	exists = (ret == 0);
1894 	ret = 0;
1895 
1896 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1897 					   name, name_len, 1);
1898 	if (IS_ERR(dir_dst_di)) {
1899 		ret = PTR_ERR(dir_dst_di);
1900 		goto out;
1901 	} else if (dir_dst_di) {
1902 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1903 						   dir_dst_di, &log_key, log_type,
1904 						   exists);
1905 		if (ret < 0)
1906 			goto out;
1907 		dir_dst_matches = (ret == 1);
1908 	}
1909 
1910 	btrfs_release_path(path);
1911 
1912 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1913 						   key->objectid, key->offset,
1914 						   name, name_len, 1);
1915 	if (IS_ERR(index_dst_di)) {
1916 		ret = PTR_ERR(index_dst_di);
1917 		goto out;
1918 	} else if (index_dst_di) {
1919 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1920 						   index_dst_di, &log_key,
1921 						   log_type, exists);
1922 		if (ret < 0)
1923 			goto out;
1924 		index_dst_matches = (ret == 1);
1925 	}
1926 
1927 	btrfs_release_path(path);
1928 
1929 	if (dir_dst_matches && index_dst_matches) {
1930 		ret = 0;
1931 		update_size = false;
1932 		goto out;
1933 	}
1934 
1935 	/*
1936 	 * Check if the inode reference exists in the log for the given name,
1937 	 * inode and parent inode
1938 	 */
1939 	search_key.objectid = log_key.objectid;
1940 	search_key.type = BTRFS_INODE_REF_KEY;
1941 	search_key.offset = key->objectid;
1942 	ret = backref_in_log(root->log_root, &search_key, 0, name, name_len);
1943 	if (ret < 0) {
1944 	        goto out;
1945 	} else if (ret) {
1946 	        /* The dentry will be added later. */
1947 	        ret = 0;
1948 	        update_size = false;
1949 	        goto out;
1950 	}
1951 
1952 	search_key.objectid = log_key.objectid;
1953 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1954 	search_key.offset = key->objectid;
1955 	ret = backref_in_log(root->log_root, &search_key, key->objectid, name,
1956 			     name_len);
1957 	if (ret < 0) {
1958 		goto out;
1959 	} else if (ret) {
1960 		/* The dentry will be added later. */
1961 		ret = 0;
1962 		update_size = false;
1963 		goto out;
1964 	}
1965 	btrfs_release_path(path);
1966 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1967 			      name, name_len, &log_key);
1968 	if (ret && ret != -ENOENT && ret != -EEXIST)
1969 		goto out;
1970 	if (!ret)
1971 		name_added = true;
1972 	update_size = false;
1973 	ret = 0;
1974 
1975 out:
1976 	if (!ret && update_size) {
1977 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1978 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1979 	}
1980 	kfree(name);
1981 	iput(dir);
1982 	if (!ret && name_added)
1983 		ret = 1;
1984 	return ret;
1985 }
1986 
1987 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1988 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1989 					struct btrfs_root *root,
1990 					struct btrfs_path *path,
1991 					struct extent_buffer *eb, int slot,
1992 					struct btrfs_key *key)
1993 {
1994 	int ret;
1995 	struct btrfs_dir_item *di;
1996 
1997 	/* We only log dir index keys, which only contain a single dir item. */
1998 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1999 
2000 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2001 	ret = replay_one_name(trans, root, path, eb, di, key);
2002 	if (ret < 0)
2003 		return ret;
2004 
2005 	/*
2006 	 * If this entry refers to a non-directory (directories can not have a
2007 	 * link count > 1) and it was added in the transaction that was not
2008 	 * committed, make sure we fixup the link count of the inode the entry
2009 	 * points to. Otherwise something like the following would result in a
2010 	 * directory pointing to an inode with a wrong link that does not account
2011 	 * for this dir entry:
2012 	 *
2013 	 * mkdir testdir
2014 	 * touch testdir/foo
2015 	 * touch testdir/bar
2016 	 * sync
2017 	 *
2018 	 * ln testdir/bar testdir/bar_link
2019 	 * ln testdir/foo testdir/foo_link
2020 	 * xfs_io -c "fsync" testdir/bar
2021 	 *
2022 	 * <power failure>
2023 	 *
2024 	 * mount fs, log replay happens
2025 	 *
2026 	 * File foo would remain with a link count of 1 when it has two entries
2027 	 * pointing to it in the directory testdir. This would make it impossible
2028 	 * to ever delete the parent directory has it would result in stale
2029 	 * dentries that can never be deleted.
2030 	 */
2031 	if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2032 		struct btrfs_path *fixup_path;
2033 		struct btrfs_key di_key;
2034 
2035 		fixup_path = btrfs_alloc_path();
2036 		if (!fixup_path)
2037 			return -ENOMEM;
2038 
2039 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2040 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2041 		btrfs_free_path(fixup_path);
2042 	}
2043 
2044 	return ret;
2045 }
2046 
2047 /*
2048  * directory replay has two parts.  There are the standard directory
2049  * items in the log copied from the subvolume, and range items
2050  * created in the log while the subvolume was logged.
2051  *
2052  * The range items tell us which parts of the key space the log
2053  * is authoritative for.  During replay, if a key in the subvolume
2054  * directory is in a logged range item, but not actually in the log
2055  * that means it was deleted from the directory before the fsync
2056  * and should be removed.
2057  */
2058 static noinline int find_dir_range(struct btrfs_root *root,
2059 				   struct btrfs_path *path,
2060 				   u64 dirid,
2061 				   u64 *start_ret, u64 *end_ret)
2062 {
2063 	struct btrfs_key key;
2064 	u64 found_end;
2065 	struct btrfs_dir_log_item *item;
2066 	int ret;
2067 	int nritems;
2068 
2069 	if (*start_ret == (u64)-1)
2070 		return 1;
2071 
2072 	key.objectid = dirid;
2073 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2074 	key.offset = *start_ret;
2075 
2076 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2077 	if (ret < 0)
2078 		goto out;
2079 	if (ret > 0) {
2080 		if (path->slots[0] == 0)
2081 			goto out;
2082 		path->slots[0]--;
2083 	}
2084 	if (ret != 0)
2085 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2086 
2087 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2088 		ret = 1;
2089 		goto next;
2090 	}
2091 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2092 			      struct btrfs_dir_log_item);
2093 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2094 
2095 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2096 		ret = 0;
2097 		*start_ret = key.offset;
2098 		*end_ret = found_end;
2099 		goto out;
2100 	}
2101 	ret = 1;
2102 next:
2103 	/* check the next slot in the tree to see if it is a valid item */
2104 	nritems = btrfs_header_nritems(path->nodes[0]);
2105 	path->slots[0]++;
2106 	if (path->slots[0] >= nritems) {
2107 		ret = btrfs_next_leaf(root, path);
2108 		if (ret)
2109 			goto out;
2110 	}
2111 
2112 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2113 
2114 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2115 		ret = 1;
2116 		goto out;
2117 	}
2118 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2119 			      struct btrfs_dir_log_item);
2120 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2121 	*start_ret = key.offset;
2122 	*end_ret = found_end;
2123 	ret = 0;
2124 out:
2125 	btrfs_release_path(path);
2126 	return ret;
2127 }
2128 
2129 /*
2130  * this looks for a given directory item in the log.  If the directory
2131  * item is not in the log, the item is removed and the inode it points
2132  * to is unlinked
2133  */
2134 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2135 				      struct btrfs_root *log,
2136 				      struct btrfs_path *path,
2137 				      struct btrfs_path *log_path,
2138 				      struct inode *dir,
2139 				      struct btrfs_key *dir_key)
2140 {
2141 	struct btrfs_root *root = BTRFS_I(dir)->root;
2142 	int ret;
2143 	struct extent_buffer *eb;
2144 	int slot;
2145 	struct btrfs_dir_item *di;
2146 	int name_len;
2147 	char *name;
2148 	struct inode *inode = NULL;
2149 	struct btrfs_key location;
2150 
2151 	/*
2152 	 * Currently we only log dir index keys. Even if we replay a log created
2153 	 * by an older kernel that logged both dir index and dir item keys, all
2154 	 * we need to do is process the dir index keys, we (and our caller) can
2155 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2156 	 */
2157 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2158 
2159 	eb = path->nodes[0];
2160 	slot = path->slots[0];
2161 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2162 	name_len = btrfs_dir_name_len(eb, di);
2163 	name = kmalloc(name_len, GFP_NOFS);
2164 	if (!name) {
2165 		ret = -ENOMEM;
2166 		goto out;
2167 	}
2168 
2169 	read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len);
2170 
2171 	if (log) {
2172 		struct btrfs_dir_item *log_di;
2173 
2174 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2175 						     dir_key->objectid,
2176 						     dir_key->offset,
2177 						     name, name_len, 0);
2178 		if (IS_ERR(log_di)) {
2179 			ret = PTR_ERR(log_di);
2180 			goto out;
2181 		} else if (log_di) {
2182 			/* The dentry exists in the log, we have nothing to do. */
2183 			ret = 0;
2184 			goto out;
2185 		}
2186 	}
2187 
2188 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2189 	btrfs_release_path(path);
2190 	btrfs_release_path(log_path);
2191 	inode = read_one_inode(root, location.objectid);
2192 	if (!inode) {
2193 		ret = -EIO;
2194 		goto out;
2195 	}
2196 
2197 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2198 	if (ret)
2199 		goto out;
2200 
2201 	inc_nlink(inode);
2202 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2203 					  name, name_len);
2204 	/*
2205 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2206 	 * them, as there are no key collisions since each key has a unique offset
2207 	 * (an index number), so we're done.
2208 	 */
2209 out:
2210 	btrfs_release_path(path);
2211 	btrfs_release_path(log_path);
2212 	kfree(name);
2213 	iput(inode);
2214 	return ret;
2215 }
2216 
2217 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2218 			      struct btrfs_root *root,
2219 			      struct btrfs_root *log,
2220 			      struct btrfs_path *path,
2221 			      const u64 ino)
2222 {
2223 	struct btrfs_key search_key;
2224 	struct btrfs_path *log_path;
2225 	int i;
2226 	int nritems;
2227 	int ret;
2228 
2229 	log_path = btrfs_alloc_path();
2230 	if (!log_path)
2231 		return -ENOMEM;
2232 
2233 	search_key.objectid = ino;
2234 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2235 	search_key.offset = 0;
2236 again:
2237 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2238 	if (ret < 0)
2239 		goto out;
2240 process_leaf:
2241 	nritems = btrfs_header_nritems(path->nodes[0]);
2242 	for (i = path->slots[0]; i < nritems; i++) {
2243 		struct btrfs_key key;
2244 		struct btrfs_dir_item *di;
2245 		struct btrfs_dir_item *log_di;
2246 		u32 total_size;
2247 		u32 cur;
2248 
2249 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2250 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2251 			ret = 0;
2252 			goto out;
2253 		}
2254 
2255 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2256 		total_size = btrfs_item_size(path->nodes[0], i);
2257 		cur = 0;
2258 		while (cur < total_size) {
2259 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2260 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2261 			u32 this_len = sizeof(*di) + name_len + data_len;
2262 			char *name;
2263 
2264 			name = kmalloc(name_len, GFP_NOFS);
2265 			if (!name) {
2266 				ret = -ENOMEM;
2267 				goto out;
2268 			}
2269 			read_extent_buffer(path->nodes[0], name,
2270 					   (unsigned long)(di + 1), name_len);
2271 
2272 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2273 						    name, name_len, 0);
2274 			btrfs_release_path(log_path);
2275 			if (!log_di) {
2276 				/* Doesn't exist in log tree, so delete it. */
2277 				btrfs_release_path(path);
2278 				di = btrfs_lookup_xattr(trans, root, path, ino,
2279 							name, name_len, -1);
2280 				kfree(name);
2281 				if (IS_ERR(di)) {
2282 					ret = PTR_ERR(di);
2283 					goto out;
2284 				}
2285 				ASSERT(di);
2286 				ret = btrfs_delete_one_dir_name(trans, root,
2287 								path, di);
2288 				if (ret)
2289 					goto out;
2290 				btrfs_release_path(path);
2291 				search_key = key;
2292 				goto again;
2293 			}
2294 			kfree(name);
2295 			if (IS_ERR(log_di)) {
2296 				ret = PTR_ERR(log_di);
2297 				goto out;
2298 			}
2299 			cur += this_len;
2300 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2301 		}
2302 	}
2303 	ret = btrfs_next_leaf(root, path);
2304 	if (ret > 0)
2305 		ret = 0;
2306 	else if (ret == 0)
2307 		goto process_leaf;
2308 out:
2309 	btrfs_free_path(log_path);
2310 	btrfs_release_path(path);
2311 	return ret;
2312 }
2313 
2314 
2315 /*
2316  * deletion replay happens before we copy any new directory items
2317  * out of the log or out of backreferences from inodes.  It
2318  * scans the log to find ranges of keys that log is authoritative for,
2319  * and then scans the directory to find items in those ranges that are
2320  * not present in the log.
2321  *
2322  * Anything we don't find in the log is unlinked and removed from the
2323  * directory.
2324  */
2325 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2326 				       struct btrfs_root *root,
2327 				       struct btrfs_root *log,
2328 				       struct btrfs_path *path,
2329 				       u64 dirid, int del_all)
2330 {
2331 	u64 range_start;
2332 	u64 range_end;
2333 	int ret = 0;
2334 	struct btrfs_key dir_key;
2335 	struct btrfs_key found_key;
2336 	struct btrfs_path *log_path;
2337 	struct inode *dir;
2338 
2339 	dir_key.objectid = dirid;
2340 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2341 	log_path = btrfs_alloc_path();
2342 	if (!log_path)
2343 		return -ENOMEM;
2344 
2345 	dir = read_one_inode(root, dirid);
2346 	/* it isn't an error if the inode isn't there, that can happen
2347 	 * because we replay the deletes before we copy in the inode item
2348 	 * from the log
2349 	 */
2350 	if (!dir) {
2351 		btrfs_free_path(log_path);
2352 		return 0;
2353 	}
2354 
2355 	range_start = 0;
2356 	range_end = 0;
2357 	while (1) {
2358 		if (del_all)
2359 			range_end = (u64)-1;
2360 		else {
2361 			ret = find_dir_range(log, path, dirid,
2362 					     &range_start, &range_end);
2363 			if (ret < 0)
2364 				goto out;
2365 			else if (ret > 0)
2366 				break;
2367 		}
2368 
2369 		dir_key.offset = range_start;
2370 		while (1) {
2371 			int nritems;
2372 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2373 						0, 0);
2374 			if (ret < 0)
2375 				goto out;
2376 
2377 			nritems = btrfs_header_nritems(path->nodes[0]);
2378 			if (path->slots[0] >= nritems) {
2379 				ret = btrfs_next_leaf(root, path);
2380 				if (ret == 1)
2381 					break;
2382 				else if (ret < 0)
2383 					goto out;
2384 			}
2385 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2386 					      path->slots[0]);
2387 			if (found_key.objectid != dirid ||
2388 			    found_key.type != dir_key.type) {
2389 				ret = 0;
2390 				goto out;
2391 			}
2392 
2393 			if (found_key.offset > range_end)
2394 				break;
2395 
2396 			ret = check_item_in_log(trans, log, path,
2397 						log_path, dir,
2398 						&found_key);
2399 			if (ret)
2400 				goto out;
2401 			if (found_key.offset == (u64)-1)
2402 				break;
2403 			dir_key.offset = found_key.offset + 1;
2404 		}
2405 		btrfs_release_path(path);
2406 		if (range_end == (u64)-1)
2407 			break;
2408 		range_start = range_end + 1;
2409 	}
2410 	ret = 0;
2411 out:
2412 	btrfs_release_path(path);
2413 	btrfs_free_path(log_path);
2414 	iput(dir);
2415 	return ret;
2416 }
2417 
2418 /*
2419  * the process_func used to replay items from the log tree.  This
2420  * gets called in two different stages.  The first stage just looks
2421  * for inodes and makes sure they are all copied into the subvolume.
2422  *
2423  * The second stage copies all the other item types from the log into
2424  * the subvolume.  The two stage approach is slower, but gets rid of
2425  * lots of complexity around inodes referencing other inodes that exist
2426  * only in the log (references come from either directory items or inode
2427  * back refs).
2428  */
2429 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2430 			     struct walk_control *wc, u64 gen, int level)
2431 {
2432 	int nritems;
2433 	struct btrfs_path *path;
2434 	struct btrfs_root *root = wc->replay_dest;
2435 	struct btrfs_key key;
2436 	int i;
2437 	int ret;
2438 
2439 	ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
2440 	if (ret)
2441 		return ret;
2442 
2443 	level = btrfs_header_level(eb);
2444 
2445 	if (level != 0)
2446 		return 0;
2447 
2448 	path = btrfs_alloc_path();
2449 	if (!path)
2450 		return -ENOMEM;
2451 
2452 	nritems = btrfs_header_nritems(eb);
2453 	for (i = 0; i < nritems; i++) {
2454 		btrfs_item_key_to_cpu(eb, &key, i);
2455 
2456 		/* inode keys are done during the first stage */
2457 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2458 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2459 			struct btrfs_inode_item *inode_item;
2460 			u32 mode;
2461 
2462 			inode_item = btrfs_item_ptr(eb, i,
2463 					    struct btrfs_inode_item);
2464 			/*
2465 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2466 			 * and never got linked before the fsync, skip it, as
2467 			 * replaying it is pointless since it would be deleted
2468 			 * later. We skip logging tmpfiles, but it's always
2469 			 * possible we are replaying a log created with a kernel
2470 			 * that used to log tmpfiles.
2471 			 */
2472 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2473 				wc->ignore_cur_inode = true;
2474 				continue;
2475 			} else {
2476 				wc->ignore_cur_inode = false;
2477 			}
2478 			ret = replay_xattr_deletes(wc->trans, root, log,
2479 						   path, key.objectid);
2480 			if (ret)
2481 				break;
2482 			mode = btrfs_inode_mode(eb, inode_item);
2483 			if (S_ISDIR(mode)) {
2484 				ret = replay_dir_deletes(wc->trans,
2485 					 root, log, path, key.objectid, 0);
2486 				if (ret)
2487 					break;
2488 			}
2489 			ret = overwrite_item(wc->trans, root, path,
2490 					     eb, i, &key);
2491 			if (ret)
2492 				break;
2493 
2494 			/*
2495 			 * Before replaying extents, truncate the inode to its
2496 			 * size. We need to do it now and not after log replay
2497 			 * because before an fsync we can have prealloc extents
2498 			 * added beyond the inode's i_size. If we did it after,
2499 			 * through orphan cleanup for example, we would drop
2500 			 * those prealloc extents just after replaying them.
2501 			 */
2502 			if (S_ISREG(mode)) {
2503 				struct btrfs_drop_extents_args drop_args = { 0 };
2504 				struct inode *inode;
2505 				u64 from;
2506 
2507 				inode = read_one_inode(root, key.objectid);
2508 				if (!inode) {
2509 					ret = -EIO;
2510 					break;
2511 				}
2512 				from = ALIGN(i_size_read(inode),
2513 					     root->fs_info->sectorsize);
2514 				drop_args.start = from;
2515 				drop_args.end = (u64)-1;
2516 				drop_args.drop_cache = true;
2517 				ret = btrfs_drop_extents(wc->trans, root,
2518 							 BTRFS_I(inode),
2519 							 &drop_args);
2520 				if (!ret) {
2521 					inode_sub_bytes(inode,
2522 							drop_args.bytes_found);
2523 					/* Update the inode's nbytes. */
2524 					ret = btrfs_update_inode(wc->trans,
2525 							root, BTRFS_I(inode));
2526 				}
2527 				iput(inode);
2528 				if (ret)
2529 					break;
2530 			}
2531 
2532 			ret = link_to_fixup_dir(wc->trans, root,
2533 						path, key.objectid);
2534 			if (ret)
2535 				break;
2536 		}
2537 
2538 		if (wc->ignore_cur_inode)
2539 			continue;
2540 
2541 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2542 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2543 			ret = replay_one_dir_item(wc->trans, root, path,
2544 						  eb, i, &key);
2545 			if (ret)
2546 				break;
2547 		}
2548 
2549 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2550 			continue;
2551 
2552 		/* these keys are simply copied */
2553 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2554 			ret = overwrite_item(wc->trans, root, path,
2555 					     eb, i, &key);
2556 			if (ret)
2557 				break;
2558 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2559 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2560 			ret = add_inode_ref(wc->trans, root, log, path,
2561 					    eb, i, &key);
2562 			if (ret && ret != -ENOENT)
2563 				break;
2564 			ret = 0;
2565 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2566 			ret = replay_one_extent(wc->trans, root, path,
2567 						eb, i, &key);
2568 			if (ret)
2569 				break;
2570 		}
2571 		/*
2572 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2573 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2574 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2575 		 * older kernel with such keys, ignore them.
