1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "ctree.h" 12 #include "tree-log.h" 13 #include "disk-io.h" 14 #include "locking.h" 15 #include "print-tree.h" 16 #include "backref.h" 17 #include "compression.h" 18 #include "qgroup.h" 19 #include "inode-map.h" 20 21 /* magic values for the inode_only field in btrfs_log_inode: 22 * 23 * LOG_INODE_ALL means to log everything 24 * LOG_INODE_EXISTS means to log just enough to recreate the inode 25 * during log replay 26 */ 27 #define LOG_INODE_ALL 0 28 #define LOG_INODE_EXISTS 1 29 #define LOG_OTHER_INODE 2 30 #define LOG_OTHER_INODE_ALL 3 31 32 /* 33 * directory trouble cases 34 * 35 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 36 * log, we must force a full commit before doing an fsync of the directory 37 * where the unlink was done. 38 * ---> record transid of last unlink/rename per directory 39 * 40 * mkdir foo/some_dir 41 * normal commit 42 * rename foo/some_dir foo2/some_dir 43 * mkdir foo/some_dir 44 * fsync foo/some_dir/some_file 45 * 46 * The fsync above will unlink the original some_dir without recording 47 * it in its new location (foo2). After a crash, some_dir will be gone 48 * unless the fsync of some_file forces a full commit 49 * 50 * 2) we must log any new names for any file or dir that is in the fsync 51 * log. ---> check inode while renaming/linking. 52 * 53 * 2a) we must log any new names for any file or dir during rename 54 * when the directory they are being removed from was logged. 55 * ---> check inode and old parent dir during rename 56 * 57 * 2a is actually the more important variant. With the extra logging 58 * a crash might unlink the old name without recreating the new one 59 * 60 * 3) after a crash, we must go through any directories with a link count 61 * of zero and redo the rm -rf 62 * 63 * mkdir f1/foo 64 * normal commit 65 * rm -rf f1/foo 66 * fsync(f1) 67 * 68 * The directory f1 was fully removed from the FS, but fsync was never 69 * called on f1, only its parent dir. After a crash the rm -rf must 70 * be replayed. This must be able to recurse down the entire 71 * directory tree. The inode link count fixup code takes care of the 72 * ugly details. 73 */ 74 75 /* 76 * stages for the tree walking. The first 77 * stage (0) is to only pin down the blocks we find 78 * the second stage (1) is to make sure that all the inodes 79 * we find in the log are created in the subvolume. 80 * 81 * The last stage is to deal with directories and links and extents 82 * and all the other fun semantics 83 */ 84 #define LOG_WALK_PIN_ONLY 0 85 #define LOG_WALK_REPLAY_INODES 1 86 #define LOG_WALK_REPLAY_DIR_INDEX 2 87 #define LOG_WALK_REPLAY_ALL 3 88 89 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, struct btrfs_inode *inode, 91 int inode_only, 92 const loff_t start, 93 const loff_t end, 94 struct btrfs_log_ctx *ctx); 95 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 96 struct btrfs_root *root, 97 struct btrfs_path *path, u64 objectid); 98 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 99 struct btrfs_root *root, 100 struct btrfs_root *log, 101 struct btrfs_path *path, 102 u64 dirid, int del_all); 103 104 /* 105 * tree logging is a special write ahead log used to make sure that 106 * fsyncs and O_SYNCs can happen without doing full tree commits. 107 * 108 * Full tree commits are expensive because they require commonly 109 * modified blocks to be recowed, creating many dirty pages in the 110 * extent tree an 4x-6x higher write load than ext3. 111 * 112 * Instead of doing a tree commit on every fsync, we use the 113 * key ranges and transaction ids to find items for a given file or directory 114 * that have changed in this transaction. Those items are copied into 115 * a special tree (one per subvolume root), that tree is written to disk 116 * and then the fsync is considered complete. 117 * 118 * After a crash, items are copied out of the log-tree back into the 119 * subvolume tree. Any file data extents found are recorded in the extent 120 * allocation tree, and the log-tree freed. 121 * 122 * The log tree is read three times, once to pin down all the extents it is 123 * using in ram and once, once to create all the inodes logged in the tree 124 * and once to do all the other items. 125 */ 126 127 /* 128 * start a sub transaction and setup the log tree 129 * this increments the log tree writer count to make the people 130 * syncing the tree wait for us to finish 131 */ 132 static int start_log_trans(struct btrfs_trans_handle *trans, 133 struct btrfs_root *root, 134 struct btrfs_log_ctx *ctx) 135 { 136 struct btrfs_fs_info *fs_info = root->fs_info; 137 int ret = 0; 138 139 mutex_lock(&root->log_mutex); 140 141 if (root->log_root) { 142 if (btrfs_need_log_full_commit(trans)) { 143 ret = -EAGAIN; 144 goto out; 145 } 146 147 if (!root->log_start_pid) { 148 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 149 root->log_start_pid = current->pid; 150 } else if (root->log_start_pid != current->pid) { 151 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 152 } 153 } else { 154 mutex_lock(&fs_info->tree_log_mutex); 155 if (!fs_info->log_root_tree) 156 ret = btrfs_init_log_root_tree(trans, fs_info); 157 mutex_unlock(&fs_info->tree_log_mutex); 158 if (ret) 159 goto out; 160 161 ret = btrfs_add_log_tree(trans, root); 162 if (ret) 163 goto out; 164 165 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 166 root->log_start_pid = current->pid; 167 } 168 169 atomic_inc(&root->log_batch); 170 atomic_inc(&root->log_writers); 171 if (ctx) { 172 int index = root->log_transid % 2; 173 list_add_tail(&ctx->list, &root->log_ctxs[index]); 174 ctx->log_transid = root->log_transid; 175 } 176 177 out: 178 mutex_unlock(&root->log_mutex); 179 return ret; 180 } 181 182 /* 183 * returns 0 if there was a log transaction running and we were able 184 * to join, or returns -ENOENT if there were not transactions 185 * in progress 186 */ 187 static int join_running_log_trans(struct btrfs_root *root) 188 { 189 int ret = -ENOENT; 190 191 smp_mb(); 192 if (!root->log_root) 193 return -ENOENT; 194 195 mutex_lock(&root->log_mutex); 196 if (root->log_root) { 197 ret = 0; 198 atomic_inc(&root->log_writers); 199 } 200 mutex_unlock(&root->log_mutex); 201 return ret; 202 } 203 204 /* 205 * This either makes the current running log transaction wait 206 * until you call btrfs_end_log_trans() or it makes any future 207 * log transactions wait until you call btrfs_end_log_trans() 208 */ 209 void btrfs_pin_log_trans(struct btrfs_root *root) 210 { 211 mutex_lock(&root->log_mutex); 212 atomic_inc(&root->log_writers); 213 mutex_unlock(&root->log_mutex); 214 } 215 216 /* 217 * indicate we're done making changes to the log tree 218 * and wake up anyone waiting to do a sync 219 */ 220 void btrfs_end_log_trans(struct btrfs_root *root) 221 { 222 if (atomic_dec_and_test(&root->log_writers)) { 223 /* atomic_dec_and_test implies a barrier */ 224 cond_wake_up_nomb(&root->log_writer_wait); 225 } 226 } 227 228 static int btrfs_write_tree_block(struct extent_buffer *buf) 229 { 230 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 231 buf->start + buf->len - 1); 232 } 233 234 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 235 { 236 filemap_fdatawait_range(buf->pages[0]->mapping, 237 buf->start, buf->start + buf->len - 1); 238 } 239 240 /* 241 * the walk control struct is used to pass state down the chain when 242 * processing the log tree. The stage field tells us which part 243 * of the log tree processing we are currently doing. The others 244 * are state fields used for that specific part 245 */ 246 struct walk_control { 247 /* should we free the extent on disk when done? This is used 248 * at transaction commit time while freeing a log tree 249 */ 250 int free; 251 252 /* should we write out the extent buffer? This is used 253 * while flushing the log tree to disk during a sync 254 */ 255 int write; 256 257 /* should we wait for the extent buffer io to finish? Also used 258 * while flushing the log tree to disk for a sync 259 */ 260 int wait; 261 262 /* pin only walk, we record which extents on disk belong to the 263 * log trees 264 */ 265 int pin; 266 267 /* what stage of the replay code we're currently in */ 268 int stage; 269 270 /* 271 * Ignore any items from the inode currently being processed. Needs 272 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 273 * the LOG_WALK_REPLAY_INODES stage. 274 */ 275 bool ignore_cur_inode; 276 277 /* the root we are currently replaying */ 278 struct btrfs_root *replay_dest; 279 280 /* the trans handle for the current replay */ 281 struct btrfs_trans_handle *trans; 282 283 /* the function that gets used to process blocks we find in the 284 * tree. Note the extent_buffer might not be up to date when it is 285 * passed in, and it must be checked or read if you need the data 286 * inside it 287 */ 288 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 289 struct walk_control *wc, u64 gen, int level); 290 }; 291 292 /* 293 * process_func used to pin down extents, write them or wait on them 294 */ 295 static int process_one_buffer(struct btrfs_root *log, 296 struct extent_buffer *eb, 297 struct walk_control *wc, u64 gen, int level) 298 { 299 struct btrfs_fs_info *fs_info = log->fs_info; 300 int ret = 0; 301 302 /* 303 * If this fs is mixed then we need to be able to process the leaves to 304 * pin down any logged extents, so we have to read the block. 305 */ 306 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 307 ret = btrfs_read_buffer(eb, gen, level, NULL); 308 if (ret) 309 return ret; 310 } 311 312 if (wc->pin) 313 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start, 314 eb->len); 315 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 317 if (wc->pin && btrfs_header_level(eb) == 0) 318 ret = btrfs_exclude_logged_extents(eb); 319 if (wc->write) 320 btrfs_write_tree_block(eb); 321 if (wc->wait) 322 btrfs_wait_tree_block_writeback(eb); 323 } 324 return ret; 325 } 326 327 /* 328 * Item overwrite used by replay and tree logging. eb, slot and key all refer 329 * to the src data we are copying out. 330 * 331 * root is the tree we are copying into, and path is a scratch 332 * path for use in this function (it should be released on entry and 333 * will be released on exit). 334 * 335 * If the key is already in the destination tree the existing item is 336 * overwritten. If the existing item isn't big enough, it is extended. 337 * If it is too large, it is truncated. 338 * 339 * If the key isn't in the destination yet, a new item is inserted. 340 */ 341 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 342 struct btrfs_root *root, 343 struct btrfs_path *path, 344 struct extent_buffer *eb, int slot, 345 struct btrfs_key *key) 346 { 347 int ret; 348 u32 item_size; 349 u64 saved_i_size = 0; 350 int save_old_i_size = 0; 351 unsigned long src_ptr; 352 unsigned long dst_ptr; 353 int overwrite_root = 0; 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 355 356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 357 overwrite_root = 1; 358 359 item_size = btrfs_item_size_nr(eb, slot); 360 src_ptr = btrfs_item_ptr_offset(eb, slot); 361 362 /* look for the key in the destination tree */ 363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 364 if (ret < 0) 365 return ret; 366 367 if (ret == 0) { 368 char *src_copy; 369 char *dst_copy; 370 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 371 path->slots[0]); 372 if (dst_size != item_size) 373 goto insert; 374 375 if (item_size == 0) { 376 btrfs_release_path(path); 377 return 0; 378 } 379 dst_copy = kmalloc(item_size, GFP_NOFS); 380 src_copy = kmalloc(item_size, GFP_NOFS); 381 if (!dst_copy || !src_copy) { 382 btrfs_release_path(path); 383 kfree(dst_copy); 384 kfree(src_copy); 385 return -ENOMEM; 386 } 387 388 read_extent_buffer(eb, src_copy, src_ptr, item_size); 389 390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 392 item_size); 393 ret = memcmp(dst_copy, src_copy, item_size); 394 395 kfree(dst_copy); 396 kfree(src_copy); 397 /* 398 * they have the same contents, just return, this saves 399 * us from cowing blocks in the destination tree and doing 400 * extra writes that may not have been done by a previous 401 * sync 402 */ 403 if (ret == 0) { 404 btrfs_release_path(path); 405 return 0; 406 } 407 408 /* 409 * We need to load the old nbytes into the inode so when we 410 * replay the extents we've logged we get the right nbytes. 411 */ 412 if (inode_item) { 413 struct btrfs_inode_item *item; 414 u64 nbytes; 415 u32 mode; 416 417 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 418 struct btrfs_inode_item); 419 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 420 item = btrfs_item_ptr(eb, slot, 421 struct btrfs_inode_item); 422 btrfs_set_inode_nbytes(eb, item, nbytes); 423 424 /* 425 * If this is a directory we need to reset the i_size to 426 * 0 so that we can set it up properly when replaying 427 * the rest of the items in this log. 428 */ 429 mode = btrfs_inode_mode(eb, item); 430 if (S_ISDIR(mode)) 431 btrfs_set_inode_size(eb, item, 0); 432 } 433 } else if (inode_item) { 434 struct btrfs_inode_item *item; 435 u32 mode; 436 437 /* 438 * New inode, set nbytes to 0 so that the nbytes comes out 439 * properly when we replay the extents. 440 */ 441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 442 btrfs_set_inode_nbytes(eb, item, 0); 443 444 /* 445 * If this is a directory we need to reset the i_size to 0 so 446 * that we can set it up properly when replaying the rest of 447 * the items in this log. 448 */ 449 mode = btrfs_inode_mode(eb, item); 450 if (S_ISDIR(mode)) 451 btrfs_set_inode_size(eb, item, 0); 452 } 453 insert: 454 btrfs_release_path(path); 455 /* try to insert the key into the destination tree */ 456 path->skip_release_on_error = 1; 457 ret = btrfs_insert_empty_item(trans, root, path, 458 key, item_size); 459 path->skip_release_on_error = 0; 460 461 /* make sure any existing item is the correct size */ 462 if (ret == -EEXIST || ret == -EOVERFLOW) { 463 u32 found_size; 464 found_size = btrfs_item_size_nr(path->nodes[0], 465 path->slots[0]); 466 if (found_size > item_size) 467 btrfs_truncate_item(path, item_size, 1); 468 else if (found_size < item_size) 469 btrfs_extend_item(path, item_size - found_size); 470 } else if (ret) { 471 return ret; 472 } 473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 474 path->slots[0]); 475 476 /* don't overwrite an existing inode if the generation number 477 * was logged as zero. This is done when the tree logging code 478 * is just logging an inode to make sure it exists after recovery. 479 * 480 * Also, don't overwrite i_size on directories during replay. 481 * log replay inserts and removes directory items based on the 482 * state of the tree found in the subvolume, and i_size is modified 483 * as it goes 484 */ 485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 486 struct btrfs_inode_item *src_item; 487 struct btrfs_inode_item *dst_item; 488 489 src_item = (struct btrfs_inode_item *)src_ptr; 490 dst_item = (struct btrfs_inode_item *)dst_ptr; 491 492 if (btrfs_inode_generation(eb, src_item) == 0) { 493 struct extent_buffer *dst_eb = path->nodes[0]; 494 const u64 ino_size = btrfs_inode_size(eb, src_item); 495 496 /* 497 * For regular files an ino_size == 0 is used only when 498 * logging that an inode exists, as part of a directory 499 * fsync, and the inode wasn't fsynced before. In this 500 * case don't set the size of the inode in the fs/subvol 501 * tree, otherwise we would be throwing valid data away. 502 */ 503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 505 ino_size != 0) { 506 struct btrfs_map_token token; 507 508 btrfs_init_map_token(&token); 509 btrfs_set_token_inode_size(dst_eb, dst_item, 510 ino_size, &token); 511 } 512 goto no_copy; 513 } 514 515 if (overwrite_root && 516 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 518 save_old_i_size = 1; 519 saved_i_size = btrfs_inode_size(path->nodes[0], 520 dst_item); 521 } 522 } 523 524 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 525 src_ptr, item_size); 526 527 if (save_old_i_size) { 528 struct btrfs_inode_item *dst_item; 529 dst_item = (struct btrfs_inode_item *)dst_ptr; 530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 531 } 532 533 /* make sure the generation is filled in */ 534 if (key->type == BTRFS_INODE_ITEM_KEY) { 535 struct btrfs_inode_item *dst_item; 536 dst_item = (struct btrfs_inode_item *)dst_ptr; 537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 538 btrfs_set_inode_generation(path->nodes[0], dst_item, 539 trans->transid); 540 } 541 } 542 no_copy: 543 btrfs_mark_buffer_dirty(path->nodes[0]); 544 btrfs_release_path(path); 545 return 0; 546 } 547 548 /* 549 * simple helper to read an inode off the disk from a given root 550 * This can only be called for subvolume roots and not for the log 551 */ 552 static noinline struct inode *read_one_inode(struct btrfs_root *root, 553 u64 objectid) 554 { 555 struct btrfs_key key; 556 struct inode *inode; 557 558 key.objectid = objectid; 559 key.type = BTRFS_INODE_ITEM_KEY; 560 key.offset = 0; 561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 562 if (IS_ERR(inode)) 563 inode = NULL; 564 return inode; 565 } 566 567 /* replays a single extent in 'eb' at 'slot' with 'key' into the 568 * subvolume 'root'. path is released on entry and should be released 569 * on exit. 570 * 571 * extents in the log tree have not been allocated out of the extent 572 * tree yet. So, this completes the allocation, taking a reference 573 * as required if the extent already exists or creating a new extent 574 * if it isn't in the extent allocation tree yet. 575 * 576 * The extent is inserted into the file, dropping any existing extents 577 * from the file that overlap the new one. 578 */ 579 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 580 struct btrfs_root *root, 581 struct btrfs_path *path, 582 struct extent_buffer *eb, int slot, 583 struct btrfs_key *key) 584 { 585 struct btrfs_fs_info *fs_info = root->fs_info; 586 int found_type; 587 u64 extent_end; 588 u64 start = key->offset; 589 u64 nbytes = 0; 590 struct btrfs_file_extent_item *item; 591 struct inode *inode = NULL; 592 unsigned long size; 593 int ret = 0; 594 595 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 596 found_type = btrfs_file_extent_type(eb, item); 597 598 if (found_type == BTRFS_FILE_EXTENT_REG || 599 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 600 nbytes = btrfs_file_extent_num_bytes(eb, item); 601 extent_end = start + nbytes; 602 603 /* 604 * We don't add to the inodes nbytes if we are prealloc or a 605 * hole. 606 */ 607 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 608 nbytes = 0; 609 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 610 size = btrfs_file_extent_ram_bytes(eb, item); 611 nbytes = btrfs_file_extent_ram_bytes(eb, item); 612 extent_end = ALIGN(start + size, 613 fs_info->sectorsize); 614 } else { 615 ret = 0; 616 goto out; 617 } 618 619 inode = read_one_inode(root, key->objectid); 620 if (!inode) { 621 ret = -EIO; 622 goto out; 623 } 624 625 /* 626 * first check to see if we already have this extent in the 627 * file. This must be done before the btrfs_drop_extents run 628 * so we don't try to drop this extent. 629 */ 630 ret = btrfs_lookup_file_extent(trans, root, path, 631 btrfs_ino(BTRFS_I(inode)), start, 0); 632 633 if (ret == 0 && 634 (found_type == BTRFS_FILE_EXTENT_REG || 635 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 636 struct btrfs_file_extent_item cmp1; 637 struct btrfs_file_extent_item cmp2; 638 struct btrfs_file_extent_item *existing; 639 struct extent_buffer *leaf; 640 641 leaf = path->nodes[0]; 642 existing = btrfs_item_ptr(leaf, path->slots[0], 643 struct btrfs_file_extent_item); 644 645 read_extent_buffer(eb, &cmp1, (unsigned long)item, 646 sizeof(cmp1)); 647 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 648 sizeof(cmp2)); 649 650 /* 651 * we already have a pointer to this exact extent, 652 * we don't have to do anything 653 */ 654 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 655 btrfs_release_path(path); 656 goto out; 657 } 658 } 659 btrfs_release_path(path); 660 661 /* drop any overlapping extents */ 662 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 663 if (ret) 664 goto out; 665 666 if (found_type == BTRFS_FILE_EXTENT_REG || 667 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 668 u64 offset; 669 unsigned long dest_offset; 670 struct btrfs_key ins; 671 672 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 673 btrfs_fs_incompat(fs_info, NO_HOLES)) 674 goto update_inode; 675 676 ret = btrfs_insert_empty_item(trans, root, path, key, 677 sizeof(*item)); 678 if (ret) 679 goto out; 680 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 681 path->slots[0]); 682 copy_extent_buffer(path->nodes[0], eb, dest_offset, 683 (unsigned long)item, sizeof(*item)); 684 685 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 686 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 687 ins.type = BTRFS_EXTENT_ITEM_KEY; 688 offset = key->offset - btrfs_file_extent_offset(eb, item); 689 690 /* 691 * Manually record dirty extent, as here we did a shallow 692 * file extent item copy and skip normal backref update, 693 * but modifying extent tree all by ourselves. 694 * So need to manually record dirty extent for qgroup, 695 * as the owner of the file extent changed from log tree 696 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 697 */ 698 ret = btrfs_qgroup_trace_extent(trans, 699 btrfs_file_extent_disk_bytenr(eb, item), 700 btrfs_file_extent_disk_num_bytes(eb, item), 701 GFP_NOFS); 702 if (ret < 0) 703 goto out; 704 705 if (ins.objectid > 0) { 706 struct btrfs_ref ref = { 0 }; 707 u64 csum_start; 708 u64 csum_end; 709 LIST_HEAD(ordered_sums); 710 711 /* 712 * is this extent already allocated in the extent 713 * allocation tree? If so, just add a reference 714 */ 715 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 716 ins.offset); 717 if (ret == 0) { 718 btrfs_init_generic_ref(&ref, 719 BTRFS_ADD_DELAYED_REF, 720 ins.objectid, ins.offset, 0); 721 btrfs_init_data_ref(&ref, 722 root->root_key.objectid, 723 key->objectid, offset); 724 ret = btrfs_inc_extent_ref(trans, &ref); 725 if (ret) 726 goto out; 727 } else { 728 /* 729 * insert the extent pointer in the extent 730 * allocation tree 731 */ 732 ret = btrfs_alloc_logged_file_extent(trans, 733 root->root_key.objectid, 734 key->objectid, offset, &ins); 735 if (ret) 736 goto out; 737 } 738 btrfs_release_path(path); 739 740 if (btrfs_file_extent_compression(eb, item)) { 741 csum_start = ins.objectid; 742 csum_end = csum_start + ins.offset; 743 } else { 744 csum_start = ins.objectid + 745 btrfs_file_extent_offset(eb, item); 746 csum_end = csum_start + 747 btrfs_file_extent_num_bytes(eb, item); 748 } 749 750 ret = btrfs_lookup_csums_range(root->log_root, 751 csum_start, csum_end - 1, 752 &ordered_sums, 0); 753 if (ret) 754 goto out; 755 /* 756 * Now delete all existing cums in the csum root that 757 * cover our range. We do this because we can have an 758 * extent that is completely referenced by one file 759 * extent item and partially referenced by another 760 * file extent item (like after using the clone or 761 * extent_same ioctls). In this case if we end up doing 762 * the replay of the one that partially references the 763 * extent first, and we do not do the csum deletion 764 * below, we can get 2 csum items in the csum tree that 765 * overlap each other. For example, imagine our log has 766 * the two following file extent items: 767 * 768 * key (257 EXTENT_DATA 409600) 769 * extent data disk byte 12845056 nr 102400 770 * extent data offset 20480 nr 20480 ram 102400 771 * 772 * key (257 EXTENT_DATA 819200) 773 * extent data disk byte 12845056 nr 102400 774 * extent data offset 0 nr 102400 ram 102400 775 * 776 * Where the second one fully references the 100K extent 777 * that starts at disk byte 12845056, and the log tree 778 * has a single csum item that covers the entire range 779 * of the extent: 780 * 781 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 782 * 783 * After the first file extent item is replayed, the 784 * csum tree gets the following csum item: 785 * 786 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 787 * 788 * Which covers the 20K sub-range starting at offset 20K 789 * of our extent. Now when we replay the second file 790 * extent item, if we do not delete existing csum items 791 * that cover any of its blocks, we end up getting two 792 * csum items in our csum tree that overlap each other: 793 * 794 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 795 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 796 * 797 * Which is a problem, because after this anyone trying 798 * to lookup up for the checksum of any block of our 799 * extent starting at an offset of 40K or higher, will 800 * end up looking at the second csum item only, which 801 * does not contain the checksum for any block starting 802 * at offset 40K or higher of our extent. 