xref: /openbmc/linux/fs/btrfs/tree-log.c (revision c8f14e2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24 
25 /* magic values for the inode_only field in btrfs_log_inode:
26  *
27  * LOG_INODE_ALL means to log everything
28  * LOG_INODE_EXISTS means to log just enough to recreate the inode
29  * during log replay
30  */
31 enum {
32 	LOG_INODE_ALL,
33 	LOG_INODE_EXISTS,
34 	LOG_OTHER_INODE,
35 	LOG_OTHER_INODE_ALL,
36 };
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 enum {
91 	LOG_WALK_PIN_ONLY,
92 	LOG_WALK_REPLAY_INODES,
93 	LOG_WALK_REPLAY_DIR_INDEX,
94 	LOG_WALK_REPLAY_ALL,
95 };
96 
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 			   struct btrfs_inode *inode,
99 			   int inode_only,
100 			   struct btrfs_log_ctx *ctx);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 			     struct btrfs_root *root,
103 			     struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 				       struct btrfs_root *root,
106 				       struct btrfs_root *log,
107 				       struct btrfs_path *path,
108 				       u64 dirid, int del_all);
109 static void wait_log_commit(struct btrfs_root *root, int transid);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	struct btrfs_root *tree_root = fs_info->tree_root;
145 	const bool zoned = btrfs_is_zoned(fs_info);
146 	int ret = 0;
147 	bool created = false;
148 
149 	/*
150 	 * First check if the log root tree was already created. If not, create
151 	 * it before locking the root's log_mutex, just to keep lockdep happy.
152 	 */
153 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
154 		mutex_lock(&tree_root->log_mutex);
155 		if (!fs_info->log_root_tree) {
156 			ret = btrfs_init_log_root_tree(trans, fs_info);
157 			if (!ret) {
158 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
159 				created = true;
160 			}
161 		}
162 		mutex_unlock(&tree_root->log_mutex);
163 		if (ret)
164 			return ret;
165 	}
166 
167 	mutex_lock(&root->log_mutex);
168 
169 again:
170 	if (root->log_root) {
171 		int index = (root->log_transid + 1) % 2;
172 
173 		if (btrfs_need_log_full_commit(trans)) {
174 			ret = -EAGAIN;
175 			goto out;
176 		}
177 
178 		if (zoned && atomic_read(&root->log_commit[index])) {
179 			wait_log_commit(root, root->log_transid - 1);
180 			goto again;
181 		}
182 
183 		if (!root->log_start_pid) {
184 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
185 			root->log_start_pid = current->pid;
186 		} else if (root->log_start_pid != current->pid) {
187 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
188 		}
189 	} else {
190 		/*
191 		 * This means fs_info->log_root_tree was already created
192 		 * for some other FS trees. Do the full commit not to mix
193 		 * nodes from multiple log transactions to do sequential
194 		 * writing.
195 		 */
196 		if (zoned && !created) {
197 			ret = -EAGAIN;
198 			goto out;
199 		}
200 
201 		ret = btrfs_add_log_tree(trans, root);
202 		if (ret)
203 			goto out;
204 
205 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
206 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
207 		root->log_start_pid = current->pid;
208 	}
209 
210 	atomic_inc(&root->log_writers);
211 	if (!ctx->logging_new_name) {
212 		int index = root->log_transid % 2;
213 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
214 		ctx->log_transid = root->log_transid;
215 	}
216 
217 out:
218 	mutex_unlock(&root->log_mutex);
219 	return ret;
220 }
221 
222 /*
223  * returns 0 if there was a log transaction running and we were able
224  * to join, or returns -ENOENT if there were not transactions
225  * in progress
226  */
227 static int join_running_log_trans(struct btrfs_root *root)
228 {
229 	const bool zoned = btrfs_is_zoned(root->fs_info);
230 	int ret = -ENOENT;
231 
232 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
233 		return ret;
234 
235 	mutex_lock(&root->log_mutex);
236 again:
237 	if (root->log_root) {
238 		int index = (root->log_transid + 1) % 2;
239 
240 		ret = 0;
241 		if (zoned && atomic_read(&root->log_commit[index])) {
242 			wait_log_commit(root, root->log_transid - 1);
243 			goto again;
244 		}
245 		atomic_inc(&root->log_writers);
246 	}
247 	mutex_unlock(&root->log_mutex);
248 	return ret;
249 }
250 
251 /*
252  * This either makes the current running log transaction wait
253  * until you call btrfs_end_log_trans() or it makes any future
254  * log transactions wait until you call btrfs_end_log_trans()
255  */
256 void btrfs_pin_log_trans(struct btrfs_root *root)
257 {
258 	atomic_inc(&root->log_writers);
259 }
260 
261 /*
262  * indicate we're done making changes to the log tree
263  * and wake up anyone waiting to do a sync
264  */
265 void btrfs_end_log_trans(struct btrfs_root *root)
266 {
267 	if (atomic_dec_and_test(&root->log_writers)) {
268 		/* atomic_dec_and_test implies a barrier */
269 		cond_wake_up_nomb(&root->log_writer_wait);
270 	}
271 }
272 
273 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
274 {
275 	filemap_fdatawait_range(buf->pages[0]->mapping,
276 			        buf->start, buf->start + buf->len - 1);
277 }
278 
279 /*
280  * the walk control struct is used to pass state down the chain when
281  * processing the log tree.  The stage field tells us which part
282  * of the log tree processing we are currently doing.  The others
283  * are state fields used for that specific part
284  */
285 struct walk_control {
286 	/* should we free the extent on disk when done?  This is used
287 	 * at transaction commit time while freeing a log tree
288 	 */
289 	int free;
290 
291 	/* pin only walk, we record which extents on disk belong to the
292 	 * log trees
293 	 */
294 	int pin;
295 
296 	/* what stage of the replay code we're currently in */
297 	int stage;
298 
299 	/*
300 	 * Ignore any items from the inode currently being processed. Needs
301 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
302 	 * the LOG_WALK_REPLAY_INODES stage.
303 	 */
304 	bool ignore_cur_inode;
305 
306 	/* the root we are currently replaying */
307 	struct btrfs_root *replay_dest;
308 
309 	/* the trans handle for the current replay */
310 	struct btrfs_trans_handle *trans;
311 
312 	/* the function that gets used to process blocks we find in the
313 	 * tree.  Note the extent_buffer might not be up to date when it is
314 	 * passed in, and it must be checked or read if you need the data
315 	 * inside it
316 	 */
317 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
318 			    struct walk_control *wc, u64 gen, int level);
319 };
320 
321 /*
322  * process_func used to pin down extents, write them or wait on them
323  */
324 static int process_one_buffer(struct btrfs_root *log,
325 			      struct extent_buffer *eb,
326 			      struct walk_control *wc, u64 gen, int level)
327 {
328 	struct btrfs_fs_info *fs_info = log->fs_info;
329 	int ret = 0;
330 
331 	/*
332 	 * If this fs is mixed then we need to be able to process the leaves to
333 	 * pin down any logged extents, so we have to read the block.
334 	 */
335 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
336 		ret = btrfs_read_buffer(eb, gen, level, NULL);
337 		if (ret)
338 			return ret;
339 	}
340 
341 	if (wc->pin) {
342 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
343 						      eb->len);
344 		if (ret)
345 			return ret;
346 
347 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
348 		    btrfs_header_level(eb) == 0)
349 			ret = btrfs_exclude_logged_extents(eb);
350 	}
351 	return ret;
352 }
353 
354 static int do_overwrite_item(struct btrfs_trans_handle *trans,
355 			     struct btrfs_root *root,
356 			     struct btrfs_path *path,
357 			     struct extent_buffer *eb, int slot,
358 			     struct btrfs_key *key)
359 {
360 	int ret;
361 	u32 item_size;
362 	u64 saved_i_size = 0;
363 	int save_old_i_size = 0;
364 	unsigned long src_ptr;
365 	unsigned long dst_ptr;
366 	int overwrite_root = 0;
367 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
368 
369 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
370 		overwrite_root = 1;
371 
372 	item_size = btrfs_item_size(eb, slot);
373 	src_ptr = btrfs_item_ptr_offset(eb, slot);
374 
375 	/* Our caller must have done a search for the key for us. */
376 	ASSERT(path->nodes[0] != NULL);
377 
378 	/*
379 	 * And the slot must point to the exact key or the slot where the key
380 	 * should be at (the first item with a key greater than 'key')
381 	 */
382 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
383 		struct btrfs_key found_key;
384 
385 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
386 		ret = btrfs_comp_cpu_keys(&found_key, key);
387 		ASSERT(ret >= 0);
388 	} else {
389 		ret = 1;
390 	}
391 
392 	if (ret == 0) {
393 		char *src_copy;
394 		char *dst_copy;
395 		u32 dst_size = btrfs_item_size(path->nodes[0],
396 						  path->slots[0]);
397 		if (dst_size != item_size)
398 			goto insert;
399 
400 		if (item_size == 0) {
401 			btrfs_release_path(path);
402 			return 0;
403 		}
404 		dst_copy = kmalloc(item_size, GFP_NOFS);
405 		src_copy = kmalloc(item_size, GFP_NOFS);
406 		if (!dst_copy || !src_copy) {
407 			btrfs_release_path(path);
408 			kfree(dst_copy);
409 			kfree(src_copy);
410 			return -ENOMEM;
411 		}
412 
413 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
414 
415 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
416 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
417 				   item_size);
418 		ret = memcmp(dst_copy, src_copy, item_size);
419 
420 		kfree(dst_copy);
421 		kfree(src_copy);
422 		/*
423 		 * they have the same contents, just return, this saves
424 		 * us from cowing blocks in the destination tree and doing
425 		 * extra writes that may not have been done by a previous
426 		 * sync
427 		 */
428 		if (ret == 0) {
429 			btrfs_release_path(path);
430 			return 0;
431 		}
432 
433 		/*
434 		 * We need to load the old nbytes into the inode so when we
435 		 * replay the extents we've logged we get the right nbytes.
436 		 */
437 		if (inode_item) {
438 			struct btrfs_inode_item *item;
439 			u64 nbytes;
440 			u32 mode;
441 
442 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
443 					      struct btrfs_inode_item);
444 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
445 			item = btrfs_item_ptr(eb, slot,
446 					      struct btrfs_inode_item);
447 			btrfs_set_inode_nbytes(eb, item, nbytes);
448 
449 			/*
450 			 * If this is a directory we need to reset the i_size to
451 			 * 0 so that we can set it up properly when replaying
452 			 * the rest of the items in this log.
453 			 */
454 			mode = btrfs_inode_mode(eb, item);
455 			if (S_ISDIR(mode))
456 				btrfs_set_inode_size(eb, item, 0);
457 		}
458 	} else if (inode_item) {
459 		struct btrfs_inode_item *item;
460 		u32 mode;
461 
462 		/*
463 		 * New inode, set nbytes to 0 so that the nbytes comes out
464 		 * properly when we replay the extents.
465 		 */
466 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
467 		btrfs_set_inode_nbytes(eb, item, 0);
468 
469 		/*
470 		 * If this is a directory we need to reset the i_size to 0 so
471 		 * that we can set it up properly when replaying the rest of
472 		 * the items in this log.
473 		 */
474 		mode = btrfs_inode_mode(eb, item);
475 		if (S_ISDIR(mode))
476 			btrfs_set_inode_size(eb, item, 0);
477 	}
478 insert:
479 	btrfs_release_path(path);
480 	/* try to insert the key into the destination tree */
481 	path->skip_release_on_error = 1;
482 	ret = btrfs_insert_empty_item(trans, root, path,
483 				      key, item_size);
484 	path->skip_release_on_error = 0;
485 
486 	/* make sure any existing item is the correct size */
487 	if (ret == -EEXIST || ret == -EOVERFLOW) {
488 		u32 found_size;
489 		found_size = btrfs_item_size(path->nodes[0],
490 						path->slots[0]);
491 		if (found_size > item_size)
492 			btrfs_truncate_item(path, item_size, 1);
493 		else if (found_size < item_size)
494 			btrfs_extend_item(path, item_size - found_size);
495 	} else if (ret) {
496 		return ret;
497 	}
498 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
499 					path->slots[0]);
500 
501 	/* don't overwrite an existing inode if the generation number
502 	 * was logged as zero.  This is done when the tree logging code
503 	 * is just logging an inode to make sure it exists after recovery.
504 	 *
505 	 * Also, don't overwrite i_size on directories during replay.
506 	 * log replay inserts and removes directory items based on the
507 	 * state of the tree found in the subvolume, and i_size is modified
508 	 * as it goes
509 	 */
510 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
511 		struct btrfs_inode_item *src_item;
512 		struct btrfs_inode_item *dst_item;
513 
514 		src_item = (struct btrfs_inode_item *)src_ptr;
515 		dst_item = (struct btrfs_inode_item *)dst_ptr;
516 
517 		if (btrfs_inode_generation(eb, src_item) == 0) {
518 			struct extent_buffer *dst_eb = path->nodes[0];
519 			const u64 ino_size = btrfs_inode_size(eb, src_item);
520 
521 			/*
522 			 * For regular files an ino_size == 0 is used only when
523 			 * logging that an inode exists, as part of a directory
524 			 * fsync, and the inode wasn't fsynced before. In this
525 			 * case don't set the size of the inode in the fs/subvol
526 			 * tree, otherwise we would be throwing valid data away.
527 			 */
528 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
529 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
530 			    ino_size != 0)
531 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
532 			goto no_copy;
533 		}
534 
535 		if (overwrite_root &&
536 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
537 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
538 			save_old_i_size = 1;
539 			saved_i_size = btrfs_inode_size(path->nodes[0],
540 							dst_item);
541 		}
542 	}
543 
544 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
545 			   src_ptr, item_size);
546 
547 	if (save_old_i_size) {
548 		struct btrfs_inode_item *dst_item;
549 		dst_item = (struct btrfs_inode_item *)dst_ptr;
550 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
551 	}
552 
553 	/* make sure the generation is filled in */
554 	if (key->type == BTRFS_INODE_ITEM_KEY) {
555 		struct btrfs_inode_item *dst_item;
556 		dst_item = (struct btrfs_inode_item *)dst_ptr;
557 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
558 			btrfs_set_inode_generation(path->nodes[0], dst_item,
559 						   trans->transid);
560 		}
561 	}
562 no_copy:
563 	btrfs_mark_buffer_dirty(path->nodes[0]);
564 	btrfs_release_path(path);
565 	return 0;
566 }
567 
568 /*
569  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
570  * to the src data we are copying out.
571  *
572  * root is the tree we are copying into, and path is a scratch
573  * path for use in this function (it should be released on entry and
574  * will be released on exit).
575  *
576  * If the key is already in the destination tree the existing item is
577  * overwritten.  If the existing item isn't big enough, it is extended.
578  * If it is too large, it is truncated.
579  *
580  * If the key isn't in the destination yet, a new item is inserted.
581  */
582 static int overwrite_item(struct btrfs_trans_handle *trans,
583 			  struct btrfs_root *root,
584 			  struct btrfs_path *path,
585 			  struct extent_buffer *eb, int slot,
586 			  struct btrfs_key *key)
587 {
588 	int ret;
589 
590 	/* Look for the key in the destination tree. */
591 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
592 	if (ret < 0)
593 		return ret;
594 
595 	return do_overwrite_item(trans, root, path, eb, slot, key);
596 }
597 
598 /*
599  * simple helper to read an inode off the disk from a given root
600  * This can only be called for subvolume roots and not for the log
601  */
602 static noinline struct inode *read_one_inode(struct btrfs_root *root,
603 					     u64 objectid)
604 {
605 	struct inode *inode;
606 
607 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
608 	if (IS_ERR(inode))
609 		inode = NULL;
610 	return inode;
611 }
612 
613 /* replays a single extent in 'eb' at 'slot' with 'key' into the
614  * subvolume 'root'.  path is released on entry and should be released
615  * on exit.
616  *
617  * extents in the log tree have not been allocated out of the extent
618  * tree yet.  So, this completes the allocation, taking a reference
619  * as required if the extent already exists or creating a new extent
620  * if it isn't in the extent allocation tree yet.
621  *
622  * The extent is inserted into the file, dropping any existing extents
623  * from the file that overlap the new one.
624  */
625 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
626 				      struct btrfs_root *root,
627 				      struct btrfs_path *path,
628 				      struct extent_buffer *eb, int slot,
629 				      struct btrfs_key *key)
630 {
631 	struct btrfs_drop_extents_args drop_args = { 0 };
632 	struct btrfs_fs_info *fs_info = root->fs_info;
633 	int found_type;
634 	u64 extent_end;
635 	u64 start = key->offset;
636 	u64 nbytes = 0;
637 	struct btrfs_file_extent_item *item;
638 	struct inode *inode = NULL;
639 	unsigned long size;
640 	int ret = 0;
641 
642 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
643 	found_type = btrfs_file_extent_type(eb, item);
644 
645 	if (found_type == BTRFS_FILE_EXTENT_REG ||
646 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
647 		nbytes = btrfs_file_extent_num_bytes(eb, item);
648 		extent_end = start + nbytes;
649 
650 		/*
651 		 * We don't add to the inodes nbytes if we are prealloc or a
652 		 * hole.
653 		 */
654 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
655 			nbytes = 0;
656 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
657 		size = btrfs_file_extent_ram_bytes(eb, item);
658 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
659 		extent_end = ALIGN(start + size,
660 				   fs_info->sectorsize);
661 	} else {
662 		ret = 0;
663 		goto out;
664 	}
665 
666 	inode = read_one_inode(root, key->objectid);
667 	if (!inode) {
668 		ret = -EIO;
669 		goto out;
670 	}
671 
672 	/*
673 	 * first check to see if we already have this extent in the
674 	 * file.  This must be done before the btrfs_drop_extents run
675 	 * so we don't try to drop this extent.
676 	 */
677 	ret = btrfs_lookup_file_extent(trans, root, path,
678 			btrfs_ino(BTRFS_I(inode)), start, 0);
679 
680 	if (ret == 0 &&
681 	    (found_type == BTRFS_FILE_EXTENT_REG ||
682 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
683 		struct btrfs_file_extent_item cmp1;
684 		struct btrfs_file_extent_item cmp2;
685 		struct btrfs_file_extent_item *existing;
686 		struct extent_buffer *leaf;
687 
688 		leaf = path->nodes[0];
689 		existing = btrfs_item_ptr(leaf, path->slots[0],
690 					  struct btrfs_file_extent_item);
691 
692 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
693 				   sizeof(cmp1));
694 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
695 				   sizeof(cmp2));
696 
697 		/*
698 		 * we already have a pointer to this exact extent,
699 		 * we don't have to do anything
700 		 */
701 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
702 			btrfs_release_path(path);
703 			goto out;
704 		}
705 	}
706 	btrfs_release_path(path);
707 
708 	/* drop any overlapping extents */
709 	drop_args.start = start;
710 	drop_args.end = extent_end;
711 	drop_args.drop_cache = true;
712 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
713 	if (ret)
714 		goto out;
715 
716 	if (found_type == BTRFS_FILE_EXTENT_REG ||
717 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
718 		u64 offset;
719 		unsigned long dest_offset;
720 		struct btrfs_key ins;
721 
722 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
723 		    btrfs_fs_incompat(fs_info, NO_HOLES))
724 			goto update_inode;
725 
726 		ret = btrfs_insert_empty_item(trans, root, path, key,
727 					      sizeof(*item));
728 		if (ret)
729 			goto out;
730 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
731 						    path->slots[0]);
732 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
733 				(unsigned long)item,  sizeof(*item));
734 
735 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
736 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
737 		ins.type = BTRFS_EXTENT_ITEM_KEY;
738 		offset = key->offset - btrfs_file_extent_offset(eb, item);
739 
740 		/*
741 		 * Manually record dirty extent, as here we did a shallow
742 		 * file extent item copy and skip normal backref update,
743 		 * but modifying extent tree all by ourselves.
744 		 * So need to manually record dirty extent for qgroup,
745 		 * as the owner of the file extent changed from log tree
746 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
747 		 */
748 		ret = btrfs_qgroup_trace_extent(trans,
749 				btrfs_file_extent_disk_bytenr(eb, item),
750 				btrfs_file_extent_disk_num_bytes(eb, item),
751 				GFP_NOFS);
752 		if (ret < 0)
753 			goto out;
754 
755 		if (ins.objectid > 0) {
756 			struct btrfs_ref ref = { 0 };
757 			u64 csum_start;
758 			u64 csum_end;
759 			LIST_HEAD(ordered_sums);
760 
761 			/*
762 			 * is this extent already allocated in the extent
763 			 * allocation tree?  If so, just add a reference
764 			 */
765 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
766 						ins.offset);
767 			if (ret < 0) {
768 				goto out;
769 			} else if (ret == 0) {
770 				btrfs_init_generic_ref(&ref,
771 						BTRFS_ADD_DELAYED_REF,
772 						ins.objectid, ins.offset, 0);
773 				btrfs_init_data_ref(&ref,
774 						root->root_key.objectid,
775 						key->objectid, offset, 0, false);
776 				ret = btrfs_inc_extent_ref(trans, &ref);
777 				if (ret)
778 					goto out;
779 			} else {
780 				/*
781 				 * insert the extent pointer in the extent
782 				 * allocation tree
783 				 */
784 				ret = btrfs_alloc_logged_file_extent(trans,
785 						root->root_key.objectid,
786 						key->objectid, offset, &ins);
787 				if (ret)
788 					goto out;
789 			}
790 			btrfs_release_path(path);
791 
792 			if (btrfs_file_extent_compression(eb, item)) {
793 				csum_start = ins.objectid;
794 				csum_end = csum_start + ins.offset;
795 			} else {
796 				csum_start = ins.objectid +
797 					btrfs_file_extent_offset(eb, item);
798 				csum_end = csum_start +
799 					btrfs_file_extent_num_bytes(eb, item);
800 			}
801 
802 			ret = btrfs_lookup_csums_range(root->log_root,
803 						csum_start, csum_end - 1,
804 						&ordered_sums, 0);
805 			if (ret)
806 				goto out;
807 			/*
808 			 * Now delete all existing cums in the csum root that
809 			 * cover our range. We do this because we can have an
810 			 * extent that is completely referenced by one file
811 			 * extent item and partially referenced by another
812 			 * file extent item (like after using the clone or
813 			 * extent_same ioctls). In this case if we end up doing
814 			 * the replay of the one that partially references the
815 			 * extent first, and we do not do the csum deletion
816 			 * below, we can get 2 csum items in the csum tree that
817 			 * overlap each other. For example, imagine our log has
818 			 * the two following file extent items:
819 			 *
820 			 * key (257 EXTENT_DATA 409600)
821 			 *     extent data disk byte 12845056 nr 102400
822 			 *     extent data offset 20480 nr 20480 ram 102400
823 			 *
824 			 * key (257 EXTENT_DATA 819200)
825 			 *     extent data disk byte 12845056 nr 102400
826 			 *     extent data offset 0 nr 102400 ram 102400
827 			 *
828 			 * Where the second one fully references the 100K extent
829 			 * that starts at disk byte 12845056, and the log tree
830 			 * has a single csum item that covers the entire range
831 			 * of the extent:
832 			 *
833 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 			 *
835 			 * After the first file extent item is replayed, the
836 			 * csum tree gets the following csum item:
837 			 *
838 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
839 			 *
840 			 * Which covers the 20K sub-range starting at offset 20K
841 			 * of our extent. Now when we replay the second file
842 			 * extent item, if we do not delete existing csum items
843 			 * that cover any of its blocks, we end up getting two
844 			 * csum items in our csum tree that overlap each other:
845 			 *
846 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
847 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
848 			 *
849 			 * Which is a problem, because after this anyone trying
850 			 * to lookup up for the checksum of any block of our
851 			 * extent starting at an offset of 40K or higher, will
852 			 * end up looking at the second csum item only, which
853 			 * does not contain the checksum for any block starting
854 			 * at offset 40K or higher of our extent.
855 			 */
856 			while (!list_empty(&ordered_sums)) {
857 				struct btrfs_ordered_sum *sums;
858 				struct btrfs_root *csum_root;
859 
860 				sums = list_entry(ordered_sums.next,
861 						struct btrfs_ordered_sum,
862 						list);
863 				csum_root = btrfs_csum_root(fs_info,
864 							    sums->bytenr);
865 				if (!ret)
866 					ret = btrfs_del_csums(trans, csum_root,
867 							      sums->bytenr,
868 							      sums->len);
869 				if (!ret)
870 					ret = btrfs_csum_file_blocks(trans,
871 								     csum_root,
872 								     sums);
873 				list_del(&sums->list);
874 				kfree(sums);
875 			}
876 			if (ret)
877 				goto out;
878 		} else {
879 			btrfs_release_path(path);
880 		}
881 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
882 		/* inline extents are easy, we just overwrite them */
883 		ret = overwrite_item(trans, root, path, eb, slot, key);
884 		if (ret)
885 			goto out;
886 	}
887 
888 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
889 						extent_end - start);
890 	if (ret)
891 		goto out;
892 
893 update_inode:
894 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
895 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
896 out:
897 	if (inode)
898 		iput(inode);
899 	return ret;
900 }
901 
902 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
903 				       struct btrfs_inode *dir,
904 				       struct btrfs_inode *inode,
905 				       const char *name,
906 				       int name_len)
907 {
908 	int ret;
909 
910 	ret = btrfs_unlink_inode(trans, dir, inode, name, name_len);
911 	if (ret)
912 		return ret;
913 	/*
914 	 * Whenever we need to check if a name exists or not, we check the
915 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
916 	 * that future checks for a name during log replay see that the name
917 	 * does not exists anymore.
918 	 */
919 	return btrfs_run_delayed_items(trans);
920 }
921 
922 /*
923  * when cleaning up conflicts between the directory names in the
924  * subvolume, directory names in the log and directory names in the
925  * inode back references, we may have to unlink inodes from directories.
926  *
927  * This is a helper function to do the unlink of a specific directory
928  * item
929  */
930 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
931 				      struct btrfs_path *path,
932 				      struct btrfs_inode *dir,
933 				      struct btrfs_dir_item *di)
934 {
935 	struct btrfs_root *root = dir->root;
936 	struct inode *inode;
937 	char *name;
938 	int name_len;
939 	struct extent_buffer *leaf;
940 	struct btrfs_key location;
941 	int ret;
942 
943 	leaf = path->nodes[0];
944 
945 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
946 	name_len = btrfs_dir_name_len(leaf, di);
947 	name = kmalloc(name_len, GFP_NOFS);
948 	if (!name)
949 		return -ENOMEM;
950 
951 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
952 	btrfs_release_path(path);
953 
954 	inode = read_one_inode(root, location.objectid);
955 	if (!inode) {
956 		ret = -EIO;
957 		goto out;
958 	}
959 
960 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
961 	if (ret)
962 		goto out;
963 
964 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), name,
965 			name_len);
966 out:
967 	kfree(name);
968 	iput(inode);
969 	return ret;
970 }
971 
972 /*
973  * See if a given name and sequence number found in an inode back reference are
974  * already in a directory and correctly point to this inode.
975  *
976  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
977  * exists.
978  */
979 static noinline int inode_in_dir(struct btrfs_root *root,
980 				 struct btrfs_path *path,
981 				 u64 dirid, u64 objectid, u64 index,
982 				 const char *name, int name_len)
983 {
984 	struct btrfs_dir_item *di;
985 	struct btrfs_key location;
986 	int ret = 0;
987 
988 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
989 					 index, name, name_len, 0);
990 	if (IS_ERR(di)) {
991 		ret = PTR_ERR(di);
992 		goto out;
993 	} else if (di) {
994 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
995 		if (location.objectid != objectid)
996 			goto out;
997 	} else {
998 		goto out;
999 	}
1000 
1001 	btrfs_release_path(path);
1002 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
1003 	if (IS_ERR(di)) {
1004 		ret = PTR_ERR(di);
1005 		goto out;
1006 	} else if (di) {
1007 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1008 		if (location.objectid == objectid)
1009 			ret = 1;
1010 	}
1011 out:
1012 	btrfs_release_path(path);
1013 	return ret;
1014 }
1015 
1016 /*
1017  * helper function to check a log tree for a named back reference in
1018  * an inode.  This is used to decide if a back reference that is
1019  * found in the subvolume conflicts with what we find in the log.
