1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/blkdev.h> 22 #include <linux/list_sort.h> 23 #include "tree-log.h" 24 #include "disk-io.h" 25 #include "locking.h" 26 #include "print-tree.h" 27 #include "backref.h" 28 #include "hash.h" 29 30 /* magic values for the inode_only field in btrfs_log_inode: 31 * 32 * LOG_INODE_ALL means to log everything 33 * LOG_INODE_EXISTS means to log just enough to recreate the inode 34 * during log replay 35 */ 36 #define LOG_INODE_ALL 0 37 #define LOG_INODE_EXISTS 1 38 39 /* 40 * directory trouble cases 41 * 42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 43 * log, we must force a full commit before doing an fsync of the directory 44 * where the unlink was done. 45 * ---> record transid of last unlink/rename per directory 46 * 47 * mkdir foo/some_dir 48 * normal commit 49 * rename foo/some_dir foo2/some_dir 50 * mkdir foo/some_dir 51 * fsync foo/some_dir/some_file 52 * 53 * The fsync above will unlink the original some_dir without recording 54 * it in its new location (foo2). After a crash, some_dir will be gone 55 * unless the fsync of some_file forces a full commit 56 * 57 * 2) we must log any new names for any file or dir that is in the fsync 58 * log. ---> check inode while renaming/linking. 59 * 60 * 2a) we must log any new names for any file or dir during rename 61 * when the directory they are being removed from was logged. 62 * ---> check inode and old parent dir during rename 63 * 64 * 2a is actually the more important variant. With the extra logging 65 * a crash might unlink the old name without recreating the new one 66 * 67 * 3) after a crash, we must go through any directories with a link count 68 * of zero and redo the rm -rf 69 * 70 * mkdir f1/foo 71 * normal commit 72 * rm -rf f1/foo 73 * fsync(f1) 74 * 75 * The directory f1 was fully removed from the FS, but fsync was never 76 * called on f1, only its parent dir. After a crash the rm -rf must 77 * be replayed. This must be able to recurse down the entire 78 * directory tree. The inode link count fixup code takes care of the 79 * ugly details. 80 */ 81 82 /* 83 * stages for the tree walking. The first 84 * stage (0) is to only pin down the blocks we find 85 * the second stage (1) is to make sure that all the inodes 86 * we find in the log are created in the subvolume. 87 * 88 * The last stage is to deal with directories and links and extents 89 * and all the other fun semantics 90 */ 91 #define LOG_WALK_PIN_ONLY 0 92 #define LOG_WALK_REPLAY_INODES 1 93 #define LOG_WALK_REPLAY_DIR_INDEX 2 94 #define LOG_WALK_REPLAY_ALL 3 95 96 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 97 struct btrfs_root *root, struct inode *inode, 98 int inode_only, 99 const loff_t start, 100 const loff_t end, 101 struct btrfs_log_ctx *ctx); 102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 103 struct btrfs_root *root, 104 struct btrfs_path *path, u64 objectid); 105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 106 struct btrfs_root *root, 107 struct btrfs_root *log, 108 struct btrfs_path *path, 109 u64 dirid, int del_all); 110 111 /* 112 * tree logging is a special write ahead log used to make sure that 113 * fsyncs and O_SYNCs can happen without doing full tree commits. 114 * 115 * Full tree commits are expensive because they require commonly 116 * modified blocks to be recowed, creating many dirty pages in the 117 * extent tree an 4x-6x higher write load than ext3. 118 * 119 * Instead of doing a tree commit on every fsync, we use the 120 * key ranges and transaction ids to find items for a given file or directory 121 * that have changed in this transaction. Those items are copied into 122 * a special tree (one per subvolume root), that tree is written to disk 123 * and then the fsync is considered complete. 124 * 125 * After a crash, items are copied out of the log-tree back into the 126 * subvolume tree. Any file data extents found are recorded in the extent 127 * allocation tree, and the log-tree freed. 128 * 129 * The log tree is read three times, once to pin down all the extents it is 130 * using in ram and once, once to create all the inodes logged in the tree 131 * and once to do all the other items. 132 */ 133 134 /* 135 * start a sub transaction and setup the log tree 136 * this increments the log tree writer count to make the people 137 * syncing the tree wait for us to finish 138 */ 139 static int start_log_trans(struct btrfs_trans_handle *trans, 140 struct btrfs_root *root, 141 struct btrfs_log_ctx *ctx) 142 { 143 int index; 144 int ret; 145 146 mutex_lock(&root->log_mutex); 147 if (root->log_root) { 148 if (btrfs_need_log_full_commit(root->fs_info, trans)) { 149 ret = -EAGAIN; 150 goto out; 151 } 152 if (!root->log_start_pid) { 153 root->log_start_pid = current->pid; 154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 155 } else if (root->log_start_pid != current->pid) { 156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 157 } 158 159 atomic_inc(&root->log_batch); 160 atomic_inc(&root->log_writers); 161 if (ctx) { 162 index = root->log_transid % 2; 163 list_add_tail(&ctx->list, &root->log_ctxs[index]); 164 ctx->log_transid = root->log_transid; 165 } 166 mutex_unlock(&root->log_mutex); 167 return 0; 168 } 169 170 ret = 0; 171 mutex_lock(&root->fs_info->tree_log_mutex); 172 if (!root->fs_info->log_root_tree) 173 ret = btrfs_init_log_root_tree(trans, root->fs_info); 174 mutex_unlock(&root->fs_info->tree_log_mutex); 175 if (ret) 176 goto out; 177 178 if (!root->log_root) { 179 ret = btrfs_add_log_tree(trans, root); 180 if (ret) 181 goto out; 182 } 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 184 root->log_start_pid = current->pid; 185 atomic_inc(&root->log_batch); 186 atomic_inc(&root->log_writers); 187 if (ctx) { 188 index = root->log_transid % 2; 189 list_add_tail(&ctx->list, &root->log_ctxs[index]); 190 ctx->log_transid = root->log_transid; 191 } 192 out: 193 mutex_unlock(&root->log_mutex); 194 return ret; 195 } 196 197 /* 198 * returns 0 if there was a log transaction running and we were able 199 * to join, or returns -ENOENT if there were not transactions 200 * in progress 201 */ 202 static int join_running_log_trans(struct btrfs_root *root) 203 { 204 int ret = -ENOENT; 205 206 smp_mb(); 207 if (!root->log_root) 208 return -ENOENT; 209 210 mutex_lock(&root->log_mutex); 211 if (root->log_root) { 212 ret = 0; 213 atomic_inc(&root->log_writers); 214 } 215 mutex_unlock(&root->log_mutex); 216 return ret; 217 } 218 219 /* 220 * This either makes the current running log transaction wait 221 * until you call btrfs_end_log_trans() or it makes any future 222 * log transactions wait until you call btrfs_end_log_trans() 223 */ 224 int btrfs_pin_log_trans(struct btrfs_root *root) 225 { 226 int ret = -ENOENT; 227 228 mutex_lock(&root->log_mutex); 229 atomic_inc(&root->log_writers); 230 mutex_unlock(&root->log_mutex); 231 return ret; 232 } 233 234 /* 235 * indicate we're done making changes to the log tree 236 * and wake up anyone waiting to do a sync 237 */ 238 void btrfs_end_log_trans(struct btrfs_root *root) 239 { 240 if (atomic_dec_and_test(&root->log_writers)) { 241 smp_mb(); 242 if (waitqueue_active(&root->log_writer_wait)) 243 wake_up(&root->log_writer_wait); 244 } 245 } 246 247 248 /* 249 * the walk control struct is used to pass state down the chain when 250 * processing the log tree. The stage field tells us which part 251 * of the log tree processing we are currently doing. The others 252 * are state fields used for that specific part 253 */ 254 struct walk_control { 255 /* should we free the extent on disk when done? This is used 256 * at transaction commit time while freeing a log tree 257 */ 258 int free; 259 260 /* should we write out the extent buffer? This is used 261 * while flushing the log tree to disk during a sync 262 */ 263 int write; 264 265 /* should we wait for the extent buffer io to finish? Also used 266 * while flushing the log tree to disk for a sync 267 */ 268 int wait; 269 270 /* pin only walk, we record which extents on disk belong to the 271 * log trees 272 */ 273 int pin; 274 275 /* what stage of the replay code we're currently in */ 276 int stage; 277 278 /* the root we are currently replaying */ 279 struct btrfs_root *replay_dest; 280 281 /* the trans handle for the current replay */ 282 struct btrfs_trans_handle *trans; 283 284 /* the function that gets used to process blocks we find in the 285 * tree. Note the extent_buffer might not be up to date when it is 286 * passed in, and it must be checked or read if you need the data 287 * inside it 288 */ 289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 290 struct walk_control *wc, u64 gen); 291 }; 292 293 /* 294 * process_func used to pin down extents, write them or wait on them 295 */ 296 static int process_one_buffer(struct btrfs_root *log, 297 struct extent_buffer *eb, 298 struct walk_control *wc, u64 gen) 299 { 300 int ret = 0; 301 302 /* 303 * If this fs is mixed then we need to be able to process the leaves to 304 * pin down any logged extents, so we have to read the block. 305 */ 306 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) { 307 ret = btrfs_read_buffer(eb, gen); 308 if (ret) 309 return ret; 310 } 311 312 if (wc->pin) 313 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root, 314 eb->start, eb->len); 315 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 317 if (wc->pin && btrfs_header_level(eb) == 0) 318 ret = btrfs_exclude_logged_extents(log, eb); 319 if (wc->write) 320 btrfs_write_tree_block(eb); 321 if (wc->wait) 322 btrfs_wait_tree_block_writeback(eb); 323 } 324 return ret; 325 } 326 327 /* 328 * Item overwrite used by replay and tree logging. eb, slot and key all refer 329 * to the src data we are copying out. 330 * 331 * root is the tree we are copying into, and path is a scratch 332 * path for use in this function (it should be released on entry and 333 * will be released on exit). 334 * 335 * If the key is already in the destination tree the existing item is 336 * overwritten. If the existing item isn't big enough, it is extended. 337 * If it is too large, it is truncated. 338 * 339 * If the key isn't in the destination yet, a new item is inserted. 340 */ 341 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 342 struct btrfs_root *root, 343 struct btrfs_path *path, 344 struct extent_buffer *eb, int slot, 345 struct btrfs_key *key) 346 { 347 int ret; 348 u32 item_size; 349 u64 saved_i_size = 0; 350 int save_old_i_size = 0; 351 unsigned long src_ptr; 352 unsigned long dst_ptr; 353 int overwrite_root = 0; 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 355 356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 357 overwrite_root = 1; 358 359 item_size = btrfs_item_size_nr(eb, slot); 360 src_ptr = btrfs_item_ptr_offset(eb, slot); 361 362 /* look for the key in the destination tree */ 363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 364 if (ret < 0) 365 return ret; 366 367 if (ret == 0) { 368 char *src_copy; 369 char *dst_copy; 370 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 371 path->slots[0]); 372 if (dst_size != item_size) 373 goto insert; 374 375 if (item_size == 0) { 376 btrfs_release_path(path); 377 return 0; 378 } 379 dst_copy = kmalloc(item_size, GFP_NOFS); 380 src_copy = kmalloc(item_size, GFP_NOFS); 381 if (!dst_copy || !src_copy) { 382 btrfs_release_path(path); 383 kfree(dst_copy); 384 kfree(src_copy); 385 return -ENOMEM; 386 } 387 388 read_extent_buffer(eb, src_copy, src_ptr, item_size); 389 390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 392 item_size); 393 ret = memcmp(dst_copy, src_copy, item_size); 394 395 kfree(dst_copy); 396 kfree(src_copy); 397 /* 398 * they have the same contents, just return, this saves 399 * us from cowing blocks in the destination tree and doing 400 * extra writes that may not have been done by a previous 401 * sync 402 */ 403 if (ret == 0) { 404 btrfs_release_path(path); 405 return 0; 406 } 407 408 /* 409 * We need to load the old nbytes into the inode so when we 410 * replay the extents we've logged we get the right nbytes. 411 */ 412 if (inode_item) { 413 struct btrfs_inode_item *item; 414 u64 nbytes; 415 u32 mode; 416 417 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 418 struct btrfs_inode_item); 419 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 420 item = btrfs_item_ptr(eb, slot, 421 struct btrfs_inode_item); 422 btrfs_set_inode_nbytes(eb, item, nbytes); 423 424 /* 425 * If this is a directory we need to reset the i_size to 426 * 0 so that we can set it up properly when replaying 427 * the rest of the items in this log. 428 */ 429 mode = btrfs_inode_mode(eb, item); 430 if (S_ISDIR(mode)) 431 btrfs_set_inode_size(eb, item, 0); 432 } 433 } else if (inode_item) { 434 struct btrfs_inode_item *item; 435 u32 mode; 436 437 /* 438 * New inode, set nbytes to 0 so that the nbytes comes out 439 * properly when we replay the extents. 440 */ 441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 442 btrfs_set_inode_nbytes(eb, item, 0); 443 444 /* 445 * If this is a directory we need to reset the i_size to 0 so 446 * that we can set it up properly when replaying the rest of 447 * the items in this log. 448 */ 449 mode = btrfs_inode_mode(eb, item); 450 if (S_ISDIR(mode)) 451 btrfs_set_inode_size(eb, item, 0); 452 } 453 insert: 454 btrfs_release_path(path); 455 /* try to insert the key into the destination tree */ 456 ret = btrfs_insert_empty_item(trans, root, path, 457 key, item_size); 458 459 /* make sure any existing item is the correct size */ 460 if (ret == -EEXIST) { 461 u32 found_size; 462 found_size = btrfs_item_size_nr(path->nodes[0], 463 path->slots[0]); 464 if (found_size > item_size) 465 btrfs_truncate_item(root, path, item_size, 1); 466 else if (found_size < item_size) 467 btrfs_extend_item(root, path, 468 item_size - found_size); 469 } else if (ret) { 470 return ret; 471 } 472 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 473 path->slots[0]); 474 475 /* don't overwrite an existing inode if the generation number 476 * was logged as zero. This is done when the tree logging code 477 * is just logging an inode to make sure it exists after recovery. 478 * 479 * Also, don't overwrite i_size on directories during replay. 480 * log replay inserts and removes directory items based on the 481 * state of the tree found in the subvolume, and i_size is modified 482 * as it goes 483 */ 484 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 485 struct btrfs_inode_item *src_item; 486 struct btrfs_inode_item *dst_item; 487 488 src_item = (struct btrfs_inode_item *)src_ptr; 489 dst_item = (struct btrfs_inode_item *)dst_ptr; 490 491 if (btrfs_inode_generation(eb, src_item) == 0) 492 goto no_copy; 493 494 if (overwrite_root && 495 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 496 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 497 save_old_i_size = 1; 498 saved_i_size = btrfs_inode_size(path->nodes[0], 499 dst_item); 500 } 501 } 502 503 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 504 src_ptr, item_size); 505 506 if (save_old_i_size) { 507 struct btrfs_inode_item *dst_item; 508 dst_item = (struct btrfs_inode_item *)dst_ptr; 509 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 510 } 511 512 /* make sure the generation is filled in */ 513 if (key->type == BTRFS_INODE_ITEM_KEY) { 514 struct btrfs_inode_item *dst_item; 515 dst_item = (struct btrfs_inode_item *)dst_ptr; 516 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 517 btrfs_set_inode_generation(path->nodes[0], dst_item, 518 trans->transid); 519 } 520 } 521 no_copy: 522 btrfs_mark_buffer_dirty(path->nodes[0]); 523 btrfs_release_path(path); 524 return 0; 525 } 526 527 /* 528 * simple helper to read an inode off the disk from a given root 529 * This can only be called for subvolume roots and not for the log 530 */ 531 static noinline struct inode *read_one_inode(struct btrfs_root *root, 532 u64 objectid) 533 { 534 struct btrfs_key key; 535 struct inode *inode; 536 537 key.objectid = objectid; 538 key.type = BTRFS_INODE_ITEM_KEY; 539 key.offset = 0; 540 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 541 if (IS_ERR(inode)) { 542 inode = NULL; 543 } else if (is_bad_inode(inode)) { 544 iput(inode); 545 inode = NULL; 546 } 547 return inode; 548 } 549 550 /* replays a single extent in 'eb' at 'slot' with 'key' into the 551 * subvolume 'root'. path is released on entry and should be released 552 * on exit. 553 * 554 * extents in the log tree have not been allocated out of the extent 555 * tree yet. So, this completes the allocation, taking a reference 556 * as required if the extent already exists or creating a new extent 557 * if it isn't in the extent allocation tree yet. 558 * 559 * The extent is inserted into the file, dropping any existing extents 560 * from the file that overlap the new one. 561 */ 562 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 563 struct btrfs_root *root, 564 struct btrfs_path *path, 565 struct extent_buffer *eb, int slot, 566 struct btrfs_key *key) 567 { 568 int found_type; 569 u64 extent_end; 570 u64 start = key->offset; 571 u64 nbytes = 0; 572 struct btrfs_file_extent_item *item; 573 struct inode *inode = NULL; 574 unsigned long size; 575 int ret = 0; 576 577 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 578 found_type = btrfs_file_extent_type(eb, item); 579 580 if (found_type == BTRFS_FILE_EXTENT_REG || 581 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 582 nbytes = btrfs_file_extent_num_bytes(eb, item); 583 extent_end = start + nbytes; 584 585 /* 586 * We don't add to the inodes nbytes if we are prealloc or a 587 * hole. 588 */ 589 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 590 nbytes = 0; 591 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 592 size = btrfs_file_extent_inline_len(eb, slot, item); 593 nbytes = btrfs_file_extent_ram_bytes(eb, item); 594 extent_end = ALIGN(start + size, root->sectorsize); 595 } else { 596 ret = 0; 597 goto out; 598 } 599 600 inode = read_one_inode(root, key->objectid); 601 if (!inode) { 602 ret = -EIO; 603 goto out; 604 } 605 606 /* 607 * first check to see if we already have this extent in the 608 * file. This must be done before the btrfs_drop_extents run 609 * so we don't try to drop this extent. 