xref: /openbmc/linux/fs/btrfs/tree-log.c (revision ca55b2fe)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 
30 /* magic values for the inode_only field in btrfs_log_inode:
31  *
32  * LOG_INODE_ALL means to log everything
33  * LOG_INODE_EXISTS means to log just enough to recreate the inode
34  * during log replay
35  */
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
38 
39 /*
40  * directory trouble cases
41  *
42  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43  * log, we must force a full commit before doing an fsync of the directory
44  * where the unlink was done.
45  * ---> record transid of last unlink/rename per directory
46  *
47  * mkdir foo/some_dir
48  * normal commit
49  * rename foo/some_dir foo2/some_dir
50  * mkdir foo/some_dir
51  * fsync foo/some_dir/some_file
52  *
53  * The fsync above will unlink the original some_dir without recording
54  * it in its new location (foo2).  After a crash, some_dir will be gone
55  * unless the fsync of some_file forces a full commit
56  *
57  * 2) we must log any new names for any file or dir that is in the fsync
58  * log. ---> check inode while renaming/linking.
59  *
60  * 2a) we must log any new names for any file or dir during rename
61  * when the directory they are being removed from was logged.
62  * ---> check inode and old parent dir during rename
63  *
64  *  2a is actually the more important variant.  With the extra logging
65  *  a crash might unlink the old name without recreating the new one
66  *
67  * 3) after a crash, we must go through any directories with a link count
68  * of zero and redo the rm -rf
69  *
70  * mkdir f1/foo
71  * normal commit
72  * rm -rf f1/foo
73  * fsync(f1)
74  *
75  * The directory f1 was fully removed from the FS, but fsync was never
76  * called on f1, only its parent dir.  After a crash the rm -rf must
77  * be replayed.  This must be able to recurse down the entire
78  * directory tree.  The inode link count fixup code takes care of the
79  * ugly details.
80  */
81 
82 /*
83  * stages for the tree walking.  The first
84  * stage (0) is to only pin down the blocks we find
85  * the second stage (1) is to make sure that all the inodes
86  * we find in the log are created in the subvolume.
87  *
88  * The last stage is to deal with directories and links and extents
89  * and all the other fun semantics
90  */
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct inode *inode,
98 			   int inode_only,
99 			   const loff_t start,
100 			   const loff_t end,
101 			   struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 			     struct btrfs_root *root,
104 			     struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 				       struct btrfs_root *root,
107 				       struct btrfs_root *log,
108 				       struct btrfs_path *path,
109 				       u64 dirid, int del_all);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	int ret = 0;
144 
145 	mutex_lock(&root->log_mutex);
146 
147 	if (root->log_root) {
148 		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
149 			ret = -EAGAIN;
150 			goto out;
151 		}
152 
153 		if (!root->log_start_pid) {
154 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
155 			root->log_start_pid = current->pid;
156 		} else if (root->log_start_pid != current->pid) {
157 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
158 		}
159 	} else {
160 		mutex_lock(&root->fs_info->tree_log_mutex);
161 		if (!root->fs_info->log_root_tree)
162 			ret = btrfs_init_log_root_tree(trans, root->fs_info);
163 		mutex_unlock(&root->fs_info->tree_log_mutex);
164 		if (ret)
165 			goto out;
166 
167 		ret = btrfs_add_log_tree(trans, root);
168 		if (ret)
169 			goto out;
170 
171 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
172 		root->log_start_pid = current->pid;
173 	}
174 
175 	atomic_inc(&root->log_batch);
176 	atomic_inc(&root->log_writers);
177 	if (ctx) {
178 		int index = root->log_transid % 2;
179 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
180 		ctx->log_transid = root->log_transid;
181 	}
182 
183 out:
184 	mutex_unlock(&root->log_mutex);
185 	return ret;
186 }
187 
188 /*
189  * returns 0 if there was a log transaction running and we were able
190  * to join, or returns -ENOENT if there were not transactions
191  * in progress
192  */
193 static int join_running_log_trans(struct btrfs_root *root)
194 {
195 	int ret = -ENOENT;
196 
197 	smp_mb();
198 	if (!root->log_root)
199 		return -ENOENT;
200 
201 	mutex_lock(&root->log_mutex);
202 	if (root->log_root) {
203 		ret = 0;
204 		atomic_inc(&root->log_writers);
205 	}
206 	mutex_unlock(&root->log_mutex);
207 	return ret;
208 }
209 
210 /*
211  * This either makes the current running log transaction wait
212  * until you call btrfs_end_log_trans() or it makes any future
213  * log transactions wait until you call btrfs_end_log_trans()
214  */
215 int btrfs_pin_log_trans(struct btrfs_root *root)
216 {
217 	int ret = -ENOENT;
218 
219 	mutex_lock(&root->log_mutex);
220 	atomic_inc(&root->log_writers);
221 	mutex_unlock(&root->log_mutex);
222 	return ret;
223 }
224 
225 /*
226  * indicate we're done making changes to the log tree
227  * and wake up anyone waiting to do a sync
228  */
229 void btrfs_end_log_trans(struct btrfs_root *root)
230 {
231 	if (atomic_dec_and_test(&root->log_writers)) {
232 		smp_mb();
233 		if (waitqueue_active(&root->log_writer_wait))
234 			wake_up(&root->log_writer_wait);
235 	}
236 }
237 
238 
239 /*
240  * the walk control struct is used to pass state down the chain when
241  * processing the log tree.  The stage field tells us which part
242  * of the log tree processing we are currently doing.  The others
243  * are state fields used for that specific part
244  */
245 struct walk_control {
246 	/* should we free the extent on disk when done?  This is used
247 	 * at transaction commit time while freeing a log tree
248 	 */
249 	int free;
250 
251 	/* should we write out the extent buffer?  This is used
252 	 * while flushing the log tree to disk during a sync
253 	 */
254 	int write;
255 
256 	/* should we wait for the extent buffer io to finish?  Also used
257 	 * while flushing the log tree to disk for a sync
258 	 */
259 	int wait;
260 
261 	/* pin only walk, we record which extents on disk belong to the
262 	 * log trees
263 	 */
264 	int pin;
265 
266 	/* what stage of the replay code we're currently in */
267 	int stage;
268 
269 	/* the root we are currently replaying */
270 	struct btrfs_root *replay_dest;
271 
272 	/* the trans handle for the current replay */
273 	struct btrfs_trans_handle *trans;
274 
275 	/* the function that gets used to process blocks we find in the
276 	 * tree.  Note the extent_buffer might not be up to date when it is
277 	 * passed in, and it must be checked or read if you need the data
278 	 * inside it
279 	 */
280 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
281 			    struct walk_control *wc, u64 gen);
282 };
283 
284 /*
285  * process_func used to pin down extents, write them or wait on them
286  */
287 static int process_one_buffer(struct btrfs_root *log,
288 			      struct extent_buffer *eb,
289 			      struct walk_control *wc, u64 gen)
290 {
291 	int ret = 0;
292 
293 	/*
294 	 * If this fs is mixed then we need to be able to process the leaves to
295 	 * pin down any logged extents, so we have to read the block.
296 	 */
297 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
298 		ret = btrfs_read_buffer(eb, gen);
299 		if (ret)
300 			return ret;
301 	}
302 
303 	if (wc->pin)
304 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
305 						      eb->start, eb->len);
306 
307 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
308 		if (wc->pin && btrfs_header_level(eb) == 0)
309 			ret = btrfs_exclude_logged_extents(log, eb);
310 		if (wc->write)
311 			btrfs_write_tree_block(eb);
312 		if (wc->wait)
313 			btrfs_wait_tree_block_writeback(eb);
314 	}
315 	return ret;
316 }
317 
318 /*
319  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
320  * to the src data we are copying out.
321  *
322  * root is the tree we are copying into, and path is a scratch
323  * path for use in this function (it should be released on entry and
324  * will be released on exit).
325  *
326  * If the key is already in the destination tree the existing item is
327  * overwritten.  If the existing item isn't big enough, it is extended.
328  * If it is too large, it is truncated.
329  *
330  * If the key isn't in the destination yet, a new item is inserted.
331  */
332 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
333 				   struct btrfs_root *root,
334 				   struct btrfs_path *path,
335 				   struct extent_buffer *eb, int slot,
336 				   struct btrfs_key *key)
337 {
338 	int ret;
339 	u32 item_size;
340 	u64 saved_i_size = 0;
341 	int save_old_i_size = 0;
342 	unsigned long src_ptr;
343 	unsigned long dst_ptr;
344 	int overwrite_root = 0;
345 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
346 
347 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
348 		overwrite_root = 1;
349 
350 	item_size = btrfs_item_size_nr(eb, slot);
351 	src_ptr = btrfs_item_ptr_offset(eb, slot);
352 
353 	/* look for the key in the destination tree */
354 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
355 	if (ret < 0)
356 		return ret;
357 
358 	if (ret == 0) {
359 		char *src_copy;
360 		char *dst_copy;
361 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
362 						  path->slots[0]);
363 		if (dst_size != item_size)
364 			goto insert;
365 
366 		if (item_size == 0) {
367 			btrfs_release_path(path);
368 			return 0;
369 		}
370 		dst_copy = kmalloc(item_size, GFP_NOFS);
371 		src_copy = kmalloc(item_size, GFP_NOFS);
372 		if (!dst_copy || !src_copy) {
373 			btrfs_release_path(path);
374 			kfree(dst_copy);
375 			kfree(src_copy);
376 			return -ENOMEM;
377 		}
378 
379 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
380 
381 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
382 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
383 				   item_size);
384 		ret = memcmp(dst_copy, src_copy, item_size);
385 
386 		kfree(dst_copy);
387 		kfree(src_copy);
388 		/*
389 		 * they have the same contents, just return, this saves
390 		 * us from cowing blocks in the destination tree and doing
391 		 * extra writes that may not have been done by a previous
392 		 * sync
393 		 */
394 		if (ret == 0) {
395 			btrfs_release_path(path);
396 			return 0;
397 		}
398 
399 		/*
400 		 * We need to load the old nbytes into the inode so when we
401 		 * replay the extents we've logged we get the right nbytes.
402 		 */
403 		if (inode_item) {
404 			struct btrfs_inode_item *item;
405 			u64 nbytes;
406 			u32 mode;
407 
408 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
409 					      struct btrfs_inode_item);
410 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
411 			item = btrfs_item_ptr(eb, slot,
412 					      struct btrfs_inode_item);
413 			btrfs_set_inode_nbytes(eb, item, nbytes);
414 
415 			/*
416 			 * If this is a directory we need to reset the i_size to
417 			 * 0 so that we can set it up properly when replaying
418 			 * the rest of the items in this log.
419 			 */
420 			mode = btrfs_inode_mode(eb, item);
421 			if (S_ISDIR(mode))
422 				btrfs_set_inode_size(eb, item, 0);
423 		}
424 	} else if (inode_item) {
425 		struct btrfs_inode_item *item;
426 		u32 mode;
427 
428 		/*
429 		 * New inode, set nbytes to 0 so that the nbytes comes out
430 		 * properly when we replay the extents.
431 		 */
432 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
433 		btrfs_set_inode_nbytes(eb, item, 0);
434 
435 		/*
436 		 * If this is a directory we need to reset the i_size to 0 so
437 		 * that we can set it up properly when replaying the rest of
438 		 * the items in this log.
439 		 */
440 		mode = btrfs_inode_mode(eb, item);
441 		if (S_ISDIR(mode))
442 			btrfs_set_inode_size(eb, item, 0);
443 	}
444 insert:
445 	btrfs_release_path(path);
446 	/* try to insert the key into the destination tree */
447 	path->skip_release_on_error = 1;
448 	ret = btrfs_insert_empty_item(trans, root, path,
449 				      key, item_size);
450 	path->skip_release_on_error = 0;
451 
452 	/* make sure any existing item is the correct size */
453 	if (ret == -EEXIST || ret == -EOVERFLOW) {
454 		u32 found_size;
455 		found_size = btrfs_item_size_nr(path->nodes[0],
456 						path->slots[0]);
457 		if (found_size > item_size)
458 			btrfs_truncate_item(root, path, item_size, 1);
459 		else if (found_size < item_size)
460 			btrfs_extend_item(root, path,
461 					  item_size - found_size);
462 	} else if (ret) {
463 		return ret;
464 	}
465 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
466 					path->slots[0]);
467 
468 	/* don't overwrite an existing inode if the generation number
469 	 * was logged as zero.  This is done when the tree logging code
470 	 * is just logging an inode to make sure it exists after recovery.
471 	 *
472 	 * Also, don't overwrite i_size on directories during replay.
473 	 * log replay inserts and removes directory items based on the
474 	 * state of the tree found in the subvolume, and i_size is modified
475 	 * as it goes
476 	 */
477 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
478 		struct btrfs_inode_item *src_item;
479 		struct btrfs_inode_item *dst_item;
480 
481 		src_item = (struct btrfs_inode_item *)src_ptr;
482 		dst_item = (struct btrfs_inode_item *)dst_ptr;
483 
484 		if (btrfs_inode_generation(eb, src_item) == 0) {
485 			struct extent_buffer *dst_eb = path->nodes[0];
486 			const u64 ino_size = btrfs_inode_size(eb, src_item);
487 
488 			/*
489 			 * For regular files an ino_size == 0 is used only when
490 			 * logging that an inode exists, as part of a directory
491 			 * fsync, and the inode wasn't fsynced before. In this
492 			 * case don't set the size of the inode in the fs/subvol
493 			 * tree, otherwise we would be throwing valid data away.
494 			 */
495 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
496 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
497 			    ino_size != 0) {
498 				struct btrfs_map_token token;
499 
500 				btrfs_init_map_token(&token);
501 				btrfs_set_token_inode_size(dst_eb, dst_item,
502 							   ino_size, &token);
503 			}
504 			goto no_copy;
505 		}
506 
507 		if (overwrite_root &&
508 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
509 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
510 			save_old_i_size = 1;
511 			saved_i_size = btrfs_inode_size(path->nodes[0],
512 							dst_item);
513 		}
514 	}
515 
516 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
517 			   src_ptr, item_size);
518 
519 	if (save_old_i_size) {
520 		struct btrfs_inode_item *dst_item;
521 		dst_item = (struct btrfs_inode_item *)dst_ptr;
522 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
523 	}
524 
525 	/* make sure the generation is filled in */
526 	if (key->type == BTRFS_INODE_ITEM_KEY) {
527 		struct btrfs_inode_item *dst_item;
528 		dst_item = (struct btrfs_inode_item *)dst_ptr;
529 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
530 			btrfs_set_inode_generation(path->nodes[0], dst_item,
531 						   trans->transid);
532 		}
533 	}
534 no_copy:
535 	btrfs_mark_buffer_dirty(path->nodes[0]);
536 	btrfs_release_path(path);
537 	return 0;
538 }
539 
540 /*
541  * simple helper to read an inode off the disk from a given root
542  * This can only be called for subvolume roots and not for the log
543  */
544 static noinline struct inode *read_one_inode(struct btrfs_root *root,
545 					     u64 objectid)
546 {
547 	struct btrfs_key key;
548 	struct inode *inode;
549 
550 	key.objectid = objectid;
551 	key.type = BTRFS_INODE_ITEM_KEY;
552 	key.offset = 0;
553 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
554 	if (IS_ERR(inode)) {
555 		inode = NULL;
556 	} else if (is_bad_inode(inode)) {
557 		iput(inode);
558 		inode = NULL;
559 	}
560 	return inode;
561 }
562 
563 /* replays a single extent in 'eb' at 'slot' with 'key' into the
564  * subvolume 'root'.  path is released on entry and should be released
565  * on exit.
566  *
567  * extents in the log tree have not been allocated out of the extent
568  * tree yet.  So, this completes the allocation, taking a reference
569  * as required if the extent already exists or creating a new extent
570  * if it isn't in the extent allocation tree yet.
571  *
572  * The extent is inserted into the file, dropping any existing extents
573  * from the file that overlap the new one.
574  */
575 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
576 				      struct btrfs_root *root,
577 				      struct btrfs_path *path,
578 				      struct extent_buffer *eb, int slot,
579 				      struct btrfs_key *key)
580 {
581 	int found_type;
582 	u64 extent_end;
583 	u64 start = key->offset;
584 	u64 nbytes = 0;
585 	struct btrfs_file_extent_item *item;
586 	struct inode *inode = NULL;
587 	unsigned long size;
588 	int ret = 0;
589 
590 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
591 	found_type = btrfs_file_extent_type(eb, item);
592 
593 	if (found_type == BTRFS_FILE_EXTENT_REG ||
594 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
595 		nbytes = btrfs_file_extent_num_bytes(eb, item);
596 		extent_end = start + nbytes;
597 
598 		/*
599 		 * We don't add to the inodes nbytes if we are prealloc or a
600 		 * hole.
601 		 */
602 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
603 			nbytes = 0;
604 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
605 		size = btrfs_file_extent_inline_len(eb, slot, item);
606 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
607 		extent_end = ALIGN(start + size, root->sectorsize);
608 	} else {
609 		ret = 0;
610 		goto out;
611 	}
612 
613 	inode = read_one_inode(root, key->objectid);
614 	if (!inode) {
615 		ret = -EIO;
616 		goto out;
617 	}
618 
619 	/*
620 	 * first check to see if we already have this extent in the
621 	 * file.  This must be done before the btrfs_drop_extents run
622 	 * so we don't try to drop this extent.
623 	 */
624 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
625 				       start, 0);
626 
627 	if (ret == 0 &&
628 	    (found_type == BTRFS_FILE_EXTENT_REG ||
629 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
630 		struct btrfs_file_extent_item cmp1;
631 		struct btrfs_file_extent_item cmp2;
632 		struct btrfs_file_extent_item *existing;
633 		struct extent_buffer *leaf;
634 
635 		leaf = path->nodes[0];
636 		existing = btrfs_item_ptr(leaf, path->slots[0],
637 					  struct btrfs_file_extent_item);
638 
639 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
640 				   sizeof(cmp1));
641 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
642 				   sizeof(cmp2));
643 
644 		/*
645 		 * we already have a pointer to this exact extent,
646 		 * we don't have to do anything
647 		 */
648 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
649 			btrfs_release_path(path);
650 			goto out;
651 		}
652 	}
653 	btrfs_release_path(path);
654 
655 	/* drop any overlapping extents */
656 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
657 	if (ret)
658 		goto out;
659 
660 	if (found_type == BTRFS_FILE_EXTENT_REG ||
661 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 		u64 offset;
663 		unsigned long dest_offset;
664 		struct btrfs_key ins;
665 
666 		ret = btrfs_insert_empty_item(trans, root, path, key,
667 					      sizeof(*item));
668 		if (ret)
669 			goto out;
670 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
671 						    path->slots[0]);
672 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
673 				(unsigned long)item,  sizeof(*item));
674 
675 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
676 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
677 		ins.type = BTRFS_EXTENT_ITEM_KEY;
678 		offset = key->offset - btrfs_file_extent_offset(eb, item);
679 
680 		if (ins.objectid > 0) {
681 			u64 csum_start;
682 			u64 csum_end;
683 			LIST_HEAD(ordered_sums);
684 			/*
685 			 * is this extent already allocated in the extent
686 			 * allocation tree?  If so, just add a reference
687 			 */
688 			ret = btrfs_lookup_data_extent(root, ins.objectid,
689 						ins.offset);
690 			if (ret == 0) {
691 				ret = btrfs_inc_extent_ref(trans, root,
692 						ins.objectid, ins.offset,
693 						0, root->root_key.objectid,
694 						key->objectid, offset, 0);
695 				if (ret)
696 					goto out;
697 			} else {
698 				/*
699 				 * insert the extent pointer in the extent
700 				 * allocation tree
701 				 */
702 				ret = btrfs_alloc_logged_file_extent(trans,
703 						root, root->root_key.objectid,
704 						key->objectid, offset, &ins);
705 				if (ret)
706 					goto out;
707 			}
708 			btrfs_release_path(path);
709 
710 			if (btrfs_file_extent_compression(eb, item)) {
711 				csum_start = ins.objectid;
712 				csum_end = csum_start + ins.offset;
713 			} else {
714 				csum_start = ins.objectid +
715 					btrfs_file_extent_offset(eb, item);
716 				csum_end = csum_start +
717 					btrfs_file_extent_num_bytes(eb, item);
718 			}
719 
720 			ret = btrfs_lookup_csums_range(root->log_root,
721 						csum_start, csum_end - 1,
722 						&ordered_sums, 0);
723 			if (ret)
724 				goto out;
725 			/*
726 			 * Now delete all existing cums in the csum root that
727 			 * cover our range. We do this because we can have an
728 			 * extent that is completely referenced by one file
729 			 * extent item and partially referenced by another
730 			 * file extent item (like after using the clone or
731 			 * extent_same ioctls). In this case if we end up doing
732 			 * the replay of the one that partially references the
733 			 * extent first, and we do not do the csum deletion
734 			 * below, we can get 2 csum items in the csum tree that
735 			 * overlap each other. For example, imagine our log has
736 			 * the two following file extent items:
737 			 *
738 			 * key (257 EXTENT_DATA 409600)
739 			 *     extent data disk byte 12845056 nr 102400
740 			 *     extent data offset 20480 nr 20480 ram 102400
741 			 *
742 			 * key (257 EXTENT_DATA 819200)
743 			 *     extent data disk byte 12845056 nr 102400
744 			 *     extent data offset 0 nr 102400 ram 102400
745 			 *
746 			 * Where the second one fully references the 100K extent
747 			 * that starts at disk byte 12845056, and the log tree
748 			 * has a single csum item that covers the entire range
749 			 * of the extent:
750 			 *
751 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
752 			 *
753 			 * After the first file extent item is replayed, the
754 			 * csum tree gets the following csum item:
755 			 *
756 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
757 			 *
758 			 * Which covers the 20K sub-range starting at offset 20K
759 			 * of our extent. Now when we replay the second file
760 			 * extent item, if we do not delete existing csum items
761 			 * that cover any of its blocks, we end up getting two
762 			 * csum items in our csum tree that overlap each other:
763 			 *
764 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
765 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
766 			 *
767 			 * Which is a problem, because after this anyone trying
768 			 * to lookup up for the checksum of any block of our
769 			 * extent starting at an offset of 40K or higher, will
770 			 * end up looking at the second csum item only, which
771 			 * does not contain the checksum for any block starting
772 			 * at offset 40K or higher of our extent.
