xref: /openbmc/linux/fs/btrfs/tree-log.c (revision c699ce1a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24 #include "fs.h"
25 #include "accessors.h"
26 #include "extent-tree.h"
27 #include "root-tree.h"
28 #include "dir-item.h"
29 #include "file-item.h"
30 #include "file.h"
31 #include "orphan.h"
32 #include "tree-checker.h"
33 
34 #define MAX_CONFLICT_INODES 10
35 
36 /* magic values for the inode_only field in btrfs_log_inode:
37  *
38  * LOG_INODE_ALL means to log everything
39  * LOG_INODE_EXISTS means to log just enough to recreate the inode
40  * during log replay
41  */
42 enum {
43 	LOG_INODE_ALL,
44 	LOG_INODE_EXISTS,
45 };
46 
47 /*
48  * directory trouble cases
49  *
50  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51  * log, we must force a full commit before doing an fsync of the directory
52  * where the unlink was done.
53  * ---> record transid of last unlink/rename per directory
54  *
55  * mkdir foo/some_dir
56  * normal commit
57  * rename foo/some_dir foo2/some_dir
58  * mkdir foo/some_dir
59  * fsync foo/some_dir/some_file
60  *
61  * The fsync above will unlink the original some_dir without recording
62  * it in its new location (foo2).  After a crash, some_dir will be gone
63  * unless the fsync of some_file forces a full commit
64  *
65  * 2) we must log any new names for any file or dir that is in the fsync
66  * log. ---> check inode while renaming/linking.
67  *
68  * 2a) we must log any new names for any file or dir during rename
69  * when the directory they are being removed from was logged.
70  * ---> check inode and old parent dir during rename
71  *
72  *  2a is actually the more important variant.  With the extra logging
73  *  a crash might unlink the old name without recreating the new one
74  *
75  * 3) after a crash, we must go through any directories with a link count
76  * of zero and redo the rm -rf
77  *
78  * mkdir f1/foo
79  * normal commit
80  * rm -rf f1/foo
81  * fsync(f1)
82  *
83  * The directory f1 was fully removed from the FS, but fsync was never
84  * called on f1, only its parent dir.  After a crash the rm -rf must
85  * be replayed.  This must be able to recurse down the entire
86  * directory tree.  The inode link count fixup code takes care of the
87  * ugly details.
88  */
89 
90 /*
91  * stages for the tree walking.  The first
92  * stage (0) is to only pin down the blocks we find
93  * the second stage (1) is to make sure that all the inodes
94  * we find in the log are created in the subvolume.
95  *
96  * The last stage is to deal with directories and links and extents
97  * and all the other fun semantics
98  */
99 enum {
100 	LOG_WALK_PIN_ONLY,
101 	LOG_WALK_REPLAY_INODES,
102 	LOG_WALK_REPLAY_DIR_INDEX,
103 	LOG_WALK_REPLAY_ALL,
104 };
105 
106 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
107 			   struct btrfs_inode *inode,
108 			   int inode_only,
109 			   struct btrfs_log_ctx *ctx);
110 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 			     struct btrfs_root *root,
112 			     struct btrfs_path *path, u64 objectid);
113 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 				       struct btrfs_root *root,
115 				       struct btrfs_root *log,
116 				       struct btrfs_path *path,
117 				       u64 dirid, int del_all);
118 static void wait_log_commit(struct btrfs_root *root, int transid);
119 
120 /*
121  * tree logging is a special write ahead log used to make sure that
122  * fsyncs and O_SYNCs can happen without doing full tree commits.
123  *
124  * Full tree commits are expensive because they require commonly
125  * modified blocks to be recowed, creating many dirty pages in the
126  * extent tree an 4x-6x higher write load than ext3.
127  *
128  * Instead of doing a tree commit on every fsync, we use the
129  * key ranges and transaction ids to find items for a given file or directory
130  * that have changed in this transaction.  Those items are copied into
131  * a special tree (one per subvolume root), that tree is written to disk
132  * and then the fsync is considered complete.
133  *
134  * After a crash, items are copied out of the log-tree back into the
135  * subvolume tree.  Any file data extents found are recorded in the extent
136  * allocation tree, and the log-tree freed.
137  *
138  * The log tree is read three times, once to pin down all the extents it is
139  * using in ram and once, once to create all the inodes logged in the tree
140  * and once to do all the other items.
141  */
142 
143 /*
144  * start a sub transaction and setup the log tree
145  * this increments the log tree writer count to make the people
146  * syncing the tree wait for us to finish
147  */
148 static int start_log_trans(struct btrfs_trans_handle *trans,
149 			   struct btrfs_root *root,
150 			   struct btrfs_log_ctx *ctx)
151 {
152 	struct btrfs_fs_info *fs_info = root->fs_info;
153 	struct btrfs_root *tree_root = fs_info->tree_root;
154 	const bool zoned = btrfs_is_zoned(fs_info);
155 	int ret = 0;
156 	bool created = false;
157 
158 	/*
159 	 * First check if the log root tree was already created. If not, create
160 	 * it before locking the root's log_mutex, just to keep lockdep happy.
161 	 */
162 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
163 		mutex_lock(&tree_root->log_mutex);
164 		if (!fs_info->log_root_tree) {
165 			ret = btrfs_init_log_root_tree(trans, fs_info);
166 			if (!ret) {
167 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
168 				created = true;
169 			}
170 		}
171 		mutex_unlock(&tree_root->log_mutex);
172 		if (ret)
173 			return ret;
174 	}
175 
176 	mutex_lock(&root->log_mutex);
177 
178 again:
179 	if (root->log_root) {
180 		int index = (root->log_transid + 1) % 2;
181 
182 		if (btrfs_need_log_full_commit(trans)) {
183 			ret = BTRFS_LOG_FORCE_COMMIT;
184 			goto out;
185 		}
186 
187 		if (zoned && atomic_read(&root->log_commit[index])) {
188 			wait_log_commit(root, root->log_transid - 1);
189 			goto again;
190 		}
191 
192 		if (!root->log_start_pid) {
193 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
194 			root->log_start_pid = current->pid;
195 		} else if (root->log_start_pid != current->pid) {
196 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
197 		}
198 	} else {
199 		/*
200 		 * This means fs_info->log_root_tree was already created
201 		 * for some other FS trees. Do the full commit not to mix
202 		 * nodes from multiple log transactions to do sequential
203 		 * writing.
204 		 */
205 		if (zoned && !created) {
206 			ret = BTRFS_LOG_FORCE_COMMIT;
207 			goto out;
208 		}
209 
210 		ret = btrfs_add_log_tree(trans, root);
211 		if (ret)
212 			goto out;
213 
214 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
215 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216 		root->log_start_pid = current->pid;
217 	}
218 
219 	atomic_inc(&root->log_writers);
220 	if (!ctx->logging_new_name) {
221 		int index = root->log_transid % 2;
222 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
223 		ctx->log_transid = root->log_transid;
224 	}
225 
226 out:
227 	mutex_unlock(&root->log_mutex);
228 	return ret;
229 }
230 
231 /*
232  * returns 0 if there was a log transaction running and we were able
233  * to join, or returns -ENOENT if there were not transactions
234  * in progress
235  */
236 static int join_running_log_trans(struct btrfs_root *root)
237 {
238 	const bool zoned = btrfs_is_zoned(root->fs_info);
239 	int ret = -ENOENT;
240 
241 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
242 		return ret;
243 
244 	mutex_lock(&root->log_mutex);
245 again:
246 	if (root->log_root) {
247 		int index = (root->log_transid + 1) % 2;
248 
249 		ret = 0;
250 		if (zoned && atomic_read(&root->log_commit[index])) {
251 			wait_log_commit(root, root->log_transid - 1);
252 			goto again;
253 		}
254 		atomic_inc(&root->log_writers);
255 	}
256 	mutex_unlock(&root->log_mutex);
257 	return ret;
258 }
259 
260 /*
261  * This either makes the current running log transaction wait
262  * until you call btrfs_end_log_trans() or it makes any future
263  * log transactions wait until you call btrfs_end_log_trans()
264  */
265 void btrfs_pin_log_trans(struct btrfs_root *root)
266 {
267 	atomic_inc(&root->log_writers);
268 }
269 
270 /*
271  * indicate we're done making changes to the log tree
272  * and wake up anyone waiting to do a sync
273  */
274 void btrfs_end_log_trans(struct btrfs_root *root)
275 {
276 	if (atomic_dec_and_test(&root->log_writers)) {
277 		/* atomic_dec_and_test implies a barrier */
278 		cond_wake_up_nomb(&root->log_writer_wait);
279 	}
280 }
281 
282 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
283 {
284 	filemap_fdatawait_range(buf->pages[0]->mapping,
285 			        buf->start, buf->start + buf->len - 1);
286 }
287 
288 /*
289  * the walk control struct is used to pass state down the chain when
290  * processing the log tree.  The stage field tells us which part
291  * of the log tree processing we are currently doing.  The others
292  * are state fields used for that specific part
293  */
294 struct walk_control {
295 	/* should we free the extent on disk when done?  This is used
296 	 * at transaction commit time while freeing a log tree
297 	 */
298 	int free;
299 
300 	/* pin only walk, we record which extents on disk belong to the
301 	 * log trees
302 	 */
303 	int pin;
304 
305 	/* what stage of the replay code we're currently in */
306 	int stage;
307 
308 	/*
309 	 * Ignore any items from the inode currently being processed. Needs
310 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
311 	 * the LOG_WALK_REPLAY_INODES stage.
312 	 */
313 	bool ignore_cur_inode;
314 
315 	/* the root we are currently replaying */
316 	struct btrfs_root *replay_dest;
317 
318 	/* the trans handle for the current replay */
319 	struct btrfs_trans_handle *trans;
320 
321 	/* the function that gets used to process blocks we find in the
322 	 * tree.  Note the extent_buffer might not be up to date when it is
323 	 * passed in, and it must be checked or read if you need the data
324 	 * inside it
325 	 */
326 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
327 			    struct walk_control *wc, u64 gen, int level);
328 };
329 
330 /*
331  * process_func used to pin down extents, write them or wait on them
332  */
333 static int process_one_buffer(struct btrfs_root *log,
334 			      struct extent_buffer *eb,
335 			      struct walk_control *wc, u64 gen, int level)
336 {
337 	struct btrfs_fs_info *fs_info = log->fs_info;
338 	int ret = 0;
339 
340 	/*
341 	 * If this fs is mixed then we need to be able to process the leaves to
342 	 * pin down any logged extents, so we have to read the block.
343 	 */
344 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
345 		struct btrfs_tree_parent_check check = {
346 			.level = level,
347 			.transid = gen
348 		};
349 
350 		ret = btrfs_read_extent_buffer(eb, &check);
351 		if (ret)
352 			return ret;
353 	}
354 
355 	if (wc->pin) {
356 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
357 						      eb->len);
358 		if (ret)
359 			return ret;
360 
361 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
362 		    btrfs_header_level(eb) == 0)
363 			ret = btrfs_exclude_logged_extents(eb);
364 	}
365 	return ret;
366 }
367 
368 /*
369  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
370  * to the src data we are copying out.
371  *
372  * root is the tree we are copying into, and path is a scratch
373  * path for use in this function (it should be released on entry and
374  * will be released on exit).
375  *
376  * If the key is already in the destination tree the existing item is
377  * overwritten.  If the existing item isn't big enough, it is extended.
378  * If it is too large, it is truncated.
379  *
380  * If the key isn't in the destination yet, a new item is inserted.
381  */
382 static int overwrite_item(struct btrfs_trans_handle *trans,
383 			  struct btrfs_root *root,
384 			  struct btrfs_path *path,
385 			  struct extent_buffer *eb, int slot,
386 			  struct btrfs_key *key)
387 {
388 	int ret;
389 	u32 item_size;
390 	u64 saved_i_size = 0;
391 	int save_old_i_size = 0;
392 	unsigned long src_ptr;
393 	unsigned long dst_ptr;
394 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
395 
396 	/*
397 	 * This is only used during log replay, so the root is always from a
398 	 * fs/subvolume tree. In case we ever need to support a log root, then
399 	 * we'll have to clone the leaf in the path, release the path and use
400 	 * the leaf before writing into the log tree. See the comments at
401 	 * copy_items() for more details.
402 	 */
403 	ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
404 
405 	item_size = btrfs_item_size(eb, slot);
406 	src_ptr = btrfs_item_ptr_offset(eb, slot);
407 
408 	/* Look for the key in the destination tree. */
409 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
410 	if (ret < 0)
411 		return ret;
412 
413 	if (ret == 0) {
414 		char *src_copy;
415 		char *dst_copy;
416 		u32 dst_size = btrfs_item_size(path->nodes[0],
417 						  path->slots[0]);
418 		if (dst_size != item_size)
419 			goto insert;
420 
421 		if (item_size == 0) {
422 			btrfs_release_path(path);
423 			return 0;
424 		}
425 		dst_copy = kmalloc(item_size, GFP_NOFS);
426 		src_copy = kmalloc(item_size, GFP_NOFS);
427 		if (!dst_copy || !src_copy) {
428 			btrfs_release_path(path);
429 			kfree(dst_copy);
430 			kfree(src_copy);
431 			return -ENOMEM;
432 		}
433 
434 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
435 
436 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
437 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
438 				   item_size);
439 		ret = memcmp(dst_copy, src_copy, item_size);
440 
441 		kfree(dst_copy);
442 		kfree(src_copy);
443 		/*
444 		 * they have the same contents, just return, this saves
445 		 * us from cowing blocks in the destination tree and doing
446 		 * extra writes that may not have been done by a previous
447 		 * sync
448 		 */
449 		if (ret == 0) {
450 			btrfs_release_path(path);
451 			return 0;
452 		}
453 
454 		/*
455 		 * We need to load the old nbytes into the inode so when we
456 		 * replay the extents we've logged we get the right nbytes.
457 		 */
458 		if (inode_item) {
459 			struct btrfs_inode_item *item;
460 			u64 nbytes;
461 			u32 mode;
462 
463 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
464 					      struct btrfs_inode_item);
465 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
466 			item = btrfs_item_ptr(eb, slot,
467 					      struct btrfs_inode_item);
468 			btrfs_set_inode_nbytes(eb, item, nbytes);
469 
470 			/*
471 			 * If this is a directory we need to reset the i_size to
472 			 * 0 so that we can set it up properly when replaying
473 			 * the rest of the items in this log.
474 			 */
475 			mode = btrfs_inode_mode(eb, item);
476 			if (S_ISDIR(mode))
477 				btrfs_set_inode_size(eb, item, 0);
478 		}
479 	} else if (inode_item) {
480 		struct btrfs_inode_item *item;
481 		u32 mode;
482 
483 		/*
484 		 * New inode, set nbytes to 0 so that the nbytes comes out
485 		 * properly when we replay the extents.
486 		 */
487 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
488 		btrfs_set_inode_nbytes(eb, item, 0);
489 
490 		/*
491 		 * If this is a directory we need to reset the i_size to 0 so
492 		 * that we can set it up properly when replaying the rest of
493 		 * the items in this log.
494 		 */
495 		mode = btrfs_inode_mode(eb, item);
496 		if (S_ISDIR(mode))
497 			btrfs_set_inode_size(eb, item, 0);
498 	}
499 insert:
500 	btrfs_release_path(path);
501 	/* try to insert the key into the destination tree */
502 	path->skip_release_on_error = 1;
503 	ret = btrfs_insert_empty_item(trans, root, path,
504 				      key, item_size);
505 	path->skip_release_on_error = 0;
506 
507 	/* make sure any existing item is the correct size */
508 	if (ret == -EEXIST || ret == -EOVERFLOW) {
509 		u32 found_size;
510 		found_size = btrfs_item_size(path->nodes[0],
511 						path->slots[0]);
512 		if (found_size > item_size)
513 			btrfs_truncate_item(path, item_size, 1);
514 		else if (found_size < item_size)
515 			btrfs_extend_item(path, item_size - found_size);
516 	} else if (ret) {
517 		return ret;
518 	}
519 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
520 					path->slots[0]);
521 
522 	/* don't overwrite an existing inode if the generation number
523 	 * was logged as zero.  This is done when the tree logging code
524 	 * is just logging an inode to make sure it exists after recovery.
525 	 *
526 	 * Also, don't overwrite i_size on directories during replay.
527 	 * log replay inserts and removes directory items based on the
528 	 * state of the tree found in the subvolume, and i_size is modified
529 	 * as it goes
530 	 */
531 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
532 		struct btrfs_inode_item *src_item;
533 		struct btrfs_inode_item *dst_item;
534 
535 		src_item = (struct btrfs_inode_item *)src_ptr;
536 		dst_item = (struct btrfs_inode_item *)dst_ptr;
537 
538 		if (btrfs_inode_generation(eb, src_item) == 0) {
539 			struct extent_buffer *dst_eb = path->nodes[0];
540 			const u64 ino_size = btrfs_inode_size(eb, src_item);
541 
542 			/*
543 			 * For regular files an ino_size == 0 is used only when
544 			 * logging that an inode exists, as part of a directory
545 			 * fsync, and the inode wasn't fsynced before. In this
546 			 * case don't set the size of the inode in the fs/subvol
547 			 * tree, otherwise we would be throwing valid data away.
548 			 */
549 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
550 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
551 			    ino_size != 0)
552 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
553 			goto no_copy;
554 		}
555 
556 		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
557 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
558 			save_old_i_size = 1;
559 			saved_i_size = btrfs_inode_size(path->nodes[0],
560 							dst_item);
561 		}
562 	}
563 
564 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
565 			   src_ptr, item_size);
566 
567 	if (save_old_i_size) {
568 		struct btrfs_inode_item *dst_item;
569 		dst_item = (struct btrfs_inode_item *)dst_ptr;
570 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
571 	}
572 
573 	/* make sure the generation is filled in */
574 	if (key->type == BTRFS_INODE_ITEM_KEY) {
575 		struct btrfs_inode_item *dst_item;
576 		dst_item = (struct btrfs_inode_item *)dst_ptr;
577 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
578 			btrfs_set_inode_generation(path->nodes[0], dst_item,
579 						   trans->transid);
580 		}
581 	}
582 no_copy:
583 	btrfs_mark_buffer_dirty(path->nodes[0]);
584 	btrfs_release_path(path);
585 	return 0;
586 }
587 
588 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
589 			       struct fscrypt_str *name)
590 {
591 	char *buf;
592 
593 	buf = kmalloc(len, GFP_NOFS);
594 	if (!buf)
595 		return -ENOMEM;
596 
597 	read_extent_buffer(eb, buf, (unsigned long)start, len);
598 	name->name = buf;
599 	name->len = len;
600 	return 0;
601 }
602 
603 /*
604  * simple helper to read an inode off the disk from a given root
605  * This can only be called for subvolume roots and not for the log
606  */
607 static noinline struct inode *read_one_inode(struct btrfs_root *root,
608 					     u64 objectid)
609 {
610 	struct inode *inode;
611 
612 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
613 	if (IS_ERR(inode))
614 		inode = NULL;
615 	return inode;
616 }
617 
618 /* replays a single extent in 'eb' at 'slot' with 'key' into the
619  * subvolume 'root'.  path is released on entry and should be released
620  * on exit.
621  *
622  * extents in the log tree have not been allocated out of the extent
623  * tree yet.  So, this completes the allocation, taking a reference
624  * as required if the extent already exists or creating a new extent
625  * if it isn't in the extent allocation tree yet.
626  *
627  * The extent is inserted into the file, dropping any existing extents
628  * from the file that overlap the new one.
629  */
630 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
631 				      struct btrfs_root *root,
632 				      struct btrfs_path *path,
633 				      struct extent_buffer *eb, int slot,
634 				      struct btrfs_key *key)
635 {
636 	struct btrfs_drop_extents_args drop_args = { 0 };
637 	struct btrfs_fs_info *fs_info = root->fs_info;
638 	int found_type;
639 	u64 extent_end;
640 	u64 start = key->offset;
641 	u64 nbytes = 0;
642 	struct btrfs_file_extent_item *item;
643 	struct inode *inode = NULL;
644 	unsigned long size;
645 	int ret = 0;
646 
647 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
648 	found_type = btrfs_file_extent_type(eb, item);
649 
650 	if (found_type == BTRFS_FILE_EXTENT_REG ||
651 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
652 		nbytes = btrfs_file_extent_num_bytes(eb, item);
653 		extent_end = start + nbytes;
654 
655 		/*
656 		 * We don't add to the inodes nbytes if we are prealloc or a
657 		 * hole.
658 		 */
659 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
660 			nbytes = 0;
661 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
662 		size = btrfs_file_extent_ram_bytes(eb, item);
663 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
664 		extent_end = ALIGN(start + size,
665 				   fs_info->sectorsize);
666 	} else {
667 		ret = 0;
668 		goto out;
669 	}
670 
671 	inode = read_one_inode(root, key->objectid);
672 	if (!inode) {
673 		ret = -EIO;
674 		goto out;
675 	}
676 
677 	/*
678 	 * first check to see if we already have this extent in the
679 	 * file.  This must be done before the btrfs_drop_extents run
680 	 * so we don't try to drop this extent.
681 	 */
682 	ret = btrfs_lookup_file_extent(trans, root, path,
683 			btrfs_ino(BTRFS_I(inode)), start, 0);
684 
685 	if (ret == 0 &&
686 	    (found_type == BTRFS_FILE_EXTENT_REG ||
687 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
688 		struct btrfs_file_extent_item cmp1;
689 		struct btrfs_file_extent_item cmp2;
690 		struct btrfs_file_extent_item *existing;
691 		struct extent_buffer *leaf;
692 
693 		leaf = path->nodes[0];
694 		existing = btrfs_item_ptr(leaf, path->slots[0],
695 					  struct btrfs_file_extent_item);
696 
697 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
698 				   sizeof(cmp1));
699 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
700 				   sizeof(cmp2));
701 
702 		/*
703 		 * we already have a pointer to this exact extent,
704 		 * we don't have to do anything
705 		 */
706 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
707 			btrfs_release_path(path);
708 			goto out;
709 		}
710 	}
711 	btrfs_release_path(path);
712 
713 	/* drop any overlapping extents */
714 	drop_args.start = start;
715 	drop_args.end = extent_end;
716 	drop_args.drop_cache = true;
717 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
718 	if (ret)
719 		goto out;
720 
721 	if (found_type == BTRFS_FILE_EXTENT_REG ||
722 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
723 		u64 offset;
724 		unsigned long dest_offset;
725 		struct btrfs_key ins;
726 
727 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
728 		    btrfs_fs_incompat(fs_info, NO_HOLES))
729 			goto update_inode;
730 
731 		ret = btrfs_insert_empty_item(trans, root, path, key,
732 					      sizeof(*item));
733 		if (ret)
734 			goto out;
735 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
736 						    path->slots[0]);
737 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
738 				(unsigned long)item,  sizeof(*item));
739 
740 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
741 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
742 		ins.type = BTRFS_EXTENT_ITEM_KEY;
743 		offset = key->offset - btrfs_file_extent_offset(eb, item);
744 
745 		/*
746 		 * Manually record dirty extent, as here we did a shallow
747 		 * file extent item copy and skip normal backref update,
748 		 * but modifying extent tree all by ourselves.
749 		 * So need to manually record dirty extent for qgroup,
750 		 * as the owner of the file extent changed from log tree
751 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
752 		 */
753 		ret = btrfs_qgroup_trace_extent(trans,
754 				btrfs_file_extent_disk_bytenr(eb, item),
755 				btrfs_file_extent_disk_num_bytes(eb, item));
756 		if (ret < 0)
757 			goto out;
758 
759 		if (ins.objectid > 0) {
760 			struct btrfs_ref ref = { 0 };
761 			u64 csum_start;
762 			u64 csum_end;
763 			LIST_HEAD(ordered_sums);
764 
765 			/*
766 			 * is this extent already allocated in the extent
767 			 * allocation tree?  If so, just add a reference
768 			 */
769 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
770 						ins.offset);
771 			if (ret < 0) {
772 				goto out;
773 			} else if (ret == 0) {
774 				btrfs_init_generic_ref(&ref,
775 						BTRFS_ADD_DELAYED_REF,
776 						ins.objectid, ins.offset, 0);
777 				btrfs_init_data_ref(&ref,
778 						root->root_key.objectid,
779 						key->objectid, offset, 0, false);
780 				ret = btrfs_inc_extent_ref(trans, &ref);
781 				if (ret)
782 					goto out;
783 			} else {
784 				/*
785 				 * insert the extent pointer in the extent
786 				 * allocation tree
787 				 */
788 				ret = btrfs_alloc_logged_file_extent(trans,
789 						root->root_key.objectid,
790 						key->objectid, offset, &ins);
791 				if (ret)
792 					goto out;
793 			}
794 			btrfs_release_path(path);
795 
796 			if (btrfs_file_extent_compression(eb, item)) {
797 				csum_start = ins.objectid;
798 				csum_end = csum_start + ins.offset;
799 			} else {
800 				csum_start = ins.objectid +
801 					btrfs_file_extent_offset(eb, item);
802 				csum_end = csum_start +
803 					btrfs_file_extent_num_bytes(eb, item);
804 			}
805 
806 			ret = btrfs_lookup_csums_list(root->log_root,
807 						csum_start, csum_end - 1,
808 						&ordered_sums, 0, false);
809 			if (ret)
810 				goto out;
811 			/*
812 			 * Now delete all existing cums in the csum root that
813 			 * cover our range. We do this because we can have an
814 			 * extent that is completely referenced by one file
815 			 * extent item and partially referenced by another
816 			 * file extent item (like after using the clone or
817 			 * extent_same ioctls). In this case if we end up doing
818 			 * the replay of the one that partially references the
819 			 * extent first, and we do not do the csum deletion
820 			 * below, we can get 2 csum items in the csum tree that
821 			 * overlap each other. For example, imagine our log has
822 			 * the two following file extent items:
823 			 *
824 			 * key (257 EXTENT_DATA 409600)
825 			 *     extent data disk byte 12845056 nr 102400
826 			 *     extent data offset 20480 nr 20480 ram 102400
827 			 *
828 			 * key (257 EXTENT_DATA 819200)
829 			 *     extent data disk byte 12845056 nr 102400
830 			 *     extent data offset 0 nr 102400 ram 102400
831 			 *
832 			 * Where the second one fully references the 100K extent
833 			 * that starts at disk byte 12845056, and the log tree
834 			 * has a single csum item that covers the entire range
835 			 * of the extent:
836 			 *
837 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
838 			 *
839 			 * After the first file extent item is replayed, the
840 			 * csum tree gets the following csum item:
841 			 *
842 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
843 			 *
844 			 * Which covers the 20K sub-range starting at offset 20K
845 			 * of our extent. Now when we replay the second file
846 			 * extent item, if we do not delete existing csum items
847 			 * that cover any of its blocks, we end up getting two
848 			 * csum items in our csum tree that overlap each other:
849 			 *
850 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
852 			 *
853 			 * Which is a problem, because after this anyone trying
854 			 * to lookup up for the checksum of any block of our
855 			 * extent starting at an offset of 40K or higher, will
856 			 * end up looking at the second csum item only, which
857 			 * does not contain the checksum for any block starting
858 			 * at offset 40K or higher of our extent.
859 			 */
860 			while (!list_empty(&ordered_sums)) {
861 				struct btrfs_ordered_sum *sums;
862 				struct btrfs_root *csum_root;
863 
864 				sums = list_entry(ordered_sums.next,
865 						struct btrfs_ordered_sum,
866 						list);
867 				csum_root = btrfs_csum_root(fs_info,
868 							    sums->bytenr);
869 				if (!ret)
870 					ret = btrfs_del_csums(trans, csum_root,
871 							      sums->bytenr,
872 							      sums->len);
873 				if (!ret)
874 					ret = btrfs_csum_file_blocks(trans,
875 								     csum_root,
876 								     sums);
877 				list_del(&sums->list);
878 				kfree(sums);
879 			}
880 			if (ret)
881 				goto out;
882 		} else {
883 			btrfs_release_path(path);
884 		}
885 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
886 		/* inline extents are easy, we just overwrite them */
887 		ret = overwrite_item(trans, root, path, eb, slot, key);
888 		if (ret)
889 			goto out;
890 	}
891 
892 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
893 						extent_end - start);
894 	if (ret)
895 		goto out;
896 
897 update_inode:
898 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
899 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
900 out:
901 	iput(inode);
902 	return ret;
903 }
904 
905 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
906 				       struct btrfs_inode *dir,
907 				       struct btrfs_inode *inode,
908 				       const struct fscrypt_str *name)
909 {
910 	int ret;
911 
912 	ret = btrfs_unlink_inode(trans, dir, inode, name);
913 	if (ret)
914 		return ret;
915 	/*
916 	 * Whenever we need to check if a name exists or not, we check the
917 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
918 	 * that future checks for a name during log replay see that the name
919 	 * does not exists anymore.
920 	 */
921 	return btrfs_run_delayed_items(trans);
922 }
923 
924 /*
925  * when cleaning up conflicts between the directory names in the
926  * subvolume, directory names in the log and directory names in the
927  * inode back references, we may have to unlink inodes from directories.
928  *
929  * This is a helper function to do the unlink of a specific directory
930  * item
931  */
932 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
933 				      struct btrfs_path *path,
934 				      struct btrfs_inode *dir,
935 				      struct btrfs_dir_item *di)
936 {
937 	struct btrfs_root *root = dir->root;
938 	struct inode *inode;
939 	struct fscrypt_str name;
940 	struct extent_buffer *leaf;
941 	struct btrfs_key location;
942 	int ret;
943 
944 	leaf = path->nodes[0];
945 
946 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
947 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
948 	if (ret)
949 		return -ENOMEM;
950 
951 	btrfs_release_path(path);
952 
953 	inode = read_one_inode(root, location.objectid);
954 	if (!inode) {
955 		ret = -EIO;
956 		goto out;
957 	}
958 
959 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
960 	if (ret)
961 		goto out;
962 
963 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
964 out:
965 	kfree(name.name);
966 	iput(inode);
967 	return ret;
968 }
969 
970 /*
971  * See if a given name and sequence number found in an inode back reference are
972  * already in a directory and correctly point to this inode.
973  *
974  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
975  * exists.
