xref: /openbmc/linux/fs/btrfs/tree-log.c (revision e8f6f3b4)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 
30 /* magic values for the inode_only field in btrfs_log_inode:
31  *
32  * LOG_INODE_ALL means to log everything
33  * LOG_INODE_EXISTS means to log just enough to recreate the inode
34  * during log replay
35  */
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
38 
39 /*
40  * directory trouble cases
41  *
42  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43  * log, we must force a full commit before doing an fsync of the directory
44  * where the unlink was done.
45  * ---> record transid of last unlink/rename per directory
46  *
47  * mkdir foo/some_dir
48  * normal commit
49  * rename foo/some_dir foo2/some_dir
50  * mkdir foo/some_dir
51  * fsync foo/some_dir/some_file
52  *
53  * The fsync above will unlink the original some_dir without recording
54  * it in its new location (foo2).  After a crash, some_dir will be gone
55  * unless the fsync of some_file forces a full commit
56  *
57  * 2) we must log any new names for any file or dir that is in the fsync
58  * log. ---> check inode while renaming/linking.
59  *
60  * 2a) we must log any new names for any file or dir during rename
61  * when the directory they are being removed from was logged.
62  * ---> check inode and old parent dir during rename
63  *
64  *  2a is actually the more important variant.  With the extra logging
65  *  a crash might unlink the old name without recreating the new one
66  *
67  * 3) after a crash, we must go through any directories with a link count
68  * of zero and redo the rm -rf
69  *
70  * mkdir f1/foo
71  * normal commit
72  * rm -rf f1/foo
73  * fsync(f1)
74  *
75  * The directory f1 was fully removed from the FS, but fsync was never
76  * called on f1, only its parent dir.  After a crash the rm -rf must
77  * be replayed.  This must be able to recurse down the entire
78  * directory tree.  The inode link count fixup code takes care of the
79  * ugly details.
80  */
81 
82 /*
83  * stages for the tree walking.  The first
84  * stage (0) is to only pin down the blocks we find
85  * the second stage (1) is to make sure that all the inodes
86  * we find in the log are created in the subvolume.
87  *
88  * The last stage is to deal with directories and links and extents
89  * and all the other fun semantics
90  */
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct inode *inode,
98 			   int inode_only,
99 			   const loff_t start,
100 			   const loff_t end,
101 			   struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 			     struct btrfs_root *root,
104 			     struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 				       struct btrfs_root *root,
107 				       struct btrfs_root *log,
108 				       struct btrfs_path *path,
109 				       u64 dirid, int del_all);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	int index;
144 	int ret;
145 
146 	mutex_lock(&root->log_mutex);
147 	if (root->log_root) {
148 		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
149 			ret = -EAGAIN;
150 			goto out;
151 		}
152 		if (!root->log_start_pid) {
153 			root->log_start_pid = current->pid;
154 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 
159 		atomic_inc(&root->log_batch);
160 		atomic_inc(&root->log_writers);
161 		if (ctx) {
162 			index = root->log_transid % 2;
163 			list_add_tail(&ctx->list, &root->log_ctxs[index]);
164 			ctx->log_transid = root->log_transid;
165 		}
166 		mutex_unlock(&root->log_mutex);
167 		return 0;
168 	}
169 
170 	ret = 0;
171 	mutex_lock(&root->fs_info->tree_log_mutex);
172 	if (!root->fs_info->log_root_tree)
173 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
174 	mutex_unlock(&root->fs_info->tree_log_mutex);
175 	if (ret)
176 		goto out;
177 
178 	if (!root->log_root) {
179 		ret = btrfs_add_log_tree(trans, root);
180 		if (ret)
181 			goto out;
182 	}
183 	clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 	root->log_start_pid = current->pid;
185 	atomic_inc(&root->log_batch);
186 	atomic_inc(&root->log_writers);
187 	if (ctx) {
188 		index = root->log_transid % 2;
189 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
190 		ctx->log_transid = root->log_transid;
191 	}
192 out:
193 	mutex_unlock(&root->log_mutex);
194 	return ret;
195 }
196 
197 /*
198  * returns 0 if there was a log transaction running and we were able
199  * to join, or returns -ENOENT if there were not transactions
200  * in progress
201  */
202 static int join_running_log_trans(struct btrfs_root *root)
203 {
204 	int ret = -ENOENT;
205 
206 	smp_mb();
207 	if (!root->log_root)
208 		return -ENOENT;
209 
210 	mutex_lock(&root->log_mutex);
211 	if (root->log_root) {
212 		ret = 0;
213 		atomic_inc(&root->log_writers);
214 	}
215 	mutex_unlock(&root->log_mutex);
216 	return ret;
217 }
218 
219 /*
220  * This either makes the current running log transaction wait
221  * until you call btrfs_end_log_trans() or it makes any future
222  * log transactions wait until you call btrfs_end_log_trans()
223  */
224 int btrfs_pin_log_trans(struct btrfs_root *root)
225 {
226 	int ret = -ENOENT;
227 
228 	mutex_lock(&root->log_mutex);
229 	atomic_inc(&root->log_writers);
230 	mutex_unlock(&root->log_mutex);
231 	return ret;
232 }
233 
234 /*
235  * indicate we're done making changes to the log tree
236  * and wake up anyone waiting to do a sync
237  */
238 void btrfs_end_log_trans(struct btrfs_root *root)
239 {
240 	if (atomic_dec_and_test(&root->log_writers)) {
241 		smp_mb();
242 		if (waitqueue_active(&root->log_writer_wait))
243 			wake_up(&root->log_writer_wait);
244 	}
245 }
246 
247 
248 /*
249  * the walk control struct is used to pass state down the chain when
250  * processing the log tree.  The stage field tells us which part
251  * of the log tree processing we are currently doing.  The others
252  * are state fields used for that specific part
253  */
254 struct walk_control {
255 	/* should we free the extent on disk when done?  This is used
256 	 * at transaction commit time while freeing a log tree
257 	 */
258 	int free;
259 
260 	/* should we write out the extent buffer?  This is used
261 	 * while flushing the log tree to disk during a sync
262 	 */
263 	int write;
264 
265 	/* should we wait for the extent buffer io to finish?  Also used
266 	 * while flushing the log tree to disk for a sync
267 	 */
268 	int wait;
269 
270 	/* pin only walk, we record which extents on disk belong to the
271 	 * log trees
272 	 */
273 	int pin;
274 
275 	/* what stage of the replay code we're currently in */
276 	int stage;
277 
278 	/* the root we are currently replaying */
279 	struct btrfs_root *replay_dest;
280 
281 	/* the trans handle for the current replay */
282 	struct btrfs_trans_handle *trans;
283 
284 	/* the function that gets used to process blocks we find in the
285 	 * tree.  Note the extent_buffer might not be up to date when it is
286 	 * passed in, and it must be checked or read if you need the data
287 	 * inside it
288 	 */
289 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 			    struct walk_control *wc, u64 gen);
291 };
292 
293 /*
294  * process_func used to pin down extents, write them or wait on them
295  */
296 static int process_one_buffer(struct btrfs_root *log,
297 			      struct extent_buffer *eb,
298 			      struct walk_control *wc, u64 gen)
299 {
300 	int ret = 0;
301 
302 	/*
303 	 * If this fs is mixed then we need to be able to process the leaves to
304 	 * pin down any logged extents, so we have to read the block.
305 	 */
306 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
307 		ret = btrfs_read_buffer(eb, gen);
308 		if (ret)
309 			return ret;
310 	}
311 
312 	if (wc->pin)
313 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
314 						      eb->start, eb->len);
315 
316 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 		if (wc->pin && btrfs_header_level(eb) == 0)
318 			ret = btrfs_exclude_logged_extents(log, eb);
319 		if (wc->write)
320 			btrfs_write_tree_block(eb);
321 		if (wc->wait)
322 			btrfs_wait_tree_block_writeback(eb);
323 	}
324 	return ret;
325 }
326 
327 /*
328  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
329  * to the src data we are copying out.
330  *
331  * root is the tree we are copying into, and path is a scratch
332  * path for use in this function (it should be released on entry and
333  * will be released on exit).
334  *
335  * If the key is already in the destination tree the existing item is
336  * overwritten.  If the existing item isn't big enough, it is extended.
337  * If it is too large, it is truncated.
338  *
339  * If the key isn't in the destination yet, a new item is inserted.
340  */
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 				   struct btrfs_root *root,
343 				   struct btrfs_path *path,
344 				   struct extent_buffer *eb, int slot,
345 				   struct btrfs_key *key)
346 {
347 	int ret;
348 	u32 item_size;
349 	u64 saved_i_size = 0;
350 	int save_old_i_size = 0;
351 	unsigned long src_ptr;
352 	unsigned long dst_ptr;
353 	int overwrite_root = 0;
354 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
355 
356 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 		overwrite_root = 1;
358 
359 	item_size = btrfs_item_size_nr(eb, slot);
360 	src_ptr = btrfs_item_ptr_offset(eb, slot);
361 
362 	/* look for the key in the destination tree */
363 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
364 	if (ret < 0)
365 		return ret;
366 
367 	if (ret == 0) {
368 		char *src_copy;
369 		char *dst_copy;
370 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 						  path->slots[0]);
372 		if (dst_size != item_size)
373 			goto insert;
374 
375 		if (item_size == 0) {
376 			btrfs_release_path(path);
377 			return 0;
378 		}
379 		dst_copy = kmalloc(item_size, GFP_NOFS);
380 		src_copy = kmalloc(item_size, GFP_NOFS);
381 		if (!dst_copy || !src_copy) {
382 			btrfs_release_path(path);
383 			kfree(dst_copy);
384 			kfree(src_copy);
385 			return -ENOMEM;
386 		}
387 
388 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
389 
390 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 				   item_size);
393 		ret = memcmp(dst_copy, src_copy, item_size);
394 
395 		kfree(dst_copy);
396 		kfree(src_copy);
397 		/*
398 		 * they have the same contents, just return, this saves
399 		 * us from cowing blocks in the destination tree and doing
400 		 * extra writes that may not have been done by a previous
401 		 * sync
402 		 */
403 		if (ret == 0) {
404 			btrfs_release_path(path);
405 			return 0;
406 		}
407 
408 		/*
409 		 * We need to load the old nbytes into the inode so when we
410 		 * replay the extents we've logged we get the right nbytes.
411 		 */
412 		if (inode_item) {
413 			struct btrfs_inode_item *item;
414 			u64 nbytes;
415 			u32 mode;
416 
417 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 					      struct btrfs_inode_item);
419 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 			item = btrfs_item_ptr(eb, slot,
421 					      struct btrfs_inode_item);
422 			btrfs_set_inode_nbytes(eb, item, nbytes);
423 
424 			/*
425 			 * If this is a directory we need to reset the i_size to
426 			 * 0 so that we can set it up properly when replaying
427 			 * the rest of the items in this log.
428 			 */
429 			mode = btrfs_inode_mode(eb, item);
430 			if (S_ISDIR(mode))
431 				btrfs_set_inode_size(eb, item, 0);
432 		}
433 	} else if (inode_item) {
434 		struct btrfs_inode_item *item;
435 		u32 mode;
436 
437 		/*
438 		 * New inode, set nbytes to 0 so that the nbytes comes out
439 		 * properly when we replay the extents.
440 		 */
441 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 		btrfs_set_inode_nbytes(eb, item, 0);
443 
444 		/*
445 		 * If this is a directory we need to reset the i_size to 0 so
446 		 * that we can set it up properly when replaying the rest of
447 		 * the items in this log.
448 		 */
449 		mode = btrfs_inode_mode(eb, item);
450 		if (S_ISDIR(mode))
451 			btrfs_set_inode_size(eb, item, 0);
452 	}
453 insert:
454 	btrfs_release_path(path);
455 	/* try to insert the key into the destination tree */
456 	ret = btrfs_insert_empty_item(trans, root, path,
457 				      key, item_size);
458 
459 	/* make sure any existing item is the correct size */
460 	if (ret == -EEXIST) {
461 		u32 found_size;
462 		found_size = btrfs_item_size_nr(path->nodes[0],
463 						path->slots[0]);
464 		if (found_size > item_size)
465 			btrfs_truncate_item(root, path, item_size, 1);
466 		else if (found_size < item_size)
467 			btrfs_extend_item(root, path,
468 					  item_size - found_size);
469 	} else if (ret) {
470 		return ret;
471 	}
472 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
473 					path->slots[0]);
474 
475 	/* don't overwrite an existing inode if the generation number
476 	 * was logged as zero.  This is done when the tree logging code
477 	 * is just logging an inode to make sure it exists after recovery.
478 	 *
479 	 * Also, don't overwrite i_size on directories during replay.
480 	 * log replay inserts and removes directory items based on the
481 	 * state of the tree found in the subvolume, and i_size is modified
482 	 * as it goes
483 	 */
484 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
485 		struct btrfs_inode_item *src_item;
486 		struct btrfs_inode_item *dst_item;
487 
488 		src_item = (struct btrfs_inode_item *)src_ptr;
489 		dst_item = (struct btrfs_inode_item *)dst_ptr;
490 
491 		if (btrfs_inode_generation(eb, src_item) == 0)
492 			goto no_copy;
493 
494 		if (overwrite_root &&
495 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
496 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
497 			save_old_i_size = 1;
498 			saved_i_size = btrfs_inode_size(path->nodes[0],
499 							dst_item);
500 		}
501 	}
502 
503 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
504 			   src_ptr, item_size);
505 
506 	if (save_old_i_size) {
507 		struct btrfs_inode_item *dst_item;
508 		dst_item = (struct btrfs_inode_item *)dst_ptr;
509 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
510 	}
511 
512 	/* make sure the generation is filled in */
513 	if (key->type == BTRFS_INODE_ITEM_KEY) {
514 		struct btrfs_inode_item *dst_item;
515 		dst_item = (struct btrfs_inode_item *)dst_ptr;
516 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
517 			btrfs_set_inode_generation(path->nodes[0], dst_item,
518 						   trans->transid);
519 		}
520 	}
521 no_copy:
522 	btrfs_mark_buffer_dirty(path->nodes[0]);
523 	btrfs_release_path(path);
524 	return 0;
525 }
526 
527 /*
528  * simple helper to read an inode off the disk from a given root
529  * This can only be called for subvolume roots and not for the log
530  */
531 static noinline struct inode *read_one_inode(struct btrfs_root *root,
532 					     u64 objectid)
533 {
534 	struct btrfs_key key;
535 	struct inode *inode;
536 
537 	key.objectid = objectid;
538 	key.type = BTRFS_INODE_ITEM_KEY;
539 	key.offset = 0;
540 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
541 	if (IS_ERR(inode)) {
542 		inode = NULL;
543 	} else if (is_bad_inode(inode)) {
544 		iput(inode);
545 		inode = NULL;
546 	}
547 	return inode;
548 }
549 
550 /* replays a single extent in 'eb' at 'slot' with 'key' into the
551  * subvolume 'root'.  path is released on entry and should be released
552  * on exit.
553  *
554  * extents in the log tree have not been allocated out of the extent
555  * tree yet.  So, this completes the allocation, taking a reference
556  * as required if the extent already exists or creating a new extent
557  * if it isn't in the extent allocation tree yet.
558  *
559  * The extent is inserted into the file, dropping any existing extents
560  * from the file that overlap the new one.
561  */
562 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
563 				      struct btrfs_root *root,
564 				      struct btrfs_path *path,
565 				      struct extent_buffer *eb, int slot,
566 				      struct btrfs_key *key)
567 {
568 	int found_type;
569 	u64 extent_end;
570 	u64 start = key->offset;
571 	u64 nbytes = 0;
572 	struct btrfs_file_extent_item *item;
573 	struct inode *inode = NULL;
574 	unsigned long size;
575 	int ret = 0;
576 
577 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
578 	found_type = btrfs_file_extent_type(eb, item);
579 
580 	if (found_type == BTRFS_FILE_EXTENT_REG ||
581 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
582 		nbytes = btrfs_file_extent_num_bytes(eb, item);
583 		extent_end = start + nbytes;
584 
585 		/*
586 		 * We don't add to the inodes nbytes if we are prealloc or a
587 		 * hole.
588 		 */
589 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
590 			nbytes = 0;
591 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
592 		size = btrfs_file_extent_inline_len(eb, slot, item);
593 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
594 		extent_end = ALIGN(start + size, root->sectorsize);
595 	} else {
596 		ret = 0;
597 		goto out;
598 	}
599 
600 	inode = read_one_inode(root, key->objectid);
601 	if (!inode) {
602 		ret = -EIO;
603 		goto out;
604 	}
605 
606 	/*
607 	 * first check to see if we already have this extent in the
608 	 * file.  This must be done before the btrfs_drop_extents run
609 	 * so we don't try to drop this extent.
