1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "inode-map.h" 21 #include "block-group.h" 22 #include "space-info.h" 23 24 /* magic values for the inode_only field in btrfs_log_inode: 25 * 26 * LOG_INODE_ALL means to log everything 27 * LOG_INODE_EXISTS means to log just enough to recreate the inode 28 * during log replay 29 */ 30 enum { 31 LOG_INODE_ALL, 32 LOG_INODE_EXISTS, 33 LOG_OTHER_INODE, 34 LOG_OTHER_INODE_ALL, 35 }; 36 37 /* 38 * directory trouble cases 39 * 40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 41 * log, we must force a full commit before doing an fsync of the directory 42 * where the unlink was done. 43 * ---> record transid of last unlink/rename per directory 44 * 45 * mkdir foo/some_dir 46 * normal commit 47 * rename foo/some_dir foo2/some_dir 48 * mkdir foo/some_dir 49 * fsync foo/some_dir/some_file 50 * 51 * The fsync above will unlink the original some_dir without recording 52 * it in its new location (foo2). After a crash, some_dir will be gone 53 * unless the fsync of some_file forces a full commit 54 * 55 * 2) we must log any new names for any file or dir that is in the fsync 56 * log. ---> check inode while renaming/linking. 57 * 58 * 2a) we must log any new names for any file or dir during rename 59 * when the directory they are being removed from was logged. 60 * ---> check inode and old parent dir during rename 61 * 62 * 2a is actually the more important variant. With the extra logging 63 * a crash might unlink the old name without recreating the new one 64 * 65 * 3) after a crash, we must go through any directories with a link count 66 * of zero and redo the rm -rf 67 * 68 * mkdir f1/foo 69 * normal commit 70 * rm -rf f1/foo 71 * fsync(f1) 72 * 73 * The directory f1 was fully removed from the FS, but fsync was never 74 * called on f1, only its parent dir. After a crash the rm -rf must 75 * be replayed. This must be able to recurse down the entire 76 * directory tree. The inode link count fixup code takes care of the 77 * ugly details. 78 */ 79 80 /* 81 * stages for the tree walking. The first 82 * stage (0) is to only pin down the blocks we find 83 * the second stage (1) is to make sure that all the inodes 84 * we find in the log are created in the subvolume. 85 * 86 * The last stage is to deal with directories and links and extents 87 * and all the other fun semantics 88 */ 89 enum { 90 LOG_WALK_PIN_ONLY, 91 LOG_WALK_REPLAY_INODES, 92 LOG_WALK_REPLAY_DIR_INDEX, 93 LOG_WALK_REPLAY_ALL, 94 }; 95 96 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 97 struct btrfs_root *root, struct btrfs_inode *inode, 98 int inode_only, 99 const loff_t start, 100 const loff_t end, 101 struct btrfs_log_ctx *ctx); 102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 103 struct btrfs_root *root, 104 struct btrfs_path *path, u64 objectid); 105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 106 struct btrfs_root *root, 107 struct btrfs_root *log, 108 struct btrfs_path *path, 109 u64 dirid, int del_all); 110 111 /* 112 * tree logging is a special write ahead log used to make sure that 113 * fsyncs and O_SYNCs can happen without doing full tree commits. 114 * 115 * Full tree commits are expensive because they require commonly 116 * modified blocks to be recowed, creating many dirty pages in the 117 * extent tree an 4x-6x higher write load than ext3. 118 * 119 * Instead of doing a tree commit on every fsync, we use the 120 * key ranges and transaction ids to find items for a given file or directory 121 * that have changed in this transaction. Those items are copied into 122 * a special tree (one per subvolume root), that tree is written to disk 123 * and then the fsync is considered complete. 124 * 125 * After a crash, items are copied out of the log-tree back into the 126 * subvolume tree. Any file data extents found are recorded in the extent 127 * allocation tree, and the log-tree freed. 128 * 129 * The log tree is read three times, once to pin down all the extents it is 130 * using in ram and once, once to create all the inodes logged in the tree 131 * and once to do all the other items. 132 */ 133 134 /* 135 * start a sub transaction and setup the log tree 136 * this increments the log tree writer count to make the people 137 * syncing the tree wait for us to finish 138 */ 139 static int start_log_trans(struct btrfs_trans_handle *trans, 140 struct btrfs_root *root, 141 struct btrfs_log_ctx *ctx) 142 { 143 struct btrfs_fs_info *fs_info = root->fs_info; 144 int ret = 0; 145 146 mutex_lock(&root->log_mutex); 147 148 if (root->log_root) { 149 if (btrfs_need_log_full_commit(trans)) { 150 ret = -EAGAIN; 151 goto out; 152 } 153 154 if (!root->log_start_pid) { 155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 156 root->log_start_pid = current->pid; 157 } else if (root->log_start_pid != current->pid) { 158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 159 } 160 } else { 161 mutex_lock(&fs_info->tree_log_mutex); 162 if (!fs_info->log_root_tree) 163 ret = btrfs_init_log_root_tree(trans, fs_info); 164 mutex_unlock(&fs_info->tree_log_mutex); 165 if (ret) 166 goto out; 167 168 ret = btrfs_add_log_tree(trans, root); 169 if (ret) 170 goto out; 171 172 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 173 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 174 root->log_start_pid = current->pid; 175 } 176 177 atomic_inc(&root->log_batch); 178 atomic_inc(&root->log_writers); 179 if (ctx) { 180 int index = root->log_transid % 2; 181 list_add_tail(&ctx->list, &root->log_ctxs[index]); 182 ctx->log_transid = root->log_transid; 183 } 184 185 out: 186 mutex_unlock(&root->log_mutex); 187 return ret; 188 } 189 190 /* 191 * returns 0 if there was a log transaction running and we were able 192 * to join, or returns -ENOENT if there were not transactions 193 * in progress 194 */ 195 static int join_running_log_trans(struct btrfs_root *root) 196 { 197 int ret = -ENOENT; 198 199 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 200 return ret; 201 202 mutex_lock(&root->log_mutex); 203 if (root->log_root) { 204 ret = 0; 205 atomic_inc(&root->log_writers); 206 } 207 mutex_unlock(&root->log_mutex); 208 return ret; 209 } 210 211 /* 212 * This either makes the current running log transaction wait 213 * until you call btrfs_end_log_trans() or it makes any future 214 * log transactions wait until you call btrfs_end_log_trans() 215 */ 216 void btrfs_pin_log_trans(struct btrfs_root *root) 217 { 218 mutex_lock(&root->log_mutex); 219 atomic_inc(&root->log_writers); 220 mutex_unlock(&root->log_mutex); 221 } 222 223 /* 224 * indicate we're done making changes to the log tree 225 * and wake up anyone waiting to do a sync 226 */ 227 void btrfs_end_log_trans(struct btrfs_root *root) 228 { 229 if (atomic_dec_and_test(&root->log_writers)) { 230 /* atomic_dec_and_test implies a barrier */ 231 cond_wake_up_nomb(&root->log_writer_wait); 232 } 233 } 234 235 static int btrfs_write_tree_block(struct extent_buffer *buf) 236 { 237 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 238 buf->start + buf->len - 1); 239 } 240 241 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 242 { 243 filemap_fdatawait_range(buf->pages[0]->mapping, 244 buf->start, buf->start + buf->len - 1); 245 } 246 247 /* 248 * the walk control struct is used to pass state down the chain when 249 * processing the log tree. The stage field tells us which part 250 * of the log tree processing we are currently doing. The others 251 * are state fields used for that specific part 252 */ 253 struct walk_control { 254 /* should we free the extent on disk when done? This is used 255 * at transaction commit time while freeing a log tree 256 */ 257 int free; 258 259 /* should we write out the extent buffer? This is used 260 * while flushing the log tree to disk during a sync 261 */ 262 int write; 263 264 /* should we wait for the extent buffer io to finish? Also used 265 * while flushing the log tree to disk for a sync 266 */ 267 int wait; 268 269 /* pin only walk, we record which extents on disk belong to the 270 * log trees 271 */ 272 int pin; 273 274 /* what stage of the replay code we're currently in */ 275 int stage; 276 277 /* 278 * Ignore any items from the inode currently being processed. Needs 279 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 280 * the LOG_WALK_REPLAY_INODES stage. 281 */ 282 bool ignore_cur_inode; 283 284 /* the root we are currently replaying */ 285 struct btrfs_root *replay_dest; 286 287 /* the trans handle for the current replay */ 288 struct btrfs_trans_handle *trans; 289 290 /* the function that gets used to process blocks we find in the 291 * tree. Note the extent_buffer might not be up to date when it is 292 * passed in, and it must be checked or read if you need the data 293 * inside it 294 */ 295 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 296 struct walk_control *wc, u64 gen, int level); 297 }; 298 299 /* 300 * process_func used to pin down extents, write them or wait on them 301 */ 302 static int process_one_buffer(struct btrfs_root *log, 303 struct extent_buffer *eb, 304 struct walk_control *wc, u64 gen, int level) 305 { 306 struct btrfs_fs_info *fs_info = log->fs_info; 307 int ret = 0; 308 309 /* 310 * If this fs is mixed then we need to be able to process the leaves to 311 * pin down any logged extents, so we have to read the block. 312 */ 313 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 314 ret = btrfs_read_buffer(eb, gen, level, NULL); 315 if (ret) 316 return ret; 317 } 318 319 if (wc->pin) 320 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start, 321 eb->len); 322 323 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 324 if (wc->pin && btrfs_header_level(eb) == 0) 325 ret = btrfs_exclude_logged_extents(eb); 326 if (wc->write) 327 btrfs_write_tree_block(eb); 328 if (wc->wait) 329 btrfs_wait_tree_block_writeback(eb); 330 } 331 return ret; 332 } 333 334 /* 335 * Item overwrite used by replay and tree logging. eb, slot and key all refer 336 * to the src data we are copying out. 337 * 338 * root is the tree we are copying into, and path is a scratch 339 * path for use in this function (it should be released on entry and 340 * will be released on exit). 341 * 342 * If the key is already in the destination tree the existing item is 343 * overwritten. If the existing item isn't big enough, it is extended. 344 * If it is too large, it is truncated. 345 * 346 * If the key isn't in the destination yet, a new item is inserted. 347 */ 348 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 349 struct btrfs_root *root, 350 struct btrfs_path *path, 351 struct extent_buffer *eb, int slot, 352 struct btrfs_key *key) 353 { 354 int ret; 355 u32 item_size; 356 u64 saved_i_size = 0; 357 int save_old_i_size = 0; 358 unsigned long src_ptr; 359 unsigned long dst_ptr; 360 int overwrite_root = 0; 361 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 362 363 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 364 overwrite_root = 1; 365 366 item_size = btrfs_item_size_nr(eb, slot); 367 src_ptr = btrfs_item_ptr_offset(eb, slot); 368 369 /* look for the key in the destination tree */ 370 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 371 if (ret < 0) 372 return ret; 373 374 if (ret == 0) { 375 char *src_copy; 376 char *dst_copy; 377 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 378 path->slots[0]); 379 if (dst_size != item_size) 380 goto insert; 381 382 if (item_size == 0) { 383 btrfs_release_path(path); 384 return 0; 385 } 386 dst_copy = kmalloc(item_size, GFP_NOFS); 387 src_copy = kmalloc(item_size, GFP_NOFS); 388 if (!dst_copy || !src_copy) { 389 btrfs_release_path(path); 390 kfree(dst_copy); 391 kfree(src_copy); 392 return -ENOMEM; 393 } 394 395 read_extent_buffer(eb, src_copy, src_ptr, item_size); 396 397 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 398 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 399 item_size); 400 ret = memcmp(dst_copy, src_copy, item_size); 401 402 kfree(dst_copy); 403 kfree(src_copy); 404 /* 405 * they have the same contents, just return, this saves 406 * us from cowing blocks in the destination tree and doing 407 * extra writes that may not have been done by a previous 408 * sync 409 */ 410 if (ret == 0) { 411 btrfs_release_path(path); 412 return 0; 413 } 414 415 /* 416 * We need to load the old nbytes into the inode so when we 417 * replay the extents we've logged we get the right nbytes. 418 */ 419 if (inode_item) { 420 struct btrfs_inode_item *item; 421 u64 nbytes; 422 u32 mode; 423 424 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 425 struct btrfs_inode_item); 426 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 427 item = btrfs_item_ptr(eb, slot, 428 struct btrfs_inode_item); 429 btrfs_set_inode_nbytes(eb, item, nbytes); 430 431 /* 432 * If this is a directory we need to reset the i_size to 433 * 0 so that we can set it up properly when replaying 434 * the rest of the items in this log. 435 */ 436 mode = btrfs_inode_mode(eb, item); 437 if (S_ISDIR(mode)) 438 btrfs_set_inode_size(eb, item, 0); 439 } 440 } else if (inode_item) { 441 struct btrfs_inode_item *item; 442 u32 mode; 443 444 /* 445 * New inode, set nbytes to 0 so that the nbytes comes out 446 * properly when we replay the extents. 447 */ 448 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 449 btrfs_set_inode_nbytes(eb, item, 0); 450 451 /* 452 * If this is a directory we need to reset the i_size to 0 so 453 * that we can set it up properly when replaying the rest of 454 * the items in this log. 455 */ 456 mode = btrfs_inode_mode(eb, item); 457 if (S_ISDIR(mode)) 458 btrfs_set_inode_size(eb, item, 0); 459 } 460 insert: 461 btrfs_release_path(path); 462 /* try to insert the key into the destination tree */ 463 path->skip_release_on_error = 1; 464 ret = btrfs_insert_empty_item(trans, root, path, 465 key, item_size); 466 path->skip_release_on_error = 0; 467 468 /* make sure any existing item is the correct size */ 469 if (ret == -EEXIST || ret == -EOVERFLOW) { 470 u32 found_size; 471 found_size = btrfs_item_size_nr(path->nodes[0], 472 path->slots[0]); 473 if (found_size > item_size) 474 btrfs_truncate_item(path, item_size, 1); 475 else if (found_size < item_size) 476 btrfs_extend_item(path, item_size - found_size); 477 } else if (ret) { 478 return ret; 479 } 480 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 481 path->slots[0]); 482 483 /* don't overwrite an existing inode if the generation number 484 * was logged as zero. This is done when the tree logging code 485 * is just logging an inode to make sure it exists after recovery. 486 * 487 * Also, don't overwrite i_size on directories during replay. 488 * log replay inserts and removes directory items based on the 489 * state of the tree found in the subvolume, and i_size is modified 490 * as it goes 491 */ 492 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 493 struct btrfs_inode_item *src_item; 494 struct btrfs_inode_item *dst_item; 495 496 src_item = (struct btrfs_inode_item *)src_ptr; 497 dst_item = (struct btrfs_inode_item *)dst_ptr; 498 499 if (btrfs_inode_generation(eb, src_item) == 0) { 500 struct extent_buffer *dst_eb = path->nodes[0]; 501 const u64 ino_size = btrfs_inode_size(eb, src_item); 502 503 /* 504 * For regular files an ino_size == 0 is used only when 505 * logging that an inode exists, as part of a directory 506 * fsync, and the inode wasn't fsynced before. In this 507 * case don't set the size of the inode in the fs/subvol 508 * tree, otherwise we would be throwing valid data away. 509 */ 510 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 511 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 512 ino_size != 0) 513 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 514 goto no_copy; 515 } 516 517 if (overwrite_root && 518 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 519 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 520 save_old_i_size = 1; 521 saved_i_size = btrfs_inode_size(path->nodes[0], 522 dst_item); 523 } 524 } 525 526 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 527 src_ptr, item_size); 528 529 if (save_old_i_size) { 530 struct btrfs_inode_item *dst_item; 531 dst_item = (struct btrfs_inode_item *)dst_ptr; 532 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 533 } 534 535 /* make sure the generation is filled in */ 536 if (key->type == BTRFS_INODE_ITEM_KEY) { 537 struct btrfs_inode_item *dst_item; 538 dst_item = (struct btrfs_inode_item *)dst_ptr; 539 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 540 btrfs_set_inode_generation(path->nodes[0], dst_item, 541 trans->transid); 542 } 543 } 544 no_copy: 545 btrfs_mark_buffer_dirty(path->nodes[0]); 546 btrfs_release_path(path); 547 return 0; 548 } 549 550 /* 551 * simple helper to read an inode off the disk from a given root 552 * This can only be called for subvolume roots and not for the log 553 */ 554 static noinline struct inode *read_one_inode(struct btrfs_root *root, 555 u64 objectid) 556 { 557 struct inode *inode; 558 559 inode = btrfs_iget(root->fs_info->sb, objectid, root); 560 if (IS_ERR(inode)) 561 inode = NULL; 562 return inode; 563 } 564 565 /* replays a single extent in 'eb' at 'slot' with 'key' into the 566 * subvolume 'root'. path is released on entry and should be released 567 * on exit. 568 * 569 * extents in the log tree have not been allocated out of the extent 570 * tree yet. So, this completes the allocation, taking a reference 571 * as required if the extent already exists or creating a new extent 572 * if it isn't in the extent allocation tree yet. 573 * 574 * The extent is inserted into the file, dropping any existing extents 575 * from the file that overlap the new one. 576 */ 577 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 578 struct btrfs_root *root, 579 struct btrfs_path *path, 580 struct extent_buffer *eb, int slot, 581 struct btrfs_key *key) 582 { 583 struct btrfs_fs_info *fs_info = root->fs_info; 584 int found_type; 585 u64 extent_end; 586 u64 start = key->offset; 587 u64 nbytes = 0; 588 struct btrfs_file_extent_item *item; 589 struct inode *inode = NULL; 590 unsigned long size; 591 int ret = 0; 592 593 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 594 found_type = btrfs_file_extent_type(eb, item); 595 596 if (found_type == BTRFS_FILE_EXTENT_REG || 597 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 598 nbytes = btrfs_file_extent_num_bytes(eb, item); 599 extent_end = start + nbytes; 600 601 /* 602 * We don't add to the inodes nbytes if we are prealloc or a 603 * hole. 604 */ 605 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 606 nbytes = 0; 607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 608 size = btrfs_file_extent_ram_bytes(eb, item); 609 nbytes = btrfs_file_extent_ram_bytes(eb, item); 610 extent_end = ALIGN(start + size, 611 fs_info->sectorsize); 612 } else { 613 ret = 0; 614 goto out; 615 } 616 617 inode = read_one_inode(root, key->objectid); 618 if (!inode) { 619 ret = -EIO; 620 goto out; 621 } 622 623 /* 624 * first check to see if we already have this extent in the 625 * file. This must be done before the btrfs_drop_extents run 626 * so we don't try to drop this extent. 627 */ 628 ret = btrfs_lookup_file_extent(trans, root, path, 629 btrfs_ino(BTRFS_I(inode)), start, 0); 630 631 if (ret == 0 && 632 (found_type == BTRFS_FILE_EXTENT_REG || 633 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 634 struct btrfs_file_extent_item cmp1; 635 struct btrfs_file_extent_item cmp2; 636 struct btrfs_file_extent_item *existing; 637 struct extent_buffer *leaf; 638 639 leaf = path->nodes[0]; 640 existing = btrfs_item_ptr(leaf, path->slots[0], 641 struct btrfs_file_extent_item); 642 643 read_extent_buffer(eb, &cmp1, (unsigned long)item, 644 sizeof(cmp1)); 645 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 646 sizeof(cmp2)); 647 648 /* 649 * we already have a pointer to this exact extent, 650 * we don't have to do anything 651 */ 652 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 653 btrfs_release_path(path); 654 goto out; 655 } 656 } 657 btrfs_release_path(path); 658 659 /* drop any overlapping extents */ 660 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 661 if (ret) 662 goto out; 663 664 if (found_type == BTRFS_FILE_EXTENT_REG || 665 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 666 u64 offset; 667 unsigned long dest_offset; 668 struct btrfs_key ins; 669 670 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 671 btrfs_fs_incompat(fs_info, NO_HOLES)) 672 goto update_inode; 673 674 ret = btrfs_insert_empty_item(trans, root, path, key, 675 sizeof(*item)); 676 if (ret) 677 goto out; 678 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 679 path->slots[0]); 680 copy_extent_buffer(path->nodes[0], eb, dest_offset, 681 (unsigned long)item, sizeof(*item)); 682 683 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 684 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 685 ins.type = BTRFS_EXTENT_ITEM_KEY; 686 offset = key->offset - btrfs_file_extent_offset(eb, item); 687 688 /* 689 * Manually record dirty extent, as here we did a shallow 690 * file extent item copy and skip normal backref update, 691 * but modifying extent tree all by ourselves. 692 * So need to manually record dirty extent for qgroup, 693 * as the owner of the file extent changed from log tree 694 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 695 */ 696 ret = btrfs_qgroup_trace_extent(trans, 697 btrfs_file_extent_disk_bytenr(eb, item), 698 btrfs_file_extent_disk_num_bytes(eb, item), 699 GFP_NOFS); 700 if (ret < 0) 701 goto out; 702 703 if (ins.objectid > 0) { 704 struct btrfs_ref ref = { 0 }; 705 u64 csum_start; 706 u64 csum_end; 707 LIST_HEAD(ordered_sums); 708 709 /* 710 * is this extent already allocated in the extent 711 * allocation tree? If so, just add a reference 712 */ 713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 714 ins.offset); 715 if (ret == 0) { 716 btrfs_init_generic_ref(&ref, 717 BTRFS_ADD_DELAYED_REF, 718 ins.objectid, ins.offset, 0); 719 btrfs_init_data_ref(&ref, 720 root->root_key.objectid, 721 key->objectid, offset); 722 ret = btrfs_inc_extent_ref(trans, &ref); 723 if (ret) 724 goto out; 725 } else { 726 /* 727 * insert the extent pointer in the extent 728 * allocation tree 729 */ 730 ret = btrfs_alloc_logged_file_extent(trans, 731 root->root_key.objectid, 732 key->objectid, offset, &ins); 733 if (ret) 734 goto out; 735 } 736 btrfs_release_path(path); 737 738 if (btrfs_file_extent_compression(eb, item)) { 739 csum_start = ins.objectid; 740 csum_end = csum_start + ins.offset; 741 } else { 742 csum_start = ins.objectid + 743 btrfs_file_extent_offset(eb, item); 744 csum_end = csum_start + 745 btrfs_file_extent_num_bytes(eb, item); 746 } 747 748 ret = btrfs_lookup_csums_range(root->log_root, 749 csum_start, csum_end - 1, 750 &ordered_sums, 0); 751 if (ret) 752 goto out; 753 /* 754 * Now delete all existing cums in the csum root that 755 * cover our range. We do this because we can have an 756 * extent that is completely referenced by one file 757 * extent item and partially referenced by another 758 * file extent item (like after using the clone or 759 * extent_same ioctls). In this case if we end up doing 760 * the replay of the one that partially references the 761 * extent first, and we do not do the csum deletion 762 * below, we can get 2 csum items in the csum tree that 763 * overlap each other. For example, imagine our log has 764 * the two following file extent items: 765 * 766 * key (257 EXTENT_DATA 409600) 767 * extent data disk byte 12845056 nr 102400 768 * extent data offset 20480 nr 20480 ram 102400 769 * 770 * key (257 EXTENT_DATA 819200) 771 * extent data disk byte 12845056 nr 102400 772 * extent data offset 0 nr 102400 ram 102400 773 * 774 * Where the second one fully references the 100K extent 775 * that starts at disk byte 12845056, and the log tree 776 * has a single csum item that covers the entire range 777 * of the extent: 778 * 779 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 780 * 781 * After the first file extent item is replayed, the 782 * csum tree gets the following csum item: 783 * 784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 785 * 786 * Which covers the 20K sub-range starting at offset 20K 787 * of our extent. Now when we replay the second file 788 * extent item, if we do not delete existing csum items 789 * that cover any of its blocks, we end up getting two 790 * csum items in our csum tree that overlap each other: 791 * 792 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 793 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 794 * 795 * Which is a problem, because after this anyone trying 796 * to lookup up for the checksum of any block of our 797 * extent starting at an offset of 40K or higher, will 798 * end up looking at the second csum item only, which 799 * does not contain the checksum for any block starting 800 * at offset 40K or higher of our extent. 