976  */
977 static noinline int inode_in_dir(struct btrfs_root *root,
978 				 struct btrfs_path *path,
979 				 u64 dirid, u64 objectid, u64 index,
980 				 struct fscrypt_str *name)
981 {
982 	struct btrfs_dir_item *di;
983 	struct btrfs_key location;
984 	int ret = 0;
985 
986 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
987 					 index, name, 0);
988 	if (IS_ERR(di)) {
989 		ret = PTR_ERR(di);
990 		goto out;
991 	} else if (di) {
992 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
993 		if (location.objectid != objectid)
994 			goto out;
995 	} else {
996 		goto out;
997 	}
998 
999 	btrfs_release_path(path);
1000 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1001 	if (IS_ERR(di)) {
1002 		ret = PTR_ERR(di);
1003 		goto out;
1004 	} else if (di) {
1005 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 		if (location.objectid == objectid)
1007 			ret = 1;
1008 	}
1009 out:
1010 	btrfs_release_path(path);
1011 	return ret;
1012 }
1013 
1014 /*
1015  * helper function to check a log tree for a named back reference in
1016  * an inode.  This is used to decide if a back reference that is
1017  * found in the subvolume conflicts with what we find in the log.
1018  *
1019  * inode backreferences may have multiple refs in a single item,
1020  * during replay we process one reference at a time, and we don't
1021  * want to delete valid links to a file from the subvolume if that
1022  * link is also in the log.
1023  */
1024 static noinline int backref_in_log(struct btrfs_root *log,
1025 				   struct btrfs_key *key,
1026 				   u64 ref_objectid,
1027 				   const struct fscrypt_str *name)
1028 {
1029 	struct btrfs_path *path;
1030 	int ret;
1031 
1032 	path = btrfs_alloc_path();
1033 	if (!path)
1034 		return -ENOMEM;
1035 
1036 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1037 	if (ret < 0) {
1038 		goto out;
1039 	} else if (ret == 1) {
1040 		ret = 0;
1041 		goto out;
1042 	}
1043 
1044 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1045 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1046 						       path->slots[0],
1047 						       ref_objectid, name);
1048 	else
1049 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1050 						   path->slots[0], name);
1051 out:
1052 	btrfs_free_path(path);
1053 	return ret;
1054 }
1055 
1056 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1057 				  struct btrfs_root *root,
1058 				  struct btrfs_path *path,
1059 				  struct btrfs_root *log_root,
1060 				  struct btrfs_inode *dir,
1061 				  struct btrfs_inode *inode,
1062 				  u64 inode_objectid, u64 parent_objectid,
1063 				  u64 ref_index, struct fscrypt_str *name)
1064 {
1065 	int ret;
1066 	struct extent_buffer *leaf;
1067 	struct btrfs_dir_item *di;
1068 	struct btrfs_key search_key;
1069 	struct btrfs_inode_extref *extref;
1070 
1071 again:
1072 	/* Search old style refs */
1073 	search_key.objectid = inode_objectid;
1074 	search_key.type = BTRFS_INODE_REF_KEY;
1075 	search_key.offset = parent_objectid;
1076 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1077 	if (ret == 0) {
1078 		struct btrfs_inode_ref *victim_ref;
1079 		unsigned long ptr;
1080 		unsigned long ptr_end;
1081 
1082 		leaf = path->nodes[0];
1083 
1084 		/* are we trying to overwrite a back ref for the root directory
1085 		 * if so, just jump out, we're done
1086 		 */
1087 		if (search_key.objectid == search_key.offset)
1088 			return 1;
1089 
1090 		/* check all the names in this back reference to see
1091 		 * if they are in the log.  if so, we allow them to stay
1092 		 * otherwise they must be unlinked as a conflict
1093 		 */
1094 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1095 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1096 		while (ptr < ptr_end) {
1097 			struct fscrypt_str victim_name;
1098 
1099 			victim_ref = (struct btrfs_inode_ref *)ptr;
1100 			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1101 				 btrfs_inode_ref_name_len(leaf, victim_ref),
1102 				 &victim_name);
1103 			if (ret)
1104 				return ret;
1105 
1106 			ret = backref_in_log(log_root, &search_key,
1107 					     parent_objectid, &victim_name);
1108 			if (ret < 0) {
1109 				kfree(victim_name.name);
1110 				return ret;
1111 			} else if (!ret) {
1112 				inc_nlink(&inode->vfs_inode);
1113 				btrfs_release_path(path);
1114 
1115 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1116 						&victim_name);
1117 				kfree(victim_name.name);
1118 				if (ret)
1119 					return ret;
1120 				goto again;
1121 			}
1122 			kfree(victim_name.name);
1123 
1124 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1125 		}
1126 	}
1127 	btrfs_release_path(path);
1128 
1129 	/* Same search but for extended refs */
1130 	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1131 					   inode_objectid, parent_objectid, 0,
1132 					   0);
1133 	if (IS_ERR(extref)) {
1134 		return PTR_ERR(extref);
1135 	} else if (extref) {
1136 		u32 item_size;
1137 		u32 cur_offset = 0;
1138 		unsigned long base;
1139 		struct inode *victim_parent;
1140 
1141 		leaf = path->nodes[0];
1142 
1143 		item_size = btrfs_item_size(leaf, path->slots[0]);
1144 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1145 
1146 		while (cur_offset < item_size) {
1147 			struct fscrypt_str victim_name;
1148 
1149 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1150 
1151 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1152 				goto next;
1153 
1154 			ret = read_alloc_one_name(leaf, &extref->name,
1155 				 btrfs_inode_extref_name_len(leaf, extref),
1156 				 &victim_name);
1157 			if (ret)
1158 				return ret;
1159 
1160 			search_key.objectid = inode_objectid;
1161 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1162 			search_key.offset = btrfs_extref_hash(parent_objectid,
1163 							      victim_name.name,
1164 							      victim_name.len);
1165 			ret = backref_in_log(log_root, &search_key,
1166 					     parent_objectid, &victim_name);
1167 			if (ret < 0) {
1168 				kfree(victim_name.name);
1169 				return ret;
1170 			} else if (!ret) {
1171 				ret = -ENOENT;
1172 				victim_parent = read_one_inode(root,
1173 						parent_objectid);
1174 				if (victim_parent) {
1175 					inc_nlink(&inode->vfs_inode);
1176 					btrfs_release_path(path);
1177 
1178 					ret = unlink_inode_for_log_replay(trans,
1179 							BTRFS_I(victim_parent),
1180 							inode, &victim_name);
1181 				}
1182 				iput(victim_parent);
1183 				kfree(victim_name.name);
1184 				if (ret)
1185 					return ret;
1186 				goto again;
1187 			}
1188 			kfree(victim_name.name);
1189 next:
1190 			cur_offset += victim_name.len + sizeof(*extref);
1191 		}
1192 	}
1193 	btrfs_release_path(path);
1194 
1195 	/* look for a conflicting sequence number */
1196 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1197 					 ref_index, name, 0);
1198 	if (IS_ERR(di)) {
1199 		return PTR_ERR(di);
1200 	} else if (di) {
1201 		ret = drop_one_dir_item(trans, path, dir, di);
1202 		if (ret)
1203 			return ret;
1204 	}
1205 	btrfs_release_path(path);
1206 
1207 	/* look for a conflicting name */
1208 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1209 	if (IS_ERR(di)) {
1210 		return PTR_ERR(di);
1211 	} else if (di) {
1212 		ret = drop_one_dir_item(trans, path, dir, di);
1213 		if (ret)
1214 			return ret;
1215 	}
1216 	btrfs_release_path(path);
1217 
1218 	return 0;
1219 }
1220 
1221 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1222 			     struct fscrypt_str *name, u64 *index,
1223 			     u64 *parent_objectid)
1224 {
1225 	struct btrfs_inode_extref *extref;
1226 	int ret;
1227 
1228 	extref = (struct btrfs_inode_extref *)ref_ptr;
1229 
1230 	ret = read_alloc_one_name(eb, &extref->name,
1231 				  btrfs_inode_extref_name_len(eb, extref), name);
1232 	if (ret)
1233 		return ret;
1234 
1235 	if (index)
1236 		*index = btrfs_inode_extref_index(eb, extref);
1237 	if (parent_objectid)
1238 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1239 
1240 	return 0;
1241 }
1242 
1243 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1244 			  struct fscrypt_str *name, u64 *index)
1245 {
1246 	struct btrfs_inode_ref *ref;
1247 	int ret;
1248 
1249 	ref = (struct btrfs_inode_ref *)ref_ptr;
1250 
1251 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1252 				  name);
1253 	if (ret)
1254 		return ret;
1255 
1256 	if (index)
1257 		*index = btrfs_inode_ref_index(eb, ref);
1258 
1259 	return 0;
1260 }
1261 
1262 /*
1263  * Take an inode reference item from the log tree and iterate all names from the
1264  * inode reference item in the subvolume tree with the same key (if it exists).
1265  * For any name that is not in the inode reference item from the log tree, do a
1266  * proper unlink of that name (that is, remove its entry from the inode
1267  * reference item and both dir index keys).
1268  */
1269 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1270 				 struct btrfs_root *root,
1271 				 struct btrfs_path *path,
1272 				 struct btrfs_inode *inode,
1273 				 struct extent_buffer *log_eb,
1274 				 int log_slot,
1275 				 struct btrfs_key *key)
1276 {
1277 	int ret;
1278 	unsigned long ref_ptr;
1279 	unsigned long ref_end;
1280 	struct extent_buffer *eb;
1281 
1282 again:
1283 	btrfs_release_path(path);
1284 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1285 	if (ret > 0) {
1286 		ret = 0;
1287 		goto out;
1288 	}
1289 	if (ret < 0)
1290 		goto out;
1291 
1292 	eb = path->nodes[0];
1293 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1294 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1295 	while (ref_ptr < ref_end) {
1296 		struct fscrypt_str name;
1297 		u64 parent_id;
1298 
1299 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1300 			ret = extref_get_fields(eb, ref_ptr, &name,
1301 						NULL, &parent_id);
1302 		} else {
1303 			parent_id = key->offset;
1304 			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1305 		}
1306 		if (ret)
1307 			goto out;
1308 
1309 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1310 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1311 							       parent_id, &name);
1312 		else
1313 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1314 
1315 		if (!ret) {
1316 			struct inode *dir;
1317 
1318 			btrfs_release_path(path);
1319 			dir = read_one_inode(root, parent_id);
1320 			if (!dir) {
1321 				ret = -ENOENT;
1322 				kfree(name.name);
1323 				goto out;
1324 			}
1325 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1326 						 inode, &name);
1327 			kfree(name.name);
1328 			iput(dir);
1329 			if (ret)
1330 				goto out;
1331 			goto again;
1332 		}
1333 
1334 		kfree(name.name);
1335 		ref_ptr += name.len;
1336 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1337 			ref_ptr += sizeof(struct btrfs_inode_extref);
1338 		else
1339 			ref_ptr += sizeof(struct btrfs_inode_ref);
1340 	}
1341 	ret = 0;
1342  out:
1343 	btrfs_release_path(path);
1344 	return ret;
1345 }
1346 
1347 /*
1348  * replay one inode back reference item found in the log tree.
1349  * eb, slot and key refer to the buffer and key found in the log tree.
1350  * root is the destination we are replaying into, and path is for temp
1351  * use by this function.  (it should be released on return).
1352  */
1353 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1354 				  struct btrfs_root *root,
1355 				  struct btrfs_root *log,
1356 				  struct btrfs_path *path,
1357 				  struct extent_buffer *eb, int slot,
1358 				  struct btrfs_key *key)
1359 {
1360 	struct inode *dir = NULL;
1361 	struct inode *inode = NULL;
1362 	unsigned long ref_ptr;
1363 	unsigned long ref_end;
1364 	struct fscrypt_str name;
1365 	int ret;
1366 	int log_ref_ver = 0;
1367 	u64 parent_objectid;
1368 	u64 inode_objectid;
1369 	u64 ref_index = 0;
1370 	int ref_struct_size;
1371 
1372 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1373 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1374 
1375 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1376 		struct btrfs_inode_extref *r;
1377 
1378 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1379 		log_ref_ver = 1;
1380 		r = (struct btrfs_inode_extref *)ref_ptr;
1381 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1382 	} else {
1383 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1384 		parent_objectid = key->offset;
1385 	}
1386 	inode_objectid = key->objectid;
1387 
1388 	/*
1389 	 * it is possible that we didn't log all the parent directories
1390 	 * for a given inode.  If we don't find the dir, just don't
1391 	 * copy the back ref in.  The link count fixup code will take
1392 	 * care of the rest
1393 	 */
1394 	dir = read_one_inode(root, parent_objectid);
1395 	if (!dir) {
1396 		ret = -ENOENT;
1397 		goto out;
1398 	}
1399 
1400 	inode = read_one_inode(root, inode_objectid);
1401 	if (!inode) {
1402 		ret = -EIO;
1403 		goto out;
1404 	}
1405 
1406 	while (ref_ptr < ref_end) {
1407 		if (log_ref_ver) {
1408 			ret = extref_get_fields(eb, ref_ptr, &name,
1409 						&ref_index, &parent_objectid);
1410 			/*
1411 			 * parent object can change from one array
1412 			 * item to another.
1413 			 */
1414 			if (!dir)
1415 				dir = read_one_inode(root, parent_objectid);
1416 			if (!dir) {
1417 				ret = -ENOENT;
1418 				goto out;
1419 			}
1420 		} else {
1421 			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1422 		}
1423 		if (ret)
1424 			goto out;
1425 
1426 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1427 				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1428 		if (ret < 0) {
1429 			goto out;
1430 		} else if (ret == 0) {
1431 			/*
1432 			 * look for a conflicting back reference in the
1433 			 * metadata. if we find one we have to unlink that name
1434 			 * of the file before we add our new link.  Later on, we
1435 			 * overwrite any existing back reference, and we don't
1436 			 * want to create dangling pointers in the directory.
1437 			 */
1438 			ret = __add_inode_ref(trans, root, path, log,
1439 					      BTRFS_I(dir), BTRFS_I(inode),
1440 					      inode_objectid, parent_objectid,
1441 					      ref_index, &name);
1442 			if (ret) {
1443 				if (ret == 1)
1444 					ret = 0;
1445 				goto out;
1446 			}
1447 
1448 			/* insert our name */
1449 			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1450 					     &name, 0, ref_index);
1451 			if (ret)
1452 				goto out;
1453 
1454 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1455 			if (ret)
1456 				goto out;
1457 		}
1458 		/* Else, ret == 1, we already have a perfect match, we're done. */
1459 
1460 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1461 		kfree(name.name);
1462 		name.name = NULL;
1463 		if (log_ref_ver) {
1464 			iput(dir);
1465 			dir = NULL;
1466 		}
1467 	}
1468 
1469 	/*
1470 	 * Before we overwrite the inode reference item in the subvolume tree
1471 	 * with the item from the log tree, we must unlink all names from the
1472 	 * parent directory that are in the subvolume's tree inode reference
1473 	 * item, otherwise we end up with an inconsistent subvolume tree where
1474 	 * dir index entries exist for a name but there is no inode reference
1475 	 * item with the same name.
1476 	 */
1477 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1478 				    key);
1479 	if (ret)
1480 		goto out;
1481 
1482 	/* finally write the back reference in the inode */
1483 	ret = overwrite_item(trans, root, path, eb, slot, key);
1484 out:
1485 	btrfs_release_path(path);
1486 	kfree(name.name);
1487 	iput(dir);
1488 	iput(inode);
1489 	return ret;
1490 }
1491 
1492 static int count_inode_extrefs(struct btrfs_root *root,
1493 		struct btrfs_inode *inode, struct btrfs_path *path)
1494 {
1495 	int ret = 0;
1496 	int name_len;
1497 	unsigned int nlink = 0;
1498 	u32 item_size;
1499 	u32 cur_offset = 0;
1500 	u64 inode_objectid = btrfs_ino(inode);
1501 	u64 offset = 0;
1502 	unsigned long ptr;
1503 	struct btrfs_inode_extref *extref;
1504 	struct extent_buffer *leaf;
1505 
1506 	while (1) {
1507 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1508 					    &extref, &offset);
1509 		if (ret)
1510 			break;
1511 
1512 		leaf = path->nodes[0];
1513 		item_size = btrfs_item_size(leaf, path->slots[0]);
1514 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1515 		cur_offset = 0;
1516 
1517 		while (cur_offset < item_size) {
1518 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1519 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1520 
1521 			nlink++;
1522 
1523 			cur_offset += name_len + sizeof(*extref);
1524 		}
1525 
1526 		offset++;
1527 		btrfs_release_path(path);
1528 	}
1529 	btrfs_release_path(path);
1530 
1531 	if (ret < 0 && ret != -ENOENT)
1532 		return ret;
1533 	return nlink;
1534 }
1535 
1536 static int count_inode_refs(struct btrfs_root *root,
1537 			struct btrfs_inode *inode, struct btrfs_path *path)
1538 {
1539 	int ret;
1540 	struct btrfs_key key;
1541 	unsigned int nlink = 0;
1542 	unsigned long ptr;
1543 	unsigned long ptr_end;
1544 	int name_len;
1545 	u64 ino = btrfs_ino(inode);
1546 
1547 	key.objectid = ino;
1548 	key.type = BTRFS_INODE_REF_KEY;
1549 	key.offset = (u64)-1;
1550 
1551 	while (1) {
1552 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1553 		if (ret < 0)
1554 			break;
1555 		if (ret > 0) {
1556 			if (path->slots[0] == 0)
1557 				break;
1558 			path->slots[0]--;
1559 		}
1560 process_slot:
1561 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1562 				      path->slots[0]);
1563 		if (key.objectid != ino ||
1564 		    key.type != BTRFS_INODE_REF_KEY)
1565 			break;
1566 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1567 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1568 						   path->slots[0]);
1569 		while (ptr < ptr_end) {
1570 			struct btrfs_inode_ref *ref;
1571 
1572 			ref = (struct btrfs_inode_ref *)ptr;
1573 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1574 							    ref);
1575 			ptr = (unsigned long)(ref + 1) + name_len;
1576 			nlink++;
1577 		}
1578 
1579 		if (key.offset == 0)
1580 			break;
1581 		if (path->slots[0] > 0) {
1582 			path->slots[0]--;
1583 			goto process_slot;
1584 		}
1585 		key.offset--;
1586 		btrfs_release_path(path);
1587 	}
1588 	btrfs_release_path(path);
1589 
1590 	return nlink;
1591 }
1592 
1593 /*
1594  * There are a few corners where the link count of the file can't
1595  * be properly maintained during replay.  So, instead of adding
1596  * lots of complexity to the log code, we just scan the backrefs
1597  * for any file that has been through replay.
1598  *
1599  * The scan will update the link count on the inode to reflect the
1600  * number of back refs found.  If it goes down to zero, the iput
1601  * will free the inode.
1602  */
1603 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1604 					   struct btrfs_root *root,
1605 					   struct inode *inode)
1606 {
1607 	struct btrfs_path *path;
1608 	int ret;
1609 	u64 nlink = 0;
1610 	u64 ino = btrfs_ino(BTRFS_I(inode));
1611 
1612 	path = btrfs_alloc_path();
1613 	if (!path)
1614 		return -ENOMEM;
1615 
1616 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1617 	if (ret < 0)
1618 		goto out;
1619 
1620 	nlink = ret;
1621 
1622 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1623 	if (ret < 0)
1624 		goto out;
1625 
1626 	nlink += ret;
1627 
1628 	ret = 0;
1629 
1630 	if (nlink != inode->i_nlink) {
1631 		set_nlink(inode, nlink);
1632 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1633 		if (ret)
1634 			goto out;
1635 	}
1636 	BTRFS_I(inode)->index_cnt = (u64)-1;
1637 
1638 	if (inode->i_nlink == 0) {
1639 		if (S_ISDIR(inode->i_mode)) {
1640 			ret = replay_dir_deletes(trans, root, NULL, path,
1641 						 ino, 1);
1642 			if (ret)
1643 				goto out;
1644 		}
1645 		ret = btrfs_insert_orphan_item(trans, root, ino);
1646 		if (ret == -EEXIST)
1647 			ret = 0;
1648 	}
1649 
1650 out:
1651 	btrfs_free_path(path);
1652 	return ret;
1653 }
1654 
1655 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1656 					    struct btrfs_root *root,
1657 					    struct btrfs_path *path)
1658 {
1659 	int ret;
1660 	struct btrfs_key key;
1661 	struct inode *inode;
1662 
1663 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1664 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1665 	key.offset = (u64)-1;
1666 	while (1) {
1667 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1668 		if (ret < 0)
1669 			break;
1670 
1671 		if (ret == 1) {
1672 			ret = 0;
1673 			if (path->slots[0] == 0)
1674 				break;
1675 			path->slots[0]--;
1676 		}
1677 
1678 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1679 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1680 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1681 			break;
1682 
1683 		ret = btrfs_del_item(trans, root, path);
1684 		if (ret)
1685 			break;
1686 
1687 		btrfs_release_path(path);
1688 		inode = read_one_inode(root, key.offset);
1689 		if (!inode) {
1690 			ret = -EIO;
1691 			break;
1692 		}
1693 
1694 		ret = fixup_inode_link_count(trans, root, inode);
1695 		iput(inode);
1696 		if (ret)
1697 			break;
1698 
1699 		/*
1700 		 * fixup on a directory may create new entries,
1701 		 * make sure we always look for the highset possible
1702 		 * offset
1703 		 */
1704 		key.offset = (u64)-1;
1705 	}
1706 	btrfs_release_path(path);
1707 	return ret;
1708 }
1709 
1710 
1711 /*
1712  * record a given inode in the fixup dir so we can check its link
1713  * count when replay is done.  The link count is incremented here
1714  * so the inode won't go away until we check it
1715  */
1716 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1717 				      struct btrfs_root *root,
1718 				      struct btrfs_path *path,
1719 				      u64 objectid)
1720 {
1721 	struct btrfs_key key;
1722 	int ret = 0;
1723 	struct inode *inode;
1724 
1725 	inode = read_one_inode(root, objectid);
1726 	if (!inode)
1727 		return -EIO;
1728 
1729 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1730 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1731 	key.offset = objectid;
1732 
1733 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1734 
1735 	btrfs_release_path(path);
1736 	if (ret == 0) {
1737 		if (!inode->i_nlink)
1738 			set_nlink(inode, 1);
1739 		else
1740 			inc_nlink(inode);
1741 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1742 	} else if (ret == -EEXIST) {
1743 		ret = 0;
1744 	}
1745 	iput(inode);
1746 
1747 	return ret;
1748 }
1749 
1750 /*
1751  * when replaying the log for a directory, we only insert names
1752  * for inodes that actually exist.  This means an fsync on a directory
1753  * does not implicitly fsync all the new files in it
1754  */
1755 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1756 				    struct btrfs_root *root,
1757 				    u64 dirid, u64 index,
1758 				    const struct fscrypt_str *name,
1759 				    struct btrfs_key *location)
1760 {
1761 	struct inode *inode;
1762 	struct inode *dir;
1763 	int ret;
1764 
1765 	inode = read_one_inode(root, location->objectid);
1766 	if (!inode)
1767 		return -ENOENT;
1768 
1769 	dir = read_one_inode(root, dirid);
1770 	if (!dir) {
1771 		iput(inode);
1772 		return -EIO;
1773 	}
1774 
1775 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1776 			     1, index);
1777 
1778 	/* FIXME, put inode into FIXUP list */
1779 
1780 	iput(inode);
1781 	iput(dir);
1782 	return ret;
1783 }
1784 
1785 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1786 					struct btrfs_inode *dir,
1787 					struct btrfs_path *path,
1788 					struct btrfs_dir_item *dst_di,
1789 					const struct btrfs_key *log_key,
1790 					u8 log_flags,
1791 					bool exists)
1792 {
1793 	struct btrfs_key found_key;
1794 
1795 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1796 	/* The existing dentry points to the same inode, don't delete it. */
1797 	if (found_key.objectid == log_key->objectid &&
1798 	    found_key.type == log_key->type &&
1799 	    found_key.offset == log_key->offset &&
1800 	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1801 		return 1;
1802 
1803 	/*
1804 	 * Don't drop the conflicting directory entry if the inode for the new
1805 	 * entry doesn't exist.
1806 	 */
1807 	if (!exists)
1808 		return 0;
1809 
1810 	return drop_one_dir_item(trans, path, dir, dst_di);
1811 }
1812 
1813 /*
1814  * take a single entry in a log directory item and replay it into
1815  * the subvolume.
1816  *
1817  * if a conflicting item exists in the subdirectory already,
1818  * the inode it points to is unlinked and put into the link count
1819  * fix up tree.
1820  *
1821  * If a name from the log points to a file or directory that does
1822  * not exist in the FS, it is skipped.  fsyncs on directories
1823  * do not force down inodes inside that directory, just changes to the
1824  * names or unlinks in a directory.
1825  *
1826  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1827  * non-existing inode) and 1 if the name was replayed.
1828  */
1829 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1830 				    struct btrfs_root *root,
1831 				    struct btrfs_path *path,
1832 				    struct extent_buffer *eb,
1833 				    struct btrfs_dir_item *di,
1834 				    struct btrfs_key *key)
1835 {
1836 	struct fscrypt_str name;
1837 	struct btrfs_dir_item *dir_dst_di;
1838 	struct btrfs_dir_item *index_dst_di;
1839 	bool dir_dst_matches = false;
1840 	bool index_dst_matches = false;
1841 	struct btrfs_key log_key;
1842 	struct btrfs_key search_key;
1843 	struct inode *dir;
1844 	u8 log_flags;
1845 	bool exists;
1846 	int ret;
1847 	bool update_size = true;
1848 	bool name_added = false;
1849 
1850 	dir = read_one_inode(root, key->objectid);
1851 	if (!dir)
1852 		return -EIO;
1853 
1854 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1855 	if (ret)
1856 		goto out;
1857 
1858 	log_flags = btrfs_dir_flags(eb, di);
1859 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1860 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1861 	btrfs_release_path(path);
1862 	if (ret < 0)
1863 		goto out;
1864 	exists = (ret == 0);
1865 	ret = 0;
1866 
1867 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1868 					   &name, 1);
1869 	if (IS_ERR(dir_dst_di)) {
1870 		ret = PTR_ERR(dir_dst_di);
1871 		goto out;
1872 	} else if (dir_dst_di) {
1873 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1874 						   dir_dst_di, &log_key,
1875 						   log_flags, exists);
1876 		if (ret < 0)
1877 			goto out;
1878 		dir_dst_matches = (ret == 1);
1879 	}
1880 
1881 	btrfs_release_path(path);
1882 
1883 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1884 						   key->objectid, key->offset,
1885 						   &name, 1);
1886 	if (IS_ERR(index_dst_di)) {
1887 		ret = PTR_ERR(index_dst_di);
1888 		goto out;
1889 	} else if (index_dst_di) {
1890 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1891 						   index_dst_di, &log_key,
1892 						   log_flags, exists);
1893 		if (ret < 0)
1894 			goto out;
1895 		index_dst_matches = (ret == 1);
1896 	}
1897 
1898 	btrfs_release_path(path);
1899 
1900 	if (dir_dst_matches && index_dst_matches) {
1901 		ret = 0;
1902 		update_size = false;
1903 		goto out;
1904 	}
1905 
1906 	/*
1907 	 * Check if the inode reference exists in the log for the given name,
1908 	 * inode and parent inode
1909 	 */
1910 	search_key.objectid = log_key.objectid;
1911 	search_key.type = BTRFS_INODE_REF_KEY;
1912 	search_key.offset = key->objectid;
1913 	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1914 	if (ret < 0) {
1915 	        goto out;
1916 	} else if (ret) {
1917 	        /* The dentry will be added later. */
1918 	        ret = 0;
1919 	        update_size = false;
1920 	        goto out;
1921 	}
1922 
1923 	search_key.objectid = log_key.objectid;
1924 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1925 	search_key.offset = key->objectid;
1926 	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1927 	if (ret < 0) {
1928 		goto out;
1929 	} else if (ret) {
1930 		/* The dentry will be added later. */
1931 		ret = 0;
1932 		update_size = false;
1933 		goto out;
1934 	}
1935 	btrfs_release_path(path);
1936 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1937 			      &name, &log_key);
1938 	if (ret && ret != -ENOENT && ret != -EEXIST)
1939 		goto out;
1940 	if (!ret)
1941 		name_added = true;
1942 	update_size = false;
1943 	ret = 0;
1944 
1945 out:
1946 	if (!ret && update_size) {
1947 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1948 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1949 	}
1950 	kfree(name.name);
1951 	iput(dir);
1952 	if (!ret && name_added)
1953 		ret = 1;
1954 	return ret;
1955 }
1956 
1957 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1958 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1959 					struct btrfs_root *root,
1960 					struct btrfs_path *path,
1961 					struct extent_buffer *eb, int slot,
1962 					struct btrfs_key *key)
1963 {
1964 	int ret;
1965 	struct btrfs_dir_item *di;
1966 
1967 	/* We only log dir index keys, which only contain a single dir item. */
1968 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1969 
1970 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1971 	ret = replay_one_name(trans, root, path, eb, di, key);
1972 	if (ret < 0)
1973 		return ret;
1974 
1975 	/*
1976 	 * If this entry refers to a non-directory (directories can not have a
1977 	 * link count > 1) and it was added in the transaction that was not
1978 	 * committed, make sure we fixup the link count of the inode the entry
1979 	 * points to. Otherwise something like the following would result in a
1980 	 * directory pointing to an inode with a wrong link that does not account
1981 	 * for this dir entry:
1982 	 *
1983 	 * mkdir testdir
1984 	 * touch testdir/foo
1985 	 * touch testdir/bar
1986 	 * sync
1987 	 *
1988 	 * ln testdir/bar testdir/bar_link
1989 	 * ln testdir/foo testdir/foo_link
1990 	 * xfs_io -c "fsync" testdir/bar
1991 	 *
1992 	 * <power failure>
1993 	 *
1994 	 * mount fs, log replay happens
1995 	 *
1996 	 * File foo would remain with a link count of 1 when it has two entries
1997 	 * pointing to it in the directory testdir. This would make it impossible
1998 	 * to ever delete the parent directory has it would result in stale
1999 	 * dentries that can never be deleted.