1020  *
1021  * inode backreferences may have multiple refs in a single item,
1022  * during replay we process one reference at a time, and we don't
1023  * want to delete valid links to a file from the subvolume if that
1024  * link is also in the log.
1025  */
1026 static noinline int backref_in_log(struct btrfs_root *log,
1027 				   struct btrfs_key *key,
1028 				   u64 ref_objectid,
1029 				   const char *name, int namelen)
1030 {
1031 	struct btrfs_path *path;
1032 	int ret;
1033 
1034 	path = btrfs_alloc_path();
1035 	if (!path)
1036 		return -ENOMEM;
1037 
1038 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1039 	if (ret < 0) {
1040 		goto out;
1041 	} else if (ret == 1) {
1042 		ret = 0;
1043 		goto out;
1044 	}
1045 
1046 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1047 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1048 						       path->slots[0],
1049 						       ref_objectid,
1050 						       name, namelen);
1051 	else
1052 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1053 						   path->slots[0],
1054 						   name, namelen);
1055 out:
1056 	btrfs_free_path(path);
1057 	return ret;
1058 }
1059 
1060 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1061 				  struct btrfs_root *root,
1062 				  struct btrfs_path *path,
1063 				  struct btrfs_root *log_root,
1064 				  struct btrfs_inode *dir,
1065 				  struct btrfs_inode *inode,
1066 				  u64 inode_objectid, u64 parent_objectid,
1067 				  u64 ref_index, char *name, int namelen,
1068 				  int *search_done)
1069 {
1070 	int ret;
1071 	char *victim_name;
1072 	int victim_name_len;
1073 	struct extent_buffer *leaf;
1074 	struct btrfs_dir_item *di;
1075 	struct btrfs_key search_key;
1076 	struct btrfs_inode_extref *extref;
1077 
1078 again:
1079 	/* Search old style refs */
1080 	search_key.objectid = inode_objectid;
1081 	search_key.type = BTRFS_INODE_REF_KEY;
1082 	search_key.offset = parent_objectid;
1083 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1084 	if (ret == 0) {
1085 		struct btrfs_inode_ref *victim_ref;
1086 		unsigned long ptr;
1087 		unsigned long ptr_end;
1088 
1089 		leaf = path->nodes[0];
1090 
1091 		/* are we trying to overwrite a back ref for the root directory
1092 		 * if so, just jump out, we're done
1093 		 */
1094 		if (search_key.objectid == search_key.offset)
1095 			return 1;
1096 
1097 		/* check all the names in this back reference to see
1098 		 * if they are in the log.  if so, we allow them to stay
1099 		 * otherwise they must be unlinked as a conflict
1100 		 */
1101 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1102 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1103 		while (ptr < ptr_end) {
1104 			victim_ref = (struct btrfs_inode_ref *)ptr;
1105 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1106 								   victim_ref);
1107 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1108 			if (!victim_name)
1109 				return -ENOMEM;
1110 
1111 			read_extent_buffer(leaf, victim_name,
1112 					   (unsigned long)(victim_ref + 1),
1113 					   victim_name_len);
1114 
1115 			ret = backref_in_log(log_root, &search_key,
1116 					     parent_objectid, victim_name,
1117 					     victim_name_len);
1118 			if (ret < 0) {
1119 				kfree(victim_name);
1120 				return ret;
1121 			} else if (!ret) {
1122 				inc_nlink(&inode->vfs_inode);
1123 				btrfs_release_path(path);
1124 
1125 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1126 						victim_name, victim_name_len);
1127 				kfree(victim_name);
1128 				if (ret)
1129 					return ret;
1130 				*search_done = 1;
1131 				goto again;
1132 			}
1133 			kfree(victim_name);
1134 
1135 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1136 		}
1137 
1138 		/*
1139 		 * NOTE: we have searched root tree and checked the
1140 		 * corresponding ref, it does not need to check again.
1141 		 */
1142 		*search_done = 1;
1143 	}
1144 	btrfs_release_path(path);
1145 
1146 	/* Same search but for extended refs */
1147 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1148 					   inode_objectid, parent_objectid, 0,
1149 					   0);
1150 	if (!IS_ERR_OR_NULL(extref)) {
1151 		u32 item_size;
1152 		u32 cur_offset = 0;
1153 		unsigned long base;
1154 		struct inode *victim_parent;
1155 
1156 		leaf = path->nodes[0];
1157 
1158 		item_size = btrfs_item_size(leaf, path->slots[0]);
1159 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1160 
1161 		while (cur_offset < item_size) {
1162 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1163 
1164 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1165 
1166 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1167 				goto next;
1168 
1169 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1170 			if (!victim_name)
1171 				return -ENOMEM;
1172 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1173 					   victim_name_len);
1174 
1175 			search_key.objectid = inode_objectid;
1176 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1177 			search_key.offset = btrfs_extref_hash(parent_objectid,
1178 							      victim_name,
1179 							      victim_name_len);
1180 			ret = backref_in_log(log_root, &search_key,
1181 					     parent_objectid, victim_name,
1182 					     victim_name_len);
1183 			if (ret < 0) {
1184 				kfree(victim_name);
1185 				return ret;
1186 			} else if (!ret) {
1187 				ret = -ENOENT;
1188 				victim_parent = read_one_inode(root,
1189 						parent_objectid);
1190 				if (victim_parent) {
1191 					inc_nlink(&inode->vfs_inode);
1192 					btrfs_release_path(path);
1193 
1194 					ret = unlink_inode_for_log_replay(trans,
1195 							BTRFS_I(victim_parent),
1196 							inode,
1197 							victim_name,
1198 							victim_name_len);
1199 				}
1200 				iput(victim_parent);
1201 				kfree(victim_name);
1202 				if (ret)
1203 					return ret;
1204 				*search_done = 1;
1205 				goto again;
1206 			}
1207 			kfree(victim_name);
1208 next:
1209 			cur_offset += victim_name_len + sizeof(*extref);
1210 		}
1211 		*search_done = 1;
1212 	}
1213 	btrfs_release_path(path);
1214 
1215 	/* look for a conflicting sequence number */
1216 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1217 					 ref_index, name, namelen, 0);
1218 	if (IS_ERR(di)) {
1219 		return PTR_ERR(di);
1220 	} else if (di) {
1221 		ret = drop_one_dir_item(trans, path, dir, di);
1222 		if (ret)
1223 			return ret;
1224 	}
1225 	btrfs_release_path(path);
1226 
1227 	/* look for a conflicting name */
1228 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1229 				   name, namelen, 0);
1230 	if (IS_ERR(di)) {
1231 		return PTR_ERR(di);
1232 	} else if (di) {
1233 		ret = drop_one_dir_item(trans, path, dir, di);
1234 		if (ret)
1235 			return ret;
1236 	}
1237 	btrfs_release_path(path);
1238 
1239 	return 0;
1240 }
1241 
1242 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1243 			     u32 *namelen, char **name, u64 *index,
1244 			     u64 *parent_objectid)
1245 {
1246 	struct btrfs_inode_extref *extref;
1247 
1248 	extref = (struct btrfs_inode_extref *)ref_ptr;
1249 
1250 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1251 	*name = kmalloc(*namelen, GFP_NOFS);
1252 	if (*name == NULL)
1253 		return -ENOMEM;
1254 
1255 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1256 			   *namelen);
1257 
1258 	if (index)
1259 		*index = btrfs_inode_extref_index(eb, extref);
1260 	if (parent_objectid)
1261 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1262 
1263 	return 0;
1264 }
1265 
1266 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1267 			  u32 *namelen, char **name, u64 *index)
1268 {
1269 	struct btrfs_inode_ref *ref;
1270 
1271 	ref = (struct btrfs_inode_ref *)ref_ptr;
1272 
1273 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1274 	*name = kmalloc(*namelen, GFP_NOFS);
1275 	if (*name == NULL)
1276 		return -ENOMEM;
1277 
1278 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1279 
1280 	if (index)
1281 		*index = btrfs_inode_ref_index(eb, ref);
1282 
1283 	return 0;
1284 }
1285 
1286 /*
1287  * Take an inode reference item from the log tree and iterate all names from the
1288  * inode reference item in the subvolume tree with the same key (if it exists).
1289  * For any name that is not in the inode reference item from the log tree, do a
1290  * proper unlink of that name (that is, remove its entry from the inode
1291  * reference item and both dir index keys).
1292  */
1293 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1294 				 struct btrfs_root *root,
1295 				 struct btrfs_path *path,
1296 				 struct btrfs_inode *inode,
1297 				 struct extent_buffer *log_eb,
1298 				 int log_slot,
1299 				 struct btrfs_key *key)
1300 {
1301 	int ret;
1302 	unsigned long ref_ptr;
1303 	unsigned long ref_end;
1304 	struct extent_buffer *eb;
1305 
1306 again:
1307 	btrfs_release_path(path);
1308 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1309 	if (ret > 0) {
1310 		ret = 0;
1311 		goto out;
1312 	}
1313 	if (ret < 0)
1314 		goto out;
1315 
1316 	eb = path->nodes[0];
1317 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1318 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1319 	while (ref_ptr < ref_end) {
1320 		char *name = NULL;
1321 		int namelen;
1322 		u64 parent_id;
1323 
1324 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1325 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1326 						NULL, &parent_id);
1327 		} else {
1328 			parent_id = key->offset;
1329 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1330 					     NULL);
1331 		}
1332 		if (ret)
1333 			goto out;
1334 
1335 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1336 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1337 							       parent_id, name,
1338 							       namelen);
1339 		else
1340 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1341 							   name, namelen);
1342 
1343 		if (!ret) {
1344 			struct inode *dir;
1345 
1346 			btrfs_release_path(path);
1347 			dir = read_one_inode(root, parent_id);
1348 			if (!dir) {
1349 				ret = -ENOENT;
1350 				kfree(name);
1351 				goto out;
1352 			}
1353 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1354 						 inode, name, namelen);
1355 			kfree(name);
1356 			iput(dir);
1357 			if (ret)
1358 				goto out;
1359 			goto again;
1360 		}
1361 
1362 		kfree(name);
1363 		ref_ptr += namelen;
1364 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1365 			ref_ptr += sizeof(struct btrfs_inode_extref);
1366 		else
1367 			ref_ptr += sizeof(struct btrfs_inode_ref);
1368 	}
1369 	ret = 0;
1370  out:
1371 	btrfs_release_path(path);
1372 	return ret;
1373 }
1374 
1375 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1376 				  const u8 ref_type, const char *name,
1377 				  const int namelen)
1378 {
1379 	struct btrfs_key key;
1380 	struct btrfs_path *path;
1381 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1382 	int ret;
1383 
1384 	path = btrfs_alloc_path();
1385 	if (!path)
1386 		return -ENOMEM;
1387 
1388 	key.objectid = btrfs_ino(BTRFS_I(inode));
1389 	key.type = ref_type;
1390 	if (key.type == BTRFS_INODE_REF_KEY)
1391 		key.offset = parent_id;
1392 	else
1393 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1394 
1395 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1396 	if (ret < 0)
1397 		goto out;
1398 	if (ret > 0) {
1399 		ret = 0;
1400 		goto out;
1401 	}
1402 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1403 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1404 				path->slots[0], parent_id, name, namelen);
1405 	else
1406 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1407 						   name, namelen);
1408 
1409 out:
1410 	btrfs_free_path(path);
1411 	return ret;
1412 }
1413 
1414 static int add_link(struct btrfs_trans_handle *trans,
1415 		    struct inode *dir, struct inode *inode, const char *name,
1416 		    int namelen, u64 ref_index)
1417 {
1418 	struct btrfs_root *root = BTRFS_I(dir)->root;
1419 	struct btrfs_dir_item *dir_item;
1420 	struct btrfs_key key;
1421 	struct btrfs_path *path;
1422 	struct inode *other_inode = NULL;
1423 	int ret;
1424 
1425 	path = btrfs_alloc_path();
1426 	if (!path)
1427 		return -ENOMEM;
1428 
1429 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1430 					 btrfs_ino(BTRFS_I(dir)),
1431 					 name, namelen, 0);
1432 	if (!dir_item) {
1433 		btrfs_release_path(path);
1434 		goto add_link;
1435 	} else if (IS_ERR(dir_item)) {
1436 		ret = PTR_ERR(dir_item);
1437 		goto out;
1438 	}
1439 
1440 	/*
1441 	 * Our inode's dentry collides with the dentry of another inode which is
1442 	 * in the log but not yet processed since it has a higher inode number.
1443 	 * So delete that other dentry.
1444 	 */
1445 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1446 	btrfs_release_path(path);
1447 	other_inode = read_one_inode(root, key.objectid);
1448 	if (!other_inode) {
1449 		ret = -ENOENT;
1450 		goto out;
1451 	}
1452 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(other_inode),
1453 					  name, namelen);
1454 	if (ret)
1455 		goto out;
1456 	/*
1457 	 * If we dropped the link count to 0, bump it so that later the iput()
1458 	 * on the inode will not free it. We will fixup the link count later.
1459 	 */
1460 	if (other_inode->i_nlink == 0)
1461 		inc_nlink(other_inode);
1462 add_link:
1463 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1464 			     name, namelen, 0, ref_index);
1465 out:
1466 	iput(other_inode);
1467 	btrfs_free_path(path);
1468 
1469 	return ret;
1470 }
1471 
1472 /*
1473  * replay one inode back reference item found in the log tree.
1474  * eb, slot and key refer to the buffer and key found in the log tree.
1475  * root is the destination we are replaying into, and path is for temp
1476  * use by this function.  (it should be released on return).
1477  */
1478 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1479 				  struct btrfs_root *root,
1480 				  struct btrfs_root *log,
1481 				  struct btrfs_path *path,
1482 				  struct extent_buffer *eb, int slot,
1483 				  struct btrfs_key *key)
1484 {
1485 	struct inode *dir = NULL;
1486 	struct inode *inode = NULL;
1487 	unsigned long ref_ptr;
1488 	unsigned long ref_end;
1489 	char *name = NULL;
1490 	int namelen;
1491 	int ret;
1492 	int search_done = 0;
1493 	int log_ref_ver = 0;
1494 	u64 parent_objectid;
1495 	u64 inode_objectid;
1496 	u64 ref_index = 0;
1497 	int ref_struct_size;
1498 
1499 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1500 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1501 
1502 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1503 		struct btrfs_inode_extref *r;
1504 
1505 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1506 		log_ref_ver = 1;
1507 		r = (struct btrfs_inode_extref *)ref_ptr;
1508 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1509 	} else {
1510 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1511 		parent_objectid = key->offset;
1512 	}
1513 	inode_objectid = key->objectid;
1514 
1515 	/*
1516 	 * it is possible that we didn't log all the parent directories
1517 	 * for a given inode.  If we don't find the dir, just don't
1518 	 * copy the back ref in.  The link count fixup code will take
1519 	 * care of the rest
1520 	 */
1521 	dir = read_one_inode(root, parent_objectid);
1522 	if (!dir) {
1523 		ret = -ENOENT;
1524 		goto out;
1525 	}
1526 
1527 	inode = read_one_inode(root, inode_objectid);
1528 	if (!inode) {
1529 		ret = -EIO;
1530 		goto out;
1531 	}
1532 
1533 	while (ref_ptr < ref_end) {
1534 		if (log_ref_ver) {
1535 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1536 						&ref_index, &parent_objectid);
1537 			/*
1538 			 * parent object can change from one array
1539 			 * item to another.
1540 			 */
1541 			if (!dir)
1542 				dir = read_one_inode(root, parent_objectid);
1543 			if (!dir) {
1544 				ret = -ENOENT;
1545 				goto out;
1546 			}
1547 		} else {
1548 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1549 					     &ref_index);
1550 		}
1551 		if (ret)
1552 			goto out;
1553 
1554 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1555 				   btrfs_ino(BTRFS_I(inode)), ref_index,
1556 				   name, namelen);
1557 		if (ret < 0) {
1558 			goto out;
1559 		} else if (ret == 0) {
1560 			/*
1561 			 * look for a conflicting back reference in the
1562 			 * metadata. if we find one we have to unlink that name
1563 			 * of the file before we add our new link.  Later on, we
1564 			 * overwrite any existing back reference, and we don't
1565 			 * want to create dangling pointers in the directory.
1566 			 */
1567 
1568 			if (!search_done) {
1569 				ret = __add_inode_ref(trans, root, path, log,
1570 						      BTRFS_I(dir),
1571 						      BTRFS_I(inode),
1572 						      inode_objectid,
1573 						      parent_objectid,
1574 						      ref_index, name, namelen,
1575 						      &search_done);
1576 				if (ret) {
1577 					if (ret == 1)
1578 						ret = 0;
1579 					goto out;
1580 				}
1581 			}
1582 
1583 			/*
1584 			 * If a reference item already exists for this inode
1585 			 * with the same parent and name, but different index,
1586 			 * drop it and the corresponding directory index entries
1587 			 * from the parent before adding the new reference item
1588 			 * and dir index entries, otherwise we would fail with
1589 			 * -EEXIST returned from btrfs_add_link() below.
1590 			 */
1591 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1592 						     name, namelen);
1593 			if (ret > 0) {
1594 				ret = unlink_inode_for_log_replay(trans,
1595 							 BTRFS_I(dir),
1596 							 BTRFS_I(inode),
1597 							 name, namelen);
1598 				/*
1599 				 * If we dropped the link count to 0, bump it so
1600 				 * that later the iput() on the inode will not
1601 				 * free it. We will fixup the link count later.
1602 				 */
1603 				if (!ret && inode->i_nlink == 0)
1604 					inc_nlink(inode);
1605 			}
1606 			if (ret < 0)
1607 				goto out;
1608 
1609 			/* insert our name */
1610 			ret = add_link(trans, dir, inode, name, namelen,
1611 				       ref_index);
1612 			if (ret)
1613 				goto out;
1614 
1615 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1616 			if (ret)
1617 				goto out;
1618 		}
1619 		/* Else, ret == 1, we already have a perfect match, we're done. */
1620 
1621 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1622 		kfree(name);
1623 		name = NULL;
1624 		if (log_ref_ver) {
1625 			iput(dir);
1626 			dir = NULL;
1627 		}
1628 	}
1629 
1630 	/*
1631 	 * Before we overwrite the inode reference item in the subvolume tree
1632 	 * with the item from the log tree, we must unlink all names from the
1633 	 * parent directory that are in the subvolume's tree inode reference
1634 	 * item, otherwise we end up with an inconsistent subvolume tree where
1635 	 * dir index entries exist for a name but there is no inode reference
1636 	 * item with the same name.
1637 	 */
1638 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1639 				    key);
1640 	if (ret)
1641 		goto out;
1642 
1643 	/* finally write the back reference in the inode */
1644 	ret = overwrite_item(trans, root, path, eb, slot, key);
1645 out:
1646 	btrfs_release_path(path);
1647 	kfree(name);
1648 	iput(dir);
1649 	iput(inode);
1650 	return ret;
1651 }
1652 
1653 static int count_inode_extrefs(struct btrfs_root *root,
1654 		struct btrfs_inode *inode, struct btrfs_path *path)
1655 {
1656 	int ret = 0;
1657 	int name_len;
1658 	unsigned int nlink = 0;
1659 	u32 item_size;
1660 	u32 cur_offset = 0;
1661 	u64 inode_objectid = btrfs_ino(inode);
1662 	u64 offset = 0;
1663 	unsigned long ptr;
1664 	struct btrfs_inode_extref *extref;
1665 	struct extent_buffer *leaf;
1666 
1667 	while (1) {
1668 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1669 					    &extref, &offset);
1670 		if (ret)
1671 			break;
1672 
1673 		leaf = path->nodes[0];
1674 		item_size = btrfs_item_size(leaf, path->slots[0]);
1675 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1676 		cur_offset = 0;
1677 
1678 		while (cur_offset < item_size) {
1679 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1680 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1681 
1682 			nlink++;
1683 
1684 			cur_offset += name_len + sizeof(*extref);
1685 		}
1686 
1687 		offset++;
1688 		btrfs_release_path(path);
1689 	}
1690 	btrfs_release_path(path);
1691 
1692 	if (ret < 0 && ret != -ENOENT)
1693 		return ret;
1694 	return nlink;
1695 }
1696 
1697 static int count_inode_refs(struct btrfs_root *root,
1698 			struct btrfs_inode *inode, struct btrfs_path *path)
1699 {
1700 	int ret;
1701 	struct btrfs_key key;
1702 	unsigned int nlink = 0;
1703 	unsigned long ptr;
1704 	unsigned long ptr_end;
1705 	int name_len;
1706 	u64 ino = btrfs_ino(inode);
1707 
1708 	key.objectid = ino;
1709 	key.type = BTRFS_INODE_REF_KEY;
1710 	key.offset = (u64)-1;
1711 
1712 	while (1) {
1713 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1714 		if (ret < 0)
1715 			break;
1716 		if (ret > 0) {
1717 			if (path->slots[0] == 0)
1718 				break;
1719 			path->slots[0]--;
1720 		}
1721 process_slot:
1722 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1723 				      path->slots[0]);
1724 		if (key.objectid != ino ||
1725 		    key.type != BTRFS_INODE_REF_KEY)
1726 			break;
1727 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1728 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1729 						   path->slots[0]);
1730 		while (ptr < ptr_end) {
1731 			struct btrfs_inode_ref *ref;
1732 
1733 			ref = (struct btrfs_inode_ref *)ptr;
1734 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1735 							    ref);
1736 			ptr = (unsigned long)(ref + 1) + name_len;
1737 			nlink++;
1738 		}
1739 
1740 		if (key.offset == 0)
1741 			break;
1742 		if (path->slots[0] > 0) {
1743 			path->slots[0]--;
1744 			goto process_slot;
1745 		}
1746 		key.offset--;
1747 		btrfs_release_path(path);
1748 	}
1749 	btrfs_release_path(path);
1750 
1751 	return nlink;
1752 }
1753 
1754 /*
1755  * There are a few corners where the link count of the file can't
1756  * be properly maintained during replay.  So, instead of adding
1757  * lots of complexity to the log code, we just scan the backrefs
1758  * for any file that has been through replay.
1759  *
1760  * The scan will update the link count on the inode to reflect the
1761  * number of back refs found.  If it goes down to zero, the iput
1762  * will free the inode.
1763  */
1764 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1765 					   struct btrfs_root *root,
1766 					   struct inode *inode)
1767 {
1768 	struct btrfs_path *path;
1769 	int ret;
1770 	u64 nlink = 0;
1771 	u64 ino = btrfs_ino(BTRFS_I(inode));
1772 
1773 	path = btrfs_alloc_path();
1774 	if (!path)
1775 		return -ENOMEM;
1776 
1777 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1778 	if (ret < 0)
1779 		goto out;
1780 
1781 	nlink = ret;
1782 
1783 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1784 	if (ret < 0)
1785 		goto out;
1786 
1787 	nlink += ret;
1788 
1789 	ret = 0;
1790 
1791 	if (nlink != inode->i_nlink) {
1792 		set_nlink(inode, nlink);
1793 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1794 		if (ret)
1795 			goto out;
1796 	}
1797 	BTRFS_I(inode)->index_cnt = (u64)-1;
1798 
1799 	if (inode->i_nlink == 0) {
1800 		if (S_ISDIR(inode->i_mode)) {
1801 			ret = replay_dir_deletes(trans, root, NULL, path,
1802 						 ino, 1);
1803 			if (ret)
1804 				goto out;
1805 		}
1806 		ret = btrfs_insert_orphan_item(trans, root, ino);
1807 		if (ret == -EEXIST)
1808 			ret = 0;
1809 	}
1810 
1811 out:
1812 	btrfs_free_path(path);
1813 	return ret;
1814 }
1815 
1816 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1817 					    struct btrfs_root *root,
1818 					    struct btrfs_path *path)
1819 {
1820 	int ret;
1821 	struct btrfs_key key;
1822 	struct inode *inode;
1823 
1824 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1825 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1826 	key.offset = (u64)-1;
1827 	while (1) {
1828 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1829 		if (ret < 0)
1830 			break;
1831 
1832 		if (ret == 1) {
1833 			ret = 0;
1834 			if (path->slots[0] == 0)
1835 				break;
1836 			path->slots[0]--;
1837 		}
1838 
1839 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1840 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1841 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1842 			break;
1843 
1844 		ret = btrfs_del_item(trans, root, path);
1845 		if (ret)
1846 			break;
1847 
1848 		btrfs_release_path(path);
1849 		inode = read_one_inode(root, key.offset);
1850 		if (!inode) {
1851 			ret = -EIO;
1852 			break;
1853 		}
1854 
1855 		ret = fixup_inode_link_count(trans, root, inode);
1856 		iput(inode);
1857 		if (ret)
1858 			break;
1859 
1860 		/*
1861 		 * fixup on a directory may create new entries,
1862 		 * make sure we always look for the highset possible
1863 		 * offset
1864 		 */
1865 		key.offset = (u64)-1;
1866 	}
1867 	btrfs_release_path(path);
1868 	return ret;
1869 }
1870 
1871 
1872 /*
1873  * record a given inode in the fixup dir so we can check its link
1874  * count when replay is done.  The link count is incremented here
1875  * so the inode won't go away until we check it
1876  */
1877 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1878 				      struct btrfs_root *root,
1879 				      struct btrfs_path *path,
1880 				      u64 objectid)
1881 {
1882 	struct btrfs_key key;
1883 	int ret = 0;
1884 	struct inode *inode;
1885 
1886 	inode = read_one_inode(root, objectid);
1887 	if (!inode)
1888 		return -EIO;
1889 
1890 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1891 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1892 	key.offset = objectid;
1893 
1894 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1895 
1896 	btrfs_release_path(path);
1897 	if (ret == 0) {
1898 		if (!inode->i_nlink)
1899 			set_nlink(inode, 1);
1900 		else
1901 			inc_nlink(inode);
1902 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1903 	} else if (ret == -EEXIST) {
1904 		ret = 0;
1905 	}
1906 	iput(inode);
1907 
1908 	return ret;
1909 }
1910 
1911 /*
1912  * when replaying the log for a directory, we only insert names
1913  * for inodes that actually exist.  This means an fsync on a directory
1914  * does not implicitly fsync all the new files in it
1915  */
1916 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1917 				    struct btrfs_root *root,
1918 				    u64 dirid, u64 index,
1919 				    char *name, int name_len,
1920 				    struct btrfs_key *location)
1921 {
1922 	struct inode *inode;
1923 	struct inode *dir;
1924 	int ret;
1925 
1926 	inode = read_one_inode(root, location->objectid);
1927 	if (!inode)
1928 		return -ENOENT;
1929 
1930 	dir = read_one_inode(root, dirid);
1931 	if (!dir) {
1932 		iput(inode);
1933 		return -EIO;
1934 	}
1935 
1936 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1937 			name_len, 1, index);
1938 
1939 	/* FIXME, put inode into FIXUP list */
1940 
1941 	iput(inode);
1942 	iput(dir);
1943 	return ret;
1944 }
1945 
1946 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1947 					struct btrfs_inode *dir,
1948 					struct btrfs_path *path,
1949 					struct btrfs_dir_item *dst_di,
1950 					const struct btrfs_key *log_key,
1951 					u8 log_type,
1952 					bool exists)
1953 {
1954 	struct btrfs_key found_key;
1955 
1956 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1957 	/* The existing dentry points to the same inode, don't delete it. */
1958 	if (found_key.objectid == log_key->objectid &&
1959 	    found_key.type == log_key->type &&
1960 	    found_key.offset == log_key->offset &&
1961 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type)
1962 		return 1;
1963 
1964 	/*
1965 	 * Don't drop the conflicting directory entry if the inode for the new
1966 	 * entry doesn't exist.
1967 	 */
1968 	if (!exists)
1969 		return 0;
1970 
1971 	return drop_one_dir_item(trans, path, dir, dst_di);
1972 }
1973 
1974 /*
1975  * take a single entry in a log directory item and replay it into
1976  * the subvolume.
