1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "block-group.h" 21 #include "space-info.h" 22 #include "zoned.h" 23 24 /* magic values for the inode_only field in btrfs_log_inode: 25 * 26 * LOG_INODE_ALL means to log everything 27 * LOG_INODE_EXISTS means to log just enough to recreate the inode 28 * during log replay 29 */ 30 enum { 31 LOG_INODE_ALL, 32 LOG_INODE_EXISTS, 33 LOG_OTHER_INODE, 34 LOG_OTHER_INODE_ALL, 35 }; 36 37 /* 38 * directory trouble cases 39 * 40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 41 * log, we must force a full commit before doing an fsync of the directory 42 * where the unlink was done. 43 * ---> record transid of last unlink/rename per directory 44 * 45 * mkdir foo/some_dir 46 * normal commit 47 * rename foo/some_dir foo2/some_dir 48 * mkdir foo/some_dir 49 * fsync foo/some_dir/some_file 50 * 51 * The fsync above will unlink the original some_dir without recording 52 * it in its new location (foo2). After a crash, some_dir will be gone 53 * unless the fsync of some_file forces a full commit 54 * 55 * 2) we must log any new names for any file or dir that is in the fsync 56 * log. ---> check inode while renaming/linking. 57 * 58 * 2a) we must log any new names for any file or dir during rename 59 * when the directory they are being removed from was logged. 60 * ---> check inode and old parent dir during rename 61 * 62 * 2a is actually the more important variant. With the extra logging 63 * a crash might unlink the old name without recreating the new one 64 * 65 * 3) after a crash, we must go through any directories with a link count 66 * of zero and redo the rm -rf 67 * 68 * mkdir f1/foo 69 * normal commit 70 * rm -rf f1/foo 71 * fsync(f1) 72 * 73 * The directory f1 was fully removed from the FS, but fsync was never 74 * called on f1, only its parent dir. After a crash the rm -rf must 75 * be replayed. This must be able to recurse down the entire 76 * directory tree. The inode link count fixup code takes care of the 77 * ugly details. 78 */ 79 80 /* 81 * stages for the tree walking. The first 82 * stage (0) is to only pin down the blocks we find 83 * the second stage (1) is to make sure that all the inodes 84 * we find in the log are created in the subvolume. 85 * 86 * The last stage is to deal with directories and links and extents 87 * and all the other fun semantics 88 */ 89 enum { 90 LOG_WALK_PIN_ONLY, 91 LOG_WALK_REPLAY_INODES, 92 LOG_WALK_REPLAY_DIR_INDEX, 93 LOG_WALK_REPLAY_ALL, 94 }; 95 96 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 97 struct btrfs_inode *inode, 98 int inode_only, 99 struct btrfs_log_ctx *ctx); 100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 101 struct btrfs_root *root, 102 struct btrfs_path *path, u64 objectid); 103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 104 struct btrfs_root *root, 105 struct btrfs_root *log, 106 struct btrfs_path *path, 107 u64 dirid, int del_all); 108 static void wait_log_commit(struct btrfs_root *root, int transid); 109 110 /* 111 * tree logging is a special write ahead log used to make sure that 112 * fsyncs and O_SYNCs can happen without doing full tree commits. 113 * 114 * Full tree commits are expensive because they require commonly 115 * modified blocks to be recowed, creating many dirty pages in the 116 * extent tree an 4x-6x higher write load than ext3. 117 * 118 * Instead of doing a tree commit on every fsync, we use the 119 * key ranges and transaction ids to find items for a given file or directory 120 * that have changed in this transaction. Those items are copied into 121 * a special tree (one per subvolume root), that tree is written to disk 122 * and then the fsync is considered complete. 123 * 124 * After a crash, items are copied out of the log-tree back into the 125 * subvolume tree. Any file data extents found are recorded in the extent 126 * allocation tree, and the log-tree freed. 127 * 128 * The log tree is read three times, once to pin down all the extents it is 129 * using in ram and once, once to create all the inodes logged in the tree 130 * and once to do all the other items. 131 */ 132 133 /* 134 * start a sub transaction and setup the log tree 135 * this increments the log tree writer count to make the people 136 * syncing the tree wait for us to finish 137 */ 138 static int start_log_trans(struct btrfs_trans_handle *trans, 139 struct btrfs_root *root, 140 struct btrfs_log_ctx *ctx) 141 { 142 struct btrfs_fs_info *fs_info = root->fs_info; 143 struct btrfs_root *tree_root = fs_info->tree_root; 144 const bool zoned = btrfs_is_zoned(fs_info); 145 int ret = 0; 146 bool created = false; 147 148 /* 149 * First check if the log root tree was already created. If not, create 150 * it before locking the root's log_mutex, just to keep lockdep happy. 151 */ 152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { 153 mutex_lock(&tree_root->log_mutex); 154 if (!fs_info->log_root_tree) { 155 ret = btrfs_init_log_root_tree(trans, fs_info); 156 if (!ret) { 157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); 158 created = true; 159 } 160 } 161 mutex_unlock(&tree_root->log_mutex); 162 if (ret) 163 return ret; 164 } 165 166 mutex_lock(&root->log_mutex); 167 168 again: 169 if (root->log_root) { 170 int index = (root->log_transid + 1) % 2; 171 172 if (btrfs_need_log_full_commit(trans)) { 173 ret = -EAGAIN; 174 goto out; 175 } 176 177 if (zoned && atomic_read(&root->log_commit[index])) { 178 wait_log_commit(root, root->log_transid - 1); 179 goto again; 180 } 181 182 if (!root->log_start_pid) { 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 184 root->log_start_pid = current->pid; 185 } else if (root->log_start_pid != current->pid) { 186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 187 } 188 } else { 189 /* 190 * This means fs_info->log_root_tree was already created 191 * for some other FS trees. Do the full commit not to mix 192 * nodes from multiple log transactions to do sequential 193 * writing. 194 */ 195 if (zoned && !created) { 196 ret = -EAGAIN; 197 goto out; 198 } 199 200 ret = btrfs_add_log_tree(trans, root); 201 if (ret) 202 goto out; 203 204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 206 root->log_start_pid = current->pid; 207 } 208 209 atomic_inc(&root->log_writers); 210 if (!ctx->logging_new_name) { 211 int index = root->log_transid % 2; 212 list_add_tail(&ctx->list, &root->log_ctxs[index]); 213 ctx->log_transid = root->log_transid; 214 } 215 216 out: 217 mutex_unlock(&root->log_mutex); 218 return ret; 219 } 220 221 /* 222 * returns 0 if there was a log transaction running and we were able 223 * to join, or returns -ENOENT if there were not transactions 224 * in progress 225 */ 226 static int join_running_log_trans(struct btrfs_root *root) 227 { 228 const bool zoned = btrfs_is_zoned(root->fs_info); 229 int ret = -ENOENT; 230 231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 232 return ret; 233 234 mutex_lock(&root->log_mutex); 235 again: 236 if (root->log_root) { 237 int index = (root->log_transid + 1) % 2; 238 239 ret = 0; 240 if (zoned && atomic_read(&root->log_commit[index])) { 241 wait_log_commit(root, root->log_transid - 1); 242 goto again; 243 } 244 atomic_inc(&root->log_writers); 245 } 246 mutex_unlock(&root->log_mutex); 247 return ret; 248 } 249 250 /* 251 * This either makes the current running log transaction wait 252 * until you call btrfs_end_log_trans() or it makes any future 253 * log transactions wait until you call btrfs_end_log_trans() 254 */ 255 void btrfs_pin_log_trans(struct btrfs_root *root) 256 { 257 atomic_inc(&root->log_writers); 258 } 259 260 /* 261 * indicate we're done making changes to the log tree 262 * and wake up anyone waiting to do a sync 263 */ 264 void btrfs_end_log_trans(struct btrfs_root *root) 265 { 266 if (atomic_dec_and_test(&root->log_writers)) { 267 /* atomic_dec_and_test implies a barrier */ 268 cond_wake_up_nomb(&root->log_writer_wait); 269 } 270 } 271 272 static int btrfs_write_tree_block(struct extent_buffer *buf) 273 { 274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 275 buf->start + buf->len - 1); 276 } 277 278 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 279 { 280 filemap_fdatawait_range(buf->pages[0]->mapping, 281 buf->start, buf->start + buf->len - 1); 282 } 283 284 /* 285 * the walk control struct is used to pass state down the chain when 286 * processing the log tree. The stage field tells us which part 287 * of the log tree processing we are currently doing. The others 288 * are state fields used for that specific part 289 */ 290 struct walk_control { 291 /* should we free the extent on disk when done? This is used 292 * at transaction commit time while freeing a log tree 293 */ 294 int free; 295 296 /* should we write out the extent buffer? This is used 297 * while flushing the log tree to disk during a sync 298 */ 299 int write; 300 301 /* should we wait for the extent buffer io to finish? Also used 302 * while flushing the log tree to disk for a sync 303 */ 304 int wait; 305 306 /* pin only walk, we record which extents on disk belong to the 307 * log trees 308 */ 309 int pin; 310 311 /* what stage of the replay code we're currently in */ 312 int stage; 313 314 /* 315 * Ignore any items from the inode currently being processed. Needs 316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 317 * the LOG_WALK_REPLAY_INODES stage. 318 */ 319 bool ignore_cur_inode; 320 321 /* the root we are currently replaying */ 322 struct btrfs_root *replay_dest; 323 324 /* the trans handle for the current replay */ 325 struct btrfs_trans_handle *trans; 326 327 /* the function that gets used to process blocks we find in the 328 * tree. Note the extent_buffer might not be up to date when it is 329 * passed in, and it must be checked or read if you need the data 330 * inside it 331 */ 332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 333 struct walk_control *wc, u64 gen, int level); 334 }; 335 336 /* 337 * process_func used to pin down extents, write them or wait on them 338 */ 339 static int process_one_buffer(struct btrfs_root *log, 340 struct extent_buffer *eb, 341 struct walk_control *wc, u64 gen, int level) 342 { 343 struct btrfs_fs_info *fs_info = log->fs_info; 344 int ret = 0; 345 346 /* 347 * If this fs is mixed then we need to be able to process the leaves to 348 * pin down any logged extents, so we have to read the block. 349 */ 350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 351 ret = btrfs_read_buffer(eb, gen, level, NULL); 352 if (ret) 353 return ret; 354 } 355 356 if (wc->pin) 357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start, 358 eb->len); 359 360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 361 if (wc->pin && btrfs_header_level(eb) == 0) 362 ret = btrfs_exclude_logged_extents(eb); 363 if (wc->write) 364 btrfs_write_tree_block(eb); 365 if (wc->wait) 366 btrfs_wait_tree_block_writeback(eb); 367 } 368 return ret; 369 } 370 371 static int do_overwrite_item(struct btrfs_trans_handle *trans, 372 struct btrfs_root *root, 373 struct btrfs_path *path, 374 struct extent_buffer *eb, int slot, 375 struct btrfs_key *key) 376 { 377 int ret; 378 u32 item_size; 379 u64 saved_i_size = 0; 380 int save_old_i_size = 0; 381 unsigned long src_ptr; 382 unsigned long dst_ptr; 383 int overwrite_root = 0; 384 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 385 386 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 387 overwrite_root = 1; 388 389 item_size = btrfs_item_size_nr(eb, slot); 390 src_ptr = btrfs_item_ptr_offset(eb, slot); 391 392 /* Our caller must have done a search for the key for us. */ 393 ASSERT(path->nodes[0] != NULL); 394 395 /* 396 * And the slot must point to the exact key or the slot where the key 397 * should be at (the first item with a key greater than 'key') 398 */ 399 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 400 struct btrfs_key found_key; 401 402 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 403 ret = btrfs_comp_cpu_keys(&found_key, key); 404 ASSERT(ret >= 0); 405 } else { 406 ret = 1; 407 } 408 409 if (ret == 0) { 410 char *src_copy; 411 char *dst_copy; 412 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 413 path->slots[0]); 414 if (dst_size != item_size) 415 goto insert; 416 417 if (item_size == 0) { 418 btrfs_release_path(path); 419 return 0; 420 } 421 dst_copy = kmalloc(item_size, GFP_NOFS); 422 src_copy = kmalloc(item_size, GFP_NOFS); 423 if (!dst_copy || !src_copy) { 424 btrfs_release_path(path); 425 kfree(dst_copy); 426 kfree(src_copy); 427 return -ENOMEM; 428 } 429 430 read_extent_buffer(eb, src_copy, src_ptr, item_size); 431 432 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 433 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 434 item_size); 435 ret = memcmp(dst_copy, src_copy, item_size); 436 437 kfree(dst_copy); 438 kfree(src_copy); 439 /* 440 * they have the same contents, just return, this saves 441 * us from cowing blocks in the destination tree and doing 442 * extra writes that may not have been done by a previous 443 * sync 444 */ 445 if (ret == 0) { 446 btrfs_release_path(path); 447 return 0; 448 } 449 450 /* 451 * We need to load the old nbytes into the inode so when we 452 * replay the extents we've logged we get the right nbytes. 453 */ 454 if (inode_item) { 455 struct btrfs_inode_item *item; 456 u64 nbytes; 457 u32 mode; 458 459 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 460 struct btrfs_inode_item); 461 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 462 item = btrfs_item_ptr(eb, slot, 463 struct btrfs_inode_item); 464 btrfs_set_inode_nbytes(eb, item, nbytes); 465 466 /* 467 * If this is a directory we need to reset the i_size to 468 * 0 so that we can set it up properly when replaying 469 * the rest of the items in this log. 470 */ 471 mode = btrfs_inode_mode(eb, item); 472 if (S_ISDIR(mode)) 473 btrfs_set_inode_size(eb, item, 0); 474 } 475 } else if (inode_item) { 476 struct btrfs_inode_item *item; 477 u32 mode; 478 479 /* 480 * New inode, set nbytes to 0 so that the nbytes comes out 481 * properly when we replay the extents. 482 */ 483 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 484 btrfs_set_inode_nbytes(eb, item, 0); 485 486 /* 487 * If this is a directory we need to reset the i_size to 0 so 488 * that we can set it up properly when replaying the rest of 489 * the items in this log. 490 */ 491 mode = btrfs_inode_mode(eb, item); 492 if (S_ISDIR(mode)) 493 btrfs_set_inode_size(eb, item, 0); 494 } 495 insert: 496 btrfs_release_path(path); 497 /* try to insert the key into the destination tree */ 498 path->skip_release_on_error = 1; 499 ret = btrfs_insert_empty_item(trans, root, path, 500 key, item_size); 501 path->skip_release_on_error = 0; 502 503 /* make sure any existing item is the correct size */ 504 if (ret == -EEXIST || ret == -EOVERFLOW) { 505 u32 found_size; 506 found_size = btrfs_item_size_nr(path->nodes[0], 507 path->slots[0]); 508 if (found_size > item_size) 509 btrfs_truncate_item(path, item_size, 1); 510 else if (found_size < item_size) 511 btrfs_extend_item(path, item_size - found_size); 512 } else if (ret) { 513 return ret; 514 } 515 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 516 path->slots[0]); 517 518 /* don't overwrite an existing inode if the generation number 519 * was logged as zero. This is done when the tree logging code 520 * is just logging an inode to make sure it exists after recovery. 521 * 522 * Also, don't overwrite i_size on directories during replay. 523 * log replay inserts and removes directory items based on the 524 * state of the tree found in the subvolume, and i_size is modified 525 * as it goes 526 */ 527 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 528 struct btrfs_inode_item *src_item; 529 struct btrfs_inode_item *dst_item; 530 531 src_item = (struct btrfs_inode_item *)src_ptr; 532 dst_item = (struct btrfs_inode_item *)dst_ptr; 533 534 if (btrfs_inode_generation(eb, src_item) == 0) { 535 struct extent_buffer *dst_eb = path->nodes[0]; 536 const u64 ino_size = btrfs_inode_size(eb, src_item); 537 538 /* 539 * For regular files an ino_size == 0 is used only when 540 * logging that an inode exists, as part of a directory 541 * fsync, and the inode wasn't fsynced before. In this 542 * case don't set the size of the inode in the fs/subvol 543 * tree, otherwise we would be throwing valid data away. 544 */ 545 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 546 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 547 ino_size != 0) 548 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 549 goto no_copy; 550 } 551 552 if (overwrite_root && 553 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 554 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 555 save_old_i_size = 1; 556 saved_i_size = btrfs_inode_size(path->nodes[0], 557 dst_item); 558 } 559 } 560 561 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 562 src_ptr, item_size); 563 564 if (save_old_i_size) { 565 struct btrfs_inode_item *dst_item; 566 dst_item = (struct btrfs_inode_item *)dst_ptr; 567 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 568 } 569 570 /* make sure the generation is filled in */ 571 if (key->type == BTRFS_INODE_ITEM_KEY) { 572 struct btrfs_inode_item *dst_item; 573 dst_item = (struct btrfs_inode_item *)dst_ptr; 574 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 575 btrfs_set_inode_generation(path->nodes[0], dst_item, 576 trans->transid); 577 } 578 } 579 no_copy: 580 btrfs_mark_buffer_dirty(path->nodes[0]); 581 btrfs_release_path(path); 582 return 0; 583 } 584 585 /* 586 * Item overwrite used by replay and tree logging. eb, slot and key all refer 587 * to the src data we are copying out. 588 * 589 * root is the tree we are copying into, and path is a scratch 590 * path for use in this function (it should be released on entry and 591 * will be released on exit). 592 * 593 * If the key is already in the destination tree the existing item is 594 * overwritten. If the existing item isn't big enough, it is extended. 595 * If it is too large, it is truncated. 596 * 597 * If the key isn't in the destination yet, a new item is inserted. 598 */ 599 static int overwrite_item(struct btrfs_trans_handle *trans, 600 struct btrfs_root *root, 601 struct btrfs_path *path, 602 struct extent_buffer *eb, int slot, 603 struct btrfs_key *key) 604 { 605 int ret; 606 607 /* Look for the key in the destination tree. */ 608 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 609 if (ret < 0) 610 return ret; 611 612 return do_overwrite_item(trans, root, path, eb, slot, key); 613 } 614 615 /* 616 * simple helper to read an inode off the disk from a given root 617 * This can only be called for subvolume roots and not for the log 618 */ 619 static noinline struct inode *read_one_inode(struct btrfs_root *root, 620 u64 objectid) 621 { 622 struct inode *inode; 623 624 inode = btrfs_iget(root->fs_info->sb, objectid, root); 625 if (IS_ERR(inode)) 626 inode = NULL; 627 return inode; 628 } 629 630 /* replays a single extent in 'eb' at 'slot' with 'key' into the 631 * subvolume 'root'. path is released on entry and should be released 632 * on exit. 633 * 634 * extents in the log tree have not been allocated out of the extent 635 * tree yet. So, this completes the allocation, taking a reference 636 * as required if the extent already exists or creating a new extent 637 * if it isn't in the extent allocation tree yet. 638 * 639 * The extent is inserted into the file, dropping any existing extents 640 * from the file that overlap the new one. 641 */ 642 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 643 struct btrfs_root *root, 644 struct btrfs_path *path, 645 struct extent_buffer *eb, int slot, 646 struct btrfs_key *key) 647 { 648 struct btrfs_drop_extents_args drop_args = { 0 }; 649 struct btrfs_fs_info *fs_info = root->fs_info; 650 int found_type; 651 u64 extent_end; 652 u64 start = key->offset; 653 u64 nbytes = 0; 654 struct btrfs_file_extent_item *item; 655 struct inode *inode = NULL; 656 unsigned long size; 657 int ret = 0; 658 659 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 660 found_type = btrfs_file_extent_type(eb, item); 661 662 if (found_type == BTRFS_FILE_EXTENT_REG || 663 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 664 nbytes = btrfs_file_extent_num_bytes(eb, item); 665 extent_end = start + nbytes; 666 667 /* 668 * We don't add to the inodes nbytes if we are prealloc or a 669 * hole. 670 */ 671 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 672 nbytes = 0; 673 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 674 size = btrfs_file_extent_ram_bytes(eb, item); 675 nbytes = btrfs_file_extent_ram_bytes(eb, item); 676 extent_end = ALIGN(start + size, 677 fs_info->sectorsize); 678 } else { 679 ret = 0; 680 goto out; 681 } 682 683 inode = read_one_inode(root, key->objectid); 684 if (!inode) { 685 ret = -EIO; 686 goto out; 687 } 688 689 /* 690 * first check to see if we already have this extent in the 691 * file. This must be done before the btrfs_drop_extents run 692 * so we don't try to drop this extent. 693 */ 694 ret = btrfs_lookup_file_extent(trans, root, path, 695 btrfs_ino(BTRFS_I(inode)), start, 0); 696 697 if (ret == 0 && 698 (found_type == BTRFS_FILE_EXTENT_REG || 699 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 700 struct btrfs_file_extent_item cmp1; 701 struct btrfs_file_extent_item cmp2; 702 struct btrfs_file_extent_item *existing; 703 struct extent_buffer *leaf; 704 705 leaf = path->nodes[0]; 706 existing = btrfs_item_ptr(leaf, path->slots[0], 707 struct btrfs_file_extent_item); 708 709 read_extent_buffer(eb, &cmp1, (unsigned long)item, 710 sizeof(cmp1)); 711 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 712 sizeof(cmp2)); 713 714 /* 715 * we already have a pointer to this exact extent, 716 * we don't have to do anything 717 */ 718 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 719 btrfs_release_path(path); 720 goto out; 721 } 722 } 723 btrfs_release_path(path); 724 725 /* drop any overlapping extents */ 726 drop_args.start = start; 727 drop_args.end = extent_end; 728 drop_args.drop_cache = true; 729 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args); 730 if (ret) 731 goto out; 732 733 if (found_type == BTRFS_FILE_EXTENT_REG || 734 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 735 u64 offset; 736 unsigned long dest_offset; 737 struct btrfs_key ins; 738 739 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 740 btrfs_fs_incompat(fs_info, NO_HOLES)) 741 goto update_inode; 742 743 ret = btrfs_insert_empty_item(trans, root, path, key, 744 sizeof(*item)); 745 if (ret) 746 goto out; 747 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 748 path->slots[0]); 749 copy_extent_buffer(path->nodes[0], eb, dest_offset, 750 (unsigned long)item, sizeof(*item)); 751 752 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 753 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 754 ins.type = BTRFS_EXTENT_ITEM_KEY; 755 offset = key->offset - btrfs_file_extent_offset(eb, item); 756 757 /* 758 * Manually record dirty extent, as here we did a shallow 759 * file extent item copy and skip normal backref update, 760 * but modifying extent tree all by ourselves. 761 * So need to manually record dirty extent for qgroup, 762 * as the owner of the file extent changed from log tree 763 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 764 */ 765 ret = btrfs_qgroup_trace_extent(trans, 766 btrfs_file_extent_disk_bytenr(eb, item), 767 btrfs_file_extent_disk_num_bytes(eb, item), 768 GFP_NOFS); 769 if (ret < 0) 770 goto out; 771 772 if (ins.objectid > 0) { 773 struct btrfs_ref ref = { 0 }; 774 u64 csum_start; 775 u64 csum_end; 776 LIST_HEAD(ordered_sums); 777 778 /* 779 * is this extent already allocated in the extent 780 * allocation tree? If so, just add a reference 781 */ 782 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 783 ins.offset); 784 if (ret < 0) { 785 goto out; 786 } else if (ret == 0) { 787 btrfs_init_generic_ref(&ref, 788 BTRFS_ADD_DELAYED_REF, 789 ins.objectid, ins.offset, 0); 790 btrfs_init_data_ref(&ref, 791 root->root_key.objectid, 792 key->objectid, offset, 0, false); 793 ret = btrfs_inc_extent_ref(trans, &ref); 794 if (ret) 795 goto out; 796 } else { 797 /* 798 * insert the extent pointer in the extent 799 * allocation tree 800 */ 801 ret = btrfs_alloc_logged_file_extent(trans, 802 root->root_key.objectid, 803 key->objectid, offset, &ins); 804 if (ret) 805 goto out; 806 } 807 btrfs_release_path(path); 808 809 if (btrfs_file_extent_compression(eb, item)) { 810 csum_start = ins.objectid; 811 csum_end = csum_start + ins.offset; 812 } else { 813 csum_start = ins.objectid + 814 btrfs_file_extent_offset(eb, item); 815 csum_end = csum_start + 816 btrfs_file_extent_num_bytes(eb, item); 817 } 818 819 ret = btrfs_lookup_csums_range(root->log_root, 820 csum_start, csum_end - 1, 821 &ordered_sums, 0); 822 if (ret) 823 goto out; 824 /* 825 * Now delete all existing cums in the csum root that 826 * cover our range. We do this because we can have an 827 * extent that is completely referenced by one file 828 * extent item and partially referenced by another 829 * file extent item (like after using the clone or 830 * extent_same ioctls). In this case if we end up doing 831 * the replay of the one that partially references the 832 * extent first, and we do not do the csum deletion 833 * below, we can get 2 csum items in the csum tree that 834 * overlap each other. For example, imagine our log has 835 * the two following file extent items: 836 * 837 * key (257 EXTENT_DATA 409600) 838 * extent data disk byte 12845056 nr 102400 839 * extent data offset 20480 nr 20480 ram 102400 840 * 841 * key (257 EXTENT_DATA 819200) 842 * extent data disk byte 12845056 nr 102400 843 * extent data offset 0 nr 102400 ram 102400 844 * 845 * Where the second one fully references the 100K extent 846 * that starts at disk byte 12845056, and the log tree 847 * has a single csum item that covers the entire range 848 * of the extent: 849 * 850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 851 * 852 * After the first file extent item is replayed, the 853 * csum tree gets the following csum item: 854 * 855 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 856 * 857 * Which covers the 20K sub-range starting at offset 20K 858 * of our extent. Now when we replay the second file 859 * extent item, if we do not delete existing csum items 860 * that cover any of its blocks, we end up getting two 861 * csum items in our csum tree that overlap each other: 862 * 863 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 864 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 865 * 866 * Which is a problem, because after this anyone trying 867 * to lookup up for the checksum of any block of our 868 * extent starting at an offset of 40K or higher, will 869 * end up looking at the second csum item only, which 870 * does not contain the checksum for any block starting 871 * at offset 40K or higher of our extent. 