xref: /openbmc/linux/fs/btrfs/tree-log.c (revision d58f75de)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 static void wait_log_commit(struct btrfs_root *root, int transid);
109 
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132 
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 			   struct btrfs_root *root,
140 			   struct btrfs_log_ctx *ctx)
141 {
142 	struct btrfs_fs_info *fs_info = root->fs_info;
143 	struct btrfs_root *tree_root = fs_info->tree_root;
144 	const bool zoned = btrfs_is_zoned(fs_info);
145 	int ret = 0;
146 	bool created = false;
147 
148 	/*
149 	 * First check if the log root tree was already created. If not, create
150 	 * it before locking the root's log_mutex, just to keep lockdep happy.
151 	 */
152 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 		mutex_lock(&tree_root->log_mutex);
154 		if (!fs_info->log_root_tree) {
155 			ret = btrfs_init_log_root_tree(trans, fs_info);
156 			if (!ret) {
157 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
158 				created = true;
159 			}
160 		}
161 		mutex_unlock(&tree_root->log_mutex);
162 		if (ret)
163 			return ret;
164 	}
165 
166 	mutex_lock(&root->log_mutex);
167 
168 again:
169 	if (root->log_root) {
170 		int index = (root->log_transid + 1) % 2;
171 
172 		if (btrfs_need_log_full_commit(trans)) {
173 			ret = -EAGAIN;
174 			goto out;
175 		}
176 
177 		if (zoned && atomic_read(&root->log_commit[index])) {
178 			wait_log_commit(root, root->log_transid - 1);
179 			goto again;
180 		}
181 
182 		if (!root->log_start_pid) {
183 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 			root->log_start_pid = current->pid;
185 		} else if (root->log_start_pid != current->pid) {
186 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
187 		}
188 	} else {
189 		/*
190 		 * This means fs_info->log_root_tree was already created
191 		 * for some other FS trees. Do the full commit not to mix
192 		 * nodes from multiple log transactions to do sequential
193 		 * writing.
194 		 */
195 		if (zoned && !created) {
196 			ret = -EAGAIN;
197 			goto out;
198 		}
199 
200 		ret = btrfs_add_log_tree(trans, root);
201 		if (ret)
202 			goto out;
203 
204 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
205 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 		root->log_start_pid = current->pid;
207 	}
208 
209 	atomic_inc(&root->log_writers);
210 	if (ctx && !ctx->logging_new_name) {
211 		int index = root->log_transid % 2;
212 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
213 		ctx->log_transid = root->log_transid;
214 	}
215 
216 out:
217 	mutex_unlock(&root->log_mutex);
218 	return ret;
219 }
220 
221 /*
222  * returns 0 if there was a log transaction running and we were able
223  * to join, or returns -ENOENT if there were not transactions
224  * in progress
225  */
226 static int join_running_log_trans(struct btrfs_root *root)
227 {
228 	const bool zoned = btrfs_is_zoned(root->fs_info);
229 	int ret = -ENOENT;
230 
231 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
232 		return ret;
233 
234 	mutex_lock(&root->log_mutex);
235 again:
236 	if (root->log_root) {
237 		int index = (root->log_transid + 1) % 2;
238 
239 		ret = 0;
240 		if (zoned && atomic_read(&root->log_commit[index])) {
241 			wait_log_commit(root, root->log_transid - 1);
242 			goto again;
243 		}
244 		atomic_inc(&root->log_writers);
245 	}
246 	mutex_unlock(&root->log_mutex);
247 	return ret;
248 }
249 
250 /*
251  * This either makes the current running log transaction wait
252  * until you call btrfs_end_log_trans() or it makes any future
253  * log transactions wait until you call btrfs_end_log_trans()
254  */
255 void btrfs_pin_log_trans(struct btrfs_root *root)
256 {
257 	atomic_inc(&root->log_writers);
258 }
259 
260 /*
261  * indicate we're done making changes to the log tree
262  * and wake up anyone waiting to do a sync
263  */
264 void btrfs_end_log_trans(struct btrfs_root *root)
265 {
266 	if (atomic_dec_and_test(&root->log_writers)) {
267 		/* atomic_dec_and_test implies a barrier */
268 		cond_wake_up_nomb(&root->log_writer_wait);
269 	}
270 }
271 
272 static int btrfs_write_tree_block(struct extent_buffer *buf)
273 {
274 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 					buf->start + buf->len - 1);
276 }
277 
278 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
279 {
280 	filemap_fdatawait_range(buf->pages[0]->mapping,
281 			        buf->start, buf->start + buf->len - 1);
282 }
283 
284 /*
285  * the walk control struct is used to pass state down the chain when
286  * processing the log tree.  The stage field tells us which part
287  * of the log tree processing we are currently doing.  The others
288  * are state fields used for that specific part
289  */
290 struct walk_control {
291 	/* should we free the extent on disk when done?  This is used
292 	 * at transaction commit time while freeing a log tree
293 	 */
294 	int free;
295 
296 	/* should we write out the extent buffer?  This is used
297 	 * while flushing the log tree to disk during a sync
298 	 */
299 	int write;
300 
301 	/* should we wait for the extent buffer io to finish?  Also used
302 	 * while flushing the log tree to disk for a sync
303 	 */
304 	int wait;
305 
306 	/* pin only walk, we record which extents on disk belong to the
307 	 * log trees
308 	 */
309 	int pin;
310 
311 	/* what stage of the replay code we're currently in */
312 	int stage;
313 
314 	/*
315 	 * Ignore any items from the inode currently being processed. Needs
316 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 	 * the LOG_WALK_REPLAY_INODES stage.
318 	 */
319 	bool ignore_cur_inode;
320 
321 	/* the root we are currently replaying */
322 	struct btrfs_root *replay_dest;
323 
324 	/* the trans handle for the current replay */
325 	struct btrfs_trans_handle *trans;
326 
327 	/* the function that gets used to process blocks we find in the
328 	 * tree.  Note the extent_buffer might not be up to date when it is
329 	 * passed in, and it must be checked or read if you need the data
330 	 * inside it
331 	 */
332 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
333 			    struct walk_control *wc, u64 gen, int level);
334 };
335 
336 /*
337  * process_func used to pin down extents, write them or wait on them
338  */
339 static int process_one_buffer(struct btrfs_root *log,
340 			      struct extent_buffer *eb,
341 			      struct walk_control *wc, u64 gen, int level)
342 {
343 	struct btrfs_fs_info *fs_info = log->fs_info;
344 	int ret = 0;
345 
346 	/*
347 	 * If this fs is mixed then we need to be able to process the leaves to
348 	 * pin down any logged extents, so we have to read the block.
349 	 */
350 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
351 		ret = btrfs_read_buffer(eb, gen, level, NULL);
352 		if (ret)
353 			return ret;
354 	}
355 
356 	if (wc->pin)
357 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
358 						      eb->len);
359 
360 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
361 		if (wc->pin && btrfs_header_level(eb) == 0)
362 			ret = btrfs_exclude_logged_extents(eb);
363 		if (wc->write)
364 			btrfs_write_tree_block(eb);
365 		if (wc->wait)
366 			btrfs_wait_tree_block_writeback(eb);
367 	}
368 	return ret;
369 }
370 
371 /*
372  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
373  * to the src data we are copying out.
374  *
375  * root is the tree we are copying into, and path is a scratch
376  * path for use in this function (it should be released on entry and
377  * will be released on exit).
378  *
379  * If the key is already in the destination tree the existing item is
380  * overwritten.  If the existing item isn't big enough, it is extended.
381  * If it is too large, it is truncated.
382  *
383  * If the key isn't in the destination yet, a new item is inserted.
384  */
385 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 				   struct btrfs_root *root,
387 				   struct btrfs_path *path,
388 				   struct extent_buffer *eb, int slot,
389 				   struct btrfs_key *key)
390 {
391 	int ret;
392 	u32 item_size;
393 	u64 saved_i_size = 0;
394 	int save_old_i_size = 0;
395 	unsigned long src_ptr;
396 	unsigned long dst_ptr;
397 	int overwrite_root = 0;
398 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
399 
400 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
401 		overwrite_root = 1;
402 
403 	item_size = btrfs_item_size_nr(eb, slot);
404 	src_ptr = btrfs_item_ptr_offset(eb, slot);
405 
406 	/* look for the key in the destination tree */
407 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
408 	if (ret < 0)
409 		return ret;
410 
411 	if (ret == 0) {
412 		char *src_copy;
413 		char *dst_copy;
414 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
415 						  path->slots[0]);
416 		if (dst_size != item_size)
417 			goto insert;
418 
419 		if (item_size == 0) {
420 			btrfs_release_path(path);
421 			return 0;
422 		}
423 		dst_copy = kmalloc(item_size, GFP_NOFS);
424 		src_copy = kmalloc(item_size, GFP_NOFS);
425 		if (!dst_copy || !src_copy) {
426 			btrfs_release_path(path);
427 			kfree(dst_copy);
428 			kfree(src_copy);
429 			return -ENOMEM;
430 		}
431 
432 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
433 
434 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
436 				   item_size);
437 		ret = memcmp(dst_copy, src_copy, item_size);
438 
439 		kfree(dst_copy);
440 		kfree(src_copy);
441 		/*
442 		 * they have the same contents, just return, this saves
443 		 * us from cowing blocks in the destination tree and doing
444 		 * extra writes that may not have been done by a previous
445 		 * sync
446 		 */
447 		if (ret == 0) {
448 			btrfs_release_path(path);
449 			return 0;
450 		}
451 
452 		/*
453 		 * We need to load the old nbytes into the inode so when we
454 		 * replay the extents we've logged we get the right nbytes.
455 		 */
456 		if (inode_item) {
457 			struct btrfs_inode_item *item;
458 			u64 nbytes;
459 			u32 mode;
460 
461 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 					      struct btrfs_inode_item);
463 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 			item = btrfs_item_ptr(eb, slot,
465 					      struct btrfs_inode_item);
466 			btrfs_set_inode_nbytes(eb, item, nbytes);
467 
468 			/*
469 			 * If this is a directory we need to reset the i_size to
470 			 * 0 so that we can set it up properly when replaying
471 			 * the rest of the items in this log.
472 			 */
473 			mode = btrfs_inode_mode(eb, item);
474 			if (S_ISDIR(mode))
475 				btrfs_set_inode_size(eb, item, 0);
476 		}
477 	} else if (inode_item) {
478 		struct btrfs_inode_item *item;
479 		u32 mode;
480 
481 		/*
482 		 * New inode, set nbytes to 0 so that the nbytes comes out
483 		 * properly when we replay the extents.
484 		 */
485 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 		btrfs_set_inode_nbytes(eb, item, 0);
487 
488 		/*
489 		 * If this is a directory we need to reset the i_size to 0 so
490 		 * that we can set it up properly when replaying the rest of
491 		 * the items in this log.
492 		 */
493 		mode = btrfs_inode_mode(eb, item);
494 		if (S_ISDIR(mode))
495 			btrfs_set_inode_size(eb, item, 0);
496 	}
497 insert:
498 	btrfs_release_path(path);
499 	/* try to insert the key into the destination tree */
500 	path->skip_release_on_error = 1;
501 	ret = btrfs_insert_empty_item(trans, root, path,
502 				      key, item_size);
503 	path->skip_release_on_error = 0;
504 
505 	/* make sure any existing item is the correct size */
506 	if (ret == -EEXIST || ret == -EOVERFLOW) {
507 		u32 found_size;
508 		found_size = btrfs_item_size_nr(path->nodes[0],
509 						path->slots[0]);
510 		if (found_size > item_size)
511 			btrfs_truncate_item(path, item_size, 1);
512 		else if (found_size < item_size)
513 			btrfs_extend_item(path, item_size - found_size);
514 	} else if (ret) {
515 		return ret;
516 	}
517 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
518 					path->slots[0]);
519 
520 	/* don't overwrite an existing inode if the generation number
521 	 * was logged as zero.  This is done when the tree logging code
522 	 * is just logging an inode to make sure it exists after recovery.
523 	 *
524 	 * Also, don't overwrite i_size on directories during replay.
525 	 * log replay inserts and removes directory items based on the
526 	 * state of the tree found in the subvolume, and i_size is modified
527 	 * as it goes
528 	 */
529 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 		struct btrfs_inode_item *src_item;
531 		struct btrfs_inode_item *dst_item;
532 
533 		src_item = (struct btrfs_inode_item *)src_ptr;
534 		dst_item = (struct btrfs_inode_item *)dst_ptr;
535 
536 		if (btrfs_inode_generation(eb, src_item) == 0) {
537 			struct extent_buffer *dst_eb = path->nodes[0];
538 			const u64 ino_size = btrfs_inode_size(eb, src_item);
539 
540 			/*
541 			 * For regular files an ino_size == 0 is used only when
542 			 * logging that an inode exists, as part of a directory
543 			 * fsync, and the inode wasn't fsynced before. In this
544 			 * case don't set the size of the inode in the fs/subvol
545 			 * tree, otherwise we would be throwing valid data away.
546 			 */
547 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
548 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
549 			    ino_size != 0)
550 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
551 			goto no_copy;
552 		}
553 
554 		if (overwrite_root &&
555 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
557 			save_old_i_size = 1;
558 			saved_i_size = btrfs_inode_size(path->nodes[0],
559 							dst_item);
560 		}
561 	}
562 
563 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
564 			   src_ptr, item_size);
565 
566 	if (save_old_i_size) {
567 		struct btrfs_inode_item *dst_item;
568 		dst_item = (struct btrfs_inode_item *)dst_ptr;
569 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
570 	}
571 
572 	/* make sure the generation is filled in */
573 	if (key->type == BTRFS_INODE_ITEM_KEY) {
574 		struct btrfs_inode_item *dst_item;
575 		dst_item = (struct btrfs_inode_item *)dst_ptr;
576 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 			btrfs_set_inode_generation(path->nodes[0], dst_item,
578 						   trans->transid);
579 		}
580 	}
581 no_copy:
582 	btrfs_mark_buffer_dirty(path->nodes[0]);
583 	btrfs_release_path(path);
584 	return 0;
585 }
586 
587 /*
588  * simple helper to read an inode off the disk from a given root
589  * This can only be called for subvolume roots and not for the log
590  */
591 static noinline struct inode *read_one_inode(struct btrfs_root *root,
592 					     u64 objectid)
593 {
594 	struct inode *inode;
595 
596 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
597 	if (IS_ERR(inode))
598 		inode = NULL;
599 	return inode;
600 }
601 
602 /* replays a single extent in 'eb' at 'slot' with 'key' into the
603  * subvolume 'root'.  path is released on entry and should be released
604  * on exit.
605  *
606  * extents in the log tree have not been allocated out of the extent
607  * tree yet.  So, this completes the allocation, taking a reference
608  * as required if the extent already exists or creating a new extent
609  * if it isn't in the extent allocation tree yet.
610  *
611  * The extent is inserted into the file, dropping any existing extents
612  * from the file that overlap the new one.
613  */
614 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 				      struct btrfs_root *root,
616 				      struct btrfs_path *path,
617 				      struct extent_buffer *eb, int slot,
618 				      struct btrfs_key *key)
619 {
620 	struct btrfs_drop_extents_args drop_args = { 0 };
621 	struct btrfs_fs_info *fs_info = root->fs_info;
622 	int found_type;
623 	u64 extent_end;
624 	u64 start = key->offset;
625 	u64 nbytes = 0;
626 	struct btrfs_file_extent_item *item;
627 	struct inode *inode = NULL;
628 	unsigned long size;
629 	int ret = 0;
630 
631 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 	found_type = btrfs_file_extent_type(eb, item);
633 
634 	if (found_type == BTRFS_FILE_EXTENT_REG ||
635 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 		nbytes = btrfs_file_extent_num_bytes(eb, item);
637 		extent_end = start + nbytes;
638 
639 		/*
640 		 * We don't add to the inodes nbytes if we are prealloc or a
641 		 * hole.
642 		 */
643 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
644 			nbytes = 0;
645 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
646 		size = btrfs_file_extent_ram_bytes(eb, item);
647 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
648 		extent_end = ALIGN(start + size,
649 				   fs_info->sectorsize);
650 	} else {
651 		ret = 0;
652 		goto out;
653 	}
654 
655 	inode = read_one_inode(root, key->objectid);
656 	if (!inode) {
657 		ret = -EIO;
658 		goto out;
659 	}
660 
661 	/*
662 	 * first check to see if we already have this extent in the
663 	 * file.  This must be done before the btrfs_drop_extents run
664 	 * so we don't try to drop this extent.
665 	 */
666 	ret = btrfs_lookup_file_extent(trans, root, path,
667 			btrfs_ino(BTRFS_I(inode)), start, 0);
668 
669 	if (ret == 0 &&
670 	    (found_type == BTRFS_FILE_EXTENT_REG ||
671 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
672 		struct btrfs_file_extent_item cmp1;
673 		struct btrfs_file_extent_item cmp2;
674 		struct btrfs_file_extent_item *existing;
675 		struct extent_buffer *leaf;
676 
677 		leaf = path->nodes[0];
678 		existing = btrfs_item_ptr(leaf, path->slots[0],
679 					  struct btrfs_file_extent_item);
680 
681 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
682 				   sizeof(cmp1));
683 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
684 				   sizeof(cmp2));
685 
686 		/*
687 		 * we already have a pointer to this exact extent,
688 		 * we don't have to do anything
689 		 */
690 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
691 			btrfs_release_path(path);
692 			goto out;
693 		}
694 	}
695 	btrfs_release_path(path);
696 
697 	/* drop any overlapping extents */
698 	drop_args.start = start;
699 	drop_args.end = extent_end;
700 	drop_args.drop_cache = true;
701 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
702 	if (ret)
703 		goto out;
704 
705 	if (found_type == BTRFS_FILE_EXTENT_REG ||
706 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
707 		u64 offset;
708 		unsigned long dest_offset;
709 		struct btrfs_key ins;
710 
711 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 		    btrfs_fs_incompat(fs_info, NO_HOLES))
713 			goto update_inode;
714 
715 		ret = btrfs_insert_empty_item(trans, root, path, key,
716 					      sizeof(*item));
717 		if (ret)
718 			goto out;
719 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
720 						    path->slots[0]);
721 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 				(unsigned long)item,  sizeof(*item));
723 
724 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 		ins.type = BTRFS_EXTENT_ITEM_KEY;
727 		offset = key->offset - btrfs_file_extent_offset(eb, item);
728 
729 		/*
730 		 * Manually record dirty extent, as here we did a shallow
731 		 * file extent item copy and skip normal backref update,
732 		 * but modifying extent tree all by ourselves.
733 		 * So need to manually record dirty extent for qgroup,
734 		 * as the owner of the file extent changed from log tree
735 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
736 		 */
737 		ret = btrfs_qgroup_trace_extent(trans,
738 				btrfs_file_extent_disk_bytenr(eb, item),
739 				btrfs_file_extent_disk_num_bytes(eb, item),
740 				GFP_NOFS);
741 		if (ret < 0)
742 			goto out;
743 
744 		if (ins.objectid > 0) {
745 			struct btrfs_ref ref = { 0 };
746 			u64 csum_start;
747 			u64 csum_end;
748 			LIST_HEAD(ordered_sums);
749 
750 			/*
751 			 * is this extent already allocated in the extent
752 			 * allocation tree?  If so, just add a reference
753 			 */
754 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
755 						ins.offset);
756 			if (ret == 0) {
757 				btrfs_init_generic_ref(&ref,
758 						BTRFS_ADD_DELAYED_REF,
759 						ins.objectid, ins.offset, 0);
760 				btrfs_init_data_ref(&ref,
761 						root->root_key.objectid,
762 						key->objectid, offset);
763 				ret = btrfs_inc_extent_ref(trans, &ref);
764 				if (ret)
765 					goto out;
766 			} else {
767 				/*
768 				 * insert the extent pointer in the extent
769 				 * allocation tree
770 				 */
771 				ret = btrfs_alloc_logged_file_extent(trans,
772 						root->root_key.objectid,
773 						key->objectid, offset, &ins);
774 				if (ret)
775 					goto out;
776 			}
777 			btrfs_release_path(path);
778 
779 			if (btrfs_file_extent_compression(eb, item)) {
780 				csum_start = ins.objectid;
781 				csum_end = csum_start + ins.offset;
782 			} else {
783 				csum_start = ins.objectid +
784 					btrfs_file_extent_offset(eb, item);
785 				csum_end = csum_start +
786 					btrfs_file_extent_num_bytes(eb, item);
787 			}
788 
789 			ret = btrfs_lookup_csums_range(root->log_root,
790 						csum_start, csum_end - 1,
791 						&ordered_sums, 0);
792 			if (ret)
793 				goto out;
794 			/*
795 			 * Now delete all existing cums in the csum root that
796 			 * cover our range. We do this because we can have an
797 			 * extent that is completely referenced by one file
798 			 * extent item and partially referenced by another
799 			 * file extent item (like after using the clone or
800 			 * extent_same ioctls). In this case if we end up doing
801 			 * the replay of the one that partially references the
802 			 * extent first, and we do not do the csum deletion
803 			 * below, we can get 2 csum items in the csum tree that
804 			 * overlap each other. For example, imagine our log has
805 			 * the two following file extent items:
806 			 *
807 			 * key (257 EXTENT_DATA 409600)
808 			 *     extent data disk byte 12845056 nr 102400
809 			 *     extent data offset 20480 nr 20480 ram 102400
810 			 *
811 			 * key (257 EXTENT_DATA 819200)
812 			 *     extent data disk byte 12845056 nr 102400
813 			 *     extent data offset 0 nr 102400 ram 102400
814 			 *
815 			 * Where the second one fully references the 100K extent
816 			 * that starts at disk byte 12845056, and the log tree
817 			 * has a single csum item that covers the entire range
818 			 * of the extent:
819 			 *
820 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
821 			 *
822 			 * After the first file extent item is replayed, the
823 			 * csum tree gets the following csum item:
824 			 *
825 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
826 			 *
827 			 * Which covers the 20K sub-range starting at offset 20K
828 			 * of our extent. Now when we replay the second file
829 			 * extent item, if we do not delete existing csum items
830 			 * that cover any of its blocks, we end up getting two
831 			 * csum items in our csum tree that overlap each other:
832 			 *
833 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
835 			 *
836 			 * Which is a problem, because after this anyone trying
837 			 * to lookup up for the checksum of any block of our
838 			 * extent starting at an offset of 40K or higher, will
839 			 * end up looking at the second csum item only, which
840 			 * does not contain the checksum for any block starting
841 			 * at offset 40K or higher of our extent.
842 			 */
843 			while (!list_empty(&ordered_sums)) {
844 				struct btrfs_ordered_sum *sums;
845 				sums = list_entry(ordered_sums.next,
846 						struct btrfs_ordered_sum,
847 						list);
848 				if (!ret)
849 					ret = btrfs_del_csums(trans,
850 							      fs_info->csum_root,
851 							      sums->bytenr,
852 							      sums->len);
853 				if (!ret)
854 					ret = btrfs_csum_file_blocks(trans,
855 						fs_info->csum_root, sums);
856 				list_del(&sums->list);
857 				kfree(sums);
858 			}
859 			if (ret)
860 				goto out;
861 		} else {
862 			btrfs_release_path(path);
863 		}
864 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
865 		/* inline extents are easy, we just overwrite them */
866 		ret = overwrite_item(trans, root, path, eb, slot, key);
867 		if (ret)
868 			goto out;
869 	}
870 
871 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
872 						extent_end - start);
873 	if (ret)
874 		goto out;
875 
876 update_inode:
877 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
878 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
879 out:
880 	if (inode)
881 		iput(inode);
882 	return ret;
883 }
884 
885 /*
886  * when cleaning up conflicts between the directory names in the
887  * subvolume, directory names in the log and directory names in the
888  * inode back references, we may have to unlink inodes from directories.
889  *
890  * This is a helper function to do the unlink of a specific directory
891  * item
892  */
893 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
894 				      struct btrfs_root *root,
895 				      struct btrfs_path *path,
896 				      struct btrfs_inode *dir,
897 				      struct btrfs_dir_item *di)
898 {
899 	struct inode *inode;
900 	char *name;
901 	int name_len;
902 	struct extent_buffer *leaf;
903 	struct btrfs_key location;
904 	int ret;
905 
906 	leaf = path->nodes[0];
907 
908 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
909 	name_len = btrfs_dir_name_len(leaf, di);
910 	name = kmalloc(name_len, GFP_NOFS);
911 	if (!name)
912 		return -ENOMEM;
913 
914 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
915 	btrfs_release_path(path);
916 
917 	inode = read_one_inode(root, location.objectid);
918 	if (!inode) {
919 		ret = -EIO;
920 		goto out;
921 	}
922 
923 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
924 	if (ret)
925 		goto out;
926 
927 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
928 			name_len);
929 	if (ret)
930 		goto out;
931 	else
932 		ret = btrfs_run_delayed_items(trans);
933 out:
934 	kfree(name);
935 	iput(inode);
936 	return ret;
937 }
938 
939 /*
940  * helper function to see if a given name and sequence number found
941  * in an inode back reference are already in a directory and correctly
942  * point to this inode
943  */
944 static noinline int inode_in_dir(struct btrfs_root *root,
945 				 struct btrfs_path *path,
946 				 u64 dirid, u64 objectid, u64 index,
947 				 const char *name, int name_len)
948 {
949 	struct btrfs_dir_item *di;
950 	struct btrfs_key location;
951 	int match = 0;
952 
953 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
954 					 index, name, name_len, 0);
955 	if (di && !IS_ERR(di)) {
956 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
957 		if (location.objectid != objectid)
958 			goto out;
959 	} else
960 		goto out;
961 	btrfs_release_path(path);
962 
963 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
964 	if (di && !IS_ERR(di)) {
965 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
966 		if (location.objectid != objectid)
967 			goto out;
968 	} else
969 		goto out;
970 	match = 1;
971 out:
972 	btrfs_release_path(path);
973 	return match;
974 }
975 
976 /*
977  * helper function to check a log tree for a named back reference in
978  * an inode.  This is used to decide if a back reference that is
979  * found in the subvolume conflicts with what we find in the log.
