xref: /openbmc/linux/fs/btrfs/tree-log.c (revision f220d3eb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "ctree.h"
12 #include "tree-log.h"
13 #include "disk-io.h"
14 #include "locking.h"
15 #include "print-tree.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "inode-map.h"
20 
21 /* magic values for the inode_only field in btrfs_log_inode:
22  *
23  * LOG_INODE_ALL means to log everything
24  * LOG_INODE_EXISTS means to log just enough to recreate the inode
25  * during log replay
26  */
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
30 
31 /*
32  * directory trouble cases
33  *
34  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35  * log, we must force a full commit before doing an fsync of the directory
36  * where the unlink was done.
37  * ---> record transid of last unlink/rename per directory
38  *
39  * mkdir foo/some_dir
40  * normal commit
41  * rename foo/some_dir foo2/some_dir
42  * mkdir foo/some_dir
43  * fsync foo/some_dir/some_file
44  *
45  * The fsync above will unlink the original some_dir without recording
46  * it in its new location (foo2).  After a crash, some_dir will be gone
47  * unless the fsync of some_file forces a full commit
48  *
49  * 2) we must log any new names for any file or dir that is in the fsync
50  * log. ---> check inode while renaming/linking.
51  *
52  * 2a) we must log any new names for any file or dir during rename
53  * when the directory they are being removed from was logged.
54  * ---> check inode and old parent dir during rename
55  *
56  *  2a is actually the more important variant.  With the extra logging
57  *  a crash might unlink the old name without recreating the new one
58  *
59  * 3) after a crash, we must go through any directories with a link count
60  * of zero and redo the rm -rf
61  *
62  * mkdir f1/foo
63  * normal commit
64  * rm -rf f1/foo
65  * fsync(f1)
66  *
67  * The directory f1 was fully removed from the FS, but fsync was never
68  * called on f1, only its parent dir.  After a crash the rm -rf must
69  * be replayed.  This must be able to recurse down the entire
70  * directory tree.  The inode link count fixup code takes care of the
71  * ugly details.
72  */
73 
74 /*
75  * stages for the tree walking.  The first
76  * stage (0) is to only pin down the blocks we find
77  * the second stage (1) is to make sure that all the inodes
78  * we find in the log are created in the subvolume.
79  *
80  * The last stage is to deal with directories and links and extents
81  * and all the other fun semantics
82  */
83 #define LOG_WALK_PIN_ONLY 0
84 #define LOG_WALK_REPLAY_INODES 1
85 #define LOG_WALK_REPLAY_DIR_INDEX 2
86 #define LOG_WALK_REPLAY_ALL 3
87 
88 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89 			   struct btrfs_root *root, struct btrfs_inode *inode,
90 			   int inode_only,
91 			   const loff_t start,
92 			   const loff_t end,
93 			   struct btrfs_log_ctx *ctx);
94 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root,
96 			     struct btrfs_path *path, u64 objectid);
97 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 				       struct btrfs_root *root,
99 				       struct btrfs_root *log,
100 				       struct btrfs_path *path,
101 				       u64 dirid, int del_all);
102 
103 /*
104  * tree logging is a special write ahead log used to make sure that
105  * fsyncs and O_SYNCs can happen without doing full tree commits.
106  *
107  * Full tree commits are expensive because they require commonly
108  * modified blocks to be recowed, creating many dirty pages in the
109  * extent tree an 4x-6x higher write load than ext3.
110  *
111  * Instead of doing a tree commit on every fsync, we use the
112  * key ranges and transaction ids to find items for a given file or directory
113  * that have changed in this transaction.  Those items are copied into
114  * a special tree (one per subvolume root), that tree is written to disk
115  * and then the fsync is considered complete.
116  *
117  * After a crash, items are copied out of the log-tree back into the
118  * subvolume tree.  Any file data extents found are recorded in the extent
119  * allocation tree, and the log-tree freed.
120  *
121  * The log tree is read three times, once to pin down all the extents it is
122  * using in ram and once, once to create all the inodes logged in the tree
123  * and once to do all the other items.
124  */
125 
126 /*
127  * start a sub transaction and setup the log tree
128  * this increments the log tree writer count to make the people
129  * syncing the tree wait for us to finish
130  */
131 static int start_log_trans(struct btrfs_trans_handle *trans,
132 			   struct btrfs_root *root,
133 			   struct btrfs_log_ctx *ctx)
134 {
135 	struct btrfs_fs_info *fs_info = root->fs_info;
136 	int ret = 0;
137 
138 	mutex_lock(&root->log_mutex);
139 
140 	if (root->log_root) {
141 		if (btrfs_need_log_full_commit(fs_info, trans)) {
142 			ret = -EAGAIN;
143 			goto out;
144 		}
145 
146 		if (!root->log_start_pid) {
147 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148 			root->log_start_pid = current->pid;
149 		} else if (root->log_start_pid != current->pid) {
150 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
151 		}
152 	} else {
153 		mutex_lock(&fs_info->tree_log_mutex);
154 		if (!fs_info->log_root_tree)
155 			ret = btrfs_init_log_root_tree(trans, fs_info);
156 		mutex_unlock(&fs_info->tree_log_mutex);
157 		if (ret)
158 			goto out;
159 
160 		ret = btrfs_add_log_tree(trans, root);
161 		if (ret)
162 			goto out;
163 
164 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 		root->log_start_pid = current->pid;
166 	}
167 
168 	atomic_inc(&root->log_batch);
169 	atomic_inc(&root->log_writers);
170 	if (ctx) {
171 		int index = root->log_transid % 2;
172 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
173 		ctx->log_transid = root->log_transid;
174 	}
175 
176 out:
177 	mutex_unlock(&root->log_mutex);
178 	return ret;
179 }
180 
181 /*
182  * returns 0 if there was a log transaction running and we were able
183  * to join, or returns -ENOENT if there were not transactions
184  * in progress
185  */
186 static int join_running_log_trans(struct btrfs_root *root)
187 {
188 	int ret = -ENOENT;
189 
190 	smp_mb();
191 	if (!root->log_root)
192 		return -ENOENT;
193 
194 	mutex_lock(&root->log_mutex);
195 	if (root->log_root) {
196 		ret = 0;
197 		atomic_inc(&root->log_writers);
198 	}
199 	mutex_unlock(&root->log_mutex);
200 	return ret;
201 }
202 
203 /*
204  * This either makes the current running log transaction wait
205  * until you call btrfs_end_log_trans() or it makes any future
206  * log transactions wait until you call btrfs_end_log_trans()
207  */
208 int btrfs_pin_log_trans(struct btrfs_root *root)
209 {
210 	int ret = -ENOENT;
211 
212 	mutex_lock(&root->log_mutex);
213 	atomic_inc(&root->log_writers);
214 	mutex_unlock(&root->log_mutex);
215 	return ret;
216 }
217 
218 /*
219  * indicate we're done making changes to the log tree
220  * and wake up anyone waiting to do a sync
221  */
222 void btrfs_end_log_trans(struct btrfs_root *root)
223 {
224 	if (atomic_dec_and_test(&root->log_writers)) {
225 		/* atomic_dec_and_test implies a barrier */
226 		cond_wake_up_nomb(&root->log_writer_wait);
227 	}
228 }
229 
230 
231 /*
232  * the walk control struct is used to pass state down the chain when
233  * processing the log tree.  The stage field tells us which part
234  * of the log tree processing we are currently doing.  The others
235  * are state fields used for that specific part
236  */
237 struct walk_control {
238 	/* should we free the extent on disk when done?  This is used
239 	 * at transaction commit time while freeing a log tree
240 	 */
241 	int free;
242 
243 	/* should we write out the extent buffer?  This is used
244 	 * while flushing the log tree to disk during a sync
245 	 */
246 	int write;
247 
248 	/* should we wait for the extent buffer io to finish?  Also used
249 	 * while flushing the log tree to disk for a sync
250 	 */
251 	int wait;
252 
253 	/* pin only walk, we record which extents on disk belong to the
254 	 * log trees
255 	 */
256 	int pin;
257 
258 	/* what stage of the replay code we're currently in */
259 	int stage;
260 
261 	/* the root we are currently replaying */
262 	struct btrfs_root *replay_dest;
263 
264 	/* the trans handle for the current replay */
265 	struct btrfs_trans_handle *trans;
266 
267 	/* the function that gets used to process blocks we find in the
268 	 * tree.  Note the extent_buffer might not be up to date when it is
269 	 * passed in, and it must be checked or read if you need the data
270 	 * inside it
271 	 */
272 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
273 			    struct walk_control *wc, u64 gen, int level);
274 };
275 
276 /*
277  * process_func used to pin down extents, write them or wait on them
278  */
279 static int process_one_buffer(struct btrfs_root *log,
280 			      struct extent_buffer *eb,
281 			      struct walk_control *wc, u64 gen, int level)
282 {
283 	struct btrfs_fs_info *fs_info = log->fs_info;
284 	int ret = 0;
285 
286 	/*
287 	 * If this fs is mixed then we need to be able to process the leaves to
288 	 * pin down any logged extents, so we have to read the block.
289 	 */
290 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
291 		ret = btrfs_read_buffer(eb, gen, level, NULL);
292 		if (ret)
293 			return ret;
294 	}
295 
296 	if (wc->pin)
297 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
298 						      eb->len);
299 
300 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
301 		if (wc->pin && btrfs_header_level(eb) == 0)
302 			ret = btrfs_exclude_logged_extents(fs_info, eb);
303 		if (wc->write)
304 			btrfs_write_tree_block(eb);
305 		if (wc->wait)
306 			btrfs_wait_tree_block_writeback(eb);
307 	}
308 	return ret;
309 }
310 
311 /*
312  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
313  * to the src data we are copying out.
314  *
315  * root is the tree we are copying into, and path is a scratch
316  * path for use in this function (it should be released on entry and
317  * will be released on exit).
318  *
319  * If the key is already in the destination tree the existing item is
320  * overwritten.  If the existing item isn't big enough, it is extended.
321  * If it is too large, it is truncated.
322  *
323  * If the key isn't in the destination yet, a new item is inserted.
324  */
325 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
326 				   struct btrfs_root *root,
327 				   struct btrfs_path *path,
328 				   struct extent_buffer *eb, int slot,
329 				   struct btrfs_key *key)
330 {
331 	struct btrfs_fs_info *fs_info = root->fs_info;
332 	int ret;
333 	u32 item_size;
334 	u64 saved_i_size = 0;
335 	int save_old_i_size = 0;
336 	unsigned long src_ptr;
337 	unsigned long dst_ptr;
338 	int overwrite_root = 0;
339 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
340 
341 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
342 		overwrite_root = 1;
343 
344 	item_size = btrfs_item_size_nr(eb, slot);
345 	src_ptr = btrfs_item_ptr_offset(eb, slot);
346 
347 	/* look for the key in the destination tree */
348 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
349 	if (ret < 0)
350 		return ret;
351 
352 	if (ret == 0) {
353 		char *src_copy;
354 		char *dst_copy;
355 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
356 						  path->slots[0]);
357 		if (dst_size != item_size)
358 			goto insert;
359 
360 		if (item_size == 0) {
361 			btrfs_release_path(path);
362 			return 0;
363 		}
364 		dst_copy = kmalloc(item_size, GFP_NOFS);
365 		src_copy = kmalloc(item_size, GFP_NOFS);
366 		if (!dst_copy || !src_copy) {
367 			btrfs_release_path(path);
368 			kfree(dst_copy);
369 			kfree(src_copy);
370 			return -ENOMEM;
371 		}
372 
373 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
374 
375 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
376 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
377 				   item_size);
378 		ret = memcmp(dst_copy, src_copy, item_size);
379 
380 		kfree(dst_copy);
381 		kfree(src_copy);
382 		/*
383 		 * they have the same contents, just return, this saves
384 		 * us from cowing blocks in the destination tree and doing
385 		 * extra writes that may not have been done by a previous
386 		 * sync
387 		 */
388 		if (ret == 0) {
389 			btrfs_release_path(path);
390 			return 0;
391 		}
392 
393 		/*
394 		 * We need to load the old nbytes into the inode so when we
395 		 * replay the extents we've logged we get the right nbytes.
396 		 */
397 		if (inode_item) {
398 			struct btrfs_inode_item *item;
399 			u64 nbytes;
400 			u32 mode;
401 
402 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
403 					      struct btrfs_inode_item);
404 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
405 			item = btrfs_item_ptr(eb, slot,
406 					      struct btrfs_inode_item);
407 			btrfs_set_inode_nbytes(eb, item, nbytes);
408 
409 			/*
410 			 * If this is a directory we need to reset the i_size to
411 			 * 0 so that we can set it up properly when replaying
412 			 * the rest of the items in this log.
413 			 */
414 			mode = btrfs_inode_mode(eb, item);
415 			if (S_ISDIR(mode))
416 				btrfs_set_inode_size(eb, item, 0);
417 		}
418 	} else if (inode_item) {
419 		struct btrfs_inode_item *item;
420 		u32 mode;
421 
422 		/*
423 		 * New inode, set nbytes to 0 so that the nbytes comes out
424 		 * properly when we replay the extents.
425 		 */
426 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
427 		btrfs_set_inode_nbytes(eb, item, 0);
428 
429 		/*
430 		 * If this is a directory we need to reset the i_size to 0 so
431 		 * that we can set it up properly when replaying the rest of
432 		 * the items in this log.
433 		 */
434 		mode = btrfs_inode_mode(eb, item);
435 		if (S_ISDIR(mode))
436 			btrfs_set_inode_size(eb, item, 0);
437 	}
438 insert:
439 	btrfs_release_path(path);
440 	/* try to insert the key into the destination tree */
441 	path->skip_release_on_error = 1;
442 	ret = btrfs_insert_empty_item(trans, root, path,
443 				      key, item_size);
444 	path->skip_release_on_error = 0;
445 
446 	/* make sure any existing item is the correct size */
447 	if (ret == -EEXIST || ret == -EOVERFLOW) {
448 		u32 found_size;
449 		found_size = btrfs_item_size_nr(path->nodes[0],
450 						path->slots[0]);
451 		if (found_size > item_size)
452 			btrfs_truncate_item(fs_info, path, item_size, 1);
453 		else if (found_size < item_size)
454 			btrfs_extend_item(fs_info, path,
455 					  item_size - found_size);
456 	} else if (ret) {
457 		return ret;
458 	}
459 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
460 					path->slots[0]);
461 
462 	/* don't overwrite an existing inode if the generation number
463 	 * was logged as zero.  This is done when the tree logging code
464 	 * is just logging an inode to make sure it exists after recovery.
465 	 *
466 	 * Also, don't overwrite i_size on directories during replay.
467 	 * log replay inserts and removes directory items based on the
468 	 * state of the tree found in the subvolume, and i_size is modified
469 	 * as it goes
470 	 */
471 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
472 		struct btrfs_inode_item *src_item;
473 		struct btrfs_inode_item *dst_item;
474 
475 		src_item = (struct btrfs_inode_item *)src_ptr;
476 		dst_item = (struct btrfs_inode_item *)dst_ptr;
477 
478 		if (btrfs_inode_generation(eb, src_item) == 0) {
479 			struct extent_buffer *dst_eb = path->nodes[0];
480 			const u64 ino_size = btrfs_inode_size(eb, src_item);
481 
482 			/*
483 			 * For regular files an ino_size == 0 is used only when
484 			 * logging that an inode exists, as part of a directory
485 			 * fsync, and the inode wasn't fsynced before. In this
486 			 * case don't set the size of the inode in the fs/subvol
487 			 * tree, otherwise we would be throwing valid data away.
488 			 */
489 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
490 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
491 			    ino_size != 0) {
492 				struct btrfs_map_token token;
493 
494 				btrfs_init_map_token(&token);
495 				btrfs_set_token_inode_size(dst_eb, dst_item,
496 							   ino_size, &token);
497 			}
498 			goto no_copy;
499 		}
500 
501 		if (overwrite_root &&
502 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
503 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
504 			save_old_i_size = 1;
505 			saved_i_size = btrfs_inode_size(path->nodes[0],
506 							dst_item);
507 		}
508 	}
509 
510 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
511 			   src_ptr, item_size);
512 
513 	if (save_old_i_size) {
514 		struct btrfs_inode_item *dst_item;
515 		dst_item = (struct btrfs_inode_item *)dst_ptr;
516 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
517 	}
518 
519 	/* make sure the generation is filled in */
520 	if (key->type == BTRFS_INODE_ITEM_KEY) {
521 		struct btrfs_inode_item *dst_item;
522 		dst_item = (struct btrfs_inode_item *)dst_ptr;
523 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
524 			btrfs_set_inode_generation(path->nodes[0], dst_item,
525 						   trans->transid);
526 		}
527 	}
528 no_copy:
529 	btrfs_mark_buffer_dirty(path->nodes[0]);
530 	btrfs_release_path(path);
531 	return 0;
532 }
533 
534 /*
535  * simple helper to read an inode off the disk from a given root
536  * This can only be called for subvolume roots and not for the log
537  */
538 static noinline struct inode *read_one_inode(struct btrfs_root *root,
539 					     u64 objectid)
540 {
541 	struct btrfs_key key;
542 	struct inode *inode;
543 
544 	key.objectid = objectid;
545 	key.type = BTRFS_INODE_ITEM_KEY;
546 	key.offset = 0;
547 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
548 	if (IS_ERR(inode))
549 		inode = NULL;
550 	return inode;
551 }
552 
553 /* replays a single extent in 'eb' at 'slot' with 'key' into the
554  * subvolume 'root'.  path is released on entry and should be released
555  * on exit.
556  *
557  * extents in the log tree have not been allocated out of the extent
558  * tree yet.  So, this completes the allocation, taking a reference
559  * as required if the extent already exists or creating a new extent
560  * if it isn't in the extent allocation tree yet.
561  *
562  * The extent is inserted into the file, dropping any existing extents
563  * from the file that overlap the new one.
564  */
565 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
566 				      struct btrfs_root *root,
567 				      struct btrfs_path *path,
568 				      struct extent_buffer *eb, int slot,
569 				      struct btrfs_key *key)
570 {
571 	struct btrfs_fs_info *fs_info = root->fs_info;
572 	int found_type;
573 	u64 extent_end;
574 	u64 start = key->offset;
575 	u64 nbytes = 0;
576 	struct btrfs_file_extent_item *item;
577 	struct inode *inode = NULL;
578 	unsigned long size;
579 	int ret = 0;
580 
581 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
582 	found_type = btrfs_file_extent_type(eb, item);
583 
584 	if (found_type == BTRFS_FILE_EXTENT_REG ||
585 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
586 		nbytes = btrfs_file_extent_num_bytes(eb, item);
587 		extent_end = start + nbytes;
588 
589 		/*
590 		 * We don't add to the inodes nbytes if we are prealloc or a
591 		 * hole.
592 		 */
593 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
594 			nbytes = 0;
595 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
596 		size = btrfs_file_extent_ram_bytes(eb, item);
597 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
598 		extent_end = ALIGN(start + size,
599 				   fs_info->sectorsize);
600 	} else {
601 		ret = 0;
602 		goto out;
603 	}
604 
605 	inode = read_one_inode(root, key->objectid);
606 	if (!inode) {
607 		ret = -EIO;
608 		goto out;
609 	}
610 
611 	/*
612 	 * first check to see if we already have this extent in the
613 	 * file.  This must be done before the btrfs_drop_extents run
614 	 * so we don't try to drop this extent.
615 	 */
616 	ret = btrfs_lookup_file_extent(trans, root, path,
617 			btrfs_ino(BTRFS_I(inode)), start, 0);
618 
619 	if (ret == 0 &&
620 	    (found_type == BTRFS_FILE_EXTENT_REG ||
621 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
622 		struct btrfs_file_extent_item cmp1;
623 		struct btrfs_file_extent_item cmp2;
624 		struct btrfs_file_extent_item *existing;
625 		struct extent_buffer *leaf;
626 
627 		leaf = path->nodes[0];
628 		existing = btrfs_item_ptr(leaf, path->slots[0],
629 					  struct btrfs_file_extent_item);
630 
631 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
632 				   sizeof(cmp1));
633 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
634 				   sizeof(cmp2));
635 
636 		/*
637 		 * we already have a pointer to this exact extent,
638 		 * we don't have to do anything
639 		 */
640 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
641 			btrfs_release_path(path);
642 			goto out;
643 		}
644 	}
645 	btrfs_release_path(path);
646 
647 	/* drop any overlapping extents */
648 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
649 	if (ret)
650 		goto out;
651 
652 	if (found_type == BTRFS_FILE_EXTENT_REG ||
653 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
654 		u64 offset;
655 		unsigned long dest_offset;
656 		struct btrfs_key ins;
657 
658 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
659 		    btrfs_fs_incompat(fs_info, NO_HOLES))
660 			goto update_inode;
661 
662 		ret = btrfs_insert_empty_item(trans, root, path, key,
663 					      sizeof(*item));
664 		if (ret)
665 			goto out;
666 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
667 						    path->slots[0]);
668 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
669 				(unsigned long)item,  sizeof(*item));
670 
671 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
672 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
673 		ins.type = BTRFS_EXTENT_ITEM_KEY;
674 		offset = key->offset - btrfs_file_extent_offset(eb, item);
675 
676 		/*
677 		 * Manually record dirty extent, as here we did a shallow
678 		 * file extent item copy and skip normal backref update,
679 		 * but modifying extent tree all by ourselves.
680 		 * So need to manually record dirty extent for qgroup,
681 		 * as the owner of the file extent changed from log tree
682 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
683 		 */
684 		ret = btrfs_qgroup_trace_extent(trans,
685 				btrfs_file_extent_disk_bytenr(eb, item),
686 				btrfs_file_extent_disk_num_bytes(eb, item),
687 				GFP_NOFS);
688 		if (ret < 0)
689 			goto out;
690 
691 		if (ins.objectid > 0) {
692 			u64 csum_start;
693 			u64 csum_end;
694 			LIST_HEAD(ordered_sums);
695 			/*
696 			 * is this extent already allocated in the extent
697 			 * allocation tree?  If so, just add a reference
698 			 */
699 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
700 						ins.offset);
701 			if (ret == 0) {
702 				ret = btrfs_inc_extent_ref(trans, root,
703 						ins.objectid, ins.offset,
704 						0, root->root_key.objectid,
705 						key->objectid, offset);
706 				if (ret)
707 					goto out;
708 			} else {
709 				/*
710 				 * insert the extent pointer in the extent
711 				 * allocation tree
712 				 */
713 				ret = btrfs_alloc_logged_file_extent(trans,
714 						root->root_key.objectid,
715 						key->objectid, offset, &ins);
716 				if (ret)
717 					goto out;
718 			}
719 			btrfs_release_path(path);
720 
721 			if (btrfs_file_extent_compression(eb, item)) {
722 				csum_start = ins.objectid;
723 				csum_end = csum_start + ins.offset;
724 			} else {
725 				csum_start = ins.objectid +
726 					btrfs_file_extent_offset(eb, item);
727 				csum_end = csum_start +
728 					btrfs_file_extent_num_bytes(eb, item);
729 			}
730 
731 			ret = btrfs_lookup_csums_range(root->log_root,
732 						csum_start, csum_end - 1,
733 						&ordered_sums, 0);
734 			if (ret)
735 				goto out;
736 			/*
737 			 * Now delete all existing cums in the csum root that
738 			 * cover our range. We do this because we can have an
739 			 * extent that is completely referenced by one file
740 			 * extent item and partially referenced by another
741 			 * file extent item (like after using the clone or
742 			 * extent_same ioctls). In this case if we end up doing
743 			 * the replay of the one that partially references the
744 			 * extent first, and we do not do the csum deletion
745 			 * below, we can get 2 csum items in the csum tree that
746 			 * overlap each other. For example, imagine our log has
747 			 * the two following file extent items:
748 			 *
749 			 * key (257 EXTENT_DATA 409600)
750 			 *     extent data disk byte 12845056 nr 102400
751 			 *     extent data offset 20480 nr 20480 ram 102400
752 			 *
753 			 * key (257 EXTENT_DATA 819200)
754 			 *     extent data disk byte 12845056 nr 102400
755 			 *     extent data offset 0 nr 102400 ram 102400
756 			 *
757 			 * Where the second one fully references the 100K extent
758 			 * that starts at disk byte 12845056, and the log tree
759 			 * has a single csum item that covers the entire range
760 			 * of the extent:
761 			 *
762 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
763 			 *
764 			 * After the first file extent item is replayed, the
765 			 * csum tree gets the following csum item:
766 			 *
767 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
768 			 *
769 			 * Which covers the 20K sub-range starting at offset 20K
770 			 * of our extent. Now when we replay the second file
771 			 * extent item, if we do not delete existing csum items
772 			 * that cover any of its blocks, we end up getting two
773 			 * csum items in our csum tree that overlap each other:
774 			 *
775 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
776 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
777 			 *
778 			 * Which is a problem, because after this anyone trying
779 			 * to lookup up for the checksum of any block of our
780 			 * extent starting at an offset of 40K or higher, will
781 			 * end up looking at the second csum item only, which
782 			 * does not contain the checksum for any block starting
783 			 * at offset 40K or higher of our extent.