610 	 */
611 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
612 				       start, 0);
613 
614 	if (ret == 0 &&
615 	    (found_type == BTRFS_FILE_EXTENT_REG ||
616 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
617 		struct btrfs_file_extent_item cmp1;
618 		struct btrfs_file_extent_item cmp2;
619 		struct btrfs_file_extent_item *existing;
620 		struct extent_buffer *leaf;
621 
622 		leaf = path->nodes[0];
623 		existing = btrfs_item_ptr(leaf, path->slots[0],
624 					  struct btrfs_file_extent_item);
625 
626 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
627 				   sizeof(cmp1));
628 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
629 				   sizeof(cmp2));
630 
631 		/*
632 		 * we already have a pointer to this exact extent,
633 		 * we don't have to do anything
634 		 */
635 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
636 			btrfs_release_path(path);
637 			goto out;
638 		}
639 	}
640 	btrfs_release_path(path);
641 
642 	/* drop any overlapping extents */
643 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
644 	if (ret)
645 		goto out;
646 
647 	if (found_type == BTRFS_FILE_EXTENT_REG ||
648 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
649 		u64 offset;
650 		unsigned long dest_offset;
651 		struct btrfs_key ins;
652 
653 		ret = btrfs_insert_empty_item(trans, root, path, key,
654 					      sizeof(*item));
655 		if (ret)
656 			goto out;
657 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
658 						    path->slots[0]);
659 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
660 				(unsigned long)item,  sizeof(*item));
661 
662 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
663 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
664 		ins.type = BTRFS_EXTENT_ITEM_KEY;
665 		offset = key->offset - btrfs_file_extent_offset(eb, item);
666 
667 		if (ins.objectid > 0) {
668 			u64 csum_start;
669 			u64 csum_end;
670 			LIST_HEAD(ordered_sums);
671 			/*
672 			 * is this extent already allocated in the extent
673 			 * allocation tree?  If so, just add a reference
674 			 */
675 			ret = btrfs_lookup_data_extent(root, ins.objectid,
676 						ins.offset);
677 			if (ret == 0) {
678 				ret = btrfs_inc_extent_ref(trans, root,
679 						ins.objectid, ins.offset,
680 						0, root->root_key.objectid,
681 						key->objectid, offset, 0);
682 				if (ret)
683 					goto out;
684 			} else {
685 				/*
686 				 * insert the extent pointer in the extent
687 				 * allocation tree
688 				 */
689 				ret = btrfs_alloc_logged_file_extent(trans,
690 						root, root->root_key.objectid,
691 						key->objectid, offset, &ins);
692 				if (ret)
693 					goto out;
694 			}
695 			btrfs_release_path(path);
696 
697 			if (btrfs_file_extent_compression(eb, item)) {
698 				csum_start = ins.objectid;
699 				csum_end = csum_start + ins.offset;
700 			} else {
701 				csum_start = ins.objectid +
702 					btrfs_file_extent_offset(eb, item);
703 				csum_end = csum_start +
704 					btrfs_file_extent_num_bytes(eb, item);
705 			}
706 
707 			ret = btrfs_lookup_csums_range(root->log_root,
708 						csum_start, csum_end - 1,
709 						&ordered_sums, 0);
710 			if (ret)
711 				goto out;
712 			while (!list_empty(&ordered_sums)) {
713 				struct btrfs_ordered_sum *sums;
714 				sums = list_entry(ordered_sums.next,
715 						struct btrfs_ordered_sum,
716 						list);
717 				if (!ret)
718 					ret = btrfs_csum_file_blocks(trans,
719 						root->fs_info->csum_root,
720 						sums);
721 				list_del(&sums->list);
722 				kfree(sums);
723 			}
724 			if (ret)
725 				goto out;
726 		} else {
727 			btrfs_release_path(path);
728 		}
729 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
730 		/* inline extents are easy, we just overwrite them */
731 		ret = overwrite_item(trans, root, path, eb, slot, key);
732 		if (ret)
733 			goto out;
734 	}
735 
736 	inode_add_bytes(inode, nbytes);
737 	ret = btrfs_update_inode(trans, root, inode);
738 out:
739 	if (inode)
740 		iput(inode);
741 	return ret;
742 }
743 
744 /*
745  * when cleaning up conflicts between the directory names in the
746  * subvolume, directory names in the log and directory names in the
747  * inode back references, we may have to unlink inodes from directories.
748  *
749  * This is a helper function to do the unlink of a specific directory
750  * item
751  */
752 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
753 				      struct btrfs_root *root,
754 				      struct btrfs_path *path,
755 				      struct inode *dir,
756 				      struct btrfs_dir_item *di)
757 {
758 	struct inode *inode;
759 	char *name;
760 	int name_len;
761 	struct extent_buffer *leaf;
762 	struct btrfs_key location;
763 	int ret;
764 
765 	leaf = path->nodes[0];
766 
767 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
768 	name_len = btrfs_dir_name_len(leaf, di);
769 	name = kmalloc(name_len, GFP_NOFS);
770 	if (!name)
771 		return -ENOMEM;
772 
773 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
774 	btrfs_release_path(path);
775 
776 	inode = read_one_inode(root, location.objectid);
777 	if (!inode) {
778 		ret = -EIO;
779 		goto out;
780 	}
781 
782 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
783 	if (ret)
784 		goto out;
785 
786 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
787 	if (ret)
788 		goto out;
789 	else
790 		ret = btrfs_run_delayed_items(trans, root);
791 out:
792 	kfree(name);
793 	iput(inode);
794 	return ret;
795 }
796 
797 /*
798  * helper function to see if a given name and sequence number found
799  * in an inode back reference are already in a directory and correctly
800  * point to this inode
801  */
802 static noinline int inode_in_dir(struct btrfs_root *root,
803 				 struct btrfs_path *path,
804 				 u64 dirid, u64 objectid, u64 index,
805 				 const char *name, int name_len)
806 {
807 	struct btrfs_dir_item *di;
808 	struct btrfs_key location;
809 	int match = 0;
810 
811 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
812 					 index, name, name_len, 0);
813 	if (di && !IS_ERR(di)) {
814 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
815 		if (location.objectid != objectid)
816 			goto out;
817 	} else
818 		goto out;
819 	btrfs_release_path(path);
820 
821 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
822 	if (di && !IS_ERR(di)) {
823 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
824 		if (location.objectid != objectid)
825 			goto out;
826 	} else
827 		goto out;
828 	match = 1;
829 out:
830 	btrfs_release_path(path);
831 	return match;
832 }
833 
834 /*
835  * helper function to check a log tree for a named back reference in
836  * an inode.  This is used to decide if a back reference that is
837  * found in the subvolume conflicts with what we find in the log.
838  *
839  * inode backreferences may have multiple refs in a single item,
840  * during replay we process one reference at a time, and we don't
841  * want to delete valid links to a file from the subvolume if that
842  * link is also in the log.
843  */
844 static noinline int backref_in_log(struct btrfs_root *log,
845 				   struct btrfs_key *key,
846 				   u64 ref_objectid,
847 				   char *name, int namelen)
848 {
849 	struct btrfs_path *path;
850 	struct btrfs_inode_ref *ref;
851 	unsigned long ptr;
852 	unsigned long ptr_end;
853 	unsigned long name_ptr;
854 	int found_name_len;
855 	int item_size;
856 	int ret;
857 	int match = 0;
858 
859 	path = btrfs_alloc_path();
860 	if (!path)
861 		return -ENOMEM;
862 
863 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
864 	if (ret != 0)
865 		goto out;
866 
867 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
868 
869 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
870 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
871 						   name, namelen, NULL))
872 			match = 1;
873 
874 		goto out;
875 	}
876 
877 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
878 	ptr_end = ptr + item_size;
879 	while (ptr < ptr_end) {
880 		ref = (struct btrfs_inode_ref *)ptr;
881 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
882 		if (found_name_len == namelen) {
883 			name_ptr = (unsigned long)(ref + 1);
884 			ret = memcmp_extent_buffer(path->nodes[0], name,
885 						   name_ptr, namelen);
886 			if (ret == 0) {
887 				match = 1;
888 				goto out;
889 			}
890 		}
891 		ptr = (unsigned long)(ref + 1) + found_name_len;
892 	}
893 out:
894 	btrfs_free_path(path);
895 	return match;
896 }
897 
898 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
899 				  struct btrfs_root *root,
900 				  struct btrfs_path *path,
901 				  struct btrfs_root *log_root,
902 				  struct inode *dir, struct inode *inode,
903 				  struct extent_buffer *eb,
904 				  u64 inode_objectid, u64 parent_objectid,
905 				  u64 ref_index, char *name, int namelen,
906 				  int *search_done)
907 {
908 	int ret;
909 	char *victim_name;
910 	int victim_name_len;
911 	struct extent_buffer *leaf;
912 	struct btrfs_dir_item *di;
913 	struct btrfs_key search_key;
914 	struct btrfs_inode_extref *extref;
915 
916 again:
917 	/* Search old style refs */
918 	search_key.objectid = inode_objectid;
919 	search_key.type = BTRFS_INODE_REF_KEY;
920 	search_key.offset = parent_objectid;
921 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
922 	if (ret == 0) {
923 		struct btrfs_inode_ref *victim_ref;
924 		unsigned long ptr;
925 		unsigned long ptr_end;
926 
927 		leaf = path->nodes[0];
928 
929 		/* are we trying to overwrite a back ref for the root directory
930 		 * if so, just jump out, we're done
931 		 */
932 		if (search_key.objectid == search_key.offset)
933 			return 1;
934 
935 		/* check all the names in this back reference to see
936 		 * if they are in the log.  if so, we allow them to stay
937 		 * otherwise they must be unlinked as a conflict
938 		 */
939 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
940 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
941 		while (ptr < ptr_end) {
942 			victim_ref = (struct btrfs_inode_ref *)ptr;
943 			victim_name_len = btrfs_inode_ref_name_len(leaf,
944 								   victim_ref);
945 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
946 			if (!victim_name)
947 				return -ENOMEM;
948 
949 			read_extent_buffer(leaf, victim_name,
950 					   (unsigned long)(victim_ref + 1),
951 					   victim_name_len);
952 
953 			if (!backref_in_log(log_root, &search_key,
954 					    parent_objectid,
955 					    victim_name,
956 					    victim_name_len)) {
957 				inc_nlink(inode);
958 				btrfs_release_path(path);
959 
960 				ret = btrfs_unlink_inode(trans, root, dir,
961 							 inode, victim_name,
962 							 victim_name_len);
963 				kfree(victim_name);
964 				if (ret)
965 					return ret;
966 				ret = btrfs_run_delayed_items(trans, root);
967 				if (ret)
968 					return ret;
969 				*search_done = 1;
970 				goto again;
971 			}
972 			kfree(victim_name);
973 
974 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
975 		}
976 
977 		/*
978 		 * NOTE: we have searched root tree and checked the
979 		 * coresponding ref, it does not need to check again.
980 		 */
981 		*search_done = 1;
982 	}
983 	btrfs_release_path(path);
984 
985 	/* Same search but for extended refs */
986 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
987 					   inode_objectid, parent_objectid, 0,
988 					   0);
989 	if (!IS_ERR_OR_NULL(extref)) {
990 		u32 item_size;
991 		u32 cur_offset = 0;
992 		unsigned long base;
993 		struct inode *victim_parent;
994 
995 		leaf = path->nodes[0];
996 
997 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
998 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
999 
1000 		while (cur_offset < item_size) {
1001 			extref = (struct btrfs_inode_extref *)base + cur_offset;
1002 
1003 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1004 
1005 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1006 				goto next;
1007 
1008 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1009 			if (!victim_name)
1010 				return -ENOMEM;
1011 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1012 					   victim_name_len);
1013 
1014 			search_key.objectid = inode_objectid;
1015 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1016 			search_key.offset = btrfs_extref_hash(parent_objectid,
1017 							      victim_name,
1018 							      victim_name_len);
1019 			ret = 0;
1020 			if (!backref_in_log(log_root, &search_key,
1021 					    parent_objectid, victim_name,
1022 					    victim_name_len)) {
1023 				ret = -ENOENT;
1024 				victim_parent = read_one_inode(root,
1025 							       parent_objectid);
1026 				if (victim_parent) {
1027 					inc_nlink(inode);
1028 					btrfs_release_path(path);
1029 
1030 					ret = btrfs_unlink_inode(trans, root,
1031 								 victim_parent,
1032 								 inode,
1033 								 victim_name,
1034 								 victim_name_len);
1035 					if (!ret)
1036 						ret = btrfs_run_delayed_items(
1037 								  trans, root);
1038 				}
1039 				iput(victim_parent);
1040 				kfree(victim_name);
1041 				if (ret)
1042 					return ret;
1043 				*search_done = 1;
1044 				goto again;
1045 			}
1046 			kfree(victim_name);
1047 			if (ret)
1048 				return ret;
1049 next:
1050 			cur_offset += victim_name_len + sizeof(*extref);
1051 		}
1052 		*search_done = 1;
1053 	}
1054 	btrfs_release_path(path);
1055 
1056 	/* look for a conflicting sequence number */
1057 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1058 					 ref_index, name, namelen, 0);
1059 	if (di && !IS_ERR(di)) {
1060 		ret = drop_one_dir_item(trans, root, path, dir, di);
1061 		if (ret)
1062 			return ret;
1063 	}
1064 	btrfs_release_path(path);
1065 
1066 	/* look for a conflicing name */
1067 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1068 				   name, namelen, 0);
1069 	if (di && !IS_ERR(di)) {
1070 		ret = drop_one_dir_item(trans, root, path, dir, di);
1071 		if (ret)
1072 			return ret;
1073 	}
1074 	btrfs_release_path(path);
1075 
1076 	return 0;
1077 }
1078 
1079 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1080 			     u32 *namelen, char **name, u64 *index,
1081 			     u64 *parent_objectid)
1082 {
1083 	struct btrfs_inode_extref *extref;
1084 
1085 	extref = (struct btrfs_inode_extref *)ref_ptr;
1086 
1087 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1088 	*name = kmalloc(*namelen, GFP_NOFS);
1089 	if (*name == NULL)
1090 		return -ENOMEM;
1091 
1092 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1093 			   *namelen);
1094 
1095 	*index = btrfs_inode_extref_index(eb, extref);
1096 	if (parent_objectid)
1097 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1098 
1099 	return 0;
1100 }
1101 
1102 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1103 			  u32 *namelen, char **name, u64 *index)
1104 {
1105 	struct btrfs_inode_ref *ref;
1106 
1107 	ref = (struct btrfs_inode_ref *)ref_ptr;
1108 
1109 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1110 	*name = kmalloc(*namelen, GFP_NOFS);
1111 	if (*name == NULL)
1112 		return -ENOMEM;
1113 
1114 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1115 
1116 	*index = btrfs_inode_ref_index(eb, ref);
1117 
1118 	return 0;
1119 }
1120 
1121 /*
1122  * replay one inode back reference item found in the log tree.
1123  * eb, slot and key refer to the buffer and key found in the log tree.
1124  * root is the destination we are replaying into, and path is for temp
1125  * use by this function.  (it should be released on return).
1126  */
1127 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1128 				  struct btrfs_root *root,
1129 				  struct btrfs_root *log,
1130 				  struct btrfs_path *path,
1131 				  struct extent_buffer *eb, int slot,
1132 				  struct btrfs_key *key)
1133 {
1134 	struct inode *dir = NULL;
1135 	struct inode *inode = NULL;
1136 	unsigned long ref_ptr;
1137 	unsigned long ref_end;
1138 	char *name = NULL;
1139 	int namelen;
1140 	int ret;
1141 	int search_done = 0;
1142 	int log_ref_ver = 0;
1143 	u64 parent_objectid;
1144 	u64 inode_objectid;
1145 	u64 ref_index = 0;
1146 	int ref_struct_size;
1147 
1148 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1149 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1150 
1151 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1152 		struct btrfs_inode_extref *r;
1153 
1154 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1155 		log_ref_ver = 1;
1156 		r = (struct btrfs_inode_extref *)ref_ptr;
1157 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1158 	} else {
1159 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1160 		parent_objectid = key->offset;
1161 	}
1162 	inode_objectid = key->objectid;
1163 
1164 	/*
1165 	 * it is possible that we didn't log all the parent directories
1166 	 * for a given inode.  If we don't find the dir, just don't
1167 	 * copy the back ref in.  The link count fixup code will take
1168 	 * care of the rest
1169 	 */
1170 	dir = read_one_inode(root, parent_objectid);
1171 	if (!dir) {
1172 		ret = -ENOENT;
1173 		goto out;
1174 	}
1175 
1176 	inode = read_one_inode(root, inode_objectid);
1177 	if (!inode) {
1178 		ret = -EIO;
1179 		goto out;
1180 	}
1181 
1182 	while (ref_ptr < ref_end) {
1183 		if (log_ref_ver) {
1184 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1185 						&ref_index, &parent_objectid);
1186 			/*
1187 			 * parent object can change from one array
1188 			 * item to another.
1189 			 */
1190 			if (!dir)
1191 				dir = read_one_inode(root, parent_objectid);
1192 			if (!dir) {
1193 				ret = -ENOENT;
1194 				goto out;
1195 			}
1196 		} else {
1197 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1198 					     &ref_index);
1199 		}
1200 		if (ret)
1201 			goto out;
1202 
1203 		/* if we already have a perfect match, we're done */
1204 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1205 				  ref_index, name, namelen)) {
1206 			/*
1207 			 * look for a conflicting back reference in the
1208 			 * metadata. if we find one we have to unlink that name
1209 			 * of the file before we add our new link.  Later on, we
1210 			 * overwrite any existing back reference, and we don't
1211 			 * want to create dangling pointers in the directory.