980  *
981  * inode backreferences may have multiple refs in a single item,
982  * during replay we process one reference at a time, and we don't
983  * want to delete valid links to a file from the subvolume if that
984  * link is also in the log.
985  */
986 static noinline int backref_in_log(struct btrfs_root *log,
987 				   struct btrfs_key *key,
988 				   u64 ref_objectid,
989 				   const char *name, int namelen)
990 {
991 	struct btrfs_path *path;
992 	int ret;
993 
994 	path = btrfs_alloc_path();
995 	if (!path)
996 		return -ENOMEM;
997 
998 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
999 	if (ret < 0) {
1000 		goto out;
1001 	} else if (ret == 1) {
1002 		ret = 0;
1003 		goto out;
1004 	}
1005 
1006 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1007 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1008 						       path->slots[0],
1009 						       ref_objectid,
1010 						       name, namelen);
1011 	else
1012 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1013 						   path->slots[0],
1014 						   name, namelen);
1015 out:
1016 	btrfs_free_path(path);
1017 	return ret;
1018 }
1019 
1020 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1021 				  struct btrfs_root *root,
1022 				  struct btrfs_path *path,
1023 				  struct btrfs_root *log_root,
1024 				  struct btrfs_inode *dir,
1025 				  struct btrfs_inode *inode,
1026 				  u64 inode_objectid, u64 parent_objectid,
1027 				  u64 ref_index, char *name, int namelen,
1028 				  int *search_done)
1029 {
1030 	int ret;
1031 	char *victim_name;
1032 	int victim_name_len;
1033 	struct extent_buffer *leaf;
1034 	struct btrfs_dir_item *di;
1035 	struct btrfs_key search_key;
1036 	struct btrfs_inode_extref *extref;
1037 
1038 again:
1039 	/* Search old style refs */
1040 	search_key.objectid = inode_objectid;
1041 	search_key.type = BTRFS_INODE_REF_KEY;
1042 	search_key.offset = parent_objectid;
1043 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1044 	if (ret == 0) {
1045 		struct btrfs_inode_ref *victim_ref;
1046 		unsigned long ptr;
1047 		unsigned long ptr_end;
1048 
1049 		leaf = path->nodes[0];
1050 
1051 		/* are we trying to overwrite a back ref for the root directory
1052 		 * if so, just jump out, we're done
1053 		 */
1054 		if (search_key.objectid == search_key.offset)
1055 			return 1;
1056 
1057 		/* check all the names in this back reference to see
1058 		 * if they are in the log.  if so, we allow them to stay
1059 		 * otherwise they must be unlinked as a conflict
1060 		 */
1061 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1062 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1063 		while (ptr < ptr_end) {
1064 			victim_ref = (struct btrfs_inode_ref *)ptr;
1065 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1066 								   victim_ref);
1067 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1068 			if (!victim_name)
1069 				return -ENOMEM;
1070 
1071 			read_extent_buffer(leaf, victim_name,
1072 					   (unsigned long)(victim_ref + 1),
1073 					   victim_name_len);
1074 
1075 			ret = backref_in_log(log_root, &search_key,
1076 					     parent_objectid, victim_name,
1077 					     victim_name_len);
1078 			if (ret < 0) {
1079 				kfree(victim_name);
1080 				return ret;
1081 			} else if (!ret) {
1082 				inc_nlink(&inode->vfs_inode);
1083 				btrfs_release_path(path);
1084 
1085 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1086 						victim_name, victim_name_len);
1087 				kfree(victim_name);
1088 				if (ret)
1089 					return ret;
1090 				ret = btrfs_run_delayed_items(trans);
1091 				if (ret)
1092 					return ret;
1093 				*search_done = 1;
1094 				goto again;
1095 			}
1096 			kfree(victim_name);
1097 
1098 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1099 		}
1100 
1101 		/*
1102 		 * NOTE: we have searched root tree and checked the
1103 		 * corresponding ref, it does not need to check again.
1104 		 */
1105 		*search_done = 1;
1106 	}
1107 	btrfs_release_path(path);
1108 
1109 	/* Same search but for extended refs */
1110 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1111 					   inode_objectid, parent_objectid, 0,
1112 					   0);
1113 	if (!IS_ERR_OR_NULL(extref)) {
1114 		u32 item_size;
1115 		u32 cur_offset = 0;
1116 		unsigned long base;
1117 		struct inode *victim_parent;
1118 
1119 		leaf = path->nodes[0];
1120 
1121 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1122 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1123 
1124 		while (cur_offset < item_size) {
1125 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1126 
1127 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1128 
1129 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1130 				goto next;
1131 
1132 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1133 			if (!victim_name)
1134 				return -ENOMEM;
1135 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1136 					   victim_name_len);
1137 
1138 			search_key.objectid = inode_objectid;
1139 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1140 			search_key.offset = btrfs_extref_hash(parent_objectid,
1141 							      victim_name,
1142 							      victim_name_len);
1143 			ret = backref_in_log(log_root, &search_key,
1144 					     parent_objectid, victim_name,
1145 					     victim_name_len);
1146 			if (ret < 0) {
1147 				return ret;
1148 			} else if (!ret) {
1149 				ret = -ENOENT;
1150 				victim_parent = read_one_inode(root,
1151 						parent_objectid);
1152 				if (victim_parent) {
1153 					inc_nlink(&inode->vfs_inode);
1154 					btrfs_release_path(path);
1155 
1156 					ret = btrfs_unlink_inode(trans, root,
1157 							BTRFS_I(victim_parent),
1158 							inode,
1159 							victim_name,
1160 							victim_name_len);
1161 					if (!ret)
1162 						ret = btrfs_run_delayed_items(
1163 								  trans);
1164 				}
1165 				iput(victim_parent);
1166 				kfree(victim_name);
1167 				if (ret)
1168 					return ret;
1169 				*search_done = 1;
1170 				goto again;
1171 			}
1172 			kfree(victim_name);
1173 next:
1174 			cur_offset += victim_name_len + sizeof(*extref);
1175 		}
1176 		*search_done = 1;
1177 	}
1178 	btrfs_release_path(path);
1179 
1180 	/* look for a conflicting sequence number */
1181 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1182 					 ref_index, name, namelen, 0);
1183 	if (di && !IS_ERR(di)) {
1184 		ret = drop_one_dir_item(trans, root, path, dir, di);
1185 		if (ret)
1186 			return ret;
1187 	}
1188 	btrfs_release_path(path);
1189 
1190 	/* look for a conflicting name */
1191 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1192 				   name, namelen, 0);
1193 	if (di && !IS_ERR(di)) {
1194 		ret = drop_one_dir_item(trans, root, path, dir, di);
1195 		if (ret)
1196 			return ret;
1197 	}
1198 	btrfs_release_path(path);
1199 
1200 	return 0;
1201 }
1202 
1203 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1204 			     u32 *namelen, char **name, u64 *index,
1205 			     u64 *parent_objectid)
1206 {
1207 	struct btrfs_inode_extref *extref;
1208 
1209 	extref = (struct btrfs_inode_extref *)ref_ptr;
1210 
1211 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1212 	*name = kmalloc(*namelen, GFP_NOFS);
1213 	if (*name == NULL)
1214 		return -ENOMEM;
1215 
1216 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1217 			   *namelen);
1218 
1219 	if (index)
1220 		*index = btrfs_inode_extref_index(eb, extref);
1221 	if (parent_objectid)
1222 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1223 
1224 	return 0;
1225 }
1226 
1227 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1228 			  u32 *namelen, char **name, u64 *index)
1229 {
1230 	struct btrfs_inode_ref *ref;
1231 
1232 	ref = (struct btrfs_inode_ref *)ref_ptr;
1233 
1234 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1235 	*name = kmalloc(*namelen, GFP_NOFS);
1236 	if (*name == NULL)
1237 		return -ENOMEM;
1238 
1239 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1240 
1241 	if (index)
1242 		*index = btrfs_inode_ref_index(eb, ref);
1243 
1244 	return 0;
1245 }
1246 
1247 /*
1248  * Take an inode reference item from the log tree and iterate all names from the
1249  * inode reference item in the subvolume tree with the same key (if it exists).
1250  * For any name that is not in the inode reference item from the log tree, do a
1251  * proper unlink of that name (that is, remove its entry from the inode
1252  * reference item and both dir index keys).
1253  */
1254 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1255 				 struct btrfs_root *root,
1256 				 struct btrfs_path *path,
1257 				 struct btrfs_inode *inode,
1258 				 struct extent_buffer *log_eb,
1259 				 int log_slot,
1260 				 struct btrfs_key *key)
1261 {
1262 	int ret;
1263 	unsigned long ref_ptr;
1264 	unsigned long ref_end;
1265 	struct extent_buffer *eb;
1266 
1267 again:
1268 	btrfs_release_path(path);
1269 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1270 	if (ret > 0) {
1271 		ret = 0;
1272 		goto out;
1273 	}
1274 	if (ret < 0)
1275 		goto out;
1276 
1277 	eb = path->nodes[0];
1278 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1279 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1280 	while (ref_ptr < ref_end) {
1281 		char *name = NULL;
1282 		int namelen;
1283 		u64 parent_id;
1284 
1285 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1286 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1287 						NULL, &parent_id);
1288 		} else {
1289 			parent_id = key->offset;
1290 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1291 					     NULL);
1292 		}
1293 		if (ret)
1294 			goto out;
1295 
1296 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1297 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1298 							       parent_id, name,
1299 							       namelen);
1300 		else
1301 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1302 							   name, namelen);
1303 
1304 		if (!ret) {
1305 			struct inode *dir;
1306 
1307 			btrfs_release_path(path);
1308 			dir = read_one_inode(root, parent_id);
1309 			if (!dir) {
1310 				ret = -ENOENT;
1311 				kfree(name);
1312 				goto out;
1313 			}
1314 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1315 						 inode, name, namelen);
1316 			kfree(name);
1317 			iput(dir);
1318 			if (ret)
1319 				goto out;
1320 			goto again;
1321 		}
1322 
1323 		kfree(name);
1324 		ref_ptr += namelen;
1325 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1326 			ref_ptr += sizeof(struct btrfs_inode_extref);
1327 		else
1328 			ref_ptr += sizeof(struct btrfs_inode_ref);
1329 	}
1330 	ret = 0;
1331  out:
1332 	btrfs_release_path(path);
1333 	return ret;
1334 }
1335 
1336 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1337 				  const u8 ref_type, const char *name,
1338 				  const int namelen)
1339 {
1340 	struct btrfs_key key;
1341 	struct btrfs_path *path;
1342 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1343 	int ret;
1344 
1345 	path = btrfs_alloc_path();
1346 	if (!path)
1347 		return -ENOMEM;
1348 
1349 	key.objectid = btrfs_ino(BTRFS_I(inode));
1350 	key.type = ref_type;
1351 	if (key.type == BTRFS_INODE_REF_KEY)
1352 		key.offset = parent_id;
1353 	else
1354 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1355 
1356 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1357 	if (ret < 0)
1358 		goto out;
1359 	if (ret > 0) {
1360 		ret = 0;
1361 		goto out;
1362 	}
1363 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1364 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1365 				path->slots[0], parent_id, name, namelen);
1366 	else
1367 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1368 						   name, namelen);
1369 
1370 out:
1371 	btrfs_free_path(path);
1372 	return ret;
1373 }
1374 
1375 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1376 		    struct inode *dir, struct inode *inode, const char *name,
1377 		    int namelen, u64 ref_index)
1378 {
1379 	struct btrfs_dir_item *dir_item;
1380 	struct btrfs_key key;
1381 	struct btrfs_path *path;
1382 	struct inode *other_inode = NULL;
1383 	int ret;
1384 
1385 	path = btrfs_alloc_path();
1386 	if (!path)
1387 		return -ENOMEM;
1388 
1389 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1390 					 btrfs_ino(BTRFS_I(dir)),
1391 					 name, namelen, 0);
1392 	if (!dir_item) {
1393 		btrfs_release_path(path);
1394 		goto add_link;
1395 	} else if (IS_ERR(dir_item)) {
1396 		ret = PTR_ERR(dir_item);
1397 		goto out;
1398 	}
1399 
1400 	/*
1401 	 * Our inode's dentry collides with the dentry of another inode which is
1402 	 * in the log but not yet processed since it has a higher inode number.
1403 	 * So delete that other dentry.
1404 	 */
1405 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1406 	btrfs_release_path(path);
1407 	other_inode = read_one_inode(root, key.objectid);
1408 	if (!other_inode) {
1409 		ret = -ENOENT;
1410 		goto out;
1411 	}
1412 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1413 				 name, namelen);
1414 	if (ret)
1415 		goto out;
1416 	/*
1417 	 * If we dropped the link count to 0, bump it so that later the iput()
1418 	 * on the inode will not free it. We will fixup the link count later.
1419 	 */
1420 	if (other_inode->i_nlink == 0)
1421 		inc_nlink(other_inode);
1422 
1423 	ret = btrfs_run_delayed_items(trans);
1424 	if (ret)
1425 		goto out;
1426 add_link:
1427 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1428 			     name, namelen, 0, ref_index);
1429 out:
1430 	iput(other_inode);
1431 	btrfs_free_path(path);
1432 
1433 	return ret;
1434 }
1435 
1436 /*
1437  * replay one inode back reference item found in the log tree.
1438  * eb, slot and key refer to the buffer and key found in the log tree.
1439  * root is the destination we are replaying into, and path is for temp
1440  * use by this function.  (it should be released on return).
1441  */
1442 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1443 				  struct btrfs_root *root,
1444 				  struct btrfs_root *log,
1445 				  struct btrfs_path *path,
1446 				  struct extent_buffer *eb, int slot,
1447 				  struct btrfs_key *key)
1448 {
1449 	struct inode *dir = NULL;
1450 	struct inode *inode = NULL;
1451 	unsigned long ref_ptr;
1452 	unsigned long ref_end;
1453 	char *name = NULL;
1454 	int namelen;
1455 	int ret;
1456 	int search_done = 0;
1457 	int log_ref_ver = 0;
1458 	u64 parent_objectid;
1459 	u64 inode_objectid;
1460 	u64 ref_index = 0;
1461 	int ref_struct_size;
1462 
1463 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1464 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1465 
1466 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1467 		struct btrfs_inode_extref *r;
1468 
1469 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1470 		log_ref_ver = 1;
1471 		r = (struct btrfs_inode_extref *)ref_ptr;
1472 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1473 	} else {
1474 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1475 		parent_objectid = key->offset;
1476 	}
1477 	inode_objectid = key->objectid;
1478 
1479 	/*
1480 	 * it is possible that we didn't log all the parent directories
1481 	 * for a given inode.  If we don't find the dir, just don't
1482 	 * copy the back ref in.  The link count fixup code will take
1483 	 * care of the rest
1484 	 */
1485 	dir = read_one_inode(root, parent_objectid);
1486 	if (!dir) {
1487 		ret = -ENOENT;
1488 		goto out;
1489 	}
1490 
1491 	inode = read_one_inode(root, inode_objectid);
1492 	if (!inode) {
1493 		ret = -EIO;
1494 		goto out;
1495 	}
1496 
1497 	while (ref_ptr < ref_end) {
1498 		if (log_ref_ver) {
1499 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1500 						&ref_index, &parent_objectid);
1501 			/*
1502 			 * parent object can change from one array
1503 			 * item to another.
1504 			 */
1505 			if (!dir)
1506 				dir = read_one_inode(root, parent_objectid);
1507 			if (!dir) {
1508 				ret = -ENOENT;
1509 				goto out;
1510 			}
1511 		} else {
1512 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1513 					     &ref_index);
1514 		}
1515 		if (ret)
1516 			goto out;
1517 
1518 		/* if we already have a perfect match, we're done */
1519 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1520 					btrfs_ino(BTRFS_I(inode)), ref_index,
1521 					name, namelen)) {
1522 			/*
1523 			 * look for a conflicting back reference in the
1524 			 * metadata. if we find one we have to unlink that name
1525 			 * of the file before we add our new link.  Later on, we
1526 			 * overwrite any existing back reference, and we don't
1527 			 * want to create dangling pointers in the directory.
1528 			 */
1529 
1530 			if (!search_done) {
1531 				ret = __add_inode_ref(trans, root, path, log,
1532 						      BTRFS_I(dir),
1533 						      BTRFS_I(inode),
1534 						      inode_objectid,
1535 						      parent_objectid,
1536 						      ref_index, name, namelen,
1537 						      &search_done);
1538 				if (ret) {
1539 					if (ret == 1)
1540 						ret = 0;
1541 					goto out;
1542 				}
1543 			}
1544 
1545 			/*
1546 			 * If a reference item already exists for this inode
1547 			 * with the same parent and name, but different index,
1548 			 * drop it and the corresponding directory index entries
1549 			 * from the parent before adding the new reference item
1550 			 * and dir index entries, otherwise we would fail with
1551 			 * -EEXIST returned from btrfs_add_link() below.
1552 			 */
1553 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1554 						     name, namelen);
1555 			if (ret > 0) {
1556 				ret = btrfs_unlink_inode(trans, root,
1557 							 BTRFS_I(dir),
1558 							 BTRFS_I(inode),
1559 							 name, namelen);
1560 				/*
1561 				 * If we dropped the link count to 0, bump it so
1562 				 * that later the iput() on the inode will not
1563 				 * free it. We will fixup the link count later.
1564 				 */
1565 				if (!ret && inode->i_nlink == 0)
1566 					inc_nlink(inode);
1567 			}
1568 			if (ret < 0)
1569 				goto out;
1570 
1571 			/* insert our name */
1572 			ret = add_link(trans, root, dir, inode, name, namelen,
1573 				       ref_index);
1574 			if (ret)
1575 				goto out;
1576 
1577 			btrfs_update_inode(trans, root, BTRFS_I(inode));
1578 		}
1579 
1580 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1581 		kfree(name);
1582 		name = NULL;
1583 		if (log_ref_ver) {
1584 			iput(dir);
1585 			dir = NULL;
1586 		}
1587 	}
1588 
1589 	/*
1590 	 * Before we overwrite the inode reference item in the subvolume tree
1591 	 * with the item from the log tree, we must unlink all names from the
1592 	 * parent directory that are in the subvolume's tree inode reference
1593 	 * item, otherwise we end up with an inconsistent subvolume tree where
1594 	 * dir index entries exist for a name but there is no inode reference
1595 	 * item with the same name.
1596 	 */
1597 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1598 				    key);
1599 	if (ret)
1600 		goto out;
1601 
1602 	/* finally write the back reference in the inode */
1603 	ret = overwrite_item(trans, root, path, eb, slot, key);
1604 out:
1605 	btrfs_release_path(path);
1606 	kfree(name);
1607 	iput(dir);
1608 	iput(inode);
1609 	return ret;
1610 }
1611 
1612 static int count_inode_extrefs(struct btrfs_root *root,
1613 		struct btrfs_inode *inode, struct btrfs_path *path)
1614 {
1615 	int ret = 0;
1616 	int name_len;
1617 	unsigned int nlink = 0;
1618 	u32 item_size;
1619 	u32 cur_offset = 0;
1620 	u64 inode_objectid = btrfs_ino(inode);
1621 	u64 offset = 0;
1622 	unsigned long ptr;
1623 	struct btrfs_inode_extref *extref;
1624 	struct extent_buffer *leaf;
1625 
1626 	while (1) {
1627 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1628 					    &extref, &offset);
1629 		if (ret)
1630 			break;
1631 
1632 		leaf = path->nodes[0];
1633 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1634 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1635 		cur_offset = 0;
1636 
1637 		while (cur_offset < item_size) {
1638 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1639 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1640 
1641 			nlink++;
1642 
1643 			cur_offset += name_len + sizeof(*extref);
1644 		}
1645 
1646 		offset++;
1647 		btrfs_release_path(path);
1648 	}
1649 	btrfs_release_path(path);
1650 
1651 	if (ret < 0 && ret != -ENOENT)
1652 		return ret;
1653 	return nlink;
1654 }
1655 
1656 static int count_inode_refs(struct btrfs_root *root,
1657 			struct btrfs_inode *inode, struct btrfs_path *path)
1658 {
1659 	int ret;
1660 	struct btrfs_key key;
1661 	unsigned int nlink = 0;
1662 	unsigned long ptr;
1663 	unsigned long ptr_end;
1664 	int name_len;
1665 	u64 ino = btrfs_ino(inode);
1666 
1667 	key.objectid = ino;
1668 	key.type = BTRFS_INODE_REF_KEY;
1669 	key.offset = (u64)-1;
1670 
1671 	while (1) {
1672 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1673 		if (ret < 0)
1674 			break;
1675 		if (ret > 0) {
1676 			if (path->slots[0] == 0)
1677 				break;
1678 			path->slots[0]--;
1679 		}
1680 process_slot:
1681 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1682 				      path->slots[0]);
1683 		if (key.objectid != ino ||
1684 		    key.type != BTRFS_INODE_REF_KEY)
1685 			break;
1686 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1687 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1688 						   path->slots[0]);
1689 		while (ptr < ptr_end) {
1690 			struct btrfs_inode_ref *ref;
1691 
1692 			ref = (struct btrfs_inode_ref *)ptr;
1693 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1694 							    ref);
1695 			ptr = (unsigned long)(ref + 1) + name_len;
1696 			nlink++;
1697 		}
1698 
1699 		if (key.offset == 0)
1700 			break;
1701 		if (path->slots[0] > 0) {
1702 			path->slots[0]--;
1703 			goto process_slot;
1704 		}
1705 		key.offset--;
1706 		btrfs_release_path(path);
1707 	}
1708 	btrfs_release_path(path);
1709 
1710 	return nlink;
1711 }
1712 
1713 /*
1714  * There are a few corners where the link count of the file can't
1715  * be properly maintained during replay.  So, instead of adding
1716  * lots of complexity to the log code, we just scan the backrefs
1717  * for any file that has been through replay.
1718  *
1719  * The scan will update the link count on the inode to reflect the
1720  * number of back refs found.  If it goes down to zero, the iput
1721  * will free the inode.