784 			 */
785 			while (!list_empty(&ordered_sums)) {
786 				struct btrfs_ordered_sum *sums;
787 				sums = list_entry(ordered_sums.next,
788 						struct btrfs_ordered_sum,
789 						list);
790 				if (!ret)
791 					ret = btrfs_del_csums(trans, fs_info,
792 							      sums->bytenr,
793 							      sums->len);
794 				if (!ret)
795 					ret = btrfs_csum_file_blocks(trans,
796 						fs_info->csum_root, sums);
797 				list_del(&sums->list);
798 				kfree(sums);
799 			}
800 			if (ret)
801 				goto out;
802 		} else {
803 			btrfs_release_path(path);
804 		}
805 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
806 		/* inline extents are easy, we just overwrite them */
807 		ret = overwrite_item(trans, root, path, eb, slot, key);
808 		if (ret)
809 			goto out;
810 	}
811 
812 	inode_add_bytes(inode, nbytes);
813 update_inode:
814 	ret = btrfs_update_inode(trans, root, inode);
815 out:
816 	if (inode)
817 		iput(inode);
818 	return ret;
819 }
820 
821 /*
822  * when cleaning up conflicts between the directory names in the
823  * subvolume, directory names in the log and directory names in the
824  * inode back references, we may have to unlink inodes from directories.
825  *
826  * This is a helper function to do the unlink of a specific directory
827  * item
828  */
829 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
830 				      struct btrfs_root *root,
831 				      struct btrfs_path *path,
832 				      struct btrfs_inode *dir,
833 				      struct btrfs_dir_item *di)
834 {
835 	struct inode *inode;
836 	char *name;
837 	int name_len;
838 	struct extent_buffer *leaf;
839 	struct btrfs_key location;
840 	int ret;
841 
842 	leaf = path->nodes[0];
843 
844 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
845 	name_len = btrfs_dir_name_len(leaf, di);
846 	name = kmalloc(name_len, GFP_NOFS);
847 	if (!name)
848 		return -ENOMEM;
849 
850 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
851 	btrfs_release_path(path);
852 
853 	inode = read_one_inode(root, location.objectid);
854 	if (!inode) {
855 		ret = -EIO;
856 		goto out;
857 	}
858 
859 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
860 	if (ret)
861 		goto out;
862 
863 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
864 			name_len);
865 	if (ret)
866 		goto out;
867 	else
868 		ret = btrfs_run_delayed_items(trans);
869 out:
870 	kfree(name);
871 	iput(inode);
872 	return ret;
873 }
874 
875 /*
876  * helper function to see if a given name and sequence number found
877  * in an inode back reference are already in a directory and correctly
878  * point to this inode
879  */
880 static noinline int inode_in_dir(struct btrfs_root *root,
881 				 struct btrfs_path *path,
882 				 u64 dirid, u64 objectid, u64 index,
883 				 const char *name, int name_len)
884 {
885 	struct btrfs_dir_item *di;
886 	struct btrfs_key location;
887 	int match = 0;
888 
889 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
890 					 index, name, name_len, 0);
891 	if (di && !IS_ERR(di)) {
892 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
893 		if (location.objectid != objectid)
894 			goto out;
895 	} else
896 		goto out;
897 	btrfs_release_path(path);
898 
899 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
900 	if (di && !IS_ERR(di)) {
901 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
902 		if (location.objectid != objectid)
903 			goto out;
904 	} else
905 		goto out;
906 	match = 1;
907 out:
908 	btrfs_release_path(path);
909 	return match;
910 }
911 
912 /*
913  * helper function to check a log tree for a named back reference in
914  * an inode.  This is used to decide if a back reference that is
915  * found in the subvolume conflicts with what we find in the log.
916  *
917  * inode backreferences may have multiple refs in a single item,
918  * during replay we process one reference at a time, and we don't
919  * want to delete valid links to a file from the subvolume if that
920  * link is also in the log.
921  */
922 static noinline int backref_in_log(struct btrfs_root *log,
923 				   struct btrfs_key *key,
924 				   u64 ref_objectid,
925 				   const char *name, int namelen)
926 {
927 	struct btrfs_path *path;
928 	struct btrfs_inode_ref *ref;
929 	unsigned long ptr;
930 	unsigned long ptr_end;
931 	unsigned long name_ptr;
932 	int found_name_len;
933 	int item_size;
934 	int ret;
935 	int match = 0;
936 
937 	path = btrfs_alloc_path();
938 	if (!path)
939 		return -ENOMEM;
940 
941 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
942 	if (ret != 0)
943 		goto out;
944 
945 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
946 
947 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
948 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
949 						   path->slots[0],
950 						   ref_objectid,
951 						   name, namelen, NULL))
952 			match = 1;
953 
954 		goto out;
955 	}
956 
957 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
958 	ptr_end = ptr + item_size;
959 	while (ptr < ptr_end) {
960 		ref = (struct btrfs_inode_ref *)ptr;
961 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
962 		if (found_name_len == namelen) {
963 			name_ptr = (unsigned long)(ref + 1);
964 			ret = memcmp_extent_buffer(path->nodes[0], name,
965 						   name_ptr, namelen);
966 			if (ret == 0) {
967 				match = 1;
968 				goto out;
969 			}
970 		}
971 		ptr = (unsigned long)(ref + 1) + found_name_len;
972 	}
973 out:
974 	btrfs_free_path(path);
975 	return match;
976 }
977 
978 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
979 				  struct btrfs_root *root,
980 				  struct btrfs_path *path,
981 				  struct btrfs_root *log_root,
982 				  struct btrfs_inode *dir,
983 				  struct btrfs_inode *inode,
984 				  u64 inode_objectid, u64 parent_objectid,
985 				  u64 ref_index, char *name, int namelen,
986 				  int *search_done)
987 {
988 	int ret;
989 	char *victim_name;
990 	int victim_name_len;
991 	struct extent_buffer *leaf;
992 	struct btrfs_dir_item *di;
993 	struct btrfs_key search_key;
994 	struct btrfs_inode_extref *extref;
995 
996 again:
997 	/* Search old style refs */
998 	search_key.objectid = inode_objectid;
999 	search_key.type = BTRFS_INODE_REF_KEY;
1000 	search_key.offset = parent_objectid;
1001 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1002 	if (ret == 0) {
1003 		struct btrfs_inode_ref *victim_ref;
1004 		unsigned long ptr;
1005 		unsigned long ptr_end;
1006 
1007 		leaf = path->nodes[0];
1008 
1009 		/* are we trying to overwrite a back ref for the root directory
1010 		 * if so, just jump out, we're done
1011 		 */
1012 		if (search_key.objectid == search_key.offset)
1013 			return 1;
1014 
1015 		/* check all the names in this back reference to see
1016 		 * if they are in the log.  if so, we allow them to stay
1017 		 * otherwise they must be unlinked as a conflict
1018 		 */
1019 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1020 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1021 		while (ptr < ptr_end) {
1022 			victim_ref = (struct btrfs_inode_ref *)ptr;
1023 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1024 								   victim_ref);
1025 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1026 			if (!victim_name)
1027 				return -ENOMEM;
1028 
1029 			read_extent_buffer(leaf, victim_name,
1030 					   (unsigned long)(victim_ref + 1),
1031 					   victim_name_len);
1032 
1033 			if (!backref_in_log(log_root, &search_key,
1034 					    parent_objectid,
1035 					    victim_name,
1036 					    victim_name_len)) {
1037 				inc_nlink(&inode->vfs_inode);
1038 				btrfs_release_path(path);
1039 
1040 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1041 						victim_name, victim_name_len);
1042 				kfree(victim_name);
1043 				if (ret)
1044 					return ret;
1045 				ret = btrfs_run_delayed_items(trans);
1046 				if (ret)
1047 					return ret;
1048 				*search_done = 1;
1049 				goto again;
1050 			}
1051 			kfree(victim_name);
1052 
1053 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1054 		}
1055 
1056 		/*
1057 		 * NOTE: we have searched root tree and checked the
1058 		 * corresponding ref, it does not need to check again.
1059 		 */
1060 		*search_done = 1;
1061 	}
1062 	btrfs_release_path(path);
1063 
1064 	/* Same search but for extended refs */
1065 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1066 					   inode_objectid, parent_objectid, 0,
1067 					   0);
1068 	if (!IS_ERR_OR_NULL(extref)) {
1069 		u32 item_size;
1070 		u32 cur_offset = 0;
1071 		unsigned long base;
1072 		struct inode *victim_parent;
1073 
1074 		leaf = path->nodes[0];
1075 
1076 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1077 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1078 
1079 		while (cur_offset < item_size) {
1080 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1081 
1082 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1083 
1084 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1085 				goto next;
1086 
1087 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1088 			if (!victim_name)
1089 				return -ENOMEM;
1090 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1091 					   victim_name_len);
1092 
1093 			search_key.objectid = inode_objectid;
1094 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1095 			search_key.offset = btrfs_extref_hash(parent_objectid,
1096 							      victim_name,
1097 							      victim_name_len);
1098 			ret = 0;
1099 			if (!backref_in_log(log_root, &search_key,
1100 					    parent_objectid, victim_name,
1101 					    victim_name_len)) {
1102 				ret = -ENOENT;
1103 				victim_parent = read_one_inode(root,
1104 						parent_objectid);
1105 				if (victim_parent) {
1106 					inc_nlink(&inode->vfs_inode);
1107 					btrfs_release_path(path);
1108 
1109 					ret = btrfs_unlink_inode(trans, root,
1110 							BTRFS_I(victim_parent),
1111 							inode,
1112 							victim_name,
1113 							victim_name_len);
1114 					if (!ret)
1115 						ret = btrfs_run_delayed_items(
1116 								  trans);
1117 				}
1118 				iput(victim_parent);
1119 				kfree(victim_name);
1120 				if (ret)
1121 					return ret;
1122 				*search_done = 1;
1123 				goto again;
1124 			}
1125 			kfree(victim_name);
1126 next:
1127 			cur_offset += victim_name_len + sizeof(*extref);
1128 		}
1129 		*search_done = 1;
1130 	}
1131 	btrfs_release_path(path);
1132 
1133 	/* look for a conflicting sequence number */
1134 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1135 					 ref_index, name, namelen, 0);
1136 	if (di && !IS_ERR(di)) {
1137 		ret = drop_one_dir_item(trans, root, path, dir, di);
1138 		if (ret)
1139 			return ret;
1140 	}
1141 	btrfs_release_path(path);
1142 
1143 	/* look for a conflicing name */
1144 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1145 				   name, namelen, 0);
1146 	if (di && !IS_ERR(di)) {
1147 		ret = drop_one_dir_item(trans, root, path, dir, di);
1148 		if (ret)
1149 			return ret;
1150 	}
1151 	btrfs_release_path(path);
1152 
1153 	return 0;
1154 }
1155 
1156 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1157 			     u32 *namelen, char **name, u64 *index,
1158 			     u64 *parent_objectid)
1159 {
1160 	struct btrfs_inode_extref *extref;
1161 
1162 	extref = (struct btrfs_inode_extref *)ref_ptr;
1163 
1164 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1165 	*name = kmalloc(*namelen, GFP_NOFS);
1166 	if (*name == NULL)
1167 		return -ENOMEM;
1168 
1169 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1170 			   *namelen);
1171 
1172 	if (index)
1173 		*index = btrfs_inode_extref_index(eb, extref);
1174 	if (parent_objectid)
1175 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1176 
1177 	return 0;
1178 }
1179 
1180 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1181 			  u32 *namelen, char **name, u64 *index)
1182 {
1183 	struct btrfs_inode_ref *ref;
1184 
1185 	ref = (struct btrfs_inode_ref *)ref_ptr;
1186 
1187 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1188 	*name = kmalloc(*namelen, GFP_NOFS);
1189 	if (*name == NULL)
1190 		return -ENOMEM;
1191 
1192 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1193 
1194 	if (index)
1195 		*index = btrfs_inode_ref_index(eb, ref);
1196 
1197 	return 0;
1198 }
1199 
1200 /*
1201  * Take an inode reference item from the log tree and iterate all names from the
1202  * inode reference item in the subvolume tree with the same key (if it exists).
1203  * For any name that is not in the inode reference item from the log tree, do a
1204  * proper unlink of that name (that is, remove its entry from the inode
1205  * reference item and both dir index keys).
1206  */
1207 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1208 				 struct btrfs_root *root,
1209 				 struct btrfs_path *path,
1210 				 struct btrfs_inode *inode,
1211 				 struct extent_buffer *log_eb,
1212 				 int log_slot,
1213 				 struct btrfs_key *key)
1214 {
1215 	int ret;
1216 	unsigned long ref_ptr;
1217 	unsigned long ref_end;
1218 	struct extent_buffer *eb;
1219 
1220 again:
1221 	btrfs_release_path(path);
1222 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1223 	if (ret > 0) {
1224 		ret = 0;
1225 		goto out;
1226 	}
1227 	if (ret < 0)
1228 		goto out;
1229 
1230 	eb = path->nodes[0];
1231 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1232 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1233 	while (ref_ptr < ref_end) {
1234 		char *name = NULL;
1235 		int namelen;
1236 		u64 parent_id;
1237 
1238 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1239 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1240 						NULL, &parent_id);
1241 		} else {
1242 			parent_id = key->offset;
1243 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1244 					     NULL);
1245 		}
1246 		if (ret)
1247 			goto out;
1248 
1249 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1250 			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1251 							     parent_id, name,
1252 							     namelen, NULL);
1253 		else
1254 			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1255 							 namelen, NULL);
1256 
1257 		if (!ret) {
1258 			struct inode *dir;
1259 
1260 			btrfs_release_path(path);
1261 			dir = read_one_inode(root, parent_id);
1262 			if (!dir) {
1263 				ret = -ENOENT;
1264 				kfree(name);
1265 				goto out;
1266 			}
1267 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1268 						 inode, name, namelen);
1269 			kfree(name);
1270 			iput(dir);
1271 			if (ret)
1272 				goto out;
1273 			goto again;
1274 		}
1275 
1276 		kfree(name);
1277 		ref_ptr += namelen;
1278 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1279 			ref_ptr += sizeof(struct btrfs_inode_extref);
1280 		else
1281 			ref_ptr += sizeof(struct btrfs_inode_ref);
1282 	}
1283 	ret = 0;
1284  out:
1285 	btrfs_release_path(path);
1286 	return ret;
1287 }
1288 
1289 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1290 				  const u8 ref_type, const char *name,
1291 				  const int namelen)
1292 {
1293 	struct btrfs_key key;
1294 	struct btrfs_path *path;
1295 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1296 	int ret;
1297 
1298 	path = btrfs_alloc_path();
1299 	if (!path)
1300 		return -ENOMEM;
1301 
1302 	key.objectid = btrfs_ino(BTRFS_I(inode));
1303 	key.type = ref_type;
1304 	if (key.type == BTRFS_INODE_REF_KEY)
1305 		key.offset = parent_id;
1306 	else
1307 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1308 
1309 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1310 	if (ret < 0)
1311 		goto out;
1312 	if (ret > 0) {
1313 		ret = 0;
1314 		goto out;
1315 	}
1316 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1317 		ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1318 						     path->slots[0], parent_id,
1319 						     name, namelen, NULL);
1320 	else
1321 		ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1322 						 name, namelen, NULL);
1323 
1324 out:
1325 	btrfs_free_path(path);
1326 	return ret;
1327 }
1328 
1329 /*
1330  * replay one inode back reference item found in the log tree.
1331  * eb, slot and key refer to the buffer and key found in the log tree.
1332  * root is the destination we are replaying into, and path is for temp
1333  * use by this function.  (it should be released on return).
1334  */
1335 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1336 				  struct btrfs_root *root,
1337 				  struct btrfs_root *log,
1338 				  struct btrfs_path *path,
1339 				  struct extent_buffer *eb, int slot,
1340 				  struct btrfs_key *key)
1341 {
1342 	struct inode *dir = NULL;
1343 	struct inode *inode = NULL;
1344 	unsigned long ref_ptr;
1345 	unsigned long ref_end;
1346 	char *name = NULL;
1347 	int namelen;
1348 	int ret;
1349 	int search_done = 0;
1350 	int log_ref_ver = 0;
1351 	u64 parent_objectid;
1352 	u64 inode_objectid;
1353 	u64 ref_index = 0;
1354 	int ref_struct_size;
1355 
1356 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1357 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1358 
1359 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1360 		struct btrfs_inode_extref *r;
1361 
1362 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1363 		log_ref_ver = 1;
1364 		r = (struct btrfs_inode_extref *)ref_ptr;
1365 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1366 	} else {
1367 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1368 		parent_objectid = key->offset;
1369 	}
1370 	inode_objectid = key->objectid;
1371 
1372 	/*
1373 	 * it is possible that we didn't log all the parent directories
1374 	 * for a given inode.  If we don't find the dir, just don't
1375 	 * copy the back ref in.  The link count fixup code will take
1376 	 * care of the rest
1377 	 */
1378 	dir = read_one_inode(root, parent_objectid);
1379 	if (!dir) {
1380 		ret = -ENOENT;
1381 		goto out;
1382 	}
1383 
1384 	inode = read_one_inode(root, inode_objectid);
1385 	if (!inode) {
1386 		ret = -EIO;
1387 		goto out;
1388 	}
1389 
1390 	while (ref_ptr < ref_end) {
1391 		if (log_ref_ver) {
1392 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1393 						&ref_index, &parent_objectid);
1394 			/*
1395 			 * parent object can change from one array
1396 			 * item to another.
1397 			 */
1398 			if (!dir)
1399 				dir = read_one_inode(root, parent_objectid);
1400 			if (!dir) {
1401 				ret = -ENOENT;
1402 				goto out;
1403 			}
1404 		} else {
1405 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1406 					     &ref_index);
1407 		}
1408 		if (ret)
1409 			goto out;
1410 
1411 		/* if we already have a perfect match, we're done */
1412 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1413 					btrfs_ino(BTRFS_I(inode)), ref_index,
1414 					name, namelen)) {
1415 			/*
1416 			 * look for a conflicting back reference in the
1417 			 * metadata. if we find one we have to unlink that name
1418 			 * of the file before we add our new link.  Later on, we
1419 			 * overwrite any existing back reference, and we don't
1420 			 * want to create dangling pointers in the directory.
1421 			 */
1422 
1423 			if (!search_done) {
1424 				ret = __add_inode_ref(trans, root, path, log,
1425 						      BTRFS_I(dir),
1426 						      BTRFS_I(inode),
1427 						      inode_objectid,
1428 						      parent_objectid,
1429 						      ref_index, name, namelen,
1430 						      &search_done);
1431 				if (ret) {
1432 					if (ret == 1)
1433 						ret = 0;
1434 					goto out;
1435 				}
1436 			}
1437 
1438 			/*
1439 			 * If a reference item already exists for this inode
1440 			 * with the same parent and name, but different index,
1441 			 * drop it and the corresponding directory index entries
1442 			 * from the parent before adding the new reference item
1443 			 * and dir index entries, otherwise we would fail with
1444 			 * -EEXIST returned from btrfs_add_link() below.
1445 			 */
1446 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1447 						     name, namelen);
1448 			if (ret > 0) {
1449 				ret = btrfs_unlink_inode(trans, root,
1450 							 BTRFS_I(dir),
1451 							 BTRFS_I(inode),
1452 							 name, namelen);
1453 				/*
1454 				 * If we dropped the link count to 0, bump it so
1455 				 * that later the iput() on the inode will not
1456 				 * free it. We will fixup the link count later.
1457 				 */
1458 				if (!ret && inode->i_nlink == 0)
1459 					inc_nlink(inode);
1460 			}
1461 			if (ret < 0)
1462 				goto out;
1463 
1464 			/* insert our name */
1465 			ret = btrfs_add_link(trans, BTRFS_I(dir),
1466 					BTRFS_I(inode),
1467 					name, namelen, 0, ref_index);
1468 			if (ret)
1469 				goto out;
1470 
1471 			btrfs_update_inode(trans, root, inode);
1472 		}
1473 
1474 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1475 		kfree(name);
1476 		name = NULL;
1477 		if (log_ref_ver) {
1478 			iput(dir);
1479 			dir = NULL;
1480 		}
1481 	}
1482 
1483 	/*
1484 	 * Before we overwrite the inode reference item in the subvolume tree
1485 	 * with the item from the log tree, we must unlink all names from the
1486 	 * parent directory that are in the subvolume's tree inode reference
1487 	 * item, otherwise we end up with an inconsistent subvolume tree where
1488 	 * dir index entries exist for a name but there is no inode reference
1489 	 * item with the same name.
1490 	 */
1491 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1492 				    key);
1493 	if (ret)
1494 		goto out;
1495 
1496 	/* finally write the back reference in the inode */
1497 	ret = overwrite_item(trans, root, path, eb, slot, key);
1498 out:
1499 	btrfs_release_path(path);
1500 	kfree(name);
1501 	iput(dir);
1502 	iput(inode);
1503 	return ret;
1504 }
1505 
1506 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1507 			      struct btrfs_root *root, u64 ino)
1508 {
1509 	int ret;
1510 
1511 	ret = btrfs_insert_orphan_item(trans, root, ino);
1512 	if (ret == -EEXIST)
1513 		ret = 0;
1514 
1515 	return ret;
1516 }
1517 
1518 static int count_inode_extrefs(struct btrfs_root *root,
1519 		struct btrfs_inode *inode, struct btrfs_path *path)
1520 {
1521 	int ret = 0;
1522 	int name_len;
1523 	unsigned int nlink = 0;
1524 	u32 item_size;
1525 	u32 cur_offset = 0;
1526 	u64 inode_objectid = btrfs_ino(inode);
1527 	u64 offset = 0;
1528 	unsigned long ptr;
1529 	struct btrfs_inode_extref *extref;
1530 	struct extent_buffer *leaf;
1531 
1532 	while (1) {
1533 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1534 					    &extref, &offset);
1535 		if (ret)
1536 			break;
1537 
1538 		leaf = path->nodes[0];
1539 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1540 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1541 		cur_offset = 0;
1542 
1543 		while (cur_offset < item_size) {
1544 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1545 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1546 
1547 			nlink++;
1548 
1549 			cur_offset += name_len + sizeof(*extref);
1550 		}
1551 
1552 		offset++;
1553 		btrfs_release_path(path);
1554 	}
1555 	btrfs_release_path(path);
1556 
1557 	if (ret < 0 && ret != -ENOENT)
1558 		return ret;
1559 	return nlink;
1560 }
1561 
1562 static int count_inode_refs(struct btrfs_root *root,
1563 			struct btrfs_inode *inode, struct btrfs_path *path)
1564 {
1565 	int ret;
1566 	struct btrfs_key key;
1567 	unsigned int nlink = 0;
1568 	unsigned long ptr;
1569 	unsigned long ptr_end;
1570 	int name_len;
1571 	u64 ino = btrfs_ino(inode);
1572 
1573 	key.objectid = ino;
1574 	key.type = BTRFS_INODE_REF_KEY;
1575 	key.offset = (u64)-1;
1576 
1577 	while (1) {
1578 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1579 		if (ret < 0)
1580 			break;
1581 		if (ret > 0) {
1582 			if (path->slots[0] == 0)
1583 				break;
1584 			path->slots[0]--;
1585 		}
1586 process_slot:
1587 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1588 				      path->slots[0]);
1589 		if (key.objectid != ino ||
1590 		    key.type != BTRFS_INODE_REF_KEY)
1591 			break;
1592 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1593 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1594 						   path->slots[0]);
1595 		while (ptr < ptr_end) {
1596 			struct btrfs_inode_ref *ref;
1597 
1598 			ref = (struct btrfs_inode_ref *)ptr;
1599 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1600 							    ref);
1601 			ptr = (unsigned long)(ref + 1) + name_len;
1602 			nlink++;
1603 		}
1604 
1605 		if (key.offset == 0)
1606 			break;
1607 		if (path->slots[0] > 0) {
1608 			path->slots[0]--;
1609 			goto process_slot;
1610 		}
1611 		key.offset--;
1612 		btrfs_release_path(path);
1613 	}
1614 	btrfs_release_path(path);
1615 
1616 	return nlink;
1617 }
1618 
1619 /*
1620  * There are a few corners where the link count of the file can't
1621  * be properly maintained during replay.  So, instead of adding
1622  * lots of complexity to the log code, we just scan the backrefs
1623  * for any file that has been through replay.