2576 		 */
2577 	}
2578 	btrfs_free_path(path);
2579 	return ret;
2580 }
2581 
2582 /*
2583  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2584  */
2585 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2586 {
2587 	struct btrfs_block_group *cache;
2588 
2589 	cache = btrfs_lookup_block_group(fs_info, start);
2590 	if (!cache) {
2591 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2592 		return;
2593 	}
2594 
2595 	spin_lock(&cache->space_info->lock);
2596 	spin_lock(&cache->lock);
2597 	cache->reserved -= fs_info->nodesize;
2598 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2599 	spin_unlock(&cache->lock);
2600 	spin_unlock(&cache->space_info->lock);
2601 
2602 	btrfs_put_block_group(cache);
2603 }
2604 
2605 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2606 				   struct btrfs_root *root,
2607 				   struct btrfs_path *path, int *level,
2608 				   struct walk_control *wc)
2609 {
2610 	struct btrfs_fs_info *fs_info = root->fs_info;
2611 	u64 bytenr;
2612 	u64 ptr_gen;
2613 	struct extent_buffer *next;
2614 	struct extent_buffer *cur;
2615 	u32 blocksize;
2616 	int ret = 0;
2617 
2618 	while (*level > 0) {
2619 		struct btrfs_key first_key;
2620 
2621 		cur = path->nodes[*level];
2622 
2623 		WARN_ON(btrfs_header_level(cur) != *level);
2624 
2625 		if (path->slots[*level] >=
2626 		    btrfs_header_nritems(cur))
2627 			break;
2628 
2629 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2630 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2631 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2632 		blocksize = fs_info->nodesize;
2633 
2634 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2635 						    btrfs_header_owner(cur),
2636 						    *level - 1);
2637 		if (IS_ERR(next))
2638 			return PTR_ERR(next);
2639 
2640 		if (*level == 1) {
2641 			ret = wc->process_func(root, next, wc, ptr_gen,
2642 					       *level - 1);
2643 			if (ret) {
2644 				free_extent_buffer(next);
2645 				return ret;
2646 			}
2647 
2648 			path->slots[*level]++;
2649 			if (wc->free) {
2650 				ret = btrfs_read_extent_buffer(next, ptr_gen,
2651 							*level - 1, &first_key);
2652 				if (ret) {
2653 					free_extent_buffer(next);
2654 					return ret;
2655 				}
2656 
2657 				if (trans) {
2658 					btrfs_tree_lock(next);
2659 					btrfs_clean_tree_block(next);
2660 					btrfs_wait_tree_block_writeback(next);
2661 					btrfs_tree_unlock(next);
2662 					ret = btrfs_pin_reserved_extent(trans,
2663 							bytenr, blocksize);
2664 					if (ret) {
2665 						free_extent_buffer(next);
2666 						return ret;
2667 					}
2668 					btrfs_redirty_list_add(
2669 						trans->transaction, next);
2670 				} else {
2671 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2672 						clear_extent_buffer_dirty(next);
2673 					unaccount_log_buffer(fs_info, bytenr);
2674 				}
2675 			}
2676 			free_extent_buffer(next);
2677 			continue;
2678 		}
2679 		ret = btrfs_read_extent_buffer(next, ptr_gen, *level - 1, &first_key);
2680 		if (ret) {
2681 			free_extent_buffer(next);
2682 			return ret;
2683 		}
2684 
2685 		if (path->nodes[*level-1])
2686 			free_extent_buffer(path->nodes[*level-1]);
2687 		path->nodes[*level-1] = next;
2688 		*level = btrfs_header_level(next);
2689 		path->slots[*level] = 0;
2690 		cond_resched();
2691 	}
2692 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2693 
2694 	cond_resched();
2695 	return 0;
2696 }
2697 
2698 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2699 				 struct btrfs_root *root,
2700 				 struct btrfs_path *path, int *level,
2701 				 struct walk_control *wc)
2702 {
2703 	struct btrfs_fs_info *fs_info = root->fs_info;
2704 	int i;
2705 	int slot;
2706 	int ret;
2707 
2708 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2709 		slot = path->slots[i];
2710 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2711 			path->slots[i]++;
2712 			*level = i;
2713 			WARN_ON(*level == 0);
2714 			return 0;
2715 		} else {
2716 			ret = wc->process_func(root, path->nodes[*level], wc,
2717 				 btrfs_header_generation(path->nodes[*level]),
2718 				 *level);
2719 			if (ret)
2720 				return ret;
2721 
2722 			if (wc->free) {
2723 				struct extent_buffer *next;
2724 
2725 				next = path->nodes[*level];
2726 
2727 				if (trans) {
2728 					btrfs_tree_lock(next);
2729 					btrfs_clean_tree_block(next);
2730 					btrfs_wait_tree_block_writeback(next);
2731 					btrfs_tree_unlock(next);
2732 					ret = btrfs_pin_reserved_extent(trans,
2733 						     path->nodes[*level]->start,
2734 						     path->nodes[*level]->len);
2735 					if (ret)
2736 						return ret;
2737 					btrfs_redirty_list_add(trans->transaction,
2738 							       next);
2739 				} else {
2740 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2741 						clear_extent_buffer_dirty(next);
2742 
2743 					unaccount_log_buffer(fs_info,
2744 						path->nodes[*level]->start);
2745 				}
2746 			}
2747 			free_extent_buffer(path->nodes[*level]);
2748 			path->nodes[*level] = NULL;
2749 			*level = i + 1;
2750 		}
2751 	}
2752 	return 1;
2753 }
2754 
2755 /*
2756  * drop the reference count on the tree rooted at 'snap'.  This traverses
2757  * the tree freeing any blocks that have a ref count of zero after being
2758  * decremented.
2759  */
2760 static int walk_log_tree(struct btrfs_trans_handle *trans,
2761 			 struct btrfs_root *log, struct walk_control *wc)
2762 {
2763 	struct btrfs_fs_info *fs_info = log->fs_info;
2764 	int ret = 0;
2765 	int wret;
2766 	int level;
2767 	struct btrfs_path *path;
2768 	int orig_level;
2769 
2770 	path = btrfs_alloc_path();
2771 	if (!path)
2772 		return -ENOMEM;
2773 
2774 	level = btrfs_header_level(log->node);
2775 	orig_level = level;
2776 	path->nodes[level] = log->node;
2777 	atomic_inc(&log->node->refs);
2778 	path->slots[level] = 0;
2779 
2780 	while (1) {
2781 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2782 		if (wret > 0)
2783 			break;
2784 		if (wret < 0) {
2785 			ret = wret;
2786 			goto out;
2787 		}
2788 
2789 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2790 		if (wret > 0)
2791 			break;
2792 		if (wret < 0) {
2793 			ret = wret;
2794 			goto out;
2795 		}
2796 	}
2797 
2798 	/* was the root node processed? if not, catch it here */
2799 	if (path->nodes[orig_level]) {
2800 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2801 			 btrfs_header_generation(path->nodes[orig_level]),
2802 			 orig_level);
2803 		if (ret)
2804 			goto out;
2805 		if (wc->free) {
2806 			struct extent_buffer *next;
2807 
2808 			next = path->nodes[orig_level];
2809 
2810 			if (trans) {
2811 				btrfs_tree_lock(next);
2812 				btrfs_clean_tree_block(next);
2813 				btrfs_wait_tree_block_writeback(next);
2814 				btrfs_tree_unlock(next);
2815 				ret = btrfs_pin_reserved_extent(trans,
2816 						next->start, next->len);
2817 				if (ret)
2818 					goto out;
2819 				btrfs_redirty_list_add(trans->transaction, next);
2820 			} else {
2821 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2822 					clear_extent_buffer_dirty(next);
2823 				unaccount_log_buffer(fs_info, next->start);
2824 			}
2825 		}
2826 	}
2827 
2828 out:
2829 	btrfs_free_path(path);
2830 	return ret;
2831 }
2832 
2833 /*
2834  * helper function to update the item for a given subvolumes log root
2835  * in the tree of log roots
2836  */
2837 static int update_log_root(struct btrfs_trans_handle *trans,
2838 			   struct btrfs_root *log,
2839 			   struct btrfs_root_item *root_item)
2840 {
2841 	struct btrfs_fs_info *fs_info = log->fs_info;
2842 	int ret;
2843 
2844 	if (log->log_transid == 1) {
2845 		/* insert root item on the first sync */
2846 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2847 				&log->root_key, root_item);
2848 	} else {
2849 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2850 				&log->root_key, root_item);
2851 	}
2852 	return ret;
2853 }
2854 
2855 static void wait_log_commit(struct btrfs_root *root, int transid)
2856 {
2857 	DEFINE_WAIT(wait);
2858 	int index = transid % 2;
2859 
2860 	/*
2861 	 * we only allow two pending log transactions at a time,
2862 	 * so we know that if ours is more than 2 older than the
2863 	 * current transaction, we're done
2864 	 */
2865 	for (;;) {
2866 		prepare_to_wait(&root->log_commit_wait[index],
2867 				&wait, TASK_UNINTERRUPTIBLE);
2868 
2869 		if (!(root->log_transid_committed < transid &&
2870 		      atomic_read(&root->log_commit[index])))
2871 			break;
2872 
2873 		mutex_unlock(&root->log_mutex);
2874 		schedule();
2875 		mutex_lock(&root->log_mutex);
2876 	}
2877 	finish_wait(&root->log_commit_wait[index], &wait);
2878 }
2879 
2880 static void wait_for_writer(struct btrfs_root *root)
2881 {
2882 	DEFINE_WAIT(wait);
2883 
2884 	for (;;) {
2885 		prepare_to_wait(&root->log_writer_wait, &wait,
2886 				TASK_UNINTERRUPTIBLE);
2887 		if (!atomic_read(&root->log_writers))
2888 			break;
2889 
2890 		mutex_unlock(&root->log_mutex);
2891 		schedule();
2892 		mutex_lock(&root->log_mutex);
2893 	}
2894 	finish_wait(&root->log_writer_wait, &wait);
2895 }
2896 
2897 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2898 					struct btrfs_log_ctx *ctx)
2899 {
2900 	mutex_lock(&root->log_mutex);
2901 	list_del_init(&ctx->list);
2902 	mutex_unlock(&root->log_mutex);
2903 }
2904 
2905 /*
2906  * Invoked in log mutex context, or be sure there is no other task which
2907  * can access the list.
2908  */
2909 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2910 					     int index, int error)
2911 {
2912 	struct btrfs_log_ctx *ctx;
2913 	struct btrfs_log_ctx *safe;
2914 
2915 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2916 		list_del_init(&ctx->list);
2917 		ctx->log_ret = error;
2918 	}
2919 }
2920 
2921 /*
2922  * btrfs_sync_log does sends a given tree log down to the disk and
2923  * updates the super blocks to record it.  When this call is done,
2924  * you know that any inodes previously logged are safely on disk only
2925  * if it returns 0.
2926  *
2927  * Any other return value means you need to call btrfs_commit_transaction.
2928  * Some of the edge cases for fsyncing directories that have had unlinks
2929  * or renames done in the past mean that sometimes the only safe
2930  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2931  * that has happened.
2932  */
2933 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2934 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2935 {
2936 	int index1;
2937 	int index2;
2938 	int mark;
2939 	int ret;
2940 	struct btrfs_fs_info *fs_info = root->fs_info;
2941 	struct btrfs_root *log = root->log_root;
2942 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2943 	struct btrfs_root_item new_root_item;
2944 	int log_transid = 0;
2945 	struct btrfs_log_ctx root_log_ctx;
2946 	struct blk_plug plug;
2947 	u64 log_root_start;
2948 	u64 log_root_level;
2949 
2950 	mutex_lock(&root->log_mutex);
2951 	log_transid = ctx->log_transid;
2952 	if (root->log_transid_committed >= log_transid) {
2953 		mutex_unlock(&root->log_mutex);
2954 		return ctx->log_ret;
2955 	}
2956 
2957 	index1 = log_transid % 2;
2958 	if (atomic_read(&root->log_commit[index1])) {
2959 		wait_log_commit(root, log_transid);
2960 		mutex_unlock(&root->log_mutex);
2961 		return ctx->log_ret;
2962 	}
2963 	ASSERT(log_transid == root->log_transid);
2964 	atomic_set(&root->log_commit[index1], 1);
2965 
2966 	/* wait for previous tree log sync to complete */
2967 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2968 		wait_log_commit(root, log_transid - 1);
2969 
2970 	while (1) {
2971 		int batch = atomic_read(&root->log_batch);
2972 		/* when we're on an ssd, just kick the log commit out */
2973 		if (!btrfs_test_opt(fs_info, SSD) &&
2974 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2975 			mutex_unlock(&root->log_mutex);
2976 			schedule_timeout_uninterruptible(1);
2977 			mutex_lock(&root->log_mutex);
2978 		}
2979 		wait_for_writer(root);
2980 		if (batch == atomic_read(&root->log_batch))
2981 			break;
2982 	}
2983 
2984 	/* bail out if we need to do a full commit */
2985 	if (btrfs_need_log_full_commit(trans)) {
2986 		ret = BTRFS_LOG_FORCE_COMMIT;
2987 		mutex_unlock(&root->log_mutex);
2988 		goto out;
2989 	}
2990 
2991 	if (log_transid % 2 == 0)
2992 		mark = EXTENT_DIRTY;
2993 	else
2994 		mark = EXTENT_NEW;
2995 
2996 	/* we start IO on  all the marked extents here, but we don't actually
2997 	 * wait for them until later.
2998 	 */
2999 	blk_start_plug(&plug);
3000 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3001 	/*
3002 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3003 	 *  commit, writes a dirty extent in this tree-log commit. This
3004 	 *  concurrent write will create a hole writing out the extents,
3005 	 *  and we cannot proceed on a zoned filesystem, requiring
3006 	 *  sequential writing. While we can bail out to a full commit
3007 	 *  here, but we can continue hoping the concurrent writing fills
3008 	 *  the hole.
3009 	 */
3010 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3011 		ret = 0;
3012 	if (ret) {
3013 		blk_finish_plug(&plug);
3014 		btrfs_abort_transaction(trans, ret);
3015 		btrfs_set_log_full_commit(trans);
3016 		mutex_unlock(&root->log_mutex);
3017 		goto out;
3018 	}
3019 
3020 	/*
3021 	 * We _must_ update under the root->log_mutex in order to make sure we
3022 	 * have a consistent view of the log root we are trying to commit at
3023 	 * this moment.
3024 	 *
3025 	 * We _must_ copy this into a local copy, because we are not holding the
3026 	 * log_root_tree->log_mutex yet.  This is important because when we
3027 	 * commit the log_root_tree we must have a consistent view of the
3028 	 * log_root_tree when we update the super block to point at the
3029 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3030 	 * with the commit and possibly point at the new block which we may not
3031 	 * have written out.
3032 	 */
3033 	btrfs_set_root_node(&log->root_item, log->node);
3034 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3035 
3036 	root->log_transid++;
3037 	log->log_transid = root->log_transid;
3038 	root->log_start_pid = 0;
3039 	/*
3040 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3041 	 * in their headers. new modifications of the log will be written to
3042 	 * new positions. so it's safe to allow log writers to go in.
3043 	 */
3044 	mutex_unlock(&root->log_mutex);
3045 
3046 	if (btrfs_is_zoned(fs_info)) {
3047 		mutex_lock(&fs_info->tree_root->log_mutex);
3048 		if (!log_root_tree->node) {
3049 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3050 			if (ret) {
3051 				mutex_unlock(&fs_info->tree_root->log_mutex);
3052 				blk_finish_plug(&plug);
3053 				goto out;
3054 			}
3055 		}
3056 		mutex_unlock(&fs_info->tree_root->log_mutex);
3057 	}
3058 
3059 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3060 
3061 	mutex_lock(&log_root_tree->log_mutex);
3062 
3063 	index2 = log_root_tree->log_transid % 2;
3064 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3065 	root_log_ctx.log_transid = log_root_tree->log_transid;
3066 
3067 	/*
3068 	 * Now we are safe to update the log_root_tree because we're under the
3069 	 * log_mutex, and we're a current writer so we're holding the commit
3070 	 * open until we drop the log_mutex.
3071 	 */
3072 	ret = update_log_root(trans, log, &new_root_item);
3073 	if (ret) {
3074 		if (!list_empty(&root_log_ctx.list))
3075 			list_del_init(&root_log_ctx.list);
3076 
3077 		blk_finish_plug(&plug);
3078 		btrfs_set_log_full_commit(trans);
3079 
3080 		if (ret != -ENOSPC) {
3081 			btrfs_abort_transaction(trans, ret);
3082 			mutex_unlock(&log_root_tree->log_mutex);
3083 			goto out;
3084 		}
3085 		btrfs_wait_tree_log_extents(log, mark);
3086 		mutex_unlock(&log_root_tree->log_mutex);
3087 		ret = BTRFS_LOG_FORCE_COMMIT;
3088 		goto out;
3089 	}
3090 
3091 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3092 		blk_finish_plug(&plug);
3093 		list_del_init(&root_log_ctx.list);
3094 		mutex_unlock(&log_root_tree->log_mutex);
3095 		ret = root_log_ctx.log_ret;
3096 		goto out;
3097 	}
3098 
3099 	index2 = root_log_ctx.log_transid % 2;
3100 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3101 		blk_finish_plug(&plug);
3102 		ret = btrfs_wait_tree_log_extents(log, mark);
3103 		wait_log_commit(log_root_tree,
3104 				root_log_ctx.log_transid);
3105 		mutex_unlock(&log_root_tree->log_mutex);
3106 		if (!ret)
3107 			ret = root_log_ctx.log_ret;
3108 		goto out;
3109 	}
3110 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3111 	atomic_set(&log_root_tree->log_commit[index2], 1);
3112 
3113 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3114 		wait_log_commit(log_root_tree,
3115 				root_log_ctx.log_transid - 1);
3116 	}
3117 
3118 	/*
3119 	 * now that we've moved on to the tree of log tree roots,
3120 	 * check the full commit flag again
3121 	 */
3122 	if (btrfs_need_log_full_commit(trans)) {
3123 		blk_finish_plug(&plug);
3124 		btrfs_wait_tree_log_extents(log, mark);
3125 		mutex_unlock(&log_root_tree->log_mutex);
3126 		ret = BTRFS_LOG_FORCE_COMMIT;
3127 		goto out_wake_log_root;
3128 	}
3129 
3130 	ret = btrfs_write_marked_extents(fs_info,
3131 					 &log_root_tree->dirty_log_pages,
3132 					 EXTENT_DIRTY | EXTENT_NEW);
3133 	blk_finish_plug(&plug);
3134 	/*
3135 	 * As described above, -EAGAIN indicates a hole in the extents. We
3136 	 * cannot wait for these write outs since the waiting cause a
3137 	 * deadlock. Bail out to the full commit instead.
3138 	 */
3139 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3140 		btrfs_set_log_full_commit(trans);
3141 		btrfs_wait_tree_log_extents(log, mark);
3142 		mutex_unlock(&log_root_tree->log_mutex);
3143 		goto out_wake_log_root;
3144 	} else if (ret) {
3145 		btrfs_set_log_full_commit(trans);
3146 		btrfs_abort_transaction(trans, ret);
3147 		mutex_unlock(&log_root_tree->log_mutex);
3148 		goto out_wake_log_root;
3149 	}
3150 	ret = btrfs_wait_tree_log_extents(log, mark);
3151 	if (!ret)
3152 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3153 						  EXTENT_NEW | EXTENT_DIRTY);
3154 	if (ret) {
3155 		btrfs_set_log_full_commit(trans);
3156 		mutex_unlock(&log_root_tree->log_mutex);
3157 		goto out_wake_log_root;
3158 	}
3159 
3160 	log_root_start = log_root_tree->node->start;
3161 	log_root_level = btrfs_header_level(log_root_tree->node);
3162 	log_root_tree->log_transid++;
3163 	mutex_unlock(&log_root_tree->log_mutex);
3164 
3165 	/*
3166 	 * Here we are guaranteed that nobody is going to write the superblock
3167 	 * for the current transaction before us and that neither we do write
3168 	 * our superblock before the previous transaction finishes its commit
3169 	 * and writes its superblock, because:
3170 	 *
3171 	 * 1) We are holding a handle on the current transaction, so no body
3172 	 *    can commit it until we release the handle;
3173 	 *
3174 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3175 	 *    if the previous transaction is still committing, and hasn't yet
3176 	 *    written its superblock, we wait for it to do it, because a
3177 	 *    transaction commit acquires the tree_log_mutex when the commit
3178 	 *    begins and releases it only after writing its superblock.
3179 	 */
3180 	mutex_lock(&fs_info->tree_log_mutex);
3181 
3182 	/*
3183 	 * The previous transaction writeout phase could have failed, and thus
3184 	 * marked the fs in an error state.  We must not commit here, as we
3185 	 * could have updated our generation in the super_for_commit and
3186 	 * writing the super here would result in transid mismatches.  If there
3187 	 * is an error here just bail.
3188 	 */
3189 	if (BTRFS_FS_ERROR(fs_info)) {
3190 		ret = -EIO;
3191 		btrfs_set_log_full_commit(trans);
3192 		btrfs_abort_transaction(trans, ret);
3193 		mutex_unlock(&fs_info->tree_log_mutex);
3194 		goto out_wake_log_root;
3195 	}
3196 
3197 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3198 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3199 	ret = write_all_supers(fs_info, 1);
3200 	mutex_unlock(&fs_info->tree_log_mutex);
3201 	if (ret) {
3202 		btrfs_set_log_full_commit(trans);
3203 		btrfs_abort_transaction(trans, ret);
3204 		goto out_wake_log_root;
3205 	}
3206 
3207 	/*
3208 	 * We know there can only be one task here, since we have not yet set
3209 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3210 	 * log must wait for the previous log transaction to commit if it's
3211 	 * still in progress or wait for the current log transaction commit if
3212 	 * someone else already started it. We use <= and not < because the
3213 	 * first log transaction has an ID of 0.
3214 	 */
3215 	ASSERT(root->last_log_commit <= log_transid);
3216 	root->last_log_commit = log_transid;
3217 
3218 out_wake_log_root:
3219 	mutex_lock(&log_root_tree->log_mutex);
3220 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3221 
3222 	log_root_tree->log_transid_committed++;
3223 	atomic_set(&log_root_tree->log_commit[index2], 0);
3224 	mutex_unlock(&log_root_tree->log_mutex);
3225 
3226 	/*
3227 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3228 	 * all the updates above are seen by the woken threads. It might not be
3229 	 * necessary, but proving that seems to be hard.
3230 	 */
3231 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3232 out:
3233 	mutex_lock(&root->log_mutex);
3234 	btrfs_remove_all_log_ctxs(root, index1, ret);
3235 	root->log_transid_committed++;
3236 	atomic_set(&root->log_commit[index1], 0);
3237 	mutex_unlock(&root->log_mutex);
3238 
3239 	/*
3240 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3241 	 * all the updates above are seen by the woken threads. It might not be
3242 	 * necessary, but proving that seems to be hard.
3243 	 */
3244 	cond_wake_up(&root->log_commit_wait[index1]);
3245 	return ret;
3246 }
3247 
3248 static void free_log_tree(struct btrfs_trans_handle *trans,
3249 			  struct btrfs_root *log)
3250 {
3251 	int ret;
3252 	struct walk_control wc = {
3253 		.free = 1,
3254 		.process_func = process_one_buffer
3255 	};
3256 
3257 	if (log->node) {
3258 		ret = walk_log_tree(trans, log, &wc);
3259 		if (ret) {
3260 			/*
3261 			 * We weren't able to traverse the entire log tree, the
3262 			 * typical scenario is getting an -EIO when reading an
3263 			 * extent buffer of the tree, due to a previous writeback
3264 			 * failure of it.
3265 			 */
3266 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3267 				&log->fs_info->fs_state);
3268 
3269 			/*
3270 			 * Some extent buffers of the log tree may still be dirty
3271 			 * and not yet written back to storage, because we may
3272 			 * have updates to a log tree without syncing a log tree,
3273 			 * such as during rename and link operations. So flush
3274 			 * them out and wait for their writeback to complete, so
3275 			 * that we properly cleanup their state and pages.
3276 			 */
3277 			btrfs_write_marked_extents(log->fs_info,
3278 						   &log->dirty_log_pages,
3279 						   EXTENT_DIRTY | EXTENT_NEW);
3280 			btrfs_wait_tree_log_extents(log,
3281 						    EXTENT_DIRTY | EXTENT_NEW);
3282 
3283 			if (trans)
3284 				btrfs_abort_transaction(trans, ret);
3285 			else
3286 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3287 		}
3288 	}
3289 
3290 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3291 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3292 	extent_io_tree_release(&log->log_csum_range);
3293 
3294 	btrfs_put_root(log);
3295 }
3296 
3297 /*
3298  * free all the extents used by the tree log.  This should be called
3299  * at commit time of the full transaction
3300  */
3301 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3302 {
3303 	if (root->log_root) {
3304 		free_log_tree(trans, root->log_root);
3305 		root->log_root = NULL;
3306 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3307 	}
3308 	return 0;
3309 }
3310 
3311 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3312 			     struct btrfs_fs_info *fs_info)
3313 {
3314 	if (fs_info->log_root_tree) {
3315 		free_log_tree(trans, fs_info->log_root_tree);
3316 		fs_info->log_root_tree = NULL;
3317 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3318 	}
3319 	return 0;
3320 }
3321 
3322 /*
3323  * Check if an inode was logged in the current transaction. This correctly deals
3324  * with the case where the inode was logged but has a logged_trans of 0, which
3325  * happens if the inode is evicted and loaded again, as logged_trans is an in
3326  * memory only field (not persisted).
3327  *
3328  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3329  * and < 0 on error.