1722  */
1723 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1724 					   struct btrfs_root *root,
1725 					   struct inode *inode)
1726 {
1727 	struct btrfs_path *path;
1728 	int ret;
1729 	u64 nlink = 0;
1730 	u64 ino = btrfs_ino(BTRFS_I(inode));
1731 
1732 	path = btrfs_alloc_path();
1733 	if (!path)
1734 		return -ENOMEM;
1735 
1736 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1737 	if (ret < 0)
1738 		goto out;
1739 
1740 	nlink = ret;
1741 
1742 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1743 	if (ret < 0)
1744 		goto out;
1745 
1746 	nlink += ret;
1747 
1748 	ret = 0;
1749 
1750 	if (nlink != inode->i_nlink) {
1751 		set_nlink(inode, nlink);
1752 		btrfs_update_inode(trans, root, BTRFS_I(inode));
1753 	}
1754 	BTRFS_I(inode)->index_cnt = (u64)-1;
1755 
1756 	if (inode->i_nlink == 0) {
1757 		if (S_ISDIR(inode->i_mode)) {
1758 			ret = replay_dir_deletes(trans, root, NULL, path,
1759 						 ino, 1);
1760 			if (ret)
1761 				goto out;
1762 		}
1763 		ret = btrfs_insert_orphan_item(trans, root, ino);
1764 		if (ret == -EEXIST)
1765 			ret = 0;
1766 	}
1767 
1768 out:
1769 	btrfs_free_path(path);
1770 	return ret;
1771 }
1772 
1773 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1774 					    struct btrfs_root *root,
1775 					    struct btrfs_path *path)
1776 {
1777 	int ret;
1778 	struct btrfs_key key;
1779 	struct inode *inode;
1780 
1781 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1782 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1783 	key.offset = (u64)-1;
1784 	while (1) {
1785 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1786 		if (ret < 0)
1787 			break;
1788 
1789 		if (ret == 1) {
1790 			if (path->slots[0] == 0)
1791 				break;
1792 			path->slots[0]--;
1793 		}
1794 
1795 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1796 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1797 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1798 			break;
1799 
1800 		ret = btrfs_del_item(trans, root, path);
1801 		if (ret)
1802 			goto out;
1803 
1804 		btrfs_release_path(path);
1805 		inode = read_one_inode(root, key.offset);
1806 		if (!inode)
1807 			return -EIO;
1808 
1809 		ret = fixup_inode_link_count(trans, root, inode);
1810 		iput(inode);
1811 		if (ret)
1812 			goto out;
1813 
1814 		/*
1815 		 * fixup on a directory may create new entries,
1816 		 * make sure we always look for the highset possible
1817 		 * offset
1818 		 */
1819 		key.offset = (u64)-1;
1820 	}
1821 	ret = 0;
1822 out:
1823 	btrfs_release_path(path);
1824 	return ret;
1825 }
1826 
1827 
1828 /*
1829  * record a given inode in the fixup dir so we can check its link
1830  * count when replay is done.  The link count is incremented here
1831  * so the inode won't go away until we check it
1832  */
1833 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1834 				      struct btrfs_root *root,
1835 				      struct btrfs_path *path,
1836 				      u64 objectid)
1837 {
1838 	struct btrfs_key key;
1839 	int ret = 0;
1840 	struct inode *inode;
1841 
1842 	inode = read_one_inode(root, objectid);
1843 	if (!inode)
1844 		return -EIO;
1845 
1846 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1847 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1848 	key.offset = objectid;
1849 
1850 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1851 
1852 	btrfs_release_path(path);
1853 	if (ret == 0) {
1854 		if (!inode->i_nlink)
1855 			set_nlink(inode, 1);
1856 		else
1857 			inc_nlink(inode);
1858 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1859 	} else if (ret == -EEXIST) {
1860 		ret = 0;
1861 	} else {
1862 		BUG(); /* Logic Error */
1863 	}
1864 	iput(inode);
1865 
1866 	return ret;
1867 }
1868 
1869 /*
1870  * when replaying the log for a directory, we only insert names
1871  * for inodes that actually exist.  This means an fsync on a directory
1872  * does not implicitly fsync all the new files in it
1873  */
1874 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1875 				    struct btrfs_root *root,
1876 				    u64 dirid, u64 index,
1877 				    char *name, int name_len,
1878 				    struct btrfs_key *location)
1879 {
1880 	struct inode *inode;
1881 	struct inode *dir;
1882 	int ret;
1883 
1884 	inode = read_one_inode(root, location->objectid);
1885 	if (!inode)
1886 		return -ENOENT;
1887 
1888 	dir = read_one_inode(root, dirid);
1889 	if (!dir) {
1890 		iput(inode);
1891 		return -EIO;
1892 	}
1893 
1894 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1895 			name_len, 1, index);
1896 
1897 	/* FIXME, put inode into FIXUP list */
1898 
1899 	iput(inode);
1900 	iput(dir);
1901 	return ret;
1902 }
1903 
1904 /*
1905  * take a single entry in a log directory item and replay it into
1906  * the subvolume.
1907  *
1908  * if a conflicting item exists in the subdirectory already,
1909  * the inode it points to is unlinked and put into the link count
1910  * fix up tree.
1911  *
1912  * If a name from the log points to a file or directory that does
1913  * not exist in the FS, it is skipped.  fsyncs on directories
1914  * do not force down inodes inside that directory, just changes to the
1915  * names or unlinks in a directory.
1916  *
1917  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1918  * non-existing inode) and 1 if the name was replayed.
1919  */
1920 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1921 				    struct btrfs_root *root,
1922 				    struct btrfs_path *path,
1923 				    struct extent_buffer *eb,
1924 				    struct btrfs_dir_item *di,
1925 				    struct btrfs_key *key)
1926 {
1927 	char *name;
1928 	int name_len;
1929 	struct btrfs_dir_item *dst_di;
1930 	struct btrfs_key found_key;
1931 	struct btrfs_key log_key;
1932 	struct inode *dir;
1933 	u8 log_type;
1934 	int exists;
1935 	int ret = 0;
1936 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1937 	bool name_added = false;
1938 
1939 	dir = read_one_inode(root, key->objectid);
1940 	if (!dir)
1941 		return -EIO;
1942 
1943 	name_len = btrfs_dir_name_len(eb, di);
1944 	name = kmalloc(name_len, GFP_NOFS);
1945 	if (!name) {
1946 		ret = -ENOMEM;
1947 		goto out;
1948 	}
1949 
1950 	log_type = btrfs_dir_type(eb, di);
1951 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1952 		   name_len);
1953 
1954 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1955 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1956 	if (exists == 0)
1957 		exists = 1;
1958 	else
1959 		exists = 0;
1960 	btrfs_release_path(path);
1961 
1962 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1963 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1964 				       name, name_len, 1);
1965 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1966 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1967 						     key->objectid,
1968 						     key->offset, name,
1969 						     name_len, 1);
1970 	} else {
1971 		/* Corruption */
1972 		ret = -EINVAL;
1973 		goto out;
1974 	}
1975 	if (IS_ERR_OR_NULL(dst_di)) {
1976 		/* we need a sequence number to insert, so we only
1977 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1978 		 */
1979 		if (key->type != BTRFS_DIR_INDEX_KEY)
1980 			goto out;
1981 		goto insert;
1982 	}
1983 
1984 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1985 	/* the existing item matches the logged item */
1986 	if (found_key.objectid == log_key.objectid &&
1987 	    found_key.type == log_key.type &&
1988 	    found_key.offset == log_key.offset &&
1989 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1990 		update_size = false;
1991 		goto out;
1992 	}
1993 
1994 	/*
1995 	 * don't drop the conflicting directory entry if the inode
1996 	 * for the new entry doesn't exist
1997 	 */
1998 	if (!exists)
1999 		goto out;
2000 
2001 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2002 	if (ret)
2003 		goto out;
2004 
2005 	if (key->type == BTRFS_DIR_INDEX_KEY)
2006 		goto insert;
2007 out:
2008 	btrfs_release_path(path);
2009 	if (!ret && update_size) {
2010 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2011 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2012 	}
2013 	kfree(name);
2014 	iput(dir);
2015 	if (!ret && name_added)
2016 		ret = 1;
2017 	return ret;
2018 
2019 insert:
2020 	/*
2021 	 * Check if the inode reference exists in the log for the given name,
2022 	 * inode and parent inode
2023 	 */
2024 	found_key.objectid = log_key.objectid;
2025 	found_key.type = BTRFS_INODE_REF_KEY;
2026 	found_key.offset = key->objectid;
2027 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2028 	if (ret < 0) {
2029 	        goto out;
2030 	} else if (ret) {
2031 	        /* The dentry will be added later. */
2032 	        ret = 0;
2033 	        update_size = false;
2034 	        goto out;
2035 	}
2036 
2037 	found_key.objectid = log_key.objectid;
2038 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2039 	found_key.offset = key->objectid;
2040 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2041 			     name_len);
2042 	if (ret < 0) {
2043 		goto out;
2044 	} else if (ret) {
2045 		/* The dentry will be added later. */
2046 		ret = 0;
2047 		update_size = false;
2048 		goto out;
2049 	}
2050 	btrfs_release_path(path);
2051 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2052 			      name, name_len, &log_key);
2053 	if (ret && ret != -ENOENT && ret != -EEXIST)
2054 		goto out;
2055 	if (!ret)
2056 		name_added = true;
2057 	update_size = false;
2058 	ret = 0;
2059 	goto out;
2060 }
2061 
2062 /*
2063  * find all the names in a directory item and reconcile them into
2064  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2065  * one name in a directory item, but the same code gets used for
2066  * both directory index types
2067  */
2068 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2069 					struct btrfs_root *root,
2070 					struct btrfs_path *path,
2071 					struct extent_buffer *eb, int slot,
2072 					struct btrfs_key *key)
2073 {
2074 	int ret = 0;
2075 	u32 item_size = btrfs_item_size_nr(eb, slot);
2076 	struct btrfs_dir_item *di;
2077 	int name_len;
2078 	unsigned long ptr;
2079 	unsigned long ptr_end;
2080 	struct btrfs_path *fixup_path = NULL;
2081 
2082 	ptr = btrfs_item_ptr_offset(eb, slot);
2083 	ptr_end = ptr + item_size;
2084 	while (ptr < ptr_end) {
2085 		di = (struct btrfs_dir_item *)ptr;
2086 		name_len = btrfs_dir_name_len(eb, di);
2087 		ret = replay_one_name(trans, root, path, eb, di, key);
2088 		if (ret < 0)
2089 			break;
2090 		ptr = (unsigned long)(di + 1);
2091 		ptr += name_len;
2092 
2093 		/*
2094 		 * If this entry refers to a non-directory (directories can not
2095 		 * have a link count > 1) and it was added in the transaction
2096 		 * that was not committed, make sure we fixup the link count of
2097 		 * the inode it the entry points to. Otherwise something like
2098 		 * the following would result in a directory pointing to an
2099 		 * inode with a wrong link that does not account for this dir
2100 		 * entry:
2101 		 *
2102 		 * mkdir testdir
2103 		 * touch testdir/foo
2104 		 * touch testdir/bar
2105 		 * sync
2106 		 *
2107 		 * ln testdir/bar testdir/bar_link
2108 		 * ln testdir/foo testdir/foo_link
2109 		 * xfs_io -c "fsync" testdir/bar
2110 		 *
2111 		 * <power failure>
2112 		 *
2113 		 * mount fs, log replay happens
2114 		 *
2115 		 * File foo would remain with a link count of 1 when it has two
2116 		 * entries pointing to it in the directory testdir. This would
2117 		 * make it impossible to ever delete the parent directory has
2118 		 * it would result in stale dentries that can never be deleted.
2119 		 */
2120 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2121 			struct btrfs_key di_key;
2122 
2123 			if (!fixup_path) {
2124 				fixup_path = btrfs_alloc_path();
2125 				if (!fixup_path) {
2126 					ret = -ENOMEM;
2127 					break;
2128 				}
2129 			}
2130 
2131 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2132 			ret = link_to_fixup_dir(trans, root, fixup_path,
2133 						di_key.objectid);
2134 			if (ret)
2135 				break;
2136 		}
2137 		ret = 0;
2138 	}
2139 	btrfs_free_path(fixup_path);
2140 	return ret;
2141 }
2142 
2143 /*
2144  * directory replay has two parts.  There are the standard directory
2145  * items in the log copied from the subvolume, and range items
2146  * created in the log while the subvolume was logged.
2147  *
2148  * The range items tell us which parts of the key space the log
2149  * is authoritative for.  During replay, if a key in the subvolume
2150  * directory is in a logged range item, but not actually in the log
2151  * that means it was deleted from the directory before the fsync
2152  * and should be removed.
2153  */
2154 static noinline int find_dir_range(struct btrfs_root *root,
2155 				   struct btrfs_path *path,
2156 				   u64 dirid, int key_type,
2157 				   u64 *start_ret, u64 *end_ret)
2158 {
2159 	struct btrfs_key key;
2160 	u64 found_end;
2161 	struct btrfs_dir_log_item *item;
2162 	int ret;
2163 	int nritems;
2164 
2165 	if (*start_ret == (u64)-1)
2166 		return 1;
2167 
2168 	key.objectid = dirid;
2169 	key.type = key_type;
2170 	key.offset = *start_ret;
2171 
2172 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2173 	if (ret < 0)
2174 		goto out;
2175 	if (ret > 0) {
2176 		if (path->slots[0] == 0)
2177 			goto out;
2178 		path->slots[0]--;
2179 	}
2180 	if (ret != 0)
2181 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2182 
2183 	if (key.type != key_type || key.objectid != dirid) {
2184 		ret = 1;
2185 		goto next;
2186 	}
2187 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2188 			      struct btrfs_dir_log_item);
2189 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2190 
2191 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2192 		ret = 0;
2193 		*start_ret = key.offset;
2194 		*end_ret = found_end;
2195 		goto out;
2196 	}
2197 	ret = 1;
2198 next:
2199 	/* check the next slot in the tree to see if it is a valid item */
2200 	nritems = btrfs_header_nritems(path->nodes[0]);
2201 	path->slots[0]++;
2202 	if (path->slots[0] >= nritems) {
2203 		ret = btrfs_next_leaf(root, path);
2204 		if (ret)
2205 			goto out;
2206 	}
2207 
2208 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2209 
2210 	if (key.type != key_type || key.objectid != dirid) {
2211 		ret = 1;
2212 		goto out;
2213 	}
2214 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2215 			      struct btrfs_dir_log_item);
2216 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2217 	*start_ret = key.offset;
2218 	*end_ret = found_end;
2219 	ret = 0;
2220 out:
2221 	btrfs_release_path(path);
2222 	return ret;
2223 }
2224 
2225 /*
2226  * this looks for a given directory item in the log.  If the directory
2227  * item is not in the log, the item is removed and the inode it points
2228  * to is unlinked
2229  */
2230 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2231 				      struct btrfs_root *root,
2232 				      struct btrfs_root *log,
2233 				      struct btrfs_path *path,
2234 				      struct btrfs_path *log_path,
2235 				      struct inode *dir,
2236 				      struct btrfs_key *dir_key)
2237 {
2238 	int ret;
2239 	struct extent_buffer *eb;
2240 	int slot;
2241 	u32 item_size;
2242 	struct btrfs_dir_item *di;
2243 	struct btrfs_dir_item *log_di;
2244 	int name_len;
2245 	unsigned long ptr;
2246 	unsigned long ptr_end;
2247 	char *name;
2248 	struct inode *inode;
2249 	struct btrfs_key location;
2250 
2251 again:
2252 	eb = path->nodes[0];
2253 	slot = path->slots[0];
2254 	item_size = btrfs_item_size_nr(eb, slot);
2255 	ptr = btrfs_item_ptr_offset(eb, slot);
2256 	ptr_end = ptr + item_size;
2257 	while (ptr < ptr_end) {
2258 		di = (struct btrfs_dir_item *)ptr;
2259 		name_len = btrfs_dir_name_len(eb, di);
2260 		name = kmalloc(name_len, GFP_NOFS);
2261 		if (!name) {
2262 			ret = -ENOMEM;
2263 			goto out;
2264 		}
2265 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2266 				  name_len);
2267 		log_di = NULL;
2268 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2269 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2270 						       dir_key->objectid,
2271 						       name, name_len, 0);
2272 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2273 			log_di = btrfs_lookup_dir_index_item(trans, log,
2274 						     log_path,
2275 						     dir_key->objectid,
2276 						     dir_key->offset,
2277 						     name, name_len, 0);
2278 		}
2279 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2280 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2281 			btrfs_release_path(path);
2282 			btrfs_release_path(log_path);
2283 			inode = read_one_inode(root, location.objectid);
2284 			if (!inode) {
2285 				kfree(name);
2286 				return -EIO;
2287 			}
2288 
2289 			ret = link_to_fixup_dir(trans, root,
2290 						path, location.objectid);
2291 			if (ret) {
2292 				kfree(name);
2293 				iput(inode);
2294 				goto out;
2295 			}
2296 
2297 			inc_nlink(inode);
2298 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2299 					BTRFS_I(inode), name, name_len);
2300 			if (!ret)
2301 				ret = btrfs_run_delayed_items(trans);
2302 			kfree(name);
2303 			iput(inode);
2304 			if (ret)
2305 				goto out;
2306 
2307 			/* there might still be more names under this key
2308 			 * check and repeat if required
2309 			 */
2310 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2311 						0, 0);
2312 			if (ret == 0)
2313 				goto again;
2314 			ret = 0;
2315 			goto out;
2316 		} else if (IS_ERR(log_di)) {
2317 			kfree(name);
2318 			return PTR_ERR(log_di);
2319 		}
2320 		btrfs_release_path(log_path);
2321 		kfree(name);
2322 
2323 		ptr = (unsigned long)(di + 1);
2324 		ptr += name_len;
2325 	}
2326 	ret = 0;
2327 out:
2328 	btrfs_release_path(path);
2329 	btrfs_release_path(log_path);
2330 	return ret;
2331 }
2332 
2333 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2334 			      struct btrfs_root *root,
2335 			      struct btrfs_root *log,
2336 			      struct btrfs_path *path,
2337 			      const u64 ino)
2338 {
2339 	struct btrfs_key search_key;
2340 	struct btrfs_path *log_path;
2341 	int i;
2342 	int nritems;
2343 	int ret;
2344 
2345 	log_path = btrfs_alloc_path();
2346 	if (!log_path)
2347 		return -ENOMEM;
2348 
2349 	search_key.objectid = ino;
2350 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2351 	search_key.offset = 0;
2352 again:
2353 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2354 	if (ret < 0)
2355 		goto out;
2356 process_leaf:
2357 	nritems = btrfs_header_nritems(path->nodes[0]);
2358 	for (i = path->slots[0]; i < nritems; i++) {
2359 		struct btrfs_key key;
2360 		struct btrfs_dir_item *di;
2361 		struct btrfs_dir_item *log_di;
2362 		u32 total_size;
2363 		u32 cur;
2364 
2365 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2366 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2367 			ret = 0;
2368 			goto out;
2369 		}
2370 
2371 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2372 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2373 		cur = 0;
2374 		while (cur < total_size) {
2375 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2376 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2377 			u32 this_len = sizeof(*di) + name_len + data_len;
2378 			char *name;
2379 
2380 			name = kmalloc(name_len, GFP_NOFS);
2381 			if (!name) {
2382 				ret = -ENOMEM;
2383 				goto out;
2384 			}
2385 			read_extent_buffer(path->nodes[0], name,
2386 					   (unsigned long)(di + 1), name_len);
2387 
2388 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2389 						    name, name_len, 0);
2390 			btrfs_release_path(log_path);
2391 			if (!log_di) {
2392 				/* Doesn't exist in log tree, so delete it. */
2393 				btrfs_release_path(path);
2394 				di = btrfs_lookup_xattr(trans, root, path, ino,
2395 							name, name_len, -1);
2396 				kfree(name);
2397 				if (IS_ERR(di)) {
2398 					ret = PTR_ERR(di);
2399 					goto out;
2400 				}
2401 				ASSERT(di);
2402 				ret = btrfs_delete_one_dir_name(trans, root,
2403 								path, di);
2404 				if (ret)
2405 					goto out;
2406 				btrfs_release_path(path);
2407 				search_key = key;
2408 				goto again;
2409 			}
2410 			kfree(name);
2411 			if (IS_ERR(log_di)) {
2412 				ret = PTR_ERR(log_di);
2413 				goto out;
2414 			}
2415 			cur += this_len;
2416 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2417 		}
2418 	}
2419 	ret = btrfs_next_leaf(root, path);
2420 	if (ret > 0)
2421 		ret = 0;
2422 	else if (ret == 0)
2423 		goto process_leaf;
2424 out:
2425 	btrfs_free_path(log_path);
2426 	btrfs_release_path(path);
2427 	return ret;
2428 }
2429 
2430 
2431 /*
2432  * deletion replay happens before we copy any new directory items
2433  * out of the log or out of backreferences from inodes.  It
2434  * scans the log to find ranges of keys that log is authoritative for,
2435  * and then scans the directory to find items in those ranges that are
2436  * not present in the log.
2437  *
2438  * Anything we don't find in the log is unlinked and removed from the
2439  * directory.
2440  */
2441 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2442 				       struct btrfs_root *root,
2443 				       struct btrfs_root *log,
2444 				       struct btrfs_path *path,
2445 				       u64 dirid, int del_all)
2446 {
2447 	u64 range_start;
2448 	u64 range_end;
2449 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2450 	int ret = 0;
2451 	struct btrfs_key dir_key;
2452 	struct btrfs_key found_key;
2453 	struct btrfs_path *log_path;
2454 	struct inode *dir;
2455 
2456 	dir_key.objectid = dirid;
2457 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2458 	log_path = btrfs_alloc_path();
2459 	if (!log_path)
2460 		return -ENOMEM;
2461 
2462 	dir = read_one_inode(root, dirid);
2463 	/* it isn't an error if the inode isn't there, that can happen
2464 	 * because we replay the deletes before we copy in the inode item
2465 	 * from the log
2466 	 */
2467 	if (!dir) {
2468 		btrfs_free_path(log_path);
2469 		return 0;
2470 	}
2471 again:
2472 	range_start = 0;
2473 	range_end = 0;
2474 	while (1) {
2475 		if (del_all)
2476 			range_end = (u64)-1;
2477 		else {
2478 			ret = find_dir_range(log, path, dirid, key_type,
2479 					     &range_start, &range_end);
2480 			if (ret != 0)
2481 				break;
2482 		}
2483 
2484 		dir_key.offset = range_start;
2485 		while (1) {
2486 			int nritems;
2487 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2488 						0, 0);
2489 			if (ret < 0)
2490 				goto out;
2491 
2492 			nritems = btrfs_header_nritems(path->nodes[0]);
2493 			if (path->slots[0] >= nritems) {
2494 				ret = btrfs_next_leaf(root, path);
2495 				if (ret == 1)
2496 					break;
2497 				else if (ret < 0)
2498 					goto out;
2499 			}
2500 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2501 					      path->slots[0]);
2502 			if (found_key.objectid != dirid ||
2503 			    found_key.type != dir_key.type)
2504 				goto next_type;
2505 
2506 			if (found_key.offset > range_end)
2507 				break;
2508 
2509 			ret = check_item_in_log(trans, root, log, path,
2510 						log_path, dir,
2511 						&found_key);
2512 			if (ret)
2513 				goto out;
2514 			if (found_key.offset == (u64)-1)
2515 				break;
2516 			dir_key.offset = found_key.offset + 1;
2517 		}
2518 		btrfs_release_path(path);
2519 		if (range_end == (u64)-1)
2520 			break;
2521 		range_start = range_end + 1;
2522 	}
2523 
2524 next_type:
2525 	ret = 0;
2526 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2527 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2528 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2529 		btrfs_release_path(path);
2530 		goto again;
2531 	}
2532 out:
2533 	btrfs_release_path(path);
2534 	btrfs_free_path(log_path);
2535 	iput(dir);
2536 	return ret;
2537 }
2538 
2539 /*
2540  * the process_func used to replay items from the log tree.  This
2541  * gets called in two different stages.  The first stage just looks
2542  * for inodes and makes sure they are all copied into the subvolume.
2543  *
2544  * The second stage copies all the other item types from the log into
2545  * the subvolume.  The two stage approach is slower, but gets rid of
2546  * lots of complexity around inodes referencing other inodes that exist
2547  * only in the log (references come from either directory items or inode
2548  * back refs).
2549  */
2550 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2551 			     struct walk_control *wc, u64 gen, int level)
2552 {
2553 	int nritems;
2554 	struct btrfs_path *path;
2555 	struct btrfs_root *root = wc->replay_dest;
2556 	struct btrfs_key key;
2557 	int i;
2558 	int ret;
2559 
2560 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2561 	if (ret)
2562 		return ret;
2563 
2564 	level = btrfs_header_level(eb);
2565 
2566 	if (level != 0)
2567 		return 0;
2568 
2569 	path = btrfs_alloc_path();
2570 	if (!path)
2571 		return -ENOMEM;
2572 
2573 	nritems = btrfs_header_nritems(eb);
2574 	for (i = 0; i < nritems; i++) {
2575 		btrfs_item_key_to_cpu(eb, &key, i);
2576 
2577 		/* inode keys are done during the first stage */
2578 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2579 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2580 			struct btrfs_inode_item *inode_item;
2581 			u32 mode;
2582 
2583 			inode_item = btrfs_item_ptr(eb, i,
2584 					    struct btrfs_inode_item);
2585 			/*
2586 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2587 			 * and never got linked before the fsync, skip it, as
2588 			 * replaying it is pointless since it would be deleted
2589 			 * later. We skip logging tmpfiles, but it's always
2590 			 * possible we are replaying a log created with a kernel
2591 			 * that used to log tmpfiles.
2592 			 */
2593 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2594 				wc->ignore_cur_inode = true;
2595 				continue;
2596 			} else {
2597 				wc->ignore_cur_inode = false;
2598 			}
2599 			ret = replay_xattr_deletes(wc->trans, root, log,
2600 						   path, key.objectid);
2601 			if (ret)
2602 				break;
2603 			mode = btrfs_inode_mode(eb, inode_item);
2604 			if (S_ISDIR(mode)) {
2605 				ret = replay_dir_deletes(wc->trans,
2606 					 root, log, path, key.objectid, 0);
2607 				if (ret)
2608 					break;
2609 			}
2610 			ret = overwrite_item(wc->trans, root, path,
2611 					     eb, i, &key);
2612 			if (ret)
2613 				break;
2614 
2615 			/*
2616 			 * Before replaying extents, truncate the inode to its
2617 			 * size. We need to do it now and not after log replay
2618 			 * because before an fsync we can have prealloc extents
2619 			 * added beyond the inode's i_size. If we did it after,
2620 			 * through orphan cleanup for example, we would drop
2621 			 * those prealloc extents just after replaying them.