803 */ 804 while (!list_empty(&ordered_sums)) { 805 struct btrfs_ordered_sum *sums; 806 sums = list_entry(ordered_sums.next, 807 struct btrfs_ordered_sum, 808 list); 809 if (!ret) 810 ret = btrfs_del_csums(trans, fs_info, 811 sums->bytenr, 812 sums->len); 813 if (!ret) 814 ret = btrfs_csum_file_blocks(trans, 815 fs_info->csum_root, sums); 816 list_del(&sums->list); 817 kfree(sums); 818 } 819 if (ret) 820 goto out; 821 } else { 822 btrfs_release_path(path); 823 } 824 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 825 /* inline extents are easy, we just overwrite them */ 826 ret = overwrite_item(trans, root, path, eb, slot, key); 827 if (ret) 828 goto out; 829 } 830 831 inode_add_bytes(inode, nbytes); 832 update_inode: 833 ret = btrfs_update_inode(trans, root, inode); 834 out: 835 if (inode) 836 iput(inode); 837 return ret; 838 } 839 840 /* 841 * when cleaning up conflicts between the directory names in the 842 * subvolume, directory names in the log and directory names in the 843 * inode back references, we may have to unlink inodes from directories. 844 * 845 * This is a helper function to do the unlink of a specific directory 846 * item 847 */ 848 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 849 struct btrfs_root *root, 850 struct btrfs_path *path, 851 struct btrfs_inode *dir, 852 struct btrfs_dir_item *di) 853 { 854 struct inode *inode; 855 char *name; 856 int name_len; 857 struct extent_buffer *leaf; 858 struct btrfs_key location; 859 int ret; 860 861 leaf = path->nodes[0]; 862 863 btrfs_dir_item_key_to_cpu(leaf, di, &location); 864 name_len = btrfs_dir_name_len(leaf, di); 865 name = kmalloc(name_len, GFP_NOFS); 866 if (!name) 867 return -ENOMEM; 868 869 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 870 btrfs_release_path(path); 871 872 inode = read_one_inode(root, location.objectid); 873 if (!inode) { 874 ret = -EIO; 875 goto out; 876 } 877 878 ret = link_to_fixup_dir(trans, root, path, location.objectid); 879 if (ret) 880 goto out; 881 882 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, 883 name_len); 884 if (ret) 885 goto out; 886 else 887 ret = btrfs_run_delayed_items(trans); 888 out: 889 kfree(name); 890 iput(inode); 891 return ret; 892 } 893 894 /* 895 * helper function to see if a given name and sequence number found 896 * in an inode back reference are already in a directory and correctly 897 * point to this inode 898 */ 899 static noinline int inode_in_dir(struct btrfs_root *root, 900 struct btrfs_path *path, 901 u64 dirid, u64 objectid, u64 index, 902 const char *name, int name_len) 903 { 904 struct btrfs_dir_item *di; 905 struct btrfs_key location; 906 int match = 0; 907 908 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 909 index, name, name_len, 0); 910 if (di && !IS_ERR(di)) { 911 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 912 if (location.objectid != objectid) 913 goto out; 914 } else 915 goto out; 916 btrfs_release_path(path); 917 918 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 919 if (di && !IS_ERR(di)) { 920 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 921 if (location.objectid != objectid) 922 goto out; 923 } else 924 goto out; 925 match = 1; 926 out: 927 btrfs_release_path(path); 928 return match; 929 } 930 931 /* 932 * helper function to check a log tree for a named back reference in 933 * an inode. This is used to decide if a back reference that is 934 * found in the subvolume conflicts with what we find in the log. 935 * 936 * inode backreferences may have multiple refs in a single item, 937 * during replay we process one reference at a time, and we don't 938 * want to delete valid links to a file from the subvolume if that 939 * link is also in the log. 940 */ 941 static noinline int backref_in_log(struct btrfs_root *log, 942 struct btrfs_key *key, 943 u64 ref_objectid, 944 const char *name, int namelen) 945 { 946 struct btrfs_path *path; 947 struct btrfs_inode_ref *ref; 948 unsigned long ptr; 949 unsigned long ptr_end; 950 unsigned long name_ptr; 951 int found_name_len; 952 int item_size; 953 int ret; 954 int match = 0; 955 956 path = btrfs_alloc_path(); 957 if (!path) 958 return -ENOMEM; 959 960 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 961 if (ret != 0) 962 goto out; 963 964 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 965 966 if (key->type == BTRFS_INODE_EXTREF_KEY) { 967 if (btrfs_find_name_in_ext_backref(path->nodes[0], 968 path->slots[0], 969 ref_objectid, 970 name, namelen, NULL)) 971 match = 1; 972 973 goto out; 974 } 975 976 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 977 ptr_end = ptr + item_size; 978 while (ptr < ptr_end) { 979 ref = (struct btrfs_inode_ref *)ptr; 980 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 981 if (found_name_len == namelen) { 982 name_ptr = (unsigned long)(ref + 1); 983 ret = memcmp_extent_buffer(path->nodes[0], name, 984 name_ptr, namelen); 985 if (ret == 0) { 986 match = 1; 987 goto out; 988 } 989 } 990 ptr = (unsigned long)(ref + 1) + found_name_len; 991 } 992 out: 993 btrfs_free_path(path); 994 return match; 995 } 996 997 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 998 struct btrfs_root *root, 999 struct btrfs_path *path, 1000 struct btrfs_root *log_root, 1001 struct btrfs_inode *dir, 1002 struct btrfs_inode *inode, 1003 u64 inode_objectid, u64 parent_objectid, 1004 u64 ref_index, char *name, int namelen, 1005 int *search_done) 1006 { 1007 int ret; 1008 char *victim_name; 1009 int victim_name_len; 1010 struct extent_buffer *leaf; 1011 struct btrfs_dir_item *di; 1012 struct btrfs_key search_key; 1013 struct btrfs_inode_extref *extref; 1014 1015 again: 1016 /* Search old style refs */ 1017 search_key.objectid = inode_objectid; 1018 search_key.type = BTRFS_INODE_REF_KEY; 1019 search_key.offset = parent_objectid; 1020 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1021 if (ret == 0) { 1022 struct btrfs_inode_ref *victim_ref; 1023 unsigned long ptr; 1024 unsigned long ptr_end; 1025 1026 leaf = path->nodes[0]; 1027 1028 /* are we trying to overwrite a back ref for the root directory 1029 * if so, just jump out, we're done 1030 */ 1031 if (search_key.objectid == search_key.offset) 1032 return 1; 1033 1034 /* check all the names in this back reference to see 1035 * if they are in the log. if so, we allow them to stay 1036 * otherwise they must be unlinked as a conflict 1037 */ 1038 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1039 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1040 while (ptr < ptr_end) { 1041 victim_ref = (struct btrfs_inode_ref *)ptr; 1042 victim_name_len = btrfs_inode_ref_name_len(leaf, 1043 victim_ref); 1044 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1045 if (!victim_name) 1046 return -ENOMEM; 1047 1048 read_extent_buffer(leaf, victim_name, 1049 (unsigned long)(victim_ref + 1), 1050 victim_name_len); 1051 1052 if (!backref_in_log(log_root, &search_key, 1053 parent_objectid, 1054 victim_name, 1055 victim_name_len)) { 1056 inc_nlink(&inode->vfs_inode); 1057 btrfs_release_path(path); 1058 1059 ret = btrfs_unlink_inode(trans, root, dir, inode, 1060 victim_name, victim_name_len); 1061 kfree(victim_name); 1062 if (ret) 1063 return ret; 1064 ret = btrfs_run_delayed_items(trans); 1065 if (ret) 1066 return ret; 1067 *search_done = 1; 1068 goto again; 1069 } 1070 kfree(victim_name); 1071 1072 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1073 } 1074 1075 /* 1076 * NOTE: we have searched root tree and checked the 1077 * corresponding ref, it does not need to check again. 1078 */ 1079 *search_done = 1; 1080 } 1081 btrfs_release_path(path); 1082 1083 /* Same search but for extended refs */ 1084 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1085 inode_objectid, parent_objectid, 0, 1086 0); 1087 if (!IS_ERR_OR_NULL(extref)) { 1088 u32 item_size; 1089 u32 cur_offset = 0; 1090 unsigned long base; 1091 struct inode *victim_parent; 1092 1093 leaf = path->nodes[0]; 1094 1095 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1096 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1097 1098 while (cur_offset < item_size) { 1099 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1100 1101 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1102 1103 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1104 goto next; 1105 1106 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1107 if (!victim_name) 1108 return -ENOMEM; 1109 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1110 victim_name_len); 1111 1112 search_key.objectid = inode_objectid; 1113 search_key.type = BTRFS_INODE_EXTREF_KEY; 1114 search_key.offset = btrfs_extref_hash(parent_objectid, 1115 victim_name, 1116 victim_name_len); 1117 ret = 0; 1118 if (!backref_in_log(log_root, &search_key, 1119 parent_objectid, victim_name, 1120 victim_name_len)) { 1121 ret = -ENOENT; 1122 victim_parent = read_one_inode(root, 1123 parent_objectid); 1124 if (victim_parent) { 1125 inc_nlink(&inode->vfs_inode); 1126 btrfs_release_path(path); 1127 1128 ret = btrfs_unlink_inode(trans, root, 1129 BTRFS_I(victim_parent), 1130 inode, 1131 victim_name, 1132 victim_name_len); 1133 if (!ret) 1134 ret = btrfs_run_delayed_items( 1135 trans); 1136 } 1137 iput(victim_parent); 1138 kfree(victim_name); 1139 if (ret) 1140 return ret; 1141 *search_done = 1; 1142 goto again; 1143 } 1144 kfree(victim_name); 1145 next: 1146 cur_offset += victim_name_len + sizeof(*extref); 1147 } 1148 *search_done = 1; 1149 } 1150 btrfs_release_path(path); 1151 1152 /* look for a conflicting sequence number */ 1153 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1154 ref_index, name, namelen, 0); 1155 if (di && !IS_ERR(di)) { 1156 ret = drop_one_dir_item(trans, root, path, dir, di); 1157 if (ret) 1158 return ret; 1159 } 1160 btrfs_release_path(path); 1161 1162 /* look for a conflicting name */ 1163 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1164 name, namelen, 0); 1165 if (di && !IS_ERR(di)) { 1166 ret = drop_one_dir_item(trans, root, path, dir, di); 1167 if (ret) 1168 return ret; 1169 } 1170 btrfs_release_path(path); 1171 1172 return 0; 1173 } 1174 1175 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1176 u32 *namelen, char **name, u64 *index, 1177 u64 *parent_objectid) 1178 { 1179 struct btrfs_inode_extref *extref; 1180 1181 extref = (struct btrfs_inode_extref *)ref_ptr; 1182 1183 *namelen = btrfs_inode_extref_name_len(eb, extref); 1184 *name = kmalloc(*namelen, GFP_NOFS); 1185 if (*name == NULL) 1186 return -ENOMEM; 1187 1188 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1189 *namelen); 1190 1191 if (index) 1192 *index = btrfs_inode_extref_index(eb, extref); 1193 if (parent_objectid) 1194 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1195 1196 return 0; 1197 } 1198 1199 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1200 u32 *namelen, char **name, u64 *index) 1201 { 1202 struct btrfs_inode_ref *ref; 1203 1204 ref = (struct btrfs_inode_ref *)ref_ptr; 1205 1206 *namelen = btrfs_inode_ref_name_len(eb, ref); 1207 *name = kmalloc(*namelen, GFP_NOFS); 1208 if (*name == NULL) 1209 return -ENOMEM; 1210 1211 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1212 1213 if (index) 1214 *index = btrfs_inode_ref_index(eb, ref); 1215 1216 return 0; 1217 } 1218 1219 /* 1220 * Take an inode reference item from the log tree and iterate all names from the 1221 * inode reference item in the subvolume tree with the same key (if it exists). 1222 * For any name that is not in the inode reference item from the log tree, do a 1223 * proper unlink of that name (that is, remove its entry from the inode 1224 * reference item and both dir index keys). 1225 */ 1226 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1227 struct btrfs_root *root, 1228 struct btrfs_path *path, 1229 struct btrfs_inode *inode, 1230 struct extent_buffer *log_eb, 1231 int log_slot, 1232 struct btrfs_key *key) 1233 { 1234 int ret; 1235 unsigned long ref_ptr; 1236 unsigned long ref_end; 1237 struct extent_buffer *eb; 1238 1239 again: 1240 btrfs_release_path(path); 1241 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1242 if (ret > 0) { 1243 ret = 0; 1244 goto out; 1245 } 1246 if (ret < 0) 1247 goto out; 1248 1249 eb = path->nodes[0]; 1250 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1251 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); 1252 while (ref_ptr < ref_end) { 1253 char *name = NULL; 1254 int namelen; 1255 u64 parent_id; 1256 1257 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1258 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1259 NULL, &parent_id); 1260 } else { 1261 parent_id = key->offset; 1262 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1263 NULL); 1264 } 1265 if (ret) 1266 goto out; 1267 1268 if (key->type == BTRFS_INODE_EXTREF_KEY) 1269 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot, 1270 parent_id, name, 1271 namelen, NULL); 1272 else 1273 ret = btrfs_find_name_in_backref(log_eb, log_slot, name, 1274 namelen, NULL); 1275 1276 if (!ret) { 1277 struct inode *dir; 1278 1279 btrfs_release_path(path); 1280 dir = read_one_inode(root, parent_id); 1281 if (!dir) { 1282 ret = -ENOENT; 1283 kfree(name); 1284 goto out; 1285 } 1286 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 1287 inode, name, namelen); 1288 kfree(name); 1289 iput(dir); 1290 if (ret) 1291 goto out; 1292 goto again; 1293 } 1294 1295 kfree(name); 1296 ref_ptr += namelen; 1297 if (key->type == BTRFS_INODE_EXTREF_KEY) 1298 ref_ptr += sizeof(struct btrfs_inode_extref); 1299 else 1300 ref_ptr += sizeof(struct btrfs_inode_ref); 1301 } 1302 ret = 0; 1303 out: 1304 btrfs_release_path(path); 1305 return ret; 1306 } 1307 1308 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1309 const u8 ref_type, const char *name, 1310 const int namelen) 1311 { 1312 struct btrfs_key key; 1313 struct btrfs_path *path; 1314 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1315 int ret; 1316 1317 path = btrfs_alloc_path(); 1318 if (!path) 1319 return -ENOMEM; 1320 1321 key.objectid = btrfs_ino(BTRFS_I(inode)); 1322 key.type = ref_type; 1323 if (key.type == BTRFS_INODE_REF_KEY) 1324 key.offset = parent_id; 1325 else 1326 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1327 1328 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1329 if (ret < 0) 1330 goto out; 1331 if (ret > 0) { 1332 ret = 0; 1333 goto out; 1334 } 1335 if (key.type == BTRFS_INODE_EXTREF_KEY) 1336 ret = btrfs_find_name_in_ext_backref(path->nodes[0], 1337 path->slots[0], parent_id, 1338 name, namelen, NULL); 1339 else 1340 ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1341 name, namelen, NULL); 1342 1343 out: 1344 btrfs_free_path(path); 1345 return ret; 1346 } 1347 1348 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1349 struct inode *dir, struct inode *inode, const char *name, 1350 int namelen, u64 ref_index) 1351 { 1352 struct btrfs_dir_item *dir_item; 1353 struct btrfs_key key; 1354 struct btrfs_path *path; 1355 struct inode *other_inode = NULL; 1356 int ret; 1357 1358 path = btrfs_alloc_path(); 1359 if (!path) 1360 return -ENOMEM; 1361 1362 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1363 btrfs_ino(BTRFS_I(dir)), 1364 name, namelen, 0); 1365 if (!dir_item) { 1366 btrfs_release_path(path); 1367 goto add_link; 1368 } else if (IS_ERR(dir_item)) { 1369 ret = PTR_ERR(dir_item); 1370 goto out; 1371 } 1372 1373 /* 1374 * Our inode's dentry collides with the dentry of another inode which is 1375 * in the log but not yet processed since it has a higher inode number. 1376 * So delete that other dentry. 1377 */ 1378 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1379 btrfs_release_path(path); 1380 other_inode = read_one_inode(root, key.objectid); 1381 if (!other_inode) { 1382 ret = -ENOENT; 1383 goto out; 1384 } 1385 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode), 1386 name, namelen); 1387 if (ret) 1388 goto out; 1389 /* 1390 * If we dropped the link count to 0, bump it so that later the iput() 1391 * on the inode will not free it. We will fixup the link count later. 1392 */ 1393 if (other_inode->i_nlink == 0) 1394 inc_nlink(other_inode); 1395 1396 ret = btrfs_run_delayed_items(trans); 1397 if (ret) 1398 goto out; 1399 add_link: 1400 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1401 name, namelen, 0, ref_index); 1402 out: 1403 iput(other_inode); 1404 btrfs_free_path(path); 1405 1406 return ret; 1407 } 1408 1409 /* 1410 * replay one inode back reference item found in the log tree. 1411 * eb, slot and key refer to the buffer and key found in the log tree. 1412 * root is the destination we are replaying into, and path is for temp 1413 * use by this function. (it should be released on return). 1414 */ 1415 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1416 struct btrfs_root *root, 1417 struct btrfs_root *log, 1418 struct btrfs_path *path, 1419 struct extent_buffer *eb, int slot, 1420 struct btrfs_key *key) 1421 { 1422 struct inode *dir = NULL; 1423 struct inode *inode = NULL; 1424 unsigned long ref_ptr; 1425 unsigned long ref_end; 1426 char *name = NULL; 1427 int namelen; 1428 int ret; 1429 int search_done = 0; 1430 int log_ref_ver = 0; 1431 u64 parent_objectid; 1432 u64 inode_objectid; 1433 u64 ref_index = 0; 1434 int ref_struct_size; 1435 1436 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1437 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1438 1439 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1440 struct btrfs_inode_extref *r; 1441 1442 ref_struct_size = sizeof(struct btrfs_inode_extref); 1443 log_ref_ver = 1; 1444 r = (struct btrfs_inode_extref *)ref_ptr; 1445 parent_objectid = btrfs_inode_extref_parent(eb, r); 1446 } else { 1447 ref_struct_size = sizeof(struct btrfs_inode_ref); 1448 parent_objectid = key->offset; 1449 } 1450 inode_objectid = key->objectid; 1451 1452 /* 1453 * it is possible that we didn't log all the parent directories 1454 * for a given inode. If we don't find the dir, just don't 1455 * copy the back ref in. The link count fixup code will take 1456 * care of the rest 1457 */ 1458 dir = read_one_inode(root, parent_objectid); 1459 if (!dir) { 1460 ret = -ENOENT; 1461 goto out; 1462 } 1463 1464 inode = read_one_inode(root, inode_objectid); 1465 if (!inode) { 1466 ret = -EIO; 1467 goto out; 1468 } 1469 1470 while (ref_ptr < ref_end) { 1471 if (log_ref_ver) { 1472 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1473 &ref_index, &parent_objectid); 1474 /* 1475 * parent object can change from one array 1476 * item to another. 1477 */ 1478 if (!dir) 1479 dir = read_one_inode(root, parent_objectid); 1480 if (!dir) { 1481 ret = -ENOENT; 1482 goto out; 1483 } 1484 } else { 1485 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1486 &ref_index); 1487 } 1488 if (ret) 1489 goto out; 1490 1491 /* if we already have a perfect match, we're done */ 1492 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1493 btrfs_ino(BTRFS_I(inode)), ref_index, 1494 name, namelen)) { 1495 /* 1496 * look for a conflicting back reference in the 1497 * metadata. if we find one we have to unlink that name 1498 * of the file before we add our new link. Later on, we 1499 * overwrite any existing back reference, and we don't 1500 * want to create dangling pointers in the directory. 1501 */ 1502 1503 if (!search_done) { 1504 ret = __add_inode_ref(trans, root, path, log, 1505 BTRFS_I(dir), 1506 BTRFS_I(inode), 1507 inode_objectid, 1508 parent_objectid, 1509 ref_index, name, namelen, 1510 &search_done); 1511 if (ret) { 1512 if (ret == 1) 1513 ret = 0; 1514 goto out; 1515 } 1516 } 1517 1518 /* 1519 * If a reference item already exists for this inode 1520 * with the same parent and name, but different index, 1521 * drop it and the corresponding directory index entries 1522 * from the parent before adding the new reference item 1523 * and dir index entries, otherwise we would fail with 1524 * -EEXIST returned from btrfs_add_link() below. 1525 */ 1526 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1527 name, namelen); 1528 if (ret > 0) { 1529 ret = btrfs_unlink_inode(trans, root, 1530 BTRFS_I(dir), 1531 BTRFS_I(inode), 1532 name, namelen); 1533 /* 1534 * If we dropped the link count to 0, bump it so 1535 * that later the iput() on the inode will not 1536 * free it. We will fixup the link count later. 1537 */ 1538 if (!ret && inode->i_nlink == 0) 1539 inc_nlink(inode); 1540 } 1541 if (ret < 0) 1542 goto out; 1543 1544 /* insert our name */ 1545 ret = add_link(trans, root, dir, inode, name, namelen, 1546 ref_index); 1547 if (ret) 1548 goto out; 1549 1550 btrfs_update_inode(trans, root, inode); 1551 } 1552 1553 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1554 kfree(name); 1555 name = NULL; 1556 if (log_ref_ver) { 1557 iput(dir); 1558 dir = NULL; 1559 } 1560 } 1561 1562 /* 1563 * Before we overwrite the inode reference item in the subvolume tree 1564 * with the item from the log tree, we must unlink all names from the 1565 * parent directory that are in the subvolume's tree inode reference 1566 * item, otherwise we end up with an inconsistent subvolume tree where 1567 * dir index entries exist for a name but there is no inode reference 1568 * item with the same name. 1569 */ 1570 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1571 key); 1572 if (ret) 1573 goto out; 1574 1575 /* finally write the back reference in the inode */ 1576 ret = overwrite_item(trans, root, path, eb, slot, key); 1577 out: 1578 btrfs_release_path(path); 1579 kfree(name); 1580 iput(dir); 1581 iput(inode); 1582 return ret; 1583 } 1584 1585 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1586 struct btrfs_root *root, u64 ino) 1587 { 1588 int ret; 1589 1590 ret = btrfs_insert_orphan_item(trans, root, ino); 1591 if (ret == -EEXIST) 1592 ret = 0; 1593 1594 return ret; 1595 } 1596 1597 static int count_inode_extrefs(struct btrfs_root *root, 1598 struct btrfs_inode *inode, struct btrfs_path *path) 1599 { 1600 int ret = 0; 1601 int name_len; 1602 unsigned int nlink = 0; 1603 u32 item_size; 1604 u32 cur_offset = 0; 1605 u64 inode_objectid = btrfs_ino(inode); 1606 u64 offset = 0; 1607 unsigned long ptr; 1608 struct btrfs_inode_extref *extref; 1609 struct extent_buffer *leaf; 1610 1611 while (1) { 1612 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1613 &extref, &offset); 1614 if (ret) 1615 break; 1616 1617 leaf = path->nodes[0]; 1618 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1619 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1620 cur_offset = 0; 1621 1622 while (cur_offset < item_size) { 1623 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1624 name_len = btrfs_inode_extref_name_len(leaf, extref); 1625 1626 nlink++; 1627 1628 cur_offset += name_len + sizeof(*extref); 1629 } 1630 1631 offset++; 1632 btrfs_release_path(path); 1633 } 1634 btrfs_release_path(path); 1635 1636 if (ret < 0 && ret != -ENOENT) 1637 return ret; 1638 return nlink; 1639 } 1640 1641 static int count_inode_refs(struct btrfs_root *root, 1642 struct btrfs_inode *inode, struct btrfs_path *path) 1643 { 1644 int ret; 1645 struct btrfs_key key; 1646 unsigned int nlink = 0; 1647 unsigned long ptr; 1648 unsigned long ptr_end; 1649 int name_len; 1650 u64 ino = btrfs_ino(inode); 1651 1652 key.objectid = ino; 1653 key.type = BTRFS_INODE_REF_KEY; 1654 key.offset = (u64)-1; 1655 1656 while (1) { 1657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1658 if (ret < 0) 1659 break; 1660 if (ret > 0) { 1661 if (path->slots[0] == 0) 1662 break; 1663 path->slots[0]--; 1664 } 1665 process_slot: 1666 btrfs_item_key_to_cpu(path->nodes[0], &key, 1667 path->slots[0]); 1668 if (key.objectid != ino || 1669 key.type != BTRFS_INODE_REF_KEY) 1670 break; 1671 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1672 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1673 path->slots[0]); 1674 while (ptr < ptr_end) { 1675 struct btrfs_inode_ref *ref; 1676 1677 ref = (struct btrfs_inode_ref *)ptr; 1678 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1679 ref); 1680 ptr = (unsigned long)(ref + 1) + name_len; 1681 nlink++; 1682 } 1683 1684 if (key.offset == 0) 1685 break; 1686 if (path->slots[0] > 0) { 1687 path->slots[0]--; 1688 goto process_slot; 1689 } 1690 key.offset--; 1691 btrfs_release_path(path); 1692 } 1693 btrfs_release_path(path); 1694 1695 return nlink; 1696 } 1697 1698 /* 1699 * There are a few corners where the link count of the file can't 1700 * be properly maintained during replay. So, instead of adding 1701 * lots of complexity to the log code, we just scan the backrefs 1702 * for any file that has been through replay. 