xref: /openbmc/linux/fs/btrfs/tree-log.c (revision dd21bfa4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24 
25 /* magic values for the inode_only field in btrfs_log_inode:
26  *
27  * LOG_INODE_ALL means to log everything
28  * LOG_INODE_EXISTS means to log just enough to recreate the inode
29  * during log replay
30  */
31 enum {
32 	LOG_INODE_ALL,
33 	LOG_INODE_EXISTS,
34 	LOG_OTHER_INODE,
35 	LOG_OTHER_INODE_ALL,
36 };
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 enum {
91 	LOG_WALK_PIN_ONLY,
92 	LOG_WALK_REPLAY_INODES,
93 	LOG_WALK_REPLAY_DIR_INDEX,
94 	LOG_WALK_REPLAY_ALL,
95 };
96 
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 			   struct btrfs_inode *inode,
99 			   int inode_only,
100 			   struct btrfs_log_ctx *ctx);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 			     struct btrfs_root *root,
103 			     struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 				       struct btrfs_root *root,
106 				       struct btrfs_root *log,
107 				       struct btrfs_path *path,
108 				       u64 dirid, int del_all);
109 static void wait_log_commit(struct btrfs_root *root, int transid);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	struct btrfs_root *tree_root = fs_info->tree_root;
145 	const bool zoned = btrfs_is_zoned(fs_info);
146 	int ret = 0;
147 	bool created = false;
148 
149 	/*
150 	 * First check if the log root tree was already created. If not, create
151 	 * it before locking the root's log_mutex, just to keep lockdep happy.
152 	 */
153 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
154 		mutex_lock(&tree_root->log_mutex);
155 		if (!fs_info->log_root_tree) {
156 			ret = btrfs_init_log_root_tree(trans, fs_info);
157 			if (!ret) {
158 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
159 				created = true;
160 			}
161 		}
162 		mutex_unlock(&tree_root->log_mutex);
163 		if (ret)
164 			return ret;
165 	}
166 
167 	mutex_lock(&root->log_mutex);
168 
169 again:
170 	if (root->log_root) {
171 		int index = (root->log_transid + 1) % 2;
172 
173 		if (btrfs_need_log_full_commit(trans)) {
174 			ret = -EAGAIN;
175 			goto out;
176 		}
177 
178 		if (zoned && atomic_read(&root->log_commit[index])) {
179 			wait_log_commit(root, root->log_transid - 1);
180 			goto again;
181 		}
182 
183 		if (!root->log_start_pid) {
184 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
185 			root->log_start_pid = current->pid;
186 		} else if (root->log_start_pid != current->pid) {
187 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
188 		}
189 	} else {
190 		/*
191 		 * This means fs_info->log_root_tree was already created
192 		 * for some other FS trees. Do the full commit not to mix
193 		 * nodes from multiple log transactions to do sequential
194 		 * writing.
195 		 */
196 		if (zoned && !created) {
197 			ret = -EAGAIN;
198 			goto out;
199 		}
200 
201 		ret = btrfs_add_log_tree(trans, root);
202 		if (ret)
203 			goto out;
204 
205 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
206 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
207 		root->log_start_pid = current->pid;
208 	}
209 
210 	atomic_inc(&root->log_writers);
211 	if (!ctx->logging_new_name) {
212 		int index = root->log_transid % 2;
213 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
214 		ctx->log_transid = root->log_transid;
215 	}
216 
217 out:
218 	mutex_unlock(&root->log_mutex);
219 	return ret;
220 }
221 
222 /*
223  * returns 0 if there was a log transaction running and we were able
224  * to join, or returns -ENOENT if there were not transactions
225  * in progress
226  */
227 static int join_running_log_trans(struct btrfs_root *root)
228 {
229 	const bool zoned = btrfs_is_zoned(root->fs_info);
230 	int ret = -ENOENT;
231 
232 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
233 		return ret;
234 
235 	mutex_lock(&root->log_mutex);
236 again:
237 	if (root->log_root) {
238 		int index = (root->log_transid + 1) % 2;
239 
240 		ret = 0;
241 		if (zoned && atomic_read(&root->log_commit[index])) {
242 			wait_log_commit(root, root->log_transid - 1);
243 			goto again;
244 		}
245 		atomic_inc(&root->log_writers);
246 	}
247 	mutex_unlock(&root->log_mutex);
248 	return ret;
249 }
250 
251 /*
252  * This either makes the current running log transaction wait
253  * until you call btrfs_end_log_trans() or it makes any future
254  * log transactions wait until you call btrfs_end_log_trans()
255  */
256 void btrfs_pin_log_trans(struct btrfs_root *root)
257 {
258 	atomic_inc(&root->log_writers);
259 }
260 
261 /*
262  * indicate we're done making changes to the log tree
263  * and wake up anyone waiting to do a sync
264  */
265 void btrfs_end_log_trans(struct btrfs_root *root)
266 {
267 	if (atomic_dec_and_test(&root->log_writers)) {
268 		/* atomic_dec_and_test implies a barrier */
269 		cond_wake_up_nomb(&root->log_writer_wait);
270 	}
271 }
272 
273 static int btrfs_write_tree_block(struct extent_buffer *buf)
274 {
275 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
276 					buf->start + buf->len - 1);
277 }
278 
279 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
280 {
281 	filemap_fdatawait_range(buf->pages[0]->mapping,
282 			        buf->start, buf->start + buf->len - 1);
283 }
284 
285 /*
286  * the walk control struct is used to pass state down the chain when
287  * processing the log tree.  The stage field tells us which part
288  * of the log tree processing we are currently doing.  The others
289  * are state fields used for that specific part
290  */
291 struct walk_control {
292 	/* should we free the extent on disk when done?  This is used
293 	 * at transaction commit time while freeing a log tree
294 	 */
295 	int free;
296 
297 	/* should we write out the extent buffer?  This is used
298 	 * while flushing the log tree to disk during a sync
299 	 */
300 	int write;
301 
302 	/* should we wait for the extent buffer io to finish?  Also used
303 	 * while flushing the log tree to disk for a sync
304 	 */
305 	int wait;
306 
307 	/* pin only walk, we record which extents on disk belong to the
308 	 * log trees
309 	 */
310 	int pin;
311 
312 	/* what stage of the replay code we're currently in */
313 	int stage;
314 
315 	/*
316 	 * Ignore any items from the inode currently being processed. Needs
317 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
318 	 * the LOG_WALK_REPLAY_INODES stage.
319 	 */
320 	bool ignore_cur_inode;
321 
322 	/* the root we are currently replaying */
323 	struct btrfs_root *replay_dest;
324 
325 	/* the trans handle for the current replay */
326 	struct btrfs_trans_handle *trans;
327 
328 	/* the function that gets used to process blocks we find in the
329 	 * tree.  Note the extent_buffer might not be up to date when it is
330 	 * passed in, and it must be checked or read if you need the data
331 	 * inside it
332 	 */
333 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
334 			    struct walk_control *wc, u64 gen, int level);
335 };
336 
337 /*
338  * process_func used to pin down extents, write them or wait on them
339  */
340 static int process_one_buffer(struct btrfs_root *log,
341 			      struct extent_buffer *eb,
342 			      struct walk_control *wc, u64 gen, int level)
343 {
344 	struct btrfs_fs_info *fs_info = log->fs_info;
345 	int ret = 0;
346 
347 	/*
348 	 * If this fs is mixed then we need to be able to process the leaves to
349 	 * pin down any logged extents, so we have to read the block.
350 	 */
351 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
352 		ret = btrfs_read_buffer(eb, gen, level, NULL);
353 		if (ret)
354 			return ret;
355 	}
356 
357 	if (wc->pin)
358 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
359 						      eb->len);
360 
361 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
362 		if (wc->pin && btrfs_header_level(eb) == 0)
363 			ret = btrfs_exclude_logged_extents(eb);
364 		if (wc->write)
365 			btrfs_write_tree_block(eb);
366 		if (wc->wait)
367 			btrfs_wait_tree_block_writeback(eb);
368 	}
369 	return ret;
370 }
371 
372 static int do_overwrite_item(struct btrfs_trans_handle *trans,
373 			     struct btrfs_root *root,
374 			     struct btrfs_path *path,
375 			     struct extent_buffer *eb, int slot,
376 			     struct btrfs_key *key)
377 {
378 	int ret;
379 	u32 item_size;
380 	u64 saved_i_size = 0;
381 	int save_old_i_size = 0;
382 	unsigned long src_ptr;
383 	unsigned long dst_ptr;
384 	int overwrite_root = 0;
385 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
386 
387 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
388 		overwrite_root = 1;
389 
390 	item_size = btrfs_item_size(eb, slot);
391 	src_ptr = btrfs_item_ptr_offset(eb, slot);
392 
393 	/* Our caller must have done a search for the key for us. */
394 	ASSERT(path->nodes[0] != NULL);
395 
396 	/*
397 	 * And the slot must point to the exact key or the slot where the key
398 	 * should be at (the first item with a key greater than 'key')
399 	 */
400 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
401 		struct btrfs_key found_key;
402 
403 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
404 		ret = btrfs_comp_cpu_keys(&found_key, key);
405 		ASSERT(ret >= 0);
406 	} else {
407 		ret = 1;
408 	}
409 
410 	if (ret == 0) {
411 		char *src_copy;
412 		char *dst_copy;
413 		u32 dst_size = btrfs_item_size(path->nodes[0],
414 						  path->slots[0]);
415 		if (dst_size != item_size)
416 			goto insert;
417 
418 		if (item_size == 0) {
419 			btrfs_release_path(path);
420 			return 0;
421 		}
422 		dst_copy = kmalloc(item_size, GFP_NOFS);
423 		src_copy = kmalloc(item_size, GFP_NOFS);
424 		if (!dst_copy || !src_copy) {
425 			btrfs_release_path(path);
426 			kfree(dst_copy);
427 			kfree(src_copy);
428 			return -ENOMEM;
429 		}
430 
431 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
432 
433 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
434 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
435 				   item_size);
436 		ret = memcmp(dst_copy, src_copy, item_size);
437 
438 		kfree(dst_copy);
439 		kfree(src_copy);
440 		/*
441 		 * they have the same contents, just return, this saves
442 		 * us from cowing blocks in the destination tree and doing
443 		 * extra writes that may not have been done by a previous
444 		 * sync
445 		 */
446 		if (ret == 0) {
447 			btrfs_release_path(path);
448 			return 0;
449 		}
450 
451 		/*
452 		 * We need to load the old nbytes into the inode so when we
453 		 * replay the extents we've logged we get the right nbytes.
454 		 */
455 		if (inode_item) {
456 			struct btrfs_inode_item *item;
457 			u64 nbytes;
458 			u32 mode;
459 
460 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
461 					      struct btrfs_inode_item);
462 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
463 			item = btrfs_item_ptr(eb, slot,
464 					      struct btrfs_inode_item);
465 			btrfs_set_inode_nbytes(eb, item, nbytes);
466 
467 			/*
468 			 * If this is a directory we need to reset the i_size to
469 			 * 0 so that we can set it up properly when replaying
470 			 * the rest of the items in this log.
471 			 */
472 			mode = btrfs_inode_mode(eb, item);
473 			if (S_ISDIR(mode))
474 				btrfs_set_inode_size(eb, item, 0);
475 		}
476 	} else if (inode_item) {
477 		struct btrfs_inode_item *item;
478 		u32 mode;
479 
480 		/*
481 		 * New inode, set nbytes to 0 so that the nbytes comes out
482 		 * properly when we replay the extents.
483 		 */
484 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
485 		btrfs_set_inode_nbytes(eb, item, 0);
486 
487 		/*
488 		 * If this is a directory we need to reset the i_size to 0 so
489 		 * that we can set it up properly when replaying the rest of
490 		 * the items in this log.
491 		 */
492 		mode = btrfs_inode_mode(eb, item);
493 		if (S_ISDIR(mode))
494 			btrfs_set_inode_size(eb, item, 0);
495 	}
496 insert:
497 	btrfs_release_path(path);
498 	/* try to insert the key into the destination tree */
499 	path->skip_release_on_error = 1;
500 	ret = btrfs_insert_empty_item(trans, root, path,
501 				      key, item_size);
502 	path->skip_release_on_error = 0;
503 
504 	/* make sure any existing item is the correct size */
505 	if (ret == -EEXIST || ret == -EOVERFLOW) {
506 		u32 found_size;
507 		found_size = btrfs_item_size(path->nodes[0],
508 						path->slots[0]);
509 		if (found_size > item_size)
510 			btrfs_truncate_item(path, item_size, 1);
511 		else if (found_size < item_size)
512 			btrfs_extend_item(path, item_size - found_size);
513 	} else if (ret) {
514 		return ret;
515 	}
516 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
517 					path->slots[0]);
518 
519 	/* don't overwrite an existing inode if the generation number
520 	 * was logged as zero.  This is done when the tree logging code
521 	 * is just logging an inode to make sure it exists after recovery.
522 	 *
523 	 * Also, don't overwrite i_size on directories during replay.
524 	 * log replay inserts and removes directory items based on the
525 	 * state of the tree found in the subvolume, and i_size is modified
526 	 * as it goes
527 	 */
528 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
529 		struct btrfs_inode_item *src_item;
530 		struct btrfs_inode_item *dst_item;
531 
532 		src_item = (struct btrfs_inode_item *)src_ptr;
533 		dst_item = (struct btrfs_inode_item *)dst_ptr;
534 
535 		if (btrfs_inode_generation(eb, src_item) == 0) {
536 			struct extent_buffer *dst_eb = path->nodes[0];
537 			const u64 ino_size = btrfs_inode_size(eb, src_item);
538 
539 			/*
540 			 * For regular files an ino_size == 0 is used only when
541 			 * logging that an inode exists, as part of a directory
542 			 * fsync, and the inode wasn't fsynced before. In this
543 			 * case don't set the size of the inode in the fs/subvol
544 			 * tree, otherwise we would be throwing valid data away.
545 			 */
546 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
547 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
548 			    ino_size != 0)
549 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
550 			goto no_copy;
551 		}
552 
553 		if (overwrite_root &&
554 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
555 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
556 			save_old_i_size = 1;
557 			saved_i_size = btrfs_inode_size(path->nodes[0],
558 							dst_item);
559 		}
560 	}
561 
562 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
563 			   src_ptr, item_size);
564 
565 	if (save_old_i_size) {
566 		struct btrfs_inode_item *dst_item;
567 		dst_item = (struct btrfs_inode_item *)dst_ptr;
568 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
569 	}
570 
571 	/* make sure the generation is filled in */
572 	if (key->type == BTRFS_INODE_ITEM_KEY) {
573 		struct btrfs_inode_item *dst_item;
574 		dst_item = (struct btrfs_inode_item *)dst_ptr;
575 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
576 			btrfs_set_inode_generation(path->nodes[0], dst_item,
577 						   trans->transid);
578 		}
579 	}
580 no_copy:
581 	btrfs_mark_buffer_dirty(path->nodes[0]);
582 	btrfs_release_path(path);
583 	return 0;
584 }
585 
586 /*
587  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
588  * to the src data we are copying out.
589  *
590  * root is the tree we are copying into, and path is a scratch
591  * path for use in this function (it should be released on entry and
592  * will be released on exit).
593  *
594  * If the key is already in the destination tree the existing item is
595  * overwritten.  If the existing item isn't big enough, it is extended.
596  * If it is too large, it is truncated.
597  *
598  * If the key isn't in the destination yet, a new item is inserted.
599  */
600 static int overwrite_item(struct btrfs_trans_handle *trans,
601 			  struct btrfs_root *root,
602 			  struct btrfs_path *path,
603 			  struct extent_buffer *eb, int slot,
604 			  struct btrfs_key *key)
605 {
606 	int ret;
607 
608 	/* Look for the key in the destination tree. */
609 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
610 	if (ret < 0)
611 		return ret;
612 
613 	return do_overwrite_item(trans, root, path, eb, slot, key);
614 }
615 
616 /*
617  * simple helper to read an inode off the disk from a given root
618  * This can only be called for subvolume roots and not for the log
619  */
620 static noinline struct inode *read_one_inode(struct btrfs_root *root,
621 					     u64 objectid)
622 {
623 	struct inode *inode;
624 
625 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
626 	if (IS_ERR(inode))
627 		inode = NULL;
628 	return inode;
629 }
630 
631 /* replays a single extent in 'eb' at 'slot' with 'key' into the
632  * subvolume 'root'.  path is released on entry and should be released
633  * on exit.
634  *
635  * extents in the log tree have not been allocated out of the extent
636  * tree yet.  So, this completes the allocation, taking a reference
637  * as required if the extent already exists or creating a new extent
638  * if it isn't in the extent allocation tree yet.
639  *
640  * The extent is inserted into the file, dropping any existing extents
641  * from the file that overlap the new one.
642  */
643 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
644 				      struct btrfs_root *root,
645 				      struct btrfs_path *path,
646 				      struct extent_buffer *eb, int slot,
647 				      struct btrfs_key *key)
648 {
649 	struct btrfs_drop_extents_args drop_args = { 0 };
650 	struct btrfs_fs_info *fs_info = root->fs_info;
651 	int found_type;
652 	u64 extent_end;
653 	u64 start = key->offset;
654 	u64 nbytes = 0;
655 	struct btrfs_file_extent_item *item;
656 	struct inode *inode = NULL;
657 	unsigned long size;
658 	int ret = 0;
659 
660 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
661 	found_type = btrfs_file_extent_type(eb, item);
662 
663 	if (found_type == BTRFS_FILE_EXTENT_REG ||
664 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
665 		nbytes = btrfs_file_extent_num_bytes(eb, item);
666 		extent_end = start + nbytes;
667 
668 		/*
669 		 * We don't add to the inodes nbytes if we are prealloc or a
670 		 * hole.
671 		 */
672 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
673 			nbytes = 0;
674 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
675 		size = btrfs_file_extent_ram_bytes(eb, item);
676 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
677 		extent_end = ALIGN(start + size,
678 				   fs_info->sectorsize);
679 	} else {
680 		ret = 0;
681 		goto out;
682 	}
683 
684 	inode = read_one_inode(root, key->objectid);
685 	if (!inode) {
686 		ret = -EIO;
687 		goto out;
688 	}
689 
690 	/*
691 	 * first check to see if we already have this extent in the
692 	 * file.  This must be done before the btrfs_drop_extents run
693 	 * so we don't try to drop this extent.
694 	 */
695 	ret = btrfs_lookup_file_extent(trans, root, path,
696 			btrfs_ino(BTRFS_I(inode)), start, 0);
697 
698 	if (ret == 0 &&
699 	    (found_type == BTRFS_FILE_EXTENT_REG ||
700 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
701 		struct btrfs_file_extent_item cmp1;
702 		struct btrfs_file_extent_item cmp2;
703 		struct btrfs_file_extent_item *existing;
704 		struct extent_buffer *leaf;
705 
706 		leaf = path->nodes[0];
707 		existing = btrfs_item_ptr(leaf, path->slots[0],
708 					  struct btrfs_file_extent_item);
709 
710 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
711 				   sizeof(cmp1));
712 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
713 				   sizeof(cmp2));
714 
715 		/*
716 		 * we already have a pointer to this exact extent,
717 		 * we don't have to do anything
718 		 */
719 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
720 			btrfs_release_path(path);
721 			goto out;
722 		}
723 	}
724 	btrfs_release_path(path);
725 
726 	/* drop any overlapping extents */
727 	drop_args.start = start;
728 	drop_args.end = extent_end;
729 	drop_args.drop_cache = true;
730 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
731 	if (ret)
732 		goto out;
733 
734 	if (found_type == BTRFS_FILE_EXTENT_REG ||
735 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
736 		u64 offset;
737 		unsigned long dest_offset;
738 		struct btrfs_key ins;
739 
740 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
741 		    btrfs_fs_incompat(fs_info, NO_HOLES))
742 			goto update_inode;
743 
744 		ret = btrfs_insert_empty_item(trans, root, path, key,
745 					      sizeof(*item));
746 		if (ret)
747 			goto out;
748 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
749 						    path->slots[0]);
750 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
751 				(unsigned long)item,  sizeof(*item));
752 
753 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
754 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
755 		ins.type = BTRFS_EXTENT_ITEM_KEY;
756 		offset = key->offset - btrfs_file_extent_offset(eb, item);
757 
758 		/*
759 		 * Manually record dirty extent, as here we did a shallow
760 		 * file extent item copy and skip normal backref update,
761 		 * but modifying extent tree all by ourselves.
762 		 * So need to manually record dirty extent for qgroup,
763 		 * as the owner of the file extent changed from log tree
764 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
765 		 */
766 		ret = btrfs_qgroup_trace_extent(trans,
767 				btrfs_file_extent_disk_bytenr(eb, item),
768 				btrfs_file_extent_disk_num_bytes(eb, item),
769 				GFP_NOFS);
770 		if (ret < 0)
771 			goto out;
772 
773 		if (ins.objectid > 0) {
774 			struct btrfs_ref ref = { 0 };
775 			u64 csum_start;
776 			u64 csum_end;
777 			LIST_HEAD(ordered_sums);
778 
779 			/*
780 			 * is this extent already allocated in the extent
781 			 * allocation tree?  If so, just add a reference
782 			 */
783 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
784 						ins.offset);
785 			if (ret < 0) {
786 				goto out;
787 			} else if (ret == 0) {
788 				btrfs_init_generic_ref(&ref,
789 						BTRFS_ADD_DELAYED_REF,
790 						ins.objectid, ins.offset, 0);
791 				btrfs_init_data_ref(&ref,
792 						root->root_key.objectid,
793 						key->objectid, offset, 0, false);
794 				ret = btrfs_inc_extent_ref(trans, &ref);
795 				if (ret)
796 					goto out;
797 			} else {
798 				/*
799 				 * insert the extent pointer in the extent
800 				 * allocation tree
801 				 */
802 				ret = btrfs_alloc_logged_file_extent(trans,
803 						root->root_key.objectid,
804 						key->objectid, offset, &ins);
805 				if (ret)
806 					goto out;
807 			}
808 			btrfs_release_path(path);
809 
810 			if (btrfs_file_extent_compression(eb, item)) {
811 				csum_start = ins.objectid;
812 				csum_end = csum_start + ins.offset;
813 			} else {
814 				csum_start = ins.objectid +
815 					btrfs_file_extent_offset(eb, item);
816 				csum_end = csum_start +
817 					btrfs_file_extent_num_bytes(eb, item);
818 			}
819 
820 			ret = btrfs_lookup_csums_range(root->log_root,
821 						csum_start, csum_end - 1,
822 						&ordered_sums, 0);
823 			if (ret)
824 				goto out;
825 			/*
826 			 * Now delete all existing cums in the csum root that
827 			 * cover our range. We do this because we can have an
828 			 * extent that is completely referenced by one file
829 			 * extent item and partially referenced by another
830 			 * file extent item (like after using the clone or
831 			 * extent_same ioctls). In this case if we end up doing
832 			 * the replay of the one that partially references the
833 			 * extent first, and we do not do the csum deletion
834 			 * below, we can get 2 csum items in the csum tree that
835 			 * overlap each other. For example, imagine our log has
836 			 * the two following file extent items:
837 			 *
838 			 * key (257 EXTENT_DATA 409600)
839 			 *     extent data disk byte 12845056 nr 102400
840 			 *     extent data offset 20480 nr 20480 ram 102400
841 			 *
842 			 * key (257 EXTENT_DATA 819200)
843 			 *     extent data disk byte 12845056 nr 102400
844 			 *     extent data offset 0 nr 102400 ram 102400
845 			 *
846 			 * Where the second one fully references the 100K extent
847 			 * that starts at disk byte 12845056, and the log tree
848 			 * has a single csum item that covers the entire range
849 			 * of the extent:
850 			 *
851 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
852 			 *
853 			 * After the first file extent item is replayed, the
854 			 * csum tree gets the following csum item:
855 			 *
856 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
857 			 *
858 			 * Which covers the 20K sub-range starting at offset 20K
859 			 * of our extent. Now when we replay the second file
860 			 * extent item, if we do not delete existing csum items
861 			 * that cover any of its blocks, we end up getting two
862 			 * csum items in our csum tree that overlap each other:
863 			 *
864 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
865 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
866 			 *
867 			 * Which is a problem, because after this anyone trying
868 			 * to lookup up for the checksum of any block of our
869 			 * extent starting at an offset of 40K or higher, will
870 			 * end up looking at the second csum item only, which
871 			 * does not contain the checksum for any block starting
872 			 * at offset 40K or higher of our extent.
873 			 */
874 			while (!list_empty(&ordered_sums)) {
875 				struct btrfs_ordered_sum *sums;
876 				struct btrfs_root *csum_root;
877 
878 				sums = list_entry(ordered_sums.next,
879 						struct btrfs_ordered_sum,
880 						list);
881 				csum_root = btrfs_csum_root(fs_info,
882 							    sums->bytenr);
883 				if (!ret)
884 					ret = btrfs_del_csums(trans, csum_root,
885 							      sums->bytenr,
886 							      sums->len);
887 				if (!ret)
888 					ret = btrfs_csum_file_blocks(trans,
889 								     csum_root,
890 								     sums);
891 				list_del(&sums->list);
892 				kfree(sums);
893 			}
894 			if (ret)
895 				goto out;
896 		} else {
897 			btrfs_release_path(path);
898 		}
899 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
900 		/* inline extents are easy, we just overwrite them */
901 		ret = overwrite_item(trans, root, path, eb, slot, key);
902 		if (ret)
903 			goto out;
904 	}
905 
906 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
907 						extent_end - start);
908 	if (ret)
909 		goto out;
910 
911 update_inode:
912 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
913 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
914 out:
915 	if (inode)
916 		iput(inode);
917 	return ret;
918 }
919 
920 /*
921  * when cleaning up conflicts between the directory names in the
922  * subvolume, directory names in the log and directory names in the
923  * inode back references, we may have to unlink inodes from directories.
924  *
925  * This is a helper function to do the unlink of a specific directory
926  * item
927  */
928 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
929 				      struct btrfs_path *path,
930 				      struct btrfs_inode *dir,
931 				      struct btrfs_dir_item *di)
932 {
933 	struct btrfs_root *root = dir->root;
934 	struct inode *inode;
935 	char *name;
936 	int name_len;
937 	struct extent_buffer *leaf;
938 	struct btrfs_key location;
939 	int ret;
940 
941 	leaf = path->nodes[0];
942 
943 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
944 	name_len = btrfs_dir_name_len(leaf, di);
945 	name = kmalloc(name_len, GFP_NOFS);
946 	if (!name)
947 		return -ENOMEM;
948 
949 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
950 	btrfs_release_path(path);
951 
952 	inode = read_one_inode(root, location.objectid);
953 	if (!inode) {
954 		ret = -EIO;
955 		goto out;
956 	}
957 
958 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
959 	if (ret)
960 		goto out;
961 
962 	ret = btrfs_unlink_inode(trans, dir, BTRFS_I(inode), name,
963 			name_len);
964 	if (ret)
965 		goto out;
966 	else
967 		ret = btrfs_run_delayed_items(trans);
968 out:
969 	kfree(name);
970 	iput(inode);
971 	return ret;
972 }
973 
974 /*
975  * See if a given name and sequence number found in an inode back reference are
976  * already in a directory and correctly point to this inode.