773 			 */
774 			while (!list_empty(&ordered_sums)) {
775 				struct btrfs_ordered_sum *sums;
776 				sums = list_entry(ordered_sums.next,
777 						struct btrfs_ordered_sum,
778 						list);
779 				if (!ret)
780 					ret = btrfs_del_csums(trans,
781 						      root->fs_info->csum_root,
782 						      sums->bytenr,
783 						      sums->len);
784 				if (!ret)
785 					ret = btrfs_csum_file_blocks(trans,
786 						root->fs_info->csum_root,
787 						sums);
788 				list_del(&sums->list);
789 				kfree(sums);
790 			}
791 			if (ret)
792 				goto out;
793 		} else {
794 			btrfs_release_path(path);
795 		}
796 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
797 		/* inline extents are easy, we just overwrite them */
798 		ret = overwrite_item(trans, root, path, eb, slot, key);
799 		if (ret)
800 			goto out;
801 	}
802 
803 	inode_add_bytes(inode, nbytes);
804 	ret = btrfs_update_inode(trans, root, inode);
805 out:
806 	if (inode)
807 		iput(inode);
808 	return ret;
809 }
810 
811 /*
812  * when cleaning up conflicts between the directory names in the
813  * subvolume, directory names in the log and directory names in the
814  * inode back references, we may have to unlink inodes from directories.
815  *
816  * This is a helper function to do the unlink of a specific directory
817  * item
818  */
819 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
820 				      struct btrfs_root *root,
821 				      struct btrfs_path *path,
822 				      struct inode *dir,
823 				      struct btrfs_dir_item *di)
824 {
825 	struct inode *inode;
826 	char *name;
827 	int name_len;
828 	struct extent_buffer *leaf;
829 	struct btrfs_key location;
830 	int ret;
831 
832 	leaf = path->nodes[0];
833 
834 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
835 	name_len = btrfs_dir_name_len(leaf, di);
836 	name = kmalloc(name_len, GFP_NOFS);
837 	if (!name)
838 		return -ENOMEM;
839 
840 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
841 	btrfs_release_path(path);
842 
843 	inode = read_one_inode(root, location.objectid);
844 	if (!inode) {
845 		ret = -EIO;
846 		goto out;
847 	}
848 
849 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
850 	if (ret)
851 		goto out;
852 
853 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
854 	if (ret)
855 		goto out;
856 	else
857 		ret = btrfs_run_delayed_items(trans, root);
858 out:
859 	kfree(name);
860 	iput(inode);
861 	return ret;
862 }
863 
864 /*
865  * helper function to see if a given name and sequence number found
866  * in an inode back reference are already in a directory and correctly
867  * point to this inode
868  */
869 static noinline int inode_in_dir(struct btrfs_root *root,
870 				 struct btrfs_path *path,
871 				 u64 dirid, u64 objectid, u64 index,
872 				 const char *name, int name_len)
873 {
874 	struct btrfs_dir_item *di;
875 	struct btrfs_key location;
876 	int match = 0;
877 
878 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
879 					 index, name, name_len, 0);
880 	if (di && !IS_ERR(di)) {
881 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
882 		if (location.objectid != objectid)
883 			goto out;
884 	} else
885 		goto out;
886 	btrfs_release_path(path);
887 
888 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
889 	if (di && !IS_ERR(di)) {
890 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
891 		if (location.objectid != objectid)
892 			goto out;
893 	} else
894 		goto out;
895 	match = 1;
896 out:
897 	btrfs_release_path(path);
898 	return match;
899 }
900 
901 /*
902  * helper function to check a log tree for a named back reference in
903  * an inode.  This is used to decide if a back reference that is
904  * found in the subvolume conflicts with what we find in the log.
905  *
906  * inode backreferences may have multiple refs in a single item,
907  * during replay we process one reference at a time, and we don't
908  * want to delete valid links to a file from the subvolume if that
909  * link is also in the log.
910  */
911 static noinline int backref_in_log(struct btrfs_root *log,
912 				   struct btrfs_key *key,
913 				   u64 ref_objectid,
914 				   const char *name, int namelen)
915 {
916 	struct btrfs_path *path;
917 	struct btrfs_inode_ref *ref;
918 	unsigned long ptr;
919 	unsigned long ptr_end;
920 	unsigned long name_ptr;
921 	int found_name_len;
922 	int item_size;
923 	int ret;
924 	int match = 0;
925 
926 	path = btrfs_alloc_path();
927 	if (!path)
928 		return -ENOMEM;
929 
930 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
931 	if (ret != 0)
932 		goto out;
933 
934 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
935 
936 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
937 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
938 						   name, namelen, NULL))
939 			match = 1;
940 
941 		goto out;
942 	}
943 
944 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
945 	ptr_end = ptr + item_size;
946 	while (ptr < ptr_end) {
947 		ref = (struct btrfs_inode_ref *)ptr;
948 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
949 		if (found_name_len == namelen) {
950 			name_ptr = (unsigned long)(ref + 1);
951 			ret = memcmp_extent_buffer(path->nodes[0], name,
952 						   name_ptr, namelen);
953 			if (ret == 0) {
954 				match = 1;
955 				goto out;
956 			}
957 		}
958 		ptr = (unsigned long)(ref + 1) + found_name_len;
959 	}
960 out:
961 	btrfs_free_path(path);
962 	return match;
963 }
964 
965 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
966 				  struct btrfs_root *root,
967 				  struct btrfs_path *path,
968 				  struct btrfs_root *log_root,
969 				  struct inode *dir, struct inode *inode,
970 				  struct extent_buffer *eb,
971 				  u64 inode_objectid, u64 parent_objectid,
972 				  u64 ref_index, char *name, int namelen,
973 				  int *search_done)
974 {
975 	int ret;
976 	char *victim_name;
977 	int victim_name_len;
978 	struct extent_buffer *leaf;
979 	struct btrfs_dir_item *di;
980 	struct btrfs_key search_key;
981 	struct btrfs_inode_extref *extref;
982 
983 again:
984 	/* Search old style refs */
985 	search_key.objectid = inode_objectid;
986 	search_key.type = BTRFS_INODE_REF_KEY;
987 	search_key.offset = parent_objectid;
988 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
989 	if (ret == 0) {
990 		struct btrfs_inode_ref *victim_ref;
991 		unsigned long ptr;
992 		unsigned long ptr_end;
993 
994 		leaf = path->nodes[0];
995 
996 		/* are we trying to overwrite a back ref for the root directory
997 		 * if so, just jump out, we're done
998 		 */
999 		if (search_key.objectid == search_key.offset)
1000 			return 1;
1001 
1002 		/* check all the names in this back reference to see
1003 		 * if they are in the log.  if so, we allow them to stay
1004 		 * otherwise they must be unlinked as a conflict
1005 		 */
1006 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1007 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1008 		while (ptr < ptr_end) {
1009 			victim_ref = (struct btrfs_inode_ref *)ptr;
1010 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1011 								   victim_ref);
1012 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1013 			if (!victim_name)
1014 				return -ENOMEM;
1015 
1016 			read_extent_buffer(leaf, victim_name,
1017 					   (unsigned long)(victim_ref + 1),
1018 					   victim_name_len);
1019 
1020 			if (!backref_in_log(log_root, &search_key,
1021 					    parent_objectid,
1022 					    victim_name,
1023 					    victim_name_len)) {
1024 				inc_nlink(inode);
1025 				btrfs_release_path(path);
1026 
1027 				ret = btrfs_unlink_inode(trans, root, dir,
1028 							 inode, victim_name,
1029 							 victim_name_len);
1030 				kfree(victim_name);
1031 				if (ret)
1032 					return ret;
1033 				ret = btrfs_run_delayed_items(trans, root);
1034 				if (ret)
1035 					return ret;
1036 				*search_done = 1;
1037 				goto again;
1038 			}
1039 			kfree(victim_name);
1040 
1041 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1042 		}
1043 
1044 		/*
1045 		 * NOTE: we have searched root tree and checked the
1046 		 * coresponding ref, it does not need to check again.
1047 		 */
1048 		*search_done = 1;
1049 	}
1050 	btrfs_release_path(path);
1051 
1052 	/* Same search but for extended refs */
1053 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1054 					   inode_objectid, parent_objectid, 0,
1055 					   0);
1056 	if (!IS_ERR_OR_NULL(extref)) {
1057 		u32 item_size;
1058 		u32 cur_offset = 0;
1059 		unsigned long base;
1060 		struct inode *victim_parent;
1061 
1062 		leaf = path->nodes[0];
1063 
1064 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1065 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1066 
1067 		while (cur_offset < item_size) {
1068 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1069 
1070 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1071 
1072 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1073 				goto next;
1074 
1075 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1076 			if (!victim_name)
1077 				return -ENOMEM;
1078 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1079 					   victim_name_len);
1080 
1081 			search_key.objectid = inode_objectid;
1082 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1083 			search_key.offset = btrfs_extref_hash(parent_objectid,
1084 							      victim_name,
1085 							      victim_name_len);
1086 			ret = 0;
1087 			if (!backref_in_log(log_root, &search_key,
1088 					    parent_objectid, victim_name,
1089 					    victim_name_len)) {
1090 				ret = -ENOENT;
1091 				victim_parent = read_one_inode(root,
1092 							       parent_objectid);
1093 				if (victim_parent) {
1094 					inc_nlink(inode);
1095 					btrfs_release_path(path);
1096 
1097 					ret = btrfs_unlink_inode(trans, root,
1098 								 victim_parent,
1099 								 inode,
1100 								 victim_name,
1101 								 victim_name_len);
1102 					if (!ret)
1103 						ret = btrfs_run_delayed_items(
1104 								  trans, root);
1105 				}
1106 				iput(victim_parent);
1107 				kfree(victim_name);
1108 				if (ret)
1109 					return ret;
1110 				*search_done = 1;
1111 				goto again;
1112 			}
1113 			kfree(victim_name);
1114 			if (ret)
1115 				return ret;
1116 next:
1117 			cur_offset += victim_name_len + sizeof(*extref);
1118 		}
1119 		*search_done = 1;
1120 	}
1121 	btrfs_release_path(path);
1122 
1123 	/* look for a conflicting sequence number */
1124 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1125 					 ref_index, name, namelen, 0);
1126 	if (di && !IS_ERR(di)) {
1127 		ret = drop_one_dir_item(trans, root, path, dir, di);
1128 		if (ret)
1129 			return ret;
1130 	}
1131 	btrfs_release_path(path);
1132 
1133 	/* look for a conflicing name */
1134 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1135 				   name, namelen, 0);
1136 	if (di && !IS_ERR(di)) {
1137 		ret = drop_one_dir_item(trans, root, path, dir, di);
1138 		if (ret)
1139 			return ret;
1140 	}
1141 	btrfs_release_path(path);
1142 
1143 	return 0;
1144 }
1145 
1146 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1147 			     u32 *namelen, char **name, u64 *index,
1148 			     u64 *parent_objectid)
1149 {
1150 	struct btrfs_inode_extref *extref;
1151 
1152 	extref = (struct btrfs_inode_extref *)ref_ptr;
1153 
1154 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1155 	*name = kmalloc(*namelen, GFP_NOFS);
1156 	if (*name == NULL)
1157 		return -ENOMEM;
1158 
1159 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1160 			   *namelen);
1161 
1162 	*index = btrfs_inode_extref_index(eb, extref);
1163 	if (parent_objectid)
1164 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1165 
1166 	return 0;
1167 }
1168 
1169 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1170 			  u32 *namelen, char **name, u64 *index)
1171 {
1172 	struct btrfs_inode_ref *ref;
1173 
1174 	ref = (struct btrfs_inode_ref *)ref_ptr;
1175 
1176 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1177 	*name = kmalloc(*namelen, GFP_NOFS);
1178 	if (*name == NULL)
1179 		return -ENOMEM;
1180 
1181 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1182 
1183 	*index = btrfs_inode_ref_index(eb, ref);
1184 
1185 	return 0;
1186 }
1187 
1188 /*
1189  * replay one inode back reference item found in the log tree.
1190  * eb, slot and key refer to the buffer and key found in the log tree.
1191  * root is the destination we are replaying into, and path is for temp
1192  * use by this function.  (it should be released on return).
1193  */
1194 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1195 				  struct btrfs_root *root,
1196 				  struct btrfs_root *log,
1197 				  struct btrfs_path *path,
1198 				  struct extent_buffer *eb, int slot,
1199 				  struct btrfs_key *key)
1200 {
1201 	struct inode *dir = NULL;
1202 	struct inode *inode = NULL;
1203 	unsigned long ref_ptr;
1204 	unsigned long ref_end;
1205 	char *name = NULL;
1206 	int namelen;
1207 	int ret;
1208 	int search_done = 0;
1209 	int log_ref_ver = 0;
1210 	u64 parent_objectid;
1211 	u64 inode_objectid;
1212 	u64 ref_index = 0;
1213 	int ref_struct_size;
1214 
1215 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1216 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1217 
1218 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1219 		struct btrfs_inode_extref *r;
1220 
1221 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1222 		log_ref_ver = 1;
1223 		r = (struct btrfs_inode_extref *)ref_ptr;
1224 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1225 	} else {
1226 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1227 		parent_objectid = key->offset;
1228 	}
1229 	inode_objectid = key->objectid;
1230 
1231 	/*
1232 	 * it is possible that we didn't log all the parent directories
1233 	 * for a given inode.  If we don't find the dir, just don't
1234 	 * copy the back ref in.  The link count fixup code will take
1235 	 * care of the rest
1236 	 */
1237 	dir = read_one_inode(root, parent_objectid);
1238 	if (!dir) {
1239 		ret = -ENOENT;
1240 		goto out;
1241 	}
1242 
1243 	inode = read_one_inode(root, inode_objectid);
1244 	if (!inode) {
1245 		ret = -EIO;
1246 		goto out;
1247 	}
1248 
1249 	while (ref_ptr < ref_end) {
1250 		if (log_ref_ver) {
1251 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1252 						&ref_index, &parent_objectid);
1253 			/*
1254 			 * parent object can change from one array
1255 			 * item to another.
1256 			 */
1257 			if (!dir)
1258 				dir = read_one_inode(root, parent_objectid);
1259 			if (!dir) {
1260 				ret = -ENOENT;
1261 				goto out;
1262 			}
1263 		} else {
1264 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1265 					     &ref_index);
1266 		}
1267 		if (ret)
1268 			goto out;
1269 
1270 		/* if we already have a perfect match, we're done */
1271 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1272 				  ref_index, name, namelen)) {
1273 			/*
1274 			 * look for a conflicting back reference in the
1275 			 * metadata. if we find one we have to unlink that name
1276 			 * of the file before we add our new link.  Later on, we
1277 			 * overwrite any existing back reference, and we don't
1278 			 * want to create dangling pointers in the directory.
1279 			 */
1280 
1281 			if (!search_done) {
1282 				ret = __add_inode_ref(trans, root, path, log,
1283 						      dir, inode, eb,
1284 						      inode_objectid,
1285 						      parent_objectid,
1286 						      ref_index, name, namelen,
1287 						      &search_done);
1288 				if (ret) {
1289 					if (ret == 1)
1290 						ret = 0;
1291 					goto out;
1292 				}
1293 			}
1294 
1295 			/* insert our name */
1296 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1297 					     0, ref_index);
1298 			if (ret)
1299 				goto out;
1300 
1301 			btrfs_update_inode(trans, root, inode);
1302 		}
1303 
1304 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1305 		kfree(name);
1306 		name = NULL;
1307 		if (log_ref_ver) {
1308 			iput(dir);
1309 			dir = NULL;
1310 		}
1311 	}
1312 
1313 	/* finally write the back reference in the inode */
1314 	ret = overwrite_item(trans, root, path, eb, slot, key);
1315 out:
1316 	btrfs_release_path(path);
1317 	kfree(name);
1318 	iput(dir);
1319 	iput(inode);
1320 	return ret;
1321 }
1322 
1323 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1324 			      struct btrfs_root *root, u64 ino)
1325 {
1326 	int ret;
1327 
1328 	ret = btrfs_insert_orphan_item(trans, root, ino);
1329 	if (ret == -EEXIST)
1330 		ret = 0;
1331 
1332 	return ret;
1333 }
1334 
1335 static int count_inode_extrefs(struct btrfs_root *root,
1336 			       struct inode *inode, struct btrfs_path *path)
1337 {
1338 	int ret = 0;
1339 	int name_len;
1340 	unsigned int nlink = 0;
1341 	u32 item_size;
1342 	u32 cur_offset = 0;
1343 	u64 inode_objectid = btrfs_ino(inode);
1344 	u64 offset = 0;
1345 	unsigned long ptr;
1346 	struct btrfs_inode_extref *extref;
1347 	struct extent_buffer *leaf;
1348 
1349 	while (1) {
1350 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1351 					    &extref, &offset);
1352 		if (ret)
1353 			break;
1354 
1355 		leaf = path->nodes[0];
1356 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1357 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1358 		cur_offset = 0;
1359 
1360 		while (cur_offset < item_size) {
1361 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1362 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1363 
1364 			nlink++;
1365 
1366 			cur_offset += name_len + sizeof(*extref);
1367 		}
1368 
1369 		offset++;
1370 		btrfs_release_path(path);
1371 	}
1372 	btrfs_release_path(path);
1373 
1374 	if (ret < 0 && ret != -ENOENT)
1375 		return ret;
1376 	return nlink;
1377 }
1378 
1379 static int count_inode_refs(struct btrfs_root *root,
1380 			       struct inode *inode, struct btrfs_path *path)
1381 {
1382 	int ret;
1383 	struct btrfs_key key;
1384 	unsigned int nlink = 0;
1385 	unsigned long ptr;
1386 	unsigned long ptr_end;
1387 	int name_len;
1388 	u64 ino = btrfs_ino(inode);
1389 
1390 	key.objectid = ino;
1391 	key.type = BTRFS_INODE_REF_KEY;
1392 	key.offset = (u64)-1;
1393 
1394 	while (1) {
1395 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1396 		if (ret < 0)
1397 			break;
1398 		if (ret > 0) {
1399 			if (path->slots[0] == 0)
1400 				break;
1401 			path->slots[0]--;
1402 		}
1403 process_slot:
1404 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1405 				      path->slots[0]);
1406 		if (key.objectid != ino ||
1407 		    key.type != BTRFS_INODE_REF_KEY)
1408 			break;
1409 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1410 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1411 						   path->slots[0]);
1412 		while (ptr < ptr_end) {
1413 			struct btrfs_inode_ref *ref;
1414 
1415 			ref = (struct btrfs_inode_ref *)ptr;
1416 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1417 							    ref);
1418 			ptr = (unsigned long)(ref + 1) + name_len;
1419 			nlink++;
1420 		}
1421 
1422 		if (key.offset == 0)
1423 			break;
1424 		if (path->slots[0] > 0) {
1425 			path->slots[0]--;
1426 			goto process_slot;
1427 		}
1428 		key.offset--;
1429 		btrfs_release_path(path);
1430 	}
1431 	btrfs_release_path(path);
1432 
1433 	return nlink;
1434 }
1435 
1436 /*
1437  * There are a few corners where the link count of the file can't
1438  * be properly maintained during replay.  So, instead of adding
1439  * lots of complexity to the log code, we just scan the backrefs
1440  * for any file that has been through replay.
1441  *
1442  * The scan will update the link count on the inode to reflect the
1443  * number of back refs found.  If it goes down to zero, the iput
1444  * will free the inode.