1212 			 */
1213 
1214 			if (!search_done) {
1215 				ret = __add_inode_ref(trans, root, path, log,
1216 						      dir, inode, eb,
1217 						      inode_objectid,
1218 						      parent_objectid,
1219 						      ref_index, name, namelen,
1220 						      &search_done);
1221 				if (ret) {
1222 					if (ret == 1)
1223 						ret = 0;
1224 					goto out;
1225 				}
1226 			}
1227 
1228 			/* insert our name */
1229 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1230 					     0, ref_index);
1231 			if (ret)
1232 				goto out;
1233 
1234 			btrfs_update_inode(trans, root, inode);
1235 		}
1236 
1237 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1238 		kfree(name);
1239 		name = NULL;
1240 		if (log_ref_ver) {
1241 			iput(dir);
1242 			dir = NULL;
1243 		}
1244 	}
1245 
1246 	/* finally write the back reference in the inode */
1247 	ret = overwrite_item(trans, root, path, eb, slot, key);
1248 out:
1249 	btrfs_release_path(path);
1250 	kfree(name);
1251 	iput(dir);
1252 	iput(inode);
1253 	return ret;
1254 }
1255 
1256 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1257 			      struct btrfs_root *root, u64 offset)
1258 {
1259 	int ret;
1260 	ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1261 			offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1262 	if (ret > 0)
1263 		ret = btrfs_insert_orphan_item(trans, root, offset);
1264 	return ret;
1265 }
1266 
1267 static int count_inode_extrefs(struct btrfs_root *root,
1268 			       struct inode *inode, struct btrfs_path *path)
1269 {
1270 	int ret = 0;
1271 	int name_len;
1272 	unsigned int nlink = 0;
1273 	u32 item_size;
1274 	u32 cur_offset = 0;
1275 	u64 inode_objectid = btrfs_ino(inode);
1276 	u64 offset = 0;
1277 	unsigned long ptr;
1278 	struct btrfs_inode_extref *extref;
1279 	struct extent_buffer *leaf;
1280 
1281 	while (1) {
1282 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1283 					    &extref, &offset);
1284 		if (ret)
1285 			break;
1286 
1287 		leaf = path->nodes[0];
1288 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1289 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1290 
1291 		while (cur_offset < item_size) {
1292 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1293 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1294 
1295 			nlink++;
1296 
1297 			cur_offset += name_len + sizeof(*extref);
1298 		}
1299 
1300 		offset++;
1301 		btrfs_release_path(path);
1302 	}
1303 	btrfs_release_path(path);
1304 
1305 	if (ret < 0)
1306 		return ret;
1307 	return nlink;
1308 }
1309 
1310 static int count_inode_refs(struct btrfs_root *root,
1311 			       struct inode *inode, struct btrfs_path *path)
1312 {
1313 	int ret;
1314 	struct btrfs_key key;
1315 	unsigned int nlink = 0;
1316 	unsigned long ptr;
1317 	unsigned long ptr_end;
1318 	int name_len;
1319 	u64 ino = btrfs_ino(inode);
1320 
1321 	key.objectid = ino;
1322 	key.type = BTRFS_INODE_REF_KEY;
1323 	key.offset = (u64)-1;
1324 
1325 	while (1) {
1326 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1327 		if (ret < 0)
1328 			break;
1329 		if (ret > 0) {
1330 			if (path->slots[0] == 0)
1331 				break;
1332 			path->slots[0]--;
1333 		}
1334 process_slot:
1335 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1336 				      path->slots[0]);
1337 		if (key.objectid != ino ||
1338 		    key.type != BTRFS_INODE_REF_KEY)
1339 			break;
1340 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1341 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1342 						   path->slots[0]);
1343 		while (ptr < ptr_end) {
1344 			struct btrfs_inode_ref *ref;
1345 
1346 			ref = (struct btrfs_inode_ref *)ptr;
1347 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1348 							    ref);
1349 			ptr = (unsigned long)(ref + 1) + name_len;
1350 			nlink++;
1351 		}
1352 
1353 		if (key.offset == 0)
1354 			break;
1355 		if (path->slots[0] > 0) {
1356 			path->slots[0]--;
1357 			goto process_slot;
1358 		}
1359 		key.offset--;
1360 		btrfs_release_path(path);
1361 	}
1362 	btrfs_release_path(path);
1363 
1364 	return nlink;
1365 }
1366 
1367 /*
1368  * There are a few corners where the link count of the file can't
1369  * be properly maintained during replay.  So, instead of adding
1370  * lots of complexity to the log code, we just scan the backrefs
1371  * for any file that has been through replay.
1372  *
1373  * The scan will update the link count on the inode to reflect the
1374  * number of back refs found.  If it goes down to zero, the iput
1375  * will free the inode.
1376  */
1377 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1378 					   struct btrfs_root *root,
1379 					   struct inode *inode)
1380 {
1381 	struct btrfs_path *path;
1382 	int ret;
1383 	u64 nlink = 0;
1384 	u64 ino = btrfs_ino(inode);
1385 
1386 	path = btrfs_alloc_path();
1387 	if (!path)
1388 		return -ENOMEM;
1389 
1390 	ret = count_inode_refs(root, inode, path);
1391 	if (ret < 0)
1392 		goto out;
1393 
1394 	nlink = ret;
1395 
1396 	ret = count_inode_extrefs(root, inode, path);
1397 	if (ret == -ENOENT)
1398 		ret = 0;
1399 
1400 	if (ret < 0)
1401 		goto out;
1402 
1403 	nlink += ret;
1404 
1405 	ret = 0;
1406 
1407 	if (nlink != inode->i_nlink) {
1408 		set_nlink(inode, nlink);
1409 		btrfs_update_inode(trans, root, inode);
1410 	}
1411 	BTRFS_I(inode)->index_cnt = (u64)-1;
1412 
1413 	if (inode->i_nlink == 0) {
1414 		if (S_ISDIR(inode->i_mode)) {
1415 			ret = replay_dir_deletes(trans, root, NULL, path,
1416 						 ino, 1);
1417 			if (ret)
1418 				goto out;
1419 		}
1420 		ret = insert_orphan_item(trans, root, ino);
1421 	}
1422 
1423 out:
1424 	btrfs_free_path(path);
1425 	return ret;
1426 }
1427 
1428 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1429 					    struct btrfs_root *root,
1430 					    struct btrfs_path *path)
1431 {
1432 	int ret;
1433 	struct btrfs_key key;
1434 	struct inode *inode;
1435 
1436 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1437 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1438 	key.offset = (u64)-1;
1439 	while (1) {
1440 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1441 		if (ret < 0)
1442 			break;
1443 
1444 		if (ret == 1) {
1445 			if (path->slots[0] == 0)
1446 				break;
1447 			path->slots[0]--;
1448 		}
1449 
1450 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1451 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1452 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1453 			break;
1454 
1455 		ret = btrfs_del_item(trans, root, path);
1456 		if (ret)
1457 			goto out;
1458 
1459 		btrfs_release_path(path);
1460 		inode = read_one_inode(root, key.offset);
1461 		if (!inode)
1462 			return -EIO;
1463 
1464 		ret = fixup_inode_link_count(trans, root, inode);
1465 		iput(inode);
1466 		if (ret)
1467 			goto out;
1468 
1469 		/*
1470 		 * fixup on a directory may create new entries,
1471 		 * make sure we always look for the highset possible
1472 		 * offset
1473 		 */
1474 		key.offset = (u64)-1;
1475 	}
1476 	ret = 0;
1477 out:
1478 	btrfs_release_path(path);
1479 	return ret;
1480 }
1481 
1482 
1483 /*
1484  * record a given inode in the fixup dir so we can check its link
1485  * count when replay is done.  The link count is incremented here
1486  * so the inode won't go away until we check it
1487  */
1488 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1489 				      struct btrfs_root *root,
1490 				      struct btrfs_path *path,
1491 				      u64 objectid)
1492 {
1493 	struct btrfs_key key;
1494 	int ret = 0;
1495 	struct inode *inode;
1496 
1497 	inode = read_one_inode(root, objectid);
1498 	if (!inode)
1499 		return -EIO;
1500 
1501 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1502 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1503 	key.offset = objectid;
1504 
1505 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1506 
1507 	btrfs_release_path(path);
1508 	if (ret == 0) {
1509 		if (!inode->i_nlink)
1510 			set_nlink(inode, 1);
1511 		else
1512 			inc_nlink(inode);
1513 		ret = btrfs_update_inode(trans, root, inode);
1514 	} else if (ret == -EEXIST) {
1515 		ret = 0;
1516 	} else {
1517 		BUG(); /* Logic Error */
1518 	}
1519 	iput(inode);
1520 
1521 	return ret;
1522 }
1523 
1524 /*
1525  * when replaying the log for a directory, we only insert names
1526  * for inodes that actually exist.  This means an fsync on a directory
1527  * does not implicitly fsync all the new files in it
1528  */
1529 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1530 				    struct btrfs_root *root,
1531 				    struct btrfs_path *path,
1532 				    u64 dirid, u64 index,
1533 				    char *name, int name_len, u8 type,
1534 				    struct btrfs_key *location)
1535 {
1536 	struct inode *inode;
1537 	struct inode *dir;
1538 	int ret;
1539 
1540 	inode = read_one_inode(root, location->objectid);
1541 	if (!inode)
1542 		return -ENOENT;
1543 
1544 	dir = read_one_inode(root, dirid);
1545 	if (!dir) {
1546 		iput(inode);
1547 		return -EIO;
1548 	}
1549 
1550 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1551 
1552 	/* FIXME, put inode into FIXUP list */
1553 
1554 	iput(inode);
1555 	iput(dir);
1556 	return ret;
1557 }
1558 
1559 /*
1560  * take a single entry in a log directory item and replay it into
1561  * the subvolume.
1562  *
1563  * if a conflicting item exists in the subdirectory already,
1564  * the inode it points to is unlinked and put into the link count
1565  * fix up tree.
1566  *
1567  * If a name from the log points to a file or directory that does
1568  * not exist in the FS, it is skipped.  fsyncs on directories
1569  * do not force down inodes inside that directory, just changes to the
1570  * names or unlinks in a directory.
1571  */
1572 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1573 				    struct btrfs_root *root,
1574 				    struct btrfs_path *path,
1575 				    struct extent_buffer *eb,
1576 				    struct btrfs_dir_item *di,
1577 				    struct btrfs_key *key)
1578 {
1579 	char *name;
1580 	int name_len;
1581 	struct btrfs_dir_item *dst_di;
1582 	struct btrfs_key found_key;
1583 	struct btrfs_key log_key;
1584 	struct inode *dir;
1585 	u8 log_type;
1586 	int exists;
1587 	int ret = 0;
1588 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1589 
1590 	dir = read_one_inode(root, key->objectid);
1591 	if (!dir)
1592 		return -EIO;
1593 
1594 	name_len = btrfs_dir_name_len(eb, di);
1595 	name = kmalloc(name_len, GFP_NOFS);
1596 	if (!name) {
1597 		ret = -ENOMEM;
1598 		goto out;
1599 	}
1600 
1601 	log_type = btrfs_dir_type(eb, di);
1602 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1603 		   name_len);
1604 
1605 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1606 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1607 	if (exists == 0)
1608 		exists = 1;
1609 	else
1610 		exists = 0;
1611 	btrfs_release_path(path);
1612 
1613 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1614 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1615 				       name, name_len, 1);
1616 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1617 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1618 						     key->objectid,
1619 						     key->offset, name,
1620 						     name_len, 1);
1621 	} else {
1622 		/* Corruption */
1623 		ret = -EINVAL;
1624 		goto out;
1625 	}
1626 	if (IS_ERR_OR_NULL(dst_di)) {
1627 		/* we need a sequence number to insert, so we only
1628 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1629 		 */
1630 		if (key->type != BTRFS_DIR_INDEX_KEY)
1631 			goto out;
1632 		goto insert;
1633 	}
1634 
1635 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1636 	/* the existing item matches the logged item */
1637 	if (found_key.objectid == log_key.objectid &&
1638 	    found_key.type == log_key.type &&
1639 	    found_key.offset == log_key.offset &&
1640 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1641 		update_size = false;
1642 		goto out;
1643 	}
1644 
1645 	/*
1646 	 * don't drop the conflicting directory entry if the inode
1647 	 * for the new entry doesn't exist
1648 	 */
1649 	if (!exists)
1650 		goto out;
1651 
1652 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1653 	if (ret)
1654 		goto out;
1655 
1656 	if (key->type == BTRFS_DIR_INDEX_KEY)
1657 		goto insert;
1658 out:
1659 	btrfs_release_path(path);
1660 	if (!ret && update_size) {
1661 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1662 		ret = btrfs_update_inode(trans, root, dir);
1663 	}
1664 	kfree(name);
1665 	iput(dir);
1666 	return ret;
1667 
1668 insert:
1669 	btrfs_release_path(path);
1670 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1671 			      name, name_len, log_type, &log_key);
1672 	if (ret && ret != -ENOENT)
1673 		goto out;
1674 	update_size = false;
1675 	ret = 0;
1676 	goto out;
1677 }
1678 
1679 /*
1680  * find all the names in a directory item and reconcile them into
1681  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1682  * one name in a directory item, but the same code gets used for
1683  * both directory index types
1684  */
1685 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1686 					struct btrfs_root *root,
1687 					struct btrfs_path *path,
1688 					struct extent_buffer *eb, int slot,
1689 					struct btrfs_key *key)
1690 {
1691 	int ret;
1692 	u32 item_size = btrfs_item_size_nr(eb, slot);
1693 	struct btrfs_dir_item *di;
1694 	int name_len;
1695 	unsigned long ptr;
1696 	unsigned long ptr_end;
1697 
1698 	ptr = btrfs_item_ptr_offset(eb, slot);
1699 	ptr_end = ptr + item_size;
1700 	while (ptr < ptr_end) {
1701 		di = (struct btrfs_dir_item *)ptr;
1702 		if (verify_dir_item(root, eb, di))
1703 			return -EIO;
1704 		name_len = btrfs_dir_name_len(eb, di);
1705 		ret = replay_one_name(trans, root, path, eb, di, key);
1706 		if (ret)
1707 			return ret;
1708 		ptr = (unsigned long)(di + 1);
1709 		ptr += name_len;
1710 	}
1711 	return 0;
1712 }
1713 
1714 /*
1715  * directory replay has two parts.  There are the standard directory
1716  * items in the log copied from the subvolume, and range items
1717  * created in the log while the subvolume was logged.
1718  *
1719  * The range items tell us which parts of the key space the log
1720  * is authoritative for.  During replay, if a key in the subvolume
1721  * directory is in a logged range item, but not actually in the log
1722  * that means it was deleted from the directory before the fsync
1723  * and should be removed.
1724  */
1725 static noinline int find_dir_range(struct btrfs_root *root,
1726 				   struct btrfs_path *path,
1727 				   u64 dirid, int key_type,
1728 				   u64 *start_ret, u64 *end_ret)
1729 {
1730 	struct btrfs_key key;
1731 	u64 found_end;
1732 	struct btrfs_dir_log_item *item;
1733 	int ret;
1734 	int nritems;
1735 
1736 	if (*start_ret == (u64)-1)
1737 		return 1;
1738 
1739 	key.objectid = dirid;
1740 	key.type = key_type;
1741 	key.offset = *start_ret;
1742 
1743 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1744 	if (ret < 0)
1745 		goto out;
1746 	if (ret > 0) {
1747 		if (path->slots[0] == 0)
1748 			goto out;
1749 		path->slots[0]--;
1750 	}
1751 	if (ret != 0)
1752 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1753 
1754 	if (key.type != key_type || key.objectid != dirid) {
1755 		ret = 1;
1756 		goto next;
1757 	}
1758 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1759 			      struct btrfs_dir_log_item);
1760 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1761 
1762 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1763 		ret = 0;
1764 		*start_ret = key.offset;
1765 		*end_ret = found_end;
1766 		goto out;
1767 	}
1768 	ret = 1;
1769 next:
1770 	/* check the next slot in the tree to see if it is a valid item */
1771 	nritems = btrfs_header_nritems(path->nodes[0]);
1772 	if (path->slots[0] >= nritems) {
1773 		ret = btrfs_next_leaf(root, path);
1774 		if (ret)
1775 			goto out;
1776 	} else {
1777 		path->slots[0]++;
1778 	}
1779 
1780 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1781 
1782 	if (key.type != key_type || key.objectid != dirid) {
1783 		ret = 1;
1784 		goto out;
1785 	}
1786 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1787 			      struct btrfs_dir_log_item);
1788 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1789 	*start_ret = key.offset;
1790 	*end_ret = found_end;
1791 	ret = 0;
1792 out:
1793 	btrfs_release_path(path);
1794 	return ret;
1795 }
1796 
1797 /*
1798  * this looks for a given directory item in the log.  If the directory
1799  * item is not in the log, the item is removed and the inode it points
1800  * to is unlinked
1801  */
1802 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1803 				      struct btrfs_root *root,
1804 				      struct btrfs_root *log,
1805 				      struct btrfs_path *path,
1806 				      struct btrfs_path *log_path,
1807 				      struct inode *dir,
1808 				      struct btrfs_key *dir_key)
1809 {
1810 	int ret;
1811 	struct extent_buffer *eb;
1812 	int slot;
1813 	u32 item_size;
1814 	struct btrfs_dir_item *di;
1815 	struct btrfs_dir_item *log_di;
1816 	int name_len;
1817 	unsigned long ptr;
1818 	unsigned long ptr_end;
1819 	char *name;
1820 	struct inode *inode;
1821 	struct btrfs_key location;
1822 
1823 again:
1824 	eb = path->nodes[0];
1825 	slot = path->slots[0];
1826 	item_size = btrfs_item_size_nr(eb, slot);
1827 	ptr = btrfs_item_ptr_offset(eb, slot);
1828 	ptr_end = ptr + item_size;
1829 	while (ptr < ptr_end) {
1830 		di = (struct btrfs_dir_item *)ptr;
1831 		if (verify_dir_item(root, eb, di)) {
1832 			ret = -EIO;
1833 			goto out;
1834 		}
1835 
1836 		name_len = btrfs_dir_name_len(eb, di);
1837 		name = kmalloc(name_len, GFP_NOFS);
1838 		if (!name) {
1839 			ret = -ENOMEM;
1840 			goto out;
1841 		}
1842 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1843 				  name_len);
1844 		log_di = NULL;
1845 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1846 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1847 						       dir_key->objectid,
1848 						       name, name_len, 0);
1849 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1850 			log_di = btrfs_lookup_dir_index_item(trans, log,
1851 						     log_path,
1852 						     dir_key->objectid,
1853 						     dir_key->offset,
1854 						     name, name_len, 0);
1855 		}
1856 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1857 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1858 			btrfs_release_path(path);
1859 			btrfs_release_path(log_path);
1860 			inode = read_one_inode(root, location.objectid);
1861 			if (!inode) {
1862 				kfree(name);
1863 				return -EIO;
1864 			}
1865 
1866 			ret = link_to_fixup_dir(trans, root,
1867 						path, location.objectid);
1868 			if (ret) {
1869 				kfree(name);
1870 				iput(inode);
1871 				goto out;
1872 			}
1873 
1874 			inc_nlink(inode);
1875 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1876 						 name, name_len);
1877 			if (!ret)
1878 				ret = btrfs_run_delayed_items(trans, root);
1879 			kfree(name);
1880 			iput(inode);
1881 			if (ret)
1882 				goto out;
1883 
1884 			/* there might still be more names under this key
1885 			 * check and repeat if required
1886 			 */
1887 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1888 						0, 0);
1889 			if (ret == 0)
1890 				goto again;
1891 			ret = 0;
1892 			goto out;
1893 		} else if (IS_ERR(log_di)) {
1894 			kfree(name);
1895 			return PTR_ERR(log_di);
1896 		}
1897 		btrfs_release_path(log_path);
1898 		kfree(name);
1899 
1900 		ptr = (unsigned long)(di + 1);
1901 		ptr += name_len;
1902 	}
1903 	ret = 0;
1904 out:
1905 	btrfs_release_path(path);
1906 	btrfs_release_path(log_path);
1907 	return ret;
1908 }
1909 
1910 /*
1911  * deletion replay happens before we copy any new directory items
1912  * out of the log or out of backreferences from inodes.  It
1913  * scans the log to find ranges of keys that log is authoritative for,
1914  * and then scans the directory to find items in those ranges that are
1915  * not present in the log.