977  *
978  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
979  * exists.
980  */
981 static noinline int inode_in_dir(struct btrfs_root *root,
982 				 struct btrfs_path *path,
983 				 u64 dirid, u64 objectid, u64 index,
984 				 const char *name, int name_len)
985 {
986 	struct btrfs_dir_item *di;
987 	struct btrfs_key location;
988 	int ret = 0;
989 
990 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
991 					 index, name, name_len, 0);
992 	if (IS_ERR(di)) {
993 		ret = PTR_ERR(di);
994 		goto out;
995 	} else if (di) {
996 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
997 		if (location.objectid != objectid)
998 			goto out;
999 	} else {
1000 		goto out;
1001 	}
1002 
1003 	btrfs_release_path(path);
1004 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
1005 	if (IS_ERR(di)) {
1006 		ret = PTR_ERR(di);
1007 		goto out;
1008 	} else if (di) {
1009 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1010 		if (location.objectid == objectid)
1011 			ret = 1;
1012 	}
1013 out:
1014 	btrfs_release_path(path);
1015 	return ret;
1016 }
1017 
1018 /*
1019  * helper function to check a log tree for a named back reference in
1020  * an inode.  This is used to decide if a back reference that is
1021  * found in the subvolume conflicts with what we find in the log.
1022  *
1023  * inode backreferences may have multiple refs in a single item,
1024  * during replay we process one reference at a time, and we don't
1025  * want to delete valid links to a file from the subvolume if that
1026  * link is also in the log.
1027  */
1028 static noinline int backref_in_log(struct btrfs_root *log,
1029 				   struct btrfs_key *key,
1030 				   u64 ref_objectid,
1031 				   const char *name, int namelen)
1032 {
1033 	struct btrfs_path *path;
1034 	int ret;
1035 
1036 	path = btrfs_alloc_path();
1037 	if (!path)
1038 		return -ENOMEM;
1039 
1040 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1041 	if (ret < 0) {
1042 		goto out;
1043 	} else if (ret == 1) {
1044 		ret = 0;
1045 		goto out;
1046 	}
1047 
1048 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1049 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1050 						       path->slots[0],
1051 						       ref_objectid,
1052 						       name, namelen);
1053 	else
1054 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1055 						   path->slots[0],
1056 						   name, namelen);
1057 out:
1058 	btrfs_free_path(path);
1059 	return ret;
1060 }
1061 
1062 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1063 				  struct btrfs_root *root,
1064 				  struct btrfs_path *path,
1065 				  struct btrfs_root *log_root,
1066 				  struct btrfs_inode *dir,
1067 				  struct btrfs_inode *inode,
1068 				  u64 inode_objectid, u64 parent_objectid,
1069 				  u64 ref_index, char *name, int namelen,
1070 				  int *search_done)
1071 {
1072 	int ret;
1073 	char *victim_name;
1074 	int victim_name_len;
1075 	struct extent_buffer *leaf;
1076 	struct btrfs_dir_item *di;
1077 	struct btrfs_key search_key;
1078 	struct btrfs_inode_extref *extref;
1079 
1080 again:
1081 	/* Search old style refs */
1082 	search_key.objectid = inode_objectid;
1083 	search_key.type = BTRFS_INODE_REF_KEY;
1084 	search_key.offset = parent_objectid;
1085 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1086 	if (ret == 0) {
1087 		struct btrfs_inode_ref *victim_ref;
1088 		unsigned long ptr;
1089 		unsigned long ptr_end;
1090 
1091 		leaf = path->nodes[0];
1092 
1093 		/* are we trying to overwrite a back ref for the root directory
1094 		 * if so, just jump out, we're done
1095 		 */
1096 		if (search_key.objectid == search_key.offset)
1097 			return 1;
1098 
1099 		/* check all the names in this back reference to see
1100 		 * if they are in the log.  if so, we allow them to stay
1101 		 * otherwise they must be unlinked as a conflict
1102 		 */
1103 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1104 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1105 		while (ptr < ptr_end) {
1106 			victim_ref = (struct btrfs_inode_ref *)ptr;
1107 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1108 								   victim_ref);
1109 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1110 			if (!victim_name)
1111 				return -ENOMEM;
1112 
1113 			read_extent_buffer(leaf, victim_name,
1114 					   (unsigned long)(victim_ref + 1),
1115 					   victim_name_len);
1116 
1117 			ret = backref_in_log(log_root, &search_key,
1118 					     parent_objectid, victim_name,
1119 					     victim_name_len);
1120 			if (ret < 0) {
1121 				kfree(victim_name);
1122 				return ret;
1123 			} else if (!ret) {
1124 				inc_nlink(&inode->vfs_inode);
1125 				btrfs_release_path(path);
1126 
1127 				ret = btrfs_unlink_inode(trans, dir, inode,
1128 						victim_name, victim_name_len);
1129 				kfree(victim_name);
1130 				if (ret)
1131 					return ret;
1132 				ret = btrfs_run_delayed_items(trans);
1133 				if (ret)
1134 					return ret;
1135 				*search_done = 1;
1136 				goto again;
1137 			}
1138 			kfree(victim_name);
1139 
1140 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1141 		}
1142 
1143 		/*
1144 		 * NOTE: we have searched root tree and checked the
1145 		 * corresponding ref, it does not need to check again.
1146 		 */
1147 		*search_done = 1;
1148 	}
1149 	btrfs_release_path(path);
1150 
1151 	/* Same search but for extended refs */
1152 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1153 					   inode_objectid, parent_objectid, 0,
1154 					   0);
1155 	if (!IS_ERR_OR_NULL(extref)) {
1156 		u32 item_size;
1157 		u32 cur_offset = 0;
1158 		unsigned long base;
1159 		struct inode *victim_parent;
1160 
1161 		leaf = path->nodes[0];
1162 
1163 		item_size = btrfs_item_size(leaf, path->slots[0]);
1164 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1165 
1166 		while (cur_offset < item_size) {
1167 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1168 
1169 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1170 
1171 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1172 				goto next;
1173 
1174 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1175 			if (!victim_name)
1176 				return -ENOMEM;
1177 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1178 					   victim_name_len);
1179 
1180 			search_key.objectid = inode_objectid;
1181 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1182 			search_key.offset = btrfs_extref_hash(parent_objectid,
1183 							      victim_name,
1184 							      victim_name_len);
1185 			ret = backref_in_log(log_root, &search_key,
1186 					     parent_objectid, victim_name,
1187 					     victim_name_len);
1188 			if (ret < 0) {
1189 				kfree(victim_name);
1190 				return ret;
1191 			} else if (!ret) {
1192 				ret = -ENOENT;
1193 				victim_parent = read_one_inode(root,
1194 						parent_objectid);
1195 				if (victim_parent) {
1196 					inc_nlink(&inode->vfs_inode);
1197 					btrfs_release_path(path);
1198 
1199 					ret = btrfs_unlink_inode(trans,
1200 							BTRFS_I(victim_parent),
1201 							inode,
1202 							victim_name,
1203 							victim_name_len);
1204 					if (!ret)
1205 						ret = btrfs_run_delayed_items(
1206 								  trans);
1207 				}
1208 				iput(victim_parent);
1209 				kfree(victim_name);
1210 				if (ret)
1211 					return ret;
1212 				*search_done = 1;
1213 				goto again;
1214 			}
1215 			kfree(victim_name);
1216 next:
1217 			cur_offset += victim_name_len + sizeof(*extref);
1218 		}
1219 		*search_done = 1;
1220 	}
1221 	btrfs_release_path(path);
1222 
1223 	/* look for a conflicting sequence number */
1224 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1225 					 ref_index, name, namelen, 0);
1226 	if (IS_ERR(di)) {
1227 		return PTR_ERR(di);
1228 	} else if (di) {
1229 		ret = drop_one_dir_item(trans, path, dir, di);
1230 		if (ret)
1231 			return ret;
1232 	}
1233 	btrfs_release_path(path);
1234 
1235 	/* look for a conflicting name */
1236 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1237 				   name, namelen, 0);
1238 	if (IS_ERR(di)) {
1239 		return PTR_ERR(di);
1240 	} else if (di) {
1241 		ret = drop_one_dir_item(trans, path, dir, di);
1242 		if (ret)
1243 			return ret;
1244 	}
1245 	btrfs_release_path(path);
1246 
1247 	return 0;
1248 }
1249 
1250 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1251 			     u32 *namelen, char **name, u64 *index,
1252 			     u64 *parent_objectid)
1253 {
1254 	struct btrfs_inode_extref *extref;
1255 
1256 	extref = (struct btrfs_inode_extref *)ref_ptr;
1257 
1258 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1259 	*name = kmalloc(*namelen, GFP_NOFS);
1260 	if (*name == NULL)
1261 		return -ENOMEM;
1262 
1263 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1264 			   *namelen);
1265 
1266 	if (index)
1267 		*index = btrfs_inode_extref_index(eb, extref);
1268 	if (parent_objectid)
1269 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1270 
1271 	return 0;
1272 }
1273 
1274 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1275 			  u32 *namelen, char **name, u64 *index)
1276 {
1277 	struct btrfs_inode_ref *ref;
1278 
1279 	ref = (struct btrfs_inode_ref *)ref_ptr;
1280 
1281 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1282 	*name = kmalloc(*namelen, GFP_NOFS);
1283 	if (*name == NULL)
1284 		return -ENOMEM;
1285 
1286 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1287 
1288 	if (index)
1289 		*index = btrfs_inode_ref_index(eb, ref);
1290 
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Take an inode reference item from the log tree and iterate all names from the
1296  * inode reference item in the subvolume tree with the same key (if it exists).
1297  * For any name that is not in the inode reference item from the log tree, do a
1298  * proper unlink of that name (that is, remove its entry from the inode
1299  * reference item and both dir index keys).
1300  */
1301 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1302 				 struct btrfs_root *root,
1303 				 struct btrfs_path *path,
1304 				 struct btrfs_inode *inode,
1305 				 struct extent_buffer *log_eb,
1306 				 int log_slot,
1307 				 struct btrfs_key *key)
1308 {
1309 	int ret;
1310 	unsigned long ref_ptr;
1311 	unsigned long ref_end;
1312 	struct extent_buffer *eb;
1313 
1314 again:
1315 	btrfs_release_path(path);
1316 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1317 	if (ret > 0) {
1318 		ret = 0;
1319 		goto out;
1320 	}
1321 	if (ret < 0)
1322 		goto out;
1323 
1324 	eb = path->nodes[0];
1325 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1326 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1327 	while (ref_ptr < ref_end) {
1328 		char *name = NULL;
1329 		int namelen;
1330 		u64 parent_id;
1331 
1332 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1333 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1334 						NULL, &parent_id);
1335 		} else {
1336 			parent_id = key->offset;
1337 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1338 					     NULL);
1339 		}
1340 		if (ret)
1341 			goto out;
1342 
1343 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1344 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1345 							       parent_id, name,
1346 							       namelen);
1347 		else
1348 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1349 							   name, namelen);
1350 
1351 		if (!ret) {
1352 			struct inode *dir;
1353 
1354 			btrfs_release_path(path);
1355 			dir = read_one_inode(root, parent_id);
1356 			if (!dir) {
1357 				ret = -ENOENT;
1358 				kfree(name);
1359 				goto out;
1360 			}
1361 			ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
1362 						 inode, name, namelen);
1363 			kfree(name);
1364 			iput(dir);
1365 			if (ret)
1366 				goto out;
1367 			goto again;
1368 		}
1369 
1370 		kfree(name);
1371 		ref_ptr += namelen;
1372 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1373 			ref_ptr += sizeof(struct btrfs_inode_extref);
1374 		else
1375 			ref_ptr += sizeof(struct btrfs_inode_ref);
1376 	}
1377 	ret = 0;
1378  out:
1379 	btrfs_release_path(path);
1380 	return ret;
1381 }
1382 
1383 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1384 				  const u8 ref_type, const char *name,
1385 				  const int namelen)
1386 {
1387 	struct btrfs_key key;
1388 	struct btrfs_path *path;
1389 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1390 	int ret;
1391 
1392 	path = btrfs_alloc_path();
1393 	if (!path)
1394 		return -ENOMEM;
1395 
1396 	key.objectid = btrfs_ino(BTRFS_I(inode));
1397 	key.type = ref_type;
1398 	if (key.type == BTRFS_INODE_REF_KEY)
1399 		key.offset = parent_id;
1400 	else
1401 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1402 
1403 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1404 	if (ret < 0)
1405 		goto out;
1406 	if (ret > 0) {
1407 		ret = 0;
1408 		goto out;
1409 	}
1410 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1411 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1412 				path->slots[0], parent_id, name, namelen);
1413 	else
1414 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1415 						   name, namelen);
1416 
1417 out:
1418 	btrfs_free_path(path);
1419 	return ret;
1420 }
1421 
1422 static int add_link(struct btrfs_trans_handle *trans,
1423 		    struct inode *dir, struct inode *inode, const char *name,
1424 		    int namelen, u64 ref_index)
1425 {
1426 	struct btrfs_root *root = BTRFS_I(dir)->root;
1427 	struct btrfs_dir_item *dir_item;
1428 	struct btrfs_key key;
1429 	struct btrfs_path *path;
1430 	struct inode *other_inode = NULL;
1431 	int ret;
1432 
1433 	path = btrfs_alloc_path();
1434 	if (!path)
1435 		return -ENOMEM;
1436 
1437 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1438 					 btrfs_ino(BTRFS_I(dir)),
1439 					 name, namelen, 0);
1440 	if (!dir_item) {
1441 		btrfs_release_path(path);
1442 		goto add_link;
1443 	} else if (IS_ERR(dir_item)) {
1444 		ret = PTR_ERR(dir_item);
1445 		goto out;
1446 	}
1447 
1448 	/*
1449 	 * Our inode's dentry collides with the dentry of another inode which is
1450 	 * in the log but not yet processed since it has a higher inode number.
1451 	 * So delete that other dentry.
1452 	 */
1453 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1454 	btrfs_release_path(path);
1455 	other_inode = read_one_inode(root, key.objectid);
1456 	if (!other_inode) {
1457 		ret = -ENOENT;
1458 		goto out;
1459 	}
1460 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(other_inode),
1461 				 name, namelen);
1462 	if (ret)
1463 		goto out;
1464 	/*
1465 	 * If we dropped the link count to 0, bump it so that later the iput()
1466 	 * on the inode will not free it. We will fixup the link count later.
1467 	 */
1468 	if (other_inode->i_nlink == 0)
1469 		inc_nlink(other_inode);
1470 
1471 	ret = btrfs_run_delayed_items(trans);
1472 	if (ret)
1473 		goto out;
1474 add_link:
1475 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1476 			     name, namelen, 0, ref_index);
1477 out:
1478 	iput(other_inode);
1479 	btrfs_free_path(path);
1480 
1481 	return ret;
1482 }
1483 
1484 /*
1485  * replay one inode back reference item found in the log tree.
1486  * eb, slot and key refer to the buffer and key found in the log tree.
1487  * root is the destination we are replaying into, and path is for temp
1488  * use by this function.  (it should be released on return).
1489  */
1490 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1491 				  struct btrfs_root *root,
1492 				  struct btrfs_root *log,
1493 				  struct btrfs_path *path,
1494 				  struct extent_buffer *eb, int slot,
1495 				  struct btrfs_key *key)
1496 {
1497 	struct inode *dir = NULL;
1498 	struct inode *inode = NULL;
1499 	unsigned long ref_ptr;
1500 	unsigned long ref_end;
1501 	char *name = NULL;
1502 	int namelen;
1503 	int ret;
1504 	int search_done = 0;
1505 	int log_ref_ver = 0;
1506 	u64 parent_objectid;
1507 	u64 inode_objectid;
1508 	u64 ref_index = 0;
1509 	int ref_struct_size;
1510 
1511 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1512 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1513 
1514 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1515 		struct btrfs_inode_extref *r;
1516 
1517 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1518 		log_ref_ver = 1;
1519 		r = (struct btrfs_inode_extref *)ref_ptr;
1520 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1521 	} else {
1522 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1523 		parent_objectid = key->offset;
1524 	}
1525 	inode_objectid = key->objectid;
1526 
1527 	/*
1528 	 * it is possible that we didn't log all the parent directories
1529 	 * for a given inode.  If we don't find the dir, just don't
1530 	 * copy the back ref in.  The link count fixup code will take
1531 	 * care of the rest
1532 	 */
1533 	dir = read_one_inode(root, parent_objectid);
1534 	if (!dir) {
1535 		ret = -ENOENT;
1536 		goto out;
1537 	}
1538 
1539 	inode = read_one_inode(root, inode_objectid);
1540 	if (!inode) {
1541 		ret = -EIO;
1542 		goto out;
1543 	}
1544 
1545 	while (ref_ptr < ref_end) {
1546 		if (log_ref_ver) {
1547 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1548 						&ref_index, &parent_objectid);
1549 			/*
1550 			 * parent object can change from one array
1551 			 * item to another.
1552 			 */
1553 			if (!dir)
1554 				dir = read_one_inode(root, parent_objectid);
1555 			if (!dir) {
1556 				ret = -ENOENT;
1557 				goto out;
1558 			}
1559 		} else {
1560 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1561 					     &ref_index);
1562 		}
1563 		if (ret)
1564 			goto out;
1565 
1566 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1567 				   btrfs_ino(BTRFS_I(inode)), ref_index,
1568 				   name, namelen);
1569 		if (ret < 0) {
1570 			goto out;
1571 		} else if (ret == 0) {
1572 			/*
1573 			 * look for a conflicting back reference in the
1574 			 * metadata. if we find one we have to unlink that name
1575 			 * of the file before we add our new link.  Later on, we
1576 			 * overwrite any existing back reference, and we don't
1577 			 * want to create dangling pointers in the directory.
1578 			 */
1579 
1580 			if (!search_done) {
1581 				ret = __add_inode_ref(trans, root, path, log,
1582 						      BTRFS_I(dir),
1583 						      BTRFS_I(inode),
1584 						      inode_objectid,
1585 						      parent_objectid,
1586 						      ref_index, name, namelen,
1587 						      &search_done);
1588 				if (ret) {
1589 					if (ret == 1)
1590 						ret = 0;
1591 					goto out;
1592 				}
1593 			}
1594 
1595 			/*
1596 			 * If a reference item already exists for this inode
1597 			 * with the same parent and name, but different index,
1598 			 * drop it and the corresponding directory index entries
1599 			 * from the parent before adding the new reference item
1600 			 * and dir index entries, otherwise we would fail with
1601 			 * -EEXIST returned from btrfs_add_link() below.
1602 			 */
1603 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1604 						     name, namelen);
1605 			if (ret > 0) {
1606 				ret = btrfs_unlink_inode(trans,
1607 							 BTRFS_I(dir),
1608 							 BTRFS_I(inode),
1609 							 name, namelen);
1610 				/*
1611 				 * If we dropped the link count to 0, bump it so
1612 				 * that later the iput() on the inode will not
1613 				 * free it. We will fixup the link count later.
1614 				 */
1615 				if (!ret && inode->i_nlink == 0)
1616 					inc_nlink(inode);
1617 			}
1618 			if (ret < 0)
1619 				goto out;
1620 
1621 			/* insert our name */
1622 			ret = add_link(trans, dir, inode, name, namelen,
1623 				       ref_index);
1624 			if (ret)
1625 				goto out;
1626 
1627 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1628 			if (ret)
1629 				goto out;
1630 		}
1631 		/* Else, ret == 1, we already have a perfect match, we're done. */
1632 
1633 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1634 		kfree(name);
1635 		name = NULL;
1636 		if (log_ref_ver) {
1637 			iput(dir);
1638 			dir = NULL;
1639 		}
1640 	}
1641 
1642 	/*
1643 	 * Before we overwrite the inode reference item in the subvolume tree
1644 	 * with the item from the log tree, we must unlink all names from the
1645 	 * parent directory that are in the subvolume's tree inode reference
1646 	 * item, otherwise we end up with an inconsistent subvolume tree where
1647 	 * dir index entries exist for a name but there is no inode reference
1648 	 * item with the same name.
1649 	 */
1650 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1651 				    key);
1652 	if (ret)
1653 		goto out;
1654 
1655 	/* finally write the back reference in the inode */
1656 	ret = overwrite_item(trans, root, path, eb, slot, key);
1657 out:
1658 	btrfs_release_path(path);
1659 	kfree(name);
1660 	iput(dir);
1661 	iput(inode);
1662 	return ret;
1663 }
1664 
1665 static int count_inode_extrefs(struct btrfs_root *root,
1666 		struct btrfs_inode *inode, struct btrfs_path *path)
1667 {
1668 	int ret = 0;
1669 	int name_len;
1670 	unsigned int nlink = 0;
1671 	u32 item_size;
1672 	u32 cur_offset = 0;
1673 	u64 inode_objectid = btrfs_ino(inode);
1674 	u64 offset = 0;
1675 	unsigned long ptr;
1676 	struct btrfs_inode_extref *extref;
1677 	struct extent_buffer *leaf;
1678 
1679 	while (1) {
1680 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1681 					    &extref, &offset);
1682 		if (ret)
1683 			break;
1684 
1685 		leaf = path->nodes[0];
1686 		item_size = btrfs_item_size(leaf, path->slots[0]);
1687 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1688 		cur_offset = 0;
1689 
1690 		while (cur_offset < item_size) {
1691 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1692 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1693 
1694 			nlink++;
1695 
1696 			cur_offset += name_len + sizeof(*extref);
1697 		}
1698 
1699 		offset++;
1700 		btrfs_release_path(path);
1701 	}
1702 	btrfs_release_path(path);
1703 
1704 	if (ret < 0 && ret != -ENOENT)
1705 		return ret;
1706 	return nlink;
1707 }
1708 
1709 static int count_inode_refs(struct btrfs_root *root,
1710 			struct btrfs_inode *inode, struct btrfs_path *path)
1711 {
1712 	int ret;
1713 	struct btrfs_key key;
1714 	unsigned int nlink = 0;
1715 	unsigned long ptr;
1716 	unsigned long ptr_end;
1717 	int name_len;
1718 	u64 ino = btrfs_ino(inode);
1719 
1720 	key.objectid = ino;
1721 	key.type = BTRFS_INODE_REF_KEY;
1722 	key.offset = (u64)-1;
1723 
1724 	while (1) {
1725 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1726 		if (ret < 0)
1727 			break;
1728 		if (ret > 0) {
1729 			if (path->slots[0] == 0)
1730 				break;
1731 			path->slots[0]--;
1732 		}
1733 process_slot:
1734 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1735 				      path->slots[0]);
1736 		if (key.objectid != ino ||
1737 		    key.type != BTRFS_INODE_REF_KEY)
1738 			break;
1739 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1740 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1741 						   path->slots[0]);
1742 		while (ptr < ptr_end) {
1743 			struct btrfs_inode_ref *ref;
1744 
1745 			ref = (struct btrfs_inode_ref *)ptr;
1746 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1747 							    ref);
1748 			ptr = (unsigned long)(ref + 1) + name_len;
1749 			nlink++;
1750 		}
1751 
1752 		if (key.offset == 0)
1753 			break;
1754 		if (path->slots[0] > 0) {
1755 			path->slots[0]--;
1756 			goto process_slot;
1757 		}
1758 		key.offset--;
1759 		btrfs_release_path(path);
1760 	}
1761 	btrfs_release_path(path);
1762 
1763 	return nlink;
1764 }
1765 
1766 /*
1767  * There are a few corners where the link count of the file can't
1768  * be properly maintained during replay.  So, instead of adding
1769  * lots of complexity to the log code, we just scan the backrefs
1770  * for any file that has been through replay.
1771  *
1772  * The scan will update the link count on the inode to reflect the
1773  * number of back refs found.  If it goes down to zero, the iput
1774  * will free the inode.