1445  */
1446 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1447 					   struct btrfs_root *root,
1448 					   struct inode *inode)
1449 {
1450 	struct btrfs_path *path;
1451 	int ret;
1452 	u64 nlink = 0;
1453 	u64 ino = btrfs_ino(inode);
1454 
1455 	path = btrfs_alloc_path();
1456 	if (!path)
1457 		return -ENOMEM;
1458 
1459 	ret = count_inode_refs(root, inode, path);
1460 	if (ret < 0)
1461 		goto out;
1462 
1463 	nlink = ret;
1464 
1465 	ret = count_inode_extrefs(root, inode, path);
1466 	if (ret < 0)
1467 		goto out;
1468 
1469 	nlink += ret;
1470 
1471 	ret = 0;
1472 
1473 	if (nlink != inode->i_nlink) {
1474 		set_nlink(inode, nlink);
1475 		btrfs_update_inode(trans, root, inode);
1476 	}
1477 	BTRFS_I(inode)->index_cnt = (u64)-1;
1478 
1479 	if (inode->i_nlink == 0) {
1480 		if (S_ISDIR(inode->i_mode)) {
1481 			ret = replay_dir_deletes(trans, root, NULL, path,
1482 						 ino, 1);
1483 			if (ret)
1484 				goto out;
1485 		}
1486 		ret = insert_orphan_item(trans, root, ino);
1487 	}
1488 
1489 out:
1490 	btrfs_free_path(path);
1491 	return ret;
1492 }
1493 
1494 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1495 					    struct btrfs_root *root,
1496 					    struct btrfs_path *path)
1497 {
1498 	int ret;
1499 	struct btrfs_key key;
1500 	struct inode *inode;
1501 
1502 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1503 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1504 	key.offset = (u64)-1;
1505 	while (1) {
1506 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1507 		if (ret < 0)
1508 			break;
1509 
1510 		if (ret == 1) {
1511 			if (path->slots[0] == 0)
1512 				break;
1513 			path->slots[0]--;
1514 		}
1515 
1516 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1517 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1518 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1519 			break;
1520 
1521 		ret = btrfs_del_item(trans, root, path);
1522 		if (ret)
1523 			goto out;
1524 
1525 		btrfs_release_path(path);
1526 		inode = read_one_inode(root, key.offset);
1527 		if (!inode)
1528 			return -EIO;
1529 
1530 		ret = fixup_inode_link_count(trans, root, inode);
1531 		iput(inode);
1532 		if (ret)
1533 			goto out;
1534 
1535 		/*
1536 		 * fixup on a directory may create new entries,
1537 		 * make sure we always look for the highset possible
1538 		 * offset
1539 		 */
1540 		key.offset = (u64)-1;
1541 	}
1542 	ret = 0;
1543 out:
1544 	btrfs_release_path(path);
1545 	return ret;
1546 }
1547 
1548 
1549 /*
1550  * record a given inode in the fixup dir so we can check its link
1551  * count when replay is done.  The link count is incremented here
1552  * so the inode won't go away until we check it
1553  */
1554 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1555 				      struct btrfs_root *root,
1556 				      struct btrfs_path *path,
1557 				      u64 objectid)
1558 {
1559 	struct btrfs_key key;
1560 	int ret = 0;
1561 	struct inode *inode;
1562 
1563 	inode = read_one_inode(root, objectid);
1564 	if (!inode)
1565 		return -EIO;
1566 
1567 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1568 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1569 	key.offset = objectid;
1570 
1571 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1572 
1573 	btrfs_release_path(path);
1574 	if (ret == 0) {
1575 		if (!inode->i_nlink)
1576 			set_nlink(inode, 1);
1577 		else
1578 			inc_nlink(inode);
1579 		ret = btrfs_update_inode(trans, root, inode);
1580 	} else if (ret == -EEXIST) {
1581 		ret = 0;
1582 	} else {
1583 		BUG(); /* Logic Error */
1584 	}
1585 	iput(inode);
1586 
1587 	return ret;
1588 }
1589 
1590 /*
1591  * when replaying the log for a directory, we only insert names
1592  * for inodes that actually exist.  This means an fsync on a directory
1593  * does not implicitly fsync all the new files in it
1594  */
1595 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1596 				    struct btrfs_root *root,
1597 				    u64 dirid, u64 index,
1598 				    char *name, int name_len,
1599 				    struct btrfs_key *location)
1600 {
1601 	struct inode *inode;
1602 	struct inode *dir;
1603 	int ret;
1604 
1605 	inode = read_one_inode(root, location->objectid);
1606 	if (!inode)
1607 		return -ENOENT;
1608 
1609 	dir = read_one_inode(root, dirid);
1610 	if (!dir) {
1611 		iput(inode);
1612 		return -EIO;
1613 	}
1614 
1615 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1616 
1617 	/* FIXME, put inode into FIXUP list */
1618 
1619 	iput(inode);
1620 	iput(dir);
1621 	return ret;
1622 }
1623 
1624 /*
1625  * Return true if an inode reference exists in the log for the given name,
1626  * inode and parent inode.
1627  */
1628 static bool name_in_log_ref(struct btrfs_root *log_root,
1629 			    const char *name, const int name_len,
1630 			    const u64 dirid, const u64 ino)
1631 {
1632 	struct btrfs_key search_key;
1633 
1634 	search_key.objectid = ino;
1635 	search_key.type = BTRFS_INODE_REF_KEY;
1636 	search_key.offset = dirid;
1637 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1638 		return true;
1639 
1640 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1641 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1642 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1643 		return true;
1644 
1645 	return false;
1646 }
1647 
1648 /*
1649  * take a single entry in a log directory item and replay it into
1650  * the subvolume.
1651  *
1652  * if a conflicting item exists in the subdirectory already,
1653  * the inode it points to is unlinked and put into the link count
1654  * fix up tree.
1655  *
1656  * If a name from the log points to a file or directory that does
1657  * not exist in the FS, it is skipped.  fsyncs on directories
1658  * do not force down inodes inside that directory, just changes to the
1659  * names or unlinks in a directory.
1660  *
1661  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1662  * non-existing inode) and 1 if the name was replayed.
1663  */
1664 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1665 				    struct btrfs_root *root,
1666 				    struct btrfs_path *path,
1667 				    struct extent_buffer *eb,
1668 				    struct btrfs_dir_item *di,
1669 				    struct btrfs_key *key)
1670 {
1671 	char *name;
1672 	int name_len;
1673 	struct btrfs_dir_item *dst_di;
1674 	struct btrfs_key found_key;
1675 	struct btrfs_key log_key;
1676 	struct inode *dir;
1677 	u8 log_type;
1678 	int exists;
1679 	int ret = 0;
1680 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1681 	bool name_added = false;
1682 
1683 	dir = read_one_inode(root, key->objectid);
1684 	if (!dir)
1685 		return -EIO;
1686 
1687 	name_len = btrfs_dir_name_len(eb, di);
1688 	name = kmalloc(name_len, GFP_NOFS);
1689 	if (!name) {
1690 		ret = -ENOMEM;
1691 		goto out;
1692 	}
1693 
1694 	log_type = btrfs_dir_type(eb, di);
1695 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1696 		   name_len);
1697 
1698 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1699 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1700 	if (exists == 0)
1701 		exists = 1;
1702 	else
1703 		exists = 0;
1704 	btrfs_release_path(path);
1705 
1706 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1707 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1708 				       name, name_len, 1);
1709 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1710 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1711 						     key->objectid,
1712 						     key->offset, name,
1713 						     name_len, 1);
1714 	} else {
1715 		/* Corruption */
1716 		ret = -EINVAL;
1717 		goto out;
1718 	}
1719 	if (IS_ERR_OR_NULL(dst_di)) {
1720 		/* we need a sequence number to insert, so we only
1721 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1722 		 */
1723 		if (key->type != BTRFS_DIR_INDEX_KEY)
1724 			goto out;
1725 		goto insert;
1726 	}
1727 
1728 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1729 	/* the existing item matches the logged item */
1730 	if (found_key.objectid == log_key.objectid &&
1731 	    found_key.type == log_key.type &&
1732 	    found_key.offset == log_key.offset &&
1733 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1734 		update_size = false;
1735 		goto out;
1736 	}
1737 
1738 	/*
1739 	 * don't drop the conflicting directory entry if the inode
1740 	 * for the new entry doesn't exist
1741 	 */
1742 	if (!exists)
1743 		goto out;
1744 
1745 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1746 	if (ret)
1747 		goto out;
1748 
1749 	if (key->type == BTRFS_DIR_INDEX_KEY)
1750 		goto insert;
1751 out:
1752 	btrfs_release_path(path);
1753 	if (!ret && update_size) {
1754 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1755 		ret = btrfs_update_inode(trans, root, dir);
1756 	}
1757 	kfree(name);
1758 	iput(dir);
1759 	if (!ret && name_added)
1760 		ret = 1;
1761 	return ret;
1762 
1763 insert:
1764 	if (name_in_log_ref(root->log_root, name, name_len,
1765 			    key->objectid, log_key.objectid)) {
1766 		/* The dentry will be added later. */
1767 		ret = 0;
1768 		update_size = false;
1769 		goto out;
1770 	}
1771 	btrfs_release_path(path);
1772 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1773 			      name, name_len, &log_key);
1774 	if (ret && ret != -ENOENT && ret != -EEXIST)
1775 		goto out;
1776 	if (!ret)
1777 		name_added = true;
1778 	update_size = false;
1779 	ret = 0;
1780 	goto out;
1781 }
1782 
1783 /*
1784  * find all the names in a directory item and reconcile them into
1785  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1786  * one name in a directory item, but the same code gets used for
1787  * both directory index types
1788  */
1789 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1790 					struct btrfs_root *root,
1791 					struct btrfs_path *path,
1792 					struct extent_buffer *eb, int slot,
1793 					struct btrfs_key *key)
1794 {
1795 	int ret = 0;
1796 	u32 item_size = btrfs_item_size_nr(eb, slot);
1797 	struct btrfs_dir_item *di;
1798 	int name_len;
1799 	unsigned long ptr;
1800 	unsigned long ptr_end;
1801 	struct btrfs_path *fixup_path = NULL;
1802 
1803 	ptr = btrfs_item_ptr_offset(eb, slot);
1804 	ptr_end = ptr + item_size;
1805 	while (ptr < ptr_end) {
1806 		di = (struct btrfs_dir_item *)ptr;
1807 		if (verify_dir_item(root, eb, di))
1808 			return -EIO;
1809 		name_len = btrfs_dir_name_len(eb, di);
1810 		ret = replay_one_name(trans, root, path, eb, di, key);
1811 		if (ret < 0)
1812 			break;
1813 		ptr = (unsigned long)(di + 1);
1814 		ptr += name_len;
1815 
1816 		/*
1817 		 * If this entry refers to a non-directory (directories can not
1818 		 * have a link count > 1) and it was added in the transaction
1819 		 * that was not committed, make sure we fixup the link count of
1820 		 * the inode it the entry points to. Otherwise something like
1821 		 * the following would result in a directory pointing to an
1822 		 * inode with a wrong link that does not account for this dir
1823 		 * entry:
1824 		 *
1825 		 * mkdir testdir
1826 		 * touch testdir/foo
1827 		 * touch testdir/bar
1828 		 * sync
1829 		 *
1830 		 * ln testdir/bar testdir/bar_link
1831 		 * ln testdir/foo testdir/foo_link
1832 		 * xfs_io -c "fsync" testdir/bar
1833 		 *
1834 		 * <power failure>
1835 		 *
1836 		 * mount fs, log replay happens
1837 		 *
1838 		 * File foo would remain with a link count of 1 when it has two
1839 		 * entries pointing to it in the directory testdir. This would
1840 		 * make it impossible to ever delete the parent directory has
1841 		 * it would result in stale dentries that can never be deleted.
1842 		 */
1843 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1844 			struct btrfs_key di_key;
1845 
1846 			if (!fixup_path) {
1847 				fixup_path = btrfs_alloc_path();
1848 				if (!fixup_path) {
1849 					ret = -ENOMEM;
1850 					break;
1851 				}
1852 			}
1853 
1854 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1855 			ret = link_to_fixup_dir(trans, root, fixup_path,
1856 						di_key.objectid);
1857 			if (ret)
1858 				break;
1859 		}
1860 		ret = 0;
1861 	}
1862 	btrfs_free_path(fixup_path);
1863 	return ret;
1864 }
1865 
1866 /*
1867  * directory replay has two parts.  There are the standard directory
1868  * items in the log copied from the subvolume, and range items
1869  * created in the log while the subvolume was logged.
1870  *
1871  * The range items tell us which parts of the key space the log
1872  * is authoritative for.  During replay, if a key in the subvolume
1873  * directory is in a logged range item, but not actually in the log
1874  * that means it was deleted from the directory before the fsync
1875  * and should be removed.
1876  */
1877 static noinline int find_dir_range(struct btrfs_root *root,
1878 				   struct btrfs_path *path,
1879 				   u64 dirid, int key_type,
1880 				   u64 *start_ret, u64 *end_ret)
1881 {
1882 	struct btrfs_key key;
1883 	u64 found_end;
1884 	struct btrfs_dir_log_item *item;
1885 	int ret;
1886 	int nritems;
1887 
1888 	if (*start_ret == (u64)-1)
1889 		return 1;
1890 
1891 	key.objectid = dirid;
1892 	key.type = key_type;
1893 	key.offset = *start_ret;
1894 
1895 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1896 	if (ret < 0)
1897 		goto out;
1898 	if (ret > 0) {
1899 		if (path->slots[0] == 0)
1900 			goto out;
1901 		path->slots[0]--;
1902 	}
1903 	if (ret != 0)
1904 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1905 
1906 	if (key.type != key_type || key.objectid != dirid) {
1907 		ret = 1;
1908 		goto next;
1909 	}
1910 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1911 			      struct btrfs_dir_log_item);
1912 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1913 
1914 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1915 		ret = 0;
1916 		*start_ret = key.offset;
1917 		*end_ret = found_end;
1918 		goto out;
1919 	}
1920 	ret = 1;
1921 next:
1922 	/* check the next slot in the tree to see if it is a valid item */
1923 	nritems = btrfs_header_nritems(path->nodes[0]);
1924 	if (path->slots[0] >= nritems) {
1925 		ret = btrfs_next_leaf(root, path);
1926 		if (ret)
1927 			goto out;
1928 	} else {
1929 		path->slots[0]++;
1930 	}
1931 
1932 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1933 
1934 	if (key.type != key_type || key.objectid != dirid) {
1935 		ret = 1;
1936 		goto out;
1937 	}
1938 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1939 			      struct btrfs_dir_log_item);
1940 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1941 	*start_ret = key.offset;
1942 	*end_ret = found_end;
1943 	ret = 0;
1944 out:
1945 	btrfs_release_path(path);
1946 	return ret;
1947 }
1948 
1949 /*
1950  * this looks for a given directory item in the log.  If the directory
1951  * item is not in the log, the item is removed and the inode it points
1952  * to is unlinked
1953  */
1954 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1955 				      struct btrfs_root *root,
1956 				      struct btrfs_root *log,
1957 				      struct btrfs_path *path,
1958 				      struct btrfs_path *log_path,
1959 				      struct inode *dir,
1960 				      struct btrfs_key *dir_key)
1961 {
1962 	int ret;
1963 	struct extent_buffer *eb;
1964 	int slot;
1965 	u32 item_size;
1966 	struct btrfs_dir_item *di;
1967 	struct btrfs_dir_item *log_di;
1968 	int name_len;
1969 	unsigned long ptr;
1970 	unsigned long ptr_end;
1971 	char *name;
1972 	struct inode *inode;
1973 	struct btrfs_key location;
1974 
1975 again:
1976 	eb = path->nodes[0];
1977 	slot = path->slots[0];
1978 	item_size = btrfs_item_size_nr(eb, slot);
1979 	ptr = btrfs_item_ptr_offset(eb, slot);
1980 	ptr_end = ptr + item_size;
1981 	while (ptr < ptr_end) {
1982 		di = (struct btrfs_dir_item *)ptr;
1983 		if (verify_dir_item(root, eb, di)) {
1984 			ret = -EIO;
1985 			goto out;
1986 		}
1987 
1988 		name_len = btrfs_dir_name_len(eb, di);
1989 		name = kmalloc(name_len, GFP_NOFS);
1990 		if (!name) {
1991 			ret = -ENOMEM;
1992 			goto out;
1993 		}
1994 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1995 				  name_len);
1996 		log_di = NULL;
1997 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1998 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1999 						       dir_key->objectid,
2000 						       name, name_len, 0);
2001 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2002 			log_di = btrfs_lookup_dir_index_item(trans, log,
2003 						     log_path,
2004 						     dir_key->objectid,
2005 						     dir_key->offset,
2006 						     name, name_len, 0);
2007 		}
2008 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2009 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2010 			btrfs_release_path(path);
2011 			btrfs_release_path(log_path);
2012 			inode = read_one_inode(root, location.objectid);
2013 			if (!inode) {
2014 				kfree(name);
2015 				return -EIO;
2016 			}
2017 
2018 			ret = link_to_fixup_dir(trans, root,
2019 						path, location.objectid);
2020 			if (ret) {
2021 				kfree(name);
2022 				iput(inode);
2023 				goto out;
2024 			}
2025 
2026 			inc_nlink(inode);
2027 			ret = btrfs_unlink_inode(trans, root, dir, inode,
2028 						 name, name_len);
2029 			if (!ret)
2030 				ret = btrfs_run_delayed_items(trans, root);
2031 			kfree(name);
2032 			iput(inode);
2033 			if (ret)
2034 				goto out;
2035 
2036 			/* there might still be more names under this key
2037 			 * check and repeat if required
2038 			 */
2039 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2040 						0, 0);
2041 			if (ret == 0)
2042 				goto again;
2043 			ret = 0;
2044 			goto out;
2045 		} else if (IS_ERR(log_di)) {
2046 			kfree(name);
2047 			return PTR_ERR(log_di);
2048 		}
2049 		btrfs_release_path(log_path);
2050 		kfree(name);
2051 
2052 		ptr = (unsigned long)(di + 1);
2053 		ptr += name_len;
2054 	}
2055 	ret = 0;
2056 out:
2057 	btrfs_release_path(path);
2058 	btrfs_release_path(log_path);
2059 	return ret;
2060 }
2061 
2062 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2063 			      struct btrfs_root *root,
2064 			      struct btrfs_root *log,
2065 			      struct btrfs_path *path,
2066 			      const u64 ino)
2067 {
2068 	struct btrfs_key search_key;
2069 	struct btrfs_path *log_path;
2070 	int i;
2071 	int nritems;
2072 	int ret;
2073 
2074 	log_path = btrfs_alloc_path();
2075 	if (!log_path)
2076 		return -ENOMEM;
2077 
2078 	search_key.objectid = ino;
2079 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2080 	search_key.offset = 0;
2081 again:
2082 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2083 	if (ret < 0)
2084 		goto out;
2085 process_leaf:
2086 	nritems = btrfs_header_nritems(path->nodes[0]);
2087 	for (i = path->slots[0]; i < nritems; i++) {
2088 		struct btrfs_key key;
2089 		struct btrfs_dir_item *di;
2090 		struct btrfs_dir_item *log_di;
2091 		u32 total_size;
2092 		u32 cur;
2093 
2094 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2095 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2096 			ret = 0;
2097 			goto out;
2098 		}
2099 
2100 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2101 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2102 		cur = 0;
2103 		while (cur < total_size) {
2104 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2105 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2106 			u32 this_len = sizeof(*di) + name_len + data_len;
2107 			char *name;
2108 
2109 			name = kmalloc(name_len, GFP_NOFS);
2110 			if (!name) {
2111 				ret = -ENOMEM;
2112 				goto out;
2113 			}
2114 			read_extent_buffer(path->nodes[0], name,
2115 					   (unsigned long)(di + 1), name_len);
2116 
2117 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2118 						    name, name_len, 0);
2119 			btrfs_release_path(log_path);
2120 			if (!log_di) {
2121 				/* Doesn't exist in log tree, so delete it. */
2122 				btrfs_release_path(path);
2123 				di = btrfs_lookup_xattr(trans, root, path, ino,
2124 							name, name_len, -1);
2125 				kfree(name);
2126 				if (IS_ERR(di)) {
2127 					ret = PTR_ERR(di);
2128 					goto out;
2129 				}
2130 				ASSERT(di);
2131 				ret = btrfs_delete_one_dir_name(trans, root,
2132 								path, di);
2133 				if (ret)
2134 					goto out;
2135 				btrfs_release_path(path);
2136 				search_key = key;
2137 				goto again;
2138 			}
2139 			kfree(name);
2140 			if (IS_ERR(log_di)) {
2141 				ret = PTR_ERR(log_di);
2142 				goto out;
2143 			}
2144 			cur += this_len;
2145 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2146 		}
2147 	}
2148 	ret = btrfs_next_leaf(root, path);
2149 	if (ret > 0)
2150 		ret = 0;
2151 	else if (ret == 0)
2152 		goto process_leaf;
2153 out:
2154 	btrfs_free_path(log_path);
2155 	btrfs_release_path(path);
2156 	return ret;
2157 }
2158 
2159 
2160 /*
2161  * deletion replay happens before we copy any new directory items
2162  * out of the log or out of backreferences from inodes.  It
2163  * scans the log to find ranges of keys that log is authoritative for,
2164  * and then scans the directory to find items in those ranges that are
2165  * not present in the log.
2166  *
2167  * Anything we don't find in the log is unlinked and removed from the
2168  * directory.