1916  *
1917  * Anything we don't find in the log is unlinked and removed from the
1918  * directory.
1919  */
1920 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1921 				       struct btrfs_root *root,
1922 				       struct btrfs_root *log,
1923 				       struct btrfs_path *path,
1924 				       u64 dirid, int del_all)
1925 {
1926 	u64 range_start;
1927 	u64 range_end;
1928 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1929 	int ret = 0;
1930 	struct btrfs_key dir_key;
1931 	struct btrfs_key found_key;
1932 	struct btrfs_path *log_path;
1933 	struct inode *dir;
1934 
1935 	dir_key.objectid = dirid;
1936 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1937 	log_path = btrfs_alloc_path();
1938 	if (!log_path)
1939 		return -ENOMEM;
1940 
1941 	dir = read_one_inode(root, dirid);
1942 	/* it isn't an error if the inode isn't there, that can happen
1943 	 * because we replay the deletes before we copy in the inode item
1944 	 * from the log
1945 	 */
1946 	if (!dir) {
1947 		btrfs_free_path(log_path);
1948 		return 0;
1949 	}
1950 again:
1951 	range_start = 0;
1952 	range_end = 0;
1953 	while (1) {
1954 		if (del_all)
1955 			range_end = (u64)-1;
1956 		else {
1957 			ret = find_dir_range(log, path, dirid, key_type,
1958 					     &range_start, &range_end);
1959 			if (ret != 0)
1960 				break;
1961 		}
1962 
1963 		dir_key.offset = range_start;
1964 		while (1) {
1965 			int nritems;
1966 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1967 						0, 0);
1968 			if (ret < 0)
1969 				goto out;
1970 
1971 			nritems = btrfs_header_nritems(path->nodes[0]);
1972 			if (path->slots[0] >= nritems) {
1973 				ret = btrfs_next_leaf(root, path);
1974 				if (ret)
1975 					break;
1976 			}
1977 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1978 					      path->slots[0]);
1979 			if (found_key.objectid != dirid ||
1980 			    found_key.type != dir_key.type)
1981 				goto next_type;
1982 
1983 			if (found_key.offset > range_end)
1984 				break;
1985 
1986 			ret = check_item_in_log(trans, root, log, path,
1987 						log_path, dir,
1988 						&found_key);
1989 			if (ret)
1990 				goto out;
1991 			if (found_key.offset == (u64)-1)
1992 				break;
1993 			dir_key.offset = found_key.offset + 1;
1994 		}
1995 		btrfs_release_path(path);
1996 		if (range_end == (u64)-1)
1997 			break;
1998 		range_start = range_end + 1;
1999 	}
2000 
2001 next_type:
2002 	ret = 0;
2003 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2004 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2005 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2006 		btrfs_release_path(path);
2007 		goto again;
2008 	}
2009 out:
2010 	btrfs_release_path(path);
2011 	btrfs_free_path(log_path);
2012 	iput(dir);
2013 	return ret;
2014 }
2015 
2016 /*
2017  * the process_func used to replay items from the log tree.  This
2018  * gets called in two different stages.  The first stage just looks
2019  * for inodes and makes sure they are all copied into the subvolume.
2020  *
2021  * The second stage copies all the other item types from the log into
2022  * the subvolume.  The two stage approach is slower, but gets rid of
2023  * lots of complexity around inodes referencing other inodes that exist
2024  * only in the log (references come from either directory items or inode
2025  * back refs).
2026  */
2027 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2028 			     struct walk_control *wc, u64 gen)
2029 {
2030 	int nritems;
2031 	struct btrfs_path *path;
2032 	struct btrfs_root *root = wc->replay_dest;
2033 	struct btrfs_key key;
2034 	int level;
2035 	int i;
2036 	int ret;
2037 
2038 	ret = btrfs_read_buffer(eb, gen);
2039 	if (ret)
2040 		return ret;
2041 
2042 	level = btrfs_header_level(eb);
2043 
2044 	if (level != 0)
2045 		return 0;
2046 
2047 	path = btrfs_alloc_path();
2048 	if (!path)
2049 		return -ENOMEM;
2050 
2051 	nritems = btrfs_header_nritems(eb);
2052 	for (i = 0; i < nritems; i++) {
2053 		btrfs_item_key_to_cpu(eb, &key, i);
2054 
2055 		/* inode keys are done during the first stage */
2056 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2057 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2058 			struct btrfs_inode_item *inode_item;
2059 			u32 mode;
2060 
2061 			inode_item = btrfs_item_ptr(eb, i,
2062 					    struct btrfs_inode_item);
2063 			mode = btrfs_inode_mode(eb, inode_item);
2064 			if (S_ISDIR(mode)) {
2065 				ret = replay_dir_deletes(wc->trans,
2066 					 root, log, path, key.objectid, 0);
2067 				if (ret)
2068 					break;
2069 			}
2070 			ret = overwrite_item(wc->trans, root, path,
2071 					     eb, i, &key);
2072 			if (ret)
2073 				break;
2074 
2075 			/* for regular files, make sure corresponding
2076 			 * orhpan item exist. extents past the new EOF
2077 			 * will be truncated later by orphan cleanup.
2078 			 */
2079 			if (S_ISREG(mode)) {
2080 				ret = insert_orphan_item(wc->trans, root,
2081 							 key.objectid);
2082 				if (ret)
2083 					break;
2084 			}
2085 
2086 			ret = link_to_fixup_dir(wc->trans, root,
2087 						path, key.objectid);
2088 			if (ret)
2089 				break;
2090 		}
2091 
2092 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2093 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2094 			ret = replay_one_dir_item(wc->trans, root, path,
2095 						  eb, i, &key);
2096 			if (ret)
2097 				break;
2098 		}
2099 
2100 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2101 			continue;
2102 
2103 		/* these keys are simply copied */
2104 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2105 			ret = overwrite_item(wc->trans, root, path,
2106 					     eb, i, &key);
2107 			if (ret)
2108 				break;
2109 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2110 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2111 			ret = add_inode_ref(wc->trans, root, log, path,
2112 					    eb, i, &key);
2113 			if (ret && ret != -ENOENT)
2114 				break;
2115 			ret = 0;
2116 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2117 			ret = replay_one_extent(wc->trans, root, path,
2118 						eb, i, &key);
2119 			if (ret)
2120 				break;
2121 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2122 			ret = replay_one_dir_item(wc->trans, root, path,
2123 						  eb, i, &key);
2124 			if (ret)
2125 				break;
2126 		}
2127 	}
2128 	btrfs_free_path(path);
2129 	return ret;
2130 }
2131 
2132 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2133 				   struct btrfs_root *root,
2134 				   struct btrfs_path *path, int *level,
2135 				   struct walk_control *wc)
2136 {
2137 	u64 root_owner;
2138 	u64 bytenr;
2139 	u64 ptr_gen;
2140 	struct extent_buffer *next;
2141 	struct extent_buffer *cur;
2142 	struct extent_buffer *parent;
2143 	u32 blocksize;
2144 	int ret = 0;
2145 
2146 	WARN_ON(*level < 0);
2147 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2148 
2149 	while (*level > 0) {
2150 		WARN_ON(*level < 0);
2151 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2152 		cur = path->nodes[*level];
2153 
2154 		WARN_ON(btrfs_header_level(cur) != *level);
2155 
2156 		if (path->slots[*level] >=
2157 		    btrfs_header_nritems(cur))
2158 			break;
2159 
2160 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2161 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2162 		blocksize = root->nodesize;
2163 
2164 		parent = path->nodes[*level];
2165 		root_owner = btrfs_header_owner(parent);
2166 
2167 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2168 		if (!next)
2169 			return -ENOMEM;
2170 
2171 		if (*level == 1) {
2172 			ret = wc->process_func(root, next, wc, ptr_gen);
2173 			if (ret) {
2174 				free_extent_buffer(next);
2175 				return ret;
2176 			}
2177 
2178 			path->slots[*level]++;
2179 			if (wc->free) {
2180 				ret = btrfs_read_buffer(next, ptr_gen);
2181 				if (ret) {
2182 					free_extent_buffer(next);
2183 					return ret;
2184 				}
2185 
2186 				if (trans) {
2187 					btrfs_tree_lock(next);
2188 					btrfs_set_lock_blocking(next);
2189 					clean_tree_block(trans, root, next);
2190 					btrfs_wait_tree_block_writeback(next);
2191 					btrfs_tree_unlock(next);
2192 				}
2193 
2194 				WARN_ON(root_owner !=
2195 					BTRFS_TREE_LOG_OBJECTID);
2196 				ret = btrfs_free_and_pin_reserved_extent(root,
2197 							 bytenr, blocksize);
2198 				if (ret) {
2199 					free_extent_buffer(next);
2200 					return ret;
2201 				}
2202 			}
2203 			free_extent_buffer(next);
2204 			continue;
2205 		}
2206 		ret = btrfs_read_buffer(next, ptr_gen);
2207 		if (ret) {
2208 			free_extent_buffer(next);
2209 			return ret;
2210 		}
2211 
2212 		WARN_ON(*level <= 0);
2213 		if (path->nodes[*level-1])
2214 			free_extent_buffer(path->nodes[*level-1]);
2215 		path->nodes[*level-1] = next;
2216 		*level = btrfs_header_level(next);
2217 		path->slots[*level] = 0;
2218 		cond_resched();
2219 	}
2220 	WARN_ON(*level < 0);
2221 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2222 
2223 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2224 
2225 	cond_resched();
2226 	return 0;
2227 }
2228 
2229 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2230 				 struct btrfs_root *root,
2231 				 struct btrfs_path *path, int *level,
2232 				 struct walk_control *wc)
2233 {
2234 	u64 root_owner;
2235 	int i;
2236 	int slot;
2237 	int ret;
2238 
2239 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2240 		slot = path->slots[i];
2241 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2242 			path->slots[i]++;
2243 			*level = i;
2244 			WARN_ON(*level == 0);
2245 			return 0;
2246 		} else {
2247 			struct extent_buffer *parent;
2248 			if (path->nodes[*level] == root->node)
2249 				parent = path->nodes[*level];
2250 			else
2251 				parent = path->nodes[*level + 1];
2252 
2253 			root_owner = btrfs_header_owner(parent);
2254 			ret = wc->process_func(root, path->nodes[*level], wc,
2255 				 btrfs_header_generation(path->nodes[*level]));
2256 			if (ret)
2257 				return ret;
2258 
2259 			if (wc->free) {
2260 				struct extent_buffer *next;
2261 
2262 				next = path->nodes[*level];
2263 
2264 				if (trans) {
2265 					btrfs_tree_lock(next);
2266 					btrfs_set_lock_blocking(next);
2267 					clean_tree_block(trans, root, next);
2268 					btrfs_wait_tree_block_writeback(next);
2269 					btrfs_tree_unlock(next);
2270 				}
2271 
2272 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2273 				ret = btrfs_free_and_pin_reserved_extent(root,
2274 						path->nodes[*level]->start,
2275 						path->nodes[*level]->len);
2276 				if (ret)
2277 					return ret;
2278 			}
2279 			free_extent_buffer(path->nodes[*level]);
2280 			path->nodes[*level] = NULL;
2281 			*level = i + 1;
2282 		}
2283 	}
2284 	return 1;
2285 }
2286 
2287 /*
2288  * drop the reference count on the tree rooted at 'snap'.  This traverses
2289  * the tree freeing any blocks that have a ref count of zero after being
2290  * decremented.
2291  */
2292 static int walk_log_tree(struct btrfs_trans_handle *trans,
2293 			 struct btrfs_root *log, struct walk_control *wc)
2294 {
2295 	int ret = 0;
2296 	int wret;
2297 	int level;
2298 	struct btrfs_path *path;
2299 	int orig_level;
2300 
2301 	path = btrfs_alloc_path();
2302 	if (!path)
2303 		return -ENOMEM;
2304 
2305 	level = btrfs_header_level(log->node);
2306 	orig_level = level;
2307 	path->nodes[level] = log->node;
2308 	extent_buffer_get(log->node);
2309 	path->slots[level] = 0;
2310 
2311 	while (1) {
2312 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2313 		if (wret > 0)
2314 			break;
2315 		if (wret < 0) {
2316 			ret = wret;
2317 			goto out;
2318 		}
2319 
2320 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2321 		if (wret > 0)
2322 			break;
2323 		if (wret < 0) {
2324 			ret = wret;
2325 			goto out;
2326 		}
2327 	}
2328 
2329 	/* was the root node processed? if not, catch it here */
2330 	if (path->nodes[orig_level]) {
2331 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2332 			 btrfs_header_generation(path->nodes[orig_level]));
2333 		if (ret)
2334 			goto out;
2335 		if (wc->free) {
2336 			struct extent_buffer *next;
2337 
2338 			next = path->nodes[orig_level];
2339 
2340 			if (trans) {
2341 				btrfs_tree_lock(next);
2342 				btrfs_set_lock_blocking(next);
2343 				clean_tree_block(trans, log, next);
2344 				btrfs_wait_tree_block_writeback(next);
2345 				btrfs_tree_unlock(next);
2346 			}
2347 
2348 			WARN_ON(log->root_key.objectid !=
2349 				BTRFS_TREE_LOG_OBJECTID);
2350 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2351 							 next->len);
2352 			if (ret)
2353 				goto out;
2354 		}
2355 	}
2356 
2357 out:
2358 	btrfs_free_path(path);
2359 	return ret;
2360 }
2361 
2362 /*
2363  * helper function to update the item for a given subvolumes log root
2364  * in the tree of log roots
2365  */
2366 static int update_log_root(struct btrfs_trans_handle *trans,
2367 			   struct btrfs_root *log)
2368 {
2369 	int ret;
2370 
2371 	if (log->log_transid == 1) {
2372 		/* insert root item on the first sync */
2373 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2374 				&log->root_key, &log->root_item);
2375 	} else {
2376 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2377 				&log->root_key, &log->root_item);
2378 	}
2379 	return ret;
2380 }
2381 
2382 static void wait_log_commit(struct btrfs_trans_handle *trans,
2383 			    struct btrfs_root *root, int transid)
2384 {
2385 	DEFINE_WAIT(wait);
2386 	int index = transid % 2;
2387 
2388 	/*
2389 	 * we only allow two pending log transactions at a time,
2390 	 * so we know that if ours is more than 2 older than the
2391 	 * current transaction, we're done
2392 	 */
2393 	do {
2394 		prepare_to_wait(&root->log_commit_wait[index],
2395 				&wait, TASK_UNINTERRUPTIBLE);
2396 		mutex_unlock(&root->log_mutex);
2397 
2398 		if (root->log_transid_committed < transid &&
2399 		    atomic_read(&root->log_commit[index]))
2400 			schedule();
2401 
2402 		finish_wait(&root->log_commit_wait[index], &wait);
2403 		mutex_lock(&root->log_mutex);
2404 	} while (root->log_transid_committed < transid &&
2405 		 atomic_read(&root->log_commit[index]));
2406 }
2407 
2408 static void wait_for_writer(struct btrfs_trans_handle *trans,
2409 			    struct btrfs_root *root)
2410 {
2411 	DEFINE_WAIT(wait);
2412 
2413 	while (atomic_read(&root->log_writers)) {
2414 		prepare_to_wait(&root->log_writer_wait,
2415 				&wait, TASK_UNINTERRUPTIBLE);
2416 		mutex_unlock(&root->log_mutex);
2417 		if (atomic_read(&root->log_writers))
2418 			schedule();
2419 		mutex_lock(&root->log_mutex);
2420 		finish_wait(&root->log_writer_wait, &wait);
2421 	}
2422 }
2423 
2424 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2425 					struct btrfs_log_ctx *ctx)
2426 {
2427 	if (!ctx)
2428 		return;
2429 
2430 	mutex_lock(&root->log_mutex);
2431 	list_del_init(&ctx->list);
2432 	mutex_unlock(&root->log_mutex);
2433 }
2434 
2435 /*
2436  * Invoked in log mutex context, or be sure there is no other task which
2437  * can access the list.
