xref: /openbmc/linux/fs/btrfs/tree-log.c (revision d89775fc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 #include "block-group.h"
22 #include "space-info.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   const loff_t start,
100 			   const loff_t end,
101 			   struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 			     struct btrfs_root *root,
104 			     struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 				       struct btrfs_root *root,
107 				       struct btrfs_root *log,
108 				       struct btrfs_path *path,
109 				       u64 dirid, int del_all);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	int ret = 0;
145 
146 	mutex_lock(&root->log_mutex);
147 
148 	if (root->log_root) {
149 		if (btrfs_need_log_full_commit(trans)) {
150 			ret = -EAGAIN;
151 			goto out;
152 		}
153 
154 		if (!root->log_start_pid) {
155 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 			root->log_start_pid = current->pid;
157 		} else if (root->log_start_pid != current->pid) {
158 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 		}
160 	} else {
161 		mutex_lock(&fs_info->tree_log_mutex);
162 		if (!fs_info->log_root_tree)
163 			ret = btrfs_init_log_root_tree(trans, fs_info);
164 		mutex_unlock(&fs_info->tree_log_mutex);
165 		if (ret)
166 			goto out;
167 
168 		ret = btrfs_add_log_tree(trans, root);
169 		if (ret)
170 			goto out;
171 
172 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
173 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
174 		root->log_start_pid = current->pid;
175 	}
176 
177 	atomic_inc(&root->log_batch);
178 	atomic_inc(&root->log_writers);
179 	if (ctx) {
180 		int index = root->log_transid % 2;
181 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
182 		ctx->log_transid = root->log_transid;
183 	}
184 
185 out:
186 	mutex_unlock(&root->log_mutex);
187 	return ret;
188 }
189 
190 /*
191  * returns 0 if there was a log transaction running and we were able
192  * to join, or returns -ENOENT if there were not transactions
193  * in progress
194  */
195 static int join_running_log_trans(struct btrfs_root *root)
196 {
197 	int ret = -ENOENT;
198 
199 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
200 		return ret;
201 
202 	mutex_lock(&root->log_mutex);
203 	if (root->log_root) {
204 		ret = 0;
205 		atomic_inc(&root->log_writers);
206 	}
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * This either makes the current running log transaction wait
213  * until you call btrfs_end_log_trans() or it makes any future
214  * log transactions wait until you call btrfs_end_log_trans()
215  */
216 void btrfs_pin_log_trans(struct btrfs_root *root)
217 {
218 	mutex_lock(&root->log_mutex);
219 	atomic_inc(&root->log_writers);
220 	mutex_unlock(&root->log_mutex);
221 }
222 
223 /*
224  * indicate we're done making changes to the log tree
225  * and wake up anyone waiting to do a sync
226  */
227 void btrfs_end_log_trans(struct btrfs_root *root)
228 {
229 	if (atomic_dec_and_test(&root->log_writers)) {
230 		/* atomic_dec_and_test implies a barrier */
231 		cond_wake_up_nomb(&root->log_writer_wait);
232 	}
233 }
234 
235 static int btrfs_write_tree_block(struct extent_buffer *buf)
236 {
237 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
238 					buf->start + buf->len - 1);
239 }
240 
241 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
242 {
243 	filemap_fdatawait_range(buf->pages[0]->mapping,
244 			        buf->start, buf->start + buf->len - 1);
245 }
246 
247 /*
248  * the walk control struct is used to pass state down the chain when
249  * processing the log tree.  The stage field tells us which part
250  * of the log tree processing we are currently doing.  The others
251  * are state fields used for that specific part
252  */
253 struct walk_control {
254 	/* should we free the extent on disk when done?  This is used
255 	 * at transaction commit time while freeing a log tree
256 	 */
257 	int free;
258 
259 	/* should we write out the extent buffer?  This is used
260 	 * while flushing the log tree to disk during a sync
261 	 */
262 	int write;
263 
264 	/* should we wait for the extent buffer io to finish?  Also used
265 	 * while flushing the log tree to disk for a sync
266 	 */
267 	int wait;
268 
269 	/* pin only walk, we record which extents on disk belong to the
270 	 * log trees
271 	 */
272 	int pin;
273 
274 	/* what stage of the replay code we're currently in */
275 	int stage;
276 
277 	/*
278 	 * Ignore any items from the inode currently being processed. Needs
279 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
280 	 * the LOG_WALK_REPLAY_INODES stage.
281 	 */
282 	bool ignore_cur_inode;
283 
284 	/* the root we are currently replaying */
285 	struct btrfs_root *replay_dest;
286 
287 	/* the trans handle for the current replay */
288 	struct btrfs_trans_handle *trans;
289 
290 	/* the function that gets used to process blocks we find in the
291 	 * tree.  Note the extent_buffer might not be up to date when it is
292 	 * passed in, and it must be checked or read if you need the data
293 	 * inside it
294 	 */
295 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
296 			    struct walk_control *wc, u64 gen, int level);
297 };
298 
299 /*
300  * process_func used to pin down extents, write them or wait on them
301  */
302 static int process_one_buffer(struct btrfs_root *log,
303 			      struct extent_buffer *eb,
304 			      struct walk_control *wc, u64 gen, int level)
305 {
306 	struct btrfs_fs_info *fs_info = log->fs_info;
307 	int ret = 0;
308 
309 	/*
310 	 * If this fs is mixed then we need to be able to process the leaves to
311 	 * pin down any logged extents, so we have to read the block.
312 	 */
313 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
314 		ret = btrfs_read_buffer(eb, gen, level, NULL);
315 		if (ret)
316 			return ret;
317 	}
318 
319 	if (wc->pin)
320 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
321 						      eb->len);
322 
323 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
324 		if (wc->pin && btrfs_header_level(eb) == 0)
325 			ret = btrfs_exclude_logged_extents(eb);
326 		if (wc->write)
327 			btrfs_write_tree_block(eb);
328 		if (wc->wait)
329 			btrfs_wait_tree_block_writeback(eb);
330 	}
331 	return ret;
332 }
333 
334 /*
335  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
336  * to the src data we are copying out.
337  *
338  * root is the tree we are copying into, and path is a scratch
339  * path for use in this function (it should be released on entry and
340  * will be released on exit).
341  *
342  * If the key is already in the destination tree the existing item is
343  * overwritten.  If the existing item isn't big enough, it is extended.
344  * If it is too large, it is truncated.
345  *
346  * If the key isn't in the destination yet, a new item is inserted.
347  */
348 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
349 				   struct btrfs_root *root,
350 				   struct btrfs_path *path,
351 				   struct extent_buffer *eb, int slot,
352 				   struct btrfs_key *key)
353 {
354 	int ret;
355 	u32 item_size;
356 	u64 saved_i_size = 0;
357 	int save_old_i_size = 0;
358 	unsigned long src_ptr;
359 	unsigned long dst_ptr;
360 	int overwrite_root = 0;
361 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
362 
363 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
364 		overwrite_root = 1;
365 
366 	item_size = btrfs_item_size_nr(eb, slot);
367 	src_ptr = btrfs_item_ptr_offset(eb, slot);
368 
369 	/* look for the key in the destination tree */
370 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
371 	if (ret < 0)
372 		return ret;
373 
374 	if (ret == 0) {
375 		char *src_copy;
376 		char *dst_copy;
377 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
378 						  path->slots[0]);
379 		if (dst_size != item_size)
380 			goto insert;
381 
382 		if (item_size == 0) {
383 			btrfs_release_path(path);
384 			return 0;
385 		}
386 		dst_copy = kmalloc(item_size, GFP_NOFS);
387 		src_copy = kmalloc(item_size, GFP_NOFS);
388 		if (!dst_copy || !src_copy) {
389 			btrfs_release_path(path);
390 			kfree(dst_copy);
391 			kfree(src_copy);
392 			return -ENOMEM;
393 		}
394 
395 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
396 
397 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
398 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
399 				   item_size);
400 		ret = memcmp(dst_copy, src_copy, item_size);
401 
402 		kfree(dst_copy);
403 		kfree(src_copy);
404 		/*
405 		 * they have the same contents, just return, this saves
406 		 * us from cowing blocks in the destination tree and doing
407 		 * extra writes that may not have been done by a previous
408 		 * sync
409 		 */
410 		if (ret == 0) {
411 			btrfs_release_path(path);
412 			return 0;
413 		}
414 
415 		/*
416 		 * We need to load the old nbytes into the inode so when we
417 		 * replay the extents we've logged we get the right nbytes.
418 		 */
419 		if (inode_item) {
420 			struct btrfs_inode_item *item;
421 			u64 nbytes;
422 			u32 mode;
423 
424 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
425 					      struct btrfs_inode_item);
426 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
427 			item = btrfs_item_ptr(eb, slot,
428 					      struct btrfs_inode_item);
429 			btrfs_set_inode_nbytes(eb, item, nbytes);
430 
431 			/*
432 			 * If this is a directory we need to reset the i_size to
433 			 * 0 so that we can set it up properly when replaying
434 			 * the rest of the items in this log.
435 			 */
436 			mode = btrfs_inode_mode(eb, item);
437 			if (S_ISDIR(mode))
438 				btrfs_set_inode_size(eb, item, 0);
439 		}
440 	} else if (inode_item) {
441 		struct btrfs_inode_item *item;
442 		u32 mode;
443 
444 		/*
445 		 * New inode, set nbytes to 0 so that the nbytes comes out
446 		 * properly when we replay the extents.
447 		 */
448 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
449 		btrfs_set_inode_nbytes(eb, item, 0);
450 
451 		/*
452 		 * If this is a directory we need to reset the i_size to 0 so
453 		 * that we can set it up properly when replaying the rest of
454 		 * the items in this log.
455 		 */
456 		mode = btrfs_inode_mode(eb, item);
457 		if (S_ISDIR(mode))
458 			btrfs_set_inode_size(eb, item, 0);
459 	}
460 insert:
461 	btrfs_release_path(path);
462 	/* try to insert the key into the destination tree */
463 	path->skip_release_on_error = 1;
464 	ret = btrfs_insert_empty_item(trans, root, path,
465 				      key, item_size);
466 	path->skip_release_on_error = 0;
467 
468 	/* make sure any existing item is the correct size */
469 	if (ret == -EEXIST || ret == -EOVERFLOW) {
470 		u32 found_size;
471 		found_size = btrfs_item_size_nr(path->nodes[0],
472 						path->slots[0]);
473 		if (found_size > item_size)
474 			btrfs_truncate_item(path, item_size, 1);
475 		else if (found_size < item_size)
476 			btrfs_extend_item(path, item_size - found_size);
477 	} else if (ret) {
478 		return ret;
479 	}
480 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
481 					path->slots[0]);
482 
483 	/* don't overwrite an existing inode if the generation number
484 	 * was logged as zero.  This is done when the tree logging code
485 	 * is just logging an inode to make sure it exists after recovery.
486 	 *
487 	 * Also, don't overwrite i_size on directories during replay.
488 	 * log replay inserts and removes directory items based on the
489 	 * state of the tree found in the subvolume, and i_size is modified
490 	 * as it goes
491 	 */
492 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
493 		struct btrfs_inode_item *src_item;
494 		struct btrfs_inode_item *dst_item;
495 
496 		src_item = (struct btrfs_inode_item *)src_ptr;
497 		dst_item = (struct btrfs_inode_item *)dst_ptr;
498 
499 		if (btrfs_inode_generation(eb, src_item) == 0) {
500 			struct extent_buffer *dst_eb = path->nodes[0];
501 			const u64 ino_size = btrfs_inode_size(eb, src_item);
502 
503 			/*
504 			 * For regular files an ino_size == 0 is used only when
505 			 * logging that an inode exists, as part of a directory
506 			 * fsync, and the inode wasn't fsynced before. In this
507 			 * case don't set the size of the inode in the fs/subvol
508 			 * tree, otherwise we would be throwing valid data away.
509 			 */
510 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
511 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
512 			    ino_size != 0)
513 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
514 			goto no_copy;
515 		}
516 
517 		if (overwrite_root &&
518 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 			save_old_i_size = 1;
521 			saved_i_size = btrfs_inode_size(path->nodes[0],
522 							dst_item);
523 		}
524 	}
525 
526 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 			   src_ptr, item_size);
528 
529 	if (save_old_i_size) {
530 		struct btrfs_inode_item *dst_item;
531 		dst_item = (struct btrfs_inode_item *)dst_ptr;
532 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
533 	}
534 
535 	/* make sure the generation is filled in */
536 	if (key->type == BTRFS_INODE_ITEM_KEY) {
537 		struct btrfs_inode_item *dst_item;
538 		dst_item = (struct btrfs_inode_item *)dst_ptr;
539 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 			btrfs_set_inode_generation(path->nodes[0], dst_item,
541 						   trans->transid);
542 		}
543 	}
544 no_copy:
545 	btrfs_mark_buffer_dirty(path->nodes[0]);
546 	btrfs_release_path(path);
547 	return 0;
548 }
549 
550 /*
551  * simple helper to read an inode off the disk from a given root
552  * This can only be called for subvolume roots and not for the log
553  */
554 static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 					     u64 objectid)
556 {
557 	struct inode *inode;
558 
559 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
560 	if (IS_ERR(inode))
561 		inode = NULL;
562 	return inode;
563 }
564 
565 /* replays a single extent in 'eb' at 'slot' with 'key' into the
566  * subvolume 'root'.  path is released on entry and should be released
567  * on exit.
568  *
569  * extents in the log tree have not been allocated out of the extent
570  * tree yet.  So, this completes the allocation, taking a reference
571  * as required if the extent already exists or creating a new extent
572  * if it isn't in the extent allocation tree yet.
573  *
574  * The extent is inserted into the file, dropping any existing extents
575  * from the file that overlap the new one.
576  */
577 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
578 				      struct btrfs_root *root,
579 				      struct btrfs_path *path,
580 				      struct extent_buffer *eb, int slot,
581 				      struct btrfs_key *key)
582 {
583 	struct btrfs_fs_info *fs_info = root->fs_info;
584 	int found_type;
585 	u64 extent_end;
586 	u64 start = key->offset;
587 	u64 nbytes = 0;
588 	struct btrfs_file_extent_item *item;
589 	struct inode *inode = NULL;
590 	unsigned long size;
591 	int ret = 0;
592 
593 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
594 	found_type = btrfs_file_extent_type(eb, item);
595 
596 	if (found_type == BTRFS_FILE_EXTENT_REG ||
597 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
598 		nbytes = btrfs_file_extent_num_bytes(eb, item);
599 		extent_end = start + nbytes;
600 
601 		/*
602 		 * We don't add to the inodes nbytes if we are prealloc or a
603 		 * hole.
604 		 */
605 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
606 			nbytes = 0;
607 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
608 		size = btrfs_file_extent_ram_bytes(eb, item);
609 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
610 		extent_end = ALIGN(start + size,
611 				   fs_info->sectorsize);
612 	} else {
613 		ret = 0;
614 		goto out;
615 	}
616 
617 	inode = read_one_inode(root, key->objectid);
618 	if (!inode) {
619 		ret = -EIO;
620 		goto out;
621 	}
622 
623 	/*
624 	 * first check to see if we already have this extent in the
625 	 * file.  This must be done before the btrfs_drop_extents run
626 	 * so we don't try to drop this extent.
627 	 */
628 	ret = btrfs_lookup_file_extent(trans, root, path,
629 			btrfs_ino(BTRFS_I(inode)), start, 0);
630 
631 	if (ret == 0 &&
632 	    (found_type == BTRFS_FILE_EXTENT_REG ||
633 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
634 		struct btrfs_file_extent_item cmp1;
635 		struct btrfs_file_extent_item cmp2;
636 		struct btrfs_file_extent_item *existing;
637 		struct extent_buffer *leaf;
638 
639 		leaf = path->nodes[0];
640 		existing = btrfs_item_ptr(leaf, path->slots[0],
641 					  struct btrfs_file_extent_item);
642 
643 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
644 				   sizeof(cmp1));
645 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
646 				   sizeof(cmp2));
647 
648 		/*
649 		 * we already have a pointer to this exact extent,
650 		 * we don't have to do anything
651 		 */
652 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
653 			btrfs_release_path(path);
654 			goto out;
655 		}
656 	}
657 	btrfs_release_path(path);
658 
659 	/* drop any overlapping extents */
660 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
661 	if (ret)
662 		goto out;
663 
664 	if (found_type == BTRFS_FILE_EXTENT_REG ||
665 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
666 		u64 offset;
667 		unsigned long dest_offset;
668 		struct btrfs_key ins;
669 
670 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
671 		    btrfs_fs_incompat(fs_info, NO_HOLES))
672 			goto update_inode;
673 
674 		ret = btrfs_insert_empty_item(trans, root, path, key,
675 					      sizeof(*item));
676 		if (ret)
677 			goto out;
678 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
679 						    path->slots[0]);
680 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
681 				(unsigned long)item,  sizeof(*item));
682 
683 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
684 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
685 		ins.type = BTRFS_EXTENT_ITEM_KEY;
686 		offset = key->offset - btrfs_file_extent_offset(eb, item);
687 
688 		/*
689 		 * Manually record dirty extent, as here we did a shallow
690 		 * file extent item copy and skip normal backref update,
691 		 * but modifying extent tree all by ourselves.
692 		 * So need to manually record dirty extent for qgroup,
693 		 * as the owner of the file extent changed from log tree
694 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
695 		 */
696 		ret = btrfs_qgroup_trace_extent(trans,
697 				btrfs_file_extent_disk_bytenr(eb, item),
698 				btrfs_file_extent_disk_num_bytes(eb, item),
699 				GFP_NOFS);
700 		if (ret < 0)
701 			goto out;
702 
703 		if (ins.objectid > 0) {
704 			struct btrfs_ref ref = { 0 };
705 			u64 csum_start;
706 			u64 csum_end;
707 			LIST_HEAD(ordered_sums);
708 
709 			/*
710 			 * is this extent already allocated in the extent
711 			 * allocation tree?  If so, just add a reference
712 			 */
713 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
714 						ins.offset);
715 			if (ret == 0) {
716 				btrfs_init_generic_ref(&ref,
717 						BTRFS_ADD_DELAYED_REF,
718 						ins.objectid, ins.offset, 0);
719 				btrfs_init_data_ref(&ref,
720 						root->root_key.objectid,
721 						key->objectid, offset);
722 				ret = btrfs_inc_extent_ref(trans, &ref);
723 				if (ret)
724 					goto out;
725 			} else {
726 				/*
727 				 * insert the extent pointer in the extent
728 				 * allocation tree
729 				 */
730 				ret = btrfs_alloc_logged_file_extent(trans,
731 						root->root_key.objectid,
732 						key->objectid, offset, &ins);
733 				if (ret)
734 					goto out;
735 			}
736 			btrfs_release_path(path);
737 
738 			if (btrfs_file_extent_compression(eb, item)) {
739 				csum_start = ins.objectid;
740 				csum_end = csum_start + ins.offset;
741 			} else {
742 				csum_start = ins.objectid +
743 					btrfs_file_extent_offset(eb, item);
744 				csum_end = csum_start +
745 					btrfs_file_extent_num_bytes(eb, item);
746 			}
747 
748 			ret = btrfs_lookup_csums_range(root->log_root,
749 						csum_start, csum_end - 1,
750 						&ordered_sums, 0);
751 			if (ret)
752 				goto out;
753 			/*
754 			 * Now delete all existing cums in the csum root that
755 			 * cover our range. We do this because we can have an
756 			 * extent that is completely referenced by one file
757 			 * extent item and partially referenced by another
758 			 * file extent item (like after using the clone or
759 			 * extent_same ioctls). In this case if we end up doing
760 			 * the replay of the one that partially references the
761 			 * extent first, and we do not do the csum deletion
762 			 * below, we can get 2 csum items in the csum tree that
763 			 * overlap each other. For example, imagine our log has
764 			 * the two following file extent items:
765 			 *
766 			 * key (257 EXTENT_DATA 409600)
767 			 *     extent data disk byte 12845056 nr 102400
768 			 *     extent data offset 20480 nr 20480 ram 102400
769 			 *
770 			 * key (257 EXTENT_DATA 819200)
771 			 *     extent data disk byte 12845056 nr 102400
772 			 *     extent data offset 0 nr 102400 ram 102400
773 			 *
774 			 * Where the second one fully references the 100K extent
775 			 * that starts at disk byte 12845056, and the log tree
776 			 * has a single csum item that covers the entire range
777 			 * of the extent:
778 			 *
779 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
780 			 *
781 			 * After the first file extent item is replayed, the
782 			 * csum tree gets the following csum item:
783 			 *
784 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 			 *
786 			 * Which covers the 20K sub-range starting at offset 20K
787 			 * of our extent. Now when we replay the second file
788 			 * extent item, if we do not delete existing csum items
789 			 * that cover any of its blocks, we end up getting two
790 			 * csum items in our csum tree that overlap each other:
791 			 *
792 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
793 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
794 			 *
795 			 * Which is a problem, because after this anyone trying
796 			 * to lookup up for the checksum of any block of our
797 			 * extent starting at an offset of 40K or higher, will
798 			 * end up looking at the second csum item only, which
799 			 * does not contain the checksum for any block starting
800 			 * at offset 40K or higher of our extent.
801 			 */
802 			while (!list_empty(&ordered_sums)) {
803 				struct btrfs_ordered_sum *sums;
804 				sums = list_entry(ordered_sums.next,
805 						struct btrfs_ordered_sum,
806 						list);
807 				if (!ret)
808 					ret = btrfs_del_csums(trans,
809 							      fs_info->csum_root,
810 							      sums->bytenr,
811 							      sums->len);
812 				if (!ret)
813 					ret = btrfs_csum_file_blocks(trans,
814 						fs_info->csum_root, sums);
815 				list_del(&sums->list);
816 				kfree(sums);
817 			}
818 			if (ret)
819 				goto out;
820 		} else {
821 			btrfs_release_path(path);
822 		}
823 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
824 		/* inline extents are easy, we just overwrite them */
825 		ret = overwrite_item(trans, root, path, eb, slot, key);
826 		if (ret)
827 			goto out;
828 	}
829 
830 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
831 						extent_end - start);
832 	if (ret)
833 		goto out;
834 
835 	inode_add_bytes(inode, nbytes);
836 update_inode:
837 	ret = btrfs_update_inode(trans, root, inode);
838 out:
839 	if (inode)
840 		iput(inode);
841 	return ret;
842 }
843 
844 /*
845  * when cleaning up conflicts between the directory names in the
846  * subvolume, directory names in the log and directory names in the
847  * inode back references, we may have to unlink inodes from directories.
848  *
849  * This is a helper function to do the unlink of a specific directory
850  * item
851  */
852 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
853 				      struct btrfs_root *root,
854 				      struct btrfs_path *path,
855 				      struct btrfs_inode *dir,
856 				      struct btrfs_dir_item *di)
857 {
858 	struct inode *inode;
859 	char *name;
860 	int name_len;
861 	struct extent_buffer *leaf;
862 	struct btrfs_key location;
863 	int ret;
864 
865 	leaf = path->nodes[0];
866 
867 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
868 	name_len = btrfs_dir_name_len(leaf, di);
869 	name = kmalloc(name_len, GFP_NOFS);
870 	if (!name)
871 		return -ENOMEM;
872 
873 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
874 	btrfs_release_path(path);
875 
876 	inode = read_one_inode(root, location.objectid);
877 	if (!inode) {
878 		ret = -EIO;
879 		goto out;
880 	}
881 
882 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
883 	if (ret)
884 		goto out;
885 
886 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
887 			name_len);
888 	if (ret)
889 		goto out;
890 	else
891 		ret = btrfs_run_delayed_items(trans);
892 out:
893 	kfree(name);
894 	iput(inode);
895 	return ret;
896 }
897 
898 /*
899  * helper function to see if a given name and sequence number found
900  * in an inode back reference are already in a directory and correctly
901  * point to this inode
902  */
903 static noinline int inode_in_dir(struct btrfs_root *root,
904 				 struct btrfs_path *path,
905 				 u64 dirid, u64 objectid, u64 index,
906 				 const char *name, int name_len)
907 {
908 	struct btrfs_dir_item *di;
909 	struct btrfs_key location;
910 	int match = 0;
911 
912 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
913 					 index, name, name_len, 0);
914 	if (di && !IS_ERR(di)) {
915 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
916 		if (location.objectid != objectid)
917 			goto out;
918 	} else
919 		goto out;
920 	btrfs_release_path(path);
921 
922 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
923 	if (di && !IS_ERR(di)) {
924 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
925 		if (location.objectid != objectid)
926 			goto out;
927 	} else
928 		goto out;
929 	match = 1;
930 out:
931 	btrfs_release_path(path);
932 	return match;
933 }
934 
935 /*
936  * helper function to check a log tree for a named back reference in
937  * an inode.  This is used to decide if a back reference that is
938  * found in the subvolume conflicts with what we find in the log.
