xref: /openbmc/linux/fs/btrfs/tree-log.c (revision cd5d5810)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "compat.h"
30 #include "tree-log.h"
31 #include "hash.h"
32 
33 /* magic values for the inode_only field in btrfs_log_inode:
34  *
35  * LOG_INODE_ALL means to log everything
36  * LOG_INODE_EXISTS means to log just enough to recreate the inode
37  * during log replay
38  */
39 #define LOG_INODE_ALL 0
40 #define LOG_INODE_EXISTS 1
41 
42 /*
43  * directory trouble cases
44  *
45  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46  * log, we must force a full commit before doing an fsync of the directory
47  * where the unlink was done.
48  * ---> record transid of last unlink/rename per directory
49  *
50  * mkdir foo/some_dir
51  * normal commit
52  * rename foo/some_dir foo2/some_dir
53  * mkdir foo/some_dir
54  * fsync foo/some_dir/some_file
55  *
56  * The fsync above will unlink the original some_dir without recording
57  * it in its new location (foo2).  After a crash, some_dir will be gone
58  * unless the fsync of some_file forces a full commit
59  *
60  * 2) we must log any new names for any file or dir that is in the fsync
61  * log. ---> check inode while renaming/linking.
62  *
63  * 2a) we must log any new names for any file or dir during rename
64  * when the directory they are being removed from was logged.
65  * ---> check inode and old parent dir during rename
66  *
67  *  2a is actually the more important variant.  With the extra logging
68  *  a crash might unlink the old name without recreating the new one
69  *
70  * 3) after a crash, we must go through any directories with a link count
71  * of zero and redo the rm -rf
72  *
73  * mkdir f1/foo
74  * normal commit
75  * rm -rf f1/foo
76  * fsync(f1)
77  *
78  * The directory f1 was fully removed from the FS, but fsync was never
79  * called on f1, only its parent dir.  After a crash the rm -rf must
80  * be replayed.  This must be able to recurse down the entire
81  * directory tree.  The inode link count fixup code takes care of the
82  * ugly details.
83  */
84 
85 /*
86  * stages for the tree walking.  The first
87  * stage (0) is to only pin down the blocks we find
88  * the second stage (1) is to make sure that all the inodes
89  * we find in the log are created in the subvolume.
90  *
91  * The last stage is to deal with directories and links and extents
92  * and all the other fun semantics
93  */
94 #define LOG_WALK_PIN_ONLY 0
95 #define LOG_WALK_REPLAY_INODES 1
96 #define LOG_WALK_REPLAY_DIR_INDEX 2
97 #define LOG_WALK_REPLAY_ALL 3
98 
99 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
100 			     struct btrfs_root *root, struct inode *inode,
101 			     int inode_only);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 			     struct btrfs_root *root,
104 			     struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 				       struct btrfs_root *root,
107 				       struct btrfs_root *log,
108 				       struct btrfs_path *path,
109 				       u64 dirid, int del_all);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root)
141 {
142 	int ret;
143 	int err = 0;
144 
145 	mutex_lock(&root->log_mutex);
146 	if (root->log_root) {
147 		if (!root->log_start_pid) {
148 			root->log_start_pid = current->pid;
149 			root->log_multiple_pids = false;
150 		} else if (root->log_start_pid != current->pid) {
151 			root->log_multiple_pids = true;
152 		}
153 
154 		atomic_inc(&root->log_batch);
155 		atomic_inc(&root->log_writers);
156 		mutex_unlock(&root->log_mutex);
157 		return 0;
158 	}
159 	root->log_multiple_pids = false;
160 	root->log_start_pid = current->pid;
161 	mutex_lock(&root->fs_info->tree_log_mutex);
162 	if (!root->fs_info->log_root_tree) {
163 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
164 		if (ret)
165 			err = ret;
166 	}
167 	if (err == 0 && !root->log_root) {
168 		ret = btrfs_add_log_tree(trans, root);
169 		if (ret)
170 			err = ret;
171 	}
172 	mutex_unlock(&root->fs_info->tree_log_mutex);
173 	atomic_inc(&root->log_batch);
174 	atomic_inc(&root->log_writers);
175 	mutex_unlock(&root->log_mutex);
176 	return err;
177 }
178 
179 /*
180  * returns 0 if there was a log transaction running and we were able
181  * to join, or returns -ENOENT if there were not transactions
182  * in progress
183  */
184 static int join_running_log_trans(struct btrfs_root *root)
185 {
186 	int ret = -ENOENT;
187 
188 	smp_mb();
189 	if (!root->log_root)
190 		return -ENOENT;
191 
192 	mutex_lock(&root->log_mutex);
193 	if (root->log_root) {
194 		ret = 0;
195 		atomic_inc(&root->log_writers);
196 	}
197 	mutex_unlock(&root->log_mutex);
198 	return ret;
199 }
200 
201 /*
202  * This either makes the current running log transaction wait
203  * until you call btrfs_end_log_trans() or it makes any future
204  * log transactions wait until you call btrfs_end_log_trans()
205  */
206 int btrfs_pin_log_trans(struct btrfs_root *root)
207 {
208 	int ret = -ENOENT;
209 
210 	mutex_lock(&root->log_mutex);
211 	atomic_inc(&root->log_writers);
212 	mutex_unlock(&root->log_mutex);
213 	return ret;
214 }
215 
216 /*
217  * indicate we're done making changes to the log tree
218  * and wake up anyone waiting to do a sync
219  */
220 void btrfs_end_log_trans(struct btrfs_root *root)
221 {
222 	if (atomic_dec_and_test(&root->log_writers)) {
223 		smp_mb();
224 		if (waitqueue_active(&root->log_writer_wait))
225 			wake_up(&root->log_writer_wait);
226 	}
227 }
228 
229 
230 /*
231  * the walk control struct is used to pass state down the chain when
232  * processing the log tree.  The stage field tells us which part
233  * of the log tree processing we are currently doing.  The others
234  * are state fields used for that specific part
235  */
236 struct walk_control {
237 	/* should we free the extent on disk when done?  This is used
238 	 * at transaction commit time while freeing a log tree
239 	 */
240 	int free;
241 
242 	/* should we write out the extent buffer?  This is used
243 	 * while flushing the log tree to disk during a sync
244 	 */
245 	int write;
246 
247 	/* should we wait for the extent buffer io to finish?  Also used
248 	 * while flushing the log tree to disk for a sync
249 	 */
250 	int wait;
251 
252 	/* pin only walk, we record which extents on disk belong to the
253 	 * log trees
254 	 */
255 	int pin;
256 
257 	/* what stage of the replay code we're currently in */
258 	int stage;
259 
260 	/* the root we are currently replaying */
261 	struct btrfs_root *replay_dest;
262 
263 	/* the trans handle for the current replay */
264 	struct btrfs_trans_handle *trans;
265 
266 	/* the function that gets used to process blocks we find in the
267 	 * tree.  Note the extent_buffer might not be up to date when it is
268 	 * passed in, and it must be checked or read if you need the data
269 	 * inside it
270 	 */
271 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
272 			    struct walk_control *wc, u64 gen);
273 };
274 
275 /*
276  * process_func used to pin down extents, write them or wait on them
277  */
278 static int process_one_buffer(struct btrfs_root *log,
279 			      struct extent_buffer *eb,
280 			      struct walk_control *wc, u64 gen)
281 {
282 	int ret = 0;
283 
284 	/*
285 	 * If this fs is mixed then we need to be able to process the leaves to
286 	 * pin down any logged extents, so we have to read the block.
287 	 */
288 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
289 		ret = btrfs_read_buffer(eb, gen);
290 		if (ret)
291 			return ret;
292 	}
293 
294 	if (wc->pin)
295 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
296 						      eb->start, eb->len);
297 
298 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
299 		if (wc->pin && btrfs_header_level(eb) == 0)
300 			ret = btrfs_exclude_logged_extents(log, eb);
301 		if (wc->write)
302 			btrfs_write_tree_block(eb);
303 		if (wc->wait)
304 			btrfs_wait_tree_block_writeback(eb);
305 	}
306 	return ret;
307 }
308 
309 /*
310  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
311  * to the src data we are copying out.
312  *
313  * root is the tree we are copying into, and path is a scratch
314  * path for use in this function (it should be released on entry and
315  * will be released on exit).
316  *
317  * If the key is already in the destination tree the existing item is
318  * overwritten.  If the existing item isn't big enough, it is extended.
319  * If it is too large, it is truncated.
320  *
321  * If the key isn't in the destination yet, a new item is inserted.
322  */
323 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
324 				   struct btrfs_root *root,
325 				   struct btrfs_path *path,
326 				   struct extent_buffer *eb, int slot,
327 				   struct btrfs_key *key)
328 {
329 	int ret;
330 	u32 item_size;
331 	u64 saved_i_size = 0;
332 	int save_old_i_size = 0;
333 	unsigned long src_ptr;
334 	unsigned long dst_ptr;
335 	int overwrite_root = 0;
336 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
337 
338 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
339 		overwrite_root = 1;
340 
341 	item_size = btrfs_item_size_nr(eb, slot);
342 	src_ptr = btrfs_item_ptr_offset(eb, slot);
343 
344 	/* look for the key in the destination tree */
345 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
346 	if (ret < 0)
347 		return ret;
348 
349 	if (ret == 0) {
350 		char *src_copy;
351 		char *dst_copy;
352 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
353 						  path->slots[0]);
354 		if (dst_size != item_size)
355 			goto insert;
356 
357 		if (item_size == 0) {
358 			btrfs_release_path(path);
359 			return 0;
360 		}
361 		dst_copy = kmalloc(item_size, GFP_NOFS);
362 		src_copy = kmalloc(item_size, GFP_NOFS);
363 		if (!dst_copy || !src_copy) {
364 			btrfs_release_path(path);
365 			kfree(dst_copy);
366 			kfree(src_copy);
367 			return -ENOMEM;
368 		}
369 
370 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
371 
372 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
373 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
374 				   item_size);
375 		ret = memcmp(dst_copy, src_copy, item_size);
376 
377 		kfree(dst_copy);
378 		kfree(src_copy);
379 		/*
380 		 * they have the same contents, just return, this saves
381 		 * us from cowing blocks in the destination tree and doing
382 		 * extra writes that may not have been done by a previous
383 		 * sync
384 		 */
385 		if (ret == 0) {
386 			btrfs_release_path(path);
387 			return 0;
388 		}
389 
390 		/*
391 		 * We need to load the old nbytes into the inode so when we
392 		 * replay the extents we've logged we get the right nbytes.
393 		 */
394 		if (inode_item) {
395 			struct btrfs_inode_item *item;
396 			u64 nbytes;
397 			u32 mode;
398 
399 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
400 					      struct btrfs_inode_item);
401 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
402 			item = btrfs_item_ptr(eb, slot,
403 					      struct btrfs_inode_item);
404 			btrfs_set_inode_nbytes(eb, item, nbytes);
405 
406 			/*
407 			 * If this is a directory we need to reset the i_size to
408 			 * 0 so that we can set it up properly when replaying
409 			 * the rest of the items in this log.
410 			 */
411 			mode = btrfs_inode_mode(eb, item);
412 			if (S_ISDIR(mode))
413 				btrfs_set_inode_size(eb, item, 0);
414 		}
415 	} else if (inode_item) {
416 		struct btrfs_inode_item *item;
417 		u32 mode;
418 
419 		/*
420 		 * New inode, set nbytes to 0 so that the nbytes comes out
421 		 * properly when we replay the extents.
422 		 */
423 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
424 		btrfs_set_inode_nbytes(eb, item, 0);
425 
426 		/*
427 		 * If this is a directory we need to reset the i_size to 0 so
428 		 * that we can set it up properly when replaying the rest of
429 		 * the items in this log.
430 		 */
431 		mode = btrfs_inode_mode(eb, item);
432 		if (S_ISDIR(mode))
433 			btrfs_set_inode_size(eb, item, 0);
434 	}
435 insert:
436 	btrfs_release_path(path);
437 	/* try to insert the key into the destination tree */
438 	ret = btrfs_insert_empty_item(trans, root, path,
439 				      key, item_size);
440 
441 	/* make sure any existing item is the correct size */
442 	if (ret == -EEXIST) {
443 		u32 found_size;
444 		found_size = btrfs_item_size_nr(path->nodes[0],
445 						path->slots[0]);
446 		if (found_size > item_size)
447 			btrfs_truncate_item(root, path, item_size, 1);
448 		else if (found_size < item_size)
449 			btrfs_extend_item(root, path,
450 					  item_size - found_size);
451 	} else if (ret) {
452 		return ret;
453 	}
454 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
455 					path->slots[0]);
456 
457 	/* don't overwrite an existing inode if the generation number
458 	 * was logged as zero.  This is done when the tree logging code
459 	 * is just logging an inode to make sure it exists after recovery.
460 	 *
461 	 * Also, don't overwrite i_size on directories during replay.
462 	 * log replay inserts and removes directory items based on the
463 	 * state of the tree found in the subvolume, and i_size is modified
464 	 * as it goes
465 	 */
466 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
467 		struct btrfs_inode_item *src_item;
468 		struct btrfs_inode_item *dst_item;
469 
470 		src_item = (struct btrfs_inode_item *)src_ptr;
471 		dst_item = (struct btrfs_inode_item *)dst_ptr;
472 
473 		if (btrfs_inode_generation(eb, src_item) == 0)
474 			goto no_copy;
475 
476 		if (overwrite_root &&
477 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
478 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
479 			save_old_i_size = 1;
480 			saved_i_size = btrfs_inode_size(path->nodes[0],
481 							dst_item);
482 		}
483 	}
484 
485 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
486 			   src_ptr, item_size);
487 
488 	if (save_old_i_size) {
489 		struct btrfs_inode_item *dst_item;
490 		dst_item = (struct btrfs_inode_item *)dst_ptr;
491 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
492 	}
493 
494 	/* make sure the generation is filled in */
495 	if (key->type == BTRFS_INODE_ITEM_KEY) {
496 		struct btrfs_inode_item *dst_item;
497 		dst_item = (struct btrfs_inode_item *)dst_ptr;
498 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
499 			btrfs_set_inode_generation(path->nodes[0], dst_item,
500 						   trans->transid);
501 		}
502 	}
503 no_copy:
504 	btrfs_mark_buffer_dirty(path->nodes[0]);
505 	btrfs_release_path(path);
506 	return 0;
507 }
508 
509 /*
510  * simple helper to read an inode off the disk from a given root
511  * This can only be called for subvolume roots and not for the log
512  */
513 static noinline struct inode *read_one_inode(struct btrfs_root *root,
514 					     u64 objectid)
515 {
516 	struct btrfs_key key;
517 	struct inode *inode;
518 
519 	key.objectid = objectid;
520 	key.type = BTRFS_INODE_ITEM_KEY;
521 	key.offset = 0;
522 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
523 	if (IS_ERR(inode)) {
524 		inode = NULL;
525 	} else if (is_bad_inode(inode)) {
526 		iput(inode);
527 		inode = NULL;
528 	}
529 	return inode;
530 }
531 
532 /* replays a single extent in 'eb' at 'slot' with 'key' into the
533  * subvolume 'root'.  path is released on entry and should be released
534  * on exit.
535  *
536  * extents in the log tree have not been allocated out of the extent
537  * tree yet.  So, this completes the allocation, taking a reference
538  * as required if the extent already exists or creating a new extent
539  * if it isn't in the extent allocation tree yet.
540  *
541  * The extent is inserted into the file, dropping any existing extents
542  * from the file that overlap the new one.
543  */
544 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
545 				      struct btrfs_root *root,
546 				      struct btrfs_path *path,
547 				      struct extent_buffer *eb, int slot,
548 				      struct btrfs_key *key)
549 {
550 	int found_type;
551 	u64 extent_end;
552 	u64 start = key->offset;
553 	u64 nbytes = 0;
554 	struct btrfs_file_extent_item *item;
555 	struct inode *inode = NULL;
556 	unsigned long size;
557 	int ret = 0;
558 
559 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
560 	found_type = btrfs_file_extent_type(eb, item);
561 
562 	if (found_type == BTRFS_FILE_EXTENT_REG ||
563 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
564 		nbytes = btrfs_file_extent_num_bytes(eb, item);
565 		extent_end = start + nbytes;
566 
567 		/*
568 		 * We don't add to the inodes nbytes if we are prealloc or a
569 		 * hole.