2438  */
2439 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2440 					     int index, int error)
2441 {
2442 	struct btrfs_log_ctx *ctx;
2443 
2444 	if (!error) {
2445 		INIT_LIST_HEAD(&root->log_ctxs[index]);
2446 		return;
2447 	}
2448 
2449 	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2450 		ctx->log_ret = error;
2451 
2452 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2453 }
2454 
2455 /*
2456  * btrfs_sync_log does sends a given tree log down to the disk and
2457  * updates the super blocks to record it.  When this call is done,
2458  * you know that any inodes previously logged are safely on disk only
2459  * if it returns 0.
2460  *
2461  * Any other return value means you need to call btrfs_commit_transaction.
2462  * Some of the edge cases for fsyncing directories that have had unlinks
2463  * or renames done in the past mean that sometimes the only safe
2464  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2465  * that has happened.
2466  */
2467 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2468 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2469 {
2470 	int index1;
2471 	int index2;
2472 	int mark;
2473 	int ret;
2474 	struct btrfs_root *log = root->log_root;
2475 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2476 	int log_transid = 0;
2477 	struct btrfs_log_ctx root_log_ctx;
2478 	struct blk_plug plug;
2479 
2480 	mutex_lock(&root->log_mutex);
2481 	log_transid = ctx->log_transid;
2482 	if (root->log_transid_committed >= log_transid) {
2483 		mutex_unlock(&root->log_mutex);
2484 		return ctx->log_ret;
2485 	}
2486 
2487 	index1 = log_transid % 2;
2488 	if (atomic_read(&root->log_commit[index1])) {
2489 		wait_log_commit(trans, root, log_transid);
2490 		mutex_unlock(&root->log_mutex);
2491 		return ctx->log_ret;
2492 	}
2493 	ASSERT(log_transid == root->log_transid);
2494 	atomic_set(&root->log_commit[index1], 1);
2495 
2496 	/* wait for previous tree log sync to complete */
2497 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2498 		wait_log_commit(trans, root, log_transid - 1);
2499 
2500 	while (1) {
2501 		int batch = atomic_read(&root->log_batch);
2502 		/* when we're on an ssd, just kick the log commit out */
2503 		if (!btrfs_test_opt(root, SSD) &&
2504 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2505 			mutex_unlock(&root->log_mutex);
2506 			schedule_timeout_uninterruptible(1);
2507 			mutex_lock(&root->log_mutex);
2508 		}
2509 		wait_for_writer(trans, root);
2510 		if (batch == atomic_read(&root->log_batch))
2511 			break;
2512 	}
2513 
2514 	/* bail out if we need to do a full commit */
2515 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2516 		ret = -EAGAIN;
2517 		btrfs_free_logged_extents(log, log_transid);
2518 		mutex_unlock(&root->log_mutex);
2519 		goto out;
2520 	}
2521 
2522 	if (log_transid % 2 == 0)
2523 		mark = EXTENT_DIRTY;
2524 	else
2525 		mark = EXTENT_NEW;
2526 
2527 	/* we start IO on  all the marked extents here, but we don't actually
2528 	 * wait for them until later.
2529 	 */
2530 	blk_start_plug(&plug);
2531 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2532 	if (ret) {
2533 		blk_finish_plug(&plug);
2534 		btrfs_abort_transaction(trans, root, ret);
2535 		btrfs_free_logged_extents(log, log_transid);
2536 		btrfs_set_log_full_commit(root->fs_info, trans);
2537 		mutex_unlock(&root->log_mutex);
2538 		goto out;
2539 	}
2540 
2541 	btrfs_set_root_node(&log->root_item, log->node);
2542 
2543 	root->log_transid++;
2544 	log->log_transid = root->log_transid;
2545 	root->log_start_pid = 0;
2546 	/*
2547 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2548 	 * in their headers. new modifications of the log will be written to
2549 	 * new positions. so it's safe to allow log writers to go in.
2550 	 */
2551 	mutex_unlock(&root->log_mutex);
2552 
2553 	btrfs_init_log_ctx(&root_log_ctx);
2554 
2555 	mutex_lock(&log_root_tree->log_mutex);
2556 	atomic_inc(&log_root_tree->log_batch);
2557 	atomic_inc(&log_root_tree->log_writers);
2558 
2559 	index2 = log_root_tree->log_transid % 2;
2560 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2561 	root_log_ctx.log_transid = log_root_tree->log_transid;
2562 
2563 	mutex_unlock(&log_root_tree->log_mutex);
2564 
2565 	ret = update_log_root(trans, log);
2566 
2567 	mutex_lock(&log_root_tree->log_mutex);
2568 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2569 		smp_mb();
2570 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2571 			wake_up(&log_root_tree->log_writer_wait);
2572 	}
2573 
2574 	if (ret) {
2575 		if (!list_empty(&root_log_ctx.list))
2576 			list_del_init(&root_log_ctx.list);
2577 
2578 		blk_finish_plug(&plug);
2579 		btrfs_set_log_full_commit(root->fs_info, trans);
2580 
2581 		if (ret != -ENOSPC) {
2582 			btrfs_abort_transaction(trans, root, ret);
2583 			mutex_unlock(&log_root_tree->log_mutex);
2584 			goto out;
2585 		}
2586 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2587 		btrfs_free_logged_extents(log, log_transid);
2588 		mutex_unlock(&log_root_tree->log_mutex);
2589 		ret = -EAGAIN;
2590 		goto out;
2591 	}
2592 
2593 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2594 		mutex_unlock(&log_root_tree->log_mutex);
2595 		ret = root_log_ctx.log_ret;
2596 		goto out;
2597 	}
2598 
2599 	index2 = root_log_ctx.log_transid % 2;
2600 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2601 		blk_finish_plug(&plug);
2602 		ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2603 						mark);
2604 		btrfs_wait_logged_extents(trans, log, log_transid);
2605 		wait_log_commit(trans, log_root_tree,
2606 				root_log_ctx.log_transid);
2607 		mutex_unlock(&log_root_tree->log_mutex);
2608 		if (!ret)
2609 			ret = root_log_ctx.log_ret;
2610 		goto out;
2611 	}
2612 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2613 	atomic_set(&log_root_tree->log_commit[index2], 1);
2614 
2615 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2616 		wait_log_commit(trans, log_root_tree,
2617 				root_log_ctx.log_transid - 1);
2618 	}
2619 
2620 	wait_for_writer(trans, log_root_tree);
2621 
2622 	/*
2623 	 * now that we've moved on to the tree of log tree roots,
2624 	 * check the full commit flag again
2625 	 */
2626 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2627 		blk_finish_plug(&plug);
2628 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2629 		btrfs_free_logged_extents(log, log_transid);
2630 		mutex_unlock(&log_root_tree->log_mutex);
2631 		ret = -EAGAIN;
2632 		goto out_wake_log_root;
2633 	}
2634 
2635 	ret = btrfs_write_marked_extents(log_root_tree,
2636 					 &log_root_tree->dirty_log_pages,
2637 					 EXTENT_DIRTY | EXTENT_NEW);
2638 	blk_finish_plug(&plug);
2639 	if (ret) {
2640 		btrfs_set_log_full_commit(root->fs_info, trans);
2641 		btrfs_abort_transaction(trans, root, ret);
2642 		btrfs_free_logged_extents(log, log_transid);
2643 		mutex_unlock(&log_root_tree->log_mutex);
2644 		goto out_wake_log_root;
2645 	}
2646 	ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2647 	if (!ret)
2648 		ret = btrfs_wait_marked_extents(log_root_tree,
2649 						&log_root_tree->dirty_log_pages,
2650 						EXTENT_NEW | EXTENT_DIRTY);
2651 	if (ret) {
2652 		btrfs_set_log_full_commit(root->fs_info, trans);
2653 		btrfs_free_logged_extents(log, log_transid);
2654 		mutex_unlock(&log_root_tree->log_mutex);
2655 		goto out_wake_log_root;
2656 	}
2657 	btrfs_wait_logged_extents(trans, log, log_transid);
2658 
2659 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2660 				log_root_tree->node->start);
2661 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2662 				btrfs_header_level(log_root_tree->node));
2663 
2664 	log_root_tree->log_transid++;
2665 	mutex_unlock(&log_root_tree->log_mutex);
2666 
2667 	/*
2668 	 * nobody else is going to jump in and write the the ctree
2669 	 * super here because the log_commit atomic below is protecting
2670 	 * us.  We must be called with a transaction handle pinning
2671 	 * the running transaction open, so a full commit can't hop
2672 	 * in and cause problems either.
2673 	 */
2674 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2675 	if (ret) {
2676 		btrfs_set_log_full_commit(root->fs_info, trans);
2677 		btrfs_abort_transaction(trans, root, ret);
2678 		goto out_wake_log_root;
2679 	}
2680 
2681 	mutex_lock(&root->log_mutex);
2682 	if (root->last_log_commit < log_transid)
2683 		root->last_log_commit = log_transid;
2684 	mutex_unlock(&root->log_mutex);
2685 
2686 out_wake_log_root:
2687 	/*
2688 	 * We needn't get log_mutex here because we are sure all
2689 	 * the other tasks are blocked.
2690 	 */
2691 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2692 
2693 	mutex_lock(&log_root_tree->log_mutex);
2694 	log_root_tree->log_transid_committed++;
2695 	atomic_set(&log_root_tree->log_commit[index2], 0);
2696 	mutex_unlock(&log_root_tree->log_mutex);
2697 
2698 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2699 		wake_up(&log_root_tree->log_commit_wait[index2]);
2700 out:
2701 	/* See above. */
2702 	btrfs_remove_all_log_ctxs(root, index1, ret);
2703 
2704 	mutex_lock(&root->log_mutex);
2705 	root->log_transid_committed++;
2706 	atomic_set(&root->log_commit[index1], 0);
2707 	mutex_unlock(&root->log_mutex);
2708 
2709 	if (waitqueue_active(&root->log_commit_wait[index1]))
2710 		wake_up(&root->log_commit_wait[index1]);
2711 	return ret;
2712 }
2713 
2714 static void free_log_tree(struct btrfs_trans_handle *trans,
2715 			  struct btrfs_root *log)
2716 {
2717 	int ret;
2718 	u64 start;
2719 	u64 end;
2720 	struct walk_control wc = {
2721 		.free = 1,
2722 		.process_func = process_one_buffer
2723 	};
2724 
2725 	ret = walk_log_tree(trans, log, &wc);
2726 	/* I don't think this can happen but just in case */
2727 	if (ret)
2728 		btrfs_abort_transaction(trans, log, ret);
2729 
2730 	while (1) {
2731 		ret = find_first_extent_bit(&log->dirty_log_pages,
2732 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2733 				NULL);
2734 		if (ret)
2735 			break;
2736 
2737 		clear_extent_bits(&log->dirty_log_pages, start, end,
2738 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2739 	}
2740 
2741 	/*
2742 	 * We may have short-circuited the log tree with the full commit logic
2743 	 * and left ordered extents on our list, so clear these out to keep us
2744 	 * from leaking inodes and memory.
2745 	 */
2746 	btrfs_free_logged_extents(log, 0);
2747 	btrfs_free_logged_extents(log, 1);
2748 
2749 	free_extent_buffer(log->node);
2750 	kfree(log);
2751 }
2752 
2753 /*
2754  * free all the extents used by the tree log.  This should be called
2755  * at commit time of the full transaction
2756  */
2757 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2758 {
2759 	if (root->log_root) {
2760 		free_log_tree(trans, root->log_root);
2761 		root->log_root = NULL;
2762 	}
2763 	return 0;
2764 }
2765 
2766 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2767 			     struct btrfs_fs_info *fs_info)
2768 {
2769 	if (fs_info->log_root_tree) {
2770 		free_log_tree(trans, fs_info->log_root_tree);
2771 		fs_info->log_root_tree = NULL;
2772 	}
2773 	return 0;
2774 }
2775 
2776 /*
2777  * If both a file and directory are logged, and unlinks or renames are
2778  * mixed in, we have a few interesting corners:
2779  *
2780  * create file X in dir Y
2781  * link file X to X.link in dir Y
2782  * fsync file X
2783  * unlink file X but leave X.link
2784  * fsync dir Y
2785  *
2786  * After a crash we would expect only X.link to exist.  But file X
2787  * didn't get fsync'd again so the log has back refs for X and X.link.
2788  *
2789  * We solve this by removing directory entries and inode backrefs from the
2790  * log when a file that was logged in the current transaction is
2791  * unlinked.  Any later fsync will include the updated log entries, and
2792  * we'll be able to reconstruct the proper directory items from backrefs.
2793  *
2794  * This optimizations allows us to avoid relogging the entire inode
2795  * or the entire directory.
2796  */
2797 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2798 				 struct btrfs_root *root,
2799 				 const char *name, int name_len,
2800 				 struct inode *dir, u64 index)
2801 {
2802 	struct btrfs_root *log;
2803 	struct btrfs_dir_item *di;
2804 	struct btrfs_path *path;
2805 	int ret;
2806 	int err = 0;
2807 	int bytes_del = 0;
2808 	u64 dir_ino = btrfs_ino(dir);
2809 
2810 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2811 		return 0;
2812 
2813 	ret = join_running_log_trans(root);
2814 	if (ret)
2815 		return 0;
2816 
2817 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2818 
2819 	log = root->log_root;
2820 	path = btrfs_alloc_path();
2821 	if (!path) {
2822 		err = -ENOMEM;
2823 		goto out_unlock;
2824 	}
2825 
2826 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2827 				   name, name_len, -1);
2828 	if (IS_ERR(di)) {
2829 		err = PTR_ERR(di);
2830 		goto fail;
2831 	}
2832 	if (di) {
2833 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2834 		bytes_del += name_len;
2835 		if (ret) {
2836 			err = ret;
2837 			goto fail;
2838 		}
2839 	}
2840 	btrfs_release_path(path);
2841 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2842 					 index, name, name_len, -1);
2843 	if (IS_ERR(di)) {
2844 		err = PTR_ERR(di);
2845 		goto fail;
2846 	}
2847 	if (di) {
2848 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2849 		bytes_del += name_len;
2850 		if (ret) {
2851 			err = ret;
2852 			goto fail;
2853 		}
2854 	}
2855 
2856 	/* update the directory size in the log to reflect the names
2857 	 * we have removed
2858 	 */
2859 	if (bytes_del) {
2860 		struct btrfs_key key;
2861 
2862 		key.objectid = dir_ino;
2863 		key.offset = 0;
2864 		key.type = BTRFS_INODE_ITEM_KEY;
2865 		btrfs_release_path(path);
2866 
2867 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2868 		if (ret < 0) {
2869 			err = ret;
2870 			goto fail;
2871 		}
2872 		if (ret == 0) {
2873 			struct btrfs_inode_item *item;
2874 			u64 i_size;
2875 
2876 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2877 					      struct btrfs_inode_item);
2878 			i_size = btrfs_inode_size(path->nodes[0], item);
2879 			if (i_size > bytes_del)
2880 				i_size -= bytes_del;
2881 			else
2882 				i_size = 0;
2883 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2884 			btrfs_mark_buffer_dirty(path->nodes[0]);
2885 		} else
2886 			ret = 0;
2887 		btrfs_release_path(path);
2888 	}
2889 fail:
2890 	btrfs_free_path(path);
2891 out_unlock:
2892 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2893 	if (ret == -ENOSPC) {
2894 		btrfs_set_log_full_commit(root->fs_info, trans);
2895 		ret = 0;
2896 	} else if (ret < 0)
2897 		btrfs_abort_transaction(trans, root, ret);
2898 
2899 	btrfs_end_log_trans(root);
2900 
2901 	return err;
2902 }
2903 
2904 /* see comments for btrfs_del_dir_entries_in_log */
2905 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2906 			       struct btrfs_root *root,
2907 			       const char *name, int name_len,
2908 			       struct inode *inode, u64 dirid)
2909 {
2910 	struct btrfs_root *log;
2911 	u64 index;
2912 	int ret;
2913 
2914 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2915 		return 0;
2916 
2917 	ret = join_running_log_trans(root);
2918 	if (ret)
2919 		return 0;
2920 	log = root->log_root;
2921 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2922 
2923 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2924 				  dirid, &index);
2925 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2926 	if (ret == -ENOSPC) {
2927 		btrfs_set_log_full_commit(root->fs_info, trans);
2928 		ret = 0;
2929 	} else if (ret < 0 && ret != -ENOENT)
2930 		btrfs_abort_transaction(trans, root, ret);
2931 	btrfs_end_log_trans(root);
2932 
2933 	return ret;
2934 }
2935 
2936 /*
2937  * creates a range item in the log for 'dirid'.  first_offset and
2938  * last_offset tell us which parts of the key space the log should
2939  * be considered authoritative for.