2169  */
2170 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2171 				       struct btrfs_root *root,
2172 				       struct btrfs_root *log,
2173 				       struct btrfs_path *path,
2174 				       u64 dirid, int del_all)
2175 {
2176 	u64 range_start;
2177 	u64 range_end;
2178 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2179 	int ret = 0;
2180 	struct btrfs_key dir_key;
2181 	struct btrfs_key found_key;
2182 	struct btrfs_path *log_path;
2183 	struct inode *dir;
2184 
2185 	dir_key.objectid = dirid;
2186 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2187 	log_path = btrfs_alloc_path();
2188 	if (!log_path)
2189 		return -ENOMEM;
2190 
2191 	dir = read_one_inode(root, dirid);
2192 	/* it isn't an error if the inode isn't there, that can happen
2193 	 * because we replay the deletes before we copy in the inode item
2194 	 * from the log
2195 	 */
2196 	if (!dir) {
2197 		btrfs_free_path(log_path);
2198 		return 0;
2199 	}
2200 again:
2201 	range_start = 0;
2202 	range_end = 0;
2203 	while (1) {
2204 		if (del_all)
2205 			range_end = (u64)-1;
2206 		else {
2207 			ret = find_dir_range(log, path, dirid, key_type,
2208 					     &range_start, &range_end);
2209 			if (ret != 0)
2210 				break;
2211 		}
2212 
2213 		dir_key.offset = range_start;
2214 		while (1) {
2215 			int nritems;
2216 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2217 						0, 0);
2218 			if (ret < 0)
2219 				goto out;
2220 
2221 			nritems = btrfs_header_nritems(path->nodes[0]);
2222 			if (path->slots[0] >= nritems) {
2223 				ret = btrfs_next_leaf(root, path);
2224 				if (ret)
2225 					break;
2226 			}
2227 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2228 					      path->slots[0]);
2229 			if (found_key.objectid != dirid ||
2230 			    found_key.type != dir_key.type)
2231 				goto next_type;
2232 
2233 			if (found_key.offset > range_end)
2234 				break;
2235 
2236 			ret = check_item_in_log(trans, root, log, path,
2237 						log_path, dir,
2238 						&found_key);
2239 			if (ret)
2240 				goto out;
2241 			if (found_key.offset == (u64)-1)
2242 				break;
2243 			dir_key.offset = found_key.offset + 1;
2244 		}
2245 		btrfs_release_path(path);
2246 		if (range_end == (u64)-1)
2247 			break;
2248 		range_start = range_end + 1;
2249 	}
2250 
2251 next_type:
2252 	ret = 0;
2253 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2254 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2255 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2256 		btrfs_release_path(path);
2257 		goto again;
2258 	}
2259 out:
2260 	btrfs_release_path(path);
2261 	btrfs_free_path(log_path);
2262 	iput(dir);
2263 	return ret;
2264 }
2265 
2266 /*
2267  * the process_func used to replay items from the log tree.  This
2268  * gets called in two different stages.  The first stage just looks
2269  * for inodes and makes sure they are all copied into the subvolume.
2270  *
2271  * The second stage copies all the other item types from the log into
2272  * the subvolume.  The two stage approach is slower, but gets rid of
2273  * lots of complexity around inodes referencing other inodes that exist
2274  * only in the log (references come from either directory items or inode
2275  * back refs).
2276  */
2277 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2278 			     struct walk_control *wc, u64 gen)
2279 {
2280 	int nritems;
2281 	struct btrfs_path *path;
2282 	struct btrfs_root *root = wc->replay_dest;
2283 	struct btrfs_key key;
2284 	int level;
2285 	int i;
2286 	int ret;
2287 
2288 	ret = btrfs_read_buffer(eb, gen);
2289 	if (ret)
2290 		return ret;
2291 
2292 	level = btrfs_header_level(eb);
2293 
2294 	if (level != 0)
2295 		return 0;
2296 
2297 	path = btrfs_alloc_path();
2298 	if (!path)
2299 		return -ENOMEM;
2300 
2301 	nritems = btrfs_header_nritems(eb);
2302 	for (i = 0; i < nritems; i++) {
2303 		btrfs_item_key_to_cpu(eb, &key, i);
2304 
2305 		/* inode keys are done during the first stage */
2306 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2307 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2308 			struct btrfs_inode_item *inode_item;
2309 			u32 mode;
2310 
2311 			inode_item = btrfs_item_ptr(eb, i,
2312 					    struct btrfs_inode_item);
2313 			ret = replay_xattr_deletes(wc->trans, root, log,
2314 						   path, key.objectid);
2315 			if (ret)
2316 				break;
2317 			mode = btrfs_inode_mode(eb, inode_item);
2318 			if (S_ISDIR(mode)) {
2319 				ret = replay_dir_deletes(wc->trans,
2320 					 root, log, path, key.objectid, 0);
2321 				if (ret)
2322 					break;
2323 			}
2324 			ret = overwrite_item(wc->trans, root, path,
2325 					     eb, i, &key);
2326 			if (ret)
2327 				break;
2328 
2329 			/* for regular files, make sure corresponding
2330 			 * orhpan item exist. extents past the new EOF
2331 			 * will be truncated later by orphan cleanup.
2332 			 */
2333 			if (S_ISREG(mode)) {
2334 				ret = insert_orphan_item(wc->trans, root,
2335 							 key.objectid);
2336 				if (ret)
2337 					break;
2338 			}
2339 
2340 			ret = link_to_fixup_dir(wc->trans, root,
2341 						path, key.objectid);
2342 			if (ret)
2343 				break;
2344 		}
2345 
2346 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2347 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2348 			ret = replay_one_dir_item(wc->trans, root, path,
2349 						  eb, i, &key);
2350 			if (ret)
2351 				break;
2352 		}
2353 
2354 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2355 			continue;
2356 
2357 		/* these keys are simply copied */
2358 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2359 			ret = overwrite_item(wc->trans, root, path,
2360 					     eb, i, &key);
2361 			if (ret)
2362 				break;
2363 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2364 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2365 			ret = add_inode_ref(wc->trans, root, log, path,
2366 					    eb, i, &key);
2367 			if (ret && ret != -ENOENT)
2368 				break;
2369 			ret = 0;
2370 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2371 			ret = replay_one_extent(wc->trans, root, path,
2372 						eb, i, &key);
2373 			if (ret)
2374 				break;
2375 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2376 			ret = replay_one_dir_item(wc->trans, root, path,
2377 						  eb, i, &key);
2378 			if (ret)
2379 				break;
2380 		}
2381 	}
2382 	btrfs_free_path(path);
2383 	return ret;
2384 }
2385 
2386 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2387 				   struct btrfs_root *root,
2388 				   struct btrfs_path *path, int *level,
2389 				   struct walk_control *wc)
2390 {
2391 	u64 root_owner;
2392 	u64 bytenr;
2393 	u64 ptr_gen;
2394 	struct extent_buffer *next;
2395 	struct extent_buffer *cur;
2396 	struct extent_buffer *parent;
2397 	u32 blocksize;
2398 	int ret = 0;
2399 
2400 	WARN_ON(*level < 0);
2401 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2402 
2403 	while (*level > 0) {
2404 		WARN_ON(*level < 0);
2405 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2406 		cur = path->nodes[*level];
2407 
2408 		WARN_ON(btrfs_header_level(cur) != *level);
2409 
2410 		if (path->slots[*level] >=
2411 		    btrfs_header_nritems(cur))
2412 			break;
2413 
2414 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2415 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2416 		blocksize = root->nodesize;
2417 
2418 		parent = path->nodes[*level];
2419 		root_owner = btrfs_header_owner(parent);
2420 
2421 		next = btrfs_find_create_tree_block(root, bytenr);
2422 		if (!next)
2423 			return -ENOMEM;
2424 
2425 		if (*level == 1) {
2426 			ret = wc->process_func(root, next, wc, ptr_gen);
2427 			if (ret) {
2428 				free_extent_buffer(next);
2429 				return ret;
2430 			}
2431 
2432 			path->slots[*level]++;
2433 			if (wc->free) {
2434 				ret = btrfs_read_buffer(next, ptr_gen);
2435 				if (ret) {
2436 					free_extent_buffer(next);
2437 					return ret;
2438 				}
2439 
2440 				if (trans) {
2441 					btrfs_tree_lock(next);
2442 					btrfs_set_lock_blocking(next);
2443 					clean_tree_block(trans, root->fs_info,
2444 							next);
2445 					btrfs_wait_tree_block_writeback(next);
2446 					btrfs_tree_unlock(next);
2447 				}
2448 
2449 				WARN_ON(root_owner !=
2450 					BTRFS_TREE_LOG_OBJECTID);
2451 				ret = btrfs_free_and_pin_reserved_extent(root,
2452 							 bytenr, blocksize);
2453 				if (ret) {
2454 					free_extent_buffer(next);
2455 					return ret;
2456 				}
2457 			}
2458 			free_extent_buffer(next);
2459 			continue;
2460 		}
2461 		ret = btrfs_read_buffer(next, ptr_gen);
2462 		if (ret) {
2463 			free_extent_buffer(next);
2464 			return ret;
2465 		}
2466 
2467 		WARN_ON(*level <= 0);
2468 		if (path->nodes[*level-1])
2469 			free_extent_buffer(path->nodes[*level-1]);
2470 		path->nodes[*level-1] = next;
2471 		*level = btrfs_header_level(next);
2472 		path->slots[*level] = 0;
2473 		cond_resched();
2474 	}
2475 	WARN_ON(*level < 0);
2476 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2477 
2478 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2479 
2480 	cond_resched();
2481 	return 0;
2482 }
2483 
2484 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2485 				 struct btrfs_root *root,
2486 				 struct btrfs_path *path, int *level,
2487 				 struct walk_control *wc)
2488 {
2489 	u64 root_owner;
2490 	int i;
2491 	int slot;
2492 	int ret;
2493 
2494 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2495 		slot = path->slots[i];
2496 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2497 			path->slots[i]++;
2498 			*level = i;
2499 			WARN_ON(*level == 0);
2500 			return 0;
2501 		} else {
2502 			struct extent_buffer *parent;
2503 			if (path->nodes[*level] == root->node)
2504 				parent = path->nodes[*level];
2505 			else
2506 				parent = path->nodes[*level + 1];
2507 
2508 			root_owner = btrfs_header_owner(parent);
2509 			ret = wc->process_func(root, path->nodes[*level], wc,
2510 				 btrfs_header_generation(path->nodes[*level]));
2511 			if (ret)
2512 				return ret;
2513 
2514 			if (wc->free) {
2515 				struct extent_buffer *next;
2516 
2517 				next = path->nodes[*level];
2518 
2519 				if (trans) {
2520 					btrfs_tree_lock(next);
2521 					btrfs_set_lock_blocking(next);
2522 					clean_tree_block(trans, root->fs_info,
2523 							next);
2524 					btrfs_wait_tree_block_writeback(next);
2525 					btrfs_tree_unlock(next);
2526 				}
2527 
2528 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2529 				ret = btrfs_free_and_pin_reserved_extent(root,
2530 						path->nodes[*level]->start,
2531 						path->nodes[*level]->len);
2532 				if (ret)
2533 					return ret;
2534 			}
2535 			free_extent_buffer(path->nodes[*level]);
2536 			path->nodes[*level] = NULL;
2537 			*level = i + 1;
2538 		}
2539 	}
2540 	return 1;
2541 }
2542 
2543 /*
2544  * drop the reference count on the tree rooted at 'snap'.  This traverses
2545  * the tree freeing any blocks that have a ref count of zero after being
2546  * decremented.
2547  */
2548 static int walk_log_tree(struct btrfs_trans_handle *trans,
2549 			 struct btrfs_root *log, struct walk_control *wc)
2550 {
2551 	int ret = 0;
2552 	int wret;
2553 	int level;
2554 	struct btrfs_path *path;
2555 	int orig_level;
2556 
2557 	path = btrfs_alloc_path();
2558 	if (!path)
2559 		return -ENOMEM;
2560 
2561 	level = btrfs_header_level(log->node);
2562 	orig_level = level;
2563 	path->nodes[level] = log->node;
2564 	extent_buffer_get(log->node);
2565 	path->slots[level] = 0;
2566 
2567 	while (1) {
2568 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2569 		if (wret > 0)
2570 			break;
2571 		if (wret < 0) {
2572 			ret = wret;
2573 			goto out;
2574 		}
2575 
2576 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2577 		if (wret > 0)
2578 			break;
2579 		if (wret < 0) {
2580 			ret = wret;
2581 			goto out;
2582 		}
2583 	}
2584 
2585 	/* was the root node processed? if not, catch it here */
2586 	if (path->nodes[orig_level]) {
2587 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2588 			 btrfs_header_generation(path->nodes[orig_level]));
2589 		if (ret)
2590 			goto out;
2591 		if (wc->free) {
2592 			struct extent_buffer *next;
2593 
2594 			next = path->nodes[orig_level];
2595 
2596 			if (trans) {
2597 				btrfs_tree_lock(next);
2598 				btrfs_set_lock_blocking(next);
2599 				clean_tree_block(trans, log->fs_info, next);
2600 				btrfs_wait_tree_block_writeback(next);
2601 				btrfs_tree_unlock(next);
2602 			}
2603 
2604 			WARN_ON(log->root_key.objectid !=
2605 				BTRFS_TREE_LOG_OBJECTID);
2606 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2607 							 next->len);
2608 			if (ret)
2609 				goto out;
2610 		}
2611 	}
2612 
2613 out:
2614 	btrfs_free_path(path);
2615 	return ret;
2616 }
2617 
2618 /*
2619  * helper function to update the item for a given subvolumes log root
2620  * in the tree of log roots
2621  */
2622 static int update_log_root(struct btrfs_trans_handle *trans,
2623 			   struct btrfs_root *log)
2624 {
2625 	int ret;
2626 
2627 	if (log->log_transid == 1) {
2628 		/* insert root item on the first sync */
2629 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2630 				&log->root_key, &log->root_item);
2631 	} else {
2632 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2633 				&log->root_key, &log->root_item);
2634 	}
2635 	return ret;
2636 }
2637 
2638 static void wait_log_commit(struct btrfs_root *root, int transid)
2639 {
2640 	DEFINE_WAIT(wait);
2641 	int index = transid % 2;
2642 
2643 	/*
2644 	 * we only allow two pending log transactions at a time,
2645 	 * so we know that if ours is more than 2 older than the
2646 	 * current transaction, we're done
2647 	 */
2648 	do {
2649 		prepare_to_wait(&root->log_commit_wait[index],
2650 				&wait, TASK_UNINTERRUPTIBLE);
2651 		mutex_unlock(&root->log_mutex);
2652 
2653 		if (root->log_transid_committed < transid &&
2654 		    atomic_read(&root->log_commit[index]))
2655 			schedule();
2656 
2657 		finish_wait(&root->log_commit_wait[index], &wait);
2658 		mutex_lock(&root->log_mutex);
2659 	} while (root->log_transid_committed < transid &&
2660 		 atomic_read(&root->log_commit[index]));
2661 }
2662 
2663 static void wait_for_writer(struct btrfs_root *root)
2664 {
2665 	DEFINE_WAIT(wait);
2666 
2667 	while (atomic_read(&root->log_writers)) {
2668 		prepare_to_wait(&root->log_writer_wait,
2669 				&wait, TASK_UNINTERRUPTIBLE);
2670 		mutex_unlock(&root->log_mutex);
2671 		if (atomic_read(&root->log_writers))
2672 			schedule();
2673 		finish_wait(&root->log_writer_wait, &wait);
2674 		mutex_lock(&root->log_mutex);
2675 	}
2676 }
2677 
2678 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2679 					struct btrfs_log_ctx *ctx)
2680 {
2681 	if (!ctx)
2682 		return;
2683 
2684 	mutex_lock(&root->log_mutex);
2685 	list_del_init(&ctx->list);
2686 	mutex_unlock(&root->log_mutex);
2687 }
2688 
2689 /*
2690  * Invoked in log mutex context, or be sure there is no other task which
2691  * can access the list.
2692  */
2693 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2694 					     int index, int error)
2695 {
2696 	struct btrfs_log_ctx *ctx;
2697 
2698 	if (!error) {
2699 		INIT_LIST_HEAD(&root->log_ctxs[index]);
2700 		return;
2701 	}
2702 
2703 	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2704 		ctx->log_ret = error;
2705 
2706 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2707 }
2708 
2709 /*
2710  * btrfs_sync_log does sends a given tree log down to the disk and
2711  * updates the super blocks to record it.  When this call is done,
2712  * you know that any inodes previously logged are safely on disk only
2713  * if it returns 0.
2714  *
2715  * Any other return value means you need to call btrfs_commit_transaction.
2716  * Some of the edge cases for fsyncing directories that have had unlinks
2717  * or renames done in the past mean that sometimes the only safe
2718  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2719  * that has happened.
2720  */
2721 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2722 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2723 {
2724 	int index1;
2725 	int index2;
2726 	int mark;
2727 	int ret;
2728 	struct btrfs_root *log = root->log_root;
2729 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2730 	int log_transid = 0;
2731 	struct btrfs_log_ctx root_log_ctx;
2732 	struct blk_plug plug;
2733 
2734 	mutex_lock(&root->log_mutex);
2735 	log_transid = ctx->log_transid;
2736 	if (root->log_transid_committed >= log_transid) {
2737 		mutex_unlock(&root->log_mutex);
2738 		return ctx->log_ret;
2739 	}
2740 
2741 	index1 = log_transid % 2;
2742 	if (atomic_read(&root->log_commit[index1])) {
2743 		wait_log_commit(root, log_transid);
2744 		mutex_unlock(&root->log_mutex);
2745 		return ctx->log_ret;
2746 	}
2747 	ASSERT(log_transid == root->log_transid);
2748 	atomic_set(&root->log_commit[index1], 1);
2749 
2750 	/* wait for previous tree log sync to complete */
2751 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2752 		wait_log_commit(root, log_transid - 1);
2753 
2754 	while (1) {
2755 		int batch = atomic_read(&root->log_batch);
2756 		/* when we're on an ssd, just kick the log commit out */
2757 		if (!btrfs_test_opt(root, SSD) &&
2758 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2759 			mutex_unlock(&root->log_mutex);
2760 			schedule_timeout_uninterruptible(1);
2761 			mutex_lock(&root->log_mutex);
2762 		}
2763 		wait_for_writer(root);
2764 		if (batch == atomic_read(&root->log_batch))
2765 			break;
2766 	}
2767 
2768 	/* bail out if we need to do a full commit */
2769 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2770 		ret = -EAGAIN;
2771 		btrfs_free_logged_extents(log, log_transid);
2772 		mutex_unlock(&root->log_mutex);
2773 		goto out;
2774 	}
2775 
2776 	if (log_transid % 2 == 0)
2777 		mark = EXTENT_DIRTY;
2778 	else
2779 		mark = EXTENT_NEW;
2780 
2781 	/* we start IO on  all the marked extents here, but we don't actually
2782 	 * wait for them until later.
2783 	 */
2784 	blk_start_plug(&plug);
2785 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2786 	if (ret) {
2787 		blk_finish_plug(&plug);
2788 		btrfs_abort_transaction(trans, root, ret);
2789 		btrfs_free_logged_extents(log, log_transid);
2790 		btrfs_set_log_full_commit(root->fs_info, trans);
2791 		mutex_unlock(&root->log_mutex);
2792 		goto out;
2793 	}
2794 
2795 	btrfs_set_root_node(&log->root_item, log->node);
2796 
2797 	root->log_transid++;
2798 	log->log_transid = root->log_transid;
2799 	root->log_start_pid = 0;
2800 	/*
2801 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2802 	 * in their headers. new modifications of the log will be written to
2803 	 * new positions. so it's safe to allow log writers to go in.