570 		 */
571 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
572 			nbytes = 0;
573 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
574 		size = btrfs_file_extent_inline_len(eb, item);
575 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
576 		extent_end = ALIGN(start + size, root->sectorsize);
577 	} else {
578 		ret = 0;
579 		goto out;
580 	}
581 
582 	inode = read_one_inode(root, key->objectid);
583 	if (!inode) {
584 		ret = -EIO;
585 		goto out;
586 	}
587 
588 	/*
589 	 * first check to see if we already have this extent in the
590 	 * file.  This must be done before the btrfs_drop_extents run
591 	 * so we don't try to drop this extent.
592 	 */
593 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
594 				       start, 0);
595 
596 	if (ret == 0 &&
597 	    (found_type == BTRFS_FILE_EXTENT_REG ||
598 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
599 		struct btrfs_file_extent_item cmp1;
600 		struct btrfs_file_extent_item cmp2;
601 		struct btrfs_file_extent_item *existing;
602 		struct extent_buffer *leaf;
603 
604 		leaf = path->nodes[0];
605 		existing = btrfs_item_ptr(leaf, path->slots[0],
606 					  struct btrfs_file_extent_item);
607 
608 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
609 				   sizeof(cmp1));
610 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
611 				   sizeof(cmp2));
612 
613 		/*
614 		 * we already have a pointer to this exact extent,
615 		 * we don't have to do anything
616 		 */
617 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
618 			btrfs_release_path(path);
619 			goto out;
620 		}
621 	}
622 	btrfs_release_path(path);
623 
624 	/* drop any overlapping extents */
625 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
626 	if (ret)
627 		goto out;
628 
629 	if (found_type == BTRFS_FILE_EXTENT_REG ||
630 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
631 		u64 offset;
632 		unsigned long dest_offset;
633 		struct btrfs_key ins;
634 
635 		ret = btrfs_insert_empty_item(trans, root, path, key,
636 					      sizeof(*item));
637 		if (ret)
638 			goto out;
639 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
640 						    path->slots[0]);
641 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
642 				(unsigned long)item,  sizeof(*item));
643 
644 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
645 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
646 		ins.type = BTRFS_EXTENT_ITEM_KEY;
647 		offset = key->offset - btrfs_file_extent_offset(eb, item);
648 
649 		if (ins.objectid > 0) {
650 			u64 csum_start;
651 			u64 csum_end;
652 			LIST_HEAD(ordered_sums);
653 			/*
654 			 * is this extent already allocated in the extent
655 			 * allocation tree?  If so, just add a reference
656 			 */
657 			ret = btrfs_lookup_extent(root, ins.objectid,
658 						ins.offset);
659 			if (ret == 0) {
660 				ret = btrfs_inc_extent_ref(trans, root,
661 						ins.objectid, ins.offset,
662 						0, root->root_key.objectid,
663 						key->objectid, offset, 0);
664 				if (ret)
665 					goto out;
666 			} else {
667 				/*
668 				 * insert the extent pointer in the extent
669 				 * allocation tree
670 				 */
671 				ret = btrfs_alloc_logged_file_extent(trans,
672 						root, root->root_key.objectid,
673 						key->objectid, offset, &ins);
674 				if (ret)
675 					goto out;
676 			}
677 			btrfs_release_path(path);
678 
679 			if (btrfs_file_extent_compression(eb, item)) {
680 				csum_start = ins.objectid;
681 				csum_end = csum_start + ins.offset;
682 			} else {
683 				csum_start = ins.objectid +
684 					btrfs_file_extent_offset(eb, item);
685 				csum_end = csum_start +
686 					btrfs_file_extent_num_bytes(eb, item);
687 			}
688 
689 			ret = btrfs_lookup_csums_range(root->log_root,
690 						csum_start, csum_end - 1,
691 						&ordered_sums, 0);
692 			if (ret)
693 				goto out;
694 			while (!list_empty(&ordered_sums)) {
695 				struct btrfs_ordered_sum *sums;
696 				sums = list_entry(ordered_sums.next,
697 						struct btrfs_ordered_sum,
698 						list);
699 				if (!ret)
700 					ret = btrfs_csum_file_blocks(trans,
701 						root->fs_info->csum_root,
702 						sums);
703 				list_del(&sums->list);
704 				kfree(sums);
705 			}
706 			if (ret)
707 				goto out;
708 		} else {
709 			btrfs_release_path(path);
710 		}
711 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
712 		/* inline extents are easy, we just overwrite them */
713 		ret = overwrite_item(trans, root, path, eb, slot, key);
714 		if (ret)
715 			goto out;
716 	}
717 
718 	inode_add_bytes(inode, nbytes);
719 	ret = btrfs_update_inode(trans, root, inode);
720 out:
721 	if (inode)
722 		iput(inode);
723 	return ret;
724 }
725 
726 /*
727  * when cleaning up conflicts between the directory names in the
728  * subvolume, directory names in the log and directory names in the
729  * inode back references, we may have to unlink inodes from directories.
730  *
731  * This is a helper function to do the unlink of a specific directory
732  * item
733  */
734 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
735 				      struct btrfs_root *root,
736 				      struct btrfs_path *path,
737 				      struct inode *dir,
738 				      struct btrfs_dir_item *di)
739 {
740 	struct inode *inode;
741 	char *name;
742 	int name_len;
743 	struct extent_buffer *leaf;
744 	struct btrfs_key location;
745 	int ret;
746 
747 	leaf = path->nodes[0];
748 
749 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
750 	name_len = btrfs_dir_name_len(leaf, di);
751 	name = kmalloc(name_len, GFP_NOFS);
752 	if (!name)
753 		return -ENOMEM;
754 
755 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
756 	btrfs_release_path(path);
757 
758 	inode = read_one_inode(root, location.objectid);
759 	if (!inode) {
760 		ret = -EIO;
761 		goto out;
762 	}
763 
764 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
765 	if (ret)
766 		goto out;
767 
768 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
769 	if (ret)
770 		goto out;
771 	else
772 		ret = btrfs_run_delayed_items(trans, root);
773 out:
774 	kfree(name);
775 	iput(inode);
776 	return ret;
777 }
778 
779 /*
780  * helper function to see if a given name and sequence number found
781  * in an inode back reference are already in a directory and correctly
782  * point to this inode
783  */
784 static noinline int inode_in_dir(struct btrfs_root *root,
785 				 struct btrfs_path *path,
786 				 u64 dirid, u64 objectid, u64 index,
787 				 const char *name, int name_len)
788 {
789 	struct btrfs_dir_item *di;
790 	struct btrfs_key location;
791 	int match = 0;
792 
793 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
794 					 index, name, name_len, 0);
795 	if (di && !IS_ERR(di)) {
796 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
797 		if (location.objectid != objectid)
798 			goto out;
799 	} else
800 		goto out;
801 	btrfs_release_path(path);
802 
803 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
804 	if (di && !IS_ERR(di)) {
805 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
806 		if (location.objectid != objectid)
807 			goto out;
808 	} else
809 		goto out;
810 	match = 1;
811 out:
812 	btrfs_release_path(path);
813 	return match;
814 }
815 
816 /*
817  * helper function to check a log tree for a named back reference in
818  * an inode.  This is used to decide if a back reference that is
819  * found in the subvolume conflicts with what we find in the log.
820  *
821  * inode backreferences may have multiple refs in a single item,
822  * during replay we process one reference at a time, and we don't
823  * want to delete valid links to a file from the subvolume if that
824  * link is also in the log.
825  */
826 static noinline int backref_in_log(struct btrfs_root *log,
827 				   struct btrfs_key *key,
828 				   u64 ref_objectid,
829 				   char *name, int namelen)
830 {
831 	struct btrfs_path *path;
832 	struct btrfs_inode_ref *ref;
833 	unsigned long ptr;
834 	unsigned long ptr_end;
835 	unsigned long name_ptr;
836 	int found_name_len;
837 	int item_size;
838 	int ret;
839 	int match = 0;
840 
841 	path = btrfs_alloc_path();
842 	if (!path)
843 		return -ENOMEM;
844 
845 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
846 	if (ret != 0)
847 		goto out;
848 
849 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
850 
851 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
852 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
853 						   name, namelen, NULL))
854 			match = 1;
855 
856 		goto out;
857 	}
858 
859 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
860 	ptr_end = ptr + item_size;
861 	while (ptr < ptr_end) {
862 		ref = (struct btrfs_inode_ref *)ptr;
863 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
864 		if (found_name_len == namelen) {
865 			name_ptr = (unsigned long)(ref + 1);
866 			ret = memcmp_extent_buffer(path->nodes[0], name,
867 						   name_ptr, namelen);
868 			if (ret == 0) {
869 				match = 1;
870 				goto out;
871 			}
872 		}
873 		ptr = (unsigned long)(ref + 1) + found_name_len;
874 	}
875 out:
876 	btrfs_free_path(path);
877 	return match;
878 }
879 
880 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
881 				  struct btrfs_root *root,
882 				  struct btrfs_path *path,
883 				  struct btrfs_root *log_root,
884 				  struct inode *dir, struct inode *inode,
885 				  struct extent_buffer *eb,
886 				  u64 inode_objectid, u64 parent_objectid,
887 				  u64 ref_index, char *name, int namelen,
888 				  int *search_done)
889 {
890 	int ret;
891 	char *victim_name;
892 	int victim_name_len;
893 	struct extent_buffer *leaf;
894 	struct btrfs_dir_item *di;
895 	struct btrfs_key search_key;
896 	struct btrfs_inode_extref *extref;
897 
898 again:
899 	/* Search old style refs */
900 	search_key.objectid = inode_objectid;
901 	search_key.type = BTRFS_INODE_REF_KEY;
902 	search_key.offset = parent_objectid;
903 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
904 	if (ret == 0) {
905 		struct btrfs_inode_ref *victim_ref;
906 		unsigned long ptr;
907 		unsigned long ptr_end;
908 
909 		leaf = path->nodes[0];
910 
911 		/* are we trying to overwrite a back ref for the root directory
912 		 * if so, just jump out, we're done
913 		 */
914 		if (search_key.objectid == search_key.offset)
915 			return 1;
916 
917 		/* check all the names in this back reference to see
918 		 * if they are in the log.  if so, we allow them to stay
919 		 * otherwise they must be unlinked as a conflict
920 		 */
921 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
922 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
923 		while (ptr < ptr_end) {
924 			victim_ref = (struct btrfs_inode_ref *)ptr;
925 			victim_name_len = btrfs_inode_ref_name_len(leaf,
926 								   victim_ref);
927 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
928 			if (!victim_name)
929 				return -ENOMEM;
930 
931 			read_extent_buffer(leaf, victim_name,
932 					   (unsigned long)(victim_ref + 1),
933 					   victim_name_len);
934 
935 			if (!backref_in_log(log_root, &search_key,
936 					    parent_objectid,
937 					    victim_name,
938 					    victim_name_len)) {
939 				btrfs_inc_nlink(inode);
940 				btrfs_release_path(path);
941 
942 				ret = btrfs_unlink_inode(trans, root, dir,
943 							 inode, victim_name,
944 							 victim_name_len);
945 				kfree(victim_name);
946 				if (ret)
947 					return ret;
948 				ret = btrfs_run_delayed_items(trans, root);
949 				if (ret)
950 					return ret;
951 				*search_done = 1;
952 				goto again;
953 			}
954 			kfree(victim_name);
955 
956 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
957 		}
958 
959 		/*
960 		 * NOTE: we have searched root tree and checked the
961 		 * coresponding ref, it does not need to check again.
962 		 */
963 		*search_done = 1;
964 	}
965 	btrfs_release_path(path);
966 
967 	/* Same search but for extended refs */
968 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
969 					   inode_objectid, parent_objectid, 0,
970 					   0);
971 	if (!IS_ERR_OR_NULL(extref)) {
972 		u32 item_size;
973 		u32 cur_offset = 0;
974 		unsigned long base;
975 		struct inode *victim_parent;
976 
977 		leaf = path->nodes[0];
978 
979 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
980 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
981 
982 		while (cur_offset < item_size) {
983 			extref = (struct btrfs_inode_extref *)base + cur_offset;
984 
985 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
986 
987 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
988 				goto next;
989 
990 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
991 			if (!victim_name)
992 				return -ENOMEM;
993 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
994 					   victim_name_len);
995 
996 			search_key.objectid = inode_objectid;
997 			search_key.type = BTRFS_INODE_EXTREF_KEY;
998 			search_key.offset = btrfs_extref_hash(parent_objectid,
999 							      victim_name,
1000 							      victim_name_len);
1001 			ret = 0;
1002 			if (!backref_in_log(log_root, &search_key,
1003 					    parent_objectid, victim_name,
1004 					    victim_name_len)) {
1005 				ret = -ENOENT;
1006 				victim_parent = read_one_inode(root,
1007 							       parent_objectid);
1008 				if (victim_parent) {
1009 					btrfs_inc_nlink(inode);
1010 					btrfs_release_path(path);
1011 
1012 					ret = btrfs_unlink_inode(trans, root,
1013 								 victim_parent,
1014 								 inode,
1015 								 victim_name,
1016 								 victim_name_len);
1017 					if (!ret)
1018 						ret = btrfs_run_delayed_items(
1019 								  trans, root);
1020 				}
1021 				iput(victim_parent);
1022 				kfree(victim_name);
1023 				if (ret)
1024 					return ret;
1025 				*search_done = 1;
1026 				goto again;
1027 			}
1028 			kfree(victim_name);
1029 			if (ret)
1030 				return ret;
1031 next:
1032 			cur_offset += victim_name_len + sizeof(*extref);
1033 		}
1034 		*search_done = 1;
1035 	}
1036 	btrfs_release_path(path);
1037 
1038 	/* look for a conflicting sequence number */
1039 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1040 					 ref_index, name, namelen, 0);
1041 	if (di && !IS_ERR(di)) {
1042 		ret = drop_one_dir_item(trans, root, path, dir, di);
1043 		if (ret)
1044 			return ret;
1045 	}
1046 	btrfs_release_path(path);
1047 
1048 	/* look for a conflicing name */
1049 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1050 				   name, namelen, 0);
1051 	if (di && !IS_ERR(di)) {
1052 		ret = drop_one_dir_item(trans, root, path, dir, di);
1053 		if (ret)
1054 			return ret;
1055 	}
1056 	btrfs_release_path(path);
1057 
1058 	return 0;
1059 }
1060 
1061 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1062 			     u32 *namelen, char **name, u64 *index,
1063 			     u64 *parent_objectid)
1064 {
1065 	struct btrfs_inode_extref *extref;
1066 
1067 	extref = (struct btrfs_inode_extref *)ref_ptr;
1068 
1069 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1070 	*name = kmalloc(*namelen, GFP_NOFS);
1071 	if (*name == NULL)
1072 		return -ENOMEM;
1073 
1074 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1075 			   *namelen);
1076 
1077 	*index = btrfs_inode_extref_index(eb, extref);
1078 	if (parent_objectid)
1079 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1080 
1081 	return 0;
1082 }
1083 
1084 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1085 			  u32 *namelen, char **name, u64 *index)
1086 {
1087 	struct btrfs_inode_ref *ref;
1088 
1089 	ref = (struct btrfs_inode_ref *)ref_ptr;
1090 
1091 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1092 	*name = kmalloc(*namelen, GFP_NOFS);
1093 	if (*name == NULL)
1094 		return -ENOMEM;
1095 
1096 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1097 
1098 	*index = btrfs_inode_ref_index(eb, ref);
1099 
1100 	return 0;
1101 }
1102 
1103 /*
1104  * replay one inode back reference item found in the log tree.
1105  * eb, slot and key refer to the buffer and key found in the log tree.
1106  * root is the destination we are replaying into, and path is for temp
1107  * use by this function.  (it should be released on return).