3330  */
3331 static int inode_logged(struct btrfs_trans_handle *trans,
3332 			struct btrfs_inode *inode,
3333 			struct btrfs_path *path_in)
3334 {
3335 	struct btrfs_path *path = path_in;
3336 	struct btrfs_key key;
3337 	int ret;
3338 
3339 	if (inode->logged_trans == trans->transid)
3340 		return 1;
3341 
3342 	/*
3343 	 * If logged_trans is not 0, then we know the inode logged was not logged
3344 	 * in this transaction, so we can return false right away.
3345 	 */
3346 	if (inode->logged_trans > 0)
3347 		return 0;
3348 
3349 	/*
3350 	 * If no log tree was created for this root in this transaction, then
3351 	 * the inode can not have been logged in this transaction. In that case
3352 	 * set logged_trans to anything greater than 0 and less than the current
3353 	 * transaction's ID, to avoid the search below in a future call in case
3354 	 * a log tree gets created after this.
3355 	 */
3356 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3357 		inode->logged_trans = trans->transid - 1;
3358 		return 0;
3359 	}
3360 
3361 	/*
3362 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3363 	 * for sure if the inode was logged before in this transaction by looking
3364 	 * only at logged_trans. We could be pessimistic and assume it was, but
3365 	 * that can lead to unnecessarily logging an inode during rename and link
3366 	 * operations, and then further updating the log in followup rename and
3367 	 * link operations, specially if it's a directory, which adds latency
3368 	 * visible to applications doing a series of rename or link operations.
3369 	 *
3370 	 * A logged_trans of 0 here can mean several things:
3371 	 *
3372 	 * 1) The inode was never logged since the filesystem was mounted, and may
3373 	 *    or may have not been evicted and loaded again;
3374 	 *
3375 	 * 2) The inode was logged in a previous transaction, then evicted and
3376 	 *    then loaded again;
3377 	 *
3378 	 * 3) The inode was logged in the current transaction, then evicted and
3379 	 *    then loaded again.
3380 	 *
3381 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3382 	 * case 3) and return true. So we do a search in the log root for the inode
3383 	 * item.
3384 	 */
3385 	key.objectid = btrfs_ino(inode);
3386 	key.type = BTRFS_INODE_ITEM_KEY;
3387 	key.offset = 0;
3388 
3389 	if (!path) {
3390 		path = btrfs_alloc_path();
3391 		if (!path)
3392 			return -ENOMEM;
3393 	}
3394 
3395 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3396 
3397 	if (path_in)
3398 		btrfs_release_path(path);
3399 	else
3400 		btrfs_free_path(path);
3401 
3402 	/*
3403 	 * Logging an inode always results in logging its inode item. So if we
3404 	 * did not find the item we know the inode was not logged for sure.
3405 	 */
3406 	if (ret < 0) {
3407 		return ret;
3408 	} else if (ret > 0) {
3409 		/*
3410 		 * Set logged_trans to a value greater than 0 and less then the
3411 		 * current transaction to avoid doing the search in future calls.
3412 		 */
3413 		inode->logged_trans = trans->transid - 1;
3414 		return 0;
3415 	}
3416 
3417 	/*
3418 	 * The inode was previously logged and then evicted, set logged_trans to
3419 	 * the current transacion's ID, to avoid future tree searches as long as
3420 	 * the inode is not evicted again.
3421 	 */
3422 	inode->logged_trans = trans->transid;
3423 
3424 	/*
3425 	 * If it's a directory, then we must set last_dir_index_offset to the
3426 	 * maximum possible value, so that the next attempt to log the inode does
3427 	 * not skip checking if dir index keys found in modified subvolume tree
3428 	 * leaves have been logged before, otherwise it would result in attempts
3429 	 * to insert duplicate dir index keys in the log tree. This must be done
3430 	 * because last_dir_index_offset is an in-memory only field, not persisted
3431 	 * in the inode item or any other on-disk structure, so its value is lost
3432 	 * once the inode is evicted.
3433 	 */
3434 	if (S_ISDIR(inode->vfs_inode.i_mode))
3435 		inode->last_dir_index_offset = (u64)-1;
3436 
3437 	return 1;
3438 }
3439 
3440 /*
3441  * Delete a directory entry from the log if it exists.
3442  *
3443  * Returns < 0 on error
3444  *           1 if the entry does not exists
3445  *           0 if the entry existed and was successfully deleted
3446  */
3447 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3448 			     struct btrfs_root *log,
3449 			     struct btrfs_path *path,
3450 			     u64 dir_ino,
3451 			     const char *name, int name_len,
3452 			     u64 index)
3453 {
3454 	struct btrfs_dir_item *di;
3455 
3456 	/*
3457 	 * We only log dir index items of a directory, so we don't need to look
3458 	 * for dir item keys.
3459 	 */
3460 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3461 					 index, name, name_len, -1);
3462 	if (IS_ERR(di))
3463 		return PTR_ERR(di);
3464 	else if (!di)
3465 		return 1;
3466 
3467 	/*
3468 	 * We do not need to update the size field of the directory's
3469 	 * inode item because on log replay we update the field to reflect
3470 	 * all existing entries in the directory (see overwrite_item()).
3471 	 */
3472 	return btrfs_delete_one_dir_name(trans, log, path, di);
3473 }
3474 
3475 /*
3476  * If both a file and directory are logged, and unlinks or renames are
3477  * mixed in, we have a few interesting corners:
3478  *
3479  * create file X in dir Y
3480  * link file X to X.link in dir Y
3481  * fsync file X
3482  * unlink file X but leave X.link
3483  * fsync dir Y
3484  *
3485  * After a crash we would expect only X.link to exist.  But file X
3486  * didn't get fsync'd again so the log has back refs for X and X.link.
3487  *
3488  * We solve this by removing directory entries and inode backrefs from the
3489  * log when a file that was logged in the current transaction is
3490  * unlinked.  Any later fsync will include the updated log entries, and
3491  * we'll be able to reconstruct the proper directory items from backrefs.
3492  *
3493  * This optimizations allows us to avoid relogging the entire inode
3494  * or the entire directory.
3495  */
3496 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3497 				  struct btrfs_root *root,
3498 				  const char *name, int name_len,
3499 				  struct btrfs_inode *dir, u64 index)
3500 {
3501 	struct btrfs_path *path;
3502 	int ret;
3503 
3504 	ret = inode_logged(trans, dir, NULL);
3505 	if (ret == 0)
3506 		return;
3507 	else if (ret < 0) {
3508 		btrfs_set_log_full_commit(trans);
3509 		return;
3510 	}
3511 
3512 	ret = join_running_log_trans(root);
3513 	if (ret)
3514 		return;
3515 
3516 	mutex_lock(&dir->log_mutex);
3517 
3518 	path = btrfs_alloc_path();
3519 	if (!path) {
3520 		ret = -ENOMEM;
3521 		goto out_unlock;
3522 	}
3523 
3524 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3525 				name, name_len, index);
3526 	btrfs_free_path(path);
3527 out_unlock:
3528 	mutex_unlock(&dir->log_mutex);
3529 	if (ret < 0)
3530 		btrfs_set_log_full_commit(trans);
3531 	btrfs_end_log_trans(root);
3532 }
3533 
3534 /* see comments for btrfs_del_dir_entries_in_log */
3535 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3536 				struct btrfs_root *root,
3537 				const char *name, int name_len,
3538 				struct btrfs_inode *inode, u64 dirid)
3539 {
3540 	struct btrfs_root *log;
3541 	u64 index;
3542 	int ret;
3543 
3544 	ret = inode_logged(trans, inode, NULL);
3545 	if (ret == 0)
3546 		return;
3547 	else if (ret < 0) {
3548 		btrfs_set_log_full_commit(trans);
3549 		return;
3550 	}
3551 
3552 	ret = join_running_log_trans(root);
3553 	if (ret)
3554 		return;
3555 	log = root->log_root;
3556 	mutex_lock(&inode->log_mutex);
3557 
3558 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3559 				  dirid, &index);
3560 	mutex_unlock(&inode->log_mutex);
3561 	if (ret < 0 && ret != -ENOENT)
3562 		btrfs_set_log_full_commit(trans);
3563 	btrfs_end_log_trans(root);
3564 }
3565 
3566 /*
3567  * creates a range item in the log for 'dirid'.  first_offset and
3568  * last_offset tell us which parts of the key space the log should
3569  * be considered authoritative for.
3570  */
3571 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3572 				       struct btrfs_root *log,
3573 				       struct btrfs_path *path,
3574 				       u64 dirid,
3575 				       u64 first_offset, u64 last_offset)
3576 {
3577 	int ret;
3578 	struct btrfs_key key;
3579 	struct btrfs_dir_log_item *item;
3580 
3581 	key.objectid = dirid;
3582 	key.offset = first_offset;
3583 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3584 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3585 	/*
3586 	 * -EEXIST is fine and can happen sporadically when we are logging a
3587 	 * directory and have concurrent insertions in the subvolume's tree for
3588 	 * items from other inodes and that result in pushing off some dir items
3589 	 * from one leaf to another in order to accommodate for the new items.
3590 	 * This results in logging the same dir index range key.
3591 	 */
3592 	if (ret && ret != -EEXIST)
3593 		return ret;
3594 
3595 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3596 			      struct btrfs_dir_log_item);
3597 	if (ret == -EEXIST) {
3598 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3599 
3600 		/*
3601 		 * btrfs_del_dir_entries_in_log() might have been called during
3602 		 * an unlink between the initial insertion of this key and the
3603 		 * current update, or we might be logging a single entry deletion
3604 		 * during a rename, so set the new last_offset to the max value.
3605 		 */
3606 		last_offset = max(last_offset, curr_end);
3607 	}
3608 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3609 	btrfs_mark_buffer_dirty(path->nodes[0]);
3610 	btrfs_release_path(path);
3611 	return 0;
3612 }
3613 
3614 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3615 				 struct btrfs_root *log,
3616 				 struct extent_buffer *src,
3617 				 struct btrfs_path *dst_path,
3618 				 int start_slot,
3619 				 int count)
3620 {
3621 	char *ins_data = NULL;
3622 	struct btrfs_item_batch batch;
3623 	struct extent_buffer *dst;
3624 	unsigned long src_offset;
3625 	unsigned long dst_offset;
3626 	struct btrfs_key key;
3627 	u32 item_size;
3628 	int ret;
3629 	int i;
3630 
3631 	ASSERT(count > 0);
3632 	batch.nr = count;
3633 
3634 	if (count == 1) {
3635 		btrfs_item_key_to_cpu(src, &key, start_slot);
3636 		item_size = btrfs_item_size(src, start_slot);
3637 		batch.keys = &key;
3638 		batch.data_sizes = &item_size;
3639 		batch.total_data_size = item_size;
3640 	} else {
3641 		struct btrfs_key *ins_keys;
3642 		u32 *ins_sizes;
3643 
3644 		ins_data = kmalloc(count * sizeof(u32) +
3645 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3646 		if (!ins_data)
3647 			return -ENOMEM;
3648 
3649 		ins_sizes = (u32 *)ins_data;
3650 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3651 		batch.keys = ins_keys;
3652 		batch.data_sizes = ins_sizes;
3653 		batch.total_data_size = 0;
3654 
3655 		for (i = 0; i < count; i++) {
3656 			const int slot = start_slot + i;
3657 
3658 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3659 			ins_sizes[i] = btrfs_item_size(src, slot);
3660 			batch.total_data_size += ins_sizes[i];
3661 		}
3662 	}
3663 
3664 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3665 	if (ret)
3666 		goto out;
3667 
3668 	dst = dst_path->nodes[0];
3669 	/*
3670 	 * Copy all the items in bulk, in a single copy operation. Item data is
3671 	 * organized such that it's placed at the end of a leaf and from right
3672 	 * to left. For example, the data for the second item ends at an offset
3673 	 * that matches the offset where the data for the first item starts, the
3674 	 * data for the third item ends at an offset that matches the offset
3675 	 * where the data of the second items starts, and so on.
3676 	 * Therefore our source and destination start offsets for copy match the
3677 	 * offsets of the last items (highest slots).
3678 	 */
3679 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3680 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3681 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3682 	btrfs_release_path(dst_path);
3683 out:
3684 	kfree(ins_data);
3685 
3686 	return ret;
3687 }
3688 
3689 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3690 				  struct btrfs_inode *inode,
3691 				  struct btrfs_path *path,
3692 				  struct btrfs_path *dst_path,
3693 				  struct btrfs_log_ctx *ctx,
3694 				  u64 *last_old_dentry_offset)
3695 {
3696 	struct btrfs_root *log = inode->root->log_root;
3697 	struct extent_buffer *src;
3698 	const int nritems = btrfs_header_nritems(path->nodes[0]);
3699 	const u64 ino = btrfs_ino(inode);
3700 	bool last_found = false;
3701 	int batch_start = 0;
3702 	int batch_size = 0;
3703 	int i;
3704 
3705 	/*
3706 	 * We need to clone the leaf, release the read lock on it, and use the
3707 	 * clone before modifying the log tree. See the comment at copy_items()
3708 	 * about why we need to do this.
3709 	 */
3710 	src = btrfs_clone_extent_buffer(path->nodes[0]);
3711 	if (!src)
3712 		return -ENOMEM;
3713 
3714 	i = path->slots[0];
3715 	btrfs_release_path(path);
3716 	path->nodes[0] = src;
3717 	path->slots[0] = i;
3718 
3719 	for (; i < nritems; i++) {
3720 		struct btrfs_dir_item *di;
3721 		struct btrfs_key key;
3722 		int ret;
3723 
3724 		btrfs_item_key_to_cpu(src, &key, i);
3725 
3726 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3727 			last_found = true;
3728 			break;
3729 		}
3730 
3731 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3732 		ctx->last_dir_item_offset = key.offset;
3733 
3734 		/*
3735 		 * Skip ranges of items that consist only of dir item keys created
3736 		 * in past transactions. However if we find a gap, we must log a
3737 		 * dir index range item for that gap, so that index keys in that
3738 		 * gap are deleted during log replay.
3739 		 */
3740 		if (btrfs_dir_transid(src, di) < trans->transid) {
3741 			if (key.offset > *last_old_dentry_offset + 1) {
3742 				ret = insert_dir_log_key(trans, log, dst_path,
3743 						 ino, *last_old_dentry_offset + 1,
3744 						 key.offset - 1);
3745 				if (ret < 0)
3746 					return ret;
3747 			}
3748 
3749 			*last_old_dentry_offset = key.offset;
3750 			continue;
3751 		}
3752 
3753 		/* If we logged this dir index item before, we can skip it. */
3754 		if (key.offset <= inode->last_dir_index_offset)
3755 			continue;
3756 
3757 		/*
3758 		 * We must make sure that when we log a directory entry, the
3759 		 * corresponding inode, after log replay, has a matching link
3760 		 * count. For example:
3761 		 *
3762 		 * touch foo
3763 		 * mkdir mydir
3764 		 * sync
3765 		 * ln foo mydir/bar
3766 		 * xfs_io -c "fsync" mydir
3767 		 * <crash>
3768 		 * <mount fs and log replay>
3769 		 *
3770 		 * Would result in a fsync log that when replayed, our file inode
3771 		 * would have a link count of 1, but we get two directory entries
3772 		 * pointing to the same inode. After removing one of the names,
3773 		 * it would not be possible to remove the other name, which
3774 		 * resulted always in stale file handle errors, and would not be
3775 		 * possible to rmdir the parent directory, since its i_size could
3776 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3777 		 * resulting in -ENOTEMPTY errors.
3778 		 */
3779 		if (!ctx->log_new_dentries) {
3780 			struct btrfs_key di_key;
3781 
3782 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3783 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3784 				ctx->log_new_dentries = true;
3785 		}
3786 
3787 		if (batch_size == 0)
3788 			batch_start = i;
3789 		batch_size++;
3790 	}
3791 
3792 	if (batch_size > 0) {
3793 		int ret;
3794 
3795 		ret = flush_dir_items_batch(trans, log, src, dst_path,
3796 					    batch_start, batch_size);
3797 		if (ret < 0)
3798 			return ret;
3799 	}
3800 
3801 	return last_found ? 1 : 0;
3802 }
3803 
3804 /*
3805  * log all the items included in the current transaction for a given
3806  * directory.  This also creates the range items in the log tree required
3807  * to replay anything deleted before the fsync
3808  */
3809 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3810 			  struct btrfs_inode *inode,
3811 			  struct btrfs_path *path,
3812 			  struct btrfs_path *dst_path,
3813 			  struct btrfs_log_ctx *ctx,
3814 			  u64 min_offset, u64 *last_offset_ret)
3815 {
3816 	struct btrfs_key min_key;
3817 	struct btrfs_root *root = inode->root;
3818 	struct btrfs_root *log = root->log_root;
3819 	int err = 0;
3820 	int ret;
3821 	u64 last_old_dentry_offset = min_offset - 1;
3822 	u64 last_offset = (u64)-1;
3823 	u64 ino = btrfs_ino(inode);
3824 
3825 	min_key.objectid = ino;
3826 	min_key.type = BTRFS_DIR_INDEX_KEY;
3827 	min_key.offset = min_offset;
3828 
3829 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3830 
3831 	/*
3832 	 * we didn't find anything from this transaction, see if there
3833 	 * is anything at all
3834 	 */
3835 	if (ret != 0 || min_key.objectid != ino ||
3836 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3837 		min_key.objectid = ino;
3838 		min_key.type = BTRFS_DIR_INDEX_KEY;
3839 		min_key.offset = (u64)-1;
3840 		btrfs_release_path(path);
3841 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3842 		if (ret < 0) {
3843 			btrfs_release_path(path);
3844 			return ret;
3845 		}
3846 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3847 
3848 		/* if ret == 0 there are items for this type,
3849 		 * create a range to tell us the last key of this type.
3850 		 * otherwise, there are no items in this directory after
3851 		 * *min_offset, and we create a range to indicate that.
3852 		 */
3853 		if (ret == 0) {
3854 			struct btrfs_key tmp;
3855 
3856 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3857 					      path->slots[0]);
3858 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3859 				last_old_dentry_offset = tmp.offset;
3860 		}
3861 		goto done;
3862 	}
3863 
3864 	/* go backward to find any previous key */
3865 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3866 	if (ret == 0) {
3867 		struct btrfs_key tmp;
3868 
3869 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3870 		/*
3871 		 * The dir index key before the first one we found that needs to
3872 		 * be logged might be in a previous leaf, and there might be a
3873 		 * gap between these keys, meaning that we had deletions that
3874 		 * happened. So the key range item we log (key type
3875 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3876 		 * previous key's offset plus 1, so that those deletes are replayed.
3877 		 */
3878 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3879 			last_old_dentry_offset = tmp.offset;
3880 	}
3881 	btrfs_release_path(path);
3882 
3883 	/*
3884 	 * Find the first key from this transaction again.  See the note for
3885 	 * log_new_dir_dentries, if we're logging a directory recursively we
3886 	 * won't be holding its i_mutex, which means we can modify the directory
3887 	 * while we're logging it.  If we remove an entry between our first
3888 	 * search and this search we'll not find the key again and can just
3889 	 * bail.
3890 	 */
3891 search:
3892 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3893 	if (ret != 0)
3894 		goto done;
3895 
3896 	/*
3897 	 * we have a block from this transaction, log every item in it
3898 	 * from our directory
3899 	 */
3900 	while (1) {
3901 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3902 					     &last_old_dentry_offset);
3903 		if (ret != 0) {
3904 			if (ret < 0)
3905 				err = ret;
3906 			goto done;
3907 		}
3908 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3909 
3910 		/*
3911 		 * look ahead to the next item and see if it is also
3912 		 * from this directory and from this transaction
3913 		 */
3914 		ret = btrfs_next_leaf(root, path);
3915 		if (ret) {
3916 			if (ret == 1)
3917 				last_offset = (u64)-1;
3918 			else
3919 				err = ret;
3920 			goto done;
3921 		}
3922 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3923 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3924 			last_offset = (u64)-1;
3925 			goto done;
3926 		}
3927 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3928 			/*
3929 			 * The next leaf was not changed in the current transaction
3930 			 * and has at least one dir index key.
3931 			 * We check for the next key because there might have been
3932 			 * one or more deletions between the last key we logged and
3933 			 * that next key. So the key range item we log (key type
3934 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3935 			 * offset minus 1, so that those deletes are replayed.
3936 			 */
3937 			last_offset = min_key.offset - 1;
3938 			goto done;
3939 		}
3940 		if (need_resched()) {
3941 			btrfs_release_path(path);
3942 			cond_resched();
3943 			goto search;
3944 		}
3945 	}
3946 done:
3947 	btrfs_release_path(path);
3948 	btrfs_release_path(dst_path);
3949 
3950 	if (err == 0) {
3951 		*last_offset_ret = last_offset;
3952 		/*
3953 		 * In case the leaf was changed in the current transaction but
3954 		 * all its dir items are from a past transaction, the last item
3955 		 * in the leaf is a dir item and there's no gap between that last
3956 		 * dir item and the first one on the next leaf (which did not
3957 		 * change in the current transaction), then we don't need to log
3958 		 * a range, last_old_dentry_offset is == to last_offset.
3959 		 */
3960 		ASSERT(last_old_dentry_offset <= last_offset);
3961 		if (last_old_dentry_offset < last_offset) {
3962 			ret = insert_dir_log_key(trans, log, path, ino,
3963 						 last_old_dentry_offset + 1,
3964 						 last_offset);
3965 			if (ret)
3966 				err = ret;
3967 		}
3968 	}
3969 	return err;
3970 }
3971 
3972 /*
3973  * If the inode was logged before and it was evicted, then its
3974  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3975  * key offset. If that's the case, search for it and update the inode. This
3976  * is to avoid lookups in the log tree every time we try to insert a dir index
3977  * key from a leaf changed in the current transaction, and to allow us to always
3978  * do batch insertions of dir index keys.
3979  */
3980 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3981 					struct btrfs_path *path,
3982 					const struct btrfs_log_ctx *ctx)
3983 {
3984 	const u64 ino = btrfs_ino(inode);
3985 	struct btrfs_key key;
3986 	int ret;
3987 
3988 	lockdep_assert_held(&inode->log_mutex);
3989 
3990 	if (inode->last_dir_index_offset != (u64)-1)
3991 		return 0;
3992 
3993 	if (!ctx->logged_before) {
3994 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3995 		return 0;
3996 	}
3997 
3998 	key.objectid = ino;
3999 	key.type = BTRFS_DIR_INDEX_KEY;
4000 	key.offset = (u64)-1;
4001 
4002 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4003 	/*
4004 	 * An error happened or we actually have an index key with an offset
4005 	 * value of (u64)-1. Bail out, we're done.
4006 	 */
4007 	if (ret <= 0)
4008 		goto out;
4009 
4010 	ret = 0;
4011 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4012 
4013 	/*
4014 	 * No dir index items, bail out and leave last_dir_index_offset with
4015 	 * the value right before the first valid index value.
4016 	 */
4017 	if (path->slots[0] == 0)
4018 		goto out;
4019 
4020 	/*
4021 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4022 	 * index key, or beyond the last key of the directory that is not an
4023 	 * index key. If we have an index key before, set last_dir_index_offset
4024 	 * to its offset value, otherwise leave it with a value right before the
4025 	 * first valid index value, as it means we have an empty directory.