939  *
940  * inode backreferences may have multiple refs in a single item,
941  * during replay we process one reference at a time, and we don't
942  * want to delete valid links to a file from the subvolume if that
943  * link is also in the log.
944  */
945 static noinline int backref_in_log(struct btrfs_root *log,
946 				   struct btrfs_key *key,
947 				   u64 ref_objectid,
948 				   const char *name, int namelen)
949 {
950 	struct btrfs_path *path;
951 	int ret;
952 
953 	path = btrfs_alloc_path();
954 	if (!path)
955 		return -ENOMEM;
956 
957 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
958 	if (ret < 0) {
959 		goto out;
960 	} else if (ret == 1) {
961 		ret = 0;
962 		goto out;
963 	}
964 
965 	if (key->type == BTRFS_INODE_EXTREF_KEY)
966 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
967 						       path->slots[0],
968 						       ref_objectid,
969 						       name, namelen);
970 	else
971 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
972 						   path->slots[0],
973 						   name, namelen);
974 out:
975 	btrfs_free_path(path);
976 	return ret;
977 }
978 
979 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
980 				  struct btrfs_root *root,
981 				  struct btrfs_path *path,
982 				  struct btrfs_root *log_root,
983 				  struct btrfs_inode *dir,
984 				  struct btrfs_inode *inode,
985 				  u64 inode_objectid, u64 parent_objectid,
986 				  u64 ref_index, char *name, int namelen,
987 				  int *search_done)
988 {
989 	int ret;
990 	char *victim_name;
991 	int victim_name_len;
992 	struct extent_buffer *leaf;
993 	struct btrfs_dir_item *di;
994 	struct btrfs_key search_key;
995 	struct btrfs_inode_extref *extref;
996 
997 again:
998 	/* Search old style refs */
999 	search_key.objectid = inode_objectid;
1000 	search_key.type = BTRFS_INODE_REF_KEY;
1001 	search_key.offset = parent_objectid;
1002 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1003 	if (ret == 0) {
1004 		struct btrfs_inode_ref *victim_ref;
1005 		unsigned long ptr;
1006 		unsigned long ptr_end;
1007 
1008 		leaf = path->nodes[0];
1009 
1010 		/* are we trying to overwrite a back ref for the root directory
1011 		 * if so, just jump out, we're done
1012 		 */
1013 		if (search_key.objectid == search_key.offset)
1014 			return 1;
1015 
1016 		/* check all the names in this back reference to see
1017 		 * if they are in the log.  if so, we allow them to stay
1018 		 * otherwise they must be unlinked as a conflict
1019 		 */
1020 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1021 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1022 		while (ptr < ptr_end) {
1023 			victim_ref = (struct btrfs_inode_ref *)ptr;
1024 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1025 								   victim_ref);
1026 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1027 			if (!victim_name)
1028 				return -ENOMEM;
1029 
1030 			read_extent_buffer(leaf, victim_name,
1031 					   (unsigned long)(victim_ref + 1),
1032 					   victim_name_len);
1033 
1034 			ret = backref_in_log(log_root, &search_key,
1035 					     parent_objectid, victim_name,
1036 					     victim_name_len);
1037 			if (ret < 0) {
1038 				kfree(victim_name);
1039 				return ret;
1040 			} else if (!ret) {
1041 				inc_nlink(&inode->vfs_inode);
1042 				btrfs_release_path(path);
1043 
1044 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1045 						victim_name, victim_name_len);
1046 				kfree(victim_name);
1047 				if (ret)
1048 					return ret;
1049 				ret = btrfs_run_delayed_items(trans);
1050 				if (ret)
1051 					return ret;
1052 				*search_done = 1;
1053 				goto again;
1054 			}
1055 			kfree(victim_name);
1056 
1057 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1058 		}
1059 
1060 		/*
1061 		 * NOTE: we have searched root tree and checked the
1062 		 * corresponding ref, it does not need to check again.
1063 		 */
1064 		*search_done = 1;
1065 	}
1066 	btrfs_release_path(path);
1067 
1068 	/* Same search but for extended refs */
1069 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070 					   inode_objectid, parent_objectid, 0,
1071 					   0);
1072 	if (!IS_ERR_OR_NULL(extref)) {
1073 		u32 item_size;
1074 		u32 cur_offset = 0;
1075 		unsigned long base;
1076 		struct inode *victim_parent;
1077 
1078 		leaf = path->nodes[0];
1079 
1080 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1082 
1083 		while (cur_offset < item_size) {
1084 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1085 
1086 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1087 
1088 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1089 				goto next;
1090 
1091 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1092 			if (!victim_name)
1093 				return -ENOMEM;
1094 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1095 					   victim_name_len);
1096 
1097 			search_key.objectid = inode_objectid;
1098 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1099 			search_key.offset = btrfs_extref_hash(parent_objectid,
1100 							      victim_name,
1101 							      victim_name_len);
1102 			ret = backref_in_log(log_root, &search_key,
1103 					     parent_objectid, victim_name,
1104 					     victim_name_len);
1105 			if (ret < 0) {
1106 				return ret;
1107 			} else if (!ret) {
1108 				ret = -ENOENT;
1109 				victim_parent = read_one_inode(root,
1110 						parent_objectid);
1111 				if (victim_parent) {
1112 					inc_nlink(&inode->vfs_inode);
1113 					btrfs_release_path(path);
1114 
1115 					ret = btrfs_unlink_inode(trans, root,
1116 							BTRFS_I(victim_parent),
1117 							inode,
1118 							victim_name,
1119 							victim_name_len);
1120 					if (!ret)
1121 						ret = btrfs_run_delayed_items(
1122 								  trans);
1123 				}
1124 				iput(victim_parent);
1125 				kfree(victim_name);
1126 				if (ret)
1127 					return ret;
1128 				*search_done = 1;
1129 				goto again;
1130 			}
1131 			kfree(victim_name);
1132 next:
1133 			cur_offset += victim_name_len + sizeof(*extref);
1134 		}
1135 		*search_done = 1;
1136 	}
1137 	btrfs_release_path(path);
1138 
1139 	/* look for a conflicting sequence number */
1140 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1141 					 ref_index, name, namelen, 0);
1142 	if (di && !IS_ERR(di)) {
1143 		ret = drop_one_dir_item(trans, root, path, dir, di);
1144 		if (ret)
1145 			return ret;
1146 	}
1147 	btrfs_release_path(path);
1148 
1149 	/* look for a conflicting name */
1150 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1151 				   name, namelen, 0);
1152 	if (di && !IS_ERR(di)) {
1153 		ret = drop_one_dir_item(trans, root, path, dir, di);
1154 		if (ret)
1155 			return ret;
1156 	}
1157 	btrfs_release_path(path);
1158 
1159 	return 0;
1160 }
1161 
1162 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1163 			     u32 *namelen, char **name, u64 *index,
1164 			     u64 *parent_objectid)
1165 {
1166 	struct btrfs_inode_extref *extref;
1167 
1168 	extref = (struct btrfs_inode_extref *)ref_ptr;
1169 
1170 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1171 	*name = kmalloc(*namelen, GFP_NOFS);
1172 	if (*name == NULL)
1173 		return -ENOMEM;
1174 
1175 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1176 			   *namelen);
1177 
1178 	if (index)
1179 		*index = btrfs_inode_extref_index(eb, extref);
1180 	if (parent_objectid)
1181 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1182 
1183 	return 0;
1184 }
1185 
1186 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1187 			  u32 *namelen, char **name, u64 *index)
1188 {
1189 	struct btrfs_inode_ref *ref;
1190 
1191 	ref = (struct btrfs_inode_ref *)ref_ptr;
1192 
1193 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1194 	*name = kmalloc(*namelen, GFP_NOFS);
1195 	if (*name == NULL)
1196 		return -ENOMEM;
1197 
1198 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1199 
1200 	if (index)
1201 		*index = btrfs_inode_ref_index(eb, ref);
1202 
1203 	return 0;
1204 }
1205 
1206 /*
1207  * Take an inode reference item from the log tree and iterate all names from the
1208  * inode reference item in the subvolume tree with the same key (if it exists).
1209  * For any name that is not in the inode reference item from the log tree, do a
1210  * proper unlink of that name (that is, remove its entry from the inode
1211  * reference item and both dir index keys).
1212  */
1213 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1214 				 struct btrfs_root *root,
1215 				 struct btrfs_path *path,
1216 				 struct btrfs_inode *inode,
1217 				 struct extent_buffer *log_eb,
1218 				 int log_slot,
1219 				 struct btrfs_key *key)
1220 {
1221 	int ret;
1222 	unsigned long ref_ptr;
1223 	unsigned long ref_end;
1224 	struct extent_buffer *eb;
1225 
1226 again:
1227 	btrfs_release_path(path);
1228 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1229 	if (ret > 0) {
1230 		ret = 0;
1231 		goto out;
1232 	}
1233 	if (ret < 0)
1234 		goto out;
1235 
1236 	eb = path->nodes[0];
1237 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1238 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1239 	while (ref_ptr < ref_end) {
1240 		char *name = NULL;
1241 		int namelen;
1242 		u64 parent_id;
1243 
1244 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1245 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1246 						NULL, &parent_id);
1247 		} else {
1248 			parent_id = key->offset;
1249 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1250 					     NULL);
1251 		}
1252 		if (ret)
1253 			goto out;
1254 
1255 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1256 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1257 							       parent_id, name,
1258 							       namelen);
1259 		else
1260 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1261 							   name, namelen);
1262 
1263 		if (!ret) {
1264 			struct inode *dir;
1265 
1266 			btrfs_release_path(path);
1267 			dir = read_one_inode(root, parent_id);
1268 			if (!dir) {
1269 				ret = -ENOENT;
1270 				kfree(name);
1271 				goto out;
1272 			}
1273 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1274 						 inode, name, namelen);
1275 			kfree(name);
1276 			iput(dir);
1277 			if (ret)
1278 				goto out;
1279 			goto again;
1280 		}
1281 
1282 		kfree(name);
1283 		ref_ptr += namelen;
1284 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1285 			ref_ptr += sizeof(struct btrfs_inode_extref);
1286 		else
1287 			ref_ptr += sizeof(struct btrfs_inode_ref);
1288 	}
1289 	ret = 0;
1290  out:
1291 	btrfs_release_path(path);
1292 	return ret;
1293 }
1294 
1295 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1296 				  const u8 ref_type, const char *name,
1297 				  const int namelen)
1298 {
1299 	struct btrfs_key key;
1300 	struct btrfs_path *path;
1301 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1302 	int ret;
1303 
1304 	path = btrfs_alloc_path();
1305 	if (!path)
1306 		return -ENOMEM;
1307 
1308 	key.objectid = btrfs_ino(BTRFS_I(inode));
1309 	key.type = ref_type;
1310 	if (key.type == BTRFS_INODE_REF_KEY)
1311 		key.offset = parent_id;
1312 	else
1313 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1314 
1315 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1316 	if (ret < 0)
1317 		goto out;
1318 	if (ret > 0) {
1319 		ret = 0;
1320 		goto out;
1321 	}
1322 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1323 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1324 				path->slots[0], parent_id, name, namelen);
1325 	else
1326 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1327 						   name, namelen);
1328 
1329 out:
1330 	btrfs_free_path(path);
1331 	return ret;
1332 }
1333 
1334 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1335 		    struct inode *dir, struct inode *inode, const char *name,
1336 		    int namelen, u64 ref_index)
1337 {
1338 	struct btrfs_dir_item *dir_item;
1339 	struct btrfs_key key;
1340 	struct btrfs_path *path;
1341 	struct inode *other_inode = NULL;
1342 	int ret;
1343 
1344 	path = btrfs_alloc_path();
1345 	if (!path)
1346 		return -ENOMEM;
1347 
1348 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1349 					 btrfs_ino(BTRFS_I(dir)),
1350 					 name, namelen, 0);
1351 	if (!dir_item) {
1352 		btrfs_release_path(path);
1353 		goto add_link;
1354 	} else if (IS_ERR(dir_item)) {
1355 		ret = PTR_ERR(dir_item);
1356 		goto out;
1357 	}
1358 
1359 	/*
1360 	 * Our inode's dentry collides with the dentry of another inode which is
1361 	 * in the log but not yet processed since it has a higher inode number.
1362 	 * So delete that other dentry.
1363 	 */
1364 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1365 	btrfs_release_path(path);
1366 	other_inode = read_one_inode(root, key.objectid);
1367 	if (!other_inode) {
1368 		ret = -ENOENT;
1369 		goto out;
1370 	}
1371 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1372 				 name, namelen);
1373 	if (ret)
1374 		goto out;
1375 	/*
1376 	 * If we dropped the link count to 0, bump it so that later the iput()
1377 	 * on the inode will not free it. We will fixup the link count later.
1378 	 */
1379 	if (other_inode->i_nlink == 0)
1380 		inc_nlink(other_inode);
1381 
1382 	ret = btrfs_run_delayed_items(trans);
1383 	if (ret)
1384 		goto out;
1385 add_link:
1386 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1387 			     name, namelen, 0, ref_index);
1388 out:
1389 	iput(other_inode);
1390 	btrfs_free_path(path);
1391 
1392 	return ret;
1393 }
1394 
1395 /*
1396  * replay one inode back reference item found in the log tree.
1397  * eb, slot and key refer to the buffer and key found in the log tree.
1398  * root is the destination we are replaying into, and path is for temp
1399  * use by this function.  (it should be released on return).
1400  */
1401 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1402 				  struct btrfs_root *root,
1403 				  struct btrfs_root *log,
1404 				  struct btrfs_path *path,
1405 				  struct extent_buffer *eb, int slot,
1406 				  struct btrfs_key *key)
1407 {
1408 	struct inode *dir = NULL;
1409 	struct inode *inode = NULL;
1410 	unsigned long ref_ptr;
1411 	unsigned long ref_end;
1412 	char *name = NULL;
1413 	int namelen;
1414 	int ret;
1415 	int search_done = 0;
1416 	int log_ref_ver = 0;
1417 	u64 parent_objectid;
1418 	u64 inode_objectid;
1419 	u64 ref_index = 0;
1420 	int ref_struct_size;
1421 
1422 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1423 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1424 
1425 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1426 		struct btrfs_inode_extref *r;
1427 
1428 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1429 		log_ref_ver = 1;
1430 		r = (struct btrfs_inode_extref *)ref_ptr;
1431 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1432 	} else {
1433 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1434 		parent_objectid = key->offset;
1435 	}
1436 	inode_objectid = key->objectid;
1437 
1438 	/*
1439 	 * it is possible that we didn't log all the parent directories
1440 	 * for a given inode.  If we don't find the dir, just don't
1441 	 * copy the back ref in.  The link count fixup code will take
1442 	 * care of the rest
1443 	 */
1444 	dir = read_one_inode(root, parent_objectid);
1445 	if (!dir) {
1446 		ret = -ENOENT;
1447 		goto out;
1448 	}
1449 
1450 	inode = read_one_inode(root, inode_objectid);
1451 	if (!inode) {
1452 		ret = -EIO;
1453 		goto out;
1454 	}
1455 
1456 	while (ref_ptr < ref_end) {
1457 		if (log_ref_ver) {
1458 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1459 						&ref_index, &parent_objectid);
1460 			/*
1461 			 * parent object can change from one array
1462 			 * item to another.
1463 			 */
1464 			if (!dir)
1465 				dir = read_one_inode(root, parent_objectid);
1466 			if (!dir) {
1467 				ret = -ENOENT;
1468 				goto out;
1469 			}
1470 		} else {
1471 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1472 					     &ref_index);
1473 		}
1474 		if (ret)
1475 			goto out;
1476 
1477 		/* if we already have a perfect match, we're done */
1478 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1479 					btrfs_ino(BTRFS_I(inode)), ref_index,
1480 					name, namelen)) {
1481 			/*
1482 			 * look for a conflicting back reference in the
1483 			 * metadata. if we find one we have to unlink that name
1484 			 * of the file before we add our new link.  Later on, we
1485 			 * overwrite any existing back reference, and we don't
1486 			 * want to create dangling pointers in the directory.
1487 			 */
1488 
1489 			if (!search_done) {
1490 				ret = __add_inode_ref(trans, root, path, log,
1491 						      BTRFS_I(dir),
1492 						      BTRFS_I(inode),
1493 						      inode_objectid,
1494 						      parent_objectid,
1495 						      ref_index, name, namelen,
1496 						      &search_done);
1497 				if (ret) {
1498 					if (ret == 1)
1499 						ret = 0;
1500 					goto out;
1501 				}
1502 			}
1503 
1504 			/*
1505 			 * If a reference item already exists for this inode
1506 			 * with the same parent and name, but different index,
1507 			 * drop it and the corresponding directory index entries
1508 			 * from the parent before adding the new reference item
1509 			 * and dir index entries, otherwise we would fail with
1510 			 * -EEXIST returned from btrfs_add_link() below.
1511 			 */
1512 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1513 						     name, namelen);
1514 			if (ret > 0) {
1515 				ret = btrfs_unlink_inode(trans, root,
1516 							 BTRFS_I(dir),
1517 							 BTRFS_I(inode),
1518 							 name, namelen);
1519 				/*
1520 				 * If we dropped the link count to 0, bump it so
1521 				 * that later the iput() on the inode will not
1522 				 * free it. We will fixup the link count later.
1523 				 */
1524 				if (!ret && inode->i_nlink == 0)
1525 					inc_nlink(inode);
1526 			}
1527 			if (ret < 0)
1528 				goto out;
1529 
1530 			/* insert our name */
1531 			ret = add_link(trans, root, dir, inode, name, namelen,
1532 				       ref_index);
1533 			if (ret)
1534 				goto out;
1535 
1536 			btrfs_update_inode(trans, root, inode);
1537 		}
1538 
1539 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1540 		kfree(name);
1541 		name = NULL;
1542 		if (log_ref_ver) {
1543 			iput(dir);
1544 			dir = NULL;
1545 		}
1546 	}
1547 
1548 	/*
1549 	 * Before we overwrite the inode reference item in the subvolume tree
1550 	 * with the item from the log tree, we must unlink all names from the
1551 	 * parent directory that are in the subvolume's tree inode reference
1552 	 * item, otherwise we end up with an inconsistent subvolume tree where
1553 	 * dir index entries exist for a name but there is no inode reference
1554 	 * item with the same name.
1555 	 */
1556 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1557 				    key);
1558 	if (ret)
1559 		goto out;
1560 
1561 	/* finally write the back reference in the inode */
1562 	ret = overwrite_item(trans, root, path, eb, slot, key);
1563 out:
1564 	btrfs_release_path(path);
1565 	kfree(name);
1566 	iput(dir);
1567 	iput(inode);
1568 	return ret;
1569 }
1570 
1571 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1572 			      struct btrfs_root *root, u64 ino)
1573 {
1574 	int ret;
1575 
1576 	ret = btrfs_insert_orphan_item(trans, root, ino);
1577 	if (ret == -EEXIST)
1578 		ret = 0;
1579 
1580 	return ret;
1581 }
1582 
1583 static int count_inode_extrefs(struct btrfs_root *root,
1584 		struct btrfs_inode *inode, struct btrfs_path *path)
1585 {
1586 	int ret = 0;
1587 	int name_len;
1588 	unsigned int nlink = 0;
1589 	u32 item_size;
1590 	u32 cur_offset = 0;
1591 	u64 inode_objectid = btrfs_ino(inode);
1592 	u64 offset = 0;
1593 	unsigned long ptr;
1594 	struct btrfs_inode_extref *extref;
1595 	struct extent_buffer *leaf;
1596 
1597 	while (1) {
1598 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1599 					    &extref, &offset);
1600 		if (ret)
1601 			break;
1602 
1603 		leaf = path->nodes[0];
1604 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1605 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1606 		cur_offset = 0;
1607 
1608 		while (cur_offset < item_size) {
1609 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1610 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1611 
1612 			nlink++;
1613 
1614 			cur_offset += name_len + sizeof(*extref);
1615 		}
1616 
1617 		offset++;
1618 		btrfs_release_path(path);
1619 	}
1620 	btrfs_release_path(path);
1621 
1622 	if (ret < 0 && ret != -ENOENT)
1623 		return ret;
1624 	return nlink;
1625 }
1626 
1627 static int count_inode_refs(struct btrfs_root *root,
1628 			struct btrfs_inode *inode, struct btrfs_path *path)
1629 {
1630 	int ret;
1631 	struct btrfs_key key;
1632 	unsigned int nlink = 0;
1633 	unsigned long ptr;
1634 	unsigned long ptr_end;
1635 	int name_len;
1636 	u64 ino = btrfs_ino(inode);
1637 
1638 	key.objectid = ino;
1639 	key.type = BTRFS_INODE_REF_KEY;
1640 	key.offset = (u64)-1;
1641 
1642 	while (1) {
1643 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1644 		if (ret < 0)
1645 			break;
1646 		if (ret > 0) {
1647 			if (path->slots[0] == 0)
1648 				break;
1649 			path->slots[0]--;
1650 		}
1651 process_slot:
1652 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1653 				      path->slots[0]);
1654 		if (key.objectid != ino ||
1655 		    key.type != BTRFS_INODE_REF_KEY)
1656 			break;
1657 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1658 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1659 						   path->slots[0]);
1660 		while (ptr < ptr_end) {
1661 			struct btrfs_inode_ref *ref;
1662 
1663 			ref = (struct btrfs_inode_ref *)ptr;
1664 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1665 							    ref);
1666 			ptr = (unsigned long)(ref + 1) + name_len;
1667 			nlink++;
1668 		}
1669 
1670 		if (key.offset == 0)
1671 			break;
1672 		if (path->slots[0] > 0) {
1673 			path->slots[0]--;
1674 			goto process_slot;
1675 		}
1676 		key.offset--;
1677 		btrfs_release_path(path);
1678 	}
1679 	btrfs_release_path(path);
1680 
1681 	return nlink;
1682 }
1683 
1684 /*
1685  * There are a few corners where the link count of the file can't
1686  * be properly maintained during replay.  So, instead of adding
1687  * lots of complexity to the log code, we just scan the backrefs
1688  * for any file that has been through replay.
1689  *
1690  * The scan will update the link count on the inode to reflect the
1691  * number of back refs found.  If it goes down to zero, the iput
1692  * will free the inode.
1693  */
1694 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1695 					   struct btrfs_root *root,
1696 					   struct inode *inode)
1697 {
1698 	struct btrfs_path *path;
1699 	int ret;
1700 	u64 nlink = 0;
1701 	u64 ino = btrfs_ino(BTRFS_I(inode));
1702 
1703 	path = btrfs_alloc_path();
1704 	if (!path)
1705 		return -ENOMEM;
1706 
1707 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1708 	if (ret < 0)
1709 		goto out;
1710 
1711 	nlink = ret;
1712 
1713 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1714 	if (ret < 0)
1715 		goto out;
1716 
1717 	nlink += ret;
1718 
1719 	ret = 0;
1720 
1721 	if (nlink != inode->i_nlink) {
1722 		set_nlink(inode, nlink);
1723 		btrfs_update_inode(trans, root, inode);
1724 	}
1725 	BTRFS_I(inode)->index_cnt = (u64)-1;
1726 
1727 	if (inode->i_nlink == 0) {
1728 		if (S_ISDIR(inode->i_mode)) {
1729 			ret = replay_dir_deletes(trans, root, NULL, path,
1730 						 ino, 1);
1731 			if (ret)
1732 				goto out;
1733 		}
1734 		ret = insert_orphan_item(trans, root, ino);
1735 	}
1736 
1737 out:
1738 	btrfs_free_path(path);
1739 	return ret;
1740 }
1741 
1742 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1743 					    struct btrfs_root *root,
1744 					    struct btrfs_path *path)
1745 {
1746 	int ret;
1747 	struct btrfs_key key;
1748 	struct inode *inode;
1749 
1750 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1751 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1752 	key.offset = (u64)-1;
1753 	while (1) {
1754 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1755 		if (ret < 0)
1756 			break;
1757 
1758 		if (ret == 1) {
1759 			if (path->slots[0] == 0)
1760 				break;
1761 			path->slots[0]--;
1762 		}
1763 
1764 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1765 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1766 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1767 			break;
1768 
1769 		ret = btrfs_del_item(trans, root, path);
1770 		if (ret)
1771 			goto out;
1772 
1773 		btrfs_release_path(path);
1774 		inode = read_one_inode(root, key.offset);
1775 		if (!inode)
1776 			return -EIO;
1777 
1778 		ret = fixup_inode_link_count(trans, root, inode);
1779 		iput(inode);
1780 		if (ret)
1781 			goto out;
1782 
1783 		/*
1784 		 * fixup on a directory may create new entries,
1785 		 * make sure we always look for the highset possible
1786 		 * offset
1787 		 */
1788 		key.offset = (u64)-1;
1789 	}
1790 	ret = 0;
1791 out:
1792 	btrfs_release_path(path);
1793 	return ret;
1794 }
1795 
1796 
1797 /*
1798  * record a given inode in the fixup dir so we can check its link
1799  * count when replay is done.  The link count is incremented here
1800  * so the inode won't go away until we check it
1801  */
1802 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1803 				      struct btrfs_root *root,
1804 				      struct btrfs_path *path,
1805 				      u64 objectid)
1806 {
1807 	struct btrfs_key key;
1808 	int ret = 0;
1809 	struct inode *inode;
1810 
1811 	inode = read_one_inode(root, objectid);
1812 	if (!inode)
1813 		return -EIO;
1814 
1815 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1816 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1817 	key.offset = objectid;
1818 
1819 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1820 
1821 	btrfs_release_path(path);
1822 	if (ret == 0) {
1823 		if (!inode->i_nlink)
1824 			set_nlink(inode, 1);
1825 		else
1826 			inc_nlink(inode);
1827 		ret = btrfs_update_inode(trans, root, inode);
1828 	} else if (ret == -EEXIST) {
1829 		ret = 0;
1830 	} else {
1831 		BUG(); /* Logic Error */
1832 	}
1833 	iput(inode);
1834 
1835 	return ret;
1836 }
1837 
1838 /*
1839  * when replaying the log for a directory, we only insert names
1840  * for inodes that actually exist.  This means an fsync on a directory
1841  * does not implicitly fsync all the new files in it
1842  */
1843 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1844 				    struct btrfs_root *root,
1845 				    u64 dirid, u64 index,
1846 				    char *name, int name_len,
1847 				    struct btrfs_key *location)
1848 {
1849 	struct inode *inode;
1850 	struct inode *dir;
1851 	int ret;
1852 
1853 	inode = read_one_inode(root, location->objectid);
1854 	if (!inode)
1855 		return -ENOENT;
1856 
1857 	dir = read_one_inode(root, dirid);
1858 	if (!dir) {
1859 		iput(inode);
1860 		return -EIO;
1861 	}
1862 
1863 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1864 			name_len, 1, index);
1865 
1866 	/* FIXME, put inode into FIXUP list */
1867 
1868 	iput(inode);
1869 	iput(dir);
1870 	return ret;
1871 }
1872 
1873 /*
1874  * take a single entry in a log directory item and replay it into
1875  * the subvolume.
