xref: /openbmc/linux/fs/btrfs/tree-log.c (revision eed183ab)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 static void wait_log_commit(struct btrfs_root *root, int transid);
109 
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132 
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 			   struct btrfs_root *root,
140 			   struct btrfs_log_ctx *ctx)
141 {
142 	struct btrfs_fs_info *fs_info = root->fs_info;
143 	struct btrfs_root *tree_root = fs_info->tree_root;
144 	const bool zoned = btrfs_is_zoned(fs_info);
145 	int ret = 0;
146 	bool created = false;
147 
148 	/*
149 	 * First check if the log root tree was already created. If not, create
150 	 * it before locking the root's log_mutex, just to keep lockdep happy.
151 	 */
152 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 		mutex_lock(&tree_root->log_mutex);
154 		if (!fs_info->log_root_tree) {
155 			ret = btrfs_init_log_root_tree(trans, fs_info);
156 			if (!ret) {
157 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
158 				created = true;
159 			}
160 		}
161 		mutex_unlock(&tree_root->log_mutex);
162 		if (ret)
163 			return ret;
164 	}
165 
166 	mutex_lock(&root->log_mutex);
167 
168 again:
169 	if (root->log_root) {
170 		int index = (root->log_transid + 1) % 2;
171 
172 		if (btrfs_need_log_full_commit(trans)) {
173 			ret = -EAGAIN;
174 			goto out;
175 		}
176 
177 		if (zoned && atomic_read(&root->log_commit[index])) {
178 			wait_log_commit(root, root->log_transid - 1);
179 			goto again;
180 		}
181 
182 		if (!root->log_start_pid) {
183 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 			root->log_start_pid = current->pid;
185 		} else if (root->log_start_pid != current->pid) {
186 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
187 		}
188 	} else {
189 		/*
190 		 * This means fs_info->log_root_tree was already created
191 		 * for some other FS trees. Do the full commit not to mix
192 		 * nodes from multiple log transactions to do sequential
193 		 * writing.
194 		 */
195 		if (zoned && !created) {
196 			ret = -EAGAIN;
197 			goto out;
198 		}
199 
200 		ret = btrfs_add_log_tree(trans, root);
201 		if (ret)
202 			goto out;
203 
204 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
205 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 		root->log_start_pid = current->pid;
207 	}
208 
209 	atomic_inc(&root->log_writers);
210 	if (ctx && !ctx->logging_new_name) {
211 		int index = root->log_transid % 2;
212 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
213 		ctx->log_transid = root->log_transid;
214 	}
215 
216 out:
217 	mutex_unlock(&root->log_mutex);
218 	return ret;
219 }
220 
221 /*
222  * returns 0 if there was a log transaction running and we were able
223  * to join, or returns -ENOENT if there were not transactions
224  * in progress
225  */
226 static int join_running_log_trans(struct btrfs_root *root)
227 {
228 	const bool zoned = btrfs_is_zoned(root->fs_info);
229 	int ret = -ENOENT;
230 
231 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 		return ret;
233 
234 	mutex_lock(&root->log_mutex);
235 again:
236 	if (root->log_root) {
237 		int index = (root->log_transid + 1) % 2;
238 
239 		ret = 0;
240 		if (zoned && atomic_read(&root->log_commit[index])) {
241 			wait_log_commit(root, root->log_transid - 1);
242 			goto again;
243 		}
244 		atomic_inc(&root->log_writers);
245 	}
246 	mutex_unlock(&root->log_mutex);
247 	return ret;
248 }
249 
250 /*
251  * This either makes the current running log transaction wait
252  * until you call btrfs_end_log_trans() or it makes any future
253  * log transactions wait until you call btrfs_end_log_trans()
254  */
255 void btrfs_pin_log_trans(struct btrfs_root *root)
256 {
257 	atomic_inc(&root->log_writers);
258 }
259 
260 /*
261  * indicate we're done making changes to the log tree
262  * and wake up anyone waiting to do a sync
263  */
264 void btrfs_end_log_trans(struct btrfs_root *root)
265 {
266 	if (atomic_dec_and_test(&root->log_writers)) {
267 		/* atomic_dec_and_test implies a barrier */
268 		cond_wake_up_nomb(&root->log_writer_wait);
269 	}
270 }
271 
272 static int btrfs_write_tree_block(struct extent_buffer *buf)
273 {
274 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 					buf->start + buf->len - 1);
276 }
277 
278 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279 {
280 	filemap_fdatawait_range(buf->pages[0]->mapping,
281 			        buf->start, buf->start + buf->len - 1);
282 }
283 
284 /*
285  * the walk control struct is used to pass state down the chain when
286  * processing the log tree.  The stage field tells us which part
287  * of the log tree processing we are currently doing.  The others
288  * are state fields used for that specific part
289  */
290 struct walk_control {
291 	/* should we free the extent on disk when done?  This is used
292 	 * at transaction commit time while freeing a log tree
293 	 */
294 	int free;
295 
296 	/* should we write out the extent buffer?  This is used
297 	 * while flushing the log tree to disk during a sync
298 	 */
299 	int write;
300 
301 	/* should we wait for the extent buffer io to finish?  Also used
302 	 * while flushing the log tree to disk for a sync
303 	 */
304 	int wait;
305 
306 	/* pin only walk, we record which extents on disk belong to the
307 	 * log trees
308 	 */
309 	int pin;
310 
311 	/* what stage of the replay code we're currently in */
312 	int stage;
313 
314 	/*
315 	 * Ignore any items from the inode currently being processed. Needs
316 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 	 * the LOG_WALK_REPLAY_INODES stage.
318 	 */
319 	bool ignore_cur_inode;
320 
321 	/* the root we are currently replaying */
322 	struct btrfs_root *replay_dest;
323 
324 	/* the trans handle for the current replay */
325 	struct btrfs_trans_handle *trans;
326 
327 	/* the function that gets used to process blocks we find in the
328 	 * tree.  Note the extent_buffer might not be up to date when it is
329 	 * passed in, and it must be checked or read if you need the data
330 	 * inside it
331 	 */
332 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
333 			    struct walk_control *wc, u64 gen, int level);
334 };
335 
336 /*
337  * process_func used to pin down extents, write them or wait on them
338  */
339 static int process_one_buffer(struct btrfs_root *log,
340 			      struct extent_buffer *eb,
341 			      struct walk_control *wc, u64 gen, int level)
342 {
343 	struct btrfs_fs_info *fs_info = log->fs_info;
344 	int ret = 0;
345 
346 	/*
347 	 * If this fs is mixed then we need to be able to process the leaves to
348 	 * pin down any logged extents, so we have to read the block.
349 	 */
350 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
351 		ret = btrfs_read_buffer(eb, gen, level, NULL);
352 		if (ret)
353 			return ret;
354 	}
355 
356 	if (wc->pin)
357 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
358 						      eb->len);
359 
360 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
361 		if (wc->pin && btrfs_header_level(eb) == 0)
362 			ret = btrfs_exclude_logged_extents(eb);
363 		if (wc->write)
364 			btrfs_write_tree_block(eb);
365 		if (wc->wait)
366 			btrfs_wait_tree_block_writeback(eb);
367 	}
368 	return ret;
369 }
370 
371 /*
372  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
373  * to the src data we are copying out.
374  *
375  * root is the tree we are copying into, and path is a scratch
376  * path for use in this function (it should be released on entry and
377  * will be released on exit).
378  *
379  * If the key is already in the destination tree the existing item is
380  * overwritten.  If the existing item isn't big enough, it is extended.
381  * If it is too large, it is truncated.
382  *
383  * If the key isn't in the destination yet, a new item is inserted.
384  */
385 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 				   struct btrfs_root *root,
387 				   struct btrfs_path *path,
388 				   struct extent_buffer *eb, int slot,
389 				   struct btrfs_key *key)
390 {
391 	int ret;
392 	u32 item_size;
393 	u64 saved_i_size = 0;
394 	int save_old_i_size = 0;
395 	unsigned long src_ptr;
396 	unsigned long dst_ptr;
397 	int overwrite_root = 0;
398 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
399 
400 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
401 		overwrite_root = 1;
402 
403 	item_size = btrfs_item_size_nr(eb, slot);
404 	src_ptr = btrfs_item_ptr_offset(eb, slot);
405 
406 	/* look for the key in the destination tree */
407 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
408 	if (ret < 0)
409 		return ret;
410 
411 	if (ret == 0) {
412 		char *src_copy;
413 		char *dst_copy;
414 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
415 						  path->slots[0]);
416 		if (dst_size != item_size)
417 			goto insert;
418 
419 		if (item_size == 0) {
420 			btrfs_release_path(path);
421 			return 0;
422 		}
423 		dst_copy = kmalloc(item_size, GFP_NOFS);
424 		src_copy = kmalloc(item_size, GFP_NOFS);
425 		if (!dst_copy || !src_copy) {
426 			btrfs_release_path(path);
427 			kfree(dst_copy);
428 			kfree(src_copy);
429 			return -ENOMEM;
430 		}
431 
432 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
433 
434 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
436 				   item_size);
437 		ret = memcmp(dst_copy, src_copy, item_size);
438 
439 		kfree(dst_copy);
440 		kfree(src_copy);
441 		/*
442 		 * they have the same contents, just return, this saves
443 		 * us from cowing blocks in the destination tree and doing
444 		 * extra writes that may not have been done by a previous
445 		 * sync
446 		 */
447 		if (ret == 0) {
448 			btrfs_release_path(path);
449 			return 0;
450 		}
451 
452 		/*
453 		 * We need to load the old nbytes into the inode so when we
454 		 * replay the extents we've logged we get the right nbytes.
455 		 */
456 		if (inode_item) {
457 			struct btrfs_inode_item *item;
458 			u64 nbytes;
459 			u32 mode;
460 
461 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 					      struct btrfs_inode_item);
463 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 			item = btrfs_item_ptr(eb, slot,
465 					      struct btrfs_inode_item);
466 			btrfs_set_inode_nbytes(eb, item, nbytes);
467 
468 			/*
469 			 * If this is a directory we need to reset the i_size to
470 			 * 0 so that we can set it up properly when replaying
471 			 * the rest of the items in this log.
472 			 */
473 			mode = btrfs_inode_mode(eb, item);
474 			if (S_ISDIR(mode))
475 				btrfs_set_inode_size(eb, item, 0);
476 		}
477 	} else if (inode_item) {
478 		struct btrfs_inode_item *item;
479 		u32 mode;
480 
481 		/*
482 		 * New inode, set nbytes to 0 so that the nbytes comes out
483 		 * properly when we replay the extents.
484 		 */
485 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 		btrfs_set_inode_nbytes(eb, item, 0);
487 
488 		/*
489 		 * If this is a directory we need to reset the i_size to 0 so
490 		 * that we can set it up properly when replaying the rest of
491 		 * the items in this log.
492 		 */
493 		mode = btrfs_inode_mode(eb, item);
494 		if (S_ISDIR(mode))
495 			btrfs_set_inode_size(eb, item, 0);
496 	}
497 insert:
498 	btrfs_release_path(path);
499 	/* try to insert the key into the destination tree */
500 	path->skip_release_on_error = 1;
501 	ret = btrfs_insert_empty_item(trans, root, path,
502 				      key, item_size);
503 	path->skip_release_on_error = 0;
504 
505 	/* make sure any existing item is the correct size */
506 	if (ret == -EEXIST || ret == -EOVERFLOW) {
507 		u32 found_size;
508 		found_size = btrfs_item_size_nr(path->nodes[0],
509 						path->slots[0]);
510 		if (found_size > item_size)
511 			btrfs_truncate_item(path, item_size, 1);
512 		else if (found_size < item_size)
513 			btrfs_extend_item(path, item_size - found_size);
514 	} else if (ret) {
515 		return ret;
516 	}
517 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 					path->slots[0]);
519 
520 	/* don't overwrite an existing inode if the generation number
521 	 * was logged as zero.  This is done when the tree logging code
522 	 * is just logging an inode to make sure it exists after recovery.
523 	 *
524 	 * Also, don't overwrite i_size on directories during replay.
525 	 * log replay inserts and removes directory items based on the
526 	 * state of the tree found in the subvolume, and i_size is modified
527 	 * as it goes
528 	 */
529 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 		struct btrfs_inode_item *src_item;
531 		struct btrfs_inode_item *dst_item;
532 
533 		src_item = (struct btrfs_inode_item *)src_ptr;
534 		dst_item = (struct btrfs_inode_item *)dst_ptr;
535 
536 		if (btrfs_inode_generation(eb, src_item) == 0) {
537 			struct extent_buffer *dst_eb = path->nodes[0];
538 			const u64 ino_size = btrfs_inode_size(eb, src_item);
539 
540 			/*
541 			 * For regular files an ino_size == 0 is used only when
542 			 * logging that an inode exists, as part of a directory
543 			 * fsync, and the inode wasn't fsynced before. In this
544 			 * case don't set the size of the inode in the fs/subvol
545 			 * tree, otherwise we would be throwing valid data away.
546 			 */
547 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
548 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
549 			    ino_size != 0)
550 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
551 			goto no_copy;
552 		}
553 
554 		if (overwrite_root &&
555 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
557 			save_old_i_size = 1;
558 			saved_i_size = btrfs_inode_size(path->nodes[0],
559 							dst_item);
560 		}
561 	}
562 
563 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 			   src_ptr, item_size);
565 
566 	if (save_old_i_size) {
567 		struct btrfs_inode_item *dst_item;
568 		dst_item = (struct btrfs_inode_item *)dst_ptr;
569 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 	}
571 
572 	/* make sure the generation is filled in */
573 	if (key->type == BTRFS_INODE_ITEM_KEY) {
574 		struct btrfs_inode_item *dst_item;
575 		dst_item = (struct btrfs_inode_item *)dst_ptr;
576 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 			btrfs_set_inode_generation(path->nodes[0], dst_item,
578 						   trans->transid);
579 		}
580 	}
581 no_copy:
582 	btrfs_mark_buffer_dirty(path->nodes[0]);
583 	btrfs_release_path(path);
584 	return 0;
585 }
586 
587 /*
588  * simple helper to read an inode off the disk from a given root
589  * This can only be called for subvolume roots and not for the log
590  */
591 static noinline struct inode *read_one_inode(struct btrfs_root *root,
592 					     u64 objectid)
593 {
594 	struct inode *inode;
595 
596 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
597 	if (IS_ERR(inode))
598 		inode = NULL;
599 	return inode;
600 }
601 
602 /* replays a single extent in 'eb' at 'slot' with 'key' into the
603  * subvolume 'root'.  path is released on entry and should be released
604  * on exit.
605  *
606  * extents in the log tree have not been allocated out of the extent
607  * tree yet.  So, this completes the allocation, taking a reference
608  * as required if the extent already exists or creating a new extent
609  * if it isn't in the extent allocation tree yet.
610  *
611  * The extent is inserted into the file, dropping any existing extents
612  * from the file that overlap the new one.
613  */
614 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 				      struct btrfs_root *root,
616 				      struct btrfs_path *path,
617 				      struct extent_buffer *eb, int slot,
618 				      struct btrfs_key *key)
619 {
620 	struct btrfs_drop_extents_args drop_args = { 0 };
621 	struct btrfs_fs_info *fs_info = root->fs_info;
622 	int found_type;
623 	u64 extent_end;
624 	u64 start = key->offset;
625 	u64 nbytes = 0;
626 	struct btrfs_file_extent_item *item;
627 	struct inode *inode = NULL;
628 	unsigned long size;
629 	int ret = 0;
630 
631 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 	found_type = btrfs_file_extent_type(eb, item);
633 
634 	if (found_type == BTRFS_FILE_EXTENT_REG ||
635 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 		nbytes = btrfs_file_extent_num_bytes(eb, item);
637 		extent_end = start + nbytes;
638 
639 		/*
640 		 * We don't add to the inodes nbytes if we are prealloc or a
641 		 * hole.
642 		 */
643 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
644 			nbytes = 0;
645 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
646 		size = btrfs_file_extent_ram_bytes(eb, item);
647 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
648 		extent_end = ALIGN(start + size,
649 				   fs_info->sectorsize);
650 	} else {
651 		ret = 0;
652 		goto out;
653 	}
654 
655 	inode = read_one_inode(root, key->objectid);
656 	if (!inode) {
657 		ret = -EIO;
658 		goto out;
659 	}
660 
661 	/*
662 	 * first check to see if we already have this extent in the
663 	 * file.  This must be done before the btrfs_drop_extents run
664 	 * so we don't try to drop this extent.
665 	 */
666 	ret = btrfs_lookup_file_extent(trans, root, path,
667 			btrfs_ino(BTRFS_I(inode)), start, 0);
668 
669 	if (ret == 0 &&
670 	    (found_type == BTRFS_FILE_EXTENT_REG ||
671 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
672 		struct btrfs_file_extent_item cmp1;
673 		struct btrfs_file_extent_item cmp2;
674 		struct btrfs_file_extent_item *existing;
675 		struct extent_buffer *leaf;
676 
677 		leaf = path->nodes[0];
678 		existing = btrfs_item_ptr(leaf, path->slots[0],
679 					  struct btrfs_file_extent_item);
680 
681 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
682 				   sizeof(cmp1));
683 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
684 				   sizeof(cmp2));
685 
686 		/*
687 		 * we already have a pointer to this exact extent,
688 		 * we don't have to do anything
689 		 */
690 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
691 			btrfs_release_path(path);
692 			goto out;
693 		}
694 	}
695 	btrfs_release_path(path);
696 
697 	/* drop any overlapping extents */
698 	drop_args.start = start;
699 	drop_args.end = extent_end;
700 	drop_args.drop_cache = true;
701 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
702 	if (ret)
703 		goto out;
704 
705 	if (found_type == BTRFS_FILE_EXTENT_REG ||
706 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
707 		u64 offset;
708 		unsigned long dest_offset;
709 		struct btrfs_key ins;
710 
711 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 		    btrfs_fs_incompat(fs_info, NO_HOLES))
713 			goto update_inode;
714 
715 		ret = btrfs_insert_empty_item(trans, root, path, key,
716 					      sizeof(*item));
717 		if (ret)
718 			goto out;
719 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
720 						    path->slots[0]);
721 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 				(unsigned long)item,  sizeof(*item));
723 
724 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 		ins.type = BTRFS_EXTENT_ITEM_KEY;
727 		offset = key->offset - btrfs_file_extent_offset(eb, item);
728 
729 		/*
730 		 * Manually record dirty extent, as here we did a shallow
731 		 * file extent item copy and skip normal backref update,
732 		 * but modifying extent tree all by ourselves.
733 		 * So need to manually record dirty extent for qgroup,
734 		 * as the owner of the file extent changed from log tree
735 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
736 		 */
737 		ret = btrfs_qgroup_trace_extent(trans,
738 				btrfs_file_extent_disk_bytenr(eb, item),
739 				btrfs_file_extent_disk_num_bytes(eb, item),
740 				GFP_NOFS);
741 		if (ret < 0)
742 			goto out;
743 
744 		if (ins.objectid > 0) {
745 			struct btrfs_ref ref = { 0 };
746 			u64 csum_start;
747 			u64 csum_end;
748 			LIST_HEAD(ordered_sums);
749 
750 			/*
751 			 * is this extent already allocated in the extent
752 			 * allocation tree?  If so, just add a reference
753 			 */
754 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
755 						ins.offset);
756 			if (ret < 0) {
757 				goto out;
758 			} else if (ret == 0) {
759 				btrfs_init_generic_ref(&ref,
760 						BTRFS_ADD_DELAYED_REF,
761 						ins.objectid, ins.offset, 0);
762 				btrfs_init_data_ref(&ref,
763 						root->root_key.objectid,
764 						key->objectid, offset);
765 				ret = btrfs_inc_extent_ref(trans, &ref);
766 				if (ret)
767 					goto out;
768 			} else {
769 				/*
770 				 * insert the extent pointer in the extent
771 				 * allocation tree
772 				 */
773 				ret = btrfs_alloc_logged_file_extent(trans,
774 						root->root_key.objectid,
775 						key->objectid, offset, &ins);
776 				if (ret)
777 					goto out;
778 			}
779 			btrfs_release_path(path);
780 
781 			if (btrfs_file_extent_compression(eb, item)) {
782 				csum_start = ins.objectid;
783 				csum_end = csum_start + ins.offset;
784 			} else {
785 				csum_start = ins.objectid +
786 					btrfs_file_extent_offset(eb, item);
787 				csum_end = csum_start +
788 					btrfs_file_extent_num_bytes(eb, item);
789 			}
790 
791 			ret = btrfs_lookup_csums_range(root->log_root,
792 						csum_start, csum_end - 1,
793 						&ordered_sums, 0);
794 			if (ret)
795 				goto out;
796 			/*
797 			 * Now delete all existing cums in the csum root that
798 			 * cover our range. We do this because we can have an
799 			 * extent that is completely referenced by one file
800 			 * extent item and partially referenced by another
801 			 * file extent item (like after using the clone or
802 			 * extent_same ioctls). In this case if we end up doing
803 			 * the replay of the one that partially references the
804 			 * extent first, and we do not do the csum deletion
805 			 * below, we can get 2 csum items in the csum tree that
806 			 * overlap each other. For example, imagine our log has
807 			 * the two following file extent items:
808 			 *
809 			 * key (257 EXTENT_DATA 409600)
810 			 *     extent data disk byte 12845056 nr 102400
811 			 *     extent data offset 20480 nr 20480 ram 102400
812 			 *
813 			 * key (257 EXTENT_DATA 819200)
814 			 *     extent data disk byte 12845056 nr 102400
815 			 *     extent data offset 0 nr 102400 ram 102400
816 			 *
817 			 * Where the second one fully references the 100K extent
818 			 * that starts at disk byte 12845056, and the log tree
819 			 * has a single csum item that covers the entire range
820 			 * of the extent:
821 			 *
822 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
823 			 *
824 			 * After the first file extent item is replayed, the
825 			 * csum tree gets the following csum item:
826 			 *
827 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
828 			 *
829 			 * Which covers the 20K sub-range starting at offset 20K
830 			 * of our extent. Now when we replay the second file
831 			 * extent item, if we do not delete existing csum items
832 			 * that cover any of its blocks, we end up getting two
833 			 * csum items in our csum tree that overlap each other:
834 			 *
835 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
836 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
837 			 *
838 			 * Which is a problem, because after this anyone trying
839 			 * to lookup up for the checksum of any block of our
840 			 * extent starting at an offset of 40K or higher, will
841 			 * end up looking at the second csum item only, which
842 			 * does not contain the checksum for any block starting
843 			 * at offset 40K or higher of our extent.
844 			 */
845 			while (!list_empty(&ordered_sums)) {
846 				struct btrfs_ordered_sum *sums;
847 				sums = list_entry(ordered_sums.next,
848 						struct btrfs_ordered_sum,
849 						list);
850 				if (!ret)
851 					ret = btrfs_del_csums(trans,
852 							      fs_info->csum_root,
853 							      sums->bytenr,
854 							      sums->len);
855 				if (!ret)
856 					ret = btrfs_csum_file_blocks(trans,
857 						fs_info->csum_root, sums);
858 				list_del(&sums->list);
859 				kfree(sums);
860 			}
861 			if (ret)
862 				goto out;
863 		} else {
864 			btrfs_release_path(path);
865 		}
866 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
867 		/* inline extents are easy, we just overwrite them */
868 		ret = overwrite_item(trans, root, path, eb, slot, key);
869 		if (ret)
870 			goto out;
871 	}
872 
873 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
874 						extent_end - start);
875 	if (ret)
876 		goto out;
877 
878 update_inode:
879 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
880 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
881 out:
882 	if (inode)
883 		iput(inode);
884 	return ret;
885 }
886 
887 /*
888  * when cleaning up conflicts between the directory names in the
889  * subvolume, directory names in the log and directory names in the
890  * inode back references, we may have to unlink inodes from directories.
891  *
892  * This is a helper function to do the unlink of a specific directory
893  * item
894  */
895 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
896 				      struct btrfs_root *root,
897 				      struct btrfs_path *path,
898 				      struct btrfs_inode *dir,
899 				      struct btrfs_dir_item *di)
900 {
901 	struct inode *inode;
902 	char *name;
903 	int name_len;
904 	struct extent_buffer *leaf;
905 	struct btrfs_key location;
906 	int ret;
907 
908 	leaf = path->nodes[0];
909 
910 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
911 	name_len = btrfs_dir_name_len(leaf, di);
912 	name = kmalloc(name_len, GFP_NOFS);
913 	if (!name)
914 		return -ENOMEM;
915 
916 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
917 	btrfs_release_path(path);
918 
919 	inode = read_one_inode(root, location.objectid);
920 	if (!inode) {
921 		ret = -EIO;
922 		goto out;
923 	}
924 
925 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
926 	if (ret)
927 		goto out;
928 
929 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
930 			name_len);
931 	if (ret)
932 		goto out;
933 	else
934 		ret = btrfs_run_delayed_items(trans);
935 out:
936 	kfree(name);
937 	iput(inode);
938 	return ret;
939 }
940 
941 /*
942  * helper function to see if a given name and sequence number found
943  * in an inode back reference are already in a directory and correctly
944  * point to this inode
945  */
946 static noinline int inode_in_dir(struct btrfs_root *root,
947 				 struct btrfs_path *path,
948 				 u64 dirid, u64 objectid, u64 index,
949 				 const char *name, int name_len)
950 {
951 	struct btrfs_dir_item *di;
952 	struct btrfs_key location;
953 	int match = 0;
954 
955 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
956 					 index, name, name_len, 0);
957 	if (di && !IS_ERR(di)) {
958 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
959 		if (location.objectid != objectid)
960 			goto out;
961 	} else
962 		goto out;
963 	btrfs_release_path(path);
964 
965 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
966 	if (di && !IS_ERR(di)) {
967 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
968 		if (location.objectid != objectid)
969 			goto out;
970 	} else
971 		goto out;
972 	match = 1;
973 out:
974 	btrfs_release_path(path);
975 	return match;
976 }
977 
978 /*
979  * helper function to check a log tree for a named back reference in
980  * an inode.  This is used to decide if a back reference that is
981  * found in the subvolume conflicts with what we find in the log.
