1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/blkdev.h> 22 #include <linux/list_sort.h> 23 #include "tree-log.h" 24 #include "disk-io.h" 25 #include "locking.h" 26 #include "print-tree.h" 27 #include "backref.h" 28 #include "hash.h" 29 30 /* magic values for the inode_only field in btrfs_log_inode: 31 * 32 * LOG_INODE_ALL means to log everything 33 * LOG_INODE_EXISTS means to log just enough to recreate the inode 34 * during log replay 35 */ 36 #define LOG_INODE_ALL 0 37 #define LOG_INODE_EXISTS 1 38 39 /* 40 * directory trouble cases 41 * 42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 43 * log, we must force a full commit before doing an fsync of the directory 44 * where the unlink was done. 45 * ---> record transid of last unlink/rename per directory 46 * 47 * mkdir foo/some_dir 48 * normal commit 49 * rename foo/some_dir foo2/some_dir 50 * mkdir foo/some_dir 51 * fsync foo/some_dir/some_file 52 * 53 * The fsync above will unlink the original some_dir without recording 54 * it in its new location (foo2). After a crash, some_dir will be gone 55 * unless the fsync of some_file forces a full commit 56 * 57 * 2) we must log any new names for any file or dir that is in the fsync 58 * log. ---> check inode while renaming/linking. 59 * 60 * 2a) we must log any new names for any file or dir during rename 61 * when the directory they are being removed from was logged. 62 * ---> check inode and old parent dir during rename 63 * 64 * 2a is actually the more important variant. With the extra logging 65 * a crash might unlink the old name without recreating the new one 66 * 67 * 3) after a crash, we must go through any directories with a link count 68 * of zero and redo the rm -rf 69 * 70 * mkdir f1/foo 71 * normal commit 72 * rm -rf f1/foo 73 * fsync(f1) 74 * 75 * The directory f1 was fully removed from the FS, but fsync was never 76 * called on f1, only its parent dir. After a crash the rm -rf must 77 * be replayed. This must be able to recurse down the entire 78 * directory tree. The inode link count fixup code takes care of the 79 * ugly details. 80 */ 81 82 /* 83 * stages for the tree walking. The first 84 * stage (0) is to only pin down the blocks we find 85 * the second stage (1) is to make sure that all the inodes 86 * we find in the log are created in the subvolume. 87 * 88 * The last stage is to deal with directories and links and extents 89 * and all the other fun semantics 90 */ 91 #define LOG_WALK_PIN_ONLY 0 92 #define LOG_WALK_REPLAY_INODES 1 93 #define LOG_WALK_REPLAY_DIR_INDEX 2 94 #define LOG_WALK_REPLAY_ALL 3 95 96 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 97 struct btrfs_root *root, struct inode *inode, 98 int inode_only, 99 const loff_t start, 100 const loff_t end, 101 struct btrfs_log_ctx *ctx); 102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 103 struct btrfs_root *root, 104 struct btrfs_path *path, u64 objectid); 105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 106 struct btrfs_root *root, 107 struct btrfs_root *log, 108 struct btrfs_path *path, 109 u64 dirid, int del_all); 110 111 /* 112 * tree logging is a special write ahead log used to make sure that 113 * fsyncs and O_SYNCs can happen without doing full tree commits. 114 * 115 * Full tree commits are expensive because they require commonly 116 * modified blocks to be recowed, creating many dirty pages in the 117 * extent tree an 4x-6x higher write load than ext3. 118 * 119 * Instead of doing a tree commit on every fsync, we use the 120 * key ranges and transaction ids to find items for a given file or directory 121 * that have changed in this transaction. Those items are copied into 122 * a special tree (one per subvolume root), that tree is written to disk 123 * and then the fsync is considered complete. 124 * 125 * After a crash, items are copied out of the log-tree back into the 126 * subvolume tree. Any file data extents found are recorded in the extent 127 * allocation tree, and the log-tree freed. 128 * 129 * The log tree is read three times, once to pin down all the extents it is 130 * using in ram and once, once to create all the inodes logged in the tree 131 * and once to do all the other items. 132 */ 133 134 /* 135 * start a sub transaction and setup the log tree 136 * this increments the log tree writer count to make the people 137 * syncing the tree wait for us to finish 138 */ 139 static int start_log_trans(struct btrfs_trans_handle *trans, 140 struct btrfs_root *root, 141 struct btrfs_log_ctx *ctx) 142 { 143 int index; 144 int ret; 145 146 mutex_lock(&root->log_mutex); 147 if (root->log_root) { 148 if (btrfs_need_log_full_commit(root->fs_info, trans)) { 149 ret = -EAGAIN; 150 goto out; 151 } 152 if (!root->log_start_pid) { 153 root->log_start_pid = current->pid; 154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 155 } else if (root->log_start_pid != current->pid) { 156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 157 } 158 159 atomic_inc(&root->log_batch); 160 atomic_inc(&root->log_writers); 161 if (ctx) { 162 index = root->log_transid % 2; 163 list_add_tail(&ctx->list, &root->log_ctxs[index]); 164 ctx->log_transid = root->log_transid; 165 } 166 mutex_unlock(&root->log_mutex); 167 return 0; 168 } 169 170 ret = 0; 171 mutex_lock(&root->fs_info->tree_log_mutex); 172 if (!root->fs_info->log_root_tree) 173 ret = btrfs_init_log_root_tree(trans, root->fs_info); 174 mutex_unlock(&root->fs_info->tree_log_mutex); 175 if (ret) 176 goto out; 177 178 if (!root->log_root) { 179 ret = btrfs_add_log_tree(trans, root); 180 if (ret) 181 goto out; 182 } 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 184 root->log_start_pid = current->pid; 185 atomic_inc(&root->log_batch); 186 atomic_inc(&root->log_writers); 187 if (ctx) { 188 index = root->log_transid % 2; 189 list_add_tail(&ctx->list, &root->log_ctxs[index]); 190 ctx->log_transid = root->log_transid; 191 } 192 out: 193 mutex_unlock(&root->log_mutex); 194 return ret; 195 } 196 197 /* 198 * returns 0 if there was a log transaction running and we were able 199 * to join, or returns -ENOENT if there were not transactions 200 * in progress 201 */ 202 static int join_running_log_trans(struct btrfs_root *root) 203 { 204 int ret = -ENOENT; 205 206 smp_mb(); 207 if (!root->log_root) 208 return -ENOENT; 209 210 mutex_lock(&root->log_mutex); 211 if (root->log_root) { 212 ret = 0; 213 atomic_inc(&root->log_writers); 214 } 215 mutex_unlock(&root->log_mutex); 216 return ret; 217 } 218 219 /* 220 * This either makes the current running log transaction wait 221 * until you call btrfs_end_log_trans() or it makes any future 222 * log transactions wait until you call btrfs_end_log_trans() 223 */ 224 int btrfs_pin_log_trans(struct btrfs_root *root) 225 { 226 int ret = -ENOENT; 227 228 mutex_lock(&root->log_mutex); 229 atomic_inc(&root->log_writers); 230 mutex_unlock(&root->log_mutex); 231 return ret; 232 } 233 234 /* 235 * indicate we're done making changes to the log tree 236 * and wake up anyone waiting to do a sync 237 */ 238 void btrfs_end_log_trans(struct btrfs_root *root) 239 { 240 if (atomic_dec_and_test(&root->log_writers)) { 241 smp_mb(); 242 if (waitqueue_active(&root->log_writer_wait)) 243 wake_up(&root->log_writer_wait); 244 } 245 } 246 247 248 /* 249 * the walk control struct is used to pass state down the chain when 250 * processing the log tree. The stage field tells us which part 251 * of the log tree processing we are currently doing. The others 252 * are state fields used for that specific part 253 */ 254 struct walk_control { 255 /* should we free the extent on disk when done? This is used 256 * at transaction commit time while freeing a log tree 257 */ 258 int free; 259 260 /* should we write out the extent buffer? This is used 261 * while flushing the log tree to disk during a sync 262 */ 263 int write; 264 265 /* should we wait for the extent buffer io to finish? Also used 266 * while flushing the log tree to disk for a sync 267 */ 268 int wait; 269 270 /* pin only walk, we record which extents on disk belong to the 271 * log trees 272 */ 273 int pin; 274 275 /* what stage of the replay code we're currently in */ 276 int stage; 277 278 /* the root we are currently replaying */ 279 struct btrfs_root *replay_dest; 280 281 /* the trans handle for the current replay */ 282 struct btrfs_trans_handle *trans; 283 284 /* the function that gets used to process blocks we find in the 285 * tree. Note the extent_buffer might not be up to date when it is 286 * passed in, and it must be checked or read if you need the data 287 * inside it 288 */ 289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 290 struct walk_control *wc, u64 gen); 291 }; 292 293 /* 294 * process_func used to pin down extents, write them or wait on them 295 */ 296 static int process_one_buffer(struct btrfs_root *log, 297 struct extent_buffer *eb, 298 struct walk_control *wc, u64 gen) 299 { 300 int ret = 0; 301 302 /* 303 * If this fs is mixed then we need to be able to process the leaves to 304 * pin down any logged extents, so we have to read the block. 305 */ 306 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) { 307 ret = btrfs_read_buffer(eb, gen); 308 if (ret) 309 return ret; 310 } 311 312 if (wc->pin) 313 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root, 314 eb->start, eb->len); 315 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 317 if (wc->pin && btrfs_header_level(eb) == 0) 318 ret = btrfs_exclude_logged_extents(log, eb); 319 if (wc->write) 320 btrfs_write_tree_block(eb); 321 if (wc->wait) 322 btrfs_wait_tree_block_writeback(eb); 323 } 324 return ret; 325 } 326 327 /* 328 * Item overwrite used by replay and tree logging. eb, slot and key all refer 329 * to the src data we are copying out. 330 * 331 * root is the tree we are copying into, and path is a scratch 332 * path for use in this function (it should be released on entry and 333 * will be released on exit). 334 * 335 * If the key is already in the destination tree the existing item is 336 * overwritten. If the existing item isn't big enough, it is extended. 337 * If it is too large, it is truncated. 338 * 339 * If the key isn't in the destination yet, a new item is inserted. 340 */ 341 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 342 struct btrfs_root *root, 343 struct btrfs_path *path, 344 struct extent_buffer *eb, int slot, 345 struct btrfs_key *key) 346 { 347 int ret; 348 u32 item_size; 349 u64 saved_i_size = 0; 350 int save_old_i_size = 0; 351 unsigned long src_ptr; 352 unsigned long dst_ptr; 353 int overwrite_root = 0; 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 355 356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 357 overwrite_root = 1; 358 359 item_size = btrfs_item_size_nr(eb, slot); 360 src_ptr = btrfs_item_ptr_offset(eb, slot); 361 362 /* look for the key in the destination tree */ 363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 364 if (ret < 0) 365 return ret; 366 367 if (ret == 0) { 368 char *src_copy; 369 char *dst_copy; 370 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 371 path->slots[0]); 372 if (dst_size != item_size) 373 goto insert; 374 375 if (item_size == 0) { 376 btrfs_release_path(path); 377 return 0; 378 } 379 dst_copy = kmalloc(item_size, GFP_NOFS); 380 src_copy = kmalloc(item_size, GFP_NOFS); 381 if (!dst_copy || !src_copy) { 382 btrfs_release_path(path); 383 kfree(dst_copy); 384 kfree(src_copy); 385 return -ENOMEM; 386 } 387 388 read_extent_buffer(eb, src_copy, src_ptr, item_size); 389 390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 392 item_size); 393 ret = memcmp(dst_copy, src_copy, item_size); 394 395 kfree(dst_copy); 396 kfree(src_copy); 397 /* 398 * they have the same contents, just return, this saves 399 * us from cowing blocks in the destination tree and doing 400 * extra writes that may not have been done by a previous 401 * sync 402 */ 403 if (ret == 0) { 404 btrfs_release_path(path); 405 return 0; 406 } 407 408 /* 409 * We need to load the old nbytes into the inode so when we 410 * replay the extents we've logged we get the right nbytes. 411 */ 412 if (inode_item) { 413 struct btrfs_inode_item *item; 414 u64 nbytes; 415 u32 mode; 416 417 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 418 struct btrfs_inode_item); 419 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 420 item = btrfs_item_ptr(eb, slot, 421 struct btrfs_inode_item); 422 btrfs_set_inode_nbytes(eb, item, nbytes); 423 424 /* 425 * If this is a directory we need to reset the i_size to 426 * 0 so that we can set it up properly when replaying 427 * the rest of the items in this log. 428 */ 429 mode = btrfs_inode_mode(eb, item); 430 if (S_ISDIR(mode)) 431 btrfs_set_inode_size(eb, item, 0); 432 } 433 } else if (inode_item) { 434 struct btrfs_inode_item *item; 435 u32 mode; 436 437 /* 438 * New inode, set nbytes to 0 so that the nbytes comes out 439 * properly when we replay the extents. 440 */ 441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 442 btrfs_set_inode_nbytes(eb, item, 0); 443 444 /* 445 * If this is a directory we need to reset the i_size to 0 so 446 * that we can set it up properly when replaying the rest of 447 * the items in this log. 448 */ 449 mode = btrfs_inode_mode(eb, item); 450 if (S_ISDIR(mode)) 451 btrfs_set_inode_size(eb, item, 0); 452 } 453 insert: 454 btrfs_release_path(path); 455 /* try to insert the key into the destination tree */ 456 ret = btrfs_insert_empty_item(trans, root, path, 457 key, item_size); 458 459 /* make sure any existing item is the correct size */ 460 if (ret == -EEXIST) { 461 u32 found_size; 462 found_size = btrfs_item_size_nr(path->nodes[0], 463 path->slots[0]); 464 if (found_size > item_size) 465 btrfs_truncate_item(root, path, item_size, 1); 466 else if (found_size < item_size) 467 btrfs_extend_item(root, path, 468 item_size - found_size); 469 } else if (ret) { 470 return ret; 471 } 472 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 473 path->slots[0]); 474 475 /* don't overwrite an existing inode if the generation number 476 * was logged as zero. This is done when the tree logging code 477 * is just logging an inode to make sure it exists after recovery. 478 * 479 * Also, don't overwrite i_size on directories during replay. 480 * log replay inserts and removes directory items based on the 481 * state of the tree found in the subvolume, and i_size is modified 482 * as it goes 483 */ 484 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 485 struct btrfs_inode_item *src_item; 486 struct btrfs_inode_item *dst_item; 487 488 src_item = (struct btrfs_inode_item *)src_ptr; 489 dst_item = (struct btrfs_inode_item *)dst_ptr; 490 491 if (btrfs_inode_generation(eb, src_item) == 0) 492 goto no_copy; 493 494 if (overwrite_root && 495 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 496 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 497 save_old_i_size = 1; 498 saved_i_size = btrfs_inode_size(path->nodes[0], 499 dst_item); 500 } 501 } 502 503 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 504 src_ptr, item_size); 505 506 if (save_old_i_size) { 507 struct btrfs_inode_item *dst_item; 508 dst_item = (struct btrfs_inode_item *)dst_ptr; 509 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 510 } 511 512 /* make sure the generation is filled in */ 513 if (key->type == BTRFS_INODE_ITEM_KEY) { 514 struct btrfs_inode_item *dst_item; 515 dst_item = (struct btrfs_inode_item *)dst_ptr; 516 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 517 btrfs_set_inode_generation(path->nodes[0], dst_item, 518 trans->transid); 519 } 520 } 521 no_copy: 522 btrfs_mark_buffer_dirty(path->nodes[0]); 523 btrfs_release_path(path); 524 return 0; 525 } 526 527 /* 528 * simple helper to read an inode off the disk from a given root 529 * This can only be called for subvolume roots and not for the log 530 */ 531 static noinline struct inode *read_one_inode(struct btrfs_root *root, 532 u64 objectid) 533 { 534 struct btrfs_key key; 535 struct inode *inode; 536 537 key.objectid = objectid; 538 key.type = BTRFS_INODE_ITEM_KEY; 539 key.offset = 0; 540 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 541 if (IS_ERR(inode)) { 542 inode = NULL; 543 } else if (is_bad_inode(inode)) { 544 iput(inode); 545 inode = NULL; 546 } 547 return inode; 548 } 549 550 /* replays a single extent in 'eb' at 'slot' with 'key' into the 551 * subvolume 'root'. path is released on entry and should be released 552 * on exit. 553 * 554 * extents in the log tree have not been allocated out of the extent 555 * tree yet. So, this completes the allocation, taking a reference 556 * as required if the extent already exists or creating a new extent 557 * if it isn't in the extent allocation tree yet. 558 * 559 * The extent is inserted into the file, dropping any existing extents 560 * from the file that overlap the new one. 561 */ 562 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 563 struct btrfs_root *root, 564 struct btrfs_path *path, 565 struct extent_buffer *eb, int slot, 566 struct btrfs_key *key) 567 { 568 int found_type; 569 u64 extent_end; 570 u64 start = key->offset; 571 u64 nbytes = 0; 572 struct btrfs_file_extent_item *item; 573 struct inode *inode = NULL; 574 unsigned long size; 575 int ret = 0; 576 577 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 578 found_type = btrfs_file_extent_type(eb, item); 579 580 if (found_type == BTRFS_FILE_EXTENT_REG || 581 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 582 nbytes = btrfs_file_extent_num_bytes(eb, item); 583 extent_end = start + nbytes; 584 585 /* 586 * We don't add to the inodes nbytes if we are prealloc or a 587 * hole. 588 */ 589 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 590 nbytes = 0; 591 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 592 size = btrfs_file_extent_inline_len(eb, slot, item); 593 nbytes = btrfs_file_extent_ram_bytes(eb, item); 594 extent_end = ALIGN(start + size, root->sectorsize); 595 } else { 596 ret = 0; 597 goto out; 598 } 599 600 inode = read_one_inode(root, key->objectid); 601 if (!inode) { 602 ret = -EIO; 603 goto out; 604 } 605 606 /* 607 * first check to see if we already have this extent in the 608 * file. This must be done before the btrfs_drop_extents run 609 * so we don't try to drop this extent. 