1108  */
1109 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1110 				  struct btrfs_root *root,
1111 				  struct btrfs_root *log,
1112 				  struct btrfs_path *path,
1113 				  struct extent_buffer *eb, int slot,
1114 				  struct btrfs_key *key)
1115 {
1116 	struct inode *dir;
1117 	struct inode *inode;
1118 	unsigned long ref_ptr;
1119 	unsigned long ref_end;
1120 	char *name;
1121 	int namelen;
1122 	int ret;
1123 	int search_done = 0;
1124 	int log_ref_ver = 0;
1125 	u64 parent_objectid;
1126 	u64 inode_objectid;
1127 	u64 ref_index = 0;
1128 	int ref_struct_size;
1129 
1130 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1131 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1132 
1133 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1134 		struct btrfs_inode_extref *r;
1135 
1136 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1137 		log_ref_ver = 1;
1138 		r = (struct btrfs_inode_extref *)ref_ptr;
1139 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1140 	} else {
1141 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1142 		parent_objectid = key->offset;
1143 	}
1144 	inode_objectid = key->objectid;
1145 
1146 	/*
1147 	 * it is possible that we didn't log all the parent directories
1148 	 * for a given inode.  If we don't find the dir, just don't
1149 	 * copy the back ref in.  The link count fixup code will take
1150 	 * care of the rest
1151 	 */
1152 	dir = read_one_inode(root, parent_objectid);
1153 	if (!dir)
1154 		return -ENOENT;
1155 
1156 	inode = read_one_inode(root, inode_objectid);
1157 	if (!inode) {
1158 		iput(dir);
1159 		return -EIO;
1160 	}
1161 
1162 	while (ref_ptr < ref_end) {
1163 		if (log_ref_ver) {
1164 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1165 						&ref_index, &parent_objectid);
1166 			/*
1167 			 * parent object can change from one array
1168 			 * item to another.
1169 			 */
1170 			if (!dir)
1171 				dir = read_one_inode(root, parent_objectid);
1172 			if (!dir)
1173 				return -ENOENT;
1174 		} else {
1175 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1176 					     &ref_index);
1177 		}
1178 		if (ret)
1179 			return ret;
1180 
1181 		/* if we already have a perfect match, we're done */
1182 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1183 				  ref_index, name, namelen)) {
1184 			/*
1185 			 * look for a conflicting back reference in the
1186 			 * metadata. if we find one we have to unlink that name
1187 			 * of the file before we add our new link.  Later on, we
1188 			 * overwrite any existing back reference, and we don't
1189 			 * want to create dangling pointers in the directory.
1190 			 */
1191 
1192 			if (!search_done) {
1193 				ret = __add_inode_ref(trans, root, path, log,
1194 						      dir, inode, eb,
1195 						      inode_objectid,
1196 						      parent_objectid,
1197 						      ref_index, name, namelen,
1198 						      &search_done);
1199 				if (ret == 1) {
1200 					ret = 0;
1201 					goto out;
1202 				}
1203 				if (ret)
1204 					goto out;
1205 			}
1206 
1207 			/* insert our name */
1208 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1209 					     0, ref_index);
1210 			if (ret)
1211 				goto out;
1212 
1213 			btrfs_update_inode(trans, root, inode);
1214 		}
1215 
1216 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1217 		kfree(name);
1218 		if (log_ref_ver) {
1219 			iput(dir);
1220 			dir = NULL;
1221 		}
1222 	}
1223 
1224 	/* finally write the back reference in the inode */
1225 	ret = overwrite_item(trans, root, path, eb, slot, key);
1226 out:
1227 	btrfs_release_path(path);
1228 	iput(dir);
1229 	iput(inode);
1230 	return ret;
1231 }
1232 
1233 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1234 			      struct btrfs_root *root, u64 offset)
1235 {
1236 	int ret;
1237 	ret = btrfs_find_orphan_item(root, offset);
1238 	if (ret > 0)
1239 		ret = btrfs_insert_orphan_item(trans, root, offset);
1240 	return ret;
1241 }
1242 
1243 static int count_inode_extrefs(struct btrfs_root *root,
1244 			       struct inode *inode, struct btrfs_path *path)
1245 {
1246 	int ret = 0;
1247 	int name_len;
1248 	unsigned int nlink = 0;
1249 	u32 item_size;
1250 	u32 cur_offset = 0;
1251 	u64 inode_objectid = btrfs_ino(inode);
1252 	u64 offset = 0;
1253 	unsigned long ptr;
1254 	struct btrfs_inode_extref *extref;
1255 	struct extent_buffer *leaf;
1256 
1257 	while (1) {
1258 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1259 					    &extref, &offset);
1260 		if (ret)
1261 			break;
1262 
1263 		leaf = path->nodes[0];
1264 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1265 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1266 
1267 		while (cur_offset < item_size) {
1268 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1269 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1270 
1271 			nlink++;
1272 
1273 			cur_offset += name_len + sizeof(*extref);
1274 		}
1275 
1276 		offset++;
1277 		btrfs_release_path(path);
1278 	}
1279 	btrfs_release_path(path);
1280 
1281 	if (ret < 0)
1282 		return ret;
1283 	return nlink;
1284 }
1285 
1286 static int count_inode_refs(struct btrfs_root *root,
1287 			       struct inode *inode, struct btrfs_path *path)
1288 {
1289 	int ret;
1290 	struct btrfs_key key;
1291 	unsigned int nlink = 0;
1292 	unsigned long ptr;
1293 	unsigned long ptr_end;
1294 	int name_len;
1295 	u64 ino = btrfs_ino(inode);
1296 
1297 	key.objectid = ino;
1298 	key.type = BTRFS_INODE_REF_KEY;
1299 	key.offset = (u64)-1;
1300 
1301 	while (1) {
1302 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1303 		if (ret < 0)
1304 			break;
1305 		if (ret > 0) {
1306 			if (path->slots[0] == 0)
1307 				break;
1308 			path->slots[0]--;
1309 		}
1310 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1311 				      path->slots[0]);
1312 		if (key.objectid != ino ||
1313 		    key.type != BTRFS_INODE_REF_KEY)
1314 			break;
1315 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1316 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1317 						   path->slots[0]);
1318 		while (ptr < ptr_end) {
1319 			struct btrfs_inode_ref *ref;
1320 
1321 			ref = (struct btrfs_inode_ref *)ptr;
1322 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1323 							    ref);
1324 			ptr = (unsigned long)(ref + 1) + name_len;
1325 			nlink++;
1326 		}
1327 
1328 		if (key.offset == 0)
1329 			break;
1330 		key.offset--;
1331 		btrfs_release_path(path);
1332 	}
1333 	btrfs_release_path(path);
1334 
1335 	return nlink;
1336 }
1337 
1338 /*
1339  * There are a few corners where the link count of the file can't
1340  * be properly maintained during replay.  So, instead of adding
1341  * lots of complexity to the log code, we just scan the backrefs
1342  * for any file that has been through replay.
1343  *
1344  * The scan will update the link count on the inode to reflect the
1345  * number of back refs found.  If it goes down to zero, the iput
1346  * will free the inode.
1347  */
1348 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1349 					   struct btrfs_root *root,
1350 					   struct inode *inode)
1351 {
1352 	struct btrfs_path *path;
1353 	int ret;
1354 	u64 nlink = 0;
1355 	u64 ino = btrfs_ino(inode);
1356 
1357 	path = btrfs_alloc_path();
1358 	if (!path)
1359 		return -ENOMEM;
1360 
1361 	ret = count_inode_refs(root, inode, path);
1362 	if (ret < 0)
1363 		goto out;
1364 
1365 	nlink = ret;
1366 
1367 	ret = count_inode_extrefs(root, inode, path);
1368 	if (ret == -ENOENT)
1369 		ret = 0;
1370 
1371 	if (ret < 0)
1372 		goto out;
1373 
1374 	nlink += ret;
1375 
1376 	ret = 0;
1377 
1378 	if (nlink != inode->i_nlink) {
1379 		set_nlink(inode, nlink);
1380 		btrfs_update_inode(trans, root, inode);
1381 	}
1382 	BTRFS_I(inode)->index_cnt = (u64)-1;
1383 
1384 	if (inode->i_nlink == 0) {
1385 		if (S_ISDIR(inode->i_mode)) {
1386 			ret = replay_dir_deletes(trans, root, NULL, path,
1387 						 ino, 1);
1388 			if (ret)
1389 				goto out;
1390 		}
1391 		ret = insert_orphan_item(trans, root, ino);
1392 	}
1393 
1394 out:
1395 	btrfs_free_path(path);
1396 	return ret;
1397 }
1398 
1399 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1400 					    struct btrfs_root *root,
1401 					    struct btrfs_path *path)
1402 {
1403 	int ret;
1404 	struct btrfs_key key;
1405 	struct inode *inode;
1406 
1407 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1408 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1409 	key.offset = (u64)-1;
1410 	while (1) {
1411 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1412 		if (ret < 0)
1413 			break;
1414 
1415 		if (ret == 1) {
1416 			if (path->slots[0] == 0)
1417 				break;
1418 			path->slots[0]--;
1419 		}
1420 
1421 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1422 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1423 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1424 			break;
1425 
1426 		ret = btrfs_del_item(trans, root, path);
1427 		if (ret)
1428 			goto out;
1429 
1430 		btrfs_release_path(path);
1431 		inode = read_one_inode(root, key.offset);
1432 		if (!inode)
1433 			return -EIO;
1434 
1435 		ret = fixup_inode_link_count(trans, root, inode);
1436 		iput(inode);
1437 		if (ret)
1438 			goto out;
1439 
1440 		/*
1441 		 * fixup on a directory may create new entries,
1442 		 * make sure we always look for the highset possible
1443 		 * offset
1444 		 */
1445 		key.offset = (u64)-1;
1446 	}
1447 	ret = 0;
1448 out:
1449 	btrfs_release_path(path);
1450 	return ret;
1451 }
1452 
1453 
1454 /*
1455  * record a given inode in the fixup dir so we can check its link
1456  * count when replay is done.  The link count is incremented here
1457  * so the inode won't go away until we check it
1458  */
1459 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1460 				      struct btrfs_root *root,
1461 				      struct btrfs_path *path,
1462 				      u64 objectid)
1463 {
1464 	struct btrfs_key key;
1465 	int ret = 0;
1466 	struct inode *inode;
1467 
1468 	inode = read_one_inode(root, objectid);
1469 	if (!inode)
1470 		return -EIO;
1471 
1472 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1473 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1474 	key.offset = objectid;
1475 
1476 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1477 
1478 	btrfs_release_path(path);
1479 	if (ret == 0) {
1480 		if (!inode->i_nlink)
1481 			set_nlink(inode, 1);
1482 		else
1483 			btrfs_inc_nlink(inode);
1484 		ret = btrfs_update_inode(trans, root, inode);
1485 	} else if (ret == -EEXIST) {
1486 		ret = 0;
1487 	} else {
1488 		BUG(); /* Logic Error */
1489 	}
1490 	iput(inode);
1491 
1492 	return ret;
1493 }
1494 
1495 /*
1496  * when replaying the log for a directory, we only insert names
1497  * for inodes that actually exist.  This means an fsync on a directory
1498  * does not implicitly fsync all the new files in it
1499  */
1500 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1501 				    struct btrfs_root *root,
1502 				    struct btrfs_path *path,
1503 				    u64 dirid, u64 index,
1504 				    char *name, int name_len, u8 type,
1505 				    struct btrfs_key *location)
1506 {
1507 	struct inode *inode;
1508 	struct inode *dir;
1509 	int ret;
1510 
1511 	inode = read_one_inode(root, location->objectid);
1512 	if (!inode)
1513 		return -ENOENT;
1514 
1515 	dir = read_one_inode(root, dirid);
1516 	if (!dir) {
1517 		iput(inode);
1518 		return -EIO;
1519 	}
1520 
1521 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1522 
1523 	/* FIXME, put inode into FIXUP list */
1524 
1525 	iput(inode);
1526 	iput(dir);
1527 	return ret;
1528 }
1529 
1530 /*
1531  * take a single entry in a log directory item and replay it into
1532  * the subvolume.
1533  *
1534  * if a conflicting item exists in the subdirectory already,
1535  * the inode it points to is unlinked and put into the link count
1536  * fix up tree.
1537  *
1538  * If a name from the log points to a file or directory that does
1539  * not exist in the FS, it is skipped.  fsyncs on directories
1540  * do not force down inodes inside that directory, just changes to the
1541  * names or unlinks in a directory.
1542  */
1543 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1544 				    struct btrfs_root *root,
1545 				    struct btrfs_path *path,
1546 				    struct extent_buffer *eb,
1547 				    struct btrfs_dir_item *di,
1548 				    struct btrfs_key *key)
1549 {
1550 	char *name;
1551 	int name_len;
1552 	struct btrfs_dir_item *dst_di;
1553 	struct btrfs_key found_key;
1554 	struct btrfs_key log_key;
1555 	struct inode *dir;
1556 	u8 log_type;
1557 	int exists;
1558 	int ret = 0;
1559 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1560 
1561 	dir = read_one_inode(root, key->objectid);
1562 	if (!dir)
1563 		return -EIO;
1564 
1565 	name_len = btrfs_dir_name_len(eb, di);
1566 	name = kmalloc(name_len, GFP_NOFS);
1567 	if (!name) {
1568 		ret = -ENOMEM;
1569 		goto out;
1570 	}
1571 
1572 	log_type = btrfs_dir_type(eb, di);
1573 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1574 		   name_len);
1575 
1576 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1577 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1578 	if (exists == 0)
1579 		exists = 1;
1580 	else
1581 		exists = 0;
1582 	btrfs_release_path(path);
1583 
1584 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1585 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1586 				       name, name_len, 1);
1587 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1588 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1589 						     key->objectid,
1590 						     key->offset, name,
1591 						     name_len, 1);
1592 	} else {
1593 		/* Corruption */
1594 		ret = -EINVAL;
1595 		goto out;
1596 	}
1597 	if (IS_ERR_OR_NULL(dst_di)) {
1598 		/* we need a sequence number to insert, so we only
1599 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1600 		 */
1601 		if (key->type != BTRFS_DIR_INDEX_KEY)
1602 			goto out;
1603 		goto insert;
1604 	}
1605 
1606 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1607 	/* the existing item matches the logged item */
1608 	if (found_key.objectid == log_key.objectid &&
1609 	    found_key.type == log_key.type &&
1610 	    found_key.offset == log_key.offset &&
1611 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1612 		goto out;
1613 	}
1614 
1615 	/*
1616 	 * don't drop the conflicting directory entry if the inode
1617 	 * for the new entry doesn't exist
1618 	 */
1619 	if (!exists)
1620 		goto out;
1621 
1622 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1623 	if (ret)
1624 		goto out;
1625 
1626 	if (key->type == BTRFS_DIR_INDEX_KEY)
1627 		goto insert;
1628 out:
1629 	btrfs_release_path(path);
1630 	if (!ret && update_size) {
1631 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1632 		ret = btrfs_update_inode(trans, root, dir);
1633 	}
1634 	kfree(name);
1635 	iput(dir);
1636 	return ret;
1637 
1638 insert:
1639 	btrfs_release_path(path);
1640 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1641 			      name, name_len, log_type, &log_key);
1642 	if (ret && ret != -ENOENT)
1643 		goto out;
1644 	update_size = false;
1645 	ret = 0;
1646 	goto out;
1647 }
1648 
1649 /*
1650  * find all the names in a directory item and reconcile them into
1651  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1652  * one name in a directory item, but the same code gets used for
1653  * both directory index types
1654  */
1655 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1656 					struct btrfs_root *root,
1657 					struct btrfs_path *path,
1658 					struct extent_buffer *eb, int slot,
1659 					struct btrfs_key *key)
1660 {
1661 	int ret;
1662 	u32 item_size = btrfs_item_size_nr(eb, slot);
1663 	struct btrfs_dir_item *di;
1664 	int name_len;
1665 	unsigned long ptr;
1666 	unsigned long ptr_end;
1667 
1668 	ptr = btrfs_item_ptr_offset(eb, slot);
1669 	ptr_end = ptr + item_size;
1670 	while (ptr < ptr_end) {
1671 		di = (struct btrfs_dir_item *)ptr;
1672 		if (verify_dir_item(root, eb, di))
1673 			return -EIO;
1674 		name_len = btrfs_dir_name_len(eb, di);
1675 		ret = replay_one_name(trans, root, path, eb, di, key);
1676 		if (ret)
1677 			return ret;
1678 		ptr = (unsigned long)(di + 1);
1679 		ptr += name_len;
1680 	}
1681 	return 0;
1682 }
1683 
1684 /*
1685  * directory replay has two parts.  There are the standard directory
1686  * items in the log copied from the subvolume, and range items
1687  * created in the log while the subvolume was logged.