982  *
983  * inode backreferences may have multiple refs in a single item,
984  * during replay we process one reference at a time, and we don't
985  * want to delete valid links to a file from the subvolume if that
986  * link is also in the log.
987  */
988 static noinline int backref_in_log(struct btrfs_root *log,
989 				   struct btrfs_key *key,
990 				   u64 ref_objectid,
991 				   const char *name, int namelen)
992 {
993 	struct btrfs_path *path;
994 	int ret;
995 
996 	path = btrfs_alloc_path();
997 	if (!path)
998 		return -ENOMEM;
999 
1000 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1001 	if (ret < 0) {
1002 		goto out;
1003 	} else if (ret == 1) {
1004 		ret = 0;
1005 		goto out;
1006 	}
1007 
1008 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1009 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1010 						       path->slots[0],
1011 						       ref_objectid,
1012 						       name, namelen);
1013 	else
1014 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1015 						   path->slots[0],
1016 						   name, namelen);
1017 out:
1018 	btrfs_free_path(path);
1019 	return ret;
1020 }
1021 
1022 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1023 				  struct btrfs_root *root,
1024 				  struct btrfs_path *path,
1025 				  struct btrfs_root *log_root,
1026 				  struct btrfs_inode *dir,
1027 				  struct btrfs_inode *inode,
1028 				  u64 inode_objectid, u64 parent_objectid,
1029 				  u64 ref_index, char *name, int namelen,
1030 				  int *search_done)
1031 {
1032 	int ret;
1033 	char *victim_name;
1034 	int victim_name_len;
1035 	struct extent_buffer *leaf;
1036 	struct btrfs_dir_item *di;
1037 	struct btrfs_key search_key;
1038 	struct btrfs_inode_extref *extref;
1039 
1040 again:
1041 	/* Search old style refs */
1042 	search_key.objectid = inode_objectid;
1043 	search_key.type = BTRFS_INODE_REF_KEY;
1044 	search_key.offset = parent_objectid;
1045 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1046 	if (ret == 0) {
1047 		struct btrfs_inode_ref *victim_ref;
1048 		unsigned long ptr;
1049 		unsigned long ptr_end;
1050 
1051 		leaf = path->nodes[0];
1052 
1053 		/* are we trying to overwrite a back ref for the root directory
1054 		 * if so, just jump out, we're done
1055 		 */
1056 		if (search_key.objectid == search_key.offset)
1057 			return 1;
1058 
1059 		/* check all the names in this back reference to see
1060 		 * if they are in the log.  if so, we allow them to stay
1061 		 * otherwise they must be unlinked as a conflict
1062 		 */
1063 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1064 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1065 		while (ptr < ptr_end) {
1066 			victim_ref = (struct btrfs_inode_ref *)ptr;
1067 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1068 								   victim_ref);
1069 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1070 			if (!victim_name)
1071 				return -ENOMEM;
1072 
1073 			read_extent_buffer(leaf, victim_name,
1074 					   (unsigned long)(victim_ref + 1),
1075 					   victim_name_len);
1076 
1077 			ret = backref_in_log(log_root, &search_key,
1078 					     parent_objectid, victim_name,
1079 					     victim_name_len);
1080 			if (ret < 0) {
1081 				kfree(victim_name);
1082 				return ret;
1083 			} else if (!ret) {
1084 				inc_nlink(&inode->vfs_inode);
1085 				btrfs_release_path(path);
1086 
1087 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1088 						victim_name, victim_name_len);
1089 				kfree(victim_name);
1090 				if (ret)
1091 					return ret;
1092 				ret = btrfs_run_delayed_items(trans);
1093 				if (ret)
1094 					return ret;
1095 				*search_done = 1;
1096 				goto again;
1097 			}
1098 			kfree(victim_name);
1099 
1100 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1101 		}
1102 
1103 		/*
1104 		 * NOTE: we have searched root tree and checked the
1105 		 * corresponding ref, it does not need to check again.
1106 		 */
1107 		*search_done = 1;
1108 	}
1109 	btrfs_release_path(path);
1110 
1111 	/* Same search but for extended refs */
1112 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1113 					   inode_objectid, parent_objectid, 0,
1114 					   0);
1115 	if (!IS_ERR_OR_NULL(extref)) {
1116 		u32 item_size;
1117 		u32 cur_offset = 0;
1118 		unsigned long base;
1119 		struct inode *victim_parent;
1120 
1121 		leaf = path->nodes[0];
1122 
1123 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1124 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1125 
1126 		while (cur_offset < item_size) {
1127 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1128 
1129 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1130 
1131 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1132 				goto next;
1133 
1134 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1135 			if (!victim_name)
1136 				return -ENOMEM;
1137 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1138 					   victim_name_len);
1139 
1140 			search_key.objectid = inode_objectid;
1141 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1142 			search_key.offset = btrfs_extref_hash(parent_objectid,
1143 							      victim_name,
1144 							      victim_name_len);
1145 			ret = backref_in_log(log_root, &search_key,
1146 					     parent_objectid, victim_name,
1147 					     victim_name_len);
1148 			if (ret < 0) {
1149 				return ret;
1150 			} else if (!ret) {
1151 				ret = -ENOENT;
1152 				victim_parent = read_one_inode(root,
1153 						parent_objectid);
1154 				if (victim_parent) {
1155 					inc_nlink(&inode->vfs_inode);
1156 					btrfs_release_path(path);
1157 
1158 					ret = btrfs_unlink_inode(trans, root,
1159 							BTRFS_I(victim_parent),
1160 							inode,
1161 							victim_name,
1162 							victim_name_len);
1163 					if (!ret)
1164 						ret = btrfs_run_delayed_items(
1165 								  trans);
1166 				}
1167 				iput(victim_parent);
1168 				kfree(victim_name);
1169 				if (ret)
1170 					return ret;
1171 				*search_done = 1;
1172 				goto again;
1173 			}
1174 			kfree(victim_name);
1175 next:
1176 			cur_offset += victim_name_len + sizeof(*extref);
1177 		}
1178 		*search_done = 1;
1179 	}
1180 	btrfs_release_path(path);
1181 
1182 	/* look for a conflicting sequence number */
1183 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1184 					 ref_index, name, namelen, 0);
1185 	if (di && !IS_ERR(di)) {
1186 		ret = drop_one_dir_item(trans, root, path, dir, di);
1187 		if (ret)
1188 			return ret;
1189 	}
1190 	btrfs_release_path(path);
1191 
1192 	/* look for a conflicting name */
1193 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1194 				   name, namelen, 0);
1195 	if (di && !IS_ERR(di)) {
1196 		ret = drop_one_dir_item(trans, root, path, dir, di);
1197 		if (ret)
1198 			return ret;
1199 	}
1200 	btrfs_release_path(path);
1201 
1202 	return 0;
1203 }
1204 
1205 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1206 			     u32 *namelen, char **name, u64 *index,
1207 			     u64 *parent_objectid)
1208 {
1209 	struct btrfs_inode_extref *extref;
1210 
1211 	extref = (struct btrfs_inode_extref *)ref_ptr;
1212 
1213 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1214 	*name = kmalloc(*namelen, GFP_NOFS);
1215 	if (*name == NULL)
1216 		return -ENOMEM;
1217 
1218 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1219 			   *namelen);
1220 
1221 	if (index)
1222 		*index = btrfs_inode_extref_index(eb, extref);
1223 	if (parent_objectid)
1224 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1225 
1226 	return 0;
1227 }
1228 
1229 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1230 			  u32 *namelen, char **name, u64 *index)
1231 {
1232 	struct btrfs_inode_ref *ref;
1233 
1234 	ref = (struct btrfs_inode_ref *)ref_ptr;
1235 
1236 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1237 	*name = kmalloc(*namelen, GFP_NOFS);
1238 	if (*name == NULL)
1239 		return -ENOMEM;
1240 
1241 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1242 
1243 	if (index)
1244 		*index = btrfs_inode_ref_index(eb, ref);
1245 
1246 	return 0;
1247 }
1248 
1249 /*
1250  * Take an inode reference item from the log tree and iterate all names from the
1251  * inode reference item in the subvolume tree with the same key (if it exists).
1252  * For any name that is not in the inode reference item from the log tree, do a
1253  * proper unlink of that name (that is, remove its entry from the inode
1254  * reference item and both dir index keys).
1255  */
1256 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1257 				 struct btrfs_root *root,
1258 				 struct btrfs_path *path,
1259 				 struct btrfs_inode *inode,
1260 				 struct extent_buffer *log_eb,
1261 				 int log_slot,
1262 				 struct btrfs_key *key)
1263 {
1264 	int ret;
1265 	unsigned long ref_ptr;
1266 	unsigned long ref_end;
1267 	struct extent_buffer *eb;
1268 
1269 again:
1270 	btrfs_release_path(path);
1271 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1272 	if (ret > 0) {
1273 		ret = 0;
1274 		goto out;
1275 	}
1276 	if (ret < 0)
1277 		goto out;
1278 
1279 	eb = path->nodes[0];
1280 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1281 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1282 	while (ref_ptr < ref_end) {
1283 		char *name = NULL;
1284 		int namelen;
1285 		u64 parent_id;
1286 
1287 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1288 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1289 						NULL, &parent_id);
1290 		} else {
1291 			parent_id = key->offset;
1292 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1293 					     NULL);
1294 		}
1295 		if (ret)
1296 			goto out;
1297 
1298 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1299 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1300 							       parent_id, name,
1301 							       namelen);
1302 		else
1303 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1304 							   name, namelen);
1305 
1306 		if (!ret) {
1307 			struct inode *dir;
1308 
1309 			btrfs_release_path(path);
1310 			dir = read_one_inode(root, parent_id);
1311 			if (!dir) {
1312 				ret = -ENOENT;
1313 				kfree(name);
1314 				goto out;
1315 			}
1316 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1317 						 inode, name, namelen);
1318 			kfree(name);
1319 			iput(dir);
1320 			if (ret)
1321 				goto out;
1322 			goto again;
1323 		}
1324 
1325 		kfree(name);
1326 		ref_ptr += namelen;
1327 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1328 			ref_ptr += sizeof(struct btrfs_inode_extref);
1329 		else
1330 			ref_ptr += sizeof(struct btrfs_inode_ref);
1331 	}
1332 	ret = 0;
1333  out:
1334 	btrfs_release_path(path);
1335 	return ret;
1336 }
1337 
1338 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1339 				  const u8 ref_type, const char *name,
1340 				  const int namelen)
1341 {
1342 	struct btrfs_key key;
1343 	struct btrfs_path *path;
1344 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1345 	int ret;
1346 
1347 	path = btrfs_alloc_path();
1348 	if (!path)
1349 		return -ENOMEM;
1350 
1351 	key.objectid = btrfs_ino(BTRFS_I(inode));
1352 	key.type = ref_type;
1353 	if (key.type == BTRFS_INODE_REF_KEY)
1354 		key.offset = parent_id;
1355 	else
1356 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1357 
1358 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1359 	if (ret < 0)
1360 		goto out;
1361 	if (ret > 0) {
1362 		ret = 0;
1363 		goto out;
1364 	}
1365 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1366 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1367 				path->slots[0], parent_id, name, namelen);
1368 	else
1369 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1370 						   name, namelen);
1371 
1372 out:
1373 	btrfs_free_path(path);
1374 	return ret;
1375 }
1376 
1377 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1378 		    struct inode *dir, struct inode *inode, const char *name,
1379 		    int namelen, u64 ref_index)
1380 {
1381 	struct btrfs_dir_item *dir_item;
1382 	struct btrfs_key key;
1383 	struct btrfs_path *path;
1384 	struct inode *other_inode = NULL;
1385 	int ret;
1386 
1387 	path = btrfs_alloc_path();
1388 	if (!path)
1389 		return -ENOMEM;
1390 
1391 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1392 					 btrfs_ino(BTRFS_I(dir)),
1393 					 name, namelen, 0);
1394 	if (!dir_item) {
1395 		btrfs_release_path(path);
1396 		goto add_link;
1397 	} else if (IS_ERR(dir_item)) {
1398 		ret = PTR_ERR(dir_item);
1399 		goto out;
1400 	}
1401 
1402 	/*
1403 	 * Our inode's dentry collides with the dentry of another inode which is
1404 	 * in the log but not yet processed since it has a higher inode number.
1405 	 * So delete that other dentry.
1406 	 */
1407 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1408 	btrfs_release_path(path);
1409 	other_inode = read_one_inode(root, key.objectid);
1410 	if (!other_inode) {
1411 		ret = -ENOENT;
1412 		goto out;
1413 	}
1414 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1415 				 name, namelen);
1416 	if (ret)
1417 		goto out;
1418 	/*
1419 	 * If we dropped the link count to 0, bump it so that later the iput()
1420 	 * on the inode will not free it. We will fixup the link count later.
1421 	 */
1422 	if (other_inode->i_nlink == 0)
1423 		inc_nlink(other_inode);
1424 
1425 	ret = btrfs_run_delayed_items(trans);
1426 	if (ret)
1427 		goto out;
1428 add_link:
1429 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1430 			     name, namelen, 0, ref_index);
1431 out:
1432 	iput(other_inode);
1433 	btrfs_free_path(path);
1434 
1435 	return ret;
1436 }
1437 
1438 /*
1439  * replay one inode back reference item found in the log tree.
1440  * eb, slot and key refer to the buffer and key found in the log tree.
1441  * root is the destination we are replaying into, and path is for temp
1442  * use by this function.  (it should be released on return).
1443  */
1444 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1445 				  struct btrfs_root *root,
1446 				  struct btrfs_root *log,
1447 				  struct btrfs_path *path,
1448 				  struct extent_buffer *eb, int slot,
1449 				  struct btrfs_key *key)
1450 {
1451 	struct inode *dir = NULL;
1452 	struct inode *inode = NULL;
1453 	unsigned long ref_ptr;
1454 	unsigned long ref_end;
1455 	char *name = NULL;
1456 	int namelen;
1457 	int ret;
1458 	int search_done = 0;
1459 	int log_ref_ver = 0;
1460 	u64 parent_objectid;
1461 	u64 inode_objectid;
1462 	u64 ref_index = 0;
1463 	int ref_struct_size;
1464 
1465 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1466 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1467 
1468 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1469 		struct btrfs_inode_extref *r;
1470 
1471 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1472 		log_ref_ver = 1;
1473 		r = (struct btrfs_inode_extref *)ref_ptr;
1474 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1475 	} else {
1476 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1477 		parent_objectid = key->offset;
1478 	}
1479 	inode_objectid = key->objectid;
1480 
1481 	/*
1482 	 * it is possible that we didn't log all the parent directories
1483 	 * for a given inode.  If we don't find the dir, just don't
1484 	 * copy the back ref in.  The link count fixup code will take
1485 	 * care of the rest
1486 	 */
1487 	dir = read_one_inode(root, parent_objectid);
1488 	if (!dir) {
1489 		ret = -ENOENT;
1490 		goto out;
1491 	}
1492 
1493 	inode = read_one_inode(root, inode_objectid);
1494 	if (!inode) {
1495 		ret = -EIO;
1496 		goto out;
1497 	}
1498 
1499 	while (ref_ptr < ref_end) {
1500 		if (log_ref_ver) {
1501 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1502 						&ref_index, &parent_objectid);
1503 			/*
1504 			 * parent object can change from one array
1505 			 * item to another.
1506 			 */
1507 			if (!dir)
1508 				dir = read_one_inode(root, parent_objectid);
1509 			if (!dir) {
1510 				ret = -ENOENT;
1511 				goto out;
1512 			}
1513 		} else {
1514 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1515 					     &ref_index);
1516 		}
1517 		if (ret)
1518 			goto out;
1519 
1520 		/* if we already have a perfect match, we're done */
1521 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1522 					btrfs_ino(BTRFS_I(inode)), ref_index,
1523 					name, namelen)) {
1524 			/*
1525 			 * look for a conflicting back reference in the
1526 			 * metadata. if we find one we have to unlink that name
1527 			 * of the file before we add our new link.  Later on, we
1528 			 * overwrite any existing back reference, and we don't
1529 			 * want to create dangling pointers in the directory.
1530 			 */
1531 
1532 			if (!search_done) {
1533 				ret = __add_inode_ref(trans, root, path, log,
1534 						      BTRFS_I(dir),
1535 						      BTRFS_I(inode),
1536 						      inode_objectid,
1537 						      parent_objectid,
1538 						      ref_index, name, namelen,
1539 						      &search_done);
1540 				if (ret) {
1541 					if (ret == 1)
1542 						ret = 0;
1543 					goto out;
1544 				}
1545 			}
1546 
1547 			/*
1548 			 * If a reference item already exists for this inode
1549 			 * with the same parent and name, but different index,
1550 			 * drop it and the corresponding directory index entries
1551 			 * from the parent before adding the new reference item
1552 			 * and dir index entries, otherwise we would fail with
1553 			 * -EEXIST returned from btrfs_add_link() below.
1554 			 */
1555 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1556 						     name, namelen);
1557 			if (ret > 0) {
1558 				ret = btrfs_unlink_inode(trans, root,
1559 							 BTRFS_I(dir),
1560 							 BTRFS_I(inode),
1561 							 name, namelen);
1562 				/*
1563 				 * If we dropped the link count to 0, bump it so
1564 				 * that later the iput() on the inode will not
1565 				 * free it. We will fixup the link count later.
1566 				 */
1567 				if (!ret && inode->i_nlink == 0)
1568 					inc_nlink(inode);
1569 			}
1570 			if (ret < 0)
1571 				goto out;
1572 
1573 			/* insert our name */
1574 			ret = add_link(trans, root, dir, inode, name, namelen,
1575 				       ref_index);
1576 			if (ret)
1577 				goto out;
1578 
1579 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1580 			if (ret)
1581 				goto out;
1582 		}
1583 
1584 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1585 		kfree(name);
1586 		name = NULL;
1587 		if (log_ref_ver) {
1588 			iput(dir);
1589 			dir = NULL;
1590 		}
1591 	}
1592 
1593 	/*
1594 	 * Before we overwrite the inode reference item in the subvolume tree
1595 	 * with the item from the log tree, we must unlink all names from the
1596 	 * parent directory that are in the subvolume's tree inode reference
1597 	 * item, otherwise we end up with an inconsistent subvolume tree where
1598 	 * dir index entries exist for a name but there is no inode reference
1599 	 * item with the same name.
1600 	 */
1601 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1602 				    key);
1603 	if (ret)
1604 		goto out;
1605 
1606 	/* finally write the back reference in the inode */
1607 	ret = overwrite_item(trans, root, path, eb, slot, key);
1608 out:
1609 	btrfs_release_path(path);
1610 	kfree(name);
1611 	iput(dir);
1612 	iput(inode);
1613 	return ret;
1614 }
1615 
1616 static int count_inode_extrefs(struct btrfs_root *root,
1617 		struct btrfs_inode *inode, struct btrfs_path *path)
1618 {
1619 	int ret = 0;
1620 	int name_len;
1621 	unsigned int nlink = 0;
1622 	u32 item_size;
1623 	u32 cur_offset = 0;
1624 	u64 inode_objectid = btrfs_ino(inode);
1625 	u64 offset = 0;
1626 	unsigned long ptr;
1627 	struct btrfs_inode_extref *extref;
1628 	struct extent_buffer *leaf;
1629 
1630 	while (1) {
1631 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1632 					    &extref, &offset);
1633 		if (ret)
1634 			break;
1635 
1636 		leaf = path->nodes[0];
1637 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1638 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1639 		cur_offset = 0;
1640 
1641 		while (cur_offset < item_size) {
1642 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1643 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1644 
1645 			nlink++;
1646 
1647 			cur_offset += name_len + sizeof(*extref);
1648 		}
1649 
1650 		offset++;
1651 		btrfs_release_path(path);
1652 	}
1653 	btrfs_release_path(path);
1654 
1655 	if (ret < 0 && ret != -ENOENT)
1656 		return ret;
1657 	return nlink;
1658 }
1659 
1660 static int count_inode_refs(struct btrfs_root *root,
1661 			struct btrfs_inode *inode, struct btrfs_path *path)
1662 {
1663 	int ret;
1664 	struct btrfs_key key;
1665 	unsigned int nlink = 0;
1666 	unsigned long ptr;
1667 	unsigned long ptr_end;
1668 	int name_len;
1669 	u64 ino = btrfs_ino(inode);
1670 
1671 	key.objectid = ino;
1672 	key.type = BTRFS_INODE_REF_KEY;
1673 	key.offset = (u64)-1;
1674 
1675 	while (1) {
1676 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1677 		if (ret < 0)
1678 			break;
1679 		if (ret > 0) {
1680 			if (path->slots[0] == 0)
1681 				break;
1682 			path->slots[0]--;
1683 		}
1684 process_slot:
1685 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1686 				      path->slots[0]);
1687 		if (key.objectid != ino ||
1688 		    key.type != BTRFS_INODE_REF_KEY)
1689 			break;
1690 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1691 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1692 						   path->slots[0]);
1693 		while (ptr < ptr_end) {
1694 			struct btrfs_inode_ref *ref;
1695 
1696 			ref = (struct btrfs_inode_ref *)ptr;
1697 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1698 							    ref);
1699 			ptr = (unsigned long)(ref + 1) + name_len;
1700 			nlink++;
1701 		}
1702 
1703 		if (key.offset == 0)
1704 			break;
1705 		if (path->slots[0] > 0) {
1706 			path->slots[0]--;
1707 			goto process_slot;
1708 		}
1709 		key.offset--;
1710 		btrfs_release_path(path);
1711 	}
1712 	btrfs_release_path(path);
1713 
1714 	return nlink;
1715 }
1716 
1717 /*
1718  * There are a few corners where the link count of the file can't
1719  * be properly maintained during replay.  So, instead of adding
1720  * lots of complexity to the log code, we just scan the backrefs
1721  * for any file that has been through replay.
1722  *
1723  * The scan will update the link count on the inode to reflect the
1724  * number of back refs found.  If it goes down to zero, the iput
1725  * will free the inode.
1726  */
1727 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1728 					   struct btrfs_root *root,
1729 					   struct inode *inode)
1730 {
1731 	struct btrfs_path *path;
1732 	int ret;
1733 	u64 nlink = 0;
1734 	u64 ino = btrfs_ino(BTRFS_I(inode));
1735 
1736 	path = btrfs_alloc_path();
1737 	if (!path)
1738 		return -ENOMEM;
1739 
1740 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1741 	if (ret < 0)
1742 		goto out;
1743 
1744 	nlink = ret;
1745 
1746 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1747 	if (ret < 0)
1748 		goto out;
1749 
1750 	nlink += ret;
1751 
1752 	ret = 0;
1753 
1754 	if (nlink != inode->i_nlink) {
1755 		set_nlink(inode, nlink);
1756 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1757 		if (ret)
1758 			goto out;
1759 	}
1760 	BTRFS_I(inode)->index_cnt = (u64)-1;
1761 
1762 	if (inode->i_nlink == 0) {
1763 		if (S_ISDIR(inode->i_mode)) {
1764 			ret = replay_dir_deletes(trans, root, NULL, path,
1765 						 ino, 1);
1766 			if (ret)
1767 				goto out;
1768 		}
1769 		ret = btrfs_insert_orphan_item(trans, root, ino);
1770 		if (ret == -EEXIST)
1771 			ret = 0;
1772 	}
1773 
1774 out:
1775 	btrfs_free_path(path);
1776 	return ret;
1777 }
1778 
1779 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1780 					    struct btrfs_root *root,
1781 					    struct btrfs_path *path)
1782 {
1783 	int ret;
1784 	struct btrfs_key key;
1785 	struct inode *inode;
1786 
1787 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1788 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1789 	key.offset = (u64)-1;
1790 	while (1) {
1791 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1792 		if (ret < 0)
1793 			break;
1794 
1795 		if (ret == 1) {
1796 			ret = 0;
1797 			if (path->slots[0] == 0)
1798 				break;
1799 			path->slots[0]--;
1800 		}
1801 
1802 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1803 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1804 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1805 			break;
1806 
1807 		ret = btrfs_del_item(trans, root, path);
1808 		if (ret)
1809 			break;
1810 
1811 		btrfs_release_path(path);
1812 		inode = read_one_inode(root, key.offset);
1813 		if (!inode) {
1814 			ret = -EIO;
1815 			break;
1816 		}
1817 
1818 		ret = fixup_inode_link_count(trans, root, inode);
1819 		iput(inode);
1820 		if (ret)
1821 			break;
1822 
1823 		/*
1824 		 * fixup on a directory may create new entries,
1825 		 * make sure we always look for the highset possible
1826 		 * offset
1827 		 */
1828 		key.offset = (u64)-1;
1829 	}
1830 	btrfs_release_path(path);
1831 	return ret;
1832 }
1833 
1834 
1835 /*
1836  * record a given inode in the fixup dir so we can check its link
1837  * count when replay is done.  The link count is incremented here
1838  * so the inode won't go away until we check it
1839  */
1840 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1841 				      struct btrfs_root *root,
1842 				      struct btrfs_path *path,
1843 				      u64 objectid)
1844 {
1845 	struct btrfs_key key;
1846 	int ret = 0;
1847 	struct inode *inode;
1848 
1849 	inode = read_one_inode(root, objectid);
1850 	if (!inode)
1851 		return -EIO;
1852 
1853 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1854 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1855 	key.offset = objectid;
1856 
1857 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1858 
1859 	btrfs_release_path(path);
1860 	if (ret == 0) {
1861 		if (!inode->i_nlink)
1862 			set_nlink(inode, 1);
1863 		else
1864 			inc_nlink(inode);
1865 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1866 	} else if (ret == -EEXIST) {
1867 		ret = 0;
1868 	}
1869 	iput(inode);
1870 
1871 	return ret;
1872 }
1873 
1874 /*
1875  * when replaying the log for a directory, we only insert names
1876  * for inodes that actually exist.  This means an fsync on a directory
1877  * does not implicitly fsync all the new files in it
1878  */
1879 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1880 				    struct btrfs_root *root,
1881 				    u64 dirid, u64 index,
1882 				    char *name, int name_len,
1883 				    struct btrfs_key *location)
1884 {
1885 	struct inode *inode;
1886 	struct inode *dir;
1887 	int ret;
1888 
1889 	inode = read_one_inode(root, location->objectid);
1890 	if (!inode)
1891 		return -ENOENT;
1892 
1893 	dir = read_one_inode(root, dirid);
1894 	if (!dir) {
1895 		iput(inode);
1896 		return -EIO;
1897 	}
1898 
1899 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1900 			name_len, 1, index);
1901 
1902 	/* FIXME, put inode into FIXUP list */
1903 
1904 	iput(inode);
1905 	iput(dir);
1906 	return ret;
1907 }
1908 
1909 /*
1910  * take a single entry in a log directory item and replay it into
1911  * the subvolume.