610 */ 611 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 612 start, 0); 613 614 if (ret == 0 && 615 (found_type == BTRFS_FILE_EXTENT_REG || 616 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 617 struct btrfs_file_extent_item cmp1; 618 struct btrfs_file_extent_item cmp2; 619 struct btrfs_file_extent_item *existing; 620 struct extent_buffer *leaf; 621 622 leaf = path->nodes[0]; 623 existing = btrfs_item_ptr(leaf, path->slots[0], 624 struct btrfs_file_extent_item); 625 626 read_extent_buffer(eb, &cmp1, (unsigned long)item, 627 sizeof(cmp1)); 628 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 629 sizeof(cmp2)); 630 631 /* 632 * we already have a pointer to this exact extent, 633 * we don't have to do anything 634 */ 635 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 636 btrfs_release_path(path); 637 goto out; 638 } 639 } 640 btrfs_release_path(path); 641 642 /* drop any overlapping extents */ 643 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 644 if (ret) 645 goto out; 646 647 if (found_type == BTRFS_FILE_EXTENT_REG || 648 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 649 u64 offset; 650 unsigned long dest_offset; 651 struct btrfs_key ins; 652 653 ret = btrfs_insert_empty_item(trans, root, path, key, 654 sizeof(*item)); 655 if (ret) 656 goto out; 657 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 658 path->slots[0]); 659 copy_extent_buffer(path->nodes[0], eb, dest_offset, 660 (unsigned long)item, sizeof(*item)); 661 662 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 663 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 664 ins.type = BTRFS_EXTENT_ITEM_KEY; 665 offset = key->offset - btrfs_file_extent_offset(eb, item); 666 667 if (ins.objectid > 0) { 668 u64 csum_start; 669 u64 csum_end; 670 LIST_HEAD(ordered_sums); 671 /* 672 * is this extent already allocated in the extent 673 * allocation tree? If so, just add a reference 674 */ 675 ret = btrfs_lookup_data_extent(root, ins.objectid, 676 ins.offset); 677 if (ret == 0) { 678 ret = btrfs_inc_extent_ref(trans, root, 679 ins.objectid, ins.offset, 680 0, root->root_key.objectid, 681 key->objectid, offset, 0); 682 if (ret) 683 goto out; 684 } else { 685 /* 686 * insert the extent pointer in the extent 687 * allocation tree 688 */ 689 ret = btrfs_alloc_logged_file_extent(trans, 690 root, root->root_key.objectid, 691 key->objectid, offset, &ins); 692 if (ret) 693 goto out; 694 } 695 btrfs_release_path(path); 696 697 if (btrfs_file_extent_compression(eb, item)) { 698 csum_start = ins.objectid; 699 csum_end = csum_start + ins.offset; 700 } else { 701 csum_start = ins.objectid + 702 btrfs_file_extent_offset(eb, item); 703 csum_end = csum_start + 704 btrfs_file_extent_num_bytes(eb, item); 705 } 706 707 ret = btrfs_lookup_csums_range(root->log_root, 708 csum_start, csum_end - 1, 709 &ordered_sums, 0); 710 if (ret) 711 goto out; 712 while (!list_empty(&ordered_sums)) { 713 struct btrfs_ordered_sum *sums; 714 sums = list_entry(ordered_sums.next, 715 struct btrfs_ordered_sum, 716 list); 717 if (!ret) 718 ret = btrfs_csum_file_blocks(trans, 719 root->fs_info->csum_root, 720 sums); 721 list_del(&sums->list); 722 kfree(sums); 723 } 724 if (ret) 725 goto out; 726 } else { 727 btrfs_release_path(path); 728 } 729 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 730 /* inline extents are easy, we just overwrite them */ 731 ret = overwrite_item(trans, root, path, eb, slot, key); 732 if (ret) 733 goto out; 734 } 735 736 inode_add_bytes(inode, nbytes); 737 ret = btrfs_update_inode(trans, root, inode); 738 out: 739 if (inode) 740 iput(inode); 741 return ret; 742 } 743 744 /* 745 * when cleaning up conflicts between the directory names in the 746 * subvolume, directory names in the log and directory names in the 747 * inode back references, we may have to unlink inodes from directories. 748 * 749 * This is a helper function to do the unlink of a specific directory 750 * item 751 */ 752 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 753 struct btrfs_root *root, 754 struct btrfs_path *path, 755 struct inode *dir, 756 struct btrfs_dir_item *di) 757 { 758 struct inode *inode; 759 char *name; 760 int name_len; 761 struct extent_buffer *leaf; 762 struct btrfs_key location; 763 int ret; 764 765 leaf = path->nodes[0]; 766 767 btrfs_dir_item_key_to_cpu(leaf, di, &location); 768 name_len = btrfs_dir_name_len(leaf, di); 769 name = kmalloc(name_len, GFP_NOFS); 770 if (!name) 771 return -ENOMEM; 772 773 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 774 btrfs_release_path(path); 775 776 inode = read_one_inode(root, location.objectid); 777 if (!inode) { 778 ret = -EIO; 779 goto out; 780 } 781 782 ret = link_to_fixup_dir(trans, root, path, location.objectid); 783 if (ret) 784 goto out; 785 786 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 787 if (ret) 788 goto out; 789 else 790 ret = btrfs_run_delayed_items(trans, root); 791 out: 792 kfree(name); 793 iput(inode); 794 return ret; 795 } 796 797 /* 798 * helper function to see if a given name and sequence number found 799 * in an inode back reference are already in a directory and correctly 800 * point to this inode 801 */ 802 static noinline int inode_in_dir(struct btrfs_root *root, 803 struct btrfs_path *path, 804 u64 dirid, u64 objectid, u64 index, 805 const char *name, int name_len) 806 { 807 struct btrfs_dir_item *di; 808 struct btrfs_key location; 809 int match = 0; 810 811 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 812 index, name, name_len, 0); 813 if (di && !IS_ERR(di)) { 814 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 815 if (location.objectid != objectid) 816 goto out; 817 } else 818 goto out; 819 btrfs_release_path(path); 820 821 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 822 if (di && !IS_ERR(di)) { 823 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 824 if (location.objectid != objectid) 825 goto out; 826 } else 827 goto out; 828 match = 1; 829 out: 830 btrfs_release_path(path); 831 return match; 832 } 833 834 /* 835 * helper function to check a log tree for a named back reference in 836 * an inode. This is used to decide if a back reference that is 837 * found in the subvolume conflicts with what we find in the log. 838 * 839 * inode backreferences may have multiple refs in a single item, 840 * during replay we process one reference at a time, and we don't 841 * want to delete valid links to a file from the subvolume if that 842 * link is also in the log. 843 */ 844 static noinline int backref_in_log(struct btrfs_root *log, 845 struct btrfs_key *key, 846 u64 ref_objectid, 847 char *name, int namelen) 848 { 849 struct btrfs_path *path; 850 struct btrfs_inode_ref *ref; 851 unsigned long ptr; 852 unsigned long ptr_end; 853 unsigned long name_ptr; 854 int found_name_len; 855 int item_size; 856 int ret; 857 int match = 0; 858 859 path = btrfs_alloc_path(); 860 if (!path) 861 return -ENOMEM; 862 863 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 864 if (ret != 0) 865 goto out; 866 867 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 868 869 if (key->type == BTRFS_INODE_EXTREF_KEY) { 870 if (btrfs_find_name_in_ext_backref(path, ref_objectid, 871 name, namelen, NULL)) 872 match = 1; 873 874 goto out; 875 } 876 877 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 878 ptr_end = ptr + item_size; 879 while (ptr < ptr_end) { 880 ref = (struct btrfs_inode_ref *)ptr; 881 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 882 if (found_name_len == namelen) { 883 name_ptr = (unsigned long)(ref + 1); 884 ret = memcmp_extent_buffer(path->nodes[0], name, 885 name_ptr, namelen); 886 if (ret == 0) { 887 match = 1; 888 goto out; 889 } 890 } 891 ptr = (unsigned long)(ref + 1) + found_name_len; 892 } 893 out: 894 btrfs_free_path(path); 895 return match; 896 } 897 898 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 899 struct btrfs_root *root, 900 struct btrfs_path *path, 901 struct btrfs_root *log_root, 902 struct inode *dir, struct inode *inode, 903 struct extent_buffer *eb, 904 u64 inode_objectid, u64 parent_objectid, 905 u64 ref_index, char *name, int namelen, 906 int *search_done) 907 { 908 int ret; 909 char *victim_name; 910 int victim_name_len; 911 struct extent_buffer *leaf; 912 struct btrfs_dir_item *di; 913 struct btrfs_key search_key; 914 struct btrfs_inode_extref *extref; 915 916 again: 917 /* Search old style refs */ 918 search_key.objectid = inode_objectid; 919 search_key.type = BTRFS_INODE_REF_KEY; 920 search_key.offset = parent_objectid; 921 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 922 if (ret == 0) { 923 struct btrfs_inode_ref *victim_ref; 924 unsigned long ptr; 925 unsigned long ptr_end; 926 927 leaf = path->nodes[0]; 928 929 /* are we trying to overwrite a back ref for the root directory 930 * if so, just jump out, we're done 931 */ 932 if (search_key.objectid == search_key.offset) 933 return 1; 934 935 /* check all the names in this back reference to see 936 * if they are in the log. if so, we allow them to stay 937 * otherwise they must be unlinked as a conflict 938 */ 939 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 940 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 941 while (ptr < ptr_end) { 942 victim_ref = (struct btrfs_inode_ref *)ptr; 943 victim_name_len = btrfs_inode_ref_name_len(leaf, 944 victim_ref); 945 victim_name = kmalloc(victim_name_len, GFP_NOFS); 946 if (!victim_name) 947 return -ENOMEM; 948 949 read_extent_buffer(leaf, victim_name, 950 (unsigned long)(victim_ref + 1), 951 victim_name_len); 952 953 if (!backref_in_log(log_root, &search_key, 954 parent_objectid, 955 victim_name, 956 victim_name_len)) { 957 inc_nlink(inode); 958 btrfs_release_path(path); 959 960 ret = btrfs_unlink_inode(trans, root, dir, 961 inode, victim_name, 962 victim_name_len); 963 kfree(victim_name); 964 if (ret) 965 return ret; 966 ret = btrfs_run_delayed_items(trans, root); 967 if (ret) 968 return ret; 969 *search_done = 1; 970 goto again; 971 } 972 kfree(victim_name); 973 974 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 975 } 976 977 /* 978 * NOTE: we have searched root tree and checked the 979 * coresponding ref, it does not need to check again. 980 */ 981 *search_done = 1; 982 } 983 btrfs_release_path(path); 984 985 /* Same search but for extended refs */ 986 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 987 inode_objectid, parent_objectid, 0, 988 0); 989 if (!IS_ERR_OR_NULL(extref)) { 990 u32 item_size; 991 u32 cur_offset = 0; 992 unsigned long base; 993 struct inode *victim_parent; 994 995 leaf = path->nodes[0]; 996 997 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 998 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 999 1000 while (cur_offset < item_size) { 1001 extref = (struct btrfs_inode_extref *)base + cur_offset; 1002 1003 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1004 1005 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1006 goto next; 1007 1008 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1009 if (!victim_name) 1010 return -ENOMEM; 1011 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1012 victim_name_len); 1013 1014 search_key.objectid = inode_objectid; 1015 search_key.type = BTRFS_INODE_EXTREF_KEY; 1016 search_key.offset = btrfs_extref_hash(parent_objectid, 1017 victim_name, 1018 victim_name_len); 1019 ret = 0; 1020 if (!backref_in_log(log_root, &search_key, 1021 parent_objectid, victim_name, 1022 victim_name_len)) { 1023 ret = -ENOENT; 1024 victim_parent = read_one_inode(root, 1025 parent_objectid); 1026 if (victim_parent) { 1027 inc_nlink(inode); 1028 btrfs_release_path(path); 1029 1030 ret = btrfs_unlink_inode(trans, root, 1031 victim_parent, 1032 inode, 1033 victim_name, 1034 victim_name_len); 1035 if (!ret) 1036 ret = btrfs_run_delayed_items( 1037 trans, root); 1038 } 1039 iput(victim_parent); 1040 kfree(victim_name); 1041 if (ret) 1042 return ret; 1043 *search_done = 1; 1044 goto again; 1045 } 1046 kfree(victim_name); 1047 if (ret) 1048 return ret; 1049 next: 1050 cur_offset += victim_name_len + sizeof(*extref); 1051 } 1052 *search_done = 1; 1053 } 1054 btrfs_release_path(path); 1055 1056 /* look for a conflicting sequence number */ 1057 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1058 ref_index, name, namelen, 0); 1059 if (di && !IS_ERR(di)) { 1060 ret = drop_one_dir_item(trans, root, path, dir, di); 1061 if (ret) 1062 return ret; 1063 } 1064 btrfs_release_path(path); 1065 1066 /* look for a conflicing name */ 1067 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1068 name, namelen, 0); 1069 if (di && !IS_ERR(di)) { 1070 ret = drop_one_dir_item(trans, root, path, dir, di); 1071 if (ret) 1072 return ret; 1073 } 1074 btrfs_release_path(path); 1075 1076 return 0; 1077 } 1078 1079 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1080 u32 *namelen, char **name, u64 *index, 1081 u64 *parent_objectid) 1082 { 1083 struct btrfs_inode_extref *extref; 1084 1085 extref = (struct btrfs_inode_extref *)ref_ptr; 1086 1087 *namelen = btrfs_inode_extref_name_len(eb, extref); 1088 *name = kmalloc(*namelen, GFP_NOFS); 1089 if (*name == NULL) 1090 return -ENOMEM; 1091 1092 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1093 *namelen); 1094 1095 *index = btrfs_inode_extref_index(eb, extref); 1096 if (parent_objectid) 1097 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1098 1099 return 0; 1100 } 1101 1102 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1103 u32 *namelen, char **name, u64 *index) 1104 { 1105 struct btrfs_inode_ref *ref; 1106 1107 ref = (struct btrfs_inode_ref *)ref_ptr; 1108 1109 *namelen = btrfs_inode_ref_name_len(eb, ref); 1110 *name = kmalloc(*namelen, GFP_NOFS); 1111 if (*name == NULL) 1112 return -ENOMEM; 1113 1114 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1115 1116 *index = btrfs_inode_ref_index(eb, ref); 1117 1118 return 0; 1119 } 1120 1121 /* 1122 * replay one inode back reference item found in the log tree. 1123 * eb, slot and key refer to the buffer and key found in the log tree. 1124 * root is the destination we are replaying into, and path is for temp 1125 * use by this function. (it should be released on return). 