1624  *
1625  * The scan will update the link count on the inode to reflect the
1626  * number of back refs found.  If it goes down to zero, the iput
1627  * will free the inode.
1628  */
1629 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1630 					   struct btrfs_root *root,
1631 					   struct inode *inode)
1632 {
1633 	struct btrfs_path *path;
1634 	int ret;
1635 	u64 nlink = 0;
1636 	u64 ino = btrfs_ino(BTRFS_I(inode));
1637 
1638 	path = btrfs_alloc_path();
1639 	if (!path)
1640 		return -ENOMEM;
1641 
1642 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1643 	if (ret < 0)
1644 		goto out;
1645 
1646 	nlink = ret;
1647 
1648 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1649 	if (ret < 0)
1650 		goto out;
1651 
1652 	nlink += ret;
1653 
1654 	ret = 0;
1655 
1656 	if (nlink != inode->i_nlink) {
1657 		set_nlink(inode, nlink);
1658 		btrfs_update_inode(trans, root, inode);
1659 	}
1660 	BTRFS_I(inode)->index_cnt = (u64)-1;
1661 
1662 	if (inode->i_nlink == 0) {
1663 		if (S_ISDIR(inode->i_mode)) {
1664 			ret = replay_dir_deletes(trans, root, NULL, path,
1665 						 ino, 1);
1666 			if (ret)
1667 				goto out;
1668 		}
1669 		ret = insert_orphan_item(trans, root, ino);
1670 	}
1671 
1672 out:
1673 	btrfs_free_path(path);
1674 	return ret;
1675 }
1676 
1677 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1678 					    struct btrfs_root *root,
1679 					    struct btrfs_path *path)
1680 {
1681 	int ret;
1682 	struct btrfs_key key;
1683 	struct inode *inode;
1684 
1685 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1686 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1687 	key.offset = (u64)-1;
1688 	while (1) {
1689 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1690 		if (ret < 0)
1691 			break;
1692 
1693 		if (ret == 1) {
1694 			if (path->slots[0] == 0)
1695 				break;
1696 			path->slots[0]--;
1697 		}
1698 
1699 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1700 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1701 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1702 			break;
1703 
1704 		ret = btrfs_del_item(trans, root, path);
1705 		if (ret)
1706 			goto out;
1707 
1708 		btrfs_release_path(path);
1709 		inode = read_one_inode(root, key.offset);
1710 		if (!inode)
1711 			return -EIO;
1712 
1713 		ret = fixup_inode_link_count(trans, root, inode);
1714 		iput(inode);
1715 		if (ret)
1716 			goto out;
1717 
1718 		/*
1719 		 * fixup on a directory may create new entries,
1720 		 * make sure we always look for the highset possible
1721 		 * offset
1722 		 */
1723 		key.offset = (u64)-1;
1724 	}
1725 	ret = 0;
1726 out:
1727 	btrfs_release_path(path);
1728 	return ret;
1729 }
1730 
1731 
1732 /*
1733  * record a given inode in the fixup dir so we can check its link
1734  * count when replay is done.  The link count is incremented here
1735  * so the inode won't go away until we check it
1736  */
1737 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1738 				      struct btrfs_root *root,
1739 				      struct btrfs_path *path,
1740 				      u64 objectid)
1741 {
1742 	struct btrfs_key key;
1743 	int ret = 0;
1744 	struct inode *inode;
1745 
1746 	inode = read_one_inode(root, objectid);
1747 	if (!inode)
1748 		return -EIO;
1749 
1750 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1751 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1752 	key.offset = objectid;
1753 
1754 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1755 
1756 	btrfs_release_path(path);
1757 	if (ret == 0) {
1758 		if (!inode->i_nlink)
1759 			set_nlink(inode, 1);
1760 		else
1761 			inc_nlink(inode);
1762 		ret = btrfs_update_inode(trans, root, inode);
1763 	} else if (ret == -EEXIST) {
1764 		ret = 0;
1765 	} else {
1766 		BUG(); /* Logic Error */
1767 	}
1768 	iput(inode);
1769 
1770 	return ret;
1771 }
1772 
1773 /*
1774  * when replaying the log for a directory, we only insert names
1775  * for inodes that actually exist.  This means an fsync on a directory
1776  * does not implicitly fsync all the new files in it
1777  */
1778 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1779 				    struct btrfs_root *root,
1780 				    u64 dirid, u64 index,
1781 				    char *name, int name_len,
1782 				    struct btrfs_key *location)
1783 {
1784 	struct inode *inode;
1785 	struct inode *dir;
1786 	int ret;
1787 
1788 	inode = read_one_inode(root, location->objectid);
1789 	if (!inode)
1790 		return -ENOENT;
1791 
1792 	dir = read_one_inode(root, dirid);
1793 	if (!dir) {
1794 		iput(inode);
1795 		return -EIO;
1796 	}
1797 
1798 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1799 			name_len, 1, index);
1800 
1801 	/* FIXME, put inode into FIXUP list */
1802 
1803 	iput(inode);
1804 	iput(dir);
1805 	return ret;
1806 }
1807 
1808 /*
1809  * Return true if an inode reference exists in the log for the given name,
1810  * inode and parent inode.
1811  */
1812 static bool name_in_log_ref(struct btrfs_root *log_root,
1813 			    const char *name, const int name_len,
1814 			    const u64 dirid, const u64 ino)
1815 {
1816 	struct btrfs_key search_key;
1817 
1818 	search_key.objectid = ino;
1819 	search_key.type = BTRFS_INODE_REF_KEY;
1820 	search_key.offset = dirid;
1821 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1822 		return true;
1823 
1824 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1825 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1826 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1827 		return true;
1828 
1829 	return false;
1830 }
1831 
1832 /*
1833  * take a single entry in a log directory item and replay it into
1834  * the subvolume.
1835  *
1836  * if a conflicting item exists in the subdirectory already,
1837  * the inode it points to is unlinked and put into the link count
1838  * fix up tree.
1839  *
1840  * If a name from the log points to a file or directory that does
1841  * not exist in the FS, it is skipped.  fsyncs on directories
1842  * do not force down inodes inside that directory, just changes to the
1843  * names or unlinks in a directory.
1844  *
1845  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1846  * non-existing inode) and 1 if the name was replayed.
1847  */
1848 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1849 				    struct btrfs_root *root,
1850 				    struct btrfs_path *path,
1851 				    struct extent_buffer *eb,
1852 				    struct btrfs_dir_item *di,
1853 				    struct btrfs_key *key)
1854 {
1855 	char *name;
1856 	int name_len;
1857 	struct btrfs_dir_item *dst_di;
1858 	struct btrfs_key found_key;
1859 	struct btrfs_key log_key;
1860 	struct inode *dir;
1861 	u8 log_type;
1862 	int exists;
1863 	int ret = 0;
1864 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1865 	bool name_added = false;
1866 
1867 	dir = read_one_inode(root, key->objectid);
1868 	if (!dir)
1869 		return -EIO;
1870 
1871 	name_len = btrfs_dir_name_len(eb, di);
1872 	name = kmalloc(name_len, GFP_NOFS);
1873 	if (!name) {
1874 		ret = -ENOMEM;
1875 		goto out;
1876 	}
1877 
1878 	log_type = btrfs_dir_type(eb, di);
1879 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1880 		   name_len);
1881 
1882 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1883 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1884 	if (exists == 0)
1885 		exists = 1;
1886 	else
1887 		exists = 0;
1888 	btrfs_release_path(path);
1889 
1890 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1891 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1892 				       name, name_len, 1);
1893 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1894 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1895 						     key->objectid,
1896 						     key->offset, name,
1897 						     name_len, 1);
1898 	} else {
1899 		/* Corruption */
1900 		ret = -EINVAL;
1901 		goto out;
1902 	}
1903 	if (IS_ERR_OR_NULL(dst_di)) {
1904 		/* we need a sequence number to insert, so we only
1905 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1906 		 */
1907 		if (key->type != BTRFS_DIR_INDEX_KEY)
1908 			goto out;
1909 		goto insert;
1910 	}
1911 
1912 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1913 	/* the existing item matches the logged item */
1914 	if (found_key.objectid == log_key.objectid &&
1915 	    found_key.type == log_key.type &&
1916 	    found_key.offset == log_key.offset &&
1917 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1918 		update_size = false;
1919 		goto out;
1920 	}
1921 
1922 	/*
1923 	 * don't drop the conflicting directory entry if the inode
1924 	 * for the new entry doesn't exist
1925 	 */
1926 	if (!exists)
1927 		goto out;
1928 
1929 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1930 	if (ret)
1931 		goto out;
1932 
1933 	if (key->type == BTRFS_DIR_INDEX_KEY)
1934 		goto insert;
1935 out:
1936 	btrfs_release_path(path);
1937 	if (!ret && update_size) {
1938 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1939 		ret = btrfs_update_inode(trans, root, dir);
1940 	}
1941 	kfree(name);
1942 	iput(dir);
1943 	if (!ret && name_added)
1944 		ret = 1;
1945 	return ret;
1946 
1947 insert:
1948 	if (name_in_log_ref(root->log_root, name, name_len,
1949 			    key->objectid, log_key.objectid)) {
1950 		/* The dentry will be added later. */
1951 		ret = 0;
1952 		update_size = false;
1953 		goto out;
1954 	}
1955 	btrfs_release_path(path);
1956 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1957 			      name, name_len, &log_key);
1958 	if (ret && ret != -ENOENT && ret != -EEXIST)
1959 		goto out;
1960 	if (!ret)
1961 		name_added = true;
1962 	update_size = false;
1963 	ret = 0;
1964 	goto out;
1965 }
1966 
1967 /*
1968  * find all the names in a directory item and reconcile them into
1969  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1970  * one name in a directory item, but the same code gets used for
1971  * both directory index types
1972  */
1973 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1974 					struct btrfs_root *root,
1975 					struct btrfs_path *path,
1976 					struct extent_buffer *eb, int slot,
1977 					struct btrfs_key *key)
1978 {
1979 	int ret = 0;
1980 	u32 item_size = btrfs_item_size_nr(eb, slot);
1981 	struct btrfs_dir_item *di;
1982 	int name_len;
1983 	unsigned long ptr;
1984 	unsigned long ptr_end;
1985 	struct btrfs_path *fixup_path = NULL;
1986 
1987 	ptr = btrfs_item_ptr_offset(eb, slot);
1988 	ptr_end = ptr + item_size;
1989 	while (ptr < ptr_end) {
1990 		di = (struct btrfs_dir_item *)ptr;
1991 		name_len = btrfs_dir_name_len(eb, di);
1992 		ret = replay_one_name(trans, root, path, eb, di, key);
1993 		if (ret < 0)
1994 			break;
1995 		ptr = (unsigned long)(di + 1);
1996 		ptr += name_len;
1997 
1998 		/*
1999 		 * If this entry refers to a non-directory (directories can not
2000 		 * have a link count > 1) and it was added in the transaction
2001 		 * that was not committed, make sure we fixup the link count of
2002 		 * the inode it the entry points to. Otherwise something like
2003 		 * the following would result in a directory pointing to an
2004 		 * inode with a wrong link that does not account for this dir
2005 		 * entry:
2006 		 *
2007 		 * mkdir testdir
2008 		 * touch testdir/foo
2009 		 * touch testdir/bar
2010 		 * sync
2011 		 *
2012 		 * ln testdir/bar testdir/bar_link
2013 		 * ln testdir/foo testdir/foo_link
2014 		 * xfs_io -c "fsync" testdir/bar
2015 		 *
2016 		 * <power failure>
2017 		 *
2018 		 * mount fs, log replay happens
2019 		 *
2020 		 * File foo would remain with a link count of 1 when it has two
2021 		 * entries pointing to it in the directory testdir. This would
2022 		 * make it impossible to ever delete the parent directory has
2023 		 * it would result in stale dentries that can never be deleted.
2024 		 */
2025 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2026 			struct btrfs_key di_key;
2027 
2028 			if (!fixup_path) {
2029 				fixup_path = btrfs_alloc_path();
2030 				if (!fixup_path) {
2031 					ret = -ENOMEM;
2032 					break;
2033 				}
2034 			}
2035 
2036 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2037 			ret = link_to_fixup_dir(trans, root, fixup_path,
2038 						di_key.objectid);
2039 			if (ret)
2040 				break;
2041 		}
2042 		ret = 0;
2043 	}
2044 	btrfs_free_path(fixup_path);
2045 	return ret;
2046 }
2047 
2048 /*
2049  * directory replay has two parts.  There are the standard directory
2050  * items in the log copied from the subvolume, and range items
2051  * created in the log while the subvolume was logged.
2052  *
2053  * The range items tell us which parts of the key space the log
2054  * is authoritative for.  During replay, if a key in the subvolume
2055  * directory is in a logged range item, but not actually in the log
2056  * that means it was deleted from the directory before the fsync
2057  * and should be removed.
2058  */
2059 static noinline int find_dir_range(struct btrfs_root *root,
2060 				   struct btrfs_path *path,
2061 				   u64 dirid, int key_type,
2062 				   u64 *start_ret, u64 *end_ret)
2063 {
2064 	struct btrfs_key key;
2065 	u64 found_end;
2066 	struct btrfs_dir_log_item *item;
2067 	int ret;
2068 	int nritems;
2069 
2070 	if (*start_ret == (u64)-1)
2071 		return 1;
2072 
2073 	key.objectid = dirid;
2074 	key.type = key_type;
2075 	key.offset = *start_ret;
2076 
2077 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2078 	if (ret < 0)
2079 		goto out;
2080 	if (ret > 0) {
2081 		if (path->slots[0] == 0)
2082 			goto out;
2083 		path->slots[0]--;
2084 	}
2085 	if (ret != 0)
2086 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2087 
2088 	if (key.type != key_type || key.objectid != dirid) {
2089 		ret = 1;
2090 		goto next;
2091 	}
2092 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2093 			      struct btrfs_dir_log_item);
2094 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2095 
2096 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2097 		ret = 0;
2098 		*start_ret = key.offset;
2099 		*end_ret = found_end;
2100 		goto out;
2101 	}
2102 	ret = 1;
2103 next:
2104 	/* check the next slot in the tree to see if it is a valid item */
2105 	nritems = btrfs_header_nritems(path->nodes[0]);
2106 	path->slots[0]++;
2107 	if (path->slots[0] >= nritems) {
2108 		ret = btrfs_next_leaf(root, path);
2109 		if (ret)
2110 			goto out;
2111 	}
2112 
2113 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2114 
2115 	if (key.type != key_type || key.objectid != dirid) {
2116 		ret = 1;
2117 		goto out;
2118 	}
2119 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2120 			      struct btrfs_dir_log_item);
2121 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2122 	*start_ret = key.offset;
2123 	*end_ret = found_end;
2124 	ret = 0;
2125 out:
2126 	btrfs_release_path(path);
2127 	return ret;
2128 }
2129 
2130 /*
2131  * this looks for a given directory item in the log.  If the directory
2132  * item is not in the log, the item is removed and the inode it points
2133  * to is unlinked
2134  */
2135 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2136 				      struct btrfs_root *root,
2137 				      struct btrfs_root *log,
2138 				      struct btrfs_path *path,
2139 				      struct btrfs_path *log_path,
2140 				      struct inode *dir,
2141 				      struct btrfs_key *dir_key)
2142 {
2143 	int ret;
2144 	struct extent_buffer *eb;
2145 	int slot;
2146 	u32 item_size;
2147 	struct btrfs_dir_item *di;
2148 	struct btrfs_dir_item *log_di;
2149 	int name_len;
2150 	unsigned long ptr;
2151 	unsigned long ptr_end;
2152 	char *name;
2153 	struct inode *inode;
2154 	struct btrfs_key location;
2155 
2156 again:
2157 	eb = path->nodes[0];
2158 	slot = path->slots[0];
2159 	item_size = btrfs_item_size_nr(eb, slot);
2160 	ptr = btrfs_item_ptr_offset(eb, slot);
2161 	ptr_end = ptr + item_size;
2162 	while (ptr < ptr_end) {
2163 		di = (struct btrfs_dir_item *)ptr;
2164 		name_len = btrfs_dir_name_len(eb, di);
2165 		name = kmalloc(name_len, GFP_NOFS);
2166 		if (!name) {
2167 			ret = -ENOMEM;
2168 			goto out;
2169 		}
2170 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2171 				  name_len);
2172 		log_di = NULL;
2173 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2174 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2175 						       dir_key->objectid,
2176 						       name, name_len, 0);
2177 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2178 			log_di = btrfs_lookup_dir_index_item(trans, log,
2179 						     log_path,
2180 						     dir_key->objectid,
2181 						     dir_key->offset,
2182 						     name, name_len, 0);
2183 		}
2184 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2185 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2186 			btrfs_release_path(path);
2187 			btrfs_release_path(log_path);
2188 			inode = read_one_inode(root, location.objectid);
2189 			if (!inode) {
2190 				kfree(name);
2191 				return -EIO;
2192 			}
2193 
2194 			ret = link_to_fixup_dir(trans, root,
2195 						path, location.objectid);
2196 			if (ret) {
2197 				kfree(name);
2198 				iput(inode);
2199 				goto out;
2200 			}
2201 
2202 			inc_nlink(inode);
2203 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2204 					BTRFS_I(inode), name, name_len);
2205 			if (!ret)
2206 				ret = btrfs_run_delayed_items(trans);
2207 			kfree(name);
2208 			iput(inode);
2209 			if (ret)
2210 				goto out;
2211 
2212 			/* there might still be more names under this key
2213 			 * check and repeat if required
2214 			 */
2215 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2216 						0, 0);
2217 			if (ret == 0)
2218 				goto again;
2219 			ret = 0;
2220 			goto out;
2221 		} else if (IS_ERR(log_di)) {
2222 			kfree(name);
2223 			return PTR_ERR(log_di);
2224 		}
2225 		btrfs_release_path(log_path);
2226 		kfree(name);
2227 
2228 		ptr = (unsigned long)(di + 1);
2229 		ptr += name_len;
2230 	}
2231 	ret = 0;
2232 out:
2233 	btrfs_release_path(path);
2234 	btrfs_release_path(log_path);
2235 	return ret;
2236 }
2237 
2238 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2239 			      struct btrfs_root *root,
2240 			      struct btrfs_root *log,
2241 			      struct btrfs_path *path,
2242 			      const u64 ino)
2243 {
2244 	struct btrfs_key search_key;
2245 	struct btrfs_path *log_path;
2246 	int i;
2247 	int nritems;
2248 	int ret;
2249 
2250 	log_path = btrfs_alloc_path();
2251 	if (!log_path)
2252 		return -ENOMEM;
2253 
2254 	search_key.objectid = ino;
2255 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2256 	search_key.offset = 0;
2257 again:
2258 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2259 	if (ret < 0)
2260 		goto out;
2261 process_leaf:
2262 	nritems = btrfs_header_nritems(path->nodes[0]);
2263 	for (i = path->slots[0]; i < nritems; i++) {
2264 		struct btrfs_key key;
2265 		struct btrfs_dir_item *di;
2266 		struct btrfs_dir_item *log_di;
2267 		u32 total_size;
2268 		u32 cur;
2269 
2270 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2271 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2272 			ret = 0;
2273 			goto out;
2274 		}
2275 
2276 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2277 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2278 		cur = 0;
2279 		while (cur < total_size) {
2280 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2281 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2282 			u32 this_len = sizeof(*di) + name_len + data_len;
2283 			char *name;
2284 
2285 			name = kmalloc(name_len, GFP_NOFS);
2286 			if (!name) {
2287 				ret = -ENOMEM;
2288 				goto out;
2289 			}
2290 			read_extent_buffer(path->nodes[0], name,
2291 					   (unsigned long)(di + 1), name_len);
2292 
2293 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2294 						    name, name_len, 0);
2295 			btrfs_release_path(log_path);
2296 			if (!log_di) {
2297 				/* Doesn't exist in log tree, so delete it. */
2298 				btrfs_release_path(path);
2299 				di = btrfs_lookup_xattr(trans, root, path, ino,
2300 							name, name_len, -1);
2301 				kfree(name);
2302 				if (IS_ERR(di)) {
2303 					ret = PTR_ERR(di);
2304 					goto out;
2305 				}
2306 				ASSERT(di);
2307 				ret = btrfs_delete_one_dir_name(trans, root,
2308 								path, di);
2309 				if (ret)
2310 					goto out;
2311 				btrfs_release_path(path);
2312 				search_key = key;
2313 				goto again;
2314 			}
2315 			kfree(name);
2316 			if (IS_ERR(log_di)) {
2317 				ret = PTR_ERR(log_di);
2318 				goto out;
2319 			}
2320 			cur += this_len;
2321 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2322 		}
2323 	}
2324 	ret = btrfs_next_leaf(root, path);
2325 	if (ret > 0)
2326 		ret = 0;
2327 	else if (ret == 0)
2328 		goto process_leaf;
2329 out:
2330 	btrfs_free_path(log_path);
2331 	btrfs_release_path(path);
2332 	return ret;
2333 }
2334 
2335 
2336 /*
2337  * deletion replay happens before we copy any new directory items
2338  * out of the log or out of backreferences from inodes.  It
2339  * scans the log to find ranges of keys that log is authoritative for,
2340  * and then scans the directory to find items in those ranges that are
2341  * not present in the log.
2342  *
2343  * Anything we don't find in the log is unlinked and removed from the
2344  * directory.