1703 * 1704 * The scan will update the link count on the inode to reflect the 1705 * number of back refs found. If it goes down to zero, the iput 1706 * will free the inode. 1707 */ 1708 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1709 struct btrfs_root *root, 1710 struct inode *inode) 1711 { 1712 struct btrfs_path *path; 1713 int ret; 1714 u64 nlink = 0; 1715 u64 ino = btrfs_ino(BTRFS_I(inode)); 1716 1717 path = btrfs_alloc_path(); 1718 if (!path) 1719 return -ENOMEM; 1720 1721 ret = count_inode_refs(root, BTRFS_I(inode), path); 1722 if (ret < 0) 1723 goto out; 1724 1725 nlink = ret; 1726 1727 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1728 if (ret < 0) 1729 goto out; 1730 1731 nlink += ret; 1732 1733 ret = 0; 1734 1735 if (nlink != inode->i_nlink) { 1736 set_nlink(inode, nlink); 1737 btrfs_update_inode(trans, root, inode); 1738 } 1739 BTRFS_I(inode)->index_cnt = (u64)-1; 1740 1741 if (inode->i_nlink == 0) { 1742 if (S_ISDIR(inode->i_mode)) { 1743 ret = replay_dir_deletes(trans, root, NULL, path, 1744 ino, 1); 1745 if (ret) 1746 goto out; 1747 } 1748 ret = insert_orphan_item(trans, root, ino); 1749 } 1750 1751 out: 1752 btrfs_free_path(path); 1753 return ret; 1754 } 1755 1756 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1757 struct btrfs_root *root, 1758 struct btrfs_path *path) 1759 { 1760 int ret; 1761 struct btrfs_key key; 1762 struct inode *inode; 1763 1764 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1765 key.type = BTRFS_ORPHAN_ITEM_KEY; 1766 key.offset = (u64)-1; 1767 while (1) { 1768 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1769 if (ret < 0) 1770 break; 1771 1772 if (ret == 1) { 1773 if (path->slots[0] == 0) 1774 break; 1775 path->slots[0]--; 1776 } 1777 1778 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1779 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1780 key.type != BTRFS_ORPHAN_ITEM_KEY) 1781 break; 1782 1783 ret = btrfs_del_item(trans, root, path); 1784 if (ret) 1785 goto out; 1786 1787 btrfs_release_path(path); 1788 inode = read_one_inode(root, key.offset); 1789 if (!inode) 1790 return -EIO; 1791 1792 ret = fixup_inode_link_count(trans, root, inode); 1793 iput(inode); 1794 if (ret) 1795 goto out; 1796 1797 /* 1798 * fixup on a directory may create new entries, 1799 * make sure we always look for the highset possible 1800 * offset 1801 */ 1802 key.offset = (u64)-1; 1803 } 1804 ret = 0; 1805 out: 1806 btrfs_release_path(path); 1807 return ret; 1808 } 1809 1810 1811 /* 1812 * record a given inode in the fixup dir so we can check its link 1813 * count when replay is done. The link count is incremented here 1814 * so the inode won't go away until we check it 1815 */ 1816 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1817 struct btrfs_root *root, 1818 struct btrfs_path *path, 1819 u64 objectid) 1820 { 1821 struct btrfs_key key; 1822 int ret = 0; 1823 struct inode *inode; 1824 1825 inode = read_one_inode(root, objectid); 1826 if (!inode) 1827 return -EIO; 1828 1829 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1830 key.type = BTRFS_ORPHAN_ITEM_KEY; 1831 key.offset = objectid; 1832 1833 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1834 1835 btrfs_release_path(path); 1836 if (ret == 0) { 1837 if (!inode->i_nlink) 1838 set_nlink(inode, 1); 1839 else 1840 inc_nlink(inode); 1841 ret = btrfs_update_inode(trans, root, inode); 1842 } else if (ret == -EEXIST) { 1843 ret = 0; 1844 } else { 1845 BUG(); /* Logic Error */ 1846 } 1847 iput(inode); 1848 1849 return ret; 1850 } 1851 1852 /* 1853 * when replaying the log for a directory, we only insert names 1854 * for inodes that actually exist. This means an fsync on a directory 1855 * does not implicitly fsync all the new files in it 1856 */ 1857 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1858 struct btrfs_root *root, 1859 u64 dirid, u64 index, 1860 char *name, int name_len, 1861 struct btrfs_key *location) 1862 { 1863 struct inode *inode; 1864 struct inode *dir; 1865 int ret; 1866 1867 inode = read_one_inode(root, location->objectid); 1868 if (!inode) 1869 return -ENOENT; 1870 1871 dir = read_one_inode(root, dirid); 1872 if (!dir) { 1873 iput(inode); 1874 return -EIO; 1875 } 1876 1877 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1878 name_len, 1, index); 1879 1880 /* FIXME, put inode into FIXUP list */ 1881 1882 iput(inode); 1883 iput(dir); 1884 return ret; 1885 } 1886 1887 /* 1888 * Return true if an inode reference exists in the log for the given name, 1889 * inode and parent inode. 1890 */ 1891 static bool name_in_log_ref(struct btrfs_root *log_root, 1892 const char *name, const int name_len, 1893 const u64 dirid, const u64 ino) 1894 { 1895 struct btrfs_key search_key; 1896 1897 search_key.objectid = ino; 1898 search_key.type = BTRFS_INODE_REF_KEY; 1899 search_key.offset = dirid; 1900 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1901 return true; 1902 1903 search_key.type = BTRFS_INODE_EXTREF_KEY; 1904 search_key.offset = btrfs_extref_hash(dirid, name, name_len); 1905 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1906 return true; 1907 1908 return false; 1909 } 1910 1911 /* 1912 * take a single entry in a log directory item and replay it into 1913 * the subvolume. 1914 * 1915 * if a conflicting item exists in the subdirectory already, 1916 * the inode it points to is unlinked and put into the link count 1917 * fix up tree. 1918 * 1919 * If a name from the log points to a file or directory that does 1920 * not exist in the FS, it is skipped. fsyncs on directories 1921 * do not force down inodes inside that directory, just changes to the 1922 * names or unlinks in a directory. 1923 * 1924 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1925 * non-existing inode) and 1 if the name was replayed. 1926 */ 1927 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1928 struct btrfs_root *root, 1929 struct btrfs_path *path, 1930 struct extent_buffer *eb, 1931 struct btrfs_dir_item *di, 1932 struct btrfs_key *key) 1933 { 1934 char *name; 1935 int name_len; 1936 struct btrfs_dir_item *dst_di; 1937 struct btrfs_key found_key; 1938 struct btrfs_key log_key; 1939 struct inode *dir; 1940 u8 log_type; 1941 int exists; 1942 int ret = 0; 1943 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1944 bool name_added = false; 1945 1946 dir = read_one_inode(root, key->objectid); 1947 if (!dir) 1948 return -EIO; 1949 1950 name_len = btrfs_dir_name_len(eb, di); 1951 name = kmalloc(name_len, GFP_NOFS); 1952 if (!name) { 1953 ret = -ENOMEM; 1954 goto out; 1955 } 1956 1957 log_type = btrfs_dir_type(eb, di); 1958 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1959 name_len); 1960 1961 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1962 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1963 if (exists == 0) 1964 exists = 1; 1965 else 1966 exists = 0; 1967 btrfs_release_path(path); 1968 1969 if (key->type == BTRFS_DIR_ITEM_KEY) { 1970 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1971 name, name_len, 1); 1972 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1973 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1974 key->objectid, 1975 key->offset, name, 1976 name_len, 1); 1977 } else { 1978 /* Corruption */ 1979 ret = -EINVAL; 1980 goto out; 1981 } 1982 if (IS_ERR_OR_NULL(dst_di)) { 1983 /* we need a sequence number to insert, so we only 1984 * do inserts for the BTRFS_DIR_INDEX_KEY types 1985 */ 1986 if (key->type != BTRFS_DIR_INDEX_KEY) 1987 goto out; 1988 goto insert; 1989 } 1990 1991 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1992 /* the existing item matches the logged item */ 1993 if (found_key.objectid == log_key.objectid && 1994 found_key.type == log_key.type && 1995 found_key.offset == log_key.offset && 1996 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1997 update_size = false; 1998 goto out; 1999 } 2000 2001 /* 2002 * don't drop the conflicting directory entry if the inode 2003 * for the new entry doesn't exist 2004 */ 2005 if (!exists) 2006 goto out; 2007 2008 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); 2009 if (ret) 2010 goto out; 2011 2012 if (key->type == BTRFS_DIR_INDEX_KEY) 2013 goto insert; 2014 out: 2015 btrfs_release_path(path); 2016 if (!ret && update_size) { 2017 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 2018 ret = btrfs_update_inode(trans, root, dir); 2019 } 2020 kfree(name); 2021 iput(dir); 2022 if (!ret && name_added) 2023 ret = 1; 2024 return ret; 2025 2026 insert: 2027 if (name_in_log_ref(root->log_root, name, name_len, 2028 key->objectid, log_key.objectid)) { 2029 /* The dentry will be added later. */ 2030 ret = 0; 2031 update_size = false; 2032 goto out; 2033 } 2034 btrfs_release_path(path); 2035 ret = insert_one_name(trans, root, key->objectid, key->offset, 2036 name, name_len, &log_key); 2037 if (ret && ret != -ENOENT && ret != -EEXIST) 2038 goto out; 2039 if (!ret) 2040 name_added = true; 2041 update_size = false; 2042 ret = 0; 2043 goto out; 2044 } 2045 2046 /* 2047 * find all the names in a directory item and reconcile them into 2048 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 2049 * one name in a directory item, but the same code gets used for 2050 * both directory index types 2051 */ 2052 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2053 struct btrfs_root *root, 2054 struct btrfs_path *path, 2055 struct extent_buffer *eb, int slot, 2056 struct btrfs_key *key) 2057 { 2058 int ret = 0; 2059 u32 item_size = btrfs_item_size_nr(eb, slot); 2060 struct btrfs_dir_item *di; 2061 int name_len; 2062 unsigned long ptr; 2063 unsigned long ptr_end; 2064 struct btrfs_path *fixup_path = NULL; 2065 2066 ptr = btrfs_item_ptr_offset(eb, slot); 2067 ptr_end = ptr + item_size; 2068 while (ptr < ptr_end) { 2069 di = (struct btrfs_dir_item *)ptr; 2070 name_len = btrfs_dir_name_len(eb, di); 2071 ret = replay_one_name(trans, root, path, eb, di, key); 2072 if (ret < 0) 2073 break; 2074 ptr = (unsigned long)(di + 1); 2075 ptr += name_len; 2076 2077 /* 2078 * If this entry refers to a non-directory (directories can not 2079 * have a link count > 1) and it was added in the transaction 2080 * that was not committed, make sure we fixup the link count of 2081 * the inode it the entry points to. Otherwise something like 2082 * the following would result in a directory pointing to an 2083 * inode with a wrong link that does not account for this dir 2084 * entry: 2085 * 2086 * mkdir testdir 2087 * touch testdir/foo 2088 * touch testdir/bar 2089 * sync 2090 * 2091 * ln testdir/bar testdir/bar_link 2092 * ln testdir/foo testdir/foo_link 2093 * xfs_io -c "fsync" testdir/bar 2094 * 2095 * <power failure> 2096 * 2097 * mount fs, log replay happens 2098 * 2099 * File foo would remain with a link count of 1 when it has two 2100 * entries pointing to it in the directory testdir. This would 2101 * make it impossible to ever delete the parent directory has 2102 * it would result in stale dentries that can never be deleted. 2103 */ 2104 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2105 struct btrfs_key di_key; 2106 2107 if (!fixup_path) { 2108 fixup_path = btrfs_alloc_path(); 2109 if (!fixup_path) { 2110 ret = -ENOMEM; 2111 break; 2112 } 2113 } 2114 2115 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2116 ret = link_to_fixup_dir(trans, root, fixup_path, 2117 di_key.objectid); 2118 if (ret) 2119 break; 2120 } 2121 ret = 0; 2122 } 2123 btrfs_free_path(fixup_path); 2124 return ret; 2125 } 2126 2127 /* 2128 * directory replay has two parts. There are the standard directory 2129 * items in the log copied from the subvolume, and range items 2130 * created in the log while the subvolume was logged. 2131 * 2132 * The range items tell us which parts of the key space the log 2133 * is authoritative for. During replay, if a key in the subvolume 2134 * directory is in a logged range item, but not actually in the log 2135 * that means it was deleted from the directory before the fsync 2136 * and should be removed. 2137 */ 2138 static noinline int find_dir_range(struct btrfs_root *root, 2139 struct btrfs_path *path, 2140 u64 dirid, int key_type, 2141 u64 *start_ret, u64 *end_ret) 2142 { 2143 struct btrfs_key key; 2144 u64 found_end; 2145 struct btrfs_dir_log_item *item; 2146 int ret; 2147 int nritems; 2148 2149 if (*start_ret == (u64)-1) 2150 return 1; 2151 2152 key.objectid = dirid; 2153 key.type = key_type; 2154 key.offset = *start_ret; 2155 2156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2157 if (ret < 0) 2158 goto out; 2159 if (ret > 0) { 2160 if (path->slots[0] == 0) 2161 goto out; 2162 path->slots[0]--; 2163 } 2164 if (ret != 0) 2165 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2166 2167 if (key.type != key_type || key.objectid != dirid) { 2168 ret = 1; 2169 goto next; 2170 } 2171 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2172 struct btrfs_dir_log_item); 2173 found_end = btrfs_dir_log_end(path->nodes[0], item); 2174 2175 if (*start_ret >= key.offset && *start_ret <= found_end) { 2176 ret = 0; 2177 *start_ret = key.offset; 2178 *end_ret = found_end; 2179 goto out; 2180 } 2181 ret = 1; 2182 next: 2183 /* check the next slot in the tree to see if it is a valid item */ 2184 nritems = btrfs_header_nritems(path->nodes[0]); 2185 path->slots[0]++; 2186 if (path->slots[0] >= nritems) { 2187 ret = btrfs_next_leaf(root, path); 2188 if (ret) 2189 goto out; 2190 } 2191 2192 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2193 2194 if (key.type != key_type || key.objectid != dirid) { 2195 ret = 1; 2196 goto out; 2197 } 2198 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2199 struct btrfs_dir_log_item); 2200 found_end = btrfs_dir_log_end(path->nodes[0], item); 2201 *start_ret = key.offset; 2202 *end_ret = found_end; 2203 ret = 0; 2204 out: 2205 btrfs_release_path(path); 2206 return ret; 2207 } 2208 2209 /* 2210 * this looks for a given directory item in the log. If the directory 2211 * item is not in the log, the item is removed and the inode it points 2212 * to is unlinked 2213 */ 2214 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2215 struct btrfs_root *root, 2216 struct btrfs_root *log, 2217 struct btrfs_path *path, 2218 struct btrfs_path *log_path, 2219 struct inode *dir, 2220 struct btrfs_key *dir_key) 2221 { 2222 int ret; 2223 struct extent_buffer *eb; 2224 int slot; 2225 u32 item_size; 2226 struct btrfs_dir_item *di; 2227 struct btrfs_dir_item *log_di; 2228 int name_len; 2229 unsigned long ptr; 2230 unsigned long ptr_end; 2231 char *name; 2232 struct inode *inode; 2233 struct btrfs_key location; 2234 2235 again: 2236 eb = path->nodes[0]; 2237 slot = path->slots[0]; 2238 item_size = btrfs_item_size_nr(eb, slot); 2239 ptr = btrfs_item_ptr_offset(eb, slot); 2240 ptr_end = ptr + item_size; 2241 while (ptr < ptr_end) { 2242 di = (struct btrfs_dir_item *)ptr; 2243 name_len = btrfs_dir_name_len(eb, di); 2244 name = kmalloc(name_len, GFP_NOFS); 2245 if (!name) { 2246 ret = -ENOMEM; 2247 goto out; 2248 } 2249 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2250 name_len); 2251 log_di = NULL; 2252 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2253 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2254 dir_key->objectid, 2255 name, name_len, 0); 2256 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2257 log_di = btrfs_lookup_dir_index_item(trans, log, 2258 log_path, 2259 dir_key->objectid, 2260 dir_key->offset, 2261 name, name_len, 0); 2262 } 2263 if (!log_di || log_di == ERR_PTR(-ENOENT)) { 2264 btrfs_dir_item_key_to_cpu(eb, di, &location); 2265 btrfs_release_path(path); 2266 btrfs_release_path(log_path); 2267 inode = read_one_inode(root, location.objectid); 2268 if (!inode) { 2269 kfree(name); 2270 return -EIO; 2271 } 2272 2273 ret = link_to_fixup_dir(trans, root, 2274 path, location.objectid); 2275 if (ret) { 2276 kfree(name); 2277 iput(inode); 2278 goto out; 2279 } 2280 2281 inc_nlink(inode); 2282 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 2283 BTRFS_I(inode), name, name_len); 2284 if (!ret) 2285 ret = btrfs_run_delayed_items(trans); 2286 kfree(name); 2287 iput(inode); 2288 if (ret) 2289 goto out; 2290 2291 /* there might still be more names under this key 2292 * check and repeat if required 2293 */ 2294 ret = btrfs_search_slot(NULL, root, dir_key, path, 2295 0, 0); 2296 if (ret == 0) 2297 goto again; 2298 ret = 0; 2299 goto out; 2300 } else if (IS_ERR(log_di)) { 2301 kfree(name); 2302 return PTR_ERR(log_di); 2303 } 2304 btrfs_release_path(log_path); 2305 kfree(name); 2306 2307 ptr = (unsigned long)(di + 1); 2308 ptr += name_len; 2309 } 2310 ret = 0; 2311 out: 2312 btrfs_release_path(path); 2313 btrfs_release_path(log_path); 2314 return ret; 2315 } 2316 2317 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2318 struct btrfs_root *root, 2319 struct btrfs_root *log, 2320 struct btrfs_path *path, 2321 const u64 ino) 2322 { 2323 struct btrfs_key search_key; 2324 struct btrfs_path *log_path; 2325 int i; 2326 int nritems; 2327 int ret; 2328 2329 log_path = btrfs_alloc_path(); 2330 if (!log_path) 2331 return -ENOMEM; 2332 2333 search_key.objectid = ino; 2334 search_key.type = BTRFS_XATTR_ITEM_KEY; 2335 search_key.offset = 0; 2336 again: 2337 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2338 if (ret < 0) 2339 goto out; 2340 process_leaf: 2341 nritems = btrfs_header_nritems(path->nodes[0]); 2342 for (i = path->slots[0]; i < nritems; i++) { 2343 struct btrfs_key key; 2344 struct btrfs_dir_item *di; 2345 struct btrfs_dir_item *log_di; 2346 u32 total_size; 2347 u32 cur; 2348 2349 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2350 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2351 ret = 0; 2352 goto out; 2353 } 2354 2355 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2356 total_size = btrfs_item_size_nr(path->nodes[0], i); 2357 cur = 0; 2358 while (cur < total_size) { 2359 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2360 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2361 u32 this_len = sizeof(*di) + name_len + data_len; 2362 char *name; 2363 2364 name = kmalloc(name_len, GFP_NOFS); 2365 if (!name) { 2366 ret = -ENOMEM; 2367 goto out; 2368 } 2369 read_extent_buffer(path->nodes[0], name, 2370 (unsigned long)(di + 1), name_len); 2371 2372 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2373 name, name_len, 0); 2374 btrfs_release_path(log_path); 2375 if (!log_di) { 2376 /* Doesn't exist in log tree, so delete it. */ 2377 btrfs_release_path(path); 2378 di = btrfs_lookup_xattr(trans, root, path, ino, 2379 name, name_len, -1); 2380 kfree(name); 2381 if (IS_ERR(di)) { 2382 ret = PTR_ERR(di); 2383 goto out; 2384 } 2385 ASSERT(di); 2386 ret = btrfs_delete_one_dir_name(trans, root, 2387 path, di); 2388 if (ret) 2389 goto out; 2390 btrfs_release_path(path); 2391 search_key = key; 2392 goto again; 2393 } 2394 kfree(name); 2395 if (IS_ERR(log_di)) { 2396 ret = PTR_ERR(log_di); 2397 goto out; 2398 } 2399 cur += this_len; 2400 di = (struct btrfs_dir_item *)((char *)di + this_len); 2401 } 2402 } 2403 ret = btrfs_next_leaf(root, path); 2404 if (ret > 0) 2405 ret = 0; 2406 else if (ret == 0) 2407 goto process_leaf; 2408 out: 2409 btrfs_free_path(log_path); 2410 btrfs_release_path(path); 2411 return ret; 2412 } 2413 2414 2415 /* 2416 * deletion replay happens before we copy any new directory items 2417 * out of the log or out of backreferences from inodes. It 2418 * scans the log to find ranges of keys that log is authoritative for, 2419 * and then scans the directory to find items in those ranges that are 2420 * not present in the log. 2421 * 2422 * Anything we don't find in the log is unlinked and removed from the 2423 * directory. 2424 */ 2425 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2426 struct btrfs_root *root, 2427 struct btrfs_root *log, 2428 struct btrfs_path *path, 2429 u64 dirid, int del_all) 2430 { 2431 u64 range_start; 2432 u64 range_end; 2433 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2434 int ret = 0; 2435 struct btrfs_key dir_key; 2436 struct btrfs_key found_key; 2437 struct btrfs_path *log_path; 2438 struct inode *dir; 2439 2440 dir_key.objectid = dirid; 2441 dir_key.type = BTRFS_DIR_ITEM_KEY; 2442 log_path = btrfs_alloc_path(); 2443 if (!log_path) 2444 return -ENOMEM; 2445 2446 dir = read_one_inode(root, dirid); 2447 /* it isn't an error if the inode isn't there, that can happen 2448 * because we replay the deletes before we copy in the inode item 2449 * from the log 2450 */ 2451 if (!dir) { 2452 btrfs_free_path(log_path); 2453 return 0; 2454 } 2455 again: 2456 range_start = 0; 2457 range_end = 0; 2458 while (1) { 2459 if (del_all) 2460 range_end = (u64)-1; 2461 else { 2462 ret = find_dir_range(log, path, dirid, key_type, 2463 &range_start, &range_end); 2464 if (ret != 0) 2465 break; 2466 } 2467 2468 dir_key.offset = range_start; 2469 while (1) { 2470 int nritems; 2471 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2472 0, 0); 2473 if (ret < 0) 2474 goto out; 2475 2476 nritems = btrfs_header_nritems(path->nodes[0]); 2477 if (path->slots[0] >= nritems) { 2478 ret = btrfs_next_leaf(root, path); 2479 if (ret == 1) 2480 break; 2481 else if (ret < 0) 2482 goto out; 2483 } 2484 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2485 path->slots[0]); 2486 if (found_key.objectid != dirid || 2487 found_key.type != dir_key.type) 2488 goto next_type; 2489 2490 if (found_key.offset > range_end) 2491 break; 2492 2493 ret = check_item_in_log(trans, root, log, path, 2494 log_path, dir, 2495 &found_key); 2496 if (ret) 2497 goto out; 2498 if (found_key.offset == (u64)-1) 2499 break; 2500 dir_key.offset = found_key.offset + 1; 2501 } 2502 btrfs_release_path(path); 2503 if (range_end == (u64)-1) 2504 break; 2505 range_start = range_end + 1; 2506 } 2507 2508 next_type: 2509 ret = 0; 2510 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2511 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2512 dir_key.type = BTRFS_DIR_INDEX_KEY; 2513 btrfs_release_path(path); 2514 goto again; 2515 } 2516 out: 2517 btrfs_release_path(path); 2518 btrfs_free_path(log_path); 2519 iput(dir); 2520 return ret; 2521 } 2522 2523 /* 2524 * the process_func used to replay items from the log tree. This 2525 * gets called in two different stages. The first stage just looks 2526 * for inodes and makes sure they are all copied into the subvolume. 