1775  */
1776 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1777 					   struct btrfs_root *root,
1778 					   struct inode *inode)
1779 {
1780 	struct btrfs_path *path;
1781 	int ret;
1782 	u64 nlink = 0;
1783 	u64 ino = btrfs_ino(BTRFS_I(inode));
1784 
1785 	path = btrfs_alloc_path();
1786 	if (!path)
1787 		return -ENOMEM;
1788 
1789 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1790 	if (ret < 0)
1791 		goto out;
1792 
1793 	nlink = ret;
1794 
1795 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1796 	if (ret < 0)
1797 		goto out;
1798 
1799 	nlink += ret;
1800 
1801 	ret = 0;
1802 
1803 	if (nlink != inode->i_nlink) {
1804 		set_nlink(inode, nlink);
1805 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1806 		if (ret)
1807 			goto out;
1808 	}
1809 	BTRFS_I(inode)->index_cnt = (u64)-1;
1810 
1811 	if (inode->i_nlink == 0) {
1812 		if (S_ISDIR(inode->i_mode)) {
1813 			ret = replay_dir_deletes(trans, root, NULL, path,
1814 						 ino, 1);
1815 			if (ret)
1816 				goto out;
1817 		}
1818 		ret = btrfs_insert_orphan_item(trans, root, ino);
1819 		if (ret == -EEXIST)
1820 			ret = 0;
1821 	}
1822 
1823 out:
1824 	btrfs_free_path(path);
1825 	return ret;
1826 }
1827 
1828 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1829 					    struct btrfs_root *root,
1830 					    struct btrfs_path *path)
1831 {
1832 	int ret;
1833 	struct btrfs_key key;
1834 	struct inode *inode;
1835 
1836 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1837 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1838 	key.offset = (u64)-1;
1839 	while (1) {
1840 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1841 		if (ret < 0)
1842 			break;
1843 
1844 		if (ret == 1) {
1845 			ret = 0;
1846 			if (path->slots[0] == 0)
1847 				break;
1848 			path->slots[0]--;
1849 		}
1850 
1851 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1852 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1853 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1854 			break;
1855 
1856 		ret = btrfs_del_item(trans, root, path);
1857 		if (ret)
1858 			break;
1859 
1860 		btrfs_release_path(path);
1861 		inode = read_one_inode(root, key.offset);
1862 		if (!inode) {
1863 			ret = -EIO;
1864 			break;
1865 		}
1866 
1867 		ret = fixup_inode_link_count(trans, root, inode);
1868 		iput(inode);
1869 		if (ret)
1870 			break;
1871 
1872 		/*
1873 		 * fixup on a directory may create new entries,
1874 		 * make sure we always look for the highset possible
1875 		 * offset
1876 		 */
1877 		key.offset = (u64)-1;
1878 	}
1879 	btrfs_release_path(path);
1880 	return ret;
1881 }
1882 
1883 
1884 /*
1885  * record a given inode in the fixup dir so we can check its link
1886  * count when replay is done.  The link count is incremented here
1887  * so the inode won't go away until we check it
1888  */
1889 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1890 				      struct btrfs_root *root,
1891 				      struct btrfs_path *path,
1892 				      u64 objectid)
1893 {
1894 	struct btrfs_key key;
1895 	int ret = 0;
1896 	struct inode *inode;
1897 
1898 	inode = read_one_inode(root, objectid);
1899 	if (!inode)
1900 		return -EIO;
1901 
1902 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1903 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1904 	key.offset = objectid;
1905 
1906 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1907 
1908 	btrfs_release_path(path);
1909 	if (ret == 0) {
1910 		if (!inode->i_nlink)
1911 			set_nlink(inode, 1);
1912 		else
1913 			inc_nlink(inode);
1914 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1915 	} else if (ret == -EEXIST) {
1916 		ret = 0;
1917 	}
1918 	iput(inode);
1919 
1920 	return ret;
1921 }
1922 
1923 /*
1924  * when replaying the log for a directory, we only insert names
1925  * for inodes that actually exist.  This means an fsync on a directory
1926  * does not implicitly fsync all the new files in it
1927  */
1928 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1929 				    struct btrfs_root *root,
1930 				    u64 dirid, u64 index,
1931 				    char *name, int name_len,
1932 				    struct btrfs_key *location)
1933 {
1934 	struct inode *inode;
1935 	struct inode *dir;
1936 	int ret;
1937 
1938 	inode = read_one_inode(root, location->objectid);
1939 	if (!inode)
1940 		return -ENOENT;
1941 
1942 	dir = read_one_inode(root, dirid);
1943 	if (!dir) {
1944 		iput(inode);
1945 		return -EIO;
1946 	}
1947 
1948 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1949 			name_len, 1, index);
1950 
1951 	/* FIXME, put inode into FIXUP list */
1952 
1953 	iput(inode);
1954 	iput(dir);
1955 	return ret;
1956 }
1957 
1958 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1959 					struct btrfs_inode *dir,
1960 					struct btrfs_path *path,
1961 					struct btrfs_dir_item *dst_di,
1962 					const struct btrfs_key *log_key,
1963 					u8 log_type,
1964 					bool exists)
1965 {
1966 	struct btrfs_key found_key;
1967 
1968 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1969 	/* The existing dentry points to the same inode, don't delete it. */
1970 	if (found_key.objectid == log_key->objectid &&
1971 	    found_key.type == log_key->type &&
1972 	    found_key.offset == log_key->offset &&
1973 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type)
1974 		return 1;
1975 
1976 	/*
1977 	 * Don't drop the conflicting directory entry if the inode for the new
1978 	 * entry doesn't exist.
1979 	 */
1980 	if (!exists)
1981 		return 0;
1982 
1983 	return drop_one_dir_item(trans, path, dir, dst_di);
1984 }
1985 
1986 /*
1987  * take a single entry in a log directory item and replay it into
1988  * the subvolume.
1989  *
1990  * if a conflicting item exists in the subdirectory already,
1991  * the inode it points to is unlinked and put into the link count
1992  * fix up tree.
1993  *
1994  * If a name from the log points to a file or directory that does
1995  * not exist in the FS, it is skipped.  fsyncs on directories
1996  * do not force down inodes inside that directory, just changes to the
1997  * names or unlinks in a directory.
1998  *
1999  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
2000  * non-existing inode) and 1 if the name was replayed.
2001  */
2002 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
2003 				    struct btrfs_root *root,
2004 				    struct btrfs_path *path,
2005 				    struct extent_buffer *eb,
2006 				    struct btrfs_dir_item *di,
2007 				    struct btrfs_key *key)
2008 {
2009 	char *name;
2010 	int name_len;
2011 	struct btrfs_dir_item *dir_dst_di;
2012 	struct btrfs_dir_item *index_dst_di;
2013 	bool dir_dst_matches = false;
2014 	bool index_dst_matches = false;
2015 	struct btrfs_key log_key;
2016 	struct btrfs_key search_key;
2017 	struct inode *dir;
2018 	u8 log_type;
2019 	bool exists;
2020 	int ret;
2021 	bool update_size = true;
2022 	bool name_added = false;
2023 
2024 	dir = read_one_inode(root, key->objectid);
2025 	if (!dir)
2026 		return -EIO;
2027 
2028 	name_len = btrfs_dir_name_len(eb, di);
2029 	name = kmalloc(name_len, GFP_NOFS);
2030 	if (!name) {
2031 		ret = -ENOMEM;
2032 		goto out;
2033 	}
2034 
2035 	log_type = btrfs_dir_type(eb, di);
2036 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
2037 		   name_len);
2038 
2039 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
2040 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
2041 	btrfs_release_path(path);
2042 	if (ret < 0)
2043 		goto out;
2044 	exists = (ret == 0);
2045 	ret = 0;
2046 
2047 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
2048 					   name, name_len, 1);
2049 	if (IS_ERR(dir_dst_di)) {
2050 		ret = PTR_ERR(dir_dst_di);
2051 		goto out;
2052 	} else if (dir_dst_di) {
2053 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2054 						   dir_dst_di, &log_key, log_type,
2055 						   exists);
2056 		if (ret < 0)
2057 			goto out;
2058 		dir_dst_matches = (ret == 1);
2059 	}
2060 
2061 	btrfs_release_path(path);
2062 
2063 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
2064 						   key->objectid, key->offset,
2065 						   name, name_len, 1);
2066 	if (IS_ERR(index_dst_di)) {
2067 		ret = PTR_ERR(index_dst_di);
2068 		goto out;
2069 	} else if (index_dst_di) {
2070 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2071 						   index_dst_di, &log_key,
2072 						   log_type, exists);
2073 		if (ret < 0)
2074 			goto out;
2075 		index_dst_matches = (ret == 1);
2076 	}
2077 
2078 	btrfs_release_path(path);
2079 
2080 	if (dir_dst_matches && index_dst_matches) {
2081 		ret = 0;
2082 		update_size = false;
2083 		goto out;
2084 	}
2085 
2086 	/*
2087 	 * Check if the inode reference exists in the log for the given name,
2088 	 * inode and parent inode
2089 	 */
2090 	search_key.objectid = log_key.objectid;
2091 	search_key.type = BTRFS_INODE_REF_KEY;
2092 	search_key.offset = key->objectid;
2093 	ret = backref_in_log(root->log_root, &search_key, 0, name, name_len);
2094 	if (ret < 0) {
2095 	        goto out;
2096 	} else if (ret) {
2097 	        /* The dentry will be added later. */
2098 	        ret = 0;
2099 	        update_size = false;
2100 	        goto out;
2101 	}
2102 
2103 	search_key.objectid = log_key.objectid;
2104 	search_key.type = BTRFS_INODE_EXTREF_KEY;
2105 	search_key.offset = key->objectid;
2106 	ret = backref_in_log(root->log_root, &search_key, key->objectid, name,
2107 			     name_len);
2108 	if (ret < 0) {
2109 		goto out;
2110 	} else if (ret) {
2111 		/* The dentry will be added later. */
2112 		ret = 0;
2113 		update_size = false;
2114 		goto out;
2115 	}
2116 	btrfs_release_path(path);
2117 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2118 			      name, name_len, &log_key);
2119 	if (ret && ret != -ENOENT && ret != -EEXIST)
2120 		goto out;
2121 	if (!ret)
2122 		name_added = true;
2123 	update_size = false;
2124 	ret = 0;
2125 
2126 out:
2127 	if (!ret && update_size) {
2128 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2129 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2130 	}
2131 	kfree(name);
2132 	iput(dir);
2133 	if (!ret && name_added)
2134 		ret = 1;
2135 	return ret;
2136 }
2137 
2138 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
2139 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2140 					struct btrfs_root *root,
2141 					struct btrfs_path *path,
2142 					struct extent_buffer *eb, int slot,
2143 					struct btrfs_key *key)
2144 {
2145 	int ret;
2146 	struct btrfs_dir_item *di;
2147 
2148 	/* We only log dir index keys, which only contain a single dir item. */
2149 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
2150 
2151 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2152 	ret = replay_one_name(trans, root, path, eb, di, key);
2153 	if (ret < 0)
2154 		return ret;
2155 
2156 	/*
2157 	 * If this entry refers to a non-directory (directories can not have a
2158 	 * link count > 1) and it was added in the transaction that was not
2159 	 * committed, make sure we fixup the link count of the inode the entry
2160 	 * points to. Otherwise something like the following would result in a
2161 	 * directory pointing to an inode with a wrong link that does not account
2162 	 * for this dir entry:
2163 	 *
2164 	 * mkdir testdir
2165 	 * touch testdir/foo
2166 	 * touch testdir/bar
2167 	 * sync
2168 	 *
2169 	 * ln testdir/bar testdir/bar_link
2170 	 * ln testdir/foo testdir/foo_link
2171 	 * xfs_io -c "fsync" testdir/bar
2172 	 *
2173 	 * <power failure>
2174 	 *
2175 	 * mount fs, log replay happens
2176 	 *
2177 	 * File foo would remain with a link count of 1 when it has two entries
2178 	 * pointing to it in the directory testdir. This would make it impossible
2179 	 * to ever delete the parent directory has it would result in stale
2180 	 * dentries that can never be deleted.
2181 	 */
2182 	if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2183 		struct btrfs_path *fixup_path;
2184 		struct btrfs_key di_key;
2185 
2186 		fixup_path = btrfs_alloc_path();
2187 		if (!fixup_path)
2188 			return -ENOMEM;
2189 
2190 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2191 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2192 		btrfs_free_path(fixup_path);
2193 	}
2194 
2195 	return ret;
2196 }
2197 
2198 /*
2199  * directory replay has two parts.  There are the standard directory
2200  * items in the log copied from the subvolume, and range items
2201  * created in the log while the subvolume was logged.
2202  *
2203  * The range items tell us which parts of the key space the log
2204  * is authoritative for.  During replay, if a key in the subvolume
2205  * directory is in a logged range item, but not actually in the log
2206  * that means it was deleted from the directory before the fsync
2207  * and should be removed.
2208  */
2209 static noinline int find_dir_range(struct btrfs_root *root,
2210 				   struct btrfs_path *path,
2211 				   u64 dirid,
2212 				   u64 *start_ret, u64 *end_ret)
2213 {
2214 	struct btrfs_key key;
2215 	u64 found_end;
2216 	struct btrfs_dir_log_item *item;
2217 	int ret;
2218 	int nritems;
2219 
2220 	if (*start_ret == (u64)-1)
2221 		return 1;
2222 
2223 	key.objectid = dirid;
2224 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2225 	key.offset = *start_ret;
2226 
2227 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2228 	if (ret < 0)
2229 		goto out;
2230 	if (ret > 0) {
2231 		if (path->slots[0] == 0)
2232 			goto out;
2233 		path->slots[0]--;
2234 	}
2235 	if (ret != 0)
2236 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2237 
2238 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2239 		ret = 1;
2240 		goto next;
2241 	}
2242 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2243 			      struct btrfs_dir_log_item);
2244 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2245 
2246 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2247 		ret = 0;
2248 		*start_ret = key.offset;
2249 		*end_ret = found_end;
2250 		goto out;
2251 	}
2252 	ret = 1;
2253 next:
2254 	/* check the next slot in the tree to see if it is a valid item */
2255 	nritems = btrfs_header_nritems(path->nodes[0]);
2256 	path->slots[0]++;
2257 	if (path->slots[0] >= nritems) {
2258 		ret = btrfs_next_leaf(root, path);
2259 		if (ret)
2260 			goto out;
2261 	}
2262 
2263 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2264 
2265 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2266 		ret = 1;
2267 		goto out;
2268 	}
2269 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2270 			      struct btrfs_dir_log_item);
2271 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2272 	*start_ret = key.offset;
2273 	*end_ret = found_end;
2274 	ret = 0;
2275 out:
2276 	btrfs_release_path(path);
2277 	return ret;
2278 }
2279 
2280 /*
2281  * this looks for a given directory item in the log.  If the directory
2282  * item is not in the log, the item is removed and the inode it points
2283  * to is unlinked
2284  */
2285 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2286 				      struct btrfs_root *log,
2287 				      struct btrfs_path *path,
2288 				      struct btrfs_path *log_path,
2289 				      struct inode *dir,
2290 				      struct btrfs_key *dir_key)
2291 {
2292 	struct btrfs_root *root = BTRFS_I(dir)->root;
2293 	int ret;
2294 	struct extent_buffer *eb;
2295 	int slot;
2296 	struct btrfs_dir_item *di;
2297 	int name_len;
2298 	char *name;
2299 	struct inode *inode = NULL;
2300 	struct btrfs_key location;
2301 
2302 	/*
2303 	 * Currenly we only log dir index keys. Even if we replay a log created
2304 	 * by an older kernel that logged both dir index and dir item keys, all
2305 	 * we need to do is process the dir index keys, we (and our caller) can
2306 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2307 	 */
2308 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2309 
2310 	eb = path->nodes[0];
2311 	slot = path->slots[0];
2312 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2313 	name_len = btrfs_dir_name_len(eb, di);
2314 	name = kmalloc(name_len, GFP_NOFS);
2315 	if (!name) {
2316 		ret = -ENOMEM;
2317 		goto out;
2318 	}
2319 
2320 	read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len);
2321 
2322 	if (log) {
2323 		struct btrfs_dir_item *log_di;
2324 
2325 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2326 						     dir_key->objectid,
2327 						     dir_key->offset,
2328 						     name, name_len, 0);
2329 		if (IS_ERR(log_di)) {
2330 			ret = PTR_ERR(log_di);
2331 			goto out;
2332 		} else if (log_di) {
2333 			/* The dentry exists in the log, we have nothing to do. */
2334 			ret = 0;
2335 			goto out;
2336 		}
2337 	}
2338 
2339 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2340 	btrfs_release_path(path);
2341 	btrfs_release_path(log_path);
2342 	inode = read_one_inode(root, location.objectid);
2343 	if (!inode) {
2344 		ret = -EIO;
2345 		goto out;
2346 	}
2347 
2348 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2349 	if (ret)
2350 		goto out;
2351 
2352 	inc_nlink(inode);
2353 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(inode), name,
2354 				 name_len);
2355 	if (ret)
2356 		goto out;
2357 
2358 	ret = btrfs_run_delayed_items(trans);
2359 	if (ret)
2360 		goto out;
2361 
2362 	/*
2363 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2364 	 * them, as there are no key collisions since each key has a unique offset
2365 	 * (an index number), so we're done.
2366 	 */
2367 out:
2368 	btrfs_release_path(path);
2369 	btrfs_release_path(log_path);
2370 	kfree(name);
2371 	iput(inode);
2372 	return ret;
2373 }
2374 
2375 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2376 			      struct btrfs_root *root,
2377 			      struct btrfs_root *log,
2378 			      struct btrfs_path *path,
2379 			      const u64 ino)
2380 {
2381 	struct btrfs_key search_key;
2382 	struct btrfs_path *log_path;
2383 	int i;
2384 	int nritems;
2385 	int ret;
2386 
2387 	log_path = btrfs_alloc_path();
2388 	if (!log_path)
2389 		return -ENOMEM;
2390 
2391 	search_key.objectid = ino;
2392 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2393 	search_key.offset = 0;
2394 again:
2395 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2396 	if (ret < 0)
2397 		goto out;
2398 process_leaf:
2399 	nritems = btrfs_header_nritems(path->nodes[0]);
2400 	for (i = path->slots[0]; i < nritems; i++) {
2401 		struct btrfs_key key;
2402 		struct btrfs_dir_item *di;
2403 		struct btrfs_dir_item *log_di;
2404 		u32 total_size;
2405 		u32 cur;
2406 
2407 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2408 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2409 			ret = 0;
2410 			goto out;
2411 		}
2412 
2413 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2414 		total_size = btrfs_item_size(path->nodes[0], i);
2415 		cur = 0;
2416 		while (cur < total_size) {
2417 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2418 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2419 			u32 this_len = sizeof(*di) + name_len + data_len;
2420 			char *name;
2421 
2422 			name = kmalloc(name_len, GFP_NOFS);
2423 			if (!name) {
2424 				ret = -ENOMEM;
2425 				goto out;
2426 			}
2427 			read_extent_buffer(path->nodes[0], name,
2428 					   (unsigned long)(di + 1), name_len);
2429 
2430 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2431 						    name, name_len, 0);
2432 			btrfs_release_path(log_path);
2433 			if (!log_di) {
2434 				/* Doesn't exist in log tree, so delete it. */
2435 				btrfs_release_path(path);
2436 				di = btrfs_lookup_xattr(trans, root, path, ino,
2437 							name, name_len, -1);
2438 				kfree(name);
2439 				if (IS_ERR(di)) {
2440 					ret = PTR_ERR(di);
2441 					goto out;
2442 				}
2443 				ASSERT(di);
2444 				ret = btrfs_delete_one_dir_name(trans, root,
2445 								path, di);
2446 				if (ret)
2447 					goto out;
2448 				btrfs_release_path(path);
2449 				search_key = key;
2450 				goto again;
2451 			}
2452 			kfree(name);
2453 			if (IS_ERR(log_di)) {
2454 				ret = PTR_ERR(log_di);
2455 				goto out;
2456 			}
2457 			cur += this_len;
2458 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2459 		}
2460 	}
2461 	ret = btrfs_next_leaf(root, path);
2462 	if (ret > 0)
2463 		ret = 0;
2464 	else if (ret == 0)
2465 		goto process_leaf;
2466 out:
2467 	btrfs_free_path(log_path);
2468 	btrfs_release_path(path);
2469 	return ret;
2470 }
2471 
2472 
2473 /*
2474  * deletion replay happens before we copy any new directory items
2475  * out of the log or out of backreferences from inodes.  It
2476  * scans the log to find ranges of keys that log is authoritative for,
2477  * and then scans the directory to find items in those ranges that are
2478  * not present in the log.
2479  *
2480  * Anything we don't find in the log is unlinked and removed from the
2481  * directory.
2482  */
2483 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2484 				       struct btrfs_root *root,
2485 				       struct btrfs_root *log,
2486 				       struct btrfs_path *path,
2487 				       u64 dirid, int del_all)
2488 {
2489 	u64 range_start;
2490 	u64 range_end;
2491 	int ret = 0;
2492 	struct btrfs_key dir_key;
2493 	struct btrfs_key found_key;
2494 	struct btrfs_path *log_path;
2495 	struct inode *dir;
2496 
2497 	dir_key.objectid = dirid;
2498 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2499 	log_path = btrfs_alloc_path();
2500 	if (!log_path)
2501 		return -ENOMEM;
2502 
2503 	dir = read_one_inode(root, dirid);
2504 	/* it isn't an error if the inode isn't there, that can happen
2505 	 * because we replay the deletes before we copy in the inode item
2506 	 * from the log
2507 	 */
2508 	if (!dir) {
2509 		btrfs_free_path(log_path);
2510 		return 0;
2511 	}
2512 
2513 	range_start = 0;
2514 	range_end = 0;
2515 	while (1) {
2516 		if (del_all)
2517 			range_end = (u64)-1;
2518 		else {
2519 			ret = find_dir_range(log, path, dirid,
2520 					     &range_start, &range_end);
2521 			if (ret < 0)
2522 				goto out;
2523 			else if (ret > 0)
2524 				break;
2525 		}
2526 
2527 		dir_key.offset = range_start;
2528 		while (1) {
2529 			int nritems;
2530 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2531 						0, 0);
2532 			if (ret < 0)
2533 				goto out;
2534 
2535 			nritems = btrfs_header_nritems(path->nodes[0]);
2536 			if (path->slots[0] >= nritems) {
2537 				ret = btrfs_next_leaf(root, path);
2538 				if (ret == 1)
2539 					break;
2540 				else if (ret < 0)
2541 					goto out;
2542 			}
2543 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2544 					      path->slots[0]);
2545 			if (found_key.objectid != dirid ||
2546 			    found_key.type != dir_key.type) {
2547 				ret = 0;
2548 				goto out;
2549 			}
2550 
2551 			if (found_key.offset > range_end)
2552 				break;
2553 
2554 			ret = check_item_in_log(trans, log, path,
2555 						log_path, dir,
2556 						&found_key);
2557 			if (ret)
2558 				goto out;
2559 			if (found_key.offset == (u64)-1)
2560 				break;
2561 			dir_key.offset = found_key.offset + 1;
2562 		}
2563 		btrfs_release_path(path);
2564 		if (range_end == (u64)-1)
2565 			break;
2566 		range_start = range_end + 1;
2567 	}
2568 	ret = 0;
2569 out:
2570 	btrfs_release_path(path);
2571 	btrfs_free_path(log_path);
2572 	iput(dir);
2573 	return ret;
2574 }
2575 
2576 /*
2577  * the process_func used to replay items from the log tree.  This
2578  * gets called in two different stages.  The first stage just looks
2579  * for inodes and makes sure they are all copied into the subvolume.
2580  *
2581  * The second stage copies all the other item types from the log into
2582  * the subvolume.  The two stage approach is slower, but gets rid of
2583  * lots of complexity around inodes referencing other inodes that exist
2584  * only in the log (references come from either directory items or inode
2585  * back refs).
2586  */
2587 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2588 			     struct walk_control *wc, u64 gen, int level)
2589 {
2590 	int nritems;
2591 	struct btrfs_path *path;
2592 	struct btrfs_root *root = wc->replay_dest;
2593 	struct btrfs_key key;
2594 	int i;
2595 	int ret;
2596 
2597 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2598 	if (ret)
2599 		return ret;
2600 
2601 	level = btrfs_header_level(eb);
2602 
2603 	if (level != 0)
2604 		return 0;
2605 
2606 	path = btrfs_alloc_path();
2607 	if (!path)
2608 		return -ENOMEM;
2609 
2610 	nritems = btrfs_header_nritems(eb);
2611 	for (i = 0; i < nritems; i++) {
2612 		btrfs_item_key_to_cpu(eb, &key, i);
2613 
2614 		/* inode keys are done during the first stage */
2615 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2616 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2617 			struct btrfs_inode_item *inode_item;
2618 			u32 mode;
2619 
2620 			inode_item = btrfs_item_ptr(eb, i,
2621 					    struct btrfs_inode_item);
2622 			/*
2623 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2624 			 * and never got linked before the fsync, skip it, as
2625 			 * replaying it is pointless since it would be deleted
2626 			 * later. We skip logging tmpfiles, but it's always
2627 			 * possible we are replaying a log created with a kernel
2628 			 * that used to log tmpfiles.
2629 			 */
2630 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2631 				wc->ignore_cur_inode = true;
2632 				continue;
2633 			} else {
2634 				wc->ignore_cur_inode = false;
2635 			}
2636 			ret = replay_xattr_deletes(wc->trans, root, log,
2637 						   path, key.objectid);
2638 			if (ret)
2639 				break;
2640 			mode = btrfs_inode_mode(eb, inode_item);
2641 			if (S_ISDIR(mode)) {
2642 				ret = replay_dir_deletes(wc->trans,
2643 					 root, log, path, key.objectid, 0);
2644 				if (ret)
2645 					break;
2646 			}
2647 			ret = overwrite_item(wc->trans, root, path,
2648 					     eb, i, &key);
2649 			if (ret)
2650 				break;
2651 
2652 			/*
2653 			 * Before replaying extents, truncate the inode to its
2654 			 * size. We need to do it now and not after log replay
2655 			 * because before an fsync we can have prealloc extents
2656 			 * added beyond the inode's i_size. If we did it after,
2657 			 * through orphan cleanup for example, we would drop
2658 			 * those prealloc extents just after replaying them.
2659 			 */
2660 			if (S_ISREG(mode)) {
2661 				struct btrfs_drop_extents_args drop_args = { 0 };
2662 				struct inode *inode;
2663 				u64 from;
2664 
2665 				inode = read_one_inode(root, key.objectid);
2666 				if (!inode) {
2667 					ret = -EIO;
2668 					break;
2669 				}
2670 				from = ALIGN(i_size_read(inode),
2671 					     root->fs_info->sectorsize);
2672 				drop_args.start = from;
2673 				drop_args.end = (u64)-1;
2674 				drop_args.drop_cache = true;
2675 				ret = btrfs_drop_extents(wc->trans, root,
2676 							 BTRFS_I(inode),
2677 							 &drop_args);
2678 				if (!ret) {
2679 					inode_sub_bytes(inode,
2680 							drop_args.bytes_found);
2681 					/* Update the inode's nbytes. */
2682 					ret = btrfs_update_inode(wc->trans,
2683 							root, BTRFS_I(inode));
2684 				}
2685 				iput(inode);
2686 				if (ret)
2687 					break;
2688 			}
2689 
2690 			ret = link_to_fixup_dir(wc->trans, root,
2691 						path, key.objectid);
2692 			if (ret)
2693 				break;
2694 		}
2695 
2696 		if (wc->ignore_cur_inode)
2697 			continue;
2698 
2699 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2700 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2701 			ret = replay_one_dir_item(wc->trans, root, path,
2702 						  eb, i, &key);
2703 			if (ret)
2704 				break;
2705 		}
2706 
2707 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2708 			continue;
2709 
2710 		/* these keys are simply copied */
2711 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2712 			ret = overwrite_item(wc->trans, root, path,
2713 					     eb, i, &key);
2714 			if (ret)
2715 				break;
2716 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2717 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2718 			ret = add_inode_ref(wc->trans, root, log, path,
2719 					    eb, i, &key);
2720 			if (ret && ret != -ENOENT)
2721 				break;
2722 			ret = 0;
2723 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2724 			ret = replay_one_extent(wc->trans, root, path,
2725 						eb, i, &key);
2726 			if (ret)
2727 				break;
2728 		}
2729 		/*
2730 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2731 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2732 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2733 		 * older kernel with such keys, ignore them.