1876  *
1877  * if a conflicting item exists in the subdirectory already,
1878  * the inode it points to is unlinked and put into the link count
1879  * fix up tree.
1880  *
1881  * If a name from the log points to a file or directory that does
1882  * not exist in the FS, it is skipped.  fsyncs on directories
1883  * do not force down inodes inside that directory, just changes to the
1884  * names or unlinks in a directory.
1885  *
1886  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1887  * non-existing inode) and 1 if the name was replayed.
1888  */
1889 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1890 				    struct btrfs_root *root,
1891 				    struct btrfs_path *path,
1892 				    struct extent_buffer *eb,
1893 				    struct btrfs_dir_item *di,
1894 				    struct btrfs_key *key)
1895 {
1896 	char *name;
1897 	int name_len;
1898 	struct btrfs_dir_item *dst_di;
1899 	struct btrfs_key found_key;
1900 	struct btrfs_key log_key;
1901 	struct inode *dir;
1902 	u8 log_type;
1903 	int exists;
1904 	int ret = 0;
1905 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1906 	bool name_added = false;
1907 
1908 	dir = read_one_inode(root, key->objectid);
1909 	if (!dir)
1910 		return -EIO;
1911 
1912 	name_len = btrfs_dir_name_len(eb, di);
1913 	name = kmalloc(name_len, GFP_NOFS);
1914 	if (!name) {
1915 		ret = -ENOMEM;
1916 		goto out;
1917 	}
1918 
1919 	log_type = btrfs_dir_type(eb, di);
1920 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1921 		   name_len);
1922 
1923 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1924 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1925 	if (exists == 0)
1926 		exists = 1;
1927 	else
1928 		exists = 0;
1929 	btrfs_release_path(path);
1930 
1931 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1932 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1933 				       name, name_len, 1);
1934 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1935 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1936 						     key->objectid,
1937 						     key->offset, name,
1938 						     name_len, 1);
1939 	} else {
1940 		/* Corruption */
1941 		ret = -EINVAL;
1942 		goto out;
1943 	}
1944 	if (IS_ERR_OR_NULL(dst_di)) {
1945 		/* we need a sequence number to insert, so we only
1946 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1947 		 */
1948 		if (key->type != BTRFS_DIR_INDEX_KEY)
1949 			goto out;
1950 		goto insert;
1951 	}
1952 
1953 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1954 	/* the existing item matches the logged item */
1955 	if (found_key.objectid == log_key.objectid &&
1956 	    found_key.type == log_key.type &&
1957 	    found_key.offset == log_key.offset &&
1958 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1959 		update_size = false;
1960 		goto out;
1961 	}
1962 
1963 	/*
1964 	 * don't drop the conflicting directory entry if the inode
1965 	 * for the new entry doesn't exist
1966 	 */
1967 	if (!exists)
1968 		goto out;
1969 
1970 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1971 	if (ret)
1972 		goto out;
1973 
1974 	if (key->type == BTRFS_DIR_INDEX_KEY)
1975 		goto insert;
1976 out:
1977 	btrfs_release_path(path);
1978 	if (!ret && update_size) {
1979 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1980 		ret = btrfs_update_inode(trans, root, dir);
1981 	}
1982 	kfree(name);
1983 	iput(dir);
1984 	if (!ret && name_added)
1985 		ret = 1;
1986 	return ret;
1987 
1988 insert:
1989 	/*
1990 	 * Check if the inode reference exists in the log for the given name,
1991 	 * inode and parent inode
1992 	 */
1993 	found_key.objectid = log_key.objectid;
1994 	found_key.type = BTRFS_INODE_REF_KEY;
1995 	found_key.offset = key->objectid;
1996 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1997 	if (ret < 0) {
1998 	        goto out;
1999 	} else if (ret) {
2000 	        /* The dentry will be added later. */
2001 	        ret = 0;
2002 	        update_size = false;
2003 	        goto out;
2004 	}
2005 
2006 	found_key.objectid = log_key.objectid;
2007 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2008 	found_key.offset = key->objectid;
2009 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2010 			     name_len);
2011 	if (ret < 0) {
2012 		goto out;
2013 	} else if (ret) {
2014 		/* The dentry will be added later. */
2015 		ret = 0;
2016 		update_size = false;
2017 		goto out;
2018 	}
2019 	btrfs_release_path(path);
2020 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2021 			      name, name_len, &log_key);
2022 	if (ret && ret != -ENOENT && ret != -EEXIST)
2023 		goto out;
2024 	if (!ret)
2025 		name_added = true;
2026 	update_size = false;
2027 	ret = 0;
2028 	goto out;
2029 }
2030 
2031 /*
2032  * find all the names in a directory item and reconcile them into
2033  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2034  * one name in a directory item, but the same code gets used for
2035  * both directory index types
2036  */
2037 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2038 					struct btrfs_root *root,
2039 					struct btrfs_path *path,
2040 					struct extent_buffer *eb, int slot,
2041 					struct btrfs_key *key)
2042 {
2043 	int ret = 0;
2044 	u32 item_size = btrfs_item_size_nr(eb, slot);
2045 	struct btrfs_dir_item *di;
2046 	int name_len;
2047 	unsigned long ptr;
2048 	unsigned long ptr_end;
2049 	struct btrfs_path *fixup_path = NULL;
2050 
2051 	ptr = btrfs_item_ptr_offset(eb, slot);
2052 	ptr_end = ptr + item_size;
2053 	while (ptr < ptr_end) {
2054 		di = (struct btrfs_dir_item *)ptr;
2055 		name_len = btrfs_dir_name_len(eb, di);
2056 		ret = replay_one_name(trans, root, path, eb, di, key);
2057 		if (ret < 0)
2058 			break;
2059 		ptr = (unsigned long)(di + 1);
2060 		ptr += name_len;
2061 
2062 		/*
2063 		 * If this entry refers to a non-directory (directories can not
2064 		 * have a link count > 1) and it was added in the transaction
2065 		 * that was not committed, make sure we fixup the link count of
2066 		 * the inode it the entry points to. Otherwise something like
2067 		 * the following would result in a directory pointing to an
2068 		 * inode with a wrong link that does not account for this dir
2069 		 * entry:
2070 		 *
2071 		 * mkdir testdir
2072 		 * touch testdir/foo
2073 		 * touch testdir/bar
2074 		 * sync
2075 		 *
2076 		 * ln testdir/bar testdir/bar_link
2077 		 * ln testdir/foo testdir/foo_link
2078 		 * xfs_io -c "fsync" testdir/bar
2079 		 *
2080 		 * <power failure>
2081 		 *
2082 		 * mount fs, log replay happens
2083 		 *
2084 		 * File foo would remain with a link count of 1 when it has two
2085 		 * entries pointing to it in the directory testdir. This would
2086 		 * make it impossible to ever delete the parent directory has
2087 		 * it would result in stale dentries that can never be deleted.
2088 		 */
2089 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2090 			struct btrfs_key di_key;
2091 
2092 			if (!fixup_path) {
2093 				fixup_path = btrfs_alloc_path();
2094 				if (!fixup_path) {
2095 					ret = -ENOMEM;
2096 					break;
2097 				}
2098 			}
2099 
2100 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2101 			ret = link_to_fixup_dir(trans, root, fixup_path,
2102 						di_key.objectid);
2103 			if (ret)
2104 				break;
2105 		}
2106 		ret = 0;
2107 	}
2108 	btrfs_free_path(fixup_path);
2109 	return ret;
2110 }
2111 
2112 /*
2113  * directory replay has two parts.  There are the standard directory
2114  * items in the log copied from the subvolume, and range items
2115  * created in the log while the subvolume was logged.
2116  *
2117  * The range items tell us which parts of the key space the log
2118  * is authoritative for.  During replay, if a key in the subvolume
2119  * directory is in a logged range item, but not actually in the log
2120  * that means it was deleted from the directory before the fsync
2121  * and should be removed.
2122  */
2123 static noinline int find_dir_range(struct btrfs_root *root,
2124 				   struct btrfs_path *path,
2125 				   u64 dirid, int key_type,
2126 				   u64 *start_ret, u64 *end_ret)
2127 {
2128 	struct btrfs_key key;
2129 	u64 found_end;
2130 	struct btrfs_dir_log_item *item;
2131 	int ret;
2132 	int nritems;
2133 
2134 	if (*start_ret == (u64)-1)
2135 		return 1;
2136 
2137 	key.objectid = dirid;
2138 	key.type = key_type;
2139 	key.offset = *start_ret;
2140 
2141 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2142 	if (ret < 0)
2143 		goto out;
2144 	if (ret > 0) {
2145 		if (path->slots[0] == 0)
2146 			goto out;
2147 		path->slots[0]--;
2148 	}
2149 	if (ret != 0)
2150 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2151 
2152 	if (key.type != key_type || key.objectid != dirid) {
2153 		ret = 1;
2154 		goto next;
2155 	}
2156 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2157 			      struct btrfs_dir_log_item);
2158 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2159 
2160 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2161 		ret = 0;
2162 		*start_ret = key.offset;
2163 		*end_ret = found_end;
2164 		goto out;
2165 	}
2166 	ret = 1;
2167 next:
2168 	/* check the next slot in the tree to see if it is a valid item */
2169 	nritems = btrfs_header_nritems(path->nodes[0]);
2170 	path->slots[0]++;
2171 	if (path->slots[0] >= nritems) {
2172 		ret = btrfs_next_leaf(root, path);
2173 		if (ret)
2174 			goto out;
2175 	}
2176 
2177 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2178 
2179 	if (key.type != key_type || key.objectid != dirid) {
2180 		ret = 1;
2181 		goto out;
2182 	}
2183 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2184 			      struct btrfs_dir_log_item);
2185 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2186 	*start_ret = key.offset;
2187 	*end_ret = found_end;
2188 	ret = 0;
2189 out:
2190 	btrfs_release_path(path);
2191 	return ret;
2192 }
2193 
2194 /*
2195  * this looks for a given directory item in the log.  If the directory
2196  * item is not in the log, the item is removed and the inode it points
2197  * to is unlinked
2198  */
2199 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2200 				      struct btrfs_root *root,
2201 				      struct btrfs_root *log,
2202 				      struct btrfs_path *path,
2203 				      struct btrfs_path *log_path,
2204 				      struct inode *dir,
2205 				      struct btrfs_key *dir_key)
2206 {
2207 	int ret;
2208 	struct extent_buffer *eb;
2209 	int slot;
2210 	u32 item_size;
2211 	struct btrfs_dir_item *di;
2212 	struct btrfs_dir_item *log_di;
2213 	int name_len;
2214 	unsigned long ptr;
2215 	unsigned long ptr_end;
2216 	char *name;
2217 	struct inode *inode;
2218 	struct btrfs_key location;
2219 
2220 again:
2221 	eb = path->nodes[0];
2222 	slot = path->slots[0];
2223 	item_size = btrfs_item_size_nr(eb, slot);
2224 	ptr = btrfs_item_ptr_offset(eb, slot);
2225 	ptr_end = ptr + item_size;
2226 	while (ptr < ptr_end) {
2227 		di = (struct btrfs_dir_item *)ptr;
2228 		name_len = btrfs_dir_name_len(eb, di);
2229 		name = kmalloc(name_len, GFP_NOFS);
2230 		if (!name) {
2231 			ret = -ENOMEM;
2232 			goto out;
2233 		}
2234 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2235 				  name_len);
2236 		log_di = NULL;
2237 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2238 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2239 						       dir_key->objectid,
2240 						       name, name_len, 0);
2241 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2242 			log_di = btrfs_lookup_dir_index_item(trans, log,
2243 						     log_path,
2244 						     dir_key->objectid,
2245 						     dir_key->offset,
2246 						     name, name_len, 0);
2247 		}
2248 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2249 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2250 			btrfs_release_path(path);
2251 			btrfs_release_path(log_path);
2252 			inode = read_one_inode(root, location.objectid);
2253 			if (!inode) {
2254 				kfree(name);
2255 				return -EIO;
2256 			}
2257 
2258 			ret = link_to_fixup_dir(trans, root,
2259 						path, location.objectid);
2260 			if (ret) {
2261 				kfree(name);
2262 				iput(inode);
2263 				goto out;
2264 			}
2265 
2266 			inc_nlink(inode);
2267 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2268 					BTRFS_I(inode), name, name_len);
2269 			if (!ret)
2270 				ret = btrfs_run_delayed_items(trans);
2271 			kfree(name);
2272 			iput(inode);
2273 			if (ret)
2274 				goto out;
2275 
2276 			/* there might still be more names under this key
2277 			 * check and repeat if required
2278 			 */
2279 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2280 						0, 0);
2281 			if (ret == 0)
2282 				goto again;
2283 			ret = 0;
2284 			goto out;
2285 		} else if (IS_ERR(log_di)) {
2286 			kfree(name);
2287 			return PTR_ERR(log_di);
2288 		}
2289 		btrfs_release_path(log_path);
2290 		kfree(name);
2291 
2292 		ptr = (unsigned long)(di + 1);
2293 		ptr += name_len;
2294 	}
2295 	ret = 0;
2296 out:
2297 	btrfs_release_path(path);
2298 	btrfs_release_path(log_path);
2299 	return ret;
2300 }
2301 
2302 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2303 			      struct btrfs_root *root,
2304 			      struct btrfs_root *log,
2305 			      struct btrfs_path *path,
2306 			      const u64 ino)
2307 {
2308 	struct btrfs_key search_key;
2309 	struct btrfs_path *log_path;
2310 	int i;
2311 	int nritems;
2312 	int ret;
2313 
2314 	log_path = btrfs_alloc_path();
2315 	if (!log_path)
2316 		return -ENOMEM;
2317 
2318 	search_key.objectid = ino;
2319 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2320 	search_key.offset = 0;
2321 again:
2322 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2323 	if (ret < 0)
2324 		goto out;
2325 process_leaf:
2326 	nritems = btrfs_header_nritems(path->nodes[0]);
2327 	for (i = path->slots[0]; i < nritems; i++) {
2328 		struct btrfs_key key;
2329 		struct btrfs_dir_item *di;
2330 		struct btrfs_dir_item *log_di;
2331 		u32 total_size;
2332 		u32 cur;
2333 
2334 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2335 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2336 			ret = 0;
2337 			goto out;
2338 		}
2339 
2340 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2341 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2342 		cur = 0;
2343 		while (cur < total_size) {
2344 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2345 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2346 			u32 this_len = sizeof(*di) + name_len + data_len;
2347 			char *name;
2348 
2349 			name = kmalloc(name_len, GFP_NOFS);
2350 			if (!name) {
2351 				ret = -ENOMEM;
2352 				goto out;
2353 			}
2354 			read_extent_buffer(path->nodes[0], name,
2355 					   (unsigned long)(di + 1), name_len);
2356 
2357 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2358 						    name, name_len, 0);
2359 			btrfs_release_path(log_path);
2360 			if (!log_di) {
2361 				/* Doesn't exist in log tree, so delete it. */
2362 				btrfs_release_path(path);
2363 				di = btrfs_lookup_xattr(trans, root, path, ino,
2364 							name, name_len, -1);
2365 				kfree(name);
2366 				if (IS_ERR(di)) {
2367 					ret = PTR_ERR(di);
2368 					goto out;
2369 				}
2370 				ASSERT(di);
2371 				ret = btrfs_delete_one_dir_name(trans, root,
2372 								path, di);
2373 				if (ret)
2374 					goto out;
2375 				btrfs_release_path(path);
2376 				search_key = key;
2377 				goto again;
2378 			}
2379 			kfree(name);
2380 			if (IS_ERR(log_di)) {
2381 				ret = PTR_ERR(log_di);
2382 				goto out;
2383 			}
2384 			cur += this_len;
2385 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2386 		}
2387 	}
2388 	ret = btrfs_next_leaf(root, path);
2389 	if (ret > 0)
2390 		ret = 0;
2391 	else if (ret == 0)
2392 		goto process_leaf;
2393 out:
2394 	btrfs_free_path(log_path);
2395 	btrfs_release_path(path);
2396 	return ret;
2397 }
2398 
2399 
2400 /*
2401  * deletion replay happens before we copy any new directory items
2402  * out of the log or out of backreferences from inodes.  It
2403  * scans the log to find ranges of keys that log is authoritative for,
2404  * and then scans the directory to find items in those ranges that are
2405  * not present in the log.
2406  *
2407  * Anything we don't find in the log is unlinked and removed from the
2408  * directory.
2409  */
2410 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2411 				       struct btrfs_root *root,
2412 				       struct btrfs_root *log,
2413 				       struct btrfs_path *path,
2414 				       u64 dirid, int del_all)
2415 {
2416 	u64 range_start;
2417 	u64 range_end;
2418 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2419 	int ret = 0;
2420 	struct btrfs_key dir_key;
2421 	struct btrfs_key found_key;
2422 	struct btrfs_path *log_path;
2423 	struct inode *dir;
2424 
2425 	dir_key.objectid = dirid;
2426 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2427 	log_path = btrfs_alloc_path();
2428 	if (!log_path)
2429 		return -ENOMEM;
2430 
2431 	dir = read_one_inode(root, dirid);
2432 	/* it isn't an error if the inode isn't there, that can happen
2433 	 * because we replay the deletes before we copy in the inode item
2434 	 * from the log
2435 	 */
2436 	if (!dir) {
2437 		btrfs_free_path(log_path);
2438 		return 0;
2439 	}
2440 again:
2441 	range_start = 0;
2442 	range_end = 0;
2443 	while (1) {
2444 		if (del_all)
2445 			range_end = (u64)-1;
2446 		else {
2447 			ret = find_dir_range(log, path, dirid, key_type,
2448 					     &range_start, &range_end);
2449 			if (ret != 0)
2450 				break;
2451 		}
2452 
2453 		dir_key.offset = range_start;
2454 		while (1) {
2455 			int nritems;
2456 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2457 						0, 0);
2458 			if (ret < 0)
2459 				goto out;
2460 
2461 			nritems = btrfs_header_nritems(path->nodes[0]);
2462 			if (path->slots[0] >= nritems) {
2463 				ret = btrfs_next_leaf(root, path);
2464 				if (ret == 1)
2465 					break;
2466 				else if (ret < 0)
2467 					goto out;
2468 			}
2469 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2470 					      path->slots[0]);
2471 			if (found_key.objectid != dirid ||
2472 			    found_key.type != dir_key.type)
2473 				goto next_type;
2474 
2475 			if (found_key.offset > range_end)
2476 				break;
2477 
2478 			ret = check_item_in_log(trans, root, log, path,
2479 						log_path, dir,
2480 						&found_key);
2481 			if (ret)
2482 				goto out;
2483 			if (found_key.offset == (u64)-1)
2484 				break;
2485 			dir_key.offset = found_key.offset + 1;
2486 		}
2487 		btrfs_release_path(path);
2488 		if (range_end == (u64)-1)
2489 			break;
2490 		range_start = range_end + 1;
2491 	}
2492 
2493 next_type:
2494 	ret = 0;
2495 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2496 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2497 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2498 		btrfs_release_path(path);
2499 		goto again;
2500 	}
2501 out:
2502 	btrfs_release_path(path);
2503 	btrfs_free_path(log_path);
2504 	iput(dir);
2505 	return ret;
2506 }
2507 
2508 /*
2509  * the process_func used to replay items from the log tree.  This
2510  * gets called in two different stages.  The first stage just looks
2511  * for inodes and makes sure they are all copied into the subvolume.
2512  *
2513  * The second stage copies all the other item types from the log into
2514  * the subvolume.  The two stage approach is slower, but gets rid of
2515  * lots of complexity around inodes referencing other inodes that exist
2516  * only in the log (references come from either directory items or inode
2517  * back refs).
2518  */
2519 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2520 			     struct walk_control *wc, u64 gen, int level)
2521 {
2522 	int nritems;
2523 	struct btrfs_path *path;
2524 	struct btrfs_root *root = wc->replay_dest;
2525 	struct btrfs_key key;
2526 	int i;
2527 	int ret;
2528 
2529 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2530 	if (ret)
2531 		return ret;
2532 
2533 	level = btrfs_header_level(eb);
2534 
2535 	if (level != 0)
2536 		return 0;
2537 
2538 	path = btrfs_alloc_path();
2539 	if (!path)
2540 		return -ENOMEM;
2541 
2542 	nritems = btrfs_header_nritems(eb);
2543 	for (i = 0; i < nritems; i++) {
2544 		btrfs_item_key_to_cpu(eb, &key, i);
2545 
2546 		/* inode keys are done during the first stage */
2547 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2548 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2549 			struct btrfs_inode_item *inode_item;
2550 			u32 mode;
2551 
2552 			inode_item = btrfs_item_ptr(eb, i,
2553 					    struct btrfs_inode_item);
2554 			/*
2555 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2556 			 * and never got linked before the fsync, skip it, as
2557 			 * replaying it is pointless since it would be deleted
2558 			 * later. We skip logging tmpfiles, but it's always
2559 			 * possible we are replaying a log created with a kernel
2560 			 * that used to log tmpfiles.
2561 			 */
2562 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2563 				wc->ignore_cur_inode = true;
2564 				continue;
2565 			} else {
2566 				wc->ignore_cur_inode = false;
2567 			}
2568 			ret = replay_xattr_deletes(wc->trans, root, log,
2569 						   path, key.objectid);
2570 			if (ret)
2571 				break;
2572 			mode = btrfs_inode_mode(eb, inode_item);
2573 			if (S_ISDIR(mode)) {
2574 				ret = replay_dir_deletes(wc->trans,
2575 					 root, log, path, key.objectid, 0);
2576 				if (ret)
2577 					break;
2578 			}
2579 			ret = overwrite_item(wc->trans, root, path,
2580 					     eb, i, &key);
2581 			if (ret)
2582 				break;
2583 
2584 			/*
2585 			 * Before replaying extents, truncate the inode to its
2586 			 * size. We need to do it now and not after log replay
2587 			 * because before an fsync we can have prealloc extents
2588 			 * added beyond the inode's i_size. If we did it after,
2589 			 * through orphan cleanup for example, we would drop
2590 			 * those prealloc extents just after replaying them.