1977  *
1978  * if a conflicting item exists in the subdirectory already,
1979  * the inode it points to is unlinked and put into the link count
1980  * fix up tree.
1981  *
1982  * If a name from the log points to a file or directory that does
1983  * not exist in the FS, it is skipped.  fsyncs on directories
1984  * do not force down inodes inside that directory, just changes to the
1985  * names or unlinks in a directory.
1986  *
1987  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1988  * non-existing inode) and 1 if the name was replayed.
1989  */
1990 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1991 				    struct btrfs_root *root,
1992 				    struct btrfs_path *path,
1993 				    struct extent_buffer *eb,
1994 				    struct btrfs_dir_item *di,
1995 				    struct btrfs_key *key)
1996 {
1997 	char *name;
1998 	int name_len;
1999 	struct btrfs_dir_item *dir_dst_di;
2000 	struct btrfs_dir_item *index_dst_di;
2001 	bool dir_dst_matches = false;
2002 	bool index_dst_matches = false;
2003 	struct btrfs_key log_key;
2004 	struct btrfs_key search_key;
2005 	struct inode *dir;
2006 	u8 log_type;
2007 	bool exists;
2008 	int ret;
2009 	bool update_size = true;
2010 	bool name_added = false;
2011 
2012 	dir = read_one_inode(root, key->objectid);
2013 	if (!dir)
2014 		return -EIO;
2015 
2016 	name_len = btrfs_dir_name_len(eb, di);
2017 	name = kmalloc(name_len, GFP_NOFS);
2018 	if (!name) {
2019 		ret = -ENOMEM;
2020 		goto out;
2021 	}
2022 
2023 	log_type = btrfs_dir_type(eb, di);
2024 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
2025 		   name_len);
2026 
2027 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
2028 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
2029 	btrfs_release_path(path);
2030 	if (ret < 0)
2031 		goto out;
2032 	exists = (ret == 0);
2033 	ret = 0;
2034 
2035 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
2036 					   name, name_len, 1);
2037 	if (IS_ERR(dir_dst_di)) {
2038 		ret = PTR_ERR(dir_dst_di);
2039 		goto out;
2040 	} else if (dir_dst_di) {
2041 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2042 						   dir_dst_di, &log_key, log_type,
2043 						   exists);
2044 		if (ret < 0)
2045 			goto out;
2046 		dir_dst_matches = (ret == 1);
2047 	}
2048 
2049 	btrfs_release_path(path);
2050 
2051 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
2052 						   key->objectid, key->offset,
2053 						   name, name_len, 1);
2054 	if (IS_ERR(index_dst_di)) {
2055 		ret = PTR_ERR(index_dst_di);
2056 		goto out;
2057 	} else if (index_dst_di) {
2058 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2059 						   index_dst_di, &log_key,
2060 						   log_type, exists);
2061 		if (ret < 0)
2062 			goto out;
2063 		index_dst_matches = (ret == 1);
2064 	}
2065 
2066 	btrfs_release_path(path);
2067 
2068 	if (dir_dst_matches && index_dst_matches) {
2069 		ret = 0;
2070 		update_size = false;
2071 		goto out;
2072 	}
2073 
2074 	/*
2075 	 * Check if the inode reference exists in the log for the given name,
2076 	 * inode and parent inode
2077 	 */
2078 	search_key.objectid = log_key.objectid;
2079 	search_key.type = BTRFS_INODE_REF_KEY;
2080 	search_key.offset = key->objectid;
2081 	ret = backref_in_log(root->log_root, &search_key, 0, name, name_len);
2082 	if (ret < 0) {
2083 	        goto out;
2084 	} else if (ret) {
2085 	        /* The dentry will be added later. */
2086 	        ret = 0;
2087 	        update_size = false;
2088 	        goto out;
2089 	}
2090 
2091 	search_key.objectid = log_key.objectid;
2092 	search_key.type = BTRFS_INODE_EXTREF_KEY;
2093 	search_key.offset = key->objectid;
2094 	ret = backref_in_log(root->log_root, &search_key, key->objectid, name,
2095 			     name_len);
2096 	if (ret < 0) {
2097 		goto out;
2098 	} else if (ret) {
2099 		/* The dentry will be added later. */
2100 		ret = 0;
2101 		update_size = false;
2102 		goto out;
2103 	}
2104 	btrfs_release_path(path);
2105 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2106 			      name, name_len, &log_key);
2107 	if (ret && ret != -ENOENT && ret != -EEXIST)
2108 		goto out;
2109 	if (!ret)
2110 		name_added = true;
2111 	update_size = false;
2112 	ret = 0;
2113 
2114 out:
2115 	if (!ret && update_size) {
2116 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2117 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2118 	}
2119 	kfree(name);
2120 	iput(dir);
2121 	if (!ret && name_added)
2122 		ret = 1;
2123 	return ret;
2124 }
2125 
2126 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
2127 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2128 					struct btrfs_root *root,
2129 					struct btrfs_path *path,
2130 					struct extent_buffer *eb, int slot,
2131 					struct btrfs_key *key)
2132 {
2133 	int ret;
2134 	struct btrfs_dir_item *di;
2135 
2136 	/* We only log dir index keys, which only contain a single dir item. */
2137 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
2138 
2139 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2140 	ret = replay_one_name(trans, root, path, eb, di, key);
2141 	if (ret < 0)
2142 		return ret;
2143 
2144 	/*
2145 	 * If this entry refers to a non-directory (directories can not have a
2146 	 * link count > 1) and it was added in the transaction that was not
2147 	 * committed, make sure we fixup the link count of the inode the entry
2148 	 * points to. Otherwise something like the following would result in a
2149 	 * directory pointing to an inode with a wrong link that does not account
2150 	 * for this dir entry:
2151 	 *
2152 	 * mkdir testdir
2153 	 * touch testdir/foo
2154 	 * touch testdir/bar
2155 	 * sync
2156 	 *
2157 	 * ln testdir/bar testdir/bar_link
2158 	 * ln testdir/foo testdir/foo_link
2159 	 * xfs_io -c "fsync" testdir/bar
2160 	 *
2161 	 * <power failure>
2162 	 *
2163 	 * mount fs, log replay happens
2164 	 *
2165 	 * File foo would remain with a link count of 1 when it has two entries
2166 	 * pointing to it in the directory testdir. This would make it impossible
2167 	 * to ever delete the parent directory has it would result in stale
2168 	 * dentries that can never be deleted.
2169 	 */
2170 	if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2171 		struct btrfs_path *fixup_path;
2172 		struct btrfs_key di_key;
2173 
2174 		fixup_path = btrfs_alloc_path();
2175 		if (!fixup_path)
2176 			return -ENOMEM;
2177 
2178 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2179 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2180 		btrfs_free_path(fixup_path);
2181 	}
2182 
2183 	return ret;
2184 }
2185 
2186 /*
2187  * directory replay has two parts.  There are the standard directory
2188  * items in the log copied from the subvolume, and range items
2189  * created in the log while the subvolume was logged.
2190  *
2191  * The range items tell us which parts of the key space the log
2192  * is authoritative for.  During replay, if a key in the subvolume
2193  * directory is in a logged range item, but not actually in the log
2194  * that means it was deleted from the directory before the fsync
2195  * and should be removed.
2196  */
2197 static noinline int find_dir_range(struct btrfs_root *root,
2198 				   struct btrfs_path *path,
2199 				   u64 dirid,
2200 				   u64 *start_ret, u64 *end_ret)
2201 {
2202 	struct btrfs_key key;
2203 	u64 found_end;
2204 	struct btrfs_dir_log_item *item;
2205 	int ret;
2206 	int nritems;
2207 
2208 	if (*start_ret == (u64)-1)
2209 		return 1;
2210 
2211 	key.objectid = dirid;
2212 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2213 	key.offset = *start_ret;
2214 
2215 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2216 	if (ret < 0)
2217 		goto out;
2218 	if (ret > 0) {
2219 		if (path->slots[0] == 0)
2220 			goto out;
2221 		path->slots[0]--;
2222 	}
2223 	if (ret != 0)
2224 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2225 
2226 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2227 		ret = 1;
2228 		goto next;
2229 	}
2230 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2231 			      struct btrfs_dir_log_item);
2232 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2233 
2234 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2235 		ret = 0;
2236 		*start_ret = key.offset;
2237 		*end_ret = found_end;
2238 		goto out;
2239 	}
2240 	ret = 1;
2241 next:
2242 	/* check the next slot in the tree to see if it is a valid item */
2243 	nritems = btrfs_header_nritems(path->nodes[0]);
2244 	path->slots[0]++;
2245 	if (path->slots[0] >= nritems) {
2246 		ret = btrfs_next_leaf(root, path);
2247 		if (ret)
2248 			goto out;
2249 	}
2250 
2251 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2252 
2253 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2254 		ret = 1;
2255 		goto out;
2256 	}
2257 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2258 			      struct btrfs_dir_log_item);
2259 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2260 	*start_ret = key.offset;
2261 	*end_ret = found_end;
2262 	ret = 0;
2263 out:
2264 	btrfs_release_path(path);
2265 	return ret;
2266 }
2267 
2268 /*
2269  * this looks for a given directory item in the log.  If the directory
2270  * item is not in the log, the item is removed and the inode it points
2271  * to is unlinked
2272  */
2273 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2274 				      struct btrfs_root *log,
2275 				      struct btrfs_path *path,
2276 				      struct btrfs_path *log_path,
2277 				      struct inode *dir,
2278 				      struct btrfs_key *dir_key)
2279 {
2280 	struct btrfs_root *root = BTRFS_I(dir)->root;
2281 	int ret;
2282 	struct extent_buffer *eb;
2283 	int slot;
2284 	struct btrfs_dir_item *di;
2285 	int name_len;
2286 	char *name;
2287 	struct inode *inode = NULL;
2288 	struct btrfs_key location;
2289 
2290 	/*
2291 	 * Currenly we only log dir index keys. Even if we replay a log created
2292 	 * by an older kernel that logged both dir index and dir item keys, all
2293 	 * we need to do is process the dir index keys, we (and our caller) can
2294 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2295 	 */
2296 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2297 
2298 	eb = path->nodes[0];
2299 	slot = path->slots[0];
2300 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2301 	name_len = btrfs_dir_name_len(eb, di);
2302 	name = kmalloc(name_len, GFP_NOFS);
2303 	if (!name) {
2304 		ret = -ENOMEM;
2305 		goto out;
2306 	}
2307 
2308 	read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len);
2309 
2310 	if (log) {
2311 		struct btrfs_dir_item *log_di;
2312 
2313 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2314 						     dir_key->objectid,
2315 						     dir_key->offset,
2316 						     name, name_len, 0);
2317 		if (IS_ERR(log_di)) {
2318 			ret = PTR_ERR(log_di);
2319 			goto out;
2320 		} else if (log_di) {
2321 			/* The dentry exists in the log, we have nothing to do. */
2322 			ret = 0;
2323 			goto out;
2324 		}
2325 	}
2326 
2327 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2328 	btrfs_release_path(path);
2329 	btrfs_release_path(log_path);
2330 	inode = read_one_inode(root, location.objectid);
2331 	if (!inode) {
2332 		ret = -EIO;
2333 		goto out;
2334 	}
2335 
2336 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2337 	if (ret)
2338 		goto out;
2339 
2340 	inc_nlink(inode);
2341 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2342 					  name, name_len);
2343 	/*
2344 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2345 	 * them, as there are no key collisions since each key has a unique offset
2346 	 * (an index number), so we're done.
2347 	 */
2348 out:
2349 	btrfs_release_path(path);
2350 	btrfs_release_path(log_path);
2351 	kfree(name);
2352 	iput(inode);
2353 	return ret;
2354 }
2355 
2356 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2357 			      struct btrfs_root *root,
2358 			      struct btrfs_root *log,
2359 			      struct btrfs_path *path,
2360 			      const u64 ino)
2361 {
2362 	struct btrfs_key search_key;
2363 	struct btrfs_path *log_path;
2364 	int i;
2365 	int nritems;
2366 	int ret;
2367 
2368 	log_path = btrfs_alloc_path();
2369 	if (!log_path)
2370 		return -ENOMEM;
2371 
2372 	search_key.objectid = ino;
2373 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2374 	search_key.offset = 0;
2375 again:
2376 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2377 	if (ret < 0)
2378 		goto out;
2379 process_leaf:
2380 	nritems = btrfs_header_nritems(path->nodes[0]);
2381 	for (i = path->slots[0]; i < nritems; i++) {
2382 		struct btrfs_key key;
2383 		struct btrfs_dir_item *di;
2384 		struct btrfs_dir_item *log_di;
2385 		u32 total_size;
2386 		u32 cur;
2387 
2388 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2389 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2390 			ret = 0;
2391 			goto out;
2392 		}
2393 
2394 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2395 		total_size = btrfs_item_size(path->nodes[0], i);
2396 		cur = 0;
2397 		while (cur < total_size) {
2398 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2399 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2400 			u32 this_len = sizeof(*di) + name_len + data_len;
2401 			char *name;
2402 
2403 			name = kmalloc(name_len, GFP_NOFS);
2404 			if (!name) {
2405 				ret = -ENOMEM;
2406 				goto out;
2407 			}
2408 			read_extent_buffer(path->nodes[0], name,
2409 					   (unsigned long)(di + 1), name_len);
2410 
2411 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2412 						    name, name_len, 0);
2413 			btrfs_release_path(log_path);
2414 			if (!log_di) {
2415 				/* Doesn't exist in log tree, so delete it. */
2416 				btrfs_release_path(path);
2417 				di = btrfs_lookup_xattr(trans, root, path, ino,
2418 							name, name_len, -1);
2419 				kfree(name);
2420 				if (IS_ERR(di)) {
2421 					ret = PTR_ERR(di);
2422 					goto out;
2423 				}
2424 				ASSERT(di);
2425 				ret = btrfs_delete_one_dir_name(trans, root,
2426 								path, di);
2427 				if (ret)
2428 					goto out;
2429 				btrfs_release_path(path);
2430 				search_key = key;
2431 				goto again;
2432 			}
2433 			kfree(name);
2434 			if (IS_ERR(log_di)) {
2435 				ret = PTR_ERR(log_di);
2436 				goto out;
2437 			}
2438 			cur += this_len;
2439 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2440 		}
2441 	}
2442 	ret = btrfs_next_leaf(root, path);
2443 	if (ret > 0)
2444 		ret = 0;
2445 	else if (ret == 0)
2446 		goto process_leaf;
2447 out:
2448 	btrfs_free_path(log_path);
2449 	btrfs_release_path(path);
2450 	return ret;
2451 }
2452 
2453 
2454 /*
2455  * deletion replay happens before we copy any new directory items
2456  * out of the log or out of backreferences from inodes.  It
2457  * scans the log to find ranges of keys that log is authoritative for,
2458  * and then scans the directory to find items in those ranges that are
2459  * not present in the log.
2460  *
2461  * Anything we don't find in the log is unlinked and removed from the
2462  * directory.
2463  */
2464 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2465 				       struct btrfs_root *root,
2466 				       struct btrfs_root *log,
2467 				       struct btrfs_path *path,
2468 				       u64 dirid, int del_all)
2469 {
2470 	u64 range_start;
2471 	u64 range_end;
2472 	int ret = 0;
2473 	struct btrfs_key dir_key;
2474 	struct btrfs_key found_key;
2475 	struct btrfs_path *log_path;
2476 	struct inode *dir;
2477 
2478 	dir_key.objectid = dirid;
2479 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2480 	log_path = btrfs_alloc_path();
2481 	if (!log_path)
2482 		return -ENOMEM;
2483 
2484 	dir = read_one_inode(root, dirid);
2485 	/* it isn't an error if the inode isn't there, that can happen
2486 	 * because we replay the deletes before we copy in the inode item
2487 	 * from the log
2488 	 */
2489 	if (!dir) {
2490 		btrfs_free_path(log_path);
2491 		return 0;
2492 	}
2493 
2494 	range_start = 0;
2495 	range_end = 0;
2496 	while (1) {
2497 		if (del_all)
2498 			range_end = (u64)-1;
2499 		else {
2500 			ret = find_dir_range(log, path, dirid,
2501 					     &range_start, &range_end);
2502 			if (ret < 0)
2503 				goto out;
2504 			else if (ret > 0)
2505 				break;
2506 		}
2507 
2508 		dir_key.offset = range_start;
2509 		while (1) {
2510 			int nritems;
2511 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2512 						0, 0);
2513 			if (ret < 0)
2514 				goto out;
2515 
2516 			nritems = btrfs_header_nritems(path->nodes[0]);
2517 			if (path->slots[0] >= nritems) {
2518 				ret = btrfs_next_leaf(root, path);
2519 				if (ret == 1)
2520 					break;
2521 				else if (ret < 0)
2522 					goto out;
2523 			}
2524 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2525 					      path->slots[0]);
2526 			if (found_key.objectid != dirid ||
2527 			    found_key.type != dir_key.type) {
2528 				ret = 0;
2529 				goto out;
2530 			}
2531 
2532 			if (found_key.offset > range_end)
2533 				break;
2534 
2535 			ret = check_item_in_log(trans, log, path,
2536 						log_path, dir,
2537 						&found_key);
2538 			if (ret)
2539 				goto out;
2540 			if (found_key.offset == (u64)-1)
2541 				break;
2542 			dir_key.offset = found_key.offset + 1;
2543 		}
2544 		btrfs_release_path(path);
2545 		if (range_end == (u64)-1)
2546 			break;
2547 		range_start = range_end + 1;
2548 	}
2549 	ret = 0;
2550 out:
2551 	btrfs_release_path(path);
2552 	btrfs_free_path(log_path);
2553 	iput(dir);
2554 	return ret;
2555 }
2556 
2557 /*
2558  * the process_func used to replay items from the log tree.  This
2559  * gets called in two different stages.  The first stage just looks
2560  * for inodes and makes sure they are all copied into the subvolume.
2561  *
2562  * The second stage copies all the other item types from the log into
2563  * the subvolume.  The two stage approach is slower, but gets rid of
2564  * lots of complexity around inodes referencing other inodes that exist
2565  * only in the log (references come from either directory items or inode
2566  * back refs).
2567  */
2568 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2569 			     struct walk_control *wc, u64 gen, int level)
2570 {
2571 	int nritems;
2572 	struct btrfs_path *path;
2573 	struct btrfs_root *root = wc->replay_dest;
2574 	struct btrfs_key key;
2575 	int i;
2576 	int ret;
2577 
2578 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2579 	if (ret)
2580 		return ret;
2581 
2582 	level = btrfs_header_level(eb);
2583 
2584 	if (level != 0)
2585 		return 0;
2586 
2587 	path = btrfs_alloc_path();
2588 	if (!path)
2589 		return -ENOMEM;
2590 
2591 	nritems = btrfs_header_nritems(eb);
2592 	for (i = 0; i < nritems; i++) {
2593 		btrfs_item_key_to_cpu(eb, &key, i);
2594 
2595 		/* inode keys are done during the first stage */
2596 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2597 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2598 			struct btrfs_inode_item *inode_item;
2599 			u32 mode;
2600 
2601 			inode_item = btrfs_item_ptr(eb, i,
2602 					    struct btrfs_inode_item);
2603 			/*
2604 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2605 			 * and never got linked before the fsync, skip it, as
2606 			 * replaying it is pointless since it would be deleted
2607 			 * later. We skip logging tmpfiles, but it's always
2608 			 * possible we are replaying a log created with a kernel
2609 			 * that used to log tmpfiles.
2610 			 */
2611 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2612 				wc->ignore_cur_inode = true;
2613 				continue;
2614 			} else {
2615 				wc->ignore_cur_inode = false;
2616 			}
2617 			ret = replay_xattr_deletes(wc->trans, root, log,
2618 						   path, key.objectid);
2619 			if (ret)
2620 				break;
2621 			mode = btrfs_inode_mode(eb, inode_item);
2622 			if (S_ISDIR(mode)) {
2623 				ret = replay_dir_deletes(wc->trans,
2624 					 root, log, path, key.objectid, 0);
2625 				if (ret)
2626 					break;
2627 			}
2628 			ret = overwrite_item(wc->trans, root, path,
2629 					     eb, i, &key);
2630 			if (ret)
2631 				break;
2632 
2633 			/*
2634 			 * Before replaying extents, truncate the inode to its
2635 			 * size. We need to do it now and not after log replay
2636 			 * because before an fsync we can have prealloc extents
2637 			 * added beyond the inode's i_size. If we did it after,
2638 			 * through orphan cleanup for example, we would drop
2639 			 * those prealloc extents just after replaying them.
2640 			 */
2641 			if (S_ISREG(mode)) {
2642 				struct btrfs_drop_extents_args drop_args = { 0 };
2643 				struct inode *inode;
2644 				u64 from;
2645 
2646 				inode = read_one_inode(root, key.objectid);
2647 				if (!inode) {
2648 					ret = -EIO;
2649 					break;
2650 				}
2651 				from = ALIGN(i_size_read(inode),
2652 					     root->fs_info->sectorsize);
2653 				drop_args.start = from;
2654 				drop_args.end = (u64)-1;
2655 				drop_args.drop_cache = true;
2656 				ret = btrfs_drop_extents(wc->trans, root,
2657 							 BTRFS_I(inode),
2658 							 &drop_args);
2659 				if (!ret) {
2660 					inode_sub_bytes(inode,
2661 							drop_args.bytes_found);
2662 					/* Update the inode's nbytes. */
2663 					ret = btrfs_update_inode(wc->trans,
2664 							root, BTRFS_I(inode));
2665 				}
2666 				iput(inode);
2667 				if (ret)
2668 					break;
2669 			}
2670 
2671 			ret = link_to_fixup_dir(wc->trans, root,
2672 						path, key.objectid);
2673 			if (ret)
2674 				break;
2675 		}
2676 
2677 		if (wc->ignore_cur_inode)
2678 			continue;
2679 
2680 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2681 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2682 			ret = replay_one_dir_item(wc->trans, root, path,
2683 						  eb, i, &key);
2684 			if (ret)
2685 				break;
2686 		}
2687 
2688 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2689 			continue;
2690 
2691 		/* these keys are simply copied */
2692 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2693 			ret = overwrite_item(wc->trans, root, path,
2694 					     eb, i, &key);
2695 			if (ret)
2696 				break;
2697 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2698 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2699 			ret = add_inode_ref(wc->trans, root, log, path,
2700 					    eb, i, &key);
2701 			if (ret && ret != -ENOENT)
2702 				break;
2703 			ret = 0;
2704 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2705 			ret = replay_one_extent(wc->trans, root, path,
2706 						eb, i, &key);
2707 			if (ret)
2708 				break;
2709 		}
2710 		/*
2711 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2712 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2713 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2714 		 * older kernel with such keys, ignore them.
2715 		 */
2716 	}
2717 	btrfs_free_path(path);
2718 	return ret;
2719 }
2720 
2721 /*
2722  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2723  */
2724 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2725 {
2726 	struct btrfs_block_group *cache;
2727 
2728 	cache = btrfs_lookup_block_group(fs_info, start);
2729 	if (!cache) {
2730 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2731 		return;
2732 	}
2733 
2734 	spin_lock(&cache->space_info->lock);
2735 	spin_lock(&cache->lock);
2736 	cache->reserved -= fs_info->nodesize;
2737 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2738 	spin_unlock(&cache->lock);
2739 	spin_unlock(&cache->space_info->lock);
2740 
2741 	btrfs_put_block_group(cache);
2742 }
2743 
2744 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2745 				   struct btrfs_root *root,
2746 				   struct btrfs_path *path, int *level,
2747 				   struct walk_control *wc)
2748 {
2749 	struct btrfs_fs_info *fs_info = root->fs_info;
2750 	u64 bytenr;
2751 	u64 ptr_gen;
2752 	struct extent_buffer *next;
2753 	struct extent_buffer *cur;
2754 	u32 blocksize;
2755 	int ret = 0;
2756 
2757 	while (*level > 0) {
2758 		struct btrfs_key first_key;
2759 
2760 		cur = path->nodes[*level];
2761 
2762 		WARN_ON(btrfs_header_level(cur) != *level);
2763 
2764 		if (path->slots[*level] >=
2765 		    btrfs_header_nritems(cur))
2766 			break;
2767 
2768 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2769 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2770 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2771 		blocksize = fs_info->nodesize;
2772 
2773 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2774 						    btrfs_header_owner(cur),
2775 						    *level - 1);
2776 		if (IS_ERR(next))
2777 			return PTR_ERR(next);
2778 
2779 		if (*level == 1) {
2780 			ret = wc->process_func(root, next, wc, ptr_gen,
2781 					       *level - 1);
2782 			if (ret) {
2783 				free_extent_buffer(next);
2784 				return ret;
2785 			}
2786 
2787 			path->slots[*level]++;
2788 			if (wc->free) {
2789 				ret = btrfs_read_buffer(next, ptr_gen,
2790 							*level - 1, &first_key);
2791 				if (ret) {
2792 					free_extent_buffer(next);
2793 					return ret;
2794 				}
2795 
2796 				if (trans) {
2797 					btrfs_tree_lock(next);
2798 					btrfs_clean_tree_block(next);
2799 					btrfs_wait_tree_block_writeback(next);
2800 					btrfs_tree_unlock(next);
2801 					ret = btrfs_pin_reserved_extent(trans,
2802 							bytenr, blocksize);
2803 					if (ret) {
2804 						free_extent_buffer(next);
2805 						return ret;
2806 					}
2807 					btrfs_redirty_list_add(
2808 						trans->transaction, next);
2809 				} else {
2810 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2811 						clear_extent_buffer_dirty(next);
2812 					unaccount_log_buffer(fs_info, bytenr);
2813 				}
2814 			}
2815 			free_extent_buffer(next);
2816 			continue;
2817 		}
2818 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2819 		if (ret) {
2820 			free_extent_buffer(next);
2821 			return ret;
2822 		}
2823 
2824 		if (path->nodes[*level-1])
2825 			free_extent_buffer(path->nodes[*level-1]);
2826 		path->nodes[*level-1] = next;
2827 		*level = btrfs_header_level(next);
2828 		path->slots[*level] = 0;
2829 		cond_resched();
2830 	}
2831 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2832 
2833 	cond_resched();
2834 	return 0;
2835 }
2836 
2837 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2838 				 struct btrfs_root *root,
2839 				 struct btrfs_path *path, int *level,
2840 				 struct walk_control *wc)
2841 {
2842 	struct btrfs_fs_info *fs_info = root->fs_info;
2843 	int i;
2844 	int slot;
2845 	int ret;
2846 
2847 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2848 		slot = path->slots[i];
2849 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2850 			path->slots[i]++;
2851 			*level = i;
2852 			WARN_ON(*level == 0);
2853 			return 0;
2854 		} else {
2855 			ret = wc->process_func(root, path->nodes[*level], wc,
2856 				 btrfs_header_generation(path->nodes[*level]),
2857 				 *level);
2858 			if (ret)
2859 				return ret;
2860 
2861 			if (wc->free) {
2862 				struct extent_buffer *next;
2863 
2864 				next = path->nodes[*level];
2865 
2866 				if (trans) {
2867 					btrfs_tree_lock(next);
2868 					btrfs_clean_tree_block(next);
2869 					btrfs_wait_tree_block_writeback(next);
2870 					btrfs_tree_unlock(next);
2871 					ret = btrfs_pin_reserved_extent(trans,
2872 						     path->nodes[*level]->start,
2873 						     path->nodes[*level]->len);
2874 					if (ret)
2875 						return ret;
2876 					btrfs_redirty_list_add(trans->transaction,
2877 							       next);
2878 				} else {
2879 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2880 						clear_extent_buffer_dirty(next);
2881 
2882 					unaccount_log_buffer(fs_info,
2883 						path->nodes[*level]->start);
2884 				}
2885 			}
2886 			free_extent_buffer(path->nodes[*level]);
2887 			path->nodes[*level] = NULL;
2888 			*level = i + 1;
2889 		}
2890 	}
2891 	return 1;
2892 }
2893 
2894 /*
2895  * drop the reference count on the tree rooted at 'snap'.  This traverses
2896  * the tree freeing any blocks that have a ref count of zero after being
2897  * decremented.