2940  */
2941 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2942 				       struct btrfs_root *log,
2943 				       struct btrfs_path *path,
2944 				       int key_type, u64 dirid,
2945 				       u64 first_offset, u64 last_offset)
2946 {
2947 	int ret;
2948 	struct btrfs_key key;
2949 	struct btrfs_dir_log_item *item;
2950 
2951 	key.objectid = dirid;
2952 	key.offset = first_offset;
2953 	if (key_type == BTRFS_DIR_ITEM_KEY)
2954 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2955 	else
2956 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2957 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2958 	if (ret)
2959 		return ret;
2960 
2961 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2962 			      struct btrfs_dir_log_item);
2963 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2964 	btrfs_mark_buffer_dirty(path->nodes[0]);
2965 	btrfs_release_path(path);
2966 	return 0;
2967 }
2968 
2969 /*
2970  * log all the items included in the current transaction for a given
2971  * directory.  This also creates the range items in the log tree required
2972  * to replay anything deleted before the fsync
2973  */
2974 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2975 			  struct btrfs_root *root, struct inode *inode,
2976 			  struct btrfs_path *path,
2977 			  struct btrfs_path *dst_path, int key_type,
2978 			  u64 min_offset, u64 *last_offset_ret)
2979 {
2980 	struct btrfs_key min_key;
2981 	struct btrfs_root *log = root->log_root;
2982 	struct extent_buffer *src;
2983 	int err = 0;
2984 	int ret;
2985 	int i;
2986 	int nritems;
2987 	u64 first_offset = min_offset;
2988 	u64 last_offset = (u64)-1;
2989 	u64 ino = btrfs_ino(inode);
2990 
2991 	log = root->log_root;
2992 
2993 	min_key.objectid = ino;
2994 	min_key.type = key_type;
2995 	min_key.offset = min_offset;
2996 
2997 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2998 
2999 	/*
3000 	 * we didn't find anything from this transaction, see if there
3001 	 * is anything at all
3002 	 */
3003 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3004 		min_key.objectid = ino;
3005 		min_key.type = key_type;
3006 		min_key.offset = (u64)-1;
3007 		btrfs_release_path(path);
3008 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3009 		if (ret < 0) {
3010 			btrfs_release_path(path);
3011 			return ret;
3012 		}
3013 		ret = btrfs_previous_item(root, path, ino, key_type);
3014 
3015 		/* if ret == 0 there are items for this type,
3016 		 * create a range to tell us the last key of this type.
3017 		 * otherwise, there are no items in this directory after
3018 		 * *min_offset, and we create a range to indicate that.
3019 		 */
3020 		if (ret == 0) {
3021 			struct btrfs_key tmp;
3022 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3023 					      path->slots[0]);
3024 			if (key_type == tmp.type)
3025 				first_offset = max(min_offset, tmp.offset) + 1;
3026 		}
3027 		goto done;
3028 	}
3029 
3030 	/* go backward to find any previous key */
3031 	ret = btrfs_previous_item(root, path, ino, key_type);
3032 	if (ret == 0) {
3033 		struct btrfs_key tmp;
3034 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3035 		if (key_type == tmp.type) {
3036 			first_offset = tmp.offset;
3037 			ret = overwrite_item(trans, log, dst_path,
3038 					     path->nodes[0], path->slots[0],
3039 					     &tmp);
3040 			if (ret) {
3041 				err = ret;
3042 				goto done;
3043 			}
3044 		}
3045 	}
3046 	btrfs_release_path(path);
3047 
3048 	/* find the first key from this transaction again */
3049 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3050 	if (WARN_ON(ret != 0))
3051 		goto done;
3052 
3053 	/*
3054 	 * we have a block from this transaction, log every item in it
3055 	 * from our directory
3056 	 */
3057 	while (1) {
3058 		struct btrfs_key tmp;
3059 		src = path->nodes[0];
3060 		nritems = btrfs_header_nritems(src);
3061 		for (i = path->slots[0]; i < nritems; i++) {
3062 			btrfs_item_key_to_cpu(src, &min_key, i);
3063 
3064 			if (min_key.objectid != ino || min_key.type != key_type)
3065 				goto done;
3066 			ret = overwrite_item(trans, log, dst_path, src, i,
3067 					     &min_key);
3068 			if (ret) {
3069 				err = ret;
3070 				goto done;
3071 			}
3072 		}
3073 		path->slots[0] = nritems;
3074 
3075 		/*
3076 		 * look ahead to the next item and see if it is also
3077 		 * from this directory and from this transaction
3078 		 */
3079 		ret = btrfs_next_leaf(root, path);
3080 		if (ret == 1) {
3081 			last_offset = (u64)-1;
3082 			goto done;
3083 		}
3084 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3085 		if (tmp.objectid != ino || tmp.type != key_type) {
3086 			last_offset = (u64)-1;
3087 			goto done;
3088 		}
3089 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3090 			ret = overwrite_item(trans, log, dst_path,
3091 					     path->nodes[0], path->slots[0],
3092 					     &tmp);
3093 			if (ret)
3094 				err = ret;
3095 			else
3096 				last_offset = tmp.offset;
3097 			goto done;
3098 		}
3099 	}
3100 done:
3101 	btrfs_release_path(path);
3102 	btrfs_release_path(dst_path);
3103 
3104 	if (err == 0) {
3105 		*last_offset_ret = last_offset;
3106 		/*
3107 		 * insert the log range keys to indicate where the log
3108 		 * is valid
3109 		 */
3110 		ret = insert_dir_log_key(trans, log, path, key_type,
3111 					 ino, first_offset, last_offset);
3112 		if (ret)
3113 			err = ret;
3114 	}
3115 	return err;
3116 }
3117 
3118 /*
3119  * logging directories is very similar to logging inodes, We find all the items
3120  * from the current transaction and write them to the log.
3121  *
3122  * The recovery code scans the directory in the subvolume, and if it finds a
3123  * key in the range logged that is not present in the log tree, then it means
3124  * that dir entry was unlinked during the transaction.
3125  *
3126  * In order for that scan to work, we must include one key smaller than
3127  * the smallest logged by this transaction and one key larger than the largest
3128  * key logged by this transaction.
3129  */
3130 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3131 			  struct btrfs_root *root, struct inode *inode,
3132 			  struct btrfs_path *path,
3133 			  struct btrfs_path *dst_path)
3134 {
3135 	u64 min_key;
3136 	u64 max_key;
3137 	int ret;
3138 	int key_type = BTRFS_DIR_ITEM_KEY;
3139 
3140 again:
3141 	min_key = 0;
3142 	max_key = 0;
3143 	while (1) {
3144 		ret = log_dir_items(trans, root, inode, path,
3145 				    dst_path, key_type, min_key,
3146 				    &max_key);
3147 		if (ret)
3148 			return ret;
3149 		if (max_key == (u64)-1)
3150 			break;
3151 		min_key = max_key + 1;
3152 	}
3153 
3154 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3155 		key_type = BTRFS_DIR_INDEX_KEY;
3156 		goto again;
3157 	}
3158 	return 0;
3159 }
3160 
3161 /*
3162  * a helper function to drop items from the log before we relog an
3163  * inode.  max_key_type indicates the highest item type to remove.
3164  * This cannot be run for file data extents because it does not
3165  * free the extents they point to.
3166  */
3167 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3168 				  struct btrfs_root *log,
3169 				  struct btrfs_path *path,
3170 				  u64 objectid, int max_key_type)
3171 {
3172 	int ret;
3173 	struct btrfs_key key;
3174 	struct btrfs_key found_key;
3175 	int start_slot;
3176 
3177 	key.objectid = objectid;
3178 	key.type = max_key_type;
3179 	key.offset = (u64)-1;
3180 
3181 	while (1) {
3182 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3183 		BUG_ON(ret == 0); /* Logic error */
3184 		if (ret < 0)
3185 			break;
3186 
3187 		if (path->slots[0] == 0)
3188 			break;
3189 
3190 		path->slots[0]--;
3191 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3192 				      path->slots[0]);
3193 
3194 		if (found_key.objectid != objectid)
3195 			break;
3196 
3197 		found_key.offset = 0;
3198 		found_key.type = 0;
3199 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3200 				       &start_slot);
3201 
3202 		ret = btrfs_del_items(trans, log, path, start_slot,
3203 				      path->slots[0] - start_slot + 1);
3204 		/*
3205 		 * If start slot isn't 0 then we don't need to re-search, we've
3206 		 * found the last guy with the objectid in this tree.
3207 		 */
3208 		if (ret || start_slot != 0)
3209 			break;
3210 		btrfs_release_path(path);
3211 	}
3212 	btrfs_release_path(path);
3213 	if (ret > 0)
3214 		ret = 0;
3215 	return ret;
3216 }
3217 
3218 static void fill_inode_item(struct btrfs_trans_handle *trans,
3219 			    struct extent_buffer *leaf,
3220 			    struct btrfs_inode_item *item,
3221 			    struct inode *inode, int log_inode_only)
3222 {
3223 	struct btrfs_map_token token;
3224 
3225 	btrfs_init_map_token(&token);
3226 
3227 	if (log_inode_only) {
3228 		/* set the generation to zero so the recover code
3229 		 * can tell the difference between an logging
3230 		 * just to say 'this inode exists' and a logging
3231 		 * to say 'update this inode with these values'
3232 		 */
3233 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3234 		btrfs_set_token_inode_size(leaf, item, 0, &token);
3235 	} else {
3236 		btrfs_set_token_inode_generation(leaf, item,
3237 						 BTRFS_I(inode)->generation,
3238 						 &token);
3239 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3240 	}
3241 
3242 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3243 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3244 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3245 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3246 
3247 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3248 				     inode->i_atime.tv_sec, &token);
3249 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3250 				      inode->i_atime.tv_nsec, &token);
3251 
3252 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3253 				     inode->i_mtime.tv_sec, &token);
3254 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3255 				      inode->i_mtime.tv_nsec, &token);
3256 
3257 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3258 				     inode->i_ctime.tv_sec, &token);
3259 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3260 				      inode->i_ctime.tv_nsec, &token);
3261 
3262 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3263 				     &token);
3264 
3265 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3266 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3267 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3268 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3269 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3270 }
3271 
3272 static int log_inode_item(struct btrfs_trans_handle *trans,
3273 			  struct btrfs_root *log, struct btrfs_path *path,
3274 			  struct inode *inode)
3275 {
3276 	struct btrfs_inode_item *inode_item;
3277 	int ret;
3278 
3279 	ret = btrfs_insert_empty_item(trans, log, path,
3280 				      &BTRFS_I(inode)->location,
3281 				      sizeof(*inode_item));
3282 	if (ret && ret != -EEXIST)
3283 		return ret;
3284 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3285 				    struct btrfs_inode_item);
3286 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3287 	btrfs_release_path(path);
3288 	return 0;
3289 }
3290 
3291 static noinline int copy_items(struct btrfs_trans_handle *trans,
3292 			       struct inode *inode,
3293 			       struct btrfs_path *dst_path,
3294 			       struct btrfs_path *src_path, u64 *last_extent,
3295 			       int start_slot, int nr, int inode_only)
3296 {
3297 	unsigned long src_offset;
3298 	unsigned long dst_offset;
3299 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3300 	struct btrfs_file_extent_item *extent;
3301 	struct btrfs_inode_item *inode_item;
3302 	struct extent_buffer *src = src_path->nodes[0];
3303 	struct btrfs_key first_key, last_key, key;
3304 	int ret;
3305 	struct btrfs_key *ins_keys;
3306 	u32 *ins_sizes;
3307 	char *ins_data;
3308 	int i;
3309 	struct list_head ordered_sums;
3310 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3311 	bool has_extents = false;
3312 	bool need_find_last_extent = true;
3313 	bool done = false;
3314 
3315 	INIT_LIST_HEAD(&ordered_sums);
3316 
3317 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3318 			   nr * sizeof(u32), GFP_NOFS);
3319 	if (!ins_data)
3320 		return -ENOMEM;
3321 
3322 	first_key.objectid = (u64)-1;
3323 
3324 	ins_sizes = (u32 *)ins_data;
3325 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3326 
3327 	for (i = 0; i < nr; i++) {
3328 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3329 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3330 	}
3331 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3332 				       ins_keys, ins_sizes, nr);
3333 	if (ret) {
3334 		kfree(ins_data);
3335 		return ret;
3336 	}
3337 
3338 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3339 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3340 						   dst_path->slots[0]);
3341 
3342 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3343 
3344 		if ((i == (nr - 1)))
3345 			last_key = ins_keys[i];
3346 
3347 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3348 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3349 						    dst_path->slots[0],
3350 						    struct btrfs_inode_item);
3351 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3352 					inode, inode_only == LOG_INODE_EXISTS);
3353 		} else {
3354 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3355 					   src_offset, ins_sizes[i]);
3356 		}
3357 
3358 		/*
3359 		 * We set need_find_last_extent here in case we know we were
3360 		 * processing other items and then walk into the first extent in
3361 		 * the inode.  If we don't hit an extent then nothing changes,
3362 		 * we'll do the last search the next time around.
3363 		 */
3364 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3365 			has_extents = true;
3366 			if (first_key.objectid == (u64)-1)
3367 				first_key = ins_keys[i];
3368 		} else {
3369 			need_find_last_extent = false;
3370 		}
3371 
3372 		/* take a reference on file data extents so that truncates
3373 		 * or deletes of this inode don't have to relog the inode
3374 		 * again
3375 		 */
3376 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3377 		    !skip_csum) {
3378 			int found_type;
3379 			extent = btrfs_item_ptr(src, start_slot + i,
3380 						struct btrfs_file_extent_item);
3381 
3382 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3383 				continue;
3384 
3385 			found_type = btrfs_file_extent_type(src, extent);
3386 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3387 				u64 ds, dl, cs, cl;
3388 				ds = btrfs_file_extent_disk_bytenr(src,
3389 								extent);
3390 				/* ds == 0 is a hole */
3391 				if (ds == 0)
3392 					continue;
3393 
3394 				dl = btrfs_file_extent_disk_num_bytes(src,
3395 								extent);
3396 				cs = btrfs_file_extent_offset(src, extent);
3397 				cl = btrfs_file_extent_num_bytes(src,
3398 								extent);
3399 				if (btrfs_file_extent_compression(src,
3400 								  extent)) {
3401 					cs = 0;
3402 					cl = dl;
3403 				}
3404 
3405 				ret = btrfs_lookup_csums_range(
3406 						log->fs_info->csum_root,
3407 						ds + cs, ds + cs + cl - 1,
3408 						&ordered_sums, 0);
3409 				if (ret) {
3410 					btrfs_release_path(dst_path);
3411 					kfree(ins_data);
3412 					return ret;
3413 				}
3414 			}
3415 		}
3416 	}
3417 
3418 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3419 	btrfs_release_path(dst_path);
3420 	kfree(ins_data);
3421 
3422 	/*
3423 	 * we have to do this after the loop above to avoid changing the
3424 	 * log tree while trying to change the log tree.
3425 	 */
3426 	ret = 0;
3427 	while (!list_empty(&ordered_sums)) {
3428 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3429 						   struct btrfs_ordered_sum,
3430 						   list);
3431 		if (!ret)
3432 			ret = btrfs_csum_file_blocks(trans, log, sums);
3433 		list_del(&sums->list);
3434 		kfree(sums);
3435 	}
3436 
3437 	if (!has_extents)
3438 		return ret;
3439 
3440 	if (need_find_last_extent && *last_extent == first_key.offset) {
3441 		/*
3442 		 * We don't have any leafs between our current one and the one
3443 		 * we processed before that can have file extent items for our
3444 		 * inode (and have a generation number smaller than our current
3445 		 * transaction id).
3446 		 */
3447 		need_find_last_extent = false;
3448 	}
3449 
3450 	/*
3451 	 * Because we use btrfs_search_forward we could skip leaves that were
3452 	 * not modified and then assume *last_extent is valid when it really
3453 	 * isn't.  So back up to the previous leaf and read the end of the last
3454 	 * extent before we go and fill in holes.
3455 	 */
3456 	if (need_find_last_extent) {
3457 		u64 len;
3458 
3459 		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3460 		if (ret < 0)
3461 			return ret;
3462 		if (ret)
3463 			goto fill_holes;
3464 		if (src_path->slots[0])
3465 			src_path->slots[0]--;
3466 		src = src_path->nodes[0];
3467 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3468 		if (key.objectid != btrfs_ino(inode) ||
3469 		    key.type != BTRFS_EXTENT_DATA_KEY)
3470 			goto fill_holes;
3471 		extent = btrfs_item_ptr(src, src_path->slots[0],
3472 					struct btrfs_file_extent_item);
3473 		if (btrfs_file_extent_type(src, extent) ==
3474 		    BTRFS_FILE_EXTENT_INLINE) {
3475 			len = btrfs_file_extent_inline_len(src,
3476 							   src_path->slots[0],
3477 							   extent);
3478 			*last_extent = ALIGN(key.offset + len,
3479 					     log->sectorsize);
3480 		} else {
3481 			len = btrfs_file_extent_num_bytes(src, extent);
3482 			*last_extent = key.offset + len;
3483 		}
3484 	}
3485 fill_holes:
3486 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3487 	 * things could have happened
3488 	 *
3489 	 * 1) A merge could have happened, so we could currently be on a leaf
3490 	 * that holds what we were copying in the first place.
3491 	 * 2) A split could have happened, and now not all of the items we want
3492 	 * are on the same leaf.
3493 	 *
3494 	 * So we need to adjust how we search for holes, we need to drop the
3495 	 * path and re-search for the first extent key we found, and then walk
3496 	 * forward until we hit the last one we copied.
3497 	 */
3498 	if (need_find_last_extent) {
3499 		/* btrfs_prev_leaf could return 1 without releasing the path */
3500 		btrfs_release_path(src_path);
3501 		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3502 					src_path, 0, 0);
3503 		if (ret < 0)
3504 			return ret;
3505 		ASSERT(ret == 0);
3506 		src = src_path->nodes[0];
3507 		i = src_path->slots[0];
3508 	} else {
3509 		i = start_slot;
3510 	}
3511 
3512 	/*
3513 	 * Ok so here we need to go through and fill in any holes we may have
3514 	 * to make sure that holes are punched for those areas in case they had
3515 	 * extents previously.