1688  *
1689  * The range items tell us which parts of the key space the log
1690  * is authoritative for.  During replay, if a key in the subvolume
1691  * directory is in a logged range item, but not actually in the log
1692  * that means it was deleted from the directory before the fsync
1693  * and should be removed.
1694  */
1695 static noinline int find_dir_range(struct btrfs_root *root,
1696 				   struct btrfs_path *path,
1697 				   u64 dirid, int key_type,
1698 				   u64 *start_ret, u64 *end_ret)
1699 {
1700 	struct btrfs_key key;
1701 	u64 found_end;
1702 	struct btrfs_dir_log_item *item;
1703 	int ret;
1704 	int nritems;
1705 
1706 	if (*start_ret == (u64)-1)
1707 		return 1;
1708 
1709 	key.objectid = dirid;
1710 	key.type = key_type;
1711 	key.offset = *start_ret;
1712 
1713 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1714 	if (ret < 0)
1715 		goto out;
1716 	if (ret > 0) {
1717 		if (path->slots[0] == 0)
1718 			goto out;
1719 		path->slots[0]--;
1720 	}
1721 	if (ret != 0)
1722 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1723 
1724 	if (key.type != key_type || key.objectid != dirid) {
1725 		ret = 1;
1726 		goto next;
1727 	}
1728 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1729 			      struct btrfs_dir_log_item);
1730 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1731 
1732 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1733 		ret = 0;
1734 		*start_ret = key.offset;
1735 		*end_ret = found_end;
1736 		goto out;
1737 	}
1738 	ret = 1;
1739 next:
1740 	/* check the next slot in the tree to see if it is a valid item */
1741 	nritems = btrfs_header_nritems(path->nodes[0]);
1742 	if (path->slots[0] >= nritems) {
1743 		ret = btrfs_next_leaf(root, path);
1744 		if (ret)
1745 			goto out;
1746 	} else {
1747 		path->slots[0]++;
1748 	}
1749 
1750 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1751 
1752 	if (key.type != key_type || key.objectid != dirid) {
1753 		ret = 1;
1754 		goto out;
1755 	}
1756 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1757 			      struct btrfs_dir_log_item);
1758 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1759 	*start_ret = key.offset;
1760 	*end_ret = found_end;
1761 	ret = 0;
1762 out:
1763 	btrfs_release_path(path);
1764 	return ret;
1765 }
1766 
1767 /*
1768  * this looks for a given directory item in the log.  If the directory
1769  * item is not in the log, the item is removed and the inode it points
1770  * to is unlinked
1771  */
1772 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1773 				      struct btrfs_root *root,
1774 				      struct btrfs_root *log,
1775 				      struct btrfs_path *path,
1776 				      struct btrfs_path *log_path,
1777 				      struct inode *dir,
1778 				      struct btrfs_key *dir_key)
1779 {
1780 	int ret;
1781 	struct extent_buffer *eb;
1782 	int slot;
1783 	u32 item_size;
1784 	struct btrfs_dir_item *di;
1785 	struct btrfs_dir_item *log_di;
1786 	int name_len;
1787 	unsigned long ptr;
1788 	unsigned long ptr_end;
1789 	char *name;
1790 	struct inode *inode;
1791 	struct btrfs_key location;
1792 
1793 again:
1794 	eb = path->nodes[0];
1795 	slot = path->slots[0];
1796 	item_size = btrfs_item_size_nr(eb, slot);
1797 	ptr = btrfs_item_ptr_offset(eb, slot);
1798 	ptr_end = ptr + item_size;
1799 	while (ptr < ptr_end) {
1800 		di = (struct btrfs_dir_item *)ptr;
1801 		if (verify_dir_item(root, eb, di)) {
1802 			ret = -EIO;
1803 			goto out;
1804 		}
1805 
1806 		name_len = btrfs_dir_name_len(eb, di);
1807 		name = kmalloc(name_len, GFP_NOFS);
1808 		if (!name) {
1809 			ret = -ENOMEM;
1810 			goto out;
1811 		}
1812 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1813 				  name_len);
1814 		log_di = NULL;
1815 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1816 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1817 						       dir_key->objectid,
1818 						       name, name_len, 0);
1819 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1820 			log_di = btrfs_lookup_dir_index_item(trans, log,
1821 						     log_path,
1822 						     dir_key->objectid,
1823 						     dir_key->offset,
1824 						     name, name_len, 0);
1825 		}
1826 		if (IS_ERR_OR_NULL(log_di)) {
1827 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1828 			btrfs_release_path(path);
1829 			btrfs_release_path(log_path);
1830 			inode = read_one_inode(root, location.objectid);
1831 			if (!inode) {
1832 				kfree(name);
1833 				return -EIO;
1834 			}
1835 
1836 			ret = link_to_fixup_dir(trans, root,
1837 						path, location.objectid);
1838 			if (ret) {
1839 				kfree(name);
1840 				iput(inode);
1841 				goto out;
1842 			}
1843 
1844 			btrfs_inc_nlink(inode);
1845 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1846 						 name, name_len);
1847 			if (!ret)
1848 				ret = btrfs_run_delayed_items(trans, root);
1849 			kfree(name);
1850 			iput(inode);
1851 			if (ret)
1852 				goto out;
1853 
1854 			/* there might still be more names under this key
1855 			 * check and repeat if required
1856 			 */
1857 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1858 						0, 0);
1859 			if (ret == 0)
1860 				goto again;
1861 			ret = 0;
1862 			goto out;
1863 		}
1864 		btrfs_release_path(log_path);
1865 		kfree(name);
1866 
1867 		ptr = (unsigned long)(di + 1);
1868 		ptr += name_len;
1869 	}
1870 	ret = 0;
1871 out:
1872 	btrfs_release_path(path);
1873 	btrfs_release_path(log_path);
1874 	return ret;
1875 }
1876 
1877 /*
1878  * deletion replay happens before we copy any new directory items
1879  * out of the log or out of backreferences from inodes.  It
1880  * scans the log to find ranges of keys that log is authoritative for,
1881  * and then scans the directory to find items in those ranges that are
1882  * not present in the log.
1883  *
1884  * Anything we don't find in the log is unlinked and removed from the
1885  * directory.
1886  */
1887 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1888 				       struct btrfs_root *root,
1889 				       struct btrfs_root *log,
1890 				       struct btrfs_path *path,
1891 				       u64 dirid, int del_all)
1892 {
1893 	u64 range_start;
1894 	u64 range_end;
1895 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1896 	int ret = 0;
1897 	struct btrfs_key dir_key;
1898 	struct btrfs_key found_key;
1899 	struct btrfs_path *log_path;
1900 	struct inode *dir;
1901 
1902 	dir_key.objectid = dirid;
1903 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1904 	log_path = btrfs_alloc_path();
1905 	if (!log_path)
1906 		return -ENOMEM;
1907 
1908 	dir = read_one_inode(root, dirid);
1909 	/* it isn't an error if the inode isn't there, that can happen
1910 	 * because we replay the deletes before we copy in the inode item
1911 	 * from the log
1912 	 */
1913 	if (!dir) {
1914 		btrfs_free_path(log_path);
1915 		return 0;
1916 	}
1917 again:
1918 	range_start = 0;
1919 	range_end = 0;
1920 	while (1) {
1921 		if (del_all)
1922 			range_end = (u64)-1;
1923 		else {
1924 			ret = find_dir_range(log, path, dirid, key_type,
1925 					     &range_start, &range_end);
1926 			if (ret != 0)
1927 				break;
1928 		}
1929 
1930 		dir_key.offset = range_start;
1931 		while (1) {
1932 			int nritems;
1933 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1934 						0, 0);
1935 			if (ret < 0)
1936 				goto out;
1937 
1938 			nritems = btrfs_header_nritems(path->nodes[0]);
1939 			if (path->slots[0] >= nritems) {
1940 				ret = btrfs_next_leaf(root, path);
1941 				if (ret)
1942 					break;
1943 			}
1944 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1945 					      path->slots[0]);
1946 			if (found_key.objectid != dirid ||
1947 			    found_key.type != dir_key.type)
1948 				goto next_type;
1949 
1950 			if (found_key.offset > range_end)
1951 				break;
1952 
1953 			ret = check_item_in_log(trans, root, log, path,
1954 						log_path, dir,
1955 						&found_key);
1956 			if (ret)
1957 				goto out;
1958 			if (found_key.offset == (u64)-1)
1959 				break;
1960 			dir_key.offset = found_key.offset + 1;
1961 		}
1962 		btrfs_release_path(path);
1963 		if (range_end == (u64)-1)
1964 			break;
1965 		range_start = range_end + 1;
1966 	}
1967 
1968 next_type:
1969 	ret = 0;
1970 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1971 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1972 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1973 		btrfs_release_path(path);
1974 		goto again;
1975 	}
1976 out:
1977 	btrfs_release_path(path);
1978 	btrfs_free_path(log_path);
1979 	iput(dir);
1980 	return ret;
1981 }
1982 
1983 /*
1984  * the process_func used to replay items from the log tree.  This
1985  * gets called in two different stages.  The first stage just looks
1986  * for inodes and makes sure they are all copied into the subvolume.
1987  *
1988  * The second stage copies all the other item types from the log into
1989  * the subvolume.  The two stage approach is slower, but gets rid of
1990  * lots of complexity around inodes referencing other inodes that exist
1991  * only in the log (references come from either directory items or inode
1992  * back refs).
1993  */
1994 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1995 			     struct walk_control *wc, u64 gen)
1996 {
1997 	int nritems;
1998 	struct btrfs_path *path;
1999 	struct btrfs_root *root = wc->replay_dest;
2000 	struct btrfs_key key;
2001 	int level;
2002 	int i;
2003 	int ret;
2004 
2005 	ret = btrfs_read_buffer(eb, gen);
2006 	if (ret)
2007 		return ret;
2008 
2009 	level = btrfs_header_level(eb);
2010 
2011 	if (level != 0)
2012 		return 0;
2013 
2014 	path = btrfs_alloc_path();
2015 	if (!path)
2016 		return -ENOMEM;
2017 
2018 	nritems = btrfs_header_nritems(eb);
2019 	for (i = 0; i < nritems; i++) {
2020 		btrfs_item_key_to_cpu(eb, &key, i);
2021 
2022 		/* inode keys are done during the first stage */
2023 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2024 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2025 			struct btrfs_inode_item *inode_item;
2026 			u32 mode;
2027 
2028 			inode_item = btrfs_item_ptr(eb, i,
2029 					    struct btrfs_inode_item);
2030 			mode = btrfs_inode_mode(eb, inode_item);
2031 			if (S_ISDIR(mode)) {
2032 				ret = replay_dir_deletes(wc->trans,
2033 					 root, log, path, key.objectid, 0);
2034 				if (ret)
2035 					break;
2036 			}
2037 			ret = overwrite_item(wc->trans, root, path,
2038 					     eb, i, &key);
2039 			if (ret)
2040 				break;
2041 
2042 			/* for regular files, make sure corresponding
2043 			 * orhpan item exist. extents past the new EOF
2044 			 * will be truncated later by orphan cleanup.
2045 			 */
2046 			if (S_ISREG(mode)) {
2047 				ret = insert_orphan_item(wc->trans, root,
2048 							 key.objectid);
2049 				if (ret)
2050 					break;
2051 			}
2052 
2053 			ret = link_to_fixup_dir(wc->trans, root,
2054 						path, key.objectid);
2055 			if (ret)
2056 				break;
2057 		}
2058 
2059 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2060 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2061 			ret = replay_one_dir_item(wc->trans, root, path,
2062 						  eb, i, &key);
2063 			if (ret)
2064 				break;
2065 		}
2066 
2067 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2068 			continue;
2069 
2070 		/* these keys are simply copied */
2071 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2072 			ret = overwrite_item(wc->trans, root, path,
2073 					     eb, i, &key);
2074 			if (ret)
2075 				break;
2076 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2077 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2078 			ret = add_inode_ref(wc->trans, root, log, path,
2079 					    eb, i, &key);
2080 			if (ret && ret != -ENOENT)
2081 				break;
2082 			ret = 0;
2083 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2084 			ret = replay_one_extent(wc->trans, root, path,
2085 						eb, i, &key);
2086 			if (ret)
2087 				break;
2088 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2089 			ret = replay_one_dir_item(wc->trans, root, path,
2090 						  eb, i, &key);
2091 			if (ret)
2092 				break;
2093 		}
2094 	}
2095 	btrfs_free_path(path);
2096 	return ret;
2097 }
2098 
2099 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2100 				   struct btrfs_root *root,
2101 				   struct btrfs_path *path, int *level,
2102 				   struct walk_control *wc)
2103 {
2104 	u64 root_owner;
2105 	u64 bytenr;
2106 	u64 ptr_gen;
2107 	struct extent_buffer *next;
2108 	struct extent_buffer *cur;
2109 	struct extent_buffer *parent;
2110 	u32 blocksize;
2111 	int ret = 0;
2112 
2113 	WARN_ON(*level < 0);
2114 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2115 
2116 	while (*level > 0) {
2117 		WARN_ON(*level < 0);
2118 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2119 		cur = path->nodes[*level];
2120 
2121 		if (btrfs_header_level(cur) != *level)
2122 			WARN_ON(1);
2123 
2124 		if (path->slots[*level] >=
2125 		    btrfs_header_nritems(cur))
2126 			break;
2127 
2128 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2129 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2130 		blocksize = btrfs_level_size(root, *level - 1);
2131 
2132 		parent = path->nodes[*level];
2133 		root_owner = btrfs_header_owner(parent);
2134 
2135 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2136 		if (!next)
2137 			return -ENOMEM;
2138 
2139 		if (*level == 1) {
2140 			ret = wc->process_func(root, next, wc, ptr_gen);
2141 			if (ret) {
2142 				free_extent_buffer(next);
2143 				return ret;
2144 			}
2145 
2146 			path->slots[*level]++;
2147 			if (wc->free) {
2148 				ret = btrfs_read_buffer(next, ptr_gen);
2149 				if (ret) {
2150 					free_extent_buffer(next);
2151 					return ret;
2152 				}
2153 
2154 				btrfs_tree_lock(next);
2155 				btrfs_set_lock_blocking(next);
2156 				clean_tree_block(trans, root, next);
2157 				btrfs_wait_tree_block_writeback(next);
2158 				btrfs_tree_unlock(next);
2159 
2160 				WARN_ON(root_owner !=
2161 					BTRFS_TREE_LOG_OBJECTID);
2162 				ret = btrfs_free_and_pin_reserved_extent(root,
2163 							 bytenr, blocksize);
2164 				if (ret) {
2165 					free_extent_buffer(next);
2166 					return ret;
2167 				}
2168 			}
2169 			free_extent_buffer(next);
2170 			continue;
2171 		}
2172 		ret = btrfs_read_buffer(next, ptr_gen);
2173 		if (ret) {
2174 			free_extent_buffer(next);
2175 			return ret;
2176 		}
2177 
2178 		WARN_ON(*level <= 0);
2179 		if (path->nodes[*level-1])
2180 			free_extent_buffer(path->nodes[*level-1]);
2181 		path->nodes[*level-1] = next;
2182 		*level = btrfs_header_level(next);
2183 		path->slots[*level] = 0;
2184 		cond_resched();
2185 	}
2186 	WARN_ON(*level < 0);
2187 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2188 
2189 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2190 
2191 	cond_resched();
2192 	return 0;
2193 }
2194 
2195 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2196 				 struct btrfs_root *root,
2197 				 struct btrfs_path *path, int *level,
2198 				 struct walk_control *wc)
2199 {
2200 	u64 root_owner;
2201 	int i;
2202 	int slot;
2203 	int ret;
2204 
2205 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2206 		slot = path->slots[i];
2207 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2208 			path->slots[i]++;
2209 			*level = i;
2210 			WARN_ON(*level == 0);
2211 			return 0;
2212 		} else {
2213 			struct extent_buffer *parent;
2214 			if (path->nodes[*level] == root->node)
2215 				parent = path->nodes[*level];
2216 			else
2217 				parent = path->nodes[*level + 1];
2218 
2219 			root_owner = btrfs_header_owner(parent);
2220 			ret = wc->process_func(root, path->nodes[*level], wc,
2221 				 btrfs_header_generation(path->nodes[*level]));
2222 			if (ret)
2223 				return ret;
2224 
2225 			if (wc->free) {
2226 				struct extent_buffer *next;
2227 
2228 				next = path->nodes[*level];
2229 
2230 				btrfs_tree_lock(next);
2231 				btrfs_set_lock_blocking(next);
2232 				clean_tree_block(trans, root, next);
2233 				btrfs_wait_tree_block_writeback(next);
2234 				btrfs_tree_unlock(next);
2235 
2236 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2237 				ret = btrfs_free_and_pin_reserved_extent(root,
2238 						path->nodes[*level]->start,
2239 						path->nodes[*level]->len);
2240 				if (ret)
2241 					return ret;
2242 			}
2243 			free_extent_buffer(path->nodes[*level]);
2244 			path->nodes[*level] = NULL;
2245 			*level = i + 1;
2246 		}
2247 	}
2248 	return 1;
2249 }
2250 
2251 /*
2252  * drop the reference count on the tree rooted at 'snap'.  This traverses
2253  * the tree freeing any blocks that have a ref count of zero after being
2254  * decremented.
