xref: /openbmc/linux/fs/btrfs/tree-log.c (revision cc29c5546c6a373648363ac49781f1d74b530707)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24 #include "fs.h"
25 #include "accessors.h"
26 #include "extent-tree.h"
27 #include "root-tree.h"
28 #include "dir-item.h"
29 #include "file-item.h"
30 #include "file.h"
31 #include "orphan.h"
32 #include "tree-checker.h"
33 
34 #define MAX_CONFLICT_INODES 10
35 
36 /* magic values for the inode_only field in btrfs_log_inode:
37  *
38  * LOG_INODE_ALL means to log everything
39  * LOG_INODE_EXISTS means to log just enough to recreate the inode
40  * during log replay
41  */
42 enum {
43 	LOG_INODE_ALL,
44 	LOG_INODE_EXISTS,
45 };
46 
47 /*
48  * directory trouble cases
49  *
50  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51  * log, we must force a full commit before doing an fsync of the directory
52  * where the unlink was done.
53  * ---> record transid of last unlink/rename per directory
54  *
55  * mkdir foo/some_dir
56  * normal commit
57  * rename foo/some_dir foo2/some_dir
58  * mkdir foo/some_dir
59  * fsync foo/some_dir/some_file
60  *
61  * The fsync above will unlink the original some_dir without recording
62  * it in its new location (foo2).  After a crash, some_dir will be gone
63  * unless the fsync of some_file forces a full commit
64  *
65  * 2) we must log any new names for any file or dir that is in the fsync
66  * log. ---> check inode while renaming/linking.
67  *
68  * 2a) we must log any new names for any file or dir during rename
69  * when the directory they are being removed from was logged.
70  * ---> check inode and old parent dir during rename
71  *
72  *  2a is actually the more important variant.  With the extra logging
73  *  a crash might unlink the old name without recreating the new one
74  *
75  * 3) after a crash, we must go through any directories with a link count
76  * of zero and redo the rm -rf
77  *
78  * mkdir f1/foo
79  * normal commit
80  * rm -rf f1/foo
81  * fsync(f1)
82  *
83  * The directory f1 was fully removed from the FS, but fsync was never
84  * called on f1, only its parent dir.  After a crash the rm -rf must
85  * be replayed.  This must be able to recurse down the entire
86  * directory tree.  The inode link count fixup code takes care of the
87  * ugly details.
88  */
89 
90 /*
91  * stages for the tree walking.  The first
92  * stage (0) is to only pin down the blocks we find
93  * the second stage (1) is to make sure that all the inodes
94  * we find in the log are created in the subvolume.
95  *
96  * The last stage is to deal with directories and links and extents
97  * and all the other fun semantics
98  */
99 enum {
100 	LOG_WALK_PIN_ONLY,
101 	LOG_WALK_REPLAY_INODES,
102 	LOG_WALK_REPLAY_DIR_INDEX,
103 	LOG_WALK_REPLAY_ALL,
104 };
105 
106 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
107 			   struct btrfs_inode *inode,
108 			   int inode_only,
109 			   struct btrfs_log_ctx *ctx);
110 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 			     struct btrfs_root *root,
112 			     struct btrfs_path *path, u64 objectid);
113 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 				       struct btrfs_root *root,
115 				       struct btrfs_root *log,
116 				       struct btrfs_path *path,
117 				       u64 dirid, int del_all);
118 static void wait_log_commit(struct btrfs_root *root, int transid);
119 
120 /*
121  * tree logging is a special write ahead log used to make sure that
122  * fsyncs and O_SYNCs can happen without doing full tree commits.
123  *
124  * Full tree commits are expensive because they require commonly
125  * modified blocks to be recowed, creating many dirty pages in the
126  * extent tree an 4x-6x higher write load than ext3.
127  *
128  * Instead of doing a tree commit on every fsync, we use the
129  * key ranges and transaction ids to find items for a given file or directory
130  * that have changed in this transaction.  Those items are copied into
131  * a special tree (one per subvolume root), that tree is written to disk
132  * and then the fsync is considered complete.
133  *
134  * After a crash, items are copied out of the log-tree back into the
135  * subvolume tree.  Any file data extents found are recorded in the extent
136  * allocation tree, and the log-tree freed.
137  *
138  * The log tree is read three times, once to pin down all the extents it is
139  * using in ram and once, once to create all the inodes logged in the tree
140  * and once to do all the other items.
141  */
142 
143 static struct inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
144 {
145 	unsigned int nofs_flag;
146 	struct inode *inode;
147 
148 	/*
149 	 * We're holding a transaction handle whether we are logging or
150 	 * replaying a log tree, so we must make sure NOFS semantics apply
151 	 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
152 	 * to allocate an inode, which can recurse back into the filesystem and
153 	 * attempt a transaction commit, resulting in a deadlock.
154 	 */
155 	nofs_flag = memalloc_nofs_save();
156 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
157 	memalloc_nofs_restore(nofs_flag);
158 
159 	return inode;
160 }
161 
162 /*
163  * start a sub transaction and setup the log tree
164  * this increments the log tree writer count to make the people
165  * syncing the tree wait for us to finish
166  */
167 static int start_log_trans(struct btrfs_trans_handle *trans,
168 			   struct btrfs_root *root,
169 			   struct btrfs_log_ctx *ctx)
170 {
171 	struct btrfs_fs_info *fs_info = root->fs_info;
172 	struct btrfs_root *tree_root = fs_info->tree_root;
173 	const bool zoned = btrfs_is_zoned(fs_info);
174 	int ret = 0;
175 	bool created = false;
176 
177 	/*
178 	 * First check if the log root tree was already created. If not, create
179 	 * it before locking the root's log_mutex, just to keep lockdep happy.
180 	 */
181 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
182 		mutex_lock(&tree_root->log_mutex);
183 		if (!fs_info->log_root_tree) {
184 			ret = btrfs_init_log_root_tree(trans, fs_info);
185 			if (!ret) {
186 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
187 				created = true;
188 			}
189 		}
190 		mutex_unlock(&tree_root->log_mutex);
191 		if (ret)
192 			return ret;
193 	}
194 
195 	mutex_lock(&root->log_mutex);
196 
197 again:
198 	if (root->log_root) {
199 		int index = (root->log_transid + 1) % 2;
200 
201 		if (btrfs_need_log_full_commit(trans)) {
202 			ret = BTRFS_LOG_FORCE_COMMIT;
203 			goto out;
204 		}
205 
206 		if (zoned && atomic_read(&root->log_commit[index])) {
207 			wait_log_commit(root, root->log_transid - 1);
208 			goto again;
209 		}
210 
211 		if (!root->log_start_pid) {
212 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
213 			root->log_start_pid = current->pid;
214 		} else if (root->log_start_pid != current->pid) {
215 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216 		}
217 	} else {
218 		/*
219 		 * This means fs_info->log_root_tree was already created
220 		 * for some other FS trees. Do the full commit not to mix
221 		 * nodes from multiple log transactions to do sequential
222 		 * writing.
223 		 */
224 		if (zoned && !created) {
225 			ret = BTRFS_LOG_FORCE_COMMIT;
226 			goto out;
227 		}
228 
229 		ret = btrfs_add_log_tree(trans, root);
230 		if (ret)
231 			goto out;
232 
233 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
234 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
235 		root->log_start_pid = current->pid;
236 	}
237 
238 	atomic_inc(&root->log_writers);
239 	if (!ctx->logging_new_name) {
240 		int index = root->log_transid % 2;
241 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
242 		ctx->log_transid = root->log_transid;
243 	}
244 
245 out:
246 	mutex_unlock(&root->log_mutex);
247 	return ret;
248 }
249 
250 /*
251  * returns 0 if there was a log transaction running and we were able
252  * to join, or returns -ENOENT if there were not transactions
253  * in progress
254  */
255 static int join_running_log_trans(struct btrfs_root *root)
256 {
257 	const bool zoned = btrfs_is_zoned(root->fs_info);
258 	int ret = -ENOENT;
259 
260 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
261 		return ret;
262 
263 	mutex_lock(&root->log_mutex);
264 again:
265 	if (root->log_root) {
266 		int index = (root->log_transid + 1) % 2;
267 
268 		ret = 0;
269 		if (zoned && atomic_read(&root->log_commit[index])) {
270 			wait_log_commit(root, root->log_transid - 1);
271 			goto again;
272 		}
273 		atomic_inc(&root->log_writers);
274 	}
275 	mutex_unlock(&root->log_mutex);
276 	return ret;
277 }
278 
279 /*
280  * This either makes the current running log transaction wait
281  * until you call btrfs_end_log_trans() or it makes any future
282  * log transactions wait until you call btrfs_end_log_trans()
283  */
284 void btrfs_pin_log_trans(struct btrfs_root *root)
285 {
286 	atomic_inc(&root->log_writers);
287 }
288 
289 /*
290  * indicate we're done making changes to the log tree
291  * and wake up anyone waiting to do a sync
292  */
293 void btrfs_end_log_trans(struct btrfs_root *root)
294 {
295 	if (atomic_dec_and_test(&root->log_writers)) {
296 		/* atomic_dec_and_test implies a barrier */
297 		cond_wake_up_nomb(&root->log_writer_wait);
298 	}
299 }
300 
301 /*
302  * the walk control struct is used to pass state down the chain when
303  * processing the log tree.  The stage field tells us which part
304  * of the log tree processing we are currently doing.  The others
305  * are state fields used for that specific part
306  */
307 struct walk_control {
308 	/* should we free the extent on disk when done?  This is used
309 	 * at transaction commit time while freeing a log tree
310 	 */
311 	int free;
312 
313 	/* pin only walk, we record which extents on disk belong to the
314 	 * log trees
315 	 */
316 	int pin;
317 
318 	/* what stage of the replay code we're currently in */
319 	int stage;
320 
321 	/*
322 	 * Ignore any items from the inode currently being processed. Needs
323 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
324 	 * the LOG_WALK_REPLAY_INODES stage.
325 	 */
326 	bool ignore_cur_inode;
327 
328 	/* the root we are currently replaying */
329 	struct btrfs_root *replay_dest;
330 
331 	/* the trans handle for the current replay */
332 	struct btrfs_trans_handle *trans;
333 
334 	/* the function that gets used to process blocks we find in the
335 	 * tree.  Note the extent_buffer might not be up to date when it is
336 	 * passed in, and it must be checked or read if you need the data
337 	 * inside it
338 	 */
339 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
340 			    struct walk_control *wc, u64 gen, int level);
341 };
342 
343 /*
344  * process_func used to pin down extents, write them or wait on them
345  */
346 static int process_one_buffer(struct btrfs_root *log,
347 			      struct extent_buffer *eb,
348 			      struct walk_control *wc, u64 gen, int level)
349 {
350 	struct btrfs_fs_info *fs_info = log->fs_info;
351 	int ret = 0;
352 
353 	/*
354 	 * If this fs is mixed then we need to be able to process the leaves to
355 	 * pin down any logged extents, so we have to read the block.
356 	 */
357 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
358 		struct btrfs_tree_parent_check check = {
359 			.level = level,
360 			.transid = gen
361 		};
362 
363 		ret = btrfs_read_extent_buffer(eb, &check);
364 		if (ret)
365 			return ret;
366 	}
367 
368 	if (wc->pin) {
369 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
370 						      eb->len);
371 		if (ret)
372 			return ret;
373 
374 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
375 		    btrfs_header_level(eb) == 0)
376 			ret = btrfs_exclude_logged_extents(eb);
377 	}
378 	return ret;
379 }
380 
381 /*
382  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
383  * to the src data we are copying out.
384  *
385  * root is the tree we are copying into, and path is a scratch
386  * path for use in this function (it should be released on entry and
387  * will be released on exit).
388  *
389  * If the key is already in the destination tree the existing item is
390  * overwritten.  If the existing item isn't big enough, it is extended.
391  * If it is too large, it is truncated.
392  *
393  * If the key isn't in the destination yet, a new item is inserted.
394  */
395 static int overwrite_item(struct btrfs_trans_handle *trans,
396 			  struct btrfs_root *root,
397 			  struct btrfs_path *path,
398 			  struct extent_buffer *eb, int slot,
399 			  struct btrfs_key *key)
400 {
401 	int ret;
402 	u32 item_size;
403 	u64 saved_i_size = 0;
404 	int save_old_i_size = 0;
405 	unsigned long src_ptr;
406 	unsigned long dst_ptr;
407 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
408 
409 	/*
410 	 * This is only used during log replay, so the root is always from a
411 	 * fs/subvolume tree. In case we ever need to support a log root, then
412 	 * we'll have to clone the leaf in the path, release the path and use
413 	 * the leaf before writing into the log tree. See the comments at
414 	 * copy_items() for more details.
415 	 */
416 	ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
417 
418 	item_size = btrfs_item_size(eb, slot);
419 	src_ptr = btrfs_item_ptr_offset(eb, slot);
420 
421 	/* Look for the key in the destination tree. */
422 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
423 	if (ret < 0)
424 		return ret;
425 
426 	if (ret == 0) {
427 		char *src_copy;
428 		char *dst_copy;
429 		u32 dst_size = btrfs_item_size(path->nodes[0],
430 						  path->slots[0]);
431 		if (dst_size != item_size)
432 			goto insert;
433 
434 		if (item_size == 0) {
435 			btrfs_release_path(path);
436 			return 0;
437 		}
438 		dst_copy = kmalloc(item_size, GFP_NOFS);
439 		src_copy = kmalloc(item_size, GFP_NOFS);
440 		if (!dst_copy || !src_copy) {
441 			btrfs_release_path(path);
442 			kfree(dst_copy);
443 			kfree(src_copy);
444 			return -ENOMEM;
445 		}
446 
447 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
448 
449 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
450 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
451 				   item_size);
452 		ret = memcmp(dst_copy, src_copy, item_size);
453 
454 		kfree(dst_copy);
455 		kfree(src_copy);
456 		/*
457 		 * they have the same contents, just return, this saves
458 		 * us from cowing blocks in the destination tree and doing
459 		 * extra writes that may not have been done by a previous
460 		 * sync
461 		 */
462 		if (ret == 0) {
463 			btrfs_release_path(path);
464 			return 0;
465 		}
466 
467 		/*
468 		 * We need to load the old nbytes into the inode so when we
469 		 * replay the extents we've logged we get the right nbytes.
470 		 */
471 		if (inode_item) {
472 			struct btrfs_inode_item *item;
473 			u64 nbytes;
474 			u32 mode;
475 
476 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
477 					      struct btrfs_inode_item);
478 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
479 			item = btrfs_item_ptr(eb, slot,
480 					      struct btrfs_inode_item);
481 			btrfs_set_inode_nbytes(eb, item, nbytes);
482 
483 			/*
484 			 * If this is a directory we need to reset the i_size to
485 			 * 0 so that we can set it up properly when replaying
486 			 * the rest of the items in this log.
487 			 */
488 			mode = btrfs_inode_mode(eb, item);
489 			if (S_ISDIR(mode))
490 				btrfs_set_inode_size(eb, item, 0);
491 		}
492 	} else if (inode_item) {
493 		struct btrfs_inode_item *item;
494 		u32 mode;
495 
496 		/*
497 		 * New inode, set nbytes to 0 so that the nbytes comes out
498 		 * properly when we replay the extents.
499 		 */
500 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
501 		btrfs_set_inode_nbytes(eb, item, 0);
502 
503 		/*
504 		 * If this is a directory we need to reset the i_size to 0 so
505 		 * that we can set it up properly when replaying the rest of
506 		 * the items in this log.
507 		 */
508 		mode = btrfs_inode_mode(eb, item);
509 		if (S_ISDIR(mode))
510 			btrfs_set_inode_size(eb, item, 0);
511 	}
512 insert:
513 	btrfs_release_path(path);
514 	/* try to insert the key into the destination tree */
515 	path->skip_release_on_error = 1;
516 	ret = btrfs_insert_empty_item(trans, root, path,
517 				      key, item_size);
518 	path->skip_release_on_error = 0;
519 
520 	/* make sure any existing item is the correct size */
521 	if (ret == -EEXIST || ret == -EOVERFLOW) {
522 		u32 found_size;
523 		found_size = btrfs_item_size(path->nodes[0],
524 						path->slots[0]);
525 		if (found_size > item_size)
526 			btrfs_truncate_item(trans, path, item_size, 1);
527 		else if (found_size < item_size)
528 			btrfs_extend_item(trans, path, item_size - found_size);
529 	} else if (ret) {
530 		return ret;
531 	}
532 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
533 					path->slots[0]);
534 
535 	/* don't overwrite an existing inode if the generation number
536 	 * was logged as zero.  This is done when the tree logging code
537 	 * is just logging an inode to make sure it exists after recovery.
538 	 *
539 	 * Also, don't overwrite i_size on directories during replay.
540 	 * log replay inserts and removes directory items based on the
541 	 * state of the tree found in the subvolume, and i_size is modified
542 	 * as it goes
543 	 */
544 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
545 		struct btrfs_inode_item *src_item;
546 		struct btrfs_inode_item *dst_item;
547 
548 		src_item = (struct btrfs_inode_item *)src_ptr;
549 		dst_item = (struct btrfs_inode_item *)dst_ptr;
550 
551 		if (btrfs_inode_generation(eb, src_item) == 0) {
552 			struct extent_buffer *dst_eb = path->nodes[0];
553 			const u64 ino_size = btrfs_inode_size(eb, src_item);
554 
555 			/*
556 			 * For regular files an ino_size == 0 is used only when
557 			 * logging that an inode exists, as part of a directory
558 			 * fsync, and the inode wasn't fsynced before. In this
559 			 * case don't set the size of the inode in the fs/subvol
560 			 * tree, otherwise we would be throwing valid data away.
561 			 */
562 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
563 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
564 			    ino_size != 0)
565 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
566 			goto no_copy;
567 		}
568 
569 		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
570 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
571 			save_old_i_size = 1;
572 			saved_i_size = btrfs_inode_size(path->nodes[0],
573 							dst_item);
574 		}
575 	}
576 
577 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
578 			   src_ptr, item_size);
579 
580 	if (save_old_i_size) {
581 		struct btrfs_inode_item *dst_item;
582 		dst_item = (struct btrfs_inode_item *)dst_ptr;
583 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
584 	}
585 
586 	/* make sure the generation is filled in */
587 	if (key->type == BTRFS_INODE_ITEM_KEY) {
588 		struct btrfs_inode_item *dst_item;
589 		dst_item = (struct btrfs_inode_item *)dst_ptr;
590 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
591 			btrfs_set_inode_generation(path->nodes[0], dst_item,
592 						   trans->transid);
593 		}
594 	}
595 no_copy:
596 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
597 	btrfs_release_path(path);
598 	return 0;
599 }
600 
601 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
602 			       struct fscrypt_str *name)
603 {
604 	char *buf;
605 
606 	buf = kmalloc(len, GFP_NOFS);
607 	if (!buf)
608 		return -ENOMEM;
609 
610 	read_extent_buffer(eb, buf, (unsigned long)start, len);
611 	name->name = buf;
612 	name->len = len;
613 	return 0;
614 }
615 
616 /*
617  * simple helper to read an inode off the disk from a given root
618  * This can only be called for subvolume roots and not for the log
619  */
620 static noinline struct inode *read_one_inode(struct btrfs_root *root,
621 					     u64 objectid)
622 {
623 	struct inode *inode;
624 
625 	inode = btrfs_iget_logging(objectid, root);
626 	if (IS_ERR(inode))
627 		inode = NULL;
628 	return inode;
629 }
630 
631 /* replays a single extent in 'eb' at 'slot' with 'key' into the
632  * subvolume 'root'.  path is released on entry and should be released
633  * on exit.
634  *
635  * extents in the log tree have not been allocated out of the extent
636  * tree yet.  So, this completes the allocation, taking a reference
637  * as required if the extent already exists or creating a new extent
638  * if it isn't in the extent allocation tree yet.
639  *
640  * The extent is inserted into the file, dropping any existing extents
641  * from the file that overlap the new one.
642  */
643 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
644 				      struct btrfs_root *root,
645 				      struct btrfs_path *path,
646 				      struct extent_buffer *eb, int slot,
647 				      struct btrfs_key *key)
648 {
649 	struct btrfs_drop_extents_args drop_args = { 0 };
650 	struct btrfs_fs_info *fs_info = root->fs_info;
651 	int found_type;
652 	u64 extent_end;
653 	u64 start = key->offset;
654 	u64 nbytes = 0;
655 	struct btrfs_file_extent_item *item;
656 	struct inode *inode = NULL;
657 	unsigned long size;
658 	int ret = 0;
659 
660 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
661 	found_type = btrfs_file_extent_type(eb, item);
662 
663 	if (found_type == BTRFS_FILE_EXTENT_REG ||
664 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
665 		nbytes = btrfs_file_extent_num_bytes(eb, item);
666 		extent_end = start + nbytes;
667 
668 		/*
669 		 * We don't add to the inodes nbytes if we are prealloc or a
670 		 * hole.
671 		 */
672 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
673 			nbytes = 0;
674 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
675 		size = btrfs_file_extent_ram_bytes(eb, item);
676 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
677 		extent_end = ALIGN(start + size,
678 				   fs_info->sectorsize);
679 	} else {
680 		ret = 0;
681 		goto out;
682 	}
683 
684 	inode = read_one_inode(root, key->objectid);
685 	if (!inode) {
686 		ret = -EIO;
687 		goto out;
688 	}
689 
690 	/*
691 	 * first check to see if we already have this extent in the
692 	 * file.  This must be done before the btrfs_drop_extents run
693 	 * so we don't try to drop this extent.
694 	 */
695 	ret = btrfs_lookup_file_extent(trans, root, path,
696 			btrfs_ino(BTRFS_I(inode)), start, 0);
697 
698 	if (ret == 0 &&
699 	    (found_type == BTRFS_FILE_EXTENT_REG ||
700 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
701 		struct btrfs_file_extent_item cmp1;
702 		struct btrfs_file_extent_item cmp2;
703 		struct btrfs_file_extent_item *existing;
704 		struct extent_buffer *leaf;
705 
706 		leaf = path->nodes[0];
707 		existing = btrfs_item_ptr(leaf, path->slots[0],
708 					  struct btrfs_file_extent_item);
709 
710 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
711 				   sizeof(cmp1));
712 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
713 				   sizeof(cmp2));
714 
715 		/*
716 		 * we already have a pointer to this exact extent,
717 		 * we don't have to do anything
718 		 */
719 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
720 			btrfs_release_path(path);
721 			goto out;
722 		}
723 	}
724 	btrfs_release_path(path);
725 
726 	/* drop any overlapping extents */
727 	drop_args.start = start;
728 	drop_args.end = extent_end;
729 	drop_args.drop_cache = true;
730 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
731 	if (ret)
732 		goto out;
733 
734 	if (found_type == BTRFS_FILE_EXTENT_REG ||
735 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
736 		u64 offset;
737 		unsigned long dest_offset;
738 		struct btrfs_key ins;
739 
740 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
741 		    btrfs_fs_incompat(fs_info, NO_HOLES))
742 			goto update_inode;
743 
744 		ret = btrfs_insert_empty_item(trans, root, path, key,
745 					      sizeof(*item));
746 		if (ret)
747 			goto out;
748 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
749 						    path->slots[0]);
750 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
751 				(unsigned long)item,  sizeof(*item));
752 
753 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
754 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
755 		ins.type = BTRFS_EXTENT_ITEM_KEY;
756 		offset = key->offset - btrfs_file_extent_offset(eb, item);
757 
758 		/*
759 		 * Manually record dirty extent, as here we did a shallow
760 		 * file extent item copy and skip normal backref update,
761 		 * but modifying extent tree all by ourselves.
762 		 * So need to manually record dirty extent for qgroup,
763 		 * as the owner of the file extent changed from log tree
764 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
765 		 */
766 		ret = btrfs_qgroup_trace_extent(trans,
767 				btrfs_file_extent_disk_bytenr(eb, item),
768 				btrfs_file_extent_disk_num_bytes(eb, item));
769 		if (ret < 0)
770 			goto out;
771 
772 		if (ins.objectid > 0) {
773 			struct btrfs_ref ref = { 0 };
774 			u64 csum_start;
775 			u64 csum_end;
776 			LIST_HEAD(ordered_sums);
777 
778 			/*
779 			 * is this extent already allocated in the extent
780 			 * allocation tree?  If so, just add a reference
781 			 */
782 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
783 						ins.offset);
784 			if (ret < 0) {
785 				goto out;
786 			} else if (ret == 0) {
787 				btrfs_init_generic_ref(&ref,
788 						BTRFS_ADD_DELAYED_REF,
789 						ins.objectid, ins.offset, 0);
790 				btrfs_init_data_ref(&ref,
791 						root->root_key.objectid,
792 						key->objectid, offset, 0, false);
793 				ret = btrfs_inc_extent_ref(trans, &ref);
794 				if (ret)
795 					goto out;
796 			} else {
797 				/*
798 				 * insert the extent pointer in the extent
799 				 * allocation tree
800 				 */
801 				ret = btrfs_alloc_logged_file_extent(trans,
802 						root->root_key.objectid,
803 						key->objectid, offset, &ins);
804 				if (ret)
805 					goto out;
806 			}
807 			btrfs_release_path(path);
808 
809 			if (btrfs_file_extent_compression(eb, item)) {
810 				csum_start = ins.objectid;
811 				csum_end = csum_start + ins.offset;
812 			} else {
813 				csum_start = ins.objectid +
814 					btrfs_file_extent_offset(eb, item);
815 				csum_end = csum_start +
816 					btrfs_file_extent_num_bytes(eb, item);
817 			}
818 
819 			ret = btrfs_lookup_csums_list(root->log_root,
820 						csum_start, csum_end - 1,
821 						&ordered_sums, 0, false);
822 			if (ret)
823 				goto out;
824 			/*
825 			 * Now delete all existing cums in the csum root that
826 			 * cover our range. We do this because we can have an
827 			 * extent that is completely referenced by one file
828 			 * extent item and partially referenced by another
829 			 * file extent item (like after using the clone or
830 			 * extent_same ioctls). In this case if we end up doing
831 			 * the replay of the one that partially references the
832 			 * extent first, and we do not do the csum deletion
833 			 * below, we can get 2 csum items in the csum tree that
834 			 * overlap each other. For example, imagine our log has
835 			 * the two following file extent items:
836 			 *
837 			 * key (257 EXTENT_DATA 409600)
838 			 *     extent data disk byte 12845056 nr 102400
839 			 *     extent data offset 20480 nr 20480 ram 102400
840 			 *
841 			 * key (257 EXTENT_DATA 819200)
842 			 *     extent data disk byte 12845056 nr 102400
843 			 *     extent data offset 0 nr 102400 ram 102400
844 			 *
845 			 * Where the second one fully references the 100K extent
846 			 * that starts at disk byte 12845056, and the log tree
847 			 * has a single csum item that covers the entire range
848 			 * of the extent:
849 			 *
850 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 			 *
852 			 * After the first file extent item is replayed, the
853 			 * csum tree gets the following csum item:
854 			 *
855 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
856 			 *
857 			 * Which covers the 20K sub-range starting at offset 20K
858 			 * of our extent. Now when we replay the second file
859 			 * extent item, if we do not delete existing csum items
860 			 * that cover any of its blocks, we end up getting two
861 			 * csum items in our csum tree that overlap each other:
862 			 *
863 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
864 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
865 			 *
866 			 * Which is a problem, because after this anyone trying
867 			 * to lookup up for the checksum of any block of our
868 			 * extent starting at an offset of 40K or higher, will
869 			 * end up looking at the second csum item only, which
870 			 * does not contain the checksum for any block starting
871 			 * at offset 40K or higher of our extent.
872 			 */
873 			while (!list_empty(&ordered_sums)) {
874 				struct btrfs_ordered_sum *sums;
875 				struct btrfs_root *csum_root;
876 
877 				sums = list_entry(ordered_sums.next,
878 						struct btrfs_ordered_sum,
879 						list);
880 				csum_root = btrfs_csum_root(fs_info,
881 							    sums->logical);
882 				if (!ret)
883 					ret = btrfs_del_csums(trans, csum_root,
884 							      sums->logical,
885 							      sums->len);
886 				if (!ret)
887 					ret = btrfs_csum_file_blocks(trans,
888 								     csum_root,
889 								     sums);
890 				list_del(&sums->list);
891 				kfree(sums);
892 			}
893 			if (ret)
894 				goto out;
895 		} else {
896 			btrfs_release_path(path);
897 		}
898 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
899 		/* inline extents are easy, we just overwrite them */
900 		ret = overwrite_item(trans, root, path, eb, slot, key);
901 		if (ret)
902 			goto out;
903 	}
904 
905 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
906 						extent_end - start);
907 	if (ret)
908 		goto out;
909 
910 update_inode:
911 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
912 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
913 out:
914 	iput(inode);
915 	return ret;
916 }
917 
918 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
919 				       struct btrfs_inode *dir,
920 				       struct btrfs_inode *inode,
921 				       const struct fscrypt_str *name)
922 {
923 	int ret;
924 
925 	ret = btrfs_unlink_inode(trans, dir, inode, name);
926 	if (ret)
927 		return ret;
928 	/*
929 	 * Whenever we need to check if a name exists or not, we check the
930 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
931 	 * that future checks for a name during log replay see that the name
932 	 * does not exists anymore.
933 	 */
934 	return btrfs_run_delayed_items(trans);
935 }
936 
937 /*
938  * when cleaning up conflicts between the directory names in the
939  * subvolume, directory names in the log and directory names in the
940  * inode back references, we may have to unlink inodes from directories.
941  *
942  * This is a helper function to do the unlink of a specific directory
943  * item
944  */
945 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
946 				      struct btrfs_path *path,
947 				      struct btrfs_inode *dir,
948 				      struct btrfs_dir_item *di)
949 {
950 	struct btrfs_root *root = dir->root;
951 	struct inode *inode;
952 	struct fscrypt_str name;
953 	struct extent_buffer *leaf;
954 	struct btrfs_key location;
955 	int ret;
956 
957 	leaf = path->nodes[0];
958 
959 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
960 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
961 	if (ret)
962 		return -ENOMEM;
963 
964 	btrfs_release_path(path);
965 
966 	inode = read_one_inode(root, location.objectid);
967 	if (!inode) {
968 		ret = -EIO;
969 		goto out;
970 	}
971 
972 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
973 	if (ret)
974 		goto out;
975 
976 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
977 out:
978 	kfree(name.name);
979 	iput(inode);
980 	return ret;
981 }
982 
983 /*
984  * See if a given name and sequence number found in an inode back reference are
985  * already in a directory and correctly point to this inode.