2345  */
2346 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2347 				       struct btrfs_root *root,
2348 				       struct btrfs_root *log,
2349 				       struct btrfs_path *path,
2350 				       u64 dirid, int del_all)
2351 {
2352 	u64 range_start;
2353 	u64 range_end;
2354 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2355 	int ret = 0;
2356 	struct btrfs_key dir_key;
2357 	struct btrfs_key found_key;
2358 	struct btrfs_path *log_path;
2359 	struct inode *dir;
2360 
2361 	dir_key.objectid = dirid;
2362 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2363 	log_path = btrfs_alloc_path();
2364 	if (!log_path)
2365 		return -ENOMEM;
2366 
2367 	dir = read_one_inode(root, dirid);
2368 	/* it isn't an error if the inode isn't there, that can happen
2369 	 * because we replay the deletes before we copy in the inode item
2370 	 * from the log
2371 	 */
2372 	if (!dir) {
2373 		btrfs_free_path(log_path);
2374 		return 0;
2375 	}
2376 again:
2377 	range_start = 0;
2378 	range_end = 0;
2379 	while (1) {
2380 		if (del_all)
2381 			range_end = (u64)-1;
2382 		else {
2383 			ret = find_dir_range(log, path, dirid, key_type,
2384 					     &range_start, &range_end);
2385 			if (ret != 0)
2386 				break;
2387 		}
2388 
2389 		dir_key.offset = range_start;
2390 		while (1) {
2391 			int nritems;
2392 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2393 						0, 0);
2394 			if (ret < 0)
2395 				goto out;
2396 
2397 			nritems = btrfs_header_nritems(path->nodes[0]);
2398 			if (path->slots[0] >= nritems) {
2399 				ret = btrfs_next_leaf(root, path);
2400 				if (ret == 1)
2401 					break;
2402 				else if (ret < 0)
2403 					goto out;
2404 			}
2405 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2406 					      path->slots[0]);
2407 			if (found_key.objectid != dirid ||
2408 			    found_key.type != dir_key.type)
2409 				goto next_type;
2410 
2411 			if (found_key.offset > range_end)
2412 				break;
2413 
2414 			ret = check_item_in_log(trans, root, log, path,
2415 						log_path, dir,
2416 						&found_key);
2417 			if (ret)
2418 				goto out;
2419 			if (found_key.offset == (u64)-1)
2420 				break;
2421 			dir_key.offset = found_key.offset + 1;
2422 		}
2423 		btrfs_release_path(path);
2424 		if (range_end == (u64)-1)
2425 			break;
2426 		range_start = range_end + 1;
2427 	}
2428 
2429 next_type:
2430 	ret = 0;
2431 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2432 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2433 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2434 		btrfs_release_path(path);
2435 		goto again;
2436 	}
2437 out:
2438 	btrfs_release_path(path);
2439 	btrfs_free_path(log_path);
2440 	iput(dir);
2441 	return ret;
2442 }
2443 
2444 /*
2445  * the process_func used to replay items from the log tree.  This
2446  * gets called in two different stages.  The first stage just looks
2447  * for inodes and makes sure they are all copied into the subvolume.
2448  *
2449  * The second stage copies all the other item types from the log into
2450  * the subvolume.  The two stage approach is slower, but gets rid of
2451  * lots of complexity around inodes referencing other inodes that exist
2452  * only in the log (references come from either directory items or inode
2453  * back refs).
2454  */
2455 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2456 			     struct walk_control *wc, u64 gen, int level)
2457 {
2458 	int nritems;
2459 	struct btrfs_path *path;
2460 	struct btrfs_root *root = wc->replay_dest;
2461 	struct btrfs_key key;
2462 	int i;
2463 	int ret;
2464 
2465 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2466 	if (ret)
2467 		return ret;
2468 
2469 	level = btrfs_header_level(eb);
2470 
2471 	if (level != 0)
2472 		return 0;
2473 
2474 	path = btrfs_alloc_path();
2475 	if (!path)
2476 		return -ENOMEM;
2477 
2478 	nritems = btrfs_header_nritems(eb);
2479 	for (i = 0; i < nritems; i++) {
2480 		btrfs_item_key_to_cpu(eb, &key, i);
2481 
2482 		/* inode keys are done during the first stage */
2483 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2484 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2485 			struct btrfs_inode_item *inode_item;
2486 			u32 mode;
2487 
2488 			inode_item = btrfs_item_ptr(eb, i,
2489 					    struct btrfs_inode_item);
2490 			ret = replay_xattr_deletes(wc->trans, root, log,
2491 						   path, key.objectid);
2492 			if (ret)
2493 				break;
2494 			mode = btrfs_inode_mode(eb, inode_item);
2495 			if (S_ISDIR(mode)) {
2496 				ret = replay_dir_deletes(wc->trans,
2497 					 root, log, path, key.objectid, 0);
2498 				if (ret)
2499 					break;
2500 			}
2501 			ret = overwrite_item(wc->trans, root, path,
2502 					     eb, i, &key);
2503 			if (ret)
2504 				break;
2505 
2506 			/*
2507 			 * Before replaying extents, truncate the inode to its
2508 			 * size. We need to do it now and not after log replay
2509 			 * because before an fsync we can have prealloc extents
2510 			 * added beyond the inode's i_size. If we did it after,
2511 			 * through orphan cleanup for example, we would drop
2512 			 * those prealloc extents just after replaying them.
2513 			 */
2514 			if (S_ISREG(mode)) {
2515 				struct inode *inode;
2516 				u64 from;
2517 
2518 				inode = read_one_inode(root, key.objectid);
2519 				if (!inode) {
2520 					ret = -EIO;
2521 					break;
2522 				}
2523 				from = ALIGN(i_size_read(inode),
2524 					     root->fs_info->sectorsize);
2525 				ret = btrfs_drop_extents(wc->trans, root, inode,
2526 							 from, (u64)-1, 1);
2527 				/*
2528 				 * If the nlink count is zero here, the iput
2529 				 * will free the inode.  We bump it to make
2530 				 * sure it doesn't get freed until the link
2531 				 * count fixup is done.
2532 				 */
2533 				if (!ret) {
2534 					if (inode->i_nlink == 0)
2535 						inc_nlink(inode);
2536 					/* Update link count and nbytes. */
2537 					ret = btrfs_update_inode(wc->trans,
2538 								 root, inode);
2539 				}
2540 				iput(inode);
2541 				if (ret)
2542 					break;
2543 			}
2544 
2545 			ret = link_to_fixup_dir(wc->trans, root,
2546 						path, key.objectid);
2547 			if (ret)
2548 				break;
2549 		}
2550 
2551 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2552 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2553 			ret = replay_one_dir_item(wc->trans, root, path,
2554 						  eb, i, &key);
2555 			if (ret)
2556 				break;
2557 		}
2558 
2559 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2560 			continue;
2561 
2562 		/* these keys are simply copied */
2563 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2564 			ret = overwrite_item(wc->trans, root, path,
2565 					     eb, i, &key);
2566 			if (ret)
2567 				break;
2568 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2569 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2570 			ret = add_inode_ref(wc->trans, root, log, path,
2571 					    eb, i, &key);
2572 			if (ret && ret != -ENOENT)
2573 				break;
2574 			ret = 0;
2575 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2576 			ret = replay_one_extent(wc->trans, root, path,
2577 						eb, i, &key);
2578 			if (ret)
2579 				break;
2580 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2581 			ret = replay_one_dir_item(wc->trans, root, path,
2582 						  eb, i, &key);
2583 			if (ret)
2584 				break;
2585 		}
2586 	}
2587 	btrfs_free_path(path);
2588 	return ret;
2589 }
2590 
2591 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2592 				   struct btrfs_root *root,
2593 				   struct btrfs_path *path, int *level,
2594 				   struct walk_control *wc)
2595 {
2596 	struct btrfs_fs_info *fs_info = root->fs_info;
2597 	u64 root_owner;
2598 	u64 bytenr;
2599 	u64 ptr_gen;
2600 	struct extent_buffer *next;
2601 	struct extent_buffer *cur;
2602 	struct extent_buffer *parent;
2603 	u32 blocksize;
2604 	int ret = 0;
2605 
2606 	WARN_ON(*level < 0);
2607 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2608 
2609 	while (*level > 0) {
2610 		struct btrfs_key first_key;
2611 
2612 		WARN_ON(*level < 0);
2613 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2614 		cur = path->nodes[*level];
2615 
2616 		WARN_ON(btrfs_header_level(cur) != *level);
2617 
2618 		if (path->slots[*level] >=
2619 		    btrfs_header_nritems(cur))
2620 			break;
2621 
2622 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2623 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2624 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2625 		blocksize = fs_info->nodesize;
2626 
2627 		parent = path->nodes[*level];
2628 		root_owner = btrfs_header_owner(parent);
2629 
2630 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2631 		if (IS_ERR(next))
2632 			return PTR_ERR(next);
2633 
2634 		if (*level == 1) {
2635 			ret = wc->process_func(root, next, wc, ptr_gen,
2636 					       *level - 1);
2637 			if (ret) {
2638 				free_extent_buffer(next);
2639 				return ret;
2640 			}
2641 
2642 			path->slots[*level]++;
2643 			if (wc->free) {
2644 				ret = btrfs_read_buffer(next, ptr_gen,
2645 							*level - 1, &first_key);
2646 				if (ret) {
2647 					free_extent_buffer(next);
2648 					return ret;
2649 				}
2650 
2651 				if (trans) {
2652 					btrfs_tree_lock(next);
2653 					btrfs_set_lock_blocking(next);
2654 					clean_tree_block(fs_info, next);
2655 					btrfs_wait_tree_block_writeback(next);
2656 					btrfs_tree_unlock(next);
2657 				} else {
2658 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2659 						clear_extent_buffer_dirty(next);
2660 				}
2661 
2662 				WARN_ON(root_owner !=
2663 					BTRFS_TREE_LOG_OBJECTID);
2664 				ret = btrfs_free_and_pin_reserved_extent(
2665 							fs_info, bytenr,
2666 							blocksize);
2667 				if (ret) {
2668 					free_extent_buffer(next);
2669 					return ret;
2670 				}
2671 			}
2672 			free_extent_buffer(next);
2673 			continue;
2674 		}
2675 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2676 		if (ret) {
2677 			free_extent_buffer(next);
2678 			return ret;
2679 		}
2680 
2681 		WARN_ON(*level <= 0);
2682 		if (path->nodes[*level-1])
2683 			free_extent_buffer(path->nodes[*level-1]);
2684 		path->nodes[*level-1] = next;
2685 		*level = btrfs_header_level(next);
2686 		path->slots[*level] = 0;
2687 		cond_resched();
2688 	}
2689 	WARN_ON(*level < 0);
2690 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2691 
2692 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2693 
2694 	cond_resched();
2695 	return 0;
2696 }
2697 
2698 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2699 				 struct btrfs_root *root,
2700 				 struct btrfs_path *path, int *level,
2701 				 struct walk_control *wc)
2702 {
2703 	struct btrfs_fs_info *fs_info = root->fs_info;
2704 	u64 root_owner;
2705 	int i;
2706 	int slot;
2707 	int ret;
2708 
2709 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2710 		slot = path->slots[i];
2711 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2712 			path->slots[i]++;
2713 			*level = i;
2714 			WARN_ON(*level == 0);
2715 			return 0;
2716 		} else {
2717 			struct extent_buffer *parent;
2718 			if (path->nodes[*level] == root->node)
2719 				parent = path->nodes[*level];
2720 			else
2721 				parent = path->nodes[*level + 1];
2722 
2723 			root_owner = btrfs_header_owner(parent);
2724 			ret = wc->process_func(root, path->nodes[*level], wc,
2725 				 btrfs_header_generation(path->nodes[*level]),
2726 				 *level);
2727 			if (ret)
2728 				return ret;
2729 
2730 			if (wc->free) {
2731 				struct extent_buffer *next;
2732 
2733 				next = path->nodes[*level];
2734 
2735 				if (trans) {
2736 					btrfs_tree_lock(next);
2737 					btrfs_set_lock_blocking(next);
2738 					clean_tree_block(fs_info, next);
2739 					btrfs_wait_tree_block_writeback(next);
2740 					btrfs_tree_unlock(next);
2741 				} else {
2742 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2743 						clear_extent_buffer_dirty(next);
2744 				}
2745 
2746 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2747 				ret = btrfs_free_and_pin_reserved_extent(
2748 						fs_info,
2749 						path->nodes[*level]->start,
2750 						path->nodes[*level]->len);
2751 				if (ret)
2752 					return ret;
2753 			}
2754 			free_extent_buffer(path->nodes[*level]);
2755 			path->nodes[*level] = NULL;
2756 			*level = i + 1;
2757 		}
2758 	}
2759 	return 1;
2760 }
2761 
2762 /*
2763  * drop the reference count on the tree rooted at 'snap'.  This traverses
2764  * the tree freeing any blocks that have a ref count of zero after being
2765  * decremented.
2766  */
2767 static int walk_log_tree(struct btrfs_trans_handle *trans,
2768 			 struct btrfs_root *log, struct walk_control *wc)
2769 {
2770 	struct btrfs_fs_info *fs_info = log->fs_info;
2771 	int ret = 0;
2772 	int wret;
2773 	int level;
2774 	struct btrfs_path *path;
2775 	int orig_level;
2776 
2777 	path = btrfs_alloc_path();
2778 	if (!path)
2779 		return -ENOMEM;
2780 
2781 	level = btrfs_header_level(log->node);
2782 	orig_level = level;
2783 	path->nodes[level] = log->node;
2784 	extent_buffer_get(log->node);
2785 	path->slots[level] = 0;
2786 
2787 	while (1) {
2788 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2789 		if (wret > 0)
2790 			break;
2791 		if (wret < 0) {
2792 			ret = wret;
2793 			goto out;
2794 		}
2795 
2796 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2797 		if (wret > 0)
2798 			break;
2799 		if (wret < 0) {
2800 			ret = wret;
2801 			goto out;
2802 		}
2803 	}
2804 
2805 	/* was the root node processed? if not, catch it here */
2806 	if (path->nodes[orig_level]) {
2807 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2808 			 btrfs_header_generation(path->nodes[orig_level]),
2809 			 orig_level);
2810 		if (ret)
2811 			goto out;
2812 		if (wc->free) {
2813 			struct extent_buffer *next;
2814 
2815 			next = path->nodes[orig_level];
2816 
2817 			if (trans) {
2818 				btrfs_tree_lock(next);
2819 				btrfs_set_lock_blocking(next);
2820 				clean_tree_block(fs_info, next);
2821 				btrfs_wait_tree_block_writeback(next);
2822 				btrfs_tree_unlock(next);
2823 			} else {
2824 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2825 					clear_extent_buffer_dirty(next);
2826 			}
2827 
2828 			WARN_ON(log->root_key.objectid !=
2829 				BTRFS_TREE_LOG_OBJECTID);
2830 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2831 							next->start, next->len);
2832 			if (ret)
2833 				goto out;
2834 		}
2835 	}
2836 
2837 out:
2838 	btrfs_free_path(path);
2839 	return ret;
2840 }
2841 
2842 /*
2843  * helper function to update the item for a given subvolumes log root
2844  * in the tree of log roots
2845  */
2846 static int update_log_root(struct btrfs_trans_handle *trans,
2847 			   struct btrfs_root *log)
2848 {
2849 	struct btrfs_fs_info *fs_info = log->fs_info;
2850 	int ret;
2851 
2852 	if (log->log_transid == 1) {
2853 		/* insert root item on the first sync */
2854 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2855 				&log->root_key, &log->root_item);
2856 	} else {
2857 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2858 				&log->root_key, &log->root_item);
2859 	}
2860 	return ret;
2861 }
2862 
2863 static void wait_log_commit(struct btrfs_root *root, int transid)
2864 {
2865 	DEFINE_WAIT(wait);
2866 	int index = transid % 2;
2867 
2868 	/*
2869 	 * we only allow two pending log transactions at a time,
2870 	 * so we know that if ours is more than 2 older than the
2871 	 * current transaction, we're done
2872 	 */
2873 	for (;;) {
2874 		prepare_to_wait(&root->log_commit_wait[index],
2875 				&wait, TASK_UNINTERRUPTIBLE);
2876 
2877 		if (!(root->log_transid_committed < transid &&
2878 		      atomic_read(&root->log_commit[index])))
2879 			break;
2880 
2881 		mutex_unlock(&root->log_mutex);
2882 		schedule();
2883 		mutex_lock(&root->log_mutex);
2884 	}
2885 	finish_wait(&root->log_commit_wait[index], &wait);
2886 }
2887 
2888 static void wait_for_writer(struct btrfs_root *root)
2889 {
2890 	DEFINE_WAIT(wait);
2891 
2892 	for (;;) {
2893 		prepare_to_wait(&root->log_writer_wait, &wait,
2894 				TASK_UNINTERRUPTIBLE);
2895 		if (!atomic_read(&root->log_writers))
2896 			break;
2897 
2898 		mutex_unlock(&root->log_mutex);
2899 		schedule();
2900 		mutex_lock(&root->log_mutex);
2901 	}
2902 	finish_wait(&root->log_writer_wait, &wait);
2903 }
2904 
2905 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2906 					struct btrfs_log_ctx *ctx)
2907 {
2908 	if (!ctx)
2909 		return;
2910 
2911 	mutex_lock(&root->log_mutex);
2912 	list_del_init(&ctx->list);
2913 	mutex_unlock(&root->log_mutex);
2914 }
2915 
2916 /*
2917  * Invoked in log mutex context, or be sure there is no other task which
2918  * can access the list.
2919  */
2920 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2921 					     int index, int error)
2922 {
2923 	struct btrfs_log_ctx *ctx;
2924 	struct btrfs_log_ctx *safe;
2925 
2926 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2927 		list_del_init(&ctx->list);
2928 		ctx->log_ret = error;
2929 	}
2930 
2931 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2932 }
2933 
2934 /*
2935  * btrfs_sync_log does sends a given tree log down to the disk and
2936  * updates the super blocks to record it.  When this call is done,
2937  * you know that any inodes previously logged are safely on disk only
2938  * if it returns 0.
2939  *
2940  * Any other return value means you need to call btrfs_commit_transaction.
2941  * Some of the edge cases for fsyncing directories that have had unlinks
2942  * or renames done in the past mean that sometimes the only safe
2943  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2944  * that has happened.
2945  */
2946 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2947 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2948 {
2949 	int index1;
2950 	int index2;
2951 	int mark;
2952 	int ret;
2953 	struct btrfs_fs_info *fs_info = root->fs_info;
2954 	struct btrfs_root *log = root->log_root;
2955 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2956 	int log_transid = 0;
2957 	struct btrfs_log_ctx root_log_ctx;
2958 	struct blk_plug plug;
2959 
2960 	mutex_lock(&root->log_mutex);
2961 	log_transid = ctx->log_transid;
2962 	if (root->log_transid_committed >= log_transid) {
2963 		mutex_unlock(&root->log_mutex);
2964 		return ctx->log_ret;
2965 	}
2966 
2967 	index1 = log_transid % 2;
2968 	if (atomic_read(&root->log_commit[index1])) {
2969 		wait_log_commit(root, log_transid);
2970 		mutex_unlock(&root->log_mutex);
2971 		return ctx->log_ret;
2972 	}
2973 	ASSERT(log_transid == root->log_transid);
2974 	atomic_set(&root->log_commit[index1], 1);
2975 
2976 	/* wait for previous tree log sync to complete */
2977 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2978 		wait_log_commit(root, log_transid - 1);
2979 
2980 	while (1) {
2981 		int batch = atomic_read(&root->log_batch);
2982 		/* when we're on an ssd, just kick the log commit out */
2983 		if (!btrfs_test_opt(fs_info, SSD) &&
2984 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2985 			mutex_unlock(&root->log_mutex);
2986 			schedule_timeout_uninterruptible(1);
2987 			mutex_lock(&root->log_mutex);
2988 		}
2989 		wait_for_writer(root);
2990 		if (batch == atomic_read(&root->log_batch))
2991 			break;
2992 	}
2993 
2994 	/* bail out if we need to do a full commit */
2995 	if (btrfs_need_log_full_commit(fs_info, trans)) {
2996 		ret = -EAGAIN;
2997 		mutex_unlock(&root->log_mutex);
2998 		goto out;
2999 	}
3000 
3001 	if (log_transid % 2 == 0)
3002 		mark = EXTENT_DIRTY;
3003 	else
3004 		mark = EXTENT_NEW;
3005 
3006 	/* we start IO on  all the marked extents here, but we don't actually
3007 	 * wait for them until later.
3008 	 */
3009 	blk_start_plug(&plug);
3010 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3011 	if (ret) {
3012 		blk_finish_plug(&plug);
3013 		btrfs_abort_transaction(trans, ret);
3014 		btrfs_set_log_full_commit(fs_info, trans);
3015 		mutex_unlock(&root->log_mutex);
3016 		goto out;
3017 	}
3018 
3019 	btrfs_set_root_node(&log->root_item, log->node);
3020 
3021 	root->log_transid++;
3022 	log->log_transid = root->log_transid;
3023 	root->log_start_pid = 0;
3024 	/*
3025 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3026 	 * in their headers. new modifications of the log will be written to
3027 	 * new positions. so it's safe to allow log writers to go in.
3028 	 */
3029 	mutex_unlock(&root->log_mutex);
3030 
3031 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3032 
3033 	mutex_lock(&log_root_tree->log_mutex);
3034 	atomic_inc(&log_root_tree->log_batch);
3035 	atomic_inc(&log_root_tree->log_writers);
3036 
3037 	index2 = log_root_tree->log_transid % 2;
3038 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3039 	root_log_ctx.log_transid = log_root_tree->log_transid;
3040 
3041 	mutex_unlock(&log_root_tree->log_mutex);
3042 
3043 	ret = update_log_root(trans, log);
3044 
3045 	mutex_lock(&log_root_tree->log_mutex);
3046 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3047 		/* atomic_dec_and_test implies a barrier */
3048 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3049 	}
3050 
3051 	if (ret) {
3052 		if (!list_empty(&root_log_ctx.list))
3053 			list_del_init(&root_log_ctx.list);
3054 
3055 		blk_finish_plug(&plug);
3056 		btrfs_set_log_full_commit(fs_info, trans);
3057 
3058 		if (ret != -ENOSPC) {
3059 			btrfs_abort_transaction(trans, ret);
3060 			mutex_unlock(&log_root_tree->log_mutex);
3061 			goto out;
3062 		}
3063 		btrfs_wait_tree_log_extents(log, mark);
3064 		mutex_unlock(&log_root_tree->log_mutex);
3065 		ret = -EAGAIN;
3066 		goto out;
3067 	}
3068 
3069 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3070 		blk_finish_plug(&plug);
3071 		list_del_init(&root_log_ctx.list);
3072 		mutex_unlock(&log_root_tree->log_mutex);
3073 		ret = root_log_ctx.log_ret;
3074 		goto out;
3075 	}
3076 
3077 	index2 = root_log_ctx.log_transid % 2;
3078 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3079 		blk_finish_plug(&plug);
3080 		ret = btrfs_wait_tree_log_extents(log, mark);
3081 		wait_log_commit(log_root_tree,
3082 				root_log_ctx.log_transid);
3083 		mutex_unlock(&log_root_tree->log_mutex);
3084 		if (!ret)
3085 			ret = root_log_ctx.log_ret;
3086 		goto out;
3087 	}
3088 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3089 	atomic_set(&log_root_tree->log_commit[index2], 1);
3090 
3091 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3092 		wait_log_commit(log_root_tree,
3093 				root_log_ctx.log_transid - 1);
3094 	}
3095 
3096 	wait_for_writer(log_root_tree);
3097 
3098 	/*
3099 	 * now that we've moved on to the tree of log tree roots,
3100 	 * check the full commit flag again
3101 	 */
3102 	if (btrfs_need_log_full_commit(fs_info, trans)) {
3103 		blk_finish_plug(&plug);
3104 		btrfs_wait_tree_log_extents(log, mark);
3105 		mutex_unlock(&log_root_tree->log_mutex);
3106 		ret = -EAGAIN;
3107 		goto out_wake_log_root;
3108 	}
3109 
3110 	ret = btrfs_write_marked_extents(fs_info,
3111 					 &log_root_tree->dirty_log_pages,
3112 					 EXTENT_DIRTY | EXTENT_NEW);
3113 	blk_finish_plug(&plug);
3114 	if (ret) {
3115 		btrfs_set_log_full_commit(fs_info, trans);
3116 		btrfs_abort_transaction(trans, ret);
3117 		mutex_unlock(&log_root_tree->log_mutex);
3118 		goto out_wake_log_root;
3119 	}
3120 	ret = btrfs_wait_tree_log_extents(log, mark);
3121 	if (!ret)
3122 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3123 						  EXTENT_NEW | EXTENT_DIRTY);
3124 	if (ret) {
3125 		btrfs_set_log_full_commit(fs_info, trans);
3126 		mutex_unlock(&log_root_tree->log_mutex);
3127 		goto out_wake_log_root;
3128 	}
3129 
3130 	btrfs_set_super_log_root(fs_info->super_for_commit,
3131 				 log_root_tree->node->start);
3132 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3133 				       btrfs_header_level(log_root_tree->node));
3134 
3135 	log_root_tree->log_transid++;
3136 	mutex_unlock(&log_root_tree->log_mutex);
3137 
3138 	/*
3139 	 * nobody else is going to jump in and write the the ctree
3140 	 * super here because the log_commit atomic below is protecting
3141 	 * us.  We must be called with a transaction handle pinning
3142 	 * the running transaction open, so a full commit can't hop
3143 	 * in and cause problems either.