610 */ 611 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 612 start, 0); 613 614 if (ret == 0 && 615 (found_type == BTRFS_FILE_EXTENT_REG || 616 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 617 struct btrfs_file_extent_item cmp1; 618 struct btrfs_file_extent_item cmp2; 619 struct btrfs_file_extent_item *existing; 620 struct extent_buffer *leaf; 621 622 leaf = path->nodes[0]; 623 existing = btrfs_item_ptr(leaf, path->slots[0], 624 struct btrfs_file_extent_item); 625 626 read_extent_buffer(eb, &cmp1, (unsigned long)item, 627 sizeof(cmp1)); 628 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 629 sizeof(cmp2)); 630 631 /* 632 * we already have a pointer to this exact extent, 633 * we don't have to do anything 634 */ 635 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 636 btrfs_release_path(path); 637 goto out; 638 } 639 } 640 btrfs_release_path(path); 641 642 /* drop any overlapping extents */ 643 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 644 if (ret) 645 goto out; 646 647 if (found_type == BTRFS_FILE_EXTENT_REG || 648 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 649 u64 offset; 650 unsigned long dest_offset; 651 struct btrfs_key ins; 652 653 ret = btrfs_insert_empty_item(trans, root, path, key, 654 sizeof(*item)); 655 if (ret) 656 goto out; 657 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 658 path->slots[0]); 659 copy_extent_buffer(path->nodes[0], eb, dest_offset, 660 (unsigned long)item, sizeof(*item)); 661 662 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 663 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 664 ins.type = BTRFS_EXTENT_ITEM_KEY; 665 offset = key->offset - btrfs_file_extent_offset(eb, item); 666 667 if (ins.objectid > 0) { 668 u64 csum_start; 669 u64 csum_end; 670 LIST_HEAD(ordered_sums); 671 /* 672 * is this extent already allocated in the extent 673 * allocation tree? If so, just add a reference 674 */ 675 ret = btrfs_lookup_data_extent(root, ins.objectid, 676 ins.offset); 677 if (ret == 0) { 678 ret = btrfs_inc_extent_ref(trans, root, 679 ins.objectid, ins.offset, 680 0, root->root_key.objectid, 681 key->objectid, offset, 0); 682 if (ret) 683 goto out; 684 } else { 685 /* 686 * insert the extent pointer in the extent 687 * allocation tree 688 */ 689 ret = btrfs_alloc_logged_file_extent(trans, 690 root, root->root_key.objectid, 691 key->objectid, offset, &ins); 692 if (ret) 693 goto out; 694 } 695 btrfs_release_path(path); 696 697 if (btrfs_file_extent_compression(eb, item)) { 698 csum_start = ins.objectid; 699 csum_end = csum_start + ins.offset; 700 } else { 701 csum_start = ins.objectid + 702 btrfs_file_extent_offset(eb, item); 703 csum_end = csum_start + 704 btrfs_file_extent_num_bytes(eb, item); 705 } 706 707 ret = btrfs_lookup_csums_range(root->log_root, 708 csum_start, csum_end - 1, 709 &ordered_sums, 0); 710 if (ret) 711 goto out; 712 while (!list_empty(&ordered_sums)) { 713 struct btrfs_ordered_sum *sums; 714 sums = list_entry(ordered_sums.next, 715 struct btrfs_ordered_sum, 716 list); 717 if (!ret) 718 ret = btrfs_csum_file_blocks(trans, 719 root->fs_info->csum_root, 720 sums); 721 list_del(&sums->list); 722 kfree(sums); 723 } 724 if (ret) 725 goto out; 726 } else { 727 btrfs_release_path(path); 728 } 729 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 730 /* inline extents are easy, we just overwrite them */ 731 ret = overwrite_item(trans, root, path, eb, slot, key); 732 if (ret) 733 goto out; 734 } 735 736 inode_add_bytes(inode, nbytes); 737 ret = btrfs_update_inode(trans, root, inode); 738 out: 739 if (inode) 740 iput(inode); 741 return ret; 742 } 743 744 /* 745 * when cleaning up conflicts between the directory names in the 746 * subvolume, directory names in the log and directory names in the 747 * inode back references, we may have to unlink inodes from directories. 748 * 749 * This is a helper function to do the unlink of a specific directory 750 * item 751 */ 752 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 753 struct btrfs_root *root, 754 struct btrfs_path *path, 755 struct inode *dir, 756 struct btrfs_dir_item *di) 757 { 758 struct inode *inode; 759 char *name; 760 int name_len; 761 struct extent_buffer *leaf; 762 struct btrfs_key location; 763 int ret; 764 765 leaf = path->nodes[0]; 766 767 btrfs_dir_item_key_to_cpu(leaf, di, &location); 768 name_len = btrfs_dir_name_len(leaf, di); 769 name = kmalloc(name_len, GFP_NOFS); 770 if (!name) 771 return -ENOMEM; 772 773 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 774 btrfs_release_path(path); 775 776 inode = read_one_inode(root, location.objectid); 777 if (!inode) { 778 ret = -EIO; 779 goto out; 780 } 781 782 ret = link_to_fixup_dir(trans, root, path, location.objectid); 783 if (ret) 784 goto out; 785 786 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 787 if (ret) 788 goto out; 789 else 790 ret = btrfs_run_delayed_items(trans, root); 791 out: 792 kfree(name); 793 iput(inode); 794 return ret; 795 } 796 797 /* 798 * helper function to see if a given name and sequence number found 799 * in an inode back reference are already in a directory and correctly 800 * point to this inode 801 */ 802 static noinline int inode_in_dir(struct btrfs_root *root, 803 struct btrfs_path *path, 804 u64 dirid, u64 objectid, u64 index, 805 const char *name, int name_len) 806 { 807 struct btrfs_dir_item *di; 808 struct btrfs_key location; 809 int match = 0; 810 811 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 812 index, name, name_len, 0); 813 if (di && !IS_ERR(di)) { 814 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 815 if (location.objectid != objectid) 816 goto out; 817 } else 818 goto out; 819 btrfs_release_path(path); 820 821 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 822 if (di && !IS_ERR(di)) { 823 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 824 if (location.objectid != objectid) 825 goto out; 826 } else 827 goto out; 828 match = 1; 829 out: 830 btrfs_release_path(path); 831 return match; 832 } 833 834 /* 835 * helper function to check a log tree for a named back reference in 836 * an inode. This is used to decide if a back reference that is 837 * found in the subvolume conflicts with what we find in the log. 838 * 839 * inode backreferences may have multiple refs in a single item, 840 * during replay we process one reference at a time, and we don't 841 * want to delete valid links to a file from the subvolume if that 842 * link is also in the log. 843 */ 844 static noinline int backref_in_log(struct btrfs_root *log, 845 struct btrfs_key *key, 846 u64 ref_objectid, 847 char *name, int namelen) 848 { 849 struct btrfs_path *path; 850 struct btrfs_inode_ref *ref; 851 unsigned long ptr; 852 unsigned long ptr_end; 853 unsigned long name_ptr; 854 int found_name_len; 855 int item_size; 856 int ret; 857 int match = 0; 858 859 path = btrfs_alloc_path(); 860 if (!path) 861 return -ENOMEM; 862 863 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 864 if (ret != 0) 865 goto out; 866 867 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 868 869 if (key->type == BTRFS_INODE_EXTREF_KEY) { 870 if (btrfs_find_name_in_ext_backref(path, ref_objectid, 871 name, namelen, NULL)) 872 match = 1; 873 874 goto out; 875 } 876 877 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 878 ptr_end = ptr + item_size; 879 while (ptr < ptr_end) { 880 ref = (struct btrfs_inode_ref *)ptr; 881 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 882 if (found_name_len == namelen) { 883 name_ptr = (unsigned long)(ref + 1); 884 ret = memcmp_extent_buffer(path->nodes[0], name, 885 name_ptr, namelen); 886 if (ret == 0) { 887 match = 1; 888 goto out; 889 } 890 } 891 ptr = (unsigned long)(ref + 1) + found_name_len; 892 } 893 out: 894 btrfs_free_path(path); 895 return match; 896 } 897 898 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 899 struct btrfs_root *root, 900 struct btrfs_path *path, 901 struct btrfs_root *log_root, 902 struct inode *dir, struct inode *inode, 903 struct extent_buffer *eb, 904 u64 inode_objectid, u64 parent_objectid, 905 u64 ref_index, char *name, int namelen, 906 int *search_done) 907 { 908 int ret; 909 char *victim_name; 910 int victim_name_len; 911 struct extent_buffer *leaf; 912 struct btrfs_dir_item *di; 913 struct btrfs_key search_key; 914 struct btrfs_inode_extref *extref; 915 916 again: 917 /* Search old style refs */ 918 search_key.objectid = inode_objectid; 919 search_key.type = BTRFS_INODE_REF_KEY; 920 search_key.offset = parent_objectid; 921 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 922 if (ret == 0) { 923 struct btrfs_inode_ref *victim_ref; 924 unsigned long ptr; 925 unsigned long ptr_end; 926 927 leaf = path->nodes[0]; 928 929 /* are we trying to overwrite a back ref for the root directory 930 * if so, just jump out, we're done 931 */ 932 if (search_key.objectid == search_key.offset) 933 return 1; 934 935 /* check all the names in this back reference to see 936 * if they are in the log. if so, we allow them to stay 937 * otherwise they must be unlinked as a conflict 938 */ 939 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 940 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 941 while (ptr < ptr_end) { 942 victim_ref = (struct btrfs_inode_ref *)ptr; 943 victim_name_len = btrfs_inode_ref_name_len(leaf, 944 victim_ref); 945 victim_name = kmalloc(victim_name_len, GFP_NOFS); 946 if (!victim_name) 947 return -ENOMEM; 948 949 read_extent_buffer(leaf, victim_name, 950 (unsigned long)(victim_ref + 1), 951 victim_name_len); 952 953 if (!backref_in_log(log_root, &search_key, 954 parent_objectid, 955 victim_name, 956 victim_name_len)) { 957 inc_nlink(inode); 958 btrfs_release_path(path); 959 960 ret = btrfs_unlink_inode(trans, root, dir, 961 inode, victim_name, 962 victim_name_len); 963 kfree(victim_name); 964 if (ret) 965 return ret; 966 ret = btrfs_run_delayed_items(trans, root); 967 if (ret) 968 return ret; 969 *search_done = 1; 970 goto again; 971 } 972 kfree(victim_name); 973 974 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 975 } 976 977 /* 978 * NOTE: we have searched root tree and checked the 979 * coresponding ref, it does not need to check again. 980 */ 981 *search_done = 1; 982 } 983 btrfs_release_path(path); 984 985 /* Same search but for extended refs */ 986 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 987 inode_objectid, parent_objectid, 0, 988 0); 989 if (!IS_ERR_OR_NULL(extref)) { 990 u32 item_size; 991 u32 cur_offset = 0; 992 unsigned long base; 993 struct inode *victim_parent; 994 995 leaf = path->nodes[0]; 996 997 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 998 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 999 1000 while (cur_offset < item_size) { 1001 extref = (struct btrfs_inode_extref *)base + cur_offset; 1002 1003 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1004 1005 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1006 goto next; 1007 1008 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1009 if (!victim_name) 1010 return -ENOMEM; 1011 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1012 victim_name_len); 1013 1014 search_key.objectid = inode_objectid; 1015 search_key.type = BTRFS_INODE_EXTREF_KEY; 1016 search_key.offset = btrfs_extref_hash(parent_objectid, 1017 victim_name, 1018 victim_name_len); 1019 ret = 0; 1020 if (!backref_in_log(log_root, &search_key, 1021 parent_objectid, victim_name, 1022 victim_name_len)) { 1023 ret = -ENOENT; 1024 victim_parent = read_one_inode(root, 1025 parent_objectid); 1026 if (victim_parent) { 1027 inc_nlink(inode); 1028 btrfs_release_path(path); 1029 1030 ret = btrfs_unlink_inode(trans, root, 1031 victim_parent, 1032 inode, 1033 victim_name, 1034 victim_name_len); 1035 if (!ret) 1036 ret = btrfs_run_delayed_items( 1037 trans, root); 1038 } 1039 iput(victim_parent); 1040 kfree(victim_name); 1041 if (ret) 1042 return ret; 1043 *search_done = 1; 1044 goto again; 1045 } 1046 kfree(victim_name); 1047 if (ret) 1048 return ret; 1049 next: 1050 cur_offset += victim_name_len + sizeof(*extref); 1051 } 1052 *search_done = 1; 1053 } 1054 btrfs_release_path(path); 1055 1056 /* look for a conflicting sequence number */ 1057 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1058 ref_index, name, namelen, 0); 1059 if (di && !IS_ERR(di)) { 1060 ret = drop_one_dir_item(trans, root, path, dir, di); 1061 if (ret) 1062 return ret; 1063 } 1064 btrfs_release_path(path); 1065 1066 /* look for a conflicing name */ 1067 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1068 name, namelen, 0); 1069 if (di && !IS_ERR(di)) { 1070 ret = drop_one_dir_item(trans, root, path, dir, di); 1071 if (ret) 1072 return ret; 1073 } 1074 btrfs_release_path(path); 1075 1076 return 0; 1077 } 1078 1079 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1080 u32 *namelen, char **name, u64 *index, 1081 u64 *parent_objectid) 1082 { 1083 struct btrfs_inode_extref *extref; 1084 1085 extref = (struct btrfs_inode_extref *)ref_ptr; 1086 1087 *namelen = btrfs_inode_extref_name_len(eb, extref); 1088 *name = kmalloc(*namelen, GFP_NOFS); 1089 if (*name == NULL) 1090 return -ENOMEM; 1091 1092 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1093 *namelen); 1094 1095 *index = btrfs_inode_extref_index(eb, extref); 1096 if (parent_objectid) 1097 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1098 1099 return 0; 1100 } 1101 1102 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1103 u32 *namelen, char **name, u64 *index) 1104 { 1105 struct btrfs_inode_ref *ref; 1106 1107 ref = (struct btrfs_inode_ref *)ref_ptr; 1108 1109 *namelen = btrfs_inode_ref_name_len(eb, ref); 1110 *name = kmalloc(*namelen, GFP_NOFS); 1111 if (*name == NULL) 1112 return -ENOMEM; 1113 1114 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1115 1116 *index = btrfs_inode_ref_index(eb, ref); 1117 1118 return 0; 1119 } 1120 1121 /* 1122 * replay one inode back reference item found in the log tree. 1123 * eb, slot and key refer to the buffer and key found in the log tree. 1124 * root is the destination we are replaying into, and path is for temp 1125 * use by this function. (it should be released on return). 