986  *
987  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
988  * exists.
989  */
990 static noinline int inode_in_dir(struct btrfs_root *root,
991 				 struct btrfs_path *path,
992 				 u64 dirid, u64 objectid, u64 index,
993 				 struct fscrypt_str *name)
994 {
995 	struct btrfs_dir_item *di;
996 	struct btrfs_key location;
997 	int ret = 0;
998 
999 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
1000 					 index, name, 0);
1001 	if (IS_ERR(di)) {
1002 		ret = PTR_ERR(di);
1003 		goto out;
1004 	} else if (di) {
1005 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 		if (location.objectid != objectid)
1007 			goto out;
1008 	} else {
1009 		goto out;
1010 	}
1011 
1012 	btrfs_release_path(path);
1013 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1014 	if (IS_ERR(di)) {
1015 		ret = PTR_ERR(di);
1016 		goto out;
1017 	} else if (di) {
1018 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1019 		if (location.objectid == objectid)
1020 			ret = 1;
1021 	}
1022 out:
1023 	btrfs_release_path(path);
1024 	return ret;
1025 }
1026 
1027 /*
1028  * helper function to check a log tree for a named back reference in
1029  * an inode.  This is used to decide if a back reference that is
1030  * found in the subvolume conflicts with what we find in the log.
1031  *
1032  * inode backreferences may have multiple refs in a single item,
1033  * during replay we process one reference at a time, and we don't
1034  * want to delete valid links to a file from the subvolume if that
1035  * link is also in the log.
1036  */
1037 static noinline int backref_in_log(struct btrfs_root *log,
1038 				   struct btrfs_key *key,
1039 				   u64 ref_objectid,
1040 				   const struct fscrypt_str *name)
1041 {
1042 	struct btrfs_path *path;
1043 	int ret;
1044 
1045 	path = btrfs_alloc_path();
1046 	if (!path)
1047 		return -ENOMEM;
1048 
1049 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1050 	if (ret < 0) {
1051 		goto out;
1052 	} else if (ret == 1) {
1053 		ret = 0;
1054 		goto out;
1055 	}
1056 
1057 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1058 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1059 						       path->slots[0],
1060 						       ref_objectid, name);
1061 	else
1062 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1063 						   path->slots[0], name);
1064 out:
1065 	btrfs_free_path(path);
1066 	return ret;
1067 }
1068 
1069 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1070 				  struct btrfs_root *root,
1071 				  struct btrfs_path *path,
1072 				  struct btrfs_root *log_root,
1073 				  struct btrfs_inode *dir,
1074 				  struct btrfs_inode *inode,
1075 				  u64 inode_objectid, u64 parent_objectid,
1076 				  u64 ref_index, struct fscrypt_str *name)
1077 {
1078 	int ret;
1079 	struct extent_buffer *leaf;
1080 	struct btrfs_dir_item *di;
1081 	struct btrfs_key search_key;
1082 	struct btrfs_inode_extref *extref;
1083 
1084 again:
1085 	/* Search old style refs */
1086 	search_key.objectid = inode_objectid;
1087 	search_key.type = BTRFS_INODE_REF_KEY;
1088 	search_key.offset = parent_objectid;
1089 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1090 	if (ret == 0) {
1091 		struct btrfs_inode_ref *victim_ref;
1092 		unsigned long ptr;
1093 		unsigned long ptr_end;
1094 
1095 		leaf = path->nodes[0];
1096 
1097 		/* are we trying to overwrite a back ref for the root directory
1098 		 * if so, just jump out, we're done
1099 		 */
1100 		if (search_key.objectid == search_key.offset)
1101 			return 1;
1102 
1103 		/* check all the names in this back reference to see
1104 		 * if they are in the log.  if so, we allow them to stay
1105 		 * otherwise they must be unlinked as a conflict
1106 		 */
1107 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1108 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1109 		while (ptr < ptr_end) {
1110 			struct fscrypt_str victim_name;
1111 
1112 			victim_ref = (struct btrfs_inode_ref *)ptr;
1113 			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1114 				 btrfs_inode_ref_name_len(leaf, victim_ref),
1115 				 &victim_name);
1116 			if (ret)
1117 				return ret;
1118 
1119 			ret = backref_in_log(log_root, &search_key,
1120 					     parent_objectid, &victim_name);
1121 			if (ret < 0) {
1122 				kfree(victim_name.name);
1123 				return ret;
1124 			} else if (!ret) {
1125 				inc_nlink(&inode->vfs_inode);
1126 				btrfs_release_path(path);
1127 
1128 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1129 						&victim_name);
1130 				kfree(victim_name.name);
1131 				if (ret)
1132 					return ret;
1133 				goto again;
1134 			}
1135 			kfree(victim_name.name);
1136 
1137 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1138 		}
1139 	}
1140 	btrfs_release_path(path);
1141 
1142 	/* Same search but for extended refs */
1143 	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1144 					   inode_objectid, parent_objectid, 0,
1145 					   0);
1146 	if (IS_ERR(extref)) {
1147 		return PTR_ERR(extref);
1148 	} else if (extref) {
1149 		u32 item_size;
1150 		u32 cur_offset = 0;
1151 		unsigned long base;
1152 		struct inode *victim_parent;
1153 
1154 		leaf = path->nodes[0];
1155 
1156 		item_size = btrfs_item_size(leaf, path->slots[0]);
1157 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1158 
1159 		while (cur_offset < item_size) {
1160 			struct fscrypt_str victim_name;
1161 
1162 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1163 
1164 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1165 				goto next;
1166 
1167 			ret = read_alloc_one_name(leaf, &extref->name,
1168 				 btrfs_inode_extref_name_len(leaf, extref),
1169 				 &victim_name);
1170 			if (ret)
1171 				return ret;
1172 
1173 			search_key.objectid = inode_objectid;
1174 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1175 			search_key.offset = btrfs_extref_hash(parent_objectid,
1176 							      victim_name.name,
1177 							      victim_name.len);
1178 			ret = backref_in_log(log_root, &search_key,
1179 					     parent_objectid, &victim_name);
1180 			if (ret < 0) {
1181 				kfree(victim_name.name);
1182 				return ret;
1183 			} else if (!ret) {
1184 				ret = -ENOENT;
1185 				victim_parent = read_one_inode(root,
1186 						parent_objectid);
1187 				if (victim_parent) {
1188 					inc_nlink(&inode->vfs_inode);
1189 					btrfs_release_path(path);
1190 
1191 					ret = unlink_inode_for_log_replay(trans,
1192 							BTRFS_I(victim_parent),
1193 							inode, &victim_name);
1194 				}
1195 				iput(victim_parent);
1196 				kfree(victim_name.name);
1197 				if (ret)
1198 					return ret;
1199 				goto again;
1200 			}
1201 			kfree(victim_name.name);
1202 next:
1203 			cur_offset += victim_name.len + sizeof(*extref);
1204 		}
1205 	}
1206 	btrfs_release_path(path);
1207 
1208 	/* look for a conflicting sequence number */
1209 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1210 					 ref_index, name, 0);
1211 	if (IS_ERR(di)) {
1212 		return PTR_ERR(di);
1213 	} else if (di) {
1214 		ret = drop_one_dir_item(trans, path, dir, di);
1215 		if (ret)
1216 			return ret;
1217 	}
1218 	btrfs_release_path(path);
1219 
1220 	/* look for a conflicting name */
1221 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1222 	if (IS_ERR(di)) {
1223 		return PTR_ERR(di);
1224 	} else if (di) {
1225 		ret = drop_one_dir_item(trans, path, dir, di);
1226 		if (ret)
1227 			return ret;
1228 	}
1229 	btrfs_release_path(path);
1230 
1231 	return 0;
1232 }
1233 
1234 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1235 			     struct fscrypt_str *name, u64 *index,
1236 			     u64 *parent_objectid)
1237 {
1238 	struct btrfs_inode_extref *extref;
1239 	int ret;
1240 
1241 	extref = (struct btrfs_inode_extref *)ref_ptr;
1242 
1243 	ret = read_alloc_one_name(eb, &extref->name,
1244 				  btrfs_inode_extref_name_len(eb, extref), name);
1245 	if (ret)
1246 		return ret;
1247 
1248 	if (index)
1249 		*index = btrfs_inode_extref_index(eb, extref);
1250 	if (parent_objectid)
1251 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1252 
1253 	return 0;
1254 }
1255 
1256 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1257 			  struct fscrypt_str *name, u64 *index)
1258 {
1259 	struct btrfs_inode_ref *ref;
1260 	int ret;
1261 
1262 	ref = (struct btrfs_inode_ref *)ref_ptr;
1263 
1264 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1265 				  name);
1266 	if (ret)
1267 		return ret;
1268 
1269 	if (index)
1270 		*index = btrfs_inode_ref_index(eb, ref);
1271 
1272 	return 0;
1273 }
1274 
1275 /*
1276  * Take an inode reference item from the log tree and iterate all names from the
1277  * inode reference item in the subvolume tree with the same key (if it exists).
1278  * For any name that is not in the inode reference item from the log tree, do a
1279  * proper unlink of that name (that is, remove its entry from the inode
1280  * reference item and both dir index keys).
1281  */
1282 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1283 				 struct btrfs_root *root,
1284 				 struct btrfs_path *path,
1285 				 struct btrfs_inode *inode,
1286 				 struct extent_buffer *log_eb,
1287 				 int log_slot,
1288 				 struct btrfs_key *key)
1289 {
1290 	int ret;
1291 	unsigned long ref_ptr;
1292 	unsigned long ref_end;
1293 	struct extent_buffer *eb;
1294 
1295 again:
1296 	btrfs_release_path(path);
1297 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1298 	if (ret > 0) {
1299 		ret = 0;
1300 		goto out;
1301 	}
1302 	if (ret < 0)
1303 		goto out;
1304 
1305 	eb = path->nodes[0];
1306 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1307 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1308 	while (ref_ptr < ref_end) {
1309 		struct fscrypt_str name;
1310 		u64 parent_id;
1311 
1312 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1313 			ret = extref_get_fields(eb, ref_ptr, &name,
1314 						NULL, &parent_id);
1315 		} else {
1316 			parent_id = key->offset;
1317 			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1318 		}
1319 		if (ret)
1320 			goto out;
1321 
1322 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1323 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1324 							       parent_id, &name);
1325 		else
1326 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1327 
1328 		if (!ret) {
1329 			struct inode *dir;
1330 
1331 			btrfs_release_path(path);
1332 			dir = read_one_inode(root, parent_id);
1333 			if (!dir) {
1334 				ret = -ENOENT;
1335 				kfree(name.name);
1336 				goto out;
1337 			}
1338 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1339 						 inode, &name);
1340 			kfree(name.name);
1341 			iput(dir);
1342 			if (ret)
1343 				goto out;
1344 			goto again;
1345 		}
1346 
1347 		kfree(name.name);
1348 		ref_ptr += name.len;
1349 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1350 			ref_ptr += sizeof(struct btrfs_inode_extref);
1351 		else
1352 			ref_ptr += sizeof(struct btrfs_inode_ref);
1353 	}
1354 	ret = 0;
1355  out:
1356 	btrfs_release_path(path);
1357 	return ret;
1358 }
1359 
1360 /*
1361  * replay one inode back reference item found in the log tree.
1362  * eb, slot and key refer to the buffer and key found in the log tree.
1363  * root is the destination we are replaying into, and path is for temp
1364  * use by this function.  (it should be released on return).
1365  */
1366 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1367 				  struct btrfs_root *root,
1368 				  struct btrfs_root *log,
1369 				  struct btrfs_path *path,
1370 				  struct extent_buffer *eb, int slot,
1371 				  struct btrfs_key *key)
1372 {
1373 	struct inode *dir = NULL;
1374 	struct inode *inode = NULL;
1375 	unsigned long ref_ptr;
1376 	unsigned long ref_end;
1377 	struct fscrypt_str name;
1378 	int ret;
1379 	int log_ref_ver = 0;
1380 	u64 parent_objectid;
1381 	u64 inode_objectid;
1382 	u64 ref_index = 0;
1383 	int ref_struct_size;
1384 
1385 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1386 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1387 
1388 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1389 		struct btrfs_inode_extref *r;
1390 
1391 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1392 		log_ref_ver = 1;
1393 		r = (struct btrfs_inode_extref *)ref_ptr;
1394 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1395 	} else {
1396 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1397 		parent_objectid = key->offset;
1398 	}
1399 	inode_objectid = key->objectid;
1400 
1401 	/*
1402 	 * it is possible that we didn't log all the parent directories
1403 	 * for a given inode.  If we don't find the dir, just don't
1404 	 * copy the back ref in.  The link count fixup code will take
1405 	 * care of the rest
1406 	 */
1407 	dir = read_one_inode(root, parent_objectid);
1408 	if (!dir) {
1409 		ret = -ENOENT;
1410 		goto out;
1411 	}
1412 
1413 	inode = read_one_inode(root, inode_objectid);
1414 	if (!inode) {
1415 		ret = -EIO;
1416 		goto out;
1417 	}
1418 
1419 	while (ref_ptr < ref_end) {
1420 		if (log_ref_ver) {
1421 			ret = extref_get_fields(eb, ref_ptr, &name,
1422 						&ref_index, &parent_objectid);
1423 			/*
1424 			 * parent object can change from one array
1425 			 * item to another.
1426 			 */
1427 			if (!dir)
1428 				dir = read_one_inode(root, parent_objectid);
1429 			if (!dir) {
1430 				ret = -ENOENT;
1431 				goto out;
1432 			}
1433 		} else {
1434 			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1435 		}
1436 		if (ret)
1437 			goto out;
1438 
1439 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1440 				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1441 		if (ret < 0) {
1442 			goto out;
1443 		} else if (ret == 0) {
1444 			/*
1445 			 * look for a conflicting back reference in the
1446 			 * metadata. if we find one we have to unlink that name
1447 			 * of the file before we add our new link.  Later on, we
1448 			 * overwrite any existing back reference, and we don't
1449 			 * want to create dangling pointers in the directory.
1450 			 */
1451 			ret = __add_inode_ref(trans, root, path, log,
1452 					      BTRFS_I(dir), BTRFS_I(inode),
1453 					      inode_objectid, parent_objectid,
1454 					      ref_index, &name);
1455 			if (ret) {
1456 				if (ret == 1)
1457 					ret = 0;
1458 				goto out;
1459 			}
1460 
1461 			/* insert our name */
1462 			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1463 					     &name, 0, ref_index);
1464 			if (ret)
1465 				goto out;
1466 
1467 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1468 			if (ret)
1469 				goto out;
1470 		}
1471 		/* Else, ret == 1, we already have a perfect match, we're done. */
1472 
1473 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1474 		kfree(name.name);
1475 		name.name = NULL;
1476 		if (log_ref_ver) {
1477 			iput(dir);
1478 			dir = NULL;
1479 		}
1480 	}
1481 
1482 	/*
1483 	 * Before we overwrite the inode reference item in the subvolume tree
1484 	 * with the item from the log tree, we must unlink all names from the
1485 	 * parent directory that are in the subvolume's tree inode reference
1486 	 * item, otherwise we end up with an inconsistent subvolume tree where
1487 	 * dir index entries exist for a name but there is no inode reference
1488 	 * item with the same name.
1489 	 */
1490 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1491 				    key);
1492 	if (ret)
1493 		goto out;
1494 
1495 	/* finally write the back reference in the inode */
1496 	ret = overwrite_item(trans, root, path, eb, slot, key);
1497 out:
1498 	btrfs_release_path(path);
1499 	kfree(name.name);
1500 	iput(dir);
1501 	iput(inode);
1502 	return ret;
1503 }
1504 
1505 static int count_inode_extrefs(struct btrfs_root *root,
1506 		struct btrfs_inode *inode, struct btrfs_path *path)
1507 {
1508 	int ret = 0;
1509 	int name_len;
1510 	unsigned int nlink = 0;
1511 	u32 item_size;
1512 	u32 cur_offset = 0;
1513 	u64 inode_objectid = btrfs_ino(inode);
1514 	u64 offset = 0;
1515 	unsigned long ptr;
1516 	struct btrfs_inode_extref *extref;
1517 	struct extent_buffer *leaf;
1518 
1519 	while (1) {
1520 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1521 					    &extref, &offset);
1522 		if (ret)
1523 			break;
1524 
1525 		leaf = path->nodes[0];
1526 		item_size = btrfs_item_size(leaf, path->slots[0]);
1527 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1528 		cur_offset = 0;
1529 
1530 		while (cur_offset < item_size) {
1531 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1532 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1533 
1534 			nlink++;
1535 
1536 			cur_offset += name_len + sizeof(*extref);
1537 		}
1538 
1539 		offset++;
1540 		btrfs_release_path(path);
1541 	}
1542 	btrfs_release_path(path);
1543 
1544 	if (ret < 0 && ret != -ENOENT)
1545 		return ret;
1546 	return nlink;
1547 }
1548 
1549 static int count_inode_refs(struct btrfs_root *root,
1550 			struct btrfs_inode *inode, struct btrfs_path *path)
1551 {
1552 	int ret;
1553 	struct btrfs_key key;
1554 	unsigned int nlink = 0;
1555 	unsigned long ptr;
1556 	unsigned long ptr_end;
1557 	int name_len;
1558 	u64 ino = btrfs_ino(inode);
1559 
1560 	key.objectid = ino;
1561 	key.type = BTRFS_INODE_REF_KEY;
1562 	key.offset = (u64)-1;
1563 
1564 	while (1) {
1565 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1566 		if (ret < 0)
1567 			break;
1568 		if (ret > 0) {
1569 			if (path->slots[0] == 0)
1570 				break;
1571 			path->slots[0]--;
1572 		}
1573 process_slot:
1574 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1575 				      path->slots[0]);
1576 		if (key.objectid != ino ||
1577 		    key.type != BTRFS_INODE_REF_KEY)
1578 			break;
1579 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1580 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1581 						   path->slots[0]);
1582 		while (ptr < ptr_end) {
1583 			struct btrfs_inode_ref *ref;
1584 
1585 			ref = (struct btrfs_inode_ref *)ptr;
1586 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1587 							    ref);
1588 			ptr = (unsigned long)(ref + 1) + name_len;
1589 			nlink++;
1590 		}
1591 
1592 		if (key.offset == 0)
1593 			break;
1594 		if (path->slots[0] > 0) {
1595 			path->slots[0]--;
1596 			goto process_slot;
1597 		}
1598 		key.offset--;
1599 		btrfs_release_path(path);
1600 	}
1601 	btrfs_release_path(path);
1602 
1603 	return nlink;
1604 }
1605 
1606 /*
1607  * There are a few corners where the link count of the file can't
1608  * be properly maintained during replay.  So, instead of adding
1609  * lots of complexity to the log code, we just scan the backrefs
1610  * for any file that has been through replay.
1611  *
1612  * The scan will update the link count on the inode to reflect the
1613  * number of back refs found.  If it goes down to zero, the iput
1614  * will free the inode.
1615  */
1616 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1617 					   struct btrfs_root *root,
1618 					   struct inode *inode)
1619 {
1620 	struct btrfs_path *path;
1621 	int ret;
1622 	u64 nlink = 0;
1623 	u64 ino = btrfs_ino(BTRFS_I(inode));
1624 
1625 	path = btrfs_alloc_path();
1626 	if (!path)
1627 		return -ENOMEM;
1628 
1629 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1630 	if (ret < 0)
1631 		goto out;
1632 
1633 	nlink = ret;
1634 
1635 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1636 	if (ret < 0)
1637 		goto out;
1638 
1639 	nlink += ret;
1640 
1641 	ret = 0;
1642 
1643 	if (nlink != inode->i_nlink) {
1644 		set_nlink(inode, nlink);
1645 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1646 		if (ret)
1647 			goto out;
1648 	}
1649 	BTRFS_I(inode)->index_cnt = (u64)-1;
1650 
1651 	if (inode->i_nlink == 0) {
1652 		if (S_ISDIR(inode->i_mode)) {
1653 			ret = replay_dir_deletes(trans, root, NULL, path,
1654 						 ino, 1);
1655 			if (ret)
1656 				goto out;
1657 		}
1658 		ret = btrfs_insert_orphan_item(trans, root, ino);
1659 		if (ret == -EEXIST)
1660 			ret = 0;
1661 	}
1662 
1663 out:
1664 	btrfs_free_path(path);
1665 	return ret;
1666 }
1667 
1668 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1669 					    struct btrfs_root *root,
1670 					    struct btrfs_path *path)
1671 {
1672 	int ret;
1673 	struct btrfs_key key;
1674 	struct inode *inode;
1675 
1676 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1677 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1678 	key.offset = (u64)-1;
1679 	while (1) {
1680 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1681 		if (ret < 0)
1682 			break;
1683 
1684 		if (ret == 1) {
1685 			ret = 0;
1686 			if (path->slots[0] == 0)
1687 				break;
1688 			path->slots[0]--;
1689 		}
1690 
1691 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1692 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1693 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1694 			break;
1695 
1696 		ret = btrfs_del_item(trans, root, path);
1697 		if (ret)
1698 			break;
1699 
1700 		btrfs_release_path(path);
1701 		inode = read_one_inode(root, key.offset);
1702 		if (!inode) {
1703 			ret = -EIO;
1704 			break;
1705 		}
1706 
1707 		ret = fixup_inode_link_count(trans, root, inode);
1708 		iput(inode);
1709 		if (ret)
1710 			break;
1711 
1712 		/*
1713 		 * fixup on a directory may create new entries,
1714 		 * make sure we always look for the highset possible
1715 		 * offset
1716 		 */
1717 		key.offset = (u64)-1;
1718 	}
1719 	btrfs_release_path(path);
1720 	return ret;
1721 }
1722 
1723 
1724 /*
1725  * record a given inode in the fixup dir so we can check its link
1726  * count when replay is done.  The link count is incremented here
1727  * so the inode won't go away until we check it
1728  */
1729 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1730 				      struct btrfs_root *root,
1731 				      struct btrfs_path *path,
1732 				      u64 objectid)
1733 {
1734 	struct btrfs_key key;
1735 	int ret = 0;
1736 	struct inode *inode;
1737 
1738 	inode = read_one_inode(root, objectid);
1739 	if (!inode)
1740 		return -EIO;
1741 
1742 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1743 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1744 	key.offset = objectid;
1745 
1746 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1747 
1748 	btrfs_release_path(path);
1749 	if (ret == 0) {
1750 		if (!inode->i_nlink)
1751 			set_nlink(inode, 1);
1752 		else
1753 			inc_nlink(inode);
1754 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1755 	} else if (ret == -EEXIST) {
1756 		ret = 0;
1757 	}
1758 	iput(inode);
1759 
1760 	return ret;
1761 }
1762 
1763 /*
1764  * when replaying the log for a directory, we only insert names
1765  * for inodes that actually exist.  This means an fsync on a directory
1766  * does not implicitly fsync all the new files in it
1767  */
1768 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1769 				    struct btrfs_root *root,
1770 				    u64 dirid, u64 index,
1771 				    const struct fscrypt_str *name,
1772 				    struct btrfs_key *location)
1773 {
1774 	struct inode *inode;
1775 	struct inode *dir;
1776 	int ret;
1777 
1778 	inode = read_one_inode(root, location->objectid);
1779 	if (!inode)
1780 		return -ENOENT;
1781 
1782 	dir = read_one_inode(root, dirid);
1783 	if (!dir) {
1784 		iput(inode);
1785 		return -EIO;
1786 	}
1787 
1788 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1789 			     1, index);
1790 
1791 	/* FIXME, put inode into FIXUP list */
1792 
1793 	iput(inode);
1794 	iput(dir);
1795 	return ret;
1796 }
1797 
1798 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1799 					struct btrfs_inode *dir,
1800 					struct btrfs_path *path,
1801 					struct btrfs_dir_item *dst_di,
1802 					const struct btrfs_key *log_key,
1803 					u8 log_flags,
1804 					bool exists)
1805 {
1806 	struct btrfs_key found_key;
1807 
1808 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1809 	/* The existing dentry points to the same inode, don't delete it. */
1810 	if (found_key.objectid == log_key->objectid &&
1811 	    found_key.type == log_key->type &&
1812 	    found_key.offset == log_key->offset &&
1813 	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1814 		return 1;
1815 
1816 	/*
1817 	 * Don't drop the conflicting directory entry if the inode for the new
1818 	 * entry doesn't exist.
1819 	 */
1820 	if (!exists)
1821 		return 0;
1822 
1823 	return drop_one_dir_item(trans, path, dir, dst_di);
1824 }
1825 
1826 /*
1827  * take a single entry in a log directory item and replay it into
1828  * the subvolume.
1829  *
1830  * if a conflicting item exists in the subdirectory already,
1831  * the inode it points to is unlinked and put into the link count
1832  * fix up tree.
1833  *
1834  * If a name from the log points to a file or directory that does
1835  * not exist in the FS, it is skipped.  fsyncs on directories
1836  * do not force down inodes inside that directory, just changes to the
1837  * names or unlinks in a directory.
1838  *
1839  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1840  * non-existing inode) and 1 if the name was replayed.
1841  */
1842 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1843 				    struct btrfs_root *root,
1844 				    struct btrfs_path *path,
1845 				    struct extent_buffer *eb,
1846 				    struct btrfs_dir_item *di,
1847 				    struct btrfs_key *key)
1848 {
1849 	struct fscrypt_str name;
1850 	struct btrfs_dir_item *dir_dst_di;
1851 	struct btrfs_dir_item *index_dst_di;
1852 	bool dir_dst_matches = false;
1853 	bool index_dst_matches = false;
1854 	struct btrfs_key log_key;
1855 	struct btrfs_key search_key;
1856 	struct inode *dir;
1857 	u8 log_flags;
1858 	bool exists;
1859 	int ret;
1860 	bool update_size = true;
1861 	bool name_added = false;
1862 
1863 	dir = read_one_inode(root, key->objectid);
1864 	if (!dir)
1865 		return -EIO;
1866 
1867 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1868 	if (ret)
1869 		goto out;
1870 
1871 	log_flags = btrfs_dir_flags(eb, di);
1872 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1873 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1874 	btrfs_release_path(path);
1875 	if (ret < 0)
1876 		goto out;
1877 	exists = (ret == 0);
1878 	ret = 0;
1879 
1880 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1881 					   &name, 1);
1882 	if (IS_ERR(dir_dst_di)) {
1883 		ret = PTR_ERR(dir_dst_di);
1884 		goto out;
1885 	} else if (dir_dst_di) {
1886 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1887 						   dir_dst_di, &log_key,
1888 						   log_flags, exists);
1889 		if (ret < 0)
1890 			goto out;
1891 		dir_dst_matches = (ret == 1);
1892 	}
1893 
1894 	btrfs_release_path(path);
1895 
1896 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1897 						   key->objectid, key->offset,
1898 						   &name, 1);
1899 	if (IS_ERR(index_dst_di)) {
1900 		ret = PTR_ERR(index_dst_di);
1901 		goto out;
1902 	} else if (index_dst_di) {
1903 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1904 						   index_dst_di, &log_key,
1905 						   log_flags, exists);
1906 		if (ret < 0)
1907 			goto out;
1908 		index_dst_matches = (ret == 1);
1909 	}
1910 
1911 	btrfs_release_path(path);
1912 
1913 	if (dir_dst_matches && index_dst_matches) {
1914 		ret = 0;
1915 		update_size = false;
1916 		goto out;
1917 	}
1918 
1919 	/*
1920 	 * Check if the inode reference exists in the log for the given name,
1921 	 * inode and parent inode
1922 	 */
1923 	search_key.objectid = log_key.objectid;
1924 	search_key.type = BTRFS_INODE_REF_KEY;
1925 	search_key.offset = key->objectid;
1926 	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1927 	if (ret < 0) {
1928 	        goto out;
1929 	} else if (ret) {
1930 	        /* The dentry will be added later. */
1931 	        ret = 0;
1932 	        update_size = false;
1933 	        goto out;
1934 	}
1935 
1936 	search_key.objectid = log_key.objectid;
1937 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1938 	search_key.offset = key->objectid;
1939 	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1940 	if (ret < 0) {
1941 		goto out;
1942 	} else if (ret) {
1943 		/* The dentry will be added later. */
1944 		ret = 0;
1945 		update_size = false;
1946 		goto out;
1947 	}
1948 	btrfs_release_path(path);
1949 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1950 			      &name, &log_key);
1951 	if (ret && ret != -ENOENT && ret != -EEXIST)
1952 		goto out;
1953 	if (!ret)
1954 		name_added = true;
1955 	update_size = false;
1956 	ret = 0;
1957 
1958 out:
1959 	if (!ret && update_size) {
1960 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1961 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1962 	}
1963 	kfree(name.name);
1964 	iput(dir);
1965 	if (!ret && name_added)
1966 		ret = 1;
1967 	return ret;
1968 }
1969 
1970 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1971 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1972 					struct btrfs_root *root,
1973 					struct btrfs_path *path,
1974 					struct extent_buffer *eb, int slot,
1975 					struct btrfs_key *key)
1976 {
1977 	int ret;
1978 	struct btrfs_dir_item *di;
1979 
1980 	/* We only log dir index keys, which only contain a single dir item. */
1981 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1982 
1983 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1984 	ret = replay_one_name(trans, root, path, eb, di, key);
1985 	if (ret < 0)
1986 		return ret;
1987 
1988 	/*
1989 	 * If this entry refers to a non-directory (directories can not have a
1990 	 * link count > 1) and it was added in the transaction that was not
1991 	 * committed, make sure we fixup the link count of the inode the entry
1992 	 * points to. Otherwise something like the following would result in a
1993 	 * directory pointing to an inode with a wrong link that does not account
1994 	 * for this dir entry:
1995 	 *
1996 	 * mkdir testdir
1997 	 * touch testdir/foo
1998 	 * touch testdir/bar
1999 	 * sync
2000 	 *
2001 	 * ln testdir/bar testdir/bar_link
2002 	 * ln testdir/foo testdir/foo_link
2003 	 * xfs_io -c "fsync" testdir/bar
2004 	 *
2005 	 * <power failure>
2006 	 *
2007 	 * mount fs, log replay happens
2008 	 *
2009 	 * File foo would remain with a link count of 1 when it has two entries
2010 	 * pointing to it in the directory testdir. This would make it impossible
2011 	 * to ever delete the parent directory has it would result in stale
2012 	 * dentries that can never be deleted.