2000 	 */
2001 	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2002 		struct btrfs_path *fixup_path;
2003 		struct btrfs_key di_key;
2004 
2005 		fixup_path = btrfs_alloc_path();
2006 		if (!fixup_path)
2007 			return -ENOMEM;
2008 
2009 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2010 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2011 		btrfs_free_path(fixup_path);
2012 	}
2013 
2014 	return ret;
2015 }
2016 
2017 /*
2018  * directory replay has two parts.  There are the standard directory
2019  * items in the log copied from the subvolume, and range items
2020  * created in the log while the subvolume was logged.
2021  *
2022  * The range items tell us which parts of the key space the log
2023  * is authoritative for.  During replay, if a key in the subvolume
2024  * directory is in a logged range item, but not actually in the log
2025  * that means it was deleted from the directory before the fsync
2026  * and should be removed.
2027  */
2028 static noinline int find_dir_range(struct btrfs_root *root,
2029 				   struct btrfs_path *path,
2030 				   u64 dirid,
2031 				   u64 *start_ret, u64 *end_ret)
2032 {
2033 	struct btrfs_key key;
2034 	u64 found_end;
2035 	struct btrfs_dir_log_item *item;
2036 	int ret;
2037 	int nritems;
2038 
2039 	if (*start_ret == (u64)-1)
2040 		return 1;
2041 
2042 	key.objectid = dirid;
2043 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2044 	key.offset = *start_ret;
2045 
2046 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2047 	if (ret < 0)
2048 		goto out;
2049 	if (ret > 0) {
2050 		if (path->slots[0] == 0)
2051 			goto out;
2052 		path->slots[0]--;
2053 	}
2054 	if (ret != 0)
2055 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2056 
2057 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2058 		ret = 1;
2059 		goto next;
2060 	}
2061 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 			      struct btrfs_dir_log_item);
2063 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2064 
2065 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2066 		ret = 0;
2067 		*start_ret = key.offset;
2068 		*end_ret = found_end;
2069 		goto out;
2070 	}
2071 	ret = 1;
2072 next:
2073 	/* check the next slot in the tree to see if it is a valid item */
2074 	nritems = btrfs_header_nritems(path->nodes[0]);
2075 	path->slots[0]++;
2076 	if (path->slots[0] >= nritems) {
2077 		ret = btrfs_next_leaf(root, path);
2078 		if (ret)
2079 			goto out;
2080 	}
2081 
2082 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2083 
2084 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2085 		ret = 1;
2086 		goto out;
2087 	}
2088 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2089 			      struct btrfs_dir_log_item);
2090 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2091 	*start_ret = key.offset;
2092 	*end_ret = found_end;
2093 	ret = 0;
2094 out:
2095 	btrfs_release_path(path);
2096 	return ret;
2097 }
2098 
2099 /*
2100  * this looks for a given directory item in the log.  If the directory
2101  * item is not in the log, the item is removed and the inode it points
2102  * to is unlinked
2103  */
2104 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2105 				      struct btrfs_root *log,
2106 				      struct btrfs_path *path,
2107 				      struct btrfs_path *log_path,
2108 				      struct inode *dir,
2109 				      struct btrfs_key *dir_key)
2110 {
2111 	struct btrfs_root *root = BTRFS_I(dir)->root;
2112 	int ret;
2113 	struct extent_buffer *eb;
2114 	int slot;
2115 	struct btrfs_dir_item *di;
2116 	struct fscrypt_str name;
2117 	struct inode *inode = NULL;
2118 	struct btrfs_key location;
2119 
2120 	/*
2121 	 * Currently we only log dir index keys. Even if we replay a log created
2122 	 * by an older kernel that logged both dir index and dir item keys, all
2123 	 * we need to do is process the dir index keys, we (and our caller) can
2124 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2125 	 */
2126 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2127 
2128 	eb = path->nodes[0];
2129 	slot = path->slots[0];
2130 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2131 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2132 	if (ret)
2133 		goto out;
2134 
2135 	if (log) {
2136 		struct btrfs_dir_item *log_di;
2137 
2138 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2139 						     dir_key->objectid,
2140 						     dir_key->offset, &name, 0);
2141 		if (IS_ERR(log_di)) {
2142 			ret = PTR_ERR(log_di);
2143 			goto out;
2144 		} else if (log_di) {
2145 			/* The dentry exists in the log, we have nothing to do. */
2146 			ret = 0;
2147 			goto out;
2148 		}
2149 	}
2150 
2151 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2152 	btrfs_release_path(path);
2153 	btrfs_release_path(log_path);
2154 	inode = read_one_inode(root, location.objectid);
2155 	if (!inode) {
2156 		ret = -EIO;
2157 		goto out;
2158 	}
2159 
2160 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2161 	if (ret)
2162 		goto out;
2163 
2164 	inc_nlink(inode);
2165 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2166 					  &name);
2167 	/*
2168 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2169 	 * them, as there are no key collisions since each key has a unique offset
2170 	 * (an index number), so we're done.
2171 	 */
2172 out:
2173 	btrfs_release_path(path);
2174 	btrfs_release_path(log_path);
2175 	kfree(name.name);
2176 	iput(inode);
2177 	return ret;
2178 }
2179 
2180 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181 			      struct btrfs_root *root,
2182 			      struct btrfs_root *log,
2183 			      struct btrfs_path *path,
2184 			      const u64 ino)
2185 {
2186 	struct btrfs_key search_key;
2187 	struct btrfs_path *log_path;
2188 	int i;
2189 	int nritems;
2190 	int ret;
2191 
2192 	log_path = btrfs_alloc_path();
2193 	if (!log_path)
2194 		return -ENOMEM;
2195 
2196 	search_key.objectid = ino;
2197 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2198 	search_key.offset = 0;
2199 again:
2200 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201 	if (ret < 0)
2202 		goto out;
2203 process_leaf:
2204 	nritems = btrfs_header_nritems(path->nodes[0]);
2205 	for (i = path->slots[0]; i < nritems; i++) {
2206 		struct btrfs_key key;
2207 		struct btrfs_dir_item *di;
2208 		struct btrfs_dir_item *log_di;
2209 		u32 total_size;
2210 		u32 cur;
2211 
2212 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214 			ret = 0;
2215 			goto out;
2216 		}
2217 
2218 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2219 		total_size = btrfs_item_size(path->nodes[0], i);
2220 		cur = 0;
2221 		while (cur < total_size) {
2222 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224 			u32 this_len = sizeof(*di) + name_len + data_len;
2225 			char *name;
2226 
2227 			name = kmalloc(name_len, GFP_NOFS);
2228 			if (!name) {
2229 				ret = -ENOMEM;
2230 				goto out;
2231 			}
2232 			read_extent_buffer(path->nodes[0], name,
2233 					   (unsigned long)(di + 1), name_len);
2234 
2235 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2236 						    name, name_len, 0);
2237 			btrfs_release_path(log_path);
2238 			if (!log_di) {
2239 				/* Doesn't exist in log tree, so delete it. */
2240 				btrfs_release_path(path);
2241 				di = btrfs_lookup_xattr(trans, root, path, ino,
2242 							name, name_len, -1);
2243 				kfree(name);
2244 				if (IS_ERR(di)) {
2245 					ret = PTR_ERR(di);
2246 					goto out;
2247 				}
2248 				ASSERT(di);
2249 				ret = btrfs_delete_one_dir_name(trans, root,
2250 								path, di);
2251 				if (ret)
2252 					goto out;
2253 				btrfs_release_path(path);
2254 				search_key = key;
2255 				goto again;
2256 			}
2257 			kfree(name);
2258 			if (IS_ERR(log_di)) {
2259 				ret = PTR_ERR(log_di);
2260 				goto out;
2261 			}
2262 			cur += this_len;
2263 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2264 		}
2265 	}
2266 	ret = btrfs_next_leaf(root, path);
2267 	if (ret > 0)
2268 		ret = 0;
2269 	else if (ret == 0)
2270 		goto process_leaf;
2271 out:
2272 	btrfs_free_path(log_path);
2273 	btrfs_release_path(path);
2274 	return ret;
2275 }
2276 
2277 
2278 /*
2279  * deletion replay happens before we copy any new directory items
2280  * out of the log or out of backreferences from inodes.  It
2281  * scans the log to find ranges of keys that log is authoritative for,
2282  * and then scans the directory to find items in those ranges that are
2283  * not present in the log.
2284  *
2285  * Anything we don't find in the log is unlinked and removed from the
2286  * directory.
2287  */
2288 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289 				       struct btrfs_root *root,
2290 				       struct btrfs_root *log,
2291 				       struct btrfs_path *path,
2292 				       u64 dirid, int del_all)
2293 {
2294 	u64 range_start;
2295 	u64 range_end;
2296 	int ret = 0;
2297 	struct btrfs_key dir_key;
2298 	struct btrfs_key found_key;
2299 	struct btrfs_path *log_path;
2300 	struct inode *dir;
2301 
2302 	dir_key.objectid = dirid;
2303 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2304 	log_path = btrfs_alloc_path();
2305 	if (!log_path)
2306 		return -ENOMEM;
2307 
2308 	dir = read_one_inode(root, dirid);
2309 	/* it isn't an error if the inode isn't there, that can happen
2310 	 * because we replay the deletes before we copy in the inode item
2311 	 * from the log
2312 	 */
2313 	if (!dir) {
2314 		btrfs_free_path(log_path);
2315 		return 0;
2316 	}
2317 
2318 	range_start = 0;
2319 	range_end = 0;
2320 	while (1) {
2321 		if (del_all)
2322 			range_end = (u64)-1;
2323 		else {
2324 			ret = find_dir_range(log, path, dirid,
2325 					     &range_start, &range_end);
2326 			if (ret < 0)
2327 				goto out;
2328 			else if (ret > 0)
2329 				break;
2330 		}
2331 
2332 		dir_key.offset = range_start;
2333 		while (1) {
2334 			int nritems;
2335 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2336 						0, 0);
2337 			if (ret < 0)
2338 				goto out;
2339 
2340 			nritems = btrfs_header_nritems(path->nodes[0]);
2341 			if (path->slots[0] >= nritems) {
2342 				ret = btrfs_next_leaf(root, path);
2343 				if (ret == 1)
2344 					break;
2345 				else if (ret < 0)
2346 					goto out;
2347 			}
2348 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2349 					      path->slots[0]);
2350 			if (found_key.objectid != dirid ||
2351 			    found_key.type != dir_key.type) {
2352 				ret = 0;
2353 				goto out;
2354 			}
2355 
2356 			if (found_key.offset > range_end)
2357 				break;
2358 
2359 			ret = check_item_in_log(trans, log, path,
2360 						log_path, dir,
2361 						&found_key);
2362 			if (ret)
2363 				goto out;
2364 			if (found_key.offset == (u64)-1)
2365 				break;
2366 			dir_key.offset = found_key.offset + 1;
2367 		}
2368 		btrfs_release_path(path);
2369 		if (range_end == (u64)-1)
2370 			break;
2371 		range_start = range_end + 1;
2372 	}
2373 	ret = 0;
2374 out:
2375 	btrfs_release_path(path);
2376 	btrfs_free_path(log_path);
2377 	iput(dir);
2378 	return ret;
2379 }
2380 
2381 /*
2382  * the process_func used to replay items from the log tree.  This
2383  * gets called in two different stages.  The first stage just looks
2384  * for inodes and makes sure they are all copied into the subvolume.
2385  *
2386  * The second stage copies all the other item types from the log into
2387  * the subvolume.  The two stage approach is slower, but gets rid of
2388  * lots of complexity around inodes referencing other inodes that exist
2389  * only in the log (references come from either directory items or inode
2390  * back refs).
2391  */
2392 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2393 			     struct walk_control *wc, u64 gen, int level)
2394 {
2395 	int nritems;
2396 	struct btrfs_tree_parent_check check = {
2397 		.transid = gen,
2398 		.level = level
2399 	};
2400 	struct btrfs_path *path;
2401 	struct btrfs_root *root = wc->replay_dest;
2402 	struct btrfs_key key;
2403 	int i;
2404 	int ret;
2405 
2406 	ret = btrfs_read_extent_buffer(eb, &check);
2407 	if (ret)
2408 		return ret;
2409 
2410 	level = btrfs_header_level(eb);
2411 
2412 	if (level != 0)
2413 		return 0;
2414 
2415 	path = btrfs_alloc_path();
2416 	if (!path)
2417 		return -ENOMEM;
2418 
2419 	nritems = btrfs_header_nritems(eb);
2420 	for (i = 0; i < nritems; i++) {
2421 		btrfs_item_key_to_cpu(eb, &key, i);
2422 
2423 		/* inode keys are done during the first stage */
2424 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2425 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2426 			struct btrfs_inode_item *inode_item;
2427 			u32 mode;
2428 
2429 			inode_item = btrfs_item_ptr(eb, i,
2430 					    struct btrfs_inode_item);
2431 			/*
2432 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2433 			 * and never got linked before the fsync, skip it, as
2434 			 * replaying it is pointless since it would be deleted
2435 			 * later. We skip logging tmpfiles, but it's always
2436 			 * possible we are replaying a log created with a kernel
2437 			 * that used to log tmpfiles.
2438 			 */
2439 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2440 				wc->ignore_cur_inode = true;
2441 				continue;
2442 			} else {
2443 				wc->ignore_cur_inode = false;
2444 			}
2445 			ret = replay_xattr_deletes(wc->trans, root, log,
2446 						   path, key.objectid);
2447 			if (ret)
2448 				break;
2449 			mode = btrfs_inode_mode(eb, inode_item);
2450 			if (S_ISDIR(mode)) {
2451 				ret = replay_dir_deletes(wc->trans,
2452 					 root, log, path, key.objectid, 0);
2453 				if (ret)
2454 					break;
2455 			}
2456 			ret = overwrite_item(wc->trans, root, path,
2457 					     eb, i, &key);
2458 			if (ret)
2459 				break;
2460 
2461 			/*
2462 			 * Before replaying extents, truncate the inode to its
2463 			 * size. We need to do it now and not after log replay
2464 			 * because before an fsync we can have prealloc extents
2465 			 * added beyond the inode's i_size. If we did it after,
2466 			 * through orphan cleanup for example, we would drop
2467 			 * those prealloc extents just after replaying them.
2468 			 */
2469 			if (S_ISREG(mode)) {
2470 				struct btrfs_drop_extents_args drop_args = { 0 };
2471 				struct inode *inode;
2472 				u64 from;
2473 
2474 				inode = read_one_inode(root, key.objectid);
2475 				if (!inode) {
2476 					ret = -EIO;
2477 					break;
2478 				}
2479 				from = ALIGN(i_size_read(inode),
2480 					     root->fs_info->sectorsize);
2481 				drop_args.start = from;
2482 				drop_args.end = (u64)-1;
2483 				drop_args.drop_cache = true;
2484 				ret = btrfs_drop_extents(wc->trans, root,
2485 							 BTRFS_I(inode),
2486 							 &drop_args);
2487 				if (!ret) {
2488 					inode_sub_bytes(inode,
2489 							drop_args.bytes_found);
2490 					/* Update the inode's nbytes. */
2491 					ret = btrfs_update_inode(wc->trans,
2492 							root, BTRFS_I(inode));
2493 				}
2494 				iput(inode);
2495 				if (ret)
2496 					break;
2497 			}
2498 
2499 			ret = link_to_fixup_dir(wc->trans, root,
2500 						path, key.objectid);
2501 			if (ret)
2502 				break;
2503 		}
2504 
2505 		if (wc->ignore_cur_inode)
2506 			continue;
2507 
2508 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2509 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2510 			ret = replay_one_dir_item(wc->trans, root, path,
2511 						  eb, i, &key);
2512 			if (ret)
2513 				break;
2514 		}
2515 
2516 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2517 			continue;
2518 
2519 		/* these keys are simply copied */
2520 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2521 			ret = overwrite_item(wc->trans, root, path,
2522 					     eb, i, &key);
2523 			if (ret)
2524 				break;
2525 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2526 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2527 			ret = add_inode_ref(wc->trans, root, log, path,
2528 					    eb, i, &key);
2529 			if (ret && ret != -ENOENT)
2530 				break;
2531 			ret = 0;
2532 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2533 			ret = replay_one_extent(wc->trans, root, path,
2534 						eb, i, &key);
2535 			if (ret)
2536 				break;
2537 		}
2538 		/*
2539 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2540 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2541 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2542 		 * older kernel with such keys, ignore them.
2543 		 */
2544 	}
2545 	btrfs_free_path(path);
2546 	return ret;
2547 }
2548 
2549 /*
2550  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2551  */
2552 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2553 {
2554 	struct btrfs_block_group *cache;
2555 
2556 	cache = btrfs_lookup_block_group(fs_info, start);
2557 	if (!cache) {
2558 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2559 		return;
2560 	}
2561 
2562 	spin_lock(&cache->space_info->lock);
2563 	spin_lock(&cache->lock);
2564 	cache->reserved -= fs_info->nodesize;
2565 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2566 	spin_unlock(&cache->lock);
2567 	spin_unlock(&cache->space_info->lock);
2568 
2569 	btrfs_put_block_group(cache);
2570 }
2571 
2572 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2573 				   struct btrfs_root *root,
2574 				   struct btrfs_path *path, int *level,
2575 				   struct walk_control *wc)
2576 {
2577 	struct btrfs_fs_info *fs_info = root->fs_info;
2578 	u64 bytenr;
2579 	u64 ptr_gen;
2580 	struct extent_buffer *next;
2581 	struct extent_buffer *cur;
2582 	u32 blocksize;
2583 	int ret = 0;
2584 
2585 	while (*level > 0) {
2586 		struct btrfs_tree_parent_check check = { 0 };
2587 
2588 		cur = path->nodes[*level];
2589 
2590 		WARN_ON(btrfs_header_level(cur) != *level);
2591 
2592 		if (path->slots[*level] >=
2593 		    btrfs_header_nritems(cur))
2594 			break;
2595 
2596 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2597 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2598 		check.transid = ptr_gen;
2599 		check.level = *level - 1;
2600 		check.has_first_key = true;
2601 		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2602 		blocksize = fs_info->nodesize;
2603 
2604 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2605 						    btrfs_header_owner(cur),
2606 						    *level - 1);
2607 		if (IS_ERR(next))
2608 			return PTR_ERR(next);
2609 
2610 		if (*level == 1) {
2611 			ret = wc->process_func(root, next, wc, ptr_gen,
2612 					       *level - 1);
2613 			if (ret) {
2614 				free_extent_buffer(next);
2615 				return ret;
2616 			}
2617 
2618 			path->slots[*level]++;
2619 			if (wc->free) {
2620 				ret = btrfs_read_extent_buffer(next, &check);
2621 				if (ret) {
2622 					free_extent_buffer(next);
2623 					return ret;
2624 				}
2625 
2626 				if (trans) {
2627 					btrfs_tree_lock(next);
2628 					btrfs_clean_tree_block(next);
2629 					btrfs_wait_tree_block_writeback(next);
2630 					btrfs_tree_unlock(next);
2631 					ret = btrfs_pin_reserved_extent(trans,
2632 							bytenr, blocksize);
2633 					if (ret) {
2634 						free_extent_buffer(next);
2635 						return ret;
2636 					}
2637 					btrfs_redirty_list_add(
2638 						trans->transaction, next);
2639 				} else {
2640 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2641 						clear_extent_buffer_dirty(next);
2642 					unaccount_log_buffer(fs_info, bytenr);
2643 				}
2644 			}
2645 			free_extent_buffer(next);
2646 			continue;
2647 		}
2648 		ret = btrfs_read_extent_buffer(next, &check);
2649 		if (ret) {
2650 			free_extent_buffer(next);
2651 			return ret;
2652 		}
2653 
2654 		if (path->nodes[*level-1])
2655 			free_extent_buffer(path->nodes[*level-1]);
2656 		path->nodes[*level-1] = next;
2657 		*level = btrfs_header_level(next);
2658 		path->slots[*level] = 0;
2659 		cond_resched();
2660 	}
2661 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2662 
2663 	cond_resched();
2664 	return 0;
2665 }
2666 
2667 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2668 				 struct btrfs_root *root,
2669 				 struct btrfs_path *path, int *level,
2670 				 struct walk_control *wc)
2671 {
2672 	struct btrfs_fs_info *fs_info = root->fs_info;
2673 	int i;
2674 	int slot;
2675 	int ret;
2676 
2677 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2678 		slot = path->slots[i];
2679 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2680 			path->slots[i]++;
2681 			*level = i;
2682 			WARN_ON(*level == 0);
2683 			return 0;
2684 		} else {
2685 			ret = wc->process_func(root, path->nodes[*level], wc,
2686 				 btrfs_header_generation(path->nodes[*level]),
2687 				 *level);
2688 			if (ret)
2689 				return ret;
2690 
2691 			if (wc->free) {
2692 				struct extent_buffer *next;
2693 
2694 				next = path->nodes[*level];
2695 
2696 				if (trans) {
2697 					btrfs_tree_lock(next);
2698 					btrfs_clean_tree_block(next);
2699 					btrfs_wait_tree_block_writeback(next);
2700 					btrfs_tree_unlock(next);
2701 					ret = btrfs_pin_reserved_extent(trans,
2702 						     path->nodes[*level]->start,
2703 						     path->nodes[*level]->len);
2704 					if (ret)
2705 						return ret;
2706 					btrfs_redirty_list_add(trans->transaction,
2707 							       next);
2708 				} else {
2709 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2710 						clear_extent_buffer_dirty(next);
2711 
2712 					unaccount_log_buffer(fs_info,
2713 						path->nodes[*level]->start);
2714 				}
2715 			}
2716 			free_extent_buffer(path->nodes[*level]);
2717 			path->nodes[*level] = NULL;
2718 			*level = i + 1;
2719 		}
2720 	}
2721 	return 1;
2722 }
2723 
2724 /*
2725  * drop the reference count on the tree rooted at 'snap'.  This traverses
2726  * the tree freeing any blocks that have a ref count of zero after being
2727  * decremented.
2728  */
2729 static int walk_log_tree(struct btrfs_trans_handle *trans,
2730 			 struct btrfs_root *log, struct walk_control *wc)
2731 {
2732 	struct btrfs_fs_info *fs_info = log->fs_info;
2733 	int ret = 0;
2734 	int wret;
2735 	int level;
2736 	struct btrfs_path *path;
2737 	int orig_level;
2738 
2739 	path = btrfs_alloc_path();
2740 	if (!path)
2741 		return -ENOMEM;
2742 
2743 	level = btrfs_header_level(log->node);
2744 	orig_level = level;
2745 	path->nodes[level] = log->node;
2746 	atomic_inc(&log->node->refs);
2747 	path->slots[level] = 0;
2748 
2749 	while (1) {
2750 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2751 		if (wret > 0)
2752 			break;
2753 		if (wret < 0) {
2754 			ret = wret;
2755 			goto out;
2756 		}
2757 
2758 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2759 		if (wret > 0)
2760 			break;
2761 		if (wret < 0) {
2762 			ret = wret;
2763 			goto out;
2764 		}
2765 	}
2766 
2767 	/* was the root node processed? if not, catch it here */
2768 	if (path->nodes[orig_level]) {
2769 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2770 			 btrfs_header_generation(path->nodes[orig_level]),
2771 			 orig_level);
2772 		if (ret)
2773 			goto out;
2774 		if (wc->free) {
2775 			struct extent_buffer *next;
2776 
2777 			next = path->nodes[orig_level];
2778 
2779 			if (trans) {
2780 				btrfs_tree_lock(next);
2781 				btrfs_clean_tree_block(next);
2782 				btrfs_wait_tree_block_writeback(next);
2783 				btrfs_tree_unlock(next);
2784 				ret = btrfs_pin_reserved_extent(trans,
2785 						next->start, next->len);
2786 				if (ret)
2787 					goto out;
2788 				btrfs_redirty_list_add(trans->transaction, next);
2789 			} else {
2790 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2791 					clear_extent_buffer_dirty(next);
2792 				unaccount_log_buffer(fs_info, next->start);
2793 			}
2794 		}
2795 	}
2796 
2797 out:
2798 	btrfs_free_path(path);
2799 	return ret;
2800 }
2801 
2802 /*
2803  * helper function to update the item for a given subvolumes log root
2804  * in the tree of log roots
2805  */
2806 static int update_log_root(struct btrfs_trans_handle *trans,
2807 			   struct btrfs_root *log,
2808 			   struct btrfs_root_item *root_item)
2809 {
2810 	struct btrfs_fs_info *fs_info = log->fs_info;
2811 	int ret;
2812 
2813 	if (log->log_transid == 1) {
2814 		/* insert root item on the first sync */
2815 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2816 				&log->root_key, root_item);
2817 	} else {
2818 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2819 				&log->root_key, root_item);
2820 	}
2821 	return ret;
2822 }
2823 
2824 static void wait_log_commit(struct btrfs_root *root, int transid)
2825 {
2826 	DEFINE_WAIT(wait);
2827 	int index = transid % 2;
2828 
2829 	/*
2830 	 * we only allow two pending log transactions at a time,
2831 	 * so we know that if ours is more than 2 older than the
2832 	 * current transaction, we're done
2833 	 */
2834 	for (;;) {
2835 		prepare_to_wait(&root->log_commit_wait[index],
2836 				&wait, TASK_UNINTERRUPTIBLE);
2837 
2838 		if (!(root->log_transid_committed < transid &&
2839 		      atomic_read(&root->log_commit[index])))
2840 			break;
2841 
2842 		mutex_unlock(&root->log_mutex);
2843 		schedule();
2844 		mutex_lock(&root->log_mutex);
2845 	}
2846 	finish_wait(&root->log_commit_wait[index], &wait);
2847 }
2848 
2849 static void wait_for_writer(struct btrfs_root *root)
2850 {
2851 	DEFINE_WAIT(wait);
2852 
2853 	for (;;) {
2854 		prepare_to_wait(&root->log_writer_wait, &wait,
2855 				TASK_UNINTERRUPTIBLE);
2856 		if (!atomic_read(&root->log_writers))
2857 			break;
2858 
2859 		mutex_unlock(&root->log_mutex);
2860 		schedule();
2861 		mutex_lock(&root->log_mutex);
2862 	}
2863 	finish_wait(&root->log_writer_wait, &wait);
2864 }
2865 
2866 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2867 					struct btrfs_log_ctx *ctx)
2868 {
2869 	mutex_lock(&root->log_mutex);
2870 	list_del_init(&ctx->list);
2871 	mutex_unlock(&root->log_mutex);
2872 }
2873 
2874 /*
2875  * Invoked in log mutex context, or be sure there is no other task which
2876  * can access the list.
2877  */
2878 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2879 					     int index, int error)
2880 {
2881 	struct btrfs_log_ctx *ctx;
2882 	struct btrfs_log_ctx *safe;
2883 
2884 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2885 		list_del_init(&ctx->list);
2886 		ctx->log_ret = error;
2887 	}
2888 }
2889 
2890 /*
2891  * btrfs_sync_log does sends a given tree log down to the disk and
2892  * updates the super blocks to record it.  When this call is done,
2893  * you know that any inodes previously logged are safely on disk only
2894  * if it returns 0.
2895  *
2896  * Any other return value means you need to call btrfs_commit_transaction.
2897  * Some of the edge cases for fsyncing directories that have had unlinks
2898  * or renames done in the past mean that sometimes the only safe
2899  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2900  * that has happened.
2901  */
2902 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2903 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2904 {
2905 	int index1;
2906 	int index2;
2907 	int mark;
2908 	int ret;
2909 	struct btrfs_fs_info *fs_info = root->fs_info;
2910 	struct btrfs_root *log = root->log_root;
2911 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2912 	struct btrfs_root_item new_root_item;
2913 	int log_transid = 0;
2914 	struct btrfs_log_ctx root_log_ctx;
2915 	struct blk_plug plug;
2916 	u64 log_root_start;
2917 	u64 log_root_level;
2918 
2919 	mutex_lock(&root->log_mutex);
2920 	log_transid = ctx->log_transid;
2921 	if (root->log_transid_committed >= log_transid) {
2922 		mutex_unlock(&root->log_mutex);
2923 		return ctx->log_ret;
2924 	}
2925 
2926 	index1 = log_transid % 2;
2927 	if (atomic_read(&root->log_commit[index1])) {
2928 		wait_log_commit(root, log_transid);
2929 		mutex_unlock(&root->log_mutex);
2930 		return ctx->log_ret;
2931 	}
2932 	ASSERT(log_transid == root->log_transid);
2933 	atomic_set(&root->log_commit[index1], 1);
2934 
2935 	/* wait for previous tree log sync to complete */
2936 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2937 		wait_log_commit(root, log_transid - 1);
2938 
2939 	while (1) {
2940 		int batch = atomic_read(&root->log_batch);
2941 		/* when we're on an ssd, just kick the log commit out */
2942 		if (!btrfs_test_opt(fs_info, SSD) &&
2943 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2944 			mutex_unlock(&root->log_mutex);
2945 			schedule_timeout_uninterruptible(1);
2946 			mutex_lock(&root->log_mutex);
2947 		}
2948 		wait_for_writer(root);
2949 		if (batch == atomic_read(&root->log_batch))
2950 			break;
2951 	}
2952 
2953 	/* bail out if we need to do a full commit */
2954 	if (btrfs_need_log_full_commit(trans)) {
2955 		ret = BTRFS_LOG_FORCE_COMMIT;
2956 		mutex_unlock(&root->log_mutex);
2957 		goto out;
2958 	}
2959 
2960 	if (log_transid % 2 == 0)
2961 		mark = EXTENT_DIRTY;
2962 	else
2963 		mark = EXTENT_NEW;
2964 
2965 	/* we start IO on  all the marked extents here, but we don't actually
2966 	 * wait for them until later.
2967 	 */
2968 	blk_start_plug(&plug);
2969 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2970 	/*
2971 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2972 	 *  commit, writes a dirty extent in this tree-log commit. This
2973 	 *  concurrent write will create a hole writing out the extents,
2974 	 *  and we cannot proceed on a zoned filesystem, requiring
2975 	 *  sequential writing. While we can bail out to a full commit
2976 	 *  here, but we can continue hoping the concurrent writing fills
2977 	 *  the hole.