2622 			 */
2623 			if (S_ISREG(mode)) {
2624 				struct btrfs_drop_extents_args drop_args = { 0 };
2625 				struct inode *inode;
2626 				u64 from;
2627 
2628 				inode = read_one_inode(root, key.objectid);
2629 				if (!inode) {
2630 					ret = -EIO;
2631 					break;
2632 				}
2633 				from = ALIGN(i_size_read(inode),
2634 					     root->fs_info->sectorsize);
2635 				drop_args.start = from;
2636 				drop_args.end = (u64)-1;
2637 				drop_args.drop_cache = true;
2638 				ret = btrfs_drop_extents(wc->trans, root,
2639 							 BTRFS_I(inode),
2640 							 &drop_args);
2641 				if (!ret) {
2642 					inode_sub_bytes(inode,
2643 							drop_args.bytes_found);
2644 					/* Update the inode's nbytes. */
2645 					ret = btrfs_update_inode(wc->trans,
2646 							root, BTRFS_I(inode));
2647 				}
2648 				iput(inode);
2649 				if (ret)
2650 					break;
2651 			}
2652 
2653 			ret = link_to_fixup_dir(wc->trans, root,
2654 						path, key.objectid);
2655 			if (ret)
2656 				break;
2657 		}
2658 
2659 		if (wc->ignore_cur_inode)
2660 			continue;
2661 
2662 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2663 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2664 			ret = replay_one_dir_item(wc->trans, root, path,
2665 						  eb, i, &key);
2666 			if (ret)
2667 				break;
2668 		}
2669 
2670 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2671 			continue;
2672 
2673 		/* these keys are simply copied */
2674 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2675 			ret = overwrite_item(wc->trans, root, path,
2676 					     eb, i, &key);
2677 			if (ret)
2678 				break;
2679 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2680 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2681 			ret = add_inode_ref(wc->trans, root, log, path,
2682 					    eb, i, &key);
2683 			if (ret && ret != -ENOENT)
2684 				break;
2685 			ret = 0;
2686 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2687 			ret = replay_one_extent(wc->trans, root, path,
2688 						eb, i, &key);
2689 			if (ret)
2690 				break;
2691 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2692 			ret = replay_one_dir_item(wc->trans, root, path,
2693 						  eb, i, &key);
2694 			if (ret)
2695 				break;
2696 		}
2697 	}
2698 	btrfs_free_path(path);
2699 	return ret;
2700 }
2701 
2702 /*
2703  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2704  */
2705 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2706 {
2707 	struct btrfs_block_group *cache;
2708 
2709 	cache = btrfs_lookup_block_group(fs_info, start);
2710 	if (!cache) {
2711 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2712 		return;
2713 	}
2714 
2715 	spin_lock(&cache->space_info->lock);
2716 	spin_lock(&cache->lock);
2717 	cache->reserved -= fs_info->nodesize;
2718 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2719 	spin_unlock(&cache->lock);
2720 	spin_unlock(&cache->space_info->lock);
2721 
2722 	btrfs_put_block_group(cache);
2723 }
2724 
2725 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2726 				   struct btrfs_root *root,
2727 				   struct btrfs_path *path, int *level,
2728 				   struct walk_control *wc)
2729 {
2730 	struct btrfs_fs_info *fs_info = root->fs_info;
2731 	u64 bytenr;
2732 	u64 ptr_gen;
2733 	struct extent_buffer *next;
2734 	struct extent_buffer *cur;
2735 	u32 blocksize;
2736 	int ret = 0;
2737 
2738 	while (*level > 0) {
2739 		struct btrfs_key first_key;
2740 
2741 		cur = path->nodes[*level];
2742 
2743 		WARN_ON(btrfs_header_level(cur) != *level);
2744 
2745 		if (path->slots[*level] >=
2746 		    btrfs_header_nritems(cur))
2747 			break;
2748 
2749 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2750 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2751 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2752 		blocksize = fs_info->nodesize;
2753 
2754 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2755 						    btrfs_header_owner(cur),
2756 						    *level - 1);
2757 		if (IS_ERR(next))
2758 			return PTR_ERR(next);
2759 
2760 		if (*level == 1) {
2761 			ret = wc->process_func(root, next, wc, ptr_gen,
2762 					       *level - 1);
2763 			if (ret) {
2764 				free_extent_buffer(next);
2765 				return ret;
2766 			}
2767 
2768 			path->slots[*level]++;
2769 			if (wc->free) {
2770 				ret = btrfs_read_buffer(next, ptr_gen,
2771 							*level - 1, &first_key);
2772 				if (ret) {
2773 					free_extent_buffer(next);
2774 					return ret;
2775 				}
2776 
2777 				if (trans) {
2778 					btrfs_tree_lock(next);
2779 					btrfs_clean_tree_block(next);
2780 					btrfs_wait_tree_block_writeback(next);
2781 					btrfs_tree_unlock(next);
2782 					ret = btrfs_pin_reserved_extent(trans,
2783 							bytenr, blocksize);
2784 					if (ret) {
2785 						free_extent_buffer(next);
2786 						return ret;
2787 					}
2788 					btrfs_redirty_list_add(
2789 						trans->transaction, next);
2790 				} else {
2791 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2792 						clear_extent_buffer_dirty(next);
2793 					unaccount_log_buffer(fs_info, bytenr);
2794 				}
2795 			}
2796 			free_extent_buffer(next);
2797 			continue;
2798 		}
2799 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2800 		if (ret) {
2801 			free_extent_buffer(next);
2802 			return ret;
2803 		}
2804 
2805 		if (path->nodes[*level-1])
2806 			free_extent_buffer(path->nodes[*level-1]);
2807 		path->nodes[*level-1] = next;
2808 		*level = btrfs_header_level(next);
2809 		path->slots[*level] = 0;
2810 		cond_resched();
2811 	}
2812 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2813 
2814 	cond_resched();
2815 	return 0;
2816 }
2817 
2818 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2819 				 struct btrfs_root *root,
2820 				 struct btrfs_path *path, int *level,
2821 				 struct walk_control *wc)
2822 {
2823 	struct btrfs_fs_info *fs_info = root->fs_info;
2824 	int i;
2825 	int slot;
2826 	int ret;
2827 
2828 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2829 		slot = path->slots[i];
2830 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2831 			path->slots[i]++;
2832 			*level = i;
2833 			WARN_ON(*level == 0);
2834 			return 0;
2835 		} else {
2836 			ret = wc->process_func(root, path->nodes[*level], wc,
2837 				 btrfs_header_generation(path->nodes[*level]),
2838 				 *level);
2839 			if (ret)
2840 				return ret;
2841 
2842 			if (wc->free) {
2843 				struct extent_buffer *next;
2844 
2845 				next = path->nodes[*level];
2846 
2847 				if (trans) {
2848 					btrfs_tree_lock(next);
2849 					btrfs_clean_tree_block(next);
2850 					btrfs_wait_tree_block_writeback(next);
2851 					btrfs_tree_unlock(next);
2852 					ret = btrfs_pin_reserved_extent(trans,
2853 						     path->nodes[*level]->start,
2854 						     path->nodes[*level]->len);
2855 					if (ret)
2856 						return ret;
2857 				} else {
2858 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2859 						clear_extent_buffer_dirty(next);
2860 
2861 					unaccount_log_buffer(fs_info,
2862 						path->nodes[*level]->start);
2863 				}
2864 			}
2865 			free_extent_buffer(path->nodes[*level]);
2866 			path->nodes[*level] = NULL;
2867 			*level = i + 1;
2868 		}
2869 	}
2870 	return 1;
2871 }
2872 
2873 /*
2874  * drop the reference count on the tree rooted at 'snap'.  This traverses
2875  * the tree freeing any blocks that have a ref count of zero after being
2876  * decremented.
2877  */
2878 static int walk_log_tree(struct btrfs_trans_handle *trans,
2879 			 struct btrfs_root *log, struct walk_control *wc)
2880 {
2881 	struct btrfs_fs_info *fs_info = log->fs_info;
2882 	int ret = 0;
2883 	int wret;
2884 	int level;
2885 	struct btrfs_path *path;
2886 	int orig_level;
2887 
2888 	path = btrfs_alloc_path();
2889 	if (!path)
2890 		return -ENOMEM;
2891 
2892 	level = btrfs_header_level(log->node);
2893 	orig_level = level;
2894 	path->nodes[level] = log->node;
2895 	atomic_inc(&log->node->refs);
2896 	path->slots[level] = 0;
2897 
2898 	while (1) {
2899 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2900 		if (wret > 0)
2901 			break;
2902 		if (wret < 0) {
2903 			ret = wret;
2904 			goto out;
2905 		}
2906 
2907 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2908 		if (wret > 0)
2909 			break;
2910 		if (wret < 0) {
2911 			ret = wret;
2912 			goto out;
2913 		}
2914 	}
2915 
2916 	/* was the root node processed? if not, catch it here */
2917 	if (path->nodes[orig_level]) {
2918 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2919 			 btrfs_header_generation(path->nodes[orig_level]),
2920 			 orig_level);
2921 		if (ret)
2922 			goto out;
2923 		if (wc->free) {
2924 			struct extent_buffer *next;
2925 
2926 			next = path->nodes[orig_level];
2927 
2928 			if (trans) {
2929 				btrfs_tree_lock(next);
2930 				btrfs_clean_tree_block(next);
2931 				btrfs_wait_tree_block_writeback(next);
2932 				btrfs_tree_unlock(next);
2933 				ret = btrfs_pin_reserved_extent(trans,
2934 						next->start, next->len);
2935 				if (ret)
2936 					goto out;
2937 			} else {
2938 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2939 					clear_extent_buffer_dirty(next);
2940 				unaccount_log_buffer(fs_info, next->start);
2941 			}
2942 		}
2943 	}
2944 
2945 out:
2946 	btrfs_free_path(path);
2947 	return ret;
2948 }
2949 
2950 /*
2951  * helper function to update the item for a given subvolumes log root
2952  * in the tree of log roots
2953  */
2954 static int update_log_root(struct btrfs_trans_handle *trans,
2955 			   struct btrfs_root *log,
2956 			   struct btrfs_root_item *root_item)
2957 {
2958 	struct btrfs_fs_info *fs_info = log->fs_info;
2959 	int ret;
2960 
2961 	if (log->log_transid == 1) {
2962 		/* insert root item on the first sync */
2963 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2964 				&log->root_key, root_item);
2965 	} else {
2966 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2967 				&log->root_key, root_item);
2968 	}
2969 	return ret;
2970 }
2971 
2972 static void wait_log_commit(struct btrfs_root *root, int transid)
2973 {
2974 	DEFINE_WAIT(wait);
2975 	int index = transid % 2;
2976 
2977 	/*
2978 	 * we only allow two pending log transactions at a time,
2979 	 * so we know that if ours is more than 2 older than the
2980 	 * current transaction, we're done
2981 	 */
2982 	for (;;) {
2983 		prepare_to_wait(&root->log_commit_wait[index],
2984 				&wait, TASK_UNINTERRUPTIBLE);
2985 
2986 		if (!(root->log_transid_committed < transid &&
2987 		      atomic_read(&root->log_commit[index])))
2988 			break;
2989 
2990 		mutex_unlock(&root->log_mutex);
2991 		schedule();
2992 		mutex_lock(&root->log_mutex);
2993 	}
2994 	finish_wait(&root->log_commit_wait[index], &wait);
2995 }
2996 
2997 static void wait_for_writer(struct btrfs_root *root)
2998 {
2999 	DEFINE_WAIT(wait);
3000 
3001 	for (;;) {
3002 		prepare_to_wait(&root->log_writer_wait, &wait,
3003 				TASK_UNINTERRUPTIBLE);
3004 		if (!atomic_read(&root->log_writers))
3005 			break;
3006 
3007 		mutex_unlock(&root->log_mutex);
3008 		schedule();
3009 		mutex_lock(&root->log_mutex);
3010 	}
3011 	finish_wait(&root->log_writer_wait, &wait);
3012 }
3013 
3014 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3015 					struct btrfs_log_ctx *ctx)
3016 {
3017 	if (!ctx)
3018 		return;
3019 
3020 	mutex_lock(&root->log_mutex);
3021 	list_del_init(&ctx->list);
3022 	mutex_unlock(&root->log_mutex);
3023 }
3024 
3025 /*
3026  * Invoked in log mutex context, or be sure there is no other task which
3027  * can access the list.
3028  */
3029 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3030 					     int index, int error)
3031 {
3032 	struct btrfs_log_ctx *ctx;
3033 	struct btrfs_log_ctx *safe;
3034 
3035 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3036 		list_del_init(&ctx->list);
3037 		ctx->log_ret = error;
3038 	}
3039 
3040 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3041 }
3042 
3043 /*
3044  * btrfs_sync_log does sends a given tree log down to the disk and
3045  * updates the super blocks to record it.  When this call is done,
3046  * you know that any inodes previously logged are safely on disk only
3047  * if it returns 0.
3048  *
3049  * Any other return value means you need to call btrfs_commit_transaction.
3050  * Some of the edge cases for fsyncing directories that have had unlinks
3051  * or renames done in the past mean that sometimes the only safe
3052  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3053  * that has happened.
3054  */
3055 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3056 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3057 {
3058 	int index1;
3059 	int index2;
3060 	int mark;
3061 	int ret;
3062 	struct btrfs_fs_info *fs_info = root->fs_info;
3063 	struct btrfs_root *log = root->log_root;
3064 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3065 	struct btrfs_root_item new_root_item;
3066 	int log_transid = 0;
3067 	struct btrfs_log_ctx root_log_ctx;
3068 	struct blk_plug plug;
3069 	u64 log_root_start;
3070 	u64 log_root_level;
3071 
3072 	mutex_lock(&root->log_mutex);
3073 	log_transid = ctx->log_transid;
3074 	if (root->log_transid_committed >= log_transid) {
3075 		mutex_unlock(&root->log_mutex);
3076 		return ctx->log_ret;
3077 	}
3078 
3079 	index1 = log_transid % 2;
3080 	if (atomic_read(&root->log_commit[index1])) {
3081 		wait_log_commit(root, log_transid);
3082 		mutex_unlock(&root->log_mutex);
3083 		return ctx->log_ret;
3084 	}
3085 	ASSERT(log_transid == root->log_transid);
3086 	atomic_set(&root->log_commit[index1], 1);
3087 
3088 	/* wait for previous tree log sync to complete */
3089 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3090 		wait_log_commit(root, log_transid - 1);
3091 
3092 	while (1) {
3093 		int batch = atomic_read(&root->log_batch);
3094 		/* when we're on an ssd, just kick the log commit out */
3095 		if (!btrfs_test_opt(fs_info, SSD) &&
3096 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3097 			mutex_unlock(&root->log_mutex);
3098 			schedule_timeout_uninterruptible(1);
3099 			mutex_lock(&root->log_mutex);
3100 		}
3101 		wait_for_writer(root);
3102 		if (batch == atomic_read(&root->log_batch))
3103 			break;
3104 	}
3105 
3106 	/* bail out if we need to do a full commit */
3107 	if (btrfs_need_log_full_commit(trans)) {
3108 		ret = -EAGAIN;
3109 		mutex_unlock(&root->log_mutex);
3110 		goto out;
3111 	}
3112 
3113 	if (log_transid % 2 == 0)
3114 		mark = EXTENT_DIRTY;
3115 	else
3116 		mark = EXTENT_NEW;
3117 
3118 	/* we start IO on  all the marked extents here, but we don't actually
3119 	 * wait for them until later.
3120 	 */
3121 	blk_start_plug(&plug);
3122 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3123 	/*
3124 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3125 	 *  commit, writes a dirty extent in this tree-log commit. This
3126 	 *  concurrent write will create a hole writing out the extents,
3127 	 *  and we cannot proceed on a zoned filesystem, requiring
3128 	 *  sequential writing. While we can bail out to a full commit
3129 	 *  here, but we can continue hoping the concurrent writing fills
3130 	 *  the hole.
3131 	 */
3132 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3133 		ret = 0;
3134 	if (ret) {
3135 		blk_finish_plug(&plug);
3136 		btrfs_abort_transaction(trans, ret);
3137 		btrfs_set_log_full_commit(trans);
3138 		mutex_unlock(&root->log_mutex);
3139 		goto out;
3140 	}
3141 
3142 	/*
3143 	 * We _must_ update under the root->log_mutex in order to make sure we
3144 	 * have a consistent view of the log root we are trying to commit at
3145 	 * this moment.
3146 	 *
3147 	 * We _must_ copy this into a local copy, because we are not holding the
3148 	 * log_root_tree->log_mutex yet.  This is important because when we
3149 	 * commit the log_root_tree we must have a consistent view of the
3150 	 * log_root_tree when we update the super block to point at the
3151 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3152 	 * with the commit and possibly point at the new block which we may not
3153 	 * have written out.
3154 	 */
3155 	btrfs_set_root_node(&log->root_item, log->node);
3156 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3157 
3158 	root->log_transid++;
3159 	log->log_transid = root->log_transid;
3160 	root->log_start_pid = 0;
3161 	/*
3162 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3163 	 * in their headers. new modifications of the log will be written to
3164 	 * new positions. so it's safe to allow log writers to go in.
3165 	 */
3166 	mutex_unlock(&root->log_mutex);
3167 
3168 	if (btrfs_is_zoned(fs_info)) {
3169 		mutex_lock(&fs_info->tree_root->log_mutex);
3170 		if (!log_root_tree->node) {
3171 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3172 			if (ret) {
3173 				mutex_unlock(&fs_info->tree_log_mutex);
3174 				goto out;
3175 			}
3176 		}
3177 		mutex_unlock(&fs_info->tree_root->log_mutex);
3178 	}
3179 
3180 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3181 
3182 	mutex_lock(&log_root_tree->log_mutex);
3183 
3184 	index2 = log_root_tree->log_transid % 2;
3185 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3186 	root_log_ctx.log_transid = log_root_tree->log_transid;
3187 
3188 	/*
3189 	 * Now we are safe to update the log_root_tree because we're under the
3190 	 * log_mutex, and we're a current writer so we're holding the commit
3191 	 * open until we drop the log_mutex.
3192 	 */
3193 	ret = update_log_root(trans, log, &new_root_item);
3194 	if (ret) {
3195 		if (!list_empty(&root_log_ctx.list))
3196 			list_del_init(&root_log_ctx.list);
3197 
3198 		blk_finish_plug(&plug);
3199 		btrfs_set_log_full_commit(trans);
3200 
3201 		if (ret != -ENOSPC) {
3202 			btrfs_abort_transaction(trans, ret);
3203 			mutex_unlock(&log_root_tree->log_mutex);
3204 			goto out;
3205 		}
3206 		btrfs_wait_tree_log_extents(log, mark);
3207 		mutex_unlock(&log_root_tree->log_mutex);
3208 		ret = -EAGAIN;
3209 		goto out;
3210 	}
3211 
3212 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3213 		blk_finish_plug(&plug);
3214 		list_del_init(&root_log_ctx.list);
3215 		mutex_unlock(&log_root_tree->log_mutex);
3216 		ret = root_log_ctx.log_ret;
3217 		goto out;
3218 	}
3219 
3220 	index2 = root_log_ctx.log_transid % 2;
3221 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3222 		blk_finish_plug(&plug);
3223 		ret = btrfs_wait_tree_log_extents(log, mark);
3224 		wait_log_commit(log_root_tree,
3225 				root_log_ctx.log_transid);
3226 		mutex_unlock(&log_root_tree->log_mutex);
3227 		if (!ret)
3228 			ret = root_log_ctx.log_ret;
3229 		goto out;
3230 	}
3231 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3232 	atomic_set(&log_root_tree->log_commit[index2], 1);
3233 
3234 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3235 		wait_log_commit(log_root_tree,
3236 				root_log_ctx.log_transid - 1);
3237 	}
3238 
3239 	/*
3240 	 * now that we've moved on to the tree of log tree roots,
3241 	 * check the full commit flag again
3242 	 */
3243 	if (btrfs_need_log_full_commit(trans)) {
3244 		blk_finish_plug(&plug);
3245 		btrfs_wait_tree_log_extents(log, mark);
3246 		mutex_unlock(&log_root_tree->log_mutex);
3247 		ret = -EAGAIN;
3248 		goto out_wake_log_root;
3249 	}
3250 
3251 	ret = btrfs_write_marked_extents(fs_info,
3252 					 &log_root_tree->dirty_log_pages,
3253 					 EXTENT_DIRTY | EXTENT_NEW);
3254 	blk_finish_plug(&plug);
3255 	/*
3256 	 * As described above, -EAGAIN indicates a hole in the extents. We
3257 	 * cannot wait for these write outs since the waiting cause a
3258 	 * deadlock. Bail out to the full commit instead.
3259 	 */
3260 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3261 		btrfs_set_log_full_commit(trans);
3262 		btrfs_wait_tree_log_extents(log, mark);
3263 		mutex_unlock(&log_root_tree->log_mutex);
3264 		goto out_wake_log_root;
3265 	} else if (ret) {
3266 		btrfs_set_log_full_commit(trans);
3267 		btrfs_abort_transaction(trans, ret);
3268 		mutex_unlock(&log_root_tree->log_mutex);
3269 		goto out_wake_log_root;
3270 	}
3271 	ret = btrfs_wait_tree_log_extents(log, mark);
3272 	if (!ret)
3273 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3274 						  EXTENT_NEW | EXTENT_DIRTY);
3275 	if (ret) {
3276 		btrfs_set_log_full_commit(trans);
3277 		mutex_unlock(&log_root_tree->log_mutex);
3278 		goto out_wake_log_root;
3279 	}
3280 
3281 	log_root_start = log_root_tree->node->start;
3282 	log_root_level = btrfs_header_level(log_root_tree->node);
3283 	log_root_tree->log_transid++;
3284 	mutex_unlock(&log_root_tree->log_mutex);
3285 
3286 	/*
3287 	 * Here we are guaranteed that nobody is going to write the superblock
3288 	 * for the current transaction before us and that neither we do write
3289 	 * our superblock before the previous transaction finishes its commit
3290 	 * and writes its superblock, because:
3291 	 *
3292 	 * 1) We are holding a handle on the current transaction, so no body
3293 	 *    can commit it until we release the handle;
3294 	 *
3295 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3296 	 *    if the previous transaction is still committing, and hasn't yet
3297 	 *    written its superblock, we wait for it to do it, because a
3298 	 *    transaction commit acquires the tree_log_mutex when the commit
3299 	 *    begins and releases it only after writing its superblock.
3300 	 */
3301 	mutex_lock(&fs_info->tree_log_mutex);
3302 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3303 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3304 	ret = write_all_supers(fs_info, 1);
3305 	mutex_unlock(&fs_info->tree_log_mutex);
3306 	if (ret) {
3307 		btrfs_set_log_full_commit(trans);
3308 		btrfs_abort_transaction(trans, ret);
3309 		goto out_wake_log_root;
3310 	}
3311 
3312 	mutex_lock(&root->log_mutex);
3313 	if (root->last_log_commit < log_transid)
3314 		root->last_log_commit = log_transid;
3315 	mutex_unlock(&root->log_mutex);
3316 
3317 out_wake_log_root:
3318 	mutex_lock(&log_root_tree->log_mutex);
3319 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3320 
3321 	log_root_tree->log_transid_committed++;
3322 	atomic_set(&log_root_tree->log_commit[index2], 0);
3323 	mutex_unlock(&log_root_tree->log_mutex);
3324 
3325 	/*
3326 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3327 	 * all the updates above are seen by the woken threads. It might not be
3328 	 * necessary, but proving that seems to be hard.
3329 	 */
3330 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3331 out:
3332 	mutex_lock(&root->log_mutex);
3333 	btrfs_remove_all_log_ctxs(root, index1, ret);
3334 	root->log_transid_committed++;
3335 	atomic_set(&root->log_commit[index1], 0);
3336 	mutex_unlock(&root->log_mutex);
3337 
3338 	/*
3339 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3340 	 * all the updates above are seen by the woken threads. It might not be
3341 	 * necessary, but proving that seems to be hard.
3342 	 */
3343 	cond_wake_up(&root->log_commit_wait[index1]);
3344 	return ret;
3345 }
3346 
3347 static void free_log_tree(struct btrfs_trans_handle *trans,
3348 			  struct btrfs_root *log)
3349 {
3350 	int ret;
3351 	struct walk_control wc = {
3352 		.free = 1,
3353 		.process_func = process_one_buffer
3354 	};
3355 
3356 	if (log->node) {
3357 		ret = walk_log_tree(trans, log, &wc);
3358 		if (ret) {
3359 			if (trans)
3360 				btrfs_abort_transaction(trans, ret);
3361 			else
3362 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3363 		}
3364 	}
3365 
3366 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3367 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3368 	extent_io_tree_release(&log->log_csum_range);
3369 
3370 	if (trans && log->node)
3371 		btrfs_redirty_list_add(trans->transaction, log->node);
3372 	btrfs_put_root(log);
3373 }
3374 
3375 /*
3376  * free all the extents used by the tree log.  This should be called
3377  * at commit time of the full transaction
3378  */
3379 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3380 {
3381 	if (root->log_root) {
3382 		free_log_tree(trans, root->log_root);
3383 		root->log_root = NULL;
3384 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3385 	}
3386 	return 0;
3387 }
3388 
3389 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3390 			     struct btrfs_fs_info *fs_info)
3391 {
3392 	if (fs_info->log_root_tree) {
3393 		free_log_tree(trans, fs_info->log_root_tree);
3394 		fs_info->log_root_tree = NULL;
3395 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3396 	}
3397 	return 0;
3398 }
3399 
3400 /*
3401  * Check if an inode was logged in the current transaction. We can't always rely
3402  * on an inode's logged_trans value, because it's an in-memory only field and
3403  * therefore not persisted. This means that its value is lost if the inode gets
3404  * evicted and loaded again from disk (in which case it has a value of 0, and
3405  * certainly it is smaller then any possible transaction ID), when that happens
3406  * the full_sync flag is set in the inode's runtime flags, so on that case we
3407  * assume eviction happened and ignore the logged_trans value, assuming the
3408  * worst case, that the inode was logged before in the current transaction.