1912  *
1913  * if a conflicting item exists in the subdirectory already,
1914  * the inode it points to is unlinked and put into the link count
1915  * fix up tree.
1916  *
1917  * If a name from the log points to a file or directory that does
1918  * not exist in the FS, it is skipped.  fsyncs on directories
1919  * do not force down inodes inside that directory, just changes to the
1920  * names or unlinks in a directory.
1921  *
1922  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1923  * non-existing inode) and 1 if the name was replayed.
1924  */
1925 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1926 				    struct btrfs_root *root,
1927 				    struct btrfs_path *path,
1928 				    struct extent_buffer *eb,
1929 				    struct btrfs_dir_item *di,
1930 				    struct btrfs_key *key)
1931 {
1932 	char *name;
1933 	int name_len;
1934 	struct btrfs_dir_item *dst_di;
1935 	struct btrfs_key found_key;
1936 	struct btrfs_key log_key;
1937 	struct inode *dir;
1938 	u8 log_type;
1939 	int exists;
1940 	int ret = 0;
1941 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1942 	bool name_added = false;
1943 
1944 	dir = read_one_inode(root, key->objectid);
1945 	if (!dir)
1946 		return -EIO;
1947 
1948 	name_len = btrfs_dir_name_len(eb, di);
1949 	name = kmalloc(name_len, GFP_NOFS);
1950 	if (!name) {
1951 		ret = -ENOMEM;
1952 		goto out;
1953 	}
1954 
1955 	log_type = btrfs_dir_type(eb, di);
1956 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1957 		   name_len);
1958 
1959 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1960 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1961 	if (exists == 0)
1962 		exists = 1;
1963 	else
1964 		exists = 0;
1965 	btrfs_release_path(path);
1966 
1967 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1968 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1969 				       name, name_len, 1);
1970 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1971 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1972 						     key->objectid,
1973 						     key->offset, name,
1974 						     name_len, 1);
1975 	} else {
1976 		/* Corruption */
1977 		ret = -EINVAL;
1978 		goto out;
1979 	}
1980 	if (IS_ERR_OR_NULL(dst_di)) {
1981 		/* we need a sequence number to insert, so we only
1982 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1983 		 */
1984 		if (key->type != BTRFS_DIR_INDEX_KEY)
1985 			goto out;
1986 		goto insert;
1987 	}
1988 
1989 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1990 	/* the existing item matches the logged item */
1991 	if (found_key.objectid == log_key.objectid &&
1992 	    found_key.type == log_key.type &&
1993 	    found_key.offset == log_key.offset &&
1994 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1995 		update_size = false;
1996 		goto out;
1997 	}
1998 
1999 	/*
2000 	 * don't drop the conflicting directory entry if the inode
2001 	 * for the new entry doesn't exist
2002 	 */
2003 	if (!exists)
2004 		goto out;
2005 
2006 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2007 	if (ret)
2008 		goto out;
2009 
2010 	if (key->type == BTRFS_DIR_INDEX_KEY)
2011 		goto insert;
2012 out:
2013 	btrfs_release_path(path);
2014 	if (!ret && update_size) {
2015 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2016 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2017 	}
2018 	kfree(name);
2019 	iput(dir);
2020 	if (!ret && name_added)
2021 		ret = 1;
2022 	return ret;
2023 
2024 insert:
2025 	/*
2026 	 * Check if the inode reference exists in the log for the given name,
2027 	 * inode and parent inode
2028 	 */
2029 	found_key.objectid = log_key.objectid;
2030 	found_key.type = BTRFS_INODE_REF_KEY;
2031 	found_key.offset = key->objectid;
2032 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2033 	if (ret < 0) {
2034 	        goto out;
2035 	} else if (ret) {
2036 	        /* The dentry will be added later. */
2037 	        ret = 0;
2038 	        update_size = false;
2039 	        goto out;
2040 	}
2041 
2042 	found_key.objectid = log_key.objectid;
2043 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2044 	found_key.offset = key->objectid;
2045 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2046 			     name_len);
2047 	if (ret < 0) {
2048 		goto out;
2049 	} else if (ret) {
2050 		/* The dentry will be added later. */
2051 		ret = 0;
2052 		update_size = false;
2053 		goto out;
2054 	}
2055 	btrfs_release_path(path);
2056 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2057 			      name, name_len, &log_key);
2058 	if (ret && ret != -ENOENT && ret != -EEXIST)
2059 		goto out;
2060 	if (!ret)
2061 		name_added = true;
2062 	update_size = false;
2063 	ret = 0;
2064 	goto out;
2065 }
2066 
2067 /*
2068  * find all the names in a directory item and reconcile them into
2069  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2070  * one name in a directory item, but the same code gets used for
2071  * both directory index types
2072  */
2073 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2074 					struct btrfs_root *root,
2075 					struct btrfs_path *path,
2076 					struct extent_buffer *eb, int slot,
2077 					struct btrfs_key *key)
2078 {
2079 	int ret = 0;
2080 	u32 item_size = btrfs_item_size_nr(eb, slot);
2081 	struct btrfs_dir_item *di;
2082 	int name_len;
2083 	unsigned long ptr;
2084 	unsigned long ptr_end;
2085 	struct btrfs_path *fixup_path = NULL;
2086 
2087 	ptr = btrfs_item_ptr_offset(eb, slot);
2088 	ptr_end = ptr + item_size;
2089 	while (ptr < ptr_end) {
2090 		di = (struct btrfs_dir_item *)ptr;
2091 		name_len = btrfs_dir_name_len(eb, di);
2092 		ret = replay_one_name(trans, root, path, eb, di, key);
2093 		if (ret < 0)
2094 			break;
2095 		ptr = (unsigned long)(di + 1);
2096 		ptr += name_len;
2097 
2098 		/*
2099 		 * If this entry refers to a non-directory (directories can not
2100 		 * have a link count > 1) and it was added in the transaction
2101 		 * that was not committed, make sure we fixup the link count of
2102 		 * the inode it the entry points to. Otherwise something like
2103 		 * the following would result in a directory pointing to an
2104 		 * inode with a wrong link that does not account for this dir
2105 		 * entry:
2106 		 *
2107 		 * mkdir testdir
2108 		 * touch testdir/foo
2109 		 * touch testdir/bar
2110 		 * sync
2111 		 *
2112 		 * ln testdir/bar testdir/bar_link
2113 		 * ln testdir/foo testdir/foo_link
2114 		 * xfs_io -c "fsync" testdir/bar
2115 		 *
2116 		 * <power failure>
2117 		 *
2118 		 * mount fs, log replay happens
2119 		 *
2120 		 * File foo would remain with a link count of 1 when it has two
2121 		 * entries pointing to it in the directory testdir. This would
2122 		 * make it impossible to ever delete the parent directory has
2123 		 * it would result in stale dentries that can never be deleted.
2124 		 */
2125 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2126 			struct btrfs_key di_key;
2127 
2128 			if (!fixup_path) {
2129 				fixup_path = btrfs_alloc_path();
2130 				if (!fixup_path) {
2131 					ret = -ENOMEM;
2132 					break;
2133 				}
2134 			}
2135 
2136 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2137 			ret = link_to_fixup_dir(trans, root, fixup_path,
2138 						di_key.objectid);
2139 			if (ret)
2140 				break;
2141 		}
2142 		ret = 0;
2143 	}
2144 	btrfs_free_path(fixup_path);
2145 	return ret;
2146 }
2147 
2148 /*
2149  * directory replay has two parts.  There are the standard directory
2150  * items in the log copied from the subvolume, and range items
2151  * created in the log while the subvolume was logged.
2152  *
2153  * The range items tell us which parts of the key space the log
2154  * is authoritative for.  During replay, if a key in the subvolume
2155  * directory is in a logged range item, but not actually in the log
2156  * that means it was deleted from the directory before the fsync
2157  * and should be removed.
2158  */
2159 static noinline int find_dir_range(struct btrfs_root *root,
2160 				   struct btrfs_path *path,
2161 				   u64 dirid, int key_type,
2162 				   u64 *start_ret, u64 *end_ret)
2163 {
2164 	struct btrfs_key key;
2165 	u64 found_end;
2166 	struct btrfs_dir_log_item *item;
2167 	int ret;
2168 	int nritems;
2169 
2170 	if (*start_ret == (u64)-1)
2171 		return 1;
2172 
2173 	key.objectid = dirid;
2174 	key.type = key_type;
2175 	key.offset = *start_ret;
2176 
2177 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2178 	if (ret < 0)
2179 		goto out;
2180 	if (ret > 0) {
2181 		if (path->slots[0] == 0)
2182 			goto out;
2183 		path->slots[0]--;
2184 	}
2185 	if (ret != 0)
2186 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2187 
2188 	if (key.type != key_type || key.objectid != dirid) {
2189 		ret = 1;
2190 		goto next;
2191 	}
2192 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2193 			      struct btrfs_dir_log_item);
2194 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2195 
2196 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2197 		ret = 0;
2198 		*start_ret = key.offset;
2199 		*end_ret = found_end;
2200 		goto out;
2201 	}
2202 	ret = 1;
2203 next:
2204 	/* check the next slot in the tree to see if it is a valid item */
2205 	nritems = btrfs_header_nritems(path->nodes[0]);
2206 	path->slots[0]++;
2207 	if (path->slots[0] >= nritems) {
2208 		ret = btrfs_next_leaf(root, path);
2209 		if (ret)
2210 			goto out;
2211 	}
2212 
2213 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2214 
2215 	if (key.type != key_type || key.objectid != dirid) {
2216 		ret = 1;
2217 		goto out;
2218 	}
2219 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2220 			      struct btrfs_dir_log_item);
2221 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2222 	*start_ret = key.offset;
2223 	*end_ret = found_end;
2224 	ret = 0;
2225 out:
2226 	btrfs_release_path(path);
2227 	return ret;
2228 }
2229 
2230 /*
2231  * this looks for a given directory item in the log.  If the directory
2232  * item is not in the log, the item is removed and the inode it points
2233  * to is unlinked
2234  */
2235 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2236 				      struct btrfs_root *root,
2237 				      struct btrfs_root *log,
2238 				      struct btrfs_path *path,
2239 				      struct btrfs_path *log_path,
2240 				      struct inode *dir,
2241 				      struct btrfs_key *dir_key)
2242 {
2243 	int ret;
2244 	struct extent_buffer *eb;
2245 	int slot;
2246 	u32 item_size;
2247 	struct btrfs_dir_item *di;
2248 	struct btrfs_dir_item *log_di;
2249 	int name_len;
2250 	unsigned long ptr;
2251 	unsigned long ptr_end;
2252 	char *name;
2253 	struct inode *inode;
2254 	struct btrfs_key location;
2255 
2256 again:
2257 	eb = path->nodes[0];
2258 	slot = path->slots[0];
2259 	item_size = btrfs_item_size_nr(eb, slot);
2260 	ptr = btrfs_item_ptr_offset(eb, slot);
2261 	ptr_end = ptr + item_size;
2262 	while (ptr < ptr_end) {
2263 		di = (struct btrfs_dir_item *)ptr;
2264 		name_len = btrfs_dir_name_len(eb, di);
2265 		name = kmalloc(name_len, GFP_NOFS);
2266 		if (!name) {
2267 			ret = -ENOMEM;
2268 			goto out;
2269 		}
2270 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2271 				  name_len);
2272 		log_di = NULL;
2273 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2274 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2275 						       dir_key->objectid,
2276 						       name, name_len, 0);
2277 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2278 			log_di = btrfs_lookup_dir_index_item(trans, log,
2279 						     log_path,
2280 						     dir_key->objectid,
2281 						     dir_key->offset,
2282 						     name, name_len, 0);
2283 		}
2284 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2285 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2286 			btrfs_release_path(path);
2287 			btrfs_release_path(log_path);
2288 			inode = read_one_inode(root, location.objectid);
2289 			if (!inode) {
2290 				kfree(name);
2291 				return -EIO;
2292 			}
2293 
2294 			ret = link_to_fixup_dir(trans, root,
2295 						path, location.objectid);
2296 			if (ret) {
2297 				kfree(name);
2298 				iput(inode);
2299 				goto out;
2300 			}
2301 
2302 			inc_nlink(inode);
2303 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2304 					BTRFS_I(inode), name, name_len);
2305 			if (!ret)
2306 				ret = btrfs_run_delayed_items(trans);
2307 			kfree(name);
2308 			iput(inode);
2309 			if (ret)
2310 				goto out;
2311 
2312 			/* there might still be more names under this key
2313 			 * check and repeat if required
2314 			 */
2315 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2316 						0, 0);
2317 			if (ret == 0)
2318 				goto again;
2319 			ret = 0;
2320 			goto out;
2321 		} else if (IS_ERR(log_di)) {
2322 			kfree(name);
2323 			return PTR_ERR(log_di);
2324 		}
2325 		btrfs_release_path(log_path);
2326 		kfree(name);
2327 
2328 		ptr = (unsigned long)(di + 1);
2329 		ptr += name_len;
2330 	}
2331 	ret = 0;
2332 out:
2333 	btrfs_release_path(path);
2334 	btrfs_release_path(log_path);
2335 	return ret;
2336 }
2337 
2338 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2339 			      struct btrfs_root *root,
2340 			      struct btrfs_root *log,
2341 			      struct btrfs_path *path,
2342 			      const u64 ino)
2343 {
2344 	struct btrfs_key search_key;
2345 	struct btrfs_path *log_path;
2346 	int i;
2347 	int nritems;
2348 	int ret;
2349 
2350 	log_path = btrfs_alloc_path();
2351 	if (!log_path)
2352 		return -ENOMEM;
2353 
2354 	search_key.objectid = ino;
2355 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2356 	search_key.offset = 0;
2357 again:
2358 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2359 	if (ret < 0)
2360 		goto out;
2361 process_leaf:
2362 	nritems = btrfs_header_nritems(path->nodes[0]);
2363 	for (i = path->slots[0]; i < nritems; i++) {
2364 		struct btrfs_key key;
2365 		struct btrfs_dir_item *di;
2366 		struct btrfs_dir_item *log_di;
2367 		u32 total_size;
2368 		u32 cur;
2369 
2370 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2371 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2372 			ret = 0;
2373 			goto out;
2374 		}
2375 
2376 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2377 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2378 		cur = 0;
2379 		while (cur < total_size) {
2380 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2381 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2382 			u32 this_len = sizeof(*di) + name_len + data_len;
2383 			char *name;
2384 
2385 			name = kmalloc(name_len, GFP_NOFS);
2386 			if (!name) {
2387 				ret = -ENOMEM;
2388 				goto out;
2389 			}
2390 			read_extent_buffer(path->nodes[0], name,
2391 					   (unsigned long)(di + 1), name_len);
2392 
2393 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2394 						    name, name_len, 0);
2395 			btrfs_release_path(log_path);
2396 			if (!log_di) {
2397 				/* Doesn't exist in log tree, so delete it. */
2398 				btrfs_release_path(path);
2399 				di = btrfs_lookup_xattr(trans, root, path, ino,
2400 							name, name_len, -1);
2401 				kfree(name);
2402 				if (IS_ERR(di)) {
2403 					ret = PTR_ERR(di);
2404 					goto out;
2405 				}
2406 				ASSERT(di);
2407 				ret = btrfs_delete_one_dir_name(trans, root,
2408 								path, di);
2409 				if (ret)
2410 					goto out;
2411 				btrfs_release_path(path);
2412 				search_key = key;
2413 				goto again;
2414 			}
2415 			kfree(name);
2416 			if (IS_ERR(log_di)) {
2417 				ret = PTR_ERR(log_di);
2418 				goto out;
2419 			}
2420 			cur += this_len;
2421 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2422 		}
2423 	}
2424 	ret = btrfs_next_leaf(root, path);
2425 	if (ret > 0)
2426 		ret = 0;
2427 	else if (ret == 0)
2428 		goto process_leaf;
2429 out:
2430 	btrfs_free_path(log_path);
2431 	btrfs_release_path(path);
2432 	return ret;
2433 }
2434 
2435 
2436 /*
2437  * deletion replay happens before we copy any new directory items
2438  * out of the log or out of backreferences from inodes.  It
2439  * scans the log to find ranges of keys that log is authoritative for,
2440  * and then scans the directory to find items in those ranges that are
2441  * not present in the log.
2442  *
2443  * Anything we don't find in the log is unlinked and removed from the
2444  * directory.
2445  */
2446 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2447 				       struct btrfs_root *root,
2448 				       struct btrfs_root *log,
2449 				       struct btrfs_path *path,
2450 				       u64 dirid, int del_all)
2451 {
2452 	u64 range_start;
2453 	u64 range_end;
2454 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2455 	int ret = 0;
2456 	struct btrfs_key dir_key;
2457 	struct btrfs_key found_key;
2458 	struct btrfs_path *log_path;
2459 	struct inode *dir;
2460 
2461 	dir_key.objectid = dirid;
2462 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2463 	log_path = btrfs_alloc_path();
2464 	if (!log_path)
2465 		return -ENOMEM;
2466 
2467 	dir = read_one_inode(root, dirid);
2468 	/* it isn't an error if the inode isn't there, that can happen
2469 	 * because we replay the deletes before we copy in the inode item
2470 	 * from the log
2471 	 */
2472 	if (!dir) {
2473 		btrfs_free_path(log_path);
2474 		return 0;
2475 	}
2476 again:
2477 	range_start = 0;
2478 	range_end = 0;
2479 	while (1) {
2480 		if (del_all)
2481 			range_end = (u64)-1;
2482 		else {
2483 			ret = find_dir_range(log, path, dirid, key_type,
2484 					     &range_start, &range_end);
2485 			if (ret != 0)
2486 				break;
2487 		}
2488 
2489 		dir_key.offset = range_start;
2490 		while (1) {
2491 			int nritems;
2492 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2493 						0, 0);
2494 			if (ret < 0)
2495 				goto out;
2496 
2497 			nritems = btrfs_header_nritems(path->nodes[0]);
2498 			if (path->slots[0] >= nritems) {
2499 				ret = btrfs_next_leaf(root, path);
2500 				if (ret == 1)
2501 					break;
2502 				else if (ret < 0)
2503 					goto out;
2504 			}
2505 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2506 					      path->slots[0]);
2507 			if (found_key.objectid != dirid ||
2508 			    found_key.type != dir_key.type)
2509 				goto next_type;
2510 
2511 			if (found_key.offset > range_end)
2512 				break;
2513 
2514 			ret = check_item_in_log(trans, root, log, path,
2515 						log_path, dir,
2516 						&found_key);
2517 			if (ret)
2518 				goto out;
2519 			if (found_key.offset == (u64)-1)
2520 				break;
2521 			dir_key.offset = found_key.offset + 1;
2522 		}
2523 		btrfs_release_path(path);
2524 		if (range_end == (u64)-1)
2525 			break;
2526 		range_start = range_end + 1;
2527 	}
2528 
2529 next_type:
2530 	ret = 0;
2531 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2532 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2533 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2534 		btrfs_release_path(path);
2535 		goto again;
2536 	}
2537 out:
2538 	btrfs_release_path(path);
2539 	btrfs_free_path(log_path);
2540 	iput(dir);
2541 	return ret;
2542 }
2543 
2544 /*
2545  * the process_func used to replay items from the log tree.  This
2546  * gets called in two different stages.  The first stage just looks
2547  * for inodes and makes sure they are all copied into the subvolume.
2548  *
2549  * The second stage copies all the other item types from the log into
2550  * the subvolume.  The two stage approach is slower, but gets rid of
2551  * lots of complexity around inodes referencing other inodes that exist
2552  * only in the log (references come from either directory items or inode
2553  * back refs).
2554  */
2555 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2556 			     struct walk_control *wc, u64 gen, int level)
2557 {
2558 	int nritems;
2559 	struct btrfs_path *path;
2560 	struct btrfs_root *root = wc->replay_dest;
2561 	struct btrfs_key key;
2562 	int i;
2563 	int ret;
2564 
2565 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2566 	if (ret)
2567 		return ret;
2568 
2569 	level = btrfs_header_level(eb);
2570 
2571 	if (level != 0)
2572 		return 0;
2573 
2574 	path = btrfs_alloc_path();
2575 	if (!path)
2576 		return -ENOMEM;
2577 
2578 	nritems = btrfs_header_nritems(eb);
2579 	for (i = 0; i < nritems; i++) {
2580 		btrfs_item_key_to_cpu(eb, &key, i);
2581 
2582 		/* inode keys are done during the first stage */
2583 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2584 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2585 			struct btrfs_inode_item *inode_item;
2586 			u32 mode;
2587 
2588 			inode_item = btrfs_item_ptr(eb, i,
2589 					    struct btrfs_inode_item);
2590 			/*
2591 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2592 			 * and never got linked before the fsync, skip it, as
2593 			 * replaying it is pointless since it would be deleted
2594 			 * later. We skip logging tmpfiles, but it's always
2595 			 * possible we are replaying a log created with a kernel
2596 			 * that used to log tmpfiles.
2597 			 */
2598 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2599 				wc->ignore_cur_inode = true;
2600 				continue;
2601 			} else {
2602 				wc->ignore_cur_inode = false;
2603 			}
2604 			ret = replay_xattr_deletes(wc->trans, root, log,
2605 						   path, key.objectid);
2606 			if (ret)
2607 				break;
2608 			mode = btrfs_inode_mode(eb, inode_item);
2609 			if (S_ISDIR(mode)) {
2610 				ret = replay_dir_deletes(wc->trans,
2611 					 root, log, path, key.objectid, 0);
2612 				if (ret)
2613 					break;
2614 			}
2615 			ret = overwrite_item(wc->trans, root, path,
2616 					     eb, i, &key);
2617 			if (ret)
2618 				break;
2619 
2620 			/*
2621 			 * Before replaying extents, truncate the inode to its
2622 			 * size. We need to do it now and not after log replay
2623 			 * because before an fsync we can have prealloc extents
2624 			 * added beyond the inode's i_size. If we did it after,
2625 			 * through orphan cleanup for example, we would drop
2626 			 * those prealloc extents just after replaying them.