1126 */ 1127 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1128 struct btrfs_root *root, 1129 struct btrfs_root *log, 1130 struct btrfs_path *path, 1131 struct extent_buffer *eb, int slot, 1132 struct btrfs_key *key) 1133 { 1134 struct inode *dir = NULL; 1135 struct inode *inode = NULL; 1136 unsigned long ref_ptr; 1137 unsigned long ref_end; 1138 char *name = NULL; 1139 int namelen; 1140 int ret; 1141 int search_done = 0; 1142 int log_ref_ver = 0; 1143 u64 parent_objectid; 1144 u64 inode_objectid; 1145 u64 ref_index = 0; 1146 int ref_struct_size; 1147 1148 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1149 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1150 1151 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1152 struct btrfs_inode_extref *r; 1153 1154 ref_struct_size = sizeof(struct btrfs_inode_extref); 1155 log_ref_ver = 1; 1156 r = (struct btrfs_inode_extref *)ref_ptr; 1157 parent_objectid = btrfs_inode_extref_parent(eb, r); 1158 } else { 1159 ref_struct_size = sizeof(struct btrfs_inode_ref); 1160 parent_objectid = key->offset; 1161 } 1162 inode_objectid = key->objectid; 1163 1164 /* 1165 * it is possible that we didn't log all the parent directories 1166 * for a given inode. If we don't find the dir, just don't 1167 * copy the back ref in. The link count fixup code will take 1168 * care of the rest 1169 */ 1170 dir = read_one_inode(root, parent_objectid); 1171 if (!dir) { 1172 ret = -ENOENT; 1173 goto out; 1174 } 1175 1176 inode = read_one_inode(root, inode_objectid); 1177 if (!inode) { 1178 ret = -EIO; 1179 goto out; 1180 } 1181 1182 while (ref_ptr < ref_end) { 1183 if (log_ref_ver) { 1184 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1185 &ref_index, &parent_objectid); 1186 /* 1187 * parent object can change from one array 1188 * item to another. 1189 */ 1190 if (!dir) 1191 dir = read_one_inode(root, parent_objectid); 1192 if (!dir) { 1193 ret = -ENOENT; 1194 goto out; 1195 } 1196 } else { 1197 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1198 &ref_index); 1199 } 1200 if (ret) 1201 goto out; 1202 1203 /* if we already have a perfect match, we're done */ 1204 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), 1205 ref_index, name, namelen)) { 1206 /* 1207 * look for a conflicting back reference in the 1208 * metadata. if we find one we have to unlink that name 1209 * of the file before we add our new link. Later on, we 1210 * overwrite any existing back reference, and we don't 1211 * want to create dangling pointers in the directory. 1212 */ 1213 1214 if (!search_done) { 1215 ret = __add_inode_ref(trans, root, path, log, 1216 dir, inode, eb, 1217 inode_objectid, 1218 parent_objectid, 1219 ref_index, name, namelen, 1220 &search_done); 1221 if (ret) { 1222 if (ret == 1) 1223 ret = 0; 1224 goto out; 1225 } 1226 } 1227 1228 /* insert our name */ 1229 ret = btrfs_add_link(trans, dir, inode, name, namelen, 1230 0, ref_index); 1231 if (ret) 1232 goto out; 1233 1234 btrfs_update_inode(trans, root, inode); 1235 } 1236 1237 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1238 kfree(name); 1239 name = NULL; 1240 if (log_ref_ver) { 1241 iput(dir); 1242 dir = NULL; 1243 } 1244 } 1245 1246 /* finally write the back reference in the inode */ 1247 ret = overwrite_item(trans, root, path, eb, slot, key); 1248 out: 1249 btrfs_release_path(path); 1250 kfree(name); 1251 iput(dir); 1252 iput(inode); 1253 return ret; 1254 } 1255 1256 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1257 struct btrfs_root *root, u64 offset) 1258 { 1259 int ret; 1260 ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID, 1261 offset, BTRFS_ORPHAN_ITEM_KEY, NULL); 1262 if (ret > 0) 1263 ret = btrfs_insert_orphan_item(trans, root, offset); 1264 return ret; 1265 } 1266 1267 static int count_inode_extrefs(struct btrfs_root *root, 1268 struct inode *inode, struct btrfs_path *path) 1269 { 1270 int ret = 0; 1271 int name_len; 1272 unsigned int nlink = 0; 1273 u32 item_size; 1274 u32 cur_offset = 0; 1275 u64 inode_objectid = btrfs_ino(inode); 1276 u64 offset = 0; 1277 unsigned long ptr; 1278 struct btrfs_inode_extref *extref; 1279 struct extent_buffer *leaf; 1280 1281 while (1) { 1282 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1283 &extref, &offset); 1284 if (ret) 1285 break; 1286 1287 leaf = path->nodes[0]; 1288 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1289 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1290 1291 while (cur_offset < item_size) { 1292 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1293 name_len = btrfs_inode_extref_name_len(leaf, extref); 1294 1295 nlink++; 1296 1297 cur_offset += name_len + sizeof(*extref); 1298 } 1299 1300 offset++; 1301 btrfs_release_path(path); 1302 } 1303 btrfs_release_path(path); 1304 1305 if (ret < 0) 1306 return ret; 1307 return nlink; 1308 } 1309 1310 static int count_inode_refs(struct btrfs_root *root, 1311 struct inode *inode, struct btrfs_path *path) 1312 { 1313 int ret; 1314 struct btrfs_key key; 1315 unsigned int nlink = 0; 1316 unsigned long ptr; 1317 unsigned long ptr_end; 1318 int name_len; 1319 u64 ino = btrfs_ino(inode); 1320 1321 key.objectid = ino; 1322 key.type = BTRFS_INODE_REF_KEY; 1323 key.offset = (u64)-1; 1324 1325 while (1) { 1326 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1327 if (ret < 0) 1328 break; 1329 if (ret > 0) { 1330 if (path->slots[0] == 0) 1331 break; 1332 path->slots[0]--; 1333 } 1334 process_slot: 1335 btrfs_item_key_to_cpu(path->nodes[0], &key, 1336 path->slots[0]); 1337 if (key.objectid != ino || 1338 key.type != BTRFS_INODE_REF_KEY) 1339 break; 1340 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1341 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1342 path->slots[0]); 1343 while (ptr < ptr_end) { 1344 struct btrfs_inode_ref *ref; 1345 1346 ref = (struct btrfs_inode_ref *)ptr; 1347 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1348 ref); 1349 ptr = (unsigned long)(ref + 1) + name_len; 1350 nlink++; 1351 } 1352 1353 if (key.offset == 0) 1354 break; 1355 if (path->slots[0] > 0) { 1356 path->slots[0]--; 1357 goto process_slot; 1358 } 1359 key.offset--; 1360 btrfs_release_path(path); 1361 } 1362 btrfs_release_path(path); 1363 1364 return nlink; 1365 } 1366 1367 /* 1368 * There are a few corners where the link count of the file can't 1369 * be properly maintained during replay. So, instead of adding 1370 * lots of complexity to the log code, we just scan the backrefs 1371 * for any file that has been through replay. 1372 * 1373 * The scan will update the link count on the inode to reflect the 1374 * number of back refs found. If it goes down to zero, the iput 1375 * will free the inode. 1376 */ 1377 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1378 struct btrfs_root *root, 1379 struct inode *inode) 1380 { 1381 struct btrfs_path *path; 1382 int ret; 1383 u64 nlink = 0; 1384 u64 ino = btrfs_ino(inode); 1385 1386 path = btrfs_alloc_path(); 1387 if (!path) 1388 return -ENOMEM; 1389 1390 ret = count_inode_refs(root, inode, path); 1391 if (ret < 0) 1392 goto out; 1393 1394 nlink = ret; 1395 1396 ret = count_inode_extrefs(root, inode, path); 1397 if (ret == -ENOENT) 1398 ret = 0; 1399 1400 if (ret < 0) 1401 goto out; 1402 1403 nlink += ret; 1404 1405 ret = 0; 1406 1407 if (nlink != inode->i_nlink) { 1408 set_nlink(inode, nlink); 1409 btrfs_update_inode(trans, root, inode); 1410 } 1411 BTRFS_I(inode)->index_cnt = (u64)-1; 1412 1413 if (inode->i_nlink == 0) { 1414 if (S_ISDIR(inode->i_mode)) { 1415 ret = replay_dir_deletes(trans, root, NULL, path, 1416 ino, 1); 1417 if (ret) 1418 goto out; 1419 } 1420 ret = insert_orphan_item(trans, root, ino); 1421 } 1422 1423 out: 1424 btrfs_free_path(path); 1425 return ret; 1426 } 1427 1428 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1429 struct btrfs_root *root, 1430 struct btrfs_path *path) 1431 { 1432 int ret; 1433 struct btrfs_key key; 1434 struct inode *inode; 1435 1436 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1437 key.type = BTRFS_ORPHAN_ITEM_KEY; 1438 key.offset = (u64)-1; 1439 while (1) { 1440 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1441 if (ret < 0) 1442 break; 1443 1444 if (ret == 1) { 1445 if (path->slots[0] == 0) 1446 break; 1447 path->slots[0]--; 1448 } 1449 1450 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1451 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1452 key.type != BTRFS_ORPHAN_ITEM_KEY) 1453 break; 1454 1455 ret = btrfs_del_item(trans, root, path); 1456 if (ret) 1457 goto out; 1458 1459 btrfs_release_path(path); 1460 inode = read_one_inode(root, key.offset); 1461 if (!inode) 1462 return -EIO; 1463 1464 ret = fixup_inode_link_count(trans, root, inode); 1465 iput(inode); 1466 if (ret) 1467 goto out; 1468 1469 /* 1470 * fixup on a directory may create new entries, 1471 * make sure we always look for the highset possible 1472 * offset 1473 */ 1474 key.offset = (u64)-1; 1475 } 1476 ret = 0; 1477 out: 1478 btrfs_release_path(path); 1479 return ret; 1480 } 1481 1482 1483 /* 1484 * record a given inode in the fixup dir so we can check its link 1485 * count when replay is done. The link count is incremented here 1486 * so the inode won't go away until we check it 1487 */ 1488 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1489 struct btrfs_root *root, 1490 struct btrfs_path *path, 1491 u64 objectid) 1492 { 1493 struct btrfs_key key; 1494 int ret = 0; 1495 struct inode *inode; 1496 1497 inode = read_one_inode(root, objectid); 1498 if (!inode) 1499 return -EIO; 1500 1501 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1502 key.type = BTRFS_ORPHAN_ITEM_KEY; 1503 key.offset = objectid; 1504 1505 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1506 1507 btrfs_release_path(path); 1508 if (ret == 0) { 1509 if (!inode->i_nlink) 1510 set_nlink(inode, 1); 1511 else 1512 inc_nlink(inode); 1513 ret = btrfs_update_inode(trans, root, inode); 1514 } else if (ret == -EEXIST) { 1515 ret = 0; 1516 } else { 1517 BUG(); /* Logic Error */ 1518 } 1519 iput(inode); 1520 1521 return ret; 1522 } 1523 1524 /* 1525 * when replaying the log for a directory, we only insert names 1526 * for inodes that actually exist. This means an fsync on a directory 1527 * does not implicitly fsync all the new files in it 1528 */ 1529 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1530 struct btrfs_root *root, 1531 struct btrfs_path *path, 1532 u64 dirid, u64 index, 1533 char *name, int name_len, u8 type, 1534 struct btrfs_key *location) 1535 { 1536 struct inode *inode; 1537 struct inode *dir; 1538 int ret; 1539 1540 inode = read_one_inode(root, location->objectid); 1541 if (!inode) 1542 return -ENOENT; 1543 1544 dir = read_one_inode(root, dirid); 1545 if (!dir) { 1546 iput(inode); 1547 return -EIO; 1548 } 1549 1550 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); 1551 1552 /* FIXME, put inode into FIXUP list */ 1553 1554 iput(inode); 1555 iput(dir); 1556 return ret; 1557 } 1558 1559 /* 1560 * take a single entry in a log directory item and replay it into 1561 * the subvolume. 1562 * 1563 * if a conflicting item exists in the subdirectory already, 1564 * the inode it points to is unlinked and put into the link count 1565 * fix up tree. 1566 * 1567 * If a name from the log points to a file or directory that does 1568 * not exist in the FS, it is skipped. fsyncs on directories 1569 * do not force down inodes inside that directory, just changes to the 1570 * names or unlinks in a directory. 1571 */ 1572 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1573 struct btrfs_root *root, 1574 struct btrfs_path *path, 1575 struct extent_buffer *eb, 1576 struct btrfs_dir_item *di, 1577 struct btrfs_key *key) 1578 { 1579 char *name; 1580 int name_len; 1581 struct btrfs_dir_item *dst_di; 1582 struct btrfs_key found_key; 1583 struct btrfs_key log_key; 1584 struct inode *dir; 1585 u8 log_type; 1586 int exists; 1587 int ret = 0; 1588 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1589 1590 dir = read_one_inode(root, key->objectid); 1591 if (!dir) 1592 return -EIO; 1593 1594 name_len = btrfs_dir_name_len(eb, di); 1595 name = kmalloc(name_len, GFP_NOFS); 1596 if (!name) { 1597 ret = -ENOMEM; 1598 goto out; 1599 } 1600 1601 log_type = btrfs_dir_type(eb, di); 1602 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1603 name_len); 1604 1605 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1606 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1607 if (exists == 0) 1608 exists = 1; 1609 else 1610 exists = 0; 1611 btrfs_release_path(path); 1612 1613 if (key->type == BTRFS_DIR_ITEM_KEY) { 1614 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1615 name, name_len, 1); 1616 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1617 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1618 key->objectid, 1619 key->offset, name, 1620 name_len, 1); 1621 } else { 1622 /* Corruption */ 1623 ret = -EINVAL; 1624 goto out; 1625 } 1626 if (IS_ERR_OR_NULL(dst_di)) { 1627 /* we need a sequence number to insert, so we only 1628 * do inserts for the BTRFS_DIR_INDEX_KEY types 1629 */ 1630 if (key->type != BTRFS_DIR_INDEX_KEY) 1631 goto out; 1632 goto insert; 1633 } 1634 1635 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1636 /* the existing item matches the logged item */ 1637 if (found_key.objectid == log_key.objectid && 1638 found_key.type == log_key.type && 1639 found_key.offset == log_key.offset && 1640 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1641 update_size = false; 1642 goto out; 1643 } 1644 1645 /* 1646 * don't drop the conflicting directory entry if the inode 1647 * for the new entry doesn't exist 1648 */ 1649 if (!exists) 1650 goto out; 1651 1652 ret = drop_one_dir_item(trans, root, path, dir, dst_di); 1653 if (ret) 1654 goto out; 1655 1656 if (key->type == BTRFS_DIR_INDEX_KEY) 1657 goto insert; 1658 out: 1659 btrfs_release_path(path); 1660 if (!ret && update_size) { 1661 btrfs_i_size_write(dir, dir->i_size + name_len * 2); 1662 ret = btrfs_update_inode(trans, root, dir); 1663 } 1664 kfree(name); 1665 iput(dir); 1666 return ret; 1667 1668 insert: 1669 btrfs_release_path(path); 1670 ret = insert_one_name(trans, root, path, key->objectid, key->offset, 1671 name, name_len, log_type, &log_key); 1672 if (ret && ret != -ENOENT) 1673 goto out; 1674 update_size = false; 1675 ret = 0; 1676 goto out; 1677 } 1678 1679 /* 1680 * find all the names in a directory item and reconcile them into 1681 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 1682 * one name in a directory item, but the same code gets used for 1683 * both directory index types 1684 */ 1685 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1686 struct btrfs_root *root, 1687 struct btrfs_path *path, 1688 struct extent_buffer *eb, int slot, 1689 struct btrfs_key *key) 1690 { 1691 int ret; 1692 u32 item_size = btrfs_item_size_nr(eb, slot); 1693 struct btrfs_dir_item *di; 1694 int name_len; 1695 unsigned long ptr; 1696 unsigned long ptr_end; 1697 1698 ptr = btrfs_item_ptr_offset(eb, slot); 1699 ptr_end = ptr + item_size; 1700 while (ptr < ptr_end) { 1701 di = (struct btrfs_dir_item *)ptr; 1702 if (verify_dir_item(root, eb, di)) 1703 return -EIO; 1704 name_len = btrfs_dir_name_len(eb, di); 1705 ret = replay_one_name(trans, root, path, eb, di, key); 1706 if (ret) 1707 return ret; 1708 ptr = (unsigned long)(di + 1); 1709 ptr += name_len; 1710 } 1711 return 0; 1712 } 1713 1714 /* 1715 * directory replay has two parts. There are the standard directory 1716 * items in the log copied from the subvolume, and range items 1717 * created in the log while the subvolume was logged. 1718 * 1719 * The range items tell us which parts of the key space the log 1720 * is authoritative for. During replay, if a key in the subvolume 1721 * directory is in a logged range item, but not actually in the log 1722 * that means it was deleted from the directory before the fsync 1723 * and should be removed. 