xref: /openbmc/linux/fs/btrfs/tree-log.c (revision e52a6321)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "ctree.h"
12 #include "tree-log.h"
13 #include "disk-io.h"
14 #include "locking.h"
15 #include "print-tree.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "inode-map.h"
20 
21 /* magic values for the inode_only field in btrfs_log_inode:
22  *
23  * LOG_INODE_ALL means to log everything
24  * LOG_INODE_EXISTS means to log just enough to recreate the inode
25  * during log replay
26  */
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
30 #define LOG_OTHER_INODE_ALL 3
31 
32 /*
33  * directory trouble cases
34  *
35  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
36  * log, we must force a full commit before doing an fsync of the directory
37  * where the unlink was done.
38  * ---> record transid of last unlink/rename per directory
39  *
40  * mkdir foo/some_dir
41  * normal commit
42  * rename foo/some_dir foo2/some_dir
43  * mkdir foo/some_dir
44  * fsync foo/some_dir/some_file
45  *
46  * The fsync above will unlink the original some_dir without recording
47  * it in its new location (foo2).  After a crash, some_dir will be gone
48  * unless the fsync of some_file forces a full commit
49  *
50  * 2) we must log any new names for any file or dir that is in the fsync
51  * log. ---> check inode while renaming/linking.
52  *
53  * 2a) we must log any new names for any file or dir during rename
54  * when the directory they are being removed from was logged.
55  * ---> check inode and old parent dir during rename
56  *
57  *  2a is actually the more important variant.  With the extra logging
58  *  a crash might unlink the old name without recreating the new one
59  *
60  * 3) after a crash, we must go through any directories with a link count
61  * of zero and redo the rm -rf
62  *
63  * mkdir f1/foo
64  * normal commit
65  * rm -rf f1/foo
66  * fsync(f1)
67  *
68  * The directory f1 was fully removed from the FS, but fsync was never
69  * called on f1, only its parent dir.  After a crash the rm -rf must
70  * be replayed.  This must be able to recurse down the entire
71  * directory tree.  The inode link count fixup code takes care of the
72  * ugly details.
73  */
74 
75 /*
76  * stages for the tree walking.  The first
77  * stage (0) is to only pin down the blocks we find
78  * the second stage (1) is to make sure that all the inodes
79  * we find in the log are created in the subvolume.
80  *
81  * The last stage is to deal with directories and links and extents
82  * and all the other fun semantics
83  */
84 #define LOG_WALK_PIN_ONLY 0
85 #define LOG_WALK_REPLAY_INODES 1
86 #define LOG_WALK_REPLAY_DIR_INDEX 2
87 #define LOG_WALK_REPLAY_ALL 3
88 
89 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90 			   struct btrfs_root *root, struct btrfs_inode *inode,
91 			   int inode_only,
92 			   const loff_t start,
93 			   const loff_t end,
94 			   struct btrfs_log_ctx *ctx);
95 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
96 			     struct btrfs_root *root,
97 			     struct btrfs_path *path, u64 objectid);
98 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
99 				       struct btrfs_root *root,
100 				       struct btrfs_root *log,
101 				       struct btrfs_path *path,
102 				       u64 dirid, int del_all);
103 
104 /*
105  * tree logging is a special write ahead log used to make sure that
106  * fsyncs and O_SYNCs can happen without doing full tree commits.
107  *
108  * Full tree commits are expensive because they require commonly
109  * modified blocks to be recowed, creating many dirty pages in the
110  * extent tree an 4x-6x higher write load than ext3.
111  *
112  * Instead of doing a tree commit on every fsync, we use the
113  * key ranges and transaction ids to find items for a given file or directory
114  * that have changed in this transaction.  Those items are copied into
115  * a special tree (one per subvolume root), that tree is written to disk
116  * and then the fsync is considered complete.
117  *
118  * After a crash, items are copied out of the log-tree back into the
119  * subvolume tree.  Any file data extents found are recorded in the extent
120  * allocation tree, and the log-tree freed.
121  *
122  * The log tree is read three times, once to pin down all the extents it is
123  * using in ram and once, once to create all the inodes logged in the tree
124  * and once to do all the other items.
125  */
126 
127 /*
128  * start a sub transaction and setup the log tree
129  * this increments the log tree writer count to make the people
130  * syncing the tree wait for us to finish
131  */
132 static int start_log_trans(struct btrfs_trans_handle *trans,
133 			   struct btrfs_root *root,
134 			   struct btrfs_log_ctx *ctx)
135 {
136 	struct btrfs_fs_info *fs_info = root->fs_info;
137 	int ret = 0;
138 
139 	mutex_lock(&root->log_mutex);
140 
141 	if (root->log_root) {
142 		if (btrfs_need_log_full_commit(trans)) {
143 			ret = -EAGAIN;
144 			goto out;
145 		}
146 
147 		if (!root->log_start_pid) {
148 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
149 			root->log_start_pid = current->pid;
150 		} else if (root->log_start_pid != current->pid) {
151 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
152 		}
153 	} else {
154 		mutex_lock(&fs_info->tree_log_mutex);
155 		if (!fs_info->log_root_tree)
156 			ret = btrfs_init_log_root_tree(trans, fs_info);
157 		mutex_unlock(&fs_info->tree_log_mutex);
158 		if (ret)
159 			goto out;
160 
161 		ret = btrfs_add_log_tree(trans, root);
162 		if (ret)
163 			goto out;
164 
165 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
166 		root->log_start_pid = current->pid;
167 	}
168 
169 	atomic_inc(&root->log_batch);
170 	atomic_inc(&root->log_writers);
171 	if (ctx) {
172 		int index = root->log_transid % 2;
173 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
174 		ctx->log_transid = root->log_transid;
175 	}
176 
177 out:
178 	mutex_unlock(&root->log_mutex);
179 	return ret;
180 }
181 
182 /*
183  * returns 0 if there was a log transaction running and we were able
184  * to join, or returns -ENOENT if there were not transactions
185  * in progress
186  */
187 static int join_running_log_trans(struct btrfs_root *root)
188 {
189 	int ret = -ENOENT;
190 
191 	smp_mb();
192 	if (!root->log_root)
193 		return -ENOENT;
194 
195 	mutex_lock(&root->log_mutex);
196 	if (root->log_root) {
197 		ret = 0;
198 		atomic_inc(&root->log_writers);
199 	}
200 	mutex_unlock(&root->log_mutex);
201 	return ret;
202 }
203 
204 /*
205  * This either makes the current running log transaction wait
206  * until you call btrfs_end_log_trans() or it makes any future
207  * log transactions wait until you call btrfs_end_log_trans()
208  */
209 void btrfs_pin_log_trans(struct btrfs_root *root)
210 {
211 	mutex_lock(&root->log_mutex);
212 	atomic_inc(&root->log_writers);
213 	mutex_unlock(&root->log_mutex);
214 }
215 
216 /*
217  * indicate we're done making changes to the log tree
218  * and wake up anyone waiting to do a sync
219  */
220 void btrfs_end_log_trans(struct btrfs_root *root)
221 {
222 	if (atomic_dec_and_test(&root->log_writers)) {
223 		/* atomic_dec_and_test implies a barrier */
224 		cond_wake_up_nomb(&root->log_writer_wait);
225 	}
226 }
227 
228 static int btrfs_write_tree_block(struct extent_buffer *buf)
229 {
230 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
231 					buf->start + buf->len - 1);
232 }
233 
234 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
235 {
236 	filemap_fdatawait_range(buf->pages[0]->mapping,
237 			        buf->start, buf->start + buf->len - 1);
238 }
239 
240 /*
241  * the walk control struct is used to pass state down the chain when
242  * processing the log tree.  The stage field tells us which part
243  * of the log tree processing we are currently doing.  The others
244  * are state fields used for that specific part
245  */
246 struct walk_control {
247 	/* should we free the extent on disk when done?  This is used
248 	 * at transaction commit time while freeing a log tree
249 	 */
250 	int free;
251 
252 	/* should we write out the extent buffer?  This is used
253 	 * while flushing the log tree to disk during a sync
254 	 */
255 	int write;
256 
257 	/* should we wait for the extent buffer io to finish?  Also used
258 	 * while flushing the log tree to disk for a sync
259 	 */
260 	int wait;
261 
262 	/* pin only walk, we record which extents on disk belong to the
263 	 * log trees
264 	 */
265 	int pin;
266 
267 	/* what stage of the replay code we're currently in */
268 	int stage;
269 
270 	/*
271 	 * Ignore any items from the inode currently being processed. Needs
272 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
273 	 * the LOG_WALK_REPLAY_INODES stage.
274 	 */
275 	bool ignore_cur_inode;
276 
277 	/* the root we are currently replaying */
278 	struct btrfs_root *replay_dest;
279 
280 	/* the trans handle for the current replay */
281 	struct btrfs_trans_handle *trans;
282 
283 	/* the function that gets used to process blocks we find in the
284 	 * tree.  Note the extent_buffer might not be up to date when it is
285 	 * passed in, and it must be checked or read if you need the data
286 	 * inside it
287 	 */
288 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
289 			    struct walk_control *wc, u64 gen, int level);
290 };
291 
292 /*
293  * process_func used to pin down extents, write them or wait on them
294  */
295 static int process_one_buffer(struct btrfs_root *log,
296 			      struct extent_buffer *eb,
297 			      struct walk_control *wc, u64 gen, int level)
298 {
299 	struct btrfs_fs_info *fs_info = log->fs_info;
300 	int ret = 0;
301 
302 	/*
303 	 * If this fs is mixed then we need to be able to process the leaves to
304 	 * pin down any logged extents, so we have to read the block.
305 	 */
306 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
307 		ret = btrfs_read_buffer(eb, gen, level, NULL);
308 		if (ret)
309 			return ret;
310 	}
311 
312 	if (wc->pin)
313 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
314 						      eb->len);
315 
316 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 		if (wc->pin && btrfs_header_level(eb) == 0)
318 			ret = btrfs_exclude_logged_extents(eb);
319 		if (wc->write)
320 			btrfs_write_tree_block(eb);
321 		if (wc->wait)
322 			btrfs_wait_tree_block_writeback(eb);
323 	}
324 	return ret;
325 }
326 
327 /*
328  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
329  * to the src data we are copying out.
330  *
331  * root is the tree we are copying into, and path is a scratch
332  * path for use in this function (it should be released on entry and
333  * will be released on exit).
334  *
335  * If the key is already in the destination tree the existing item is
336  * overwritten.  If the existing item isn't big enough, it is extended.
337  * If it is too large, it is truncated.
338  *
339  * If the key isn't in the destination yet, a new item is inserted.
340  */
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 				   struct btrfs_root *root,
343 				   struct btrfs_path *path,
344 				   struct extent_buffer *eb, int slot,
345 				   struct btrfs_key *key)
346 {
347 	int ret;
348 	u32 item_size;
349 	u64 saved_i_size = 0;
350 	int save_old_i_size = 0;
351 	unsigned long src_ptr;
352 	unsigned long dst_ptr;
353 	int overwrite_root = 0;
354 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
355 
356 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 		overwrite_root = 1;
358 
359 	item_size = btrfs_item_size_nr(eb, slot);
360 	src_ptr = btrfs_item_ptr_offset(eb, slot);
361 
362 	/* look for the key in the destination tree */
363 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
364 	if (ret < 0)
365 		return ret;
366 
367 	if (ret == 0) {
368 		char *src_copy;
369 		char *dst_copy;
370 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 						  path->slots[0]);
372 		if (dst_size != item_size)
373 			goto insert;
374 
375 		if (item_size == 0) {
376 			btrfs_release_path(path);
377 			return 0;
378 		}
379 		dst_copy = kmalloc(item_size, GFP_NOFS);
380 		src_copy = kmalloc(item_size, GFP_NOFS);
381 		if (!dst_copy || !src_copy) {
382 			btrfs_release_path(path);
383 			kfree(dst_copy);
384 			kfree(src_copy);
385 			return -ENOMEM;
386 		}
387 
388 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
389 
390 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 				   item_size);
393 		ret = memcmp(dst_copy, src_copy, item_size);
394 
395 		kfree(dst_copy);
396 		kfree(src_copy);
397 		/*
398 		 * they have the same contents, just return, this saves
399 		 * us from cowing blocks in the destination tree and doing
400 		 * extra writes that may not have been done by a previous
401 		 * sync
402 		 */
403 		if (ret == 0) {
404 			btrfs_release_path(path);
405 			return 0;
406 		}
407 
408 		/*
409 		 * We need to load the old nbytes into the inode so when we
410 		 * replay the extents we've logged we get the right nbytes.
411 		 */
412 		if (inode_item) {
413 			struct btrfs_inode_item *item;
414 			u64 nbytes;
415 			u32 mode;
416 
417 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 					      struct btrfs_inode_item);
419 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 			item = btrfs_item_ptr(eb, slot,
421 					      struct btrfs_inode_item);
422 			btrfs_set_inode_nbytes(eb, item, nbytes);
423 
424 			/*
425 			 * If this is a directory we need to reset the i_size to
426 			 * 0 so that we can set it up properly when replaying
427 			 * the rest of the items in this log.
428 			 */
429 			mode = btrfs_inode_mode(eb, item);
430 			if (S_ISDIR(mode))
431 				btrfs_set_inode_size(eb, item, 0);
432 		}
433 	} else if (inode_item) {
434 		struct btrfs_inode_item *item;
435 		u32 mode;
436 
437 		/*
438 		 * New inode, set nbytes to 0 so that the nbytes comes out
439 		 * properly when we replay the extents.
440 		 */
441 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 		btrfs_set_inode_nbytes(eb, item, 0);
443 
444 		/*
445 		 * If this is a directory we need to reset the i_size to 0 so
446 		 * that we can set it up properly when replaying the rest of
447 		 * the items in this log.
448 		 */
449 		mode = btrfs_inode_mode(eb, item);
450 		if (S_ISDIR(mode))
451 			btrfs_set_inode_size(eb, item, 0);
452 	}
453 insert:
454 	btrfs_release_path(path);
455 	/* try to insert the key into the destination tree */
456 	path->skip_release_on_error = 1;
457 	ret = btrfs_insert_empty_item(trans, root, path,
458 				      key, item_size);
459 	path->skip_release_on_error = 0;
460 
461 	/* make sure any existing item is the correct size */
462 	if (ret == -EEXIST || ret == -EOVERFLOW) {
463 		u32 found_size;
464 		found_size = btrfs_item_size_nr(path->nodes[0],
465 						path->slots[0]);
466 		if (found_size > item_size)
467 			btrfs_truncate_item(path, item_size, 1);
468 		else if (found_size < item_size)
469 			btrfs_extend_item(path, item_size - found_size);
470 	} else if (ret) {
471 		return ret;
472 	}
473 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 					path->slots[0]);
475 
476 	/* don't overwrite an existing inode if the generation number
477 	 * was logged as zero.  This is done when the tree logging code
478 	 * is just logging an inode to make sure it exists after recovery.
479 	 *
480 	 * Also, don't overwrite i_size on directories during replay.
481 	 * log replay inserts and removes directory items based on the
482 	 * state of the tree found in the subvolume, and i_size is modified
483 	 * as it goes
484 	 */
485 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 		struct btrfs_inode_item *src_item;
487 		struct btrfs_inode_item *dst_item;
488 
489 		src_item = (struct btrfs_inode_item *)src_ptr;
490 		dst_item = (struct btrfs_inode_item *)dst_ptr;
491 
492 		if (btrfs_inode_generation(eb, src_item) == 0) {
493 			struct extent_buffer *dst_eb = path->nodes[0];
494 			const u64 ino_size = btrfs_inode_size(eb, src_item);
495 
496 			/*
497 			 * For regular files an ino_size == 0 is used only when
498 			 * logging that an inode exists, as part of a directory
499 			 * fsync, and the inode wasn't fsynced before. In this
500 			 * case don't set the size of the inode in the fs/subvol
501 			 * tree, otherwise we would be throwing valid data away.
502 			 */
503 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
504 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 			    ino_size != 0) {
506 				struct btrfs_map_token token;
507 
508 				btrfs_init_map_token(&token);
509 				btrfs_set_token_inode_size(dst_eb, dst_item,
510 							   ino_size, &token);
511 			}
512 			goto no_copy;
513 		}
514 
515 		if (overwrite_root &&
516 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 			save_old_i_size = 1;
519 			saved_i_size = btrfs_inode_size(path->nodes[0],
520 							dst_item);
521 		}
522 	}
523 
524 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 			   src_ptr, item_size);
526 
527 	if (save_old_i_size) {
528 		struct btrfs_inode_item *dst_item;
529 		dst_item = (struct btrfs_inode_item *)dst_ptr;
530 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 	}
532 
533 	/* make sure the generation is filled in */
534 	if (key->type == BTRFS_INODE_ITEM_KEY) {
535 		struct btrfs_inode_item *dst_item;
536 		dst_item = (struct btrfs_inode_item *)dst_ptr;
537 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 			btrfs_set_inode_generation(path->nodes[0], dst_item,
539 						   trans->transid);
540 		}
541 	}
542 no_copy:
543 	btrfs_mark_buffer_dirty(path->nodes[0]);
544 	btrfs_release_path(path);
545 	return 0;
546 }
547 
548 /*
549  * simple helper to read an inode off the disk from a given root
550  * This can only be called for subvolume roots and not for the log
551  */
552 static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 					     u64 objectid)
554 {
555 	struct btrfs_key key;
556 	struct inode *inode;
557 
558 	key.objectid = objectid;
559 	key.type = BTRFS_INODE_ITEM_KEY;
560 	key.offset = 0;
561 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
562 	if (IS_ERR(inode))
563 		inode = NULL;
564 	return inode;
565 }
566 
567 /* replays a single extent in 'eb' at 'slot' with 'key' into the
568  * subvolume 'root'.  path is released on entry and should be released
569  * on exit.
570  *
571  * extents in the log tree have not been allocated out of the extent
572  * tree yet.  So, this completes the allocation, taking a reference
573  * as required if the extent already exists or creating a new extent
574  * if it isn't in the extent allocation tree yet.
575  *
576  * The extent is inserted into the file, dropping any existing extents
577  * from the file that overlap the new one.
578  */
579 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
580 				      struct btrfs_root *root,
581 				      struct btrfs_path *path,
582 				      struct extent_buffer *eb, int slot,
583 				      struct btrfs_key *key)
584 {
585 	struct btrfs_fs_info *fs_info = root->fs_info;
586 	int found_type;
587 	u64 extent_end;
588 	u64 start = key->offset;
589 	u64 nbytes = 0;
590 	struct btrfs_file_extent_item *item;
591 	struct inode *inode = NULL;
592 	unsigned long size;
593 	int ret = 0;
594 
595 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
596 	found_type = btrfs_file_extent_type(eb, item);
597 
598 	if (found_type == BTRFS_FILE_EXTENT_REG ||
599 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
600 		nbytes = btrfs_file_extent_num_bytes(eb, item);
601 		extent_end = start + nbytes;
602 
603 		/*
604 		 * We don't add to the inodes nbytes if we are prealloc or a
605 		 * hole.
606 		 */
607 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
608 			nbytes = 0;
609 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
610 		size = btrfs_file_extent_ram_bytes(eb, item);
611 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
612 		extent_end = ALIGN(start + size,
613 				   fs_info->sectorsize);
614 	} else {
615 		ret = 0;
616 		goto out;
617 	}
618 
619 	inode = read_one_inode(root, key->objectid);
620 	if (!inode) {
621 		ret = -EIO;
622 		goto out;
623 	}
624 
625 	/*
626 	 * first check to see if we already have this extent in the
627 	 * file.  This must be done before the btrfs_drop_extents run
628 	 * so we don't try to drop this extent.
629 	 */
630 	ret = btrfs_lookup_file_extent(trans, root, path,
631 			btrfs_ino(BTRFS_I(inode)), start, 0);
632 
633 	if (ret == 0 &&
634 	    (found_type == BTRFS_FILE_EXTENT_REG ||
635 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
636 		struct btrfs_file_extent_item cmp1;
637 		struct btrfs_file_extent_item cmp2;
638 		struct btrfs_file_extent_item *existing;
639 		struct extent_buffer *leaf;
640 
641 		leaf = path->nodes[0];
642 		existing = btrfs_item_ptr(leaf, path->slots[0],
643 					  struct btrfs_file_extent_item);
644 
645 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
646 				   sizeof(cmp1));
647 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
648 				   sizeof(cmp2));
649 
650 		/*
651 		 * we already have a pointer to this exact extent,
652 		 * we don't have to do anything
653 		 */
654 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
655 			btrfs_release_path(path);
656 			goto out;
657 		}
658 	}
659 	btrfs_release_path(path);
660 
661 	/* drop any overlapping extents */
662 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
663 	if (ret)
664 		goto out;
665 
666 	if (found_type == BTRFS_FILE_EXTENT_REG ||
667 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
668 		u64 offset;
669 		unsigned long dest_offset;
670 		struct btrfs_key ins;
671 
672 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
673 		    btrfs_fs_incompat(fs_info, NO_HOLES))
674 			goto update_inode;
675 
676 		ret = btrfs_insert_empty_item(trans, root, path, key,
677 					      sizeof(*item));
678 		if (ret)
679 			goto out;
680 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
681 						    path->slots[0]);
682 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
683 				(unsigned long)item,  sizeof(*item));
684 
685 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
686 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
687 		ins.type = BTRFS_EXTENT_ITEM_KEY;
688 		offset = key->offset - btrfs_file_extent_offset(eb, item);
689 
690 		/*
691 		 * Manually record dirty extent, as here we did a shallow
692 		 * file extent item copy and skip normal backref update,
693 		 * but modifying extent tree all by ourselves.
694 		 * So need to manually record dirty extent for qgroup,
695 		 * as the owner of the file extent changed from log tree
696 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
697 		 */
698 		ret = btrfs_qgroup_trace_extent(trans,
699 				btrfs_file_extent_disk_bytenr(eb, item),
700 				btrfs_file_extent_disk_num_bytes(eb, item),
701 				GFP_NOFS);
702 		if (ret < 0)
703 			goto out;
704 
705 		if (ins.objectid > 0) {
706 			struct btrfs_ref ref = { 0 };
707 			u64 csum_start;
708 			u64 csum_end;
709 			LIST_HEAD(ordered_sums);
710 
711 			/*
712 			 * is this extent already allocated in the extent
713 			 * allocation tree?  If so, just add a reference
714 			 */
715 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
716 						ins.offset);
717 			if (ret == 0) {
718 				btrfs_init_generic_ref(&ref,
719 						BTRFS_ADD_DELAYED_REF,
720 						ins.objectid, ins.offset, 0);
721 				btrfs_init_data_ref(&ref,
722 						root->root_key.objectid,
723 						key->objectid, offset);
724 				ret = btrfs_inc_extent_ref(trans, &ref);
725 				if (ret)
726 					goto out;
727 			} else {
728 				/*
729 				 * insert the extent pointer in the extent
730 				 * allocation tree
731 				 */
732 				ret = btrfs_alloc_logged_file_extent(trans,
733 						root->root_key.objectid,
734 						key->objectid, offset, &ins);
735 				if (ret)
736 					goto out;
737 			}
738 			btrfs_release_path(path);
739 
740 			if (btrfs_file_extent_compression(eb, item)) {
741 				csum_start = ins.objectid;
742 				csum_end = csum_start + ins.offset;
743 			} else {
744 				csum_start = ins.objectid +
745 					btrfs_file_extent_offset(eb, item);
746 				csum_end = csum_start +
747 					btrfs_file_extent_num_bytes(eb, item);
748 			}
749 
750 			ret = btrfs_lookup_csums_range(root->log_root,
751 						csum_start, csum_end - 1,
752 						&ordered_sums, 0);
753 			if (ret)
754 				goto out;
755 			/*
756 			 * Now delete all existing cums in the csum root that
757 			 * cover our range. We do this because we can have an
758 			 * extent that is completely referenced by one file
759 			 * extent item and partially referenced by another
760 			 * file extent item (like after using the clone or
761 			 * extent_same ioctls). In this case if we end up doing
762 			 * the replay of the one that partially references the
763 			 * extent first, and we do not do the csum deletion
764 			 * below, we can get 2 csum items in the csum tree that
765 			 * overlap each other. For example, imagine our log has
766 			 * the two following file extent items:
767 			 *
768 			 * key (257 EXTENT_DATA 409600)
769 			 *     extent data disk byte 12845056 nr 102400
770 			 *     extent data offset 20480 nr 20480 ram 102400
771 			 *
772 			 * key (257 EXTENT_DATA 819200)
773 			 *     extent data disk byte 12845056 nr 102400
774 			 *     extent data offset 0 nr 102400 ram 102400
775 			 *
776 			 * Where the second one fully references the 100K extent
777 			 * that starts at disk byte 12845056, and the log tree
778 			 * has a single csum item that covers the entire range
779 			 * of the extent:
780 			 *
781 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
782 			 *
783 			 * After the first file extent item is replayed, the
784 			 * csum tree gets the following csum item:
785 			 *
786 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
787 			 *
788 			 * Which covers the 20K sub-range starting at offset 20K
789 			 * of our extent. Now when we replay the second file
790 			 * extent item, if we do not delete existing csum items
791 			 * that cover any of its blocks, we end up getting two
792 			 * csum items in our csum tree that overlap each other:
793 			 *
794 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
795 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
796 			 *
797 			 * Which is a problem, because after this anyone trying
798 			 * to lookup up for the checksum of any block of our
799 			 * extent starting at an offset of 40K or higher, will
800 			 * end up looking at the second csum item only, which
801 			 * does not contain the checksum for any block starting
802 			 * at offset 40K or higher of our extent.