2734 		 */
2735 	}
2736 	btrfs_free_path(path);
2737 	return ret;
2738 }
2739 
2740 /*
2741  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2742  */
2743 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2744 {
2745 	struct btrfs_block_group *cache;
2746 
2747 	cache = btrfs_lookup_block_group(fs_info, start);
2748 	if (!cache) {
2749 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2750 		return;
2751 	}
2752 
2753 	spin_lock(&cache->space_info->lock);
2754 	spin_lock(&cache->lock);
2755 	cache->reserved -= fs_info->nodesize;
2756 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2757 	spin_unlock(&cache->lock);
2758 	spin_unlock(&cache->space_info->lock);
2759 
2760 	btrfs_put_block_group(cache);
2761 }
2762 
2763 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2764 				   struct btrfs_root *root,
2765 				   struct btrfs_path *path, int *level,
2766 				   struct walk_control *wc)
2767 {
2768 	struct btrfs_fs_info *fs_info = root->fs_info;
2769 	u64 bytenr;
2770 	u64 ptr_gen;
2771 	struct extent_buffer *next;
2772 	struct extent_buffer *cur;
2773 	u32 blocksize;
2774 	int ret = 0;
2775 
2776 	while (*level > 0) {
2777 		struct btrfs_key first_key;
2778 
2779 		cur = path->nodes[*level];
2780 
2781 		WARN_ON(btrfs_header_level(cur) != *level);
2782 
2783 		if (path->slots[*level] >=
2784 		    btrfs_header_nritems(cur))
2785 			break;
2786 
2787 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2788 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2789 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2790 		blocksize = fs_info->nodesize;
2791 
2792 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2793 						    btrfs_header_owner(cur),
2794 						    *level - 1);
2795 		if (IS_ERR(next))
2796 			return PTR_ERR(next);
2797 
2798 		if (*level == 1) {
2799 			ret = wc->process_func(root, next, wc, ptr_gen,
2800 					       *level - 1);
2801 			if (ret) {
2802 				free_extent_buffer(next);
2803 				return ret;
2804 			}
2805 
2806 			path->slots[*level]++;
2807 			if (wc->free) {
2808 				ret = btrfs_read_buffer(next, ptr_gen,
2809 							*level - 1, &first_key);
2810 				if (ret) {
2811 					free_extent_buffer(next);
2812 					return ret;
2813 				}
2814 
2815 				if (trans) {
2816 					btrfs_tree_lock(next);
2817 					btrfs_clean_tree_block(next);
2818 					btrfs_wait_tree_block_writeback(next);
2819 					btrfs_tree_unlock(next);
2820 					ret = btrfs_pin_reserved_extent(trans,
2821 							bytenr, blocksize);
2822 					if (ret) {
2823 						free_extent_buffer(next);
2824 						return ret;
2825 					}
2826 					btrfs_redirty_list_add(
2827 						trans->transaction, next);
2828 				} else {
2829 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2830 						clear_extent_buffer_dirty(next);
2831 					unaccount_log_buffer(fs_info, bytenr);
2832 				}
2833 			}
2834 			free_extent_buffer(next);
2835 			continue;
2836 		}
2837 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2838 		if (ret) {
2839 			free_extent_buffer(next);
2840 			return ret;
2841 		}
2842 
2843 		if (path->nodes[*level-1])
2844 			free_extent_buffer(path->nodes[*level-1]);
2845 		path->nodes[*level-1] = next;
2846 		*level = btrfs_header_level(next);
2847 		path->slots[*level] = 0;
2848 		cond_resched();
2849 	}
2850 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2851 
2852 	cond_resched();
2853 	return 0;
2854 }
2855 
2856 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2857 				 struct btrfs_root *root,
2858 				 struct btrfs_path *path, int *level,
2859 				 struct walk_control *wc)
2860 {
2861 	struct btrfs_fs_info *fs_info = root->fs_info;
2862 	int i;
2863 	int slot;
2864 	int ret;
2865 
2866 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2867 		slot = path->slots[i];
2868 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2869 			path->slots[i]++;
2870 			*level = i;
2871 			WARN_ON(*level == 0);
2872 			return 0;
2873 		} else {
2874 			ret = wc->process_func(root, path->nodes[*level], wc,
2875 				 btrfs_header_generation(path->nodes[*level]),
2876 				 *level);
2877 			if (ret)
2878 				return ret;
2879 
2880 			if (wc->free) {
2881 				struct extent_buffer *next;
2882 
2883 				next = path->nodes[*level];
2884 
2885 				if (trans) {
2886 					btrfs_tree_lock(next);
2887 					btrfs_clean_tree_block(next);
2888 					btrfs_wait_tree_block_writeback(next);
2889 					btrfs_tree_unlock(next);
2890 					ret = btrfs_pin_reserved_extent(trans,
2891 						     path->nodes[*level]->start,
2892 						     path->nodes[*level]->len);
2893 					if (ret)
2894 						return ret;
2895 					btrfs_redirty_list_add(trans->transaction,
2896 							       next);
2897 				} else {
2898 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2899 						clear_extent_buffer_dirty(next);
2900 
2901 					unaccount_log_buffer(fs_info,
2902 						path->nodes[*level]->start);
2903 				}
2904 			}
2905 			free_extent_buffer(path->nodes[*level]);
2906 			path->nodes[*level] = NULL;
2907 			*level = i + 1;
2908 		}
2909 	}
2910 	return 1;
2911 }
2912 
2913 /*
2914  * drop the reference count on the tree rooted at 'snap'.  This traverses
2915  * the tree freeing any blocks that have a ref count of zero after being
2916  * decremented.
2917  */
2918 static int walk_log_tree(struct btrfs_trans_handle *trans,
2919 			 struct btrfs_root *log, struct walk_control *wc)
2920 {
2921 	struct btrfs_fs_info *fs_info = log->fs_info;
2922 	int ret = 0;
2923 	int wret;
2924 	int level;
2925 	struct btrfs_path *path;
2926 	int orig_level;
2927 
2928 	path = btrfs_alloc_path();
2929 	if (!path)
2930 		return -ENOMEM;
2931 
2932 	level = btrfs_header_level(log->node);
2933 	orig_level = level;
2934 	path->nodes[level] = log->node;
2935 	atomic_inc(&log->node->refs);
2936 	path->slots[level] = 0;
2937 
2938 	while (1) {
2939 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2940 		if (wret > 0)
2941 			break;
2942 		if (wret < 0) {
2943 			ret = wret;
2944 			goto out;
2945 		}
2946 
2947 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2948 		if (wret > 0)
2949 			break;
2950 		if (wret < 0) {
2951 			ret = wret;
2952 			goto out;
2953 		}
2954 	}
2955 
2956 	/* was the root node processed? if not, catch it here */
2957 	if (path->nodes[orig_level]) {
2958 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2959 			 btrfs_header_generation(path->nodes[orig_level]),
2960 			 orig_level);
2961 		if (ret)
2962 			goto out;
2963 		if (wc->free) {
2964 			struct extent_buffer *next;
2965 
2966 			next = path->nodes[orig_level];
2967 
2968 			if (trans) {
2969 				btrfs_tree_lock(next);
2970 				btrfs_clean_tree_block(next);
2971 				btrfs_wait_tree_block_writeback(next);
2972 				btrfs_tree_unlock(next);
2973 				ret = btrfs_pin_reserved_extent(trans,
2974 						next->start, next->len);
2975 				if (ret)
2976 					goto out;
2977 				btrfs_redirty_list_add(trans->transaction, next);
2978 			} else {
2979 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2980 					clear_extent_buffer_dirty(next);
2981 				unaccount_log_buffer(fs_info, next->start);
2982 			}
2983 		}
2984 	}
2985 
2986 out:
2987 	btrfs_free_path(path);
2988 	return ret;
2989 }
2990 
2991 /*
2992  * helper function to update the item for a given subvolumes log root
2993  * in the tree of log roots
2994  */
2995 static int update_log_root(struct btrfs_trans_handle *trans,
2996 			   struct btrfs_root *log,
2997 			   struct btrfs_root_item *root_item)
2998 {
2999 	struct btrfs_fs_info *fs_info = log->fs_info;
3000 	int ret;
3001 
3002 	if (log->log_transid == 1) {
3003 		/* insert root item on the first sync */
3004 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
3005 				&log->root_key, root_item);
3006 	} else {
3007 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
3008 				&log->root_key, root_item);
3009 	}
3010 	return ret;
3011 }
3012 
3013 static void wait_log_commit(struct btrfs_root *root, int transid)
3014 {
3015 	DEFINE_WAIT(wait);
3016 	int index = transid % 2;
3017 
3018 	/*
3019 	 * we only allow two pending log transactions at a time,
3020 	 * so we know that if ours is more than 2 older than the
3021 	 * current transaction, we're done
3022 	 */
3023 	for (;;) {
3024 		prepare_to_wait(&root->log_commit_wait[index],
3025 				&wait, TASK_UNINTERRUPTIBLE);
3026 
3027 		if (!(root->log_transid_committed < transid &&
3028 		      atomic_read(&root->log_commit[index])))
3029 			break;
3030 
3031 		mutex_unlock(&root->log_mutex);
3032 		schedule();
3033 		mutex_lock(&root->log_mutex);
3034 	}
3035 	finish_wait(&root->log_commit_wait[index], &wait);
3036 }
3037 
3038 static void wait_for_writer(struct btrfs_root *root)
3039 {
3040 	DEFINE_WAIT(wait);
3041 
3042 	for (;;) {
3043 		prepare_to_wait(&root->log_writer_wait, &wait,
3044 				TASK_UNINTERRUPTIBLE);
3045 		if (!atomic_read(&root->log_writers))
3046 			break;
3047 
3048 		mutex_unlock(&root->log_mutex);
3049 		schedule();
3050 		mutex_lock(&root->log_mutex);
3051 	}
3052 	finish_wait(&root->log_writer_wait, &wait);
3053 }
3054 
3055 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3056 					struct btrfs_log_ctx *ctx)
3057 {
3058 	mutex_lock(&root->log_mutex);
3059 	list_del_init(&ctx->list);
3060 	mutex_unlock(&root->log_mutex);
3061 }
3062 
3063 /*
3064  * Invoked in log mutex context, or be sure there is no other task which
3065  * can access the list.
3066  */
3067 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3068 					     int index, int error)
3069 {
3070 	struct btrfs_log_ctx *ctx;
3071 	struct btrfs_log_ctx *safe;
3072 
3073 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3074 		list_del_init(&ctx->list);
3075 		ctx->log_ret = error;
3076 	}
3077 }
3078 
3079 /*
3080  * btrfs_sync_log does sends a given tree log down to the disk and
3081  * updates the super blocks to record it.  When this call is done,
3082  * you know that any inodes previously logged are safely on disk only
3083  * if it returns 0.
3084  *
3085  * Any other return value means you need to call btrfs_commit_transaction.
3086  * Some of the edge cases for fsyncing directories that have had unlinks
3087  * or renames done in the past mean that sometimes the only safe
3088  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3089  * that has happened.
3090  */
3091 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3092 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3093 {
3094 	int index1;
3095 	int index2;
3096 	int mark;
3097 	int ret;
3098 	struct btrfs_fs_info *fs_info = root->fs_info;
3099 	struct btrfs_root *log = root->log_root;
3100 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3101 	struct btrfs_root_item new_root_item;
3102 	int log_transid = 0;
3103 	struct btrfs_log_ctx root_log_ctx;
3104 	struct blk_plug plug;
3105 	u64 log_root_start;
3106 	u64 log_root_level;
3107 
3108 	mutex_lock(&root->log_mutex);
3109 	log_transid = ctx->log_transid;
3110 	if (root->log_transid_committed >= log_transid) {
3111 		mutex_unlock(&root->log_mutex);
3112 		return ctx->log_ret;
3113 	}
3114 
3115 	index1 = log_transid % 2;
3116 	if (atomic_read(&root->log_commit[index1])) {
3117 		wait_log_commit(root, log_transid);
3118 		mutex_unlock(&root->log_mutex);
3119 		return ctx->log_ret;
3120 	}
3121 	ASSERT(log_transid == root->log_transid);
3122 	atomic_set(&root->log_commit[index1], 1);
3123 
3124 	/* wait for previous tree log sync to complete */
3125 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3126 		wait_log_commit(root, log_transid - 1);
3127 
3128 	while (1) {
3129 		int batch = atomic_read(&root->log_batch);
3130 		/* when we're on an ssd, just kick the log commit out */
3131 		if (!btrfs_test_opt(fs_info, SSD) &&
3132 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3133 			mutex_unlock(&root->log_mutex);
3134 			schedule_timeout_uninterruptible(1);
3135 			mutex_lock(&root->log_mutex);
3136 		}
3137 		wait_for_writer(root);
3138 		if (batch == atomic_read(&root->log_batch))
3139 			break;
3140 	}
3141 
3142 	/* bail out if we need to do a full commit */
3143 	if (btrfs_need_log_full_commit(trans)) {
3144 		ret = -EAGAIN;
3145 		mutex_unlock(&root->log_mutex);
3146 		goto out;
3147 	}
3148 
3149 	if (log_transid % 2 == 0)
3150 		mark = EXTENT_DIRTY;
3151 	else
3152 		mark = EXTENT_NEW;
3153 
3154 	/* we start IO on  all the marked extents here, but we don't actually
3155 	 * wait for them until later.
3156 	 */
3157 	blk_start_plug(&plug);
3158 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3159 	/*
3160 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3161 	 *  commit, writes a dirty extent in this tree-log commit. This
3162 	 *  concurrent write will create a hole writing out the extents,
3163 	 *  and we cannot proceed on a zoned filesystem, requiring
3164 	 *  sequential writing. While we can bail out to a full commit
3165 	 *  here, but we can continue hoping the concurrent writing fills
3166 	 *  the hole.
3167 	 */
3168 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3169 		ret = 0;
3170 	if (ret) {
3171 		blk_finish_plug(&plug);
3172 		btrfs_abort_transaction(trans, ret);
3173 		btrfs_set_log_full_commit(trans);
3174 		mutex_unlock(&root->log_mutex);
3175 		goto out;
3176 	}
3177 
3178 	/*
3179 	 * We _must_ update under the root->log_mutex in order to make sure we
3180 	 * have a consistent view of the log root we are trying to commit at
3181 	 * this moment.
3182 	 *
3183 	 * We _must_ copy this into a local copy, because we are not holding the
3184 	 * log_root_tree->log_mutex yet.  This is important because when we
3185 	 * commit the log_root_tree we must have a consistent view of the
3186 	 * log_root_tree when we update the super block to point at the
3187 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3188 	 * with the commit and possibly point at the new block which we may not
3189 	 * have written out.
3190 	 */
3191 	btrfs_set_root_node(&log->root_item, log->node);
3192 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3193 
3194 	root->log_transid++;
3195 	log->log_transid = root->log_transid;
3196 	root->log_start_pid = 0;
3197 	/*
3198 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3199 	 * in their headers. new modifications of the log will be written to
3200 	 * new positions. so it's safe to allow log writers to go in.
3201 	 */
3202 	mutex_unlock(&root->log_mutex);
3203 
3204 	if (btrfs_is_zoned(fs_info)) {
3205 		mutex_lock(&fs_info->tree_root->log_mutex);
3206 		if (!log_root_tree->node) {
3207 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3208 			if (ret) {
3209 				mutex_unlock(&fs_info->tree_root->log_mutex);
3210 				goto out;
3211 			}
3212 		}
3213 		mutex_unlock(&fs_info->tree_root->log_mutex);
3214 	}
3215 
3216 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3217 
3218 	mutex_lock(&log_root_tree->log_mutex);
3219 
3220 	index2 = log_root_tree->log_transid % 2;
3221 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3222 	root_log_ctx.log_transid = log_root_tree->log_transid;
3223 
3224 	/*
3225 	 * Now we are safe to update the log_root_tree because we're under the
3226 	 * log_mutex, and we're a current writer so we're holding the commit
3227 	 * open until we drop the log_mutex.
3228 	 */
3229 	ret = update_log_root(trans, log, &new_root_item);
3230 	if (ret) {
3231 		if (!list_empty(&root_log_ctx.list))
3232 			list_del_init(&root_log_ctx.list);
3233 
3234 		blk_finish_plug(&plug);
3235 		btrfs_set_log_full_commit(trans);
3236 
3237 		if (ret != -ENOSPC) {
3238 			btrfs_abort_transaction(trans, ret);
3239 			mutex_unlock(&log_root_tree->log_mutex);
3240 			goto out;
3241 		}
3242 		btrfs_wait_tree_log_extents(log, mark);
3243 		mutex_unlock(&log_root_tree->log_mutex);
3244 		ret = -EAGAIN;
3245 		goto out;
3246 	}
3247 
3248 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3249 		blk_finish_plug(&plug);
3250 		list_del_init(&root_log_ctx.list);
3251 		mutex_unlock(&log_root_tree->log_mutex);
3252 		ret = root_log_ctx.log_ret;
3253 		goto out;
3254 	}
3255 
3256 	index2 = root_log_ctx.log_transid % 2;
3257 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3258 		blk_finish_plug(&plug);
3259 		ret = btrfs_wait_tree_log_extents(log, mark);
3260 		wait_log_commit(log_root_tree,
3261 				root_log_ctx.log_transid);
3262 		mutex_unlock(&log_root_tree->log_mutex);
3263 		if (!ret)
3264 			ret = root_log_ctx.log_ret;
3265 		goto out;
3266 	}
3267 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3268 	atomic_set(&log_root_tree->log_commit[index2], 1);
3269 
3270 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3271 		wait_log_commit(log_root_tree,
3272 				root_log_ctx.log_transid - 1);
3273 	}
3274 
3275 	/*
3276 	 * now that we've moved on to the tree of log tree roots,
3277 	 * check the full commit flag again
3278 	 */
3279 	if (btrfs_need_log_full_commit(trans)) {
3280 		blk_finish_plug(&plug);
3281 		btrfs_wait_tree_log_extents(log, mark);
3282 		mutex_unlock(&log_root_tree->log_mutex);
3283 		ret = -EAGAIN;
3284 		goto out_wake_log_root;
3285 	}
3286 
3287 	ret = btrfs_write_marked_extents(fs_info,
3288 					 &log_root_tree->dirty_log_pages,
3289 					 EXTENT_DIRTY | EXTENT_NEW);
3290 	blk_finish_plug(&plug);
3291 	/*
3292 	 * As described above, -EAGAIN indicates a hole in the extents. We
3293 	 * cannot wait for these write outs since the waiting cause a
3294 	 * deadlock. Bail out to the full commit instead.
3295 	 */
3296 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3297 		btrfs_set_log_full_commit(trans);
3298 		btrfs_wait_tree_log_extents(log, mark);
3299 		mutex_unlock(&log_root_tree->log_mutex);
3300 		goto out_wake_log_root;
3301 	} else if (ret) {
3302 		btrfs_set_log_full_commit(trans);
3303 		btrfs_abort_transaction(trans, ret);
3304 		mutex_unlock(&log_root_tree->log_mutex);
3305 		goto out_wake_log_root;
3306 	}
3307 	ret = btrfs_wait_tree_log_extents(log, mark);
3308 	if (!ret)
3309 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3310 						  EXTENT_NEW | EXTENT_DIRTY);
3311 	if (ret) {
3312 		btrfs_set_log_full_commit(trans);
3313 		mutex_unlock(&log_root_tree->log_mutex);
3314 		goto out_wake_log_root;
3315 	}
3316 
3317 	log_root_start = log_root_tree->node->start;
3318 	log_root_level = btrfs_header_level(log_root_tree->node);
3319 	log_root_tree->log_transid++;
3320 	mutex_unlock(&log_root_tree->log_mutex);
3321 
3322 	/*
3323 	 * Here we are guaranteed that nobody is going to write the superblock
3324 	 * for the current transaction before us and that neither we do write
3325 	 * our superblock before the previous transaction finishes its commit
3326 	 * and writes its superblock, because:
3327 	 *
3328 	 * 1) We are holding a handle on the current transaction, so no body
3329 	 *    can commit it until we release the handle;
3330 	 *
3331 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3332 	 *    if the previous transaction is still committing, and hasn't yet
3333 	 *    written its superblock, we wait for it to do it, because a
3334 	 *    transaction commit acquires the tree_log_mutex when the commit
3335 	 *    begins and releases it only after writing its superblock.
3336 	 */
3337 	mutex_lock(&fs_info->tree_log_mutex);
3338 
3339 	/*
3340 	 * The previous transaction writeout phase could have failed, and thus
3341 	 * marked the fs in an error state.  We must not commit here, as we
3342 	 * could have updated our generation in the super_for_commit and
3343 	 * writing the super here would result in transid mismatches.  If there
3344 	 * is an error here just bail.
3345 	 */
3346 	if (BTRFS_FS_ERROR(fs_info)) {
3347 		ret = -EIO;
3348 		btrfs_set_log_full_commit(trans);
3349 		btrfs_abort_transaction(trans, ret);
3350 		mutex_unlock(&fs_info->tree_log_mutex);
3351 		goto out_wake_log_root;
3352 	}
3353 
3354 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3355 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3356 	ret = write_all_supers(fs_info, 1);
3357 	mutex_unlock(&fs_info->tree_log_mutex);
3358 	if (ret) {
3359 		btrfs_set_log_full_commit(trans);
3360 		btrfs_abort_transaction(trans, ret);
3361 		goto out_wake_log_root;
3362 	}
3363 
3364 	/*
3365 	 * We know there can only be one task here, since we have not yet set
3366 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3367 	 * log must wait for the previous log transaction to commit if it's
3368 	 * still in progress or wait for the current log transaction commit if
3369 	 * someone else already started it. We use <= and not < because the
3370 	 * first log transaction has an ID of 0.
3371 	 */
3372 	ASSERT(root->last_log_commit <= log_transid);
3373 	root->last_log_commit = log_transid;
3374 
3375 out_wake_log_root:
3376 	mutex_lock(&log_root_tree->log_mutex);
3377 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3378 
3379 	log_root_tree->log_transid_committed++;
3380 	atomic_set(&log_root_tree->log_commit[index2], 0);
3381 	mutex_unlock(&log_root_tree->log_mutex);
3382 
3383 	/*
3384 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3385 	 * all the updates above are seen by the woken threads. It might not be
3386 	 * necessary, but proving that seems to be hard.
3387 	 */
3388 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3389 out:
3390 	mutex_lock(&root->log_mutex);
3391 	btrfs_remove_all_log_ctxs(root, index1, ret);
3392 	root->log_transid_committed++;
3393 	atomic_set(&root->log_commit[index1], 0);
3394 	mutex_unlock(&root->log_mutex);
3395 
3396 	/*
3397 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3398 	 * all the updates above are seen by the woken threads. It might not be
3399 	 * necessary, but proving that seems to be hard.
3400 	 */
3401 	cond_wake_up(&root->log_commit_wait[index1]);
3402 	return ret;
3403 }
3404 
3405 static void free_log_tree(struct btrfs_trans_handle *trans,
3406 			  struct btrfs_root *log)
3407 {
3408 	int ret;
3409 	struct walk_control wc = {
3410 		.free = 1,
3411 		.process_func = process_one_buffer
3412 	};
3413 
3414 	if (log->node) {
3415 		ret = walk_log_tree(trans, log, &wc);
3416 		if (ret) {
3417 			/*
3418 			 * We weren't able to traverse the entire log tree, the
3419 			 * typical scenario is getting an -EIO when reading an
3420 			 * extent buffer of the tree, due to a previous writeback
3421 			 * failure of it.
3422 			 */
3423 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3424 				&log->fs_info->fs_state);
3425 
3426 			/*
3427 			 * Some extent buffers of the log tree may still be dirty
3428 			 * and not yet written back to storage, because we may
3429 			 * have updates to a log tree without syncing a log tree,
3430 			 * such as during rename and link operations. So flush
3431 			 * them out and wait for their writeback to complete, so
3432 			 * that we properly cleanup their state and pages.
3433 			 */
3434 			btrfs_write_marked_extents(log->fs_info,
3435 						   &log->dirty_log_pages,
3436 						   EXTENT_DIRTY | EXTENT_NEW);
3437 			btrfs_wait_tree_log_extents(log,
3438 						    EXTENT_DIRTY | EXTENT_NEW);
3439 
3440 			if (trans)
3441 				btrfs_abort_transaction(trans, ret);
3442 			else
3443 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3444 		}
3445 	}
3446 
3447 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3448 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3449 	extent_io_tree_release(&log->log_csum_range);
3450 
3451 	btrfs_put_root(log);
3452 }
3453 
3454 /*
3455  * free all the extents used by the tree log.  This should be called
3456  * at commit time of the full transaction
3457  */
3458 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3459 {
3460 	if (root->log_root) {
3461 		free_log_tree(trans, root->log_root);
3462 		root->log_root = NULL;
3463 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3464 	}
3465 	return 0;
3466 }
3467 
3468 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3469 			     struct btrfs_fs_info *fs_info)
3470 {
3471 	if (fs_info->log_root_tree) {
3472 		free_log_tree(trans, fs_info->log_root_tree);
3473 		fs_info->log_root_tree = NULL;
3474 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3475 	}
3476 	return 0;
3477 }
3478 
3479 /*
3480  * Check if an inode was logged in the current transaction. This may often
3481  * return some false positives, because logged_trans is an in memory only field,
3482  * not persisted anywhere. This is meant to be used in contexts where a false
3483  * positive has no functional consequences.
3484  */
3485 static bool inode_logged(struct btrfs_trans_handle *trans,
3486 			 struct btrfs_inode *inode)
3487 {
3488 	if (inode->logged_trans == trans->transid)
3489 		return true;
3490 
3491 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state))
3492 		return false;
3493 
3494 	/*
3495 	 * The inode's logged_trans is always 0 when we load it (because it is
3496 	 * not persisted in the inode item or elsewhere). So if it is 0, the
3497 	 * inode was last modified in the current transaction then the inode may
3498 	 * have been logged before in the current transaction, then evicted and
3499 	 * loaded again in the current transaction - or may have never been logged
3500 	 * in the current transaction, but since we can not be sure, we have to
3501 	 * assume it was, otherwise our callers can leave an inconsistent log.
3502 	 */
3503 	if (inode->logged_trans == 0 &&
3504 	    inode->last_trans == trans->transid &&
3505 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3506 		return true;
3507 
3508 	return false;
3509 }
3510 
3511 /*
3512  * If both a file and directory are logged, and unlinks or renames are
3513  * mixed in, we have a few interesting corners:
3514  *
3515  * create file X in dir Y
3516  * link file X to X.link in dir Y
3517  * fsync file X
3518  * unlink file X but leave X.link
3519  * fsync dir Y
3520  *
3521  * After a crash we would expect only X.link to exist.  But file X
3522  * didn't get fsync'd again so the log has back refs for X and X.link.
3523  *
3524  * We solve this by removing directory entries and inode backrefs from the
3525  * log when a file that was logged in the current transaction is
3526  * unlinked.  Any later fsync will include the updated log entries, and
3527  * we'll be able to reconstruct the proper directory items from backrefs.
3528  *
3529  * This optimizations allows us to avoid relogging the entire inode
3530  * or the entire directory.
3531  */
3532 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3533 				  struct btrfs_root *root,
3534 				  const char *name, int name_len,
3535 				  struct btrfs_inode *dir, u64 index)
3536 {
3537 	struct btrfs_root *log;
3538 	struct btrfs_dir_item *di;
3539 	struct btrfs_path *path;
3540 	int ret;
3541 	int err = 0;
3542 	u64 dir_ino = btrfs_ino(dir);
3543 
3544 	if (!inode_logged(trans, dir))
3545 		return;
3546 
3547 	ret = join_running_log_trans(root);
3548 	if (ret)
3549 		return;
3550 
3551 	mutex_lock(&dir->log_mutex);
3552 
3553 	log = root->log_root;
3554 	path = btrfs_alloc_path();
3555 	if (!path) {
3556 		err = -ENOMEM;
3557 		goto out_unlock;
3558 	}
3559 
3560 	/*
3561 	 * We only log dir index items of a directory, so we don't need to look
3562 	 * for dir item keys.