3409  */
3410 static bool inode_logged(struct btrfs_trans_handle *trans,
3411 			 struct btrfs_inode *inode)
3412 {
3413 	if (inode->logged_trans == trans->transid)
3414 		return true;
3415 
3416 	if (inode->last_trans == trans->transid &&
3417 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3418 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3419 		return true;
3420 
3421 	return false;
3422 }
3423 
3424 /*
3425  * If both a file and directory are logged, and unlinks or renames are
3426  * mixed in, we have a few interesting corners:
3427  *
3428  * create file X in dir Y
3429  * link file X to X.link in dir Y
3430  * fsync file X
3431  * unlink file X but leave X.link
3432  * fsync dir Y
3433  *
3434  * After a crash we would expect only X.link to exist.  But file X
3435  * didn't get fsync'd again so the log has back refs for X and X.link.
3436  *
3437  * We solve this by removing directory entries and inode backrefs from the
3438  * log when a file that was logged in the current transaction is
3439  * unlinked.  Any later fsync will include the updated log entries, and
3440  * we'll be able to reconstruct the proper directory items from backrefs.
3441  *
3442  * This optimizations allows us to avoid relogging the entire inode
3443  * or the entire directory.
3444  */
3445 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3446 				 struct btrfs_root *root,
3447 				 const char *name, int name_len,
3448 				 struct btrfs_inode *dir, u64 index)
3449 {
3450 	struct btrfs_root *log;
3451 	struct btrfs_dir_item *di;
3452 	struct btrfs_path *path;
3453 	int ret;
3454 	int err = 0;
3455 	u64 dir_ino = btrfs_ino(dir);
3456 
3457 	if (!inode_logged(trans, dir))
3458 		return 0;
3459 
3460 	ret = join_running_log_trans(root);
3461 	if (ret)
3462 		return 0;
3463 
3464 	mutex_lock(&dir->log_mutex);
3465 
3466 	log = root->log_root;
3467 	path = btrfs_alloc_path();
3468 	if (!path) {
3469 		err = -ENOMEM;
3470 		goto out_unlock;
3471 	}
3472 
3473 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3474 				   name, name_len, -1);
3475 	if (IS_ERR(di)) {
3476 		err = PTR_ERR(di);
3477 		goto fail;
3478 	}
3479 	if (di) {
3480 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3481 		if (ret) {
3482 			err = ret;
3483 			goto fail;
3484 		}
3485 	}
3486 	btrfs_release_path(path);
3487 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3488 					 index, name, name_len, -1);
3489 	if (IS_ERR(di)) {
3490 		err = PTR_ERR(di);
3491 		goto fail;
3492 	}
3493 	if (di) {
3494 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3495 		if (ret) {
3496 			err = ret;
3497 			goto fail;
3498 		}
3499 	}
3500 
3501 	/*
3502 	 * We do not need to update the size field of the directory's inode item
3503 	 * because on log replay we update the field to reflect all existing
3504 	 * entries in the directory (see overwrite_item()).
3505 	 */
3506 fail:
3507 	btrfs_free_path(path);
3508 out_unlock:
3509 	mutex_unlock(&dir->log_mutex);
3510 	if (err == -ENOSPC) {
3511 		btrfs_set_log_full_commit(trans);
3512 		err = 0;
3513 	} else if (err < 0 && err != -ENOENT) {
3514 		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3515 		btrfs_abort_transaction(trans, err);
3516 	}
3517 
3518 	btrfs_end_log_trans(root);
3519 
3520 	return err;
3521 }
3522 
3523 /* see comments for btrfs_del_dir_entries_in_log */
3524 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3525 			       struct btrfs_root *root,
3526 			       const char *name, int name_len,
3527 			       struct btrfs_inode *inode, u64 dirid)
3528 {
3529 	struct btrfs_root *log;
3530 	u64 index;
3531 	int ret;
3532 
3533 	if (!inode_logged(trans, inode))
3534 		return 0;
3535 
3536 	ret = join_running_log_trans(root);
3537 	if (ret)
3538 		return 0;
3539 	log = root->log_root;
3540 	mutex_lock(&inode->log_mutex);
3541 
3542 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3543 				  dirid, &index);
3544 	mutex_unlock(&inode->log_mutex);
3545 	if (ret == -ENOSPC) {
3546 		btrfs_set_log_full_commit(trans);
3547 		ret = 0;
3548 	} else if (ret < 0 && ret != -ENOENT)
3549 		btrfs_abort_transaction(trans, ret);
3550 	btrfs_end_log_trans(root);
3551 
3552 	return ret;
3553 }
3554 
3555 /*
3556  * creates a range item in the log for 'dirid'.  first_offset and
3557  * last_offset tell us which parts of the key space the log should
3558  * be considered authoritative for.
3559  */
3560 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3561 				       struct btrfs_root *log,
3562 				       struct btrfs_path *path,
3563 				       int key_type, u64 dirid,
3564 				       u64 first_offset, u64 last_offset)
3565 {
3566 	int ret;
3567 	struct btrfs_key key;
3568 	struct btrfs_dir_log_item *item;
3569 
3570 	key.objectid = dirid;
3571 	key.offset = first_offset;
3572 	if (key_type == BTRFS_DIR_ITEM_KEY)
3573 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3574 	else
3575 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3576 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3577 	if (ret)
3578 		return ret;
3579 
3580 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3581 			      struct btrfs_dir_log_item);
3582 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3583 	btrfs_mark_buffer_dirty(path->nodes[0]);
3584 	btrfs_release_path(path);
3585 	return 0;
3586 }
3587 
3588 /*
3589  * log all the items included in the current transaction for a given
3590  * directory.  This also creates the range items in the log tree required
3591  * to replay anything deleted before the fsync
3592  */
3593 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3594 			  struct btrfs_root *root, struct btrfs_inode *inode,
3595 			  struct btrfs_path *path,
3596 			  struct btrfs_path *dst_path, int key_type,
3597 			  struct btrfs_log_ctx *ctx,
3598 			  u64 min_offset, u64 *last_offset_ret)
3599 {
3600 	struct btrfs_key min_key;
3601 	struct btrfs_root *log = root->log_root;
3602 	struct extent_buffer *src;
3603 	int err = 0;
3604 	int ret;
3605 	int i;
3606 	int nritems;
3607 	u64 first_offset = min_offset;
3608 	u64 last_offset = (u64)-1;
3609 	u64 ino = btrfs_ino(inode);
3610 
3611 	log = root->log_root;
3612 
3613 	min_key.objectid = ino;
3614 	min_key.type = key_type;
3615 	min_key.offset = min_offset;
3616 
3617 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3618 
3619 	/*
3620 	 * we didn't find anything from this transaction, see if there
3621 	 * is anything at all
3622 	 */
3623 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3624 		min_key.objectid = ino;
3625 		min_key.type = key_type;
3626 		min_key.offset = (u64)-1;
3627 		btrfs_release_path(path);
3628 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3629 		if (ret < 0) {
3630 			btrfs_release_path(path);
3631 			return ret;
3632 		}
3633 		ret = btrfs_previous_item(root, path, ino, key_type);
3634 
3635 		/* if ret == 0 there are items for this type,
3636 		 * create a range to tell us the last key of this type.
3637 		 * otherwise, there are no items in this directory after
3638 		 * *min_offset, and we create a range to indicate that.
3639 		 */
3640 		if (ret == 0) {
3641 			struct btrfs_key tmp;
3642 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3643 					      path->slots[0]);
3644 			if (key_type == tmp.type)
3645 				first_offset = max(min_offset, tmp.offset) + 1;
3646 		}
3647 		goto done;
3648 	}
3649 
3650 	/* go backward to find any previous key */
3651 	ret = btrfs_previous_item(root, path, ino, key_type);
3652 	if (ret == 0) {
3653 		struct btrfs_key tmp;
3654 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3655 		if (key_type == tmp.type) {
3656 			first_offset = tmp.offset;
3657 			ret = overwrite_item(trans, log, dst_path,
3658 					     path->nodes[0], path->slots[0],
3659 					     &tmp);
3660 			if (ret) {
3661 				err = ret;
3662 				goto done;
3663 			}
3664 		}
3665 	}
3666 	btrfs_release_path(path);
3667 
3668 	/*
3669 	 * Find the first key from this transaction again.  See the note for
3670 	 * log_new_dir_dentries, if we're logging a directory recursively we
3671 	 * won't be holding its i_mutex, which means we can modify the directory
3672 	 * while we're logging it.  If we remove an entry between our first
3673 	 * search and this search we'll not find the key again and can just
3674 	 * bail.
3675 	 */
3676 search:
3677 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3678 	if (ret != 0)
3679 		goto done;
3680 
3681 	/*
3682 	 * we have a block from this transaction, log every item in it
3683 	 * from our directory
3684 	 */
3685 	while (1) {
3686 		struct btrfs_key tmp;
3687 		src = path->nodes[0];
3688 		nritems = btrfs_header_nritems(src);
3689 		for (i = path->slots[0]; i < nritems; i++) {
3690 			struct btrfs_dir_item *di;
3691 
3692 			btrfs_item_key_to_cpu(src, &min_key, i);
3693 
3694 			if (min_key.objectid != ino || min_key.type != key_type)
3695 				goto done;
3696 
3697 			if (need_resched()) {
3698 				btrfs_release_path(path);
3699 				cond_resched();
3700 				goto search;
3701 			}
3702 
3703 			ret = overwrite_item(trans, log, dst_path, src, i,
3704 					     &min_key);
3705 			if (ret) {
3706 				err = ret;
3707 				goto done;
3708 			}
3709 
3710 			/*
3711 			 * We must make sure that when we log a directory entry,
3712 			 * the corresponding inode, after log replay, has a
3713 			 * matching link count. For example:
3714 			 *
3715 			 * touch foo
3716 			 * mkdir mydir
3717 			 * sync
3718 			 * ln foo mydir/bar
3719 			 * xfs_io -c "fsync" mydir
3720 			 * <crash>
3721 			 * <mount fs and log replay>
3722 			 *
3723 			 * Would result in a fsync log that when replayed, our
3724 			 * file inode would have a link count of 1, but we get
3725 			 * two directory entries pointing to the same inode.
3726 			 * After removing one of the names, it would not be
3727 			 * possible to remove the other name, which resulted
3728 			 * always in stale file handle errors, and would not
3729 			 * be possible to rmdir the parent directory, since
3730 			 * its i_size could never decrement to the value
3731 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3732 			 */
3733 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3734 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3735 			if (ctx &&
3736 			    (btrfs_dir_transid(src, di) == trans->transid ||
3737 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3738 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3739 				ctx->log_new_dentries = true;
3740 		}
3741 		path->slots[0] = nritems;
3742 
3743 		/*
3744 		 * look ahead to the next item and see if it is also
3745 		 * from this directory and from this transaction
3746 		 */
3747 		ret = btrfs_next_leaf(root, path);
3748 		if (ret) {
3749 			if (ret == 1)
3750 				last_offset = (u64)-1;
3751 			else
3752 				err = ret;
3753 			goto done;
3754 		}
3755 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3756 		if (tmp.objectid != ino || tmp.type != key_type) {
3757 			last_offset = (u64)-1;
3758 			goto done;
3759 		}
3760 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3761 			ret = overwrite_item(trans, log, dst_path,
3762 					     path->nodes[0], path->slots[0],
3763 					     &tmp);
3764 			if (ret)
3765 				err = ret;
3766 			else
3767 				last_offset = tmp.offset;
3768 			goto done;
3769 		}
3770 	}
3771 done:
3772 	btrfs_release_path(path);
3773 	btrfs_release_path(dst_path);
3774 
3775 	if (err == 0) {
3776 		*last_offset_ret = last_offset;
3777 		/*
3778 		 * insert the log range keys to indicate where the log
3779 		 * is valid
3780 		 */
3781 		ret = insert_dir_log_key(trans, log, path, key_type,
3782 					 ino, first_offset, last_offset);
3783 		if (ret)
3784 			err = ret;
3785 	}
3786 	return err;
3787 }
3788 
3789 /*
3790  * logging directories is very similar to logging inodes, We find all the items
3791  * from the current transaction and write them to the log.
3792  *
3793  * The recovery code scans the directory in the subvolume, and if it finds a
3794  * key in the range logged that is not present in the log tree, then it means
3795  * that dir entry was unlinked during the transaction.
3796  *
3797  * In order for that scan to work, we must include one key smaller than
3798  * the smallest logged by this transaction and one key larger than the largest
3799  * key logged by this transaction.
3800  */
3801 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3802 			  struct btrfs_root *root, struct btrfs_inode *inode,
3803 			  struct btrfs_path *path,
3804 			  struct btrfs_path *dst_path,
3805 			  struct btrfs_log_ctx *ctx)
3806 {
3807 	u64 min_key;
3808 	u64 max_key;
3809 	int ret;
3810 	int key_type = BTRFS_DIR_ITEM_KEY;
3811 
3812 again:
3813 	min_key = 0;
3814 	max_key = 0;
3815 	while (1) {
3816 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3817 				ctx, min_key, &max_key);
3818 		if (ret)
3819 			return ret;
3820 		if (max_key == (u64)-1)
3821 			break;
3822 		min_key = max_key + 1;
3823 	}
3824 
3825 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3826 		key_type = BTRFS_DIR_INDEX_KEY;
3827 		goto again;
3828 	}
3829 	return 0;
3830 }
3831 
3832 /*
3833  * a helper function to drop items from the log before we relog an
3834  * inode.  max_key_type indicates the highest item type to remove.
3835  * This cannot be run for file data extents because it does not
3836  * free the extents they point to.
3837  */
3838 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3839 				  struct btrfs_root *log,
3840 				  struct btrfs_path *path,
3841 				  u64 objectid, int max_key_type)
3842 {
3843 	int ret;
3844 	struct btrfs_key key;
3845 	struct btrfs_key found_key;
3846 	int start_slot;
3847 
3848 	key.objectid = objectid;
3849 	key.type = max_key_type;
3850 	key.offset = (u64)-1;
3851 
3852 	while (1) {
3853 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3854 		BUG_ON(ret == 0); /* Logic error */
3855 		if (ret < 0)
3856 			break;
3857 
3858 		if (path->slots[0] == 0)
3859 			break;
3860 
3861 		path->slots[0]--;
3862 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3863 				      path->slots[0]);
3864 
3865 		if (found_key.objectid != objectid)
3866 			break;
3867 
3868 		found_key.offset = 0;
3869 		found_key.type = 0;
3870 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3871 		if (ret < 0)
3872 			break;
3873 
3874 		ret = btrfs_del_items(trans, log, path, start_slot,
3875 				      path->slots[0] - start_slot + 1);
3876 		/*
3877 		 * If start slot isn't 0 then we don't need to re-search, we've
3878 		 * found the last guy with the objectid in this tree.
3879 		 */
3880 		if (ret || start_slot != 0)
3881 			break;
3882 		btrfs_release_path(path);
3883 	}
3884 	btrfs_release_path(path);
3885 	if (ret > 0)
3886 		ret = 0;
3887 	return ret;
3888 }
3889 
3890 static void fill_inode_item(struct btrfs_trans_handle *trans,
3891 			    struct extent_buffer *leaf,
3892 			    struct btrfs_inode_item *item,
3893 			    struct inode *inode, int log_inode_only,
3894 			    u64 logged_isize)
3895 {
3896 	struct btrfs_map_token token;
3897 
3898 	btrfs_init_map_token(&token, leaf);
3899 
3900 	if (log_inode_only) {
3901 		/* set the generation to zero so the recover code
3902 		 * can tell the difference between an logging
3903 		 * just to say 'this inode exists' and a logging
3904 		 * to say 'update this inode with these values'
3905 		 */
3906 		btrfs_set_token_inode_generation(&token, item, 0);
3907 		btrfs_set_token_inode_size(&token, item, logged_isize);
3908 	} else {
3909 		btrfs_set_token_inode_generation(&token, item,
3910 						 BTRFS_I(inode)->generation);
3911 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3912 	}
3913 
3914 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3915 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3916 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3917 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3918 
3919 	btrfs_set_token_timespec_sec(&token, &item->atime,
3920 				     inode->i_atime.tv_sec);
3921 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3922 				      inode->i_atime.tv_nsec);
3923 
3924 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3925 				     inode->i_mtime.tv_sec);
3926 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3927 				      inode->i_mtime.tv_nsec);
3928 
3929 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3930 				     inode->i_ctime.tv_sec);
3931 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3932 				      inode->i_ctime.tv_nsec);
3933 
3934 	/*
3935 	 * We do not need to set the nbytes field, in fact during a fast fsync
3936 	 * its value may not even be correct, since a fast fsync does not wait
3937 	 * for ordered extent completion, which is where we update nbytes, it
3938 	 * only waits for writeback to complete. During log replay as we find
3939 	 * file extent items and replay them, we adjust the nbytes field of the
3940 	 * inode item in subvolume tree as needed (see overwrite_item()).
3941 	 */
3942 
3943 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3944 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3945 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3946 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3947 	btrfs_set_token_inode_block_group(&token, item, 0);
3948 }
3949 
3950 static int log_inode_item(struct btrfs_trans_handle *trans,
3951 			  struct btrfs_root *log, struct btrfs_path *path,
3952 			  struct btrfs_inode *inode)
3953 {
3954 	struct btrfs_inode_item *inode_item;
3955 	int ret;
3956 
3957 	ret = btrfs_insert_empty_item(trans, log, path,
3958 				      &inode->location, sizeof(*inode_item));
3959 	if (ret && ret != -EEXIST)
3960 		return ret;
3961 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3962 				    struct btrfs_inode_item);
3963 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3964 			0, 0);
3965 	btrfs_release_path(path);
3966 	return 0;
3967 }
3968 
3969 static int log_csums(struct btrfs_trans_handle *trans,
3970 		     struct btrfs_inode *inode,
3971 		     struct btrfs_root *log_root,
3972 		     struct btrfs_ordered_sum *sums)
3973 {
3974 	const u64 lock_end = sums->bytenr + sums->len - 1;
3975 	struct extent_state *cached_state = NULL;
3976 	int ret;
3977 
3978 	/*
3979 	 * If this inode was not used for reflink operations in the current
3980 	 * transaction with new extents, then do the fast path, no need to
3981 	 * worry about logging checksum items with overlapping ranges.
3982 	 */
3983 	if (inode->last_reflink_trans < trans->transid)
3984 		return btrfs_csum_file_blocks(trans, log_root, sums);
3985 
3986 	/*
3987 	 * Serialize logging for checksums. This is to avoid racing with the
3988 	 * same checksum being logged by another task that is logging another
3989 	 * file which happens to refer to the same extent as well. Such races
3990 	 * can leave checksum items in the log with overlapping ranges.
3991 	 */
3992 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3993 			       lock_end, &cached_state);
3994 	if (ret)
3995 		return ret;
3996 	/*
3997 	 * Due to extent cloning, we might have logged a csum item that covers a
3998 	 * subrange of a cloned extent, and later we can end up logging a csum
3999 	 * item for a larger subrange of the same extent or the entire range.
4000 	 * This would leave csum items in the log tree that cover the same range
4001 	 * and break the searches for checksums in the log tree, resulting in
4002 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4003 	 * trim and adjust) any existing csum items in the log for this range.
4004 	 */
4005 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4006 	if (!ret)
4007 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4008 
4009 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4010 			     &cached_state);
4011 
4012 	return ret;
4013 }
4014 
4015 static noinline int copy_items(struct btrfs_trans_handle *trans,
4016 			       struct btrfs_inode *inode,
4017 			       struct btrfs_path *dst_path,
4018 			       struct btrfs_path *src_path,
4019 			       int start_slot, int nr, int inode_only,
4020 			       u64 logged_isize)
4021 {
4022 	struct btrfs_fs_info *fs_info = trans->fs_info;
4023 	unsigned long src_offset;
4024 	unsigned long dst_offset;
4025 	struct btrfs_root *log = inode->root->log_root;
4026 	struct btrfs_file_extent_item *extent;
4027 	struct btrfs_inode_item *inode_item;
4028 	struct extent_buffer *src = src_path->nodes[0];
4029 	int ret;
4030 	struct btrfs_key *ins_keys;
4031 	u32 *ins_sizes;
4032 	char *ins_data;
4033 	int i;
4034 	struct list_head ordered_sums;
4035 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4036 
4037 	INIT_LIST_HEAD(&ordered_sums);
4038 
4039 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4040 			   nr * sizeof(u32), GFP_NOFS);
4041 	if (!ins_data)
4042 		return -ENOMEM;
4043 
4044 	ins_sizes = (u32 *)ins_data;
4045 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4046 
4047 	for (i = 0; i < nr; i++) {
4048 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4049 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4050 	}
4051 	ret = btrfs_insert_empty_items(trans, log, dst_path,
4052 				       ins_keys, ins_sizes, nr);
4053 	if (ret) {
4054 		kfree(ins_data);
4055 		return ret;
4056 	}
4057 
4058 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4059 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4060 						   dst_path->slots[0]);
4061 
4062 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4063 
4064 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4065 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4066 						    dst_path->slots[0],
4067 						    struct btrfs_inode_item);
4068 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4069 					&inode->vfs_inode,
4070 					inode_only == LOG_INODE_EXISTS,
4071 					logged_isize);
4072 		} else {
4073 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4074 					   src_offset, ins_sizes[i]);
4075 		}
4076 
4077 		/* take a reference on file data extents so that truncates
4078 		 * or deletes of this inode don't have to relog the inode
4079 		 * again
4080 		 */
4081 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4082 		    !skip_csum) {
4083 			int found_type;
4084 			extent = btrfs_item_ptr(src, start_slot + i,
4085 						struct btrfs_file_extent_item);
4086 
4087 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4088 				continue;
4089 
4090 			found_type = btrfs_file_extent_type(src, extent);
4091 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4092 				u64 ds, dl, cs, cl;
4093 				ds = btrfs_file_extent_disk_bytenr(src,
4094 								extent);
4095 				/* ds == 0 is a hole */
4096 				if (ds == 0)
4097 					continue;
4098 
4099 				dl = btrfs_file_extent_disk_num_bytes(src,
4100 								extent);
4101 				cs = btrfs_file_extent_offset(src, extent);
4102 				cl = btrfs_file_extent_num_bytes(src,
4103 								extent);
4104 				if (btrfs_file_extent_compression(src,
4105 								  extent)) {
4106 					cs = 0;
4107 					cl = dl;
4108 				}
4109 
4110 				ret = btrfs_lookup_csums_range(
4111 						fs_info->csum_root,
4112 						ds + cs, ds + cs + cl - 1,
4113 						&ordered_sums, 0);
4114 				if (ret)
4115 					break;
4116 			}
4117 		}
4118 	}
4119 
4120 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4121 	btrfs_release_path(dst_path);
4122 	kfree(ins_data);
4123 
4124 	/*
4125 	 * we have to do this after the loop above to avoid changing the
4126 	 * log tree while trying to change the log tree.
4127 	 */
4128 	while (!list_empty(&ordered_sums)) {
4129 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4130 						   struct btrfs_ordered_sum,
4131 						   list);
4132 		if (!ret)
4133 			ret = log_csums(trans, inode, log, sums);
4134 		list_del(&sums->list);
4135 		kfree(sums);
4136 	}
4137 
4138 	return ret;
4139 }
4140 
4141 static int extent_cmp(void *priv, const struct list_head *a,
4142 		      const struct list_head *b)
4143 {
4144 	struct extent_map *em1, *em2;
4145 
4146 	em1 = list_entry(a, struct extent_map, list);
4147 	em2 = list_entry(b, struct extent_map, list);
4148 
4149 	if (em1->start < em2->start)
4150 		return -1;
4151 	else if (em1->start > em2->start)
4152 		return 1;
4153 	return 0;
4154 }
4155 
4156 static int log_extent_csums(struct btrfs_trans_handle *trans,
4157 			    struct btrfs_inode *inode,
4158 			    struct btrfs_root *log_root,
4159 			    const struct extent_map *em,
4160 			    struct btrfs_log_ctx *ctx)
4161 {
4162 	struct btrfs_ordered_extent *ordered;
4163 	u64 csum_offset;
4164 	u64 csum_len;
4165 	u64 mod_start = em->mod_start;
4166 	u64 mod_len = em->mod_len;
4167 	LIST_HEAD(ordered_sums);
4168 	int ret = 0;
4169 
4170 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4171 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4172 	    em->block_start == EXTENT_MAP_HOLE)
4173 		return 0;
4174 
4175 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4176 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4177 		const u64 mod_end = mod_start + mod_len;
4178 		struct btrfs_ordered_sum *sums;
4179 
4180 		if (mod_len == 0)
4181 			break;
4182 
4183 		if (ordered_end <= mod_start)
4184 			continue;
4185 		if (mod_end <= ordered->file_offset)
4186 			break;
4187 
4188 		/*
4189 		 * We are going to copy all the csums on this ordered extent, so
4190 		 * go ahead and adjust mod_start and mod_len in case this ordered
4191 		 * extent has already been logged.