803 			 */
804 			while (!list_empty(&ordered_sums)) {
805 				struct btrfs_ordered_sum *sums;
806 				sums = list_entry(ordered_sums.next,
807 						struct btrfs_ordered_sum,
808 						list);
809 				if (!ret)
810 					ret = btrfs_del_csums(trans, fs_info,
811 							      sums->bytenr,
812 							      sums->len);
813 				if (!ret)
814 					ret = btrfs_csum_file_blocks(trans,
815 						fs_info->csum_root, sums);
816 				list_del(&sums->list);
817 				kfree(sums);
818 			}
819 			if (ret)
820 				goto out;
821 		} else {
822 			btrfs_release_path(path);
823 		}
824 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
825 		/* inline extents are easy, we just overwrite them */
826 		ret = overwrite_item(trans, root, path, eb, slot, key);
827 		if (ret)
828 			goto out;
829 	}
830 
831 	inode_add_bytes(inode, nbytes);
832 update_inode:
833 	ret = btrfs_update_inode(trans, root, inode);
834 out:
835 	if (inode)
836 		iput(inode);
837 	return ret;
838 }
839 
840 /*
841  * when cleaning up conflicts between the directory names in the
842  * subvolume, directory names in the log and directory names in the
843  * inode back references, we may have to unlink inodes from directories.
844  *
845  * This is a helper function to do the unlink of a specific directory
846  * item
847  */
848 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
849 				      struct btrfs_root *root,
850 				      struct btrfs_path *path,
851 				      struct btrfs_inode *dir,
852 				      struct btrfs_dir_item *di)
853 {
854 	struct inode *inode;
855 	char *name;
856 	int name_len;
857 	struct extent_buffer *leaf;
858 	struct btrfs_key location;
859 	int ret;
860 
861 	leaf = path->nodes[0];
862 
863 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
864 	name_len = btrfs_dir_name_len(leaf, di);
865 	name = kmalloc(name_len, GFP_NOFS);
866 	if (!name)
867 		return -ENOMEM;
868 
869 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
870 	btrfs_release_path(path);
871 
872 	inode = read_one_inode(root, location.objectid);
873 	if (!inode) {
874 		ret = -EIO;
875 		goto out;
876 	}
877 
878 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
879 	if (ret)
880 		goto out;
881 
882 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
883 			name_len);
884 	if (ret)
885 		goto out;
886 	else
887 		ret = btrfs_run_delayed_items(trans);
888 out:
889 	kfree(name);
890 	iput(inode);
891 	return ret;
892 }
893 
894 /*
895  * helper function to see if a given name and sequence number found
896  * in an inode back reference are already in a directory and correctly
897  * point to this inode
898  */
899 static noinline int inode_in_dir(struct btrfs_root *root,
900 				 struct btrfs_path *path,
901 				 u64 dirid, u64 objectid, u64 index,
902 				 const char *name, int name_len)
903 {
904 	struct btrfs_dir_item *di;
905 	struct btrfs_key location;
906 	int match = 0;
907 
908 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
909 					 index, name, name_len, 0);
910 	if (di && !IS_ERR(di)) {
911 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
912 		if (location.objectid != objectid)
913 			goto out;
914 	} else
915 		goto out;
916 	btrfs_release_path(path);
917 
918 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
919 	if (di && !IS_ERR(di)) {
920 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
921 		if (location.objectid != objectid)
922 			goto out;
923 	} else
924 		goto out;
925 	match = 1;
926 out:
927 	btrfs_release_path(path);
928 	return match;
929 }
930 
931 /*
932  * helper function to check a log tree for a named back reference in
933  * an inode.  This is used to decide if a back reference that is
934  * found in the subvolume conflicts with what we find in the log.
935  *
936  * inode backreferences may have multiple refs in a single item,
937  * during replay we process one reference at a time, and we don't
938  * want to delete valid links to a file from the subvolume if that
939  * link is also in the log.
940  */
941 static noinline int backref_in_log(struct btrfs_root *log,
942 				   struct btrfs_key *key,
943 				   u64 ref_objectid,
944 				   const char *name, int namelen)
945 {
946 	struct btrfs_path *path;
947 	struct btrfs_inode_ref *ref;
948 	unsigned long ptr;
949 	unsigned long ptr_end;
950 	unsigned long name_ptr;
951 	int found_name_len;
952 	int item_size;
953 	int ret;
954 	int match = 0;
955 
956 	path = btrfs_alloc_path();
957 	if (!path)
958 		return -ENOMEM;
959 
960 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
961 	if (ret != 0)
962 		goto out;
963 
964 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
965 
966 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
967 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
968 						   path->slots[0],
969 						   ref_objectid,
970 						   name, namelen, NULL))
971 			match = 1;
972 
973 		goto out;
974 	}
975 
976 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
977 	ptr_end = ptr + item_size;
978 	while (ptr < ptr_end) {
979 		ref = (struct btrfs_inode_ref *)ptr;
980 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
981 		if (found_name_len == namelen) {
982 			name_ptr = (unsigned long)(ref + 1);
983 			ret = memcmp_extent_buffer(path->nodes[0], name,
984 						   name_ptr, namelen);
985 			if (ret == 0) {
986 				match = 1;
987 				goto out;
988 			}
989 		}
990 		ptr = (unsigned long)(ref + 1) + found_name_len;
991 	}
992 out:
993 	btrfs_free_path(path);
994 	return match;
995 }
996 
997 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
998 				  struct btrfs_root *root,
999 				  struct btrfs_path *path,
1000 				  struct btrfs_root *log_root,
1001 				  struct btrfs_inode *dir,
1002 				  struct btrfs_inode *inode,
1003 				  u64 inode_objectid, u64 parent_objectid,
1004 				  u64 ref_index, char *name, int namelen,
1005 				  int *search_done)
1006 {
1007 	int ret;
1008 	char *victim_name;
1009 	int victim_name_len;
1010 	struct extent_buffer *leaf;
1011 	struct btrfs_dir_item *di;
1012 	struct btrfs_key search_key;
1013 	struct btrfs_inode_extref *extref;
1014 
1015 again:
1016 	/* Search old style refs */
1017 	search_key.objectid = inode_objectid;
1018 	search_key.type = BTRFS_INODE_REF_KEY;
1019 	search_key.offset = parent_objectid;
1020 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1021 	if (ret == 0) {
1022 		struct btrfs_inode_ref *victim_ref;
1023 		unsigned long ptr;
1024 		unsigned long ptr_end;
1025 
1026 		leaf = path->nodes[0];
1027 
1028 		/* are we trying to overwrite a back ref for the root directory
1029 		 * if so, just jump out, we're done
1030 		 */
1031 		if (search_key.objectid == search_key.offset)
1032 			return 1;
1033 
1034 		/* check all the names in this back reference to see
1035 		 * if they are in the log.  if so, we allow them to stay
1036 		 * otherwise they must be unlinked as a conflict
1037 		 */
1038 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1039 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1040 		while (ptr < ptr_end) {
1041 			victim_ref = (struct btrfs_inode_ref *)ptr;
1042 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1043 								   victim_ref);
1044 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1045 			if (!victim_name)
1046 				return -ENOMEM;
1047 
1048 			read_extent_buffer(leaf, victim_name,
1049 					   (unsigned long)(victim_ref + 1),
1050 					   victim_name_len);
1051 
1052 			if (!backref_in_log(log_root, &search_key,
1053 					    parent_objectid,
1054 					    victim_name,
1055 					    victim_name_len)) {
1056 				inc_nlink(&inode->vfs_inode);
1057 				btrfs_release_path(path);
1058 
1059 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1060 						victim_name, victim_name_len);
1061 				kfree(victim_name);
1062 				if (ret)
1063 					return ret;
1064 				ret = btrfs_run_delayed_items(trans);
1065 				if (ret)
1066 					return ret;
1067 				*search_done = 1;
1068 				goto again;
1069 			}
1070 			kfree(victim_name);
1071 
1072 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1073 		}
1074 
1075 		/*
1076 		 * NOTE: we have searched root tree and checked the
1077 		 * corresponding ref, it does not need to check again.
1078 		 */
1079 		*search_done = 1;
1080 	}
1081 	btrfs_release_path(path);
1082 
1083 	/* Same search but for extended refs */
1084 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1085 					   inode_objectid, parent_objectid, 0,
1086 					   0);
1087 	if (!IS_ERR_OR_NULL(extref)) {
1088 		u32 item_size;
1089 		u32 cur_offset = 0;
1090 		unsigned long base;
1091 		struct inode *victim_parent;
1092 
1093 		leaf = path->nodes[0];
1094 
1095 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1096 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1097 
1098 		while (cur_offset < item_size) {
1099 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1100 
1101 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1102 
1103 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1104 				goto next;
1105 
1106 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1107 			if (!victim_name)
1108 				return -ENOMEM;
1109 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1110 					   victim_name_len);
1111 
1112 			search_key.objectid = inode_objectid;
1113 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1114 			search_key.offset = btrfs_extref_hash(parent_objectid,
1115 							      victim_name,
1116 							      victim_name_len);
1117 			ret = 0;
1118 			if (!backref_in_log(log_root, &search_key,
1119 					    parent_objectid, victim_name,
1120 					    victim_name_len)) {
1121 				ret = -ENOENT;
1122 				victim_parent = read_one_inode(root,
1123 						parent_objectid);
1124 				if (victim_parent) {
1125 					inc_nlink(&inode->vfs_inode);
1126 					btrfs_release_path(path);
1127 
1128 					ret = btrfs_unlink_inode(trans, root,
1129 							BTRFS_I(victim_parent),
1130 							inode,
1131 							victim_name,
1132 							victim_name_len);
1133 					if (!ret)
1134 						ret = btrfs_run_delayed_items(
1135 								  trans);
1136 				}
1137 				iput(victim_parent);
1138 				kfree(victim_name);
1139 				if (ret)
1140 					return ret;
1141 				*search_done = 1;
1142 				goto again;
1143 			}
1144 			kfree(victim_name);
1145 next:
1146 			cur_offset += victim_name_len + sizeof(*extref);
1147 		}
1148 		*search_done = 1;
1149 	}
1150 	btrfs_release_path(path);
1151 
1152 	/* look for a conflicting sequence number */
1153 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1154 					 ref_index, name, namelen, 0);
1155 	if (di && !IS_ERR(di)) {
1156 		ret = drop_one_dir_item(trans, root, path, dir, di);
1157 		if (ret)
1158 			return ret;
1159 	}
1160 	btrfs_release_path(path);
1161 
1162 	/* look for a conflicting name */
1163 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1164 				   name, namelen, 0);
1165 	if (di && !IS_ERR(di)) {
1166 		ret = drop_one_dir_item(trans, root, path, dir, di);
1167 		if (ret)
1168 			return ret;
1169 	}
1170 	btrfs_release_path(path);
1171 
1172 	return 0;
1173 }
1174 
1175 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1176 			     u32 *namelen, char **name, u64 *index,
1177 			     u64 *parent_objectid)
1178 {
1179 	struct btrfs_inode_extref *extref;
1180 
1181 	extref = (struct btrfs_inode_extref *)ref_ptr;
1182 
1183 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1184 	*name = kmalloc(*namelen, GFP_NOFS);
1185 	if (*name == NULL)
1186 		return -ENOMEM;
1187 
1188 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1189 			   *namelen);
1190 
1191 	if (index)
1192 		*index = btrfs_inode_extref_index(eb, extref);
1193 	if (parent_objectid)
1194 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1195 
1196 	return 0;
1197 }
1198 
1199 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1200 			  u32 *namelen, char **name, u64 *index)
1201 {
1202 	struct btrfs_inode_ref *ref;
1203 
1204 	ref = (struct btrfs_inode_ref *)ref_ptr;
1205 
1206 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1207 	*name = kmalloc(*namelen, GFP_NOFS);
1208 	if (*name == NULL)
1209 		return -ENOMEM;
1210 
1211 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1212 
1213 	if (index)
1214 		*index = btrfs_inode_ref_index(eb, ref);
1215 
1216 	return 0;
1217 }
1218 
1219 /*
1220  * Take an inode reference item from the log tree and iterate all names from the
1221  * inode reference item in the subvolume tree with the same key (if it exists).
1222  * For any name that is not in the inode reference item from the log tree, do a
1223  * proper unlink of that name (that is, remove its entry from the inode
1224  * reference item and both dir index keys).
1225  */
1226 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1227 				 struct btrfs_root *root,
1228 				 struct btrfs_path *path,
1229 				 struct btrfs_inode *inode,
1230 				 struct extent_buffer *log_eb,
1231 				 int log_slot,
1232 				 struct btrfs_key *key)
1233 {
1234 	int ret;
1235 	unsigned long ref_ptr;
1236 	unsigned long ref_end;
1237 	struct extent_buffer *eb;
1238 
1239 again:
1240 	btrfs_release_path(path);
1241 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1242 	if (ret > 0) {
1243 		ret = 0;
1244 		goto out;
1245 	}
1246 	if (ret < 0)
1247 		goto out;
1248 
1249 	eb = path->nodes[0];
1250 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1251 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1252 	while (ref_ptr < ref_end) {
1253 		char *name = NULL;
1254 		int namelen;
1255 		u64 parent_id;
1256 
1257 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1258 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1259 						NULL, &parent_id);
1260 		} else {
1261 			parent_id = key->offset;
1262 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1263 					     NULL);
1264 		}
1265 		if (ret)
1266 			goto out;
1267 
1268 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1269 			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1270 							     parent_id, name,
1271 							     namelen, NULL);
1272 		else
1273 			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1274 							 namelen, NULL);
1275 
1276 		if (!ret) {
1277 			struct inode *dir;
1278 
1279 			btrfs_release_path(path);
1280 			dir = read_one_inode(root, parent_id);
1281 			if (!dir) {
1282 				ret = -ENOENT;
1283 				kfree(name);
1284 				goto out;
1285 			}
1286 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1287 						 inode, name, namelen);
1288 			kfree(name);
1289 			iput(dir);
1290 			if (ret)
1291 				goto out;
1292 			goto again;
1293 		}
1294 
1295 		kfree(name);
1296 		ref_ptr += namelen;
1297 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1298 			ref_ptr += sizeof(struct btrfs_inode_extref);
1299 		else
1300 			ref_ptr += sizeof(struct btrfs_inode_ref);
1301 	}
1302 	ret = 0;
1303  out:
1304 	btrfs_release_path(path);
1305 	return ret;
1306 }
1307 
1308 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1309 				  const u8 ref_type, const char *name,
1310 				  const int namelen)
1311 {
1312 	struct btrfs_key key;
1313 	struct btrfs_path *path;
1314 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1315 	int ret;
1316 
1317 	path = btrfs_alloc_path();
1318 	if (!path)
1319 		return -ENOMEM;
1320 
1321 	key.objectid = btrfs_ino(BTRFS_I(inode));
1322 	key.type = ref_type;
1323 	if (key.type == BTRFS_INODE_REF_KEY)
1324 		key.offset = parent_id;
1325 	else
1326 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1327 
1328 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1329 	if (ret < 0)
1330 		goto out;
1331 	if (ret > 0) {
1332 		ret = 0;
1333 		goto out;
1334 	}
1335 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1336 		ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1337 						     path->slots[0], parent_id,
1338 						     name, namelen, NULL);
1339 	else
1340 		ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1341 						 name, namelen, NULL);
1342 
1343 out:
1344 	btrfs_free_path(path);
1345 	return ret;
1346 }
1347 
1348 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1349 		    struct inode *dir, struct inode *inode, const char *name,
1350 		    int namelen, u64 ref_index)
1351 {
1352 	struct btrfs_dir_item *dir_item;
1353 	struct btrfs_key key;
1354 	struct btrfs_path *path;
1355 	struct inode *other_inode = NULL;
1356 	int ret;
1357 
1358 	path = btrfs_alloc_path();
1359 	if (!path)
1360 		return -ENOMEM;
1361 
1362 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1363 					 btrfs_ino(BTRFS_I(dir)),
1364 					 name, namelen, 0);
1365 	if (!dir_item) {
1366 		btrfs_release_path(path);
1367 		goto add_link;
1368 	} else if (IS_ERR(dir_item)) {
1369 		ret = PTR_ERR(dir_item);
1370 		goto out;
1371 	}
1372 
1373 	/*
1374 	 * Our inode's dentry collides with the dentry of another inode which is
1375 	 * in the log but not yet processed since it has a higher inode number.
1376 	 * So delete that other dentry.
1377 	 */
1378 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1379 	btrfs_release_path(path);
1380 	other_inode = read_one_inode(root, key.objectid);
1381 	if (!other_inode) {
1382 		ret = -ENOENT;
1383 		goto out;
1384 	}
1385 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1386 				 name, namelen);
1387 	if (ret)
1388 		goto out;
1389 	/*
1390 	 * If we dropped the link count to 0, bump it so that later the iput()
1391 	 * on the inode will not free it. We will fixup the link count later.
1392 	 */
1393 	if (other_inode->i_nlink == 0)
1394 		inc_nlink(other_inode);
1395 
1396 	ret = btrfs_run_delayed_items(trans);
1397 	if (ret)
1398 		goto out;
1399 add_link:
1400 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1401 			     name, namelen, 0, ref_index);
1402 out:
1403 	iput(other_inode);
1404 	btrfs_free_path(path);
1405 
1406 	return ret;
1407 }
1408 
1409 /*
1410  * replay one inode back reference item found in the log tree.
1411  * eb, slot and key refer to the buffer and key found in the log tree.
1412  * root is the destination we are replaying into, and path is for temp
1413  * use by this function.  (it should be released on return).
1414  */
1415 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1416 				  struct btrfs_root *root,
1417 				  struct btrfs_root *log,
1418 				  struct btrfs_path *path,
1419 				  struct extent_buffer *eb, int slot,
1420 				  struct btrfs_key *key)
1421 {
1422 	struct inode *dir = NULL;
1423 	struct inode *inode = NULL;
1424 	unsigned long ref_ptr;
1425 	unsigned long ref_end;
1426 	char *name = NULL;
1427 	int namelen;
1428 	int ret;
1429 	int search_done = 0;
1430 	int log_ref_ver = 0;
1431 	u64 parent_objectid;
1432 	u64 inode_objectid;
1433 	u64 ref_index = 0;
1434 	int ref_struct_size;
1435 
1436 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1437 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1438 
1439 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1440 		struct btrfs_inode_extref *r;
1441 
1442 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1443 		log_ref_ver = 1;
1444 		r = (struct btrfs_inode_extref *)ref_ptr;
1445 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1446 	} else {
1447 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1448 		parent_objectid = key->offset;
1449 	}
1450 	inode_objectid = key->objectid;
1451 
1452 	/*
1453 	 * it is possible that we didn't log all the parent directories
1454 	 * for a given inode.  If we don't find the dir, just don't
1455 	 * copy the back ref in.  The link count fixup code will take
1456 	 * care of the rest
1457 	 */
1458 	dir = read_one_inode(root, parent_objectid);
1459 	if (!dir) {
1460 		ret = -ENOENT;
1461 		goto out;
1462 	}
1463 
1464 	inode = read_one_inode(root, inode_objectid);
1465 	if (!inode) {
1466 		ret = -EIO;
1467 		goto out;
1468 	}
1469 
1470 	while (ref_ptr < ref_end) {
1471 		if (log_ref_ver) {
1472 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1473 						&ref_index, &parent_objectid);
1474 			/*
1475 			 * parent object can change from one array
1476 			 * item to another.
1477 			 */
1478 			if (!dir)
1479 				dir = read_one_inode(root, parent_objectid);
1480 			if (!dir) {
1481 				ret = -ENOENT;
1482 				goto out;
1483 			}
1484 		} else {
1485 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1486 					     &ref_index);
1487 		}
1488 		if (ret)
1489 			goto out;
1490 
1491 		/* if we already have a perfect match, we're done */
1492 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1493 					btrfs_ino(BTRFS_I(inode)), ref_index,
1494 					name, namelen)) {
1495 			/*
1496 			 * look for a conflicting back reference in the
1497 			 * metadata. if we find one we have to unlink that name
1498 			 * of the file before we add our new link.  Later on, we
1499 			 * overwrite any existing back reference, and we don't
1500 			 * want to create dangling pointers in the directory.
1501 			 */
1502 
1503 			if (!search_done) {
1504 				ret = __add_inode_ref(trans, root, path, log,
1505 						      BTRFS_I(dir),
1506 						      BTRFS_I(inode),
1507 						      inode_objectid,
1508 						      parent_objectid,
1509 						      ref_index, name, namelen,
1510 						      &search_done);
1511 				if (ret) {
1512 					if (ret == 1)
1513 						ret = 0;
1514 					goto out;
1515 				}
1516 			}
1517 
1518 			/*
1519 			 * If a reference item already exists for this inode
1520 			 * with the same parent and name, but different index,
1521 			 * drop it and the corresponding directory index entries
1522 			 * from the parent before adding the new reference item
1523 			 * and dir index entries, otherwise we would fail with
1524 			 * -EEXIST returned from btrfs_add_link() below.
1525 			 */
1526 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1527 						     name, namelen);
1528 			if (ret > 0) {
1529 				ret = btrfs_unlink_inode(trans, root,
1530 							 BTRFS_I(dir),
1531 							 BTRFS_I(inode),
1532 							 name, namelen);
1533 				/*
1534 				 * If we dropped the link count to 0, bump it so
1535 				 * that later the iput() on the inode will not
1536 				 * free it. We will fixup the link count later.
1537 				 */
1538 				if (!ret && inode->i_nlink == 0)
1539 					inc_nlink(inode);
1540 			}
1541 			if (ret < 0)
1542 				goto out;
1543 
1544 			/* insert our name */
1545 			ret = add_link(trans, root, dir, inode, name, namelen,
1546 				       ref_index);
1547 			if (ret)
1548 				goto out;
1549 
1550 			btrfs_update_inode(trans, root, inode);
1551 		}
1552 
1553 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1554 		kfree(name);
1555 		name = NULL;
1556 		if (log_ref_ver) {
1557 			iput(dir);
1558 			dir = NULL;
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * Before we overwrite the inode reference item in the subvolume tree
1564 	 * with the item from the log tree, we must unlink all names from the
1565 	 * parent directory that are in the subvolume's tree inode reference
1566 	 * item, otherwise we end up with an inconsistent subvolume tree where
1567 	 * dir index entries exist for a name but there is no inode reference
1568 	 * item with the same name.
1569 	 */
1570 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1571 				    key);
1572 	if (ret)
1573 		goto out;
1574 
1575 	/* finally write the back reference in the inode */
1576 	ret = overwrite_item(trans, root, path, eb, slot, key);
1577 out:
1578 	btrfs_release_path(path);
1579 	kfree(name);
1580 	iput(dir);
1581 	iput(inode);
1582 	return ret;
1583 }
1584 
1585 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1586 			      struct btrfs_root *root, u64 ino)
1587 {
1588 	int ret;
1589 
1590 	ret = btrfs_insert_orphan_item(trans, root, ino);
1591 	if (ret == -EEXIST)
1592 		ret = 0;
1593 
1594 	return ret;
1595 }
1596 
1597 static int count_inode_extrefs(struct btrfs_root *root,
1598 		struct btrfs_inode *inode, struct btrfs_path *path)
1599 {
1600 	int ret = 0;
1601 	int name_len;
1602 	unsigned int nlink = 0;
1603 	u32 item_size;
1604 	u32 cur_offset = 0;
1605 	u64 inode_objectid = btrfs_ino(inode);
1606 	u64 offset = 0;
1607 	unsigned long ptr;
1608 	struct btrfs_inode_extref *extref;
1609 	struct extent_buffer *leaf;
1610 
1611 	while (1) {
1612 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1613 					    &extref, &offset);
1614 		if (ret)
1615 			break;
1616 
1617 		leaf = path->nodes[0];
1618 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1619 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1620 		cur_offset = 0;
1621 
1622 		while (cur_offset < item_size) {
1623 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1624 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1625 
1626 			nlink++;
1627 
1628 			cur_offset += name_len + sizeof(*extref);
1629 		}
1630 
1631 		offset++;
1632 		btrfs_release_path(path);
1633 	}
1634 	btrfs_release_path(path);
1635 
1636 	if (ret < 0 && ret != -ENOENT)
1637 		return ret;
1638 	return nlink;
1639 }
1640 
1641 static int count_inode_refs(struct btrfs_root *root,
1642 			struct btrfs_inode *inode, struct btrfs_path *path)
1643 {
1644 	int ret;
1645 	struct btrfs_key key;
1646 	unsigned int nlink = 0;
1647 	unsigned long ptr;
1648 	unsigned long ptr_end;
1649 	int name_len;
1650 	u64 ino = btrfs_ino(inode);
1651 
1652 	key.objectid = ino;
1653 	key.type = BTRFS_INODE_REF_KEY;
1654 	key.offset = (u64)-1;
1655 
1656 	while (1) {
1657 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658 		if (ret < 0)
1659 			break;
1660 		if (ret > 0) {
1661 			if (path->slots[0] == 0)
1662 				break;
1663 			path->slots[0]--;
1664 		}
1665 process_slot:
1666 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1667 				      path->slots[0]);
1668 		if (key.objectid != ino ||
1669 		    key.type != BTRFS_INODE_REF_KEY)
1670 			break;
1671 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1672 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1673 						   path->slots[0]);
1674 		while (ptr < ptr_end) {
1675 			struct btrfs_inode_ref *ref;
1676 
1677 			ref = (struct btrfs_inode_ref *)ptr;
1678 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1679 							    ref);
1680 			ptr = (unsigned long)(ref + 1) + name_len;
1681 			nlink++;
1682 		}
1683 
1684 		if (key.offset == 0)
1685 			break;
1686 		if (path->slots[0] > 0) {
1687 			path->slots[0]--;
1688 			goto process_slot;
1689 		}
1690 		key.offset--;
1691 		btrfs_release_path(path);
1692 	}
1693 	btrfs_release_path(path);
1694 
1695 	return nlink;
1696 }
1697 
1698 /*
1699  * There are a few corners where the link count of the file can't
1700  * be properly maintained during replay.  So, instead of adding
1701  * lots of complexity to the log code, we just scan the backrefs
1702  * for any file that has been through replay.