2591 			 */
2592 			if (S_ISREG(mode)) {
2593 				struct inode *inode;
2594 				u64 from;
2595 
2596 				inode = read_one_inode(root, key.objectid);
2597 				if (!inode) {
2598 					ret = -EIO;
2599 					break;
2600 				}
2601 				from = ALIGN(i_size_read(inode),
2602 					     root->fs_info->sectorsize);
2603 				ret = btrfs_drop_extents(wc->trans, root, inode,
2604 							 from, (u64)-1, 1);
2605 				if (!ret) {
2606 					/* Update the inode's nbytes. */
2607 					ret = btrfs_update_inode(wc->trans,
2608 								 root, inode);
2609 				}
2610 				iput(inode);
2611 				if (ret)
2612 					break;
2613 			}
2614 
2615 			ret = link_to_fixup_dir(wc->trans, root,
2616 						path, key.objectid);
2617 			if (ret)
2618 				break;
2619 		}
2620 
2621 		if (wc->ignore_cur_inode)
2622 			continue;
2623 
2624 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2625 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2626 			ret = replay_one_dir_item(wc->trans, root, path,
2627 						  eb, i, &key);
2628 			if (ret)
2629 				break;
2630 		}
2631 
2632 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2633 			continue;
2634 
2635 		/* these keys are simply copied */
2636 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2637 			ret = overwrite_item(wc->trans, root, path,
2638 					     eb, i, &key);
2639 			if (ret)
2640 				break;
2641 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2642 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2643 			ret = add_inode_ref(wc->trans, root, log, path,
2644 					    eb, i, &key);
2645 			if (ret && ret != -ENOENT)
2646 				break;
2647 			ret = 0;
2648 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2649 			ret = replay_one_extent(wc->trans, root, path,
2650 						eb, i, &key);
2651 			if (ret)
2652 				break;
2653 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2654 			ret = replay_one_dir_item(wc->trans, root, path,
2655 						  eb, i, &key);
2656 			if (ret)
2657 				break;
2658 		}
2659 	}
2660 	btrfs_free_path(path);
2661 	return ret;
2662 }
2663 
2664 /*
2665  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2666  */
2667 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2668 {
2669 	struct btrfs_block_group *cache;
2670 
2671 	cache = btrfs_lookup_block_group(fs_info, start);
2672 	if (!cache) {
2673 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2674 		return;
2675 	}
2676 
2677 	spin_lock(&cache->space_info->lock);
2678 	spin_lock(&cache->lock);
2679 	cache->reserved -= fs_info->nodesize;
2680 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2681 	spin_unlock(&cache->lock);
2682 	spin_unlock(&cache->space_info->lock);
2683 
2684 	btrfs_put_block_group(cache);
2685 }
2686 
2687 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2688 				   struct btrfs_root *root,
2689 				   struct btrfs_path *path, int *level,
2690 				   struct walk_control *wc)
2691 {
2692 	struct btrfs_fs_info *fs_info = root->fs_info;
2693 	u64 bytenr;
2694 	u64 ptr_gen;
2695 	struct extent_buffer *next;
2696 	struct extent_buffer *cur;
2697 	u32 blocksize;
2698 	int ret = 0;
2699 
2700 	while (*level > 0) {
2701 		struct btrfs_key first_key;
2702 
2703 		cur = path->nodes[*level];
2704 
2705 		WARN_ON(btrfs_header_level(cur) != *level);
2706 
2707 		if (path->slots[*level] >=
2708 		    btrfs_header_nritems(cur))
2709 			break;
2710 
2711 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2712 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2713 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2714 		blocksize = fs_info->nodesize;
2715 
2716 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2717 		if (IS_ERR(next))
2718 			return PTR_ERR(next);
2719 
2720 		if (*level == 1) {
2721 			ret = wc->process_func(root, next, wc, ptr_gen,
2722 					       *level - 1);
2723 			if (ret) {
2724 				free_extent_buffer(next);
2725 				return ret;
2726 			}
2727 
2728 			path->slots[*level]++;
2729 			if (wc->free) {
2730 				ret = btrfs_read_buffer(next, ptr_gen,
2731 							*level - 1, &first_key);
2732 				if (ret) {
2733 					free_extent_buffer(next);
2734 					return ret;
2735 				}
2736 
2737 				if (trans) {
2738 					btrfs_tree_lock(next);
2739 					btrfs_set_lock_blocking_write(next);
2740 					btrfs_clean_tree_block(next);
2741 					btrfs_wait_tree_block_writeback(next);
2742 					btrfs_tree_unlock(next);
2743 					ret = btrfs_pin_reserved_extent(trans,
2744 							bytenr, blocksize);
2745 					if (ret) {
2746 						free_extent_buffer(next);
2747 						return ret;
2748 					}
2749 				} else {
2750 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2751 						clear_extent_buffer_dirty(next);
2752 					unaccount_log_buffer(fs_info, bytenr);
2753 				}
2754 			}
2755 			free_extent_buffer(next);
2756 			continue;
2757 		}
2758 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2759 		if (ret) {
2760 			free_extent_buffer(next);
2761 			return ret;
2762 		}
2763 
2764 		if (path->nodes[*level-1])
2765 			free_extent_buffer(path->nodes[*level-1]);
2766 		path->nodes[*level-1] = next;
2767 		*level = btrfs_header_level(next);
2768 		path->slots[*level] = 0;
2769 		cond_resched();
2770 	}
2771 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2772 
2773 	cond_resched();
2774 	return 0;
2775 }
2776 
2777 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2778 				 struct btrfs_root *root,
2779 				 struct btrfs_path *path, int *level,
2780 				 struct walk_control *wc)
2781 {
2782 	struct btrfs_fs_info *fs_info = root->fs_info;
2783 	int i;
2784 	int slot;
2785 	int ret;
2786 
2787 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2788 		slot = path->slots[i];
2789 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2790 			path->slots[i]++;
2791 			*level = i;
2792 			WARN_ON(*level == 0);
2793 			return 0;
2794 		} else {
2795 			ret = wc->process_func(root, path->nodes[*level], wc,
2796 				 btrfs_header_generation(path->nodes[*level]),
2797 				 *level);
2798 			if (ret)
2799 				return ret;
2800 
2801 			if (wc->free) {
2802 				struct extent_buffer *next;
2803 
2804 				next = path->nodes[*level];
2805 
2806 				if (trans) {
2807 					btrfs_tree_lock(next);
2808 					btrfs_set_lock_blocking_write(next);
2809 					btrfs_clean_tree_block(next);
2810 					btrfs_wait_tree_block_writeback(next);
2811 					btrfs_tree_unlock(next);
2812 					ret = btrfs_pin_reserved_extent(trans,
2813 						     path->nodes[*level]->start,
2814 						     path->nodes[*level]->len);
2815 					if (ret)
2816 						return ret;
2817 				} else {
2818 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2819 						clear_extent_buffer_dirty(next);
2820 
2821 					unaccount_log_buffer(fs_info,
2822 						path->nodes[*level]->start);
2823 				}
2824 			}
2825 			free_extent_buffer(path->nodes[*level]);
2826 			path->nodes[*level] = NULL;
2827 			*level = i + 1;
2828 		}
2829 	}
2830 	return 1;
2831 }
2832 
2833 /*
2834  * drop the reference count on the tree rooted at 'snap'.  This traverses
2835  * the tree freeing any blocks that have a ref count of zero after being
2836  * decremented.
2837  */
2838 static int walk_log_tree(struct btrfs_trans_handle *trans,
2839 			 struct btrfs_root *log, struct walk_control *wc)
2840 {
2841 	struct btrfs_fs_info *fs_info = log->fs_info;
2842 	int ret = 0;
2843 	int wret;
2844 	int level;
2845 	struct btrfs_path *path;
2846 	int orig_level;
2847 
2848 	path = btrfs_alloc_path();
2849 	if (!path)
2850 		return -ENOMEM;
2851 
2852 	level = btrfs_header_level(log->node);
2853 	orig_level = level;
2854 	path->nodes[level] = log->node;
2855 	atomic_inc(&log->node->refs);
2856 	path->slots[level] = 0;
2857 
2858 	while (1) {
2859 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2860 		if (wret > 0)
2861 			break;
2862 		if (wret < 0) {
2863 			ret = wret;
2864 			goto out;
2865 		}
2866 
2867 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2868 		if (wret > 0)
2869 			break;
2870 		if (wret < 0) {
2871 			ret = wret;
2872 			goto out;
2873 		}
2874 	}
2875 
2876 	/* was the root node processed? if not, catch it here */
2877 	if (path->nodes[orig_level]) {
2878 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2879 			 btrfs_header_generation(path->nodes[orig_level]),
2880 			 orig_level);
2881 		if (ret)
2882 			goto out;
2883 		if (wc->free) {
2884 			struct extent_buffer *next;
2885 
2886 			next = path->nodes[orig_level];
2887 
2888 			if (trans) {
2889 				btrfs_tree_lock(next);
2890 				btrfs_set_lock_blocking_write(next);
2891 				btrfs_clean_tree_block(next);
2892 				btrfs_wait_tree_block_writeback(next);
2893 				btrfs_tree_unlock(next);
2894 				ret = btrfs_pin_reserved_extent(trans,
2895 						next->start, next->len);
2896 				if (ret)
2897 					goto out;
2898 			} else {
2899 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2900 					clear_extent_buffer_dirty(next);
2901 				unaccount_log_buffer(fs_info, next->start);
2902 			}
2903 		}
2904 	}
2905 
2906 out:
2907 	btrfs_free_path(path);
2908 	return ret;
2909 }
2910 
2911 /*
2912  * helper function to update the item for a given subvolumes log root
2913  * in the tree of log roots
2914  */
2915 static int update_log_root(struct btrfs_trans_handle *trans,
2916 			   struct btrfs_root *log,
2917 			   struct btrfs_root_item *root_item)
2918 {
2919 	struct btrfs_fs_info *fs_info = log->fs_info;
2920 	int ret;
2921 
2922 	if (log->log_transid == 1) {
2923 		/* insert root item on the first sync */
2924 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2925 				&log->root_key, root_item);
2926 	} else {
2927 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2928 				&log->root_key, root_item);
2929 	}
2930 	return ret;
2931 }
2932 
2933 static void wait_log_commit(struct btrfs_root *root, int transid)
2934 {
2935 	DEFINE_WAIT(wait);
2936 	int index = transid % 2;
2937 
2938 	/*
2939 	 * we only allow two pending log transactions at a time,
2940 	 * so we know that if ours is more than 2 older than the
2941 	 * current transaction, we're done
2942 	 */
2943 	for (;;) {
2944 		prepare_to_wait(&root->log_commit_wait[index],
2945 				&wait, TASK_UNINTERRUPTIBLE);
2946 
2947 		if (!(root->log_transid_committed < transid &&
2948 		      atomic_read(&root->log_commit[index])))
2949 			break;
2950 
2951 		mutex_unlock(&root->log_mutex);
2952 		schedule();
2953 		mutex_lock(&root->log_mutex);
2954 	}
2955 	finish_wait(&root->log_commit_wait[index], &wait);
2956 }
2957 
2958 static void wait_for_writer(struct btrfs_root *root)
2959 {
2960 	DEFINE_WAIT(wait);
2961 
2962 	for (;;) {
2963 		prepare_to_wait(&root->log_writer_wait, &wait,
2964 				TASK_UNINTERRUPTIBLE);
2965 		if (!atomic_read(&root->log_writers))
2966 			break;
2967 
2968 		mutex_unlock(&root->log_mutex);
2969 		schedule();
2970 		mutex_lock(&root->log_mutex);
2971 	}
2972 	finish_wait(&root->log_writer_wait, &wait);
2973 }
2974 
2975 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2976 					struct btrfs_log_ctx *ctx)
2977 {
2978 	if (!ctx)
2979 		return;
2980 
2981 	mutex_lock(&root->log_mutex);
2982 	list_del_init(&ctx->list);
2983 	mutex_unlock(&root->log_mutex);
2984 }
2985 
2986 /*
2987  * Invoked in log mutex context, or be sure there is no other task which
2988  * can access the list.
2989  */
2990 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2991 					     int index, int error)
2992 {
2993 	struct btrfs_log_ctx *ctx;
2994 	struct btrfs_log_ctx *safe;
2995 
2996 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2997 		list_del_init(&ctx->list);
2998 		ctx->log_ret = error;
2999 	}
3000 
3001 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3002 }
3003 
3004 /*
3005  * btrfs_sync_log does sends a given tree log down to the disk and
3006  * updates the super blocks to record it.  When this call is done,
3007  * you know that any inodes previously logged are safely on disk only
3008  * if it returns 0.
3009  *
3010  * Any other return value means you need to call btrfs_commit_transaction.
3011  * Some of the edge cases for fsyncing directories that have had unlinks
3012  * or renames done in the past mean that sometimes the only safe
3013  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3014  * that has happened.
3015  */
3016 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3017 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3018 {
3019 	int index1;
3020 	int index2;
3021 	int mark;
3022 	int ret;
3023 	struct btrfs_fs_info *fs_info = root->fs_info;
3024 	struct btrfs_root *log = root->log_root;
3025 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3026 	struct btrfs_root_item new_root_item;
3027 	int log_transid = 0;
3028 	struct btrfs_log_ctx root_log_ctx;
3029 	struct blk_plug plug;
3030 
3031 	mutex_lock(&root->log_mutex);
3032 	log_transid = ctx->log_transid;
3033 	if (root->log_transid_committed >= log_transid) {
3034 		mutex_unlock(&root->log_mutex);
3035 		return ctx->log_ret;
3036 	}
3037 
3038 	index1 = log_transid % 2;
3039 	if (atomic_read(&root->log_commit[index1])) {
3040 		wait_log_commit(root, log_transid);
3041 		mutex_unlock(&root->log_mutex);
3042 		return ctx->log_ret;
3043 	}
3044 	ASSERT(log_transid == root->log_transid);
3045 	atomic_set(&root->log_commit[index1], 1);
3046 
3047 	/* wait for previous tree log sync to complete */
3048 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3049 		wait_log_commit(root, log_transid - 1);
3050 
3051 	while (1) {
3052 		int batch = atomic_read(&root->log_batch);
3053 		/* when we're on an ssd, just kick the log commit out */
3054 		if (!btrfs_test_opt(fs_info, SSD) &&
3055 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3056 			mutex_unlock(&root->log_mutex);
3057 			schedule_timeout_uninterruptible(1);
3058 			mutex_lock(&root->log_mutex);
3059 		}
3060 		wait_for_writer(root);
3061 		if (batch == atomic_read(&root->log_batch))
3062 			break;
3063 	}
3064 
3065 	/* bail out if we need to do a full commit */
3066 	if (btrfs_need_log_full_commit(trans)) {
3067 		ret = -EAGAIN;
3068 		mutex_unlock(&root->log_mutex);
3069 		goto out;
3070 	}
3071 
3072 	if (log_transid % 2 == 0)
3073 		mark = EXTENT_DIRTY;
3074 	else
3075 		mark = EXTENT_NEW;
3076 
3077 	/* we start IO on  all the marked extents here, but we don't actually
3078 	 * wait for them until later.
3079 	 */
3080 	blk_start_plug(&plug);
3081 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3082 	if (ret) {
3083 		blk_finish_plug(&plug);
3084 		btrfs_abort_transaction(trans, ret);
3085 		btrfs_set_log_full_commit(trans);
3086 		mutex_unlock(&root->log_mutex);
3087 		goto out;
3088 	}
3089 
3090 	/*
3091 	 * We _must_ update under the root->log_mutex in order to make sure we
3092 	 * have a consistent view of the log root we are trying to commit at
3093 	 * this moment.
3094 	 *
3095 	 * We _must_ copy this into a local copy, because we are not holding the
3096 	 * log_root_tree->log_mutex yet.  This is important because when we
3097 	 * commit the log_root_tree we must have a consistent view of the
3098 	 * log_root_tree when we update the super block to point at the
3099 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3100 	 * with the commit and possibly point at the new block which we may not
3101 	 * have written out.
3102 	 */
3103 	btrfs_set_root_node(&log->root_item, log->node);
3104 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3105 
3106 	root->log_transid++;
3107 	log->log_transid = root->log_transid;
3108 	root->log_start_pid = 0;
3109 	/*
3110 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3111 	 * in their headers. new modifications of the log will be written to
3112 	 * new positions. so it's safe to allow log writers to go in.
3113 	 */
3114 	mutex_unlock(&root->log_mutex);
3115 
3116 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3117 
3118 	mutex_lock(&log_root_tree->log_mutex);
3119 
3120 	index2 = log_root_tree->log_transid % 2;
3121 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3122 	root_log_ctx.log_transid = log_root_tree->log_transid;
3123 
3124 	/*
3125 	 * Now we are safe to update the log_root_tree because we're under the
3126 	 * log_mutex, and we're a current writer so we're holding the commit
3127 	 * open until we drop the log_mutex.
3128 	 */
3129 	ret = update_log_root(trans, log, &new_root_item);
3130 	if (ret) {
3131 		if (!list_empty(&root_log_ctx.list))
3132 			list_del_init(&root_log_ctx.list);
3133 
3134 		blk_finish_plug(&plug);
3135 		btrfs_set_log_full_commit(trans);
3136 
3137 		if (ret != -ENOSPC) {
3138 			btrfs_abort_transaction(trans, ret);
3139 			mutex_unlock(&log_root_tree->log_mutex);
3140 			goto out;
3141 		}
3142 		btrfs_wait_tree_log_extents(log, mark);
3143 		mutex_unlock(&log_root_tree->log_mutex);
3144 		ret = -EAGAIN;
3145 		goto out;
3146 	}
3147 
3148 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3149 		blk_finish_plug(&plug);
3150 		list_del_init(&root_log_ctx.list);
3151 		mutex_unlock(&log_root_tree->log_mutex);
3152 		ret = root_log_ctx.log_ret;
3153 		goto out;
3154 	}
3155 
3156 	index2 = root_log_ctx.log_transid % 2;
3157 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3158 		blk_finish_plug(&plug);
3159 		ret = btrfs_wait_tree_log_extents(log, mark);
3160 		wait_log_commit(log_root_tree,
3161 				root_log_ctx.log_transid);
3162 		mutex_unlock(&log_root_tree->log_mutex);
3163 		if (!ret)
3164 			ret = root_log_ctx.log_ret;
3165 		goto out;
3166 	}
3167 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3168 	atomic_set(&log_root_tree->log_commit[index2], 1);
3169 
3170 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3171 		wait_log_commit(log_root_tree,
3172 				root_log_ctx.log_transid - 1);
3173 	}
3174 
3175 	/*
3176 	 * now that we've moved on to the tree of log tree roots,
3177 	 * check the full commit flag again
3178 	 */
3179 	if (btrfs_need_log_full_commit(trans)) {
3180 		blk_finish_plug(&plug);
3181 		btrfs_wait_tree_log_extents(log, mark);
3182 		mutex_unlock(&log_root_tree->log_mutex);
3183 		ret = -EAGAIN;
3184 		goto out_wake_log_root;
3185 	}
3186 
3187 	ret = btrfs_write_marked_extents(fs_info,
3188 					 &log_root_tree->dirty_log_pages,
3189 					 EXTENT_DIRTY | EXTENT_NEW);
3190 	blk_finish_plug(&plug);
3191 	if (ret) {
3192 		btrfs_set_log_full_commit(trans);
3193 		btrfs_abort_transaction(trans, ret);
3194 		mutex_unlock(&log_root_tree->log_mutex);
3195 		goto out_wake_log_root;
3196 	}
3197 	ret = btrfs_wait_tree_log_extents(log, mark);
3198 	if (!ret)
3199 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3200 						  EXTENT_NEW | EXTENT_DIRTY);
3201 	if (ret) {
3202 		btrfs_set_log_full_commit(trans);
3203 		mutex_unlock(&log_root_tree->log_mutex);
3204 		goto out_wake_log_root;
3205 	}
3206 
3207 	btrfs_set_super_log_root(fs_info->super_for_commit,
3208 				 log_root_tree->node->start);
3209 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3210 				       btrfs_header_level(log_root_tree->node));
3211 
3212 	log_root_tree->log_transid++;
3213 	mutex_unlock(&log_root_tree->log_mutex);
3214 
3215 	/*
3216 	 * Nobody else is going to jump in and write the ctree
3217 	 * super here because the log_commit atomic below is protecting
3218 	 * us.  We must be called with a transaction handle pinning
3219 	 * the running transaction open, so a full commit can't hop
3220 	 * in and cause problems either.
3221 	 */
3222 	ret = write_all_supers(fs_info, 1);
3223 	if (ret) {
3224 		btrfs_set_log_full_commit(trans);
3225 		btrfs_abort_transaction(trans, ret);
3226 		goto out_wake_log_root;
3227 	}
3228 
3229 	mutex_lock(&root->log_mutex);
3230 	if (root->last_log_commit < log_transid)
3231 		root->last_log_commit = log_transid;
3232 	mutex_unlock(&root->log_mutex);
3233 
3234 out_wake_log_root:
3235 	mutex_lock(&log_root_tree->log_mutex);
3236 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3237 
3238 	log_root_tree->log_transid_committed++;
3239 	atomic_set(&log_root_tree->log_commit[index2], 0);
3240 	mutex_unlock(&log_root_tree->log_mutex);
3241 
3242 	/*
3243 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3244 	 * all the updates above are seen by the woken threads. It might not be
3245 	 * necessary, but proving that seems to be hard.
3246 	 */
3247 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3248 out:
3249 	mutex_lock(&root->log_mutex);
3250 	btrfs_remove_all_log_ctxs(root, index1, ret);
3251 	root->log_transid_committed++;
3252 	atomic_set(&root->log_commit[index1], 0);
3253 	mutex_unlock(&root->log_mutex);
3254 
3255 	/*
3256 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3257 	 * all the updates above are seen by the woken threads. It might not be
3258 	 * necessary, but proving that seems to be hard.
3259 	 */
3260 	cond_wake_up(&root->log_commit_wait[index1]);
3261 	return ret;
3262 }
3263 
3264 static void free_log_tree(struct btrfs_trans_handle *trans,
3265 			  struct btrfs_root *log)
3266 {
3267 	int ret;
3268 	struct walk_control wc = {
3269 		.free = 1,
3270 		.process_func = process_one_buffer
3271 	};
3272 
3273 	ret = walk_log_tree(trans, log, &wc);
3274 	if (ret) {
3275 		if (trans)
3276 			btrfs_abort_transaction(trans, ret);
3277 		else
3278 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3279 	}
3280 
3281 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3282 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3283 	extent_io_tree_release(&log->log_csum_range);
3284 	btrfs_put_root(log);
3285 }
3286 
3287 /*
3288  * free all the extents used by the tree log.  This should be called
3289  * at commit time of the full transaction
3290  */
3291 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3292 {
3293 	if (root->log_root) {
3294 		free_log_tree(trans, root->log_root);
3295 		root->log_root = NULL;
3296 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3297 	}
3298 	return 0;
3299 }
3300 
3301 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3302 			     struct btrfs_fs_info *fs_info)
3303 {
3304 	if (fs_info->log_root_tree) {
3305 		free_log_tree(trans, fs_info->log_root_tree);
3306 		fs_info->log_root_tree = NULL;
3307 	}
3308 	return 0;
3309 }
3310 
3311 /*
3312  * Check if an inode was logged in the current transaction. We can't always rely
3313  * on an inode's logged_trans value, because it's an in-memory only field and
3314  * therefore not persisted. This means that its value is lost if the inode gets
3315  * evicted and loaded again from disk (in which case it has a value of 0, and
3316  * certainly it is smaller then any possible transaction ID), when that happens
3317  * the full_sync flag is set in the inode's runtime flags, so on that case we
3318  * assume eviction happened and ignore the logged_trans value, assuming the
3319  * worst case, that the inode was logged before in the current transaction.
3320  */
3321 static bool inode_logged(struct btrfs_trans_handle *trans,
3322 			 struct btrfs_inode *inode)
3323 {
3324 	if (inode->logged_trans == trans->transid)
3325 		return true;
3326 
3327 	if (inode->last_trans == trans->transid &&
3328 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3329 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3330 		return true;
3331 
3332 	return false;
3333 }
3334 
3335 /*
3336  * If both a file and directory are logged, and unlinks or renames are
3337  * mixed in, we have a few interesting corners:
3338  *
3339  * create file X in dir Y
3340  * link file X to X.link in dir Y
3341  * fsync file X
3342  * unlink file X but leave X.link
3343  * fsync dir Y
3344  *
3345  * After a crash we would expect only X.link to exist.  But file X
3346  * didn't get fsync'd again so the log has back refs for X and X.link.
3347  *
3348  * We solve this by removing directory entries and inode backrefs from the
3349  * log when a file that was logged in the current transaction is
3350  * unlinked.  Any later fsync will include the updated log entries, and
3351  * we'll be able to reconstruct the proper directory items from backrefs.
3352  *
3353  * This optimizations allows us to avoid relogging the entire inode
3354  * or the entire directory.