2804 	 */
2805 	mutex_unlock(&root->log_mutex);
2806 
2807 	btrfs_init_log_ctx(&root_log_ctx);
2808 
2809 	mutex_lock(&log_root_tree->log_mutex);
2810 	atomic_inc(&log_root_tree->log_batch);
2811 	atomic_inc(&log_root_tree->log_writers);
2812 
2813 	index2 = log_root_tree->log_transid % 2;
2814 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2815 	root_log_ctx.log_transid = log_root_tree->log_transid;
2816 
2817 	mutex_unlock(&log_root_tree->log_mutex);
2818 
2819 	ret = update_log_root(trans, log);
2820 
2821 	mutex_lock(&log_root_tree->log_mutex);
2822 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2823 		smp_mb();
2824 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2825 			wake_up(&log_root_tree->log_writer_wait);
2826 	}
2827 
2828 	if (ret) {
2829 		if (!list_empty(&root_log_ctx.list))
2830 			list_del_init(&root_log_ctx.list);
2831 
2832 		blk_finish_plug(&plug);
2833 		btrfs_set_log_full_commit(root->fs_info, trans);
2834 
2835 		if (ret != -ENOSPC) {
2836 			btrfs_abort_transaction(trans, root, ret);
2837 			mutex_unlock(&log_root_tree->log_mutex);
2838 			goto out;
2839 		}
2840 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2841 		btrfs_free_logged_extents(log, log_transid);
2842 		mutex_unlock(&log_root_tree->log_mutex);
2843 		ret = -EAGAIN;
2844 		goto out;
2845 	}
2846 
2847 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2848 		blk_finish_plug(&plug);
2849 		mutex_unlock(&log_root_tree->log_mutex);
2850 		ret = root_log_ctx.log_ret;
2851 		goto out;
2852 	}
2853 
2854 	index2 = root_log_ctx.log_transid % 2;
2855 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2856 		blk_finish_plug(&plug);
2857 		ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2858 						mark);
2859 		btrfs_wait_logged_extents(trans, log, log_transid);
2860 		wait_log_commit(log_root_tree,
2861 				root_log_ctx.log_transid);
2862 		mutex_unlock(&log_root_tree->log_mutex);
2863 		if (!ret)
2864 			ret = root_log_ctx.log_ret;
2865 		goto out;
2866 	}
2867 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2868 	atomic_set(&log_root_tree->log_commit[index2], 1);
2869 
2870 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2871 		wait_log_commit(log_root_tree,
2872 				root_log_ctx.log_transid - 1);
2873 	}
2874 
2875 	wait_for_writer(log_root_tree);
2876 
2877 	/*
2878 	 * now that we've moved on to the tree of log tree roots,
2879 	 * check the full commit flag again
2880 	 */
2881 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2882 		blk_finish_plug(&plug);
2883 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2884 		btrfs_free_logged_extents(log, log_transid);
2885 		mutex_unlock(&log_root_tree->log_mutex);
2886 		ret = -EAGAIN;
2887 		goto out_wake_log_root;
2888 	}
2889 
2890 	ret = btrfs_write_marked_extents(log_root_tree,
2891 					 &log_root_tree->dirty_log_pages,
2892 					 EXTENT_DIRTY | EXTENT_NEW);
2893 	blk_finish_plug(&plug);
2894 	if (ret) {
2895 		btrfs_set_log_full_commit(root->fs_info, trans);
2896 		btrfs_abort_transaction(trans, root, ret);
2897 		btrfs_free_logged_extents(log, log_transid);
2898 		mutex_unlock(&log_root_tree->log_mutex);
2899 		goto out_wake_log_root;
2900 	}
2901 	ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2902 	if (!ret)
2903 		ret = btrfs_wait_marked_extents(log_root_tree,
2904 						&log_root_tree->dirty_log_pages,
2905 						EXTENT_NEW | EXTENT_DIRTY);
2906 	if (ret) {
2907 		btrfs_set_log_full_commit(root->fs_info, trans);
2908 		btrfs_free_logged_extents(log, log_transid);
2909 		mutex_unlock(&log_root_tree->log_mutex);
2910 		goto out_wake_log_root;
2911 	}
2912 	btrfs_wait_logged_extents(trans, log, log_transid);
2913 
2914 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2915 				log_root_tree->node->start);
2916 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2917 				btrfs_header_level(log_root_tree->node));
2918 
2919 	log_root_tree->log_transid++;
2920 	mutex_unlock(&log_root_tree->log_mutex);
2921 
2922 	/*
2923 	 * nobody else is going to jump in and write the the ctree
2924 	 * super here because the log_commit atomic below is protecting
2925 	 * us.  We must be called with a transaction handle pinning
2926 	 * the running transaction open, so a full commit can't hop
2927 	 * in and cause problems either.
2928 	 */
2929 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2930 	if (ret) {
2931 		btrfs_set_log_full_commit(root->fs_info, trans);
2932 		btrfs_abort_transaction(trans, root, ret);
2933 		goto out_wake_log_root;
2934 	}
2935 
2936 	mutex_lock(&root->log_mutex);
2937 	if (root->last_log_commit < log_transid)
2938 		root->last_log_commit = log_transid;
2939 	mutex_unlock(&root->log_mutex);
2940 
2941 out_wake_log_root:
2942 	/*
2943 	 * We needn't get log_mutex here because we are sure all
2944 	 * the other tasks are blocked.
2945 	 */
2946 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2947 
2948 	mutex_lock(&log_root_tree->log_mutex);
2949 	log_root_tree->log_transid_committed++;
2950 	atomic_set(&log_root_tree->log_commit[index2], 0);
2951 	mutex_unlock(&log_root_tree->log_mutex);
2952 
2953 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2954 		wake_up(&log_root_tree->log_commit_wait[index2]);
2955 out:
2956 	/* See above. */
2957 	btrfs_remove_all_log_ctxs(root, index1, ret);
2958 
2959 	mutex_lock(&root->log_mutex);
2960 	root->log_transid_committed++;
2961 	atomic_set(&root->log_commit[index1], 0);
2962 	mutex_unlock(&root->log_mutex);
2963 
2964 	if (waitqueue_active(&root->log_commit_wait[index1]))
2965 		wake_up(&root->log_commit_wait[index1]);
2966 	return ret;
2967 }
2968 
2969 static void free_log_tree(struct btrfs_trans_handle *trans,
2970 			  struct btrfs_root *log)
2971 {
2972 	int ret;
2973 	u64 start;
2974 	u64 end;
2975 	struct walk_control wc = {
2976 		.free = 1,
2977 		.process_func = process_one_buffer
2978 	};
2979 
2980 	ret = walk_log_tree(trans, log, &wc);
2981 	/* I don't think this can happen but just in case */
2982 	if (ret)
2983 		btrfs_abort_transaction(trans, log, ret);
2984 
2985 	while (1) {
2986 		ret = find_first_extent_bit(&log->dirty_log_pages,
2987 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2988 				NULL);
2989 		if (ret)
2990 			break;
2991 
2992 		clear_extent_bits(&log->dirty_log_pages, start, end,
2993 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2994 	}
2995 
2996 	/*
2997 	 * We may have short-circuited the log tree with the full commit logic
2998 	 * and left ordered extents on our list, so clear these out to keep us
2999 	 * from leaking inodes and memory.
3000 	 */
3001 	btrfs_free_logged_extents(log, 0);
3002 	btrfs_free_logged_extents(log, 1);
3003 
3004 	free_extent_buffer(log->node);
3005 	kfree(log);
3006 }
3007 
3008 /*
3009  * free all the extents used by the tree log.  This should be called
3010  * at commit time of the full transaction
3011  */
3012 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3013 {
3014 	if (root->log_root) {
3015 		free_log_tree(trans, root->log_root);
3016 		root->log_root = NULL;
3017 	}
3018 	return 0;
3019 }
3020 
3021 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3022 			     struct btrfs_fs_info *fs_info)
3023 {
3024 	if (fs_info->log_root_tree) {
3025 		free_log_tree(trans, fs_info->log_root_tree);
3026 		fs_info->log_root_tree = NULL;
3027 	}
3028 	return 0;
3029 }
3030 
3031 /*
3032  * If both a file and directory are logged, and unlinks or renames are
3033  * mixed in, we have a few interesting corners:
3034  *
3035  * create file X in dir Y
3036  * link file X to X.link in dir Y
3037  * fsync file X
3038  * unlink file X but leave X.link
3039  * fsync dir Y
3040  *
3041  * After a crash we would expect only X.link to exist.  But file X
3042  * didn't get fsync'd again so the log has back refs for X and X.link.
3043  *
3044  * We solve this by removing directory entries and inode backrefs from the
3045  * log when a file that was logged in the current transaction is
3046  * unlinked.  Any later fsync will include the updated log entries, and
3047  * we'll be able to reconstruct the proper directory items from backrefs.
3048  *
3049  * This optimizations allows us to avoid relogging the entire inode
3050  * or the entire directory.
3051  */
3052 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3053 				 struct btrfs_root *root,
3054 				 const char *name, int name_len,
3055 				 struct inode *dir, u64 index)
3056 {
3057 	struct btrfs_root *log;
3058 	struct btrfs_dir_item *di;
3059 	struct btrfs_path *path;
3060 	int ret;
3061 	int err = 0;
3062 	int bytes_del = 0;
3063 	u64 dir_ino = btrfs_ino(dir);
3064 
3065 	if (BTRFS_I(dir)->logged_trans < trans->transid)
3066 		return 0;
3067 
3068 	ret = join_running_log_trans(root);
3069 	if (ret)
3070 		return 0;
3071 
3072 	mutex_lock(&BTRFS_I(dir)->log_mutex);
3073 
3074 	log = root->log_root;
3075 	path = btrfs_alloc_path();
3076 	if (!path) {
3077 		err = -ENOMEM;
3078 		goto out_unlock;
3079 	}
3080 
3081 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3082 				   name, name_len, -1);
3083 	if (IS_ERR(di)) {
3084 		err = PTR_ERR(di);
3085 		goto fail;
3086 	}
3087 	if (di) {
3088 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3089 		bytes_del += name_len;
3090 		if (ret) {
3091 			err = ret;
3092 			goto fail;
3093 		}
3094 	}
3095 	btrfs_release_path(path);
3096 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3097 					 index, name, name_len, -1);
3098 	if (IS_ERR(di)) {
3099 		err = PTR_ERR(di);
3100 		goto fail;
3101 	}
3102 	if (di) {
3103 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3104 		bytes_del += name_len;
3105 		if (ret) {
3106 			err = ret;
3107 			goto fail;
3108 		}
3109 	}
3110 
3111 	/* update the directory size in the log to reflect the names
3112 	 * we have removed
3113 	 */
3114 	if (bytes_del) {
3115 		struct btrfs_key key;
3116 
3117 		key.objectid = dir_ino;
3118 		key.offset = 0;
3119 		key.type = BTRFS_INODE_ITEM_KEY;
3120 		btrfs_release_path(path);
3121 
3122 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3123 		if (ret < 0) {
3124 			err = ret;
3125 			goto fail;
3126 		}
3127 		if (ret == 0) {
3128 			struct btrfs_inode_item *item;
3129 			u64 i_size;
3130 
3131 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3132 					      struct btrfs_inode_item);
3133 			i_size = btrfs_inode_size(path->nodes[0], item);
3134 			if (i_size > bytes_del)
3135 				i_size -= bytes_del;
3136 			else
3137 				i_size = 0;
3138 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3139 			btrfs_mark_buffer_dirty(path->nodes[0]);
3140 		} else
3141 			ret = 0;
3142 		btrfs_release_path(path);
3143 	}
3144 fail:
3145 	btrfs_free_path(path);
3146 out_unlock:
3147 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
3148 	if (ret == -ENOSPC) {
3149 		btrfs_set_log_full_commit(root->fs_info, trans);
3150 		ret = 0;
3151 	} else if (ret < 0)
3152 		btrfs_abort_transaction(trans, root, ret);
3153 
3154 	btrfs_end_log_trans(root);
3155 
3156 	return err;
3157 }
3158 
3159 /* see comments for btrfs_del_dir_entries_in_log */
3160 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3161 			       struct btrfs_root *root,
3162 			       const char *name, int name_len,
3163 			       struct inode *inode, u64 dirid)
3164 {
3165 	struct btrfs_root *log;
3166 	u64 index;
3167 	int ret;
3168 
3169 	if (BTRFS_I(inode)->logged_trans < trans->transid)
3170 		return 0;
3171 
3172 	ret = join_running_log_trans(root);
3173 	if (ret)
3174 		return 0;
3175 	log = root->log_root;
3176 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3177 
3178 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3179 				  dirid, &index);
3180 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3181 	if (ret == -ENOSPC) {
3182 		btrfs_set_log_full_commit(root->fs_info, trans);
3183 		ret = 0;
3184 	} else if (ret < 0 && ret != -ENOENT)
3185 		btrfs_abort_transaction(trans, root, ret);
3186 	btrfs_end_log_trans(root);
3187 
3188 	return ret;
3189 }
3190 
3191 /*
3192  * creates a range item in the log for 'dirid'.  first_offset and
3193  * last_offset tell us which parts of the key space the log should
3194  * be considered authoritative for.
3195  */
3196 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3197 				       struct btrfs_root *log,
3198 				       struct btrfs_path *path,
3199 				       int key_type, u64 dirid,
3200 				       u64 first_offset, u64 last_offset)
3201 {
3202 	int ret;
3203 	struct btrfs_key key;
3204 	struct btrfs_dir_log_item *item;
3205 
3206 	key.objectid = dirid;
3207 	key.offset = first_offset;
3208 	if (key_type == BTRFS_DIR_ITEM_KEY)
3209 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3210 	else
3211 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3212 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3213 	if (ret)
3214 		return ret;
3215 
3216 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3217 			      struct btrfs_dir_log_item);
3218 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3219 	btrfs_mark_buffer_dirty(path->nodes[0]);
3220 	btrfs_release_path(path);
3221 	return 0;
3222 }
3223 
3224 /*
3225  * log all the items included in the current transaction for a given
3226  * directory.  This also creates the range items in the log tree required
3227  * to replay anything deleted before the fsync
3228  */
3229 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3230 			  struct btrfs_root *root, struct inode *inode,
3231 			  struct btrfs_path *path,
3232 			  struct btrfs_path *dst_path, int key_type,
3233 			  struct btrfs_log_ctx *ctx,
3234 			  u64 min_offset, u64 *last_offset_ret)
3235 {
3236 	struct btrfs_key min_key;
3237 	struct btrfs_root *log = root->log_root;
3238 	struct extent_buffer *src;
3239 	int err = 0;
3240 	int ret;
3241 	int i;
3242 	int nritems;
3243 	u64 first_offset = min_offset;
3244 	u64 last_offset = (u64)-1;
3245 	u64 ino = btrfs_ino(inode);
3246 
3247 	log = root->log_root;
3248 
3249 	min_key.objectid = ino;
3250 	min_key.type = key_type;
3251 	min_key.offset = min_offset;
3252 
3253 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3254 
3255 	/*
3256 	 * we didn't find anything from this transaction, see if there
3257 	 * is anything at all
3258 	 */
3259 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3260 		min_key.objectid = ino;
3261 		min_key.type = key_type;
3262 		min_key.offset = (u64)-1;
3263 		btrfs_release_path(path);
3264 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3265 		if (ret < 0) {
3266 			btrfs_release_path(path);
3267 			return ret;
3268 		}
3269 		ret = btrfs_previous_item(root, path, ino, key_type);
3270 
3271 		/* if ret == 0 there are items for this type,
3272 		 * create a range to tell us the last key of this type.
3273 		 * otherwise, there are no items in this directory after
3274 		 * *min_offset, and we create a range to indicate that.
3275 		 */
3276 		if (ret == 0) {
3277 			struct btrfs_key tmp;
3278 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3279 					      path->slots[0]);
3280 			if (key_type == tmp.type)
3281 				first_offset = max(min_offset, tmp.offset) + 1;
3282 		}
3283 		goto done;
3284 	}
3285 
3286 	/* go backward to find any previous key */
3287 	ret = btrfs_previous_item(root, path, ino, key_type);
3288 	if (ret == 0) {
3289 		struct btrfs_key tmp;
3290 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3291 		if (key_type == tmp.type) {
3292 			first_offset = tmp.offset;
3293 			ret = overwrite_item(trans, log, dst_path,
3294 					     path->nodes[0], path->slots[0],
3295 					     &tmp);
3296 			if (ret) {
3297 				err = ret;
3298 				goto done;
3299 			}
3300 		}
3301 	}
3302 	btrfs_release_path(path);
3303 
3304 	/* find the first key from this transaction again */
3305 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3306 	if (WARN_ON(ret != 0))
3307 		goto done;
3308 
3309 	/*
3310 	 * we have a block from this transaction, log every item in it
3311 	 * from our directory
3312 	 */
3313 	while (1) {
3314 		struct btrfs_key tmp;
3315 		src = path->nodes[0];
3316 		nritems = btrfs_header_nritems(src);
3317 		for (i = path->slots[0]; i < nritems; i++) {
3318 			struct btrfs_dir_item *di;
3319 
3320 			btrfs_item_key_to_cpu(src, &min_key, i);
3321 
3322 			if (min_key.objectid != ino || min_key.type != key_type)
3323 				goto done;
3324 			ret = overwrite_item(trans, log, dst_path, src, i,
3325 					     &min_key);
3326 			if (ret) {
3327 				err = ret;
3328 				goto done;
3329 			}
3330 
3331 			/*
3332 			 * We must make sure that when we log a directory entry,
3333 			 * the corresponding inode, after log replay, has a
3334 			 * matching link count. For example:
3335 			 *
3336 			 * touch foo
3337 			 * mkdir mydir
3338 			 * sync
3339 			 * ln foo mydir/bar
3340 			 * xfs_io -c "fsync" mydir
3341 			 * <crash>
3342 			 * <mount fs and log replay>
3343 			 *
3344 			 * Would result in a fsync log that when replayed, our
3345 			 * file inode would have a link count of 1, but we get
3346 			 * two directory entries pointing to the same inode.
3347 			 * After removing one of the names, it would not be
3348 			 * possible to remove the other name, which resulted
3349 			 * always in stale file handle errors, and would not
3350 			 * be possible to rmdir the parent directory, since
3351 			 * its i_size could never decrement to the value
3352 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3353 			 */
3354 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3355 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3356 			if (ctx &&
3357 			    (btrfs_dir_transid(src, di) == trans->transid ||
3358 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3359 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3360 				ctx->log_new_dentries = true;
3361 		}
3362 		path->slots[0] = nritems;
3363 
3364 		/*
3365 		 * look ahead to the next item and see if it is also
3366 		 * from this directory and from this transaction
3367 		 */
3368 		ret = btrfs_next_leaf(root, path);
3369 		if (ret == 1) {
3370 			last_offset = (u64)-1;
3371 			goto done;
3372 		}
3373 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3374 		if (tmp.objectid != ino || tmp.type != key_type) {
3375 			last_offset = (u64)-1;
3376 			goto done;
3377 		}
3378 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3379 			ret = overwrite_item(trans, log, dst_path,
3380 					     path->nodes[0], path->slots[0],
3381 					     &tmp);
3382 			if (ret)
3383 				err = ret;
3384 			else
3385 				last_offset = tmp.offset;
3386 			goto done;
3387 		}
3388 	}
3389 done:
3390 	btrfs_release_path(path);
3391 	btrfs_release_path(dst_path);
3392 
3393 	if (err == 0) {
3394 		*last_offset_ret = last_offset;
3395 		/*
3396 		 * insert the log range keys to indicate where the log
3397 		 * is valid
3398 		 */
3399 		ret = insert_dir_log_key(trans, log, path, key_type,
3400 					 ino, first_offset, last_offset);
3401 		if (ret)
3402 			err = ret;
3403 	}
3404 	return err;
3405 }
3406 
3407 /*
3408  * logging directories is very similar to logging inodes, We find all the items
3409  * from the current transaction and write them to the log.
3410  *
3411  * The recovery code scans the directory in the subvolume, and if it finds a
3412  * key in the range logged that is not present in the log tree, then it means
3413  * that dir entry was unlinked during the transaction.
3414  *
3415  * In order for that scan to work, we must include one key smaller than
3416  * the smallest logged by this transaction and one key larger than the largest
3417  * key logged by this transaction.
3418  */
3419 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3420 			  struct btrfs_root *root, struct inode *inode,
3421 			  struct btrfs_path *path,
3422 			  struct btrfs_path *dst_path,
3423 			  struct btrfs_log_ctx *ctx)
3424 {
3425 	u64 min_key;
3426 	u64 max_key;
3427 	int ret;
3428 	int key_type = BTRFS_DIR_ITEM_KEY;
3429 
3430 again:
3431 	min_key = 0;
3432 	max_key = 0;
3433 	while (1) {
3434 		ret = log_dir_items(trans, root, inode, path,
3435 				    dst_path, key_type, ctx, min_key,
3436 				    &max_key);
3437 		if (ret)
3438 			return ret;
3439 		if (max_key == (u64)-1)
3440 			break;
3441 		min_key = max_key + 1;
3442 	}
3443 
3444 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3445 		key_type = BTRFS_DIR_INDEX_KEY;
3446 		goto again;
3447 	}
3448 	return 0;
3449 }
3450 
3451 /*
3452  * a helper function to drop items from the log before we relog an
3453  * inode.  max_key_type indicates the highest item type to remove.
3454  * This cannot be run for file data extents because it does not
3455  * free the extents they point to.
3456  */
3457 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3458 				  struct btrfs_root *log,
3459 				  struct btrfs_path *path,
3460 				  u64 objectid, int max_key_type)
3461 {
3462 	int ret;
3463 	struct btrfs_key key;
3464 	struct btrfs_key found_key;
3465 	int start_slot;
3466 
3467 	key.objectid = objectid;
3468 	key.type = max_key_type;
3469 	key.offset = (u64)-1;
3470 
3471 	while (1) {
3472 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3473 		BUG_ON(ret == 0); /* Logic error */
3474 		if (ret < 0)
3475 			break;
3476 
3477 		if (path->slots[0] == 0)
3478 			break;
3479 
3480 		path->slots[0]--;
3481 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3482 				      path->slots[0]);
3483 
3484 		if (found_key.objectid != objectid)
3485 			break;
3486 
3487 		found_key.offset = 0;
3488 		found_key.type = 0;
3489 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3490 				       &start_slot);
3491 
3492 		ret = btrfs_del_items(trans, log, path, start_slot,
3493 				      path->slots[0] - start_slot + 1);
3494 		/*
3495 		 * If start slot isn't 0 then we don't need to re-search, we've
3496 		 * found the last guy with the objectid in this tree.
