xref: /openbmc/linux/fs/btrfs/tree-log.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28 
29 /* magic values for the inode_only field in btrfs_log_inode:
30  *
31  * LOG_INODE_ALL means to log everything
32  * LOG_INODE_EXISTS means to log just enough to recreate the inode
33  * during log replay
34  */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root, struct inode *inode,
96 			     int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 			     struct btrfs_root *root,
99 			     struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 				       struct btrfs_root *root,
102 				       struct btrfs_root *log,
103 				       struct btrfs_path *path,
104 				       u64 dirid, int del_all);
105 
106 /*
107  * tree logging is a special write ahead log used to make sure that
108  * fsyncs and O_SYNCs can happen without doing full tree commits.
109  *
110  * Full tree commits are expensive because they require commonly
111  * modified blocks to be recowed, creating many dirty pages in the
112  * extent tree an 4x-6x higher write load than ext3.
113  *
114  * Instead of doing a tree commit on every fsync, we use the
115  * key ranges and transaction ids to find items for a given file or directory
116  * that have changed in this transaction.  Those items are copied into
117  * a special tree (one per subvolume root), that tree is written to disk
118  * and then the fsync is considered complete.
119  *
120  * After a crash, items are copied out of the log-tree back into the
121  * subvolume tree.  Any file data extents found are recorded in the extent
122  * allocation tree, and the log-tree freed.
123  *
124  * The log tree is read three times, once to pin down all the extents it is
125  * using in ram and once, once to create all the inodes logged in the tree
126  * and once to do all the other items.
127  */
128 
129 /*
130  * start a sub transaction and setup the log tree
131  * this increments the log tree writer count to make the people
132  * syncing the tree wait for us to finish
133  */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 			   struct btrfs_root *root)
136 {
137 	int ret;
138 	int err = 0;
139 
140 	mutex_lock(&root->log_mutex);
141 	if (root->log_root) {
142 		if (!root->log_start_pid) {
143 			root->log_start_pid = current->pid;
144 			root->log_multiple_pids = false;
145 		} else if (root->log_start_pid != current->pid) {
146 			root->log_multiple_pids = true;
147 		}
148 
149 		root->log_batch++;
150 		atomic_inc(&root->log_writers);
151 		mutex_unlock(&root->log_mutex);
152 		return 0;
153 	}
154 	root->log_multiple_pids = false;
155 	root->log_start_pid = current->pid;
156 	mutex_lock(&root->fs_info->tree_log_mutex);
157 	if (!root->fs_info->log_root_tree) {
158 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 		if (ret)
160 			err = ret;
161 	}
162 	if (err == 0 && !root->log_root) {
163 		ret = btrfs_add_log_tree(trans, root);
164 		if (ret)
165 			err = ret;
166 	}
167 	mutex_unlock(&root->fs_info->tree_log_mutex);
168 	root->log_batch++;
169 	atomic_inc(&root->log_writers);
170 	mutex_unlock(&root->log_mutex);
171 	return err;
172 }
173 
174 /*
175  * returns 0 if there was a log transaction running and we were able
176  * to join, or returns -ENOENT if there were not transactions
177  * in progress
178  */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 	int ret = -ENOENT;
182 
183 	smp_mb();
184 	if (!root->log_root)
185 		return -ENOENT;
186 
187 	mutex_lock(&root->log_mutex);
188 	if (root->log_root) {
189 		ret = 0;
190 		atomic_inc(&root->log_writers);
191 	}
192 	mutex_unlock(&root->log_mutex);
193 	return ret;
194 }
195 
196 /*
197  * This either makes the current running log transaction wait
198  * until you call btrfs_end_log_trans() or it makes any future
199  * log transactions wait until you call btrfs_end_log_trans()
200  */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 	int ret = -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	atomic_inc(&root->log_writers);
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * indicate we're done making changes to the log tree
213  * and wake up anyone waiting to do a sync
214  */
215 int btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 	if (atomic_dec_and_test(&root->log_writers)) {
218 		smp_mb();
219 		if (waitqueue_active(&root->log_writer_wait))
220 			wake_up(&root->log_writer_wait);
221 	}
222 	return 0;
223 }
224 
225 
226 /*
227  * the walk control struct is used to pass state down the chain when
228  * processing the log tree.  The stage field tells us which part
229  * of the log tree processing we are currently doing.  The others
230  * are state fields used for that specific part
231  */