872 */ 873 while (!list_empty(&ordered_sums)) { 874 struct btrfs_ordered_sum *sums; 875 sums = list_entry(ordered_sums.next, 876 struct btrfs_ordered_sum, 877 list); 878 if (!ret) 879 ret = btrfs_del_csums(trans, 880 fs_info->csum_root, 881 sums->bytenr, 882 sums->len); 883 if (!ret) 884 ret = btrfs_csum_file_blocks(trans, 885 fs_info->csum_root, sums); 886 list_del(&sums->list); 887 kfree(sums); 888 } 889 if (ret) 890 goto out; 891 } else { 892 btrfs_release_path(path); 893 } 894 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 895 /* inline extents are easy, we just overwrite them */ 896 ret = overwrite_item(trans, root, path, eb, slot, key); 897 if (ret) 898 goto out; 899 } 900 901 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, 902 extent_end - start); 903 if (ret) 904 goto out; 905 906 update_inode: 907 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found); 908 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 909 out: 910 if (inode) 911 iput(inode); 912 return ret; 913 } 914 915 /* 916 * when cleaning up conflicts between the directory names in the 917 * subvolume, directory names in the log and directory names in the 918 * inode back references, we may have to unlink inodes from directories. 919 * 920 * This is a helper function to do the unlink of a specific directory 921 * item 922 */ 923 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 924 struct btrfs_path *path, 925 struct btrfs_inode *dir, 926 struct btrfs_dir_item *di) 927 { 928 struct btrfs_root *root = dir->root; 929 struct inode *inode; 930 char *name; 931 int name_len; 932 struct extent_buffer *leaf; 933 struct btrfs_key location; 934 int ret; 935 936 leaf = path->nodes[0]; 937 938 btrfs_dir_item_key_to_cpu(leaf, di, &location); 939 name_len = btrfs_dir_name_len(leaf, di); 940 name = kmalloc(name_len, GFP_NOFS); 941 if (!name) 942 return -ENOMEM; 943 944 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 945 btrfs_release_path(path); 946 947 inode = read_one_inode(root, location.objectid); 948 if (!inode) { 949 ret = -EIO; 950 goto out; 951 } 952 953 ret = link_to_fixup_dir(trans, root, path, location.objectid); 954 if (ret) 955 goto out; 956 957 ret = btrfs_unlink_inode(trans, dir, BTRFS_I(inode), name, 958 name_len); 959 if (ret) 960 goto out; 961 else 962 ret = btrfs_run_delayed_items(trans); 963 out: 964 kfree(name); 965 iput(inode); 966 return ret; 967 } 968 969 /* 970 * See if a given name and sequence number found in an inode back reference are 971 * already in a directory and correctly point to this inode. 972 * 973 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it 974 * exists. 975 */ 976 static noinline int inode_in_dir(struct btrfs_root *root, 977 struct btrfs_path *path, 978 u64 dirid, u64 objectid, u64 index, 979 const char *name, int name_len) 980 { 981 struct btrfs_dir_item *di; 982 struct btrfs_key location; 983 int ret = 0; 984 985 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 986 index, name, name_len, 0); 987 if (IS_ERR(di)) { 988 ret = PTR_ERR(di); 989 goto out; 990 } else if (di) { 991 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 992 if (location.objectid != objectid) 993 goto out; 994 } else { 995 goto out; 996 } 997 998 btrfs_release_path(path); 999 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 1000 if (IS_ERR(di)) { 1001 ret = PTR_ERR(di); 1002 goto out; 1003 } else if (di) { 1004 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1005 if (location.objectid == objectid) 1006 ret = 1; 1007 } 1008 out: 1009 btrfs_release_path(path); 1010 return ret; 1011 } 1012 1013 /* 1014 * helper function to check a log tree for a named back reference in 1015 * an inode. This is used to decide if a back reference that is 1016 * found in the subvolume conflicts with what we find in the log. 1017 * 1018 * inode backreferences may have multiple refs in a single item, 1019 * during replay we process one reference at a time, and we don't 1020 * want to delete valid links to a file from the subvolume if that 1021 * link is also in the log. 1022 */ 1023 static noinline int backref_in_log(struct btrfs_root *log, 1024 struct btrfs_key *key, 1025 u64 ref_objectid, 1026 const char *name, int namelen) 1027 { 1028 struct btrfs_path *path; 1029 int ret; 1030 1031 path = btrfs_alloc_path(); 1032 if (!path) 1033 return -ENOMEM; 1034 1035 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 1036 if (ret < 0) { 1037 goto out; 1038 } else if (ret == 1) { 1039 ret = 0; 1040 goto out; 1041 } 1042 1043 if (key->type == BTRFS_INODE_EXTREF_KEY) 1044 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1045 path->slots[0], 1046 ref_objectid, 1047 name, namelen); 1048 else 1049 ret = !!btrfs_find_name_in_backref(path->nodes[0], 1050 path->slots[0], 1051 name, namelen); 1052 out: 1053 btrfs_free_path(path); 1054 return ret; 1055 } 1056 1057 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 1058 struct btrfs_root *root, 1059 struct btrfs_path *path, 1060 struct btrfs_root *log_root, 1061 struct btrfs_inode *dir, 1062 struct btrfs_inode *inode, 1063 u64 inode_objectid, u64 parent_objectid, 1064 u64 ref_index, char *name, int namelen, 1065 int *search_done) 1066 { 1067 int ret; 1068 char *victim_name; 1069 int victim_name_len; 1070 struct extent_buffer *leaf; 1071 struct btrfs_dir_item *di; 1072 struct btrfs_key search_key; 1073 struct btrfs_inode_extref *extref; 1074 1075 again: 1076 /* Search old style refs */ 1077 search_key.objectid = inode_objectid; 1078 search_key.type = BTRFS_INODE_REF_KEY; 1079 search_key.offset = parent_objectid; 1080 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1081 if (ret == 0) { 1082 struct btrfs_inode_ref *victim_ref; 1083 unsigned long ptr; 1084 unsigned long ptr_end; 1085 1086 leaf = path->nodes[0]; 1087 1088 /* are we trying to overwrite a back ref for the root directory 1089 * if so, just jump out, we're done 1090 */ 1091 if (search_key.objectid == search_key.offset) 1092 return 1; 1093 1094 /* check all the names in this back reference to see 1095 * if they are in the log. if so, we allow them to stay 1096 * otherwise they must be unlinked as a conflict 1097 */ 1098 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1099 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1100 while (ptr < ptr_end) { 1101 victim_ref = (struct btrfs_inode_ref *)ptr; 1102 victim_name_len = btrfs_inode_ref_name_len(leaf, 1103 victim_ref); 1104 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1105 if (!victim_name) 1106 return -ENOMEM; 1107 1108 read_extent_buffer(leaf, victim_name, 1109 (unsigned long)(victim_ref + 1), 1110 victim_name_len); 1111 1112 ret = backref_in_log(log_root, &search_key, 1113 parent_objectid, victim_name, 1114 victim_name_len); 1115 if (ret < 0) { 1116 kfree(victim_name); 1117 return ret; 1118 } else if (!ret) { 1119 inc_nlink(&inode->vfs_inode); 1120 btrfs_release_path(path); 1121 1122 ret = btrfs_unlink_inode(trans, dir, inode, 1123 victim_name, victim_name_len); 1124 kfree(victim_name); 1125 if (ret) 1126 return ret; 1127 ret = btrfs_run_delayed_items(trans); 1128 if (ret) 1129 return ret; 1130 *search_done = 1; 1131 goto again; 1132 } 1133 kfree(victim_name); 1134 1135 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1136 } 1137 1138 /* 1139 * NOTE: we have searched root tree and checked the 1140 * corresponding ref, it does not need to check again. 1141 */ 1142 *search_done = 1; 1143 } 1144 btrfs_release_path(path); 1145 1146 /* Same search but for extended refs */ 1147 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1148 inode_objectid, parent_objectid, 0, 1149 0); 1150 if (!IS_ERR_OR_NULL(extref)) { 1151 u32 item_size; 1152 u32 cur_offset = 0; 1153 unsigned long base; 1154 struct inode *victim_parent; 1155 1156 leaf = path->nodes[0]; 1157 1158 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1159 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1160 1161 while (cur_offset < item_size) { 1162 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1163 1164 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1165 1166 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1167 goto next; 1168 1169 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1170 if (!victim_name) 1171 return -ENOMEM; 1172 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1173 victim_name_len); 1174 1175 search_key.objectid = inode_objectid; 1176 search_key.type = BTRFS_INODE_EXTREF_KEY; 1177 search_key.offset = btrfs_extref_hash(parent_objectid, 1178 victim_name, 1179 victim_name_len); 1180 ret = backref_in_log(log_root, &search_key, 1181 parent_objectid, victim_name, 1182 victim_name_len); 1183 if (ret < 0) { 1184 kfree(victim_name); 1185 return ret; 1186 } else if (!ret) { 1187 ret = -ENOENT; 1188 victim_parent = read_one_inode(root, 1189 parent_objectid); 1190 if (victim_parent) { 1191 inc_nlink(&inode->vfs_inode); 1192 btrfs_release_path(path); 1193 1194 ret = btrfs_unlink_inode(trans, 1195 BTRFS_I(victim_parent), 1196 inode, 1197 victim_name, 1198 victim_name_len); 1199 if (!ret) 1200 ret = btrfs_run_delayed_items( 1201 trans); 1202 } 1203 iput(victim_parent); 1204 kfree(victim_name); 1205 if (ret) 1206 return ret; 1207 *search_done = 1; 1208 goto again; 1209 } 1210 kfree(victim_name); 1211 next: 1212 cur_offset += victim_name_len + sizeof(*extref); 1213 } 1214 *search_done = 1; 1215 } 1216 btrfs_release_path(path); 1217 1218 /* look for a conflicting sequence number */ 1219 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1220 ref_index, name, namelen, 0); 1221 if (IS_ERR(di)) { 1222 return PTR_ERR(di); 1223 } else if (di) { 1224 ret = drop_one_dir_item(trans, path, dir, di); 1225 if (ret) 1226 return ret; 1227 } 1228 btrfs_release_path(path); 1229 1230 /* look for a conflicting name */ 1231 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1232 name, namelen, 0); 1233 if (IS_ERR(di)) { 1234 return PTR_ERR(di); 1235 } else if (di) { 1236 ret = drop_one_dir_item(trans, path, dir, di); 1237 if (ret) 1238 return ret; 1239 } 1240 btrfs_release_path(path); 1241 1242 return 0; 1243 } 1244 1245 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1246 u32 *namelen, char **name, u64 *index, 1247 u64 *parent_objectid) 1248 { 1249 struct btrfs_inode_extref *extref; 1250 1251 extref = (struct btrfs_inode_extref *)ref_ptr; 1252 1253 *namelen = btrfs_inode_extref_name_len(eb, extref); 1254 *name = kmalloc(*namelen, GFP_NOFS); 1255 if (*name == NULL) 1256 return -ENOMEM; 1257 1258 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1259 *namelen); 1260 1261 if (index) 1262 *index = btrfs_inode_extref_index(eb, extref); 1263 if (parent_objectid) 1264 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1265 1266 return 0; 1267 } 1268 1269 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1270 u32 *namelen, char **name, u64 *index) 1271 { 1272 struct btrfs_inode_ref *ref; 1273 1274 ref = (struct btrfs_inode_ref *)ref_ptr; 1275 1276 *namelen = btrfs_inode_ref_name_len(eb, ref); 1277 *name = kmalloc(*namelen, GFP_NOFS); 1278 if (*name == NULL) 1279 return -ENOMEM; 1280 1281 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1282 1283 if (index) 1284 *index = btrfs_inode_ref_index(eb, ref); 1285 1286 return 0; 1287 } 1288 1289 /* 1290 * Take an inode reference item from the log tree and iterate all names from the 1291 * inode reference item in the subvolume tree with the same key (if it exists). 1292 * For any name that is not in the inode reference item from the log tree, do a 1293 * proper unlink of that name (that is, remove its entry from the inode 1294 * reference item and both dir index keys). 1295 */ 1296 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1297 struct btrfs_root *root, 1298 struct btrfs_path *path, 1299 struct btrfs_inode *inode, 1300 struct extent_buffer *log_eb, 1301 int log_slot, 1302 struct btrfs_key *key) 1303 { 1304 int ret; 1305 unsigned long ref_ptr; 1306 unsigned long ref_end; 1307 struct extent_buffer *eb; 1308 1309 again: 1310 btrfs_release_path(path); 1311 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1312 if (ret > 0) { 1313 ret = 0; 1314 goto out; 1315 } 1316 if (ret < 0) 1317 goto out; 1318 1319 eb = path->nodes[0]; 1320 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1321 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); 1322 while (ref_ptr < ref_end) { 1323 char *name = NULL; 1324 int namelen; 1325 u64 parent_id; 1326 1327 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1328 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1329 NULL, &parent_id); 1330 } else { 1331 parent_id = key->offset; 1332 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1333 NULL); 1334 } 1335 if (ret) 1336 goto out; 1337 1338 if (key->type == BTRFS_INODE_EXTREF_KEY) 1339 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1340 parent_id, name, 1341 namelen); 1342 else 1343 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, 1344 name, namelen); 1345 1346 if (!ret) { 1347 struct inode *dir; 1348 1349 btrfs_release_path(path); 1350 dir = read_one_inode(root, parent_id); 1351 if (!dir) { 1352 ret = -ENOENT; 1353 kfree(name); 1354 goto out; 1355 } 1356 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), 1357 inode, name, namelen); 1358 kfree(name); 1359 iput(dir); 1360 if (ret) 1361 goto out; 1362 goto again; 1363 } 1364 1365 kfree(name); 1366 ref_ptr += namelen; 1367 if (key->type == BTRFS_INODE_EXTREF_KEY) 1368 ref_ptr += sizeof(struct btrfs_inode_extref); 1369 else 1370 ref_ptr += sizeof(struct btrfs_inode_ref); 1371 } 1372 ret = 0; 1373 out: 1374 btrfs_release_path(path); 1375 return ret; 1376 } 1377 1378 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1379 const u8 ref_type, const char *name, 1380 const int namelen) 1381 { 1382 struct btrfs_key key; 1383 struct btrfs_path *path; 1384 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1385 int ret; 1386 1387 path = btrfs_alloc_path(); 1388 if (!path) 1389 return -ENOMEM; 1390 1391 key.objectid = btrfs_ino(BTRFS_I(inode)); 1392 key.type = ref_type; 1393 if (key.type == BTRFS_INODE_REF_KEY) 1394 key.offset = parent_id; 1395 else 1396 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1397 1398 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1399 if (ret < 0) 1400 goto out; 1401 if (ret > 0) { 1402 ret = 0; 1403 goto out; 1404 } 1405 if (key.type == BTRFS_INODE_EXTREF_KEY) 1406 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1407 path->slots[0], parent_id, name, namelen); 1408 else 1409 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1410 name, namelen); 1411 1412 out: 1413 btrfs_free_path(path); 1414 return ret; 1415 } 1416 1417 static int add_link(struct btrfs_trans_handle *trans, 1418 struct inode *dir, struct inode *inode, const char *name, 1419 int namelen, u64 ref_index) 1420 { 1421 struct btrfs_root *root = BTRFS_I(dir)->root; 1422 struct btrfs_dir_item *dir_item; 1423 struct btrfs_key key; 1424 struct btrfs_path *path; 1425 struct inode *other_inode = NULL; 1426 int ret; 1427 1428 path = btrfs_alloc_path(); 1429 if (!path) 1430 return -ENOMEM; 1431 1432 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1433 btrfs_ino(BTRFS_I(dir)), 1434 name, namelen, 0); 1435 if (!dir_item) { 1436 btrfs_release_path(path); 1437 goto add_link; 1438 } else if (IS_ERR(dir_item)) { 1439 ret = PTR_ERR(dir_item); 1440 goto out; 1441 } 1442 1443 /* 1444 * Our inode's dentry collides with the dentry of another inode which is 1445 * in the log but not yet processed since it has a higher inode number. 1446 * So delete that other dentry. 1447 */ 1448 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1449 btrfs_release_path(path); 1450 other_inode = read_one_inode(root, key.objectid); 1451 if (!other_inode) { 1452 ret = -ENOENT; 1453 goto out; 1454 } 1455 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(other_inode), 1456 name, namelen); 1457 if (ret) 1458 goto out; 1459 /* 1460 * If we dropped the link count to 0, bump it so that later the iput() 1461 * on the inode will not free it. We will fixup the link count later. 1462 */ 1463 if (other_inode->i_nlink == 0) 1464 inc_nlink(other_inode); 1465 1466 ret = btrfs_run_delayed_items(trans); 1467 if (ret) 1468 goto out; 1469 add_link: 1470 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1471 name, namelen, 0, ref_index); 1472 out: 1473 iput(other_inode); 1474 btrfs_free_path(path); 1475 1476 return ret; 1477 } 1478 1479 /* 1480 * replay one inode back reference item found in the log tree. 1481 * eb, slot and key refer to the buffer and key found in the log tree. 1482 * root is the destination we are replaying into, and path is for temp 1483 * use by this function. (it should be released on return). 1484 */ 1485 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1486 struct btrfs_root *root, 1487 struct btrfs_root *log, 1488 struct btrfs_path *path, 1489 struct extent_buffer *eb, int slot, 1490 struct btrfs_key *key) 1491 { 1492 struct inode *dir = NULL; 1493 struct inode *inode = NULL; 1494 unsigned long ref_ptr; 1495 unsigned long ref_end; 1496 char *name = NULL; 1497 int namelen; 1498 int ret; 1499 int search_done = 0; 1500 int log_ref_ver = 0; 1501 u64 parent_objectid; 1502 u64 inode_objectid; 1503 u64 ref_index = 0; 1504 int ref_struct_size; 1505 1506 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1507 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1508 1509 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1510 struct btrfs_inode_extref *r; 1511 1512 ref_struct_size = sizeof(struct btrfs_inode_extref); 1513 log_ref_ver = 1; 1514 r = (struct btrfs_inode_extref *)ref_ptr; 1515 parent_objectid = btrfs_inode_extref_parent(eb, r); 1516 } else { 1517 ref_struct_size = sizeof(struct btrfs_inode_ref); 1518 parent_objectid = key->offset; 1519 } 1520 inode_objectid = key->objectid; 1521 1522 /* 1523 * it is possible that we didn't log all the parent directories 1524 * for a given inode. If we don't find the dir, just don't 1525 * copy the back ref in. The link count fixup code will take 1526 * care of the rest 1527 */ 1528 dir = read_one_inode(root, parent_objectid); 1529 if (!dir) { 1530 ret = -ENOENT; 1531 goto out; 1532 } 1533 1534 inode = read_one_inode(root, inode_objectid); 1535 if (!inode) { 1536 ret = -EIO; 1537 goto out; 1538 } 1539 1540 while (ref_ptr < ref_end) { 1541 if (log_ref_ver) { 1542 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1543 &ref_index, &parent_objectid); 1544 /* 1545 * parent object can change from one array 1546 * item to another. 1547 */ 1548 if (!dir) 1549 dir = read_one_inode(root, parent_objectid); 1550 if (!dir) { 1551 ret = -ENOENT; 1552 goto out; 1553 } 1554 } else { 1555 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1556 &ref_index); 1557 } 1558 if (ret) 1559 goto out; 1560 1561 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1562 btrfs_ino(BTRFS_I(inode)), ref_index, 1563 name, namelen); 1564 if (ret < 0) { 1565 goto out; 1566 } else if (ret == 0) { 1567 /* 1568 * look for a conflicting back reference in the 1569 * metadata. if we find one we have to unlink that name 1570 * of the file before we add our new link. Later on, we 1571 * overwrite any existing back reference, and we don't 1572 * want to create dangling pointers in the directory. 1573 */ 1574 1575 if (!search_done) { 1576 ret = __add_inode_ref(trans, root, path, log, 1577 BTRFS_I(dir), 1578 BTRFS_I(inode), 1579 inode_objectid, 1580 parent_objectid, 1581 ref_index, name, namelen, 1582 &search_done); 1583 if (ret) { 1584 if (ret == 1) 1585 ret = 0; 1586 goto out; 1587 } 1588 } 1589 1590 /* 1591 * If a reference item already exists for this inode 1592 * with the same parent and name, but different index, 1593 * drop it and the corresponding directory index entries 1594 * from the parent before adding the new reference item 1595 * and dir index entries, otherwise we would fail with 1596 * -EEXIST returned from btrfs_add_link() below. 1597 */ 1598 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1599 name, namelen); 1600 if (ret > 0) { 1601 ret = btrfs_unlink_inode(trans, 1602 BTRFS_I(dir), 1603 BTRFS_I(inode), 1604 name, namelen); 1605 /* 1606 * If we dropped the link count to 0, bump it so 1607 * that later the iput() on the inode will not 1608 * free it. We will fixup the link count later. 1609 */ 1610 if (!ret && inode->i_nlink == 0) 1611 inc_nlink(inode); 1612 } 1613 if (ret < 0) 1614 goto out; 1615 1616 /* insert our name */ 1617 ret = add_link(trans, dir, inode, name, namelen, 1618 ref_index); 1619 if (ret) 1620 goto out; 1621 1622 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1623 if (ret) 1624 goto out; 1625 } 1626 /* Else, ret == 1, we already have a perfect match, we're done. */ 1627 1628 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1629 kfree(name); 1630 name = NULL; 1631 if (log_ref_ver) { 1632 iput(dir); 1633 dir = NULL; 1634 } 1635 } 1636 1637 /* 1638 * Before we overwrite the inode reference item in the subvolume tree 1639 * with the item from the log tree, we must unlink all names from the 1640 * parent directory that are in the subvolume's tree inode reference 1641 * item, otherwise we end up with an inconsistent subvolume tree where 1642 * dir index entries exist for a name but there is no inode reference 1643 * item with the same name. 1644 */ 1645 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1646 key); 1647 if (ret) 1648 goto out; 1649 1650 /* finally write the back reference in the inode */ 1651 ret = overwrite_item(trans, root, path, eb, slot, key); 1652 out: 1653 btrfs_release_path(path); 1654 kfree(name); 1655 iput(dir); 1656 iput(inode); 1657 return ret; 1658 } 1659 1660 static int count_inode_extrefs(struct btrfs_root *root, 1661 struct btrfs_inode *inode, struct btrfs_path *path) 1662 { 1663 int ret = 0; 1664 int name_len; 1665 unsigned int nlink = 0; 1666 u32 item_size; 1667 u32 cur_offset = 0; 1668 u64 inode_objectid = btrfs_ino(inode); 1669 u64 offset = 0; 1670 unsigned long ptr; 1671 struct btrfs_inode_extref *extref; 1672 struct extent_buffer *leaf; 1673 1674 while (1) { 1675 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1676 &extref, &offset); 1677 if (ret) 1678 break; 1679 1680 leaf = path->nodes[0]; 1681 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1682 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1683 cur_offset = 0; 1684 1685 while (cur_offset < item_size) { 1686 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1687 name_len = btrfs_inode_extref_name_len(leaf, extref); 1688 1689 nlink++; 1690 1691 cur_offset += name_len + sizeof(*extref); 1692 } 1693 1694 offset++; 1695 btrfs_release_path(path); 1696 } 1697 btrfs_release_path(path); 1698 1699 if (ret < 0 && ret != -ENOENT) 1700 return ret; 1701 return nlink; 1702 } 1703 1704 static int count_inode_refs(struct btrfs_root *root, 1705 struct btrfs_inode *inode, struct btrfs_path *path) 1706 { 1707 int ret; 1708 struct btrfs_key key; 1709 unsigned int nlink = 0; 1710 unsigned long ptr; 1711 unsigned long ptr_end; 1712 int name_len; 1713 u64 ino = btrfs_ino(inode); 1714 1715 key.objectid = ino; 1716 key.type = BTRFS_INODE_REF_KEY; 1717 key.offset = (u64)-1; 1718 1719 while (1) { 1720 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1721 if (ret < 0) 1722 break; 1723 if (ret > 0) { 1724 if (path->slots[0] == 0) 1725 break; 1726 path->slots[0]--; 1727 } 1728 process_slot: 1729 btrfs_item_key_to_cpu(path->nodes[0], &key, 1730 path->slots[0]); 1731 if (key.objectid != ino || 1732 key.type != BTRFS_INODE_REF_KEY) 1733 break; 1734 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1735 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1736 path->slots[0]); 1737 while (ptr < ptr_end) { 1738 struct btrfs_inode_ref *ref; 1739 1740 ref = (struct btrfs_inode_ref *)ptr; 1741 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1742 ref); 1743 ptr = (unsigned long)(ref + 1) + name_len; 1744 nlink++; 1745 } 1746 1747 if (key.offset == 0) 1748 break; 1749 if (path->slots[0] > 0) { 1750 path->slots[0]--; 1751 goto process_slot; 1752 } 1753 key.offset--; 1754 btrfs_release_path(path); 1755 } 1756 btrfs_release_path(path); 1757 1758 return nlink; 1759 } 1760 1761 /* 1762 * There are a few corners where the link count of the file can't 1763 * be properly maintained during replay. So, instead of adding 1764 * lots of complexity to the log code, we just scan the backrefs 1765 * for any file that has been through replay. 