2255  */
2256 static int walk_log_tree(struct btrfs_trans_handle *trans,
2257 			 struct btrfs_root *log, struct walk_control *wc)
2258 {
2259 	int ret = 0;
2260 	int wret;
2261 	int level;
2262 	struct btrfs_path *path;
2263 	int orig_level;
2264 
2265 	path = btrfs_alloc_path();
2266 	if (!path)
2267 		return -ENOMEM;
2268 
2269 	level = btrfs_header_level(log->node);
2270 	orig_level = level;
2271 	path->nodes[level] = log->node;
2272 	extent_buffer_get(log->node);
2273 	path->slots[level] = 0;
2274 
2275 	while (1) {
2276 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2277 		if (wret > 0)
2278 			break;
2279 		if (wret < 0) {
2280 			ret = wret;
2281 			goto out;
2282 		}
2283 
2284 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2285 		if (wret > 0)
2286 			break;
2287 		if (wret < 0) {
2288 			ret = wret;
2289 			goto out;
2290 		}
2291 	}
2292 
2293 	/* was the root node processed? if not, catch it here */
2294 	if (path->nodes[orig_level]) {
2295 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2296 			 btrfs_header_generation(path->nodes[orig_level]));
2297 		if (ret)
2298 			goto out;
2299 		if (wc->free) {
2300 			struct extent_buffer *next;
2301 
2302 			next = path->nodes[orig_level];
2303 
2304 			btrfs_tree_lock(next);
2305 			btrfs_set_lock_blocking(next);
2306 			clean_tree_block(trans, log, next);
2307 			btrfs_wait_tree_block_writeback(next);
2308 			btrfs_tree_unlock(next);
2309 
2310 			WARN_ON(log->root_key.objectid !=
2311 				BTRFS_TREE_LOG_OBJECTID);
2312 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2313 							 next->len);
2314 			if (ret)
2315 				goto out;
2316 		}
2317 	}
2318 
2319 out:
2320 	btrfs_free_path(path);
2321 	return ret;
2322 }
2323 
2324 /*
2325  * helper function to update the item for a given subvolumes log root
2326  * in the tree of log roots
2327  */
2328 static int update_log_root(struct btrfs_trans_handle *trans,
2329 			   struct btrfs_root *log)
2330 {
2331 	int ret;
2332 
2333 	if (log->log_transid == 1) {
2334 		/* insert root item on the first sync */
2335 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2336 				&log->root_key, &log->root_item);
2337 	} else {
2338 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2339 				&log->root_key, &log->root_item);
2340 	}
2341 	return ret;
2342 }
2343 
2344 static int wait_log_commit(struct btrfs_trans_handle *trans,
2345 			   struct btrfs_root *root, unsigned long transid)
2346 {
2347 	DEFINE_WAIT(wait);
2348 	int index = transid % 2;
2349 
2350 	/*
2351 	 * we only allow two pending log transactions at a time,
2352 	 * so we know that if ours is more than 2 older than the
2353 	 * current transaction, we're done
2354 	 */
2355 	do {
2356 		prepare_to_wait(&root->log_commit_wait[index],
2357 				&wait, TASK_UNINTERRUPTIBLE);
2358 		mutex_unlock(&root->log_mutex);
2359 
2360 		if (root->fs_info->last_trans_log_full_commit !=
2361 		    trans->transid && root->log_transid < transid + 2 &&
2362 		    atomic_read(&root->log_commit[index]))
2363 			schedule();
2364 
2365 		finish_wait(&root->log_commit_wait[index], &wait);
2366 		mutex_lock(&root->log_mutex);
2367 	} while (root->fs_info->last_trans_log_full_commit !=
2368 		 trans->transid && root->log_transid < transid + 2 &&
2369 		 atomic_read(&root->log_commit[index]));
2370 	return 0;
2371 }
2372 
2373 static void wait_for_writer(struct btrfs_trans_handle *trans,
2374 			    struct btrfs_root *root)
2375 {
2376 	DEFINE_WAIT(wait);
2377 	while (root->fs_info->last_trans_log_full_commit !=
2378 	       trans->transid && atomic_read(&root->log_writers)) {
2379 		prepare_to_wait(&root->log_writer_wait,
2380 				&wait, TASK_UNINTERRUPTIBLE);
2381 		mutex_unlock(&root->log_mutex);
2382 		if (root->fs_info->last_trans_log_full_commit !=
2383 		    trans->transid && atomic_read(&root->log_writers))
2384 			schedule();
2385 		mutex_lock(&root->log_mutex);
2386 		finish_wait(&root->log_writer_wait, &wait);
2387 	}
2388 }
2389 
2390 /*
2391  * btrfs_sync_log does sends a given tree log down to the disk and
2392  * updates the super blocks to record it.  When this call is done,
2393  * you know that any inodes previously logged are safely on disk only
2394  * if it returns 0.
2395  *
2396  * Any other return value means you need to call btrfs_commit_transaction.
2397  * Some of the edge cases for fsyncing directories that have had unlinks
2398  * or renames done in the past mean that sometimes the only safe
2399  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2400  * that has happened.
2401  */
2402 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2403 		   struct btrfs_root *root)
2404 {
2405 	int index1;
2406 	int index2;
2407 	int mark;
2408 	int ret;
2409 	struct btrfs_root *log = root->log_root;
2410 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2411 	unsigned long log_transid = 0;
2412 	struct blk_plug plug;
2413 
2414 	mutex_lock(&root->log_mutex);
2415 	log_transid = root->log_transid;
2416 	index1 = root->log_transid % 2;
2417 	if (atomic_read(&root->log_commit[index1])) {
2418 		wait_log_commit(trans, root, root->log_transid);
2419 		mutex_unlock(&root->log_mutex);
2420 		return 0;
2421 	}
2422 	atomic_set(&root->log_commit[index1], 1);
2423 
2424 	/* wait for previous tree log sync to complete */
2425 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2426 		wait_log_commit(trans, root, root->log_transid - 1);
2427 	while (1) {
2428 		int batch = atomic_read(&root->log_batch);
2429 		/* when we're on an ssd, just kick the log commit out */
2430 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2431 			mutex_unlock(&root->log_mutex);
2432 			schedule_timeout_uninterruptible(1);
2433 			mutex_lock(&root->log_mutex);
2434 		}
2435 		wait_for_writer(trans, root);
2436 		if (batch == atomic_read(&root->log_batch))
2437 			break;
2438 	}
2439 
2440 	/* bail out if we need to do a full commit */
2441 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2442 		ret = -EAGAIN;
2443 		btrfs_free_logged_extents(log, log_transid);
2444 		mutex_unlock(&root->log_mutex);
2445 		goto out;
2446 	}
2447 
2448 	if (log_transid % 2 == 0)
2449 		mark = EXTENT_DIRTY;
2450 	else
2451 		mark = EXTENT_NEW;
2452 
2453 	/* we start IO on  all the marked extents here, but we don't actually
2454 	 * wait for them until later.
2455 	 */
2456 	blk_start_plug(&plug);
2457 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2458 	if (ret) {
2459 		blk_finish_plug(&plug);
2460 		btrfs_abort_transaction(trans, root, ret);
2461 		btrfs_free_logged_extents(log, log_transid);
2462 		mutex_unlock(&root->log_mutex);
2463 		goto out;
2464 	}
2465 
2466 	btrfs_set_root_node(&log->root_item, log->node);
2467 
2468 	root->log_transid++;
2469 	log->log_transid = root->log_transid;
2470 	root->log_start_pid = 0;
2471 	smp_mb();
2472 	/*
2473 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2474 	 * in their headers. new modifications of the log will be written to
2475 	 * new positions. so it's safe to allow log writers to go in.
2476 	 */
2477 	mutex_unlock(&root->log_mutex);
2478 
2479 	mutex_lock(&log_root_tree->log_mutex);
2480 	atomic_inc(&log_root_tree->log_batch);
2481 	atomic_inc(&log_root_tree->log_writers);
2482 	mutex_unlock(&log_root_tree->log_mutex);
2483 
2484 	ret = update_log_root(trans, log);
2485 
2486 	mutex_lock(&log_root_tree->log_mutex);
2487 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2488 		smp_mb();
2489 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2490 			wake_up(&log_root_tree->log_writer_wait);
2491 	}
2492 
2493 	if (ret) {
2494 		blk_finish_plug(&plug);
2495 		if (ret != -ENOSPC) {
2496 			btrfs_abort_transaction(trans, root, ret);
2497 			mutex_unlock(&log_root_tree->log_mutex);
2498 			goto out;
2499 		}
2500 		root->fs_info->last_trans_log_full_commit = trans->transid;
2501 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2502 		btrfs_free_logged_extents(log, log_transid);
2503 		mutex_unlock(&log_root_tree->log_mutex);
2504 		ret = -EAGAIN;
2505 		goto out;
2506 	}
2507 
2508 	index2 = log_root_tree->log_transid % 2;
2509 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2510 		blk_finish_plug(&plug);
2511 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2512 		wait_log_commit(trans, log_root_tree,
2513 				log_root_tree->log_transid);
2514 		btrfs_free_logged_extents(log, log_transid);
2515 		mutex_unlock(&log_root_tree->log_mutex);
2516 		ret = 0;
2517 		goto out;
2518 	}
2519 	atomic_set(&log_root_tree->log_commit[index2], 1);
2520 
2521 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2522 		wait_log_commit(trans, log_root_tree,
2523 				log_root_tree->log_transid - 1);
2524 	}
2525 
2526 	wait_for_writer(trans, log_root_tree);
2527 
2528 	/*
2529 	 * now that we've moved on to the tree of log tree roots,
2530 	 * check the full commit flag again
2531 	 */
2532 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2533 		blk_finish_plug(&plug);
2534 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2535 		btrfs_free_logged_extents(log, log_transid);
2536 		mutex_unlock(&log_root_tree->log_mutex);
2537 		ret = -EAGAIN;
2538 		goto out_wake_log_root;
2539 	}
2540 
2541 	ret = btrfs_write_marked_extents(log_root_tree,
2542 					 &log_root_tree->dirty_log_pages,
2543 					 EXTENT_DIRTY | EXTENT_NEW);
2544 	blk_finish_plug(&plug);
2545 	if (ret) {
2546 		btrfs_abort_transaction(trans, root, ret);
2547 		btrfs_free_logged_extents(log, log_transid);
2548 		mutex_unlock(&log_root_tree->log_mutex);
2549 		goto out_wake_log_root;
2550 	}
2551 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2552 	btrfs_wait_marked_extents(log_root_tree,
2553 				  &log_root_tree->dirty_log_pages,
2554 				  EXTENT_NEW | EXTENT_DIRTY);
2555 	btrfs_wait_logged_extents(log, log_transid);
2556 
2557 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2558 				log_root_tree->node->start);
2559 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2560 				btrfs_header_level(log_root_tree->node));
2561 
2562 	log_root_tree->log_transid++;
2563 	smp_mb();
2564 
2565 	mutex_unlock(&log_root_tree->log_mutex);
2566 
2567 	/*
2568 	 * nobody else is going to jump in and write the the ctree
2569 	 * super here because the log_commit atomic below is protecting
2570 	 * us.  We must be called with a transaction handle pinning
2571 	 * the running transaction open, so a full commit can't hop
2572 	 * in and cause problems either.
2573 	 */
2574 	btrfs_scrub_pause_super(root);
2575 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2576 	btrfs_scrub_continue_super(root);
2577 	if (ret) {
2578 		btrfs_abort_transaction(trans, root, ret);
2579 		goto out_wake_log_root;
2580 	}
2581 
2582 	mutex_lock(&root->log_mutex);
2583 	if (root->last_log_commit < log_transid)
2584 		root->last_log_commit = log_transid;
2585 	mutex_unlock(&root->log_mutex);
2586 
2587 out_wake_log_root:
2588 	atomic_set(&log_root_tree->log_commit[index2], 0);
2589 	smp_mb();
2590 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2591 		wake_up(&log_root_tree->log_commit_wait[index2]);
2592 out:
2593 	atomic_set(&root->log_commit[index1], 0);
2594 	smp_mb();
2595 	if (waitqueue_active(&root->log_commit_wait[index1]))
2596 		wake_up(&root->log_commit_wait[index1]);
2597 	return ret;
2598 }
2599 
2600 static void free_log_tree(struct btrfs_trans_handle *trans,
2601 			  struct btrfs_root *log)
2602 {
2603 	int ret;
2604 	u64 start;
2605 	u64 end;
2606 	struct walk_control wc = {
2607 		.free = 1,
2608 		.process_func = process_one_buffer
2609 	};
2610 
2611 	if (trans) {
2612 		ret = walk_log_tree(trans, log, &wc);
2613 
2614 		/* I don't think this can happen but just in case */
2615 		if (ret)
2616 			btrfs_abort_transaction(trans, log, ret);
2617 	}
2618 
2619 	while (1) {
2620 		ret = find_first_extent_bit(&log->dirty_log_pages,
2621 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2622 				NULL);
2623 		if (ret)
2624 			break;
2625 
2626 		clear_extent_bits(&log->dirty_log_pages, start, end,
2627 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2628 	}
2629 
2630 	/*
2631 	 * We may have short-circuited the log tree with the full commit logic
2632 	 * and left ordered extents on our list, so clear these out to keep us
2633 	 * from leaking inodes and memory.
2634 	 */
2635 	btrfs_free_logged_extents(log, 0);
2636 	btrfs_free_logged_extents(log, 1);
2637 
2638 	free_extent_buffer(log->node);
2639 	kfree(log);
2640 }
2641 
2642 /*
2643  * free all the extents used by the tree log.  This should be called
2644  * at commit time of the full transaction
2645  */
2646 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2647 {
2648 	if (root->log_root) {
2649 		free_log_tree(trans, root->log_root);
2650 		root->log_root = NULL;
2651 	}
2652 	return 0;
2653 }
2654 
2655 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2656 			     struct btrfs_fs_info *fs_info)
2657 {
2658 	if (fs_info->log_root_tree) {
2659 		free_log_tree(trans, fs_info->log_root_tree);
2660 		fs_info->log_root_tree = NULL;
2661 	}
2662 	return 0;
2663 }
2664 
2665 /*
2666  * If both a file and directory are logged, and unlinks or renames are
2667  * mixed in, we have a few interesting corners:
2668  *
2669  * create file X in dir Y
2670  * link file X to X.link in dir Y
2671  * fsync file X
2672  * unlink file X but leave X.link
2673  * fsync dir Y
2674  *
2675  * After a crash we would expect only X.link to exist.  But file X
2676  * didn't get fsync'd again so the log has back refs for X and X.link.