3144 	 */
3145 	ret = write_all_supers(fs_info, 1);
3146 	if (ret) {
3147 		btrfs_set_log_full_commit(fs_info, trans);
3148 		btrfs_abort_transaction(trans, ret);
3149 		goto out_wake_log_root;
3150 	}
3151 
3152 	mutex_lock(&root->log_mutex);
3153 	if (root->last_log_commit < log_transid)
3154 		root->last_log_commit = log_transid;
3155 	mutex_unlock(&root->log_mutex);
3156 
3157 out_wake_log_root:
3158 	mutex_lock(&log_root_tree->log_mutex);
3159 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3160 
3161 	log_root_tree->log_transid_committed++;
3162 	atomic_set(&log_root_tree->log_commit[index2], 0);
3163 	mutex_unlock(&log_root_tree->log_mutex);
3164 
3165 	/*
3166 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3167 	 * all the updates above are seen by the woken threads. It might not be
3168 	 * necessary, but proving that seems to be hard.
3169 	 */
3170 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3171 out:
3172 	mutex_lock(&root->log_mutex);
3173 	btrfs_remove_all_log_ctxs(root, index1, ret);
3174 	root->log_transid_committed++;
3175 	atomic_set(&root->log_commit[index1], 0);
3176 	mutex_unlock(&root->log_mutex);
3177 
3178 	/*
3179 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3180 	 * all the updates above are seen by the woken threads. It might not be
3181 	 * necessary, but proving that seems to be hard.
3182 	 */
3183 	cond_wake_up(&root->log_commit_wait[index1]);
3184 	return ret;
3185 }
3186 
3187 static void free_log_tree(struct btrfs_trans_handle *trans,
3188 			  struct btrfs_root *log)
3189 {
3190 	int ret;
3191 	u64 start;
3192 	u64 end;
3193 	struct walk_control wc = {
3194 		.free = 1,
3195 		.process_func = process_one_buffer
3196 	};
3197 
3198 	ret = walk_log_tree(trans, log, &wc);
3199 	/* I don't think this can happen but just in case */
3200 	if (ret)
3201 		btrfs_abort_transaction(trans, ret);
3202 
3203 	while (1) {
3204 		ret = find_first_extent_bit(&log->dirty_log_pages,
3205 				0, &start, &end,
3206 				EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3207 				NULL);
3208 		if (ret)
3209 			break;
3210 
3211 		clear_extent_bits(&log->dirty_log_pages, start, end,
3212 				  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3213 	}
3214 
3215 	free_extent_buffer(log->node);
3216 	kfree(log);
3217 }
3218 
3219 /*
3220  * free all the extents used by the tree log.  This should be called
3221  * at commit time of the full transaction
3222  */
3223 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3224 {
3225 	if (root->log_root) {
3226 		free_log_tree(trans, root->log_root);
3227 		root->log_root = NULL;
3228 	}
3229 	return 0;
3230 }
3231 
3232 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3233 			     struct btrfs_fs_info *fs_info)
3234 {
3235 	if (fs_info->log_root_tree) {
3236 		free_log_tree(trans, fs_info->log_root_tree);
3237 		fs_info->log_root_tree = NULL;
3238 	}
3239 	return 0;
3240 }
3241 
3242 /*
3243  * If both a file and directory are logged, and unlinks or renames are
3244  * mixed in, we have a few interesting corners:
3245  *
3246  * create file X in dir Y
3247  * link file X to X.link in dir Y
3248  * fsync file X
3249  * unlink file X but leave X.link
3250  * fsync dir Y
3251  *
3252  * After a crash we would expect only X.link to exist.  But file X
3253  * didn't get fsync'd again so the log has back refs for X and X.link.
3254  *
3255  * We solve this by removing directory entries and inode backrefs from the
3256  * log when a file that was logged in the current transaction is
3257  * unlinked.  Any later fsync will include the updated log entries, and
3258  * we'll be able to reconstruct the proper directory items from backrefs.
3259  *
3260  * This optimizations allows us to avoid relogging the entire inode
3261  * or the entire directory.
3262  */
3263 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3264 				 struct btrfs_root *root,
3265 				 const char *name, int name_len,
3266 				 struct btrfs_inode *dir, u64 index)
3267 {
3268 	struct btrfs_root *log;
3269 	struct btrfs_dir_item *di;
3270 	struct btrfs_path *path;
3271 	int ret;
3272 	int err = 0;
3273 	int bytes_del = 0;
3274 	u64 dir_ino = btrfs_ino(dir);
3275 
3276 	if (dir->logged_trans < trans->transid)
3277 		return 0;
3278 
3279 	ret = join_running_log_trans(root);
3280 	if (ret)
3281 		return 0;
3282 
3283 	mutex_lock(&dir->log_mutex);
3284 
3285 	log = root->log_root;
3286 	path = btrfs_alloc_path();
3287 	if (!path) {
3288 		err = -ENOMEM;
3289 		goto out_unlock;
3290 	}
3291 
3292 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3293 				   name, name_len, -1);
3294 	if (IS_ERR(di)) {
3295 		err = PTR_ERR(di);
3296 		goto fail;
3297 	}
3298 	if (di) {
3299 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3300 		bytes_del += name_len;
3301 		if (ret) {
3302 			err = ret;
3303 			goto fail;
3304 		}
3305 	}
3306 	btrfs_release_path(path);
3307 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3308 					 index, name, name_len, -1);
3309 	if (IS_ERR(di)) {
3310 		err = PTR_ERR(di);
3311 		goto fail;
3312 	}
3313 	if (di) {
3314 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3315 		bytes_del += name_len;
3316 		if (ret) {
3317 			err = ret;
3318 			goto fail;
3319 		}
3320 	}
3321 
3322 	/* update the directory size in the log to reflect the names
3323 	 * we have removed
3324 	 */
3325 	if (bytes_del) {
3326 		struct btrfs_key key;
3327 
3328 		key.objectid = dir_ino;
3329 		key.offset = 0;
3330 		key.type = BTRFS_INODE_ITEM_KEY;
3331 		btrfs_release_path(path);
3332 
3333 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3334 		if (ret < 0) {
3335 			err = ret;
3336 			goto fail;
3337 		}
3338 		if (ret == 0) {
3339 			struct btrfs_inode_item *item;
3340 			u64 i_size;
3341 
3342 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3343 					      struct btrfs_inode_item);
3344 			i_size = btrfs_inode_size(path->nodes[0], item);
3345 			if (i_size > bytes_del)
3346 				i_size -= bytes_del;
3347 			else
3348 				i_size = 0;
3349 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3350 			btrfs_mark_buffer_dirty(path->nodes[0]);
3351 		} else
3352 			ret = 0;
3353 		btrfs_release_path(path);
3354 	}
3355 fail:
3356 	btrfs_free_path(path);
3357 out_unlock:
3358 	mutex_unlock(&dir->log_mutex);
3359 	if (ret == -ENOSPC) {
3360 		btrfs_set_log_full_commit(root->fs_info, trans);
3361 		ret = 0;
3362 	} else if (ret < 0)
3363 		btrfs_abort_transaction(trans, ret);
3364 
3365 	btrfs_end_log_trans(root);
3366 
3367 	return err;
3368 }
3369 
3370 /* see comments for btrfs_del_dir_entries_in_log */
3371 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3372 			       struct btrfs_root *root,
3373 			       const char *name, int name_len,
3374 			       struct btrfs_inode *inode, u64 dirid)
3375 {
3376 	struct btrfs_fs_info *fs_info = root->fs_info;
3377 	struct btrfs_root *log;
3378 	u64 index;
3379 	int ret;
3380 
3381 	if (inode->logged_trans < trans->transid)
3382 		return 0;
3383 
3384 	ret = join_running_log_trans(root);
3385 	if (ret)
3386 		return 0;
3387 	log = root->log_root;
3388 	mutex_lock(&inode->log_mutex);
3389 
3390 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3391 				  dirid, &index);
3392 	mutex_unlock(&inode->log_mutex);
3393 	if (ret == -ENOSPC) {
3394 		btrfs_set_log_full_commit(fs_info, trans);
3395 		ret = 0;
3396 	} else if (ret < 0 && ret != -ENOENT)
3397 		btrfs_abort_transaction(trans, ret);
3398 	btrfs_end_log_trans(root);
3399 
3400 	return ret;
3401 }
3402 
3403 /*
3404  * creates a range item in the log for 'dirid'.  first_offset and
3405  * last_offset tell us which parts of the key space the log should
3406  * be considered authoritative for.
3407  */
3408 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3409 				       struct btrfs_root *log,
3410 				       struct btrfs_path *path,
3411 				       int key_type, u64 dirid,
3412 				       u64 first_offset, u64 last_offset)
3413 {
3414 	int ret;
3415 	struct btrfs_key key;
3416 	struct btrfs_dir_log_item *item;
3417 
3418 	key.objectid = dirid;
3419 	key.offset = first_offset;
3420 	if (key_type == BTRFS_DIR_ITEM_KEY)
3421 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3422 	else
3423 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3424 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3425 	if (ret)
3426 		return ret;
3427 
3428 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3429 			      struct btrfs_dir_log_item);
3430 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3431 	btrfs_mark_buffer_dirty(path->nodes[0]);
3432 	btrfs_release_path(path);
3433 	return 0;
3434 }
3435 
3436 /*
3437  * log all the items included in the current transaction for a given
3438  * directory.  This also creates the range items in the log tree required
3439  * to replay anything deleted before the fsync
3440  */
3441 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3442 			  struct btrfs_root *root, struct btrfs_inode *inode,
3443 			  struct btrfs_path *path,
3444 			  struct btrfs_path *dst_path, int key_type,
3445 			  struct btrfs_log_ctx *ctx,
3446 			  u64 min_offset, u64 *last_offset_ret)
3447 {
3448 	struct btrfs_key min_key;
3449 	struct btrfs_root *log = root->log_root;
3450 	struct extent_buffer *src;
3451 	int err = 0;
3452 	int ret;
3453 	int i;
3454 	int nritems;
3455 	u64 first_offset = min_offset;
3456 	u64 last_offset = (u64)-1;
3457 	u64 ino = btrfs_ino(inode);
3458 
3459 	log = root->log_root;
3460 
3461 	min_key.objectid = ino;
3462 	min_key.type = key_type;
3463 	min_key.offset = min_offset;
3464 
3465 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3466 
3467 	/*
3468 	 * we didn't find anything from this transaction, see if there
3469 	 * is anything at all
3470 	 */
3471 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3472 		min_key.objectid = ino;
3473 		min_key.type = key_type;
3474 		min_key.offset = (u64)-1;
3475 		btrfs_release_path(path);
3476 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3477 		if (ret < 0) {
3478 			btrfs_release_path(path);
3479 			return ret;
3480 		}
3481 		ret = btrfs_previous_item(root, path, ino, key_type);
3482 
3483 		/* if ret == 0 there are items for this type,
3484 		 * create a range to tell us the last key of this type.
3485 		 * otherwise, there are no items in this directory after
3486 		 * *min_offset, and we create a range to indicate that.
3487 		 */
3488 		if (ret == 0) {
3489 			struct btrfs_key tmp;
3490 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3491 					      path->slots[0]);
3492 			if (key_type == tmp.type)
3493 				first_offset = max(min_offset, tmp.offset) + 1;
3494 		}
3495 		goto done;
3496 	}
3497 
3498 	/* go backward to find any previous key */
3499 	ret = btrfs_previous_item(root, path, ino, key_type);
3500 	if (ret == 0) {
3501 		struct btrfs_key tmp;
3502 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3503 		if (key_type == tmp.type) {
3504 			first_offset = tmp.offset;
3505 			ret = overwrite_item(trans, log, dst_path,
3506 					     path->nodes[0], path->slots[0],
3507 					     &tmp);
3508 			if (ret) {
3509 				err = ret;
3510 				goto done;
3511 			}
3512 		}
3513 	}
3514 	btrfs_release_path(path);
3515 
3516 	/* find the first key from this transaction again */
3517 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3518 	if (WARN_ON(ret != 0))
3519 		goto done;
3520 
3521 	/*
3522 	 * we have a block from this transaction, log every item in it
3523 	 * from our directory
3524 	 */
3525 	while (1) {
3526 		struct btrfs_key tmp;
3527 		src = path->nodes[0];
3528 		nritems = btrfs_header_nritems(src);
3529 		for (i = path->slots[0]; i < nritems; i++) {
3530 			struct btrfs_dir_item *di;
3531 
3532 			btrfs_item_key_to_cpu(src, &min_key, i);
3533 
3534 			if (min_key.objectid != ino || min_key.type != key_type)
3535 				goto done;
3536 			ret = overwrite_item(trans, log, dst_path, src, i,
3537 					     &min_key);
3538 			if (ret) {
3539 				err = ret;
3540 				goto done;
3541 			}
3542 
3543 			/*
3544 			 * We must make sure that when we log a directory entry,
3545 			 * the corresponding inode, after log replay, has a
3546 			 * matching link count. For example:
3547 			 *
3548 			 * touch foo
3549 			 * mkdir mydir
3550 			 * sync
3551 			 * ln foo mydir/bar
3552 			 * xfs_io -c "fsync" mydir
3553 			 * <crash>
3554 			 * <mount fs and log replay>
3555 			 *
3556 			 * Would result in a fsync log that when replayed, our
3557 			 * file inode would have a link count of 1, but we get
3558 			 * two directory entries pointing to the same inode.
3559 			 * After removing one of the names, it would not be
3560 			 * possible to remove the other name, which resulted
3561 			 * always in stale file handle errors, and would not
3562 			 * be possible to rmdir the parent directory, since
3563 			 * its i_size could never decrement to the value
3564 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3565 			 */
3566 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3567 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3568 			if (ctx &&
3569 			    (btrfs_dir_transid(src, di) == trans->transid ||
3570 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3571 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3572 				ctx->log_new_dentries = true;
3573 		}
3574 		path->slots[0] = nritems;
3575 
3576 		/*
3577 		 * look ahead to the next item and see if it is also
3578 		 * from this directory and from this transaction
3579 		 */
3580 		ret = btrfs_next_leaf(root, path);
3581 		if (ret) {
3582 			if (ret == 1)
3583 				last_offset = (u64)-1;
3584 			else
3585 				err = ret;
3586 			goto done;
3587 		}
3588 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3589 		if (tmp.objectid != ino || tmp.type != key_type) {
3590 			last_offset = (u64)-1;
3591 			goto done;
3592 		}
3593 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3594 			ret = overwrite_item(trans, log, dst_path,
3595 					     path->nodes[0], path->slots[0],
3596 					     &tmp);
3597 			if (ret)
3598 				err = ret;
3599 			else
3600 				last_offset = tmp.offset;
3601 			goto done;
3602 		}
3603 	}
3604 done:
3605 	btrfs_release_path(path);
3606 	btrfs_release_path(dst_path);
3607 
3608 	if (err == 0) {
3609 		*last_offset_ret = last_offset;
3610 		/*
3611 		 * insert the log range keys to indicate where the log
3612 		 * is valid
3613 		 */
3614 		ret = insert_dir_log_key(trans, log, path, key_type,
3615 					 ino, first_offset, last_offset);
3616 		if (ret)
3617 			err = ret;
3618 	}
3619 	return err;
3620 }
3621 
3622 /*
3623  * logging directories is very similar to logging inodes, We find all the items
3624  * from the current transaction and write them to the log.
3625  *
3626  * The recovery code scans the directory in the subvolume, and if it finds a
3627  * key in the range logged that is not present in the log tree, then it means
3628  * that dir entry was unlinked during the transaction.
3629  *
3630  * In order for that scan to work, we must include one key smaller than
3631  * the smallest logged by this transaction and one key larger than the largest
3632  * key logged by this transaction.
3633  */
3634 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3635 			  struct btrfs_root *root, struct btrfs_inode *inode,
3636 			  struct btrfs_path *path,
3637 			  struct btrfs_path *dst_path,
3638 			  struct btrfs_log_ctx *ctx)
3639 {
3640 	u64 min_key;
3641 	u64 max_key;
3642 	int ret;
3643 	int key_type = BTRFS_DIR_ITEM_KEY;
3644 
3645 again:
3646 	min_key = 0;
3647 	max_key = 0;
3648 	while (1) {
3649 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3650 				ctx, min_key, &max_key);
3651 		if (ret)
3652 			return ret;
3653 		if (max_key == (u64)-1)
3654 			break;
3655 		min_key = max_key + 1;
3656 	}
3657 
3658 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3659 		key_type = BTRFS_DIR_INDEX_KEY;
3660 		goto again;
3661 	}
3662 	return 0;
3663 }
3664 
3665 /*
3666  * a helper function to drop items from the log before we relog an
3667  * inode.  max_key_type indicates the highest item type to remove.
3668  * This cannot be run for file data extents because it does not
3669  * free the extents they point to.
3670  */
3671 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3672 				  struct btrfs_root *log,
3673 				  struct btrfs_path *path,
3674 				  u64 objectid, int max_key_type)
3675 {
3676 	int ret;
3677 	struct btrfs_key key;
3678 	struct btrfs_key found_key;
3679 	int start_slot;
3680 
3681 	key.objectid = objectid;
3682 	key.type = max_key_type;
3683 	key.offset = (u64)-1;
3684 
3685 	while (1) {
3686 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3687 		BUG_ON(ret == 0); /* Logic error */
3688 		if (ret < 0)
3689 			break;
3690 
3691 		if (path->slots[0] == 0)
3692 			break;
3693 
3694 		path->slots[0]--;
3695 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3696 				      path->slots[0]);
3697 
3698 		if (found_key.objectid != objectid)
3699 			break;
3700 
3701 		found_key.offset = 0;
3702 		found_key.type = 0;
3703 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3704 				       &start_slot);
3705 
3706 		ret = btrfs_del_items(trans, log, path, start_slot,
3707 				      path->slots[0] - start_slot + 1);
3708 		/*
3709 		 * If start slot isn't 0 then we don't need to re-search, we've
3710 		 * found the last guy with the objectid in this tree.
3711 		 */
3712 		if (ret || start_slot != 0)
3713 			break;
3714 		btrfs_release_path(path);
3715 	}
3716 	btrfs_release_path(path);
3717 	if (ret > 0)
3718 		ret = 0;
3719 	return ret;
3720 }
3721 
3722 static void fill_inode_item(struct btrfs_trans_handle *trans,
3723 			    struct extent_buffer *leaf,
3724 			    struct btrfs_inode_item *item,
3725 			    struct inode *inode, int log_inode_only,
3726 			    u64 logged_isize)
3727 {
3728 	struct btrfs_map_token token;
3729 
3730 	btrfs_init_map_token(&token);
3731 
3732 	if (log_inode_only) {
3733 		/* set the generation to zero so the recover code
3734 		 * can tell the difference between an logging
3735 		 * just to say 'this inode exists' and a logging
3736 		 * to say 'update this inode with these values'
3737 		 */
3738 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3739 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3740 	} else {
3741 		btrfs_set_token_inode_generation(leaf, item,
3742 						 BTRFS_I(inode)->generation,
3743 						 &token);
3744 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3745 	}
3746 
3747 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3748 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3749 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3750 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3751 
3752 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3753 				     inode->i_atime.tv_sec, &token);
3754 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3755 				      inode->i_atime.tv_nsec, &token);
3756 
3757 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3758 				     inode->i_mtime.tv_sec, &token);
3759 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3760 				      inode->i_mtime.tv_nsec, &token);
3761 
3762 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3763 				     inode->i_ctime.tv_sec, &token);
3764 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3765 				      inode->i_ctime.tv_nsec, &token);
3766 
3767 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3768 				     &token);
3769 
3770 	btrfs_set_token_inode_sequence(leaf, item,
3771 				       inode_peek_iversion(inode), &token);
3772 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3773 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3774 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3775 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3776 }
3777 
3778 static int log_inode_item(struct btrfs_trans_handle *trans,
3779 			  struct btrfs_root *log, struct btrfs_path *path,
3780 			  struct btrfs_inode *inode)
3781 {
3782 	struct btrfs_inode_item *inode_item;
3783 	int ret;
3784 
3785 	ret = btrfs_insert_empty_item(trans, log, path,
3786 				      &inode->location, sizeof(*inode_item));
3787 	if (ret && ret != -EEXIST)
3788 		return ret;
3789 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3790 				    struct btrfs_inode_item);
3791 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3792 			0, 0);
3793 	btrfs_release_path(path);
3794 	return 0;
3795 }
3796 
3797 static noinline int copy_items(struct btrfs_trans_handle *trans,
3798 			       struct btrfs_inode *inode,
3799 			       struct btrfs_path *dst_path,
3800 			       struct btrfs_path *src_path, u64 *last_extent,
3801 			       int start_slot, int nr, int inode_only,
3802 			       u64 logged_isize)
3803 {
3804 	struct btrfs_fs_info *fs_info = trans->fs_info;
3805 	unsigned long src_offset;
3806 	unsigned long dst_offset;
3807 	struct btrfs_root *log = inode->root->log_root;
3808 	struct btrfs_file_extent_item *extent;
3809 	struct btrfs_inode_item *inode_item;
3810 	struct extent_buffer *src = src_path->nodes[0];
3811 	struct btrfs_key first_key, last_key, key;
3812 	int ret;
3813 	struct btrfs_key *ins_keys;
3814 	u32 *ins_sizes;
3815 	char *ins_data;
3816 	int i;
3817 	struct list_head ordered_sums;
3818 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3819 	bool has_extents = false;
3820 	bool need_find_last_extent = true;
3821 	bool done = false;
3822 
3823 	INIT_LIST_HEAD(&ordered_sums);
3824 
3825 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3826 			   nr * sizeof(u32), GFP_NOFS);
3827 	if (!ins_data)
3828 		return -ENOMEM;
3829 
3830 	first_key.objectid = (u64)-1;
3831 
3832 	ins_sizes = (u32 *)ins_data;
3833 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3834 
3835 	for (i = 0; i < nr; i++) {
3836 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3837 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3838 	}
3839 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3840 				       ins_keys, ins_sizes, nr);
3841 	if (ret) {
3842 		kfree(ins_data);
3843 		return ret;
3844 	}
3845 
3846 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3847 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3848 						   dst_path->slots[0]);
3849 
3850 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3851 
3852 		if (i == nr - 1)
3853 			last_key = ins_keys[i];
3854 
3855 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3856 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3857 						    dst_path->slots[0],
3858 						    struct btrfs_inode_item);
3859 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3860 					&inode->vfs_inode,
3861 					inode_only == LOG_INODE_EXISTS,
3862 					logged_isize);
3863 		} else {
3864 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3865 					   src_offset, ins_sizes[i]);
3866 		}
3867 
3868 		/*
3869 		 * We set need_find_last_extent here in case we know we were
3870 		 * processing other items and then walk into the first extent in
3871 		 * the inode.  If we don't hit an extent then nothing changes,
3872 		 * we'll do the last search the next time around.