3563 	 */
3564 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3565 					 index, name, name_len, -1);
3566 	if (IS_ERR(di)) {
3567 		err = PTR_ERR(di);
3568 		goto fail;
3569 	}
3570 	if (di) {
3571 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3572 		if (ret) {
3573 			err = ret;
3574 			goto fail;
3575 		}
3576 	}
3577 
3578 	/*
3579 	 * We do not need to update the size field of the directory's inode item
3580 	 * because on log replay we update the field to reflect all existing
3581 	 * entries in the directory (see overwrite_item()).
3582 	 */
3583 fail:
3584 	btrfs_free_path(path);
3585 out_unlock:
3586 	mutex_unlock(&dir->log_mutex);
3587 	if (err < 0)
3588 		btrfs_set_log_full_commit(trans);
3589 	btrfs_end_log_trans(root);
3590 }
3591 
3592 /* see comments for btrfs_del_dir_entries_in_log */
3593 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3594 				struct btrfs_root *root,
3595 				const char *name, int name_len,
3596 				struct btrfs_inode *inode, u64 dirid)
3597 {
3598 	struct btrfs_root *log;
3599 	u64 index;
3600 	int ret;
3601 
3602 	if (!inode_logged(trans, inode))
3603 		return;
3604 
3605 	ret = join_running_log_trans(root);
3606 	if (ret)
3607 		return;
3608 	log = root->log_root;
3609 	mutex_lock(&inode->log_mutex);
3610 
3611 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3612 				  dirid, &index);
3613 	mutex_unlock(&inode->log_mutex);
3614 	if (ret < 0 && ret != -ENOENT)
3615 		btrfs_set_log_full_commit(trans);
3616 	btrfs_end_log_trans(root);
3617 }
3618 
3619 /*
3620  * creates a range item in the log for 'dirid'.  first_offset and
3621  * last_offset tell us which parts of the key space the log should
3622  * be considered authoritative for.
3623  */
3624 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3625 				       struct btrfs_root *log,
3626 				       struct btrfs_path *path,
3627 				       u64 dirid,
3628 				       u64 first_offset, u64 last_offset)
3629 {
3630 	int ret;
3631 	struct btrfs_key key;
3632 	struct btrfs_dir_log_item *item;
3633 
3634 	key.objectid = dirid;
3635 	key.offset = first_offset;
3636 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3637 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3638 	if (ret)
3639 		return ret;
3640 
3641 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3642 			      struct btrfs_dir_log_item);
3643 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3644 	btrfs_mark_buffer_dirty(path->nodes[0]);
3645 	btrfs_release_path(path);
3646 	return 0;
3647 }
3648 
3649 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3650 				 struct btrfs_root *log,
3651 				 struct extent_buffer *src,
3652 				 struct btrfs_path *dst_path,
3653 				 int start_slot,
3654 				 int count)
3655 {
3656 	char *ins_data = NULL;
3657 	struct btrfs_item_batch batch;
3658 	struct extent_buffer *dst;
3659 	unsigned long src_offset;
3660 	unsigned long dst_offset;
3661 	struct btrfs_key key;
3662 	u32 item_size;
3663 	int ret;
3664 	int i;
3665 
3666 	ASSERT(count > 0);
3667 	batch.nr = count;
3668 
3669 	if (count == 1) {
3670 		btrfs_item_key_to_cpu(src, &key, start_slot);
3671 		item_size = btrfs_item_size(src, start_slot);
3672 		batch.keys = &key;
3673 		batch.data_sizes = &item_size;
3674 		batch.total_data_size = item_size;
3675 	} else {
3676 		struct btrfs_key *ins_keys;
3677 		u32 *ins_sizes;
3678 
3679 		ins_data = kmalloc(count * sizeof(u32) +
3680 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3681 		if (!ins_data)
3682 			return -ENOMEM;
3683 
3684 		ins_sizes = (u32 *)ins_data;
3685 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3686 		batch.keys = ins_keys;
3687 		batch.data_sizes = ins_sizes;
3688 		batch.total_data_size = 0;
3689 
3690 		for (i = 0; i < count; i++) {
3691 			const int slot = start_slot + i;
3692 
3693 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3694 			ins_sizes[i] = btrfs_item_size(src, slot);
3695 			batch.total_data_size += ins_sizes[i];
3696 		}
3697 	}
3698 
3699 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3700 	if (ret)
3701 		goto out;
3702 
3703 	dst = dst_path->nodes[0];
3704 	/*
3705 	 * Copy all the items in bulk, in a single copy operation. Item data is
3706 	 * organized such that it's placed at the end of a leaf and from right
3707 	 * to left. For example, the data for the second item ends at an offset
3708 	 * that matches the offset where the data for the first item starts, the
3709 	 * data for the third item ends at an offset that matches the offset
3710 	 * where the data of the second items starts, and so on.
3711 	 * Therefore our source and destination start offsets for copy match the
3712 	 * offsets of the last items (highest slots).
3713 	 */
3714 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3715 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3716 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3717 	btrfs_release_path(dst_path);
3718 out:
3719 	kfree(ins_data);
3720 
3721 	return ret;
3722 }
3723 
3724 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3725 				  struct btrfs_inode *inode,
3726 				  struct btrfs_path *path,
3727 				  struct btrfs_path *dst_path,
3728 				  struct btrfs_log_ctx *ctx)
3729 {
3730 	struct btrfs_root *log = inode->root->log_root;
3731 	struct extent_buffer *src = path->nodes[0];
3732 	const int nritems = btrfs_header_nritems(src);
3733 	const u64 ino = btrfs_ino(inode);
3734 	const bool inode_logged_before = inode_logged(trans, inode);
3735 	bool last_found = false;
3736 	int batch_start = 0;
3737 	int batch_size = 0;
3738 	int i;
3739 
3740 	for (i = path->slots[0]; i < nritems; i++) {
3741 		struct btrfs_key key;
3742 		int ret;
3743 
3744 		btrfs_item_key_to_cpu(src, &key, i);
3745 
3746 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3747 			last_found = true;
3748 			break;
3749 		}
3750 
3751 		ctx->last_dir_item_offset = key.offset;
3752 		/*
3753 		 * We must make sure that when we log a directory entry, the
3754 		 * corresponding inode, after log replay, has a matching link
3755 		 * count. For example:
3756 		 *
3757 		 * touch foo
3758 		 * mkdir mydir
3759 		 * sync
3760 		 * ln foo mydir/bar
3761 		 * xfs_io -c "fsync" mydir
3762 		 * <crash>
3763 		 * <mount fs and log replay>
3764 		 *
3765 		 * Would result in a fsync log that when replayed, our file inode
3766 		 * would have a link count of 1, but we get two directory entries
3767 		 * pointing to the same inode. After removing one of the names,
3768 		 * it would not be possible to remove the other name, which
3769 		 * resulted always in stale file handle errors, and would not be
3770 		 * possible to rmdir the parent directory, since its i_size could
3771 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3772 		 * resulting in -ENOTEMPTY errors.
3773 		 */
3774 		if (!ctx->log_new_dentries) {
3775 			struct btrfs_dir_item *di;
3776 			struct btrfs_key di_key;
3777 
3778 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3779 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3780 			if ((btrfs_dir_transid(src, di) == trans->transid ||
3781 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3782 			    di_key.type != BTRFS_ROOT_ITEM_KEY)
3783 				ctx->log_new_dentries = true;
3784 		}
3785 
3786 		if (!inode_logged_before)
3787 			goto add_to_batch;
3788 
3789 		/*
3790 		 * If we were logged before and have logged dir items, we can skip
3791 		 * checking if any item with a key offset larger than the last one
3792 		 * we logged is in the log tree, saving time and avoiding adding
3793 		 * contention on the log tree.
3794 		 */
3795 		if (key.offset > inode->last_dir_index_offset)
3796 			goto add_to_batch;
3797 		/*
3798 		 * Check if the key was already logged before. If not we can add
3799 		 * it to a batch for bulk insertion.
3800 		 */
3801 		ret = btrfs_search_slot(NULL, log, &key, dst_path, 0, 0);
3802 		if (ret < 0) {
3803 			return ret;
3804 		} else if (ret > 0) {
3805 			btrfs_release_path(dst_path);
3806 			goto add_to_batch;
3807 		}
3808 
3809 		/*
3810 		 * Item exists in the log. Overwrite the item in the log if it
3811 		 * has different content or do nothing if it has exactly the same
3812 		 * content. And then flush the current batch if any - do it after
3813 		 * overwriting the current item, or we would deadlock otherwise,
3814 		 * since we are holding a path for the existing item.
3815 		 */
3816 		ret = do_overwrite_item(trans, log, dst_path, src, i, &key);
3817 		if (ret < 0)
3818 			return ret;
3819 
3820 		if (batch_size > 0) {
3821 			ret = flush_dir_items_batch(trans, log, src, dst_path,
3822 						    batch_start, batch_size);
3823 			if (ret < 0)
3824 				return ret;
3825 			batch_size = 0;
3826 		}
3827 		continue;
3828 add_to_batch:
3829 		if (batch_size == 0)
3830 			batch_start = i;
3831 		batch_size++;
3832 	}
3833 
3834 	if (batch_size > 0) {
3835 		int ret;
3836 
3837 		ret = flush_dir_items_batch(trans, log, src, dst_path,
3838 					    batch_start, batch_size);
3839 		if (ret < 0)
3840 			return ret;
3841 	}
3842 
3843 	return last_found ? 1 : 0;
3844 }
3845 
3846 /*
3847  * log all the items included in the current transaction for a given
3848  * directory.  This also creates the range items in the log tree required
3849  * to replay anything deleted before the fsync
3850  */
3851 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3852 			  struct btrfs_inode *inode,
3853 			  struct btrfs_path *path,
3854 			  struct btrfs_path *dst_path,
3855 			  struct btrfs_log_ctx *ctx,
3856 			  u64 min_offset, u64 *last_offset_ret)
3857 {
3858 	struct btrfs_key min_key;
3859 	struct btrfs_root *root = inode->root;
3860 	struct btrfs_root *log = root->log_root;
3861 	int err = 0;
3862 	int ret;
3863 	u64 first_offset = min_offset;
3864 	u64 last_offset = (u64)-1;
3865 	u64 ino = btrfs_ino(inode);
3866 
3867 	min_key.objectid = ino;
3868 	min_key.type = BTRFS_DIR_INDEX_KEY;
3869 	min_key.offset = min_offset;
3870 
3871 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3872 
3873 	/*
3874 	 * we didn't find anything from this transaction, see if there
3875 	 * is anything at all
3876 	 */
3877 	if (ret != 0 || min_key.objectid != ino ||
3878 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3879 		min_key.objectid = ino;
3880 		min_key.type = BTRFS_DIR_INDEX_KEY;
3881 		min_key.offset = (u64)-1;
3882 		btrfs_release_path(path);
3883 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3884 		if (ret < 0) {
3885 			btrfs_release_path(path);
3886 			return ret;
3887 		}
3888 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3889 
3890 		/* if ret == 0 there are items for this type,
3891 		 * create a range to tell us the last key of this type.
3892 		 * otherwise, there are no items in this directory after
3893 		 * *min_offset, and we create a range to indicate that.
3894 		 */
3895 		if (ret == 0) {
3896 			struct btrfs_key tmp;
3897 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3898 					      path->slots[0]);
3899 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3900 				first_offset = max(min_offset, tmp.offset) + 1;
3901 		}
3902 		goto done;
3903 	}
3904 
3905 	/* go backward to find any previous key */
3906 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3907 	if (ret == 0) {
3908 		struct btrfs_key tmp;
3909 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3910 		if (tmp.type == BTRFS_DIR_INDEX_KEY) {
3911 			first_offset = tmp.offset;
3912 			ret = overwrite_item(trans, log, dst_path,
3913 					     path->nodes[0], path->slots[0],
3914 					     &tmp);
3915 			if (ret) {
3916 				err = ret;
3917 				goto done;
3918 			}
3919 		}
3920 	}
3921 	btrfs_release_path(path);
3922 
3923 	/*
3924 	 * Find the first key from this transaction again.  See the note for
3925 	 * log_new_dir_dentries, if we're logging a directory recursively we
3926 	 * won't be holding its i_mutex, which means we can modify the directory
3927 	 * while we're logging it.  If we remove an entry between our first
3928 	 * search and this search we'll not find the key again and can just
3929 	 * bail.
3930 	 */
3931 search:
3932 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3933 	if (ret != 0)
3934 		goto done;
3935 
3936 	/*
3937 	 * we have a block from this transaction, log every item in it
3938 	 * from our directory
3939 	 */
3940 	while (1) {
3941 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx);
3942 		if (ret != 0) {
3943 			if (ret < 0)
3944 				err = ret;
3945 			goto done;
3946 		}
3947 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3948 
3949 		/*
3950 		 * look ahead to the next item and see if it is also
3951 		 * from this directory and from this transaction
3952 		 */
3953 		ret = btrfs_next_leaf(root, path);
3954 		if (ret) {
3955 			if (ret == 1)
3956 				last_offset = (u64)-1;
3957 			else
3958 				err = ret;
3959 			goto done;
3960 		}
3961 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3962 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3963 			last_offset = (u64)-1;
3964 			goto done;
3965 		}
3966 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3967 			ctx->last_dir_item_offset = min_key.offset;
3968 			ret = overwrite_item(trans, log, dst_path,
3969 					     path->nodes[0], path->slots[0],
3970 					     &min_key);
3971 			if (ret)
3972 				err = ret;
3973 			else
3974 				last_offset = min_key.offset;
3975 			goto done;
3976 		}
3977 		if (need_resched()) {
3978 			btrfs_release_path(path);
3979 			cond_resched();
3980 			goto search;
3981 		}
3982 	}
3983 done:
3984 	btrfs_release_path(path);
3985 	btrfs_release_path(dst_path);
3986 
3987 	if (err == 0) {
3988 		*last_offset_ret = last_offset;
3989 		/*
3990 		 * insert the log range keys to indicate where the log
3991 		 * is valid
3992 		 */
3993 		ret = insert_dir_log_key(trans, log, path, ino, first_offset,
3994 					 last_offset);
3995 		if (ret)
3996 			err = ret;
3997 	}
3998 	return err;
3999 }
4000 
4001 /*
4002  * logging directories is very similar to logging inodes, We find all the items
4003  * from the current transaction and write them to the log.
4004  *
4005  * The recovery code scans the directory in the subvolume, and if it finds a
4006  * key in the range logged that is not present in the log tree, then it means
4007  * that dir entry was unlinked during the transaction.
4008  *
4009  * In order for that scan to work, we must include one key smaller than
4010  * the smallest logged by this transaction and one key larger than the largest
4011  * key logged by this transaction.
4012  */
4013 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4014 			  struct btrfs_inode *inode,
4015 			  struct btrfs_path *path,
4016 			  struct btrfs_path *dst_path,
4017 			  struct btrfs_log_ctx *ctx)
4018 {
4019 	u64 min_key;
4020 	u64 max_key;
4021 	int ret;
4022 
4023 	/*
4024 	 * If this is the first time we are being logged in the current
4025 	 * transaction, or we were logged before but the inode was evicted and
4026 	 * reloaded later, in which case its logged_trans is 0, reset the value
4027 	 * of the last logged key offset. Note that we don't use the helper
4028 	 * function inode_logged() here - that is because the function returns
4029 	 * true after an inode eviction, assuming the worst case as it can not
4030 	 * know for sure if the inode was logged before. So we can not skip key
4031 	 * searches in the case the inode was evicted, because it may not have
4032 	 * been logged in this transaction and may have been logged in a past
4033 	 * transaction, so we need to reset the last dir index offset to (u64)-1.
4034 	 */
4035 	if (inode->logged_trans != trans->transid)
4036 		inode->last_dir_index_offset = (u64)-1;
4037 
4038 	min_key = 0;
4039 	max_key = 0;
4040 	ctx->last_dir_item_offset = inode->last_dir_index_offset;
4041 
4042 	while (1) {
4043 		ret = log_dir_items(trans, inode, path, dst_path,
4044 				ctx, min_key, &max_key);
4045 		if (ret)
4046 			return ret;
4047 		if (max_key == (u64)-1)
4048 			break;
4049 		min_key = max_key + 1;
4050 	}
4051 
4052 	inode->last_dir_index_offset = ctx->last_dir_item_offset;
4053 
4054 	return 0;
4055 }
4056 
4057 /*
4058  * a helper function to drop items from the log before we relog an
4059  * inode.  max_key_type indicates the highest item type to remove.
4060  * This cannot be run for file data extents because it does not
4061  * free the extents they point to.
4062  */
4063 static int drop_inode_items(struct btrfs_trans_handle *trans,
4064 				  struct btrfs_root *log,
4065 				  struct btrfs_path *path,
4066 				  struct btrfs_inode *inode,
4067 				  int max_key_type)
4068 {
4069 	int ret;
4070 	struct btrfs_key key;
4071 	struct btrfs_key found_key;
4072 	int start_slot;
4073 
4074 	if (!inode_logged(trans, inode))
4075 		return 0;
4076 
4077 	key.objectid = btrfs_ino(inode);
4078 	key.type = max_key_type;
4079 	key.offset = (u64)-1;
4080 
4081 	while (1) {
4082 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4083 		BUG_ON(ret == 0); /* Logic error */
4084 		if (ret < 0)
4085 			break;
4086 
4087 		if (path->slots[0] == 0)
4088 			break;
4089 
4090 		path->slots[0]--;
4091 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4092 				      path->slots[0]);
4093 
4094 		if (found_key.objectid != key.objectid)
4095 			break;
4096 
4097 		found_key.offset = 0;
4098 		found_key.type = 0;
4099 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4100 		if (ret < 0)
4101 			break;
4102 
4103 		ret = btrfs_del_items(trans, log, path, start_slot,
4104 				      path->slots[0] - start_slot + 1);
4105 		/*
4106 		 * If start slot isn't 0 then we don't need to re-search, we've
4107 		 * found the last guy with the objectid in this tree.
4108 		 */
4109 		if (ret || start_slot != 0)
4110 			break;
4111 		btrfs_release_path(path);
4112 	}
4113 	btrfs_release_path(path);
4114 	if (ret > 0)
4115 		ret = 0;
4116 	return ret;
4117 }
4118 
4119 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4120 				struct btrfs_root *log_root,
4121 				struct btrfs_inode *inode,
4122 				u64 new_size, u32 min_type)
4123 {
4124 	struct btrfs_truncate_control control = {
4125 		.new_size = new_size,
4126 		.ino = btrfs_ino(inode),
4127 		.min_type = min_type,
4128 		.skip_ref_updates = true,
4129 	};
4130 
4131 	return btrfs_truncate_inode_items(trans, log_root, &control);
4132 }
4133 
4134 static void fill_inode_item(struct btrfs_trans_handle *trans,
4135 			    struct extent_buffer *leaf,
4136 			    struct btrfs_inode_item *item,
4137 			    struct inode *inode, int log_inode_only,
4138 			    u64 logged_isize)
4139 {
4140 	struct btrfs_map_token token;
4141 	u64 flags;
4142 
4143 	btrfs_init_map_token(&token, leaf);
4144 
4145 	if (log_inode_only) {
4146 		/* set the generation to zero so the recover code
4147 		 * can tell the difference between an logging
4148 		 * just to say 'this inode exists' and a logging
4149 		 * to say 'update this inode with these values'
4150 		 */
4151 		btrfs_set_token_inode_generation(&token, item, 0);
4152 		btrfs_set_token_inode_size(&token, item, logged_isize);
4153 	} else {
4154 		btrfs_set_token_inode_generation(&token, item,
4155 						 BTRFS_I(inode)->generation);
4156 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4157 	}
4158 
4159 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4160 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4161 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4162 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4163 
4164 	btrfs_set_token_timespec_sec(&token, &item->atime,
4165 				     inode->i_atime.tv_sec);
4166 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4167 				      inode->i_atime.tv_nsec);
4168 
4169 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4170 				     inode->i_mtime.tv_sec);
4171 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4172 				      inode->i_mtime.tv_nsec);
4173 
4174 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4175 				     inode->i_ctime.tv_sec);
4176 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4177 				      inode->i_ctime.tv_nsec);
4178 
4179 	/*
4180 	 * We do not need to set the nbytes field, in fact during a fast fsync
4181 	 * its value may not even be correct, since a fast fsync does not wait
4182 	 * for ordered extent completion, which is where we update nbytes, it
4183 	 * only waits for writeback to complete. During log replay as we find
4184 	 * file extent items and replay them, we adjust the nbytes field of the
4185 	 * inode item in subvolume tree as needed (see overwrite_item()).
4186 	 */
4187 
4188 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4189 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4190 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4191 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4192 					  BTRFS_I(inode)->ro_flags);
4193 	btrfs_set_token_inode_flags(&token, item, flags);
4194 	btrfs_set_token_inode_block_group(&token, item, 0);
4195 }
4196 
4197 static int log_inode_item(struct btrfs_trans_handle *trans,
4198 			  struct btrfs_root *log, struct btrfs_path *path,
4199 			  struct btrfs_inode *inode, bool inode_item_dropped)
4200 {
4201 	struct btrfs_inode_item *inode_item;
4202 	int ret;
4203 
4204 	/*
4205 	 * If we are doing a fast fsync and the inode was logged before in the
4206 	 * current transaction, then we know the inode was previously logged and
4207 	 * it exists in the log tree. For performance reasons, in this case use
4208 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4209 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4210 	 * contention in case there are concurrent fsyncs for other inodes of the
4211 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4212 	 * already exists can also result in unnecessarily splitting a leaf.
4213 	 */
4214 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4215 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4216 		ASSERT(ret <= 0);
4217 		if (ret > 0)
4218 			ret = -ENOENT;
4219 	} else {
4220 		/*
4221 		 * This means it is the first fsync in the current transaction,
4222 		 * so the inode item is not in the log and we need to insert it.
4223 		 * We can never get -EEXIST because we are only called for a fast
4224 		 * fsync and in case an inode eviction happens after the inode was
4225 		 * logged before in the current transaction, when we load again
4226 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4227 		 * flags and set ->logged_trans to 0.
4228 		 */
4229 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4230 					      sizeof(*inode_item));
4231 		ASSERT(ret != -EEXIST);
4232 	}
4233 	if (ret)
4234 		return ret;
4235 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4236 				    struct btrfs_inode_item);
4237 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4238 			0, 0);
4239 	btrfs_release_path(path);
4240 	return 0;
4241 }
4242 
4243 static int log_csums(struct btrfs_trans_handle *trans,
4244 		     struct btrfs_inode *inode,
4245 		     struct btrfs_root *log_root,
4246 		     struct btrfs_ordered_sum *sums)
4247 {
4248 	const u64 lock_end = sums->bytenr + sums->len - 1;
4249 	struct extent_state *cached_state = NULL;
4250 	int ret;
4251 
4252 	/*
4253 	 * If this inode was not used for reflink operations in the current
4254 	 * transaction with new extents, then do the fast path, no need to
4255 	 * worry about logging checksum items with overlapping ranges.
4256 	 */
4257 	if (inode->last_reflink_trans < trans->transid)
4258 		return btrfs_csum_file_blocks(trans, log_root, sums);
4259 
4260 	/*
4261 	 * Serialize logging for checksums. This is to avoid racing with the
4262 	 * same checksum being logged by another task that is logging another
4263 	 * file which happens to refer to the same extent as well. Such races
4264 	 * can leave checksum items in the log with overlapping ranges.
4265 	 */
4266 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4267 			       lock_end, &cached_state);
4268 	if (ret)
4269 		return ret;
4270 	/*
4271 	 * Due to extent cloning, we might have logged a csum item that covers a
4272 	 * subrange of a cloned extent, and later we can end up logging a csum
4273 	 * item for a larger subrange of the same extent or the entire range.
4274 	 * This would leave csum items in the log tree that cover the same range
4275 	 * and break the searches for checksums in the log tree, resulting in
4276 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4277 	 * trim and adjust) any existing csum items in the log for this range.
4278 	 */
4279 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4280 	if (!ret)
4281 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4282 
4283 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4284 			     &cached_state);
4285 
4286 	return ret;
4287 }
4288 
4289 static noinline int copy_items(struct btrfs_trans_handle *trans,
4290 			       struct btrfs_inode *inode,
4291 			       struct btrfs_path *dst_path,
4292 			       struct btrfs_path *src_path,
4293 			       int start_slot, int nr, int inode_only,
4294 			       u64 logged_isize)
4295 {
4296 	struct btrfs_fs_info *fs_info = trans->fs_info;
4297 	unsigned long src_offset;
4298 	unsigned long dst_offset;
4299 	struct btrfs_root *log = inode->root->log_root;
4300 	struct btrfs_file_extent_item *extent;
4301 	struct btrfs_inode_item *inode_item;
4302 	struct extent_buffer *src = src_path->nodes[0];
4303 	int ret;
4304 	struct btrfs_key *ins_keys;
4305 	u32 *ins_sizes;
4306 	struct btrfs_item_batch batch;
4307 	char *ins_data;
4308 	int i;
4309 	struct list_head ordered_sums;
4310 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4311 
4312 	INIT_LIST_HEAD(&ordered_sums);
4313 
4314 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4315 			   nr * sizeof(u32), GFP_NOFS);
4316 	if (!ins_data)
4317 		return -ENOMEM;
4318 
4319 	ins_sizes = (u32 *)ins_data;
4320 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4321 	batch.keys = ins_keys;
4322 	batch.data_sizes = ins_sizes;
4323 	batch.total_data_size = 0;
4324 	batch.nr = nr;
4325 
4326 	for (i = 0; i < nr; i++) {
4327 		ins_sizes[i] = btrfs_item_size(src, i + start_slot);
4328 		batch.total_data_size += ins_sizes[i];
4329 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4330 	}
4331 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4332 	if (ret) {
4333 		kfree(ins_data);
4334 		return ret;
4335 	}
4336 
4337 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4338 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4339 						   dst_path->slots[0]);
4340 
4341 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4342 
4343 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4344 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4345 						    dst_path->slots[0],
4346 						    struct btrfs_inode_item);
4347 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4348 					&inode->vfs_inode,
4349 					inode_only == LOG_INODE_EXISTS,
4350 					logged_isize);
4351 		} else {
4352 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4353 					   src_offset, ins_sizes[i]);
4354 		}
4355 
4356 		/* take a reference on file data extents so that truncates
4357 		 * or deletes of this inode don't have to relog the inode
4358 		 * again
4359 		 */
4360 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4361 		    !skip_csum) {
4362 			int found_type;
4363 			extent = btrfs_item_ptr(src, start_slot + i,
4364 						struct btrfs_file_extent_item);
4365 
4366 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4367 				continue;
4368 
4369 			found_type = btrfs_file_extent_type(src, extent);
4370 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4371 				struct btrfs_root *csum_root;
4372 				u64 ds, dl, cs, cl;
4373 				ds = btrfs_file_extent_disk_bytenr(src,
4374 								extent);
4375 				/* ds == 0 is a hole */
4376 				if (ds == 0)
4377 					continue;
4378 
4379 				dl = btrfs_file_extent_disk_num_bytes(src,
4380 								extent);
4381 				cs = btrfs_file_extent_offset(src, extent);
4382 				cl = btrfs_file_extent_num_bytes(src,
4383 								extent);
4384 				if (btrfs_file_extent_compression(src,
4385 								  extent)) {
4386 					cs = 0;
4387 					cl = dl;
4388 				}
4389 
4390 				csum_root = btrfs_csum_root(fs_info, ds);
4391 				ret = btrfs_lookup_csums_range(csum_root,
4392 						ds + cs, ds + cs + cl - 1,
4393 						&ordered_sums, 0);
4394 				if (ret)
4395 					break;
4396 			}
4397 		}
4398 	}
4399 
4400 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4401 	btrfs_release_path(dst_path);
4402 	kfree(ins_data);
4403 
4404 	/*
4405 	 * we have to do this after the loop above to avoid changing the
4406 	 * log tree while trying to change the log tree.