1126 */ 1127 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1128 struct btrfs_root *root, 1129 struct btrfs_root *log, 1130 struct btrfs_path *path, 1131 struct extent_buffer *eb, int slot, 1132 struct btrfs_key *key) 1133 { 1134 struct inode *dir = NULL; 1135 struct inode *inode = NULL; 1136 unsigned long ref_ptr; 1137 unsigned long ref_end; 1138 char *name = NULL; 1139 int namelen; 1140 int ret; 1141 int search_done = 0; 1142 int log_ref_ver = 0; 1143 u64 parent_objectid; 1144 u64 inode_objectid; 1145 u64 ref_index = 0; 1146 int ref_struct_size; 1147 1148 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1149 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1150 1151 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1152 struct btrfs_inode_extref *r; 1153 1154 ref_struct_size = sizeof(struct btrfs_inode_extref); 1155 log_ref_ver = 1; 1156 r = (struct btrfs_inode_extref *)ref_ptr; 1157 parent_objectid = btrfs_inode_extref_parent(eb, r); 1158 } else { 1159 ref_struct_size = sizeof(struct btrfs_inode_ref); 1160 parent_objectid = key->offset; 1161 } 1162 inode_objectid = key->objectid; 1163 1164 /* 1165 * it is possible that we didn't log all the parent directories 1166 * for a given inode. If we don't find the dir, just don't 1167 * copy the back ref in. The link count fixup code will take 1168 * care of the rest 1169 */ 1170 dir = read_one_inode(root, parent_objectid); 1171 if (!dir) { 1172 ret = -ENOENT; 1173 goto out; 1174 } 1175 1176 inode = read_one_inode(root, inode_objectid); 1177 if (!inode) { 1178 ret = -EIO; 1179 goto out; 1180 } 1181 1182 while (ref_ptr < ref_end) { 1183 if (log_ref_ver) { 1184 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1185 &ref_index, &parent_objectid); 1186 /* 1187 * parent object can change from one array 1188 * item to another. 1189 */ 1190 if (!dir) 1191 dir = read_one_inode(root, parent_objectid); 1192 if (!dir) { 1193 ret = -ENOENT; 1194 goto out; 1195 } 1196 } else { 1197 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1198 &ref_index); 1199 } 1200 if (ret) 1201 goto out; 1202 1203 /* if we already have a perfect match, we're done */ 1204 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), 1205 ref_index, name, namelen)) { 1206 /* 1207 * look for a conflicting back reference in the 1208 * metadata. if we find one we have to unlink that name 1209 * of the file before we add our new link. Later on, we 1210 * overwrite any existing back reference, and we don't 1211 * want to create dangling pointers in the directory. 1212 */ 1213 1214 if (!search_done) { 1215 ret = __add_inode_ref(trans, root, path, log, 1216 dir, inode, eb, 1217 inode_objectid, 1218 parent_objectid, 1219 ref_index, name, namelen, 1220 &search_done); 1221 if (ret) { 1222 if (ret == 1) 1223 ret = 0; 1224 goto out; 1225 } 1226 } 1227 1228 /* insert our name */ 1229 ret = btrfs_add_link(trans, dir, inode, name, namelen, 1230 0, ref_index); 1231 if (ret) 1232 goto out; 1233 1234 btrfs_update_inode(trans, root, inode); 1235 } 1236 1237 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1238 kfree(name); 1239 name = NULL; 1240 if (log_ref_ver) { 1241 iput(dir); 1242 dir = NULL; 1243 } 1244 } 1245 1246 /* finally write the back reference in the inode */ 1247 ret = overwrite_item(trans, root, path, eb, slot, key); 1248 out: 1249 btrfs_release_path(path); 1250 kfree(name); 1251 iput(dir); 1252 iput(inode); 1253 return ret; 1254 } 1255 1256 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1257 struct btrfs_root *root, u64 offset) 1258 { 1259 int ret; 1260 ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID, 1261 offset, BTRFS_ORPHAN_ITEM_KEY, NULL); 1262 if (ret > 0) 1263 ret = btrfs_insert_orphan_item(trans, root, offset); 1264 return ret; 1265 } 1266 1267 static int count_inode_extrefs(struct btrfs_root *root, 1268 struct inode *inode, struct btrfs_path *path) 1269 { 1270 int ret = 0; 1271 int name_len; 1272 unsigned int nlink = 0; 1273 u32 item_size; 1274 u32 cur_offset = 0; 1275 u64 inode_objectid = btrfs_ino(inode); 1276 u64 offset = 0; 1277 unsigned long ptr; 1278 struct btrfs_inode_extref *extref; 1279 struct extent_buffer *leaf; 1280 1281 while (1) { 1282 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1283 &extref, &offset); 1284 if (ret) 1285 break; 1286 1287 leaf = path->nodes[0]; 1288 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1289 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1290 1291 while (cur_offset < item_size) { 1292 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1293 name_len = btrfs_inode_extref_name_len(leaf, extref); 1294 1295 nlink++; 1296 1297 cur_offset += name_len + sizeof(*extref); 1298 } 1299 1300 offset++; 1301 btrfs_release_path(path); 1302 } 1303 btrfs_release_path(path); 1304 1305 if (ret < 0) 1306 return ret; 1307 return nlink; 1308 } 1309 1310 static int count_inode_refs(struct btrfs_root *root, 1311 struct inode *inode, struct btrfs_path *path) 1312 { 1313 int ret; 1314 struct btrfs_key key; 1315 unsigned int nlink = 0; 1316 unsigned long ptr; 1317 unsigned long ptr_end; 1318 int name_len; 1319 u64 ino = btrfs_ino(inode); 1320 1321 key.objectid = ino; 1322 key.type = BTRFS_INODE_REF_KEY; 1323 key.offset = (u64)-1; 1324 1325 while (1) { 1326 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1327 if (ret < 0) 1328 break; 1329 if (ret > 0) { 1330 if (path->slots[0] == 0) 1331 break; 1332 path->slots[0]--; 1333 } 1334 process_slot: 1335 btrfs_item_key_to_cpu(path->nodes[0], &key, 1336 path->slots[0]); 1337 if (key.objectid != ino || 1338 key.type != BTRFS_INODE_REF_KEY) 1339 break; 1340 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1341 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1342 path->slots[0]); 1343 while (ptr < ptr_end) { 1344 struct btrfs_inode_ref *ref; 1345 1346 ref = (struct btrfs_inode_ref *)ptr; 1347 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1348 ref); 1349 ptr = (unsigned long)(ref + 1) + name_len; 1350 nlink++; 1351 } 1352 1353 if (key.offset == 0) 1354 break; 1355 if (path->slots[0] > 0) { 1356 path->slots[0]--; 1357 goto process_slot; 1358 } 1359 key.offset--; 1360 btrfs_release_path(path); 1361 } 1362 btrfs_release_path(path); 1363 1364 return nlink; 1365 } 1366 1367 /* 1368 * There are a few corners where the link count of the file can't 1369 * be properly maintained during replay. So, instead of adding 1370 * lots of complexity to the log code, we just scan the backrefs 1371 * for any file that has been through replay. 1372 * 1373 * The scan will update the link count on the inode to reflect the 1374 * number of back refs found. If it goes down to zero, the iput 1375 * will free the inode. 1376 */ 1377 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1378 struct btrfs_root *root, 1379 struct inode *inode) 1380 { 1381 struct btrfs_path *path; 1382 int ret; 1383 u64 nlink = 0; 1384 u64 ino = btrfs_ino(inode); 1385 1386 path = btrfs_alloc_path(); 1387 if (!path) 1388 return -ENOMEM; 1389 1390 ret = count_inode_refs(root, inode, path); 1391 if (ret < 0) 1392 goto out; 1393 1394 nlink = ret; 1395 1396 ret = count_inode_extrefs(root, inode, path); 1397 if (ret == -ENOENT) 1398 ret = 0; 1399 1400 if (ret < 0) 1401 goto out; 1402 1403 nlink += ret; 1404 1405 ret = 0; 1406 1407 if (nlink != inode->i_nlink) { 1408 set_nlink(inode, nlink); 1409 btrfs_update_inode(trans, root, inode); 1410 } 1411 BTRFS_I(inode)->index_cnt = (u64)-1; 1412 1413 if (inode->i_nlink == 0) { 1414 if (S_ISDIR(inode->i_mode)) { 1415 ret = replay_dir_deletes(trans, root, NULL, path, 1416 ino, 1); 1417 if (ret) 1418 goto out; 1419 } 1420 ret = insert_orphan_item(trans, root, ino); 1421 } 1422 1423 out: 1424 btrfs_free_path(path); 1425 return ret; 1426 } 1427 1428 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1429 struct btrfs_root *root, 1430 struct btrfs_path *path) 1431 { 1432 int ret; 1433 struct btrfs_key key; 1434 struct inode *inode; 1435 1436 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1437 key.type = BTRFS_ORPHAN_ITEM_KEY; 1438 key.offset = (u64)-1; 1439 while (1) { 1440 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1441 if (ret < 0) 1442 break; 1443 1444 if (ret == 1) { 1445 if (path->slots[0] == 0) 1446 break; 1447 path->slots[0]--; 1448 } 1449 1450 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1451 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1452 key.type != BTRFS_ORPHAN_ITEM_KEY) 1453 break; 1454 1455 ret = btrfs_del_item(trans, root, path); 1456 if (ret) 1457 goto out; 1458 1459 btrfs_release_path(path); 1460 inode = read_one_inode(root, key.offset); 1461 if (!inode) 1462 return -EIO; 1463 1464 ret = fixup_inode_link_count(trans, root, inode); 1465 iput(inode); 1466 if (ret) 1467 goto out; 1468 1469 /* 1470 * fixup on a directory may create new entries, 1471 * make sure we always look for the highset possible 1472 * offset 1473 */ 1474 key.offset = (u64)-1; 1475 } 1476 ret = 0; 1477 out: 1478 btrfs_release_path(path); 1479 return ret; 1480 } 1481 1482 1483 /* 1484 * record a given inode in the fixup dir so we can check its link 1485 * count when replay is done. The link count is incremented here 1486 * so the inode won't go away until we check it 1487 */ 1488 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1489 struct btrfs_root *root, 1490 struct btrfs_path *path, 1491 u64 objectid) 1492 { 1493 struct btrfs_key key; 1494 int ret = 0; 1495 struct inode *inode; 1496 1497 inode = read_one_inode(root, objectid); 1498 if (!inode) 1499 return -EIO; 1500 1501 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1502 key.type = BTRFS_ORPHAN_ITEM_KEY; 1503 key.offset = objectid; 1504 1505 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1506 1507 btrfs_release_path(path); 1508 if (ret == 0) { 1509 if (!inode->i_nlink) 1510 set_nlink(inode, 1); 1511 else 1512 inc_nlink(inode); 1513 ret = btrfs_update_inode(trans, root, inode); 1514 } else if (ret == -EEXIST) { 1515 ret = 0; 1516 } else { 1517 BUG(); /* Logic Error */ 1518 } 1519 iput(inode); 1520 1521 return ret; 1522 } 1523 1524 /* 1525 * when replaying the log for a directory, we only insert names 1526 * for inodes that actually exist. This means an fsync on a directory 1527 * does not implicitly fsync all the new files in it 1528 */ 1529 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1530 struct btrfs_root *root, 1531 struct btrfs_path *path, 1532 u64 dirid, u64 index, 1533 char *name, int name_len, u8 type, 1534 struct btrfs_key *location) 1535 { 1536 struct inode *inode; 1537 struct inode *dir; 1538 int ret; 1539 1540 inode = read_one_inode(root, location->objectid); 1541 if (!inode) 1542 return -ENOENT; 1543 1544 dir = read_one_inode(root, dirid); 1545 if (!dir) { 1546 iput(inode); 1547 return -EIO; 1548 } 1549 1550 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); 1551 1552 /* FIXME, put inode into FIXUP list */ 1553 1554 iput(inode); 1555 iput(dir); 1556 return ret; 1557 } 1558 1559 /* 1560 * take a single entry in a log directory item and replay it into 1561 * the subvolume. 1562 * 1563 * if a conflicting item exists in the subdirectory already, 1564 * the inode it points to is unlinked and put into the link count 1565 * fix up tree. 1566 * 1567 * If a name from the log points to a file or directory that does 1568 * not exist in the FS, it is skipped. fsyncs on directories 1569 * do not force down inodes inside that directory, just changes to the 1570 * names or unlinks in a directory. 1571 */ 1572 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1573 struct btrfs_root *root, 1574 struct btrfs_path *path, 1575 struct extent_buffer *eb, 1576 struct btrfs_dir_item *di, 1577 struct btrfs_key *key) 1578 { 1579 char *name; 1580 int name_len; 1581 struct btrfs_dir_item *dst_di; 1582 struct btrfs_key found_key; 1583 struct btrfs_key log_key; 1584 struct inode *dir; 1585 u8 log_type; 1586 int exists; 1587 int ret = 0; 1588 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1589 1590 dir = read_one_inode(root, key->objectid); 1591 if (!dir) 1592 return -EIO; 1593 1594 name_len = btrfs_dir_name_len(eb, di); 1595 name = kmalloc(name_len, GFP_NOFS); 1596 if (!name) { 1597 ret = -ENOMEM; 1598 goto out; 1599 } 1600 1601 log_type = btrfs_dir_type(eb, di); 1602 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1603 name_len); 1604 1605 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1606 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1607 if (exists == 0) 1608 exists = 1; 1609 else 1610 exists = 0; 1611 btrfs_release_path(path); 1612 1613 if (key->type == BTRFS_DIR_ITEM_KEY) { 1614 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1615 name, name_len, 1); 1616 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1617 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1618 key->objectid, 1619 key->offset, name, 1620 name_len, 1); 1621 } else { 1622 /* Corruption */ 1623 ret = -EINVAL; 1624 goto out; 1625 } 1626 if (IS_ERR_OR_NULL(dst_di)) { 1627 /* we need a sequence number to insert, so we only 1628 * do inserts for the BTRFS_DIR_INDEX_KEY types 1629 */ 1630 if (key->type != BTRFS_DIR_INDEX_KEY) 1631 goto out; 1632 goto insert; 1633 } 1634 1635 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1636 /* the existing item matches the logged item */ 1637 if (found_key.objectid == log_key.objectid && 1638 found_key.type == log_key.type && 1639 found_key.offset == log_key.offset && 1640 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1641 update_size = false; 1642 goto out; 1643 } 1644 1645 /* 1646 * don't drop the conflicting directory entry if the inode 1647 * for the new entry doesn't exist 1648 */ 1649 if (!exists) 1650 goto out; 1651 1652 ret = drop_one_dir_item(trans, root, path, dir, dst_di); 1653 if (ret) 1654 goto out; 1655 1656 if (key->type == BTRFS_DIR_INDEX_KEY) 1657 goto insert; 1658 out: 1659 btrfs_release_path(path); 1660 if (!ret && update_size) { 1661 btrfs_i_size_write(dir, dir->i_size + name_len * 2); 1662 ret = btrfs_update_inode(trans, root, dir); 1663 } 1664 kfree(name); 1665 iput(dir); 1666 return ret; 1667 1668 insert: 1669 btrfs_release_path(path); 1670 ret = insert_one_name(trans, root, path, key->objectid, key->offset, 1671 name, name_len, log_type, &log_key); 1672 if (ret && ret != -ENOENT) 1673 goto out; 1674 update_size = false; 1675 ret = 0; 1676 goto out; 1677 } 1678 1679 /* 1680 * find all the names in a directory item and reconcile them into 1681 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 1682 * one name in a directory item, but the same code gets used for 1683 * both directory index types 1684 */ 1685 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1686 struct btrfs_root *root, 1687 struct btrfs_path *path, 1688 struct extent_buffer *eb, int slot, 1689 struct btrfs_key *key) 1690 { 1691 int ret; 1692 u32 item_size = btrfs_item_size_nr(eb, slot); 1693 struct btrfs_dir_item *di; 1694 int name_len; 1695 unsigned long ptr; 1696 unsigned long ptr_end; 1697 1698 ptr = btrfs_item_ptr_offset(eb, slot); 1699 ptr_end = ptr + item_size; 1700 while (ptr < ptr_end) { 1701 di = (struct btrfs_dir_item *)ptr; 1702 if (verify_dir_item(root, eb, di)) 1703 return -EIO; 1704 name_len = btrfs_dir_name_len(eb, di); 1705 ret = replay_one_name(trans, root, path, eb, di, key); 1706 if (ret) 1707 return ret; 1708 ptr = (unsigned long)(di + 1); 1709 ptr += name_len; 1710 } 1711 return 0; 1712 } 1713 1714 /* 1715 * directory replay has two parts. There are the standard directory 1716 * items in the log copied from the subvolume, and range items 1717 * created in the log while the subvolume was logged. 1718 * 1719 * The range items tell us which parts of the key space the log 1720 * is authoritative for. During replay, if a key in the subvolume 1721 * directory is in a logged range item, but not actually in the log 1722 * that means it was deleted from the directory before the fsync 1723 * and should be removed. 