2627 			 */
2628 			if (S_ISREG(mode)) {
2629 				struct btrfs_drop_extents_args drop_args = { 0 };
2630 				struct inode *inode;
2631 				u64 from;
2632 
2633 				inode = read_one_inode(root, key.objectid);
2634 				if (!inode) {
2635 					ret = -EIO;
2636 					break;
2637 				}
2638 				from = ALIGN(i_size_read(inode),
2639 					     root->fs_info->sectorsize);
2640 				drop_args.start = from;
2641 				drop_args.end = (u64)-1;
2642 				drop_args.drop_cache = true;
2643 				ret = btrfs_drop_extents(wc->trans, root,
2644 							 BTRFS_I(inode),
2645 							 &drop_args);
2646 				if (!ret) {
2647 					inode_sub_bytes(inode,
2648 							drop_args.bytes_found);
2649 					/* Update the inode's nbytes. */
2650 					ret = btrfs_update_inode(wc->trans,
2651 							root, BTRFS_I(inode));
2652 				}
2653 				iput(inode);
2654 				if (ret)
2655 					break;
2656 			}
2657 
2658 			ret = link_to_fixup_dir(wc->trans, root,
2659 						path, key.objectid);
2660 			if (ret)
2661 				break;
2662 		}
2663 
2664 		if (wc->ignore_cur_inode)
2665 			continue;
2666 
2667 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2668 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2669 			ret = replay_one_dir_item(wc->trans, root, path,
2670 						  eb, i, &key);
2671 			if (ret)
2672 				break;
2673 		}
2674 
2675 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2676 			continue;
2677 
2678 		/* these keys are simply copied */
2679 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2680 			ret = overwrite_item(wc->trans, root, path,
2681 					     eb, i, &key);
2682 			if (ret)
2683 				break;
2684 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2685 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2686 			ret = add_inode_ref(wc->trans, root, log, path,
2687 					    eb, i, &key);
2688 			if (ret && ret != -ENOENT)
2689 				break;
2690 			ret = 0;
2691 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2692 			ret = replay_one_extent(wc->trans, root, path,
2693 						eb, i, &key);
2694 			if (ret)
2695 				break;
2696 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2697 			ret = replay_one_dir_item(wc->trans, root, path,
2698 						  eb, i, &key);
2699 			if (ret)
2700 				break;
2701 		}
2702 	}
2703 	btrfs_free_path(path);
2704 	return ret;
2705 }
2706 
2707 /*
2708  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2709  */
2710 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2711 {
2712 	struct btrfs_block_group *cache;
2713 
2714 	cache = btrfs_lookup_block_group(fs_info, start);
2715 	if (!cache) {
2716 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2717 		return;
2718 	}
2719 
2720 	spin_lock(&cache->space_info->lock);
2721 	spin_lock(&cache->lock);
2722 	cache->reserved -= fs_info->nodesize;
2723 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2724 	spin_unlock(&cache->lock);
2725 	spin_unlock(&cache->space_info->lock);
2726 
2727 	btrfs_put_block_group(cache);
2728 }
2729 
2730 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2731 				   struct btrfs_root *root,
2732 				   struct btrfs_path *path, int *level,
2733 				   struct walk_control *wc)
2734 {
2735 	struct btrfs_fs_info *fs_info = root->fs_info;
2736 	u64 bytenr;
2737 	u64 ptr_gen;
2738 	struct extent_buffer *next;
2739 	struct extent_buffer *cur;
2740 	u32 blocksize;
2741 	int ret = 0;
2742 
2743 	while (*level > 0) {
2744 		struct btrfs_key first_key;
2745 
2746 		cur = path->nodes[*level];
2747 
2748 		WARN_ON(btrfs_header_level(cur) != *level);
2749 
2750 		if (path->slots[*level] >=
2751 		    btrfs_header_nritems(cur))
2752 			break;
2753 
2754 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2755 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2756 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2757 		blocksize = fs_info->nodesize;
2758 
2759 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2760 						    btrfs_header_owner(cur),
2761 						    *level - 1);
2762 		if (IS_ERR(next))
2763 			return PTR_ERR(next);
2764 
2765 		if (*level == 1) {
2766 			ret = wc->process_func(root, next, wc, ptr_gen,
2767 					       *level - 1);
2768 			if (ret) {
2769 				free_extent_buffer(next);
2770 				return ret;
2771 			}
2772 
2773 			path->slots[*level]++;
2774 			if (wc->free) {
2775 				ret = btrfs_read_buffer(next, ptr_gen,
2776 							*level - 1, &first_key);
2777 				if (ret) {
2778 					free_extent_buffer(next);
2779 					return ret;
2780 				}
2781 
2782 				if (trans) {
2783 					btrfs_tree_lock(next);
2784 					btrfs_clean_tree_block(next);
2785 					btrfs_wait_tree_block_writeback(next);
2786 					btrfs_tree_unlock(next);
2787 					ret = btrfs_pin_reserved_extent(trans,
2788 							bytenr, blocksize);
2789 					if (ret) {
2790 						free_extent_buffer(next);
2791 						return ret;
2792 					}
2793 					btrfs_redirty_list_add(
2794 						trans->transaction, next);
2795 				} else {
2796 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2797 						clear_extent_buffer_dirty(next);
2798 					unaccount_log_buffer(fs_info, bytenr);
2799 				}
2800 			}
2801 			free_extent_buffer(next);
2802 			continue;
2803 		}
2804 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2805 		if (ret) {
2806 			free_extent_buffer(next);
2807 			return ret;
2808 		}
2809 
2810 		if (path->nodes[*level-1])
2811 			free_extent_buffer(path->nodes[*level-1]);
2812 		path->nodes[*level-1] = next;
2813 		*level = btrfs_header_level(next);
2814 		path->slots[*level] = 0;
2815 		cond_resched();
2816 	}
2817 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2818 
2819 	cond_resched();
2820 	return 0;
2821 }
2822 
2823 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2824 				 struct btrfs_root *root,
2825 				 struct btrfs_path *path, int *level,
2826 				 struct walk_control *wc)
2827 {
2828 	struct btrfs_fs_info *fs_info = root->fs_info;
2829 	int i;
2830 	int slot;
2831 	int ret;
2832 
2833 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2834 		slot = path->slots[i];
2835 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2836 			path->slots[i]++;
2837 			*level = i;
2838 			WARN_ON(*level == 0);
2839 			return 0;
2840 		} else {
2841 			ret = wc->process_func(root, path->nodes[*level], wc,
2842 				 btrfs_header_generation(path->nodes[*level]),
2843 				 *level);
2844 			if (ret)
2845 				return ret;
2846 
2847 			if (wc->free) {
2848 				struct extent_buffer *next;
2849 
2850 				next = path->nodes[*level];
2851 
2852 				if (trans) {
2853 					btrfs_tree_lock(next);
2854 					btrfs_clean_tree_block(next);
2855 					btrfs_wait_tree_block_writeback(next);
2856 					btrfs_tree_unlock(next);
2857 					ret = btrfs_pin_reserved_extent(trans,
2858 						     path->nodes[*level]->start,
2859 						     path->nodes[*level]->len);
2860 					if (ret)
2861 						return ret;
2862 				} else {
2863 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2864 						clear_extent_buffer_dirty(next);
2865 
2866 					unaccount_log_buffer(fs_info,
2867 						path->nodes[*level]->start);
2868 				}
2869 			}
2870 			free_extent_buffer(path->nodes[*level]);
2871 			path->nodes[*level] = NULL;
2872 			*level = i + 1;
2873 		}
2874 	}
2875 	return 1;
2876 }
2877 
2878 /*
2879  * drop the reference count on the tree rooted at 'snap'.  This traverses
2880  * the tree freeing any blocks that have a ref count of zero after being
2881  * decremented.
2882  */
2883 static int walk_log_tree(struct btrfs_trans_handle *trans,
2884 			 struct btrfs_root *log, struct walk_control *wc)
2885 {
2886 	struct btrfs_fs_info *fs_info = log->fs_info;
2887 	int ret = 0;
2888 	int wret;
2889 	int level;
2890 	struct btrfs_path *path;
2891 	int orig_level;
2892 
2893 	path = btrfs_alloc_path();
2894 	if (!path)
2895 		return -ENOMEM;
2896 
2897 	level = btrfs_header_level(log->node);
2898 	orig_level = level;
2899 	path->nodes[level] = log->node;
2900 	atomic_inc(&log->node->refs);
2901 	path->slots[level] = 0;
2902 
2903 	while (1) {
2904 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2905 		if (wret > 0)
2906 			break;
2907 		if (wret < 0) {
2908 			ret = wret;
2909 			goto out;
2910 		}
2911 
2912 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2913 		if (wret > 0)
2914 			break;
2915 		if (wret < 0) {
2916 			ret = wret;
2917 			goto out;
2918 		}
2919 	}
2920 
2921 	/* was the root node processed? if not, catch it here */
2922 	if (path->nodes[orig_level]) {
2923 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2924 			 btrfs_header_generation(path->nodes[orig_level]),
2925 			 orig_level);
2926 		if (ret)
2927 			goto out;
2928 		if (wc->free) {
2929 			struct extent_buffer *next;
2930 
2931 			next = path->nodes[orig_level];
2932 
2933 			if (trans) {
2934 				btrfs_tree_lock(next);
2935 				btrfs_clean_tree_block(next);
2936 				btrfs_wait_tree_block_writeback(next);
2937 				btrfs_tree_unlock(next);
2938 				ret = btrfs_pin_reserved_extent(trans,
2939 						next->start, next->len);
2940 				if (ret)
2941 					goto out;
2942 			} else {
2943 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2944 					clear_extent_buffer_dirty(next);
2945 				unaccount_log_buffer(fs_info, next->start);
2946 			}
2947 		}
2948 	}
2949 
2950 out:
2951 	btrfs_free_path(path);
2952 	return ret;
2953 }
2954 
2955 /*
2956  * helper function to update the item for a given subvolumes log root
2957  * in the tree of log roots
2958  */
2959 static int update_log_root(struct btrfs_trans_handle *trans,
2960 			   struct btrfs_root *log,
2961 			   struct btrfs_root_item *root_item)
2962 {
2963 	struct btrfs_fs_info *fs_info = log->fs_info;
2964 	int ret;
2965 
2966 	if (log->log_transid == 1) {
2967 		/* insert root item on the first sync */
2968 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2969 				&log->root_key, root_item);
2970 	} else {
2971 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2972 				&log->root_key, root_item);
2973 	}
2974 	return ret;
2975 }
2976 
2977 static void wait_log_commit(struct btrfs_root *root, int transid)
2978 {
2979 	DEFINE_WAIT(wait);
2980 	int index = transid % 2;
2981 
2982 	/*
2983 	 * we only allow two pending log transactions at a time,
2984 	 * so we know that if ours is more than 2 older than the
2985 	 * current transaction, we're done
2986 	 */
2987 	for (;;) {
2988 		prepare_to_wait(&root->log_commit_wait[index],
2989 				&wait, TASK_UNINTERRUPTIBLE);
2990 
2991 		if (!(root->log_transid_committed < transid &&
2992 		      atomic_read(&root->log_commit[index])))
2993 			break;
2994 
2995 		mutex_unlock(&root->log_mutex);
2996 		schedule();
2997 		mutex_lock(&root->log_mutex);
2998 	}
2999 	finish_wait(&root->log_commit_wait[index], &wait);
3000 }
3001 
3002 static void wait_for_writer(struct btrfs_root *root)
3003 {
3004 	DEFINE_WAIT(wait);
3005 
3006 	for (;;) {
3007 		prepare_to_wait(&root->log_writer_wait, &wait,
3008 				TASK_UNINTERRUPTIBLE);
3009 		if (!atomic_read(&root->log_writers))
3010 			break;
3011 
3012 		mutex_unlock(&root->log_mutex);
3013 		schedule();
3014 		mutex_lock(&root->log_mutex);
3015 	}
3016 	finish_wait(&root->log_writer_wait, &wait);
3017 }
3018 
3019 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3020 					struct btrfs_log_ctx *ctx)
3021 {
3022 	if (!ctx)
3023 		return;
3024 
3025 	mutex_lock(&root->log_mutex);
3026 	list_del_init(&ctx->list);
3027 	mutex_unlock(&root->log_mutex);
3028 }
3029 
3030 /*
3031  * Invoked in log mutex context, or be sure there is no other task which
3032  * can access the list.
3033  */
3034 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3035 					     int index, int error)
3036 {
3037 	struct btrfs_log_ctx *ctx;
3038 	struct btrfs_log_ctx *safe;
3039 
3040 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3041 		list_del_init(&ctx->list);
3042 		ctx->log_ret = error;
3043 	}
3044 }
3045 
3046 /*
3047  * btrfs_sync_log does sends a given tree log down to the disk and
3048  * updates the super blocks to record it.  When this call is done,
3049  * you know that any inodes previously logged are safely on disk only
3050  * if it returns 0.
3051  *
3052  * Any other return value means you need to call btrfs_commit_transaction.
3053  * Some of the edge cases for fsyncing directories that have had unlinks
3054  * or renames done in the past mean that sometimes the only safe
3055  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3056  * that has happened.
3057  */
3058 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3059 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3060 {
3061 	int index1;
3062 	int index2;
3063 	int mark;
3064 	int ret;
3065 	struct btrfs_fs_info *fs_info = root->fs_info;
3066 	struct btrfs_root *log = root->log_root;
3067 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3068 	struct btrfs_root_item new_root_item;
3069 	int log_transid = 0;
3070 	struct btrfs_log_ctx root_log_ctx;
3071 	struct blk_plug plug;
3072 	u64 log_root_start;
3073 	u64 log_root_level;
3074 
3075 	mutex_lock(&root->log_mutex);
3076 	log_transid = ctx->log_transid;
3077 	if (root->log_transid_committed >= log_transid) {
3078 		mutex_unlock(&root->log_mutex);
3079 		return ctx->log_ret;
3080 	}
3081 
3082 	index1 = log_transid % 2;
3083 	if (atomic_read(&root->log_commit[index1])) {
3084 		wait_log_commit(root, log_transid);
3085 		mutex_unlock(&root->log_mutex);
3086 		return ctx->log_ret;
3087 	}
3088 	ASSERT(log_transid == root->log_transid);
3089 	atomic_set(&root->log_commit[index1], 1);
3090 
3091 	/* wait for previous tree log sync to complete */
3092 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3093 		wait_log_commit(root, log_transid - 1);
3094 
3095 	while (1) {
3096 		int batch = atomic_read(&root->log_batch);
3097 		/* when we're on an ssd, just kick the log commit out */
3098 		if (!btrfs_test_opt(fs_info, SSD) &&
3099 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3100 			mutex_unlock(&root->log_mutex);
3101 			schedule_timeout_uninterruptible(1);
3102 			mutex_lock(&root->log_mutex);
3103 		}
3104 		wait_for_writer(root);
3105 		if (batch == atomic_read(&root->log_batch))
3106 			break;
3107 	}
3108 
3109 	/* bail out if we need to do a full commit */
3110 	if (btrfs_need_log_full_commit(trans)) {
3111 		ret = -EAGAIN;
3112 		mutex_unlock(&root->log_mutex);
3113 		goto out;
3114 	}
3115 
3116 	if (log_transid % 2 == 0)
3117 		mark = EXTENT_DIRTY;
3118 	else
3119 		mark = EXTENT_NEW;
3120 
3121 	/* we start IO on  all the marked extents here, but we don't actually
3122 	 * wait for them until later.
3123 	 */
3124 	blk_start_plug(&plug);
3125 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3126 	/*
3127 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3128 	 *  commit, writes a dirty extent in this tree-log commit. This
3129 	 *  concurrent write will create a hole writing out the extents,
3130 	 *  and we cannot proceed on a zoned filesystem, requiring
3131 	 *  sequential writing. While we can bail out to a full commit
3132 	 *  here, but we can continue hoping the concurrent writing fills
3133 	 *  the hole.
3134 	 */
3135 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3136 		ret = 0;
3137 	if (ret) {
3138 		blk_finish_plug(&plug);
3139 		btrfs_abort_transaction(trans, ret);
3140 		btrfs_set_log_full_commit(trans);
3141 		mutex_unlock(&root->log_mutex);
3142 		goto out;
3143 	}
3144 
3145 	/*
3146 	 * We _must_ update under the root->log_mutex in order to make sure we
3147 	 * have a consistent view of the log root we are trying to commit at
3148 	 * this moment.
3149 	 *
3150 	 * We _must_ copy this into a local copy, because we are not holding the
3151 	 * log_root_tree->log_mutex yet.  This is important because when we
3152 	 * commit the log_root_tree we must have a consistent view of the
3153 	 * log_root_tree when we update the super block to point at the
3154 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3155 	 * with the commit and possibly point at the new block which we may not
3156 	 * have written out.
3157 	 */
3158 	btrfs_set_root_node(&log->root_item, log->node);
3159 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3160 
3161 	root->log_transid++;
3162 	log->log_transid = root->log_transid;
3163 	root->log_start_pid = 0;
3164 	/*
3165 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3166 	 * in their headers. new modifications of the log will be written to
3167 	 * new positions. so it's safe to allow log writers to go in.
3168 	 */
3169 	mutex_unlock(&root->log_mutex);
3170 
3171 	if (btrfs_is_zoned(fs_info)) {
3172 		mutex_lock(&fs_info->tree_root->log_mutex);
3173 		if (!log_root_tree->node) {
3174 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3175 			if (ret) {
3176 				mutex_unlock(&fs_info->tree_root->log_mutex);
3177 				goto out;
3178 			}
3179 		}
3180 		mutex_unlock(&fs_info->tree_root->log_mutex);
3181 	}
3182 
3183 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3184 
3185 	mutex_lock(&log_root_tree->log_mutex);
3186 
3187 	index2 = log_root_tree->log_transid % 2;
3188 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3189 	root_log_ctx.log_transid = log_root_tree->log_transid;
3190 
3191 	/*
3192 	 * Now we are safe to update the log_root_tree because we're under the
3193 	 * log_mutex, and we're a current writer so we're holding the commit
3194 	 * open until we drop the log_mutex.
3195 	 */
3196 	ret = update_log_root(trans, log, &new_root_item);
3197 	if (ret) {
3198 		if (!list_empty(&root_log_ctx.list))
3199 			list_del_init(&root_log_ctx.list);
3200 
3201 		blk_finish_plug(&plug);
3202 		btrfs_set_log_full_commit(trans);
3203 
3204 		if (ret != -ENOSPC) {
3205 			btrfs_abort_transaction(trans, ret);
3206 			mutex_unlock(&log_root_tree->log_mutex);
3207 			goto out;
3208 		}
3209 		btrfs_wait_tree_log_extents(log, mark);
3210 		mutex_unlock(&log_root_tree->log_mutex);
3211 		ret = -EAGAIN;
3212 		goto out;
3213 	}
3214 
3215 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3216 		blk_finish_plug(&plug);
3217 		list_del_init(&root_log_ctx.list);
3218 		mutex_unlock(&log_root_tree->log_mutex);
3219 		ret = root_log_ctx.log_ret;
3220 		goto out;
3221 	}
3222 
3223 	index2 = root_log_ctx.log_transid % 2;
3224 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3225 		blk_finish_plug(&plug);
3226 		ret = btrfs_wait_tree_log_extents(log, mark);
3227 		wait_log_commit(log_root_tree,
3228 				root_log_ctx.log_transid);
3229 		mutex_unlock(&log_root_tree->log_mutex);
3230 		if (!ret)
3231 			ret = root_log_ctx.log_ret;
3232 		goto out;
3233 	}
3234 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3235 	atomic_set(&log_root_tree->log_commit[index2], 1);
3236 
3237 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3238 		wait_log_commit(log_root_tree,
3239 				root_log_ctx.log_transid - 1);
3240 	}
3241 
3242 	/*
3243 	 * now that we've moved on to the tree of log tree roots,
3244 	 * check the full commit flag again
3245 	 */
3246 	if (btrfs_need_log_full_commit(trans)) {
3247 		blk_finish_plug(&plug);
3248 		btrfs_wait_tree_log_extents(log, mark);
3249 		mutex_unlock(&log_root_tree->log_mutex);
3250 		ret = -EAGAIN;
3251 		goto out_wake_log_root;
3252 	}
3253 
3254 	ret = btrfs_write_marked_extents(fs_info,
3255 					 &log_root_tree->dirty_log_pages,
3256 					 EXTENT_DIRTY | EXTENT_NEW);
3257 	blk_finish_plug(&plug);
3258 	/*
3259 	 * As described above, -EAGAIN indicates a hole in the extents. We
3260 	 * cannot wait for these write outs since the waiting cause a
3261 	 * deadlock. Bail out to the full commit instead.
3262 	 */
3263 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3264 		btrfs_set_log_full_commit(trans);
3265 		btrfs_wait_tree_log_extents(log, mark);
3266 		mutex_unlock(&log_root_tree->log_mutex);
3267 		goto out_wake_log_root;
3268 	} else if (ret) {
3269 		btrfs_set_log_full_commit(trans);
3270 		btrfs_abort_transaction(trans, ret);
3271 		mutex_unlock(&log_root_tree->log_mutex);
3272 		goto out_wake_log_root;
3273 	}
3274 	ret = btrfs_wait_tree_log_extents(log, mark);
3275 	if (!ret)
3276 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3277 						  EXTENT_NEW | EXTENT_DIRTY);
3278 	if (ret) {
3279 		btrfs_set_log_full_commit(trans);
3280 		mutex_unlock(&log_root_tree->log_mutex);
3281 		goto out_wake_log_root;
3282 	}
3283 
3284 	log_root_start = log_root_tree->node->start;
3285 	log_root_level = btrfs_header_level(log_root_tree->node);
3286 	log_root_tree->log_transid++;
3287 	mutex_unlock(&log_root_tree->log_mutex);
3288 
3289 	/*
3290 	 * Here we are guaranteed that nobody is going to write the superblock
3291 	 * for the current transaction before us and that neither we do write
3292 	 * our superblock before the previous transaction finishes its commit
3293 	 * and writes its superblock, because:
3294 	 *
3295 	 * 1) We are holding a handle on the current transaction, so no body
3296 	 *    can commit it until we release the handle;
3297 	 *
3298 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3299 	 *    if the previous transaction is still committing, and hasn't yet
3300 	 *    written its superblock, we wait for it to do it, because a
3301 	 *    transaction commit acquires the tree_log_mutex when the commit
3302 	 *    begins and releases it only after writing its superblock.
3303 	 */
3304 	mutex_lock(&fs_info->tree_log_mutex);
3305 
3306 	/*
3307 	 * The previous transaction writeout phase could have failed, and thus
3308 	 * marked the fs in an error state.  We must not commit here, as we
3309 	 * could have updated our generation in the super_for_commit and
3310 	 * writing the super here would result in transid mismatches.  If there
3311 	 * is an error here just bail.
3312 	 */
3313 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3314 		ret = -EIO;
3315 		btrfs_set_log_full_commit(trans);
3316 		btrfs_abort_transaction(trans, ret);
3317 		mutex_unlock(&fs_info->tree_log_mutex);
3318 		goto out_wake_log_root;
3319 	}
3320 
3321 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3322 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3323 	ret = write_all_supers(fs_info, 1);
3324 	mutex_unlock(&fs_info->tree_log_mutex);
3325 	if (ret) {
3326 		btrfs_set_log_full_commit(trans);
3327 		btrfs_abort_transaction(trans, ret);
3328 		goto out_wake_log_root;
3329 	}
3330 
3331 	/*
3332 	 * We know there can only be one task here, since we have not yet set
3333 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3334 	 * log must wait for the previous log transaction to commit if it's
3335 	 * still in progress or wait for the current log transaction commit if
3336 	 * someone else already started it. We use <= and not < because the
3337 	 * first log transaction has an ID of 0.
3338 	 */
3339 	ASSERT(root->last_log_commit <= log_transid);
3340 	root->last_log_commit = log_transid;
3341 
3342 out_wake_log_root:
3343 	mutex_lock(&log_root_tree->log_mutex);
3344 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3345 
3346 	log_root_tree->log_transid_committed++;
3347 	atomic_set(&log_root_tree->log_commit[index2], 0);
3348 	mutex_unlock(&log_root_tree->log_mutex);
3349 
3350 	/*
3351 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3352 	 * all the updates above are seen by the woken threads. It might not be
3353 	 * necessary, but proving that seems to be hard.
3354 	 */
3355 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3356 out:
3357 	mutex_lock(&root->log_mutex);
3358 	btrfs_remove_all_log_ctxs(root, index1, ret);
3359 	root->log_transid_committed++;
3360 	atomic_set(&root->log_commit[index1], 0);
3361 	mutex_unlock(&root->log_mutex);
3362 
3363 	/*
3364 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3365 	 * all the updates above are seen by the woken threads. It might not be
3366 	 * necessary, but proving that seems to be hard.
3367 	 */
3368 	cond_wake_up(&root->log_commit_wait[index1]);
3369 	return ret;
3370 }
3371 
3372 static void free_log_tree(struct btrfs_trans_handle *trans,
3373 			  struct btrfs_root *log)
3374 {
3375 	int ret;
3376 	struct walk_control wc = {
3377 		.free = 1,
3378 		.process_func = process_one_buffer
3379 	};
3380 
3381 	if (log->node) {
3382 		ret = walk_log_tree(trans, log, &wc);
3383 		if (ret) {
3384 			if (trans)
3385 				btrfs_abort_transaction(trans, ret);
3386 			else
3387 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3388 		}
3389 	}
3390 
3391 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3392 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3393 	extent_io_tree_release(&log->log_csum_range);
3394 
3395 	if (trans && log->node)
3396 		btrfs_redirty_list_add(trans->transaction, log->node);
3397 	btrfs_put_root(log);
3398 }
3399 
3400 /*
3401  * free all the extents used by the tree log.  This should be called
3402  * at commit time of the full transaction
3403  */
3404 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3405 {
3406 	if (root->log_root) {
3407 		free_log_tree(trans, root->log_root);
3408 		root->log_root = NULL;
3409 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3410 	}
3411 	return 0;
3412 }
3413 
3414 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3415 			     struct btrfs_fs_info *fs_info)
3416 {
3417 	if (fs_info->log_root_tree) {
3418 		free_log_tree(trans, fs_info->log_root_tree);
3419 		fs_info->log_root_tree = NULL;
3420 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3421 	}
3422 	return 0;
3423 }
3424 
3425 /*
3426  * Check if an inode was logged in the current transaction. This may often
3427  * return some false positives, because logged_trans is an in memory only field,
3428  * not persisted anywhere. This is meant to be used in contexts where a false
3429  * positive has no functional consequences.
3430  */
3431 static bool inode_logged(struct btrfs_trans_handle *trans,
3432 			 struct btrfs_inode *inode)
3433 {
3434 	if (inode->logged_trans == trans->transid)
3435 		return true;
3436 
3437 	/*
3438 	 * The inode's logged_trans is always 0 when we load it (because it is
3439 	 * not persisted in the inode item or elsewhere). So if it is 0, the
3440 	 * inode was last modified in the current transaction then the inode may
3441 	 * have been logged before in the current transaction, then evicted and
3442 	 * loaded again in the current transaction - or may have never been logged
3443 	 * in the current transaction, but since we can not be sure, we have to
3444 	 * assume it was, otherwise our callers can leave an inconsistent log.
3445 	 */
3446 	if (inode->logged_trans == 0 &&
3447 	    inode->last_trans == trans->transid &&
3448 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3449 		return true;
3450 
3451 	return false;
3452 }
3453 
3454 /*
3455  * If both a file and directory are logged, and unlinks or renames are
3456  * mixed in, we have a few interesting corners:
3457  *
3458  * create file X in dir Y
3459  * link file X to X.link in dir Y
3460  * fsync file X
3461  * unlink file X but leave X.link
3462  * fsync dir Y
3463  *
3464  * After a crash we would expect only X.link to exist.  But file X
3465  * didn't get fsync'd again so the log has back refs for X and X.link.