2527 * 2528 * The second stage copies all the other item types from the log into 2529 * the subvolume. The two stage approach is slower, but gets rid of 2530 * lots of complexity around inodes referencing other inodes that exist 2531 * only in the log (references come from either directory items or inode 2532 * back refs). 2533 */ 2534 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2535 struct walk_control *wc, u64 gen, int level) 2536 { 2537 int nritems; 2538 struct btrfs_path *path; 2539 struct btrfs_root *root = wc->replay_dest; 2540 struct btrfs_key key; 2541 int i; 2542 int ret; 2543 2544 ret = btrfs_read_buffer(eb, gen, level, NULL); 2545 if (ret) 2546 return ret; 2547 2548 level = btrfs_header_level(eb); 2549 2550 if (level != 0) 2551 return 0; 2552 2553 path = btrfs_alloc_path(); 2554 if (!path) 2555 return -ENOMEM; 2556 2557 nritems = btrfs_header_nritems(eb); 2558 for (i = 0; i < nritems; i++) { 2559 btrfs_item_key_to_cpu(eb, &key, i); 2560 2561 /* inode keys are done during the first stage */ 2562 if (key.type == BTRFS_INODE_ITEM_KEY && 2563 wc->stage == LOG_WALK_REPLAY_INODES) { 2564 struct btrfs_inode_item *inode_item; 2565 u32 mode; 2566 2567 inode_item = btrfs_item_ptr(eb, i, 2568 struct btrfs_inode_item); 2569 /* 2570 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2571 * and never got linked before the fsync, skip it, as 2572 * replaying it is pointless since it would be deleted 2573 * later. We skip logging tmpfiles, but it's always 2574 * possible we are replaying a log created with a kernel 2575 * that used to log tmpfiles. 2576 */ 2577 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2578 wc->ignore_cur_inode = true; 2579 continue; 2580 } else { 2581 wc->ignore_cur_inode = false; 2582 } 2583 ret = replay_xattr_deletes(wc->trans, root, log, 2584 path, key.objectid); 2585 if (ret) 2586 break; 2587 mode = btrfs_inode_mode(eb, inode_item); 2588 if (S_ISDIR(mode)) { 2589 ret = replay_dir_deletes(wc->trans, 2590 root, log, path, key.objectid, 0); 2591 if (ret) 2592 break; 2593 } 2594 ret = overwrite_item(wc->trans, root, path, 2595 eb, i, &key); 2596 if (ret) 2597 break; 2598 2599 /* 2600 * Before replaying extents, truncate the inode to its 2601 * size. We need to do it now and not after log replay 2602 * because before an fsync we can have prealloc extents 2603 * added beyond the inode's i_size. If we did it after, 2604 * through orphan cleanup for example, we would drop 2605 * those prealloc extents just after replaying them. 2606 */ 2607 if (S_ISREG(mode)) { 2608 struct inode *inode; 2609 u64 from; 2610 2611 inode = read_one_inode(root, key.objectid); 2612 if (!inode) { 2613 ret = -EIO; 2614 break; 2615 } 2616 from = ALIGN(i_size_read(inode), 2617 root->fs_info->sectorsize); 2618 ret = btrfs_drop_extents(wc->trans, root, inode, 2619 from, (u64)-1, 1); 2620 if (!ret) { 2621 /* Update the inode's nbytes. */ 2622 ret = btrfs_update_inode(wc->trans, 2623 root, inode); 2624 } 2625 iput(inode); 2626 if (ret) 2627 break; 2628 } 2629 2630 ret = link_to_fixup_dir(wc->trans, root, 2631 path, key.objectid); 2632 if (ret) 2633 break; 2634 } 2635 2636 if (wc->ignore_cur_inode) 2637 continue; 2638 2639 if (key.type == BTRFS_DIR_INDEX_KEY && 2640 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2641 ret = replay_one_dir_item(wc->trans, root, path, 2642 eb, i, &key); 2643 if (ret) 2644 break; 2645 } 2646 2647 if (wc->stage < LOG_WALK_REPLAY_ALL) 2648 continue; 2649 2650 /* these keys are simply copied */ 2651 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2652 ret = overwrite_item(wc->trans, root, path, 2653 eb, i, &key); 2654 if (ret) 2655 break; 2656 } else if (key.type == BTRFS_INODE_REF_KEY || 2657 key.type == BTRFS_INODE_EXTREF_KEY) { 2658 ret = add_inode_ref(wc->trans, root, log, path, 2659 eb, i, &key); 2660 if (ret && ret != -ENOENT) 2661 break; 2662 ret = 0; 2663 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2664 ret = replay_one_extent(wc->trans, root, path, 2665 eb, i, &key); 2666 if (ret) 2667 break; 2668 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2669 ret = replay_one_dir_item(wc->trans, root, path, 2670 eb, i, &key); 2671 if (ret) 2672 break; 2673 } 2674 } 2675 btrfs_free_path(path); 2676 return ret; 2677 } 2678 2679 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2680 struct btrfs_root *root, 2681 struct btrfs_path *path, int *level, 2682 struct walk_control *wc) 2683 { 2684 struct btrfs_fs_info *fs_info = root->fs_info; 2685 u64 root_owner; 2686 u64 bytenr; 2687 u64 ptr_gen; 2688 struct extent_buffer *next; 2689 struct extent_buffer *cur; 2690 struct extent_buffer *parent; 2691 u32 blocksize; 2692 int ret = 0; 2693 2694 WARN_ON(*level < 0); 2695 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2696 2697 while (*level > 0) { 2698 struct btrfs_key first_key; 2699 2700 WARN_ON(*level < 0); 2701 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2702 cur = path->nodes[*level]; 2703 2704 WARN_ON(btrfs_header_level(cur) != *level); 2705 2706 if (path->slots[*level] >= 2707 btrfs_header_nritems(cur)) 2708 break; 2709 2710 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2711 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2712 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2713 blocksize = fs_info->nodesize; 2714 2715 parent = path->nodes[*level]; 2716 root_owner = btrfs_header_owner(parent); 2717 2718 next = btrfs_find_create_tree_block(fs_info, bytenr); 2719 if (IS_ERR(next)) 2720 return PTR_ERR(next); 2721 2722 if (*level == 1) { 2723 ret = wc->process_func(root, next, wc, ptr_gen, 2724 *level - 1); 2725 if (ret) { 2726 free_extent_buffer(next); 2727 return ret; 2728 } 2729 2730 path->slots[*level]++; 2731 if (wc->free) { 2732 ret = btrfs_read_buffer(next, ptr_gen, 2733 *level - 1, &first_key); 2734 if (ret) { 2735 free_extent_buffer(next); 2736 return ret; 2737 } 2738 2739 if (trans) { 2740 btrfs_tree_lock(next); 2741 btrfs_set_lock_blocking_write(next); 2742 btrfs_clean_tree_block(next); 2743 btrfs_wait_tree_block_writeback(next); 2744 btrfs_tree_unlock(next); 2745 } else { 2746 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2747 clear_extent_buffer_dirty(next); 2748 } 2749 2750 WARN_ON(root_owner != 2751 BTRFS_TREE_LOG_OBJECTID); 2752 ret = btrfs_free_and_pin_reserved_extent( 2753 fs_info, bytenr, 2754 blocksize); 2755 if (ret) { 2756 free_extent_buffer(next); 2757 return ret; 2758 } 2759 } 2760 free_extent_buffer(next); 2761 continue; 2762 } 2763 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2764 if (ret) { 2765 free_extent_buffer(next); 2766 return ret; 2767 } 2768 2769 WARN_ON(*level <= 0); 2770 if (path->nodes[*level-1]) 2771 free_extent_buffer(path->nodes[*level-1]); 2772 path->nodes[*level-1] = next; 2773 *level = btrfs_header_level(next); 2774 path->slots[*level] = 0; 2775 cond_resched(); 2776 } 2777 WARN_ON(*level < 0); 2778 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2779 2780 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2781 2782 cond_resched(); 2783 return 0; 2784 } 2785 2786 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2787 struct btrfs_root *root, 2788 struct btrfs_path *path, int *level, 2789 struct walk_control *wc) 2790 { 2791 struct btrfs_fs_info *fs_info = root->fs_info; 2792 u64 root_owner; 2793 int i; 2794 int slot; 2795 int ret; 2796 2797 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2798 slot = path->slots[i]; 2799 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2800 path->slots[i]++; 2801 *level = i; 2802 WARN_ON(*level == 0); 2803 return 0; 2804 } else { 2805 struct extent_buffer *parent; 2806 if (path->nodes[*level] == root->node) 2807 parent = path->nodes[*level]; 2808 else 2809 parent = path->nodes[*level + 1]; 2810 2811 root_owner = btrfs_header_owner(parent); 2812 ret = wc->process_func(root, path->nodes[*level], wc, 2813 btrfs_header_generation(path->nodes[*level]), 2814 *level); 2815 if (ret) 2816 return ret; 2817 2818 if (wc->free) { 2819 struct extent_buffer *next; 2820 2821 next = path->nodes[*level]; 2822 2823 if (trans) { 2824 btrfs_tree_lock(next); 2825 btrfs_set_lock_blocking_write(next); 2826 btrfs_clean_tree_block(next); 2827 btrfs_wait_tree_block_writeback(next); 2828 btrfs_tree_unlock(next); 2829 } else { 2830 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2831 clear_extent_buffer_dirty(next); 2832 } 2833 2834 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 2835 ret = btrfs_free_and_pin_reserved_extent( 2836 fs_info, 2837 path->nodes[*level]->start, 2838 path->nodes[*level]->len); 2839 if (ret) 2840 return ret; 2841 } 2842 free_extent_buffer(path->nodes[*level]); 2843 path->nodes[*level] = NULL; 2844 *level = i + 1; 2845 } 2846 } 2847 return 1; 2848 } 2849 2850 /* 2851 * drop the reference count on the tree rooted at 'snap'. This traverses 2852 * the tree freeing any blocks that have a ref count of zero after being 2853 * decremented. 2854 */ 2855 static int walk_log_tree(struct btrfs_trans_handle *trans, 2856 struct btrfs_root *log, struct walk_control *wc) 2857 { 2858 struct btrfs_fs_info *fs_info = log->fs_info; 2859 int ret = 0; 2860 int wret; 2861 int level; 2862 struct btrfs_path *path; 2863 int orig_level; 2864 2865 path = btrfs_alloc_path(); 2866 if (!path) 2867 return -ENOMEM; 2868 2869 level = btrfs_header_level(log->node); 2870 orig_level = level; 2871 path->nodes[level] = log->node; 2872 extent_buffer_get(log->node); 2873 path->slots[level] = 0; 2874 2875 while (1) { 2876 wret = walk_down_log_tree(trans, log, path, &level, wc); 2877 if (wret > 0) 2878 break; 2879 if (wret < 0) { 2880 ret = wret; 2881 goto out; 2882 } 2883 2884 wret = walk_up_log_tree(trans, log, path, &level, wc); 2885 if (wret > 0) 2886 break; 2887 if (wret < 0) { 2888 ret = wret; 2889 goto out; 2890 } 2891 } 2892 2893 /* was the root node processed? if not, catch it here */ 2894 if (path->nodes[orig_level]) { 2895 ret = wc->process_func(log, path->nodes[orig_level], wc, 2896 btrfs_header_generation(path->nodes[orig_level]), 2897 orig_level); 2898 if (ret) 2899 goto out; 2900 if (wc->free) { 2901 struct extent_buffer *next; 2902 2903 next = path->nodes[orig_level]; 2904 2905 if (trans) { 2906 btrfs_tree_lock(next); 2907 btrfs_set_lock_blocking_write(next); 2908 btrfs_clean_tree_block(next); 2909 btrfs_wait_tree_block_writeback(next); 2910 btrfs_tree_unlock(next); 2911 } else { 2912 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2913 clear_extent_buffer_dirty(next); 2914 } 2915 2916 WARN_ON(log->root_key.objectid != 2917 BTRFS_TREE_LOG_OBJECTID); 2918 ret = btrfs_free_and_pin_reserved_extent(fs_info, 2919 next->start, next->len); 2920 if (ret) 2921 goto out; 2922 } 2923 } 2924 2925 out: 2926 btrfs_free_path(path); 2927 return ret; 2928 } 2929 2930 /* 2931 * helper function to update the item for a given subvolumes log root 2932 * in the tree of log roots 2933 */ 2934 static int update_log_root(struct btrfs_trans_handle *trans, 2935 struct btrfs_root *log) 2936 { 2937 struct btrfs_fs_info *fs_info = log->fs_info; 2938 int ret; 2939 2940 if (log->log_transid == 1) { 2941 /* insert root item on the first sync */ 2942 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2943 &log->root_key, &log->root_item); 2944 } else { 2945 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2946 &log->root_key, &log->root_item); 2947 } 2948 return ret; 2949 } 2950 2951 static void wait_log_commit(struct btrfs_root *root, int transid) 2952 { 2953 DEFINE_WAIT(wait); 2954 int index = transid % 2; 2955 2956 /* 2957 * we only allow two pending log transactions at a time, 2958 * so we know that if ours is more than 2 older than the 2959 * current transaction, we're done 2960 */ 2961 for (;;) { 2962 prepare_to_wait(&root->log_commit_wait[index], 2963 &wait, TASK_UNINTERRUPTIBLE); 2964 2965 if (!(root->log_transid_committed < transid && 2966 atomic_read(&root->log_commit[index]))) 2967 break; 2968 2969 mutex_unlock(&root->log_mutex); 2970 schedule(); 2971 mutex_lock(&root->log_mutex); 2972 } 2973 finish_wait(&root->log_commit_wait[index], &wait); 2974 } 2975 2976 static void wait_for_writer(struct btrfs_root *root) 2977 { 2978 DEFINE_WAIT(wait); 2979 2980 for (;;) { 2981 prepare_to_wait(&root->log_writer_wait, &wait, 2982 TASK_UNINTERRUPTIBLE); 2983 if (!atomic_read(&root->log_writers)) 2984 break; 2985 2986 mutex_unlock(&root->log_mutex); 2987 schedule(); 2988 mutex_lock(&root->log_mutex); 2989 } 2990 finish_wait(&root->log_writer_wait, &wait); 2991 } 2992 2993 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2994 struct btrfs_log_ctx *ctx) 2995 { 2996 if (!ctx) 2997 return; 2998 2999 mutex_lock(&root->log_mutex); 3000 list_del_init(&ctx->list); 3001 mutex_unlock(&root->log_mutex); 3002 } 3003 3004 /* 3005 * Invoked in log mutex context, or be sure there is no other task which 3006 * can access the list. 3007 */ 3008 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 3009 int index, int error) 3010 { 3011 struct btrfs_log_ctx *ctx; 3012 struct btrfs_log_ctx *safe; 3013 3014 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 3015 list_del_init(&ctx->list); 3016 ctx->log_ret = error; 3017 } 3018 3019 INIT_LIST_HEAD(&root->log_ctxs[index]); 3020 } 3021 3022 /* 3023 * btrfs_sync_log does sends a given tree log down to the disk and 3024 * updates the super blocks to record it. When this call is done, 3025 * you know that any inodes previously logged are safely on disk only 3026 * if it returns 0. 3027 * 3028 * Any other return value means you need to call btrfs_commit_transaction. 3029 * Some of the edge cases for fsyncing directories that have had unlinks 3030 * or renames done in the past mean that sometimes the only safe 3031 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3032 * that has happened. 3033 */ 3034 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3035 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3036 { 3037 int index1; 3038 int index2; 3039 int mark; 3040 int ret; 3041 struct btrfs_fs_info *fs_info = root->fs_info; 3042 struct btrfs_root *log = root->log_root; 3043 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3044 int log_transid = 0; 3045 struct btrfs_log_ctx root_log_ctx; 3046 struct blk_plug plug; 3047 3048 mutex_lock(&root->log_mutex); 3049 log_transid = ctx->log_transid; 3050 if (root->log_transid_committed >= log_transid) { 3051 mutex_unlock(&root->log_mutex); 3052 return ctx->log_ret; 3053 } 3054 3055 index1 = log_transid % 2; 3056 if (atomic_read(&root->log_commit[index1])) { 3057 wait_log_commit(root, log_transid); 3058 mutex_unlock(&root->log_mutex); 3059 return ctx->log_ret; 3060 } 3061 ASSERT(log_transid == root->log_transid); 3062 atomic_set(&root->log_commit[index1], 1); 3063 3064 /* wait for previous tree log sync to complete */ 3065 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3066 wait_log_commit(root, log_transid - 1); 3067 3068 while (1) { 3069 int batch = atomic_read(&root->log_batch); 3070 /* when we're on an ssd, just kick the log commit out */ 3071 if (!btrfs_test_opt(fs_info, SSD) && 3072 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3073 mutex_unlock(&root->log_mutex); 3074 schedule_timeout_uninterruptible(1); 3075 mutex_lock(&root->log_mutex); 3076 } 3077 wait_for_writer(root); 3078 if (batch == atomic_read(&root->log_batch)) 3079 break; 3080 } 3081 3082 /* bail out if we need to do a full commit */ 3083 if (btrfs_need_log_full_commit(trans)) { 3084 ret = -EAGAIN; 3085 mutex_unlock(&root->log_mutex); 3086 goto out; 3087 } 3088 3089 if (log_transid % 2 == 0) 3090 mark = EXTENT_DIRTY; 3091 else 3092 mark = EXTENT_NEW; 3093 3094 /* we start IO on all the marked extents here, but we don't actually 3095 * wait for them until later. 3096 */ 3097 blk_start_plug(&plug); 3098 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3099 if (ret) { 3100 blk_finish_plug(&plug); 3101 btrfs_abort_transaction(trans, ret); 3102 btrfs_set_log_full_commit(trans); 3103 mutex_unlock(&root->log_mutex); 3104 goto out; 3105 } 3106 3107 btrfs_set_root_node(&log->root_item, log->node); 3108 3109 root->log_transid++; 3110 log->log_transid = root->log_transid; 3111 root->log_start_pid = 0; 3112 /* 3113 * Update or create log root item under the root's log_mutex to prevent 3114 * races with concurrent log syncs that can lead to failure to update 3115 * log root item because it was not created yet. 3116 */ 3117 ret = update_log_root(trans, log); 3118 /* 3119 * IO has been started, blocks of the log tree have WRITTEN flag set 3120 * in their headers. new modifications of the log will be written to 3121 * new positions. so it's safe to allow log writers to go in. 3122 */ 3123 mutex_unlock(&root->log_mutex); 3124 3125 btrfs_init_log_ctx(&root_log_ctx, NULL); 3126 3127 mutex_lock(&log_root_tree->log_mutex); 3128 atomic_inc(&log_root_tree->log_batch); 3129 atomic_inc(&log_root_tree->log_writers); 3130 3131 index2 = log_root_tree->log_transid % 2; 3132 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3133 root_log_ctx.log_transid = log_root_tree->log_transid; 3134 3135 mutex_unlock(&log_root_tree->log_mutex); 3136 3137 mutex_lock(&log_root_tree->log_mutex); 3138 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 3139 /* atomic_dec_and_test implies a barrier */ 3140 cond_wake_up_nomb(&log_root_tree->log_writer_wait); 3141 } 3142 3143 if (ret) { 3144 if (!list_empty(&root_log_ctx.list)) 3145 list_del_init(&root_log_ctx.list); 3146 3147 blk_finish_plug(&plug); 3148 btrfs_set_log_full_commit(trans); 3149 3150 if (ret != -ENOSPC) { 3151 btrfs_abort_transaction(trans, ret); 3152 mutex_unlock(&log_root_tree->log_mutex); 3153 goto out; 3154 } 3155 btrfs_wait_tree_log_extents(log, mark); 3156 mutex_unlock(&log_root_tree->log_mutex); 3157 ret = -EAGAIN; 3158 goto out; 3159 } 3160 3161 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3162 blk_finish_plug(&plug); 3163 list_del_init(&root_log_ctx.list); 3164 mutex_unlock(&log_root_tree->log_mutex); 3165 ret = root_log_ctx.log_ret; 3166 goto out; 3167 } 3168 3169 index2 = root_log_ctx.log_transid % 2; 3170 if (atomic_read(&log_root_tree->log_commit[index2])) { 3171 blk_finish_plug(&plug); 3172 ret = btrfs_wait_tree_log_extents(log, mark); 3173 wait_log_commit(log_root_tree, 3174 root_log_ctx.log_transid); 3175 mutex_unlock(&log_root_tree->log_mutex); 3176 if (!ret) 3177 ret = root_log_ctx.log_ret; 3178 goto out; 3179 } 3180 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3181 atomic_set(&log_root_tree->log_commit[index2], 1); 3182 3183 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3184 wait_log_commit(log_root_tree, 3185 root_log_ctx.log_transid - 1); 3186 } 3187 3188 wait_for_writer(log_root_tree); 3189 3190 /* 3191 * now that we've moved on to the tree of log tree roots, 3192 * check the full commit flag again 3193 */ 3194 if (btrfs_need_log_full_commit(trans)) { 3195 blk_finish_plug(&plug); 3196 btrfs_wait_tree_log_extents(log, mark); 3197 mutex_unlock(&log_root_tree->log_mutex); 3198 ret = -EAGAIN; 3199 goto out_wake_log_root; 3200 } 3201 3202 ret = btrfs_write_marked_extents(fs_info, 3203 &log_root_tree->dirty_log_pages, 3204 EXTENT_DIRTY | EXTENT_NEW); 3205 blk_finish_plug(&plug); 3206 if (ret) { 3207 btrfs_set_log_full_commit(trans); 3208 btrfs_abort_transaction(trans, ret); 3209 mutex_unlock(&log_root_tree->log_mutex); 3210 goto out_wake_log_root; 3211 } 3212 ret = btrfs_wait_tree_log_extents(log, mark); 3213 if (!ret) 3214 ret = btrfs_wait_tree_log_extents(log_root_tree, 3215 EXTENT_NEW | EXTENT_DIRTY); 3216 if (ret) { 3217 btrfs_set_log_full_commit(trans); 3218 mutex_unlock(&log_root_tree->log_mutex); 3219 goto out_wake_log_root; 3220 } 3221 3222 btrfs_set_super_log_root(fs_info->super_for_commit, 3223 log_root_tree->node->start); 3224 btrfs_set_super_log_root_level(fs_info->super_for_commit, 3225 btrfs_header_level(log_root_tree->node)); 3226 3227 log_root_tree->log_transid++; 3228 mutex_unlock(&log_root_tree->log_mutex); 3229 3230 /* 3231 * Nobody else is going to jump in and write the ctree 3232 * super here because the log_commit atomic below is protecting 3233 * us. We must be called with a transaction handle pinning 3234 * the running transaction open, so a full commit can't hop 3235 * in and cause problems either. 3236 */ 3237 ret = write_all_supers(fs_info, 1); 3238 if (ret) { 3239 btrfs_set_log_full_commit(trans); 3240 btrfs_abort_transaction(trans, ret); 3241 goto out_wake_log_root; 3242 } 3243 3244 mutex_lock(&root->log_mutex); 3245 if (root->last_log_commit < log_transid) 3246 root->last_log_commit = log_transid; 3247 mutex_unlock(&root->log_mutex); 3248 3249 out_wake_log_root: 3250 mutex_lock(&log_root_tree->log_mutex); 3251 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3252 3253 log_root_tree->log_transid_committed++; 3254 atomic_set(&log_root_tree->log_commit[index2], 0); 3255 mutex_unlock(&log_root_tree->log_mutex); 3256 3257 /* 3258 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3259 * all the updates above are seen by the woken threads. It might not be 3260 * necessary, but proving that seems to be hard. 3261 */ 3262 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3263 out: 3264 mutex_lock(&root->log_mutex); 3265 btrfs_remove_all_log_ctxs(root, index1, ret); 3266 root->log_transid_committed++; 3267 atomic_set(&root->log_commit[index1], 0); 3268 mutex_unlock(&root->log_mutex); 3269 3270 /* 3271 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3272 * all the updates above are seen by the woken threads. It might not be 3273 * necessary, but proving that seems to be hard. 3274 */ 3275 cond_wake_up(&root->log_commit_wait[index1]); 3276 return ret; 3277 } 3278 3279 static void free_log_tree(struct btrfs_trans_handle *trans, 3280 struct btrfs_root *log) 3281 { 3282 int ret; 3283 struct walk_control wc = { 3284 .free = 1, 3285 .process_func = process_one_buffer 3286 }; 3287 3288 ret = walk_log_tree(trans, log, &wc); 3289 if (ret) { 3290 if (trans) 3291 btrfs_abort_transaction(trans, ret); 3292 else 3293 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3294 } 3295 3296 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3297 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3298 free_extent_buffer(log->node); 3299 kfree(log); 3300 } 3301 3302 /* 3303 * free all the extents used by the tree log. This should be called 3304 * at commit time of the full transaction 3305 */ 3306 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3307 { 3308 if (root->log_root) { 3309 free_log_tree(trans, root->log_root); 3310 root->log_root = NULL; 3311 } 3312 return 0; 3313 } 3314 3315 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3316 struct btrfs_fs_info *fs_info) 3317 { 3318 if (fs_info->log_root_tree) { 3319 free_log_tree(trans, fs_info->log_root_tree); 3320 fs_info->log_root_tree = NULL; 3321 } 3322 return 0; 3323 } 3324 3325 /* 3326 * Check if an inode was logged in the current transaction. We can't always rely 3327 * on an inode's logged_trans value, because it's an in-memory only field and 3328 * therefore not persisted. This means that its value is lost if the inode gets 3329 * evicted and loaded again from disk (in which case it has a value of 0, and 3330 * certainly it is smaller then any possible transaction ID), when that happens 3331 * the full_sync flag is set in the inode's runtime flags, so on that case we 3332 * assume eviction happened and ignore the logged_trans value, assuming the 3333 * worst case, that the inode was logged before in the current transaction. 