801 */ 802 while (!list_empty(&ordered_sums)) { 803 struct btrfs_ordered_sum *sums; 804 sums = list_entry(ordered_sums.next, 805 struct btrfs_ordered_sum, 806 list); 807 if (!ret) 808 ret = btrfs_del_csums(trans, 809 fs_info->csum_root, 810 sums->bytenr, 811 sums->len); 812 if (!ret) 813 ret = btrfs_csum_file_blocks(trans, 814 fs_info->csum_root, sums); 815 list_del(&sums->list); 816 kfree(sums); 817 } 818 if (ret) 819 goto out; 820 } else { 821 btrfs_release_path(path); 822 } 823 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 824 /* inline extents are easy, we just overwrite them */ 825 ret = overwrite_item(trans, root, path, eb, slot, key); 826 if (ret) 827 goto out; 828 } 829 830 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, 831 extent_end - start); 832 if (ret) 833 goto out; 834 835 inode_add_bytes(inode, nbytes); 836 update_inode: 837 ret = btrfs_update_inode(trans, root, inode); 838 out: 839 if (inode) 840 iput(inode); 841 return ret; 842 } 843 844 /* 845 * when cleaning up conflicts between the directory names in the 846 * subvolume, directory names in the log and directory names in the 847 * inode back references, we may have to unlink inodes from directories. 848 * 849 * This is a helper function to do the unlink of a specific directory 850 * item 851 */ 852 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 853 struct btrfs_root *root, 854 struct btrfs_path *path, 855 struct btrfs_inode *dir, 856 struct btrfs_dir_item *di) 857 { 858 struct inode *inode; 859 char *name; 860 int name_len; 861 struct extent_buffer *leaf; 862 struct btrfs_key location; 863 int ret; 864 865 leaf = path->nodes[0]; 866 867 btrfs_dir_item_key_to_cpu(leaf, di, &location); 868 name_len = btrfs_dir_name_len(leaf, di); 869 name = kmalloc(name_len, GFP_NOFS); 870 if (!name) 871 return -ENOMEM; 872 873 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 874 btrfs_release_path(path); 875 876 inode = read_one_inode(root, location.objectid); 877 if (!inode) { 878 ret = -EIO; 879 goto out; 880 } 881 882 ret = link_to_fixup_dir(trans, root, path, location.objectid); 883 if (ret) 884 goto out; 885 886 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, 887 name_len); 888 if (ret) 889 goto out; 890 else 891 ret = btrfs_run_delayed_items(trans); 892 out: 893 kfree(name); 894 iput(inode); 895 return ret; 896 } 897 898 /* 899 * helper function to see if a given name and sequence number found 900 * in an inode back reference are already in a directory and correctly 901 * point to this inode 902 */ 903 static noinline int inode_in_dir(struct btrfs_root *root, 904 struct btrfs_path *path, 905 u64 dirid, u64 objectid, u64 index, 906 const char *name, int name_len) 907 { 908 struct btrfs_dir_item *di; 909 struct btrfs_key location; 910 int match = 0; 911 912 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 913 index, name, name_len, 0); 914 if (di && !IS_ERR(di)) { 915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 916 if (location.objectid != objectid) 917 goto out; 918 } else 919 goto out; 920 btrfs_release_path(path); 921 922 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 923 if (di && !IS_ERR(di)) { 924 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 925 if (location.objectid != objectid) 926 goto out; 927 } else 928 goto out; 929 match = 1; 930 out: 931 btrfs_release_path(path); 932 return match; 933 } 934 935 /* 936 * helper function to check a log tree for a named back reference in 937 * an inode. This is used to decide if a back reference that is 938 * found in the subvolume conflicts with what we find in the log. 939 * 940 * inode backreferences may have multiple refs in a single item, 941 * during replay we process one reference at a time, and we don't 942 * want to delete valid links to a file from the subvolume if that 943 * link is also in the log. 944 */ 945 static noinline int backref_in_log(struct btrfs_root *log, 946 struct btrfs_key *key, 947 u64 ref_objectid, 948 const char *name, int namelen) 949 { 950 struct btrfs_path *path; 951 int ret; 952 953 path = btrfs_alloc_path(); 954 if (!path) 955 return -ENOMEM; 956 957 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 958 if (ret < 0) { 959 goto out; 960 } else if (ret == 1) { 961 ret = 0; 962 goto out; 963 } 964 965 if (key->type == BTRFS_INODE_EXTREF_KEY) 966 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 967 path->slots[0], 968 ref_objectid, 969 name, namelen); 970 else 971 ret = !!btrfs_find_name_in_backref(path->nodes[0], 972 path->slots[0], 973 name, namelen); 974 out: 975 btrfs_free_path(path); 976 return ret; 977 } 978 979 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 980 struct btrfs_root *root, 981 struct btrfs_path *path, 982 struct btrfs_root *log_root, 983 struct btrfs_inode *dir, 984 struct btrfs_inode *inode, 985 u64 inode_objectid, u64 parent_objectid, 986 u64 ref_index, char *name, int namelen, 987 int *search_done) 988 { 989 int ret; 990 char *victim_name; 991 int victim_name_len; 992 struct extent_buffer *leaf; 993 struct btrfs_dir_item *di; 994 struct btrfs_key search_key; 995 struct btrfs_inode_extref *extref; 996 997 again: 998 /* Search old style refs */ 999 search_key.objectid = inode_objectid; 1000 search_key.type = BTRFS_INODE_REF_KEY; 1001 search_key.offset = parent_objectid; 1002 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1003 if (ret == 0) { 1004 struct btrfs_inode_ref *victim_ref; 1005 unsigned long ptr; 1006 unsigned long ptr_end; 1007 1008 leaf = path->nodes[0]; 1009 1010 /* are we trying to overwrite a back ref for the root directory 1011 * if so, just jump out, we're done 1012 */ 1013 if (search_key.objectid == search_key.offset) 1014 return 1; 1015 1016 /* check all the names in this back reference to see 1017 * if they are in the log. if so, we allow them to stay 1018 * otherwise they must be unlinked as a conflict 1019 */ 1020 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1021 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1022 while (ptr < ptr_end) { 1023 victim_ref = (struct btrfs_inode_ref *)ptr; 1024 victim_name_len = btrfs_inode_ref_name_len(leaf, 1025 victim_ref); 1026 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1027 if (!victim_name) 1028 return -ENOMEM; 1029 1030 read_extent_buffer(leaf, victim_name, 1031 (unsigned long)(victim_ref + 1), 1032 victim_name_len); 1033 1034 ret = backref_in_log(log_root, &search_key, 1035 parent_objectid, victim_name, 1036 victim_name_len); 1037 if (ret < 0) { 1038 kfree(victim_name); 1039 return ret; 1040 } else if (!ret) { 1041 inc_nlink(&inode->vfs_inode); 1042 btrfs_release_path(path); 1043 1044 ret = btrfs_unlink_inode(trans, root, dir, inode, 1045 victim_name, victim_name_len); 1046 kfree(victim_name); 1047 if (ret) 1048 return ret; 1049 ret = btrfs_run_delayed_items(trans); 1050 if (ret) 1051 return ret; 1052 *search_done = 1; 1053 goto again; 1054 } 1055 kfree(victim_name); 1056 1057 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1058 } 1059 1060 /* 1061 * NOTE: we have searched root tree and checked the 1062 * corresponding ref, it does not need to check again. 1063 */ 1064 *search_done = 1; 1065 } 1066 btrfs_release_path(path); 1067 1068 /* Same search but for extended refs */ 1069 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1070 inode_objectid, parent_objectid, 0, 1071 0); 1072 if (!IS_ERR_OR_NULL(extref)) { 1073 u32 item_size; 1074 u32 cur_offset = 0; 1075 unsigned long base; 1076 struct inode *victim_parent; 1077 1078 leaf = path->nodes[0]; 1079 1080 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1081 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1082 1083 while (cur_offset < item_size) { 1084 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1085 1086 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1087 1088 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1089 goto next; 1090 1091 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1092 if (!victim_name) 1093 return -ENOMEM; 1094 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1095 victim_name_len); 1096 1097 search_key.objectid = inode_objectid; 1098 search_key.type = BTRFS_INODE_EXTREF_KEY; 1099 search_key.offset = btrfs_extref_hash(parent_objectid, 1100 victim_name, 1101 victim_name_len); 1102 ret = backref_in_log(log_root, &search_key, 1103 parent_objectid, victim_name, 1104 victim_name_len); 1105 if (ret < 0) { 1106 return ret; 1107 } else if (!ret) { 1108 ret = -ENOENT; 1109 victim_parent = read_one_inode(root, 1110 parent_objectid); 1111 if (victim_parent) { 1112 inc_nlink(&inode->vfs_inode); 1113 btrfs_release_path(path); 1114 1115 ret = btrfs_unlink_inode(trans, root, 1116 BTRFS_I(victim_parent), 1117 inode, 1118 victim_name, 1119 victim_name_len); 1120 if (!ret) 1121 ret = btrfs_run_delayed_items( 1122 trans); 1123 } 1124 iput(victim_parent); 1125 kfree(victim_name); 1126 if (ret) 1127 return ret; 1128 *search_done = 1; 1129 goto again; 1130 } 1131 kfree(victim_name); 1132 next: 1133 cur_offset += victim_name_len + sizeof(*extref); 1134 } 1135 *search_done = 1; 1136 } 1137 btrfs_release_path(path); 1138 1139 /* look for a conflicting sequence number */ 1140 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1141 ref_index, name, namelen, 0); 1142 if (di && !IS_ERR(di)) { 1143 ret = drop_one_dir_item(trans, root, path, dir, di); 1144 if (ret) 1145 return ret; 1146 } 1147 btrfs_release_path(path); 1148 1149 /* look for a conflicting name */ 1150 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1151 name, namelen, 0); 1152 if (di && !IS_ERR(di)) { 1153 ret = drop_one_dir_item(trans, root, path, dir, di); 1154 if (ret) 1155 return ret; 1156 } 1157 btrfs_release_path(path); 1158 1159 return 0; 1160 } 1161 1162 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1163 u32 *namelen, char **name, u64 *index, 1164 u64 *parent_objectid) 1165 { 1166 struct btrfs_inode_extref *extref; 1167 1168 extref = (struct btrfs_inode_extref *)ref_ptr; 1169 1170 *namelen = btrfs_inode_extref_name_len(eb, extref); 1171 *name = kmalloc(*namelen, GFP_NOFS); 1172 if (*name == NULL) 1173 return -ENOMEM; 1174 1175 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1176 *namelen); 1177 1178 if (index) 1179 *index = btrfs_inode_extref_index(eb, extref); 1180 if (parent_objectid) 1181 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1182 1183 return 0; 1184 } 1185 1186 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1187 u32 *namelen, char **name, u64 *index) 1188 { 1189 struct btrfs_inode_ref *ref; 1190 1191 ref = (struct btrfs_inode_ref *)ref_ptr; 1192 1193 *namelen = btrfs_inode_ref_name_len(eb, ref); 1194 *name = kmalloc(*namelen, GFP_NOFS); 1195 if (*name == NULL) 1196 return -ENOMEM; 1197 1198 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1199 1200 if (index) 1201 *index = btrfs_inode_ref_index(eb, ref); 1202 1203 return 0; 1204 } 1205 1206 /* 1207 * Take an inode reference item from the log tree and iterate all names from the 1208 * inode reference item in the subvolume tree with the same key (if it exists). 1209 * For any name that is not in the inode reference item from the log tree, do a 1210 * proper unlink of that name (that is, remove its entry from the inode 1211 * reference item and both dir index keys). 1212 */ 1213 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1214 struct btrfs_root *root, 1215 struct btrfs_path *path, 1216 struct btrfs_inode *inode, 1217 struct extent_buffer *log_eb, 1218 int log_slot, 1219 struct btrfs_key *key) 1220 { 1221 int ret; 1222 unsigned long ref_ptr; 1223 unsigned long ref_end; 1224 struct extent_buffer *eb; 1225 1226 again: 1227 btrfs_release_path(path); 1228 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1229 if (ret > 0) { 1230 ret = 0; 1231 goto out; 1232 } 1233 if (ret < 0) 1234 goto out; 1235 1236 eb = path->nodes[0]; 1237 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1238 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); 1239 while (ref_ptr < ref_end) { 1240 char *name = NULL; 1241 int namelen; 1242 u64 parent_id; 1243 1244 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1245 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1246 NULL, &parent_id); 1247 } else { 1248 parent_id = key->offset; 1249 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1250 NULL); 1251 } 1252 if (ret) 1253 goto out; 1254 1255 if (key->type == BTRFS_INODE_EXTREF_KEY) 1256 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1257 parent_id, name, 1258 namelen); 1259 else 1260 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, 1261 name, namelen); 1262 1263 if (!ret) { 1264 struct inode *dir; 1265 1266 btrfs_release_path(path); 1267 dir = read_one_inode(root, parent_id); 1268 if (!dir) { 1269 ret = -ENOENT; 1270 kfree(name); 1271 goto out; 1272 } 1273 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 1274 inode, name, namelen); 1275 kfree(name); 1276 iput(dir); 1277 if (ret) 1278 goto out; 1279 goto again; 1280 } 1281 1282 kfree(name); 1283 ref_ptr += namelen; 1284 if (key->type == BTRFS_INODE_EXTREF_KEY) 1285 ref_ptr += sizeof(struct btrfs_inode_extref); 1286 else 1287 ref_ptr += sizeof(struct btrfs_inode_ref); 1288 } 1289 ret = 0; 1290 out: 1291 btrfs_release_path(path); 1292 return ret; 1293 } 1294 1295 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1296 const u8 ref_type, const char *name, 1297 const int namelen) 1298 { 1299 struct btrfs_key key; 1300 struct btrfs_path *path; 1301 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1302 int ret; 1303 1304 path = btrfs_alloc_path(); 1305 if (!path) 1306 return -ENOMEM; 1307 1308 key.objectid = btrfs_ino(BTRFS_I(inode)); 1309 key.type = ref_type; 1310 if (key.type == BTRFS_INODE_REF_KEY) 1311 key.offset = parent_id; 1312 else 1313 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1314 1315 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1316 if (ret < 0) 1317 goto out; 1318 if (ret > 0) { 1319 ret = 0; 1320 goto out; 1321 } 1322 if (key.type == BTRFS_INODE_EXTREF_KEY) 1323 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1324 path->slots[0], parent_id, name, namelen); 1325 else 1326 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1327 name, namelen); 1328 1329 out: 1330 btrfs_free_path(path); 1331 return ret; 1332 } 1333 1334 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1335 struct inode *dir, struct inode *inode, const char *name, 1336 int namelen, u64 ref_index) 1337 { 1338 struct btrfs_dir_item *dir_item; 1339 struct btrfs_key key; 1340 struct btrfs_path *path; 1341 struct inode *other_inode = NULL; 1342 int ret; 1343 1344 path = btrfs_alloc_path(); 1345 if (!path) 1346 return -ENOMEM; 1347 1348 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1349 btrfs_ino(BTRFS_I(dir)), 1350 name, namelen, 0); 1351 if (!dir_item) { 1352 btrfs_release_path(path); 1353 goto add_link; 1354 } else if (IS_ERR(dir_item)) { 1355 ret = PTR_ERR(dir_item); 1356 goto out; 1357 } 1358 1359 /* 1360 * Our inode's dentry collides with the dentry of another inode which is 1361 * in the log but not yet processed since it has a higher inode number. 1362 * So delete that other dentry. 1363 */ 1364 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1365 btrfs_release_path(path); 1366 other_inode = read_one_inode(root, key.objectid); 1367 if (!other_inode) { 1368 ret = -ENOENT; 1369 goto out; 1370 } 1371 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode), 1372 name, namelen); 1373 if (ret) 1374 goto out; 1375 /* 1376 * If we dropped the link count to 0, bump it so that later the iput() 1377 * on the inode will not free it. We will fixup the link count later. 1378 */ 1379 if (other_inode->i_nlink == 0) 1380 inc_nlink(other_inode); 1381 1382 ret = btrfs_run_delayed_items(trans); 1383 if (ret) 1384 goto out; 1385 add_link: 1386 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1387 name, namelen, 0, ref_index); 1388 out: 1389 iput(other_inode); 1390 btrfs_free_path(path); 1391 1392 return ret; 1393 } 1394 1395 /* 1396 * replay one inode back reference item found in the log tree. 1397 * eb, slot and key refer to the buffer and key found in the log tree. 1398 * root is the destination we are replaying into, and path is for temp 1399 * use by this function. (it should be released on return). 1400 */ 1401 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1402 struct btrfs_root *root, 1403 struct btrfs_root *log, 1404 struct btrfs_path *path, 1405 struct extent_buffer *eb, int slot, 1406 struct btrfs_key *key) 1407 { 1408 struct inode *dir = NULL; 1409 struct inode *inode = NULL; 1410 unsigned long ref_ptr; 1411 unsigned long ref_end; 1412 char *name = NULL; 1413 int namelen; 1414 int ret; 1415 int search_done = 0; 1416 int log_ref_ver = 0; 1417 u64 parent_objectid; 1418 u64 inode_objectid; 1419 u64 ref_index = 0; 1420 int ref_struct_size; 1421 1422 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1423 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1424 1425 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1426 struct btrfs_inode_extref *r; 1427 1428 ref_struct_size = sizeof(struct btrfs_inode_extref); 1429 log_ref_ver = 1; 1430 r = (struct btrfs_inode_extref *)ref_ptr; 1431 parent_objectid = btrfs_inode_extref_parent(eb, r); 1432 } else { 1433 ref_struct_size = sizeof(struct btrfs_inode_ref); 1434 parent_objectid = key->offset; 1435 } 1436 inode_objectid = key->objectid; 1437 1438 /* 1439 * it is possible that we didn't log all the parent directories 1440 * for a given inode. If we don't find the dir, just don't 1441 * copy the back ref in. The link count fixup code will take 1442 * care of the rest 1443 */ 1444 dir = read_one_inode(root, parent_objectid); 1445 if (!dir) { 1446 ret = -ENOENT; 1447 goto out; 1448 } 1449 1450 inode = read_one_inode(root, inode_objectid); 1451 if (!inode) { 1452 ret = -EIO; 1453 goto out; 1454 } 1455 1456 while (ref_ptr < ref_end) { 1457 if (log_ref_ver) { 1458 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1459 &ref_index, &parent_objectid); 1460 /* 1461 * parent object can change from one array 1462 * item to another. 1463 */ 1464 if (!dir) 1465 dir = read_one_inode(root, parent_objectid); 1466 if (!dir) { 1467 ret = -ENOENT; 1468 goto out; 1469 } 1470 } else { 1471 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1472 &ref_index); 1473 } 1474 if (ret) 1475 goto out; 1476 1477 /* if we already have a perfect match, we're done */ 1478 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1479 btrfs_ino(BTRFS_I(inode)), ref_index, 1480 name, namelen)) { 1481 /* 1482 * look for a conflicting back reference in the 1483 * metadata. if we find one we have to unlink that name 1484 * of the file before we add our new link. Later on, we 1485 * overwrite any existing back reference, and we don't 1486 * want to create dangling pointers in the directory. 1487 */ 1488 1489 if (!search_done) { 1490 ret = __add_inode_ref(trans, root, path, log, 1491 BTRFS_I(dir), 1492 BTRFS_I(inode), 1493 inode_objectid, 1494 parent_objectid, 1495 ref_index, name, namelen, 1496 &search_done); 1497 if (ret) { 1498 if (ret == 1) 1499 ret = 0; 1500 goto out; 1501 } 1502 } 1503 1504 /* 1505 * If a reference item already exists for this inode 1506 * with the same parent and name, but different index, 1507 * drop it and the corresponding directory index entries 1508 * from the parent before adding the new reference item 1509 * and dir index entries, otherwise we would fail with 1510 * -EEXIST returned from btrfs_add_link() below. 1511 */ 1512 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1513 name, namelen); 1514 if (ret > 0) { 1515 ret = btrfs_unlink_inode(trans, root, 1516 BTRFS_I(dir), 1517 BTRFS_I(inode), 1518 name, namelen); 1519 /* 1520 * If we dropped the link count to 0, bump it so 1521 * that later the iput() on the inode will not 1522 * free it. We will fixup the link count later. 1523 */ 1524 if (!ret && inode->i_nlink == 0) 1525 inc_nlink(inode); 1526 } 1527 if (ret < 0) 1528 goto out; 1529 1530 /* insert our name */ 1531 ret = add_link(trans, root, dir, inode, name, namelen, 1532 ref_index); 1533 if (ret) 1534 goto out; 1535 1536 btrfs_update_inode(trans, root, inode); 1537 } 1538 1539 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1540 kfree(name); 1541 name = NULL; 1542 if (log_ref_ver) { 1543 iput(dir); 1544 dir = NULL; 1545 } 1546 } 1547 1548 /* 1549 * Before we overwrite the inode reference item in the subvolume tree 1550 * with the item from the log tree, we must unlink all names from the 1551 * parent directory that are in the subvolume's tree inode reference 1552 * item, otherwise we end up with an inconsistent subvolume tree where 1553 * dir index entries exist for a name but there is no inode reference 1554 * item with the same name. 1555 */ 1556 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1557 key); 1558 if (ret) 1559 goto out; 1560 1561 /* finally write the back reference in the inode */ 1562 ret = overwrite_item(trans, root, path, eb, slot, key); 1563 out: 1564 btrfs_release_path(path); 1565 kfree(name); 1566 iput(dir); 1567 iput(inode); 1568 return ret; 1569 } 1570 1571 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1572 struct btrfs_root *root, u64 ino) 1573 { 1574 int ret; 1575 1576 ret = btrfs_insert_orphan_item(trans, root, ino); 1577 if (ret == -EEXIST) 1578 ret = 0; 1579 1580 return ret; 1581 } 1582 1583 static int count_inode_extrefs(struct btrfs_root *root, 1584 struct btrfs_inode *inode, struct btrfs_path *path) 1585 { 1586 int ret = 0; 1587 int name_len; 1588 unsigned int nlink = 0; 1589 u32 item_size; 1590 u32 cur_offset = 0; 1591 u64 inode_objectid = btrfs_ino(inode); 1592 u64 offset = 0; 1593 unsigned long ptr; 1594 struct btrfs_inode_extref *extref; 1595 struct extent_buffer *leaf; 1596 1597 while (1) { 1598 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1599 &extref, &offset); 1600 if (ret) 1601 break; 1602 1603 leaf = path->nodes[0]; 1604 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1605 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1606 cur_offset = 0; 1607 1608 while (cur_offset < item_size) { 1609 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1610 name_len = btrfs_inode_extref_name_len(leaf, extref); 1611 1612 nlink++; 1613 1614 cur_offset += name_len + sizeof(*extref); 1615 } 1616 1617 offset++; 1618 btrfs_release_path(path); 1619 } 1620 btrfs_release_path(path); 1621 1622 if (ret < 0 && ret != -ENOENT) 1623 return ret; 1624 return nlink; 1625 } 1626 1627 static int count_inode_refs(struct btrfs_root *root, 1628 struct btrfs_inode *inode, struct btrfs_path *path) 1629 { 1630 int ret; 1631 struct btrfs_key key; 1632 unsigned int nlink = 0; 1633 unsigned long ptr; 1634 unsigned long ptr_end; 1635 int name_len; 1636 u64 ino = btrfs_ino(inode); 1637 1638 key.objectid = ino; 1639 key.type = BTRFS_INODE_REF_KEY; 1640 key.offset = (u64)-1; 1641 1642 while (1) { 1643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1644 if (ret < 0) 1645 break; 1646 if (ret > 0) { 1647 if (path->slots[0] == 0) 1648 break; 1649 path->slots[0]--; 1650 } 1651 process_slot: 1652 btrfs_item_key_to_cpu(path->nodes[0], &key, 1653 path->slots[0]); 1654 if (key.objectid != ino || 1655 key.type != BTRFS_INODE_REF_KEY) 1656 break; 1657 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1658 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1659 path->slots[0]); 1660 while (ptr < ptr_end) { 1661 struct btrfs_inode_ref *ref; 1662 1663 ref = (struct btrfs_inode_ref *)ptr; 1664 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1665 ref); 1666 ptr = (unsigned long)(ref + 1) + name_len; 1667 nlink++; 1668 } 1669 1670 if (key.offset == 0) 1671 break; 1672 if (path->slots[0] > 0) { 1673 path->slots[0]--; 1674 goto process_slot; 1675 } 1676 key.offset--; 1677 btrfs_release_path(path); 1678 } 1679 btrfs_release_path(path); 1680 1681 return nlink; 1682 } 1683 1684 /* 1685 * There are a few corners where the link count of the file can't 1686 * be properly maintained during replay. So, instead of adding 1687 * lots of complexity to the log code, we just scan the backrefs 1688 * for any file that has been through replay. 