3873 		 */
3874 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3875 			has_extents = true;
3876 			if (first_key.objectid == (u64)-1)
3877 				first_key = ins_keys[i];
3878 		} else {
3879 			need_find_last_extent = false;
3880 		}
3881 
3882 		/* take a reference on file data extents so that truncates
3883 		 * or deletes of this inode don't have to relog the inode
3884 		 * again
3885 		 */
3886 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3887 		    !skip_csum) {
3888 			int found_type;
3889 			extent = btrfs_item_ptr(src, start_slot + i,
3890 						struct btrfs_file_extent_item);
3891 
3892 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3893 				continue;
3894 
3895 			found_type = btrfs_file_extent_type(src, extent);
3896 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3897 				u64 ds, dl, cs, cl;
3898 				ds = btrfs_file_extent_disk_bytenr(src,
3899 								extent);
3900 				/* ds == 0 is a hole */
3901 				if (ds == 0)
3902 					continue;
3903 
3904 				dl = btrfs_file_extent_disk_num_bytes(src,
3905 								extent);
3906 				cs = btrfs_file_extent_offset(src, extent);
3907 				cl = btrfs_file_extent_num_bytes(src,
3908 								extent);
3909 				if (btrfs_file_extent_compression(src,
3910 								  extent)) {
3911 					cs = 0;
3912 					cl = dl;
3913 				}
3914 
3915 				ret = btrfs_lookup_csums_range(
3916 						fs_info->csum_root,
3917 						ds + cs, ds + cs + cl - 1,
3918 						&ordered_sums, 0);
3919 				if (ret) {
3920 					btrfs_release_path(dst_path);
3921 					kfree(ins_data);
3922 					return ret;
3923 				}
3924 			}
3925 		}
3926 	}
3927 
3928 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3929 	btrfs_release_path(dst_path);
3930 	kfree(ins_data);
3931 
3932 	/*
3933 	 * we have to do this after the loop above to avoid changing the
3934 	 * log tree while trying to change the log tree.
3935 	 */
3936 	ret = 0;
3937 	while (!list_empty(&ordered_sums)) {
3938 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3939 						   struct btrfs_ordered_sum,
3940 						   list);
3941 		if (!ret)
3942 			ret = btrfs_csum_file_blocks(trans, log, sums);
3943 		list_del(&sums->list);
3944 		kfree(sums);
3945 	}
3946 
3947 	if (!has_extents)
3948 		return ret;
3949 
3950 	if (need_find_last_extent && *last_extent == first_key.offset) {
3951 		/*
3952 		 * We don't have any leafs between our current one and the one
3953 		 * we processed before that can have file extent items for our
3954 		 * inode (and have a generation number smaller than our current
3955 		 * transaction id).
3956 		 */
3957 		need_find_last_extent = false;
3958 	}
3959 
3960 	/*
3961 	 * Because we use btrfs_search_forward we could skip leaves that were
3962 	 * not modified and then assume *last_extent is valid when it really
3963 	 * isn't.  So back up to the previous leaf and read the end of the last
3964 	 * extent before we go and fill in holes.
3965 	 */
3966 	if (need_find_last_extent) {
3967 		u64 len;
3968 
3969 		ret = btrfs_prev_leaf(inode->root, src_path);
3970 		if (ret < 0)
3971 			return ret;
3972 		if (ret)
3973 			goto fill_holes;
3974 		if (src_path->slots[0])
3975 			src_path->slots[0]--;
3976 		src = src_path->nodes[0];
3977 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3978 		if (key.objectid != btrfs_ino(inode) ||
3979 		    key.type != BTRFS_EXTENT_DATA_KEY)
3980 			goto fill_holes;
3981 		extent = btrfs_item_ptr(src, src_path->slots[0],
3982 					struct btrfs_file_extent_item);
3983 		if (btrfs_file_extent_type(src, extent) ==
3984 		    BTRFS_FILE_EXTENT_INLINE) {
3985 			len = btrfs_file_extent_ram_bytes(src, extent);
3986 			*last_extent = ALIGN(key.offset + len,
3987 					     fs_info->sectorsize);
3988 		} else {
3989 			len = btrfs_file_extent_num_bytes(src, extent);
3990 			*last_extent = key.offset + len;
3991 		}
3992 	}
3993 fill_holes:
3994 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3995 	 * things could have happened
3996 	 *
3997 	 * 1) A merge could have happened, so we could currently be on a leaf
3998 	 * that holds what we were copying in the first place.
3999 	 * 2) A split could have happened, and now not all of the items we want
4000 	 * are on the same leaf.
4001 	 *
4002 	 * So we need to adjust how we search for holes, we need to drop the
4003 	 * path and re-search for the first extent key we found, and then walk
4004 	 * forward until we hit the last one we copied.
4005 	 */
4006 	if (need_find_last_extent) {
4007 		/* btrfs_prev_leaf could return 1 without releasing the path */
4008 		btrfs_release_path(src_path);
4009 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
4010 				src_path, 0, 0);
4011 		if (ret < 0)
4012 			return ret;
4013 		ASSERT(ret == 0);
4014 		src = src_path->nodes[0];
4015 		i = src_path->slots[0];
4016 	} else {
4017 		i = start_slot;
4018 	}
4019 
4020 	/*
4021 	 * Ok so here we need to go through and fill in any holes we may have
4022 	 * to make sure that holes are punched for those areas in case they had
4023 	 * extents previously.
4024 	 */
4025 	while (!done) {
4026 		u64 offset, len;
4027 		u64 extent_end;
4028 
4029 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4030 			ret = btrfs_next_leaf(inode->root, src_path);
4031 			if (ret < 0)
4032 				return ret;
4033 			ASSERT(ret == 0);
4034 			src = src_path->nodes[0];
4035 			i = 0;
4036 			need_find_last_extent = true;
4037 		}
4038 
4039 		btrfs_item_key_to_cpu(src, &key, i);
4040 		if (!btrfs_comp_cpu_keys(&key, &last_key))
4041 			done = true;
4042 		if (key.objectid != btrfs_ino(inode) ||
4043 		    key.type != BTRFS_EXTENT_DATA_KEY) {
4044 			i++;
4045 			continue;
4046 		}
4047 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4048 		if (btrfs_file_extent_type(src, extent) ==
4049 		    BTRFS_FILE_EXTENT_INLINE) {
4050 			len = btrfs_file_extent_ram_bytes(src, extent);
4051 			extent_end = ALIGN(key.offset + len,
4052 					   fs_info->sectorsize);
4053 		} else {
4054 			len = btrfs_file_extent_num_bytes(src, extent);
4055 			extent_end = key.offset + len;
4056 		}
4057 		i++;
4058 
4059 		if (*last_extent == key.offset) {
4060 			*last_extent = extent_end;
4061 			continue;
4062 		}
4063 		offset = *last_extent;
4064 		len = key.offset - *last_extent;
4065 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4066 				offset, 0, 0, len, 0, len, 0, 0, 0);
4067 		if (ret)
4068 			break;
4069 		*last_extent = extent_end;
4070 	}
4071 
4072 	/*
4073 	 * Check if there is a hole between the last extent found in our leaf
4074 	 * and the first extent in the next leaf. If there is one, we need to
4075 	 * log an explicit hole so that at replay time we can punch the hole.
4076 	 */
4077 	if (ret == 0 &&
4078 	    key.objectid == btrfs_ino(inode) &&
4079 	    key.type == BTRFS_EXTENT_DATA_KEY &&
4080 	    i == btrfs_header_nritems(src_path->nodes[0])) {
4081 		ret = btrfs_next_leaf(inode->root, src_path);
4082 		need_find_last_extent = true;
4083 		if (ret > 0) {
4084 			ret = 0;
4085 		} else if (ret == 0) {
4086 			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4087 					      src_path->slots[0]);
4088 			if (key.objectid == btrfs_ino(inode) &&
4089 			    key.type == BTRFS_EXTENT_DATA_KEY &&
4090 			    *last_extent < key.offset) {
4091 				const u64 len = key.offset - *last_extent;
4092 
4093 				ret = btrfs_insert_file_extent(trans, log,
4094 							       btrfs_ino(inode),
4095 							       *last_extent, 0,
4096 							       0, len, 0, len,
4097 							       0, 0, 0);
4098 			}
4099 		}
4100 	}
4101 	/*
4102 	 * Need to let the callers know we dropped the path so they should
4103 	 * re-search.
4104 	 */
4105 	if (!ret && need_find_last_extent)
4106 		ret = 1;
4107 	return ret;
4108 }
4109 
4110 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4111 {
4112 	struct extent_map *em1, *em2;
4113 
4114 	em1 = list_entry(a, struct extent_map, list);
4115 	em2 = list_entry(b, struct extent_map, list);
4116 
4117 	if (em1->start < em2->start)
4118 		return -1;
4119 	else if (em1->start > em2->start)
4120 		return 1;
4121 	return 0;
4122 }
4123 
4124 static int log_extent_csums(struct btrfs_trans_handle *trans,
4125 			    struct btrfs_inode *inode,
4126 			    struct btrfs_root *log_root,
4127 			    const struct extent_map *em)
4128 {
4129 	u64 csum_offset;
4130 	u64 csum_len;
4131 	LIST_HEAD(ordered_sums);
4132 	int ret = 0;
4133 
4134 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4135 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4136 	    em->block_start == EXTENT_MAP_HOLE)
4137 		return 0;
4138 
4139 	/* If we're compressed we have to save the entire range of csums. */
4140 	if (em->compress_type) {
4141 		csum_offset = 0;
4142 		csum_len = max(em->block_len, em->orig_block_len);
4143 	} else {
4144 		csum_offset = em->mod_start - em->start;
4145 		csum_len = em->mod_len;
4146 	}
4147 
4148 	/* block start is already adjusted for the file extent offset. */
4149 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4150 				       em->block_start + csum_offset,
4151 				       em->block_start + csum_offset +
4152 				       csum_len - 1, &ordered_sums, 0);
4153 	if (ret)
4154 		return ret;
4155 
4156 	while (!list_empty(&ordered_sums)) {
4157 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4158 						   struct btrfs_ordered_sum,
4159 						   list);
4160 		if (!ret)
4161 			ret = btrfs_csum_file_blocks(trans, log_root, sums);
4162 		list_del(&sums->list);
4163 		kfree(sums);
4164 	}
4165 
4166 	return ret;
4167 }
4168 
4169 static int log_one_extent(struct btrfs_trans_handle *trans,
4170 			  struct btrfs_inode *inode, struct btrfs_root *root,
4171 			  const struct extent_map *em,
4172 			  struct btrfs_path *path,
4173 			  struct btrfs_log_ctx *ctx)
4174 {
4175 	struct btrfs_root *log = root->log_root;
4176 	struct btrfs_file_extent_item *fi;
4177 	struct extent_buffer *leaf;
4178 	struct btrfs_map_token token;
4179 	struct btrfs_key key;
4180 	u64 extent_offset = em->start - em->orig_start;
4181 	u64 block_len;
4182 	int ret;
4183 	int extent_inserted = 0;
4184 
4185 	ret = log_extent_csums(trans, inode, log, em);
4186 	if (ret)
4187 		return ret;
4188 
4189 	btrfs_init_map_token(&token);
4190 
4191 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4192 				   em->start + em->len, NULL, 0, 1,
4193 				   sizeof(*fi), &extent_inserted);
4194 	if (ret)
4195 		return ret;
4196 
4197 	if (!extent_inserted) {
4198 		key.objectid = btrfs_ino(inode);
4199 		key.type = BTRFS_EXTENT_DATA_KEY;
4200 		key.offset = em->start;
4201 
4202 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4203 					      sizeof(*fi));
4204 		if (ret)
4205 			return ret;
4206 	}
4207 	leaf = path->nodes[0];
4208 	fi = btrfs_item_ptr(leaf, path->slots[0],
4209 			    struct btrfs_file_extent_item);
4210 
4211 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4212 					       &token);
4213 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4214 		btrfs_set_token_file_extent_type(leaf, fi,
4215 						 BTRFS_FILE_EXTENT_PREALLOC,
4216 						 &token);
4217 	else
4218 		btrfs_set_token_file_extent_type(leaf, fi,
4219 						 BTRFS_FILE_EXTENT_REG,
4220 						 &token);
4221 
4222 	block_len = max(em->block_len, em->orig_block_len);
4223 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4224 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4225 							em->block_start,
4226 							&token);
4227 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4228 							   &token);
4229 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4230 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4231 							em->block_start -
4232 							extent_offset, &token);
4233 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4234 							   &token);
4235 	} else {
4236 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4237 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4238 							   &token);
4239 	}
4240 
4241 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4242 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4243 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4244 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4245 						&token);
4246 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4247 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4248 	btrfs_mark_buffer_dirty(leaf);
4249 
4250 	btrfs_release_path(path);
4251 
4252 	return ret;
4253 }
4254 
4255 /*
4256  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4257  * lose them after doing a fast fsync and replaying the log. We scan the
4258  * subvolume's root instead of iterating the inode's extent map tree because
4259  * otherwise we can log incorrect extent items based on extent map conversion.
4260  * That can happen due to the fact that extent maps are merged when they
4261  * are not in the extent map tree's list of modified extents.
4262  */
4263 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4264 				      struct btrfs_inode *inode,
4265 				      struct btrfs_path *path)
4266 {
4267 	struct btrfs_root *root = inode->root;
4268 	struct btrfs_key key;
4269 	const u64 i_size = i_size_read(&inode->vfs_inode);
4270 	const u64 ino = btrfs_ino(inode);
4271 	struct btrfs_path *dst_path = NULL;
4272 	u64 last_extent = (u64)-1;
4273 	int ins_nr = 0;
4274 	int start_slot;
4275 	int ret;
4276 
4277 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4278 		return 0;
4279 
4280 	key.objectid = ino;
4281 	key.type = BTRFS_EXTENT_DATA_KEY;
4282 	key.offset = i_size;
4283 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4284 	if (ret < 0)
4285 		goto out;
4286 
4287 	while (true) {
4288 		struct extent_buffer *leaf = path->nodes[0];
4289 		int slot = path->slots[0];
4290 
4291 		if (slot >= btrfs_header_nritems(leaf)) {
4292 			if (ins_nr > 0) {
4293 				ret = copy_items(trans, inode, dst_path, path,
4294 						 &last_extent, start_slot,
4295 						 ins_nr, 1, 0);
4296 				if (ret < 0)
4297 					goto out;
4298 				ins_nr = 0;
4299 			}
4300 			ret = btrfs_next_leaf(root, path);
4301 			if (ret < 0)
4302 				goto out;
4303 			if (ret > 0) {
4304 				ret = 0;
4305 				break;
4306 			}
4307 			continue;
4308 		}
4309 
4310 		btrfs_item_key_to_cpu(leaf, &key, slot);
4311 		if (key.objectid > ino)
4312 			break;
4313 		if (WARN_ON_ONCE(key.objectid < ino) ||
4314 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4315 		    key.offset < i_size) {
4316 			path->slots[0]++;
4317 			continue;
4318 		}
4319 		if (last_extent == (u64)-1) {
4320 			last_extent = key.offset;
4321 			/*
4322 			 * Avoid logging extent items logged in past fsync calls
4323 			 * and leading to duplicate keys in the log tree.
4324 			 */
4325 			do {
4326 				ret = btrfs_truncate_inode_items(trans,
4327 							 root->log_root,
4328 							 &inode->vfs_inode,
4329 							 i_size,
4330 							 BTRFS_EXTENT_DATA_KEY);
4331 			} while (ret == -EAGAIN);
4332 			if (ret)
4333 				goto out;
4334 		}
4335 		if (ins_nr == 0)
4336 			start_slot = slot;
4337 		ins_nr++;
4338 		path->slots[0]++;
4339 		if (!dst_path) {
4340 			dst_path = btrfs_alloc_path();
4341 			if (!dst_path) {
4342 				ret = -ENOMEM;
4343 				goto out;
4344 			}
4345 		}
4346 	}
4347 	if (ins_nr > 0) {
4348 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4349 				 start_slot, ins_nr, 1, 0);
4350 		if (ret > 0)
4351 			ret = 0;
4352 	}
4353 out:
4354 	btrfs_release_path(path);
4355 	btrfs_free_path(dst_path);
4356 	return ret;
4357 }
4358 
4359 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4360 				     struct btrfs_root *root,
4361 				     struct btrfs_inode *inode,
4362 				     struct btrfs_path *path,
4363 				     struct btrfs_log_ctx *ctx,
4364 				     const u64 start,
4365 				     const u64 end)
4366 {
4367 	struct extent_map *em, *n;
4368 	struct list_head extents;
4369 	struct extent_map_tree *tree = &inode->extent_tree;
4370 	u64 logged_start, logged_end;
4371 	u64 test_gen;
4372 	int ret = 0;
4373 	int num = 0;
4374 
4375 	INIT_LIST_HEAD(&extents);
4376 
4377 	down_write(&inode->dio_sem);
4378 	write_lock(&tree->lock);
4379 	test_gen = root->fs_info->last_trans_committed;
4380 	logged_start = start;
4381 	logged_end = end;
4382 
4383 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4384 		list_del_init(&em->list);
4385 		/*
4386 		 * Just an arbitrary number, this can be really CPU intensive
4387 		 * once we start getting a lot of extents, and really once we
4388 		 * have a bunch of extents we just want to commit since it will
4389 		 * be faster.
4390 		 */
4391 		if (++num > 32768) {
4392 			list_del_init(&tree->modified_extents);
4393 			ret = -EFBIG;
4394 			goto process;
4395 		}
4396 
4397 		if (em->generation <= test_gen)
4398 			continue;
4399 
4400 		/* We log prealloc extents beyond eof later. */
4401 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4402 		    em->start >= i_size_read(&inode->vfs_inode))
4403 			continue;
4404 
4405 		if (em->start < logged_start)
4406 			logged_start = em->start;
4407 		if ((em->start + em->len - 1) > logged_end)
4408 			logged_end = em->start + em->len - 1;
4409 
4410 		/* Need a ref to keep it from getting evicted from cache */
4411 		refcount_inc(&em->refs);
4412 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4413 		list_add_tail(&em->list, &extents);
4414 		num++;
4415 	}
4416 
4417 	list_sort(NULL, &extents, extent_cmp);
4418 process:
4419 	while (!list_empty(&extents)) {
4420 		em = list_entry(extents.next, struct extent_map, list);
4421 
4422 		list_del_init(&em->list);
4423 
4424 		/*
4425 		 * If we had an error we just need to delete everybody from our
4426 		 * private list.
4427 		 */
4428 		if (ret) {
4429 			clear_em_logging(tree, em);
4430 			free_extent_map(em);
4431 			continue;
4432 		}
4433 
4434 		write_unlock(&tree->lock);
4435 
4436 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4437 		write_lock(&tree->lock);
4438 		clear_em_logging(tree, em);
4439 		free_extent_map(em);
4440 	}
4441 	WARN_ON(!list_empty(&extents));
4442 	write_unlock(&tree->lock);
4443 	up_write(&inode->dio_sem);
4444 
4445 	btrfs_release_path(path);
4446 	if (!ret)
4447 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4448 
4449 	return ret;
4450 }
4451 
4452 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4453 			     struct btrfs_path *path, u64 *size_ret)
4454 {
4455 	struct btrfs_key key;
4456 	int ret;
4457 
4458 	key.objectid = btrfs_ino(inode);
4459 	key.type = BTRFS_INODE_ITEM_KEY;
4460 	key.offset = 0;
4461 
4462 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4463 	if (ret < 0) {
4464 		return ret;
4465 	} else if (ret > 0) {
4466 		*size_ret = 0;
4467 	} else {
4468 		struct btrfs_inode_item *item;
4469 
4470 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4471 				      struct btrfs_inode_item);
4472 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4473 	}
4474 
4475 	btrfs_release_path(path);
4476 	return 0;
4477 }
4478 
4479 /*
4480  * At the moment we always log all xattrs. This is to figure out at log replay
4481  * time which xattrs must have their deletion replayed. If a xattr is missing
4482  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4483  * because if a xattr is deleted, the inode is fsynced and a power failure
4484  * happens, causing the log to be replayed the next time the fs is mounted,
4485  * we want the xattr to not exist anymore (same behaviour as other filesystems
4486  * with a journal, ext3/4, xfs, f2fs, etc).
4487  */
4488 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4489 				struct btrfs_root *root,
4490 				struct btrfs_inode *inode,
4491 				struct btrfs_path *path,
4492 				struct btrfs_path *dst_path)
4493 {
4494 	int ret;
4495 	struct btrfs_key key;
4496 	const u64 ino = btrfs_ino(inode);
4497 	int ins_nr = 0;
4498 	int start_slot = 0;
4499 
4500 	key.objectid = ino;
4501 	key.type = BTRFS_XATTR_ITEM_KEY;
4502 	key.offset = 0;
4503 
4504 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4505 	if (ret < 0)
4506 		return ret;
4507 
4508 	while (true) {
4509 		int slot = path->slots[0];
4510 		struct extent_buffer *leaf = path->nodes[0];
4511 		int nritems = btrfs_header_nritems(leaf);
4512 
4513 		if (slot >= nritems) {
4514 			if (ins_nr > 0) {
4515 				u64 last_extent = 0;
4516 
4517 				ret = copy_items(trans, inode, dst_path, path,
4518 						 &last_extent, start_slot,
4519 						 ins_nr, 1, 0);
4520 				/* can't be 1, extent items aren't processed */
4521 				ASSERT(ret <= 0);
4522 				if (ret < 0)
4523 					return ret;
4524 				ins_nr = 0;
4525 			}
4526 			ret = btrfs_next_leaf(root, path);
4527 			if (ret < 0)
4528 				return ret;
4529 			else if (ret > 0)
4530 				break;
4531 			continue;
4532 		}
4533 
4534 		btrfs_item_key_to_cpu(leaf, &key, slot);
4535 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4536 			break;
4537 
4538 		if (ins_nr == 0)
4539 			start_slot = slot;
4540 		ins_nr++;
4541 		path->slots[0]++;
4542 		cond_resched();
4543 	}
4544 	if (ins_nr > 0) {
4545 		u64 last_extent = 0;
4546 
4547 		ret = copy_items(trans, inode, dst_path, path,
4548 				 &last_extent, start_slot,
4549 				 ins_nr, 1, 0);
4550 		/* can't be 1, extent items aren't processed */
4551 		ASSERT(ret <= 0);
4552 		if (ret < 0)
4553 			return ret;
4554 	}
4555 
4556 	return 0;
4557 }
4558 
4559 /*
4560  * If the no holes feature is enabled we need to make sure any hole between the
4561  * last extent and the i_size of our inode is explicitly marked in the log. This
4562  * is to make sure that doing something like:
4563  *
4564  *      1) create file with 128Kb of data
4565  *      2) truncate file to 64Kb
4566  *      3) truncate file to 256Kb
4567  *      4) fsync file
4568  *      5) <crash/power failure>
4569  *      6) mount fs and trigger log replay
4570  *
4571  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4572  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4573  * file correspond to a hole. The presence of explicit holes in a log tree is
4574  * what guarantees that log replay will remove/adjust file extent items in the
4575  * fs/subvol tree.
4576  *
4577  * Here we do not need to care about holes between extents, that is already done
4578  * by copy_items(). We also only need to do this in the full sync path, where we
4579  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4580  * lookup the list of modified extent maps and if any represents a hole, we
4581  * insert a corresponding extent representing a hole in the log tree.