1766 * 1767 * The scan will update the link count on the inode to reflect the 1768 * number of back refs found. If it goes down to zero, the iput 1769 * will free the inode. 1770 */ 1771 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1772 struct btrfs_root *root, 1773 struct inode *inode) 1774 { 1775 struct btrfs_path *path; 1776 int ret; 1777 u64 nlink = 0; 1778 u64 ino = btrfs_ino(BTRFS_I(inode)); 1779 1780 path = btrfs_alloc_path(); 1781 if (!path) 1782 return -ENOMEM; 1783 1784 ret = count_inode_refs(root, BTRFS_I(inode), path); 1785 if (ret < 0) 1786 goto out; 1787 1788 nlink = ret; 1789 1790 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1791 if (ret < 0) 1792 goto out; 1793 1794 nlink += ret; 1795 1796 ret = 0; 1797 1798 if (nlink != inode->i_nlink) { 1799 set_nlink(inode, nlink); 1800 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1801 if (ret) 1802 goto out; 1803 } 1804 BTRFS_I(inode)->index_cnt = (u64)-1; 1805 1806 if (inode->i_nlink == 0) { 1807 if (S_ISDIR(inode->i_mode)) { 1808 ret = replay_dir_deletes(trans, root, NULL, path, 1809 ino, 1); 1810 if (ret) 1811 goto out; 1812 } 1813 ret = btrfs_insert_orphan_item(trans, root, ino); 1814 if (ret == -EEXIST) 1815 ret = 0; 1816 } 1817 1818 out: 1819 btrfs_free_path(path); 1820 return ret; 1821 } 1822 1823 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1824 struct btrfs_root *root, 1825 struct btrfs_path *path) 1826 { 1827 int ret; 1828 struct btrfs_key key; 1829 struct inode *inode; 1830 1831 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1832 key.type = BTRFS_ORPHAN_ITEM_KEY; 1833 key.offset = (u64)-1; 1834 while (1) { 1835 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1836 if (ret < 0) 1837 break; 1838 1839 if (ret == 1) { 1840 ret = 0; 1841 if (path->slots[0] == 0) 1842 break; 1843 path->slots[0]--; 1844 } 1845 1846 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1847 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1848 key.type != BTRFS_ORPHAN_ITEM_KEY) 1849 break; 1850 1851 ret = btrfs_del_item(trans, root, path); 1852 if (ret) 1853 break; 1854 1855 btrfs_release_path(path); 1856 inode = read_one_inode(root, key.offset); 1857 if (!inode) { 1858 ret = -EIO; 1859 break; 1860 } 1861 1862 ret = fixup_inode_link_count(trans, root, inode); 1863 iput(inode); 1864 if (ret) 1865 break; 1866 1867 /* 1868 * fixup on a directory may create new entries, 1869 * make sure we always look for the highset possible 1870 * offset 1871 */ 1872 key.offset = (u64)-1; 1873 } 1874 btrfs_release_path(path); 1875 return ret; 1876 } 1877 1878 1879 /* 1880 * record a given inode in the fixup dir so we can check its link 1881 * count when replay is done. The link count is incremented here 1882 * so the inode won't go away until we check it 1883 */ 1884 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1885 struct btrfs_root *root, 1886 struct btrfs_path *path, 1887 u64 objectid) 1888 { 1889 struct btrfs_key key; 1890 int ret = 0; 1891 struct inode *inode; 1892 1893 inode = read_one_inode(root, objectid); 1894 if (!inode) 1895 return -EIO; 1896 1897 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1898 key.type = BTRFS_ORPHAN_ITEM_KEY; 1899 key.offset = objectid; 1900 1901 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1902 1903 btrfs_release_path(path); 1904 if (ret == 0) { 1905 if (!inode->i_nlink) 1906 set_nlink(inode, 1); 1907 else 1908 inc_nlink(inode); 1909 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1910 } else if (ret == -EEXIST) { 1911 ret = 0; 1912 } 1913 iput(inode); 1914 1915 return ret; 1916 } 1917 1918 /* 1919 * when replaying the log for a directory, we only insert names 1920 * for inodes that actually exist. This means an fsync on a directory 1921 * does not implicitly fsync all the new files in it 1922 */ 1923 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1924 struct btrfs_root *root, 1925 u64 dirid, u64 index, 1926 char *name, int name_len, 1927 struct btrfs_key *location) 1928 { 1929 struct inode *inode; 1930 struct inode *dir; 1931 int ret; 1932 1933 inode = read_one_inode(root, location->objectid); 1934 if (!inode) 1935 return -ENOENT; 1936 1937 dir = read_one_inode(root, dirid); 1938 if (!dir) { 1939 iput(inode); 1940 return -EIO; 1941 } 1942 1943 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1944 name_len, 1, index); 1945 1946 /* FIXME, put inode into FIXUP list */ 1947 1948 iput(inode); 1949 iput(dir); 1950 return ret; 1951 } 1952 1953 /* 1954 * take a single entry in a log directory item and replay it into 1955 * the subvolume. 1956 * 1957 * if a conflicting item exists in the subdirectory already, 1958 * the inode it points to is unlinked and put into the link count 1959 * fix up tree. 1960 * 1961 * If a name from the log points to a file or directory that does 1962 * not exist in the FS, it is skipped. fsyncs on directories 1963 * do not force down inodes inside that directory, just changes to the 1964 * names or unlinks in a directory. 1965 * 1966 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1967 * non-existing inode) and 1 if the name was replayed. 1968 */ 1969 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1970 struct btrfs_root *root, 1971 struct btrfs_path *path, 1972 struct extent_buffer *eb, 1973 struct btrfs_dir_item *di, 1974 struct btrfs_key *key) 1975 { 1976 char *name; 1977 int name_len; 1978 struct btrfs_dir_item *dst_di; 1979 struct btrfs_key found_key; 1980 struct btrfs_key log_key; 1981 struct inode *dir; 1982 u8 log_type; 1983 bool exists; 1984 int ret; 1985 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1986 bool name_added = false; 1987 1988 dir = read_one_inode(root, key->objectid); 1989 if (!dir) 1990 return -EIO; 1991 1992 name_len = btrfs_dir_name_len(eb, di); 1993 name = kmalloc(name_len, GFP_NOFS); 1994 if (!name) { 1995 ret = -ENOMEM; 1996 goto out; 1997 } 1998 1999 log_type = btrfs_dir_type(eb, di); 2000 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2001 name_len); 2002 2003 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 2004 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); 2005 btrfs_release_path(path); 2006 if (ret < 0) 2007 goto out; 2008 exists = (ret == 0); 2009 ret = 0; 2010 2011 if (key->type == BTRFS_DIR_ITEM_KEY) { 2012 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 2013 name, name_len, 1); 2014 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 2015 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 2016 key->objectid, 2017 key->offset, name, 2018 name_len, 1); 2019 } else { 2020 /* Corruption */ 2021 ret = -EINVAL; 2022 goto out; 2023 } 2024 2025 if (IS_ERR(dst_di)) { 2026 ret = PTR_ERR(dst_di); 2027 goto out; 2028 } else if (!dst_di) { 2029 /* we need a sequence number to insert, so we only 2030 * do inserts for the BTRFS_DIR_INDEX_KEY types 2031 */ 2032 if (key->type != BTRFS_DIR_INDEX_KEY) 2033 goto out; 2034 goto insert; 2035 } 2036 2037 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 2038 /* the existing item matches the logged item */ 2039 if (found_key.objectid == log_key.objectid && 2040 found_key.type == log_key.type && 2041 found_key.offset == log_key.offset && 2042 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 2043 update_size = false; 2044 goto out; 2045 } 2046 2047 /* 2048 * don't drop the conflicting directory entry if the inode 2049 * for the new entry doesn't exist 2050 */ 2051 if (!exists) 2052 goto out; 2053 2054 ret = drop_one_dir_item(trans, path, BTRFS_I(dir), dst_di); 2055 if (ret) 2056 goto out; 2057 2058 if (key->type == BTRFS_DIR_INDEX_KEY) 2059 goto insert; 2060 out: 2061 btrfs_release_path(path); 2062 if (!ret && update_size) { 2063 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 2064 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 2065 } 2066 kfree(name); 2067 iput(dir); 2068 if (!ret && name_added) 2069 ret = 1; 2070 return ret; 2071 2072 insert: 2073 /* 2074 * Check if the inode reference exists in the log for the given name, 2075 * inode and parent inode 2076 */ 2077 found_key.objectid = log_key.objectid; 2078 found_key.type = BTRFS_INODE_REF_KEY; 2079 found_key.offset = key->objectid; 2080 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len); 2081 if (ret < 0) { 2082 goto out; 2083 } else if (ret) { 2084 /* The dentry will be added later. */ 2085 ret = 0; 2086 update_size = false; 2087 goto out; 2088 } 2089 2090 found_key.objectid = log_key.objectid; 2091 found_key.type = BTRFS_INODE_EXTREF_KEY; 2092 found_key.offset = key->objectid; 2093 ret = backref_in_log(root->log_root, &found_key, key->objectid, name, 2094 name_len); 2095 if (ret < 0) { 2096 goto out; 2097 } else if (ret) { 2098 /* The dentry will be added later. */ 2099 ret = 0; 2100 update_size = false; 2101 goto out; 2102 } 2103 btrfs_release_path(path); 2104 ret = insert_one_name(trans, root, key->objectid, key->offset, 2105 name, name_len, &log_key); 2106 if (ret && ret != -ENOENT && ret != -EEXIST) 2107 goto out; 2108 if (!ret) 2109 name_added = true; 2110 update_size = false; 2111 ret = 0; 2112 goto out; 2113 } 2114 2115 /* 2116 * find all the names in a directory item and reconcile them into 2117 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 2118 * one name in a directory item, but the same code gets used for 2119 * both directory index types 2120 */ 2121 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2122 struct btrfs_root *root, 2123 struct btrfs_path *path, 2124 struct extent_buffer *eb, int slot, 2125 struct btrfs_key *key) 2126 { 2127 int ret = 0; 2128 u32 item_size = btrfs_item_size_nr(eb, slot); 2129 struct btrfs_dir_item *di; 2130 int name_len; 2131 unsigned long ptr; 2132 unsigned long ptr_end; 2133 struct btrfs_path *fixup_path = NULL; 2134 2135 ptr = btrfs_item_ptr_offset(eb, slot); 2136 ptr_end = ptr + item_size; 2137 while (ptr < ptr_end) { 2138 di = (struct btrfs_dir_item *)ptr; 2139 name_len = btrfs_dir_name_len(eb, di); 2140 ret = replay_one_name(trans, root, path, eb, di, key); 2141 if (ret < 0) 2142 break; 2143 ptr = (unsigned long)(di + 1); 2144 ptr += name_len; 2145 2146 /* 2147 * If this entry refers to a non-directory (directories can not 2148 * have a link count > 1) and it was added in the transaction 2149 * that was not committed, make sure we fixup the link count of 2150 * the inode it the entry points to. Otherwise something like 2151 * the following would result in a directory pointing to an 2152 * inode with a wrong link that does not account for this dir 2153 * entry: 2154 * 2155 * mkdir testdir 2156 * touch testdir/foo 2157 * touch testdir/bar 2158 * sync 2159 * 2160 * ln testdir/bar testdir/bar_link 2161 * ln testdir/foo testdir/foo_link 2162 * xfs_io -c "fsync" testdir/bar 2163 * 2164 * <power failure> 2165 * 2166 * mount fs, log replay happens 2167 * 2168 * File foo would remain with a link count of 1 when it has two 2169 * entries pointing to it in the directory testdir. This would 2170 * make it impossible to ever delete the parent directory has 2171 * it would result in stale dentries that can never be deleted. 2172 */ 2173 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2174 struct btrfs_key di_key; 2175 2176 if (!fixup_path) { 2177 fixup_path = btrfs_alloc_path(); 2178 if (!fixup_path) { 2179 ret = -ENOMEM; 2180 break; 2181 } 2182 } 2183 2184 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2185 ret = link_to_fixup_dir(trans, root, fixup_path, 2186 di_key.objectid); 2187 if (ret) 2188 break; 2189 } 2190 ret = 0; 2191 } 2192 btrfs_free_path(fixup_path); 2193 return ret; 2194 } 2195 2196 /* 2197 * directory replay has two parts. There are the standard directory 2198 * items in the log copied from the subvolume, and range items 2199 * created in the log while the subvolume was logged. 2200 * 2201 * The range items tell us which parts of the key space the log 2202 * is authoritative for. During replay, if a key in the subvolume 2203 * directory is in a logged range item, but not actually in the log 2204 * that means it was deleted from the directory before the fsync 2205 * and should be removed. 2206 */ 2207 static noinline int find_dir_range(struct btrfs_root *root, 2208 struct btrfs_path *path, 2209 u64 dirid, int key_type, 2210 u64 *start_ret, u64 *end_ret) 2211 { 2212 struct btrfs_key key; 2213 u64 found_end; 2214 struct btrfs_dir_log_item *item; 2215 int ret; 2216 int nritems; 2217 2218 if (*start_ret == (u64)-1) 2219 return 1; 2220 2221 key.objectid = dirid; 2222 key.type = key_type; 2223 key.offset = *start_ret; 2224 2225 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2226 if (ret < 0) 2227 goto out; 2228 if (ret > 0) { 2229 if (path->slots[0] == 0) 2230 goto out; 2231 path->slots[0]--; 2232 } 2233 if (ret != 0) 2234 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2235 2236 if (key.type != key_type || key.objectid != dirid) { 2237 ret = 1; 2238 goto next; 2239 } 2240 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2241 struct btrfs_dir_log_item); 2242 found_end = btrfs_dir_log_end(path->nodes[0], item); 2243 2244 if (*start_ret >= key.offset && *start_ret <= found_end) { 2245 ret = 0; 2246 *start_ret = key.offset; 2247 *end_ret = found_end; 2248 goto out; 2249 } 2250 ret = 1; 2251 next: 2252 /* check the next slot in the tree to see if it is a valid item */ 2253 nritems = btrfs_header_nritems(path->nodes[0]); 2254 path->slots[0]++; 2255 if (path->slots[0] >= nritems) { 2256 ret = btrfs_next_leaf(root, path); 2257 if (ret) 2258 goto out; 2259 } 2260 2261 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2262 2263 if (key.type != key_type || key.objectid != dirid) { 2264 ret = 1; 2265 goto out; 2266 } 2267 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2268 struct btrfs_dir_log_item); 2269 found_end = btrfs_dir_log_end(path->nodes[0], item); 2270 *start_ret = key.offset; 2271 *end_ret = found_end; 2272 ret = 0; 2273 out: 2274 btrfs_release_path(path); 2275 return ret; 2276 } 2277 2278 /* 2279 * this looks for a given directory item in the log. If the directory 2280 * item is not in the log, the item is removed and the inode it points 2281 * to is unlinked 2282 */ 2283 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2284 struct btrfs_root *log, 2285 struct btrfs_path *path, 2286 struct btrfs_path *log_path, 2287 struct inode *dir, 2288 struct btrfs_key *dir_key) 2289 { 2290 struct btrfs_root *root = BTRFS_I(dir)->root; 2291 int ret; 2292 struct extent_buffer *eb; 2293 int slot; 2294 u32 item_size; 2295 struct btrfs_dir_item *di; 2296 struct btrfs_dir_item *log_di; 2297 int name_len; 2298 unsigned long ptr; 2299 unsigned long ptr_end; 2300 char *name; 2301 struct inode *inode; 2302 struct btrfs_key location; 2303 2304 again: 2305 eb = path->nodes[0]; 2306 slot = path->slots[0]; 2307 item_size = btrfs_item_size_nr(eb, slot); 2308 ptr = btrfs_item_ptr_offset(eb, slot); 2309 ptr_end = ptr + item_size; 2310 while (ptr < ptr_end) { 2311 di = (struct btrfs_dir_item *)ptr; 2312 name_len = btrfs_dir_name_len(eb, di); 2313 name = kmalloc(name_len, GFP_NOFS); 2314 if (!name) { 2315 ret = -ENOMEM; 2316 goto out; 2317 } 2318 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2319 name_len); 2320 log_di = NULL; 2321 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2322 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2323 dir_key->objectid, 2324 name, name_len, 0); 2325 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2326 log_di = btrfs_lookup_dir_index_item(trans, log, 2327 log_path, 2328 dir_key->objectid, 2329 dir_key->offset, 2330 name, name_len, 0); 2331 } 2332 if (!log_di) { 2333 btrfs_dir_item_key_to_cpu(eb, di, &location); 2334 btrfs_release_path(path); 2335 btrfs_release_path(log_path); 2336 inode = read_one_inode(root, location.objectid); 2337 if (!inode) { 2338 kfree(name); 2339 return -EIO; 2340 } 2341 2342 ret = link_to_fixup_dir(trans, root, 2343 path, location.objectid); 2344 if (ret) { 2345 kfree(name); 2346 iput(inode); 2347 goto out; 2348 } 2349 2350 inc_nlink(inode); 2351 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), 2352 BTRFS_I(inode), name, name_len); 2353 if (!ret) 2354 ret = btrfs_run_delayed_items(trans); 2355 kfree(name); 2356 iput(inode); 2357 if (ret) 2358 goto out; 2359 2360 /* there might still be more names under this key 2361 * check and repeat if required 2362 */ 2363 ret = btrfs_search_slot(NULL, root, dir_key, path, 2364 0, 0); 2365 if (ret == 0) 2366 goto again; 2367 ret = 0; 2368 goto out; 2369 } else if (IS_ERR(log_di)) { 2370 kfree(name); 2371 return PTR_ERR(log_di); 2372 } 2373 btrfs_release_path(log_path); 2374 kfree(name); 2375 2376 ptr = (unsigned long)(di + 1); 2377 ptr += name_len; 2378 } 2379 ret = 0; 2380 out: 2381 btrfs_release_path(path); 2382 btrfs_release_path(log_path); 2383 return ret; 2384 } 2385 2386 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2387 struct btrfs_root *root, 2388 struct btrfs_root *log, 2389 struct btrfs_path *path, 2390 const u64 ino) 2391 { 2392 struct btrfs_key search_key; 2393 struct btrfs_path *log_path; 2394 int i; 2395 int nritems; 2396 int ret; 2397 2398 log_path = btrfs_alloc_path(); 2399 if (!log_path) 2400 return -ENOMEM; 2401 2402 search_key.objectid = ino; 2403 search_key.type = BTRFS_XATTR_ITEM_KEY; 2404 search_key.offset = 0; 2405 again: 2406 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2407 if (ret < 0) 2408 goto out; 2409 process_leaf: 2410 nritems = btrfs_header_nritems(path->nodes[0]); 2411 for (i = path->slots[0]; i < nritems; i++) { 2412 struct btrfs_key key; 2413 struct btrfs_dir_item *di; 2414 struct btrfs_dir_item *log_di; 2415 u32 total_size; 2416 u32 cur; 2417 2418 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2419 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2420 ret = 0; 2421 goto out; 2422 } 2423 2424 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2425 total_size = btrfs_item_size_nr(path->nodes[0], i); 2426 cur = 0; 2427 while (cur < total_size) { 2428 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2429 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2430 u32 this_len = sizeof(*di) + name_len + data_len; 2431 char *name; 2432 2433 name = kmalloc(name_len, GFP_NOFS); 2434 if (!name) { 2435 ret = -ENOMEM; 2436 goto out; 2437 } 2438 read_extent_buffer(path->nodes[0], name, 2439 (unsigned long)(di + 1), name_len); 2440 2441 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2442 name, name_len, 0); 2443 btrfs_release_path(log_path); 2444 if (!log_di) { 2445 /* Doesn't exist in log tree, so delete it. */ 2446 btrfs_release_path(path); 2447 di = btrfs_lookup_xattr(trans, root, path, ino, 2448 name, name_len, -1); 2449 kfree(name); 2450 if (IS_ERR(di)) { 2451 ret = PTR_ERR(di); 2452 goto out; 2453 } 2454 ASSERT(di); 2455 ret = btrfs_delete_one_dir_name(trans, root, 2456 path, di); 2457 if (ret) 2458 goto out; 2459 btrfs_release_path(path); 2460 search_key = key; 2461 goto again; 2462 } 2463 kfree(name); 2464 if (IS_ERR(log_di)) { 2465 ret = PTR_ERR(log_di); 2466 goto out; 2467 } 2468 cur += this_len; 2469 di = (struct btrfs_dir_item *)((char *)di + this_len); 2470 } 2471 } 2472 ret = btrfs_next_leaf(root, path); 2473 if (ret > 0) 2474 ret = 0; 2475 else if (ret == 0) 2476 goto process_leaf; 2477 out: 2478 btrfs_free_path(log_path); 2479 btrfs_release_path(path); 2480 return ret; 2481 } 2482 2483 2484 /* 2485 * deletion replay happens before we copy any new directory items 2486 * out of the log or out of backreferences from inodes. It 2487 * scans the log to find ranges of keys that log is authoritative for, 2488 * and then scans the directory to find items in those ranges that are 2489 * not present in the log. 2490 * 2491 * Anything we don't find in the log is unlinked and removed from the 2492 * directory. 2493 */ 2494 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2495 struct btrfs_root *root, 2496 struct btrfs_root *log, 2497 struct btrfs_path *path, 2498 u64 dirid, int del_all) 2499 { 2500 u64 range_start; 2501 u64 range_end; 2502 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2503 int ret = 0; 2504 struct btrfs_key dir_key; 2505 struct btrfs_key found_key; 2506 struct btrfs_path *log_path; 2507 struct inode *dir; 2508 2509 dir_key.objectid = dirid; 2510 dir_key.type = BTRFS_DIR_ITEM_KEY; 2511 log_path = btrfs_alloc_path(); 2512 if (!log_path) 2513 return -ENOMEM; 2514 2515 dir = read_one_inode(root, dirid); 2516 /* it isn't an error if the inode isn't there, that can happen 2517 * because we replay the deletes before we copy in the inode item 2518 * from the log 2519 */ 2520 if (!dir) { 2521 btrfs_free_path(log_path); 2522 return 0; 2523 } 2524 again: 2525 range_start = 0; 2526 range_end = 0; 2527 while (1) { 2528 if (del_all) 2529 range_end = (u64)-1; 2530 else { 2531 ret = find_dir_range(log, path, dirid, key_type, 2532 &range_start, &range_end); 2533 if (ret < 0) 2534 goto out; 2535 else if (ret > 0) 2536 break; 2537 } 2538 2539 dir_key.offset = range_start; 2540 while (1) { 2541 int nritems; 2542 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2543 0, 0); 2544 if (ret < 0) 2545 goto out; 2546 2547 nritems = btrfs_header_nritems(path->nodes[0]); 2548 if (path->slots[0] >= nritems) { 2549 ret = btrfs_next_leaf(root, path); 2550 if (ret == 1) 2551 break; 2552 else if (ret < 0) 2553 goto out; 2554 } 2555 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2556 path->slots[0]); 2557 if (found_key.objectid != dirid || 2558 found_key.type != dir_key.type) 2559 goto next_type; 2560 2561 if (found_key.offset > range_end) 2562 break; 2563 2564 ret = check_item_in_log(trans, log, path, 2565 log_path, dir, 2566 &found_key); 2567 if (ret) 2568 goto out; 2569 if (found_key.offset == (u64)-1) 2570 break; 2571 dir_key.offset = found_key.offset + 1; 2572 } 2573 btrfs_release_path(path); 2574 if (range_end == (u64)-1) 2575 break; 2576 range_start = range_end + 1; 2577 } 2578 2579 next_type: 2580 ret = 0; 2581 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2582 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2583 dir_key.type = BTRFS_DIR_INDEX_KEY; 2584 btrfs_release_path(path); 2585 goto again; 2586 } 2587 out: 2588 btrfs_release_path(path); 2589 btrfs_free_path(log_path); 2590 iput(dir); 2591 return ret; 2592 } 2593 2594 /* 2595 * the process_func used to replay items from the log tree. This 2596 * gets called in two different stages. The first stage just looks 2597 * for inodes and makes sure they are all copied into the subvolume. 2598 * 2599 * The second stage copies all the other item types from the log into 2600 * the subvolume. The two stage approach is slower, but gets rid of 2601 * lots of complexity around inodes referencing other inodes that exist 2602 * only in the log (references come from either directory items or inode 2603 * back refs). 2604 */ 2605 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2606 struct walk_control *wc, u64 gen, int level) 2607 { 2608 int nritems; 2609 struct btrfs_path *path; 2610 struct btrfs_root *root = wc->replay_dest; 2611 struct btrfs_key key; 2612 int i; 2613 int ret; 2614 2615 ret = btrfs_read_buffer(eb, gen, level, NULL); 2616 if (ret) 2617 return ret; 2618 2619 level = btrfs_header_level(eb); 2620 2621 if (level != 0) 2622 return 0; 2623 2624 path = btrfs_alloc_path(); 2625 if (!path) 2626 return -ENOMEM; 2627 2628 nritems = btrfs_header_nritems(eb); 2629 for (i = 0; i < nritems; i++) { 2630 btrfs_item_key_to_cpu(eb, &key, i); 2631 2632 /* inode keys are done during the first stage */ 2633 if (key.type == BTRFS_INODE_ITEM_KEY && 2634 wc->stage == LOG_WALK_REPLAY_INODES) { 2635 struct btrfs_inode_item *inode_item; 2636 u32 mode; 2637 2638 inode_item = btrfs_item_ptr(eb, i, 2639 struct btrfs_inode_item); 2640 /* 2641 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2642 * and never got linked before the fsync, skip it, as 2643 * replaying it is pointless since it would be deleted 2644 * later. We skip logging tmpfiles, but it's always 2645 * possible we are replaying a log created with a kernel 2646 * that used to log tmpfiles. 