1724 */ 1725 static noinline int find_dir_range(struct btrfs_root *root, 1726 struct btrfs_path *path, 1727 u64 dirid, int key_type, 1728 u64 *start_ret, u64 *end_ret) 1729 { 1730 struct btrfs_key key; 1731 u64 found_end; 1732 struct btrfs_dir_log_item *item; 1733 int ret; 1734 int nritems; 1735 1736 if (*start_ret == (u64)-1) 1737 return 1; 1738 1739 key.objectid = dirid; 1740 key.type = key_type; 1741 key.offset = *start_ret; 1742 1743 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1744 if (ret < 0) 1745 goto out; 1746 if (ret > 0) { 1747 if (path->slots[0] == 0) 1748 goto out; 1749 path->slots[0]--; 1750 } 1751 if (ret != 0) 1752 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1753 1754 if (key.type != key_type || key.objectid != dirid) { 1755 ret = 1; 1756 goto next; 1757 } 1758 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1759 struct btrfs_dir_log_item); 1760 found_end = btrfs_dir_log_end(path->nodes[0], item); 1761 1762 if (*start_ret >= key.offset && *start_ret <= found_end) { 1763 ret = 0; 1764 *start_ret = key.offset; 1765 *end_ret = found_end; 1766 goto out; 1767 } 1768 ret = 1; 1769 next: 1770 /* check the next slot in the tree to see if it is a valid item */ 1771 nritems = btrfs_header_nritems(path->nodes[0]); 1772 if (path->slots[0] >= nritems) { 1773 ret = btrfs_next_leaf(root, path); 1774 if (ret) 1775 goto out; 1776 } else { 1777 path->slots[0]++; 1778 } 1779 1780 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1781 1782 if (key.type != key_type || key.objectid != dirid) { 1783 ret = 1; 1784 goto out; 1785 } 1786 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1787 struct btrfs_dir_log_item); 1788 found_end = btrfs_dir_log_end(path->nodes[0], item); 1789 *start_ret = key.offset; 1790 *end_ret = found_end; 1791 ret = 0; 1792 out: 1793 btrfs_release_path(path); 1794 return ret; 1795 } 1796 1797 /* 1798 * this looks for a given directory item in the log. If the directory 1799 * item is not in the log, the item is removed and the inode it points 1800 * to is unlinked 1801 */ 1802 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 1803 struct btrfs_root *root, 1804 struct btrfs_root *log, 1805 struct btrfs_path *path, 1806 struct btrfs_path *log_path, 1807 struct inode *dir, 1808 struct btrfs_key *dir_key) 1809 { 1810 int ret; 1811 struct extent_buffer *eb; 1812 int slot; 1813 u32 item_size; 1814 struct btrfs_dir_item *di; 1815 struct btrfs_dir_item *log_di; 1816 int name_len; 1817 unsigned long ptr; 1818 unsigned long ptr_end; 1819 char *name; 1820 struct inode *inode; 1821 struct btrfs_key location; 1822 1823 again: 1824 eb = path->nodes[0]; 1825 slot = path->slots[0]; 1826 item_size = btrfs_item_size_nr(eb, slot); 1827 ptr = btrfs_item_ptr_offset(eb, slot); 1828 ptr_end = ptr + item_size; 1829 while (ptr < ptr_end) { 1830 di = (struct btrfs_dir_item *)ptr; 1831 if (verify_dir_item(root, eb, di)) { 1832 ret = -EIO; 1833 goto out; 1834 } 1835 1836 name_len = btrfs_dir_name_len(eb, di); 1837 name = kmalloc(name_len, GFP_NOFS); 1838 if (!name) { 1839 ret = -ENOMEM; 1840 goto out; 1841 } 1842 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1843 name_len); 1844 log_di = NULL; 1845 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 1846 log_di = btrfs_lookup_dir_item(trans, log, log_path, 1847 dir_key->objectid, 1848 name, name_len, 0); 1849 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 1850 log_di = btrfs_lookup_dir_index_item(trans, log, 1851 log_path, 1852 dir_key->objectid, 1853 dir_key->offset, 1854 name, name_len, 0); 1855 } 1856 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) { 1857 btrfs_dir_item_key_to_cpu(eb, di, &location); 1858 btrfs_release_path(path); 1859 btrfs_release_path(log_path); 1860 inode = read_one_inode(root, location.objectid); 1861 if (!inode) { 1862 kfree(name); 1863 return -EIO; 1864 } 1865 1866 ret = link_to_fixup_dir(trans, root, 1867 path, location.objectid); 1868 if (ret) { 1869 kfree(name); 1870 iput(inode); 1871 goto out; 1872 } 1873 1874 inc_nlink(inode); 1875 ret = btrfs_unlink_inode(trans, root, dir, inode, 1876 name, name_len); 1877 if (!ret) 1878 ret = btrfs_run_delayed_items(trans, root); 1879 kfree(name); 1880 iput(inode); 1881 if (ret) 1882 goto out; 1883 1884 /* there might still be more names under this key 1885 * check and repeat if required 1886 */ 1887 ret = btrfs_search_slot(NULL, root, dir_key, path, 1888 0, 0); 1889 if (ret == 0) 1890 goto again; 1891 ret = 0; 1892 goto out; 1893 } else if (IS_ERR(log_di)) { 1894 kfree(name); 1895 return PTR_ERR(log_di); 1896 } 1897 btrfs_release_path(log_path); 1898 kfree(name); 1899 1900 ptr = (unsigned long)(di + 1); 1901 ptr += name_len; 1902 } 1903 ret = 0; 1904 out: 1905 btrfs_release_path(path); 1906 btrfs_release_path(log_path); 1907 return ret; 1908 } 1909 1910 /* 1911 * deletion replay happens before we copy any new directory items 1912 * out of the log or out of backreferences from inodes. It 1913 * scans the log to find ranges of keys that log is authoritative for, 1914 * and then scans the directory to find items in those ranges that are 1915 * not present in the log. 1916 * 1917 * Anything we don't find in the log is unlinked and removed from the 1918 * directory. 1919 */ 1920 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 1921 struct btrfs_root *root, 1922 struct btrfs_root *log, 1923 struct btrfs_path *path, 1924 u64 dirid, int del_all) 1925 { 1926 u64 range_start; 1927 u64 range_end; 1928 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 1929 int ret = 0; 1930 struct btrfs_key dir_key; 1931 struct btrfs_key found_key; 1932 struct btrfs_path *log_path; 1933 struct inode *dir; 1934 1935 dir_key.objectid = dirid; 1936 dir_key.type = BTRFS_DIR_ITEM_KEY; 1937 log_path = btrfs_alloc_path(); 1938 if (!log_path) 1939 return -ENOMEM; 1940 1941 dir = read_one_inode(root, dirid); 1942 /* it isn't an error if the inode isn't there, that can happen 1943 * because we replay the deletes before we copy in the inode item 1944 * from the log 1945 */ 1946 if (!dir) { 1947 btrfs_free_path(log_path); 1948 return 0; 1949 } 1950 again: 1951 range_start = 0; 1952 range_end = 0; 1953 while (1) { 1954 if (del_all) 1955 range_end = (u64)-1; 1956 else { 1957 ret = find_dir_range(log, path, dirid, key_type, 1958 &range_start, &range_end); 1959 if (ret != 0) 1960 break; 1961 } 1962 1963 dir_key.offset = range_start; 1964 while (1) { 1965 int nritems; 1966 ret = btrfs_search_slot(NULL, root, &dir_key, path, 1967 0, 0); 1968 if (ret < 0) 1969 goto out; 1970 1971 nritems = btrfs_header_nritems(path->nodes[0]); 1972 if (path->slots[0] >= nritems) { 1973 ret = btrfs_next_leaf(root, path); 1974 if (ret) 1975 break; 1976 } 1977 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1978 path->slots[0]); 1979 if (found_key.objectid != dirid || 1980 found_key.type != dir_key.type) 1981 goto next_type; 1982 1983 if (found_key.offset > range_end) 1984 break; 1985 1986 ret = check_item_in_log(trans, root, log, path, 1987 log_path, dir, 1988 &found_key); 1989 if (ret) 1990 goto out; 1991 if (found_key.offset == (u64)-1) 1992 break; 1993 dir_key.offset = found_key.offset + 1; 1994 } 1995 btrfs_release_path(path); 1996 if (range_end == (u64)-1) 1997 break; 1998 range_start = range_end + 1; 1999 } 2000 2001 next_type: 2002 ret = 0; 2003 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2004 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2005 dir_key.type = BTRFS_DIR_INDEX_KEY; 2006 btrfs_release_path(path); 2007 goto again; 2008 } 2009 out: 2010 btrfs_release_path(path); 2011 btrfs_free_path(log_path); 2012 iput(dir); 2013 return ret; 2014 } 2015 2016 /* 2017 * the process_func used to replay items from the log tree. This 2018 * gets called in two different stages. The first stage just looks 2019 * for inodes and makes sure they are all copied into the subvolume. 2020 * 2021 * The second stage copies all the other item types from the log into 2022 * the subvolume. The two stage approach is slower, but gets rid of 2023 * lots of complexity around inodes referencing other inodes that exist 2024 * only in the log (references come from either directory items or inode 2025 * back refs). 2026 */ 2027 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2028 struct walk_control *wc, u64 gen) 2029 { 2030 int nritems; 2031 struct btrfs_path *path; 2032 struct btrfs_root *root = wc->replay_dest; 2033 struct btrfs_key key; 2034 int level; 2035 int i; 2036 int ret; 2037 2038 ret = btrfs_read_buffer(eb, gen); 2039 if (ret) 2040 return ret; 2041 2042 level = btrfs_header_level(eb); 2043 2044 if (level != 0) 2045 return 0; 2046 2047 path = btrfs_alloc_path(); 2048 if (!path) 2049 return -ENOMEM; 2050 2051 nritems = btrfs_header_nritems(eb); 2052 for (i = 0; i < nritems; i++) { 2053 btrfs_item_key_to_cpu(eb, &key, i); 2054 2055 /* inode keys are done during the first stage */ 2056 if (key.type == BTRFS_INODE_ITEM_KEY && 2057 wc->stage == LOG_WALK_REPLAY_INODES) { 2058 struct btrfs_inode_item *inode_item; 2059 u32 mode; 2060 2061 inode_item = btrfs_item_ptr(eb, i, 2062 struct btrfs_inode_item); 2063 mode = btrfs_inode_mode(eb, inode_item); 2064 if (S_ISDIR(mode)) { 2065 ret = replay_dir_deletes(wc->trans, 2066 root, log, path, key.objectid, 0); 2067 if (ret) 2068 break; 2069 } 2070 ret = overwrite_item(wc->trans, root, path, 2071 eb, i, &key); 2072 if (ret) 2073 break; 2074 2075 /* for regular files, make sure corresponding 2076 * orhpan item exist. extents past the new EOF 2077 * will be truncated later by orphan cleanup. 2078 */ 2079 if (S_ISREG(mode)) { 2080 ret = insert_orphan_item(wc->trans, root, 2081 key.objectid); 2082 if (ret) 2083 break; 2084 } 2085 2086 ret = link_to_fixup_dir(wc->trans, root, 2087 path, key.objectid); 2088 if (ret) 2089 break; 2090 } 2091 2092 if (key.type == BTRFS_DIR_INDEX_KEY && 2093 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2094 ret = replay_one_dir_item(wc->trans, root, path, 2095 eb, i, &key); 2096 if (ret) 2097 break; 2098 } 2099 2100 if (wc->stage < LOG_WALK_REPLAY_ALL) 2101 continue; 2102 2103 /* these keys are simply copied */ 2104 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2105 ret = overwrite_item(wc->trans, root, path, 2106 eb, i, &key); 2107 if (ret) 2108 break; 2109 } else if (key.type == BTRFS_INODE_REF_KEY || 2110 key.type == BTRFS_INODE_EXTREF_KEY) { 2111 ret = add_inode_ref(wc->trans, root, log, path, 2112 eb, i, &key); 2113 if (ret && ret != -ENOENT) 2114 break; 2115 ret = 0; 2116 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2117 ret = replay_one_extent(wc->trans, root, path, 2118 eb, i, &key); 2119 if (ret) 2120 break; 2121 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2122 ret = replay_one_dir_item(wc->trans, root, path, 2123 eb, i, &key); 2124 if (ret) 2125 break; 2126 } 2127 } 2128 btrfs_free_path(path); 2129 return ret; 2130 } 2131 2132 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2133 struct btrfs_root *root, 2134 struct btrfs_path *path, int *level, 2135 struct walk_control *wc) 2136 { 2137 u64 root_owner; 2138 u64 bytenr; 2139 u64 ptr_gen; 2140 struct extent_buffer *next; 2141 struct extent_buffer *cur; 2142 struct extent_buffer *parent; 2143 u32 blocksize; 2144 int ret = 0; 2145 2146 WARN_ON(*level < 0); 2147 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2148 2149 while (*level > 0) { 2150 WARN_ON(*level < 0); 2151 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2152 cur = path->nodes[*level]; 2153 2154 WARN_ON(btrfs_header_level(cur) != *level); 2155 2156 if (path->slots[*level] >= 2157 btrfs_header_nritems(cur)) 2158 break; 2159 2160 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2161 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2162 blocksize = root->nodesize; 2163 2164 parent = path->nodes[*level]; 2165 root_owner = btrfs_header_owner(parent); 2166 2167 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 2168 if (!next) 2169 return -ENOMEM; 2170 2171 if (*level == 1) { 2172 ret = wc->process_func(root, next, wc, ptr_gen); 2173 if (ret) { 2174 free_extent_buffer(next); 2175 return ret; 2176 } 2177 2178 path->slots[*level]++; 2179 if (wc->free) { 2180 ret = btrfs_read_buffer(next, ptr_gen); 2181 if (ret) { 2182 free_extent_buffer(next); 2183 return ret; 2184 } 2185 2186 if (trans) { 2187 btrfs_tree_lock(next); 2188 btrfs_set_lock_blocking(next); 2189 clean_tree_block(trans, root, next); 2190 btrfs_wait_tree_block_writeback(next); 2191 btrfs_tree_unlock(next); 2192 } 2193 2194 WARN_ON(root_owner != 2195 BTRFS_TREE_LOG_OBJECTID); 2196 ret = btrfs_free_and_pin_reserved_extent(root, 2197 bytenr, blocksize); 2198 if (ret) { 2199 free_extent_buffer(next); 2200 return ret; 2201 } 2202 } 2203 free_extent_buffer(next); 2204 continue; 2205 } 2206 ret = btrfs_read_buffer(next, ptr_gen); 2207 if (ret) { 2208 free_extent_buffer(next); 2209 return ret; 2210 } 2211 2212 WARN_ON(*level <= 0); 2213 if (path->nodes[*level-1]) 2214 free_extent_buffer(path->nodes[*level-1]); 2215 path->nodes[*level-1] = next; 2216 *level = btrfs_header_level(next); 2217 path->slots[*level] = 0; 2218 cond_resched(); 2219 } 2220 WARN_ON(*level < 0); 2221 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2222 2223 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2224 2225 cond_resched(); 2226 return 0; 2227 } 2228 2229 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2230 struct btrfs_root *root, 2231 struct btrfs_path *path, int *level, 2232 struct walk_control *wc) 2233 { 2234 u64 root_owner; 2235 int i; 2236 int slot; 2237 int ret; 2238 2239 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2240 slot = path->slots[i]; 2241 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2242 path->slots[i]++; 2243 *level = i; 2244 WARN_ON(*level == 0); 2245 return 0; 2246 } else { 2247 struct extent_buffer *parent; 2248 if (path->nodes[*level] == root->node) 2249 parent = path->nodes[*level]; 2250 else 2251 parent = path->nodes[*level + 1]; 2252 2253 root_owner = btrfs_header_owner(parent); 2254 ret = wc->process_func(root, path->nodes[*level], wc, 2255 btrfs_header_generation(path->nodes[*level])); 2256 if (ret) 2257 return ret; 2258 2259 if (wc->free) { 2260 struct extent_buffer *next; 2261 2262 next = path->nodes[*level]; 2263 2264 if (trans) { 2265 btrfs_tree_lock(next); 2266 btrfs_set_lock_blocking(next); 2267 clean_tree_block(trans, root, next); 2268 btrfs_wait_tree_block_writeback(next); 2269 btrfs_tree_unlock(next); 2270 } 2271 2272 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 2273 ret = btrfs_free_and_pin_reserved_extent(root, 2274 path->nodes[*level]->start, 2275 path->nodes[*level]->len); 2276 if (ret) 2277 return ret; 2278 } 2279 free_extent_buffer(path->nodes[*level]); 2280 path->nodes[*level] = NULL; 2281 *level = i + 1; 2282 } 2283 } 2284 return 1; 2285 } 2286 2287 /* 2288 * drop the reference count on the tree rooted at 'snap'. This traverses 2289 * the tree freeing any blocks that have a ref count of zero after being 2290 * decremented. 