4582  */
4583 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4584 				   struct btrfs_root *root,
4585 				   struct btrfs_inode *inode,
4586 				   struct btrfs_path *path)
4587 {
4588 	struct btrfs_fs_info *fs_info = root->fs_info;
4589 	int ret;
4590 	struct btrfs_key key;
4591 	u64 hole_start;
4592 	u64 hole_size;
4593 	struct extent_buffer *leaf;
4594 	struct btrfs_root *log = root->log_root;
4595 	const u64 ino = btrfs_ino(inode);
4596 	const u64 i_size = i_size_read(&inode->vfs_inode);
4597 
4598 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4599 		return 0;
4600 
4601 	key.objectid = ino;
4602 	key.type = BTRFS_EXTENT_DATA_KEY;
4603 	key.offset = (u64)-1;
4604 
4605 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4606 	ASSERT(ret != 0);
4607 	if (ret < 0)
4608 		return ret;
4609 
4610 	ASSERT(path->slots[0] > 0);
4611 	path->slots[0]--;
4612 	leaf = path->nodes[0];
4613 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4614 
4615 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4616 		/* inode does not have any extents */
4617 		hole_start = 0;
4618 		hole_size = i_size;
4619 	} else {
4620 		struct btrfs_file_extent_item *extent;
4621 		u64 len;
4622 
4623 		/*
4624 		 * If there's an extent beyond i_size, an explicit hole was
4625 		 * already inserted by copy_items().
4626 		 */
4627 		if (key.offset >= i_size)
4628 			return 0;
4629 
4630 		extent = btrfs_item_ptr(leaf, path->slots[0],
4631 					struct btrfs_file_extent_item);
4632 
4633 		if (btrfs_file_extent_type(leaf, extent) ==
4634 		    BTRFS_FILE_EXTENT_INLINE) {
4635 			len = btrfs_file_extent_ram_bytes(leaf, extent);
4636 			ASSERT(len == i_size ||
4637 			       (len == fs_info->sectorsize &&
4638 				btrfs_file_extent_compression(leaf, extent) !=
4639 				BTRFS_COMPRESS_NONE));
4640 			return 0;
4641 		}
4642 
4643 		len = btrfs_file_extent_num_bytes(leaf, extent);
4644 		/* Last extent goes beyond i_size, no need to log a hole. */
4645 		if (key.offset + len > i_size)
4646 			return 0;
4647 		hole_start = key.offset + len;
4648 		hole_size = i_size - hole_start;
4649 	}
4650 	btrfs_release_path(path);
4651 
4652 	/* Last extent ends at i_size. */
4653 	if (hole_size == 0)
4654 		return 0;
4655 
4656 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4657 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4658 				       hole_size, 0, hole_size, 0, 0, 0);
4659 	return ret;
4660 }
4661 
4662 /*
4663  * When we are logging a new inode X, check if it doesn't have a reference that
4664  * matches the reference from some other inode Y created in a past transaction
4665  * and that was renamed in the current transaction. If we don't do this, then at
4666  * log replay time we can lose inode Y (and all its files if it's a directory):
4667  *
4668  * mkdir /mnt/x
4669  * echo "hello world" > /mnt/x/foobar
4670  * sync
4671  * mv /mnt/x /mnt/y
4672  * mkdir /mnt/x                 # or touch /mnt/x
4673  * xfs_io -c fsync /mnt/x
4674  * <power fail>
4675  * mount fs, trigger log replay
4676  *
4677  * After the log replay procedure, we would lose the first directory and all its
4678  * files (file foobar).
4679  * For the case where inode Y is not a directory we simply end up losing it:
4680  *
4681  * echo "123" > /mnt/foo
4682  * sync
4683  * mv /mnt/foo /mnt/bar
4684  * echo "abc" > /mnt/foo
4685  * xfs_io -c fsync /mnt/foo
4686  * <power fail>
4687  *
4688  * We also need this for cases where a snapshot entry is replaced by some other
4689  * entry (file or directory) otherwise we end up with an unreplayable log due to
4690  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4691  * if it were a regular entry:
4692  *
4693  * mkdir /mnt/x
4694  * btrfs subvolume snapshot /mnt /mnt/x/snap
4695  * btrfs subvolume delete /mnt/x/snap
4696  * rmdir /mnt/x
4697  * mkdir /mnt/x
4698  * fsync /mnt/x or fsync some new file inside it
4699  * <power fail>
4700  *
4701  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4702  * the same transaction.
4703  */
4704 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4705 					 const int slot,
4706 					 const struct btrfs_key *key,
4707 					 struct btrfs_inode *inode,
4708 					 u64 *other_ino)
4709 {
4710 	int ret;
4711 	struct btrfs_path *search_path;
4712 	char *name = NULL;
4713 	u32 name_len = 0;
4714 	u32 item_size = btrfs_item_size_nr(eb, slot);
4715 	u32 cur_offset = 0;
4716 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4717 
4718 	search_path = btrfs_alloc_path();
4719 	if (!search_path)
4720 		return -ENOMEM;
4721 	search_path->search_commit_root = 1;
4722 	search_path->skip_locking = 1;
4723 
4724 	while (cur_offset < item_size) {
4725 		u64 parent;
4726 		u32 this_name_len;
4727 		u32 this_len;
4728 		unsigned long name_ptr;
4729 		struct btrfs_dir_item *di;
4730 
4731 		if (key->type == BTRFS_INODE_REF_KEY) {
4732 			struct btrfs_inode_ref *iref;
4733 
4734 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4735 			parent = key->offset;
4736 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4737 			name_ptr = (unsigned long)(iref + 1);
4738 			this_len = sizeof(*iref) + this_name_len;
4739 		} else {
4740 			struct btrfs_inode_extref *extref;
4741 
4742 			extref = (struct btrfs_inode_extref *)(ptr +
4743 							       cur_offset);
4744 			parent = btrfs_inode_extref_parent(eb, extref);
4745 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4746 			name_ptr = (unsigned long)&extref->name;
4747 			this_len = sizeof(*extref) + this_name_len;
4748 		}
4749 
4750 		if (this_name_len > name_len) {
4751 			char *new_name;
4752 
4753 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4754 			if (!new_name) {
4755 				ret = -ENOMEM;
4756 				goto out;
4757 			}
4758 			name_len = this_name_len;
4759 			name = new_name;
4760 		}
4761 
4762 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4763 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4764 				parent, name, this_name_len, 0);
4765 		if (di && !IS_ERR(di)) {
4766 			struct btrfs_key di_key;
4767 
4768 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4769 						  di, &di_key);
4770 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4771 				ret = 1;
4772 				*other_ino = di_key.objectid;
4773 			} else {
4774 				ret = -EAGAIN;
4775 			}
4776 			goto out;
4777 		} else if (IS_ERR(di)) {
4778 			ret = PTR_ERR(di);
4779 			goto out;
4780 		}
4781 		btrfs_release_path(search_path);
4782 
4783 		cur_offset += this_len;
4784 	}
4785 	ret = 0;
4786 out:
4787 	btrfs_free_path(search_path);
4788 	kfree(name);
4789 	return ret;
4790 }
4791 
4792 /* log a single inode in the tree log.
4793  * At least one parent directory for this inode must exist in the tree
4794  * or be logged already.
4795  *
4796  * Any items from this inode changed by the current transaction are copied
4797  * to the log tree.  An extra reference is taken on any extents in this
4798  * file, allowing us to avoid a whole pile of corner cases around logging
4799  * blocks that have been removed from the tree.
4800  *
4801  * See LOG_INODE_ALL and related defines for a description of what inode_only
4802  * does.
4803  *
4804  * This handles both files and directories.
4805  */
4806 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4807 			   struct btrfs_root *root, struct btrfs_inode *inode,
4808 			   int inode_only,
4809 			   const loff_t start,
4810 			   const loff_t end,
4811 			   struct btrfs_log_ctx *ctx)
4812 {
4813 	struct btrfs_fs_info *fs_info = root->fs_info;
4814 	struct btrfs_path *path;
4815 	struct btrfs_path *dst_path;
4816 	struct btrfs_key min_key;
4817 	struct btrfs_key max_key;
4818 	struct btrfs_root *log = root->log_root;
4819 	u64 last_extent = 0;
4820 	int err = 0;
4821 	int ret;
4822 	int nritems;
4823 	int ins_start_slot = 0;
4824 	int ins_nr;
4825 	bool fast_search = false;
4826 	u64 ino = btrfs_ino(inode);
4827 	struct extent_map_tree *em_tree = &inode->extent_tree;
4828 	u64 logged_isize = 0;
4829 	bool need_log_inode_item = true;
4830 	bool xattrs_logged = false;
4831 
4832 	path = btrfs_alloc_path();
4833 	if (!path)
4834 		return -ENOMEM;
4835 	dst_path = btrfs_alloc_path();
4836 	if (!dst_path) {
4837 		btrfs_free_path(path);
4838 		return -ENOMEM;
4839 	}
4840 
4841 	min_key.objectid = ino;
4842 	min_key.type = BTRFS_INODE_ITEM_KEY;
4843 	min_key.offset = 0;
4844 
4845 	max_key.objectid = ino;
4846 
4847 
4848 	/* today the code can only do partial logging of directories */
4849 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4850 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4851 		       &inode->runtime_flags) &&
4852 	     inode_only >= LOG_INODE_EXISTS))
4853 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4854 	else
4855 		max_key.type = (u8)-1;
4856 	max_key.offset = (u64)-1;
4857 
4858 	/*
4859 	 * Only run delayed items if we are a dir or a new file.
4860 	 * Otherwise commit the delayed inode only, which is needed in
4861 	 * order for the log replay code to mark inodes for link count
4862 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4863 	 */
4864 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4865 	    inode->generation > fs_info->last_trans_committed)
4866 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4867 	else
4868 		ret = btrfs_commit_inode_delayed_inode(inode);
4869 
4870 	if (ret) {
4871 		btrfs_free_path(path);
4872 		btrfs_free_path(dst_path);
4873 		return ret;
4874 	}
4875 
4876 	if (inode_only == LOG_OTHER_INODE) {
4877 		inode_only = LOG_INODE_EXISTS;
4878 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4879 	} else {
4880 		mutex_lock(&inode->log_mutex);
4881 	}
4882 
4883 	/*
4884 	 * a brute force approach to making sure we get the most uptodate
4885 	 * copies of everything.
4886 	 */
4887 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
4888 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4889 
4890 		if (inode_only == LOG_INODE_EXISTS)
4891 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4892 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4893 	} else {
4894 		if (inode_only == LOG_INODE_EXISTS) {
4895 			/*
4896 			 * Make sure the new inode item we write to the log has
4897 			 * the same isize as the current one (if it exists).
4898 			 * This is necessary to prevent data loss after log
4899 			 * replay, and also to prevent doing a wrong expanding
4900 			 * truncate - for e.g. create file, write 4K into offset
4901 			 * 0, fsync, write 4K into offset 4096, add hard link,
4902 			 * fsync some other file (to sync log), power fail - if
4903 			 * we use the inode's current i_size, after log replay
4904 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4905 			 * (zeroes), as if an expanding truncate happened,
4906 			 * instead of getting a file of 4Kb only.
4907 			 */
4908 			err = logged_inode_size(log, inode, path, &logged_isize);
4909 			if (err)
4910 				goto out_unlock;
4911 		}
4912 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4913 			     &inode->runtime_flags)) {
4914 			if (inode_only == LOG_INODE_EXISTS) {
4915 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4916 				ret = drop_objectid_items(trans, log, path, ino,
4917 							  max_key.type);
4918 			} else {
4919 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4920 					  &inode->runtime_flags);
4921 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4922 					  &inode->runtime_flags);
4923 				while(1) {
4924 					ret = btrfs_truncate_inode_items(trans,
4925 						log, &inode->vfs_inode, 0, 0);
4926 					if (ret != -EAGAIN)
4927 						break;
4928 				}
4929 			}
4930 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4931 					      &inode->runtime_flags) ||
4932 			   inode_only == LOG_INODE_EXISTS) {
4933 			if (inode_only == LOG_INODE_ALL)
4934 				fast_search = true;
4935 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4936 			ret = drop_objectid_items(trans, log, path, ino,
4937 						  max_key.type);
4938 		} else {
4939 			if (inode_only == LOG_INODE_ALL)
4940 				fast_search = true;
4941 			goto log_extents;
4942 		}
4943 
4944 	}
4945 	if (ret) {
4946 		err = ret;
4947 		goto out_unlock;
4948 	}
4949 
4950 	while (1) {
4951 		ins_nr = 0;
4952 		ret = btrfs_search_forward(root, &min_key,
4953 					   path, trans->transid);
4954 		if (ret < 0) {
4955 			err = ret;
4956 			goto out_unlock;
4957 		}
4958 		if (ret != 0)
4959 			break;
4960 again:
4961 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4962 		if (min_key.objectid != ino)
4963 			break;
4964 		if (min_key.type > max_key.type)
4965 			break;
4966 
4967 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4968 			need_log_inode_item = false;
4969 
4970 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4971 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4972 		    inode->generation == trans->transid) {
4973 			u64 other_ino = 0;
4974 
4975 			ret = btrfs_check_ref_name_override(path->nodes[0],
4976 					path->slots[0], &min_key, inode,
4977 					&other_ino);
4978 			if (ret < 0) {
4979 				err = ret;
4980 				goto out_unlock;
4981 			} else if (ret > 0 && ctx &&
4982 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4983 				struct btrfs_key inode_key;
4984 				struct inode *other_inode;
4985 
4986 				if (ins_nr > 0) {
4987 					ins_nr++;
4988 				} else {
4989 					ins_nr = 1;
4990 					ins_start_slot = path->slots[0];
4991 				}
4992 				ret = copy_items(trans, inode, dst_path, path,
4993 						 &last_extent, ins_start_slot,
4994 						 ins_nr, inode_only,
4995 						 logged_isize);
4996 				if (ret < 0) {
4997 					err = ret;
4998 					goto out_unlock;
4999 				}
5000 				ins_nr = 0;
5001 				btrfs_release_path(path);
5002 				inode_key.objectid = other_ino;
5003 				inode_key.type = BTRFS_INODE_ITEM_KEY;
5004 				inode_key.offset = 0;
5005 				other_inode = btrfs_iget(fs_info->sb,
5006 							 &inode_key, root,
5007 							 NULL);
5008 				/*
5009 				 * If the other inode that had a conflicting dir
5010 				 * entry was deleted in the current transaction,
5011 				 * we don't need to do more work nor fallback to
5012 				 * a transaction commit.
5013 				 */
5014 				if (other_inode == ERR_PTR(-ENOENT)) {
5015 					goto next_key;
5016 				} else if (IS_ERR(other_inode)) {
5017 					err = PTR_ERR(other_inode);
5018 					goto out_unlock;
5019 				}
5020 				/*
5021 				 * We are safe logging the other inode without
5022 				 * acquiring its i_mutex as long as we log with
5023 				 * the LOG_INODE_EXISTS mode. We're safe against
5024 				 * concurrent renames of the other inode as well
5025 				 * because during a rename we pin the log and
5026 				 * update the log with the new name before we
5027 				 * unpin it.
5028 				 */
5029 				err = btrfs_log_inode(trans, root,
5030 						BTRFS_I(other_inode),
5031 						LOG_OTHER_INODE, 0, LLONG_MAX,
5032 						ctx);
5033 				iput(other_inode);
5034 				if (err)
5035 					goto out_unlock;
5036 				else
5037 					goto next_key;
5038 			}
5039 		}
5040 
5041 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5042 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5043 			if (ins_nr == 0)
5044 				goto next_slot;
5045 			ret = copy_items(trans, inode, dst_path, path,
5046 					 &last_extent, ins_start_slot,
5047 					 ins_nr, inode_only, logged_isize);
5048 			if (ret < 0) {
5049 				err = ret;
5050 				goto out_unlock;
5051 			}
5052 			ins_nr = 0;
5053 			if (ret) {
5054 				btrfs_release_path(path);
5055 				continue;
5056 			}
5057 			goto next_slot;
5058 		}
5059 
5060 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5061 			ins_nr++;
5062 			goto next_slot;
5063 		} else if (!ins_nr) {
5064 			ins_start_slot = path->slots[0];
5065 			ins_nr = 1;
5066 			goto next_slot;
5067 		}
5068 
5069 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5070 				 ins_start_slot, ins_nr, inode_only,
5071 				 logged_isize);
5072 		if (ret < 0) {
5073 			err = ret;
5074 			goto out_unlock;
5075 		}
5076 		if (ret) {
5077 			ins_nr = 0;
5078 			btrfs_release_path(path);
5079 			continue;
5080 		}
5081 		ins_nr = 1;
5082 		ins_start_slot = path->slots[0];
5083 next_slot:
5084 
5085 		nritems = btrfs_header_nritems(path->nodes[0]);
5086 		path->slots[0]++;
5087 		if (path->slots[0] < nritems) {
5088 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5089 					      path->slots[0]);
5090 			goto again;
5091 		}
5092 		if (ins_nr) {
5093 			ret = copy_items(trans, inode, dst_path, path,
5094 					 &last_extent, ins_start_slot,
5095 					 ins_nr, inode_only, logged_isize);
5096 			if (ret < 0) {
5097 				err = ret;
5098 				goto out_unlock;
5099 			}
5100 			ret = 0;
5101 			ins_nr = 0;
5102 		}
5103 		btrfs_release_path(path);
5104 next_key:
5105 		if (min_key.offset < (u64)-1) {
5106 			min_key.offset++;
5107 		} else if (min_key.type < max_key.type) {
5108 			min_key.type++;
5109 			min_key.offset = 0;
5110 		} else {
5111 			break;
5112 		}
5113 	}
5114 	if (ins_nr) {
5115 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5116 				 ins_start_slot, ins_nr, inode_only,
5117 				 logged_isize);
5118 		if (ret < 0) {
5119 			err = ret;
5120 			goto out_unlock;
5121 		}
5122 		ret = 0;
5123 		ins_nr = 0;
5124 	}
5125 
5126 	btrfs_release_path(path);
5127 	btrfs_release_path(dst_path);
5128 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5129 	if (err)
5130 		goto out_unlock;
5131 	xattrs_logged = true;
5132 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5133 		btrfs_release_path(path);
5134 		btrfs_release_path(dst_path);
5135 		err = btrfs_log_trailing_hole(trans, root, inode, path);
5136 		if (err)
5137 			goto out_unlock;
5138 	}
5139 log_extents:
5140 	btrfs_release_path(path);
5141 	btrfs_release_path(dst_path);
5142 	if (need_log_inode_item) {
5143 		err = log_inode_item(trans, log, dst_path, inode);
5144 		if (!err && !xattrs_logged) {
5145 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5146 						   dst_path);
5147 			btrfs_release_path(path);
5148 		}
5149 		if (err)
5150 			goto out_unlock;
5151 	}
5152 	if (fast_search) {
5153 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5154 						ctx, start, end);
5155 		if (ret) {
5156 			err = ret;
5157 			goto out_unlock;
5158 		}
5159 	} else if (inode_only == LOG_INODE_ALL) {
5160 		struct extent_map *em, *n;
5161 
5162 		write_lock(&em_tree->lock);
5163 		/*
5164 		 * We can't just remove every em if we're called for a ranged
5165 		 * fsync - that is, one that doesn't cover the whole possible
5166 		 * file range (0 to LLONG_MAX). This is because we can have
5167 		 * em's that fall outside the range we're logging and therefore
5168 		 * their ordered operations haven't completed yet
5169 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5170 		 * didn't get their respective file extent item in the fs/subvol
5171 		 * tree yet, and need to let the next fast fsync (one which
5172 		 * consults the list of modified extent maps) find the em so
5173 		 * that it logs a matching file extent item and waits for the
5174 		 * respective ordered operation to complete (if it's still
5175 		 * running).
5176 		 *
5177 		 * Removing every em outside the range we're logging would make
5178 		 * the next fast fsync not log their matching file extent items,
5179 		 * therefore making us lose data after a log replay.
5180 		 */
5181 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5182 					 list) {
5183 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5184 
5185 			if (em->mod_start >= start && mod_end <= end)
5186 				list_del_init(&em->list);
5187 		}
5188 		write_unlock(&em_tree->lock);
5189 	}
5190 
5191 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5192 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5193 					ctx);
5194 		if (ret) {
5195 			err = ret;
5196 			goto out_unlock;
5197 		}
5198 	}
5199 
5200 	spin_lock(&inode->lock);
5201 	inode->logged_trans = trans->transid;
5202 	inode->last_log_commit = inode->last_sub_trans;
5203 	spin_unlock(&inode->lock);
5204 out_unlock:
5205 	mutex_unlock(&inode->log_mutex);
5206 
5207 	btrfs_free_path(path);
5208 	btrfs_free_path(dst_path);
5209 	return err;
5210 }
5211 
5212 /*
5213  * Check if we must fallback to a transaction commit when logging an inode.
5214  * This must be called after logging the inode and is used only in the context
5215  * when fsyncing an inode requires the need to log some other inode - in which
5216  * case we can't lock the i_mutex of each other inode we need to log as that
5217  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5218  * log inodes up or down in the hierarchy) or rename operations for example. So
5219  * we take the log_mutex of the inode after we have logged it and then check for
5220  * its last_unlink_trans value - this is safe because any task setting
5221  * last_unlink_trans must take the log_mutex and it must do this before it does
5222  * the actual unlink operation, so if we do this check before a concurrent task
5223  * sets last_unlink_trans it means we've logged a consistent version/state of
5224  * all the inode items, otherwise we are not sure and must do a transaction
5225  * commit (the concurrent task might have only updated last_unlink_trans before
5226  * we logged the inode or it might have also done the unlink).
5227  */
5228 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5229 					  struct btrfs_inode *inode)
5230 {
5231 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5232 	bool ret = false;
5233 
5234 	mutex_lock(&inode->log_mutex);
5235 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5236 		/*
5237 		 * Make sure any commits to the log are forced to be full
5238 		 * commits.
5239 		 */
5240 		btrfs_set_log_full_commit(fs_info, trans);
5241 		ret = true;
5242 	}
5243 	mutex_unlock(&inode->log_mutex);
5244 
5245 	return ret;
5246 }
5247 
5248 /*
5249  * follow the dentry parent pointers up the chain and see if any
5250  * of the directories in it require a full commit before they can
5251  * be logged.  Returns zero if nothing special needs to be done or 1 if
5252  * a full commit is required.
5253  */
5254 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5255 					       struct btrfs_inode *inode,
5256 					       struct dentry *parent,
5257 					       struct super_block *sb,
5258 					       u64 last_committed)
5259 {
5260 	int ret = 0;
5261 	struct dentry *old_parent = NULL;
5262 	struct btrfs_inode *orig_inode = inode;
5263 
5264 	/*
5265 	 * for regular files, if its inode is already on disk, we don't
5266 	 * have to worry about the parents at all.  This is because
5267 	 * we can use the last_unlink_trans field to record renames
5268 	 * and other fun in this file.
5269 	 */
5270 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5271 	    inode->generation <= last_committed &&
5272 	    inode->last_unlink_trans <= last_committed)
5273 		goto out;
5274 
5275 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5276 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5277 			goto out;
5278 		inode = BTRFS_I(d_inode(parent));
5279 	}
5280 
5281 	while (1) {
5282 		/*
5283 		 * If we are logging a directory then we start with our inode,
5284 		 * not our parent's inode, so we need to skip setting the
5285 		 * logged_trans so that further down in the log code we don't
5286 		 * think this inode has already been logged.