1724 */ 1725 static noinline int find_dir_range(struct btrfs_root *root, 1726 struct btrfs_path *path, 1727 u64 dirid, int key_type, 1728 u64 *start_ret, u64 *end_ret) 1729 { 1730 struct btrfs_key key; 1731 u64 found_end; 1732 struct btrfs_dir_log_item *item; 1733 int ret; 1734 int nritems; 1735 1736 if (*start_ret == (u64)-1) 1737 return 1; 1738 1739 key.objectid = dirid; 1740 key.type = key_type; 1741 key.offset = *start_ret; 1742 1743 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1744 if (ret < 0) 1745 goto out; 1746 if (ret > 0) { 1747 if (path->slots[0] == 0) 1748 goto out; 1749 path->slots[0]--; 1750 } 1751 if (ret != 0) 1752 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1753 1754 if (key.type != key_type || key.objectid != dirid) { 1755 ret = 1; 1756 goto next; 1757 } 1758 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1759 struct btrfs_dir_log_item); 1760 found_end = btrfs_dir_log_end(path->nodes[0], item); 1761 1762 if (*start_ret >= key.offset && *start_ret <= found_end) { 1763 ret = 0; 1764 *start_ret = key.offset; 1765 *end_ret = found_end; 1766 goto out; 1767 } 1768 ret = 1; 1769 next: 1770 /* check the next slot in the tree to see if it is a valid item */ 1771 nritems = btrfs_header_nritems(path->nodes[0]); 1772 if (path->slots[0] >= nritems) { 1773 ret = btrfs_next_leaf(root, path); 1774 if (ret) 1775 goto out; 1776 } else { 1777 path->slots[0]++; 1778 } 1779 1780 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1781 1782 if (key.type != key_type || key.objectid != dirid) { 1783 ret = 1; 1784 goto out; 1785 } 1786 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1787 struct btrfs_dir_log_item); 1788 found_end = btrfs_dir_log_end(path->nodes[0], item); 1789 *start_ret = key.offset; 1790 *end_ret = found_end; 1791 ret = 0; 1792 out: 1793 btrfs_release_path(path); 1794 return ret; 1795 } 1796 1797 /* 1798 * this looks for a given directory item in the log. If the directory 1799 * item is not in the log, the item is removed and the inode it points 1800 * to is unlinked 1801 */ 1802 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 1803 struct btrfs_root *root, 1804 struct btrfs_root *log, 1805 struct btrfs_path *path, 1806 struct btrfs_path *log_path, 1807 struct inode *dir, 1808 struct btrfs_key *dir_key) 1809 { 1810 int ret; 1811 struct extent_buffer *eb; 1812 int slot; 1813 u32 item_size; 1814 struct btrfs_dir_item *di; 1815 struct btrfs_dir_item *log_di; 1816 int name_len; 1817 unsigned long ptr; 1818 unsigned long ptr_end; 1819 char *name; 1820 struct inode *inode; 1821 struct btrfs_key location; 1822 1823 again: 1824 eb = path->nodes[0]; 1825 slot = path->slots[0]; 1826 item_size = btrfs_item_size_nr(eb, slot); 1827 ptr = btrfs_item_ptr_offset(eb, slot); 1828 ptr_end = ptr + item_size; 1829 while (ptr < ptr_end) { 1830 di = (struct btrfs_dir_item *)ptr; 1831 if (verify_dir_item(root, eb, di)) { 1832 ret = -EIO; 1833 goto out; 1834 } 1835 1836 name_len = btrfs_dir_name_len(eb, di); 1837 name = kmalloc(name_len, GFP_NOFS); 1838 if (!name) { 1839 ret = -ENOMEM; 1840 goto out; 1841 } 1842 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1843 name_len); 1844 log_di = NULL; 1845 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 1846 log_di = btrfs_lookup_dir_item(trans, log, log_path, 1847 dir_key->objectid, 1848 name, name_len, 0); 1849 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 1850 log_di = btrfs_lookup_dir_index_item(trans, log, 1851 log_path, 1852 dir_key->objectid, 1853 dir_key->offset, 1854 name, name_len, 0); 1855 } 1856 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) { 1857 btrfs_dir_item_key_to_cpu(eb, di, &location); 1858 btrfs_release_path(path); 1859 btrfs_release_path(log_path); 1860 inode = read_one_inode(root, location.objectid); 1861 if (!inode) { 1862 kfree(name); 1863 return -EIO; 1864 } 1865 1866 ret = link_to_fixup_dir(trans, root, 1867 path, location.objectid); 1868 if (ret) { 1869 kfree(name); 1870 iput(inode); 1871 goto out; 1872 } 1873 1874 inc_nlink(inode); 1875 ret = btrfs_unlink_inode(trans, root, dir, inode, 1876 name, name_len); 1877 if (!ret) 1878 ret = btrfs_run_delayed_items(trans, root); 1879 kfree(name); 1880 iput(inode); 1881 if (ret) 1882 goto out; 1883 1884 /* there might still be more names under this key 1885 * check and repeat if required 1886 */ 1887 ret = btrfs_search_slot(NULL, root, dir_key, path, 1888 0, 0); 1889 if (ret == 0) 1890 goto again; 1891 ret = 0; 1892 goto out; 1893 } else if (IS_ERR(log_di)) { 1894 kfree(name); 1895 return PTR_ERR(log_di); 1896 } 1897 btrfs_release_path(log_path); 1898 kfree(name); 1899 1900 ptr = (unsigned long)(di + 1); 1901 ptr += name_len; 1902 } 1903 ret = 0; 1904 out: 1905 btrfs_release_path(path); 1906 btrfs_release_path(log_path); 1907 return ret; 1908 } 1909 1910 /* 1911 * deletion replay happens before we copy any new directory items 1912 * out of the log or out of backreferences from inodes. It 1913 * scans the log to find ranges of keys that log is authoritative for, 1914 * and then scans the directory to find items in those ranges that are 1915 * not present in the log. 1916 * 1917 * Anything we don't find in the log is unlinked and removed from the 1918 * directory. 1919 */ 1920 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 1921 struct btrfs_root *root, 1922 struct btrfs_root *log, 1923 struct btrfs_path *path, 1924 u64 dirid, int del_all) 1925 { 1926 u64 range_start; 1927 u64 range_end; 1928 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 1929 int ret = 0; 1930 struct btrfs_key dir_key; 1931 struct btrfs_key found_key; 1932 struct btrfs_path *log_path; 1933 struct inode *dir; 1934 1935 dir_key.objectid = dirid; 1936 dir_key.type = BTRFS_DIR_ITEM_KEY; 1937 log_path = btrfs_alloc_path(); 1938 if (!log_path) 1939 return -ENOMEM; 1940 1941 dir = read_one_inode(root, dirid); 1942 /* it isn't an error if the inode isn't there, that can happen 1943 * because we replay the deletes before we copy in the inode item 1944 * from the log 1945 */ 1946 if (!dir) { 1947 btrfs_free_path(log_path); 1948 return 0; 1949 } 1950 again: 1951 range_start = 0; 1952 range_end = 0; 1953 while (1) { 1954 if (del_all) 1955 range_end = (u64)-1; 1956 else { 1957 ret = find_dir_range(log, path, dirid, key_type, 1958 &range_start, &range_end); 1959 if (ret != 0) 1960 break; 1961 } 1962 1963 dir_key.offset = range_start; 1964 while (1) { 1965 int nritems; 1966 ret = btrfs_search_slot(NULL, root, &dir_key, path, 1967 0, 0); 1968 if (ret < 0) 1969 goto out; 1970 1971 nritems = btrfs_header_nritems(path->nodes[0]); 1972 if (path->slots[0] >= nritems) { 1973 ret = btrfs_next_leaf(root, path); 1974 if (ret) 1975 break; 1976 } 1977 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1978 path->slots[0]); 1979 if (found_key.objectid != dirid || 1980 found_key.type != dir_key.type) 1981 goto next_type; 1982 1983 if (found_key.offset > range_end) 1984 break; 1985 1986 ret = check_item_in_log(trans, root, log, path, 1987 log_path, dir, 1988 &found_key); 1989 if (ret) 1990 goto out; 1991 if (found_key.offset == (u64)-1) 1992 break; 1993 dir_key.offset = found_key.offset + 1; 1994 } 1995 btrfs_release_path(path); 1996 if (range_end == (u64)-1) 1997 break; 1998 range_start = range_end + 1; 1999 } 2000 2001 next_type: 2002 ret = 0; 2003 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2004 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2005 dir_key.type = BTRFS_DIR_INDEX_KEY; 2006 btrfs_release_path(path); 2007 goto again; 2008 } 2009 out: 2010 btrfs_release_path(path); 2011 btrfs_free_path(log_path); 2012 iput(dir); 2013 return ret; 2014 } 2015 2016 /* 2017 * the process_func used to replay items from the log tree. This 2018 * gets called in two different stages. The first stage just looks 2019 * for inodes and makes sure they are all copied into the subvolume. 2020 * 2021 * The second stage copies all the other item types from the log into 2022 * the subvolume. The two stage approach is slower, but gets rid of 2023 * lots of complexity around inodes referencing other inodes that exist 2024 * only in the log (references come from either directory items or inode 2025 * back refs). 2026 */ 2027 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2028 struct walk_control *wc, u64 gen) 2029 { 2030 int nritems; 2031 struct btrfs_path *path; 2032 struct btrfs_root *root = wc->replay_dest; 2033 struct btrfs_key key; 2034 int level; 2035 int i; 2036 int ret; 2037 2038 ret = btrfs_read_buffer(eb, gen); 2039 if (ret) 2040 return ret; 2041 2042 level = btrfs_header_level(eb); 2043 2044 if (level != 0) 2045 return 0; 2046 2047 path = btrfs_alloc_path(); 2048 if (!path) 2049 return -ENOMEM; 2050 2051 nritems = btrfs_header_nritems(eb); 2052 for (i = 0; i < nritems; i++) { 2053 btrfs_item_key_to_cpu(eb, &key, i); 2054 2055 /* inode keys are done during the first stage */ 2056 if (key.type == BTRFS_INODE_ITEM_KEY && 2057 wc->stage == LOG_WALK_REPLAY_INODES) { 2058 struct btrfs_inode_item *inode_item; 2059 u32 mode; 2060 2061 inode_item = btrfs_item_ptr(eb, i, 2062 struct btrfs_inode_item); 2063 mode = btrfs_inode_mode(eb, inode_item); 2064 if (S_ISDIR(mode)) { 2065 ret = replay_dir_deletes(wc->trans, 2066 root, log, path, key.objectid, 0); 2067 if (ret) 2068 break; 2069 } 2070 ret = overwrite_item(wc->trans, root, path, 2071 eb, i, &key); 2072 if (ret) 2073 break; 2074 2075 /* for regular files, make sure corresponding 2076 * orhpan item exist. extents past the new EOF 2077 * will be truncated later by orphan cleanup. 2078 */ 2079 if (S_ISREG(mode)) { 2080 ret = insert_orphan_item(wc->trans, root, 2081 key.objectid); 2082 if (ret) 2083 break; 2084 } 2085 2086 ret = link_to_fixup_dir(wc->trans, root, 2087 path, key.objectid); 2088 if (ret) 2089 break; 2090 } 2091 2092 if (key.type == BTRFS_DIR_INDEX_KEY && 2093 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2094 ret = replay_one_dir_item(wc->trans, root, path, 2095 eb, i, &key); 2096 if (ret) 2097 break; 2098 } 2099 2100 if (wc->stage < LOG_WALK_REPLAY_ALL) 2101 continue; 2102 2103 /* these keys are simply copied */ 2104 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2105 ret = overwrite_item(wc->trans, root, path, 2106 eb, i, &key); 2107 if (ret) 2108 break; 2109 } else if (key.type == BTRFS_INODE_REF_KEY || 2110 key.type == BTRFS_INODE_EXTREF_KEY) { 2111 ret = add_inode_ref(wc->trans, root, log, path, 2112 eb, i, &key); 2113 if (ret && ret != -ENOENT) 2114 break; 2115 ret = 0; 2116 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2117 ret = replay_one_extent(wc->trans, root, path, 2118 eb, i, &key); 2119 if (ret) 2120 break; 2121 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2122 ret = replay_one_dir_item(wc->trans, root, path, 2123 eb, i, &key); 2124 if (ret) 2125 break; 2126 } 2127 } 2128 btrfs_free_path(path); 2129 return ret; 2130 } 2131 2132 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2133 struct btrfs_root *root, 2134 struct btrfs_path *path, int *level, 2135 struct walk_control *wc) 2136 { 2137 u64 root_owner; 2138 u64 bytenr; 2139 u64 ptr_gen; 2140 struct extent_buffer *next; 2141 struct extent_buffer *cur; 2142 struct extent_buffer *parent; 2143 u32 blocksize; 2144 int ret = 0; 2145 2146 WARN_ON(*level < 0); 2147 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2148 2149 while (*level > 0) { 2150 WARN_ON(*level < 0); 2151 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2152 cur = path->nodes[*level]; 2153 2154 WARN_ON(btrfs_header_level(cur) != *level); 2155 2156 if (path->slots[*level] >= 2157 btrfs_header_nritems(cur)) 2158 break; 2159 2160 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2161 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2162 blocksize = root->nodesize; 2163 2164 parent = path->nodes[*level]; 2165 root_owner = btrfs_header_owner(parent); 2166 2167 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 2168 if (!next) 2169 return -ENOMEM; 2170 2171 if (*level == 1) { 2172 ret = wc->process_func(root, next, wc, ptr_gen); 2173 if (ret) { 2174 free_extent_buffer(next); 2175 return ret; 2176 } 2177 2178 path->slots[*level]++; 2179 if (wc->free) { 2180 ret = btrfs_read_buffer(next, ptr_gen); 2181 if (ret) { 2182 free_extent_buffer(next); 2183 return ret; 2184 } 2185 2186 if (trans) { 2187 btrfs_tree_lock(next); 2188 btrfs_set_lock_blocking(next); 2189 clean_tree_block(trans, root, next); 2190 btrfs_wait_tree_block_writeback(next); 2191 btrfs_tree_unlock(next); 2192 } 2193 2194 WARN_ON(root_owner != 2195 BTRFS_TREE_LOG_OBJECTID); 2196 ret = btrfs_free_and_pin_reserved_extent(root, 2197 bytenr, blocksize); 2198 if (ret) { 2199 free_extent_buffer(next); 2200 return ret; 2201 } 2202 } 2203 free_extent_buffer(next); 2204 continue; 2205 } 2206 ret = btrfs_read_buffer(next, ptr_gen); 2207 if (ret) { 2208 free_extent_buffer(next); 2209 return ret; 2210 } 2211 2212 WARN_ON(*level <= 0); 2213 if (path->nodes[*level-1]) 2214 free_extent_buffer(path->nodes[*level-1]); 2215 path->nodes[*level-1] = next; 2216 *level = btrfs_header_level(next); 2217 path->slots[*level] = 0; 2218 cond_resched(); 2219 } 2220 WARN_ON(*level < 0); 2221 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2222 2223 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2224 2225 cond_resched(); 2226 return 0; 2227 } 2228 2229 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2230 struct btrfs_root *root, 2231 struct btrfs_path *path, int *level, 2232 struct walk_control *wc) 2233 { 2234 u64 root_owner; 2235 int i; 2236 int slot; 2237 int ret; 2238 2239 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2240 slot = path->slots[i]; 2241 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2242 path->slots[i]++; 2243 *level = i; 2244 WARN_ON(*level == 0); 2245 return 0; 2246 } else { 2247 struct extent_buffer *parent; 2248 if (path->nodes[*level] == root->node) 2249 parent = path->nodes[*level]; 2250 else 2251 parent = path->nodes[*level + 1]; 2252 2253 root_owner = btrfs_header_owner(parent); 2254 ret = wc->process_func(root, path->nodes[*level], wc, 2255 btrfs_header_generation(path->nodes[*level])); 2256 if (ret) 2257 return ret; 2258 2259 if (wc->free) { 2260 struct extent_buffer *next; 2261 2262 next = path->nodes[*level]; 2263 2264 if (trans) { 2265 btrfs_tree_lock(next); 2266 btrfs_set_lock_blocking(next); 2267 clean_tree_block(trans, root, next); 2268 btrfs_wait_tree_block_writeback(next); 2269 btrfs_tree_unlock(next); 2270 } 2271 2272 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 2273 ret = btrfs_free_and_pin_reserved_extent(root, 2274 path->nodes[*level]->start, 2275 path->nodes[*level]->len); 2276 if (ret) 2277 return ret; 2278 } 2279 free_extent_buffer(path->nodes[*level]); 2280 path->nodes[*level] = NULL; 2281 *level = i + 1; 2282 } 2283 } 2284 return 1; 2285 } 2286 2287 /* 2288 * drop the reference count on the tree rooted at 'snap'. This traverses 2289 * the tree freeing any blocks that have a ref count of zero after being 2290 * decremented. 2291 */ 2292 static int walk_log_tree(struct btrfs_trans_handle *trans, 2293 struct btrfs_root *log, struct walk_control *wc) 2294 { 2295 int ret = 0; 2296 int wret; 2297 int level; 2298 struct btrfs_path *path; 2299 int orig_level; 2300 2301 path = btrfs_alloc_path(); 2302 if (!path) 2303 return -ENOMEM; 2304 2305 level = btrfs_header_level(log->node); 2306 orig_level = level; 2307 path->nodes[level] = log->node; 2308 extent_buffer_get(log->node); 2309 path->slots[level] = 0; 2310 2311 while (1) { 2312 wret = walk_down_log_tree(trans, log, path, &level, wc); 2313 if (wret > 0) 2314 break; 2315 if (wret < 0) { 2316 ret = wret; 2317 goto out; 2318 } 2319 2320 wret = walk_up_log_tree(trans, log, path, &level, wc); 2321 if (wret > 0) 2322 break; 2323 if (wret < 0) { 2324 ret = wret; 2325 goto out; 2326 } 2327 } 2328 2329 /* was the root node processed? if not, catch it here */ 2330 if (path->nodes[orig_level]) { 2331 ret = wc->process_func(log, path->nodes[orig_level], wc, 2332 btrfs_header_generation(path->nodes[orig_level])); 2333 if (ret) 2334 goto out; 2335 if (wc->free) { 2336 struct extent_buffer *next; 2337 2338 next = path->nodes[orig_level]; 2339 2340 if (trans) { 2341 btrfs_tree_lock(next); 2342 btrfs_set_lock_blocking(next); 2343 clean_tree_block(trans, log, next); 2344 btrfs_wait_tree_block_writeback(next); 2345 btrfs_tree_unlock(next); 2346 } 2347 2348 WARN_ON(log->root_key.objectid != 2349 BTRFS_TREE_LOG_OBJECTID); 2350 ret = btrfs_free_and_pin_reserved_extent(log, next->start, 2351 next->len); 2352 if (ret) 2353 goto out; 2354 } 2355 } 2356 2357 out: 2358 btrfs_free_path(path); 2359 return ret; 2360 } 2361 2362 /* 2363 * helper function to update the item for a given subvolumes log root 2364 * in the tree of log roots 2365 */ 2366 static int update_log_root(struct btrfs_trans_handle *trans, 2367 struct btrfs_root *log) 2368 { 2369 int ret; 2370 2371 if (log->log_transid == 1) { 2372 /* insert root item on the first sync */ 2373 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, 2374 &log->root_key, &log->root_item); 2375 } else { 2376 ret = btrfs_update_root(trans, log->fs_info->log_root_tree, 2377 &log->root_key, &log->root_item); 2378 } 2379 return ret; 2380 } 2381 2382 static void wait_log_commit(struct btrfs_trans_handle *trans, 2383 struct btrfs_root *root, int transid) 2384 { 2385 DEFINE_WAIT(wait); 2386 int index = transid % 2; 2387 2388 /* 2389 * we only allow two pending log transactions at a time, 2390 * so we know that if ours is more than 2 older than the 2391 * current transaction, we're done 2392 */ 2393 do { 2394 prepare_to_wait(&root->log_commit_wait[index], 2395 &wait, TASK_UNINTERRUPTIBLE); 2396 mutex_unlock(&root->log_mutex); 2397 2398 if (root->log_transid_committed < transid && 2399 atomic_read(&root->log_commit[index])) 2400 schedule(); 2401 2402 finish_wait(&root->log_commit_wait[index], &wait); 2403 mutex_lock(&root->log_mutex); 2404 } while (root->log_transid_committed < transid && 2405 atomic_read(&root->log_commit[index])); 2406 } 2407 2408 static void wait_for_writer(struct btrfs_trans_handle *trans, 2409 struct btrfs_root *root) 2410 { 2411 DEFINE_WAIT(wait); 2412 2413 while (atomic_read(&root->log_writers)) { 2414 prepare_to_wait(&root->log_writer_wait, 2415 &wait, TASK_UNINTERRUPTIBLE); 2416 mutex_unlock(&root->log_mutex); 2417 if (atomic_read(&root->log_writers)) 2418 schedule(); 2419 mutex_lock(&root->log_mutex); 2420 finish_wait(&root->log_writer_wait, &wait); 2421 } 2422 } 2423 2424 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2425 struct btrfs_log_ctx *ctx) 2426 { 2427 if (!ctx) 2428 return; 2429 2430 mutex_lock(&root->log_mutex); 2431 list_del_init(&ctx->list); 2432 mutex_unlock(&root->log_mutex); 2433 } 2434 2435 /* 2436 * Invoked in log mutex context, or be sure there is no other task which 2437 * can access the list. 2438 */ 2439 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2440 int index, int error) 2441 { 2442 struct btrfs_log_ctx *ctx; 2443 2444 if (!error) { 2445 INIT_LIST_HEAD(&root->log_ctxs[index]); 2446 return; 2447 } 2448 2449 list_for_each_entry(ctx, &root->log_ctxs[index], list) 2450 ctx->log_ret = error; 2451 2452 INIT_LIST_HEAD(&root->log_ctxs[index]); 2453 } 2454 2455 /* 2456 * btrfs_sync_log does sends a given tree log down to the disk and 2457 * updates the super blocks to record it. When this call is done, 2458 * you know that any inodes previously logged are safely on disk only 2459 * if it returns 0. 