4407 	 */
4408 	while (!list_empty(&ordered_sums)) {
4409 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4410 						   struct btrfs_ordered_sum,
4411 						   list);
4412 		if (!ret)
4413 			ret = log_csums(trans, inode, log, sums);
4414 		list_del(&sums->list);
4415 		kfree(sums);
4416 	}
4417 
4418 	return ret;
4419 }
4420 
4421 static int extent_cmp(void *priv, const struct list_head *a,
4422 		      const struct list_head *b)
4423 {
4424 	const struct extent_map *em1, *em2;
4425 
4426 	em1 = list_entry(a, struct extent_map, list);
4427 	em2 = list_entry(b, struct extent_map, list);
4428 
4429 	if (em1->start < em2->start)
4430 		return -1;
4431 	else if (em1->start > em2->start)
4432 		return 1;
4433 	return 0;
4434 }
4435 
4436 static int log_extent_csums(struct btrfs_trans_handle *trans,
4437 			    struct btrfs_inode *inode,
4438 			    struct btrfs_root *log_root,
4439 			    const struct extent_map *em,
4440 			    struct btrfs_log_ctx *ctx)
4441 {
4442 	struct btrfs_ordered_extent *ordered;
4443 	struct btrfs_root *csum_root;
4444 	u64 csum_offset;
4445 	u64 csum_len;
4446 	u64 mod_start = em->mod_start;
4447 	u64 mod_len = em->mod_len;
4448 	LIST_HEAD(ordered_sums);
4449 	int ret = 0;
4450 
4451 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4452 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4453 	    em->block_start == EXTENT_MAP_HOLE)
4454 		return 0;
4455 
4456 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4457 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4458 		const u64 mod_end = mod_start + mod_len;
4459 		struct btrfs_ordered_sum *sums;
4460 
4461 		if (mod_len == 0)
4462 			break;
4463 
4464 		if (ordered_end <= mod_start)
4465 			continue;
4466 		if (mod_end <= ordered->file_offset)
4467 			break;
4468 
4469 		/*
4470 		 * We are going to copy all the csums on this ordered extent, so
4471 		 * go ahead and adjust mod_start and mod_len in case this ordered
4472 		 * extent has already been logged.
4473 		 */
4474 		if (ordered->file_offset > mod_start) {
4475 			if (ordered_end >= mod_end)
4476 				mod_len = ordered->file_offset - mod_start;
4477 			/*
4478 			 * If we have this case
4479 			 *
4480 			 * |--------- logged extent ---------|
4481 			 *       |----- ordered extent ----|
4482 			 *
4483 			 * Just don't mess with mod_start and mod_len, we'll
4484 			 * just end up logging more csums than we need and it
4485 			 * will be ok.
4486 			 */
4487 		} else {
4488 			if (ordered_end < mod_end) {
4489 				mod_len = mod_end - ordered_end;
4490 				mod_start = ordered_end;
4491 			} else {
4492 				mod_len = 0;
4493 			}
4494 		}
4495 
4496 		/*
4497 		 * To keep us from looping for the above case of an ordered
4498 		 * extent that falls inside of the logged extent.
4499 		 */
4500 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4501 			continue;
4502 
4503 		list_for_each_entry(sums, &ordered->list, list) {
4504 			ret = log_csums(trans, inode, log_root, sums);
4505 			if (ret)
4506 				return ret;
4507 		}
4508 	}
4509 
4510 	/* We're done, found all csums in the ordered extents. */
4511 	if (mod_len == 0)
4512 		return 0;
4513 
4514 	/* If we're compressed we have to save the entire range of csums. */
4515 	if (em->compress_type) {
4516 		csum_offset = 0;
4517 		csum_len = max(em->block_len, em->orig_block_len);
4518 	} else {
4519 		csum_offset = mod_start - em->start;
4520 		csum_len = mod_len;
4521 	}
4522 
4523 	/* block start is already adjusted for the file extent offset. */
4524 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4525 	ret = btrfs_lookup_csums_range(csum_root,
4526 				       em->block_start + csum_offset,
4527 				       em->block_start + csum_offset +
4528 				       csum_len - 1, &ordered_sums, 0);
4529 	if (ret)
4530 		return ret;
4531 
4532 	while (!list_empty(&ordered_sums)) {
4533 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4534 						   struct btrfs_ordered_sum,
4535 						   list);
4536 		if (!ret)
4537 			ret = log_csums(trans, inode, log_root, sums);
4538 		list_del(&sums->list);
4539 		kfree(sums);
4540 	}
4541 
4542 	return ret;
4543 }
4544 
4545 static int log_one_extent(struct btrfs_trans_handle *trans,
4546 			  struct btrfs_inode *inode,
4547 			  const struct extent_map *em,
4548 			  struct btrfs_path *path,
4549 			  struct btrfs_log_ctx *ctx)
4550 {
4551 	struct btrfs_drop_extents_args drop_args = { 0 };
4552 	struct btrfs_root *log = inode->root->log_root;
4553 	struct btrfs_file_extent_item *fi;
4554 	struct extent_buffer *leaf;
4555 	struct btrfs_map_token token;
4556 	struct btrfs_key key;
4557 	u64 extent_offset = em->start - em->orig_start;
4558 	u64 block_len;
4559 	int ret;
4560 
4561 	ret = log_extent_csums(trans, inode, log, em, ctx);
4562 	if (ret)
4563 		return ret;
4564 
4565 	/*
4566 	 * If this is the first time we are logging the inode in the current
4567 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4568 	 * because it does a deletion search, which always acquires write locks
4569 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4570 	 * but also adds significant contention in a log tree, since log trees
4571 	 * are small, with a root at level 2 or 3 at most, due to their short
4572 	 * life span.
4573 	 */
4574 	if (inode_logged(trans, inode)) {
4575 		drop_args.path = path;
4576 		drop_args.start = em->start;
4577 		drop_args.end = em->start + em->len;
4578 		drop_args.replace_extent = true;
4579 		drop_args.extent_item_size = sizeof(*fi);
4580 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4581 		if (ret)
4582 			return ret;
4583 	}
4584 
4585 	if (!drop_args.extent_inserted) {
4586 		key.objectid = btrfs_ino(inode);
4587 		key.type = BTRFS_EXTENT_DATA_KEY;
4588 		key.offset = em->start;
4589 
4590 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4591 					      sizeof(*fi));
4592 		if (ret)
4593 			return ret;
4594 	}
4595 	leaf = path->nodes[0];
4596 	btrfs_init_map_token(&token, leaf);
4597 	fi = btrfs_item_ptr(leaf, path->slots[0],
4598 			    struct btrfs_file_extent_item);
4599 
4600 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4601 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4602 		btrfs_set_token_file_extent_type(&token, fi,
4603 						 BTRFS_FILE_EXTENT_PREALLOC);
4604 	else
4605 		btrfs_set_token_file_extent_type(&token, fi,
4606 						 BTRFS_FILE_EXTENT_REG);
4607 
4608 	block_len = max(em->block_len, em->orig_block_len);
4609 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4610 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4611 							em->block_start);
4612 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4613 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4614 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4615 							em->block_start -
4616 							extent_offset);
4617 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4618 	} else {
4619 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4620 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4621 	}
4622 
4623 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4624 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4625 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4626 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4627 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4628 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4629 	btrfs_mark_buffer_dirty(leaf);
4630 
4631 	btrfs_release_path(path);
4632 
4633 	return ret;
4634 }
4635 
4636 /*
4637  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4638  * lose them after doing a fast fsync and replaying the log. We scan the
4639  * subvolume's root instead of iterating the inode's extent map tree because
4640  * otherwise we can log incorrect extent items based on extent map conversion.
4641  * That can happen due to the fact that extent maps are merged when they
4642  * are not in the extent map tree's list of modified extents.
4643  */
4644 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4645 				      struct btrfs_inode *inode,
4646 				      struct btrfs_path *path)
4647 {
4648 	struct btrfs_root *root = inode->root;
4649 	struct btrfs_key key;
4650 	const u64 i_size = i_size_read(&inode->vfs_inode);
4651 	const u64 ino = btrfs_ino(inode);
4652 	struct btrfs_path *dst_path = NULL;
4653 	bool dropped_extents = false;
4654 	u64 truncate_offset = i_size;
4655 	struct extent_buffer *leaf;
4656 	int slot;
4657 	int ins_nr = 0;
4658 	int start_slot;
4659 	int ret;
4660 
4661 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4662 		return 0;
4663 
4664 	key.objectid = ino;
4665 	key.type = BTRFS_EXTENT_DATA_KEY;
4666 	key.offset = i_size;
4667 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4668 	if (ret < 0)
4669 		goto out;
4670 
4671 	/*
4672 	 * We must check if there is a prealloc extent that starts before the
4673 	 * i_size and crosses the i_size boundary. This is to ensure later we
4674 	 * truncate down to the end of that extent and not to the i_size, as
4675 	 * otherwise we end up losing part of the prealloc extent after a log
4676 	 * replay and with an implicit hole if there is another prealloc extent
4677 	 * that starts at an offset beyond i_size.
4678 	 */
4679 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4680 	if (ret < 0)
4681 		goto out;
4682 
4683 	if (ret == 0) {
4684 		struct btrfs_file_extent_item *ei;
4685 
4686 		leaf = path->nodes[0];
4687 		slot = path->slots[0];
4688 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4689 
4690 		if (btrfs_file_extent_type(leaf, ei) ==
4691 		    BTRFS_FILE_EXTENT_PREALLOC) {
4692 			u64 extent_end;
4693 
4694 			btrfs_item_key_to_cpu(leaf, &key, slot);
4695 			extent_end = key.offset +
4696 				btrfs_file_extent_num_bytes(leaf, ei);
4697 
4698 			if (extent_end > i_size)
4699 				truncate_offset = extent_end;
4700 		}
4701 	} else {
4702 		ret = 0;
4703 	}
4704 
4705 	while (true) {
4706 		leaf = path->nodes[0];
4707 		slot = path->slots[0];
4708 
4709 		if (slot >= btrfs_header_nritems(leaf)) {
4710 			if (ins_nr > 0) {
4711 				ret = copy_items(trans, inode, dst_path, path,
4712 						 start_slot, ins_nr, 1, 0);
4713 				if (ret < 0)
4714 					goto out;
4715 				ins_nr = 0;
4716 			}
4717 			ret = btrfs_next_leaf(root, path);
4718 			if (ret < 0)
4719 				goto out;
4720 			if (ret > 0) {
4721 				ret = 0;
4722 				break;
4723 			}
4724 			continue;
4725 		}
4726 
4727 		btrfs_item_key_to_cpu(leaf, &key, slot);
4728 		if (key.objectid > ino)
4729 			break;
4730 		if (WARN_ON_ONCE(key.objectid < ino) ||
4731 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4732 		    key.offset < i_size) {
4733 			path->slots[0]++;
4734 			continue;
4735 		}
4736 		if (!dropped_extents) {
4737 			/*
4738 			 * Avoid logging extent items logged in past fsync calls
4739 			 * and leading to duplicate keys in the log tree.
4740 			 */
4741 			ret = truncate_inode_items(trans, root->log_root, inode,
4742 						   truncate_offset,
4743 						   BTRFS_EXTENT_DATA_KEY);
4744 			if (ret)
4745 				goto out;
4746 			dropped_extents = true;
4747 		}
4748 		if (ins_nr == 0)
4749 			start_slot = slot;
4750 		ins_nr++;
4751 		path->slots[0]++;
4752 		if (!dst_path) {
4753 			dst_path = btrfs_alloc_path();
4754 			if (!dst_path) {
4755 				ret = -ENOMEM;
4756 				goto out;
4757 			}
4758 		}
4759 	}
4760 	if (ins_nr > 0)
4761 		ret = copy_items(trans, inode, dst_path, path,
4762 				 start_slot, ins_nr, 1, 0);
4763 out:
4764 	btrfs_release_path(path);
4765 	btrfs_free_path(dst_path);
4766 	return ret;
4767 }
4768 
4769 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4770 				     struct btrfs_inode *inode,
4771 				     struct btrfs_path *path,
4772 				     struct btrfs_log_ctx *ctx)
4773 {
4774 	struct btrfs_ordered_extent *ordered;
4775 	struct btrfs_ordered_extent *tmp;
4776 	struct extent_map *em, *n;
4777 	struct list_head extents;
4778 	struct extent_map_tree *tree = &inode->extent_tree;
4779 	int ret = 0;
4780 	int num = 0;
4781 
4782 	INIT_LIST_HEAD(&extents);
4783 
4784 	write_lock(&tree->lock);
4785 
4786 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4787 		list_del_init(&em->list);
4788 		/*
4789 		 * Just an arbitrary number, this can be really CPU intensive
4790 		 * once we start getting a lot of extents, and really once we
4791 		 * have a bunch of extents we just want to commit since it will
4792 		 * be faster.
4793 		 */
4794 		if (++num > 32768) {
4795 			list_del_init(&tree->modified_extents);
4796 			ret = -EFBIG;
4797 			goto process;
4798 		}
4799 
4800 		if (em->generation < trans->transid)
4801 			continue;
4802 
4803 		/* We log prealloc extents beyond eof later. */
4804 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4805 		    em->start >= i_size_read(&inode->vfs_inode))
4806 			continue;
4807 
4808 		/* Need a ref to keep it from getting evicted from cache */
4809 		refcount_inc(&em->refs);
4810 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4811 		list_add_tail(&em->list, &extents);
4812 		num++;
4813 	}
4814 
4815 	list_sort(NULL, &extents, extent_cmp);
4816 process:
4817 	while (!list_empty(&extents)) {
4818 		em = list_entry(extents.next, struct extent_map, list);
4819 
4820 		list_del_init(&em->list);
4821 
4822 		/*
4823 		 * If we had an error we just need to delete everybody from our
4824 		 * private list.
4825 		 */
4826 		if (ret) {
4827 			clear_em_logging(tree, em);
4828 			free_extent_map(em);
4829 			continue;
4830 		}
4831 
4832 		write_unlock(&tree->lock);
4833 
4834 		ret = log_one_extent(trans, inode, em, path, ctx);
4835 		write_lock(&tree->lock);
4836 		clear_em_logging(tree, em);
4837 		free_extent_map(em);
4838 	}
4839 	WARN_ON(!list_empty(&extents));
4840 	write_unlock(&tree->lock);
4841 
4842 	btrfs_release_path(path);
4843 	if (!ret)
4844 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4845 	if (ret)
4846 		return ret;
4847 
4848 	/*
4849 	 * We have logged all extents successfully, now make sure the commit of
4850 	 * the current transaction waits for the ordered extents to complete
4851 	 * before it commits and wipes out the log trees, otherwise we would
4852 	 * lose data if an ordered extents completes after the transaction
4853 	 * commits and a power failure happens after the transaction commit.
4854 	 */
4855 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4856 		list_del_init(&ordered->log_list);
4857 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4858 
4859 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4860 			spin_lock_irq(&inode->ordered_tree.lock);
4861 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4862 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4863 				atomic_inc(&trans->transaction->pending_ordered);
4864 			}
4865 			spin_unlock_irq(&inode->ordered_tree.lock);
4866 		}
4867 		btrfs_put_ordered_extent(ordered);
4868 	}
4869 
4870 	return 0;
4871 }
4872 
4873 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4874 			     struct btrfs_path *path, u64 *size_ret)
4875 {
4876 	struct btrfs_key key;
4877 	int ret;
4878 
4879 	key.objectid = btrfs_ino(inode);
4880 	key.type = BTRFS_INODE_ITEM_KEY;
4881 	key.offset = 0;
4882 
4883 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4884 	if (ret < 0) {
4885 		return ret;
4886 	} else if (ret > 0) {
4887 		*size_ret = 0;
4888 	} else {
4889 		struct btrfs_inode_item *item;
4890 
4891 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4892 				      struct btrfs_inode_item);
4893 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4894 		/*
4895 		 * If the in-memory inode's i_size is smaller then the inode
4896 		 * size stored in the btree, return the inode's i_size, so
4897 		 * that we get a correct inode size after replaying the log
4898 		 * when before a power failure we had a shrinking truncate
4899 		 * followed by addition of a new name (rename / new hard link).
4900 		 * Otherwise return the inode size from the btree, to avoid
4901 		 * data loss when replaying a log due to previously doing a
4902 		 * write that expands the inode's size and logging a new name
4903 		 * immediately after.
4904 		 */
4905 		if (*size_ret > inode->vfs_inode.i_size)
4906 			*size_ret = inode->vfs_inode.i_size;
4907 	}
4908 
4909 	btrfs_release_path(path);
4910 	return 0;
4911 }
4912 
4913 /*
4914  * At the moment we always log all xattrs. This is to figure out at log replay
4915  * time which xattrs must have their deletion replayed. If a xattr is missing
4916  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4917  * because if a xattr is deleted, the inode is fsynced and a power failure
4918  * happens, causing the log to be replayed the next time the fs is mounted,
4919  * we want the xattr to not exist anymore (same behaviour as other filesystems
4920  * with a journal, ext3/4, xfs, f2fs, etc).
4921  */
4922 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4923 				struct btrfs_inode *inode,
4924 				struct btrfs_path *path,
4925 				struct btrfs_path *dst_path)
4926 {
4927 	struct btrfs_root *root = inode->root;
4928 	int ret;
4929 	struct btrfs_key key;
4930 	const u64 ino = btrfs_ino(inode);
4931 	int ins_nr = 0;
4932 	int start_slot = 0;
4933 	bool found_xattrs = false;
4934 
4935 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4936 		return 0;
4937 
4938 	key.objectid = ino;
4939 	key.type = BTRFS_XATTR_ITEM_KEY;
4940 	key.offset = 0;
4941 
4942 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4943 	if (ret < 0)
4944 		return ret;
4945 
4946 	while (true) {
4947 		int slot = path->slots[0];
4948 		struct extent_buffer *leaf = path->nodes[0];
4949 		int nritems = btrfs_header_nritems(leaf);
4950 
4951 		if (slot >= nritems) {
4952 			if (ins_nr > 0) {
4953 				ret = copy_items(trans, inode, dst_path, path,
4954 						 start_slot, ins_nr, 1, 0);
4955 				if (ret < 0)
4956 					return ret;
4957 				ins_nr = 0;
4958 			}
4959 			ret = btrfs_next_leaf(root, path);
4960 			if (ret < 0)
4961 				return ret;
4962 			else if (ret > 0)
4963 				break;
4964 			continue;
4965 		}
4966 
4967 		btrfs_item_key_to_cpu(leaf, &key, slot);
4968 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4969 			break;
4970 
4971 		if (ins_nr == 0)
4972 			start_slot = slot;
4973 		ins_nr++;
4974 		path->slots[0]++;
4975 		found_xattrs = true;
4976 		cond_resched();
4977 	}
4978 	if (ins_nr > 0) {
4979 		ret = copy_items(trans, inode, dst_path, path,
4980 				 start_slot, ins_nr, 1, 0);
4981 		if (ret < 0)
4982 			return ret;
4983 	}
4984 
4985 	if (!found_xattrs)
4986 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4987 
4988 	return 0;
4989 }
4990 
4991 /*
4992  * When using the NO_HOLES feature if we punched a hole that causes the
4993  * deletion of entire leafs or all the extent items of the first leaf (the one
4994  * that contains the inode item and references) we may end up not processing
4995  * any extents, because there are no leafs with a generation matching the
4996  * current transaction that have extent items for our inode. So we need to find
4997  * if any holes exist and then log them. We also need to log holes after any
4998  * truncate operation that changes the inode's size.
4999  */
5000 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5001 			   struct btrfs_inode *inode,
5002 			   struct btrfs_path *path)
5003 {
5004 	struct btrfs_root *root = inode->root;
5005 	struct btrfs_fs_info *fs_info = root->fs_info;
5006 	struct btrfs_key key;
5007 	const u64 ino = btrfs_ino(inode);
5008 	const u64 i_size = i_size_read(&inode->vfs_inode);
5009 	u64 prev_extent_end = 0;
5010 	int ret;
5011 
5012 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5013 		return 0;
5014 
5015 	key.objectid = ino;
5016 	key.type = BTRFS_EXTENT_DATA_KEY;
5017 	key.offset = 0;
5018 
5019 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5020 	if (ret < 0)
5021 		return ret;
5022 
5023 	while (true) {
5024 		struct extent_buffer *leaf = path->nodes[0];
5025 
5026 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5027 			ret = btrfs_next_leaf(root, path);
5028 			if (ret < 0)
5029 				return ret;
5030 			if (ret > 0) {
5031 				ret = 0;
5032 				break;
5033 			}
5034 			leaf = path->nodes[0];
5035 		}
5036 
5037 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5038 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5039 			break;
5040 
5041 		/* We have a hole, log it. */
5042 		if (prev_extent_end < key.offset) {
5043 			const u64 hole_len = key.offset - prev_extent_end;
5044 
5045 			/*
5046 			 * Release the path to avoid deadlocks with other code
5047 			 * paths that search the root while holding locks on
5048 			 * leafs from the log root.
5049 			 */
5050 			btrfs_release_path(path);
5051 			ret = btrfs_insert_file_extent(trans, root->log_root,
5052 						       ino, prev_extent_end, 0,
5053 						       0, hole_len, 0, hole_len,
5054 						       0, 0, 0);
5055 			if (ret < 0)
5056 				return ret;
5057 
5058 			/*
5059 			 * Search for the same key again in the root. Since it's
5060 			 * an extent item and we are holding the inode lock, the
5061 			 * key must still exist. If it doesn't just emit warning
5062 			 * and return an error to fall back to a transaction
5063 			 * commit.
5064 			 */
5065 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5066 			if (ret < 0)
5067 				return ret;
5068 			if (WARN_ON(ret > 0))
5069 				return -ENOENT;
5070 			leaf = path->nodes[0];
5071 		}
5072 
5073 		prev_extent_end = btrfs_file_extent_end(path);
5074 		path->slots[0]++;
5075 		cond_resched();
5076 	}
5077 
5078 	if (prev_extent_end < i_size) {
5079 		u64 hole_len;
5080 
5081 		btrfs_release_path(path);
5082 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5083 		ret = btrfs_insert_file_extent(trans, root->log_root,
5084 					       ino, prev_extent_end, 0, 0,
5085 					       hole_len, 0, hole_len,
5086 					       0, 0, 0);
5087 		if (ret < 0)
5088 			return ret;
5089 	}
5090 
5091 	return 0;
5092 }
5093 
5094 /*
5095  * When we are logging a new inode X, check if it doesn't have a reference that
5096  * matches the reference from some other inode Y created in a past transaction
5097  * and that was renamed in the current transaction. If we don't do this, then at
5098  * log replay time we can lose inode Y (and all its files if it's a directory):
5099  *
5100  * mkdir /mnt/x
5101  * echo "hello world" > /mnt/x/foobar
5102  * sync
5103  * mv /mnt/x /mnt/y
5104  * mkdir /mnt/x                 # or touch /mnt/x
5105  * xfs_io -c fsync /mnt/x
5106  * <power fail>
5107  * mount fs, trigger log replay
5108  *
5109  * After the log replay procedure, we would lose the first directory and all its
5110  * files (file foobar).
5111  * For the case where inode Y is not a directory we simply end up losing it:
5112  *
5113  * echo "123" > /mnt/foo
5114  * sync
5115  * mv /mnt/foo /mnt/bar
5116  * echo "abc" > /mnt/foo
5117  * xfs_io -c fsync /mnt/foo
5118  * <power fail>
5119  *
5120  * We also need this for cases where a snapshot entry is replaced by some other
5121  * entry (file or directory) otherwise we end up with an unreplayable log due to
5122  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5123  * if it were a regular entry:
5124  *
5125  * mkdir /mnt/x
5126  * btrfs subvolume snapshot /mnt /mnt/x/snap
5127  * btrfs subvolume delete /mnt/x/snap
5128  * rmdir /mnt/x
5129  * mkdir /mnt/x
5130  * fsync /mnt/x or fsync some new file inside it
5131  * <power fail>
5132  *
5133  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5134  * the same transaction.