4026 	 */
4027 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4028 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4029 		inode->last_dir_index_offset = key.offset;
4030 
4031 out:
4032 	btrfs_release_path(path);
4033 
4034 	return ret;
4035 }
4036 
4037 /*
4038  * logging directories is very similar to logging inodes, We find all the items
4039  * from the current transaction and write them to the log.
4040  *
4041  * The recovery code scans the directory in the subvolume, and if it finds a
4042  * key in the range logged that is not present in the log tree, then it means
4043  * that dir entry was unlinked during the transaction.
4044  *
4045  * In order for that scan to work, we must include one key smaller than
4046  * the smallest logged by this transaction and one key larger than the largest
4047  * key logged by this transaction.
4048  */
4049 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4050 			  struct btrfs_inode *inode,
4051 			  struct btrfs_path *path,
4052 			  struct btrfs_path *dst_path,
4053 			  struct btrfs_log_ctx *ctx)
4054 {
4055 	u64 min_key;
4056 	u64 max_key;
4057 	int ret;
4058 
4059 	ret = update_last_dir_index_offset(inode, path, ctx);
4060 	if (ret)
4061 		return ret;
4062 
4063 	min_key = BTRFS_DIR_START_INDEX;
4064 	max_key = 0;
4065 	ctx->last_dir_item_offset = inode->last_dir_index_offset;
4066 
4067 	while (1) {
4068 		ret = log_dir_items(trans, inode, path, dst_path,
4069 				ctx, min_key, &max_key);
4070 		if (ret)
4071 			return ret;
4072 		if (max_key == (u64)-1)
4073 			break;
4074 		min_key = max_key + 1;
4075 	}
4076 
4077 	inode->last_dir_index_offset = ctx->last_dir_item_offset;
4078 
4079 	return 0;
4080 }
4081 
4082 /*
4083  * a helper function to drop items from the log before we relog an
4084  * inode.  max_key_type indicates the highest item type to remove.
4085  * This cannot be run for file data extents because it does not
4086  * free the extents they point to.
4087  */
4088 static int drop_inode_items(struct btrfs_trans_handle *trans,
4089 				  struct btrfs_root *log,
4090 				  struct btrfs_path *path,
4091 				  struct btrfs_inode *inode,
4092 				  int max_key_type)
4093 {
4094 	int ret;
4095 	struct btrfs_key key;
4096 	struct btrfs_key found_key;
4097 	int start_slot;
4098 
4099 	key.objectid = btrfs_ino(inode);
4100 	key.type = max_key_type;
4101 	key.offset = (u64)-1;
4102 
4103 	while (1) {
4104 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4105 		BUG_ON(ret == 0); /* Logic error */
4106 		if (ret < 0)
4107 			break;
4108 
4109 		if (path->slots[0] == 0)
4110 			break;
4111 
4112 		path->slots[0]--;
4113 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4114 				      path->slots[0]);
4115 
4116 		if (found_key.objectid != key.objectid)
4117 			break;
4118 
4119 		found_key.offset = 0;
4120 		found_key.type = 0;
4121 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4122 		if (ret < 0)
4123 			break;
4124 
4125 		ret = btrfs_del_items(trans, log, path, start_slot,
4126 				      path->slots[0] - start_slot + 1);
4127 		/*
4128 		 * If start slot isn't 0 then we don't need to re-search, we've
4129 		 * found the last guy with the objectid in this tree.
4130 		 */
4131 		if (ret || start_slot != 0)
4132 			break;
4133 		btrfs_release_path(path);
4134 	}
4135 	btrfs_release_path(path);
4136 	if (ret > 0)
4137 		ret = 0;
4138 	return ret;
4139 }
4140 
4141 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4142 				struct btrfs_root *log_root,
4143 				struct btrfs_inode *inode,
4144 				u64 new_size, u32 min_type)
4145 {
4146 	struct btrfs_truncate_control control = {
4147 		.new_size = new_size,
4148 		.ino = btrfs_ino(inode),
4149 		.min_type = min_type,
4150 		.skip_ref_updates = true,
4151 	};
4152 
4153 	return btrfs_truncate_inode_items(trans, log_root, &control);
4154 }
4155 
4156 static void fill_inode_item(struct btrfs_trans_handle *trans,
4157 			    struct extent_buffer *leaf,
4158 			    struct btrfs_inode_item *item,
4159 			    struct inode *inode, int log_inode_only,
4160 			    u64 logged_isize)
4161 {
4162 	struct btrfs_map_token token;
4163 	u64 flags;
4164 
4165 	btrfs_init_map_token(&token, leaf);
4166 
4167 	if (log_inode_only) {
4168 		/* set the generation to zero so the recover code
4169 		 * can tell the difference between an logging
4170 		 * just to say 'this inode exists' and a logging
4171 		 * to say 'update this inode with these values'
4172 		 */
4173 		btrfs_set_token_inode_generation(&token, item, 0);
4174 		btrfs_set_token_inode_size(&token, item, logged_isize);
4175 	} else {
4176 		btrfs_set_token_inode_generation(&token, item,
4177 						 BTRFS_I(inode)->generation);
4178 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4179 	}
4180 
4181 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4182 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4183 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4184 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4185 
4186 	btrfs_set_token_timespec_sec(&token, &item->atime,
4187 				     inode->i_atime.tv_sec);
4188 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4189 				      inode->i_atime.tv_nsec);
4190 
4191 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4192 				     inode->i_mtime.tv_sec);
4193 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4194 				      inode->i_mtime.tv_nsec);
4195 
4196 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4197 				     inode->i_ctime.tv_sec);
4198 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4199 				      inode->i_ctime.tv_nsec);
4200 
4201 	/*
4202 	 * We do not need to set the nbytes field, in fact during a fast fsync
4203 	 * its value may not even be correct, since a fast fsync does not wait
4204 	 * for ordered extent completion, which is where we update nbytes, it
4205 	 * only waits for writeback to complete. During log replay as we find
4206 	 * file extent items and replay them, we adjust the nbytes field of the
4207 	 * inode item in subvolume tree as needed (see overwrite_item()).
4208 	 */
4209 
4210 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4211 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4212 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4213 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4214 					  BTRFS_I(inode)->ro_flags);
4215 	btrfs_set_token_inode_flags(&token, item, flags);
4216 	btrfs_set_token_inode_block_group(&token, item, 0);
4217 }
4218 
4219 static int log_inode_item(struct btrfs_trans_handle *trans,
4220 			  struct btrfs_root *log, struct btrfs_path *path,
4221 			  struct btrfs_inode *inode, bool inode_item_dropped)
4222 {
4223 	struct btrfs_inode_item *inode_item;
4224 	int ret;
4225 
4226 	/*
4227 	 * If we are doing a fast fsync and the inode was logged before in the
4228 	 * current transaction, then we know the inode was previously logged and
4229 	 * it exists in the log tree. For performance reasons, in this case use
4230 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4231 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4232 	 * contention in case there are concurrent fsyncs for other inodes of the
4233 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4234 	 * already exists can also result in unnecessarily splitting a leaf.
4235 	 */
4236 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4237 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4238 		ASSERT(ret <= 0);
4239 		if (ret > 0)
4240 			ret = -ENOENT;
4241 	} else {
4242 		/*
4243 		 * This means it is the first fsync in the current transaction,
4244 		 * so the inode item is not in the log and we need to insert it.
4245 		 * We can never get -EEXIST because we are only called for a fast
4246 		 * fsync and in case an inode eviction happens after the inode was
4247 		 * logged before in the current transaction, when we load again
4248 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4249 		 * flags and set ->logged_trans to 0.
4250 		 */
4251 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4252 					      sizeof(*inode_item));
4253 		ASSERT(ret != -EEXIST);
4254 	}
4255 	if (ret)
4256 		return ret;
4257 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4258 				    struct btrfs_inode_item);
4259 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4260 			0, 0);
4261 	btrfs_release_path(path);
4262 	return 0;
4263 }
4264 
4265 static int log_csums(struct btrfs_trans_handle *trans,
4266 		     struct btrfs_inode *inode,
4267 		     struct btrfs_root *log_root,
4268 		     struct btrfs_ordered_sum *sums)
4269 {
4270 	const u64 lock_end = sums->bytenr + sums->len - 1;
4271 	struct extent_state *cached_state = NULL;
4272 	int ret;
4273 
4274 	/*
4275 	 * If this inode was not used for reflink operations in the current
4276 	 * transaction with new extents, then do the fast path, no need to
4277 	 * worry about logging checksum items with overlapping ranges.
4278 	 */
4279 	if (inode->last_reflink_trans < trans->transid)
4280 		return btrfs_csum_file_blocks(trans, log_root, sums);
4281 
4282 	/*
4283 	 * Serialize logging for checksums. This is to avoid racing with the
4284 	 * same checksum being logged by another task that is logging another
4285 	 * file which happens to refer to the same extent as well. Such races
4286 	 * can leave checksum items in the log with overlapping ranges.
4287 	 */
4288 	ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4289 			  &cached_state);
4290 	if (ret)
4291 		return ret;
4292 	/*
4293 	 * Due to extent cloning, we might have logged a csum item that covers a
4294 	 * subrange of a cloned extent, and later we can end up logging a csum
4295 	 * item for a larger subrange of the same extent or the entire range.
4296 	 * This would leave csum items in the log tree that cover the same range
4297 	 * and break the searches for checksums in the log tree, resulting in
4298 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4299 	 * trim and adjust) any existing csum items in the log for this range.
4300 	 */
4301 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4302 	if (!ret)
4303 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4304 
4305 	unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4306 		      &cached_state);
4307 
4308 	return ret;
4309 }
4310 
4311 static noinline int copy_items(struct btrfs_trans_handle *trans,
4312 			       struct btrfs_inode *inode,
4313 			       struct btrfs_path *dst_path,
4314 			       struct btrfs_path *src_path,
4315 			       int start_slot, int nr, int inode_only,
4316 			       u64 logged_isize)
4317 {
4318 	struct btrfs_root *log = inode->root->log_root;
4319 	struct btrfs_file_extent_item *extent;
4320 	struct extent_buffer *src;
4321 	int ret = 0;
4322 	struct btrfs_key *ins_keys;
4323 	u32 *ins_sizes;
4324 	struct btrfs_item_batch batch;
4325 	char *ins_data;
4326 	int i;
4327 	int dst_index;
4328 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4329 	const u64 i_size = i_size_read(&inode->vfs_inode);
4330 
4331 	/*
4332 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4333 	 * use the clone. This is because otherwise we would be changing the log
4334 	 * tree, to insert items from the subvolume tree or insert csum items,
4335 	 * while holding a read lock on a leaf from the subvolume tree, which
4336 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4337 	 *
4338 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4339 	 *    holding a write lock on a parent extent buffer from the log tree.
4340 	 *    Allocating the pages for an extent buffer, or the extent buffer
4341 	 *    struct, can trigger inode eviction and finally the inode eviction
4342 	 *    will trigger a release/remove of a delayed node, which requires
4343 	 *    taking the delayed node's mutex;
4344 	 *
4345 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4346 	 *    reclaim thread and make us wait for it to release enough space and
4347 	 *    unblock our reservation ticket. The reclaim thread can start
4348 	 *    flushing delayed items, and that in turn results in the need to
4349 	 *    lock delayed node mutexes and in the need to write lock extent
4350 	 *    buffers of a subvolume tree - all this while holding a write lock
4351 	 *    on the parent extent buffer in the log tree.
4352 	 *
4353 	 * So one task in scenario 1) running in parallel with another task in
4354 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4355 	 * node mutex while having a read lock on a leaf from the subvolume,
4356 	 * while the other is holding the delayed node's mutex and wants to
4357 	 * write lock the same subvolume leaf for flushing delayed items.
4358 	 */
4359 	src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4360 	if (!src)
4361 		return -ENOMEM;
4362 
4363 	i = src_path->slots[0];
4364 	btrfs_release_path(src_path);
4365 	src_path->nodes[0] = src;
4366 	src_path->slots[0] = i;
4367 
4368 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4369 			   nr * sizeof(u32), GFP_NOFS);
4370 	if (!ins_data)
4371 		return -ENOMEM;
4372 
4373 	ins_sizes = (u32 *)ins_data;
4374 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4375 	batch.keys = ins_keys;
4376 	batch.data_sizes = ins_sizes;
4377 	batch.total_data_size = 0;
4378 	batch.nr = 0;
4379 
4380 	dst_index = 0;
4381 	for (i = 0; i < nr; i++) {
4382 		const int src_slot = start_slot + i;
4383 		struct btrfs_root *csum_root;
4384 		struct btrfs_ordered_sum *sums;
4385 		struct btrfs_ordered_sum *sums_next;
4386 		LIST_HEAD(ordered_sums);
4387 		u64 disk_bytenr;
4388 		u64 disk_num_bytes;
4389 		u64 extent_offset;
4390 		u64 extent_num_bytes;
4391 		bool is_old_extent;
4392 
4393 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4394 
4395 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4396 			goto add_to_batch;
4397 
4398 		extent = btrfs_item_ptr(src, src_slot,
4399 					struct btrfs_file_extent_item);
4400 
4401 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4402 				 trans->transid);
4403 
4404 		/*
4405 		 * Don't copy extents from past generations. That would make us
4406 		 * log a lot more metadata for common cases like doing only a
4407 		 * few random writes into a file and then fsync it for the first
4408 		 * time or after the full sync flag is set on the inode. We can
4409 		 * get leaves full of extent items, most of which are from past
4410 		 * generations, so we can skip them - as long as the inode has
4411 		 * not been the target of a reflink operation in this transaction,
4412 		 * as in that case it might have had file extent items with old
4413 		 * generations copied into it. We also must always log prealloc
4414 		 * extents that start at or beyond eof, otherwise we would lose
4415 		 * them on log replay.
4416 		 */
4417 		if (is_old_extent &&
4418 		    ins_keys[dst_index].offset < i_size &&
4419 		    inode->last_reflink_trans < trans->transid)
4420 			continue;
4421 
4422 		if (skip_csum)
4423 			goto add_to_batch;
4424 
4425 		/* Only regular extents have checksums. */
4426 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4427 			goto add_to_batch;
4428 
4429 		/*
4430 		 * If it's an extent created in a past transaction, then its
4431 		 * checksums are already accessible from the committed csum tree,
4432 		 * no need to log them.
4433 		 */
4434 		if (is_old_extent)
4435 			goto add_to_batch;
4436 
4437 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4438 		/* If it's an explicit hole, there are no checksums. */
4439 		if (disk_bytenr == 0)
4440 			goto add_to_batch;
4441 
4442 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4443 
4444 		if (btrfs_file_extent_compression(src, extent)) {
4445 			extent_offset = 0;
4446 			extent_num_bytes = disk_num_bytes;
4447 		} else {
4448 			extent_offset = btrfs_file_extent_offset(src, extent);
4449 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4450 		}
4451 
4452 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4453 		disk_bytenr += extent_offset;
4454 		ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4455 					       disk_bytenr + extent_num_bytes - 1,
4456 					       &ordered_sums, 0, false);
4457 		if (ret)
4458 			goto out;
4459 
4460 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4461 			if (!ret)
4462 				ret = log_csums(trans, inode, log, sums);
4463 			list_del(&sums->list);
4464 			kfree(sums);
4465 		}
4466 		if (ret)
4467 			goto out;
4468 
4469 add_to_batch:
4470 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4471 		batch.total_data_size += ins_sizes[dst_index];
4472 		batch.nr++;
4473 		dst_index++;
4474 	}
4475 
4476 	/*
4477 	 * We have a leaf full of old extent items that don't need to be logged,
4478 	 * so we don't need to do anything.
4479 	 */
4480 	if (batch.nr == 0)
4481 		goto out;
4482 
4483 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4484 	if (ret)
4485 		goto out;
4486 
4487 	dst_index = 0;
4488 	for (i = 0; i < nr; i++) {
4489 		const int src_slot = start_slot + i;
4490 		const int dst_slot = dst_path->slots[0] + dst_index;
4491 		struct btrfs_key key;
4492 		unsigned long src_offset;
4493 		unsigned long dst_offset;
4494 
4495 		/*
4496 		 * We're done, all the remaining items in the source leaf
4497 		 * correspond to old file extent items.
4498 		 */
4499 		if (dst_index >= batch.nr)
4500 			break;
4501 
4502 		btrfs_item_key_to_cpu(src, &key, src_slot);
4503 
4504 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4505 			goto copy_item;
4506 
4507 		extent = btrfs_item_ptr(src, src_slot,
4508 					struct btrfs_file_extent_item);
4509 
4510 		/* See the comment in the previous loop, same logic. */
4511 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4512 		    key.offset < i_size &&
4513 		    inode->last_reflink_trans < trans->transid)
4514 			continue;
4515 
4516 copy_item:
4517 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4518 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4519 
4520 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4521 			struct btrfs_inode_item *inode_item;
4522 
4523 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4524 						    struct btrfs_inode_item);
4525 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4526 					&inode->vfs_inode,
4527 					inode_only == LOG_INODE_EXISTS,
4528 					logged_isize);
4529 		} else {
4530 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4531 					   src_offset, ins_sizes[dst_index]);
4532 		}
4533 
4534 		dst_index++;
4535 	}
4536 
4537 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4538 	btrfs_release_path(dst_path);
4539 out:
4540 	kfree(ins_data);
4541 
4542 	return ret;
4543 }
4544 
4545 static int extent_cmp(void *priv, const struct list_head *a,
4546 		      const struct list_head *b)
4547 {
4548 	const struct extent_map *em1, *em2;
4549 
4550 	em1 = list_entry(a, struct extent_map, list);
4551 	em2 = list_entry(b, struct extent_map, list);
4552 
4553 	if (em1->start < em2->start)
4554 		return -1;
4555 	else if (em1->start > em2->start)
4556 		return 1;
4557 	return 0;
4558 }
4559 
4560 static int log_extent_csums(struct btrfs_trans_handle *trans,
4561 			    struct btrfs_inode *inode,
4562 			    struct btrfs_root *log_root,
4563 			    const struct extent_map *em,
4564 			    struct btrfs_log_ctx *ctx)
4565 {
4566 	struct btrfs_ordered_extent *ordered;
4567 	struct btrfs_root *csum_root;
4568 	u64 csum_offset;
4569 	u64 csum_len;
4570 	u64 mod_start = em->mod_start;
4571 	u64 mod_len = em->mod_len;
4572 	LIST_HEAD(ordered_sums);
4573 	int ret = 0;
4574 
4575 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4576 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4577 	    em->block_start == EXTENT_MAP_HOLE)
4578 		return 0;
4579 
4580 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4581 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4582 		const u64 mod_end = mod_start + mod_len;
4583 		struct btrfs_ordered_sum *sums;
4584 
4585 		if (mod_len == 0)
4586 			break;
4587 
4588 		if (ordered_end <= mod_start)
4589 			continue;
4590 		if (mod_end <= ordered->file_offset)
4591 			break;
4592 
4593 		/*
4594 		 * We are going to copy all the csums on this ordered extent, so
4595 		 * go ahead and adjust mod_start and mod_len in case this ordered
4596 		 * extent has already been logged.
4597 		 */
4598 		if (ordered->file_offset > mod_start) {
4599 			if (ordered_end >= mod_end)
4600 				mod_len = ordered->file_offset - mod_start;
4601 			/*
4602 			 * If we have this case
4603 			 *
4604 			 * |--------- logged extent ---------|
4605 			 *       |----- ordered extent ----|
4606 			 *
4607 			 * Just don't mess with mod_start and mod_len, we'll
4608 			 * just end up logging more csums than we need and it
4609 			 * will be ok.
4610 			 */
4611 		} else {
4612 			if (ordered_end < mod_end) {
4613 				mod_len = mod_end - ordered_end;
4614 				mod_start = ordered_end;
4615 			} else {
4616 				mod_len = 0;
4617 			}
4618 		}
4619 
4620 		/*
4621 		 * To keep us from looping for the above case of an ordered
4622 		 * extent that falls inside of the logged extent.
4623 		 */
4624 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4625 			continue;
4626 
4627 		list_for_each_entry(sums, &ordered->list, list) {
4628 			ret = log_csums(trans, inode, log_root, sums);
4629 			if (ret)
4630 				return ret;
4631 		}
4632 	}
4633 
4634 	/* We're done, found all csums in the ordered extents. */
4635 	if (mod_len == 0)
4636 		return 0;
4637 
4638 	/* If we're compressed we have to save the entire range of csums. */
4639 	if (em->compress_type) {
4640 		csum_offset = 0;
4641 		csum_len = max(em->block_len, em->orig_block_len);
4642 	} else {
4643 		csum_offset = mod_start - em->start;
4644 		csum_len = mod_len;
4645 	}
4646 
4647 	/* block start is already adjusted for the file extent offset. */
4648 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4649 	ret = btrfs_lookup_csums_range(csum_root,
4650 				       em->block_start + csum_offset,
4651 				       em->block_start + csum_offset +
4652 				       csum_len - 1, &ordered_sums, 0, false);
4653 	if (ret)
4654 		return ret;
4655 
4656 	while (!list_empty(&ordered_sums)) {
4657 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4658 						   struct btrfs_ordered_sum,
4659 						   list);
4660 		if (!ret)
4661 			ret = log_csums(trans, inode, log_root, sums);
4662 		list_del(&sums->list);
4663 		kfree(sums);
4664 	}
4665 
4666 	return ret;
4667 }
4668 
4669 static int log_one_extent(struct btrfs_trans_handle *trans,
4670 			  struct btrfs_inode *inode,
4671 			  const struct extent_map *em,
4672 			  struct btrfs_path *path,
4673 			  struct btrfs_log_ctx *ctx)
4674 {
4675 	struct btrfs_drop_extents_args drop_args = { 0 };
4676 	struct btrfs_root *log = inode->root->log_root;
4677 	struct btrfs_file_extent_item fi = { 0 };
4678 	struct extent_buffer *leaf;
4679 	struct btrfs_key key;
4680 	u64 extent_offset = em->start - em->orig_start;
4681 	u64 block_len;
4682 	int ret;
4683 
4684 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4685 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4686 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4687 	else
4688 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4689 
4690 	block_len = max(em->block_len, em->orig_block_len);
4691 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4692 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4693 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4694 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4695 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4696 							extent_offset);
4697 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4698 	}
4699 
4700 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4701 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4702 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4703 	btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4704 
4705 	ret = log_extent_csums(trans, inode, log, em, ctx);
4706 	if (ret)
4707 		return ret;
4708 
4709 	/*
4710 	 * If this is the first time we are logging the inode in the current
4711 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4712 	 * because it does a deletion search, which always acquires write locks
4713 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4714 	 * but also adds significant contention in a log tree, since log trees
4715 	 * are small, with a root at level 2 or 3 at most, due to their short
4716 	 * life span.
4717 	 */
4718 	if (ctx->logged_before) {
4719 		drop_args.path = path;
4720 		drop_args.start = em->start;
4721 		drop_args.end = em->start + em->len;
4722 		drop_args.replace_extent = true;
4723 		drop_args.extent_item_size = sizeof(fi);
4724 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4725 		if (ret)
4726 			return ret;
4727 	}
4728 
4729 	if (!drop_args.extent_inserted) {
4730 		key.objectid = btrfs_ino(inode);
4731 		key.type = BTRFS_EXTENT_DATA_KEY;
4732 		key.offset = em->start;
4733 
4734 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4735 					      sizeof(fi));
4736 		if (ret)
4737 			return ret;
4738 	}
4739 	leaf = path->nodes[0];
4740 	write_extent_buffer(leaf, &fi,
4741 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4742 			    sizeof(fi));
4743 	btrfs_mark_buffer_dirty(leaf);
4744 
4745 	btrfs_release_path(path);
4746 
4747 	return ret;
4748 }
4749 
4750 /*
4751  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4752  * lose them after doing a full/fast fsync and replaying the log. We scan the
4753  * subvolume's root instead of iterating the inode's extent map tree because
4754  * otherwise we can log incorrect extent items based on extent map conversion.