3516 	 */
3517 	while (!done) {
3518 		u64 offset, len;
3519 		u64 extent_end;
3520 
3521 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3522 			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3523 			if (ret < 0)
3524 				return ret;
3525 			ASSERT(ret == 0);
3526 			src = src_path->nodes[0];
3527 			i = 0;
3528 		}
3529 
3530 		btrfs_item_key_to_cpu(src, &key, i);
3531 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3532 			done = true;
3533 		if (key.objectid != btrfs_ino(inode) ||
3534 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3535 			i++;
3536 			continue;
3537 		}
3538 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3539 		if (btrfs_file_extent_type(src, extent) ==
3540 		    BTRFS_FILE_EXTENT_INLINE) {
3541 			len = btrfs_file_extent_inline_len(src, i, extent);
3542 			extent_end = ALIGN(key.offset + len, log->sectorsize);
3543 		} else {
3544 			len = btrfs_file_extent_num_bytes(src, extent);
3545 			extent_end = key.offset + len;
3546 		}
3547 		i++;
3548 
3549 		if (*last_extent == key.offset) {
3550 			*last_extent = extent_end;
3551 			continue;
3552 		}
3553 		offset = *last_extent;
3554 		len = key.offset - *last_extent;
3555 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3556 					       offset, 0, 0, len, 0, len, 0,
3557 					       0, 0);
3558 		if (ret)
3559 			break;
3560 		*last_extent = extent_end;
3561 	}
3562 	/*
3563 	 * Need to let the callers know we dropped the path so they should
3564 	 * re-search.
3565 	 */
3566 	if (!ret && need_find_last_extent)
3567 		ret = 1;
3568 	return ret;
3569 }
3570 
3571 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3572 {
3573 	struct extent_map *em1, *em2;
3574 
3575 	em1 = list_entry(a, struct extent_map, list);
3576 	em2 = list_entry(b, struct extent_map, list);
3577 
3578 	if (em1->start < em2->start)
3579 		return -1;
3580 	else if (em1->start > em2->start)
3581 		return 1;
3582 	return 0;
3583 }
3584 
3585 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3586 				struct inode *inode,
3587 				struct btrfs_root *root,
3588 				const struct extent_map *em,
3589 				const struct list_head *logged_list,
3590 				bool *ordered_io_error)
3591 {
3592 	struct btrfs_ordered_extent *ordered;
3593 	struct btrfs_root *log = root->log_root;
3594 	u64 mod_start = em->mod_start;
3595 	u64 mod_len = em->mod_len;
3596 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3597 	u64 csum_offset;
3598 	u64 csum_len;
3599 	LIST_HEAD(ordered_sums);
3600 	int ret = 0;
3601 
3602 	*ordered_io_error = false;
3603 
3604 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3605 	    em->block_start == EXTENT_MAP_HOLE)
3606 		return 0;
3607 
3608 	/*
3609 	 * Wait far any ordered extent that covers our extent map. If it
3610 	 * finishes without an error, first check and see if our csums are on
3611 	 * our outstanding ordered extents.
3612 	 */
3613 	list_for_each_entry(ordered, logged_list, log_list) {
3614 		struct btrfs_ordered_sum *sum;
3615 
3616 		if (!mod_len)
3617 			break;
3618 
3619 		if (ordered->file_offset + ordered->len <= mod_start ||
3620 		    mod_start + mod_len <= ordered->file_offset)
3621 			continue;
3622 
3623 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3624 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3625 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3626 			const u64 start = ordered->file_offset;
3627 			const u64 end = ordered->file_offset + ordered->len - 1;
3628 
3629 			WARN_ON(ordered->inode != inode);
3630 			filemap_fdatawrite_range(inode->i_mapping, start, end);
3631 		}
3632 
3633 		wait_event(ordered->wait,
3634 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3635 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3636 
3637 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3638 			/*
3639 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3640 			 * i_mapping flags, so that the next fsync won't get
3641 			 * an outdated io error too.
3642 			 */
3643 			btrfs_inode_check_errors(inode);
3644 			*ordered_io_error = true;
3645 			break;
3646 		}
3647 		/*
3648 		 * We are going to copy all the csums on this ordered extent, so
3649 		 * go ahead and adjust mod_start and mod_len in case this
3650 		 * ordered extent has already been logged.
3651 		 */
3652 		if (ordered->file_offset > mod_start) {
3653 			if (ordered->file_offset + ordered->len >=
3654 			    mod_start + mod_len)
3655 				mod_len = ordered->file_offset - mod_start;
3656 			/*
3657 			 * If we have this case
3658 			 *
3659 			 * |--------- logged extent ---------|
3660 			 *       |----- ordered extent ----|
3661 			 *
3662 			 * Just don't mess with mod_start and mod_len, we'll
3663 			 * just end up logging more csums than we need and it
3664 			 * will be ok.
3665 			 */
3666 		} else {
3667 			if (ordered->file_offset + ordered->len <
3668 			    mod_start + mod_len) {
3669 				mod_len = (mod_start + mod_len) -
3670 					(ordered->file_offset + ordered->len);
3671 				mod_start = ordered->file_offset +
3672 					ordered->len;
3673 			} else {
3674 				mod_len = 0;
3675 			}
3676 		}
3677 
3678 		if (skip_csum)
3679 			continue;
3680 
3681 		/*
3682 		 * To keep us from looping for the above case of an ordered
3683 		 * extent that falls inside of the logged extent.
3684 		 */
3685 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3686 				     &ordered->flags))
3687 			continue;
3688 
3689 		if (ordered->csum_bytes_left) {
3690 			btrfs_start_ordered_extent(inode, ordered, 0);
3691 			wait_event(ordered->wait,
3692 				   ordered->csum_bytes_left == 0);
3693 		}
3694 
3695 		list_for_each_entry(sum, &ordered->list, list) {
3696 			ret = btrfs_csum_file_blocks(trans, log, sum);
3697 			if (ret)
3698 				break;
3699 		}
3700 	}
3701 
3702 	if (*ordered_io_error || !mod_len || ret || skip_csum)
3703 		return ret;
3704 
3705 	if (em->compress_type) {
3706 		csum_offset = 0;
3707 		csum_len = max(em->block_len, em->orig_block_len);
3708 	} else {
3709 		csum_offset = mod_start - em->start;
3710 		csum_len = mod_len;
3711 	}
3712 
3713 	/* block start is already adjusted for the file extent offset. */
3714 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3715 				       em->block_start + csum_offset,
3716 				       em->block_start + csum_offset +
3717 				       csum_len - 1, &ordered_sums, 0);
3718 	if (ret)
3719 		return ret;
3720 
3721 	while (!list_empty(&ordered_sums)) {
3722 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3723 						   struct btrfs_ordered_sum,
3724 						   list);
3725 		if (!ret)
3726 			ret = btrfs_csum_file_blocks(trans, log, sums);
3727 		list_del(&sums->list);
3728 		kfree(sums);
3729 	}
3730 
3731 	return ret;
3732 }
3733 
3734 static int log_one_extent(struct btrfs_trans_handle *trans,
3735 			  struct inode *inode, struct btrfs_root *root,
3736 			  const struct extent_map *em,
3737 			  struct btrfs_path *path,
3738 			  const struct list_head *logged_list,
3739 			  struct btrfs_log_ctx *ctx)
3740 {
3741 	struct btrfs_root *log = root->log_root;
3742 	struct btrfs_file_extent_item *fi;
3743 	struct extent_buffer *leaf;
3744 	struct btrfs_map_token token;
3745 	struct btrfs_key key;
3746 	u64 extent_offset = em->start - em->orig_start;
3747 	u64 block_len;
3748 	int ret;
3749 	int extent_inserted = 0;
3750 	bool ordered_io_err = false;
3751 
3752 	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
3753 				   &ordered_io_err);
3754 	if (ret)
3755 		return ret;
3756 
3757 	if (ordered_io_err) {
3758 		ctx->io_err = -EIO;
3759 		return 0;
3760 	}
3761 
3762 	btrfs_init_map_token(&token);
3763 
3764 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3765 				   em->start + em->len, NULL, 0, 1,
3766 				   sizeof(*fi), &extent_inserted);
3767 	if (ret)
3768 		return ret;
3769 
3770 	if (!extent_inserted) {
3771 		key.objectid = btrfs_ino(inode);
3772 		key.type = BTRFS_EXTENT_DATA_KEY;
3773 		key.offset = em->start;
3774 
3775 		ret = btrfs_insert_empty_item(trans, log, path, &key,
3776 					      sizeof(*fi));
3777 		if (ret)
3778 			return ret;
3779 	}
3780 	leaf = path->nodes[0];
3781 	fi = btrfs_item_ptr(leaf, path->slots[0],
3782 			    struct btrfs_file_extent_item);
3783 
3784 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
3785 					       &token);
3786 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3787 		btrfs_set_token_file_extent_type(leaf, fi,
3788 						 BTRFS_FILE_EXTENT_PREALLOC,
3789 						 &token);
3790 	else
3791 		btrfs_set_token_file_extent_type(leaf, fi,
3792 						 BTRFS_FILE_EXTENT_REG,
3793 						 &token);
3794 
3795 	block_len = max(em->block_len, em->orig_block_len);
3796 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3797 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3798 							em->block_start,
3799 							&token);
3800 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3801 							   &token);
3802 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3803 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3804 							em->block_start -
3805 							extent_offset, &token);
3806 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3807 							   &token);
3808 	} else {
3809 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3810 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3811 							   &token);
3812 	}
3813 
3814 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
3815 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3816 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3817 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3818 						&token);
3819 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3820 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3821 	btrfs_mark_buffer_dirty(leaf);
3822 
3823 	btrfs_release_path(path);
3824 
3825 	return ret;
3826 }
3827 
3828 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3829 				     struct btrfs_root *root,
3830 				     struct inode *inode,
3831 				     struct btrfs_path *path,
3832 				     struct list_head *logged_list,
3833 				     struct btrfs_log_ctx *ctx)
3834 {
3835 	struct extent_map *em, *n;
3836 	struct list_head extents;
3837 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3838 	u64 test_gen;
3839 	int ret = 0;
3840 	int num = 0;
3841 
3842 	INIT_LIST_HEAD(&extents);
3843 
3844 	write_lock(&tree->lock);
3845 	test_gen = root->fs_info->last_trans_committed;
3846 
3847 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3848 		list_del_init(&em->list);
3849 
3850 		/*
3851 		 * Just an arbitrary number, this can be really CPU intensive
3852 		 * once we start getting a lot of extents, and really once we
3853 		 * have a bunch of extents we just want to commit since it will
3854 		 * be faster.
3855 		 */
3856 		if (++num > 32768) {
3857 			list_del_init(&tree->modified_extents);
3858 			ret = -EFBIG;
3859 			goto process;
3860 		}
3861 
3862 		if (em->generation <= test_gen)
3863 			continue;
3864 		/* Need a ref to keep it from getting evicted from cache */
3865 		atomic_inc(&em->refs);
3866 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3867 		list_add_tail(&em->list, &extents);
3868 		num++;
3869 	}
3870 
3871 	list_sort(NULL, &extents, extent_cmp);
3872 
3873 process:
3874 	while (!list_empty(&extents)) {
3875 		em = list_entry(extents.next, struct extent_map, list);
3876 
3877 		list_del_init(&em->list);
3878 
3879 		/*
3880 		 * If we had an error we just need to delete everybody from our
3881 		 * private list.
3882 		 */
3883 		if (ret) {
3884 			clear_em_logging(tree, em);
3885 			free_extent_map(em);
3886 			continue;
3887 		}
3888 
3889 		write_unlock(&tree->lock);
3890 
3891 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
3892 				     ctx);
3893 		write_lock(&tree->lock);
3894 		clear_em_logging(tree, em);
3895 		free_extent_map(em);
3896 	}
3897 	WARN_ON(!list_empty(&extents));
3898 	write_unlock(&tree->lock);
3899 
3900 	btrfs_release_path(path);
3901 	return ret;
3902 }
3903 
3904 /* log a single inode in the tree log.
3905  * At least one parent directory for this inode must exist in the tree
3906  * or be logged already.
3907  *
3908  * Any items from this inode changed by the current transaction are copied
3909  * to the log tree.  An extra reference is taken on any extents in this
3910  * file, allowing us to avoid a whole pile of corner cases around logging
3911  * blocks that have been removed from the tree.
3912  *
3913  * See LOG_INODE_ALL and related defines for a description of what inode_only
3914  * does.
3915  *
3916  * This handles both files and directories.
3917  */
3918 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3919 			   struct btrfs_root *root, struct inode *inode,
3920 			   int inode_only,
3921 			   const loff_t start,
3922 			   const loff_t end,
3923 			   struct btrfs_log_ctx *ctx)
3924 {
3925 	struct btrfs_path *path;
3926 	struct btrfs_path *dst_path;
3927 	struct btrfs_key min_key;
3928 	struct btrfs_key max_key;
3929 	struct btrfs_root *log = root->log_root;
3930 	struct extent_buffer *src = NULL;
3931 	LIST_HEAD(logged_list);
3932 	u64 last_extent = 0;
3933 	int err = 0;
3934 	int ret;
3935 	int nritems;
3936 	int ins_start_slot = 0;
3937 	int ins_nr;
3938 	bool fast_search = false;
3939 	u64 ino = btrfs_ino(inode);
3940 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3941 
3942 	path = btrfs_alloc_path();
3943 	if (!path)
3944 		return -ENOMEM;
3945 	dst_path = btrfs_alloc_path();
3946 	if (!dst_path) {
3947 		btrfs_free_path(path);
3948 		return -ENOMEM;
3949 	}
3950 
3951 	min_key.objectid = ino;
3952 	min_key.type = BTRFS_INODE_ITEM_KEY;
3953 	min_key.offset = 0;
3954 
3955 	max_key.objectid = ino;
3956 
3957 
3958 	/* today the code can only do partial logging of directories */
3959 	if (S_ISDIR(inode->i_mode) ||
3960 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3961 		       &BTRFS_I(inode)->runtime_flags) &&
3962 	     inode_only == LOG_INODE_EXISTS))
3963 		max_key.type = BTRFS_XATTR_ITEM_KEY;
3964 	else
3965 		max_key.type = (u8)-1;
3966 	max_key.offset = (u64)-1;
3967 
3968 	/* Only run delayed items if we are a dir or a new file */
3969 	if (S_ISDIR(inode->i_mode) ||
3970 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3971 		ret = btrfs_commit_inode_delayed_items(trans, inode);
3972 		if (ret) {
3973 			btrfs_free_path(path);
3974 			btrfs_free_path(dst_path);
3975 			return ret;
3976 		}
3977 	}
3978 
3979 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3980 
3981 	btrfs_get_logged_extents(inode, &logged_list, start, end);
3982 
3983 	/*
3984 	 * a brute force approach to making sure we get the most uptodate
3985 	 * copies of everything.
3986 	 */
3987 	if (S_ISDIR(inode->i_mode)) {
3988 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3989 
3990 		if (inode_only == LOG_INODE_EXISTS)
3991 			max_key_type = BTRFS_XATTR_ITEM_KEY;
3992 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3993 	} else {
3994 		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3995 				       &BTRFS_I(inode)->runtime_flags)) {
3996 			clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3997 				  &BTRFS_I(inode)->runtime_flags);
3998 			ret = btrfs_truncate_inode_items(trans, log,
3999 							 inode, 0, 0);
4000 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4001 					      &BTRFS_I(inode)->runtime_flags) ||
4002 			   inode_only == LOG_INODE_EXISTS) {
4003 			if (inode_only == LOG_INODE_ALL)
4004 				fast_search = true;
4005 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4006 			ret = drop_objectid_items(trans, log, path, ino,
4007 						  max_key.type);
4008 		} else {
4009 			if (inode_only == LOG_INODE_ALL)
4010 				fast_search = true;
4011 			ret = log_inode_item(trans, log, dst_path, inode);
4012 			if (ret) {
4013 				err = ret;
4014 				goto out_unlock;
4015 			}
4016 			goto log_extents;
4017 		}
4018 
4019 	}
4020 	if (ret) {
4021 		err = ret;
4022 		goto out_unlock;
4023 	}
4024 
4025 	while (1) {
4026 		ins_nr = 0;
4027 		ret = btrfs_search_forward(root, &min_key,
4028 					   path, trans->transid);
4029 		if (ret != 0)
4030 			break;
4031 again:
4032 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4033 		if (min_key.objectid != ino)
4034 			break;
4035 		if (min_key.type > max_key.type)
4036 			break;
4037 
4038 		src = path->nodes[0];
4039 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4040 			ins_nr++;
4041 			goto next_slot;
4042 		} else if (!ins_nr) {
4043 			ins_start_slot = path->slots[0];
4044 			ins_nr = 1;
4045 			goto next_slot;
4046 		}
4047 
4048 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4049 				 ins_start_slot, ins_nr, inode_only);
4050 		if (ret < 0) {
4051 			err = ret;
4052 			goto out_unlock;
4053 		}
4054 		if (ret) {
4055 			ins_nr = 0;
4056 			btrfs_release_path(path);
4057 			continue;
4058 		}
4059 		ins_nr = 1;
4060 		ins_start_slot = path->slots[0];
4061 next_slot:
4062 
4063 		nritems = btrfs_header_nritems(path->nodes[0]);
4064 		path->slots[0]++;
4065 		if (path->slots[0] < nritems) {
4066 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4067 					      path->slots[0]);
4068 			goto again;
4069 		}
4070 		if (ins_nr) {
4071 			ret = copy_items(trans, inode, dst_path, path,
4072 					 &last_extent, ins_start_slot,
4073 					 ins_nr, inode_only);
4074 			if (ret < 0) {
4075 				err = ret;
4076 				goto out_unlock;
4077 			}
4078 			ret = 0;
4079 			ins_nr = 0;
4080 		}
4081 		btrfs_release_path(path);
4082 
4083 		if (min_key.offset < (u64)-1) {
4084 			min_key.offset++;
4085 		} else if (min_key.type < max_key.type) {
4086 			min_key.type++;
4087 			min_key.offset = 0;
4088 		} else {
4089 			break;
4090 		}
4091 	}
4092 	if (ins_nr) {
4093 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4094 				 ins_start_slot, ins_nr, inode_only);
4095 		if (ret < 0) {
4096 			err = ret;
4097 			goto out_unlock;
4098 		}
4099 		ret = 0;
4100 		ins_nr = 0;
4101 	}
4102 
4103 log_extents:
4104 	btrfs_release_path(path);
4105 	btrfs_release_path(dst_path);
4106 	if (fast_search) {
4107 		/*
4108 		 * Some ordered extents started by fsync might have completed
4109 		 * before we collected the ordered extents in logged_list, which
4110 		 * means they're gone, not in our logged_list nor in the inode's
4111 		 * ordered tree. We want the application/user space to know an
4112 		 * error happened while attempting to persist file data so that
4113 		 * it can take proper action. If such error happened, we leave
4114 		 * without writing to the log tree and the fsync must report the
4115 		 * file data write error and not commit the current transaction.