1689 * 1690 * The scan will update the link count on the inode to reflect the 1691 * number of back refs found. If it goes down to zero, the iput 1692 * will free the inode. 1693 */ 1694 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1695 struct btrfs_root *root, 1696 struct inode *inode) 1697 { 1698 struct btrfs_path *path; 1699 int ret; 1700 u64 nlink = 0; 1701 u64 ino = btrfs_ino(BTRFS_I(inode)); 1702 1703 path = btrfs_alloc_path(); 1704 if (!path) 1705 return -ENOMEM; 1706 1707 ret = count_inode_refs(root, BTRFS_I(inode), path); 1708 if (ret < 0) 1709 goto out; 1710 1711 nlink = ret; 1712 1713 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1714 if (ret < 0) 1715 goto out; 1716 1717 nlink += ret; 1718 1719 ret = 0; 1720 1721 if (nlink != inode->i_nlink) { 1722 set_nlink(inode, nlink); 1723 btrfs_update_inode(trans, root, inode); 1724 } 1725 BTRFS_I(inode)->index_cnt = (u64)-1; 1726 1727 if (inode->i_nlink == 0) { 1728 if (S_ISDIR(inode->i_mode)) { 1729 ret = replay_dir_deletes(trans, root, NULL, path, 1730 ino, 1); 1731 if (ret) 1732 goto out; 1733 } 1734 ret = insert_orphan_item(trans, root, ino); 1735 } 1736 1737 out: 1738 btrfs_free_path(path); 1739 return ret; 1740 } 1741 1742 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1743 struct btrfs_root *root, 1744 struct btrfs_path *path) 1745 { 1746 int ret; 1747 struct btrfs_key key; 1748 struct inode *inode; 1749 1750 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1751 key.type = BTRFS_ORPHAN_ITEM_KEY; 1752 key.offset = (u64)-1; 1753 while (1) { 1754 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1755 if (ret < 0) 1756 break; 1757 1758 if (ret == 1) { 1759 if (path->slots[0] == 0) 1760 break; 1761 path->slots[0]--; 1762 } 1763 1764 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1765 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1766 key.type != BTRFS_ORPHAN_ITEM_KEY) 1767 break; 1768 1769 ret = btrfs_del_item(trans, root, path); 1770 if (ret) 1771 goto out; 1772 1773 btrfs_release_path(path); 1774 inode = read_one_inode(root, key.offset); 1775 if (!inode) 1776 return -EIO; 1777 1778 ret = fixup_inode_link_count(trans, root, inode); 1779 iput(inode); 1780 if (ret) 1781 goto out; 1782 1783 /* 1784 * fixup on a directory may create new entries, 1785 * make sure we always look for the highset possible 1786 * offset 1787 */ 1788 key.offset = (u64)-1; 1789 } 1790 ret = 0; 1791 out: 1792 btrfs_release_path(path); 1793 return ret; 1794 } 1795 1796 1797 /* 1798 * record a given inode in the fixup dir so we can check its link 1799 * count when replay is done. The link count is incremented here 1800 * so the inode won't go away until we check it 1801 */ 1802 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1803 struct btrfs_root *root, 1804 struct btrfs_path *path, 1805 u64 objectid) 1806 { 1807 struct btrfs_key key; 1808 int ret = 0; 1809 struct inode *inode; 1810 1811 inode = read_one_inode(root, objectid); 1812 if (!inode) 1813 return -EIO; 1814 1815 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1816 key.type = BTRFS_ORPHAN_ITEM_KEY; 1817 key.offset = objectid; 1818 1819 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1820 1821 btrfs_release_path(path); 1822 if (ret == 0) { 1823 if (!inode->i_nlink) 1824 set_nlink(inode, 1); 1825 else 1826 inc_nlink(inode); 1827 ret = btrfs_update_inode(trans, root, inode); 1828 } else if (ret == -EEXIST) { 1829 ret = 0; 1830 } else { 1831 BUG(); /* Logic Error */ 1832 } 1833 iput(inode); 1834 1835 return ret; 1836 } 1837 1838 /* 1839 * when replaying the log for a directory, we only insert names 1840 * for inodes that actually exist. This means an fsync on a directory 1841 * does not implicitly fsync all the new files in it 1842 */ 1843 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1844 struct btrfs_root *root, 1845 u64 dirid, u64 index, 1846 char *name, int name_len, 1847 struct btrfs_key *location) 1848 { 1849 struct inode *inode; 1850 struct inode *dir; 1851 int ret; 1852 1853 inode = read_one_inode(root, location->objectid); 1854 if (!inode) 1855 return -ENOENT; 1856 1857 dir = read_one_inode(root, dirid); 1858 if (!dir) { 1859 iput(inode); 1860 return -EIO; 1861 } 1862 1863 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1864 name_len, 1, index); 1865 1866 /* FIXME, put inode into FIXUP list */ 1867 1868 iput(inode); 1869 iput(dir); 1870 return ret; 1871 } 1872 1873 /* 1874 * take a single entry in a log directory item and replay it into 1875 * the subvolume. 1876 * 1877 * if a conflicting item exists in the subdirectory already, 1878 * the inode it points to is unlinked and put into the link count 1879 * fix up tree. 1880 * 1881 * If a name from the log points to a file or directory that does 1882 * not exist in the FS, it is skipped. fsyncs on directories 1883 * do not force down inodes inside that directory, just changes to the 1884 * names or unlinks in a directory. 1885 * 1886 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1887 * non-existing inode) and 1 if the name was replayed. 1888 */ 1889 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1890 struct btrfs_root *root, 1891 struct btrfs_path *path, 1892 struct extent_buffer *eb, 1893 struct btrfs_dir_item *di, 1894 struct btrfs_key *key) 1895 { 1896 char *name; 1897 int name_len; 1898 struct btrfs_dir_item *dst_di; 1899 struct btrfs_key found_key; 1900 struct btrfs_key log_key; 1901 struct inode *dir; 1902 u8 log_type; 1903 int exists; 1904 int ret = 0; 1905 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1906 bool name_added = false; 1907 1908 dir = read_one_inode(root, key->objectid); 1909 if (!dir) 1910 return -EIO; 1911 1912 name_len = btrfs_dir_name_len(eb, di); 1913 name = kmalloc(name_len, GFP_NOFS); 1914 if (!name) { 1915 ret = -ENOMEM; 1916 goto out; 1917 } 1918 1919 log_type = btrfs_dir_type(eb, di); 1920 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1921 name_len); 1922 1923 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1924 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1925 if (exists == 0) 1926 exists = 1; 1927 else 1928 exists = 0; 1929 btrfs_release_path(path); 1930 1931 if (key->type == BTRFS_DIR_ITEM_KEY) { 1932 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1933 name, name_len, 1); 1934 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1935 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1936 key->objectid, 1937 key->offset, name, 1938 name_len, 1); 1939 } else { 1940 /* Corruption */ 1941 ret = -EINVAL; 1942 goto out; 1943 } 1944 if (IS_ERR_OR_NULL(dst_di)) { 1945 /* we need a sequence number to insert, so we only 1946 * do inserts for the BTRFS_DIR_INDEX_KEY types 1947 */ 1948 if (key->type != BTRFS_DIR_INDEX_KEY) 1949 goto out; 1950 goto insert; 1951 } 1952 1953 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1954 /* the existing item matches the logged item */ 1955 if (found_key.objectid == log_key.objectid && 1956 found_key.type == log_key.type && 1957 found_key.offset == log_key.offset && 1958 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1959 update_size = false; 1960 goto out; 1961 } 1962 1963 /* 1964 * don't drop the conflicting directory entry if the inode 1965 * for the new entry doesn't exist 1966 */ 1967 if (!exists) 1968 goto out; 1969 1970 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); 1971 if (ret) 1972 goto out; 1973 1974 if (key->type == BTRFS_DIR_INDEX_KEY) 1975 goto insert; 1976 out: 1977 btrfs_release_path(path); 1978 if (!ret && update_size) { 1979 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 1980 ret = btrfs_update_inode(trans, root, dir); 1981 } 1982 kfree(name); 1983 iput(dir); 1984 if (!ret && name_added) 1985 ret = 1; 1986 return ret; 1987 1988 insert: 1989 /* 1990 * Check if the inode reference exists in the log for the given name, 1991 * inode and parent inode 1992 */ 1993 found_key.objectid = log_key.objectid; 1994 found_key.type = BTRFS_INODE_REF_KEY; 1995 found_key.offset = key->objectid; 1996 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len); 1997 if (ret < 0) { 1998 goto out; 1999 } else if (ret) { 2000 /* The dentry will be added later. */ 2001 ret = 0; 2002 update_size = false; 2003 goto out; 2004 } 2005 2006 found_key.objectid = log_key.objectid; 2007 found_key.type = BTRFS_INODE_EXTREF_KEY; 2008 found_key.offset = key->objectid; 2009 ret = backref_in_log(root->log_root, &found_key, key->objectid, name, 2010 name_len); 2011 if (ret < 0) { 2012 goto out; 2013 } else if (ret) { 2014 /* The dentry will be added later. */ 2015 ret = 0; 2016 update_size = false; 2017 goto out; 2018 } 2019 btrfs_release_path(path); 2020 ret = insert_one_name(trans, root, key->objectid, key->offset, 2021 name, name_len, &log_key); 2022 if (ret && ret != -ENOENT && ret != -EEXIST) 2023 goto out; 2024 if (!ret) 2025 name_added = true; 2026 update_size = false; 2027 ret = 0; 2028 goto out; 2029 } 2030 2031 /* 2032 * find all the names in a directory item and reconcile them into 2033 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 2034 * one name in a directory item, but the same code gets used for 2035 * both directory index types 2036 */ 2037 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2038 struct btrfs_root *root, 2039 struct btrfs_path *path, 2040 struct extent_buffer *eb, int slot, 2041 struct btrfs_key *key) 2042 { 2043 int ret = 0; 2044 u32 item_size = btrfs_item_size_nr(eb, slot); 2045 struct btrfs_dir_item *di; 2046 int name_len; 2047 unsigned long ptr; 2048 unsigned long ptr_end; 2049 struct btrfs_path *fixup_path = NULL; 2050 2051 ptr = btrfs_item_ptr_offset(eb, slot); 2052 ptr_end = ptr + item_size; 2053 while (ptr < ptr_end) { 2054 di = (struct btrfs_dir_item *)ptr; 2055 name_len = btrfs_dir_name_len(eb, di); 2056 ret = replay_one_name(trans, root, path, eb, di, key); 2057 if (ret < 0) 2058 break; 2059 ptr = (unsigned long)(di + 1); 2060 ptr += name_len; 2061 2062 /* 2063 * If this entry refers to a non-directory (directories can not 2064 * have a link count > 1) and it was added in the transaction 2065 * that was not committed, make sure we fixup the link count of 2066 * the inode it the entry points to. Otherwise something like 2067 * the following would result in a directory pointing to an 2068 * inode with a wrong link that does not account for this dir 2069 * entry: 2070 * 2071 * mkdir testdir 2072 * touch testdir/foo 2073 * touch testdir/bar 2074 * sync 2075 * 2076 * ln testdir/bar testdir/bar_link 2077 * ln testdir/foo testdir/foo_link 2078 * xfs_io -c "fsync" testdir/bar 2079 * 2080 * <power failure> 2081 * 2082 * mount fs, log replay happens 2083 * 2084 * File foo would remain with a link count of 1 when it has two 2085 * entries pointing to it in the directory testdir. This would 2086 * make it impossible to ever delete the parent directory has 2087 * it would result in stale dentries that can never be deleted. 2088 */ 2089 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2090 struct btrfs_key di_key; 2091 2092 if (!fixup_path) { 2093 fixup_path = btrfs_alloc_path(); 2094 if (!fixup_path) { 2095 ret = -ENOMEM; 2096 break; 2097 } 2098 } 2099 2100 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2101 ret = link_to_fixup_dir(trans, root, fixup_path, 2102 di_key.objectid); 2103 if (ret) 2104 break; 2105 } 2106 ret = 0; 2107 } 2108 btrfs_free_path(fixup_path); 2109 return ret; 2110 } 2111 2112 /* 2113 * directory replay has two parts. There are the standard directory 2114 * items in the log copied from the subvolume, and range items 2115 * created in the log while the subvolume was logged. 2116 * 2117 * The range items tell us which parts of the key space the log 2118 * is authoritative for. During replay, if a key in the subvolume 2119 * directory is in a logged range item, but not actually in the log 2120 * that means it was deleted from the directory before the fsync 2121 * and should be removed. 2122 */ 2123 static noinline int find_dir_range(struct btrfs_root *root, 2124 struct btrfs_path *path, 2125 u64 dirid, int key_type, 2126 u64 *start_ret, u64 *end_ret) 2127 { 2128 struct btrfs_key key; 2129 u64 found_end; 2130 struct btrfs_dir_log_item *item; 2131 int ret; 2132 int nritems; 2133 2134 if (*start_ret == (u64)-1) 2135 return 1; 2136 2137 key.objectid = dirid; 2138 key.type = key_type; 2139 key.offset = *start_ret; 2140 2141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2142 if (ret < 0) 2143 goto out; 2144 if (ret > 0) { 2145 if (path->slots[0] == 0) 2146 goto out; 2147 path->slots[0]--; 2148 } 2149 if (ret != 0) 2150 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2151 2152 if (key.type != key_type || key.objectid != dirid) { 2153 ret = 1; 2154 goto next; 2155 } 2156 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2157 struct btrfs_dir_log_item); 2158 found_end = btrfs_dir_log_end(path->nodes[0], item); 2159 2160 if (*start_ret >= key.offset && *start_ret <= found_end) { 2161 ret = 0; 2162 *start_ret = key.offset; 2163 *end_ret = found_end; 2164 goto out; 2165 } 2166 ret = 1; 2167 next: 2168 /* check the next slot in the tree to see if it is a valid item */ 2169 nritems = btrfs_header_nritems(path->nodes[0]); 2170 path->slots[0]++; 2171 if (path->slots[0] >= nritems) { 2172 ret = btrfs_next_leaf(root, path); 2173 if (ret) 2174 goto out; 2175 } 2176 2177 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2178 2179 if (key.type != key_type || key.objectid != dirid) { 2180 ret = 1; 2181 goto out; 2182 } 2183 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2184 struct btrfs_dir_log_item); 2185 found_end = btrfs_dir_log_end(path->nodes[0], item); 2186 *start_ret = key.offset; 2187 *end_ret = found_end; 2188 ret = 0; 2189 out: 2190 btrfs_release_path(path); 2191 return ret; 2192 } 2193 2194 /* 2195 * this looks for a given directory item in the log. If the directory 2196 * item is not in the log, the item is removed and the inode it points 2197 * to is unlinked 2198 */ 2199 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2200 struct btrfs_root *root, 2201 struct btrfs_root *log, 2202 struct btrfs_path *path, 2203 struct btrfs_path *log_path, 2204 struct inode *dir, 2205 struct btrfs_key *dir_key) 2206 { 2207 int ret; 2208 struct extent_buffer *eb; 2209 int slot; 2210 u32 item_size; 2211 struct btrfs_dir_item *di; 2212 struct btrfs_dir_item *log_di; 2213 int name_len; 2214 unsigned long ptr; 2215 unsigned long ptr_end; 2216 char *name; 2217 struct inode *inode; 2218 struct btrfs_key location; 2219 2220 again: 2221 eb = path->nodes[0]; 2222 slot = path->slots[0]; 2223 item_size = btrfs_item_size_nr(eb, slot); 2224 ptr = btrfs_item_ptr_offset(eb, slot); 2225 ptr_end = ptr + item_size; 2226 while (ptr < ptr_end) { 2227 di = (struct btrfs_dir_item *)ptr; 2228 name_len = btrfs_dir_name_len(eb, di); 2229 name = kmalloc(name_len, GFP_NOFS); 2230 if (!name) { 2231 ret = -ENOMEM; 2232 goto out; 2233 } 2234 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2235 name_len); 2236 log_di = NULL; 2237 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2238 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2239 dir_key->objectid, 2240 name, name_len, 0); 2241 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2242 log_di = btrfs_lookup_dir_index_item(trans, log, 2243 log_path, 2244 dir_key->objectid, 2245 dir_key->offset, 2246 name, name_len, 0); 2247 } 2248 if (!log_di || log_di == ERR_PTR(-ENOENT)) { 2249 btrfs_dir_item_key_to_cpu(eb, di, &location); 2250 btrfs_release_path(path); 2251 btrfs_release_path(log_path); 2252 inode = read_one_inode(root, location.objectid); 2253 if (!inode) { 2254 kfree(name); 2255 return -EIO; 2256 } 2257 2258 ret = link_to_fixup_dir(trans, root, 2259 path, location.objectid); 2260 if (ret) { 2261 kfree(name); 2262 iput(inode); 2263 goto out; 2264 } 2265 2266 inc_nlink(inode); 2267 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 2268 BTRFS_I(inode), name, name_len); 2269 if (!ret) 2270 ret = btrfs_run_delayed_items(trans); 2271 kfree(name); 2272 iput(inode); 2273 if (ret) 2274 goto out; 2275 2276 /* there might still be more names under this key 2277 * check and repeat if required 2278 */ 2279 ret = btrfs_search_slot(NULL, root, dir_key, path, 2280 0, 0); 2281 if (ret == 0) 2282 goto again; 2283 ret = 0; 2284 goto out; 2285 } else if (IS_ERR(log_di)) { 2286 kfree(name); 2287 return PTR_ERR(log_di); 2288 } 2289 btrfs_release_path(log_path); 2290 kfree(name); 2291 2292 ptr = (unsigned long)(di + 1); 2293 ptr += name_len; 2294 } 2295 ret = 0; 2296 out: 2297 btrfs_release_path(path); 2298 btrfs_release_path(log_path); 2299 return ret; 2300 } 2301 2302 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2303 struct btrfs_root *root, 2304 struct btrfs_root *log, 2305 struct btrfs_path *path, 2306 const u64 ino) 2307 { 2308 struct btrfs_key search_key; 2309 struct btrfs_path *log_path; 2310 int i; 2311 int nritems; 2312 int ret; 2313 2314 log_path = btrfs_alloc_path(); 2315 if (!log_path) 2316 return -ENOMEM; 2317 2318 search_key.objectid = ino; 2319 search_key.type = BTRFS_XATTR_ITEM_KEY; 2320 search_key.offset = 0; 2321 again: 2322 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2323 if (ret < 0) 2324 goto out; 2325 process_leaf: 2326 nritems = btrfs_header_nritems(path->nodes[0]); 2327 for (i = path->slots[0]; i < nritems; i++) { 2328 struct btrfs_key key; 2329 struct btrfs_dir_item *di; 2330 struct btrfs_dir_item *log_di; 2331 u32 total_size; 2332 u32 cur; 2333 2334 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2335 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2336 ret = 0; 2337 goto out; 2338 } 2339 2340 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2341 total_size = btrfs_item_size_nr(path->nodes[0], i); 2342 cur = 0; 2343 while (cur < total_size) { 2344 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2345 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2346 u32 this_len = sizeof(*di) + name_len + data_len; 2347 char *name; 2348 2349 name = kmalloc(name_len, GFP_NOFS); 2350 if (!name) { 2351 ret = -ENOMEM; 2352 goto out; 2353 } 2354 read_extent_buffer(path->nodes[0], name, 2355 (unsigned long)(di + 1), name_len); 2356 2357 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2358 name, name_len, 0); 2359 btrfs_release_path(log_path); 2360 if (!log_di) { 2361 /* Doesn't exist in log tree, so delete it. */ 2362 btrfs_release_path(path); 2363 di = btrfs_lookup_xattr(trans, root, path, ino, 2364 name, name_len, -1); 2365 kfree(name); 2366 if (IS_ERR(di)) { 2367 ret = PTR_ERR(di); 2368 goto out; 2369 } 2370 ASSERT(di); 2371 ret = btrfs_delete_one_dir_name(trans, root, 2372 path, di); 2373 if (ret) 2374 goto out; 2375 btrfs_release_path(path); 2376 search_key = key; 2377 goto again; 2378 } 2379 kfree(name); 2380 if (IS_ERR(log_di)) { 2381 ret = PTR_ERR(log_di); 2382 goto out; 2383 } 2384 cur += this_len; 2385 di = (struct btrfs_dir_item *)((char *)di + this_len); 2386 } 2387 } 2388 ret = btrfs_next_leaf(root, path); 2389 if (ret > 0) 2390 ret = 0; 2391 else if (ret == 0) 2392 goto process_leaf; 2393 out: 2394 btrfs_free_path(log_path); 2395 btrfs_release_path(path); 2396 return ret; 2397 } 2398 2399 2400 /* 2401 * deletion replay happens before we copy any new directory items 2402 * out of the log or out of backreferences from inodes. It 2403 * scans the log to find ranges of keys that log is authoritative for, 2404 * and then scans the directory to find items in those ranges that are 2405 * not present in the log. 2406 * 2407 * Anything we don't find in the log is unlinked and removed from the 2408 * directory. 2409 */ 2410 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2411 struct btrfs_root *root, 2412 struct btrfs_root *log, 2413 struct btrfs_path *path, 2414 u64 dirid, int del_all) 2415 { 2416 u64 range_start; 2417 u64 range_end; 2418 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2419 int ret = 0; 2420 struct btrfs_key dir_key; 2421 struct btrfs_key found_key; 2422 struct btrfs_path *log_path; 2423 struct inode *dir; 2424 2425 dir_key.objectid = dirid; 2426 dir_key.type = BTRFS_DIR_ITEM_KEY; 2427 log_path = btrfs_alloc_path(); 2428 if (!log_path) 2429 return -ENOMEM; 2430 2431 dir = read_one_inode(root, dirid); 2432 /* it isn't an error if the inode isn't there, that can happen 2433 * because we replay the deletes before we copy in the inode item 2434 * from the log 2435 */ 2436 if (!dir) { 2437 btrfs_free_path(log_path); 2438 return 0; 2439 } 2440 again: 2441 range_start = 0; 2442 range_end = 0; 2443 while (1) { 2444 if (del_all) 2445 range_end = (u64)-1; 2446 else { 2447 ret = find_dir_range(log, path, dirid, key_type, 2448 &range_start, &range_end); 2449 if (ret != 0) 2450 break; 2451 } 2452 2453 dir_key.offset = range_start; 2454 while (1) { 2455 int nritems; 2456 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2457 0, 0); 2458 if (ret < 0) 2459 goto out; 2460 2461 nritems = btrfs_header_nritems(path->nodes[0]); 2462 if (path->slots[0] >= nritems) { 2463 ret = btrfs_next_leaf(root, path); 2464 if (ret == 1) 2465 break; 2466 else if (ret < 0) 2467 goto out; 2468 } 2469 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2470 path->slots[0]); 2471 if (found_key.objectid != dirid || 2472 found_key.type != dir_key.type) 2473 goto next_type; 2474 2475 if (found_key.offset > range_end) 2476 break; 2477 2478 ret = check_item_in_log(trans, root, log, path, 2479 log_path, dir, 2480 &found_key); 2481 if (ret) 2482 goto out; 2483 if (found_key.offset == (u64)-1) 2484 break; 2485 dir_key.offset = found_key.offset + 1; 2486 } 2487 btrfs_release_path(path); 2488 if (range_end == (u64)-1) 2489 break; 2490 range_start = range_end + 1; 2491 } 2492 2493 next_type: 2494 ret = 0; 2495 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2496 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2497 dir_key.type = BTRFS_DIR_INDEX_KEY; 2498 btrfs_release_path(path); 2499 goto again; 2500 } 2501 out: 2502 btrfs_release_path(path); 2503 btrfs_free_path(log_path); 2504 iput(dir); 2505 return ret; 2506 } 2507 2508 /* 2509 * the process_func used to replay items from the log tree. This 2510 * gets called in two different stages. The first stage just looks 2511 * for inodes and makes sure they are all copied into the subvolume. 