2898  */
2899 static int walk_log_tree(struct btrfs_trans_handle *trans,
2900 			 struct btrfs_root *log, struct walk_control *wc)
2901 {
2902 	struct btrfs_fs_info *fs_info = log->fs_info;
2903 	int ret = 0;
2904 	int wret;
2905 	int level;
2906 	struct btrfs_path *path;
2907 	int orig_level;
2908 
2909 	path = btrfs_alloc_path();
2910 	if (!path)
2911 		return -ENOMEM;
2912 
2913 	level = btrfs_header_level(log->node);
2914 	orig_level = level;
2915 	path->nodes[level] = log->node;
2916 	atomic_inc(&log->node->refs);
2917 	path->slots[level] = 0;
2918 
2919 	while (1) {
2920 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2921 		if (wret > 0)
2922 			break;
2923 		if (wret < 0) {
2924 			ret = wret;
2925 			goto out;
2926 		}
2927 
2928 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2929 		if (wret > 0)
2930 			break;
2931 		if (wret < 0) {
2932 			ret = wret;
2933 			goto out;
2934 		}
2935 	}
2936 
2937 	/* was the root node processed? if not, catch it here */
2938 	if (path->nodes[orig_level]) {
2939 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2940 			 btrfs_header_generation(path->nodes[orig_level]),
2941 			 orig_level);
2942 		if (ret)
2943 			goto out;
2944 		if (wc->free) {
2945 			struct extent_buffer *next;
2946 
2947 			next = path->nodes[orig_level];
2948 
2949 			if (trans) {
2950 				btrfs_tree_lock(next);
2951 				btrfs_clean_tree_block(next);
2952 				btrfs_wait_tree_block_writeback(next);
2953 				btrfs_tree_unlock(next);
2954 				ret = btrfs_pin_reserved_extent(trans,
2955 						next->start, next->len);
2956 				if (ret)
2957 					goto out;
2958 				btrfs_redirty_list_add(trans->transaction, next);
2959 			} else {
2960 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2961 					clear_extent_buffer_dirty(next);
2962 				unaccount_log_buffer(fs_info, next->start);
2963 			}
2964 		}
2965 	}
2966 
2967 out:
2968 	btrfs_free_path(path);
2969 	return ret;
2970 }
2971 
2972 /*
2973  * helper function to update the item for a given subvolumes log root
2974  * in the tree of log roots
2975  */
2976 static int update_log_root(struct btrfs_trans_handle *trans,
2977 			   struct btrfs_root *log,
2978 			   struct btrfs_root_item *root_item)
2979 {
2980 	struct btrfs_fs_info *fs_info = log->fs_info;
2981 	int ret;
2982 
2983 	if (log->log_transid == 1) {
2984 		/* insert root item on the first sync */
2985 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2986 				&log->root_key, root_item);
2987 	} else {
2988 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2989 				&log->root_key, root_item);
2990 	}
2991 	return ret;
2992 }
2993 
2994 static void wait_log_commit(struct btrfs_root *root, int transid)
2995 {
2996 	DEFINE_WAIT(wait);
2997 	int index = transid % 2;
2998 
2999 	/*
3000 	 * we only allow two pending log transactions at a time,
3001 	 * so we know that if ours is more than 2 older than the
3002 	 * current transaction, we're done
3003 	 */
3004 	for (;;) {
3005 		prepare_to_wait(&root->log_commit_wait[index],
3006 				&wait, TASK_UNINTERRUPTIBLE);
3007 
3008 		if (!(root->log_transid_committed < transid &&
3009 		      atomic_read(&root->log_commit[index])))
3010 			break;
3011 
3012 		mutex_unlock(&root->log_mutex);
3013 		schedule();
3014 		mutex_lock(&root->log_mutex);
3015 	}
3016 	finish_wait(&root->log_commit_wait[index], &wait);
3017 }
3018 
3019 static void wait_for_writer(struct btrfs_root *root)
3020 {
3021 	DEFINE_WAIT(wait);
3022 
3023 	for (;;) {
3024 		prepare_to_wait(&root->log_writer_wait, &wait,
3025 				TASK_UNINTERRUPTIBLE);
3026 		if (!atomic_read(&root->log_writers))
3027 			break;
3028 
3029 		mutex_unlock(&root->log_mutex);
3030 		schedule();
3031 		mutex_lock(&root->log_mutex);
3032 	}
3033 	finish_wait(&root->log_writer_wait, &wait);
3034 }
3035 
3036 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3037 					struct btrfs_log_ctx *ctx)
3038 {
3039 	mutex_lock(&root->log_mutex);
3040 	list_del_init(&ctx->list);
3041 	mutex_unlock(&root->log_mutex);
3042 }
3043 
3044 /*
3045  * Invoked in log mutex context, or be sure there is no other task which
3046  * can access the list.
3047  */
3048 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3049 					     int index, int error)
3050 {
3051 	struct btrfs_log_ctx *ctx;
3052 	struct btrfs_log_ctx *safe;
3053 
3054 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3055 		list_del_init(&ctx->list);
3056 		ctx->log_ret = error;
3057 	}
3058 }
3059 
3060 /*
3061  * btrfs_sync_log does sends a given tree log down to the disk and
3062  * updates the super blocks to record it.  When this call is done,
3063  * you know that any inodes previously logged are safely on disk only
3064  * if it returns 0.
3065  *
3066  * Any other return value means you need to call btrfs_commit_transaction.
3067  * Some of the edge cases for fsyncing directories that have had unlinks
3068  * or renames done in the past mean that sometimes the only safe
3069  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3070  * that has happened.
3071  */
3072 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3073 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3074 {
3075 	int index1;
3076 	int index2;
3077 	int mark;
3078 	int ret;
3079 	struct btrfs_fs_info *fs_info = root->fs_info;
3080 	struct btrfs_root *log = root->log_root;
3081 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3082 	struct btrfs_root_item new_root_item;
3083 	int log_transid = 0;
3084 	struct btrfs_log_ctx root_log_ctx;
3085 	struct blk_plug plug;
3086 	u64 log_root_start;
3087 	u64 log_root_level;
3088 
3089 	mutex_lock(&root->log_mutex);
3090 	log_transid = ctx->log_transid;
3091 	if (root->log_transid_committed >= log_transid) {
3092 		mutex_unlock(&root->log_mutex);
3093 		return ctx->log_ret;
3094 	}
3095 
3096 	index1 = log_transid % 2;
3097 	if (atomic_read(&root->log_commit[index1])) {
3098 		wait_log_commit(root, log_transid);
3099 		mutex_unlock(&root->log_mutex);
3100 		return ctx->log_ret;
3101 	}
3102 	ASSERT(log_transid == root->log_transid);
3103 	atomic_set(&root->log_commit[index1], 1);
3104 
3105 	/* wait for previous tree log sync to complete */
3106 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3107 		wait_log_commit(root, log_transid - 1);
3108 
3109 	while (1) {
3110 		int batch = atomic_read(&root->log_batch);
3111 		/* when we're on an ssd, just kick the log commit out */
3112 		if (!btrfs_test_opt(fs_info, SSD) &&
3113 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3114 			mutex_unlock(&root->log_mutex);
3115 			schedule_timeout_uninterruptible(1);
3116 			mutex_lock(&root->log_mutex);
3117 		}
3118 		wait_for_writer(root);
3119 		if (batch == atomic_read(&root->log_batch))
3120 			break;
3121 	}
3122 
3123 	/* bail out if we need to do a full commit */
3124 	if (btrfs_need_log_full_commit(trans)) {
3125 		ret = -EAGAIN;
3126 		mutex_unlock(&root->log_mutex);
3127 		goto out;
3128 	}
3129 
3130 	if (log_transid % 2 == 0)
3131 		mark = EXTENT_DIRTY;
3132 	else
3133 		mark = EXTENT_NEW;
3134 
3135 	/* we start IO on  all the marked extents here, but we don't actually
3136 	 * wait for them until later.
3137 	 */
3138 	blk_start_plug(&plug);
3139 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3140 	/*
3141 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3142 	 *  commit, writes a dirty extent in this tree-log commit. This
3143 	 *  concurrent write will create a hole writing out the extents,
3144 	 *  and we cannot proceed on a zoned filesystem, requiring
3145 	 *  sequential writing. While we can bail out to a full commit
3146 	 *  here, but we can continue hoping the concurrent writing fills
3147 	 *  the hole.
3148 	 */
3149 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3150 		ret = 0;
3151 	if (ret) {
3152 		blk_finish_plug(&plug);
3153 		btrfs_abort_transaction(trans, ret);
3154 		btrfs_set_log_full_commit(trans);
3155 		mutex_unlock(&root->log_mutex);
3156 		goto out;
3157 	}
3158 
3159 	/*
3160 	 * We _must_ update under the root->log_mutex in order to make sure we
3161 	 * have a consistent view of the log root we are trying to commit at
3162 	 * this moment.
3163 	 *
3164 	 * We _must_ copy this into a local copy, because we are not holding the
3165 	 * log_root_tree->log_mutex yet.  This is important because when we
3166 	 * commit the log_root_tree we must have a consistent view of the
3167 	 * log_root_tree when we update the super block to point at the
3168 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3169 	 * with the commit and possibly point at the new block which we may not
3170 	 * have written out.
3171 	 */
3172 	btrfs_set_root_node(&log->root_item, log->node);
3173 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3174 
3175 	root->log_transid++;
3176 	log->log_transid = root->log_transid;
3177 	root->log_start_pid = 0;
3178 	/*
3179 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3180 	 * in their headers. new modifications of the log will be written to
3181 	 * new positions. so it's safe to allow log writers to go in.
3182 	 */
3183 	mutex_unlock(&root->log_mutex);
3184 
3185 	if (btrfs_is_zoned(fs_info)) {
3186 		mutex_lock(&fs_info->tree_root->log_mutex);
3187 		if (!log_root_tree->node) {
3188 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3189 			if (ret) {
3190 				mutex_unlock(&fs_info->tree_root->log_mutex);
3191 				goto out;
3192 			}
3193 		}
3194 		mutex_unlock(&fs_info->tree_root->log_mutex);
3195 	}
3196 
3197 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3198 
3199 	mutex_lock(&log_root_tree->log_mutex);
3200 
3201 	index2 = log_root_tree->log_transid % 2;
3202 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3203 	root_log_ctx.log_transid = log_root_tree->log_transid;
3204 
3205 	/*
3206 	 * Now we are safe to update the log_root_tree because we're under the
3207 	 * log_mutex, and we're a current writer so we're holding the commit
3208 	 * open until we drop the log_mutex.
3209 	 */
3210 	ret = update_log_root(trans, log, &new_root_item);
3211 	if (ret) {
3212 		if (!list_empty(&root_log_ctx.list))
3213 			list_del_init(&root_log_ctx.list);
3214 
3215 		blk_finish_plug(&plug);
3216 		btrfs_set_log_full_commit(trans);
3217 
3218 		if (ret != -ENOSPC) {
3219 			btrfs_abort_transaction(trans, ret);
3220 			mutex_unlock(&log_root_tree->log_mutex);
3221 			goto out;
3222 		}
3223 		btrfs_wait_tree_log_extents(log, mark);
3224 		mutex_unlock(&log_root_tree->log_mutex);
3225 		ret = -EAGAIN;
3226 		goto out;
3227 	}
3228 
3229 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3230 		blk_finish_plug(&plug);
3231 		list_del_init(&root_log_ctx.list);
3232 		mutex_unlock(&log_root_tree->log_mutex);
3233 		ret = root_log_ctx.log_ret;
3234 		goto out;
3235 	}
3236 
3237 	index2 = root_log_ctx.log_transid % 2;
3238 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3239 		blk_finish_plug(&plug);
3240 		ret = btrfs_wait_tree_log_extents(log, mark);
3241 		wait_log_commit(log_root_tree,
3242 				root_log_ctx.log_transid);
3243 		mutex_unlock(&log_root_tree->log_mutex);
3244 		if (!ret)
3245 			ret = root_log_ctx.log_ret;
3246 		goto out;
3247 	}
3248 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3249 	atomic_set(&log_root_tree->log_commit[index2], 1);
3250 
3251 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3252 		wait_log_commit(log_root_tree,
3253 				root_log_ctx.log_transid - 1);
3254 	}
3255 
3256 	/*
3257 	 * now that we've moved on to the tree of log tree roots,
3258 	 * check the full commit flag again
3259 	 */
3260 	if (btrfs_need_log_full_commit(trans)) {
3261 		blk_finish_plug(&plug);
3262 		btrfs_wait_tree_log_extents(log, mark);
3263 		mutex_unlock(&log_root_tree->log_mutex);
3264 		ret = -EAGAIN;
3265 		goto out_wake_log_root;
3266 	}
3267 
3268 	ret = btrfs_write_marked_extents(fs_info,
3269 					 &log_root_tree->dirty_log_pages,
3270 					 EXTENT_DIRTY | EXTENT_NEW);
3271 	blk_finish_plug(&plug);
3272 	/*
3273 	 * As described above, -EAGAIN indicates a hole in the extents. We
3274 	 * cannot wait for these write outs since the waiting cause a
3275 	 * deadlock. Bail out to the full commit instead.
3276 	 */
3277 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3278 		btrfs_set_log_full_commit(trans);
3279 		btrfs_wait_tree_log_extents(log, mark);
3280 		mutex_unlock(&log_root_tree->log_mutex);
3281 		goto out_wake_log_root;
3282 	} else if (ret) {
3283 		btrfs_set_log_full_commit(trans);
3284 		btrfs_abort_transaction(trans, ret);
3285 		mutex_unlock(&log_root_tree->log_mutex);
3286 		goto out_wake_log_root;
3287 	}
3288 	ret = btrfs_wait_tree_log_extents(log, mark);
3289 	if (!ret)
3290 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3291 						  EXTENT_NEW | EXTENT_DIRTY);
3292 	if (ret) {
3293 		btrfs_set_log_full_commit(trans);
3294 		mutex_unlock(&log_root_tree->log_mutex);
3295 		goto out_wake_log_root;
3296 	}
3297 
3298 	log_root_start = log_root_tree->node->start;
3299 	log_root_level = btrfs_header_level(log_root_tree->node);
3300 	log_root_tree->log_transid++;
3301 	mutex_unlock(&log_root_tree->log_mutex);
3302 
3303 	/*
3304 	 * Here we are guaranteed that nobody is going to write the superblock
3305 	 * for the current transaction before us and that neither we do write
3306 	 * our superblock before the previous transaction finishes its commit
3307 	 * and writes its superblock, because:
3308 	 *
3309 	 * 1) We are holding a handle on the current transaction, so no body
3310 	 *    can commit it until we release the handle;
3311 	 *
3312 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3313 	 *    if the previous transaction is still committing, and hasn't yet
3314 	 *    written its superblock, we wait for it to do it, because a
3315 	 *    transaction commit acquires the tree_log_mutex when the commit
3316 	 *    begins and releases it only after writing its superblock.
3317 	 */
3318 	mutex_lock(&fs_info->tree_log_mutex);
3319 
3320 	/*
3321 	 * The previous transaction writeout phase could have failed, and thus
3322 	 * marked the fs in an error state.  We must not commit here, as we
3323 	 * could have updated our generation in the super_for_commit and
3324 	 * writing the super here would result in transid mismatches.  If there
3325 	 * is an error here just bail.
3326 	 */
3327 	if (BTRFS_FS_ERROR(fs_info)) {
3328 		ret = -EIO;
3329 		btrfs_set_log_full_commit(trans);
3330 		btrfs_abort_transaction(trans, ret);
3331 		mutex_unlock(&fs_info->tree_log_mutex);
3332 		goto out_wake_log_root;
3333 	}
3334 
3335 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3336 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3337 	ret = write_all_supers(fs_info, 1);
3338 	mutex_unlock(&fs_info->tree_log_mutex);
3339 	if (ret) {
3340 		btrfs_set_log_full_commit(trans);
3341 		btrfs_abort_transaction(trans, ret);
3342 		goto out_wake_log_root;
3343 	}
3344 
3345 	/*
3346 	 * We know there can only be one task here, since we have not yet set
3347 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3348 	 * log must wait for the previous log transaction to commit if it's
3349 	 * still in progress or wait for the current log transaction commit if
3350 	 * someone else already started it. We use <= and not < because the
3351 	 * first log transaction has an ID of 0.
3352 	 */
3353 	ASSERT(root->last_log_commit <= log_transid);
3354 	root->last_log_commit = log_transid;
3355 
3356 out_wake_log_root:
3357 	mutex_lock(&log_root_tree->log_mutex);
3358 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3359 
3360 	log_root_tree->log_transid_committed++;
3361 	atomic_set(&log_root_tree->log_commit[index2], 0);
3362 	mutex_unlock(&log_root_tree->log_mutex);
3363 
3364 	/*
3365 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3366 	 * all the updates above are seen by the woken threads. It might not be
3367 	 * necessary, but proving that seems to be hard.
3368 	 */
3369 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3370 out:
3371 	mutex_lock(&root->log_mutex);
3372 	btrfs_remove_all_log_ctxs(root, index1, ret);
3373 	root->log_transid_committed++;
3374 	atomic_set(&root->log_commit[index1], 0);
3375 	mutex_unlock(&root->log_mutex);
3376 
3377 	/*
3378 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3379 	 * all the updates above are seen by the woken threads. It might not be
3380 	 * necessary, but proving that seems to be hard.
3381 	 */
3382 	cond_wake_up(&root->log_commit_wait[index1]);
3383 	return ret;
3384 }
3385 
3386 static void free_log_tree(struct btrfs_trans_handle *trans,
3387 			  struct btrfs_root *log)
3388 {
3389 	int ret;
3390 	struct walk_control wc = {
3391 		.free = 1,
3392 		.process_func = process_one_buffer
3393 	};
3394 
3395 	if (log->node) {
3396 		ret = walk_log_tree(trans, log, &wc);
3397 		if (ret) {
3398 			/*
3399 			 * We weren't able to traverse the entire log tree, the
3400 			 * typical scenario is getting an -EIO when reading an
3401 			 * extent buffer of the tree, due to a previous writeback
3402 			 * failure of it.
3403 			 */
3404 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3405 				&log->fs_info->fs_state);
3406 
3407 			/*
3408 			 * Some extent buffers of the log tree may still be dirty
3409 			 * and not yet written back to storage, because we may
3410 			 * have updates to a log tree without syncing a log tree,
3411 			 * such as during rename and link operations. So flush
3412 			 * them out and wait for their writeback to complete, so
3413 			 * that we properly cleanup their state and pages.
3414 			 */
3415 			btrfs_write_marked_extents(log->fs_info,
3416 						   &log->dirty_log_pages,
3417 						   EXTENT_DIRTY | EXTENT_NEW);
3418 			btrfs_wait_tree_log_extents(log,
3419 						    EXTENT_DIRTY | EXTENT_NEW);
3420 
3421 			if (trans)
3422 				btrfs_abort_transaction(trans, ret);
3423 			else
3424 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3425 		}
3426 	}
3427 
3428 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3429 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3430 	extent_io_tree_release(&log->log_csum_range);
3431 
3432 	btrfs_put_root(log);
3433 }
3434 
3435 /*
3436  * free all the extents used by the tree log.  This should be called
3437  * at commit time of the full transaction
3438  */
3439 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3440 {
3441 	if (root->log_root) {
3442 		free_log_tree(trans, root->log_root);
3443 		root->log_root = NULL;
3444 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3445 	}
3446 	return 0;
3447 }
3448 
3449 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3450 			     struct btrfs_fs_info *fs_info)
3451 {
3452 	if (fs_info->log_root_tree) {
3453 		free_log_tree(trans, fs_info->log_root_tree);
3454 		fs_info->log_root_tree = NULL;
3455 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3456 	}
3457 	return 0;
3458 }
3459 
3460 /*
3461  * Check if an inode was logged in the current transaction. This correctly deals
3462  * with the case where the inode was logged but has a logged_trans of 0, which
3463  * happens if the inode is evicted and loaded again, as logged_trans is an in
3464  * memory only field (not persisted).
3465  *
3466  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3467  * and < 0 on error.
3468  */
3469 static int inode_logged(struct btrfs_trans_handle *trans,
3470 			struct btrfs_inode *inode,
3471 			struct btrfs_path *path_in)
3472 {
3473 	struct btrfs_path *path = path_in;
3474 	struct btrfs_key key;
3475 	int ret;
3476 
3477 	if (inode->logged_trans == trans->transid)
3478 		return 1;
3479 
3480 	/*
3481 	 * If logged_trans is not 0, then we know the inode logged was not logged
3482 	 * in this transaction, so we can return false right away.
3483 	 */
3484 	if (inode->logged_trans > 0)
3485 		return 0;
3486 
3487 	/*
3488 	 * If no log tree was created for this root in this transaction, then
3489 	 * the inode can not have been logged in this transaction. In that case
3490 	 * set logged_trans to anything greater than 0 and less than the current
3491 	 * transaction's ID, to avoid the search below in a future call in case
3492 	 * a log tree gets created after this.
3493 	 */
3494 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3495 		inode->logged_trans = trans->transid - 1;
3496 		return 0;
3497 	}
3498 
3499 	/*
3500 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3501 	 * for sure if the inode was logged before in this transaction by looking
3502 	 * only at logged_trans. We could be pessimistic and assume it was, but
3503 	 * that can lead to unnecessarily logging an inode during rename and link
3504 	 * operations, and then further updating the log in followup rename and
3505 	 * link operations, specially if it's a directory, which adds latency
3506 	 * visible to applications doing a series of rename or link operations.
3507 	 *
3508 	 * A logged_trans of 0 here can mean several things:
3509 	 *
3510 	 * 1) The inode was never logged since the filesystem was mounted, and may
3511 	 *    or may have not been evicted and loaded again;
3512 	 *
3513 	 * 2) The inode was logged in a previous transaction, then evicted and
3514 	 *    then loaded again;
3515 	 *
3516 	 * 3) The inode was logged in the current transaction, then evicted and
3517 	 *    then loaded again.
3518 	 *
3519 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3520 	 * case 3) and return true. So we do a search in the log root for the inode
3521 	 * item.
3522 	 */
3523 	key.objectid = btrfs_ino(inode);
3524 	key.type = BTRFS_INODE_ITEM_KEY;
3525 	key.offset = 0;
3526 
3527 	if (!path) {
3528 		path = btrfs_alloc_path();
3529 		if (!path)
3530 			return -ENOMEM;
3531 	}
3532 
3533 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3534 
3535 	if (path_in)
3536 		btrfs_release_path(path);
3537 	else
3538 		btrfs_free_path(path);
3539 
3540 	/*
3541 	 * Logging an inode always results in logging its inode item. So if we
3542 	 * did not find the item we know the inode was not logged for sure.
3543 	 */
3544 	if (ret < 0) {
3545 		return ret;
3546 	} else if (ret > 0) {
3547 		/*
3548 		 * Set logged_trans to a value greater than 0 and less then the
3549 		 * current transaction to avoid doing the search in future calls.
3550 		 */
3551 		inode->logged_trans = trans->transid - 1;
3552 		return 0;
3553 	}
3554 
3555 	/*
3556 	 * The inode was previously logged and then evicted, set logged_trans to
3557 	 * the current transacion's ID, to avoid future tree searches as long as
3558 	 * the inode is not evicted again.
3559 	 */
3560 	inode->logged_trans = trans->transid;
3561 
3562 	/*
3563 	 * If it's a directory, then we must set last_dir_index_offset to the
3564 	 * maximum possible value, so that the next attempt to log the inode does
3565 	 * not skip checking if dir index keys found in modified subvolume tree
3566 	 * leaves have been logged before, otherwise it would result in attempts
3567 	 * to insert duplicate dir index keys in the log tree. This must be done
3568 	 * because last_dir_index_offset is an in-memory only field, not persisted
3569 	 * in the inode item or any other on-disk structure, so its value is lost
3570 	 * once the inode is evicted.
3571 	 */
3572 	if (S_ISDIR(inode->vfs_inode.i_mode))
3573 		inode->last_dir_index_offset = (u64)-1;
3574 
3575 	return 1;
3576 }
3577 
3578 /*
3579  * Delete a directory entry from the log if it exists.
3580  *
3581  * Returns < 0 on error
3582  *           1 if the entry does not exists
3583  *           0 if the entry existed and was successfully deleted
3584  */
3585 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3586 			     struct btrfs_root *log,
3587 			     struct btrfs_path *path,
3588 			     u64 dir_ino,
3589 			     const char *name, int name_len,
3590 			     u64 index)
3591 {
3592 	struct btrfs_dir_item *di;
3593 
3594 	/*
3595 	 * We only log dir index items of a directory, so we don't need to look
3596 	 * for dir item keys.
3597 	 */
3598 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3599 					 index, name, name_len, -1);
3600 	if (IS_ERR(di))
3601 		return PTR_ERR(di);
3602 	else if (!di)
3603 		return 1;
3604 
3605 	/*
3606 	 * We do not need to update the size field of the directory's
3607 	 * inode item because on log replay we update the field to reflect
3608 	 * all existing entries in the directory (see overwrite_item()).
3609 	 */
3610 	return btrfs_delete_one_dir_name(trans, log, path, di);
3611 }
3612 
3613 /*
3614  * If both a file and directory are logged, and unlinks or renames are
3615  * mixed in, we have a few interesting corners:
3616  *
3617  * create file X in dir Y
3618  * link file X to X.link in dir Y
3619  * fsync file X
3620  * unlink file X but leave X.link
3621  * fsync dir Y
3622  *
3623  * After a crash we would expect only X.link to exist.  But file X
3624  * didn't get fsync'd again so the log has back refs for X and X.link.
3625  *
3626  * We solve this by removing directory entries and inode backrefs from the
3627  * log when a file that was logged in the current transaction is
3628  * unlinked.  Any later fsync will include the updated log entries, and
3629  * we'll be able to reconstruct the proper directory items from backrefs.
3630  *
3631  * This optimizations allows us to avoid relogging the entire inode
3632  * or the entire directory.
3633  */
3634 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3635 				  struct btrfs_root *root,
3636 				  const char *name, int name_len,
3637 				  struct btrfs_inode *dir, u64 index)
3638 {
3639 	struct btrfs_path *path;
3640 	int ret;
3641 
3642 	ret = inode_logged(trans, dir, NULL);
3643 	if (ret == 0)
3644 		return;
3645 	else if (ret < 0) {
3646 		btrfs_set_log_full_commit(trans);
3647 		return;
3648 	}
3649 
3650 	ret = join_running_log_trans(root);
3651 	if (ret)
3652 		return;
3653 
3654 	mutex_lock(&dir->log_mutex);
3655 
3656 	path = btrfs_alloc_path();
3657 	if (!path) {
3658 		ret = -ENOMEM;
3659 		goto out_unlock;
3660 	}
3661 
3662 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3663 				name, name_len, index);
3664 	btrfs_free_path(path);
3665 out_unlock:
3666 	mutex_unlock(&dir->log_mutex);
3667 	if (ret < 0)
3668 		btrfs_set_log_full_commit(trans);
3669 	btrfs_end_log_trans(root);
3670 }
3671 
3672 /* see comments for btrfs_del_dir_entries_in_log */
3673 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3674 				struct btrfs_root *root,
3675 				const char *name, int name_len,
3676 				struct btrfs_inode *inode, u64 dirid)
3677 {
3678 	struct btrfs_root *log;
3679 	u64 index;
3680 	int ret;
3681 
3682 	ret = inode_logged(trans, inode, NULL);
3683 	if (ret == 0)
3684 		return;
3685 	else if (ret < 0) {
3686 		btrfs_set_log_full_commit(trans);
3687 		return;
3688 	}
3689 
3690 	ret = join_running_log_trans(root);
3691 	if (ret)
3692 		return;
3693 	log = root->log_root;
3694 	mutex_lock(&inode->log_mutex);
3695 
3696 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3697 				  dirid, &index);
3698 	mutex_unlock(&inode->log_mutex);
3699 	if (ret < 0 && ret != -ENOENT)
3700 		btrfs_set_log_full_commit(trans);
3701 	btrfs_end_log_trans(root);
3702 }
3703 
3704 /*
3705  * creates a range item in the log for 'dirid'.  first_offset and
3706  * last_offset tell us which parts of the key space the log should
3707  * be considered authoritative for.