4755  * That can happen due to the fact that extent maps are merged when they
4756  * are not in the extent map tree's list of modified extents.
4757  */
4758 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4759 				      struct btrfs_inode *inode,
4760 				      struct btrfs_path *path)
4761 {
4762 	struct btrfs_root *root = inode->root;
4763 	struct btrfs_key key;
4764 	const u64 i_size = i_size_read(&inode->vfs_inode);
4765 	const u64 ino = btrfs_ino(inode);
4766 	struct btrfs_path *dst_path = NULL;
4767 	bool dropped_extents = false;
4768 	u64 truncate_offset = i_size;
4769 	struct extent_buffer *leaf;
4770 	int slot;
4771 	int ins_nr = 0;
4772 	int start_slot;
4773 	int ret;
4774 
4775 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4776 		return 0;
4777 
4778 	key.objectid = ino;
4779 	key.type = BTRFS_EXTENT_DATA_KEY;
4780 	key.offset = i_size;
4781 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4782 	if (ret < 0)
4783 		goto out;
4784 
4785 	/*
4786 	 * We must check if there is a prealloc extent that starts before the
4787 	 * i_size and crosses the i_size boundary. This is to ensure later we
4788 	 * truncate down to the end of that extent and not to the i_size, as
4789 	 * otherwise we end up losing part of the prealloc extent after a log
4790 	 * replay and with an implicit hole if there is another prealloc extent
4791 	 * that starts at an offset beyond i_size.
4792 	 */
4793 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4794 	if (ret < 0)
4795 		goto out;
4796 
4797 	if (ret == 0) {
4798 		struct btrfs_file_extent_item *ei;
4799 
4800 		leaf = path->nodes[0];
4801 		slot = path->slots[0];
4802 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4803 
4804 		if (btrfs_file_extent_type(leaf, ei) ==
4805 		    BTRFS_FILE_EXTENT_PREALLOC) {
4806 			u64 extent_end;
4807 
4808 			btrfs_item_key_to_cpu(leaf, &key, slot);
4809 			extent_end = key.offset +
4810 				btrfs_file_extent_num_bytes(leaf, ei);
4811 
4812 			if (extent_end > i_size)
4813 				truncate_offset = extent_end;
4814 		}
4815 	} else {
4816 		ret = 0;
4817 	}
4818 
4819 	while (true) {
4820 		leaf = path->nodes[0];
4821 		slot = path->slots[0];
4822 
4823 		if (slot >= btrfs_header_nritems(leaf)) {
4824 			if (ins_nr > 0) {
4825 				ret = copy_items(trans, inode, dst_path, path,
4826 						 start_slot, ins_nr, 1, 0);
4827 				if (ret < 0)
4828 					goto out;
4829 				ins_nr = 0;
4830 			}
4831 			ret = btrfs_next_leaf(root, path);
4832 			if (ret < 0)
4833 				goto out;
4834 			if (ret > 0) {
4835 				ret = 0;
4836 				break;
4837 			}
4838 			continue;
4839 		}
4840 
4841 		btrfs_item_key_to_cpu(leaf, &key, slot);
4842 		if (key.objectid > ino)
4843 			break;
4844 		if (WARN_ON_ONCE(key.objectid < ino) ||
4845 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4846 		    key.offset < i_size) {
4847 			path->slots[0]++;
4848 			continue;
4849 		}
4850 		if (!dropped_extents) {
4851 			/*
4852 			 * Avoid logging extent items logged in past fsync calls
4853 			 * and leading to duplicate keys in the log tree.
4854 			 */
4855 			ret = truncate_inode_items(trans, root->log_root, inode,
4856 						   truncate_offset,
4857 						   BTRFS_EXTENT_DATA_KEY);
4858 			if (ret)
4859 				goto out;
4860 			dropped_extents = true;
4861 		}
4862 		if (ins_nr == 0)
4863 			start_slot = slot;
4864 		ins_nr++;
4865 		path->slots[0]++;
4866 		if (!dst_path) {
4867 			dst_path = btrfs_alloc_path();
4868 			if (!dst_path) {
4869 				ret = -ENOMEM;
4870 				goto out;
4871 			}
4872 		}
4873 	}
4874 	if (ins_nr > 0)
4875 		ret = copy_items(trans, inode, dst_path, path,
4876 				 start_slot, ins_nr, 1, 0);
4877 out:
4878 	btrfs_release_path(path);
4879 	btrfs_free_path(dst_path);
4880 	return ret;
4881 }
4882 
4883 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4884 				     struct btrfs_inode *inode,
4885 				     struct btrfs_path *path,
4886 				     struct btrfs_log_ctx *ctx)
4887 {
4888 	struct btrfs_ordered_extent *ordered;
4889 	struct btrfs_ordered_extent *tmp;
4890 	struct extent_map *em, *n;
4891 	struct list_head extents;
4892 	struct extent_map_tree *tree = &inode->extent_tree;
4893 	int ret = 0;
4894 	int num = 0;
4895 
4896 	INIT_LIST_HEAD(&extents);
4897 
4898 	write_lock(&tree->lock);
4899 
4900 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4901 		list_del_init(&em->list);
4902 		/*
4903 		 * Just an arbitrary number, this can be really CPU intensive
4904 		 * once we start getting a lot of extents, and really once we
4905 		 * have a bunch of extents we just want to commit since it will
4906 		 * be faster.
4907 		 */
4908 		if (++num > 32768) {
4909 			list_del_init(&tree->modified_extents);
4910 			ret = -EFBIG;
4911 			goto process;
4912 		}
4913 
4914 		if (em->generation < trans->transid)
4915 			continue;
4916 
4917 		/* We log prealloc extents beyond eof later. */
4918 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4919 		    em->start >= i_size_read(&inode->vfs_inode))
4920 			continue;
4921 
4922 		/* Need a ref to keep it from getting evicted from cache */
4923 		refcount_inc(&em->refs);
4924 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4925 		list_add_tail(&em->list, &extents);
4926 		num++;
4927 	}
4928 
4929 	list_sort(NULL, &extents, extent_cmp);
4930 process:
4931 	while (!list_empty(&extents)) {
4932 		em = list_entry(extents.next, struct extent_map, list);
4933 
4934 		list_del_init(&em->list);
4935 
4936 		/*
4937 		 * If we had an error we just need to delete everybody from our
4938 		 * private list.
4939 		 */
4940 		if (ret) {
4941 			clear_em_logging(tree, em);
4942 			free_extent_map(em);
4943 			continue;
4944 		}
4945 
4946 		write_unlock(&tree->lock);
4947 
4948 		ret = log_one_extent(trans, inode, em, path, ctx);
4949 		write_lock(&tree->lock);
4950 		clear_em_logging(tree, em);
4951 		free_extent_map(em);
4952 	}
4953 	WARN_ON(!list_empty(&extents));
4954 	write_unlock(&tree->lock);
4955 
4956 	if (!ret)
4957 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4958 	if (ret)
4959 		return ret;
4960 
4961 	/*
4962 	 * We have logged all extents successfully, now make sure the commit of
4963 	 * the current transaction waits for the ordered extents to complete
4964 	 * before it commits and wipes out the log trees, otherwise we would
4965 	 * lose data if an ordered extents completes after the transaction
4966 	 * commits and a power failure happens after the transaction commit.
4967 	 */
4968 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4969 		list_del_init(&ordered->log_list);
4970 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4971 
4972 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4973 			spin_lock_irq(&inode->ordered_tree.lock);
4974 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4975 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4976 				atomic_inc(&trans->transaction->pending_ordered);
4977 			}
4978 			spin_unlock_irq(&inode->ordered_tree.lock);
4979 		}
4980 		btrfs_put_ordered_extent(ordered);
4981 	}
4982 
4983 	return 0;
4984 }
4985 
4986 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4987 			     struct btrfs_path *path, u64 *size_ret)
4988 {
4989 	struct btrfs_key key;
4990 	int ret;
4991 
4992 	key.objectid = btrfs_ino(inode);
4993 	key.type = BTRFS_INODE_ITEM_KEY;
4994 	key.offset = 0;
4995 
4996 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4997 	if (ret < 0) {
4998 		return ret;
4999 	} else if (ret > 0) {
5000 		*size_ret = 0;
5001 	} else {
5002 		struct btrfs_inode_item *item;
5003 
5004 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5005 				      struct btrfs_inode_item);
5006 		*size_ret = btrfs_inode_size(path->nodes[0], item);
5007 		/*
5008 		 * If the in-memory inode's i_size is smaller then the inode
5009 		 * size stored in the btree, return the inode's i_size, so
5010 		 * that we get a correct inode size after replaying the log
5011 		 * when before a power failure we had a shrinking truncate
5012 		 * followed by addition of a new name (rename / new hard link).
5013 		 * Otherwise return the inode size from the btree, to avoid
5014 		 * data loss when replaying a log due to previously doing a
5015 		 * write that expands the inode's size and logging a new name
5016 		 * immediately after.
5017 		 */
5018 		if (*size_ret > inode->vfs_inode.i_size)
5019 			*size_ret = inode->vfs_inode.i_size;
5020 	}
5021 
5022 	btrfs_release_path(path);
5023 	return 0;
5024 }
5025 
5026 /*
5027  * At the moment we always log all xattrs. This is to figure out at log replay
5028  * time which xattrs must have their deletion replayed. If a xattr is missing
5029  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5030  * because if a xattr is deleted, the inode is fsynced and a power failure
5031  * happens, causing the log to be replayed the next time the fs is mounted,
5032  * we want the xattr to not exist anymore (same behaviour as other filesystems
5033  * with a journal, ext3/4, xfs, f2fs, etc).
5034  */
5035 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5036 				struct btrfs_inode *inode,
5037 				struct btrfs_path *path,
5038 				struct btrfs_path *dst_path)
5039 {
5040 	struct btrfs_root *root = inode->root;
5041 	int ret;
5042 	struct btrfs_key key;
5043 	const u64 ino = btrfs_ino(inode);
5044 	int ins_nr = 0;
5045 	int start_slot = 0;
5046 	bool found_xattrs = false;
5047 
5048 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5049 		return 0;
5050 
5051 	key.objectid = ino;
5052 	key.type = BTRFS_XATTR_ITEM_KEY;
5053 	key.offset = 0;
5054 
5055 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5056 	if (ret < 0)
5057 		return ret;
5058 
5059 	while (true) {
5060 		int slot = path->slots[0];
5061 		struct extent_buffer *leaf = path->nodes[0];
5062 		int nritems = btrfs_header_nritems(leaf);
5063 
5064 		if (slot >= nritems) {
5065 			if (ins_nr > 0) {
5066 				ret = copy_items(trans, inode, dst_path, path,
5067 						 start_slot, ins_nr, 1, 0);
5068 				if (ret < 0)
5069 					return ret;
5070 				ins_nr = 0;
5071 			}
5072 			ret = btrfs_next_leaf(root, path);
5073 			if (ret < 0)
5074 				return ret;
5075 			else if (ret > 0)
5076 				break;
5077 			continue;
5078 		}
5079 
5080 		btrfs_item_key_to_cpu(leaf, &key, slot);
5081 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5082 			break;
5083 
5084 		if (ins_nr == 0)
5085 			start_slot = slot;
5086 		ins_nr++;
5087 		path->slots[0]++;
5088 		found_xattrs = true;
5089 		cond_resched();
5090 	}
5091 	if (ins_nr > 0) {
5092 		ret = copy_items(trans, inode, dst_path, path,
5093 				 start_slot, ins_nr, 1, 0);
5094 		if (ret < 0)
5095 			return ret;
5096 	}
5097 
5098 	if (!found_xattrs)
5099 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5100 
5101 	return 0;
5102 }
5103 
5104 /*
5105  * When using the NO_HOLES feature if we punched a hole that causes the
5106  * deletion of entire leafs or all the extent items of the first leaf (the one
5107  * that contains the inode item and references) we may end up not processing
5108  * any extents, because there are no leafs with a generation matching the
5109  * current transaction that have extent items for our inode. So we need to find
5110  * if any holes exist and then log them. We also need to log holes after any
5111  * truncate operation that changes the inode's size.
5112  */
5113 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5114 			   struct btrfs_inode *inode,
5115 			   struct btrfs_path *path)
5116 {
5117 	struct btrfs_root *root = inode->root;
5118 	struct btrfs_fs_info *fs_info = root->fs_info;
5119 	struct btrfs_key key;
5120 	const u64 ino = btrfs_ino(inode);
5121 	const u64 i_size = i_size_read(&inode->vfs_inode);
5122 	u64 prev_extent_end = 0;
5123 	int ret;
5124 
5125 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5126 		return 0;
5127 
5128 	key.objectid = ino;
5129 	key.type = BTRFS_EXTENT_DATA_KEY;
5130 	key.offset = 0;
5131 
5132 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5133 	if (ret < 0)
5134 		return ret;
5135 
5136 	while (true) {
5137 		struct extent_buffer *leaf = path->nodes[0];
5138 
5139 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5140 			ret = btrfs_next_leaf(root, path);
5141 			if (ret < 0)
5142 				return ret;
5143 			if (ret > 0) {
5144 				ret = 0;
5145 				break;
5146 			}
5147 			leaf = path->nodes[0];
5148 		}
5149 
5150 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5151 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5152 			break;
5153 
5154 		/* We have a hole, log it. */
5155 		if (prev_extent_end < key.offset) {
5156 			const u64 hole_len = key.offset - prev_extent_end;
5157 
5158 			/*
5159 			 * Release the path to avoid deadlocks with other code
5160 			 * paths that search the root while holding locks on
5161 			 * leafs from the log root.
5162 			 */
5163 			btrfs_release_path(path);
5164 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5165 						       ino, prev_extent_end,
5166 						       hole_len);
5167 			if (ret < 0)
5168 				return ret;
5169 
5170 			/*
5171 			 * Search for the same key again in the root. Since it's
5172 			 * an extent item and we are holding the inode lock, the
5173 			 * key must still exist. If it doesn't just emit warning
5174 			 * and return an error to fall back to a transaction
5175 			 * commit.
5176 			 */
5177 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5178 			if (ret < 0)
5179 				return ret;
5180 			if (WARN_ON(ret > 0))
5181 				return -ENOENT;
5182 			leaf = path->nodes[0];
5183 		}
5184 
5185 		prev_extent_end = btrfs_file_extent_end(path);
5186 		path->slots[0]++;
5187 		cond_resched();
5188 	}
5189 
5190 	if (prev_extent_end < i_size) {
5191 		u64 hole_len;
5192 
5193 		btrfs_release_path(path);
5194 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5195 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5196 					       prev_extent_end, hole_len);
5197 		if (ret < 0)
5198 			return ret;
5199 	}
5200 
5201 	return 0;
5202 }
5203 
5204 /*
5205  * When we are logging a new inode X, check if it doesn't have a reference that
5206  * matches the reference from some other inode Y created in a past transaction
5207  * and that was renamed in the current transaction. If we don't do this, then at
5208  * log replay time we can lose inode Y (and all its files if it's a directory):
5209  *
5210  * mkdir /mnt/x
5211  * echo "hello world" > /mnt/x/foobar
5212  * sync
5213  * mv /mnt/x /mnt/y
5214  * mkdir /mnt/x                 # or touch /mnt/x
5215  * xfs_io -c fsync /mnt/x
5216  * <power fail>
5217  * mount fs, trigger log replay
5218  *
5219  * After the log replay procedure, we would lose the first directory and all its
5220  * files (file foobar).
5221  * For the case where inode Y is not a directory we simply end up losing it:
5222  *
5223  * echo "123" > /mnt/foo
5224  * sync
5225  * mv /mnt/foo /mnt/bar
5226  * echo "abc" > /mnt/foo
5227  * xfs_io -c fsync /mnt/foo
5228  * <power fail>
5229  *
5230  * We also need this for cases where a snapshot entry is replaced by some other
5231  * entry (file or directory) otherwise we end up with an unreplayable log due to
5232  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5233  * if it were a regular entry:
5234  *
5235  * mkdir /mnt/x
5236  * btrfs subvolume snapshot /mnt /mnt/x/snap
5237  * btrfs subvolume delete /mnt/x/snap
5238  * rmdir /mnt/x
5239  * mkdir /mnt/x
5240  * fsync /mnt/x or fsync some new file inside it
5241  * <power fail>
5242  *
5243  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5244  * the same transaction.
5245  */
5246 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5247 					 const int slot,
5248 					 const struct btrfs_key *key,
5249 					 struct btrfs_inode *inode,
5250 					 u64 *other_ino, u64 *other_parent)
5251 {
5252 	int ret;
5253 	struct btrfs_path *search_path;
5254 	char *name = NULL;
5255 	u32 name_len = 0;
5256 	u32 item_size = btrfs_item_size(eb, slot);
5257 	u32 cur_offset = 0;
5258 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5259 
5260 	search_path = btrfs_alloc_path();
5261 	if (!search_path)
5262 		return -ENOMEM;
5263 	search_path->search_commit_root = 1;
5264 	search_path->skip_locking = 1;
5265 
5266 	while (cur_offset < item_size) {
5267 		u64 parent;
5268 		u32 this_name_len;
5269 		u32 this_len;
5270 		unsigned long name_ptr;
5271 		struct btrfs_dir_item *di;
5272 
5273 		if (key->type == BTRFS_INODE_REF_KEY) {
5274 			struct btrfs_inode_ref *iref;
5275 
5276 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5277 			parent = key->offset;
5278 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5279 			name_ptr = (unsigned long)(iref + 1);
5280 			this_len = sizeof(*iref) + this_name_len;
5281 		} else {
5282 			struct btrfs_inode_extref *extref;
5283 
5284 			extref = (struct btrfs_inode_extref *)(ptr +
5285 							       cur_offset);
5286 			parent = btrfs_inode_extref_parent(eb, extref);
5287 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5288 			name_ptr = (unsigned long)&extref->name;
5289 			this_len = sizeof(*extref) + this_name_len;
5290 		}
5291 
5292 		if (this_name_len > name_len) {
5293 			char *new_name;
5294 
5295 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5296 			if (!new_name) {
5297 				ret = -ENOMEM;
5298 				goto out;
5299 			}
5300 			name_len = this_name_len;
5301 			name = new_name;
5302 		}
5303 
5304 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5305 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5306 				parent, name, this_name_len, 0);
5307 		if (di && !IS_ERR(di)) {
5308 			struct btrfs_key di_key;
5309 
5310 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5311 						  di, &di_key);
5312 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5313 				if (di_key.objectid != key->objectid) {
5314 					ret = 1;
5315 					*other_ino = di_key.objectid;
5316 					*other_parent = parent;
5317 				} else {
5318 					ret = 0;
5319 				}
5320 			} else {
5321 				ret = -EAGAIN;
5322 			}
5323 			goto out;
5324 		} else if (IS_ERR(di)) {
5325 			ret = PTR_ERR(di);
5326 			goto out;
5327 		}
5328 		btrfs_release_path(search_path);
5329 
5330 		cur_offset += this_len;
5331 	}
5332 	ret = 0;
5333 out:
5334 	btrfs_free_path(search_path);
5335 	kfree(name);
5336 	return ret;
5337 }
5338 
5339 /*
5340  * Check if we need to log an inode. This is used in contexts where while
5341  * logging an inode we need to log another inode (either that it exists or in
5342  * full mode). This is used instead of btrfs_inode_in_log() because the later
5343  * requires the inode to be in the log and have the log transaction committed,
5344  * while here we do not care if the log transaction was already committed - our
5345  * caller will commit the log later - and we want to avoid logging an inode
5346  * multiple times when multiple tasks have joined the same log transaction.
5347  */
5348 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5349 			   const struct btrfs_inode *inode)
5350 {
5351 	/*
5352 	 * If a directory was not modified, no dentries added or removed, we can
5353 	 * and should avoid logging it.
5354 	 */
5355 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5356 		return false;
5357 
5358 	/*
5359 	 * If this inode does not have new/updated/deleted xattrs since the last
5360 	 * time it was logged and is flagged as logged in the current transaction,
5361 	 * we can skip logging it. As for new/deleted names, those are updated in
5362 	 * the log by link/unlink/rename operations.
5363 	 * In case the inode was logged and then evicted and reloaded, its
5364 	 * logged_trans will be 0, in which case we have to fully log it since
5365 	 * logged_trans is a transient field, not persisted.
5366 	 */
5367 	if (inode->logged_trans == trans->transid &&
5368 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5369 		return false;
5370 
5371 	return true;
5372 }
5373 
5374 struct btrfs_dir_list {
5375 	u64 ino;
5376 	struct list_head list;
5377 };
5378 
5379 /*
5380  * Log the inodes of the new dentries of a directory.
5381  * See process_dir_items_leaf() for details about why it is needed.
5382  * This is a recursive operation - if an existing dentry corresponds to a
5383  * directory, that directory's new entries are logged too (same behaviour as
5384  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5385  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5386  * complains about the following circular lock dependency / possible deadlock:
5387  *
5388  *        CPU0                                        CPU1
5389  *        ----                                        ----
5390  * lock(&type->i_mutex_dir_key#3/2);
5391  *                                            lock(sb_internal#2);
5392  *                                            lock(&type->i_mutex_dir_key#3/2);
5393  * lock(&sb->s_type->i_mutex_key#14);
5394  *
5395  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5396  * sb_start_intwrite() in btrfs_start_transaction().
5397  * Not acquiring the VFS lock of the inodes is still safe because:
5398  *
5399  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5400  *    that while logging the inode new references (names) are added or removed
5401  *    from the inode, leaving the logged inode item with a link count that does
5402  *    not match the number of logged inode reference items. This is fine because
5403  *    at log replay time we compute the real number of links and correct the
5404  *    link count in the inode item (see replay_one_buffer() and
5405  *    link_to_fixup_dir());
5406  *
5407  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5408  *    while logging the inode's items new index items (key type
5409  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5410  *    has a size that doesn't match the sum of the lengths of all the logged
5411  *    names - this is ok, not a problem, because at log replay time we set the
5412  *    directory's i_size to the correct value (see replay_one_name() and
5413  *    do_overwrite_item()).
5414  */
5415 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5416 				struct btrfs_inode *start_inode,
5417 				struct btrfs_log_ctx *ctx)
5418 {
5419 	struct btrfs_root *root = start_inode->root;
5420 	struct btrfs_fs_info *fs_info = root->fs_info;
5421 	struct btrfs_path *path;
5422 	LIST_HEAD(dir_list);
5423 	struct btrfs_dir_list *dir_elem;
5424 	u64 ino = btrfs_ino(start_inode);
5425 	int ret = 0;
5426 
5427 	/*
5428 	 * If we are logging a new name, as part of a link or rename operation,
5429 	 * don't bother logging new dentries, as we just want to log the names
5430 	 * of an inode and that any new parents exist.