3355  */
3356 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3357 				 struct btrfs_root *root,
3358 				 const char *name, int name_len,
3359 				 struct btrfs_inode *dir, u64 index)
3360 {
3361 	struct btrfs_root *log;
3362 	struct btrfs_dir_item *di;
3363 	struct btrfs_path *path;
3364 	int ret;
3365 	int err = 0;
3366 	int bytes_del = 0;
3367 	u64 dir_ino = btrfs_ino(dir);
3368 
3369 	if (!inode_logged(trans, dir))
3370 		return 0;
3371 
3372 	ret = join_running_log_trans(root);
3373 	if (ret)
3374 		return 0;
3375 
3376 	mutex_lock(&dir->log_mutex);
3377 
3378 	log = root->log_root;
3379 	path = btrfs_alloc_path();
3380 	if (!path) {
3381 		err = -ENOMEM;
3382 		goto out_unlock;
3383 	}
3384 
3385 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3386 				   name, name_len, -1);
3387 	if (IS_ERR(di)) {
3388 		err = PTR_ERR(di);
3389 		goto fail;
3390 	}
3391 	if (di) {
3392 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3393 		bytes_del += name_len;
3394 		if (ret) {
3395 			err = ret;
3396 			goto fail;
3397 		}
3398 	}
3399 	btrfs_release_path(path);
3400 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3401 					 index, name, name_len, -1);
3402 	if (IS_ERR(di)) {
3403 		err = PTR_ERR(di);
3404 		goto fail;
3405 	}
3406 	if (di) {
3407 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3408 		bytes_del += name_len;
3409 		if (ret) {
3410 			err = ret;
3411 			goto fail;
3412 		}
3413 	}
3414 
3415 	/* update the directory size in the log to reflect the names
3416 	 * we have removed
3417 	 */
3418 	if (bytes_del) {
3419 		struct btrfs_key key;
3420 
3421 		key.objectid = dir_ino;
3422 		key.offset = 0;
3423 		key.type = BTRFS_INODE_ITEM_KEY;
3424 		btrfs_release_path(path);
3425 
3426 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3427 		if (ret < 0) {
3428 			err = ret;
3429 			goto fail;
3430 		}
3431 		if (ret == 0) {
3432 			struct btrfs_inode_item *item;
3433 			u64 i_size;
3434 
3435 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3436 					      struct btrfs_inode_item);
3437 			i_size = btrfs_inode_size(path->nodes[0], item);
3438 			if (i_size > bytes_del)
3439 				i_size -= bytes_del;
3440 			else
3441 				i_size = 0;
3442 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3443 			btrfs_mark_buffer_dirty(path->nodes[0]);
3444 		} else
3445 			ret = 0;
3446 		btrfs_release_path(path);
3447 	}
3448 fail:
3449 	btrfs_free_path(path);
3450 out_unlock:
3451 	mutex_unlock(&dir->log_mutex);
3452 	if (ret == -ENOSPC) {
3453 		btrfs_set_log_full_commit(trans);
3454 		ret = 0;
3455 	} else if (ret < 0)
3456 		btrfs_abort_transaction(trans, ret);
3457 
3458 	btrfs_end_log_trans(root);
3459 
3460 	return err;
3461 }
3462 
3463 /* see comments for btrfs_del_dir_entries_in_log */
3464 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3465 			       struct btrfs_root *root,
3466 			       const char *name, int name_len,
3467 			       struct btrfs_inode *inode, u64 dirid)
3468 {
3469 	struct btrfs_root *log;
3470 	u64 index;
3471 	int ret;
3472 
3473 	if (!inode_logged(trans, inode))
3474 		return 0;
3475 
3476 	ret = join_running_log_trans(root);
3477 	if (ret)
3478 		return 0;
3479 	log = root->log_root;
3480 	mutex_lock(&inode->log_mutex);
3481 
3482 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3483 				  dirid, &index);
3484 	mutex_unlock(&inode->log_mutex);
3485 	if (ret == -ENOSPC) {
3486 		btrfs_set_log_full_commit(trans);
3487 		ret = 0;
3488 	} else if (ret < 0 && ret != -ENOENT)
3489 		btrfs_abort_transaction(trans, ret);
3490 	btrfs_end_log_trans(root);
3491 
3492 	return ret;
3493 }
3494 
3495 /*
3496  * creates a range item in the log for 'dirid'.  first_offset and
3497  * last_offset tell us which parts of the key space the log should
3498  * be considered authoritative for.
3499  */
3500 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3501 				       struct btrfs_root *log,
3502 				       struct btrfs_path *path,
3503 				       int key_type, u64 dirid,
3504 				       u64 first_offset, u64 last_offset)
3505 {
3506 	int ret;
3507 	struct btrfs_key key;
3508 	struct btrfs_dir_log_item *item;
3509 
3510 	key.objectid = dirid;
3511 	key.offset = first_offset;
3512 	if (key_type == BTRFS_DIR_ITEM_KEY)
3513 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3514 	else
3515 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3516 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3517 	if (ret)
3518 		return ret;
3519 
3520 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3521 			      struct btrfs_dir_log_item);
3522 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3523 	btrfs_mark_buffer_dirty(path->nodes[0]);
3524 	btrfs_release_path(path);
3525 	return 0;
3526 }
3527 
3528 /*
3529  * log all the items included in the current transaction for a given
3530  * directory.  This also creates the range items in the log tree required
3531  * to replay anything deleted before the fsync
3532  */
3533 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3534 			  struct btrfs_root *root, struct btrfs_inode *inode,
3535 			  struct btrfs_path *path,
3536 			  struct btrfs_path *dst_path, int key_type,
3537 			  struct btrfs_log_ctx *ctx,
3538 			  u64 min_offset, u64 *last_offset_ret)
3539 {
3540 	struct btrfs_key min_key;
3541 	struct btrfs_root *log = root->log_root;
3542 	struct extent_buffer *src;
3543 	int err = 0;
3544 	int ret;
3545 	int i;
3546 	int nritems;
3547 	u64 first_offset = min_offset;
3548 	u64 last_offset = (u64)-1;
3549 	u64 ino = btrfs_ino(inode);
3550 
3551 	log = root->log_root;
3552 
3553 	min_key.objectid = ino;
3554 	min_key.type = key_type;
3555 	min_key.offset = min_offset;
3556 
3557 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3558 
3559 	/*
3560 	 * we didn't find anything from this transaction, see if there
3561 	 * is anything at all
3562 	 */
3563 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3564 		min_key.objectid = ino;
3565 		min_key.type = key_type;
3566 		min_key.offset = (u64)-1;
3567 		btrfs_release_path(path);
3568 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3569 		if (ret < 0) {
3570 			btrfs_release_path(path);
3571 			return ret;
3572 		}
3573 		ret = btrfs_previous_item(root, path, ino, key_type);
3574 
3575 		/* if ret == 0 there are items for this type,
3576 		 * create a range to tell us the last key of this type.
3577 		 * otherwise, there are no items in this directory after
3578 		 * *min_offset, and we create a range to indicate that.
3579 		 */
3580 		if (ret == 0) {
3581 			struct btrfs_key tmp;
3582 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3583 					      path->slots[0]);
3584 			if (key_type == tmp.type)
3585 				first_offset = max(min_offset, tmp.offset) + 1;
3586 		}
3587 		goto done;
3588 	}
3589 
3590 	/* go backward to find any previous key */
3591 	ret = btrfs_previous_item(root, path, ino, key_type);
3592 	if (ret == 0) {
3593 		struct btrfs_key tmp;
3594 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3595 		if (key_type == tmp.type) {
3596 			first_offset = tmp.offset;
3597 			ret = overwrite_item(trans, log, dst_path,
3598 					     path->nodes[0], path->slots[0],
3599 					     &tmp);
3600 			if (ret) {
3601 				err = ret;
3602 				goto done;
3603 			}
3604 		}
3605 	}
3606 	btrfs_release_path(path);
3607 
3608 	/*
3609 	 * Find the first key from this transaction again.  See the note for
3610 	 * log_new_dir_dentries, if we're logging a directory recursively we
3611 	 * won't be holding its i_mutex, which means we can modify the directory
3612 	 * while we're logging it.  If we remove an entry between our first
3613 	 * search and this search we'll not find the key again and can just
3614 	 * bail.
3615 	 */
3616 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3617 	if (ret != 0)
3618 		goto done;
3619 
3620 	/*
3621 	 * we have a block from this transaction, log every item in it
3622 	 * from our directory
3623 	 */
3624 	while (1) {
3625 		struct btrfs_key tmp;
3626 		src = path->nodes[0];
3627 		nritems = btrfs_header_nritems(src);
3628 		for (i = path->slots[0]; i < nritems; i++) {
3629 			struct btrfs_dir_item *di;
3630 
3631 			btrfs_item_key_to_cpu(src, &min_key, i);
3632 
3633 			if (min_key.objectid != ino || min_key.type != key_type)
3634 				goto done;
3635 			ret = overwrite_item(trans, log, dst_path, src, i,
3636 					     &min_key);
3637 			if (ret) {
3638 				err = ret;
3639 				goto done;
3640 			}
3641 
3642 			/*
3643 			 * We must make sure that when we log a directory entry,
3644 			 * the corresponding inode, after log replay, has a
3645 			 * matching link count. For example:
3646 			 *
3647 			 * touch foo
3648 			 * mkdir mydir
3649 			 * sync
3650 			 * ln foo mydir/bar
3651 			 * xfs_io -c "fsync" mydir
3652 			 * <crash>
3653 			 * <mount fs and log replay>
3654 			 *
3655 			 * Would result in a fsync log that when replayed, our
3656 			 * file inode would have a link count of 1, but we get
3657 			 * two directory entries pointing to the same inode.
3658 			 * After removing one of the names, it would not be
3659 			 * possible to remove the other name, which resulted
3660 			 * always in stale file handle errors, and would not
3661 			 * be possible to rmdir the parent directory, since
3662 			 * its i_size could never decrement to the value
3663 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3664 			 */
3665 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3666 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3667 			if (ctx &&
3668 			    (btrfs_dir_transid(src, di) == trans->transid ||
3669 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3670 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3671 				ctx->log_new_dentries = true;
3672 		}
3673 		path->slots[0] = nritems;
3674 
3675 		/*
3676 		 * look ahead to the next item and see if it is also
3677 		 * from this directory and from this transaction
3678 		 */
3679 		ret = btrfs_next_leaf(root, path);
3680 		if (ret) {
3681 			if (ret == 1)
3682 				last_offset = (u64)-1;
3683 			else
3684 				err = ret;
3685 			goto done;
3686 		}
3687 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3688 		if (tmp.objectid != ino || tmp.type != key_type) {
3689 			last_offset = (u64)-1;
3690 			goto done;
3691 		}
3692 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3693 			ret = overwrite_item(trans, log, dst_path,
3694 					     path->nodes[0], path->slots[0],
3695 					     &tmp);
3696 			if (ret)
3697 				err = ret;
3698 			else
3699 				last_offset = tmp.offset;
3700 			goto done;
3701 		}
3702 	}
3703 done:
3704 	btrfs_release_path(path);
3705 	btrfs_release_path(dst_path);
3706 
3707 	if (err == 0) {
3708 		*last_offset_ret = last_offset;
3709 		/*
3710 		 * insert the log range keys to indicate where the log
3711 		 * is valid
3712 		 */
3713 		ret = insert_dir_log_key(trans, log, path, key_type,
3714 					 ino, first_offset, last_offset);
3715 		if (ret)
3716 			err = ret;
3717 	}
3718 	return err;
3719 }
3720 
3721 /*
3722  * logging directories is very similar to logging inodes, We find all the items
3723  * from the current transaction and write them to the log.
3724  *
3725  * The recovery code scans the directory in the subvolume, and if it finds a
3726  * key in the range logged that is not present in the log tree, then it means
3727  * that dir entry was unlinked during the transaction.
3728  *
3729  * In order for that scan to work, we must include one key smaller than
3730  * the smallest logged by this transaction and one key larger than the largest
3731  * key logged by this transaction.
3732  */
3733 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3734 			  struct btrfs_root *root, struct btrfs_inode *inode,
3735 			  struct btrfs_path *path,
3736 			  struct btrfs_path *dst_path,
3737 			  struct btrfs_log_ctx *ctx)
3738 {
3739 	u64 min_key;
3740 	u64 max_key;
3741 	int ret;
3742 	int key_type = BTRFS_DIR_ITEM_KEY;
3743 
3744 again:
3745 	min_key = 0;
3746 	max_key = 0;
3747 	while (1) {
3748 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3749 				ctx, min_key, &max_key);
3750 		if (ret)
3751 			return ret;
3752 		if (max_key == (u64)-1)
3753 			break;
3754 		min_key = max_key + 1;
3755 	}
3756 
3757 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3758 		key_type = BTRFS_DIR_INDEX_KEY;
3759 		goto again;
3760 	}
3761 	return 0;
3762 }
3763 
3764 /*
3765  * a helper function to drop items from the log before we relog an
3766  * inode.  max_key_type indicates the highest item type to remove.
3767  * This cannot be run for file data extents because it does not
3768  * free the extents they point to.
3769  */
3770 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3771 				  struct btrfs_root *log,
3772 				  struct btrfs_path *path,
3773 				  u64 objectid, int max_key_type)
3774 {
3775 	int ret;
3776 	struct btrfs_key key;
3777 	struct btrfs_key found_key;
3778 	int start_slot;
3779 
3780 	key.objectid = objectid;
3781 	key.type = max_key_type;
3782 	key.offset = (u64)-1;
3783 
3784 	while (1) {
3785 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3786 		BUG_ON(ret == 0); /* Logic error */
3787 		if (ret < 0)
3788 			break;
3789 
3790 		if (path->slots[0] == 0)
3791 			break;
3792 
3793 		path->slots[0]--;
3794 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3795 				      path->slots[0]);
3796 
3797 		if (found_key.objectid != objectid)
3798 			break;
3799 
3800 		found_key.offset = 0;
3801 		found_key.type = 0;
3802 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3803 		if (ret < 0)
3804 			break;
3805 
3806 		ret = btrfs_del_items(trans, log, path, start_slot,
3807 				      path->slots[0] - start_slot + 1);
3808 		/*
3809 		 * If start slot isn't 0 then we don't need to re-search, we've
3810 		 * found the last guy with the objectid in this tree.
3811 		 */
3812 		if (ret || start_slot != 0)
3813 			break;
3814 		btrfs_release_path(path);
3815 	}
3816 	btrfs_release_path(path);
3817 	if (ret > 0)
3818 		ret = 0;
3819 	return ret;
3820 }
3821 
3822 static void fill_inode_item(struct btrfs_trans_handle *trans,
3823 			    struct extent_buffer *leaf,
3824 			    struct btrfs_inode_item *item,
3825 			    struct inode *inode, int log_inode_only,
3826 			    u64 logged_isize)
3827 {
3828 	struct btrfs_map_token token;
3829 
3830 	btrfs_init_map_token(&token, leaf);
3831 
3832 	if (log_inode_only) {
3833 		/* set the generation to zero so the recover code
3834 		 * can tell the difference between an logging
3835 		 * just to say 'this inode exists' and a logging
3836 		 * to say 'update this inode with these values'
3837 		 */
3838 		btrfs_set_token_inode_generation(&token, item, 0);
3839 		btrfs_set_token_inode_size(&token, item, logged_isize);
3840 	} else {
3841 		btrfs_set_token_inode_generation(&token, item,
3842 						 BTRFS_I(inode)->generation);
3843 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3844 	}
3845 
3846 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3847 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3848 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3849 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3850 
3851 	btrfs_set_token_timespec_sec(&token, &item->atime,
3852 				     inode->i_atime.tv_sec);
3853 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3854 				      inode->i_atime.tv_nsec);
3855 
3856 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3857 				     inode->i_mtime.tv_sec);
3858 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3859 				      inode->i_mtime.tv_nsec);
3860 
3861 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3862 				     inode->i_ctime.tv_sec);
3863 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3864 				      inode->i_ctime.tv_nsec);
3865 
3866 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3867 
3868 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3869 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3870 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3871 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3872 	btrfs_set_token_inode_block_group(&token, item, 0);
3873 }
3874 
3875 static int log_inode_item(struct btrfs_trans_handle *trans,
3876 			  struct btrfs_root *log, struct btrfs_path *path,
3877 			  struct btrfs_inode *inode)
3878 {
3879 	struct btrfs_inode_item *inode_item;
3880 	int ret;
3881 
3882 	ret = btrfs_insert_empty_item(trans, log, path,
3883 				      &inode->location, sizeof(*inode_item));
3884 	if (ret && ret != -EEXIST)
3885 		return ret;
3886 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3887 				    struct btrfs_inode_item);
3888 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3889 			0, 0);
3890 	btrfs_release_path(path);
3891 	return 0;
3892 }
3893 
3894 static int log_csums(struct btrfs_trans_handle *trans,
3895 		     struct btrfs_inode *inode,
3896 		     struct btrfs_root *log_root,
3897 		     struct btrfs_ordered_sum *sums)
3898 {
3899 	const u64 lock_end = sums->bytenr + sums->len - 1;
3900 	struct extent_state *cached_state = NULL;
3901 	int ret;
3902 
3903 	/*
3904 	 * If this inode was not used for reflink operations in the current
3905 	 * transaction with new extents, then do the fast path, no need to
3906 	 * worry about logging checksum items with overlapping ranges.
3907 	 */
3908 	if (inode->last_reflink_trans < trans->transid)
3909 		return btrfs_csum_file_blocks(trans, log_root, sums);
3910 
3911 	/*
3912 	 * Serialize logging for checksums. This is to avoid racing with the
3913 	 * same checksum being logged by another task that is logging another
3914 	 * file which happens to refer to the same extent as well. Such races
3915 	 * can leave checksum items in the log with overlapping ranges.
3916 	 */
3917 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3918 			       lock_end, &cached_state);
3919 	if (ret)
3920 		return ret;
3921 	/*
3922 	 * Due to extent cloning, we might have logged a csum item that covers a
3923 	 * subrange of a cloned extent, and later we can end up logging a csum
3924 	 * item for a larger subrange of the same extent or the entire range.
3925 	 * This would leave csum items in the log tree that cover the same range
3926 	 * and break the searches for checksums in the log tree, resulting in
3927 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3928 	 * trim and adjust) any existing csum items in the log for this range.
3929 	 */
3930 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3931 	if (!ret)
3932 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
3933 
3934 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3935 			     &cached_state);
3936 
3937 	return ret;
3938 }
3939 
3940 static noinline int copy_items(struct btrfs_trans_handle *trans,
3941 			       struct btrfs_inode *inode,
3942 			       struct btrfs_path *dst_path,
3943 			       struct btrfs_path *src_path,
3944 			       int start_slot, int nr, int inode_only,
3945 			       u64 logged_isize)
3946 {
3947 	struct btrfs_fs_info *fs_info = trans->fs_info;
3948 	unsigned long src_offset;
3949 	unsigned long dst_offset;
3950 	struct btrfs_root *log = inode->root->log_root;
3951 	struct btrfs_file_extent_item *extent;
3952 	struct btrfs_inode_item *inode_item;
3953 	struct extent_buffer *src = src_path->nodes[0];
3954 	int ret;
3955 	struct btrfs_key *ins_keys;
3956 	u32 *ins_sizes;
3957 	char *ins_data;
3958 	int i;
3959 	struct list_head ordered_sums;
3960 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3961 
3962 	INIT_LIST_HEAD(&ordered_sums);
3963 
3964 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3965 			   nr * sizeof(u32), GFP_NOFS);
3966 	if (!ins_data)
3967 		return -ENOMEM;
3968 
3969 	ins_sizes = (u32 *)ins_data;
3970 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3971 
3972 	for (i = 0; i < nr; i++) {
3973 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3974 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3975 	}
3976 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3977 				       ins_keys, ins_sizes, nr);
3978 	if (ret) {
3979 		kfree(ins_data);
3980 		return ret;
3981 	}
3982 
3983 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3984 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3985 						   dst_path->slots[0]);
3986 
3987 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3988 
3989 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3990 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3991 						    dst_path->slots[0],
3992 						    struct btrfs_inode_item);
3993 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3994 					&inode->vfs_inode,
3995 					inode_only == LOG_INODE_EXISTS,
3996 					logged_isize);
3997 		} else {
3998 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3999 					   src_offset, ins_sizes[i]);
4000 		}
4001 
4002 		/* take a reference on file data extents so that truncates
4003 		 * or deletes of this inode don't have to relog the inode
4004 		 * again
4005 		 */
4006 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4007 		    !skip_csum) {
4008 			int found_type;
4009 			extent = btrfs_item_ptr(src, start_slot + i,
4010 						struct btrfs_file_extent_item);
4011 
4012 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4013 				continue;
4014 
4015 			found_type = btrfs_file_extent_type(src, extent);
4016 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4017 				u64 ds, dl, cs, cl;
4018 				ds = btrfs_file_extent_disk_bytenr(src,
4019 								extent);
4020 				/* ds == 0 is a hole */
4021 				if (ds == 0)
4022 					continue;
4023 
4024 				dl = btrfs_file_extent_disk_num_bytes(src,
4025 								extent);
4026 				cs = btrfs_file_extent_offset(src, extent);
4027 				cl = btrfs_file_extent_num_bytes(src,
4028 								extent);
4029 				if (btrfs_file_extent_compression(src,
4030 								  extent)) {
4031 					cs = 0;
4032 					cl = dl;
4033 				}
4034 
4035 				ret = btrfs_lookup_csums_range(
4036 						fs_info->csum_root,
4037 						ds + cs, ds + cs + cl - 1,
4038 						&ordered_sums, 0);
4039 				if (ret) {
4040 					btrfs_release_path(dst_path);
4041 					kfree(ins_data);
4042 					return ret;
4043 				}
4044 			}
4045 		}
4046 	}
4047 
4048 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4049 	btrfs_release_path(dst_path);
4050 	kfree(ins_data);
4051 
4052 	/*
4053 	 * we have to do this after the loop above to avoid changing the
4054 	 * log tree while trying to change the log tree.
4055 	 */
4056 	ret = 0;
4057 	while (!list_empty(&ordered_sums)) {
4058 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4059 						   struct btrfs_ordered_sum,
4060 						   list);
4061 		if (!ret)
4062 			ret = log_csums(trans, inode, log, sums);
4063 		list_del(&sums->list);
4064 		kfree(sums);
4065 	}
4066 
4067 	return ret;
4068 }
4069 
4070 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4071 {
4072 	struct extent_map *em1, *em2;
4073 
4074 	em1 = list_entry(a, struct extent_map, list);
4075 	em2 = list_entry(b, struct extent_map, list);
4076 
4077 	if (em1->start < em2->start)
4078 		return -1;
4079 	else if (em1->start > em2->start)
4080 		return 1;
4081 	return 0;
4082 }
4083 
4084 static int log_extent_csums(struct btrfs_trans_handle *trans,
4085 			    struct btrfs_inode *inode,
4086 			    struct btrfs_root *log_root,
4087 			    const struct extent_map *em)
4088 {
4089 	u64 csum_offset;
4090 	u64 csum_len;
4091 	LIST_HEAD(ordered_sums);
4092 	int ret = 0;
4093 
4094 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4095 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4096 	    em->block_start == EXTENT_MAP_HOLE)
4097 		return 0;
4098 
4099 	/* If we're compressed we have to save the entire range of csums. */
4100 	if (em->compress_type) {
4101 		csum_offset = 0;
4102 		csum_len = max(em->block_len, em->orig_block_len);
4103 	} else {
4104 		csum_offset = em->mod_start - em->start;
4105 		csum_len = em->mod_len;
4106 	}
4107 
4108 	/* block start is already adjusted for the file extent offset. */
4109 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4110 				       em->block_start + csum_offset,
4111 				       em->block_start + csum_offset +
4112 				       csum_len - 1, &ordered_sums, 0);
4113 	if (ret)
4114 		return ret;
4115 
4116 	while (!list_empty(&ordered_sums)) {
4117 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4118 						   struct btrfs_ordered_sum,
4119 						   list);
4120 		if (!ret)
4121 			ret = log_csums(trans, inode, log_root, sums);
4122 		list_del(&sums->list);
4123 		kfree(sums);
4124 	}
4125 
4126 	return ret;
4127 }
4128 
4129 static int log_one_extent(struct btrfs_trans_handle *trans,
4130 			  struct btrfs_inode *inode, struct btrfs_root *root,
4131 			  const struct extent_map *em,
4132 			  struct btrfs_path *path,
4133 			  struct btrfs_log_ctx *ctx)
4134 {
4135 	struct btrfs_root *log = root->log_root;
4136 	struct btrfs_file_extent_item *fi;
4137 	struct extent_buffer *leaf;
4138 	struct btrfs_map_token token;
4139 	struct btrfs_key key;
4140 	u64 extent_offset = em->start - em->orig_start;
4141 	u64 block_len;
4142 	int ret;
4143 	int extent_inserted = 0;
4144 
4145 	ret = log_extent_csums(trans, inode, log, em);
4146 	if (ret)
4147 		return ret;
4148 
4149 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4150 				   em->start + em->len, NULL, 0, 1,
4151 				   sizeof(*fi), &extent_inserted);
4152 	if (ret)
4153 		return ret;
4154 
4155 	if (!extent_inserted) {
4156 		key.objectid = btrfs_ino(inode);
4157 		key.type = BTRFS_EXTENT_DATA_KEY;
4158 		key.offset = em->start;
4159 
4160 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4161 					      sizeof(*fi));
4162 		if (ret)
4163 			return ret;
4164 	}
4165 	leaf = path->nodes[0];
4166 	btrfs_init_map_token(&token, leaf);
4167 	fi = btrfs_item_ptr(leaf, path->slots[0],
4168 			    struct btrfs_file_extent_item);
4169 
4170 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4171 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4172 		btrfs_set_token_file_extent_type(&token, fi,
4173 						 BTRFS_FILE_EXTENT_PREALLOC);
4174 	else
4175 		btrfs_set_token_file_extent_type(&token, fi,
4176 						 BTRFS_FILE_EXTENT_REG);
4177 
4178 	block_len = max(em->block_len, em->orig_block_len);
4179 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4180 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4181 							em->block_start);
4182 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4183 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4184 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4185 							em->block_start -
4186 							extent_offset);
4187 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4188 	} else {
4189 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4190 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4191 	}
4192 
4193 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4194 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4195 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4196 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4197 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4198 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4199 	btrfs_mark_buffer_dirty(leaf);
4200 
4201 	btrfs_release_path(path);
4202 
4203 	return ret;
4204 }
4205 
4206 /*
4207  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4208  * lose them after doing a fast fsync and replaying the log. We scan the
4209  * subvolume's root instead of iterating the inode's extent map tree because
4210  * otherwise we can log incorrect extent items based on extent map conversion.