2512 * 2513 * The second stage copies all the other item types from the log into 2514 * the subvolume. The two stage approach is slower, but gets rid of 2515 * lots of complexity around inodes referencing other inodes that exist 2516 * only in the log (references come from either directory items or inode 2517 * back refs). 2518 */ 2519 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2520 struct walk_control *wc, u64 gen, int level) 2521 { 2522 int nritems; 2523 struct btrfs_path *path; 2524 struct btrfs_root *root = wc->replay_dest; 2525 struct btrfs_key key; 2526 int i; 2527 int ret; 2528 2529 ret = btrfs_read_buffer(eb, gen, level, NULL); 2530 if (ret) 2531 return ret; 2532 2533 level = btrfs_header_level(eb); 2534 2535 if (level != 0) 2536 return 0; 2537 2538 path = btrfs_alloc_path(); 2539 if (!path) 2540 return -ENOMEM; 2541 2542 nritems = btrfs_header_nritems(eb); 2543 for (i = 0; i < nritems; i++) { 2544 btrfs_item_key_to_cpu(eb, &key, i); 2545 2546 /* inode keys are done during the first stage */ 2547 if (key.type == BTRFS_INODE_ITEM_KEY && 2548 wc->stage == LOG_WALK_REPLAY_INODES) { 2549 struct btrfs_inode_item *inode_item; 2550 u32 mode; 2551 2552 inode_item = btrfs_item_ptr(eb, i, 2553 struct btrfs_inode_item); 2554 /* 2555 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2556 * and never got linked before the fsync, skip it, as 2557 * replaying it is pointless since it would be deleted 2558 * later. We skip logging tmpfiles, but it's always 2559 * possible we are replaying a log created with a kernel 2560 * that used to log tmpfiles. 2561 */ 2562 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2563 wc->ignore_cur_inode = true; 2564 continue; 2565 } else { 2566 wc->ignore_cur_inode = false; 2567 } 2568 ret = replay_xattr_deletes(wc->trans, root, log, 2569 path, key.objectid); 2570 if (ret) 2571 break; 2572 mode = btrfs_inode_mode(eb, inode_item); 2573 if (S_ISDIR(mode)) { 2574 ret = replay_dir_deletes(wc->trans, 2575 root, log, path, key.objectid, 0); 2576 if (ret) 2577 break; 2578 } 2579 ret = overwrite_item(wc->trans, root, path, 2580 eb, i, &key); 2581 if (ret) 2582 break; 2583 2584 /* 2585 * Before replaying extents, truncate the inode to its 2586 * size. We need to do it now and not after log replay 2587 * because before an fsync we can have prealloc extents 2588 * added beyond the inode's i_size. If we did it after, 2589 * through orphan cleanup for example, we would drop 2590 * those prealloc extents just after replaying them. 2591 */ 2592 if (S_ISREG(mode)) { 2593 struct inode *inode; 2594 u64 from; 2595 2596 inode = read_one_inode(root, key.objectid); 2597 if (!inode) { 2598 ret = -EIO; 2599 break; 2600 } 2601 from = ALIGN(i_size_read(inode), 2602 root->fs_info->sectorsize); 2603 ret = btrfs_drop_extents(wc->trans, root, inode, 2604 from, (u64)-1, 1); 2605 if (!ret) { 2606 /* Update the inode's nbytes. */ 2607 ret = btrfs_update_inode(wc->trans, 2608 root, inode); 2609 } 2610 iput(inode); 2611 if (ret) 2612 break; 2613 } 2614 2615 ret = link_to_fixup_dir(wc->trans, root, 2616 path, key.objectid); 2617 if (ret) 2618 break; 2619 } 2620 2621 if (wc->ignore_cur_inode) 2622 continue; 2623 2624 if (key.type == BTRFS_DIR_INDEX_KEY && 2625 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2626 ret = replay_one_dir_item(wc->trans, root, path, 2627 eb, i, &key); 2628 if (ret) 2629 break; 2630 } 2631 2632 if (wc->stage < LOG_WALK_REPLAY_ALL) 2633 continue; 2634 2635 /* these keys are simply copied */ 2636 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2637 ret = overwrite_item(wc->trans, root, path, 2638 eb, i, &key); 2639 if (ret) 2640 break; 2641 } else if (key.type == BTRFS_INODE_REF_KEY || 2642 key.type == BTRFS_INODE_EXTREF_KEY) { 2643 ret = add_inode_ref(wc->trans, root, log, path, 2644 eb, i, &key); 2645 if (ret && ret != -ENOENT) 2646 break; 2647 ret = 0; 2648 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2649 ret = replay_one_extent(wc->trans, root, path, 2650 eb, i, &key); 2651 if (ret) 2652 break; 2653 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2654 ret = replay_one_dir_item(wc->trans, root, path, 2655 eb, i, &key); 2656 if (ret) 2657 break; 2658 } 2659 } 2660 btrfs_free_path(path); 2661 return ret; 2662 } 2663 2664 /* 2665 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2666 */ 2667 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2668 { 2669 struct btrfs_block_group *cache; 2670 2671 cache = btrfs_lookup_block_group(fs_info, start); 2672 if (!cache) { 2673 btrfs_err(fs_info, "unable to find block group for %llu", start); 2674 return; 2675 } 2676 2677 spin_lock(&cache->space_info->lock); 2678 spin_lock(&cache->lock); 2679 cache->reserved -= fs_info->nodesize; 2680 cache->space_info->bytes_reserved -= fs_info->nodesize; 2681 spin_unlock(&cache->lock); 2682 spin_unlock(&cache->space_info->lock); 2683 2684 btrfs_put_block_group(cache); 2685 } 2686 2687 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2688 struct btrfs_root *root, 2689 struct btrfs_path *path, int *level, 2690 struct walk_control *wc) 2691 { 2692 struct btrfs_fs_info *fs_info = root->fs_info; 2693 u64 bytenr; 2694 u64 ptr_gen; 2695 struct extent_buffer *next; 2696 struct extent_buffer *cur; 2697 u32 blocksize; 2698 int ret = 0; 2699 2700 while (*level > 0) { 2701 struct btrfs_key first_key; 2702 2703 cur = path->nodes[*level]; 2704 2705 WARN_ON(btrfs_header_level(cur) != *level); 2706 2707 if (path->slots[*level] >= 2708 btrfs_header_nritems(cur)) 2709 break; 2710 2711 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2712 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2713 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2714 blocksize = fs_info->nodesize; 2715 2716 next = btrfs_find_create_tree_block(fs_info, bytenr); 2717 if (IS_ERR(next)) 2718 return PTR_ERR(next); 2719 2720 if (*level == 1) { 2721 ret = wc->process_func(root, next, wc, ptr_gen, 2722 *level - 1); 2723 if (ret) { 2724 free_extent_buffer(next); 2725 return ret; 2726 } 2727 2728 path->slots[*level]++; 2729 if (wc->free) { 2730 ret = btrfs_read_buffer(next, ptr_gen, 2731 *level - 1, &first_key); 2732 if (ret) { 2733 free_extent_buffer(next); 2734 return ret; 2735 } 2736 2737 if (trans) { 2738 btrfs_tree_lock(next); 2739 btrfs_set_lock_blocking_write(next); 2740 btrfs_clean_tree_block(next); 2741 btrfs_wait_tree_block_writeback(next); 2742 btrfs_tree_unlock(next); 2743 ret = btrfs_pin_reserved_extent(trans, 2744 bytenr, blocksize); 2745 if (ret) { 2746 free_extent_buffer(next); 2747 return ret; 2748 } 2749 } else { 2750 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2751 clear_extent_buffer_dirty(next); 2752 unaccount_log_buffer(fs_info, bytenr); 2753 } 2754 } 2755 free_extent_buffer(next); 2756 continue; 2757 } 2758 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2759 if (ret) { 2760 free_extent_buffer(next); 2761 return ret; 2762 } 2763 2764 if (path->nodes[*level-1]) 2765 free_extent_buffer(path->nodes[*level-1]); 2766 path->nodes[*level-1] = next; 2767 *level = btrfs_header_level(next); 2768 path->slots[*level] = 0; 2769 cond_resched(); 2770 } 2771 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2772 2773 cond_resched(); 2774 return 0; 2775 } 2776 2777 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2778 struct btrfs_root *root, 2779 struct btrfs_path *path, int *level, 2780 struct walk_control *wc) 2781 { 2782 struct btrfs_fs_info *fs_info = root->fs_info; 2783 int i; 2784 int slot; 2785 int ret; 2786 2787 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2788 slot = path->slots[i]; 2789 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2790 path->slots[i]++; 2791 *level = i; 2792 WARN_ON(*level == 0); 2793 return 0; 2794 } else { 2795 ret = wc->process_func(root, path->nodes[*level], wc, 2796 btrfs_header_generation(path->nodes[*level]), 2797 *level); 2798 if (ret) 2799 return ret; 2800 2801 if (wc->free) { 2802 struct extent_buffer *next; 2803 2804 next = path->nodes[*level]; 2805 2806 if (trans) { 2807 btrfs_tree_lock(next); 2808 btrfs_set_lock_blocking_write(next); 2809 btrfs_clean_tree_block(next); 2810 btrfs_wait_tree_block_writeback(next); 2811 btrfs_tree_unlock(next); 2812 ret = btrfs_pin_reserved_extent(trans, 2813 path->nodes[*level]->start, 2814 path->nodes[*level]->len); 2815 if (ret) 2816 return ret; 2817 } else { 2818 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2819 clear_extent_buffer_dirty(next); 2820 2821 unaccount_log_buffer(fs_info, 2822 path->nodes[*level]->start); 2823 } 2824 } 2825 free_extent_buffer(path->nodes[*level]); 2826 path->nodes[*level] = NULL; 2827 *level = i + 1; 2828 } 2829 } 2830 return 1; 2831 } 2832 2833 /* 2834 * drop the reference count on the tree rooted at 'snap'. This traverses 2835 * the tree freeing any blocks that have a ref count of zero after being 2836 * decremented. 2837 */ 2838 static int walk_log_tree(struct btrfs_trans_handle *trans, 2839 struct btrfs_root *log, struct walk_control *wc) 2840 { 2841 struct btrfs_fs_info *fs_info = log->fs_info; 2842 int ret = 0; 2843 int wret; 2844 int level; 2845 struct btrfs_path *path; 2846 int orig_level; 2847 2848 path = btrfs_alloc_path(); 2849 if (!path) 2850 return -ENOMEM; 2851 2852 level = btrfs_header_level(log->node); 2853 orig_level = level; 2854 path->nodes[level] = log->node; 2855 atomic_inc(&log->node->refs); 2856 path->slots[level] = 0; 2857 2858 while (1) { 2859 wret = walk_down_log_tree(trans, log, path, &level, wc); 2860 if (wret > 0) 2861 break; 2862 if (wret < 0) { 2863 ret = wret; 2864 goto out; 2865 } 2866 2867 wret = walk_up_log_tree(trans, log, path, &level, wc); 2868 if (wret > 0) 2869 break; 2870 if (wret < 0) { 2871 ret = wret; 2872 goto out; 2873 } 2874 } 2875 2876 /* was the root node processed? if not, catch it here */ 2877 if (path->nodes[orig_level]) { 2878 ret = wc->process_func(log, path->nodes[orig_level], wc, 2879 btrfs_header_generation(path->nodes[orig_level]), 2880 orig_level); 2881 if (ret) 2882 goto out; 2883 if (wc->free) { 2884 struct extent_buffer *next; 2885 2886 next = path->nodes[orig_level]; 2887 2888 if (trans) { 2889 btrfs_tree_lock(next); 2890 btrfs_set_lock_blocking_write(next); 2891 btrfs_clean_tree_block(next); 2892 btrfs_wait_tree_block_writeback(next); 2893 btrfs_tree_unlock(next); 2894 ret = btrfs_pin_reserved_extent(trans, 2895 next->start, next->len); 2896 if (ret) 2897 goto out; 2898 } else { 2899 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2900 clear_extent_buffer_dirty(next); 2901 unaccount_log_buffer(fs_info, next->start); 2902 } 2903 } 2904 } 2905 2906 out: 2907 btrfs_free_path(path); 2908 return ret; 2909 } 2910 2911 /* 2912 * helper function to update the item for a given subvolumes log root 2913 * in the tree of log roots 2914 */ 2915 static int update_log_root(struct btrfs_trans_handle *trans, 2916 struct btrfs_root *log, 2917 struct btrfs_root_item *root_item) 2918 { 2919 struct btrfs_fs_info *fs_info = log->fs_info; 2920 int ret; 2921 2922 if (log->log_transid == 1) { 2923 /* insert root item on the first sync */ 2924 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2925 &log->root_key, root_item); 2926 } else { 2927 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2928 &log->root_key, root_item); 2929 } 2930 return ret; 2931 } 2932 2933 static void wait_log_commit(struct btrfs_root *root, int transid) 2934 { 2935 DEFINE_WAIT(wait); 2936 int index = transid % 2; 2937 2938 /* 2939 * we only allow two pending log transactions at a time, 2940 * so we know that if ours is more than 2 older than the 2941 * current transaction, we're done 2942 */ 2943 for (;;) { 2944 prepare_to_wait(&root->log_commit_wait[index], 2945 &wait, TASK_UNINTERRUPTIBLE); 2946 2947 if (!(root->log_transid_committed < transid && 2948 atomic_read(&root->log_commit[index]))) 2949 break; 2950 2951 mutex_unlock(&root->log_mutex); 2952 schedule(); 2953 mutex_lock(&root->log_mutex); 2954 } 2955 finish_wait(&root->log_commit_wait[index], &wait); 2956 } 2957 2958 static void wait_for_writer(struct btrfs_root *root) 2959 { 2960 DEFINE_WAIT(wait); 2961 2962 for (;;) { 2963 prepare_to_wait(&root->log_writer_wait, &wait, 2964 TASK_UNINTERRUPTIBLE); 2965 if (!atomic_read(&root->log_writers)) 2966 break; 2967 2968 mutex_unlock(&root->log_mutex); 2969 schedule(); 2970 mutex_lock(&root->log_mutex); 2971 } 2972 finish_wait(&root->log_writer_wait, &wait); 2973 } 2974 2975 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2976 struct btrfs_log_ctx *ctx) 2977 { 2978 if (!ctx) 2979 return; 2980 2981 mutex_lock(&root->log_mutex); 2982 list_del_init(&ctx->list); 2983 mutex_unlock(&root->log_mutex); 2984 } 2985 2986 /* 2987 * Invoked in log mutex context, or be sure there is no other task which 2988 * can access the list. 2989 */ 2990 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2991 int index, int error) 2992 { 2993 struct btrfs_log_ctx *ctx; 2994 struct btrfs_log_ctx *safe; 2995 2996 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 2997 list_del_init(&ctx->list); 2998 ctx->log_ret = error; 2999 } 3000 3001 INIT_LIST_HEAD(&root->log_ctxs[index]); 3002 } 3003 3004 /* 3005 * btrfs_sync_log does sends a given tree log down to the disk and 3006 * updates the super blocks to record it. When this call is done, 3007 * you know that any inodes previously logged are safely on disk only 3008 * if it returns 0. 3009 * 3010 * Any other return value means you need to call btrfs_commit_transaction. 3011 * Some of the edge cases for fsyncing directories that have had unlinks 3012 * or renames done in the past mean that sometimes the only safe 3013 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3014 * that has happened. 3015 */ 3016 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3017 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3018 { 3019 int index1; 3020 int index2; 3021 int mark; 3022 int ret; 3023 struct btrfs_fs_info *fs_info = root->fs_info; 3024 struct btrfs_root *log = root->log_root; 3025 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3026 struct btrfs_root_item new_root_item; 3027 int log_transid = 0; 3028 struct btrfs_log_ctx root_log_ctx; 3029 struct blk_plug plug; 3030 3031 mutex_lock(&root->log_mutex); 3032 log_transid = ctx->log_transid; 3033 if (root->log_transid_committed >= log_transid) { 3034 mutex_unlock(&root->log_mutex); 3035 return ctx->log_ret; 3036 } 3037 3038 index1 = log_transid % 2; 3039 if (atomic_read(&root->log_commit[index1])) { 3040 wait_log_commit(root, log_transid); 3041 mutex_unlock(&root->log_mutex); 3042 return ctx->log_ret; 3043 } 3044 ASSERT(log_transid == root->log_transid); 3045 atomic_set(&root->log_commit[index1], 1); 3046 3047 /* wait for previous tree log sync to complete */ 3048 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3049 wait_log_commit(root, log_transid - 1); 3050 3051 while (1) { 3052 int batch = atomic_read(&root->log_batch); 3053 /* when we're on an ssd, just kick the log commit out */ 3054 if (!btrfs_test_opt(fs_info, SSD) && 3055 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3056 mutex_unlock(&root->log_mutex); 3057 schedule_timeout_uninterruptible(1); 3058 mutex_lock(&root->log_mutex); 3059 } 3060 wait_for_writer(root); 3061 if (batch == atomic_read(&root->log_batch)) 3062 break; 3063 } 3064 3065 /* bail out if we need to do a full commit */ 3066 if (btrfs_need_log_full_commit(trans)) { 3067 ret = -EAGAIN; 3068 mutex_unlock(&root->log_mutex); 3069 goto out; 3070 } 3071 3072 if (log_transid % 2 == 0) 3073 mark = EXTENT_DIRTY; 3074 else 3075 mark = EXTENT_NEW; 3076 3077 /* we start IO on all the marked extents here, but we don't actually 3078 * wait for them until later. 3079 */ 3080 blk_start_plug(&plug); 3081 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3082 if (ret) { 3083 blk_finish_plug(&plug); 3084 btrfs_abort_transaction(trans, ret); 3085 btrfs_set_log_full_commit(trans); 3086 mutex_unlock(&root->log_mutex); 3087 goto out; 3088 } 3089 3090 /* 3091 * We _must_ update under the root->log_mutex in order to make sure we 3092 * have a consistent view of the log root we are trying to commit at 3093 * this moment. 3094 * 3095 * We _must_ copy this into a local copy, because we are not holding the 3096 * log_root_tree->log_mutex yet. This is important because when we 3097 * commit the log_root_tree we must have a consistent view of the 3098 * log_root_tree when we update the super block to point at the 3099 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3100 * with the commit and possibly point at the new block which we may not 3101 * have written out. 3102 */ 3103 btrfs_set_root_node(&log->root_item, log->node); 3104 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3105 3106 root->log_transid++; 3107 log->log_transid = root->log_transid; 3108 root->log_start_pid = 0; 3109 /* 3110 * IO has been started, blocks of the log tree have WRITTEN flag set 3111 * in their headers. new modifications of the log will be written to 3112 * new positions. so it's safe to allow log writers to go in. 3113 */ 3114 mutex_unlock(&root->log_mutex); 3115 3116 btrfs_init_log_ctx(&root_log_ctx, NULL); 3117 3118 mutex_lock(&log_root_tree->log_mutex); 3119 3120 index2 = log_root_tree->log_transid % 2; 3121 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3122 root_log_ctx.log_transid = log_root_tree->log_transid; 3123 3124 /* 3125 * Now we are safe to update the log_root_tree because we're under the 3126 * log_mutex, and we're a current writer so we're holding the commit 3127 * open until we drop the log_mutex. 3128 */ 3129 ret = update_log_root(trans, log, &new_root_item); 3130 if (ret) { 3131 if (!list_empty(&root_log_ctx.list)) 3132 list_del_init(&root_log_ctx.list); 3133 3134 blk_finish_plug(&plug); 3135 btrfs_set_log_full_commit(trans); 3136 3137 if (ret != -ENOSPC) { 3138 btrfs_abort_transaction(trans, ret); 3139 mutex_unlock(&log_root_tree->log_mutex); 3140 goto out; 3141 } 3142 btrfs_wait_tree_log_extents(log, mark); 3143 mutex_unlock(&log_root_tree->log_mutex); 3144 ret = -EAGAIN; 3145 goto out; 3146 } 3147 3148 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3149 blk_finish_plug(&plug); 3150 list_del_init(&root_log_ctx.list); 3151 mutex_unlock(&log_root_tree->log_mutex); 3152 ret = root_log_ctx.log_ret; 3153 goto out; 3154 } 3155 3156 index2 = root_log_ctx.log_transid % 2; 3157 if (atomic_read(&log_root_tree->log_commit[index2])) { 3158 blk_finish_plug(&plug); 3159 ret = btrfs_wait_tree_log_extents(log, mark); 3160 wait_log_commit(log_root_tree, 3161 root_log_ctx.log_transid); 3162 mutex_unlock(&log_root_tree->log_mutex); 3163 if (!ret) 3164 ret = root_log_ctx.log_ret; 3165 goto out; 3166 } 3167 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3168 atomic_set(&log_root_tree->log_commit[index2], 1); 3169 3170 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3171 wait_log_commit(log_root_tree, 3172 root_log_ctx.log_transid - 1); 3173 } 3174 3175 /* 3176 * now that we've moved on to the tree of log tree roots, 3177 * check the full commit flag again 3178 */ 3179 if (btrfs_need_log_full_commit(trans)) { 3180 blk_finish_plug(&plug); 3181 btrfs_wait_tree_log_extents(log, mark); 3182 mutex_unlock(&log_root_tree->log_mutex); 3183 ret = -EAGAIN; 3184 goto out_wake_log_root; 3185 } 3186 3187 ret = btrfs_write_marked_extents(fs_info, 3188 &log_root_tree->dirty_log_pages, 3189 EXTENT_DIRTY | EXTENT_NEW); 3190 blk_finish_plug(&plug); 3191 if (ret) { 3192 btrfs_set_log_full_commit(trans); 3193 btrfs_abort_transaction(trans, ret); 3194 mutex_unlock(&log_root_tree->log_mutex); 3195 goto out_wake_log_root; 3196 } 3197 ret = btrfs_wait_tree_log_extents(log, mark); 3198 if (!ret) 3199 ret = btrfs_wait_tree_log_extents(log_root_tree, 3200 EXTENT_NEW | EXTENT_DIRTY); 3201 if (ret) { 3202 btrfs_set_log_full_commit(trans); 3203 mutex_unlock(&log_root_tree->log_mutex); 3204 goto out_wake_log_root; 3205 } 3206 3207 btrfs_set_super_log_root(fs_info->super_for_commit, 3208 log_root_tree->node->start); 3209 btrfs_set_super_log_root_level(fs_info->super_for_commit, 3210 btrfs_header_level(log_root_tree->node)); 3211 3212 log_root_tree->log_transid++; 3213 mutex_unlock(&log_root_tree->log_mutex); 3214 3215 /* 3216 * Nobody else is going to jump in and write the ctree 3217 * super here because the log_commit atomic below is protecting 3218 * us. We must be called with a transaction handle pinning 3219 * the running transaction open, so a full commit can't hop 3220 * in and cause problems either. 3221 */ 3222 ret = write_all_supers(fs_info, 1); 3223 if (ret) { 3224 btrfs_set_log_full_commit(trans); 3225 btrfs_abort_transaction(trans, ret); 3226 goto out_wake_log_root; 3227 } 3228 3229 mutex_lock(&root->log_mutex); 3230 if (root->last_log_commit < log_transid) 3231 root->last_log_commit = log_transid; 3232 mutex_unlock(&root->log_mutex); 3233 3234 out_wake_log_root: 3235 mutex_lock(&log_root_tree->log_mutex); 3236 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3237 3238 log_root_tree->log_transid_committed++; 3239 atomic_set(&log_root_tree->log_commit[index2], 0); 3240 mutex_unlock(&log_root_tree->log_mutex); 3241 3242 /* 3243 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3244 * all the updates above are seen by the woken threads. It might not be 3245 * necessary, but proving that seems to be hard. 3246 */ 3247 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3248 out: 3249 mutex_lock(&root->log_mutex); 3250 btrfs_remove_all_log_ctxs(root, index1, ret); 3251 root->log_transid_committed++; 3252 atomic_set(&root->log_commit[index1], 0); 3253 mutex_unlock(&root->log_mutex); 3254 3255 /* 3256 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3257 * all the updates above are seen by the woken threads. It might not be 3258 * necessary, but proving that seems to be hard. 3259 */ 3260 cond_wake_up(&root->log_commit_wait[index1]); 3261 return ret; 3262 } 3263 3264 static void free_log_tree(struct btrfs_trans_handle *trans, 3265 struct btrfs_root *log) 3266 { 3267 int ret; 3268 struct walk_control wc = { 3269 .free = 1, 3270 .process_func = process_one_buffer 3271 }; 3272 3273 ret = walk_log_tree(trans, log, &wc); 3274 if (ret) { 3275 if (trans) 3276 btrfs_abort_transaction(trans, ret); 3277 else 3278 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3279 } 3280 3281 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3282 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3283 extent_io_tree_release(&log->log_csum_range); 3284 btrfs_put_root(log); 3285 } 3286 3287 /* 3288 * free all the extents used by the tree log. This should be called 3289 * at commit time of the full transaction 3290 */ 3291 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3292 { 3293 if (root->log_root) { 3294 free_log_tree(trans, root->log_root); 3295 root->log_root = NULL; 3296 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3297 } 3298 return 0; 3299 } 3300 3301 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3302 struct btrfs_fs_info *fs_info) 3303 { 3304 if (fs_info->log_root_tree) { 3305 free_log_tree(trans, fs_info->log_root_tree); 3306 fs_info->log_root_tree = NULL; 3307 } 3308 return 0; 3309 } 3310 3311 /* 3312 * Check if an inode was logged in the current transaction. We can't always rely 3313 * on an inode's logged_trans value, because it's an in-memory only field and 3314 * therefore not persisted. This means that its value is lost if the inode gets 3315 * evicted and loaded again from disk (in which case it has a value of 0, and 3316 * certainly it is smaller then any possible transaction ID), when that happens 3317 * the full_sync flag is set in the inode's runtime flags, so on that case we 3318 * assume eviction happened and ignore the logged_trans value, assuming the 3319 * worst case, that the inode was logged before in the current transaction. 