2677  *
2678  * We solve this by removing directory entries and inode backrefs from the
2679  * log when a file that was logged in the current transaction is
2680  * unlinked.  Any later fsync will include the updated log entries, and
2681  * we'll be able to reconstruct the proper directory items from backrefs.
2682  *
2683  * This optimizations allows us to avoid relogging the entire inode
2684  * or the entire directory.
2685  */
2686 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2687 				 struct btrfs_root *root,
2688 				 const char *name, int name_len,
2689 				 struct inode *dir, u64 index)
2690 {
2691 	struct btrfs_root *log;
2692 	struct btrfs_dir_item *di;
2693 	struct btrfs_path *path;
2694 	int ret;
2695 	int err = 0;
2696 	int bytes_del = 0;
2697 	u64 dir_ino = btrfs_ino(dir);
2698 
2699 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2700 		return 0;
2701 
2702 	ret = join_running_log_trans(root);
2703 	if (ret)
2704 		return 0;
2705 
2706 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2707 
2708 	log = root->log_root;
2709 	path = btrfs_alloc_path();
2710 	if (!path) {
2711 		err = -ENOMEM;
2712 		goto out_unlock;
2713 	}
2714 
2715 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2716 				   name, name_len, -1);
2717 	if (IS_ERR(di)) {
2718 		err = PTR_ERR(di);
2719 		goto fail;
2720 	}
2721 	if (di) {
2722 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2723 		bytes_del += name_len;
2724 		if (ret) {
2725 			err = ret;
2726 			goto fail;
2727 		}
2728 	}
2729 	btrfs_release_path(path);
2730 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2731 					 index, name, name_len, -1);
2732 	if (IS_ERR(di)) {
2733 		err = PTR_ERR(di);
2734 		goto fail;
2735 	}
2736 	if (di) {
2737 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2738 		bytes_del += name_len;
2739 		if (ret) {
2740 			err = ret;
2741 			goto fail;
2742 		}
2743 	}
2744 
2745 	/* update the directory size in the log to reflect the names
2746 	 * we have removed
2747 	 */
2748 	if (bytes_del) {
2749 		struct btrfs_key key;
2750 
2751 		key.objectid = dir_ino;
2752 		key.offset = 0;
2753 		key.type = BTRFS_INODE_ITEM_KEY;
2754 		btrfs_release_path(path);
2755 
2756 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2757 		if (ret < 0) {
2758 			err = ret;
2759 			goto fail;
2760 		}
2761 		if (ret == 0) {
2762 			struct btrfs_inode_item *item;
2763 			u64 i_size;
2764 
2765 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2766 					      struct btrfs_inode_item);
2767 			i_size = btrfs_inode_size(path->nodes[0], item);
2768 			if (i_size > bytes_del)
2769 				i_size -= bytes_del;
2770 			else
2771 				i_size = 0;
2772 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2773 			btrfs_mark_buffer_dirty(path->nodes[0]);
2774 		} else
2775 			ret = 0;
2776 		btrfs_release_path(path);
2777 	}
2778 fail:
2779 	btrfs_free_path(path);
2780 out_unlock:
2781 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2782 	if (ret == -ENOSPC) {
2783 		root->fs_info->last_trans_log_full_commit = trans->transid;
2784 		ret = 0;
2785 	} else if (ret < 0)
2786 		btrfs_abort_transaction(trans, root, ret);
2787 
2788 	btrfs_end_log_trans(root);
2789 
2790 	return err;
2791 }
2792 
2793 /* see comments for btrfs_del_dir_entries_in_log */
2794 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2795 			       struct btrfs_root *root,
2796 			       const char *name, int name_len,
2797 			       struct inode *inode, u64 dirid)
2798 {
2799 	struct btrfs_root *log;
2800 	u64 index;
2801 	int ret;
2802 
2803 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2804 		return 0;
2805 
2806 	ret = join_running_log_trans(root);
2807 	if (ret)
2808 		return 0;
2809 	log = root->log_root;
2810 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2811 
2812 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2813 				  dirid, &index);
2814 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2815 	if (ret == -ENOSPC) {
2816 		root->fs_info->last_trans_log_full_commit = trans->transid;
2817 		ret = 0;
2818 	} else if (ret < 0 && ret != -ENOENT)
2819 		btrfs_abort_transaction(trans, root, ret);
2820 	btrfs_end_log_trans(root);
2821 
2822 	return ret;
2823 }
2824 
2825 /*
2826  * creates a range item in the log for 'dirid'.  first_offset and
2827  * last_offset tell us which parts of the key space the log should
2828  * be considered authoritative for.
2829  */
2830 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2831 				       struct btrfs_root *log,
2832 				       struct btrfs_path *path,
2833 				       int key_type, u64 dirid,
2834 				       u64 first_offset, u64 last_offset)
2835 {
2836 	int ret;
2837 	struct btrfs_key key;
2838 	struct btrfs_dir_log_item *item;
2839 
2840 	key.objectid = dirid;
2841 	key.offset = first_offset;
2842 	if (key_type == BTRFS_DIR_ITEM_KEY)
2843 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2844 	else
2845 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2846 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2847 	if (ret)
2848 		return ret;
2849 
2850 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2851 			      struct btrfs_dir_log_item);
2852 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2853 	btrfs_mark_buffer_dirty(path->nodes[0]);
2854 	btrfs_release_path(path);
2855 	return 0;
2856 }
2857 
2858 /*
2859  * log all the items included in the current transaction for a given
2860  * directory.  This also creates the range items in the log tree required
2861  * to replay anything deleted before the fsync
2862  */
2863 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2864 			  struct btrfs_root *root, struct inode *inode,
2865 			  struct btrfs_path *path,
2866 			  struct btrfs_path *dst_path, int key_type,
2867 			  u64 min_offset, u64 *last_offset_ret)
2868 {
2869 	struct btrfs_key min_key;
2870 	struct btrfs_key max_key;
2871 	struct btrfs_root *log = root->log_root;
2872 	struct extent_buffer *src;
2873 	int err = 0;
2874 	int ret;
2875 	int i;
2876 	int nritems;
2877 	u64 first_offset = min_offset;
2878 	u64 last_offset = (u64)-1;
2879 	u64 ino = btrfs_ino(inode);
2880 
2881 	log = root->log_root;
2882 	max_key.objectid = ino;
2883 	max_key.offset = (u64)-1;
2884 	max_key.type = key_type;
2885 
2886 	min_key.objectid = ino;
2887 	min_key.type = key_type;
2888 	min_key.offset = min_offset;
2889 
2890 	path->keep_locks = 1;
2891 
2892 	ret = btrfs_search_forward(root, &min_key, &max_key,
2893 				   path, trans->transid);
2894 
2895 	/*
2896 	 * we didn't find anything from this transaction, see if there
2897 	 * is anything at all
2898 	 */
2899 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2900 		min_key.objectid = ino;
2901 		min_key.type = key_type;
2902 		min_key.offset = (u64)-1;
2903 		btrfs_release_path(path);
2904 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2905 		if (ret < 0) {
2906 			btrfs_release_path(path);
2907 			return ret;
2908 		}
2909 		ret = btrfs_previous_item(root, path, ino, key_type);
2910 
2911 		/* if ret == 0 there are items for this type,
2912 		 * create a range to tell us the last key of this type.
2913 		 * otherwise, there are no items in this directory after
2914 		 * *min_offset, and we create a range to indicate that.
2915 		 */
2916 		if (ret == 0) {
2917 			struct btrfs_key tmp;
2918 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2919 					      path->slots[0]);
2920 			if (key_type == tmp.type)
2921 				first_offset = max(min_offset, tmp.offset) + 1;
2922 		}
2923 		goto done;
2924 	}
2925 
2926 	/* go backward to find any previous key */
2927 	ret = btrfs_previous_item(root, path, ino, key_type);
2928 	if (ret == 0) {
2929 		struct btrfs_key tmp;
2930 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2931 		if (key_type == tmp.type) {
2932 			first_offset = tmp.offset;
2933 			ret = overwrite_item(trans, log, dst_path,
2934 					     path->nodes[0], path->slots[0],
2935 					     &tmp);
2936 			if (ret) {
2937 				err = ret;
2938 				goto done;
2939 			}
2940 		}
2941 	}
2942 	btrfs_release_path(path);
2943 
2944 	/* find the first key from this transaction again */
2945 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2946 	if (ret != 0) {
2947 		WARN_ON(1);
2948 		goto done;
2949 	}
2950 
2951 	/*
2952 	 * we have a block from this transaction, log every item in it
2953 	 * from our directory
2954 	 */
2955 	while (1) {
2956 		struct btrfs_key tmp;
2957 		src = path->nodes[0];
2958 		nritems = btrfs_header_nritems(src);
2959 		for (i = path->slots[0]; i < nritems; i++) {
2960 			btrfs_item_key_to_cpu(src, &min_key, i);
2961 
2962 			if (min_key.objectid != ino || min_key.type != key_type)
2963 				goto done;
2964 			ret = overwrite_item(trans, log, dst_path, src, i,
2965 					     &min_key);
2966 			if (ret) {
2967 				err = ret;
2968 				goto done;
2969 			}
2970 		}
2971 		path->slots[0] = nritems;
2972 
2973 		/*
2974 		 * look ahead to the next item and see if it is also
2975 		 * from this directory and from this transaction
2976 		 */
2977 		ret = btrfs_next_leaf(root, path);
2978 		if (ret == 1) {
2979 			last_offset = (u64)-1;
2980 			goto done;
2981 		}
2982 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2983 		if (tmp.objectid != ino || tmp.type != key_type) {
2984 			last_offset = (u64)-1;
2985 			goto done;
2986 		}
2987 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2988 			ret = overwrite_item(trans, log, dst_path,
2989 					     path->nodes[0], path->slots[0],
2990 					     &tmp);
2991 			if (ret)
2992 				err = ret;
2993 			else
2994 				last_offset = tmp.offset;
2995 			goto done;
2996 		}
2997 	}
2998 done:
2999 	btrfs_release_path(path);
3000 	btrfs_release_path(dst_path);
3001 
3002 	if (err == 0) {
3003 		*last_offset_ret = last_offset;
3004 		/*
3005 		 * insert the log range keys to indicate where the log
3006 		 * is valid
3007 		 */
3008 		ret = insert_dir_log_key(trans, log, path, key_type,
3009 					 ino, first_offset, last_offset);
3010 		if (ret)
3011 			err = ret;
3012 	}
3013 	return err;
3014 }
3015 
3016 /*
3017  * logging directories is very similar to logging inodes, We find all the items
3018  * from the current transaction and write them to the log.
3019  *
3020  * The recovery code scans the directory in the subvolume, and if it finds a
3021  * key in the range logged that is not present in the log tree, then it means
3022  * that dir entry was unlinked during the transaction.
3023  *
3024  * In order for that scan to work, we must include one key smaller than
3025  * the smallest logged by this transaction and one key larger than the largest
3026  * key logged by this transaction.
3027  */
3028 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3029 			  struct btrfs_root *root, struct inode *inode,
3030 			  struct btrfs_path *path,
3031 			  struct btrfs_path *dst_path)
3032 {
3033 	u64 min_key;
3034 	u64 max_key;
3035 	int ret;
3036 	int key_type = BTRFS_DIR_ITEM_KEY;
3037 
3038 again:
3039 	min_key = 0;
3040 	max_key = 0;
3041 	while (1) {
3042 		ret = log_dir_items(trans, root, inode, path,
3043 				    dst_path, key_type, min_key,
3044 				    &max_key);
3045 		if (ret)
3046 			return ret;
3047 		if (max_key == (u64)-1)
3048 			break;
3049 		min_key = max_key + 1;
3050 	}
3051 
3052 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3053 		key_type = BTRFS_DIR_INDEX_KEY;
3054 		goto again;
3055 	}
3056 	return 0;
3057 }
3058 
3059 /*
3060  * a helper function to drop items from the log before we relog an
3061  * inode.  max_key_type indicates the highest item type to remove.
3062  * This cannot be run for file data extents because it does not
3063  * free the extents they point to.
3064  */
3065 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3066 				  struct btrfs_root *log,
3067 				  struct btrfs_path *path,
3068 				  u64 objectid, int max_key_type)
3069 {
3070 	int ret;
3071 	struct btrfs_key key;
3072 	struct btrfs_key found_key;
3073 	int start_slot;
3074 
3075 	key.objectid = objectid;
3076 	key.type = max_key_type;
3077 	key.offset = (u64)-1;
3078 
3079 	while (1) {
3080 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3081 		BUG_ON(ret == 0); /* Logic error */
3082 		if (ret < 0)
3083 			break;
3084 
3085 		if (path->slots[0] == 0)
3086 			break;
3087 
3088 		path->slots[0]--;
3089 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3090 				      path->slots[0]);
3091 
3092 		if (found_key.objectid != objectid)
3093 			break;
3094 
3095 		found_key.offset = 0;
3096 		found_key.type = 0;
3097 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3098 				       &start_slot);
3099 
3100 		ret = btrfs_del_items(trans, log, path, start_slot,
3101 				      path->slots[0] - start_slot + 1);
3102 		/*
3103 		 * If start slot isn't 0 then we don't need to re-search, we've
3104 		 * found the last guy with the objectid in this tree.
3105 		 */
3106 		if (ret || start_slot != 0)
3107 			break;
3108 		btrfs_release_path(path);
3109 	}
3110 	btrfs_release_path(path);
3111 	if (ret > 0)
3112 		ret = 0;
3113 	return ret;
3114 }
3115 
3116 static void fill_inode_item(struct btrfs_trans_handle *trans,
3117 			    struct extent_buffer *leaf,
3118 			    struct btrfs_inode_item *item,
3119 			    struct inode *inode, int log_inode_only)
3120 {
3121 	struct btrfs_map_token token;
3122 
3123 	btrfs_init_map_token(&token);
3124 
3125 	if (log_inode_only) {
3126 		/* set the generation to zero so the recover code
3127 		 * can tell the difference between an logging
3128 		 * just to say 'this inode exists' and a logging
3129 		 * to say 'update this inode with these values'
3130 		 */
3131 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3132 		btrfs_set_token_inode_size(leaf, item, 0, &token);
3133 	} else {
3134 		btrfs_set_token_inode_generation(leaf, item,
3135 						 BTRFS_I(inode)->generation,
3136 						 &token);
3137 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3138 	}
3139 
3140 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3141 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3142 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3143 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3144 
3145 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3146 				     inode->i_atime.tv_sec, &token);
3147 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3148 				      inode->i_atime.tv_nsec, &token);
3149 
3150 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3151 				     inode->i_mtime.tv_sec, &token);
3152 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3153 				      inode->i_mtime.tv_nsec, &token);
3154 
3155 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3156 				     inode->i_ctime.tv_sec, &token);
3157 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3158 				      inode->i_ctime.tv_nsec, &token);
3159 
3160 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3161 				     &token);
3162 
3163 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3164 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3165 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3166 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3167 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3168 }
3169 
3170 static int log_inode_item(struct btrfs_trans_handle *trans,
3171 			  struct btrfs_root *log, struct btrfs_path *path,
3172 			  struct inode *inode)
3173 {
3174 	struct btrfs_inode_item *inode_item;
3175 	struct btrfs_key key;
3176 	int ret;
3177 
3178 	memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3179 	ret = btrfs_insert_empty_item(trans, log, path, &key,
3180 				      sizeof(*inode_item));
3181 	if (ret && ret != -EEXIST)
3182 		return ret;
3183 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3184 				    struct btrfs_inode_item);
3185 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3186 	btrfs_release_path(path);
3187 	return 0;
3188 }
3189 
3190 static noinline int copy_items(struct btrfs_trans_handle *trans,
3191 			       struct inode *inode,
3192 			       struct btrfs_path *dst_path,
3193 			       struct extent_buffer *src,
3194 			       int start_slot, int nr, int inode_only)
3195 {
3196 	unsigned long src_offset;
3197 	unsigned long dst_offset;
3198 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3199 	struct btrfs_file_extent_item *extent;
3200 	struct btrfs_inode_item *inode_item;
3201 	int ret;
3202 	struct btrfs_key *ins_keys;
3203 	u32 *ins_sizes;
3204 	char *ins_data;
3205 	int i;
3206 	struct list_head ordered_sums;
3207 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3208 
3209 	INIT_LIST_HEAD(&ordered_sums);
3210 
3211 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3212 			   nr * sizeof(u32), GFP_NOFS);
3213 	if (!ins_data)
3214 		return -ENOMEM;
3215 
3216 	ins_sizes = (u32 *)ins_data;
3217 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3218 
3219 	for (i = 0; i < nr; i++) {
3220 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3221 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3222 	}
3223 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3224 				       ins_keys, ins_sizes, nr);
3225 	if (ret) {
3226 		kfree(ins_data);
3227 		return ret;
3228 	}
3229 
3230 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3231 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3232 						   dst_path->slots[0]);
3233 
3234 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3235 
3236 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3237 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3238 						    dst_path->slots[0],
3239 						    struct btrfs_inode_item);
3240 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3241 					inode, inode_only == LOG_INODE_EXISTS);
3242 		} else {
3243 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3244 					   src_offset, ins_sizes[i]);
3245 		}
3246 
3247 		/* take a reference on file data extents so that truncates
3248 		 * or deletes of this inode don't have to relog the inode
3249 		 * again
3250 		 */
3251 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3252 		    !skip_csum) {
3253 			int found_type;
3254 			extent = btrfs_item_ptr(src, start_slot + i,
3255 						struct btrfs_file_extent_item);
3256 
3257 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3258 				continue;
3259 
3260 			found_type = btrfs_file_extent_type(src, extent);
3261 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3262 				u64 ds, dl, cs, cl;
3263 				ds = btrfs_file_extent_disk_bytenr(src,
3264 								extent);
3265 				/* ds == 0 is a hole */
3266 				if (ds == 0)
3267 					continue;
3268 
3269 				dl = btrfs_file_extent_disk_num_bytes(src,
3270 								extent);
3271 				cs = btrfs_file_extent_offset(src, extent);
3272 				cl = btrfs_file_extent_num_bytes(src,
3273 								extent);
3274 				if (btrfs_file_extent_compression(src,
3275 								  extent)) {
3276 					cs = 0;
3277 					cl = dl;
3278 				}
3279 
3280 				ret = btrfs_lookup_csums_range(
3281 						log->fs_info->csum_root,
3282 						ds + cs, ds + cs + cl - 1,
3283 						&ordered_sums, 0);
3284 				if (ret) {
3285 					btrfs_release_path(dst_path);
3286 					kfree(ins_data);
3287 					return ret;
3288 				}
3289 			}
3290 		}
3291 	}
3292 
3293 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3294 	btrfs_release_path(dst_path);
3295 	kfree(ins_data);
3296 
3297 	/*
3298 	 * we have to do this after the loop above to avoid changing the
3299 	 * log tree while trying to change the log tree.