3334 */ 3335 static bool inode_logged(struct btrfs_trans_handle *trans, 3336 struct btrfs_inode *inode) 3337 { 3338 if (inode->logged_trans == trans->transid) 3339 return true; 3340 3341 if (inode->last_trans == trans->transid && 3342 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && 3343 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags)) 3344 return true; 3345 3346 return false; 3347 } 3348 3349 /* 3350 * If both a file and directory are logged, and unlinks or renames are 3351 * mixed in, we have a few interesting corners: 3352 * 3353 * create file X in dir Y 3354 * link file X to X.link in dir Y 3355 * fsync file X 3356 * unlink file X but leave X.link 3357 * fsync dir Y 3358 * 3359 * After a crash we would expect only X.link to exist. But file X 3360 * didn't get fsync'd again so the log has back refs for X and X.link. 3361 * 3362 * We solve this by removing directory entries and inode backrefs from the 3363 * log when a file that was logged in the current transaction is 3364 * unlinked. Any later fsync will include the updated log entries, and 3365 * we'll be able to reconstruct the proper directory items from backrefs. 3366 * 3367 * This optimizations allows us to avoid relogging the entire inode 3368 * or the entire directory. 3369 */ 3370 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3371 struct btrfs_root *root, 3372 const char *name, int name_len, 3373 struct btrfs_inode *dir, u64 index) 3374 { 3375 struct btrfs_root *log; 3376 struct btrfs_dir_item *di; 3377 struct btrfs_path *path; 3378 int ret; 3379 int err = 0; 3380 int bytes_del = 0; 3381 u64 dir_ino = btrfs_ino(dir); 3382 3383 if (!inode_logged(trans, dir)) 3384 return 0; 3385 3386 ret = join_running_log_trans(root); 3387 if (ret) 3388 return 0; 3389 3390 mutex_lock(&dir->log_mutex); 3391 3392 log = root->log_root; 3393 path = btrfs_alloc_path(); 3394 if (!path) { 3395 err = -ENOMEM; 3396 goto out_unlock; 3397 } 3398 3399 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3400 name, name_len, -1); 3401 if (IS_ERR(di)) { 3402 err = PTR_ERR(di); 3403 goto fail; 3404 } 3405 if (di) { 3406 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3407 bytes_del += name_len; 3408 if (ret) { 3409 err = ret; 3410 goto fail; 3411 } 3412 } 3413 btrfs_release_path(path); 3414 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3415 index, name, name_len, -1); 3416 if (IS_ERR(di)) { 3417 err = PTR_ERR(di); 3418 goto fail; 3419 } 3420 if (di) { 3421 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3422 bytes_del += name_len; 3423 if (ret) { 3424 err = ret; 3425 goto fail; 3426 } 3427 } 3428 3429 /* update the directory size in the log to reflect the names 3430 * we have removed 3431 */ 3432 if (bytes_del) { 3433 struct btrfs_key key; 3434 3435 key.objectid = dir_ino; 3436 key.offset = 0; 3437 key.type = BTRFS_INODE_ITEM_KEY; 3438 btrfs_release_path(path); 3439 3440 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 3441 if (ret < 0) { 3442 err = ret; 3443 goto fail; 3444 } 3445 if (ret == 0) { 3446 struct btrfs_inode_item *item; 3447 u64 i_size; 3448 3449 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3450 struct btrfs_inode_item); 3451 i_size = btrfs_inode_size(path->nodes[0], item); 3452 if (i_size > bytes_del) 3453 i_size -= bytes_del; 3454 else 3455 i_size = 0; 3456 btrfs_set_inode_size(path->nodes[0], item, i_size); 3457 btrfs_mark_buffer_dirty(path->nodes[0]); 3458 } else 3459 ret = 0; 3460 btrfs_release_path(path); 3461 } 3462 fail: 3463 btrfs_free_path(path); 3464 out_unlock: 3465 mutex_unlock(&dir->log_mutex); 3466 if (ret == -ENOSPC) { 3467 btrfs_set_log_full_commit(trans); 3468 ret = 0; 3469 } else if (ret < 0) 3470 btrfs_abort_transaction(trans, ret); 3471 3472 btrfs_end_log_trans(root); 3473 3474 return err; 3475 } 3476 3477 /* see comments for btrfs_del_dir_entries_in_log */ 3478 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3479 struct btrfs_root *root, 3480 const char *name, int name_len, 3481 struct btrfs_inode *inode, u64 dirid) 3482 { 3483 struct btrfs_root *log; 3484 u64 index; 3485 int ret; 3486 3487 if (!inode_logged(trans, inode)) 3488 return 0; 3489 3490 ret = join_running_log_trans(root); 3491 if (ret) 3492 return 0; 3493 log = root->log_root; 3494 mutex_lock(&inode->log_mutex); 3495 3496 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3497 dirid, &index); 3498 mutex_unlock(&inode->log_mutex); 3499 if (ret == -ENOSPC) { 3500 btrfs_set_log_full_commit(trans); 3501 ret = 0; 3502 } else if (ret < 0 && ret != -ENOENT) 3503 btrfs_abort_transaction(trans, ret); 3504 btrfs_end_log_trans(root); 3505 3506 return ret; 3507 } 3508 3509 /* 3510 * creates a range item in the log for 'dirid'. first_offset and 3511 * last_offset tell us which parts of the key space the log should 3512 * be considered authoritative for. 3513 */ 3514 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3515 struct btrfs_root *log, 3516 struct btrfs_path *path, 3517 int key_type, u64 dirid, 3518 u64 first_offset, u64 last_offset) 3519 { 3520 int ret; 3521 struct btrfs_key key; 3522 struct btrfs_dir_log_item *item; 3523 3524 key.objectid = dirid; 3525 key.offset = first_offset; 3526 if (key_type == BTRFS_DIR_ITEM_KEY) 3527 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3528 else 3529 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3530 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3531 if (ret) 3532 return ret; 3533 3534 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3535 struct btrfs_dir_log_item); 3536 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3537 btrfs_mark_buffer_dirty(path->nodes[0]); 3538 btrfs_release_path(path); 3539 return 0; 3540 } 3541 3542 /* 3543 * log all the items included in the current transaction for a given 3544 * directory. This also creates the range items in the log tree required 3545 * to replay anything deleted before the fsync 3546 */ 3547 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3548 struct btrfs_root *root, struct btrfs_inode *inode, 3549 struct btrfs_path *path, 3550 struct btrfs_path *dst_path, int key_type, 3551 struct btrfs_log_ctx *ctx, 3552 u64 min_offset, u64 *last_offset_ret) 3553 { 3554 struct btrfs_key min_key; 3555 struct btrfs_root *log = root->log_root; 3556 struct extent_buffer *src; 3557 int err = 0; 3558 int ret; 3559 int i; 3560 int nritems; 3561 u64 first_offset = min_offset; 3562 u64 last_offset = (u64)-1; 3563 u64 ino = btrfs_ino(inode); 3564 3565 log = root->log_root; 3566 3567 min_key.objectid = ino; 3568 min_key.type = key_type; 3569 min_key.offset = min_offset; 3570 3571 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3572 3573 /* 3574 * we didn't find anything from this transaction, see if there 3575 * is anything at all 3576 */ 3577 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3578 min_key.objectid = ino; 3579 min_key.type = key_type; 3580 min_key.offset = (u64)-1; 3581 btrfs_release_path(path); 3582 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3583 if (ret < 0) { 3584 btrfs_release_path(path); 3585 return ret; 3586 } 3587 ret = btrfs_previous_item(root, path, ino, key_type); 3588 3589 /* if ret == 0 there are items for this type, 3590 * create a range to tell us the last key of this type. 3591 * otherwise, there are no items in this directory after 3592 * *min_offset, and we create a range to indicate that. 3593 */ 3594 if (ret == 0) { 3595 struct btrfs_key tmp; 3596 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3597 path->slots[0]); 3598 if (key_type == tmp.type) 3599 first_offset = max(min_offset, tmp.offset) + 1; 3600 } 3601 goto done; 3602 } 3603 3604 /* go backward to find any previous key */ 3605 ret = btrfs_previous_item(root, path, ino, key_type); 3606 if (ret == 0) { 3607 struct btrfs_key tmp; 3608 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3609 if (key_type == tmp.type) { 3610 first_offset = tmp.offset; 3611 ret = overwrite_item(trans, log, dst_path, 3612 path->nodes[0], path->slots[0], 3613 &tmp); 3614 if (ret) { 3615 err = ret; 3616 goto done; 3617 } 3618 } 3619 } 3620 btrfs_release_path(path); 3621 3622 /* 3623 * Find the first key from this transaction again. See the note for 3624 * log_new_dir_dentries, if we're logging a directory recursively we 3625 * won't be holding its i_mutex, which means we can modify the directory 3626 * while we're logging it. If we remove an entry between our first 3627 * search and this search we'll not find the key again and can just 3628 * bail. 3629 */ 3630 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3631 if (ret != 0) 3632 goto done; 3633 3634 /* 3635 * we have a block from this transaction, log every item in it 3636 * from our directory 3637 */ 3638 while (1) { 3639 struct btrfs_key tmp; 3640 src = path->nodes[0]; 3641 nritems = btrfs_header_nritems(src); 3642 for (i = path->slots[0]; i < nritems; i++) { 3643 struct btrfs_dir_item *di; 3644 3645 btrfs_item_key_to_cpu(src, &min_key, i); 3646 3647 if (min_key.objectid != ino || min_key.type != key_type) 3648 goto done; 3649 ret = overwrite_item(trans, log, dst_path, src, i, 3650 &min_key); 3651 if (ret) { 3652 err = ret; 3653 goto done; 3654 } 3655 3656 /* 3657 * We must make sure that when we log a directory entry, 3658 * the corresponding inode, after log replay, has a 3659 * matching link count. For example: 3660 * 3661 * touch foo 3662 * mkdir mydir 3663 * sync 3664 * ln foo mydir/bar 3665 * xfs_io -c "fsync" mydir 3666 * <crash> 3667 * <mount fs and log replay> 3668 * 3669 * Would result in a fsync log that when replayed, our 3670 * file inode would have a link count of 1, but we get 3671 * two directory entries pointing to the same inode. 3672 * After removing one of the names, it would not be 3673 * possible to remove the other name, which resulted 3674 * always in stale file handle errors, and would not 3675 * be possible to rmdir the parent directory, since 3676 * its i_size could never decrement to the value 3677 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3678 */ 3679 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3680 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3681 if (ctx && 3682 (btrfs_dir_transid(src, di) == trans->transid || 3683 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3684 tmp.type != BTRFS_ROOT_ITEM_KEY) 3685 ctx->log_new_dentries = true; 3686 } 3687 path->slots[0] = nritems; 3688 3689 /* 3690 * look ahead to the next item and see if it is also 3691 * from this directory and from this transaction 3692 */ 3693 ret = btrfs_next_leaf(root, path); 3694 if (ret) { 3695 if (ret == 1) 3696 last_offset = (u64)-1; 3697 else 3698 err = ret; 3699 goto done; 3700 } 3701 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3702 if (tmp.objectid != ino || tmp.type != key_type) { 3703 last_offset = (u64)-1; 3704 goto done; 3705 } 3706 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3707 ret = overwrite_item(trans, log, dst_path, 3708 path->nodes[0], path->slots[0], 3709 &tmp); 3710 if (ret) 3711 err = ret; 3712 else 3713 last_offset = tmp.offset; 3714 goto done; 3715 } 3716 } 3717 done: 3718 btrfs_release_path(path); 3719 btrfs_release_path(dst_path); 3720 3721 if (err == 0) { 3722 *last_offset_ret = last_offset; 3723 /* 3724 * insert the log range keys to indicate where the log 3725 * is valid 3726 */ 3727 ret = insert_dir_log_key(trans, log, path, key_type, 3728 ino, first_offset, last_offset); 3729 if (ret) 3730 err = ret; 3731 } 3732 return err; 3733 } 3734 3735 /* 3736 * logging directories is very similar to logging inodes, We find all the items 3737 * from the current transaction and write them to the log. 3738 * 3739 * The recovery code scans the directory in the subvolume, and if it finds a 3740 * key in the range logged that is not present in the log tree, then it means 3741 * that dir entry was unlinked during the transaction. 3742 * 3743 * In order for that scan to work, we must include one key smaller than 3744 * the smallest logged by this transaction and one key larger than the largest 3745 * key logged by this transaction. 3746 */ 3747 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3748 struct btrfs_root *root, struct btrfs_inode *inode, 3749 struct btrfs_path *path, 3750 struct btrfs_path *dst_path, 3751 struct btrfs_log_ctx *ctx) 3752 { 3753 u64 min_key; 3754 u64 max_key; 3755 int ret; 3756 int key_type = BTRFS_DIR_ITEM_KEY; 3757 3758 again: 3759 min_key = 0; 3760 max_key = 0; 3761 while (1) { 3762 ret = log_dir_items(trans, root, inode, path, dst_path, key_type, 3763 ctx, min_key, &max_key); 3764 if (ret) 3765 return ret; 3766 if (max_key == (u64)-1) 3767 break; 3768 min_key = max_key + 1; 3769 } 3770 3771 if (key_type == BTRFS_DIR_ITEM_KEY) { 3772 key_type = BTRFS_DIR_INDEX_KEY; 3773 goto again; 3774 } 3775 return 0; 3776 } 3777 3778 /* 3779 * a helper function to drop items from the log before we relog an 3780 * inode. max_key_type indicates the highest item type to remove. 3781 * This cannot be run for file data extents because it does not 3782 * free the extents they point to. 3783 */ 3784 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3785 struct btrfs_root *log, 3786 struct btrfs_path *path, 3787 u64 objectid, int max_key_type) 3788 { 3789 int ret; 3790 struct btrfs_key key; 3791 struct btrfs_key found_key; 3792 int start_slot; 3793 3794 key.objectid = objectid; 3795 key.type = max_key_type; 3796 key.offset = (u64)-1; 3797 3798 while (1) { 3799 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3800 BUG_ON(ret == 0); /* Logic error */ 3801 if (ret < 0) 3802 break; 3803 3804 if (path->slots[0] == 0) 3805 break; 3806 3807 path->slots[0]--; 3808 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3809 path->slots[0]); 3810 3811 if (found_key.objectid != objectid) 3812 break; 3813 3814 found_key.offset = 0; 3815 found_key.type = 0; 3816 ret = btrfs_bin_search(path->nodes[0], &found_key, 0, 3817 &start_slot); 3818 if (ret < 0) 3819 break; 3820 3821 ret = btrfs_del_items(trans, log, path, start_slot, 3822 path->slots[0] - start_slot + 1); 3823 /* 3824 * If start slot isn't 0 then we don't need to re-search, we've 3825 * found the last guy with the objectid in this tree. 3826 */ 3827 if (ret || start_slot != 0) 3828 break; 3829 btrfs_release_path(path); 3830 } 3831 btrfs_release_path(path); 3832 if (ret > 0) 3833 ret = 0; 3834 return ret; 3835 } 3836 3837 static void fill_inode_item(struct btrfs_trans_handle *trans, 3838 struct extent_buffer *leaf, 3839 struct btrfs_inode_item *item, 3840 struct inode *inode, int log_inode_only, 3841 u64 logged_isize) 3842 { 3843 struct btrfs_map_token token; 3844 3845 btrfs_init_map_token(&token); 3846 3847 if (log_inode_only) { 3848 /* set the generation to zero so the recover code 3849 * can tell the difference between an logging 3850 * just to say 'this inode exists' and a logging 3851 * to say 'update this inode with these values' 3852 */ 3853 btrfs_set_token_inode_generation(leaf, item, 0, &token); 3854 btrfs_set_token_inode_size(leaf, item, logged_isize, &token); 3855 } else { 3856 btrfs_set_token_inode_generation(leaf, item, 3857 BTRFS_I(inode)->generation, 3858 &token); 3859 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); 3860 } 3861 3862 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3863 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3864 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3865 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3866 3867 btrfs_set_token_timespec_sec(leaf, &item->atime, 3868 inode->i_atime.tv_sec, &token); 3869 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3870 inode->i_atime.tv_nsec, &token); 3871 3872 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3873 inode->i_mtime.tv_sec, &token); 3874 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3875 inode->i_mtime.tv_nsec, &token); 3876 3877 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3878 inode->i_ctime.tv_sec, &token); 3879 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3880 inode->i_ctime.tv_nsec, &token); 3881 3882 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3883 &token); 3884 3885 btrfs_set_token_inode_sequence(leaf, item, 3886 inode_peek_iversion(inode), &token); 3887 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3888 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3889 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3890 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3891 } 3892 3893 static int log_inode_item(struct btrfs_trans_handle *trans, 3894 struct btrfs_root *log, struct btrfs_path *path, 3895 struct btrfs_inode *inode) 3896 { 3897 struct btrfs_inode_item *inode_item; 3898 int ret; 3899 3900 ret = btrfs_insert_empty_item(trans, log, path, 3901 &inode->location, sizeof(*inode_item)); 3902 if (ret && ret != -EEXIST) 3903 return ret; 3904 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3905 struct btrfs_inode_item); 3906 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 3907 0, 0); 3908 btrfs_release_path(path); 3909 return 0; 3910 } 3911 3912 static noinline int copy_items(struct btrfs_trans_handle *trans, 3913 struct btrfs_inode *inode, 3914 struct btrfs_path *dst_path, 3915 struct btrfs_path *src_path, u64 *last_extent, 3916 int start_slot, int nr, int inode_only, 3917 u64 logged_isize) 3918 { 3919 struct btrfs_fs_info *fs_info = trans->fs_info; 3920 unsigned long src_offset; 3921 unsigned long dst_offset; 3922 struct btrfs_root *log = inode->root->log_root; 3923 struct btrfs_file_extent_item *extent; 3924 struct btrfs_inode_item *inode_item; 3925 struct extent_buffer *src = src_path->nodes[0]; 3926 struct btrfs_key first_key, last_key, key; 3927 int ret; 3928 struct btrfs_key *ins_keys; 3929 u32 *ins_sizes; 3930 char *ins_data; 3931 int i; 3932 struct list_head ordered_sums; 3933 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 3934 bool has_extents = false; 3935 bool need_find_last_extent = true; 3936 bool done = false; 3937 3938 INIT_LIST_HEAD(&ordered_sums); 3939 3940 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3941 nr * sizeof(u32), GFP_NOFS); 3942 if (!ins_data) 3943 return -ENOMEM; 3944 3945 first_key.objectid = (u64)-1; 3946 3947 ins_sizes = (u32 *)ins_data; 3948 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3949 3950 for (i = 0; i < nr; i++) { 3951 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3952 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3953 } 3954 ret = btrfs_insert_empty_items(trans, log, dst_path, 3955 ins_keys, ins_sizes, nr); 3956 if (ret) { 3957 kfree(ins_data); 3958 return ret; 3959 } 3960 3961 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3962 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3963 dst_path->slots[0]); 3964 3965 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3966 3967 if (i == nr - 1) 3968 last_key = ins_keys[i]; 3969 3970 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3971 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3972 dst_path->slots[0], 3973 struct btrfs_inode_item); 3974 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3975 &inode->vfs_inode, 3976 inode_only == LOG_INODE_EXISTS, 3977 logged_isize); 3978 } else { 3979 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3980 src_offset, ins_sizes[i]); 3981 } 3982 3983 /* 3984 * We set need_find_last_extent here in case we know we were 3985 * processing other items and then walk into the first extent in 3986 * the inode. If we don't hit an extent then nothing changes, 3987 * we'll do the last search the next time around. 3988 */ 3989 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) { 3990 has_extents = true; 3991 if (first_key.objectid == (u64)-1) 3992 first_key = ins_keys[i]; 3993 } else { 3994 need_find_last_extent = false; 3995 } 3996 3997 /* take a reference on file data extents so that truncates 3998 * or deletes of this inode don't have to relog the inode 3999 * again 4000 */ 4001 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 4002 !skip_csum) { 4003 int found_type; 4004 extent = btrfs_item_ptr(src, start_slot + i, 4005 struct btrfs_file_extent_item); 4006 4007 if (btrfs_file_extent_generation(src, extent) < trans->transid) 4008 continue; 4009 4010 found_type = btrfs_file_extent_type(src, extent); 4011 if (found_type == BTRFS_FILE_EXTENT_REG) { 4012 u64 ds, dl, cs, cl; 4013 ds = btrfs_file_extent_disk_bytenr(src, 4014 extent); 4015 /* ds == 0 is a hole */ 4016 if (ds == 0) 4017 continue; 4018 4019 dl = btrfs_file_extent_disk_num_bytes(src, 4020 extent); 4021 cs = btrfs_file_extent_offset(src, extent); 4022 cl = btrfs_file_extent_num_bytes(src, 4023 extent); 4024 if (btrfs_file_extent_compression(src, 4025 extent)) { 4026 cs = 0; 4027 cl = dl; 4028 } 4029 4030 ret = btrfs_lookup_csums_range( 4031 fs_info->csum_root, 4032 ds + cs, ds + cs + cl - 1, 4033 &ordered_sums, 0); 4034 if (ret) { 4035 btrfs_release_path(dst_path); 4036 kfree(ins_data); 4037 return ret; 4038 } 4039 } 4040 } 4041 } 4042 4043 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4044 btrfs_release_path(dst_path); 4045 kfree(ins_data); 4046 4047 /* 4048 * we have to do this after the loop above to avoid changing the 4049 * log tree while trying to change the log tree. 4050 */ 4051 ret = 0; 4052 while (!list_empty(&ordered_sums)) { 4053 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4054 struct btrfs_ordered_sum, 4055 list); 4056 if (!ret) 4057 ret = btrfs_csum_file_blocks(trans, log, sums); 4058 list_del(&sums->list); 4059 kfree(sums); 4060 } 4061 4062 if (!has_extents) 4063 return ret; 4064 4065 if (need_find_last_extent && *last_extent == first_key.offset) { 4066 /* 4067 * We don't have any leafs between our current one and the one 4068 * we processed before that can have file extent items for our 4069 * inode (and have a generation number smaller than our current 4070 * transaction id). 4071 */ 4072 need_find_last_extent = false; 4073 } 4074 4075 /* 4076 * Because we use btrfs_search_forward we could skip leaves that were 4077 * not modified and then assume *last_extent is valid when it really 4078 * isn't. So back up to the previous leaf and read the end of the last 4079 * extent before we go and fill in holes. 4080 */ 4081 if (need_find_last_extent) { 4082 u64 len; 4083 4084 ret = btrfs_prev_leaf(inode->root, src_path); 4085 if (ret < 0) 4086 return ret; 4087 if (ret) 4088 goto fill_holes; 4089 if (src_path->slots[0]) 4090 src_path->slots[0]--; 4091 src = src_path->nodes[0]; 4092 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]); 4093 if (key.objectid != btrfs_ino(inode) || 4094 key.type != BTRFS_EXTENT_DATA_KEY) 4095 goto fill_holes; 4096 extent = btrfs_item_ptr(src, src_path->slots[0], 4097 struct btrfs_file_extent_item); 4098 if (btrfs_file_extent_type(src, extent) == 4099 BTRFS_FILE_EXTENT_INLINE) { 4100 len = btrfs_file_extent_ram_bytes(src, extent); 4101 *last_extent = ALIGN(key.offset + len, 4102 fs_info->sectorsize); 4103 } else { 4104 len = btrfs_file_extent_num_bytes(src, extent); 4105 *last_extent = key.offset + len; 4106 } 4107 } 4108 fill_holes: 4109 /* So we did prev_leaf, now we need to move to the next leaf, but a few 4110 * things could have happened 4111 * 4112 * 1) A merge could have happened, so we could currently be on a leaf 4113 * that holds what we were copying in the first place. 4114 * 2) A split could have happened, and now not all of the items we want 4115 * are on the same leaf. 4116 * 4117 * So we need to adjust how we search for holes, we need to drop the 4118 * path and re-search for the first extent key we found, and then walk 4119 * forward until we hit the last one we copied. 4120 */ 4121 if (need_find_last_extent) { 4122 /* btrfs_prev_leaf could return 1 without releasing the path */ 4123 btrfs_release_path(src_path); 4124 ret = btrfs_search_slot(NULL, inode->root, &first_key, 4125 src_path, 0, 0); 4126 if (ret < 0) 4127 return ret; 4128 ASSERT(ret == 0); 4129 src = src_path->nodes[0]; 4130 i = src_path->slots[0]; 4131 } else { 4132 i = start_slot; 4133 } 4134 4135 /* 4136 * Ok so here we need to go through and fill in any holes we may have 4137 * to make sure that holes are punched for those areas in case they had 4138 * extents previously. 