4211  * That can happen due to the fact that extent maps are merged when they
4212  * are not in the extent map tree's list of modified extents.
4213  */
4214 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4215 				      struct btrfs_inode *inode,
4216 				      struct btrfs_path *path)
4217 {
4218 	struct btrfs_root *root = inode->root;
4219 	struct btrfs_key key;
4220 	const u64 i_size = i_size_read(&inode->vfs_inode);
4221 	const u64 ino = btrfs_ino(inode);
4222 	struct btrfs_path *dst_path = NULL;
4223 	bool dropped_extents = false;
4224 	u64 truncate_offset = i_size;
4225 	struct extent_buffer *leaf;
4226 	int slot;
4227 	int ins_nr = 0;
4228 	int start_slot;
4229 	int ret;
4230 
4231 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4232 		return 0;
4233 
4234 	key.objectid = ino;
4235 	key.type = BTRFS_EXTENT_DATA_KEY;
4236 	key.offset = i_size;
4237 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4238 	if (ret < 0)
4239 		goto out;
4240 
4241 	/*
4242 	 * We must check if there is a prealloc extent that starts before the
4243 	 * i_size and crosses the i_size boundary. This is to ensure later we
4244 	 * truncate down to the end of that extent and not to the i_size, as
4245 	 * otherwise we end up losing part of the prealloc extent after a log
4246 	 * replay and with an implicit hole if there is another prealloc extent
4247 	 * that starts at an offset beyond i_size.
4248 	 */
4249 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4250 	if (ret < 0)
4251 		goto out;
4252 
4253 	if (ret == 0) {
4254 		struct btrfs_file_extent_item *ei;
4255 
4256 		leaf = path->nodes[0];
4257 		slot = path->slots[0];
4258 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4259 
4260 		if (btrfs_file_extent_type(leaf, ei) ==
4261 		    BTRFS_FILE_EXTENT_PREALLOC) {
4262 			u64 extent_end;
4263 
4264 			btrfs_item_key_to_cpu(leaf, &key, slot);
4265 			extent_end = key.offset +
4266 				btrfs_file_extent_num_bytes(leaf, ei);
4267 
4268 			if (extent_end > i_size)
4269 				truncate_offset = extent_end;
4270 		}
4271 	} else {
4272 		ret = 0;
4273 	}
4274 
4275 	while (true) {
4276 		leaf = path->nodes[0];
4277 		slot = path->slots[0];
4278 
4279 		if (slot >= btrfs_header_nritems(leaf)) {
4280 			if (ins_nr > 0) {
4281 				ret = copy_items(trans, inode, dst_path, path,
4282 						 start_slot, ins_nr, 1, 0);
4283 				if (ret < 0)
4284 					goto out;
4285 				ins_nr = 0;
4286 			}
4287 			ret = btrfs_next_leaf(root, path);
4288 			if (ret < 0)
4289 				goto out;
4290 			if (ret > 0) {
4291 				ret = 0;
4292 				break;
4293 			}
4294 			continue;
4295 		}
4296 
4297 		btrfs_item_key_to_cpu(leaf, &key, slot);
4298 		if (key.objectid > ino)
4299 			break;
4300 		if (WARN_ON_ONCE(key.objectid < ino) ||
4301 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4302 		    key.offset < i_size) {
4303 			path->slots[0]++;
4304 			continue;
4305 		}
4306 		if (!dropped_extents) {
4307 			/*
4308 			 * Avoid logging extent items logged in past fsync calls
4309 			 * and leading to duplicate keys in the log tree.
4310 			 */
4311 			do {
4312 				ret = btrfs_truncate_inode_items(trans,
4313 							 root->log_root,
4314 							 &inode->vfs_inode,
4315 							 truncate_offset,
4316 							 BTRFS_EXTENT_DATA_KEY);
4317 			} while (ret == -EAGAIN);
4318 			if (ret)
4319 				goto out;
4320 			dropped_extents = true;
4321 		}
4322 		if (ins_nr == 0)
4323 			start_slot = slot;
4324 		ins_nr++;
4325 		path->slots[0]++;
4326 		if (!dst_path) {
4327 			dst_path = btrfs_alloc_path();
4328 			if (!dst_path) {
4329 				ret = -ENOMEM;
4330 				goto out;
4331 			}
4332 		}
4333 	}
4334 	if (ins_nr > 0)
4335 		ret = copy_items(trans, inode, dst_path, path,
4336 				 start_slot, ins_nr, 1, 0);
4337 out:
4338 	btrfs_release_path(path);
4339 	btrfs_free_path(dst_path);
4340 	return ret;
4341 }
4342 
4343 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4344 				     struct btrfs_root *root,
4345 				     struct btrfs_inode *inode,
4346 				     struct btrfs_path *path,
4347 				     struct btrfs_log_ctx *ctx,
4348 				     const u64 start,
4349 				     const u64 end)
4350 {
4351 	struct extent_map *em, *n;
4352 	struct list_head extents;
4353 	struct extent_map_tree *tree = &inode->extent_tree;
4354 	u64 test_gen;
4355 	int ret = 0;
4356 	int num = 0;
4357 
4358 	INIT_LIST_HEAD(&extents);
4359 
4360 	write_lock(&tree->lock);
4361 	test_gen = root->fs_info->last_trans_committed;
4362 
4363 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4364 		/*
4365 		 * Skip extents outside our logging range. It's important to do
4366 		 * it for correctness because if we don't ignore them, we may
4367 		 * log them before their ordered extent completes, and therefore
4368 		 * we could log them without logging their respective checksums
4369 		 * (the checksum items are added to the csum tree at the very
4370 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4371 		 * outside of our range in the list, since we may have another
4372 		 * ranged fsync in the near future that needs them. If an extent
4373 		 * outside our range corresponds to a hole, log it to avoid
4374 		 * leaving gaps between extents (fsck will complain when we are
4375 		 * not using the NO_HOLES feature).
4376 		 */
4377 		if ((em->start > end || em->start + em->len <= start) &&
4378 		    em->block_start != EXTENT_MAP_HOLE)
4379 			continue;
4380 
4381 		list_del_init(&em->list);
4382 		/*
4383 		 * Just an arbitrary number, this can be really CPU intensive
4384 		 * once we start getting a lot of extents, and really once we
4385 		 * have a bunch of extents we just want to commit since it will
4386 		 * be faster.
4387 		 */
4388 		if (++num > 32768) {
4389 			list_del_init(&tree->modified_extents);
4390 			ret = -EFBIG;
4391 			goto process;
4392 		}
4393 
4394 		if (em->generation <= test_gen)
4395 			continue;
4396 
4397 		/* We log prealloc extents beyond eof later. */
4398 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4399 		    em->start >= i_size_read(&inode->vfs_inode))
4400 			continue;
4401 
4402 		/* Need a ref to keep it from getting evicted from cache */
4403 		refcount_inc(&em->refs);
4404 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4405 		list_add_tail(&em->list, &extents);
4406 		num++;
4407 	}
4408 
4409 	list_sort(NULL, &extents, extent_cmp);
4410 process:
4411 	while (!list_empty(&extents)) {
4412 		em = list_entry(extents.next, struct extent_map, list);
4413 
4414 		list_del_init(&em->list);
4415 
4416 		/*
4417 		 * If we had an error we just need to delete everybody from our
4418 		 * private list.
4419 		 */
4420 		if (ret) {
4421 			clear_em_logging(tree, em);
4422 			free_extent_map(em);
4423 			continue;
4424 		}
4425 
4426 		write_unlock(&tree->lock);
4427 
4428 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4429 		write_lock(&tree->lock);
4430 		clear_em_logging(tree, em);
4431 		free_extent_map(em);
4432 	}
4433 	WARN_ON(!list_empty(&extents));
4434 	write_unlock(&tree->lock);
4435 
4436 	btrfs_release_path(path);
4437 	if (!ret)
4438 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4439 
4440 	return ret;
4441 }
4442 
4443 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4444 			     struct btrfs_path *path, u64 *size_ret)
4445 {
4446 	struct btrfs_key key;
4447 	int ret;
4448 
4449 	key.objectid = btrfs_ino(inode);
4450 	key.type = BTRFS_INODE_ITEM_KEY;
4451 	key.offset = 0;
4452 
4453 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4454 	if (ret < 0) {
4455 		return ret;
4456 	} else if (ret > 0) {
4457 		*size_ret = 0;
4458 	} else {
4459 		struct btrfs_inode_item *item;
4460 
4461 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4462 				      struct btrfs_inode_item);
4463 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4464 		/*
4465 		 * If the in-memory inode's i_size is smaller then the inode
4466 		 * size stored in the btree, return the inode's i_size, so
4467 		 * that we get a correct inode size after replaying the log
4468 		 * when before a power failure we had a shrinking truncate
4469 		 * followed by addition of a new name (rename / new hard link).
4470 		 * Otherwise return the inode size from the btree, to avoid
4471 		 * data loss when replaying a log due to previously doing a
4472 		 * write that expands the inode's size and logging a new name
4473 		 * immediately after.
4474 		 */
4475 		if (*size_ret > inode->vfs_inode.i_size)
4476 			*size_ret = inode->vfs_inode.i_size;
4477 	}
4478 
4479 	btrfs_release_path(path);
4480 	return 0;
4481 }
4482 
4483 /*
4484  * At the moment we always log all xattrs. This is to figure out at log replay
4485  * time which xattrs must have their deletion replayed. If a xattr is missing
4486  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4487  * because if a xattr is deleted, the inode is fsynced and a power failure
4488  * happens, causing the log to be replayed the next time the fs is mounted,
4489  * we want the xattr to not exist anymore (same behaviour as other filesystems
4490  * with a journal, ext3/4, xfs, f2fs, etc).
4491  */
4492 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4493 				struct btrfs_root *root,
4494 				struct btrfs_inode *inode,
4495 				struct btrfs_path *path,
4496 				struct btrfs_path *dst_path)
4497 {
4498 	int ret;
4499 	struct btrfs_key key;
4500 	const u64 ino = btrfs_ino(inode);
4501 	int ins_nr = 0;
4502 	int start_slot = 0;
4503 
4504 	key.objectid = ino;
4505 	key.type = BTRFS_XATTR_ITEM_KEY;
4506 	key.offset = 0;
4507 
4508 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4509 	if (ret < 0)
4510 		return ret;
4511 
4512 	while (true) {
4513 		int slot = path->slots[0];
4514 		struct extent_buffer *leaf = path->nodes[0];
4515 		int nritems = btrfs_header_nritems(leaf);
4516 
4517 		if (slot >= nritems) {
4518 			if (ins_nr > 0) {
4519 				ret = copy_items(trans, inode, dst_path, path,
4520 						 start_slot, ins_nr, 1, 0);
4521 				if (ret < 0)
4522 					return ret;
4523 				ins_nr = 0;
4524 			}
4525 			ret = btrfs_next_leaf(root, path);
4526 			if (ret < 0)
4527 				return ret;
4528 			else if (ret > 0)
4529 				break;
4530 			continue;
4531 		}
4532 
4533 		btrfs_item_key_to_cpu(leaf, &key, slot);
4534 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4535 			break;
4536 
4537 		if (ins_nr == 0)
4538 			start_slot = slot;
4539 		ins_nr++;
4540 		path->slots[0]++;
4541 		cond_resched();
4542 	}
4543 	if (ins_nr > 0) {
4544 		ret = copy_items(trans, inode, dst_path, path,
4545 				 start_slot, ins_nr, 1, 0);
4546 		if (ret < 0)
4547 			return ret;
4548 	}
4549 
4550 	return 0;
4551 }
4552 
4553 /*
4554  * When using the NO_HOLES feature if we punched a hole that causes the
4555  * deletion of entire leafs or all the extent items of the first leaf (the one
4556  * that contains the inode item and references) we may end up not processing
4557  * any extents, because there are no leafs with a generation matching the
4558  * current transaction that have extent items for our inode. So we need to find
4559  * if any holes exist and then log them. We also need to log holes after any
4560  * truncate operation that changes the inode's size.
4561  */
4562 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4563 			   struct btrfs_root *root,
4564 			   struct btrfs_inode *inode,
4565 			   struct btrfs_path *path)
4566 {
4567 	struct btrfs_fs_info *fs_info = root->fs_info;
4568 	struct btrfs_key key;
4569 	const u64 ino = btrfs_ino(inode);
4570 	const u64 i_size = i_size_read(&inode->vfs_inode);
4571 	u64 prev_extent_end = 0;
4572 	int ret;
4573 
4574 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4575 		return 0;
4576 
4577 	key.objectid = ino;
4578 	key.type = BTRFS_EXTENT_DATA_KEY;
4579 	key.offset = 0;
4580 
4581 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4582 	if (ret < 0)
4583 		return ret;
4584 
4585 	while (true) {
4586 		struct extent_buffer *leaf = path->nodes[0];
4587 
4588 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4589 			ret = btrfs_next_leaf(root, path);
4590 			if (ret < 0)
4591 				return ret;
4592 			if (ret > 0) {
4593 				ret = 0;
4594 				break;
4595 			}
4596 			leaf = path->nodes[0];
4597 		}
4598 
4599 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4600 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4601 			break;
4602 
4603 		/* We have a hole, log it. */
4604 		if (prev_extent_end < key.offset) {
4605 			const u64 hole_len = key.offset - prev_extent_end;
4606 
4607 			/*
4608 			 * Release the path to avoid deadlocks with other code
4609 			 * paths that search the root while holding locks on
4610 			 * leafs from the log root.
4611 			 */
4612 			btrfs_release_path(path);
4613 			ret = btrfs_insert_file_extent(trans, root->log_root,
4614 						       ino, prev_extent_end, 0,
4615 						       0, hole_len, 0, hole_len,
4616 						       0, 0, 0);
4617 			if (ret < 0)
4618 				return ret;
4619 
4620 			/*
4621 			 * Search for the same key again in the root. Since it's
4622 			 * an extent item and we are holding the inode lock, the
4623 			 * key must still exist. If it doesn't just emit warning
4624 			 * and return an error to fall back to a transaction
4625 			 * commit.
4626 			 */
4627 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4628 			if (ret < 0)
4629 				return ret;
4630 			if (WARN_ON(ret > 0))
4631 				return -ENOENT;
4632 			leaf = path->nodes[0];
4633 		}
4634 
4635 		prev_extent_end = btrfs_file_extent_end(path);
4636 		path->slots[0]++;
4637 		cond_resched();
4638 	}
4639 
4640 	if (prev_extent_end < i_size) {
4641 		u64 hole_len;
4642 
4643 		btrfs_release_path(path);
4644 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4645 		ret = btrfs_insert_file_extent(trans, root->log_root,
4646 					       ino, prev_extent_end, 0, 0,
4647 					       hole_len, 0, hole_len,
4648 					       0, 0, 0);
4649 		if (ret < 0)
4650 			return ret;
4651 	}
4652 
4653 	return 0;
4654 }
4655 
4656 /*
4657  * When we are logging a new inode X, check if it doesn't have a reference that
4658  * matches the reference from some other inode Y created in a past transaction
4659  * and that was renamed in the current transaction. If we don't do this, then at
4660  * log replay time we can lose inode Y (and all its files if it's a directory):
4661  *
4662  * mkdir /mnt/x
4663  * echo "hello world" > /mnt/x/foobar
4664  * sync
4665  * mv /mnt/x /mnt/y
4666  * mkdir /mnt/x                 # or touch /mnt/x
4667  * xfs_io -c fsync /mnt/x
4668  * <power fail>
4669  * mount fs, trigger log replay
4670  *
4671  * After the log replay procedure, we would lose the first directory and all its
4672  * files (file foobar).
4673  * For the case where inode Y is not a directory we simply end up losing it:
4674  *
4675  * echo "123" > /mnt/foo
4676  * sync
4677  * mv /mnt/foo /mnt/bar
4678  * echo "abc" > /mnt/foo
4679  * xfs_io -c fsync /mnt/foo
4680  * <power fail>
4681  *
4682  * We also need this for cases where a snapshot entry is replaced by some other
4683  * entry (file or directory) otherwise we end up with an unreplayable log due to
4684  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4685  * if it were a regular entry:
4686  *
4687  * mkdir /mnt/x
4688  * btrfs subvolume snapshot /mnt /mnt/x/snap
4689  * btrfs subvolume delete /mnt/x/snap
4690  * rmdir /mnt/x
4691  * mkdir /mnt/x
4692  * fsync /mnt/x or fsync some new file inside it
4693  * <power fail>
4694  *
4695  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4696  * the same transaction.
4697  */
4698 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4699 					 const int slot,
4700 					 const struct btrfs_key *key,
4701 					 struct btrfs_inode *inode,
4702 					 u64 *other_ino, u64 *other_parent)
4703 {
4704 	int ret;
4705 	struct btrfs_path *search_path;
4706 	char *name = NULL;
4707 	u32 name_len = 0;
4708 	u32 item_size = btrfs_item_size_nr(eb, slot);
4709 	u32 cur_offset = 0;
4710 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4711 
4712 	search_path = btrfs_alloc_path();
4713 	if (!search_path)
4714 		return -ENOMEM;
4715 	search_path->search_commit_root = 1;
4716 	search_path->skip_locking = 1;
4717 
4718 	while (cur_offset < item_size) {
4719 		u64 parent;
4720 		u32 this_name_len;
4721 		u32 this_len;
4722 		unsigned long name_ptr;
4723 		struct btrfs_dir_item *di;
4724 
4725 		if (key->type == BTRFS_INODE_REF_KEY) {
4726 			struct btrfs_inode_ref *iref;
4727 
4728 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4729 			parent = key->offset;
4730 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4731 			name_ptr = (unsigned long)(iref + 1);
4732 			this_len = sizeof(*iref) + this_name_len;
4733 		} else {
4734 			struct btrfs_inode_extref *extref;
4735 
4736 			extref = (struct btrfs_inode_extref *)(ptr +
4737 							       cur_offset);
4738 			parent = btrfs_inode_extref_parent(eb, extref);
4739 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4740 			name_ptr = (unsigned long)&extref->name;
4741 			this_len = sizeof(*extref) + this_name_len;
4742 		}
4743 
4744 		if (this_name_len > name_len) {
4745 			char *new_name;
4746 
4747 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4748 			if (!new_name) {
4749 				ret = -ENOMEM;
4750 				goto out;
4751 			}
4752 			name_len = this_name_len;
4753 			name = new_name;
4754 		}
4755 
4756 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4757 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4758 				parent, name, this_name_len, 0);
4759 		if (di && !IS_ERR(di)) {
4760 			struct btrfs_key di_key;
4761 
4762 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4763 						  di, &di_key);
4764 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4765 				if (di_key.objectid != key->objectid) {
4766 					ret = 1;
4767 					*other_ino = di_key.objectid;
4768 					*other_parent = parent;
4769 				} else {
4770 					ret = 0;
4771 				}
4772 			} else {
4773 				ret = -EAGAIN;
4774 			}
4775 			goto out;
4776 		} else if (IS_ERR(di)) {
4777 			ret = PTR_ERR(di);
4778 			goto out;
4779 		}
4780 		btrfs_release_path(search_path);
4781 
4782 		cur_offset += this_len;
4783 	}
4784 	ret = 0;
4785 out:
4786 	btrfs_free_path(search_path);
4787 	kfree(name);
4788 	return ret;
4789 }
4790 
4791 struct btrfs_ino_list {
4792 	u64 ino;
4793 	u64 parent;
4794 	struct list_head list;
4795 };
4796 
4797 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4798 				  struct btrfs_root *root,
4799 				  struct btrfs_path *path,
4800 				  struct btrfs_log_ctx *ctx,
4801 				  u64 ino, u64 parent)
4802 {
4803 	struct btrfs_ino_list *ino_elem;
4804 	LIST_HEAD(inode_list);
4805 	int ret = 0;
4806 
4807 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4808 	if (!ino_elem)
4809 		return -ENOMEM;
4810 	ino_elem->ino = ino;
4811 	ino_elem->parent = parent;
4812 	list_add_tail(&ino_elem->list, &inode_list);
4813 
4814 	while (!list_empty(&inode_list)) {
4815 		struct btrfs_fs_info *fs_info = root->fs_info;
4816 		struct btrfs_key key;
4817 		struct inode *inode;
4818 
4819 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4820 					    list);
4821 		ino = ino_elem->ino;
4822 		parent = ino_elem->parent;
4823 		list_del(&ino_elem->list);
4824 		kfree(ino_elem);
4825 		if (ret)
4826 			continue;
4827 
4828 		btrfs_release_path(path);
4829 
4830 		inode = btrfs_iget(fs_info->sb, ino, root);
4831 		/*
4832 		 * If the other inode that had a conflicting dir entry was
4833 		 * deleted in the current transaction, we need to log its parent
4834 		 * directory.
4835 		 */
4836 		if (IS_ERR(inode)) {
4837 			ret = PTR_ERR(inode);
4838 			if (ret == -ENOENT) {
4839 				inode = btrfs_iget(fs_info->sb, parent, root);
4840 				if (IS_ERR(inode)) {
4841 					ret = PTR_ERR(inode);
4842 				} else {
4843 					ret = btrfs_log_inode(trans, root,
4844 						      BTRFS_I(inode),
4845 						      LOG_OTHER_INODE_ALL,
4846 						      0, LLONG_MAX, ctx);
4847 					btrfs_add_delayed_iput(inode);
4848 				}
4849 			}
4850 			continue;
4851 		}
4852 		/*
4853 		 * If the inode was already logged skip it - otherwise we can
4854 		 * hit an infinite loop. Example:
4855 		 *
4856 		 * From the commit root (previous transaction) we have the
4857 		 * following inodes:
4858 		 *
4859 		 * inode 257 a directory
4860 		 * inode 258 with references "zz" and "zz_link" on inode 257
4861 		 * inode 259 with reference "a" on inode 257
4862 		 *
4863 		 * And in the current (uncommitted) transaction we have:
4864 		 *
4865 		 * inode 257 a directory, unchanged
4866 		 * inode 258 with references "a" and "a2" on inode 257
4867 		 * inode 259 with reference "zz_link" on inode 257
4868 		 * inode 261 with reference "zz" on inode 257
4869 		 *
4870 		 * When logging inode 261 the following infinite loop could
4871 		 * happen if we don't skip already logged inodes:
4872 		 *
4873 		 * - we detect inode 258 as a conflicting inode, with inode 261
4874 		 *   on reference "zz", and log it;
4875 		 *
4876 		 * - we detect inode 259 as a conflicting inode, with inode 258
4877 		 *   on reference "a", and log it;
4878 		 *
4879 		 * - we detect inode 258 as a conflicting inode, with inode 259
4880 		 *   on reference "zz_link", and log it - again! After this we
4881 		 *   repeat the above steps forever.
4882 		 */
4883 		spin_lock(&BTRFS_I(inode)->lock);
4884 		/*
4885 		 * Check the inode's logged_trans only instead of
4886 		 * btrfs_inode_in_log(). This is because the last_log_commit of
4887 		 * the inode is not updated when we only log that it exists and
4888 		 * and it has the full sync bit set (see btrfs_log_inode()).
4889 		 */
4890 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
4891 			spin_unlock(&BTRFS_I(inode)->lock);
4892 			btrfs_add_delayed_iput(inode);
4893 			continue;
4894 		}
4895 		spin_unlock(&BTRFS_I(inode)->lock);
4896 		/*
4897 		 * We are safe logging the other inode without acquiring its
4898 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4899 		 * are safe against concurrent renames of the other inode as
4900 		 * well because during a rename we pin the log and update the
4901 		 * log with the new name before we unpin it.