4192 		 */
4193 		if (ordered->file_offset > mod_start) {
4194 			if (ordered_end >= mod_end)
4195 				mod_len = ordered->file_offset - mod_start;
4196 			/*
4197 			 * If we have this case
4198 			 *
4199 			 * |--------- logged extent ---------|
4200 			 *       |----- ordered extent ----|
4201 			 *
4202 			 * Just don't mess with mod_start and mod_len, we'll
4203 			 * just end up logging more csums than we need and it
4204 			 * will be ok.
4205 			 */
4206 		} else {
4207 			if (ordered_end < mod_end) {
4208 				mod_len = mod_end - ordered_end;
4209 				mod_start = ordered_end;
4210 			} else {
4211 				mod_len = 0;
4212 			}
4213 		}
4214 
4215 		/*
4216 		 * To keep us from looping for the above case of an ordered
4217 		 * extent that falls inside of the logged extent.
4218 		 */
4219 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4220 			continue;
4221 
4222 		list_for_each_entry(sums, &ordered->list, list) {
4223 			ret = log_csums(trans, inode, log_root, sums);
4224 			if (ret)
4225 				return ret;
4226 		}
4227 	}
4228 
4229 	/* We're done, found all csums in the ordered extents. */
4230 	if (mod_len == 0)
4231 		return 0;
4232 
4233 	/* If we're compressed we have to save the entire range of csums. */
4234 	if (em->compress_type) {
4235 		csum_offset = 0;
4236 		csum_len = max(em->block_len, em->orig_block_len);
4237 	} else {
4238 		csum_offset = mod_start - em->start;
4239 		csum_len = mod_len;
4240 	}
4241 
4242 	/* block start is already adjusted for the file extent offset. */
4243 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4244 				       em->block_start + csum_offset,
4245 				       em->block_start + csum_offset +
4246 				       csum_len - 1, &ordered_sums, 0);
4247 	if (ret)
4248 		return ret;
4249 
4250 	while (!list_empty(&ordered_sums)) {
4251 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4252 						   struct btrfs_ordered_sum,
4253 						   list);
4254 		if (!ret)
4255 			ret = log_csums(trans, inode, log_root, sums);
4256 		list_del(&sums->list);
4257 		kfree(sums);
4258 	}
4259 
4260 	return ret;
4261 }
4262 
4263 static int log_one_extent(struct btrfs_trans_handle *trans,
4264 			  struct btrfs_inode *inode, struct btrfs_root *root,
4265 			  const struct extent_map *em,
4266 			  struct btrfs_path *path,
4267 			  struct btrfs_log_ctx *ctx)
4268 {
4269 	struct btrfs_drop_extents_args drop_args = { 0 };
4270 	struct btrfs_root *log = root->log_root;
4271 	struct btrfs_file_extent_item *fi;
4272 	struct extent_buffer *leaf;
4273 	struct btrfs_map_token token;
4274 	struct btrfs_key key;
4275 	u64 extent_offset = em->start - em->orig_start;
4276 	u64 block_len;
4277 	int ret;
4278 
4279 	ret = log_extent_csums(trans, inode, log, em, ctx);
4280 	if (ret)
4281 		return ret;
4282 
4283 	drop_args.path = path;
4284 	drop_args.start = em->start;
4285 	drop_args.end = em->start + em->len;
4286 	drop_args.replace_extent = true;
4287 	drop_args.extent_item_size = sizeof(*fi);
4288 	ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4289 	if (ret)
4290 		return ret;
4291 
4292 	if (!drop_args.extent_inserted) {
4293 		key.objectid = btrfs_ino(inode);
4294 		key.type = BTRFS_EXTENT_DATA_KEY;
4295 		key.offset = em->start;
4296 
4297 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4298 					      sizeof(*fi));
4299 		if (ret)
4300 			return ret;
4301 	}
4302 	leaf = path->nodes[0];
4303 	btrfs_init_map_token(&token, leaf);
4304 	fi = btrfs_item_ptr(leaf, path->slots[0],
4305 			    struct btrfs_file_extent_item);
4306 
4307 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4308 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4309 		btrfs_set_token_file_extent_type(&token, fi,
4310 						 BTRFS_FILE_EXTENT_PREALLOC);
4311 	else
4312 		btrfs_set_token_file_extent_type(&token, fi,
4313 						 BTRFS_FILE_EXTENT_REG);
4314 
4315 	block_len = max(em->block_len, em->orig_block_len);
4316 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4317 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4318 							em->block_start);
4319 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4320 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4321 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4322 							em->block_start -
4323 							extent_offset);
4324 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4325 	} else {
4326 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4327 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4328 	}
4329 
4330 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4331 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4332 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4333 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4334 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4335 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4336 	btrfs_mark_buffer_dirty(leaf);
4337 
4338 	btrfs_release_path(path);
4339 
4340 	return ret;
4341 }
4342 
4343 /*
4344  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4345  * lose them after doing a fast fsync and replaying the log. We scan the
4346  * subvolume's root instead of iterating the inode's extent map tree because
4347  * otherwise we can log incorrect extent items based on extent map conversion.
4348  * That can happen due to the fact that extent maps are merged when they
4349  * are not in the extent map tree's list of modified extents.
4350  */
4351 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4352 				      struct btrfs_inode *inode,
4353 				      struct btrfs_path *path)
4354 {
4355 	struct btrfs_root *root = inode->root;
4356 	struct btrfs_key key;
4357 	const u64 i_size = i_size_read(&inode->vfs_inode);
4358 	const u64 ino = btrfs_ino(inode);
4359 	struct btrfs_path *dst_path = NULL;
4360 	bool dropped_extents = false;
4361 	u64 truncate_offset = i_size;
4362 	struct extent_buffer *leaf;
4363 	int slot;
4364 	int ins_nr = 0;
4365 	int start_slot;
4366 	int ret;
4367 
4368 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4369 		return 0;
4370 
4371 	key.objectid = ino;
4372 	key.type = BTRFS_EXTENT_DATA_KEY;
4373 	key.offset = i_size;
4374 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4375 	if (ret < 0)
4376 		goto out;
4377 
4378 	/*
4379 	 * We must check if there is a prealloc extent that starts before the
4380 	 * i_size and crosses the i_size boundary. This is to ensure later we
4381 	 * truncate down to the end of that extent and not to the i_size, as
4382 	 * otherwise we end up losing part of the prealloc extent after a log
4383 	 * replay and with an implicit hole if there is another prealloc extent
4384 	 * that starts at an offset beyond i_size.
4385 	 */
4386 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4387 	if (ret < 0)
4388 		goto out;
4389 
4390 	if (ret == 0) {
4391 		struct btrfs_file_extent_item *ei;
4392 
4393 		leaf = path->nodes[0];
4394 		slot = path->slots[0];
4395 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4396 
4397 		if (btrfs_file_extent_type(leaf, ei) ==
4398 		    BTRFS_FILE_EXTENT_PREALLOC) {
4399 			u64 extent_end;
4400 
4401 			btrfs_item_key_to_cpu(leaf, &key, slot);
4402 			extent_end = key.offset +
4403 				btrfs_file_extent_num_bytes(leaf, ei);
4404 
4405 			if (extent_end > i_size)
4406 				truncate_offset = extent_end;
4407 		}
4408 	} else {
4409 		ret = 0;
4410 	}
4411 
4412 	while (true) {
4413 		leaf = path->nodes[0];
4414 		slot = path->slots[0];
4415 
4416 		if (slot >= btrfs_header_nritems(leaf)) {
4417 			if (ins_nr > 0) {
4418 				ret = copy_items(trans, inode, dst_path, path,
4419 						 start_slot, ins_nr, 1, 0);
4420 				if (ret < 0)
4421 					goto out;
4422 				ins_nr = 0;
4423 			}
4424 			ret = btrfs_next_leaf(root, path);
4425 			if (ret < 0)
4426 				goto out;
4427 			if (ret > 0) {
4428 				ret = 0;
4429 				break;
4430 			}
4431 			continue;
4432 		}
4433 
4434 		btrfs_item_key_to_cpu(leaf, &key, slot);
4435 		if (key.objectid > ino)
4436 			break;
4437 		if (WARN_ON_ONCE(key.objectid < ino) ||
4438 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4439 		    key.offset < i_size) {
4440 			path->slots[0]++;
4441 			continue;
4442 		}
4443 		if (!dropped_extents) {
4444 			/*
4445 			 * Avoid logging extent items logged in past fsync calls
4446 			 * and leading to duplicate keys in the log tree.
4447 			 */
4448 			do {
4449 				ret = btrfs_truncate_inode_items(trans,
4450 							 root->log_root,
4451 							 inode, truncate_offset,
4452 							 BTRFS_EXTENT_DATA_KEY);
4453 			} while (ret == -EAGAIN);
4454 			if (ret)
4455 				goto out;
4456 			dropped_extents = true;
4457 		}
4458 		if (ins_nr == 0)
4459 			start_slot = slot;
4460 		ins_nr++;
4461 		path->slots[0]++;
4462 		if (!dst_path) {
4463 			dst_path = btrfs_alloc_path();
4464 			if (!dst_path) {
4465 				ret = -ENOMEM;
4466 				goto out;
4467 			}
4468 		}
4469 	}
4470 	if (ins_nr > 0)
4471 		ret = copy_items(trans, inode, dst_path, path,
4472 				 start_slot, ins_nr, 1, 0);
4473 out:
4474 	btrfs_release_path(path);
4475 	btrfs_free_path(dst_path);
4476 	return ret;
4477 }
4478 
4479 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4480 				     struct btrfs_root *root,
4481 				     struct btrfs_inode *inode,
4482 				     struct btrfs_path *path,
4483 				     struct btrfs_log_ctx *ctx)
4484 {
4485 	struct btrfs_ordered_extent *ordered;
4486 	struct btrfs_ordered_extent *tmp;
4487 	struct extent_map *em, *n;
4488 	struct list_head extents;
4489 	struct extent_map_tree *tree = &inode->extent_tree;
4490 	int ret = 0;
4491 	int num = 0;
4492 
4493 	INIT_LIST_HEAD(&extents);
4494 
4495 	write_lock(&tree->lock);
4496 
4497 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4498 		list_del_init(&em->list);
4499 		/*
4500 		 * Just an arbitrary number, this can be really CPU intensive
4501 		 * once we start getting a lot of extents, and really once we
4502 		 * have a bunch of extents we just want to commit since it will
4503 		 * be faster.
4504 		 */
4505 		if (++num > 32768) {
4506 			list_del_init(&tree->modified_extents);
4507 			ret = -EFBIG;
4508 			goto process;
4509 		}
4510 
4511 		if (em->generation < trans->transid)
4512 			continue;
4513 
4514 		/* We log prealloc extents beyond eof later. */
4515 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4516 		    em->start >= i_size_read(&inode->vfs_inode))
4517 			continue;
4518 
4519 		/* Need a ref to keep it from getting evicted from cache */
4520 		refcount_inc(&em->refs);
4521 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4522 		list_add_tail(&em->list, &extents);
4523 		num++;
4524 	}
4525 
4526 	list_sort(NULL, &extents, extent_cmp);
4527 process:
4528 	while (!list_empty(&extents)) {
4529 		em = list_entry(extents.next, struct extent_map, list);
4530 
4531 		list_del_init(&em->list);
4532 
4533 		/*
4534 		 * If we had an error we just need to delete everybody from our
4535 		 * private list.
4536 		 */
4537 		if (ret) {
4538 			clear_em_logging(tree, em);
4539 			free_extent_map(em);
4540 			continue;
4541 		}
4542 
4543 		write_unlock(&tree->lock);
4544 
4545 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4546 		write_lock(&tree->lock);
4547 		clear_em_logging(tree, em);
4548 		free_extent_map(em);
4549 	}
4550 	WARN_ON(!list_empty(&extents));
4551 	write_unlock(&tree->lock);
4552 
4553 	btrfs_release_path(path);
4554 	if (!ret)
4555 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4556 	if (ret)
4557 		return ret;
4558 
4559 	/*
4560 	 * We have logged all extents successfully, now make sure the commit of
4561 	 * the current transaction waits for the ordered extents to complete
4562 	 * before it commits and wipes out the log trees, otherwise we would
4563 	 * lose data if an ordered extents completes after the transaction
4564 	 * commits and a power failure happens after the transaction commit.
4565 	 */
4566 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4567 		list_del_init(&ordered->log_list);
4568 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4569 
4570 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4571 			spin_lock_irq(&inode->ordered_tree.lock);
4572 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4573 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4574 				atomic_inc(&trans->transaction->pending_ordered);
4575 			}
4576 			spin_unlock_irq(&inode->ordered_tree.lock);
4577 		}
4578 		btrfs_put_ordered_extent(ordered);
4579 	}
4580 
4581 	return 0;
4582 }
4583 
4584 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4585 			     struct btrfs_path *path, u64 *size_ret)
4586 {
4587 	struct btrfs_key key;
4588 	int ret;
4589 
4590 	key.objectid = btrfs_ino(inode);
4591 	key.type = BTRFS_INODE_ITEM_KEY;
4592 	key.offset = 0;
4593 
4594 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4595 	if (ret < 0) {
4596 		return ret;
4597 	} else if (ret > 0) {
4598 		*size_ret = 0;
4599 	} else {
4600 		struct btrfs_inode_item *item;
4601 
4602 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4603 				      struct btrfs_inode_item);
4604 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4605 		/*
4606 		 * If the in-memory inode's i_size is smaller then the inode
4607 		 * size stored in the btree, return the inode's i_size, so
4608 		 * that we get a correct inode size after replaying the log
4609 		 * when before a power failure we had a shrinking truncate
4610 		 * followed by addition of a new name (rename / new hard link).
4611 		 * Otherwise return the inode size from the btree, to avoid
4612 		 * data loss when replaying a log due to previously doing a
4613 		 * write that expands the inode's size and logging a new name
4614 		 * immediately after.
4615 		 */
4616 		if (*size_ret > inode->vfs_inode.i_size)
4617 			*size_ret = inode->vfs_inode.i_size;
4618 	}
4619 
4620 	btrfs_release_path(path);
4621 	return 0;
4622 }
4623 
4624 /*
4625  * At the moment we always log all xattrs. This is to figure out at log replay
4626  * time which xattrs must have their deletion replayed. If a xattr is missing
4627  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4628  * because if a xattr is deleted, the inode is fsynced and a power failure
4629  * happens, causing the log to be replayed the next time the fs is mounted,
4630  * we want the xattr to not exist anymore (same behaviour as other filesystems
4631  * with a journal, ext3/4, xfs, f2fs, etc).
4632  */
4633 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4634 				struct btrfs_root *root,
4635 				struct btrfs_inode *inode,
4636 				struct btrfs_path *path,
4637 				struct btrfs_path *dst_path)
4638 {
4639 	int ret;
4640 	struct btrfs_key key;
4641 	const u64 ino = btrfs_ino(inode);
4642 	int ins_nr = 0;
4643 	int start_slot = 0;
4644 	bool found_xattrs = false;
4645 
4646 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4647 		return 0;
4648 
4649 	key.objectid = ino;
4650 	key.type = BTRFS_XATTR_ITEM_KEY;
4651 	key.offset = 0;
4652 
4653 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4654 	if (ret < 0)
4655 		return ret;
4656 
4657 	while (true) {
4658 		int slot = path->slots[0];
4659 		struct extent_buffer *leaf = path->nodes[0];
4660 		int nritems = btrfs_header_nritems(leaf);
4661 
4662 		if (slot >= nritems) {
4663 			if (ins_nr > 0) {
4664 				ret = copy_items(trans, inode, dst_path, path,
4665 						 start_slot, ins_nr, 1, 0);
4666 				if (ret < 0)
4667 					return ret;
4668 				ins_nr = 0;
4669 			}
4670 			ret = btrfs_next_leaf(root, path);
4671 			if (ret < 0)
4672 				return ret;
4673 			else if (ret > 0)
4674 				break;
4675 			continue;
4676 		}
4677 
4678 		btrfs_item_key_to_cpu(leaf, &key, slot);
4679 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4680 			break;
4681 
4682 		if (ins_nr == 0)
4683 			start_slot = slot;
4684 		ins_nr++;
4685 		path->slots[0]++;
4686 		found_xattrs = true;
4687 		cond_resched();
4688 	}
4689 	if (ins_nr > 0) {
4690 		ret = copy_items(trans, inode, dst_path, path,
4691 				 start_slot, ins_nr, 1, 0);
4692 		if (ret < 0)
4693 			return ret;
4694 	}
4695 
4696 	if (!found_xattrs)
4697 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4698 
4699 	return 0;
4700 }
4701 
4702 /*
4703  * When using the NO_HOLES feature if we punched a hole that causes the
4704  * deletion of entire leafs or all the extent items of the first leaf (the one
4705  * that contains the inode item and references) we may end up not processing
4706  * any extents, because there are no leafs with a generation matching the
4707  * current transaction that have extent items for our inode. So we need to find
4708  * if any holes exist and then log them. We also need to log holes after any
4709  * truncate operation that changes the inode's size.
4710  */
4711 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4712 			   struct btrfs_root *root,
4713 			   struct btrfs_inode *inode,
4714 			   struct btrfs_path *path)
4715 {
4716 	struct btrfs_fs_info *fs_info = root->fs_info;
4717 	struct btrfs_key key;
4718 	const u64 ino = btrfs_ino(inode);
4719 	const u64 i_size = i_size_read(&inode->vfs_inode);
4720 	u64 prev_extent_end = 0;
4721 	int ret;
4722 
4723 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4724 		return 0;
4725 
4726 	key.objectid = ino;
4727 	key.type = BTRFS_EXTENT_DATA_KEY;
4728 	key.offset = 0;
4729 
4730 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4731 	if (ret < 0)
4732 		return ret;
4733 
4734 	while (true) {
4735 		struct extent_buffer *leaf = path->nodes[0];
4736 
4737 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4738 			ret = btrfs_next_leaf(root, path);
4739 			if (ret < 0)
4740 				return ret;
4741 			if (ret > 0) {
4742 				ret = 0;
4743 				break;
4744 			}
4745 			leaf = path->nodes[0];
4746 		}
4747 
4748 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4749 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4750 			break;
4751 
4752 		/* We have a hole, log it. */
4753 		if (prev_extent_end < key.offset) {
4754 			const u64 hole_len = key.offset - prev_extent_end;
4755 
4756 			/*
4757 			 * Release the path to avoid deadlocks with other code
4758 			 * paths that search the root while holding locks on
4759 			 * leafs from the log root.
4760 			 */
4761 			btrfs_release_path(path);
4762 			ret = btrfs_insert_file_extent(trans, root->log_root,
4763 						       ino, prev_extent_end, 0,
4764 						       0, hole_len, 0, hole_len,
4765 						       0, 0, 0);
4766 			if (ret < 0)
4767 				return ret;
4768 
4769 			/*
4770 			 * Search for the same key again in the root. Since it's
4771 			 * an extent item and we are holding the inode lock, the
4772 			 * key must still exist. If it doesn't just emit warning
4773 			 * and return an error to fall back to a transaction
4774 			 * commit.
4775 			 */
4776 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4777 			if (ret < 0)
4778 				return ret;
4779 			if (WARN_ON(ret > 0))
4780 				return -ENOENT;
4781 			leaf = path->nodes[0];
4782 		}
4783 
4784 		prev_extent_end = btrfs_file_extent_end(path);
4785 		path->slots[0]++;
4786 		cond_resched();
4787 	}
4788 
4789 	if (prev_extent_end < i_size) {
4790 		u64 hole_len;
4791 
4792 		btrfs_release_path(path);
4793 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4794 		ret = btrfs_insert_file_extent(trans, root->log_root,
4795 					       ino, prev_extent_end, 0, 0,
4796 					       hole_len, 0, hole_len,
4797 					       0, 0, 0);
4798 		if (ret < 0)
4799 			return ret;
4800 	}
4801 
4802 	return 0;
4803 }
4804 
4805 /*
4806  * When we are logging a new inode X, check if it doesn't have a reference that
4807  * matches the reference from some other inode Y created in a past transaction
4808  * and that was renamed in the current transaction. If we don't do this, then at
4809  * log replay time we can lose inode Y (and all its files if it's a directory):
4810  *
4811  * mkdir /mnt/x
4812  * echo "hello world" > /mnt/x/foobar
4813  * sync
4814  * mv /mnt/x /mnt/y
4815  * mkdir /mnt/x                 # or touch /mnt/x
4816  * xfs_io -c fsync /mnt/x
4817  * <power fail>
4818  * mount fs, trigger log replay
4819  *
4820  * After the log replay procedure, we would lose the first directory and all its
4821  * files (file foobar).
4822  * For the case where inode Y is not a directory we simply end up losing it:
4823  *
4824  * echo "123" > /mnt/foo
4825  * sync
4826  * mv /mnt/foo /mnt/bar
4827  * echo "abc" > /mnt/foo
4828  * xfs_io -c fsync /mnt/foo
4829  * <power fail>
4830  *
4831  * We also need this for cases where a snapshot entry is replaced by some other
4832  * entry (file or directory) otherwise we end up with an unreplayable log due to
4833  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4834  * if it were a regular entry:
4835  *
4836  * mkdir /mnt/x
4837  * btrfs subvolume snapshot /mnt /mnt/x/snap
4838  * btrfs subvolume delete /mnt/x/snap
4839  * rmdir /mnt/x
4840  * mkdir /mnt/x
4841  * fsync /mnt/x or fsync some new file inside it
4842  * <power fail>
4843  *
4844  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4845  * the same transaction.
4846  */
4847 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4848 					 const int slot,
4849 					 const struct btrfs_key *key,
4850 					 struct btrfs_inode *inode,
4851 					 u64 *other_ino, u64 *other_parent)
4852 {
4853 	int ret;
4854 	struct btrfs_path *search_path;
4855 	char *name = NULL;
4856 	u32 name_len = 0;
4857 	u32 item_size = btrfs_item_size_nr(eb, slot);
4858 	u32 cur_offset = 0;
4859 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4860 
4861 	search_path = btrfs_alloc_path();
4862 	if (!search_path)
4863 		return -ENOMEM;
4864 	search_path->search_commit_root = 1;
4865 	search_path->skip_locking = 1;
4866 
4867 	while (cur_offset < item_size) {
4868 		u64 parent;
4869 		u32 this_name_len;
4870 		u32 this_len;
4871 		unsigned long name_ptr;
4872 		struct btrfs_dir_item *di;
4873 
4874 		if (key->type == BTRFS_INODE_REF_KEY) {
4875 			struct btrfs_inode_ref *iref;
4876 
4877 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4878 			parent = key->offset;
4879 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4880 			name_ptr = (unsigned long)(iref + 1);
4881 			this_len = sizeof(*iref) + this_name_len;
4882 		} else {
4883 			struct btrfs_inode_extref *extref;
4884 
4885 			extref = (struct btrfs_inode_extref *)(ptr +
4886 							       cur_offset);
4887 			parent = btrfs_inode_extref_parent(eb, extref);
4888 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4889 			name_ptr = (unsigned long)&extref->name;
4890 			this_len = sizeof(*extref) + this_name_len;
4891 		}
4892 
4893 		if (this_name_len > name_len) {
4894 			char *new_name;
4895 
4896 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4897 			if (!new_name) {
4898 				ret = -ENOMEM;
4899 				goto out;
4900 			}
4901 			name_len = this_name_len;
4902 			name = new_name;
4903 		}
4904 
4905 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4906 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4907 				parent, name, this_name_len, 0);
4908 		if (di && !IS_ERR(di)) {
4909 			struct btrfs_key di_key;
4910 
4911 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4912 						  di, &di_key);
4913 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4914 				if (di_key.objectid != key->objectid) {
4915 					ret = 1;
4916 					*other_ino = di_key.objectid;
4917 					*other_parent = parent;
4918 				} else {
4919 					ret = 0;
4920 				}
4921 			} else {
4922 				ret = -EAGAIN;
4923 			}
4924 			goto out;
4925 		} else if (IS_ERR(di)) {
4926 			ret = PTR_ERR(di);
4927 			goto out;
4928 		}
4929 		btrfs_release_path(search_path);
4930 
4931 		cur_offset += this_len;
4932 	}
4933 	ret = 0;
4934 out:
4935 	btrfs_free_path(search_path);
4936 	kfree(name);
4937 	return ret;
4938 }
4939 
4940 struct btrfs_ino_list {
4941 	u64 ino;
4942 	u64 parent;
4943 	struct list_head list;
4944 };
4945 
4946 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4947 				  struct btrfs_root *root,
4948 				  struct btrfs_path *path,
4949 				  struct btrfs_log_ctx *ctx,
4950 				  u64 ino, u64 parent)
4951 {
4952 	struct btrfs_ino_list *ino_elem;
4953 	LIST_HEAD(inode_list);
4954 	int ret = 0;
4955 
4956 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4957 	if (!ino_elem)
4958 		return -ENOMEM;
4959 	ino_elem->ino = ino;
4960 	ino_elem->parent = parent;
4961 	list_add_tail(&ino_elem->list, &inode_list);
4962 
4963 	while (!list_empty(&inode_list)) {
4964 		struct btrfs_fs_info *fs_info = root->fs_info;
4965 		struct btrfs_key key;
4966 		struct inode *inode;
4967 
4968 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4969 					    list);
4970 		ino = ino_elem->ino;
4971 		parent = ino_elem->parent;
4972 		list_del(&ino_elem->list);
4973 		kfree(ino_elem);
4974 		if (ret)
4975 			continue;
4976 
4977 		btrfs_release_path(path);
4978 
4979 		inode = btrfs_iget(fs_info->sb, ino, root);
4980 		/*
4981 		 * If the other inode that had a conflicting dir entry was
4982 		 * deleted in the current transaction, we need to log its parent
4983 		 * directory.