4139 */ 4140 while (!done) { 4141 u64 offset, len; 4142 u64 extent_end; 4143 4144 if (i >= btrfs_header_nritems(src_path->nodes[0])) { 4145 ret = btrfs_next_leaf(inode->root, src_path); 4146 if (ret < 0) 4147 return ret; 4148 ASSERT(ret == 0); 4149 src = src_path->nodes[0]; 4150 i = 0; 4151 need_find_last_extent = true; 4152 } 4153 4154 btrfs_item_key_to_cpu(src, &key, i); 4155 if (!btrfs_comp_cpu_keys(&key, &last_key)) 4156 done = true; 4157 if (key.objectid != btrfs_ino(inode) || 4158 key.type != BTRFS_EXTENT_DATA_KEY) { 4159 i++; 4160 continue; 4161 } 4162 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); 4163 if (btrfs_file_extent_type(src, extent) == 4164 BTRFS_FILE_EXTENT_INLINE) { 4165 len = btrfs_file_extent_ram_bytes(src, extent); 4166 extent_end = ALIGN(key.offset + len, 4167 fs_info->sectorsize); 4168 } else { 4169 len = btrfs_file_extent_num_bytes(src, extent); 4170 extent_end = key.offset + len; 4171 } 4172 i++; 4173 4174 if (*last_extent == key.offset) { 4175 *last_extent = extent_end; 4176 continue; 4177 } 4178 offset = *last_extent; 4179 len = key.offset - *last_extent; 4180 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode), 4181 offset, 0, 0, len, 0, len, 0, 0, 0); 4182 if (ret) 4183 break; 4184 *last_extent = extent_end; 4185 } 4186 4187 /* 4188 * Check if there is a hole between the last extent found in our leaf 4189 * and the first extent in the next leaf. If there is one, we need to 4190 * log an explicit hole so that at replay time we can punch the hole. 4191 */ 4192 if (ret == 0 && 4193 key.objectid == btrfs_ino(inode) && 4194 key.type == BTRFS_EXTENT_DATA_KEY && 4195 i == btrfs_header_nritems(src_path->nodes[0])) { 4196 ret = btrfs_next_leaf(inode->root, src_path); 4197 need_find_last_extent = true; 4198 if (ret > 0) { 4199 ret = 0; 4200 } else if (ret == 0) { 4201 btrfs_item_key_to_cpu(src_path->nodes[0], &key, 4202 src_path->slots[0]); 4203 if (key.objectid == btrfs_ino(inode) && 4204 key.type == BTRFS_EXTENT_DATA_KEY && 4205 *last_extent < key.offset) { 4206 const u64 len = key.offset - *last_extent; 4207 4208 ret = btrfs_insert_file_extent(trans, log, 4209 btrfs_ino(inode), 4210 *last_extent, 0, 4211 0, len, 0, len, 4212 0, 0, 0); 4213 *last_extent += len; 4214 } 4215 } 4216 } 4217 /* 4218 * Need to let the callers know we dropped the path so they should 4219 * re-search. 4220 */ 4221 if (!ret && need_find_last_extent) 4222 ret = 1; 4223 return ret; 4224 } 4225 4226 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 4227 { 4228 struct extent_map *em1, *em2; 4229 4230 em1 = list_entry(a, struct extent_map, list); 4231 em2 = list_entry(b, struct extent_map, list); 4232 4233 if (em1->start < em2->start) 4234 return -1; 4235 else if (em1->start > em2->start) 4236 return 1; 4237 return 0; 4238 } 4239 4240 static int log_extent_csums(struct btrfs_trans_handle *trans, 4241 struct btrfs_inode *inode, 4242 struct btrfs_root *log_root, 4243 const struct extent_map *em) 4244 { 4245 u64 csum_offset; 4246 u64 csum_len; 4247 LIST_HEAD(ordered_sums); 4248 int ret = 0; 4249 4250 if (inode->flags & BTRFS_INODE_NODATASUM || 4251 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4252 em->block_start == EXTENT_MAP_HOLE) 4253 return 0; 4254 4255 /* If we're compressed we have to save the entire range of csums. */ 4256 if (em->compress_type) { 4257 csum_offset = 0; 4258 csum_len = max(em->block_len, em->orig_block_len); 4259 } else { 4260 csum_offset = em->mod_start - em->start; 4261 csum_len = em->mod_len; 4262 } 4263 4264 /* block start is already adjusted for the file extent offset. */ 4265 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, 4266 em->block_start + csum_offset, 4267 em->block_start + csum_offset + 4268 csum_len - 1, &ordered_sums, 0); 4269 if (ret) 4270 return ret; 4271 4272 while (!list_empty(&ordered_sums)) { 4273 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4274 struct btrfs_ordered_sum, 4275 list); 4276 if (!ret) 4277 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4278 list_del(&sums->list); 4279 kfree(sums); 4280 } 4281 4282 return ret; 4283 } 4284 4285 static int log_one_extent(struct btrfs_trans_handle *trans, 4286 struct btrfs_inode *inode, struct btrfs_root *root, 4287 const struct extent_map *em, 4288 struct btrfs_path *path, 4289 struct btrfs_log_ctx *ctx) 4290 { 4291 struct btrfs_root *log = root->log_root; 4292 struct btrfs_file_extent_item *fi; 4293 struct extent_buffer *leaf; 4294 struct btrfs_map_token token; 4295 struct btrfs_key key; 4296 u64 extent_offset = em->start - em->orig_start; 4297 u64 block_len; 4298 int ret; 4299 int extent_inserted = 0; 4300 4301 ret = log_extent_csums(trans, inode, log, em); 4302 if (ret) 4303 return ret; 4304 4305 btrfs_init_map_token(&token); 4306 4307 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start, 4308 em->start + em->len, NULL, 0, 1, 4309 sizeof(*fi), &extent_inserted); 4310 if (ret) 4311 return ret; 4312 4313 if (!extent_inserted) { 4314 key.objectid = btrfs_ino(inode); 4315 key.type = BTRFS_EXTENT_DATA_KEY; 4316 key.offset = em->start; 4317 4318 ret = btrfs_insert_empty_item(trans, log, path, &key, 4319 sizeof(*fi)); 4320 if (ret) 4321 return ret; 4322 } 4323 leaf = path->nodes[0]; 4324 fi = btrfs_item_ptr(leaf, path->slots[0], 4325 struct btrfs_file_extent_item); 4326 4327 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, 4328 &token); 4329 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4330 btrfs_set_token_file_extent_type(leaf, fi, 4331 BTRFS_FILE_EXTENT_PREALLOC, 4332 &token); 4333 else 4334 btrfs_set_token_file_extent_type(leaf, fi, 4335 BTRFS_FILE_EXTENT_REG, 4336 &token); 4337 4338 block_len = max(em->block_len, em->orig_block_len); 4339 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4340 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4341 em->block_start, 4342 &token); 4343 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4344 &token); 4345 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4346 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4347 em->block_start - 4348 extent_offset, &token); 4349 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4350 &token); 4351 } else { 4352 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); 4353 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, 4354 &token); 4355 } 4356 4357 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); 4358 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); 4359 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); 4360 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, 4361 &token); 4362 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); 4363 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); 4364 btrfs_mark_buffer_dirty(leaf); 4365 4366 btrfs_release_path(path); 4367 4368 return ret; 4369 } 4370 4371 /* 4372 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4373 * lose them after doing a fast fsync and replaying the log. We scan the 4374 * subvolume's root instead of iterating the inode's extent map tree because 4375 * otherwise we can log incorrect extent items based on extent map conversion. 4376 * That can happen due to the fact that extent maps are merged when they 4377 * are not in the extent map tree's list of modified extents. 4378 */ 4379 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4380 struct btrfs_inode *inode, 4381 struct btrfs_path *path) 4382 { 4383 struct btrfs_root *root = inode->root; 4384 struct btrfs_key key; 4385 const u64 i_size = i_size_read(&inode->vfs_inode); 4386 const u64 ino = btrfs_ino(inode); 4387 struct btrfs_path *dst_path = NULL; 4388 u64 last_extent = (u64)-1; 4389 int ins_nr = 0; 4390 int start_slot; 4391 int ret; 4392 4393 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4394 return 0; 4395 4396 key.objectid = ino; 4397 key.type = BTRFS_EXTENT_DATA_KEY; 4398 key.offset = i_size; 4399 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4400 if (ret < 0) 4401 goto out; 4402 4403 while (true) { 4404 struct extent_buffer *leaf = path->nodes[0]; 4405 int slot = path->slots[0]; 4406 4407 if (slot >= btrfs_header_nritems(leaf)) { 4408 if (ins_nr > 0) { 4409 ret = copy_items(trans, inode, dst_path, path, 4410 &last_extent, start_slot, 4411 ins_nr, 1, 0); 4412 if (ret < 0) 4413 goto out; 4414 ins_nr = 0; 4415 } 4416 ret = btrfs_next_leaf(root, path); 4417 if (ret < 0) 4418 goto out; 4419 if (ret > 0) { 4420 ret = 0; 4421 break; 4422 } 4423 continue; 4424 } 4425 4426 btrfs_item_key_to_cpu(leaf, &key, slot); 4427 if (key.objectid > ino) 4428 break; 4429 if (WARN_ON_ONCE(key.objectid < ino) || 4430 key.type < BTRFS_EXTENT_DATA_KEY || 4431 key.offset < i_size) { 4432 path->slots[0]++; 4433 continue; 4434 } 4435 if (last_extent == (u64)-1) { 4436 last_extent = key.offset; 4437 /* 4438 * Avoid logging extent items logged in past fsync calls 4439 * and leading to duplicate keys in the log tree. 4440 */ 4441 do { 4442 ret = btrfs_truncate_inode_items(trans, 4443 root->log_root, 4444 &inode->vfs_inode, 4445 i_size, 4446 BTRFS_EXTENT_DATA_KEY); 4447 } while (ret == -EAGAIN); 4448 if (ret) 4449 goto out; 4450 } 4451 if (ins_nr == 0) 4452 start_slot = slot; 4453 ins_nr++; 4454 path->slots[0]++; 4455 if (!dst_path) { 4456 dst_path = btrfs_alloc_path(); 4457 if (!dst_path) { 4458 ret = -ENOMEM; 4459 goto out; 4460 } 4461 } 4462 } 4463 if (ins_nr > 0) { 4464 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4465 start_slot, ins_nr, 1, 0); 4466 if (ret > 0) 4467 ret = 0; 4468 } 4469 out: 4470 btrfs_release_path(path); 4471 btrfs_free_path(dst_path); 4472 return ret; 4473 } 4474 4475 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4476 struct btrfs_root *root, 4477 struct btrfs_inode *inode, 4478 struct btrfs_path *path, 4479 struct btrfs_log_ctx *ctx, 4480 const u64 start, 4481 const u64 end) 4482 { 4483 struct extent_map *em, *n; 4484 struct list_head extents; 4485 struct extent_map_tree *tree = &inode->extent_tree; 4486 u64 test_gen; 4487 int ret = 0; 4488 int num = 0; 4489 4490 INIT_LIST_HEAD(&extents); 4491 4492 write_lock(&tree->lock); 4493 test_gen = root->fs_info->last_trans_committed; 4494 4495 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4496 /* 4497 * Skip extents outside our logging range. It's important to do 4498 * it for correctness because if we don't ignore them, we may 4499 * log them before their ordered extent completes, and therefore 4500 * we could log them without logging their respective checksums 4501 * (the checksum items are added to the csum tree at the very 4502 * end of btrfs_finish_ordered_io()). Also leave such extents 4503 * outside of our range in the list, since we may have another 4504 * ranged fsync in the near future that needs them. If an extent 4505 * outside our range corresponds to a hole, log it to avoid 4506 * leaving gaps between extents (fsck will complain when we are 4507 * not using the NO_HOLES feature). 4508 */ 4509 if ((em->start > end || em->start + em->len <= start) && 4510 em->block_start != EXTENT_MAP_HOLE) 4511 continue; 4512 4513 list_del_init(&em->list); 4514 /* 4515 * Just an arbitrary number, this can be really CPU intensive 4516 * once we start getting a lot of extents, and really once we 4517 * have a bunch of extents we just want to commit since it will 4518 * be faster. 4519 */ 4520 if (++num > 32768) { 4521 list_del_init(&tree->modified_extents); 4522 ret = -EFBIG; 4523 goto process; 4524 } 4525 4526 if (em->generation <= test_gen) 4527 continue; 4528 4529 /* We log prealloc extents beyond eof later. */ 4530 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4531 em->start >= i_size_read(&inode->vfs_inode)) 4532 continue; 4533 4534 /* Need a ref to keep it from getting evicted from cache */ 4535 refcount_inc(&em->refs); 4536 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4537 list_add_tail(&em->list, &extents); 4538 num++; 4539 } 4540 4541 list_sort(NULL, &extents, extent_cmp); 4542 process: 4543 while (!list_empty(&extents)) { 4544 em = list_entry(extents.next, struct extent_map, list); 4545 4546 list_del_init(&em->list); 4547 4548 /* 4549 * If we had an error we just need to delete everybody from our 4550 * private list. 4551 */ 4552 if (ret) { 4553 clear_em_logging(tree, em); 4554 free_extent_map(em); 4555 continue; 4556 } 4557 4558 write_unlock(&tree->lock); 4559 4560 ret = log_one_extent(trans, inode, root, em, path, ctx); 4561 write_lock(&tree->lock); 4562 clear_em_logging(tree, em); 4563 free_extent_map(em); 4564 } 4565 WARN_ON(!list_empty(&extents)); 4566 write_unlock(&tree->lock); 4567 4568 btrfs_release_path(path); 4569 if (!ret) 4570 ret = btrfs_log_prealloc_extents(trans, inode, path); 4571 4572 return ret; 4573 } 4574 4575 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4576 struct btrfs_path *path, u64 *size_ret) 4577 { 4578 struct btrfs_key key; 4579 int ret; 4580 4581 key.objectid = btrfs_ino(inode); 4582 key.type = BTRFS_INODE_ITEM_KEY; 4583 key.offset = 0; 4584 4585 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4586 if (ret < 0) { 4587 return ret; 4588 } else if (ret > 0) { 4589 *size_ret = 0; 4590 } else { 4591 struct btrfs_inode_item *item; 4592 4593 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4594 struct btrfs_inode_item); 4595 *size_ret = btrfs_inode_size(path->nodes[0], item); 4596 /* 4597 * If the in-memory inode's i_size is smaller then the inode 4598 * size stored in the btree, return the inode's i_size, so 4599 * that we get a correct inode size after replaying the log 4600 * when before a power failure we had a shrinking truncate 4601 * followed by addition of a new name (rename / new hard link). 4602 * Otherwise return the inode size from the btree, to avoid 4603 * data loss when replaying a log due to previously doing a 4604 * write that expands the inode's size and logging a new name 4605 * immediately after. 4606 */ 4607 if (*size_ret > inode->vfs_inode.i_size) 4608 *size_ret = inode->vfs_inode.i_size; 4609 } 4610 4611 btrfs_release_path(path); 4612 return 0; 4613 } 4614 4615 /* 4616 * At the moment we always log all xattrs. This is to figure out at log replay 4617 * time which xattrs must have their deletion replayed. If a xattr is missing 4618 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4619 * because if a xattr is deleted, the inode is fsynced and a power failure 4620 * happens, causing the log to be replayed the next time the fs is mounted, 4621 * we want the xattr to not exist anymore (same behaviour as other filesystems 4622 * with a journal, ext3/4, xfs, f2fs, etc). 4623 */ 4624 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4625 struct btrfs_root *root, 4626 struct btrfs_inode *inode, 4627 struct btrfs_path *path, 4628 struct btrfs_path *dst_path) 4629 { 4630 int ret; 4631 struct btrfs_key key; 4632 const u64 ino = btrfs_ino(inode); 4633 int ins_nr = 0; 4634 int start_slot = 0; 4635 4636 key.objectid = ino; 4637 key.type = BTRFS_XATTR_ITEM_KEY; 4638 key.offset = 0; 4639 4640 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4641 if (ret < 0) 4642 return ret; 4643 4644 while (true) { 4645 int slot = path->slots[0]; 4646 struct extent_buffer *leaf = path->nodes[0]; 4647 int nritems = btrfs_header_nritems(leaf); 4648 4649 if (slot >= nritems) { 4650 if (ins_nr > 0) { 4651 u64 last_extent = 0; 4652 4653 ret = copy_items(trans, inode, dst_path, path, 4654 &last_extent, start_slot, 4655 ins_nr, 1, 0); 4656 /* can't be 1, extent items aren't processed */ 4657 ASSERT(ret <= 0); 4658 if (ret < 0) 4659 return ret; 4660 ins_nr = 0; 4661 } 4662 ret = btrfs_next_leaf(root, path); 4663 if (ret < 0) 4664 return ret; 4665 else if (ret > 0) 4666 break; 4667 continue; 4668 } 4669 4670 btrfs_item_key_to_cpu(leaf, &key, slot); 4671 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4672 break; 4673 4674 if (ins_nr == 0) 4675 start_slot = slot; 4676 ins_nr++; 4677 path->slots[0]++; 4678 cond_resched(); 4679 } 4680 if (ins_nr > 0) { 4681 u64 last_extent = 0; 4682 4683 ret = copy_items(trans, inode, dst_path, path, 4684 &last_extent, start_slot, 4685 ins_nr, 1, 0); 4686 /* can't be 1, extent items aren't processed */ 4687 ASSERT(ret <= 0); 4688 if (ret < 0) 4689 return ret; 4690 } 4691 4692 return 0; 4693 } 4694 4695 /* 4696 * If the no holes feature is enabled we need to make sure any hole between the 4697 * last extent and the i_size of our inode is explicitly marked in the log. This 4698 * is to make sure that doing something like: 4699 * 4700 * 1) create file with 128Kb of data 4701 * 2) truncate file to 64Kb 4702 * 3) truncate file to 256Kb 4703 * 4) fsync file 4704 * 5) <crash/power failure> 4705 * 6) mount fs and trigger log replay 4706 * 4707 * Will give us a file with a size of 256Kb, the first 64Kb of data match what 4708 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the 4709 * file correspond to a hole. The presence of explicit holes in a log tree is 4710 * what guarantees that log replay will remove/adjust file extent items in the 4711 * fs/subvol tree. 4712 * 4713 * Here we do not need to care about holes between extents, that is already done 4714 * by copy_items(). We also only need to do this in the full sync path, where we 4715 * lookup for extents from the fs/subvol tree only. In the fast path case, we 4716 * lookup the list of modified extent maps and if any represents a hole, we 4717 * insert a corresponding extent representing a hole in the log tree. 4718 */ 4719 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans, 4720 struct btrfs_root *root, 4721 struct btrfs_inode *inode, 4722 struct btrfs_path *path) 4723 { 4724 struct btrfs_fs_info *fs_info = root->fs_info; 4725 int ret; 4726 struct btrfs_key key; 4727 u64 hole_start; 4728 u64 hole_size; 4729 struct extent_buffer *leaf; 4730 struct btrfs_root *log = root->log_root; 4731 const u64 ino = btrfs_ino(inode); 4732 const u64 i_size = i_size_read(&inode->vfs_inode); 4733 4734 if (!btrfs_fs_incompat(fs_info, NO_HOLES)) 4735 return 0; 4736 4737 key.objectid = ino; 4738 key.type = BTRFS_EXTENT_DATA_KEY; 4739 key.offset = (u64)-1; 4740 4741 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4742 ASSERT(ret != 0); 4743 if (ret < 0) 4744 return ret; 4745 4746 ASSERT(path->slots[0] > 0); 4747 path->slots[0]--; 4748 leaf = path->nodes[0]; 4749 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4750 4751 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 4752 /* inode does not have any extents */ 4753 hole_start = 0; 4754 hole_size = i_size; 4755 } else { 4756 struct btrfs_file_extent_item *extent; 4757 u64 len; 4758 4759 /* 4760 * If there's an extent beyond i_size, an explicit hole was 4761 * already inserted by copy_items(). 4762 */ 4763 if (key.offset >= i_size) 4764 return 0; 4765 4766 extent = btrfs_item_ptr(leaf, path->slots[0], 4767 struct btrfs_file_extent_item); 4768 4769 if (btrfs_file_extent_type(leaf, extent) == 4770 BTRFS_FILE_EXTENT_INLINE) 4771 return 0; 4772 4773 len = btrfs_file_extent_num_bytes(leaf, extent); 4774 /* Last extent goes beyond i_size, no need to log a hole. */ 4775 if (key.offset + len > i_size) 4776 return 0; 4777 hole_start = key.offset + len; 4778 hole_size = i_size - hole_start; 4779 } 4780 btrfs_release_path(path); 4781 4782 /* Last extent ends at i_size. */ 4783 if (hole_size == 0) 4784 return 0; 4785 4786 hole_size = ALIGN(hole_size, fs_info->sectorsize); 4787 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0, 4788 hole_size, 0, hole_size, 0, 0, 0); 4789 return ret; 4790 } 4791 4792 /* 4793 * When we are logging a new inode X, check if it doesn't have a reference that 4794 * matches the reference from some other inode Y created in a past transaction 4795 * and that was renamed in the current transaction. If we don't do this, then at 4796 * log replay time we can lose inode Y (and all its files if it's a directory): 4797 * 4798 * mkdir /mnt/x 4799 * echo "hello world" > /mnt/x/foobar 4800 * sync 4801 * mv /mnt/x /mnt/y 4802 * mkdir /mnt/x # or touch /mnt/x 4803 * xfs_io -c fsync /mnt/x 4804 * <power fail> 4805 * mount fs, trigger log replay 4806 * 4807 * After the log replay procedure, we would lose the first directory and all its 4808 * files (file foobar). 4809 * For the case where inode Y is not a directory we simply end up losing it: 4810 * 4811 * echo "123" > /mnt/foo 4812 * sync 4813 * mv /mnt/foo /mnt/bar 4814 * echo "abc" > /mnt/foo 4815 * xfs_io -c fsync /mnt/foo 4816 * <power fail> 4817 * 4818 * We also need this for cases where a snapshot entry is replaced by some other 4819 * entry (file or directory) otherwise we end up with an unreplayable log due to 4820 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4821 * if it were a regular entry: 4822 * 4823 * mkdir /mnt/x 4824 * btrfs subvolume snapshot /mnt /mnt/x/snap 4825 * btrfs subvolume delete /mnt/x/snap 4826 * rmdir /mnt/x 4827 * mkdir /mnt/x 4828 * fsync /mnt/x or fsync some new file inside it 4829 * <power fail> 4830 * 4831 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4832 * the same transaction. 4833 */ 4834 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4835 const int slot, 4836 const struct btrfs_key *key, 4837 struct btrfs_inode *inode, 4838 u64 *other_ino, u64 *other_parent) 4839 { 4840 int ret; 4841 struct btrfs_path *search_path; 4842 char *name = NULL; 4843 u32 name_len = 0; 4844 u32 item_size = btrfs_item_size_nr(eb, slot); 4845 u32 cur_offset = 0; 4846 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4847 4848 search_path = btrfs_alloc_path(); 4849 if (!search_path) 4850 return -ENOMEM; 4851 search_path->search_commit_root = 1; 4852 search_path->skip_locking = 1; 4853 4854 while (cur_offset < item_size) { 4855 u64 parent; 4856 u32 this_name_len; 4857 u32 this_len; 4858 unsigned long name_ptr; 4859 struct btrfs_dir_item *di; 4860 4861 if (key->type == BTRFS_INODE_REF_KEY) { 4862 struct btrfs_inode_ref *iref; 4863 4864 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4865 parent = key->offset; 4866 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4867 name_ptr = (unsigned long)(iref + 1); 4868 this_len = sizeof(*iref) + this_name_len; 4869 } else { 4870 struct btrfs_inode_extref *extref; 4871 4872 extref = (struct btrfs_inode_extref *)(ptr + 4873 cur_offset); 4874 parent = btrfs_inode_extref_parent(eb, extref); 4875 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4876 name_ptr = (unsigned long)&extref->name; 4877 this_len = sizeof(*extref) + this_name_len; 4878 } 4879 4880 if (this_name_len > name_len) { 4881 char *new_name; 4882 4883 new_name = krealloc(name, this_name_len, GFP_NOFS); 4884 if (!new_name) { 4885 ret = -ENOMEM; 4886 goto out; 4887 } 4888 name_len = this_name_len; 4889 name = new_name; 4890 } 4891 4892 read_extent_buffer(eb, name, name_ptr, this_name_len); 4893 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 4894 parent, name, this_name_len, 0); 4895 if (di && !IS_ERR(di)) { 4896 struct btrfs_key di_key; 4897 4898 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4899 di, &di_key); 4900 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4901 if (di_key.objectid != key->objectid) { 4902 ret = 1; 4903 *other_ino = di_key.objectid; 4904 *other_parent = parent; 4905 } else { 4906 ret = 0; 4907 } 4908 } else { 4909 ret = -EAGAIN; 4910 } 4911 goto out; 4912 } else if (IS_ERR(di)) { 4913 ret = PTR_ERR(di); 4914 goto out; 4915 } 4916 btrfs_release_path(search_path); 4917 4918 cur_offset += this_len; 4919 } 4920 ret = 0; 4921 out: 4922 btrfs_free_path(search_path); 4923 kfree(name); 4924 return ret; 4925 } 4926 4927 struct btrfs_ino_list { 4928 u64 ino; 4929 u64 parent; 4930 struct list_head list; 4931 }; 4932 4933 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 4934 struct btrfs_root *root, 4935 struct btrfs_path *path, 4936 struct btrfs_log_ctx *ctx, 4937 u64 ino, u64 parent) 4938 { 4939 struct btrfs_ino_list *ino_elem; 4940 LIST_HEAD(inode_list); 4941 int ret = 0; 4942 4943 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4944 if (!ino_elem) 4945 return -ENOMEM; 4946 ino_elem->ino = ino; 4947 ino_elem->parent = parent; 4948 list_add_tail(&ino_elem->list, &inode_list); 4949 4950 while (!list_empty(&inode_list)) { 4951 struct btrfs_fs_info *fs_info = root->fs_info; 4952 struct btrfs_key key; 4953 struct inode *inode; 4954 4955 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 4956 list); 4957 ino = ino_elem->ino; 4958 parent = ino_elem->parent; 4959 list_del(&ino_elem->list); 4960 kfree(ino_elem); 4961 if (ret) 4962 continue; 4963 4964 btrfs_release_path(path); 4965 4966 key.objectid = ino; 4967 key.type = BTRFS_INODE_ITEM_KEY; 4968 key.offset = 0; 4969 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4970 /* 4971 * If the other inode that had a conflicting dir entry was 4972 * deleted in the current transaction, we need to log its parent 4973 * directory. 