1703  *
1704  * The scan will update the link count on the inode to reflect the
1705  * number of back refs found.  If it goes down to zero, the iput
1706  * will free the inode.
1707  */
1708 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1709 					   struct btrfs_root *root,
1710 					   struct inode *inode)
1711 {
1712 	struct btrfs_path *path;
1713 	int ret;
1714 	u64 nlink = 0;
1715 	u64 ino = btrfs_ino(BTRFS_I(inode));
1716 
1717 	path = btrfs_alloc_path();
1718 	if (!path)
1719 		return -ENOMEM;
1720 
1721 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1722 	if (ret < 0)
1723 		goto out;
1724 
1725 	nlink = ret;
1726 
1727 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1728 	if (ret < 0)
1729 		goto out;
1730 
1731 	nlink += ret;
1732 
1733 	ret = 0;
1734 
1735 	if (nlink != inode->i_nlink) {
1736 		set_nlink(inode, nlink);
1737 		btrfs_update_inode(trans, root, inode);
1738 	}
1739 	BTRFS_I(inode)->index_cnt = (u64)-1;
1740 
1741 	if (inode->i_nlink == 0) {
1742 		if (S_ISDIR(inode->i_mode)) {
1743 			ret = replay_dir_deletes(trans, root, NULL, path,
1744 						 ino, 1);
1745 			if (ret)
1746 				goto out;
1747 		}
1748 		ret = insert_orphan_item(trans, root, ino);
1749 	}
1750 
1751 out:
1752 	btrfs_free_path(path);
1753 	return ret;
1754 }
1755 
1756 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1757 					    struct btrfs_root *root,
1758 					    struct btrfs_path *path)
1759 {
1760 	int ret;
1761 	struct btrfs_key key;
1762 	struct inode *inode;
1763 
1764 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1765 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1766 	key.offset = (u64)-1;
1767 	while (1) {
1768 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769 		if (ret < 0)
1770 			break;
1771 
1772 		if (ret == 1) {
1773 			if (path->slots[0] == 0)
1774 				break;
1775 			path->slots[0]--;
1776 		}
1777 
1778 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1780 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1781 			break;
1782 
1783 		ret = btrfs_del_item(trans, root, path);
1784 		if (ret)
1785 			goto out;
1786 
1787 		btrfs_release_path(path);
1788 		inode = read_one_inode(root, key.offset);
1789 		if (!inode)
1790 			return -EIO;
1791 
1792 		ret = fixup_inode_link_count(trans, root, inode);
1793 		iput(inode);
1794 		if (ret)
1795 			goto out;
1796 
1797 		/*
1798 		 * fixup on a directory may create new entries,
1799 		 * make sure we always look for the highset possible
1800 		 * offset
1801 		 */
1802 		key.offset = (u64)-1;
1803 	}
1804 	ret = 0;
1805 out:
1806 	btrfs_release_path(path);
1807 	return ret;
1808 }
1809 
1810 
1811 /*
1812  * record a given inode in the fixup dir so we can check its link
1813  * count when replay is done.  The link count is incremented here
1814  * so the inode won't go away until we check it
1815  */
1816 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1817 				      struct btrfs_root *root,
1818 				      struct btrfs_path *path,
1819 				      u64 objectid)
1820 {
1821 	struct btrfs_key key;
1822 	int ret = 0;
1823 	struct inode *inode;
1824 
1825 	inode = read_one_inode(root, objectid);
1826 	if (!inode)
1827 		return -EIO;
1828 
1829 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1830 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1831 	key.offset = objectid;
1832 
1833 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1834 
1835 	btrfs_release_path(path);
1836 	if (ret == 0) {
1837 		if (!inode->i_nlink)
1838 			set_nlink(inode, 1);
1839 		else
1840 			inc_nlink(inode);
1841 		ret = btrfs_update_inode(trans, root, inode);
1842 	} else if (ret == -EEXIST) {
1843 		ret = 0;
1844 	} else {
1845 		BUG(); /* Logic Error */
1846 	}
1847 	iput(inode);
1848 
1849 	return ret;
1850 }
1851 
1852 /*
1853  * when replaying the log for a directory, we only insert names
1854  * for inodes that actually exist.  This means an fsync on a directory
1855  * does not implicitly fsync all the new files in it
1856  */
1857 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1858 				    struct btrfs_root *root,
1859 				    u64 dirid, u64 index,
1860 				    char *name, int name_len,
1861 				    struct btrfs_key *location)
1862 {
1863 	struct inode *inode;
1864 	struct inode *dir;
1865 	int ret;
1866 
1867 	inode = read_one_inode(root, location->objectid);
1868 	if (!inode)
1869 		return -ENOENT;
1870 
1871 	dir = read_one_inode(root, dirid);
1872 	if (!dir) {
1873 		iput(inode);
1874 		return -EIO;
1875 	}
1876 
1877 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1878 			name_len, 1, index);
1879 
1880 	/* FIXME, put inode into FIXUP list */
1881 
1882 	iput(inode);
1883 	iput(dir);
1884 	return ret;
1885 }
1886 
1887 /*
1888  * Return true if an inode reference exists in the log for the given name,
1889  * inode and parent inode.
1890  */
1891 static bool name_in_log_ref(struct btrfs_root *log_root,
1892 			    const char *name, const int name_len,
1893 			    const u64 dirid, const u64 ino)
1894 {
1895 	struct btrfs_key search_key;
1896 
1897 	search_key.objectid = ino;
1898 	search_key.type = BTRFS_INODE_REF_KEY;
1899 	search_key.offset = dirid;
1900 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1901 		return true;
1902 
1903 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1904 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1905 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1906 		return true;
1907 
1908 	return false;
1909 }
1910 
1911 /*
1912  * take a single entry in a log directory item and replay it into
1913  * the subvolume.
1914  *
1915  * if a conflicting item exists in the subdirectory already,
1916  * the inode it points to is unlinked and put into the link count
1917  * fix up tree.
1918  *
1919  * If a name from the log points to a file or directory that does
1920  * not exist in the FS, it is skipped.  fsyncs on directories
1921  * do not force down inodes inside that directory, just changes to the
1922  * names or unlinks in a directory.
1923  *
1924  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1925  * non-existing inode) and 1 if the name was replayed.
1926  */
1927 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1928 				    struct btrfs_root *root,
1929 				    struct btrfs_path *path,
1930 				    struct extent_buffer *eb,
1931 				    struct btrfs_dir_item *di,
1932 				    struct btrfs_key *key)
1933 {
1934 	char *name;
1935 	int name_len;
1936 	struct btrfs_dir_item *dst_di;
1937 	struct btrfs_key found_key;
1938 	struct btrfs_key log_key;
1939 	struct inode *dir;
1940 	u8 log_type;
1941 	int exists;
1942 	int ret = 0;
1943 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1944 	bool name_added = false;
1945 
1946 	dir = read_one_inode(root, key->objectid);
1947 	if (!dir)
1948 		return -EIO;
1949 
1950 	name_len = btrfs_dir_name_len(eb, di);
1951 	name = kmalloc(name_len, GFP_NOFS);
1952 	if (!name) {
1953 		ret = -ENOMEM;
1954 		goto out;
1955 	}
1956 
1957 	log_type = btrfs_dir_type(eb, di);
1958 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1959 		   name_len);
1960 
1961 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1962 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1963 	if (exists == 0)
1964 		exists = 1;
1965 	else
1966 		exists = 0;
1967 	btrfs_release_path(path);
1968 
1969 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1970 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1971 				       name, name_len, 1);
1972 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1973 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1974 						     key->objectid,
1975 						     key->offset, name,
1976 						     name_len, 1);
1977 	} else {
1978 		/* Corruption */
1979 		ret = -EINVAL;
1980 		goto out;
1981 	}
1982 	if (IS_ERR_OR_NULL(dst_di)) {
1983 		/* we need a sequence number to insert, so we only
1984 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1985 		 */
1986 		if (key->type != BTRFS_DIR_INDEX_KEY)
1987 			goto out;
1988 		goto insert;
1989 	}
1990 
1991 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1992 	/* the existing item matches the logged item */
1993 	if (found_key.objectid == log_key.objectid &&
1994 	    found_key.type == log_key.type &&
1995 	    found_key.offset == log_key.offset &&
1996 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1997 		update_size = false;
1998 		goto out;
1999 	}
2000 
2001 	/*
2002 	 * don't drop the conflicting directory entry if the inode
2003 	 * for the new entry doesn't exist
2004 	 */
2005 	if (!exists)
2006 		goto out;
2007 
2008 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2009 	if (ret)
2010 		goto out;
2011 
2012 	if (key->type == BTRFS_DIR_INDEX_KEY)
2013 		goto insert;
2014 out:
2015 	btrfs_release_path(path);
2016 	if (!ret && update_size) {
2017 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2018 		ret = btrfs_update_inode(trans, root, dir);
2019 	}
2020 	kfree(name);
2021 	iput(dir);
2022 	if (!ret && name_added)
2023 		ret = 1;
2024 	return ret;
2025 
2026 insert:
2027 	if (name_in_log_ref(root->log_root, name, name_len,
2028 			    key->objectid, log_key.objectid)) {
2029 		/* The dentry will be added later. */
2030 		ret = 0;
2031 		update_size = false;
2032 		goto out;
2033 	}
2034 	btrfs_release_path(path);
2035 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2036 			      name, name_len, &log_key);
2037 	if (ret && ret != -ENOENT && ret != -EEXIST)
2038 		goto out;
2039 	if (!ret)
2040 		name_added = true;
2041 	update_size = false;
2042 	ret = 0;
2043 	goto out;
2044 }
2045 
2046 /*
2047  * find all the names in a directory item and reconcile them into
2048  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2049  * one name in a directory item, but the same code gets used for
2050  * both directory index types
2051  */
2052 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2053 					struct btrfs_root *root,
2054 					struct btrfs_path *path,
2055 					struct extent_buffer *eb, int slot,
2056 					struct btrfs_key *key)
2057 {
2058 	int ret = 0;
2059 	u32 item_size = btrfs_item_size_nr(eb, slot);
2060 	struct btrfs_dir_item *di;
2061 	int name_len;
2062 	unsigned long ptr;
2063 	unsigned long ptr_end;
2064 	struct btrfs_path *fixup_path = NULL;
2065 
2066 	ptr = btrfs_item_ptr_offset(eb, slot);
2067 	ptr_end = ptr + item_size;
2068 	while (ptr < ptr_end) {
2069 		di = (struct btrfs_dir_item *)ptr;
2070 		name_len = btrfs_dir_name_len(eb, di);
2071 		ret = replay_one_name(trans, root, path, eb, di, key);
2072 		if (ret < 0)
2073 			break;
2074 		ptr = (unsigned long)(di + 1);
2075 		ptr += name_len;
2076 
2077 		/*
2078 		 * If this entry refers to a non-directory (directories can not
2079 		 * have a link count > 1) and it was added in the transaction
2080 		 * that was not committed, make sure we fixup the link count of
2081 		 * the inode it the entry points to. Otherwise something like
2082 		 * the following would result in a directory pointing to an
2083 		 * inode with a wrong link that does not account for this dir
2084 		 * entry:
2085 		 *
2086 		 * mkdir testdir
2087 		 * touch testdir/foo
2088 		 * touch testdir/bar
2089 		 * sync
2090 		 *
2091 		 * ln testdir/bar testdir/bar_link
2092 		 * ln testdir/foo testdir/foo_link
2093 		 * xfs_io -c "fsync" testdir/bar
2094 		 *
2095 		 * <power failure>
2096 		 *
2097 		 * mount fs, log replay happens
2098 		 *
2099 		 * File foo would remain with a link count of 1 when it has two
2100 		 * entries pointing to it in the directory testdir. This would
2101 		 * make it impossible to ever delete the parent directory has
2102 		 * it would result in stale dentries that can never be deleted.
2103 		 */
2104 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2105 			struct btrfs_key di_key;
2106 
2107 			if (!fixup_path) {
2108 				fixup_path = btrfs_alloc_path();
2109 				if (!fixup_path) {
2110 					ret = -ENOMEM;
2111 					break;
2112 				}
2113 			}
2114 
2115 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2116 			ret = link_to_fixup_dir(trans, root, fixup_path,
2117 						di_key.objectid);
2118 			if (ret)
2119 				break;
2120 		}
2121 		ret = 0;
2122 	}
2123 	btrfs_free_path(fixup_path);
2124 	return ret;
2125 }
2126 
2127 /*
2128  * directory replay has two parts.  There are the standard directory
2129  * items in the log copied from the subvolume, and range items
2130  * created in the log while the subvolume was logged.
2131  *
2132  * The range items tell us which parts of the key space the log
2133  * is authoritative for.  During replay, if a key in the subvolume
2134  * directory is in a logged range item, but not actually in the log
2135  * that means it was deleted from the directory before the fsync
2136  * and should be removed.
2137  */
2138 static noinline int find_dir_range(struct btrfs_root *root,
2139 				   struct btrfs_path *path,
2140 				   u64 dirid, int key_type,
2141 				   u64 *start_ret, u64 *end_ret)
2142 {
2143 	struct btrfs_key key;
2144 	u64 found_end;
2145 	struct btrfs_dir_log_item *item;
2146 	int ret;
2147 	int nritems;
2148 
2149 	if (*start_ret == (u64)-1)
2150 		return 1;
2151 
2152 	key.objectid = dirid;
2153 	key.type = key_type;
2154 	key.offset = *start_ret;
2155 
2156 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157 	if (ret < 0)
2158 		goto out;
2159 	if (ret > 0) {
2160 		if (path->slots[0] == 0)
2161 			goto out;
2162 		path->slots[0]--;
2163 	}
2164 	if (ret != 0)
2165 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2166 
2167 	if (key.type != key_type || key.objectid != dirid) {
2168 		ret = 1;
2169 		goto next;
2170 	}
2171 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2172 			      struct btrfs_dir_log_item);
2173 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2174 
2175 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2176 		ret = 0;
2177 		*start_ret = key.offset;
2178 		*end_ret = found_end;
2179 		goto out;
2180 	}
2181 	ret = 1;
2182 next:
2183 	/* check the next slot in the tree to see if it is a valid item */
2184 	nritems = btrfs_header_nritems(path->nodes[0]);
2185 	path->slots[0]++;
2186 	if (path->slots[0] >= nritems) {
2187 		ret = btrfs_next_leaf(root, path);
2188 		if (ret)
2189 			goto out;
2190 	}
2191 
2192 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2193 
2194 	if (key.type != key_type || key.objectid != dirid) {
2195 		ret = 1;
2196 		goto out;
2197 	}
2198 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2199 			      struct btrfs_dir_log_item);
2200 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2201 	*start_ret = key.offset;
2202 	*end_ret = found_end;
2203 	ret = 0;
2204 out:
2205 	btrfs_release_path(path);
2206 	return ret;
2207 }
2208 
2209 /*
2210  * this looks for a given directory item in the log.  If the directory
2211  * item is not in the log, the item is removed and the inode it points
2212  * to is unlinked
2213  */
2214 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2215 				      struct btrfs_root *root,
2216 				      struct btrfs_root *log,
2217 				      struct btrfs_path *path,
2218 				      struct btrfs_path *log_path,
2219 				      struct inode *dir,
2220 				      struct btrfs_key *dir_key)
2221 {
2222 	int ret;
2223 	struct extent_buffer *eb;
2224 	int slot;
2225 	u32 item_size;
2226 	struct btrfs_dir_item *di;
2227 	struct btrfs_dir_item *log_di;
2228 	int name_len;
2229 	unsigned long ptr;
2230 	unsigned long ptr_end;
2231 	char *name;
2232 	struct inode *inode;
2233 	struct btrfs_key location;
2234 
2235 again:
2236 	eb = path->nodes[0];
2237 	slot = path->slots[0];
2238 	item_size = btrfs_item_size_nr(eb, slot);
2239 	ptr = btrfs_item_ptr_offset(eb, slot);
2240 	ptr_end = ptr + item_size;
2241 	while (ptr < ptr_end) {
2242 		di = (struct btrfs_dir_item *)ptr;
2243 		name_len = btrfs_dir_name_len(eb, di);
2244 		name = kmalloc(name_len, GFP_NOFS);
2245 		if (!name) {
2246 			ret = -ENOMEM;
2247 			goto out;
2248 		}
2249 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2250 				  name_len);
2251 		log_di = NULL;
2252 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2253 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2254 						       dir_key->objectid,
2255 						       name, name_len, 0);
2256 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2257 			log_di = btrfs_lookup_dir_index_item(trans, log,
2258 						     log_path,
2259 						     dir_key->objectid,
2260 						     dir_key->offset,
2261 						     name, name_len, 0);
2262 		}
2263 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2264 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2265 			btrfs_release_path(path);
2266 			btrfs_release_path(log_path);
2267 			inode = read_one_inode(root, location.objectid);
2268 			if (!inode) {
2269 				kfree(name);
2270 				return -EIO;
2271 			}
2272 
2273 			ret = link_to_fixup_dir(trans, root,
2274 						path, location.objectid);
2275 			if (ret) {
2276 				kfree(name);
2277 				iput(inode);
2278 				goto out;
2279 			}
2280 
2281 			inc_nlink(inode);
2282 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2283 					BTRFS_I(inode), name, name_len);
2284 			if (!ret)
2285 				ret = btrfs_run_delayed_items(trans);
2286 			kfree(name);
2287 			iput(inode);
2288 			if (ret)
2289 				goto out;
2290 
2291 			/* there might still be more names under this key
2292 			 * check and repeat if required
2293 			 */
2294 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2295 						0, 0);
2296 			if (ret == 0)
2297 				goto again;
2298 			ret = 0;
2299 			goto out;
2300 		} else if (IS_ERR(log_di)) {
2301 			kfree(name);
2302 			return PTR_ERR(log_di);
2303 		}
2304 		btrfs_release_path(log_path);
2305 		kfree(name);
2306 
2307 		ptr = (unsigned long)(di + 1);
2308 		ptr += name_len;
2309 	}
2310 	ret = 0;
2311 out:
2312 	btrfs_release_path(path);
2313 	btrfs_release_path(log_path);
2314 	return ret;
2315 }
2316 
2317 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2318 			      struct btrfs_root *root,
2319 			      struct btrfs_root *log,
2320 			      struct btrfs_path *path,
2321 			      const u64 ino)
2322 {
2323 	struct btrfs_key search_key;
2324 	struct btrfs_path *log_path;
2325 	int i;
2326 	int nritems;
2327 	int ret;
2328 
2329 	log_path = btrfs_alloc_path();
2330 	if (!log_path)
2331 		return -ENOMEM;
2332 
2333 	search_key.objectid = ino;
2334 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2335 	search_key.offset = 0;
2336 again:
2337 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2338 	if (ret < 0)
2339 		goto out;
2340 process_leaf:
2341 	nritems = btrfs_header_nritems(path->nodes[0]);
2342 	for (i = path->slots[0]; i < nritems; i++) {
2343 		struct btrfs_key key;
2344 		struct btrfs_dir_item *di;
2345 		struct btrfs_dir_item *log_di;
2346 		u32 total_size;
2347 		u32 cur;
2348 
2349 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2350 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2351 			ret = 0;
2352 			goto out;
2353 		}
2354 
2355 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2356 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2357 		cur = 0;
2358 		while (cur < total_size) {
2359 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2360 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2361 			u32 this_len = sizeof(*di) + name_len + data_len;
2362 			char *name;
2363 
2364 			name = kmalloc(name_len, GFP_NOFS);
2365 			if (!name) {
2366 				ret = -ENOMEM;
2367 				goto out;
2368 			}
2369 			read_extent_buffer(path->nodes[0], name,
2370 					   (unsigned long)(di + 1), name_len);
2371 
2372 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2373 						    name, name_len, 0);
2374 			btrfs_release_path(log_path);
2375 			if (!log_di) {
2376 				/* Doesn't exist in log tree, so delete it. */
2377 				btrfs_release_path(path);
2378 				di = btrfs_lookup_xattr(trans, root, path, ino,
2379 							name, name_len, -1);
2380 				kfree(name);
2381 				if (IS_ERR(di)) {
2382 					ret = PTR_ERR(di);
2383 					goto out;
2384 				}
2385 				ASSERT(di);
2386 				ret = btrfs_delete_one_dir_name(trans, root,
2387 								path, di);
2388 				if (ret)
2389 					goto out;
2390 				btrfs_release_path(path);
2391 				search_key = key;
2392 				goto again;
2393 			}
2394 			kfree(name);
2395 			if (IS_ERR(log_di)) {
2396 				ret = PTR_ERR(log_di);
2397 				goto out;
2398 			}
2399 			cur += this_len;
2400 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2401 		}
2402 	}
2403 	ret = btrfs_next_leaf(root, path);
2404 	if (ret > 0)
2405 		ret = 0;
2406 	else if (ret == 0)
2407 		goto process_leaf;
2408 out:
2409 	btrfs_free_path(log_path);
2410 	btrfs_release_path(path);
2411 	return ret;
2412 }
2413 
2414 
2415 /*
2416  * deletion replay happens before we copy any new directory items
2417  * out of the log or out of backreferences from inodes.  It
2418  * scans the log to find ranges of keys that log is authoritative for,
2419  * and then scans the directory to find items in those ranges that are
2420  * not present in the log.
2421  *
2422  * Anything we don't find in the log is unlinked and removed from the
2423  * directory.
2424  */
2425 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2426 				       struct btrfs_root *root,
2427 				       struct btrfs_root *log,
2428 				       struct btrfs_path *path,
2429 				       u64 dirid, int del_all)
2430 {
2431 	u64 range_start;
2432 	u64 range_end;
2433 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2434 	int ret = 0;
2435 	struct btrfs_key dir_key;
2436 	struct btrfs_key found_key;
2437 	struct btrfs_path *log_path;
2438 	struct inode *dir;
2439 
2440 	dir_key.objectid = dirid;
2441 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2442 	log_path = btrfs_alloc_path();
2443 	if (!log_path)
2444 		return -ENOMEM;
2445 
2446 	dir = read_one_inode(root, dirid);
2447 	/* it isn't an error if the inode isn't there, that can happen
2448 	 * because we replay the deletes before we copy in the inode item
2449 	 * from the log
2450 	 */
2451 	if (!dir) {
2452 		btrfs_free_path(log_path);
2453 		return 0;
2454 	}
2455 again:
2456 	range_start = 0;
2457 	range_end = 0;
2458 	while (1) {
2459 		if (del_all)
2460 			range_end = (u64)-1;
2461 		else {
2462 			ret = find_dir_range(log, path, dirid, key_type,
2463 					     &range_start, &range_end);
2464 			if (ret != 0)
2465 				break;
2466 		}
2467 
2468 		dir_key.offset = range_start;
2469 		while (1) {
2470 			int nritems;
2471 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2472 						0, 0);
2473 			if (ret < 0)
2474 				goto out;
2475 
2476 			nritems = btrfs_header_nritems(path->nodes[0]);
2477 			if (path->slots[0] >= nritems) {
2478 				ret = btrfs_next_leaf(root, path);
2479 				if (ret == 1)
2480 					break;
2481 				else if (ret < 0)
2482 					goto out;
2483 			}
2484 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2485 					      path->slots[0]);
2486 			if (found_key.objectid != dirid ||
2487 			    found_key.type != dir_key.type)
2488 				goto next_type;
2489 
2490 			if (found_key.offset > range_end)
2491 				break;
2492 
2493 			ret = check_item_in_log(trans, root, log, path,
2494 						log_path, dir,
2495 						&found_key);
2496 			if (ret)
2497 				goto out;
2498 			if (found_key.offset == (u64)-1)
2499 				break;
2500 			dir_key.offset = found_key.offset + 1;
2501 		}
2502 		btrfs_release_path(path);
2503 		if (range_end == (u64)-1)
2504 			break;
2505 		range_start = range_end + 1;
2506 	}
2507 
2508 next_type:
2509 	ret = 0;
2510 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2511 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2512 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2513 		btrfs_release_path(path);
2514 		goto again;
2515 	}
2516 out:
2517 	btrfs_release_path(path);
2518 	btrfs_free_path(log_path);
2519 	iput(dir);
2520 	return ret;
2521 }
2522 
2523 /*
2524  * the process_func used to replay items from the log tree.  This
2525  * gets called in two different stages.  The first stage just looks
2526  * for inodes and makes sure they are all copied into the subvolume.
2527  *
2528  * The second stage copies all the other item types from the log into
2529  * the subvolume.  The two stage approach is slower, but gets rid of
2530  * lots of complexity around inodes referencing other inodes that exist
2531  * only in the log (references come from either directory items or inode
2532  * back refs).
2533  */
2534 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2535 			     struct walk_control *wc, u64 gen, int level)
2536 {
2537 	int nritems;
2538 	struct btrfs_path *path;
2539 	struct btrfs_root *root = wc->replay_dest;
2540 	struct btrfs_key key;
2541 	int i;
2542 	int ret;
2543 
2544 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2545 	if (ret)
2546 		return ret;
2547 
2548 	level = btrfs_header_level(eb);
2549 
2550 	if (level != 0)
2551 		return 0;
2552 
2553 	path = btrfs_alloc_path();
2554 	if (!path)
2555 		return -ENOMEM;
2556 
2557 	nritems = btrfs_header_nritems(eb);
2558 	for (i = 0; i < nritems; i++) {
2559 		btrfs_item_key_to_cpu(eb, &key, i);
2560 
2561 		/* inode keys are done during the first stage */
2562 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2563 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2564 			struct btrfs_inode_item *inode_item;
2565 			u32 mode;
2566 
2567 			inode_item = btrfs_item_ptr(eb, i,
2568 					    struct btrfs_inode_item);
2569 			/*
2570 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2571 			 * and never got linked before the fsync, skip it, as
2572 			 * replaying it is pointless since it would be deleted
2573 			 * later. We skip logging tmpfiles, but it's always
2574 			 * possible we are replaying a log created with a kernel
2575 			 * that used to log tmpfiles.