4902 		 */
4903 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4904 				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4905 		if (ret) {
4906 			btrfs_add_delayed_iput(inode);
4907 			continue;
4908 		}
4909 
4910 		key.objectid = ino;
4911 		key.type = BTRFS_INODE_REF_KEY;
4912 		key.offset = 0;
4913 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4914 		if (ret < 0) {
4915 			btrfs_add_delayed_iput(inode);
4916 			continue;
4917 		}
4918 
4919 		while (true) {
4920 			struct extent_buffer *leaf = path->nodes[0];
4921 			int slot = path->slots[0];
4922 			u64 other_ino = 0;
4923 			u64 other_parent = 0;
4924 
4925 			if (slot >= btrfs_header_nritems(leaf)) {
4926 				ret = btrfs_next_leaf(root, path);
4927 				if (ret < 0) {
4928 					break;
4929 				} else if (ret > 0) {
4930 					ret = 0;
4931 					break;
4932 				}
4933 				continue;
4934 			}
4935 
4936 			btrfs_item_key_to_cpu(leaf, &key, slot);
4937 			if (key.objectid != ino ||
4938 			    (key.type != BTRFS_INODE_REF_KEY &&
4939 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
4940 				ret = 0;
4941 				break;
4942 			}
4943 
4944 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
4945 					BTRFS_I(inode), &other_ino,
4946 					&other_parent);
4947 			if (ret < 0)
4948 				break;
4949 			if (ret > 0) {
4950 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4951 				if (!ino_elem) {
4952 					ret = -ENOMEM;
4953 					break;
4954 				}
4955 				ino_elem->ino = other_ino;
4956 				ino_elem->parent = other_parent;
4957 				list_add_tail(&ino_elem->list, &inode_list);
4958 				ret = 0;
4959 			}
4960 			path->slots[0]++;
4961 		}
4962 		btrfs_add_delayed_iput(inode);
4963 	}
4964 
4965 	return ret;
4966 }
4967 
4968 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
4969 				   struct btrfs_inode *inode,
4970 				   struct btrfs_key *min_key,
4971 				   const struct btrfs_key *max_key,
4972 				   struct btrfs_path *path,
4973 				   struct btrfs_path *dst_path,
4974 				   const u64 logged_isize,
4975 				   const bool recursive_logging,
4976 				   const int inode_only,
4977 				   struct btrfs_log_ctx *ctx,
4978 				   bool *need_log_inode_item)
4979 {
4980 	struct btrfs_root *root = inode->root;
4981 	int ins_start_slot = 0;
4982 	int ins_nr = 0;
4983 	int ret;
4984 
4985 	while (1) {
4986 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
4987 		if (ret < 0)
4988 			return ret;
4989 		if (ret > 0) {
4990 			ret = 0;
4991 			break;
4992 		}
4993 again:
4994 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
4995 		if (min_key->objectid != max_key->objectid)
4996 			break;
4997 		if (min_key->type > max_key->type)
4998 			break;
4999 
5000 		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5001 			*need_log_inode_item = false;
5002 
5003 		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5004 		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5005 		    inode->generation == trans->transid &&
5006 		    !recursive_logging) {
5007 			u64 other_ino = 0;
5008 			u64 other_parent = 0;
5009 
5010 			ret = btrfs_check_ref_name_override(path->nodes[0],
5011 					path->slots[0], min_key, inode,
5012 					&other_ino, &other_parent);
5013 			if (ret < 0) {
5014 				return ret;
5015 			} else if (ret > 0 && ctx &&
5016 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5017 				if (ins_nr > 0) {
5018 					ins_nr++;
5019 				} else {
5020 					ins_nr = 1;
5021 					ins_start_slot = path->slots[0];
5022 				}
5023 				ret = copy_items(trans, inode, dst_path, path,
5024 						 ins_start_slot, ins_nr,
5025 						 inode_only, logged_isize);
5026 				if (ret < 0)
5027 					return ret;
5028 				ins_nr = 0;
5029 
5030 				ret = log_conflicting_inodes(trans, root, path,
5031 						ctx, other_ino, other_parent);
5032 				if (ret)
5033 					return ret;
5034 				btrfs_release_path(path);
5035 				goto next_key;
5036 			}
5037 		}
5038 
5039 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5040 		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5041 			if (ins_nr == 0)
5042 				goto next_slot;
5043 			ret = copy_items(trans, inode, dst_path, path,
5044 					 ins_start_slot,
5045 					 ins_nr, inode_only, logged_isize);
5046 			if (ret < 0)
5047 				return ret;
5048 			ins_nr = 0;
5049 			goto next_slot;
5050 		}
5051 
5052 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5053 			ins_nr++;
5054 			goto next_slot;
5055 		} else if (!ins_nr) {
5056 			ins_start_slot = path->slots[0];
5057 			ins_nr = 1;
5058 			goto next_slot;
5059 		}
5060 
5061 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5062 				 ins_nr, inode_only, logged_isize);
5063 		if (ret < 0)
5064 			return ret;
5065 		ins_nr = 1;
5066 		ins_start_slot = path->slots[0];
5067 next_slot:
5068 		path->slots[0]++;
5069 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5070 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5071 					      path->slots[0]);
5072 			goto again;
5073 		}
5074 		if (ins_nr) {
5075 			ret = copy_items(trans, inode, dst_path, path,
5076 					 ins_start_slot, ins_nr, inode_only,
5077 					 logged_isize);
5078 			if (ret < 0)
5079 				return ret;
5080 			ins_nr = 0;
5081 		}
5082 		btrfs_release_path(path);
5083 next_key:
5084 		if (min_key->offset < (u64)-1) {
5085 			min_key->offset++;
5086 		} else if (min_key->type < max_key->type) {
5087 			min_key->type++;
5088 			min_key->offset = 0;
5089 		} else {
5090 			break;
5091 		}
5092 	}
5093 	if (ins_nr)
5094 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5095 				 ins_nr, inode_only, logged_isize);
5096 
5097 	return ret;
5098 }
5099 
5100 /* log a single inode in the tree log.
5101  * At least one parent directory for this inode must exist in the tree
5102  * or be logged already.
5103  *
5104  * Any items from this inode changed by the current transaction are copied
5105  * to the log tree.  An extra reference is taken on any extents in this
5106  * file, allowing us to avoid a whole pile of corner cases around logging
5107  * blocks that have been removed from the tree.
5108  *
5109  * See LOG_INODE_ALL and related defines for a description of what inode_only
5110  * does.
5111  *
5112  * This handles both files and directories.
5113  */
5114 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5115 			   struct btrfs_root *root, struct btrfs_inode *inode,
5116 			   int inode_only,
5117 			   const loff_t start,
5118 			   const loff_t end,
5119 			   struct btrfs_log_ctx *ctx)
5120 {
5121 	struct btrfs_path *path;
5122 	struct btrfs_path *dst_path;
5123 	struct btrfs_key min_key;
5124 	struct btrfs_key max_key;
5125 	struct btrfs_root *log = root->log_root;
5126 	int err = 0;
5127 	int ret = 0;
5128 	bool fast_search = false;
5129 	u64 ino = btrfs_ino(inode);
5130 	struct extent_map_tree *em_tree = &inode->extent_tree;
5131 	u64 logged_isize = 0;
5132 	bool need_log_inode_item = true;
5133 	bool xattrs_logged = false;
5134 	bool recursive_logging = false;
5135 
5136 	path = btrfs_alloc_path();
5137 	if (!path)
5138 		return -ENOMEM;
5139 	dst_path = btrfs_alloc_path();
5140 	if (!dst_path) {
5141 		btrfs_free_path(path);
5142 		return -ENOMEM;
5143 	}
5144 
5145 	min_key.objectid = ino;
5146 	min_key.type = BTRFS_INODE_ITEM_KEY;
5147 	min_key.offset = 0;
5148 
5149 	max_key.objectid = ino;
5150 
5151 
5152 	/* today the code can only do partial logging of directories */
5153 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5154 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5155 		       &inode->runtime_flags) &&
5156 	     inode_only >= LOG_INODE_EXISTS))
5157 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5158 	else
5159 		max_key.type = (u8)-1;
5160 	max_key.offset = (u64)-1;
5161 
5162 	/*
5163 	 * Only run delayed items if we are a directory. We want to make sure
5164 	 * all directory indexes hit the fs/subvolume tree so we can find them
5165 	 * and figure out which index ranges have to be logged.
5166 	 *
5167 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5168 	 * as we want to make sure an up to date version is in the subvolume
5169 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5170 	 * it to the log tree. For a non full sync, we always log the inode item
5171 	 * based on the in-memory struct btrfs_inode which is always up to date.
5172 	 */
5173 	if (S_ISDIR(inode->vfs_inode.i_mode))
5174 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5175 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5176 		ret = btrfs_commit_inode_delayed_inode(inode);
5177 
5178 	if (ret) {
5179 		btrfs_free_path(path);
5180 		btrfs_free_path(dst_path);
5181 		return ret;
5182 	}
5183 
5184 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5185 		recursive_logging = true;
5186 		if (inode_only == LOG_OTHER_INODE)
5187 			inode_only = LOG_INODE_EXISTS;
5188 		else
5189 			inode_only = LOG_INODE_ALL;
5190 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5191 	} else {
5192 		mutex_lock(&inode->log_mutex);
5193 	}
5194 
5195 	/*
5196 	 * a brute force approach to making sure we get the most uptodate
5197 	 * copies of everything.
5198 	 */
5199 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5200 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5201 
5202 		if (inode_only == LOG_INODE_EXISTS)
5203 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5204 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5205 	} else {
5206 		if (inode_only == LOG_INODE_EXISTS) {
5207 			/*
5208 			 * Make sure the new inode item we write to the log has
5209 			 * the same isize as the current one (if it exists).
5210 			 * This is necessary to prevent data loss after log
5211 			 * replay, and also to prevent doing a wrong expanding
5212 			 * truncate - for e.g. create file, write 4K into offset
5213 			 * 0, fsync, write 4K into offset 4096, add hard link,
5214 			 * fsync some other file (to sync log), power fail - if
5215 			 * we use the inode's current i_size, after log replay
5216 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5217 			 * (zeroes), as if an expanding truncate happened,
5218 			 * instead of getting a file of 4Kb only.
5219 			 */
5220 			err = logged_inode_size(log, inode, path, &logged_isize);
5221 			if (err)
5222 				goto out_unlock;
5223 		}
5224 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5225 			     &inode->runtime_flags)) {
5226 			if (inode_only == LOG_INODE_EXISTS) {
5227 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5228 				ret = drop_objectid_items(trans, log, path, ino,
5229 							  max_key.type);
5230 			} else {
5231 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5232 					  &inode->runtime_flags);
5233 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5234 					  &inode->runtime_flags);
5235 				while(1) {
5236 					ret = btrfs_truncate_inode_items(trans,
5237 						log, &inode->vfs_inode, 0, 0);
5238 					if (ret != -EAGAIN)
5239 						break;
5240 				}
5241 			}
5242 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5243 					      &inode->runtime_flags) ||
5244 			   inode_only == LOG_INODE_EXISTS) {
5245 			if (inode_only == LOG_INODE_ALL)
5246 				fast_search = true;
5247 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5248 			ret = drop_objectid_items(trans, log, path, ino,
5249 						  max_key.type);
5250 		} else {
5251 			if (inode_only == LOG_INODE_ALL)
5252 				fast_search = true;
5253 			goto log_extents;
5254 		}
5255 
5256 	}
5257 	if (ret) {
5258 		err = ret;
5259 		goto out_unlock;
5260 	}
5261 
5262 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5263 				      path, dst_path, logged_isize,
5264 				      recursive_logging, inode_only, ctx,
5265 				      &need_log_inode_item);
5266 	if (err)
5267 		goto out_unlock;
5268 
5269 	btrfs_release_path(path);
5270 	btrfs_release_path(dst_path);
5271 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5272 	if (err)
5273 		goto out_unlock;
5274 	xattrs_logged = true;
5275 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5276 		btrfs_release_path(path);
5277 		btrfs_release_path(dst_path);
5278 		err = btrfs_log_holes(trans, root, inode, path);
5279 		if (err)
5280 			goto out_unlock;
5281 	}
5282 log_extents:
5283 	btrfs_release_path(path);
5284 	btrfs_release_path(dst_path);
5285 	if (need_log_inode_item) {
5286 		err = log_inode_item(trans, log, dst_path, inode);
5287 		if (!err && !xattrs_logged) {
5288 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5289 						   dst_path);
5290 			btrfs_release_path(path);
5291 		}
5292 		if (err)
5293 			goto out_unlock;
5294 	}
5295 	if (fast_search) {
5296 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5297 						ctx, start, end);
5298 		if (ret) {
5299 			err = ret;
5300 			goto out_unlock;
5301 		}
5302 	} else if (inode_only == LOG_INODE_ALL) {
5303 		struct extent_map *em, *n;
5304 
5305 		write_lock(&em_tree->lock);
5306 		/*
5307 		 * We can't just remove every em if we're called for a ranged
5308 		 * fsync - that is, one that doesn't cover the whole possible
5309 		 * file range (0 to LLONG_MAX). This is because we can have
5310 		 * em's that fall outside the range we're logging and therefore
5311 		 * their ordered operations haven't completed yet
5312 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5313 		 * didn't get their respective file extent item in the fs/subvol
5314 		 * tree yet, and need to let the next fast fsync (one which
5315 		 * consults the list of modified extent maps) find the em so
5316 		 * that it logs a matching file extent item and waits for the
5317 		 * respective ordered operation to complete (if it's still
5318 		 * running).
5319 		 *
5320 		 * Removing every em outside the range we're logging would make
5321 		 * the next fast fsync not log their matching file extent items,
5322 		 * therefore making us lose data after a log replay.
5323 		 */
5324 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5325 					 list) {
5326 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5327 
5328 			if (em->mod_start >= start && mod_end <= end)
5329 				list_del_init(&em->list);
5330 		}
5331 		write_unlock(&em_tree->lock);
5332 	}
5333 
5334 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5335 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5336 					ctx);
5337 		if (ret) {
5338 			err = ret;
5339 			goto out_unlock;
5340 		}
5341 	}
5342 
5343 	/*
5344 	 * Don't update last_log_commit if we logged that an inode exists after
5345 	 * it was loaded to memory (full_sync bit set).
5346 	 * This is to prevent data loss when we do a write to the inode, then
5347 	 * the inode gets evicted after all delalloc was flushed, then we log
5348 	 * it exists (due to a rename for example) and then fsync it. This last
5349 	 * fsync would do nothing (not logging the extents previously written).
5350 	 */
5351 	spin_lock(&inode->lock);
5352 	inode->logged_trans = trans->transid;
5353 	if (inode_only != LOG_INODE_EXISTS ||
5354 	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5355 		inode->last_log_commit = inode->last_sub_trans;
5356 	spin_unlock(&inode->lock);
5357 out_unlock:
5358 	mutex_unlock(&inode->log_mutex);
5359 
5360 	btrfs_free_path(path);
5361 	btrfs_free_path(dst_path);
5362 	return err;
5363 }
5364 
5365 /*
5366  * Check if we must fallback to a transaction commit when logging an inode.
5367  * This must be called after logging the inode and is used only in the context
5368  * when fsyncing an inode requires the need to log some other inode - in which
5369  * case we can't lock the i_mutex of each other inode we need to log as that
5370  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5371  * log inodes up or down in the hierarchy) or rename operations for example. So
5372  * we take the log_mutex of the inode after we have logged it and then check for
5373  * its last_unlink_trans value - this is safe because any task setting
5374  * last_unlink_trans must take the log_mutex and it must do this before it does
5375  * the actual unlink operation, so if we do this check before a concurrent task
5376  * sets last_unlink_trans it means we've logged a consistent version/state of
5377  * all the inode items, otherwise we are not sure and must do a transaction
5378  * commit (the concurrent task might have only updated last_unlink_trans before
5379  * we logged the inode or it might have also done the unlink).
5380  */
5381 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5382 					  struct btrfs_inode *inode)
5383 {
5384 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5385 	bool ret = false;
5386 
5387 	mutex_lock(&inode->log_mutex);
5388 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5389 		/*
5390 		 * Make sure any commits to the log are forced to be full
5391 		 * commits.
5392 		 */
5393 		btrfs_set_log_full_commit(trans);
5394 		ret = true;
5395 	}
5396 	mutex_unlock(&inode->log_mutex);
5397 
5398 	return ret;
5399 }
5400 
5401 /*
5402  * follow the dentry parent pointers up the chain and see if any
5403  * of the directories in it require a full commit before they can
5404  * be logged.  Returns zero if nothing special needs to be done or 1 if
5405  * a full commit is required.
5406  */
5407 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5408 					       struct btrfs_inode *inode,
5409 					       struct dentry *parent,
5410 					       struct super_block *sb,
5411 					       u64 last_committed)
5412 {
5413 	int ret = 0;
5414 	struct dentry *old_parent = NULL;
5415 
5416 	/*
5417 	 * for regular files, if its inode is already on disk, we don't
5418 	 * have to worry about the parents at all.  This is because
5419 	 * we can use the last_unlink_trans field to record renames
5420 	 * and other fun in this file.
5421 	 */
5422 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5423 	    inode->generation <= last_committed &&
5424 	    inode->last_unlink_trans <= last_committed)
5425 		goto out;
5426 
5427 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5428 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5429 			goto out;
5430 		inode = BTRFS_I(d_inode(parent));
5431 	}
5432 
5433 	while (1) {
5434 		if (btrfs_must_commit_transaction(trans, inode)) {
5435 			ret = 1;
5436 			break;
5437 		}
5438 
5439 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5440 			break;
5441 
5442 		if (IS_ROOT(parent)) {
5443 			inode = BTRFS_I(d_inode(parent));
5444 			if (btrfs_must_commit_transaction(trans, inode))
5445 				ret = 1;
5446 			break;
5447 		}
5448 
5449 		parent = dget_parent(parent);
5450 		dput(old_parent);
5451 		old_parent = parent;
5452 		inode = BTRFS_I(d_inode(parent));
5453 
5454 	}
5455 	dput(old_parent);
5456 out:
5457 	return ret;
5458 }
5459 
5460 struct btrfs_dir_list {
5461 	u64 ino;
5462 	struct list_head list;
5463 };
5464 
5465 /*
5466  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5467  * details about the why it is needed.
5468  * This is a recursive operation - if an existing dentry corresponds to a
5469  * directory, that directory's new entries are logged too (same behaviour as
5470  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5471  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5472  * complains about the following circular lock dependency / possible deadlock:
5473  *
5474  *        CPU0                                        CPU1
5475  *        ----                                        ----
5476  * lock(&type->i_mutex_dir_key#3/2);
5477  *                                            lock(sb_internal#2);
5478  *                                            lock(&type->i_mutex_dir_key#3/2);
5479  * lock(&sb->s_type->i_mutex_key#14);
5480  *
5481  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5482  * sb_start_intwrite() in btrfs_start_transaction().
5483  * Not locking i_mutex of the inodes is still safe because:
5484  *
5485  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5486  *    that while logging the inode new references (names) are added or removed
5487  *    from the inode, leaving the logged inode item with a link count that does
5488  *    not match the number of logged inode reference items. This is fine because
5489  *    at log replay time we compute the real number of links and correct the
5490  *    link count in the inode item (see replay_one_buffer() and
5491  *    link_to_fixup_dir());
5492  *
5493  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5494  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5495  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5496  *    has a size that doesn't match the sum of the lengths of all the logged
5497  *    names. This does not result in a problem because if a dir_item key is
5498  *    logged but its matching dir_index key is not logged, at log replay time we
5499  *    don't use it to replay the respective name (see replay_one_name()). On the
5500  *    other hand if only the dir_index key ends up being logged, the respective
5501  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5502  *    keys created (see replay_one_name()).
5503  *    The directory's inode item with a wrong i_size is not a problem as well,
5504  *    since we don't use it at log replay time to set the i_size in the inode
5505  *    item of the fs/subvol tree (see overwrite_item()).
5506  */
5507 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5508 				struct btrfs_root *root,
5509 				struct btrfs_inode *start_inode,
5510 				struct btrfs_log_ctx *ctx)
5511 {
5512 	struct btrfs_fs_info *fs_info = root->fs_info;
5513 	struct btrfs_root *log = root->log_root;
5514 	struct btrfs_path *path;
5515 	LIST_HEAD(dir_list);
5516 	struct btrfs_dir_list *dir_elem;
5517 	int ret = 0;
5518 
5519 	path = btrfs_alloc_path();
5520 	if (!path)
5521 		return -ENOMEM;
5522 
5523 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5524 	if (!dir_elem) {
5525 		btrfs_free_path(path);
5526 		return -ENOMEM;
5527 	}
5528 	dir_elem->ino = btrfs_ino(start_inode);
5529 	list_add_tail(&dir_elem->list, &dir_list);
5530 
5531 	while (!list_empty(&dir_list)) {
5532 		struct extent_buffer *leaf;
5533 		struct btrfs_key min_key;
5534 		int nritems;
5535 		int i;
5536 
5537 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5538 					    list);
5539 		if (ret)
5540 			goto next_dir_inode;
5541 
5542 		min_key.objectid = dir_elem->ino;
5543 		min_key.type = BTRFS_DIR_ITEM_KEY;
5544 		min_key.offset = 0;
5545 again:
5546 		btrfs_release_path(path);
5547 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5548 		if (ret < 0) {
5549 			goto next_dir_inode;
5550 		} else if (ret > 0) {
5551 			ret = 0;
5552 			goto next_dir_inode;
5553 		}
5554 
5555 process_leaf:
5556 		leaf = path->nodes[0];
5557 		nritems = btrfs_header_nritems(leaf);
5558 		for (i = path->slots[0]; i < nritems; i++) {
5559 			struct btrfs_dir_item *di;
5560 			struct btrfs_key di_key;
5561 			struct inode *di_inode;
5562 			struct btrfs_dir_list *new_dir_elem;
5563 			int log_mode = LOG_INODE_EXISTS;
5564 			int type;
5565 
5566 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5567 			if (min_key.objectid != dir_elem->ino ||
5568 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5569 				goto next_dir_inode;
5570 
5571 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5572 			type = btrfs_dir_type(leaf, di);
5573 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5574 			    type != BTRFS_FT_DIR)
5575 				continue;
5576 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5577 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5578 				continue;
5579 
5580 			btrfs_release_path(path);
5581 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5582 			if (IS_ERR(di_inode)) {
5583 				ret = PTR_ERR(di_inode);
5584 				goto next_dir_inode;
5585 			}
5586 
5587 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5588 				btrfs_add_delayed_iput(di_inode);
5589 				break;
5590 			}
5591 
5592 			ctx->log_new_dentries = false;
5593 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5594 				log_mode = LOG_INODE_ALL;
5595 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5596 					      log_mode, 0, LLONG_MAX, ctx);
5597 			if (!ret &&
5598 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5599 				ret = 1;
5600 			btrfs_add_delayed_iput(di_inode);
5601 			if (ret)
5602 				goto next_dir_inode;
5603 			if (ctx->log_new_dentries) {
5604 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5605 						       GFP_NOFS);
5606 				if (!new_dir_elem) {
5607 					ret = -ENOMEM;
5608 					goto next_dir_inode;
5609 				}
5610 				new_dir_elem->ino = di_key.objectid;
5611 				list_add_tail(&new_dir_elem->list, &dir_list);
5612 			}
5613 			break;
5614 		}
5615 		if (i == nritems) {
5616 			ret = btrfs_next_leaf(log, path);
5617 			if (ret < 0) {
5618 				goto next_dir_inode;
5619 			} else if (ret > 0) {
5620 				ret = 0;
5621 				goto next_dir_inode;
5622 			}
5623 			goto process_leaf;
5624 		}
5625 		if (min_key.offset < (u64)-1) {
5626 			min_key.offset++;
5627 			goto again;
5628 		}
5629 next_dir_inode:
5630 		list_del(&dir_elem->list);
5631 		kfree(dir_elem);
5632 	}
5633 
5634 	btrfs_free_path(path);
5635 	return ret;
5636 }
5637 
5638 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5639 				 struct btrfs_inode *inode,
5640 				 struct btrfs_log_ctx *ctx)
5641 {
5642 	struct btrfs_fs_info *fs_info = trans->fs_info;
5643 	int ret;
5644 	struct btrfs_path *path;
5645 	struct btrfs_key key;
5646 	struct btrfs_root *root = inode->root;
5647 	const u64 ino = btrfs_ino(inode);
5648 
5649 	path = btrfs_alloc_path();
5650 	if (!path)
5651 		return -ENOMEM;
5652 	path->skip_locking = 1;
5653 	path->search_commit_root = 1;
5654 
5655 	key.objectid = ino;
5656 	key.type = BTRFS_INODE_REF_KEY;
5657 	key.offset = 0;
5658 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5659 	if (ret < 0)
5660 		goto out;
5661 
5662 	while (true) {
5663 		struct extent_buffer *leaf = path->nodes[0];
5664 		int slot = path->slots[0];
5665 		u32 cur_offset = 0;
5666 		u32 item_size;
5667 		unsigned long ptr;
5668 
5669 		if (slot >= btrfs_header_nritems(leaf)) {
5670 			ret = btrfs_next_leaf(root, path);
5671 			if (ret < 0)
5672 				goto out;
5673 			else if (ret > 0)
5674 				break;
5675 			continue;
5676 		}
5677 
5678 		btrfs_item_key_to_cpu(leaf, &key, slot);
5679 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5680 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5681 			break;
5682 
5683 		item_size = btrfs_item_size_nr(leaf, slot);
5684 		ptr = btrfs_item_ptr_offset(leaf, slot);
5685 		while (cur_offset < item_size) {
5686 			struct btrfs_key inode_key;
5687 			struct inode *dir_inode;
5688 
5689 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5690 			inode_key.offset = 0;
5691 
5692 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5693 				struct btrfs_inode_extref *extref;
5694 
5695 				extref = (struct btrfs_inode_extref *)
5696 					(ptr + cur_offset);
5697 				inode_key.objectid = btrfs_inode_extref_parent(
5698 					leaf, extref);
5699 				cur_offset += sizeof(*extref);
5700 				cur_offset += btrfs_inode_extref_name_len(leaf,
5701 					extref);
5702 			} else {
5703 				inode_key.objectid = key.offset;
5704 				cur_offset = item_size;
5705 			}
5706 
5707 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5708 					       root);
5709 			/*
5710 			 * If the parent inode was deleted, return an error to
5711 			 * fallback to a transaction commit. This is to prevent
5712 			 * getting an inode that was moved from one parent A to
5713 			 * a parent B, got its former parent A deleted and then
5714 			 * it got fsync'ed, from existing at both parents after
5715 			 * a log replay (and the old parent still existing).