3708  */
3709 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3710 				       struct btrfs_root *log,
3711 				       struct btrfs_path *path,
3712 				       u64 dirid,
3713 				       u64 first_offset, u64 last_offset)
3714 {
3715 	int ret;
3716 	struct btrfs_key key;
3717 	struct btrfs_dir_log_item *item;
3718 
3719 	key.objectid = dirid;
3720 	key.offset = first_offset;
3721 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3722 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3723 	if (ret)
3724 		return ret;
3725 
3726 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3727 			      struct btrfs_dir_log_item);
3728 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3729 	btrfs_mark_buffer_dirty(path->nodes[0]);
3730 	btrfs_release_path(path);
3731 	return 0;
3732 }
3733 
3734 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3735 				 struct btrfs_root *log,
3736 				 struct extent_buffer *src,
3737 				 struct btrfs_path *dst_path,
3738 				 int start_slot,
3739 				 int count)
3740 {
3741 	char *ins_data = NULL;
3742 	struct btrfs_item_batch batch;
3743 	struct extent_buffer *dst;
3744 	unsigned long src_offset;
3745 	unsigned long dst_offset;
3746 	struct btrfs_key key;
3747 	u32 item_size;
3748 	int ret;
3749 	int i;
3750 
3751 	ASSERT(count > 0);
3752 	batch.nr = count;
3753 
3754 	if (count == 1) {
3755 		btrfs_item_key_to_cpu(src, &key, start_slot);
3756 		item_size = btrfs_item_size(src, start_slot);
3757 		batch.keys = &key;
3758 		batch.data_sizes = &item_size;
3759 		batch.total_data_size = item_size;
3760 	} else {
3761 		struct btrfs_key *ins_keys;
3762 		u32 *ins_sizes;
3763 
3764 		ins_data = kmalloc(count * sizeof(u32) +
3765 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3766 		if (!ins_data)
3767 			return -ENOMEM;
3768 
3769 		ins_sizes = (u32 *)ins_data;
3770 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3771 		batch.keys = ins_keys;
3772 		batch.data_sizes = ins_sizes;
3773 		batch.total_data_size = 0;
3774 
3775 		for (i = 0; i < count; i++) {
3776 			const int slot = start_slot + i;
3777 
3778 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3779 			ins_sizes[i] = btrfs_item_size(src, slot);
3780 			batch.total_data_size += ins_sizes[i];
3781 		}
3782 	}
3783 
3784 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3785 	if (ret)
3786 		goto out;
3787 
3788 	dst = dst_path->nodes[0];
3789 	/*
3790 	 * Copy all the items in bulk, in a single copy operation. Item data is
3791 	 * organized such that it's placed at the end of a leaf and from right
3792 	 * to left. For example, the data for the second item ends at an offset
3793 	 * that matches the offset where the data for the first item starts, the
3794 	 * data for the third item ends at an offset that matches the offset
3795 	 * where the data of the second items starts, and so on.
3796 	 * Therefore our source and destination start offsets for copy match the
3797 	 * offsets of the last items (highest slots).
3798 	 */
3799 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3800 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3801 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3802 	btrfs_release_path(dst_path);
3803 out:
3804 	kfree(ins_data);
3805 
3806 	return ret;
3807 }
3808 
3809 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3810 				  struct btrfs_inode *inode,
3811 				  struct btrfs_path *path,
3812 				  struct btrfs_path *dst_path,
3813 				  struct btrfs_log_ctx *ctx,
3814 				  u64 *last_old_dentry_offset)
3815 {
3816 	struct btrfs_root *log = inode->root->log_root;
3817 	struct extent_buffer *src = path->nodes[0];
3818 	const int nritems = btrfs_header_nritems(src);
3819 	const u64 ino = btrfs_ino(inode);
3820 	bool last_found = false;
3821 	int batch_start = 0;
3822 	int batch_size = 0;
3823 	int i;
3824 
3825 	for (i = path->slots[0]; i < nritems; i++) {
3826 		struct btrfs_dir_item *di;
3827 		struct btrfs_key key;
3828 		int ret;
3829 
3830 		btrfs_item_key_to_cpu(src, &key, i);
3831 
3832 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3833 			last_found = true;
3834 			break;
3835 		}
3836 
3837 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3838 		ctx->last_dir_item_offset = key.offset;
3839 
3840 		/*
3841 		 * Skip ranges of items that consist only of dir item keys created
3842 		 * in past transactions. However if we find a gap, we must log a
3843 		 * dir index range item for that gap, so that index keys in that
3844 		 * gap are deleted during log replay.
3845 		 */
3846 		if (btrfs_dir_transid(src, di) < trans->transid) {
3847 			if (key.offset > *last_old_dentry_offset + 1) {
3848 				ret = insert_dir_log_key(trans, log, dst_path,
3849 						 ino, *last_old_dentry_offset + 1,
3850 						 key.offset - 1);
3851 				/*
3852 				 * -EEXIST should never happen because when we
3853 				 * log a directory in full mode (LOG_INODE_ALL)
3854 				 * we drop all BTRFS_DIR_LOG_INDEX_KEY keys from
3855 				 * the log tree.
3856 				 */
3857 				ASSERT(ret != -EEXIST);
3858 				if (ret < 0)
3859 					return ret;
3860 			}
3861 
3862 			*last_old_dentry_offset = key.offset;
3863 			continue;
3864 		}
3865 		/*
3866 		 * We must make sure that when we log a directory entry, the
3867 		 * corresponding inode, after log replay, has a matching link
3868 		 * count. For example:
3869 		 *
3870 		 * touch foo
3871 		 * mkdir mydir
3872 		 * sync
3873 		 * ln foo mydir/bar
3874 		 * xfs_io -c "fsync" mydir
3875 		 * <crash>
3876 		 * <mount fs and log replay>
3877 		 *
3878 		 * Would result in a fsync log that when replayed, our file inode
3879 		 * would have a link count of 1, but we get two directory entries
3880 		 * pointing to the same inode. After removing one of the names,
3881 		 * it would not be possible to remove the other name, which
3882 		 * resulted always in stale file handle errors, and would not be
3883 		 * possible to rmdir the parent directory, since its i_size could
3884 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3885 		 * resulting in -ENOTEMPTY errors.
3886 		 */
3887 		if (!ctx->log_new_dentries) {
3888 			struct btrfs_key di_key;
3889 
3890 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3891 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3892 				ctx->log_new_dentries = true;
3893 		}
3894 
3895 		if (!ctx->logged_before)
3896 			goto add_to_batch;
3897 
3898 		/*
3899 		 * If we were logged before and have logged dir items, we can skip
3900 		 * checking if any item with a key offset larger than the last one
3901 		 * we logged is in the log tree, saving time and avoiding adding
3902 		 * contention on the log tree. We can only rely on the value of
3903 		 * last_dir_index_offset when we know for sure that the inode was
3904 		 * previously logged in the current transaction.
3905 		 */
3906 		if (key.offset > inode->last_dir_index_offset)
3907 			goto add_to_batch;
3908 		/*
3909 		 * Check if the key was already logged before. If not we can add
3910 		 * it to a batch for bulk insertion.
3911 		 */
3912 		ret = btrfs_search_slot(NULL, log, &key, dst_path, 0, 0);
3913 		if (ret < 0) {
3914 			return ret;
3915 		} else if (ret > 0) {
3916 			btrfs_release_path(dst_path);
3917 			goto add_to_batch;
3918 		}
3919 
3920 		/*
3921 		 * Item exists in the log. Overwrite the item in the log if it
3922 		 * has different content or do nothing if it has exactly the same
3923 		 * content. And then flush the current batch if any - do it after
3924 		 * overwriting the current item, or we would deadlock otherwise,
3925 		 * since we are holding a path for the existing item.
3926 		 */
3927 		ret = do_overwrite_item(trans, log, dst_path, src, i, &key);
3928 		if (ret < 0)
3929 			return ret;
3930 
3931 		if (batch_size > 0) {
3932 			ret = flush_dir_items_batch(trans, log, src, dst_path,
3933 						    batch_start, batch_size);
3934 			if (ret < 0)
3935 				return ret;
3936 			batch_size = 0;
3937 		}
3938 		continue;
3939 add_to_batch:
3940 		if (batch_size == 0)
3941 			batch_start = i;
3942 		batch_size++;
3943 	}
3944 
3945 	if (batch_size > 0) {
3946 		int ret;
3947 
3948 		ret = flush_dir_items_batch(trans, log, src, dst_path,
3949 					    batch_start, batch_size);
3950 		if (ret < 0)
3951 			return ret;
3952 	}
3953 
3954 	return last_found ? 1 : 0;
3955 }
3956 
3957 /*
3958  * log all the items included in the current transaction for a given
3959  * directory.  This also creates the range items in the log tree required
3960  * to replay anything deleted before the fsync
3961  */
3962 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3963 			  struct btrfs_inode *inode,
3964 			  struct btrfs_path *path,
3965 			  struct btrfs_path *dst_path,
3966 			  struct btrfs_log_ctx *ctx,
3967 			  u64 min_offset, u64 *last_offset_ret)
3968 {
3969 	struct btrfs_key min_key;
3970 	struct btrfs_root *root = inode->root;
3971 	struct btrfs_root *log = root->log_root;
3972 	int err = 0;
3973 	int ret;
3974 	u64 last_old_dentry_offset = min_offset - 1;
3975 	u64 last_offset = (u64)-1;
3976 	u64 ino = btrfs_ino(inode);
3977 
3978 	min_key.objectid = ino;
3979 	min_key.type = BTRFS_DIR_INDEX_KEY;
3980 	min_key.offset = min_offset;
3981 
3982 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3983 
3984 	/*
3985 	 * we didn't find anything from this transaction, see if there
3986 	 * is anything at all
3987 	 */
3988 	if (ret != 0 || min_key.objectid != ino ||
3989 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3990 		min_key.objectid = ino;
3991 		min_key.type = BTRFS_DIR_INDEX_KEY;
3992 		min_key.offset = (u64)-1;
3993 		btrfs_release_path(path);
3994 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3995 		if (ret < 0) {
3996 			btrfs_release_path(path);
3997 			return ret;
3998 		}
3999 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
4000 
4001 		/* if ret == 0 there are items for this type,
4002 		 * create a range to tell us the last key of this type.
4003 		 * otherwise, there are no items in this directory after
4004 		 * *min_offset, and we create a range to indicate that.
4005 		 */
4006 		if (ret == 0) {
4007 			struct btrfs_key tmp;
4008 
4009 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
4010 					      path->slots[0]);
4011 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
4012 				last_old_dentry_offset = tmp.offset;
4013 		}
4014 		goto done;
4015 	}
4016 
4017 	/* go backward to find any previous key */
4018 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
4019 	if (ret == 0) {
4020 		struct btrfs_key tmp;
4021 
4022 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
4023 		/*
4024 		 * The dir index key before the first one we found that needs to
4025 		 * be logged might be in a previous leaf, and there might be a
4026 		 * gap between these keys, meaning that we had deletions that
4027 		 * happened. So the key range item we log (key type
4028 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
4029 		 * previous key's offset plus 1, so that those deletes are replayed.
4030 		 */
4031 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
4032 			last_old_dentry_offset = tmp.offset;
4033 	}
4034 	btrfs_release_path(path);
4035 
4036 	/*
4037 	 * Find the first key from this transaction again.  See the note for
4038 	 * log_new_dir_dentries, if we're logging a directory recursively we
4039 	 * won't be holding its i_mutex, which means we can modify the directory
4040 	 * while we're logging it.  If we remove an entry between our first
4041 	 * search and this search we'll not find the key again and can just
4042 	 * bail.
4043 	 */
4044 search:
4045 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
4046 	if (ret != 0)
4047 		goto done;
4048 
4049 	/*
4050 	 * we have a block from this transaction, log every item in it
4051 	 * from our directory
4052 	 */
4053 	while (1) {
4054 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
4055 					     &last_old_dentry_offset);
4056 		if (ret != 0) {
4057 			if (ret < 0)
4058 				err = ret;
4059 			goto done;
4060 		}
4061 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
4062 
4063 		/*
4064 		 * look ahead to the next item and see if it is also
4065 		 * from this directory and from this transaction
4066 		 */
4067 		ret = btrfs_next_leaf(root, path);
4068 		if (ret) {
4069 			if (ret == 1)
4070 				last_offset = (u64)-1;
4071 			else
4072 				err = ret;
4073 			goto done;
4074 		}
4075 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
4076 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
4077 			last_offset = (u64)-1;
4078 			goto done;
4079 		}
4080 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
4081 			/*
4082 			 * The next leaf was not changed in the current transaction
4083 			 * and has at least one dir index key.
4084 			 * We check for the next key because there might have been
4085 			 * one or more deletions between the last key we logged and
4086 			 * that next key. So the key range item we log (key type
4087 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
4088 			 * offset minus 1, so that those deletes are replayed.
4089 			 */
4090 			last_offset = min_key.offset - 1;
4091 			goto done;
4092 		}
4093 		if (need_resched()) {
4094 			btrfs_release_path(path);
4095 			cond_resched();
4096 			goto search;
4097 		}
4098 	}
4099 done:
4100 	btrfs_release_path(path);
4101 	btrfs_release_path(dst_path);
4102 
4103 	if (err == 0) {
4104 		*last_offset_ret = last_offset;
4105 		/*
4106 		 * In case the leaf was changed in the current transaction but
4107 		 * all its dir items are from a past transaction, the last item
4108 		 * in the leaf is a dir item and there's no gap between that last
4109 		 * dir item and the first one on the next leaf (which did not
4110 		 * change in the current transaction), then we don't need to log
4111 		 * a range, last_old_dentry_offset is == to last_offset.
4112 		 */
4113 		ASSERT(last_old_dentry_offset <= last_offset);
4114 		if (last_old_dentry_offset < last_offset) {
4115 			ret = insert_dir_log_key(trans, log, path, ino,
4116 						 last_old_dentry_offset + 1,
4117 						 last_offset);
4118 			if (ret)
4119 				err = ret;
4120 		}
4121 	}
4122 	return err;
4123 }
4124 
4125 /*
4126  * logging directories is very similar to logging inodes, We find all the items
4127  * from the current transaction and write them to the log.
4128  *
4129  * The recovery code scans the directory in the subvolume, and if it finds a
4130  * key in the range logged that is not present in the log tree, then it means
4131  * that dir entry was unlinked during the transaction.
4132  *
4133  * In order for that scan to work, we must include one key smaller than
4134  * the smallest logged by this transaction and one key larger than the largest
4135  * key logged by this transaction.
4136  */
4137 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4138 			  struct btrfs_inode *inode,
4139 			  struct btrfs_path *path,
4140 			  struct btrfs_path *dst_path,
4141 			  struct btrfs_log_ctx *ctx)
4142 {
4143 	u64 min_key;
4144 	u64 max_key;
4145 	int ret;
4146 
4147 	min_key = BTRFS_DIR_START_INDEX;
4148 	max_key = 0;
4149 	ctx->last_dir_item_offset = inode->last_dir_index_offset;
4150 
4151 	while (1) {
4152 		ret = log_dir_items(trans, inode, path, dst_path,
4153 				ctx, min_key, &max_key);
4154 		if (ret)
4155 			return ret;
4156 		if (max_key == (u64)-1)
4157 			break;
4158 		min_key = max_key + 1;
4159 	}
4160 
4161 	inode->last_dir_index_offset = ctx->last_dir_item_offset;
4162 
4163 	return 0;
4164 }
4165 
4166 /*
4167  * a helper function to drop items from the log before we relog an
4168  * inode.  max_key_type indicates the highest item type to remove.
4169  * This cannot be run for file data extents because it does not
4170  * free the extents they point to.
4171  */
4172 static int drop_inode_items(struct btrfs_trans_handle *trans,
4173 				  struct btrfs_root *log,
4174 				  struct btrfs_path *path,
4175 				  struct btrfs_inode *inode,
4176 				  int max_key_type)
4177 {
4178 	int ret;
4179 	struct btrfs_key key;
4180 	struct btrfs_key found_key;
4181 	int start_slot;
4182 
4183 	key.objectid = btrfs_ino(inode);
4184 	key.type = max_key_type;
4185 	key.offset = (u64)-1;
4186 
4187 	while (1) {
4188 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4189 		BUG_ON(ret == 0); /* Logic error */
4190 		if (ret < 0)
4191 			break;
4192 
4193 		if (path->slots[0] == 0)
4194 			break;
4195 
4196 		path->slots[0]--;
4197 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4198 				      path->slots[0]);
4199 
4200 		if (found_key.objectid != key.objectid)
4201 			break;
4202 
4203 		found_key.offset = 0;
4204 		found_key.type = 0;
4205 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4206 		if (ret < 0)
4207 			break;
4208 
4209 		ret = btrfs_del_items(trans, log, path, start_slot,
4210 				      path->slots[0] - start_slot + 1);
4211 		/*
4212 		 * If start slot isn't 0 then we don't need to re-search, we've
4213 		 * found the last guy with the objectid in this tree.
4214 		 */
4215 		if (ret || start_slot != 0)
4216 			break;
4217 		btrfs_release_path(path);
4218 	}
4219 	btrfs_release_path(path);
4220 	if (ret > 0)
4221 		ret = 0;
4222 	return ret;
4223 }
4224 
4225 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4226 				struct btrfs_root *log_root,
4227 				struct btrfs_inode *inode,
4228 				u64 new_size, u32 min_type)
4229 {
4230 	struct btrfs_truncate_control control = {
4231 		.new_size = new_size,
4232 		.ino = btrfs_ino(inode),
4233 		.min_type = min_type,
4234 		.skip_ref_updates = true,
4235 	};
4236 
4237 	return btrfs_truncate_inode_items(trans, log_root, &control);
4238 }
4239 
4240 static void fill_inode_item(struct btrfs_trans_handle *trans,
4241 			    struct extent_buffer *leaf,
4242 			    struct btrfs_inode_item *item,
4243 			    struct inode *inode, int log_inode_only,
4244 			    u64 logged_isize)
4245 {
4246 	struct btrfs_map_token token;
4247 	u64 flags;
4248 
4249 	btrfs_init_map_token(&token, leaf);
4250 
4251 	if (log_inode_only) {
4252 		/* set the generation to zero so the recover code
4253 		 * can tell the difference between an logging
4254 		 * just to say 'this inode exists' and a logging
4255 		 * to say 'update this inode with these values'
4256 		 */
4257 		btrfs_set_token_inode_generation(&token, item, 0);
4258 		btrfs_set_token_inode_size(&token, item, logged_isize);
4259 	} else {
4260 		btrfs_set_token_inode_generation(&token, item,
4261 						 BTRFS_I(inode)->generation);
4262 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4263 	}
4264 
4265 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4266 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4267 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4268 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4269 
4270 	btrfs_set_token_timespec_sec(&token, &item->atime,
4271 				     inode->i_atime.tv_sec);
4272 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4273 				      inode->i_atime.tv_nsec);
4274 
4275 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4276 				     inode->i_mtime.tv_sec);
4277 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4278 				      inode->i_mtime.tv_nsec);
4279 
4280 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4281 				     inode->i_ctime.tv_sec);
4282 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4283 				      inode->i_ctime.tv_nsec);
4284 
4285 	/*
4286 	 * We do not need to set the nbytes field, in fact during a fast fsync
4287 	 * its value may not even be correct, since a fast fsync does not wait
4288 	 * for ordered extent completion, which is where we update nbytes, it
4289 	 * only waits for writeback to complete. During log replay as we find
4290 	 * file extent items and replay them, we adjust the nbytes field of the
4291 	 * inode item in subvolume tree as needed (see overwrite_item()).
4292 	 */
4293 
4294 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4295 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4296 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4297 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4298 					  BTRFS_I(inode)->ro_flags);
4299 	btrfs_set_token_inode_flags(&token, item, flags);
4300 	btrfs_set_token_inode_block_group(&token, item, 0);
4301 }
4302 
4303 static int log_inode_item(struct btrfs_trans_handle *trans,
4304 			  struct btrfs_root *log, struct btrfs_path *path,
4305 			  struct btrfs_inode *inode, bool inode_item_dropped)
4306 {
4307 	struct btrfs_inode_item *inode_item;
4308 	int ret;
4309 
4310 	/*
4311 	 * If we are doing a fast fsync and the inode was logged before in the
4312 	 * current transaction, then we know the inode was previously logged and
4313 	 * it exists in the log tree. For performance reasons, in this case use
4314 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4315 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4316 	 * contention in case there are concurrent fsyncs for other inodes of the
4317 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4318 	 * already exists can also result in unnecessarily splitting a leaf.
4319 	 */
4320 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4321 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4322 		ASSERT(ret <= 0);
4323 		if (ret > 0)
4324 			ret = -ENOENT;
4325 	} else {
4326 		/*
4327 		 * This means it is the first fsync in the current transaction,
4328 		 * so the inode item is not in the log and we need to insert it.
4329 		 * We can never get -EEXIST because we are only called for a fast
4330 		 * fsync and in case an inode eviction happens after the inode was
4331 		 * logged before in the current transaction, when we load again
4332 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4333 		 * flags and set ->logged_trans to 0.
4334 		 */
4335 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4336 					      sizeof(*inode_item));
4337 		ASSERT(ret != -EEXIST);
4338 	}
4339 	if (ret)
4340 		return ret;
4341 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4342 				    struct btrfs_inode_item);
4343 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4344 			0, 0);
4345 	btrfs_release_path(path);
4346 	return 0;
4347 }
4348 
4349 static int log_csums(struct btrfs_trans_handle *trans,
4350 		     struct btrfs_inode *inode,
4351 		     struct btrfs_root *log_root,
4352 		     struct btrfs_ordered_sum *sums)
4353 {
4354 	const u64 lock_end = sums->bytenr + sums->len - 1;
4355 	struct extent_state *cached_state = NULL;
4356 	int ret;
4357 
4358 	/*
4359 	 * If this inode was not used for reflink operations in the current
4360 	 * transaction with new extents, then do the fast path, no need to
4361 	 * worry about logging checksum items with overlapping ranges.
4362 	 */
4363 	if (inode->last_reflink_trans < trans->transid)
4364 		return btrfs_csum_file_blocks(trans, log_root, sums);
4365 
4366 	/*
4367 	 * Serialize logging for checksums. This is to avoid racing with the
4368 	 * same checksum being logged by another task that is logging another
4369 	 * file which happens to refer to the same extent as well. Such races
4370 	 * can leave checksum items in the log with overlapping ranges.
4371 	 */
4372 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4373 			       lock_end, &cached_state);
4374 	if (ret)
4375 		return ret;
4376 	/*
4377 	 * Due to extent cloning, we might have logged a csum item that covers a
4378 	 * subrange of a cloned extent, and later we can end up logging a csum
4379 	 * item for a larger subrange of the same extent or the entire range.
4380 	 * This would leave csum items in the log tree that cover the same range
4381 	 * and break the searches for checksums in the log tree, resulting in
4382 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4383 	 * trim and adjust) any existing csum items in the log for this range.
4384 	 */
4385 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4386 	if (!ret)
4387 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4388 
4389 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4390 			     &cached_state);
4391 
4392 	return ret;
4393 }
4394 
4395 static noinline int copy_items(struct btrfs_trans_handle *trans,
4396 			       struct btrfs_inode *inode,
4397 			       struct btrfs_path *dst_path,
4398 			       struct btrfs_path *src_path,
4399 			       int start_slot, int nr, int inode_only,
4400 			       u64 logged_isize)
4401 {
4402 	struct btrfs_root *log = inode->root->log_root;
4403 	struct btrfs_file_extent_item *extent;
4404 	struct extent_buffer *src = src_path->nodes[0];
4405 	int ret = 0;
4406 	struct btrfs_key *ins_keys;
4407 	u32 *ins_sizes;
4408 	struct btrfs_item_batch batch;
4409 	char *ins_data;
4410 	int i;
4411 	int dst_index;
4412 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4413 	const u64 i_size = i_size_read(&inode->vfs_inode);
4414 
4415 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4416 			   nr * sizeof(u32), GFP_NOFS);
4417 	if (!ins_data)
4418 		return -ENOMEM;
4419 
4420 	ins_sizes = (u32 *)ins_data;
4421 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4422 	batch.keys = ins_keys;
4423 	batch.data_sizes = ins_sizes;
4424 	batch.total_data_size = 0;
4425 	batch.nr = 0;
4426 
4427 	dst_index = 0;
4428 	for (i = 0; i < nr; i++) {
4429 		const int src_slot = start_slot + i;
4430 		struct btrfs_root *csum_root;
4431 		struct btrfs_ordered_sum *sums;
4432 		struct btrfs_ordered_sum *sums_next;
4433 		LIST_HEAD(ordered_sums);
4434 		u64 disk_bytenr;
4435 		u64 disk_num_bytes;
4436 		u64 extent_offset;
4437 		u64 extent_num_bytes;
4438 		bool is_old_extent;
4439 
4440 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4441 
4442 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4443 			goto add_to_batch;
4444 
4445 		extent = btrfs_item_ptr(src, src_slot,
4446 					struct btrfs_file_extent_item);
4447 
4448 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4449 				 trans->transid);
4450 
4451 		/*
4452 		 * Don't copy extents from past generations. That would make us
4453 		 * log a lot more metadata for common cases like doing only a
4454 		 * few random writes into a file and then fsync it for the first
4455 		 * time or after the full sync flag is set on the inode. We can
4456 		 * get leaves full of extent items, most of which are from past
4457 		 * generations, so we can skip them - as long as the inode has
4458 		 * not been the target of a reflink operation in this transaction,
4459 		 * as in that case it might have had file extent items with old
4460 		 * generations copied into it. We also must always log prealloc
4461 		 * extents that start at or beyond eof, otherwise we would lose
4462 		 * them on log replay.
4463 		 */
4464 		if (is_old_extent &&
4465 		    ins_keys[dst_index].offset < i_size &&
4466 		    inode->last_reflink_trans < trans->transid)
4467 			continue;
4468 
4469 		if (skip_csum)
4470 			goto add_to_batch;
4471 
4472 		/* Only regular extents have checksums. */
4473 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4474 			goto add_to_batch;
4475 
4476 		/*
4477 		 * If it's an extent created in a past transaction, then its
4478 		 * checksums are already accessible from the committed csum tree,
4479 		 * no need to log them.
4480 		 */
4481 		if (is_old_extent)
4482 			goto add_to_batch;
4483 
4484 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4485 		/* If it's an explicit hole, there are no checksums. */
4486 		if (disk_bytenr == 0)
4487 			goto add_to_batch;
4488 
4489 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4490 
4491 		if (btrfs_file_extent_compression(src, extent)) {
4492 			extent_offset = 0;
4493 			extent_num_bytes = disk_num_bytes;
4494 		} else {
4495 			extent_offset = btrfs_file_extent_offset(src, extent);
4496 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4497 		}
4498 
4499 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4500 		disk_bytenr += extent_offset;
4501 		ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4502 					       disk_bytenr + extent_num_bytes - 1,
4503 					       &ordered_sums, 0);
4504 		if (ret)
4505 			goto out;
4506 
4507 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4508 			if (!ret)
4509 				ret = log_csums(trans, inode, log, sums);
4510 			list_del(&sums->list);
4511 			kfree(sums);
4512 		}
4513 		if (ret)
4514 			goto out;
4515 
4516 add_to_batch:
4517 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4518 		batch.total_data_size += ins_sizes[dst_index];
4519 		batch.nr++;
4520 		dst_index++;
4521 	}
4522 
4523 	/*
4524 	 * We have a leaf full of old extent items that don't need to be logged,
4525 	 * so we don't need to do anything.