3466  *
3467  * We solve this by removing directory entries and inode backrefs from the
3468  * log when a file that was logged in the current transaction is
3469  * unlinked.  Any later fsync will include the updated log entries, and
3470  * we'll be able to reconstruct the proper directory items from backrefs.
3471  *
3472  * This optimizations allows us to avoid relogging the entire inode
3473  * or the entire directory.
3474  */
3475 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3476 				 struct btrfs_root *root,
3477 				 const char *name, int name_len,
3478 				 struct btrfs_inode *dir, u64 index)
3479 {
3480 	struct btrfs_root *log;
3481 	struct btrfs_dir_item *di;
3482 	struct btrfs_path *path;
3483 	int ret;
3484 	int err = 0;
3485 	u64 dir_ino = btrfs_ino(dir);
3486 
3487 	if (!inode_logged(trans, dir))
3488 		return 0;
3489 
3490 	ret = join_running_log_trans(root);
3491 	if (ret)
3492 		return 0;
3493 
3494 	mutex_lock(&dir->log_mutex);
3495 
3496 	log = root->log_root;
3497 	path = btrfs_alloc_path();
3498 	if (!path) {
3499 		err = -ENOMEM;
3500 		goto out_unlock;
3501 	}
3502 
3503 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3504 				   name, name_len, -1);
3505 	if (IS_ERR(di)) {
3506 		err = PTR_ERR(di);
3507 		goto fail;
3508 	}
3509 	if (di) {
3510 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3511 		if (ret) {
3512 			err = ret;
3513 			goto fail;
3514 		}
3515 	}
3516 	btrfs_release_path(path);
3517 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3518 					 index, name, name_len, -1);
3519 	if (IS_ERR(di)) {
3520 		err = PTR_ERR(di);
3521 		goto fail;
3522 	}
3523 	if (di) {
3524 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3525 		if (ret) {
3526 			err = ret;
3527 			goto fail;
3528 		}
3529 	}
3530 
3531 	/*
3532 	 * We do not need to update the size field of the directory's inode item
3533 	 * because on log replay we update the field to reflect all existing
3534 	 * entries in the directory (see overwrite_item()).
3535 	 */
3536 fail:
3537 	btrfs_free_path(path);
3538 out_unlock:
3539 	mutex_unlock(&dir->log_mutex);
3540 	if (err == -ENOSPC) {
3541 		btrfs_set_log_full_commit(trans);
3542 		err = 0;
3543 	} else if (err < 0 && err != -ENOENT) {
3544 		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3545 		btrfs_abort_transaction(trans, err);
3546 	}
3547 
3548 	btrfs_end_log_trans(root);
3549 
3550 	return err;
3551 }
3552 
3553 /* see comments for btrfs_del_dir_entries_in_log */
3554 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3555 			       struct btrfs_root *root,
3556 			       const char *name, int name_len,
3557 			       struct btrfs_inode *inode, u64 dirid)
3558 {
3559 	struct btrfs_root *log;
3560 	u64 index;
3561 	int ret;
3562 
3563 	if (!inode_logged(trans, inode))
3564 		return 0;
3565 
3566 	ret = join_running_log_trans(root);
3567 	if (ret)
3568 		return 0;
3569 	log = root->log_root;
3570 	mutex_lock(&inode->log_mutex);
3571 
3572 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3573 				  dirid, &index);
3574 	mutex_unlock(&inode->log_mutex);
3575 	if (ret == -ENOSPC) {
3576 		btrfs_set_log_full_commit(trans);
3577 		ret = 0;
3578 	} else if (ret < 0 && ret != -ENOENT)
3579 		btrfs_abort_transaction(trans, ret);
3580 	btrfs_end_log_trans(root);
3581 
3582 	return ret;
3583 }
3584 
3585 /*
3586  * creates a range item in the log for 'dirid'.  first_offset and
3587  * last_offset tell us which parts of the key space the log should
3588  * be considered authoritative for.
3589  */
3590 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3591 				       struct btrfs_root *log,
3592 				       struct btrfs_path *path,
3593 				       int key_type, u64 dirid,
3594 				       u64 first_offset, u64 last_offset)
3595 {
3596 	int ret;
3597 	struct btrfs_key key;
3598 	struct btrfs_dir_log_item *item;
3599 
3600 	key.objectid = dirid;
3601 	key.offset = first_offset;
3602 	if (key_type == BTRFS_DIR_ITEM_KEY)
3603 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3604 	else
3605 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3606 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3607 	if (ret)
3608 		return ret;
3609 
3610 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3611 			      struct btrfs_dir_log_item);
3612 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3613 	btrfs_mark_buffer_dirty(path->nodes[0]);
3614 	btrfs_release_path(path);
3615 	return 0;
3616 }
3617 
3618 /*
3619  * log all the items included in the current transaction for a given
3620  * directory.  This also creates the range items in the log tree required
3621  * to replay anything deleted before the fsync
3622  */
3623 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3624 			  struct btrfs_root *root, struct btrfs_inode *inode,
3625 			  struct btrfs_path *path,
3626 			  struct btrfs_path *dst_path, int key_type,
3627 			  struct btrfs_log_ctx *ctx,
3628 			  u64 min_offset, u64 *last_offset_ret)
3629 {
3630 	struct btrfs_key min_key;
3631 	struct btrfs_root *log = root->log_root;
3632 	struct extent_buffer *src;
3633 	int err = 0;
3634 	int ret;
3635 	int i;
3636 	int nritems;
3637 	u64 first_offset = min_offset;
3638 	u64 last_offset = (u64)-1;
3639 	u64 ino = btrfs_ino(inode);
3640 
3641 	log = root->log_root;
3642 
3643 	min_key.objectid = ino;
3644 	min_key.type = key_type;
3645 	min_key.offset = min_offset;
3646 
3647 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3648 
3649 	/*
3650 	 * we didn't find anything from this transaction, see if there
3651 	 * is anything at all
3652 	 */
3653 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3654 		min_key.objectid = ino;
3655 		min_key.type = key_type;
3656 		min_key.offset = (u64)-1;
3657 		btrfs_release_path(path);
3658 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3659 		if (ret < 0) {
3660 			btrfs_release_path(path);
3661 			return ret;
3662 		}
3663 		ret = btrfs_previous_item(root, path, ino, key_type);
3664 
3665 		/* if ret == 0 there are items for this type,
3666 		 * create a range to tell us the last key of this type.
3667 		 * otherwise, there are no items in this directory after
3668 		 * *min_offset, and we create a range to indicate that.
3669 		 */
3670 		if (ret == 0) {
3671 			struct btrfs_key tmp;
3672 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3673 					      path->slots[0]);
3674 			if (key_type == tmp.type)
3675 				first_offset = max(min_offset, tmp.offset) + 1;
3676 		}
3677 		goto done;
3678 	}
3679 
3680 	/* go backward to find any previous key */
3681 	ret = btrfs_previous_item(root, path, ino, key_type);
3682 	if (ret == 0) {
3683 		struct btrfs_key tmp;
3684 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3685 		if (key_type == tmp.type) {
3686 			first_offset = tmp.offset;
3687 			ret = overwrite_item(trans, log, dst_path,
3688 					     path->nodes[0], path->slots[0],
3689 					     &tmp);
3690 			if (ret) {
3691 				err = ret;
3692 				goto done;
3693 			}
3694 		}
3695 	}
3696 	btrfs_release_path(path);
3697 
3698 	/*
3699 	 * Find the first key from this transaction again.  See the note for
3700 	 * log_new_dir_dentries, if we're logging a directory recursively we
3701 	 * won't be holding its i_mutex, which means we can modify the directory
3702 	 * while we're logging it.  If we remove an entry between our first
3703 	 * search and this search we'll not find the key again and can just
3704 	 * bail.
3705 	 */
3706 search:
3707 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3708 	if (ret != 0)
3709 		goto done;
3710 
3711 	/*
3712 	 * we have a block from this transaction, log every item in it
3713 	 * from our directory
3714 	 */
3715 	while (1) {
3716 		struct btrfs_key tmp;
3717 		src = path->nodes[0];
3718 		nritems = btrfs_header_nritems(src);
3719 		for (i = path->slots[0]; i < nritems; i++) {
3720 			struct btrfs_dir_item *di;
3721 
3722 			btrfs_item_key_to_cpu(src, &min_key, i);
3723 
3724 			if (min_key.objectid != ino || min_key.type != key_type)
3725 				goto done;
3726 
3727 			if (need_resched()) {
3728 				btrfs_release_path(path);
3729 				cond_resched();
3730 				goto search;
3731 			}
3732 
3733 			ret = overwrite_item(trans, log, dst_path, src, i,
3734 					     &min_key);
3735 			if (ret) {
3736 				err = ret;
3737 				goto done;
3738 			}
3739 
3740 			/*
3741 			 * We must make sure that when we log a directory entry,
3742 			 * the corresponding inode, after log replay, has a
3743 			 * matching link count. For example:
3744 			 *
3745 			 * touch foo
3746 			 * mkdir mydir
3747 			 * sync
3748 			 * ln foo mydir/bar
3749 			 * xfs_io -c "fsync" mydir
3750 			 * <crash>
3751 			 * <mount fs and log replay>
3752 			 *
3753 			 * Would result in a fsync log that when replayed, our
3754 			 * file inode would have a link count of 1, but we get
3755 			 * two directory entries pointing to the same inode.
3756 			 * After removing one of the names, it would not be
3757 			 * possible to remove the other name, which resulted
3758 			 * always in stale file handle errors, and would not
3759 			 * be possible to rmdir the parent directory, since
3760 			 * its i_size could never decrement to the value
3761 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3762 			 */
3763 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3764 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3765 			if (ctx &&
3766 			    (btrfs_dir_transid(src, di) == trans->transid ||
3767 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3768 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3769 				ctx->log_new_dentries = true;
3770 		}
3771 		path->slots[0] = nritems;
3772 
3773 		/*
3774 		 * look ahead to the next item and see if it is also
3775 		 * from this directory and from this transaction
3776 		 */
3777 		ret = btrfs_next_leaf(root, path);
3778 		if (ret) {
3779 			if (ret == 1)
3780 				last_offset = (u64)-1;
3781 			else
3782 				err = ret;
3783 			goto done;
3784 		}
3785 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3786 		if (tmp.objectid != ino || tmp.type != key_type) {
3787 			last_offset = (u64)-1;
3788 			goto done;
3789 		}
3790 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3791 			ret = overwrite_item(trans, log, dst_path,
3792 					     path->nodes[0], path->slots[0],
3793 					     &tmp);
3794 			if (ret)
3795 				err = ret;
3796 			else
3797 				last_offset = tmp.offset;
3798 			goto done;
3799 		}
3800 	}
3801 done:
3802 	btrfs_release_path(path);
3803 	btrfs_release_path(dst_path);
3804 
3805 	if (err == 0) {
3806 		*last_offset_ret = last_offset;
3807 		/*
3808 		 * insert the log range keys to indicate where the log
3809 		 * is valid
3810 		 */
3811 		ret = insert_dir_log_key(trans, log, path, key_type,
3812 					 ino, first_offset, last_offset);
3813 		if (ret)
3814 			err = ret;
3815 	}
3816 	return err;
3817 }
3818 
3819 /*
3820  * logging directories is very similar to logging inodes, We find all the items
3821  * from the current transaction and write them to the log.
3822  *
3823  * The recovery code scans the directory in the subvolume, and if it finds a
3824  * key in the range logged that is not present in the log tree, then it means
3825  * that dir entry was unlinked during the transaction.
3826  *
3827  * In order for that scan to work, we must include one key smaller than
3828  * the smallest logged by this transaction and one key larger than the largest
3829  * key logged by this transaction.
3830  */
3831 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3832 			  struct btrfs_root *root, struct btrfs_inode *inode,
3833 			  struct btrfs_path *path,
3834 			  struct btrfs_path *dst_path,
3835 			  struct btrfs_log_ctx *ctx)
3836 {
3837 	u64 min_key;
3838 	u64 max_key;
3839 	int ret;
3840 	int key_type = BTRFS_DIR_ITEM_KEY;
3841 
3842 again:
3843 	min_key = 0;
3844 	max_key = 0;
3845 	while (1) {
3846 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3847 				ctx, min_key, &max_key);
3848 		if (ret)
3849 			return ret;
3850 		if (max_key == (u64)-1)
3851 			break;
3852 		min_key = max_key + 1;
3853 	}
3854 
3855 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3856 		key_type = BTRFS_DIR_INDEX_KEY;
3857 		goto again;
3858 	}
3859 	return 0;
3860 }
3861 
3862 /*
3863  * a helper function to drop items from the log before we relog an
3864  * inode.  max_key_type indicates the highest item type to remove.
3865  * This cannot be run for file data extents because it does not
3866  * free the extents they point to.
3867  */
3868 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3869 				  struct btrfs_root *log,
3870 				  struct btrfs_path *path,
3871 				  u64 objectid, int max_key_type)
3872 {
3873 	int ret;
3874 	struct btrfs_key key;
3875 	struct btrfs_key found_key;
3876 	int start_slot;
3877 
3878 	key.objectid = objectid;
3879 	key.type = max_key_type;
3880 	key.offset = (u64)-1;
3881 
3882 	while (1) {
3883 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3884 		BUG_ON(ret == 0); /* Logic error */
3885 		if (ret < 0)
3886 			break;
3887 
3888 		if (path->slots[0] == 0)
3889 			break;
3890 
3891 		path->slots[0]--;
3892 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3893 				      path->slots[0]);
3894 
3895 		if (found_key.objectid != objectid)
3896 			break;
3897 
3898 		found_key.offset = 0;
3899 		found_key.type = 0;
3900 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3901 		if (ret < 0)
3902 			break;
3903 
3904 		ret = btrfs_del_items(trans, log, path, start_slot,
3905 				      path->slots[0] - start_slot + 1);
3906 		/*
3907 		 * If start slot isn't 0 then we don't need to re-search, we've
3908 		 * found the last guy with the objectid in this tree.
3909 		 */
3910 		if (ret || start_slot != 0)
3911 			break;
3912 		btrfs_release_path(path);
3913 	}
3914 	btrfs_release_path(path);
3915 	if (ret > 0)
3916 		ret = 0;
3917 	return ret;
3918 }
3919 
3920 static void fill_inode_item(struct btrfs_trans_handle *trans,
3921 			    struct extent_buffer *leaf,
3922 			    struct btrfs_inode_item *item,
3923 			    struct inode *inode, int log_inode_only,
3924 			    u64 logged_isize)
3925 {
3926 	struct btrfs_map_token token;
3927 	u64 flags;
3928 
3929 	btrfs_init_map_token(&token, leaf);
3930 
3931 	if (log_inode_only) {
3932 		/* set the generation to zero so the recover code
3933 		 * can tell the difference between an logging
3934 		 * just to say 'this inode exists' and a logging
3935 		 * to say 'update this inode with these values'
3936 		 */
3937 		btrfs_set_token_inode_generation(&token, item, 0);
3938 		btrfs_set_token_inode_size(&token, item, logged_isize);
3939 	} else {
3940 		btrfs_set_token_inode_generation(&token, item,
3941 						 BTRFS_I(inode)->generation);
3942 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3943 	}
3944 
3945 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3946 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3947 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3948 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3949 
3950 	btrfs_set_token_timespec_sec(&token, &item->atime,
3951 				     inode->i_atime.tv_sec);
3952 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3953 				      inode->i_atime.tv_nsec);
3954 
3955 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3956 				     inode->i_mtime.tv_sec);
3957 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3958 				      inode->i_mtime.tv_nsec);
3959 
3960 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3961 				     inode->i_ctime.tv_sec);
3962 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3963 				      inode->i_ctime.tv_nsec);
3964 
3965 	/*
3966 	 * We do not need to set the nbytes field, in fact during a fast fsync
3967 	 * its value may not even be correct, since a fast fsync does not wait
3968 	 * for ordered extent completion, which is where we update nbytes, it
3969 	 * only waits for writeback to complete. During log replay as we find
3970 	 * file extent items and replay them, we adjust the nbytes field of the
3971 	 * inode item in subvolume tree as needed (see overwrite_item()).
3972 	 */
3973 
3974 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3975 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3976 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3977 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3978 					  BTRFS_I(inode)->ro_flags);
3979 	btrfs_set_token_inode_flags(&token, item, flags);
3980 	btrfs_set_token_inode_block_group(&token, item, 0);
3981 }
3982 
3983 static int log_inode_item(struct btrfs_trans_handle *trans,
3984 			  struct btrfs_root *log, struct btrfs_path *path,
3985 			  struct btrfs_inode *inode, bool inode_item_dropped)
3986 {
3987 	struct btrfs_inode_item *inode_item;
3988 	int ret;
3989 
3990 	/*
3991 	 * If we are doing a fast fsync and the inode was logged before in the
3992 	 * current transaction, then we know the inode was previously logged and
3993 	 * it exists in the log tree. For performance reasons, in this case use
3994 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
3995 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
3996 	 * contention in case there are concurrent fsyncs for other inodes of the
3997 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
3998 	 * already exists can also result in unnecessarily splitting a leaf.
3999 	 */
4000 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4001 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4002 		ASSERT(ret <= 0);
4003 		if (ret > 0)
4004 			ret = -ENOENT;
4005 	} else {
4006 		/*
4007 		 * This means it is the first fsync in the current transaction,
4008 		 * so the inode item is not in the log and we need to insert it.
4009 		 * We can never get -EEXIST because we are only called for a fast
4010 		 * fsync and in case an inode eviction happens after the inode was
4011 		 * logged before in the current transaction, when we load again
4012 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4013 		 * flags and set ->logged_trans to 0.
4014 		 */
4015 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4016 					      sizeof(*inode_item));
4017 		ASSERT(ret != -EEXIST);
4018 	}
4019 	if (ret)
4020 		return ret;
4021 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4022 				    struct btrfs_inode_item);
4023 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4024 			0, 0);
4025 	btrfs_release_path(path);
4026 	return 0;
4027 }
4028 
4029 static int log_csums(struct btrfs_trans_handle *trans,
4030 		     struct btrfs_inode *inode,
4031 		     struct btrfs_root *log_root,
4032 		     struct btrfs_ordered_sum *sums)
4033 {
4034 	const u64 lock_end = sums->bytenr + sums->len - 1;
4035 	struct extent_state *cached_state = NULL;
4036 	int ret;
4037 
4038 	/*
4039 	 * If this inode was not used for reflink operations in the current
4040 	 * transaction with new extents, then do the fast path, no need to
4041 	 * worry about logging checksum items with overlapping ranges.
4042 	 */
4043 	if (inode->last_reflink_trans < trans->transid)
4044 		return btrfs_csum_file_blocks(trans, log_root, sums);
4045 
4046 	/*
4047 	 * Serialize logging for checksums. This is to avoid racing with the
4048 	 * same checksum being logged by another task that is logging another
4049 	 * file which happens to refer to the same extent as well. Such races
4050 	 * can leave checksum items in the log with overlapping ranges.
4051 	 */
4052 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4053 			       lock_end, &cached_state);
4054 	if (ret)
4055 		return ret;
4056 	/*
4057 	 * Due to extent cloning, we might have logged a csum item that covers a
4058 	 * subrange of a cloned extent, and later we can end up logging a csum
4059 	 * item for a larger subrange of the same extent or the entire range.
4060 	 * This would leave csum items in the log tree that cover the same range
4061 	 * and break the searches for checksums in the log tree, resulting in
4062 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4063 	 * trim and adjust) any existing csum items in the log for this range.
4064 	 */
4065 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4066 	if (!ret)
4067 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4068 
4069 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4070 			     &cached_state);
4071 
4072 	return ret;
4073 }
4074 
4075 static noinline int copy_items(struct btrfs_trans_handle *trans,
4076 			       struct btrfs_inode *inode,
4077 			       struct btrfs_path *dst_path,
4078 			       struct btrfs_path *src_path,
4079 			       int start_slot, int nr, int inode_only,
4080 			       u64 logged_isize)
4081 {
4082 	struct btrfs_fs_info *fs_info = trans->fs_info;
4083 	unsigned long src_offset;
4084 	unsigned long dst_offset;
4085 	struct btrfs_root *log = inode->root->log_root;
4086 	struct btrfs_file_extent_item *extent;
4087 	struct btrfs_inode_item *inode_item;
4088 	struct extent_buffer *src = src_path->nodes[0];
4089 	int ret;
4090 	struct btrfs_key *ins_keys;
4091 	u32 *ins_sizes;
4092 	char *ins_data;
4093 	int i;
4094 	struct list_head ordered_sums;
4095 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4096 
4097 	INIT_LIST_HEAD(&ordered_sums);
4098 
4099 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4100 			   nr * sizeof(u32), GFP_NOFS);
4101 	if (!ins_data)
4102 		return -ENOMEM;
4103 
4104 	ins_sizes = (u32 *)ins_data;
4105 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4106 
4107 	for (i = 0; i < nr; i++) {
4108 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4109 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4110 	}
4111 	ret = btrfs_insert_empty_items(trans, log, dst_path,
4112 				       ins_keys, ins_sizes, nr);
4113 	if (ret) {
4114 		kfree(ins_data);
4115 		return ret;
4116 	}
4117 
4118 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4119 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4120 						   dst_path->slots[0]);
4121 
4122 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4123 
4124 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4125 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4126 						    dst_path->slots[0],
4127 						    struct btrfs_inode_item);
4128 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4129 					&inode->vfs_inode,
4130 					inode_only == LOG_INODE_EXISTS,
4131 					logged_isize);
4132 		} else {
4133 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4134 					   src_offset, ins_sizes[i]);
4135 		}
4136 
4137 		/* take a reference on file data extents so that truncates
4138 		 * or deletes of this inode don't have to relog the inode
4139 		 * again
4140 		 */
4141 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4142 		    !skip_csum) {
4143 			int found_type;
4144 			extent = btrfs_item_ptr(src, start_slot + i,
4145 						struct btrfs_file_extent_item);
4146 
4147 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4148 				continue;
4149 
4150 			found_type = btrfs_file_extent_type(src, extent);
4151 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4152 				u64 ds, dl, cs, cl;
4153 				ds = btrfs_file_extent_disk_bytenr(src,
4154 								extent);
4155 				/* ds == 0 is a hole */
4156 				if (ds == 0)
4157 					continue;
4158 
4159 				dl = btrfs_file_extent_disk_num_bytes(src,
4160 								extent);
4161 				cs = btrfs_file_extent_offset(src, extent);
4162 				cl = btrfs_file_extent_num_bytes(src,
4163 								extent);
4164 				if (btrfs_file_extent_compression(src,
4165 								  extent)) {
4166 					cs = 0;
4167 					cl = dl;
4168 				}
4169 
4170 				ret = btrfs_lookup_csums_range(
4171 						fs_info->csum_root,
4172 						ds + cs, ds + cs + cl - 1,
4173 						&ordered_sums, 0);
4174 				if (ret)
4175 					break;
4176 			}
4177 		}
4178 	}
4179 
4180 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4181 	btrfs_release_path(dst_path);
4182 	kfree(ins_data);
4183 
4184 	/*
4185 	 * we have to do this after the loop above to avoid changing the
4186 	 * log tree while trying to change the log tree.
4187 	 */
4188 	while (!list_empty(&ordered_sums)) {
4189 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4190 						   struct btrfs_ordered_sum,
4191 						   list);
4192 		if (!ret)
4193 			ret = log_csums(trans, inode, log, sums);
4194 		list_del(&sums->list);
4195 		kfree(sums);
4196 	}
4197 
4198 	return ret;
4199 }
4200 
4201 static int extent_cmp(void *priv, const struct list_head *a,
4202 		      const struct list_head *b)
4203 {
4204 	const struct extent_map *em1, *em2;
4205 
4206 	em1 = list_entry(a, struct extent_map, list);
4207 	em2 = list_entry(b, struct extent_map, list);
4208 
4209 	if (em1->start < em2->start)
4210 		return -1;
4211 	else if (em1->start > em2->start)
4212 		return 1;
4213 	return 0;
4214 }
4215 
4216 static int log_extent_csums(struct btrfs_trans_handle *trans,
4217 			    struct btrfs_inode *inode,
4218 			    struct btrfs_root *log_root,
4219 			    const struct extent_map *em,
4220 			    struct btrfs_log_ctx *ctx)
4221 {
4222 	struct btrfs_ordered_extent *ordered;
4223 	u64 csum_offset;
4224 	u64 csum_len;
4225 	u64 mod_start = em->mod_start;
4226 	u64 mod_len = em->mod_len;
4227 	LIST_HEAD(ordered_sums);
4228 	int ret = 0;
4229 
4230 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4231 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4232 	    em->block_start == EXTENT_MAP_HOLE)
4233 		return 0;
4234 
4235 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4236 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4237 		const u64 mod_end = mod_start + mod_len;
4238 		struct btrfs_ordered_sum *sums;
4239 
4240 		if (mod_len == 0)
4241 			break;
4242 
4243 		if (ordered_end <= mod_start)
4244 			continue;
4245 		if (mod_end <= ordered->file_offset)
4246 			break;
4247 
4248 		/*
4249 		 * We are going to copy all the csums on this ordered extent, so
4250 		 * go ahead and adjust mod_start and mod_len in case this ordered
4251 		 * extent has already been logged.
4252 		 */
4253 		if (ordered->file_offset > mod_start) {
4254 			if (ordered_end >= mod_end)
4255 				mod_len = ordered->file_offset - mod_start;
4256 			/*
4257 			 * If we have this case
4258 			 *
4259 			 * |--------- logged extent ---------|
4260 			 *       |----- ordered extent ----|
4261 			 *
4262 			 * Just don't mess with mod_start and mod_len, we'll
4263 			 * just end up logging more csums than we need and it
4264 			 * will be ok.