3320 */ 3321 static bool inode_logged(struct btrfs_trans_handle *trans, 3322 struct btrfs_inode *inode) 3323 { 3324 if (inode->logged_trans == trans->transid) 3325 return true; 3326 3327 if (inode->last_trans == trans->transid && 3328 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && 3329 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags)) 3330 return true; 3331 3332 return false; 3333 } 3334 3335 /* 3336 * If both a file and directory are logged, and unlinks or renames are 3337 * mixed in, we have a few interesting corners: 3338 * 3339 * create file X in dir Y 3340 * link file X to X.link in dir Y 3341 * fsync file X 3342 * unlink file X but leave X.link 3343 * fsync dir Y 3344 * 3345 * After a crash we would expect only X.link to exist. But file X 3346 * didn't get fsync'd again so the log has back refs for X and X.link. 3347 * 3348 * We solve this by removing directory entries and inode backrefs from the 3349 * log when a file that was logged in the current transaction is 3350 * unlinked. Any later fsync will include the updated log entries, and 3351 * we'll be able to reconstruct the proper directory items from backrefs. 3352 * 3353 * This optimizations allows us to avoid relogging the entire inode 3354 * or the entire directory. 3355 */ 3356 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3357 struct btrfs_root *root, 3358 const char *name, int name_len, 3359 struct btrfs_inode *dir, u64 index) 3360 { 3361 struct btrfs_root *log; 3362 struct btrfs_dir_item *di; 3363 struct btrfs_path *path; 3364 int ret; 3365 int err = 0; 3366 int bytes_del = 0; 3367 u64 dir_ino = btrfs_ino(dir); 3368 3369 if (!inode_logged(trans, dir)) 3370 return 0; 3371 3372 ret = join_running_log_trans(root); 3373 if (ret) 3374 return 0; 3375 3376 mutex_lock(&dir->log_mutex); 3377 3378 log = root->log_root; 3379 path = btrfs_alloc_path(); 3380 if (!path) { 3381 err = -ENOMEM; 3382 goto out_unlock; 3383 } 3384 3385 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3386 name, name_len, -1); 3387 if (IS_ERR(di)) { 3388 err = PTR_ERR(di); 3389 goto fail; 3390 } 3391 if (di) { 3392 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3393 bytes_del += name_len; 3394 if (ret) { 3395 err = ret; 3396 goto fail; 3397 } 3398 } 3399 btrfs_release_path(path); 3400 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3401 index, name, name_len, -1); 3402 if (IS_ERR(di)) { 3403 err = PTR_ERR(di); 3404 goto fail; 3405 } 3406 if (di) { 3407 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3408 bytes_del += name_len; 3409 if (ret) { 3410 err = ret; 3411 goto fail; 3412 } 3413 } 3414 3415 /* update the directory size in the log to reflect the names 3416 * we have removed 3417 */ 3418 if (bytes_del) { 3419 struct btrfs_key key; 3420 3421 key.objectid = dir_ino; 3422 key.offset = 0; 3423 key.type = BTRFS_INODE_ITEM_KEY; 3424 btrfs_release_path(path); 3425 3426 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 3427 if (ret < 0) { 3428 err = ret; 3429 goto fail; 3430 } 3431 if (ret == 0) { 3432 struct btrfs_inode_item *item; 3433 u64 i_size; 3434 3435 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3436 struct btrfs_inode_item); 3437 i_size = btrfs_inode_size(path->nodes[0], item); 3438 if (i_size > bytes_del) 3439 i_size -= bytes_del; 3440 else 3441 i_size = 0; 3442 btrfs_set_inode_size(path->nodes[0], item, i_size); 3443 btrfs_mark_buffer_dirty(path->nodes[0]); 3444 } else 3445 ret = 0; 3446 btrfs_release_path(path); 3447 } 3448 fail: 3449 btrfs_free_path(path); 3450 out_unlock: 3451 mutex_unlock(&dir->log_mutex); 3452 if (ret == -ENOSPC) { 3453 btrfs_set_log_full_commit(trans); 3454 ret = 0; 3455 } else if (ret < 0) 3456 btrfs_abort_transaction(trans, ret); 3457 3458 btrfs_end_log_trans(root); 3459 3460 return err; 3461 } 3462 3463 /* see comments for btrfs_del_dir_entries_in_log */ 3464 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3465 struct btrfs_root *root, 3466 const char *name, int name_len, 3467 struct btrfs_inode *inode, u64 dirid) 3468 { 3469 struct btrfs_root *log; 3470 u64 index; 3471 int ret; 3472 3473 if (!inode_logged(trans, inode)) 3474 return 0; 3475 3476 ret = join_running_log_trans(root); 3477 if (ret) 3478 return 0; 3479 log = root->log_root; 3480 mutex_lock(&inode->log_mutex); 3481 3482 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3483 dirid, &index); 3484 mutex_unlock(&inode->log_mutex); 3485 if (ret == -ENOSPC) { 3486 btrfs_set_log_full_commit(trans); 3487 ret = 0; 3488 } else if (ret < 0 && ret != -ENOENT) 3489 btrfs_abort_transaction(trans, ret); 3490 btrfs_end_log_trans(root); 3491 3492 return ret; 3493 } 3494 3495 /* 3496 * creates a range item in the log for 'dirid'. first_offset and 3497 * last_offset tell us which parts of the key space the log should 3498 * be considered authoritative for. 3499 */ 3500 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3501 struct btrfs_root *log, 3502 struct btrfs_path *path, 3503 int key_type, u64 dirid, 3504 u64 first_offset, u64 last_offset) 3505 { 3506 int ret; 3507 struct btrfs_key key; 3508 struct btrfs_dir_log_item *item; 3509 3510 key.objectid = dirid; 3511 key.offset = first_offset; 3512 if (key_type == BTRFS_DIR_ITEM_KEY) 3513 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3514 else 3515 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3516 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3517 if (ret) 3518 return ret; 3519 3520 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3521 struct btrfs_dir_log_item); 3522 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3523 btrfs_mark_buffer_dirty(path->nodes[0]); 3524 btrfs_release_path(path); 3525 return 0; 3526 } 3527 3528 /* 3529 * log all the items included in the current transaction for a given 3530 * directory. This also creates the range items in the log tree required 3531 * to replay anything deleted before the fsync 3532 */ 3533 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3534 struct btrfs_root *root, struct btrfs_inode *inode, 3535 struct btrfs_path *path, 3536 struct btrfs_path *dst_path, int key_type, 3537 struct btrfs_log_ctx *ctx, 3538 u64 min_offset, u64 *last_offset_ret) 3539 { 3540 struct btrfs_key min_key; 3541 struct btrfs_root *log = root->log_root; 3542 struct extent_buffer *src; 3543 int err = 0; 3544 int ret; 3545 int i; 3546 int nritems; 3547 u64 first_offset = min_offset; 3548 u64 last_offset = (u64)-1; 3549 u64 ino = btrfs_ino(inode); 3550 3551 log = root->log_root; 3552 3553 min_key.objectid = ino; 3554 min_key.type = key_type; 3555 min_key.offset = min_offset; 3556 3557 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3558 3559 /* 3560 * we didn't find anything from this transaction, see if there 3561 * is anything at all 3562 */ 3563 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3564 min_key.objectid = ino; 3565 min_key.type = key_type; 3566 min_key.offset = (u64)-1; 3567 btrfs_release_path(path); 3568 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3569 if (ret < 0) { 3570 btrfs_release_path(path); 3571 return ret; 3572 } 3573 ret = btrfs_previous_item(root, path, ino, key_type); 3574 3575 /* if ret == 0 there are items for this type, 3576 * create a range to tell us the last key of this type. 3577 * otherwise, there are no items in this directory after 3578 * *min_offset, and we create a range to indicate that. 3579 */ 3580 if (ret == 0) { 3581 struct btrfs_key tmp; 3582 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3583 path->slots[0]); 3584 if (key_type == tmp.type) 3585 first_offset = max(min_offset, tmp.offset) + 1; 3586 } 3587 goto done; 3588 } 3589 3590 /* go backward to find any previous key */ 3591 ret = btrfs_previous_item(root, path, ino, key_type); 3592 if (ret == 0) { 3593 struct btrfs_key tmp; 3594 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3595 if (key_type == tmp.type) { 3596 first_offset = tmp.offset; 3597 ret = overwrite_item(trans, log, dst_path, 3598 path->nodes[0], path->slots[0], 3599 &tmp); 3600 if (ret) { 3601 err = ret; 3602 goto done; 3603 } 3604 } 3605 } 3606 btrfs_release_path(path); 3607 3608 /* 3609 * Find the first key from this transaction again. See the note for 3610 * log_new_dir_dentries, if we're logging a directory recursively we 3611 * won't be holding its i_mutex, which means we can modify the directory 3612 * while we're logging it. If we remove an entry between our first 3613 * search and this search we'll not find the key again and can just 3614 * bail. 3615 */ 3616 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3617 if (ret != 0) 3618 goto done; 3619 3620 /* 3621 * we have a block from this transaction, log every item in it 3622 * from our directory 3623 */ 3624 while (1) { 3625 struct btrfs_key tmp; 3626 src = path->nodes[0]; 3627 nritems = btrfs_header_nritems(src); 3628 for (i = path->slots[0]; i < nritems; i++) { 3629 struct btrfs_dir_item *di; 3630 3631 btrfs_item_key_to_cpu(src, &min_key, i); 3632 3633 if (min_key.objectid != ino || min_key.type != key_type) 3634 goto done; 3635 ret = overwrite_item(trans, log, dst_path, src, i, 3636 &min_key); 3637 if (ret) { 3638 err = ret; 3639 goto done; 3640 } 3641 3642 /* 3643 * We must make sure that when we log a directory entry, 3644 * the corresponding inode, after log replay, has a 3645 * matching link count. For example: 3646 * 3647 * touch foo 3648 * mkdir mydir 3649 * sync 3650 * ln foo mydir/bar 3651 * xfs_io -c "fsync" mydir 3652 * <crash> 3653 * <mount fs and log replay> 3654 * 3655 * Would result in a fsync log that when replayed, our 3656 * file inode would have a link count of 1, but we get 3657 * two directory entries pointing to the same inode. 3658 * After removing one of the names, it would not be 3659 * possible to remove the other name, which resulted 3660 * always in stale file handle errors, and would not 3661 * be possible to rmdir the parent directory, since 3662 * its i_size could never decrement to the value 3663 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3664 */ 3665 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3666 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3667 if (ctx && 3668 (btrfs_dir_transid(src, di) == trans->transid || 3669 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3670 tmp.type != BTRFS_ROOT_ITEM_KEY) 3671 ctx->log_new_dentries = true; 3672 } 3673 path->slots[0] = nritems; 3674 3675 /* 3676 * look ahead to the next item and see if it is also 3677 * from this directory and from this transaction 3678 */ 3679 ret = btrfs_next_leaf(root, path); 3680 if (ret) { 3681 if (ret == 1) 3682 last_offset = (u64)-1; 3683 else 3684 err = ret; 3685 goto done; 3686 } 3687 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3688 if (tmp.objectid != ino || tmp.type != key_type) { 3689 last_offset = (u64)-1; 3690 goto done; 3691 } 3692 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3693 ret = overwrite_item(trans, log, dst_path, 3694 path->nodes[0], path->slots[0], 3695 &tmp); 3696 if (ret) 3697 err = ret; 3698 else 3699 last_offset = tmp.offset; 3700 goto done; 3701 } 3702 } 3703 done: 3704 btrfs_release_path(path); 3705 btrfs_release_path(dst_path); 3706 3707 if (err == 0) { 3708 *last_offset_ret = last_offset; 3709 /* 3710 * insert the log range keys to indicate where the log 3711 * is valid 3712 */ 3713 ret = insert_dir_log_key(trans, log, path, key_type, 3714 ino, first_offset, last_offset); 3715 if (ret) 3716 err = ret; 3717 } 3718 return err; 3719 } 3720 3721 /* 3722 * logging directories is very similar to logging inodes, We find all the items 3723 * from the current transaction and write them to the log. 3724 * 3725 * The recovery code scans the directory in the subvolume, and if it finds a 3726 * key in the range logged that is not present in the log tree, then it means 3727 * that dir entry was unlinked during the transaction. 3728 * 3729 * In order for that scan to work, we must include one key smaller than 3730 * the smallest logged by this transaction and one key larger than the largest 3731 * key logged by this transaction. 3732 */ 3733 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3734 struct btrfs_root *root, struct btrfs_inode *inode, 3735 struct btrfs_path *path, 3736 struct btrfs_path *dst_path, 3737 struct btrfs_log_ctx *ctx) 3738 { 3739 u64 min_key; 3740 u64 max_key; 3741 int ret; 3742 int key_type = BTRFS_DIR_ITEM_KEY; 3743 3744 again: 3745 min_key = 0; 3746 max_key = 0; 3747 while (1) { 3748 ret = log_dir_items(trans, root, inode, path, dst_path, key_type, 3749 ctx, min_key, &max_key); 3750 if (ret) 3751 return ret; 3752 if (max_key == (u64)-1) 3753 break; 3754 min_key = max_key + 1; 3755 } 3756 3757 if (key_type == BTRFS_DIR_ITEM_KEY) { 3758 key_type = BTRFS_DIR_INDEX_KEY; 3759 goto again; 3760 } 3761 return 0; 3762 } 3763 3764 /* 3765 * a helper function to drop items from the log before we relog an 3766 * inode. max_key_type indicates the highest item type to remove. 3767 * This cannot be run for file data extents because it does not 3768 * free the extents they point to. 3769 */ 3770 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3771 struct btrfs_root *log, 3772 struct btrfs_path *path, 3773 u64 objectid, int max_key_type) 3774 { 3775 int ret; 3776 struct btrfs_key key; 3777 struct btrfs_key found_key; 3778 int start_slot; 3779 3780 key.objectid = objectid; 3781 key.type = max_key_type; 3782 key.offset = (u64)-1; 3783 3784 while (1) { 3785 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3786 BUG_ON(ret == 0); /* Logic error */ 3787 if (ret < 0) 3788 break; 3789 3790 if (path->slots[0] == 0) 3791 break; 3792 3793 path->slots[0]--; 3794 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3795 path->slots[0]); 3796 3797 if (found_key.objectid != objectid) 3798 break; 3799 3800 found_key.offset = 0; 3801 found_key.type = 0; 3802 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot); 3803 if (ret < 0) 3804 break; 3805 3806 ret = btrfs_del_items(trans, log, path, start_slot, 3807 path->slots[0] - start_slot + 1); 3808 /* 3809 * If start slot isn't 0 then we don't need to re-search, we've 3810 * found the last guy with the objectid in this tree. 3811 */ 3812 if (ret || start_slot != 0) 3813 break; 3814 btrfs_release_path(path); 3815 } 3816 btrfs_release_path(path); 3817 if (ret > 0) 3818 ret = 0; 3819 return ret; 3820 } 3821 3822 static void fill_inode_item(struct btrfs_trans_handle *trans, 3823 struct extent_buffer *leaf, 3824 struct btrfs_inode_item *item, 3825 struct inode *inode, int log_inode_only, 3826 u64 logged_isize) 3827 { 3828 struct btrfs_map_token token; 3829 3830 btrfs_init_map_token(&token, leaf); 3831 3832 if (log_inode_only) { 3833 /* set the generation to zero so the recover code 3834 * can tell the difference between an logging 3835 * just to say 'this inode exists' and a logging 3836 * to say 'update this inode with these values' 3837 */ 3838 btrfs_set_token_inode_generation(&token, item, 0); 3839 btrfs_set_token_inode_size(&token, item, logged_isize); 3840 } else { 3841 btrfs_set_token_inode_generation(&token, item, 3842 BTRFS_I(inode)->generation); 3843 btrfs_set_token_inode_size(&token, item, inode->i_size); 3844 } 3845 3846 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3847 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3848 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3849 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3850 3851 btrfs_set_token_timespec_sec(&token, &item->atime, 3852 inode->i_atime.tv_sec); 3853 btrfs_set_token_timespec_nsec(&token, &item->atime, 3854 inode->i_atime.tv_nsec); 3855 3856 btrfs_set_token_timespec_sec(&token, &item->mtime, 3857 inode->i_mtime.tv_sec); 3858 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3859 inode->i_mtime.tv_nsec); 3860 3861 btrfs_set_token_timespec_sec(&token, &item->ctime, 3862 inode->i_ctime.tv_sec); 3863 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3864 inode->i_ctime.tv_nsec); 3865 3866 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3867 3868 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3869 btrfs_set_token_inode_transid(&token, item, trans->transid); 3870 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3871 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3872 btrfs_set_token_inode_block_group(&token, item, 0); 3873 } 3874 3875 static int log_inode_item(struct btrfs_trans_handle *trans, 3876 struct btrfs_root *log, struct btrfs_path *path, 3877 struct btrfs_inode *inode) 3878 { 3879 struct btrfs_inode_item *inode_item; 3880 int ret; 3881 3882 ret = btrfs_insert_empty_item(trans, log, path, 3883 &inode->location, sizeof(*inode_item)); 3884 if (ret && ret != -EEXIST) 3885 return ret; 3886 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3887 struct btrfs_inode_item); 3888 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 3889 0, 0); 3890 btrfs_release_path(path); 3891 return 0; 3892 } 3893 3894 static int log_csums(struct btrfs_trans_handle *trans, 3895 struct btrfs_inode *inode, 3896 struct btrfs_root *log_root, 3897 struct btrfs_ordered_sum *sums) 3898 { 3899 const u64 lock_end = sums->bytenr + sums->len - 1; 3900 struct extent_state *cached_state = NULL; 3901 int ret; 3902 3903 /* 3904 * If this inode was not used for reflink operations in the current 3905 * transaction with new extents, then do the fast path, no need to 3906 * worry about logging checksum items with overlapping ranges. 3907 */ 3908 if (inode->last_reflink_trans < trans->transid) 3909 return btrfs_csum_file_blocks(trans, log_root, sums); 3910 3911 /* 3912 * Serialize logging for checksums. This is to avoid racing with the 3913 * same checksum being logged by another task that is logging another 3914 * file which happens to refer to the same extent as well. Such races 3915 * can leave checksum items in the log with overlapping ranges. 3916 */ 3917 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr, 3918 lock_end, &cached_state); 3919 if (ret) 3920 return ret; 3921 /* 3922 * Due to extent cloning, we might have logged a csum item that covers a 3923 * subrange of a cloned extent, and later we can end up logging a csum 3924 * item for a larger subrange of the same extent or the entire range. 3925 * This would leave csum items in the log tree that cover the same range 3926 * and break the searches for checksums in the log tree, resulting in 3927 * some checksums missing in the fs/subvolume tree. So just delete (or 3928 * trim and adjust) any existing csum items in the log for this range. 3929 */ 3930 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len); 3931 if (!ret) 3932 ret = btrfs_csum_file_blocks(trans, log_root, sums); 3933 3934 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end, 3935 &cached_state); 3936 3937 return ret; 3938 } 3939 3940 static noinline int copy_items(struct btrfs_trans_handle *trans, 3941 struct btrfs_inode *inode, 3942 struct btrfs_path *dst_path, 3943 struct btrfs_path *src_path, 3944 int start_slot, int nr, int inode_only, 3945 u64 logged_isize) 3946 { 3947 struct btrfs_fs_info *fs_info = trans->fs_info; 3948 unsigned long src_offset; 3949 unsigned long dst_offset; 3950 struct btrfs_root *log = inode->root->log_root; 3951 struct btrfs_file_extent_item *extent; 3952 struct btrfs_inode_item *inode_item; 3953 struct extent_buffer *src = src_path->nodes[0]; 3954 int ret; 3955 struct btrfs_key *ins_keys; 3956 u32 *ins_sizes; 3957 char *ins_data; 3958 int i; 3959 struct list_head ordered_sums; 3960 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 3961 3962 INIT_LIST_HEAD(&ordered_sums); 3963 3964 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3965 nr * sizeof(u32), GFP_NOFS); 3966 if (!ins_data) 3967 return -ENOMEM; 3968 3969 ins_sizes = (u32 *)ins_data; 3970 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3971 3972 for (i = 0; i < nr; i++) { 3973 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3974 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3975 } 3976 ret = btrfs_insert_empty_items(trans, log, dst_path, 3977 ins_keys, ins_sizes, nr); 3978 if (ret) { 3979 kfree(ins_data); 3980 return ret; 3981 } 3982 3983 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3984 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3985 dst_path->slots[0]); 3986 3987 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3988 3989 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3990 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3991 dst_path->slots[0], 3992 struct btrfs_inode_item); 3993 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3994 &inode->vfs_inode, 3995 inode_only == LOG_INODE_EXISTS, 3996 logged_isize); 3997 } else { 3998 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3999 src_offset, ins_sizes[i]); 4000 } 4001 4002 /* take a reference on file data extents so that truncates 4003 * or deletes of this inode don't have to relog the inode 4004 * again 4005 */ 4006 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 4007 !skip_csum) { 4008 int found_type; 4009 extent = btrfs_item_ptr(src, start_slot + i, 4010 struct btrfs_file_extent_item); 4011 4012 if (btrfs_file_extent_generation(src, extent) < trans->transid) 4013 continue; 4014 4015 found_type = btrfs_file_extent_type(src, extent); 4016 if (found_type == BTRFS_FILE_EXTENT_REG) { 4017 u64 ds, dl, cs, cl; 4018 ds = btrfs_file_extent_disk_bytenr(src, 4019 extent); 4020 /* ds == 0 is a hole */ 4021 if (ds == 0) 4022 continue; 4023 4024 dl = btrfs_file_extent_disk_num_bytes(src, 4025 extent); 4026 cs = btrfs_file_extent_offset(src, extent); 4027 cl = btrfs_file_extent_num_bytes(src, 4028 extent); 4029 if (btrfs_file_extent_compression(src, 4030 extent)) { 4031 cs = 0; 4032 cl = dl; 4033 } 4034 4035 ret = btrfs_lookup_csums_range( 4036 fs_info->csum_root, 4037 ds + cs, ds + cs + cl - 1, 4038 &ordered_sums, 0); 4039 if (ret) { 4040 btrfs_release_path(dst_path); 4041 kfree(ins_data); 4042 return ret; 4043 } 4044 } 4045 } 4046 } 4047 4048 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4049 btrfs_release_path(dst_path); 4050 kfree(ins_data); 4051 4052 /* 4053 * we have to do this after the loop above to avoid changing the 4054 * log tree while trying to change the log tree. 4055 */ 4056 ret = 0; 4057 while (!list_empty(&ordered_sums)) { 4058 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4059 struct btrfs_ordered_sum, 4060 list); 4061 if (!ret) 4062 ret = log_csums(trans, inode, log, sums); 4063 list_del(&sums->list); 4064 kfree(sums); 4065 } 4066 4067 return ret; 4068 } 4069 4070 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 4071 { 4072 struct extent_map *em1, *em2; 4073 4074 em1 = list_entry(a, struct extent_map, list); 4075 em2 = list_entry(b, struct extent_map, list); 4076 4077 if (em1->start < em2->start) 4078 return -1; 4079 else if (em1->start > em2->start) 4080 return 1; 4081 return 0; 4082 } 4083 4084 static int log_extent_csums(struct btrfs_trans_handle *trans, 4085 struct btrfs_inode *inode, 4086 struct btrfs_root *log_root, 4087 const struct extent_map *em) 4088 { 4089 u64 csum_offset; 4090 u64 csum_len; 4091 LIST_HEAD(ordered_sums); 4092 int ret = 0; 4093 4094 if (inode->flags & BTRFS_INODE_NODATASUM || 4095 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4096 em->block_start == EXTENT_MAP_HOLE) 4097 return 0; 4098 4099 /* If we're compressed we have to save the entire range of csums. */ 4100 if (em->compress_type) { 4101 csum_offset = 0; 4102 