3497 		 */
3498 		if (ret || start_slot != 0)
3499 			break;
3500 		btrfs_release_path(path);
3501 	}
3502 	btrfs_release_path(path);
3503 	if (ret > 0)
3504 		ret = 0;
3505 	return ret;
3506 }
3507 
3508 static void fill_inode_item(struct btrfs_trans_handle *trans,
3509 			    struct extent_buffer *leaf,
3510 			    struct btrfs_inode_item *item,
3511 			    struct inode *inode, int log_inode_only,
3512 			    u64 logged_isize)
3513 {
3514 	struct btrfs_map_token token;
3515 
3516 	btrfs_init_map_token(&token);
3517 
3518 	if (log_inode_only) {
3519 		/* set the generation to zero so the recover code
3520 		 * can tell the difference between an logging
3521 		 * just to say 'this inode exists' and a logging
3522 		 * to say 'update this inode with these values'
3523 		 */
3524 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3525 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3526 	} else {
3527 		btrfs_set_token_inode_generation(leaf, item,
3528 						 BTRFS_I(inode)->generation,
3529 						 &token);
3530 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3531 	}
3532 
3533 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3534 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3535 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3536 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3537 
3538 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3539 				     inode->i_atime.tv_sec, &token);
3540 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3541 				      inode->i_atime.tv_nsec, &token);
3542 
3543 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3544 				     inode->i_mtime.tv_sec, &token);
3545 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3546 				      inode->i_mtime.tv_nsec, &token);
3547 
3548 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3549 				     inode->i_ctime.tv_sec, &token);
3550 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3551 				      inode->i_ctime.tv_nsec, &token);
3552 
3553 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3554 				     &token);
3555 
3556 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3557 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3558 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3559 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3560 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3561 }
3562 
3563 static int log_inode_item(struct btrfs_trans_handle *trans,
3564 			  struct btrfs_root *log, struct btrfs_path *path,
3565 			  struct inode *inode)
3566 {
3567 	struct btrfs_inode_item *inode_item;
3568 	int ret;
3569 
3570 	ret = btrfs_insert_empty_item(trans, log, path,
3571 				      &BTRFS_I(inode)->location,
3572 				      sizeof(*inode_item));
3573 	if (ret && ret != -EEXIST)
3574 		return ret;
3575 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3576 				    struct btrfs_inode_item);
3577 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3578 	btrfs_release_path(path);
3579 	return 0;
3580 }
3581 
3582 static noinline int copy_items(struct btrfs_trans_handle *trans,
3583 			       struct inode *inode,
3584 			       struct btrfs_path *dst_path,
3585 			       struct btrfs_path *src_path, u64 *last_extent,
3586 			       int start_slot, int nr, int inode_only,
3587 			       u64 logged_isize)
3588 {
3589 	unsigned long src_offset;
3590 	unsigned long dst_offset;
3591 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3592 	struct btrfs_file_extent_item *extent;
3593 	struct btrfs_inode_item *inode_item;
3594 	struct extent_buffer *src = src_path->nodes[0];
3595 	struct btrfs_key first_key, last_key, key;
3596 	int ret;
3597 	struct btrfs_key *ins_keys;
3598 	u32 *ins_sizes;
3599 	char *ins_data;
3600 	int i;
3601 	struct list_head ordered_sums;
3602 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3603 	bool has_extents = false;
3604 	bool need_find_last_extent = true;
3605 	bool done = false;
3606 
3607 	INIT_LIST_HEAD(&ordered_sums);
3608 
3609 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3610 			   nr * sizeof(u32), GFP_NOFS);
3611 	if (!ins_data)
3612 		return -ENOMEM;
3613 
3614 	first_key.objectid = (u64)-1;
3615 
3616 	ins_sizes = (u32 *)ins_data;
3617 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3618 
3619 	for (i = 0; i < nr; i++) {
3620 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3621 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3622 	}
3623 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3624 				       ins_keys, ins_sizes, nr);
3625 	if (ret) {
3626 		kfree(ins_data);
3627 		return ret;
3628 	}
3629 
3630 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3631 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3632 						   dst_path->slots[0]);
3633 
3634 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3635 
3636 		if ((i == (nr - 1)))
3637 			last_key = ins_keys[i];
3638 
3639 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3640 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3641 						    dst_path->slots[0],
3642 						    struct btrfs_inode_item);
3643 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3644 					inode, inode_only == LOG_INODE_EXISTS,
3645 					logged_isize);
3646 		} else {
3647 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3648 					   src_offset, ins_sizes[i]);
3649 		}
3650 
3651 		/*
3652 		 * We set need_find_last_extent here in case we know we were
3653 		 * processing other items and then walk into the first extent in
3654 		 * the inode.  If we don't hit an extent then nothing changes,
3655 		 * we'll do the last search the next time around.
3656 		 */
3657 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3658 			has_extents = true;
3659 			if (first_key.objectid == (u64)-1)
3660 				first_key = ins_keys[i];
3661 		} else {
3662 			need_find_last_extent = false;
3663 		}
3664 
3665 		/* take a reference on file data extents so that truncates
3666 		 * or deletes of this inode don't have to relog the inode
3667 		 * again
3668 		 */
3669 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3670 		    !skip_csum) {
3671 			int found_type;
3672 			extent = btrfs_item_ptr(src, start_slot + i,
3673 						struct btrfs_file_extent_item);
3674 
3675 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3676 				continue;
3677 
3678 			found_type = btrfs_file_extent_type(src, extent);
3679 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3680 				u64 ds, dl, cs, cl;
3681 				ds = btrfs_file_extent_disk_bytenr(src,
3682 								extent);
3683 				/* ds == 0 is a hole */
3684 				if (ds == 0)
3685 					continue;
3686 
3687 				dl = btrfs_file_extent_disk_num_bytes(src,
3688 								extent);
3689 				cs = btrfs_file_extent_offset(src, extent);
3690 				cl = btrfs_file_extent_num_bytes(src,
3691 								extent);
3692 				if (btrfs_file_extent_compression(src,
3693 								  extent)) {
3694 					cs = 0;
3695 					cl = dl;
3696 				}
3697 
3698 				ret = btrfs_lookup_csums_range(
3699 						log->fs_info->csum_root,
3700 						ds + cs, ds + cs + cl - 1,
3701 						&ordered_sums, 0);
3702 				if (ret) {
3703 					btrfs_release_path(dst_path);
3704 					kfree(ins_data);
3705 					return ret;
3706 				}
3707 			}
3708 		}
3709 	}
3710 
3711 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3712 	btrfs_release_path(dst_path);
3713 	kfree(ins_data);
3714 
3715 	/*
3716 	 * we have to do this after the loop above to avoid changing the
3717 	 * log tree while trying to change the log tree.
3718 	 */
3719 	ret = 0;
3720 	while (!list_empty(&ordered_sums)) {
3721 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3722 						   struct btrfs_ordered_sum,
3723 						   list);
3724 		if (!ret)
3725 			ret = btrfs_csum_file_blocks(trans, log, sums);
3726 		list_del(&sums->list);
3727 		kfree(sums);
3728 	}
3729 
3730 	if (!has_extents)
3731 		return ret;
3732 
3733 	if (need_find_last_extent && *last_extent == first_key.offset) {
3734 		/*
3735 		 * We don't have any leafs between our current one and the one
3736 		 * we processed before that can have file extent items for our
3737 		 * inode (and have a generation number smaller than our current
3738 		 * transaction id).
3739 		 */
3740 		need_find_last_extent = false;
3741 	}
3742 
3743 	/*
3744 	 * Because we use btrfs_search_forward we could skip leaves that were
3745 	 * not modified and then assume *last_extent is valid when it really
3746 	 * isn't.  So back up to the previous leaf and read the end of the last
3747 	 * extent before we go and fill in holes.
3748 	 */
3749 	if (need_find_last_extent) {
3750 		u64 len;
3751 
3752 		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3753 		if (ret < 0)
3754 			return ret;
3755 		if (ret)
3756 			goto fill_holes;
3757 		if (src_path->slots[0])
3758 			src_path->slots[0]--;
3759 		src = src_path->nodes[0];
3760 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3761 		if (key.objectid != btrfs_ino(inode) ||
3762 		    key.type != BTRFS_EXTENT_DATA_KEY)
3763 			goto fill_holes;
3764 		extent = btrfs_item_ptr(src, src_path->slots[0],
3765 					struct btrfs_file_extent_item);
3766 		if (btrfs_file_extent_type(src, extent) ==
3767 		    BTRFS_FILE_EXTENT_INLINE) {
3768 			len = btrfs_file_extent_inline_len(src,
3769 							   src_path->slots[0],
3770 							   extent);
3771 			*last_extent = ALIGN(key.offset + len,
3772 					     log->sectorsize);
3773 		} else {
3774 			len = btrfs_file_extent_num_bytes(src, extent);
3775 			*last_extent = key.offset + len;
3776 		}
3777 	}
3778 fill_holes:
3779 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3780 	 * things could have happened
3781 	 *
3782 	 * 1) A merge could have happened, so we could currently be on a leaf
3783 	 * that holds what we were copying in the first place.
3784 	 * 2) A split could have happened, and now not all of the items we want
3785 	 * are on the same leaf.
3786 	 *
3787 	 * So we need to adjust how we search for holes, we need to drop the
3788 	 * path and re-search for the first extent key we found, and then walk
3789 	 * forward until we hit the last one we copied.
3790 	 */
3791 	if (need_find_last_extent) {
3792 		/* btrfs_prev_leaf could return 1 without releasing the path */
3793 		btrfs_release_path(src_path);
3794 		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3795 					src_path, 0, 0);
3796 		if (ret < 0)
3797 			return ret;
3798 		ASSERT(ret == 0);
3799 		src = src_path->nodes[0];
3800 		i = src_path->slots[0];
3801 	} else {
3802 		i = start_slot;
3803 	}
3804 
3805 	/*
3806 	 * Ok so here we need to go through and fill in any holes we may have
3807 	 * to make sure that holes are punched for those areas in case they had
3808 	 * extents previously.
3809 	 */
3810 	while (!done) {
3811 		u64 offset, len;
3812 		u64 extent_end;
3813 
3814 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3815 			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3816 			if (ret < 0)
3817 				return ret;
3818 			ASSERT(ret == 0);
3819 			src = src_path->nodes[0];
3820 			i = 0;
3821 		}
3822 
3823 		btrfs_item_key_to_cpu(src, &key, i);
3824 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3825 			done = true;
3826 		if (key.objectid != btrfs_ino(inode) ||
3827 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3828 			i++;
3829 			continue;
3830 		}
3831 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3832 		if (btrfs_file_extent_type(src, extent) ==
3833 		    BTRFS_FILE_EXTENT_INLINE) {
3834 			len = btrfs_file_extent_inline_len(src, i, extent);
3835 			extent_end = ALIGN(key.offset + len, log->sectorsize);
3836 		} else {
3837 			len = btrfs_file_extent_num_bytes(src, extent);
3838 			extent_end = key.offset + len;
3839 		}
3840 		i++;
3841 
3842 		if (*last_extent == key.offset) {
3843 			*last_extent = extent_end;
3844 			continue;
3845 		}
3846 		offset = *last_extent;
3847 		len = key.offset - *last_extent;
3848 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3849 					       offset, 0, 0, len, 0, len, 0,
3850 					       0, 0);
3851 		if (ret)
3852 			break;
3853 		*last_extent = extent_end;
3854 	}
3855 	/*
3856 	 * Need to let the callers know we dropped the path so they should
3857 	 * re-search.
3858 	 */
3859 	if (!ret && need_find_last_extent)
3860 		ret = 1;
3861 	return ret;
3862 }
3863 
3864 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3865 {
3866 	struct extent_map *em1, *em2;
3867 
3868 	em1 = list_entry(a, struct extent_map, list);
3869 	em2 = list_entry(b, struct extent_map, list);
3870 
3871 	if (em1->start < em2->start)
3872 		return -1;
3873 	else if (em1->start > em2->start)
3874 		return 1;
3875 	return 0;
3876 }
3877 
3878 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3879 				struct inode *inode,
3880 				struct btrfs_root *root,
3881 				const struct extent_map *em,
3882 				const struct list_head *logged_list,
3883 				bool *ordered_io_error)
3884 {
3885 	struct btrfs_ordered_extent *ordered;
3886 	struct btrfs_root *log = root->log_root;
3887 	u64 mod_start = em->mod_start;
3888 	u64 mod_len = em->mod_len;
3889 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3890 	u64 csum_offset;
3891 	u64 csum_len;
3892 	LIST_HEAD(ordered_sums);
3893 	int ret = 0;
3894 
3895 	*ordered_io_error = false;
3896 
3897 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3898 	    em->block_start == EXTENT_MAP_HOLE)
3899 		return 0;
3900 
3901 	/*
3902 	 * Wait far any ordered extent that covers our extent map. If it
3903 	 * finishes without an error, first check and see if our csums are on
3904 	 * our outstanding ordered extents.
3905 	 */
3906 	list_for_each_entry(ordered, logged_list, log_list) {
3907 		struct btrfs_ordered_sum *sum;
3908 
3909 		if (!mod_len)
3910 			break;
3911 
3912 		if (ordered->file_offset + ordered->len <= mod_start ||
3913 		    mod_start + mod_len <= ordered->file_offset)
3914 			continue;
3915 
3916 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3917 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3918 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3919 			const u64 start = ordered->file_offset;
3920 			const u64 end = ordered->file_offset + ordered->len - 1;
3921 
3922 			WARN_ON(ordered->inode != inode);
3923 			filemap_fdatawrite_range(inode->i_mapping, start, end);
3924 		}
3925 
3926 		wait_event(ordered->wait,
3927 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3928 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3929 
3930 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3931 			/*
3932 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3933 			 * i_mapping flags, so that the next fsync won't get
3934 			 * an outdated io error too.
3935 			 */
3936 			btrfs_inode_check_errors(inode);
3937 			*ordered_io_error = true;
3938 			break;
3939 		}
3940 		/*
3941 		 * We are going to copy all the csums on this ordered extent, so
3942 		 * go ahead and adjust mod_start and mod_len in case this
3943 		 * ordered extent has already been logged.
3944 		 */
3945 		if (ordered->file_offset > mod_start) {
3946 			if (ordered->file_offset + ordered->len >=
3947 			    mod_start + mod_len)
3948 				mod_len = ordered->file_offset - mod_start;
3949 			/*
3950 			 * If we have this case
3951 			 *
3952 			 * |--------- logged extent ---------|
3953 			 *       |----- ordered extent ----|
3954 			 *
3955 			 * Just don't mess with mod_start and mod_len, we'll
3956 			 * just end up logging more csums than we need and it
3957 			 * will be ok.
3958 			 */
3959 		} else {
3960 			if (ordered->file_offset + ordered->len <
3961 			    mod_start + mod_len) {
3962 				mod_len = (mod_start + mod_len) -
3963 					(ordered->file_offset + ordered->len);
3964 				mod_start = ordered->file_offset +
3965 					ordered->len;
3966 			} else {
3967 				mod_len = 0;
3968 			}
3969 		}
3970 
3971 		if (skip_csum)
3972 			continue;
3973 
3974 		/*
3975 		 * To keep us from looping for the above case of an ordered
3976 		 * extent that falls inside of the logged extent.
3977 		 */
3978 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3979 				     &ordered->flags))
3980 			continue;
3981 
3982 		list_for_each_entry(sum, &ordered->list, list) {
3983 			ret = btrfs_csum_file_blocks(trans, log, sum);
3984 			if (ret)
3985 				break;
3986 		}
3987 	}
3988 
3989 	if (*ordered_io_error || !mod_len || ret || skip_csum)
3990 		return ret;
3991 
3992 	if (em->compress_type) {
3993 		csum_offset = 0;
3994 		csum_len = max(em->block_len, em->orig_block_len);
3995 	} else {
3996 		csum_offset = mod_start - em->start;
3997 		csum_len = mod_len;
3998 	}
3999 
4000 	/* block start is already adjusted for the file extent offset. */
4001 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4002 				       em->block_start + csum_offset,
4003 				       em->block_start + csum_offset +
4004 				       csum_len - 1, &ordered_sums, 0);
4005 	if (ret)
4006 		return ret;
4007 
4008 	while (!list_empty(&ordered_sums)) {
4009 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4010 						   struct btrfs_ordered_sum,
4011 						   list);
4012 		if (!ret)
4013 			ret = btrfs_csum_file_blocks(trans, log, sums);
4014 		list_del(&sums->list);
4015 		kfree(sums);
4016 	}
4017 
4018 	return ret;
4019 }
4020 
4021 static int log_one_extent(struct btrfs_trans_handle *trans,
4022 			  struct inode *inode, struct btrfs_root *root,
4023 			  const struct extent_map *em,
4024 			  struct btrfs_path *path,
4025 			  const struct list_head *logged_list,
4026 			  struct btrfs_log_ctx *ctx)
4027 {
4028 	struct btrfs_root *log = root->log_root;
4029 	struct btrfs_file_extent_item *fi;
4030 	struct extent_buffer *leaf;
4031 	struct btrfs_map_token token;
4032 	struct btrfs_key key;
4033 	u64 extent_offset = em->start - em->orig_start;
4034 	u64 block_len;
4035 	int ret;
4036 	int extent_inserted = 0;
4037 	bool ordered_io_err = false;
4038 
4039 	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4040 				   &ordered_io_err);
4041 	if (ret)
4042 		return ret;
4043 
4044 	if (ordered_io_err) {
4045 		ctx->io_err = -EIO;
4046 		return 0;
4047 	}
4048 
4049 	btrfs_init_map_token(&token);
4050 
4051 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4052 				   em->start + em->len, NULL, 0, 1,
4053 				   sizeof(*fi), &extent_inserted);
4054 	if (ret)
4055 		return ret;
4056 
4057 	if (!extent_inserted) {
4058 		key.objectid = btrfs_ino(inode);
4059 		key.type = BTRFS_EXTENT_DATA_KEY;
4060 		key.offset = em->start;
4061 
4062 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4063 					      sizeof(*fi));
4064 		if (ret)
4065 			return ret;
4066 	}
4067 	leaf = path->nodes[0];
4068 	fi = btrfs_item_ptr(leaf, path->slots[0],
4069 			    struct btrfs_file_extent_item);
4070 
4071 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4072 					       &token);
4073 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4074 		btrfs_set_token_file_extent_type(leaf, fi,
4075 						 BTRFS_FILE_EXTENT_PREALLOC,
4076 						 &token);
4077 	else
4078 		btrfs_set_token_file_extent_type(leaf, fi,
4079 						 BTRFS_FILE_EXTENT_REG,
4080 						 &token);
4081 
4082 	block_len = max(em->block_len, em->orig_block_len);
4083 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4084 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4085 							em->block_start,
4086 							&token);
4087 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4088 							   &token);
4089 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4090 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4091 							em->block_start -
4092 							extent_offset, &token);
4093 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4094 							   &token);
4095 	} else {
4096 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4097 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4098 							   &token);
4099 	}
4100 
4101 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4102 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4103 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4104 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4105 						&token);
4106 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4107 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4108 	btrfs_mark_buffer_dirty(leaf);
4109 
4110 	btrfs_release_path(path);
4111 
4112 	return ret;
4113 }
4114 
4115 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4116 				     struct btrfs_root *root,
4117 				     struct inode *inode,
4118 				     struct btrfs_path *path,
4119 				     struct list_head *logged_list,
4120 				     struct btrfs_log_ctx *ctx)
4121 {
4122 	struct extent_map *em, *n;
4123 	struct list_head extents;
4124 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4125 	u64 test_gen;
4126 	int ret = 0;
4127 	int num = 0;
4128 
4129 	INIT_LIST_HEAD(&extents);
4130 
4131 	write_lock(&tree->lock);
4132 	test_gen = root->fs_info->last_trans_committed;
4133 
4134 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4135 		list_del_init(&em->list);
4136 
4137 		/*
4138 		 * Just an arbitrary number, this can be really CPU intensive
4139 		 * once we start getting a lot of extents, and really once we
4140 		 * have a bunch of extents we just want to commit since it will
4141 		 * be faster.
4142 		 */
4143 		if (++num > 32768) {
4144 			list_del_init(&tree->modified_extents);
4145 			ret = -EFBIG;
4146 			goto process;
4147 		}
4148 
4149 		if (em->generation <= test_gen)
4150 			continue;
4151 		/* Need a ref to keep it from getting evicted from cache */
4152 		atomic_inc(&em->refs);
4153 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4154 		list_add_tail(&em->list, &extents);
4155 		num++;
4156 	}
4157 
4158 	list_sort(NULL, &extents, extent_cmp);
4159 
4160 process:
4161 	while (!list_empty(&extents)) {
4162 		em = list_entry(extents.next, struct extent_map, list);
4163 
4164 		list_del_init(&em->list);
4165 
4166 		/*
4167 		 * If we had an error we just need to delete everybody from our
4168 		 * private list.
4169 		 */
4170 		if (ret) {
4171 			clear_em_logging(tree, em);
4172 			free_extent_map(em);
4173 			continue;
4174 		}
4175 
4176 		write_unlock(&tree->lock);
4177 
4178 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4179 				     ctx);
4180 		write_lock(&tree->lock);
4181 		clear_em_logging(tree, em);
4182 		free_extent_map(em);
4183 	}
4184 	WARN_ON(!list_empty(&extents));
4185 	write_unlock(&tree->lock);
4186 
4187 	btrfs_release_path(path);
4188 	return ret;
4189 }
4190 
4191 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4192 			     struct btrfs_path *path, u64 *size_ret)
4193 {
4194 	struct btrfs_key key;
4195 	int ret;
4196 
4197 	key.objectid = btrfs_ino(inode);
4198 	key.type = BTRFS_INODE_ITEM_KEY;
4199 	key.offset = 0;
4200 
4201 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4202 	if (ret < 0) {
4203 		return ret;
4204 	} else if (ret > 0) {
4205 		*size_ret = 0;
4206 	} else {
4207 		struct btrfs_inode_item *item;
4208 
4209 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4210 				      struct btrfs_inode_item);
4211 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4212 	}
4213 
4214 	btrfs_release_path(path);
4215 	return 0;
4216 }
4217 
4218 /*
4219  * At the moment we always log all xattrs. This is to figure out at log replay
4220  * time which xattrs must have their deletion replayed. If a xattr is missing
4221  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4222  * because if a xattr is deleted, the inode is fsynced and a power failure
4223  * happens, causing the log to be replayed the next time the fs is mounted,
4224  * we want the xattr to not exist anymore (same behaviour as other filesystems
4225  * with a journal, ext3/4, xfs, f2fs, etc).