2291 */ 2292 static int walk_log_tree(struct btrfs_trans_handle *trans, 2293 struct btrfs_root *log, struct walk_control *wc) 2294 { 2295 int ret = 0; 2296 int wret; 2297 int level; 2298 struct btrfs_path *path; 2299 int orig_level; 2300 2301 path = btrfs_alloc_path(); 2302 if (!path) 2303 return -ENOMEM; 2304 2305 level = btrfs_header_level(log->node); 2306 orig_level = level; 2307 path->nodes[level] = log->node; 2308 extent_buffer_get(log->node); 2309 path->slots[level] = 0; 2310 2311 while (1) { 2312 wret = walk_down_log_tree(trans, log, path, &level, wc); 2313 if (wret > 0) 2314 break; 2315 if (wret < 0) { 2316 ret = wret; 2317 goto out; 2318 } 2319 2320 wret = walk_up_log_tree(trans, log, path, &level, wc); 2321 if (wret > 0) 2322 break; 2323 if (wret < 0) { 2324 ret = wret; 2325 goto out; 2326 } 2327 } 2328 2329 /* was the root node processed? if not, catch it here */ 2330 if (path->nodes[orig_level]) { 2331 ret = wc->process_func(log, path->nodes[orig_level], wc, 2332 btrfs_header_generation(path->nodes[orig_level])); 2333 if (ret) 2334 goto out; 2335 if (wc->free) { 2336 struct extent_buffer *next; 2337 2338 next = path->nodes[orig_level]; 2339 2340 if (trans) { 2341 btrfs_tree_lock(next); 2342 btrfs_set_lock_blocking(next); 2343 clean_tree_block(trans, log, next); 2344 btrfs_wait_tree_block_writeback(next); 2345 btrfs_tree_unlock(next); 2346 } 2347 2348 WARN_ON(log->root_key.objectid != 2349 BTRFS_TREE_LOG_OBJECTID); 2350 ret = btrfs_free_and_pin_reserved_extent(log, next->start, 2351 next->len); 2352 if (ret) 2353 goto out; 2354 } 2355 } 2356 2357 out: 2358 btrfs_free_path(path); 2359 return ret; 2360 } 2361 2362 /* 2363 * helper function to update the item for a given subvolumes log root 2364 * in the tree of log roots 2365 */ 2366 static int update_log_root(struct btrfs_trans_handle *trans, 2367 struct btrfs_root *log) 2368 { 2369 int ret; 2370 2371 if (log->log_transid == 1) { 2372 /* insert root item on the first sync */ 2373 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, 2374 &log->root_key, &log->root_item); 2375 } else { 2376 ret = btrfs_update_root(trans, log->fs_info->log_root_tree, 2377 &log->root_key, &log->root_item); 2378 } 2379 return ret; 2380 } 2381 2382 static void wait_log_commit(struct btrfs_trans_handle *trans, 2383 struct btrfs_root *root, int transid) 2384 { 2385 DEFINE_WAIT(wait); 2386 int index = transid % 2; 2387 2388 /* 2389 * we only allow two pending log transactions at a time, 2390 * so we know that if ours is more than 2 older than the 2391 * current transaction, we're done 2392 */ 2393 do { 2394 prepare_to_wait(&root->log_commit_wait[index], 2395 &wait, TASK_UNINTERRUPTIBLE); 2396 mutex_unlock(&root->log_mutex); 2397 2398 if (root->log_transid_committed < transid && 2399 atomic_read(&root->log_commit[index])) 2400 schedule(); 2401 2402 finish_wait(&root->log_commit_wait[index], &wait); 2403 mutex_lock(&root->log_mutex); 2404 } while (root->log_transid_committed < transid && 2405 atomic_read(&root->log_commit[index])); 2406 } 2407 2408 static void wait_for_writer(struct btrfs_trans_handle *trans, 2409 struct btrfs_root *root) 2410 { 2411 DEFINE_WAIT(wait); 2412 2413 while (atomic_read(&root->log_writers)) { 2414 prepare_to_wait(&root->log_writer_wait, 2415 &wait, TASK_UNINTERRUPTIBLE); 2416 mutex_unlock(&root->log_mutex); 2417 if (atomic_read(&root->log_writers)) 2418 schedule(); 2419 mutex_lock(&root->log_mutex); 2420 finish_wait(&root->log_writer_wait, &wait); 2421 } 2422 } 2423 2424 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2425 struct btrfs_log_ctx *ctx) 2426 { 2427 if (!ctx) 2428 return; 2429 2430 mutex_lock(&root->log_mutex); 2431 list_del_init(&ctx->list); 2432 mutex_unlock(&root->log_mutex); 2433 } 2434 2435 /* 2436 * Invoked in log mutex context, or be sure there is no other task which 2437 * can access the list. 2438 */ 2439 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2440 int index, int error) 2441 { 2442 struct btrfs_log_ctx *ctx; 2443 2444 if (!error) { 2445 INIT_LIST_HEAD(&root->log_ctxs[index]); 2446 return; 2447 } 2448 2449 list_for_each_entry(ctx, &root->log_ctxs[index], list) 2450 ctx->log_ret = error; 2451 2452 INIT_LIST_HEAD(&root->log_ctxs[index]); 2453 } 2454 2455 /* 2456 * btrfs_sync_log does sends a given tree log down to the disk and 2457 * updates the super blocks to record it. When this call is done, 2458 * you know that any inodes previously logged are safely on disk only 2459 * if it returns 0. 2460 * 2461 * Any other return value means you need to call btrfs_commit_transaction. 2462 * Some of the edge cases for fsyncing directories that have had unlinks 2463 * or renames done in the past mean that sometimes the only safe 2464 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2465 * that has happened. 2466 */ 2467 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2468 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 2469 { 2470 int index1; 2471 int index2; 2472 int mark; 2473 int ret; 2474 struct btrfs_root *log = root->log_root; 2475 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; 2476 int log_transid = 0; 2477 struct btrfs_log_ctx root_log_ctx; 2478 struct blk_plug plug; 2479 2480 mutex_lock(&root->log_mutex); 2481 log_transid = ctx->log_transid; 2482 if (root->log_transid_committed >= log_transid) { 2483 mutex_unlock(&root->log_mutex); 2484 return ctx->log_ret; 2485 } 2486 2487 index1 = log_transid % 2; 2488 if (atomic_read(&root->log_commit[index1])) { 2489 wait_log_commit(trans, root, log_transid); 2490 mutex_unlock(&root->log_mutex); 2491 return ctx->log_ret; 2492 } 2493 ASSERT(log_transid == root->log_transid); 2494 atomic_set(&root->log_commit[index1], 1); 2495 2496 /* wait for previous tree log sync to complete */ 2497 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2498 wait_log_commit(trans, root, log_transid - 1); 2499 2500 while (1) { 2501 int batch = atomic_read(&root->log_batch); 2502 /* when we're on an ssd, just kick the log commit out */ 2503 if (!btrfs_test_opt(root, SSD) && 2504 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 2505 mutex_unlock(&root->log_mutex); 2506 schedule_timeout_uninterruptible(1); 2507 mutex_lock(&root->log_mutex); 2508 } 2509 wait_for_writer(trans, root); 2510 if (batch == atomic_read(&root->log_batch)) 2511 break; 2512 } 2513 2514 /* bail out if we need to do a full commit */ 2515 if (btrfs_need_log_full_commit(root->fs_info, trans)) { 2516 ret = -EAGAIN; 2517 btrfs_free_logged_extents(log, log_transid); 2518 mutex_unlock(&root->log_mutex); 2519 goto out; 2520 } 2521 2522 if (log_transid % 2 == 0) 2523 mark = EXTENT_DIRTY; 2524 else 2525 mark = EXTENT_NEW; 2526 2527 /* we start IO on all the marked extents here, but we don't actually 2528 * wait for them until later. 2529 */ 2530 blk_start_plug(&plug); 2531 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); 2532 if (ret) { 2533 blk_finish_plug(&plug); 2534 btrfs_abort_transaction(trans, root, ret); 2535 btrfs_free_logged_extents(log, log_transid); 2536 btrfs_set_log_full_commit(root->fs_info, trans); 2537 mutex_unlock(&root->log_mutex); 2538 goto out; 2539 } 2540 2541 btrfs_set_root_node(&log->root_item, log->node); 2542 2543 root->log_transid++; 2544 log->log_transid = root->log_transid; 2545 root->log_start_pid = 0; 2546 /* 2547 * IO has been started, blocks of the log tree have WRITTEN flag set 2548 * in their headers. new modifications of the log will be written to 2549 * new positions. so it's safe to allow log writers to go in. 2550 */ 2551 mutex_unlock(&root->log_mutex); 2552 2553 btrfs_init_log_ctx(&root_log_ctx); 2554 2555 mutex_lock(&log_root_tree->log_mutex); 2556 atomic_inc(&log_root_tree->log_batch); 2557 atomic_inc(&log_root_tree->log_writers); 2558 2559 index2 = log_root_tree->log_transid % 2; 2560 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 2561 root_log_ctx.log_transid = log_root_tree->log_transid; 2562 2563 mutex_unlock(&log_root_tree->log_mutex); 2564 2565 ret = update_log_root(trans, log); 2566 2567 mutex_lock(&log_root_tree->log_mutex); 2568 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 2569 smp_mb(); 2570 if (waitqueue_active(&log_root_tree->log_writer_wait)) 2571 wake_up(&log_root_tree->log_writer_wait); 2572 } 2573 2574 if (ret) { 2575 if (!list_empty(&root_log_ctx.list)) 2576 list_del_init(&root_log_ctx.list); 2577 2578 blk_finish_plug(&plug); 2579 btrfs_set_log_full_commit(root->fs_info, trans); 2580 2581 if (ret != -ENOSPC) { 2582 btrfs_abort_transaction(trans, root, ret); 2583 mutex_unlock(&log_root_tree->log_mutex); 2584 goto out; 2585 } 2586 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2587 btrfs_free_logged_extents(log, log_transid); 2588 mutex_unlock(&log_root_tree->log_mutex); 2589 ret = -EAGAIN; 2590 goto out; 2591 } 2592 2593 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 2594 mutex_unlock(&log_root_tree->log_mutex); 2595 ret = root_log_ctx.log_ret; 2596 goto out; 2597 } 2598 2599 index2 = root_log_ctx.log_transid % 2; 2600 if (atomic_read(&log_root_tree->log_commit[index2])) { 2601 blk_finish_plug(&plug); 2602 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2603 wait_log_commit(trans, log_root_tree, 2604 root_log_ctx.log_transid); 2605 btrfs_free_logged_extents(log, log_transid); 2606 mutex_unlock(&log_root_tree->log_mutex); 2607 ret = root_log_ctx.log_ret; 2608 goto out; 2609 } 2610 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 2611 atomic_set(&log_root_tree->log_commit[index2], 1); 2612 2613 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 2614 wait_log_commit(trans, log_root_tree, 2615 root_log_ctx.log_transid - 1); 2616 } 2617 2618 wait_for_writer(trans, log_root_tree); 2619 2620 /* 2621 * now that we've moved on to the tree of log tree roots, 2622 * check the full commit flag again 2623 */ 2624 if (btrfs_need_log_full_commit(root->fs_info, trans)) { 2625 blk_finish_plug(&plug); 2626 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2627 btrfs_free_logged_extents(log, log_transid); 2628 mutex_unlock(&log_root_tree->log_mutex); 2629 ret = -EAGAIN; 2630 goto out_wake_log_root; 2631 } 2632 2633 ret = btrfs_write_marked_extents(log_root_tree, 2634 &log_root_tree->dirty_log_pages, 2635 EXTENT_DIRTY | EXTENT_NEW); 2636 blk_finish_plug(&plug); 2637 if (ret) { 2638 btrfs_set_log_full_commit(root->fs_info, trans); 2639 btrfs_abort_transaction(trans, root, ret); 2640 btrfs_free_logged_extents(log, log_transid); 2641 mutex_unlock(&log_root_tree->log_mutex); 2642 goto out_wake_log_root; 2643 } 2644 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2645 btrfs_wait_marked_extents(log_root_tree, 2646 &log_root_tree->dirty_log_pages, 2647 EXTENT_NEW | EXTENT_DIRTY); 2648 btrfs_wait_logged_extents(log, log_transid); 2649 2650 btrfs_set_super_log_root(root->fs_info->super_for_commit, 2651 log_root_tree->node->start); 2652 btrfs_set_super_log_root_level(root->fs_info->super_for_commit, 2653 btrfs_header_level(log_root_tree->node)); 2654 2655 log_root_tree->log_transid++; 2656 mutex_unlock(&log_root_tree->log_mutex); 2657 2658 /* 2659 * nobody else is going to jump in and write the the ctree 2660 * super here because the log_commit atomic below is protecting 2661 * us. We must be called with a transaction handle pinning 2662 * the running transaction open, so a full commit can't hop 2663 * in and cause problems either. 2664 */ 2665 ret = write_ctree_super(trans, root->fs_info->tree_root, 1); 2666 if (ret) { 2667 btrfs_set_log_full_commit(root->fs_info, trans); 2668 btrfs_abort_transaction(trans, root, ret); 2669 goto out_wake_log_root; 2670 } 2671 2672 mutex_lock(&root->log_mutex); 2673 if (root->last_log_commit < log_transid) 2674 root->last_log_commit = log_transid; 2675 mutex_unlock(&root->log_mutex); 2676 2677 out_wake_log_root: 2678 /* 2679 * We needn't get log_mutex here because we are sure all 2680 * the other tasks are blocked. 2681 */ 2682 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 2683 2684 mutex_lock(&log_root_tree->log_mutex); 2685 log_root_tree->log_transid_committed++; 2686 atomic_set(&log_root_tree->log_commit[index2], 0); 2687 mutex_unlock(&log_root_tree->log_mutex); 2688 2689 if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) 2690 wake_up(&log_root_tree->log_commit_wait[index2]); 2691 out: 2692 /* See above. */ 2693 btrfs_remove_all_log_ctxs(root, index1, ret); 2694 2695 mutex_lock(&root->log_mutex); 2696 root->log_transid_committed++; 2697 atomic_set(&root->log_commit[index1], 0); 2698 mutex_unlock(&root->log_mutex); 2699 2700 if (waitqueue_active(&root->log_commit_wait[index1])) 2701 wake_up(&root->log_commit_wait[index1]); 2702 return ret; 2703 } 2704 2705 static void free_log_tree(struct btrfs_trans_handle *trans, 2706 struct btrfs_root *log) 2707 { 2708 int ret; 2709 u64 start; 2710 u64 end; 2711 struct walk_control wc = { 2712 .free = 1, 2713 .process_func = process_one_buffer 2714 }; 2715 2716 ret = walk_log_tree(trans, log, &wc); 2717 /* I don't think this can happen but just in case */ 2718 if (ret) 2719 btrfs_abort_transaction(trans, log, ret); 2720 2721 while (1) { 2722 ret = find_first_extent_bit(&log->dirty_log_pages, 2723 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW, 2724 NULL); 2725 if (ret) 2726 break; 2727 2728 clear_extent_bits(&log->dirty_log_pages, start, end, 2729 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); 2730 } 2731 2732 /* 2733 * We may have short-circuited the log tree with the full commit logic 2734 * and left ordered extents on our list, so clear these out to keep us 2735 * from leaking inodes and memory. 2736 */ 2737 btrfs_free_logged_extents(log, 0); 2738 btrfs_free_logged_extents(log, 1); 2739 2740 free_extent_buffer(log->node); 2741 kfree(log); 2742 } 2743 2744 /* 2745 * free all the extents used by the tree log. This should be called 2746 * at commit time of the full transaction 2747 */ 2748 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 2749 { 2750 if (root->log_root) { 2751 free_log_tree(trans, root->log_root); 2752 root->log_root = NULL; 2753 } 2754 return 0; 2755 } 2756 2757 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 2758 struct btrfs_fs_info *fs_info) 2759 { 2760 if (fs_info->log_root_tree) { 2761 free_log_tree(trans, fs_info->log_root_tree); 2762 fs_info->log_root_tree = NULL; 2763 } 2764 return 0; 2765 } 2766 2767 /* 2768 * If both a file and directory are logged, and unlinks or renames are 2769 * mixed in, we have a few interesting corners: 2770 * 2771 * create file X in dir Y 2772 * link file X to X.link in dir Y 2773 * fsync file X 2774 * unlink file X but leave X.link 2775 * fsync dir Y 2776 * 2777 * After a crash we would expect only X.link to exist. But file X 2778 * didn't get fsync'd again so the log has back refs for X and X.link. 2779 * 2780 * We solve this by removing directory entries and inode backrefs from the 2781 * log when a file that was logged in the current transaction is 2782 * unlinked. Any later fsync will include the updated log entries, and 2783 * we'll be able to reconstruct the proper directory items from backrefs. 2784 * 2785 * This optimizations allows us to avoid relogging the entire inode 2786 * or the entire directory. 2787 */ 2788 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 2789 struct btrfs_root *root, 2790 const char *name, int name_len, 2791 struct inode *dir, u64 index) 2792 { 2793 struct btrfs_root *log; 2794 struct btrfs_dir_item *di; 2795 struct btrfs_path *path; 2796 int ret; 2797 int err = 0; 2798 int bytes_del = 0; 2799 u64 dir_ino = btrfs_ino(dir); 2800 2801 if (BTRFS_I(dir)->logged_trans < trans->transid) 2802 return 0; 2803 2804 ret = join_running_log_trans(root); 2805 if (ret) 2806 return 0; 2807 2808 mutex_lock(&BTRFS_I(dir)->log_mutex); 2809 2810 log = root->log_root; 2811 path = btrfs_alloc_path(); 2812 if (!path) { 2813 err = -ENOMEM; 2814 goto out_unlock; 2815 } 2816 2817 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 2818 name, name_len, -1); 2819 if (IS_ERR(di)) { 2820 err = PTR_ERR(di); 2821 goto fail; 2822 } 2823 if (di) { 2824 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2825 bytes_del += name_len; 2826 if (ret) { 2827 err = ret; 2828 goto fail; 2829 } 2830 } 2831 btrfs_release_path(path); 2832 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 2833 index, name, name_len, -1); 2834 if (IS_ERR(di)) { 2835 err = PTR_ERR(di); 2836 goto fail; 2837 } 2838 if (di) { 2839 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2840 bytes_del += name_len; 2841 if (ret) { 2842 err = ret; 2843 goto fail; 2844 } 2845 } 2846 2847 /* update the directory size in the log to reflect the names 2848 * we have removed 2849 */ 2850 if (bytes_del) { 2851 struct btrfs_key key; 2852 2853 key.objectid = dir_ino; 2854 key.offset = 0; 2855 key.type = BTRFS_INODE_ITEM_KEY; 2856 btrfs_release_path(path); 2857 2858 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 2859 if (ret < 0) { 2860 err = ret; 2861 goto fail; 2862 } 2863 if (ret == 0) { 2864 struct btrfs_inode_item *item; 2865 u64 i_size; 2866 2867 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2868 struct btrfs_inode_item); 2869 i_size = btrfs_inode_size(path->nodes[0], item); 2870 if (i_size > bytes_del) 2871 i_size -= bytes_del; 2872 else 2873 i_size = 0; 2874 btrfs_set_inode_size(path->nodes[0], item, i_size); 2875 btrfs_mark_buffer_dirty(path->nodes[0]); 2876 } else 2877 ret = 0; 2878 btrfs_release_path(path); 2879 } 2880 fail: 2881 btrfs_free_path(path); 2882 out_unlock: 2883 mutex_unlock(&BTRFS_I(dir)->log_mutex); 2884 if (ret == -ENOSPC) { 2885 btrfs_set_log_full_commit(root->fs_info, trans); 2886 ret = 0; 2887 } else if (ret < 0) 2888 btrfs_abort_transaction(trans, root, ret); 2889 2890 btrfs_end_log_trans(root); 2891 2892 return err; 2893 } 2894 2895 /* see comments for btrfs_del_dir_entries_in_log */ 2896 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 2897 struct btrfs_root *root, 2898 const char *name, int name_len, 2899 struct inode *inode, u64 dirid) 2900 { 2901 struct btrfs_root *log; 2902 u64 index; 2903 int ret; 2904 2905 if (BTRFS_I(inode)->logged_trans < trans->transid) 2906 return 0; 2907 2908 ret = join_running_log_trans(root); 2909 if (ret) 2910 return 0; 2911 log = root->log_root; 2912 mutex_lock(&BTRFS_I(inode)->log_mutex); 2913 2914 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 2915 dirid, &index); 2916 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2917 if (ret == -ENOSPC) { 2918 btrfs_set_log_full_commit(root->fs_info, trans); 2919 ret = 0; 2920 } else if (ret < 0 && ret != -ENOENT) 2921 btrfs_abort_transaction(trans, root, ret); 2922 btrfs_end_log_trans(root); 2923 2924 return ret; 2925 } 2926 2927 /* 2928 * creates a range item in the log for 'dirid'. first_offset and 2929 * last_offset tell us which parts of the key space the log should 2930 * be considered authoritative for. 2931 */ 2932 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 2933 struct btrfs_root *log, 2934 struct btrfs_path *path, 2935 int key_type, u64 dirid, 2936 u64 first_offset, u64 last_offset) 2937 { 2938 int ret; 2939 struct btrfs_key key; 2940 struct btrfs_dir_log_item *item; 2941 2942 key.objectid = dirid; 2943 key.offset = first_offset; 2944 if (key_type == BTRFS_DIR_ITEM_KEY) 2945 key.type = BTRFS_DIR_LOG_ITEM_KEY; 2946 else 2947 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2948 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 2949 if (ret) 2950 return ret; 2951 2952 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2953 struct btrfs_dir_log_item); 2954 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 2955 btrfs_mark_buffer_dirty(path->nodes[0]); 2956 btrfs_release_path(path); 2957 return 0; 2958 } 2959 2960 /* 2961 * log all the items included in the current transaction for a given 2962 * directory. This also creates the range items in the log tree required 2963 * to replay anything deleted before the fsync 2964 */ 2965 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 2966 struct btrfs_root *root, struct inode *inode, 2967 struct btrfs_path *path, 2968 struct btrfs_path *dst_path, int key_type, 2969 u64 min_offset, u64 *last_offset_ret) 2970 { 2971 struct btrfs_key min_key; 2972 struct btrfs_root *log = root->log_root; 2973 struct extent_buffer *src; 2974 int err = 0; 2975 int ret; 2976 int i; 2977 int nritems; 2978 u64 first_offset = min_offset; 2979 u64 last_offset = (u64)-1; 2980 u64 ino = btrfs_ino(inode); 2981 2982 log = root->log_root; 2983 2984 min_key.objectid = ino; 2985 min_key.type = key_type; 2986 min_key.offset = min_offset; 2987 2988 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 2989 2990 /* 2991 * we didn't find anything from this transaction, see if there 2992 * is anything at all 2993 */ 2994 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 2995 min_key.objectid = ino; 2996 min_key.type = key_type; 2997 min_key.offset = (u64)-1; 2998 btrfs_release_path(path); 2999 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3000 if (ret < 0) { 3001 btrfs_release_path(path); 3002 return ret; 3003 } 3004 ret = btrfs_previous_item(root, path, ino, key_type); 3005 3006 /* if ret == 0 there are items for this type, 3007 * create a range to tell us the last key of this type. 3008 * otherwise, there are no items in this directory after 3009 * *min_offset, and we create a range to indicate that. 3010 */ 3011 if (ret == 0) { 3012 struct btrfs_key tmp; 3013 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3014 path->slots[0]); 3015 if (key_type == tmp.type) 3016 first_offset = max(min_offset, tmp.offset) + 1; 3017 } 3018 goto done; 3019 } 3020 3021 /* go backward to find any previous key */ 3022 ret = btrfs_previous_item(root, path, ino, key_type); 3023 if (ret == 0) { 3024 struct btrfs_key tmp; 3025 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3026 if (key_type == tmp.type) { 3027 first_offset = tmp.offset; 3028 ret = overwrite_item(trans, log, dst_path, 3029 path->nodes[0], path->slots[0], 3030 &tmp); 3031 if (ret) { 3032 err = ret; 3033 goto done; 3034 } 3035 } 3036 } 3037 btrfs_release_path(path); 3038 3039 /* find the first key from this transaction again */ 3040 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3041 if (WARN_ON(ret != 0)) 3042 goto done; 3043 3044 /* 3045 * we have a block from this transaction, log every item in it 3046 * from our directory 3047 */ 3048 while (1) { 3049 struct btrfs_key tmp; 3050 src = path->nodes[0]; 3051 nritems = btrfs_header_nritems(src); 3052 for (i = path->slots[0]; i < nritems; i++) { 3053 btrfs_item_key_to_cpu(src, &min_key, i); 3054 3055 if (min_key.objectid != ino || min_key.type != key_type) 3056 goto done; 3057 ret = overwrite_item(trans, log, dst_path, src, i, 3058 &min_key); 3059 if (ret) { 3060 err = ret; 3061 goto done; 3062 } 3063 } 3064 path->slots[0] = nritems; 3065 3066 /* 3067 * look ahead to the next item and see if it is also 3068 * from this directory and from this transaction 3069 */ 3070 ret = btrfs_next_leaf(root, path); 3071 if (ret == 1) { 3072 last_offset = (u64)-1; 3073 goto done; 3074 } 3075 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3076 if (tmp.objectid != ino || tmp.type != key_type) { 3077 last_offset = (u64)-1; 3078 goto done; 3079 } 3080 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3081 ret = overwrite_item(trans, log, dst_path, 3082 path->nodes[0], path->slots[0], 3083 &tmp); 3084 if (ret) 3085 err = ret; 3086 else 3087 last_offset = tmp.offset; 3088 goto done; 3089 } 3090 } 3091 done: 3092 btrfs_release_path(path); 3093 btrfs_release_path(dst_path); 3094 3095 if (err == 0) { 3096 *last_offset_ret = last_offset; 3097 /* 3098 * insert the log range keys to indicate where the log 3099 * is valid 3100 */ 3101 ret = insert_dir_log_key(trans, log, path, key_type, 3102 ino, first_offset, last_offset); 3103 if (ret) 3104 err = ret; 3105 } 3106 return err; 3107 } 3108 3109 /* 3110 * logging directories is very similar to logging inodes, We find all the items 3111 * from the current transaction and write them to the log. 3112 * 3113 * The recovery code scans the directory in the subvolume, and if it finds a 3114 * key in the range logged that is not present in the log tree, then it means 3115 * that dir entry was unlinked during the transaction. 3116 * 3117 * In order for that scan to work, we must include one key smaller than 3118 * the smallest logged by this transaction and one key larger than the largest 3119 * key logged by this transaction. 3120 */ 3121 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3122 struct btrfs_root *root, struct inode *inode, 3123 struct btrfs_path *path, 3124 struct btrfs_path *dst_path) 3125 { 3126 u64 min_key; 3127 u64 max_key; 3128 int ret; 3129 int key_type = BTRFS_DIR_ITEM_KEY; 3130 3131 again: 3132 min_key = 0; 3133 max_key = 0; 3134 while (1) { 3135 ret = log_dir_items(trans, root, inode, path, 3136 dst_path, key_type, min_key, 3137 &max_key); 3138 if (ret) 3139 return ret; 3140 if (max_key == (u64)-1) 3141 break; 3142 min_key = max_key + 1; 3143 } 3144 3145 if (key_type == BTRFS_DIR_ITEM_KEY) { 3146 key_type = BTRFS_DIR_INDEX_KEY; 3147 goto again; 3148 } 3149 return 0; 3150 } 3151 3152 /* 3153 * a helper function to drop items from the log before we relog an 3154 * inode. max_key_type indicates the highest item type to remove. 3155 * This cannot be run for file data extents because it does not 3156 * free the extents they point to. 3157 */ 3158 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3159 struct btrfs_root *log, 3160 struct btrfs_path *path, 3161 u64 objectid, int max_key_type) 3162 { 3163 int ret; 3164 struct btrfs_key key; 3165 struct btrfs_key found_key; 3166 int start_slot; 3167 3168 key.objectid = objectid; 3169 key.type = max_key_type; 3170 key.offset = (u64)-1; 3171 3172 while (1) { 3173 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3174 BUG_ON(ret == 0); /* Logic error */ 3175 if (ret < 0) 3176 break; 3177 3178 if (path->slots[0] == 0) 3179 break; 3180 3181 path->slots[0]--; 3182 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3183 path->slots[0]); 3184 3185 if (found_key.objectid != objectid) 3186 break; 3187 3188 found_key.offset = 0; 3189 found_key.type = 0; 3190 ret = btrfs_bin_search(path->nodes[0], &found_key, 0, 3191 &start_slot); 3192 3193 ret = btrfs_del_items(trans, log, path, start_slot, 3194 path->slots[0] - start_slot + 1); 3195 /* 3196 * If start slot isn't 0 then we don't need to re-search, we've 3197 * found the last guy with the objectid in this tree. 3198 */ 3199 if (ret || start_slot != 0) 3200 break; 3201 btrfs_release_path(path); 3202 } 3203 btrfs_release_path(path); 3204 if (ret > 0) 3205 ret = 0; 3206 return ret; 3207 } 3208 3209 static void fill_inode_item(struct btrfs_trans_handle *trans, 3210 struct extent_buffer *leaf, 3211 struct btrfs_inode_item *item, 3212 struct inode *inode, int log_inode_only) 3213 { 3214 struct btrfs_map_token token; 3215 3216 btrfs_init_map_token(&token); 3217 3218 if (log_inode_only) { 3219 /* set the generation to zero so the recover code 3220 * can tell the difference between an logging 3221 * just to say 'this inode exists' and a logging 3222 * to say 'update this inode with these values' 3223 */ 3224 btrfs_set_token_inode_generation(leaf, item, 0, &token); 3225 btrfs_set_token_inode_size(leaf, item, 0, &token); 3226 } else { 3227 btrfs_set_token_inode_generation(leaf, item, 3228 BTRFS_I(inode)->generation, 3229 &token); 3230 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); 3231 } 3232 3233 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3234 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3235 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3236 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3237 3238 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3239 inode->i_atime.tv_sec, &token); 3240 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3241 inode->i_atime.tv_nsec, &token); 3242 3243 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3244 inode->i_mtime.tv_sec, &token); 3245 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3246 inode->i_mtime.tv_nsec, &token); 3247 3248 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3249 inode->i_ctime.tv_sec, &token); 3250 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3251 inode->i_ctime.tv_nsec, &token); 3252 3253 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3254 &token); 3255 3256 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3257 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3258 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3259 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3260 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3261 } 3262 3263 static int log_inode_item(struct btrfs_trans_handle *trans, 3264 struct btrfs_root *log, struct btrfs_path *path, 3265 struct inode *inode) 3266 { 3267 struct btrfs_inode_item *inode_item; 3268 int ret; 3269 3270 ret = btrfs_insert_empty_item(trans, log, path, 3271 &BTRFS_I(inode)->location, 3272 sizeof(*inode_item)); 3273 if (ret && ret != -EEXIST) 3274 return ret; 3275 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3276 struct btrfs_inode_item); 3277 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0); 3278 btrfs_release_path(path); 3279 return 0; 3280 } 3281 3282 static noinline int copy_items(struct btrfs_trans_handle *trans, 3283 struct inode *inode, 3284 struct btrfs_path *dst_path, 3285 struct btrfs_path *src_path, u64 *last_extent, 3286 int start_slot, int nr, int inode_only) 3287 { 3288 unsigned long src_offset; 3289 unsigned long dst_offset; 3290 struct btrfs_root *log = BTRFS_I(inode)->root->log_root; 3291 struct btrfs_file_extent_item *extent; 3292 struct btrfs_inode_item *inode_item; 3293 struct extent_buffer *src = src_path->nodes[0]; 3294 struct btrfs_key first_key, last_key, key; 3295 int ret; 3296 struct btrfs_key *ins_keys; 3297 u32 *ins_sizes; 3298 char *ins_data; 3299 int i; 3300 struct list_head ordered_sums; 3301 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 3302 bool has_extents = false; 3303 bool need_find_last_extent = true; 3304 bool done = false; 3305 3306 INIT_LIST_HEAD(&ordered_sums); 3307 3308 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3309 nr * sizeof(u32), GFP_NOFS); 3310 if (!ins_data) 3311 return -ENOMEM; 3312 3313 first_key.objectid = (u64)-1; 3314 3315 ins_sizes = (u32 *)ins_data; 3316 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3317 3318 for (i = 0; i < nr; i++) { 3319 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3320 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3321 } 3322 ret = btrfs_insert_empty_items(trans, log, dst_path, 3323 ins_keys, ins_sizes, nr); 3324 if (ret) { 3325 kfree(ins_data); 3326 return ret; 3327 } 3328 3329 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3330 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3331 dst_path->slots[0]); 3332 3333 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3334 3335 if ((i == (nr - 1))) 3336 last_key = ins_keys[i]; 3337 3338 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3339 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3340 dst_path->slots[0], 3341 struct btrfs_inode_item); 3342 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3343 inode, inode_only == LOG_INODE_EXISTS); 3344 } else { 3345 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3346 src_offset, ins_sizes[i]); 3347 } 3348 3349 /* 3350 * We set need_find_last_extent here in case we know we were 3351 * processing other items and then walk into the first extent in 3352 * the inode. If we don't hit an extent then nothing changes, 3353 * we'll do the last search the next time around. 3354 */ 3355 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) { 3356 has_extents = true; 3357 if (first_key.objectid == (u64)-1) 3358 first_key = ins_keys[i]; 3359 } else { 3360 need_find_last_extent = false; 3361 } 3362 3363 /* take a reference on file data extents so that truncates 3364 * or deletes of this inode don't have to relog the inode 3365 * again 3366 */ 3367 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 3368 !skip_csum) { 3369 int found_type; 3370 extent = btrfs_item_ptr(src, start_slot + i, 3371 struct btrfs_file_extent_item); 3372 3373 if (btrfs_file_extent_generation(src, extent) < trans->transid) 3374 continue; 3375 3376 found_type = btrfs_file_extent_type(src, extent); 3377 if (found_type == BTRFS_FILE_EXTENT_REG) { 3378 u64 ds, dl, cs, cl; 3379 ds = btrfs_file_extent_disk_bytenr(src, 3380 extent); 3381 /* ds == 0 is a hole */ 3382 if (ds == 0) 3383 continue; 3384 3385 dl = btrfs_file_extent_disk_num_bytes(src, 3386 extent); 3387 cs = btrfs_file_extent_offset(src, extent); 3388 cl = btrfs_file_extent_num_bytes(src, 3389 extent); 3390 if (btrfs_file_extent_compression(src, 3391 extent)) { 3392 cs = 0; 3393 cl = dl; 3394 } 3395 3396 ret = btrfs_lookup_csums_range( 3397 log->fs_info->csum_root, 3398 ds + cs, ds + cs + cl - 1, 3399 &ordered_sums, 0); 3400 if (ret) { 3401 btrfs_release_path(dst_path); 3402 kfree(ins_data); 3403 return ret; 3404 } 3405 } 3406 } 3407 } 3408 3409 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 3410 btrfs_release_path(dst_path); 3411 kfree(ins_data); 3412 3413 /* 3414 * we have to do this after the loop above to avoid changing the 3415 * log tree while trying to change the log tree. 3416 */ 3417 ret = 0; 3418 while (!list_empty(&ordered_sums)) { 3419 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 3420 struct btrfs_ordered_sum, 3421 list); 3422 if (!ret) 3423 ret = btrfs_csum_file_blocks(trans, log, sums); 3424 list_del(&sums->list); 3425 kfree(sums); 3426 } 3427 3428 if (!has_extents) 3429 return ret; 3430 3431 if (need_find_last_extent && *last_extent == first_key.offset) { 3432 /* 3433 * We don't have any leafs between our current one and the one 3434 * we processed before that can have file extent items for our 3435 * inode (and have a generation number smaller than our current 3436 * transaction id). 3437 */ 3438 need_find_last_extent = false; 3439 } 3440 3441 /* 3442 * Because we use btrfs_search_forward we could skip leaves that were 3443 * not modified and then assume *last_extent is valid when it really 3444 * isn't. So back up to the previous leaf and read the end of the last 3445 * extent before we go and fill in holes. 