5716 			 * Example:
5717 			 *
5718 			 * mkdir /mnt/A
5719 			 * mkdir /mnt/B
5720 			 * touch /mnt/B/bar
5721 			 * sync
5722 			 * mv /mnt/B/bar /mnt/A/bar
5723 			 * mv -T /mnt/A /mnt/B
5724 			 * fsync /mnt/B/bar
5725 			 * <power fail>
5726 			 *
5727 			 * If we ignore the old parent B which got deleted,
5728 			 * after a log replay we would have file bar linked
5729 			 * at both parents and the old parent B would still
5730 			 * exist.
5731 			 */
5732 			if (IS_ERR(dir_inode)) {
5733 				ret = PTR_ERR(dir_inode);
5734 				goto out;
5735 			}
5736 
5737 			if (ctx)
5738 				ctx->log_new_dentries = false;
5739 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5740 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5741 			if (!ret &&
5742 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5743 				ret = 1;
5744 			if (!ret && ctx && ctx->log_new_dentries)
5745 				ret = log_new_dir_dentries(trans, root,
5746 						   BTRFS_I(dir_inode), ctx);
5747 			btrfs_add_delayed_iput(dir_inode);
5748 			if (ret)
5749 				goto out;
5750 		}
5751 		path->slots[0]++;
5752 	}
5753 	ret = 0;
5754 out:
5755 	btrfs_free_path(path);
5756 	return ret;
5757 }
5758 
5759 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5760 			     struct btrfs_root *root,
5761 			     struct btrfs_path *path,
5762 			     struct btrfs_log_ctx *ctx)
5763 {
5764 	struct btrfs_key found_key;
5765 
5766 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5767 
5768 	while (true) {
5769 		struct btrfs_fs_info *fs_info = root->fs_info;
5770 		const u64 last_committed = fs_info->last_trans_committed;
5771 		struct extent_buffer *leaf = path->nodes[0];
5772 		int slot = path->slots[0];
5773 		struct btrfs_key search_key;
5774 		struct inode *inode;
5775 		u64 ino;
5776 		int ret = 0;
5777 
5778 		btrfs_release_path(path);
5779 
5780 		ino = found_key.offset;
5781 
5782 		search_key.objectid = found_key.offset;
5783 		search_key.type = BTRFS_INODE_ITEM_KEY;
5784 		search_key.offset = 0;
5785 		inode = btrfs_iget(fs_info->sb, ino, root);
5786 		if (IS_ERR(inode))
5787 			return PTR_ERR(inode);
5788 
5789 		if (BTRFS_I(inode)->generation > last_committed)
5790 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5791 					      LOG_INODE_EXISTS,
5792 					      0, LLONG_MAX, ctx);
5793 		btrfs_add_delayed_iput(inode);
5794 		if (ret)
5795 			return ret;
5796 
5797 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5798 			break;
5799 
5800 		search_key.type = BTRFS_INODE_REF_KEY;
5801 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5802 		if (ret < 0)
5803 			return ret;
5804 
5805 		leaf = path->nodes[0];
5806 		slot = path->slots[0];
5807 		if (slot >= btrfs_header_nritems(leaf)) {
5808 			ret = btrfs_next_leaf(root, path);
5809 			if (ret < 0)
5810 				return ret;
5811 			else if (ret > 0)
5812 				return -ENOENT;
5813 			leaf = path->nodes[0];
5814 			slot = path->slots[0];
5815 		}
5816 
5817 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5818 		if (found_key.objectid != search_key.objectid ||
5819 		    found_key.type != BTRFS_INODE_REF_KEY)
5820 			return -ENOENT;
5821 	}
5822 	return 0;
5823 }
5824 
5825 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5826 				  struct btrfs_inode *inode,
5827 				  struct dentry *parent,
5828 				  struct btrfs_log_ctx *ctx)
5829 {
5830 	struct btrfs_root *root = inode->root;
5831 	struct btrfs_fs_info *fs_info = root->fs_info;
5832 	struct dentry *old_parent = NULL;
5833 	struct super_block *sb = inode->vfs_inode.i_sb;
5834 	int ret = 0;
5835 
5836 	while (true) {
5837 		if (!parent || d_really_is_negative(parent) ||
5838 		    sb != parent->d_sb)
5839 			break;
5840 
5841 		inode = BTRFS_I(d_inode(parent));
5842 		if (root != inode->root)
5843 			break;
5844 
5845 		if (inode->generation > fs_info->last_trans_committed) {
5846 			ret = btrfs_log_inode(trans, root, inode,
5847 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5848 			if (ret)
5849 				break;
5850 		}
5851 		if (IS_ROOT(parent))
5852 			break;
5853 
5854 		parent = dget_parent(parent);
5855 		dput(old_parent);
5856 		old_parent = parent;
5857 	}
5858 	dput(old_parent);
5859 
5860 	return ret;
5861 }
5862 
5863 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5864 				 struct btrfs_inode *inode,
5865 				 struct dentry *parent,
5866 				 struct btrfs_log_ctx *ctx)
5867 {
5868 	struct btrfs_root *root = inode->root;
5869 	const u64 ino = btrfs_ino(inode);
5870 	struct btrfs_path *path;
5871 	struct btrfs_key search_key;
5872 	int ret;
5873 
5874 	/*
5875 	 * For a single hard link case, go through a fast path that does not
5876 	 * need to iterate the fs/subvolume tree.
5877 	 */
5878 	if (inode->vfs_inode.i_nlink < 2)
5879 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5880 
5881 	path = btrfs_alloc_path();
5882 	if (!path)
5883 		return -ENOMEM;
5884 
5885 	search_key.objectid = ino;
5886 	search_key.type = BTRFS_INODE_REF_KEY;
5887 	search_key.offset = 0;
5888 again:
5889 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5890 	if (ret < 0)
5891 		goto out;
5892 	if (ret == 0)
5893 		path->slots[0]++;
5894 
5895 	while (true) {
5896 		struct extent_buffer *leaf = path->nodes[0];
5897 		int slot = path->slots[0];
5898 		struct btrfs_key found_key;
5899 
5900 		if (slot >= btrfs_header_nritems(leaf)) {
5901 			ret = btrfs_next_leaf(root, path);
5902 			if (ret < 0)
5903 				goto out;
5904 			else if (ret > 0)
5905 				break;
5906 			continue;
5907 		}
5908 
5909 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5910 		if (found_key.objectid != ino ||
5911 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
5912 			break;
5913 
5914 		/*
5915 		 * Don't deal with extended references because they are rare
5916 		 * cases and too complex to deal with (we would need to keep
5917 		 * track of which subitem we are processing for each item in
5918 		 * this loop, etc). So just return some error to fallback to
5919 		 * a transaction commit.
5920 		 */
5921 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5922 			ret = -EMLINK;
5923 			goto out;
5924 		}
5925 
5926 		/*
5927 		 * Logging ancestors needs to do more searches on the fs/subvol
5928 		 * tree, so it releases the path as needed to avoid deadlocks.
5929 		 * Keep track of the last inode ref key and resume from that key
5930 		 * after logging all new ancestors for the current hard link.
5931 		 */
5932 		memcpy(&search_key, &found_key, sizeof(search_key));
5933 
5934 		ret = log_new_ancestors(trans, root, path, ctx);
5935 		if (ret)
5936 			goto out;
5937 		btrfs_release_path(path);
5938 		goto again;
5939 	}
5940 	ret = 0;
5941 out:
5942 	btrfs_free_path(path);
5943 	return ret;
5944 }
5945 
5946 /*
5947  * helper function around btrfs_log_inode to make sure newly created
5948  * parent directories also end up in the log.  A minimal inode and backref
5949  * only logging is done of any parent directories that are older than
5950  * the last committed transaction
5951  */
5952 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5953 				  struct btrfs_inode *inode,
5954 				  struct dentry *parent,
5955 				  const loff_t start,
5956 				  const loff_t end,
5957 				  int inode_only,
5958 				  struct btrfs_log_ctx *ctx)
5959 {
5960 	struct btrfs_root *root = inode->root;
5961 	struct btrfs_fs_info *fs_info = root->fs_info;
5962 	struct super_block *sb;
5963 	int ret = 0;
5964 	u64 last_committed = fs_info->last_trans_committed;
5965 	bool log_dentries = false;
5966 
5967 	sb = inode->vfs_inode.i_sb;
5968 
5969 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5970 		ret = 1;
5971 		goto end_no_trans;
5972 	}
5973 
5974 	/*
5975 	 * The prev transaction commit doesn't complete, we need do
5976 	 * full commit by ourselves.
5977 	 */
5978 	if (fs_info->last_trans_log_full_commit >
5979 	    fs_info->last_trans_committed) {
5980 		ret = 1;
5981 		goto end_no_trans;
5982 	}
5983 
5984 	if (btrfs_root_refs(&root->root_item) == 0) {
5985 		ret = 1;
5986 		goto end_no_trans;
5987 	}
5988 
5989 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5990 			last_committed);
5991 	if (ret)
5992 		goto end_no_trans;
5993 
5994 	/*
5995 	 * Skip already logged inodes or inodes corresponding to tmpfiles
5996 	 * (since logging them is pointless, a link count of 0 means they
5997 	 * will never be accessible).
5998 	 */
5999 	if (btrfs_inode_in_log(inode, trans->transid) ||
6000 	    inode->vfs_inode.i_nlink == 0) {
6001 		ret = BTRFS_NO_LOG_SYNC;
6002 		goto end_no_trans;
6003 	}
6004 
6005 	ret = start_log_trans(trans, root, ctx);
6006 	if (ret)
6007 		goto end_no_trans;
6008 
6009 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6010 	if (ret)
6011 		goto end_trans;
6012 
6013 	/*
6014 	 * for regular files, if its inode is already on disk, we don't
6015 	 * have to worry about the parents at all.  This is because
6016 	 * we can use the last_unlink_trans field to record renames
6017 	 * and other fun in this file.
6018 	 */
6019 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6020 	    inode->generation <= last_committed &&
6021 	    inode->last_unlink_trans <= last_committed) {
6022 		ret = 0;
6023 		goto end_trans;
6024 	}
6025 
6026 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6027 		log_dentries = true;
6028 
6029 	/*
6030 	 * On unlink we must make sure all our current and old parent directory
6031 	 * inodes are fully logged. This is to prevent leaving dangling
6032 	 * directory index entries in directories that were our parents but are
6033 	 * not anymore. Not doing this results in old parent directory being
6034 	 * impossible to delete after log replay (rmdir will always fail with
6035 	 * error -ENOTEMPTY).
6036 	 *
6037 	 * Example 1:
6038 	 *
6039 	 * mkdir testdir
6040 	 * touch testdir/foo
6041 	 * ln testdir/foo testdir/bar
6042 	 * sync
6043 	 * unlink testdir/bar
6044 	 * xfs_io -c fsync testdir/foo
6045 	 * <power failure>
6046 	 * mount fs, triggers log replay
6047 	 *
6048 	 * If we don't log the parent directory (testdir), after log replay the
6049 	 * directory still has an entry pointing to the file inode using the bar
6050 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6051 	 * the file inode has a link count of 1.
6052 	 *
6053 	 * Example 2:
6054 	 *
6055 	 * mkdir testdir
6056 	 * touch foo
6057 	 * ln foo testdir/foo2
6058 	 * ln foo testdir/foo3
6059 	 * sync
6060 	 * unlink testdir/foo3
6061 	 * xfs_io -c fsync foo
6062 	 * <power failure>
6063 	 * mount fs, triggers log replay
6064 	 *
6065 	 * Similar as the first example, after log replay the parent directory
6066 	 * testdir still has an entry pointing to the inode file with name foo3
6067 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6068 	 * and has a link count of 2.
6069 	 */
6070 	if (inode->last_unlink_trans > last_committed) {
6071 		ret = btrfs_log_all_parents(trans, inode, ctx);
6072 		if (ret)
6073 			goto end_trans;
6074 	}
6075 
6076 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6077 	if (ret)
6078 		goto end_trans;
6079 
6080 	if (log_dentries)
6081 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6082 	else
6083 		ret = 0;
6084 end_trans:
6085 	if (ret < 0) {
6086 		btrfs_set_log_full_commit(trans);
6087 		ret = 1;
6088 	}
6089 
6090 	if (ret)
6091 		btrfs_remove_log_ctx(root, ctx);
6092 	btrfs_end_log_trans(root);
6093 end_no_trans:
6094 	return ret;
6095 }
6096 
6097 /*
6098  * it is not safe to log dentry if the chunk root has added new
6099  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6100  * If this returns 1, you must commit the transaction to safely get your
6101  * data on disk.
6102  */
6103 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6104 			  struct dentry *dentry,
6105 			  const loff_t start,
6106 			  const loff_t end,
6107 			  struct btrfs_log_ctx *ctx)
6108 {
6109 	struct dentry *parent = dget_parent(dentry);
6110 	int ret;
6111 
6112 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6113 				     start, end, LOG_INODE_ALL, ctx);
6114 	dput(parent);
6115 
6116 	return ret;
6117 }
6118 
6119 /*
6120  * should be called during mount to recover any replay any log trees
6121  * from the FS
6122  */
6123 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6124 {
6125 	int ret;
6126 	struct btrfs_path *path;
6127 	struct btrfs_trans_handle *trans;
6128 	struct btrfs_key key;
6129 	struct btrfs_key found_key;
6130 	struct btrfs_root *log;
6131 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6132 	struct walk_control wc = {
6133 		.process_func = process_one_buffer,
6134 		.stage = LOG_WALK_PIN_ONLY,
6135 	};
6136 
6137 	path = btrfs_alloc_path();
6138 	if (!path)
6139 		return -ENOMEM;
6140 
6141 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6142 
6143 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6144 	if (IS_ERR(trans)) {
6145 		ret = PTR_ERR(trans);
6146 		goto error;
6147 	}
6148 
6149 	wc.trans = trans;
6150 	wc.pin = 1;
6151 
6152 	ret = walk_log_tree(trans, log_root_tree, &wc);
6153 	if (ret) {
6154 		btrfs_handle_fs_error(fs_info, ret,
6155 			"Failed to pin buffers while recovering log root tree.");
6156 		goto error;
6157 	}
6158 
6159 again:
6160 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6161 	key.offset = (u64)-1;
6162 	key.type = BTRFS_ROOT_ITEM_KEY;
6163 
6164 	while (1) {
6165 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6166 
6167 		if (ret < 0) {
6168 			btrfs_handle_fs_error(fs_info, ret,
6169 				    "Couldn't find tree log root.");
6170 			goto error;
6171 		}
6172 		if (ret > 0) {
6173 			if (path->slots[0] == 0)
6174 				break;
6175 			path->slots[0]--;
6176 		}
6177 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6178 				      path->slots[0]);
6179 		btrfs_release_path(path);
6180 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6181 			break;
6182 
6183 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6184 		if (IS_ERR(log)) {
6185 			ret = PTR_ERR(log);
6186 			btrfs_handle_fs_error(fs_info, ret,
6187 				    "Couldn't read tree log root.");
6188 			goto error;
6189 		}
6190 
6191 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6192 						   true);
6193 		if (IS_ERR(wc.replay_dest)) {
6194 			ret = PTR_ERR(wc.replay_dest);
6195 
6196 			/*
6197 			 * We didn't find the subvol, likely because it was
6198 			 * deleted.  This is ok, simply skip this log and go to
6199 			 * the next one.
6200 			 *
6201 			 * We need to exclude the root because we can't have
6202 			 * other log replays overwriting this log as we'll read
6203 			 * it back in a few more times.  This will keep our
6204 			 * block from being modified, and we'll just bail for
6205 			 * each subsequent pass.
6206 			 */
6207 			if (ret == -ENOENT)
6208 				ret = btrfs_pin_extent_for_log_replay(trans,
6209 							log->node->start,
6210 							log->node->len);
6211 			btrfs_put_root(log);
6212 
6213 			if (!ret)
6214 				goto next;
6215 			btrfs_handle_fs_error(fs_info, ret,
6216 				"Couldn't read target root for tree log recovery.");
6217 			goto error;
6218 		}
6219 
6220 		wc.replay_dest->log_root = log;
6221 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6222 		ret = walk_log_tree(trans, log, &wc);
6223 
6224 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6225 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6226 						      path);
6227 		}
6228 
6229 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6230 			struct btrfs_root *root = wc.replay_dest;
6231 
6232 			btrfs_release_path(path);
6233 
6234 			/*
6235 			 * We have just replayed everything, and the highest
6236 			 * objectid of fs roots probably has changed in case
6237 			 * some inode_item's got replayed.
6238 			 *
6239 			 * root->objectid_mutex is not acquired as log replay
6240 			 * could only happen during mount.
6241 			 */
6242 			ret = btrfs_find_highest_objectid(root,
6243 						  &root->highest_objectid);
6244 		}
6245 
6246 		wc.replay_dest->log_root = NULL;
6247 		btrfs_put_root(wc.replay_dest);
6248 		btrfs_put_root(log);
6249 
6250 		if (ret)
6251 			goto error;
6252 next:
6253 		if (found_key.offset == 0)
6254 			break;
6255 		key.offset = found_key.offset - 1;
6256 	}
6257 	btrfs_release_path(path);
6258 
6259 	/* step one is to pin it all, step two is to replay just inodes */
6260 	if (wc.pin) {
6261 		wc.pin = 0;
6262 		wc.process_func = replay_one_buffer;
6263 		wc.stage = LOG_WALK_REPLAY_INODES;
6264 		goto again;
6265 	}
6266 	/* step three is to replay everything */
6267 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6268 		wc.stage++;
6269 		goto again;
6270 	}
6271 
6272 	btrfs_free_path(path);
6273 
6274 	/* step 4: commit the transaction, which also unpins the blocks */
6275 	ret = btrfs_commit_transaction(trans);
6276 	if (ret)
6277 		return ret;
6278 
6279 	log_root_tree->log_root = NULL;
6280 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6281 	btrfs_put_root(log_root_tree);
6282 
6283 	return 0;
6284 error:
6285 	if (wc.trans)
6286 		btrfs_end_transaction(wc.trans);
6287 	btrfs_free_path(path);
6288 	return ret;
6289 }
6290 
6291 /*
6292  * there are some corner cases where we want to force a full
6293  * commit instead of allowing a directory to be logged.
6294  *
6295  * They revolve around files there were unlinked from the directory, and
6296  * this function updates the parent directory so that a full commit is
6297  * properly done if it is fsync'd later after the unlinks are done.
6298  *
6299  * Must be called before the unlink operations (updates to the subvolume tree,
6300  * inodes, etc) are done.
6301  */
6302 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6303 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6304 			     int for_rename)
6305 {
6306 	/*
6307 	 * when we're logging a file, if it hasn't been renamed
6308 	 * or unlinked, and its inode is fully committed on disk,
6309 	 * we don't have to worry about walking up the directory chain
6310 	 * to log its parents.
6311 	 *
6312 	 * So, we use the last_unlink_trans field to put this transid
6313 	 * into the file.  When the file is logged we check it and
6314 	 * don't log the parents if the file is fully on disk.
6315 	 */
6316 	mutex_lock(&inode->log_mutex);
6317 	inode->last_unlink_trans = trans->transid;
6318 	mutex_unlock(&inode->log_mutex);
6319 
6320 	/*
6321 	 * if this directory was already logged any new
6322 	 * names for this file/dir will get recorded
6323 	 */
6324 	if (dir->logged_trans == trans->transid)
6325 		return;
6326 
6327 	/*
6328 	 * if the inode we're about to unlink was logged,
6329 	 * the log will be properly updated for any new names
6330 	 */
6331 	if (inode->logged_trans == trans->transid)
6332 		return;
6333 
6334 	/*
6335 	 * when renaming files across directories, if the directory
6336 	 * there we're unlinking from gets fsync'd later on, there's
6337 	 * no way to find the destination directory later and fsync it
6338 	 * properly.  So, we have to be conservative and force commits
6339 	 * so the new name gets discovered.
6340 	 */
6341 	if (for_rename)
6342 		goto record;
6343 
6344 	/* we can safely do the unlink without any special recording */
6345 	return;
6346 
6347 record:
6348 	mutex_lock(&dir->log_mutex);
6349 	dir->last_unlink_trans = trans->transid;
6350 	mutex_unlock(&dir->log_mutex);
6351 }
6352 
6353 /*
6354  * Make sure that if someone attempts to fsync the parent directory of a deleted
6355  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6356  * that after replaying the log tree of the parent directory's root we will not
6357  * see the snapshot anymore and at log replay time we will not see any log tree
6358  * corresponding to the deleted snapshot's root, which could lead to replaying
6359  * it after replaying the log tree of the parent directory (which would replay
6360  * the snapshot delete operation).
6361  *
6362  * Must be called before the actual snapshot destroy operation (updates to the
6363  * parent root and tree of tree roots trees, etc) are done.
6364  */
6365 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6366 				   struct btrfs_inode *dir)
6367 {
6368 	mutex_lock(&dir->log_mutex);
6369 	dir->last_unlink_trans = trans->transid;
6370 	mutex_unlock(&dir->log_mutex);
6371 }
6372 
6373 /*
6374  * Call this after adding a new name for a file and it will properly
6375  * update the log to reflect the new name.
6376  *
6377  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6378  * true (because it's not used).
6379  *
6380  * Return value depends on whether @sync_log is true or false.
6381  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6382  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6383  *            otherwise.
6384  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6385  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6386  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6387  *             committed (without attempting to sync the log).
6388  */
6389 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6390 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6391 			struct dentry *parent,
6392 			bool sync_log, struct btrfs_log_ctx *ctx)
6393 {
6394 	struct btrfs_fs_info *fs_info = trans->fs_info;
6395 	int ret;
6396 
6397 	/*
6398 	 * this will force the logging code to walk the dentry chain
6399 	 * up for the file
6400 	 */
6401 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6402 		inode->last_unlink_trans = trans->transid;
6403 
6404 	/*
6405 	 * if this inode hasn't been logged and directory we're renaming it
6406 	 * from hasn't been logged, we don't need to log it
6407 	 */
6408 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6409 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6410 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6411 			BTRFS_DONT_NEED_LOG_SYNC;
6412 
6413 	if (sync_log) {
6414 		struct btrfs_log_ctx ctx2;
6415 
6416 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6417 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6418 					     LOG_INODE_EXISTS, &ctx2);
6419 		if (ret == BTRFS_NO_LOG_SYNC)
6420 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6421 		else if (ret)
6422 			return BTRFS_NEED_TRANS_COMMIT;
6423 
6424 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6425 		if (ret)
6426 			return BTRFS_NEED_TRANS_COMMIT;
6427 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6428 	}
6429 
6430 	ASSERT(ctx);
6431 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6432 				     LOG_INODE_EXISTS, ctx);
6433 	if (ret == BTRFS_NO_LOG_SYNC)
6434 		return BTRFS_DONT_NEED_LOG_SYNC;
6435 	else if (ret)
6436 		return BTRFS_NEED_TRANS_COMMIT;
6437 
6438 	return BTRFS_NEED_LOG_SYNC;
6439 }
6440 
6441