2978 	 */
2979 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2980 		ret = 0;
2981 	if (ret) {
2982 		blk_finish_plug(&plug);
2983 		btrfs_abort_transaction(trans, ret);
2984 		btrfs_set_log_full_commit(trans);
2985 		mutex_unlock(&root->log_mutex);
2986 		goto out;
2987 	}
2988 
2989 	/*
2990 	 * We _must_ update under the root->log_mutex in order to make sure we
2991 	 * have a consistent view of the log root we are trying to commit at
2992 	 * this moment.
2993 	 *
2994 	 * We _must_ copy this into a local copy, because we are not holding the
2995 	 * log_root_tree->log_mutex yet.  This is important because when we
2996 	 * commit the log_root_tree we must have a consistent view of the
2997 	 * log_root_tree when we update the super block to point at the
2998 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
2999 	 * with the commit and possibly point at the new block which we may not
3000 	 * have written out.
3001 	 */
3002 	btrfs_set_root_node(&log->root_item, log->node);
3003 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3004 
3005 	root->log_transid++;
3006 	log->log_transid = root->log_transid;
3007 	root->log_start_pid = 0;
3008 	/*
3009 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3010 	 * in their headers. new modifications of the log will be written to
3011 	 * new positions. so it's safe to allow log writers to go in.
3012 	 */
3013 	mutex_unlock(&root->log_mutex);
3014 
3015 	if (btrfs_is_zoned(fs_info)) {
3016 		mutex_lock(&fs_info->tree_root->log_mutex);
3017 		if (!log_root_tree->node) {
3018 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3019 			if (ret) {
3020 				mutex_unlock(&fs_info->tree_root->log_mutex);
3021 				blk_finish_plug(&plug);
3022 				goto out;
3023 			}
3024 		}
3025 		mutex_unlock(&fs_info->tree_root->log_mutex);
3026 	}
3027 
3028 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3029 
3030 	mutex_lock(&log_root_tree->log_mutex);
3031 
3032 	index2 = log_root_tree->log_transid % 2;
3033 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3034 	root_log_ctx.log_transid = log_root_tree->log_transid;
3035 
3036 	/*
3037 	 * Now we are safe to update the log_root_tree because we're under the
3038 	 * log_mutex, and we're a current writer so we're holding the commit
3039 	 * open until we drop the log_mutex.
3040 	 */
3041 	ret = update_log_root(trans, log, &new_root_item);
3042 	if (ret) {
3043 		if (!list_empty(&root_log_ctx.list))
3044 			list_del_init(&root_log_ctx.list);
3045 
3046 		blk_finish_plug(&plug);
3047 		btrfs_set_log_full_commit(trans);
3048 
3049 		if (ret != -ENOSPC) {
3050 			btrfs_abort_transaction(trans, ret);
3051 			mutex_unlock(&log_root_tree->log_mutex);
3052 			goto out;
3053 		}
3054 		btrfs_wait_tree_log_extents(log, mark);
3055 		mutex_unlock(&log_root_tree->log_mutex);
3056 		ret = BTRFS_LOG_FORCE_COMMIT;
3057 		goto out;
3058 	}
3059 
3060 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3061 		blk_finish_plug(&plug);
3062 		list_del_init(&root_log_ctx.list);
3063 		mutex_unlock(&log_root_tree->log_mutex);
3064 		ret = root_log_ctx.log_ret;
3065 		goto out;
3066 	}
3067 
3068 	index2 = root_log_ctx.log_transid % 2;
3069 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3070 		blk_finish_plug(&plug);
3071 		ret = btrfs_wait_tree_log_extents(log, mark);
3072 		wait_log_commit(log_root_tree,
3073 				root_log_ctx.log_transid);
3074 		mutex_unlock(&log_root_tree->log_mutex);
3075 		if (!ret)
3076 			ret = root_log_ctx.log_ret;
3077 		goto out;
3078 	}
3079 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3080 	atomic_set(&log_root_tree->log_commit[index2], 1);
3081 
3082 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3083 		wait_log_commit(log_root_tree,
3084 				root_log_ctx.log_transid - 1);
3085 	}
3086 
3087 	/*
3088 	 * now that we've moved on to the tree of log tree roots,
3089 	 * check the full commit flag again
3090 	 */
3091 	if (btrfs_need_log_full_commit(trans)) {
3092 		blk_finish_plug(&plug);
3093 		btrfs_wait_tree_log_extents(log, mark);
3094 		mutex_unlock(&log_root_tree->log_mutex);
3095 		ret = BTRFS_LOG_FORCE_COMMIT;
3096 		goto out_wake_log_root;
3097 	}
3098 
3099 	ret = btrfs_write_marked_extents(fs_info,
3100 					 &log_root_tree->dirty_log_pages,
3101 					 EXTENT_DIRTY | EXTENT_NEW);
3102 	blk_finish_plug(&plug);
3103 	/*
3104 	 * As described above, -EAGAIN indicates a hole in the extents. We
3105 	 * cannot wait for these write outs since the waiting cause a
3106 	 * deadlock. Bail out to the full commit instead.
3107 	 */
3108 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3109 		btrfs_set_log_full_commit(trans);
3110 		btrfs_wait_tree_log_extents(log, mark);
3111 		mutex_unlock(&log_root_tree->log_mutex);
3112 		goto out_wake_log_root;
3113 	} else if (ret) {
3114 		btrfs_set_log_full_commit(trans);
3115 		btrfs_abort_transaction(trans, ret);
3116 		mutex_unlock(&log_root_tree->log_mutex);
3117 		goto out_wake_log_root;
3118 	}
3119 	ret = btrfs_wait_tree_log_extents(log, mark);
3120 	if (!ret)
3121 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3122 						  EXTENT_NEW | EXTENT_DIRTY);
3123 	if (ret) {
3124 		btrfs_set_log_full_commit(trans);
3125 		mutex_unlock(&log_root_tree->log_mutex);
3126 		goto out_wake_log_root;
3127 	}
3128 
3129 	log_root_start = log_root_tree->node->start;
3130 	log_root_level = btrfs_header_level(log_root_tree->node);
3131 	log_root_tree->log_transid++;
3132 	mutex_unlock(&log_root_tree->log_mutex);
3133 
3134 	/*
3135 	 * Here we are guaranteed that nobody is going to write the superblock
3136 	 * for the current transaction before us and that neither we do write
3137 	 * our superblock before the previous transaction finishes its commit
3138 	 * and writes its superblock, because:
3139 	 *
3140 	 * 1) We are holding a handle on the current transaction, so no body
3141 	 *    can commit it until we release the handle;
3142 	 *
3143 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3144 	 *    if the previous transaction is still committing, and hasn't yet
3145 	 *    written its superblock, we wait for it to do it, because a
3146 	 *    transaction commit acquires the tree_log_mutex when the commit
3147 	 *    begins and releases it only after writing its superblock.
3148 	 */
3149 	mutex_lock(&fs_info->tree_log_mutex);
3150 
3151 	/*
3152 	 * The previous transaction writeout phase could have failed, and thus
3153 	 * marked the fs in an error state.  We must not commit here, as we
3154 	 * could have updated our generation in the super_for_commit and
3155 	 * writing the super here would result in transid mismatches.  If there
3156 	 * is an error here just bail.
3157 	 */
3158 	if (BTRFS_FS_ERROR(fs_info)) {
3159 		ret = -EIO;
3160 		btrfs_set_log_full_commit(trans);
3161 		btrfs_abort_transaction(trans, ret);
3162 		mutex_unlock(&fs_info->tree_log_mutex);
3163 		goto out_wake_log_root;
3164 	}
3165 
3166 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3167 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3168 	ret = write_all_supers(fs_info, 1);
3169 	mutex_unlock(&fs_info->tree_log_mutex);
3170 	if (ret) {
3171 		btrfs_set_log_full_commit(trans);
3172 		btrfs_abort_transaction(trans, ret);
3173 		goto out_wake_log_root;
3174 	}
3175 
3176 	/*
3177 	 * We know there can only be one task here, since we have not yet set
3178 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3179 	 * log must wait for the previous log transaction to commit if it's
3180 	 * still in progress or wait for the current log transaction commit if
3181 	 * someone else already started it. We use <= and not < because the
3182 	 * first log transaction has an ID of 0.
3183 	 */
3184 	ASSERT(root->last_log_commit <= log_transid);
3185 	root->last_log_commit = log_transid;
3186 
3187 out_wake_log_root:
3188 	mutex_lock(&log_root_tree->log_mutex);
3189 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3190 
3191 	log_root_tree->log_transid_committed++;
3192 	atomic_set(&log_root_tree->log_commit[index2], 0);
3193 	mutex_unlock(&log_root_tree->log_mutex);
3194 
3195 	/*
3196 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3197 	 * all the updates above are seen by the woken threads. It might not be
3198 	 * necessary, but proving that seems to be hard.
3199 	 */
3200 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3201 out:
3202 	mutex_lock(&root->log_mutex);
3203 	btrfs_remove_all_log_ctxs(root, index1, ret);
3204 	root->log_transid_committed++;
3205 	atomic_set(&root->log_commit[index1], 0);
3206 	mutex_unlock(&root->log_mutex);
3207 
3208 	/*
3209 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3210 	 * all the updates above are seen by the woken threads. It might not be
3211 	 * necessary, but proving that seems to be hard.
3212 	 */
3213 	cond_wake_up(&root->log_commit_wait[index1]);
3214 	return ret;
3215 }
3216 
3217 static void free_log_tree(struct btrfs_trans_handle *trans,
3218 			  struct btrfs_root *log)
3219 {
3220 	int ret;
3221 	struct walk_control wc = {
3222 		.free = 1,
3223 		.process_func = process_one_buffer
3224 	};
3225 
3226 	if (log->node) {
3227 		ret = walk_log_tree(trans, log, &wc);
3228 		if (ret) {
3229 			/*
3230 			 * We weren't able to traverse the entire log tree, the
3231 			 * typical scenario is getting an -EIO when reading an
3232 			 * extent buffer of the tree, due to a previous writeback
3233 			 * failure of it.
3234 			 */
3235 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3236 				&log->fs_info->fs_state);
3237 
3238 			/*
3239 			 * Some extent buffers of the log tree may still be dirty
3240 			 * and not yet written back to storage, because we may
3241 			 * have updates to a log tree without syncing a log tree,
3242 			 * such as during rename and link operations. So flush
3243 			 * them out and wait for their writeback to complete, so
3244 			 * that we properly cleanup their state and pages.
3245 			 */
3246 			btrfs_write_marked_extents(log->fs_info,
3247 						   &log->dirty_log_pages,
3248 						   EXTENT_DIRTY | EXTENT_NEW);
3249 			btrfs_wait_tree_log_extents(log,
3250 						    EXTENT_DIRTY | EXTENT_NEW);
3251 
3252 			if (trans)
3253 				btrfs_abort_transaction(trans, ret);
3254 			else
3255 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3256 		}
3257 	}
3258 
3259 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3260 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3261 	extent_io_tree_release(&log->log_csum_range);
3262 
3263 	btrfs_put_root(log);
3264 }
3265 
3266 /*
3267  * free all the extents used by the tree log.  This should be called
3268  * at commit time of the full transaction
3269  */
3270 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3271 {
3272 	if (root->log_root) {
3273 		free_log_tree(trans, root->log_root);
3274 		root->log_root = NULL;
3275 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3276 	}
3277 	return 0;
3278 }
3279 
3280 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3281 			     struct btrfs_fs_info *fs_info)
3282 {
3283 	if (fs_info->log_root_tree) {
3284 		free_log_tree(trans, fs_info->log_root_tree);
3285 		fs_info->log_root_tree = NULL;
3286 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3287 	}
3288 	return 0;
3289 }
3290 
3291 /*
3292  * Check if an inode was logged in the current transaction. This correctly deals
3293  * with the case where the inode was logged but has a logged_trans of 0, which
3294  * happens if the inode is evicted and loaded again, as logged_trans is an in
3295  * memory only field (not persisted).
3296  *
3297  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3298  * and < 0 on error.
3299  */
3300 static int inode_logged(struct btrfs_trans_handle *trans,
3301 			struct btrfs_inode *inode,
3302 			struct btrfs_path *path_in)
3303 {
3304 	struct btrfs_path *path = path_in;
3305 	struct btrfs_key key;
3306 	int ret;
3307 
3308 	if (inode->logged_trans == trans->transid)
3309 		return 1;
3310 
3311 	/*
3312 	 * If logged_trans is not 0, then we know the inode logged was not logged
3313 	 * in this transaction, so we can return false right away.
3314 	 */
3315 	if (inode->logged_trans > 0)
3316 		return 0;
3317 
3318 	/*
3319 	 * If no log tree was created for this root in this transaction, then
3320 	 * the inode can not have been logged in this transaction. In that case
3321 	 * set logged_trans to anything greater than 0 and less than the current
3322 	 * transaction's ID, to avoid the search below in a future call in case
3323 	 * a log tree gets created after this.
3324 	 */
3325 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3326 		inode->logged_trans = trans->transid - 1;
3327 		return 0;
3328 	}
3329 
3330 	/*
3331 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3332 	 * for sure if the inode was logged before in this transaction by looking
3333 	 * only at logged_trans. We could be pessimistic and assume it was, but
3334 	 * that can lead to unnecessarily logging an inode during rename and link
3335 	 * operations, and then further updating the log in followup rename and
3336 	 * link operations, specially if it's a directory, which adds latency
3337 	 * visible to applications doing a series of rename or link operations.
3338 	 *
3339 	 * A logged_trans of 0 here can mean several things:
3340 	 *
3341 	 * 1) The inode was never logged since the filesystem was mounted, and may
3342 	 *    or may have not been evicted and loaded again;
3343 	 *
3344 	 * 2) The inode was logged in a previous transaction, then evicted and
3345 	 *    then loaded again;
3346 	 *
3347 	 * 3) The inode was logged in the current transaction, then evicted and
3348 	 *    then loaded again.
3349 	 *
3350 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3351 	 * case 3) and return true. So we do a search in the log root for the inode
3352 	 * item.
3353 	 */
3354 	key.objectid = btrfs_ino(inode);
3355 	key.type = BTRFS_INODE_ITEM_KEY;
3356 	key.offset = 0;
3357 
3358 	if (!path) {
3359 		path = btrfs_alloc_path();
3360 		if (!path)
3361 			return -ENOMEM;
3362 	}
3363 
3364 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3365 
3366 	if (path_in)
3367 		btrfs_release_path(path);
3368 	else
3369 		btrfs_free_path(path);
3370 
3371 	/*
3372 	 * Logging an inode always results in logging its inode item. So if we
3373 	 * did not find the item we know the inode was not logged for sure.
3374 	 */
3375 	if (ret < 0) {
3376 		return ret;
3377 	} else if (ret > 0) {
3378 		/*
3379 		 * Set logged_trans to a value greater than 0 and less then the
3380 		 * current transaction to avoid doing the search in future calls.
3381 		 */
3382 		inode->logged_trans = trans->transid - 1;
3383 		return 0;
3384 	}
3385 
3386 	/*
3387 	 * The inode was previously logged and then evicted, set logged_trans to
3388 	 * the current transacion's ID, to avoid future tree searches as long as
3389 	 * the inode is not evicted again.
3390 	 */
3391 	inode->logged_trans = trans->transid;
3392 
3393 	/*
3394 	 * If it's a directory, then we must set last_dir_index_offset to the
3395 	 * maximum possible value, so that the next attempt to log the inode does
3396 	 * not skip checking if dir index keys found in modified subvolume tree
3397 	 * leaves have been logged before, otherwise it would result in attempts
3398 	 * to insert duplicate dir index keys in the log tree. This must be done
3399 	 * because last_dir_index_offset is an in-memory only field, not persisted
3400 	 * in the inode item or any other on-disk structure, so its value is lost
3401 	 * once the inode is evicted.
3402 	 */
3403 	if (S_ISDIR(inode->vfs_inode.i_mode))
3404 		inode->last_dir_index_offset = (u64)-1;
3405 
3406 	return 1;
3407 }
3408 
3409 /*
3410  * Delete a directory entry from the log if it exists.
3411  *
3412  * Returns < 0 on error
3413  *           1 if the entry does not exists
3414  *           0 if the entry existed and was successfully deleted
3415  */
3416 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3417 			     struct btrfs_root *log,
3418 			     struct btrfs_path *path,
3419 			     u64 dir_ino,
3420 			     const struct fscrypt_str *name,
3421 			     u64 index)
3422 {
3423 	struct btrfs_dir_item *di;
3424 
3425 	/*
3426 	 * We only log dir index items of a directory, so we don't need to look
3427 	 * for dir item keys.
3428 	 */
3429 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3430 					 index, name, -1);
3431 	if (IS_ERR(di))
3432 		return PTR_ERR(di);
3433 	else if (!di)
3434 		return 1;
3435 
3436 	/*
3437 	 * We do not need to update the size field of the directory's
3438 	 * inode item because on log replay we update the field to reflect
3439 	 * all existing entries in the directory (see overwrite_item()).
3440 	 */
3441 	return btrfs_delete_one_dir_name(trans, log, path, di);
3442 }
3443 
3444 /*
3445  * If both a file and directory are logged, and unlinks or renames are
3446  * mixed in, we have a few interesting corners:
3447  *
3448  * create file X in dir Y
3449  * link file X to X.link in dir Y
3450  * fsync file X
3451  * unlink file X but leave X.link
3452  * fsync dir Y
3453  *
3454  * After a crash we would expect only X.link to exist.  But file X
3455  * didn't get fsync'd again so the log has back refs for X and X.link.
3456  *
3457  * We solve this by removing directory entries and inode backrefs from the
3458  * log when a file that was logged in the current transaction is
3459  * unlinked.  Any later fsync will include the updated log entries, and
3460  * we'll be able to reconstruct the proper directory items from backrefs.
3461  *
3462  * This optimizations allows us to avoid relogging the entire inode
3463  * or the entire directory.
3464  */
3465 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3466 				  struct btrfs_root *root,
3467 				  const struct fscrypt_str *name,
3468 				  struct btrfs_inode *dir, u64 index)
3469 {
3470 	struct btrfs_path *path;
3471 	int ret;
3472 
3473 	ret = inode_logged(trans, dir, NULL);
3474 	if (ret == 0)
3475 		return;
3476 	else if (ret < 0) {
3477 		btrfs_set_log_full_commit(trans);
3478 		return;
3479 	}
3480 
3481 	ret = join_running_log_trans(root);
3482 	if (ret)
3483 		return;
3484 
3485 	mutex_lock(&dir->log_mutex);
3486 
3487 	path = btrfs_alloc_path();
3488 	if (!path) {
3489 		ret = -ENOMEM;
3490 		goto out_unlock;
3491 	}
3492 
3493 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3494 				name, index);
3495 	btrfs_free_path(path);
3496 out_unlock:
3497 	mutex_unlock(&dir->log_mutex);
3498 	if (ret < 0)
3499 		btrfs_set_log_full_commit(trans);
3500 	btrfs_end_log_trans(root);
3501 }
3502 
3503 /* see comments for btrfs_del_dir_entries_in_log */
3504 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3505 				struct btrfs_root *root,
3506 				const struct fscrypt_str *name,
3507 				struct btrfs_inode *inode, u64 dirid)
3508 {
3509 	struct btrfs_root *log;
3510 	u64 index;
3511 	int ret;
3512 
3513 	ret = inode_logged(trans, inode, NULL);
3514 	if (ret == 0)
3515 		return;
3516 	else if (ret < 0) {
3517 		btrfs_set_log_full_commit(trans);
3518 		return;
3519 	}
3520 
3521 	ret = join_running_log_trans(root);
3522 	if (ret)
3523 		return;
3524 	log = root->log_root;
3525 	mutex_lock(&inode->log_mutex);
3526 
3527 	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3528 				  dirid, &index);
3529 	mutex_unlock(&inode->log_mutex);
3530 	if (ret < 0 && ret != -ENOENT)
3531 		btrfs_set_log_full_commit(trans);
3532 	btrfs_end_log_trans(root);
3533 }
3534 
3535 /*
3536  * creates a range item in the log for 'dirid'.  first_offset and
3537  * last_offset tell us which parts of the key space the log should
3538  * be considered authoritative for.
3539  */
3540 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3541 				       struct btrfs_root *log,
3542 				       struct btrfs_path *path,
3543 				       u64 dirid,
3544 				       u64 first_offset, u64 last_offset)
3545 {
3546 	int ret;
3547 	struct btrfs_key key;
3548 	struct btrfs_dir_log_item *item;
3549 
3550 	key.objectid = dirid;
3551 	key.offset = first_offset;
3552 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3553 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3554 	/*
3555 	 * -EEXIST is fine and can happen sporadically when we are logging a
3556 	 * directory and have concurrent insertions in the subvolume's tree for
3557 	 * items from other inodes and that result in pushing off some dir items
3558 	 * from one leaf to another in order to accommodate for the new items.
3559 	 * This results in logging the same dir index range key.
3560 	 */
3561 	if (ret && ret != -EEXIST)
3562 		return ret;
3563 
3564 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3565 			      struct btrfs_dir_log_item);
3566 	if (ret == -EEXIST) {
3567 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3568 
3569 		/*
3570 		 * btrfs_del_dir_entries_in_log() might have been called during
3571 		 * an unlink between the initial insertion of this key and the
3572 		 * current update, or we might be logging a single entry deletion
3573 		 * during a rename, so set the new last_offset to the max value.
3574 		 */
3575 		last_offset = max(last_offset, curr_end);
3576 	}
3577 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3578 	btrfs_mark_buffer_dirty(path->nodes[0]);
3579 	btrfs_release_path(path);
3580 	return 0;
3581 }
3582 
3583 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3584 				 struct btrfs_root *log,
3585 				 struct extent_buffer *src,
3586 				 struct btrfs_path *dst_path,
3587 				 int start_slot,
3588 				 int count)
3589 {
3590 	char *ins_data = NULL;
3591 	struct btrfs_item_batch batch;
3592 	struct extent_buffer *dst;
3593 	unsigned long src_offset;
3594 	unsigned long dst_offset;
3595 	struct btrfs_key key;
3596 	u32 item_size;
3597 	int ret;
3598 	int i;
3599 
3600 	ASSERT(count > 0);
3601 	batch.nr = count;
3602 
3603 	if (count == 1) {
3604 		btrfs_item_key_to_cpu(src, &key, start_slot);
3605 		item_size = btrfs_item_size(src, start_slot);
3606 		batch.keys = &key;
3607 		batch.data_sizes = &item_size;
3608 		batch.total_data_size = item_size;
3609 	} else {
3610 		struct btrfs_key *ins_keys;
3611 		u32 *ins_sizes;
3612 
3613 		ins_data = kmalloc(count * sizeof(u32) +
3614 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3615 		if (!ins_data)
3616 			return -ENOMEM;
3617 
3618 		ins_sizes = (u32 *)ins_data;
3619 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3620 		batch.keys = ins_keys;
3621 		batch.data_sizes = ins_sizes;
3622 		batch.total_data_size = 0;
3623 
3624 		for (i = 0; i < count; i++) {
3625 			const int slot = start_slot + i;
3626 
3627 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3628 			ins_sizes[i] = btrfs_item_size(src, slot);
3629 			batch.total_data_size += ins_sizes[i];
3630 		}
3631 	}
3632 
3633 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3634 	if (ret)
3635 		goto out;
3636 
3637 	dst = dst_path->nodes[0];
3638 	/*
3639 	 * Copy all the items in bulk, in a single copy operation. Item data is
3640 	 * organized such that it's placed at the end of a leaf and from right
3641 	 * to left. For example, the data for the second item ends at an offset
3642 	 * that matches the offset where the data for the first item starts, the
3643 	 * data for the third item ends at an offset that matches the offset
3644 	 * where the data of the second items starts, and so on.
3645 	 * Therefore our source and destination start offsets for copy match the
3646 	 * offsets of the last items (highest slots).
3647 	 */
3648 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3649 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3650 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3651 	btrfs_release_path(dst_path);
3652 out:
3653 	kfree(ins_data);
3654 
3655 	return ret;
3656 }
3657 
3658 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3659 				  struct btrfs_inode *inode,
3660 				  struct btrfs_path *path,
3661 				  struct btrfs_path *dst_path,
3662 				  struct btrfs_log_ctx *ctx,
3663 				  u64 *last_old_dentry_offset)
3664 {
3665 	struct btrfs_root *log = inode->root->log_root;
3666 	struct extent_buffer *src;
3667 	const int nritems = btrfs_header_nritems(path->nodes[0]);
3668 	const u64 ino = btrfs_ino(inode);
3669 	bool last_found = false;
3670 	int batch_start = 0;
3671 	int batch_size = 0;
3672 	int i;
3673 
3674 	/*
3675 	 * We need to clone the leaf, release the read lock on it, and use the
3676 	 * clone before modifying the log tree. See the comment at copy_items()
3677 	 * about why we need to do this.
3678 	 */
3679 	src = btrfs_clone_extent_buffer(path->nodes[0]);
3680 	if (!src)
3681 		return -ENOMEM;
3682 
3683 	i = path->slots[0];
3684 	btrfs_release_path(path);
3685 	path->nodes[0] = src;
3686 	path->slots[0] = i;
3687 
3688 	for (; i < nritems; i++) {
3689 		struct btrfs_dir_item *di;
3690 		struct btrfs_key key;
3691 		int ret;
3692 
3693 		btrfs_item_key_to_cpu(src, &key, i);
3694 
3695 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3696 			last_found = true;
3697 			break;
3698 		}
3699 
3700 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3701 		ctx->last_dir_item_offset = key.offset;
3702 
3703 		/*
3704 		 * Skip ranges of items that consist only of dir item keys created
3705 		 * in past transactions. However if we find a gap, we must log a
3706 		 * dir index range item for that gap, so that index keys in that
3707 		 * gap are deleted during log replay.
3708 		 */
3709 		if (btrfs_dir_transid(src, di) < trans->transid) {
3710 			if (key.offset > *last_old_dentry_offset + 1) {
3711 				ret = insert_dir_log_key(trans, log, dst_path,
3712 						 ino, *last_old_dentry_offset + 1,
3713 						 key.offset - 1);
3714 				if (ret < 0)
3715 					return ret;
3716 			}
3717 
3718 			*last_old_dentry_offset = key.offset;
3719 			continue;
3720 		}
3721 
3722 		/* If we logged this dir index item before, we can skip it. */
3723 		if (key.offset <= inode->last_dir_index_offset)
3724 			continue;
3725 
3726 		/*
3727 		 * We must make sure that when we log a directory entry, the
3728 		 * corresponding inode, after log replay, has a matching link
3729 		 * count. For example:
3730 		 *
3731 		 * touch foo
3732 		 * mkdir mydir
3733 		 * sync
3734 		 * ln foo mydir/bar
3735 		 * xfs_io -c "fsync" mydir
3736 		 * <crash>
3737 		 * <mount fs and log replay>
3738 		 *
3739 		 * Would result in a fsync log that when replayed, our file inode
3740 		 * would have a link count of 1, but we get two directory entries
3741 		 * pointing to the same inode. After removing one of the names,
3742 		 * it would not be possible to remove the other name, which
3743 		 * resulted always in stale file handle errors, and would not be
3744 		 * possible to rmdir the parent directory, since its i_size could
3745 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3746 		 * resulting in -ENOTEMPTY errors.
3747 		 */
3748 		if (!ctx->log_new_dentries) {
3749 			struct btrfs_key di_key;
3750 
3751 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3752 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3753 				ctx->log_new_dentries = true;
3754 		}
3755 
3756 		if (batch_size == 0)
3757 			batch_start = i;
3758 		batch_size++;
3759 	}
3760 
3761 	if (batch_size > 0) {
3762 		int ret;
3763 
3764 		ret = flush_dir_items_batch(trans, log, src, dst_path,
3765 					    batch_start, batch_size);
3766 		if (ret < 0)
3767 			return ret;
3768 	}
3769 
3770 	return last_found ? 1 : 0;
3771 }
3772 
3773 /*
3774  * log all the items included in the current transaction for a given
3775  * directory.  This also creates the range items in the log tree required
3776  * to replay anything deleted before the fsync
3777  */
3778 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3779 			  struct btrfs_inode *inode,
3780 			  struct btrfs_path *path,
3781 			  struct btrfs_path *dst_path,
3782 			  struct btrfs_log_ctx *ctx,
3783 			  u64 min_offset, u64 *last_offset_ret)
3784 {
3785 	struct btrfs_key min_key;
3786 	struct btrfs_root *root = inode->root;
3787 	struct btrfs_root *log = root->log_root;
3788 	int err = 0;
3789 	int ret;
3790 	u64 last_old_dentry_offset = min_offset - 1;
3791 	u64 last_offset = (u64)-1;
3792 	u64 ino = btrfs_ino(inode);
3793 
3794 	min_key.objectid = ino;
3795 	min_key.type = BTRFS_DIR_INDEX_KEY;
3796 	min_key.offset = min_offset;
3797 
3798 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3799 
3800 	/*
3801 	 * we didn't find anything from this transaction, see if there
3802 	 * is anything at all
3803 	 */
3804 	if (ret != 0 || min_key.objectid != ino ||
3805 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3806 		min_key.objectid = ino;
3807 		min_key.type = BTRFS_DIR_INDEX_KEY;
3808 		min_key.offset = (u64)-1;
3809 		btrfs_release_path(path);
3810 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3811 		if (ret < 0) {
3812 			btrfs_release_path(path);
3813 			return ret;
3814 		}
3815 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3816 
3817 		/* if ret == 0 there are items for this type,
3818 		 * create a range to tell us the last key of this type.
3819 		 * otherwise, there are no items in this directory after
3820 		 * *min_offset, and we create a range to indicate that.
3821 		 */
3822 		if (ret == 0) {
3823 			struct btrfs_key tmp;
3824 
3825 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3826 					      path->slots[0]);
3827 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3828 				last_old_dentry_offset = tmp.offset;
3829 		}
3830 		goto done;
3831 	}
3832 
3833 	/* go backward to find any previous key */
3834 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3835 	if (ret == 0) {
3836 		struct btrfs_key tmp;
3837 
3838 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3839 		/*
3840 		 * The dir index key before the first one we found that needs to
3841 		 * be logged might be in a previous leaf, and there might be a
3842 		 * gap between these keys, meaning that we had deletions that
3843 		 * happened. So the key range item we log (key type
3844 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3845 		 * previous key's offset plus 1, so that those deletes are replayed.