5287 		 */
5288 		if (inode != orig_inode)
5289 			inode->logged_trans = trans->transid;
5290 		smp_mb();
5291 
5292 		if (btrfs_must_commit_transaction(trans, inode)) {
5293 			ret = 1;
5294 			break;
5295 		}
5296 
5297 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5298 			break;
5299 
5300 		if (IS_ROOT(parent)) {
5301 			inode = BTRFS_I(d_inode(parent));
5302 			if (btrfs_must_commit_transaction(trans, inode))
5303 				ret = 1;
5304 			break;
5305 		}
5306 
5307 		parent = dget_parent(parent);
5308 		dput(old_parent);
5309 		old_parent = parent;
5310 		inode = BTRFS_I(d_inode(parent));
5311 
5312 	}
5313 	dput(old_parent);
5314 out:
5315 	return ret;
5316 }
5317 
5318 struct btrfs_dir_list {
5319 	u64 ino;
5320 	struct list_head list;
5321 };
5322 
5323 /*
5324  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5325  * details about the why it is needed.
5326  * This is a recursive operation - if an existing dentry corresponds to a
5327  * directory, that directory's new entries are logged too (same behaviour as
5328  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5329  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5330  * complains about the following circular lock dependency / possible deadlock:
5331  *
5332  *        CPU0                                        CPU1
5333  *        ----                                        ----
5334  * lock(&type->i_mutex_dir_key#3/2);
5335  *                                            lock(sb_internal#2);
5336  *                                            lock(&type->i_mutex_dir_key#3/2);
5337  * lock(&sb->s_type->i_mutex_key#14);
5338  *
5339  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5340  * sb_start_intwrite() in btrfs_start_transaction().
5341  * Not locking i_mutex of the inodes is still safe because:
5342  *
5343  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5344  *    that while logging the inode new references (names) are added or removed
5345  *    from the inode, leaving the logged inode item with a link count that does
5346  *    not match the number of logged inode reference items. This is fine because
5347  *    at log replay time we compute the real number of links and correct the
5348  *    link count in the inode item (see replay_one_buffer() and
5349  *    link_to_fixup_dir());
5350  *
5351  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5352  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5353  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5354  *    has a size that doesn't match the sum of the lengths of all the logged
5355  *    names. This does not result in a problem because if a dir_item key is
5356  *    logged but its matching dir_index key is not logged, at log replay time we
5357  *    don't use it to replay the respective name (see replay_one_name()). On the
5358  *    other hand if only the dir_index key ends up being logged, the respective
5359  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5360  *    keys created (see replay_one_name()).
5361  *    The directory's inode item with a wrong i_size is not a problem as well,
5362  *    since we don't use it at log replay time to set the i_size in the inode
5363  *    item of the fs/subvol tree (see overwrite_item()).
5364  */
5365 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5366 				struct btrfs_root *root,
5367 				struct btrfs_inode *start_inode,
5368 				struct btrfs_log_ctx *ctx)
5369 {
5370 	struct btrfs_fs_info *fs_info = root->fs_info;
5371 	struct btrfs_root *log = root->log_root;
5372 	struct btrfs_path *path;
5373 	LIST_HEAD(dir_list);
5374 	struct btrfs_dir_list *dir_elem;
5375 	int ret = 0;
5376 
5377 	path = btrfs_alloc_path();
5378 	if (!path)
5379 		return -ENOMEM;
5380 
5381 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5382 	if (!dir_elem) {
5383 		btrfs_free_path(path);
5384 		return -ENOMEM;
5385 	}
5386 	dir_elem->ino = btrfs_ino(start_inode);
5387 	list_add_tail(&dir_elem->list, &dir_list);
5388 
5389 	while (!list_empty(&dir_list)) {
5390 		struct extent_buffer *leaf;
5391 		struct btrfs_key min_key;
5392 		int nritems;
5393 		int i;
5394 
5395 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5396 					    list);
5397 		if (ret)
5398 			goto next_dir_inode;
5399 
5400 		min_key.objectid = dir_elem->ino;
5401 		min_key.type = BTRFS_DIR_ITEM_KEY;
5402 		min_key.offset = 0;
5403 again:
5404 		btrfs_release_path(path);
5405 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5406 		if (ret < 0) {
5407 			goto next_dir_inode;
5408 		} else if (ret > 0) {
5409 			ret = 0;
5410 			goto next_dir_inode;
5411 		}
5412 
5413 process_leaf:
5414 		leaf = path->nodes[0];
5415 		nritems = btrfs_header_nritems(leaf);
5416 		for (i = path->slots[0]; i < nritems; i++) {
5417 			struct btrfs_dir_item *di;
5418 			struct btrfs_key di_key;
5419 			struct inode *di_inode;
5420 			struct btrfs_dir_list *new_dir_elem;
5421 			int log_mode = LOG_INODE_EXISTS;
5422 			int type;
5423 
5424 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5425 			if (min_key.objectid != dir_elem->ino ||
5426 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5427 				goto next_dir_inode;
5428 
5429 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5430 			type = btrfs_dir_type(leaf, di);
5431 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5432 			    type != BTRFS_FT_DIR)
5433 				continue;
5434 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5435 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5436 				continue;
5437 
5438 			btrfs_release_path(path);
5439 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5440 			if (IS_ERR(di_inode)) {
5441 				ret = PTR_ERR(di_inode);
5442 				goto next_dir_inode;
5443 			}
5444 
5445 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5446 				iput(di_inode);
5447 				break;
5448 			}
5449 
5450 			ctx->log_new_dentries = false;
5451 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5452 				log_mode = LOG_INODE_ALL;
5453 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5454 					      log_mode, 0, LLONG_MAX, ctx);
5455 			if (!ret &&
5456 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5457 				ret = 1;
5458 			iput(di_inode);
5459 			if (ret)
5460 				goto next_dir_inode;
5461 			if (ctx->log_new_dentries) {
5462 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5463 						       GFP_NOFS);
5464 				if (!new_dir_elem) {
5465 					ret = -ENOMEM;
5466 					goto next_dir_inode;
5467 				}
5468 				new_dir_elem->ino = di_key.objectid;
5469 				list_add_tail(&new_dir_elem->list, &dir_list);
5470 			}
5471 			break;
5472 		}
5473 		if (i == nritems) {
5474 			ret = btrfs_next_leaf(log, path);
5475 			if (ret < 0) {
5476 				goto next_dir_inode;
5477 			} else if (ret > 0) {
5478 				ret = 0;
5479 				goto next_dir_inode;
5480 			}
5481 			goto process_leaf;
5482 		}
5483 		if (min_key.offset < (u64)-1) {
5484 			min_key.offset++;
5485 			goto again;
5486 		}
5487 next_dir_inode:
5488 		list_del(&dir_elem->list);
5489 		kfree(dir_elem);
5490 	}
5491 
5492 	btrfs_free_path(path);
5493 	return ret;
5494 }
5495 
5496 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5497 				 struct btrfs_inode *inode,
5498 				 struct btrfs_log_ctx *ctx)
5499 {
5500 	struct btrfs_fs_info *fs_info = trans->fs_info;
5501 	int ret;
5502 	struct btrfs_path *path;
5503 	struct btrfs_key key;
5504 	struct btrfs_root *root = inode->root;
5505 	const u64 ino = btrfs_ino(inode);
5506 
5507 	path = btrfs_alloc_path();
5508 	if (!path)
5509 		return -ENOMEM;
5510 	path->skip_locking = 1;
5511 	path->search_commit_root = 1;
5512 
5513 	key.objectid = ino;
5514 	key.type = BTRFS_INODE_REF_KEY;
5515 	key.offset = 0;
5516 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5517 	if (ret < 0)
5518 		goto out;
5519 
5520 	while (true) {
5521 		struct extent_buffer *leaf = path->nodes[0];
5522 		int slot = path->slots[0];
5523 		u32 cur_offset = 0;
5524 		u32 item_size;
5525 		unsigned long ptr;
5526 
5527 		if (slot >= btrfs_header_nritems(leaf)) {
5528 			ret = btrfs_next_leaf(root, path);
5529 			if (ret < 0)
5530 				goto out;
5531 			else if (ret > 0)
5532 				break;
5533 			continue;
5534 		}
5535 
5536 		btrfs_item_key_to_cpu(leaf, &key, slot);
5537 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5538 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5539 			break;
5540 
5541 		item_size = btrfs_item_size_nr(leaf, slot);
5542 		ptr = btrfs_item_ptr_offset(leaf, slot);
5543 		while (cur_offset < item_size) {
5544 			struct btrfs_key inode_key;
5545 			struct inode *dir_inode;
5546 
5547 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5548 			inode_key.offset = 0;
5549 
5550 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5551 				struct btrfs_inode_extref *extref;
5552 
5553 				extref = (struct btrfs_inode_extref *)
5554 					(ptr + cur_offset);
5555 				inode_key.objectid = btrfs_inode_extref_parent(
5556 					leaf, extref);
5557 				cur_offset += sizeof(*extref);
5558 				cur_offset += btrfs_inode_extref_name_len(leaf,
5559 					extref);
5560 			} else {
5561 				inode_key.objectid = key.offset;
5562 				cur_offset = item_size;
5563 			}
5564 
5565 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5566 					       root, NULL);
5567 			/* If parent inode was deleted, skip it. */
5568 			if (IS_ERR(dir_inode))
5569 				continue;
5570 
5571 			if (ctx)
5572 				ctx->log_new_dentries = false;
5573 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5574 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5575 			if (!ret &&
5576 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5577 				ret = 1;
5578 			if (!ret && ctx && ctx->log_new_dentries)
5579 				ret = log_new_dir_dentries(trans, root,
5580 						   BTRFS_I(dir_inode), ctx);
5581 			iput(dir_inode);
5582 			if (ret)
5583 				goto out;
5584 		}
5585 		path->slots[0]++;
5586 	}
5587 	ret = 0;
5588 out:
5589 	btrfs_free_path(path);
5590 	return ret;
5591 }
5592 
5593 /*
5594  * helper function around btrfs_log_inode to make sure newly created
5595  * parent directories also end up in the log.  A minimal inode and backref
5596  * only logging is done of any parent directories that are older than
5597  * the last committed transaction
5598  */
5599 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5600 				  struct btrfs_inode *inode,
5601 				  struct dentry *parent,
5602 				  const loff_t start,
5603 				  const loff_t end,
5604 				  int inode_only,
5605 				  struct btrfs_log_ctx *ctx)
5606 {
5607 	struct btrfs_root *root = inode->root;
5608 	struct btrfs_fs_info *fs_info = root->fs_info;
5609 	struct super_block *sb;
5610 	struct dentry *old_parent = NULL;
5611 	int ret = 0;
5612 	u64 last_committed = fs_info->last_trans_committed;
5613 	bool log_dentries = false;
5614 	struct btrfs_inode *orig_inode = inode;
5615 
5616 	sb = inode->vfs_inode.i_sb;
5617 
5618 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5619 		ret = 1;
5620 		goto end_no_trans;
5621 	}
5622 
5623 	/*
5624 	 * The prev transaction commit doesn't complete, we need do
5625 	 * full commit by ourselves.
5626 	 */
5627 	if (fs_info->last_trans_log_full_commit >
5628 	    fs_info->last_trans_committed) {
5629 		ret = 1;
5630 		goto end_no_trans;
5631 	}
5632 
5633 	if (btrfs_root_refs(&root->root_item) == 0) {
5634 		ret = 1;
5635 		goto end_no_trans;
5636 	}
5637 
5638 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5639 			last_committed);
5640 	if (ret)
5641 		goto end_no_trans;
5642 
5643 	if (btrfs_inode_in_log(inode, trans->transid)) {
5644 		ret = BTRFS_NO_LOG_SYNC;
5645 		goto end_no_trans;
5646 	}
5647 
5648 	ret = start_log_trans(trans, root, ctx);
5649 	if (ret)
5650 		goto end_no_trans;
5651 
5652 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5653 	if (ret)
5654 		goto end_trans;
5655 
5656 	/*
5657 	 * for regular files, if its inode is already on disk, we don't
5658 	 * have to worry about the parents at all.  This is because
5659 	 * we can use the last_unlink_trans field to record renames
5660 	 * and other fun in this file.
5661 	 */
5662 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5663 	    inode->generation <= last_committed &&
5664 	    inode->last_unlink_trans <= last_committed) {
5665 		ret = 0;
5666 		goto end_trans;
5667 	}
5668 
5669 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5670 		log_dentries = true;
5671 
5672 	/*
5673 	 * On unlink we must make sure all our current and old parent directory
5674 	 * inodes are fully logged. This is to prevent leaving dangling
5675 	 * directory index entries in directories that were our parents but are
5676 	 * not anymore. Not doing this results in old parent directory being
5677 	 * impossible to delete after log replay (rmdir will always fail with
5678 	 * error -ENOTEMPTY).
5679 	 *
5680 	 * Example 1:
5681 	 *
5682 	 * mkdir testdir
5683 	 * touch testdir/foo
5684 	 * ln testdir/foo testdir/bar
5685 	 * sync
5686 	 * unlink testdir/bar
5687 	 * xfs_io -c fsync testdir/foo
5688 	 * <power failure>
5689 	 * mount fs, triggers log replay
5690 	 *
5691 	 * If we don't log the parent directory (testdir), after log replay the
5692 	 * directory still has an entry pointing to the file inode using the bar
5693 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5694 	 * the file inode has a link count of 1.
5695 	 *
5696 	 * Example 2:
5697 	 *
5698 	 * mkdir testdir
5699 	 * touch foo
5700 	 * ln foo testdir/foo2
5701 	 * ln foo testdir/foo3
5702 	 * sync
5703 	 * unlink testdir/foo3
5704 	 * xfs_io -c fsync foo
5705 	 * <power failure>
5706 	 * mount fs, triggers log replay
5707 	 *
5708 	 * Similar as the first example, after log replay the parent directory
5709 	 * testdir still has an entry pointing to the inode file with name foo3
5710 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5711 	 * and has a link count of 2.
5712 	 */
5713 	if (inode->last_unlink_trans > last_committed) {
5714 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5715 		if (ret)
5716 			goto end_trans;
5717 	}
5718 
5719 	while (1) {
5720 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5721 			break;
5722 
5723 		inode = BTRFS_I(d_inode(parent));
5724 		if (root != inode->root)
5725 			break;
5726 
5727 		if (inode->generation > last_committed) {
5728 			ret = btrfs_log_inode(trans, root, inode,
5729 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5730 			if (ret)
5731 				goto end_trans;
5732 		}
5733 		if (IS_ROOT(parent))
5734 			break;
5735 
5736 		parent = dget_parent(parent);
5737 		dput(old_parent);
5738 		old_parent = parent;
5739 	}
5740 	if (log_dentries)
5741 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5742 	else
5743 		ret = 0;
5744 end_trans:
5745 	dput(old_parent);
5746 	if (ret < 0) {
5747 		btrfs_set_log_full_commit(fs_info, trans);
5748 		ret = 1;
5749 	}
5750 
5751 	if (ret)
5752 		btrfs_remove_log_ctx(root, ctx);
5753 	btrfs_end_log_trans(root);
5754 end_no_trans:
5755 	return ret;
5756 }
5757 
5758 /*
5759  * it is not safe to log dentry if the chunk root has added new
5760  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5761  * If this returns 1, you must commit the transaction to safely get your
5762  * data on disk.
5763  */
5764 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5765 			  struct dentry *dentry,
5766 			  const loff_t start,
5767 			  const loff_t end,
5768 			  struct btrfs_log_ctx *ctx)
5769 {
5770 	struct dentry *parent = dget_parent(dentry);
5771 	int ret;
5772 
5773 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5774 				     start, end, LOG_INODE_ALL, ctx);
5775 	dput(parent);
5776 
5777 	return ret;
5778 }
5779 
5780 /*
5781  * should be called during mount to recover any replay any log trees
5782  * from the FS
5783  */
5784 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5785 {
5786 	int ret;
5787 	struct btrfs_path *path;
5788 	struct btrfs_trans_handle *trans;
5789 	struct btrfs_key key;
5790 	struct btrfs_key found_key;
5791 	struct btrfs_key tmp_key;
5792 	struct btrfs_root *log;
5793 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5794 	struct walk_control wc = {
5795 		.process_func = process_one_buffer,
5796 		.stage = 0,
5797 	};
5798 
5799 	path = btrfs_alloc_path();
5800 	if (!path)
5801 		return -ENOMEM;
5802 
5803 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5804 
5805 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5806 	if (IS_ERR(trans)) {
5807 		ret = PTR_ERR(trans);
5808 		goto error;
5809 	}
5810 
5811 	wc.trans = trans;
5812 	wc.pin = 1;
5813 
5814 	ret = walk_log_tree(trans, log_root_tree, &wc);
5815 	if (ret) {
5816 		btrfs_handle_fs_error(fs_info, ret,
5817 			"Failed to pin buffers while recovering log root tree.");
5818 		goto error;
5819 	}
5820 
5821 again:
5822 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5823 	key.offset = (u64)-1;
5824 	key.type = BTRFS_ROOT_ITEM_KEY;
5825 
5826 	while (1) {
5827 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5828 
5829 		if (ret < 0) {
5830 			btrfs_handle_fs_error(fs_info, ret,
5831 				    "Couldn't find tree log root.");
5832 			goto error;
5833 		}
5834 		if (ret > 0) {
5835 			if (path->slots[0] == 0)
5836 				break;
5837 			path->slots[0]--;
5838 		}
5839 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5840 				      path->slots[0]);
5841 		btrfs_release_path(path);
5842 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5843 			break;
5844 
5845 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5846 		if (IS_ERR(log)) {
5847 			ret = PTR_ERR(log);
5848 			btrfs_handle_fs_error(fs_info, ret,
5849 				    "Couldn't read tree log root.");
5850 			goto error;
5851 		}
5852 
5853 		tmp_key.objectid = found_key.offset;
5854 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5855 		tmp_key.offset = (u64)-1;
5856 
5857 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5858 		if (IS_ERR(wc.replay_dest)) {
5859 			ret = PTR_ERR(wc.replay_dest);
5860 			free_extent_buffer(log->node);
5861 			free_extent_buffer(log->commit_root);
5862 			kfree(log);
5863 			btrfs_handle_fs_error(fs_info, ret,
5864 				"Couldn't read target root for tree log recovery.");
5865 			goto error;
5866 		}
5867 
5868 		wc.replay_dest->log_root = log;
5869 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5870 		ret = walk_log_tree(trans, log, &wc);
5871 
5872 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5873 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5874 						      path);
5875 		}
5876 
5877 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5878 			struct btrfs_root *root = wc.replay_dest;
5879 
5880 			btrfs_release_path(path);
5881 
5882 			/*
5883 			 * We have just replayed everything, and the highest
5884 			 * objectid of fs roots probably has changed in case
5885 			 * some inode_item's got replayed.
5886 			 *
5887 			 * root->objectid_mutex is not acquired as log replay
5888 			 * could only happen during mount.
5889 			 */
5890 			ret = btrfs_find_highest_objectid(root,
5891 						  &root->highest_objectid);
5892 		}
5893 
5894 		key.offset = found_key.offset - 1;
5895 		wc.replay_dest->log_root = NULL;
5896 		free_extent_buffer(log->node);
5897 		free_extent_buffer(log->commit_root);
5898 		kfree(log);
5899 
5900 		if (ret)
5901 			goto error;
5902 
5903 		if (found_key.offset == 0)
5904 			break;
5905 	}
5906 	btrfs_release_path(path);
5907 
5908 	/* step one is to pin it all, step two is to replay just inodes */
5909 	if (wc.pin) {
5910 		wc.pin = 0;
5911 		wc.process_func = replay_one_buffer;
5912 		wc.stage = LOG_WALK_REPLAY_INODES;
5913 		goto again;
5914 	}
5915 	/* step three is to replay everything */
5916 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5917 		wc.stage++;
5918 		goto again;
5919 	}
5920 
5921 	btrfs_free_path(path);
5922 
5923 	/* step 4: commit the transaction, which also unpins the blocks */
5924 	ret = btrfs_commit_transaction(trans);
5925 	if (ret)
5926 		return ret;
5927 
5928 	free_extent_buffer(log_root_tree->node);
5929 	log_root_tree->log_root = NULL;
5930 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5931 	kfree(log_root_tree);
5932 
5933 	return 0;
5934 error:
5935 	if (wc.trans)
5936 		btrfs_end_transaction(wc.trans);
5937 	btrfs_free_path(path);
5938 	return ret;
5939 }
5940 
5941 /*
5942  * there are some corner cases where we want to force a full
5943  * commit instead of allowing a directory to be logged.
5944  *
5945  * They revolve around files there were unlinked from the directory, and
5946  * this function updates the parent directory so that a full commit is
5947  * properly done if it is fsync'd later after the unlinks are done.
5948  *
5949  * Must be called before the unlink operations (updates to the subvolume tree,
5950  * inodes, etc) are done.
5951  */
5952 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5953 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
5954 			     int for_rename)
5955 {
5956 	/*
5957 	 * when we're logging a file, if it hasn't been renamed
5958 	 * or unlinked, and its inode is fully committed on disk,
5959 	 * we don't have to worry about walking up the directory chain
5960 	 * to log its parents.
5961 	 *
5962 	 * So, we use the last_unlink_trans field to put this transid
5963 	 * into the file.  When the file is logged we check it and
5964 	 * don't log the parents if the file is fully on disk.
5965 	 */
5966 	mutex_lock(&inode->log_mutex);
5967 	inode->last_unlink_trans = trans->transid;
5968 	mutex_unlock(&inode->log_mutex);
5969 
5970 	/*
5971 	 * if this directory was already logged any new
5972 	 * names for this file/dir will get recorded
5973 	 */
5974 	smp_mb();
5975 	if (dir->logged_trans == trans->transid)
5976 		return;
5977 
5978 	/*
5979 	 * if the inode we're about to unlink was logged,
5980 	 * the log will be properly updated for any new names
5981 	 */
5982 	if (inode->logged_trans == trans->transid)
5983 		return;
5984 
5985 	/*
5986 	 * when renaming files across directories, if the directory
5987 	 * there we're unlinking from gets fsync'd later on, there's
5988 	 * no way to find the destination directory later and fsync it
5989 	 * properly.  So, we have to be conservative and force commits
5990 	 * so the new name gets discovered.
5991 	 */
5992 	if (for_rename)
5993 		goto record;
5994 
5995 	/* we can safely do the unlink without any special recording */
5996 	return;
5997 
5998 record:
5999 	mutex_lock(&dir->log_mutex);
6000 	dir->last_unlink_trans = trans->transid;
6001 	mutex_unlock(&dir->log_mutex);
6002 }
6003 
6004 /*
6005  * Make sure that if someone attempts to fsync the parent directory of a deleted
6006  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6007  * that after replaying the log tree of the parent directory's root we will not
6008  * see the snapshot anymore and at log replay time we will not see any log tree
6009  * corresponding to the deleted snapshot's root, which could lead to replaying
6010  * it after replaying the log tree of the parent directory (which would replay
6011  * the snapshot delete operation).
6012  *
6013  * Must be called before the actual snapshot destroy operation (updates to the
6014  * parent root and tree of tree roots trees, etc) are done.
6015  */
6016 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6017 				   struct btrfs_inode *dir)
6018 {
6019 	mutex_lock(&dir->log_mutex);
6020 	dir->last_unlink_trans = trans->transid;
6021 	mutex_unlock(&dir->log_mutex);
6022 }
6023 
6024 /*
6025  * Call this after adding a new name for a file and it will properly
6026  * update the log to reflect the new name.
6027  *
6028  * It will return zero if all goes well, and it will return 1 if a
6029  * full transaction commit is required.
6030  */
6031 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6032 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6033 			struct dentry *parent)
6034 {
6035 	struct btrfs_fs_info *fs_info = trans->fs_info;
6036 
6037 	/*
6038 	 * this will force the logging code to walk the dentry chain
6039 	 * up for the file
6040 	 */
6041 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6042 		inode->last_unlink_trans = trans->transid;
6043 
6044 	/*
6045 	 * if this inode hasn't been logged and directory we're renaming it
6046 	 * from hasn't been logged, we don't need to log it
6047 	 */
6048 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6049 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6050 		return 0;
6051 
6052 	return btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6053 				      LOG_INODE_EXISTS, NULL);
6054 }
6055 
6056