2576 			 */
2577 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2578 				wc->ignore_cur_inode = true;
2579 				continue;
2580 			} else {
2581 				wc->ignore_cur_inode = false;
2582 			}
2583 			ret = replay_xattr_deletes(wc->trans, root, log,
2584 						   path, key.objectid);
2585 			if (ret)
2586 				break;
2587 			mode = btrfs_inode_mode(eb, inode_item);
2588 			if (S_ISDIR(mode)) {
2589 				ret = replay_dir_deletes(wc->trans,
2590 					 root, log, path, key.objectid, 0);
2591 				if (ret)
2592 					break;
2593 			}
2594 			ret = overwrite_item(wc->trans, root, path,
2595 					     eb, i, &key);
2596 			if (ret)
2597 				break;
2598 
2599 			/*
2600 			 * Before replaying extents, truncate the inode to its
2601 			 * size. We need to do it now and not after log replay
2602 			 * because before an fsync we can have prealloc extents
2603 			 * added beyond the inode's i_size. If we did it after,
2604 			 * through orphan cleanup for example, we would drop
2605 			 * those prealloc extents just after replaying them.
2606 			 */
2607 			if (S_ISREG(mode)) {
2608 				struct inode *inode;
2609 				u64 from;
2610 
2611 				inode = read_one_inode(root, key.objectid);
2612 				if (!inode) {
2613 					ret = -EIO;
2614 					break;
2615 				}
2616 				from = ALIGN(i_size_read(inode),
2617 					     root->fs_info->sectorsize);
2618 				ret = btrfs_drop_extents(wc->trans, root, inode,
2619 							 from, (u64)-1, 1);
2620 				if (!ret) {
2621 					/* Update the inode's nbytes. */
2622 					ret = btrfs_update_inode(wc->trans,
2623 								 root, inode);
2624 				}
2625 				iput(inode);
2626 				if (ret)
2627 					break;
2628 			}
2629 
2630 			ret = link_to_fixup_dir(wc->trans, root,
2631 						path, key.objectid);
2632 			if (ret)
2633 				break;
2634 		}
2635 
2636 		if (wc->ignore_cur_inode)
2637 			continue;
2638 
2639 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2640 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2641 			ret = replay_one_dir_item(wc->trans, root, path,
2642 						  eb, i, &key);
2643 			if (ret)
2644 				break;
2645 		}
2646 
2647 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2648 			continue;
2649 
2650 		/* these keys are simply copied */
2651 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2652 			ret = overwrite_item(wc->trans, root, path,
2653 					     eb, i, &key);
2654 			if (ret)
2655 				break;
2656 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2657 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2658 			ret = add_inode_ref(wc->trans, root, log, path,
2659 					    eb, i, &key);
2660 			if (ret && ret != -ENOENT)
2661 				break;
2662 			ret = 0;
2663 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2664 			ret = replay_one_extent(wc->trans, root, path,
2665 						eb, i, &key);
2666 			if (ret)
2667 				break;
2668 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2669 			ret = replay_one_dir_item(wc->trans, root, path,
2670 						  eb, i, &key);
2671 			if (ret)
2672 				break;
2673 		}
2674 	}
2675 	btrfs_free_path(path);
2676 	return ret;
2677 }
2678 
2679 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2680 				   struct btrfs_root *root,
2681 				   struct btrfs_path *path, int *level,
2682 				   struct walk_control *wc)
2683 {
2684 	struct btrfs_fs_info *fs_info = root->fs_info;
2685 	u64 root_owner;
2686 	u64 bytenr;
2687 	u64 ptr_gen;
2688 	struct extent_buffer *next;
2689 	struct extent_buffer *cur;
2690 	struct extent_buffer *parent;
2691 	u32 blocksize;
2692 	int ret = 0;
2693 
2694 	WARN_ON(*level < 0);
2695 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2696 
2697 	while (*level > 0) {
2698 		struct btrfs_key first_key;
2699 
2700 		WARN_ON(*level < 0);
2701 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2702 		cur = path->nodes[*level];
2703 
2704 		WARN_ON(btrfs_header_level(cur) != *level);
2705 
2706 		if (path->slots[*level] >=
2707 		    btrfs_header_nritems(cur))
2708 			break;
2709 
2710 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2711 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2712 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2713 		blocksize = fs_info->nodesize;
2714 
2715 		parent = path->nodes[*level];
2716 		root_owner = btrfs_header_owner(parent);
2717 
2718 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2719 		if (IS_ERR(next))
2720 			return PTR_ERR(next);
2721 
2722 		if (*level == 1) {
2723 			ret = wc->process_func(root, next, wc, ptr_gen,
2724 					       *level - 1);
2725 			if (ret) {
2726 				free_extent_buffer(next);
2727 				return ret;
2728 			}
2729 
2730 			path->slots[*level]++;
2731 			if (wc->free) {
2732 				ret = btrfs_read_buffer(next, ptr_gen,
2733 							*level - 1, &first_key);
2734 				if (ret) {
2735 					free_extent_buffer(next);
2736 					return ret;
2737 				}
2738 
2739 				if (trans) {
2740 					btrfs_tree_lock(next);
2741 					btrfs_set_lock_blocking_write(next);
2742 					btrfs_clean_tree_block(next);
2743 					btrfs_wait_tree_block_writeback(next);
2744 					btrfs_tree_unlock(next);
2745 				} else {
2746 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747 						clear_extent_buffer_dirty(next);
2748 				}
2749 
2750 				WARN_ON(root_owner !=
2751 					BTRFS_TREE_LOG_OBJECTID);
2752 				ret = btrfs_free_and_pin_reserved_extent(
2753 							fs_info, bytenr,
2754 							blocksize);
2755 				if (ret) {
2756 					free_extent_buffer(next);
2757 					return ret;
2758 				}
2759 			}
2760 			free_extent_buffer(next);
2761 			continue;
2762 		}
2763 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2764 		if (ret) {
2765 			free_extent_buffer(next);
2766 			return ret;
2767 		}
2768 
2769 		WARN_ON(*level <= 0);
2770 		if (path->nodes[*level-1])
2771 			free_extent_buffer(path->nodes[*level-1]);
2772 		path->nodes[*level-1] = next;
2773 		*level = btrfs_header_level(next);
2774 		path->slots[*level] = 0;
2775 		cond_resched();
2776 	}
2777 	WARN_ON(*level < 0);
2778 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2779 
2780 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2781 
2782 	cond_resched();
2783 	return 0;
2784 }
2785 
2786 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2787 				 struct btrfs_root *root,
2788 				 struct btrfs_path *path, int *level,
2789 				 struct walk_control *wc)
2790 {
2791 	struct btrfs_fs_info *fs_info = root->fs_info;
2792 	u64 root_owner;
2793 	int i;
2794 	int slot;
2795 	int ret;
2796 
2797 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2798 		slot = path->slots[i];
2799 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2800 			path->slots[i]++;
2801 			*level = i;
2802 			WARN_ON(*level == 0);
2803 			return 0;
2804 		} else {
2805 			struct extent_buffer *parent;
2806 			if (path->nodes[*level] == root->node)
2807 				parent = path->nodes[*level];
2808 			else
2809 				parent = path->nodes[*level + 1];
2810 
2811 			root_owner = btrfs_header_owner(parent);
2812 			ret = wc->process_func(root, path->nodes[*level], wc,
2813 				 btrfs_header_generation(path->nodes[*level]),
2814 				 *level);
2815 			if (ret)
2816 				return ret;
2817 
2818 			if (wc->free) {
2819 				struct extent_buffer *next;
2820 
2821 				next = path->nodes[*level];
2822 
2823 				if (trans) {
2824 					btrfs_tree_lock(next);
2825 					btrfs_set_lock_blocking_write(next);
2826 					btrfs_clean_tree_block(next);
2827 					btrfs_wait_tree_block_writeback(next);
2828 					btrfs_tree_unlock(next);
2829 				} else {
2830 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2831 						clear_extent_buffer_dirty(next);
2832 				}
2833 
2834 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2835 				ret = btrfs_free_and_pin_reserved_extent(
2836 						fs_info,
2837 						path->nodes[*level]->start,
2838 						path->nodes[*level]->len);
2839 				if (ret)
2840 					return ret;
2841 			}
2842 			free_extent_buffer(path->nodes[*level]);
2843 			path->nodes[*level] = NULL;
2844 			*level = i + 1;
2845 		}
2846 	}
2847 	return 1;
2848 }
2849 
2850 /*
2851  * drop the reference count on the tree rooted at 'snap'.  This traverses
2852  * the tree freeing any blocks that have a ref count of zero after being
2853  * decremented.
2854  */
2855 static int walk_log_tree(struct btrfs_trans_handle *trans,
2856 			 struct btrfs_root *log, struct walk_control *wc)
2857 {
2858 	struct btrfs_fs_info *fs_info = log->fs_info;
2859 	int ret = 0;
2860 	int wret;
2861 	int level;
2862 	struct btrfs_path *path;
2863 	int orig_level;
2864 
2865 	path = btrfs_alloc_path();
2866 	if (!path)
2867 		return -ENOMEM;
2868 
2869 	level = btrfs_header_level(log->node);
2870 	orig_level = level;
2871 	path->nodes[level] = log->node;
2872 	extent_buffer_get(log->node);
2873 	path->slots[level] = 0;
2874 
2875 	while (1) {
2876 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2877 		if (wret > 0)
2878 			break;
2879 		if (wret < 0) {
2880 			ret = wret;
2881 			goto out;
2882 		}
2883 
2884 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2885 		if (wret > 0)
2886 			break;
2887 		if (wret < 0) {
2888 			ret = wret;
2889 			goto out;
2890 		}
2891 	}
2892 
2893 	/* was the root node processed? if not, catch it here */
2894 	if (path->nodes[orig_level]) {
2895 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2896 			 btrfs_header_generation(path->nodes[orig_level]),
2897 			 orig_level);
2898 		if (ret)
2899 			goto out;
2900 		if (wc->free) {
2901 			struct extent_buffer *next;
2902 
2903 			next = path->nodes[orig_level];
2904 
2905 			if (trans) {
2906 				btrfs_tree_lock(next);
2907 				btrfs_set_lock_blocking_write(next);
2908 				btrfs_clean_tree_block(next);
2909 				btrfs_wait_tree_block_writeback(next);
2910 				btrfs_tree_unlock(next);
2911 			} else {
2912 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2913 					clear_extent_buffer_dirty(next);
2914 			}
2915 
2916 			WARN_ON(log->root_key.objectid !=
2917 				BTRFS_TREE_LOG_OBJECTID);
2918 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2919 							next->start, next->len);
2920 			if (ret)
2921 				goto out;
2922 		}
2923 	}
2924 
2925 out:
2926 	btrfs_free_path(path);
2927 	return ret;
2928 }
2929 
2930 /*
2931  * helper function to update the item for a given subvolumes log root
2932  * in the tree of log roots
2933  */
2934 static int update_log_root(struct btrfs_trans_handle *trans,
2935 			   struct btrfs_root *log)
2936 {
2937 	struct btrfs_fs_info *fs_info = log->fs_info;
2938 	int ret;
2939 
2940 	if (log->log_transid == 1) {
2941 		/* insert root item on the first sync */
2942 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2943 				&log->root_key, &log->root_item);
2944 	} else {
2945 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2946 				&log->root_key, &log->root_item);
2947 	}
2948 	return ret;
2949 }
2950 
2951 static void wait_log_commit(struct btrfs_root *root, int transid)
2952 {
2953 	DEFINE_WAIT(wait);
2954 	int index = transid % 2;
2955 
2956 	/*
2957 	 * we only allow two pending log transactions at a time,
2958 	 * so we know that if ours is more than 2 older than the
2959 	 * current transaction, we're done
2960 	 */
2961 	for (;;) {
2962 		prepare_to_wait(&root->log_commit_wait[index],
2963 				&wait, TASK_UNINTERRUPTIBLE);
2964 
2965 		if (!(root->log_transid_committed < transid &&
2966 		      atomic_read(&root->log_commit[index])))
2967 			break;
2968 
2969 		mutex_unlock(&root->log_mutex);
2970 		schedule();
2971 		mutex_lock(&root->log_mutex);
2972 	}
2973 	finish_wait(&root->log_commit_wait[index], &wait);
2974 }
2975 
2976 static void wait_for_writer(struct btrfs_root *root)
2977 {
2978 	DEFINE_WAIT(wait);
2979 
2980 	for (;;) {
2981 		prepare_to_wait(&root->log_writer_wait, &wait,
2982 				TASK_UNINTERRUPTIBLE);
2983 		if (!atomic_read(&root->log_writers))
2984 			break;
2985 
2986 		mutex_unlock(&root->log_mutex);
2987 		schedule();
2988 		mutex_lock(&root->log_mutex);
2989 	}
2990 	finish_wait(&root->log_writer_wait, &wait);
2991 }
2992 
2993 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2994 					struct btrfs_log_ctx *ctx)
2995 {
2996 	if (!ctx)
2997 		return;
2998 
2999 	mutex_lock(&root->log_mutex);
3000 	list_del_init(&ctx->list);
3001 	mutex_unlock(&root->log_mutex);
3002 }
3003 
3004 /*
3005  * Invoked in log mutex context, or be sure there is no other task which
3006  * can access the list.
3007  */
3008 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3009 					     int index, int error)
3010 {
3011 	struct btrfs_log_ctx *ctx;
3012 	struct btrfs_log_ctx *safe;
3013 
3014 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3015 		list_del_init(&ctx->list);
3016 		ctx->log_ret = error;
3017 	}
3018 
3019 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3020 }
3021 
3022 /*
3023  * btrfs_sync_log does sends a given tree log down to the disk and
3024  * updates the super blocks to record it.  When this call is done,
3025  * you know that any inodes previously logged are safely on disk only
3026  * if it returns 0.
3027  *
3028  * Any other return value means you need to call btrfs_commit_transaction.
3029  * Some of the edge cases for fsyncing directories that have had unlinks
3030  * or renames done in the past mean that sometimes the only safe
3031  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3032  * that has happened.
3033  */
3034 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3035 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3036 {
3037 	int index1;
3038 	int index2;
3039 	int mark;
3040 	int ret;
3041 	struct btrfs_fs_info *fs_info = root->fs_info;
3042 	struct btrfs_root *log = root->log_root;
3043 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3044 	int log_transid = 0;
3045 	struct btrfs_log_ctx root_log_ctx;
3046 	struct blk_plug plug;
3047 
3048 	mutex_lock(&root->log_mutex);
3049 	log_transid = ctx->log_transid;
3050 	if (root->log_transid_committed >= log_transid) {
3051 		mutex_unlock(&root->log_mutex);
3052 		return ctx->log_ret;
3053 	}
3054 
3055 	index1 = log_transid % 2;
3056 	if (atomic_read(&root->log_commit[index1])) {
3057 		wait_log_commit(root, log_transid);
3058 		mutex_unlock(&root->log_mutex);
3059 		return ctx->log_ret;
3060 	}
3061 	ASSERT(log_transid == root->log_transid);
3062 	atomic_set(&root->log_commit[index1], 1);
3063 
3064 	/* wait for previous tree log sync to complete */
3065 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3066 		wait_log_commit(root, log_transid - 1);
3067 
3068 	while (1) {
3069 		int batch = atomic_read(&root->log_batch);
3070 		/* when we're on an ssd, just kick the log commit out */
3071 		if (!btrfs_test_opt(fs_info, SSD) &&
3072 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3073 			mutex_unlock(&root->log_mutex);
3074 			schedule_timeout_uninterruptible(1);
3075 			mutex_lock(&root->log_mutex);
3076 		}
3077 		wait_for_writer(root);
3078 		if (batch == atomic_read(&root->log_batch))
3079 			break;
3080 	}
3081 
3082 	/* bail out if we need to do a full commit */
3083 	if (btrfs_need_log_full_commit(trans)) {
3084 		ret = -EAGAIN;
3085 		mutex_unlock(&root->log_mutex);
3086 		goto out;
3087 	}
3088 
3089 	if (log_transid % 2 == 0)
3090 		mark = EXTENT_DIRTY;
3091 	else
3092 		mark = EXTENT_NEW;
3093 
3094 	/* we start IO on  all the marked extents here, but we don't actually
3095 	 * wait for them until later.
3096 	 */
3097 	blk_start_plug(&plug);
3098 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3099 	if (ret) {
3100 		blk_finish_plug(&plug);
3101 		btrfs_abort_transaction(trans, ret);
3102 		btrfs_set_log_full_commit(trans);
3103 		mutex_unlock(&root->log_mutex);
3104 		goto out;
3105 	}
3106 
3107 	btrfs_set_root_node(&log->root_item, log->node);
3108 
3109 	root->log_transid++;
3110 	log->log_transid = root->log_transid;
3111 	root->log_start_pid = 0;
3112 	/*
3113 	 * Update or create log root item under the root's log_mutex to prevent
3114 	 * races with concurrent log syncs that can lead to failure to update
3115 	 * log root item because it was not created yet.
3116 	 */
3117 	ret = update_log_root(trans, log);
3118 	/*
3119 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3120 	 * in their headers. new modifications of the log will be written to
3121 	 * new positions. so it's safe to allow log writers to go in.
3122 	 */
3123 	mutex_unlock(&root->log_mutex);
3124 
3125 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3126 
3127 	mutex_lock(&log_root_tree->log_mutex);
3128 	atomic_inc(&log_root_tree->log_batch);
3129 	atomic_inc(&log_root_tree->log_writers);
3130 
3131 	index2 = log_root_tree->log_transid % 2;
3132 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3133 	root_log_ctx.log_transid = log_root_tree->log_transid;
3134 
3135 	mutex_unlock(&log_root_tree->log_mutex);
3136 
3137 	mutex_lock(&log_root_tree->log_mutex);
3138 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3139 		/* atomic_dec_and_test implies a barrier */
3140 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3141 	}
3142 
3143 	if (ret) {
3144 		if (!list_empty(&root_log_ctx.list))
3145 			list_del_init(&root_log_ctx.list);
3146 
3147 		blk_finish_plug(&plug);
3148 		btrfs_set_log_full_commit(trans);
3149 
3150 		if (ret != -ENOSPC) {
3151 			btrfs_abort_transaction(trans, ret);
3152 			mutex_unlock(&log_root_tree->log_mutex);
3153 			goto out;
3154 		}
3155 		btrfs_wait_tree_log_extents(log, mark);
3156 		mutex_unlock(&log_root_tree->log_mutex);
3157 		ret = -EAGAIN;
3158 		goto out;
3159 	}
3160 
3161 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3162 		blk_finish_plug(&plug);
3163 		list_del_init(&root_log_ctx.list);
3164 		mutex_unlock(&log_root_tree->log_mutex);
3165 		ret = root_log_ctx.log_ret;
3166 		goto out;
3167 	}
3168 
3169 	index2 = root_log_ctx.log_transid % 2;
3170 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3171 		blk_finish_plug(&plug);
3172 		ret = btrfs_wait_tree_log_extents(log, mark);
3173 		wait_log_commit(log_root_tree,
3174 				root_log_ctx.log_transid);
3175 		mutex_unlock(&log_root_tree->log_mutex);
3176 		if (!ret)
3177 			ret = root_log_ctx.log_ret;
3178 		goto out;
3179 	}
3180 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3181 	atomic_set(&log_root_tree->log_commit[index2], 1);
3182 
3183 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3184 		wait_log_commit(log_root_tree,
3185 				root_log_ctx.log_transid - 1);
3186 	}
3187 
3188 	wait_for_writer(log_root_tree);
3189 
3190 	/*
3191 	 * now that we've moved on to the tree of log tree roots,
3192 	 * check the full commit flag again
3193 	 */
3194 	if (btrfs_need_log_full_commit(trans)) {
3195 		blk_finish_plug(&plug);
3196 		btrfs_wait_tree_log_extents(log, mark);
3197 		mutex_unlock(&log_root_tree->log_mutex);
3198 		ret = -EAGAIN;
3199 		goto out_wake_log_root;
3200 	}
3201 
3202 	ret = btrfs_write_marked_extents(fs_info,
3203 					 &log_root_tree->dirty_log_pages,
3204 					 EXTENT_DIRTY | EXTENT_NEW);
3205 	blk_finish_plug(&plug);
3206 	if (ret) {
3207 		btrfs_set_log_full_commit(trans);
3208 		btrfs_abort_transaction(trans, ret);
3209 		mutex_unlock(&log_root_tree->log_mutex);
3210 		goto out_wake_log_root;
3211 	}
3212 	ret = btrfs_wait_tree_log_extents(log, mark);
3213 	if (!ret)
3214 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3215 						  EXTENT_NEW | EXTENT_DIRTY);
3216 	if (ret) {
3217 		btrfs_set_log_full_commit(trans);
3218 		mutex_unlock(&log_root_tree->log_mutex);
3219 		goto out_wake_log_root;
3220 	}
3221 
3222 	btrfs_set_super_log_root(fs_info->super_for_commit,
3223 				 log_root_tree->node->start);
3224 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3225 				       btrfs_header_level(log_root_tree->node));
3226 
3227 	log_root_tree->log_transid++;
3228 	mutex_unlock(&log_root_tree->log_mutex);
3229 
3230 	/*
3231 	 * Nobody else is going to jump in and write the ctree
3232 	 * super here because the log_commit atomic below is protecting
3233 	 * us.  We must be called with a transaction handle pinning
3234 	 * the running transaction open, so a full commit can't hop
3235 	 * in and cause problems either.
3236 	 */
3237 	ret = write_all_supers(fs_info, 1);
3238 	if (ret) {
3239 		btrfs_set_log_full_commit(trans);
3240 		btrfs_abort_transaction(trans, ret);
3241 		goto out_wake_log_root;
3242 	}
3243 
3244 	mutex_lock(&root->log_mutex);
3245 	if (root->last_log_commit < log_transid)
3246 		root->last_log_commit = log_transid;
3247 	mutex_unlock(&root->log_mutex);
3248 
3249 out_wake_log_root:
3250 	mutex_lock(&log_root_tree->log_mutex);
3251 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3252 
3253 	log_root_tree->log_transid_committed++;
3254 	atomic_set(&log_root_tree->log_commit[index2], 0);
3255 	mutex_unlock(&log_root_tree->log_mutex);
3256 
3257 	/*
3258 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3259 	 * all the updates above are seen by the woken threads. It might not be
3260 	 * necessary, but proving that seems to be hard.
3261 	 */
3262 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3263 out:
3264 	mutex_lock(&root->log_mutex);
3265 	btrfs_remove_all_log_ctxs(root, index1, ret);
3266 	root->log_transid_committed++;
3267 	atomic_set(&root->log_commit[index1], 0);
3268 	mutex_unlock(&root->log_mutex);
3269 
3270 	/*
3271 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3272 	 * all the updates above are seen by the woken threads. It might not be
3273 	 * necessary, but proving that seems to be hard.
3274 	 */
3275 	cond_wake_up(&root->log_commit_wait[index1]);
3276 	return ret;
3277 }
3278 
3279 static void free_log_tree(struct btrfs_trans_handle *trans,
3280 			  struct btrfs_root *log)
3281 {
3282 	int ret;
3283 	struct walk_control wc = {
3284 		.free = 1,
3285 		.process_func = process_one_buffer
3286 	};
3287 
3288 	ret = walk_log_tree(trans, log, &wc);
3289 	if (ret) {
3290 		if (trans)
3291 			btrfs_abort_transaction(trans, ret);
3292 		else
3293 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3294 	}
3295 
3296 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3297 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3298 	free_extent_buffer(log->node);
3299 	kfree(log);
3300 }
3301 
3302 /*
3303  * free all the extents used by the tree log.  This should be called
3304  * at commit time of the full transaction
3305  */
3306 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3307 {
3308 	if (root->log_root) {
3309 		free_log_tree(trans, root->log_root);
3310 		root->log_root = NULL;
3311 	}
3312 	return 0;
3313 }
3314 
3315 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3316 			     struct btrfs_fs_info *fs_info)
3317 {
3318 	if (fs_info->log_root_tree) {
3319 		free_log_tree(trans, fs_info->log_root_tree);
3320 		fs_info->log_root_tree = NULL;
3321 	}
3322 	return 0;
3323 }
3324 
3325 /*
3326  * Check if an inode was logged in the current transaction. We can't always rely
3327  * on an inode's logged_trans value, because it's an in-memory only field and
3328  * therefore not persisted. This means that its value is lost if the inode gets
3329  * evicted and loaded again from disk (in which case it has a value of 0, and
3330  * certainly it is smaller then any possible transaction ID), when that happens
3331  * the full_sync flag is set in the inode's runtime flags, so on that case we
3332  * assume eviction happened and ignore the logged_trans value, assuming the
3333  * worst case, that the inode was logged before in the current transaction.