4974 */ 4975 if (IS_ERR(inode)) { 4976 ret = PTR_ERR(inode); 4977 if (ret == -ENOENT) { 4978 key.objectid = parent; 4979 inode = btrfs_iget(fs_info->sb, &key, root, 4980 NULL); 4981 if (IS_ERR(inode)) { 4982 ret = PTR_ERR(inode); 4983 } else { 4984 ret = btrfs_log_inode(trans, root, 4985 BTRFS_I(inode), 4986 LOG_OTHER_INODE_ALL, 4987 0, LLONG_MAX, ctx); 4988 iput(inode); 4989 } 4990 } 4991 continue; 4992 } 4993 /* 4994 * We are safe logging the other inode without acquiring its 4995 * lock as long as we log with the LOG_INODE_EXISTS mode. We 4996 * are safe against concurrent renames of the other inode as 4997 * well because during a rename we pin the log and update the 4998 * log with the new name before we unpin it. 4999 */ 5000 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5001 LOG_OTHER_INODE, 0, LLONG_MAX, ctx); 5002 if (ret) { 5003 iput(inode); 5004 continue; 5005 } 5006 5007 key.objectid = ino; 5008 key.type = BTRFS_INODE_REF_KEY; 5009 key.offset = 0; 5010 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5011 if (ret < 0) { 5012 iput(inode); 5013 continue; 5014 } 5015 5016 while (true) { 5017 struct extent_buffer *leaf = path->nodes[0]; 5018 int slot = path->slots[0]; 5019 u64 other_ino = 0; 5020 u64 other_parent = 0; 5021 5022 if (slot >= btrfs_header_nritems(leaf)) { 5023 ret = btrfs_next_leaf(root, path); 5024 if (ret < 0) { 5025 break; 5026 } else if (ret > 0) { 5027 ret = 0; 5028 break; 5029 } 5030 continue; 5031 } 5032 5033 btrfs_item_key_to_cpu(leaf, &key, slot); 5034 if (key.objectid != ino || 5035 (key.type != BTRFS_INODE_REF_KEY && 5036 key.type != BTRFS_INODE_EXTREF_KEY)) { 5037 ret = 0; 5038 break; 5039 } 5040 5041 ret = btrfs_check_ref_name_override(leaf, slot, &key, 5042 BTRFS_I(inode), &other_ino, 5043 &other_parent); 5044 if (ret < 0) 5045 break; 5046 if (ret > 0) { 5047 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5048 if (!ino_elem) { 5049 ret = -ENOMEM; 5050 break; 5051 } 5052 ino_elem->ino = other_ino; 5053 ino_elem->parent = other_parent; 5054 list_add_tail(&ino_elem->list, &inode_list); 5055 ret = 0; 5056 } 5057 path->slots[0]++; 5058 } 5059 iput(inode); 5060 } 5061 5062 return ret; 5063 } 5064 5065 /* log a single inode in the tree log. 5066 * At least one parent directory for this inode must exist in the tree 5067 * or be logged already. 5068 * 5069 * Any items from this inode changed by the current transaction are copied 5070 * to the log tree. An extra reference is taken on any extents in this 5071 * file, allowing us to avoid a whole pile of corner cases around logging 5072 * blocks that have been removed from the tree. 5073 * 5074 * See LOG_INODE_ALL and related defines for a description of what inode_only 5075 * does. 5076 * 5077 * This handles both files and directories. 5078 */ 5079 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5080 struct btrfs_root *root, struct btrfs_inode *inode, 5081 int inode_only, 5082 const loff_t start, 5083 const loff_t end, 5084 struct btrfs_log_ctx *ctx) 5085 { 5086 struct btrfs_fs_info *fs_info = root->fs_info; 5087 struct btrfs_path *path; 5088 struct btrfs_path *dst_path; 5089 struct btrfs_key min_key; 5090 struct btrfs_key max_key; 5091 struct btrfs_root *log = root->log_root; 5092 u64 last_extent = 0; 5093 int err = 0; 5094 int ret; 5095 int nritems; 5096 int ins_start_slot = 0; 5097 int ins_nr; 5098 bool fast_search = false; 5099 u64 ino = btrfs_ino(inode); 5100 struct extent_map_tree *em_tree = &inode->extent_tree; 5101 u64 logged_isize = 0; 5102 bool need_log_inode_item = true; 5103 bool xattrs_logged = false; 5104 bool recursive_logging = false; 5105 5106 path = btrfs_alloc_path(); 5107 if (!path) 5108 return -ENOMEM; 5109 dst_path = btrfs_alloc_path(); 5110 if (!dst_path) { 5111 btrfs_free_path(path); 5112 return -ENOMEM; 5113 } 5114 5115 min_key.objectid = ino; 5116 min_key.type = BTRFS_INODE_ITEM_KEY; 5117 min_key.offset = 0; 5118 5119 max_key.objectid = ino; 5120 5121 5122 /* today the code can only do partial logging of directories */ 5123 if (S_ISDIR(inode->vfs_inode.i_mode) || 5124 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5125 &inode->runtime_flags) && 5126 inode_only >= LOG_INODE_EXISTS)) 5127 max_key.type = BTRFS_XATTR_ITEM_KEY; 5128 else 5129 max_key.type = (u8)-1; 5130 max_key.offset = (u64)-1; 5131 5132 /* 5133 * Only run delayed items if we are a dir or a new file. 5134 * Otherwise commit the delayed inode only, which is needed in 5135 * order for the log replay code to mark inodes for link count 5136 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items). 5137 */ 5138 if (S_ISDIR(inode->vfs_inode.i_mode) || 5139 inode->generation > fs_info->last_trans_committed) 5140 ret = btrfs_commit_inode_delayed_items(trans, inode); 5141 else 5142 ret = btrfs_commit_inode_delayed_inode(inode); 5143 5144 if (ret) { 5145 btrfs_free_path(path); 5146 btrfs_free_path(dst_path); 5147 return ret; 5148 } 5149 5150 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5151 recursive_logging = true; 5152 if (inode_only == LOG_OTHER_INODE) 5153 inode_only = LOG_INODE_EXISTS; 5154 else 5155 inode_only = LOG_INODE_ALL; 5156 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5157 } else { 5158 mutex_lock(&inode->log_mutex); 5159 } 5160 5161 /* 5162 * a brute force approach to making sure we get the most uptodate 5163 * copies of everything. 5164 */ 5165 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5166 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5167 5168 if (inode_only == LOG_INODE_EXISTS) 5169 max_key_type = BTRFS_XATTR_ITEM_KEY; 5170 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 5171 } else { 5172 if (inode_only == LOG_INODE_EXISTS) { 5173 /* 5174 * Make sure the new inode item we write to the log has 5175 * the same isize as the current one (if it exists). 5176 * This is necessary to prevent data loss after log 5177 * replay, and also to prevent doing a wrong expanding 5178 * truncate - for e.g. create file, write 4K into offset 5179 * 0, fsync, write 4K into offset 4096, add hard link, 5180 * fsync some other file (to sync log), power fail - if 5181 * we use the inode's current i_size, after log replay 5182 * we get a 8Kb file, with the last 4Kb extent as a hole 5183 * (zeroes), as if an expanding truncate happened, 5184 * instead of getting a file of 4Kb only. 5185 */ 5186 err = logged_inode_size(log, inode, path, &logged_isize); 5187 if (err) 5188 goto out_unlock; 5189 } 5190 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5191 &inode->runtime_flags)) { 5192 if (inode_only == LOG_INODE_EXISTS) { 5193 max_key.type = BTRFS_XATTR_ITEM_KEY; 5194 ret = drop_objectid_items(trans, log, path, ino, 5195 max_key.type); 5196 } else { 5197 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5198 &inode->runtime_flags); 5199 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5200 &inode->runtime_flags); 5201 while(1) { 5202 ret = btrfs_truncate_inode_items(trans, 5203 log, &inode->vfs_inode, 0, 0); 5204 if (ret != -EAGAIN) 5205 break; 5206 } 5207 } 5208 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5209 &inode->runtime_flags) || 5210 inode_only == LOG_INODE_EXISTS) { 5211 if (inode_only == LOG_INODE_ALL) 5212 fast_search = true; 5213 max_key.type = BTRFS_XATTR_ITEM_KEY; 5214 ret = drop_objectid_items(trans, log, path, ino, 5215 max_key.type); 5216 } else { 5217 if (inode_only == LOG_INODE_ALL) 5218 fast_search = true; 5219 goto log_extents; 5220 } 5221 5222 } 5223 if (ret) { 5224 err = ret; 5225 goto out_unlock; 5226 } 5227 5228 while (1) { 5229 ins_nr = 0; 5230 ret = btrfs_search_forward(root, &min_key, 5231 path, trans->transid); 5232 if (ret < 0) { 5233 err = ret; 5234 goto out_unlock; 5235 } 5236 if (ret != 0) 5237 break; 5238 again: 5239 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 5240 if (min_key.objectid != ino) 5241 break; 5242 if (min_key.type > max_key.type) 5243 break; 5244 5245 if (min_key.type == BTRFS_INODE_ITEM_KEY) 5246 need_log_inode_item = false; 5247 5248 if ((min_key.type == BTRFS_INODE_REF_KEY || 5249 min_key.type == BTRFS_INODE_EXTREF_KEY) && 5250 inode->generation == trans->transid && 5251 !recursive_logging) { 5252 u64 other_ino = 0; 5253 u64 other_parent = 0; 5254 5255 ret = btrfs_check_ref_name_override(path->nodes[0], 5256 path->slots[0], &min_key, inode, 5257 &other_ino, &other_parent); 5258 if (ret < 0) { 5259 err = ret; 5260 goto out_unlock; 5261 } else if (ret > 0 && ctx && 5262 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5263 if (ins_nr > 0) { 5264 ins_nr++; 5265 } else { 5266 ins_nr = 1; 5267 ins_start_slot = path->slots[0]; 5268 } 5269 ret = copy_items(trans, inode, dst_path, path, 5270 &last_extent, ins_start_slot, 5271 ins_nr, inode_only, 5272 logged_isize); 5273 if (ret < 0) { 5274 err = ret; 5275 goto out_unlock; 5276 } 5277 ins_nr = 0; 5278 5279 err = log_conflicting_inodes(trans, root, path, 5280 ctx, other_ino, other_parent); 5281 if (err) 5282 goto out_unlock; 5283 btrfs_release_path(path); 5284 goto next_key; 5285 } 5286 } 5287 5288 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5289 if (min_key.type == BTRFS_XATTR_ITEM_KEY) { 5290 if (ins_nr == 0) 5291 goto next_slot; 5292 ret = copy_items(trans, inode, dst_path, path, 5293 &last_extent, ins_start_slot, 5294 ins_nr, inode_only, logged_isize); 5295 if (ret < 0) { 5296 err = ret; 5297 goto out_unlock; 5298 } 5299 ins_nr = 0; 5300 if (ret) { 5301 btrfs_release_path(path); 5302 continue; 5303 } 5304 goto next_slot; 5305 } 5306 5307 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5308 ins_nr++; 5309 goto next_slot; 5310 } else if (!ins_nr) { 5311 ins_start_slot = path->slots[0]; 5312 ins_nr = 1; 5313 goto next_slot; 5314 } 5315 5316 ret = copy_items(trans, inode, dst_path, path, &last_extent, 5317 ins_start_slot, ins_nr, inode_only, 5318 logged_isize); 5319 if (ret < 0) { 5320 err = ret; 5321 goto out_unlock; 5322 } 5323 if (ret) { 5324 ins_nr = 0; 5325 btrfs_release_path(path); 5326 continue; 5327 } 5328 ins_nr = 1; 5329 ins_start_slot = path->slots[0]; 5330 next_slot: 5331 5332 nritems = btrfs_header_nritems(path->nodes[0]); 5333 path->slots[0]++; 5334 if (path->slots[0] < nritems) { 5335 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 5336 path->slots[0]); 5337 goto again; 5338 } 5339 if (ins_nr) { 5340 ret = copy_items(trans, inode, dst_path, path, 5341 &last_extent, ins_start_slot, 5342 ins_nr, inode_only, logged_isize); 5343 if (ret < 0) { 5344 err = ret; 5345 goto out_unlock; 5346 } 5347 ret = 0; 5348 ins_nr = 0; 5349 } 5350 btrfs_release_path(path); 5351 next_key: 5352 if (min_key.offset < (u64)-1) { 5353 min_key.offset++; 5354 } else if (min_key.type < max_key.type) { 5355 min_key.type++; 5356 min_key.offset = 0; 5357 } else { 5358 break; 5359 } 5360 } 5361 if (ins_nr) { 5362 ret = copy_items(trans, inode, dst_path, path, &last_extent, 5363 ins_start_slot, ins_nr, inode_only, 5364 logged_isize); 5365 if (ret < 0) { 5366 err = ret; 5367 goto out_unlock; 5368 } 5369 ret = 0; 5370 ins_nr = 0; 5371 } 5372 5373 btrfs_release_path(path); 5374 btrfs_release_path(dst_path); 5375 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 5376 if (err) 5377 goto out_unlock; 5378 xattrs_logged = true; 5379 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5380 btrfs_release_path(path); 5381 btrfs_release_path(dst_path); 5382 err = btrfs_log_trailing_hole(trans, root, inode, path); 5383 if (err) 5384 goto out_unlock; 5385 } 5386 log_extents: 5387 btrfs_release_path(path); 5388 btrfs_release_path(dst_path); 5389 if (need_log_inode_item) { 5390 err = log_inode_item(trans, log, dst_path, inode); 5391 if (!err && !xattrs_logged) { 5392 err = btrfs_log_all_xattrs(trans, root, inode, path, 5393 dst_path); 5394 btrfs_release_path(path); 5395 } 5396 if (err) 5397 goto out_unlock; 5398 } 5399 if (fast_search) { 5400 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 5401 ctx, start, end); 5402 if (ret) { 5403 err = ret; 5404 goto out_unlock; 5405 } 5406 } else if (inode_only == LOG_INODE_ALL) { 5407 struct extent_map *em, *n; 5408 5409 write_lock(&em_tree->lock); 5410 /* 5411 * We can't just remove every em if we're called for a ranged 5412 * fsync - that is, one that doesn't cover the whole possible 5413 * file range (0 to LLONG_MAX). This is because we can have 5414 * em's that fall outside the range we're logging and therefore 5415 * their ordered operations haven't completed yet 5416 * (btrfs_finish_ordered_io() not invoked yet). This means we 5417 * didn't get their respective file extent item in the fs/subvol 5418 * tree yet, and need to let the next fast fsync (one which 5419 * consults the list of modified extent maps) find the em so 5420 * that it logs a matching file extent item and waits for the 5421 * respective ordered operation to complete (if it's still 5422 * running). 5423 * 5424 * Removing every em outside the range we're logging would make 5425 * the next fast fsync not log their matching file extent items, 5426 * therefore making us lose data after a log replay. 5427 */ 5428 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 5429 list) { 5430 const u64 mod_end = em->mod_start + em->mod_len - 1; 5431 5432 if (em->mod_start >= start && mod_end <= end) 5433 list_del_init(&em->list); 5434 } 5435 write_unlock(&em_tree->lock); 5436 } 5437 5438 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5439 ret = log_directory_changes(trans, root, inode, path, dst_path, 5440 ctx); 5441 if (ret) { 5442 err = ret; 5443 goto out_unlock; 5444 } 5445 } 5446 5447 /* 5448 * Don't update last_log_commit if we logged that an inode exists after 5449 * it was loaded to memory (full_sync bit set). 5450 * This is to prevent data loss when we do a write to the inode, then 5451 * the inode gets evicted after all delalloc was flushed, then we log 5452 * it exists (due to a rename for example) and then fsync it. This last 5453 * fsync would do nothing (not logging the extents previously written). 5454 */ 5455 spin_lock(&inode->lock); 5456 inode->logged_trans = trans->transid; 5457 if (inode_only != LOG_INODE_EXISTS || 5458 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) 5459 inode->last_log_commit = inode->last_sub_trans; 5460 spin_unlock(&inode->lock); 5461 out_unlock: 5462 mutex_unlock(&inode->log_mutex); 5463 5464 btrfs_free_path(path); 5465 btrfs_free_path(dst_path); 5466 return err; 5467 } 5468 5469 /* 5470 * Check if we must fallback to a transaction commit when logging an inode. 5471 * This must be called after logging the inode and is used only in the context 5472 * when fsyncing an inode requires the need to log some other inode - in which 5473 * case we can't lock the i_mutex of each other inode we need to log as that 5474 * can lead to deadlocks with concurrent fsync against other inodes (as we can 5475 * log inodes up or down in the hierarchy) or rename operations for example. So 5476 * we take the log_mutex of the inode after we have logged it and then check for 5477 * its last_unlink_trans value - this is safe because any task setting 5478 * last_unlink_trans must take the log_mutex and it must do this before it does 5479 * the actual unlink operation, so if we do this check before a concurrent task 5480 * sets last_unlink_trans it means we've logged a consistent version/state of 5481 * all the inode items, otherwise we are not sure and must do a transaction 5482 * commit (the concurrent task might have only updated last_unlink_trans before 5483 * we logged the inode or it might have also done the unlink). 5484 */ 5485 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, 5486 struct btrfs_inode *inode) 5487 { 5488 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5489 bool ret = false; 5490 5491 mutex_lock(&inode->log_mutex); 5492 if (inode->last_unlink_trans > fs_info->last_trans_committed) { 5493 /* 5494 * Make sure any commits to the log are forced to be full 5495 * commits. 5496 */ 5497 btrfs_set_log_full_commit(trans); 5498 ret = true; 5499 } 5500 mutex_unlock(&inode->log_mutex); 5501 5502 return ret; 5503 } 5504 5505 /* 5506 * follow the dentry parent pointers up the chain and see if any 5507 * of the directories in it require a full commit before they can 5508 * be logged. Returns zero if nothing special needs to be done or 1 if 5509 * a full commit is required. 5510 */ 5511 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 5512 struct btrfs_inode *inode, 5513 struct dentry *parent, 5514 struct super_block *sb, 5515 u64 last_committed) 5516 { 5517 int ret = 0; 5518 struct dentry *old_parent = NULL; 5519 5520 /* 5521 * for regular files, if its inode is already on disk, we don't 5522 * have to worry about the parents at all. This is because 5523 * we can use the last_unlink_trans field to record renames 5524 * and other fun in this file. 5525 */ 5526 if (S_ISREG(inode->vfs_inode.i_mode) && 5527 inode->generation <= last_committed && 5528 inode->last_unlink_trans <= last_committed) 5529 goto out; 5530 5531 if (!S_ISDIR(inode->vfs_inode.i_mode)) { 5532 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5533 goto out; 5534 inode = BTRFS_I(d_inode(parent)); 5535 } 5536 5537 while (1) { 5538 if (btrfs_must_commit_transaction(trans, inode)) { 5539 ret = 1; 5540 break; 5541 } 5542 5543 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5544 break; 5545 5546 if (IS_ROOT(parent)) { 5547 inode = BTRFS_I(d_inode(parent)); 5548 if (btrfs_must_commit_transaction(trans, inode)) 5549 ret = 1; 5550 break; 5551 } 5552 5553 parent = dget_parent(parent); 5554 dput(old_parent); 5555 old_parent = parent; 5556 inode = BTRFS_I(d_inode(parent)); 5557 5558 } 5559 dput(old_parent); 5560 out: 5561 return ret; 5562 } 5563 5564 struct btrfs_dir_list { 5565 u64 ino; 5566 struct list_head list; 5567 }; 5568 5569 /* 5570 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5571 * details about the why it is needed. 5572 * This is a recursive operation - if an existing dentry corresponds to a 5573 * directory, that directory's new entries are logged too (same behaviour as 5574 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5575 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5576 * complains about the following circular lock dependency / possible deadlock: 5577 * 5578 * CPU0 CPU1 5579 * ---- ---- 5580 * lock(&type->i_mutex_dir_key#3/2); 5581 * lock(sb_internal#2); 5582 * lock(&type->i_mutex_dir_key#3/2); 5583 * lock(&sb->s_type->i_mutex_key#14); 5584 * 5585 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5586 * sb_start_intwrite() in btrfs_start_transaction(). 5587 * Not locking i_mutex of the inodes is still safe because: 5588 * 5589 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5590 * that while logging the inode new references (names) are added or removed 5591 * from the inode, leaving the logged inode item with a link count that does 5592 * not match the number of logged inode reference items. This is fine because 5593 * at log replay time we compute the real number of links and correct the 5594 * link count in the inode item (see replay_one_buffer() and 5595 * link_to_fixup_dir()); 5596 * 5597 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5598 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5599 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5600 * has a size that doesn't match the sum of the lengths of all the logged 5601 * names. This does not result in a problem because if a dir_item key is 5602 * logged but its matching dir_index key is not logged, at log replay time we 5603 * don't use it to replay the respective name (see replay_one_name()). On the 5604 * other hand if only the dir_index key ends up being logged, the respective 5605 * name is added to the fs/subvol tree with both the dir_item and dir_index 5606 * keys created (see replay_one_name()). 5607 * The directory's inode item with a wrong i_size is not a problem as well, 5608 * since we don't use it at log replay time to set the i_size in the inode 5609 * item of the fs/subvol tree (see overwrite_item()). 