2013 	 */
2014 	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2015 		struct btrfs_path *fixup_path;
2016 		struct btrfs_key di_key;
2017 
2018 		fixup_path = btrfs_alloc_path();
2019 		if (!fixup_path)
2020 			return -ENOMEM;
2021 
2022 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2023 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2024 		btrfs_free_path(fixup_path);
2025 	}
2026 
2027 	return ret;
2028 }
2029 
2030 /*
2031  * directory replay has two parts.  There are the standard directory
2032  * items in the log copied from the subvolume, and range items
2033  * created in the log while the subvolume was logged.
2034  *
2035  * The range items tell us which parts of the key space the log
2036  * is authoritative for.  During replay, if a key in the subvolume
2037  * directory is in a logged range item, but not actually in the log
2038  * that means it was deleted from the directory before the fsync
2039  * and should be removed.
2040  */
2041 static noinline int find_dir_range(struct btrfs_root *root,
2042 				   struct btrfs_path *path,
2043 				   u64 dirid,
2044 				   u64 *start_ret, u64 *end_ret)
2045 {
2046 	struct btrfs_key key;
2047 	u64 found_end;
2048 	struct btrfs_dir_log_item *item;
2049 	int ret;
2050 	int nritems;
2051 
2052 	if (*start_ret == (u64)-1)
2053 		return 1;
2054 
2055 	key.objectid = dirid;
2056 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2057 	key.offset = *start_ret;
2058 
2059 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2060 	if (ret < 0)
2061 		goto out;
2062 	if (ret > 0) {
2063 		if (path->slots[0] == 0)
2064 			goto out;
2065 		path->slots[0]--;
2066 	}
2067 	if (ret != 0)
2068 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2069 
2070 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2071 		ret = 1;
2072 		goto next;
2073 	}
2074 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2075 			      struct btrfs_dir_log_item);
2076 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2077 
2078 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2079 		ret = 0;
2080 		*start_ret = key.offset;
2081 		*end_ret = found_end;
2082 		goto out;
2083 	}
2084 	ret = 1;
2085 next:
2086 	/* check the next slot in the tree to see if it is a valid item */
2087 	nritems = btrfs_header_nritems(path->nodes[0]);
2088 	path->slots[0]++;
2089 	if (path->slots[0] >= nritems) {
2090 		ret = btrfs_next_leaf(root, path);
2091 		if (ret)
2092 			goto out;
2093 	}
2094 
2095 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2096 
2097 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2098 		ret = 1;
2099 		goto out;
2100 	}
2101 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2102 			      struct btrfs_dir_log_item);
2103 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2104 	*start_ret = key.offset;
2105 	*end_ret = found_end;
2106 	ret = 0;
2107 out:
2108 	btrfs_release_path(path);
2109 	return ret;
2110 }
2111 
2112 /*
2113  * this looks for a given directory item in the log.  If the directory
2114  * item is not in the log, the item is removed and the inode it points
2115  * to is unlinked
2116  */
2117 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2118 				      struct btrfs_root *log,
2119 				      struct btrfs_path *path,
2120 				      struct btrfs_path *log_path,
2121 				      struct inode *dir,
2122 				      struct btrfs_key *dir_key)
2123 {
2124 	struct btrfs_root *root = BTRFS_I(dir)->root;
2125 	int ret;
2126 	struct extent_buffer *eb;
2127 	int slot;
2128 	struct btrfs_dir_item *di;
2129 	struct fscrypt_str name;
2130 	struct inode *inode = NULL;
2131 	struct btrfs_key location;
2132 
2133 	/*
2134 	 * Currently we only log dir index keys. Even if we replay a log created
2135 	 * by an older kernel that logged both dir index and dir item keys, all
2136 	 * we need to do is process the dir index keys, we (and our caller) can
2137 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2138 	 */
2139 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2140 
2141 	eb = path->nodes[0];
2142 	slot = path->slots[0];
2143 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2144 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2145 	if (ret)
2146 		goto out;
2147 
2148 	if (log) {
2149 		struct btrfs_dir_item *log_di;
2150 
2151 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2152 						     dir_key->objectid,
2153 						     dir_key->offset, &name, 0);
2154 		if (IS_ERR(log_di)) {
2155 			ret = PTR_ERR(log_di);
2156 			goto out;
2157 		} else if (log_di) {
2158 			/* The dentry exists in the log, we have nothing to do. */
2159 			ret = 0;
2160 			goto out;
2161 		}
2162 	}
2163 
2164 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2165 	btrfs_release_path(path);
2166 	btrfs_release_path(log_path);
2167 	inode = read_one_inode(root, location.objectid);
2168 	if (!inode) {
2169 		ret = -EIO;
2170 		goto out;
2171 	}
2172 
2173 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2174 	if (ret)
2175 		goto out;
2176 
2177 	inc_nlink(inode);
2178 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2179 					  &name);
2180 	/*
2181 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2182 	 * them, as there are no key collisions since each key has a unique offset
2183 	 * (an index number), so we're done.
2184 	 */
2185 out:
2186 	btrfs_release_path(path);
2187 	btrfs_release_path(log_path);
2188 	kfree(name.name);
2189 	iput(inode);
2190 	return ret;
2191 }
2192 
2193 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2194 			      struct btrfs_root *root,
2195 			      struct btrfs_root *log,
2196 			      struct btrfs_path *path,
2197 			      const u64 ino)
2198 {
2199 	struct btrfs_key search_key;
2200 	struct btrfs_path *log_path;
2201 	int i;
2202 	int nritems;
2203 	int ret;
2204 
2205 	log_path = btrfs_alloc_path();
2206 	if (!log_path)
2207 		return -ENOMEM;
2208 
2209 	search_key.objectid = ino;
2210 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2211 	search_key.offset = 0;
2212 again:
2213 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2214 	if (ret < 0)
2215 		goto out;
2216 process_leaf:
2217 	nritems = btrfs_header_nritems(path->nodes[0]);
2218 	for (i = path->slots[0]; i < nritems; i++) {
2219 		struct btrfs_key key;
2220 		struct btrfs_dir_item *di;
2221 		struct btrfs_dir_item *log_di;
2222 		u32 total_size;
2223 		u32 cur;
2224 
2225 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2226 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2227 			ret = 0;
2228 			goto out;
2229 		}
2230 
2231 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2232 		total_size = btrfs_item_size(path->nodes[0], i);
2233 		cur = 0;
2234 		while (cur < total_size) {
2235 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2236 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2237 			u32 this_len = sizeof(*di) + name_len + data_len;
2238 			char *name;
2239 
2240 			name = kmalloc(name_len, GFP_NOFS);
2241 			if (!name) {
2242 				ret = -ENOMEM;
2243 				goto out;
2244 			}
2245 			read_extent_buffer(path->nodes[0], name,
2246 					   (unsigned long)(di + 1), name_len);
2247 
2248 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2249 						    name, name_len, 0);
2250 			btrfs_release_path(log_path);
2251 			if (!log_di) {
2252 				/* Doesn't exist in log tree, so delete it. */
2253 				btrfs_release_path(path);
2254 				di = btrfs_lookup_xattr(trans, root, path, ino,
2255 							name, name_len, -1);
2256 				kfree(name);
2257 				if (IS_ERR(di)) {
2258 					ret = PTR_ERR(di);
2259 					goto out;
2260 				}
2261 				ASSERT(di);
2262 				ret = btrfs_delete_one_dir_name(trans, root,
2263 								path, di);
2264 				if (ret)
2265 					goto out;
2266 				btrfs_release_path(path);
2267 				search_key = key;
2268 				goto again;
2269 			}
2270 			kfree(name);
2271 			if (IS_ERR(log_di)) {
2272 				ret = PTR_ERR(log_di);
2273 				goto out;
2274 			}
2275 			cur += this_len;
2276 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2277 		}
2278 	}
2279 	ret = btrfs_next_leaf(root, path);
2280 	if (ret > 0)
2281 		ret = 0;
2282 	else if (ret == 0)
2283 		goto process_leaf;
2284 out:
2285 	btrfs_free_path(log_path);
2286 	btrfs_release_path(path);
2287 	return ret;
2288 }
2289 
2290 
2291 /*
2292  * deletion replay happens before we copy any new directory items
2293  * out of the log or out of backreferences from inodes.  It
2294  * scans the log to find ranges of keys that log is authoritative for,
2295  * and then scans the directory to find items in those ranges that are
2296  * not present in the log.
2297  *
2298  * Anything we don't find in the log is unlinked and removed from the
2299  * directory.
2300  */
2301 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2302 				       struct btrfs_root *root,
2303 				       struct btrfs_root *log,
2304 				       struct btrfs_path *path,
2305 				       u64 dirid, int del_all)
2306 {
2307 	u64 range_start;
2308 	u64 range_end;
2309 	int ret = 0;
2310 	struct btrfs_key dir_key;
2311 	struct btrfs_key found_key;
2312 	struct btrfs_path *log_path;
2313 	struct inode *dir;
2314 
2315 	dir_key.objectid = dirid;
2316 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2317 	log_path = btrfs_alloc_path();
2318 	if (!log_path)
2319 		return -ENOMEM;
2320 
2321 	dir = read_one_inode(root, dirid);
2322 	/* it isn't an error if the inode isn't there, that can happen
2323 	 * because we replay the deletes before we copy in the inode item
2324 	 * from the log
2325 	 */
2326 	if (!dir) {
2327 		btrfs_free_path(log_path);
2328 		return 0;
2329 	}
2330 
2331 	range_start = 0;
2332 	range_end = 0;
2333 	while (1) {
2334 		if (del_all)
2335 			range_end = (u64)-1;
2336 		else {
2337 			ret = find_dir_range(log, path, dirid,
2338 					     &range_start, &range_end);
2339 			if (ret < 0)
2340 				goto out;
2341 			else if (ret > 0)
2342 				break;
2343 		}
2344 
2345 		dir_key.offset = range_start;
2346 		while (1) {
2347 			int nritems;
2348 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2349 						0, 0);
2350 			if (ret < 0)
2351 				goto out;
2352 
2353 			nritems = btrfs_header_nritems(path->nodes[0]);
2354 			if (path->slots[0] >= nritems) {
2355 				ret = btrfs_next_leaf(root, path);
2356 				if (ret == 1)
2357 					break;
2358 				else if (ret < 0)
2359 					goto out;
2360 			}
2361 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2362 					      path->slots[0]);
2363 			if (found_key.objectid != dirid ||
2364 			    found_key.type != dir_key.type) {
2365 				ret = 0;
2366 				goto out;
2367 			}
2368 
2369 			if (found_key.offset > range_end)
2370 				break;
2371 
2372 			ret = check_item_in_log(trans, log, path,
2373 						log_path, dir,
2374 						&found_key);
2375 			if (ret)
2376 				goto out;
2377 			if (found_key.offset == (u64)-1)
2378 				break;
2379 			dir_key.offset = found_key.offset + 1;
2380 		}
2381 		btrfs_release_path(path);
2382 		if (range_end == (u64)-1)
2383 			break;
2384 		range_start = range_end + 1;
2385 	}
2386 	ret = 0;
2387 out:
2388 	btrfs_release_path(path);
2389 	btrfs_free_path(log_path);
2390 	iput(dir);
2391 	return ret;
2392 }
2393 
2394 /*
2395  * the process_func used to replay items from the log tree.  This
2396  * gets called in two different stages.  The first stage just looks
2397  * for inodes and makes sure they are all copied into the subvolume.
2398  *
2399  * The second stage copies all the other item types from the log into
2400  * the subvolume.  The two stage approach is slower, but gets rid of
2401  * lots of complexity around inodes referencing other inodes that exist
2402  * only in the log (references come from either directory items or inode
2403  * back refs).
2404  */
2405 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2406 			     struct walk_control *wc, u64 gen, int level)
2407 {
2408 	int nritems;
2409 	struct btrfs_tree_parent_check check = {
2410 		.transid = gen,
2411 		.level = level
2412 	};
2413 	struct btrfs_path *path;
2414 	struct btrfs_root *root = wc->replay_dest;
2415 	struct btrfs_key key;
2416 	int i;
2417 	int ret;
2418 
2419 	ret = btrfs_read_extent_buffer(eb, &check);
2420 	if (ret)
2421 		return ret;
2422 
2423 	level = btrfs_header_level(eb);
2424 
2425 	if (level != 0)
2426 		return 0;
2427 
2428 	path = btrfs_alloc_path();
2429 	if (!path)
2430 		return -ENOMEM;
2431 
2432 	nritems = btrfs_header_nritems(eb);
2433 	for (i = 0; i < nritems; i++) {
2434 		btrfs_item_key_to_cpu(eb, &key, i);
2435 
2436 		/* inode keys are done during the first stage */
2437 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2438 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2439 			struct btrfs_inode_item *inode_item;
2440 			u32 mode;
2441 
2442 			inode_item = btrfs_item_ptr(eb, i,
2443 					    struct btrfs_inode_item);
2444 			/*
2445 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2446 			 * and never got linked before the fsync, skip it, as
2447 			 * replaying it is pointless since it would be deleted
2448 			 * later. We skip logging tmpfiles, but it's always
2449 			 * possible we are replaying a log created with a kernel
2450 			 * that used to log tmpfiles.
2451 			 */
2452 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2453 				wc->ignore_cur_inode = true;
2454 				continue;
2455 			} else {
2456 				wc->ignore_cur_inode = false;
2457 			}
2458 			ret = replay_xattr_deletes(wc->trans, root, log,
2459 						   path, key.objectid);
2460 			if (ret)
2461 				break;
2462 			mode = btrfs_inode_mode(eb, inode_item);
2463 			if (S_ISDIR(mode)) {
2464 				ret = replay_dir_deletes(wc->trans,
2465 					 root, log, path, key.objectid, 0);
2466 				if (ret)
2467 					break;
2468 			}
2469 			ret = overwrite_item(wc->trans, root, path,
2470 					     eb, i, &key);
2471 			if (ret)
2472 				break;
2473 
2474 			/*
2475 			 * Before replaying extents, truncate the inode to its
2476 			 * size. We need to do it now and not after log replay
2477 			 * because before an fsync we can have prealloc extents
2478 			 * added beyond the inode's i_size. If we did it after,
2479 			 * through orphan cleanup for example, we would drop
2480 			 * those prealloc extents just after replaying them.
2481 			 */
2482 			if (S_ISREG(mode)) {
2483 				struct btrfs_drop_extents_args drop_args = { 0 };
2484 				struct inode *inode;
2485 				u64 from;
2486 
2487 				inode = read_one_inode(root, key.objectid);
2488 				if (!inode) {
2489 					ret = -EIO;
2490 					break;
2491 				}
2492 				from = ALIGN(i_size_read(inode),
2493 					     root->fs_info->sectorsize);
2494 				drop_args.start = from;
2495 				drop_args.end = (u64)-1;
2496 				drop_args.drop_cache = true;
2497 				ret = btrfs_drop_extents(wc->trans, root,
2498 							 BTRFS_I(inode),
2499 							 &drop_args);
2500 				if (!ret) {
2501 					inode_sub_bytes(inode,
2502 							drop_args.bytes_found);
2503 					/* Update the inode's nbytes. */
2504 					ret = btrfs_update_inode(wc->trans,
2505 							root, BTRFS_I(inode));
2506 				}
2507 				iput(inode);
2508 				if (ret)
2509 					break;
2510 			}
2511 
2512 			ret = link_to_fixup_dir(wc->trans, root,
2513 						path, key.objectid);
2514 			if (ret)
2515 				break;
2516 		}
2517 
2518 		if (wc->ignore_cur_inode)
2519 			continue;
2520 
2521 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2522 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2523 			ret = replay_one_dir_item(wc->trans, root, path,
2524 						  eb, i, &key);
2525 			if (ret)
2526 				break;
2527 		}
2528 
2529 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2530 			continue;
2531 
2532 		/* these keys are simply copied */
2533 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2534 			ret = overwrite_item(wc->trans, root, path,
2535 					     eb, i, &key);
2536 			if (ret)
2537 				break;
2538 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2539 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2540 			ret = add_inode_ref(wc->trans, root, log, path,
2541 					    eb, i, &key);
2542 			if (ret && ret != -ENOENT)
2543 				break;
2544 			ret = 0;
2545 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2546 			ret = replay_one_extent(wc->trans, root, path,
2547 						eb, i, &key);
2548 			if (ret)
2549 				break;
2550 		}
2551 		/*
2552 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2553 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2554 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2555 		 * older kernel with such keys, ignore them.
2556 		 */
2557 	}
2558 	btrfs_free_path(path);
2559 	return ret;
2560 }
2561 
2562 /*
2563  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2564  */
2565 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2566 {
2567 	struct btrfs_block_group *cache;
2568 
2569 	cache = btrfs_lookup_block_group(fs_info, start);
2570 	if (!cache) {
2571 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2572 		return;
2573 	}
2574 
2575 	spin_lock(&cache->space_info->lock);
2576 	spin_lock(&cache->lock);
2577 	cache->reserved -= fs_info->nodesize;
2578 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2579 	spin_unlock(&cache->lock);
2580 	spin_unlock(&cache->space_info->lock);
2581 
2582 	btrfs_put_block_group(cache);
2583 }
2584 
2585 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2586 			    struct extent_buffer *eb)
2587 {
2588 	int ret;
2589 
2590 	btrfs_tree_lock(eb);
2591 	btrfs_clear_buffer_dirty(trans, eb);
2592 	wait_on_extent_buffer_writeback(eb);
2593 	btrfs_tree_unlock(eb);
2594 
2595 	if (trans) {
2596 		ret = btrfs_pin_reserved_extent(trans, eb->start, eb->len);
2597 		if (ret)
2598 			return ret;
2599 		btrfs_redirty_list_add(trans->transaction, eb);
2600 	} else {
2601 		unaccount_log_buffer(eb->fs_info, eb->start);
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2608 				   struct btrfs_root *root,
2609 				   struct btrfs_path *path, int *level,
2610 				   struct walk_control *wc)
2611 {
2612 	struct btrfs_fs_info *fs_info = root->fs_info;
2613 	u64 bytenr;
2614 	u64 ptr_gen;
2615 	struct extent_buffer *next;
2616 	struct extent_buffer *cur;
2617 	int ret = 0;
2618 
2619 	while (*level > 0) {
2620 		struct btrfs_tree_parent_check check = { 0 };
2621 
2622 		cur = path->nodes[*level];
2623 
2624 		WARN_ON(btrfs_header_level(cur) != *level);
2625 
2626 		if (path->slots[*level] >=
2627 		    btrfs_header_nritems(cur))
2628 			break;
2629 
2630 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2631 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2632 		check.transid = ptr_gen;
2633 		check.level = *level - 1;
2634 		check.has_first_key = true;
2635 		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2636 
2637 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2638 						    btrfs_header_owner(cur),
2639 						    *level - 1);
2640 		if (IS_ERR(next))
2641 			return PTR_ERR(next);
2642 
2643 		if (*level == 1) {
2644 			ret = wc->process_func(root, next, wc, ptr_gen,
2645 					       *level - 1);
2646 			if (ret) {
2647 				free_extent_buffer(next);
2648 				return ret;
2649 			}
2650 
2651 			path->slots[*level]++;
2652 			if (wc->free) {
2653 				ret = btrfs_read_extent_buffer(next, &check);
2654 				if (ret) {
2655 					free_extent_buffer(next);
2656 					return ret;
2657 				}
2658 
2659 				ret = clean_log_buffer(trans, next);
2660 				if (ret) {
2661 					free_extent_buffer(next);
2662 					return ret;
2663 				}
2664 			}
2665 			free_extent_buffer(next);
2666 			continue;
2667 		}
2668 		ret = btrfs_read_extent_buffer(next, &check);
2669 		if (ret) {
2670 			free_extent_buffer(next);
2671 			return ret;
2672 		}
2673 
2674 		if (path->nodes[*level-1])
2675 			free_extent_buffer(path->nodes[*level-1]);
2676 		path->nodes[*level-1] = next;
2677 		*level = btrfs_header_level(next);
2678 		path->slots[*level] = 0;
2679 		cond_resched();
2680 	}
2681 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2682 
2683 	cond_resched();
2684 	return 0;
2685 }
2686 
2687 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2688 				 struct btrfs_root *root,
2689 				 struct btrfs_path *path, int *level,
2690 				 struct walk_control *wc)
2691 {
2692 	int i;
2693 	int slot;
2694 	int ret;
2695 
2696 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2697 		slot = path->slots[i];
2698 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2699 			path->slots[i]++;
2700 			*level = i;
2701 			WARN_ON(*level == 0);
2702 			return 0;
2703 		} else {
2704 			ret = wc->process_func(root, path->nodes[*level], wc,
2705 				 btrfs_header_generation(path->nodes[*level]),
2706 				 *level);
2707 			if (ret)
2708 				return ret;
2709 
2710 			if (wc->free) {
2711 				ret = clean_log_buffer(trans, path->nodes[*level]);
2712 				if (ret)
2713 					return ret;
2714 			}
2715 			free_extent_buffer(path->nodes[*level]);
2716 			path->nodes[*level] = NULL;
2717 			*level = i + 1;
2718 		}
2719 	}
2720 	return 1;
2721 }
2722 
2723 /*
2724  * drop the reference count on the tree rooted at 'snap'.  This traverses
2725  * the tree freeing any blocks that have a ref count of zero after being
2726  * decremented.
2727  */
2728 static int walk_log_tree(struct btrfs_trans_handle *trans,
2729 			 struct btrfs_root *log, struct walk_control *wc)
2730 {
2731 	int ret = 0;
2732 	int wret;
2733 	int level;
2734 	struct btrfs_path *path;
2735 	int orig_level;
2736 
2737 	path = btrfs_alloc_path();
2738 	if (!path)
2739 		return -ENOMEM;
2740 
2741 	level = btrfs_header_level(log->node);
2742 	orig_level = level;
2743 	path->nodes[level] = log->node;
2744 	atomic_inc(&log->node->refs);
2745 	path->slots[level] = 0;
2746 
2747 	while (1) {
2748 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2749 		if (wret > 0)
2750 			break;
2751 		if (wret < 0) {
2752 			ret = wret;
2753 			goto out;
2754 		}
2755 
2756 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2757 		if (wret > 0)
2758 			break;
2759 		if (wret < 0) {
2760 			ret = wret;
2761 			goto out;
2762 		}
2763 	}
2764 
2765 	/* was the root node processed? if not, catch it here */
2766 	if (path->nodes[orig_level]) {
2767 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2768 			 btrfs_header_generation(path->nodes[orig_level]),
2769 			 orig_level);
2770 		if (ret)
2771 			goto out;
2772 		if (wc->free)
2773 			ret = clean_log_buffer(trans, path->nodes[orig_level]);
2774 	}
2775 
2776 out:
2777 	btrfs_free_path(path);
2778 	return ret;
2779 }
2780 
2781 /*
2782  * helper function to update the item for a given subvolumes log root
2783  * in the tree of log roots
2784  */
2785 static int update_log_root(struct btrfs_trans_handle *trans,
2786 			   struct btrfs_root *log,
2787 			   struct btrfs_root_item *root_item)
2788 {
2789 	struct btrfs_fs_info *fs_info = log->fs_info;
2790 	int ret;
2791 
2792 	if (log->log_transid == 1) {
2793 		/* insert root item on the first sync */
2794 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2795 				&log->root_key, root_item);
2796 	} else {
2797 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2798 				&log->root_key, root_item);
2799 	}
2800 	return ret;
2801 }
2802 
2803 static void wait_log_commit(struct btrfs_root *root, int transid)
2804 {
2805 	DEFINE_WAIT(wait);
2806 	int index = transid % 2;
2807 
2808 	/*
2809 	 * we only allow two pending log transactions at a time,
2810 	 * so we know that if ours is more than 2 older than the
2811 	 * current transaction, we're done
2812 	 */
2813 	for (;;) {
2814 		prepare_to_wait(&root->log_commit_wait[index],
2815 				&wait, TASK_UNINTERRUPTIBLE);
2816 
2817 		if (!(root->log_transid_committed < transid &&
2818 		      atomic_read(&root->log_commit[index])))
2819 			break;
2820 
2821 		mutex_unlock(&root->log_mutex);
2822 		schedule();
2823 		mutex_lock(&root->log_mutex);
2824 	}
2825 	finish_wait(&root->log_commit_wait[index], &wait);
2826 }
2827 
2828 static void wait_for_writer(struct btrfs_root *root)
2829 {
2830 	DEFINE_WAIT(wait);
2831 
2832 	for (;;) {
2833 		prepare_to_wait(&root->log_writer_wait, &wait,
2834 				TASK_UNINTERRUPTIBLE);
2835 		if (!atomic_read(&root->log_writers))
2836 			break;
2837 
2838 		mutex_unlock(&root->log_mutex);
2839 		schedule();
2840 		mutex_lock(&root->log_mutex);
2841 	}
2842 	finish_wait(&root->log_writer_wait, &wait);
2843 }
2844 
2845 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2846 					struct btrfs_log_ctx *ctx)
2847 {
2848 	mutex_lock(&root->log_mutex);
2849 	list_del_init(&ctx->list);
2850 	mutex_unlock(&root->log_mutex);
2851 }
2852 
2853 /*
2854  * Invoked in log mutex context, or be sure there is no other task which
2855  * can access the list.
2856  */
2857 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2858 					     int index, int error)
2859 {
2860 	struct btrfs_log_ctx *ctx;
2861 	struct btrfs_log_ctx *safe;
2862 
2863 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2864 		list_del_init(&ctx->list);
2865 		ctx->log_ret = error;
2866 	}
2867 }
2868 
2869 /*
2870  * btrfs_sync_log does sends a given tree log down to the disk and
2871  * updates the super blocks to record it.  When this call is done,
2872  * you know that any inodes previously logged are safely on disk only
2873  * if it returns 0.
2874  *
2875  * Any other return value means you need to call btrfs_commit_transaction.
2876  * Some of the edge cases for fsyncing directories that have had unlinks
2877  * or renames done in the past mean that sometimes the only safe
2878  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2879  * that has happened.
2880  */
2881 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2882 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2883 {
2884 	int index1;
2885 	int index2;
2886 	int mark;
2887 	int ret;
2888 	struct btrfs_fs_info *fs_info = root->fs_info;
2889 	struct btrfs_root *log = root->log_root;
2890 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2891 	struct btrfs_root_item new_root_item;
2892 	int log_transid = 0;
2893 	struct btrfs_log_ctx root_log_ctx;
2894 	struct blk_plug plug;
2895 	u64 log_root_start;
2896 	u64 log_root_level;
2897 
2898 	mutex_lock(&root->log_mutex);
2899 	log_transid = ctx->log_transid;
2900 	if (root->log_transid_committed >= log_transid) {
2901 		mutex_unlock(&root->log_mutex);
2902 		return ctx->log_ret;
2903 	}
2904 
2905 	index1 = log_transid % 2;
2906 	if (atomic_read(&root->log_commit[index1])) {
2907 		wait_log_commit(root, log_transid);
2908 		mutex_unlock(&root->log_mutex);
2909 		return ctx->log_ret;
2910 	}
2911 	ASSERT(log_transid == root->log_transid);
2912 	atomic_set(&root->log_commit[index1], 1);
2913 
2914 	/* wait for previous tree log sync to complete */
2915 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2916 		wait_log_commit(root, log_transid - 1);
2917 
2918 	while (1) {
2919 		int batch = atomic_read(&root->log_batch);
2920 		/* when we're on an ssd, just kick the log commit out */
2921 		if (!btrfs_test_opt(fs_info, SSD) &&
2922 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2923 			mutex_unlock(&root->log_mutex);
2924 			schedule_timeout_uninterruptible(1);
2925 			mutex_lock(&root->log_mutex);
2926 		}
2927 		wait_for_writer(root);
2928 		if (batch == atomic_read(&root->log_batch))
2929 			break;
2930 	}
2931 
2932 	/* bail out if we need to do a full commit */
2933 	if (btrfs_need_log_full_commit(trans)) {
2934 		ret = BTRFS_LOG_FORCE_COMMIT;
2935 		mutex_unlock(&root->log_mutex);
2936 		goto out;
2937 	}
2938 
2939 	if (log_transid % 2 == 0)
2940 		mark = EXTENT_DIRTY;
2941 	else
2942 		mark = EXTENT_NEW;
2943 
2944 	/* we start IO on  all the marked extents here, but we don't actually
2945 	 * wait for them until later.
2946 	 */
2947 	blk_start_plug(&plug);
2948 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2949 	/*
2950 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2951 	 *  commit, writes a dirty extent in this tree-log commit. This
2952 	 *  concurrent write will create a hole writing out the extents,
2953 	 *  and we cannot proceed on a zoned filesystem, requiring
2954 	 *  sequential writing. While we can bail out to a full commit
2955 	 *  here, but we can continue hoping the concurrent writing fills
2956 	 *  the hole.
2957 	 */
2958 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2959 		ret = 0;
2960 	if (ret) {
2961 		blk_finish_plug(&plug);
2962 		btrfs_set_log_full_commit(trans);
2963 		mutex_unlock(&root->log_mutex);
2964 		goto out;
2965 	}
2966 
2967 	/*
2968 	 * We _must_ update under the root->log_mutex in order to make sure we
2969 	 * have a consistent view of the log root we are trying to commit at
2970 	 * this moment.
2971 	 *
2972 	 * We _must_ copy this into a local copy, because we are not holding the
2973 	 * log_root_tree->log_mutex yet.  This is important because when we
2974 	 * commit the log_root_tree we must have a consistent view of the
2975 	 * log_root_tree when we update the super block to point at the
2976 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
2977 	 * with the commit and possibly point at the new block which we may not
2978 	 * have written out.
2979 	 */
2980 	btrfs_set_root_node(&log->root_item, log->node);
2981 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
2982 
2983 	root->log_transid++;
2984 	log->log_transid = root->log_transid;
2985 	root->log_start_pid = 0;
2986 	/*
2987 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2988 	 * in their headers. new modifications of the log will be written to
2989 	 * new positions. so it's safe to allow log writers to go in.