2647 */ 2648 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2649 wc->ignore_cur_inode = true; 2650 continue; 2651 } else { 2652 wc->ignore_cur_inode = false; 2653 } 2654 ret = replay_xattr_deletes(wc->trans, root, log, 2655 path, key.objectid); 2656 if (ret) 2657 break; 2658 mode = btrfs_inode_mode(eb, inode_item); 2659 if (S_ISDIR(mode)) { 2660 ret = replay_dir_deletes(wc->trans, 2661 root, log, path, key.objectid, 0); 2662 if (ret) 2663 break; 2664 } 2665 ret = overwrite_item(wc->trans, root, path, 2666 eb, i, &key); 2667 if (ret) 2668 break; 2669 2670 /* 2671 * Before replaying extents, truncate the inode to its 2672 * size. We need to do it now and not after log replay 2673 * because before an fsync we can have prealloc extents 2674 * added beyond the inode's i_size. If we did it after, 2675 * through orphan cleanup for example, we would drop 2676 * those prealloc extents just after replaying them. 2677 */ 2678 if (S_ISREG(mode)) { 2679 struct btrfs_drop_extents_args drop_args = { 0 }; 2680 struct inode *inode; 2681 u64 from; 2682 2683 inode = read_one_inode(root, key.objectid); 2684 if (!inode) { 2685 ret = -EIO; 2686 break; 2687 } 2688 from = ALIGN(i_size_read(inode), 2689 root->fs_info->sectorsize); 2690 drop_args.start = from; 2691 drop_args.end = (u64)-1; 2692 drop_args.drop_cache = true; 2693 ret = btrfs_drop_extents(wc->trans, root, 2694 BTRFS_I(inode), 2695 &drop_args); 2696 if (!ret) { 2697 inode_sub_bytes(inode, 2698 drop_args.bytes_found); 2699 /* Update the inode's nbytes. */ 2700 ret = btrfs_update_inode(wc->trans, 2701 root, BTRFS_I(inode)); 2702 } 2703 iput(inode); 2704 if (ret) 2705 break; 2706 } 2707 2708 ret = link_to_fixup_dir(wc->trans, root, 2709 path, key.objectid); 2710 if (ret) 2711 break; 2712 } 2713 2714 if (wc->ignore_cur_inode) 2715 continue; 2716 2717 if (key.type == BTRFS_DIR_INDEX_KEY && 2718 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2719 ret = replay_one_dir_item(wc->trans, root, path, 2720 eb, i, &key); 2721 if (ret) 2722 break; 2723 } 2724 2725 if (wc->stage < LOG_WALK_REPLAY_ALL) 2726 continue; 2727 2728 /* these keys are simply copied */ 2729 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2730 ret = overwrite_item(wc->trans, root, path, 2731 eb, i, &key); 2732 if (ret) 2733 break; 2734 } else if (key.type == BTRFS_INODE_REF_KEY || 2735 key.type == BTRFS_INODE_EXTREF_KEY) { 2736 ret = add_inode_ref(wc->trans, root, log, path, 2737 eb, i, &key); 2738 if (ret && ret != -ENOENT) 2739 break; 2740 ret = 0; 2741 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2742 ret = replay_one_extent(wc->trans, root, path, 2743 eb, i, &key); 2744 if (ret) 2745 break; 2746 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2747 ret = replay_one_dir_item(wc->trans, root, path, 2748 eb, i, &key); 2749 if (ret) 2750 break; 2751 } 2752 } 2753 btrfs_free_path(path); 2754 return ret; 2755 } 2756 2757 /* 2758 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2759 */ 2760 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2761 { 2762 struct btrfs_block_group *cache; 2763 2764 cache = btrfs_lookup_block_group(fs_info, start); 2765 if (!cache) { 2766 btrfs_err(fs_info, "unable to find block group for %llu", start); 2767 return; 2768 } 2769 2770 spin_lock(&cache->space_info->lock); 2771 spin_lock(&cache->lock); 2772 cache->reserved -= fs_info->nodesize; 2773 cache->space_info->bytes_reserved -= fs_info->nodesize; 2774 spin_unlock(&cache->lock); 2775 spin_unlock(&cache->space_info->lock); 2776 2777 btrfs_put_block_group(cache); 2778 } 2779 2780 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2781 struct btrfs_root *root, 2782 struct btrfs_path *path, int *level, 2783 struct walk_control *wc) 2784 { 2785 struct btrfs_fs_info *fs_info = root->fs_info; 2786 u64 bytenr; 2787 u64 ptr_gen; 2788 struct extent_buffer *next; 2789 struct extent_buffer *cur; 2790 u32 blocksize; 2791 int ret = 0; 2792 2793 while (*level > 0) { 2794 struct btrfs_key first_key; 2795 2796 cur = path->nodes[*level]; 2797 2798 WARN_ON(btrfs_header_level(cur) != *level); 2799 2800 if (path->slots[*level] >= 2801 btrfs_header_nritems(cur)) 2802 break; 2803 2804 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2805 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2806 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2807 blocksize = fs_info->nodesize; 2808 2809 next = btrfs_find_create_tree_block(fs_info, bytenr, 2810 btrfs_header_owner(cur), 2811 *level - 1); 2812 if (IS_ERR(next)) 2813 return PTR_ERR(next); 2814 2815 if (*level == 1) { 2816 ret = wc->process_func(root, next, wc, ptr_gen, 2817 *level - 1); 2818 if (ret) { 2819 free_extent_buffer(next); 2820 return ret; 2821 } 2822 2823 path->slots[*level]++; 2824 if (wc->free) { 2825 ret = btrfs_read_buffer(next, ptr_gen, 2826 *level - 1, &first_key); 2827 if (ret) { 2828 free_extent_buffer(next); 2829 return ret; 2830 } 2831 2832 if (trans) { 2833 btrfs_tree_lock(next); 2834 btrfs_clean_tree_block(next); 2835 btrfs_wait_tree_block_writeback(next); 2836 btrfs_tree_unlock(next); 2837 ret = btrfs_pin_reserved_extent(trans, 2838 bytenr, blocksize); 2839 if (ret) { 2840 free_extent_buffer(next); 2841 return ret; 2842 } 2843 btrfs_redirty_list_add( 2844 trans->transaction, next); 2845 } else { 2846 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2847 clear_extent_buffer_dirty(next); 2848 unaccount_log_buffer(fs_info, bytenr); 2849 } 2850 } 2851 free_extent_buffer(next); 2852 continue; 2853 } 2854 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2855 if (ret) { 2856 free_extent_buffer(next); 2857 return ret; 2858 } 2859 2860 if (path->nodes[*level-1]) 2861 free_extent_buffer(path->nodes[*level-1]); 2862 path->nodes[*level-1] = next; 2863 *level = btrfs_header_level(next); 2864 path->slots[*level] = 0; 2865 cond_resched(); 2866 } 2867 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2868 2869 cond_resched(); 2870 return 0; 2871 } 2872 2873 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2874 struct btrfs_root *root, 2875 struct btrfs_path *path, int *level, 2876 struct walk_control *wc) 2877 { 2878 struct btrfs_fs_info *fs_info = root->fs_info; 2879 int i; 2880 int slot; 2881 int ret; 2882 2883 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2884 slot = path->slots[i]; 2885 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2886 path->slots[i]++; 2887 *level = i; 2888 WARN_ON(*level == 0); 2889 return 0; 2890 } else { 2891 ret = wc->process_func(root, path->nodes[*level], wc, 2892 btrfs_header_generation(path->nodes[*level]), 2893 *level); 2894 if (ret) 2895 return ret; 2896 2897 if (wc->free) { 2898 struct extent_buffer *next; 2899 2900 next = path->nodes[*level]; 2901 2902 if (trans) { 2903 btrfs_tree_lock(next); 2904 btrfs_clean_tree_block(next); 2905 btrfs_wait_tree_block_writeback(next); 2906 btrfs_tree_unlock(next); 2907 ret = btrfs_pin_reserved_extent(trans, 2908 path->nodes[*level]->start, 2909 path->nodes[*level]->len); 2910 if (ret) 2911 return ret; 2912 btrfs_redirty_list_add(trans->transaction, 2913 next); 2914 } else { 2915 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2916 clear_extent_buffer_dirty(next); 2917 2918 unaccount_log_buffer(fs_info, 2919 path->nodes[*level]->start); 2920 } 2921 } 2922 free_extent_buffer(path->nodes[*level]); 2923 path->nodes[*level] = NULL; 2924 *level = i + 1; 2925 } 2926 } 2927 return 1; 2928 } 2929 2930 /* 2931 * drop the reference count on the tree rooted at 'snap'. This traverses 2932 * the tree freeing any blocks that have a ref count of zero after being 2933 * decremented. 2934 */ 2935 static int walk_log_tree(struct btrfs_trans_handle *trans, 2936 struct btrfs_root *log, struct walk_control *wc) 2937 { 2938 struct btrfs_fs_info *fs_info = log->fs_info; 2939 int ret = 0; 2940 int wret; 2941 int level; 2942 struct btrfs_path *path; 2943 int orig_level; 2944 2945 path = btrfs_alloc_path(); 2946 if (!path) 2947 return -ENOMEM; 2948 2949 level = btrfs_header_level(log->node); 2950 orig_level = level; 2951 path->nodes[level] = log->node; 2952 atomic_inc(&log->node->refs); 2953 path->slots[level] = 0; 2954 2955 while (1) { 2956 wret = walk_down_log_tree(trans, log, path, &level, wc); 2957 if (wret > 0) 2958 break; 2959 if (wret < 0) { 2960 ret = wret; 2961 goto out; 2962 } 2963 2964 wret = walk_up_log_tree(trans, log, path, &level, wc); 2965 if (wret > 0) 2966 break; 2967 if (wret < 0) { 2968 ret = wret; 2969 goto out; 2970 } 2971 } 2972 2973 /* was the root node processed? if not, catch it here */ 2974 if (path->nodes[orig_level]) { 2975 ret = wc->process_func(log, path->nodes[orig_level], wc, 2976 btrfs_header_generation(path->nodes[orig_level]), 2977 orig_level); 2978 if (ret) 2979 goto out; 2980 if (wc->free) { 2981 struct extent_buffer *next; 2982 2983 next = path->nodes[orig_level]; 2984 2985 if (trans) { 2986 btrfs_tree_lock(next); 2987 btrfs_clean_tree_block(next); 2988 btrfs_wait_tree_block_writeback(next); 2989 btrfs_tree_unlock(next); 2990 ret = btrfs_pin_reserved_extent(trans, 2991 next->start, next->len); 2992 if (ret) 2993 goto out; 2994 btrfs_redirty_list_add(trans->transaction, next); 2995 } else { 2996 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2997 clear_extent_buffer_dirty(next); 2998 unaccount_log_buffer(fs_info, next->start); 2999 } 3000 } 3001 } 3002 3003 out: 3004 btrfs_free_path(path); 3005 return ret; 3006 } 3007 3008 /* 3009 * helper function to update the item for a given subvolumes log root 3010 * in the tree of log roots 3011 */ 3012 static int update_log_root(struct btrfs_trans_handle *trans, 3013 struct btrfs_root *log, 3014 struct btrfs_root_item *root_item) 3015 { 3016 struct btrfs_fs_info *fs_info = log->fs_info; 3017 int ret; 3018 3019 if (log->log_transid == 1) { 3020 /* insert root item on the first sync */ 3021 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 3022 &log->root_key, root_item); 3023 } else { 3024 ret = btrfs_update_root(trans, fs_info->log_root_tree, 3025 &log->root_key, root_item); 3026 } 3027 return ret; 3028 } 3029 3030 static void wait_log_commit(struct btrfs_root *root, int transid) 3031 { 3032 DEFINE_WAIT(wait); 3033 int index = transid % 2; 3034 3035 /* 3036 * we only allow two pending log transactions at a time, 3037 * so we know that if ours is more than 2 older than the 3038 * current transaction, we're done 3039 */ 3040 for (;;) { 3041 prepare_to_wait(&root->log_commit_wait[index], 3042 &wait, TASK_UNINTERRUPTIBLE); 3043 3044 if (!(root->log_transid_committed < transid && 3045 atomic_read(&root->log_commit[index]))) 3046 break; 3047 3048 mutex_unlock(&root->log_mutex); 3049 schedule(); 3050 mutex_lock(&root->log_mutex); 3051 } 3052 finish_wait(&root->log_commit_wait[index], &wait); 3053 } 3054 3055 static void wait_for_writer(struct btrfs_root *root) 3056 { 3057 DEFINE_WAIT(wait); 3058 3059 for (;;) { 3060 prepare_to_wait(&root->log_writer_wait, &wait, 3061 TASK_UNINTERRUPTIBLE); 3062 if (!atomic_read(&root->log_writers)) 3063 break; 3064 3065 mutex_unlock(&root->log_mutex); 3066 schedule(); 3067 mutex_lock(&root->log_mutex); 3068 } 3069 finish_wait(&root->log_writer_wait, &wait); 3070 } 3071 3072 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 3073 struct btrfs_log_ctx *ctx) 3074 { 3075 mutex_lock(&root->log_mutex); 3076 list_del_init(&ctx->list); 3077 mutex_unlock(&root->log_mutex); 3078 } 3079 3080 /* 3081 * Invoked in log mutex context, or be sure there is no other task which 3082 * can access the list. 3083 */ 3084 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 3085 int index, int error) 3086 { 3087 struct btrfs_log_ctx *ctx; 3088 struct btrfs_log_ctx *safe; 3089 3090 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 3091 list_del_init(&ctx->list); 3092 ctx->log_ret = error; 3093 } 3094 } 3095 3096 /* 3097 * btrfs_sync_log does sends a given tree log down to the disk and 3098 * updates the super blocks to record it. When this call is done, 3099 * you know that any inodes previously logged are safely on disk only 3100 * if it returns 0. 3101 * 3102 * Any other return value means you need to call btrfs_commit_transaction. 3103 * Some of the edge cases for fsyncing directories that have had unlinks 3104 * or renames done in the past mean that sometimes the only safe 3105 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3106 * that has happened. 3107 */ 3108 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3109 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3110 { 3111 int index1; 3112 int index2; 3113 int mark; 3114 int ret; 3115 struct btrfs_fs_info *fs_info = root->fs_info; 3116 struct btrfs_root *log = root->log_root; 3117 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3118 struct btrfs_root_item new_root_item; 3119 int log_transid = 0; 3120 struct btrfs_log_ctx root_log_ctx; 3121 struct blk_plug plug; 3122 u64 log_root_start; 3123 u64 log_root_level; 3124 3125 mutex_lock(&root->log_mutex); 3126 log_transid = ctx->log_transid; 3127 if (root->log_transid_committed >= log_transid) { 3128 mutex_unlock(&root->log_mutex); 3129 return ctx->log_ret; 3130 } 3131 3132 index1 = log_transid % 2; 3133 if (atomic_read(&root->log_commit[index1])) { 3134 wait_log_commit(root, log_transid); 3135 mutex_unlock(&root->log_mutex); 3136 return ctx->log_ret; 3137 } 3138 ASSERT(log_transid == root->log_transid); 3139 atomic_set(&root->log_commit[index1], 1); 3140 3141 /* wait for previous tree log sync to complete */ 3142 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3143 wait_log_commit(root, log_transid - 1); 3144 3145 while (1) { 3146 int batch = atomic_read(&root->log_batch); 3147 /* when we're on an ssd, just kick the log commit out */ 3148 if (!btrfs_test_opt(fs_info, SSD) && 3149 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3150 mutex_unlock(&root->log_mutex); 3151 schedule_timeout_uninterruptible(1); 3152 mutex_lock(&root->log_mutex); 3153 } 3154 wait_for_writer(root); 3155 if (batch == atomic_read(&root->log_batch)) 3156 break; 3157 } 3158 3159 /* bail out if we need to do a full commit */ 3160 if (btrfs_need_log_full_commit(trans)) { 3161 ret = -EAGAIN; 3162 mutex_unlock(&root->log_mutex); 3163 goto out; 3164 } 3165 3166 if (log_transid % 2 == 0) 3167 mark = EXTENT_DIRTY; 3168 else 3169 mark = EXTENT_NEW; 3170 3171 /* we start IO on all the marked extents here, but we don't actually 3172 * wait for them until later. 3173 */ 3174 blk_start_plug(&plug); 3175 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3176 /* 3177 * -EAGAIN happens when someone, e.g., a concurrent transaction 3178 * commit, writes a dirty extent in this tree-log commit. This 3179 * concurrent write will create a hole writing out the extents, 3180 * and we cannot proceed on a zoned filesystem, requiring 3181 * sequential writing. While we can bail out to a full commit 3182 * here, but we can continue hoping the concurrent writing fills 3183 * the hole. 3184 */ 3185 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) 3186 ret = 0; 3187 if (ret) { 3188 blk_finish_plug(&plug); 3189 btrfs_abort_transaction(trans, ret); 3190 btrfs_set_log_full_commit(trans); 3191 mutex_unlock(&root->log_mutex); 3192 goto out; 3193 } 3194 3195 /* 3196 * We _must_ update under the root->log_mutex in order to make sure we 3197 * have a consistent view of the log root we are trying to commit at 3198 * this moment. 3199 * 3200 * We _must_ copy this into a local copy, because we are not holding the 3201 * log_root_tree->log_mutex yet. This is important because when we 3202 * commit the log_root_tree we must have a consistent view of the 3203 * log_root_tree when we update the super block to point at the 3204 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3205 * with the commit and possibly point at the new block which we may not 3206 * have written out. 3207 */ 3208 btrfs_set_root_node(&log->root_item, log->node); 3209 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3210 3211 root->log_transid++; 3212 log->log_transid = root->log_transid; 3213 root->log_start_pid = 0; 3214 /* 3215 * IO has been started, blocks of the log tree have WRITTEN flag set 3216 * in their headers. new modifications of the log will be written to 3217 * new positions. so it's safe to allow log writers to go in. 3218 */ 3219 mutex_unlock(&root->log_mutex); 3220 3221 if (btrfs_is_zoned(fs_info)) { 3222 mutex_lock(&fs_info->tree_root->log_mutex); 3223 if (!log_root_tree->node) { 3224 ret = btrfs_alloc_log_tree_node(trans, log_root_tree); 3225 if (ret) { 3226 mutex_unlock(&fs_info->tree_root->log_mutex); 3227 goto out; 3228 } 3229 } 3230 mutex_unlock(&fs_info->tree_root->log_mutex); 3231 } 3232 3233 btrfs_init_log_ctx(&root_log_ctx, NULL); 3234 3235 mutex_lock(&log_root_tree->log_mutex); 3236 3237 index2 = log_root_tree->log_transid % 2; 3238 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3239 root_log_ctx.log_transid = log_root_tree->log_transid; 3240 3241 /* 3242 * Now we are safe to update the log_root_tree because we're under the 3243 * log_mutex, and we're a current writer so we're holding the commit 3244 * open until we drop the log_mutex. 3245 */ 3246 ret = update_log_root(trans, log, &new_root_item); 3247 if (ret) { 3248 if (!list_empty(&root_log_ctx.list)) 3249 list_del_init(&root_log_ctx.list); 3250 3251 blk_finish_plug(&plug); 3252 btrfs_set_log_full_commit(trans); 3253 3254 if (ret != -ENOSPC) { 3255 btrfs_abort_transaction(trans, ret); 3256 mutex_unlock(&log_root_tree->log_mutex); 3257 goto out; 3258 } 3259 btrfs_wait_tree_log_extents(log, mark); 3260 mutex_unlock(&log_root_tree->log_mutex); 3261 ret = -EAGAIN; 3262 goto out; 3263 } 3264 3265 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3266 blk_finish_plug(&plug); 3267 list_del_init(&root_log_ctx.list); 3268 mutex_unlock(&log_root_tree->log_mutex); 3269 ret = root_log_ctx.log_ret; 3270 goto out; 3271 } 3272 3273 index2 = root_log_ctx.log_transid % 2; 3274 if (atomic_read(&log_root_tree->log_commit[index2])) { 3275 blk_finish_plug(&plug); 3276 ret = btrfs_wait_tree_log_extents(log, mark); 3277 wait_log_commit(log_root_tree, 3278 root_log_ctx.log_transid); 3279 mutex_unlock(&log_root_tree->log_mutex); 3280 if (!ret) 3281 ret = root_log_ctx.log_ret; 3282 goto out; 3283 } 3284 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3285 atomic_set(&log_root_tree->log_commit[index2], 1); 3286 3287 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3288 wait_log_commit(log_root_tree, 3289 root_log_ctx.log_transid - 1); 3290 } 3291 3292 /* 3293 * now that we've moved on to the tree of log tree roots, 3294 * check the full commit flag again 3295 */ 3296 if (btrfs_need_log_full_commit(trans)) { 3297 blk_finish_plug(&plug); 3298 btrfs_wait_tree_log_extents(log, mark); 3299 mutex_unlock(&log_root_tree->log_mutex); 3300 ret = -EAGAIN; 3301 goto out_wake_log_root; 3302 } 3303 3304 ret = btrfs_write_marked_extents(fs_info, 3305 &log_root_tree->dirty_log_pages, 3306 EXTENT_DIRTY | EXTENT_NEW); 3307 blk_finish_plug(&plug); 3308 /* 3309 * As described above, -EAGAIN indicates a hole in the extents. We 3310 * cannot wait for these write outs since the waiting cause a 3311 * deadlock. Bail out to the full commit instead. 3312 */ 3313 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { 3314 btrfs_set_log_full_commit(trans); 3315 btrfs_wait_tree_log_extents(log, mark); 3316 mutex_unlock(&log_root_tree->log_mutex); 3317 goto out_wake_log_root; 3318 } else if (ret) { 3319 btrfs_set_log_full_commit(trans); 3320 btrfs_abort_transaction(trans, ret); 3321 mutex_unlock(&log_root_tree->log_mutex); 3322 goto out_wake_log_root; 3323 } 3324 ret = btrfs_wait_tree_log_extents(log, mark); 3325 if (!ret) 3326 ret = btrfs_wait_tree_log_extents(log_root_tree, 3327 EXTENT_NEW | EXTENT_DIRTY); 3328 if (ret) { 3329 btrfs_set_log_full_commit(trans); 3330 mutex_unlock(&log_root_tree->log_mutex); 3331 goto out_wake_log_root; 3332 } 3333 3334 log_root_start = log_root_tree->node->start; 3335 log_root_level = btrfs_header_level(log_root_tree->node); 3336 log_root_tree->log_transid++; 3337 mutex_unlock(&log_root_tree->log_mutex); 3338 3339 /* 3340 * Here we are guaranteed that nobody is going to write the superblock 3341 * for the current transaction before us and that neither we do write 3342 * our superblock before the previous transaction finishes its commit 3343 * and writes its superblock, because: 3344 * 3345 * 1) We are holding a handle on the current transaction, so no body 3346 * can commit it until we release the handle; 3347 * 3348 * 2) Before writing our superblock we acquire the tree_log_mutex, so 3349 * if the previous transaction is still committing, and hasn't yet 3350 * written its superblock, we wait for it to do it, because a 3351 * transaction commit acquires the tree_log_mutex when the commit 3352 * begins and releases it only after writing its superblock. 3353 */ 3354 mutex_lock(&fs_info->tree_log_mutex); 3355 3356 /* 3357 * The previous transaction writeout phase could have failed, and thus 3358 * marked the fs in an error state. We must not commit here, as we 3359 * could have updated our generation in the super_for_commit and 3360 * writing the super here would result in transid mismatches. If there 3361 * is an error here just bail. 3362 */ 3363 if (BTRFS_FS_ERROR(fs_info)) { 3364 ret = -EIO; 3365 btrfs_set_log_full_commit(trans); 3366 btrfs_abort_transaction(trans, ret); 3367 mutex_unlock(&fs_info->tree_log_mutex); 3368 goto out_wake_log_root; 3369 } 3370 3371 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); 3372 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); 3373 ret = write_all_supers(fs_info, 1); 3374 mutex_unlock(&fs_info->tree_log_mutex); 3375 if (ret) { 3376 btrfs_set_log_full_commit(trans); 3377 btrfs_abort_transaction(trans, ret); 3378 goto out_wake_log_root; 3379 } 3380 3381 /* 3382 * We know there can only be one task here, since we have not yet set 3383 * root->log_commit[index1] to 0 and any task attempting to sync the 3384 * log must wait for the previous log transaction to commit if it's 3385 * still in progress or wait for the current log transaction commit if 3386 * someone else already started it. We use <= and not < because the 3387 * first log transaction has an ID of 0. 3388 */ 3389 ASSERT(root->last_log_commit <= log_transid); 3390 root->last_log_commit = log_transid; 3391 3392 out_wake_log_root: 3393 mutex_lock(&log_root_tree->log_mutex); 3394 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3395 3396 log_root_tree->log_transid_committed++; 3397 atomic_set(&log_root_tree->log_commit[index2], 0); 3398 mutex_unlock(&log_root_tree->log_mutex); 3399 3400 /* 3401 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3402 * all the updates above are seen by the woken threads. It might not be 3403 * necessary, but proving that seems to be hard. 3404 */ 3405 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3406 out: 3407 mutex_lock(&root->log_mutex); 3408 btrfs_remove_all_log_ctxs(root, index1, ret); 3409 root->log_transid_committed++; 3410 atomic_set(&root->log_commit[index1], 0); 3411 mutex_unlock(&root->log_mutex); 3412 3413 /* 3414 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3415 * all the updates above are seen by the woken threads. It might not be 3416 * necessary, but proving that seems to be hard. 3417 */ 3418 cond_wake_up(&root->log_commit_wait[index1]); 3419 return ret; 3420 } 3421 3422 static void free_log_tree(struct btrfs_trans_handle *trans, 3423 struct btrfs_root *log) 3424 { 3425 int ret; 3426 struct walk_control wc = { 3427 .free = 1, 3428 .process_func = process_one_buffer 3429 }; 3430 3431 if (log->node) { 3432 ret = walk_log_tree(trans, log, &wc); 3433 if (ret) { 3434 if (trans) 3435 btrfs_abort_transaction(trans, ret); 3436 else 3437 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3438 } 3439 } 3440 3441 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3442 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3443 extent_io_tree_release(&log->log_csum_range); 3444 3445 btrfs_put_root(log); 3446 } 3447 3448 /* 3449 * free all the extents used by the tree log. This should be called 3450 * at commit time of the full transaction 3451 */ 3452 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3453 { 3454 if (root->log_root) { 3455 free_log_tree(trans, root->log_root); 3456 root->log_root = NULL; 3457 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3458 } 3459 return 0; 3460 } 3461 3462 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3463 struct btrfs_fs_info *fs_info) 3464 { 3465 if (fs_info->log_root_tree) { 3466 free_log_tree(trans, fs_info->log_root_tree); 3467 fs_info->log_root_tree = NULL; 3468 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); 3469 } 3470 return 0; 3471 } 3472 3473 /* 3474 * Check if an inode was logged in the current transaction. This may often 3475 * return some false positives, because logged_trans is an in memory only field, 3476 * not persisted anywhere. This is meant to be used in contexts where a false 3477 * positive has no functional consequences. 3478 */ 3479 static bool inode_logged(struct btrfs_trans_handle *trans, 3480 struct btrfs_inode *inode) 3481 { 3482 if (inode->logged_trans == trans->transid) 3483 return true; 3484 3485 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) 3486 return false; 3487 3488 /* 3489 * The inode's logged_trans is always 0 when we load it (because it is 3490 * not persisted in the inode item or elsewhere). So if it is 0, the 3491 * inode was last modified in the current transaction then the inode may 3492 * have been logged before in the current transaction, then evicted and 3493 * loaded again in the current transaction - or may have never been logged 3494 * in the current transaction, but since we can not be sure, we have to 3495 * assume it was, otherwise our callers can leave an inconsistent log. 3496 */ 3497 if (inode->logged_trans == 0 && 3498 inode->last_trans == trans->transid && 3499 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags)) 3500 return true; 3501 3502 return false; 3503 } 3504 3505 /* 3506 * If both a file and directory are logged, and unlinks or renames are 3507 * mixed in, we have a few interesting corners: 3508 * 3509 * create file X in dir Y 3510 * link file X to X.link in dir Y 3511 * fsync file X 3512 * unlink file X but leave X.link 3513 * fsync dir Y 3514 * 3515 * After a crash we would expect only X.link to exist. But file X 3516 * didn't get fsync'd again so the log has back refs for X and X.link. 3517 * 3518 * We solve this by removing directory entries and inode backrefs from the 3519 * log when a file that was logged in the current transaction is 3520 * unlinked. Any later fsync will include the updated log entries, and 3521 * we'll be able to reconstruct the proper directory items from backrefs. 