3300 	 */
3301 	ret = 0;
3302 	while (!list_empty(&ordered_sums)) {
3303 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3304 						   struct btrfs_ordered_sum,
3305 						   list);
3306 		if (!ret)
3307 			ret = btrfs_csum_file_blocks(trans, log, sums);
3308 		list_del(&sums->list);
3309 		kfree(sums);
3310 	}
3311 	return ret;
3312 }
3313 
3314 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3315 {
3316 	struct extent_map *em1, *em2;
3317 
3318 	em1 = list_entry(a, struct extent_map, list);
3319 	em2 = list_entry(b, struct extent_map, list);
3320 
3321 	if (em1->start < em2->start)
3322 		return -1;
3323 	else if (em1->start > em2->start)
3324 		return 1;
3325 	return 0;
3326 }
3327 
3328 static int log_one_extent(struct btrfs_trans_handle *trans,
3329 			  struct inode *inode, struct btrfs_root *root,
3330 			  struct extent_map *em, struct btrfs_path *path)
3331 {
3332 	struct btrfs_root *log = root->log_root;
3333 	struct btrfs_file_extent_item *fi;
3334 	struct extent_buffer *leaf;
3335 	struct btrfs_ordered_extent *ordered;
3336 	struct list_head ordered_sums;
3337 	struct btrfs_map_token token;
3338 	struct btrfs_key key;
3339 	u64 mod_start = em->mod_start;
3340 	u64 mod_len = em->mod_len;
3341 	u64 csum_offset;
3342 	u64 csum_len;
3343 	u64 extent_offset = em->start - em->orig_start;
3344 	u64 block_len;
3345 	int ret;
3346 	int index = log->log_transid % 2;
3347 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3348 
3349 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3350 				   em->start + em->len, NULL, 0);
3351 	if (ret)
3352 		return ret;
3353 
3354 	INIT_LIST_HEAD(&ordered_sums);
3355 	btrfs_init_map_token(&token);
3356 	key.objectid = btrfs_ino(inode);
3357 	key.type = BTRFS_EXTENT_DATA_KEY;
3358 	key.offset = em->start;
3359 
3360 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3361 	if (ret)
3362 		return ret;
3363 	leaf = path->nodes[0];
3364 	fi = btrfs_item_ptr(leaf, path->slots[0],
3365 			    struct btrfs_file_extent_item);
3366 
3367 	btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3368 					       &token);
3369 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3370 		skip_csum = true;
3371 		btrfs_set_token_file_extent_type(leaf, fi,
3372 						 BTRFS_FILE_EXTENT_PREALLOC,
3373 						 &token);
3374 	} else {
3375 		btrfs_set_token_file_extent_type(leaf, fi,
3376 						 BTRFS_FILE_EXTENT_REG,
3377 						 &token);
3378 		if (em->block_start == 0)
3379 			skip_csum = true;
3380 	}
3381 
3382 	block_len = max(em->block_len, em->orig_block_len);
3383 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3384 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3385 							em->block_start,
3386 							&token);
3387 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3388 							   &token);
3389 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3390 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3391 							em->block_start -
3392 							extent_offset, &token);
3393 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3394 							   &token);
3395 	} else {
3396 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3397 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3398 							   &token);
3399 	}
3400 
3401 	btrfs_set_token_file_extent_offset(leaf, fi,
3402 					   em->start - em->orig_start,
3403 					   &token);
3404 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3405 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3406 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3407 						&token);
3408 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3409 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3410 	btrfs_mark_buffer_dirty(leaf);
3411 
3412 	btrfs_release_path(path);
3413 	if (ret) {
3414 		return ret;
3415 	}
3416 
3417 	if (skip_csum)
3418 		return 0;
3419 
3420 	if (em->compress_type) {
3421 		csum_offset = 0;
3422 		csum_len = block_len;
3423 	}
3424 
3425 	/*
3426 	 * First check and see if our csums are on our outstanding ordered
3427 	 * extents.
3428 	 */
3429 again:
3430 	spin_lock_irq(&log->log_extents_lock[index]);
3431 	list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3432 		struct btrfs_ordered_sum *sum;
3433 
3434 		if (!mod_len)
3435 			break;
3436 
3437 		if (ordered->inode != inode)
3438 			continue;
3439 
3440 		if (ordered->file_offset + ordered->len <= mod_start ||
3441 		    mod_start + mod_len <= ordered->file_offset)
3442 			continue;
3443 
3444 		/*
3445 		 * We are going to copy all the csums on this ordered extent, so
3446 		 * go ahead and adjust mod_start and mod_len in case this
3447 		 * ordered extent has already been logged.
3448 		 */
3449 		if (ordered->file_offset > mod_start) {
3450 			if (ordered->file_offset + ordered->len >=
3451 			    mod_start + mod_len)
3452 				mod_len = ordered->file_offset - mod_start;
3453 			/*
3454 			 * If we have this case
3455 			 *
3456 			 * |--------- logged extent ---------|
3457 			 *       |----- ordered extent ----|
3458 			 *
3459 			 * Just don't mess with mod_start and mod_len, we'll
3460 			 * just end up logging more csums than we need and it
3461 			 * will be ok.
3462 			 */
3463 		} else {
3464 			if (ordered->file_offset + ordered->len <
3465 			    mod_start + mod_len) {
3466 				mod_len = (mod_start + mod_len) -
3467 					(ordered->file_offset + ordered->len);
3468 				mod_start = ordered->file_offset +
3469 					ordered->len;
3470 			} else {
3471 				mod_len = 0;
3472 			}
3473 		}
3474 
3475 		/*
3476 		 * To keep us from looping for the above case of an ordered
3477 		 * extent that falls inside of the logged extent.
3478 		 */
3479 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3480 				     &ordered->flags))
3481 			continue;
3482 		atomic_inc(&ordered->refs);
3483 		spin_unlock_irq(&log->log_extents_lock[index]);
3484 		/*
3485 		 * we've dropped the lock, we must either break or
3486 		 * start over after this.
3487 		 */
3488 
3489 		wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3490 
3491 		list_for_each_entry(sum, &ordered->list, list) {
3492 			ret = btrfs_csum_file_blocks(trans, log, sum);
3493 			if (ret) {
3494 				btrfs_put_ordered_extent(ordered);
3495 				goto unlocked;
3496 			}
3497 		}
3498 		btrfs_put_ordered_extent(ordered);
3499 		goto again;
3500 
3501 	}
3502 	spin_unlock_irq(&log->log_extents_lock[index]);
3503 unlocked:
3504 
3505 	if (!mod_len || ret)
3506 		return ret;
3507 
3508 	csum_offset = mod_start - em->start;
3509 	csum_len = mod_len;
3510 
3511 	/* block start is already adjusted for the file extent offset. */
3512 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3513 				       em->block_start + csum_offset,
3514 				       em->block_start + csum_offset +
3515 				       csum_len - 1, &ordered_sums, 0);
3516 	if (ret)
3517 		return ret;
3518 
3519 	while (!list_empty(&ordered_sums)) {
3520 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3521 						   struct btrfs_ordered_sum,
3522 						   list);
3523 		if (!ret)
3524 			ret = btrfs_csum_file_blocks(trans, log, sums);
3525 		list_del(&sums->list);
3526 		kfree(sums);
3527 	}
3528 
3529 	return ret;
3530 }
3531 
3532 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3533 				     struct btrfs_root *root,
3534 				     struct inode *inode,
3535 				     struct btrfs_path *path)
3536 {
3537 	struct extent_map *em, *n;
3538 	struct list_head extents;
3539 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3540 	u64 test_gen;
3541 	int ret = 0;
3542 	int num = 0;
3543 
3544 	INIT_LIST_HEAD(&extents);
3545 
3546 	write_lock(&tree->lock);
3547 	test_gen = root->fs_info->last_trans_committed;
3548 
3549 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3550 		list_del_init(&em->list);
3551 
3552 		/*
3553 		 * Just an arbitrary number, this can be really CPU intensive
3554 		 * once we start getting a lot of extents, and really once we
3555 		 * have a bunch of extents we just want to commit since it will
3556 		 * be faster.
3557 		 */
3558 		if (++num > 32768) {
3559 			list_del_init(&tree->modified_extents);
3560 			ret = -EFBIG;
3561 			goto process;
3562 		}
3563 
3564 		if (em->generation <= test_gen)
3565 			continue;
3566 		/* Need a ref to keep it from getting evicted from cache */
3567 		atomic_inc(&em->refs);
3568 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3569 		list_add_tail(&em->list, &extents);
3570 		num++;
3571 	}
3572 
3573 	list_sort(NULL, &extents, extent_cmp);
3574 
3575 process:
3576 	while (!list_empty(&extents)) {
3577 		em = list_entry(extents.next, struct extent_map, list);
3578 
3579 		list_del_init(&em->list);
3580 
3581 		/*
3582 		 * If we had an error we just need to delete everybody from our
3583 		 * private list.
3584 		 */
3585 		if (ret) {
3586 			clear_em_logging(tree, em);
3587 			free_extent_map(em);
3588 			continue;
3589 		}
3590 
3591 		write_unlock(&tree->lock);
3592 
3593 		ret = log_one_extent(trans, inode, root, em, path);
3594 		write_lock(&tree->lock);
3595 		clear_em_logging(tree, em);
3596 		free_extent_map(em);
3597 	}
3598 	WARN_ON(!list_empty(&extents));
3599 	write_unlock(&tree->lock);
3600 
3601 	btrfs_release_path(path);
3602 	return ret;
3603 }
3604 
3605 /* log a single inode in the tree log.
3606  * At least one parent directory for this inode must exist in the tree
3607  * or be logged already.
3608  *
3609  * Any items from this inode changed by the current transaction are copied
3610  * to the log tree.  An extra reference is taken on any extents in this
3611  * file, allowing us to avoid a whole pile of corner cases around logging
3612  * blocks that have been removed from the tree.
3613  *
3614  * See LOG_INODE_ALL and related defines for a description of what inode_only
3615  * does.
3616  *
3617  * This handles both files and directories.
3618  */
3619 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3620 			     struct btrfs_root *root, struct inode *inode,
3621 			     int inode_only)
3622 {
3623 	struct btrfs_path *path;
3624 	struct btrfs_path *dst_path;
3625 	struct btrfs_key min_key;
3626 	struct btrfs_key max_key;
3627 	struct btrfs_root *log = root->log_root;
3628 	struct extent_buffer *src = NULL;
3629 	int err = 0;
3630 	int ret;
3631 	int nritems;
3632 	int ins_start_slot = 0;
3633 	int ins_nr;
3634 	bool fast_search = false;
3635 	u64 ino = btrfs_ino(inode);
3636 
3637 	path = btrfs_alloc_path();
3638 	if (!path)
3639 		return -ENOMEM;
3640 	dst_path = btrfs_alloc_path();
3641 	if (!dst_path) {
3642 		btrfs_free_path(path);
3643 		return -ENOMEM;
3644 	}
3645 
3646 	min_key.objectid = ino;
3647 	min_key.type = BTRFS_INODE_ITEM_KEY;
3648 	min_key.offset = 0;
3649 
3650 	max_key.objectid = ino;
3651 
3652 
3653 	/* today the code can only do partial logging of directories */
3654 	if (S_ISDIR(inode->i_mode) ||
3655 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3656 		       &BTRFS_I(inode)->runtime_flags) &&
3657 	     inode_only == LOG_INODE_EXISTS))
3658 		max_key.type = BTRFS_XATTR_ITEM_KEY;
3659 	else
3660 		max_key.type = (u8)-1;
3661 	max_key.offset = (u64)-1;
3662 
3663 	/* Only run delayed items if we are a dir or a new file */
3664 	if (S_ISDIR(inode->i_mode) ||
3665 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3666 		ret = btrfs_commit_inode_delayed_items(trans, inode);
3667 		if (ret) {
3668 			btrfs_free_path(path);
3669 			btrfs_free_path(dst_path);
3670 			return ret;
3671 		}
3672 	}
3673 
3674 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3675 
3676 	btrfs_get_logged_extents(log, inode);
3677 
3678 	/*
3679 	 * a brute force approach to making sure we get the most uptodate
3680 	 * copies of everything.