3846 		 */
3847 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3848 			last_old_dentry_offset = tmp.offset;
3849 	}
3850 	btrfs_release_path(path);
3851 
3852 	/*
3853 	 * Find the first key from this transaction again.  See the note for
3854 	 * log_new_dir_dentries, if we're logging a directory recursively we
3855 	 * won't be holding its i_mutex, which means we can modify the directory
3856 	 * while we're logging it.  If we remove an entry between our first
3857 	 * search and this search we'll not find the key again and can just
3858 	 * bail.
3859 	 */
3860 search:
3861 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3862 	if (ret != 0)
3863 		goto done;
3864 
3865 	/*
3866 	 * we have a block from this transaction, log every item in it
3867 	 * from our directory
3868 	 */
3869 	while (1) {
3870 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3871 					     &last_old_dentry_offset);
3872 		if (ret != 0) {
3873 			if (ret < 0)
3874 				err = ret;
3875 			goto done;
3876 		}
3877 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3878 
3879 		/*
3880 		 * look ahead to the next item and see if it is also
3881 		 * from this directory and from this transaction
3882 		 */
3883 		ret = btrfs_next_leaf(root, path);
3884 		if (ret) {
3885 			if (ret == 1)
3886 				last_offset = (u64)-1;
3887 			else
3888 				err = ret;
3889 			goto done;
3890 		}
3891 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3892 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3893 			last_offset = (u64)-1;
3894 			goto done;
3895 		}
3896 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3897 			/*
3898 			 * The next leaf was not changed in the current transaction
3899 			 * and has at least one dir index key.
3900 			 * We check for the next key because there might have been
3901 			 * one or more deletions between the last key we logged and
3902 			 * that next key. So the key range item we log (key type
3903 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3904 			 * offset minus 1, so that those deletes are replayed.
3905 			 */
3906 			last_offset = min_key.offset - 1;
3907 			goto done;
3908 		}
3909 		if (need_resched()) {
3910 			btrfs_release_path(path);
3911 			cond_resched();
3912 			goto search;
3913 		}
3914 	}
3915 done:
3916 	btrfs_release_path(path);
3917 	btrfs_release_path(dst_path);
3918 
3919 	if (err == 0) {
3920 		*last_offset_ret = last_offset;
3921 		/*
3922 		 * In case the leaf was changed in the current transaction but
3923 		 * all its dir items are from a past transaction, the last item
3924 		 * in the leaf is a dir item and there's no gap between that last
3925 		 * dir item and the first one on the next leaf (which did not
3926 		 * change in the current transaction), then we don't need to log
3927 		 * a range, last_old_dentry_offset is == to last_offset.
3928 		 */
3929 		ASSERT(last_old_dentry_offset <= last_offset);
3930 		if (last_old_dentry_offset < last_offset) {
3931 			ret = insert_dir_log_key(trans, log, path, ino,
3932 						 last_old_dentry_offset + 1,
3933 						 last_offset);
3934 			if (ret)
3935 				err = ret;
3936 		}
3937 	}
3938 	return err;
3939 }
3940 
3941 /*
3942  * If the inode was logged before and it was evicted, then its
3943  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3944  * key offset. If that's the case, search for it and update the inode. This
3945  * is to avoid lookups in the log tree every time we try to insert a dir index
3946  * key from a leaf changed in the current transaction, and to allow us to always
3947  * do batch insertions of dir index keys.
3948  */
3949 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3950 					struct btrfs_path *path,
3951 					const struct btrfs_log_ctx *ctx)
3952 {
3953 	const u64 ino = btrfs_ino(inode);
3954 	struct btrfs_key key;
3955 	int ret;
3956 
3957 	lockdep_assert_held(&inode->log_mutex);
3958 
3959 	if (inode->last_dir_index_offset != (u64)-1)
3960 		return 0;
3961 
3962 	if (!ctx->logged_before) {
3963 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3964 		return 0;
3965 	}
3966 
3967 	key.objectid = ino;
3968 	key.type = BTRFS_DIR_INDEX_KEY;
3969 	key.offset = (u64)-1;
3970 
3971 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3972 	/*
3973 	 * An error happened or we actually have an index key with an offset
3974 	 * value of (u64)-1. Bail out, we're done.
3975 	 */
3976 	if (ret <= 0)
3977 		goto out;
3978 
3979 	ret = 0;
3980 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3981 
3982 	/*
3983 	 * No dir index items, bail out and leave last_dir_index_offset with
3984 	 * the value right before the first valid index value.
3985 	 */
3986 	if (path->slots[0] == 0)
3987 		goto out;
3988 
3989 	/*
3990 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
3991 	 * index key, or beyond the last key of the directory that is not an
3992 	 * index key. If we have an index key before, set last_dir_index_offset
3993 	 * to its offset value, otherwise leave it with a value right before the
3994 	 * first valid index value, as it means we have an empty directory.
3995 	 */
3996 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3997 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
3998 		inode->last_dir_index_offset = key.offset;
3999 
4000 out:
4001 	btrfs_release_path(path);
4002 
4003 	return ret;
4004 }
4005 
4006 /*
4007  * logging directories is very similar to logging inodes, We find all the items
4008  * from the current transaction and write them to the log.
4009  *
4010  * The recovery code scans the directory in the subvolume, and if it finds a
4011  * key in the range logged that is not present in the log tree, then it means
4012  * that dir entry was unlinked during the transaction.
4013  *
4014  * In order for that scan to work, we must include one key smaller than
4015  * the smallest logged by this transaction and one key larger than the largest
4016  * key logged by this transaction.
4017  */
4018 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4019 			  struct btrfs_inode *inode,
4020 			  struct btrfs_path *path,
4021 			  struct btrfs_path *dst_path,
4022 			  struct btrfs_log_ctx *ctx)
4023 {
4024 	u64 min_key;
4025 	u64 max_key;
4026 	int ret;
4027 
4028 	ret = update_last_dir_index_offset(inode, path, ctx);
4029 	if (ret)
4030 		return ret;
4031 
4032 	min_key = BTRFS_DIR_START_INDEX;
4033 	max_key = 0;
4034 	ctx->last_dir_item_offset = inode->last_dir_index_offset;
4035 
4036 	while (1) {
4037 		ret = log_dir_items(trans, inode, path, dst_path,
4038 				ctx, min_key, &max_key);
4039 		if (ret)
4040 			return ret;
4041 		if (max_key == (u64)-1)
4042 			break;
4043 		min_key = max_key + 1;
4044 	}
4045 
4046 	inode->last_dir_index_offset = ctx->last_dir_item_offset;
4047 
4048 	return 0;
4049 }
4050 
4051 /*
4052  * a helper function to drop items from the log before we relog an
4053  * inode.  max_key_type indicates the highest item type to remove.
4054  * This cannot be run for file data extents because it does not
4055  * free the extents they point to.
4056  */
4057 static int drop_inode_items(struct btrfs_trans_handle *trans,
4058 				  struct btrfs_root *log,
4059 				  struct btrfs_path *path,
4060 				  struct btrfs_inode *inode,
4061 				  int max_key_type)
4062 {
4063 	int ret;
4064 	struct btrfs_key key;
4065 	struct btrfs_key found_key;
4066 	int start_slot;
4067 
4068 	key.objectid = btrfs_ino(inode);
4069 	key.type = max_key_type;
4070 	key.offset = (u64)-1;
4071 
4072 	while (1) {
4073 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4074 		BUG_ON(ret == 0); /* Logic error */
4075 		if (ret < 0)
4076 			break;
4077 
4078 		if (path->slots[0] == 0)
4079 			break;
4080 
4081 		path->slots[0]--;
4082 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4083 				      path->slots[0]);
4084 
4085 		if (found_key.objectid != key.objectid)
4086 			break;
4087 
4088 		found_key.offset = 0;
4089 		found_key.type = 0;
4090 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4091 		if (ret < 0)
4092 			break;
4093 
4094 		ret = btrfs_del_items(trans, log, path, start_slot,
4095 				      path->slots[0] - start_slot + 1);
4096 		/*
4097 		 * If start slot isn't 0 then we don't need to re-search, we've
4098 		 * found the last guy with the objectid in this tree.
4099 		 */
4100 		if (ret || start_slot != 0)
4101 			break;
4102 		btrfs_release_path(path);
4103 	}
4104 	btrfs_release_path(path);
4105 	if (ret > 0)
4106 		ret = 0;
4107 	return ret;
4108 }
4109 
4110 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4111 				struct btrfs_root *log_root,
4112 				struct btrfs_inode *inode,
4113 				u64 new_size, u32 min_type)
4114 {
4115 	struct btrfs_truncate_control control = {
4116 		.new_size = new_size,
4117 		.ino = btrfs_ino(inode),
4118 		.min_type = min_type,
4119 		.skip_ref_updates = true,
4120 	};
4121 
4122 	return btrfs_truncate_inode_items(trans, log_root, &control);
4123 }
4124 
4125 static void fill_inode_item(struct btrfs_trans_handle *trans,
4126 			    struct extent_buffer *leaf,
4127 			    struct btrfs_inode_item *item,
4128 			    struct inode *inode, int log_inode_only,
4129 			    u64 logged_isize)
4130 {
4131 	struct btrfs_map_token token;
4132 	u64 flags;
4133 
4134 	btrfs_init_map_token(&token, leaf);
4135 
4136 	if (log_inode_only) {
4137 		/* set the generation to zero so the recover code
4138 		 * can tell the difference between an logging
4139 		 * just to say 'this inode exists' and a logging
4140 		 * to say 'update this inode with these values'
4141 		 */
4142 		btrfs_set_token_inode_generation(&token, item, 0);
4143 		btrfs_set_token_inode_size(&token, item, logged_isize);
4144 	} else {
4145 		btrfs_set_token_inode_generation(&token, item,
4146 						 BTRFS_I(inode)->generation);
4147 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4148 	}
4149 
4150 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4151 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4152 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4153 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4154 
4155 	btrfs_set_token_timespec_sec(&token, &item->atime,
4156 				     inode->i_atime.tv_sec);
4157 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4158 				      inode->i_atime.tv_nsec);
4159 
4160 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4161 				     inode->i_mtime.tv_sec);
4162 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4163 				      inode->i_mtime.tv_nsec);
4164 
4165 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4166 				     inode->i_ctime.tv_sec);
4167 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4168 				      inode->i_ctime.tv_nsec);
4169 
4170 	/*
4171 	 * We do not need to set the nbytes field, in fact during a fast fsync
4172 	 * its value may not even be correct, since a fast fsync does not wait
4173 	 * for ordered extent completion, which is where we update nbytes, it
4174 	 * only waits for writeback to complete. During log replay as we find
4175 	 * file extent items and replay them, we adjust the nbytes field of the
4176 	 * inode item in subvolume tree as needed (see overwrite_item()).
4177 	 */
4178 
4179 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4180 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4181 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4182 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4183 					  BTRFS_I(inode)->ro_flags);
4184 	btrfs_set_token_inode_flags(&token, item, flags);
4185 	btrfs_set_token_inode_block_group(&token, item, 0);
4186 }
4187 
4188 static int log_inode_item(struct btrfs_trans_handle *trans,
4189 			  struct btrfs_root *log, struct btrfs_path *path,
4190 			  struct btrfs_inode *inode, bool inode_item_dropped)
4191 {
4192 	struct btrfs_inode_item *inode_item;
4193 	int ret;
4194 
4195 	/*
4196 	 * If we are doing a fast fsync and the inode was logged before in the
4197 	 * current transaction, then we know the inode was previously logged and
4198 	 * it exists in the log tree. For performance reasons, in this case use
4199 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4200 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4201 	 * contention in case there are concurrent fsyncs for other inodes of the
4202 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4203 	 * already exists can also result in unnecessarily splitting a leaf.
4204 	 */
4205 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4206 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4207 		ASSERT(ret <= 0);
4208 		if (ret > 0)
4209 			ret = -ENOENT;
4210 	} else {
4211 		/*
4212 		 * This means it is the first fsync in the current transaction,
4213 		 * so the inode item is not in the log and we need to insert it.
4214 		 * We can never get -EEXIST because we are only called for a fast
4215 		 * fsync and in case an inode eviction happens after the inode was
4216 		 * logged before in the current transaction, when we load again
4217 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4218 		 * flags and set ->logged_trans to 0.
4219 		 */
4220 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4221 					      sizeof(*inode_item));
4222 		ASSERT(ret != -EEXIST);
4223 	}
4224 	if (ret)
4225 		return ret;
4226 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4227 				    struct btrfs_inode_item);
4228 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4229 			0, 0);
4230 	btrfs_release_path(path);
4231 	return 0;
4232 }
4233 
4234 static int log_csums(struct btrfs_trans_handle *trans,
4235 		     struct btrfs_inode *inode,
4236 		     struct btrfs_root *log_root,
4237 		     struct btrfs_ordered_sum *sums)
4238 {
4239 	const u64 lock_end = sums->bytenr + sums->len - 1;
4240 	struct extent_state *cached_state = NULL;
4241 	int ret;
4242 
4243 	/*
4244 	 * If this inode was not used for reflink operations in the current
4245 	 * transaction with new extents, then do the fast path, no need to
4246 	 * worry about logging checksum items with overlapping ranges.
4247 	 */
4248 	if (inode->last_reflink_trans < trans->transid)
4249 		return btrfs_csum_file_blocks(trans, log_root, sums);
4250 
4251 	/*
4252 	 * Serialize logging for checksums. This is to avoid racing with the
4253 	 * same checksum being logged by another task that is logging another
4254 	 * file which happens to refer to the same extent as well. Such races
4255 	 * can leave checksum items in the log with overlapping ranges.
4256 	 */
4257 	ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4258 			  &cached_state);
4259 	if (ret)
4260 		return ret;
4261 	/*
4262 	 * Due to extent cloning, we might have logged a csum item that covers a
4263 	 * subrange of a cloned extent, and later we can end up logging a csum
4264 	 * item for a larger subrange of the same extent or the entire range.
4265 	 * This would leave csum items in the log tree that cover the same range
4266 	 * and break the searches for checksums in the log tree, resulting in
4267 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4268 	 * trim and adjust) any existing csum items in the log for this range.
4269 	 */
4270 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4271 	if (!ret)
4272 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4273 
4274 	unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4275 		      &cached_state);
4276 
4277 	return ret;
4278 }
4279 
4280 static noinline int copy_items(struct btrfs_trans_handle *trans,
4281 			       struct btrfs_inode *inode,
4282 			       struct btrfs_path *dst_path,
4283 			       struct btrfs_path *src_path,
4284 			       int start_slot, int nr, int inode_only,
4285 			       u64 logged_isize)
4286 {
4287 	struct btrfs_root *log = inode->root->log_root;
4288 	struct btrfs_file_extent_item *extent;
4289 	struct extent_buffer *src;
4290 	int ret = 0;
4291 	struct btrfs_key *ins_keys;
4292 	u32 *ins_sizes;
4293 	struct btrfs_item_batch batch;
4294 	char *ins_data;
4295 	int i;
4296 	int dst_index;
4297 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4298 	const u64 i_size = i_size_read(&inode->vfs_inode);
4299 
4300 	/*
4301 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4302 	 * use the clone. This is because otherwise we would be changing the log
4303 	 * tree, to insert items from the subvolume tree or insert csum items,
4304 	 * while holding a read lock on a leaf from the subvolume tree, which
4305 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4306 	 *
4307 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4308 	 *    holding a write lock on a parent extent buffer from the log tree.
4309 	 *    Allocating the pages for an extent buffer, or the extent buffer
4310 	 *    struct, can trigger inode eviction and finally the inode eviction
4311 	 *    will trigger a release/remove of a delayed node, which requires
4312 	 *    taking the delayed node's mutex;
4313 	 *
4314 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4315 	 *    reclaim thread and make us wait for it to release enough space and
4316 	 *    unblock our reservation ticket. The reclaim thread can start
4317 	 *    flushing delayed items, and that in turn results in the need to
4318 	 *    lock delayed node mutexes and in the need to write lock extent
4319 	 *    buffers of a subvolume tree - all this while holding a write lock
4320 	 *    on the parent extent buffer in the log tree.
4321 	 *
4322 	 * So one task in scenario 1) running in parallel with another task in
4323 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4324 	 * node mutex while having a read lock on a leaf from the subvolume,
4325 	 * while the other is holding the delayed node's mutex and wants to
4326 	 * write lock the same subvolume leaf for flushing delayed items.
4327 	 */
4328 	src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4329 	if (!src)
4330 		return -ENOMEM;
4331 
4332 	i = src_path->slots[0];
4333 	btrfs_release_path(src_path);
4334 	src_path->nodes[0] = src;
4335 	src_path->slots[0] = i;
4336 
4337 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4338 			   nr * sizeof(u32), GFP_NOFS);
4339 	if (!ins_data)
4340 		return -ENOMEM;
4341 
4342 	ins_sizes = (u32 *)ins_data;
4343 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4344 	batch.keys = ins_keys;
4345 	batch.data_sizes = ins_sizes;
4346 	batch.total_data_size = 0;
4347 	batch.nr = 0;
4348 
4349 	dst_index = 0;
4350 	for (i = 0; i < nr; i++) {
4351 		const int src_slot = start_slot + i;
4352 		struct btrfs_root *csum_root;
4353 		struct btrfs_ordered_sum *sums;
4354 		struct btrfs_ordered_sum *sums_next;
4355 		LIST_HEAD(ordered_sums);
4356 		u64 disk_bytenr;
4357 		u64 disk_num_bytes;
4358 		u64 extent_offset;
4359 		u64 extent_num_bytes;
4360 		bool is_old_extent;
4361 
4362 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4363 
4364 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4365 			goto add_to_batch;
4366 
4367 		extent = btrfs_item_ptr(src, src_slot,
4368 					struct btrfs_file_extent_item);
4369 
4370 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4371 				 trans->transid);
4372 
4373 		/*
4374 		 * Don't copy extents from past generations. That would make us
4375 		 * log a lot more metadata for common cases like doing only a
4376 		 * few random writes into a file and then fsync it for the first
4377 		 * time or after the full sync flag is set on the inode. We can
4378 		 * get leaves full of extent items, most of which are from past
4379 		 * generations, so we can skip them - as long as the inode has
4380 		 * not been the target of a reflink operation in this transaction,
4381 		 * as in that case it might have had file extent items with old
4382 		 * generations copied into it. We also must always log prealloc
4383 		 * extents that start at or beyond eof, otherwise we would lose
4384 		 * them on log replay.
4385 		 */
4386 		if (is_old_extent &&
4387 		    ins_keys[dst_index].offset < i_size &&
4388 		    inode->last_reflink_trans < trans->transid)
4389 			continue;
4390 
4391 		if (skip_csum)
4392 			goto add_to_batch;
4393 
4394 		/* Only regular extents have checksums. */
4395 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4396 			goto add_to_batch;
4397 
4398 		/*
4399 		 * If it's an extent created in a past transaction, then its
4400 		 * checksums are already accessible from the committed csum tree,
4401 		 * no need to log them.
4402 		 */
4403 		if (is_old_extent)
4404 			goto add_to_batch;
4405 
4406 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4407 		/* If it's an explicit hole, there are no checksums. */
4408 		if (disk_bytenr == 0)
4409 			goto add_to_batch;
4410 
4411 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4412 
4413 		if (btrfs_file_extent_compression(src, extent)) {
4414 			extent_offset = 0;
4415 			extent_num_bytes = disk_num_bytes;
4416 		} else {
4417 			extent_offset = btrfs_file_extent_offset(src, extent);
4418 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4419 		}
4420 
4421 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4422 		disk_bytenr += extent_offset;
4423 		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4424 					      disk_bytenr + extent_num_bytes - 1,
4425 					      &ordered_sums, 0, false);
4426 		if (ret)
4427 			goto out;
4428 
4429 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4430 			if (!ret)
4431 				ret = log_csums(trans, inode, log, sums);
4432 			list_del(&sums->list);
4433 			kfree(sums);
4434 		}
4435 		if (ret)
4436 			goto out;
4437 
4438 add_to_batch:
4439 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4440 		batch.total_data_size += ins_sizes[dst_index];
4441 		batch.nr++;
4442 		dst_index++;
4443 	}
4444 
4445 	/*
4446 	 * We have a leaf full of old extent items that don't need to be logged,
4447 	 * so we don't need to do anything.
4448 	 */
4449 	if (batch.nr == 0)
4450 		goto out;
4451 
4452 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4453 	if (ret)
4454 		goto out;
4455 
4456 	dst_index = 0;
4457 	for (i = 0; i < nr; i++) {
4458 		const int src_slot = start_slot + i;
4459 		const int dst_slot = dst_path->slots[0] + dst_index;
4460 		struct btrfs_key key;
4461 		unsigned long src_offset;
4462 		unsigned long dst_offset;
4463 
4464 		/*
4465 		 * We're done, all the remaining items in the source leaf
4466 		 * correspond to old file extent items.
4467 		 */
4468 		if (dst_index >= batch.nr)
4469 			break;
4470 
4471 		btrfs_item_key_to_cpu(src, &key, src_slot);
4472 
4473 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4474 			goto copy_item;
4475 
4476 		extent = btrfs_item_ptr(src, src_slot,
4477 					struct btrfs_file_extent_item);
4478 
4479 		/* See the comment in the previous loop, same logic. */
4480 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4481 		    key.offset < i_size &&
4482 		    inode->last_reflink_trans < trans->transid)
4483 			continue;
4484 
4485 copy_item:
4486 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4487 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4488 
4489 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4490 			struct btrfs_inode_item *inode_item;
4491 
4492 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4493 						    struct btrfs_inode_item);
4494 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4495 					&inode->vfs_inode,
4496 					inode_only == LOG_INODE_EXISTS,
4497 					logged_isize);
4498 		} else {
4499 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4500 					   src_offset, ins_sizes[dst_index]);
4501 		}
4502 
4503 		dst_index++;
4504 	}
4505 
4506 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4507 	btrfs_release_path(dst_path);
4508 out:
4509 	kfree(ins_data);
4510 
4511 	return ret;
4512 }
4513 
4514 static int extent_cmp(void *priv, const struct list_head *a,
4515 		      const struct list_head *b)
4516 {
4517 	const struct extent_map *em1, *em2;
4518 
4519 	em1 = list_entry(a, struct extent_map, list);
4520 	em2 = list_entry(b, struct extent_map, list);
4521 
4522 	if (em1->start < em2->start)
4523 		return -1;
4524 	else if (em1->start > em2->start)
4525 		return 1;
4526 	return 0;
4527 }
4528 
4529 static int log_extent_csums(struct btrfs_trans_handle *trans,
4530 			    struct btrfs_inode *inode,
4531 			    struct btrfs_root *log_root,
4532 			    const struct extent_map *em,
4533 			    struct btrfs_log_ctx *ctx)
4534 {
4535 	struct btrfs_ordered_extent *ordered;
4536 	struct btrfs_root *csum_root;
4537 	u64 csum_offset;
4538 	u64 csum_len;
4539 	u64 mod_start = em->mod_start;
4540 	u64 mod_len = em->mod_len;
4541 	LIST_HEAD(ordered_sums);
4542 	int ret = 0;
4543 
4544 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4545 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4546 	    em->block_start == EXTENT_MAP_HOLE)
4547 		return 0;
4548 
4549 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4550 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4551 		const u64 mod_end = mod_start + mod_len;
4552 		struct btrfs_ordered_sum *sums;
4553 
4554 		if (mod_len == 0)
4555 			break;
4556 
4557 		if (ordered_end <= mod_start)
4558 			continue;
4559 		if (mod_end <= ordered->file_offset)
4560 			break;
4561 
4562 		/*
4563 		 * We are going to copy all the csums on this ordered extent, so
4564 		 * go ahead and adjust mod_start and mod_len in case this ordered
4565 		 * extent has already been logged.
4566 		 */
4567 		if (ordered->file_offset > mod_start) {
4568 			if (ordered_end >= mod_end)
4569 				mod_len = ordered->file_offset - mod_start;
4570 			/*
4571 			 * If we have this case
4572 			 *
4573 			 * |--------- logged extent ---------|
4574 			 *       |----- ordered extent ----|
4575 			 *
4576 			 * Just don't mess with mod_start and mod_len, we'll
4577 			 * just end up logging more csums than we need and it
4578 			 * will be ok.
4579 			 */
4580 		} else {
4581 			if (ordered_end < mod_end) {
4582 				mod_len = mod_end - ordered_end;
4583 				mod_start = ordered_end;
4584 			} else {
4585 				mod_len = 0;
4586 			}
4587 		}
4588 
4589 		/*
4590 		 * To keep us from looping for the above case of an ordered
4591 		 * extent that falls inside of the logged extent.
4592 		 */
4593 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4594 			continue;
4595 
4596 		list_for_each_entry(sums, &ordered->list, list) {
4597 			ret = log_csums(trans, inode, log_root, sums);
4598 			if (ret)
4599 				return ret;
4600 		}
4601 	}
4602 
4603 	/* We're done, found all csums in the ordered extents. */
4604 	if (mod_len == 0)
4605 		return 0;
4606 
4607 	/* If we're compressed we have to save the entire range of csums. */
4608 	if (em->compress_type) {
4609 		csum_offset = 0;
4610 		csum_len = max(em->block_len, em->orig_block_len);
4611 	} else {
4612 		csum_offset = mod_start - em->start;
4613 		csum_len = mod_len;
4614 	}
4615 
4616 	/* block start is already adjusted for the file extent offset. */
4617 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4618 	ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4619 				      em->block_start + csum_offset +
4620 				      csum_len - 1, &ordered_sums, 0, false);
4621 	if (ret)
4622 		return ret;
4623 
4624 	while (!list_empty(&ordered_sums)) {
4625 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4626 						   struct btrfs_ordered_sum,
4627 						   list);
4628 		if (!ret)
4629 			ret = log_csums(trans, inode, log_root, sums);
4630 		list_del(&sums->list);
4631 		kfree(sums);
4632 	}
4633 
4634 	return ret;
4635 }
4636 
4637 static int log_one_extent(struct btrfs_trans_handle *trans,
4638 			  struct btrfs_inode *inode,
4639 			  const struct extent_map *em,
4640 			  struct btrfs_path *path,
4641 			  struct btrfs_log_ctx *ctx)
4642 {
4643 	struct btrfs_drop_extents_args drop_args = { 0 };
4644 	struct btrfs_root *log = inode->root->log_root;
4645 	struct btrfs_file_extent_item fi = { 0 };
4646 	struct extent_buffer *leaf;
4647 	struct btrfs_key key;
4648 	u64 extent_offset = em->start - em->orig_start;
4649 	u64 block_len;
4650 	int ret;
4651 
4652 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4653 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4654 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4655 	else
4656 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4657 
4658 	block_len = max(em->block_len, em->orig_block_len);
4659 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4660 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4661 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4662 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4663 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4664 							extent_offset);
4665 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4666 	}
4667 
4668 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4669 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4670 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4671 	btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4672 
4673 	ret = log_extent_csums(trans, inode, log, em, ctx);
4674 	if (ret)
4675 		return ret;
4676 
4677 	/*
4678 	 * If this is the first time we are logging the inode in the current
4679 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4680 	 * because it does a deletion search, which always acquires write locks
4681 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4682 	 * but also adds significant contention in a log tree, since log trees
4683 	 * are small, with a root at level 2 or 3 at most, due to their short
4684 	 * life span.
4685 	 */
4686 	if (ctx->logged_before) {
4687 		drop_args.path = path;
4688 		drop_args.start = em->start;
4689 		drop_args.end = em->start + em->len;
4690 		drop_args.replace_extent = true;
4691 		drop_args.extent_item_size = sizeof(fi);
4692 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4693 		if (ret)
4694 			return ret;
4695 	}
4696 
4697 	if (!drop_args.extent_inserted) {
4698 		key.objectid = btrfs_ino(inode);
4699 		key.type = BTRFS_EXTENT_DATA_KEY;
4700 		key.offset = em->start;
4701 
4702 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4703 					      sizeof(fi));
4704 		if (ret)
4705 			return ret;
4706 	}
4707 	leaf = path->nodes[0];
4708 	write_extent_buffer(leaf, &fi,
4709 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4710 			    sizeof(fi));
4711 	btrfs_mark_buffer_dirty(leaf);
4712 
4713 	btrfs_release_path(path);
4714 
4715 	return ret;
4716 }
4717 
4718 /*
4719  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4720  * lose them after doing a full/fast fsync and replaying the log. We scan the
4721  * subvolume's root instead of iterating the inode's extent map tree because
4722  * otherwise we can log incorrect extent items based on extent map conversion.
4723  * That can happen due to the fact that extent maps are merged when they
4724  * are not in the extent map tree's list of modified extents.
4725  */
4726 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4727 				      struct btrfs_inode *inode,
4728 				      struct btrfs_path *path)
4729 {
4730 	struct btrfs_root *root = inode->root;
4731 	struct btrfs_key key;
4732 	const u64 i_size = i_size_read(&inode->vfs_inode);
4733 	const u64 ino = btrfs_ino(inode);
4734 	struct btrfs_path *dst_path = NULL;
4735 	bool dropped_extents = false;
4736 	u64 truncate_offset = i_size;
4737 	struct extent_buffer *leaf;
4738 	int slot;
4739 	int ins_nr = 0;
4740 	int start_slot;
4741 	int ret;
4742 
4743 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4744 		return 0;
4745 
4746 	key.objectid = ino;
4747 	key.type = BTRFS_EXTENT_DATA_KEY;
4748 	key.offset = i_size;
4749 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4750 	if (ret < 0)
4751 		goto out;
4752 
4753 	/*
4754 	 * We must check if there is a prealloc extent that starts before the
4755 	 * i_size and crosses the i_size boundary. This is to ensure later we
4756 	 * truncate down to the end of that extent and not to the i_size, as
4757 	 * otherwise we end up losing part of the prealloc extent after a log
4758 	 * replay and with an implicit hole if there is another prealloc extent
4759 	 * that starts at an offset beyond i_size.