5135  */
5136 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5137 					 const int slot,
5138 					 const struct btrfs_key *key,
5139 					 struct btrfs_inode *inode,
5140 					 u64 *other_ino, u64 *other_parent)
5141 {
5142 	int ret;
5143 	struct btrfs_path *search_path;
5144 	char *name = NULL;
5145 	u32 name_len = 0;
5146 	u32 item_size = btrfs_item_size(eb, slot);
5147 	u32 cur_offset = 0;
5148 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5149 
5150 	search_path = btrfs_alloc_path();
5151 	if (!search_path)
5152 		return -ENOMEM;
5153 	search_path->search_commit_root = 1;
5154 	search_path->skip_locking = 1;
5155 
5156 	while (cur_offset < item_size) {
5157 		u64 parent;
5158 		u32 this_name_len;
5159 		u32 this_len;
5160 		unsigned long name_ptr;
5161 		struct btrfs_dir_item *di;
5162 
5163 		if (key->type == BTRFS_INODE_REF_KEY) {
5164 			struct btrfs_inode_ref *iref;
5165 
5166 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5167 			parent = key->offset;
5168 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5169 			name_ptr = (unsigned long)(iref + 1);
5170 			this_len = sizeof(*iref) + this_name_len;
5171 		} else {
5172 			struct btrfs_inode_extref *extref;
5173 
5174 			extref = (struct btrfs_inode_extref *)(ptr +
5175 							       cur_offset);
5176 			parent = btrfs_inode_extref_parent(eb, extref);
5177 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5178 			name_ptr = (unsigned long)&extref->name;
5179 			this_len = sizeof(*extref) + this_name_len;
5180 		}
5181 
5182 		if (this_name_len > name_len) {
5183 			char *new_name;
5184 
5185 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5186 			if (!new_name) {
5187 				ret = -ENOMEM;
5188 				goto out;
5189 			}
5190 			name_len = this_name_len;
5191 			name = new_name;
5192 		}
5193 
5194 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5195 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5196 				parent, name, this_name_len, 0);
5197 		if (di && !IS_ERR(di)) {
5198 			struct btrfs_key di_key;
5199 
5200 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5201 						  di, &di_key);
5202 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5203 				if (di_key.objectid != key->objectid) {
5204 					ret = 1;
5205 					*other_ino = di_key.objectid;
5206 					*other_parent = parent;
5207 				} else {
5208 					ret = 0;
5209 				}
5210 			} else {
5211 				ret = -EAGAIN;
5212 			}
5213 			goto out;
5214 		} else if (IS_ERR(di)) {
5215 			ret = PTR_ERR(di);
5216 			goto out;
5217 		}
5218 		btrfs_release_path(search_path);
5219 
5220 		cur_offset += this_len;
5221 	}
5222 	ret = 0;
5223 out:
5224 	btrfs_free_path(search_path);
5225 	kfree(name);
5226 	return ret;
5227 }
5228 
5229 struct btrfs_ino_list {
5230 	u64 ino;
5231 	u64 parent;
5232 	struct list_head list;
5233 };
5234 
5235 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5236 				  struct btrfs_root *root,
5237 				  struct btrfs_path *path,
5238 				  struct btrfs_log_ctx *ctx,
5239 				  u64 ino, u64 parent)
5240 {
5241 	struct btrfs_ino_list *ino_elem;
5242 	LIST_HEAD(inode_list);
5243 	int ret = 0;
5244 
5245 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5246 	if (!ino_elem)
5247 		return -ENOMEM;
5248 	ino_elem->ino = ino;
5249 	ino_elem->parent = parent;
5250 	list_add_tail(&ino_elem->list, &inode_list);
5251 
5252 	while (!list_empty(&inode_list)) {
5253 		struct btrfs_fs_info *fs_info = root->fs_info;
5254 		struct btrfs_key key;
5255 		struct inode *inode;
5256 
5257 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5258 					    list);
5259 		ino = ino_elem->ino;
5260 		parent = ino_elem->parent;
5261 		list_del(&ino_elem->list);
5262 		kfree(ino_elem);
5263 		if (ret)
5264 			continue;
5265 
5266 		btrfs_release_path(path);
5267 
5268 		inode = btrfs_iget(fs_info->sb, ino, root);
5269 		/*
5270 		 * If the other inode that had a conflicting dir entry was
5271 		 * deleted in the current transaction, we need to log its parent
5272 		 * directory.
5273 		 */
5274 		if (IS_ERR(inode)) {
5275 			ret = PTR_ERR(inode);
5276 			if (ret == -ENOENT) {
5277 				inode = btrfs_iget(fs_info->sb, parent, root);
5278 				if (IS_ERR(inode)) {
5279 					ret = PTR_ERR(inode);
5280 				} else {
5281 					ret = btrfs_log_inode(trans,
5282 						      BTRFS_I(inode),
5283 						      LOG_OTHER_INODE_ALL,
5284 						      ctx);
5285 					btrfs_add_delayed_iput(inode);
5286 				}
5287 			}
5288 			continue;
5289 		}
5290 		/*
5291 		 * If the inode was already logged skip it - otherwise we can
5292 		 * hit an infinite loop. Example:
5293 		 *
5294 		 * From the commit root (previous transaction) we have the
5295 		 * following inodes:
5296 		 *
5297 		 * inode 257 a directory
5298 		 * inode 258 with references "zz" and "zz_link" on inode 257
5299 		 * inode 259 with reference "a" on inode 257
5300 		 *
5301 		 * And in the current (uncommitted) transaction we have:
5302 		 *
5303 		 * inode 257 a directory, unchanged
5304 		 * inode 258 with references "a" and "a2" on inode 257
5305 		 * inode 259 with reference "zz_link" on inode 257
5306 		 * inode 261 with reference "zz" on inode 257
5307 		 *
5308 		 * When logging inode 261 the following infinite loop could
5309 		 * happen if we don't skip already logged inodes:
5310 		 *
5311 		 * - we detect inode 258 as a conflicting inode, with inode 261
5312 		 *   on reference "zz", and log it;
5313 		 *
5314 		 * - we detect inode 259 as a conflicting inode, with inode 258
5315 		 *   on reference "a", and log it;
5316 		 *
5317 		 * - we detect inode 258 as a conflicting inode, with inode 259
5318 		 *   on reference "zz_link", and log it - again! After this we
5319 		 *   repeat the above steps forever.
5320 		 */
5321 		spin_lock(&BTRFS_I(inode)->lock);
5322 		/*
5323 		 * Check the inode's logged_trans only instead of
5324 		 * btrfs_inode_in_log(). This is because the last_log_commit of
5325 		 * the inode is not updated when we only log that it exists (see
5326 		 * btrfs_log_inode()).
5327 		 */
5328 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
5329 			spin_unlock(&BTRFS_I(inode)->lock);
5330 			btrfs_add_delayed_iput(inode);
5331 			continue;
5332 		}
5333 		spin_unlock(&BTRFS_I(inode)->lock);
5334 		/*
5335 		 * We are safe logging the other inode without acquiring its
5336 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5337 		 * are safe against concurrent renames of the other inode as
5338 		 * well because during a rename we pin the log and update the
5339 		 * log with the new name before we unpin it.
5340 		 */
5341 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx);
5342 		if (ret) {
5343 			btrfs_add_delayed_iput(inode);
5344 			continue;
5345 		}
5346 
5347 		key.objectid = ino;
5348 		key.type = BTRFS_INODE_REF_KEY;
5349 		key.offset = 0;
5350 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5351 		if (ret < 0) {
5352 			btrfs_add_delayed_iput(inode);
5353 			continue;
5354 		}
5355 
5356 		while (true) {
5357 			struct extent_buffer *leaf = path->nodes[0];
5358 			int slot = path->slots[0];
5359 			u64 other_ino = 0;
5360 			u64 other_parent = 0;
5361 
5362 			if (slot >= btrfs_header_nritems(leaf)) {
5363 				ret = btrfs_next_leaf(root, path);
5364 				if (ret < 0) {
5365 					break;
5366 				} else if (ret > 0) {
5367 					ret = 0;
5368 					break;
5369 				}
5370 				continue;
5371 			}
5372 
5373 			btrfs_item_key_to_cpu(leaf, &key, slot);
5374 			if (key.objectid != ino ||
5375 			    (key.type != BTRFS_INODE_REF_KEY &&
5376 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5377 				ret = 0;
5378 				break;
5379 			}
5380 
5381 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5382 					BTRFS_I(inode), &other_ino,
5383 					&other_parent);
5384 			if (ret < 0)
5385 				break;
5386 			if (ret > 0) {
5387 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5388 				if (!ino_elem) {
5389 					ret = -ENOMEM;
5390 					break;
5391 				}
5392 				ino_elem->ino = other_ino;
5393 				ino_elem->parent = other_parent;
5394 				list_add_tail(&ino_elem->list, &inode_list);
5395 				ret = 0;
5396 			}
5397 			path->slots[0]++;
5398 		}
5399 		btrfs_add_delayed_iput(inode);
5400 	}
5401 
5402 	return ret;
5403 }
5404 
5405 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5406 				   struct btrfs_inode *inode,
5407 				   struct btrfs_key *min_key,
5408 				   const struct btrfs_key *max_key,
5409 				   struct btrfs_path *path,
5410 				   struct btrfs_path *dst_path,
5411 				   const u64 logged_isize,
5412 				   const bool recursive_logging,
5413 				   const int inode_only,
5414 				   struct btrfs_log_ctx *ctx,
5415 				   bool *need_log_inode_item)
5416 {
5417 	struct btrfs_root *root = inode->root;
5418 	int ins_start_slot = 0;
5419 	int ins_nr = 0;
5420 	int ret;
5421 
5422 	while (1) {
5423 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5424 		if (ret < 0)
5425 			return ret;
5426 		if (ret > 0) {
5427 			ret = 0;
5428 			break;
5429 		}
5430 again:
5431 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5432 		if (min_key->objectid != max_key->objectid)
5433 			break;
5434 		if (min_key->type > max_key->type)
5435 			break;
5436 
5437 		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5438 			*need_log_inode_item = false;
5439 
5440 		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5441 		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5442 		    inode->generation == trans->transid &&
5443 		    !recursive_logging) {
5444 			u64 other_ino = 0;
5445 			u64 other_parent = 0;
5446 
5447 			ret = btrfs_check_ref_name_override(path->nodes[0],
5448 					path->slots[0], min_key, inode,
5449 					&other_ino, &other_parent);
5450 			if (ret < 0) {
5451 				return ret;
5452 			} else if (ret > 0 &&
5453 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5454 				if (ins_nr > 0) {
5455 					ins_nr++;
5456 				} else {
5457 					ins_nr = 1;
5458 					ins_start_slot = path->slots[0];
5459 				}
5460 				ret = copy_items(trans, inode, dst_path, path,
5461 						 ins_start_slot, ins_nr,
5462 						 inode_only, logged_isize);
5463 				if (ret < 0)
5464 					return ret;
5465 				ins_nr = 0;
5466 
5467 				ret = log_conflicting_inodes(trans, root, path,
5468 						ctx, other_ino, other_parent);
5469 				if (ret)
5470 					return ret;
5471 				btrfs_release_path(path);
5472 				goto next_key;
5473 			}
5474 		}
5475 
5476 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5477 		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5478 			if (ins_nr == 0)
5479 				goto next_slot;
5480 			ret = copy_items(trans, inode, dst_path, path,
5481 					 ins_start_slot,
5482 					 ins_nr, inode_only, logged_isize);
5483 			if (ret < 0)
5484 				return ret;
5485 			ins_nr = 0;
5486 			goto next_slot;
5487 		}
5488 
5489 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5490 			ins_nr++;
5491 			goto next_slot;
5492 		} else if (!ins_nr) {
5493 			ins_start_slot = path->slots[0];
5494 			ins_nr = 1;
5495 			goto next_slot;
5496 		}
5497 
5498 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5499 				 ins_nr, inode_only, logged_isize);
5500 		if (ret < 0)
5501 			return ret;
5502 		ins_nr = 1;
5503 		ins_start_slot = path->slots[0];
5504 next_slot:
5505 		path->slots[0]++;
5506 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5507 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5508 					      path->slots[0]);
5509 			goto again;
5510 		}
5511 		if (ins_nr) {
5512 			ret = copy_items(trans, inode, dst_path, path,
5513 					 ins_start_slot, ins_nr, inode_only,
5514 					 logged_isize);
5515 			if (ret < 0)
5516 				return ret;
5517 			ins_nr = 0;
5518 		}
5519 		btrfs_release_path(path);
5520 next_key:
5521 		if (min_key->offset < (u64)-1) {
5522 			min_key->offset++;
5523 		} else if (min_key->type < max_key->type) {
5524 			min_key->type++;
5525 			min_key->offset = 0;
5526 		} else {
5527 			break;
5528 		}
5529 	}
5530 	if (ins_nr)
5531 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5532 				 ins_nr, inode_only, logged_isize);
5533 
5534 	return ret;
5535 }
5536 
5537 /* log a single inode in the tree log.
5538  * At least one parent directory for this inode must exist in the tree
5539  * or be logged already.
5540  *
5541  * Any items from this inode changed by the current transaction are copied
5542  * to the log tree.  An extra reference is taken on any extents in this
5543  * file, allowing us to avoid a whole pile of corner cases around logging
5544  * blocks that have been removed from the tree.
5545  *
5546  * See LOG_INODE_ALL and related defines for a description of what inode_only
5547  * does.
5548  *
5549  * This handles both files and directories.
5550  */
5551 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5552 			   struct btrfs_inode *inode,
5553 			   int inode_only,
5554 			   struct btrfs_log_ctx *ctx)
5555 {
5556 	struct btrfs_path *path;
5557 	struct btrfs_path *dst_path;
5558 	struct btrfs_key min_key;
5559 	struct btrfs_key max_key;
5560 	struct btrfs_root *log = inode->root->log_root;
5561 	int err = 0;
5562 	int ret = 0;
5563 	bool fast_search = false;
5564 	u64 ino = btrfs_ino(inode);
5565 	struct extent_map_tree *em_tree = &inode->extent_tree;
5566 	u64 logged_isize = 0;
5567 	bool need_log_inode_item = true;
5568 	bool xattrs_logged = false;
5569 	bool recursive_logging = false;
5570 	bool inode_item_dropped = true;
5571 
5572 	path = btrfs_alloc_path();
5573 	if (!path)
5574 		return -ENOMEM;
5575 	dst_path = btrfs_alloc_path();
5576 	if (!dst_path) {
5577 		btrfs_free_path(path);
5578 		return -ENOMEM;
5579 	}
5580 
5581 	min_key.objectid = ino;
5582 	min_key.type = BTRFS_INODE_ITEM_KEY;
5583 	min_key.offset = 0;
5584 
5585 	max_key.objectid = ino;
5586 
5587 
5588 	/* today the code can only do partial logging of directories */
5589 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5590 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5591 		       &inode->runtime_flags) &&
5592 	     inode_only >= LOG_INODE_EXISTS))
5593 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5594 	else
5595 		max_key.type = (u8)-1;
5596 	max_key.offset = (u64)-1;
5597 
5598 	/*
5599 	 * Only run delayed items if we are a directory. We want to make sure
5600 	 * all directory indexes hit the fs/subvolume tree so we can find them
5601 	 * and figure out which index ranges have to be logged.
5602 	 */
5603 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5604 		err = btrfs_commit_inode_delayed_items(trans, inode);
5605 		if (err)
5606 			goto out;
5607 	}
5608 
5609 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5610 		recursive_logging = true;
5611 		if (inode_only == LOG_OTHER_INODE)
5612 			inode_only = LOG_INODE_EXISTS;
5613 		else
5614 			inode_only = LOG_INODE_ALL;
5615 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5616 	} else {
5617 		mutex_lock(&inode->log_mutex);
5618 	}
5619 
5620 	/*
5621 	 * This is for cases where logging a directory could result in losing a
5622 	 * a file after replaying the log. For example, if we move a file from a
5623 	 * directory A to a directory B, then fsync directory A, we have no way
5624 	 * to known the file was moved from A to B, so logging just A would
5625 	 * result in losing the file after a log replay.
5626 	 */
5627 	if (S_ISDIR(inode->vfs_inode.i_mode) &&
5628 	    inode_only == LOG_INODE_ALL &&
5629 	    inode->last_unlink_trans >= trans->transid) {
5630 		btrfs_set_log_full_commit(trans);
5631 		err = 1;
5632 		goto out_unlock;
5633 	}
5634 
5635 	/*
5636 	 * a brute force approach to making sure we get the most uptodate
5637 	 * copies of everything.
5638 	 */
5639 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5640 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5641 
5642 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5643 		if (inode_only == LOG_INODE_EXISTS)
5644 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5645 		ret = drop_inode_items(trans, log, path, inode, max_key_type);
5646 	} else {
5647 		if (inode_only == LOG_INODE_EXISTS && inode_logged(trans, inode)) {
5648 			/*
5649 			 * Make sure the new inode item we write to the log has
5650 			 * the same isize as the current one (if it exists).
5651 			 * This is necessary to prevent data loss after log
5652 			 * replay, and also to prevent doing a wrong expanding
5653 			 * truncate - for e.g. create file, write 4K into offset
5654 			 * 0, fsync, write 4K into offset 4096, add hard link,
5655 			 * fsync some other file (to sync log), power fail - if
5656 			 * we use the inode's current i_size, after log replay
5657 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5658 			 * (zeroes), as if an expanding truncate happened,
5659 			 * instead of getting a file of 4Kb only.
5660 			 */
5661 			err = logged_inode_size(log, inode, path, &logged_isize);
5662 			if (err)
5663 				goto out_unlock;
5664 		}
5665 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5666 			     &inode->runtime_flags)) {
5667 			if (inode_only == LOG_INODE_EXISTS) {
5668 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5669 				ret = drop_inode_items(trans, log, path, inode,
5670 						       max_key.type);
5671 			} else {
5672 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5673 					  &inode->runtime_flags);
5674 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5675 					  &inode->runtime_flags);
5676 				if (inode_logged(trans, inode))
5677 					ret = truncate_inode_items(trans, log,
5678 								   inode, 0, 0);
5679 			}
5680 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5681 					      &inode->runtime_flags) ||
5682 			   inode_only == LOG_INODE_EXISTS) {
5683 			if (inode_only == LOG_INODE_ALL)
5684 				fast_search = true;
5685 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5686 			ret = drop_inode_items(trans, log, path, inode,
5687 					       max_key.type);
5688 		} else {
5689 			if (inode_only == LOG_INODE_ALL)
5690 				fast_search = true;
5691 			inode_item_dropped = false;
5692 			goto log_extents;
5693 		}
5694 
5695 	}
5696 	if (ret) {
5697 		err = ret;
5698 		goto out_unlock;
5699 	}
5700 
5701 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5702 				      path, dst_path, logged_isize,
5703 				      recursive_logging, inode_only, ctx,
5704 				      &need_log_inode_item);
5705 	if (err)
5706 		goto out_unlock;
5707 
5708 	btrfs_release_path(path);
5709 	btrfs_release_path(dst_path);
5710 	err = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5711 	if (err)
5712 		goto out_unlock;
5713 	xattrs_logged = true;
5714 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5715 		btrfs_release_path(path);
5716 		btrfs_release_path(dst_path);
5717 		err = btrfs_log_holes(trans, inode, path);
5718 		if (err)
5719 			goto out_unlock;
5720 	}
5721 log_extents:
5722 	btrfs_release_path(path);
5723 	btrfs_release_path(dst_path);
5724 	if (need_log_inode_item) {
5725 		err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
5726 		if (err)
5727 			goto out_unlock;
5728 		/*
5729 		 * If we are doing a fast fsync and the inode was logged before
5730 		 * in this transaction, we don't need to log the xattrs because
5731 		 * they were logged before. If xattrs were added, changed or
5732 		 * deleted since the last time we logged the inode, then we have
5733 		 * already logged them because the inode had the runtime flag
5734 		 * BTRFS_INODE_COPY_EVERYTHING set.
5735 		 */
5736 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
5737 			err = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5738 			if (err)
5739 				goto out_unlock;
5740 			btrfs_release_path(path);
5741 		}
5742 	}
5743 	if (fast_search) {
5744 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
5745 		if (ret) {
5746 			err = ret;
5747 			goto out_unlock;
5748 		}
5749 	} else if (inode_only == LOG_INODE_ALL) {
5750 		struct extent_map *em, *n;
5751 
5752 		write_lock(&em_tree->lock);
5753 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5754 			list_del_init(&em->list);
5755 		write_unlock(&em_tree->lock);
5756 	}
5757 
5758 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5759 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
5760 		if (ret) {
5761 			err = ret;
5762 			goto out_unlock;
5763 		}
5764 	}
5765 
5766 	spin_lock(&inode->lock);
5767 	inode->logged_trans = trans->transid;
5768 	/*
5769 	 * Don't update last_log_commit if we logged that an inode exists.
5770 	 * We do this for three reasons:
5771 	 *
5772 	 * 1) We might have had buffered writes to this inode that were
5773 	 *    flushed and had their ordered extents completed in this
5774 	 *    transaction, but we did not previously log the inode with
5775 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
5776 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
5777 	 *    happened. We must make sure that if an explicit fsync against
5778 	 *    the inode is performed later, it logs the new extents, an
5779 	 *    updated inode item, etc, and syncs the log. The same logic
5780 	 *    applies to direct IO writes instead of buffered writes.
5781 	 *
5782 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5783 	 *    is logged with an i_size of 0 or whatever value was logged
5784 	 *    before. If later the i_size of the inode is increased by a
5785 	 *    truncate operation, the log is synced through an fsync of
5786 	 *    some other inode and then finally an explicit fsync against
5787 	 *    this inode is made, we must make sure this fsync logs the
5788 	 *    inode with the new i_size, the hole between old i_size and
5789 	 *    the new i_size, and syncs the log.
5790 	 *
5791 	 * 3) If we are logging that an ancestor inode exists as part of
5792 	 *    logging a new name from a link or rename operation, don't update
5793 	 *    its last_log_commit - otherwise if an explicit fsync is made
5794 	 *    against an ancestor, the fsync considers the inode in the log
5795 	 *    and doesn't sync the log, resulting in the ancestor missing after
5796 	 *    a power failure unless the log was synced as part of an fsync
5797 	 *    against any other unrelated inode.
5798 	 */
5799 	if (inode_only != LOG_INODE_EXISTS)
5800 		inode->last_log_commit = inode->last_sub_trans;
5801 	spin_unlock(&inode->lock);
5802 out_unlock:
5803 	mutex_unlock(&inode->log_mutex);
5804 out:
5805 	btrfs_free_path(path);
5806 	btrfs_free_path(dst_path);
5807 	return err;
5808 }
5809 
5810 /*
5811  * Check if we need to log an inode. This is used in contexts where while
5812  * logging an inode we need to log another inode (either that it exists or in
5813  * full mode). This is used instead of btrfs_inode_in_log() because the later
5814  * requires the inode to be in the log and have the log transaction committed,
5815  * while here we do not care if the log transaction was already committed - our
5816  * caller will commit the log later - and we want to avoid logging an inode
5817  * multiple times when multiple tasks have joined the same log transaction.
5818  */
5819 static bool need_log_inode(struct btrfs_trans_handle *trans,
5820 			   struct btrfs_inode *inode)
5821 {
5822 	/*
5823 	 * If a directory was not modified, no dentries added or removed, we can
5824 	 * and should avoid logging it.
5825 	 */
5826 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5827 		return false;
5828 
5829 	/*
5830 	 * If this inode does not have new/updated/deleted xattrs since the last
5831 	 * time it was logged and is flagged as logged in the current transaction,
5832 	 * we can skip logging it. As for new/deleted names, those are updated in
5833 	 * the log by link/unlink/rename operations.
5834 	 * In case the inode was logged and then evicted and reloaded, its
5835 	 * logged_trans will be 0, in which case we have to fully log it since
5836 	 * logged_trans is a transient field, not persisted.
5837 	 */
5838 	if (inode->logged_trans == trans->transid &&
5839 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5840 		return false;
5841 
5842 	return true;
5843 }
5844 
5845 struct btrfs_dir_list {
5846 	u64 ino;
5847 	struct list_head list;
5848 };
5849 
5850 /*
5851  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5852  * details about the why it is needed.
5853  * This is a recursive operation - if an existing dentry corresponds to a
5854  * directory, that directory's new entries are logged too (same behaviour as
5855  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5856  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5857  * complains about the following circular lock dependency / possible deadlock:
5858  *
5859  *        CPU0                                        CPU1
5860  *        ----                                        ----
5861  * lock(&type->i_mutex_dir_key#3/2);
5862  *                                            lock(sb_internal#2);
5863  *                                            lock(&type->i_mutex_dir_key#3/2);
5864  * lock(&sb->s_type->i_mutex_key#14);
5865  *
5866  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5867  * sb_start_intwrite() in btrfs_start_transaction().
5868  * Not locking i_mutex of the inodes is still safe because:
5869  *
5870  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5871  *    that while logging the inode new references (names) are added or removed
5872  *    from the inode, leaving the logged inode item with a link count that does
5873  *    not match the number of logged inode reference items. This is fine because
5874  *    at log replay time we compute the real number of links and correct the
5875  *    link count in the inode item (see replay_one_buffer() and
5876  *    link_to_fixup_dir());
5877  *
5878  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5879  *    while logging the inode's items new index items (key type
5880  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5881  *    has a size that doesn't match the sum of the lengths of all the logged
5882  *    names - this is ok, not a problem, because at log replay time we set the
5883  *    directory's i_size to the correct value (see replay_one_name() and
5884  *    do_overwrite_item()).
5885  */
5886 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5887 				struct btrfs_root *root,
5888 				struct btrfs_inode *start_inode,
5889 				struct btrfs_log_ctx *ctx)
5890 {
5891 	struct btrfs_fs_info *fs_info = root->fs_info;
5892 	struct btrfs_root *log = root->log_root;
5893 	struct btrfs_path *path;
5894 	LIST_HEAD(dir_list);
5895 	struct btrfs_dir_list *dir_elem;
5896 	int ret = 0;
5897 
5898 	/*
5899 	 * If we are logging a new name, as part of a link or rename operation,
5900 	 * don't bother logging new dentries, as we just want to log the names
5901 	 * of an inode and that any new parents exist.