4226  */
4227 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4228 				struct btrfs_root *root,
4229 				struct inode *inode,
4230 				struct btrfs_path *path,
4231 				struct btrfs_path *dst_path)
4232 {
4233 	int ret;
4234 	struct btrfs_key key;
4235 	const u64 ino = btrfs_ino(inode);
4236 	int ins_nr = 0;
4237 	int start_slot = 0;
4238 
4239 	key.objectid = ino;
4240 	key.type = BTRFS_XATTR_ITEM_KEY;
4241 	key.offset = 0;
4242 
4243 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4244 	if (ret < 0)
4245 		return ret;
4246 
4247 	while (true) {
4248 		int slot = path->slots[0];
4249 		struct extent_buffer *leaf = path->nodes[0];
4250 		int nritems = btrfs_header_nritems(leaf);
4251 
4252 		if (slot >= nritems) {
4253 			if (ins_nr > 0) {
4254 				u64 last_extent = 0;
4255 
4256 				ret = copy_items(trans, inode, dst_path, path,
4257 						 &last_extent, start_slot,
4258 						 ins_nr, 1, 0);
4259 				/* can't be 1, extent items aren't processed */
4260 				ASSERT(ret <= 0);
4261 				if (ret < 0)
4262 					return ret;
4263 				ins_nr = 0;
4264 			}
4265 			ret = btrfs_next_leaf(root, path);
4266 			if (ret < 0)
4267 				return ret;
4268 			else if (ret > 0)
4269 				break;
4270 			continue;
4271 		}
4272 
4273 		btrfs_item_key_to_cpu(leaf, &key, slot);
4274 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4275 			break;
4276 
4277 		if (ins_nr == 0)
4278 			start_slot = slot;
4279 		ins_nr++;
4280 		path->slots[0]++;
4281 		cond_resched();
4282 	}
4283 	if (ins_nr > 0) {
4284 		u64 last_extent = 0;
4285 
4286 		ret = copy_items(trans, inode, dst_path, path,
4287 				 &last_extent, start_slot,
4288 				 ins_nr, 1, 0);
4289 		/* can't be 1, extent items aren't processed */
4290 		ASSERT(ret <= 0);
4291 		if (ret < 0)
4292 			return ret;
4293 	}
4294 
4295 	return 0;
4296 }
4297 
4298 /*
4299  * If the no holes feature is enabled we need to make sure any hole between the
4300  * last extent and the i_size of our inode is explicitly marked in the log. This
4301  * is to make sure that doing something like:
4302  *
4303  *      1) create file with 128Kb of data
4304  *      2) truncate file to 64Kb
4305  *      3) truncate file to 256Kb
4306  *      4) fsync file
4307  *      5) <crash/power failure>
4308  *      6) mount fs and trigger log replay
4309  *
4310  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4311  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4312  * file correspond to a hole. The presence of explicit holes in a log tree is
4313  * what guarantees that log replay will remove/adjust file extent items in the
4314  * fs/subvol tree.
4315  *
4316  * Here we do not need to care about holes between extents, that is already done
4317  * by copy_items(). We also only need to do this in the full sync path, where we
4318  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4319  * lookup the list of modified extent maps and if any represents a hole, we
4320  * insert a corresponding extent representing a hole in the log tree.
4321  */
4322 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4323 				   struct btrfs_root *root,
4324 				   struct inode *inode,
4325 				   struct btrfs_path *path)
4326 {
4327 	int ret;
4328 	struct btrfs_key key;
4329 	u64 hole_start;
4330 	u64 hole_size;
4331 	struct extent_buffer *leaf;
4332 	struct btrfs_root *log = root->log_root;
4333 	const u64 ino = btrfs_ino(inode);
4334 	const u64 i_size = i_size_read(inode);
4335 
4336 	if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4337 		return 0;
4338 
4339 	key.objectid = ino;
4340 	key.type = BTRFS_EXTENT_DATA_KEY;
4341 	key.offset = (u64)-1;
4342 
4343 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4344 	ASSERT(ret != 0);
4345 	if (ret < 0)
4346 		return ret;
4347 
4348 	ASSERT(path->slots[0] > 0);
4349 	path->slots[0]--;
4350 	leaf = path->nodes[0];
4351 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4352 
4353 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4354 		/* inode does not have any extents */
4355 		hole_start = 0;
4356 		hole_size = i_size;
4357 	} else {
4358 		struct btrfs_file_extent_item *extent;
4359 		u64 len;
4360 
4361 		/*
4362 		 * If there's an extent beyond i_size, an explicit hole was
4363 		 * already inserted by copy_items().
4364 		 */
4365 		if (key.offset >= i_size)
4366 			return 0;
4367 
4368 		extent = btrfs_item_ptr(leaf, path->slots[0],
4369 					struct btrfs_file_extent_item);
4370 
4371 		if (btrfs_file_extent_type(leaf, extent) ==
4372 		    BTRFS_FILE_EXTENT_INLINE) {
4373 			len = btrfs_file_extent_inline_len(leaf,
4374 							   path->slots[0],
4375 							   extent);
4376 			ASSERT(len == i_size);
4377 			return 0;
4378 		}
4379 
4380 		len = btrfs_file_extent_num_bytes(leaf, extent);
4381 		/* Last extent goes beyond i_size, no need to log a hole. */
4382 		if (key.offset + len > i_size)
4383 			return 0;
4384 		hole_start = key.offset + len;
4385 		hole_size = i_size - hole_start;
4386 	}
4387 	btrfs_release_path(path);
4388 
4389 	/* Last extent ends at i_size. */
4390 	if (hole_size == 0)
4391 		return 0;
4392 
4393 	hole_size = ALIGN(hole_size, root->sectorsize);
4394 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4395 				       hole_size, 0, hole_size, 0, 0, 0);
4396 	return ret;
4397 }
4398 
4399 /* log a single inode in the tree log.
4400  * At least one parent directory for this inode must exist in the tree
4401  * or be logged already.
4402  *
4403  * Any items from this inode changed by the current transaction are copied
4404  * to the log tree.  An extra reference is taken on any extents in this
4405  * file, allowing us to avoid a whole pile of corner cases around logging
4406  * blocks that have been removed from the tree.
4407  *
4408  * See LOG_INODE_ALL and related defines for a description of what inode_only
4409  * does.
4410  *
4411  * This handles both files and directories.
4412  */
4413 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4414 			   struct btrfs_root *root, struct inode *inode,
4415 			   int inode_only,
4416 			   const loff_t start,
4417 			   const loff_t end,
4418 			   struct btrfs_log_ctx *ctx)
4419 {
4420 	struct btrfs_path *path;
4421 	struct btrfs_path *dst_path;
4422 	struct btrfs_key min_key;
4423 	struct btrfs_key max_key;
4424 	struct btrfs_root *log = root->log_root;
4425 	struct extent_buffer *src = NULL;
4426 	LIST_HEAD(logged_list);
4427 	u64 last_extent = 0;
4428 	int err = 0;
4429 	int ret;
4430 	int nritems;
4431 	int ins_start_slot = 0;
4432 	int ins_nr;
4433 	bool fast_search = false;
4434 	u64 ino = btrfs_ino(inode);
4435 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4436 	u64 logged_isize = 0;
4437 	bool need_log_inode_item = true;
4438 
4439 	path = btrfs_alloc_path();
4440 	if (!path)
4441 		return -ENOMEM;
4442 	dst_path = btrfs_alloc_path();
4443 	if (!dst_path) {
4444 		btrfs_free_path(path);
4445 		return -ENOMEM;
4446 	}
4447 
4448 	min_key.objectid = ino;
4449 	min_key.type = BTRFS_INODE_ITEM_KEY;
4450 	min_key.offset = 0;
4451 
4452 	max_key.objectid = ino;
4453 
4454 
4455 	/* today the code can only do partial logging of directories */
4456 	if (S_ISDIR(inode->i_mode) ||
4457 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4458 		       &BTRFS_I(inode)->runtime_flags) &&
4459 	     inode_only == LOG_INODE_EXISTS))
4460 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4461 	else
4462 		max_key.type = (u8)-1;
4463 	max_key.offset = (u64)-1;
4464 
4465 	/*
4466 	 * Only run delayed items if we are a dir or a new file.
4467 	 * Otherwise commit the delayed inode only, which is needed in
4468 	 * order for the log replay code to mark inodes for link count
4469 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4470 	 */
4471 	if (S_ISDIR(inode->i_mode) ||
4472 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4473 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4474 	else
4475 		ret = btrfs_commit_inode_delayed_inode(inode);
4476 
4477 	if (ret) {
4478 		btrfs_free_path(path);
4479 		btrfs_free_path(dst_path);
4480 		return ret;
4481 	}
4482 
4483 	mutex_lock(&BTRFS_I(inode)->log_mutex);
4484 
4485 	btrfs_get_logged_extents(inode, &logged_list, start, end);
4486 
4487 	/*
4488 	 * a brute force approach to making sure we get the most uptodate
4489 	 * copies of everything.
4490 	 */
4491 	if (S_ISDIR(inode->i_mode)) {
4492 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4493 
4494 		if (inode_only == LOG_INODE_EXISTS)
4495 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4496 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4497 	} else {
4498 		if (inode_only == LOG_INODE_EXISTS) {
4499 			/*
4500 			 * Make sure the new inode item we write to the log has
4501 			 * the same isize as the current one (if it exists).
4502 			 * This is necessary to prevent data loss after log
4503 			 * replay, and also to prevent doing a wrong expanding
4504 			 * truncate - for e.g. create file, write 4K into offset
4505 			 * 0, fsync, write 4K into offset 4096, add hard link,
4506 			 * fsync some other file (to sync log), power fail - if
4507 			 * we use the inode's current i_size, after log replay
4508 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4509 			 * (zeroes), as if an expanding truncate happened,
4510 			 * instead of getting a file of 4Kb only.
4511 			 */
4512 			err = logged_inode_size(log, inode, path,
4513 						&logged_isize);
4514 			if (err)
4515 				goto out_unlock;
4516 		}
4517 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4518 			     &BTRFS_I(inode)->runtime_flags)) {
4519 			if (inode_only == LOG_INODE_EXISTS) {
4520 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4521 				ret = drop_objectid_items(trans, log, path, ino,
4522 							  max_key.type);
4523 			} else {
4524 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4525 					  &BTRFS_I(inode)->runtime_flags);
4526 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4527 					  &BTRFS_I(inode)->runtime_flags);
4528 				while(1) {
4529 					ret = btrfs_truncate_inode_items(trans,
4530 							 log, inode, 0, 0);
4531 					if (ret != -EAGAIN)
4532 						break;
4533 				}
4534 			}
4535 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4536 					      &BTRFS_I(inode)->runtime_flags) ||
4537 			   inode_only == LOG_INODE_EXISTS) {
4538 			if (inode_only == LOG_INODE_ALL)
4539 				fast_search = true;
4540 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4541 			ret = drop_objectid_items(trans, log, path, ino,
4542 						  max_key.type);
4543 		} else {
4544 			if (inode_only == LOG_INODE_ALL)
4545 				fast_search = true;
4546 			goto log_extents;
4547 		}
4548 
4549 	}
4550 	if (ret) {
4551 		err = ret;
4552 		goto out_unlock;
4553 	}
4554 
4555 	while (1) {
4556 		ins_nr = 0;
4557 		ret = btrfs_search_forward(root, &min_key,
4558 					   path, trans->transid);
4559 		if (ret != 0)
4560 			break;
4561 again:
4562 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4563 		if (min_key.objectid != ino)
4564 			break;
4565 		if (min_key.type > max_key.type)
4566 			break;
4567 
4568 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4569 			need_log_inode_item = false;
4570 
4571 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4572 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4573 			if (ins_nr == 0)
4574 				goto next_slot;
4575 			ret = copy_items(trans, inode, dst_path, path,
4576 					 &last_extent, ins_start_slot,
4577 					 ins_nr, inode_only, logged_isize);
4578 			if (ret < 0) {
4579 				err = ret;
4580 				goto out_unlock;
4581 			}
4582 			ins_nr = 0;
4583 			if (ret) {
4584 				btrfs_release_path(path);
4585 				continue;
4586 			}
4587 			goto next_slot;
4588 		}
4589 
4590 		src = path->nodes[0];
4591 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4592 			ins_nr++;
4593 			goto next_slot;
4594 		} else if (!ins_nr) {
4595 			ins_start_slot = path->slots[0];
4596 			ins_nr = 1;
4597 			goto next_slot;
4598 		}
4599 
4600 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4601 				 ins_start_slot, ins_nr, inode_only,
4602 				 logged_isize);
4603 		if (ret < 0) {
4604 			err = ret;
4605 			goto out_unlock;
4606 		}
4607 		if (ret) {
4608 			ins_nr = 0;
4609 			btrfs_release_path(path);
4610 			continue;
4611 		}
4612 		ins_nr = 1;
4613 		ins_start_slot = path->slots[0];
4614 next_slot:
4615 
4616 		nritems = btrfs_header_nritems(path->nodes[0]);
4617 		path->slots[0]++;
4618 		if (path->slots[0] < nritems) {
4619 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4620 					      path->slots[0]);
4621 			goto again;
4622 		}
4623 		if (ins_nr) {
4624 			ret = copy_items(trans, inode, dst_path, path,
4625 					 &last_extent, ins_start_slot,
4626 					 ins_nr, inode_only, logged_isize);
4627 			if (ret < 0) {
4628 				err = ret;
4629 				goto out_unlock;
4630 			}
4631 			ret = 0;
4632 			ins_nr = 0;
4633 		}
4634 		btrfs_release_path(path);
4635 
4636 		if (min_key.offset < (u64)-1) {
4637 			min_key.offset++;
4638 		} else if (min_key.type < max_key.type) {
4639 			min_key.type++;
4640 			min_key.offset = 0;
4641 		} else {
4642 			break;
4643 		}
4644 	}
4645 	if (ins_nr) {
4646 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4647 				 ins_start_slot, ins_nr, inode_only,
4648 				 logged_isize);
4649 		if (ret < 0) {
4650 			err = ret;
4651 			goto out_unlock;
4652 		}
4653 		ret = 0;
4654 		ins_nr = 0;
4655 	}
4656 
4657 	btrfs_release_path(path);
4658 	btrfs_release_path(dst_path);
4659 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4660 	if (err)
4661 		goto out_unlock;
4662 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4663 		btrfs_release_path(path);
4664 		btrfs_release_path(dst_path);
4665 		err = btrfs_log_trailing_hole(trans, root, inode, path);
4666 		if (err)
4667 			goto out_unlock;
4668 	}
4669 log_extents:
4670 	btrfs_release_path(path);
4671 	btrfs_release_path(dst_path);
4672 	if (need_log_inode_item) {
4673 		err = log_inode_item(trans, log, dst_path, inode);
4674 		if (err)
4675 			goto out_unlock;
4676 	}
4677 	if (fast_search) {
4678 		/*
4679 		 * Some ordered extents started by fsync might have completed
4680 		 * before we collected the ordered extents in logged_list, which
4681 		 * means they're gone, not in our logged_list nor in the inode's
4682 		 * ordered tree. We want the application/user space to know an
4683 		 * error happened while attempting to persist file data so that
4684 		 * it can take proper action. If such error happened, we leave
4685 		 * without writing to the log tree and the fsync must report the
4686 		 * file data write error and not commit the current transaction.
4687 		 */
4688 		err = btrfs_inode_check_errors(inode);
4689 		if (err) {
4690 			ctx->io_err = err;
4691 			goto out_unlock;
4692 		}
4693 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4694 						&logged_list, ctx);
4695 		if (ret) {
4696 			err = ret;
4697 			goto out_unlock;
4698 		}
4699 	} else if (inode_only == LOG_INODE_ALL) {
4700 		struct extent_map *em, *n;
4701 
4702 		write_lock(&em_tree->lock);
4703 		/*
4704 		 * We can't just remove every em if we're called for a ranged
4705 		 * fsync - that is, one that doesn't cover the whole possible
4706 		 * file range (0 to LLONG_MAX). This is because we can have
4707 		 * em's that fall outside the range we're logging and therefore
4708 		 * their ordered operations haven't completed yet
4709 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4710 		 * didn't get their respective file extent item in the fs/subvol
4711 		 * tree yet, and need to let the next fast fsync (one which
4712 		 * consults the list of modified extent maps) find the em so
4713 		 * that it logs a matching file extent item and waits for the
4714 		 * respective ordered operation to complete (if it's still
4715 		 * running).
4716 		 *
4717 		 * Removing every em outside the range we're logging would make
4718 		 * the next fast fsync not log their matching file extent items,
4719 		 * therefore making us lose data after a log replay.
4720 		 */
4721 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4722 					 list) {
4723 			const u64 mod_end = em->mod_start + em->mod_len - 1;
4724 
4725 			if (em->mod_start >= start && mod_end <= end)
4726 				list_del_init(&em->list);
4727 		}
4728 		write_unlock(&em_tree->lock);
4729 	}
4730 
4731 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4732 		ret = log_directory_changes(trans, root, inode, path, dst_path,
4733 					    ctx);
4734 		if (ret) {
4735 			err = ret;
4736 			goto out_unlock;
4737 		}
4738 	}
4739 
4740 	spin_lock(&BTRFS_I(inode)->lock);
4741 	BTRFS_I(inode)->logged_trans = trans->transid;
4742 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4743 	spin_unlock(&BTRFS_I(inode)->lock);
4744 out_unlock:
4745 	if (unlikely(err))
4746 		btrfs_put_logged_extents(&logged_list);
4747 	else
4748 		btrfs_submit_logged_extents(&logged_list, log);
4749 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4750 
4751 	btrfs_free_path(path);
4752 	btrfs_free_path(dst_path);
4753 	return err;
4754 }
4755 
4756 /*
4757  * follow the dentry parent pointers up the chain and see if any
4758  * of the directories in it require a full commit before they can
4759  * be logged.  Returns zero if nothing special needs to be done or 1 if
4760  * a full commit is required.
4761  */
4762 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4763 					       struct inode *inode,
4764 					       struct dentry *parent,
4765 					       struct super_block *sb,
4766 					       u64 last_committed)
4767 {
4768 	int ret = 0;
4769 	struct btrfs_root *root;
4770 	struct dentry *old_parent = NULL;
4771 	struct inode *orig_inode = inode;
4772 
4773 	/*
4774 	 * for regular files, if its inode is already on disk, we don't
4775 	 * have to worry about the parents at all.  This is because
4776 	 * we can use the last_unlink_trans field to record renames
4777 	 * and other fun in this file.
4778 	 */
4779 	if (S_ISREG(inode->i_mode) &&
4780 	    BTRFS_I(inode)->generation <= last_committed &&
4781 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4782 			goto out;
4783 
4784 	if (!S_ISDIR(inode->i_mode)) {
4785 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4786 			goto out;
4787 		inode = d_inode(parent);
4788 	}
4789 
4790 	while (1) {
4791 		/*
4792 		 * If we are logging a directory then we start with our inode,
4793 		 * not our parents inode, so we need to skipp setting the
4794 		 * logged_trans so that further down in the log code we don't
4795 		 * think this inode has already been logged.
4796 		 */
4797 		if (inode != orig_inode)
4798 			BTRFS_I(inode)->logged_trans = trans->transid;
4799 		smp_mb();
4800 
4801 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4802 			root = BTRFS_I(inode)->root;
4803 
4804 			/*
4805 			 * make sure any commits to the log are forced
4806 			 * to be full commits
4807 			 */
4808 			btrfs_set_log_full_commit(root->fs_info, trans);
4809 			ret = 1;
4810 			break;
4811 		}
4812 
4813 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4814 			break;
4815 
4816 		if (IS_ROOT(parent))
4817 			break;
4818 
4819 		parent = dget_parent(parent);
4820 		dput(old_parent);
4821 		old_parent = parent;
4822 		inode = d_inode(parent);
4823 
4824 	}
4825 	dput(old_parent);
4826 out:
4827 	return ret;
4828 }
4829 
4830 struct btrfs_dir_list {
4831 	u64 ino;
4832 	struct list_head list;
4833 };
4834 
4835 /*
4836  * Log the inodes of the new dentries of a directory. See log_dir_items() for
4837  * details about the why it is needed.
4838  * This is a recursive operation - if an existing dentry corresponds to a
4839  * directory, that directory's new entries are logged too (same behaviour as
4840  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
4841  * the dentries point to we do not lock their i_mutex, otherwise lockdep
4842  * complains about the following circular lock dependency / possible deadlock:
4843  *
4844  *        CPU0                                        CPU1
4845  *        ----                                        ----
4846  * lock(&type->i_mutex_dir_key#3/2);
4847  *                                            lock(sb_internal#2);
4848  *                                            lock(&type->i_mutex_dir_key#3/2);
4849  * lock(&sb->s_type->i_mutex_key#14);
4850  *
4851  * Where sb_internal is the lock (a counter that works as a lock) acquired by
4852  * sb_start_intwrite() in btrfs_start_transaction().