4760 	 */
4761 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4762 	if (ret < 0)
4763 		goto out;
4764 
4765 	if (ret == 0) {
4766 		struct btrfs_file_extent_item *ei;
4767 
4768 		leaf = path->nodes[0];
4769 		slot = path->slots[0];
4770 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4771 
4772 		if (btrfs_file_extent_type(leaf, ei) ==
4773 		    BTRFS_FILE_EXTENT_PREALLOC) {
4774 			u64 extent_end;
4775 
4776 			btrfs_item_key_to_cpu(leaf, &key, slot);
4777 			extent_end = key.offset +
4778 				btrfs_file_extent_num_bytes(leaf, ei);
4779 
4780 			if (extent_end > i_size)
4781 				truncate_offset = extent_end;
4782 		}
4783 	} else {
4784 		ret = 0;
4785 	}
4786 
4787 	while (true) {
4788 		leaf = path->nodes[0];
4789 		slot = path->slots[0];
4790 
4791 		if (slot >= btrfs_header_nritems(leaf)) {
4792 			if (ins_nr > 0) {
4793 				ret = copy_items(trans, inode, dst_path, path,
4794 						 start_slot, ins_nr, 1, 0);
4795 				if (ret < 0)
4796 					goto out;
4797 				ins_nr = 0;
4798 			}
4799 			ret = btrfs_next_leaf(root, path);
4800 			if (ret < 0)
4801 				goto out;
4802 			if (ret > 0) {
4803 				ret = 0;
4804 				break;
4805 			}
4806 			continue;
4807 		}
4808 
4809 		btrfs_item_key_to_cpu(leaf, &key, slot);
4810 		if (key.objectid > ino)
4811 			break;
4812 		if (WARN_ON_ONCE(key.objectid < ino) ||
4813 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4814 		    key.offset < i_size) {
4815 			path->slots[0]++;
4816 			continue;
4817 		}
4818 		if (!dropped_extents) {
4819 			/*
4820 			 * Avoid logging extent items logged in past fsync calls
4821 			 * and leading to duplicate keys in the log tree.
4822 			 */
4823 			ret = truncate_inode_items(trans, root->log_root, inode,
4824 						   truncate_offset,
4825 						   BTRFS_EXTENT_DATA_KEY);
4826 			if (ret)
4827 				goto out;
4828 			dropped_extents = true;
4829 		}
4830 		if (ins_nr == 0)
4831 			start_slot = slot;
4832 		ins_nr++;
4833 		path->slots[0]++;
4834 		if (!dst_path) {
4835 			dst_path = btrfs_alloc_path();
4836 			if (!dst_path) {
4837 				ret = -ENOMEM;
4838 				goto out;
4839 			}
4840 		}
4841 	}
4842 	if (ins_nr > 0)
4843 		ret = copy_items(trans, inode, dst_path, path,
4844 				 start_slot, ins_nr, 1, 0);
4845 out:
4846 	btrfs_release_path(path);
4847 	btrfs_free_path(dst_path);
4848 	return ret;
4849 }
4850 
4851 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4852 				     struct btrfs_inode *inode,
4853 				     struct btrfs_path *path,
4854 				     struct btrfs_log_ctx *ctx)
4855 {
4856 	struct btrfs_ordered_extent *ordered;
4857 	struct btrfs_ordered_extent *tmp;
4858 	struct extent_map *em, *n;
4859 	struct list_head extents;
4860 	struct extent_map_tree *tree = &inode->extent_tree;
4861 	int ret = 0;
4862 	int num = 0;
4863 
4864 	INIT_LIST_HEAD(&extents);
4865 
4866 	write_lock(&tree->lock);
4867 
4868 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4869 		list_del_init(&em->list);
4870 		/*
4871 		 * Just an arbitrary number, this can be really CPU intensive
4872 		 * once we start getting a lot of extents, and really once we
4873 		 * have a bunch of extents we just want to commit since it will
4874 		 * be faster.
4875 		 */
4876 		if (++num > 32768) {
4877 			list_del_init(&tree->modified_extents);
4878 			ret = -EFBIG;
4879 			goto process;
4880 		}
4881 
4882 		if (em->generation < trans->transid)
4883 			continue;
4884 
4885 		/* We log prealloc extents beyond eof later. */
4886 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4887 		    em->start >= i_size_read(&inode->vfs_inode))
4888 			continue;
4889 
4890 		/* Need a ref to keep it from getting evicted from cache */
4891 		refcount_inc(&em->refs);
4892 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4893 		list_add_tail(&em->list, &extents);
4894 		num++;
4895 	}
4896 
4897 	list_sort(NULL, &extents, extent_cmp);
4898 process:
4899 	while (!list_empty(&extents)) {
4900 		em = list_entry(extents.next, struct extent_map, list);
4901 
4902 		list_del_init(&em->list);
4903 
4904 		/*
4905 		 * If we had an error we just need to delete everybody from our
4906 		 * private list.
4907 		 */
4908 		if (ret) {
4909 			clear_em_logging(tree, em);
4910 			free_extent_map(em);
4911 			continue;
4912 		}
4913 
4914 		write_unlock(&tree->lock);
4915 
4916 		ret = log_one_extent(trans, inode, em, path, ctx);
4917 		write_lock(&tree->lock);
4918 		clear_em_logging(tree, em);
4919 		free_extent_map(em);
4920 	}
4921 	WARN_ON(!list_empty(&extents));
4922 	write_unlock(&tree->lock);
4923 
4924 	if (!ret)
4925 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4926 	if (ret)
4927 		return ret;
4928 
4929 	/*
4930 	 * We have logged all extents successfully, now make sure the commit of
4931 	 * the current transaction waits for the ordered extents to complete
4932 	 * before it commits and wipes out the log trees, otherwise we would
4933 	 * lose data if an ordered extents completes after the transaction
4934 	 * commits and a power failure happens after the transaction commit.
4935 	 */
4936 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4937 		list_del_init(&ordered->log_list);
4938 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4939 
4940 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4941 			spin_lock_irq(&inode->ordered_tree.lock);
4942 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4943 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4944 				atomic_inc(&trans->transaction->pending_ordered);
4945 			}
4946 			spin_unlock_irq(&inode->ordered_tree.lock);
4947 		}
4948 		btrfs_put_ordered_extent(ordered);
4949 	}
4950 
4951 	return 0;
4952 }
4953 
4954 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4955 			     struct btrfs_path *path, u64 *size_ret)
4956 {
4957 	struct btrfs_key key;
4958 	int ret;
4959 
4960 	key.objectid = btrfs_ino(inode);
4961 	key.type = BTRFS_INODE_ITEM_KEY;
4962 	key.offset = 0;
4963 
4964 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4965 	if (ret < 0) {
4966 		return ret;
4967 	} else if (ret > 0) {
4968 		*size_ret = 0;
4969 	} else {
4970 		struct btrfs_inode_item *item;
4971 
4972 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4973 				      struct btrfs_inode_item);
4974 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4975 		/*
4976 		 * If the in-memory inode's i_size is smaller then the inode
4977 		 * size stored in the btree, return the inode's i_size, so
4978 		 * that we get a correct inode size after replaying the log
4979 		 * when before a power failure we had a shrinking truncate
4980 		 * followed by addition of a new name (rename / new hard link).
4981 		 * Otherwise return the inode size from the btree, to avoid
4982 		 * data loss when replaying a log due to previously doing a
4983 		 * write that expands the inode's size and logging a new name
4984 		 * immediately after.
4985 		 */
4986 		if (*size_ret > inode->vfs_inode.i_size)
4987 			*size_ret = inode->vfs_inode.i_size;
4988 	}
4989 
4990 	btrfs_release_path(path);
4991 	return 0;
4992 }
4993 
4994 /*
4995  * At the moment we always log all xattrs. This is to figure out at log replay
4996  * time which xattrs must have their deletion replayed. If a xattr is missing
4997  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4998  * because if a xattr is deleted, the inode is fsynced and a power failure
4999  * happens, causing the log to be replayed the next time the fs is mounted,
5000  * we want the xattr to not exist anymore (same behaviour as other filesystems
5001  * with a journal, ext3/4, xfs, f2fs, etc).
5002  */
5003 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5004 				struct btrfs_inode *inode,
5005 				struct btrfs_path *path,
5006 				struct btrfs_path *dst_path)
5007 {
5008 	struct btrfs_root *root = inode->root;
5009 	int ret;
5010 	struct btrfs_key key;
5011 	const u64 ino = btrfs_ino(inode);
5012 	int ins_nr = 0;
5013 	int start_slot = 0;
5014 	bool found_xattrs = false;
5015 
5016 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5017 		return 0;
5018 
5019 	key.objectid = ino;
5020 	key.type = BTRFS_XATTR_ITEM_KEY;
5021 	key.offset = 0;
5022 
5023 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5024 	if (ret < 0)
5025 		return ret;
5026 
5027 	while (true) {
5028 		int slot = path->slots[0];
5029 		struct extent_buffer *leaf = path->nodes[0];
5030 		int nritems = btrfs_header_nritems(leaf);
5031 
5032 		if (slot >= nritems) {
5033 			if (ins_nr > 0) {
5034 				ret = copy_items(trans, inode, dst_path, path,
5035 						 start_slot, ins_nr, 1, 0);
5036 				if (ret < 0)
5037 					return ret;
5038 				ins_nr = 0;
5039 			}
5040 			ret = btrfs_next_leaf(root, path);
5041 			if (ret < 0)
5042 				return ret;
5043 			else if (ret > 0)
5044 				break;
5045 			continue;
5046 		}
5047 
5048 		btrfs_item_key_to_cpu(leaf, &key, slot);
5049 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5050 			break;
5051 
5052 		if (ins_nr == 0)
5053 			start_slot = slot;
5054 		ins_nr++;
5055 		path->slots[0]++;
5056 		found_xattrs = true;
5057 		cond_resched();
5058 	}
5059 	if (ins_nr > 0) {
5060 		ret = copy_items(trans, inode, dst_path, path,
5061 				 start_slot, ins_nr, 1, 0);
5062 		if (ret < 0)
5063 			return ret;
5064 	}
5065 
5066 	if (!found_xattrs)
5067 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5068 
5069 	return 0;
5070 }
5071 
5072 /*
5073  * When using the NO_HOLES feature if we punched a hole that causes the
5074  * deletion of entire leafs or all the extent items of the first leaf (the one
5075  * that contains the inode item and references) we may end up not processing
5076  * any extents, because there are no leafs with a generation matching the
5077  * current transaction that have extent items for our inode. So we need to find
5078  * if any holes exist and then log them. We also need to log holes after any
5079  * truncate operation that changes the inode's size.
5080  */
5081 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5082 			   struct btrfs_inode *inode,
5083 			   struct btrfs_path *path)
5084 {
5085 	struct btrfs_root *root = inode->root;
5086 	struct btrfs_fs_info *fs_info = root->fs_info;
5087 	struct btrfs_key key;
5088 	const u64 ino = btrfs_ino(inode);
5089 	const u64 i_size = i_size_read(&inode->vfs_inode);
5090 	u64 prev_extent_end = 0;
5091 	int ret;
5092 
5093 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5094 		return 0;
5095 
5096 	key.objectid = ino;
5097 	key.type = BTRFS_EXTENT_DATA_KEY;
5098 	key.offset = 0;
5099 
5100 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5101 	if (ret < 0)
5102 		return ret;
5103 
5104 	while (true) {
5105 		struct extent_buffer *leaf = path->nodes[0];
5106 
5107 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5108 			ret = btrfs_next_leaf(root, path);
5109 			if (ret < 0)
5110 				return ret;
5111 			if (ret > 0) {
5112 				ret = 0;
5113 				break;
5114 			}
5115 			leaf = path->nodes[0];
5116 		}
5117 
5118 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5119 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5120 			break;
5121 
5122 		/* We have a hole, log it. */
5123 		if (prev_extent_end < key.offset) {
5124 			const u64 hole_len = key.offset - prev_extent_end;
5125 
5126 			/*
5127 			 * Release the path to avoid deadlocks with other code
5128 			 * paths that search the root while holding locks on
5129 			 * leafs from the log root.
5130 			 */
5131 			btrfs_release_path(path);
5132 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5133 						       ino, prev_extent_end,
5134 						       hole_len);
5135 			if (ret < 0)
5136 				return ret;
5137 
5138 			/*
5139 			 * Search for the same key again in the root. Since it's
5140 			 * an extent item and we are holding the inode lock, the
5141 			 * key must still exist. If it doesn't just emit warning
5142 			 * and return an error to fall back to a transaction
5143 			 * commit.
5144 			 */
5145 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5146 			if (ret < 0)
5147 				return ret;
5148 			if (WARN_ON(ret > 0))
5149 				return -ENOENT;
5150 			leaf = path->nodes[0];
5151 		}
5152 
5153 		prev_extent_end = btrfs_file_extent_end(path);
5154 		path->slots[0]++;
5155 		cond_resched();
5156 	}
5157 
5158 	if (prev_extent_end < i_size) {
5159 		u64 hole_len;
5160 
5161 		btrfs_release_path(path);
5162 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5163 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5164 					       prev_extent_end, hole_len);
5165 		if (ret < 0)
5166 			return ret;
5167 	}
5168 
5169 	return 0;
5170 }
5171 
5172 /*
5173  * When we are logging a new inode X, check if it doesn't have a reference that
5174  * matches the reference from some other inode Y created in a past transaction
5175  * and that was renamed in the current transaction. If we don't do this, then at
5176  * log replay time we can lose inode Y (and all its files if it's a directory):
5177  *
5178  * mkdir /mnt/x
5179  * echo "hello world" > /mnt/x/foobar
5180  * sync
5181  * mv /mnt/x /mnt/y
5182  * mkdir /mnt/x                 # or touch /mnt/x
5183  * xfs_io -c fsync /mnt/x
5184  * <power fail>
5185  * mount fs, trigger log replay
5186  *
5187  * After the log replay procedure, we would lose the first directory and all its
5188  * files (file foobar).
5189  * For the case where inode Y is not a directory we simply end up losing it:
5190  *
5191  * echo "123" > /mnt/foo
5192  * sync
5193  * mv /mnt/foo /mnt/bar
5194  * echo "abc" > /mnt/foo
5195  * xfs_io -c fsync /mnt/foo
5196  * <power fail>
5197  *
5198  * We also need this for cases where a snapshot entry is replaced by some other
5199  * entry (file or directory) otherwise we end up with an unreplayable log due to
5200  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5201  * if it were a regular entry:
5202  *
5203  * mkdir /mnt/x
5204  * btrfs subvolume snapshot /mnt /mnt/x/snap
5205  * btrfs subvolume delete /mnt/x/snap
5206  * rmdir /mnt/x
5207  * mkdir /mnt/x
5208  * fsync /mnt/x or fsync some new file inside it
5209  * <power fail>
5210  *
5211  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5212  * the same transaction.
5213  */
5214 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5215 					 const int slot,
5216 					 const struct btrfs_key *key,
5217 					 struct btrfs_inode *inode,
5218 					 u64 *other_ino, u64 *other_parent)
5219 {
5220 	int ret;
5221 	struct btrfs_path *search_path;
5222 	char *name = NULL;
5223 	u32 name_len = 0;
5224 	u32 item_size = btrfs_item_size(eb, slot);
5225 	u32 cur_offset = 0;
5226 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5227 
5228 	search_path = btrfs_alloc_path();
5229 	if (!search_path)
5230 		return -ENOMEM;
5231 	search_path->search_commit_root = 1;
5232 	search_path->skip_locking = 1;
5233 
5234 	while (cur_offset < item_size) {
5235 		u64 parent;
5236 		u32 this_name_len;
5237 		u32 this_len;
5238 		unsigned long name_ptr;
5239 		struct btrfs_dir_item *di;
5240 		struct fscrypt_str name_str;
5241 
5242 		if (key->type == BTRFS_INODE_REF_KEY) {
5243 			struct btrfs_inode_ref *iref;
5244 
5245 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5246 			parent = key->offset;
5247 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5248 			name_ptr = (unsigned long)(iref + 1);
5249 			this_len = sizeof(*iref) + this_name_len;
5250 		} else {
5251 			struct btrfs_inode_extref *extref;
5252 
5253 			extref = (struct btrfs_inode_extref *)(ptr +
5254 							       cur_offset);
5255 			parent = btrfs_inode_extref_parent(eb, extref);
5256 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5257 			name_ptr = (unsigned long)&extref->name;
5258 			this_len = sizeof(*extref) + this_name_len;
5259 		}
5260 
5261 		if (this_name_len > name_len) {
5262 			char *new_name;
5263 
5264 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5265 			if (!new_name) {
5266 				ret = -ENOMEM;
5267 				goto out;
5268 			}
5269 			name_len = this_name_len;
5270 			name = new_name;
5271 		}
5272 
5273 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5274 
5275 		name_str.name = name;
5276 		name_str.len = this_name_len;
5277 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5278 				parent, &name_str, 0);
5279 		if (di && !IS_ERR(di)) {
5280 			struct btrfs_key di_key;
5281 
5282 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5283 						  di, &di_key);
5284 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5285 				if (di_key.objectid != key->objectid) {
5286 					ret = 1;
5287 					*other_ino = di_key.objectid;
5288 					*other_parent = parent;
5289 				} else {
5290 					ret = 0;
5291 				}
5292 			} else {
5293 				ret = -EAGAIN;
5294 			}
5295 			goto out;
5296 		} else if (IS_ERR(di)) {
5297 			ret = PTR_ERR(di);
5298 			goto out;
5299 		}
5300 		btrfs_release_path(search_path);
5301 
5302 		cur_offset += this_len;
5303 	}
5304 	ret = 0;
5305 out:
5306 	btrfs_free_path(search_path);
5307 	kfree(name);
5308 	return ret;
5309 }
5310 
5311 /*
5312  * Check if we need to log an inode. This is used in contexts where while
5313  * logging an inode we need to log another inode (either that it exists or in
5314  * full mode). This is used instead of btrfs_inode_in_log() because the later
5315  * requires the inode to be in the log and have the log transaction committed,
5316  * while here we do not care if the log transaction was already committed - our
5317  * caller will commit the log later - and we want to avoid logging an inode
5318  * multiple times when multiple tasks have joined the same log transaction.
5319  */
5320 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5321 			   const struct btrfs_inode *inode)
5322 {
5323 	/*
5324 	 * If a directory was not modified, no dentries added or removed, we can
5325 	 * and should avoid logging it.
5326 	 */
5327 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5328 		return false;
5329 
5330 	/*
5331 	 * If this inode does not have new/updated/deleted xattrs since the last
5332 	 * time it was logged and is flagged as logged in the current transaction,
5333 	 * we can skip logging it. As for new/deleted names, those are updated in
5334 	 * the log by link/unlink/rename operations.
5335 	 * In case the inode was logged and then evicted and reloaded, its
5336 	 * logged_trans will be 0, in which case we have to fully log it since
5337 	 * logged_trans is a transient field, not persisted.
5338 	 */
5339 	if (inode->logged_trans == trans->transid &&
5340 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5341 		return false;
5342 
5343 	return true;
5344 }
5345 
5346 struct btrfs_dir_list {
5347 	u64 ino;
5348 	struct list_head list;
5349 };
5350 
5351 /*
5352  * Log the inodes of the new dentries of a directory.
5353  * See process_dir_items_leaf() for details about why it is needed.
5354  * This is a recursive operation - if an existing dentry corresponds to a
5355  * directory, that directory's new entries are logged too (same behaviour as
5356  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5357  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5358  * complains about the following circular lock dependency / possible deadlock:
5359  *
5360  *        CPU0                                        CPU1
5361  *        ----                                        ----
5362  * lock(&type->i_mutex_dir_key#3/2);
5363  *                                            lock(sb_internal#2);
5364  *                                            lock(&type->i_mutex_dir_key#3/2);
5365  * lock(&sb->s_type->i_mutex_key#14);
5366  *
5367  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5368  * sb_start_intwrite() in btrfs_start_transaction().
5369  * Not acquiring the VFS lock of the inodes is still safe because:
5370  *
5371  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5372  *    that while logging the inode new references (names) are added or removed
5373  *    from the inode, leaving the logged inode item with a link count that does
5374  *    not match the number of logged inode reference items. This is fine because
5375  *    at log replay time we compute the real number of links and correct the
5376  *    link count in the inode item (see replay_one_buffer() and
5377  *    link_to_fixup_dir());
5378  *
5379  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5380  *    while logging the inode's items new index items (key type
5381  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5382  *    has a size that doesn't match the sum of the lengths of all the logged
5383  *    names - this is ok, not a problem, because at log replay time we set the
5384  *    directory's i_size to the correct value (see replay_one_name() and
5385  *    overwrite_item()).
5386  */
5387 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5388 				struct btrfs_inode *start_inode,
5389 				struct btrfs_log_ctx *ctx)
5390 {
5391 	struct btrfs_root *root = start_inode->root;
5392 	struct btrfs_fs_info *fs_info = root->fs_info;
5393 	struct btrfs_path *path;
5394 	LIST_HEAD(dir_list);
5395 	struct btrfs_dir_list *dir_elem;
5396 	u64 ino = btrfs_ino(start_inode);
5397 	int ret = 0;
5398 
5399 	/*
5400 	 * If we are logging a new name, as part of a link or rename operation,
5401 	 * don't bother logging new dentries, as we just want to log the names
5402 	 * of an inode and that any new parents exist.
5403 	 */
5404 	if (ctx->logging_new_name)
5405 		return 0;
5406 
5407 	path = btrfs_alloc_path();
5408 	if (!path)
5409 		return -ENOMEM;
5410 
5411 	while (true) {
5412 		struct extent_buffer *leaf;
5413 		struct btrfs_key min_key;
5414 		bool continue_curr_inode = true;
5415 		int nritems;
5416 		int i;
5417 
5418 		min_key.objectid = ino;
5419 		min_key.type = BTRFS_DIR_INDEX_KEY;
5420 		min_key.offset = 0;
5421 again:
5422 		btrfs_release_path(path);
5423 		ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5424 		if (ret < 0) {
5425 			break;
5426 		} else if (ret > 0) {
5427 			ret = 0;
5428 			goto next;
5429 		}
5430 
5431 		leaf = path->nodes[0];
5432 		nritems = btrfs_header_nritems(leaf);
5433 		for (i = path->slots[0]; i < nritems; i++) {
5434 			struct btrfs_dir_item *di;
5435 			struct btrfs_key di_key;
5436 			struct inode *di_inode;
5437 			int log_mode = LOG_INODE_EXISTS;
5438 			int type;
5439 
5440 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5441 			if (min_key.objectid != ino ||
5442 			    min_key.type != BTRFS_DIR_INDEX_KEY) {
5443 				continue_curr_inode = false;
5444 				break;
5445 			}
5446 
5447 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5448 			type = btrfs_dir_ftype(leaf, di);
5449 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5450 				continue;
5451 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5452 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5453 				continue;
5454 
5455 			btrfs_release_path(path);
5456 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5457 			if (IS_ERR(di_inode)) {
5458 				ret = PTR_ERR(di_inode);
5459 				goto out;
5460 			}
5461 
5462 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5463 				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5464 				break;
5465 			}
5466 
5467 			ctx->log_new_dentries = false;
5468 			if (type == BTRFS_FT_DIR)
5469 				log_mode = LOG_INODE_ALL;
5470 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5471 					      log_mode, ctx);
5472 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5473 			if (ret)
5474 				goto out;
5475 			if (ctx->log_new_dentries) {
5476 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5477 				if (!dir_elem) {
5478 					ret = -ENOMEM;
5479 					goto out;
5480 				}
5481 				dir_elem->ino = di_key.objectid;
5482 				list_add_tail(&dir_elem->list, &dir_list);
5483 			}
5484 			break;
5485 		}
5486 
5487 		if (continue_curr_inode && min_key.offset < (u64)-1) {
5488 			min_key.offset++;
5489 			goto again;
5490 		}
5491 
5492 next:
5493 		if (list_empty(&dir_list))
5494 			break;
5495 
5496 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5497 		ino = dir_elem->ino;
5498 		list_del(&dir_elem->list);
5499 		kfree(dir_elem);
5500 	}
5501 out:
5502 	btrfs_free_path(path);
5503 	if (ret) {
5504 		struct btrfs_dir_list *next;
5505 
5506 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5507 			kfree(dir_elem);
5508 	}
5509 
5510 	return ret;
5511 }
5512 
5513 struct btrfs_ino_list {
5514 	u64 ino;
5515 	u64 parent;
5516 	struct list_head list;
5517 };
5518 
5519 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5520 {
5521 	struct btrfs_ino_list *curr;
5522 	struct btrfs_ino_list *next;
5523 
5524 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5525 		list_del(&curr->list);
5526 		kfree(curr);
5527 	}
5528 }
5529 
5530 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5531 				    struct btrfs_path *path)
5532 {
5533 	struct btrfs_key key;
5534 	int ret;
5535 
5536 	key.objectid = ino;
5537 	key.type = BTRFS_INODE_ITEM_KEY;
5538 	key.offset = 0;
5539 
5540 	path->search_commit_root = 1;
5541 	path->skip_locking = 1;
5542 
5543 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5544 	if (WARN_ON_ONCE(ret > 0)) {
5545 		/*
5546 		 * We have previously found the inode through the commit root
5547 		 * so this should not happen. If it does, just error out and
5548 		 * fallback to a transaction commit.
5549 		 */
5550 		ret = -ENOENT;
5551 	} else if (ret == 0) {
5552 		struct btrfs_inode_item *item;
5553 
5554 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5555 				      struct btrfs_inode_item);
5556 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5557 			ret = 1;
5558 	}
5559 
5560 	btrfs_release_path(path);
5561 	path->search_commit_root = 0;
5562 	path->skip_locking = 0;
5563 
5564 	return ret;
5565 }
5566 
5567 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5568 				 struct btrfs_root *root,
5569 				 struct btrfs_path *path,
5570 				 u64 ino, u64 parent,
5571 				 struct btrfs_log_ctx *ctx)
5572 {
5573 	struct btrfs_ino_list *ino_elem;
5574 	struct inode *inode;
5575 
5576 	/*
5577 	 * It's rare to have a lot of conflicting inodes, in practice it is not
5578 	 * common to have more than 1 or 2. We don't want to collect too many,
5579 	 * as we could end up logging too many inodes (even if only in
5580 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5581 	 * commits.
5582 	 */
5583 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5584 		return BTRFS_LOG_FORCE_COMMIT;
5585 
5586 	inode = btrfs_iget(root->fs_info->sb, ino, root);
5587 	/*
5588 	 * If the other inode that had a conflicting dir entry was deleted in
5589 	 * the current transaction then we either:
5590 	 *
5591 	 * 1) Log the parent directory (later after adding it to the list) if
5592 	 *    the inode is a directory. This is because it may be a deleted
5593 	 *    subvolume/snapshot or it may be a regular directory that had
5594 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5595 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5596 	 *    during log replay. So we just log the parent, which will result in
5597 	 *    a fallback to a transaction commit if we are dealing with those
5598 	 *    cases (last_unlink_trans will match the current transaction);
5599 	 *
5600 	 * 2) Do nothing if it's not a directory. During log replay we simply
5601 	 *    unlink the conflicting dentry from the parent directory and then
5602 	 *    add the dentry for our inode. Like this we can avoid logging the
5603 	 *    parent directory (and maybe fallback to a transaction commit in
5604 	 *    case it has a last_unlink_trans == trans->transid, due to moving
5605 	 *    some inode from it to some other directory).
5606 	 */
5607 	if (IS_ERR(inode)) {
5608 		int ret = PTR_ERR(inode);
5609 
5610 		if (ret != -ENOENT)
5611 			return ret;
5612 
5613 		ret = conflicting_inode_is_dir(root, ino, path);
5614 		/* Not a directory or we got an error. */
5615 		if (ret <= 0)
5616 			return ret;
5617 
5618 		/* Conflicting inode is a directory, so we'll log its parent. */
5619 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5620 		if (!ino_elem)
5621 			return -ENOMEM;
5622 		ino_elem->ino = ino;
5623 		ino_elem->parent = parent;
5624 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5625 		ctx->num_conflict_inodes++;
5626 
5627 		return 0;
5628 	}
5629 
5630 	/*
5631 	 * If the inode was already logged skip it - otherwise we can hit an
5632 	 * infinite loop. Example:
5633 	 *
5634 	 * From the commit root (previous transaction) we have the following
5635 	 * inodes:
5636 	 *
5637 	 * inode 257 a directory
5638 	 * inode 258 with references "zz" and "zz_link" on inode 257
5639 	 * inode 259 with reference "a" on inode 257
5640 	 *
5641 	 * And in the current (uncommitted) transaction we have:
5642 	 *
5643 	 * inode 257 a directory, unchanged
5644 	 * inode 258 with references "a" and "a2" on inode 257
5645 	 * inode 259 with reference "zz_link" on inode 257
5646 	 * inode 261 with reference "zz" on inode 257
5647 	 *
5648 	 * When logging inode 261 the following infinite loop could
5649 	 * happen if we don't skip already logged inodes:
5650 	 *
5651 	 * - we detect inode 258 as a conflicting inode, with inode 261
5652 	 *   on reference "zz", and log it;
5653 	 *
5654 	 * - we detect inode 259 as a conflicting inode, with inode 258
5655 	 *   on reference "a", and log it;
5656 	 *
5657 	 * - we detect inode 258 as a conflicting inode, with inode 259
5658 	 *   on reference "zz_link", and log it - again! After this we
5659 	 *   repeat the above steps forever.
5660 	 *
5661 	 * Here we can use need_log_inode() because we only need to log the
5662 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5663 	 * so that the log ends up with the new name and without the old name.
5664 	 */
5665 	if (!need_log_inode(trans, BTRFS_I(inode))) {
5666 		btrfs_add_delayed_iput(BTRFS_I(inode));
5667 		return 0;
5668 	}
5669 
5670 	btrfs_add_delayed_iput(BTRFS_I(inode));
5671 
5672 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5673 	if (!ino_elem)
5674 		return -ENOMEM;
5675 	ino_elem->ino = ino;
5676 	ino_elem->parent = parent;
5677 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5678 	ctx->num_conflict_inodes++;
5679 
5680 	return 0;
5681 }
5682 
5683 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5684 				  struct btrfs_root *root,
5685 				  struct btrfs_log_ctx *ctx)
5686 {
5687 	struct btrfs_fs_info *fs_info = root->fs_info;
5688 	int ret = 0;
5689 
5690 	/*
5691 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5692 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5693 	 * calls. This check guarantees we can have only 1 level of recursion.
5694 	 */
5695 	if (ctx->logging_conflict_inodes)
5696 		return 0;
5697 
5698 	ctx->logging_conflict_inodes = true;
5699 
5700 	/*
5701 	 * New conflicting inodes may be found and added to the list while we
5702 	 * are logging a conflicting inode, so keep iterating while the list is
5703 	 * not empty.