2460 * 2461 * Any other return value means you need to call btrfs_commit_transaction. 2462 * Some of the edge cases for fsyncing directories that have had unlinks 2463 * or renames done in the past mean that sometimes the only safe 2464 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2465 * that has happened. 2466 */ 2467 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2468 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 2469 { 2470 int index1; 2471 int index2; 2472 int mark; 2473 int ret; 2474 struct btrfs_root *log = root->log_root; 2475 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; 2476 int log_transid = 0; 2477 struct btrfs_log_ctx root_log_ctx; 2478 struct blk_plug plug; 2479 2480 mutex_lock(&root->log_mutex); 2481 log_transid = ctx->log_transid; 2482 if (root->log_transid_committed >= log_transid) { 2483 mutex_unlock(&root->log_mutex); 2484 return ctx->log_ret; 2485 } 2486 2487 index1 = log_transid % 2; 2488 if (atomic_read(&root->log_commit[index1])) { 2489 wait_log_commit(trans, root, log_transid); 2490 mutex_unlock(&root->log_mutex); 2491 return ctx->log_ret; 2492 } 2493 ASSERT(log_transid == root->log_transid); 2494 atomic_set(&root->log_commit[index1], 1); 2495 2496 /* wait for previous tree log sync to complete */ 2497 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2498 wait_log_commit(trans, root, log_transid - 1); 2499 2500 while (1) { 2501 int batch = atomic_read(&root->log_batch); 2502 /* when we're on an ssd, just kick the log commit out */ 2503 if (!btrfs_test_opt(root, SSD) && 2504 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 2505 mutex_unlock(&root->log_mutex); 2506 schedule_timeout_uninterruptible(1); 2507 mutex_lock(&root->log_mutex); 2508 } 2509 wait_for_writer(trans, root); 2510 if (batch == atomic_read(&root->log_batch)) 2511 break; 2512 } 2513 2514 /* bail out if we need to do a full commit */ 2515 if (btrfs_need_log_full_commit(root->fs_info, trans)) { 2516 ret = -EAGAIN; 2517 btrfs_free_logged_extents(log, log_transid); 2518 mutex_unlock(&root->log_mutex); 2519 goto out; 2520 } 2521 2522 if (log_transid % 2 == 0) 2523 mark = EXTENT_DIRTY; 2524 else 2525 mark = EXTENT_NEW; 2526 2527 /* we start IO on all the marked extents here, but we don't actually 2528 * wait for them until later. 2529 */ 2530 blk_start_plug(&plug); 2531 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); 2532 if (ret) { 2533 blk_finish_plug(&plug); 2534 btrfs_abort_transaction(trans, root, ret); 2535 btrfs_free_logged_extents(log, log_transid); 2536 btrfs_set_log_full_commit(root->fs_info, trans); 2537 mutex_unlock(&root->log_mutex); 2538 goto out; 2539 } 2540 2541 btrfs_set_root_node(&log->root_item, log->node); 2542 2543 root->log_transid++; 2544 log->log_transid = root->log_transid; 2545 root->log_start_pid = 0; 2546 /* 2547 * IO has been started, blocks of the log tree have WRITTEN flag set 2548 * in their headers. new modifications of the log will be written to 2549 * new positions. so it's safe to allow log writers to go in. 2550 */ 2551 mutex_unlock(&root->log_mutex); 2552 2553 btrfs_init_log_ctx(&root_log_ctx); 2554 2555 mutex_lock(&log_root_tree->log_mutex); 2556 atomic_inc(&log_root_tree->log_batch); 2557 atomic_inc(&log_root_tree->log_writers); 2558 2559 index2 = log_root_tree->log_transid % 2; 2560 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 2561 root_log_ctx.log_transid = log_root_tree->log_transid; 2562 2563 mutex_unlock(&log_root_tree->log_mutex); 2564 2565 ret = update_log_root(trans, log); 2566 2567 mutex_lock(&log_root_tree->log_mutex); 2568 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 2569 smp_mb(); 2570 if (waitqueue_active(&log_root_tree->log_writer_wait)) 2571 wake_up(&log_root_tree->log_writer_wait); 2572 } 2573 2574 if (ret) { 2575 if (!list_empty(&root_log_ctx.list)) 2576 list_del_init(&root_log_ctx.list); 2577 2578 blk_finish_plug(&plug); 2579 btrfs_set_log_full_commit(root->fs_info, trans); 2580 2581 if (ret != -ENOSPC) { 2582 btrfs_abort_transaction(trans, root, ret); 2583 mutex_unlock(&log_root_tree->log_mutex); 2584 goto out; 2585 } 2586 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2587 btrfs_free_logged_extents(log, log_transid); 2588 mutex_unlock(&log_root_tree->log_mutex); 2589 ret = -EAGAIN; 2590 goto out; 2591 } 2592 2593 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 2594 mutex_unlock(&log_root_tree->log_mutex); 2595 ret = root_log_ctx.log_ret; 2596 goto out; 2597 } 2598 2599 index2 = root_log_ctx.log_transid % 2; 2600 if (atomic_read(&log_root_tree->log_commit[index2])) { 2601 blk_finish_plug(&plug); 2602 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, 2603 mark); 2604 btrfs_wait_logged_extents(trans, log, log_transid); 2605 wait_log_commit(trans, log_root_tree, 2606 root_log_ctx.log_transid); 2607 mutex_unlock(&log_root_tree->log_mutex); 2608 if (!ret) 2609 ret = root_log_ctx.log_ret; 2610 goto out; 2611 } 2612 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 2613 atomic_set(&log_root_tree->log_commit[index2], 1); 2614 2615 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 2616 wait_log_commit(trans, log_root_tree, 2617 root_log_ctx.log_transid - 1); 2618 } 2619 2620 wait_for_writer(trans, log_root_tree); 2621 2622 /* 2623 * now that we've moved on to the tree of log tree roots, 2624 * check the full commit flag again 2625 */ 2626 if (btrfs_need_log_full_commit(root->fs_info, trans)) { 2627 blk_finish_plug(&plug); 2628 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2629 btrfs_free_logged_extents(log, log_transid); 2630 mutex_unlock(&log_root_tree->log_mutex); 2631 ret = -EAGAIN; 2632 goto out_wake_log_root; 2633 } 2634 2635 ret = btrfs_write_marked_extents(log_root_tree, 2636 &log_root_tree->dirty_log_pages, 2637 EXTENT_DIRTY | EXTENT_NEW); 2638 blk_finish_plug(&plug); 2639 if (ret) { 2640 btrfs_set_log_full_commit(root->fs_info, trans); 2641 btrfs_abort_transaction(trans, root, ret); 2642 btrfs_free_logged_extents(log, log_transid); 2643 mutex_unlock(&log_root_tree->log_mutex); 2644 goto out_wake_log_root; 2645 } 2646 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2647 if (!ret) 2648 ret = btrfs_wait_marked_extents(log_root_tree, 2649 &log_root_tree->dirty_log_pages, 2650 EXTENT_NEW | EXTENT_DIRTY); 2651 if (ret) { 2652 btrfs_set_log_full_commit(root->fs_info, trans); 2653 btrfs_free_logged_extents(log, log_transid); 2654 mutex_unlock(&log_root_tree->log_mutex); 2655 goto out_wake_log_root; 2656 } 2657 btrfs_wait_logged_extents(trans, log, log_transid); 2658 2659 btrfs_set_super_log_root(root->fs_info->super_for_commit, 2660 log_root_tree->node->start); 2661 btrfs_set_super_log_root_level(root->fs_info->super_for_commit, 2662 btrfs_header_level(log_root_tree->node)); 2663 2664 log_root_tree->log_transid++; 2665 mutex_unlock(&log_root_tree->log_mutex); 2666 2667 /* 2668 * nobody else is going to jump in and write the the ctree 2669 * super here because the log_commit atomic below is protecting 2670 * us. We must be called with a transaction handle pinning 2671 * the running transaction open, so a full commit can't hop 2672 * in and cause problems either. 2673 */ 2674 ret = write_ctree_super(trans, root->fs_info->tree_root, 1); 2675 if (ret) { 2676 btrfs_set_log_full_commit(root->fs_info, trans); 2677 btrfs_abort_transaction(trans, root, ret); 2678 goto out_wake_log_root; 2679 } 2680 2681 mutex_lock(&root->log_mutex); 2682 if (root->last_log_commit < log_transid) 2683 root->last_log_commit = log_transid; 2684 mutex_unlock(&root->log_mutex); 2685 2686 out_wake_log_root: 2687 /* 2688 * We needn't get log_mutex here because we are sure all 2689 * the other tasks are blocked. 2690 */ 2691 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 2692 2693 mutex_lock(&log_root_tree->log_mutex); 2694 log_root_tree->log_transid_committed++; 2695 atomic_set(&log_root_tree->log_commit[index2], 0); 2696 mutex_unlock(&log_root_tree->log_mutex); 2697 2698 if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) 2699 wake_up(&log_root_tree->log_commit_wait[index2]); 2700 out: 2701 /* See above. */ 2702 btrfs_remove_all_log_ctxs(root, index1, ret); 2703 2704 mutex_lock(&root->log_mutex); 2705 root->log_transid_committed++; 2706 atomic_set(&root->log_commit[index1], 0); 2707 mutex_unlock(&root->log_mutex); 2708 2709 if (waitqueue_active(&root->log_commit_wait[index1])) 2710 wake_up(&root->log_commit_wait[index1]); 2711 return ret; 2712 } 2713 2714 static void free_log_tree(struct btrfs_trans_handle *trans, 2715 struct btrfs_root *log) 2716 { 2717 int ret; 2718 u64 start; 2719 u64 end; 2720 struct walk_control wc = { 2721 .free = 1, 2722 .process_func = process_one_buffer 2723 }; 2724 2725 ret = walk_log_tree(trans, log, &wc); 2726 /* I don't think this can happen but just in case */ 2727 if (ret) 2728 btrfs_abort_transaction(trans, log, ret); 2729 2730 while (1) { 2731 ret = find_first_extent_bit(&log->dirty_log_pages, 2732 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW, 2733 NULL); 2734 if (ret) 2735 break; 2736 2737 clear_extent_bits(&log->dirty_log_pages, start, end, 2738 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); 2739 } 2740 2741 /* 2742 * We may have short-circuited the log tree with the full commit logic 2743 * and left ordered extents on our list, so clear these out to keep us 2744 * from leaking inodes and memory. 2745 */ 2746 btrfs_free_logged_extents(log, 0); 2747 btrfs_free_logged_extents(log, 1); 2748 2749 free_extent_buffer(log->node); 2750 kfree(log); 2751 } 2752 2753 /* 2754 * free all the extents used by the tree log. This should be called 2755 * at commit time of the full transaction 2756 */ 2757 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 2758 { 2759 if (root->log_root) { 2760 free_log_tree(trans, root->log_root); 2761 root->log_root = NULL; 2762 } 2763 return 0; 2764 } 2765 2766 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 2767 struct btrfs_fs_info *fs_info) 2768 { 2769 if (fs_info->log_root_tree) { 2770 free_log_tree(trans, fs_info->log_root_tree); 2771 fs_info->log_root_tree = NULL; 2772 } 2773 return 0; 2774 } 2775 2776 /* 2777 * If both a file and directory are logged, and unlinks or renames are 2778 * mixed in, we have a few interesting corners: 2779 * 2780 * create file X in dir Y 2781 * link file X to X.link in dir Y 2782 * fsync file X 2783 * unlink file X but leave X.link 2784 * fsync dir Y 2785 * 2786 * After a crash we would expect only X.link to exist. But file X 2787 * didn't get fsync'd again so the log has back refs for X and X.link. 2788 * 2789 * We solve this by removing directory entries and inode backrefs from the 2790 * log when a file that was logged in the current transaction is 2791 * unlinked. Any later fsync will include the updated log entries, and 2792 * we'll be able to reconstruct the proper directory items from backrefs. 2793 * 2794 * This optimizations allows us to avoid relogging the entire inode 2795 * or the entire directory. 2796 */ 2797 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 2798 struct btrfs_root *root, 2799 const char *name, int name_len, 2800 struct inode *dir, u64 index) 2801 { 2802 struct btrfs_root *log; 2803 struct btrfs_dir_item *di; 2804 struct btrfs_path *path; 2805 int ret; 2806 int err = 0; 2807 int bytes_del = 0; 2808 u64 dir_ino = btrfs_ino(dir); 2809 2810 if (BTRFS_I(dir)->logged_trans < trans->transid) 2811 return 0; 2812 2813 ret = join_running_log_trans(root); 2814 if (ret) 2815 return 0; 2816 2817 mutex_lock(&BTRFS_I(dir)->log_mutex); 2818 2819 log = root->log_root; 2820 path = btrfs_alloc_path(); 2821 if (!path) { 2822 err = -ENOMEM; 2823 goto out_unlock; 2824 } 2825 2826 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 2827 name, name_len, -1); 2828 if (IS_ERR(di)) { 2829 err = PTR_ERR(di); 2830 goto fail; 2831 } 2832 if (di) { 2833 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2834 bytes_del += name_len; 2835 if (ret) { 2836 err = ret; 2837 goto fail; 2838 } 2839 } 2840 btrfs_release_path(path); 2841 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 2842 index, name, name_len, -1); 2843 if (IS_ERR(di)) { 2844 err = PTR_ERR(di); 2845 goto fail; 2846 } 2847 if (di) { 2848 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2849 bytes_del += name_len; 2850 if (ret) { 2851 err = ret; 2852 goto fail; 2853 } 2854 } 2855 2856 /* update the directory size in the log to reflect the names 2857 * we have removed 2858 */ 2859 if (bytes_del) { 2860 struct btrfs_key key; 2861 2862 key.objectid = dir_ino; 2863 key.offset = 0; 2864 key.type = BTRFS_INODE_ITEM_KEY; 2865 btrfs_release_path(path); 2866 2867 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 2868 if (ret < 0) { 2869 err = ret; 2870 goto fail; 2871 } 2872 if (ret == 0) { 2873 struct btrfs_inode_item *item; 2874 u64 i_size; 2875 2876 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2877 struct btrfs_inode_item); 2878 i_size = btrfs_inode_size(path->nodes[0], item); 2879 if (i_size > bytes_del) 2880 i_size -= bytes_del; 2881 else 2882 i_size = 0; 2883 btrfs_set_inode_size(path->nodes[0], item, i_size); 2884 btrfs_mark_buffer_dirty(path->nodes[0]); 2885 } else 2886 ret = 0; 2887 btrfs_release_path(path); 2888 } 2889 fail: 2890 btrfs_free_path(path); 2891 out_unlock: 2892 mutex_unlock(&BTRFS_I(dir)->log_mutex); 2893 if (ret == -ENOSPC) { 2894 btrfs_set_log_full_commit(root->fs_info, trans); 2895 ret = 0; 2896 } else if (ret < 0) 2897 btrfs_abort_transaction(trans, root, ret); 2898 2899 btrfs_end_log_trans(root); 2900 2901 return err; 2902 } 2903 2904 /* see comments for btrfs_del_dir_entries_in_log */ 2905 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 2906 struct btrfs_root *root, 2907 const char *name, int name_len, 2908 struct inode *inode, u64 dirid) 2909 { 2910 struct btrfs_root *log; 2911 u64 index; 2912 int ret; 2913 2914 if (BTRFS_I(inode)->logged_trans < trans->transid) 2915 return 0; 2916 2917 ret = join_running_log_trans(root); 2918 if (ret) 2919 return 0; 2920 log = root->log_root; 2921 mutex_lock(&BTRFS_I(inode)->log_mutex); 2922 2923 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 2924 dirid, &index); 2925 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2926 if (ret == -ENOSPC) { 2927 btrfs_set_log_full_commit(root->fs_info, trans); 2928 ret = 0; 2929 } else if (ret < 0 && ret != -ENOENT) 2930 btrfs_abort_transaction(trans, root, ret); 2931 btrfs_end_log_trans(root); 2932 2933 return ret; 2934 } 2935 2936 /* 2937 * creates a range item in the log for 'dirid'. first_offset and 2938 * last_offset tell us which parts of the key space the log should 2939 * be considered authoritative for. 2940 */ 2941 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 2942 struct btrfs_root *log, 