5902 	 */
5903 	if (ctx->logging_new_name)
5904 		return 0;
5905 
5906 	path = btrfs_alloc_path();
5907 	if (!path)
5908 		return -ENOMEM;
5909 
5910 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5911 	if (!dir_elem) {
5912 		btrfs_free_path(path);
5913 		return -ENOMEM;
5914 	}
5915 	dir_elem->ino = btrfs_ino(start_inode);
5916 	list_add_tail(&dir_elem->list, &dir_list);
5917 
5918 	while (!list_empty(&dir_list)) {
5919 		struct extent_buffer *leaf;
5920 		struct btrfs_key min_key;
5921 		int nritems;
5922 		int i;
5923 
5924 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5925 					    list);
5926 		if (ret)
5927 			goto next_dir_inode;
5928 
5929 		min_key.objectid = dir_elem->ino;
5930 		min_key.type = BTRFS_DIR_INDEX_KEY;
5931 		min_key.offset = 0;
5932 again:
5933 		btrfs_release_path(path);
5934 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5935 		if (ret < 0) {
5936 			goto next_dir_inode;
5937 		} else if (ret > 0) {
5938 			ret = 0;
5939 			goto next_dir_inode;
5940 		}
5941 
5942 process_leaf:
5943 		leaf = path->nodes[0];
5944 		nritems = btrfs_header_nritems(leaf);
5945 		for (i = path->slots[0]; i < nritems; i++) {
5946 			struct btrfs_dir_item *di;
5947 			struct btrfs_key di_key;
5948 			struct inode *di_inode;
5949 			struct btrfs_dir_list *new_dir_elem;
5950 			int log_mode = LOG_INODE_EXISTS;
5951 			int type;
5952 
5953 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5954 			if (min_key.objectid != dir_elem->ino ||
5955 			    min_key.type != BTRFS_DIR_INDEX_KEY)
5956 				goto next_dir_inode;
5957 
5958 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5959 			type = btrfs_dir_type(leaf, di);
5960 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5961 			    type != BTRFS_FT_DIR)
5962 				continue;
5963 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5964 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5965 				continue;
5966 
5967 			btrfs_release_path(path);
5968 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5969 			if (IS_ERR(di_inode)) {
5970 				ret = PTR_ERR(di_inode);
5971 				goto next_dir_inode;
5972 			}
5973 
5974 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5975 				btrfs_add_delayed_iput(di_inode);
5976 				break;
5977 			}
5978 
5979 			ctx->log_new_dentries = false;
5980 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5981 				log_mode = LOG_INODE_ALL;
5982 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5983 					      log_mode, ctx);
5984 			btrfs_add_delayed_iput(di_inode);
5985 			if (ret)
5986 				goto next_dir_inode;
5987 			if (ctx->log_new_dentries) {
5988 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5989 						       GFP_NOFS);
5990 				if (!new_dir_elem) {
5991 					ret = -ENOMEM;
5992 					goto next_dir_inode;
5993 				}
5994 				new_dir_elem->ino = di_key.objectid;
5995 				list_add_tail(&new_dir_elem->list, &dir_list);
5996 			}
5997 			break;
5998 		}
5999 		if (i == nritems) {
6000 			ret = btrfs_next_leaf(log, path);
6001 			if (ret < 0) {
6002 				goto next_dir_inode;
6003 			} else if (ret > 0) {
6004 				ret = 0;
6005 				goto next_dir_inode;
6006 			}
6007 			goto process_leaf;
6008 		}
6009 		if (min_key.offset < (u64)-1) {
6010 			min_key.offset++;
6011 			goto again;
6012 		}
6013 next_dir_inode:
6014 		list_del(&dir_elem->list);
6015 		kfree(dir_elem);
6016 	}
6017 
6018 	btrfs_free_path(path);
6019 	return ret;
6020 }
6021 
6022 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6023 				 struct btrfs_inode *inode,
6024 				 struct btrfs_log_ctx *ctx)
6025 {
6026 	struct btrfs_fs_info *fs_info = trans->fs_info;
6027 	int ret;
6028 	struct btrfs_path *path;
6029 	struct btrfs_key key;
6030 	struct btrfs_root *root = inode->root;
6031 	const u64 ino = btrfs_ino(inode);
6032 
6033 	path = btrfs_alloc_path();
6034 	if (!path)
6035 		return -ENOMEM;
6036 	path->skip_locking = 1;
6037 	path->search_commit_root = 1;
6038 
6039 	key.objectid = ino;
6040 	key.type = BTRFS_INODE_REF_KEY;
6041 	key.offset = 0;
6042 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6043 	if (ret < 0)
6044 		goto out;
6045 
6046 	while (true) {
6047 		struct extent_buffer *leaf = path->nodes[0];
6048 		int slot = path->slots[0];
6049 		u32 cur_offset = 0;
6050 		u32 item_size;
6051 		unsigned long ptr;
6052 
6053 		if (slot >= btrfs_header_nritems(leaf)) {
6054 			ret = btrfs_next_leaf(root, path);
6055 			if (ret < 0)
6056 				goto out;
6057 			else if (ret > 0)
6058 				break;
6059 			continue;
6060 		}
6061 
6062 		btrfs_item_key_to_cpu(leaf, &key, slot);
6063 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6064 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6065 			break;
6066 
6067 		item_size = btrfs_item_size(leaf, slot);
6068 		ptr = btrfs_item_ptr_offset(leaf, slot);
6069 		while (cur_offset < item_size) {
6070 			struct btrfs_key inode_key;
6071 			struct inode *dir_inode;
6072 
6073 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6074 			inode_key.offset = 0;
6075 
6076 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6077 				struct btrfs_inode_extref *extref;
6078 
6079 				extref = (struct btrfs_inode_extref *)
6080 					(ptr + cur_offset);
6081 				inode_key.objectid = btrfs_inode_extref_parent(
6082 					leaf, extref);
6083 				cur_offset += sizeof(*extref);
6084 				cur_offset += btrfs_inode_extref_name_len(leaf,
6085 					extref);
6086 			} else {
6087 				inode_key.objectid = key.offset;
6088 				cur_offset = item_size;
6089 			}
6090 
6091 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6092 					       root);
6093 			/*
6094 			 * If the parent inode was deleted, return an error to
6095 			 * fallback to a transaction commit. This is to prevent
6096 			 * getting an inode that was moved from one parent A to
6097 			 * a parent B, got its former parent A deleted and then
6098 			 * it got fsync'ed, from existing at both parents after
6099 			 * a log replay (and the old parent still existing).
6100 			 * Example:
6101 			 *
6102 			 * mkdir /mnt/A
6103 			 * mkdir /mnt/B
6104 			 * touch /mnt/B/bar
6105 			 * sync
6106 			 * mv /mnt/B/bar /mnt/A/bar
6107 			 * mv -T /mnt/A /mnt/B
6108 			 * fsync /mnt/B/bar
6109 			 * <power fail>
6110 			 *
6111 			 * If we ignore the old parent B which got deleted,
6112 			 * after a log replay we would have file bar linked
6113 			 * at both parents and the old parent B would still
6114 			 * exist.
6115 			 */
6116 			if (IS_ERR(dir_inode)) {
6117 				ret = PTR_ERR(dir_inode);
6118 				goto out;
6119 			}
6120 
6121 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6122 				btrfs_add_delayed_iput(dir_inode);
6123 				continue;
6124 			}
6125 
6126 			ctx->log_new_dentries = false;
6127 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6128 					      LOG_INODE_ALL, ctx);
6129 			if (!ret && ctx->log_new_dentries)
6130 				ret = log_new_dir_dentries(trans, root,
6131 						   BTRFS_I(dir_inode), ctx);
6132 			btrfs_add_delayed_iput(dir_inode);
6133 			if (ret)
6134 				goto out;
6135 		}
6136 		path->slots[0]++;
6137 	}
6138 	ret = 0;
6139 out:
6140 	btrfs_free_path(path);
6141 	return ret;
6142 }
6143 
6144 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6145 			     struct btrfs_root *root,
6146 			     struct btrfs_path *path,
6147 			     struct btrfs_log_ctx *ctx)
6148 {
6149 	struct btrfs_key found_key;
6150 
6151 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6152 
6153 	while (true) {
6154 		struct btrfs_fs_info *fs_info = root->fs_info;
6155 		struct extent_buffer *leaf = path->nodes[0];
6156 		int slot = path->slots[0];
6157 		struct btrfs_key search_key;
6158 		struct inode *inode;
6159 		u64 ino;
6160 		int ret = 0;
6161 
6162 		btrfs_release_path(path);
6163 
6164 		ino = found_key.offset;
6165 
6166 		search_key.objectid = found_key.offset;
6167 		search_key.type = BTRFS_INODE_ITEM_KEY;
6168 		search_key.offset = 0;
6169 		inode = btrfs_iget(fs_info->sb, ino, root);
6170 		if (IS_ERR(inode))
6171 			return PTR_ERR(inode);
6172 
6173 		if (BTRFS_I(inode)->generation >= trans->transid &&
6174 		    need_log_inode(trans, BTRFS_I(inode)))
6175 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6176 					      LOG_INODE_EXISTS, ctx);
6177 		btrfs_add_delayed_iput(inode);
6178 		if (ret)
6179 			return ret;
6180 
6181 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6182 			break;
6183 
6184 		search_key.type = BTRFS_INODE_REF_KEY;
6185 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6186 		if (ret < 0)
6187 			return ret;
6188 
6189 		leaf = path->nodes[0];
6190 		slot = path->slots[0];
6191 		if (slot >= btrfs_header_nritems(leaf)) {
6192 			ret = btrfs_next_leaf(root, path);
6193 			if (ret < 0)
6194 				return ret;
6195 			else if (ret > 0)
6196 				return -ENOENT;
6197 			leaf = path->nodes[0];
6198 			slot = path->slots[0];
6199 		}
6200 
6201 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6202 		if (found_key.objectid != search_key.objectid ||
6203 		    found_key.type != BTRFS_INODE_REF_KEY)
6204 			return -ENOENT;
6205 	}
6206 	return 0;
6207 }
6208 
6209 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6210 				  struct btrfs_inode *inode,
6211 				  struct dentry *parent,
6212 				  struct btrfs_log_ctx *ctx)
6213 {
6214 	struct btrfs_root *root = inode->root;
6215 	struct dentry *old_parent = NULL;
6216 	struct super_block *sb = inode->vfs_inode.i_sb;
6217 	int ret = 0;
6218 
6219 	while (true) {
6220 		if (!parent || d_really_is_negative(parent) ||
6221 		    sb != parent->d_sb)
6222 			break;
6223 
6224 		inode = BTRFS_I(d_inode(parent));
6225 		if (root != inode->root)
6226 			break;
6227 
6228 		if (inode->generation >= trans->transid &&
6229 		    need_log_inode(trans, inode)) {
6230 			ret = btrfs_log_inode(trans, inode,
6231 					      LOG_INODE_EXISTS, ctx);
6232 			if (ret)
6233 				break;
6234 		}
6235 		if (IS_ROOT(parent))
6236 			break;
6237 
6238 		parent = dget_parent(parent);
6239 		dput(old_parent);
6240 		old_parent = parent;
6241 	}
6242 	dput(old_parent);
6243 
6244 	return ret;
6245 }
6246 
6247 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6248 				 struct btrfs_inode *inode,
6249 				 struct dentry *parent,
6250 				 struct btrfs_log_ctx *ctx)
6251 {
6252 	struct btrfs_root *root = inode->root;
6253 	const u64 ino = btrfs_ino(inode);
6254 	struct btrfs_path *path;
6255 	struct btrfs_key search_key;
6256 	int ret;
6257 
6258 	/*
6259 	 * For a single hard link case, go through a fast path that does not
6260 	 * need to iterate the fs/subvolume tree.
6261 	 */
6262 	if (inode->vfs_inode.i_nlink < 2)
6263 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6264 
6265 	path = btrfs_alloc_path();
6266 	if (!path)
6267 		return -ENOMEM;
6268 
6269 	search_key.objectid = ino;
6270 	search_key.type = BTRFS_INODE_REF_KEY;
6271 	search_key.offset = 0;
6272 again:
6273 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6274 	if (ret < 0)
6275 		goto out;
6276 	if (ret == 0)
6277 		path->slots[0]++;
6278 
6279 	while (true) {
6280 		struct extent_buffer *leaf = path->nodes[0];
6281 		int slot = path->slots[0];
6282 		struct btrfs_key found_key;
6283 
6284 		if (slot >= btrfs_header_nritems(leaf)) {
6285 			ret = btrfs_next_leaf(root, path);
6286 			if (ret < 0)
6287 				goto out;
6288 			else if (ret > 0)
6289 				break;
6290 			continue;
6291 		}
6292 
6293 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6294 		if (found_key.objectid != ino ||
6295 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6296 			break;
6297 
6298 		/*
6299 		 * Don't deal with extended references because they are rare
6300 		 * cases and too complex to deal with (we would need to keep
6301 		 * track of which subitem we are processing for each item in
6302 		 * this loop, etc). So just return some error to fallback to
6303 		 * a transaction commit.
6304 		 */
6305 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6306 			ret = -EMLINK;
6307 			goto out;
6308 		}
6309 
6310 		/*
6311 		 * Logging ancestors needs to do more searches on the fs/subvol
6312 		 * tree, so it releases the path as needed to avoid deadlocks.
6313 		 * Keep track of the last inode ref key and resume from that key
6314 		 * after logging all new ancestors for the current hard link.
6315 		 */
6316 		memcpy(&search_key, &found_key, sizeof(search_key));
6317 
6318 		ret = log_new_ancestors(trans, root, path, ctx);
6319 		if (ret)
6320 			goto out;
6321 		btrfs_release_path(path);
6322 		goto again;
6323 	}
6324 	ret = 0;
6325 out:
6326 	btrfs_free_path(path);
6327 	return ret;
6328 }
6329 
6330 /*
6331  * helper function around btrfs_log_inode to make sure newly created
6332  * parent directories also end up in the log.  A minimal inode and backref
6333  * only logging is done of any parent directories that are older than
6334  * the last committed transaction
6335  */
6336 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6337 				  struct btrfs_inode *inode,
6338 				  struct dentry *parent,
6339 				  int inode_only,
6340 				  struct btrfs_log_ctx *ctx)
6341 {
6342 	struct btrfs_root *root = inode->root;
6343 	struct btrfs_fs_info *fs_info = root->fs_info;
6344 	int ret = 0;
6345 	bool log_dentries = false;
6346 
6347 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6348 		ret = 1;
6349 		goto end_no_trans;
6350 	}
6351 
6352 	if (btrfs_root_refs(&root->root_item) == 0) {
6353 		ret = 1;
6354 		goto end_no_trans;
6355 	}
6356 
6357 	/*
6358 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6359 	 * (since logging them is pointless, a link count of 0 means they
6360 	 * will never be accessible).
6361 	 */
6362 	if ((btrfs_inode_in_log(inode, trans->transid) &&
6363 	     list_empty(&ctx->ordered_extents)) ||
6364 	    inode->vfs_inode.i_nlink == 0) {
6365 		ret = BTRFS_NO_LOG_SYNC;
6366 		goto end_no_trans;
6367 	}
6368 
6369 	ret = start_log_trans(trans, root, ctx);
6370 	if (ret)
6371 		goto end_no_trans;
6372 
6373 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
6374 	if (ret)
6375 		goto end_trans;
6376 
6377 	/*
6378 	 * for regular files, if its inode is already on disk, we don't
6379 	 * have to worry about the parents at all.  This is because
6380 	 * we can use the last_unlink_trans field to record renames
6381 	 * and other fun in this file.
6382 	 */
6383 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6384 	    inode->generation < trans->transid &&
6385 	    inode->last_unlink_trans < trans->transid) {
6386 		ret = 0;
6387 		goto end_trans;
6388 	}
6389 
6390 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
6391 		log_dentries = true;
6392 
6393 	/*
6394 	 * On unlink we must make sure all our current and old parent directory
6395 	 * inodes are fully logged. This is to prevent leaving dangling
6396 	 * directory index entries in directories that were our parents but are
6397 	 * not anymore. Not doing this results in old parent directory being
6398 	 * impossible to delete after log replay (rmdir will always fail with
6399 	 * error -ENOTEMPTY).
6400 	 *
6401 	 * Example 1:
6402 	 *
6403 	 * mkdir testdir
6404 	 * touch testdir/foo
6405 	 * ln testdir/foo testdir/bar
6406 	 * sync
6407 	 * unlink testdir/bar
6408 	 * xfs_io -c fsync testdir/foo
6409 	 * <power failure>
6410 	 * mount fs, triggers log replay
6411 	 *
6412 	 * If we don't log the parent directory (testdir), after log replay the
6413 	 * directory still has an entry pointing to the file inode using the bar
6414 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6415 	 * the file inode has a link count of 1.
6416 	 *
6417 	 * Example 2:
6418 	 *
6419 	 * mkdir testdir
6420 	 * touch foo
6421 	 * ln foo testdir/foo2
6422 	 * ln foo testdir/foo3
6423 	 * sync
6424 	 * unlink testdir/foo3
6425 	 * xfs_io -c fsync foo
6426 	 * <power failure>
6427 	 * mount fs, triggers log replay
6428 	 *
6429 	 * Similar as the first example, after log replay the parent directory
6430 	 * testdir still has an entry pointing to the inode file with name foo3
6431 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6432 	 * and has a link count of 2.
6433 	 */
6434 	if (inode->last_unlink_trans >= trans->transid) {
6435 		ret = btrfs_log_all_parents(trans, inode, ctx);
6436 		if (ret)
6437 			goto end_trans;
6438 	}
6439 
6440 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6441 	if (ret)
6442 		goto end_trans;
6443 
6444 	if (log_dentries)
6445 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6446 	else
6447 		ret = 0;
6448 end_trans:
6449 	if (ret < 0) {
6450 		btrfs_set_log_full_commit(trans);
6451 		ret = 1;
6452 	}
6453 
6454 	if (ret)
6455 		btrfs_remove_log_ctx(root, ctx);
6456 	btrfs_end_log_trans(root);
6457 end_no_trans:
6458 	return ret;
6459 }
6460 
6461 /*
6462  * it is not safe to log dentry if the chunk root has added new
6463  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6464  * If this returns 1, you must commit the transaction to safely get your
6465  * data on disk.
6466  */
6467 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6468 			  struct dentry *dentry,
6469 			  struct btrfs_log_ctx *ctx)
6470 {
6471 	struct dentry *parent = dget_parent(dentry);
6472 	int ret;
6473 
6474 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6475 				     LOG_INODE_ALL, ctx);
6476 	dput(parent);
6477 
6478 	return ret;
6479 }
6480 
6481 /*
6482  * should be called during mount to recover any replay any log trees
6483  * from the FS
6484  */
6485 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6486 {
6487 	int ret;
6488 	struct btrfs_path *path;
6489 	struct btrfs_trans_handle *trans;
6490 	struct btrfs_key key;
6491 	struct btrfs_key found_key;
6492 	struct btrfs_root *log;
6493 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6494 	struct walk_control wc = {
6495 		.process_func = process_one_buffer,
6496 		.stage = LOG_WALK_PIN_ONLY,
6497 	};
6498 
6499 	path = btrfs_alloc_path();
6500 	if (!path)
6501 		return -ENOMEM;
6502 
6503 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6504 
6505 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6506 	if (IS_ERR(trans)) {
6507 		ret = PTR_ERR(trans);
6508 		goto error;
6509 	}
6510 
6511 	wc.trans = trans;
6512 	wc.pin = 1;
6513 
6514 	ret = walk_log_tree(trans, log_root_tree, &wc);
6515 	if (ret) {
6516 		btrfs_abort_transaction(trans, ret);
6517 		goto error;
6518 	}
6519 
6520 again:
6521 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6522 	key.offset = (u64)-1;
6523 	key.type = BTRFS_ROOT_ITEM_KEY;
6524 
6525 	while (1) {
6526 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6527 
6528 		if (ret < 0) {
6529 			btrfs_abort_transaction(trans, ret);
6530 			goto error;
6531 		}
6532 		if (ret > 0) {
6533 			if (path->slots[0] == 0)
6534 				break;
6535 			path->slots[0]--;
6536 		}
6537 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6538 				      path->slots[0]);
6539 		btrfs_release_path(path);
6540 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6541 			break;
6542 
6543 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6544 		if (IS_ERR(log)) {
6545 			ret = PTR_ERR(log);
6546 			btrfs_abort_transaction(trans, ret);
6547 			goto error;
6548 		}
6549 
6550 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6551 						   true);
6552 		if (IS_ERR(wc.replay_dest)) {
6553 			ret = PTR_ERR(wc.replay_dest);
6554 
6555 			/*
6556 			 * We didn't find the subvol, likely because it was
6557 			 * deleted.  This is ok, simply skip this log and go to
6558 			 * the next one.
6559 			 *
6560 			 * We need to exclude the root because we can't have
6561 			 * other log replays overwriting this log as we'll read
6562 			 * it back in a few more times.  This will keep our
6563 			 * block from being modified, and we'll just bail for
6564 			 * each subsequent pass.
6565 			 */
6566 			if (ret == -ENOENT)
6567 				ret = btrfs_pin_extent_for_log_replay(trans,
6568 							log->node->start,
6569 							log->node->len);
6570 			btrfs_put_root(log);
6571 
6572 			if (!ret)
6573 				goto next;
6574 			btrfs_abort_transaction(trans, ret);
6575 			goto error;
6576 		}
6577 
6578 		wc.replay_dest->log_root = log;
6579 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6580 		if (ret)
6581 			/* The loop needs to continue due to the root refs */
6582 			btrfs_abort_transaction(trans, ret);
6583 		else
6584 			ret = walk_log_tree(trans, log, &wc);
6585 
6586 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6587 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6588 						      path);
6589 			if (ret)
6590 				btrfs_abort_transaction(trans, ret);
6591 		}
6592 
6593 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6594 			struct btrfs_root *root = wc.replay_dest;
6595 
6596 			btrfs_release_path(path);
6597 
6598 			/*
6599 			 * We have just replayed everything, and the highest
6600 			 * objectid of fs roots probably has changed in case
6601 			 * some inode_item's got replayed.
6602 			 *
6603 			 * root->objectid_mutex is not acquired as log replay
6604 			 * could only happen during mount.
6605 			 */
6606 			ret = btrfs_init_root_free_objectid(root);
6607 			if (ret)
6608 				btrfs_abort_transaction(trans, ret);
6609 		}
6610 
6611 		wc.replay_dest->log_root = NULL;
6612 		btrfs_put_root(wc.replay_dest);
6613 		btrfs_put_root(log);
6614 
6615 		if (ret)
6616 			goto error;
6617 next:
6618 		if (found_key.offset == 0)
6619 			break;
6620 		key.offset = found_key.offset - 1;
6621 	}
6622 	btrfs_release_path(path);
6623 
6624 	/* step one is to pin it all, step two is to replay just inodes */
6625 	if (wc.pin) {
6626 		wc.pin = 0;
6627 		wc.process_func = replay_one_buffer;
6628 		wc.stage = LOG_WALK_REPLAY_INODES;
6629 		goto again;
6630 	}
6631 	/* step three is to replay everything */
6632 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6633 		wc.stage++;
6634 		goto again;
6635 	}
6636 
6637 	btrfs_free_path(path);
6638 
6639 	/* step 4: commit the transaction, which also unpins the blocks */
6640 	ret = btrfs_commit_transaction(trans);
6641 	if (ret)
6642 		return ret;
6643 
6644 	log_root_tree->log_root = NULL;
6645 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6646 	btrfs_put_root(log_root_tree);
6647 
6648 	return 0;
6649 error:
6650 	if (wc.trans)
6651 		btrfs_end_transaction(wc.trans);
6652 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6653 	btrfs_free_path(path);
6654 	return ret;
6655 }
6656 
6657 /*
6658  * there are some corner cases where we want to force a full
6659  * commit instead of allowing a directory to be logged.
6660  *
6661  * They revolve around files there were unlinked from the directory, and
6662  * this function updates the parent directory so that a full commit is
6663  * properly done if it is fsync'd later after the unlinks are done.
6664  *
6665  * Must be called before the unlink operations (updates to the subvolume tree,
6666  * inodes, etc) are done.
6667  */
6668 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6669 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6670 			     int for_rename)
6671 {
6672 	/*
6673 	 * when we're logging a file, if it hasn't been renamed
6674 	 * or unlinked, and its inode is fully committed on disk,
6675 	 * we don't have to worry about walking up the directory chain
6676 	 * to log its parents.
6677 	 *
6678 	 * So, we use the last_unlink_trans field to put this transid
6679 	 * into the file.  When the file is logged we check it and
6680 	 * don't log the parents if the file is fully on disk.
6681 	 */
6682 	mutex_lock(&inode->log_mutex);
6683 	inode->last_unlink_trans = trans->transid;
6684 	mutex_unlock(&inode->log_mutex);
6685 
6686 	/*
6687 	 * if this directory was already logged any new
6688 	 * names for this file/dir will get recorded
6689 	 */
6690 	if (dir->logged_trans == trans->transid)
6691 		return;
6692 
6693 	/*
6694 	 * if the inode we're about to unlink was logged,
6695 	 * the log will be properly updated for any new names
6696 	 */
6697 	if (inode->logged_trans == trans->transid)
6698 		return;
6699 
6700 	/*
6701 	 * when renaming files across directories, if the directory
6702 	 * there we're unlinking from gets fsync'd later on, there's
6703 	 * no way to find the destination directory later and fsync it
6704 	 * properly.  So, we have to be conservative and force commits
6705 	 * so the new name gets discovered.
6706 	 */
6707 	if (for_rename)
6708 		goto record;
6709 
6710 	/* we can safely do the unlink without any special recording */
6711 	return;
6712 
6713 record:
6714 	mutex_lock(&dir->log_mutex);
6715 	dir->last_unlink_trans = trans->transid;
6716 	mutex_unlock(&dir->log_mutex);
6717 }
6718 
6719 /*
6720  * Make sure that if someone attempts to fsync the parent directory of a deleted
6721  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6722  * that after replaying the log tree of the parent directory's root we will not
6723  * see the snapshot anymore and at log replay time we will not see any log tree
6724  * corresponding to the deleted snapshot's root, which could lead to replaying
6725  * it after replaying the log tree of the parent directory (which would replay
6726  * the snapshot delete operation).
6727  *
6728  * Must be called before the actual snapshot destroy operation (updates to the
6729  * parent root and tree of tree roots trees, etc) are done.
6730  */
6731 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6732 				   struct btrfs_inode *dir)
6733 {
6734 	mutex_lock(&dir->log_mutex);
6735 	dir->last_unlink_trans = trans->transid;
6736 	mutex_unlock(&dir->log_mutex);
6737 }
6738 
6739 /*
6740  * Call this after adding a new name for a file and it will properly
6741  * update the log to reflect the new name.
6742  */
6743 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6744 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6745 			struct dentry *parent)
6746 {
6747 	struct btrfs_log_ctx ctx;
6748 
6749 	/*
6750 	 * this will force the logging code to walk the dentry chain
6751 	 * up for the file
6752 	 */
6753 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6754 		inode->last_unlink_trans = trans->transid;
6755 
6756 	/*
6757 	 * if this inode hasn't been logged and directory we're renaming it
6758 	 * from hasn't been logged, we don't need to log it
6759 	 */
6760 	if (!inode_logged(trans, inode) &&
6761 	    (!old_dir || !inode_logged(trans, old_dir)))
6762 		return;
6763 
6764 	/*
6765 	 * If we are doing a rename (old_dir is not NULL) from a directory that
6766 	 * was previously logged, make sure the next log attempt on the directory
6767 	 * is not skipped and logs the inode again. This is because the log may
6768 	 * not currently be authoritative for a range including the old
6769 	 * BTRFS_DIR_INDEX_KEY key, so we want to make sure after a log replay we
6770 	 * do not end up with both the new and old dentries around (in case the
6771 	 * inode is a directory we would have a directory with two hard links and
6772 	 * 2 inode references for different parents). The next log attempt of
6773 	 * old_dir will happen at btrfs_log_all_parents(), called through
6774 	 * btrfs_log_inode_parent() below, because we have previously set
6775 	 * inode->last_unlink_trans to the current transaction ID, either here or
6776 	 * at btrfs_record_unlink_dir() in case the inode is a directory.
6777 	 */
6778 	if (old_dir)
6779 		old_dir->logged_trans = 0;
6780 
6781 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6782 	ctx.logging_new_name = true;
6783 	/*
6784 	 * We don't care about the return value. If we fail to log the new name
6785 	 * then we know the next attempt to sync the log will fallback to a full
6786 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6787 	 * we don't need to worry about getting a log committed that has an
6788 	 * inconsistent state after a rename operation.
6789 	 */
6790 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6791 }
6792 
6793