csum_len = max(em->block_len, em->orig_block_len); 4103 } else { 4104 csum_offset = em->mod_start - em->start; 4105 csum_len = em->mod_len; 4106 } 4107 4108 /* block start is already adjusted for the file extent offset. */ 4109 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, 4110 em->block_start + csum_offset, 4111 em->block_start + csum_offset + 4112 csum_len - 1, &ordered_sums, 0); 4113 if (ret) 4114 return ret; 4115 4116 while (!list_empty(&ordered_sums)) { 4117 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4118 struct btrfs_ordered_sum, 4119 list); 4120 if (!ret) 4121 ret = log_csums(trans, inode, log_root, sums); 4122 list_del(&sums->list); 4123 kfree(sums); 4124 } 4125 4126 return ret; 4127 } 4128 4129 static int log_one_extent(struct btrfs_trans_handle *trans, 4130 struct btrfs_inode *inode, struct btrfs_root *root, 4131 const struct extent_map *em, 4132 struct btrfs_path *path, 4133 struct btrfs_log_ctx *ctx) 4134 { 4135 struct btrfs_root *log = root->log_root; 4136 struct btrfs_file_extent_item *fi; 4137 struct extent_buffer *leaf; 4138 struct btrfs_map_token token; 4139 struct btrfs_key key; 4140 u64 extent_offset = em->start - em->orig_start; 4141 u64 block_len; 4142 int ret; 4143 int extent_inserted = 0; 4144 4145 ret = log_extent_csums(trans, inode, log, em); 4146 if (ret) 4147 return ret; 4148 4149 ret = __btrfs_drop_extents(trans, log, inode, path, em->start, 4150 em->start + em->len, NULL, 0, 1, 4151 sizeof(*fi), &extent_inserted); 4152 if (ret) 4153 return ret; 4154 4155 if (!extent_inserted) { 4156 key.objectid = btrfs_ino(inode); 4157 key.type = BTRFS_EXTENT_DATA_KEY; 4158 key.offset = em->start; 4159 4160 ret = btrfs_insert_empty_item(trans, log, path, &key, 4161 sizeof(*fi)); 4162 if (ret) 4163 return ret; 4164 } 4165 leaf = path->nodes[0]; 4166 btrfs_init_map_token(&token, leaf); 4167 fi = btrfs_item_ptr(leaf, path->slots[0], 4168 struct btrfs_file_extent_item); 4169 4170 btrfs_set_token_file_extent_generation(&token, fi, trans->transid); 4171 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4172 btrfs_set_token_file_extent_type(&token, fi, 4173 BTRFS_FILE_EXTENT_PREALLOC); 4174 else 4175 btrfs_set_token_file_extent_type(&token, fi, 4176 BTRFS_FILE_EXTENT_REG); 4177 4178 block_len = max(em->block_len, em->orig_block_len); 4179 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4180 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4181 em->block_start); 4182 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4183 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4184 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4185 em->block_start - 4186 extent_offset); 4187 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4188 } else { 4189 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0); 4190 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0); 4191 } 4192 4193 btrfs_set_token_file_extent_offset(&token, fi, extent_offset); 4194 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len); 4195 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes); 4196 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type); 4197 btrfs_set_token_file_extent_encryption(&token, fi, 0); 4198 btrfs_set_token_file_extent_other_encoding(&token, fi, 0); 4199 btrfs_mark_buffer_dirty(leaf); 4200 4201 btrfs_release_path(path); 4202 4203 return ret; 4204 } 4205 4206 /* 4207 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4208 * lose them after doing a fast fsync and replaying the log. We scan the 4209 * subvolume's root instead of iterating the inode's extent map tree because 4210 * otherwise we can log incorrect extent items based on extent map conversion. 4211 * That can happen due to the fact that extent maps are merged when they 4212 * are not in the extent map tree's list of modified extents. 4213 */ 4214 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4215 struct btrfs_inode *inode, 4216 struct btrfs_path *path) 4217 { 4218 struct btrfs_root *root = inode->root; 4219 struct btrfs_key key; 4220 const u64 i_size = i_size_read(&inode->vfs_inode); 4221 const u64 ino = btrfs_ino(inode); 4222 struct btrfs_path *dst_path = NULL; 4223 bool dropped_extents = false; 4224 u64 truncate_offset = i_size; 4225 struct extent_buffer *leaf; 4226 int slot; 4227 int ins_nr = 0; 4228 int start_slot; 4229 int ret; 4230 4231 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4232 return 0; 4233 4234 key.objectid = ino; 4235 key.type = BTRFS_EXTENT_DATA_KEY; 4236 key.offset = i_size; 4237 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4238 if (ret < 0) 4239 goto out; 4240 4241 /* 4242 * We must check if there is a prealloc extent that starts before the 4243 * i_size and crosses the i_size boundary. This is to ensure later we 4244 * truncate down to the end of that extent and not to the i_size, as 4245 * otherwise we end up losing part of the prealloc extent after a log 4246 * replay and with an implicit hole if there is another prealloc extent 4247 * that starts at an offset beyond i_size. 4248 */ 4249 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4250 if (ret < 0) 4251 goto out; 4252 4253 if (ret == 0) { 4254 struct btrfs_file_extent_item *ei; 4255 4256 leaf = path->nodes[0]; 4257 slot = path->slots[0]; 4258 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4259 4260 if (btrfs_file_extent_type(leaf, ei) == 4261 BTRFS_FILE_EXTENT_PREALLOC) { 4262 u64 extent_end; 4263 4264 btrfs_item_key_to_cpu(leaf, &key, slot); 4265 extent_end = key.offset + 4266 btrfs_file_extent_num_bytes(leaf, ei); 4267 4268 if (extent_end > i_size) 4269 truncate_offset = extent_end; 4270 } 4271 } else { 4272 ret = 0; 4273 } 4274 4275 while (true) { 4276 leaf = path->nodes[0]; 4277 slot = path->slots[0]; 4278 4279 if (slot >= btrfs_header_nritems(leaf)) { 4280 if (ins_nr > 0) { 4281 ret = copy_items(trans, inode, dst_path, path, 4282 start_slot, ins_nr, 1, 0); 4283 if (ret < 0) 4284 goto out; 4285 ins_nr = 0; 4286 } 4287 ret = btrfs_next_leaf(root, path); 4288 if (ret < 0) 4289 goto out; 4290 if (ret > 0) { 4291 ret = 0; 4292 break; 4293 } 4294 continue; 4295 } 4296 4297 btrfs_item_key_to_cpu(leaf, &key, slot); 4298 if (key.objectid > ino) 4299 break; 4300 if (WARN_ON_ONCE(key.objectid < ino) || 4301 key.type < BTRFS_EXTENT_DATA_KEY || 4302 key.offset < i_size) { 4303 path->slots[0]++; 4304 continue; 4305 } 4306 if (!dropped_extents) { 4307 /* 4308 * Avoid logging extent items logged in past fsync calls 4309 * and leading to duplicate keys in the log tree. 4310 */ 4311 do { 4312 ret = btrfs_truncate_inode_items(trans, 4313 root->log_root, 4314 &inode->vfs_inode, 4315 truncate_offset, 4316 BTRFS_EXTENT_DATA_KEY); 4317 } while (ret == -EAGAIN); 4318 if (ret) 4319 goto out; 4320 dropped_extents = true; 4321 } 4322 if (ins_nr == 0) 4323 start_slot = slot; 4324 ins_nr++; 4325 path->slots[0]++; 4326 if (!dst_path) { 4327 dst_path = btrfs_alloc_path(); 4328 if (!dst_path) { 4329 ret = -ENOMEM; 4330 goto out; 4331 } 4332 } 4333 } 4334 if (ins_nr > 0) 4335 ret = copy_items(trans, inode, dst_path, path, 4336 start_slot, ins_nr, 1, 0); 4337 out: 4338 btrfs_release_path(path); 4339 btrfs_free_path(dst_path); 4340 return ret; 4341 } 4342 4343 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4344 struct btrfs_root *root, 4345 struct btrfs_inode *inode, 4346 struct btrfs_path *path, 4347 struct btrfs_log_ctx *ctx, 4348 const u64 start, 4349 const u64 end) 4350 { 4351 struct extent_map *em, *n; 4352 struct list_head extents; 4353 struct extent_map_tree *tree = &inode->extent_tree; 4354 u64 test_gen; 4355 int ret = 0; 4356 int num = 0; 4357 4358 INIT_LIST_HEAD(&extents); 4359 4360 write_lock(&tree->lock); 4361 test_gen = root->fs_info->last_trans_committed; 4362 4363 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4364 /* 4365 * Skip extents outside our logging range. It's important to do 4366 * it for correctness because if we don't ignore them, we may 4367 * log them before their ordered extent completes, and therefore 4368 * we could log them without logging their respective checksums 4369 * (the checksum items are added to the csum tree at the very 4370 * end of btrfs_finish_ordered_io()). Also leave such extents 4371 * outside of our range in the list, since we may have another 4372 * ranged fsync in the near future that needs them. If an extent 4373 * outside our range corresponds to a hole, log it to avoid 4374 * leaving gaps between extents (fsck will complain when we are 4375 * not using the NO_HOLES feature). 4376 */ 4377 if ((em->start > end || em->start + em->len <= start) && 4378 em->block_start != EXTENT_MAP_HOLE) 4379 continue; 4380 4381 list_del_init(&em->list); 4382 /* 4383 * Just an arbitrary number, this can be really CPU intensive 4384 * once we start getting a lot of extents, and really once we 4385 * have a bunch of extents we just want to commit since it will 4386 * be faster. 4387 */ 4388 if (++num > 32768) { 4389 list_del_init(&tree->modified_extents); 4390 ret = -EFBIG; 4391 goto process; 4392 } 4393 4394 if (em->generation <= test_gen) 4395 continue; 4396 4397 /* We log prealloc extents beyond eof later. */ 4398 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4399 em->start >= i_size_read(&inode->vfs_inode)) 4400 continue; 4401 4402 /* Need a ref to keep it from getting evicted from cache */ 4403 refcount_inc(&em->refs); 4404 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4405 list_add_tail(&em->list, &extents); 4406 num++; 4407 } 4408 4409 list_sort(NULL, &extents, extent_cmp); 4410 process: 4411 while (!list_empty(&extents)) { 4412 em = list_entry(extents.next, struct extent_map, list); 4413 4414 list_del_init(&em->list); 4415 4416 /* 4417 * If we had an error we just need to delete everybody from our 4418 * private list. 4419 */ 4420 if (ret) { 4421 clear_em_logging(tree, em); 4422 free_extent_map(em); 4423 continue; 4424 } 4425 4426 write_unlock(&tree->lock); 4427 4428 ret = log_one_extent(trans, inode, root, em, path, ctx); 4429 write_lock(&tree->lock); 4430 clear_em_logging(tree, em); 4431 free_extent_map(em); 4432 } 4433 WARN_ON(!list_empty(&extents)); 4434 write_unlock(&tree->lock); 4435 4436 btrfs_release_path(path); 4437 if (!ret) 4438 ret = btrfs_log_prealloc_extents(trans, inode, path); 4439 4440 return ret; 4441 } 4442 4443 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4444 struct btrfs_path *path, u64 *size_ret) 4445 { 4446 struct btrfs_key key; 4447 int ret; 4448 4449 key.objectid = btrfs_ino(inode); 4450 key.type = BTRFS_INODE_ITEM_KEY; 4451 key.offset = 0; 4452 4453 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4454 if (ret < 0) { 4455 return ret; 4456 } else if (ret > 0) { 4457 *size_ret = 0; 4458 } else { 4459 struct btrfs_inode_item *item; 4460 4461 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4462 struct btrfs_inode_item); 4463 *size_ret = btrfs_inode_size(path->nodes[0], item); 4464 /* 4465 * If the in-memory inode's i_size is smaller then the inode 4466 * size stored in the btree, return the inode's i_size, so 4467 * that we get a correct inode size after replaying the log 4468 * when before a power failure we had a shrinking truncate 4469 * followed by addition of a new name (rename / new hard link). 4470 * Otherwise return the inode size from the btree, to avoid 4471 * data loss when replaying a log due to previously doing a 4472 * write that expands the inode's size and logging a new name 4473 * immediately after. 4474 */ 4475 if (*size_ret > inode->vfs_inode.i_size) 4476 *size_ret = inode->vfs_inode.i_size; 4477 } 4478 4479 btrfs_release_path(path); 4480 return 0; 4481 } 4482 4483 /* 4484 * At the moment we always log all xattrs. This is to figure out at log replay 4485 * time which xattrs must have their deletion replayed. If a xattr is missing 4486 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4487 * because if a xattr is deleted, the inode is fsynced and a power failure 4488 * happens, causing the log to be replayed the next time the fs is mounted, 4489 * we want the xattr to not exist anymore (same behaviour as other filesystems 4490 * with a journal, ext3/4, xfs, f2fs, etc). 4491 */ 4492 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4493 struct btrfs_root *root, 4494 struct btrfs_inode *inode, 4495 struct btrfs_path *path, 4496 struct btrfs_path *dst_path) 4497 { 4498 int ret; 4499 struct btrfs_key key; 4500 const u64 ino = btrfs_ino(inode); 4501 int ins_nr = 0; 4502 int start_slot = 0; 4503 4504 key.objectid = ino; 4505 key.type = BTRFS_XATTR_ITEM_KEY; 4506 key.offset = 0; 4507 4508 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4509 if (ret < 0) 4510 return ret; 4511 4512 while (true) { 4513 int slot = path->slots[0]; 4514 struct extent_buffer *leaf = path->nodes[0]; 4515 int nritems = btrfs_header_nritems(leaf); 4516 4517 if (slot >= nritems) { 4518 if (ins_nr > 0) { 4519 ret = copy_items(trans, inode, dst_path, path, 4520 start_slot, ins_nr, 1, 0); 4521 if (ret < 0) 4522 return ret; 4523 ins_nr = 0; 4524 } 4525 ret = btrfs_next_leaf(root, path); 4526 if (ret < 0) 4527 return ret; 4528 else if (ret > 0) 4529 break; 4530 continue; 4531 } 4532 4533 btrfs_item_key_to_cpu(leaf, &key, slot); 4534 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4535 break; 4536 4537 if (ins_nr == 0) 4538 start_slot = slot; 4539 ins_nr++; 4540 path->slots[0]++; 4541 cond_resched(); 4542 } 4543 if (ins_nr > 0) { 4544 ret = copy_items(trans, inode, dst_path, path, 4545 start_slot, ins_nr, 1, 0); 4546 if (ret < 0) 4547 return ret; 4548 } 4549 4550 return 0; 4551 } 4552 4553 /* 4554 * When using the NO_HOLES feature if we punched a hole that causes the 4555 * deletion of entire leafs or all the extent items of the first leaf (the one 4556 * that contains the inode item and references) we may end up not processing 4557 * any extents, because there are no leafs with a generation matching the 4558 * current transaction that have extent items for our inode. So we need to find 4559 * if any holes exist and then log them. We also need to log holes after any 4560 * truncate operation that changes the inode's size. 4561 */ 4562 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 4563 struct btrfs_root *root, 4564 struct btrfs_inode *inode, 4565 struct btrfs_path *path) 4566 { 4567 struct btrfs_fs_info *fs_info = root->fs_info; 4568 struct btrfs_key key; 4569 const u64 ino = btrfs_ino(inode); 4570 const u64 i_size = i_size_read(&inode->vfs_inode); 4571 u64 prev_extent_end = 0; 4572 int ret; 4573 4574 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 4575 return 0; 4576 4577 key.objectid = ino; 4578 key.type = BTRFS_EXTENT_DATA_KEY; 4579 key.offset = 0; 4580 4581 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4582 if (ret < 0) 4583 return ret; 4584 4585 while (true) { 4586 struct extent_buffer *leaf = path->nodes[0]; 4587 4588 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 4589 ret = btrfs_next_leaf(root, path); 4590 if (ret < 0) 4591 return ret; 4592 if (ret > 0) { 4593 ret = 0; 4594 break; 4595 } 4596 leaf = path->nodes[0]; 4597 } 4598 4599 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4600 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 4601 break; 4602 4603 /* We have a hole, log it. */ 4604 if (prev_extent_end < key.offset) { 4605 const u64 hole_len = key.offset - prev_extent_end; 4606 4607 /* 4608 * Release the path to avoid deadlocks with other code 4609 * paths that search the root while holding locks on 4610 * leafs from the log root. 4611 */ 4612 btrfs_release_path(path); 4613 ret = btrfs_insert_file_extent(trans, root->log_root, 4614 ino, prev_extent_end, 0, 4615 0, hole_len, 0, hole_len, 4616 0, 0, 0); 4617 if (ret < 0) 4618 return ret; 4619 4620 /* 4621 * Search for the same key again in the root. Since it's 4622 * an extent item and we are holding the inode lock, the 4623 * key must still exist. If it doesn't just emit warning 4624 * and return an error to fall back to a transaction 4625 * commit. 4626 */ 4627 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4628 if (ret < 0) 4629 return ret; 4630 if (WARN_ON(ret > 0)) 4631 return -ENOENT; 4632 leaf = path->nodes[0]; 4633 } 4634 4635 prev_extent_end = btrfs_file_extent_end(path); 4636 path->slots[0]++; 4637 cond_resched(); 4638 } 4639 4640 if (prev_extent_end < i_size) { 4641 u64 hole_len; 4642 4643 btrfs_release_path(path); 4644 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 4645 ret = btrfs_insert_file_extent(trans, root->log_root, 4646 ino, prev_extent_end, 0, 0, 4647 hole_len, 0, hole_len, 4648 0, 0, 0); 4649 if (ret < 0) 4650 return ret; 4651 } 4652 4653 return 0; 4654 } 4655 4656 /* 4657 * When we are logging a new inode X, check if it doesn't have a reference that 4658 * matches the reference from some other inode Y created in a past transaction 4659 * and that was renamed in the current transaction. If we don't do this, then at 4660 * log replay time we can lose inode Y (and all its files if it's a directory): 4661 * 4662 * mkdir /mnt/x 4663 * echo "hello world" > /mnt/x/foobar 4664 * sync 4665 * mv /mnt/x /mnt/y 4666 * mkdir /mnt/x # or touch /mnt/x 4667 * xfs_io -c fsync /mnt/x 4668 * <power fail> 4669 * mount fs, trigger log replay 4670 * 4671 * After the log replay procedure, we would lose the first directory and all its 4672 * files (file foobar). 4673 * For the case where inode Y is not a directory we simply end up losing it: 4674 * 4675 * echo "123" > /mnt/foo 4676 * sync 4677 * mv /mnt/foo /mnt/bar 4678 * echo "abc" > /mnt/foo 4679 * xfs_io -c fsync /mnt/foo 4680 * <power fail> 4681 * 4682 * We also need this for cases where a snapshot entry is replaced by some other 4683 * entry (file or directory) otherwise we end up with an unreplayable log due to 4684 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4685 * if it were a regular entry: 4686 * 4687 * mkdir /mnt/x 4688 * btrfs subvolume snapshot /mnt /mnt/x/snap 4689 * btrfs subvolume delete /mnt/x/snap 4690 * rmdir /mnt/x 4691 * mkdir /mnt/x 4692 * fsync /mnt/x or fsync some new file inside it 4693 * <power fail> 4694 * 4695 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4696 * the same transaction. 4697 */ 4698 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4699 const int slot, 4700 const struct btrfs_key *key, 4701 struct btrfs_inode *inode, 4702 u64 *other_ino, u64 *other_parent) 4703 { 4704 int ret; 4705 struct btrfs_path *search_path; 4706 char *name = NULL; 4707 u32 name_len = 0; 4708 u32 item_size = btrfs_item_size_nr(eb, slot); 4709 u32 cur_offset = 0; 4710 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4711 4712 search_path = btrfs_alloc_path(); 4713 if (!search_path) 4714 return -ENOMEM; 4715 search_path->search_commit_root = 1; 4716 search_path->skip_locking = 1; 4717 4718 while (cur_offset < item_size) { 4719 u64 parent; 4720 u32 this_name_len; 4721 u32 this_len; 4722 unsigned long name_ptr; 4723 struct btrfs_dir_item *di; 4724 4725 if (key->type == BTRFS_INODE_REF_KEY) { 4726 struct btrfs_inode_ref *iref; 4727 4728 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4729 parent = key->offset; 4730 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4731 name_ptr = (unsigned long)(iref + 1); 4732 this_len = sizeof(*iref) + this_name_len; 4733 } else { 4734 struct btrfs_inode_extref *extref; 4735 4736 extref = (struct btrfs_inode_extref *)(ptr + 4737 cur_offset); 4738 parent = btrfs_inode_extref_parent(eb, extref); 4739 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4740 name_ptr = (unsigned long)&extref->name; 4741 this_len = sizeof(*extref) + this_name_len; 4742 } 4743 4744 if (this_name_len > name_len) { 4745 char *new_name; 4746 4747 new_name = krealloc(name, this_name_len, GFP_NOFS); 4748 if (!new_name) { 4749 ret = -ENOMEM; 4750 goto out; 4751 } 4752 name_len = this_name_len; 4753 name = new_name; 4754 } 4755 4756 read_extent_buffer(eb, name, name_ptr, this_name_len); 4757 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 4758 parent, name, this_name_len, 0); 4759 if (di && !IS_ERR(di)) { 4760 struct btrfs_key di_key; 4761 4762 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4763 di, &di_key); 4764 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4765 if (di_key.objectid != key->objectid) { 4766 ret = 1; 4767 *other_ino = di_key.objectid; 4768 *other_parent = parent; 4769 } else { 4770 ret = 0; 4771 } 4772 } else { 4773 ret = -EAGAIN; 4774 } 4775 goto out; 4776 } else if (IS_ERR(di)) { 4777 ret = PTR_ERR(di); 4778 goto out; 4779 } 4780 btrfs_release_path(search_path); 4781 4782 cur_offset += this_len; 4783 } 4784 ret = 0; 4785 out: 4786 btrfs_free_path(search_path); 4787 kfree(name); 4788 return ret; 4789 } 4790 4791 struct btrfs_ino_list { 4792 u64 ino; 4793 u64 parent; 4794 struct list_head list; 4795 }; 4796 4797 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 4798 struct btrfs_root *root, 4799 struct btrfs_path *path, 4800 struct btrfs_log_ctx *ctx, 4801 u64 ino, u64 parent) 4802 { 4803 struct btrfs_ino_list *ino_elem; 4804 LIST_HEAD(inode_list); 4805 int ret = 0; 4806 4807 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4808 if (!ino_elem) 4809 return -ENOMEM; 4810 ino_elem->ino = ino; 4811 ino_elem->parent = parent; 4812 list_add_tail(&ino_elem->list, &inode_list); 4813 4814 while (!list_empty(&inode_list)) { 4815 struct btrfs_fs_info *fs_info = root->fs_info; 4816 struct btrfs_key key; 4817 struct inode *inode; 4818 4819 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 4820 list); 4821 ino = ino_elem->ino; 4822 parent = ino_elem->parent; 4823 list_del(&ino_elem->list); 4824 kfree(ino_elem); 4825 if (ret) 4826 continue; 4827 4828 btrfs_release_path(path); 4829 4830 inode = btrfs_iget(fs_info->sb, ino, root); 4831 /* 4832 * If the other inode that had a conflicting dir entry was 4833 * deleted in the current transaction, we need to log its parent 4834 * directory. 4835 */ 4836 if (IS_ERR(inode)) { 4837 ret = PTR_ERR(inode); 4838 if (ret == -ENOENT) { 4839 inode = btrfs_iget(fs_info->sb, parent, root); 4840 if (IS_ERR(inode)) { 4841 ret = PTR_ERR(inode); 4842 } else { 4843 ret = btrfs_log_inode(trans, root, 4844 BTRFS_I(inode), 4845 LOG_OTHER_INODE_ALL, 4846 0, LLONG_MAX, ctx); 4847 btrfs_add_delayed_iput(inode); 4848 } 4849 } 4850 continue; 4851 } 4852 /* 4853 * If the inode was already logged skip it - otherwise we can 4854 * hit an infinite loop. Example: 4855 * 4856 * From the commit root (previous transaction) we have the 4857 * following inodes: 4858 * 4859 * inode 257 a directory 4860 * inode 258 with references "zz" and "zz_link" on inode 257 4861 * inode 259 with reference "a" on inode 257 4862 * 4863 * And in the current (uncommitted) transaction we have: 4864 * 4865 * inode 257 a directory, unchanged 4866 * inode 258 with references "a" and "a2" on inode 257 4867 * inode 259 with reference "zz_link" on inode 257 4868 * inode 261 with reference "zz" on inode 257 4869 * 4870 * When logging inode 261 the following infinite loop could 4871 * happen if we don't skip already logged inodes: 4872 * 4873 * - we detect inode 258 as a conflicting inode, with inode 261 4874 * on reference "zz", and log it; 4875 * 4876 * - we detect inode 259 as a conflicting inode, with inode 258 4877 * on reference "a", and log it; 4878 * 4879 * - we detect inode 258 as a conflicting inode, with inode 259 4880 * on reference "zz_link", and log it - again! After this we 4881 * repeat the above steps forever. 4882 */ 4883 spin_lock(&BTRFS_I(inode)->lock); 4884 /* 4885 * Check the inode's logged_trans only instead of 4886 * btrfs_inode_in_log(). This is because the last_log_commit of 4887 * the inode is not updated when we only log that it exists and 4888 * and it has the full sync bit set (see btrfs_log_inode()). 