5431 	 */
5432 	if (ctx->logging_new_name)
5433 		return 0;
5434 
5435 	path = btrfs_alloc_path();
5436 	if (!path)
5437 		return -ENOMEM;
5438 
5439 	while (true) {
5440 		struct extent_buffer *leaf;
5441 		struct btrfs_key min_key;
5442 		bool continue_curr_inode = true;
5443 		int nritems;
5444 		int i;
5445 
5446 		min_key.objectid = ino;
5447 		min_key.type = BTRFS_DIR_INDEX_KEY;
5448 		min_key.offset = 0;
5449 again:
5450 		btrfs_release_path(path);
5451 		ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5452 		if (ret < 0) {
5453 			break;
5454 		} else if (ret > 0) {
5455 			ret = 0;
5456 			goto next;
5457 		}
5458 
5459 		leaf = path->nodes[0];
5460 		nritems = btrfs_header_nritems(leaf);
5461 		for (i = path->slots[0]; i < nritems; i++) {
5462 			struct btrfs_dir_item *di;
5463 			struct btrfs_key di_key;
5464 			struct inode *di_inode;
5465 			int log_mode = LOG_INODE_EXISTS;
5466 			int type;
5467 
5468 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5469 			if (min_key.objectid != ino ||
5470 			    min_key.type != BTRFS_DIR_INDEX_KEY) {
5471 				continue_curr_inode = false;
5472 				break;
5473 			}
5474 
5475 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5476 			type = btrfs_dir_type(leaf, di);
5477 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5478 				continue;
5479 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5480 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5481 				continue;
5482 
5483 			btrfs_release_path(path);
5484 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5485 			if (IS_ERR(di_inode)) {
5486 				ret = PTR_ERR(di_inode);
5487 				goto out;
5488 			}
5489 
5490 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5491 				btrfs_add_delayed_iput(di_inode);
5492 				break;
5493 			}
5494 
5495 			ctx->log_new_dentries = false;
5496 			if (type == BTRFS_FT_DIR)
5497 				log_mode = LOG_INODE_ALL;
5498 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5499 					      log_mode, ctx);
5500 			btrfs_add_delayed_iput(di_inode);
5501 			if (ret)
5502 				goto out;
5503 			if (ctx->log_new_dentries) {
5504 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5505 				if (!dir_elem) {
5506 					ret = -ENOMEM;
5507 					goto out;
5508 				}
5509 				dir_elem->ino = di_key.objectid;
5510 				list_add_tail(&dir_elem->list, &dir_list);
5511 			}
5512 			break;
5513 		}
5514 
5515 		if (continue_curr_inode && min_key.offset < (u64)-1) {
5516 			min_key.offset++;
5517 			goto again;
5518 		}
5519 
5520 next:
5521 		if (list_empty(&dir_list))
5522 			break;
5523 
5524 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5525 		ino = dir_elem->ino;
5526 		list_del(&dir_elem->list);
5527 		kfree(dir_elem);
5528 	}
5529 out:
5530 	btrfs_free_path(path);
5531 	if (ret) {
5532 		struct btrfs_dir_list *next;
5533 
5534 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5535 			kfree(dir_elem);
5536 	}
5537 
5538 	return ret;
5539 }
5540 
5541 struct btrfs_ino_list {
5542 	u64 ino;
5543 	u64 parent;
5544 	struct list_head list;
5545 };
5546 
5547 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5548 {
5549 	struct btrfs_ino_list *curr;
5550 	struct btrfs_ino_list *next;
5551 
5552 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5553 		list_del(&curr->list);
5554 		kfree(curr);
5555 	}
5556 }
5557 
5558 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5559 				    struct btrfs_path *path)
5560 {
5561 	struct btrfs_key key;
5562 	int ret;
5563 
5564 	key.objectid = ino;
5565 	key.type = BTRFS_INODE_ITEM_KEY;
5566 	key.offset = 0;
5567 
5568 	path->search_commit_root = 1;
5569 	path->skip_locking = 1;
5570 
5571 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5572 	if (WARN_ON_ONCE(ret > 0)) {
5573 		/*
5574 		 * We have previously found the inode through the commit root
5575 		 * so this should not happen. If it does, just error out and
5576 		 * fallback to a transaction commit.
5577 		 */
5578 		ret = -ENOENT;
5579 	} else if (ret == 0) {
5580 		struct btrfs_inode_item *item;
5581 
5582 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5583 				      struct btrfs_inode_item);
5584 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5585 			ret = 1;
5586 	}
5587 
5588 	btrfs_release_path(path);
5589 	path->search_commit_root = 0;
5590 	path->skip_locking = 0;
5591 
5592 	return ret;
5593 }
5594 
5595 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5596 				 struct btrfs_root *root,
5597 				 struct btrfs_path *path,
5598 				 u64 ino, u64 parent,
5599 				 struct btrfs_log_ctx *ctx)
5600 {
5601 	struct btrfs_ino_list *ino_elem;
5602 	struct inode *inode;
5603 
5604 	/*
5605 	 * It's rare to have a lot of conflicting inodes, in practice it is not
5606 	 * common to have more than 1 or 2. We don't want to collect too many,
5607 	 * as we could end up logging too many inodes (even if only in
5608 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5609 	 * commits.
5610 	 */
5611 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5612 		return BTRFS_LOG_FORCE_COMMIT;
5613 
5614 	inode = btrfs_iget(root->fs_info->sb, ino, root);
5615 	/*
5616 	 * If the other inode that had a conflicting dir entry was deleted in
5617 	 * the current transaction then we either:
5618 	 *
5619 	 * 1) Log the parent directory (later after adding it to the list) if
5620 	 *    the inode is a directory. This is because it may be a deleted
5621 	 *    subvolume/snapshot or it may be a regular directory that had
5622 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5623 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5624 	 *    during log replay. So we just log the parent, which will result in
5625 	 *    a fallback to a transaction commit if we are dealing with those
5626 	 *    cases (last_unlink_trans will match the current transaction);
5627 	 *
5628 	 * 2) Do nothing if it's not a directory. During log replay we simply
5629 	 *    unlink the conflicting dentry from the parent directory and then
5630 	 *    add the dentry for our inode. Like this we can avoid logging the
5631 	 *    parent directory (and maybe fallback to a transaction commit in
5632 	 *    case it has a last_unlink_trans == trans->transid, due to moving
5633 	 *    some inode from it to some other directory).
5634 	 */
5635 	if (IS_ERR(inode)) {
5636 		int ret = PTR_ERR(inode);
5637 
5638 		if (ret != -ENOENT)
5639 			return ret;
5640 
5641 		ret = conflicting_inode_is_dir(root, ino, path);
5642 		/* Not a directory or we got an error. */
5643 		if (ret <= 0)
5644 			return ret;
5645 
5646 		/* Conflicting inode is a directory, so we'll log its parent. */
5647 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5648 		if (!ino_elem)
5649 			return -ENOMEM;
5650 		ino_elem->ino = ino;
5651 		ino_elem->parent = parent;
5652 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5653 		ctx->num_conflict_inodes++;
5654 
5655 		return 0;
5656 	}
5657 
5658 	/*
5659 	 * If the inode was already logged skip it - otherwise we can hit an
5660 	 * infinite loop. Example:
5661 	 *
5662 	 * From the commit root (previous transaction) we have the following
5663 	 * inodes:
5664 	 *
5665 	 * inode 257 a directory
5666 	 * inode 258 with references "zz" and "zz_link" on inode 257
5667 	 * inode 259 with reference "a" on inode 257
5668 	 *
5669 	 * And in the current (uncommitted) transaction we have:
5670 	 *
5671 	 * inode 257 a directory, unchanged
5672 	 * inode 258 with references "a" and "a2" on inode 257
5673 	 * inode 259 with reference "zz_link" on inode 257
5674 	 * inode 261 with reference "zz" on inode 257
5675 	 *
5676 	 * When logging inode 261 the following infinite loop could
5677 	 * happen if we don't skip already logged inodes:
5678 	 *
5679 	 * - we detect inode 258 as a conflicting inode, with inode 261
5680 	 *   on reference "zz", and log it;
5681 	 *
5682 	 * - we detect inode 259 as a conflicting inode, with inode 258
5683 	 *   on reference "a", and log it;
5684 	 *
5685 	 * - we detect inode 258 as a conflicting inode, with inode 259
5686 	 *   on reference "zz_link", and log it - again! After this we
5687 	 *   repeat the above steps forever.
5688 	 *
5689 	 * Here we can use need_log_inode() because we only need to log the
5690 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5691 	 * so that the log ends up with the new name and without the old name.
5692 	 */
5693 	if (!need_log_inode(trans, BTRFS_I(inode))) {
5694 		btrfs_add_delayed_iput(inode);
5695 		return 0;
5696 	}
5697 
5698 	btrfs_add_delayed_iput(inode);
5699 
5700 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5701 	if (!ino_elem)
5702 		return -ENOMEM;
5703 	ino_elem->ino = ino;
5704 	ino_elem->parent = parent;
5705 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5706 	ctx->num_conflict_inodes++;
5707 
5708 	return 0;
5709 }
5710 
5711 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5712 				  struct btrfs_root *root,
5713 				  struct btrfs_log_ctx *ctx)
5714 {
5715 	struct btrfs_fs_info *fs_info = root->fs_info;
5716 	int ret = 0;
5717 
5718 	/*
5719 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5720 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5721 	 * calls. This check guarantees we can have only 1 level of recursion.
5722 	 */
5723 	if (ctx->logging_conflict_inodes)
5724 		return 0;
5725 
5726 	ctx->logging_conflict_inodes = true;
5727 
5728 	/*
5729 	 * New conflicting inodes may be found and added to the list while we
5730 	 * are logging a conflicting inode, so keep iterating while the list is
5731 	 * not empty.
5732 	 */
5733 	while (!list_empty(&ctx->conflict_inodes)) {
5734 		struct btrfs_ino_list *curr;
5735 		struct inode *inode;
5736 		u64 ino;
5737 		u64 parent;
5738 
5739 		curr = list_first_entry(&ctx->conflict_inodes,
5740 					struct btrfs_ino_list, list);
5741 		ino = curr->ino;
5742 		parent = curr->parent;
5743 		list_del(&curr->list);
5744 		kfree(curr);
5745 
5746 		inode = btrfs_iget(fs_info->sb, ino, root);
5747 		/*
5748 		 * If the other inode that had a conflicting dir entry was
5749 		 * deleted in the current transaction, we need to log its parent
5750 		 * directory. See the comment at add_conflicting_inode().
5751 		 */
5752 		if (IS_ERR(inode)) {
5753 			ret = PTR_ERR(inode);
5754 			if (ret != -ENOENT)
5755 				break;
5756 
5757 			inode = btrfs_iget(fs_info->sb, parent, root);
5758 			if (IS_ERR(inode)) {
5759 				ret = PTR_ERR(inode);
5760 				break;
5761 			}
5762 
5763 			/*
5764 			 * Always log the directory, we cannot make this
5765 			 * conditional on need_log_inode() because the directory
5766 			 * might have been logged in LOG_INODE_EXISTS mode or
5767 			 * the dir index of the conflicting inode is not in a
5768 			 * dir index key range logged for the directory. So we
5769 			 * must make sure the deletion is recorded.
5770 			 */
5771 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5772 					      LOG_INODE_ALL, ctx);
5773 			btrfs_add_delayed_iput(inode);
5774 			if (ret)
5775 				break;
5776 			continue;
5777 		}
5778 
5779 		/*
5780 		 * Here we can use need_log_inode() because we only need to log
5781 		 * the inode in LOG_INODE_EXISTS mode and rename operations
5782 		 * update the log, so that the log ends up with the new name and
5783 		 * without the old name.
5784 		 *
5785 		 * We did this check at add_conflicting_inode(), but here we do
5786 		 * it again because if some other task logged the inode after
5787 		 * that, we can avoid doing it again.
5788 		 */
5789 		if (!need_log_inode(trans, BTRFS_I(inode))) {
5790 			btrfs_add_delayed_iput(inode);
5791 			continue;
5792 		}
5793 
5794 		/*
5795 		 * We are safe logging the other inode without acquiring its
5796 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5797 		 * are safe against concurrent renames of the other inode as
5798 		 * well because during a rename we pin the log and update the
5799 		 * log with the new name before we unpin it.
5800 		 */
5801 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5802 		btrfs_add_delayed_iput(inode);
5803 		if (ret)
5804 			break;
5805 	}
5806 
5807 	ctx->logging_conflict_inodes = false;
5808 	if (ret)
5809 		free_conflicting_inodes(ctx);
5810 
5811 	return ret;
5812 }
5813 
5814 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5815 				   struct btrfs_inode *inode,
5816 				   struct btrfs_key *min_key,
5817 				   const struct btrfs_key *max_key,
5818 				   struct btrfs_path *path,
5819 				   struct btrfs_path *dst_path,
5820 				   const u64 logged_isize,
5821 				   const int inode_only,
5822 				   struct btrfs_log_ctx *ctx,
5823 				   bool *need_log_inode_item)
5824 {
5825 	const u64 i_size = i_size_read(&inode->vfs_inode);
5826 	struct btrfs_root *root = inode->root;
5827 	int ins_start_slot = 0;
5828 	int ins_nr = 0;
5829 	int ret;
5830 
5831 	while (1) {
5832 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5833 		if (ret < 0)
5834 			return ret;
5835 		if (ret > 0) {
5836 			ret = 0;
5837 			break;
5838 		}
5839 again:
5840 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5841 		if (min_key->objectid != max_key->objectid)
5842 			break;
5843 		if (min_key->type > max_key->type)
5844 			break;
5845 
5846 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5847 			*need_log_inode_item = false;
5848 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5849 			   min_key->offset >= i_size) {
5850 			/*
5851 			 * Extents at and beyond eof are logged with
5852 			 * btrfs_log_prealloc_extents().
5853 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5854 			 * and no keys greater than that, so bail out.
5855 			 */
5856 			break;
5857 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5858 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5859 			   (inode->generation == trans->transid ||
5860 			    ctx->logging_conflict_inodes)) {
5861 			u64 other_ino = 0;
5862 			u64 other_parent = 0;
5863 
5864 			ret = btrfs_check_ref_name_override(path->nodes[0],
5865 					path->slots[0], min_key, inode,
5866 					&other_ino, &other_parent);
5867 			if (ret < 0) {
5868 				return ret;
5869 			} else if (ret > 0 &&
5870 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5871 				if (ins_nr > 0) {
5872 					ins_nr++;
5873 				} else {
5874 					ins_nr = 1;
5875 					ins_start_slot = path->slots[0];
5876 				}
5877 				ret = copy_items(trans, inode, dst_path, path,
5878 						 ins_start_slot, ins_nr,
5879 						 inode_only, logged_isize);
5880 				if (ret < 0)
5881 					return ret;
5882 				ins_nr = 0;
5883 
5884 				btrfs_release_path(path);
5885 				ret = add_conflicting_inode(trans, root, path,
5886 							    other_ino,
5887 							    other_parent, ctx);
5888 				if (ret)
5889 					return ret;
5890 				goto next_key;
5891 			}
5892 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5893 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5894 			if (ins_nr == 0)
5895 				goto next_slot;
5896 			ret = copy_items(trans, inode, dst_path, path,
5897 					 ins_start_slot,
5898 					 ins_nr, inode_only, logged_isize);
5899 			if (ret < 0)
5900 				return ret;
5901 			ins_nr = 0;
5902 			goto next_slot;
5903 		}
5904 
5905 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5906 			ins_nr++;
5907 			goto next_slot;
5908 		} else if (!ins_nr) {
5909 			ins_start_slot = path->slots[0];
5910 			ins_nr = 1;
5911 			goto next_slot;
5912 		}
5913 
5914 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5915 				 ins_nr, inode_only, logged_isize);
5916 		if (ret < 0)
5917 			return ret;
5918 		ins_nr = 1;
5919 		ins_start_slot = path->slots[0];
5920 next_slot:
5921 		path->slots[0]++;
5922 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5923 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5924 					      path->slots[0]);
5925 			goto again;
5926 		}
5927 		if (ins_nr) {
5928 			ret = copy_items(trans, inode, dst_path, path,
5929 					 ins_start_slot, ins_nr, inode_only,
5930 					 logged_isize);
5931 			if (ret < 0)
5932 				return ret;
5933 			ins_nr = 0;
5934 		}
5935 		btrfs_release_path(path);
5936 next_key:
5937 		if (min_key->offset < (u64)-1) {
5938 			min_key->offset++;
5939 		} else if (min_key->type < max_key->type) {
5940 			min_key->type++;
5941 			min_key->offset = 0;
5942 		} else {
5943 			break;
5944 		}
5945 
5946 		/*
5947 		 * We may process many leaves full of items for our inode, so
5948 		 * avoid monopolizing a cpu for too long by rescheduling while
5949 		 * not holding locks on any tree.
5950 		 */
5951 		cond_resched();
5952 	}
5953 	if (ins_nr) {
5954 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5955 				 ins_nr, inode_only, logged_isize);
5956 		if (ret)
5957 			return ret;
5958 	}
5959 
5960 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5961 		/*
5962 		 * Release the path because otherwise we might attempt to double
5963 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5964 		 */
5965 		btrfs_release_path(path);
5966 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5967 	}
5968 
5969 	return ret;
5970 }
5971 
5972 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5973 				      struct btrfs_root *log,
5974 				      struct btrfs_path *path,
5975 				      const struct btrfs_item_batch *batch,
5976 				      const struct btrfs_delayed_item *first_item)
5977 {
5978 	const struct btrfs_delayed_item *curr = first_item;
5979 	int ret;
5980 
5981 	ret = btrfs_insert_empty_items(trans, log, path, batch);
5982 	if (ret)
5983 		return ret;
5984 
5985 	for (int i = 0; i < batch->nr; i++) {
5986 		char *data_ptr;
5987 
5988 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5989 		write_extent_buffer(path->nodes[0], &curr->data,
5990 				    (unsigned long)data_ptr, curr->data_len);
5991 		curr = list_next_entry(curr, log_list);
5992 		path->slots[0]++;
5993 	}
5994 
5995 	btrfs_release_path(path);
5996 
5997 	return 0;
5998 }
5999 
6000 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6001 				       struct btrfs_inode *inode,
6002 				       struct btrfs_path *path,
6003 				       const struct list_head *delayed_ins_list,
6004 				       struct btrfs_log_ctx *ctx)
6005 {
6006 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6007 	const int max_batch_size = 195;
6008 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6009 	const u64 ino = btrfs_ino(inode);
6010 	struct btrfs_root *log = inode->root->log_root;
6011 	struct btrfs_item_batch batch = {
6012 		.nr = 0,
6013 		.total_data_size = 0,
6014 	};
6015 	const struct btrfs_delayed_item *first = NULL;
6016 	const struct btrfs_delayed_item *curr;
6017 	char *ins_data;
6018 	struct btrfs_key *ins_keys;
6019 	u32 *ins_sizes;
6020 	u64 curr_batch_size = 0;
6021 	int batch_idx = 0;
6022 	int ret;
6023 
6024 	/* We are adding dir index items to the log tree. */
6025 	lockdep_assert_held(&inode->log_mutex);
6026 
6027 	/*
6028 	 * We collect delayed items before copying index keys from the subvolume
6029 	 * to the log tree. However just after we collected them, they may have
6030 	 * been flushed (all of them or just some of them), and therefore we
6031 	 * could have copied them from the subvolume tree to the log tree.
6032 	 * So find the first delayed item that was not yet logged (they are
6033 	 * sorted by index number).
6034 	 */
6035 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6036 		if (curr->index > inode->last_dir_index_offset) {
6037 			first = curr;
6038 			break;
6039 		}
6040 	}
6041 
6042 	/* Empty list or all delayed items were already logged. */
6043 	if (!first)
6044 		return 0;
6045 
6046 	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6047 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6048 	if (!ins_data)
6049 		return -ENOMEM;
6050 	ins_sizes = (u32 *)ins_data;
6051 	batch.data_sizes = ins_sizes;
6052 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6053 	batch.keys = ins_keys;
6054 
6055 	curr = first;
6056 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6057 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6058 
6059 		if (curr_batch_size + curr_size > leaf_data_size ||
6060 		    batch.nr == max_batch_size) {
6061 			ret = insert_delayed_items_batch(trans, log, path,
6062 							 &batch, first);
6063 			if (ret)
6064 				goto out;
6065 			batch_idx = 0;
6066 			batch.nr = 0;
6067 			batch.total_data_size = 0;
6068 			curr_batch_size = 0;
6069 			first = curr;
6070 		}
6071 
6072 		ins_sizes[batch_idx] = curr->data_len;
6073 		ins_keys[batch_idx].objectid = ino;
6074 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6075 		ins_keys[batch_idx].offset = curr->index;
6076 		curr_batch_size += curr_size;
6077 		batch.total_data_size += curr->data_len;
6078 		batch.nr++;
6079 		batch_idx++;
6080 		curr = list_next_entry(curr, log_list);
6081 	}
6082 
6083 	ASSERT(batch.nr >= 1);
6084 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6085 
6086 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6087 			       log_list);
6088 	inode->last_dir_index_offset = curr->index;
6089 out:
6090 	kfree(ins_data);
6091 
6092 	return ret;
6093 }
6094 
6095 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6096 				      struct btrfs_inode *inode,
6097 				      struct btrfs_path *path,
6098 				      const struct list_head *delayed_del_list,
6099 				      struct btrfs_log_ctx *ctx)
6100 {
6101 	const u64 ino = btrfs_ino(inode);
6102 	const struct btrfs_delayed_item *curr;
6103 
6104 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6105 				log_list);
6106 
6107 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6108 		u64 first_dir_index = curr->index;
6109 		u64 last_dir_index;
6110 		const struct btrfs_delayed_item *next;
6111 		int ret;
6112 
6113 		/*
6114 		 * Find a range of consecutive dir index items to delete. Like
6115 		 * this we log a single dir range item spanning several contiguous
6116 		 * dir items instead of logging one range item per dir index item.