4984 		 */
4985 		if (IS_ERR(inode)) {
4986 			ret = PTR_ERR(inode);
4987 			if (ret == -ENOENT) {
4988 				inode = btrfs_iget(fs_info->sb, parent, root);
4989 				if (IS_ERR(inode)) {
4990 					ret = PTR_ERR(inode);
4991 				} else {
4992 					ret = btrfs_log_inode(trans, root,
4993 						      BTRFS_I(inode),
4994 						      LOG_OTHER_INODE_ALL,
4995 						      ctx);
4996 					btrfs_add_delayed_iput(inode);
4997 				}
4998 			}
4999 			continue;
5000 		}
5001 		/*
5002 		 * If the inode was already logged skip it - otherwise we can
5003 		 * hit an infinite loop. Example:
5004 		 *
5005 		 * From the commit root (previous transaction) we have the
5006 		 * following inodes:
5007 		 *
5008 		 * inode 257 a directory
5009 		 * inode 258 with references "zz" and "zz_link" on inode 257
5010 		 * inode 259 with reference "a" on inode 257
5011 		 *
5012 		 * And in the current (uncommitted) transaction we have:
5013 		 *
5014 		 * inode 257 a directory, unchanged
5015 		 * inode 258 with references "a" and "a2" on inode 257
5016 		 * inode 259 with reference "zz_link" on inode 257
5017 		 * inode 261 with reference "zz" on inode 257
5018 		 *
5019 		 * When logging inode 261 the following infinite loop could
5020 		 * happen if we don't skip already logged inodes:
5021 		 *
5022 		 * - we detect inode 258 as a conflicting inode, with inode 261
5023 		 *   on reference "zz", and log it;
5024 		 *
5025 		 * - we detect inode 259 as a conflicting inode, with inode 258
5026 		 *   on reference "a", and log it;
5027 		 *
5028 		 * - we detect inode 258 as a conflicting inode, with inode 259
5029 		 *   on reference "zz_link", and log it - again! After this we
5030 		 *   repeat the above steps forever.
5031 		 */
5032 		spin_lock(&BTRFS_I(inode)->lock);
5033 		/*
5034 		 * Check the inode's logged_trans only instead of
5035 		 * btrfs_inode_in_log(). This is because the last_log_commit of
5036 		 * the inode is not updated when we only log that it exists and
5037 		 * it has the full sync bit set (see btrfs_log_inode()).
5038 		 */
5039 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
5040 			spin_unlock(&BTRFS_I(inode)->lock);
5041 			btrfs_add_delayed_iput(inode);
5042 			continue;
5043 		}
5044 		spin_unlock(&BTRFS_I(inode)->lock);
5045 		/*
5046 		 * We are safe logging the other inode without acquiring its
5047 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5048 		 * are safe against concurrent renames of the other inode as
5049 		 * well because during a rename we pin the log and update the
5050 		 * log with the new name before we unpin it.
5051 		 */
5052 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5053 				      LOG_OTHER_INODE, ctx);
5054 		if (ret) {
5055 			btrfs_add_delayed_iput(inode);
5056 			continue;
5057 		}
5058 
5059 		key.objectid = ino;
5060 		key.type = BTRFS_INODE_REF_KEY;
5061 		key.offset = 0;
5062 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5063 		if (ret < 0) {
5064 			btrfs_add_delayed_iput(inode);
5065 			continue;
5066 		}
5067 
5068 		while (true) {
5069 			struct extent_buffer *leaf = path->nodes[0];
5070 			int slot = path->slots[0];
5071 			u64 other_ino = 0;
5072 			u64 other_parent = 0;
5073 
5074 			if (slot >= btrfs_header_nritems(leaf)) {
5075 				ret = btrfs_next_leaf(root, path);
5076 				if (ret < 0) {
5077 					break;
5078 				} else if (ret > 0) {
5079 					ret = 0;
5080 					break;
5081 				}
5082 				continue;
5083 			}
5084 
5085 			btrfs_item_key_to_cpu(leaf, &key, slot);
5086 			if (key.objectid != ino ||
5087 			    (key.type != BTRFS_INODE_REF_KEY &&
5088 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5089 				ret = 0;
5090 				break;
5091 			}
5092 
5093 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5094 					BTRFS_I(inode), &other_ino,
5095 					&other_parent);
5096 			if (ret < 0)
5097 				break;
5098 			if (ret > 0) {
5099 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5100 				if (!ino_elem) {
5101 					ret = -ENOMEM;
5102 					break;
5103 				}
5104 				ino_elem->ino = other_ino;
5105 				ino_elem->parent = other_parent;
5106 				list_add_tail(&ino_elem->list, &inode_list);
5107 				ret = 0;
5108 			}
5109 			path->slots[0]++;
5110 		}
5111 		btrfs_add_delayed_iput(inode);
5112 	}
5113 
5114 	return ret;
5115 }
5116 
5117 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5118 				   struct btrfs_inode *inode,
5119 				   struct btrfs_key *min_key,
5120 				   const struct btrfs_key *max_key,
5121 				   struct btrfs_path *path,
5122 				   struct btrfs_path *dst_path,
5123 				   const u64 logged_isize,
5124 				   const bool recursive_logging,
5125 				   const int inode_only,
5126 				   struct btrfs_log_ctx *ctx,
5127 				   bool *need_log_inode_item)
5128 {
5129 	struct btrfs_root *root = inode->root;
5130 	int ins_start_slot = 0;
5131 	int ins_nr = 0;
5132 	int ret;
5133 
5134 	while (1) {
5135 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5136 		if (ret < 0)
5137 			return ret;
5138 		if (ret > 0) {
5139 			ret = 0;
5140 			break;
5141 		}
5142 again:
5143 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5144 		if (min_key->objectid != max_key->objectid)
5145 			break;
5146 		if (min_key->type > max_key->type)
5147 			break;
5148 
5149 		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5150 			*need_log_inode_item = false;
5151 
5152 		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5153 		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5154 		    inode->generation == trans->transid &&
5155 		    !recursive_logging) {
5156 			u64 other_ino = 0;
5157 			u64 other_parent = 0;
5158 
5159 			ret = btrfs_check_ref_name_override(path->nodes[0],
5160 					path->slots[0], min_key, inode,
5161 					&other_ino, &other_parent);
5162 			if (ret < 0) {
5163 				return ret;
5164 			} else if (ret > 0 && ctx &&
5165 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5166 				if (ins_nr > 0) {
5167 					ins_nr++;
5168 				} else {
5169 					ins_nr = 1;
5170 					ins_start_slot = path->slots[0];
5171 				}
5172 				ret = copy_items(trans, inode, dst_path, path,
5173 						 ins_start_slot, ins_nr,
5174 						 inode_only, logged_isize);
5175 				if (ret < 0)
5176 					return ret;
5177 				ins_nr = 0;
5178 
5179 				ret = log_conflicting_inodes(trans, root, path,
5180 						ctx, other_ino, other_parent);
5181 				if (ret)
5182 					return ret;
5183 				btrfs_release_path(path);
5184 				goto next_key;
5185 			}
5186 		}
5187 
5188 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5189 		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5190 			if (ins_nr == 0)
5191 				goto next_slot;
5192 			ret = copy_items(trans, inode, dst_path, path,
5193 					 ins_start_slot,
5194 					 ins_nr, inode_only, logged_isize);
5195 			if (ret < 0)
5196 				return ret;
5197 			ins_nr = 0;
5198 			goto next_slot;
5199 		}
5200 
5201 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5202 			ins_nr++;
5203 			goto next_slot;
5204 		} else if (!ins_nr) {
5205 			ins_start_slot = path->slots[0];
5206 			ins_nr = 1;
5207 			goto next_slot;
5208 		}
5209 
5210 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5211 				 ins_nr, inode_only, logged_isize);
5212 		if (ret < 0)
5213 			return ret;
5214 		ins_nr = 1;
5215 		ins_start_slot = path->slots[0];
5216 next_slot:
5217 		path->slots[0]++;
5218 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5219 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5220 					      path->slots[0]);
5221 			goto again;
5222 		}
5223 		if (ins_nr) {
5224 			ret = copy_items(trans, inode, dst_path, path,
5225 					 ins_start_slot, ins_nr, inode_only,
5226 					 logged_isize);
5227 			if (ret < 0)
5228 				return ret;
5229 			ins_nr = 0;
5230 		}
5231 		btrfs_release_path(path);
5232 next_key:
5233 		if (min_key->offset < (u64)-1) {
5234 			min_key->offset++;
5235 		} else if (min_key->type < max_key->type) {
5236 			min_key->type++;
5237 			min_key->offset = 0;
5238 		} else {
5239 			break;
5240 		}
5241 	}
5242 	if (ins_nr)
5243 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5244 				 ins_nr, inode_only, logged_isize);
5245 
5246 	return ret;
5247 }
5248 
5249 /* log a single inode in the tree log.
5250  * At least one parent directory for this inode must exist in the tree
5251  * or be logged already.
5252  *
5253  * Any items from this inode changed by the current transaction are copied
5254  * to the log tree.  An extra reference is taken on any extents in this
5255  * file, allowing us to avoid a whole pile of corner cases around logging
5256  * blocks that have been removed from the tree.
5257  *
5258  * See LOG_INODE_ALL and related defines for a description of what inode_only
5259  * does.
5260  *
5261  * This handles both files and directories.
5262  */
5263 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5264 			   struct btrfs_root *root, struct btrfs_inode *inode,
5265 			   int inode_only,
5266 			   struct btrfs_log_ctx *ctx)
5267 {
5268 	struct btrfs_path *path;
5269 	struct btrfs_path *dst_path;
5270 	struct btrfs_key min_key;
5271 	struct btrfs_key max_key;
5272 	struct btrfs_root *log = root->log_root;
5273 	int err = 0;
5274 	int ret = 0;
5275 	bool fast_search = false;
5276 	u64 ino = btrfs_ino(inode);
5277 	struct extent_map_tree *em_tree = &inode->extent_tree;
5278 	u64 logged_isize = 0;
5279 	bool need_log_inode_item = true;
5280 	bool xattrs_logged = false;
5281 	bool recursive_logging = false;
5282 
5283 	path = btrfs_alloc_path();
5284 	if (!path)
5285 		return -ENOMEM;
5286 	dst_path = btrfs_alloc_path();
5287 	if (!dst_path) {
5288 		btrfs_free_path(path);
5289 		return -ENOMEM;
5290 	}
5291 
5292 	min_key.objectid = ino;
5293 	min_key.type = BTRFS_INODE_ITEM_KEY;
5294 	min_key.offset = 0;
5295 
5296 	max_key.objectid = ino;
5297 
5298 
5299 	/* today the code can only do partial logging of directories */
5300 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5301 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5302 		       &inode->runtime_flags) &&
5303 	     inode_only >= LOG_INODE_EXISTS))
5304 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5305 	else
5306 		max_key.type = (u8)-1;
5307 	max_key.offset = (u64)-1;
5308 
5309 	/*
5310 	 * Only run delayed items if we are a directory. We want to make sure
5311 	 * all directory indexes hit the fs/subvolume tree so we can find them
5312 	 * and figure out which index ranges have to be logged.
5313 	 *
5314 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5315 	 * as we want to make sure an up to date version is in the subvolume
5316 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5317 	 * it to the log tree. For a non full sync, we always log the inode item
5318 	 * based on the in-memory struct btrfs_inode which is always up to date.
5319 	 */
5320 	if (S_ISDIR(inode->vfs_inode.i_mode))
5321 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5322 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5323 		ret = btrfs_commit_inode_delayed_inode(inode);
5324 
5325 	if (ret) {
5326 		btrfs_free_path(path);
5327 		btrfs_free_path(dst_path);
5328 		return ret;
5329 	}
5330 
5331 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5332 		recursive_logging = true;
5333 		if (inode_only == LOG_OTHER_INODE)
5334 			inode_only = LOG_INODE_EXISTS;
5335 		else
5336 			inode_only = LOG_INODE_ALL;
5337 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5338 	} else {
5339 		mutex_lock(&inode->log_mutex);
5340 	}
5341 
5342 	/*
5343 	 * This is for cases where logging a directory could result in losing a
5344 	 * a file after replaying the log. For example, if we move a file from a
5345 	 * directory A to a directory B, then fsync directory A, we have no way
5346 	 * to known the file was moved from A to B, so logging just A would
5347 	 * result in losing the file after a log replay.
5348 	 */
5349 	if (S_ISDIR(inode->vfs_inode.i_mode) &&
5350 	    inode_only == LOG_INODE_ALL &&
5351 	    inode->last_unlink_trans >= trans->transid) {
5352 		btrfs_set_log_full_commit(trans);
5353 		err = 1;
5354 		goto out_unlock;
5355 	}
5356 
5357 	/*
5358 	 * a brute force approach to making sure we get the most uptodate
5359 	 * copies of everything.
5360 	 */
5361 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5362 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5363 
5364 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5365 		if (inode_only == LOG_INODE_EXISTS)
5366 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5367 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5368 	} else {
5369 		if (inode_only == LOG_INODE_EXISTS) {
5370 			/*
5371 			 * Make sure the new inode item we write to the log has
5372 			 * the same isize as the current one (if it exists).
5373 			 * This is necessary to prevent data loss after log
5374 			 * replay, and also to prevent doing a wrong expanding
5375 			 * truncate - for e.g. create file, write 4K into offset
5376 			 * 0, fsync, write 4K into offset 4096, add hard link,
5377 			 * fsync some other file (to sync log), power fail - if
5378 			 * we use the inode's current i_size, after log replay
5379 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5380 			 * (zeroes), as if an expanding truncate happened,
5381 			 * instead of getting a file of 4Kb only.
5382 			 */
5383 			err = logged_inode_size(log, inode, path, &logged_isize);
5384 			if (err)
5385 				goto out_unlock;
5386 		}
5387 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5388 			     &inode->runtime_flags)) {
5389 			if (inode_only == LOG_INODE_EXISTS) {
5390 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5391 				ret = drop_objectid_items(trans, log, path, ino,
5392 							  max_key.type);
5393 			} else {
5394 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5395 					  &inode->runtime_flags);
5396 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5397 					  &inode->runtime_flags);
5398 				while(1) {
5399 					ret = btrfs_truncate_inode_items(trans,
5400 						log, inode, 0, 0);
5401 					if (ret != -EAGAIN)
5402 						break;
5403 				}
5404 			}
5405 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5406 					      &inode->runtime_flags) ||
5407 			   inode_only == LOG_INODE_EXISTS) {
5408 			if (inode_only == LOG_INODE_ALL)
5409 				fast_search = true;
5410 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5411 			ret = drop_objectid_items(trans, log, path, ino,
5412 						  max_key.type);
5413 		} else {
5414 			if (inode_only == LOG_INODE_ALL)
5415 				fast_search = true;
5416 			goto log_extents;
5417 		}
5418 
5419 	}
5420 	if (ret) {
5421 		err = ret;
5422 		goto out_unlock;
5423 	}
5424 
5425 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5426 				      path, dst_path, logged_isize,
5427 				      recursive_logging, inode_only, ctx,
5428 				      &need_log_inode_item);
5429 	if (err)
5430 		goto out_unlock;
5431 
5432 	btrfs_release_path(path);
5433 	btrfs_release_path(dst_path);
5434 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5435 	if (err)
5436 		goto out_unlock;
5437 	xattrs_logged = true;
5438 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5439 		btrfs_release_path(path);
5440 		btrfs_release_path(dst_path);
5441 		err = btrfs_log_holes(trans, root, inode, path);
5442 		if (err)
5443 			goto out_unlock;
5444 	}
5445 log_extents:
5446 	btrfs_release_path(path);
5447 	btrfs_release_path(dst_path);
5448 	if (need_log_inode_item) {
5449 		err = log_inode_item(trans, log, dst_path, inode);
5450 		if (!err && !xattrs_logged) {
5451 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5452 						   dst_path);
5453 			btrfs_release_path(path);
5454 		}
5455 		if (err)
5456 			goto out_unlock;
5457 	}
5458 	if (fast_search) {
5459 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5460 						ctx);
5461 		if (ret) {
5462 			err = ret;
5463 			goto out_unlock;
5464 		}
5465 	} else if (inode_only == LOG_INODE_ALL) {
5466 		struct extent_map *em, *n;
5467 
5468 		write_lock(&em_tree->lock);
5469 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5470 			list_del_init(&em->list);
5471 		write_unlock(&em_tree->lock);
5472 	}
5473 
5474 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5475 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5476 					ctx);
5477 		if (ret) {
5478 			err = ret;
5479 			goto out_unlock;
5480 		}
5481 	}
5482 
5483 	/*
5484 	 * If we are logging that an ancestor inode exists as part of logging a
5485 	 * new name from a link or rename operation, don't mark the inode as
5486 	 * logged - otherwise if an explicit fsync is made against an ancestor,
5487 	 * the fsync considers the inode in the log and doesn't sync the log,
5488 	 * resulting in the ancestor missing after a power failure unless the
5489 	 * log was synced as part of an fsync against any other unrelated inode.
5490 	 * So keep it simple for this case and just don't flag the ancestors as
5491 	 * logged.
5492 	 */
5493 	if (!ctx ||
5494 	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5495 	      &inode->vfs_inode != ctx->inode)) {
5496 		spin_lock(&inode->lock);
5497 		inode->logged_trans = trans->transid;
5498 		/*
5499 		 * Don't update last_log_commit if we logged that an inode exists
5500 		 * after it was loaded to memory (full_sync bit set).
5501 		 * This is to prevent data loss when we do a write to the inode,
5502 		 * then the inode gets evicted after all delalloc was flushed,
5503 		 * then we log it exists (due to a rename for example) and then
5504 		 * fsync it. This last fsync would do nothing (not logging the
5505 		 * extents previously written).
5506 		 */
5507 		if (inode_only != LOG_INODE_EXISTS ||
5508 		    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5509 			inode->last_log_commit = inode->last_sub_trans;
5510 		spin_unlock(&inode->lock);
5511 	}
5512 out_unlock:
5513 	mutex_unlock(&inode->log_mutex);
5514 
5515 	btrfs_free_path(path);
5516 	btrfs_free_path(dst_path);
5517 	return err;
5518 }
5519 
5520 /*
5521  * Check if we need to log an inode. This is used in contexts where while
5522  * logging an inode we need to log another inode (either that it exists or in
5523  * full mode). This is used instead of btrfs_inode_in_log() because the later
5524  * requires the inode to be in the log and have the log transaction committed,
5525  * while here we do not care if the log transaction was already committed - our
5526  * caller will commit the log later - and we want to avoid logging an inode
5527  * multiple times when multiple tasks have joined the same log transaction.
5528  */
5529 static bool need_log_inode(struct btrfs_trans_handle *trans,
5530 			   struct btrfs_inode *inode)
5531 {
5532 	/*
5533 	 * If this inode does not have new/updated/deleted xattrs since the last
5534 	 * time it was logged and is flagged as logged in the current transaction,
5535 	 * we can skip logging it. As for new/deleted names, those are updated in
5536 	 * the log by link/unlink/rename operations.
5537 	 * In case the inode was logged and then evicted and reloaded, its
5538 	 * logged_trans will be 0, in which case we have to fully log it since
5539 	 * logged_trans is a transient field, not persisted.
5540 	 */
5541 	if (inode->logged_trans == trans->transid &&
5542 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5543 		return false;
5544 
5545 	return true;
5546 }
5547 
5548 struct btrfs_dir_list {
5549 	u64 ino;
5550 	struct list_head list;
5551 };
5552 
5553 /*
5554  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5555  * details about the why it is needed.
5556  * This is a recursive operation - if an existing dentry corresponds to a
5557  * directory, that directory's new entries are logged too (same behaviour as
5558  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5559  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5560  * complains about the following circular lock dependency / possible deadlock:
5561  *
5562  *        CPU0                                        CPU1
5563  *        ----                                        ----
5564  * lock(&type->i_mutex_dir_key#3/2);
5565  *                                            lock(sb_internal#2);
5566  *                                            lock(&type->i_mutex_dir_key#3/2);
5567  * lock(&sb->s_type->i_mutex_key#14);
5568  *
5569  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5570  * sb_start_intwrite() in btrfs_start_transaction().
5571  * Not locking i_mutex of the inodes is still safe because:
5572  *
5573  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5574  *    that while logging the inode new references (names) are added or removed
5575  *    from the inode, leaving the logged inode item with a link count that does
5576  *    not match the number of logged inode reference items. This is fine because
5577  *    at log replay time we compute the real number of links and correct the
5578  *    link count in the inode item (see replay_one_buffer() and
5579  *    link_to_fixup_dir());
5580  *
5581  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5582  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5583  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5584  *    has a size that doesn't match the sum of the lengths of all the logged
5585  *    names. This does not result in a problem because if a dir_item key is
5586  *    logged but its matching dir_index key is not logged, at log replay time we
5587  *    don't use it to replay the respective name (see replay_one_name()). On the
5588  *    other hand if only the dir_index key ends up being logged, the respective
5589  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5590  *    keys created (see replay_one_name()).
5591  *    The directory's inode item with a wrong i_size is not a problem as well,
5592  *    since we don't use it at log replay time to set the i_size in the inode
5593  *    item of the fs/subvol tree (see overwrite_item()).