5704 	 */
5705 	while (!list_empty(&ctx->conflict_inodes)) {
5706 		struct btrfs_ino_list *curr;
5707 		struct inode *inode;
5708 		u64 ino;
5709 		u64 parent;
5710 
5711 		curr = list_first_entry(&ctx->conflict_inodes,
5712 					struct btrfs_ino_list, list);
5713 		ino = curr->ino;
5714 		parent = curr->parent;
5715 		list_del(&curr->list);
5716 		kfree(curr);
5717 
5718 		inode = btrfs_iget(fs_info->sb, ino, root);
5719 		/*
5720 		 * If the other inode that had a conflicting dir entry was
5721 		 * deleted in the current transaction, we need to log its parent
5722 		 * directory. See the comment at add_conflicting_inode().
5723 		 */
5724 		if (IS_ERR(inode)) {
5725 			ret = PTR_ERR(inode);
5726 			if (ret != -ENOENT)
5727 				break;
5728 
5729 			inode = btrfs_iget(fs_info->sb, parent, root);
5730 			if (IS_ERR(inode)) {
5731 				ret = PTR_ERR(inode);
5732 				break;
5733 			}
5734 
5735 			/*
5736 			 * Always log the directory, we cannot make this
5737 			 * conditional on need_log_inode() because the directory
5738 			 * might have been logged in LOG_INODE_EXISTS mode or
5739 			 * the dir index of the conflicting inode is not in a
5740 			 * dir index key range logged for the directory. So we
5741 			 * must make sure the deletion is recorded.
5742 			 */
5743 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5744 					      LOG_INODE_ALL, ctx);
5745 			btrfs_add_delayed_iput(BTRFS_I(inode));
5746 			if (ret)
5747 				break;
5748 			continue;
5749 		}
5750 
5751 		/*
5752 		 * Here we can use need_log_inode() because we only need to log
5753 		 * the inode in LOG_INODE_EXISTS mode and rename operations
5754 		 * update the log, so that the log ends up with the new name and
5755 		 * without the old name.
5756 		 *
5757 		 * We did this check at add_conflicting_inode(), but here we do
5758 		 * it again because if some other task logged the inode after
5759 		 * that, we can avoid doing it again.
5760 		 */
5761 		if (!need_log_inode(trans, BTRFS_I(inode))) {
5762 			btrfs_add_delayed_iput(BTRFS_I(inode));
5763 			continue;
5764 		}
5765 
5766 		/*
5767 		 * We are safe logging the other inode without acquiring its
5768 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5769 		 * are safe against concurrent renames of the other inode as
5770 		 * well because during a rename we pin the log and update the
5771 		 * log with the new name before we unpin it.
5772 		 */
5773 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5774 		btrfs_add_delayed_iput(BTRFS_I(inode));
5775 		if (ret)
5776 			break;
5777 	}
5778 
5779 	ctx->logging_conflict_inodes = false;
5780 	if (ret)
5781 		free_conflicting_inodes(ctx);
5782 
5783 	return ret;
5784 }
5785 
5786 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5787 				   struct btrfs_inode *inode,
5788 				   struct btrfs_key *min_key,
5789 				   const struct btrfs_key *max_key,
5790 				   struct btrfs_path *path,
5791 				   struct btrfs_path *dst_path,
5792 				   const u64 logged_isize,
5793 				   const int inode_only,
5794 				   struct btrfs_log_ctx *ctx,
5795 				   bool *need_log_inode_item)
5796 {
5797 	const u64 i_size = i_size_read(&inode->vfs_inode);
5798 	struct btrfs_root *root = inode->root;
5799 	int ins_start_slot = 0;
5800 	int ins_nr = 0;
5801 	int ret;
5802 
5803 	while (1) {
5804 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5805 		if (ret < 0)
5806 			return ret;
5807 		if (ret > 0) {
5808 			ret = 0;
5809 			break;
5810 		}
5811 again:
5812 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5813 		if (min_key->objectid != max_key->objectid)
5814 			break;
5815 		if (min_key->type > max_key->type)
5816 			break;
5817 
5818 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5819 			*need_log_inode_item = false;
5820 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5821 			   min_key->offset >= i_size) {
5822 			/*
5823 			 * Extents at and beyond eof are logged with
5824 			 * btrfs_log_prealloc_extents().
5825 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5826 			 * and no keys greater than that, so bail out.
5827 			 */
5828 			break;
5829 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5830 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5831 			   (inode->generation == trans->transid ||
5832 			    ctx->logging_conflict_inodes)) {
5833 			u64 other_ino = 0;
5834 			u64 other_parent = 0;
5835 
5836 			ret = btrfs_check_ref_name_override(path->nodes[0],
5837 					path->slots[0], min_key, inode,
5838 					&other_ino, &other_parent);
5839 			if (ret < 0) {
5840 				return ret;
5841 			} else if (ret > 0 &&
5842 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5843 				if (ins_nr > 0) {
5844 					ins_nr++;
5845 				} else {
5846 					ins_nr = 1;
5847 					ins_start_slot = path->slots[0];
5848 				}
5849 				ret = copy_items(trans, inode, dst_path, path,
5850 						 ins_start_slot, ins_nr,
5851 						 inode_only, logged_isize);
5852 				if (ret < 0)
5853 					return ret;
5854 				ins_nr = 0;
5855 
5856 				btrfs_release_path(path);
5857 				ret = add_conflicting_inode(trans, root, path,
5858 							    other_ino,
5859 							    other_parent, ctx);
5860 				if (ret)
5861 					return ret;
5862 				goto next_key;
5863 			}
5864 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5865 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5866 			if (ins_nr == 0)
5867 				goto next_slot;
5868 			ret = copy_items(trans, inode, dst_path, path,
5869 					 ins_start_slot,
5870 					 ins_nr, inode_only, logged_isize);
5871 			if (ret < 0)
5872 				return ret;
5873 			ins_nr = 0;
5874 			goto next_slot;
5875 		}
5876 
5877 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5878 			ins_nr++;
5879 			goto next_slot;
5880 		} else if (!ins_nr) {
5881 			ins_start_slot = path->slots[0];
5882 			ins_nr = 1;
5883 			goto next_slot;
5884 		}
5885 
5886 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5887 				 ins_nr, inode_only, logged_isize);
5888 		if (ret < 0)
5889 			return ret;
5890 		ins_nr = 1;
5891 		ins_start_slot = path->slots[0];
5892 next_slot:
5893 		path->slots[0]++;
5894 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5895 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5896 					      path->slots[0]);
5897 			goto again;
5898 		}
5899 		if (ins_nr) {
5900 			ret = copy_items(trans, inode, dst_path, path,
5901 					 ins_start_slot, ins_nr, inode_only,
5902 					 logged_isize);
5903 			if (ret < 0)
5904 				return ret;
5905 			ins_nr = 0;
5906 		}
5907 		btrfs_release_path(path);
5908 next_key:
5909 		if (min_key->offset < (u64)-1) {
5910 			min_key->offset++;
5911 		} else if (min_key->type < max_key->type) {
5912 			min_key->type++;
5913 			min_key->offset = 0;
5914 		} else {
5915 			break;
5916 		}
5917 
5918 		/*
5919 		 * We may process many leaves full of items for our inode, so
5920 		 * avoid monopolizing a cpu for too long by rescheduling while
5921 		 * not holding locks on any tree.
5922 		 */
5923 		cond_resched();
5924 	}
5925 	if (ins_nr) {
5926 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5927 				 ins_nr, inode_only, logged_isize);
5928 		if (ret)
5929 			return ret;
5930 	}
5931 
5932 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5933 		/*
5934 		 * Release the path because otherwise we might attempt to double
5935 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5936 		 */
5937 		btrfs_release_path(path);
5938 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5939 	}
5940 
5941 	return ret;
5942 }
5943 
5944 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5945 				      struct btrfs_root *log,
5946 				      struct btrfs_path *path,
5947 				      const struct btrfs_item_batch *batch,
5948 				      const struct btrfs_delayed_item *first_item)
5949 {
5950 	const struct btrfs_delayed_item *curr = first_item;
5951 	int ret;
5952 
5953 	ret = btrfs_insert_empty_items(trans, log, path, batch);
5954 	if (ret)
5955 		return ret;
5956 
5957 	for (int i = 0; i < batch->nr; i++) {
5958 		char *data_ptr;
5959 
5960 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5961 		write_extent_buffer(path->nodes[0], &curr->data,
5962 				    (unsigned long)data_ptr, curr->data_len);
5963 		curr = list_next_entry(curr, log_list);
5964 		path->slots[0]++;
5965 	}
5966 
5967 	btrfs_release_path(path);
5968 
5969 	return 0;
5970 }
5971 
5972 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5973 				       struct btrfs_inode *inode,
5974 				       struct btrfs_path *path,
5975 				       const struct list_head *delayed_ins_list,
5976 				       struct btrfs_log_ctx *ctx)
5977 {
5978 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
5979 	const int max_batch_size = 195;
5980 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
5981 	const u64 ino = btrfs_ino(inode);
5982 	struct btrfs_root *log = inode->root->log_root;
5983 	struct btrfs_item_batch batch = {
5984 		.nr = 0,
5985 		.total_data_size = 0,
5986 	};
5987 	const struct btrfs_delayed_item *first = NULL;
5988 	const struct btrfs_delayed_item *curr;
5989 	char *ins_data;
5990 	struct btrfs_key *ins_keys;
5991 	u32 *ins_sizes;
5992 	u64 curr_batch_size = 0;
5993 	int batch_idx = 0;
5994 	int ret;
5995 
5996 	/* We are adding dir index items to the log tree. */
5997 	lockdep_assert_held(&inode->log_mutex);
5998 
5999 	/*
6000 	 * We collect delayed items before copying index keys from the subvolume
6001 	 * to the log tree. However just after we collected them, they may have
6002 	 * been flushed (all of them or just some of them), and therefore we
6003 	 * could have copied them from the subvolume tree to the log tree.
6004 	 * So find the first delayed item that was not yet logged (they are
6005 	 * sorted by index number).
6006 	 */
6007 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6008 		if (curr->index > inode->last_dir_index_offset) {
6009 			first = curr;
6010 			break;
6011 		}
6012 	}
6013 
6014 	/* Empty list or all delayed items were already logged. */
6015 	if (!first)
6016 		return 0;
6017 
6018 	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6019 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6020 	if (!ins_data)
6021 		return -ENOMEM;
6022 	ins_sizes = (u32 *)ins_data;
6023 	batch.data_sizes = ins_sizes;
6024 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6025 	batch.keys = ins_keys;
6026 
6027 	curr = first;
6028 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6029 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6030 
6031 		if (curr_batch_size + curr_size > leaf_data_size ||
6032 		    batch.nr == max_batch_size) {
6033 			ret = insert_delayed_items_batch(trans, log, path,
6034 							 &batch, first);
6035 			if (ret)
6036 				goto out;
6037 			batch_idx = 0;
6038 			batch.nr = 0;
6039 			batch.total_data_size = 0;
6040 			curr_batch_size = 0;
6041 			first = curr;
6042 		}
6043 
6044 		ins_sizes[batch_idx] = curr->data_len;
6045 		ins_keys[batch_idx].objectid = ino;
6046 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6047 		ins_keys[batch_idx].offset = curr->index;
6048 		curr_batch_size += curr_size;
6049 		batch.total_data_size += curr->data_len;
6050 		batch.nr++;
6051 		batch_idx++;
6052 		curr = list_next_entry(curr, log_list);
6053 	}
6054 
6055 	ASSERT(batch.nr >= 1);
6056 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6057 
6058 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6059 			       log_list);
6060 	inode->last_dir_index_offset = curr->index;
6061 out:
6062 	kfree(ins_data);
6063 
6064 	return ret;
6065 }
6066 
6067 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6068 				      struct btrfs_inode *inode,
6069 				      struct btrfs_path *path,
6070 				      const struct list_head *delayed_del_list,
6071 				      struct btrfs_log_ctx *ctx)
6072 {
6073 	const u64 ino = btrfs_ino(inode);
6074 	const struct btrfs_delayed_item *curr;
6075 
6076 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6077 				log_list);
6078 
6079 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6080 		u64 first_dir_index = curr->index;
6081 		u64 last_dir_index;
6082 		const struct btrfs_delayed_item *next;
6083 		int ret;
6084 
6085 		/*
6086 		 * Find a range of consecutive dir index items to delete. Like
6087 		 * this we log a single dir range item spanning several contiguous
6088 		 * dir items instead of logging one range item per dir index item.
6089 		 */
6090 		next = list_next_entry(curr, log_list);
6091 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6092 			if (next->index != curr->index + 1)
6093 				break;
6094 			curr = next;
6095 			next = list_next_entry(next, log_list);
6096 		}
6097 
6098 		last_dir_index = curr->index;
6099 		ASSERT(last_dir_index >= first_dir_index);
6100 
6101 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6102 					 ino, first_dir_index, last_dir_index);
6103 		if (ret)
6104 			return ret;
6105 		curr = list_next_entry(curr, log_list);
6106 	}
6107 
6108 	return 0;
6109 }
6110 
6111 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6112 					struct btrfs_inode *inode,
6113 					struct btrfs_path *path,
6114 					struct btrfs_log_ctx *ctx,
6115 					const struct list_head *delayed_del_list,
6116 					const struct btrfs_delayed_item *first,
6117 					const struct btrfs_delayed_item **last_ret)
6118 {
6119 	const struct btrfs_delayed_item *next;
6120 	struct extent_buffer *leaf = path->nodes[0];
6121 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6122 	int slot = path->slots[0] + 1;
6123 	const u64 ino = btrfs_ino(inode);
6124 
6125 	next = list_next_entry(first, log_list);
6126 
6127 	while (slot < last_slot &&
6128 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6129 		struct btrfs_key key;
6130 
6131 		btrfs_item_key_to_cpu(leaf, &key, slot);
6132 		if (key.objectid != ino ||
6133 		    key.type != BTRFS_DIR_INDEX_KEY ||
6134 		    key.offset != next->index)
6135 			break;
6136 
6137 		slot++;
6138 		*last_ret = next;
6139 		next = list_next_entry(next, log_list);
6140 	}
6141 
6142 	return btrfs_del_items(trans, inode->root->log_root, path,
6143 			       path->slots[0], slot - path->slots[0]);
6144 }
6145 
6146 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6147 					     struct btrfs_inode *inode,
6148 					     struct btrfs_path *path,
6149 					     const struct list_head *delayed_del_list,
6150 					     struct btrfs_log_ctx *ctx)
6151 {
6152 	struct btrfs_root *log = inode->root->log_root;
6153 	const struct btrfs_delayed_item *curr;
6154 	u64 last_range_start;
6155 	u64 last_range_end = 0;
6156 	struct btrfs_key key;
6157 
6158 	key.objectid = btrfs_ino(inode);
6159 	key.type = BTRFS_DIR_INDEX_KEY;
6160 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6161 				log_list);
6162 
6163 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6164 		const struct btrfs_delayed_item *last = curr;
6165 		u64 first_dir_index = curr->index;
6166 		u64 last_dir_index;
6167 		bool deleted_items = false;
6168 		int ret;
6169 
6170 		key.offset = curr->index;
6171 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6172 		if (ret < 0) {
6173 			return ret;
6174 		} else if (ret == 0) {
6175 			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6176 							   delayed_del_list, curr,
6177 							   &last);
6178 			if (ret)
6179 				return ret;
6180 			deleted_items = true;
6181 		}
6182 
6183 		btrfs_release_path(path);
6184 
6185 		/*
6186 		 * If we deleted items from the leaf, it means we have a range
6187 		 * item logging their range, so no need to add one or update an
6188 		 * existing one. Otherwise we have to log a dir range item.
6189 		 */
6190 		if (deleted_items)
6191 			goto next_batch;
6192 
6193 		last_dir_index = last->index;
6194 		ASSERT(last_dir_index >= first_dir_index);
6195 		/*
6196 		 * If this range starts right after where the previous one ends,
6197 		 * then we want to reuse the previous range item and change its
6198 		 * end offset to the end of this range. This is just to minimize
6199 		 * leaf space usage, by avoiding adding a new range item.
6200 		 */
6201 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6202 			first_dir_index = last_range_start;
6203 
6204 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6205 					 first_dir_index, last_dir_index);
6206 		if (ret)
6207 			return ret;
6208 
6209 		last_range_start = first_dir_index;
6210 		last_range_end = last_dir_index;
6211 next_batch:
6212 		curr = list_next_entry(last, log_list);
6213 	}
6214 
6215 	return 0;
6216 }
6217 
6218 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6219 				      struct btrfs_inode *inode,
6220 				      struct btrfs_path *path,
6221 				      const struct list_head *delayed_del_list,
6222 				      struct btrfs_log_ctx *ctx)
6223 {
6224 	/*
6225 	 * We are deleting dir index items from the log tree or adding range
6226 	 * items to it.
6227 	 */
6228 	lockdep_assert_held(&inode->log_mutex);
6229 
6230 	if (list_empty(delayed_del_list))
6231 		return 0;
6232 
6233 	if (ctx->logged_before)
6234 		return log_delayed_deletions_incremental(trans, inode, path,
6235 							 delayed_del_list, ctx);
6236 
6237 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6238 					  ctx);
6239 }
6240 
6241 /*
6242  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6243  * items instead of the subvolume tree.
6244  */
6245 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6246 				    struct btrfs_inode *inode,
6247 				    const struct list_head *delayed_ins_list,
6248 				    struct btrfs_log_ctx *ctx)
6249 {
6250 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6251 	struct btrfs_fs_info *fs_info = trans->fs_info;
6252 	struct btrfs_delayed_item *item;
6253 	int ret = 0;
6254 
6255 	/*
6256 	 * No need for the log mutex, plus to avoid potential deadlocks or
6257 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6258 	 * mutexes.
6259 	 */
6260 	lockdep_assert_not_held(&inode->log_mutex);
6261 
6262 	ASSERT(!ctx->logging_new_delayed_dentries);
6263 	ctx->logging_new_delayed_dentries = true;
6264 
6265 	list_for_each_entry(item, delayed_ins_list, log_list) {
6266 		struct btrfs_dir_item *dir_item;
6267 		struct inode *di_inode;
6268 		struct btrfs_key key;
6269 		int log_mode = LOG_INODE_EXISTS;
6270 
6271 		dir_item = (struct btrfs_dir_item *)item->data;
6272 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6273 
6274 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6275 			continue;
6276 
6277 		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6278 		if (IS_ERR(di_inode)) {
6279 			ret = PTR_ERR(di_inode);
6280 			break;
6281 		}
6282 
6283 		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6284 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6285 			continue;
6286 		}
6287 
6288 		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6289 			log_mode = LOG_INODE_ALL;
6290 
6291 		ctx->log_new_dentries = false;
6292 		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6293 
6294 		if (!ret && ctx->log_new_dentries)
6295 			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6296 
6297 		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6298 
6299 		if (ret)
6300 			break;
6301 	}
6302 
6303 	ctx->log_new_dentries = orig_log_new_dentries;
6304 	ctx->logging_new_delayed_dentries = false;
6305 
6306 	return ret;
6307 }
6308 
6309 /* log a single inode in the tree log.
6310  * At least one parent directory for this inode must exist in the tree
6311  * or be logged already.
6312  *
6313  * Any items from this inode changed by the current transaction are copied
6314  * to the log tree.  An extra reference is taken on any extents in this
6315  * file, allowing us to avoid a whole pile of corner cases around logging
6316  * blocks that have been removed from the tree.
6317  *
6318  * See LOG_INODE_ALL and related defines for a description of what inode_only
6319  * does.
6320  *
6321  * This handles both files and directories.
6322  */
6323 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6324 			   struct btrfs_inode *inode,
6325 			   int inode_only,
6326 			   struct btrfs_log_ctx *ctx)
6327 {
6328 	struct btrfs_path *path;
6329 	struct btrfs_path *dst_path;
6330 	struct btrfs_key min_key;
6331 	struct btrfs_key max_key;
6332 	struct btrfs_root *log = inode->root->log_root;
6333 	int ret;
6334 	bool fast_search = false;
6335 	u64 ino = btrfs_ino(inode);
6336 	struct extent_map_tree *em_tree = &inode->extent_tree;
6337 	u64 logged_isize = 0;
6338 	bool need_log_inode_item = true;
6339 	bool xattrs_logged = false;
6340 	bool inode_item_dropped = true;
6341 	bool full_dir_logging = false;
6342 	LIST_HEAD(delayed_ins_list);
6343 	LIST_HEAD(delayed_del_list);
6344 
6345 	path = btrfs_alloc_path();
6346 	if (!path)
6347 		return -ENOMEM;
6348 	dst_path = btrfs_alloc_path();
6349 	if (!dst_path) {
6350 		btrfs_free_path(path);
6351 		return -ENOMEM;
6352 	}
6353 
6354 	min_key.objectid = ino;
6355 	min_key.type = BTRFS_INODE_ITEM_KEY;
6356 	min_key.offset = 0;
6357 
6358 	max_key.objectid = ino;
6359 
6360 
6361 	/* today the code can only do partial logging of directories */
6362 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6363 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6364 		       &inode->runtime_flags) &&
6365 	     inode_only >= LOG_INODE_EXISTS))
6366 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6367 	else
6368 		max_key.type = (u8)-1;
6369 	max_key.offset = (u64)-1;
6370 
6371 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6372 		full_dir_logging = true;
6373 
6374 	/*
6375 	 * If we are logging a directory while we are logging dentries of the
6376 	 * delayed items of some other inode, then we need to flush the delayed
6377 	 * items of this directory and not log the delayed items directly. This
6378 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6379 	 * by having something like this:
6380 	 *
6381 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6382 	 *     $ xfs_io -c "fsync" a
6383 	 *
6384 	 * Where all directories in the path did not exist before and are
6385 	 * created in the current transaction.
6386 	 * So in such a case we directly log the delayed items of the main
6387 	 * directory ("a") without flushing them first, while for each of its
6388 	 * subdirectories we flush their delayed items before logging them.
6389 	 * This prevents a potential unbounded recursion like this:
6390 	 *
6391 	 * btrfs_log_inode()
6392 	 *   log_new_delayed_dentries()
6393 	 *      btrfs_log_inode()
6394 	 *        log_new_delayed_dentries()
6395 	 *          btrfs_log_inode()
6396 	 *            log_new_delayed_dentries()
6397 	 *              (...)
6398 	 *
6399 	 * We have thresholds for the maximum number of delayed items to have in
6400 	 * memory, and once they are hit, the items are flushed asynchronously.
6401 	 * However the limit is quite high, so lets prevent deep levels of
6402 	 * recursion to happen by limiting the maximum depth to be 1.
6403 	 */
6404 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6405 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6406 		if (ret)
6407 			goto out;
6408 	}
6409 
6410 	mutex_lock(&inode->log_mutex);
6411 
6412 	/*
6413 	 * For symlinks, we must always log their content, which is stored in an
6414 	 * inline extent, otherwise we could end up with an empty symlink after
6415 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6416 	 * one attempts to create an empty symlink).
6417 	 * We don't need to worry about flushing delalloc, because when we create
6418 	 * the inline extent when the symlink is created (we never have delalloc
6419 	 * for symlinks).
6420 	 */
6421 	if (S_ISLNK(inode->vfs_inode.i_mode))
6422 		inode_only = LOG_INODE_ALL;
6423 
6424 	/*
6425 	 * Before logging the inode item, cache the value returned by
6426 	 * inode_logged(), because after that we have the need to figure out if
6427 	 * the inode was previously logged in this transaction.
6428 	 */
6429 	ret = inode_logged(trans, inode, path);
6430 	if (ret < 0)
6431 		goto out_unlock;
6432 	ctx->logged_before = (ret == 1);
6433 	ret = 0;
6434 
6435 	/*
6436 	 * This is for cases where logging a directory could result in losing a
6437 	 * a file after replaying the log. For example, if we move a file from a
6438 	 * directory A to a directory B, then fsync directory A, we have no way
6439 	 * to known the file was moved from A to B, so logging just A would
6440 	 * result in losing the file after a log replay.
6441 	 */
6442 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6443 		btrfs_set_log_full_commit(trans);
6444 		ret = BTRFS_LOG_FORCE_COMMIT;
6445 		goto out_unlock;
6446 	}
6447 
6448 	/*
6449 	 * a brute force approach to making sure we get the most uptodate
6450 	 * copies of everything.
6451 	 */
6452 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6453 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6454 		if (ctx->logged_before)
6455 			ret = drop_inode_items(trans, log, path, inode,
6456 					       BTRFS_XATTR_ITEM_KEY);
6457 	} else {
6458 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6459 			/*
6460 			 * Make sure the new inode item we write to the log has
6461 			 * the same isize as the current one (if it exists).
6462 			 * This is necessary to prevent data loss after log
6463 			 * replay, and also to prevent doing a wrong expanding
6464 			 * truncate - for e.g. create file, write 4K into offset
6465 			 * 0, fsync, write 4K into offset 4096, add hard link,
6466 			 * fsync some other file (to sync log), power fail - if
6467 			 * we use the inode's current i_size, after log replay
6468 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6469 			 * (zeroes), as if an expanding truncate happened,
6470 			 * instead of getting a file of 4Kb only.
6471 			 */
6472 			ret = logged_inode_size(log, inode, path, &logged_isize);
6473 			if (ret)
6474 				goto out_unlock;
6475 		}
6476 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6477 			     &inode->runtime_flags)) {
6478 			if (inode_only == LOG_INODE_EXISTS) {
6479 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6480 				if (ctx->logged_before)
6481 					ret = drop_inode_items(trans, log, path,
6482 							       inode, max_key.type);
6483 			} else {
6484 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6485 					  &inode->runtime_flags);
6486 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6487 					  &inode->runtime_flags);
6488 				if (ctx->logged_before)
6489 					ret = truncate_inode_items(trans, log,
6490 								   inode, 0, 0);
6491 			}
6492 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6493 					      &inode->runtime_flags) ||
6494 			   inode_only == LOG_INODE_EXISTS) {
6495 			if (inode_only == LOG_INODE_ALL)
6496 				fast_search = true;
6497 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6498 			if (ctx->logged_before)
6499 				ret = drop_inode_items(trans, log, path, inode,
6500 						       max_key.type);
6501 		} else {
6502 			if (inode_only == LOG_INODE_ALL)
6503 				fast_search = true;
6504 			inode_item_dropped = false;
6505 			goto log_extents;
6506 		}
6507 
6508 	}
6509 	if (ret)
6510 		goto out_unlock;
6511 
6512 	/*
6513 	 * If we are logging a directory in full mode, collect the delayed items
6514 	 * before iterating the subvolume tree, so that we don't miss any new
6515 	 * dir index items in case they get flushed while or right after we are
6516 	 * iterating the subvolume tree.
6517 	 */
6518 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6519 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6520 					    &delayed_del_list);
6521 
6522 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6523 				      path, dst_path, logged_isize,
6524 				      inode_only, ctx,
6525 				      &need_log_inode_item);
6526 	if (ret)
6527 		goto out_unlock;
6528 
6529 	btrfs_release_path(path);
6530 	btrfs_release_path(dst_path);
6531 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6532 	if (ret)
6533 		goto out_unlock;
6534 	xattrs_logged = true;
6535 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6536 		btrfs_release_path(path);
6537 		btrfs_release_path(dst_path);
6538 		ret = btrfs_log_holes(trans, inode, path);
6539 		if (ret)
6540 			goto out_unlock;
6541 	}
6542 log_extents:
6543 	btrfs_release_path(path);
6544 	btrfs_release_path(dst_path);
6545 	if (need_log_inode_item) {
6546 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6547 		if (ret)
6548 			goto out_unlock;
6549 		/*
6550 		 * If we are doing a fast fsync and the inode was logged before
6551 		 * in this transaction, we don't need to log the xattrs because
6552 		 * they were logged before. If xattrs were added, changed or
6553 		 * deleted since the last time we logged the inode, then we have
6554 		 * already logged them because the inode had the runtime flag
6555 		 * BTRFS_INODE_COPY_EVERYTHING set.
6556 		 */
6557 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6558 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6559 			if (ret)
6560 				goto out_unlock;
6561 			btrfs_release_path(path);
6562 		}
6563 	}
6564 	if (fast_search) {
6565 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6566 		if (ret)
6567 			goto out_unlock;
6568 	} else if (inode_only == LOG_INODE_ALL) {
6569 		struct extent_map *em, *n;
6570 
6571 		write_lock(&em_tree->lock);
6572 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6573 			list_del_init(&em->list);
6574 		write_unlock(&em_tree->lock);
6575 	}
6576 
6577 	if (full_dir_logging) {
6578 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6579 		if (ret)
6580 			goto out_unlock;
6581 		ret = log_delayed_insertion_items(trans, inode, path,
6582 						  &delayed_ins_list, ctx);
6583 		if (ret)
6584 			goto out_unlock;
6585 		ret = log_delayed_deletion_items(trans, inode, path,
6586 						 &delayed_del_list, ctx);
6587 		if (ret)
6588 			goto out_unlock;
6589 	}
6590 
6591 	spin_lock(&inode->lock);
6592 	inode->logged_trans = trans->transid;
6593 	/*
6594 	 * Don't update last_log_commit if we logged that an inode exists.
6595 	 * We do this for three reasons:
6596 	 *
6597 	 * 1) We might have had buffered writes to this inode that were
6598 	 *    flushed and had their ordered extents completed in this
6599 	 *    transaction, but we did not previously log the inode with
6600 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6601 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6602 	 *    happened. We must make sure that if an explicit fsync against
6603 	 *    the inode is performed later, it logs the new extents, an
6604 	 *    updated inode item, etc, and syncs the log. The same logic
6605 	 *    applies to direct IO writes instead of buffered writes.
6606 	 *
6607 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6608 	 *    is logged with an i_size of 0 or whatever value was logged
6609 	 *    before. If later the i_size of the inode is increased by a
6610 	 *    truncate operation, the log is synced through an fsync of
6611 	 *    some other inode and then finally an explicit fsync against
6612 	 *    this inode is made, we must make sure this fsync logs the
6613 	 *    inode with the new i_size, the hole between old i_size and
6614 	 *    the new i_size, and syncs the log.