6117 		 */
6118 		next = list_next_entry(curr, log_list);
6119 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6120 			if (next->index != curr->index + 1)
6121 				break;
6122 			curr = next;
6123 			next = list_next_entry(next, log_list);
6124 		}
6125 
6126 		last_dir_index = curr->index;
6127 		ASSERT(last_dir_index >= first_dir_index);
6128 
6129 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6130 					 ino, first_dir_index, last_dir_index);
6131 		if (ret)
6132 			return ret;
6133 		curr = list_next_entry(curr, log_list);
6134 	}
6135 
6136 	return 0;
6137 }
6138 
6139 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6140 					struct btrfs_inode *inode,
6141 					struct btrfs_path *path,
6142 					struct btrfs_log_ctx *ctx,
6143 					const struct list_head *delayed_del_list,
6144 					const struct btrfs_delayed_item *first,
6145 					const struct btrfs_delayed_item **last_ret)
6146 {
6147 	const struct btrfs_delayed_item *next;
6148 	struct extent_buffer *leaf = path->nodes[0];
6149 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6150 	int slot = path->slots[0] + 1;
6151 	const u64 ino = btrfs_ino(inode);
6152 
6153 	next = list_next_entry(first, log_list);
6154 
6155 	while (slot < last_slot &&
6156 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6157 		struct btrfs_key key;
6158 
6159 		btrfs_item_key_to_cpu(leaf, &key, slot);
6160 		if (key.objectid != ino ||
6161 		    key.type != BTRFS_DIR_INDEX_KEY ||
6162 		    key.offset != next->index)
6163 			break;
6164 
6165 		slot++;
6166 		*last_ret = next;
6167 		next = list_next_entry(next, log_list);
6168 	}
6169 
6170 	return btrfs_del_items(trans, inode->root->log_root, path,
6171 			       path->slots[0], slot - path->slots[0]);
6172 }
6173 
6174 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6175 					     struct btrfs_inode *inode,
6176 					     struct btrfs_path *path,
6177 					     const struct list_head *delayed_del_list,
6178 					     struct btrfs_log_ctx *ctx)
6179 {
6180 	struct btrfs_root *log = inode->root->log_root;
6181 	const struct btrfs_delayed_item *curr;
6182 	u64 last_range_start;
6183 	u64 last_range_end = 0;
6184 	struct btrfs_key key;
6185 
6186 	key.objectid = btrfs_ino(inode);
6187 	key.type = BTRFS_DIR_INDEX_KEY;
6188 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6189 				log_list);
6190 
6191 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6192 		const struct btrfs_delayed_item *last = curr;
6193 		u64 first_dir_index = curr->index;
6194 		u64 last_dir_index;
6195 		bool deleted_items = false;
6196 		int ret;
6197 
6198 		key.offset = curr->index;
6199 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6200 		if (ret < 0) {
6201 			return ret;
6202 		} else if (ret == 0) {
6203 			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6204 							   delayed_del_list, curr,
6205 							   &last);
6206 			if (ret)
6207 				return ret;
6208 			deleted_items = true;
6209 		}
6210 
6211 		btrfs_release_path(path);
6212 
6213 		/*
6214 		 * If we deleted items from the leaf, it means we have a range
6215 		 * item logging their range, so no need to add one or update an
6216 		 * existing one. Otherwise we have to log a dir range item.
6217 		 */
6218 		if (deleted_items)
6219 			goto next_batch;
6220 
6221 		last_dir_index = last->index;
6222 		ASSERT(last_dir_index >= first_dir_index);
6223 		/*
6224 		 * If this range starts right after where the previous one ends,
6225 		 * then we want to reuse the previous range item and change its
6226 		 * end offset to the end of this range. This is just to minimize
6227 		 * leaf space usage, by avoiding adding a new range item.
6228 		 */
6229 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6230 			first_dir_index = last_range_start;
6231 
6232 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6233 					 first_dir_index, last_dir_index);
6234 		if (ret)
6235 			return ret;
6236 
6237 		last_range_start = first_dir_index;
6238 		last_range_end = last_dir_index;
6239 next_batch:
6240 		curr = list_next_entry(last, log_list);
6241 	}
6242 
6243 	return 0;
6244 }
6245 
6246 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6247 				      struct btrfs_inode *inode,
6248 				      struct btrfs_path *path,
6249 				      const struct list_head *delayed_del_list,
6250 				      struct btrfs_log_ctx *ctx)
6251 {
6252 	/*
6253 	 * We are deleting dir index items from the log tree or adding range
6254 	 * items to it.
6255 	 */
6256 	lockdep_assert_held(&inode->log_mutex);
6257 
6258 	if (list_empty(delayed_del_list))
6259 		return 0;
6260 
6261 	if (ctx->logged_before)
6262 		return log_delayed_deletions_incremental(trans, inode, path,
6263 							 delayed_del_list, ctx);
6264 
6265 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6266 					  ctx);
6267 }
6268 
6269 /*
6270  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6271  * items instead of the subvolume tree.
6272  */
6273 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6274 				    struct btrfs_inode *inode,
6275 				    const struct list_head *delayed_ins_list,
6276 				    struct btrfs_log_ctx *ctx)
6277 {
6278 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6279 	struct btrfs_fs_info *fs_info = trans->fs_info;
6280 	struct btrfs_delayed_item *item;
6281 	int ret = 0;
6282 
6283 	/*
6284 	 * No need for the log mutex, plus to avoid potential deadlocks or
6285 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6286 	 * mutexes.
6287 	 */
6288 	lockdep_assert_not_held(&inode->log_mutex);
6289 
6290 	ASSERT(!ctx->logging_new_delayed_dentries);
6291 	ctx->logging_new_delayed_dentries = true;
6292 
6293 	list_for_each_entry(item, delayed_ins_list, log_list) {
6294 		struct btrfs_dir_item *dir_item;
6295 		struct inode *di_inode;
6296 		struct btrfs_key key;
6297 		int log_mode = LOG_INODE_EXISTS;
6298 
6299 		dir_item = (struct btrfs_dir_item *)item->data;
6300 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6301 
6302 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6303 			continue;
6304 
6305 		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6306 		if (IS_ERR(di_inode)) {
6307 			ret = PTR_ERR(di_inode);
6308 			break;
6309 		}
6310 
6311 		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6312 			btrfs_add_delayed_iput(di_inode);
6313 			continue;
6314 		}
6315 
6316 		if (btrfs_stack_dir_type(dir_item) == BTRFS_FT_DIR)
6317 			log_mode = LOG_INODE_ALL;
6318 
6319 		ctx->log_new_dentries = false;
6320 		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6321 
6322 		if (!ret && ctx->log_new_dentries)
6323 			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6324 
6325 		btrfs_add_delayed_iput(di_inode);
6326 
6327 		if (ret)
6328 			break;
6329 	}
6330 
6331 	ctx->log_new_dentries = orig_log_new_dentries;
6332 	ctx->logging_new_delayed_dentries = false;
6333 
6334 	return ret;
6335 }
6336 
6337 /* log a single inode in the tree log.
6338  * At least one parent directory for this inode must exist in the tree
6339  * or be logged already.
6340  *
6341  * Any items from this inode changed by the current transaction are copied
6342  * to the log tree.  An extra reference is taken on any extents in this
6343  * file, allowing us to avoid a whole pile of corner cases around logging
6344  * blocks that have been removed from the tree.
6345  *
6346  * See LOG_INODE_ALL and related defines for a description of what inode_only
6347  * does.
6348  *
6349  * This handles both files and directories.
6350  */
6351 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6352 			   struct btrfs_inode *inode,
6353 			   int inode_only,
6354 			   struct btrfs_log_ctx *ctx)
6355 {
6356 	struct btrfs_path *path;
6357 	struct btrfs_path *dst_path;
6358 	struct btrfs_key min_key;
6359 	struct btrfs_key max_key;
6360 	struct btrfs_root *log = inode->root->log_root;
6361 	int ret;
6362 	bool fast_search = false;
6363 	u64 ino = btrfs_ino(inode);
6364 	struct extent_map_tree *em_tree = &inode->extent_tree;
6365 	u64 logged_isize = 0;
6366 	bool need_log_inode_item = true;
6367 	bool xattrs_logged = false;
6368 	bool inode_item_dropped = true;
6369 	bool full_dir_logging = false;
6370 	LIST_HEAD(delayed_ins_list);
6371 	LIST_HEAD(delayed_del_list);
6372 
6373 	path = btrfs_alloc_path();
6374 	if (!path)
6375 		return -ENOMEM;
6376 	dst_path = btrfs_alloc_path();
6377 	if (!dst_path) {
6378 		btrfs_free_path(path);
6379 		return -ENOMEM;
6380 	}
6381 
6382 	min_key.objectid = ino;
6383 	min_key.type = BTRFS_INODE_ITEM_KEY;
6384 	min_key.offset = 0;
6385 
6386 	max_key.objectid = ino;
6387 
6388 
6389 	/* today the code can only do partial logging of directories */
6390 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6391 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6392 		       &inode->runtime_flags) &&
6393 	     inode_only >= LOG_INODE_EXISTS))
6394 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6395 	else
6396 		max_key.type = (u8)-1;
6397 	max_key.offset = (u64)-1;
6398 
6399 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6400 		full_dir_logging = true;
6401 
6402 	/*
6403 	 * If we are logging a directory while we are logging dentries of the
6404 	 * delayed items of some other inode, then we need to flush the delayed
6405 	 * items of this directory and not log the delayed items directly. This
6406 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6407 	 * by having something like this:
6408 	 *
6409 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6410 	 *     $ xfs_io -c "fsync" a
6411 	 *
6412 	 * Where all directories in the path did not exist before and are
6413 	 * created in the current transaction.
6414 	 * So in such a case we directly log the delayed items of the main
6415 	 * directory ("a") without flushing them first, while for each of its
6416 	 * subdirectories we flush their delayed items before logging them.
6417 	 * This prevents a potential unbounded recursion like this:
6418 	 *
6419 	 * btrfs_log_inode()
6420 	 *   log_new_delayed_dentries()
6421 	 *      btrfs_log_inode()
6422 	 *        log_new_delayed_dentries()
6423 	 *          btrfs_log_inode()
6424 	 *            log_new_delayed_dentries()
6425 	 *              (...)
6426 	 *
6427 	 * We have thresholds for the maximum number of delayed items to have in
6428 	 * memory, and once they are hit, the items are flushed asynchronously.
6429 	 * However the limit is quite high, so lets prevent deep levels of
6430 	 * recursion to happen by limiting the maximum depth to be 1.
6431 	 */
6432 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6433 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6434 		if (ret)
6435 			goto out;
6436 	}
6437 
6438 	mutex_lock(&inode->log_mutex);
6439 
6440 	/*
6441 	 * For symlinks, we must always log their content, which is stored in an
6442 	 * inline extent, otherwise we could end up with an empty symlink after
6443 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6444 	 * one attempts to create an empty symlink).
6445 	 * We don't need to worry about flushing delalloc, because when we create
6446 	 * the inline extent when the symlink is created (we never have delalloc
6447 	 * for symlinks).
6448 	 */
6449 	if (S_ISLNK(inode->vfs_inode.i_mode))
6450 		inode_only = LOG_INODE_ALL;
6451 
6452 	/*
6453 	 * Before logging the inode item, cache the value returned by
6454 	 * inode_logged(), because after that we have the need to figure out if
6455 	 * the inode was previously logged in this transaction.
6456 	 */
6457 	ret = inode_logged(trans, inode, path);
6458 	if (ret < 0)
6459 		goto out_unlock;
6460 	ctx->logged_before = (ret == 1);
6461 	ret = 0;
6462 
6463 	/*
6464 	 * This is for cases where logging a directory could result in losing a
6465 	 * a file after replaying the log. For example, if we move a file from a
6466 	 * directory A to a directory B, then fsync directory A, we have no way
6467 	 * to known the file was moved from A to B, so logging just A would
6468 	 * result in losing the file after a log replay.
6469 	 */
6470 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6471 		btrfs_set_log_full_commit(trans);
6472 		ret = BTRFS_LOG_FORCE_COMMIT;
6473 		goto out_unlock;
6474 	}
6475 
6476 	/*
6477 	 * a brute force approach to making sure we get the most uptodate
6478 	 * copies of everything.
6479 	 */
6480 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6481 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6482 		if (ctx->logged_before)
6483 			ret = drop_inode_items(trans, log, path, inode,
6484 					       BTRFS_XATTR_ITEM_KEY);
6485 	} else {
6486 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6487 			/*
6488 			 * Make sure the new inode item we write to the log has
6489 			 * the same isize as the current one (if it exists).
6490 			 * This is necessary to prevent data loss after log
6491 			 * replay, and also to prevent doing a wrong expanding
6492 			 * truncate - for e.g. create file, write 4K into offset
6493 			 * 0, fsync, write 4K into offset 4096, add hard link,
6494 			 * fsync some other file (to sync log), power fail - if
6495 			 * we use the inode's current i_size, after log replay
6496 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6497 			 * (zeroes), as if an expanding truncate happened,
6498 			 * instead of getting a file of 4Kb only.
6499 			 */
6500 			ret = logged_inode_size(log, inode, path, &logged_isize);
6501 			if (ret)
6502 				goto out_unlock;
6503 		}
6504 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6505 			     &inode->runtime_flags)) {
6506 			if (inode_only == LOG_INODE_EXISTS) {
6507 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6508 				if (ctx->logged_before)
6509 					ret = drop_inode_items(trans, log, path,
6510 							       inode, max_key.type);
6511 			} else {
6512 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6513 					  &inode->runtime_flags);
6514 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6515 					  &inode->runtime_flags);
6516 				if (ctx->logged_before)
6517 					ret = truncate_inode_items(trans, log,
6518 								   inode, 0, 0);
6519 			}
6520 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6521 					      &inode->runtime_flags) ||
6522 			   inode_only == LOG_INODE_EXISTS) {
6523 			if (inode_only == LOG_INODE_ALL)
6524 				fast_search = true;
6525 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6526 			if (ctx->logged_before)
6527 				ret = drop_inode_items(trans, log, path, inode,
6528 						       max_key.type);
6529 		} else {
6530 			if (inode_only == LOG_INODE_ALL)
6531 				fast_search = true;
6532 			inode_item_dropped = false;
6533 			goto log_extents;
6534 		}
6535 
6536 	}
6537 	if (ret)
6538 		goto out_unlock;
6539 
6540 	/*
6541 	 * If we are logging a directory in full mode, collect the delayed items
6542 	 * before iterating the subvolume tree, so that we don't miss any new
6543 	 * dir index items in case they get flushed while or right after we are
6544 	 * iterating the subvolume tree.
6545 	 */
6546 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6547 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6548 					    &delayed_del_list);
6549 
6550 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6551 				      path, dst_path, logged_isize,
6552 				      inode_only, ctx,
6553 				      &need_log_inode_item);
6554 	if (ret)
6555 		goto out_unlock;
6556 
6557 	btrfs_release_path(path);
6558 	btrfs_release_path(dst_path);
6559 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6560 	if (ret)
6561 		goto out_unlock;
6562 	xattrs_logged = true;
6563 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6564 		btrfs_release_path(path);
6565 		btrfs_release_path(dst_path);
6566 		ret = btrfs_log_holes(trans, inode, path);
6567 		if (ret)
6568 			goto out_unlock;
6569 	}
6570 log_extents:
6571 	btrfs_release_path(path);
6572 	btrfs_release_path(dst_path);
6573 	if (need_log_inode_item) {
6574 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6575 		if (ret)
6576 			goto out_unlock;
6577 		/*
6578 		 * If we are doing a fast fsync and the inode was logged before
6579 		 * in this transaction, we don't need to log the xattrs because
6580 		 * they were logged before. If xattrs were added, changed or
6581 		 * deleted since the last time we logged the inode, then we have
6582 		 * already logged them because the inode had the runtime flag
6583 		 * BTRFS_INODE_COPY_EVERYTHING set.
6584 		 */
6585 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6586 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6587 			if (ret)
6588 				goto out_unlock;
6589 			btrfs_release_path(path);
6590 		}
6591 	}
6592 	if (fast_search) {
6593 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6594 		if (ret)
6595 			goto out_unlock;
6596 	} else if (inode_only == LOG_INODE_ALL) {
6597 		struct extent_map *em, *n;
6598 
6599 		write_lock(&em_tree->lock);
6600 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6601 			list_del_init(&em->list);
6602 		write_unlock(&em_tree->lock);
6603 	}
6604 
6605 	if (full_dir_logging) {
6606 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6607 		if (ret)
6608 			goto out_unlock;
6609 		ret = log_delayed_insertion_items(trans, inode, path,
6610 						  &delayed_ins_list, ctx);
6611 		if (ret)
6612 			goto out_unlock;
6613 		ret = log_delayed_deletion_items(trans, inode, path,
6614 						 &delayed_del_list, ctx);
6615 		if (ret)
6616 			goto out_unlock;
6617 	}
6618 
6619 	spin_lock(&inode->lock);
6620 	inode->logged_trans = trans->transid;
6621 	/*
6622 	 * Don't update last_log_commit if we logged that an inode exists.
6623 	 * We do this for three reasons:
6624 	 *
6625 	 * 1) We might have had buffered writes to this inode that were
6626 	 *    flushed and had their ordered extents completed in this
6627 	 *    transaction, but we did not previously log the inode with
6628 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6629 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6630 	 *    happened. We must make sure that if an explicit fsync against
6631 	 *    the inode is performed later, it logs the new extents, an
6632 	 *    updated inode item, etc, and syncs the log. The same logic
6633 	 *    applies to direct IO writes instead of buffered writes.
6634 	 *
6635 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6636 	 *    is logged with an i_size of 0 or whatever value was logged
6637 	 *    before. If later the i_size of the inode is increased by a
6638 	 *    truncate operation, the log is synced through an fsync of
6639 	 *    some other inode and then finally an explicit fsync against
6640 	 *    this inode is made, we must make sure this fsync logs the
6641 	 *    inode with the new i_size, the hole between old i_size and
6642 	 *    the new i_size, and syncs the log.
6643 	 *
6644 	 * 3) If we are logging that an ancestor inode exists as part of
6645 	 *    logging a new name from a link or rename operation, don't update
6646 	 *    its last_log_commit - otherwise if an explicit fsync is made
6647 	 *    against an ancestor, the fsync considers the inode in the log
6648 	 *    and doesn't sync the log, resulting in the ancestor missing after
6649 	 *    a power failure unless the log was synced as part of an fsync
6650 	 *    against any other unrelated inode.
6651 	 */
6652 	if (inode_only != LOG_INODE_EXISTS)
6653 		inode->last_log_commit = inode->last_sub_trans;
6654 	spin_unlock(&inode->lock);
6655 
6656 	/*
6657 	 * Reset the last_reflink_trans so that the next fsync does not need to
6658 	 * go through the slower path when logging extents and their checksums.
6659 	 */
6660 	if (inode_only == LOG_INODE_ALL)
6661 		inode->last_reflink_trans = 0;
6662 
6663 out_unlock:
6664 	mutex_unlock(&inode->log_mutex);
6665 out:
6666 	btrfs_free_path(path);
6667 	btrfs_free_path(dst_path);
6668 
6669 	if (ret)
6670 		free_conflicting_inodes(ctx);
6671 	else
6672 		ret = log_conflicting_inodes(trans, inode->root, ctx);
6673 
6674 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6675 		if (!ret)
6676 			ret = log_new_delayed_dentries(trans, inode,
6677 						       &delayed_ins_list, ctx);
6678 
6679 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6680 					    &delayed_del_list);
6681 	}
6682 
6683 	return ret;
6684 }
6685 
6686 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6687 				 struct btrfs_inode *inode,
6688 				 struct btrfs_log_ctx *ctx)
6689 {
6690 	struct btrfs_fs_info *fs_info = trans->fs_info;
6691 	int ret;
6692 	struct btrfs_path *path;
6693 	struct btrfs_key key;
6694 	struct btrfs_root *root = inode->root;
6695 	const u64 ino = btrfs_ino(inode);
6696 
6697 	path = btrfs_alloc_path();
6698 	if (!path)
6699 		return -ENOMEM;
6700 	path->skip_locking = 1;
6701 	path->search_commit_root = 1;
6702 
6703 	key.objectid = ino;
6704 	key.type = BTRFS_INODE_REF_KEY;
6705 	key.offset = 0;
6706 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6707 	if (ret < 0)
6708 		goto out;
6709 
6710 	while (true) {
6711 		struct extent_buffer *leaf = path->nodes[0];
6712 		int slot = path->slots[0];
6713 		u32 cur_offset = 0;
6714 		u32 item_size;
6715 		unsigned long ptr;
6716 
6717 		if (slot >= btrfs_header_nritems(leaf)) {
6718 			ret = btrfs_next_leaf(root, path);
6719 			if (ret < 0)
6720 				goto out;
6721 			else if (ret > 0)
6722 				break;
6723 			continue;
6724 		}
6725 
6726 		btrfs_item_key_to_cpu(leaf, &key, slot);
6727 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6728 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6729 			break;
6730 
6731 		item_size = btrfs_item_size(leaf, slot);
6732 		ptr = btrfs_item_ptr_offset(leaf, slot);
6733 		while (cur_offset < item_size) {
6734 			struct btrfs_key inode_key;
6735 			struct inode *dir_inode;
6736 
6737 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6738 			inode_key.offset = 0;
6739 
6740 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6741 				struct btrfs_inode_extref *extref;
6742 
6743 				extref = (struct btrfs_inode_extref *)
6744 					(ptr + cur_offset);
6745 				inode_key.objectid = btrfs_inode_extref_parent(
6746 					leaf, extref);
6747 				cur_offset += sizeof(*extref);
6748 				cur_offset += btrfs_inode_extref_name_len(leaf,
6749 					extref);
6750 			} else {
6751 				inode_key.objectid = key.offset;
6752 				cur_offset = item_size;
6753 			}
6754 
6755 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6756 					       root);
6757 			/*
6758 			 * If the parent inode was deleted, return an error to
6759 			 * fallback to a transaction commit. This is to prevent
6760 			 * getting an inode that was moved from one parent A to
6761 			 * a parent B, got its former parent A deleted and then
6762 			 * it got fsync'ed, from existing at both parents after
6763 			 * a log replay (and the old parent still existing).
6764 			 * Example:
6765 			 *
6766 			 * mkdir /mnt/A
6767 			 * mkdir /mnt/B
6768 			 * touch /mnt/B/bar
6769 			 * sync
6770 			 * mv /mnt/B/bar /mnt/A/bar
6771 			 * mv -T /mnt/A /mnt/B
6772 			 * fsync /mnt/B/bar
6773 			 * <power fail>
6774 			 *
6775 			 * If we ignore the old parent B which got deleted,
6776 			 * after a log replay we would have file bar linked
6777 			 * at both parents and the old parent B would still
6778 			 * exist.