5610 */ 5611 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5612 struct btrfs_root *root, 5613 struct btrfs_inode *start_inode, 5614 struct btrfs_log_ctx *ctx) 5615 { 5616 struct btrfs_fs_info *fs_info = root->fs_info; 5617 struct btrfs_root *log = root->log_root; 5618 struct btrfs_path *path; 5619 LIST_HEAD(dir_list); 5620 struct btrfs_dir_list *dir_elem; 5621 int ret = 0; 5622 5623 path = btrfs_alloc_path(); 5624 if (!path) 5625 return -ENOMEM; 5626 5627 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5628 if (!dir_elem) { 5629 btrfs_free_path(path); 5630 return -ENOMEM; 5631 } 5632 dir_elem->ino = btrfs_ino(start_inode); 5633 list_add_tail(&dir_elem->list, &dir_list); 5634 5635 while (!list_empty(&dir_list)) { 5636 struct extent_buffer *leaf; 5637 struct btrfs_key min_key; 5638 int nritems; 5639 int i; 5640 5641 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5642 list); 5643 if (ret) 5644 goto next_dir_inode; 5645 5646 min_key.objectid = dir_elem->ino; 5647 min_key.type = BTRFS_DIR_ITEM_KEY; 5648 min_key.offset = 0; 5649 again: 5650 btrfs_release_path(path); 5651 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5652 if (ret < 0) { 5653 goto next_dir_inode; 5654 } else if (ret > 0) { 5655 ret = 0; 5656 goto next_dir_inode; 5657 } 5658 5659 process_leaf: 5660 leaf = path->nodes[0]; 5661 nritems = btrfs_header_nritems(leaf); 5662 for (i = path->slots[0]; i < nritems; i++) { 5663 struct btrfs_dir_item *di; 5664 struct btrfs_key di_key; 5665 struct inode *di_inode; 5666 struct btrfs_dir_list *new_dir_elem; 5667 int log_mode = LOG_INODE_EXISTS; 5668 int type; 5669 5670 btrfs_item_key_to_cpu(leaf, &min_key, i); 5671 if (min_key.objectid != dir_elem->ino || 5672 min_key.type != BTRFS_DIR_ITEM_KEY) 5673 goto next_dir_inode; 5674 5675 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5676 type = btrfs_dir_type(leaf, di); 5677 if (btrfs_dir_transid(leaf, di) < trans->transid && 5678 type != BTRFS_FT_DIR) 5679 continue; 5680 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5681 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5682 continue; 5683 5684 btrfs_release_path(path); 5685 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL); 5686 if (IS_ERR(di_inode)) { 5687 ret = PTR_ERR(di_inode); 5688 goto next_dir_inode; 5689 } 5690 5691 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) { 5692 iput(di_inode); 5693 break; 5694 } 5695 5696 ctx->log_new_dentries = false; 5697 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5698 log_mode = LOG_INODE_ALL; 5699 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), 5700 log_mode, 0, LLONG_MAX, ctx); 5701 if (!ret && 5702 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode))) 5703 ret = 1; 5704 iput(di_inode); 5705 if (ret) 5706 goto next_dir_inode; 5707 if (ctx->log_new_dentries) { 5708 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5709 GFP_NOFS); 5710 if (!new_dir_elem) { 5711 ret = -ENOMEM; 5712 goto next_dir_inode; 5713 } 5714 new_dir_elem->ino = di_key.objectid; 5715 list_add_tail(&new_dir_elem->list, &dir_list); 5716 } 5717 break; 5718 } 5719 if (i == nritems) { 5720 ret = btrfs_next_leaf(log, path); 5721 if (ret < 0) { 5722 goto next_dir_inode; 5723 } else if (ret > 0) { 5724 ret = 0; 5725 goto next_dir_inode; 5726 } 5727 goto process_leaf; 5728 } 5729 if (min_key.offset < (u64)-1) { 5730 min_key.offset++; 5731 goto again; 5732 } 5733 next_dir_inode: 5734 list_del(&dir_elem->list); 5735 kfree(dir_elem); 5736 } 5737 5738 btrfs_free_path(path); 5739 return ret; 5740 } 5741 5742 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5743 struct btrfs_inode *inode, 5744 struct btrfs_log_ctx *ctx) 5745 { 5746 struct btrfs_fs_info *fs_info = trans->fs_info; 5747 int ret; 5748 struct btrfs_path *path; 5749 struct btrfs_key key; 5750 struct btrfs_root *root = inode->root; 5751 const u64 ino = btrfs_ino(inode); 5752 5753 path = btrfs_alloc_path(); 5754 if (!path) 5755 return -ENOMEM; 5756 path->skip_locking = 1; 5757 path->search_commit_root = 1; 5758 5759 key.objectid = ino; 5760 key.type = BTRFS_INODE_REF_KEY; 5761 key.offset = 0; 5762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5763 if (ret < 0) 5764 goto out; 5765 5766 while (true) { 5767 struct extent_buffer *leaf = path->nodes[0]; 5768 int slot = path->slots[0]; 5769 u32 cur_offset = 0; 5770 u32 item_size; 5771 unsigned long ptr; 5772 5773 if (slot >= btrfs_header_nritems(leaf)) { 5774 ret = btrfs_next_leaf(root, path); 5775 if (ret < 0) 5776 goto out; 5777 else if (ret > 0) 5778 break; 5779 continue; 5780 } 5781 5782 btrfs_item_key_to_cpu(leaf, &key, slot); 5783 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5784 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5785 break; 5786 5787 item_size = btrfs_item_size_nr(leaf, slot); 5788 ptr = btrfs_item_ptr_offset(leaf, slot); 5789 while (cur_offset < item_size) { 5790 struct btrfs_key inode_key; 5791 struct inode *dir_inode; 5792 5793 inode_key.type = BTRFS_INODE_ITEM_KEY; 5794 inode_key.offset = 0; 5795 5796 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5797 struct btrfs_inode_extref *extref; 5798 5799 extref = (struct btrfs_inode_extref *) 5800 (ptr + cur_offset); 5801 inode_key.objectid = btrfs_inode_extref_parent( 5802 leaf, extref); 5803 cur_offset += sizeof(*extref); 5804 cur_offset += btrfs_inode_extref_name_len(leaf, 5805 extref); 5806 } else { 5807 inode_key.objectid = key.offset; 5808 cur_offset = item_size; 5809 } 5810 5811 dir_inode = btrfs_iget(fs_info->sb, &inode_key, 5812 root, NULL); 5813 /* 5814 * If the parent inode was deleted, return an error to 5815 * fallback to a transaction commit. This is to prevent 5816 * getting an inode that was moved from one parent A to 5817 * a parent B, got its former parent A deleted and then 5818 * it got fsync'ed, from existing at both parents after 5819 * a log replay (and the old parent still existing). 5820 * Example: 5821 * 5822 * mkdir /mnt/A 5823 * mkdir /mnt/B 5824 * touch /mnt/B/bar 5825 * sync 5826 * mv /mnt/B/bar /mnt/A/bar 5827 * mv -T /mnt/A /mnt/B 5828 * fsync /mnt/B/bar 5829 * <power fail> 5830 * 5831 * If we ignore the old parent B which got deleted, 5832 * after a log replay we would have file bar linked 5833 * at both parents and the old parent B would still 5834 * exist. 5835 */ 5836 if (IS_ERR(dir_inode)) { 5837 ret = PTR_ERR(dir_inode); 5838 goto out; 5839 } 5840 5841 if (ctx) 5842 ctx->log_new_dentries = false; 5843 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), 5844 LOG_INODE_ALL, 0, LLONG_MAX, ctx); 5845 if (!ret && 5846 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode))) 5847 ret = 1; 5848 if (!ret && ctx && ctx->log_new_dentries) 5849 ret = log_new_dir_dentries(trans, root, 5850 BTRFS_I(dir_inode), ctx); 5851 iput(dir_inode); 5852 if (ret) 5853 goto out; 5854 } 5855 path->slots[0]++; 5856 } 5857 ret = 0; 5858 out: 5859 btrfs_free_path(path); 5860 return ret; 5861 } 5862 5863 static int log_new_ancestors(struct btrfs_trans_handle *trans, 5864 struct btrfs_root *root, 5865 struct btrfs_path *path, 5866 struct btrfs_log_ctx *ctx) 5867 { 5868 struct btrfs_key found_key; 5869 5870 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5871 5872 while (true) { 5873 struct btrfs_fs_info *fs_info = root->fs_info; 5874 const u64 last_committed = fs_info->last_trans_committed; 5875 struct extent_buffer *leaf = path->nodes[0]; 5876 int slot = path->slots[0]; 5877 struct btrfs_key search_key; 5878 struct inode *inode; 5879 int ret = 0; 5880 5881 btrfs_release_path(path); 5882 5883 search_key.objectid = found_key.offset; 5884 search_key.type = BTRFS_INODE_ITEM_KEY; 5885 search_key.offset = 0; 5886 inode = btrfs_iget(fs_info->sb, &search_key, root, NULL); 5887 if (IS_ERR(inode)) 5888 return PTR_ERR(inode); 5889 5890 if (BTRFS_I(inode)->generation > last_committed) 5891 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5892 LOG_INODE_EXISTS, 5893 0, LLONG_MAX, ctx); 5894 iput(inode); 5895 if (ret) 5896 return ret; 5897 5898 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 5899 break; 5900 5901 search_key.type = BTRFS_INODE_REF_KEY; 5902 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5903 if (ret < 0) 5904 return ret; 5905 5906 leaf = path->nodes[0]; 5907 slot = path->slots[0]; 5908 if (slot >= btrfs_header_nritems(leaf)) { 5909 ret = btrfs_next_leaf(root, path); 5910 if (ret < 0) 5911 return ret; 5912 else if (ret > 0) 5913 return -ENOENT; 5914 leaf = path->nodes[0]; 5915 slot = path->slots[0]; 5916 } 5917 5918 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5919 if (found_key.objectid != search_key.objectid || 5920 found_key.type != BTRFS_INODE_REF_KEY) 5921 return -ENOENT; 5922 } 5923 return 0; 5924 } 5925 5926 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 5927 struct btrfs_inode *inode, 5928 struct dentry *parent, 5929 struct btrfs_log_ctx *ctx) 5930 { 5931 struct btrfs_root *root = inode->root; 5932 struct btrfs_fs_info *fs_info = root->fs_info; 5933 struct dentry *old_parent = NULL; 5934 struct super_block *sb = inode->vfs_inode.i_sb; 5935 int ret = 0; 5936 5937 while (true) { 5938 if (!parent || d_really_is_negative(parent) || 5939 sb != parent->d_sb) 5940 break; 5941 5942 inode = BTRFS_I(d_inode(parent)); 5943 if (root != inode->root) 5944 break; 5945 5946 if (inode->generation > fs_info->last_trans_committed) { 5947 ret = btrfs_log_inode(trans, root, inode, 5948 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx); 5949 if (ret) 5950 break; 5951 } 5952 if (IS_ROOT(parent)) 5953 break; 5954 5955 parent = dget_parent(parent); 5956 dput(old_parent); 5957 old_parent = parent; 5958 } 5959 dput(old_parent); 5960 5961 return ret; 5962 } 5963 5964 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 5965 struct btrfs_inode *inode, 5966 struct dentry *parent, 5967 struct btrfs_log_ctx *ctx) 5968 { 5969 struct btrfs_root *root = inode->root; 5970 const u64 ino = btrfs_ino(inode); 5971 struct btrfs_path *path; 5972 struct btrfs_key search_key; 5973 int ret; 5974 5975 /* 5976 * For a single hard link case, go through a fast path that does not 5977 * need to iterate the fs/subvolume tree. 5978 */ 5979 if (inode->vfs_inode.i_nlink < 2) 5980 return log_new_ancestors_fast(trans, inode, parent, ctx); 5981 5982 path = btrfs_alloc_path(); 5983 if (!path) 5984 return -ENOMEM; 5985 5986 search_key.objectid = ino; 5987 search_key.type = BTRFS_INODE_REF_KEY; 5988 search_key.offset = 0; 5989 again: 5990 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5991 if (ret < 0) 5992 goto out; 5993 if (ret == 0) 5994 path->slots[0]++; 5995 5996 while (true) { 5997 struct extent_buffer *leaf = path->nodes[0]; 5998 int slot = path->slots[0]; 5999 struct btrfs_key found_key; 6000 6001 if (slot >= btrfs_header_nritems(leaf)) { 6002 ret = btrfs_next_leaf(root, path); 6003 if (ret < 0) 6004 goto out; 6005 else if (ret > 0) 6006 break; 6007 continue; 6008 } 6009 6010 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6011 if (found_key.objectid != ino || 6012 found_key.type > BTRFS_INODE_EXTREF_KEY) 6013 break; 6014 6015 /* 6016 * Don't deal with extended references because they are rare 6017 * cases and too complex to deal with (we would need to keep 6018 * track of which subitem we are processing for each item in 6019 * this loop, etc). So just return some error to fallback to 6020 * a transaction commit. 6021 */ 6022 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 6023 ret = -EMLINK; 6024 goto out; 6025 } 6026 6027 /* 6028 * Logging ancestors needs to do more searches on the fs/subvol 6029 * tree, so it releases the path as needed to avoid deadlocks. 6030 * Keep track of the last inode ref key and resume from that key 6031 * after logging all new ancestors for the current hard link. 6032 */ 6033 memcpy(&search_key, &found_key, sizeof(search_key)); 6034 6035 ret = log_new_ancestors(trans, root, path, ctx); 6036 if (ret) 6037 goto out; 6038 btrfs_release_path(path); 6039 goto again; 6040 } 6041 ret = 0; 6042 out: 6043 btrfs_free_path(path); 6044 return ret; 6045 } 6046 6047 /* 6048 * helper function around btrfs_log_inode to make sure newly created 6049 * parent directories also end up in the log. A minimal inode and backref 6050 * only logging is done of any parent directories that are older than 6051 * the last committed transaction 6052 */ 6053 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 6054 struct btrfs_inode *inode, 6055 struct dentry *parent, 6056 const loff_t start, 6057 const loff_t end, 6058 int inode_only, 6059 struct btrfs_log_ctx *ctx) 6060 { 6061 struct btrfs_root *root = inode->root; 6062 struct btrfs_fs_info *fs_info = root->fs_info; 6063 struct super_block *sb; 6064 int ret = 0; 6065 u64 last_committed = fs_info->last_trans_committed; 6066 bool log_dentries = false; 6067 6068 sb = inode->vfs_inode.i_sb; 6069 6070 if (btrfs_test_opt(fs_info, NOTREELOG)) { 6071 ret = 1; 6072 goto end_no_trans; 6073 } 6074 6075 /* 6076 * The prev transaction commit doesn't complete, we need do 6077 * full commit by ourselves. 6078 */ 6079 if (fs_info->last_trans_log_full_commit > 6080 fs_info->last_trans_committed) { 6081 ret = 1; 6082 goto end_no_trans; 6083 } 6084 6085 if (btrfs_root_refs(&root->root_item) == 0) { 6086 ret = 1; 6087 goto end_no_trans; 6088 } 6089 6090 ret = check_parent_dirs_for_sync(trans, inode, parent, sb, 6091 last_committed); 6092 if (ret) 6093 goto end_no_trans; 6094 6095 /* 6096 * Skip already logged inodes or inodes corresponding to tmpfiles 6097 * (since logging them is pointless, a link count of 0 means they 6098 * will never be accessible). 6099 */ 6100 if (btrfs_inode_in_log(inode, trans->transid) || 6101 inode->vfs_inode.i_nlink == 0) { 6102 ret = BTRFS_NO_LOG_SYNC; 6103 goto end_no_trans; 6104 } 6105 6106 ret = start_log_trans(trans, root, ctx); 6107 if (ret) 6108 goto end_no_trans; 6109 6110 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 6111 if (ret) 6112 goto end_trans; 6113 6114 /* 6115 * for regular files, if its inode is already on disk, we don't 6116 * have to worry about the parents at all. This is because 6117 * we can use the last_unlink_trans field to record renames 6118 * and other fun in this file. 6119 */ 6120 if (S_ISREG(inode->vfs_inode.i_mode) && 6121 inode->generation <= last_committed && 6122 inode->last_unlink_trans <= last_committed) { 6123 ret = 0; 6124 goto end_trans; 6125 } 6126 6127 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) 6128 log_dentries = true; 6129 6130 /* 6131 * On unlink we must make sure all our current and old parent directory 6132 * inodes are fully logged. This is to prevent leaving dangling 6133 * directory index entries in directories that were our parents but are 6134 * not anymore. Not doing this results in old parent directory being 6135 * impossible to delete after log replay (rmdir will always fail with 6136 * error -ENOTEMPTY). 6137 * 6138 * Example 1: 6139 * 6140 * mkdir testdir 6141 * touch testdir/foo 6142 * ln testdir/foo testdir/bar 6143 * sync 6144 * unlink testdir/bar 6145 * xfs_io -c fsync testdir/foo 6146 * <power failure> 6147 * mount fs, triggers log replay 6148 * 6149 * If we don't log the parent directory (testdir), after log replay the 6150 * directory still has an entry pointing to the file inode using the bar 6151 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6152 * the file inode has a link count of 1. 6153 * 6154 * Example 2: 6155 * 6156 * mkdir testdir 6157 * touch foo 6158 * ln foo testdir/foo2 6159 * ln foo testdir/foo3 6160 * sync 6161 * unlink testdir/foo3 6162 * xfs_io -c fsync foo 6163 * <power failure> 6164 * mount fs, triggers log replay 6165 * 6166 * Similar as the first example, after log replay the parent directory 6167 * testdir still has an entry pointing to the inode file with name foo3 6168 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6169 * and has a link count of 2. 6170 */ 6171 if (inode->last_unlink_trans > last_committed) { 6172 ret = btrfs_log_all_parents(trans, inode, ctx); 6173 if (ret) 6174 goto end_trans; 6175 } 6176 6177 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6178 if (ret) 6179 goto end_trans; 6180 6181 if (log_dentries) 6182 ret = log_new_dir_dentries(trans, root, inode, ctx); 6183 else 6184 ret = 0; 6185 end_trans: 6186 if (ret < 0) { 6187 btrfs_set_log_full_commit(trans); 6188 ret = 1; 6189 } 6190 6191 if (ret) 6192 btrfs_remove_log_ctx(root, ctx); 6193 btrfs_end_log_trans(root); 6194 end_no_trans: 6195 return ret; 6196 } 6197 6198 /* 6199 * it is not safe to log dentry if the chunk root has added new 6200 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6201 * If this returns 1, you must commit the transaction to safely get your 6202 * data on disk. 6203 */ 6204 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6205 struct dentry *dentry, 6206 const loff_t start, 6207 const loff_t end, 6208 struct btrfs_log_ctx *ctx) 6209 { 6210 struct dentry *parent = dget_parent(dentry); 6211 int ret; 6212 6213 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6214 start, end, LOG_INODE_ALL, ctx); 6215 dput(parent); 6216 6217 return ret; 6218 } 6219 6220 /* 6221 * should be called during mount to recover any replay any log trees 6222 * from the FS 6223 */ 6224 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6225 { 6226 int ret; 6227 struct btrfs_path *path; 6228 struct btrfs_trans_handle *trans; 6229 struct btrfs_key key; 6230 struct btrfs_key found_key; 6231 struct btrfs_key tmp_key; 6232 struct btrfs_root *log; 6233 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6234 struct walk_control wc = { 6235 .process_func = process_one_buffer, 6236 .stage = 0, 6237 }; 6238 6239 path = btrfs_alloc_path(); 6240 if (!path) 6241 return -ENOMEM; 6242 6243 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6244 6245 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6246 if (IS_ERR(trans)) { 6247 ret = PTR_ERR(trans); 6248 goto error; 6249 } 6250 6251 wc.trans = trans; 6252 wc.pin = 1; 6253 6254 ret = walk_log_tree(trans, log_root_tree, &wc); 6255 if (ret) { 6256 btrfs_handle_fs_error(fs_info, ret, 6257 "Failed to pin buffers while recovering log root tree."); 6258 goto error; 6259 } 6260 6261 again: 6262 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6263 key.offset = (u64)-1; 6264 key.type = BTRFS_ROOT_ITEM_KEY; 6265 6266 while (1) { 6267 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6268 6269 if (ret < 0) { 6270 btrfs_handle_fs_error(fs_info, ret, 6271 "Couldn't find tree log root."); 6272 goto error; 6273 } 6274 if (ret > 0) { 6275 if (path->slots[0] == 0) 6276 break; 6277 path->slots[0]--; 6278 } 6279 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6280 path->slots[0]); 6281 btrfs_release_path(path); 6282 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6283 break; 6284 6285 log = btrfs_read_fs_root(log_root_tree, &found_key); 6286 if (IS_ERR(log)) { 6287 ret = PTR_ERR(log); 6288 btrfs_handle_fs_error(fs_info, ret, 6289 "Couldn't read tree log root."); 6290 goto error; 6291 } 6292 6293 tmp_key.objectid = found_key.offset; 6294 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 6295 tmp_key.offset = (u64)-1; 6296 6297 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 6298 if (IS_ERR(wc.replay_dest)) { 6299 ret = PTR_ERR(wc.replay_dest); 6300 free_extent_buffer(log->node); 6301 free_extent_buffer(log->commit_root); 6302 kfree(log); 6303 btrfs_handle_fs_error(fs_info, ret, 6304 "Couldn't read target root for tree log recovery."); 6305 goto error; 6306 } 6307 6308 wc.replay_dest->log_root = log; 6309 btrfs_record_root_in_trans(trans, wc.replay_dest); 6310 ret = walk_log_tree(trans, log, &wc); 6311 6312 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6313 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6314 path); 6315 } 6316 6317 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6318 struct btrfs_root *root = wc.replay_dest; 6319 6320 btrfs_release_path(path); 6321 6322 /* 6323 * We have just replayed everything, and the highest 6324 * objectid of fs roots probably has changed in case 6325 * some inode_item's got replayed. 6326 * 6327 * root->objectid_mutex is not acquired as log replay 6328 * could only happen during mount. 6329 */ 6330 ret = btrfs_find_highest_objectid(root, 6331 &root->highest_objectid); 6332 } 6333 6334 key.offset = found_key.offset - 1; 6335 wc.replay_dest->log_root = NULL; 6336 free_extent_buffer(log->node); 6337 free_extent_buffer(log->commit_root); 6338 kfree(log); 6339 6340 if (ret) 6341 goto error; 6342 6343 if (found_key.offset == 0) 6344 break; 6345 } 6346 btrfs_release_path(path); 6347 6348 /* step one is to pin it all, step two is to replay just inodes */ 6349 if (wc.pin) { 6350 wc.pin = 0; 6351 wc.process_func = replay_one_buffer; 6352 wc.stage = LOG_WALK_REPLAY_INODES; 6353 goto again; 6354 } 6355 /* step three is to replay everything */ 6356 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6357 wc.stage++; 6358 goto again; 6359 } 6360 6361 btrfs_free_path(path); 6362 6363 /* step 4: commit the transaction, which also unpins the blocks */ 6364 ret = btrfs_commit_transaction(trans); 6365 if (ret) 6366 return ret; 6367 6368 free_extent_buffer(log_root_tree->node); 6369 log_root_tree->log_root = NULL; 6370 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6371 kfree(log_root_tree); 6372 6373 return 0; 6374 error: 6375 if (wc.trans) 6376 btrfs_end_transaction(wc.trans); 6377 btrfs_free_path(path); 6378 return ret; 6379 } 6380 6381 /* 6382 * there are some corner cases where we want to force a full 6383 * commit instead of allowing a directory to be logged. 6384 * 6385 * They revolve around files there were unlinked from the directory, and 6386 * this function updates the parent directory so that a full commit is 6387 * properly done if it is fsync'd later after the unlinks are done. 6388 * 6389 * Must be called before the unlink operations (updates to the subvolume tree, 6390 * inodes, etc) are done. 6391 */ 6392 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6393 struct btrfs_inode *dir, struct btrfs_inode *inode, 6394 int for_rename) 6395 { 6396 /* 6397 * when we're logging a file, if it hasn't been renamed 6398 * or unlinked, and its inode is fully committed on disk, 6399 * we don't have to worry about walking up the directory chain 6400 * to log its parents. 6401 * 6402 * So, we use the last_unlink_trans field to put this transid 6403 * into the file. When the file is logged we check it and 6404 * don't log the parents if the file is fully on disk. 6405 */ 6406 mutex_lock(&inode->log_mutex); 6407 inode->last_unlink_trans = trans->transid; 6408 mutex_unlock(&inode->log_mutex); 6409 6410 /* 6411 * if this directory was already logged any new 6412 * names for this file/dir will get recorded 6413 */ 6414 if (dir->logged_trans == trans->transid) 6415 return; 6416 6417 /* 6418 * if the inode we're about to unlink was logged, 6419 * the log will be properly updated for any new names 6420 */ 6421 if (inode->logged_trans == trans->transid) 6422 return; 6423 6424 /* 6425 * when renaming files across directories, if the directory 6426 * there we're unlinking from gets fsync'd later on, there's 6427 * no way to find the destination directory later and fsync it 6428 * properly. So, we have to be conservative and force commits 6429 * so the new name gets discovered. 6430 */ 6431 if (for_rename) 6432 goto record; 6433 6434 /* we can safely do the unlink without any special recording */ 6435 return; 6436 6437 record: 6438 mutex_lock(&dir->log_mutex); 6439 dir->last_unlink_trans = trans->transid; 6440 mutex_unlock(&dir->log_mutex); 6441 } 6442 6443 /* 6444 * Make sure that if someone attempts to fsync the parent directory of a deleted 6445 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6446 * that after replaying the log tree of the parent directory's root we will not 6447 * see the snapshot anymore and at log replay time we will not see any log tree 6448 * corresponding to the deleted snapshot's root, which could lead to replaying 6449 * it after replaying the log tree of the parent directory (which would replay 6450 * the snapshot delete operation). 6451 * 6452 * Must be called before the actual snapshot destroy operation (updates to the 6453 * parent root and tree of tree roots trees, etc) are done. 6454 */ 6455 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6456 struct btrfs_inode *dir) 6457 { 6458 mutex_lock(&dir->log_mutex); 6459 dir->last_unlink_trans = trans->transid; 6460 mutex_unlock(&dir->log_mutex); 6461 } 6462 6463 /* 6464 * Call this after adding a new name for a file and it will properly 6465 * update the log to reflect the new name. 6466 * 6467 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's 6468 * true (because it's not used). 6469 * 6470 * Return value depends on whether @sync_log is true or false. 6471 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6472 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT 6473 * otherwise. 6474 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to 6475 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log, 6476 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6477 * committed (without attempting to sync the log). 6478 */ 6479 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 6480 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6481 struct dentry *parent, 6482 bool sync_log, struct btrfs_log_ctx *ctx) 6483 { 6484 struct btrfs_fs_info *fs_info = trans->fs_info; 6485 int ret; 6486 6487 /* 6488 * this will force the logging code to walk the dentry chain 6489 * up for the file 6490 */ 6491 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6492 inode->last_unlink_trans = trans->transid; 6493 6494 /* 6495 * if this inode hasn't been logged and directory we're renaming it 6496 * from hasn't been logged, we don't need to log it 6497 */ 6498 if (inode->logged_trans <= fs_info->last_trans_committed && 6499 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed)) 6500 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT : 6501 BTRFS_DONT_NEED_LOG_SYNC; 6502 6503 if (sync_log) { 6504 struct btrfs_log_ctx ctx2; 6505 6506 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode); 6507 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6508 LOG_INODE_EXISTS, &ctx2); 6509 if (ret == BTRFS_NO_LOG_SYNC) 6510 return BTRFS_DONT_NEED_TRANS_COMMIT; 6511 else if (ret) 6512 return BTRFS_NEED_TRANS_COMMIT; 6513 6514 ret = btrfs_sync_log(trans, inode->root, &ctx2); 6515 if (ret) 6516 return BTRFS_NEED_TRANS_COMMIT; 6517 return BTRFS_DONT_NEED_TRANS_COMMIT; 6518 } 6519 6520 ASSERT(ctx); 6521 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6522 LOG_INODE_EXISTS, ctx); 6523 if (ret == BTRFS_NO_LOG_SYNC) 6524 return BTRFS_DONT_NEED_LOG_SYNC; 6525 else if (ret) 6526 return BTRFS_NEED_TRANS_COMMIT; 6527 6528 return BTRFS_NEED_LOG_SYNC; 6529 } 6530 6531