4265 			 */
4266 		} else {
4267 			if (ordered_end < mod_end) {
4268 				mod_len = mod_end - ordered_end;
4269 				mod_start = ordered_end;
4270 			} else {
4271 				mod_len = 0;
4272 			}
4273 		}
4274 
4275 		/*
4276 		 * To keep us from looping for the above case of an ordered
4277 		 * extent that falls inside of the logged extent.
4278 		 */
4279 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4280 			continue;
4281 
4282 		list_for_each_entry(sums, &ordered->list, list) {
4283 			ret = log_csums(trans, inode, log_root, sums);
4284 			if (ret)
4285 				return ret;
4286 		}
4287 	}
4288 
4289 	/* We're done, found all csums in the ordered extents. */
4290 	if (mod_len == 0)
4291 		return 0;
4292 
4293 	/* If we're compressed we have to save the entire range of csums. */
4294 	if (em->compress_type) {
4295 		csum_offset = 0;
4296 		csum_len = max(em->block_len, em->orig_block_len);
4297 	} else {
4298 		csum_offset = mod_start - em->start;
4299 		csum_len = mod_len;
4300 	}
4301 
4302 	/* block start is already adjusted for the file extent offset. */
4303 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4304 				       em->block_start + csum_offset,
4305 				       em->block_start + csum_offset +
4306 				       csum_len - 1, &ordered_sums, 0);
4307 	if (ret)
4308 		return ret;
4309 
4310 	while (!list_empty(&ordered_sums)) {
4311 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4312 						   struct btrfs_ordered_sum,
4313 						   list);
4314 		if (!ret)
4315 			ret = log_csums(trans, inode, log_root, sums);
4316 		list_del(&sums->list);
4317 		kfree(sums);
4318 	}
4319 
4320 	return ret;
4321 }
4322 
4323 static int log_one_extent(struct btrfs_trans_handle *trans,
4324 			  struct btrfs_inode *inode, struct btrfs_root *root,
4325 			  const struct extent_map *em,
4326 			  struct btrfs_path *path,
4327 			  struct btrfs_log_ctx *ctx)
4328 {
4329 	struct btrfs_drop_extents_args drop_args = { 0 };
4330 	struct btrfs_root *log = root->log_root;
4331 	struct btrfs_file_extent_item *fi;
4332 	struct extent_buffer *leaf;
4333 	struct btrfs_map_token token;
4334 	struct btrfs_key key;
4335 	u64 extent_offset = em->start - em->orig_start;
4336 	u64 block_len;
4337 	int ret;
4338 
4339 	ret = log_extent_csums(trans, inode, log, em, ctx);
4340 	if (ret)
4341 		return ret;
4342 
4343 	drop_args.path = path;
4344 	drop_args.start = em->start;
4345 	drop_args.end = em->start + em->len;
4346 	drop_args.replace_extent = true;
4347 	drop_args.extent_item_size = sizeof(*fi);
4348 	ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4349 	if (ret)
4350 		return ret;
4351 
4352 	if (!drop_args.extent_inserted) {
4353 		key.objectid = btrfs_ino(inode);
4354 		key.type = BTRFS_EXTENT_DATA_KEY;
4355 		key.offset = em->start;
4356 
4357 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4358 					      sizeof(*fi));
4359 		if (ret)
4360 			return ret;
4361 	}
4362 	leaf = path->nodes[0];
4363 	btrfs_init_map_token(&token, leaf);
4364 	fi = btrfs_item_ptr(leaf, path->slots[0],
4365 			    struct btrfs_file_extent_item);
4366 
4367 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4368 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4369 		btrfs_set_token_file_extent_type(&token, fi,
4370 						 BTRFS_FILE_EXTENT_PREALLOC);
4371 	else
4372 		btrfs_set_token_file_extent_type(&token, fi,
4373 						 BTRFS_FILE_EXTENT_REG);
4374 
4375 	block_len = max(em->block_len, em->orig_block_len);
4376 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4377 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4378 							em->block_start);
4379 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4380 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4381 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4382 							em->block_start -
4383 							extent_offset);
4384 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4385 	} else {
4386 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4387 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4388 	}
4389 
4390 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4391 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4392 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4393 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4394 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4395 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4396 	btrfs_mark_buffer_dirty(leaf);
4397 
4398 	btrfs_release_path(path);
4399 
4400 	return ret;
4401 }
4402 
4403 /*
4404  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4405  * lose them after doing a fast fsync and replaying the log. We scan the
4406  * subvolume's root instead of iterating the inode's extent map tree because
4407  * otherwise we can log incorrect extent items based on extent map conversion.
4408  * That can happen due to the fact that extent maps are merged when they
4409  * are not in the extent map tree's list of modified extents.
4410  */
4411 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4412 				      struct btrfs_inode *inode,
4413 				      struct btrfs_path *path)
4414 {
4415 	struct btrfs_root *root = inode->root;
4416 	struct btrfs_key key;
4417 	const u64 i_size = i_size_read(&inode->vfs_inode);
4418 	const u64 ino = btrfs_ino(inode);
4419 	struct btrfs_path *dst_path = NULL;
4420 	bool dropped_extents = false;
4421 	u64 truncate_offset = i_size;
4422 	struct extent_buffer *leaf;
4423 	int slot;
4424 	int ins_nr = 0;
4425 	int start_slot;
4426 	int ret;
4427 
4428 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4429 		return 0;
4430 
4431 	key.objectid = ino;
4432 	key.type = BTRFS_EXTENT_DATA_KEY;
4433 	key.offset = i_size;
4434 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4435 	if (ret < 0)
4436 		goto out;
4437 
4438 	/*
4439 	 * We must check if there is a prealloc extent that starts before the
4440 	 * i_size and crosses the i_size boundary. This is to ensure later we
4441 	 * truncate down to the end of that extent and not to the i_size, as
4442 	 * otherwise we end up losing part of the prealloc extent after a log
4443 	 * replay and with an implicit hole if there is another prealloc extent
4444 	 * that starts at an offset beyond i_size.
4445 	 */
4446 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4447 	if (ret < 0)
4448 		goto out;
4449 
4450 	if (ret == 0) {
4451 		struct btrfs_file_extent_item *ei;
4452 
4453 		leaf = path->nodes[0];
4454 		slot = path->slots[0];
4455 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4456 
4457 		if (btrfs_file_extent_type(leaf, ei) ==
4458 		    BTRFS_FILE_EXTENT_PREALLOC) {
4459 			u64 extent_end;
4460 
4461 			btrfs_item_key_to_cpu(leaf, &key, slot);
4462 			extent_end = key.offset +
4463 				btrfs_file_extent_num_bytes(leaf, ei);
4464 
4465 			if (extent_end > i_size)
4466 				truncate_offset = extent_end;
4467 		}
4468 	} else {
4469 		ret = 0;
4470 	}
4471 
4472 	while (true) {
4473 		leaf = path->nodes[0];
4474 		slot = path->slots[0];
4475 
4476 		if (slot >= btrfs_header_nritems(leaf)) {
4477 			if (ins_nr > 0) {
4478 				ret = copy_items(trans, inode, dst_path, path,
4479 						 start_slot, ins_nr, 1, 0);
4480 				if (ret < 0)
4481 					goto out;
4482 				ins_nr = 0;
4483 			}
4484 			ret = btrfs_next_leaf(root, path);
4485 			if (ret < 0)
4486 				goto out;
4487 			if (ret > 0) {
4488 				ret = 0;
4489 				break;
4490 			}
4491 			continue;
4492 		}
4493 
4494 		btrfs_item_key_to_cpu(leaf, &key, slot);
4495 		if (key.objectid > ino)
4496 			break;
4497 		if (WARN_ON_ONCE(key.objectid < ino) ||
4498 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4499 		    key.offset < i_size) {
4500 			path->slots[0]++;
4501 			continue;
4502 		}
4503 		if (!dropped_extents) {
4504 			/*
4505 			 * Avoid logging extent items logged in past fsync calls
4506 			 * and leading to duplicate keys in the log tree.
4507 			 */
4508 			do {
4509 				ret = btrfs_truncate_inode_items(trans,
4510 							 root->log_root,
4511 							 inode, truncate_offset,
4512 							 BTRFS_EXTENT_DATA_KEY,
4513 							 NULL);
4514 			} while (ret == -EAGAIN);
4515 			if (ret)
4516 				goto out;
4517 			dropped_extents = true;
4518 		}
4519 		if (ins_nr == 0)
4520 			start_slot = slot;
4521 		ins_nr++;
4522 		path->slots[0]++;
4523 		if (!dst_path) {
4524 			dst_path = btrfs_alloc_path();
4525 			if (!dst_path) {
4526 				ret = -ENOMEM;
4527 				goto out;
4528 			}
4529 		}
4530 	}
4531 	if (ins_nr > 0)
4532 		ret = copy_items(trans, inode, dst_path, path,
4533 				 start_slot, ins_nr, 1, 0);
4534 out:
4535 	btrfs_release_path(path);
4536 	btrfs_free_path(dst_path);
4537 	return ret;
4538 }
4539 
4540 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4541 				     struct btrfs_root *root,
4542 				     struct btrfs_inode *inode,
4543 				     struct btrfs_path *path,
4544 				     struct btrfs_log_ctx *ctx)
4545 {
4546 	struct btrfs_ordered_extent *ordered;
4547 	struct btrfs_ordered_extent *tmp;
4548 	struct extent_map *em, *n;
4549 	struct list_head extents;
4550 	struct extent_map_tree *tree = &inode->extent_tree;
4551 	int ret = 0;
4552 	int num = 0;
4553 
4554 	INIT_LIST_HEAD(&extents);
4555 
4556 	write_lock(&tree->lock);
4557 
4558 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4559 		list_del_init(&em->list);
4560 		/*
4561 		 * Just an arbitrary number, this can be really CPU intensive
4562 		 * once we start getting a lot of extents, and really once we
4563 		 * have a bunch of extents we just want to commit since it will
4564 		 * be faster.
4565 		 */
4566 		if (++num > 32768) {
4567 			list_del_init(&tree->modified_extents);
4568 			ret = -EFBIG;
4569 			goto process;
4570 		}
4571 
4572 		if (em->generation < trans->transid)
4573 			continue;
4574 
4575 		/* We log prealloc extents beyond eof later. */
4576 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4577 		    em->start >= i_size_read(&inode->vfs_inode))
4578 			continue;
4579 
4580 		/* Need a ref to keep it from getting evicted from cache */
4581 		refcount_inc(&em->refs);
4582 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4583 		list_add_tail(&em->list, &extents);
4584 		num++;
4585 	}
4586 
4587 	list_sort(NULL, &extents, extent_cmp);
4588 process:
4589 	while (!list_empty(&extents)) {
4590 		em = list_entry(extents.next, struct extent_map, list);
4591 
4592 		list_del_init(&em->list);
4593 
4594 		/*
4595 		 * If we had an error we just need to delete everybody from our
4596 		 * private list.
4597 		 */
4598 		if (ret) {
4599 			clear_em_logging(tree, em);
4600 			free_extent_map(em);
4601 			continue;
4602 		}
4603 
4604 		write_unlock(&tree->lock);
4605 
4606 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4607 		write_lock(&tree->lock);
4608 		clear_em_logging(tree, em);
4609 		free_extent_map(em);
4610 	}
4611 	WARN_ON(!list_empty(&extents));
4612 	write_unlock(&tree->lock);
4613 
4614 	btrfs_release_path(path);
4615 	if (!ret)
4616 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4617 	if (ret)
4618 		return ret;
4619 
4620 	/*
4621 	 * We have logged all extents successfully, now make sure the commit of
4622 	 * the current transaction waits for the ordered extents to complete
4623 	 * before it commits and wipes out the log trees, otherwise we would
4624 	 * lose data if an ordered extents completes after the transaction
4625 	 * commits and a power failure happens after the transaction commit.
4626 	 */
4627 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4628 		list_del_init(&ordered->log_list);
4629 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4630 
4631 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4632 			spin_lock_irq(&inode->ordered_tree.lock);
4633 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4634 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4635 				atomic_inc(&trans->transaction->pending_ordered);
4636 			}
4637 			spin_unlock_irq(&inode->ordered_tree.lock);
4638 		}
4639 		btrfs_put_ordered_extent(ordered);
4640 	}
4641 
4642 	return 0;
4643 }
4644 
4645 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4646 			     struct btrfs_path *path, u64 *size_ret)
4647 {
4648 	struct btrfs_key key;
4649 	int ret;
4650 
4651 	key.objectid = btrfs_ino(inode);
4652 	key.type = BTRFS_INODE_ITEM_KEY;
4653 	key.offset = 0;
4654 
4655 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4656 	if (ret < 0) {
4657 		return ret;
4658 	} else if (ret > 0) {
4659 		*size_ret = 0;
4660 	} else {
4661 		struct btrfs_inode_item *item;
4662 
4663 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4664 				      struct btrfs_inode_item);
4665 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4666 		/*
4667 		 * If the in-memory inode's i_size is smaller then the inode
4668 		 * size stored in the btree, return the inode's i_size, so
4669 		 * that we get a correct inode size after replaying the log
4670 		 * when before a power failure we had a shrinking truncate
4671 		 * followed by addition of a new name (rename / new hard link).
4672 		 * Otherwise return the inode size from the btree, to avoid
4673 		 * data loss when replaying a log due to previously doing a
4674 		 * write that expands the inode's size and logging a new name
4675 		 * immediately after.
4676 		 */
4677 		if (*size_ret > inode->vfs_inode.i_size)
4678 			*size_ret = inode->vfs_inode.i_size;
4679 	}
4680 
4681 	btrfs_release_path(path);
4682 	return 0;
4683 }
4684 
4685 /*
4686  * At the moment we always log all xattrs. This is to figure out at log replay
4687  * time which xattrs must have their deletion replayed. If a xattr is missing
4688  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4689  * because if a xattr is deleted, the inode is fsynced and a power failure
4690  * happens, causing the log to be replayed the next time the fs is mounted,
4691  * we want the xattr to not exist anymore (same behaviour as other filesystems
4692  * with a journal, ext3/4, xfs, f2fs, etc).
4693  */
4694 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4695 				struct btrfs_root *root,
4696 				struct btrfs_inode *inode,
4697 				struct btrfs_path *path,
4698 				struct btrfs_path *dst_path)
4699 {
4700 	int ret;
4701 	struct btrfs_key key;
4702 	const u64 ino = btrfs_ino(inode);
4703 	int ins_nr = 0;
4704 	int start_slot = 0;
4705 	bool found_xattrs = false;
4706 
4707 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4708 		return 0;
4709 
4710 	key.objectid = ino;
4711 	key.type = BTRFS_XATTR_ITEM_KEY;
4712 	key.offset = 0;
4713 
4714 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4715 	if (ret < 0)
4716 		return ret;
4717 
4718 	while (true) {
4719 		int slot = path->slots[0];
4720 		struct extent_buffer *leaf = path->nodes[0];
4721 		int nritems = btrfs_header_nritems(leaf);
4722 
4723 		if (slot >= nritems) {
4724 			if (ins_nr > 0) {
4725 				ret = copy_items(trans, inode, dst_path, path,
4726 						 start_slot, ins_nr, 1, 0);
4727 				if (ret < 0)
4728 					return ret;
4729 				ins_nr = 0;
4730 			}
4731 			ret = btrfs_next_leaf(root, path);
4732 			if (ret < 0)
4733 				return ret;
4734 			else if (ret > 0)
4735 				break;
4736 			continue;
4737 		}
4738 
4739 		btrfs_item_key_to_cpu(leaf, &key, slot);
4740 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4741 			break;
4742 
4743 		if (ins_nr == 0)
4744 			start_slot = slot;
4745 		ins_nr++;
4746 		path->slots[0]++;
4747 		found_xattrs = true;
4748 		cond_resched();
4749 	}
4750 	if (ins_nr > 0) {
4751 		ret = copy_items(trans, inode, dst_path, path,
4752 				 start_slot, ins_nr, 1, 0);
4753 		if (ret < 0)
4754 			return ret;
4755 	}
4756 
4757 	if (!found_xattrs)
4758 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4759 
4760 	return 0;
4761 }
4762 
4763 /*
4764  * When using the NO_HOLES feature if we punched a hole that causes the
4765  * deletion of entire leafs or all the extent items of the first leaf (the one
4766  * that contains the inode item and references) we may end up not processing
4767  * any extents, because there are no leafs with a generation matching the
4768  * current transaction that have extent items for our inode. So we need to find
4769  * if any holes exist and then log them. We also need to log holes after any
4770  * truncate operation that changes the inode's size.
4771  */
4772 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4773 			   struct btrfs_root *root,
4774 			   struct btrfs_inode *inode,
4775 			   struct btrfs_path *path)
4776 {
4777 	struct btrfs_fs_info *fs_info = root->fs_info;
4778 	struct btrfs_key key;
4779 	const u64 ino = btrfs_ino(inode);
4780 	const u64 i_size = i_size_read(&inode->vfs_inode);
4781 	u64 prev_extent_end = 0;
4782 	int ret;
4783 
4784 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4785 		return 0;
4786 
4787 	key.objectid = ino;
4788 	key.type = BTRFS_EXTENT_DATA_KEY;
4789 	key.offset = 0;
4790 
4791 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4792 	if (ret < 0)
4793 		return ret;
4794 
4795 	while (true) {
4796 		struct extent_buffer *leaf = path->nodes[0];
4797 
4798 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4799 			ret = btrfs_next_leaf(root, path);
4800 			if (ret < 0)
4801 				return ret;
4802 			if (ret > 0) {
4803 				ret = 0;
4804 				break;
4805 			}
4806 			leaf = path->nodes[0];
4807 		}
4808 
4809 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4810 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4811 			break;
4812 
4813 		/* We have a hole, log it. */
4814 		if (prev_extent_end < key.offset) {
4815 			const u64 hole_len = key.offset - prev_extent_end;
4816 
4817 			/*
4818 			 * Release the path to avoid deadlocks with other code
4819 			 * paths that search the root while holding locks on
4820 			 * leafs from the log root.
4821 			 */
4822 			btrfs_release_path(path);
4823 			ret = btrfs_insert_file_extent(trans, root->log_root,
4824 						       ino, prev_extent_end, 0,
4825 						       0, hole_len, 0, hole_len,
4826 						       0, 0, 0);
4827 			if (ret < 0)
4828 				return ret;
4829 
4830 			/*
4831 			 * Search for the same key again in the root. Since it's
4832 			 * an extent item and we are holding the inode lock, the
4833 			 * key must still exist. If it doesn't just emit warning
4834 			 * and return an error to fall back to a transaction
4835 			 * commit.
4836 			 */
4837 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4838 			if (ret < 0)
4839 				return ret;
4840 			if (WARN_ON(ret > 0))
4841 				return -ENOENT;
4842 			leaf = path->nodes[0];
4843 		}
4844 
4845 		prev_extent_end = btrfs_file_extent_end(path);
4846 		path->slots[0]++;
4847 		cond_resched();
4848 	}
4849 
4850 	if (prev_extent_end < i_size) {
4851 		u64 hole_len;
4852 
4853 		btrfs_release_path(path);
4854 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4855 		ret = btrfs_insert_file_extent(trans, root->log_root,
4856 					       ino, prev_extent_end, 0, 0,
4857 					       hole_len, 0, hole_len,
4858 					       0, 0, 0);
4859 		if (ret < 0)
4860 			return ret;
4861 	}
4862 
4863 	return 0;
4864 }
4865 
4866 /*
4867  * When we are logging a new inode X, check if it doesn't have a reference that
4868  * matches the reference from some other inode Y created in a past transaction
4869  * and that was renamed in the current transaction. If we don't do this, then at
4870  * log replay time we can lose inode Y (and all its files if it's a directory):
4871  *
4872  * mkdir /mnt/x
4873  * echo "hello world" > /mnt/x/foobar
4874  * sync
4875  * mv /mnt/x /mnt/y
4876  * mkdir /mnt/x                 # or touch /mnt/x
4877  * xfs_io -c fsync /mnt/x
4878  * <power fail>
4879  * mount fs, trigger log replay
4880  *
4881  * After the log replay procedure, we would lose the first directory and all its
4882  * files (file foobar).
4883  * For the case where inode Y is not a directory we simply end up losing it:
4884  *
4885  * echo "123" > /mnt/foo
4886  * sync
4887  * mv /mnt/foo /mnt/bar
4888  * echo "abc" > /mnt/foo
4889  * xfs_io -c fsync /mnt/foo
4890  * <power fail>
4891  *
4892  * We also need this for cases where a snapshot entry is replaced by some other
4893  * entry (file or directory) otherwise we end up with an unreplayable log due to
4894  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4895  * if it were a regular entry:
4896  *
4897  * mkdir /mnt/x
4898  * btrfs subvolume snapshot /mnt /mnt/x/snap
4899  * btrfs subvolume delete /mnt/x/snap
4900  * rmdir /mnt/x
4901  * mkdir /mnt/x
4902  * fsync /mnt/x or fsync some new file inside it
4903  * <power fail>
4904  *
4905  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4906  * the same transaction.
4907  */
4908 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4909 					 const int slot,
4910 					 const struct btrfs_key *key,
4911 					 struct btrfs_inode *inode,
4912 					 u64 *other_ino, u64 *other_parent)
4913 {
4914 	int ret;
4915 	struct btrfs_path *search_path;
4916 	char *name = NULL;
4917 	u32 name_len = 0;
4918 	u32 item_size = btrfs_item_size_nr(eb, slot);
4919 	u32 cur_offset = 0;
4920 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4921 
4922 	search_path = btrfs_alloc_path();
4923 	if (!search_path)
4924 		return -ENOMEM;
4925 	search_path->search_commit_root = 1;
4926 	search_path->skip_locking = 1;
4927 
4928 	while (cur_offset < item_size) {
4929 		u64 parent;
4930 		u32 this_name_len;
4931 		u32 this_len;
4932 		unsigned long name_ptr;
4933 		struct btrfs_dir_item *di;
4934 
4935 		if (key->type == BTRFS_INODE_REF_KEY) {
4936 			struct btrfs_inode_ref *iref;
4937 
4938 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4939 			parent = key->offset;
4940 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4941 			name_ptr = (unsigned long)(iref + 1);
4942 			this_len = sizeof(*iref) + this_name_len;
4943 		} else {
4944 			struct btrfs_inode_extref *extref;
4945 
4946 			extref = (struct btrfs_inode_extref *)(ptr +
4947 							       cur_offset);
4948 			parent = btrfs_inode_extref_parent(eb, extref);
4949 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4950 			name_ptr = (unsigned long)&extref->name;
4951 			this_len = sizeof(*extref) + this_name_len;
4952 		}
4953 
4954 		if (this_name_len > name_len) {
4955 			char *new_name;
4956 
4957 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4958 			if (!new_name) {
4959 				ret = -ENOMEM;
4960 				goto out;
4961 			}
4962 			name_len = this_name_len;
4963 			name = new_name;
4964 		}
4965 
4966 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4967 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4968 				parent, name, this_name_len, 0);
4969 		if (di && !IS_ERR(di)) {
4970 			struct btrfs_key di_key;
4971 
4972 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4973 						  di, &di_key);
4974 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4975 				if (di_key.objectid != key->objectid) {
4976 					ret = 1;
4977 					*other_ino = di_key.objectid;
4978 					*other_parent = parent;
4979 				} else {
4980 					ret = 0;
4981 				}
4982 			} else {
4983 				ret = -EAGAIN;
4984 			}
4985 			goto out;
4986 		} else if (IS_ERR(di)) {
4987 			ret = PTR_ERR(di);
4988 			goto out;
4989 		}
4990 		btrfs_release_path(search_path);
4991 
4992 		cur_offset += this_len;
4993 	}
4994 	ret = 0;
4995 out:
4996 	btrfs_free_path(search_path);
4997 	kfree(name);
4998 	return ret;
4999 }
5000 
5001 struct btrfs_ino_list {
5002 	u64 ino;
5003 	u64 parent;
5004 	struct list_head list;
5005 };
5006 
5007 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5008 				  struct btrfs_root *root,
5009 				  struct btrfs_path *path,
5010 				  struct btrfs_log_ctx *ctx,
5011 				  u64 ino, u64 parent)
5012 {
5013 	struct btrfs_ino_list *ino_elem;
5014 	LIST_HEAD(inode_list);
5015 	int ret = 0;
5016 
5017 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5018 	if (!ino_elem)
5019 		return -ENOMEM;
5020 	ino_elem->ino = ino;
5021 	ino_elem->parent = parent;
5022 	list_add_tail(&ino_elem->list, &inode_list);
5023 
5024 	while (!list_empty(&inode_list)) {
5025 		struct btrfs_fs_info *fs_info = root->fs_info;
5026 		struct btrfs_key key;
5027 		struct inode *inode;
5028 
5029 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5030 					    list);
5031 		ino = ino_elem->ino;
5032 		parent = ino_elem->parent;
5033 		list_del(&ino_elem->list);
5034 		kfree(ino_elem);
5035 		if (ret)
5036 			continue;
5037 
5038 		btrfs_release_path(path);
5039 
5040 		inode = btrfs_iget(fs_info->sb, ino, root);
5041 		/*
5042 		 * If the other inode that had a conflicting dir entry was
5043 		 * deleted in the current transaction, we need to log its parent
5044 		 * directory.