4526 	 */
4527 	if (batch.nr == 0)
4528 		goto out;
4529 
4530 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4531 	if (ret)
4532 		goto out;
4533 
4534 	dst_index = 0;
4535 	for (i = 0; i < nr; i++) {
4536 		const int src_slot = start_slot + i;
4537 		const int dst_slot = dst_path->slots[0] + dst_index;
4538 		struct btrfs_key key;
4539 		unsigned long src_offset;
4540 		unsigned long dst_offset;
4541 
4542 		/*
4543 		 * We're done, all the remaining items in the source leaf
4544 		 * correspond to old file extent items.
4545 		 */
4546 		if (dst_index >= batch.nr)
4547 			break;
4548 
4549 		btrfs_item_key_to_cpu(src, &key, src_slot);
4550 
4551 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4552 			goto copy_item;
4553 
4554 		extent = btrfs_item_ptr(src, src_slot,
4555 					struct btrfs_file_extent_item);
4556 
4557 		/* See the comment in the previous loop, same logic. */
4558 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4559 		    key.offset < i_size &&
4560 		    inode->last_reflink_trans < trans->transid)
4561 			continue;
4562 
4563 copy_item:
4564 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4565 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4566 
4567 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4568 			struct btrfs_inode_item *inode_item;
4569 
4570 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4571 						    struct btrfs_inode_item);
4572 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4573 					&inode->vfs_inode,
4574 					inode_only == LOG_INODE_EXISTS,
4575 					logged_isize);
4576 		} else {
4577 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4578 					   src_offset, ins_sizes[dst_index]);
4579 		}
4580 
4581 		dst_index++;
4582 	}
4583 
4584 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4585 	btrfs_release_path(dst_path);
4586 out:
4587 	kfree(ins_data);
4588 
4589 	return ret;
4590 }
4591 
4592 static int extent_cmp(void *priv, const struct list_head *a,
4593 		      const struct list_head *b)
4594 {
4595 	const struct extent_map *em1, *em2;
4596 
4597 	em1 = list_entry(a, struct extent_map, list);
4598 	em2 = list_entry(b, struct extent_map, list);
4599 
4600 	if (em1->start < em2->start)
4601 		return -1;
4602 	else if (em1->start > em2->start)
4603 		return 1;
4604 	return 0;
4605 }
4606 
4607 static int log_extent_csums(struct btrfs_trans_handle *trans,
4608 			    struct btrfs_inode *inode,
4609 			    struct btrfs_root *log_root,
4610 			    const struct extent_map *em,
4611 			    struct btrfs_log_ctx *ctx)
4612 {
4613 	struct btrfs_ordered_extent *ordered;
4614 	struct btrfs_root *csum_root;
4615 	u64 csum_offset;
4616 	u64 csum_len;
4617 	u64 mod_start = em->mod_start;
4618 	u64 mod_len = em->mod_len;
4619 	LIST_HEAD(ordered_sums);
4620 	int ret = 0;
4621 
4622 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4623 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4624 	    em->block_start == EXTENT_MAP_HOLE)
4625 		return 0;
4626 
4627 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4628 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4629 		const u64 mod_end = mod_start + mod_len;
4630 		struct btrfs_ordered_sum *sums;
4631 
4632 		if (mod_len == 0)
4633 			break;
4634 
4635 		if (ordered_end <= mod_start)
4636 			continue;
4637 		if (mod_end <= ordered->file_offset)
4638 			break;
4639 
4640 		/*
4641 		 * We are going to copy all the csums on this ordered extent, so
4642 		 * go ahead and adjust mod_start and mod_len in case this ordered
4643 		 * extent has already been logged.
4644 		 */
4645 		if (ordered->file_offset > mod_start) {
4646 			if (ordered_end >= mod_end)
4647 				mod_len = ordered->file_offset - mod_start;
4648 			/*
4649 			 * If we have this case
4650 			 *
4651 			 * |--------- logged extent ---------|
4652 			 *       |----- ordered extent ----|
4653 			 *
4654 			 * Just don't mess with mod_start and mod_len, we'll
4655 			 * just end up logging more csums than we need and it
4656 			 * will be ok.
4657 			 */
4658 		} else {
4659 			if (ordered_end < mod_end) {
4660 				mod_len = mod_end - ordered_end;
4661 				mod_start = ordered_end;
4662 			} else {
4663 				mod_len = 0;
4664 			}
4665 		}
4666 
4667 		/*
4668 		 * To keep us from looping for the above case of an ordered
4669 		 * extent that falls inside of the logged extent.
4670 		 */
4671 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4672 			continue;
4673 
4674 		list_for_each_entry(sums, &ordered->list, list) {
4675 			ret = log_csums(trans, inode, log_root, sums);
4676 			if (ret)
4677 				return ret;
4678 		}
4679 	}
4680 
4681 	/* We're done, found all csums in the ordered extents. */
4682 	if (mod_len == 0)
4683 		return 0;
4684 
4685 	/* If we're compressed we have to save the entire range of csums. */
4686 	if (em->compress_type) {
4687 		csum_offset = 0;
4688 		csum_len = max(em->block_len, em->orig_block_len);
4689 	} else {
4690 		csum_offset = mod_start - em->start;
4691 		csum_len = mod_len;
4692 	}
4693 
4694 	/* block start is already adjusted for the file extent offset. */
4695 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4696 	ret = btrfs_lookup_csums_range(csum_root,
4697 				       em->block_start + csum_offset,
4698 				       em->block_start + csum_offset +
4699 				       csum_len - 1, &ordered_sums, 0);
4700 	if (ret)
4701 		return ret;
4702 
4703 	while (!list_empty(&ordered_sums)) {
4704 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4705 						   struct btrfs_ordered_sum,
4706 						   list);
4707 		if (!ret)
4708 			ret = log_csums(trans, inode, log_root, sums);
4709 		list_del(&sums->list);
4710 		kfree(sums);
4711 	}
4712 
4713 	return ret;
4714 }
4715 
4716 static int log_one_extent(struct btrfs_trans_handle *trans,
4717 			  struct btrfs_inode *inode,
4718 			  const struct extent_map *em,
4719 			  struct btrfs_path *path,
4720 			  struct btrfs_log_ctx *ctx)
4721 {
4722 	struct btrfs_drop_extents_args drop_args = { 0 };
4723 	struct btrfs_root *log = inode->root->log_root;
4724 	struct btrfs_file_extent_item fi = { 0 };
4725 	struct extent_buffer *leaf;
4726 	struct btrfs_key key;
4727 	u64 extent_offset = em->start - em->orig_start;
4728 	u64 block_len;
4729 	int ret;
4730 
4731 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4732 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4733 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4734 	else
4735 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4736 
4737 	block_len = max(em->block_len, em->orig_block_len);
4738 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4739 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4740 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4741 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4742 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4743 							extent_offset);
4744 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4745 	}
4746 
4747 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4748 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4749 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4750 	btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4751 
4752 	ret = log_extent_csums(trans, inode, log, em, ctx);
4753 	if (ret)
4754 		return ret;
4755 
4756 	/*
4757 	 * If this is the first time we are logging the inode in the current
4758 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4759 	 * because it does a deletion search, which always acquires write locks
4760 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4761 	 * but also adds significant contention in a log tree, since log trees
4762 	 * are small, with a root at level 2 or 3 at most, due to their short
4763 	 * life span.
4764 	 */
4765 	if (ctx->logged_before) {
4766 		drop_args.path = path;
4767 		drop_args.start = em->start;
4768 		drop_args.end = em->start + em->len;
4769 		drop_args.replace_extent = true;
4770 		drop_args.extent_item_size = sizeof(fi);
4771 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4772 		if (ret)
4773 			return ret;
4774 	}
4775 
4776 	if (!drop_args.extent_inserted) {
4777 		key.objectid = btrfs_ino(inode);
4778 		key.type = BTRFS_EXTENT_DATA_KEY;
4779 		key.offset = em->start;
4780 
4781 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4782 					      sizeof(fi));
4783 		if (ret)
4784 			return ret;
4785 	}
4786 	leaf = path->nodes[0];
4787 	write_extent_buffer(leaf, &fi,
4788 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4789 			    sizeof(fi));
4790 	btrfs_mark_buffer_dirty(leaf);
4791 
4792 	btrfs_release_path(path);
4793 
4794 	return ret;
4795 }
4796 
4797 /*
4798  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4799  * lose them after doing a full/fast fsync and replaying the log. We scan the
4800  * subvolume's root instead of iterating the inode's extent map tree because
4801  * otherwise we can log incorrect extent items based on extent map conversion.
4802  * That can happen due to the fact that extent maps are merged when they
4803  * are not in the extent map tree's list of modified extents.
4804  */
4805 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4806 				      struct btrfs_inode *inode,
4807 				      struct btrfs_path *path)
4808 {
4809 	struct btrfs_root *root = inode->root;
4810 	struct btrfs_key key;
4811 	const u64 i_size = i_size_read(&inode->vfs_inode);
4812 	const u64 ino = btrfs_ino(inode);
4813 	struct btrfs_path *dst_path = NULL;
4814 	bool dropped_extents = false;
4815 	u64 truncate_offset = i_size;
4816 	struct extent_buffer *leaf;
4817 	int slot;
4818 	int ins_nr = 0;
4819 	int start_slot;
4820 	int ret;
4821 
4822 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4823 		return 0;
4824 
4825 	key.objectid = ino;
4826 	key.type = BTRFS_EXTENT_DATA_KEY;
4827 	key.offset = i_size;
4828 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4829 	if (ret < 0)
4830 		goto out;
4831 
4832 	/*
4833 	 * We must check if there is a prealloc extent that starts before the
4834 	 * i_size and crosses the i_size boundary. This is to ensure later we
4835 	 * truncate down to the end of that extent and not to the i_size, as
4836 	 * otherwise we end up losing part of the prealloc extent after a log
4837 	 * replay and with an implicit hole if there is another prealloc extent
4838 	 * that starts at an offset beyond i_size.
4839 	 */
4840 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4841 	if (ret < 0)
4842 		goto out;
4843 
4844 	if (ret == 0) {
4845 		struct btrfs_file_extent_item *ei;
4846 
4847 		leaf = path->nodes[0];
4848 		slot = path->slots[0];
4849 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4850 
4851 		if (btrfs_file_extent_type(leaf, ei) ==
4852 		    BTRFS_FILE_EXTENT_PREALLOC) {
4853 			u64 extent_end;
4854 
4855 			btrfs_item_key_to_cpu(leaf, &key, slot);
4856 			extent_end = key.offset +
4857 				btrfs_file_extent_num_bytes(leaf, ei);
4858 
4859 			if (extent_end > i_size)
4860 				truncate_offset = extent_end;
4861 		}
4862 	} else {
4863 		ret = 0;
4864 	}
4865 
4866 	while (true) {
4867 		leaf = path->nodes[0];
4868 		slot = path->slots[0];
4869 
4870 		if (slot >= btrfs_header_nritems(leaf)) {
4871 			if (ins_nr > 0) {
4872 				ret = copy_items(trans, inode, dst_path, path,
4873 						 start_slot, ins_nr, 1, 0);
4874 				if (ret < 0)
4875 					goto out;
4876 				ins_nr = 0;
4877 			}
4878 			ret = btrfs_next_leaf(root, path);
4879 			if (ret < 0)
4880 				goto out;
4881 			if (ret > 0) {
4882 				ret = 0;
4883 				break;
4884 			}
4885 			continue;
4886 		}
4887 
4888 		btrfs_item_key_to_cpu(leaf, &key, slot);
4889 		if (key.objectid > ino)
4890 			break;
4891 		if (WARN_ON_ONCE(key.objectid < ino) ||
4892 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4893 		    key.offset < i_size) {
4894 			path->slots[0]++;
4895 			continue;
4896 		}
4897 		if (!dropped_extents) {
4898 			/*
4899 			 * Avoid logging extent items logged in past fsync calls
4900 			 * and leading to duplicate keys in the log tree.
4901 			 */
4902 			ret = truncate_inode_items(trans, root->log_root, inode,
4903 						   truncate_offset,
4904 						   BTRFS_EXTENT_DATA_KEY);
4905 			if (ret)
4906 				goto out;
4907 			dropped_extents = true;
4908 		}
4909 		if (ins_nr == 0)
4910 			start_slot = slot;
4911 		ins_nr++;
4912 		path->slots[0]++;
4913 		if (!dst_path) {
4914 			dst_path = btrfs_alloc_path();
4915 			if (!dst_path) {
4916 				ret = -ENOMEM;
4917 				goto out;
4918 			}
4919 		}
4920 	}
4921 	if (ins_nr > 0)
4922 		ret = copy_items(trans, inode, dst_path, path,
4923 				 start_slot, ins_nr, 1, 0);
4924 out:
4925 	btrfs_release_path(path);
4926 	btrfs_free_path(dst_path);
4927 	return ret;
4928 }
4929 
4930 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4931 				     struct btrfs_inode *inode,
4932 				     struct btrfs_path *path,
4933 				     struct btrfs_log_ctx *ctx)
4934 {
4935 	struct btrfs_ordered_extent *ordered;
4936 	struct btrfs_ordered_extent *tmp;
4937 	struct extent_map *em, *n;
4938 	struct list_head extents;
4939 	struct extent_map_tree *tree = &inode->extent_tree;
4940 	int ret = 0;
4941 	int num = 0;
4942 
4943 	INIT_LIST_HEAD(&extents);
4944 
4945 	write_lock(&tree->lock);
4946 
4947 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4948 		list_del_init(&em->list);
4949 		/*
4950 		 * Just an arbitrary number, this can be really CPU intensive
4951 		 * once we start getting a lot of extents, and really once we
4952 		 * have a bunch of extents we just want to commit since it will
4953 		 * be faster.
4954 		 */
4955 		if (++num > 32768) {
4956 			list_del_init(&tree->modified_extents);
4957 			ret = -EFBIG;
4958 			goto process;
4959 		}
4960 
4961 		if (em->generation < trans->transid)
4962 			continue;
4963 
4964 		/* We log prealloc extents beyond eof later. */
4965 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4966 		    em->start >= i_size_read(&inode->vfs_inode))
4967 			continue;
4968 
4969 		/* Need a ref to keep it from getting evicted from cache */
4970 		refcount_inc(&em->refs);
4971 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4972 		list_add_tail(&em->list, &extents);
4973 		num++;
4974 	}
4975 
4976 	list_sort(NULL, &extents, extent_cmp);
4977 process:
4978 	while (!list_empty(&extents)) {
4979 		em = list_entry(extents.next, struct extent_map, list);
4980 
4981 		list_del_init(&em->list);
4982 
4983 		/*
4984 		 * If we had an error we just need to delete everybody from our
4985 		 * private list.
4986 		 */
4987 		if (ret) {
4988 			clear_em_logging(tree, em);
4989 			free_extent_map(em);
4990 			continue;
4991 		}
4992 
4993 		write_unlock(&tree->lock);
4994 
4995 		ret = log_one_extent(trans, inode, em, path, ctx);
4996 		write_lock(&tree->lock);
4997 		clear_em_logging(tree, em);
4998 		free_extent_map(em);
4999 	}
5000 	WARN_ON(!list_empty(&extents));
5001 	write_unlock(&tree->lock);
5002 
5003 	if (!ret)
5004 		ret = btrfs_log_prealloc_extents(trans, inode, path);
5005 	if (ret)
5006 		return ret;
5007 
5008 	/*
5009 	 * We have logged all extents successfully, now make sure the commit of
5010 	 * the current transaction waits for the ordered extents to complete
5011 	 * before it commits and wipes out the log trees, otherwise we would
5012 	 * lose data if an ordered extents completes after the transaction
5013 	 * commits and a power failure happens after the transaction commit.
5014 	 */
5015 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5016 		list_del_init(&ordered->log_list);
5017 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5018 
5019 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5020 			spin_lock_irq(&inode->ordered_tree.lock);
5021 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5022 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5023 				atomic_inc(&trans->transaction->pending_ordered);
5024 			}
5025 			spin_unlock_irq(&inode->ordered_tree.lock);
5026 		}
5027 		btrfs_put_ordered_extent(ordered);
5028 	}
5029 
5030 	return 0;
5031 }
5032 
5033 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5034 			     struct btrfs_path *path, u64 *size_ret)
5035 {
5036 	struct btrfs_key key;
5037 	int ret;
5038 
5039 	key.objectid = btrfs_ino(inode);
5040 	key.type = BTRFS_INODE_ITEM_KEY;
5041 	key.offset = 0;
5042 
5043 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5044 	if (ret < 0) {
5045 		return ret;
5046 	} else if (ret > 0) {
5047 		*size_ret = 0;
5048 	} else {
5049 		struct btrfs_inode_item *item;
5050 
5051 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5052 				      struct btrfs_inode_item);
5053 		*size_ret = btrfs_inode_size(path->nodes[0], item);
5054 		/*
5055 		 * If the in-memory inode's i_size is smaller then the inode
5056 		 * size stored in the btree, return the inode's i_size, so
5057 		 * that we get a correct inode size after replaying the log
5058 		 * when before a power failure we had a shrinking truncate
5059 		 * followed by addition of a new name (rename / new hard link).
5060 		 * Otherwise return the inode size from the btree, to avoid
5061 		 * data loss when replaying a log due to previously doing a
5062 		 * write that expands the inode's size and logging a new name
5063 		 * immediately after.
5064 		 */
5065 		if (*size_ret > inode->vfs_inode.i_size)
5066 			*size_ret = inode->vfs_inode.i_size;
5067 	}
5068 
5069 	btrfs_release_path(path);
5070 	return 0;
5071 }
5072 
5073 /*
5074  * At the moment we always log all xattrs. This is to figure out at log replay
5075  * time which xattrs must have their deletion replayed. If a xattr is missing
5076  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5077  * because if a xattr is deleted, the inode is fsynced and a power failure
5078  * happens, causing the log to be replayed the next time the fs is mounted,
5079  * we want the xattr to not exist anymore (same behaviour as other filesystems
5080  * with a journal, ext3/4, xfs, f2fs, etc).
5081  */
5082 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5083 				struct btrfs_inode *inode,
5084 				struct btrfs_path *path,
5085 				struct btrfs_path *dst_path)
5086 {
5087 	struct btrfs_root *root = inode->root;
5088 	int ret;
5089 	struct btrfs_key key;
5090 	const u64 ino = btrfs_ino(inode);
5091 	int ins_nr = 0;
5092 	int start_slot = 0;
5093 	bool found_xattrs = false;
5094 
5095 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5096 		return 0;
5097 
5098 	key.objectid = ino;
5099 	key.type = BTRFS_XATTR_ITEM_KEY;
5100 	key.offset = 0;
5101 
5102 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5103 	if (ret < 0)
5104 		return ret;
5105 
5106 	while (true) {
5107 		int slot = path->slots[0];
5108 		struct extent_buffer *leaf = path->nodes[0];
5109 		int nritems = btrfs_header_nritems(leaf);
5110 
5111 		if (slot >= nritems) {
5112 			if (ins_nr > 0) {
5113 				ret = copy_items(trans, inode, dst_path, path,
5114 						 start_slot, ins_nr, 1, 0);
5115 				if (ret < 0)
5116 					return ret;
5117 				ins_nr = 0;
5118 			}
5119 			ret = btrfs_next_leaf(root, path);
5120 			if (ret < 0)
5121 				return ret;
5122 			else if (ret > 0)
5123 				break;
5124 			continue;
5125 		}
5126 
5127 		btrfs_item_key_to_cpu(leaf, &key, slot);
5128 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5129 			break;
5130 
5131 		if (ins_nr == 0)
5132 			start_slot = slot;
5133 		ins_nr++;
5134 		path->slots[0]++;
5135 		found_xattrs = true;
5136 		cond_resched();
5137 	}
5138 	if (ins_nr > 0) {
5139 		ret = copy_items(trans, inode, dst_path, path,
5140 				 start_slot, ins_nr, 1, 0);
5141 		if (ret < 0)
5142 			return ret;
5143 	}
5144 
5145 	if (!found_xattrs)
5146 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5147 
5148 	return 0;
5149 }
5150 
5151 /*
5152  * When using the NO_HOLES feature if we punched a hole that causes the
5153  * deletion of entire leafs or all the extent items of the first leaf (the one
5154  * that contains the inode item and references) we may end up not processing
5155  * any extents, because there are no leafs with a generation matching the
5156  * current transaction that have extent items for our inode. So we need to find
5157  * if any holes exist and then log them. We also need to log holes after any
5158  * truncate operation that changes the inode's size.
5159  */
5160 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5161 			   struct btrfs_inode *inode,
5162 			   struct btrfs_path *path)
5163 {
5164 	struct btrfs_root *root = inode->root;
5165 	struct btrfs_fs_info *fs_info = root->fs_info;
5166 	struct btrfs_key key;
5167 	const u64 ino = btrfs_ino(inode);
5168 	const u64 i_size = i_size_read(&inode->vfs_inode);
5169 	u64 prev_extent_end = 0;
5170 	int ret;
5171 
5172 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5173 		return 0;
5174 
5175 	key.objectid = ino;
5176 	key.type = BTRFS_EXTENT_DATA_KEY;
5177 	key.offset = 0;
5178 
5179 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5180 	if (ret < 0)
5181 		return ret;
5182 
5183 	while (true) {
5184 		struct extent_buffer *leaf = path->nodes[0];
5185 
5186 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5187 			ret = btrfs_next_leaf(root, path);
5188 			if (ret < 0)
5189 				return ret;
5190 			if (ret > 0) {
5191 				ret = 0;
5192 				break;
5193 			}
5194 			leaf = path->nodes[0];
5195 		}
5196 
5197 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5198 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5199 			break;
5200 
5201 		/* We have a hole, log it. */
5202 		if (prev_extent_end < key.offset) {
5203 			const u64 hole_len = key.offset - prev_extent_end;
5204 
5205 			/*
5206 			 * Release the path to avoid deadlocks with other code
5207 			 * paths that search the root while holding locks on
5208 			 * leafs from the log root.
5209 			 */
5210 			btrfs_release_path(path);
5211 			ret = btrfs_insert_file_extent(trans, root->log_root,
5212 						       ino, prev_extent_end, 0,
5213 						       0, hole_len, 0, hole_len,
5214 						       0, 0, 0);
5215 			if (ret < 0)
5216 				return ret;
5217 
5218 			/*
5219 			 * Search for the same key again in the root. Since it's
5220 			 * an extent item and we are holding the inode lock, the
5221 			 * key must still exist. If it doesn't just emit warning
5222 			 * and return an error to fall back to a transaction
5223 			 * commit.
5224 			 */
5225 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5226 			if (ret < 0)
5227 				return ret;
5228 			if (WARN_ON(ret > 0))
5229 				return -ENOENT;
5230 			leaf = path->nodes[0];
5231 		}
5232 
5233 		prev_extent_end = btrfs_file_extent_end(path);
5234 		path->slots[0]++;
5235 		cond_resched();
5236 	}
5237 
5238 	if (prev_extent_end < i_size) {
5239 		u64 hole_len;
5240 
5241 		btrfs_release_path(path);
5242 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5243 		ret = btrfs_insert_file_extent(trans, root->log_root,
5244 					       ino, prev_extent_end, 0, 0,
5245 					       hole_len, 0, hole_len,
5246 					       0, 0, 0);
5247 		if (ret < 0)
5248 			return ret;
5249 	}
5250 
5251 	return 0;
5252 }
5253 
5254 /*
5255  * When we are logging a new inode X, check if it doesn't have a reference that
5256  * matches the reference from some other inode Y created in a past transaction
5257  * and that was renamed in the current transaction. If we don't do this, then at
5258  * log replay time we can lose inode Y (and all its files if it's a directory):
5259  *
5260  * mkdir /mnt/x
5261  * echo "hello world" > /mnt/x/foobar
5262  * sync
5263  * mv /mnt/x /mnt/y
5264  * mkdir /mnt/x                 # or touch /mnt/x
5265  * xfs_io -c fsync /mnt/x
5266  * <power fail>
5267  * mount fs, trigger log replay
5268  *
5269  * After the log replay procedure, we would lose the first directory and all its
5270  * files (file foobar).
5271  * For the case where inode Y is not a directory we simply end up losing it:
5272  *
5273  * echo "123" > /mnt/foo
5274  * sync
5275  * mv /mnt/foo /mnt/bar
5276  * echo "abc" > /mnt/foo
5277  * xfs_io -c fsync /mnt/foo
5278  * <power fail>
5279  *
5280  * We also need this for cases where a snapshot entry is replaced by some other
5281  * entry (file or directory) otherwise we end up with an unreplayable log due to
5282  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5283  * if it were a regular entry:
5284  *
5285  * mkdir /mnt/x
5286  * btrfs subvolume snapshot /mnt /mnt/x/snap
5287  * btrfs subvolume delete /mnt/x/snap
5288  * rmdir /mnt/x
5289  * mkdir /mnt/x
5290  * fsync /mnt/x or fsync some new file inside it
5291  * <power fail>
5292  *
5293  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5294  * the same transaction.
5295  */
5296 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5297 					 const int slot,
5298 					 const struct btrfs_key *key,
5299 					 struct btrfs_inode *inode,
5300 					 u64 *other_ino, u64 *other_parent)
5301 {
5302 	int ret;
5303 	struct btrfs_path *search_path;
5304 	char *name = NULL;
5305 	u32 name_len = 0;
5306 	u32 item_size = btrfs_item_size(eb, slot);
5307 	u32 cur_offset = 0;
5308 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5309 
5310 	search_path = btrfs_alloc_path();
5311 	if (!search_path)
5312 		return -ENOMEM;
5313 	search_path->search_commit_root = 1;
5314 	search_path->skip_locking = 1;
5315 
5316 	while (cur_offset < item_size) {
5317 		u64 parent;
5318 		u32 this_name_len;
5319 		u32 this_len;
5320 		unsigned long name_ptr;
5321 		struct btrfs_dir_item *di;
5322 
5323 		if (key->type == BTRFS_INODE_REF_KEY) {
5324 			struct btrfs_inode_ref *iref;
5325 
5326 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5327 			parent = key->offset;
5328 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5329 			name_ptr = (unsigned long)(iref + 1);
5330 			this_len = sizeof(*iref) + this_name_len;
5331 		} else {
5332 			struct btrfs_inode_extref *extref;
5333 
5334 			extref = (struct btrfs_inode_extref *)(ptr +
5335 							       cur_offset);
5336 			parent = btrfs_inode_extref_parent(eb, extref);
5337 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5338 			name_ptr = (unsigned long)&extref->name;
5339 			this_len = sizeof(*extref) + this_name_len;
5340 		}
5341 
5342 		if (this_name_len > name_len) {
5343 			char *new_name;
5344 
5345 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5346 			if (!new_name) {
5347 				ret = -ENOMEM;
5348 				goto out;
5349 			}
5350 			name_len = this_name_len;
5351 			name = new_name;
5352 		}
5353 
5354 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5355 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5356 				parent, name, this_name_len, 0);
5357 		if (di && !IS_ERR(di)) {
5358 			struct btrfs_key di_key;
5359 
5360 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5361 						  di, &di_key);
5362 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5363 				if (di_key.objectid != key->objectid) {
5364 					ret = 1;
5365 					*other_ino = di_key.objectid;
5366 					*other_parent = parent;
5367 				} else {
5368 					ret = 0;
5369 				}
5370 			} else {
5371 				ret = -EAGAIN;
5372 			}
5373 			goto out;
5374 		} else if (IS_ERR(di)) {
5375 			ret = PTR_ERR(di);
5376 			goto out;
5377 		}
5378 		btrfs_release_path(search_path);
5379 
5380 		cur_offset += this_len;
5381 	}
5382 	ret = 0;
5383 out:
5384 	btrfs_free_path(search_path);
5385 	kfree(name);
5386 	return ret;
5387 }
5388 
5389 struct btrfs_ino_list {
5390 	u64 ino;
5391 	u64 parent;
5392 	struct list_head list;
5393 };
5394 
5395 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5396 				  struct btrfs_root *root,
5397 				  struct btrfs_path *path,
5398 				  struct btrfs_log_ctx *ctx,
5399 				  u64 ino, u64 parent)
5400 {
5401 	struct btrfs_ino_list *ino_elem;
5402 	LIST_HEAD(inode_list);
5403 	int ret = 0;
5404 
5405 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5406 	if (!ino_elem)
5407 		return -ENOMEM;
5408 	ino_elem->ino = ino;
5409 	ino_elem->parent = parent;
5410 	list_add_tail(&ino_elem->list, &inode_list);
5411 
5412 	while (!list_empty(&inode_list)) {
5413 		struct btrfs_fs_info *fs_info = root->fs_info;
5414 		struct btrfs_key key;
5415 		struct inode *inode;
5416 
5417 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5418 					    list);
5419 		ino = ino_elem->ino;
5420 		parent = ino_elem->parent;
5421 		list_del(&ino_elem->list);
5422 		kfree(ino_elem);
5423 		if (ret)
5424 			continue;
5425 
5426 		btrfs_release_path(path);
5427 
5428 		inode = btrfs_iget(fs_info->sb, ino, root);
5429 		/*
5430 		 * If the other inode that had a conflicting dir entry was
5431 		 * deleted in the current transaction, we need to log its parent
5432 		 * directory.