3334  */
3335 static bool inode_logged(struct btrfs_trans_handle *trans,
3336 			 struct btrfs_inode *inode)
3337 {
3338 	if (inode->logged_trans == trans->transid)
3339 		return true;
3340 
3341 	if (inode->last_trans == trans->transid &&
3342 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3343 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3344 		return true;
3345 
3346 	return false;
3347 }
3348 
3349 /*
3350  * If both a file and directory are logged, and unlinks or renames are
3351  * mixed in, we have a few interesting corners:
3352  *
3353  * create file X in dir Y
3354  * link file X to X.link in dir Y
3355  * fsync file X
3356  * unlink file X but leave X.link
3357  * fsync dir Y
3358  *
3359  * After a crash we would expect only X.link to exist.  But file X
3360  * didn't get fsync'd again so the log has back refs for X and X.link.
3361  *
3362  * We solve this by removing directory entries and inode backrefs from the
3363  * log when a file that was logged in the current transaction is
3364  * unlinked.  Any later fsync will include the updated log entries, and
3365  * we'll be able to reconstruct the proper directory items from backrefs.
3366  *
3367  * This optimizations allows us to avoid relogging the entire inode
3368  * or the entire directory.
3369  */
3370 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3371 				 struct btrfs_root *root,
3372 				 const char *name, int name_len,
3373 				 struct btrfs_inode *dir, u64 index)
3374 {
3375 	struct btrfs_root *log;
3376 	struct btrfs_dir_item *di;
3377 	struct btrfs_path *path;
3378 	int ret;
3379 	int err = 0;
3380 	int bytes_del = 0;
3381 	u64 dir_ino = btrfs_ino(dir);
3382 
3383 	if (!inode_logged(trans, dir))
3384 		return 0;
3385 
3386 	ret = join_running_log_trans(root);
3387 	if (ret)
3388 		return 0;
3389 
3390 	mutex_lock(&dir->log_mutex);
3391 
3392 	log = root->log_root;
3393 	path = btrfs_alloc_path();
3394 	if (!path) {
3395 		err = -ENOMEM;
3396 		goto out_unlock;
3397 	}
3398 
3399 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3400 				   name, name_len, -1);
3401 	if (IS_ERR(di)) {
3402 		err = PTR_ERR(di);
3403 		goto fail;
3404 	}
3405 	if (di) {
3406 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3407 		bytes_del += name_len;
3408 		if (ret) {
3409 			err = ret;
3410 			goto fail;
3411 		}
3412 	}
3413 	btrfs_release_path(path);
3414 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3415 					 index, name, name_len, -1);
3416 	if (IS_ERR(di)) {
3417 		err = PTR_ERR(di);
3418 		goto fail;
3419 	}
3420 	if (di) {
3421 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3422 		bytes_del += name_len;
3423 		if (ret) {
3424 			err = ret;
3425 			goto fail;
3426 		}
3427 	}
3428 
3429 	/* update the directory size in the log to reflect the names
3430 	 * we have removed
3431 	 */
3432 	if (bytes_del) {
3433 		struct btrfs_key key;
3434 
3435 		key.objectid = dir_ino;
3436 		key.offset = 0;
3437 		key.type = BTRFS_INODE_ITEM_KEY;
3438 		btrfs_release_path(path);
3439 
3440 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3441 		if (ret < 0) {
3442 			err = ret;
3443 			goto fail;
3444 		}
3445 		if (ret == 0) {
3446 			struct btrfs_inode_item *item;
3447 			u64 i_size;
3448 
3449 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3450 					      struct btrfs_inode_item);
3451 			i_size = btrfs_inode_size(path->nodes[0], item);
3452 			if (i_size > bytes_del)
3453 				i_size -= bytes_del;
3454 			else
3455 				i_size = 0;
3456 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3457 			btrfs_mark_buffer_dirty(path->nodes[0]);
3458 		} else
3459 			ret = 0;
3460 		btrfs_release_path(path);
3461 	}
3462 fail:
3463 	btrfs_free_path(path);
3464 out_unlock:
3465 	mutex_unlock(&dir->log_mutex);
3466 	if (ret == -ENOSPC) {
3467 		btrfs_set_log_full_commit(trans);
3468 		ret = 0;
3469 	} else if (ret < 0)
3470 		btrfs_abort_transaction(trans, ret);
3471 
3472 	btrfs_end_log_trans(root);
3473 
3474 	return err;
3475 }
3476 
3477 /* see comments for btrfs_del_dir_entries_in_log */
3478 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3479 			       struct btrfs_root *root,
3480 			       const char *name, int name_len,
3481 			       struct btrfs_inode *inode, u64 dirid)
3482 {
3483 	struct btrfs_root *log;
3484 	u64 index;
3485 	int ret;
3486 
3487 	if (!inode_logged(trans, inode))
3488 		return 0;
3489 
3490 	ret = join_running_log_trans(root);
3491 	if (ret)
3492 		return 0;
3493 	log = root->log_root;
3494 	mutex_lock(&inode->log_mutex);
3495 
3496 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3497 				  dirid, &index);
3498 	mutex_unlock(&inode->log_mutex);
3499 	if (ret == -ENOSPC) {
3500 		btrfs_set_log_full_commit(trans);
3501 		ret = 0;
3502 	} else if (ret < 0 && ret != -ENOENT)
3503 		btrfs_abort_transaction(trans, ret);
3504 	btrfs_end_log_trans(root);
3505 
3506 	return ret;
3507 }
3508 
3509 /*
3510  * creates a range item in the log for 'dirid'.  first_offset and
3511  * last_offset tell us which parts of the key space the log should
3512  * be considered authoritative for.
3513  */
3514 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3515 				       struct btrfs_root *log,
3516 				       struct btrfs_path *path,
3517 				       int key_type, u64 dirid,
3518 				       u64 first_offset, u64 last_offset)
3519 {
3520 	int ret;
3521 	struct btrfs_key key;
3522 	struct btrfs_dir_log_item *item;
3523 
3524 	key.objectid = dirid;
3525 	key.offset = first_offset;
3526 	if (key_type == BTRFS_DIR_ITEM_KEY)
3527 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3528 	else
3529 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3530 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3531 	if (ret)
3532 		return ret;
3533 
3534 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3535 			      struct btrfs_dir_log_item);
3536 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3537 	btrfs_mark_buffer_dirty(path->nodes[0]);
3538 	btrfs_release_path(path);
3539 	return 0;
3540 }
3541 
3542 /*
3543  * log all the items included in the current transaction for a given
3544  * directory.  This also creates the range items in the log tree required
3545  * to replay anything deleted before the fsync
3546  */
3547 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3548 			  struct btrfs_root *root, struct btrfs_inode *inode,
3549 			  struct btrfs_path *path,
3550 			  struct btrfs_path *dst_path, int key_type,
3551 			  struct btrfs_log_ctx *ctx,
3552 			  u64 min_offset, u64 *last_offset_ret)
3553 {
3554 	struct btrfs_key min_key;
3555 	struct btrfs_root *log = root->log_root;
3556 	struct extent_buffer *src;
3557 	int err = 0;
3558 	int ret;
3559 	int i;
3560 	int nritems;
3561 	u64 first_offset = min_offset;
3562 	u64 last_offset = (u64)-1;
3563 	u64 ino = btrfs_ino(inode);
3564 
3565 	log = root->log_root;
3566 
3567 	min_key.objectid = ino;
3568 	min_key.type = key_type;
3569 	min_key.offset = min_offset;
3570 
3571 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3572 
3573 	/*
3574 	 * we didn't find anything from this transaction, see if there
3575 	 * is anything at all
3576 	 */
3577 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3578 		min_key.objectid = ino;
3579 		min_key.type = key_type;
3580 		min_key.offset = (u64)-1;
3581 		btrfs_release_path(path);
3582 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3583 		if (ret < 0) {
3584 			btrfs_release_path(path);
3585 			return ret;
3586 		}
3587 		ret = btrfs_previous_item(root, path, ino, key_type);
3588 
3589 		/* if ret == 0 there are items for this type,
3590 		 * create a range to tell us the last key of this type.
3591 		 * otherwise, there are no items in this directory after
3592 		 * *min_offset, and we create a range to indicate that.
3593 		 */
3594 		if (ret == 0) {
3595 			struct btrfs_key tmp;
3596 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3597 					      path->slots[0]);
3598 			if (key_type == tmp.type)
3599 				first_offset = max(min_offset, tmp.offset) + 1;
3600 		}
3601 		goto done;
3602 	}
3603 
3604 	/* go backward to find any previous key */
3605 	ret = btrfs_previous_item(root, path, ino, key_type);
3606 	if (ret == 0) {
3607 		struct btrfs_key tmp;
3608 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3609 		if (key_type == tmp.type) {
3610 			first_offset = tmp.offset;
3611 			ret = overwrite_item(trans, log, dst_path,
3612 					     path->nodes[0], path->slots[0],
3613 					     &tmp);
3614 			if (ret) {
3615 				err = ret;
3616 				goto done;
3617 			}
3618 		}
3619 	}
3620 	btrfs_release_path(path);
3621 
3622 	/*
3623 	 * Find the first key from this transaction again.  See the note for
3624 	 * log_new_dir_dentries, if we're logging a directory recursively we
3625 	 * won't be holding its i_mutex, which means we can modify the directory
3626 	 * while we're logging it.  If we remove an entry between our first
3627 	 * search and this search we'll not find the key again and can just
3628 	 * bail.
3629 	 */
3630 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3631 	if (ret != 0)
3632 		goto done;
3633 
3634 	/*
3635 	 * we have a block from this transaction, log every item in it
3636 	 * from our directory
3637 	 */
3638 	while (1) {
3639 		struct btrfs_key tmp;
3640 		src = path->nodes[0];
3641 		nritems = btrfs_header_nritems(src);
3642 		for (i = path->slots[0]; i < nritems; i++) {
3643 			struct btrfs_dir_item *di;
3644 
3645 			btrfs_item_key_to_cpu(src, &min_key, i);
3646 
3647 			if (min_key.objectid != ino || min_key.type != key_type)
3648 				goto done;
3649 			ret = overwrite_item(trans, log, dst_path, src, i,
3650 					     &min_key);
3651 			if (ret) {
3652 				err = ret;
3653 				goto done;
3654 			}
3655 
3656 			/*
3657 			 * We must make sure that when we log a directory entry,
3658 			 * the corresponding inode, after log replay, has a
3659 			 * matching link count. For example:
3660 			 *
3661 			 * touch foo
3662 			 * mkdir mydir
3663 			 * sync
3664 			 * ln foo mydir/bar
3665 			 * xfs_io -c "fsync" mydir
3666 			 * <crash>
3667 			 * <mount fs and log replay>
3668 			 *
3669 			 * Would result in a fsync log that when replayed, our
3670 			 * file inode would have a link count of 1, but we get
3671 			 * two directory entries pointing to the same inode.
3672 			 * After removing one of the names, it would not be
3673 			 * possible to remove the other name, which resulted
3674 			 * always in stale file handle errors, and would not
3675 			 * be possible to rmdir the parent directory, since
3676 			 * its i_size could never decrement to the value
3677 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3678 			 */
3679 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3680 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3681 			if (ctx &&
3682 			    (btrfs_dir_transid(src, di) == trans->transid ||
3683 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3684 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3685 				ctx->log_new_dentries = true;
3686 		}
3687 		path->slots[0] = nritems;
3688 
3689 		/*
3690 		 * look ahead to the next item and see if it is also
3691 		 * from this directory and from this transaction
3692 		 */
3693 		ret = btrfs_next_leaf(root, path);
3694 		if (ret) {
3695 			if (ret == 1)
3696 				last_offset = (u64)-1;
3697 			else
3698 				err = ret;
3699 			goto done;
3700 		}
3701 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3702 		if (tmp.objectid != ino || tmp.type != key_type) {
3703 			last_offset = (u64)-1;
3704 			goto done;
3705 		}
3706 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3707 			ret = overwrite_item(trans, log, dst_path,
3708 					     path->nodes[0], path->slots[0],
3709 					     &tmp);
3710 			if (ret)
3711 				err = ret;
3712 			else
3713 				last_offset = tmp.offset;
3714 			goto done;
3715 		}
3716 	}
3717 done:
3718 	btrfs_release_path(path);
3719 	btrfs_release_path(dst_path);
3720 
3721 	if (err == 0) {
3722 		*last_offset_ret = last_offset;
3723 		/*
3724 		 * insert the log range keys to indicate where the log
3725 		 * is valid
3726 		 */
3727 		ret = insert_dir_log_key(trans, log, path, key_type,
3728 					 ino, first_offset, last_offset);
3729 		if (ret)
3730 			err = ret;
3731 	}
3732 	return err;
3733 }
3734 
3735 /*
3736  * logging directories is very similar to logging inodes, We find all the items
3737  * from the current transaction and write them to the log.
3738  *
3739  * The recovery code scans the directory in the subvolume, and if it finds a
3740  * key in the range logged that is not present in the log tree, then it means
3741  * that dir entry was unlinked during the transaction.
3742  *
3743  * In order for that scan to work, we must include one key smaller than
3744  * the smallest logged by this transaction and one key larger than the largest
3745  * key logged by this transaction.
3746  */
3747 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3748 			  struct btrfs_root *root, struct btrfs_inode *inode,
3749 			  struct btrfs_path *path,
3750 			  struct btrfs_path *dst_path,
3751 			  struct btrfs_log_ctx *ctx)
3752 {
3753 	u64 min_key;
3754 	u64 max_key;
3755 	int ret;
3756 	int key_type = BTRFS_DIR_ITEM_KEY;
3757 
3758 again:
3759 	min_key = 0;
3760 	max_key = 0;
3761 	while (1) {
3762 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3763 				ctx, min_key, &max_key);
3764 		if (ret)
3765 			return ret;
3766 		if (max_key == (u64)-1)
3767 			break;
3768 		min_key = max_key + 1;
3769 	}
3770 
3771 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3772 		key_type = BTRFS_DIR_INDEX_KEY;
3773 		goto again;
3774 	}
3775 	return 0;
3776 }
3777 
3778 /*
3779  * a helper function to drop items from the log before we relog an
3780  * inode.  max_key_type indicates the highest item type to remove.
3781  * This cannot be run for file data extents because it does not
3782  * free the extents they point to.
3783  */
3784 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3785 				  struct btrfs_root *log,
3786 				  struct btrfs_path *path,
3787 				  u64 objectid, int max_key_type)
3788 {
3789 	int ret;
3790 	struct btrfs_key key;
3791 	struct btrfs_key found_key;
3792 	int start_slot;
3793 
3794 	key.objectid = objectid;
3795 	key.type = max_key_type;
3796 	key.offset = (u64)-1;
3797 
3798 	while (1) {
3799 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3800 		BUG_ON(ret == 0); /* Logic error */
3801 		if (ret < 0)
3802 			break;
3803 
3804 		if (path->slots[0] == 0)
3805 			break;
3806 
3807 		path->slots[0]--;
3808 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3809 				      path->slots[0]);
3810 
3811 		if (found_key.objectid != objectid)
3812 			break;
3813 
3814 		found_key.offset = 0;
3815 		found_key.type = 0;
3816 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3817 				       &start_slot);
3818 		if (ret < 0)
3819 			break;
3820 
3821 		ret = btrfs_del_items(trans, log, path, start_slot,
3822 				      path->slots[0] - start_slot + 1);
3823 		/*
3824 		 * If start slot isn't 0 then we don't need to re-search, we've
3825 		 * found the last guy with the objectid in this tree.
3826 		 */
3827 		if (ret || start_slot != 0)
3828 			break;
3829 		btrfs_release_path(path);
3830 	}
3831 	btrfs_release_path(path);
3832 	if (ret > 0)
3833 		ret = 0;
3834 	return ret;
3835 }
3836 
3837 static void fill_inode_item(struct btrfs_trans_handle *trans,
3838 			    struct extent_buffer *leaf,
3839 			    struct btrfs_inode_item *item,
3840 			    struct inode *inode, int log_inode_only,
3841 			    u64 logged_isize)
3842 {
3843 	struct btrfs_map_token token;
3844 
3845 	btrfs_init_map_token(&token);
3846 
3847 	if (log_inode_only) {
3848 		/* set the generation to zero so the recover code
3849 		 * can tell the difference between an logging
3850 		 * just to say 'this inode exists' and a logging
3851 		 * to say 'update this inode with these values'
3852 		 */
3853 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3854 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3855 	} else {
3856 		btrfs_set_token_inode_generation(leaf, item,
3857 						 BTRFS_I(inode)->generation,
3858 						 &token);
3859 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3860 	}
3861 
3862 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3863 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3864 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3865 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3866 
3867 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3868 				     inode->i_atime.tv_sec, &token);
3869 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3870 				      inode->i_atime.tv_nsec, &token);
3871 
3872 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3873 				     inode->i_mtime.tv_sec, &token);
3874 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3875 				      inode->i_mtime.tv_nsec, &token);
3876 
3877 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3878 				     inode->i_ctime.tv_sec, &token);
3879 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3880 				      inode->i_ctime.tv_nsec, &token);
3881 
3882 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3883 				     &token);
3884 
3885 	btrfs_set_token_inode_sequence(leaf, item,
3886 				       inode_peek_iversion(inode), &token);
3887 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3888 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3889 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3890 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3891 }
3892 
3893 static int log_inode_item(struct btrfs_trans_handle *trans,
3894 			  struct btrfs_root *log, struct btrfs_path *path,
3895 			  struct btrfs_inode *inode)
3896 {
3897 	struct btrfs_inode_item *inode_item;
3898 	int ret;
3899 
3900 	ret = btrfs_insert_empty_item(trans, log, path,
3901 				      &inode->location, sizeof(*inode_item));
3902 	if (ret && ret != -EEXIST)
3903 		return ret;
3904 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3905 				    struct btrfs_inode_item);
3906 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3907 			0, 0);
3908 	btrfs_release_path(path);
3909 	return 0;
3910 }
3911 
3912 static noinline int copy_items(struct btrfs_trans_handle *trans,
3913 			       struct btrfs_inode *inode,
3914 			       struct btrfs_path *dst_path,
3915 			       struct btrfs_path *src_path, u64 *last_extent,
3916 			       int start_slot, int nr, int inode_only,
3917 			       u64 logged_isize)
3918 {
3919 	struct btrfs_fs_info *fs_info = trans->fs_info;
3920 	unsigned long src_offset;
3921 	unsigned long dst_offset;
3922 	struct btrfs_root *log = inode->root->log_root;
3923 	struct btrfs_file_extent_item *extent;
3924 	struct btrfs_inode_item *inode_item;
3925 	struct extent_buffer *src = src_path->nodes[0];
3926 	struct btrfs_key first_key, last_key, key;
3927 	int ret;
3928 	struct btrfs_key *ins_keys;
3929 	u32 *ins_sizes;
3930 	char *ins_data;
3931 	int i;
3932 	struct list_head ordered_sums;
3933 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3934 	bool has_extents = false;
3935 	bool need_find_last_extent = true;
3936 	bool done = false;
3937 
3938 	INIT_LIST_HEAD(&ordered_sums);
3939 
3940 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3941 			   nr * sizeof(u32), GFP_NOFS);
3942 	if (!ins_data)
3943 		return -ENOMEM;
3944 
3945 	first_key.objectid = (u64)-1;
3946 
3947 	ins_sizes = (u32 *)ins_data;
3948 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3949 
3950 	for (i = 0; i < nr; i++) {
3951 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3952 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3953 	}
3954 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3955 				       ins_keys, ins_sizes, nr);
3956 	if (ret) {
3957 		kfree(ins_data);
3958 		return ret;
3959 	}
3960 
3961 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3962 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3963 						   dst_path->slots[0]);
3964 
3965 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3966 
3967 		if (i == nr - 1)
3968 			last_key = ins_keys[i];
3969 
3970 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3971 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3972 						    dst_path->slots[0],
3973 						    struct btrfs_inode_item);
3974 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3975 					&inode->vfs_inode,
3976 					inode_only == LOG_INODE_EXISTS,
3977 					logged_isize);
3978 		} else {
3979 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3980 					   src_offset, ins_sizes[i]);
3981 		}
3982 
3983 		/*
3984 		 * We set need_find_last_extent here in case we know we were
3985 		 * processing other items and then walk into the first extent in
3986 		 * the inode.  If we don't hit an extent then nothing changes,
3987 		 * we'll do the last search the next time around.
3988 		 */
3989 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3990 			has_extents = true;
3991 			if (first_key.objectid == (u64)-1)
3992 				first_key = ins_keys[i];
3993 		} else {
3994 			need_find_last_extent = false;
3995 		}
3996 
3997 		/* take a reference on file data extents so that truncates
3998 		 * or deletes of this inode don't have to relog the inode
3999 		 * again
4000 		 */
4001 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4002 		    !skip_csum) {
4003 			int found_type;
4004 			extent = btrfs_item_ptr(src, start_slot + i,
4005 						struct btrfs_file_extent_item);
4006 
4007 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4008 				continue;
4009 
4010 			found_type = btrfs_file_extent_type(src, extent);
4011 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4012 				u64 ds, dl, cs, cl;
4013 				ds = btrfs_file_extent_disk_bytenr(src,
4014 								extent);
4015 				/* ds == 0 is a hole */
4016 				if (ds == 0)
4017 					continue;
4018 
4019 				dl = btrfs_file_extent_disk_num_bytes(src,
4020 								extent);
4021 				cs = btrfs_file_extent_offset(src, extent);
4022 				cl = btrfs_file_extent_num_bytes(src,
4023 								extent);
4024 				if (btrfs_file_extent_compression(src,
4025 								  extent)) {
4026 					cs = 0;
4027 					cl = dl;
4028 				}
4029 
4030 				ret = btrfs_lookup_csums_range(
4031 						fs_info->csum_root,
4032 						ds + cs, ds + cs + cl - 1,
4033 						&ordered_sums, 0);
4034 				if (ret) {
4035 					btrfs_release_path(dst_path);
4036 					kfree(ins_data);
4037 					return ret;
4038 				}
4039 			}
4040 		}
4041 	}
4042 
4043 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4044 	btrfs_release_path(dst_path);
4045 	kfree(ins_data);
4046 
4047 	/*
4048 	 * we have to do this after the loop above to avoid changing the
4049 	 * log tree while trying to change the log tree.
4050 	 */
4051 	ret = 0;
4052 	while (!list_empty(&ordered_sums)) {
4053 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4054 						   struct btrfs_ordered_sum,
4055 						   list);
4056 		if (!ret)
4057 			ret = btrfs_csum_file_blocks(trans, log, sums);
4058 		list_del(&sums->list);
4059 		kfree(sums);
4060 	}
4061 
4062 	if (!has_extents)
4063 		return ret;
4064 
4065 	if (need_find_last_extent && *last_extent == first_key.offset) {
4066 		/*
4067 		 * We don't have any leafs between our current one and the one
4068 		 * we processed before that can have file extent items for our
4069 		 * inode (and have a generation number smaller than our current
4070 		 * transaction id).
4071 		 */
4072 		need_find_last_extent = false;
4073 	}
4074 
4075 	/*
4076 	 * Because we use btrfs_search_forward we could skip leaves that were
4077 	 * not modified and then assume *last_extent is valid when it really
4078 	 * isn't.  So back up to the previous leaf and read the end of the last
4079 	 * extent before we go and fill in holes.
4080 	 */
4081 	if (need_find_last_extent) {
4082 		u64 len;
4083 
4084 		ret = btrfs_prev_leaf(inode->root, src_path);
4085 		if (ret < 0)
4086 			return ret;
4087 		if (ret)
4088 			goto fill_holes;
4089 		if (src_path->slots[0])
4090 			src_path->slots[0]--;
4091 		src = src_path->nodes[0];
4092 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4093 		if (key.objectid != btrfs_ino(inode) ||
4094 		    key.type != BTRFS_EXTENT_DATA_KEY)
4095 			goto fill_holes;
4096 		extent = btrfs_item_ptr(src, src_path->slots[0],
4097 					struct btrfs_file_extent_item);
4098 		if (btrfs_file_extent_type(src, extent) ==
4099 		    BTRFS_FILE_EXTENT_INLINE) {
4100 			len = btrfs_file_extent_ram_bytes(src, extent);
4101 			*last_extent = ALIGN(key.offset + len,
4102 					     fs_info->sectorsize);
4103 		} else {
4104 			len = btrfs_file_extent_num_bytes(src, extent);
4105 			*last_extent = key.offset + len;
4106 		}
4107 	}
4108 fill_holes:
4109 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
4110 	 * things could have happened
4111 	 *
4112 	 * 1) A merge could have happened, so we could currently be on a leaf
4113 	 * that holds what we were copying in the first place.
4114 	 * 2) A split could have happened, and now not all of the items we want
4115 	 * are on the same leaf.
4116 	 *
4117 	 * So we need to adjust how we search for holes, we need to drop the
4118 	 * path and re-search for the first extent key we found, and then walk
4119 	 * forward until we hit the last one we copied.
4120 	 */
4121 	if (need_find_last_extent) {
4122 		/* btrfs_prev_leaf could return 1 without releasing the path */
4123 		btrfs_release_path(src_path);
4124 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
4125 				src_path, 0, 0);
4126 		if (ret < 0)
4127 			return ret;
4128 		ASSERT(ret == 0);
4129 		src = src_path->nodes[0];
4130 		i = src_path->slots[0];
4131 	} else {
4132 		i = start_slot;
4133 	}
4134 
4135 	/*
4136 	 * Ok so here we need to go through and fill in any holes we may have
4137 	 * to make sure that holes are punched for those areas in case they had
4138 	 * extents previously.