2943 struct btrfs_path *path, 2944 int key_type, u64 dirid, 2945 u64 first_offset, u64 last_offset) 2946 { 2947 int ret; 2948 struct btrfs_key key; 2949 struct btrfs_dir_log_item *item; 2950 2951 key.objectid = dirid; 2952 key.offset = first_offset; 2953 if (key_type == BTRFS_DIR_ITEM_KEY) 2954 key.type = BTRFS_DIR_LOG_ITEM_KEY; 2955 else 2956 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2957 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 2958 if (ret) 2959 return ret; 2960 2961 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2962 struct btrfs_dir_log_item); 2963 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 2964 btrfs_mark_buffer_dirty(path->nodes[0]); 2965 btrfs_release_path(path); 2966 return 0; 2967 } 2968 2969 /* 2970 * log all the items included in the current transaction for a given 2971 * directory. This also creates the range items in the log tree required 2972 * to replay anything deleted before the fsync 2973 */ 2974 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 2975 struct btrfs_root *root, struct inode *inode, 2976 struct btrfs_path *path, 2977 struct btrfs_path *dst_path, int key_type, 2978 u64 min_offset, u64 *last_offset_ret) 2979 { 2980 struct btrfs_key min_key; 2981 struct btrfs_root *log = root->log_root; 2982 struct extent_buffer *src; 2983 int err = 0; 2984 int ret; 2985 int i; 2986 int nritems; 2987 u64 first_offset = min_offset; 2988 u64 last_offset = (u64)-1; 2989 u64 ino = btrfs_ino(inode); 2990 2991 log = root->log_root; 2992 2993 min_key.objectid = ino; 2994 min_key.type = key_type; 2995 min_key.offset = min_offset; 2996 2997 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 2998 2999 /* 3000 * we didn't find anything from this transaction, see if there 3001 * is anything at all 3002 */ 3003 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3004 min_key.objectid = ino; 3005 min_key.type = key_type; 3006 min_key.offset = (u64)-1; 3007 btrfs_release_path(path); 3008 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3009 if (ret < 0) { 3010 btrfs_release_path(path); 3011 return ret; 3012 } 3013 ret = btrfs_previous_item(root, path, ino, key_type); 3014 3015 /* if ret == 0 there are items for this type, 3016 * create a range to tell us the last key of this type. 3017 * otherwise, there are no items in this directory after 3018 * *min_offset, and we create a range to indicate that. 3019 */ 3020 if (ret == 0) { 3021 struct btrfs_key tmp; 3022 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3023 path->slots[0]); 3024 if (key_type == tmp.type) 3025 first_offset = max(min_offset, tmp.offset) + 1; 3026 } 3027 goto done; 3028 } 3029 3030 /* go backward to find any previous key */ 3031 ret = btrfs_previous_item(root, path, ino, key_type); 3032 if (ret == 0) { 3033 struct btrfs_key tmp; 3034 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3035 if (key_type == tmp.type) { 3036 first_offset = tmp.offset; 3037 ret = overwrite_item(trans, log, dst_path, 3038 path->nodes[0], path->slots[0], 3039 &tmp); 3040 if (ret) { 3041 err = ret; 3042 goto done; 3043 } 3044 } 3045 } 3046 btrfs_release_path(path); 3047 3048 /* find the first key from this transaction again */ 3049 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3050 if (WARN_ON(ret != 0)) 3051 goto done; 3052 3053 /* 3054 * we have a block from this transaction, log every item in it 3055 * from our directory 3056 */ 3057 while (1) { 3058 struct btrfs_key tmp; 3059 src = path->nodes[0]; 3060 nritems = btrfs_header_nritems(src); 3061 for (i = path->slots[0]; i < nritems; i++) { 3062 btrfs_item_key_to_cpu(src, &min_key, i); 3063 3064 if (min_key.objectid != ino || min_key.type != key_type) 3065 goto done; 3066 ret = overwrite_item(trans, log, dst_path, src, i, 3067 &min_key); 3068 if (ret) { 3069 err = ret; 3070 goto done; 3071 } 3072 } 3073 path->slots[0] = nritems; 3074 3075 /* 3076 * look ahead to the next item and see if it is also 3077 * from this directory and from this transaction 3078 */ 3079 ret = btrfs_next_leaf(root, path); 3080 if (ret == 1) { 3081 last_offset = (u64)-1; 3082 goto done; 3083 } 3084 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3085 if (tmp.objectid != ino || tmp.type != key_type) { 3086 last_offset = (u64)-1; 3087 goto done; 3088 } 3089 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3090 ret = overwrite_item(trans, log, dst_path, 3091 path->nodes[0], path->slots[0], 3092 &tmp); 3093 if (ret) 3094 err = ret; 3095 else 3096 last_offset = tmp.offset; 3097 goto done; 3098 } 3099 } 3100 done: 3101 btrfs_release_path(path); 3102 btrfs_release_path(dst_path); 3103 3104 if (err == 0) { 3105 *last_offset_ret = last_offset; 3106 /* 3107 * insert the log range keys to indicate where the log 3108 * is valid 3109 */ 3110 ret = insert_dir_log_key(trans, log, path, key_type, 3111 ino, first_offset, last_offset); 3112 if (ret) 3113 err = ret; 3114 } 3115 return err; 3116 } 3117 3118 /* 3119 * logging directories is very similar to logging inodes, We find all the items 3120 * from the current transaction and write them to the log. 3121 * 3122 * The recovery code scans the directory in the subvolume, and if it finds a 3123 * key in the range logged that is not present in the log tree, then it means 3124 * that dir entry was unlinked during the transaction. 3125 * 3126 * In order for that scan to work, we must include one key smaller than 3127 * the smallest logged by this transaction and one key larger than the largest 3128 * key logged by this transaction. 3129 */ 3130 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3131 struct btrfs_root *root, struct inode *inode, 3132 struct btrfs_path *path, 3133 struct btrfs_path *dst_path) 3134 { 3135 u64 min_key; 3136 u64 max_key; 3137 int ret; 3138 int key_type = BTRFS_DIR_ITEM_KEY; 3139 3140 again: 3141 min_key = 0; 3142 max_key = 0; 3143 while (1) { 3144 ret = log_dir_items(trans, root, inode, path, 3145 dst_path, key_type, min_key, 3146 &max_key); 3147 if (ret) 3148 return ret; 3149 if (max_key == (u64)-1) 3150 break; 3151 min_key = max_key + 1; 3152 } 3153 3154 if (key_type == BTRFS_DIR_ITEM_KEY) { 3155 key_type = BTRFS_DIR_INDEX_KEY; 3156 goto again; 3157 } 3158 return 0; 3159 } 3160 3161 /* 3162 * a helper function to drop items from the log before we relog an 3163 * inode. max_key_type indicates the highest item type to remove. 3164 * This cannot be run for file data extents because it does not 3165 * free the extents they point to. 3166 */ 3167 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3168 struct btrfs_root *log, 3169 struct btrfs_path *path, 3170 u64 objectid, int max_key_type) 3171 { 3172 int ret; 3173 struct btrfs_key key; 3174 struct btrfs_key found_key; 3175 int start_slot; 3176 3177 key.objectid = objectid; 3178 key.type = max_key_type; 3179 key.offset = (u64)-1; 3180 3181 while (1) { 3182 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3183 BUG_ON(ret == 0); /* Logic error */ 3184 if (ret < 0) 3185 break; 3186 3187 if (path->slots[0] == 0) 3188 break; 3189 3190 path->slots[0]--; 3191 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3192 path->slots[0]); 3193 3194 if (found_key.objectid != objectid) 3195 break; 3196 3197 found_key.offset = 0; 3198 found_key.type = 0; 3199 ret = btrfs_bin_search(path->nodes[0], &found_key, 0, 3200 &start_slot); 3201 3202 ret = btrfs_del_items(trans, log, path, start_slot, 3203 path->slots[0] - start_slot + 1); 3204 /* 3205 * If start slot isn't 0 then we don't need to re-search, we've 3206 * found the last guy with the objectid in this tree. 3207 */ 3208 if (ret || start_slot != 0) 3209 break; 3210 btrfs_release_path(path); 3211 } 3212 btrfs_release_path(path); 3213 if (ret > 0) 3214 ret = 0; 3215 return ret; 3216 } 3217 3218 static void fill_inode_item(struct btrfs_trans_handle *trans, 3219 struct extent_buffer *leaf, 3220 struct btrfs_inode_item *item, 3221 struct inode *inode, int log_inode_only) 3222 { 3223 struct btrfs_map_token token; 3224 3225 btrfs_init_map_token(&token); 3226 3227 if (log_inode_only) { 3228 /* set the generation to zero so the recover code 3229 * can tell the difference between an logging 3230 * just to say 'this inode exists' and a logging 3231 * to say 'update this inode with these values' 3232 */ 3233 btrfs_set_token_inode_generation(leaf, item, 0, &token); 3234 btrfs_set_token_inode_size(leaf, item, 0, &token); 3235 } else { 3236 btrfs_set_token_inode_generation(leaf, item, 3237 BTRFS_I(inode)->generation, 3238 &token); 3239 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); 3240 } 3241 3242 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3243 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3244 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3245 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3246 3247 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3248 inode->i_atime.tv_sec, &token); 3249 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3250 inode->i_atime.tv_nsec, &token); 3251 3252 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3253 inode->i_mtime.tv_sec, &token); 3254 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3255 inode->i_mtime.tv_nsec, &token); 3256 3257 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3258 inode->i_ctime.tv_sec, &token); 3259 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3260 inode->i_ctime.tv_nsec, &token); 3261 3262 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3263 &token); 3264 3265 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3266 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3267 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3268 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3269 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3270 } 3271 3272 static int log_inode_item(struct btrfs_trans_handle *trans, 3273 struct btrfs_root *log, struct btrfs_path *path, 3274 struct inode *inode) 3275 { 3276 struct btrfs_inode_item *inode_item; 3277 int ret; 3278 3279 ret = btrfs_insert_empty_item(trans, log, path, 3280 &BTRFS_I(inode)->location, 3281 sizeof(*inode_item)); 3282 if (ret && ret != -EEXIST) 3283 return ret; 3284 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3285 struct btrfs_inode_item); 3286 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0); 3287 btrfs_release_path(path); 3288 return 0; 3289 } 3290 3291 static noinline int copy_items(struct btrfs_trans_handle *trans, 3292 struct inode *inode, 3293 struct btrfs_path *dst_path, 3294 struct btrfs_path *src_path, u64 *last_extent, 3295 int start_slot, int nr, int inode_only) 3296 { 3297 unsigned long src_offset; 3298 unsigned long dst_offset; 3299 struct btrfs_root *log = BTRFS_I(inode)->root->log_root; 3300 struct btrfs_file_extent_item *extent; 3301 struct btrfs_inode_item *inode_item; 3302 struct extent_buffer *src = src_path->nodes[0]; 3303 struct btrfs_key first_key, last_key, key; 3304 int ret; 3305 struct btrfs_key *ins_keys; 3306 u32 *ins_sizes; 3307 char *ins_data; 3308 int i; 3309 struct list_head ordered_sums; 3310 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 3311 bool has_extents = false; 3312 bool need_find_last_extent = true; 3313 bool done = false; 3314 3315 INIT_LIST_HEAD(&ordered_sums); 3316 3317 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3318 nr * sizeof(u32), GFP_NOFS); 3319 if (!ins_data) 3320 return -ENOMEM; 3321 3322 first_key.objectid = (u64)-1; 3323 3324 ins_sizes = (u32 *)ins_data; 3325 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3326 3327 for (i = 0; i < nr; i++) { 3328 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3329 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3330 } 3331 ret = btrfs_insert_empty_items(trans, log, dst_path, 3332 ins_keys, ins_sizes, nr); 3333 if (ret) { 3334 kfree(ins_data); 3335 return ret; 3336 } 3337 3338 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3339 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3340 dst_path->slots[0]); 3341 3342 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3343 3344 if ((i == (nr - 1))) 3345 last_key = ins_keys[i]; 3346 3347 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3348 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3349 dst_path->slots[0], 3350 struct btrfs_inode_item); 3351 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3352 inode, inode_only == LOG_INODE_EXISTS); 3353 } else { 3354 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3355 src_offset, ins_sizes[i]); 3356 } 3357 3358 /* 3359 * We set need_find_last_extent here in case we know we were 3360 * processing other items and then walk into the first extent in 3361 * the inode. If we don't hit an extent then nothing changes, 3362 * we'll do the last search the next time around. 3363 */ 3364 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) { 3365 has_extents = true; 3366 if (first_key.objectid == (u64)-1) 3367 first_key = ins_keys[i]; 3368 } else { 3369 need_find_last_extent = false; 3370 } 3371 3372 /* take a reference on file data extents so that truncates 3373 * or deletes of this inode don't have to relog the inode 3374 * again 3375 */ 3376 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 3377 !skip_csum) { 3378 int found_type; 3379 extent = btrfs_item_ptr(src, start_slot + i, 3380 struct btrfs_file_extent_item); 3381 3382 if (btrfs_file_extent_generation(src, extent) < trans->transid) 3383 continue; 3384 3385 found_type = btrfs_file_extent_type(src, extent); 3386 if (found_type == BTRFS_FILE_EXTENT_REG) { 3387 u64 ds, dl, cs, cl; 3388 ds = btrfs_file_extent_disk_bytenr(src, 3389 extent); 3390 /* ds == 0 is a hole */ 3391 if (ds == 0) 3392 continue; 3393 3394 dl = btrfs_file_extent_disk_num_bytes(src, 3395 extent); 3396 cs = btrfs_file_extent_offset(src, extent); 3397 cl = btrfs_file_extent_num_bytes(src, 3398 extent); 3399 if (btrfs_file_extent_compression(src, 3400 extent)) { 3401 cs = 0; 3402 cl = dl; 3403 } 3404 3405 ret = btrfs_lookup_csums_range( 3406 log->fs_info->csum_root, 3407 ds + cs, ds + cs + cl - 1, 3408 &ordered_sums, 0); 3409 if (ret) { 3410 btrfs_release_path(dst_path); 3411 kfree(ins_data); 3412 return ret; 3413 } 3414 } 3415 } 3416 } 3417 3418 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 3419 btrfs_release_path(dst_path); 3420 kfree(ins_data); 3421 3422 /* 3423 * we have to do this after the loop above to avoid changing the 3424 * log tree while trying to change the log tree. 3425 */ 3426 ret = 0; 3427 while (!list_empty(&ordered_sums)) { 3428 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 3429 struct btrfs_ordered_sum, 3430 list); 3431 if (!ret) 3432 ret = btrfs_csum_file_blocks(trans, log, sums); 3433 list_del(&sums->list); 3434 kfree(sums); 3435 } 3436 3437 if (!has_extents) 3438 return ret; 3439 3440 if (need_find_last_extent && *last_extent == first_key.offset) { 3441 /* 3442 * We don't have any leafs between our current one and the one 3443 * we processed before that can have file extent items for our 3444 * inode (and have a generation number smaller than our current 3445 * transaction id). 3446 */ 3447 need_find_last_extent = false; 3448 } 3449 3450 /* 3451 * Because we use btrfs_search_forward we could skip leaves that were 3452 * not modified and then assume *last_extent is valid when it really 3453 * isn't. So back up to the previous leaf and read the end of the last 3454 * extent before we go and fill in holes. 3455 */ 3456 if (need_find_last_extent) { 3457 u64 len; 3458 3459 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path); 3460 if (ret < 0) 3461 return ret; 3462 if (ret) 3463 goto fill_holes; 3464 if (src_path->slots[0]) 3465 src_path->slots[0]--; 3466 src = src_path->nodes[0]; 3467 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]); 3468 if (key.objectid != btrfs_ino(inode) || 3469 key.type != BTRFS_EXTENT_DATA_KEY) 3470 goto fill_holes; 3471 extent = btrfs_item_ptr(src, src_path->slots[0], 3472 struct btrfs_file_extent_item); 3473 if (btrfs_file_extent_type(src, extent) == 3474 BTRFS_FILE_EXTENT_INLINE) { 3475 len = btrfs_file_extent_inline_len(src, 3476 src_path->slots[0], 3477 extent); 3478 *last_extent = ALIGN(key.offset + len, 3479 log->sectorsize); 3480 } else { 3481 len = btrfs_file_extent_num_bytes(src, extent); 3482 *last_extent = key.offset + len; 3483 } 3484 } 3485 fill_holes: 3486 /* So we did prev_leaf, now we need to move to the next leaf, but a few 3487 * things could have happened 3488 * 3489 * 1) A merge could have happened, so we could currently be on a leaf 3490 * that holds what we were copying in the first place. 