4889 */ 4890 if (BTRFS_I(inode)->logged_trans == trans->transid) { 4891 spin_unlock(&BTRFS_I(inode)->lock); 4892 btrfs_add_delayed_iput(inode); 4893 continue; 4894 } 4895 spin_unlock(&BTRFS_I(inode)->lock); 4896 /* 4897 * We are safe logging the other inode without acquiring its 4898 * lock as long as we log with the LOG_INODE_EXISTS mode. We 4899 * are safe against concurrent renames of the other inode as 4900 * well because during a rename we pin the log and update the 4901 * log with the new name before we unpin it. 4902 */ 4903 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 4904 LOG_OTHER_INODE, 0, LLONG_MAX, ctx); 4905 if (ret) { 4906 btrfs_add_delayed_iput(inode); 4907 continue; 4908 } 4909 4910 key.objectid = ino; 4911 key.type = BTRFS_INODE_REF_KEY; 4912 key.offset = 0; 4913 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4914 if (ret < 0) { 4915 btrfs_add_delayed_iput(inode); 4916 continue; 4917 } 4918 4919 while (true) { 4920 struct extent_buffer *leaf = path->nodes[0]; 4921 int slot = path->slots[0]; 4922 u64 other_ino = 0; 4923 u64 other_parent = 0; 4924 4925 if (slot >= btrfs_header_nritems(leaf)) { 4926 ret = btrfs_next_leaf(root, path); 4927 if (ret < 0) { 4928 break; 4929 } else if (ret > 0) { 4930 ret = 0; 4931 break; 4932 } 4933 continue; 4934 } 4935 4936 btrfs_item_key_to_cpu(leaf, &key, slot); 4937 if (key.objectid != ino || 4938 (key.type != BTRFS_INODE_REF_KEY && 4939 key.type != BTRFS_INODE_EXTREF_KEY)) { 4940 ret = 0; 4941 break; 4942 } 4943 4944 ret = btrfs_check_ref_name_override(leaf, slot, &key, 4945 BTRFS_I(inode), &other_ino, 4946 &other_parent); 4947 if (ret < 0) 4948 break; 4949 if (ret > 0) { 4950 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4951 if (!ino_elem) { 4952 ret = -ENOMEM; 4953 break; 4954 } 4955 ino_elem->ino = other_ino; 4956 ino_elem->parent = other_parent; 4957 list_add_tail(&ino_elem->list, &inode_list); 4958 ret = 0; 4959 } 4960 path->slots[0]++; 4961 } 4962 btrfs_add_delayed_iput(inode); 4963 } 4964 4965 return ret; 4966 } 4967 4968 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 4969 struct btrfs_inode *inode, 4970 struct btrfs_key *min_key, 4971 const struct btrfs_key *max_key, 4972 struct btrfs_path *path, 4973 struct btrfs_path *dst_path, 4974 const u64 logged_isize, 4975 const bool recursive_logging, 4976 const int inode_only, 4977 struct btrfs_log_ctx *ctx, 4978 bool *need_log_inode_item) 4979 { 4980 struct btrfs_root *root = inode->root; 4981 int ins_start_slot = 0; 4982 int ins_nr = 0; 4983 int ret; 4984 4985 while (1) { 4986 ret = btrfs_search_forward(root, min_key, path, trans->transid); 4987 if (ret < 0) 4988 return ret; 4989 if (ret > 0) { 4990 ret = 0; 4991 break; 4992 } 4993 again: 4994 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 4995 if (min_key->objectid != max_key->objectid) 4996 break; 4997 if (min_key->type > max_key->type) 4998 break; 4999 5000 if (min_key->type == BTRFS_INODE_ITEM_KEY) 5001 *need_log_inode_item = false; 5002 5003 if ((min_key->type == BTRFS_INODE_REF_KEY || 5004 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5005 inode->generation == trans->transid && 5006 !recursive_logging) { 5007 u64 other_ino = 0; 5008 u64 other_parent = 0; 5009 5010 ret = btrfs_check_ref_name_override(path->nodes[0], 5011 path->slots[0], min_key, inode, 5012 &other_ino, &other_parent); 5013 if (ret < 0) { 5014 return ret; 5015 } else if (ret > 0 && ctx && 5016 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5017 if (ins_nr > 0) { 5018 ins_nr++; 5019 } else { 5020 ins_nr = 1; 5021 ins_start_slot = path->slots[0]; 5022 } 5023 ret = copy_items(trans, inode, dst_path, path, 5024 ins_start_slot, ins_nr, 5025 inode_only, logged_isize); 5026 if (ret < 0) 5027 return ret; 5028 ins_nr = 0; 5029 5030 ret = log_conflicting_inodes(trans, root, path, 5031 ctx, other_ino, other_parent); 5032 if (ret) 5033 return ret; 5034 btrfs_release_path(path); 5035 goto next_key; 5036 } 5037 } 5038 5039 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5040 if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5041 if (ins_nr == 0) 5042 goto next_slot; 5043 ret = copy_items(trans, inode, dst_path, path, 5044 ins_start_slot, 5045 ins_nr, inode_only, logged_isize); 5046 if (ret < 0) 5047 return ret; 5048 ins_nr = 0; 5049 goto next_slot; 5050 } 5051 5052 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5053 ins_nr++; 5054 goto next_slot; 5055 } else if (!ins_nr) { 5056 ins_start_slot = path->slots[0]; 5057 ins_nr = 1; 5058 goto next_slot; 5059 } 5060 5061 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5062 ins_nr, inode_only, logged_isize); 5063 if (ret < 0) 5064 return ret; 5065 ins_nr = 1; 5066 ins_start_slot = path->slots[0]; 5067 next_slot: 5068 path->slots[0]++; 5069 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 5070 btrfs_item_key_to_cpu(path->nodes[0], min_key, 5071 path->slots[0]); 5072 goto again; 5073 } 5074 if (ins_nr) { 5075 ret = copy_items(trans, inode, dst_path, path, 5076 ins_start_slot, ins_nr, inode_only, 5077 logged_isize); 5078 if (ret < 0) 5079 return ret; 5080 ins_nr = 0; 5081 } 5082 btrfs_release_path(path); 5083 next_key: 5084 if (min_key->offset < (u64)-1) { 5085 min_key->offset++; 5086 } else if (min_key->type < max_key->type) { 5087 min_key->type++; 5088 min_key->offset = 0; 5089 } else { 5090 break; 5091 } 5092 } 5093 if (ins_nr) 5094 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5095 ins_nr, inode_only, logged_isize); 5096 5097 return ret; 5098 } 5099 5100 /* log a single inode in the tree log. 5101 * At least one parent directory for this inode must exist in the tree 5102 * or be logged already. 5103 * 5104 * Any items from this inode changed by the current transaction are copied 5105 * to the log tree. An extra reference is taken on any extents in this 5106 * file, allowing us to avoid a whole pile of corner cases around logging 5107 * blocks that have been removed from the tree. 5108 * 5109 * See LOG_INODE_ALL and related defines for a description of what inode_only 5110 * does. 5111 * 5112 * This handles both files and directories. 5113 */ 5114 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5115 struct btrfs_root *root, struct btrfs_inode *inode, 5116 int inode_only, 5117 const loff_t start, 5118 const loff_t end, 5119 struct btrfs_log_ctx *ctx) 5120 { 5121 struct btrfs_path *path; 5122 struct btrfs_path *dst_path; 5123 struct btrfs_key min_key; 5124 struct btrfs_key max_key; 5125 struct btrfs_root *log = root->log_root; 5126 int err = 0; 5127 int ret = 0; 5128 bool fast_search = false; 5129 u64 ino = btrfs_ino(inode); 5130 struct extent_map_tree *em_tree = &inode->extent_tree; 5131 u64 logged_isize = 0; 5132 bool need_log_inode_item = true; 5133 bool xattrs_logged = false; 5134 bool recursive_logging = false; 5135 5136 path = btrfs_alloc_path(); 5137 if (!path) 5138 return -ENOMEM; 5139 dst_path = btrfs_alloc_path(); 5140 if (!dst_path) { 5141 btrfs_free_path(path); 5142 return -ENOMEM; 5143 } 5144 5145 min_key.objectid = ino; 5146 min_key.type = BTRFS_INODE_ITEM_KEY; 5147 min_key.offset = 0; 5148 5149 max_key.objectid = ino; 5150 5151 5152 /* today the code can only do partial logging of directories */ 5153 if (S_ISDIR(inode->vfs_inode.i_mode) || 5154 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5155 &inode->runtime_flags) && 5156 inode_only >= LOG_INODE_EXISTS)) 5157 max_key.type = BTRFS_XATTR_ITEM_KEY; 5158 else 5159 max_key.type = (u8)-1; 5160 max_key.offset = (u64)-1; 5161 5162 /* 5163 * Only run delayed items if we are a directory. We want to make sure 5164 * all directory indexes hit the fs/subvolume tree so we can find them 5165 * and figure out which index ranges have to be logged. 5166 * 5167 * Otherwise commit the delayed inode only if the full sync flag is set, 5168 * as we want to make sure an up to date version is in the subvolume 5169 * tree so copy_inode_items_to_log() / copy_items() can find it and copy 5170 * it to the log tree. For a non full sync, we always log the inode item 5171 * based on the in-memory struct btrfs_inode which is always up to date. 5172 */ 5173 if (S_ISDIR(inode->vfs_inode.i_mode)) 5174 ret = btrfs_commit_inode_delayed_items(trans, inode); 5175 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) 5176 ret = btrfs_commit_inode_delayed_inode(inode); 5177 5178 if (ret) { 5179 btrfs_free_path(path); 5180 btrfs_free_path(dst_path); 5181 return ret; 5182 } 5183 5184 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5185 recursive_logging = true; 5186 if (inode_only == LOG_OTHER_INODE) 5187 inode_only = LOG_INODE_EXISTS; 5188 else 5189 inode_only = LOG_INODE_ALL; 5190 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5191 } else { 5192 mutex_lock(&inode->log_mutex); 5193 } 5194 5195 /* 5196 * a brute force approach to making sure we get the most uptodate 5197 * copies of everything. 5198 */ 5199 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5200 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5201 5202 if (inode_only == LOG_INODE_EXISTS) 5203 max_key_type = BTRFS_XATTR_ITEM_KEY; 5204 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 5205 } else { 5206 if (inode_only == LOG_INODE_EXISTS) { 5207 /* 5208 * Make sure the new inode item we write to the log has 5209 * the same isize as the current one (if it exists). 5210 * This is necessary to prevent data loss after log 5211 * replay, and also to prevent doing a wrong expanding 5212 * truncate - for e.g. create file, write 4K into offset 5213 * 0, fsync, write 4K into offset 4096, add hard link, 5214 * fsync some other file (to sync log), power fail - if 5215 * we use the inode's current i_size, after log replay 5216 * we get a 8Kb file, with the last 4Kb extent as a hole 5217 * (zeroes), as if an expanding truncate happened, 5218 * instead of getting a file of 4Kb only. 5219 */ 5220 err = logged_inode_size(log, inode, path, &logged_isize); 5221 if (err) 5222 goto out_unlock; 5223 } 5224 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5225 &inode->runtime_flags)) { 5226 if (inode_only == LOG_INODE_EXISTS) { 5227 max_key.type = BTRFS_XATTR_ITEM_KEY; 5228 ret = drop_objectid_items(trans, log, path, ino, 5229 max_key.type); 5230 } else { 5231 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5232 &inode->runtime_flags); 5233 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5234 &inode->runtime_flags); 5235 while(1) { 5236 ret = btrfs_truncate_inode_items(trans, 5237 log, &inode->vfs_inode, 0, 0); 5238 if (ret != -EAGAIN) 5239 break; 5240 } 5241 } 5242 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5243 &inode->runtime_flags) || 5244 inode_only == LOG_INODE_EXISTS) { 5245 if (inode_only == LOG_INODE_ALL) 5246 fast_search = true; 5247 max_key.type = BTRFS_XATTR_ITEM_KEY; 5248 ret = drop_objectid_items(trans, log, path, ino, 5249 max_key.type); 5250 } else { 5251 if (inode_only == LOG_INODE_ALL) 5252 fast_search = true; 5253 goto log_extents; 5254 } 5255 5256 } 5257 if (ret) { 5258 err = ret; 5259 goto out_unlock; 5260 } 5261 5262 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 5263 path, dst_path, logged_isize, 5264 recursive_logging, inode_only, ctx, 5265 &need_log_inode_item); 5266 if (err) 5267 goto out_unlock; 5268 5269 btrfs_release_path(path); 5270 btrfs_release_path(dst_path); 5271 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 5272 if (err) 5273 goto out_unlock; 5274 xattrs_logged = true; 5275 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5276 btrfs_release_path(path); 5277 btrfs_release_path(dst_path); 5278 err = btrfs_log_holes(trans, root, inode, path); 5279 if (err) 5280 goto out_unlock; 5281 } 5282 log_extents: 5283 btrfs_release_path(path); 5284 btrfs_release_path(dst_path); 5285 if (need_log_inode_item) { 5286 err = log_inode_item(trans, log, dst_path, inode); 5287 if (!err && !xattrs_logged) { 5288 err = btrfs_log_all_xattrs(trans, root, inode, path, 5289 dst_path); 5290 btrfs_release_path(path); 5291 } 5292 if (err) 5293 goto out_unlock; 5294 } 5295 if (fast_search) { 5296 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 5297 ctx, start, end); 5298 if (ret) { 5299 err = ret; 5300 goto out_unlock; 5301 } 5302 } else if (inode_only == LOG_INODE_ALL) { 5303 struct extent_map *em, *n; 5304 5305 write_lock(&em_tree->lock); 5306 /* 5307 * We can't just remove every em if we're called for a ranged 5308 * fsync - that is, one that doesn't cover the whole possible 5309 * file range (0 to LLONG_MAX). This is because we can have 5310 * em's that fall outside the range we're logging and therefore 5311 * their ordered operations haven't completed yet 5312 * (btrfs_finish_ordered_io() not invoked yet). This means we 5313 * didn't get their respective file extent item in the fs/subvol 5314 * tree yet, and need to let the next fast fsync (one which 5315 * consults the list of modified extent maps) find the em so 5316 * that it logs a matching file extent item and waits for the 5317 * respective ordered operation to complete (if it's still 5318 * running). 5319 * 5320 * Removing every em outside the range we're logging would make 5321 * the next fast fsync not log their matching file extent items, 5322 * therefore making us lose data after a log replay. 5323 */ 5324 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 5325 list) { 5326 const u64 mod_end = em->mod_start + em->mod_len - 1; 5327 5328 if (em->mod_start >= start && mod_end <= end) 5329 list_del_init(&em->list); 5330 } 5331 write_unlock(&em_tree->lock); 5332 } 5333 5334 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5335 ret = log_directory_changes(trans, root, inode, path, dst_path, 5336 ctx); 5337 if (ret) { 5338 err = ret; 5339 goto out_unlock; 5340 } 5341 } 5342 5343 /* 5344 * Don't update last_log_commit if we logged that an inode exists after 5345 * it was loaded to memory (full_sync bit set). 5346 * This is to prevent data loss when we do a write to the inode, then 5347 * the inode gets evicted after all delalloc was flushed, then we log 5348 * it exists (due to a rename for example) and then fsync it. This last 5349 * fsync would do nothing (not logging the extents previously written). 5350 */ 5351 spin_lock(&inode->lock); 5352 inode->logged_trans = trans->transid; 5353 if (inode_only != LOG_INODE_EXISTS || 5354 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) 5355 inode->last_log_commit = inode->last_sub_trans; 5356 spin_unlock(&inode->lock); 5357 out_unlock: 5358 mutex_unlock(&inode->log_mutex); 5359 5360 btrfs_free_path(path); 5361 btrfs_free_path(dst_path); 5362 return err; 5363 } 5364 5365 /* 5366 * Check if we must fallback to a transaction commit when logging an inode. 5367 * This must be called after logging the inode and is used only in the context 5368 * when fsyncing an inode requires the need to log some other inode - in which 5369 * case we can't lock the i_mutex of each other inode we need to log as that 5370 * can lead to deadlocks with concurrent fsync against other inodes (as we can 5371 * log inodes up or down in the hierarchy) or rename operations for example. So 5372 * we take the log_mutex of the inode after we have logged it and then check for 5373 * its last_unlink_trans value - this is safe because any task setting 5374 * last_unlink_trans must take the log_mutex and it must do this before it does 5375 * the actual unlink operation, so if we do this check before a concurrent task 5376 * sets last_unlink_trans it means we've logged a consistent version/state of 5377 * all the inode items, otherwise we are not sure and must do a transaction 5378 * commit (the concurrent task might have only updated last_unlink_trans before 5379 * we logged the inode or it might have also done the unlink). 5380 */ 5381 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, 5382 struct btrfs_inode *inode) 5383 { 5384 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5385 bool ret = false; 5386 5387 mutex_lock(&inode->log_mutex); 5388 if (inode->last_unlink_trans > fs_info->last_trans_committed) { 5389 /* 5390 * Make sure any commits to the log are forced to be full 5391 * commits. 5392 */ 5393 btrfs_set_log_full_commit(trans); 5394 ret = true; 5395 } 5396 mutex_unlock(&inode->log_mutex); 5397 5398 return ret; 5399 } 5400 5401 /* 5402 * follow the dentry parent pointers up the chain and see if any 5403 * of the directories in it require a full commit before they can 5404 * be logged. Returns zero if nothing special needs to be done or 1 if 5405 * a full commit is required. 5406 */ 5407 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 5408 struct btrfs_inode *inode, 5409 struct dentry *parent, 5410 struct super_block *sb, 5411 u64 last_committed) 5412 { 5413 int ret = 0; 5414 struct dentry *old_parent = NULL; 5415 5416 /* 5417 * for regular files, if its inode is already on disk, we don't 5418 * have to worry about the parents at all. This is because 5419 * we can use the last_unlink_trans field to record renames 5420 * and other fun in this file. 5421 */ 5422 if (S_ISREG(inode->vfs_inode.i_mode) && 5423 inode->generation <= last_committed && 5424 inode->last_unlink_trans <= last_committed) 5425 goto out; 5426 5427 if (!S_ISDIR(inode->vfs_inode.i_mode)) { 5428 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5429 goto out; 5430 inode = BTRFS_I(d_inode(parent)); 5431 } 5432 5433 while (1) { 5434 if (btrfs_must_commit_transaction(trans, inode)) { 5435 ret = 1; 5436 break; 5437 } 5438 5439 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5440 break; 5441 5442 if (IS_ROOT(parent)) { 5443 inode = BTRFS_I(d_inode(parent)); 5444 if (btrfs_must_commit_transaction(trans, inode)) 5445 ret = 1; 5446 break; 5447 } 5448 5449 parent = dget_parent(parent); 5450 dput(old_parent); 5451 old_parent = parent; 5452 inode = BTRFS_I(d_inode(parent)); 5453 5454 } 5455 dput(old_parent); 5456 out: 5457 return ret; 5458 } 5459 5460 struct btrfs_dir_list { 5461 u64 ino; 5462 struct list_head list; 5463 }; 5464 5465 /* 5466 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5467 * details about the why it is needed. 5468 * This is a recursive operation - if an existing dentry corresponds to a 5469 * directory, that directory's new entries are logged too (same behaviour as 5470 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5471 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5472 * complains about the following circular lock dependency / possible deadlock: 5473 * 5474 * CPU0 CPU1 5475 * ---- ---- 5476 * lock(&type->i_mutex_dir_key#3/2); 5477 * lock(sb_internal#2); 5478 * lock(&type->i_mutex_dir_key#3/2); 5479 * lock(&sb->s_type->i_mutex_key#14); 5480 * 5481 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5482 * sb_start_intwrite() in btrfs_start_transaction(). 5483 * Not locking i_mutex of the inodes is still safe because: 5484 * 5485 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5486 * that while logging the inode new references (names) are added or removed 5487 * from the inode, leaving the logged inode item with a link count that does 5488 * not match the number of logged inode reference items. This is fine because 5489 * at log replay time we compute the real number of links and correct the 5490 * link count in the inode item (see replay_one_buffer() and 5491 * link_to_fixup_dir()); 5492 * 5493 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5494 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5495 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5496 * has a size that doesn't match the sum of the lengths of all the logged 5497 * names. This does not result in a problem because if a dir_item key is 5498 * logged but its matching dir_index key is not logged, at log replay time we 5499 * don't use it to replay the respective name (see replay_one_name()). On the 5500 * other hand if only the dir_index key ends up being logged, the respective 5501 * name is added to the fs/subvol tree with both the dir_item and dir_index 5502 * keys created (see replay_one_name()). 5503 * The directory's inode item with a wrong i_size is not a problem as well, 5504 * since we don't use it at log replay time to set the i_size in the inode 5505 * item of the fs/subvol tree (see overwrite_item()). 5506 */ 5507 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5508 struct btrfs_root *root, 5509 struct btrfs_inode *start_inode, 5510 struct btrfs_log_ctx *ctx) 5511 { 5512 struct btrfs_fs_info *fs_info = root->fs_info; 5513 struct btrfs_root *log = root->log_root; 5514 struct btrfs_path *path; 5515 LIST_HEAD(dir_list); 5516 struct btrfs_dir_list *dir_elem; 5517 int ret = 0; 5518 5519 path = btrfs_alloc_path(); 5520 if (!path) 5521 return -ENOMEM; 5522 5523 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5524 if (!dir_elem) { 5525 btrfs_free_path(path); 5526 return -ENOMEM; 5527 } 5528 dir_elem->ino = btrfs_ino(start_inode); 5529 list_add_tail(&dir_elem->list, &dir_list); 5530 5531 while (!list_empty(&dir_list)) { 5532 struct extent_buffer *leaf; 5533 struct btrfs_key min_key; 5534 int nritems; 5535 int i; 5536 5537 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5538 list); 5539 if (ret) 5540 goto next_dir_inode; 5541 5542 min_key.objectid = dir_elem->ino; 5543 min_key.type = BTRFS_DIR_ITEM_KEY; 5544 min_key.offset = 0; 5545 again: 5546 btrfs_release_path(path); 5547 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5548 if (ret < 0) { 5549 goto next_dir_inode; 5550 } else if (ret > 0) { 5551 ret = 0; 5552 goto next_dir_inode; 5553 } 5554 5555 process_leaf: 5556 leaf = path->nodes[0]; 5557 nritems = btrfs_header_nritems(leaf); 5558 for (i = path->slots[0]; i < nritems; i++) { 5559 struct btrfs_dir_item *di; 5560 struct btrfs_key di_key; 5561 struct inode *di_inode; 5562 struct btrfs_dir_list *new_dir_elem; 5563 int log_mode = LOG_INODE_EXISTS; 5564 int type; 5565 5566 btrfs_item_key_to_cpu(leaf, &min_key, i); 5567 if (min_key.objectid != dir_elem->ino || 5568 min_key.type != BTRFS_DIR_ITEM_KEY) 5569 goto next_dir_inode; 5570 5571 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5572 type = btrfs_dir_type(leaf, di); 5573 if (btrfs_dir_transid(leaf, di) < trans->transid && 5574 type != BTRFS_FT_DIR) 5575 continue; 5576 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5577 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5578 continue; 5579 5580 btrfs_release_path(path); 5581 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root); 5582 if (IS_ERR(di_inode)) { 5583 ret = PTR_ERR(di_inode); 5584 goto next_dir_inode; 5585 } 5586 5587 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) { 5588 btrfs_add_delayed_iput(di_inode); 5589 break; 5590 } 5591 5592 ctx->log_new_dentries = false; 5593 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5594 log_mode = LOG_INODE_ALL; 5595 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), 5596 log_mode, 0, LLONG_MAX, ctx); 5597 if (!ret && 5598 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode))) 5599 ret = 1; 5600 btrfs_add_delayed_iput(di_inode); 5601 if (ret) 5602 goto next_dir_inode; 5603 if (ctx->log_new_dentries) { 5604 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5605 GFP_NOFS); 5606 if (!new_dir_elem) { 5607 ret = -ENOMEM; 5608 goto next_dir_inode; 5609 } 5610 new_dir_elem->ino = di_key.objectid; 5611 list_add_tail(&new_dir_elem->list, &dir_list); 5612 } 5613 break; 5614 } 5615 if (i == nritems) { 5616 ret = btrfs_next_leaf(log, path); 5617 if (ret < 0) { 5618 goto next_dir_inode; 5619 } else if (ret > 0) { 5620 ret = 0; 5621 goto next_dir_inode; 5622 } 5623 goto process_leaf; 5624 } 5625 if (min_key.offset < (u64)-1) { 5626 min_key.offset++; 5627 goto again; 5628 } 5629 next_dir_inode: 5630 list_del(&dir_elem->list); 5631 kfree(dir_elem); 5632 } 5633 5634 btrfs_free_path(path); 5635 return ret; 5636 } 5637 5638 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5639 struct btrfs_inode *inode, 5640 struct btrfs_log_ctx *ctx) 5641 { 5642 struct btrfs_fs_info *fs_info = trans->fs_info; 5643 int ret; 5644 struct btrfs_path *path; 5645 struct btrfs_key key; 5646 struct btrfs_root *root = inode->root; 5647 const u64 ino = btrfs_ino(inode); 5648 5649 path = btrfs_alloc_path(); 5650 if (!path) 5651 return -ENOMEM; 5652 path->skip_locking = 1; 5653 path->search_commit_root = 1; 5654 5655 key.objectid = ino; 5656 key.type = BTRFS_INODE_REF_KEY; 5657 key.offset = 0; 5658 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5659 if (ret < 0) 5660 goto out; 5661 5662 while (true) { 5663 struct extent_buffer *leaf = path->nodes[0]; 5664 int slot = path->slots[0]; 5665 u32 cur_offset = 0; 5666 u32 item_size; 5667 unsigned long ptr; 5668 5669 if (slot >= btrfs_header_nritems(leaf)) { 5670 ret = btrfs_next_leaf(root, path); 5671 if (ret < 0) 5672 goto out; 5673 else if (ret > 0) 5674 break; 5675 continue; 5676 } 5677 5678 btrfs_item_key_to_cpu(leaf, &key, slot); 5679 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5680 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5681 break; 5682 5683 item_size = btrfs_item_size_nr(leaf, slot); 5684 ptr = btrfs_item_ptr_offset(leaf, slot); 5685 while (cur_offset < item_size) { 5686 struct btrfs_key inode_key; 5687 struct inode *dir_inode; 5688 5689 inode_key.type = BTRFS_INODE_ITEM_KEY; 5690 inode_key.offset = 0; 5691 5692 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5693 struct btrfs_inode_extref *extref; 5694 5695 extref = (struct btrfs_inode_extref *) 5696 (ptr + cur_offset); 5697 inode_key.objectid = btrfs_inode_extref_parent( 5698 leaf, extref); 5699 cur_offset += sizeof(*extref); 5700 cur_offset += btrfs_inode_extref_name_len(leaf, 5701 extref); 5702 } else { 5703 inode_key.objectid = key.offset; 5704 cur_offset = item_size; 5705 } 5706 5707 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid, 5708 root); 5709 /* 5710 * If the parent inode was deleted, return an error to 5711 * fallback to a transaction commit. This is to prevent 5712 * getting an inode that was moved from one parent A to 5713 * a parent B, got its former parent A deleted and then 5714 * it got fsync'ed, from existing at both parents after 5715 * a log replay (and the old parent still existing). 