4139 	 */
4140 	while (!done) {
4141 		u64 offset, len;
4142 		u64 extent_end;
4143 
4144 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4145 			ret = btrfs_next_leaf(inode->root, src_path);
4146 			if (ret < 0)
4147 				return ret;
4148 			ASSERT(ret == 0);
4149 			src = src_path->nodes[0];
4150 			i = 0;
4151 			need_find_last_extent = true;
4152 		}
4153 
4154 		btrfs_item_key_to_cpu(src, &key, i);
4155 		if (!btrfs_comp_cpu_keys(&key, &last_key))
4156 			done = true;
4157 		if (key.objectid != btrfs_ino(inode) ||
4158 		    key.type != BTRFS_EXTENT_DATA_KEY) {
4159 			i++;
4160 			continue;
4161 		}
4162 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4163 		if (btrfs_file_extent_type(src, extent) ==
4164 		    BTRFS_FILE_EXTENT_INLINE) {
4165 			len = btrfs_file_extent_ram_bytes(src, extent);
4166 			extent_end = ALIGN(key.offset + len,
4167 					   fs_info->sectorsize);
4168 		} else {
4169 			len = btrfs_file_extent_num_bytes(src, extent);
4170 			extent_end = key.offset + len;
4171 		}
4172 		i++;
4173 
4174 		if (*last_extent == key.offset) {
4175 			*last_extent = extent_end;
4176 			continue;
4177 		}
4178 		offset = *last_extent;
4179 		len = key.offset - *last_extent;
4180 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4181 				offset, 0, 0, len, 0, len, 0, 0, 0);
4182 		if (ret)
4183 			break;
4184 		*last_extent = extent_end;
4185 	}
4186 
4187 	/*
4188 	 * Check if there is a hole between the last extent found in our leaf
4189 	 * and the first extent in the next leaf. If there is one, we need to
4190 	 * log an explicit hole so that at replay time we can punch the hole.
4191 	 */
4192 	if (ret == 0 &&
4193 	    key.objectid == btrfs_ino(inode) &&
4194 	    key.type == BTRFS_EXTENT_DATA_KEY &&
4195 	    i == btrfs_header_nritems(src_path->nodes[0])) {
4196 		ret = btrfs_next_leaf(inode->root, src_path);
4197 		need_find_last_extent = true;
4198 		if (ret > 0) {
4199 			ret = 0;
4200 		} else if (ret == 0) {
4201 			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4202 					      src_path->slots[0]);
4203 			if (key.objectid == btrfs_ino(inode) &&
4204 			    key.type == BTRFS_EXTENT_DATA_KEY &&
4205 			    *last_extent < key.offset) {
4206 				const u64 len = key.offset - *last_extent;
4207 
4208 				ret = btrfs_insert_file_extent(trans, log,
4209 							       btrfs_ino(inode),
4210 							       *last_extent, 0,
4211 							       0, len, 0, len,
4212 							       0, 0, 0);
4213 				*last_extent += len;
4214 			}
4215 		}
4216 	}
4217 	/*
4218 	 * Need to let the callers know we dropped the path so they should
4219 	 * re-search.
4220 	 */
4221 	if (!ret && need_find_last_extent)
4222 		ret = 1;
4223 	return ret;
4224 }
4225 
4226 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4227 {
4228 	struct extent_map *em1, *em2;
4229 
4230 	em1 = list_entry(a, struct extent_map, list);
4231 	em2 = list_entry(b, struct extent_map, list);
4232 
4233 	if (em1->start < em2->start)
4234 		return -1;
4235 	else if (em1->start > em2->start)
4236 		return 1;
4237 	return 0;
4238 }
4239 
4240 static int log_extent_csums(struct btrfs_trans_handle *trans,
4241 			    struct btrfs_inode *inode,
4242 			    struct btrfs_root *log_root,
4243 			    const struct extent_map *em)
4244 {
4245 	u64 csum_offset;
4246 	u64 csum_len;
4247 	LIST_HEAD(ordered_sums);
4248 	int ret = 0;
4249 
4250 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4251 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4252 	    em->block_start == EXTENT_MAP_HOLE)
4253 		return 0;
4254 
4255 	/* If we're compressed we have to save the entire range of csums. */
4256 	if (em->compress_type) {
4257 		csum_offset = 0;
4258 		csum_len = max(em->block_len, em->orig_block_len);
4259 	} else {
4260 		csum_offset = em->mod_start - em->start;
4261 		csum_len = em->mod_len;
4262 	}
4263 
4264 	/* block start is already adjusted for the file extent offset. */
4265 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4266 				       em->block_start + csum_offset,
4267 				       em->block_start + csum_offset +
4268 				       csum_len - 1, &ordered_sums, 0);
4269 	if (ret)
4270 		return ret;
4271 
4272 	while (!list_empty(&ordered_sums)) {
4273 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4274 						   struct btrfs_ordered_sum,
4275 						   list);
4276 		if (!ret)
4277 			ret = btrfs_csum_file_blocks(trans, log_root, sums);
4278 		list_del(&sums->list);
4279 		kfree(sums);
4280 	}
4281 
4282 	return ret;
4283 }
4284 
4285 static int log_one_extent(struct btrfs_trans_handle *trans,
4286 			  struct btrfs_inode *inode, struct btrfs_root *root,
4287 			  const struct extent_map *em,
4288 			  struct btrfs_path *path,
4289 			  struct btrfs_log_ctx *ctx)
4290 {
4291 	struct btrfs_root *log = root->log_root;
4292 	struct btrfs_file_extent_item *fi;
4293 	struct extent_buffer *leaf;
4294 	struct btrfs_map_token token;
4295 	struct btrfs_key key;
4296 	u64 extent_offset = em->start - em->orig_start;
4297 	u64 block_len;
4298 	int ret;
4299 	int extent_inserted = 0;
4300 
4301 	ret = log_extent_csums(trans, inode, log, em);
4302 	if (ret)
4303 		return ret;
4304 
4305 	btrfs_init_map_token(&token);
4306 
4307 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4308 				   em->start + em->len, NULL, 0, 1,
4309 				   sizeof(*fi), &extent_inserted);
4310 	if (ret)
4311 		return ret;
4312 
4313 	if (!extent_inserted) {
4314 		key.objectid = btrfs_ino(inode);
4315 		key.type = BTRFS_EXTENT_DATA_KEY;
4316 		key.offset = em->start;
4317 
4318 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4319 					      sizeof(*fi));
4320 		if (ret)
4321 			return ret;
4322 	}
4323 	leaf = path->nodes[0];
4324 	fi = btrfs_item_ptr(leaf, path->slots[0],
4325 			    struct btrfs_file_extent_item);
4326 
4327 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4328 					       &token);
4329 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4330 		btrfs_set_token_file_extent_type(leaf, fi,
4331 						 BTRFS_FILE_EXTENT_PREALLOC,
4332 						 &token);
4333 	else
4334 		btrfs_set_token_file_extent_type(leaf, fi,
4335 						 BTRFS_FILE_EXTENT_REG,
4336 						 &token);
4337 
4338 	block_len = max(em->block_len, em->orig_block_len);
4339 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4340 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4341 							em->block_start,
4342 							&token);
4343 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4344 							   &token);
4345 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4346 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4347 							em->block_start -
4348 							extent_offset, &token);
4349 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4350 							   &token);
4351 	} else {
4352 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4353 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4354 							   &token);
4355 	}
4356 
4357 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4358 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4359 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4360 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4361 						&token);
4362 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4363 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4364 	btrfs_mark_buffer_dirty(leaf);
4365 
4366 	btrfs_release_path(path);
4367 
4368 	return ret;
4369 }
4370 
4371 /*
4372  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4373  * lose them after doing a fast fsync and replaying the log. We scan the
4374  * subvolume's root instead of iterating the inode's extent map tree because
4375  * otherwise we can log incorrect extent items based on extent map conversion.
4376  * That can happen due to the fact that extent maps are merged when they
4377  * are not in the extent map tree's list of modified extents.
4378  */
4379 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4380 				      struct btrfs_inode *inode,
4381 				      struct btrfs_path *path)
4382 {
4383 	struct btrfs_root *root = inode->root;
4384 	struct btrfs_key key;
4385 	const u64 i_size = i_size_read(&inode->vfs_inode);
4386 	const u64 ino = btrfs_ino(inode);
4387 	struct btrfs_path *dst_path = NULL;
4388 	u64 last_extent = (u64)-1;
4389 	int ins_nr = 0;
4390 	int start_slot;
4391 	int ret;
4392 
4393 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4394 		return 0;
4395 
4396 	key.objectid = ino;
4397 	key.type = BTRFS_EXTENT_DATA_KEY;
4398 	key.offset = i_size;
4399 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4400 	if (ret < 0)
4401 		goto out;
4402 
4403 	while (true) {
4404 		struct extent_buffer *leaf = path->nodes[0];
4405 		int slot = path->slots[0];
4406 
4407 		if (slot >= btrfs_header_nritems(leaf)) {
4408 			if (ins_nr > 0) {
4409 				ret = copy_items(trans, inode, dst_path, path,
4410 						 &last_extent, start_slot,
4411 						 ins_nr, 1, 0);
4412 				if (ret < 0)
4413 					goto out;
4414 				ins_nr = 0;
4415 			}
4416 			ret = btrfs_next_leaf(root, path);
4417 			if (ret < 0)
4418 				goto out;
4419 			if (ret > 0) {
4420 				ret = 0;
4421 				break;
4422 			}
4423 			continue;
4424 		}
4425 
4426 		btrfs_item_key_to_cpu(leaf, &key, slot);
4427 		if (key.objectid > ino)
4428 			break;
4429 		if (WARN_ON_ONCE(key.objectid < ino) ||
4430 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4431 		    key.offset < i_size) {
4432 			path->slots[0]++;
4433 			continue;
4434 		}
4435 		if (last_extent == (u64)-1) {
4436 			last_extent = key.offset;
4437 			/*
4438 			 * Avoid logging extent items logged in past fsync calls
4439 			 * and leading to duplicate keys in the log tree.
4440 			 */
4441 			do {
4442 				ret = btrfs_truncate_inode_items(trans,
4443 							 root->log_root,
4444 							 &inode->vfs_inode,
4445 							 i_size,
4446 							 BTRFS_EXTENT_DATA_KEY);
4447 			} while (ret == -EAGAIN);
4448 			if (ret)
4449 				goto out;
4450 		}
4451 		if (ins_nr == 0)
4452 			start_slot = slot;
4453 		ins_nr++;
4454 		path->slots[0]++;
4455 		if (!dst_path) {
4456 			dst_path = btrfs_alloc_path();
4457 			if (!dst_path) {
4458 				ret = -ENOMEM;
4459 				goto out;
4460 			}
4461 		}
4462 	}
4463 	if (ins_nr > 0) {
4464 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4465 				 start_slot, ins_nr, 1, 0);
4466 		if (ret > 0)
4467 			ret = 0;
4468 	}
4469 out:
4470 	btrfs_release_path(path);
4471 	btrfs_free_path(dst_path);
4472 	return ret;
4473 }
4474 
4475 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4476 				     struct btrfs_root *root,
4477 				     struct btrfs_inode *inode,
4478 				     struct btrfs_path *path,
4479 				     struct btrfs_log_ctx *ctx,
4480 				     const u64 start,
4481 				     const u64 end)
4482 {
4483 	struct extent_map *em, *n;
4484 	struct list_head extents;
4485 	struct extent_map_tree *tree = &inode->extent_tree;
4486 	u64 test_gen;
4487 	int ret = 0;
4488 	int num = 0;
4489 
4490 	INIT_LIST_HEAD(&extents);
4491 
4492 	write_lock(&tree->lock);
4493 	test_gen = root->fs_info->last_trans_committed;
4494 
4495 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4496 		/*
4497 		 * Skip extents outside our logging range. It's important to do
4498 		 * it for correctness because if we don't ignore them, we may
4499 		 * log them before their ordered extent completes, and therefore
4500 		 * we could log them without logging their respective checksums
4501 		 * (the checksum items are added to the csum tree at the very
4502 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4503 		 * outside of our range in the list, since we may have another
4504 		 * ranged fsync in the near future that needs them. If an extent
4505 		 * outside our range corresponds to a hole, log it to avoid
4506 		 * leaving gaps between extents (fsck will complain when we are
4507 		 * not using the NO_HOLES feature).
4508 		 */
4509 		if ((em->start > end || em->start + em->len <= start) &&
4510 		    em->block_start != EXTENT_MAP_HOLE)
4511 			continue;
4512 
4513 		list_del_init(&em->list);
4514 		/*
4515 		 * Just an arbitrary number, this can be really CPU intensive
4516 		 * once we start getting a lot of extents, and really once we
4517 		 * have a bunch of extents we just want to commit since it will
4518 		 * be faster.
4519 		 */
4520 		if (++num > 32768) {
4521 			list_del_init(&tree->modified_extents);
4522 			ret = -EFBIG;
4523 			goto process;
4524 		}
4525 
4526 		if (em->generation <= test_gen)
4527 			continue;
4528 
4529 		/* We log prealloc extents beyond eof later. */
4530 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4531 		    em->start >= i_size_read(&inode->vfs_inode))
4532 			continue;
4533 
4534 		/* Need a ref to keep it from getting evicted from cache */
4535 		refcount_inc(&em->refs);
4536 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4537 		list_add_tail(&em->list, &extents);
4538 		num++;
4539 	}
4540 
4541 	list_sort(NULL, &extents, extent_cmp);
4542 process:
4543 	while (!list_empty(&extents)) {
4544 		em = list_entry(extents.next, struct extent_map, list);
4545 
4546 		list_del_init(&em->list);
4547 
4548 		/*
4549 		 * If we had an error we just need to delete everybody from our
4550 		 * private list.
4551 		 */
4552 		if (ret) {
4553 			clear_em_logging(tree, em);
4554 			free_extent_map(em);
4555 			continue;
4556 		}
4557 
4558 		write_unlock(&tree->lock);
4559 
4560 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4561 		write_lock(&tree->lock);
4562 		clear_em_logging(tree, em);
4563 		free_extent_map(em);
4564 	}
4565 	WARN_ON(!list_empty(&extents));
4566 	write_unlock(&tree->lock);
4567 
4568 	btrfs_release_path(path);
4569 	if (!ret)
4570 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4571 
4572 	return ret;
4573 }
4574 
4575 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4576 			     struct btrfs_path *path, u64 *size_ret)
4577 {
4578 	struct btrfs_key key;
4579 	int ret;
4580 
4581 	key.objectid = btrfs_ino(inode);
4582 	key.type = BTRFS_INODE_ITEM_KEY;
4583 	key.offset = 0;
4584 
4585 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4586 	if (ret < 0) {
4587 		return ret;
4588 	} else if (ret > 0) {
4589 		*size_ret = 0;
4590 	} else {
4591 		struct btrfs_inode_item *item;
4592 
4593 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4594 				      struct btrfs_inode_item);
4595 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4596 		/*
4597 		 * If the in-memory inode's i_size is smaller then the inode
4598 		 * size stored in the btree, return the inode's i_size, so
4599 		 * that we get a correct inode size after replaying the log
4600 		 * when before a power failure we had a shrinking truncate
4601 		 * followed by addition of a new name (rename / new hard link).
4602 		 * Otherwise return the inode size from the btree, to avoid
4603 		 * data loss when replaying a log due to previously doing a
4604 		 * write that expands the inode's size and logging a new name
4605 		 * immediately after.
4606 		 */
4607 		if (*size_ret > inode->vfs_inode.i_size)
4608 			*size_ret = inode->vfs_inode.i_size;
4609 	}
4610 
4611 	btrfs_release_path(path);
4612 	return 0;
4613 }
4614 
4615 /*
4616  * At the moment we always log all xattrs. This is to figure out at log replay
4617  * time which xattrs must have their deletion replayed. If a xattr is missing
4618  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4619  * because if a xattr is deleted, the inode is fsynced and a power failure
4620  * happens, causing the log to be replayed the next time the fs is mounted,
4621  * we want the xattr to not exist anymore (same behaviour as other filesystems
4622  * with a journal, ext3/4, xfs, f2fs, etc).
4623  */
4624 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4625 				struct btrfs_root *root,
4626 				struct btrfs_inode *inode,
4627 				struct btrfs_path *path,
4628 				struct btrfs_path *dst_path)
4629 {
4630 	int ret;
4631 	struct btrfs_key key;
4632 	const u64 ino = btrfs_ino(inode);
4633 	int ins_nr = 0;
4634 	int start_slot = 0;
4635 
4636 	key.objectid = ino;
4637 	key.type = BTRFS_XATTR_ITEM_KEY;
4638 	key.offset = 0;
4639 
4640 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4641 	if (ret < 0)
4642 		return ret;
4643 
4644 	while (true) {
4645 		int slot = path->slots[0];
4646 		struct extent_buffer *leaf = path->nodes[0];
4647 		int nritems = btrfs_header_nritems(leaf);
4648 
4649 		if (slot >= nritems) {
4650 			if (ins_nr > 0) {
4651 				u64 last_extent = 0;
4652 
4653 				ret = copy_items(trans, inode, dst_path, path,
4654 						 &last_extent, start_slot,
4655 						 ins_nr, 1, 0);
4656 				/* can't be 1, extent items aren't processed */
4657 				ASSERT(ret <= 0);
4658 				if (ret < 0)
4659 					return ret;
4660 				ins_nr = 0;
4661 			}
4662 			ret = btrfs_next_leaf(root, path);
4663 			if (ret < 0)
4664 				return ret;
4665 			else if (ret > 0)
4666 				break;
4667 			continue;
4668 		}
4669 
4670 		btrfs_item_key_to_cpu(leaf, &key, slot);
4671 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4672 			break;
4673 
4674 		if (ins_nr == 0)
4675 			start_slot = slot;
4676 		ins_nr++;
4677 		path->slots[0]++;
4678 		cond_resched();
4679 	}
4680 	if (ins_nr > 0) {
4681 		u64 last_extent = 0;
4682 
4683 		ret = copy_items(trans, inode, dst_path, path,
4684 				 &last_extent, start_slot,
4685 				 ins_nr, 1, 0);
4686 		/* can't be 1, extent items aren't processed */
4687 		ASSERT(ret <= 0);
4688 		if (ret < 0)
4689 			return ret;
4690 	}
4691 
4692 	return 0;
4693 }
4694 
4695 /*
4696  * If the no holes feature is enabled we need to make sure any hole between the
4697  * last extent and the i_size of our inode is explicitly marked in the log. This
4698  * is to make sure that doing something like:
4699  *
4700  *      1) create file with 128Kb of data
4701  *      2) truncate file to 64Kb
4702  *      3) truncate file to 256Kb
4703  *      4) fsync file
4704  *      5) <crash/power failure>
4705  *      6) mount fs and trigger log replay
4706  *
4707  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4708  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4709  * file correspond to a hole. The presence of explicit holes in a log tree is
4710  * what guarantees that log replay will remove/adjust file extent items in the
4711  * fs/subvol tree.
4712  *
4713  * Here we do not need to care about holes between extents, that is already done
4714  * by copy_items(). We also only need to do this in the full sync path, where we
4715  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4716  * lookup the list of modified extent maps and if any represents a hole, we
4717  * insert a corresponding extent representing a hole in the log tree.
4718  */
4719 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4720 				   struct btrfs_root *root,
4721 				   struct btrfs_inode *inode,
4722 				   struct btrfs_path *path)
4723 {
4724 	struct btrfs_fs_info *fs_info = root->fs_info;
4725 	int ret;
4726 	struct btrfs_key key;
4727 	u64 hole_start;
4728 	u64 hole_size;
4729 	struct extent_buffer *leaf;
4730 	struct btrfs_root *log = root->log_root;
4731 	const u64 ino = btrfs_ino(inode);
4732 	const u64 i_size = i_size_read(&inode->vfs_inode);
4733 
4734 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4735 		return 0;
4736 
4737 	key.objectid = ino;
4738 	key.type = BTRFS_EXTENT_DATA_KEY;
4739 	key.offset = (u64)-1;
4740 
4741 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4742 	ASSERT(ret != 0);
4743 	if (ret < 0)
4744 		return ret;
4745 
4746 	ASSERT(path->slots[0] > 0);
4747 	path->slots[0]--;
4748 	leaf = path->nodes[0];
4749 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4750 
4751 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4752 		/* inode does not have any extents */
4753 		hole_start = 0;
4754 		hole_size = i_size;
4755 	} else {
4756 		struct btrfs_file_extent_item *extent;
4757 		u64 len;
4758 
4759 		/*
4760 		 * If there's an extent beyond i_size, an explicit hole was
4761 		 * already inserted by copy_items().
4762 		 */
4763 		if (key.offset >= i_size)
4764 			return 0;
4765 
4766 		extent = btrfs_item_ptr(leaf, path->slots[0],
4767 					struct btrfs_file_extent_item);
4768 
4769 		if (btrfs_file_extent_type(leaf, extent) ==
4770 		    BTRFS_FILE_EXTENT_INLINE)
4771 			return 0;
4772 
4773 		len = btrfs_file_extent_num_bytes(leaf, extent);
4774 		/* Last extent goes beyond i_size, no need to log a hole. */
4775 		if (key.offset + len > i_size)
4776 			return 0;
4777 		hole_start = key.offset + len;
4778 		hole_size = i_size - hole_start;
4779 	}
4780 	btrfs_release_path(path);
4781 
4782 	/* Last extent ends at i_size. */
4783 	if (hole_size == 0)
4784 		return 0;
4785 
4786 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4787 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4788 				       hole_size, 0, hole_size, 0, 0, 0);
4789 	return ret;
4790 }
4791 
4792 /*
4793  * When we are logging a new inode X, check if it doesn't have a reference that
4794  * matches the reference from some other inode Y created in a past transaction
4795  * and that was renamed in the current transaction. If we don't do this, then at
4796  * log replay time we can lose inode Y (and all its files if it's a directory):
4797  *
4798  * mkdir /mnt/x
4799  * echo "hello world" > /mnt/x/foobar
4800  * sync
4801  * mv /mnt/x /mnt/y
4802  * mkdir /mnt/x                 # or touch /mnt/x
4803  * xfs_io -c fsync /mnt/x
4804  * <power fail>
4805  * mount fs, trigger log replay
4806  *
4807  * After the log replay procedure, we would lose the first directory and all its
4808  * files (file foobar).
4809  * For the case where inode Y is not a directory we simply end up losing it:
4810  *
4811  * echo "123" > /mnt/foo
4812  * sync
4813  * mv /mnt/foo /mnt/bar
4814  * echo "abc" > /mnt/foo
4815  * xfs_io -c fsync /mnt/foo
4816  * <power fail>
4817  *
4818  * We also need this for cases where a snapshot entry is replaced by some other
4819  * entry (file or directory) otherwise we end up with an unreplayable log due to
4820  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4821  * if it were a regular entry:
4822  *
4823  * mkdir /mnt/x
4824  * btrfs subvolume snapshot /mnt /mnt/x/snap
4825  * btrfs subvolume delete /mnt/x/snap
4826  * rmdir /mnt/x
4827  * mkdir /mnt/x
4828  * fsync /mnt/x or fsync some new file inside it
4829  * <power fail>
4830  *
4831  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4832  * the same transaction.
4833  */
4834 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4835 					 const int slot,
4836 					 const struct btrfs_key *key,
4837 					 struct btrfs_inode *inode,
4838 					 u64 *other_ino, u64 *other_parent)
4839 {
4840 	int ret;
4841 	struct btrfs_path *search_path;
4842 	char *name = NULL;
4843 	u32 name_len = 0;
4844 	u32 item_size = btrfs_item_size_nr(eb, slot);
4845 	u32 cur_offset = 0;
4846 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4847 
4848 	search_path = btrfs_alloc_path();
4849 	if (!search_path)
4850 		return -ENOMEM;
4851 	search_path->search_commit_root = 1;
4852 	search_path->skip_locking = 1;
4853 
4854 	while (cur_offset < item_size) {
4855 		u64 parent;
4856 		u32 this_name_len;
4857 		u32 this_len;
4858 		unsigned long name_ptr;
4859 		struct btrfs_dir_item *di;
4860 
4861 		if (key->type == BTRFS_INODE_REF_KEY) {
4862 			struct btrfs_inode_ref *iref;
4863 
4864 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4865 			parent = key->offset;
4866 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4867 			name_ptr = (unsigned long)(iref + 1);
4868 			this_len = sizeof(*iref) + this_name_len;
4869 		} else {
4870 			struct btrfs_inode_extref *extref;
4871 
4872 			extref = (struct btrfs_inode_extref *)(ptr +
4873 							       cur_offset);
4874 			parent = btrfs_inode_extref_parent(eb, extref);
4875 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4876 			name_ptr = (unsigned long)&extref->name;
4877 			this_len = sizeof(*extref) + this_name_len;
4878 		}
4879 
4880 		if (this_name_len > name_len) {
4881 			char *new_name;
4882 
4883 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4884 			if (!new_name) {
4885 				ret = -ENOMEM;
4886 				goto out;
4887 			}
4888 			name_len = this_name_len;
4889 			name = new_name;
4890 		}
4891 
4892 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4893 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4894 				parent, name, this_name_len, 0);
4895 		if (di && !IS_ERR(di)) {
4896 			struct btrfs_key di_key;
4897 
4898 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4899 						  di, &di_key);
4900 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4901 				if (di_key.objectid != key->objectid) {
4902 					ret = 1;
4903 					*other_ino = di_key.objectid;
4904 					*other_parent = parent;
4905 				} else {
4906 					ret = 0;
4907 				}
4908 			} else {
4909 				ret = -EAGAIN;
4910 			}
4911 			goto out;
4912 		} else if (IS_ERR(di)) {
4913 			ret = PTR_ERR(di);
4914 			goto out;
4915 		}
4916 		btrfs_release_path(search_path);
4917 
4918 		cur_offset += this_len;
4919 	}
4920 	ret = 0;
4921 out:
4922 	btrfs_free_path(search_path);
4923 	kfree(name);
4924 	return ret;
4925 }
4926 
4927 struct btrfs_ino_list {
4928 	u64 ino;
4929 	u64 parent;
4930 	struct list_head list;
4931 };
4932 
4933 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4934 				  struct btrfs_root *root,
4935 				  struct btrfs_path *path,
4936 				  struct btrfs_log_ctx *ctx,
4937 				  u64 ino, u64 parent)
4938 {
4939 	struct btrfs_ino_list *ino_elem;
4940 	LIST_HEAD(inode_list);
4941 	int ret = 0;
4942 
4943 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4944 	if (!ino_elem)
4945 		return -ENOMEM;
4946 	ino_elem->ino = ino;
4947 	ino_elem->parent = parent;
4948 	list_add_tail(&ino_elem->list, &inode_list);
4949 
4950 	while (!list_empty(&inode_list)) {
4951 		struct btrfs_fs_info *fs_info = root->fs_info;
4952 		struct btrfs_key key;
4953 		struct inode *inode;
4954 
4955 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4956 					    list);
4957 		ino = ino_elem->ino;
4958 		parent = ino_elem->parent;
4959 		list_del(&ino_elem->list);
4960 		kfree(ino_elem);
4961 		if (ret)
4962 			continue;
4963 
4964 		btrfs_release_path(path);
4965 
4966 		key.objectid = ino;
4967 		key.type = BTRFS_INODE_ITEM_KEY;
4968 		key.offset = 0;
4969 		inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4970 		/*
4971 		 * If the other inode that had a conflicting dir entry was
4972 		 * deleted in the current transaction, we need to log its parent
4973 		 * directory.