3522 * 3523 * This optimizations allows us to avoid relogging the entire inode 3524 * or the entire directory. 3525 */ 3526 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3527 struct btrfs_root *root, 3528 const char *name, int name_len, 3529 struct btrfs_inode *dir, u64 index) 3530 { 3531 struct btrfs_root *log; 3532 struct btrfs_dir_item *di; 3533 struct btrfs_path *path; 3534 int ret; 3535 int err = 0; 3536 u64 dir_ino = btrfs_ino(dir); 3537 3538 if (!inode_logged(trans, dir)) 3539 return; 3540 3541 ret = join_running_log_trans(root); 3542 if (ret) 3543 return; 3544 3545 mutex_lock(&dir->log_mutex); 3546 3547 log = root->log_root; 3548 path = btrfs_alloc_path(); 3549 if (!path) { 3550 err = -ENOMEM; 3551 goto out_unlock; 3552 } 3553 3554 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3555 name, name_len, -1); 3556 if (IS_ERR(di)) { 3557 err = PTR_ERR(di); 3558 goto fail; 3559 } 3560 if (di) { 3561 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3562 if (ret) { 3563 err = ret; 3564 goto fail; 3565 } 3566 } 3567 btrfs_release_path(path); 3568 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3569 index, name, name_len, -1); 3570 if (IS_ERR(di)) { 3571 err = PTR_ERR(di); 3572 goto fail; 3573 } 3574 if (di) { 3575 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3576 if (ret) { 3577 err = ret; 3578 goto fail; 3579 } 3580 } 3581 3582 /* 3583 * We do not need to update the size field of the directory's inode item 3584 * because on log replay we update the field to reflect all existing 3585 * entries in the directory (see overwrite_item()). 3586 */ 3587 fail: 3588 btrfs_free_path(path); 3589 out_unlock: 3590 mutex_unlock(&dir->log_mutex); 3591 if (err < 0) 3592 btrfs_set_log_full_commit(trans); 3593 btrfs_end_log_trans(root); 3594 } 3595 3596 /* see comments for btrfs_del_dir_entries_in_log */ 3597 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3598 struct btrfs_root *root, 3599 const char *name, int name_len, 3600 struct btrfs_inode *inode, u64 dirid) 3601 { 3602 struct btrfs_root *log; 3603 u64 index; 3604 int ret; 3605 3606 if (!inode_logged(trans, inode)) 3607 return; 3608 3609 ret = join_running_log_trans(root); 3610 if (ret) 3611 return; 3612 log = root->log_root; 3613 mutex_lock(&inode->log_mutex); 3614 3615 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3616 dirid, &index); 3617 mutex_unlock(&inode->log_mutex); 3618 if (ret < 0 && ret != -ENOENT) 3619 btrfs_set_log_full_commit(trans); 3620 btrfs_end_log_trans(root); 3621 } 3622 3623 /* 3624 * creates a range item in the log for 'dirid'. first_offset and 3625 * last_offset tell us which parts of the key space the log should 3626 * be considered authoritative for. 3627 */ 3628 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3629 struct btrfs_root *log, 3630 struct btrfs_path *path, 3631 int key_type, u64 dirid, 3632 u64 first_offset, u64 last_offset) 3633 { 3634 int ret; 3635 struct btrfs_key key; 3636 struct btrfs_dir_log_item *item; 3637 3638 key.objectid = dirid; 3639 key.offset = first_offset; 3640 if (key_type == BTRFS_DIR_ITEM_KEY) 3641 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3642 else 3643 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3644 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3645 if (ret) 3646 return ret; 3647 3648 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3649 struct btrfs_dir_log_item); 3650 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3651 btrfs_mark_buffer_dirty(path->nodes[0]); 3652 btrfs_release_path(path); 3653 return 0; 3654 } 3655 3656 static int flush_dir_items_batch(struct btrfs_trans_handle *trans, 3657 struct btrfs_root *log, 3658 struct extent_buffer *src, 3659 struct btrfs_path *dst_path, 3660 int start_slot, 3661 int count) 3662 { 3663 char *ins_data = NULL; 3664 struct btrfs_item_batch batch; 3665 struct extent_buffer *dst; 3666 unsigned long src_offset; 3667 unsigned long dst_offset; 3668 struct btrfs_key key; 3669 u32 item_size; 3670 int ret; 3671 int i; 3672 3673 ASSERT(count > 0); 3674 batch.nr = count; 3675 3676 if (count == 1) { 3677 btrfs_item_key_to_cpu(src, &key, start_slot); 3678 item_size = btrfs_item_size_nr(src, start_slot); 3679 batch.keys = &key; 3680 batch.data_sizes = &item_size; 3681 batch.total_data_size = item_size; 3682 } else { 3683 struct btrfs_key *ins_keys; 3684 u32 *ins_sizes; 3685 3686 ins_data = kmalloc(count * sizeof(u32) + 3687 count * sizeof(struct btrfs_key), GFP_NOFS); 3688 if (!ins_data) 3689 return -ENOMEM; 3690 3691 ins_sizes = (u32 *)ins_data; 3692 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); 3693 batch.keys = ins_keys; 3694 batch.data_sizes = ins_sizes; 3695 batch.total_data_size = 0; 3696 3697 for (i = 0; i < count; i++) { 3698 const int slot = start_slot + i; 3699 3700 btrfs_item_key_to_cpu(src, &ins_keys[i], slot); 3701 ins_sizes[i] = btrfs_item_size_nr(src, slot); 3702 batch.total_data_size += ins_sizes[i]; 3703 } 3704 } 3705 3706 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 3707 if (ret) 3708 goto out; 3709 3710 dst = dst_path->nodes[0]; 3711 /* 3712 * Copy all the items in bulk, in a single copy operation. Item data is 3713 * organized such that it's placed at the end of a leaf and from right 3714 * to left. For example, the data for the second item ends at an offset 3715 * that matches the offset where the data for the first item starts, the 3716 * data for the third item ends at an offset that matches the offset 3717 * where the data of the second items starts, and so on. 3718 * Therefore our source and destination start offsets for copy match the 3719 * offsets of the last items (highest slots). 3720 */ 3721 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); 3722 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); 3723 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); 3724 btrfs_release_path(dst_path); 3725 out: 3726 kfree(ins_data); 3727 3728 return ret; 3729 } 3730 3731 static int process_dir_items_leaf(struct btrfs_trans_handle *trans, 3732 struct btrfs_inode *inode, 3733 struct btrfs_path *path, 3734 struct btrfs_path *dst_path, 3735 int key_type, 3736 struct btrfs_log_ctx *ctx) 3737 { 3738 struct btrfs_root *log = inode->root->log_root; 3739 struct extent_buffer *src = path->nodes[0]; 3740 const int nritems = btrfs_header_nritems(src); 3741 const u64 ino = btrfs_ino(inode); 3742 const bool inode_logged_before = inode_logged(trans, inode); 3743 u64 last_logged_key_offset; 3744 bool last_found = false; 3745 int batch_start = 0; 3746 int batch_size = 0; 3747 int i; 3748 3749 if (key_type == BTRFS_DIR_ITEM_KEY) 3750 last_logged_key_offset = inode->last_dir_item_offset; 3751 else 3752 last_logged_key_offset = inode->last_dir_index_offset; 3753 3754 for (i = path->slots[0]; i < nritems; i++) { 3755 struct btrfs_key key; 3756 int ret; 3757 3758 btrfs_item_key_to_cpu(src, &key, i); 3759 3760 if (key.objectid != ino || key.type != key_type) { 3761 last_found = true; 3762 break; 3763 } 3764 3765 ctx->last_dir_item_offset = key.offset; 3766 /* 3767 * We must make sure that when we log a directory entry, the 3768 * corresponding inode, after log replay, has a matching link 3769 * count. For example: 3770 * 3771 * touch foo 3772 * mkdir mydir 3773 * sync 3774 * ln foo mydir/bar 3775 * xfs_io -c "fsync" mydir 3776 * <crash> 3777 * <mount fs and log replay> 3778 * 3779 * Would result in a fsync log that when replayed, our file inode 3780 * would have a link count of 1, but we get two directory entries 3781 * pointing to the same inode. After removing one of the names, 3782 * it would not be possible to remove the other name, which 3783 * resulted always in stale file handle errors, and would not be 3784 * possible to rmdir the parent directory, since its i_size could 3785 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, 3786 * resulting in -ENOTEMPTY errors. 3787 */ 3788 if (!ctx->log_new_dentries) { 3789 struct btrfs_dir_item *di; 3790 struct btrfs_key di_key; 3791 3792 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3793 btrfs_dir_item_key_to_cpu(src, di, &di_key); 3794 if ((btrfs_dir_transid(src, di) == trans->transid || 3795 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3796 di_key.type != BTRFS_ROOT_ITEM_KEY) 3797 ctx->log_new_dentries = true; 3798 } 3799 3800 if (!inode_logged_before) 3801 goto add_to_batch; 3802 3803 /* 3804 * If we were logged before and have logged dir items, we can skip 3805 * checking if any item with a key offset larger than the last one 3806 * we logged is in the log tree, saving time and avoiding adding 3807 * contention on the log tree. 3808 */ 3809 if (key.offset > last_logged_key_offset) 3810 goto add_to_batch; 3811 /* 3812 * Check if the key was already logged before. If not we can add 3813 * it to a batch for bulk insertion. 3814 */ 3815 ret = btrfs_search_slot(NULL, log, &key, dst_path, 0, 0); 3816 if (ret < 0) { 3817 return ret; 3818 } else if (ret > 0) { 3819 btrfs_release_path(dst_path); 3820 goto add_to_batch; 3821 } 3822 3823 /* 3824 * Item exists in the log. Overwrite the item in the log if it 3825 * has different content or do nothing if it has exactly the same 3826 * content. And then flush the current batch if any - do it after 3827 * overwriting the current item, or we would deadlock otherwise, 3828 * since we are holding a path for the existing item. 3829 */ 3830 ret = do_overwrite_item(trans, log, dst_path, src, i, &key); 3831 if (ret < 0) 3832 return ret; 3833 3834 if (batch_size > 0) { 3835 ret = flush_dir_items_batch(trans, log, src, dst_path, 3836 batch_start, batch_size); 3837 if (ret < 0) 3838 return ret; 3839 batch_size = 0; 3840 } 3841 continue; 3842 add_to_batch: 3843 if (batch_size == 0) 3844 batch_start = i; 3845 batch_size++; 3846 } 3847 3848 if (batch_size > 0) { 3849 int ret; 3850 3851 ret = flush_dir_items_batch(trans, log, src, dst_path, 3852 batch_start, batch_size); 3853 if (ret < 0) 3854 return ret; 3855 } 3856 3857 return last_found ? 1 : 0; 3858 } 3859 3860 /* 3861 * log all the items included in the current transaction for a given 3862 * directory. This also creates the range items in the log tree required 3863 * to replay anything deleted before the fsync 3864 */ 3865 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3866 struct btrfs_inode *inode, 3867 struct btrfs_path *path, 3868 struct btrfs_path *dst_path, int key_type, 3869 struct btrfs_log_ctx *ctx, 3870 u64 min_offset, u64 *last_offset_ret) 3871 { 3872 struct btrfs_key min_key; 3873 struct btrfs_root *root = inode->root; 3874 struct btrfs_root *log = root->log_root; 3875 int err = 0; 3876 int ret; 3877 u64 first_offset = min_offset; 3878 u64 last_offset = (u64)-1; 3879 u64 ino = btrfs_ino(inode); 3880 3881 min_key.objectid = ino; 3882 min_key.type = key_type; 3883 min_key.offset = min_offset; 3884 3885 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3886 3887 /* 3888 * we didn't find anything from this transaction, see if there 3889 * is anything at all 3890 */ 3891 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3892 min_key.objectid = ino; 3893 min_key.type = key_type; 3894 min_key.offset = (u64)-1; 3895 btrfs_release_path(path); 3896 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3897 if (ret < 0) { 3898 btrfs_release_path(path); 3899 return ret; 3900 } 3901 ret = btrfs_previous_item(root, path, ino, key_type); 3902 3903 /* if ret == 0 there are items for this type, 3904 * create a range to tell us the last key of this type. 3905 * otherwise, there are no items in this directory after 3906 * *min_offset, and we create a range to indicate that. 3907 */ 3908 if (ret == 0) { 3909 struct btrfs_key tmp; 3910 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3911 path->slots[0]); 3912 if (key_type == tmp.type) 3913 first_offset = max(min_offset, tmp.offset) + 1; 3914 } 3915 goto done; 3916 } 3917 3918 /* go backward to find any previous key */ 3919 ret = btrfs_previous_item(root, path, ino, key_type); 3920 if (ret == 0) { 3921 struct btrfs_key tmp; 3922 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3923 if (key_type == tmp.type) { 3924 first_offset = tmp.offset; 3925 ret = overwrite_item(trans, log, dst_path, 3926 path->nodes[0], path->slots[0], 3927 &tmp); 3928 if (ret) { 3929 err = ret; 3930 goto done; 3931 } 3932 } 3933 } 3934 btrfs_release_path(path); 3935 3936 /* 3937 * Find the first key from this transaction again. See the note for 3938 * log_new_dir_dentries, if we're logging a directory recursively we 3939 * won't be holding its i_mutex, which means we can modify the directory 3940 * while we're logging it. If we remove an entry between our first 3941 * search and this search we'll not find the key again and can just 3942 * bail. 3943 */ 3944 search: 3945 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3946 if (ret != 0) 3947 goto done; 3948 3949 /* 3950 * we have a block from this transaction, log every item in it 3951 * from our directory 3952 */ 3953 while (1) { 3954 ret = process_dir_items_leaf(trans, inode, path, dst_path, 3955 key_type, ctx); 3956 if (ret != 0) { 3957 if (ret < 0) 3958 err = ret; 3959 goto done; 3960 } 3961 path->slots[0] = btrfs_header_nritems(path->nodes[0]); 3962 3963 /* 3964 * look ahead to the next item and see if it is also 3965 * from this directory and from this transaction 3966 */ 3967 ret = btrfs_next_leaf(root, path); 3968 if (ret) { 3969 if (ret == 1) 3970 last_offset = (u64)-1; 3971 else 3972 err = ret; 3973 goto done; 3974 } 3975 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); 3976 if (min_key.objectid != ino || min_key.type != key_type) { 3977 last_offset = (u64)-1; 3978 goto done; 3979 } 3980 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3981 ctx->last_dir_item_offset = min_key.offset; 3982 ret = overwrite_item(trans, log, dst_path, 3983 path->nodes[0], path->slots[0], 3984 &min_key); 3985 if (ret) 3986 err = ret; 3987 else 3988 last_offset = min_key.offset; 3989 goto done; 3990 } 3991 if (need_resched()) { 3992 btrfs_release_path(path); 3993 cond_resched(); 3994 goto search; 3995 } 3996 } 3997 done: 3998 btrfs_release_path(path); 3999 btrfs_release_path(dst_path); 4000 4001 if (err == 0) { 4002 *last_offset_ret = last_offset; 4003 /* 4004 * insert the log range keys to indicate where the log 4005 * is valid 4006 */ 4007 ret = insert_dir_log_key(trans, log, path, key_type, 4008 ino, first_offset, last_offset); 4009 if (ret) 4010 err = ret; 4011 } 4012 return err; 4013 } 4014 4015 /* 4016 * logging directories is very similar to logging inodes, We find all the items 4017 * from the current transaction and write them to the log. 4018 * 4019 * The recovery code scans the directory in the subvolume, and if it finds a 4020 * key in the range logged that is not present in the log tree, then it means 4021 * that dir entry was unlinked during the transaction. 4022 * 4023 * In order for that scan to work, we must include one key smaller than 4024 * the smallest logged by this transaction and one key larger than the largest 4025 * key logged by this transaction. 4026 */ 4027 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 4028 struct btrfs_inode *inode, 4029 struct btrfs_path *path, 4030 struct btrfs_path *dst_path, 4031 struct btrfs_log_ctx *ctx) 4032 { 4033 u64 min_key; 4034 u64 max_key; 4035 int ret; 4036 int key_type = BTRFS_DIR_ITEM_KEY; 4037 4038 /* 4039 * If this is the first time we are being logged in the current 4040 * transaction, or we were logged before but the inode was evicted and 4041 * reloaded later, in which case its logged_trans is 0, reset the values 4042 * of the last logged key offsets. Note that we don't use the helper 4043 * function inode_logged() here - that is because the function returns 4044 * true after an inode eviction, assuming the worst case as it can not 4045 * know for sure if the inode was logged before. So we can not skip key 4046 * searches in the case the inode was evicted, because it may not have 4047 * been logged in this transaction and may have been logged in a past 4048 * transaction, so we need to reset the last dir item and index offsets 4049 * to (u64)-1. 4050 */ 4051 if (inode->logged_trans != trans->transid) { 4052 inode->last_dir_item_offset = (u64)-1; 4053 inode->last_dir_index_offset = (u64)-1; 4054 } 4055 again: 4056 min_key = 0; 4057 max_key = 0; 4058 if (key_type == BTRFS_DIR_ITEM_KEY) 4059 ctx->last_dir_item_offset = inode->last_dir_item_offset; 4060 else 4061 ctx->last_dir_item_offset = inode->last_dir_index_offset; 4062 4063 while (1) { 4064 ret = log_dir_items(trans, inode, path, dst_path, key_type, 4065 ctx, min_key, &max_key); 4066 if (ret) 4067 return ret; 4068 if (max_key == (u64)-1) 4069 break; 4070 min_key = max_key + 1; 4071 } 4072 4073 if (key_type == BTRFS_DIR_ITEM_KEY) { 4074 inode->last_dir_item_offset = ctx->last_dir_item_offset; 4075 key_type = BTRFS_DIR_INDEX_KEY; 4076 goto again; 4077 } else { 4078 inode->last_dir_index_offset = ctx->last_dir_item_offset; 4079 } 4080 return 0; 4081 } 4082 4083 /* 4084 * a helper function to drop items from the log before we relog an 4085 * inode. max_key_type indicates the highest item type to remove. 4086 * This cannot be run for file data extents because it does not 4087 * free the extents they point to. 4088 */ 4089 static int drop_inode_items(struct btrfs_trans_handle *trans, 4090 struct btrfs_root *log, 4091 struct btrfs_path *path, 4092 struct btrfs_inode *inode, 4093 int max_key_type) 4094 { 4095 int ret; 4096 struct btrfs_key key; 4097 struct btrfs_key found_key; 4098 int start_slot; 4099 4100 if (!inode_logged(trans, inode)) 4101 return 0; 4102 4103 key.objectid = btrfs_ino(inode); 4104 key.type = max_key_type; 4105 key.offset = (u64)-1; 4106 4107 while (1) { 4108 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 4109 BUG_ON(ret == 0); /* Logic error */ 4110 if (ret < 0) 4111 break; 4112 4113 if (path->slots[0] == 0) 4114 break; 4115 4116 path->slots[0]--; 4117 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4118 path->slots[0]); 4119 4120 if (found_key.objectid != key.objectid) 4121 break; 4122 4123 found_key.offset = 0; 4124 found_key.type = 0; 4125 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot); 4126 if (ret < 0) 4127 break; 4128 4129 ret = btrfs_del_items(trans, log, path, start_slot, 4130 path->slots[0] - start_slot + 1); 4131 /* 4132 * If start slot isn't 0 then we don't need to re-search, we've 4133 * found the last guy with the objectid in this tree. 4134 */ 4135 if (ret || start_slot != 0) 4136 break; 4137 btrfs_release_path(path); 4138 } 4139 btrfs_release_path(path); 4140 if (ret > 0) 4141 ret = 0; 4142 return ret; 4143 } 4144 4145 static int truncate_inode_items(struct btrfs_trans_handle *trans, 4146 struct btrfs_root *log_root, 4147 struct btrfs_inode *inode, 4148 u64 new_size, u32 min_type) 4149 { 4150 int ret; 4151 4152 do { 4153 ret = btrfs_truncate_inode_items(trans, log_root, inode, 4154 new_size, min_type, NULL); 4155 } while (ret == -EAGAIN); 4156 4157 return ret; 4158 } 4159 4160 static void fill_inode_item(struct btrfs_trans_handle *trans, 4161 struct extent_buffer *leaf, 4162 struct btrfs_inode_item *item, 4163 struct inode *inode, int log_inode_only, 4164 u64 logged_isize) 4165 { 4166 struct btrfs_map_token token; 4167 u64 flags; 4168 4169 btrfs_init_map_token(&token, leaf); 4170 4171 if (log_inode_only) { 4172 /* set the generation to zero so the recover code 4173 * can tell the difference between an logging 4174 * just to say 'this inode exists' and a logging 4175 * to say 'update this inode with these values' 4176 */ 4177 btrfs_set_token_inode_generation(&token, item, 0); 4178 btrfs_set_token_inode_size(&token, item, logged_isize); 4179 } else { 4180 btrfs_set_token_inode_generation(&token, item, 4181 BTRFS_I(inode)->generation); 4182 btrfs_set_token_inode_size(&token, item, inode->i_size); 4183 } 4184 4185 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4186 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4187 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4188 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4189 4190 btrfs_set_token_timespec_sec(&token, &item->atime, 4191 inode->i_atime.tv_sec); 4192 btrfs_set_token_timespec_nsec(&token, &item->atime, 4193 inode->i_atime.tv_nsec); 4194 4195 btrfs_set_token_timespec_sec(&token, &item->mtime, 4196 inode->i_mtime.tv_sec); 4197 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4198 inode->i_mtime.tv_nsec); 4199 4200 btrfs_set_token_timespec_sec(&token, &item->ctime, 4201 inode->i_ctime.tv_sec); 4202 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4203 inode->i_ctime.tv_nsec); 4204 4205 /* 4206 * We do not need to set the nbytes field, in fact during a fast fsync 4207 * its value may not even be correct, since a fast fsync does not wait 4208 * for ordered extent completion, which is where we update nbytes, it 4209 * only waits for writeback to complete. During log replay as we find 4210 * file extent items and replay them, we adjust the nbytes field of the 4211 * inode item in subvolume tree as needed (see overwrite_item()). 4212 */ 4213 4214 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4215 btrfs_set_token_inode_transid(&token, item, trans->transid); 4216 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4217 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4218 BTRFS_I(inode)->ro_flags); 4219 btrfs_set_token_inode_flags(&token, item, flags); 4220 btrfs_set_token_inode_block_group(&token, item, 0); 4221 } 4222 4223 static int log_inode_item(struct btrfs_trans_handle *trans, 4224 struct btrfs_root *log, struct btrfs_path *path, 4225 struct btrfs_inode *inode, bool inode_item_dropped) 4226 { 4227 struct btrfs_inode_item *inode_item; 4228 int ret; 4229 4230 /* 4231 * If we are doing a fast fsync and the inode was logged before in the 4232 * current transaction, then we know the inode was previously logged and 4233 * it exists in the log tree. For performance reasons, in this case use 4234 * btrfs_search_slot() directly with ins_len set to 0 so that we never 4235 * attempt a write lock on the leaf's parent, which adds unnecessary lock 4236 * contention in case there are concurrent fsyncs for other inodes of the 4237 * same subvolume. Using btrfs_insert_empty_item() when the inode item 4238 * already exists can also result in unnecessarily splitting a leaf. 4239 */ 4240 if (!inode_item_dropped && inode->logged_trans == trans->transid) { 4241 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1); 4242 ASSERT(ret <= 0); 4243 if (ret > 0) 4244 ret = -ENOENT; 4245 } else { 4246 /* 4247 * This means it is the first fsync in the current transaction, 4248 * so the inode item is not in the log and we need to insert it. 4249 * We can never get -EEXIST because we are only called for a fast 4250 * fsync and in case an inode eviction happens after the inode was 4251 * logged before in the current transaction, when we load again 4252 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime 4253 * flags and set ->logged_trans to 0. 4254 */ 4255 ret = btrfs_insert_empty_item(trans, log, path, &inode->location, 4256 sizeof(*inode_item)); 4257 ASSERT(ret != -EEXIST); 4258 } 4259 if (ret) 4260 return ret; 4261 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4262 struct btrfs_inode_item); 4263 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 4264 0, 0); 4265 btrfs_release_path(path); 4266 return 0; 4267 } 4268 4269 static int log_csums(struct btrfs_trans_handle *trans, 4270 struct btrfs_inode *inode, 4271 struct btrfs_root *log_root, 4272 struct btrfs_ordered_sum *sums) 4273 { 4274 const u64 lock_end = sums->bytenr + sums->len - 1; 4275 struct extent_state *cached_state = NULL; 4276 int ret; 4277 4278 /* 4279 * If this inode was not used for reflink operations in the current 4280 * transaction with new extents, then do the fast path, no need to 4281 * worry about logging checksum items with overlapping ranges. 4282 */ 4283 if (inode->last_reflink_trans < trans->transid) 4284 return btrfs_csum_file_blocks(trans, log_root, sums); 4285 4286 /* 4287 * Serialize logging for checksums. This is to avoid racing with the 4288 * same checksum being logged by another task that is logging another 4289 * file which happens to refer to the same extent as well. Such races 4290 * can leave checksum items in the log with overlapping ranges. 4291 */ 4292 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr, 4293 lock_end, &cached_state); 4294 if (ret) 4295 return ret; 4296 /* 4297 * Due to extent cloning, we might have logged a csum item that covers a 4298 * subrange of a cloned extent, and later we can end up logging a csum 4299 * item for a larger subrange of the same extent or the entire range. 4300 * This would leave csum items in the log tree that cover the same range 4301 * and break the searches for checksums in the log tree, resulting in 4302 * some checksums missing in the fs/subvolume tree. So just delete (or 4303 * trim and adjust) any existing csum items in the log for this range. 