5716 * Example: 5717 * 5718 * mkdir /mnt/A 5719 * mkdir /mnt/B 5720 * touch /mnt/B/bar 5721 * sync 5722 * mv /mnt/B/bar /mnt/A/bar 5723 * mv -T /mnt/A /mnt/B 5724 * fsync /mnt/B/bar 5725 * <power fail> 5726 * 5727 * If we ignore the old parent B which got deleted, 5728 * after a log replay we would have file bar linked 5729 * at both parents and the old parent B would still 5730 * exist. 5731 */ 5732 if (IS_ERR(dir_inode)) { 5733 ret = PTR_ERR(dir_inode); 5734 goto out; 5735 } 5736 5737 if (ctx) 5738 ctx->log_new_dentries = false; 5739 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), 5740 LOG_INODE_ALL, 0, LLONG_MAX, ctx); 5741 if (!ret && 5742 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode))) 5743 ret = 1; 5744 if (!ret && ctx && ctx->log_new_dentries) 5745 ret = log_new_dir_dentries(trans, root, 5746 BTRFS_I(dir_inode), ctx); 5747 btrfs_add_delayed_iput(dir_inode); 5748 if (ret) 5749 goto out; 5750 } 5751 path->slots[0]++; 5752 } 5753 ret = 0; 5754 out: 5755 btrfs_free_path(path); 5756 return ret; 5757 } 5758 5759 static int log_new_ancestors(struct btrfs_trans_handle *trans, 5760 struct btrfs_root *root, 5761 struct btrfs_path *path, 5762 struct btrfs_log_ctx *ctx) 5763 { 5764 struct btrfs_key found_key; 5765 5766 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5767 5768 while (true) { 5769 struct btrfs_fs_info *fs_info = root->fs_info; 5770 const u64 last_committed = fs_info->last_trans_committed; 5771 struct extent_buffer *leaf = path->nodes[0]; 5772 int slot = path->slots[0]; 5773 struct btrfs_key search_key; 5774 struct inode *inode; 5775 u64 ino; 5776 int ret = 0; 5777 5778 btrfs_release_path(path); 5779 5780 ino = found_key.offset; 5781 5782 search_key.objectid = found_key.offset; 5783 search_key.type = BTRFS_INODE_ITEM_KEY; 5784 search_key.offset = 0; 5785 inode = btrfs_iget(fs_info->sb, ino, root); 5786 if (IS_ERR(inode)) 5787 return PTR_ERR(inode); 5788 5789 if (BTRFS_I(inode)->generation > last_committed) 5790 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5791 LOG_INODE_EXISTS, 5792 0, LLONG_MAX, ctx); 5793 btrfs_add_delayed_iput(inode); 5794 if (ret) 5795 return ret; 5796 5797 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 5798 break; 5799 5800 search_key.type = BTRFS_INODE_REF_KEY; 5801 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5802 if (ret < 0) 5803 return ret; 5804 5805 leaf = path->nodes[0]; 5806 slot = path->slots[0]; 5807 if (slot >= btrfs_header_nritems(leaf)) { 5808 ret = btrfs_next_leaf(root, path); 5809 if (ret < 0) 5810 return ret; 5811 else if (ret > 0) 5812 return -ENOENT; 5813 leaf = path->nodes[0]; 5814 slot = path->slots[0]; 5815 } 5816 5817 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5818 if (found_key.objectid != search_key.objectid || 5819 found_key.type != BTRFS_INODE_REF_KEY) 5820 return -ENOENT; 5821 } 5822 return 0; 5823 } 5824 5825 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 5826 struct btrfs_inode *inode, 5827 struct dentry *parent, 5828 struct btrfs_log_ctx *ctx) 5829 { 5830 struct btrfs_root *root = inode->root; 5831 struct btrfs_fs_info *fs_info = root->fs_info; 5832 struct dentry *old_parent = NULL; 5833 struct super_block *sb = inode->vfs_inode.i_sb; 5834 int ret = 0; 5835 5836 while (true) { 5837 if (!parent || d_really_is_negative(parent) || 5838 sb != parent->d_sb) 5839 break; 5840 5841 inode = BTRFS_I(d_inode(parent)); 5842 if (root != inode->root) 5843 break; 5844 5845 if (inode->generation > fs_info->last_trans_committed) { 5846 ret = btrfs_log_inode(trans, root, inode, 5847 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx); 5848 if (ret) 5849 break; 5850 } 5851 if (IS_ROOT(parent)) 5852 break; 5853 5854 parent = dget_parent(parent); 5855 dput(old_parent); 5856 old_parent = parent; 5857 } 5858 dput(old_parent); 5859 5860 return ret; 5861 } 5862 5863 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 5864 struct btrfs_inode *inode, 5865 struct dentry *parent, 5866 struct btrfs_log_ctx *ctx) 5867 { 5868 struct btrfs_root *root = inode->root; 5869 const u64 ino = btrfs_ino(inode); 5870 struct btrfs_path *path; 5871 struct btrfs_key search_key; 5872 int ret; 5873 5874 /* 5875 * For a single hard link case, go through a fast path that does not 5876 * need to iterate the fs/subvolume tree. 5877 */ 5878 if (inode->vfs_inode.i_nlink < 2) 5879 return log_new_ancestors_fast(trans, inode, parent, ctx); 5880 5881 path = btrfs_alloc_path(); 5882 if (!path) 5883 return -ENOMEM; 5884 5885 search_key.objectid = ino; 5886 search_key.type = BTRFS_INODE_REF_KEY; 5887 search_key.offset = 0; 5888 again: 5889 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5890 if (ret < 0) 5891 goto out; 5892 if (ret == 0) 5893 path->slots[0]++; 5894 5895 while (true) { 5896 struct extent_buffer *leaf = path->nodes[0]; 5897 int slot = path->slots[0]; 5898 struct btrfs_key found_key; 5899 5900 if (slot >= btrfs_header_nritems(leaf)) { 5901 ret = btrfs_next_leaf(root, path); 5902 if (ret < 0) 5903 goto out; 5904 else if (ret > 0) 5905 break; 5906 continue; 5907 } 5908 5909 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5910 if (found_key.objectid != ino || 5911 found_key.type > BTRFS_INODE_EXTREF_KEY) 5912 break; 5913 5914 /* 5915 * Don't deal with extended references because they are rare 5916 * cases and too complex to deal with (we would need to keep 5917 * track of which subitem we are processing for each item in 5918 * this loop, etc). So just return some error to fallback to 5919 * a transaction commit. 5920 */ 5921 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 5922 ret = -EMLINK; 5923 goto out; 5924 } 5925 5926 /* 5927 * Logging ancestors needs to do more searches on the fs/subvol 5928 * tree, so it releases the path as needed to avoid deadlocks. 5929 * Keep track of the last inode ref key and resume from that key 5930 * after logging all new ancestors for the current hard link. 5931 */ 5932 memcpy(&search_key, &found_key, sizeof(search_key)); 5933 5934 ret = log_new_ancestors(trans, root, path, ctx); 5935 if (ret) 5936 goto out; 5937 btrfs_release_path(path); 5938 goto again; 5939 } 5940 ret = 0; 5941 out: 5942 btrfs_free_path(path); 5943 return ret; 5944 } 5945 5946 /* 5947 * helper function around btrfs_log_inode to make sure newly created 5948 * parent directories also end up in the log. A minimal inode and backref 5949 * only logging is done of any parent directories that are older than 5950 * the last committed transaction 5951 */ 5952 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 5953 struct btrfs_inode *inode, 5954 struct dentry *parent, 5955 const loff_t start, 5956 const loff_t end, 5957 int inode_only, 5958 struct btrfs_log_ctx *ctx) 5959 { 5960 struct btrfs_root *root = inode->root; 5961 struct btrfs_fs_info *fs_info = root->fs_info; 5962 struct super_block *sb; 5963 int ret = 0; 5964 u64 last_committed = fs_info->last_trans_committed; 5965 bool log_dentries = false; 5966 5967 sb = inode->vfs_inode.i_sb; 5968 5969 if (btrfs_test_opt(fs_info, NOTREELOG)) { 5970 ret = 1; 5971 goto end_no_trans; 5972 } 5973 5974 /* 5975 * The prev transaction commit doesn't complete, we need do 5976 * full commit by ourselves. 5977 */ 5978 if (fs_info->last_trans_log_full_commit > 5979 fs_info->last_trans_committed) { 5980 ret = 1; 5981 goto end_no_trans; 5982 } 5983 5984 if (btrfs_root_refs(&root->root_item) == 0) { 5985 ret = 1; 5986 goto end_no_trans; 5987 } 5988 5989 ret = check_parent_dirs_for_sync(trans, inode, parent, sb, 5990 last_committed); 5991 if (ret) 5992 goto end_no_trans; 5993 5994 /* 5995 * Skip already logged inodes or inodes corresponding to tmpfiles 5996 * (since logging them is pointless, a link count of 0 means they 5997 * will never be accessible). 5998 */ 5999 if (btrfs_inode_in_log(inode, trans->transid) || 6000 inode->vfs_inode.i_nlink == 0) { 6001 ret = BTRFS_NO_LOG_SYNC; 6002 goto end_no_trans; 6003 } 6004 6005 ret = start_log_trans(trans, root, ctx); 6006 if (ret) 6007 goto end_no_trans; 6008 6009 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 6010 if (ret) 6011 goto end_trans; 6012 6013 /* 6014 * for regular files, if its inode is already on disk, we don't 6015 * have to worry about the parents at all. This is because 6016 * we can use the last_unlink_trans field to record renames 6017 * and other fun in this file. 6018 */ 6019 if (S_ISREG(inode->vfs_inode.i_mode) && 6020 inode->generation <= last_committed && 6021 inode->last_unlink_trans <= last_committed) { 6022 ret = 0; 6023 goto end_trans; 6024 } 6025 6026 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) 6027 log_dentries = true; 6028 6029 /* 6030 * On unlink we must make sure all our current and old parent directory 6031 * inodes are fully logged. This is to prevent leaving dangling 6032 * directory index entries in directories that were our parents but are 6033 * not anymore. Not doing this results in old parent directory being 6034 * impossible to delete after log replay (rmdir will always fail with 6035 * error -ENOTEMPTY). 6036 * 6037 * Example 1: 6038 * 6039 * mkdir testdir 6040 * touch testdir/foo 6041 * ln testdir/foo testdir/bar 6042 * sync 6043 * unlink testdir/bar 6044 * xfs_io -c fsync testdir/foo 6045 * <power failure> 6046 * mount fs, triggers log replay 6047 * 6048 * If we don't log the parent directory (testdir), after log replay the 6049 * directory still has an entry pointing to the file inode using the bar 6050 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6051 * the file inode has a link count of 1. 6052 * 6053 * Example 2: 6054 * 6055 * mkdir testdir 6056 * touch foo 6057 * ln foo testdir/foo2 6058 * ln foo testdir/foo3 6059 * sync 6060 * unlink testdir/foo3 6061 * xfs_io -c fsync foo 6062 * <power failure> 6063 * mount fs, triggers log replay 6064 * 6065 * Similar as the first example, after log replay the parent directory 6066 * testdir still has an entry pointing to the inode file with name foo3 6067 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6068 * and has a link count of 2. 6069 */ 6070 if (inode->last_unlink_trans > last_committed) { 6071 ret = btrfs_log_all_parents(trans, inode, ctx); 6072 if (ret) 6073 goto end_trans; 6074 } 6075 6076 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6077 if (ret) 6078 goto end_trans; 6079 6080 if (log_dentries) 6081 ret = log_new_dir_dentries(trans, root, inode, ctx); 6082 else 6083 ret = 0; 6084 end_trans: 6085 if (ret < 0) { 6086 btrfs_set_log_full_commit(trans); 6087 ret = 1; 6088 } 6089 6090 if (ret) 6091 btrfs_remove_log_ctx(root, ctx); 6092 btrfs_end_log_trans(root); 6093 end_no_trans: 6094 return ret; 6095 } 6096 6097 /* 6098 * it is not safe to log dentry if the chunk root has added new 6099 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6100 * If this returns 1, you must commit the transaction to safely get your 6101 * data on disk. 6102 */ 6103 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6104 struct dentry *dentry, 6105 const loff_t start, 6106 const loff_t end, 6107 struct btrfs_log_ctx *ctx) 6108 { 6109 struct dentry *parent = dget_parent(dentry); 6110 int ret; 6111 6112 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6113 start, end, LOG_INODE_ALL, ctx); 6114 dput(parent); 6115 6116 return ret; 6117 } 6118 6119 /* 6120 * should be called during mount to recover any replay any log trees 6121 * from the FS 6122 */ 6123 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6124 { 6125 int ret; 6126 struct btrfs_path *path; 6127 struct btrfs_trans_handle *trans; 6128 struct btrfs_key key; 6129 struct btrfs_key found_key; 6130 struct btrfs_root *log; 6131 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6132 struct walk_control wc = { 6133 .process_func = process_one_buffer, 6134 .stage = LOG_WALK_PIN_ONLY, 6135 }; 6136 6137 path = btrfs_alloc_path(); 6138 if (!path) 6139 return -ENOMEM; 6140 6141 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6142 6143 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6144 if (IS_ERR(trans)) { 6145 ret = PTR_ERR(trans); 6146 goto error; 6147 } 6148 6149 wc.trans = trans; 6150 wc.pin = 1; 6151 6152 ret = walk_log_tree(trans, log_root_tree, &wc); 6153 if (ret) { 6154 btrfs_handle_fs_error(fs_info, ret, 6155 "Failed to pin buffers while recovering log root tree."); 6156 goto error; 6157 } 6158 6159 again: 6160 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6161 key.offset = (u64)-1; 6162 key.type = BTRFS_ROOT_ITEM_KEY; 6163 6164 while (1) { 6165 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6166 6167 if (ret < 0) { 6168 btrfs_handle_fs_error(fs_info, ret, 6169 "Couldn't find tree log root."); 6170 goto error; 6171 } 6172 if (ret > 0) { 6173 if (path->slots[0] == 0) 6174 break; 6175 path->slots[0]--; 6176 } 6177 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6178 path->slots[0]); 6179 btrfs_release_path(path); 6180 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6181 break; 6182 6183 log = btrfs_read_tree_root(log_root_tree, &found_key); 6184 if (IS_ERR(log)) { 6185 ret = PTR_ERR(log); 6186 btrfs_handle_fs_error(fs_info, ret, 6187 "Couldn't read tree log root."); 6188 goto error; 6189 } 6190 6191 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 6192 true); 6193 if (IS_ERR(wc.replay_dest)) { 6194 ret = PTR_ERR(wc.replay_dest); 6195 6196 /* 6197 * We didn't find the subvol, likely because it was 6198 * deleted. This is ok, simply skip this log and go to 6199 * the next one. 6200 * 6201 * We need to exclude the root because we can't have 6202 * other log replays overwriting this log as we'll read 6203 * it back in a few more times. This will keep our 6204 * block from being modified, and we'll just bail for 6205 * each subsequent pass. 6206 */ 6207 if (ret == -ENOENT) 6208 ret = btrfs_pin_extent_for_log_replay(trans, 6209 log->node->start, 6210 log->node->len); 6211 btrfs_put_root(log); 6212 6213 if (!ret) 6214 goto next; 6215 btrfs_handle_fs_error(fs_info, ret, 6216 "Couldn't read target root for tree log recovery."); 6217 goto error; 6218 } 6219 6220 wc.replay_dest->log_root = log; 6221 btrfs_record_root_in_trans(trans, wc.replay_dest); 6222 ret = walk_log_tree(trans, log, &wc); 6223 6224 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6225 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6226 path); 6227 } 6228 6229 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6230 struct btrfs_root *root = wc.replay_dest; 6231 6232 btrfs_release_path(path); 6233 6234 /* 6235 * We have just replayed everything, and the highest 6236 * objectid of fs roots probably has changed in case 6237 * some inode_item's got replayed. 6238 * 6239 * root->objectid_mutex is not acquired as log replay 6240 * could only happen during mount. 6241 */ 6242 ret = btrfs_find_highest_objectid(root, 6243 &root->highest_objectid); 6244 } 6245 6246 wc.replay_dest->log_root = NULL; 6247 btrfs_put_root(wc.replay_dest); 6248 btrfs_put_root(log); 6249 6250 if (ret) 6251 goto error; 6252 next: 6253 if (found_key.offset == 0) 6254 break; 6255 key.offset = found_key.offset - 1; 6256 } 6257 btrfs_release_path(path); 6258 6259 /* step one is to pin it all, step two is to replay just inodes */ 6260 if (wc.pin) { 6261 wc.pin = 0; 6262 wc.process_func = replay_one_buffer; 6263 wc.stage = LOG_WALK_REPLAY_INODES; 6264 goto again; 6265 } 6266 /* step three is to replay everything */ 6267 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6268 wc.stage++; 6269 goto again; 6270 } 6271 6272 btrfs_free_path(path); 6273 6274 /* step 4: commit the transaction, which also unpins the blocks */ 6275 ret = btrfs_commit_transaction(trans); 6276 if (ret) 6277 return ret; 6278 6279 log_root_tree->log_root = NULL; 6280 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6281 btrfs_put_root(log_root_tree); 6282 6283 return 0; 6284 error: 6285 if (wc.trans) 6286 btrfs_end_transaction(wc.trans); 6287 btrfs_free_path(path); 6288 return ret; 6289 } 6290 6291 /* 6292 * there are some corner cases where we want to force a full 6293 * commit instead of allowing a directory to be logged. 6294 * 6295 * They revolve around files there were unlinked from the directory, and 6296 * this function updates the parent directory so that a full commit is 6297 * properly done if it is fsync'd later after the unlinks are done. 6298 * 6299 * Must be called before the unlink operations (updates to the subvolume tree, 6300 * inodes, etc) are done. 6301 */ 6302 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6303 struct btrfs_inode *dir, struct btrfs_inode *inode, 6304 int for_rename) 6305 { 6306 /* 6307 * when we're logging a file, if it hasn't been renamed 6308 * or unlinked, and its inode is fully committed on disk, 6309 * we don't have to worry about walking up the directory chain 6310 * to log its parents. 6311 * 6312 * So, we use the last_unlink_trans field to put this transid 6313 * into the file. When the file is logged we check it and 6314 * don't log the parents if the file is fully on disk. 6315 */ 6316 mutex_lock(&inode->log_mutex); 6317 inode->last_unlink_trans = trans->transid; 6318 mutex_unlock(&inode->log_mutex); 6319 6320 /* 6321 * if this directory was already logged any new 6322 * names for this file/dir will get recorded 6323 */ 6324 if (dir->logged_trans == trans->transid) 6325 return; 6326 6327 /* 6328 * if the inode we're about to unlink was logged, 6329 * the log will be properly updated for any new names 6330 */ 6331 if (inode->logged_trans == trans->transid) 6332 return; 6333 6334 /* 6335 * when renaming files across directories, if the directory 6336 * there we're unlinking from gets fsync'd later on, there's 6337 * no way to find the destination directory later and fsync it 6338 * properly. So, we have to be conservative and force commits 6339 * so the new name gets discovered. 6340 */ 6341 if (for_rename) 6342 goto record; 6343 6344 /* we can safely do the unlink without any special recording */ 6345 return; 6346 6347 record: 6348 mutex_lock(&dir->log_mutex); 6349 dir->last_unlink_trans = trans->transid; 6350 mutex_unlock(&dir->log_mutex); 6351 } 6352 6353 /* 6354 * Make sure that if someone attempts to fsync the parent directory of a deleted 6355 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6356 * that after replaying the log tree of the parent directory's root we will not 6357 * see the snapshot anymore and at log replay time we will not see any log tree 6358 * corresponding to the deleted snapshot's root, which could lead to replaying 6359 * it after replaying the log tree of the parent directory (which would replay 6360 * the snapshot delete operation). 6361 * 6362 * Must be called before the actual snapshot destroy operation (updates to the 6363 * parent root and tree of tree roots trees, etc) are done. 6364 */ 6365 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6366 struct btrfs_inode *dir) 6367 { 6368 mutex_lock(&dir->log_mutex); 6369 dir->last_unlink_trans = trans->transid; 6370 mutex_unlock(&dir->log_mutex); 6371 } 6372 6373 /* 6374 * Call this after adding a new name for a file and it will properly 6375 * update the log to reflect the new name. 6376 * 6377 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's 6378 * true (because it's not used). 6379 * 6380 * Return value depends on whether @sync_log is true or false. 6381 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6382 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT 6383 * otherwise. 6384 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to 6385 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log, 6386 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6387 * committed (without attempting to sync the log). 6388 */ 6389 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 6390 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6391 struct dentry *parent, 6392 bool sync_log, struct btrfs_log_ctx *ctx) 6393 { 6394 struct btrfs_fs_info *fs_info = trans->fs_info; 6395 int ret; 6396 6397 /* 6398 * this will force the logging code to walk the dentry chain 6399 * up for the file 6400 */ 6401 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6402 inode->last_unlink_trans = trans->transid; 6403 6404 /* 6405 * if this inode hasn't been logged and directory we're renaming it 6406 * from hasn't been logged, we don't need to log it 6407 */ 6408 if (inode->logged_trans <= fs_info->last_trans_committed && 6409 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed)) 6410 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT : 6411 BTRFS_DONT_NEED_LOG_SYNC; 6412 6413 if (sync_log) { 6414 struct btrfs_log_ctx ctx2; 6415 6416 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode); 6417 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6418 LOG_INODE_EXISTS, &ctx2); 6419 if (ret == BTRFS_NO_LOG_SYNC) 6420 return BTRFS_DONT_NEED_TRANS_COMMIT; 6421 else if (ret) 6422 return BTRFS_NEED_TRANS_COMMIT; 6423 6424 ret = btrfs_sync_log(trans, inode->root, &ctx2); 6425 if (ret) 6426 return BTRFS_NEED_TRANS_COMMIT; 6427 return BTRFS_DONT_NEED_TRANS_COMMIT; 6428 } 6429 6430 ASSERT(ctx); 6431 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6432 LOG_INODE_EXISTS, ctx); 6433 if (ret == BTRFS_NO_LOG_SYNC) 6434 return BTRFS_DONT_NEED_LOG_SYNC; 6435 else if (ret) 6436 return BTRFS_NEED_TRANS_COMMIT; 6437 6438 return BTRFS_NEED_LOG_SYNC; 6439 } 6440 6441