5045 		 */
5046 		if (IS_ERR(inode)) {
5047 			ret = PTR_ERR(inode);
5048 			if (ret == -ENOENT) {
5049 				inode = btrfs_iget(fs_info->sb, parent, root);
5050 				if (IS_ERR(inode)) {
5051 					ret = PTR_ERR(inode);
5052 				} else {
5053 					ret = btrfs_log_inode(trans, root,
5054 						      BTRFS_I(inode),
5055 						      LOG_OTHER_INODE_ALL,
5056 						      ctx);
5057 					btrfs_add_delayed_iput(inode);
5058 				}
5059 			}
5060 			continue;
5061 		}
5062 		/*
5063 		 * If the inode was already logged skip it - otherwise we can
5064 		 * hit an infinite loop. Example:
5065 		 *
5066 		 * From the commit root (previous transaction) we have the
5067 		 * following inodes:
5068 		 *
5069 		 * inode 257 a directory
5070 		 * inode 258 with references "zz" and "zz_link" on inode 257
5071 		 * inode 259 with reference "a" on inode 257
5072 		 *
5073 		 * And in the current (uncommitted) transaction we have:
5074 		 *
5075 		 * inode 257 a directory, unchanged
5076 		 * inode 258 with references "a" and "a2" on inode 257
5077 		 * inode 259 with reference "zz_link" on inode 257
5078 		 * inode 261 with reference "zz" on inode 257
5079 		 *
5080 		 * When logging inode 261 the following infinite loop could
5081 		 * happen if we don't skip already logged inodes:
5082 		 *
5083 		 * - we detect inode 258 as a conflicting inode, with inode 261
5084 		 *   on reference "zz", and log it;
5085 		 *
5086 		 * - we detect inode 259 as a conflicting inode, with inode 258
5087 		 *   on reference "a", and log it;
5088 		 *
5089 		 * - we detect inode 258 as a conflicting inode, with inode 259
5090 		 *   on reference "zz_link", and log it - again! After this we
5091 		 *   repeat the above steps forever.
5092 		 */
5093 		spin_lock(&BTRFS_I(inode)->lock);
5094 		/*
5095 		 * Check the inode's logged_trans only instead of
5096 		 * btrfs_inode_in_log(). This is because the last_log_commit of
5097 		 * the inode is not updated when we only log that it exists (see
5098 		 * btrfs_log_inode()).
5099 		 */
5100 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
5101 			spin_unlock(&BTRFS_I(inode)->lock);
5102 			btrfs_add_delayed_iput(inode);
5103 			continue;
5104 		}
5105 		spin_unlock(&BTRFS_I(inode)->lock);
5106 		/*
5107 		 * We are safe logging the other inode without acquiring its
5108 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5109 		 * are safe against concurrent renames of the other inode as
5110 		 * well because during a rename we pin the log and update the
5111 		 * log with the new name before we unpin it.
5112 		 */
5113 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5114 				      LOG_OTHER_INODE, ctx);
5115 		if (ret) {
5116 			btrfs_add_delayed_iput(inode);
5117 			continue;
5118 		}
5119 
5120 		key.objectid = ino;
5121 		key.type = BTRFS_INODE_REF_KEY;
5122 		key.offset = 0;
5123 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5124 		if (ret < 0) {
5125 			btrfs_add_delayed_iput(inode);
5126 			continue;
5127 		}
5128 
5129 		while (true) {
5130 			struct extent_buffer *leaf = path->nodes[0];
5131 			int slot = path->slots[0];
5132 			u64 other_ino = 0;
5133 			u64 other_parent = 0;
5134 
5135 			if (slot >= btrfs_header_nritems(leaf)) {
5136 				ret = btrfs_next_leaf(root, path);
5137 				if (ret < 0) {
5138 					break;
5139 				} else if (ret > 0) {
5140 					ret = 0;
5141 					break;
5142 				}
5143 				continue;
5144 			}
5145 
5146 			btrfs_item_key_to_cpu(leaf, &key, slot);
5147 			if (key.objectid != ino ||
5148 			    (key.type != BTRFS_INODE_REF_KEY &&
5149 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5150 				ret = 0;
5151 				break;
5152 			}
5153 
5154 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5155 					BTRFS_I(inode), &other_ino,
5156 					&other_parent);
5157 			if (ret < 0)
5158 				break;
5159 			if (ret > 0) {
5160 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5161 				if (!ino_elem) {
5162 					ret = -ENOMEM;
5163 					break;
5164 				}
5165 				ino_elem->ino = other_ino;
5166 				ino_elem->parent = other_parent;
5167 				list_add_tail(&ino_elem->list, &inode_list);
5168 				ret = 0;
5169 			}
5170 			path->slots[0]++;
5171 		}
5172 		btrfs_add_delayed_iput(inode);
5173 	}
5174 
5175 	return ret;
5176 }
5177 
5178 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5179 				   struct btrfs_inode *inode,
5180 				   struct btrfs_key *min_key,
5181 				   const struct btrfs_key *max_key,
5182 				   struct btrfs_path *path,
5183 				   struct btrfs_path *dst_path,
5184 				   const u64 logged_isize,
5185 				   const bool recursive_logging,
5186 				   const int inode_only,
5187 				   struct btrfs_log_ctx *ctx,
5188 				   bool *need_log_inode_item)
5189 {
5190 	struct btrfs_root *root = inode->root;
5191 	int ins_start_slot = 0;
5192 	int ins_nr = 0;
5193 	int ret;
5194 
5195 	while (1) {
5196 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5197 		if (ret < 0)
5198 			return ret;
5199 		if (ret > 0) {
5200 			ret = 0;
5201 			break;
5202 		}
5203 again:
5204 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5205 		if (min_key->objectid != max_key->objectid)
5206 			break;
5207 		if (min_key->type > max_key->type)
5208 			break;
5209 
5210 		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5211 			*need_log_inode_item = false;
5212 
5213 		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5214 		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5215 		    inode->generation == trans->transid &&
5216 		    !recursive_logging) {
5217 			u64 other_ino = 0;
5218 			u64 other_parent = 0;
5219 
5220 			ret = btrfs_check_ref_name_override(path->nodes[0],
5221 					path->slots[0], min_key, inode,
5222 					&other_ino, &other_parent);
5223 			if (ret < 0) {
5224 				return ret;
5225 			} else if (ret > 0 && ctx &&
5226 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5227 				if (ins_nr > 0) {
5228 					ins_nr++;
5229 				} else {
5230 					ins_nr = 1;
5231 					ins_start_slot = path->slots[0];
5232 				}
5233 				ret = copy_items(trans, inode, dst_path, path,
5234 						 ins_start_slot, ins_nr,
5235 						 inode_only, logged_isize);
5236 				if (ret < 0)
5237 					return ret;
5238 				ins_nr = 0;
5239 
5240 				ret = log_conflicting_inodes(trans, root, path,
5241 						ctx, other_ino, other_parent);
5242 				if (ret)
5243 					return ret;
5244 				btrfs_release_path(path);
5245 				goto next_key;
5246 			}
5247 		}
5248 
5249 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5250 		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5251 			if (ins_nr == 0)
5252 				goto next_slot;
5253 			ret = copy_items(trans, inode, dst_path, path,
5254 					 ins_start_slot,
5255 					 ins_nr, inode_only, logged_isize);
5256 			if (ret < 0)
5257 				return ret;
5258 			ins_nr = 0;
5259 			goto next_slot;
5260 		}
5261 
5262 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5263 			ins_nr++;
5264 			goto next_slot;
5265 		} else if (!ins_nr) {
5266 			ins_start_slot = path->slots[0];
5267 			ins_nr = 1;
5268 			goto next_slot;
5269 		}
5270 
5271 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5272 				 ins_nr, inode_only, logged_isize);
5273 		if (ret < 0)
5274 			return ret;
5275 		ins_nr = 1;
5276 		ins_start_slot = path->slots[0];
5277 next_slot:
5278 		path->slots[0]++;
5279 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5280 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5281 					      path->slots[0]);
5282 			goto again;
5283 		}
5284 		if (ins_nr) {
5285 			ret = copy_items(trans, inode, dst_path, path,
5286 					 ins_start_slot, ins_nr, inode_only,
5287 					 logged_isize);
5288 			if (ret < 0)
5289 				return ret;
5290 			ins_nr = 0;
5291 		}
5292 		btrfs_release_path(path);
5293 next_key:
5294 		if (min_key->offset < (u64)-1) {
5295 			min_key->offset++;
5296 		} else if (min_key->type < max_key->type) {
5297 			min_key->type++;
5298 			min_key->offset = 0;
5299 		} else {
5300 			break;
5301 		}
5302 	}
5303 	if (ins_nr)
5304 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5305 				 ins_nr, inode_only, logged_isize);
5306 
5307 	return ret;
5308 }
5309 
5310 /* log a single inode in the tree log.
5311  * At least one parent directory for this inode must exist in the tree
5312  * or be logged already.
5313  *
5314  * Any items from this inode changed by the current transaction are copied
5315  * to the log tree.  An extra reference is taken on any extents in this
5316  * file, allowing us to avoid a whole pile of corner cases around logging
5317  * blocks that have been removed from the tree.
5318  *
5319  * See LOG_INODE_ALL and related defines for a description of what inode_only
5320  * does.
5321  *
5322  * This handles both files and directories.
5323  */
5324 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5325 			   struct btrfs_root *root, struct btrfs_inode *inode,
5326 			   int inode_only,
5327 			   struct btrfs_log_ctx *ctx)
5328 {
5329 	struct btrfs_path *path;
5330 	struct btrfs_path *dst_path;
5331 	struct btrfs_key min_key;
5332 	struct btrfs_key max_key;
5333 	struct btrfs_root *log = root->log_root;
5334 	int err = 0;
5335 	int ret = 0;
5336 	bool fast_search = false;
5337 	u64 ino = btrfs_ino(inode);
5338 	struct extent_map_tree *em_tree = &inode->extent_tree;
5339 	u64 logged_isize = 0;
5340 	bool need_log_inode_item = true;
5341 	bool xattrs_logged = false;
5342 	bool recursive_logging = false;
5343 	bool inode_item_dropped = true;
5344 
5345 	path = btrfs_alloc_path();
5346 	if (!path)
5347 		return -ENOMEM;
5348 	dst_path = btrfs_alloc_path();
5349 	if (!dst_path) {
5350 		btrfs_free_path(path);
5351 		return -ENOMEM;
5352 	}
5353 
5354 	min_key.objectid = ino;
5355 	min_key.type = BTRFS_INODE_ITEM_KEY;
5356 	min_key.offset = 0;
5357 
5358 	max_key.objectid = ino;
5359 
5360 
5361 	/* today the code can only do partial logging of directories */
5362 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5363 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5364 		       &inode->runtime_flags) &&
5365 	     inode_only >= LOG_INODE_EXISTS))
5366 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5367 	else
5368 		max_key.type = (u8)-1;
5369 	max_key.offset = (u64)-1;
5370 
5371 	/*
5372 	 * Only run delayed items if we are a directory. We want to make sure
5373 	 * all directory indexes hit the fs/subvolume tree so we can find them
5374 	 * and figure out which index ranges have to be logged.
5375 	 *
5376 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5377 	 * as we want to make sure an up to date version is in the subvolume
5378 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5379 	 * it to the log tree. For a non full sync, we always log the inode item
5380 	 * based on the in-memory struct btrfs_inode which is always up to date.
5381 	 */
5382 	if (S_ISDIR(inode->vfs_inode.i_mode))
5383 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5384 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5385 		ret = btrfs_commit_inode_delayed_inode(inode);
5386 
5387 	if (ret) {
5388 		btrfs_free_path(path);
5389 		btrfs_free_path(dst_path);
5390 		return ret;
5391 	}
5392 
5393 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5394 		recursive_logging = true;
5395 		if (inode_only == LOG_OTHER_INODE)
5396 			inode_only = LOG_INODE_EXISTS;
5397 		else
5398 			inode_only = LOG_INODE_ALL;
5399 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5400 	} else {
5401 		mutex_lock(&inode->log_mutex);
5402 	}
5403 
5404 	/*
5405 	 * This is for cases where logging a directory could result in losing a
5406 	 * a file after replaying the log. For example, if we move a file from a
5407 	 * directory A to a directory B, then fsync directory A, we have no way
5408 	 * to known the file was moved from A to B, so logging just A would
5409 	 * result in losing the file after a log replay.
5410 	 */
5411 	if (S_ISDIR(inode->vfs_inode.i_mode) &&
5412 	    inode_only == LOG_INODE_ALL &&
5413 	    inode->last_unlink_trans >= trans->transid) {
5414 		btrfs_set_log_full_commit(trans);
5415 		err = 1;
5416 		goto out_unlock;
5417 	}
5418 
5419 	/*
5420 	 * a brute force approach to making sure we get the most uptodate
5421 	 * copies of everything.
5422 	 */
5423 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5424 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5425 
5426 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5427 		if (inode_only == LOG_INODE_EXISTS)
5428 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5429 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5430 	} else {
5431 		if (inode_only == LOG_INODE_EXISTS) {
5432 			/*
5433 			 * Make sure the new inode item we write to the log has
5434 			 * the same isize as the current one (if it exists).
5435 			 * This is necessary to prevent data loss after log
5436 			 * replay, and also to prevent doing a wrong expanding
5437 			 * truncate - for e.g. create file, write 4K into offset
5438 			 * 0, fsync, write 4K into offset 4096, add hard link,
5439 			 * fsync some other file (to sync log), power fail - if
5440 			 * we use the inode's current i_size, after log replay
5441 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5442 			 * (zeroes), as if an expanding truncate happened,
5443 			 * instead of getting a file of 4Kb only.
5444 			 */
5445 			err = logged_inode_size(log, inode, path, &logged_isize);
5446 			if (err)
5447 				goto out_unlock;
5448 		}
5449 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5450 			     &inode->runtime_flags)) {
5451 			if (inode_only == LOG_INODE_EXISTS) {
5452 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5453 				ret = drop_objectid_items(trans, log, path, ino,
5454 							  max_key.type);
5455 			} else {
5456 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5457 					  &inode->runtime_flags);
5458 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5459 					  &inode->runtime_flags);
5460 				while(1) {
5461 					ret = btrfs_truncate_inode_items(trans,
5462 						log, inode, 0, 0, NULL);
5463 					if (ret != -EAGAIN)
5464 						break;
5465 				}
5466 			}
5467 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5468 					      &inode->runtime_flags) ||
5469 			   inode_only == LOG_INODE_EXISTS) {
5470 			if (inode_only == LOG_INODE_ALL)
5471 				fast_search = true;
5472 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5473 			ret = drop_objectid_items(trans, log, path, ino,
5474 						  max_key.type);
5475 		} else {
5476 			if (inode_only == LOG_INODE_ALL)
5477 				fast_search = true;
5478 			inode_item_dropped = false;
5479 			goto log_extents;
5480 		}
5481 
5482 	}
5483 	if (ret) {
5484 		err = ret;
5485 		goto out_unlock;
5486 	}
5487 
5488 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5489 				      path, dst_path, logged_isize,
5490 				      recursive_logging, inode_only, ctx,
5491 				      &need_log_inode_item);
5492 	if (err)
5493 		goto out_unlock;
5494 
5495 	btrfs_release_path(path);
5496 	btrfs_release_path(dst_path);
5497 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5498 	if (err)
5499 		goto out_unlock;
5500 	xattrs_logged = true;
5501 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5502 		btrfs_release_path(path);
5503 		btrfs_release_path(dst_path);
5504 		err = btrfs_log_holes(trans, root, inode, path);
5505 		if (err)
5506 			goto out_unlock;
5507 	}
5508 log_extents:
5509 	btrfs_release_path(path);
5510 	btrfs_release_path(dst_path);
5511 	if (need_log_inode_item) {
5512 		err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
5513 		if (err)
5514 			goto out_unlock;
5515 		/*
5516 		 * If we are doing a fast fsync and the inode was logged before
5517 		 * in this transaction, we don't need to log the xattrs because
5518 		 * they were logged before. If xattrs were added, changed or
5519 		 * deleted since the last time we logged the inode, then we have
5520 		 * already logged them because the inode had the runtime flag
5521 		 * BTRFS_INODE_COPY_EVERYTHING set.
5522 		 */
5523 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
5524 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5525 						   dst_path);
5526 			if (err)
5527 				goto out_unlock;
5528 			btrfs_release_path(path);
5529 		}
5530 	}
5531 	if (fast_search) {
5532 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5533 						ctx);
5534 		if (ret) {
5535 			err = ret;
5536 			goto out_unlock;
5537 		}
5538 	} else if (inode_only == LOG_INODE_ALL) {
5539 		struct extent_map *em, *n;
5540 
5541 		write_lock(&em_tree->lock);
5542 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5543 			list_del_init(&em->list);
5544 		write_unlock(&em_tree->lock);
5545 	}
5546 
5547 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5548 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5549 					ctx);
5550 		if (ret) {
5551 			err = ret;
5552 			goto out_unlock;
5553 		}
5554 	}
5555 
5556 	/*
5557 	 * If we are logging that an ancestor inode exists as part of logging a
5558 	 * new name from a link or rename operation, don't mark the inode as
5559 	 * logged - otherwise if an explicit fsync is made against an ancestor,
5560 	 * the fsync considers the inode in the log and doesn't sync the log,
5561 	 * resulting in the ancestor missing after a power failure unless the
5562 	 * log was synced as part of an fsync against any other unrelated inode.
5563 	 * So keep it simple for this case and just don't flag the ancestors as
5564 	 * logged.
5565 	 */
5566 	if (!ctx ||
5567 	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5568 	      &inode->vfs_inode != ctx->inode)) {
5569 		spin_lock(&inode->lock);
5570 		inode->logged_trans = trans->transid;
5571 		/*
5572 		 * Don't update last_log_commit if we logged that an inode exists.
5573 		 * We do this for two reasons:
5574 		 *
5575 		 * 1) We might have had buffered writes to this inode that were
5576 		 *    flushed and had their ordered extents completed in this
5577 		 *    transaction, but we did not previously log the inode with
5578 		 *    LOG_INODE_ALL. Later the inode was evicted and after that
5579 		 *    it was loaded again and this LOG_INODE_EXISTS log operation
5580 		 *    happened. We must make sure that if an explicit fsync against
5581 		 *    the inode is performed later, it logs the new extents, an
5582 		 *    updated inode item, etc, and syncs the log. The same logic
5583 		 *    applies to direct IO writes instead of buffered writes.
5584 		 *
5585 		 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5586 		 *    is logged with an i_size of 0 or whatever value was logged
5587 		 *    before. If later the i_size of the inode is increased by a
5588 		 *    truncate operation, the log is synced through an fsync of
5589 		 *    some other inode and then finally an explicit fsync against
5590 		 *    this inode is made, we must make sure this fsync logs the
5591 		 *    inode with the new i_size, the hole between old i_size and
5592 		 *    the new i_size, and syncs the log.
5593 		 */
5594 		if (inode_only != LOG_INODE_EXISTS)
5595 			inode->last_log_commit = inode->last_sub_trans;
5596 		spin_unlock(&inode->lock);
5597 	}
5598 out_unlock:
5599 	mutex_unlock(&inode->log_mutex);
5600 
5601 	btrfs_free_path(path);
5602 	btrfs_free_path(dst_path);
5603 	return err;
5604 }
5605 
5606 /*
5607  * Check if we need to log an inode. This is used in contexts where while
5608  * logging an inode we need to log another inode (either that it exists or in
5609  * full mode). This is used instead of btrfs_inode_in_log() because the later
5610  * requires the inode to be in the log and have the log transaction committed,
5611  * while here we do not care if the log transaction was already committed - our
5612  * caller will commit the log later - and we want to avoid logging an inode
5613  * multiple times when multiple tasks have joined the same log transaction.
5614  */
5615 static bool need_log_inode(struct btrfs_trans_handle *trans,
5616 			   struct btrfs_inode *inode)
5617 {
5618 	/*
5619 	 * If a directory was not modified, no dentries added or removed, we can
5620 	 * and should avoid logging it.
5621 	 */
5622 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5623 		return false;
5624 
5625 	/*
5626 	 * If this inode does not have new/updated/deleted xattrs since the last
5627 	 * time it was logged and is flagged as logged in the current transaction,
5628 	 * we can skip logging it. As for new/deleted names, those are updated in
5629 	 * the log by link/unlink/rename operations.
5630 	 * In case the inode was logged and then evicted and reloaded, its
5631 	 * logged_trans will be 0, in which case we have to fully log it since
5632 	 * logged_trans is a transient field, not persisted.
5633 	 */
5634 	if (inode->logged_trans == trans->transid &&
5635 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5636 		return false;
5637 
5638 	return true;
5639 }
5640 
5641 struct btrfs_dir_list {
5642 	u64 ino;
5643 	struct list_head list;
5644 };
5645 
5646 /*
5647  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5648  * details about the why it is needed.
5649  * This is a recursive operation - if an existing dentry corresponds to a
5650  * directory, that directory's new entries are logged too (same behaviour as
5651  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5652  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5653  * complains about the following circular lock dependency / possible deadlock:
5654  *
5655  *        CPU0                                        CPU1
5656  *        ----                                        ----
5657  * lock(&type->i_mutex_dir_key#3/2);
5658  *                                            lock(sb_internal#2);
5659  *                                            lock(&type->i_mutex_dir_key#3/2);
5660  * lock(&sb->s_type->i_mutex_key#14);
5661  *
5662  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5663  * sb_start_intwrite() in btrfs_start_transaction().
5664  * Not locking i_mutex of the inodes is still safe because:
5665  *
5666  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5667  *    that while logging the inode new references (names) are added or removed
5668  *    from the inode, leaving the logged inode item with a link count that does
5669  *    not match the number of logged inode reference items. This is fine because
5670  *    at log replay time we compute the real number of links and correct the
5671  *    link count in the inode item (see replay_one_buffer() and
5672  *    link_to_fixup_dir());
5673  *
5674  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5675  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5676  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5677  *    has a size that doesn't match the sum of the lengths of all the logged
5678  *    names. This does not result in a problem because if a dir_item key is
5679  *    logged but its matching dir_index key is not logged, at log replay time we
5680  *    don't use it to replay the respective name (see replay_one_name()). On the
5681  *    other hand if only the dir_index key ends up being logged, the respective
5682  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5683  *    keys created (see replay_one_name()).
5684  *    The directory's inode item with a wrong i_size is not a problem as well,
5685  *    since we don't use it at log replay time to set the i_size in the inode
5686  *    item of the fs/subvol tree (see overwrite_item()).
5687  */
5688 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5689 				struct btrfs_root *root,
5690 				struct btrfs_inode *start_inode,
5691 				struct btrfs_log_ctx *ctx)
5692 {
5693 	struct btrfs_fs_info *fs_info = root->fs_info;
5694 	struct btrfs_root *log = root->log_root;
5695 	struct btrfs_path *path;
5696 	LIST_HEAD(dir_list);
5697 	struct btrfs_dir_list *dir_elem;
5698 	int ret = 0;
5699 
5700 	path = btrfs_alloc_path();
5701 	if (!path)
5702 		return -ENOMEM;
5703 
5704 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5705 	if (!dir_elem) {
5706 		btrfs_free_path(path);
5707 		return -ENOMEM;
5708 	}
5709 	dir_elem->ino = btrfs_ino(start_inode);
5710 	list_add_tail(&dir_elem->list, &dir_list);
5711 
5712 	while (!list_empty(&dir_list)) {
5713 		struct extent_buffer *leaf;
5714 		struct btrfs_key min_key;
5715 		int nritems;
5716 		int i;
5717 
5718 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5719 					    list);
5720 		if (ret)
5721 			goto next_dir_inode;
5722 
5723 		min_key.objectid = dir_elem->ino;
5724 		min_key.type = BTRFS_DIR_ITEM_KEY;
5725 		min_key.offset = 0;
5726 again:
5727 		btrfs_release_path(path);
5728 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5729 		if (ret < 0) {
5730 			goto next_dir_inode;
5731 		} else if (ret > 0) {
5732 			ret = 0;
5733 			goto next_dir_inode;
5734 		}
5735 
5736 process_leaf:
5737 		leaf = path->nodes[0];
5738 		nritems = btrfs_header_nritems(leaf);
5739 		for (i = path->slots[0]; i < nritems; i++) {
5740 			struct btrfs_dir_item *di;
5741 			struct btrfs_key di_key;
5742 			struct inode *di_inode;
5743 			struct btrfs_dir_list *new_dir_elem;
5744 			int log_mode = LOG_INODE_EXISTS;
5745 			int type;
5746 
5747 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5748 			if (min_key.objectid != dir_elem->ino ||
5749 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5750 				goto next_dir_inode;
5751 
5752 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5753 			type = btrfs_dir_type(leaf, di);
5754 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5755 			    type != BTRFS_FT_DIR)
5756 				continue;
5757 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5758 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5759 				continue;
5760 
5761 			btrfs_release_path(path);
5762 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5763 			if (IS_ERR(di_inode)) {
5764 				ret = PTR_ERR(di_inode);
5765 				goto next_dir_inode;
5766 			}
5767 
5768 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5769 				btrfs_add_delayed_iput(di_inode);
5770 				break;
5771 			}
5772 
5773 			ctx->log_new_dentries = false;
5774 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5775 				log_mode = LOG_INODE_ALL;
5776 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5777 					      log_mode, ctx);
5778 			btrfs_add_delayed_iput(di_inode);
5779 			if (ret)
5780 				goto next_dir_inode;
5781 			if (ctx->log_new_dentries) {
5782 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5783 						       GFP_NOFS);
5784 				if (!new_dir_elem) {
5785 					ret = -ENOMEM;
5786 					goto next_dir_inode;
5787 				}
5788 				new_dir_elem->ino = di_key.objectid;
5789 				list_add_tail(&new_dir_elem->list, &dir_list);
5790 			}
5791 			break;
5792 		}
5793 		if (i == nritems) {
5794 			ret = btrfs_next_leaf(log, path);
5795 			if (ret < 0) {
5796 				goto next_dir_inode;
5797 			} else if (ret > 0) {
5798 				ret = 0;
5799 				goto next_dir_inode;
5800 			}
5801 			goto process_leaf;
5802 		}
5803 		if (min_key.offset < (u64)-1) {
5804 			min_key.offset++;
5805 			goto again;
5806 		}
5807 next_dir_inode:
5808 		list_del(&dir_elem->list);
5809 		kfree(dir_elem);
5810 	}
5811 
5812 	btrfs_free_path(path);
5813 	return ret;
5814 }
5815 
5816 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5817 				 struct btrfs_inode *inode,
5818 				 struct btrfs_log_ctx *ctx)
5819 {
5820 	struct btrfs_fs_info *fs_info = trans->fs_info;
5821 	int ret;
5822 	struct btrfs_path *path;
5823 	struct btrfs_key key;
5824 	struct btrfs_root *root = inode->root;
5825 	const u64 ino = btrfs_ino(inode);
5826 
5827 	path = btrfs_alloc_path();
5828 	if (!path)
5829 		return -ENOMEM;
5830 	path->skip_locking = 1;
5831 	path->search_commit_root = 1;
5832 
5833 	key.objectid = ino;
5834 	key.type = BTRFS_INODE_REF_KEY;
5835 	key.offset = 0;
5836 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5837 	if (ret < 0)
5838 		goto out;
5839 
5840 	while (true) {
5841 		struct extent_buffer *leaf = path->nodes[0];
5842 		int slot = path->slots[0];
5843 		u32 cur_offset = 0;
5844 		u32 item_size;
5845 		unsigned long ptr;
5846 
5847 		if (slot >= btrfs_header_nritems(leaf)) {
5848 			ret = btrfs_next_leaf(root, path);
5849 			if (ret < 0)
5850 				goto out;
5851 			else if (ret > 0)
5852 				break;
5853 			continue;
5854 		}
5855 
5856 		btrfs_item_key_to_cpu(leaf, &key, slot);
5857 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5858 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5859 			break;
5860 
5861 		item_size = btrfs_item_size_nr(leaf, slot);
5862 		ptr = btrfs_item_ptr_offset(leaf, slot);
5863 		while (cur_offset < item_size) {
5864 			struct btrfs_key inode_key;
5865 			struct inode *dir_inode;
5866 
5867 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5868 			inode_key.offset = 0;
5869 
5870 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5871 				struct btrfs_inode_extref *extref;
5872 
5873 				extref = (struct btrfs_inode_extref *)
5874 					(ptr + cur_offset);
5875 				inode_key.objectid = btrfs_inode_extref_parent(
5876 					leaf, extref);
5877 				cur_offset += sizeof(*extref);
5878 				cur_offset += btrfs_inode_extref_name_len(leaf,
5879 					extref);
5880 			} else {
5881 				inode_key.objectid = key.offset;
5882 				cur_offset = item_size;
5883 			}
5884 
5885 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5886 					       root);
5887 			/*
5888 			 * If the parent inode was deleted, return an error to
5889 			 * fallback to a transaction commit. This is to prevent
5890 			 * getting an inode that was moved from one parent A to
5891 			 * a parent B, got its former parent A deleted and then
5892 			 * it got fsync'ed, from existing at both parents after
5893 			 * a log replay (and the old parent still existing).