3491 * 2) A split could have happened, and now not all of the items we want 3492 * are on the same leaf. 3493 * 3494 * So we need to adjust how we search for holes, we need to drop the 3495 * path and re-search for the first extent key we found, and then walk 3496 * forward until we hit the last one we copied. 3497 */ 3498 if (need_find_last_extent) { 3499 /* btrfs_prev_leaf could return 1 without releasing the path */ 3500 btrfs_release_path(src_path); 3501 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key, 3502 src_path, 0, 0); 3503 if (ret < 0) 3504 return ret; 3505 ASSERT(ret == 0); 3506 src = src_path->nodes[0]; 3507 i = src_path->slots[0]; 3508 } else { 3509 i = start_slot; 3510 } 3511 3512 /* 3513 * Ok so here we need to go through and fill in any holes we may have 3514 * to make sure that holes are punched for those areas in case they had 3515 * extents previously. 3516 */ 3517 while (!done) { 3518 u64 offset, len; 3519 u64 extent_end; 3520 3521 if (i >= btrfs_header_nritems(src_path->nodes[0])) { 3522 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path); 3523 if (ret < 0) 3524 return ret; 3525 ASSERT(ret == 0); 3526 src = src_path->nodes[0]; 3527 i = 0; 3528 } 3529 3530 btrfs_item_key_to_cpu(src, &key, i); 3531 if (!btrfs_comp_cpu_keys(&key, &last_key)) 3532 done = true; 3533 if (key.objectid != btrfs_ino(inode) || 3534 key.type != BTRFS_EXTENT_DATA_KEY) { 3535 i++; 3536 continue; 3537 } 3538 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); 3539 if (btrfs_file_extent_type(src, extent) == 3540 BTRFS_FILE_EXTENT_INLINE) { 3541 len = btrfs_file_extent_inline_len(src, i, extent); 3542 extent_end = ALIGN(key.offset + len, log->sectorsize); 3543 } else { 3544 len = btrfs_file_extent_num_bytes(src, extent); 3545 extent_end = key.offset + len; 3546 } 3547 i++; 3548 3549 if (*last_extent == key.offset) { 3550 *last_extent = extent_end; 3551 continue; 3552 } 3553 offset = *last_extent; 3554 len = key.offset - *last_extent; 3555 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode), 3556 offset, 0, 0, len, 0, len, 0, 3557 0, 0); 3558 if (ret) 3559 break; 3560 *last_extent = extent_end; 3561 } 3562 /* 3563 * Need to let the callers know we dropped the path so they should 3564 * re-search. 3565 */ 3566 if (!ret && need_find_last_extent) 3567 ret = 1; 3568 return ret; 3569 } 3570 3571 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 3572 { 3573 struct extent_map *em1, *em2; 3574 3575 em1 = list_entry(a, struct extent_map, list); 3576 em2 = list_entry(b, struct extent_map, list); 3577 3578 if (em1->start < em2->start) 3579 return -1; 3580 else if (em1->start > em2->start) 3581 return 1; 3582 return 0; 3583 } 3584 3585 static int wait_ordered_extents(struct btrfs_trans_handle *trans, 3586 struct inode *inode, 3587 struct btrfs_root *root, 3588 const struct extent_map *em, 3589 const struct list_head *logged_list, 3590 bool *ordered_io_error) 3591 { 3592 struct btrfs_ordered_extent *ordered; 3593 struct btrfs_root *log = root->log_root; 3594 u64 mod_start = em->mod_start; 3595 u64 mod_len = em->mod_len; 3596 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 3597 u64 csum_offset; 3598 u64 csum_len; 3599 LIST_HEAD(ordered_sums); 3600 int ret = 0; 3601 3602 *ordered_io_error = false; 3603 3604 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 3605 em->block_start == EXTENT_MAP_HOLE) 3606 return 0; 3607 3608 /* 3609 * Wait far any ordered extent that covers our extent map. If it 3610 * finishes without an error, first check and see if our csums are on 3611 * our outstanding ordered extents. 3612 */ 3613 list_for_each_entry(ordered, logged_list, log_list) { 3614 struct btrfs_ordered_sum *sum; 3615 3616 if (!mod_len) 3617 break; 3618 3619 if (ordered->file_offset + ordered->len <= mod_start || 3620 mod_start + mod_len <= ordered->file_offset) 3621 continue; 3622 3623 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && 3624 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3625 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 3626 const u64 start = ordered->file_offset; 3627 const u64 end = ordered->file_offset + ordered->len - 1; 3628 3629 WARN_ON(ordered->inode != inode); 3630 filemap_fdatawrite_range(inode->i_mapping, start, end); 3631 } 3632 3633 wait_event(ordered->wait, 3634 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) || 3635 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))); 3636 3637 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) { 3638 /* 3639 * Clear the AS_EIO/AS_ENOSPC flags from the inode's 3640 * i_mapping flags, so that the next fsync won't get 3641 * an outdated io error too. 3642 */ 3643 btrfs_inode_check_errors(inode); 3644 *ordered_io_error = true; 3645 break; 3646 } 3647 /* 3648 * We are going to copy all the csums on this ordered extent, so 3649 * go ahead and adjust mod_start and mod_len in case this 3650 * ordered extent has already been logged. 3651 */ 3652 if (ordered->file_offset > mod_start) { 3653 if (ordered->file_offset + ordered->len >= 3654 mod_start + mod_len) 3655 mod_len = ordered->file_offset - mod_start; 3656 /* 3657 * If we have this case 3658 * 3659 * |--------- logged extent ---------| 3660 * |----- ordered extent ----| 3661 * 3662 * Just don't mess with mod_start and mod_len, we'll 3663 * just end up logging more csums than we need and it 3664 * will be ok. 3665 */ 3666 } else { 3667 if (ordered->file_offset + ordered->len < 3668 mod_start + mod_len) { 3669 mod_len = (mod_start + mod_len) - 3670 (ordered->file_offset + ordered->len); 3671 mod_start = ordered->file_offset + 3672 ordered->len; 3673 } else { 3674 mod_len = 0; 3675 } 3676 } 3677 3678 if (skip_csum) 3679 continue; 3680 3681 /* 3682 * To keep us from looping for the above case of an ordered 3683 * extent that falls inside of the logged extent. 3684 */ 3685 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, 3686 &ordered->flags)) 3687 continue; 3688 3689 if (ordered->csum_bytes_left) { 3690 btrfs_start_ordered_extent(inode, ordered, 0); 3691 wait_event(ordered->wait, 3692 ordered->csum_bytes_left == 0); 3693 } 3694 3695 list_for_each_entry(sum, &ordered->list, list) { 3696 ret = btrfs_csum_file_blocks(trans, log, sum); 3697 if (ret) 3698 break; 3699 } 3700 } 3701 3702 if (*ordered_io_error || !mod_len || ret || skip_csum) 3703 return ret; 3704 3705 if (em->compress_type) { 3706 csum_offset = 0; 3707 csum_len = max(em->block_len, em->orig_block_len); 3708 } else { 3709 csum_offset = mod_start - em->start; 3710 csum_len = mod_len; 3711 } 3712 3713 /* block start is already adjusted for the file extent offset. */ 3714 ret = btrfs_lookup_csums_range(log->fs_info->csum_root, 3715 em->block_start + csum_offset, 3716 em->block_start + csum_offset + 3717 csum_len - 1, &ordered_sums, 0); 3718 if (ret) 3719 return ret; 3720 3721 while (!list_empty(&ordered_sums)) { 3722 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 3723 struct btrfs_ordered_sum, 3724 list); 3725 if (!ret) 3726 ret = btrfs_csum_file_blocks(trans, log, sums); 3727 list_del(&sums->list); 3728 kfree(sums); 3729 } 3730 3731 return ret; 3732 } 3733 3734 static int log_one_extent(struct btrfs_trans_handle *trans, 3735 struct inode *inode, struct btrfs_root *root, 3736 const struct extent_map *em, 3737 struct btrfs_path *path, 3738 const struct list_head *logged_list, 3739 struct btrfs_log_ctx *ctx) 3740 { 3741 struct btrfs_root *log = root->log_root; 3742 struct btrfs_file_extent_item *fi; 3743 struct extent_buffer *leaf; 3744 struct btrfs_map_token token; 3745 struct btrfs_key key; 3746 u64 extent_offset = em->start - em->orig_start; 3747 u64 block_len; 3748 int ret; 3749 int extent_inserted = 0; 3750 bool ordered_io_err = false; 3751 3752 ret = wait_ordered_extents(trans, inode, root, em, logged_list, 3753 &ordered_io_err); 3754 if (ret) 3755 return ret; 3756 3757 if (ordered_io_err) { 3758 ctx->io_err = -EIO; 3759 return 0; 3760 } 3761 3762 btrfs_init_map_token(&token); 3763 3764 ret = __btrfs_drop_extents(trans, log, inode, path, em->start, 3765 em->start + em->len, NULL, 0, 1, 3766 sizeof(*fi), &extent_inserted); 3767 if (ret) 3768 return ret; 3769 3770 if (!extent_inserted) { 3771 key.objectid = btrfs_ino(inode); 3772 key.type = BTRFS_EXTENT_DATA_KEY; 3773 key.offset = em->start; 3774 3775 ret = btrfs_insert_empty_item(trans, log, path, &key, 3776 sizeof(*fi)); 3777 if (ret) 3778 return ret; 3779 } 3780 leaf = path->nodes[0]; 3781 fi = btrfs_item_ptr(leaf, path->slots[0], 3782 struct btrfs_file_extent_item); 3783 3784 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, 3785 &token); 3786 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3787 btrfs_set_token_file_extent_type(leaf, fi, 3788 BTRFS_FILE_EXTENT_PREALLOC, 3789 &token); 3790 else 3791 btrfs_set_token_file_extent_type(leaf, fi, 3792 BTRFS_FILE_EXTENT_REG, 3793 &token); 3794 3795 block_len = max(em->block_len, em->orig_block_len); 3796 if (em->compress_type != BTRFS_COMPRESS_NONE) { 3797 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 3798 em->block_start, 3799 &token); 3800 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 3801 &token); 3802 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 3803 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 3804 em->block_start - 3805 extent_offset, &token); 3806 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 3807 &token); 3808 } else { 3809 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); 3810 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, 3811 &token); 3812 } 3813 3814 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); 3815 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); 3816 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); 3817 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, 3818 &token); 3819 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); 3820 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); 3821 btrfs_mark_buffer_dirty(leaf); 3822 3823 btrfs_release_path(path); 3824 3825 return ret; 3826 } 3827 3828 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 3829 struct btrfs_root *root, 3830 struct inode *inode, 3831 struct btrfs_path *path, 3832 struct list_head *logged_list, 3833 struct btrfs_log_ctx *ctx) 3834 { 3835 struct extent_map *em, *n; 3836 struct list_head extents; 3837 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree; 3838 u64 test_gen; 3839 int ret = 0; 3840 int num = 0; 3841 3842 INIT_LIST_HEAD(&extents); 3843 3844 write_lock(&tree->lock); 3845 test_gen = root->fs_info->last_trans_committed; 3846 3847 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 3848 list_del_init(&em->list); 3849 3850 /* 3851 * Just an arbitrary number, this can be really CPU intensive 3852 * once we start getting a lot of extents, and really once we 3853 * have a bunch of extents we just want to commit since it will 3854 * be faster. 3855 */ 3856 if (++num > 32768) { 3857 list_del_init(&tree->modified_extents); 3858 ret = -EFBIG; 3859 goto process; 3860 } 3861 3862 if (em->generation <= test_gen) 3863 continue; 3864 /* Need a ref to keep it from getting evicted from cache */ 3865 atomic_inc(&em->refs); 3866 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 3867 list_add_tail(&em->list, &extents); 3868 num++; 3869 } 3870 3871 list_sort(NULL, &extents, extent_cmp); 3872 3873 process: 3874 while (!list_empty(&extents)) { 3875 em = list_entry(extents.next, struct extent_map, list); 3876 3877 list_del_init(&em->list); 3878 3879 /* 3880 * If we had an error we just need to delete everybody from our 3881 * private list. 3882 */ 3883 if (ret) { 3884 clear_em_logging(tree, em); 3885 free_extent_map(em); 3886 continue; 3887 } 3888 3889 write_unlock(&tree->lock); 3890 3891 ret = log_one_extent(trans, inode, root, em, path, logged_list, 3892 ctx); 3893 write_lock(&tree->lock); 3894 clear_em_logging(tree, em); 3895 free_extent_map(em); 3896 } 3897 WARN_ON(!list_empty(&extents)); 3898 write_unlock(&tree->lock); 3899 3900 btrfs_release_path(path); 3901 return ret; 3902 } 3903 3904 /* log a single inode in the tree log. 3905 * At least one parent directory for this inode must exist in the tree 3906 * or be logged already. 3907 * 3908 * Any items from this inode changed by the current transaction are copied 3909 * to the log tree. An extra reference is taken on any extents in this 3910 * file, allowing us to avoid a whole pile of corner cases around logging 3911 * blocks that have been removed from the tree. 3912 * 3913 * See LOG_INODE_ALL and related defines for a description of what inode_only 3914 * does. 3915 * 3916 * This handles both files and directories. 3917 */ 3918 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 3919 struct btrfs_root *root, struct inode *inode, 3920 int inode_only, 3921 const loff_t start, 3922 const loff_t end, 3923 struct btrfs_log_ctx *ctx) 3924 { 3925 struct btrfs_path *path; 3926 struct btrfs_path *dst_path; 3927 struct btrfs_key min_key; 3928 struct btrfs_key max_key; 3929 struct btrfs_root *log = root->log_root; 3930 struct extent_buffer *src = NULL; 3931 LIST_HEAD(logged_list); 3932 u64 last_extent = 0; 3933 int err = 0; 3934 int ret; 3935 int nritems; 3936 int ins_start_slot = 0; 3937 int ins_nr; 3938 bool fast_search = false; 3939 u64 ino = btrfs_ino(inode); 3940 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3941 3942 path = btrfs_alloc_path(); 3943 if (!path) 3944 return -ENOMEM; 3945 dst_path = btrfs_alloc_path(); 3946 if (!dst_path) { 3947 btrfs_free_path(path); 3948 return -ENOMEM; 3949 } 3950 3951 min_key.objectid = ino; 3952 min_key.type = BTRFS_INODE_ITEM_KEY; 3953 min_key.offset = 0; 3954 3955 max_key.objectid = ino; 3956 3957 3958 /* today the code can only do partial logging of directories */ 3959 if (S_ISDIR(inode->i_mode) || 3960 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3961 &BTRFS_I(inode)->runtime_flags) && 3962 inode_only == LOG_INODE_EXISTS)) 3963 max_key.type = BTRFS_XATTR_ITEM_KEY; 3964 else 3965 max_key.type = (u8)-1; 3966 max_key.offset = (u64)-1; 3967 3968 /* Only run delayed items if we are a dir or a new file */ 3969 if (S_ISDIR(inode->i_mode) || 3970 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) { 3971 ret = btrfs_commit_inode_delayed_items(trans, inode); 3972 if (ret) { 3973 btrfs_free_path(path); 3974 btrfs_free_path(dst_path); 3975 return ret; 3976 } 3977 } 3978 3979 mutex_lock(&BTRFS_I(inode)->log_mutex); 3980 3981 btrfs_get_logged_extents(inode, &logged_list, start, end); 3982 3983 /* 3984 * a brute force approach to making sure we get the most uptodate 3985 * copies of everything. 3986 */ 3987 if (S_ISDIR(inode->i_mode)) { 3988 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 3989 3990 if (inode_only == LOG_INODE_EXISTS) 3991 max_key_type = BTRFS_XATTR_ITEM_KEY; 3992 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 3993 } else { 3994 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3995 &BTRFS_I(inode)->runtime_flags)) { 3996 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 3997 &BTRFS_I(inode)->runtime_flags); 3998 ret = btrfs_truncate_inode_items(trans, log, 3999 inode, 0, 0); 4000 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 4001 &BTRFS_I(inode)->runtime_flags) || 4002 inode_only == LOG_INODE_EXISTS) { 4003 if (inode_only == LOG_INODE_ALL) 4004 fast_search = true; 4005 max_key.type = BTRFS_XATTR_ITEM_KEY; 4006 ret = drop_objectid_items(trans, log, path, ino, 4007 max_key.type); 4008 } else { 4009 if (inode_only == LOG_INODE_ALL) 4010 fast_search = true; 4011 ret = log_inode_item(trans, log, dst_path, inode); 4012 if (ret) { 4013 err = ret; 4014 goto out_unlock; 4015 } 4016 goto log_extents; 4017 } 4018 4019 } 4020 if (ret) { 4021 err = ret; 4022 goto out_unlock; 4023 } 4024 4025 while (1) { 4026 ins_nr = 0; 4027 ret = btrfs_search_forward(root, &min_key, 4028 path, trans->transid); 4029 if (ret != 0) 4030 break; 4031 again: 4032 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 4033 if (min_key.objectid != ino) 4034 break; 4035 if (min_key.type > max_key.type) 4036 break; 4037 4038 src = path->nodes[0]; 4039 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 4040 ins_nr++; 4041 goto next_slot; 4042 } else if (!ins_nr) { 4043 ins_start_slot = path->slots[0]; 4044 ins_nr = 1; 4045 goto next_slot; 4046 } 4047 4048 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4049 ins_start_slot, ins_nr, inode_only); 4050 if (ret < 0) { 4051 err = ret; 4052 goto out_unlock; 4053 } 4054 if (ret) { 4055 ins_nr = 0; 4056 btrfs_release_path(path); 4057 continue; 4058 } 4059 ins_nr = 1; 4060 ins_start_slot = path->slots[0]; 4061 next_slot: 4062 4063 nritems = btrfs_header_nritems(path->nodes[0]); 4064 path->slots[0]++; 4065 if (path->slots[0] < nritems) { 4066 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 4067 path->slots[0]); 4068 goto again; 4069 } 4070 if (ins_nr) { 4071 ret = copy_items(trans, inode, dst_path, path, 4072 &last_extent, ins_start_slot, 4073 ins_nr, inode_only); 4074 if (ret < 0) { 4075 err = ret; 4076 goto out_unlock; 4077 } 4078 ret = 0; 4079 ins_nr = 0; 4080 } 4081 btrfs_release_path(path); 4082 4083 if (min_key.offset < (u64)-1) { 4084 min_key.offset++; 4085 } else if (min_key.type < max_key.type) { 4086 min_key.type++; 4087 min_key.offset = 0; 4088 } else { 4089 break; 4090 } 4091 } 4092 if (ins_nr) { 4093 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4094 ins_start_slot, ins_nr, inode_only); 4095 if (ret < 0) { 4096 err = ret; 4097 goto out_unlock; 4098 } 4099 ret = 0; 4100 ins_nr = 0; 4101 } 4102 4103 log_extents: 4104 btrfs_release_path(path); 4105 btrfs_release_path(dst_path); 4106 if (fast_search) { 4107 /* 4108 * Some ordered extents started by fsync might have completed 4109 * before we collected the ordered extents in logged_list, which 4110 * means they're gone, not in our logged_list nor in the inode's 4111 * ordered tree. We want the application/user space to know an 4112 * error happened while attempting to persist file data so that 4113 * it can take proper action. If such error happened, we leave 4114 * without writing to the log tree and the fsync must report the 4115 * file data write error and not commit the current transaction. 