4304 */ 4305 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len); 4306 if (!ret) 4307 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4308 4309 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end, 4310 &cached_state); 4311 4312 return ret; 4313 } 4314 4315 static noinline int copy_items(struct btrfs_trans_handle *trans, 4316 struct btrfs_inode *inode, 4317 struct btrfs_path *dst_path, 4318 struct btrfs_path *src_path, 4319 int start_slot, int nr, int inode_only, 4320 u64 logged_isize) 4321 { 4322 struct btrfs_fs_info *fs_info = trans->fs_info; 4323 unsigned long src_offset; 4324 unsigned long dst_offset; 4325 struct btrfs_root *log = inode->root->log_root; 4326 struct btrfs_file_extent_item *extent; 4327 struct btrfs_inode_item *inode_item; 4328 struct extent_buffer *src = src_path->nodes[0]; 4329 int ret; 4330 struct btrfs_key *ins_keys; 4331 u32 *ins_sizes; 4332 struct btrfs_item_batch batch; 4333 char *ins_data; 4334 int i; 4335 struct list_head ordered_sums; 4336 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 4337 4338 INIT_LIST_HEAD(&ordered_sums); 4339 4340 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 4341 nr * sizeof(u32), GFP_NOFS); 4342 if (!ins_data) 4343 return -ENOMEM; 4344 4345 ins_sizes = (u32 *)ins_data; 4346 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 4347 batch.keys = ins_keys; 4348 batch.data_sizes = ins_sizes; 4349 batch.total_data_size = 0; 4350 batch.nr = nr; 4351 4352 for (i = 0; i < nr; i++) { 4353 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 4354 batch.total_data_size += ins_sizes[i]; 4355 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 4356 } 4357 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 4358 if (ret) { 4359 kfree(ins_data); 4360 return ret; 4361 } 4362 4363 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 4364 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 4365 dst_path->slots[0]); 4366 4367 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 4368 4369 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 4370 inode_item = btrfs_item_ptr(dst_path->nodes[0], 4371 dst_path->slots[0], 4372 struct btrfs_inode_item); 4373 fill_inode_item(trans, dst_path->nodes[0], inode_item, 4374 &inode->vfs_inode, 4375 inode_only == LOG_INODE_EXISTS, 4376 logged_isize); 4377 } else { 4378 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4379 src_offset, ins_sizes[i]); 4380 } 4381 4382 /* take a reference on file data extents so that truncates 4383 * or deletes of this inode don't have to relog the inode 4384 * again 4385 */ 4386 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 4387 !skip_csum) { 4388 int found_type; 4389 extent = btrfs_item_ptr(src, start_slot + i, 4390 struct btrfs_file_extent_item); 4391 4392 if (btrfs_file_extent_generation(src, extent) < trans->transid) 4393 continue; 4394 4395 found_type = btrfs_file_extent_type(src, extent); 4396 if (found_type == BTRFS_FILE_EXTENT_REG) { 4397 u64 ds, dl, cs, cl; 4398 ds = btrfs_file_extent_disk_bytenr(src, 4399 extent); 4400 /* ds == 0 is a hole */ 4401 if (ds == 0) 4402 continue; 4403 4404 dl = btrfs_file_extent_disk_num_bytes(src, 4405 extent); 4406 cs = btrfs_file_extent_offset(src, extent); 4407 cl = btrfs_file_extent_num_bytes(src, 4408 extent); 4409 if (btrfs_file_extent_compression(src, 4410 extent)) { 4411 cs = 0; 4412 cl = dl; 4413 } 4414 4415 ret = btrfs_lookup_csums_range( 4416 fs_info->csum_root, 4417 ds + cs, ds + cs + cl - 1, 4418 &ordered_sums, 0); 4419 if (ret) 4420 break; 4421 } 4422 } 4423 } 4424 4425 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4426 btrfs_release_path(dst_path); 4427 kfree(ins_data); 4428 4429 /* 4430 * we have to do this after the loop above to avoid changing the 4431 * log tree while trying to change the log tree. 4432 */ 4433 while (!list_empty(&ordered_sums)) { 4434 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4435 struct btrfs_ordered_sum, 4436 list); 4437 if (!ret) 4438 ret = log_csums(trans, inode, log, sums); 4439 list_del(&sums->list); 4440 kfree(sums); 4441 } 4442 4443 return ret; 4444 } 4445 4446 static int extent_cmp(void *priv, const struct list_head *a, 4447 const struct list_head *b) 4448 { 4449 const struct extent_map *em1, *em2; 4450 4451 em1 = list_entry(a, struct extent_map, list); 4452 em2 = list_entry(b, struct extent_map, list); 4453 4454 if (em1->start < em2->start) 4455 return -1; 4456 else if (em1->start > em2->start) 4457 return 1; 4458 return 0; 4459 } 4460 4461 static int log_extent_csums(struct btrfs_trans_handle *trans, 4462 struct btrfs_inode *inode, 4463 struct btrfs_root *log_root, 4464 const struct extent_map *em, 4465 struct btrfs_log_ctx *ctx) 4466 { 4467 struct btrfs_ordered_extent *ordered; 4468 u64 csum_offset; 4469 u64 csum_len; 4470 u64 mod_start = em->mod_start; 4471 u64 mod_len = em->mod_len; 4472 LIST_HEAD(ordered_sums); 4473 int ret = 0; 4474 4475 if (inode->flags & BTRFS_INODE_NODATASUM || 4476 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4477 em->block_start == EXTENT_MAP_HOLE) 4478 return 0; 4479 4480 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { 4481 const u64 ordered_end = ordered->file_offset + ordered->num_bytes; 4482 const u64 mod_end = mod_start + mod_len; 4483 struct btrfs_ordered_sum *sums; 4484 4485 if (mod_len == 0) 4486 break; 4487 4488 if (ordered_end <= mod_start) 4489 continue; 4490 if (mod_end <= ordered->file_offset) 4491 break; 4492 4493 /* 4494 * We are going to copy all the csums on this ordered extent, so 4495 * go ahead and adjust mod_start and mod_len in case this ordered 4496 * extent has already been logged. 4497 */ 4498 if (ordered->file_offset > mod_start) { 4499 if (ordered_end >= mod_end) 4500 mod_len = ordered->file_offset - mod_start; 4501 /* 4502 * If we have this case 4503 * 4504 * |--------- logged extent ---------| 4505 * |----- ordered extent ----| 4506 * 4507 * Just don't mess with mod_start and mod_len, we'll 4508 * just end up logging more csums than we need and it 4509 * will be ok. 4510 */ 4511 } else { 4512 if (ordered_end < mod_end) { 4513 mod_len = mod_end - ordered_end; 4514 mod_start = ordered_end; 4515 } else { 4516 mod_len = 0; 4517 } 4518 } 4519 4520 /* 4521 * To keep us from looping for the above case of an ordered 4522 * extent that falls inside of the logged extent. 4523 */ 4524 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) 4525 continue; 4526 4527 list_for_each_entry(sums, &ordered->list, list) { 4528 ret = log_csums(trans, inode, log_root, sums); 4529 if (ret) 4530 return ret; 4531 } 4532 } 4533 4534 /* We're done, found all csums in the ordered extents. */ 4535 if (mod_len == 0) 4536 return 0; 4537 4538 /* If we're compressed we have to save the entire range of csums. */ 4539 if (em->compress_type) { 4540 csum_offset = 0; 4541 csum_len = max(em->block_len, em->orig_block_len); 4542 } else { 4543 csum_offset = mod_start - em->start; 4544 csum_len = mod_len; 4545 } 4546 4547 /* block start is already adjusted for the file extent offset. */ 4548 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, 4549 em->block_start + csum_offset, 4550 em->block_start + csum_offset + 4551 csum_len - 1, &ordered_sums, 0); 4552 if (ret) 4553 return ret; 4554 4555 while (!list_empty(&ordered_sums)) { 4556 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4557 struct btrfs_ordered_sum, 4558 list); 4559 if (!ret) 4560 ret = log_csums(trans, inode, log_root, sums); 4561 list_del(&sums->list); 4562 kfree(sums); 4563 } 4564 4565 return ret; 4566 } 4567 4568 static int log_one_extent(struct btrfs_trans_handle *trans, 4569 struct btrfs_inode *inode, 4570 const struct extent_map *em, 4571 struct btrfs_path *path, 4572 struct btrfs_log_ctx *ctx) 4573 { 4574 struct btrfs_drop_extents_args drop_args = { 0 }; 4575 struct btrfs_root *log = inode->root->log_root; 4576 struct btrfs_file_extent_item *fi; 4577 struct extent_buffer *leaf; 4578 struct btrfs_map_token token; 4579 struct btrfs_key key; 4580 u64 extent_offset = em->start - em->orig_start; 4581 u64 block_len; 4582 int ret; 4583 4584 ret = log_extent_csums(trans, inode, log, em, ctx); 4585 if (ret) 4586 return ret; 4587 4588 /* 4589 * If this is the first time we are logging the inode in the current 4590 * transaction, we can avoid btrfs_drop_extents(), which is expensive 4591 * because it does a deletion search, which always acquires write locks 4592 * for extent buffers at levels 2, 1 and 0. This not only wastes time 4593 * but also adds significant contention in a log tree, since log trees 4594 * are small, with a root at level 2 or 3 at most, due to their short 4595 * life span. 4596 */ 4597 if (inode_logged(trans, inode)) { 4598 drop_args.path = path; 4599 drop_args.start = em->start; 4600 drop_args.end = em->start + em->len; 4601 drop_args.replace_extent = true; 4602 drop_args.extent_item_size = sizeof(*fi); 4603 ret = btrfs_drop_extents(trans, log, inode, &drop_args); 4604 if (ret) 4605 return ret; 4606 } 4607 4608 if (!drop_args.extent_inserted) { 4609 key.objectid = btrfs_ino(inode); 4610 key.type = BTRFS_EXTENT_DATA_KEY; 4611 key.offset = em->start; 4612 4613 ret = btrfs_insert_empty_item(trans, log, path, &key, 4614 sizeof(*fi)); 4615 if (ret) 4616 return ret; 4617 } 4618 leaf = path->nodes[0]; 4619 btrfs_init_map_token(&token, leaf); 4620 fi = btrfs_item_ptr(leaf, path->slots[0], 4621 struct btrfs_file_extent_item); 4622 4623 btrfs_set_token_file_extent_generation(&token, fi, trans->transid); 4624 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4625 btrfs_set_token_file_extent_type(&token, fi, 4626 BTRFS_FILE_EXTENT_PREALLOC); 4627 else 4628 btrfs_set_token_file_extent_type(&token, fi, 4629 BTRFS_FILE_EXTENT_REG); 4630 4631 block_len = max(em->block_len, em->orig_block_len); 4632 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4633 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4634 em->block_start); 4635 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4636 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4637 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4638 em->block_start - 4639 extent_offset); 4640 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4641 } else { 4642 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0); 4643 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0); 4644 } 4645 4646 btrfs_set_token_file_extent_offset(&token, fi, extent_offset); 4647 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len); 4648 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes); 4649 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type); 4650 btrfs_set_token_file_extent_encryption(&token, fi, 0); 4651 btrfs_set_token_file_extent_other_encoding(&token, fi, 0); 4652 btrfs_mark_buffer_dirty(leaf); 4653 4654 btrfs_release_path(path); 4655 4656 return ret; 4657 } 4658 4659 /* 4660 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4661 * lose them after doing a fast fsync and replaying the log. We scan the 4662 * subvolume's root instead of iterating the inode's extent map tree because 4663 * otherwise we can log incorrect extent items based on extent map conversion. 4664 * That can happen due to the fact that extent maps are merged when they 4665 * are not in the extent map tree's list of modified extents. 4666 */ 4667 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4668 struct btrfs_inode *inode, 4669 struct btrfs_path *path) 4670 { 4671 struct btrfs_root *root = inode->root; 4672 struct btrfs_key key; 4673 const u64 i_size = i_size_read(&inode->vfs_inode); 4674 const u64 ino = btrfs_ino(inode); 4675 struct btrfs_path *dst_path = NULL; 4676 bool dropped_extents = false; 4677 u64 truncate_offset = i_size; 4678 struct extent_buffer *leaf; 4679 int slot; 4680 int ins_nr = 0; 4681 int start_slot; 4682 int ret; 4683 4684 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4685 return 0; 4686 4687 key.objectid = ino; 4688 key.type = BTRFS_EXTENT_DATA_KEY; 4689 key.offset = i_size; 4690 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4691 if (ret < 0) 4692 goto out; 4693 4694 /* 4695 * We must check if there is a prealloc extent that starts before the 4696 * i_size and crosses the i_size boundary. This is to ensure later we 4697 * truncate down to the end of that extent and not to the i_size, as 4698 * otherwise we end up losing part of the prealloc extent after a log 4699 * replay and with an implicit hole if there is another prealloc extent 4700 * that starts at an offset beyond i_size. 4701 */ 4702 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4703 if (ret < 0) 4704 goto out; 4705 4706 if (ret == 0) { 4707 struct btrfs_file_extent_item *ei; 4708 4709 leaf = path->nodes[0]; 4710 slot = path->slots[0]; 4711 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4712 4713 if (btrfs_file_extent_type(leaf, ei) == 4714 BTRFS_FILE_EXTENT_PREALLOC) { 4715 u64 extent_end; 4716 4717 btrfs_item_key_to_cpu(leaf, &key, slot); 4718 extent_end = key.offset + 4719 btrfs_file_extent_num_bytes(leaf, ei); 4720 4721 if (extent_end > i_size) 4722 truncate_offset = extent_end; 4723 } 4724 } else { 4725 ret = 0; 4726 } 4727 4728 while (true) { 4729 leaf = path->nodes[0]; 4730 slot = path->slots[0]; 4731 4732 if (slot >= btrfs_header_nritems(leaf)) { 4733 if (ins_nr > 0) { 4734 ret = copy_items(trans, inode, dst_path, path, 4735 start_slot, ins_nr, 1, 0); 4736 if (ret < 0) 4737 goto out; 4738 ins_nr = 0; 4739 } 4740 ret = btrfs_next_leaf(root, path); 4741 if (ret < 0) 4742 goto out; 4743 if (ret > 0) { 4744 ret = 0; 4745 break; 4746 } 4747 continue; 4748 } 4749 4750 btrfs_item_key_to_cpu(leaf, &key, slot); 4751 if (key.objectid > ino) 4752 break; 4753 if (WARN_ON_ONCE(key.objectid < ino) || 4754 key.type < BTRFS_EXTENT_DATA_KEY || 4755 key.offset < i_size) { 4756 path->slots[0]++; 4757 continue; 4758 } 4759 if (!dropped_extents) { 4760 /* 4761 * Avoid logging extent items logged in past fsync calls 4762 * and leading to duplicate keys in the log tree. 4763 */ 4764 ret = truncate_inode_items(trans, root->log_root, inode, 4765 truncate_offset, 4766 BTRFS_EXTENT_DATA_KEY); 4767 if (ret) 4768 goto out; 4769 dropped_extents = true; 4770 } 4771 if (ins_nr == 0) 4772 start_slot = slot; 4773 ins_nr++; 4774 path->slots[0]++; 4775 if (!dst_path) { 4776 dst_path = btrfs_alloc_path(); 4777 if (!dst_path) { 4778 ret = -ENOMEM; 4779 goto out; 4780 } 4781 } 4782 } 4783 if (ins_nr > 0) 4784 ret = copy_items(trans, inode, dst_path, path, 4785 start_slot, ins_nr, 1, 0); 4786 out: 4787 btrfs_release_path(path); 4788 btrfs_free_path(dst_path); 4789 return ret; 4790 } 4791 4792 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4793 struct btrfs_inode *inode, 4794 struct btrfs_path *path, 4795 struct btrfs_log_ctx *ctx) 4796 { 4797 struct btrfs_ordered_extent *ordered; 4798 struct btrfs_ordered_extent *tmp; 4799 struct extent_map *em, *n; 4800 struct list_head extents; 4801 struct extent_map_tree *tree = &inode->extent_tree; 4802 int ret = 0; 4803 int num = 0; 4804 4805 INIT_LIST_HEAD(&extents); 4806 4807 write_lock(&tree->lock); 4808 4809 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4810 list_del_init(&em->list); 4811 /* 4812 * Just an arbitrary number, this can be really CPU intensive 4813 * once we start getting a lot of extents, and really once we 4814 * have a bunch of extents we just want to commit since it will 4815 * be faster. 4816 */ 4817 if (++num > 32768) { 4818 list_del_init(&tree->modified_extents); 4819 ret = -EFBIG; 4820 goto process; 4821 } 4822 4823 if (em->generation < trans->transid) 4824 continue; 4825 4826 /* We log prealloc extents beyond eof later. */ 4827 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4828 em->start >= i_size_read(&inode->vfs_inode)) 4829 continue; 4830 4831 /* Need a ref to keep it from getting evicted from cache */ 4832 refcount_inc(&em->refs); 4833 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4834 list_add_tail(&em->list, &extents); 4835 num++; 4836 } 4837 4838 list_sort(NULL, &extents, extent_cmp); 4839 process: 4840 while (!list_empty(&extents)) { 4841 em = list_entry(extents.next, struct extent_map, list); 4842 4843 list_del_init(&em->list); 4844 4845 /* 4846 * If we had an error we just need to delete everybody from our 4847 * private list. 4848 */ 4849 if (ret) { 4850 clear_em_logging(tree, em); 4851 free_extent_map(em); 4852 continue; 4853 } 4854 4855 write_unlock(&tree->lock); 4856 4857 ret = log_one_extent(trans, inode, em, path, ctx); 4858 write_lock(&tree->lock); 4859 clear_em_logging(tree, em); 4860 free_extent_map(em); 4861 } 4862 WARN_ON(!list_empty(&extents)); 4863 write_unlock(&tree->lock); 4864 4865 btrfs_release_path(path); 4866 if (!ret) 4867 ret = btrfs_log_prealloc_extents(trans, inode, path); 4868 if (ret) 4869 return ret; 4870 4871 /* 4872 * We have logged all extents successfully, now make sure the commit of 4873 * the current transaction waits for the ordered extents to complete 4874 * before it commits and wipes out the log trees, otherwise we would 4875 * lose data if an ordered extents completes after the transaction 4876 * commits and a power failure happens after the transaction commit. 4877 */ 4878 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 4879 list_del_init(&ordered->log_list); 4880 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); 4881 4882 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4883 spin_lock_irq(&inode->ordered_tree.lock); 4884 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4885 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 4886 atomic_inc(&trans->transaction->pending_ordered); 4887 } 4888 spin_unlock_irq(&inode->ordered_tree.lock); 4889 } 4890 btrfs_put_ordered_extent(ordered); 4891 } 4892 4893 return 0; 4894 } 4895 4896 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4897 struct btrfs_path *path, u64 *size_ret) 4898 { 4899 struct btrfs_key key; 4900 int ret; 4901 4902 key.objectid = btrfs_ino(inode); 4903 key.type = BTRFS_INODE_ITEM_KEY; 4904 key.offset = 0; 4905 4906 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4907 if (ret < 0) { 4908 return ret; 4909 } else if (ret > 0) { 4910 *size_ret = 0; 4911 } else { 4912 struct btrfs_inode_item *item; 4913 4914 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4915 struct btrfs_inode_item); 4916 *size_ret = btrfs_inode_size(path->nodes[0], item); 4917 /* 4918 * If the in-memory inode's i_size is smaller then the inode 4919 * size stored in the btree, return the inode's i_size, so 4920 * that we get a correct inode size after replaying the log 4921 * when before a power failure we had a shrinking truncate 4922 * followed by addition of a new name (rename / new hard link). 4923 * Otherwise return the inode size from the btree, to avoid 4924 * data loss when replaying a log due to previously doing a 4925 * write that expands the inode's size and logging a new name 4926 * immediately after. 4927 */ 4928 if (*size_ret > inode->vfs_inode.i_size) 4929 *size_ret = inode->vfs_inode.i_size; 4930 } 4931 4932 btrfs_release_path(path); 4933 return 0; 4934 } 4935 4936 /* 4937 * At the moment we always log all xattrs. This is to figure out at log replay 4938 * time which xattrs must have their deletion replayed. If a xattr is missing 4939 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4940 * because if a xattr is deleted, the inode is fsynced and a power failure 4941 * happens, causing the log to be replayed the next time the fs is mounted, 4942 * we want the xattr to not exist anymore (same behaviour as other filesystems 4943 * with a journal, ext3/4, xfs, f2fs, etc). 4944 */ 4945 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4946 struct btrfs_inode *inode, 4947 struct btrfs_path *path, 4948 struct btrfs_path *dst_path) 4949 { 4950 struct btrfs_root *root = inode->root; 4951 int ret; 4952 struct btrfs_key key; 4953 const u64 ino = btrfs_ino(inode); 4954 int ins_nr = 0; 4955 int start_slot = 0; 4956 bool found_xattrs = false; 4957 4958 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) 4959 return 0; 4960 4961 key.objectid = ino; 4962 key.type = BTRFS_XATTR_ITEM_KEY; 4963 key.offset = 0; 4964 4965 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4966 if (ret < 0) 4967 return ret; 4968 4969 while (true) { 4970 int slot = path->slots[0]; 4971 struct extent_buffer *leaf = path->nodes[0]; 4972 int nritems = btrfs_header_nritems(leaf); 4973 4974 if (slot >= nritems) { 4975 if (ins_nr > 0) { 4976 ret = copy_items(trans, inode, dst_path, path, 4977 start_slot, ins_nr, 1, 0); 4978 if (ret < 0) 4979 return ret; 4980 ins_nr = 0; 4981 } 4982 ret = btrfs_next_leaf(root, path); 4983 if (ret < 0) 4984 return ret; 4985 else if (ret > 0) 4986 break; 4987 continue; 4988 } 4989 4990 btrfs_item_key_to_cpu(leaf, &key, slot); 4991 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4992 break; 4993 4994 if (ins_nr == 0) 4995 start_slot = slot; 4996 ins_nr++; 4997 path->slots[0]++; 4998 found_xattrs = true; 4999 cond_resched(); 5000 } 5001 if (ins_nr > 0) { 5002 ret = copy_items(trans, inode, dst_path, path, 5003 start_slot, ins_nr, 1, 0); 5004 if (ret < 0) 5005 return ret; 5006 } 5007 5008 if (!found_xattrs) 5009 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); 5010 5011 return 0; 5012 } 5013 5014 /* 5015 * When using the NO_HOLES feature if we punched a hole that causes the 5016 * deletion of entire leafs or all the extent items of the first leaf (the one 5017 * that contains the inode item and references) we may end up not processing 5018 * any extents, because there are no leafs with a generation matching the 5019 * current transaction that have extent items for our inode. So we need to find 5020 * if any holes exist and then log them. We also need to log holes after any 5021 * truncate operation that changes the inode's size. 5022 */ 5023 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 5024 struct btrfs_inode *inode, 5025 struct btrfs_path *path) 5026 { 5027 struct btrfs_root *root = inode->root; 5028 struct btrfs_fs_info *fs_info = root->fs_info; 5029 struct btrfs_key key; 5030 const u64 ino = btrfs_ino(inode); 5031 const u64 i_size = i_size_read(&inode->vfs_inode); 5032 u64 prev_extent_end = 0; 5033 int ret; 5034 5035 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 5036 return 0; 5037 5038 key.objectid = ino; 5039 key.type = BTRFS_EXTENT_DATA_KEY; 5040 key.offset = 0; 5041 5042 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5043 if (ret < 0) 5044 return ret; 5045 5046 while (true) { 5047 struct extent_buffer *leaf = path->nodes[0]; 5048 5049 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 5050 ret = btrfs_next_leaf(root, path); 5051 if (ret < 0) 5052 return ret; 5053 if (ret > 0) { 5054 ret = 0; 5055 break; 5056 } 5057 leaf = path->nodes[0]; 5058 } 5059 5060 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5061 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 5062 break; 5063 5064 /* We have a hole, log it. */ 5065 if (prev_extent_end < key.offset) { 5066 const u64 hole_len = key.offset - prev_extent_end; 5067 5068 /* 5069 * Release the path to avoid deadlocks with other code 5070 * paths that search the root while holding locks on 5071 * leafs from the log root. 5072 */ 5073 btrfs_release_path(path); 5074 ret = btrfs_insert_file_extent(trans, root->log_root, 5075 ino, prev_extent_end, 0, 5076 0, hole_len, 0, hole_len, 5077 0, 0, 0); 5078 if (ret < 0) 5079 return ret; 5080 5081 /* 5082 * Search for the same key again in the root. Since it's 5083 * an extent item and we are holding the inode lock, the 5084 * key must still exist. If it doesn't just emit warning 5085 * and return an error to fall back to a transaction 5086 * commit. 5087 */ 5088 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5089 if (ret < 0) 5090 return ret; 5091 if (WARN_ON(ret > 0)) 5092 return -ENOENT; 5093 leaf = path->nodes[0]; 5094 } 5095 5096 prev_extent_end = btrfs_file_extent_end(path); 5097 path->slots[0]++; 5098 cond_resched(); 5099 } 5100 5101 if (prev_extent_end < i_size) { 5102 u64 hole_len; 5103 5104 btrfs_release_path(path); 5105 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 5106 ret = btrfs_insert_file_extent(trans, root->log_root, 5107 ino, prev_extent_end, 0, 0, 5108 hole_len, 0, hole_len, 5109 0, 0, 0); 5110 if (ret < 0) 5111 return ret; 5112 } 5113 5114 return 0; 5115 } 5116 5117 /* 5118 * When we are logging a new inode X, check if it doesn't have a reference that 5119 * matches the reference from some other inode Y created in a past transaction 5120 * and that was renamed in the current transaction. If we don't do this, then at 5121 * log replay time we can lose inode Y (and all its files if it's a directory): 5122 * 5123 * mkdir /mnt/x 5124 * echo "hello world" > /mnt/x/foobar 5125 * sync 5126 * mv /mnt/x /mnt/y 5127 * mkdir /mnt/x # or touch /mnt/x 5128 * xfs_io -c fsync /mnt/x 5129 * <power fail> 5130 * mount fs, trigger log replay 5131 * 5132 * After the log replay procedure, we would lose the first directory and all its 5133 * files (file foobar). 5134 * For the case where inode Y is not a directory we simply end up losing it: 5135 * 5136 * echo "123" > /mnt/foo 5137 * sync 5138 * mv /mnt/foo /mnt/bar 5139 * echo "abc" > /mnt/foo 5140 * xfs_io -c fsync /mnt/foo 5141 * <power fail> 5142 * 5143 * We also need this for cases where a snapshot entry is replaced by some other 5144 * entry (file or directory) otherwise we end up with an unreplayable log due to 5145 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 5146 * if it were a regular entry: 5147 * 5148 * mkdir /mnt/x 5149 * btrfs subvolume snapshot /mnt /mnt/x/snap 5150 * btrfs subvolume delete /mnt/x/snap 5151 * rmdir /mnt/x 5152 * mkdir /mnt/x 5153 * fsync /mnt/x or fsync some new file inside it 5154 * <power fail> 5155 * 5156 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 5157 * the same transaction. 