2990 	 */
2991 	mutex_unlock(&root->log_mutex);
2992 
2993 	if (btrfs_is_zoned(fs_info)) {
2994 		mutex_lock(&fs_info->tree_root->log_mutex);
2995 		if (!log_root_tree->node) {
2996 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
2997 			if (ret) {
2998 				mutex_unlock(&fs_info->tree_root->log_mutex);
2999 				blk_finish_plug(&plug);
3000 				goto out;
3001 			}
3002 		}
3003 		mutex_unlock(&fs_info->tree_root->log_mutex);
3004 	}
3005 
3006 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3007 
3008 	mutex_lock(&log_root_tree->log_mutex);
3009 
3010 	index2 = log_root_tree->log_transid % 2;
3011 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3012 	root_log_ctx.log_transid = log_root_tree->log_transid;
3013 
3014 	/*
3015 	 * Now we are safe to update the log_root_tree because we're under the
3016 	 * log_mutex, and we're a current writer so we're holding the commit
3017 	 * open until we drop the log_mutex.
3018 	 */
3019 	ret = update_log_root(trans, log, &new_root_item);
3020 	if (ret) {
3021 		if (!list_empty(&root_log_ctx.list))
3022 			list_del_init(&root_log_ctx.list);
3023 
3024 		blk_finish_plug(&plug);
3025 		btrfs_set_log_full_commit(trans);
3026 		if (ret != -ENOSPC)
3027 			btrfs_err(fs_info,
3028 				  "failed to update log for root %llu ret %d",
3029 				  root->root_key.objectid, ret);
3030 		btrfs_wait_tree_log_extents(log, mark);
3031 		mutex_unlock(&log_root_tree->log_mutex);
3032 		goto out;
3033 	}
3034 
3035 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3036 		blk_finish_plug(&plug);
3037 		list_del_init(&root_log_ctx.list);
3038 		mutex_unlock(&log_root_tree->log_mutex);
3039 		ret = root_log_ctx.log_ret;
3040 		goto out;
3041 	}
3042 
3043 	index2 = root_log_ctx.log_transid % 2;
3044 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3045 		blk_finish_plug(&plug);
3046 		ret = btrfs_wait_tree_log_extents(log, mark);
3047 		wait_log_commit(log_root_tree,
3048 				root_log_ctx.log_transid);
3049 		mutex_unlock(&log_root_tree->log_mutex);
3050 		if (!ret)
3051 			ret = root_log_ctx.log_ret;
3052 		goto out;
3053 	}
3054 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3055 	atomic_set(&log_root_tree->log_commit[index2], 1);
3056 
3057 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3058 		wait_log_commit(log_root_tree,
3059 				root_log_ctx.log_transid - 1);
3060 	}
3061 
3062 	/*
3063 	 * now that we've moved on to the tree of log tree roots,
3064 	 * check the full commit flag again
3065 	 */
3066 	if (btrfs_need_log_full_commit(trans)) {
3067 		blk_finish_plug(&plug);
3068 		btrfs_wait_tree_log_extents(log, mark);
3069 		mutex_unlock(&log_root_tree->log_mutex);
3070 		ret = BTRFS_LOG_FORCE_COMMIT;
3071 		goto out_wake_log_root;
3072 	}
3073 
3074 	ret = btrfs_write_marked_extents(fs_info,
3075 					 &log_root_tree->dirty_log_pages,
3076 					 EXTENT_DIRTY | EXTENT_NEW);
3077 	blk_finish_plug(&plug);
3078 	/*
3079 	 * As described above, -EAGAIN indicates a hole in the extents. We
3080 	 * cannot wait for these write outs since the waiting cause a
3081 	 * deadlock. Bail out to the full commit instead.
3082 	 */
3083 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3084 		btrfs_set_log_full_commit(trans);
3085 		btrfs_wait_tree_log_extents(log, mark);
3086 		mutex_unlock(&log_root_tree->log_mutex);
3087 		goto out_wake_log_root;
3088 	} else if (ret) {
3089 		btrfs_set_log_full_commit(trans);
3090 		mutex_unlock(&log_root_tree->log_mutex);
3091 		goto out_wake_log_root;
3092 	}
3093 	ret = btrfs_wait_tree_log_extents(log, mark);
3094 	if (!ret)
3095 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3096 						  EXTENT_NEW | EXTENT_DIRTY);
3097 	if (ret) {
3098 		btrfs_set_log_full_commit(trans);
3099 		mutex_unlock(&log_root_tree->log_mutex);
3100 		goto out_wake_log_root;
3101 	}
3102 
3103 	log_root_start = log_root_tree->node->start;
3104 	log_root_level = btrfs_header_level(log_root_tree->node);
3105 	log_root_tree->log_transid++;
3106 	mutex_unlock(&log_root_tree->log_mutex);
3107 
3108 	/*
3109 	 * Here we are guaranteed that nobody is going to write the superblock
3110 	 * for the current transaction before us and that neither we do write
3111 	 * our superblock before the previous transaction finishes its commit
3112 	 * and writes its superblock, because:
3113 	 *
3114 	 * 1) We are holding a handle on the current transaction, so no body
3115 	 *    can commit it until we release the handle;
3116 	 *
3117 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3118 	 *    if the previous transaction is still committing, and hasn't yet
3119 	 *    written its superblock, we wait for it to do it, because a
3120 	 *    transaction commit acquires the tree_log_mutex when the commit
3121 	 *    begins and releases it only after writing its superblock.
3122 	 */
3123 	mutex_lock(&fs_info->tree_log_mutex);
3124 
3125 	/*
3126 	 * The previous transaction writeout phase could have failed, and thus
3127 	 * marked the fs in an error state.  We must not commit here, as we
3128 	 * could have updated our generation in the super_for_commit and
3129 	 * writing the super here would result in transid mismatches.  If there
3130 	 * is an error here just bail.
3131 	 */
3132 	if (BTRFS_FS_ERROR(fs_info)) {
3133 		ret = -EIO;
3134 		btrfs_set_log_full_commit(trans);
3135 		btrfs_abort_transaction(trans, ret);
3136 		mutex_unlock(&fs_info->tree_log_mutex);
3137 		goto out_wake_log_root;
3138 	}
3139 
3140 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3141 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3142 	ret = write_all_supers(fs_info, 1);
3143 	mutex_unlock(&fs_info->tree_log_mutex);
3144 	if (ret) {
3145 		btrfs_set_log_full_commit(trans);
3146 		btrfs_abort_transaction(trans, ret);
3147 		goto out_wake_log_root;
3148 	}
3149 
3150 	/*
3151 	 * We know there can only be one task here, since we have not yet set
3152 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3153 	 * log must wait for the previous log transaction to commit if it's
3154 	 * still in progress or wait for the current log transaction commit if
3155 	 * someone else already started it. We use <= and not < because the
3156 	 * first log transaction has an ID of 0.
3157 	 */
3158 	ASSERT(root->last_log_commit <= log_transid);
3159 	root->last_log_commit = log_transid;
3160 
3161 out_wake_log_root:
3162 	mutex_lock(&log_root_tree->log_mutex);
3163 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3164 
3165 	log_root_tree->log_transid_committed++;
3166 	atomic_set(&log_root_tree->log_commit[index2], 0);
3167 	mutex_unlock(&log_root_tree->log_mutex);
3168 
3169 	/*
3170 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3171 	 * all the updates above are seen by the woken threads. It might not be
3172 	 * necessary, but proving that seems to be hard.
3173 	 */
3174 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3175 out:
3176 	mutex_lock(&root->log_mutex);
3177 	btrfs_remove_all_log_ctxs(root, index1, ret);
3178 	root->log_transid_committed++;
3179 	atomic_set(&root->log_commit[index1], 0);
3180 	mutex_unlock(&root->log_mutex);
3181 
3182 	/*
3183 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3184 	 * all the updates above are seen by the woken threads. It might not be
3185 	 * necessary, but proving that seems to be hard.
3186 	 */
3187 	cond_wake_up(&root->log_commit_wait[index1]);
3188 	return ret;
3189 }
3190 
3191 static void free_log_tree(struct btrfs_trans_handle *trans,
3192 			  struct btrfs_root *log)
3193 {
3194 	int ret;
3195 	struct walk_control wc = {
3196 		.free = 1,
3197 		.process_func = process_one_buffer
3198 	};
3199 
3200 	if (log->node) {
3201 		ret = walk_log_tree(trans, log, &wc);
3202 		if (ret) {
3203 			/*
3204 			 * We weren't able to traverse the entire log tree, the
3205 			 * typical scenario is getting an -EIO when reading an
3206 			 * extent buffer of the tree, due to a previous writeback
3207 			 * failure of it.
3208 			 */
3209 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3210 				&log->fs_info->fs_state);
3211 
3212 			/*
3213 			 * Some extent buffers of the log tree may still be dirty
3214 			 * and not yet written back to storage, because we may
3215 			 * have updates to a log tree without syncing a log tree,
3216 			 * such as during rename and link operations. So flush
3217 			 * them out and wait for their writeback to complete, so
3218 			 * that we properly cleanup their state and pages.
3219 			 */
3220 			btrfs_write_marked_extents(log->fs_info,
3221 						   &log->dirty_log_pages,
3222 						   EXTENT_DIRTY | EXTENT_NEW);
3223 			btrfs_wait_tree_log_extents(log,
3224 						    EXTENT_DIRTY | EXTENT_NEW);
3225 
3226 			if (trans)
3227 				btrfs_abort_transaction(trans, ret);
3228 			else
3229 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3230 		}
3231 	}
3232 
3233 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3234 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3235 	extent_io_tree_release(&log->log_csum_range);
3236 
3237 	btrfs_put_root(log);
3238 }
3239 
3240 /*
3241  * free all the extents used by the tree log.  This should be called
3242  * at commit time of the full transaction
3243  */
3244 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3245 {
3246 	if (root->log_root) {
3247 		free_log_tree(trans, root->log_root);
3248 		root->log_root = NULL;
3249 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3250 	}
3251 	return 0;
3252 }
3253 
3254 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3255 			     struct btrfs_fs_info *fs_info)
3256 {
3257 	if (fs_info->log_root_tree) {
3258 		free_log_tree(trans, fs_info->log_root_tree);
3259 		fs_info->log_root_tree = NULL;
3260 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3261 	}
3262 	return 0;
3263 }
3264 
3265 /*
3266  * Check if an inode was logged in the current transaction. This correctly deals
3267  * with the case where the inode was logged but has a logged_trans of 0, which
3268  * happens if the inode is evicted and loaded again, as logged_trans is an in
3269  * memory only field (not persisted).
3270  *
3271  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3272  * and < 0 on error.
3273  */
3274 static int inode_logged(const struct btrfs_trans_handle *trans,
3275 			struct btrfs_inode *inode,
3276 			struct btrfs_path *path_in)
3277 {
3278 	struct btrfs_path *path = path_in;
3279 	struct btrfs_key key;
3280 	int ret;
3281 
3282 	if (inode->logged_trans == trans->transid)
3283 		return 1;
3284 
3285 	/*
3286 	 * If logged_trans is not 0, then we know the inode logged was not logged
3287 	 * in this transaction, so we can return false right away.
3288 	 */
3289 	if (inode->logged_trans > 0)
3290 		return 0;
3291 
3292 	/*
3293 	 * If no log tree was created for this root in this transaction, then
3294 	 * the inode can not have been logged in this transaction. In that case
3295 	 * set logged_trans to anything greater than 0 and less than the current
3296 	 * transaction's ID, to avoid the search below in a future call in case
3297 	 * a log tree gets created after this.
3298 	 */
3299 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3300 		inode->logged_trans = trans->transid - 1;
3301 		return 0;
3302 	}
3303 
3304 	/*
3305 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3306 	 * for sure if the inode was logged before in this transaction by looking
3307 	 * only at logged_trans. We could be pessimistic and assume it was, but
3308 	 * that can lead to unnecessarily logging an inode during rename and link
3309 	 * operations, and then further updating the log in followup rename and
3310 	 * link operations, specially if it's a directory, which adds latency
3311 	 * visible to applications doing a series of rename or link operations.
3312 	 *
3313 	 * A logged_trans of 0 here can mean several things:
3314 	 *
3315 	 * 1) The inode was never logged since the filesystem was mounted, and may
3316 	 *    or may have not been evicted and loaded again;
3317 	 *
3318 	 * 2) The inode was logged in a previous transaction, then evicted and
3319 	 *    then loaded again;
3320 	 *
3321 	 * 3) The inode was logged in the current transaction, then evicted and
3322 	 *    then loaded again.
3323 	 *
3324 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3325 	 * case 3) and return true. So we do a search in the log root for the inode
3326 	 * item.
3327 	 */
3328 	key.objectid = btrfs_ino(inode);
3329 	key.type = BTRFS_INODE_ITEM_KEY;
3330 	key.offset = 0;
3331 
3332 	if (!path) {
3333 		path = btrfs_alloc_path();
3334 		if (!path)
3335 			return -ENOMEM;
3336 	}
3337 
3338 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3339 
3340 	if (path_in)
3341 		btrfs_release_path(path);
3342 	else
3343 		btrfs_free_path(path);
3344 
3345 	/*
3346 	 * Logging an inode always results in logging its inode item. So if we
3347 	 * did not find the item we know the inode was not logged for sure.
3348 	 */
3349 	if (ret < 0) {
3350 		return ret;
3351 	} else if (ret > 0) {
3352 		/*
3353 		 * Set logged_trans to a value greater than 0 and less then the
3354 		 * current transaction to avoid doing the search in future calls.
3355 		 */
3356 		inode->logged_trans = trans->transid - 1;
3357 		return 0;
3358 	}
3359 
3360 	/*
3361 	 * The inode was previously logged and then evicted, set logged_trans to
3362 	 * the current transacion's ID, to avoid future tree searches as long as
3363 	 * the inode is not evicted again.
3364 	 */
3365 	inode->logged_trans = trans->transid;
3366 
3367 	/*
3368 	 * If it's a directory, then we must set last_dir_index_offset to the
3369 	 * maximum possible value, so that the next attempt to log the inode does
3370 	 * not skip checking if dir index keys found in modified subvolume tree
3371 	 * leaves have been logged before, otherwise it would result in attempts
3372 	 * to insert duplicate dir index keys in the log tree. This must be done
3373 	 * because last_dir_index_offset is an in-memory only field, not persisted
3374 	 * in the inode item or any other on-disk structure, so its value is lost
3375 	 * once the inode is evicted.
3376 	 */
3377 	if (S_ISDIR(inode->vfs_inode.i_mode))
3378 		inode->last_dir_index_offset = (u64)-1;
3379 
3380 	return 1;
3381 }
3382 
3383 /*
3384  * Delete a directory entry from the log if it exists.
3385  *
3386  * Returns < 0 on error
3387  *           1 if the entry does not exists
3388  *           0 if the entry existed and was successfully deleted
3389  */
3390 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3391 			     struct btrfs_root *log,
3392 			     struct btrfs_path *path,
3393 			     u64 dir_ino,
3394 			     const struct fscrypt_str *name,
3395 			     u64 index)
3396 {
3397 	struct btrfs_dir_item *di;
3398 
3399 	/*
3400 	 * We only log dir index items of a directory, so we don't need to look
3401 	 * for dir item keys.
3402 	 */
3403 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3404 					 index, name, -1);
3405 	if (IS_ERR(di))
3406 		return PTR_ERR(di);
3407 	else if (!di)
3408 		return 1;
3409 
3410 	/*
3411 	 * We do not need to update the size field of the directory's
3412 	 * inode item because on log replay we update the field to reflect
3413 	 * all existing entries in the directory (see overwrite_item()).
3414 	 */
3415 	return btrfs_delete_one_dir_name(trans, log, path, di);
3416 }
3417 
3418 /*
3419  * If both a file and directory are logged, and unlinks or renames are
3420  * mixed in, we have a few interesting corners:
3421  *
3422  * create file X in dir Y
3423  * link file X to X.link in dir Y
3424  * fsync file X
3425  * unlink file X but leave X.link
3426  * fsync dir Y
3427  *
3428  * After a crash we would expect only X.link to exist.  But file X
3429  * didn't get fsync'd again so the log has back refs for X and X.link.
3430  *
3431  * We solve this by removing directory entries and inode backrefs from the
3432  * log when a file that was logged in the current transaction is
3433  * unlinked.  Any later fsync will include the updated log entries, and
3434  * we'll be able to reconstruct the proper directory items from backrefs.
3435  *
3436  * This optimizations allows us to avoid relogging the entire inode
3437  * or the entire directory.
3438  */
3439 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3440 				  struct btrfs_root *root,
3441 				  const struct fscrypt_str *name,
3442 				  struct btrfs_inode *dir, u64 index)
3443 {
3444 	struct btrfs_path *path;
3445 	int ret;
3446 
3447 	ret = inode_logged(trans, dir, NULL);
3448 	if (ret == 0)
3449 		return;
3450 	else if (ret < 0) {
3451 		btrfs_set_log_full_commit(trans);
3452 		return;
3453 	}
3454 
3455 	ret = join_running_log_trans(root);
3456 	if (ret)
3457 		return;
3458 
3459 	mutex_lock(&dir->log_mutex);
3460 
3461 	path = btrfs_alloc_path();
3462 	if (!path) {
3463 		ret = -ENOMEM;
3464 		goto out_unlock;
3465 	}
3466 
3467 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3468 				name, index);
3469 	btrfs_free_path(path);
3470 out_unlock:
3471 	mutex_unlock(&dir->log_mutex);
3472 	if (ret < 0)
3473 		btrfs_set_log_full_commit(trans);
3474 	btrfs_end_log_trans(root);
3475 }
3476 
3477 /* see comments for btrfs_del_dir_entries_in_log */
3478 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3479 				struct btrfs_root *root,
3480 				const struct fscrypt_str *name,
3481 				struct btrfs_inode *inode, u64 dirid)
3482 {
3483 	struct btrfs_root *log;
3484 	u64 index;
3485 	int ret;
3486 
3487 	ret = inode_logged(trans, inode, NULL);
3488 	if (ret == 0)
3489 		return;
3490 	else if (ret < 0) {
3491 		btrfs_set_log_full_commit(trans);
3492 		return;
3493 	}
3494 
3495 	ret = join_running_log_trans(root);
3496 	if (ret)
3497 		return;
3498 	log = root->log_root;
3499 	mutex_lock(&inode->log_mutex);
3500 
3501 	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3502 				  dirid, &index);
3503 	mutex_unlock(&inode->log_mutex);
3504 	if (ret < 0 && ret != -ENOENT)
3505 		btrfs_set_log_full_commit(trans);
3506 	btrfs_end_log_trans(root);
3507 }
3508 
3509 /*
3510  * creates a range item in the log for 'dirid'.  first_offset and
3511  * last_offset tell us which parts of the key space the log should
3512  * be considered authoritative for.
3513  */
3514 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3515 				       struct btrfs_root *log,
3516 				       struct btrfs_path *path,
3517 				       u64 dirid,
3518 				       u64 first_offset, u64 last_offset)
3519 {
3520 	int ret;
3521 	struct btrfs_key key;
3522 	struct btrfs_dir_log_item *item;
3523 
3524 	key.objectid = dirid;
3525 	key.offset = first_offset;
3526 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3527 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3528 	/*
3529 	 * -EEXIST is fine and can happen sporadically when we are logging a
3530 	 * directory and have concurrent insertions in the subvolume's tree for
3531 	 * items from other inodes and that result in pushing off some dir items
3532 	 * from one leaf to another in order to accommodate for the new items.
3533 	 * This results in logging the same dir index range key.
3534 	 */
3535 	if (ret && ret != -EEXIST)
3536 		return ret;
3537 
3538 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3539 			      struct btrfs_dir_log_item);
3540 	if (ret == -EEXIST) {
3541 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3542 
3543 		/*
3544 		 * btrfs_del_dir_entries_in_log() might have been called during
3545 		 * an unlink between the initial insertion of this key and the
3546 		 * current update, or we might be logging a single entry deletion
3547 		 * during a rename, so set the new last_offset to the max value.
3548 		 */
3549 		last_offset = max(last_offset, curr_end);
3550 	}
3551 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3552 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3553 	btrfs_release_path(path);
3554 	return 0;
3555 }
3556 
3557 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3558 				 struct btrfs_inode *inode,
3559 				 struct extent_buffer *src,
3560 				 struct btrfs_path *dst_path,
3561 				 int start_slot,
3562 				 int count)
3563 {
3564 	struct btrfs_root *log = inode->root->log_root;
3565 	char *ins_data = NULL;
3566 	struct btrfs_item_batch batch;
3567 	struct extent_buffer *dst;
3568 	unsigned long src_offset;
3569 	unsigned long dst_offset;
3570 	u64 last_index;
3571 	struct btrfs_key key;
3572 	u32 item_size;
3573 	int ret;
3574 	int i;
3575 
3576 	ASSERT(count > 0);
3577 	batch.nr = count;
3578 
3579 	if (count == 1) {
3580 		btrfs_item_key_to_cpu(src, &key, start_slot);
3581 		item_size = btrfs_item_size(src, start_slot);
3582 		batch.keys = &key;
3583 		batch.data_sizes = &item_size;
3584 		batch.total_data_size = item_size;
3585 	} else {
3586 		struct btrfs_key *ins_keys;
3587 		u32 *ins_sizes;
3588 
3589 		ins_data = kmalloc(count * sizeof(u32) +
3590 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3591 		if (!ins_data)
3592 			return -ENOMEM;
3593 
3594 		ins_sizes = (u32 *)ins_data;
3595 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3596 		batch.keys = ins_keys;
3597 		batch.data_sizes = ins_sizes;
3598 		batch.total_data_size = 0;
3599 
3600 		for (i = 0; i < count; i++) {
3601 			const int slot = start_slot + i;
3602 
3603 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3604 			ins_sizes[i] = btrfs_item_size(src, slot);
3605 			batch.total_data_size += ins_sizes[i];
3606 		}
3607 	}
3608 
3609 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3610 	if (ret)
3611 		goto out;
3612 
3613 	dst = dst_path->nodes[0];
3614 	/*
3615 	 * Copy all the items in bulk, in a single copy operation. Item data is
3616 	 * organized such that it's placed at the end of a leaf and from right
3617 	 * to left. For example, the data for the second item ends at an offset
3618 	 * that matches the offset where the data for the first item starts, the
3619 	 * data for the third item ends at an offset that matches the offset
3620 	 * where the data of the second items starts, and so on.
3621 	 * Therefore our source and destination start offsets for copy match the
3622 	 * offsets of the last items (highest slots).
3623 	 */
3624 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3625 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3626 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3627 	btrfs_release_path(dst_path);
3628 
3629 	last_index = batch.keys[count - 1].offset;
3630 	ASSERT(last_index > inode->last_dir_index_offset);
3631 
3632 	/*
3633 	 * If for some unexpected reason the last item's index is not greater
3634 	 * than the last index we logged, warn and force a transaction commit.
3635 	 */
3636 	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3637 		ret = BTRFS_LOG_FORCE_COMMIT;
3638 	else
3639 		inode->last_dir_index_offset = last_index;
3640 
3641 	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3642 		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3643 out:
3644 	kfree(ins_data);
3645 
3646 	return ret;
3647 }
3648 
3649 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3650 				  struct btrfs_inode *inode,
3651 				  struct btrfs_path *path,
3652 				  struct btrfs_path *dst_path,
3653 				  struct btrfs_log_ctx *ctx,
3654 				  u64 *last_old_dentry_offset)
3655 {
3656 	struct btrfs_root *log = inode->root->log_root;
3657 	struct extent_buffer *src;
3658 	const int nritems = btrfs_header_nritems(path->nodes[0]);
3659 	const u64 ino = btrfs_ino(inode);
3660 	bool last_found = false;
3661 	int batch_start = 0;
3662 	int batch_size = 0;
3663 	int i;
3664 
3665 	/*
3666 	 * We need to clone the leaf, release the read lock on it, and use the
3667 	 * clone before modifying the log tree. See the comment at copy_items()
3668 	 * about why we need to do this.
3669 	 */
3670 	src = btrfs_clone_extent_buffer(path->nodes[0]);
3671 	if (!src)
3672 		return -ENOMEM;
3673 
3674 	i = path->slots[0];
3675 	btrfs_release_path(path);
3676 	path->nodes[0] = src;
3677 	path->slots[0] = i;
3678 
3679 	for (; i < nritems; i++) {
3680 		struct btrfs_dir_item *di;
3681 		struct btrfs_key key;
3682 		int ret;
3683 
3684 		btrfs_item_key_to_cpu(src, &key, i);
3685 
3686 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3687 			last_found = true;
3688 			break;
3689 		}
3690 
3691 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3692 
3693 		/*
3694 		 * Skip ranges of items that consist only of dir item keys created
3695 		 * in past transactions. However if we find a gap, we must log a
3696 		 * dir index range item for that gap, so that index keys in that
3697 		 * gap are deleted during log replay.
3698 		 */
3699 		if (btrfs_dir_transid(src, di) < trans->transid) {
3700 			if (key.offset > *last_old_dentry_offset + 1) {
3701 				ret = insert_dir_log_key(trans, log, dst_path,
3702 						 ino, *last_old_dentry_offset + 1,
3703 						 key.offset - 1);
3704 				if (ret < 0)
3705 					return ret;
3706 			}
3707 
3708 			*last_old_dentry_offset = key.offset;
3709 			continue;
3710 		}
3711 
3712 		/* If we logged this dir index item before, we can skip it. */
3713 		if (key.offset <= inode->last_dir_index_offset)
3714 			continue;
3715 
3716 		/*
3717 		 * We must make sure that when we log a directory entry, the
3718 		 * corresponding inode, after log replay, has a matching link
3719 		 * count. For example:
3720 		 *
3721 		 * touch foo
3722 		 * mkdir mydir
3723 		 * sync
3724 		 * ln foo mydir/bar
3725 		 * xfs_io -c "fsync" mydir
3726 		 * <crash>
3727 		 * <mount fs and log replay>
3728 		 *
3729 		 * Would result in a fsync log that when replayed, our file inode
3730 		 * would have a link count of 1, but we get two directory entries
3731 		 * pointing to the same inode. After removing one of the names,
3732 		 * it would not be possible to remove the other name, which
3733 		 * resulted always in stale file handle errors, and would not be
3734 		 * possible to rmdir the parent directory, since its i_size could
3735 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3736 		 * resulting in -ENOTEMPTY errors.
3737 		 */
3738 		if (!ctx->log_new_dentries) {
3739 			struct btrfs_key di_key;
3740 
3741 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3742 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3743 				ctx->log_new_dentries = true;
3744 		}
3745 
3746 		if (batch_size == 0)
3747 			batch_start = i;
3748 		batch_size++;
3749 	}
3750 
3751 	if (batch_size > 0) {
3752 		int ret;
3753 
3754 		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3755 					    batch_start, batch_size);
3756 		if (ret < 0)
3757 			return ret;
3758 	}
3759 
3760 	return last_found ? 1 : 0;
3761 }
3762 
3763 /*
3764  * log all the items included in the current transaction for a given
3765  * directory.  This also creates the range items in the log tree required
3766  * to replay anything deleted before the fsync
3767  */
3768 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3769 			  struct btrfs_inode *inode,
3770 			  struct btrfs_path *path,
3771 			  struct btrfs_path *dst_path,
3772 			  struct btrfs_log_ctx *ctx,
3773 			  u64 min_offset, u64 *last_offset_ret)
3774 {
3775 	struct btrfs_key min_key;
3776 	struct btrfs_root *root = inode->root;
3777 	struct btrfs_root *log = root->log_root;
3778 	int ret;
3779 	u64 last_old_dentry_offset = min_offset - 1;
3780 	u64 last_offset = (u64)-1;
3781 	u64 ino = btrfs_ino(inode);
3782 
3783 	min_key.objectid = ino;
3784 	min_key.type = BTRFS_DIR_INDEX_KEY;
3785 	min_key.offset = min_offset;
3786 
3787 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3788 
3789 	/*
3790 	 * we didn't find anything from this transaction, see if there
3791 	 * is anything at all
3792 	 */
3793 	if (ret != 0 || min_key.objectid != ino ||
3794 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3795 		min_key.objectid = ino;
3796 		min_key.type = BTRFS_DIR_INDEX_KEY;
3797 		min_key.offset = (u64)-1;
3798 		btrfs_release_path(path);
3799 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3800 		if (ret < 0) {
3801 			btrfs_release_path(path);
3802 			return ret;
3803 		}
3804 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3805 
3806 		/* if ret == 0 there are items for this type,
3807 		 * create a range to tell us the last key of this type.
3808 		 * otherwise, there are no items in this directory after
3809 		 * *min_offset, and we create a range to indicate that.
3810 		 */
3811 		if (ret == 0) {
3812 			struct btrfs_key tmp;
3813 
3814 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3815 					      path->slots[0]);
3816 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3817 				last_old_dentry_offset = tmp.offset;
3818 		} else if (ret > 0) {
3819 			ret = 0;
3820 		}
3821 
3822 		goto done;
3823 	}
3824 
3825 	/* go backward to find any previous key */
3826 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3827 	if (ret == 0) {
3828 		struct btrfs_key tmp;
3829 
3830 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3831 		/*
3832 		 * The dir index key before the first one we found that needs to
3833 		 * be logged might be in a previous leaf, and there might be a
3834 		 * gap between these keys, meaning that we had deletions that
3835 		 * happened. So the key range item we log (key type
3836 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3837 		 * previous key's offset plus 1, so that those deletes are replayed.
3838 		 */
3839 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3840 			last_old_dentry_offset = tmp.offset;
3841 	} else if (ret < 0) {
3842 		goto done;
3843 	}
3844 
3845 	btrfs_release_path(path);
3846 
3847 	/*
3848 	 * Find the first key from this transaction again or the one we were at
3849 	 * in the loop below in case we had to reschedule. We may be logging the
3850 	 * directory without holding its VFS lock, which happen when logging new
3851 	 * dentries (through log_new_dir_dentries()) or in some cases when we
3852 	 * need to log the parent directory of an inode. This means a dir index
3853 	 * key might be deleted from the inode's root, and therefore we may not
3854 	 * find it anymore. If we can't find it, just move to the next key. We
3855 	 * can not bail out and ignore, because if we do that we will simply
3856 	 * not log dir index keys that come after the one that was just deleted
3857 	 * and we can end up logging a dir index range that ends at (u64)-1
3858 	 * (@last_offset is initialized to that), resulting in removing dir
3859 	 * entries we should not remove at log replay time.