5594  */
5595 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5596 				struct btrfs_root *root,
5597 				struct btrfs_inode *start_inode,
5598 				struct btrfs_log_ctx *ctx)
5599 {
5600 	struct btrfs_fs_info *fs_info = root->fs_info;
5601 	struct btrfs_root *log = root->log_root;
5602 	struct btrfs_path *path;
5603 	LIST_HEAD(dir_list);
5604 	struct btrfs_dir_list *dir_elem;
5605 	int ret = 0;
5606 
5607 	path = btrfs_alloc_path();
5608 	if (!path)
5609 		return -ENOMEM;
5610 
5611 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5612 	if (!dir_elem) {
5613 		btrfs_free_path(path);
5614 		return -ENOMEM;
5615 	}
5616 	dir_elem->ino = btrfs_ino(start_inode);
5617 	list_add_tail(&dir_elem->list, &dir_list);
5618 
5619 	while (!list_empty(&dir_list)) {
5620 		struct extent_buffer *leaf;
5621 		struct btrfs_key min_key;
5622 		int nritems;
5623 		int i;
5624 
5625 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5626 					    list);
5627 		if (ret)
5628 			goto next_dir_inode;
5629 
5630 		min_key.objectid = dir_elem->ino;
5631 		min_key.type = BTRFS_DIR_ITEM_KEY;
5632 		min_key.offset = 0;
5633 again:
5634 		btrfs_release_path(path);
5635 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5636 		if (ret < 0) {
5637 			goto next_dir_inode;
5638 		} else if (ret > 0) {
5639 			ret = 0;
5640 			goto next_dir_inode;
5641 		}
5642 
5643 process_leaf:
5644 		leaf = path->nodes[0];
5645 		nritems = btrfs_header_nritems(leaf);
5646 		for (i = path->slots[0]; i < nritems; i++) {
5647 			struct btrfs_dir_item *di;
5648 			struct btrfs_key di_key;
5649 			struct inode *di_inode;
5650 			struct btrfs_dir_list *new_dir_elem;
5651 			int log_mode = LOG_INODE_EXISTS;
5652 			int type;
5653 
5654 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5655 			if (min_key.objectid != dir_elem->ino ||
5656 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5657 				goto next_dir_inode;
5658 
5659 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5660 			type = btrfs_dir_type(leaf, di);
5661 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5662 			    type != BTRFS_FT_DIR)
5663 				continue;
5664 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5665 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5666 				continue;
5667 
5668 			btrfs_release_path(path);
5669 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5670 			if (IS_ERR(di_inode)) {
5671 				ret = PTR_ERR(di_inode);
5672 				goto next_dir_inode;
5673 			}
5674 
5675 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5676 				btrfs_add_delayed_iput(di_inode);
5677 				break;
5678 			}
5679 
5680 			ctx->log_new_dentries = false;
5681 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5682 				log_mode = LOG_INODE_ALL;
5683 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5684 					      log_mode, ctx);
5685 			btrfs_add_delayed_iput(di_inode);
5686 			if (ret)
5687 				goto next_dir_inode;
5688 			if (ctx->log_new_dentries) {
5689 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5690 						       GFP_NOFS);
5691 				if (!new_dir_elem) {
5692 					ret = -ENOMEM;
5693 					goto next_dir_inode;
5694 				}
5695 				new_dir_elem->ino = di_key.objectid;
5696 				list_add_tail(&new_dir_elem->list, &dir_list);
5697 			}
5698 			break;
5699 		}
5700 		if (i == nritems) {
5701 			ret = btrfs_next_leaf(log, path);
5702 			if (ret < 0) {
5703 				goto next_dir_inode;
5704 			} else if (ret > 0) {
5705 				ret = 0;
5706 				goto next_dir_inode;
5707 			}
5708 			goto process_leaf;
5709 		}
5710 		if (min_key.offset < (u64)-1) {
5711 			min_key.offset++;
5712 			goto again;
5713 		}
5714 next_dir_inode:
5715 		list_del(&dir_elem->list);
5716 		kfree(dir_elem);
5717 	}
5718 
5719 	btrfs_free_path(path);
5720 	return ret;
5721 }
5722 
5723 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5724 				 struct btrfs_inode *inode,
5725 				 struct btrfs_log_ctx *ctx)
5726 {
5727 	struct btrfs_fs_info *fs_info = trans->fs_info;
5728 	int ret;
5729 	struct btrfs_path *path;
5730 	struct btrfs_key key;
5731 	struct btrfs_root *root = inode->root;
5732 	const u64 ino = btrfs_ino(inode);
5733 
5734 	path = btrfs_alloc_path();
5735 	if (!path)
5736 		return -ENOMEM;
5737 	path->skip_locking = 1;
5738 	path->search_commit_root = 1;
5739 
5740 	key.objectid = ino;
5741 	key.type = BTRFS_INODE_REF_KEY;
5742 	key.offset = 0;
5743 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5744 	if (ret < 0)
5745 		goto out;
5746 
5747 	while (true) {
5748 		struct extent_buffer *leaf = path->nodes[0];
5749 		int slot = path->slots[0];
5750 		u32 cur_offset = 0;
5751 		u32 item_size;
5752 		unsigned long ptr;
5753 
5754 		if (slot >= btrfs_header_nritems(leaf)) {
5755 			ret = btrfs_next_leaf(root, path);
5756 			if (ret < 0)
5757 				goto out;
5758 			else if (ret > 0)
5759 				break;
5760 			continue;
5761 		}
5762 
5763 		btrfs_item_key_to_cpu(leaf, &key, slot);
5764 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5765 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5766 			break;
5767 
5768 		item_size = btrfs_item_size_nr(leaf, slot);
5769 		ptr = btrfs_item_ptr_offset(leaf, slot);
5770 		while (cur_offset < item_size) {
5771 			struct btrfs_key inode_key;
5772 			struct inode *dir_inode;
5773 
5774 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5775 			inode_key.offset = 0;
5776 
5777 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5778 				struct btrfs_inode_extref *extref;
5779 
5780 				extref = (struct btrfs_inode_extref *)
5781 					(ptr + cur_offset);
5782 				inode_key.objectid = btrfs_inode_extref_parent(
5783 					leaf, extref);
5784 				cur_offset += sizeof(*extref);
5785 				cur_offset += btrfs_inode_extref_name_len(leaf,
5786 					extref);
5787 			} else {
5788 				inode_key.objectid = key.offset;
5789 				cur_offset = item_size;
5790 			}
5791 
5792 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5793 					       root);
5794 			/*
5795 			 * If the parent inode was deleted, return an error to
5796 			 * fallback to a transaction commit. This is to prevent
5797 			 * getting an inode that was moved from one parent A to
5798 			 * a parent B, got its former parent A deleted and then
5799 			 * it got fsync'ed, from existing at both parents after
5800 			 * a log replay (and the old parent still existing).
5801 			 * Example:
5802 			 *
5803 			 * mkdir /mnt/A
5804 			 * mkdir /mnt/B
5805 			 * touch /mnt/B/bar
5806 			 * sync
5807 			 * mv /mnt/B/bar /mnt/A/bar
5808 			 * mv -T /mnt/A /mnt/B
5809 			 * fsync /mnt/B/bar
5810 			 * <power fail>
5811 			 *
5812 			 * If we ignore the old parent B which got deleted,
5813 			 * after a log replay we would have file bar linked
5814 			 * at both parents and the old parent B would still
5815 			 * exist.
5816 			 */
5817 			if (IS_ERR(dir_inode)) {
5818 				ret = PTR_ERR(dir_inode);
5819 				goto out;
5820 			}
5821 
5822 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5823 				btrfs_add_delayed_iput(dir_inode);
5824 				continue;
5825 			}
5826 
5827 			if (ctx)
5828 				ctx->log_new_dentries = false;
5829 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5830 					      LOG_INODE_ALL, ctx);
5831 			if (!ret && ctx && ctx->log_new_dentries)
5832 				ret = log_new_dir_dentries(trans, root,
5833 						   BTRFS_I(dir_inode), ctx);
5834 			btrfs_add_delayed_iput(dir_inode);
5835 			if (ret)
5836 				goto out;
5837 		}
5838 		path->slots[0]++;
5839 	}
5840 	ret = 0;
5841 out:
5842 	btrfs_free_path(path);
5843 	return ret;
5844 }
5845 
5846 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5847 			     struct btrfs_root *root,
5848 			     struct btrfs_path *path,
5849 			     struct btrfs_log_ctx *ctx)
5850 {
5851 	struct btrfs_key found_key;
5852 
5853 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5854 
5855 	while (true) {
5856 		struct btrfs_fs_info *fs_info = root->fs_info;
5857 		struct extent_buffer *leaf = path->nodes[0];
5858 		int slot = path->slots[0];
5859 		struct btrfs_key search_key;
5860 		struct inode *inode;
5861 		u64 ino;
5862 		int ret = 0;
5863 
5864 		btrfs_release_path(path);
5865 
5866 		ino = found_key.offset;
5867 
5868 		search_key.objectid = found_key.offset;
5869 		search_key.type = BTRFS_INODE_ITEM_KEY;
5870 		search_key.offset = 0;
5871 		inode = btrfs_iget(fs_info->sb, ino, root);
5872 		if (IS_ERR(inode))
5873 			return PTR_ERR(inode);
5874 
5875 		if (BTRFS_I(inode)->generation >= trans->transid &&
5876 		    need_log_inode(trans, BTRFS_I(inode)))
5877 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5878 					      LOG_INODE_EXISTS, ctx);
5879 		btrfs_add_delayed_iput(inode);
5880 		if (ret)
5881 			return ret;
5882 
5883 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5884 			break;
5885 
5886 		search_key.type = BTRFS_INODE_REF_KEY;
5887 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5888 		if (ret < 0)
5889 			return ret;
5890 
5891 		leaf = path->nodes[0];
5892 		slot = path->slots[0];
5893 		if (slot >= btrfs_header_nritems(leaf)) {
5894 			ret = btrfs_next_leaf(root, path);
5895 			if (ret < 0)
5896 				return ret;
5897 			else if (ret > 0)
5898 				return -ENOENT;
5899 			leaf = path->nodes[0];
5900 			slot = path->slots[0];
5901 		}
5902 
5903 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5904 		if (found_key.objectid != search_key.objectid ||
5905 		    found_key.type != BTRFS_INODE_REF_KEY)
5906 			return -ENOENT;
5907 	}
5908 	return 0;
5909 }
5910 
5911 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5912 				  struct btrfs_inode *inode,
5913 				  struct dentry *parent,
5914 				  struct btrfs_log_ctx *ctx)
5915 {
5916 	struct btrfs_root *root = inode->root;
5917 	struct dentry *old_parent = NULL;
5918 	struct super_block *sb = inode->vfs_inode.i_sb;
5919 	int ret = 0;
5920 
5921 	while (true) {
5922 		if (!parent || d_really_is_negative(parent) ||
5923 		    sb != parent->d_sb)
5924 			break;
5925 
5926 		inode = BTRFS_I(d_inode(parent));
5927 		if (root != inode->root)
5928 			break;
5929 
5930 		if (inode->generation >= trans->transid &&
5931 		    need_log_inode(trans, inode)) {
5932 			ret = btrfs_log_inode(trans, root, inode,
5933 					      LOG_INODE_EXISTS, ctx);
5934 			if (ret)
5935 				break;
5936 		}
5937 		if (IS_ROOT(parent))
5938 			break;
5939 
5940 		parent = dget_parent(parent);
5941 		dput(old_parent);
5942 		old_parent = parent;
5943 	}
5944 	dput(old_parent);
5945 
5946 	return ret;
5947 }
5948 
5949 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5950 				 struct btrfs_inode *inode,
5951 				 struct dentry *parent,
5952 				 struct btrfs_log_ctx *ctx)
5953 {
5954 	struct btrfs_root *root = inode->root;
5955 	const u64 ino = btrfs_ino(inode);
5956 	struct btrfs_path *path;
5957 	struct btrfs_key search_key;
5958 	int ret;
5959 
5960 	/*
5961 	 * For a single hard link case, go through a fast path that does not
5962 	 * need to iterate the fs/subvolume tree.
5963 	 */
5964 	if (inode->vfs_inode.i_nlink < 2)
5965 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5966 
5967 	path = btrfs_alloc_path();
5968 	if (!path)
5969 		return -ENOMEM;
5970 
5971 	search_key.objectid = ino;
5972 	search_key.type = BTRFS_INODE_REF_KEY;
5973 	search_key.offset = 0;
5974 again:
5975 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5976 	if (ret < 0)
5977 		goto out;
5978 	if (ret == 0)
5979 		path->slots[0]++;
5980 
5981 	while (true) {
5982 		struct extent_buffer *leaf = path->nodes[0];
5983 		int slot = path->slots[0];
5984 		struct btrfs_key found_key;
5985 
5986 		if (slot >= btrfs_header_nritems(leaf)) {
5987 			ret = btrfs_next_leaf(root, path);
5988 			if (ret < 0)
5989 				goto out;
5990 			else if (ret > 0)
5991 				break;
5992 			continue;
5993 		}
5994 
5995 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5996 		if (found_key.objectid != ino ||
5997 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
5998 			break;
5999 
6000 		/*
6001 		 * Don't deal with extended references because they are rare
6002 		 * cases and too complex to deal with (we would need to keep
6003 		 * track of which subitem we are processing for each item in
6004 		 * this loop, etc). So just return some error to fallback to
6005 		 * a transaction commit.
6006 		 */
6007 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6008 			ret = -EMLINK;
6009 			goto out;
6010 		}
6011 
6012 		/*
6013 		 * Logging ancestors needs to do more searches on the fs/subvol
6014 		 * tree, so it releases the path as needed to avoid deadlocks.
6015 		 * Keep track of the last inode ref key and resume from that key
6016 		 * after logging all new ancestors for the current hard link.
6017 		 */
6018 		memcpy(&search_key, &found_key, sizeof(search_key));
6019 
6020 		ret = log_new_ancestors(trans, root, path, ctx);
6021 		if (ret)
6022 			goto out;
6023 		btrfs_release_path(path);
6024 		goto again;
6025 	}
6026 	ret = 0;
6027 out:
6028 	btrfs_free_path(path);
6029 	return ret;
6030 }
6031 
6032 /*
6033  * helper function around btrfs_log_inode to make sure newly created
6034  * parent directories also end up in the log.  A minimal inode and backref
6035  * only logging is done of any parent directories that are older than
6036  * the last committed transaction
6037  */
6038 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6039 				  struct btrfs_inode *inode,
6040 				  struct dentry *parent,
6041 				  int inode_only,
6042 				  struct btrfs_log_ctx *ctx)
6043 {
6044 	struct btrfs_root *root = inode->root;
6045 	struct btrfs_fs_info *fs_info = root->fs_info;
6046 	int ret = 0;
6047 	bool log_dentries = false;
6048 
6049 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6050 		ret = 1;
6051 		goto end_no_trans;
6052 	}
6053 
6054 	if (btrfs_root_refs(&root->root_item) == 0) {
6055 		ret = 1;
6056 		goto end_no_trans;
6057 	}
6058 
6059 	/*
6060 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6061 	 * (since logging them is pointless, a link count of 0 means they
6062 	 * will never be accessible).
6063 	 */
6064 	if (btrfs_inode_in_log(inode, trans->transid) ||
6065 	    inode->vfs_inode.i_nlink == 0) {
6066 		ret = BTRFS_NO_LOG_SYNC;
6067 		goto end_no_trans;
6068 	}
6069 
6070 	ret = start_log_trans(trans, root, ctx);
6071 	if (ret)
6072 		goto end_no_trans;
6073 
6074 	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6075 	if (ret)
6076 		goto end_trans;
6077 
6078 	/*
6079 	 * for regular files, if its inode is already on disk, we don't
6080 	 * have to worry about the parents at all.  This is because
6081 	 * we can use the last_unlink_trans field to record renames
6082 	 * and other fun in this file.
6083 	 */
6084 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6085 	    inode->generation < trans->transid &&
6086 	    inode->last_unlink_trans < trans->transid) {
6087 		ret = 0;
6088 		goto end_trans;
6089 	}
6090 
6091 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6092 		log_dentries = true;
6093 
6094 	/*
6095 	 * On unlink we must make sure all our current and old parent directory
6096 	 * inodes are fully logged. This is to prevent leaving dangling
6097 	 * directory index entries in directories that were our parents but are
6098 	 * not anymore. Not doing this results in old parent directory being
6099 	 * impossible to delete after log replay (rmdir will always fail with
6100 	 * error -ENOTEMPTY).
6101 	 *
6102 	 * Example 1:
6103 	 *
6104 	 * mkdir testdir
6105 	 * touch testdir/foo
6106 	 * ln testdir/foo testdir/bar
6107 	 * sync
6108 	 * unlink testdir/bar
6109 	 * xfs_io -c fsync testdir/foo
6110 	 * <power failure>
6111 	 * mount fs, triggers log replay
6112 	 *
6113 	 * If we don't log the parent directory (testdir), after log replay the
6114 	 * directory still has an entry pointing to the file inode using the bar
6115 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6116 	 * the file inode has a link count of 1.
6117 	 *
6118 	 * Example 2:
6119 	 *
6120 	 * mkdir testdir
6121 	 * touch foo
6122 	 * ln foo testdir/foo2
6123 	 * ln foo testdir/foo3
6124 	 * sync
6125 	 * unlink testdir/foo3
6126 	 * xfs_io -c fsync foo
6127 	 * <power failure>
6128 	 * mount fs, triggers log replay
6129 	 *
6130 	 * Similar as the first example, after log replay the parent directory
6131 	 * testdir still has an entry pointing to the inode file with name foo3
6132 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6133 	 * and has a link count of 2.
6134 	 */
6135 	if (inode->last_unlink_trans >= trans->transid) {
6136 		ret = btrfs_log_all_parents(trans, inode, ctx);
6137 		if (ret)
6138 			goto end_trans;
6139 	}
6140 
6141 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6142 	if (ret)
6143 		goto end_trans;
6144 
6145 	if (log_dentries)
6146 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6147 	else
6148 		ret = 0;
6149 end_trans:
6150 	if (ret < 0) {
6151 		btrfs_set_log_full_commit(trans);
6152 		ret = 1;
6153 	}
6154 
6155 	if (ret)
6156 		btrfs_remove_log_ctx(root, ctx);
6157 	btrfs_end_log_trans(root);
6158 end_no_trans:
6159 	return ret;
6160 }
6161 
6162 /*
6163  * it is not safe to log dentry if the chunk root has added new
6164  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6165  * If this returns 1, you must commit the transaction to safely get your
6166  * data on disk.
6167  */
6168 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6169 			  struct dentry *dentry,
6170 			  struct btrfs_log_ctx *ctx)
6171 {
6172 	struct dentry *parent = dget_parent(dentry);
6173 	int ret;
6174 
6175 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6176 				     LOG_INODE_ALL, ctx);
6177 	dput(parent);
6178 
6179 	return ret;
6180 }
6181 
6182 /*
6183  * should be called during mount to recover any replay any log trees
6184  * from the FS
6185  */
6186 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6187 {
6188 	int ret;
6189 	struct btrfs_path *path;
6190 	struct btrfs_trans_handle *trans;
6191 	struct btrfs_key key;
6192 	struct btrfs_key found_key;
6193 	struct btrfs_root *log;
6194 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6195 	struct walk_control wc = {
6196 		.process_func = process_one_buffer,
6197 		.stage = LOG_WALK_PIN_ONLY,
6198 	};
6199 
6200 	path = btrfs_alloc_path();
6201 	if (!path)
6202 		return -ENOMEM;
6203 
6204 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6205 
6206 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6207 	if (IS_ERR(trans)) {
6208 		ret = PTR_ERR(trans);
6209 		goto error;
6210 	}
6211 
6212 	wc.trans = trans;
6213 	wc.pin = 1;
6214 
6215 	ret = walk_log_tree(trans, log_root_tree, &wc);
6216 	if (ret) {
6217 		btrfs_handle_fs_error(fs_info, ret,
6218 			"Failed to pin buffers while recovering log root tree.");
6219 		goto error;
6220 	}
6221 
6222 again:
6223 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6224 	key.offset = (u64)-1;
6225 	key.type = BTRFS_ROOT_ITEM_KEY;
6226 
6227 	while (1) {
6228 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6229 
6230 		if (ret < 0) {
6231 			btrfs_handle_fs_error(fs_info, ret,
6232 				    "Couldn't find tree log root.");
6233 			goto error;
6234 		}
6235 		if (ret > 0) {
6236 			if (path->slots[0] == 0)
6237 				break;
6238 			path->slots[0]--;
6239 		}
6240 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6241 				      path->slots[0]);
6242 		btrfs_release_path(path);
6243 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6244 			break;
6245 
6246 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6247 		if (IS_ERR(log)) {
6248 			ret = PTR_ERR(log);
6249 			btrfs_handle_fs_error(fs_info, ret,
6250 				    "Couldn't read tree log root.");
6251 			goto error;
6252 		}
6253 
6254 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6255 						   true);
6256 		if (IS_ERR(wc.replay_dest)) {
6257 			ret = PTR_ERR(wc.replay_dest);
6258 
6259 			/*
6260 			 * We didn't find the subvol, likely because it was
6261 			 * deleted.  This is ok, simply skip this log and go to
6262 			 * the next one.
6263 			 *
6264 			 * We need to exclude the root because we can't have
6265 			 * other log replays overwriting this log as we'll read
6266 			 * it back in a few more times.  This will keep our
6267 			 * block from being modified, and we'll just bail for
6268 			 * each subsequent pass.
6269 			 */
6270 			if (ret == -ENOENT)
6271 				ret = btrfs_pin_extent_for_log_replay(trans,
6272 							log->node->start,
6273 							log->node->len);
6274 			btrfs_put_root(log);
6275 
6276 			if (!ret)
6277 				goto next;
6278 			btrfs_handle_fs_error(fs_info, ret,
6279 				"Couldn't read target root for tree log recovery.");
6280 			goto error;
6281 		}
6282 
6283 		wc.replay_dest->log_root = log;
6284 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6285 		if (ret)
6286 			/* The loop needs to continue due to the root refs */
6287 			btrfs_handle_fs_error(fs_info, ret,
6288 				"failed to record the log root in transaction");
6289 		else
6290 			ret = walk_log_tree(trans, log, &wc);
6291 
6292 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6293 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6294 						      path);
6295 		}
6296 
6297 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6298 			struct btrfs_root *root = wc.replay_dest;
6299 
6300 			btrfs_release_path(path);
6301 
6302 			/*
6303 			 * We have just replayed everything, and the highest
6304 			 * objectid of fs roots probably has changed in case
6305 			 * some inode_item's got replayed.
6306 			 *
6307 			 * root->objectid_mutex is not acquired as log replay
6308 			 * could only happen during mount.
6309 			 */
6310 			ret = btrfs_init_root_free_objectid(root);
6311 		}
6312 
6313 		wc.replay_dest->log_root = NULL;
6314 		btrfs_put_root(wc.replay_dest);
6315 		btrfs_put_root(log);
6316 
6317 		if (ret)
6318 			goto error;
6319 next:
6320 		if (found_key.offset == 0)
6321 			break;
6322 		key.offset = found_key.offset - 1;
6323 	}
6324 	btrfs_release_path(path);
6325 
6326 	/* step one is to pin it all, step two is to replay just inodes */
6327 	if (wc.pin) {
6328 		wc.pin = 0;
6329 		wc.process_func = replay_one_buffer;
6330 		wc.stage = LOG_WALK_REPLAY_INODES;
6331 		goto again;
6332 	}
6333 	/* step three is to replay everything */
6334 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6335 		wc.stage++;
6336 		goto again;
6337 	}
6338 
6339 	btrfs_free_path(path);
6340 
6341 	/* step 4: commit the transaction, which also unpins the blocks */
6342 	ret = btrfs_commit_transaction(trans);
6343 	if (ret)
6344 		return ret;
6345 
6346 	log_root_tree->log_root = NULL;
6347 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6348 	btrfs_put_root(log_root_tree);
6349 
6350 	return 0;
6351 error:
6352 	if (wc.trans)
6353 		btrfs_end_transaction(wc.trans);
6354 	btrfs_free_path(path);
6355 	return ret;
6356 }
6357 
6358 /*
6359  * there are some corner cases where we want to force a full
6360  * commit instead of allowing a directory to be logged.
6361  *
6362  * They revolve around files there were unlinked from the directory, and
6363  * this function updates the parent directory so that a full commit is
6364  * properly done if it is fsync'd later after the unlinks are done.
6365  *
6366  * Must be called before the unlink operations (updates to the subvolume tree,
6367  * inodes, etc) are done.
6368  */
6369 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6370 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6371 			     int for_rename)
6372 {
6373 	/*
6374 	 * when we're logging a file, if it hasn't been renamed
6375 	 * or unlinked, and its inode is fully committed on disk,
6376 	 * we don't have to worry about walking up the directory chain
6377 	 * to log its parents.
6378 	 *
6379 	 * So, we use the last_unlink_trans field to put this transid
6380 	 * into the file.  When the file is logged we check it and
6381 	 * don't log the parents if the file is fully on disk.
6382 	 */
6383 	mutex_lock(&inode->log_mutex);
6384 	inode->last_unlink_trans = trans->transid;
6385 	mutex_unlock(&inode->log_mutex);
6386 
6387 	/*
6388 	 * if this directory was already logged any new
6389 	 * names for this file/dir will get recorded
6390 	 */
6391 	if (dir->logged_trans == trans->transid)
6392 		return;
6393 
6394 	/*
6395 	 * if the inode we're about to unlink was logged,
6396 	 * the log will be properly updated for any new names
6397 	 */
6398 	if (inode->logged_trans == trans->transid)
6399 		return;
6400 
6401 	/*
6402 	 * when renaming files across directories, if the directory
6403 	 * there we're unlinking from gets fsync'd later on, there's
6404 	 * no way to find the destination directory later and fsync it
6405 	 * properly.  So, we have to be conservative and force commits
6406 	 * so the new name gets discovered.
6407 	 */
6408 	if (for_rename)
6409 		goto record;
6410 
6411 	/* we can safely do the unlink without any special recording */
6412 	return;
6413 
6414 record:
6415 	mutex_lock(&dir->log_mutex);
6416 	dir->last_unlink_trans = trans->transid;
6417 	mutex_unlock(&dir->log_mutex);
6418 }
6419 
6420 /*
6421  * Make sure that if someone attempts to fsync the parent directory of a deleted
6422  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6423  * that after replaying the log tree of the parent directory's root we will not
6424  * see the snapshot anymore and at log replay time we will not see any log tree
6425  * corresponding to the deleted snapshot's root, which could lead to replaying
6426  * it after replaying the log tree of the parent directory (which would replay
6427  * the snapshot delete operation).
6428  *
6429  * Must be called before the actual snapshot destroy operation (updates to the
6430  * parent root and tree of tree roots trees, etc) are done.
6431  */
6432 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6433 				   struct btrfs_inode *dir)
6434 {
6435 	mutex_lock(&dir->log_mutex);
6436 	dir->last_unlink_trans = trans->transid;
6437 	mutex_unlock(&dir->log_mutex);
6438 }
6439 
6440 /*
6441  * Call this after adding a new name for a file and it will properly
6442  * update the log to reflect the new name.
6443  */
6444 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6445 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6446 			struct dentry *parent)
6447 {
6448 	struct btrfs_log_ctx ctx;
6449 
6450 	/*
6451 	 * this will force the logging code to walk the dentry chain
6452 	 * up for the file
6453 	 */
6454 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6455 		inode->last_unlink_trans = trans->transid;
6456 
6457 	/*
6458 	 * if this inode hasn't been logged and directory we're renaming it
6459 	 * from hasn't been logged, we don't need to log it
6460 	 */
6461 	if (inode->logged_trans < trans->transid &&
6462 	    (!old_dir || old_dir->logged_trans < trans->transid))
6463 		return;
6464 
6465 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6466 	ctx.logging_new_name = true;
6467 	/*
6468 	 * We don't care about the return value. If we fail to log the new name
6469 	 * then we know the next attempt to sync the log will fallback to a full
6470 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6471 	 * we don't need to worry about getting a log committed that has an
6472 	 * inconsistent state after a rename operation.
6473 	 */
6474 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6475 }
6476 
6477