3446 */ 3447 if (need_find_last_extent) { 3448 u64 len; 3449 3450 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path); 3451 if (ret < 0) 3452 return ret; 3453 if (ret) 3454 goto fill_holes; 3455 if (src_path->slots[0]) 3456 src_path->slots[0]--; 3457 src = src_path->nodes[0]; 3458 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]); 3459 if (key.objectid != btrfs_ino(inode) || 3460 key.type != BTRFS_EXTENT_DATA_KEY) 3461 goto fill_holes; 3462 extent = btrfs_item_ptr(src, src_path->slots[0], 3463 struct btrfs_file_extent_item); 3464 if (btrfs_file_extent_type(src, extent) == 3465 BTRFS_FILE_EXTENT_INLINE) { 3466 len = btrfs_file_extent_inline_len(src, 3467 src_path->slots[0], 3468 extent); 3469 *last_extent = ALIGN(key.offset + len, 3470 log->sectorsize); 3471 } else { 3472 len = btrfs_file_extent_num_bytes(src, extent); 3473 *last_extent = key.offset + len; 3474 } 3475 } 3476 fill_holes: 3477 /* So we did prev_leaf, now we need to move to the next leaf, but a few 3478 * things could have happened 3479 * 3480 * 1) A merge could have happened, so we could currently be on a leaf 3481 * that holds what we were copying in the first place. 3482 * 2) A split could have happened, and now not all of the items we want 3483 * are on the same leaf. 3484 * 3485 * So we need to adjust how we search for holes, we need to drop the 3486 * path and re-search for the first extent key we found, and then walk 3487 * forward until we hit the last one we copied. 3488 */ 3489 if (need_find_last_extent) { 3490 /* btrfs_prev_leaf could return 1 without releasing the path */ 3491 btrfs_release_path(src_path); 3492 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key, 3493 src_path, 0, 0); 3494 if (ret < 0) 3495 return ret; 3496 ASSERT(ret == 0); 3497 src = src_path->nodes[0]; 3498 i = src_path->slots[0]; 3499 } else { 3500 i = start_slot; 3501 } 3502 3503 /* 3504 * Ok so here we need to go through and fill in any holes we may have 3505 * to make sure that holes are punched for those areas in case they had 3506 * extents previously. 3507 */ 3508 while (!done) { 3509 u64 offset, len; 3510 u64 extent_end; 3511 3512 if (i >= btrfs_header_nritems(src_path->nodes[0])) { 3513 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path); 3514 if (ret < 0) 3515 return ret; 3516 ASSERT(ret == 0); 3517 src = src_path->nodes[0]; 3518 i = 0; 3519 } 3520 3521 btrfs_item_key_to_cpu(src, &key, i); 3522 if (!btrfs_comp_cpu_keys(&key, &last_key)) 3523 done = true; 3524 if (key.objectid != btrfs_ino(inode) || 3525 key.type != BTRFS_EXTENT_DATA_KEY) { 3526 i++; 3527 continue; 3528 } 3529 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); 3530 if (btrfs_file_extent_type(src, extent) == 3531 BTRFS_FILE_EXTENT_INLINE) { 3532 len = btrfs_file_extent_inline_len(src, i, extent); 3533 extent_end = ALIGN(key.offset + len, log->sectorsize); 3534 } else { 3535 len = btrfs_file_extent_num_bytes(src, extent); 3536 extent_end = key.offset + len; 3537 } 3538 i++; 3539 3540 if (*last_extent == key.offset) { 3541 *last_extent = extent_end; 3542 continue; 3543 } 3544 offset = *last_extent; 3545 len = key.offset - *last_extent; 3546 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode), 3547 offset, 0, 0, len, 0, len, 0, 3548 0, 0); 3549 if (ret) 3550 break; 3551 *last_extent = extent_end; 3552 } 3553 /* 3554 * Need to let the callers know we dropped the path so they should 3555 * re-search. 3556 */ 3557 if (!ret && need_find_last_extent) 3558 ret = 1; 3559 return ret; 3560 } 3561 3562 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 3563 { 3564 struct extent_map *em1, *em2; 3565 3566 em1 = list_entry(a, struct extent_map, list); 3567 em2 = list_entry(b, struct extent_map, list); 3568 3569 if (em1->start < em2->start) 3570 return -1; 3571 else if (em1->start > em2->start) 3572 return 1; 3573 return 0; 3574 } 3575 3576 static int wait_ordered_extents(struct btrfs_trans_handle *trans, 3577 struct inode *inode, 3578 struct btrfs_root *root, 3579 const struct extent_map *em, 3580 const struct list_head *logged_list, 3581 bool *ordered_io_error) 3582 { 3583 struct btrfs_ordered_extent *ordered; 3584 struct btrfs_root *log = root->log_root; 3585 u64 mod_start = em->mod_start; 3586 u64 mod_len = em->mod_len; 3587 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 3588 u64 csum_offset; 3589 u64 csum_len; 3590 LIST_HEAD(ordered_sums); 3591 int ret = 0; 3592 3593 *ordered_io_error = false; 3594 3595 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 3596 em->block_start == EXTENT_MAP_HOLE) 3597 return 0; 3598 3599 /* 3600 * Wait far any ordered extent that covers our extent map. If it 3601 * finishes without an error, first check and see if our csums are on 3602 * our outstanding ordered extents. 3603 */ 3604 list_for_each_entry(ordered, logged_list, log_list) { 3605 struct btrfs_ordered_sum *sum; 3606 3607 if (!mod_len) 3608 break; 3609 3610 if (ordered->file_offset + ordered->len <= mod_start || 3611 mod_start + mod_len <= ordered->file_offset) 3612 continue; 3613 3614 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && 3615 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3616 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 3617 const u64 start = ordered->file_offset; 3618 const u64 end = ordered->file_offset + ordered->len - 1; 3619 3620 WARN_ON(ordered->inode != inode); 3621 filemap_fdatawrite_range(inode->i_mapping, start, end); 3622 } 3623 3624 wait_event(ordered->wait, 3625 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) || 3626 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))); 3627 3628 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) { 3629 *ordered_io_error = true; 3630 break; 3631 } 3632 /* 3633 * We are going to copy all the csums on this ordered extent, so 3634 * go ahead and adjust mod_start and mod_len in case this 3635 * ordered extent has already been logged. 3636 */ 3637 if (ordered->file_offset > mod_start) { 3638 if (ordered->file_offset + ordered->len >= 3639 mod_start + mod_len) 3640 mod_len = ordered->file_offset - mod_start; 3641 /* 3642 * If we have this case 3643 * 3644 * |--------- logged extent ---------| 3645 * |----- ordered extent ----| 3646 * 3647 * Just don't mess with mod_start and mod_len, we'll 3648 * just end up logging more csums than we need and it 3649 * will be ok. 3650 */ 3651 } else { 3652 if (ordered->file_offset + ordered->len < 3653 mod_start + mod_len) { 3654 mod_len = (mod_start + mod_len) - 3655 (ordered->file_offset + ordered->len); 3656 mod_start = ordered->file_offset + 3657 ordered->len; 3658 } else { 3659 mod_len = 0; 3660 } 3661 } 3662 3663 if (skip_csum) 3664 continue; 3665 3666 /* 3667 * To keep us from looping for the above case of an ordered 3668 * extent that falls inside of the logged extent. 3669 */ 3670 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, 3671 &ordered->flags)) 3672 continue; 3673 3674 if (ordered->csum_bytes_left) { 3675 btrfs_start_ordered_extent(inode, ordered, 0); 3676 wait_event(ordered->wait, 3677 ordered->csum_bytes_left == 0); 3678 } 3679 3680 list_for_each_entry(sum, &ordered->list, list) { 3681 ret = btrfs_csum_file_blocks(trans, log, sum); 3682 if (ret) 3683 break; 3684 } 3685 } 3686 3687 if (*ordered_io_error || !mod_len || ret || skip_csum) 3688 return ret; 3689 3690 if (em->compress_type) { 3691 csum_offset = 0; 3692 csum_len = max(em->block_len, em->orig_block_len); 3693 } else { 3694 csum_offset = mod_start - em->start; 3695 csum_len = mod_len; 3696 } 3697 3698 /* block start is already adjusted for the file extent offset. */ 3699 ret = btrfs_lookup_csums_range(log->fs_info->csum_root, 3700 em->block_start + csum_offset, 3701 em->block_start + csum_offset + 3702 csum_len - 1, &ordered_sums, 0); 3703 if (ret) 3704 return ret; 3705 3706 while (!list_empty(&ordered_sums)) { 3707 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 3708 struct btrfs_ordered_sum, 3709 list); 3710 if (!ret) 3711 ret = btrfs_csum_file_blocks(trans, log, sums); 3712 list_del(&sums->list); 3713 kfree(sums); 3714 } 3715 3716 return ret; 3717 } 3718 3719 static int log_one_extent(struct btrfs_trans_handle *trans, 3720 struct inode *inode, struct btrfs_root *root, 3721 const struct extent_map *em, 3722 struct btrfs_path *path, 3723 const struct list_head *logged_list, 3724 struct btrfs_log_ctx *ctx) 3725 { 3726 struct btrfs_root *log = root->log_root; 3727 struct btrfs_file_extent_item *fi; 3728 struct extent_buffer *leaf; 3729 struct btrfs_map_token token; 3730 struct btrfs_key key; 3731 u64 extent_offset = em->start - em->orig_start; 3732 u64 block_len; 3733 int ret; 3734 int extent_inserted = 0; 3735 bool ordered_io_err = false; 3736 3737 ret = wait_ordered_extents(trans, inode, root, em, logged_list, 3738 &ordered_io_err); 3739 if (ret) 3740 return ret; 3741 3742 if (ordered_io_err) { 3743 ctx->io_err = -EIO; 3744 return 0; 3745 } 3746 3747 btrfs_init_map_token(&token); 3748 3749 ret = __btrfs_drop_extents(trans, log, inode, path, em->start, 3750 em->start + em->len, NULL, 0, 1, 3751 sizeof(*fi), &extent_inserted); 3752 if (ret) 3753 return ret; 3754 3755 if (!extent_inserted) { 3756 key.objectid = btrfs_ino(inode); 3757 key.type = BTRFS_EXTENT_DATA_KEY; 3758 key.offset = em->start; 3759 3760 ret = btrfs_insert_empty_item(trans, log, path, &key, 3761 sizeof(*fi)); 3762 if (ret) 3763 return ret; 3764 } 3765 leaf = path->nodes[0]; 3766 fi = btrfs_item_ptr(leaf, path->slots[0], 3767 struct btrfs_file_extent_item); 3768 3769 btrfs_set_token_file_extent_generation(leaf, fi, em->generation, 3770 &token); 3771 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3772 btrfs_set_token_file_extent_type(leaf, fi, 3773 BTRFS_FILE_EXTENT_PREALLOC, 3774 &token); 3775 else 3776 btrfs_set_token_file_extent_type(leaf, fi, 3777 BTRFS_FILE_EXTENT_REG, 3778 &token); 3779 3780 block_len = max(em->block_len, em->orig_block_len); 3781 if (em->compress_type != BTRFS_COMPRESS_NONE) { 3782 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 3783 em->block_start, 3784 &token); 3785 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 3786 &token); 3787 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 3788 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 3789 em->block_start - 3790 extent_offset, &token); 3791 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 3792 &token); 3793 } else { 3794 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); 3795 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, 3796 &token); 3797 } 3798 3799 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); 3800 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); 3801 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); 3802 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, 3803 &token); 3804 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); 3805 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); 3806 btrfs_mark_buffer_dirty(leaf); 3807 3808 btrfs_release_path(path); 3809 3810 return ret; 3811 } 3812 3813 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 3814 struct btrfs_root *root, 3815 struct inode *inode, 3816 struct btrfs_path *path, 3817 struct list_head *logged_list, 3818 struct btrfs_log_ctx *ctx) 3819 { 3820 struct extent_map *em, *n; 3821 struct list_head extents; 3822 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree; 3823 u64 test_gen; 3824 int ret = 0; 3825 int num = 0; 3826 3827 INIT_LIST_HEAD(&extents); 3828 3829 write_lock(&tree->lock); 3830 test_gen = root->fs_info->last_trans_committed; 3831 3832 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 3833 list_del_init(&em->list); 3834 3835 /* 3836 * Just an arbitrary number, this can be really CPU intensive 3837 * once we start getting a lot of extents, and really once we 3838 * have a bunch of extents we just want to commit since it will 3839 * be faster. 3840 */ 3841 if (++num > 32768) { 3842 list_del_init(&tree->modified_extents); 3843 ret = -EFBIG; 3844 goto process; 3845 } 3846 3847 if (em->generation <= test_gen) 3848 continue; 3849 /* Need a ref to keep it from getting evicted from cache */ 3850 atomic_inc(&em->refs); 3851 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 3852 list_add_tail(&em->list, &extents); 3853 num++; 3854 } 3855 3856 list_sort(NULL, &extents, extent_cmp); 3857 3858 process: 3859 while (!list_empty(&extents)) { 3860 em = list_entry(extents.next, struct extent_map, list); 3861 3862 list_del_init(&em->list); 3863 3864 /* 3865 * If we had an error we just need to delete everybody from our 3866 * private list. 3867 */ 3868 if (ret) { 3869 clear_em_logging(tree, em); 3870 free_extent_map(em); 3871 continue; 3872 } 3873 3874 write_unlock(&tree->lock); 3875 3876 ret = log_one_extent(trans, inode, root, em, path, logged_list, 3877 ctx); 3878 write_lock(&tree->lock); 3879 clear_em_logging(tree, em); 3880 free_extent_map(em); 3881 } 3882 WARN_ON(!list_empty(&extents)); 3883 write_unlock(&tree->lock); 3884 3885 btrfs_release_path(path); 3886 return ret; 3887 } 3888 3889 /* log a single inode in the tree log. 3890 * At least one parent directory for this inode must exist in the tree 3891 * or be logged already. 3892 * 3893 * Any items from this inode changed by the current transaction are copied 3894 * to the log tree. An extra reference is taken on any extents in this 3895 * file, allowing us to avoid a whole pile of corner cases around logging 3896 * blocks that have been removed from the tree. 3897 * 3898 * See LOG_INODE_ALL and related defines for a description of what inode_only 3899 * does. 3900 * 3901 * This handles both files and directories. 3902 */ 3903 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 3904 struct btrfs_root *root, struct inode *inode, 3905 int inode_only, 3906 const loff_t start, 3907 const loff_t end, 3908 struct btrfs_log_ctx *ctx) 3909 { 3910 struct btrfs_path *path; 3911 struct btrfs_path *dst_path; 3912 struct btrfs_key min_key; 3913 struct btrfs_key max_key; 3914 struct btrfs_root *log = root->log_root; 3915 struct extent_buffer *src = NULL; 3916 LIST_HEAD(logged_list); 3917 u64 last_extent = 0; 3918 int err = 0; 3919 int ret; 3920 int nritems; 3921 int ins_start_slot = 0; 3922 int ins_nr; 3923 bool fast_search = false; 3924 u64 ino = btrfs_ino(inode); 3925 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3926 3927 path = btrfs_alloc_path(); 3928 if (!path) 3929 return -ENOMEM; 3930 dst_path = btrfs_alloc_path(); 3931 if (!dst_path) { 3932 btrfs_free_path(path); 3933 return -ENOMEM; 3934 } 3935 3936 min_key.objectid = ino; 3937 min_key.type = BTRFS_INODE_ITEM_KEY; 3938 min_key.offset = 0; 3939 3940 max_key.objectid = ino; 3941 3942 3943 /* today the code can only do partial logging of directories */ 3944 if (S_ISDIR(inode->i_mode) || 3945 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3946 &BTRFS_I(inode)->runtime_flags) && 3947 inode_only == LOG_INODE_EXISTS)) 3948 max_key.type = BTRFS_XATTR_ITEM_KEY; 3949 else 3950 max_key.type = (u8)-1; 3951 max_key.offset = (u64)-1; 3952 3953 /* Only run delayed items if we are a dir or a new file */ 3954 if (S_ISDIR(inode->i_mode) || 3955 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) { 3956 ret = btrfs_commit_inode_delayed_items(trans, inode); 3957 if (ret) { 3958 btrfs_free_path(path); 3959 btrfs_free_path(dst_path); 3960 return ret; 3961 } 3962 } 3963 3964 mutex_lock(&BTRFS_I(inode)->log_mutex); 3965 3966 btrfs_get_logged_extents(inode, &logged_list); 3967 3968 /* 3969 * a brute force approach to making sure we get the most uptodate 3970 * copies of everything. 