5158 */ 5159 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 5160 const int slot, 5161 const struct btrfs_key *key, 5162 struct btrfs_inode *inode, 5163 u64 *other_ino, u64 *other_parent) 5164 { 5165 int ret; 5166 struct btrfs_path *search_path; 5167 char *name = NULL; 5168 u32 name_len = 0; 5169 u32 item_size = btrfs_item_size_nr(eb, slot); 5170 u32 cur_offset = 0; 5171 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 5172 5173 search_path = btrfs_alloc_path(); 5174 if (!search_path) 5175 return -ENOMEM; 5176 search_path->search_commit_root = 1; 5177 search_path->skip_locking = 1; 5178 5179 while (cur_offset < item_size) { 5180 u64 parent; 5181 u32 this_name_len; 5182 u32 this_len; 5183 unsigned long name_ptr; 5184 struct btrfs_dir_item *di; 5185 5186 if (key->type == BTRFS_INODE_REF_KEY) { 5187 struct btrfs_inode_ref *iref; 5188 5189 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 5190 parent = key->offset; 5191 this_name_len = btrfs_inode_ref_name_len(eb, iref); 5192 name_ptr = (unsigned long)(iref + 1); 5193 this_len = sizeof(*iref) + this_name_len; 5194 } else { 5195 struct btrfs_inode_extref *extref; 5196 5197 extref = (struct btrfs_inode_extref *)(ptr + 5198 cur_offset); 5199 parent = btrfs_inode_extref_parent(eb, extref); 5200 this_name_len = btrfs_inode_extref_name_len(eb, extref); 5201 name_ptr = (unsigned long)&extref->name; 5202 this_len = sizeof(*extref) + this_name_len; 5203 } 5204 5205 if (this_name_len > name_len) { 5206 char *new_name; 5207 5208 new_name = krealloc(name, this_name_len, GFP_NOFS); 5209 if (!new_name) { 5210 ret = -ENOMEM; 5211 goto out; 5212 } 5213 name_len = this_name_len; 5214 name = new_name; 5215 } 5216 5217 read_extent_buffer(eb, name, name_ptr, this_name_len); 5218 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 5219 parent, name, this_name_len, 0); 5220 if (di && !IS_ERR(di)) { 5221 struct btrfs_key di_key; 5222 5223 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 5224 di, &di_key); 5225 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 5226 if (di_key.objectid != key->objectid) { 5227 ret = 1; 5228 *other_ino = di_key.objectid; 5229 *other_parent = parent; 5230 } else { 5231 ret = 0; 5232 } 5233 } else { 5234 ret = -EAGAIN; 5235 } 5236 goto out; 5237 } else if (IS_ERR(di)) { 5238 ret = PTR_ERR(di); 5239 goto out; 5240 } 5241 btrfs_release_path(search_path); 5242 5243 cur_offset += this_len; 5244 } 5245 ret = 0; 5246 out: 5247 btrfs_free_path(search_path); 5248 kfree(name); 5249 return ret; 5250 } 5251 5252 struct btrfs_ino_list { 5253 u64 ino; 5254 u64 parent; 5255 struct list_head list; 5256 }; 5257 5258 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 5259 struct btrfs_root *root, 5260 struct btrfs_path *path, 5261 struct btrfs_log_ctx *ctx, 5262 u64 ino, u64 parent) 5263 { 5264 struct btrfs_ino_list *ino_elem; 5265 LIST_HEAD(inode_list); 5266 int ret = 0; 5267 5268 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5269 if (!ino_elem) 5270 return -ENOMEM; 5271 ino_elem->ino = ino; 5272 ino_elem->parent = parent; 5273 list_add_tail(&ino_elem->list, &inode_list); 5274 5275 while (!list_empty(&inode_list)) { 5276 struct btrfs_fs_info *fs_info = root->fs_info; 5277 struct btrfs_key key; 5278 struct inode *inode; 5279 5280 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 5281 list); 5282 ino = ino_elem->ino; 5283 parent = ino_elem->parent; 5284 list_del(&ino_elem->list); 5285 kfree(ino_elem); 5286 if (ret) 5287 continue; 5288 5289 btrfs_release_path(path); 5290 5291 inode = btrfs_iget(fs_info->sb, ino, root); 5292 /* 5293 * If the other inode that had a conflicting dir entry was 5294 * deleted in the current transaction, we need to log its parent 5295 * directory. 5296 */ 5297 if (IS_ERR(inode)) { 5298 ret = PTR_ERR(inode); 5299 if (ret == -ENOENT) { 5300 inode = btrfs_iget(fs_info->sb, parent, root); 5301 if (IS_ERR(inode)) { 5302 ret = PTR_ERR(inode); 5303 } else { 5304 ret = btrfs_log_inode(trans, 5305 BTRFS_I(inode), 5306 LOG_OTHER_INODE_ALL, 5307 ctx); 5308 btrfs_add_delayed_iput(inode); 5309 } 5310 } 5311 continue; 5312 } 5313 /* 5314 * If the inode was already logged skip it - otherwise we can 5315 * hit an infinite loop. Example: 5316 * 5317 * From the commit root (previous transaction) we have the 5318 * following inodes: 5319 * 5320 * inode 257 a directory 5321 * inode 258 with references "zz" and "zz_link" on inode 257 5322 * inode 259 with reference "a" on inode 257 5323 * 5324 * And in the current (uncommitted) transaction we have: 5325 * 5326 * inode 257 a directory, unchanged 5327 * inode 258 with references "a" and "a2" on inode 257 5328 * inode 259 with reference "zz_link" on inode 257 5329 * inode 261 with reference "zz" on inode 257 5330 * 5331 * When logging inode 261 the following infinite loop could 5332 * happen if we don't skip already logged inodes: 5333 * 5334 * - we detect inode 258 as a conflicting inode, with inode 261 5335 * on reference "zz", and log it; 5336 * 5337 * - we detect inode 259 as a conflicting inode, with inode 258 5338 * on reference "a", and log it; 5339 * 5340 * - we detect inode 258 as a conflicting inode, with inode 259 5341 * on reference "zz_link", and log it - again! After this we 5342 * repeat the above steps forever. 5343 */ 5344 spin_lock(&BTRFS_I(inode)->lock); 5345 /* 5346 * Check the inode's logged_trans only instead of 5347 * btrfs_inode_in_log(). This is because the last_log_commit of 5348 * the inode is not updated when we only log that it exists (see 5349 * btrfs_log_inode()). 5350 */ 5351 if (BTRFS_I(inode)->logged_trans == trans->transid) { 5352 spin_unlock(&BTRFS_I(inode)->lock); 5353 btrfs_add_delayed_iput(inode); 5354 continue; 5355 } 5356 spin_unlock(&BTRFS_I(inode)->lock); 5357 /* 5358 * We are safe logging the other inode without acquiring its 5359 * lock as long as we log with the LOG_INODE_EXISTS mode. We 5360 * are safe against concurrent renames of the other inode as 5361 * well because during a rename we pin the log and update the 5362 * log with the new name before we unpin it. 5363 */ 5364 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx); 5365 if (ret) { 5366 btrfs_add_delayed_iput(inode); 5367 continue; 5368 } 5369 5370 key.objectid = ino; 5371 key.type = BTRFS_INODE_REF_KEY; 5372 key.offset = 0; 5373 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5374 if (ret < 0) { 5375 btrfs_add_delayed_iput(inode); 5376 continue; 5377 } 5378 5379 while (true) { 5380 struct extent_buffer *leaf = path->nodes[0]; 5381 int slot = path->slots[0]; 5382 u64 other_ino = 0; 5383 u64 other_parent = 0; 5384 5385 if (slot >= btrfs_header_nritems(leaf)) { 5386 ret = btrfs_next_leaf(root, path); 5387 if (ret < 0) { 5388 break; 5389 } else if (ret > 0) { 5390 ret = 0; 5391 break; 5392 } 5393 continue; 5394 } 5395 5396 btrfs_item_key_to_cpu(leaf, &key, slot); 5397 if (key.objectid != ino || 5398 (key.type != BTRFS_INODE_REF_KEY && 5399 key.type != BTRFS_INODE_EXTREF_KEY)) { 5400 ret = 0; 5401 break; 5402 } 5403 5404 ret = btrfs_check_ref_name_override(leaf, slot, &key, 5405 BTRFS_I(inode), &other_ino, 5406 &other_parent); 5407 if (ret < 0) 5408 break; 5409 if (ret > 0) { 5410 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5411 if (!ino_elem) { 5412 ret = -ENOMEM; 5413 break; 5414 } 5415 ino_elem->ino = other_ino; 5416 ino_elem->parent = other_parent; 5417 list_add_tail(&ino_elem->list, &inode_list); 5418 ret = 0; 5419 } 5420 path->slots[0]++; 5421 } 5422 btrfs_add_delayed_iput(inode); 5423 } 5424 5425 return ret; 5426 } 5427 5428 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 5429 struct btrfs_inode *inode, 5430 struct btrfs_key *min_key, 5431 const struct btrfs_key *max_key, 5432 struct btrfs_path *path, 5433 struct btrfs_path *dst_path, 5434 const u64 logged_isize, 5435 const bool recursive_logging, 5436 const int inode_only, 5437 struct btrfs_log_ctx *ctx, 5438 bool *need_log_inode_item) 5439 { 5440 struct btrfs_root *root = inode->root; 5441 int ins_start_slot = 0; 5442 int ins_nr = 0; 5443 int ret; 5444 5445 while (1) { 5446 ret = btrfs_search_forward(root, min_key, path, trans->transid); 5447 if (ret < 0) 5448 return ret; 5449 if (ret > 0) { 5450 ret = 0; 5451 break; 5452 } 5453 again: 5454 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 5455 if (min_key->objectid != max_key->objectid) 5456 break; 5457 if (min_key->type > max_key->type) 5458 break; 5459 5460 if (min_key->type == BTRFS_INODE_ITEM_KEY) 5461 *need_log_inode_item = false; 5462 5463 if ((min_key->type == BTRFS_INODE_REF_KEY || 5464 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5465 inode->generation == trans->transid && 5466 !recursive_logging) { 5467 u64 other_ino = 0; 5468 u64 other_parent = 0; 5469 5470 ret = btrfs_check_ref_name_override(path->nodes[0], 5471 path->slots[0], min_key, inode, 5472 &other_ino, &other_parent); 5473 if (ret < 0) { 5474 return ret; 5475 } else if (ret > 0 && 5476 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5477 if (ins_nr > 0) { 5478 ins_nr++; 5479 } else { 5480 ins_nr = 1; 5481 ins_start_slot = path->slots[0]; 5482 } 5483 ret = copy_items(trans, inode, dst_path, path, 5484 ins_start_slot, ins_nr, 5485 inode_only, logged_isize); 5486 if (ret < 0) 5487 return ret; 5488 ins_nr = 0; 5489 5490 ret = log_conflicting_inodes(trans, root, path, 5491 ctx, other_ino, other_parent); 5492 if (ret) 5493 return ret; 5494 btrfs_release_path(path); 5495 goto next_key; 5496 } 5497 } 5498 5499 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5500 if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5501 if (ins_nr == 0) 5502 goto next_slot; 5503 ret = copy_items(trans, inode, dst_path, path, 5504 ins_start_slot, 5505 ins_nr, inode_only, logged_isize); 5506 if (ret < 0) 5507 return ret; 5508 ins_nr = 0; 5509 goto next_slot; 5510 } 5511 5512 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5513 ins_nr++; 5514 goto next_slot; 5515 } else if (!ins_nr) { 5516 ins_start_slot = path->slots[0]; 5517 ins_nr = 1; 5518 goto next_slot; 5519 } 5520 5521 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5522 ins_nr, inode_only, logged_isize); 5523 if (ret < 0) 5524 return ret; 5525 ins_nr = 1; 5526 ins_start_slot = path->slots[0]; 5527 next_slot: 5528 path->slots[0]++; 5529 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 5530 btrfs_item_key_to_cpu(path->nodes[0], min_key, 5531 path->slots[0]); 5532 goto again; 5533 } 5534 if (ins_nr) { 5535 ret = copy_items(trans, inode, dst_path, path, 5536 ins_start_slot, ins_nr, inode_only, 5537 logged_isize); 5538 if (ret < 0) 5539 return ret; 5540 ins_nr = 0; 5541 } 5542 btrfs_release_path(path); 5543 next_key: 5544 if (min_key->offset < (u64)-1) { 5545 min_key->offset++; 5546 } else if (min_key->type < max_key->type) { 5547 min_key->type++; 5548 min_key->offset = 0; 5549 } else { 5550 break; 5551 } 5552 } 5553 if (ins_nr) 5554 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5555 ins_nr, inode_only, logged_isize); 5556 5557 return ret; 5558 } 5559 5560 /* log a single inode in the tree log. 5561 * At least one parent directory for this inode must exist in the tree 5562 * or be logged already. 5563 * 5564 * Any items from this inode changed by the current transaction are copied 5565 * to the log tree. An extra reference is taken on any extents in this 5566 * file, allowing us to avoid a whole pile of corner cases around logging 5567 * blocks that have been removed from the tree. 5568 * 5569 * See LOG_INODE_ALL and related defines for a description of what inode_only 5570 * does. 5571 * 5572 * This handles both files and directories. 5573 */ 5574 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5575 struct btrfs_inode *inode, 5576 int inode_only, 5577 struct btrfs_log_ctx *ctx) 5578 { 5579 struct btrfs_path *path; 5580 struct btrfs_path *dst_path; 5581 struct btrfs_key min_key; 5582 struct btrfs_key max_key; 5583 struct btrfs_root *log = inode->root->log_root; 5584 int err = 0; 5585 int ret = 0; 5586 bool fast_search = false; 5587 u64 ino = btrfs_ino(inode); 5588 struct extent_map_tree *em_tree = &inode->extent_tree; 5589 u64 logged_isize = 0; 5590 bool need_log_inode_item = true; 5591 bool xattrs_logged = false; 5592 bool recursive_logging = false; 5593 bool inode_item_dropped = true; 5594 5595 path = btrfs_alloc_path(); 5596 if (!path) 5597 return -ENOMEM; 5598 dst_path = btrfs_alloc_path(); 5599 if (!dst_path) { 5600 btrfs_free_path(path); 5601 return -ENOMEM; 5602 } 5603 5604 min_key.objectid = ino; 5605 min_key.type = BTRFS_INODE_ITEM_KEY; 5606 min_key.offset = 0; 5607 5608 max_key.objectid = ino; 5609 5610 5611 /* today the code can only do partial logging of directories */ 5612 if (S_ISDIR(inode->vfs_inode.i_mode) || 5613 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5614 &inode->runtime_flags) && 5615 inode_only >= LOG_INODE_EXISTS)) 5616 max_key.type = BTRFS_XATTR_ITEM_KEY; 5617 else 5618 max_key.type = (u8)-1; 5619 max_key.offset = (u64)-1; 5620 5621 /* 5622 * Only run delayed items if we are a directory. We want to make sure 5623 * all directory indexes hit the fs/subvolume tree so we can find them 5624 * and figure out which index ranges have to be logged. 5625 */ 5626 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5627 err = btrfs_commit_inode_delayed_items(trans, inode); 5628 if (err) 5629 goto out; 5630 } 5631 5632 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5633 recursive_logging = true; 5634 if (inode_only == LOG_OTHER_INODE) 5635 inode_only = LOG_INODE_EXISTS; 5636 else 5637 inode_only = LOG_INODE_ALL; 5638 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5639 } else { 5640 mutex_lock(&inode->log_mutex); 5641 } 5642 5643 /* 5644 * This is for cases where logging a directory could result in losing a 5645 * a file after replaying the log. For example, if we move a file from a 5646 * directory A to a directory B, then fsync directory A, we have no way 5647 * to known the file was moved from A to B, so logging just A would 5648 * result in losing the file after a log replay. 5649 */ 5650 if (S_ISDIR(inode->vfs_inode.i_mode) && 5651 inode_only == LOG_INODE_ALL && 5652 inode->last_unlink_trans >= trans->transid) { 5653 btrfs_set_log_full_commit(trans); 5654 err = 1; 5655 goto out_unlock; 5656 } 5657 5658 /* 5659 * a brute force approach to making sure we get the most uptodate 5660 * copies of everything. 5661 */ 5662 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5663 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5664 5665 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); 5666 if (inode_only == LOG_INODE_EXISTS) 5667 max_key_type = BTRFS_XATTR_ITEM_KEY; 5668 ret = drop_inode_items(trans, log, path, inode, max_key_type); 5669 } else { 5670 if (inode_only == LOG_INODE_EXISTS && inode_logged(trans, inode)) { 5671 /* 5672 * Make sure the new inode item we write to the log has 5673 * the same isize as the current one (if it exists). 5674 * This is necessary to prevent data loss after log 5675 * replay, and also to prevent doing a wrong expanding 5676 * truncate - for e.g. create file, write 4K into offset 5677 * 0, fsync, write 4K into offset 4096, add hard link, 5678 * fsync some other file (to sync log), power fail - if 5679 * we use the inode's current i_size, after log replay 5680 * we get a 8Kb file, with the last 4Kb extent as a hole 5681 * (zeroes), as if an expanding truncate happened, 5682 * instead of getting a file of 4Kb only. 5683 */ 5684 err = logged_inode_size(log, inode, path, &logged_isize); 5685 if (err) 5686 goto out_unlock; 5687 } 5688 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5689 &inode->runtime_flags)) { 5690 if (inode_only == LOG_INODE_EXISTS) { 5691 max_key.type = BTRFS_XATTR_ITEM_KEY; 5692 ret = drop_inode_items(trans, log, path, inode, 5693 max_key.type); 5694 } else { 5695 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5696 &inode->runtime_flags); 5697 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5698 &inode->runtime_flags); 5699 if (inode_logged(trans, inode)) 5700 ret = truncate_inode_items(trans, log, 5701 inode, 0, 0); 5702 } 5703 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5704 &inode->runtime_flags) || 5705 inode_only == LOG_INODE_EXISTS) { 5706 if (inode_only == LOG_INODE_ALL) 5707 fast_search = true; 5708 max_key.type = BTRFS_XATTR_ITEM_KEY; 5709 ret = drop_inode_items(trans, log, path, inode, 5710 max_key.type); 5711 } else { 5712 if (inode_only == LOG_INODE_ALL) 5713 fast_search = true; 5714 inode_item_dropped = false; 5715 goto log_extents; 5716 } 5717 5718 } 5719 if (ret) { 5720 err = ret; 5721 goto out_unlock; 5722 } 5723 5724 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 5725 path, dst_path, logged_isize, 5726 recursive_logging, inode_only, ctx, 5727 &need_log_inode_item); 5728 if (err) 5729 goto out_unlock; 5730 5731 btrfs_release_path(path); 5732 btrfs_release_path(dst_path); 5733 err = btrfs_log_all_xattrs(trans, inode, path, dst_path); 5734 if (err) 5735 goto out_unlock; 5736 xattrs_logged = true; 5737 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5738 btrfs_release_path(path); 5739 btrfs_release_path(dst_path); 5740 err = btrfs_log_holes(trans, inode, path); 5741 if (err) 5742 goto out_unlock; 5743 } 5744 log_extents: 5745 btrfs_release_path(path); 5746 btrfs_release_path(dst_path); 5747 if (need_log_inode_item) { 5748 err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); 5749 if (err) 5750 goto out_unlock; 5751 /* 5752 * If we are doing a fast fsync and the inode was logged before 5753 * in this transaction, we don't need to log the xattrs because 5754 * they were logged before. If xattrs were added, changed or 5755 * deleted since the last time we logged the inode, then we have 5756 * already logged them because the inode had the runtime flag 5757 * BTRFS_INODE_COPY_EVERYTHING set. 5758 */ 5759 if (!xattrs_logged && inode->logged_trans < trans->transid) { 5760 err = btrfs_log_all_xattrs(trans, inode, path, dst_path); 5761 if (err) 5762 goto out_unlock; 5763 btrfs_release_path(path); 5764 } 5765 } 5766 if (fast_search) { 5767 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); 5768 if (ret) { 5769 err = ret; 5770 goto out_unlock; 5771 } 5772 } else if (inode_only == LOG_INODE_ALL) { 5773 struct extent_map *em, *n; 5774 5775 write_lock(&em_tree->lock); 5776 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) 5777 list_del_init(&em->list); 5778 write_unlock(&em_tree->lock); 5779 } 5780 5781 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5782 ret = log_directory_changes(trans, inode, path, dst_path, ctx); 5783 if (ret) { 5784 err = ret; 5785 goto out_unlock; 5786 } 5787 } 5788 5789 spin_lock(&inode->lock); 5790 inode->logged_trans = trans->transid; 5791 /* 5792 * Don't update last_log_commit if we logged that an inode exists. 5793 * We do this for three reasons: 5794 * 5795 * 1) We might have had buffered writes to this inode that were 5796 * flushed and had their ordered extents completed in this 5797 * transaction, but we did not previously log the inode with 5798 * LOG_INODE_ALL. Later the inode was evicted and after that 5799 * it was loaded again and this LOG_INODE_EXISTS log operation 5800 * happened. We must make sure that if an explicit fsync against 5801 * the inode is performed later, it logs the new extents, an 5802 * updated inode item, etc, and syncs the log. The same logic 5803 * applies to direct IO writes instead of buffered writes. 5804 * 5805 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item 5806 * is logged with an i_size of 0 or whatever value was logged 5807 * before. If later the i_size of the inode is increased by a 5808 * truncate operation, the log is synced through an fsync of 5809 * some other inode and then finally an explicit fsync against 5810 * this inode is made, we must make sure this fsync logs the 5811 * inode with the new i_size, the hole between old i_size and 5812 * the new i_size, and syncs the log. 5813 * 5814 * 3) If we are logging that an ancestor inode exists as part of 5815 * logging a new name from a link or rename operation, don't update 5816 * its last_log_commit - otherwise if an explicit fsync is made 5817 * against an ancestor, the fsync considers the inode in the log 5818 * and doesn't sync the log, resulting in the ancestor missing after 5819 * a power failure unless the log was synced as part of an fsync 5820 * against any other unrelated inode. 5821 */ 5822 if (inode_only != LOG_INODE_EXISTS) 5823 inode->last_log_commit = inode->last_sub_trans; 5824 spin_unlock(&inode->lock); 5825 out_unlock: 5826 mutex_unlock(&inode->log_mutex); 5827 out: 5828 btrfs_free_path(path); 5829 btrfs_free_path(dst_path); 5830 return err; 5831 } 5832 5833 /* 5834 * Check if we need to log an inode. This is used in contexts where while 5835 * logging an inode we need to log another inode (either that it exists or in 5836 * full mode). This is used instead of btrfs_inode_in_log() because the later 5837 * requires the inode to be in the log and have the log transaction committed, 5838 * while here we do not care if the log transaction was already committed - our 5839 * caller will commit the log later - and we want to avoid logging an inode 5840 * multiple times when multiple tasks have joined the same log transaction. 5841 */ 5842 static bool need_log_inode(struct btrfs_trans_handle *trans, 5843 struct btrfs_inode *inode) 5844 { 5845 /* 5846 * If a directory was not modified, no dentries added or removed, we can 5847 * and should avoid logging it. 5848 */ 5849 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) 5850 return false; 5851 5852 /* 5853 * If this inode does not have new/updated/deleted xattrs since the last 5854 * time it was logged and is flagged as logged in the current transaction, 5855 * we can skip logging it. As for new/deleted names, those are updated in 5856 * the log by link/unlink/rename operations. 5857 * In case the inode was logged and then evicted and reloaded, its 5858 * logged_trans will be 0, in which case we have to fully log it since 5859 * logged_trans is a transient field, not persisted. 5860 */ 5861 if (inode->logged_trans == trans->transid && 5862 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 5863 return false; 5864 5865 return true; 5866 } 5867 5868 struct btrfs_dir_list { 5869 u64 ino; 5870 struct list_head list; 5871 }; 5872 5873 /* 5874 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5875 * details about the why it is needed. 5876 * This is a recursive operation - if an existing dentry corresponds to a 5877 * directory, that directory's new entries are logged too (same behaviour as 5878 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5879 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5880 * complains about the following circular lock dependency / possible deadlock: 5881 * 5882 * CPU0 CPU1 5883 * ---- ---- 5884 * lock(&type->i_mutex_dir_key#3/2); 5885 * lock(sb_internal#2); 5886 * lock(&type->i_mutex_dir_key#3/2); 5887 * lock(&sb->s_type->i_mutex_key#14); 5888 * 5889 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5890 * sb_start_intwrite() in btrfs_start_transaction(). 5891 * Not locking i_mutex of the inodes is still safe because: 5892 * 5893 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5894 * that while logging the inode new references (names) are added or removed 5895 * from the inode, leaving the logged inode item with a link count that does 5896 * not match the number of logged inode reference items. This is fine because 5897 * at log replay time we compute the real number of links and correct the 5898 * link count in the inode item (see replay_one_buffer() and 5899 * link_to_fixup_dir()); 5900 * 5901 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5902 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5903 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5904 * has a size that doesn't match the sum of the lengths of all the logged 5905 * names. This does not result in a problem because if a dir_item key is 5906 * logged but its matching dir_index key is not logged, at log replay time we 5907 * don't use it to replay the respective name (see replay_one_name()). On the 5908 * other hand if only the dir_index key ends up being logged, the respective 5909 * name is added to the fs/subvol tree with both the dir_item and dir_index 5910 * keys created (see replay_one_name()). 5911 * The directory's inode item with a wrong i_size is not a problem as well, 5912 * since we don't use it at log replay time to set the i_size in the inode 5913 * item of the fs/subvol tree (see overwrite_item()). 5914 */ 5915 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5916 struct btrfs_root *root, 5917 struct btrfs_inode *start_inode, 5918 struct btrfs_log_ctx *ctx) 5919 { 5920 struct btrfs_fs_info *fs_info = root->fs_info; 5921 struct btrfs_root *log = root->log_root; 5922 struct btrfs_path *path; 5923 LIST_HEAD(dir_list); 5924 struct btrfs_dir_list *dir_elem; 5925 int ret = 0; 5926 5927 /* 5928 * If we are logging a new name, as part of a link or rename operation, 5929 * don't bother logging new dentries, as we just want to log the names 5930 * of an inode and that any new parents exist. 