4853  * Not locking i_mutex of the inodes is still safe because:
4854  *
4855  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
4856  *    that while logging the inode new references (names) are added or removed
4857  *    from the inode, leaving the logged inode item with a link count that does
4858  *    not match the number of logged inode reference items. This is fine because
4859  *    at log replay time we compute the real number of links and correct the
4860  *    link count in the inode item (see replay_one_buffer() and
4861  *    link_to_fixup_dir());
4862  *
4863  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
4864  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
4865  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
4866  *    has a size that doesn't match the sum of the lengths of all the logged
4867  *    names. This does not result in a problem because if a dir_item key is
4868  *    logged but its matching dir_index key is not logged, at log replay time we
4869  *    don't use it to replay the respective name (see replay_one_name()). On the
4870  *    other hand if only the dir_index key ends up being logged, the respective
4871  *    name is added to the fs/subvol tree with both the dir_item and dir_index
4872  *    keys created (see replay_one_name()).
4873  *    The directory's inode item with a wrong i_size is not a problem as well,
4874  *    since we don't use it at log replay time to set the i_size in the inode
4875  *    item of the fs/subvol tree (see overwrite_item()).
4876  */
4877 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
4878 				struct btrfs_root *root,
4879 				struct inode *start_inode,
4880 				struct btrfs_log_ctx *ctx)
4881 {
4882 	struct btrfs_root *log = root->log_root;
4883 	struct btrfs_path *path;
4884 	LIST_HEAD(dir_list);
4885 	struct btrfs_dir_list *dir_elem;
4886 	int ret = 0;
4887 
4888 	path = btrfs_alloc_path();
4889 	if (!path)
4890 		return -ENOMEM;
4891 
4892 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
4893 	if (!dir_elem) {
4894 		btrfs_free_path(path);
4895 		return -ENOMEM;
4896 	}
4897 	dir_elem->ino = btrfs_ino(start_inode);
4898 	list_add_tail(&dir_elem->list, &dir_list);
4899 
4900 	while (!list_empty(&dir_list)) {
4901 		struct extent_buffer *leaf;
4902 		struct btrfs_key min_key;
4903 		int nritems;
4904 		int i;
4905 
4906 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
4907 					    list);
4908 		if (ret)
4909 			goto next_dir_inode;
4910 
4911 		min_key.objectid = dir_elem->ino;
4912 		min_key.type = BTRFS_DIR_ITEM_KEY;
4913 		min_key.offset = 0;
4914 again:
4915 		btrfs_release_path(path);
4916 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
4917 		if (ret < 0) {
4918 			goto next_dir_inode;
4919 		} else if (ret > 0) {
4920 			ret = 0;
4921 			goto next_dir_inode;
4922 		}
4923 
4924 process_leaf:
4925 		leaf = path->nodes[0];
4926 		nritems = btrfs_header_nritems(leaf);
4927 		for (i = path->slots[0]; i < nritems; i++) {
4928 			struct btrfs_dir_item *di;
4929 			struct btrfs_key di_key;
4930 			struct inode *di_inode;
4931 			struct btrfs_dir_list *new_dir_elem;
4932 			int log_mode = LOG_INODE_EXISTS;
4933 			int type;
4934 
4935 			btrfs_item_key_to_cpu(leaf, &min_key, i);
4936 			if (min_key.objectid != dir_elem->ino ||
4937 			    min_key.type != BTRFS_DIR_ITEM_KEY)
4938 				goto next_dir_inode;
4939 
4940 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
4941 			type = btrfs_dir_type(leaf, di);
4942 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
4943 			    type != BTRFS_FT_DIR)
4944 				continue;
4945 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
4946 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
4947 				continue;
4948 
4949 			di_inode = btrfs_iget(root->fs_info->sb, &di_key,
4950 					      root, NULL);
4951 			if (IS_ERR(di_inode)) {
4952 				ret = PTR_ERR(di_inode);
4953 				goto next_dir_inode;
4954 			}
4955 
4956 			if (btrfs_inode_in_log(di_inode, trans->transid)) {
4957 				iput(di_inode);
4958 				continue;
4959 			}
4960 
4961 			ctx->log_new_dentries = false;
4962 			if (type == BTRFS_FT_DIR)
4963 				log_mode = LOG_INODE_ALL;
4964 			btrfs_release_path(path);
4965 			ret = btrfs_log_inode(trans, root, di_inode,
4966 					      log_mode, 0, LLONG_MAX, ctx);
4967 			iput(di_inode);
4968 			if (ret)
4969 				goto next_dir_inode;
4970 			if (ctx->log_new_dentries) {
4971 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
4972 						       GFP_NOFS);
4973 				if (!new_dir_elem) {
4974 					ret = -ENOMEM;
4975 					goto next_dir_inode;
4976 				}
4977 				new_dir_elem->ino = di_key.objectid;
4978 				list_add_tail(&new_dir_elem->list, &dir_list);
4979 			}
4980 			break;
4981 		}
4982 		if (i == nritems) {
4983 			ret = btrfs_next_leaf(log, path);
4984 			if (ret < 0) {
4985 				goto next_dir_inode;
4986 			} else if (ret > 0) {
4987 				ret = 0;
4988 				goto next_dir_inode;
4989 			}
4990 			goto process_leaf;
4991 		}
4992 		if (min_key.offset < (u64)-1) {
4993 			min_key.offset++;
4994 			goto again;
4995 		}
4996 next_dir_inode:
4997 		list_del(&dir_elem->list);
4998 		kfree(dir_elem);
4999 	}
5000 
5001 	btrfs_free_path(path);
5002 	return ret;
5003 }
5004 
5005 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5006 				 struct inode *inode,
5007 				 struct btrfs_log_ctx *ctx)
5008 {
5009 	int ret;
5010 	struct btrfs_path *path;
5011 	struct btrfs_key key;
5012 	struct btrfs_root *root = BTRFS_I(inode)->root;
5013 	const u64 ino = btrfs_ino(inode);
5014 
5015 	path = btrfs_alloc_path();
5016 	if (!path)
5017 		return -ENOMEM;
5018 	path->skip_locking = 1;
5019 	path->search_commit_root = 1;
5020 
5021 	key.objectid = ino;
5022 	key.type = BTRFS_INODE_REF_KEY;
5023 	key.offset = 0;
5024 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5025 	if (ret < 0)
5026 		goto out;
5027 
5028 	while (true) {
5029 		struct extent_buffer *leaf = path->nodes[0];
5030 		int slot = path->slots[0];
5031 		u32 cur_offset = 0;
5032 		u32 item_size;
5033 		unsigned long ptr;
5034 
5035 		if (slot >= btrfs_header_nritems(leaf)) {
5036 			ret = btrfs_next_leaf(root, path);
5037 			if (ret < 0)
5038 				goto out;
5039 			else if (ret > 0)
5040 				break;
5041 			continue;
5042 		}
5043 
5044 		btrfs_item_key_to_cpu(leaf, &key, slot);
5045 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5046 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5047 			break;
5048 
5049 		item_size = btrfs_item_size_nr(leaf, slot);
5050 		ptr = btrfs_item_ptr_offset(leaf, slot);
5051 		while (cur_offset < item_size) {
5052 			struct btrfs_key inode_key;
5053 			struct inode *dir_inode;
5054 
5055 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5056 			inode_key.offset = 0;
5057 
5058 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5059 				struct btrfs_inode_extref *extref;
5060 
5061 				extref = (struct btrfs_inode_extref *)
5062 					(ptr + cur_offset);
5063 				inode_key.objectid = btrfs_inode_extref_parent(
5064 					leaf, extref);
5065 				cur_offset += sizeof(*extref);
5066 				cur_offset += btrfs_inode_extref_name_len(leaf,
5067 					extref);
5068 			} else {
5069 				inode_key.objectid = key.offset;
5070 				cur_offset = item_size;
5071 			}
5072 
5073 			dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5074 					       root, NULL);
5075 			/* If parent inode was deleted, skip it. */
5076 			if (IS_ERR(dir_inode))
5077 				continue;
5078 
5079 			ret = btrfs_log_inode(trans, root, dir_inode,
5080 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5081 			iput(dir_inode);
5082 			if (ret)
5083 				goto out;
5084 		}
5085 		path->slots[0]++;
5086 	}
5087 	ret = 0;
5088 out:
5089 	btrfs_free_path(path);
5090 	return ret;
5091 }
5092 
5093 /*
5094  * helper function around btrfs_log_inode to make sure newly created
5095  * parent directories also end up in the log.  A minimal inode and backref
5096  * only logging is done of any parent directories that are older than
5097  * the last committed transaction
5098  */
5099 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5100 			    	  struct btrfs_root *root, struct inode *inode,
5101 				  struct dentry *parent,
5102 				  const loff_t start,
5103 				  const loff_t end,
5104 				  int exists_only,
5105 				  struct btrfs_log_ctx *ctx)
5106 {
5107 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5108 	struct super_block *sb;
5109 	struct dentry *old_parent = NULL;
5110 	int ret = 0;
5111 	u64 last_committed = root->fs_info->last_trans_committed;
5112 	bool log_dentries = false;
5113 	struct inode *orig_inode = inode;
5114 
5115 	sb = inode->i_sb;
5116 
5117 	if (btrfs_test_opt(root, NOTREELOG)) {
5118 		ret = 1;
5119 		goto end_no_trans;
5120 	}
5121 
5122 	/*
5123 	 * The prev transaction commit doesn't complete, we need do
5124 	 * full commit by ourselves.
5125 	 */
5126 	if (root->fs_info->last_trans_log_full_commit >
5127 	    root->fs_info->last_trans_committed) {
5128 		ret = 1;
5129 		goto end_no_trans;
5130 	}
5131 
5132 	if (root != BTRFS_I(inode)->root ||
5133 	    btrfs_root_refs(&root->root_item) == 0) {
5134 		ret = 1;
5135 		goto end_no_trans;
5136 	}
5137 
5138 	ret = check_parent_dirs_for_sync(trans, inode, parent,
5139 					 sb, last_committed);
5140 	if (ret)
5141 		goto end_no_trans;
5142 
5143 	if (btrfs_inode_in_log(inode, trans->transid)) {
5144 		ret = BTRFS_NO_LOG_SYNC;
5145 		goto end_no_trans;
5146 	}
5147 
5148 	ret = start_log_trans(trans, root, ctx);
5149 	if (ret)
5150 		goto end_no_trans;
5151 
5152 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5153 	if (ret)
5154 		goto end_trans;
5155 
5156 	/*
5157 	 * for regular files, if its inode is already on disk, we don't
5158 	 * have to worry about the parents at all.  This is because
5159 	 * we can use the last_unlink_trans field to record renames
5160 	 * and other fun in this file.
5161 	 */
5162 	if (S_ISREG(inode->i_mode) &&
5163 	    BTRFS_I(inode)->generation <= last_committed &&
5164 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5165 		ret = 0;
5166 		goto end_trans;
5167 	}
5168 
5169 	if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5170 		log_dentries = true;
5171 
5172 	/*
5173 	 * On unlink we must make sure all our current and old parent directores
5174 	 * inodes are fully logged. This is to prevent leaving dangling
5175 	 * directory index entries in directories that were our parents but are
5176 	 * not anymore. Not doing this results in old parent directory being
5177 	 * impossible to delete after log replay (rmdir will always fail with
5178 	 * error -ENOTEMPTY).
5179 	 *
5180 	 * Example 1:
5181 	 *
5182 	 * mkdir testdir
5183 	 * touch testdir/foo
5184 	 * ln testdir/foo testdir/bar
5185 	 * sync
5186 	 * unlink testdir/bar
5187 	 * xfs_io -c fsync testdir/foo
5188 	 * <power failure>
5189 	 * mount fs, triggers log replay
5190 	 *
5191 	 * If we don't log the parent directory (testdir), after log replay the
5192 	 * directory still has an entry pointing to the file inode using the bar
5193 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5194 	 * the file inode has a link count of 1.
5195 	 *
5196 	 * Example 2:
5197 	 *
5198 	 * mkdir testdir
5199 	 * touch foo
5200 	 * ln foo testdir/foo2
5201 	 * ln foo testdir/foo3
5202 	 * sync
5203 	 * unlink testdir/foo3
5204 	 * xfs_io -c fsync foo
5205 	 * <power failure>
5206 	 * mount fs, triggers log replay
5207 	 *
5208 	 * Similar as the first example, after log replay the parent directory
5209 	 * testdir still has an entry pointing to the inode file with name foo3
5210 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5211 	 * and has a link count of 2.
5212 	 */
5213 	if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5214 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5215 		if (ret)
5216 			goto end_trans;
5217 	}
5218 
5219 	while (1) {
5220 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5221 			break;
5222 
5223 		inode = d_inode(parent);
5224 		if (root != BTRFS_I(inode)->root)
5225 			break;
5226 
5227 		if (BTRFS_I(inode)->generation > last_committed) {
5228 			ret = btrfs_log_inode(trans, root, inode,
5229 					      LOG_INODE_EXISTS,
5230 					      0, LLONG_MAX, ctx);
5231 			if (ret)
5232 				goto end_trans;
5233 		}
5234 		if (IS_ROOT(parent))
5235 			break;
5236 
5237 		parent = dget_parent(parent);
5238 		dput(old_parent);
5239 		old_parent = parent;
5240 	}
5241 	if (log_dentries)
5242 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5243 	else
5244 		ret = 0;
5245 end_trans:
5246 	dput(old_parent);
5247 	if (ret < 0) {
5248 		btrfs_set_log_full_commit(root->fs_info, trans);
5249 		ret = 1;
5250 	}
5251 
5252 	if (ret)
5253 		btrfs_remove_log_ctx(root, ctx);
5254 	btrfs_end_log_trans(root);
5255 end_no_trans:
5256 	return ret;
5257 }
5258 
5259 /*
5260  * it is not safe to log dentry if the chunk root has added new
5261  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5262  * If this returns 1, you must commit the transaction to safely get your
5263  * data on disk.
5264  */
5265 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5266 			  struct btrfs_root *root, struct dentry *dentry,
5267 			  const loff_t start,
5268 			  const loff_t end,
5269 			  struct btrfs_log_ctx *ctx)
5270 {
5271 	struct dentry *parent = dget_parent(dentry);
5272 	int ret;
5273 
5274 	ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5275 				     start, end, 0, ctx);
5276 	dput(parent);
5277 
5278 	return ret;
5279 }
5280 
5281 /*
5282  * should be called during mount to recover any replay any log trees
5283  * from the FS
5284  */
5285 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5286 {
5287 	int ret;
5288 	struct btrfs_path *path;
5289 	struct btrfs_trans_handle *trans;
5290 	struct btrfs_key key;
5291 	struct btrfs_key found_key;
5292 	struct btrfs_key tmp_key;
5293 	struct btrfs_root *log;
5294 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5295 	struct walk_control wc = {
5296 		.process_func = process_one_buffer,
5297 		.stage = 0,
5298 	};
5299 
5300 	path = btrfs_alloc_path();
5301 	if (!path)
5302 		return -ENOMEM;
5303 
5304 	fs_info->log_root_recovering = 1;
5305 
5306 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5307 	if (IS_ERR(trans)) {
5308 		ret = PTR_ERR(trans);
5309 		goto error;
5310 	}
5311 
5312 	wc.trans = trans;
5313 	wc.pin = 1;
5314 
5315 	ret = walk_log_tree(trans, log_root_tree, &wc);
5316 	if (ret) {
5317 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
5318 			    "recovering log root tree.");
5319 		goto error;
5320 	}
5321 
5322 again:
5323 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5324 	key.offset = (u64)-1;
5325 	key.type = BTRFS_ROOT_ITEM_KEY;
5326 
5327 	while (1) {
5328 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5329 
5330 		if (ret < 0) {
5331 			btrfs_error(fs_info, ret,
5332 				    "Couldn't find tree log root.");
5333 			goto error;
5334 		}
5335 		if (ret > 0) {
5336 			if (path->slots[0] == 0)
5337 				break;
5338 			path->slots[0]--;
5339 		}
5340 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5341 				      path->slots[0]);
5342 		btrfs_release_path(path);
5343 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5344 			break;
5345 
5346 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5347 		if (IS_ERR(log)) {
5348 			ret = PTR_ERR(log);
5349 			btrfs_error(fs_info, ret,
5350 				    "Couldn't read tree log root.");
5351 			goto error;
5352 		}
5353 
5354 		tmp_key.objectid = found_key.offset;
5355 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5356 		tmp_key.offset = (u64)-1;
5357 
5358 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5359 		if (IS_ERR(wc.replay_dest)) {
5360 			ret = PTR_ERR(wc.replay_dest);
5361 			free_extent_buffer(log->node);
5362 			free_extent_buffer(log->commit_root);
5363 			kfree(log);
5364 			btrfs_error(fs_info, ret, "Couldn't read target root "
5365 				    "for tree log recovery.");
5366 			goto error;
5367 		}
5368 
5369 		wc.replay_dest->log_root = log;
5370 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5371 		ret = walk_log_tree(trans, log, &wc);
5372 
5373 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5374 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5375 						      path);
5376 		}
5377 
5378 		key.offset = found_key.offset - 1;
5379 		wc.replay_dest->log_root = NULL;
5380 		free_extent_buffer(log->node);
5381 		free_extent_buffer(log->commit_root);
5382 		kfree(log);
5383 
5384 		if (ret)
5385 			goto error;
5386 
5387 		if (found_key.offset == 0)
5388 			break;
5389 	}
5390 	btrfs_release_path(path);
5391 
5392 	/* step one is to pin it all, step two is to replay just inodes */
5393 	if (wc.pin) {
5394 		wc.pin = 0;
5395 		wc.process_func = replay_one_buffer;
5396 		wc.stage = LOG_WALK_REPLAY_INODES;
5397 		goto again;
5398 	}
5399 	/* step three is to replay everything */
5400 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5401 		wc.stage++;
5402 		goto again;
5403 	}
5404 
5405 	btrfs_free_path(path);
5406 
5407 	/* step 4: commit the transaction, which also unpins the blocks */
5408 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5409 	if (ret)
5410 		return ret;
5411 
5412 	free_extent_buffer(log_root_tree->node);
5413 	log_root_tree->log_root = NULL;
5414 	fs_info->log_root_recovering = 0;
5415 	kfree(log_root_tree);
5416 
5417 	return 0;
5418 error:
5419 	if (wc.trans)
5420 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
5421 	btrfs_free_path(path);
5422 	return ret;
5423 }
5424 
5425 /*
5426  * there are some corner cases where we want to force a full
5427  * commit instead of allowing a directory to be logged.
5428  *
5429  * They revolve around files there were unlinked from the directory, and
5430  * this function updates the parent directory so that a full commit is
5431  * properly done if it is fsync'd later after the unlinks are done.
5432  */
5433 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5434 			     struct inode *dir, struct inode *inode,
5435 			     int for_rename)
5436 {
5437 	/*
5438 	 * when we're logging a file, if it hasn't been renamed
5439 	 * or unlinked, and its inode is fully committed on disk,
5440 	 * we don't have to worry about walking up the directory chain
5441 	 * to log its parents.
5442 	 *
5443 	 * So, we use the last_unlink_trans field to put this transid
5444 	 * into the file.  When the file is logged we check it and
5445 	 * don't log the parents if the file is fully on disk.
5446 	 */
5447 	if (S_ISREG(inode->i_mode))
5448 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5449 
5450 	/*
5451 	 * if this directory was already logged any new
5452 	 * names for this file/dir will get recorded
5453 	 */
5454 	smp_mb();
5455 	if (BTRFS_I(dir)->logged_trans == trans->transid)
5456 		return;
5457 
5458 	/*
5459 	 * if the inode we're about to unlink was logged,
5460 	 * the log will be properly updated for any new names
5461 	 */
5462 	if (BTRFS_I(inode)->logged_trans == trans->transid)
5463 		return;
5464 
5465 	/*
5466 	 * when renaming files across directories, if the directory
5467 	 * there we're unlinking from gets fsync'd later on, there's
5468 	 * no way to find the destination directory later and fsync it
5469 	 * properly.  So, we have to be conservative and force commits
5470 	 * so the new name gets discovered.
5471 	 */
5472 	if (for_rename)
5473 		goto record;
5474 
5475 	/* we can safely do the unlink without any special recording */
5476 	return;
5477 
5478 record:
5479 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5480 }
5481 
5482 /*
5483  * Call this after adding a new name for a file and it will properly
5484  * update the log to reflect the new name.
5485  *
5486  * It will return zero if all goes well, and it will return 1 if a
5487  * full transaction commit is required.
5488  */
5489 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5490 			struct inode *inode, struct inode *old_dir,
5491 			struct dentry *parent)
5492 {
5493 	struct btrfs_root * root = BTRFS_I(inode)->root;
5494 
5495 	/*
5496 	 * this will force the logging code to walk the dentry chain
5497 	 * up for the file
5498 	 */
5499 	if (S_ISREG(inode->i_mode))
5500 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5501 
5502 	/*
5503 	 * if this inode hasn't been logged and directory we're renaming it
5504 	 * from hasn't been logged, we don't need to log it
5505 	 */
5506 	if (BTRFS_I(inode)->logged_trans <=
5507 	    root->fs_info->last_trans_committed &&
5508 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5509 		    root->fs_info->last_trans_committed))
5510 		return 0;
5511 
5512 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5513 				      LLONG_MAX, 1, NULL);
5514 }
5515 
5516