5433 		 */
5434 		if (IS_ERR(inode)) {
5435 			ret = PTR_ERR(inode);
5436 			if (ret == -ENOENT) {
5437 				inode = btrfs_iget(fs_info->sb, parent, root);
5438 				if (IS_ERR(inode)) {
5439 					ret = PTR_ERR(inode);
5440 				} else {
5441 					ret = btrfs_log_inode(trans,
5442 						      BTRFS_I(inode),
5443 						      LOG_OTHER_INODE_ALL,
5444 						      ctx);
5445 					btrfs_add_delayed_iput(inode);
5446 				}
5447 			}
5448 			continue;
5449 		}
5450 		/*
5451 		 * If the inode was already logged skip it - otherwise we can
5452 		 * hit an infinite loop. Example:
5453 		 *
5454 		 * From the commit root (previous transaction) we have the
5455 		 * following inodes:
5456 		 *
5457 		 * inode 257 a directory
5458 		 * inode 258 with references "zz" and "zz_link" on inode 257
5459 		 * inode 259 with reference "a" on inode 257
5460 		 *
5461 		 * And in the current (uncommitted) transaction we have:
5462 		 *
5463 		 * inode 257 a directory, unchanged
5464 		 * inode 258 with references "a" and "a2" on inode 257
5465 		 * inode 259 with reference "zz_link" on inode 257
5466 		 * inode 261 with reference "zz" on inode 257
5467 		 *
5468 		 * When logging inode 261 the following infinite loop could
5469 		 * happen if we don't skip already logged inodes:
5470 		 *
5471 		 * - we detect inode 258 as a conflicting inode, with inode 261
5472 		 *   on reference "zz", and log it;
5473 		 *
5474 		 * - we detect inode 259 as a conflicting inode, with inode 258
5475 		 *   on reference "a", and log it;
5476 		 *
5477 		 * - we detect inode 258 as a conflicting inode, with inode 259
5478 		 *   on reference "zz_link", and log it - again! After this we
5479 		 *   repeat the above steps forever.
5480 		 */
5481 		spin_lock(&BTRFS_I(inode)->lock);
5482 		/*
5483 		 * Check the inode's logged_trans only instead of
5484 		 * btrfs_inode_in_log(). This is because the last_log_commit of
5485 		 * the inode is not updated when we only log that it exists (see
5486 		 * btrfs_log_inode()).
5487 		 */
5488 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
5489 			spin_unlock(&BTRFS_I(inode)->lock);
5490 			btrfs_add_delayed_iput(inode);
5491 			continue;
5492 		}
5493 		spin_unlock(&BTRFS_I(inode)->lock);
5494 		/*
5495 		 * We are safe logging the other inode without acquiring its
5496 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5497 		 * are safe against concurrent renames of the other inode as
5498 		 * well because during a rename we pin the log and update the
5499 		 * log with the new name before we unpin it.
5500 		 */
5501 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx);
5502 		if (ret) {
5503 			btrfs_add_delayed_iput(inode);
5504 			continue;
5505 		}
5506 
5507 		key.objectid = ino;
5508 		key.type = BTRFS_INODE_REF_KEY;
5509 		key.offset = 0;
5510 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5511 		if (ret < 0) {
5512 			btrfs_add_delayed_iput(inode);
5513 			continue;
5514 		}
5515 
5516 		while (true) {
5517 			struct extent_buffer *leaf = path->nodes[0];
5518 			int slot = path->slots[0];
5519 			u64 other_ino = 0;
5520 			u64 other_parent = 0;
5521 
5522 			if (slot >= btrfs_header_nritems(leaf)) {
5523 				ret = btrfs_next_leaf(root, path);
5524 				if (ret < 0) {
5525 					break;
5526 				} else if (ret > 0) {
5527 					ret = 0;
5528 					break;
5529 				}
5530 				continue;
5531 			}
5532 
5533 			btrfs_item_key_to_cpu(leaf, &key, slot);
5534 			if (key.objectid != ino ||
5535 			    (key.type != BTRFS_INODE_REF_KEY &&
5536 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5537 				ret = 0;
5538 				break;
5539 			}
5540 
5541 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5542 					BTRFS_I(inode), &other_ino,
5543 					&other_parent);
5544 			if (ret < 0)
5545 				break;
5546 			if (ret > 0) {
5547 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5548 				if (!ino_elem) {
5549 					ret = -ENOMEM;
5550 					break;
5551 				}
5552 				ino_elem->ino = other_ino;
5553 				ino_elem->parent = other_parent;
5554 				list_add_tail(&ino_elem->list, &inode_list);
5555 				ret = 0;
5556 			}
5557 			path->slots[0]++;
5558 		}
5559 		btrfs_add_delayed_iput(inode);
5560 	}
5561 
5562 	return ret;
5563 }
5564 
5565 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5566 				   struct btrfs_inode *inode,
5567 				   struct btrfs_key *min_key,
5568 				   const struct btrfs_key *max_key,
5569 				   struct btrfs_path *path,
5570 				   struct btrfs_path *dst_path,
5571 				   const u64 logged_isize,
5572 				   const bool recursive_logging,
5573 				   const int inode_only,
5574 				   struct btrfs_log_ctx *ctx,
5575 				   bool *need_log_inode_item)
5576 {
5577 	const u64 i_size = i_size_read(&inode->vfs_inode);
5578 	struct btrfs_root *root = inode->root;
5579 	int ins_start_slot = 0;
5580 	int ins_nr = 0;
5581 	int ret;
5582 
5583 	while (1) {
5584 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5585 		if (ret < 0)
5586 			return ret;
5587 		if (ret > 0) {
5588 			ret = 0;
5589 			break;
5590 		}
5591 again:
5592 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5593 		if (min_key->objectid != max_key->objectid)
5594 			break;
5595 		if (min_key->type > max_key->type)
5596 			break;
5597 
5598 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5599 			*need_log_inode_item = false;
5600 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5601 			   min_key->offset >= i_size) {
5602 			/*
5603 			 * Extents at and beyond eof are logged with
5604 			 * btrfs_log_prealloc_extents().
5605 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5606 			 * and no keys greater than that, so bail out.
5607 			 */
5608 			break;
5609 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5610 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5611 			   inode->generation == trans->transid &&
5612 			   !recursive_logging) {
5613 			u64 other_ino = 0;
5614 			u64 other_parent = 0;
5615 
5616 			ret = btrfs_check_ref_name_override(path->nodes[0],
5617 					path->slots[0], min_key, inode,
5618 					&other_ino, &other_parent);
5619 			if (ret < 0) {
5620 				return ret;
5621 			} else if (ret > 0 &&
5622 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5623 				if (ins_nr > 0) {
5624 					ins_nr++;
5625 				} else {
5626 					ins_nr = 1;
5627 					ins_start_slot = path->slots[0];
5628 				}
5629 				ret = copy_items(trans, inode, dst_path, path,
5630 						 ins_start_slot, ins_nr,
5631 						 inode_only, logged_isize);
5632 				if (ret < 0)
5633 					return ret;
5634 				ins_nr = 0;
5635 
5636 				ret = log_conflicting_inodes(trans, root, path,
5637 						ctx, other_ino, other_parent);
5638 				if (ret)
5639 					return ret;
5640 				btrfs_release_path(path);
5641 				goto next_key;
5642 			}
5643 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5644 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5645 			if (ins_nr == 0)
5646 				goto next_slot;
5647 			ret = copy_items(trans, inode, dst_path, path,
5648 					 ins_start_slot,
5649 					 ins_nr, inode_only, logged_isize);
5650 			if (ret < 0)
5651 				return ret;
5652 			ins_nr = 0;
5653 			goto next_slot;
5654 		}
5655 
5656 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5657 			ins_nr++;
5658 			goto next_slot;
5659 		} else if (!ins_nr) {
5660 			ins_start_slot = path->slots[0];
5661 			ins_nr = 1;
5662 			goto next_slot;
5663 		}
5664 
5665 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5666 				 ins_nr, inode_only, logged_isize);
5667 		if (ret < 0)
5668 			return ret;
5669 		ins_nr = 1;
5670 		ins_start_slot = path->slots[0];
5671 next_slot:
5672 		path->slots[0]++;
5673 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5674 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5675 					      path->slots[0]);
5676 			goto again;
5677 		}
5678 		if (ins_nr) {
5679 			ret = copy_items(trans, inode, dst_path, path,
5680 					 ins_start_slot, ins_nr, inode_only,
5681 					 logged_isize);
5682 			if (ret < 0)
5683 				return ret;
5684 			ins_nr = 0;
5685 		}
5686 		btrfs_release_path(path);
5687 next_key:
5688 		if (min_key->offset < (u64)-1) {
5689 			min_key->offset++;
5690 		} else if (min_key->type < max_key->type) {
5691 			min_key->type++;
5692 			min_key->offset = 0;
5693 		} else {
5694 			break;
5695 		}
5696 
5697 		/*
5698 		 * We may process many leaves full of items for our inode, so
5699 		 * avoid monopolizing a cpu for too long by rescheduling while
5700 		 * not holding locks on any tree.
5701 		 */
5702 		cond_resched();
5703 	}
5704 	if (ins_nr) {
5705 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5706 				 ins_nr, inode_only, logged_isize);
5707 		if (ret)
5708 			return ret;
5709 	}
5710 
5711 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5712 		/*
5713 		 * Release the path because otherwise we might attempt to double
5714 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5715 		 */
5716 		btrfs_release_path(path);
5717 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5718 	}
5719 
5720 	return ret;
5721 }
5722 
5723 /* log a single inode in the tree log.
5724  * At least one parent directory for this inode must exist in the tree
5725  * or be logged already.
5726  *
5727  * Any items from this inode changed by the current transaction are copied
5728  * to the log tree.  An extra reference is taken on any extents in this
5729  * file, allowing us to avoid a whole pile of corner cases around logging
5730  * blocks that have been removed from the tree.
5731  *
5732  * See LOG_INODE_ALL and related defines for a description of what inode_only
5733  * does.
5734  *
5735  * This handles both files and directories.
5736  */
5737 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5738 			   struct btrfs_inode *inode,
5739 			   int inode_only,
5740 			   struct btrfs_log_ctx *ctx)
5741 {
5742 	struct btrfs_path *path;
5743 	struct btrfs_path *dst_path;
5744 	struct btrfs_key min_key;
5745 	struct btrfs_key max_key;
5746 	struct btrfs_root *log = inode->root->log_root;
5747 	int ret;
5748 	bool fast_search = false;
5749 	u64 ino = btrfs_ino(inode);
5750 	struct extent_map_tree *em_tree = &inode->extent_tree;
5751 	u64 logged_isize = 0;
5752 	bool need_log_inode_item = true;
5753 	bool xattrs_logged = false;
5754 	bool recursive_logging = false;
5755 	bool inode_item_dropped = true;
5756 	const bool orig_logged_before = ctx->logged_before;
5757 
5758 	path = btrfs_alloc_path();
5759 	if (!path)
5760 		return -ENOMEM;
5761 	dst_path = btrfs_alloc_path();
5762 	if (!dst_path) {
5763 		btrfs_free_path(path);
5764 		return -ENOMEM;
5765 	}
5766 
5767 	min_key.objectid = ino;
5768 	min_key.type = BTRFS_INODE_ITEM_KEY;
5769 	min_key.offset = 0;
5770 
5771 	max_key.objectid = ino;
5772 
5773 
5774 	/* today the code can only do partial logging of directories */
5775 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5776 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5777 		       &inode->runtime_flags) &&
5778 	     inode_only >= LOG_INODE_EXISTS))
5779 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5780 	else
5781 		max_key.type = (u8)-1;
5782 	max_key.offset = (u64)-1;
5783 
5784 	/*
5785 	 * Only run delayed items if we are a directory. We want to make sure
5786 	 * all directory indexes hit the fs/subvolume tree so we can find them
5787 	 * and figure out which index ranges have to be logged.
5788 	 */
5789 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5790 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5791 		if (ret)
5792 			goto out;
5793 	}
5794 
5795 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5796 		recursive_logging = true;
5797 		if (inode_only == LOG_OTHER_INODE)
5798 			inode_only = LOG_INODE_EXISTS;
5799 		else
5800 			inode_only = LOG_INODE_ALL;
5801 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5802 	} else {
5803 		mutex_lock(&inode->log_mutex);
5804 	}
5805 
5806 	/*
5807 	 * Before logging the inode item, cache the value returned by
5808 	 * inode_logged(), because after that we have the need to figure out if
5809 	 * the inode was previously logged in this transaction.
5810 	 */
5811 	ret = inode_logged(trans, inode, path);
5812 	if (ret < 0)
5813 		goto out_unlock;
5814 	ctx->logged_before = (ret == 1);
5815 	ret = 0;
5816 
5817 	/*
5818 	 * This is for cases where logging a directory could result in losing a
5819 	 * a file after replaying the log. For example, if we move a file from a
5820 	 * directory A to a directory B, then fsync directory A, we have no way
5821 	 * to known the file was moved from A to B, so logging just A would
5822 	 * result in losing the file after a log replay.
5823 	 */
5824 	if (S_ISDIR(inode->vfs_inode.i_mode) &&
5825 	    inode_only == LOG_INODE_ALL &&
5826 	    inode->last_unlink_trans >= trans->transid) {
5827 		btrfs_set_log_full_commit(trans);
5828 		ret = 1;
5829 		goto out_unlock;
5830 	}
5831 
5832 	/*
5833 	 * a brute force approach to making sure we get the most uptodate
5834 	 * copies of everything.
5835 	 */
5836 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5837 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5838 
5839 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5840 		if (inode_only == LOG_INODE_EXISTS)
5841 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5842 		if (ctx->logged_before)
5843 			ret = drop_inode_items(trans, log, path, inode,
5844 					       max_key_type);
5845 	} else {
5846 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
5847 			/*
5848 			 * Make sure the new inode item we write to the log has
5849 			 * the same isize as the current one (if it exists).
5850 			 * This is necessary to prevent data loss after log
5851 			 * replay, and also to prevent doing a wrong expanding
5852 			 * truncate - for e.g. create file, write 4K into offset
5853 			 * 0, fsync, write 4K into offset 4096, add hard link,
5854 			 * fsync some other file (to sync log), power fail - if
5855 			 * we use the inode's current i_size, after log replay
5856 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5857 			 * (zeroes), as if an expanding truncate happened,
5858 			 * instead of getting a file of 4Kb only.
5859 			 */
5860 			ret = logged_inode_size(log, inode, path, &logged_isize);
5861 			if (ret)
5862 				goto out_unlock;
5863 		}
5864 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5865 			     &inode->runtime_flags)) {
5866 			if (inode_only == LOG_INODE_EXISTS) {
5867 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5868 				if (ctx->logged_before)
5869 					ret = drop_inode_items(trans, log, path,
5870 							       inode, max_key.type);
5871 			} else {
5872 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5873 					  &inode->runtime_flags);
5874 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5875 					  &inode->runtime_flags);
5876 				if (ctx->logged_before)
5877 					ret = truncate_inode_items(trans, log,
5878 								   inode, 0, 0);
5879 			}
5880 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5881 					      &inode->runtime_flags) ||
5882 			   inode_only == LOG_INODE_EXISTS) {
5883 			if (inode_only == LOG_INODE_ALL)
5884 				fast_search = true;
5885 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5886 			if (ctx->logged_before)
5887 				ret = drop_inode_items(trans, log, path, inode,
5888 						       max_key.type);
5889 		} else {
5890 			if (inode_only == LOG_INODE_ALL)
5891 				fast_search = true;
5892 			inode_item_dropped = false;
5893 			goto log_extents;
5894 		}
5895 
5896 	}
5897 	if (ret)
5898 		goto out_unlock;
5899 
5900 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5901 				      path, dst_path, logged_isize,
5902 				      recursive_logging, inode_only, ctx,
5903 				      &need_log_inode_item);
5904 	if (ret)
5905 		goto out_unlock;
5906 
5907 	btrfs_release_path(path);
5908 	btrfs_release_path(dst_path);
5909 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5910 	if (ret)
5911 		goto out_unlock;
5912 	xattrs_logged = true;
5913 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5914 		btrfs_release_path(path);
5915 		btrfs_release_path(dst_path);
5916 		ret = btrfs_log_holes(trans, inode, path);
5917 		if (ret)
5918 			goto out_unlock;
5919 	}
5920 log_extents:
5921 	btrfs_release_path(path);
5922 	btrfs_release_path(dst_path);
5923 	if (need_log_inode_item) {
5924 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
5925 		if (ret)
5926 			goto out_unlock;
5927 		/*
5928 		 * If we are doing a fast fsync and the inode was logged before
5929 		 * in this transaction, we don't need to log the xattrs because
5930 		 * they were logged before. If xattrs were added, changed or
5931 		 * deleted since the last time we logged the inode, then we have
5932 		 * already logged them because the inode had the runtime flag
5933 		 * BTRFS_INODE_COPY_EVERYTHING set.
5934 		 */
5935 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
5936 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5937 			if (ret)
5938 				goto out_unlock;
5939 			btrfs_release_path(path);
5940 		}
5941 	}
5942 	if (fast_search) {
5943 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
5944 		if (ret)
5945 			goto out_unlock;
5946 	} else if (inode_only == LOG_INODE_ALL) {
5947 		struct extent_map *em, *n;
5948 
5949 		write_lock(&em_tree->lock);
5950 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5951 			list_del_init(&em->list);
5952 		write_unlock(&em_tree->lock);
5953 	}
5954 
5955 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5956 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
5957 		if (ret)
5958 			goto out_unlock;
5959 	}
5960 
5961 	spin_lock(&inode->lock);
5962 	inode->logged_trans = trans->transid;
5963 	/*
5964 	 * Don't update last_log_commit if we logged that an inode exists.
5965 	 * We do this for three reasons:
5966 	 *
5967 	 * 1) We might have had buffered writes to this inode that were
5968 	 *    flushed and had their ordered extents completed in this
5969 	 *    transaction, but we did not previously log the inode with
5970 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
5971 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
5972 	 *    happened. We must make sure that if an explicit fsync against
5973 	 *    the inode is performed later, it logs the new extents, an
5974 	 *    updated inode item, etc, and syncs the log. The same logic
5975 	 *    applies to direct IO writes instead of buffered writes.
5976 	 *
5977 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5978 	 *    is logged with an i_size of 0 or whatever value was logged
5979 	 *    before. If later the i_size of the inode is increased by a
5980 	 *    truncate operation, the log is synced through an fsync of
5981 	 *    some other inode and then finally an explicit fsync against
5982 	 *    this inode is made, we must make sure this fsync logs the
5983 	 *    inode with the new i_size, the hole between old i_size and
5984 	 *    the new i_size, and syncs the log.
5985 	 *
5986 	 * 3) If we are logging that an ancestor inode exists as part of
5987 	 *    logging a new name from a link or rename operation, don't update
5988 	 *    its last_log_commit - otherwise if an explicit fsync is made
5989 	 *    against an ancestor, the fsync considers the inode in the log
5990 	 *    and doesn't sync the log, resulting in the ancestor missing after
5991 	 *    a power failure unless the log was synced as part of an fsync
5992 	 *    against any other unrelated inode.
5993 	 */
5994 	if (inode_only != LOG_INODE_EXISTS)
5995 		inode->last_log_commit = inode->last_sub_trans;
5996 	spin_unlock(&inode->lock);
5997 
5998 	/*
5999 	 * Reset the last_reflink_trans so that the next fsync does not need to
6000 	 * go through the slower path when logging extents and their checksums.
6001 	 */
6002 	if (inode_only == LOG_INODE_ALL)
6003 		inode->last_reflink_trans = 0;
6004 
6005 out_unlock:
6006 	mutex_unlock(&inode->log_mutex);
6007 out:
6008 	btrfs_free_path(path);
6009 	btrfs_free_path(dst_path);
6010 
6011 	if (recursive_logging)
6012 		ctx->logged_before = orig_logged_before;
6013 
6014 	return ret;
6015 }
6016 
6017 /*
6018  * Check if we need to log an inode. This is used in contexts where while
6019  * logging an inode we need to log another inode (either that it exists or in
6020  * full mode). This is used instead of btrfs_inode_in_log() because the later
6021  * requires the inode to be in the log and have the log transaction committed,
6022  * while here we do not care if the log transaction was already committed - our
6023  * caller will commit the log later - and we want to avoid logging an inode
6024  * multiple times when multiple tasks have joined the same log transaction.
6025  */
6026 static bool need_log_inode(struct btrfs_trans_handle *trans,
6027 			   struct btrfs_inode *inode)
6028 {
6029 	/*
6030 	 * If a directory was not modified, no dentries added or removed, we can
6031 	 * and should avoid logging it.
6032 	 */
6033 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
6034 		return false;
6035 
6036 	/*
6037 	 * If this inode does not have new/updated/deleted xattrs since the last
6038 	 * time it was logged and is flagged as logged in the current transaction,
6039 	 * we can skip logging it. As for new/deleted names, those are updated in
6040 	 * the log by link/unlink/rename operations.
6041 	 * In case the inode was logged and then evicted and reloaded, its
6042 	 * logged_trans will be 0, in which case we have to fully log it since
6043 	 * logged_trans is a transient field, not persisted.
6044 	 */
6045 	if (inode->logged_trans == trans->transid &&
6046 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
6047 		return false;
6048 
6049 	return true;
6050 }
6051 
6052 struct btrfs_dir_list {
6053 	u64 ino;
6054 	struct list_head list;
6055 };
6056 
6057 /*
6058  * Log the inodes of the new dentries of a directory. See log_dir_items() for
6059  * details about the why it is needed.
6060  * This is a recursive operation - if an existing dentry corresponds to a
6061  * directory, that directory's new entries are logged too (same behaviour as
6062  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
6063  * the dentries point to we do not lock their i_mutex, otherwise lockdep
6064  * complains about the following circular lock dependency / possible deadlock:
6065  *
6066  *        CPU0                                        CPU1
6067  *        ----                                        ----
6068  * lock(&type->i_mutex_dir_key#3/2);
6069  *                                            lock(sb_internal#2);
6070  *                                            lock(&type->i_mutex_dir_key#3/2);
6071  * lock(&sb->s_type->i_mutex_key#14);
6072  *
6073  * Where sb_internal is the lock (a counter that works as a lock) acquired by
6074  * sb_start_intwrite() in btrfs_start_transaction().
6075  * Not locking i_mutex of the inodes is still safe because:
6076  *
6077  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
6078  *    that while logging the inode new references (names) are added or removed
6079  *    from the inode, leaving the logged inode item with a link count that does
6080  *    not match the number of logged inode reference items. This is fine because
6081  *    at log replay time we compute the real number of links and correct the
6082  *    link count in the inode item (see replay_one_buffer() and
6083  *    link_to_fixup_dir());
6084  *
6085  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
6086  *    while logging the inode's items new index items (key type
6087  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
6088  *    has a size that doesn't match the sum of the lengths of all the logged
6089  *    names - this is ok, not a problem, because at log replay time we set the
6090  *    directory's i_size to the correct value (see replay_one_name() and
6091  *    do_overwrite_item()).
6092  */
6093 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
6094 				struct btrfs_root *root,
6095 				struct btrfs_inode *start_inode,
6096 				struct btrfs_log_ctx *ctx)
6097 {
6098 	struct btrfs_fs_info *fs_info = root->fs_info;
6099 	struct btrfs_path *path;
6100 	LIST_HEAD(dir_list);
6101 	struct btrfs_dir_list *dir_elem;
6102 	int ret = 0;
6103 
6104 	/*
6105 	 * If we are logging a new name, as part of a link or rename operation,
6106 	 * don't bother logging new dentries, as we just want to log the names
6107 	 * of an inode and that any new parents exist.
6108 	 */
6109 	if (ctx->logging_new_name)
6110 		return 0;
6111 
6112 	path = btrfs_alloc_path();
6113 	if (!path)
6114 		return -ENOMEM;
6115 
6116 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
6117 	if (!dir_elem) {
6118 		btrfs_free_path(path);
6119 		return -ENOMEM;
6120 	}
6121 	dir_elem->ino = btrfs_ino(start_inode);
6122 	list_add_tail(&dir_elem->list, &dir_list);
6123 
6124 	while (!list_empty(&dir_list)) {
6125 		struct extent_buffer *leaf;
6126 		struct btrfs_key min_key;
6127 		int nritems;
6128 		int i;
6129 
6130 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
6131 					    list);
6132 		if (ret)
6133 			goto next_dir_inode;
6134 
6135 		min_key.objectid = dir_elem->ino;
6136 		min_key.type = BTRFS_DIR_INDEX_KEY;
6137 		min_key.offset = 0;
6138 again:
6139 		btrfs_release_path(path);
6140 		ret = btrfs_search_forward(root, &min_key, path, trans->transid);
6141 		if (ret < 0) {
6142 			goto next_dir_inode;
6143 		} else if (ret > 0) {
6144 			ret = 0;
6145 			goto next_dir_inode;
6146 		}
6147 
6148 		leaf = path->nodes[0];
6149 		nritems = btrfs_header_nritems(leaf);
6150 		for (i = path->slots[0]; i < nritems; i++) {
6151 			struct btrfs_dir_item *di;
6152 			struct btrfs_key di_key;
6153 			struct inode *di_inode;
6154 			struct btrfs_dir_list *new_dir_elem;
6155 			int log_mode = LOG_INODE_EXISTS;
6156 			int type;
6157 
6158 			btrfs_item_key_to_cpu(leaf, &min_key, i);
6159 			if (min_key.objectid != dir_elem->ino ||
6160 			    min_key.type != BTRFS_DIR_INDEX_KEY)
6161 				goto next_dir_inode;
6162 
6163 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
6164 			type = btrfs_dir_type(leaf, di);
6165 			if (btrfs_dir_transid(leaf, di) < trans->transid)
6166 				continue;
6167 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
6168 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
6169 				continue;
6170 
6171 			btrfs_release_path(path);
6172 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
6173 			if (IS_ERR(di_inode)) {
6174 				ret = PTR_ERR(di_inode);
6175 				goto next_dir_inode;
6176 			}
6177 
6178 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6179 				btrfs_add_delayed_iput(di_inode);
6180 				break;
6181 			}
6182 
6183 			ctx->log_new_dentries = false;
6184 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
6185 				log_mode = LOG_INODE_ALL;
6186 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
6187 					      log_mode, ctx);
6188 			btrfs_add_delayed_iput(di_inode);
6189 			if (ret)
6190 				goto next_dir_inode;
6191 			if (ctx->log_new_dentries) {
6192 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
6193 						       GFP_NOFS);
6194 				if (!new_dir_elem) {
6195 					ret = -ENOMEM;
6196 					goto next_dir_inode;
6197 				}
6198 				new_dir_elem->ino = di_key.objectid;
6199 				list_add_tail(&new_dir_elem->list, &dir_list);
6200 			}
6201 			break;
6202 		}
6203 		if (min_key.offset < (u64)-1) {
6204 			min_key.offset++;
6205 			goto again;
6206 		}
6207 next_dir_inode:
6208 		list_del(&dir_elem->list);
6209 		kfree(dir_elem);
6210 	}
6211 
6212 	btrfs_free_path(path);
6213 	return ret;
6214 }
6215 
6216 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6217 				 struct btrfs_inode *inode,
6218 				 struct btrfs_log_ctx *ctx)
6219 {
6220 	struct btrfs_fs_info *fs_info = trans->fs_info;
6221 	int ret;
6222 	struct btrfs_path *path;
6223 	struct btrfs_key key;
6224 	struct btrfs_root *root = inode->root;
6225 	const u64 ino = btrfs_ino(inode);
6226 
6227 	path = btrfs_alloc_path();
6228 	if (!path)
6229 		return -ENOMEM;
6230 	path->skip_locking = 1;
6231 	path->search_commit_root = 1;
6232 
6233 	key.objectid = ino;
6234 	key.type = BTRFS_INODE_REF_KEY;
6235 	key.offset = 0;
6236 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6237 	if (ret < 0)
6238 		goto out;
6239 
6240 	while (true) {
6241 		struct extent_buffer *leaf = path->nodes[0];
6242 		int slot = path->slots[0];
6243 		u32 cur_offset = 0;
6244 		u32 item_size;
6245 		unsigned long ptr;
6246 
6247 		if (slot >= btrfs_header_nritems(leaf)) {
6248 			ret = btrfs_next_leaf(root, path);
6249 			if (ret < 0)
6250 				goto out;
6251 			else if (ret > 0)
6252 				break;
6253 			continue;
6254 		}
6255 
6256 		btrfs_item_key_to_cpu(leaf, &key, slot);
6257 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6258 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6259 			break;
6260 
6261 		item_size = btrfs_item_size(leaf, slot);
6262 		ptr = btrfs_item_ptr_offset(leaf, slot);
6263 		while (cur_offset < item_size) {
6264 			struct btrfs_key inode_key;
6265 			struct inode *dir_inode;
6266 
6267 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6268 			inode_key.offset = 0;
6269 
6270 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6271 				struct btrfs_inode_extref *extref;
6272 
6273 				extref = (struct btrfs_inode_extref *)
6274 					(ptr + cur_offset);
6275 				inode_key.objectid = btrfs_inode_extref_parent(
6276 					leaf, extref);
6277 				cur_offset += sizeof(*extref);
6278 				cur_offset += btrfs_inode_extref_name_len(leaf,
6279 					extref);
6280 			} else {
6281 				inode_key.objectid = key.offset;
6282 				cur_offset = item_size;
6283 			}
6284 
6285 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6286 					       root);
6287 			/*
6288 			 * If the parent inode was deleted, return an error to
6289 			 * fallback to a transaction commit. This is to prevent
6290 			 * getting an inode that was moved from one parent A to
6291 			 * a parent B, got its former parent A deleted and then
6292 			 * it got fsync'ed, from existing at both parents after
6293 			 * a log replay (and the old parent still existing).