3681 	 */
3682 	if (S_ISDIR(inode->i_mode)) {
3683 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3684 
3685 		if (inode_only == LOG_INODE_EXISTS)
3686 			max_key_type = BTRFS_XATTR_ITEM_KEY;
3687 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3688 	} else {
3689 		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3690 				       &BTRFS_I(inode)->runtime_flags)) {
3691 			clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3692 				  &BTRFS_I(inode)->runtime_flags);
3693 			ret = btrfs_truncate_inode_items(trans, log,
3694 							 inode, 0, 0);
3695 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3696 					      &BTRFS_I(inode)->runtime_flags)) {
3697 			if (inode_only == LOG_INODE_ALL)
3698 				fast_search = true;
3699 			max_key.type = BTRFS_XATTR_ITEM_KEY;
3700 			ret = drop_objectid_items(trans, log, path, ino,
3701 						  max_key.type);
3702 		} else {
3703 			if (inode_only == LOG_INODE_ALL)
3704 				fast_search = true;
3705 			ret = log_inode_item(trans, log, dst_path, inode);
3706 			if (ret) {
3707 				err = ret;
3708 				goto out_unlock;
3709 			}
3710 			goto log_extents;
3711 		}
3712 
3713 	}
3714 	if (ret) {
3715 		err = ret;
3716 		goto out_unlock;
3717 	}
3718 	path->keep_locks = 1;
3719 
3720 	while (1) {
3721 		ins_nr = 0;
3722 		ret = btrfs_search_forward(root, &min_key, &max_key,
3723 					   path, trans->transid);
3724 		if (ret != 0)
3725 			break;
3726 again:
3727 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
3728 		if (min_key.objectid != ino)
3729 			break;
3730 		if (min_key.type > max_key.type)
3731 			break;
3732 
3733 		src = path->nodes[0];
3734 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3735 			ins_nr++;
3736 			goto next_slot;
3737 		} else if (!ins_nr) {
3738 			ins_start_slot = path->slots[0];
3739 			ins_nr = 1;
3740 			goto next_slot;
3741 		}
3742 
3743 		ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3744 				 ins_nr, inode_only);
3745 		if (ret) {
3746 			err = ret;
3747 			goto out_unlock;
3748 		}
3749 		ins_nr = 1;
3750 		ins_start_slot = path->slots[0];
3751 next_slot:
3752 
3753 		nritems = btrfs_header_nritems(path->nodes[0]);
3754 		path->slots[0]++;
3755 		if (path->slots[0] < nritems) {
3756 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3757 					      path->slots[0]);
3758 			goto again;
3759 		}
3760 		if (ins_nr) {
3761 			ret = copy_items(trans, inode, dst_path, src,
3762 					 ins_start_slot,
3763 					 ins_nr, inode_only);
3764 			if (ret) {
3765 				err = ret;
3766 				goto out_unlock;
3767 			}
3768 			ins_nr = 0;
3769 		}
3770 		btrfs_release_path(path);
3771 
3772 		if (min_key.offset < (u64)-1)
3773 			min_key.offset++;
3774 		else if (min_key.type < (u8)-1)
3775 			min_key.type++;
3776 		else if (min_key.objectid < (u64)-1)
3777 			min_key.objectid++;
3778 		else
3779 			break;
3780 	}
3781 	if (ins_nr) {
3782 		ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3783 				 ins_nr, inode_only);
3784 		if (ret) {
3785 			err = ret;
3786 			goto out_unlock;
3787 		}
3788 		ins_nr = 0;
3789 	}
3790 
3791 log_extents:
3792 	btrfs_release_path(path);
3793 	btrfs_release_path(dst_path);
3794 	if (fast_search) {
3795 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3796 		if (ret) {
3797 			err = ret;
3798 			goto out_unlock;
3799 		}
3800 	} else {
3801 		struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3802 		struct extent_map *em, *n;
3803 
3804 		write_lock(&tree->lock);
3805 		list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3806 			list_del_init(&em->list);
3807 		write_unlock(&tree->lock);
3808 	}
3809 
3810 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3811 		ret = log_directory_changes(trans, root, inode, path, dst_path);
3812 		if (ret) {
3813 			err = ret;
3814 			goto out_unlock;
3815 		}
3816 	}
3817 	BTRFS_I(inode)->logged_trans = trans->transid;
3818 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3819 out_unlock:
3820 	if (err)
3821 		btrfs_free_logged_extents(log, log->log_transid);
3822 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3823 
3824 	btrfs_free_path(path);
3825 	btrfs_free_path(dst_path);
3826 	return err;
3827 }
3828 
3829 /*
3830  * follow the dentry parent pointers up the chain and see if any
3831  * of the directories in it require a full commit before they can
3832  * be logged.  Returns zero if nothing special needs to be done or 1 if
3833  * a full commit is required.
3834  */
3835 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3836 					       struct inode *inode,
3837 					       struct dentry *parent,
3838 					       struct super_block *sb,
3839 					       u64 last_committed)
3840 {
3841 	int ret = 0;
3842 	struct btrfs_root *root;
3843 	struct dentry *old_parent = NULL;
3844 	struct inode *orig_inode = inode;
3845 
3846 	/*
3847 	 * for regular files, if its inode is already on disk, we don't
3848 	 * have to worry about the parents at all.  This is because
3849 	 * we can use the last_unlink_trans field to record renames
3850 	 * and other fun in this file.
3851 	 */
3852 	if (S_ISREG(inode->i_mode) &&
3853 	    BTRFS_I(inode)->generation <= last_committed &&
3854 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
3855 			goto out;
3856 
3857 	if (!S_ISDIR(inode->i_mode)) {
3858 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3859 			goto out;
3860 		inode = parent->d_inode;
3861 	}
3862 
3863 	while (1) {
3864 		/*
3865 		 * If we are logging a directory then we start with our inode,
3866 		 * not our parents inode, so we need to skipp setting the
3867 		 * logged_trans so that further down in the log code we don't
3868 		 * think this inode has already been logged.
3869 		 */
3870 		if (inode != orig_inode)
3871 			BTRFS_I(inode)->logged_trans = trans->transid;
3872 		smp_mb();
3873 
3874 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3875 			root = BTRFS_I(inode)->root;
3876 
3877 			/*
3878 			 * make sure any commits to the log are forced
3879 			 * to be full commits
3880 			 */
3881 			root->fs_info->last_trans_log_full_commit =
3882 				trans->transid;
3883 			ret = 1;
3884 			break;
3885 		}
3886 
3887 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3888 			break;
3889 
3890 		if (IS_ROOT(parent))
3891 			break;
3892 
3893 		parent = dget_parent(parent);
3894 		dput(old_parent);
3895 		old_parent = parent;
3896 		inode = parent->d_inode;
3897 
3898 	}
3899 	dput(old_parent);
3900 out:
3901 	return ret;
3902 }
3903 
3904 /*
3905  * helper function around btrfs_log_inode to make sure newly created
3906  * parent directories also end up in the log.  A minimal inode and backref
3907  * only logging is done of any parent directories that are older than
3908  * the last committed transaction
3909  */
3910 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3911 			    	  struct btrfs_root *root, struct inode *inode,
3912 			    	  struct dentry *parent, int exists_only)
3913 {
3914 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3915 	struct super_block *sb;
3916 	struct dentry *old_parent = NULL;
3917 	int ret = 0;
3918 	u64 last_committed = root->fs_info->last_trans_committed;
3919 
3920 	sb = inode->i_sb;
3921 
3922 	if (btrfs_test_opt(root, NOTREELOG)) {
3923 		ret = 1;
3924 		goto end_no_trans;
3925 	}
3926 
3927 	if (root->fs_info->last_trans_log_full_commit >
3928 	    root->fs_info->last_trans_committed) {
3929 		ret = 1;
3930 		goto end_no_trans;
3931 	}
3932 
3933 	if (root != BTRFS_I(inode)->root ||
3934 	    btrfs_root_refs(&root->root_item) == 0) {
3935 		ret = 1;
3936 		goto end_no_trans;
3937 	}
3938 
3939 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3940 					 sb, last_committed);
3941 	if (ret)
3942 		goto end_no_trans;
3943 
3944 	if (btrfs_inode_in_log(inode, trans->transid)) {
3945 		ret = BTRFS_NO_LOG_SYNC;
3946 		goto end_no_trans;
3947 	}
3948 
3949 	ret = start_log_trans(trans, root);
3950 	if (ret)
3951 		goto end_trans;
3952 
3953 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3954 	if (ret)
3955 		goto end_trans;
3956 
3957 	/*
3958 	 * for regular files, if its inode is already on disk, we don't
3959 	 * have to worry about the parents at all.  This is because
3960 	 * we can use the last_unlink_trans field to record renames
3961 	 * and other fun in this file.
3962 	 */
3963 	if (S_ISREG(inode->i_mode) &&
3964 	    BTRFS_I(inode)->generation <= last_committed &&
3965 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3966 		ret = 0;
3967 		goto end_trans;
3968 	}
3969 
3970 	inode_only = LOG_INODE_EXISTS;
3971 	while (1) {
3972 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3973 			break;
3974 
3975 		inode = parent->d_inode;
3976 		if (root != BTRFS_I(inode)->root)
3977 			break;
3978 
3979 		if (BTRFS_I(inode)->generation >
3980 		    root->fs_info->last_trans_committed) {
3981 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3982 			if (ret)
3983 				goto end_trans;
3984 		}
3985 		if (IS_ROOT(parent))
3986 			break;
3987 
3988 		parent = dget_parent(parent);
3989 		dput(old_parent);
3990 		old_parent = parent;
3991 	}
3992 	ret = 0;
3993 end_trans:
3994 	dput(old_parent);
3995 	if (ret < 0) {
3996 		root->fs_info->last_trans_log_full_commit = trans->transid;
3997 		ret = 1;
3998 	}
3999 	btrfs_end_log_trans(root);
4000 end_no_trans:
4001 	return ret;
4002 }
4003 
4004 /*
4005  * it is not safe to log dentry if the chunk root has added new
4006  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4007  * If this returns 1, you must commit the transaction to safely get your
4008  * data on disk.
4009  */
4010 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4011 			  struct btrfs_root *root, struct dentry *dentry)
4012 {
4013 	struct dentry *parent = dget_parent(dentry);
4014 	int ret;
4015 
4016 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
4017 	dput(parent);
4018 
4019 	return ret;
4020 }
4021 
4022 /*
4023  * should be called during mount to recover any replay any log trees
4024  * from the FS
4025  */
4026 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4027 {
4028 	int ret;
4029 	struct btrfs_path *path;
4030 	struct btrfs_trans_handle *trans;
4031 	struct btrfs_key key;
4032 	struct btrfs_key found_key;
4033 	struct btrfs_key tmp_key;
4034 	struct btrfs_root *log;
4035 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4036 	struct walk_control wc = {
4037 		.process_func = process_one_buffer,
4038 		.stage = 0,
4039 	};
4040 
4041 	path = btrfs_alloc_path();
4042 	if (!path)
4043 		return -ENOMEM;
4044 
4045 	fs_info->log_root_recovering = 1;
4046 
4047 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4048 	if (IS_ERR(trans)) {
4049 		ret = PTR_ERR(trans);
4050 		goto error;
4051 	}
4052 
4053 	wc.trans = trans;
4054 	wc.pin = 1;
4055 
4056 	ret = walk_log_tree(trans, log_root_tree, &wc);
4057 	if (ret) {
4058 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
4059 			    "recovering log root tree.");
4060 		goto error;
4061 	}
4062 
4063 again:
4064 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
4065 	key.offset = (u64)-1;
4066 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4067 
4068 	while (1) {
4069 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4070 
4071 		if (ret < 0) {
4072 			btrfs_error(fs_info, ret,
4073 				    "Couldn't find tree log root.");
4074 			goto error;
4075 		}
4076 		if (ret > 0) {
4077 			if (path->slots[0] == 0)
4078 				break;
4079 			path->slots[0]--;
4080 		}
4081 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4082 				      path->slots[0]);
4083 		btrfs_release_path(path);
4084 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4085 			break;
4086 
4087 		log = btrfs_read_fs_root(log_root_tree, &found_key);
4088 		if (IS_ERR(log)) {
4089 			ret = PTR_ERR(log);
4090 			btrfs_error(fs_info, ret,
4091 				    "Couldn't read tree log root.");
4092 			goto error;
4093 		}
4094 
4095 		tmp_key.objectid = found_key.offset;
4096 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4097 		tmp_key.offset = (u64)-1;
4098 
4099 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4100 		if (IS_ERR(wc.replay_dest)) {
4101 			ret = PTR_ERR(wc.replay_dest);
4102 			free_extent_buffer(log->node);
4103 			free_extent_buffer(log->commit_root);
4104 			kfree(log);
4105 			btrfs_error(fs_info, ret, "Couldn't read target root "
4106 				    "for tree log recovery.");
4107 			goto error;
4108 		}
4109 
4110 		wc.replay_dest->log_root = log;
4111 		btrfs_record_root_in_trans(trans, wc.replay_dest);
4112 		ret = walk_log_tree(trans, log, &wc);
4113 
4114 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4115 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4116 						      path);
4117 		}
4118 
4119 		key.offset = found_key.offset - 1;
4120 		wc.replay_dest->log_root = NULL;
4121 		free_extent_buffer(log->node);
4122 		free_extent_buffer(log->commit_root);
4123 		kfree(log);
4124 
4125 		if (ret)
4126 			goto error;
4127 
4128 		if (found_key.offset == 0)
4129 			break;
4130 	}
4131 	btrfs_release_path(path);
4132 
4133 	/* step one is to pin it all, step two is to replay just inodes */
4134 	if (wc.pin) {
4135 		wc.pin = 0;
4136 		wc.process_func = replay_one_buffer;
4137 		wc.stage = LOG_WALK_REPLAY_INODES;
4138 		goto again;
4139 	}
4140 	/* step three is to replay everything */
4141 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4142 		wc.stage++;
4143 		goto again;
4144 	}
4145 
4146 	btrfs_free_path(path);
4147 
4148 	/* step 4: commit the transaction, which also unpins the blocks */
4149 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4150 	if (ret)
4151 		return ret;
4152 
4153 	free_extent_buffer(log_root_tree->node);
4154 	log_root_tree->log_root = NULL;
4155 	fs_info->log_root_recovering = 0;
4156 	kfree(log_root_tree);
4157 
4158 	return 0;
4159 error:
4160 	if (wc.trans)
4161 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4162 	btrfs_free_path(path);
4163 	return ret;
4164 }
4165 
4166 /*
4167  * there are some corner cases where we want to force a full
4168  * commit instead of allowing a directory to be logged.
4169  *
4170  * They revolve around files there were unlinked from the directory, and
4171  * this function updates the parent directory so that a full commit is
4172  * properly done if it is fsync'd later after the unlinks are done.
4173  */
4174 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4175 			     struct inode *dir, struct inode *inode,
4176 			     int for_rename)
4177 {
4178 	/*
4179 	 * when we're logging a file, if it hasn't been renamed
4180 	 * or unlinked, and its inode is fully committed on disk,
4181 	 * we don't have to worry about walking up the directory chain
4182 	 * to log its parents.
4183 	 *
4184 	 * So, we use the last_unlink_trans field to put this transid
4185 	 * into the file.  When the file is logged we check it and
4186 	 * don't log the parents if the file is fully on disk.
4187 	 */
4188 	if (S_ISREG(inode->i_mode))
4189 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4190 
4191 	/*
4192 	 * if this directory was already logged any new
4193 	 * names for this file/dir will get recorded
4194 	 */
4195 	smp_mb();
4196 	if (BTRFS_I(dir)->logged_trans == trans->transid)
4197 		return;
4198 
4199 	/*
4200 	 * if the inode we're about to unlink was logged,
4201 	 * the log will be properly updated for any new names
4202 	 */
4203 	if (BTRFS_I(inode)->logged_trans == trans->transid)
4204 		return;
4205 
4206 	/*
4207 	 * when renaming files across directories, if the directory
4208 	 * there we're unlinking from gets fsync'd later on, there's
4209 	 * no way to find the destination directory later and fsync it
4210 	 * properly.  So, we have to be conservative and force commits
4211 	 * so the new name gets discovered.
4212 	 */
4213 	if (for_rename)
4214 		goto record;
4215 
4216 	/* we can safely do the unlink without any special recording */
4217 	return;
4218 
4219 record:
4220 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
4221 }
4222 
4223 /*
4224  * Call this after adding a new name for a file and it will properly
4225  * update the log to reflect the new name.
4226  *
4227  * It will return zero if all goes well, and it will return 1 if a
4228  * full transaction commit is required.
4229  */
4230 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4231 			struct inode *inode, struct inode *old_dir,
4232 			struct dentry *parent)
4233 {
4234 	struct btrfs_root * root = BTRFS_I(inode)->root;
4235 
4236 	/*
4237 	 * this will force the logging code to walk the dentry chain
4238 	 * up for the file
4239 	 */
4240 	if (S_ISREG(inode->i_mode))
4241 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4242 
4243 	/*
4244 	 * if this inode hasn't been logged and directory we're renaming it
4245 	 * from hasn't been logged, we don't need to log it
4246 	 */
4247 	if (BTRFS_I(inode)->logged_trans <=
4248 	    root->fs_info->last_trans_committed &&
4249 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4250 		    root->fs_info->last_trans_committed))
4251 		return 0;
4252 
4253 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4254 }
4255 
4256