3860 	 */
3861 search:
3862 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3863 	if (ret > 0) {
3864 		ret = btrfs_next_item(root, path);
3865 		if (ret > 0) {
3866 			/* There are no more keys in the inode's root. */
3867 			ret = 0;
3868 			goto done;
3869 		}
3870 	}
3871 	if (ret < 0)
3872 		goto done;
3873 
3874 	/*
3875 	 * we have a block from this transaction, log every item in it
3876 	 * from our directory
3877 	 */
3878 	while (1) {
3879 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3880 					     &last_old_dentry_offset);
3881 		if (ret != 0) {
3882 			if (ret > 0)
3883 				ret = 0;
3884 			goto done;
3885 		}
3886 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3887 
3888 		/*
3889 		 * look ahead to the next item and see if it is also
3890 		 * from this directory and from this transaction
3891 		 */
3892 		ret = btrfs_next_leaf(root, path);
3893 		if (ret) {
3894 			if (ret == 1) {
3895 				last_offset = (u64)-1;
3896 				ret = 0;
3897 			}
3898 			goto done;
3899 		}
3900 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3901 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3902 			last_offset = (u64)-1;
3903 			goto done;
3904 		}
3905 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3906 			/*
3907 			 * The next leaf was not changed in the current transaction
3908 			 * and has at least one dir index key.
3909 			 * We check for the next key because there might have been
3910 			 * one or more deletions between the last key we logged and
3911 			 * that next key. So the key range item we log (key type
3912 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3913 			 * offset minus 1, so that those deletes are replayed.
3914 			 */
3915 			last_offset = min_key.offset - 1;
3916 			goto done;
3917 		}
3918 		if (need_resched()) {
3919 			btrfs_release_path(path);
3920 			cond_resched();
3921 			goto search;
3922 		}
3923 	}
3924 done:
3925 	btrfs_release_path(path);
3926 	btrfs_release_path(dst_path);
3927 
3928 	if (ret == 0) {
3929 		*last_offset_ret = last_offset;
3930 		/*
3931 		 * In case the leaf was changed in the current transaction but
3932 		 * all its dir items are from a past transaction, the last item
3933 		 * in the leaf is a dir item and there's no gap between that last
3934 		 * dir item and the first one on the next leaf (which did not
3935 		 * change in the current transaction), then we don't need to log
3936 		 * a range, last_old_dentry_offset is == to last_offset.
3937 		 */
3938 		ASSERT(last_old_dentry_offset <= last_offset);
3939 		if (last_old_dentry_offset < last_offset)
3940 			ret = insert_dir_log_key(trans, log, path, ino,
3941 						 last_old_dentry_offset + 1,
3942 						 last_offset);
3943 	}
3944 
3945 	return ret;
3946 }
3947 
3948 /*
3949  * If the inode was logged before and it was evicted, then its
3950  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3951  * key offset. If that's the case, search for it and update the inode. This
3952  * is to avoid lookups in the log tree every time we try to insert a dir index
3953  * key from a leaf changed in the current transaction, and to allow us to always
3954  * do batch insertions of dir index keys.
3955  */
3956 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3957 					struct btrfs_path *path,
3958 					const struct btrfs_log_ctx *ctx)
3959 {
3960 	const u64 ino = btrfs_ino(inode);
3961 	struct btrfs_key key;
3962 	int ret;
3963 
3964 	lockdep_assert_held(&inode->log_mutex);
3965 
3966 	if (inode->last_dir_index_offset != (u64)-1)
3967 		return 0;
3968 
3969 	if (!ctx->logged_before) {
3970 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3971 		return 0;
3972 	}
3973 
3974 	key.objectid = ino;
3975 	key.type = BTRFS_DIR_INDEX_KEY;
3976 	key.offset = (u64)-1;
3977 
3978 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3979 	/*
3980 	 * An error happened or we actually have an index key with an offset
3981 	 * value of (u64)-1. Bail out, we're done.
3982 	 */
3983 	if (ret <= 0)
3984 		goto out;
3985 
3986 	ret = 0;
3987 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3988 
3989 	/*
3990 	 * No dir index items, bail out and leave last_dir_index_offset with
3991 	 * the value right before the first valid index value.
3992 	 */
3993 	if (path->slots[0] == 0)
3994 		goto out;
3995 
3996 	/*
3997 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
3998 	 * index key, or beyond the last key of the directory that is not an
3999 	 * index key. If we have an index key before, set last_dir_index_offset
4000 	 * to its offset value, otherwise leave it with a value right before the
4001 	 * first valid index value, as it means we have an empty directory.
4002 	 */
4003 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4004 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4005 		inode->last_dir_index_offset = key.offset;
4006 
4007 out:
4008 	btrfs_release_path(path);
4009 
4010 	return ret;
4011 }
4012 
4013 /*
4014  * logging directories is very similar to logging inodes, We find all the items
4015  * from the current transaction and write them to the log.
4016  *
4017  * The recovery code scans the directory in the subvolume, and if it finds a
4018  * key in the range logged that is not present in the log tree, then it means
4019  * that dir entry was unlinked during the transaction.
4020  *
4021  * In order for that scan to work, we must include one key smaller than
4022  * the smallest logged by this transaction and one key larger than the largest
4023  * key logged by this transaction.
4024  */
4025 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4026 			  struct btrfs_inode *inode,
4027 			  struct btrfs_path *path,
4028 			  struct btrfs_path *dst_path,
4029 			  struct btrfs_log_ctx *ctx)
4030 {
4031 	u64 min_key;
4032 	u64 max_key;
4033 	int ret;
4034 
4035 	ret = update_last_dir_index_offset(inode, path, ctx);
4036 	if (ret)
4037 		return ret;
4038 
4039 	min_key = BTRFS_DIR_START_INDEX;
4040 	max_key = 0;
4041 
4042 	while (1) {
4043 		ret = log_dir_items(trans, inode, path, dst_path,
4044 				ctx, min_key, &max_key);
4045 		if (ret)
4046 			return ret;
4047 		if (max_key == (u64)-1)
4048 			break;
4049 		min_key = max_key + 1;
4050 	}
4051 
4052 	return 0;
4053 }
4054 
4055 /*
4056  * a helper function to drop items from the log before we relog an
4057  * inode.  max_key_type indicates the highest item type to remove.
4058  * This cannot be run for file data extents because it does not
4059  * free the extents they point to.
4060  */
4061 static int drop_inode_items(struct btrfs_trans_handle *trans,
4062 				  struct btrfs_root *log,
4063 				  struct btrfs_path *path,
4064 				  struct btrfs_inode *inode,
4065 				  int max_key_type)
4066 {
4067 	int ret;
4068 	struct btrfs_key key;
4069 	struct btrfs_key found_key;
4070 	int start_slot;
4071 
4072 	key.objectid = btrfs_ino(inode);
4073 	key.type = max_key_type;
4074 	key.offset = (u64)-1;
4075 
4076 	while (1) {
4077 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4078 		if (ret < 0) {
4079 			break;
4080 		} else if (ret > 0) {
4081 			if (path->slots[0] == 0)
4082 				break;
4083 			path->slots[0]--;
4084 		}
4085 
4086 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4087 				      path->slots[0]);
4088 
4089 		if (found_key.objectid != key.objectid)
4090 			break;
4091 
4092 		found_key.offset = 0;
4093 		found_key.type = 0;
4094 		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4095 		if (ret < 0)
4096 			break;
4097 
4098 		ret = btrfs_del_items(trans, log, path, start_slot,
4099 				      path->slots[0] - start_slot + 1);
4100 		/*
4101 		 * If start slot isn't 0 then we don't need to re-search, we've
4102 		 * found the last guy with the objectid in this tree.
4103 		 */
4104 		if (ret || start_slot != 0)
4105 			break;
4106 		btrfs_release_path(path);
4107 	}
4108 	btrfs_release_path(path);
4109 	if (ret > 0)
4110 		ret = 0;
4111 	return ret;
4112 }
4113 
4114 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4115 				struct btrfs_root *log_root,
4116 				struct btrfs_inode *inode,
4117 				u64 new_size, u32 min_type)
4118 {
4119 	struct btrfs_truncate_control control = {
4120 		.new_size = new_size,
4121 		.ino = btrfs_ino(inode),
4122 		.min_type = min_type,
4123 		.skip_ref_updates = true,
4124 	};
4125 
4126 	return btrfs_truncate_inode_items(trans, log_root, &control);
4127 }
4128 
4129 static void fill_inode_item(struct btrfs_trans_handle *trans,
4130 			    struct extent_buffer *leaf,
4131 			    struct btrfs_inode_item *item,
4132 			    struct inode *inode, int log_inode_only,
4133 			    u64 logged_isize)
4134 {
4135 	struct btrfs_map_token token;
4136 	u64 flags;
4137 
4138 	btrfs_init_map_token(&token, leaf);
4139 
4140 	if (log_inode_only) {
4141 		/* set the generation to zero so the recover code
4142 		 * can tell the difference between an logging
4143 		 * just to say 'this inode exists' and a logging
4144 		 * to say 'update this inode with these values'
4145 		 */
4146 		btrfs_set_token_inode_generation(&token, item, 0);
4147 		btrfs_set_token_inode_size(&token, item, logged_isize);
4148 	} else {
4149 		btrfs_set_token_inode_generation(&token, item,
4150 						 BTRFS_I(inode)->generation);
4151 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4152 	}
4153 
4154 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4155 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4156 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4157 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4158 
4159 	btrfs_set_token_timespec_sec(&token, &item->atime,
4160 				     inode->i_atime.tv_sec);
4161 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4162 				      inode->i_atime.tv_nsec);
4163 
4164 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4165 				     inode->i_mtime.tv_sec);
4166 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4167 				      inode->i_mtime.tv_nsec);
4168 
4169 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4170 				     inode_get_ctime(inode).tv_sec);
4171 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4172 				      inode_get_ctime(inode).tv_nsec);
4173 
4174 	/*
4175 	 * We do not need to set the nbytes field, in fact during a fast fsync
4176 	 * its value may not even be correct, since a fast fsync does not wait
4177 	 * for ordered extent completion, which is where we update nbytes, it
4178 	 * only waits for writeback to complete. During log replay as we find
4179 	 * file extent items and replay them, we adjust the nbytes field of the
4180 	 * inode item in subvolume tree as needed (see overwrite_item()).
4181 	 */
4182 
4183 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4184 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4185 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4186 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4187 					  BTRFS_I(inode)->ro_flags);
4188 	btrfs_set_token_inode_flags(&token, item, flags);
4189 	btrfs_set_token_inode_block_group(&token, item, 0);
4190 }
4191 
4192 static int log_inode_item(struct btrfs_trans_handle *trans,
4193 			  struct btrfs_root *log, struct btrfs_path *path,
4194 			  struct btrfs_inode *inode, bool inode_item_dropped)
4195 {
4196 	struct btrfs_inode_item *inode_item;
4197 	int ret;
4198 
4199 	/*
4200 	 * If we are doing a fast fsync and the inode was logged before in the
4201 	 * current transaction, then we know the inode was previously logged and
4202 	 * it exists in the log tree. For performance reasons, in this case use
4203 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4204 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4205 	 * contention in case there are concurrent fsyncs for other inodes of the
4206 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4207 	 * already exists can also result in unnecessarily splitting a leaf.
4208 	 */
4209 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4210 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4211 		ASSERT(ret <= 0);
4212 		if (ret > 0)
4213 			ret = -ENOENT;
4214 	} else {
4215 		/*
4216 		 * This means it is the first fsync in the current transaction,
4217 		 * so the inode item is not in the log and we need to insert it.
4218 		 * We can never get -EEXIST because we are only called for a fast
4219 		 * fsync and in case an inode eviction happens after the inode was
4220 		 * logged before in the current transaction, when we load again
4221 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4222 		 * flags and set ->logged_trans to 0.
4223 		 */
4224 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4225 					      sizeof(*inode_item));
4226 		ASSERT(ret != -EEXIST);
4227 	}
4228 	if (ret)
4229 		return ret;
4230 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4231 				    struct btrfs_inode_item);
4232 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4233 			0, 0);
4234 	btrfs_release_path(path);
4235 	return 0;
4236 }
4237 
4238 static int log_csums(struct btrfs_trans_handle *trans,
4239 		     struct btrfs_inode *inode,
4240 		     struct btrfs_root *log_root,
4241 		     struct btrfs_ordered_sum *sums)
4242 {
4243 	const u64 lock_end = sums->logical + sums->len - 1;
4244 	struct extent_state *cached_state = NULL;
4245 	int ret;
4246 
4247 	/*
4248 	 * If this inode was not used for reflink operations in the current
4249 	 * transaction with new extents, then do the fast path, no need to
4250 	 * worry about logging checksum items with overlapping ranges.
4251 	 */
4252 	if (inode->last_reflink_trans < trans->transid)
4253 		return btrfs_csum_file_blocks(trans, log_root, sums);
4254 
4255 	/*
4256 	 * Serialize logging for checksums. This is to avoid racing with the
4257 	 * same checksum being logged by another task that is logging another
4258 	 * file which happens to refer to the same extent as well. Such races
4259 	 * can leave checksum items in the log with overlapping ranges.
4260 	 */
4261 	ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4262 			  &cached_state);
4263 	if (ret)
4264 		return ret;
4265 	/*
4266 	 * Due to extent cloning, we might have logged a csum item that covers a
4267 	 * subrange of a cloned extent, and later we can end up logging a csum
4268 	 * item for a larger subrange of the same extent or the entire range.
4269 	 * This would leave csum items in the log tree that cover the same range
4270 	 * and break the searches for checksums in the log tree, resulting in
4271 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4272 	 * trim and adjust) any existing csum items in the log for this range.
4273 	 */
4274 	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4275 	if (!ret)
4276 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4277 
4278 	unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4279 		      &cached_state);
4280 
4281 	return ret;
4282 }
4283 
4284 static noinline int copy_items(struct btrfs_trans_handle *trans,
4285 			       struct btrfs_inode *inode,
4286 			       struct btrfs_path *dst_path,
4287 			       struct btrfs_path *src_path,
4288 			       int start_slot, int nr, int inode_only,
4289 			       u64 logged_isize)
4290 {
4291 	struct btrfs_root *log = inode->root->log_root;
4292 	struct btrfs_file_extent_item *extent;
4293 	struct extent_buffer *src;
4294 	int ret = 0;
4295 	struct btrfs_key *ins_keys;
4296 	u32 *ins_sizes;
4297 	struct btrfs_item_batch batch;
4298 	char *ins_data;
4299 	int i;
4300 	int dst_index;
4301 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4302 	const u64 i_size = i_size_read(&inode->vfs_inode);
4303 
4304 	/*
4305 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4306 	 * use the clone. This is because otherwise we would be changing the log
4307 	 * tree, to insert items from the subvolume tree or insert csum items,
4308 	 * while holding a read lock on a leaf from the subvolume tree, which
4309 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4310 	 *
4311 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4312 	 *    holding a write lock on a parent extent buffer from the log tree.
4313 	 *    Allocating the pages for an extent buffer, or the extent buffer
4314 	 *    struct, can trigger inode eviction and finally the inode eviction
4315 	 *    will trigger a release/remove of a delayed node, which requires
4316 	 *    taking the delayed node's mutex;
4317 	 *
4318 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4319 	 *    reclaim thread and make us wait for it to release enough space and
4320 	 *    unblock our reservation ticket. The reclaim thread can start
4321 	 *    flushing delayed items, and that in turn results in the need to
4322 	 *    lock delayed node mutexes and in the need to write lock extent
4323 	 *    buffers of a subvolume tree - all this while holding a write lock
4324 	 *    on the parent extent buffer in the log tree.
4325 	 *
4326 	 * So one task in scenario 1) running in parallel with another task in
4327 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4328 	 * node mutex while having a read lock on a leaf from the subvolume,
4329 	 * while the other is holding the delayed node's mutex and wants to
4330 	 * write lock the same subvolume leaf for flushing delayed items.
4331 	 */
4332 	src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4333 	if (!src)
4334 		return -ENOMEM;
4335 
4336 	i = src_path->slots[0];
4337 	btrfs_release_path(src_path);
4338 	src_path->nodes[0] = src;
4339 	src_path->slots[0] = i;
4340 
4341 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4342 			   nr * sizeof(u32), GFP_NOFS);
4343 	if (!ins_data)
4344 		return -ENOMEM;
4345 
4346 	ins_sizes = (u32 *)ins_data;
4347 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4348 	batch.keys = ins_keys;
4349 	batch.data_sizes = ins_sizes;
4350 	batch.total_data_size = 0;
4351 	batch.nr = 0;
4352 
4353 	dst_index = 0;
4354 	for (i = 0; i < nr; i++) {
4355 		const int src_slot = start_slot + i;
4356 		struct btrfs_root *csum_root;
4357 		struct btrfs_ordered_sum *sums;
4358 		struct btrfs_ordered_sum *sums_next;
4359 		LIST_HEAD(ordered_sums);
4360 		u64 disk_bytenr;
4361 		u64 disk_num_bytes;
4362 		u64 extent_offset;
4363 		u64 extent_num_bytes;
4364 		bool is_old_extent;
4365 
4366 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4367 
4368 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4369 			goto add_to_batch;
4370 
4371 		extent = btrfs_item_ptr(src, src_slot,
4372 					struct btrfs_file_extent_item);
4373 
4374 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4375 				 trans->transid);
4376 
4377 		/*
4378 		 * Don't copy extents from past generations. That would make us
4379 		 * log a lot more metadata for common cases like doing only a
4380 		 * few random writes into a file and then fsync it for the first
4381 		 * time or after the full sync flag is set on the inode. We can
4382 		 * get leaves full of extent items, most of which are from past
4383 		 * generations, so we can skip them - as long as the inode has
4384 		 * not been the target of a reflink operation in this transaction,
4385 		 * as in that case it might have had file extent items with old
4386 		 * generations copied into it. We also must always log prealloc
4387 		 * extents that start at or beyond eof, otherwise we would lose
4388 		 * them on log replay.
4389 		 */
4390 		if (is_old_extent &&
4391 		    ins_keys[dst_index].offset < i_size &&
4392 		    inode->last_reflink_trans < trans->transid)
4393 			continue;
4394 
4395 		if (skip_csum)
4396 			goto add_to_batch;
4397 
4398 		/* Only regular extents have checksums. */
4399 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4400 			goto add_to_batch;
4401 
4402 		/*
4403 		 * If it's an extent created in a past transaction, then its
4404 		 * checksums are already accessible from the committed csum tree,
4405 		 * no need to log them.
4406 		 */
4407 		if (is_old_extent)
4408 			goto add_to_batch;
4409 
4410 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4411 		/* If it's an explicit hole, there are no checksums. */
4412 		if (disk_bytenr == 0)
4413 			goto add_to_batch;
4414 
4415 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4416 
4417 		if (btrfs_file_extent_compression(src, extent)) {
4418 			extent_offset = 0;
4419 			extent_num_bytes = disk_num_bytes;
4420 		} else {
4421 			extent_offset = btrfs_file_extent_offset(src, extent);
4422 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4423 		}
4424 
4425 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4426 		disk_bytenr += extent_offset;
4427 		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4428 					      disk_bytenr + extent_num_bytes - 1,
4429 					      &ordered_sums, 0, false);
4430 		if (ret)
4431 			goto out;
4432 
4433 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4434 			if (!ret)
4435 				ret = log_csums(trans, inode, log, sums);
4436 			list_del(&sums->list);
4437 			kfree(sums);
4438 		}
4439 		if (ret)
4440 			goto out;
4441 
4442 add_to_batch:
4443 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4444 		batch.total_data_size += ins_sizes[dst_index];
4445 		batch.nr++;
4446 		dst_index++;
4447 	}
4448 
4449 	/*
4450 	 * We have a leaf full of old extent items that don't need to be logged,
4451 	 * so we don't need to do anything.
4452 	 */
4453 	if (batch.nr == 0)
4454 		goto out;
4455 
4456 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4457 	if (ret)
4458 		goto out;
4459 
4460 	dst_index = 0;
4461 	for (i = 0; i < nr; i++) {
4462 		const int src_slot = start_slot + i;
4463 		const int dst_slot = dst_path->slots[0] + dst_index;
4464 		struct btrfs_key key;
4465 		unsigned long src_offset;
4466 		unsigned long dst_offset;
4467 
4468 		/*
4469 		 * We're done, all the remaining items in the source leaf
4470 		 * correspond to old file extent items.
4471 		 */
4472 		if (dst_index >= batch.nr)
4473 			break;
4474 
4475 		btrfs_item_key_to_cpu(src, &key, src_slot);
4476 
4477 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4478 			goto copy_item;
4479 
4480 		extent = btrfs_item_ptr(src, src_slot,
4481 					struct btrfs_file_extent_item);
4482 
4483 		/* See the comment in the previous loop, same logic. */
4484 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4485 		    key.offset < i_size &&
4486 		    inode->last_reflink_trans < trans->transid)
4487 			continue;
4488 
4489 copy_item:
4490 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4491 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4492 
4493 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4494 			struct btrfs_inode_item *inode_item;
4495 
4496 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4497 						    struct btrfs_inode_item);
4498 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4499 					&inode->vfs_inode,
4500 					inode_only == LOG_INODE_EXISTS,
4501 					logged_isize);
4502 		} else {
4503 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4504 					   src_offset, ins_sizes[dst_index]);
4505 		}
4506 
4507 		dst_index++;
4508 	}
4509 
4510 	btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4511 	btrfs_release_path(dst_path);
4512 out:
4513 	kfree(ins_data);
4514 
4515 	return ret;
4516 }
4517 
4518 static int extent_cmp(void *priv, const struct list_head *a,
4519 		      const struct list_head *b)
4520 {
4521 	const struct extent_map *em1, *em2;
4522 
4523 	em1 = list_entry(a, struct extent_map, list);
4524 	em2 = list_entry(b, struct extent_map, list);
4525 
4526 	if (em1->start < em2->start)
4527 		return -1;
4528 	else if (em1->start > em2->start)
4529 		return 1;
4530 	return 0;
4531 }
4532 
4533 static int log_extent_csums(struct btrfs_trans_handle *trans,
4534 			    struct btrfs_inode *inode,
4535 			    struct btrfs_root *log_root,
4536 			    const struct extent_map *em,
4537 			    struct btrfs_log_ctx *ctx)
4538 {
4539 	struct btrfs_ordered_extent *ordered;
4540 	struct btrfs_root *csum_root;
4541 	u64 csum_offset;
4542 	u64 csum_len;
4543 	u64 mod_start = em->mod_start;
4544 	u64 mod_len = em->mod_len;
4545 	LIST_HEAD(ordered_sums);
4546 	int ret = 0;
4547 
4548 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4549 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4550 	    em->block_start == EXTENT_MAP_HOLE)
4551 		return 0;
4552 
4553 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4554 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4555 		const u64 mod_end = mod_start + mod_len;
4556 		struct btrfs_ordered_sum *sums;
4557 
4558 		if (mod_len == 0)
4559 			break;
4560 
4561 		if (ordered_end <= mod_start)
4562 			continue;
4563 		if (mod_end <= ordered->file_offset)
4564 			break;
4565 
4566 		/*
4567 		 * We are going to copy all the csums on this ordered extent, so
4568 		 * go ahead and adjust mod_start and mod_len in case this ordered
4569 		 * extent has already been logged.
4570 		 */
4571 		if (ordered->file_offset > mod_start) {
4572 			if (ordered_end >= mod_end)
4573 				mod_len = ordered->file_offset - mod_start;
4574 			/*
4575 			 * If we have this case
4576 			 *
4577 			 * |--------- logged extent ---------|
4578 			 *       |----- ordered extent ----|
4579 			 *
4580 			 * Just don't mess with mod_start and mod_len, we'll
4581 			 * just end up logging more csums than we need and it
4582 			 * will be ok.
4583 			 */
4584 		} else {
4585 			if (ordered_end < mod_end) {
4586 				mod_len = mod_end - ordered_end;
4587 				mod_start = ordered_end;
4588 			} else {
4589 				mod_len = 0;
4590 			}
4591 		}
4592 
4593 		/*
4594 		 * To keep us from looping for the above case of an ordered
4595 		 * extent that falls inside of the logged extent.
4596 		 */
4597 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4598 			continue;
4599 
4600 		list_for_each_entry(sums, &ordered->list, list) {
4601 			ret = log_csums(trans, inode, log_root, sums);
4602 			if (ret)
4603 				return ret;
4604 		}
4605 	}
4606 
4607 	/* We're done, found all csums in the ordered extents. */
4608 	if (mod_len == 0)
4609 		return 0;
4610 
4611 	/* If we're compressed we have to save the entire range of csums. */
4612 	if (em->compress_type) {
4613 		csum_offset = 0;
4614 		csum_len = max(em->block_len, em->orig_block_len);
4615 	} else {
4616 		csum_offset = mod_start - em->start;
4617 		csum_len = mod_len;
4618 	}
4619 
4620 	/* block start is already adjusted for the file extent offset. */
4621 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4622 	ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4623 				      em->block_start + csum_offset +
4624 				      csum_len - 1, &ordered_sums, 0, false);
4625 	if (ret)
4626 		return ret;
4627 
4628 	while (!list_empty(&ordered_sums)) {
4629 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4630 						   struct btrfs_ordered_sum,
4631 						   list);
4632 		if (!ret)
4633 			ret = log_csums(trans, inode, log_root, sums);
4634 		list_del(&sums->list);
4635 		kfree(sums);
4636 	}
4637 
4638 	return ret;
4639 }
4640 
4641 static int log_one_extent(struct btrfs_trans_handle *trans,
4642 			  struct btrfs_inode *inode,
4643 			  const struct extent_map *em,
4644 			  struct btrfs_path *path,
4645 			  struct btrfs_log_ctx *ctx)
4646 {
4647 	struct btrfs_drop_extents_args drop_args = { 0 };
4648 	struct btrfs_root *log = inode->root->log_root;
4649 	struct btrfs_file_extent_item fi = { 0 };
4650 	struct extent_buffer *leaf;
4651 	struct btrfs_key key;
4652 	u64 extent_offset = em->start - em->orig_start;
4653 	u64 block_len;
4654 	int ret;
4655 
4656 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4657 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4658 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4659 	else
4660 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4661 
4662 	block_len = max(em->block_len, em->orig_block_len);
4663 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4664 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4665 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4666 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4667 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4668 							extent_offset);
4669 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4670 	}
4671 
4672 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4673 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4674 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4675 	btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4676 
4677 	ret = log_extent_csums(trans, inode, log, em, ctx);
4678 	if (ret)
4679 		return ret;
4680 
4681 	/*
4682 	 * If this is the first time we are logging the inode in the current
4683 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4684 	 * because it does a deletion search, which always acquires write locks
4685 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4686 	 * but also adds significant contention in a log tree, since log trees
4687 	 * are small, with a root at level 2 or 3 at most, due to their short
4688 	 * life span.
4689 	 */
4690 	if (ctx->logged_before) {
4691 		drop_args.path = path;
4692 		drop_args.start = em->start;
4693 		drop_args.end = em->start + em->len;
4694 		drop_args.replace_extent = true;
4695 		drop_args.extent_item_size = sizeof(fi);
4696 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4697 		if (ret)
4698 			return ret;
4699 	}
4700 
4701 	if (!drop_args.extent_inserted) {
4702 		key.objectid = btrfs_ino(inode);
4703 		key.type = BTRFS_EXTENT_DATA_KEY;
4704 		key.offset = em->start;
4705 
4706 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4707 					      sizeof(fi));
4708 		if (ret)
4709 			return ret;
4710 	}
4711 	leaf = path->nodes[0];
4712 	write_extent_buffer(leaf, &fi,
4713 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4714 			    sizeof(fi));
4715 	btrfs_mark_buffer_dirty(trans, leaf);
4716 
4717 	btrfs_release_path(path);
4718 
4719 	return ret;
4720 }
4721 
4722 /*
4723  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4724  * lose them after doing a full/fast fsync and replaying the log. We scan the
4725  * subvolume's root instead of iterating the inode's extent map tree because
4726  * otherwise we can log incorrect extent items based on extent map conversion.
4727  * That can happen due to the fact that extent maps are merged when they
4728  * are not in the extent map tree's list of modified extents.
4729  */
4730 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4731 				      struct btrfs_inode *inode,
4732 				      struct btrfs_path *path)
4733 {
4734 	struct btrfs_root *root = inode->root;
4735 	struct btrfs_key key;
4736 	const u64 i_size = i_size_read(&inode->vfs_inode);
4737 	const u64 ino = btrfs_ino(inode);
4738 	struct btrfs_path *dst_path = NULL;
4739 	bool dropped_extents = false;
4740 	u64 truncate_offset = i_size;
4741 	struct extent_buffer *leaf;
4742 	int slot;
4743 	int ins_nr = 0;
4744 	int start_slot = 0;
4745 	int ret;
4746 
4747 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4748 		return 0;
4749 
4750 	key.objectid = ino;
4751 	key.type = BTRFS_EXTENT_DATA_KEY;
4752 	key.offset = i_size;
4753 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4754 	if (ret < 0)
4755 		goto out;
4756 
4757 	/*
4758 	 * We must check if there is a prealloc extent that starts before the
4759 	 * i_size and crosses the i_size boundary. This is to ensure later we
4760 	 * truncate down to the end of that extent and not to the i_size, as
4761 	 * otherwise we end up losing part of the prealloc extent after a log
4762 	 * replay and with an implicit hole if there is another prealloc extent
4763 	 * that starts at an offset beyond i_size.
4764 	 */
4765 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4766 	if (ret < 0)
4767 		goto out;
4768 
4769 	if (ret == 0) {
4770 		struct btrfs_file_extent_item *ei;
4771 
4772 		leaf = path->nodes[0];
4773 		slot = path->slots[0];
4774 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4775 
4776 		if (btrfs_file_extent_type(leaf, ei) ==
4777 		    BTRFS_FILE_EXTENT_PREALLOC) {
4778 			u64 extent_end;
4779 
4780 			btrfs_item_key_to_cpu(leaf, &key, slot);
4781 			extent_end = key.offset +
4782 				btrfs_file_extent_num_bytes(leaf, ei);
4783 
4784 			if (extent_end > i_size)
4785 				truncate_offset = extent_end;
4786 		}
4787 	} else {
4788 		ret = 0;
4789 	}
4790 
4791 	while (true) {
4792 		leaf = path->nodes[0];
4793 		slot = path->slots[0];
4794 
4795 		if (slot >= btrfs_header_nritems(leaf)) {
4796 			if (ins_nr > 0) {
4797 				ret = copy_items(trans, inode, dst_path, path,
4798 						 start_slot, ins_nr, 1, 0);
4799 				if (ret < 0)
4800 					goto out;
4801 				ins_nr = 0;
4802 			}
4803 			ret = btrfs_next_leaf(root, path);
4804 			if (ret < 0)
4805 				goto out;
4806 			if (ret > 0) {
4807 				ret = 0;
4808 				break;
4809 			}
4810 			continue;
4811 		}
4812 
4813 		btrfs_item_key_to_cpu(leaf, &key, slot);
4814 		if (key.objectid > ino)
4815 			break;
4816 		if (WARN_ON_ONCE(key.objectid < ino) ||
4817 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4818 		    key.offset < i_size) {
4819 			path->slots[0]++;
4820 			continue;
4821 		}
4822 		/*
4823 		 * Avoid overlapping items in the log tree. The first time we
4824 		 * get here, get rid of everything from a past fsync. After
4825 		 * that, if the current extent starts before the end of the last
4826 		 * extent we copied, truncate the last one. This can happen if
4827 		 * an ordered extent completion modifies the subvolume tree
4828 		 * while btrfs_next_leaf() has the tree unlocked.