3971 */ 3972 if (S_ISDIR(inode->i_mode)) { 3973 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 3974 3975 if (inode_only == LOG_INODE_EXISTS) 3976 max_key_type = BTRFS_XATTR_ITEM_KEY; 3977 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 3978 } else { 3979 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3980 &BTRFS_I(inode)->runtime_flags)) { 3981 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 3982 &BTRFS_I(inode)->runtime_flags); 3983 ret = btrfs_truncate_inode_items(trans, log, 3984 inode, 0, 0); 3985 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 3986 &BTRFS_I(inode)->runtime_flags) || 3987 inode_only == LOG_INODE_EXISTS) { 3988 if (inode_only == LOG_INODE_ALL) 3989 fast_search = true; 3990 max_key.type = BTRFS_XATTR_ITEM_KEY; 3991 ret = drop_objectid_items(trans, log, path, ino, 3992 max_key.type); 3993 } else { 3994 if (inode_only == LOG_INODE_ALL) 3995 fast_search = true; 3996 ret = log_inode_item(trans, log, dst_path, inode); 3997 if (ret) { 3998 err = ret; 3999 goto out_unlock; 4000 } 4001 goto log_extents; 4002 } 4003 4004 } 4005 if (ret) { 4006 err = ret; 4007 goto out_unlock; 4008 } 4009 4010 while (1) { 4011 ins_nr = 0; 4012 ret = btrfs_search_forward(root, &min_key, 4013 path, trans->transid); 4014 if (ret != 0) 4015 break; 4016 again: 4017 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 4018 if (min_key.objectid != ino) 4019 break; 4020 if (min_key.type > max_key.type) 4021 break; 4022 4023 src = path->nodes[0]; 4024 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 4025 ins_nr++; 4026 goto next_slot; 4027 } else if (!ins_nr) { 4028 ins_start_slot = path->slots[0]; 4029 ins_nr = 1; 4030 goto next_slot; 4031 } 4032 4033 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4034 ins_start_slot, ins_nr, inode_only); 4035 if (ret < 0) { 4036 err = ret; 4037 goto out_unlock; 4038 } 4039 if (ret) { 4040 ins_nr = 0; 4041 btrfs_release_path(path); 4042 continue; 4043 } 4044 ins_nr = 1; 4045 ins_start_slot = path->slots[0]; 4046 next_slot: 4047 4048 nritems = btrfs_header_nritems(path->nodes[0]); 4049 path->slots[0]++; 4050 if (path->slots[0] < nritems) { 4051 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 4052 path->slots[0]); 4053 goto again; 4054 } 4055 if (ins_nr) { 4056 ret = copy_items(trans, inode, dst_path, path, 4057 &last_extent, ins_start_slot, 4058 ins_nr, inode_only); 4059 if (ret < 0) { 4060 err = ret; 4061 goto out_unlock; 4062 } 4063 ret = 0; 4064 ins_nr = 0; 4065 } 4066 btrfs_release_path(path); 4067 4068 if (min_key.offset < (u64)-1) { 4069 min_key.offset++; 4070 } else if (min_key.type < max_key.type) { 4071 min_key.type++; 4072 min_key.offset = 0; 4073 } else { 4074 break; 4075 } 4076 } 4077 if (ins_nr) { 4078 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4079 ins_start_slot, ins_nr, inode_only); 4080 if (ret < 0) { 4081 err = ret; 4082 goto out_unlock; 4083 } 4084 ret = 0; 4085 ins_nr = 0; 4086 } 4087 4088 log_extents: 4089 btrfs_release_path(path); 4090 btrfs_release_path(dst_path); 4091 if (fast_search) { 4092 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 4093 &logged_list, ctx); 4094 if (ret) { 4095 err = ret; 4096 goto out_unlock; 4097 } 4098 } else if (inode_only == LOG_INODE_ALL) { 4099 struct extent_map *em, *n; 4100 4101 write_lock(&em_tree->lock); 4102 /* 4103 * We can't just remove every em if we're called for a ranged 4104 * fsync - that is, one that doesn't cover the whole possible 4105 * file range (0 to LLONG_MAX). This is because we can have 4106 * em's that fall outside the range we're logging and therefore 4107 * their ordered operations haven't completed yet 4108 * (btrfs_finish_ordered_io() not invoked yet). This means we 4109 * didn't get their respective file extent item in the fs/subvol 4110 * tree yet, and need to let the next fast fsync (one which 4111 * consults the list of modified extent maps) find the em so 4112 * that it logs a matching file extent item and waits for the 4113 * respective ordered operation to complete (if it's still 4114 * running). 4115 * 4116 * Removing every em outside the range we're logging would make 4117 * the next fast fsync not log their matching file extent items, 4118 * therefore making us lose data after a log replay. 4119 */ 4120 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 4121 list) { 4122 const u64 mod_end = em->mod_start + em->mod_len - 1; 4123 4124 if (em->mod_start >= start && mod_end <= end) 4125 list_del_init(&em->list); 4126 } 4127 write_unlock(&em_tree->lock); 4128 } 4129 4130 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { 4131 ret = log_directory_changes(trans, root, inode, path, dst_path); 4132 if (ret) { 4133 err = ret; 4134 goto out_unlock; 4135 } 4136 } 4137 4138 BTRFS_I(inode)->logged_trans = trans->transid; 4139 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans; 4140 out_unlock: 4141 if (unlikely(err)) 4142 btrfs_put_logged_extents(&logged_list); 4143 else 4144 btrfs_submit_logged_extents(&logged_list, log); 4145 mutex_unlock(&BTRFS_I(inode)->log_mutex); 4146 4147 btrfs_free_path(path); 4148 btrfs_free_path(dst_path); 4149 return err; 4150 } 4151 4152 /* 4153 * follow the dentry parent pointers up the chain and see if any 4154 * of the directories in it require a full commit before they can 4155 * be logged. Returns zero if nothing special needs to be done or 1 if 4156 * a full commit is required. 4157 */ 4158 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 4159 struct inode *inode, 4160 struct dentry *parent, 4161 struct super_block *sb, 4162 u64 last_committed) 4163 { 4164 int ret = 0; 4165 struct btrfs_root *root; 4166 struct dentry *old_parent = NULL; 4167 struct inode *orig_inode = inode; 4168 4169 /* 4170 * for regular files, if its inode is already on disk, we don't 4171 * have to worry about the parents at all. This is because 4172 * we can use the last_unlink_trans field to record renames 4173 * and other fun in this file. 4174 */ 4175 if (S_ISREG(inode->i_mode) && 4176 BTRFS_I(inode)->generation <= last_committed && 4177 BTRFS_I(inode)->last_unlink_trans <= last_committed) 4178 goto out; 4179 4180 if (!S_ISDIR(inode->i_mode)) { 4181 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 4182 goto out; 4183 inode = parent->d_inode; 4184 } 4185 4186 while (1) { 4187 /* 4188 * If we are logging a directory then we start with our inode, 4189 * not our parents inode, so we need to skipp setting the 4190 * logged_trans so that further down in the log code we don't 4191 * think this inode has already been logged. 4192 */ 4193 if (inode != orig_inode) 4194 BTRFS_I(inode)->logged_trans = trans->transid; 4195 smp_mb(); 4196 4197 if (BTRFS_I(inode)->last_unlink_trans > last_committed) { 4198 root = BTRFS_I(inode)->root; 4199 4200 /* 4201 * make sure any commits to the log are forced 4202 * to be full commits 4203 */ 4204 btrfs_set_log_full_commit(root->fs_info, trans); 4205 ret = 1; 4206 break; 4207 } 4208 4209 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 4210 break; 4211 4212 if (IS_ROOT(parent)) 4213 break; 4214 4215 parent = dget_parent(parent); 4216 dput(old_parent); 4217 old_parent = parent; 4218 inode = parent->d_inode; 4219 4220 } 4221 dput(old_parent); 4222 out: 4223 return ret; 4224 } 4225 4226 /* 4227 * helper function around btrfs_log_inode to make sure newly created 4228 * parent directories also end up in the log. A minimal inode and backref 4229 * only logging is done of any parent directories that are older than 4230 * the last committed transaction 4231 */ 4232 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 4233 struct btrfs_root *root, struct inode *inode, 4234 struct dentry *parent, 4235 const loff_t start, 4236 const loff_t end, 4237 int exists_only, 4238 struct btrfs_log_ctx *ctx) 4239 { 4240 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; 4241 struct super_block *sb; 4242 struct dentry *old_parent = NULL; 4243 int ret = 0; 4244 u64 last_committed = root->fs_info->last_trans_committed; 4245 4246 sb = inode->i_sb; 4247 4248 if (btrfs_test_opt(root, NOTREELOG)) { 4249 ret = 1; 4250 goto end_no_trans; 4251 } 4252 4253 /* 4254 * The prev transaction commit doesn't complete, we need do 4255 * full commit by ourselves. 4256 */ 4257 if (root->fs_info->last_trans_log_full_commit > 4258 root->fs_info->last_trans_committed) { 4259 ret = 1; 4260 goto end_no_trans; 4261 } 4262 4263 if (root != BTRFS_I(inode)->root || 4264 btrfs_root_refs(&root->root_item) == 0) { 4265 ret = 1; 4266 goto end_no_trans; 4267 } 4268 4269 ret = check_parent_dirs_for_sync(trans, inode, parent, 4270 sb, last_committed); 4271 if (ret) 4272 goto end_no_trans; 4273 4274 if (btrfs_inode_in_log(inode, trans->transid)) { 4275 ret = BTRFS_NO_LOG_SYNC; 4276 goto end_no_trans; 4277 } 4278 4279 ret = start_log_trans(trans, root, ctx); 4280 if (ret) 4281 goto end_no_trans; 4282 4283 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 4284 if (ret) 4285 goto end_trans; 4286 4287 /* 4288 * for regular files, if its inode is already on disk, we don't 4289 * have to worry about the parents at all. This is because 4290 * we can use the last_unlink_trans field to record renames 4291 * and other fun in this file. 4292 */ 4293 if (S_ISREG(inode->i_mode) && 4294 BTRFS_I(inode)->generation <= last_committed && 4295 BTRFS_I(inode)->last_unlink_trans <= last_committed) { 4296 ret = 0; 4297 goto end_trans; 4298 } 4299 4300 inode_only = LOG_INODE_EXISTS; 4301 while (1) { 4302 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 4303 break; 4304 4305 inode = parent->d_inode; 4306 if (root != BTRFS_I(inode)->root) 4307 break; 4308 4309 if (BTRFS_I(inode)->generation > 4310 root->fs_info->last_trans_committed) { 4311 ret = btrfs_log_inode(trans, root, inode, inode_only, 4312 0, LLONG_MAX, ctx); 4313 if (ret) 4314 goto end_trans; 4315 } 4316 if (IS_ROOT(parent)) 4317 break; 4318 4319 parent = dget_parent(parent); 4320 dput(old_parent); 4321 old_parent = parent; 4322 } 4323 ret = 0; 4324 end_trans: 4325 dput(old_parent); 4326 if (ret < 0) { 4327 btrfs_set_log_full_commit(root->fs_info, trans); 4328 ret = 1; 4329 } 4330 4331 if (ret) 4332 btrfs_remove_log_ctx(root, ctx); 4333 btrfs_end_log_trans(root); 4334 end_no_trans: 4335 return ret; 4336 } 4337 4338 /* 4339 * it is not safe to log dentry if the chunk root has added new 4340 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 4341 * If this returns 1, you must commit the transaction to safely get your 4342 * data on disk. 4343 */ 4344 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 4345 struct btrfs_root *root, struct dentry *dentry, 4346 const loff_t start, 4347 const loff_t end, 4348 struct btrfs_log_ctx *ctx) 4349 { 4350 struct dentry *parent = dget_parent(dentry); 4351 int ret; 4352 4353 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 4354 start, end, 0, ctx); 4355 dput(parent); 4356 4357 return ret; 4358 } 4359 4360 /* 4361 * should be called during mount to recover any replay any log trees 4362 * from the FS 4363 */ 4364 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 4365 { 4366 int ret; 4367 struct btrfs_path *path; 4368 struct btrfs_trans_handle *trans; 4369 struct btrfs_key key; 4370 struct btrfs_key found_key; 4371 struct btrfs_key tmp_key; 4372 struct btrfs_root *log; 4373 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 4374 struct walk_control wc = { 4375 .process_func = process_one_buffer, 4376 .stage = 0, 4377 }; 4378 4379 path = btrfs_alloc_path(); 4380 if (!path) 4381 return -ENOMEM; 4382 4383 fs_info->log_root_recovering = 1; 4384 4385 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4386 if (IS_ERR(trans)) { 4387 ret = PTR_ERR(trans); 4388 goto error; 4389 } 4390 4391 wc.trans = trans; 4392 wc.pin = 1; 4393 4394 ret = walk_log_tree(trans, log_root_tree, &wc); 4395 if (ret) { 4396 btrfs_error(fs_info, ret, "Failed to pin buffers while " 4397 "recovering log root tree."); 4398 goto error; 4399 } 4400 4401 again: 4402 key.objectid = BTRFS_TREE_LOG_OBJECTID; 4403 key.offset = (u64)-1; 4404 key.type = BTRFS_ROOT_ITEM_KEY; 4405 4406 while (1) { 4407 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 4408 4409 if (ret < 0) { 4410 btrfs_error(fs_info, ret, 4411 "Couldn't find tree log root."); 4412 goto error; 4413 } 4414 if (ret > 0) { 4415 if (path->slots[0] == 0) 4416 break; 4417 path->slots[0]--; 4418 } 4419 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4420 path->slots[0]); 4421 btrfs_release_path(path); 4422 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4423 break; 4424 4425 log = btrfs_read_fs_root(log_root_tree, &found_key); 4426 if (IS_ERR(log)) { 4427 ret = PTR_ERR(log); 4428 btrfs_error(fs_info, ret, 4429 "Couldn't read tree log root."); 4430 goto error; 4431 } 4432 4433 tmp_key.objectid = found_key.offset; 4434 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 4435 tmp_key.offset = (u64)-1; 4436 4437 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 4438 if (IS_ERR(wc.replay_dest)) { 4439 ret = PTR_ERR(wc.replay_dest); 4440 free_extent_buffer(log->node); 4441 free_extent_buffer(log->commit_root); 4442 kfree(log); 4443 btrfs_error(fs_info, ret, "Couldn't read target root " 4444 "for tree log recovery."); 4445 goto error; 4446 } 4447 4448 wc.replay_dest->log_root = log; 4449 btrfs_record_root_in_trans(trans, wc.replay_dest); 4450 ret = walk_log_tree(trans, log, &wc); 4451 4452 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 4453 ret = fixup_inode_link_counts(trans, wc.replay_dest, 4454 path); 4455 } 4456 4457 key.offset = found_key.offset - 1; 4458 wc.replay_dest->log_root = NULL; 4459 free_extent_buffer(log->node); 4460 free_extent_buffer(log->commit_root); 4461 kfree(log); 4462 4463 if (ret) 4464 goto error; 4465 4466 if (found_key.offset == 0) 4467 break; 4468 } 4469 btrfs_release_path(path); 4470 4471 /* step one is to pin it all, step two is to replay just inodes */ 4472 if (wc.pin) { 4473 wc.pin = 0; 4474 wc.process_func = replay_one_buffer; 4475 wc.stage = LOG_WALK_REPLAY_INODES; 4476 goto again; 4477 } 4478 /* step three is to replay everything */ 4479 if (wc.stage < LOG_WALK_REPLAY_ALL) { 4480 wc.stage++; 4481 goto again; 4482 } 4483 4484 btrfs_free_path(path); 4485 4486 /* step 4: commit the transaction, which also unpins the blocks */ 4487 ret = btrfs_commit_transaction(trans, fs_info->tree_root); 4488 if (ret) 4489 return ret; 4490 4491 free_extent_buffer(log_root_tree->node); 4492 log_root_tree->log_root = NULL; 4493 fs_info->log_root_recovering = 0; 4494 kfree(log_root_tree); 4495 4496 return 0; 4497 error: 4498 if (wc.trans) 4499 btrfs_end_transaction(wc.trans, fs_info->tree_root); 4500 btrfs_free_path(path); 4501 return ret; 4502 } 4503 4504 /* 4505 * there are some corner cases where we want to force a full 4506 * commit instead of allowing a directory to be logged. 4507 * 4508 * They revolve around files there were unlinked from the directory, and 4509 * this function updates the parent directory so that a full commit is 4510 * properly done if it is fsync'd later after the unlinks are done. 4511 */ 4512 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 4513 struct inode *dir, struct inode *inode, 4514 int for_rename) 4515 { 4516 /* 4517 * when we're logging a file, if it hasn't been renamed 4518 * or unlinked, and its inode is fully committed on disk, 4519 * we don't have to worry about walking up the directory chain 4520 * to log its parents. 4521 * 4522 * So, we use the last_unlink_trans field to put this transid 4523 * into the file. When the file is logged we check it and 4524 * don't log the parents if the file is fully on disk. 4525 */ 4526 if (S_ISREG(inode->i_mode)) 4527 BTRFS_I(inode)->last_unlink_trans = trans->transid; 4528 4529 /* 4530 * if this directory was already logged any new 4531 * names for this file/dir will get recorded 4532 */ 4533 smp_mb(); 4534 if (BTRFS_I(dir)->logged_trans == trans->transid) 4535 return; 4536 4537 /* 4538 * if the inode we're about to unlink was logged, 4539 * the log will be properly updated for any new names 4540 */ 4541 if (BTRFS_I(inode)->logged_trans == trans->transid) 4542 return; 4543 4544 /* 4545 * when renaming files across directories, if the directory 4546 * there we're unlinking from gets fsync'd later on, there's 4547 * no way to find the destination directory later and fsync it 4548 * properly. So, we have to be conservative and force commits 4549 * so the new name gets discovered. 4550 */ 4551 if (for_rename) 4552 goto record; 4553 4554 /* we can safely do the unlink without any special recording */ 4555 return; 4556 4557 record: 4558 BTRFS_I(dir)->last_unlink_trans = trans->transid; 4559 } 4560 4561 /* 4562 * Call this after adding a new name for a file and it will properly 4563 * update the log to reflect the new name. 4564 * 4565 * It will return zero if all goes well, and it will return 1 if a 4566 * full transaction commit is required. 4567 */ 4568 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 4569 struct inode *inode, struct inode *old_dir, 4570 struct dentry *parent) 4571 { 4572 struct btrfs_root * root = BTRFS_I(inode)->root; 4573 4574 /* 4575 * this will force the logging code to walk the dentry chain 4576 * up for the file 4577 */ 4578 if (S_ISREG(inode->i_mode)) 4579 BTRFS_I(inode)->last_unlink_trans = trans->transid; 4580 4581 /* 4582 * if this inode hasn't been logged and directory we're renaming it 4583 * from hasn't been logged, we don't need to log it 4584 */ 4585 if (BTRFS_I(inode)->logged_trans <= 4586 root->fs_info->last_trans_committed && 4587 (!old_dir || BTRFS_I(old_dir)->logged_trans <= 4588 root->fs_info->last_trans_committed)) 4589 return 0; 4590 4591 return btrfs_log_inode_parent(trans, root, inode, parent, 0, 4592 LLONG_MAX, 1, NULL); 4593 } 4594 4595