4116 */ 4117 err = btrfs_inode_check_errors(inode); 4118 if (err) { 4119 ctx->io_err = err; 4120 goto out_unlock; 4121 } 4122 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 4123 &logged_list, ctx); 4124 if (ret) { 4125 err = ret; 4126 goto out_unlock; 4127 } 4128 } else if (inode_only == LOG_INODE_ALL) { 4129 struct extent_map *em, *n; 4130 4131 write_lock(&em_tree->lock); 4132 /* 4133 * We can't just remove every em if we're called for a ranged 4134 * fsync - that is, one that doesn't cover the whole possible 4135 * file range (0 to LLONG_MAX). This is because we can have 4136 * em's that fall outside the range we're logging and therefore 4137 * their ordered operations haven't completed yet 4138 * (btrfs_finish_ordered_io() not invoked yet). This means we 4139 * didn't get their respective file extent item in the fs/subvol 4140 * tree yet, and need to let the next fast fsync (one which 4141 * consults the list of modified extent maps) find the em so 4142 * that it logs a matching file extent item and waits for the 4143 * respective ordered operation to complete (if it's still 4144 * running). 4145 * 4146 * Removing every em outside the range we're logging would make 4147 * the next fast fsync not log their matching file extent items, 4148 * therefore making us lose data after a log replay. 4149 */ 4150 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 4151 list) { 4152 const u64 mod_end = em->mod_start + em->mod_len - 1; 4153 4154 if (em->mod_start >= start && mod_end <= end) 4155 list_del_init(&em->list); 4156 } 4157 write_unlock(&em_tree->lock); 4158 } 4159 4160 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { 4161 ret = log_directory_changes(trans, root, inode, path, dst_path); 4162 if (ret) { 4163 err = ret; 4164 goto out_unlock; 4165 } 4166 } 4167 4168 BTRFS_I(inode)->logged_trans = trans->transid; 4169 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans; 4170 out_unlock: 4171 if (unlikely(err)) 4172 btrfs_put_logged_extents(&logged_list); 4173 else 4174 btrfs_submit_logged_extents(&logged_list, log); 4175 mutex_unlock(&BTRFS_I(inode)->log_mutex); 4176 4177 btrfs_free_path(path); 4178 btrfs_free_path(dst_path); 4179 return err; 4180 } 4181 4182 /* 4183 * follow the dentry parent pointers up the chain and see if any 4184 * of the directories in it require a full commit before they can 4185 * be logged. Returns zero if nothing special needs to be done or 1 if 4186 * a full commit is required. 4187 */ 4188 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 4189 struct inode *inode, 4190 struct dentry *parent, 4191 struct super_block *sb, 4192 u64 last_committed) 4193 { 4194 int ret = 0; 4195 struct btrfs_root *root; 4196 struct dentry *old_parent = NULL; 4197 struct inode *orig_inode = inode; 4198 4199 /* 4200 * for regular files, if its inode is already on disk, we don't 4201 * have to worry about the parents at all. This is because 4202 * we can use the last_unlink_trans field to record renames 4203 * and other fun in this file. 4204 */ 4205 if (S_ISREG(inode->i_mode) && 4206 BTRFS_I(inode)->generation <= last_committed && 4207 BTRFS_I(inode)->last_unlink_trans <= last_committed) 4208 goto out; 4209 4210 if (!S_ISDIR(inode->i_mode)) { 4211 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 4212 goto out; 4213 inode = parent->d_inode; 4214 } 4215 4216 while (1) { 4217 /* 4218 * If we are logging a directory then we start with our inode, 4219 * not our parents inode, so we need to skipp setting the 4220 * logged_trans so that further down in the log code we don't 4221 * think this inode has already been logged. 4222 */ 4223 if (inode != orig_inode) 4224 BTRFS_I(inode)->logged_trans = trans->transid; 4225 smp_mb(); 4226 4227 if (BTRFS_I(inode)->last_unlink_trans > last_committed) { 4228 root = BTRFS_I(inode)->root; 4229 4230 /* 4231 * make sure any commits to the log are forced 4232 * to be full commits 4233 */ 4234 btrfs_set_log_full_commit(root->fs_info, trans); 4235 ret = 1; 4236 break; 4237 } 4238 4239 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 4240 break; 4241 4242 if (IS_ROOT(parent)) 4243 break; 4244 4245 parent = dget_parent(parent); 4246 dput(old_parent); 4247 old_parent = parent; 4248 inode = parent->d_inode; 4249 4250 } 4251 dput(old_parent); 4252 out: 4253 return ret; 4254 } 4255 4256 /* 4257 * helper function around btrfs_log_inode to make sure newly created 4258 * parent directories also end up in the log. A minimal inode and backref 4259 * only logging is done of any parent directories that are older than 4260 * the last committed transaction 4261 */ 4262 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 4263 struct btrfs_root *root, struct inode *inode, 4264 struct dentry *parent, 4265 const loff_t start, 4266 const loff_t end, 4267 int exists_only, 4268 struct btrfs_log_ctx *ctx) 4269 { 4270 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; 4271 struct super_block *sb; 4272 struct dentry *old_parent = NULL; 4273 int ret = 0; 4274 u64 last_committed = root->fs_info->last_trans_committed; 4275 4276 sb = inode->i_sb; 4277 4278 if (btrfs_test_opt(root, NOTREELOG)) { 4279 ret = 1; 4280 goto end_no_trans; 4281 } 4282 4283 /* 4284 * The prev transaction commit doesn't complete, we need do 4285 * full commit by ourselves. 4286 */ 4287 if (root->fs_info->last_trans_log_full_commit > 4288 root->fs_info->last_trans_committed) { 4289 ret = 1; 4290 goto end_no_trans; 4291 } 4292 4293 if (root != BTRFS_I(inode)->root || 4294 btrfs_root_refs(&root->root_item) == 0) { 4295 ret = 1; 4296 goto end_no_trans; 4297 } 4298 4299 ret = check_parent_dirs_for_sync(trans, inode, parent, 4300 sb, last_committed); 4301 if (ret) 4302 goto end_no_trans; 4303 4304 if (btrfs_inode_in_log(inode, trans->transid)) { 4305 ret = BTRFS_NO_LOG_SYNC; 4306 goto end_no_trans; 4307 } 4308 4309 ret = start_log_trans(trans, root, ctx); 4310 if (ret) 4311 goto end_no_trans; 4312 4313 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 4314 if (ret) 4315 goto end_trans; 4316 4317 /* 4318 * for regular files, if its inode is already on disk, we don't 4319 * have to worry about the parents at all. This is because 4320 * we can use the last_unlink_trans field to record renames 4321 * and other fun in this file. 4322 */ 4323 if (S_ISREG(inode->i_mode) && 4324 BTRFS_I(inode)->generation <= last_committed && 4325 BTRFS_I(inode)->last_unlink_trans <= last_committed) { 4326 ret = 0; 4327 goto end_trans; 4328 } 4329 4330 inode_only = LOG_INODE_EXISTS; 4331 while (1) { 4332 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 4333 break; 4334 4335 inode = parent->d_inode; 4336 if (root != BTRFS_I(inode)->root) 4337 break; 4338 4339 if (BTRFS_I(inode)->generation > 4340 root->fs_info->last_trans_committed) { 4341 ret = btrfs_log_inode(trans, root, inode, inode_only, 4342 0, LLONG_MAX, ctx); 4343 if (ret) 4344 goto end_trans; 4345 } 4346 if (IS_ROOT(parent)) 4347 break; 4348 4349 parent = dget_parent(parent); 4350 dput(old_parent); 4351 old_parent = parent; 4352 } 4353 ret = 0; 4354 end_trans: 4355 dput(old_parent); 4356 if (ret < 0) { 4357 btrfs_set_log_full_commit(root->fs_info, trans); 4358 ret = 1; 4359 } 4360 4361 if (ret) 4362 btrfs_remove_log_ctx(root, ctx); 4363 btrfs_end_log_trans(root); 4364 end_no_trans: 4365 return ret; 4366 } 4367 4368 /* 4369 * it is not safe to log dentry if the chunk root has added new 4370 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 4371 * If this returns 1, you must commit the transaction to safely get your 4372 * data on disk. 4373 */ 4374 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 4375 struct btrfs_root *root, struct dentry *dentry, 4376 const loff_t start, 4377 const loff_t end, 4378 struct btrfs_log_ctx *ctx) 4379 { 4380 struct dentry *parent = dget_parent(dentry); 4381 int ret; 4382 4383 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 4384 start, end, 0, ctx); 4385 dput(parent); 4386 4387 return ret; 4388 } 4389 4390 /* 4391 * should be called during mount to recover any replay any log trees 4392 * from the FS 4393 */ 4394 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 4395 { 4396 int ret; 4397 struct btrfs_path *path; 4398 struct btrfs_trans_handle *trans; 4399 struct btrfs_key key; 4400 struct btrfs_key found_key; 4401 struct btrfs_key tmp_key; 4402 struct btrfs_root *log; 4403 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 4404 struct walk_control wc = { 4405 .process_func = process_one_buffer, 4406 .stage = 0, 4407 }; 4408 4409 path = btrfs_alloc_path(); 4410 if (!path) 4411 return -ENOMEM; 4412 4413 fs_info->log_root_recovering = 1; 4414 4415 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4416 if (IS_ERR(trans)) { 4417 ret = PTR_ERR(trans); 4418 goto error; 4419 } 4420 4421 wc.trans = trans; 4422 wc.pin = 1; 4423 4424 ret = walk_log_tree(trans, log_root_tree, &wc); 4425 if (ret) { 4426 btrfs_error(fs_info, ret, "Failed to pin buffers while " 4427 "recovering log root tree."); 4428 goto error; 4429 } 4430 4431 again: 4432 key.objectid = BTRFS_TREE_LOG_OBJECTID; 4433 key.offset = (u64)-1; 4434 key.type = BTRFS_ROOT_ITEM_KEY; 4435 4436 while (1) { 4437 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 4438 4439 if (ret < 0) { 4440 btrfs_error(fs_info, ret, 4441 "Couldn't find tree log root."); 4442 goto error; 4443 } 4444 if (ret > 0) { 4445 if (path->slots[0] == 0) 4446 break; 4447 path->slots[0]--; 4448 } 4449 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4450 path->slots[0]); 4451 btrfs_release_path(path); 4452 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4453 break; 4454 4455 log = btrfs_read_fs_root(log_root_tree, &found_key); 4456 if (IS_ERR(log)) { 4457 ret = PTR_ERR(log); 4458 btrfs_error(fs_info, ret, 4459 "Couldn't read tree log root."); 4460 goto error; 4461 } 4462 4463 tmp_key.objectid = found_key.offset; 4464 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 4465 tmp_key.offset = (u64)-1; 4466 4467 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 4468 if (IS_ERR(wc.replay_dest)) { 4469 ret = PTR_ERR(wc.replay_dest); 4470 free_extent_buffer(log->node); 4471 free_extent_buffer(log->commit_root); 4472 kfree(log); 4473 btrfs_error(fs_info, ret, "Couldn't read target root " 4474 "for tree log recovery."); 4475 goto error; 4476 } 4477 4478 wc.replay_dest->log_root = log; 4479 btrfs_record_root_in_trans(trans, wc.replay_dest); 4480 ret = walk_log_tree(trans, log, &wc); 4481 4482 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 4483 ret = fixup_inode_link_counts(trans, wc.replay_dest, 4484 path); 4485 } 4486 4487 key.offset = found_key.offset - 1; 4488 wc.replay_dest->log_root = NULL; 4489 free_extent_buffer(log->node); 4490 free_extent_buffer(log->commit_root); 4491 kfree(log); 4492 4493 if (ret) 4494 goto error; 4495 4496 if (found_key.offset == 0) 4497 break; 4498 } 4499 btrfs_release_path(path); 4500 4501 /* step one is to pin it all, step two is to replay just inodes */ 4502 if (wc.pin) { 4503 wc.pin = 0; 4504 wc.process_func = replay_one_buffer; 4505 wc.stage = LOG_WALK_REPLAY_INODES; 4506 goto again; 4507 } 4508 /* step three is to replay everything */ 4509 if (wc.stage < LOG_WALK_REPLAY_ALL) { 4510 wc.stage++; 4511 goto again; 4512 } 4513 4514 btrfs_free_path(path); 4515 4516 /* step 4: commit the transaction, which also unpins the blocks */ 4517 ret = btrfs_commit_transaction(trans, fs_info->tree_root); 4518 if (ret) 4519 return ret; 4520 4521 free_extent_buffer(log_root_tree->node); 4522 log_root_tree->log_root = NULL; 4523 fs_info->log_root_recovering = 0; 4524 kfree(log_root_tree); 4525 4526 return 0; 4527 error: 4528 if (wc.trans) 4529 btrfs_end_transaction(wc.trans, fs_info->tree_root); 4530 btrfs_free_path(path); 4531 return ret; 4532 } 4533 4534 /* 4535 * there are some corner cases where we want to force a full 4536 * commit instead of allowing a directory to be logged. 4537 * 4538 * They revolve around files there were unlinked from the directory, and 4539 * this function updates the parent directory so that a full commit is 4540 * properly done if it is fsync'd later after the unlinks are done. 4541 */ 4542 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 4543 struct inode *dir, struct inode *inode, 4544 int for_rename) 4545 { 4546 /* 4547 * when we're logging a file, if it hasn't been renamed 4548 * or unlinked, and its inode is fully committed on disk, 4549 * we don't have to worry about walking up the directory chain 4550 * to log its parents. 4551 * 4552 * So, we use the last_unlink_trans field to put this transid 4553 * into the file. When the file is logged we check it and 4554 * don't log the parents if the file is fully on disk. 4555 */ 4556 if (S_ISREG(inode->i_mode)) 4557 BTRFS_I(inode)->last_unlink_trans = trans->transid; 4558 4559 /* 4560 * if this directory was already logged any new 4561 * names for this file/dir will get recorded 4562 */ 4563 smp_mb(); 4564 if (BTRFS_I(dir)->logged_trans == trans->transid) 4565 return; 4566 4567 /* 4568 * if the inode we're about to unlink was logged, 4569 * the log will be properly updated for any new names 4570 */ 4571 if (BTRFS_I(inode)->logged_trans == trans->transid) 4572 return; 4573 4574 /* 4575 * when renaming files across directories, if the directory 4576 * there we're unlinking from gets fsync'd later on, there's 4577 * no way to find the destination directory later and fsync it 4578 * properly. So, we have to be conservative and force commits 4579 * so the new name gets discovered. 4580 */ 4581 if (for_rename) 4582 goto record; 4583 4584 /* we can safely do the unlink without any special recording */ 4585 return; 4586 4587 record: 4588 BTRFS_I(dir)->last_unlink_trans = trans->transid; 4589 } 4590 4591 /* 4592 * Call this after adding a new name for a file and it will properly 4593 * update the log to reflect the new name. 4594 * 4595 * It will return zero if all goes well, and it will return 1 if a 4596 * full transaction commit is required. 4597 */ 4598 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 4599 struct inode *inode, struct inode *old_dir, 4600 struct dentry *parent) 4601 { 4602 struct btrfs_root * root = BTRFS_I(inode)->root; 4603 4604 /* 4605 * this will force the logging code to walk the dentry chain 4606 * up for the file 4607 */ 4608 if (S_ISREG(inode->i_mode)) 4609 BTRFS_I(inode)->last_unlink_trans = trans->transid; 4610 4611 /* 4612 * if this inode hasn't been logged and directory we're renaming it 4613 * from hasn't been logged, we don't need to log it 4614 */ 4615 if (BTRFS_I(inode)->logged_trans <= 4616 root->fs_info->last_trans_committed && 4617 (!old_dir || BTRFS_I(old_dir)->logged_trans <= 4618 root->fs_info->last_trans_committed)) 4619 return 0; 4620 4621 return btrfs_log_inode_parent(trans, root, inode, parent, 0, 4622 LLONG_MAX, 1, NULL); 4623 } 4624 4625