6779 			 */
6780 			if (IS_ERR(dir_inode)) {
6781 				ret = PTR_ERR(dir_inode);
6782 				goto out;
6783 			}
6784 
6785 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6786 				btrfs_add_delayed_iput(dir_inode);
6787 				continue;
6788 			}
6789 
6790 			ctx->log_new_dentries = false;
6791 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6792 					      LOG_INODE_ALL, ctx);
6793 			if (!ret && ctx->log_new_dentries)
6794 				ret = log_new_dir_dentries(trans,
6795 						   BTRFS_I(dir_inode), ctx);
6796 			btrfs_add_delayed_iput(dir_inode);
6797 			if (ret)
6798 				goto out;
6799 		}
6800 		path->slots[0]++;
6801 	}
6802 	ret = 0;
6803 out:
6804 	btrfs_free_path(path);
6805 	return ret;
6806 }
6807 
6808 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6809 			     struct btrfs_root *root,
6810 			     struct btrfs_path *path,
6811 			     struct btrfs_log_ctx *ctx)
6812 {
6813 	struct btrfs_key found_key;
6814 
6815 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6816 
6817 	while (true) {
6818 		struct btrfs_fs_info *fs_info = root->fs_info;
6819 		struct extent_buffer *leaf = path->nodes[0];
6820 		int slot = path->slots[0];
6821 		struct btrfs_key search_key;
6822 		struct inode *inode;
6823 		u64 ino;
6824 		int ret = 0;
6825 
6826 		btrfs_release_path(path);
6827 
6828 		ino = found_key.offset;
6829 
6830 		search_key.objectid = found_key.offset;
6831 		search_key.type = BTRFS_INODE_ITEM_KEY;
6832 		search_key.offset = 0;
6833 		inode = btrfs_iget(fs_info->sb, ino, root);
6834 		if (IS_ERR(inode))
6835 			return PTR_ERR(inode);
6836 
6837 		if (BTRFS_I(inode)->generation >= trans->transid &&
6838 		    need_log_inode(trans, BTRFS_I(inode)))
6839 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6840 					      LOG_INODE_EXISTS, ctx);
6841 		btrfs_add_delayed_iput(inode);
6842 		if (ret)
6843 			return ret;
6844 
6845 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6846 			break;
6847 
6848 		search_key.type = BTRFS_INODE_REF_KEY;
6849 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6850 		if (ret < 0)
6851 			return ret;
6852 
6853 		leaf = path->nodes[0];
6854 		slot = path->slots[0];
6855 		if (slot >= btrfs_header_nritems(leaf)) {
6856 			ret = btrfs_next_leaf(root, path);
6857 			if (ret < 0)
6858 				return ret;
6859 			else if (ret > 0)
6860 				return -ENOENT;
6861 			leaf = path->nodes[0];
6862 			slot = path->slots[0];
6863 		}
6864 
6865 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6866 		if (found_key.objectid != search_key.objectid ||
6867 		    found_key.type != BTRFS_INODE_REF_KEY)
6868 			return -ENOENT;
6869 	}
6870 	return 0;
6871 }
6872 
6873 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6874 				  struct btrfs_inode *inode,
6875 				  struct dentry *parent,
6876 				  struct btrfs_log_ctx *ctx)
6877 {
6878 	struct btrfs_root *root = inode->root;
6879 	struct dentry *old_parent = NULL;
6880 	struct super_block *sb = inode->vfs_inode.i_sb;
6881 	int ret = 0;
6882 
6883 	while (true) {
6884 		if (!parent || d_really_is_negative(parent) ||
6885 		    sb != parent->d_sb)
6886 			break;
6887 
6888 		inode = BTRFS_I(d_inode(parent));
6889 		if (root != inode->root)
6890 			break;
6891 
6892 		if (inode->generation >= trans->transid &&
6893 		    need_log_inode(trans, inode)) {
6894 			ret = btrfs_log_inode(trans, inode,
6895 					      LOG_INODE_EXISTS, ctx);
6896 			if (ret)
6897 				break;
6898 		}
6899 		if (IS_ROOT(parent))
6900 			break;
6901 
6902 		parent = dget_parent(parent);
6903 		dput(old_parent);
6904 		old_parent = parent;
6905 	}
6906 	dput(old_parent);
6907 
6908 	return ret;
6909 }
6910 
6911 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6912 				 struct btrfs_inode *inode,
6913 				 struct dentry *parent,
6914 				 struct btrfs_log_ctx *ctx)
6915 {
6916 	struct btrfs_root *root = inode->root;
6917 	const u64 ino = btrfs_ino(inode);
6918 	struct btrfs_path *path;
6919 	struct btrfs_key search_key;
6920 	int ret;
6921 
6922 	/*
6923 	 * For a single hard link case, go through a fast path that does not
6924 	 * need to iterate the fs/subvolume tree.
6925 	 */
6926 	if (inode->vfs_inode.i_nlink < 2)
6927 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6928 
6929 	path = btrfs_alloc_path();
6930 	if (!path)
6931 		return -ENOMEM;
6932 
6933 	search_key.objectid = ino;
6934 	search_key.type = BTRFS_INODE_REF_KEY;
6935 	search_key.offset = 0;
6936 again:
6937 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6938 	if (ret < 0)
6939 		goto out;
6940 	if (ret == 0)
6941 		path->slots[0]++;
6942 
6943 	while (true) {
6944 		struct extent_buffer *leaf = path->nodes[0];
6945 		int slot = path->slots[0];
6946 		struct btrfs_key found_key;
6947 
6948 		if (slot >= btrfs_header_nritems(leaf)) {
6949 			ret = btrfs_next_leaf(root, path);
6950 			if (ret < 0)
6951 				goto out;
6952 			else if (ret > 0)
6953 				break;
6954 			continue;
6955 		}
6956 
6957 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6958 		if (found_key.objectid != ino ||
6959 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6960 			break;
6961 
6962 		/*
6963 		 * Don't deal with extended references because they are rare
6964 		 * cases and too complex to deal with (we would need to keep
6965 		 * track of which subitem we are processing for each item in
6966 		 * this loop, etc). So just return some error to fallback to
6967 		 * a transaction commit.
6968 		 */
6969 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6970 			ret = -EMLINK;
6971 			goto out;
6972 		}
6973 
6974 		/*
6975 		 * Logging ancestors needs to do more searches on the fs/subvol
6976 		 * tree, so it releases the path as needed to avoid deadlocks.
6977 		 * Keep track of the last inode ref key and resume from that key
6978 		 * after logging all new ancestors for the current hard link.
6979 		 */
6980 		memcpy(&search_key, &found_key, sizeof(search_key));
6981 
6982 		ret = log_new_ancestors(trans, root, path, ctx);
6983 		if (ret)
6984 			goto out;
6985 		btrfs_release_path(path);
6986 		goto again;
6987 	}
6988 	ret = 0;
6989 out:
6990 	btrfs_free_path(path);
6991 	return ret;
6992 }
6993 
6994 /*
6995  * helper function around btrfs_log_inode to make sure newly created
6996  * parent directories also end up in the log.  A minimal inode and backref
6997  * only logging is done of any parent directories that are older than
6998  * the last committed transaction
6999  */
7000 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7001 				  struct btrfs_inode *inode,
7002 				  struct dentry *parent,
7003 				  int inode_only,
7004 				  struct btrfs_log_ctx *ctx)
7005 {
7006 	struct btrfs_root *root = inode->root;
7007 	struct btrfs_fs_info *fs_info = root->fs_info;
7008 	int ret = 0;
7009 	bool log_dentries = false;
7010 
7011 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
7012 		ret = BTRFS_LOG_FORCE_COMMIT;
7013 		goto end_no_trans;
7014 	}
7015 
7016 	if (btrfs_root_refs(&root->root_item) == 0) {
7017 		ret = BTRFS_LOG_FORCE_COMMIT;
7018 		goto end_no_trans;
7019 	}
7020 
7021 	/*
7022 	 * Skip already logged inodes or inodes corresponding to tmpfiles
7023 	 * (since logging them is pointless, a link count of 0 means they
7024 	 * will never be accessible).
7025 	 */
7026 	if ((btrfs_inode_in_log(inode, trans->transid) &&
7027 	     list_empty(&ctx->ordered_extents)) ||
7028 	    inode->vfs_inode.i_nlink == 0) {
7029 		ret = BTRFS_NO_LOG_SYNC;
7030 		goto end_no_trans;
7031 	}
7032 
7033 	ret = start_log_trans(trans, root, ctx);
7034 	if (ret)
7035 		goto end_no_trans;
7036 
7037 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7038 	if (ret)
7039 		goto end_trans;
7040 
7041 	/*
7042 	 * for regular files, if its inode is already on disk, we don't
7043 	 * have to worry about the parents at all.  This is because
7044 	 * we can use the last_unlink_trans field to record renames
7045 	 * and other fun in this file.
7046 	 */
7047 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7048 	    inode->generation < trans->transid &&
7049 	    inode->last_unlink_trans < trans->transid) {
7050 		ret = 0;
7051 		goto end_trans;
7052 	}
7053 
7054 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7055 		log_dentries = true;
7056 
7057 	/*
7058 	 * On unlink we must make sure all our current and old parent directory
7059 	 * inodes are fully logged. This is to prevent leaving dangling
7060 	 * directory index entries in directories that were our parents but are
7061 	 * not anymore. Not doing this results in old parent directory being
7062 	 * impossible to delete after log replay (rmdir will always fail with
7063 	 * error -ENOTEMPTY).
7064 	 *
7065 	 * Example 1:
7066 	 *
7067 	 * mkdir testdir
7068 	 * touch testdir/foo
7069 	 * ln testdir/foo testdir/bar
7070 	 * sync
7071 	 * unlink testdir/bar
7072 	 * xfs_io -c fsync testdir/foo
7073 	 * <power failure>
7074 	 * mount fs, triggers log replay
7075 	 *
7076 	 * If we don't log the parent directory (testdir), after log replay the
7077 	 * directory still has an entry pointing to the file inode using the bar
7078 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7079 	 * the file inode has a link count of 1.
7080 	 *
7081 	 * Example 2:
7082 	 *
7083 	 * mkdir testdir
7084 	 * touch foo
7085 	 * ln foo testdir/foo2
7086 	 * ln foo testdir/foo3
7087 	 * sync
7088 	 * unlink testdir/foo3
7089 	 * xfs_io -c fsync foo
7090 	 * <power failure>
7091 	 * mount fs, triggers log replay
7092 	 *
7093 	 * Similar as the first example, after log replay the parent directory
7094 	 * testdir still has an entry pointing to the inode file with name foo3
7095 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7096 	 * and has a link count of 2.
7097 	 */
7098 	if (inode->last_unlink_trans >= trans->transid) {
7099 		ret = btrfs_log_all_parents(trans, inode, ctx);
7100 		if (ret)
7101 			goto end_trans;
7102 	}
7103 
7104 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7105 	if (ret)
7106 		goto end_trans;
7107 
7108 	if (log_dentries)
7109 		ret = log_new_dir_dentries(trans, inode, ctx);
7110 	else
7111 		ret = 0;
7112 end_trans:
7113 	if (ret < 0) {
7114 		btrfs_set_log_full_commit(trans);
7115 		ret = BTRFS_LOG_FORCE_COMMIT;
7116 	}
7117 
7118 	if (ret)
7119 		btrfs_remove_log_ctx(root, ctx);
7120 	btrfs_end_log_trans(root);
7121 end_no_trans:
7122 	return ret;
7123 }
7124 
7125 /*
7126  * it is not safe to log dentry if the chunk root has added new
7127  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7128  * If this returns 1, you must commit the transaction to safely get your
7129  * data on disk.
7130  */
7131 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7132 			  struct dentry *dentry,
7133 			  struct btrfs_log_ctx *ctx)
7134 {
7135 	struct dentry *parent = dget_parent(dentry);
7136 	int ret;
7137 
7138 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7139 				     LOG_INODE_ALL, ctx);
7140 	dput(parent);
7141 
7142 	return ret;
7143 }
7144 
7145 /*
7146  * should be called during mount to recover any replay any log trees
7147  * from the FS
7148  */
7149 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7150 {
7151 	int ret;
7152 	struct btrfs_path *path;
7153 	struct btrfs_trans_handle *trans;
7154 	struct btrfs_key key;
7155 	struct btrfs_key found_key;
7156 	struct btrfs_root *log;
7157 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7158 	struct walk_control wc = {
7159 		.process_func = process_one_buffer,
7160 		.stage = LOG_WALK_PIN_ONLY,
7161 	};
7162 
7163 	path = btrfs_alloc_path();
7164 	if (!path)
7165 		return -ENOMEM;
7166 
7167 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7168 
7169 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7170 	if (IS_ERR(trans)) {
7171 		ret = PTR_ERR(trans);
7172 		goto error;
7173 	}
7174 
7175 	wc.trans = trans;
7176 	wc.pin = 1;
7177 
7178 	ret = walk_log_tree(trans, log_root_tree, &wc);
7179 	if (ret) {
7180 		btrfs_abort_transaction(trans, ret);
7181 		goto error;
7182 	}
7183 
7184 again:
7185 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7186 	key.offset = (u64)-1;
7187 	key.type = BTRFS_ROOT_ITEM_KEY;
7188 
7189 	while (1) {
7190 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7191 
7192 		if (ret < 0) {
7193 			btrfs_abort_transaction(trans, ret);
7194 			goto error;
7195 		}
7196 		if (ret > 0) {
7197 			if (path->slots[0] == 0)
7198 				break;
7199 			path->slots[0]--;
7200 		}
7201 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7202 				      path->slots[0]);
7203 		btrfs_release_path(path);
7204 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7205 			break;
7206 
7207 		log = btrfs_read_tree_root(log_root_tree, &found_key);
7208 		if (IS_ERR(log)) {
7209 			ret = PTR_ERR(log);
7210 			btrfs_abort_transaction(trans, ret);
7211 			goto error;
7212 		}
7213 
7214 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7215 						   true);
7216 		if (IS_ERR(wc.replay_dest)) {
7217 			ret = PTR_ERR(wc.replay_dest);
7218 
7219 			/*
7220 			 * We didn't find the subvol, likely because it was
7221 			 * deleted.  This is ok, simply skip this log and go to
7222 			 * the next one.
7223 			 *
7224 			 * We need to exclude the root because we can't have
7225 			 * other log replays overwriting this log as we'll read
7226 			 * it back in a few more times.  This will keep our
7227 			 * block from being modified, and we'll just bail for
7228 			 * each subsequent pass.
7229 			 */
7230 			if (ret == -ENOENT)
7231 				ret = btrfs_pin_extent_for_log_replay(trans,
7232 							log->node->start,
7233 							log->node->len);
7234 			btrfs_put_root(log);
7235 
7236 			if (!ret)
7237 				goto next;
7238 			btrfs_abort_transaction(trans, ret);
7239 			goto error;
7240 		}
7241 
7242 		wc.replay_dest->log_root = log;
7243 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7244 		if (ret)
7245 			/* The loop needs to continue due to the root refs */
7246 			btrfs_abort_transaction(trans, ret);
7247 		else
7248 			ret = walk_log_tree(trans, log, &wc);
7249 
7250 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7251 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7252 						      path);
7253 			if (ret)
7254 				btrfs_abort_transaction(trans, ret);
7255 		}
7256 
7257 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7258 			struct btrfs_root *root = wc.replay_dest;
7259 
7260 			btrfs_release_path(path);
7261 
7262 			/*
7263 			 * We have just replayed everything, and the highest
7264 			 * objectid of fs roots probably has changed in case
7265 			 * some inode_item's got replayed.
7266 			 *
7267 			 * root->objectid_mutex is not acquired as log replay
7268 			 * could only happen during mount.
7269 			 */
7270 			ret = btrfs_init_root_free_objectid(root);
7271 			if (ret)
7272 				btrfs_abort_transaction(trans, ret);
7273 		}
7274 
7275 		wc.replay_dest->log_root = NULL;
7276 		btrfs_put_root(wc.replay_dest);
7277 		btrfs_put_root(log);
7278 
7279 		if (ret)
7280 			goto error;
7281 next:
7282 		if (found_key.offset == 0)
7283 			break;
7284 		key.offset = found_key.offset - 1;
7285 	}
7286 	btrfs_release_path(path);
7287 
7288 	/* step one is to pin it all, step two is to replay just inodes */
7289 	if (wc.pin) {
7290 		wc.pin = 0;
7291 		wc.process_func = replay_one_buffer;
7292 		wc.stage = LOG_WALK_REPLAY_INODES;
7293 		goto again;
7294 	}
7295 	/* step three is to replay everything */
7296 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7297 		wc.stage++;
7298 		goto again;
7299 	}
7300 
7301 	btrfs_free_path(path);
7302 
7303 	/* step 4: commit the transaction, which also unpins the blocks */
7304 	ret = btrfs_commit_transaction(trans);
7305 	if (ret)
7306 		return ret;
7307 
7308 	log_root_tree->log_root = NULL;
7309 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7310 	btrfs_put_root(log_root_tree);
7311 
7312 	return 0;
7313 error:
7314 	if (wc.trans)
7315 		btrfs_end_transaction(wc.trans);
7316 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7317 	btrfs_free_path(path);
7318 	return ret;
7319 }
7320 
7321 /*
7322  * there are some corner cases where we want to force a full
7323  * commit instead of allowing a directory to be logged.
7324  *
7325  * They revolve around files there were unlinked from the directory, and
7326  * this function updates the parent directory so that a full commit is
7327  * properly done if it is fsync'd later after the unlinks are done.
7328  *
7329  * Must be called before the unlink operations (updates to the subvolume tree,
7330  * inodes, etc) are done.
7331  */
7332 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7333 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7334 			     int for_rename)
7335 {
7336 	/*
7337 	 * when we're logging a file, if it hasn't been renamed
7338 	 * or unlinked, and its inode is fully committed on disk,
7339 	 * we don't have to worry about walking up the directory chain
7340 	 * to log its parents.
7341 	 *
7342 	 * So, we use the last_unlink_trans field to put this transid
7343 	 * into the file.  When the file is logged we check it and
7344 	 * don't log the parents if the file is fully on disk.
7345 	 */
7346 	mutex_lock(&inode->log_mutex);
7347 	inode->last_unlink_trans = trans->transid;
7348 	mutex_unlock(&inode->log_mutex);
7349 
7350 	/*
7351 	 * if this directory was already logged any new
7352 	 * names for this file/dir will get recorded
7353 	 */
7354 	if (dir->logged_trans == trans->transid)
7355 		return;
7356 
7357 	/*
7358 	 * if the inode we're about to unlink was logged,
7359 	 * the log will be properly updated for any new names
7360 	 */
7361 	if (inode->logged_trans == trans->transid)
7362 		return;
7363 
7364 	/*
7365 	 * when renaming files across directories, if the directory
7366 	 * there we're unlinking from gets fsync'd later on, there's
7367 	 * no way to find the destination directory later and fsync it
7368 	 * properly.  So, we have to be conservative and force commits
7369 	 * so the new name gets discovered.
7370 	 */
7371 	if (for_rename)
7372 		goto record;
7373 
7374 	/* we can safely do the unlink without any special recording */
7375 	return;
7376 
7377 record:
7378 	mutex_lock(&dir->log_mutex);
7379 	dir->last_unlink_trans = trans->transid;
7380 	mutex_unlock(&dir->log_mutex);
7381 }
7382 
7383 /*
7384  * Make sure that if someone attempts to fsync the parent directory of a deleted
7385  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7386  * that after replaying the log tree of the parent directory's root we will not
7387  * see the snapshot anymore and at log replay time we will not see any log tree
7388  * corresponding to the deleted snapshot's root, which could lead to replaying
7389  * it after replaying the log tree of the parent directory (which would replay
7390  * the snapshot delete operation).
7391  *
7392  * Must be called before the actual snapshot destroy operation (updates to the
7393  * parent root and tree of tree roots trees, etc) are done.
7394  */
7395 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7396 				   struct btrfs_inode *dir)
7397 {
7398 	mutex_lock(&dir->log_mutex);
7399 	dir->last_unlink_trans = trans->transid;
7400 	mutex_unlock(&dir->log_mutex);
7401 }
7402 
7403 /**
7404  * Update the log after adding a new name for an inode.
7405  *
7406  * @trans:              Transaction handle.
7407  * @old_dentry:         The dentry associated with the old name and the old
7408  *                      parent directory.
7409  * @old_dir:            The inode of the previous parent directory for the case
7410  *                      of a rename. For a link operation, it must be NULL.
7411  * @old_dir_index:      The index number associated with the old name, meaningful
7412  *                      only for rename operations (when @old_dir is not NULL).
7413  *                      Ignored for link operations.
7414  * @parent:             The dentry associated with the directory under which the
7415  *                      new name is located.
7416  *
7417  * Call this after adding a new name for an inode, as a result of a link or
7418  * rename operation, and it will properly update the log to reflect the new name.
7419  */
7420 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7421 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7422 			u64 old_dir_index, struct dentry *parent)
7423 {
7424 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7425 	struct btrfs_root *root = inode->root;
7426 	struct btrfs_log_ctx ctx;
7427 	bool log_pinned = false;
7428 	int ret;
7429 
7430 	/*
7431 	 * this will force the logging code to walk the dentry chain
7432 	 * up for the file
7433 	 */
7434 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7435 		inode->last_unlink_trans = trans->transid;
7436 
7437 	/*
7438 	 * if this inode hasn't been logged and directory we're renaming it
7439 	 * from hasn't been logged, we don't need to log it
7440 	 */
7441 	ret = inode_logged(trans, inode, NULL);
7442 	if (ret < 0) {
7443 		goto out;
7444 	} else if (ret == 0) {
7445 		if (!old_dir)
7446 			return;
7447 		/*
7448 		 * If the inode was not logged and we are doing a rename (old_dir is not
7449 		 * NULL), check if old_dir was logged - if it was not we can return and
7450 		 * do nothing.
7451 		 */
7452 		ret = inode_logged(trans, old_dir, NULL);
7453 		if (ret < 0)
7454 			goto out;
7455 		else if (ret == 0)
7456 			return;
7457 	}
7458 	ret = 0;
7459 
7460 	/*
7461 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7462 	 * was previously logged, make sure that on log replay we get the old
7463 	 * dir entry deleted. This is needed because we will also log the new
7464 	 * name of the renamed inode, so we need to make sure that after log
7465 	 * replay we don't end up with both the new and old dir entries existing.
7466 	 */
7467 	if (old_dir && old_dir->logged_trans == trans->transid) {
7468 		struct btrfs_root *log = old_dir->root->log_root;
7469 		struct btrfs_path *path;
7470 
7471 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7472 
7473 		/*
7474 		 * We have two inodes to update in the log, the old directory and
7475 		 * the inode that got renamed, so we must pin the log to prevent
7476 		 * anyone from syncing the log until we have updated both inodes
7477 		 * in the log.
7478 		 */
7479 		ret = join_running_log_trans(root);
7480 		/*
7481 		 * At least one of the inodes was logged before, so this should
7482 		 * not fail, but if it does, it's not serious, just bail out and
7483 		 * mark the log for a full commit.
7484 		 */
7485 		if (WARN_ON_ONCE(ret < 0))
7486 			goto out;
7487 		log_pinned = true;
7488 
7489 		path = btrfs_alloc_path();
7490 		if (!path) {
7491 			ret = -ENOMEM;
7492 			goto out;
7493 		}
7494 
7495 		/*
7496 		 * Other concurrent task might be logging the old directory,
7497 		 * as it can be triggered when logging other inode that had or
7498 		 * still has a dentry in the old directory. We lock the old
7499 		 * directory's log_mutex to ensure the deletion of the old
7500 		 * name is persisted, because during directory logging we
7501 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7502 		 * the old name's dir index item is in the delayed items, so
7503 		 * it could be missed by an in progress directory logging.
7504 		 */
7505 		mutex_lock(&old_dir->log_mutex);
7506 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7507 					old_dentry->d_name.name,
7508 					old_dentry->d_name.len, old_dir_index);
7509 		if (ret > 0) {
7510 			/*
7511 			 * The dentry does not exist in the log, so record its
7512 			 * deletion.
7513 			 */
7514 			btrfs_release_path(path);
7515 			ret = insert_dir_log_key(trans, log, path,
7516 						 btrfs_ino(old_dir),
7517 						 old_dir_index, old_dir_index);
7518 		}
7519 		mutex_unlock(&old_dir->log_mutex);
7520 
7521 		btrfs_free_path(path);
7522 		if (ret < 0)
7523 			goto out;
7524 	}
7525 
7526 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7527 	ctx.logging_new_name = true;
7528 	/*
7529 	 * We don't care about the return value. If we fail to log the new name
7530 	 * then we know the next attempt to sync the log will fallback to a full
7531 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7532 	 * we don't need to worry about getting a log committed that has an
7533 	 * inconsistent state after a rename operation.
7534 	 */
7535 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7536 	ASSERT(list_empty(&ctx.conflict_inodes));
7537 out:
7538 	/*
7539 	 * If an error happened mark the log for a full commit because it's not
7540 	 * consistent and up to date or we couldn't find out if one of the
7541 	 * inodes was logged before in this transaction. Do it before unpinning
7542 	 * the log, to avoid any races with someone else trying to commit it.
7543 	 */
7544 	if (ret < 0)
7545 		btrfs_set_log_full_commit(trans);
7546 	if (log_pinned)
7547 		btrfs_end_log_trans(root);
7548 }
7549 
7550