4829 		 */
4830 		if (!dropped_extents || key.offset < truncate_offset) {
4831 			ret = truncate_inode_items(trans, root->log_root, inode,
4832 						   min(key.offset, truncate_offset),
4833 						   BTRFS_EXTENT_DATA_KEY);
4834 			if (ret)
4835 				goto out;
4836 			dropped_extents = true;
4837 		}
4838 		truncate_offset = btrfs_file_extent_end(path);
4839 		if (ins_nr == 0)
4840 			start_slot = slot;
4841 		ins_nr++;
4842 		path->slots[0]++;
4843 		if (!dst_path) {
4844 			dst_path = btrfs_alloc_path();
4845 			if (!dst_path) {
4846 				ret = -ENOMEM;
4847 				goto out;
4848 			}
4849 		}
4850 	}
4851 	if (ins_nr > 0)
4852 		ret = copy_items(trans, inode, dst_path, path,
4853 				 start_slot, ins_nr, 1, 0);
4854 out:
4855 	btrfs_release_path(path);
4856 	btrfs_free_path(dst_path);
4857 	return ret;
4858 }
4859 
4860 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4861 				     struct btrfs_inode *inode,
4862 				     struct btrfs_path *path,
4863 				     struct btrfs_log_ctx *ctx)
4864 {
4865 	struct btrfs_ordered_extent *ordered;
4866 	struct btrfs_ordered_extent *tmp;
4867 	struct extent_map *em, *n;
4868 	LIST_HEAD(extents);
4869 	struct extent_map_tree *tree = &inode->extent_tree;
4870 	int ret = 0;
4871 	int num = 0;
4872 
4873 	write_lock(&tree->lock);
4874 
4875 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4876 		list_del_init(&em->list);
4877 		/*
4878 		 * Just an arbitrary number, this can be really CPU intensive
4879 		 * once we start getting a lot of extents, and really once we
4880 		 * have a bunch of extents we just want to commit since it will
4881 		 * be faster.
4882 		 */
4883 		if (++num > 32768) {
4884 			list_del_init(&tree->modified_extents);
4885 			ret = -EFBIG;
4886 			goto process;
4887 		}
4888 
4889 		if (em->generation < trans->transid)
4890 			continue;
4891 
4892 		/* We log prealloc extents beyond eof later. */
4893 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4894 		    em->start >= i_size_read(&inode->vfs_inode))
4895 			continue;
4896 
4897 		/* Need a ref to keep it from getting evicted from cache */
4898 		refcount_inc(&em->refs);
4899 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4900 		list_add_tail(&em->list, &extents);
4901 		num++;
4902 	}
4903 
4904 	list_sort(NULL, &extents, extent_cmp);
4905 process:
4906 	while (!list_empty(&extents)) {
4907 		em = list_entry(extents.next, struct extent_map, list);
4908 
4909 		list_del_init(&em->list);
4910 
4911 		/*
4912 		 * If we had an error we just need to delete everybody from our
4913 		 * private list.
4914 		 */
4915 		if (ret) {
4916 			clear_em_logging(tree, em);
4917 			free_extent_map(em);
4918 			continue;
4919 		}
4920 
4921 		write_unlock(&tree->lock);
4922 
4923 		ret = log_one_extent(trans, inode, em, path, ctx);
4924 		write_lock(&tree->lock);
4925 		clear_em_logging(tree, em);
4926 		free_extent_map(em);
4927 	}
4928 	WARN_ON(!list_empty(&extents));
4929 	write_unlock(&tree->lock);
4930 
4931 	if (!ret)
4932 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4933 	if (ret)
4934 		return ret;
4935 
4936 	/*
4937 	 * We have logged all extents successfully, now make sure the commit of
4938 	 * the current transaction waits for the ordered extents to complete
4939 	 * before it commits and wipes out the log trees, otherwise we would
4940 	 * lose data if an ordered extents completes after the transaction
4941 	 * commits and a power failure happens after the transaction commit.
4942 	 */
4943 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4944 		list_del_init(&ordered->log_list);
4945 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4946 
4947 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4948 			spin_lock_irq(&inode->ordered_tree.lock);
4949 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4950 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4951 				atomic_inc(&trans->transaction->pending_ordered);
4952 			}
4953 			spin_unlock_irq(&inode->ordered_tree.lock);
4954 		}
4955 		btrfs_put_ordered_extent(ordered);
4956 	}
4957 
4958 	return 0;
4959 }
4960 
4961 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4962 			     struct btrfs_path *path, u64 *size_ret)
4963 {
4964 	struct btrfs_key key;
4965 	int ret;
4966 
4967 	key.objectid = btrfs_ino(inode);
4968 	key.type = BTRFS_INODE_ITEM_KEY;
4969 	key.offset = 0;
4970 
4971 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4972 	if (ret < 0) {
4973 		return ret;
4974 	} else if (ret > 0) {
4975 		*size_ret = 0;
4976 	} else {
4977 		struct btrfs_inode_item *item;
4978 
4979 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4980 				      struct btrfs_inode_item);
4981 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4982 		/*
4983 		 * If the in-memory inode's i_size is smaller then the inode
4984 		 * size stored in the btree, return the inode's i_size, so
4985 		 * that we get a correct inode size after replaying the log
4986 		 * when before a power failure we had a shrinking truncate
4987 		 * followed by addition of a new name (rename / new hard link).
4988 		 * Otherwise return the inode size from the btree, to avoid
4989 		 * data loss when replaying a log due to previously doing a
4990 		 * write that expands the inode's size and logging a new name
4991 		 * immediately after.
4992 		 */
4993 		if (*size_ret > inode->vfs_inode.i_size)
4994 			*size_ret = inode->vfs_inode.i_size;
4995 	}
4996 
4997 	btrfs_release_path(path);
4998 	return 0;
4999 }
5000 
5001 /*
5002  * At the moment we always log all xattrs. This is to figure out at log replay
5003  * time which xattrs must have their deletion replayed. If a xattr is missing
5004  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5005  * because if a xattr is deleted, the inode is fsynced and a power failure
5006  * happens, causing the log to be replayed the next time the fs is mounted,
5007  * we want the xattr to not exist anymore (same behaviour as other filesystems
5008  * with a journal, ext3/4, xfs, f2fs, etc).
5009  */
5010 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5011 				struct btrfs_inode *inode,
5012 				struct btrfs_path *path,
5013 				struct btrfs_path *dst_path)
5014 {
5015 	struct btrfs_root *root = inode->root;
5016 	int ret;
5017 	struct btrfs_key key;
5018 	const u64 ino = btrfs_ino(inode);
5019 	int ins_nr = 0;
5020 	int start_slot = 0;
5021 	bool found_xattrs = false;
5022 
5023 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5024 		return 0;
5025 
5026 	key.objectid = ino;
5027 	key.type = BTRFS_XATTR_ITEM_KEY;
5028 	key.offset = 0;
5029 
5030 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5031 	if (ret < 0)
5032 		return ret;
5033 
5034 	while (true) {
5035 		int slot = path->slots[0];
5036 		struct extent_buffer *leaf = path->nodes[0];
5037 		int nritems = btrfs_header_nritems(leaf);
5038 
5039 		if (slot >= nritems) {
5040 			if (ins_nr > 0) {
5041 				ret = copy_items(trans, inode, dst_path, path,
5042 						 start_slot, ins_nr, 1, 0);
5043 				if (ret < 0)
5044 					return ret;
5045 				ins_nr = 0;
5046 			}
5047 			ret = btrfs_next_leaf(root, path);
5048 			if (ret < 0)
5049 				return ret;
5050 			else if (ret > 0)
5051 				break;
5052 			continue;
5053 		}
5054 
5055 		btrfs_item_key_to_cpu(leaf, &key, slot);
5056 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5057 			break;
5058 
5059 		if (ins_nr == 0)
5060 			start_slot = slot;
5061 		ins_nr++;
5062 		path->slots[0]++;
5063 		found_xattrs = true;
5064 		cond_resched();
5065 	}
5066 	if (ins_nr > 0) {
5067 		ret = copy_items(trans, inode, dst_path, path,
5068 				 start_slot, ins_nr, 1, 0);
5069 		if (ret < 0)
5070 			return ret;
5071 	}
5072 
5073 	if (!found_xattrs)
5074 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5075 
5076 	return 0;
5077 }
5078 
5079 /*
5080  * When using the NO_HOLES feature if we punched a hole that causes the
5081  * deletion of entire leafs or all the extent items of the first leaf (the one
5082  * that contains the inode item and references) we may end up not processing
5083  * any extents, because there are no leafs with a generation matching the
5084  * current transaction that have extent items for our inode. So we need to find
5085  * if any holes exist and then log them. We also need to log holes after any
5086  * truncate operation that changes the inode's size.
5087  */
5088 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5089 			   struct btrfs_inode *inode,
5090 			   struct btrfs_path *path)
5091 {
5092 	struct btrfs_root *root = inode->root;
5093 	struct btrfs_fs_info *fs_info = root->fs_info;
5094 	struct btrfs_key key;
5095 	const u64 ino = btrfs_ino(inode);
5096 	const u64 i_size = i_size_read(&inode->vfs_inode);
5097 	u64 prev_extent_end = 0;
5098 	int ret;
5099 
5100 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5101 		return 0;
5102 
5103 	key.objectid = ino;
5104 	key.type = BTRFS_EXTENT_DATA_KEY;
5105 	key.offset = 0;
5106 
5107 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5108 	if (ret < 0)
5109 		return ret;
5110 
5111 	while (true) {
5112 		struct extent_buffer *leaf = path->nodes[0];
5113 
5114 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5115 			ret = btrfs_next_leaf(root, path);
5116 			if (ret < 0)
5117 				return ret;
5118 			if (ret > 0) {
5119 				ret = 0;
5120 				break;
5121 			}
5122 			leaf = path->nodes[0];
5123 		}
5124 
5125 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5126 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5127 			break;
5128 
5129 		/* We have a hole, log it. */
5130 		if (prev_extent_end < key.offset) {
5131 			const u64 hole_len = key.offset - prev_extent_end;
5132 
5133 			/*
5134 			 * Release the path to avoid deadlocks with other code
5135 			 * paths that search the root while holding locks on
5136 			 * leafs from the log root.
5137 			 */
5138 			btrfs_release_path(path);
5139 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5140 						       ino, prev_extent_end,
5141 						       hole_len);
5142 			if (ret < 0)
5143 				return ret;
5144 
5145 			/*
5146 			 * Search for the same key again in the root. Since it's
5147 			 * an extent item and we are holding the inode lock, the
5148 			 * key must still exist. If it doesn't just emit warning
5149 			 * and return an error to fall back to a transaction
5150 			 * commit.
5151 			 */
5152 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5153 			if (ret < 0)
5154 				return ret;
5155 			if (WARN_ON(ret > 0))
5156 				return -ENOENT;
5157 			leaf = path->nodes[0];
5158 		}
5159 
5160 		prev_extent_end = btrfs_file_extent_end(path);
5161 		path->slots[0]++;
5162 		cond_resched();
5163 	}
5164 
5165 	if (prev_extent_end < i_size) {
5166 		u64 hole_len;
5167 
5168 		btrfs_release_path(path);
5169 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5170 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5171 					       prev_extent_end, hole_len);
5172 		if (ret < 0)
5173 			return ret;
5174 	}
5175 
5176 	return 0;
5177 }
5178 
5179 /*
5180  * When we are logging a new inode X, check if it doesn't have a reference that
5181  * matches the reference from some other inode Y created in a past transaction
5182  * and that was renamed in the current transaction. If we don't do this, then at
5183  * log replay time we can lose inode Y (and all its files if it's a directory):
5184  *
5185  * mkdir /mnt/x
5186  * echo "hello world" > /mnt/x/foobar
5187  * sync
5188  * mv /mnt/x /mnt/y
5189  * mkdir /mnt/x                 # or touch /mnt/x
5190  * xfs_io -c fsync /mnt/x
5191  * <power fail>
5192  * mount fs, trigger log replay
5193  *
5194  * After the log replay procedure, we would lose the first directory and all its
5195  * files (file foobar).
5196  * For the case where inode Y is not a directory we simply end up losing it:
5197  *
5198  * echo "123" > /mnt/foo
5199  * sync
5200  * mv /mnt/foo /mnt/bar
5201  * echo "abc" > /mnt/foo
5202  * xfs_io -c fsync /mnt/foo
5203  * <power fail>
5204  *
5205  * We also need this for cases where a snapshot entry is replaced by some other
5206  * entry (file or directory) otherwise we end up with an unreplayable log due to
5207  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5208  * if it were a regular entry:
5209  *
5210  * mkdir /mnt/x
5211  * btrfs subvolume snapshot /mnt /mnt/x/snap
5212  * btrfs subvolume delete /mnt/x/snap
5213  * rmdir /mnt/x
5214  * mkdir /mnt/x
5215  * fsync /mnt/x or fsync some new file inside it
5216  * <power fail>
5217  *
5218  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5219  * the same transaction.
5220  */
5221 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5222 					 const int slot,
5223 					 const struct btrfs_key *key,
5224 					 struct btrfs_inode *inode,
5225 					 u64 *other_ino, u64 *other_parent)
5226 {
5227 	int ret;
5228 	struct btrfs_path *search_path;
5229 	char *name = NULL;
5230 	u32 name_len = 0;
5231 	u32 item_size = btrfs_item_size(eb, slot);
5232 	u32 cur_offset = 0;
5233 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5234 
5235 	search_path = btrfs_alloc_path();
5236 	if (!search_path)
5237 		return -ENOMEM;
5238 	search_path->search_commit_root = 1;
5239 	search_path->skip_locking = 1;
5240 
5241 	while (cur_offset < item_size) {
5242 		u64 parent;
5243 		u32 this_name_len;
5244 		u32 this_len;
5245 		unsigned long name_ptr;
5246 		struct btrfs_dir_item *di;
5247 		struct fscrypt_str name_str;
5248 
5249 		if (key->type == BTRFS_INODE_REF_KEY) {
5250 			struct btrfs_inode_ref *iref;
5251 
5252 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5253 			parent = key->offset;
5254 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5255 			name_ptr = (unsigned long)(iref + 1);
5256 			this_len = sizeof(*iref) + this_name_len;
5257 		} else {
5258 			struct btrfs_inode_extref *extref;
5259 
5260 			extref = (struct btrfs_inode_extref *)(ptr +
5261 							       cur_offset);
5262 			parent = btrfs_inode_extref_parent(eb, extref);
5263 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5264 			name_ptr = (unsigned long)&extref->name;
5265 			this_len = sizeof(*extref) + this_name_len;
5266 		}
5267 
5268 		if (this_name_len > name_len) {
5269 			char *new_name;
5270 
5271 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5272 			if (!new_name) {
5273 				ret = -ENOMEM;
5274 				goto out;
5275 			}
5276 			name_len = this_name_len;
5277 			name = new_name;
5278 		}
5279 
5280 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5281 
5282 		name_str.name = name;
5283 		name_str.len = this_name_len;
5284 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5285 				parent, &name_str, 0);
5286 		if (di && !IS_ERR(di)) {
5287 			struct btrfs_key di_key;
5288 
5289 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5290 						  di, &di_key);
5291 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5292 				if (di_key.objectid != key->objectid) {
5293 					ret = 1;
5294 					*other_ino = di_key.objectid;
5295 					*other_parent = parent;
5296 				} else {
5297 					ret = 0;
5298 				}
5299 			} else {
5300 				ret = -EAGAIN;
5301 			}
5302 			goto out;
5303 		} else if (IS_ERR(di)) {
5304 			ret = PTR_ERR(di);
5305 			goto out;
5306 		}
5307 		btrfs_release_path(search_path);
5308 
5309 		cur_offset += this_len;
5310 	}
5311 	ret = 0;
5312 out:
5313 	btrfs_free_path(search_path);
5314 	kfree(name);
5315 	return ret;
5316 }
5317 
5318 /*
5319  * Check if we need to log an inode. This is used in contexts where while
5320  * logging an inode we need to log another inode (either that it exists or in
5321  * full mode). This is used instead of btrfs_inode_in_log() because the later
5322  * requires the inode to be in the log and have the log transaction committed,
5323  * while here we do not care if the log transaction was already committed - our
5324  * caller will commit the log later - and we want to avoid logging an inode
5325  * multiple times when multiple tasks have joined the same log transaction.
5326  */
5327 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5328 			   struct btrfs_inode *inode)
5329 {
5330 	/*
5331 	 * If a directory was not modified, no dentries added or removed, we can
5332 	 * and should avoid logging it.
5333 	 */
5334 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5335 		return false;
5336 
5337 	/*
5338 	 * If this inode does not have new/updated/deleted xattrs since the last
5339 	 * time it was logged and is flagged as logged in the current transaction,
5340 	 * we can skip logging it. As for new/deleted names, those are updated in
5341 	 * the log by link/unlink/rename operations.
5342 	 * In case the inode was logged and then evicted and reloaded, its
5343 	 * logged_trans will be 0, in which case we have to fully log it since
5344 	 * logged_trans is a transient field, not persisted.
5345 	 */
5346 	if (inode_logged(trans, inode, NULL) == 1 &&
5347 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5348 		return false;
5349 
5350 	return true;
5351 }
5352 
5353 struct btrfs_dir_list {
5354 	u64 ino;
5355 	struct list_head list;
5356 };
5357 
5358 /*
5359  * Log the inodes of the new dentries of a directory.
5360  * See process_dir_items_leaf() for details about why it is needed.
5361  * This is a recursive operation - if an existing dentry corresponds to a
5362  * directory, that directory's new entries are logged too (same behaviour as
5363  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5364  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5365  * complains about the following circular lock dependency / possible deadlock:
5366  *
5367  *        CPU0                                        CPU1
5368  *        ----                                        ----
5369  * lock(&type->i_mutex_dir_key#3/2);
5370  *                                            lock(sb_internal#2);
5371  *                                            lock(&type->i_mutex_dir_key#3/2);
5372  * lock(&sb->s_type->i_mutex_key#14);
5373  *
5374  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5375  * sb_start_intwrite() in btrfs_start_transaction().
5376  * Not acquiring the VFS lock of the inodes is still safe because:
5377  *
5378  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5379  *    that while logging the inode new references (names) are added or removed
5380  *    from the inode, leaving the logged inode item with a link count that does
5381  *    not match the number of logged inode reference items. This is fine because
5382  *    at log replay time we compute the real number of links and correct the
5383  *    link count in the inode item (see replay_one_buffer() and
5384  *    link_to_fixup_dir());
5385  *
5386  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5387  *    while logging the inode's items new index items (key type
5388  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5389  *    has a size that doesn't match the sum of the lengths of all the logged
5390  *    names - this is ok, not a problem, because at log replay time we set the
5391  *    directory's i_size to the correct value (see replay_one_name() and
5392  *    overwrite_item()).
5393  */
5394 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5395 				struct btrfs_inode *start_inode,
5396 				struct btrfs_log_ctx *ctx)
5397 {
5398 	struct btrfs_root *root = start_inode->root;
5399 	struct btrfs_path *path;
5400 	LIST_HEAD(dir_list);
5401 	struct btrfs_dir_list *dir_elem;
5402 	u64 ino = btrfs_ino(start_inode);
5403 	struct btrfs_inode *curr_inode = start_inode;
5404 	int ret = 0;
5405 
5406 	/*
5407 	 * If we are logging a new name, as part of a link or rename operation,
5408 	 * don't bother logging new dentries, as we just want to log the names
5409 	 * of an inode and that any new parents exist.
5410 	 */
5411 	if (ctx->logging_new_name)
5412 		return 0;
5413 
5414 	path = btrfs_alloc_path();
5415 	if (!path)
5416 		return -ENOMEM;
5417 
5418 	/* Pairs with btrfs_add_delayed_iput below. */
5419 	ihold(&curr_inode->vfs_inode);
5420 
5421 	while (true) {
5422 		struct inode *vfs_inode;
5423 		struct btrfs_key key;
5424 		struct btrfs_key found_key;
5425 		u64 next_index;
5426 		bool continue_curr_inode = true;
5427 		int iter_ret;
5428 
5429 		key.objectid = ino;
5430 		key.type = BTRFS_DIR_INDEX_KEY;
5431 		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5432 		next_index = key.offset;
5433 again:
5434 		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5435 			struct extent_buffer *leaf = path->nodes[0];
5436 			struct btrfs_dir_item *di;
5437 			struct btrfs_key di_key;
5438 			struct inode *di_inode;
5439 			int log_mode = LOG_INODE_EXISTS;
5440 			int type;
5441 
5442 			if (found_key.objectid != ino ||
5443 			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5444 				continue_curr_inode = false;
5445 				break;
5446 			}
5447 
5448 			next_index = found_key.offset + 1;
5449 
5450 			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5451 			type = btrfs_dir_ftype(leaf, di);
5452 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5453 				continue;
5454 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5455 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5456 				continue;
5457 
5458 			btrfs_release_path(path);
5459 			di_inode = btrfs_iget_logging(di_key.objectid, root);
5460 			if (IS_ERR(di_inode)) {
5461 				ret = PTR_ERR(di_inode);
5462 				goto out;
5463 			}
5464 
5465 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5466 				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5467 				break;
5468 			}
5469 
5470 			ctx->log_new_dentries = false;
5471 			if (type == BTRFS_FT_DIR)
5472 				log_mode = LOG_INODE_ALL;
5473 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5474 					      log_mode, ctx);
5475 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5476 			if (ret)
5477 				goto out;
5478 			if (ctx->log_new_dentries) {
5479 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5480 				if (!dir_elem) {
5481 					ret = -ENOMEM;
5482 					goto out;
5483 				}
5484 				dir_elem->ino = di_key.objectid;
5485 				list_add_tail(&dir_elem->list, &dir_list);
5486 			}
5487 			break;
5488 		}
5489 
5490 		btrfs_release_path(path);
5491 
5492 		if (iter_ret < 0) {
5493 			ret = iter_ret;
5494 			goto out;
5495 		} else if (iter_ret > 0) {
5496 			continue_curr_inode = false;
5497 		} else {
5498 			key = found_key;
5499 		}
5500 
5501 		if (continue_curr_inode && key.offset < (u64)-1) {
5502 			key.offset++;
5503 			goto again;
5504 		}
5505 
5506 		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5507 
5508 		if (list_empty(&dir_list))
5509 			break;
5510 
5511 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5512 		ino = dir_elem->ino;
5513 		list_del(&dir_elem->list);
5514 		kfree(dir_elem);
5515 
5516 		btrfs_add_delayed_iput(curr_inode);
5517 		curr_inode = NULL;
5518 
5519 		vfs_inode = btrfs_iget_logging(ino, root);
5520 		if (IS_ERR(vfs_inode)) {
5521 			ret = PTR_ERR(vfs_inode);
5522 			break;
5523 		}
5524 		curr_inode = BTRFS_I(vfs_inode);
5525 	}
5526 out:
5527 	btrfs_free_path(path);
5528 	if (curr_inode)
5529 		btrfs_add_delayed_iput(curr_inode);
5530 
5531 	if (ret) {
5532 		struct btrfs_dir_list *next;
5533 
5534 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5535 			kfree(dir_elem);
5536 	}
5537 
5538 	return ret;
5539 }
5540 
5541 struct btrfs_ino_list {
5542 	u64 ino;
5543 	u64 parent;
5544 	struct list_head list;
5545 };
5546 
5547 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5548 {
5549 	struct btrfs_ino_list *curr;
5550 	struct btrfs_ino_list *next;
5551 
5552 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5553 		list_del(&curr->list);
5554 		kfree(curr);
5555 	}
5556 }
5557 
5558 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5559 				    struct btrfs_path *path)
5560 {
5561 	struct btrfs_key key;
5562 	int ret;
5563 
5564 	key.objectid = ino;
5565 	key.type = BTRFS_INODE_ITEM_KEY;
5566 	key.offset = 0;
5567 
5568 	path->search_commit_root = 1;
5569 	path->skip_locking = 1;
5570 
5571 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5572 	if (WARN_ON_ONCE(ret > 0)) {
5573 		/*
5574 		 * We have previously found the inode through the commit root
5575 		 * so this should not happen. If it does, just error out and
5576 		 * fallback to a transaction commit.
5577 		 */
5578 		ret = -ENOENT;
5579 	} else if (ret == 0) {
5580 		struct btrfs_inode_item *item;
5581 
5582 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5583 				      struct btrfs_inode_item);
5584 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5585 			ret = 1;
5586 	}
5587 
5588 	btrfs_release_path(path);
5589 	path->search_commit_root = 0;
5590 	path->skip_locking = 0;
5591 
5592 	return ret;
5593 }
5594 
5595 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5596 				 struct btrfs_root *root,
5597 				 struct btrfs_path *path,
5598 				 u64 ino, u64 parent,
5599 				 struct btrfs_log_ctx *ctx)
5600 {
5601 	struct btrfs_ino_list *ino_elem;
5602 	struct inode *inode;
5603 
5604 	/*
5605 	 * It's rare to have a lot of conflicting inodes, in practice it is not
5606 	 * common to have more than 1 or 2. We don't want to collect too many,
5607 	 * as we could end up logging too many inodes (even if only in
5608 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5609 	 * commits.
5610 	 */
5611 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5612 		return BTRFS_LOG_FORCE_COMMIT;
5613 
5614 	inode = btrfs_iget_logging(ino, root);
5615 	/*
5616 	 * If the other inode that had a conflicting dir entry was deleted in
5617 	 * the current transaction then we either:
5618 	 *
5619 	 * 1) Log the parent directory (later after adding it to the list) if
5620 	 *    the inode is a directory. This is because it may be a deleted
5621 	 *    subvolume/snapshot or it may be a regular directory that had
5622 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5623 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5624 	 *    during log replay. So we just log the parent, which will result in
5625 	 *    a fallback to a transaction commit if we are dealing with those
5626 	 *    cases (last_unlink_trans will match the current transaction);
5627 	 *
5628 	 * 2) Do nothing if it's not a directory. During log replay we simply
5629 	 *    unlink the conflicting dentry from the parent directory and then
5630 	 *    add the dentry for our inode. Like this we can avoid logging the
5631 	 *    parent directory (and maybe fallback to a transaction commit in
5632 	 *    case it has a last_unlink_trans == trans->transid, due to moving
5633 	 *    some inode from it to some other directory).
5634 	 */
5635 	if (IS_ERR(inode)) {
5636 		int ret = PTR_ERR(inode);
5637 
5638 		if (ret != -ENOENT)
5639 			return ret;
5640 
5641 		ret = conflicting_inode_is_dir(root, ino, path);
5642 		/* Not a directory or we got an error. */
5643 		if (ret <= 0)
5644 			return ret;
5645 
5646 		/* Conflicting inode is a directory, so we'll log its parent. */
5647 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5648 		if (!ino_elem)
5649 			return -ENOMEM;
5650 		ino_elem->ino = ino;
5651 		ino_elem->parent = parent;
5652 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5653 		ctx->num_conflict_inodes++;
5654 
5655 		return 0;
5656 	}
5657 
5658 	/*
5659 	 * If the inode was already logged skip it - otherwise we can hit an
5660 	 * infinite loop. Example:
5661 	 *
5662 	 * From the commit root (previous transaction) we have the following
5663 	 * inodes:
5664 	 *
5665 	 * inode 257 a directory
5666 	 * inode 258 with references "zz" and "zz_link" on inode 257
5667 	 * inode 259 with reference "a" on inode 257
5668 	 *
5669 	 * And in the current (uncommitted) transaction we have:
5670 	 *
5671 	 * inode 257 a directory, unchanged
5672 	 * inode 258 with references "a" and "a2" on inode 257
5673 	 * inode 259 with reference "zz_link" on inode 257
5674 	 * inode 261 with reference "zz" on inode 257
5675 	 *
5676 	 * When logging inode 261 the following infinite loop could
5677 	 * happen if we don't skip already logged inodes:
5678 	 *
5679 	 * - we detect inode 258 as a conflicting inode, with inode 261
5680 	 *   on reference "zz", and log it;
5681 	 *
5682 	 * - we detect inode 259 as a conflicting inode, with inode 258
5683 	 *   on reference "a", and log it;
5684 	 *
5685 	 * - we detect inode 258 as a conflicting inode, with inode 259
5686 	 *   on reference "zz_link", and log it - again! After this we
5687 	 *   repeat the above steps forever.
5688 	 *
5689 	 * Here we can use need_log_inode() because we only need to log the
5690 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5691 	 * so that the log ends up with the new name and without the old name.
5692 	 */
5693 	if (!need_log_inode(trans, BTRFS_I(inode))) {
5694 		btrfs_add_delayed_iput(BTRFS_I(inode));
5695 		return 0;
5696 	}
5697 
5698 	btrfs_add_delayed_iput(BTRFS_I(inode));
5699 
5700 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5701 	if (!ino_elem)
5702 		return -ENOMEM;
5703 	ino_elem->ino = ino;
5704 	ino_elem->parent = parent;
5705 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5706 	ctx->num_conflict_inodes++;
5707 
5708 	return 0;
5709 }
5710 
5711 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5712 				  struct btrfs_root *root,
5713 				  struct btrfs_log_ctx *ctx)
5714 {
5715 	int ret = 0;
5716 
5717 	/*
5718 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5719 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5720 	 * calls. This check guarantees we can have only 1 level of recursion.