5894 			 * Example:
5895 			 *
5896 			 * mkdir /mnt/A
5897 			 * mkdir /mnt/B
5898 			 * touch /mnt/B/bar
5899 			 * sync
5900 			 * mv /mnt/B/bar /mnt/A/bar
5901 			 * mv -T /mnt/A /mnt/B
5902 			 * fsync /mnt/B/bar
5903 			 * <power fail>
5904 			 *
5905 			 * If we ignore the old parent B which got deleted,
5906 			 * after a log replay we would have file bar linked
5907 			 * at both parents and the old parent B would still
5908 			 * exist.
5909 			 */
5910 			if (IS_ERR(dir_inode)) {
5911 				ret = PTR_ERR(dir_inode);
5912 				goto out;
5913 			}
5914 
5915 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5916 				btrfs_add_delayed_iput(dir_inode);
5917 				continue;
5918 			}
5919 
5920 			if (ctx)
5921 				ctx->log_new_dentries = false;
5922 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5923 					      LOG_INODE_ALL, ctx);
5924 			if (!ret && ctx && ctx->log_new_dentries)
5925 				ret = log_new_dir_dentries(trans, root,
5926 						   BTRFS_I(dir_inode), ctx);
5927 			btrfs_add_delayed_iput(dir_inode);
5928 			if (ret)
5929 				goto out;
5930 		}
5931 		path->slots[0]++;
5932 	}
5933 	ret = 0;
5934 out:
5935 	btrfs_free_path(path);
5936 	return ret;
5937 }
5938 
5939 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5940 			     struct btrfs_root *root,
5941 			     struct btrfs_path *path,
5942 			     struct btrfs_log_ctx *ctx)
5943 {
5944 	struct btrfs_key found_key;
5945 
5946 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5947 
5948 	while (true) {
5949 		struct btrfs_fs_info *fs_info = root->fs_info;
5950 		struct extent_buffer *leaf = path->nodes[0];
5951 		int slot = path->slots[0];
5952 		struct btrfs_key search_key;
5953 		struct inode *inode;
5954 		u64 ino;
5955 		int ret = 0;
5956 
5957 		btrfs_release_path(path);
5958 
5959 		ino = found_key.offset;
5960 
5961 		search_key.objectid = found_key.offset;
5962 		search_key.type = BTRFS_INODE_ITEM_KEY;
5963 		search_key.offset = 0;
5964 		inode = btrfs_iget(fs_info->sb, ino, root);
5965 		if (IS_ERR(inode))
5966 			return PTR_ERR(inode);
5967 
5968 		if (BTRFS_I(inode)->generation >= trans->transid &&
5969 		    need_log_inode(trans, BTRFS_I(inode)))
5970 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5971 					      LOG_INODE_EXISTS, ctx);
5972 		btrfs_add_delayed_iput(inode);
5973 		if (ret)
5974 			return ret;
5975 
5976 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5977 			break;
5978 
5979 		search_key.type = BTRFS_INODE_REF_KEY;
5980 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5981 		if (ret < 0)
5982 			return ret;
5983 
5984 		leaf = path->nodes[0];
5985 		slot = path->slots[0];
5986 		if (slot >= btrfs_header_nritems(leaf)) {
5987 			ret = btrfs_next_leaf(root, path);
5988 			if (ret < 0)
5989 				return ret;
5990 			else if (ret > 0)
5991 				return -ENOENT;
5992 			leaf = path->nodes[0];
5993 			slot = path->slots[0];
5994 		}
5995 
5996 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5997 		if (found_key.objectid != search_key.objectid ||
5998 		    found_key.type != BTRFS_INODE_REF_KEY)
5999 			return -ENOENT;
6000 	}
6001 	return 0;
6002 }
6003 
6004 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6005 				  struct btrfs_inode *inode,
6006 				  struct dentry *parent,
6007 				  struct btrfs_log_ctx *ctx)
6008 {
6009 	struct btrfs_root *root = inode->root;
6010 	struct dentry *old_parent = NULL;
6011 	struct super_block *sb = inode->vfs_inode.i_sb;
6012 	int ret = 0;
6013 
6014 	while (true) {
6015 		if (!parent || d_really_is_negative(parent) ||
6016 		    sb != parent->d_sb)
6017 			break;
6018 
6019 		inode = BTRFS_I(d_inode(parent));
6020 		if (root != inode->root)
6021 			break;
6022 
6023 		if (inode->generation >= trans->transid &&
6024 		    need_log_inode(trans, inode)) {
6025 			ret = btrfs_log_inode(trans, root, inode,
6026 					      LOG_INODE_EXISTS, ctx);
6027 			if (ret)
6028 				break;
6029 		}
6030 		if (IS_ROOT(parent))
6031 			break;
6032 
6033 		parent = dget_parent(parent);
6034 		dput(old_parent);
6035 		old_parent = parent;
6036 	}
6037 	dput(old_parent);
6038 
6039 	return ret;
6040 }
6041 
6042 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6043 				 struct btrfs_inode *inode,
6044 				 struct dentry *parent,
6045 				 struct btrfs_log_ctx *ctx)
6046 {
6047 	struct btrfs_root *root = inode->root;
6048 	const u64 ino = btrfs_ino(inode);
6049 	struct btrfs_path *path;
6050 	struct btrfs_key search_key;
6051 	int ret;
6052 
6053 	/*
6054 	 * For a single hard link case, go through a fast path that does not
6055 	 * need to iterate the fs/subvolume tree.
6056 	 */
6057 	if (inode->vfs_inode.i_nlink < 2)
6058 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6059 
6060 	path = btrfs_alloc_path();
6061 	if (!path)
6062 		return -ENOMEM;
6063 
6064 	search_key.objectid = ino;
6065 	search_key.type = BTRFS_INODE_REF_KEY;
6066 	search_key.offset = 0;
6067 again:
6068 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6069 	if (ret < 0)
6070 		goto out;
6071 	if (ret == 0)
6072 		path->slots[0]++;
6073 
6074 	while (true) {
6075 		struct extent_buffer *leaf = path->nodes[0];
6076 		int slot = path->slots[0];
6077 		struct btrfs_key found_key;
6078 
6079 		if (slot >= btrfs_header_nritems(leaf)) {
6080 			ret = btrfs_next_leaf(root, path);
6081 			if (ret < 0)
6082 				goto out;
6083 			else if (ret > 0)
6084 				break;
6085 			continue;
6086 		}
6087 
6088 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6089 		if (found_key.objectid != ino ||
6090 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6091 			break;
6092 
6093 		/*
6094 		 * Don't deal with extended references because they are rare
6095 		 * cases and too complex to deal with (we would need to keep
6096 		 * track of which subitem we are processing for each item in
6097 		 * this loop, etc). So just return some error to fallback to
6098 		 * a transaction commit.
6099 		 */
6100 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6101 			ret = -EMLINK;
6102 			goto out;
6103 		}
6104 
6105 		/*
6106 		 * Logging ancestors needs to do more searches on the fs/subvol
6107 		 * tree, so it releases the path as needed to avoid deadlocks.
6108 		 * Keep track of the last inode ref key and resume from that key
6109 		 * after logging all new ancestors for the current hard link.
6110 		 */
6111 		memcpy(&search_key, &found_key, sizeof(search_key));
6112 
6113 		ret = log_new_ancestors(trans, root, path, ctx);
6114 		if (ret)
6115 			goto out;
6116 		btrfs_release_path(path);
6117 		goto again;
6118 	}
6119 	ret = 0;
6120 out:
6121 	btrfs_free_path(path);
6122 	return ret;
6123 }
6124 
6125 /*
6126  * helper function around btrfs_log_inode to make sure newly created
6127  * parent directories also end up in the log.  A minimal inode and backref
6128  * only logging is done of any parent directories that are older than
6129  * the last committed transaction
6130  */
6131 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6132 				  struct btrfs_inode *inode,
6133 				  struct dentry *parent,
6134 				  int inode_only,
6135 				  struct btrfs_log_ctx *ctx)
6136 {
6137 	struct btrfs_root *root = inode->root;
6138 	struct btrfs_fs_info *fs_info = root->fs_info;
6139 	int ret = 0;
6140 	bool log_dentries = false;
6141 
6142 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6143 		ret = 1;
6144 		goto end_no_trans;
6145 	}
6146 
6147 	if (btrfs_root_refs(&root->root_item) == 0) {
6148 		ret = 1;
6149 		goto end_no_trans;
6150 	}
6151 
6152 	/*
6153 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6154 	 * (since logging them is pointless, a link count of 0 means they
6155 	 * will never be accessible).
6156 	 */
6157 	if ((btrfs_inode_in_log(inode, trans->transid) &&
6158 	     list_empty(&ctx->ordered_extents)) ||
6159 	    inode->vfs_inode.i_nlink == 0) {
6160 		ret = BTRFS_NO_LOG_SYNC;
6161 		goto end_no_trans;
6162 	}
6163 
6164 	ret = start_log_trans(trans, root, ctx);
6165 	if (ret)
6166 		goto end_no_trans;
6167 
6168 	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6169 	if (ret)
6170 		goto end_trans;
6171 
6172 	/*
6173 	 * for regular files, if its inode is already on disk, we don't
6174 	 * have to worry about the parents at all.  This is because
6175 	 * we can use the last_unlink_trans field to record renames
6176 	 * and other fun in this file.
6177 	 */
6178 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6179 	    inode->generation < trans->transid &&
6180 	    inode->last_unlink_trans < trans->transid) {
6181 		ret = 0;
6182 		goto end_trans;
6183 	}
6184 
6185 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6186 		log_dentries = true;
6187 
6188 	/*
6189 	 * On unlink we must make sure all our current and old parent directory
6190 	 * inodes are fully logged. This is to prevent leaving dangling
6191 	 * directory index entries in directories that were our parents but are
6192 	 * not anymore. Not doing this results in old parent directory being
6193 	 * impossible to delete after log replay (rmdir will always fail with
6194 	 * error -ENOTEMPTY).
6195 	 *
6196 	 * Example 1:
6197 	 *
6198 	 * mkdir testdir
6199 	 * touch testdir/foo
6200 	 * ln testdir/foo testdir/bar
6201 	 * sync
6202 	 * unlink testdir/bar
6203 	 * xfs_io -c fsync testdir/foo
6204 	 * <power failure>
6205 	 * mount fs, triggers log replay
6206 	 *
6207 	 * If we don't log the parent directory (testdir), after log replay the
6208 	 * directory still has an entry pointing to the file inode using the bar
6209 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6210 	 * the file inode has a link count of 1.
6211 	 *
6212 	 * Example 2:
6213 	 *
6214 	 * mkdir testdir
6215 	 * touch foo
6216 	 * ln foo testdir/foo2
6217 	 * ln foo testdir/foo3
6218 	 * sync
6219 	 * unlink testdir/foo3
6220 	 * xfs_io -c fsync foo
6221 	 * <power failure>
6222 	 * mount fs, triggers log replay
6223 	 *
6224 	 * Similar as the first example, after log replay the parent directory
6225 	 * testdir still has an entry pointing to the inode file with name foo3
6226 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6227 	 * and has a link count of 2.
6228 	 */
6229 	if (inode->last_unlink_trans >= trans->transid) {
6230 		ret = btrfs_log_all_parents(trans, inode, ctx);
6231 		if (ret)
6232 			goto end_trans;
6233 	}
6234 
6235 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6236 	if (ret)
6237 		goto end_trans;
6238 
6239 	if (log_dentries)
6240 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6241 	else
6242 		ret = 0;
6243 end_trans:
6244 	if (ret < 0) {
6245 		btrfs_set_log_full_commit(trans);
6246 		ret = 1;
6247 	}
6248 
6249 	if (ret)
6250 		btrfs_remove_log_ctx(root, ctx);
6251 	btrfs_end_log_trans(root);
6252 end_no_trans:
6253 	return ret;
6254 }
6255 
6256 /*
6257  * it is not safe to log dentry if the chunk root has added new
6258  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6259  * If this returns 1, you must commit the transaction to safely get your
6260  * data on disk.
6261  */
6262 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6263 			  struct dentry *dentry,
6264 			  struct btrfs_log_ctx *ctx)
6265 {
6266 	struct dentry *parent = dget_parent(dentry);
6267 	int ret;
6268 
6269 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6270 				     LOG_INODE_ALL, ctx);
6271 	dput(parent);
6272 
6273 	return ret;
6274 }
6275 
6276 /*
6277  * should be called during mount to recover any replay any log trees
6278  * from the FS
6279  */
6280 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6281 {
6282 	int ret;
6283 	struct btrfs_path *path;
6284 	struct btrfs_trans_handle *trans;
6285 	struct btrfs_key key;
6286 	struct btrfs_key found_key;
6287 	struct btrfs_root *log;
6288 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6289 	struct walk_control wc = {
6290 		.process_func = process_one_buffer,
6291 		.stage = LOG_WALK_PIN_ONLY,
6292 	};
6293 
6294 	path = btrfs_alloc_path();
6295 	if (!path)
6296 		return -ENOMEM;
6297 
6298 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6299 
6300 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6301 	if (IS_ERR(trans)) {
6302 		ret = PTR_ERR(trans);
6303 		goto error;
6304 	}
6305 
6306 	wc.trans = trans;
6307 	wc.pin = 1;
6308 
6309 	ret = walk_log_tree(trans, log_root_tree, &wc);
6310 	if (ret) {
6311 		btrfs_handle_fs_error(fs_info, ret,
6312 			"Failed to pin buffers while recovering log root tree.");
6313 		goto error;
6314 	}
6315 
6316 again:
6317 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6318 	key.offset = (u64)-1;
6319 	key.type = BTRFS_ROOT_ITEM_KEY;
6320 
6321 	while (1) {
6322 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6323 
6324 		if (ret < 0) {
6325 			btrfs_handle_fs_error(fs_info, ret,
6326 				    "Couldn't find tree log root.");
6327 			goto error;
6328 		}
6329 		if (ret > 0) {
6330 			if (path->slots[0] == 0)
6331 				break;
6332 			path->slots[0]--;
6333 		}
6334 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6335 				      path->slots[0]);
6336 		btrfs_release_path(path);
6337 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6338 			break;
6339 
6340 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6341 		if (IS_ERR(log)) {
6342 			ret = PTR_ERR(log);
6343 			btrfs_handle_fs_error(fs_info, ret,
6344 				    "Couldn't read tree log root.");
6345 			goto error;
6346 		}
6347 
6348 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6349 						   true);
6350 		if (IS_ERR(wc.replay_dest)) {
6351 			ret = PTR_ERR(wc.replay_dest);
6352 
6353 			/*
6354 			 * We didn't find the subvol, likely because it was
6355 			 * deleted.  This is ok, simply skip this log and go to
6356 			 * the next one.
6357 			 *
6358 			 * We need to exclude the root because we can't have
6359 			 * other log replays overwriting this log as we'll read
6360 			 * it back in a few more times.  This will keep our
6361 			 * block from being modified, and we'll just bail for
6362 			 * each subsequent pass.
6363 			 */
6364 			if (ret == -ENOENT)
6365 				ret = btrfs_pin_extent_for_log_replay(trans,
6366 							log->node->start,
6367 							log->node->len);
6368 			btrfs_put_root(log);
6369 
6370 			if (!ret)
6371 				goto next;
6372 			btrfs_handle_fs_error(fs_info, ret,
6373 				"Couldn't read target root for tree log recovery.");
6374 			goto error;
6375 		}
6376 
6377 		wc.replay_dest->log_root = log;
6378 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6379 		if (ret)
6380 			/* The loop needs to continue due to the root refs */
6381 			btrfs_handle_fs_error(fs_info, ret,
6382 				"failed to record the log root in transaction");
6383 		else
6384 			ret = walk_log_tree(trans, log, &wc);
6385 
6386 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6387 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6388 						      path);
6389 		}
6390 
6391 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6392 			struct btrfs_root *root = wc.replay_dest;
6393 
6394 			btrfs_release_path(path);
6395 
6396 			/*
6397 			 * We have just replayed everything, and the highest
6398 			 * objectid of fs roots probably has changed in case
6399 			 * some inode_item's got replayed.
6400 			 *
6401 			 * root->objectid_mutex is not acquired as log replay
6402 			 * could only happen during mount.
6403 			 */
6404 			ret = btrfs_init_root_free_objectid(root);
6405 		}
6406 
6407 		wc.replay_dest->log_root = NULL;
6408 		btrfs_put_root(wc.replay_dest);
6409 		btrfs_put_root(log);
6410 
6411 		if (ret)
6412 			goto error;
6413 next:
6414 		if (found_key.offset == 0)
6415 			break;
6416 		key.offset = found_key.offset - 1;
6417 	}
6418 	btrfs_release_path(path);
6419 
6420 	/* step one is to pin it all, step two is to replay just inodes */
6421 	if (wc.pin) {
6422 		wc.pin = 0;
6423 		wc.process_func = replay_one_buffer;
6424 		wc.stage = LOG_WALK_REPLAY_INODES;
6425 		goto again;
6426 	}
6427 	/* step three is to replay everything */
6428 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6429 		wc.stage++;
6430 		goto again;
6431 	}
6432 
6433 	btrfs_free_path(path);
6434 
6435 	/* step 4: commit the transaction, which also unpins the blocks */
6436 	ret = btrfs_commit_transaction(trans);
6437 	if (ret)
6438 		return ret;
6439 
6440 	log_root_tree->log_root = NULL;
6441 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6442 	btrfs_put_root(log_root_tree);
6443 
6444 	return 0;
6445 error:
6446 	if (wc.trans)
6447 		btrfs_end_transaction(wc.trans);
6448 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6449 	btrfs_free_path(path);
6450 	return ret;
6451 }
6452 
6453 /*
6454  * there are some corner cases where we want to force a full
6455  * commit instead of allowing a directory to be logged.
6456  *
6457  * They revolve around files there were unlinked from the directory, and
6458  * this function updates the parent directory so that a full commit is
6459  * properly done if it is fsync'd later after the unlinks are done.
6460  *
6461  * Must be called before the unlink operations (updates to the subvolume tree,
6462  * inodes, etc) are done.
6463  */
6464 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6465 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6466 			     int for_rename)
6467 {
6468 	/*
6469 	 * when we're logging a file, if it hasn't been renamed
6470 	 * or unlinked, and its inode is fully committed on disk,
6471 	 * we don't have to worry about walking up the directory chain
6472 	 * to log its parents.
6473 	 *
6474 	 * So, we use the last_unlink_trans field to put this transid
6475 	 * into the file.  When the file is logged we check it and
6476 	 * don't log the parents if the file is fully on disk.
6477 	 */
6478 	mutex_lock(&inode->log_mutex);
6479 	inode->last_unlink_trans = trans->transid;
6480 	mutex_unlock(&inode->log_mutex);
6481 
6482 	/*
6483 	 * if this directory was already logged any new
6484 	 * names for this file/dir will get recorded
6485 	 */
6486 	if (dir->logged_trans == trans->transid)
6487 		return;
6488 
6489 	/*
6490 	 * if the inode we're about to unlink was logged,
6491 	 * the log will be properly updated for any new names
6492 	 */
6493 	if (inode->logged_trans == trans->transid)
6494 		return;
6495 
6496 	/*
6497 	 * when renaming files across directories, if the directory
6498 	 * there we're unlinking from gets fsync'd later on, there's
6499 	 * no way to find the destination directory later and fsync it
6500 	 * properly.  So, we have to be conservative and force commits
6501 	 * so the new name gets discovered.
6502 	 */
6503 	if (for_rename)
6504 		goto record;
6505 
6506 	/* we can safely do the unlink without any special recording */
6507 	return;
6508 
6509 record:
6510 	mutex_lock(&dir->log_mutex);
6511 	dir->last_unlink_trans = trans->transid;
6512 	mutex_unlock(&dir->log_mutex);
6513 }
6514 
6515 /*
6516  * Make sure that if someone attempts to fsync the parent directory of a deleted
6517  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6518  * that after replaying the log tree of the parent directory's root we will not
6519  * see the snapshot anymore and at log replay time we will not see any log tree
6520  * corresponding to the deleted snapshot's root, which could lead to replaying
6521  * it after replaying the log tree of the parent directory (which would replay
6522  * the snapshot delete operation).
6523  *
6524  * Must be called before the actual snapshot destroy operation (updates to the
6525  * parent root and tree of tree roots trees, etc) are done.
6526  */
6527 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6528 				   struct btrfs_inode *dir)
6529 {
6530 	mutex_lock(&dir->log_mutex);
6531 	dir->last_unlink_trans = trans->transid;
6532 	mutex_unlock(&dir->log_mutex);
6533 }
6534 
6535 /*
6536  * Call this after adding a new name for a file and it will properly
6537  * update the log to reflect the new name.
6538  */
6539 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6540 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6541 			struct dentry *parent)
6542 {
6543 	struct btrfs_log_ctx ctx;
6544 
6545 	/*
6546 	 * this will force the logging code to walk the dentry chain
6547 	 * up for the file
6548 	 */
6549 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6550 		inode->last_unlink_trans = trans->transid;
6551 
6552 	/*
6553 	 * if this inode hasn't been logged and directory we're renaming it
6554 	 * from hasn't been logged, we don't need to log it
6555 	 */
6556 	if (!inode_logged(trans, inode) &&
6557 	    (!old_dir || !inode_logged(trans, old_dir)))
6558 		return;
6559 
6560 	/*
6561 	 * If we are doing a rename (old_dir is not NULL) from a directory that
6562 	 * was previously logged, make sure the next log attempt on the directory
6563 	 * is not skipped and logs the inode again. This is because the log may
6564 	 * not currently be authoritative for a range including the old
6565 	 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6566 	 * sure after a log replay we do not end up with both the new and old
6567 	 * dentries around (in case the inode is a directory we would have a
6568 	 * directory with two hard links and 2 inode references for different
6569 	 * parents). The next log attempt of old_dir will happen at
6570 	 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6571 	 * below, because we have previously set inode->last_unlink_trans to the
6572 	 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6573 	 * case inode is a directory.
6574 	 */
6575 	if (old_dir)
6576 		old_dir->logged_trans = 0;
6577 
6578 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6579 	ctx.logging_new_name = true;
6580 	/*
6581 	 * We don't care about the return value. If we fail to log the new name
6582 	 * then we know the next attempt to sync the log will fallback to a full
6583 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6584 	 * we don't need to worry about getting a log committed that has an
6585 	 * inconsistent state after a rename operation.
6586 	 */
6587 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6588 }
6589 
6590