4974 		 */
4975 		if (IS_ERR(inode)) {
4976 			ret = PTR_ERR(inode);
4977 			if (ret == -ENOENT) {
4978 				key.objectid = parent;
4979 				inode = btrfs_iget(fs_info->sb, &key, root,
4980 						   NULL);
4981 				if (IS_ERR(inode)) {
4982 					ret = PTR_ERR(inode);
4983 				} else {
4984 					ret = btrfs_log_inode(trans, root,
4985 						      BTRFS_I(inode),
4986 						      LOG_OTHER_INODE_ALL,
4987 						      0, LLONG_MAX, ctx);
4988 					iput(inode);
4989 				}
4990 			}
4991 			continue;
4992 		}
4993 		/*
4994 		 * We are safe logging the other inode without acquiring its
4995 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4996 		 * are safe against concurrent renames of the other inode as
4997 		 * well because during a rename we pin the log and update the
4998 		 * log with the new name before we unpin it.
4999 		 */
5000 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5001 				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
5002 		if (ret) {
5003 			iput(inode);
5004 			continue;
5005 		}
5006 
5007 		key.objectid = ino;
5008 		key.type = BTRFS_INODE_REF_KEY;
5009 		key.offset = 0;
5010 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5011 		if (ret < 0) {
5012 			iput(inode);
5013 			continue;
5014 		}
5015 
5016 		while (true) {
5017 			struct extent_buffer *leaf = path->nodes[0];
5018 			int slot = path->slots[0];
5019 			u64 other_ino = 0;
5020 			u64 other_parent = 0;
5021 
5022 			if (slot >= btrfs_header_nritems(leaf)) {
5023 				ret = btrfs_next_leaf(root, path);
5024 				if (ret < 0) {
5025 					break;
5026 				} else if (ret > 0) {
5027 					ret = 0;
5028 					break;
5029 				}
5030 				continue;
5031 			}
5032 
5033 			btrfs_item_key_to_cpu(leaf, &key, slot);
5034 			if (key.objectid != ino ||
5035 			    (key.type != BTRFS_INODE_REF_KEY &&
5036 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5037 				ret = 0;
5038 				break;
5039 			}
5040 
5041 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5042 					BTRFS_I(inode), &other_ino,
5043 					&other_parent);
5044 			if (ret < 0)
5045 				break;
5046 			if (ret > 0) {
5047 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5048 				if (!ino_elem) {
5049 					ret = -ENOMEM;
5050 					break;
5051 				}
5052 				ino_elem->ino = other_ino;
5053 				ino_elem->parent = other_parent;
5054 				list_add_tail(&ino_elem->list, &inode_list);
5055 				ret = 0;
5056 			}
5057 			path->slots[0]++;
5058 		}
5059 		iput(inode);
5060 	}
5061 
5062 	return ret;
5063 }
5064 
5065 /* log a single inode in the tree log.
5066  * At least one parent directory for this inode must exist in the tree
5067  * or be logged already.
5068  *
5069  * Any items from this inode changed by the current transaction are copied
5070  * to the log tree.  An extra reference is taken on any extents in this
5071  * file, allowing us to avoid a whole pile of corner cases around logging
5072  * blocks that have been removed from the tree.
5073  *
5074  * See LOG_INODE_ALL and related defines for a description of what inode_only
5075  * does.
5076  *
5077  * This handles both files and directories.
5078  */
5079 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5080 			   struct btrfs_root *root, struct btrfs_inode *inode,
5081 			   int inode_only,
5082 			   const loff_t start,
5083 			   const loff_t end,
5084 			   struct btrfs_log_ctx *ctx)
5085 {
5086 	struct btrfs_fs_info *fs_info = root->fs_info;
5087 	struct btrfs_path *path;
5088 	struct btrfs_path *dst_path;
5089 	struct btrfs_key min_key;
5090 	struct btrfs_key max_key;
5091 	struct btrfs_root *log = root->log_root;
5092 	u64 last_extent = 0;
5093 	int err = 0;
5094 	int ret;
5095 	int nritems;
5096 	int ins_start_slot = 0;
5097 	int ins_nr;
5098 	bool fast_search = false;
5099 	u64 ino = btrfs_ino(inode);
5100 	struct extent_map_tree *em_tree = &inode->extent_tree;
5101 	u64 logged_isize = 0;
5102 	bool need_log_inode_item = true;
5103 	bool xattrs_logged = false;
5104 	bool recursive_logging = false;
5105 
5106 	path = btrfs_alloc_path();
5107 	if (!path)
5108 		return -ENOMEM;
5109 	dst_path = btrfs_alloc_path();
5110 	if (!dst_path) {
5111 		btrfs_free_path(path);
5112 		return -ENOMEM;
5113 	}
5114 
5115 	min_key.objectid = ino;
5116 	min_key.type = BTRFS_INODE_ITEM_KEY;
5117 	min_key.offset = 0;
5118 
5119 	max_key.objectid = ino;
5120 
5121 
5122 	/* today the code can only do partial logging of directories */
5123 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5124 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5125 		       &inode->runtime_flags) &&
5126 	     inode_only >= LOG_INODE_EXISTS))
5127 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5128 	else
5129 		max_key.type = (u8)-1;
5130 	max_key.offset = (u64)-1;
5131 
5132 	/*
5133 	 * Only run delayed items if we are a dir or a new file.
5134 	 * Otherwise commit the delayed inode only, which is needed in
5135 	 * order for the log replay code to mark inodes for link count
5136 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5137 	 */
5138 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5139 	    inode->generation > fs_info->last_trans_committed)
5140 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5141 	else
5142 		ret = btrfs_commit_inode_delayed_inode(inode);
5143 
5144 	if (ret) {
5145 		btrfs_free_path(path);
5146 		btrfs_free_path(dst_path);
5147 		return ret;
5148 	}
5149 
5150 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5151 		recursive_logging = true;
5152 		if (inode_only == LOG_OTHER_INODE)
5153 			inode_only = LOG_INODE_EXISTS;
5154 		else
5155 			inode_only = LOG_INODE_ALL;
5156 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5157 	} else {
5158 		mutex_lock(&inode->log_mutex);
5159 	}
5160 
5161 	/*
5162 	 * a brute force approach to making sure we get the most uptodate
5163 	 * copies of everything.
5164 	 */
5165 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5166 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5167 
5168 		if (inode_only == LOG_INODE_EXISTS)
5169 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5170 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5171 	} else {
5172 		if (inode_only == LOG_INODE_EXISTS) {
5173 			/*
5174 			 * Make sure the new inode item we write to the log has
5175 			 * the same isize as the current one (if it exists).
5176 			 * This is necessary to prevent data loss after log
5177 			 * replay, and also to prevent doing a wrong expanding
5178 			 * truncate - for e.g. create file, write 4K into offset
5179 			 * 0, fsync, write 4K into offset 4096, add hard link,
5180 			 * fsync some other file (to sync log), power fail - if
5181 			 * we use the inode's current i_size, after log replay
5182 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5183 			 * (zeroes), as if an expanding truncate happened,
5184 			 * instead of getting a file of 4Kb only.
5185 			 */
5186 			err = logged_inode_size(log, inode, path, &logged_isize);
5187 			if (err)
5188 				goto out_unlock;
5189 		}
5190 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5191 			     &inode->runtime_flags)) {
5192 			if (inode_only == LOG_INODE_EXISTS) {
5193 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5194 				ret = drop_objectid_items(trans, log, path, ino,
5195 							  max_key.type);
5196 			} else {
5197 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5198 					  &inode->runtime_flags);
5199 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5200 					  &inode->runtime_flags);
5201 				while(1) {
5202 					ret = btrfs_truncate_inode_items(trans,
5203 						log, &inode->vfs_inode, 0, 0);
5204 					if (ret != -EAGAIN)
5205 						break;
5206 				}
5207 			}
5208 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5209 					      &inode->runtime_flags) ||
5210 			   inode_only == LOG_INODE_EXISTS) {
5211 			if (inode_only == LOG_INODE_ALL)
5212 				fast_search = true;
5213 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5214 			ret = drop_objectid_items(trans, log, path, ino,
5215 						  max_key.type);
5216 		} else {
5217 			if (inode_only == LOG_INODE_ALL)
5218 				fast_search = true;
5219 			goto log_extents;
5220 		}
5221 
5222 	}
5223 	if (ret) {
5224 		err = ret;
5225 		goto out_unlock;
5226 	}
5227 
5228 	while (1) {
5229 		ins_nr = 0;
5230 		ret = btrfs_search_forward(root, &min_key,
5231 					   path, trans->transid);
5232 		if (ret < 0) {
5233 			err = ret;
5234 			goto out_unlock;
5235 		}
5236 		if (ret != 0)
5237 			break;
5238 again:
5239 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
5240 		if (min_key.objectid != ino)
5241 			break;
5242 		if (min_key.type > max_key.type)
5243 			break;
5244 
5245 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
5246 			need_log_inode_item = false;
5247 
5248 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
5249 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5250 		    inode->generation == trans->transid &&
5251 		    !recursive_logging) {
5252 			u64 other_ino = 0;
5253 			u64 other_parent = 0;
5254 
5255 			ret = btrfs_check_ref_name_override(path->nodes[0],
5256 					path->slots[0], &min_key, inode,
5257 					&other_ino, &other_parent);
5258 			if (ret < 0) {
5259 				err = ret;
5260 				goto out_unlock;
5261 			} else if (ret > 0 && ctx &&
5262 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5263 				if (ins_nr > 0) {
5264 					ins_nr++;
5265 				} else {
5266 					ins_nr = 1;
5267 					ins_start_slot = path->slots[0];
5268 				}
5269 				ret = copy_items(trans, inode, dst_path, path,
5270 						 &last_extent, ins_start_slot,
5271 						 ins_nr, inode_only,
5272 						 logged_isize);
5273 				if (ret < 0) {
5274 					err = ret;
5275 					goto out_unlock;
5276 				}
5277 				ins_nr = 0;
5278 
5279 				err = log_conflicting_inodes(trans, root, path,
5280 						ctx, other_ino, other_parent);
5281 				if (err)
5282 					goto out_unlock;
5283 				btrfs_release_path(path);
5284 				goto next_key;
5285 			}
5286 		}
5287 
5288 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5289 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5290 			if (ins_nr == 0)
5291 				goto next_slot;
5292 			ret = copy_items(trans, inode, dst_path, path,
5293 					 &last_extent, ins_start_slot,
5294 					 ins_nr, inode_only, logged_isize);
5295 			if (ret < 0) {
5296 				err = ret;
5297 				goto out_unlock;
5298 			}
5299 			ins_nr = 0;
5300 			if (ret) {
5301 				btrfs_release_path(path);
5302 				continue;
5303 			}
5304 			goto next_slot;
5305 		}
5306 
5307 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5308 			ins_nr++;
5309 			goto next_slot;
5310 		} else if (!ins_nr) {
5311 			ins_start_slot = path->slots[0];
5312 			ins_nr = 1;
5313 			goto next_slot;
5314 		}
5315 
5316 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5317 				 ins_start_slot, ins_nr, inode_only,
5318 				 logged_isize);
5319 		if (ret < 0) {
5320 			err = ret;
5321 			goto out_unlock;
5322 		}
5323 		if (ret) {
5324 			ins_nr = 0;
5325 			btrfs_release_path(path);
5326 			continue;
5327 		}
5328 		ins_nr = 1;
5329 		ins_start_slot = path->slots[0];
5330 next_slot:
5331 
5332 		nritems = btrfs_header_nritems(path->nodes[0]);
5333 		path->slots[0]++;
5334 		if (path->slots[0] < nritems) {
5335 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5336 					      path->slots[0]);
5337 			goto again;
5338 		}
5339 		if (ins_nr) {
5340 			ret = copy_items(trans, inode, dst_path, path,
5341 					 &last_extent, ins_start_slot,
5342 					 ins_nr, inode_only, logged_isize);
5343 			if (ret < 0) {
5344 				err = ret;
5345 				goto out_unlock;
5346 			}
5347 			ret = 0;
5348 			ins_nr = 0;
5349 		}
5350 		btrfs_release_path(path);
5351 next_key:
5352 		if (min_key.offset < (u64)-1) {
5353 			min_key.offset++;
5354 		} else if (min_key.type < max_key.type) {
5355 			min_key.type++;
5356 			min_key.offset = 0;
5357 		} else {
5358 			break;
5359 		}
5360 	}
5361 	if (ins_nr) {
5362 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5363 				 ins_start_slot, ins_nr, inode_only,
5364 				 logged_isize);
5365 		if (ret < 0) {
5366 			err = ret;
5367 			goto out_unlock;
5368 		}
5369 		ret = 0;
5370 		ins_nr = 0;
5371 	}
5372 
5373 	btrfs_release_path(path);
5374 	btrfs_release_path(dst_path);
5375 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5376 	if (err)
5377 		goto out_unlock;
5378 	xattrs_logged = true;
5379 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5380 		btrfs_release_path(path);
5381 		btrfs_release_path(dst_path);
5382 		err = btrfs_log_trailing_hole(trans, root, inode, path);
5383 		if (err)
5384 			goto out_unlock;
5385 	}
5386 log_extents:
5387 	btrfs_release_path(path);
5388 	btrfs_release_path(dst_path);
5389 	if (need_log_inode_item) {
5390 		err = log_inode_item(trans, log, dst_path, inode);
5391 		if (!err && !xattrs_logged) {
5392 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5393 						   dst_path);
5394 			btrfs_release_path(path);
5395 		}
5396 		if (err)
5397 			goto out_unlock;
5398 	}
5399 	if (fast_search) {
5400 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5401 						ctx, start, end);
5402 		if (ret) {
5403 			err = ret;
5404 			goto out_unlock;
5405 		}
5406 	} else if (inode_only == LOG_INODE_ALL) {
5407 		struct extent_map *em, *n;
5408 
5409 		write_lock(&em_tree->lock);
5410 		/*
5411 		 * We can't just remove every em if we're called for a ranged
5412 		 * fsync - that is, one that doesn't cover the whole possible
5413 		 * file range (0 to LLONG_MAX). This is because we can have
5414 		 * em's that fall outside the range we're logging and therefore
5415 		 * their ordered operations haven't completed yet
5416 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5417 		 * didn't get their respective file extent item in the fs/subvol
5418 		 * tree yet, and need to let the next fast fsync (one which
5419 		 * consults the list of modified extent maps) find the em so
5420 		 * that it logs a matching file extent item and waits for the
5421 		 * respective ordered operation to complete (if it's still
5422 		 * running).
5423 		 *
5424 		 * Removing every em outside the range we're logging would make
5425 		 * the next fast fsync not log their matching file extent items,
5426 		 * therefore making us lose data after a log replay.
5427 		 */
5428 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5429 					 list) {
5430 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5431 
5432 			if (em->mod_start >= start && mod_end <= end)
5433 				list_del_init(&em->list);
5434 		}
5435 		write_unlock(&em_tree->lock);
5436 	}
5437 
5438 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5439 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5440 					ctx);
5441 		if (ret) {
5442 			err = ret;
5443 			goto out_unlock;
5444 		}
5445 	}
5446 
5447 	/*
5448 	 * Don't update last_log_commit if we logged that an inode exists after
5449 	 * it was loaded to memory (full_sync bit set).
5450 	 * This is to prevent data loss when we do a write to the inode, then
5451 	 * the inode gets evicted after all delalloc was flushed, then we log
5452 	 * it exists (due to a rename for example) and then fsync it. This last
5453 	 * fsync would do nothing (not logging the extents previously written).
5454 	 */
5455 	spin_lock(&inode->lock);
5456 	inode->logged_trans = trans->transid;
5457 	if (inode_only != LOG_INODE_EXISTS ||
5458 	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5459 		inode->last_log_commit = inode->last_sub_trans;
5460 	spin_unlock(&inode->lock);
5461 out_unlock:
5462 	mutex_unlock(&inode->log_mutex);
5463 
5464 	btrfs_free_path(path);
5465 	btrfs_free_path(dst_path);
5466 	return err;
5467 }
5468 
5469 /*
5470  * Check if we must fallback to a transaction commit when logging an inode.
5471  * This must be called after logging the inode and is used only in the context
5472  * when fsyncing an inode requires the need to log some other inode - in which
5473  * case we can't lock the i_mutex of each other inode we need to log as that
5474  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5475  * log inodes up or down in the hierarchy) or rename operations for example. So
5476  * we take the log_mutex of the inode after we have logged it and then check for
5477  * its last_unlink_trans value - this is safe because any task setting
5478  * last_unlink_trans must take the log_mutex and it must do this before it does
5479  * the actual unlink operation, so if we do this check before a concurrent task
5480  * sets last_unlink_trans it means we've logged a consistent version/state of
5481  * all the inode items, otherwise we are not sure and must do a transaction
5482  * commit (the concurrent task might have only updated last_unlink_trans before
5483  * we logged the inode or it might have also done the unlink).
5484  */
5485 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5486 					  struct btrfs_inode *inode)
5487 {
5488 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5489 	bool ret = false;
5490 
5491 	mutex_lock(&inode->log_mutex);
5492 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5493 		/*
5494 		 * Make sure any commits to the log are forced to be full
5495 		 * commits.
5496 		 */
5497 		btrfs_set_log_full_commit(trans);
5498 		ret = true;
5499 	}
5500 	mutex_unlock(&inode->log_mutex);
5501 
5502 	return ret;
5503 }
5504 
5505 /*
5506  * follow the dentry parent pointers up the chain and see if any
5507  * of the directories in it require a full commit before they can
5508  * be logged.  Returns zero if nothing special needs to be done or 1 if
5509  * a full commit is required.
5510  */
5511 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5512 					       struct btrfs_inode *inode,
5513 					       struct dentry *parent,
5514 					       struct super_block *sb,
5515 					       u64 last_committed)
5516 {
5517 	int ret = 0;
5518 	struct dentry *old_parent = NULL;
5519 
5520 	/*
5521 	 * for regular files, if its inode is already on disk, we don't
5522 	 * have to worry about the parents at all.  This is because
5523 	 * we can use the last_unlink_trans field to record renames
5524 	 * and other fun in this file.
5525 	 */
5526 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5527 	    inode->generation <= last_committed &&
5528 	    inode->last_unlink_trans <= last_committed)
5529 		goto out;
5530 
5531 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5532 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5533 			goto out;
5534 		inode = BTRFS_I(d_inode(parent));
5535 	}
5536 
5537 	while (1) {
5538 		if (btrfs_must_commit_transaction(trans, inode)) {
5539 			ret = 1;
5540 			break;
5541 		}
5542 
5543 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5544 			break;
5545 
5546 		if (IS_ROOT(parent)) {
5547 			inode = BTRFS_I(d_inode(parent));
5548 			if (btrfs_must_commit_transaction(trans, inode))
5549 				ret = 1;
5550 			break;
5551 		}
5552 
5553 		parent = dget_parent(parent);
5554 		dput(old_parent);
5555 		old_parent = parent;
5556 		inode = BTRFS_I(d_inode(parent));
5557 
5558 	}
5559 	dput(old_parent);
5560 out:
5561 	return ret;
5562 }
5563 
5564 struct btrfs_dir_list {
5565 	u64 ino;
5566 	struct list_head list;
5567 };
5568 
5569 /*
5570  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5571  * details about the why it is needed.
5572  * This is a recursive operation - if an existing dentry corresponds to a
5573  * directory, that directory's new entries are logged too (same behaviour as
5574  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5575  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5576  * complains about the following circular lock dependency / possible deadlock:
5577  *
5578  *        CPU0                                        CPU1
5579  *        ----                                        ----
5580  * lock(&type->i_mutex_dir_key#3/2);
5581  *                                            lock(sb_internal#2);
5582  *                                            lock(&type->i_mutex_dir_key#3/2);
5583  * lock(&sb->s_type->i_mutex_key#14);
5584  *
5585  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5586  * sb_start_intwrite() in btrfs_start_transaction().
5587  * Not locking i_mutex of the inodes is still safe because:
5588  *
5589  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5590  *    that while logging the inode new references (names) are added or removed
5591  *    from the inode, leaving the logged inode item with a link count that does
5592  *    not match the number of logged inode reference items. This is fine because
5593  *    at log replay time we compute the real number of links and correct the
5594  *    link count in the inode item (see replay_one_buffer() and
5595  *    link_to_fixup_dir());
5596  *
5597  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5598  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5599  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5600  *    has a size that doesn't match the sum of the lengths of all the logged
5601  *    names. This does not result in a problem because if a dir_item key is
5602  *    logged but its matching dir_index key is not logged, at log replay time we
5603  *    don't use it to replay the respective name (see replay_one_name()). On the
5604  *    other hand if only the dir_index key ends up being logged, the respective
5605  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5606  *    keys created (see replay_one_name()).
5607  *    The directory's inode item with a wrong i_size is not a problem as well,
5608  *    since we don't use it at log replay time to set the i_size in the inode
5609  *    item of the fs/subvol tree (see overwrite_item()).
5610  */
5611 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5612 				struct btrfs_root *root,
5613 				struct btrfs_inode *start_inode,
5614 				struct btrfs_log_ctx *ctx)
5615 {
5616 	struct btrfs_fs_info *fs_info = root->fs_info;
5617 	struct btrfs_root *log = root->log_root;
5618 	struct btrfs_path *path;
5619 	LIST_HEAD(dir_list);
5620 	struct btrfs_dir_list *dir_elem;
5621 	int ret = 0;
5622 
5623 	path = btrfs_alloc_path();
5624 	if (!path)
5625 		return -ENOMEM;
5626 
5627 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5628 	if (!dir_elem) {
5629 		btrfs_free_path(path);
5630 		return -ENOMEM;
5631 	}
5632 	dir_elem->ino = btrfs_ino(start_inode);
5633 	list_add_tail(&dir_elem->list, &dir_list);
5634 
5635 	while (!list_empty(&dir_list)) {
5636 		struct extent_buffer *leaf;
5637 		struct btrfs_key min_key;
5638 		int nritems;
5639 		int i;
5640 
5641 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5642 					    list);
5643 		if (ret)
5644 			goto next_dir_inode;
5645 
5646 		min_key.objectid = dir_elem->ino;
5647 		min_key.type = BTRFS_DIR_ITEM_KEY;
5648 		min_key.offset = 0;
5649 again:
5650 		btrfs_release_path(path);
5651 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5652 		if (ret < 0) {
5653 			goto next_dir_inode;
5654 		} else if (ret > 0) {
5655 			ret = 0;
5656 			goto next_dir_inode;
5657 		}
5658 
5659 process_leaf:
5660 		leaf = path->nodes[0];
5661 		nritems = btrfs_header_nritems(leaf);
5662 		for (i = path->slots[0]; i < nritems; i++) {
5663 			struct btrfs_dir_item *di;
5664 			struct btrfs_key di_key;
5665 			struct inode *di_inode;
5666 			struct btrfs_dir_list *new_dir_elem;
5667 			int log_mode = LOG_INODE_EXISTS;
5668 			int type;
5669 
5670 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5671 			if (min_key.objectid != dir_elem->ino ||
5672 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5673 				goto next_dir_inode;
5674 
5675 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5676 			type = btrfs_dir_type(leaf, di);
5677 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5678 			    type != BTRFS_FT_DIR)
5679 				continue;
5680 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5681 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5682 				continue;
5683 
5684 			btrfs_release_path(path);
5685 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5686 			if (IS_ERR(di_inode)) {
5687 				ret = PTR_ERR(di_inode);
5688 				goto next_dir_inode;
5689 			}
5690 
5691 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5692 				iput(di_inode);
5693 				break;
5694 			}
5695 
5696 			ctx->log_new_dentries = false;
5697 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5698 				log_mode = LOG_INODE_ALL;
5699 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5700 					      log_mode, 0, LLONG_MAX, ctx);
5701 			if (!ret &&
5702 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5703 				ret = 1;
5704 			iput(di_inode);
5705 			if (ret)
5706 				goto next_dir_inode;
5707 			if (ctx->log_new_dentries) {
5708 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5709 						       GFP_NOFS);
5710 				if (!new_dir_elem) {
5711 					ret = -ENOMEM;
5712 					goto next_dir_inode;
5713 				}
5714 				new_dir_elem->ino = di_key.objectid;
5715 				list_add_tail(&new_dir_elem->list, &dir_list);
5716 			}
5717 			break;
5718 		}
5719 		if (i == nritems) {
5720 			ret = btrfs_next_leaf(log, path);
5721 			if (ret < 0) {
5722 				goto next_dir_inode;
5723 			} else if (ret > 0) {
5724 				ret = 0;
5725 				goto next_dir_inode;
5726 			}
5727 			goto process_leaf;
5728 		}
5729 		if (min_key.offset < (u64)-1) {
5730 			min_key.offset++;
5731 			goto again;
5732 		}
5733 next_dir_inode:
5734 		list_del(&dir_elem->list);
5735 		kfree(dir_elem);
5736 	}
5737 
5738 	btrfs_free_path(path);
5739 	return ret;
5740 }
5741 
5742 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5743 				 struct btrfs_inode *inode,
5744 				 struct btrfs_log_ctx *ctx)
5745 {
5746 	struct btrfs_fs_info *fs_info = trans->fs_info;
5747 	int ret;
5748 	struct btrfs_path *path;
5749 	struct btrfs_key key;
5750 	struct btrfs_root *root = inode->root;
5751 	const u64 ino = btrfs_ino(inode);
5752 
5753 	path = btrfs_alloc_path();
5754 	if (!path)
5755 		return -ENOMEM;
5756 	path->skip_locking = 1;
5757 	path->search_commit_root = 1;
5758 
5759 	key.objectid = ino;
5760 	key.type = BTRFS_INODE_REF_KEY;
5761 	key.offset = 0;
5762 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5763 	if (ret < 0)
5764 		goto out;
5765 
5766 	while (true) {
5767 		struct extent_buffer *leaf = path->nodes[0];
5768 		int slot = path->slots[0];
5769 		u32 cur_offset = 0;
5770 		u32 item_size;
5771 		unsigned long ptr;
5772 
5773 		if (slot >= btrfs_header_nritems(leaf)) {
5774 			ret = btrfs_next_leaf(root, path);
5775 			if (ret < 0)
5776 				goto out;
5777 			else if (ret > 0)
5778 				break;
5779 			continue;
5780 		}
5781 
5782 		btrfs_item_key_to_cpu(leaf, &key, slot);
5783 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5784 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5785 			break;
5786 
5787 		item_size = btrfs_item_size_nr(leaf, slot);
5788 		ptr = btrfs_item_ptr_offset(leaf, slot);
5789 		while (cur_offset < item_size) {
5790 			struct btrfs_key inode_key;
5791 			struct inode *dir_inode;
5792 
5793 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5794 			inode_key.offset = 0;
5795 
5796 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5797 				struct btrfs_inode_extref *extref;
5798 
5799 				extref = (struct btrfs_inode_extref *)
5800 					(ptr + cur_offset);
5801 				inode_key.objectid = btrfs_inode_extref_parent(
5802 					leaf, extref);
5803 				cur_offset += sizeof(*extref);
5804 				cur_offset += btrfs_inode_extref_name_len(leaf,
5805 					extref);
5806 			} else {
5807 				inode_key.objectid = key.offset;
5808 				cur_offset = item_size;
5809 			}
5810 
5811 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5812 					       root, NULL);
5813 			/*
5814 			 * If the parent inode was deleted, return an error to
5815 			 * fallback to a transaction commit. This is to prevent
5816 			 * getting an inode that was moved from one parent A to
5817 			 * a parent B, got its former parent A deleted and then
5818 			 * it got fsync'ed, from existing at both parents after
5819 			 * a log replay (and the old parent still existing).