4116 		 */
4117 		err = btrfs_inode_check_errors(inode);
4118 		if (err) {
4119 			ctx->io_err = err;
4120 			goto out_unlock;
4121 		}
4122 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4123 						&logged_list, ctx);
4124 		if (ret) {
4125 			err = ret;
4126 			goto out_unlock;
4127 		}
4128 	} else if (inode_only == LOG_INODE_ALL) {
4129 		struct extent_map *em, *n;
4130 
4131 		write_lock(&em_tree->lock);
4132 		/*
4133 		 * We can't just remove every em if we're called for a ranged
4134 		 * fsync - that is, one that doesn't cover the whole possible
4135 		 * file range (0 to LLONG_MAX). This is because we can have
4136 		 * em's that fall outside the range we're logging and therefore
4137 		 * their ordered operations haven't completed yet
4138 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4139 		 * didn't get their respective file extent item in the fs/subvol
4140 		 * tree yet, and need to let the next fast fsync (one which
4141 		 * consults the list of modified extent maps) find the em so
4142 		 * that it logs a matching file extent item and waits for the
4143 		 * respective ordered operation to complete (if it's still
4144 		 * running).
4145 		 *
4146 		 * Removing every em outside the range we're logging would make
4147 		 * the next fast fsync not log their matching file extent items,
4148 		 * therefore making us lose data after a log replay.
4149 		 */
4150 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4151 					 list) {
4152 			const u64 mod_end = em->mod_start + em->mod_len - 1;
4153 
4154 			if (em->mod_start >= start && mod_end <= end)
4155 				list_del_init(&em->list);
4156 		}
4157 		write_unlock(&em_tree->lock);
4158 	}
4159 
4160 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4161 		ret = log_directory_changes(trans, root, inode, path, dst_path);
4162 		if (ret) {
4163 			err = ret;
4164 			goto out_unlock;
4165 		}
4166 	}
4167 
4168 	BTRFS_I(inode)->logged_trans = trans->transid;
4169 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4170 out_unlock:
4171 	if (unlikely(err))
4172 		btrfs_put_logged_extents(&logged_list);
4173 	else
4174 		btrfs_submit_logged_extents(&logged_list, log);
4175 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4176 
4177 	btrfs_free_path(path);
4178 	btrfs_free_path(dst_path);
4179 	return err;
4180 }
4181 
4182 /*
4183  * follow the dentry parent pointers up the chain and see if any
4184  * of the directories in it require a full commit before they can
4185  * be logged.  Returns zero if nothing special needs to be done or 1 if
4186  * a full commit is required.
4187  */
4188 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4189 					       struct inode *inode,
4190 					       struct dentry *parent,
4191 					       struct super_block *sb,
4192 					       u64 last_committed)
4193 {
4194 	int ret = 0;
4195 	struct btrfs_root *root;
4196 	struct dentry *old_parent = NULL;
4197 	struct inode *orig_inode = inode;
4198 
4199 	/*
4200 	 * for regular files, if its inode is already on disk, we don't
4201 	 * have to worry about the parents at all.  This is because
4202 	 * we can use the last_unlink_trans field to record renames
4203 	 * and other fun in this file.
4204 	 */
4205 	if (S_ISREG(inode->i_mode) &&
4206 	    BTRFS_I(inode)->generation <= last_committed &&
4207 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4208 			goto out;
4209 
4210 	if (!S_ISDIR(inode->i_mode)) {
4211 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4212 			goto out;
4213 		inode = parent->d_inode;
4214 	}
4215 
4216 	while (1) {
4217 		/*
4218 		 * If we are logging a directory then we start with our inode,
4219 		 * not our parents inode, so we need to skipp setting the
4220 		 * logged_trans so that further down in the log code we don't
4221 		 * think this inode has already been logged.
4222 		 */
4223 		if (inode != orig_inode)
4224 			BTRFS_I(inode)->logged_trans = trans->transid;
4225 		smp_mb();
4226 
4227 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4228 			root = BTRFS_I(inode)->root;
4229 
4230 			/*
4231 			 * make sure any commits to the log are forced
4232 			 * to be full commits
4233 			 */
4234 			btrfs_set_log_full_commit(root->fs_info, trans);
4235 			ret = 1;
4236 			break;
4237 		}
4238 
4239 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4240 			break;
4241 
4242 		if (IS_ROOT(parent))
4243 			break;
4244 
4245 		parent = dget_parent(parent);
4246 		dput(old_parent);
4247 		old_parent = parent;
4248 		inode = parent->d_inode;
4249 
4250 	}
4251 	dput(old_parent);
4252 out:
4253 	return ret;
4254 }
4255 
4256 /*
4257  * helper function around btrfs_log_inode to make sure newly created
4258  * parent directories also end up in the log.  A minimal inode and backref
4259  * only logging is done of any parent directories that are older than
4260  * the last committed transaction
4261  */
4262 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4263 			    	  struct btrfs_root *root, struct inode *inode,
4264 				  struct dentry *parent,
4265 				  const loff_t start,
4266 				  const loff_t end,
4267 				  int exists_only,
4268 				  struct btrfs_log_ctx *ctx)
4269 {
4270 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4271 	struct super_block *sb;
4272 	struct dentry *old_parent = NULL;
4273 	int ret = 0;
4274 	u64 last_committed = root->fs_info->last_trans_committed;
4275 
4276 	sb = inode->i_sb;
4277 
4278 	if (btrfs_test_opt(root, NOTREELOG)) {
4279 		ret = 1;
4280 		goto end_no_trans;
4281 	}
4282 
4283 	/*
4284 	 * The prev transaction commit doesn't complete, we need do
4285 	 * full commit by ourselves.
4286 	 */
4287 	if (root->fs_info->last_trans_log_full_commit >
4288 	    root->fs_info->last_trans_committed) {
4289 		ret = 1;
4290 		goto end_no_trans;
4291 	}
4292 
4293 	if (root != BTRFS_I(inode)->root ||
4294 	    btrfs_root_refs(&root->root_item) == 0) {
4295 		ret = 1;
4296 		goto end_no_trans;
4297 	}
4298 
4299 	ret = check_parent_dirs_for_sync(trans, inode, parent,
4300 					 sb, last_committed);
4301 	if (ret)
4302 		goto end_no_trans;
4303 
4304 	if (btrfs_inode_in_log(inode, trans->transid)) {
4305 		ret = BTRFS_NO_LOG_SYNC;
4306 		goto end_no_trans;
4307 	}
4308 
4309 	ret = start_log_trans(trans, root, ctx);
4310 	if (ret)
4311 		goto end_no_trans;
4312 
4313 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4314 	if (ret)
4315 		goto end_trans;
4316 
4317 	/*
4318 	 * for regular files, if its inode is already on disk, we don't
4319 	 * have to worry about the parents at all.  This is because
4320 	 * we can use the last_unlink_trans field to record renames
4321 	 * and other fun in this file.
4322 	 */
4323 	if (S_ISREG(inode->i_mode) &&
4324 	    BTRFS_I(inode)->generation <= last_committed &&
4325 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4326 		ret = 0;
4327 		goto end_trans;
4328 	}
4329 
4330 	inode_only = LOG_INODE_EXISTS;
4331 	while (1) {
4332 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4333 			break;
4334 
4335 		inode = parent->d_inode;
4336 		if (root != BTRFS_I(inode)->root)
4337 			break;
4338 
4339 		if (BTRFS_I(inode)->generation >
4340 		    root->fs_info->last_trans_committed) {
4341 			ret = btrfs_log_inode(trans, root, inode, inode_only,
4342 					      0, LLONG_MAX, ctx);
4343 			if (ret)
4344 				goto end_trans;
4345 		}
4346 		if (IS_ROOT(parent))
4347 			break;
4348 
4349 		parent = dget_parent(parent);
4350 		dput(old_parent);
4351 		old_parent = parent;
4352 	}
4353 	ret = 0;
4354 end_trans:
4355 	dput(old_parent);
4356 	if (ret < 0) {
4357 		btrfs_set_log_full_commit(root->fs_info, trans);
4358 		ret = 1;
4359 	}
4360 
4361 	if (ret)
4362 		btrfs_remove_log_ctx(root, ctx);
4363 	btrfs_end_log_trans(root);
4364 end_no_trans:
4365 	return ret;
4366 }
4367 
4368 /*
4369  * it is not safe to log dentry if the chunk root has added new
4370  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4371  * If this returns 1, you must commit the transaction to safely get your
4372  * data on disk.
4373  */
4374 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4375 			  struct btrfs_root *root, struct dentry *dentry,
4376 			  const loff_t start,
4377 			  const loff_t end,
4378 			  struct btrfs_log_ctx *ctx)
4379 {
4380 	struct dentry *parent = dget_parent(dentry);
4381 	int ret;
4382 
4383 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4384 				     start, end, 0, ctx);
4385 	dput(parent);
4386 
4387 	return ret;
4388 }
4389 
4390 /*
4391  * should be called during mount to recover any replay any log trees
4392  * from the FS
4393  */
4394 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4395 {
4396 	int ret;
4397 	struct btrfs_path *path;
4398 	struct btrfs_trans_handle *trans;
4399 	struct btrfs_key key;
4400 	struct btrfs_key found_key;
4401 	struct btrfs_key tmp_key;
4402 	struct btrfs_root *log;
4403 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4404 	struct walk_control wc = {
4405 		.process_func = process_one_buffer,
4406 		.stage = 0,
4407 	};
4408 
4409 	path = btrfs_alloc_path();
4410 	if (!path)
4411 		return -ENOMEM;
4412 
4413 	fs_info->log_root_recovering = 1;
4414 
4415 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4416 	if (IS_ERR(trans)) {
4417 		ret = PTR_ERR(trans);
4418 		goto error;
4419 	}
4420 
4421 	wc.trans = trans;
4422 	wc.pin = 1;
4423 
4424 	ret = walk_log_tree(trans, log_root_tree, &wc);
4425 	if (ret) {
4426 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
4427 			    "recovering log root tree.");
4428 		goto error;
4429 	}
4430 
4431 again:
4432 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
4433 	key.offset = (u64)-1;
4434 	key.type = BTRFS_ROOT_ITEM_KEY;
4435 
4436 	while (1) {
4437 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4438 
4439 		if (ret < 0) {
4440 			btrfs_error(fs_info, ret,
4441 				    "Couldn't find tree log root.");
4442 			goto error;
4443 		}
4444 		if (ret > 0) {
4445 			if (path->slots[0] == 0)
4446 				break;
4447 			path->slots[0]--;
4448 		}
4449 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4450 				      path->slots[0]);
4451 		btrfs_release_path(path);
4452 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4453 			break;
4454 
4455 		log = btrfs_read_fs_root(log_root_tree, &found_key);
4456 		if (IS_ERR(log)) {
4457 			ret = PTR_ERR(log);
4458 			btrfs_error(fs_info, ret,
4459 				    "Couldn't read tree log root.");
4460 			goto error;
4461 		}
4462 
4463 		tmp_key.objectid = found_key.offset;
4464 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4465 		tmp_key.offset = (u64)-1;
4466 
4467 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4468 		if (IS_ERR(wc.replay_dest)) {
4469 			ret = PTR_ERR(wc.replay_dest);
4470 			free_extent_buffer(log->node);
4471 			free_extent_buffer(log->commit_root);
4472 			kfree(log);
4473 			btrfs_error(fs_info, ret, "Couldn't read target root "
4474 				    "for tree log recovery.");
4475 			goto error;
4476 		}
4477 
4478 		wc.replay_dest->log_root = log;
4479 		btrfs_record_root_in_trans(trans, wc.replay_dest);
4480 		ret = walk_log_tree(trans, log, &wc);
4481 
4482 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4483 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4484 						      path);
4485 		}
4486 
4487 		key.offset = found_key.offset - 1;
4488 		wc.replay_dest->log_root = NULL;
4489 		free_extent_buffer(log->node);
4490 		free_extent_buffer(log->commit_root);
4491 		kfree(log);
4492 
4493 		if (ret)
4494 			goto error;
4495 
4496 		if (found_key.offset == 0)
4497 			break;
4498 	}
4499 	btrfs_release_path(path);
4500 
4501 	/* step one is to pin it all, step two is to replay just inodes */
4502 	if (wc.pin) {
4503 		wc.pin = 0;
4504 		wc.process_func = replay_one_buffer;
4505 		wc.stage = LOG_WALK_REPLAY_INODES;
4506 		goto again;
4507 	}
4508 	/* step three is to replay everything */
4509 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4510 		wc.stage++;
4511 		goto again;
4512 	}
4513 
4514 	btrfs_free_path(path);
4515 
4516 	/* step 4: commit the transaction, which also unpins the blocks */
4517 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4518 	if (ret)
4519 		return ret;
4520 
4521 	free_extent_buffer(log_root_tree->node);
4522 	log_root_tree->log_root = NULL;
4523 	fs_info->log_root_recovering = 0;
4524 	kfree(log_root_tree);
4525 
4526 	return 0;
4527 error:
4528 	if (wc.trans)
4529 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4530 	btrfs_free_path(path);
4531 	return ret;
4532 }
4533 
4534 /*
4535  * there are some corner cases where we want to force a full
4536  * commit instead of allowing a directory to be logged.
4537  *
4538  * They revolve around files there were unlinked from the directory, and
4539  * this function updates the parent directory so that a full commit is
4540  * properly done if it is fsync'd later after the unlinks are done.
4541  */
4542 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4543 			     struct inode *dir, struct inode *inode,
4544 			     int for_rename)
4545 {
4546 	/*
4547 	 * when we're logging a file, if it hasn't been renamed
4548 	 * or unlinked, and its inode is fully committed on disk,
4549 	 * we don't have to worry about walking up the directory chain
4550 	 * to log its parents.
4551 	 *
4552 	 * So, we use the last_unlink_trans field to put this transid
4553 	 * into the file.  When the file is logged we check it and
4554 	 * don't log the parents if the file is fully on disk.
4555 	 */
4556 	if (S_ISREG(inode->i_mode))
4557 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4558 
4559 	/*
4560 	 * if this directory was already logged any new
4561 	 * names for this file/dir will get recorded
4562 	 */
4563 	smp_mb();
4564 	if (BTRFS_I(dir)->logged_trans == trans->transid)
4565 		return;
4566 
4567 	/*
4568 	 * if the inode we're about to unlink was logged,
4569 	 * the log will be properly updated for any new names
4570 	 */
4571 	if (BTRFS_I(inode)->logged_trans == trans->transid)
4572 		return;
4573 
4574 	/*
4575 	 * when renaming files across directories, if the directory
4576 	 * there we're unlinking from gets fsync'd later on, there's
4577 	 * no way to find the destination directory later and fsync it
4578 	 * properly.  So, we have to be conservative and force commits
4579 	 * so the new name gets discovered.
4580 	 */
4581 	if (for_rename)
4582 		goto record;
4583 
4584 	/* we can safely do the unlink without any special recording */
4585 	return;
4586 
4587 record:
4588 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
4589 }
4590 
4591 /*
4592  * Call this after adding a new name for a file and it will properly
4593  * update the log to reflect the new name.
4594  *
4595  * It will return zero if all goes well, and it will return 1 if a
4596  * full transaction commit is required.
4597  */
4598 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4599 			struct inode *inode, struct inode *old_dir,
4600 			struct dentry *parent)
4601 {
4602 	struct btrfs_root * root = BTRFS_I(inode)->root;
4603 
4604 	/*
4605 	 * this will force the logging code to walk the dentry chain
4606 	 * up for the file
4607 	 */
4608 	if (S_ISREG(inode->i_mode))
4609 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4610 
4611 	/*
4612 	 * if this inode hasn't been logged and directory we're renaming it
4613 	 * from hasn't been logged, we don't need to log it
4614 	 */
4615 	if (BTRFS_I(inode)->logged_trans <=
4616 	    root->fs_info->last_trans_committed &&
4617 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4618 		    root->fs_info->last_trans_committed))
4619 		return 0;
4620 
4621 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4622 				      LLONG_MAX, 1, NULL);
4623 }
4624 
4625