5721 	 */
5722 	if (ctx->logging_conflict_inodes)
5723 		return 0;
5724 
5725 	ctx->logging_conflict_inodes = true;
5726 
5727 	/*
5728 	 * New conflicting inodes may be found and added to the list while we
5729 	 * are logging a conflicting inode, so keep iterating while the list is
5730 	 * not empty.
5731 	 */
5732 	while (!list_empty(&ctx->conflict_inodes)) {
5733 		struct btrfs_ino_list *curr;
5734 		struct inode *inode;
5735 		u64 ino;
5736 		u64 parent;
5737 
5738 		curr = list_first_entry(&ctx->conflict_inodes,
5739 					struct btrfs_ino_list, list);
5740 		ino = curr->ino;
5741 		parent = curr->parent;
5742 		list_del(&curr->list);
5743 		kfree(curr);
5744 
5745 		inode = btrfs_iget_logging(ino, root);
5746 		/*
5747 		 * If the other inode that had a conflicting dir entry was
5748 		 * deleted in the current transaction, we need to log its parent
5749 		 * directory. See the comment at add_conflicting_inode().
5750 		 */
5751 		if (IS_ERR(inode)) {
5752 			ret = PTR_ERR(inode);
5753 			if (ret != -ENOENT)
5754 				break;
5755 
5756 			inode = btrfs_iget_logging(parent, root);
5757 			if (IS_ERR(inode)) {
5758 				ret = PTR_ERR(inode);
5759 				break;
5760 			}
5761 
5762 			/*
5763 			 * Always log the directory, we cannot make this
5764 			 * conditional on need_log_inode() because the directory
5765 			 * might have been logged in LOG_INODE_EXISTS mode or
5766 			 * the dir index of the conflicting inode is not in a
5767 			 * dir index key range logged for the directory. So we
5768 			 * must make sure the deletion is recorded.
5769 			 */
5770 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5771 					      LOG_INODE_ALL, ctx);
5772 			btrfs_add_delayed_iput(BTRFS_I(inode));
5773 			if (ret)
5774 				break;
5775 			continue;
5776 		}
5777 
5778 		/*
5779 		 * Here we can use need_log_inode() because we only need to log
5780 		 * the inode in LOG_INODE_EXISTS mode and rename operations
5781 		 * update the log, so that the log ends up with the new name and
5782 		 * without the old name.
5783 		 *
5784 		 * We did this check at add_conflicting_inode(), but here we do
5785 		 * it again because if some other task logged the inode after
5786 		 * that, we can avoid doing it again.
5787 		 */
5788 		if (!need_log_inode(trans, BTRFS_I(inode))) {
5789 			btrfs_add_delayed_iput(BTRFS_I(inode));
5790 			continue;
5791 		}
5792 
5793 		/*
5794 		 * We are safe logging the other inode without acquiring its
5795 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5796 		 * are safe against concurrent renames of the other inode as
5797 		 * well because during a rename we pin the log and update the
5798 		 * log with the new name before we unpin it.
5799 		 */
5800 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5801 		btrfs_add_delayed_iput(BTRFS_I(inode));
5802 		if (ret)
5803 			break;
5804 	}
5805 
5806 	ctx->logging_conflict_inodes = false;
5807 	if (ret)
5808 		free_conflicting_inodes(ctx);
5809 
5810 	return ret;
5811 }
5812 
5813 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5814 				   struct btrfs_inode *inode,
5815 				   struct btrfs_key *min_key,
5816 				   const struct btrfs_key *max_key,
5817 				   struct btrfs_path *path,
5818 				   struct btrfs_path *dst_path,
5819 				   const u64 logged_isize,
5820 				   const int inode_only,
5821 				   struct btrfs_log_ctx *ctx,
5822 				   bool *need_log_inode_item)
5823 {
5824 	const u64 i_size = i_size_read(&inode->vfs_inode);
5825 	struct btrfs_root *root = inode->root;
5826 	int ins_start_slot = 0;
5827 	int ins_nr = 0;
5828 	int ret;
5829 
5830 	while (1) {
5831 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5832 		if (ret < 0)
5833 			return ret;
5834 		if (ret > 0) {
5835 			ret = 0;
5836 			break;
5837 		}
5838 again:
5839 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5840 		if (min_key->objectid != max_key->objectid)
5841 			break;
5842 		if (min_key->type > max_key->type)
5843 			break;
5844 
5845 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5846 			*need_log_inode_item = false;
5847 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5848 			   min_key->offset >= i_size) {
5849 			/*
5850 			 * Extents at and beyond eof are logged with
5851 			 * btrfs_log_prealloc_extents().
5852 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5853 			 * and no keys greater than that, so bail out.
5854 			 */
5855 			break;
5856 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5857 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5858 			   (inode->generation == trans->transid ||
5859 			    ctx->logging_conflict_inodes)) {
5860 			u64 other_ino = 0;
5861 			u64 other_parent = 0;
5862 
5863 			ret = btrfs_check_ref_name_override(path->nodes[0],
5864 					path->slots[0], min_key, inode,
5865 					&other_ino, &other_parent);
5866 			if (ret < 0) {
5867 				return ret;
5868 			} else if (ret > 0 &&
5869 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5870 				if (ins_nr > 0) {
5871 					ins_nr++;
5872 				} else {
5873 					ins_nr = 1;
5874 					ins_start_slot = path->slots[0];
5875 				}
5876 				ret = copy_items(trans, inode, dst_path, path,
5877 						 ins_start_slot, ins_nr,
5878 						 inode_only, logged_isize);
5879 				if (ret < 0)
5880 					return ret;
5881 				ins_nr = 0;
5882 
5883 				btrfs_release_path(path);
5884 				ret = add_conflicting_inode(trans, root, path,
5885 							    other_ino,
5886 							    other_parent, ctx);
5887 				if (ret)
5888 					return ret;
5889 				goto next_key;
5890 			}
5891 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5892 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5893 			if (ins_nr == 0)
5894 				goto next_slot;
5895 			ret = copy_items(trans, inode, dst_path, path,
5896 					 ins_start_slot,
5897 					 ins_nr, inode_only, logged_isize);
5898 			if (ret < 0)
5899 				return ret;
5900 			ins_nr = 0;
5901 			goto next_slot;
5902 		}
5903 
5904 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5905 			ins_nr++;
5906 			goto next_slot;
5907 		} else if (!ins_nr) {
5908 			ins_start_slot = path->slots[0];
5909 			ins_nr = 1;
5910 			goto next_slot;
5911 		}
5912 
5913 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5914 				 ins_nr, inode_only, logged_isize);
5915 		if (ret < 0)
5916 			return ret;
5917 		ins_nr = 1;
5918 		ins_start_slot = path->slots[0];
5919 next_slot:
5920 		path->slots[0]++;
5921 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5922 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5923 					      path->slots[0]);
5924 			goto again;
5925 		}
5926 		if (ins_nr) {
5927 			ret = copy_items(trans, inode, dst_path, path,
5928 					 ins_start_slot, ins_nr, inode_only,
5929 					 logged_isize);
5930 			if (ret < 0)
5931 				return ret;
5932 			ins_nr = 0;
5933 		}
5934 		btrfs_release_path(path);
5935 next_key:
5936 		if (min_key->offset < (u64)-1) {
5937 			min_key->offset++;
5938 		} else if (min_key->type < max_key->type) {
5939 			min_key->type++;
5940 			min_key->offset = 0;
5941 		} else {
5942 			break;
5943 		}
5944 
5945 		/*
5946 		 * We may process many leaves full of items for our inode, so
5947 		 * avoid monopolizing a cpu for too long by rescheduling while
5948 		 * not holding locks on any tree.
5949 		 */
5950 		cond_resched();
5951 	}
5952 	if (ins_nr) {
5953 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5954 				 ins_nr, inode_only, logged_isize);
5955 		if (ret)
5956 			return ret;
5957 	}
5958 
5959 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5960 		/*
5961 		 * Release the path because otherwise we might attempt to double
5962 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5963 		 */
5964 		btrfs_release_path(path);
5965 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5966 	}
5967 
5968 	return ret;
5969 }
5970 
5971 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5972 				      struct btrfs_root *log,
5973 				      struct btrfs_path *path,
5974 				      const struct btrfs_item_batch *batch,
5975 				      const struct btrfs_delayed_item *first_item)
5976 {
5977 	const struct btrfs_delayed_item *curr = first_item;
5978 	int ret;
5979 
5980 	ret = btrfs_insert_empty_items(trans, log, path, batch);
5981 	if (ret)
5982 		return ret;
5983 
5984 	for (int i = 0; i < batch->nr; i++) {
5985 		char *data_ptr;
5986 
5987 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5988 		write_extent_buffer(path->nodes[0], &curr->data,
5989 				    (unsigned long)data_ptr, curr->data_len);
5990 		curr = list_next_entry(curr, log_list);
5991 		path->slots[0]++;
5992 	}
5993 
5994 	btrfs_release_path(path);
5995 
5996 	return 0;
5997 }
5998 
5999 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6000 				       struct btrfs_inode *inode,
6001 				       struct btrfs_path *path,
6002 				       const struct list_head *delayed_ins_list,
6003 				       struct btrfs_log_ctx *ctx)
6004 {
6005 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6006 	const int max_batch_size = 195;
6007 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6008 	const u64 ino = btrfs_ino(inode);
6009 	struct btrfs_root *log = inode->root->log_root;
6010 	struct btrfs_item_batch batch = {
6011 		.nr = 0,
6012 		.total_data_size = 0,
6013 	};
6014 	const struct btrfs_delayed_item *first = NULL;
6015 	const struct btrfs_delayed_item *curr;
6016 	char *ins_data;
6017 	struct btrfs_key *ins_keys;
6018 	u32 *ins_sizes;
6019 	u64 curr_batch_size = 0;
6020 	int batch_idx = 0;
6021 	int ret;
6022 
6023 	/* We are adding dir index items to the log tree. */
6024 	lockdep_assert_held(&inode->log_mutex);
6025 
6026 	/*
6027 	 * We collect delayed items before copying index keys from the subvolume
6028 	 * to the log tree. However just after we collected them, they may have
6029 	 * been flushed (all of them or just some of them), and therefore we
6030 	 * could have copied them from the subvolume tree to the log tree.
6031 	 * So find the first delayed item that was not yet logged (they are
6032 	 * sorted by index number).
6033 	 */
6034 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6035 		if (curr->index > inode->last_dir_index_offset) {
6036 			first = curr;
6037 			break;
6038 		}
6039 	}
6040 
6041 	/* Empty list or all delayed items were already logged. */
6042 	if (!first)
6043 		return 0;
6044 
6045 	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6046 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6047 	if (!ins_data)
6048 		return -ENOMEM;
6049 	ins_sizes = (u32 *)ins_data;
6050 	batch.data_sizes = ins_sizes;
6051 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6052 	batch.keys = ins_keys;
6053 
6054 	curr = first;
6055 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6056 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6057 
6058 		if (curr_batch_size + curr_size > leaf_data_size ||
6059 		    batch.nr == max_batch_size) {
6060 			ret = insert_delayed_items_batch(trans, log, path,
6061 							 &batch, first);
6062 			if (ret)
6063 				goto out;
6064 			batch_idx = 0;
6065 			batch.nr = 0;
6066 			batch.total_data_size = 0;
6067 			curr_batch_size = 0;
6068 			first = curr;
6069 		}
6070 
6071 		ins_sizes[batch_idx] = curr->data_len;
6072 		ins_keys[batch_idx].objectid = ino;
6073 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6074 		ins_keys[batch_idx].offset = curr->index;
6075 		curr_batch_size += curr_size;
6076 		batch.total_data_size += curr->data_len;
6077 		batch.nr++;
6078 		batch_idx++;
6079 		curr = list_next_entry(curr, log_list);
6080 	}
6081 
6082 	ASSERT(batch.nr >= 1);
6083 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6084 
6085 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6086 			       log_list);
6087 	inode->last_dir_index_offset = curr->index;
6088 out:
6089 	kfree(ins_data);
6090 
6091 	return ret;
6092 }
6093 
6094 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6095 				      struct btrfs_inode *inode,
6096 				      struct btrfs_path *path,
6097 				      const struct list_head *delayed_del_list,
6098 				      struct btrfs_log_ctx *ctx)
6099 {
6100 	const u64 ino = btrfs_ino(inode);
6101 	const struct btrfs_delayed_item *curr;
6102 
6103 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6104 				log_list);
6105 
6106 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6107 		u64 first_dir_index = curr->index;
6108 		u64 last_dir_index;
6109 		const struct btrfs_delayed_item *next;
6110 		int ret;
6111 
6112 		/*
6113 		 * Find a range of consecutive dir index items to delete. Like
6114 		 * this we log a single dir range item spanning several contiguous
6115 		 * dir items instead of logging one range item per dir index item.
6116 		 */
6117 		next = list_next_entry(curr, log_list);
6118 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6119 			if (next->index != curr->index + 1)
6120 				break;
6121 			curr = next;
6122 			next = list_next_entry(next, log_list);
6123 		}
6124 
6125 		last_dir_index = curr->index;
6126 		ASSERT(last_dir_index >= first_dir_index);
6127 
6128 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6129 					 ino, first_dir_index, last_dir_index);
6130 		if (ret)
6131 			return ret;
6132 		curr = list_next_entry(curr, log_list);
6133 	}
6134 
6135 	return 0;
6136 }
6137 
6138 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6139 					struct btrfs_inode *inode,
6140 					struct btrfs_path *path,
6141 					struct btrfs_log_ctx *ctx,
6142 					const struct list_head *delayed_del_list,
6143 					const struct btrfs_delayed_item *first,
6144 					const struct btrfs_delayed_item **last_ret)
6145 {
6146 	const struct btrfs_delayed_item *next;
6147 	struct extent_buffer *leaf = path->nodes[0];
6148 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6149 	int slot = path->slots[0] + 1;
6150 	const u64 ino = btrfs_ino(inode);
6151 
6152 	next = list_next_entry(first, log_list);
6153 
6154 	while (slot < last_slot &&
6155 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6156 		struct btrfs_key key;
6157 
6158 		btrfs_item_key_to_cpu(leaf, &key, slot);
6159 		if (key.objectid != ino ||
6160 		    key.type != BTRFS_DIR_INDEX_KEY ||
6161 		    key.offset != next->index)
6162 			break;
6163 
6164 		slot++;
6165 		*last_ret = next;
6166 		next = list_next_entry(next, log_list);
6167 	}
6168 
6169 	return btrfs_del_items(trans, inode->root->log_root, path,
6170 			       path->slots[0], slot - path->slots[0]);
6171 }
6172 
6173 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6174 					     struct btrfs_inode *inode,
6175 					     struct btrfs_path *path,
6176 					     const struct list_head *delayed_del_list,
6177 					     struct btrfs_log_ctx *ctx)
6178 {
6179 	struct btrfs_root *log = inode->root->log_root;
6180 	const struct btrfs_delayed_item *curr;
6181 	u64 last_range_start = 0;
6182 	u64 last_range_end = 0;
6183 	struct btrfs_key key;
6184 
6185 	key.objectid = btrfs_ino(inode);
6186 	key.type = BTRFS_DIR_INDEX_KEY;
6187 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6188 				log_list);
6189 
6190 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6191 		const struct btrfs_delayed_item *last = curr;
6192 		u64 first_dir_index = curr->index;
6193 		u64 last_dir_index;
6194 		bool deleted_items = false;
6195 		int ret;
6196 
6197 		key.offset = curr->index;
6198 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6199 		if (ret < 0) {
6200 			return ret;
6201 		} else if (ret == 0) {
6202 			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6203 							   delayed_del_list, curr,
6204 							   &last);
6205 			if (ret)
6206 				return ret;
6207 			deleted_items = true;
6208 		}
6209 
6210 		btrfs_release_path(path);
6211 
6212 		/*
6213 		 * If we deleted items from the leaf, it means we have a range
6214 		 * item logging their range, so no need to add one or update an
6215 		 * existing one. Otherwise we have to log a dir range item.
6216 		 */
6217 		if (deleted_items)
6218 			goto next_batch;
6219 
6220 		last_dir_index = last->index;
6221 		ASSERT(last_dir_index >= first_dir_index);
6222 		/*
6223 		 * If this range starts right after where the previous one ends,
6224 		 * then we want to reuse the previous range item and change its
6225 		 * end offset to the end of this range. This is just to minimize
6226 		 * leaf space usage, by avoiding adding a new range item.
6227 		 */
6228 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6229 			first_dir_index = last_range_start;
6230 
6231 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6232 					 first_dir_index, last_dir_index);
6233 		if (ret)
6234 			return ret;
6235 
6236 		last_range_start = first_dir_index;
6237 		last_range_end = last_dir_index;
6238 next_batch:
6239 		curr = list_next_entry(last, log_list);
6240 	}
6241 
6242 	return 0;
6243 }
6244 
6245 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6246 				      struct btrfs_inode *inode,
6247 				      struct btrfs_path *path,
6248 				      const struct list_head *delayed_del_list,
6249 				      struct btrfs_log_ctx *ctx)
6250 {
6251 	/*
6252 	 * We are deleting dir index items from the log tree or adding range
6253 	 * items to it.
6254 	 */
6255 	lockdep_assert_held(&inode->log_mutex);
6256 
6257 	if (list_empty(delayed_del_list))
6258 		return 0;
6259 
6260 	if (ctx->logged_before)
6261 		return log_delayed_deletions_incremental(trans, inode, path,
6262 							 delayed_del_list, ctx);
6263 
6264 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6265 					  ctx);
6266 }
6267 
6268 /*
6269  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6270  * items instead of the subvolume tree.
6271  */
6272 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6273 				    struct btrfs_inode *inode,
6274 				    const struct list_head *delayed_ins_list,
6275 				    struct btrfs_log_ctx *ctx)
6276 {
6277 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6278 	struct btrfs_delayed_item *item;
6279 	int ret = 0;
6280 
6281 	/*
6282 	 * No need for the log mutex, plus to avoid potential deadlocks or
6283 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6284 	 * mutexes.
6285 	 */
6286 	lockdep_assert_not_held(&inode->log_mutex);
6287 
6288 	ASSERT(!ctx->logging_new_delayed_dentries);
6289 	ctx->logging_new_delayed_dentries = true;
6290 
6291 	list_for_each_entry(item, delayed_ins_list, log_list) {
6292 		struct btrfs_dir_item *dir_item;
6293 		struct inode *di_inode;
6294 		struct btrfs_key key;
6295 		int log_mode = LOG_INODE_EXISTS;
6296 
6297 		dir_item = (struct btrfs_dir_item *)item->data;
6298 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6299 
6300 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6301 			continue;
6302 
6303 		di_inode = btrfs_iget_logging(key.objectid, inode->root);
6304 		if (IS_ERR(di_inode)) {
6305 			ret = PTR_ERR(di_inode);
6306 			break;
6307 		}
6308 
6309 		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6310 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6311 			continue;
6312 		}
6313 
6314 		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6315 			log_mode = LOG_INODE_ALL;
6316 
6317 		ctx->log_new_dentries = false;
6318 		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6319 
6320 		if (!ret && ctx->log_new_dentries)
6321 			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6322 
6323 		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6324 
6325 		if (ret)
6326 			break;
6327 	}
6328 
6329 	ctx->log_new_dentries = orig_log_new_dentries;
6330 	ctx->logging_new_delayed_dentries = false;
6331 
6332 	return ret;
6333 }
6334 
6335 /* log a single inode in the tree log.
6336  * At least one parent directory for this inode must exist in the tree
6337  * or be logged already.
6338  *
6339  * Any items from this inode changed by the current transaction are copied
6340  * to the log tree.  An extra reference is taken on any extents in this
6341  * file, allowing us to avoid a whole pile of corner cases around logging
6342  * blocks that have been removed from the tree.
6343  *
6344  * See LOG_INODE_ALL and related defines for a description of what inode_only
6345  * does.
6346  *
6347  * This handles both files and directories.
6348  */
6349 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6350 			   struct btrfs_inode *inode,
6351 			   int inode_only,
6352 			   struct btrfs_log_ctx *ctx)
6353 {
6354 	struct btrfs_path *path;
6355 	struct btrfs_path *dst_path;
6356 	struct btrfs_key min_key;
6357 	struct btrfs_key max_key;
6358 	struct btrfs_root *log = inode->root->log_root;
6359 	int ret;
6360 	bool fast_search = false;
6361 	u64 ino = btrfs_ino(inode);
6362 	struct extent_map_tree *em_tree = &inode->extent_tree;
6363 	u64 logged_isize = 0;
6364 	bool need_log_inode_item = true;
6365 	bool xattrs_logged = false;
6366 	bool inode_item_dropped = true;
6367 	bool full_dir_logging = false;
6368 	LIST_HEAD(delayed_ins_list);
6369 	LIST_HEAD(delayed_del_list);
6370 
6371 	path = btrfs_alloc_path();
6372 	if (!path)
6373 		return -ENOMEM;
6374 	dst_path = btrfs_alloc_path();
6375 	if (!dst_path) {
6376 		btrfs_free_path(path);
6377 		return -ENOMEM;
6378 	}
6379 
6380 	min_key.objectid = ino;
6381 	min_key.type = BTRFS_INODE_ITEM_KEY;
6382 	min_key.offset = 0;
6383 
6384 	max_key.objectid = ino;
6385 
6386 
6387 	/* today the code can only do partial logging of directories */
6388 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6389 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6390 		       &inode->runtime_flags) &&
6391 	     inode_only >= LOG_INODE_EXISTS))
6392 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6393 	else
6394 		max_key.type = (u8)-1;
6395 	max_key.offset = (u64)-1;
6396 
6397 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6398 		full_dir_logging = true;
6399 
6400 	/*
6401 	 * If we are logging a directory while we are logging dentries of the
6402 	 * delayed items of some other inode, then we need to flush the delayed
6403 	 * items of this directory and not log the delayed items directly. This
6404 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6405 	 * by having something like this:
6406 	 *
6407 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6408 	 *     $ xfs_io -c "fsync" a
6409 	 *
6410 	 * Where all directories in the path did not exist before and are
6411 	 * created in the current transaction.
6412 	 * So in such a case we directly log the delayed items of the main
6413 	 * directory ("a") without flushing them first, while for each of its
6414 	 * subdirectories we flush their delayed items before logging them.
6415 	 * This prevents a potential unbounded recursion like this:
6416 	 *
6417 	 * btrfs_log_inode()
6418 	 *   log_new_delayed_dentries()
6419 	 *      btrfs_log_inode()
6420 	 *        log_new_delayed_dentries()
6421 	 *          btrfs_log_inode()
6422 	 *            log_new_delayed_dentries()
6423 	 *              (...)
6424 	 *
6425 	 * We have thresholds for the maximum number of delayed items to have in
6426 	 * memory, and once they are hit, the items are flushed asynchronously.
6427 	 * However the limit is quite high, so lets prevent deep levels of
6428 	 * recursion to happen by limiting the maximum depth to be 1.
6429 	 */
6430 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6431 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6432 		if (ret)
6433 			goto out;
6434 	}
6435 
6436 	mutex_lock(&inode->log_mutex);
6437 
6438 	/*
6439 	 * For symlinks, we must always log their content, which is stored in an
6440 	 * inline extent, otherwise we could end up with an empty symlink after
6441 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6442 	 * one attempts to create an empty symlink).
6443 	 * We don't need to worry about flushing delalloc, because when we create
6444 	 * the inline extent when the symlink is created (we never have delalloc
6445 	 * for symlinks).
6446 	 */
6447 	if (S_ISLNK(inode->vfs_inode.i_mode))
6448 		inode_only = LOG_INODE_ALL;
6449 
6450 	/*
6451 	 * Before logging the inode item, cache the value returned by
6452 	 * inode_logged(), because after that we have the need to figure out if
6453 	 * the inode was previously logged in this transaction.
6454 	 */
6455 	ret = inode_logged(trans, inode, path);
6456 	if (ret < 0)
6457 		goto out_unlock;
6458 	ctx->logged_before = (ret == 1);
6459 	ret = 0;
6460 
6461 	/*
6462 	 * This is for cases where logging a directory could result in losing a
6463 	 * a file after replaying the log. For example, if we move a file from a
6464 	 * directory A to a directory B, then fsync directory A, we have no way
6465 	 * to known the file was moved from A to B, so logging just A would
6466 	 * result in losing the file after a log replay.
6467 	 */
6468 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6469 		ret = BTRFS_LOG_FORCE_COMMIT;
6470 		goto out_unlock;
6471 	}
6472 
6473 	/*
6474 	 * a brute force approach to making sure we get the most uptodate
6475 	 * copies of everything.
6476 	 */
6477 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6478 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6479 		if (ctx->logged_before)
6480 			ret = drop_inode_items(trans, log, path, inode,
6481 					       BTRFS_XATTR_ITEM_KEY);
6482 	} else {
6483 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6484 			/*
6485 			 * Make sure the new inode item we write to the log has
6486 			 * the same isize as the current one (if it exists).
6487 			 * This is necessary to prevent data loss after log
6488 			 * replay, and also to prevent doing a wrong expanding
6489 			 * truncate - for e.g. create file, write 4K into offset
6490 			 * 0, fsync, write 4K into offset 4096, add hard link,
6491 			 * fsync some other file (to sync log), power fail - if
6492 			 * we use the inode's current i_size, after log replay
6493 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6494 			 * (zeroes), as if an expanding truncate happened,
6495 			 * instead of getting a file of 4Kb only.
6496 			 */
6497 			ret = logged_inode_size(log, inode, path, &logged_isize);
6498 			if (ret)
6499 				goto out_unlock;
6500 		}
6501 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6502 			     &inode->runtime_flags)) {
6503 			if (inode_only == LOG_INODE_EXISTS) {
6504 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6505 				if (ctx->logged_before)
6506 					ret = drop_inode_items(trans, log, path,
6507 							       inode, max_key.type);
6508 			} else {
6509 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6510 					  &inode->runtime_flags);
6511 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6512 					  &inode->runtime_flags);
6513 				if (ctx->logged_before)
6514 					ret = truncate_inode_items(trans, log,
6515 								   inode, 0, 0);
6516 			}
6517 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6518 					      &inode->runtime_flags) ||
6519 			   inode_only == LOG_INODE_EXISTS) {
6520 			if (inode_only == LOG_INODE_ALL)
6521 				fast_search = true;
6522 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6523 			if (ctx->logged_before)
6524 				ret = drop_inode_items(trans, log, path, inode,
6525 						       max_key.type);
6526 		} else {
6527 			if (inode_only == LOG_INODE_ALL)
6528 				fast_search = true;
6529 			inode_item_dropped = false;
6530 			goto log_extents;
6531 		}
6532 
6533 	}
6534 	if (ret)
6535 		goto out_unlock;
6536 
6537 	/*
6538 	 * If we are logging a directory in full mode, collect the delayed items
6539 	 * before iterating the subvolume tree, so that we don't miss any new
6540 	 * dir index items in case they get flushed while or right after we are
6541 	 * iterating the subvolume tree.
6542 	 */
6543 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6544 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6545 					    &delayed_del_list);
6546 
6547 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6548 				      path, dst_path, logged_isize,
6549 				      inode_only, ctx,
6550 				      &need_log_inode_item);
6551 	if (ret)
6552 		goto out_unlock;
6553 
6554 	btrfs_release_path(path);
6555 	btrfs_release_path(dst_path);
6556 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6557 	if (ret)
6558 		goto out_unlock;
6559 	xattrs_logged = true;
6560 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6561 		btrfs_release_path(path);
6562 		btrfs_release_path(dst_path);
6563 		ret = btrfs_log_holes(trans, inode, path);
6564 		if (ret)
6565 			goto out_unlock;
6566 	}
6567 log_extents:
6568 	btrfs_release_path(path);
6569 	btrfs_release_path(dst_path);
6570 	if (need_log_inode_item) {
6571 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6572 		if (ret)
6573 			goto out_unlock;
6574 		/*
6575 		 * If we are doing a fast fsync and the inode was logged before
6576 		 * in this transaction, we don't need to log the xattrs because
6577 		 * they were logged before. If xattrs were added, changed or
6578 		 * deleted since the last time we logged the inode, then we have
6579 		 * already logged them because the inode had the runtime flag
6580 		 * BTRFS_INODE_COPY_EVERYTHING set.
6581 		 */
6582 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6583 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6584 			if (ret)
6585 				goto out_unlock;
6586 			btrfs_release_path(path);
6587 		}
6588 	}
6589 	if (fast_search) {
6590 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6591 		if (ret)
6592 			goto out_unlock;
6593 	} else if (inode_only == LOG_INODE_ALL) {
6594 		struct extent_map *em, *n;
6595 
6596 		write_lock(&em_tree->lock);
6597 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6598 			list_del_init(&em->list);
6599 		write_unlock(&em_tree->lock);
6600 	}
6601 
6602 	if (full_dir_logging) {
6603 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6604 		if (ret)
6605 			goto out_unlock;
6606 		ret = log_delayed_insertion_items(trans, inode, path,
6607 						  &delayed_ins_list, ctx);
6608 		if (ret)
6609 			goto out_unlock;
6610 		ret = log_delayed_deletion_items(trans, inode, path,
6611 						 &delayed_del_list, ctx);
6612 		if (ret)
6613 			goto out_unlock;
6614 	}
6615 
6616 	spin_lock(&inode->lock);
6617 	inode->logged_trans = trans->transid;
6618 	/*
6619 	 * Don't update last_log_commit if we logged that an inode exists.
6620 	 * We do this for three reasons:
6621 	 *
6622 	 * 1) We might have had buffered writes to this inode that were
6623 	 *    flushed and had their ordered extents completed in this
6624 	 *    transaction, but we did not previously log the inode with
6625 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6626 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6627 	 *    happened. We must make sure that if an explicit fsync against
6628 	 *    the inode is performed later, it logs the new extents, an
6629 	 *    updated inode item, etc, and syncs the log. The same logic
6630 	 *    applies to direct IO writes instead of buffered writes.
6631 	 *
6632 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6633 	 *    is logged with an i_size of 0 or whatever value was logged
6634 	 *    before. If later the i_size of the inode is increased by a
6635 	 *    truncate operation, the log is synced through an fsync of
6636 	 *    some other inode and then finally an explicit fsync against
6637 	 *    this inode is made, we must make sure this fsync logs the
6638 	 *    inode with the new i_size, the hole between old i_size and
6639 	 *    the new i_size, and syncs the log.