6615 	 *
6616 	 * 3) If we are logging that an ancestor inode exists as part of
6617 	 *    logging a new name from a link or rename operation, don't update
6618 	 *    its last_log_commit - otherwise if an explicit fsync is made
6619 	 *    against an ancestor, the fsync considers the inode in the log
6620 	 *    and doesn't sync the log, resulting in the ancestor missing after
6621 	 *    a power failure unless the log was synced as part of an fsync
6622 	 *    against any other unrelated inode.
6623 	 */
6624 	if (inode_only != LOG_INODE_EXISTS)
6625 		inode->last_log_commit = inode->last_sub_trans;
6626 	spin_unlock(&inode->lock);
6627 
6628 	/*
6629 	 * Reset the last_reflink_trans so that the next fsync does not need to
6630 	 * go through the slower path when logging extents and their checksums.
6631 	 */
6632 	if (inode_only == LOG_INODE_ALL)
6633 		inode->last_reflink_trans = 0;
6634 
6635 out_unlock:
6636 	mutex_unlock(&inode->log_mutex);
6637 out:
6638 	btrfs_free_path(path);
6639 	btrfs_free_path(dst_path);
6640 
6641 	if (ret)
6642 		free_conflicting_inodes(ctx);
6643 	else
6644 		ret = log_conflicting_inodes(trans, inode->root, ctx);
6645 
6646 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6647 		if (!ret)
6648 			ret = log_new_delayed_dentries(trans, inode,
6649 						       &delayed_ins_list, ctx);
6650 
6651 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6652 					    &delayed_del_list);
6653 	}
6654 
6655 	return ret;
6656 }
6657 
6658 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6659 				 struct btrfs_inode *inode,
6660 				 struct btrfs_log_ctx *ctx)
6661 {
6662 	struct btrfs_fs_info *fs_info = trans->fs_info;
6663 	int ret;
6664 	struct btrfs_path *path;
6665 	struct btrfs_key key;
6666 	struct btrfs_root *root = inode->root;
6667 	const u64 ino = btrfs_ino(inode);
6668 
6669 	path = btrfs_alloc_path();
6670 	if (!path)
6671 		return -ENOMEM;
6672 	path->skip_locking = 1;
6673 	path->search_commit_root = 1;
6674 
6675 	key.objectid = ino;
6676 	key.type = BTRFS_INODE_REF_KEY;
6677 	key.offset = 0;
6678 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6679 	if (ret < 0)
6680 		goto out;
6681 
6682 	while (true) {
6683 		struct extent_buffer *leaf = path->nodes[0];
6684 		int slot = path->slots[0];
6685 		u32 cur_offset = 0;
6686 		u32 item_size;
6687 		unsigned long ptr;
6688 
6689 		if (slot >= btrfs_header_nritems(leaf)) {
6690 			ret = btrfs_next_leaf(root, path);
6691 			if (ret < 0)
6692 				goto out;
6693 			else if (ret > 0)
6694 				break;
6695 			continue;
6696 		}
6697 
6698 		btrfs_item_key_to_cpu(leaf, &key, slot);
6699 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6700 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6701 			break;
6702 
6703 		item_size = btrfs_item_size(leaf, slot);
6704 		ptr = btrfs_item_ptr_offset(leaf, slot);
6705 		while (cur_offset < item_size) {
6706 			struct btrfs_key inode_key;
6707 			struct inode *dir_inode;
6708 
6709 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6710 			inode_key.offset = 0;
6711 
6712 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6713 				struct btrfs_inode_extref *extref;
6714 
6715 				extref = (struct btrfs_inode_extref *)
6716 					(ptr + cur_offset);
6717 				inode_key.objectid = btrfs_inode_extref_parent(
6718 					leaf, extref);
6719 				cur_offset += sizeof(*extref);
6720 				cur_offset += btrfs_inode_extref_name_len(leaf,
6721 					extref);
6722 			} else {
6723 				inode_key.objectid = key.offset;
6724 				cur_offset = item_size;
6725 			}
6726 
6727 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6728 					       root);
6729 			/*
6730 			 * If the parent inode was deleted, return an error to
6731 			 * fallback to a transaction commit. This is to prevent
6732 			 * getting an inode that was moved from one parent A to
6733 			 * a parent B, got its former parent A deleted and then
6734 			 * it got fsync'ed, from existing at both parents after
6735 			 * a log replay (and the old parent still existing).
6736 			 * Example:
6737 			 *
6738 			 * mkdir /mnt/A
6739 			 * mkdir /mnt/B
6740 			 * touch /mnt/B/bar
6741 			 * sync
6742 			 * mv /mnt/B/bar /mnt/A/bar
6743 			 * mv -T /mnt/A /mnt/B
6744 			 * fsync /mnt/B/bar
6745 			 * <power fail>
6746 			 *
6747 			 * If we ignore the old parent B which got deleted,
6748 			 * after a log replay we would have file bar linked
6749 			 * at both parents and the old parent B would still
6750 			 * exist.
6751 			 */
6752 			if (IS_ERR(dir_inode)) {
6753 				ret = PTR_ERR(dir_inode);
6754 				goto out;
6755 			}
6756 
6757 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6758 				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6759 				continue;
6760 			}
6761 
6762 			ctx->log_new_dentries = false;
6763 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6764 					      LOG_INODE_ALL, ctx);
6765 			if (!ret && ctx->log_new_dentries)
6766 				ret = log_new_dir_dentries(trans,
6767 						   BTRFS_I(dir_inode), ctx);
6768 			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6769 			if (ret)
6770 				goto out;
6771 		}
6772 		path->slots[0]++;
6773 	}
6774 	ret = 0;
6775 out:
6776 	btrfs_free_path(path);
6777 	return ret;
6778 }
6779 
6780 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6781 			     struct btrfs_root *root,
6782 			     struct btrfs_path *path,
6783 			     struct btrfs_log_ctx *ctx)
6784 {
6785 	struct btrfs_key found_key;
6786 
6787 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6788 
6789 	while (true) {
6790 		struct btrfs_fs_info *fs_info = root->fs_info;
6791 		struct extent_buffer *leaf = path->nodes[0];
6792 		int slot = path->slots[0];
6793 		struct btrfs_key search_key;
6794 		struct inode *inode;
6795 		u64 ino;
6796 		int ret = 0;
6797 
6798 		btrfs_release_path(path);
6799 
6800 		ino = found_key.offset;
6801 
6802 		search_key.objectid = found_key.offset;
6803 		search_key.type = BTRFS_INODE_ITEM_KEY;
6804 		search_key.offset = 0;
6805 		inode = btrfs_iget(fs_info->sb, ino, root);
6806 		if (IS_ERR(inode))
6807 			return PTR_ERR(inode);
6808 
6809 		if (BTRFS_I(inode)->generation >= trans->transid &&
6810 		    need_log_inode(trans, BTRFS_I(inode)))
6811 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6812 					      LOG_INODE_EXISTS, ctx);
6813 		btrfs_add_delayed_iput(BTRFS_I(inode));
6814 		if (ret)
6815 			return ret;
6816 
6817 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6818 			break;
6819 
6820 		search_key.type = BTRFS_INODE_REF_KEY;
6821 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6822 		if (ret < 0)
6823 			return ret;
6824 
6825 		leaf = path->nodes[0];
6826 		slot = path->slots[0];
6827 		if (slot >= btrfs_header_nritems(leaf)) {
6828 			ret = btrfs_next_leaf(root, path);
6829 			if (ret < 0)
6830 				return ret;
6831 			else if (ret > 0)
6832 				return -ENOENT;
6833 			leaf = path->nodes[0];
6834 			slot = path->slots[0];
6835 		}
6836 
6837 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6838 		if (found_key.objectid != search_key.objectid ||
6839 		    found_key.type != BTRFS_INODE_REF_KEY)
6840 			return -ENOENT;
6841 	}
6842 	return 0;
6843 }
6844 
6845 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6846 				  struct btrfs_inode *inode,
6847 				  struct dentry *parent,
6848 				  struct btrfs_log_ctx *ctx)
6849 {
6850 	struct btrfs_root *root = inode->root;
6851 	struct dentry *old_parent = NULL;
6852 	struct super_block *sb = inode->vfs_inode.i_sb;
6853 	int ret = 0;
6854 
6855 	while (true) {
6856 		if (!parent || d_really_is_negative(parent) ||
6857 		    sb != parent->d_sb)
6858 			break;
6859 
6860 		inode = BTRFS_I(d_inode(parent));
6861 		if (root != inode->root)
6862 			break;
6863 
6864 		if (inode->generation >= trans->transid &&
6865 		    need_log_inode(trans, inode)) {
6866 			ret = btrfs_log_inode(trans, inode,
6867 					      LOG_INODE_EXISTS, ctx);
6868 			if (ret)
6869 				break;
6870 		}
6871 		if (IS_ROOT(parent))
6872 			break;
6873 
6874 		parent = dget_parent(parent);
6875 		dput(old_parent);
6876 		old_parent = parent;
6877 	}
6878 	dput(old_parent);
6879 
6880 	return ret;
6881 }
6882 
6883 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6884 				 struct btrfs_inode *inode,
6885 				 struct dentry *parent,
6886 				 struct btrfs_log_ctx *ctx)
6887 {
6888 	struct btrfs_root *root = inode->root;
6889 	const u64 ino = btrfs_ino(inode);
6890 	struct btrfs_path *path;
6891 	struct btrfs_key search_key;
6892 	int ret;
6893 
6894 	/*
6895 	 * For a single hard link case, go through a fast path that does not
6896 	 * need to iterate the fs/subvolume tree.
6897 	 */
6898 	if (inode->vfs_inode.i_nlink < 2)
6899 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6900 
6901 	path = btrfs_alloc_path();
6902 	if (!path)
6903 		return -ENOMEM;
6904 
6905 	search_key.objectid = ino;
6906 	search_key.type = BTRFS_INODE_REF_KEY;
6907 	search_key.offset = 0;
6908 again:
6909 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6910 	if (ret < 0)
6911 		goto out;
6912 	if (ret == 0)
6913 		path->slots[0]++;
6914 
6915 	while (true) {
6916 		struct extent_buffer *leaf = path->nodes[0];
6917 		int slot = path->slots[0];
6918 		struct btrfs_key found_key;
6919 
6920 		if (slot >= btrfs_header_nritems(leaf)) {
6921 			ret = btrfs_next_leaf(root, path);
6922 			if (ret < 0)
6923 				goto out;
6924 			else if (ret > 0)
6925 				break;
6926 			continue;
6927 		}
6928 
6929 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6930 		if (found_key.objectid != ino ||
6931 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6932 			break;
6933 
6934 		/*
6935 		 * Don't deal with extended references because they are rare
6936 		 * cases and too complex to deal with (we would need to keep
6937 		 * track of which subitem we are processing for each item in
6938 		 * this loop, etc). So just return some error to fallback to
6939 		 * a transaction commit.
6940 		 */
6941 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6942 			ret = -EMLINK;
6943 			goto out;
6944 		}
6945 
6946 		/*
6947 		 * Logging ancestors needs to do more searches on the fs/subvol
6948 		 * tree, so it releases the path as needed to avoid deadlocks.
6949 		 * Keep track of the last inode ref key and resume from that key
6950 		 * after logging all new ancestors for the current hard link.
6951 		 */
6952 		memcpy(&search_key, &found_key, sizeof(search_key));
6953 
6954 		ret = log_new_ancestors(trans, root, path, ctx);
6955 		if (ret)
6956 			goto out;
6957 		btrfs_release_path(path);
6958 		goto again;
6959 	}
6960 	ret = 0;
6961 out:
6962 	btrfs_free_path(path);
6963 	return ret;
6964 }
6965 
6966 /*
6967  * helper function around btrfs_log_inode to make sure newly created
6968  * parent directories also end up in the log.  A minimal inode and backref
6969  * only logging is done of any parent directories that are older than
6970  * the last committed transaction
6971  */
6972 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6973 				  struct btrfs_inode *inode,
6974 				  struct dentry *parent,
6975 				  int inode_only,
6976 				  struct btrfs_log_ctx *ctx)
6977 {
6978 	struct btrfs_root *root = inode->root;
6979 	struct btrfs_fs_info *fs_info = root->fs_info;
6980 	int ret = 0;
6981 	bool log_dentries = false;
6982 
6983 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6984 		ret = BTRFS_LOG_FORCE_COMMIT;
6985 		goto end_no_trans;
6986 	}
6987 
6988 	if (btrfs_root_refs(&root->root_item) == 0) {
6989 		ret = BTRFS_LOG_FORCE_COMMIT;
6990 		goto end_no_trans;
6991 	}
6992 
6993 	/*
6994 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6995 	 * (since logging them is pointless, a link count of 0 means they
6996 	 * will never be accessible).
6997 	 */
6998 	if ((btrfs_inode_in_log(inode, trans->transid) &&
6999 	     list_empty(&ctx->ordered_extents)) ||
7000 	    inode->vfs_inode.i_nlink == 0) {
7001 		ret = BTRFS_NO_LOG_SYNC;
7002 		goto end_no_trans;
7003 	}
7004 
7005 	ret = start_log_trans(trans, root, ctx);
7006 	if (ret)
7007 		goto end_no_trans;
7008 
7009 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7010 	if (ret)
7011 		goto end_trans;
7012 
7013 	/*
7014 	 * for regular files, if its inode is already on disk, we don't
7015 	 * have to worry about the parents at all.  This is because
7016 	 * we can use the last_unlink_trans field to record renames
7017 	 * and other fun in this file.
7018 	 */
7019 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7020 	    inode->generation < trans->transid &&
7021 	    inode->last_unlink_trans < trans->transid) {
7022 		ret = 0;
7023 		goto end_trans;
7024 	}
7025 
7026 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7027 		log_dentries = true;
7028 
7029 	/*
7030 	 * On unlink we must make sure all our current and old parent directory
7031 	 * inodes are fully logged. This is to prevent leaving dangling
7032 	 * directory index entries in directories that were our parents but are
7033 	 * not anymore. Not doing this results in old parent directory being
7034 	 * impossible to delete after log replay (rmdir will always fail with
7035 	 * error -ENOTEMPTY).
7036 	 *
7037 	 * Example 1:
7038 	 *
7039 	 * mkdir testdir
7040 	 * touch testdir/foo
7041 	 * ln testdir/foo testdir/bar
7042 	 * sync
7043 	 * unlink testdir/bar
7044 	 * xfs_io -c fsync testdir/foo
7045 	 * <power failure>
7046 	 * mount fs, triggers log replay
7047 	 *
7048 	 * If we don't log the parent directory (testdir), after log replay the
7049 	 * directory still has an entry pointing to the file inode using the bar
7050 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7051 	 * the file inode has a link count of 1.
7052 	 *
7053 	 * Example 2:
7054 	 *
7055 	 * mkdir testdir
7056 	 * touch foo
7057 	 * ln foo testdir/foo2
7058 	 * ln foo testdir/foo3
7059 	 * sync
7060 	 * unlink testdir/foo3
7061 	 * xfs_io -c fsync foo
7062 	 * <power failure>
7063 	 * mount fs, triggers log replay
7064 	 *
7065 	 * Similar as the first example, after log replay the parent directory
7066 	 * testdir still has an entry pointing to the inode file with name foo3
7067 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7068 	 * and has a link count of 2.
7069 	 */
7070 	if (inode->last_unlink_trans >= trans->transid) {
7071 		ret = btrfs_log_all_parents(trans, inode, ctx);
7072 		if (ret)
7073 			goto end_trans;
7074 	}
7075 
7076 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7077 	if (ret)
7078 		goto end_trans;
7079 
7080 	if (log_dentries)
7081 		ret = log_new_dir_dentries(trans, inode, ctx);
7082 	else
7083 		ret = 0;
7084 end_trans:
7085 	if (ret < 0) {
7086 		btrfs_set_log_full_commit(trans);
7087 		ret = BTRFS_LOG_FORCE_COMMIT;
7088 	}
7089 
7090 	if (ret)
7091 		btrfs_remove_log_ctx(root, ctx);
7092 	btrfs_end_log_trans(root);
7093 end_no_trans:
7094 	return ret;
7095 }
7096 
7097 /*
7098  * it is not safe to log dentry if the chunk root has added new
7099  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7100  * If this returns 1, you must commit the transaction to safely get your
7101  * data on disk.
7102  */
7103 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7104 			  struct dentry *dentry,
7105 			  struct btrfs_log_ctx *ctx)
7106 {
7107 	struct dentry *parent = dget_parent(dentry);
7108 	int ret;
7109 
7110 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7111 				     LOG_INODE_ALL, ctx);
7112 	dput(parent);
7113 
7114 	return ret;
7115 }
7116 
7117 /*
7118  * should be called during mount to recover any replay any log trees
7119  * from the FS
7120  */
7121 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7122 {
7123 	int ret;
7124 	struct btrfs_path *path;
7125 	struct btrfs_trans_handle *trans;
7126 	struct btrfs_key key;
7127 	struct btrfs_key found_key;
7128 	struct btrfs_root *log;
7129 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7130 	struct walk_control wc = {
7131 		.process_func = process_one_buffer,
7132 		.stage = LOG_WALK_PIN_ONLY,
7133 	};
7134 
7135 	path = btrfs_alloc_path();
7136 	if (!path)
7137 		return -ENOMEM;
7138 
7139 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7140 
7141 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7142 	if (IS_ERR(trans)) {
7143 		ret = PTR_ERR(trans);
7144 		goto error;
7145 	}
7146 
7147 	wc.trans = trans;
7148 	wc.pin = 1;
7149 
7150 	ret = walk_log_tree(trans, log_root_tree, &wc);
7151 	if (ret) {
7152 		btrfs_abort_transaction(trans, ret);
7153 		goto error;
7154 	}
7155 
7156 again:
7157 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7158 	key.offset = (u64)-1;
7159 	key.type = BTRFS_ROOT_ITEM_KEY;
7160 
7161 	while (1) {
7162 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7163 
7164 		if (ret < 0) {
7165 			btrfs_abort_transaction(trans, ret);
7166 			goto error;
7167 		}
7168 		if (ret > 0) {
7169 			if (path->slots[0] == 0)
7170 				break;
7171 			path->slots[0]--;
7172 		}
7173 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7174 				      path->slots[0]);
7175 		btrfs_release_path(path);
7176 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7177 			break;
7178 
7179 		log = btrfs_read_tree_root(log_root_tree, &found_key);
7180 		if (IS_ERR(log)) {
7181 			ret = PTR_ERR(log);
7182 			btrfs_abort_transaction(trans, ret);
7183 			goto error;
7184 		}
7185 
7186 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7187 						   true);
7188 		if (IS_ERR(wc.replay_dest)) {
7189 			ret = PTR_ERR(wc.replay_dest);
7190 
7191 			/*
7192 			 * We didn't find the subvol, likely because it was
7193 			 * deleted.  This is ok, simply skip this log and go to
7194 			 * the next one.
7195 			 *
7196 			 * We need to exclude the root because we can't have
7197 			 * other log replays overwriting this log as we'll read
7198 			 * it back in a few more times.  This will keep our
7199 			 * block from being modified, and we'll just bail for
7200 			 * each subsequent pass.
7201 			 */
7202 			if (ret == -ENOENT)
7203 				ret = btrfs_pin_extent_for_log_replay(trans,
7204 							log->node->start,
7205 							log->node->len);
7206 			btrfs_put_root(log);
7207 
7208 			if (!ret)
7209 				goto next;
7210 			btrfs_abort_transaction(trans, ret);
7211 			goto error;
7212 		}
7213 
7214 		wc.replay_dest->log_root = log;
7215 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7216 		if (ret)
7217 			/* The loop needs to continue due to the root refs */
7218 			btrfs_abort_transaction(trans, ret);
7219 		else
7220 			ret = walk_log_tree(trans, log, &wc);
7221 
7222 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7223 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7224 						      path);
7225 			if (ret)
7226 				btrfs_abort_transaction(trans, ret);
7227 		}
7228 
7229 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7230 			struct btrfs_root *root = wc.replay_dest;
7231 
7232 			btrfs_release_path(path);
7233 
7234 			/*
7235 			 * We have just replayed everything, and the highest
7236 			 * objectid of fs roots probably has changed in case
7237 			 * some inode_item's got replayed.
7238 			 *
7239 			 * root->objectid_mutex is not acquired as log replay
7240 			 * could only happen during mount.
7241 			 */
7242 			ret = btrfs_init_root_free_objectid(root);
7243 			if (ret)
7244 				btrfs_abort_transaction(trans, ret);
7245 		}
7246 
7247 		wc.replay_dest->log_root = NULL;
7248 		btrfs_put_root(wc.replay_dest);
7249 		btrfs_put_root(log);
7250 
7251 		if (ret)
7252 			goto error;
7253 next:
7254 		if (found_key.offset == 0)
7255 			break;
7256 		key.offset = found_key.offset - 1;
7257 	}
7258 	btrfs_release_path(path);
7259 
7260 	/* step one is to pin it all, step two is to replay just inodes */
7261 	if (wc.pin) {
7262 		wc.pin = 0;
7263 		wc.process_func = replay_one_buffer;
7264 		wc.stage = LOG_WALK_REPLAY_INODES;
7265 		goto again;
7266 	}
7267 	/* step three is to replay everything */
7268 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7269 		wc.stage++;
7270 		goto again;
7271 	}
7272 
7273 	btrfs_free_path(path);
7274 
7275 	/* step 4: commit the transaction, which also unpins the blocks */
7276 	ret = btrfs_commit_transaction(trans);
7277 	if (ret)
7278 		return ret;
7279 
7280 	log_root_tree->log_root = NULL;
7281 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7282 	btrfs_put_root(log_root_tree);
7283 
7284 	return 0;
7285 error:
7286 	if (wc.trans)
7287 		btrfs_end_transaction(wc.trans);
7288 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7289 	btrfs_free_path(path);
7290 	return ret;
7291 }
7292 
7293 /*
7294  * there are some corner cases where we want to force a full
7295  * commit instead of allowing a directory to be logged.
7296  *
7297  * They revolve around files there were unlinked from the directory, and
7298  * this function updates the parent directory so that a full commit is
7299  * properly done if it is fsync'd later after the unlinks are done.
7300  *
7301  * Must be called before the unlink operations (updates to the subvolume tree,
7302  * inodes, etc) are done.
7303  */
7304 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7305 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7306 			     int for_rename)
7307 {
7308 	/*
7309 	 * when we're logging a file, if it hasn't been renamed
7310 	 * or unlinked, and its inode is fully committed on disk,
7311 	 * we don't have to worry about walking up the directory chain
7312 	 * to log its parents.
7313 	 *
7314 	 * So, we use the last_unlink_trans field to put this transid
7315 	 * into the file.  When the file is logged we check it and
7316 	 * don't log the parents if the file is fully on disk.
7317 	 */
7318 	mutex_lock(&inode->log_mutex);
7319 	inode->last_unlink_trans = trans->transid;
7320 	mutex_unlock(&inode->log_mutex);
7321 
7322 	/*
7323 	 * if this directory was already logged any new
7324 	 * names for this file/dir will get recorded
7325 	 */
7326 	if (dir->logged_trans == trans->transid)
7327 		return;
7328 
7329 	/*
7330 	 * if the inode we're about to unlink was logged,
7331 	 * the log will be properly updated for any new names
7332 	 */
7333 	if (inode->logged_trans == trans->transid)
7334 		return;
7335 
7336 	/*
7337 	 * when renaming files across directories, if the directory
7338 	 * there we're unlinking from gets fsync'd later on, there's
7339 	 * no way to find the destination directory later and fsync it
7340 	 * properly.  So, we have to be conservative and force commits
7341 	 * so the new name gets discovered.
7342 	 */
7343 	if (for_rename)
7344 		goto record;
7345 
7346 	/* we can safely do the unlink without any special recording */
7347 	return;
7348 
7349 record:
7350 	mutex_lock(&dir->log_mutex);
7351 	dir->last_unlink_trans = trans->transid;
7352 	mutex_unlock(&dir->log_mutex);
7353 }
7354 
7355 /*
7356  * Make sure that if someone attempts to fsync the parent directory of a deleted
7357  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7358  * that after replaying the log tree of the parent directory's root we will not
7359  * see the snapshot anymore and at log replay time we will not see any log tree
7360  * corresponding to the deleted snapshot's root, which could lead to replaying
7361  * it after replaying the log tree of the parent directory (which would replay
7362  * the snapshot delete operation).
7363  *
7364  * Must be called before the actual snapshot destroy operation (updates to the
7365  * parent root and tree of tree roots trees, etc) are done.
7366  */
7367 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7368 				   struct btrfs_inode *dir)
7369 {
7370 	mutex_lock(&dir->log_mutex);
7371 	dir->last_unlink_trans = trans->transid;
7372 	mutex_unlock(&dir->log_mutex);
7373 }
7374 
7375 /*
7376  * Update the log after adding a new name for an inode.
7377  *
7378  * @trans:              Transaction handle.
7379  * @old_dentry:         The dentry associated with the old name and the old
7380  *                      parent directory.
7381  * @old_dir:            The inode of the previous parent directory for the case
7382  *                      of a rename. For a link operation, it must be NULL.
7383  * @old_dir_index:      The index number associated with the old name, meaningful
7384  *                      only for rename operations (when @old_dir is not NULL).
7385  *                      Ignored for link operations.
7386  * @parent:             The dentry associated with the directory under which the
7387  *                      new name is located.
7388  *
7389  * Call this after adding a new name for an inode, as a result of a link or
7390  * rename operation, and it will properly update the log to reflect the new name.
7391  */
7392 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7393 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7394 			u64 old_dir_index, struct dentry *parent)
7395 {
7396 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7397 	struct btrfs_root *root = inode->root;
7398 	struct btrfs_log_ctx ctx;
7399 	bool log_pinned = false;
7400 	int ret;
7401 
7402 	/*
7403 	 * this will force the logging code to walk the dentry chain
7404 	 * up for the file
7405 	 */
7406 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7407 		inode->last_unlink_trans = trans->transid;
7408 
7409 	/*
7410 	 * if this inode hasn't been logged and directory we're renaming it
7411 	 * from hasn't been logged, we don't need to log it
7412 	 */
7413 	ret = inode_logged(trans, inode, NULL);
7414 	if (ret < 0) {
7415 		goto out;
7416 	} else if (ret == 0) {
7417 		if (!old_dir)
7418 			return;
7419 		/*
7420 		 * If the inode was not logged and we are doing a rename (old_dir is not
7421 		 * NULL), check if old_dir was logged - if it was not we can return and
7422 		 * do nothing.
7423 		 */
7424 		ret = inode_logged(trans, old_dir, NULL);
7425 		if (ret < 0)
7426 			goto out;
7427 		else if (ret == 0)
7428 			return;
7429 	}
7430 	ret = 0;
7431 
7432 	/*
7433 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7434 	 * was previously logged, make sure that on log replay we get the old
7435 	 * dir entry deleted. This is needed because we will also log the new
7436 	 * name of the renamed inode, so we need to make sure that after log
7437 	 * replay we don't end up with both the new and old dir entries existing.
7438 	 */
7439 	if (old_dir && old_dir->logged_trans == trans->transid) {
7440 		struct btrfs_root *log = old_dir->root->log_root;
7441 		struct btrfs_path *path;
7442 		struct fscrypt_name fname;
7443 
7444 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7445 
7446 		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7447 					     &old_dentry->d_name, 0, &fname);
7448 		if (ret)
7449 			goto out;
7450 		/*
7451 		 * We have two inodes to update in the log, the old directory and
7452 		 * the inode that got renamed, so we must pin the log to prevent
7453 		 * anyone from syncing the log until we have updated both inodes
7454 		 * in the log.
7455 		 */
7456 		ret = join_running_log_trans(root);
7457 		/*
7458 		 * At least one of the inodes was logged before, so this should
7459 		 * not fail, but if it does, it's not serious, just bail out and
7460 		 * mark the log for a full commit.
7461 		 */
7462 		if (WARN_ON_ONCE(ret < 0))
7463 			goto out;
7464 		log_pinned = true;
7465 
7466 		path = btrfs_alloc_path();
7467 		if (!path) {
7468 			ret = -ENOMEM;
7469 			fscrypt_free_filename(&fname);
7470 			goto out;
7471 		}
7472 
7473 		/*
7474 		 * Other concurrent task might be logging the old directory,
7475 		 * as it can be triggered when logging other inode that had or
7476 		 * still has a dentry in the old directory. We lock the old
7477 		 * directory's log_mutex to ensure the deletion of the old
7478 		 * name is persisted, because during directory logging we
7479 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7480 		 * the old name's dir index item is in the delayed items, so
7481 		 * it could be missed by an in progress directory logging.
7482 		 */
7483 		mutex_lock(&old_dir->log_mutex);
7484 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7485 					&fname.disk_name, old_dir_index);
7486 		if (ret > 0) {
7487 			/*
7488 			 * The dentry does not exist in the log, so record its
7489 			 * deletion.
7490 			 */
7491 			btrfs_release_path(path);
7492 			ret = insert_dir_log_key(trans, log, path,
7493 						 btrfs_ino(old_dir),
7494 						 old_dir_index, old_dir_index);
7495 		}
7496 		mutex_unlock(&old_dir->log_mutex);
7497 
7498 		btrfs_free_path(path);
7499 		fscrypt_free_filename(&fname);
7500 		if (ret < 0)
7501 			goto out;
7502 	}
7503 
7504 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7505 	ctx.logging_new_name = true;
7506 	/*
7507 	 * We don't care about the return value. If we fail to log the new name
7508 	 * then we know the next attempt to sync the log will fallback to a full
7509 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7510 	 * we don't need to worry about getting a log committed that has an
7511 	 * inconsistent state after a rename operation.
7512 	 */
7513 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7514 	ASSERT(list_empty(&ctx.conflict_inodes));
7515 out:
7516 	/*
7517 	 * If an error happened mark the log for a full commit because it's not
7518 	 * consistent and up to date or we couldn't find out if one of the
7519 	 * inodes was logged before in this transaction. Do it before unpinning
7520 	 * the log, to avoid any races with someone else trying to commit it.
7521 	 */
7522 	if (ret < 0)
7523 		btrfs_set_log_full_commit(trans);
7524 	if (log_pinned)
7525 		btrfs_end_log_trans(root);
7526 }
7527 
7528