5931 */ 5932 if (ctx->logging_new_name) 5933 return 0; 5934 5935 path = btrfs_alloc_path(); 5936 if (!path) 5937 return -ENOMEM; 5938 5939 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5940 if (!dir_elem) { 5941 btrfs_free_path(path); 5942 return -ENOMEM; 5943 } 5944 dir_elem->ino = btrfs_ino(start_inode); 5945 list_add_tail(&dir_elem->list, &dir_list); 5946 5947 while (!list_empty(&dir_list)) { 5948 struct extent_buffer *leaf; 5949 struct btrfs_key min_key; 5950 int nritems; 5951 int i; 5952 5953 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5954 list); 5955 if (ret) 5956 goto next_dir_inode; 5957 5958 min_key.objectid = dir_elem->ino; 5959 min_key.type = BTRFS_DIR_ITEM_KEY; 5960 min_key.offset = 0; 5961 again: 5962 btrfs_release_path(path); 5963 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5964 if (ret < 0) { 5965 goto next_dir_inode; 5966 } else if (ret > 0) { 5967 ret = 0; 5968 goto next_dir_inode; 5969 } 5970 5971 process_leaf: 5972 leaf = path->nodes[0]; 5973 nritems = btrfs_header_nritems(leaf); 5974 for (i = path->slots[0]; i < nritems; i++) { 5975 struct btrfs_dir_item *di; 5976 struct btrfs_key di_key; 5977 struct inode *di_inode; 5978 struct btrfs_dir_list *new_dir_elem; 5979 int log_mode = LOG_INODE_EXISTS; 5980 int type; 5981 5982 btrfs_item_key_to_cpu(leaf, &min_key, i); 5983 if (min_key.objectid != dir_elem->ino || 5984 min_key.type != BTRFS_DIR_ITEM_KEY) 5985 goto next_dir_inode; 5986 5987 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5988 type = btrfs_dir_type(leaf, di); 5989 if (btrfs_dir_transid(leaf, di) < trans->transid && 5990 type != BTRFS_FT_DIR) 5991 continue; 5992 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5993 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5994 continue; 5995 5996 btrfs_release_path(path); 5997 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root); 5998 if (IS_ERR(di_inode)) { 5999 ret = PTR_ERR(di_inode); 6000 goto next_dir_inode; 6001 } 6002 6003 if (!need_log_inode(trans, BTRFS_I(di_inode))) { 6004 btrfs_add_delayed_iput(di_inode); 6005 break; 6006 } 6007 6008 ctx->log_new_dentries = false; 6009 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 6010 log_mode = LOG_INODE_ALL; 6011 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), 6012 log_mode, ctx); 6013 btrfs_add_delayed_iput(di_inode); 6014 if (ret) 6015 goto next_dir_inode; 6016 if (ctx->log_new_dentries) { 6017 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 6018 GFP_NOFS); 6019 if (!new_dir_elem) { 6020 ret = -ENOMEM; 6021 goto next_dir_inode; 6022 } 6023 new_dir_elem->ino = di_key.objectid; 6024 list_add_tail(&new_dir_elem->list, &dir_list); 6025 } 6026 break; 6027 } 6028 if (i == nritems) { 6029 ret = btrfs_next_leaf(log, path); 6030 if (ret < 0) { 6031 goto next_dir_inode; 6032 } else if (ret > 0) { 6033 ret = 0; 6034 goto next_dir_inode; 6035 } 6036 goto process_leaf; 6037 } 6038 if (min_key.offset < (u64)-1) { 6039 min_key.offset++; 6040 goto again; 6041 } 6042 next_dir_inode: 6043 list_del(&dir_elem->list); 6044 kfree(dir_elem); 6045 } 6046 6047 btrfs_free_path(path); 6048 return ret; 6049 } 6050 6051 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 6052 struct btrfs_inode *inode, 6053 struct btrfs_log_ctx *ctx) 6054 { 6055 struct btrfs_fs_info *fs_info = trans->fs_info; 6056 int ret; 6057 struct btrfs_path *path; 6058 struct btrfs_key key; 6059 struct btrfs_root *root = inode->root; 6060 const u64 ino = btrfs_ino(inode); 6061 6062 path = btrfs_alloc_path(); 6063 if (!path) 6064 return -ENOMEM; 6065 path->skip_locking = 1; 6066 path->search_commit_root = 1; 6067 6068 key.objectid = ino; 6069 key.type = BTRFS_INODE_REF_KEY; 6070 key.offset = 0; 6071 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6072 if (ret < 0) 6073 goto out; 6074 6075 while (true) { 6076 struct extent_buffer *leaf = path->nodes[0]; 6077 int slot = path->slots[0]; 6078 u32 cur_offset = 0; 6079 u32 item_size; 6080 unsigned long ptr; 6081 6082 if (slot >= btrfs_header_nritems(leaf)) { 6083 ret = btrfs_next_leaf(root, path); 6084 if (ret < 0) 6085 goto out; 6086 else if (ret > 0) 6087 break; 6088 continue; 6089 } 6090 6091 btrfs_item_key_to_cpu(leaf, &key, slot); 6092 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 6093 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 6094 break; 6095 6096 item_size = btrfs_item_size_nr(leaf, slot); 6097 ptr = btrfs_item_ptr_offset(leaf, slot); 6098 while (cur_offset < item_size) { 6099 struct btrfs_key inode_key; 6100 struct inode *dir_inode; 6101 6102 inode_key.type = BTRFS_INODE_ITEM_KEY; 6103 inode_key.offset = 0; 6104 6105 if (key.type == BTRFS_INODE_EXTREF_KEY) { 6106 struct btrfs_inode_extref *extref; 6107 6108 extref = (struct btrfs_inode_extref *) 6109 (ptr + cur_offset); 6110 inode_key.objectid = btrfs_inode_extref_parent( 6111 leaf, extref); 6112 cur_offset += sizeof(*extref); 6113 cur_offset += btrfs_inode_extref_name_len(leaf, 6114 extref); 6115 } else { 6116 inode_key.objectid = key.offset; 6117 cur_offset = item_size; 6118 } 6119 6120 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid, 6121 root); 6122 /* 6123 * If the parent inode was deleted, return an error to 6124 * fallback to a transaction commit. This is to prevent 6125 * getting an inode that was moved from one parent A to 6126 * a parent B, got its former parent A deleted and then 6127 * it got fsync'ed, from existing at both parents after 6128 * a log replay (and the old parent still existing). 6129 * Example: 6130 * 6131 * mkdir /mnt/A 6132 * mkdir /mnt/B 6133 * touch /mnt/B/bar 6134 * sync 6135 * mv /mnt/B/bar /mnt/A/bar 6136 * mv -T /mnt/A /mnt/B 6137 * fsync /mnt/B/bar 6138 * <power fail> 6139 * 6140 * If we ignore the old parent B which got deleted, 6141 * after a log replay we would have file bar linked 6142 * at both parents and the old parent B would still 6143 * exist. 6144 */ 6145 if (IS_ERR(dir_inode)) { 6146 ret = PTR_ERR(dir_inode); 6147 goto out; 6148 } 6149 6150 if (!need_log_inode(trans, BTRFS_I(dir_inode))) { 6151 btrfs_add_delayed_iput(dir_inode); 6152 continue; 6153 } 6154 6155 ctx->log_new_dentries = false; 6156 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode), 6157 LOG_INODE_ALL, ctx); 6158 if (!ret && ctx->log_new_dentries) 6159 ret = log_new_dir_dentries(trans, root, 6160 BTRFS_I(dir_inode), ctx); 6161 btrfs_add_delayed_iput(dir_inode); 6162 if (ret) 6163 goto out; 6164 } 6165 path->slots[0]++; 6166 } 6167 ret = 0; 6168 out: 6169 btrfs_free_path(path); 6170 return ret; 6171 } 6172 6173 static int log_new_ancestors(struct btrfs_trans_handle *trans, 6174 struct btrfs_root *root, 6175 struct btrfs_path *path, 6176 struct btrfs_log_ctx *ctx) 6177 { 6178 struct btrfs_key found_key; 6179 6180 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 6181 6182 while (true) { 6183 struct btrfs_fs_info *fs_info = root->fs_info; 6184 struct extent_buffer *leaf = path->nodes[0]; 6185 int slot = path->slots[0]; 6186 struct btrfs_key search_key; 6187 struct inode *inode; 6188 u64 ino; 6189 int ret = 0; 6190 6191 btrfs_release_path(path); 6192 6193 ino = found_key.offset; 6194 6195 search_key.objectid = found_key.offset; 6196 search_key.type = BTRFS_INODE_ITEM_KEY; 6197 search_key.offset = 0; 6198 inode = btrfs_iget(fs_info->sb, ino, root); 6199 if (IS_ERR(inode)) 6200 return PTR_ERR(inode); 6201 6202 if (BTRFS_I(inode)->generation >= trans->transid && 6203 need_log_inode(trans, BTRFS_I(inode))) 6204 ret = btrfs_log_inode(trans, BTRFS_I(inode), 6205 LOG_INODE_EXISTS, ctx); 6206 btrfs_add_delayed_iput(inode); 6207 if (ret) 6208 return ret; 6209 6210 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 6211 break; 6212 6213 search_key.type = BTRFS_INODE_REF_KEY; 6214 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6215 if (ret < 0) 6216 return ret; 6217 6218 leaf = path->nodes[0]; 6219 slot = path->slots[0]; 6220 if (slot >= btrfs_header_nritems(leaf)) { 6221 ret = btrfs_next_leaf(root, path); 6222 if (ret < 0) 6223 return ret; 6224 else if (ret > 0) 6225 return -ENOENT; 6226 leaf = path->nodes[0]; 6227 slot = path->slots[0]; 6228 } 6229 6230 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6231 if (found_key.objectid != search_key.objectid || 6232 found_key.type != BTRFS_INODE_REF_KEY) 6233 return -ENOENT; 6234 } 6235 return 0; 6236 } 6237 6238 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 6239 struct btrfs_inode *inode, 6240 struct dentry *parent, 6241 struct btrfs_log_ctx *ctx) 6242 { 6243 struct btrfs_root *root = inode->root; 6244 struct dentry *old_parent = NULL; 6245 struct super_block *sb = inode->vfs_inode.i_sb; 6246 int ret = 0; 6247 6248 while (true) { 6249 if (!parent || d_really_is_negative(parent) || 6250 sb != parent->d_sb) 6251 break; 6252 6253 inode = BTRFS_I(d_inode(parent)); 6254 if (root != inode->root) 6255 break; 6256 6257 if (inode->generation >= trans->transid && 6258 need_log_inode(trans, inode)) { 6259 ret = btrfs_log_inode(trans, inode, 6260 LOG_INODE_EXISTS, ctx); 6261 if (ret) 6262 break; 6263 } 6264 if (IS_ROOT(parent)) 6265 break; 6266 6267 parent = dget_parent(parent); 6268 dput(old_parent); 6269 old_parent = parent; 6270 } 6271 dput(old_parent); 6272 6273 return ret; 6274 } 6275 6276 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 6277 struct btrfs_inode *inode, 6278 struct dentry *parent, 6279 struct btrfs_log_ctx *ctx) 6280 { 6281 struct btrfs_root *root = inode->root; 6282 const u64 ino = btrfs_ino(inode); 6283 struct btrfs_path *path; 6284 struct btrfs_key search_key; 6285 int ret; 6286 6287 /* 6288 * For a single hard link case, go through a fast path that does not 6289 * need to iterate the fs/subvolume tree. 6290 */ 6291 if (inode->vfs_inode.i_nlink < 2) 6292 return log_new_ancestors_fast(trans, inode, parent, ctx); 6293 6294 path = btrfs_alloc_path(); 6295 if (!path) 6296 return -ENOMEM; 6297 6298 search_key.objectid = ino; 6299 search_key.type = BTRFS_INODE_REF_KEY; 6300 search_key.offset = 0; 6301 again: 6302 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6303 if (ret < 0) 6304 goto out; 6305 if (ret == 0) 6306 path->slots[0]++; 6307 6308 while (true) { 6309 struct extent_buffer *leaf = path->nodes[0]; 6310 int slot = path->slots[0]; 6311 struct btrfs_key found_key; 6312 6313 if (slot >= btrfs_header_nritems(leaf)) { 6314 ret = btrfs_next_leaf(root, path); 6315 if (ret < 0) 6316 goto out; 6317 else if (ret > 0) 6318 break; 6319 continue; 6320 } 6321 6322 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6323 if (found_key.objectid != ino || 6324 found_key.type > BTRFS_INODE_EXTREF_KEY) 6325 break; 6326 6327 /* 6328 * Don't deal with extended references because they are rare 6329 * cases and too complex to deal with (we would need to keep 6330 * track of which subitem we are processing for each item in 6331 * this loop, etc). So just return some error to fallback to 6332 * a transaction commit. 6333 */ 6334 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 6335 ret = -EMLINK; 6336 goto out; 6337 } 6338 6339 /* 6340 * Logging ancestors needs to do more searches on the fs/subvol 6341 * tree, so it releases the path as needed to avoid deadlocks. 6342 * Keep track of the last inode ref key and resume from that key 6343 * after logging all new ancestors for the current hard link. 6344 */ 6345 memcpy(&search_key, &found_key, sizeof(search_key)); 6346 6347 ret = log_new_ancestors(trans, root, path, ctx); 6348 if (ret) 6349 goto out; 6350 btrfs_release_path(path); 6351 goto again; 6352 } 6353 ret = 0; 6354 out: 6355 btrfs_free_path(path); 6356 return ret; 6357 } 6358 6359 /* 6360 * helper function around btrfs_log_inode to make sure newly created 6361 * parent directories also end up in the log. A minimal inode and backref 6362 * only logging is done of any parent directories that are older than 6363 * the last committed transaction 6364 */ 6365 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 6366 struct btrfs_inode *inode, 6367 struct dentry *parent, 6368 int inode_only, 6369 struct btrfs_log_ctx *ctx) 6370 { 6371 struct btrfs_root *root = inode->root; 6372 struct btrfs_fs_info *fs_info = root->fs_info; 6373 int ret = 0; 6374 bool log_dentries = false; 6375 6376 if (btrfs_test_opt(fs_info, NOTREELOG)) { 6377 ret = 1; 6378 goto end_no_trans; 6379 } 6380 6381 if (btrfs_root_refs(&root->root_item) == 0) { 6382 ret = 1; 6383 goto end_no_trans; 6384 } 6385 6386 /* 6387 * Skip already logged inodes or inodes corresponding to tmpfiles 6388 * (since logging them is pointless, a link count of 0 means they 6389 * will never be accessible). 6390 */ 6391 if ((btrfs_inode_in_log(inode, trans->transid) && 6392 list_empty(&ctx->ordered_extents)) || 6393 inode->vfs_inode.i_nlink == 0) { 6394 ret = BTRFS_NO_LOG_SYNC; 6395 goto end_no_trans; 6396 } 6397 6398 ret = start_log_trans(trans, root, ctx); 6399 if (ret) 6400 goto end_no_trans; 6401 6402 ret = btrfs_log_inode(trans, inode, inode_only, ctx); 6403 if (ret) 6404 goto end_trans; 6405 6406 /* 6407 * for regular files, if its inode is already on disk, we don't 6408 * have to worry about the parents at all. This is because 6409 * we can use the last_unlink_trans field to record renames 6410 * and other fun in this file. 6411 */ 6412 if (S_ISREG(inode->vfs_inode.i_mode) && 6413 inode->generation < trans->transid && 6414 inode->last_unlink_trans < trans->transid) { 6415 ret = 0; 6416 goto end_trans; 6417 } 6418 6419 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries) 6420 log_dentries = true; 6421 6422 /* 6423 * On unlink we must make sure all our current and old parent directory 6424 * inodes are fully logged. This is to prevent leaving dangling 6425 * directory index entries in directories that were our parents but are 6426 * not anymore. Not doing this results in old parent directory being 6427 * impossible to delete after log replay (rmdir will always fail with 6428 * error -ENOTEMPTY). 6429 * 6430 * Example 1: 6431 * 6432 * mkdir testdir 6433 * touch testdir/foo 6434 * ln testdir/foo testdir/bar 6435 * sync 6436 * unlink testdir/bar 6437 * xfs_io -c fsync testdir/foo 6438 * <power failure> 6439 * mount fs, triggers log replay 6440 * 6441 * If we don't log the parent directory (testdir), after log replay the 6442 * directory still has an entry pointing to the file inode using the bar 6443 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6444 * the file inode has a link count of 1. 6445 * 6446 * Example 2: 6447 * 6448 * mkdir testdir 6449 * touch foo 6450 * ln foo testdir/foo2 6451 * ln foo testdir/foo3 6452 * sync 6453 * unlink testdir/foo3 6454 * xfs_io -c fsync foo 6455 * <power failure> 6456 * mount fs, triggers log replay 6457 * 6458 * Similar as the first example, after log replay the parent directory 6459 * testdir still has an entry pointing to the inode file with name foo3 6460 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6461 * and has a link count of 2. 6462 */ 6463 if (inode->last_unlink_trans >= trans->transid) { 6464 ret = btrfs_log_all_parents(trans, inode, ctx); 6465 if (ret) 6466 goto end_trans; 6467 } 6468 6469 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6470 if (ret) 6471 goto end_trans; 6472 6473 if (log_dentries) 6474 ret = log_new_dir_dentries(trans, root, inode, ctx); 6475 else 6476 ret = 0; 6477 end_trans: 6478 if (ret < 0) { 6479 btrfs_set_log_full_commit(trans); 6480 ret = 1; 6481 } 6482 6483 if (ret) 6484 btrfs_remove_log_ctx(root, ctx); 6485 btrfs_end_log_trans(root); 6486 end_no_trans: 6487 return ret; 6488 } 6489 6490 /* 6491 * it is not safe to log dentry if the chunk root has added new 6492 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6493 * If this returns 1, you must commit the transaction to safely get your 6494 * data on disk. 6495 */ 6496 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6497 struct dentry *dentry, 6498 struct btrfs_log_ctx *ctx) 6499 { 6500 struct dentry *parent = dget_parent(dentry); 6501 int ret; 6502 6503 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6504 LOG_INODE_ALL, ctx); 6505 dput(parent); 6506 6507 return ret; 6508 } 6509 6510 /* 6511 * should be called during mount to recover any replay any log trees 6512 * from the FS 6513 */ 6514 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6515 { 6516 int ret; 6517 struct btrfs_path *path; 6518 struct btrfs_trans_handle *trans; 6519 struct btrfs_key key; 6520 struct btrfs_key found_key; 6521 struct btrfs_root *log; 6522 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6523 struct walk_control wc = { 6524 .process_func = process_one_buffer, 6525 .stage = LOG_WALK_PIN_ONLY, 6526 }; 6527 6528 path = btrfs_alloc_path(); 6529 if (!path) 6530 return -ENOMEM; 6531 6532 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6533 6534 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6535 if (IS_ERR(trans)) { 6536 ret = PTR_ERR(trans); 6537 goto error; 6538 } 6539 6540 wc.trans = trans; 6541 wc.pin = 1; 6542 6543 ret = walk_log_tree(trans, log_root_tree, &wc); 6544 if (ret) { 6545 btrfs_abort_transaction(trans, ret); 6546 goto error; 6547 } 6548 6549 again: 6550 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6551 key.offset = (u64)-1; 6552 key.type = BTRFS_ROOT_ITEM_KEY; 6553 6554 while (1) { 6555 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6556 6557 if (ret < 0) { 6558 btrfs_abort_transaction(trans, ret); 6559 goto error; 6560 } 6561 if (ret > 0) { 6562 if (path->slots[0] == 0) 6563 break; 6564 path->slots[0]--; 6565 } 6566 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6567 path->slots[0]); 6568 btrfs_release_path(path); 6569 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6570 break; 6571 6572 log = btrfs_read_tree_root(log_root_tree, &found_key); 6573 if (IS_ERR(log)) { 6574 ret = PTR_ERR(log); 6575 btrfs_abort_transaction(trans, ret); 6576 goto error; 6577 } 6578 6579 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 6580 true); 6581 if (IS_ERR(wc.replay_dest)) { 6582 ret = PTR_ERR(wc.replay_dest); 6583 6584 /* 6585 * We didn't find the subvol, likely because it was 6586 * deleted. This is ok, simply skip this log and go to 6587 * the next one. 6588 * 6589 * We need to exclude the root because we can't have 6590 * other log replays overwriting this log as we'll read 6591 * it back in a few more times. This will keep our 6592 * block from being modified, and we'll just bail for 6593 * each subsequent pass. 6594 */ 6595 if (ret == -ENOENT) 6596 ret = btrfs_pin_extent_for_log_replay(trans, 6597 log->node->start, 6598 log->node->len); 6599 btrfs_put_root(log); 6600 6601 if (!ret) 6602 goto next; 6603 btrfs_abort_transaction(trans, ret); 6604 goto error; 6605 } 6606 6607 wc.replay_dest->log_root = log; 6608 ret = btrfs_record_root_in_trans(trans, wc.replay_dest); 6609 if (ret) 6610 /* The loop needs to continue due to the root refs */ 6611 btrfs_abort_transaction(trans, ret); 6612 else 6613 ret = walk_log_tree(trans, log, &wc); 6614 6615 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6616 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6617 path); 6618 if (ret) 6619 btrfs_abort_transaction(trans, ret); 6620 } 6621 6622 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6623 struct btrfs_root *root = wc.replay_dest; 6624 6625 btrfs_release_path(path); 6626 6627 /* 6628 * We have just replayed everything, and the highest 6629 * objectid of fs roots probably has changed in case 6630 * some inode_item's got replayed. 6631 * 6632 * root->objectid_mutex is not acquired as log replay 6633 * could only happen during mount. 6634 */ 6635 ret = btrfs_init_root_free_objectid(root); 6636 if (ret) 6637 btrfs_abort_transaction(trans, ret); 6638 } 6639 6640 wc.replay_dest->log_root = NULL; 6641 btrfs_put_root(wc.replay_dest); 6642 btrfs_put_root(log); 6643 6644 if (ret) 6645 goto error; 6646 next: 6647 if (found_key.offset == 0) 6648 break; 6649 key.offset = found_key.offset - 1; 6650 } 6651 btrfs_release_path(path); 6652 6653 /* step one is to pin it all, step two is to replay just inodes */ 6654 if (wc.pin) { 6655 wc.pin = 0; 6656 wc.process_func = replay_one_buffer; 6657 wc.stage = LOG_WALK_REPLAY_INODES; 6658 goto again; 6659 } 6660 /* step three is to replay everything */ 6661 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6662 wc.stage++; 6663 goto again; 6664 } 6665 6666 btrfs_free_path(path); 6667 6668 /* step 4: commit the transaction, which also unpins the blocks */ 6669 ret = btrfs_commit_transaction(trans); 6670 if (ret) 6671 return ret; 6672 6673 log_root_tree->log_root = NULL; 6674 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6675 btrfs_put_root(log_root_tree); 6676 6677 return 0; 6678 error: 6679 if (wc.trans) 6680 btrfs_end_transaction(wc.trans); 6681 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6682 btrfs_free_path(path); 6683 return ret; 6684 } 6685 6686 /* 6687 * there are some corner cases where we want to force a full 6688 * commit instead of allowing a directory to be logged. 6689 * 6690 * They revolve around files there were unlinked from the directory, and 6691 * this function updates the parent directory so that a full commit is 6692 * properly done if it is fsync'd later after the unlinks are done. 6693 * 6694 * Must be called before the unlink operations (updates to the subvolume tree, 6695 * inodes, etc) are done. 6696 */ 6697 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6698 struct btrfs_inode *dir, struct btrfs_inode *inode, 6699 int for_rename) 6700 { 6701 /* 6702 * when we're logging a file, if it hasn't been renamed 6703 * or unlinked, and its inode is fully committed on disk, 6704 * we don't have to worry about walking up the directory chain 6705 * to log its parents. 6706 * 6707 * So, we use the last_unlink_trans field to put this transid 6708 * into the file. When the file is logged we check it and 6709 * don't log the parents if the file is fully on disk. 6710 */ 6711 mutex_lock(&inode->log_mutex); 6712 inode->last_unlink_trans = trans->transid; 6713 mutex_unlock(&inode->log_mutex); 6714 6715 /* 6716 * if this directory was already logged any new 6717 * names for this file/dir will get recorded 6718 */ 6719 if (dir->logged_trans == trans->transid) 6720 return; 6721 6722 /* 6723 * if the inode we're about to unlink was logged, 6724 * the log will be properly updated for any new names 6725 */ 6726 if (inode->logged_trans == trans->transid) 6727 return; 6728 6729 /* 6730 * when renaming files across directories, if the directory 6731 * there we're unlinking from gets fsync'd later on, there's 6732 * no way to find the destination directory later and fsync it 6733 * properly. So, we have to be conservative and force commits 6734 * so the new name gets discovered. 6735 */ 6736 if (for_rename) 6737 goto record; 6738 6739 /* we can safely do the unlink without any special recording */ 6740 return; 6741 6742 record: 6743 mutex_lock(&dir->log_mutex); 6744 dir->last_unlink_trans = trans->transid; 6745 mutex_unlock(&dir->log_mutex); 6746 } 6747 6748 /* 6749 * Make sure that if someone attempts to fsync the parent directory of a deleted 6750 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6751 * that after replaying the log tree of the parent directory's root we will not 6752 * see the snapshot anymore and at log replay time we will not see any log tree 6753 * corresponding to the deleted snapshot's root, which could lead to replaying 6754 * it after replaying the log tree of the parent directory (which would replay 6755 * the snapshot delete operation). 6756 * 6757 * Must be called before the actual snapshot destroy operation (updates to the 6758 * parent root and tree of tree roots trees, etc) are done. 6759 */ 6760 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6761 struct btrfs_inode *dir) 6762 { 6763 mutex_lock(&dir->log_mutex); 6764 dir->last_unlink_trans = trans->transid; 6765 mutex_unlock(&dir->log_mutex); 6766 } 6767 6768 /* 6769 * Call this after adding a new name for a file and it will properly 6770 * update the log to reflect the new name. 6771 */ 6772 void btrfs_log_new_name(struct btrfs_trans_handle *trans, 6773 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6774 struct dentry *parent) 6775 { 6776 struct btrfs_log_ctx ctx; 6777 6778 /* 6779 * this will force the logging code to walk the dentry chain 6780 * up for the file 6781 */ 6782 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6783 inode->last_unlink_trans = trans->transid; 6784 6785 /* 6786 * if this inode hasn't been logged and directory we're renaming it 6787 * from hasn't been logged, we don't need to log it 6788 */ 6789 if (!inode_logged(trans, inode) && 6790 (!old_dir || !inode_logged(trans, old_dir))) 6791 return; 6792 6793 /* 6794 * If we are doing a rename (old_dir is not NULL) from a directory that 6795 * was previously logged, make sure the next log attempt on the directory 6796 * is not skipped and logs the inode again. This is because the log may 6797 * not currently be authoritative for a range including the old 6798 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make 6799 * sure after a log replay we do not end up with both the new and old 6800 * dentries around (in case the inode is a directory we would have a 6801 * directory with two hard links and 2 inode references for different 6802 * parents). The next log attempt of old_dir will happen at 6803 * btrfs_log_all_parents(), called through btrfs_log_inode_parent() 6804 * below, because we have previously set inode->last_unlink_trans to the 6805 * current transaction ID, either here or at btrfs_record_unlink_dir() in 6806 * case inode is a directory. 6807 */ 6808 if (old_dir) 6809 old_dir->logged_trans = 0; 6810 6811 btrfs_init_log_ctx(&ctx, &inode->vfs_inode); 6812 ctx.logging_new_name = true; 6813 /* 6814 * We don't care about the return value. If we fail to log the new name 6815 * then we know the next attempt to sync the log will fallback to a full 6816 * transaction commit (due to a call to btrfs_set_log_full_commit()), so 6817 * we don't need to worry about getting a log committed that has an 6818 * inconsistent state after a rename operation. 6819 */ 6820 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); 6821 } 6822 6823