6640 	 *
6641 	 * 3) If we are logging that an ancestor inode exists as part of
6642 	 *    logging a new name from a link or rename operation, don't update
6643 	 *    its last_log_commit - otherwise if an explicit fsync is made
6644 	 *    against an ancestor, the fsync considers the inode in the log
6645 	 *    and doesn't sync the log, resulting in the ancestor missing after
6646 	 *    a power failure unless the log was synced as part of an fsync
6647 	 *    against any other unrelated inode.
6648 	 */
6649 	if (inode_only != LOG_INODE_EXISTS)
6650 		inode->last_log_commit = inode->last_sub_trans;
6651 	spin_unlock(&inode->lock);
6652 
6653 	/*
6654 	 * Reset the last_reflink_trans so that the next fsync does not need to
6655 	 * go through the slower path when logging extents and their checksums.
6656 	 */
6657 	if (inode_only == LOG_INODE_ALL)
6658 		inode->last_reflink_trans = 0;
6659 
6660 out_unlock:
6661 	mutex_unlock(&inode->log_mutex);
6662 out:
6663 	btrfs_free_path(path);
6664 	btrfs_free_path(dst_path);
6665 
6666 	if (ret)
6667 		free_conflicting_inodes(ctx);
6668 	else
6669 		ret = log_conflicting_inodes(trans, inode->root, ctx);
6670 
6671 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6672 		if (!ret)
6673 			ret = log_new_delayed_dentries(trans, inode,
6674 						       &delayed_ins_list, ctx);
6675 
6676 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6677 					    &delayed_del_list);
6678 	}
6679 
6680 	return ret;
6681 }
6682 
6683 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6684 				 struct btrfs_inode *inode,
6685 				 struct btrfs_log_ctx *ctx)
6686 {
6687 	int ret;
6688 	struct btrfs_path *path;
6689 	struct btrfs_key key;
6690 	struct btrfs_root *root = inode->root;
6691 	const u64 ino = btrfs_ino(inode);
6692 
6693 	path = btrfs_alloc_path();
6694 	if (!path)
6695 		return -ENOMEM;
6696 	path->skip_locking = 1;
6697 	path->search_commit_root = 1;
6698 
6699 	key.objectid = ino;
6700 	key.type = BTRFS_INODE_REF_KEY;
6701 	key.offset = 0;
6702 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6703 	if (ret < 0)
6704 		goto out;
6705 
6706 	while (true) {
6707 		struct extent_buffer *leaf = path->nodes[0];
6708 		int slot = path->slots[0];
6709 		u32 cur_offset = 0;
6710 		u32 item_size;
6711 		unsigned long ptr;
6712 
6713 		if (slot >= btrfs_header_nritems(leaf)) {
6714 			ret = btrfs_next_leaf(root, path);
6715 			if (ret < 0)
6716 				goto out;
6717 			else if (ret > 0)
6718 				break;
6719 			continue;
6720 		}
6721 
6722 		btrfs_item_key_to_cpu(leaf, &key, slot);
6723 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6724 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6725 			break;
6726 
6727 		item_size = btrfs_item_size(leaf, slot);
6728 		ptr = btrfs_item_ptr_offset(leaf, slot);
6729 		while (cur_offset < item_size) {
6730 			struct btrfs_key inode_key;
6731 			struct inode *dir_inode;
6732 
6733 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6734 			inode_key.offset = 0;
6735 
6736 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6737 				struct btrfs_inode_extref *extref;
6738 
6739 				extref = (struct btrfs_inode_extref *)
6740 					(ptr + cur_offset);
6741 				inode_key.objectid = btrfs_inode_extref_parent(
6742 					leaf, extref);
6743 				cur_offset += sizeof(*extref);
6744 				cur_offset += btrfs_inode_extref_name_len(leaf,
6745 					extref);
6746 			} else {
6747 				inode_key.objectid = key.offset;
6748 				cur_offset = item_size;
6749 			}
6750 
6751 			dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6752 			/*
6753 			 * If the parent inode was deleted, return an error to
6754 			 * fallback to a transaction commit. This is to prevent
6755 			 * getting an inode that was moved from one parent A to
6756 			 * a parent B, got its former parent A deleted and then
6757 			 * it got fsync'ed, from existing at both parents after
6758 			 * a log replay (and the old parent still existing).
6759 			 * Example:
6760 			 *
6761 			 * mkdir /mnt/A
6762 			 * mkdir /mnt/B
6763 			 * touch /mnt/B/bar
6764 			 * sync
6765 			 * mv /mnt/B/bar /mnt/A/bar
6766 			 * mv -T /mnt/A /mnt/B
6767 			 * fsync /mnt/B/bar
6768 			 * <power fail>
6769 			 *
6770 			 * If we ignore the old parent B which got deleted,
6771 			 * after a log replay we would have file bar linked
6772 			 * at both parents and the old parent B would still
6773 			 * exist.
6774 			 */
6775 			if (IS_ERR(dir_inode)) {
6776 				ret = PTR_ERR(dir_inode);
6777 				goto out;
6778 			}
6779 
6780 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6781 				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6782 				continue;
6783 			}
6784 
6785 			ctx->log_new_dentries = false;
6786 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6787 					      LOG_INODE_ALL, ctx);
6788 			if (!ret && ctx->log_new_dentries)
6789 				ret = log_new_dir_dentries(trans,
6790 						   BTRFS_I(dir_inode), ctx);
6791 			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6792 			if (ret)
6793 				goto out;
6794 		}
6795 		path->slots[0]++;
6796 	}
6797 	ret = 0;
6798 out:
6799 	btrfs_free_path(path);
6800 	return ret;
6801 }
6802 
6803 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6804 			     struct btrfs_root *root,
6805 			     struct btrfs_path *path,
6806 			     struct btrfs_log_ctx *ctx)
6807 {
6808 	struct btrfs_key found_key;
6809 
6810 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6811 
6812 	while (true) {
6813 		struct extent_buffer *leaf;
6814 		int slot;
6815 		struct btrfs_key search_key;
6816 		struct inode *inode;
6817 		u64 ino;
6818 		int ret = 0;
6819 
6820 		btrfs_release_path(path);
6821 
6822 		ino = found_key.offset;
6823 
6824 		search_key.objectid = found_key.offset;
6825 		search_key.type = BTRFS_INODE_ITEM_KEY;
6826 		search_key.offset = 0;
6827 		inode = btrfs_iget_logging(ino, root);
6828 		if (IS_ERR(inode))
6829 			return PTR_ERR(inode);
6830 
6831 		if (BTRFS_I(inode)->generation >= trans->transid &&
6832 		    need_log_inode(trans, BTRFS_I(inode)))
6833 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6834 					      LOG_INODE_EXISTS, ctx);
6835 		btrfs_add_delayed_iput(BTRFS_I(inode));
6836 		if (ret)
6837 			return ret;
6838 
6839 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6840 			break;
6841 
6842 		search_key.type = BTRFS_INODE_REF_KEY;
6843 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6844 		if (ret < 0)
6845 			return ret;
6846 
6847 		leaf = path->nodes[0];
6848 		slot = path->slots[0];
6849 		if (slot >= btrfs_header_nritems(leaf)) {
6850 			ret = btrfs_next_leaf(root, path);
6851 			if (ret < 0)
6852 				return ret;
6853 			else if (ret > 0)
6854 				return -ENOENT;
6855 			leaf = path->nodes[0];
6856 			slot = path->slots[0];
6857 		}
6858 
6859 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6860 		if (found_key.objectid != search_key.objectid ||
6861 		    found_key.type != BTRFS_INODE_REF_KEY)
6862 			return -ENOENT;
6863 	}
6864 	return 0;
6865 }
6866 
6867 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6868 				  struct btrfs_inode *inode,
6869 				  struct dentry *parent,
6870 				  struct btrfs_log_ctx *ctx)
6871 {
6872 	struct btrfs_root *root = inode->root;
6873 	struct dentry *old_parent = NULL;
6874 	struct super_block *sb = inode->vfs_inode.i_sb;
6875 	int ret = 0;
6876 
6877 	while (true) {
6878 		if (!parent || d_really_is_negative(parent) ||
6879 		    sb != parent->d_sb)
6880 			break;
6881 
6882 		inode = BTRFS_I(d_inode(parent));
6883 		if (root != inode->root)
6884 			break;
6885 
6886 		if (inode->generation >= trans->transid &&
6887 		    need_log_inode(trans, inode)) {
6888 			ret = btrfs_log_inode(trans, inode,
6889 					      LOG_INODE_EXISTS, ctx);
6890 			if (ret)
6891 				break;
6892 		}
6893 		if (IS_ROOT(parent))
6894 			break;
6895 
6896 		parent = dget_parent(parent);
6897 		dput(old_parent);
6898 		old_parent = parent;
6899 	}
6900 	dput(old_parent);
6901 
6902 	return ret;
6903 }
6904 
6905 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6906 				 struct btrfs_inode *inode,
6907 				 struct dentry *parent,
6908 				 struct btrfs_log_ctx *ctx)
6909 {
6910 	struct btrfs_root *root = inode->root;
6911 	const u64 ino = btrfs_ino(inode);
6912 	struct btrfs_path *path;
6913 	struct btrfs_key search_key;
6914 	int ret;
6915 
6916 	/*
6917 	 * For a single hard link case, go through a fast path that does not
6918 	 * need to iterate the fs/subvolume tree.
6919 	 */
6920 	if (inode->vfs_inode.i_nlink < 2)
6921 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6922 
6923 	path = btrfs_alloc_path();
6924 	if (!path)
6925 		return -ENOMEM;
6926 
6927 	search_key.objectid = ino;
6928 	search_key.type = BTRFS_INODE_REF_KEY;
6929 	search_key.offset = 0;
6930 again:
6931 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6932 	if (ret < 0)
6933 		goto out;
6934 	if (ret == 0)
6935 		path->slots[0]++;
6936 
6937 	while (true) {
6938 		struct extent_buffer *leaf = path->nodes[0];
6939 		int slot = path->slots[0];
6940 		struct btrfs_key found_key;
6941 
6942 		if (slot >= btrfs_header_nritems(leaf)) {
6943 			ret = btrfs_next_leaf(root, path);
6944 			if (ret < 0)
6945 				goto out;
6946 			else if (ret > 0)
6947 				break;
6948 			continue;
6949 		}
6950 
6951 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6952 		if (found_key.objectid != ino ||
6953 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6954 			break;
6955 
6956 		/*
6957 		 * Don't deal with extended references because they are rare
6958 		 * cases and too complex to deal with (we would need to keep
6959 		 * track of which subitem we are processing for each item in
6960 		 * this loop, etc). So just return some error to fallback to
6961 		 * a transaction commit.
6962 		 */
6963 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6964 			ret = -EMLINK;
6965 			goto out;
6966 		}
6967 
6968 		/*
6969 		 * Logging ancestors needs to do more searches on the fs/subvol
6970 		 * tree, so it releases the path as needed to avoid deadlocks.
6971 		 * Keep track of the last inode ref key and resume from that key
6972 		 * after logging all new ancestors for the current hard link.
6973 		 */
6974 		memcpy(&search_key, &found_key, sizeof(search_key));
6975 
6976 		ret = log_new_ancestors(trans, root, path, ctx);
6977 		if (ret)
6978 			goto out;
6979 		btrfs_release_path(path);
6980 		goto again;
6981 	}
6982 	ret = 0;
6983 out:
6984 	btrfs_free_path(path);
6985 	return ret;
6986 }
6987 
6988 /*
6989  * helper function around btrfs_log_inode to make sure newly created
6990  * parent directories also end up in the log.  A minimal inode and backref
6991  * only logging is done of any parent directories that are older than
6992  * the last committed transaction
6993  */
6994 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6995 				  struct btrfs_inode *inode,
6996 				  struct dentry *parent,
6997 				  int inode_only,
6998 				  struct btrfs_log_ctx *ctx)
6999 {
7000 	struct btrfs_root *root = inode->root;
7001 	struct btrfs_fs_info *fs_info = root->fs_info;
7002 	int ret = 0;
7003 	bool log_dentries = false;
7004 
7005 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
7006 		ret = BTRFS_LOG_FORCE_COMMIT;
7007 		goto end_no_trans;
7008 	}
7009 
7010 	if (btrfs_root_refs(&root->root_item) == 0) {
7011 		ret = BTRFS_LOG_FORCE_COMMIT;
7012 		goto end_no_trans;
7013 	}
7014 
7015 	/*
7016 	 * Skip already logged inodes or inodes corresponding to tmpfiles
7017 	 * (since logging them is pointless, a link count of 0 means they
7018 	 * will never be accessible).
7019 	 */
7020 	if ((btrfs_inode_in_log(inode, trans->transid) &&
7021 	     list_empty(&ctx->ordered_extents)) ||
7022 	    inode->vfs_inode.i_nlink == 0) {
7023 		ret = BTRFS_NO_LOG_SYNC;
7024 		goto end_no_trans;
7025 	}
7026 
7027 	ret = start_log_trans(trans, root, ctx);
7028 	if (ret)
7029 		goto end_no_trans;
7030 
7031 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7032 	if (ret)
7033 		goto end_trans;
7034 
7035 	/*
7036 	 * for regular files, if its inode is already on disk, we don't
7037 	 * have to worry about the parents at all.  This is because
7038 	 * we can use the last_unlink_trans field to record renames
7039 	 * and other fun in this file.
7040 	 */
7041 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7042 	    inode->generation < trans->transid &&
7043 	    inode->last_unlink_trans < trans->transid) {
7044 		ret = 0;
7045 		goto end_trans;
7046 	}
7047 
7048 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7049 		log_dentries = true;
7050 
7051 	/*
7052 	 * On unlink we must make sure all our current and old parent directory
7053 	 * inodes are fully logged. This is to prevent leaving dangling
7054 	 * directory index entries in directories that were our parents but are
7055 	 * not anymore. Not doing this results in old parent directory being
7056 	 * impossible to delete after log replay (rmdir will always fail with
7057 	 * error -ENOTEMPTY).
7058 	 *
7059 	 * Example 1:
7060 	 *
7061 	 * mkdir testdir
7062 	 * touch testdir/foo
7063 	 * ln testdir/foo testdir/bar
7064 	 * sync
7065 	 * unlink testdir/bar
7066 	 * xfs_io -c fsync testdir/foo
7067 	 * <power failure>
7068 	 * mount fs, triggers log replay
7069 	 *
7070 	 * If we don't log the parent directory (testdir), after log replay the
7071 	 * directory still has an entry pointing to the file inode using the bar
7072 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7073 	 * the file inode has a link count of 1.
7074 	 *
7075 	 * Example 2:
7076 	 *
7077 	 * mkdir testdir
7078 	 * touch foo
7079 	 * ln foo testdir/foo2
7080 	 * ln foo testdir/foo3
7081 	 * sync
7082 	 * unlink testdir/foo3
7083 	 * xfs_io -c fsync foo
7084 	 * <power failure>
7085 	 * mount fs, triggers log replay
7086 	 *
7087 	 * Similar as the first example, after log replay the parent directory
7088 	 * testdir still has an entry pointing to the inode file with name foo3
7089 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7090 	 * and has a link count of 2.
7091 	 */
7092 	if (inode->last_unlink_trans >= trans->transid) {
7093 		ret = btrfs_log_all_parents(trans, inode, ctx);
7094 		if (ret)
7095 			goto end_trans;
7096 	}
7097 
7098 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7099 	if (ret)
7100 		goto end_trans;
7101 
7102 	if (log_dentries)
7103 		ret = log_new_dir_dentries(trans, inode, ctx);
7104 	else
7105 		ret = 0;
7106 end_trans:
7107 	if (ret < 0) {
7108 		btrfs_set_log_full_commit(trans);
7109 		ret = BTRFS_LOG_FORCE_COMMIT;
7110 	}
7111 
7112 	if (ret)
7113 		btrfs_remove_log_ctx(root, ctx);
7114 	btrfs_end_log_trans(root);
7115 end_no_trans:
7116 	return ret;
7117 }
7118 
7119 /*
7120  * it is not safe to log dentry if the chunk root has added new
7121  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7122  * If this returns 1, you must commit the transaction to safely get your
7123  * data on disk.
7124  */
7125 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7126 			  struct dentry *dentry,
7127 			  struct btrfs_log_ctx *ctx)
7128 {
7129 	struct dentry *parent = dget_parent(dentry);
7130 	int ret;
7131 
7132 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7133 				     LOG_INODE_ALL, ctx);
7134 	dput(parent);
7135 
7136 	return ret;
7137 }
7138 
7139 /*
7140  * should be called during mount to recover any replay any log trees
7141  * from the FS
7142  */
7143 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7144 {
7145 	int ret;
7146 	struct btrfs_path *path;
7147 	struct btrfs_trans_handle *trans;
7148 	struct btrfs_key key;
7149 	struct btrfs_key found_key;
7150 	struct btrfs_root *log;
7151 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7152 	struct walk_control wc = {
7153 		.process_func = process_one_buffer,
7154 		.stage = LOG_WALK_PIN_ONLY,
7155 	};
7156 
7157 	path = btrfs_alloc_path();
7158 	if (!path)
7159 		return -ENOMEM;
7160 
7161 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7162 
7163 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7164 	if (IS_ERR(trans)) {
7165 		ret = PTR_ERR(trans);
7166 		goto error;
7167 	}
7168 
7169 	wc.trans = trans;
7170 	wc.pin = 1;
7171 
7172 	ret = walk_log_tree(trans, log_root_tree, &wc);
7173 	if (ret) {
7174 		btrfs_abort_transaction(trans, ret);
7175 		goto error;
7176 	}
7177 
7178 again:
7179 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7180 	key.offset = (u64)-1;
7181 	key.type = BTRFS_ROOT_ITEM_KEY;
7182 
7183 	while (1) {
7184 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7185 
7186 		if (ret < 0) {
7187 			btrfs_abort_transaction(trans, ret);
7188 			goto error;
7189 		}
7190 		if (ret > 0) {
7191 			if (path->slots[0] == 0)
7192 				break;
7193 			path->slots[0]--;
7194 		}
7195 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7196 				      path->slots[0]);
7197 		btrfs_release_path(path);
7198 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7199 			break;
7200 
7201 		log = btrfs_read_tree_root(log_root_tree, &found_key);
7202 		if (IS_ERR(log)) {
7203 			ret = PTR_ERR(log);
7204 			btrfs_abort_transaction(trans, ret);
7205 			goto error;
7206 		}
7207 
7208 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7209 						   true);
7210 		if (IS_ERR(wc.replay_dest)) {
7211 			ret = PTR_ERR(wc.replay_dest);
7212 
7213 			/*
7214 			 * We didn't find the subvol, likely because it was
7215 			 * deleted.  This is ok, simply skip this log and go to
7216 			 * the next one.
7217 			 *
7218 			 * We need to exclude the root because we can't have
7219 			 * other log replays overwriting this log as we'll read
7220 			 * it back in a few more times.  This will keep our
7221 			 * block from being modified, and we'll just bail for
7222 			 * each subsequent pass.
7223 			 */
7224 			if (ret == -ENOENT)
7225 				ret = btrfs_pin_extent_for_log_replay(trans,
7226 							log->node->start,
7227 							log->node->len);
7228 			btrfs_put_root(log);
7229 
7230 			if (!ret)
7231 				goto next;
7232 			btrfs_abort_transaction(trans, ret);
7233 			goto error;
7234 		}
7235 
7236 		wc.replay_dest->log_root = log;
7237 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7238 		if (ret)
7239 			/* The loop needs to continue due to the root refs */
7240 			btrfs_abort_transaction(trans, ret);
7241 		else
7242 			ret = walk_log_tree(trans, log, &wc);
7243 
7244 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7245 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7246 						      path);
7247 			if (ret)
7248 				btrfs_abort_transaction(trans, ret);
7249 		}
7250 
7251 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7252 			struct btrfs_root *root = wc.replay_dest;
7253 
7254 			btrfs_release_path(path);
7255 
7256 			/*
7257 			 * We have just replayed everything, and the highest
7258 			 * objectid of fs roots probably has changed in case
7259 			 * some inode_item's got replayed.
7260 			 *
7261 			 * root->objectid_mutex is not acquired as log replay
7262 			 * could only happen during mount.
7263 			 */
7264 			ret = btrfs_init_root_free_objectid(root);
7265 			if (ret)
7266 				btrfs_abort_transaction(trans, ret);
7267 		}
7268 
7269 		wc.replay_dest->log_root = NULL;
7270 		btrfs_put_root(wc.replay_dest);
7271 		btrfs_put_root(log);
7272 
7273 		if (ret)
7274 			goto error;
7275 next:
7276 		if (found_key.offset == 0)
7277 			break;
7278 		key.offset = found_key.offset - 1;
7279 	}
7280 	btrfs_release_path(path);
7281 
7282 	/* step one is to pin it all, step two is to replay just inodes */
7283 	if (wc.pin) {
7284 		wc.pin = 0;
7285 		wc.process_func = replay_one_buffer;
7286 		wc.stage = LOG_WALK_REPLAY_INODES;
7287 		goto again;
7288 	}
7289 	/* step three is to replay everything */
7290 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7291 		wc.stage++;
7292 		goto again;
7293 	}
7294 
7295 	btrfs_free_path(path);
7296 
7297 	/* step 4: commit the transaction, which also unpins the blocks */
7298 	ret = btrfs_commit_transaction(trans);
7299 	if (ret)
7300 		return ret;
7301 
7302 	log_root_tree->log_root = NULL;
7303 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7304 	btrfs_put_root(log_root_tree);
7305 
7306 	return 0;
7307 error:
7308 	if (wc.trans)
7309 		btrfs_end_transaction(wc.trans);
7310 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7311 	btrfs_free_path(path);
7312 	return ret;
7313 }
7314 
7315 /*
7316  * there are some corner cases where we want to force a full
7317  * commit instead of allowing a directory to be logged.
7318  *
7319  * They revolve around files there were unlinked from the directory, and
7320  * this function updates the parent directory so that a full commit is
7321  * properly done if it is fsync'd later after the unlinks are done.
7322  *
7323  * Must be called before the unlink operations (updates to the subvolume tree,
7324  * inodes, etc) are done.
7325  */
7326 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7327 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7328 			     bool for_rename)
7329 {
7330 	/*
7331 	 * when we're logging a file, if it hasn't been renamed
7332 	 * or unlinked, and its inode is fully committed on disk,
7333 	 * we don't have to worry about walking up the directory chain
7334 	 * to log its parents.
7335 	 *
7336 	 * So, we use the last_unlink_trans field to put this transid
7337 	 * into the file.  When the file is logged we check it and
7338 	 * don't log the parents if the file is fully on disk.
7339 	 */
7340 	mutex_lock(&inode->log_mutex);
7341 	inode->last_unlink_trans = trans->transid;
7342 	mutex_unlock(&inode->log_mutex);
7343 
7344 	if (!for_rename)
7345 		return;
7346 
7347 	/*
7348 	 * If this directory was already logged, any new names will be logged
7349 	 * with btrfs_log_new_name() and old names will be deleted from the log
7350 	 * tree with btrfs_del_dir_entries_in_log() or with
7351 	 * btrfs_del_inode_ref_in_log().
7352 	 */
7353 	if (inode_logged(trans, dir, NULL) == 1)
7354 		return;
7355 
7356 	/*
7357 	 * If the inode we're about to unlink was logged before, the log will be
7358 	 * properly updated with the new name with btrfs_log_new_name() and the
7359 	 * old name removed with btrfs_del_dir_entries_in_log() or with
7360 	 * btrfs_del_inode_ref_in_log().
7361 	 */
7362 	if (inode_logged(trans, inode, NULL) == 1)
7363 		return;
7364 
7365 	/*
7366 	 * when renaming files across directories, if the directory
7367 	 * there we're unlinking from gets fsync'd later on, there's
7368 	 * no way to find the destination directory later and fsync it
7369 	 * properly.  So, we have to be conservative and force commits
7370 	 * so the new name gets discovered.
7371 	 */
7372 	mutex_lock(&dir->log_mutex);
7373 	dir->last_unlink_trans = trans->transid;
7374 	mutex_unlock(&dir->log_mutex);
7375 }
7376 
7377 /*
7378  * Make sure that if someone attempts to fsync the parent directory of a deleted
7379  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7380  * that after replaying the log tree of the parent directory's root we will not
7381  * see the snapshot anymore and at log replay time we will not see any log tree
7382  * corresponding to the deleted snapshot's root, which could lead to replaying
7383  * it after replaying the log tree of the parent directory (which would replay
7384  * the snapshot delete operation).
7385  *
7386  * Must be called before the actual snapshot destroy operation (updates to the
7387  * parent root and tree of tree roots trees, etc) are done.
7388  */
7389 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7390 				   struct btrfs_inode *dir)
7391 {
7392 	mutex_lock(&dir->log_mutex);
7393 	dir->last_unlink_trans = trans->transid;
7394 	mutex_unlock(&dir->log_mutex);
7395 }
7396 
7397 /*
7398  * Update the log after adding a new name for an inode.
7399  *
7400  * @trans:              Transaction handle.
7401  * @old_dentry:         The dentry associated with the old name and the old
7402  *                      parent directory.
7403  * @old_dir:            The inode of the previous parent directory for the case
7404  *                      of a rename. For a link operation, it must be NULL.
7405  * @old_dir_index:      The index number associated with the old name, meaningful
7406  *                      only for rename operations (when @old_dir is not NULL).
7407  *                      Ignored for link operations.
7408  * @parent:             The dentry associated with the directory under which the
7409  *                      new name is located.
7410  *
7411  * Call this after adding a new name for an inode, as a result of a link or
7412  * rename operation, and it will properly update the log to reflect the new name.
7413  */
7414 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7415 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7416 			u64 old_dir_index, struct dentry *parent)
7417 {
7418 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7419 	struct btrfs_root *root = inode->root;
7420 	struct btrfs_log_ctx ctx;
7421 	bool log_pinned = false;
7422 	int ret;
7423 
7424 	/*
7425 	 * this will force the logging code to walk the dentry chain
7426 	 * up for the file
7427 	 */
7428 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7429 		inode->last_unlink_trans = trans->transid;
7430 
7431 	/*
7432 	 * if this inode hasn't been logged and directory we're renaming it
7433 	 * from hasn't been logged, we don't need to log it
7434 	 */
7435 	ret = inode_logged(trans, inode, NULL);
7436 	if (ret < 0) {
7437 		goto out;
7438 	} else if (ret == 0) {
7439 		if (!old_dir)
7440 			return;
7441 		/*
7442 		 * If the inode was not logged and we are doing a rename (old_dir is not
7443 		 * NULL), check if old_dir was logged - if it was not we can return and
7444 		 * do nothing.
7445 		 */
7446 		ret = inode_logged(trans, old_dir, NULL);
7447 		if (ret < 0)
7448 			goto out;
7449 		else if (ret == 0)
7450 			return;
7451 	}
7452 	ret = 0;
7453 
7454 	/*
7455 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7456 	 * was previously logged, make sure that on log replay we get the old
7457 	 * dir entry deleted. This is needed because we will also log the new
7458 	 * name of the renamed inode, so we need to make sure that after log
7459 	 * replay we don't end up with both the new and old dir entries existing.
7460 	 */
7461 	if (old_dir && old_dir->logged_trans == trans->transid) {
7462 		struct btrfs_root *log = old_dir->root->log_root;
7463 		struct btrfs_path *path;
7464 		struct fscrypt_name fname;
7465 
7466 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7467 
7468 		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7469 					     &old_dentry->d_name, 0, &fname);
7470 		if (ret)
7471 			goto out;
7472 		/*
7473 		 * We have two inodes to update in the log, the old directory and
7474 		 * the inode that got renamed, so we must pin the log to prevent
7475 		 * anyone from syncing the log until we have updated both inodes
7476 		 * in the log.
7477 		 */
7478 		ret = join_running_log_trans(root);
7479 		/*
7480 		 * At least one of the inodes was logged before, so this should
7481 		 * not fail, but if it does, it's not serious, just bail out and
7482 		 * mark the log for a full commit.
7483 		 */
7484 		if (WARN_ON_ONCE(ret < 0)) {
7485 			fscrypt_free_filename(&fname);
7486 			goto out;
7487 		}
7488 
7489 		log_pinned = true;
7490 
7491 		path = btrfs_alloc_path();
7492 		if (!path) {
7493 			ret = -ENOMEM;
7494 			fscrypt_free_filename(&fname);
7495 			goto out;
7496 		}
7497 
7498 		/*
7499 		 * Other concurrent task might be logging the old directory,
7500 		 * as it can be triggered when logging other inode that had or
7501 		 * still has a dentry in the old directory. We lock the old
7502 		 * directory's log_mutex to ensure the deletion of the old
7503 		 * name is persisted, because during directory logging we
7504 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7505 		 * the old name's dir index item is in the delayed items, so
7506 		 * it could be missed by an in progress directory logging.
7507 		 */
7508 		mutex_lock(&old_dir->log_mutex);
7509 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7510 					&fname.disk_name, old_dir_index);
7511 		if (ret > 0) {
7512 			/*
7513 			 * The dentry does not exist in the log, so record its
7514 			 * deletion.
7515 			 */
7516 			btrfs_release_path(path);
7517 			ret = insert_dir_log_key(trans, log, path,
7518 						 btrfs_ino(old_dir),
7519 						 old_dir_index, old_dir_index);
7520 		}
7521 		mutex_unlock(&old_dir->log_mutex);
7522 
7523 		btrfs_free_path(path);
7524 		fscrypt_free_filename(&fname);
7525 		if (ret < 0)
7526 			goto out;
7527 	}
7528 
7529 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7530 	ctx.logging_new_name = true;
7531 	/*
7532 	 * We don't care about the return value. If we fail to log the new name
7533 	 * then we know the next attempt to sync the log will fallback to a full
7534 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7535 	 * we don't need to worry about getting a log committed that has an
7536 	 * inconsistent state after a rename operation.
7537 	 */
7538 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7539 	ASSERT(list_empty(&ctx.conflict_inodes));
7540 out:
7541 	/*
7542 	 * If an error happened mark the log for a full commit because it's not
7543 	 * consistent and up to date or we couldn't find out if one of the
7544 	 * inodes was logged before in this transaction. Do it before unpinning
7545 	 * the log, to avoid any races with someone else trying to commit it.
7546 	 */
7547 	if (ret < 0)
7548 		btrfs_set_log_full_commit(trans);
7549 	if (log_pinned)
7550 		btrfs_end_log_trans(root);
7551 }
7552 
7553