6294 			 * Example:
6295 			 *
6296 			 * mkdir /mnt/A
6297 			 * mkdir /mnt/B
6298 			 * touch /mnt/B/bar
6299 			 * sync
6300 			 * mv /mnt/B/bar /mnt/A/bar
6301 			 * mv -T /mnt/A /mnt/B
6302 			 * fsync /mnt/B/bar
6303 			 * <power fail>
6304 			 *
6305 			 * If we ignore the old parent B which got deleted,
6306 			 * after a log replay we would have file bar linked
6307 			 * at both parents and the old parent B would still
6308 			 * exist.
6309 			 */
6310 			if (IS_ERR(dir_inode)) {
6311 				ret = PTR_ERR(dir_inode);
6312 				goto out;
6313 			}
6314 
6315 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6316 				btrfs_add_delayed_iput(dir_inode);
6317 				continue;
6318 			}
6319 
6320 			ctx->log_new_dentries = false;
6321 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6322 					      LOG_INODE_ALL, ctx);
6323 			if (!ret && ctx->log_new_dentries)
6324 				ret = log_new_dir_dentries(trans, root,
6325 						   BTRFS_I(dir_inode), ctx);
6326 			btrfs_add_delayed_iput(dir_inode);
6327 			if (ret)
6328 				goto out;
6329 		}
6330 		path->slots[0]++;
6331 	}
6332 	ret = 0;
6333 out:
6334 	btrfs_free_path(path);
6335 	return ret;
6336 }
6337 
6338 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6339 			     struct btrfs_root *root,
6340 			     struct btrfs_path *path,
6341 			     struct btrfs_log_ctx *ctx)
6342 {
6343 	struct btrfs_key found_key;
6344 
6345 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6346 
6347 	while (true) {
6348 		struct btrfs_fs_info *fs_info = root->fs_info;
6349 		struct extent_buffer *leaf = path->nodes[0];
6350 		int slot = path->slots[0];
6351 		struct btrfs_key search_key;
6352 		struct inode *inode;
6353 		u64 ino;
6354 		int ret = 0;
6355 
6356 		btrfs_release_path(path);
6357 
6358 		ino = found_key.offset;
6359 
6360 		search_key.objectid = found_key.offset;
6361 		search_key.type = BTRFS_INODE_ITEM_KEY;
6362 		search_key.offset = 0;
6363 		inode = btrfs_iget(fs_info->sb, ino, root);
6364 		if (IS_ERR(inode))
6365 			return PTR_ERR(inode);
6366 
6367 		if (BTRFS_I(inode)->generation >= trans->transid &&
6368 		    need_log_inode(trans, BTRFS_I(inode)))
6369 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6370 					      LOG_INODE_EXISTS, ctx);
6371 		btrfs_add_delayed_iput(inode);
6372 		if (ret)
6373 			return ret;
6374 
6375 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6376 			break;
6377 
6378 		search_key.type = BTRFS_INODE_REF_KEY;
6379 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6380 		if (ret < 0)
6381 			return ret;
6382 
6383 		leaf = path->nodes[0];
6384 		slot = path->slots[0];
6385 		if (slot >= btrfs_header_nritems(leaf)) {
6386 			ret = btrfs_next_leaf(root, path);
6387 			if (ret < 0)
6388 				return ret;
6389 			else if (ret > 0)
6390 				return -ENOENT;
6391 			leaf = path->nodes[0];
6392 			slot = path->slots[0];
6393 		}
6394 
6395 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6396 		if (found_key.objectid != search_key.objectid ||
6397 		    found_key.type != BTRFS_INODE_REF_KEY)
6398 			return -ENOENT;
6399 	}
6400 	return 0;
6401 }
6402 
6403 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6404 				  struct btrfs_inode *inode,
6405 				  struct dentry *parent,
6406 				  struct btrfs_log_ctx *ctx)
6407 {
6408 	struct btrfs_root *root = inode->root;
6409 	struct dentry *old_parent = NULL;
6410 	struct super_block *sb = inode->vfs_inode.i_sb;
6411 	int ret = 0;
6412 
6413 	while (true) {
6414 		if (!parent || d_really_is_negative(parent) ||
6415 		    sb != parent->d_sb)
6416 			break;
6417 
6418 		inode = BTRFS_I(d_inode(parent));
6419 		if (root != inode->root)
6420 			break;
6421 
6422 		if (inode->generation >= trans->transid &&
6423 		    need_log_inode(trans, inode)) {
6424 			ret = btrfs_log_inode(trans, inode,
6425 					      LOG_INODE_EXISTS, ctx);
6426 			if (ret)
6427 				break;
6428 		}
6429 		if (IS_ROOT(parent))
6430 			break;
6431 
6432 		parent = dget_parent(parent);
6433 		dput(old_parent);
6434 		old_parent = parent;
6435 	}
6436 	dput(old_parent);
6437 
6438 	return ret;
6439 }
6440 
6441 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6442 				 struct btrfs_inode *inode,
6443 				 struct dentry *parent,
6444 				 struct btrfs_log_ctx *ctx)
6445 {
6446 	struct btrfs_root *root = inode->root;
6447 	const u64 ino = btrfs_ino(inode);
6448 	struct btrfs_path *path;
6449 	struct btrfs_key search_key;
6450 	int ret;
6451 
6452 	/*
6453 	 * For a single hard link case, go through a fast path that does not
6454 	 * need to iterate the fs/subvolume tree.
6455 	 */
6456 	if (inode->vfs_inode.i_nlink < 2)
6457 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6458 
6459 	path = btrfs_alloc_path();
6460 	if (!path)
6461 		return -ENOMEM;
6462 
6463 	search_key.objectid = ino;
6464 	search_key.type = BTRFS_INODE_REF_KEY;
6465 	search_key.offset = 0;
6466 again:
6467 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6468 	if (ret < 0)
6469 		goto out;
6470 	if (ret == 0)
6471 		path->slots[0]++;
6472 
6473 	while (true) {
6474 		struct extent_buffer *leaf = path->nodes[0];
6475 		int slot = path->slots[0];
6476 		struct btrfs_key found_key;
6477 
6478 		if (slot >= btrfs_header_nritems(leaf)) {
6479 			ret = btrfs_next_leaf(root, path);
6480 			if (ret < 0)
6481 				goto out;
6482 			else if (ret > 0)
6483 				break;
6484 			continue;
6485 		}
6486 
6487 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6488 		if (found_key.objectid != ino ||
6489 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6490 			break;
6491 
6492 		/*
6493 		 * Don't deal with extended references because they are rare
6494 		 * cases and too complex to deal with (we would need to keep
6495 		 * track of which subitem we are processing for each item in
6496 		 * this loop, etc). So just return some error to fallback to
6497 		 * a transaction commit.
6498 		 */
6499 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6500 			ret = -EMLINK;
6501 			goto out;
6502 		}
6503 
6504 		/*
6505 		 * Logging ancestors needs to do more searches on the fs/subvol
6506 		 * tree, so it releases the path as needed to avoid deadlocks.
6507 		 * Keep track of the last inode ref key and resume from that key
6508 		 * after logging all new ancestors for the current hard link.
6509 		 */
6510 		memcpy(&search_key, &found_key, sizeof(search_key));
6511 
6512 		ret = log_new_ancestors(trans, root, path, ctx);
6513 		if (ret)
6514 			goto out;
6515 		btrfs_release_path(path);
6516 		goto again;
6517 	}
6518 	ret = 0;
6519 out:
6520 	btrfs_free_path(path);
6521 	return ret;
6522 }
6523 
6524 /*
6525  * helper function around btrfs_log_inode to make sure newly created
6526  * parent directories also end up in the log.  A minimal inode and backref
6527  * only logging is done of any parent directories that are older than
6528  * the last committed transaction
6529  */
6530 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6531 				  struct btrfs_inode *inode,
6532 				  struct dentry *parent,
6533 				  int inode_only,
6534 				  struct btrfs_log_ctx *ctx)
6535 {
6536 	struct btrfs_root *root = inode->root;
6537 	struct btrfs_fs_info *fs_info = root->fs_info;
6538 	int ret = 0;
6539 	bool log_dentries = false;
6540 
6541 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6542 		ret = 1;
6543 		goto end_no_trans;
6544 	}
6545 
6546 	if (btrfs_root_refs(&root->root_item) == 0) {
6547 		ret = 1;
6548 		goto end_no_trans;
6549 	}
6550 
6551 	/*
6552 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6553 	 * (since logging them is pointless, a link count of 0 means they
6554 	 * will never be accessible).
6555 	 */
6556 	if ((btrfs_inode_in_log(inode, trans->transid) &&
6557 	     list_empty(&ctx->ordered_extents)) ||
6558 	    inode->vfs_inode.i_nlink == 0) {
6559 		ret = BTRFS_NO_LOG_SYNC;
6560 		goto end_no_trans;
6561 	}
6562 
6563 	ret = start_log_trans(trans, root, ctx);
6564 	if (ret)
6565 		goto end_no_trans;
6566 
6567 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
6568 	if (ret)
6569 		goto end_trans;
6570 
6571 	/*
6572 	 * for regular files, if its inode is already on disk, we don't
6573 	 * have to worry about the parents at all.  This is because
6574 	 * we can use the last_unlink_trans field to record renames
6575 	 * and other fun in this file.
6576 	 */
6577 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6578 	    inode->generation < trans->transid &&
6579 	    inode->last_unlink_trans < trans->transid) {
6580 		ret = 0;
6581 		goto end_trans;
6582 	}
6583 
6584 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
6585 		log_dentries = true;
6586 
6587 	/*
6588 	 * On unlink we must make sure all our current and old parent directory
6589 	 * inodes are fully logged. This is to prevent leaving dangling
6590 	 * directory index entries in directories that were our parents but are
6591 	 * not anymore. Not doing this results in old parent directory being
6592 	 * impossible to delete after log replay (rmdir will always fail with
6593 	 * error -ENOTEMPTY).
6594 	 *
6595 	 * Example 1:
6596 	 *
6597 	 * mkdir testdir
6598 	 * touch testdir/foo
6599 	 * ln testdir/foo testdir/bar
6600 	 * sync
6601 	 * unlink testdir/bar
6602 	 * xfs_io -c fsync testdir/foo
6603 	 * <power failure>
6604 	 * mount fs, triggers log replay
6605 	 *
6606 	 * If we don't log the parent directory (testdir), after log replay the
6607 	 * directory still has an entry pointing to the file inode using the bar
6608 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6609 	 * the file inode has a link count of 1.
6610 	 *
6611 	 * Example 2:
6612 	 *
6613 	 * mkdir testdir
6614 	 * touch foo
6615 	 * ln foo testdir/foo2
6616 	 * ln foo testdir/foo3
6617 	 * sync
6618 	 * unlink testdir/foo3
6619 	 * xfs_io -c fsync foo
6620 	 * <power failure>
6621 	 * mount fs, triggers log replay
6622 	 *
6623 	 * Similar as the first example, after log replay the parent directory
6624 	 * testdir still has an entry pointing to the inode file with name foo3
6625 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6626 	 * and has a link count of 2.
6627 	 */
6628 	if (inode->last_unlink_trans >= trans->transid) {
6629 		ret = btrfs_log_all_parents(trans, inode, ctx);
6630 		if (ret)
6631 			goto end_trans;
6632 	}
6633 
6634 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6635 	if (ret)
6636 		goto end_trans;
6637 
6638 	if (log_dentries)
6639 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6640 	else
6641 		ret = 0;
6642 end_trans:
6643 	if (ret < 0) {
6644 		btrfs_set_log_full_commit(trans);
6645 		ret = 1;
6646 	}
6647 
6648 	if (ret)
6649 		btrfs_remove_log_ctx(root, ctx);
6650 	btrfs_end_log_trans(root);
6651 end_no_trans:
6652 	return ret;
6653 }
6654 
6655 /*
6656  * it is not safe to log dentry if the chunk root has added new
6657  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6658  * If this returns 1, you must commit the transaction to safely get your
6659  * data on disk.
6660  */
6661 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6662 			  struct dentry *dentry,
6663 			  struct btrfs_log_ctx *ctx)
6664 {
6665 	struct dentry *parent = dget_parent(dentry);
6666 	int ret;
6667 
6668 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6669 				     LOG_INODE_ALL, ctx);
6670 	dput(parent);
6671 
6672 	return ret;
6673 }
6674 
6675 /*
6676  * should be called during mount to recover any replay any log trees
6677  * from the FS
6678  */
6679 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6680 {
6681 	int ret;
6682 	struct btrfs_path *path;
6683 	struct btrfs_trans_handle *trans;
6684 	struct btrfs_key key;
6685 	struct btrfs_key found_key;
6686 	struct btrfs_root *log;
6687 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6688 	struct walk_control wc = {
6689 		.process_func = process_one_buffer,
6690 		.stage = LOG_WALK_PIN_ONLY,
6691 	};
6692 
6693 	path = btrfs_alloc_path();
6694 	if (!path)
6695 		return -ENOMEM;
6696 
6697 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6698 
6699 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6700 	if (IS_ERR(trans)) {
6701 		ret = PTR_ERR(trans);
6702 		goto error;
6703 	}
6704 
6705 	wc.trans = trans;
6706 	wc.pin = 1;
6707 
6708 	ret = walk_log_tree(trans, log_root_tree, &wc);
6709 	if (ret) {
6710 		btrfs_abort_transaction(trans, ret);
6711 		goto error;
6712 	}
6713 
6714 again:
6715 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6716 	key.offset = (u64)-1;
6717 	key.type = BTRFS_ROOT_ITEM_KEY;
6718 
6719 	while (1) {
6720 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6721 
6722 		if (ret < 0) {
6723 			btrfs_abort_transaction(trans, ret);
6724 			goto error;
6725 		}
6726 		if (ret > 0) {
6727 			if (path->slots[0] == 0)
6728 				break;
6729 			path->slots[0]--;
6730 		}
6731 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6732 				      path->slots[0]);
6733 		btrfs_release_path(path);
6734 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6735 			break;
6736 
6737 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6738 		if (IS_ERR(log)) {
6739 			ret = PTR_ERR(log);
6740 			btrfs_abort_transaction(trans, ret);
6741 			goto error;
6742 		}
6743 
6744 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6745 						   true);
6746 		if (IS_ERR(wc.replay_dest)) {
6747 			ret = PTR_ERR(wc.replay_dest);
6748 
6749 			/*
6750 			 * We didn't find the subvol, likely because it was
6751 			 * deleted.  This is ok, simply skip this log and go to
6752 			 * the next one.
6753 			 *
6754 			 * We need to exclude the root because we can't have
6755 			 * other log replays overwriting this log as we'll read
6756 			 * it back in a few more times.  This will keep our
6757 			 * block from being modified, and we'll just bail for
6758 			 * each subsequent pass.
6759 			 */
6760 			if (ret == -ENOENT)
6761 				ret = btrfs_pin_extent_for_log_replay(trans,
6762 							log->node->start,
6763 							log->node->len);
6764 			btrfs_put_root(log);
6765 
6766 			if (!ret)
6767 				goto next;
6768 			btrfs_abort_transaction(trans, ret);
6769 			goto error;
6770 		}
6771 
6772 		wc.replay_dest->log_root = log;
6773 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6774 		if (ret)
6775 			/* The loop needs to continue due to the root refs */
6776 			btrfs_abort_transaction(trans, ret);
6777 		else
6778 			ret = walk_log_tree(trans, log, &wc);
6779 
6780 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6781 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6782 						      path);
6783 			if (ret)
6784 				btrfs_abort_transaction(trans, ret);
6785 		}
6786 
6787 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6788 			struct btrfs_root *root = wc.replay_dest;
6789 
6790 			btrfs_release_path(path);
6791 
6792 			/*
6793 			 * We have just replayed everything, and the highest
6794 			 * objectid of fs roots probably has changed in case
6795 			 * some inode_item's got replayed.
6796 			 *
6797 			 * root->objectid_mutex is not acquired as log replay
6798 			 * could only happen during mount.
6799 			 */
6800 			ret = btrfs_init_root_free_objectid(root);
6801 			if (ret)
6802 				btrfs_abort_transaction(trans, ret);
6803 		}
6804 
6805 		wc.replay_dest->log_root = NULL;
6806 		btrfs_put_root(wc.replay_dest);
6807 		btrfs_put_root(log);
6808 
6809 		if (ret)
6810 			goto error;
6811 next:
6812 		if (found_key.offset == 0)
6813 			break;
6814 		key.offset = found_key.offset - 1;
6815 	}
6816 	btrfs_release_path(path);
6817 
6818 	/* step one is to pin it all, step two is to replay just inodes */
6819 	if (wc.pin) {
6820 		wc.pin = 0;
6821 		wc.process_func = replay_one_buffer;
6822 		wc.stage = LOG_WALK_REPLAY_INODES;
6823 		goto again;
6824 	}
6825 	/* step three is to replay everything */
6826 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6827 		wc.stage++;
6828 		goto again;
6829 	}
6830 
6831 	btrfs_free_path(path);
6832 
6833 	/* step 4: commit the transaction, which also unpins the blocks */
6834 	ret = btrfs_commit_transaction(trans);
6835 	if (ret)
6836 		return ret;
6837 
6838 	log_root_tree->log_root = NULL;
6839 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6840 	btrfs_put_root(log_root_tree);
6841 
6842 	return 0;
6843 error:
6844 	if (wc.trans)
6845 		btrfs_end_transaction(wc.trans);
6846 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6847 	btrfs_free_path(path);
6848 	return ret;
6849 }
6850 
6851 /*
6852  * there are some corner cases where we want to force a full
6853  * commit instead of allowing a directory to be logged.
6854  *
6855  * They revolve around files there were unlinked from the directory, and
6856  * this function updates the parent directory so that a full commit is
6857  * properly done if it is fsync'd later after the unlinks are done.
6858  *
6859  * Must be called before the unlink operations (updates to the subvolume tree,
6860  * inodes, etc) are done.
6861  */
6862 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6863 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6864 			     int for_rename)
6865 {
6866 	/*
6867 	 * when we're logging a file, if it hasn't been renamed
6868 	 * or unlinked, and its inode is fully committed on disk,
6869 	 * we don't have to worry about walking up the directory chain
6870 	 * to log its parents.
6871 	 *
6872 	 * So, we use the last_unlink_trans field to put this transid
6873 	 * into the file.  When the file is logged we check it and
6874 	 * don't log the parents if the file is fully on disk.
6875 	 */
6876 	mutex_lock(&inode->log_mutex);
6877 	inode->last_unlink_trans = trans->transid;
6878 	mutex_unlock(&inode->log_mutex);
6879 
6880 	/*
6881 	 * if this directory was already logged any new
6882 	 * names for this file/dir will get recorded
6883 	 */
6884 	if (dir->logged_trans == trans->transid)
6885 		return;
6886 
6887 	/*
6888 	 * if the inode we're about to unlink was logged,
6889 	 * the log will be properly updated for any new names
6890 	 */
6891 	if (inode->logged_trans == trans->transid)
6892 		return;
6893 
6894 	/*
6895 	 * when renaming files across directories, if the directory
6896 	 * there we're unlinking from gets fsync'd later on, there's
6897 	 * no way to find the destination directory later and fsync it
6898 	 * properly.  So, we have to be conservative and force commits
6899 	 * so the new name gets discovered.
6900 	 */
6901 	if (for_rename)
6902 		goto record;
6903 
6904 	/* we can safely do the unlink without any special recording */
6905 	return;
6906 
6907 record:
6908 	mutex_lock(&dir->log_mutex);
6909 	dir->last_unlink_trans = trans->transid;
6910 	mutex_unlock(&dir->log_mutex);
6911 }
6912 
6913 /*
6914  * Make sure that if someone attempts to fsync the parent directory of a deleted
6915  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6916  * that after replaying the log tree of the parent directory's root we will not
6917  * see the snapshot anymore and at log replay time we will not see any log tree
6918  * corresponding to the deleted snapshot's root, which could lead to replaying
6919  * it after replaying the log tree of the parent directory (which would replay
6920  * the snapshot delete operation).
6921  *
6922  * Must be called before the actual snapshot destroy operation (updates to the
6923  * parent root and tree of tree roots trees, etc) are done.
6924  */
6925 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6926 				   struct btrfs_inode *dir)
6927 {
6928 	mutex_lock(&dir->log_mutex);
6929 	dir->last_unlink_trans = trans->transid;
6930 	mutex_unlock(&dir->log_mutex);
6931 }
6932 
6933 /**
6934  * Update the log after adding a new name for an inode.
6935  *
6936  * @trans:              Transaction handle.
6937  * @old_dentry:         The dentry associated with the old name and the old
6938  *                      parent directory.
6939  * @old_dir:            The inode of the previous parent directory for the case
6940  *                      of a rename. For a link operation, it must be NULL.
6941  * @old_dir_index:      The index number associated with the old name, meaningful
6942  *                      only for rename operations (when @old_dir is not NULL).
6943  *                      Ignored for link operations.
6944  * @parent:             The dentry associated with the directory under which the
6945  *                      new name is located.
6946  *
6947  * Call this after adding a new name for an inode, as a result of a link or
6948  * rename operation, and it will properly update the log to reflect the new name.
6949  */
6950 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6951 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
6952 			u64 old_dir_index, struct dentry *parent)
6953 {
6954 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
6955 	struct btrfs_root *root = inode->root;
6956 	struct btrfs_log_ctx ctx;
6957 	bool log_pinned = false;
6958 	int ret;
6959 
6960 	/*
6961 	 * this will force the logging code to walk the dentry chain
6962 	 * up for the file
6963 	 */
6964 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6965 		inode->last_unlink_trans = trans->transid;
6966 
6967 	/*
6968 	 * if this inode hasn't been logged and directory we're renaming it
6969 	 * from hasn't been logged, we don't need to log it
6970 	 */
6971 	ret = inode_logged(trans, inode, NULL);
6972 	if (ret < 0) {
6973 		goto out;
6974 	} else if (ret == 0) {
6975 		if (!old_dir)
6976 			return;
6977 		/*
6978 		 * If the inode was not logged and we are doing a rename (old_dir is not
6979 		 * NULL), check if old_dir was logged - if it was not we can return and
6980 		 * do nothing.
6981 		 */
6982 		ret = inode_logged(trans, old_dir, NULL);
6983 		if (ret < 0)
6984 			goto out;
6985 		else if (ret == 0)
6986 			return;
6987 	}
6988 	ret = 0;
6989 
6990 	/*
6991 	 * If we are doing a rename (old_dir is not NULL) from a directory that
6992 	 * was previously logged, make sure that on log replay we get the old
6993 	 * dir entry deleted. This is needed because we will also log the new
6994 	 * name of the renamed inode, so we need to make sure that after log
6995 	 * replay we don't end up with both the new and old dir entries existing.
6996 	 */
6997 	if (old_dir && old_dir->logged_trans == trans->transid) {
6998 		struct btrfs_root *log = old_dir->root->log_root;
6999 		struct btrfs_path *path;
7000 
7001 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7002 
7003 		/*
7004 		 * We have two inodes to update in the log, the old directory and
7005 		 * the inode that got renamed, so we must pin the log to prevent
7006 		 * anyone from syncing the log until we have updated both inodes
7007 		 * in the log.
7008 		 */
7009 		log_pinned = true;
7010 		btrfs_pin_log_trans(root);
7011 
7012 		path = btrfs_alloc_path();
7013 		if (!path) {
7014 			ret = -ENOMEM;
7015 			goto out;
7016 		}
7017 
7018 		/*
7019 		 * Other concurrent task might be logging the old directory,
7020 		 * as it can be triggered when logging other inode that had or
7021 		 * still has a dentry in the old directory. So take the old
7022 		 * directory's log_mutex to prevent getting an -EEXIST when
7023 		 * logging a key to record the deletion, or having that other
7024 		 * task logging the old directory get an -EEXIST if it attempts
7025 		 * to log the same key after we just did it. In both cases that
7026 		 * would result in falling back to a transaction commit.
7027 		 */
7028 		mutex_lock(&old_dir->log_mutex);
7029 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7030 					old_dentry->d_name.name,
7031 					old_dentry->d_name.len, old_dir_index);
7032 		if (ret > 0) {
7033 			/*
7034 			 * The dentry does not exist in the log, so record its
7035 			 * deletion.
7036 			 */
7037 			btrfs_release_path(path);
7038 			ret = insert_dir_log_key(trans, log, path,
7039 						 btrfs_ino(old_dir),
7040 						 old_dir_index, old_dir_index);
7041 		}
7042 		mutex_unlock(&old_dir->log_mutex);
7043 
7044 		btrfs_free_path(path);
7045 		if (ret < 0)
7046 			goto out;
7047 	}
7048 
7049 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7050 	ctx.logging_new_name = true;
7051 	/*
7052 	 * We don't care about the return value. If we fail to log the new name
7053 	 * then we know the next attempt to sync the log will fallback to a full
7054 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7055 	 * we don't need to worry about getting a log committed that has an
7056 	 * inconsistent state after a rename operation.
7057 	 */
7058 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7059 out:
7060 	/*
7061 	 * If an error happened mark the log for a full commit because it's not
7062 	 * consistent and up to date or we couldn't find out if one of the
7063 	 * inodes was logged before in this transaction. Do it before unpinning
7064 	 * the log, to avoid any races with someone else trying to commit it.
7065 	 */
7066 	if (ret < 0)
7067 		btrfs_set_log_full_commit(trans);
7068 	if (log_pinned)
7069 		btrfs_end_log_trans(root);
7070 }
7071 
7072