5820 			 * Example:
5821 			 *
5822 			 * mkdir /mnt/A
5823 			 * mkdir /mnt/B
5824 			 * touch /mnt/B/bar
5825 			 * sync
5826 			 * mv /mnt/B/bar /mnt/A/bar
5827 			 * mv -T /mnt/A /mnt/B
5828 			 * fsync /mnt/B/bar
5829 			 * <power fail>
5830 			 *
5831 			 * If we ignore the old parent B which got deleted,
5832 			 * after a log replay we would have file bar linked
5833 			 * at both parents and the old parent B would still
5834 			 * exist.
5835 			 */
5836 			if (IS_ERR(dir_inode)) {
5837 				ret = PTR_ERR(dir_inode);
5838 				goto out;
5839 			}
5840 
5841 			if (ctx)
5842 				ctx->log_new_dentries = false;
5843 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5844 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5845 			if (!ret &&
5846 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5847 				ret = 1;
5848 			if (!ret && ctx && ctx->log_new_dentries)
5849 				ret = log_new_dir_dentries(trans, root,
5850 						   BTRFS_I(dir_inode), ctx);
5851 			iput(dir_inode);
5852 			if (ret)
5853 				goto out;
5854 		}
5855 		path->slots[0]++;
5856 	}
5857 	ret = 0;
5858 out:
5859 	btrfs_free_path(path);
5860 	return ret;
5861 }
5862 
5863 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5864 			     struct btrfs_root *root,
5865 			     struct btrfs_path *path,
5866 			     struct btrfs_log_ctx *ctx)
5867 {
5868 	struct btrfs_key found_key;
5869 
5870 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5871 
5872 	while (true) {
5873 		struct btrfs_fs_info *fs_info = root->fs_info;
5874 		const u64 last_committed = fs_info->last_trans_committed;
5875 		struct extent_buffer *leaf = path->nodes[0];
5876 		int slot = path->slots[0];
5877 		struct btrfs_key search_key;
5878 		struct inode *inode;
5879 		int ret = 0;
5880 
5881 		btrfs_release_path(path);
5882 
5883 		search_key.objectid = found_key.offset;
5884 		search_key.type = BTRFS_INODE_ITEM_KEY;
5885 		search_key.offset = 0;
5886 		inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5887 		if (IS_ERR(inode))
5888 			return PTR_ERR(inode);
5889 
5890 		if (BTRFS_I(inode)->generation > last_committed)
5891 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5892 					      LOG_INODE_EXISTS,
5893 					      0, LLONG_MAX, ctx);
5894 		iput(inode);
5895 		if (ret)
5896 			return ret;
5897 
5898 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5899 			break;
5900 
5901 		search_key.type = BTRFS_INODE_REF_KEY;
5902 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5903 		if (ret < 0)
5904 			return ret;
5905 
5906 		leaf = path->nodes[0];
5907 		slot = path->slots[0];
5908 		if (slot >= btrfs_header_nritems(leaf)) {
5909 			ret = btrfs_next_leaf(root, path);
5910 			if (ret < 0)
5911 				return ret;
5912 			else if (ret > 0)
5913 				return -ENOENT;
5914 			leaf = path->nodes[0];
5915 			slot = path->slots[0];
5916 		}
5917 
5918 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5919 		if (found_key.objectid != search_key.objectid ||
5920 		    found_key.type != BTRFS_INODE_REF_KEY)
5921 			return -ENOENT;
5922 	}
5923 	return 0;
5924 }
5925 
5926 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5927 				  struct btrfs_inode *inode,
5928 				  struct dentry *parent,
5929 				  struct btrfs_log_ctx *ctx)
5930 {
5931 	struct btrfs_root *root = inode->root;
5932 	struct btrfs_fs_info *fs_info = root->fs_info;
5933 	struct dentry *old_parent = NULL;
5934 	struct super_block *sb = inode->vfs_inode.i_sb;
5935 	int ret = 0;
5936 
5937 	while (true) {
5938 		if (!parent || d_really_is_negative(parent) ||
5939 		    sb != parent->d_sb)
5940 			break;
5941 
5942 		inode = BTRFS_I(d_inode(parent));
5943 		if (root != inode->root)
5944 			break;
5945 
5946 		if (inode->generation > fs_info->last_trans_committed) {
5947 			ret = btrfs_log_inode(trans, root, inode,
5948 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5949 			if (ret)
5950 				break;
5951 		}
5952 		if (IS_ROOT(parent))
5953 			break;
5954 
5955 		parent = dget_parent(parent);
5956 		dput(old_parent);
5957 		old_parent = parent;
5958 	}
5959 	dput(old_parent);
5960 
5961 	return ret;
5962 }
5963 
5964 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5965 				 struct btrfs_inode *inode,
5966 				 struct dentry *parent,
5967 				 struct btrfs_log_ctx *ctx)
5968 {
5969 	struct btrfs_root *root = inode->root;
5970 	const u64 ino = btrfs_ino(inode);
5971 	struct btrfs_path *path;
5972 	struct btrfs_key search_key;
5973 	int ret;
5974 
5975 	/*
5976 	 * For a single hard link case, go through a fast path that does not
5977 	 * need to iterate the fs/subvolume tree.
5978 	 */
5979 	if (inode->vfs_inode.i_nlink < 2)
5980 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5981 
5982 	path = btrfs_alloc_path();
5983 	if (!path)
5984 		return -ENOMEM;
5985 
5986 	search_key.objectid = ino;
5987 	search_key.type = BTRFS_INODE_REF_KEY;
5988 	search_key.offset = 0;
5989 again:
5990 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5991 	if (ret < 0)
5992 		goto out;
5993 	if (ret == 0)
5994 		path->slots[0]++;
5995 
5996 	while (true) {
5997 		struct extent_buffer *leaf = path->nodes[0];
5998 		int slot = path->slots[0];
5999 		struct btrfs_key found_key;
6000 
6001 		if (slot >= btrfs_header_nritems(leaf)) {
6002 			ret = btrfs_next_leaf(root, path);
6003 			if (ret < 0)
6004 				goto out;
6005 			else if (ret > 0)
6006 				break;
6007 			continue;
6008 		}
6009 
6010 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6011 		if (found_key.objectid != ino ||
6012 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6013 			break;
6014 
6015 		/*
6016 		 * Don't deal with extended references because they are rare
6017 		 * cases and too complex to deal with (we would need to keep
6018 		 * track of which subitem we are processing for each item in
6019 		 * this loop, etc). So just return some error to fallback to
6020 		 * a transaction commit.
6021 		 */
6022 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6023 			ret = -EMLINK;
6024 			goto out;
6025 		}
6026 
6027 		/*
6028 		 * Logging ancestors needs to do more searches on the fs/subvol
6029 		 * tree, so it releases the path as needed to avoid deadlocks.
6030 		 * Keep track of the last inode ref key and resume from that key
6031 		 * after logging all new ancestors for the current hard link.
6032 		 */
6033 		memcpy(&search_key, &found_key, sizeof(search_key));
6034 
6035 		ret = log_new_ancestors(trans, root, path, ctx);
6036 		if (ret)
6037 			goto out;
6038 		btrfs_release_path(path);
6039 		goto again;
6040 	}
6041 	ret = 0;
6042 out:
6043 	btrfs_free_path(path);
6044 	return ret;
6045 }
6046 
6047 /*
6048  * helper function around btrfs_log_inode to make sure newly created
6049  * parent directories also end up in the log.  A minimal inode and backref
6050  * only logging is done of any parent directories that are older than
6051  * the last committed transaction
6052  */
6053 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6054 				  struct btrfs_inode *inode,
6055 				  struct dentry *parent,
6056 				  const loff_t start,
6057 				  const loff_t end,
6058 				  int inode_only,
6059 				  struct btrfs_log_ctx *ctx)
6060 {
6061 	struct btrfs_root *root = inode->root;
6062 	struct btrfs_fs_info *fs_info = root->fs_info;
6063 	struct super_block *sb;
6064 	int ret = 0;
6065 	u64 last_committed = fs_info->last_trans_committed;
6066 	bool log_dentries = false;
6067 
6068 	sb = inode->vfs_inode.i_sb;
6069 
6070 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6071 		ret = 1;
6072 		goto end_no_trans;
6073 	}
6074 
6075 	/*
6076 	 * The prev transaction commit doesn't complete, we need do
6077 	 * full commit by ourselves.
6078 	 */
6079 	if (fs_info->last_trans_log_full_commit >
6080 	    fs_info->last_trans_committed) {
6081 		ret = 1;
6082 		goto end_no_trans;
6083 	}
6084 
6085 	if (btrfs_root_refs(&root->root_item) == 0) {
6086 		ret = 1;
6087 		goto end_no_trans;
6088 	}
6089 
6090 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6091 			last_committed);
6092 	if (ret)
6093 		goto end_no_trans;
6094 
6095 	/*
6096 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6097 	 * (since logging them is pointless, a link count of 0 means they
6098 	 * will never be accessible).
6099 	 */
6100 	if (btrfs_inode_in_log(inode, trans->transid) ||
6101 	    inode->vfs_inode.i_nlink == 0) {
6102 		ret = BTRFS_NO_LOG_SYNC;
6103 		goto end_no_trans;
6104 	}
6105 
6106 	ret = start_log_trans(trans, root, ctx);
6107 	if (ret)
6108 		goto end_no_trans;
6109 
6110 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6111 	if (ret)
6112 		goto end_trans;
6113 
6114 	/*
6115 	 * for regular files, if its inode is already on disk, we don't
6116 	 * have to worry about the parents at all.  This is because
6117 	 * we can use the last_unlink_trans field to record renames
6118 	 * and other fun in this file.
6119 	 */
6120 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6121 	    inode->generation <= last_committed &&
6122 	    inode->last_unlink_trans <= last_committed) {
6123 		ret = 0;
6124 		goto end_trans;
6125 	}
6126 
6127 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6128 		log_dentries = true;
6129 
6130 	/*
6131 	 * On unlink we must make sure all our current and old parent directory
6132 	 * inodes are fully logged. This is to prevent leaving dangling
6133 	 * directory index entries in directories that were our parents but are
6134 	 * not anymore. Not doing this results in old parent directory being
6135 	 * impossible to delete after log replay (rmdir will always fail with
6136 	 * error -ENOTEMPTY).
6137 	 *
6138 	 * Example 1:
6139 	 *
6140 	 * mkdir testdir
6141 	 * touch testdir/foo
6142 	 * ln testdir/foo testdir/bar
6143 	 * sync
6144 	 * unlink testdir/bar
6145 	 * xfs_io -c fsync testdir/foo
6146 	 * <power failure>
6147 	 * mount fs, triggers log replay
6148 	 *
6149 	 * If we don't log the parent directory (testdir), after log replay the
6150 	 * directory still has an entry pointing to the file inode using the bar
6151 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6152 	 * the file inode has a link count of 1.
6153 	 *
6154 	 * Example 2:
6155 	 *
6156 	 * mkdir testdir
6157 	 * touch foo
6158 	 * ln foo testdir/foo2
6159 	 * ln foo testdir/foo3
6160 	 * sync
6161 	 * unlink testdir/foo3
6162 	 * xfs_io -c fsync foo
6163 	 * <power failure>
6164 	 * mount fs, triggers log replay
6165 	 *
6166 	 * Similar as the first example, after log replay the parent directory
6167 	 * testdir still has an entry pointing to the inode file with name foo3
6168 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6169 	 * and has a link count of 2.
6170 	 */
6171 	if (inode->last_unlink_trans > last_committed) {
6172 		ret = btrfs_log_all_parents(trans, inode, ctx);
6173 		if (ret)
6174 			goto end_trans;
6175 	}
6176 
6177 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6178 	if (ret)
6179 		goto end_trans;
6180 
6181 	if (log_dentries)
6182 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6183 	else
6184 		ret = 0;
6185 end_trans:
6186 	if (ret < 0) {
6187 		btrfs_set_log_full_commit(trans);
6188 		ret = 1;
6189 	}
6190 
6191 	if (ret)
6192 		btrfs_remove_log_ctx(root, ctx);
6193 	btrfs_end_log_trans(root);
6194 end_no_trans:
6195 	return ret;
6196 }
6197 
6198 /*
6199  * it is not safe to log dentry if the chunk root has added new
6200  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6201  * If this returns 1, you must commit the transaction to safely get your
6202  * data on disk.
6203  */
6204 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6205 			  struct dentry *dentry,
6206 			  const loff_t start,
6207 			  const loff_t end,
6208 			  struct btrfs_log_ctx *ctx)
6209 {
6210 	struct dentry *parent = dget_parent(dentry);
6211 	int ret;
6212 
6213 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6214 				     start, end, LOG_INODE_ALL, ctx);
6215 	dput(parent);
6216 
6217 	return ret;
6218 }
6219 
6220 /*
6221  * should be called during mount to recover any replay any log trees
6222  * from the FS
6223  */
6224 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6225 {
6226 	int ret;
6227 	struct btrfs_path *path;
6228 	struct btrfs_trans_handle *trans;
6229 	struct btrfs_key key;
6230 	struct btrfs_key found_key;
6231 	struct btrfs_key tmp_key;
6232 	struct btrfs_root *log;
6233 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6234 	struct walk_control wc = {
6235 		.process_func = process_one_buffer,
6236 		.stage = 0,
6237 	};
6238 
6239 	path = btrfs_alloc_path();
6240 	if (!path)
6241 		return -ENOMEM;
6242 
6243 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6244 
6245 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6246 	if (IS_ERR(trans)) {
6247 		ret = PTR_ERR(trans);
6248 		goto error;
6249 	}
6250 
6251 	wc.trans = trans;
6252 	wc.pin = 1;
6253 
6254 	ret = walk_log_tree(trans, log_root_tree, &wc);
6255 	if (ret) {
6256 		btrfs_handle_fs_error(fs_info, ret,
6257 			"Failed to pin buffers while recovering log root tree.");
6258 		goto error;
6259 	}
6260 
6261 again:
6262 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6263 	key.offset = (u64)-1;
6264 	key.type = BTRFS_ROOT_ITEM_KEY;
6265 
6266 	while (1) {
6267 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6268 
6269 		if (ret < 0) {
6270 			btrfs_handle_fs_error(fs_info, ret,
6271 				    "Couldn't find tree log root.");
6272 			goto error;
6273 		}
6274 		if (ret > 0) {
6275 			if (path->slots[0] == 0)
6276 				break;
6277 			path->slots[0]--;
6278 		}
6279 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6280 				      path->slots[0]);
6281 		btrfs_release_path(path);
6282 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6283 			break;
6284 
6285 		log = btrfs_read_fs_root(log_root_tree, &found_key);
6286 		if (IS_ERR(log)) {
6287 			ret = PTR_ERR(log);
6288 			btrfs_handle_fs_error(fs_info, ret,
6289 				    "Couldn't read tree log root.");
6290 			goto error;
6291 		}
6292 
6293 		tmp_key.objectid = found_key.offset;
6294 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6295 		tmp_key.offset = (u64)-1;
6296 
6297 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6298 		if (IS_ERR(wc.replay_dest)) {
6299 			ret = PTR_ERR(wc.replay_dest);
6300 			free_extent_buffer(log->node);
6301 			free_extent_buffer(log->commit_root);
6302 			kfree(log);
6303 			btrfs_handle_fs_error(fs_info, ret,
6304 				"Couldn't read target root for tree log recovery.");
6305 			goto error;
6306 		}
6307 
6308 		wc.replay_dest->log_root = log;
6309 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6310 		ret = walk_log_tree(trans, log, &wc);
6311 
6312 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6313 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6314 						      path);
6315 		}
6316 
6317 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6318 			struct btrfs_root *root = wc.replay_dest;
6319 
6320 			btrfs_release_path(path);
6321 
6322 			/*
6323 			 * We have just replayed everything, and the highest
6324 			 * objectid of fs roots probably has changed in case
6325 			 * some inode_item's got replayed.
6326 			 *
6327 			 * root->objectid_mutex is not acquired as log replay
6328 			 * could only happen during mount.
6329 			 */
6330 			ret = btrfs_find_highest_objectid(root,
6331 						  &root->highest_objectid);
6332 		}
6333 
6334 		key.offset = found_key.offset - 1;
6335 		wc.replay_dest->log_root = NULL;
6336 		free_extent_buffer(log->node);
6337 		free_extent_buffer(log->commit_root);
6338 		kfree(log);
6339 
6340 		if (ret)
6341 			goto error;
6342 
6343 		if (found_key.offset == 0)
6344 			break;
6345 	}
6346 	btrfs_release_path(path);
6347 
6348 	/* step one is to pin it all, step two is to replay just inodes */
6349 	if (wc.pin) {
6350 		wc.pin = 0;
6351 		wc.process_func = replay_one_buffer;
6352 		wc.stage = LOG_WALK_REPLAY_INODES;
6353 		goto again;
6354 	}
6355 	/* step three is to replay everything */
6356 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6357 		wc.stage++;
6358 		goto again;
6359 	}
6360 
6361 	btrfs_free_path(path);
6362 
6363 	/* step 4: commit the transaction, which also unpins the blocks */
6364 	ret = btrfs_commit_transaction(trans);
6365 	if (ret)
6366 		return ret;
6367 
6368 	free_extent_buffer(log_root_tree->node);
6369 	log_root_tree->log_root = NULL;
6370 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6371 	kfree(log_root_tree);
6372 
6373 	return 0;
6374 error:
6375 	if (wc.trans)
6376 		btrfs_end_transaction(wc.trans);
6377 	btrfs_free_path(path);
6378 	return ret;
6379 }
6380 
6381 /*
6382  * there are some corner cases where we want to force a full
6383  * commit instead of allowing a directory to be logged.
6384  *
6385  * They revolve around files there were unlinked from the directory, and
6386  * this function updates the parent directory so that a full commit is
6387  * properly done if it is fsync'd later after the unlinks are done.
6388  *
6389  * Must be called before the unlink operations (updates to the subvolume tree,
6390  * inodes, etc) are done.
6391  */
6392 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6393 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6394 			     int for_rename)
6395 {
6396 	/*
6397 	 * when we're logging a file, if it hasn't been renamed
6398 	 * or unlinked, and its inode is fully committed on disk,
6399 	 * we don't have to worry about walking up the directory chain
6400 	 * to log its parents.
6401 	 *
6402 	 * So, we use the last_unlink_trans field to put this transid
6403 	 * into the file.  When the file is logged we check it and
6404 	 * don't log the parents if the file is fully on disk.
6405 	 */
6406 	mutex_lock(&inode->log_mutex);
6407 	inode->last_unlink_trans = trans->transid;
6408 	mutex_unlock(&inode->log_mutex);
6409 
6410 	/*
6411 	 * if this directory was already logged any new
6412 	 * names for this file/dir will get recorded
6413 	 */
6414 	if (dir->logged_trans == trans->transid)
6415 		return;
6416 
6417 	/*
6418 	 * if the inode we're about to unlink was logged,
6419 	 * the log will be properly updated for any new names
6420 	 */
6421 	if (inode->logged_trans == trans->transid)
6422 		return;
6423 
6424 	/*
6425 	 * when renaming files across directories, if the directory
6426 	 * there we're unlinking from gets fsync'd later on, there's
6427 	 * no way to find the destination directory later and fsync it
6428 	 * properly.  So, we have to be conservative and force commits
6429 	 * so the new name gets discovered.
6430 	 */
6431 	if (for_rename)
6432 		goto record;
6433 
6434 	/* we can safely do the unlink without any special recording */
6435 	return;
6436 
6437 record:
6438 	mutex_lock(&dir->log_mutex);
6439 	dir->last_unlink_trans = trans->transid;
6440 	mutex_unlock(&dir->log_mutex);
6441 }
6442 
6443 /*
6444  * Make sure that if someone attempts to fsync the parent directory of a deleted
6445  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6446  * that after replaying the log tree of the parent directory's root we will not
6447  * see the snapshot anymore and at log replay time we will not see any log tree
6448  * corresponding to the deleted snapshot's root, which could lead to replaying
6449  * it after replaying the log tree of the parent directory (which would replay
6450  * the snapshot delete operation).
6451  *
6452  * Must be called before the actual snapshot destroy operation (updates to the
6453  * parent root and tree of tree roots trees, etc) are done.
6454  */
6455 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6456 				   struct btrfs_inode *dir)
6457 {
6458 	mutex_lock(&dir->log_mutex);
6459 	dir->last_unlink_trans = trans->transid;
6460 	mutex_unlock(&dir->log_mutex);
6461 }
6462 
6463 /*
6464  * Call this after adding a new name for a file and it will properly
6465  * update the log to reflect the new name.
6466  *
6467  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6468  * true (because it's not used).
6469  *
6470  * Return value depends on whether @sync_log is true or false.
6471  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6472  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6473  *            otherwise.
6474  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6475  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6476  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6477  *             committed (without attempting to sync the log).
6478  */
6479 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6480 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6481 			struct dentry *parent,
6482 			bool sync_log, struct btrfs_log_ctx *ctx)
6483 {
6484 	struct btrfs_fs_info *fs_info = trans->fs_info;
6485 	int ret;
6486 
6487 	/*
6488 	 * this will force the logging code to walk the dentry chain
6489 	 * up for the file
6490 	 */
6491 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6492 		inode->last_unlink_trans = trans->transid;
6493 
6494 	/*
6495 	 * if this inode hasn't been logged and directory we're renaming it
6496 	 * from hasn't been logged, we don't need to log it
6497 	 */
6498 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6499 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6500 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6501 			BTRFS_DONT_NEED_LOG_SYNC;
6502 
6503 	if (sync_log) {
6504 		struct btrfs_log_ctx ctx2;
6505 
6506 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6507 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6508 					     LOG_INODE_EXISTS, &ctx2);
6509 		if (ret == BTRFS_NO_LOG_SYNC)
6510 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6511 		else if (ret)
6512 			return BTRFS_NEED_TRANS_COMMIT;
6513 
6514 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6515 		if (ret)
6516 			return BTRFS_NEED_TRANS_COMMIT;
6517 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6518 	}
6519 
6520 	ASSERT(ctx);
6521 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6522 				     LOG_INODE_EXISTS, ctx);
6523 	if (ret == BTRFS_NO_LOG_SYNC)
6524 		return BTRFS_DONT_NEED_LOG_SYNC;
6525 	else if (ret)
6526 		return BTRFS_NEED_TRANS_COMMIT;
6527 
6528 	return BTRFS_NEED_LOG_SYNC;
6529 }
6530 
6531