232 struct walk_control {
233 	/* should we free the extent on disk when done?  This is used
234 	 * at transaction commit time while freeing a log tree
235 	 */
236 	int free;
237 
238 	/* should we write out the extent buffer?  This is used
239 	 * while flushing the log tree to disk during a sync
240 	 */
241 	int write;
242 
243 	/* should we wait for the extent buffer io to finish?  Also used
244 	 * while flushing the log tree to disk for a sync
245 	 */
246 	int wait;
247 
248 	/* pin only walk, we record which extents on disk belong to the
249 	 * log trees
250 	 */
251 	int pin;
252 
253 	/* what stage of the replay code we're currently in */
254 	int stage;
255 
256 	/* the root we are currently replaying */
257 	struct btrfs_root *replay_dest;
258 
259 	/* the trans handle for the current replay */
260 	struct btrfs_trans_handle *trans;
261 
262 	/* the function that gets used to process blocks we find in the
263 	 * tree.  Note the extent_buffer might not be up to date when it is
264 	 * passed in, and it must be checked or read if you need the data
265 	 * inside it
266 	 */
267 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 			    struct walk_control *wc, u64 gen);
269 };
270 
271 /*
272  * process_func used to pin down extents, write them or wait on them
273  */
274 static int process_one_buffer(struct btrfs_root *log,
275 			      struct extent_buffer *eb,
276 			      struct walk_control *wc, u64 gen)
277 {
278 	if (wc->pin)
279 		btrfs_pin_extent(log->fs_info->extent_root,
280 				 eb->start, eb->len, 0);
281 
282 	if (btrfs_buffer_uptodate(eb, gen)) {
283 		if (wc->write)
284 			btrfs_write_tree_block(eb);
285 		if (wc->wait)
286 			btrfs_wait_tree_block_writeback(eb);
287 	}
288 	return 0;
289 }
290 
291 /*
292  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
293  * to the src data we are copying out.
294  *
295  * root is the tree we are copying into, and path is a scratch
296  * path for use in this function (it should be released on entry and
297  * will be released on exit).
298  *
299  * If the key is already in the destination tree the existing item is
300  * overwritten.  If the existing item isn't big enough, it is extended.
301  * If it is too large, it is truncated.
302  *
303  * If the key isn't in the destination yet, a new item is inserted.
304  */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 				   struct btrfs_root *root,
307 				   struct btrfs_path *path,
308 				   struct extent_buffer *eb, int slot,
309 				   struct btrfs_key *key)
310 {
311 	int ret;
312 	u32 item_size;
313 	u64 saved_i_size = 0;
314 	int save_old_i_size = 0;
315 	unsigned long src_ptr;
316 	unsigned long dst_ptr;
317 	int overwrite_root = 0;
318 
319 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 		overwrite_root = 1;
321 
322 	item_size = btrfs_item_size_nr(eb, slot);
323 	src_ptr = btrfs_item_ptr_offset(eb, slot);
324 
325 	/* look for the key in the destination tree */
326 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 	if (ret == 0) {
328 		char *src_copy;
329 		char *dst_copy;
330 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 						  path->slots[0]);
332 		if (dst_size != item_size)
333 			goto insert;
334 
335 		if (item_size == 0) {
336 			btrfs_release_path(root, path);
337 			return 0;
338 		}
339 		dst_copy = kmalloc(item_size, GFP_NOFS);
340 		src_copy = kmalloc(item_size, GFP_NOFS);
341 
342 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
343 
344 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
345 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
346 				   item_size);
347 		ret = memcmp(dst_copy, src_copy, item_size);
348 
349 		kfree(dst_copy);
350 		kfree(src_copy);
351 		/*
352 		 * they have the same contents, just return, this saves
353 		 * us from cowing blocks in the destination tree and doing
354 		 * extra writes that may not have been done by a previous
355 		 * sync
356 		 */
357 		if (ret == 0) {
358 			btrfs_release_path(root, path);
359 			return 0;
360 		}
361 
362 	}
363 insert:
364 	btrfs_release_path(root, path);
365 	/* try to insert the key into the destination tree */
366 	ret = btrfs_insert_empty_item(trans, root, path,
367 				      key, item_size);
368 
369 	/* make sure any existing item is the correct size */
370 	if (ret == -EEXIST) {
371 		u32 found_size;
372 		found_size = btrfs_item_size_nr(path->nodes[0],
373 						path->slots[0]);
374 		if (found_size > item_size) {
375 			btrfs_truncate_item(trans, root, path, item_size, 1);
376 		} else if (found_size < item_size) {
377 			ret = btrfs_extend_item(trans, root, path,
378 						item_size - found_size);
379 			BUG_ON(ret);
380 		}
381 	} else if (ret) {
382 		return ret;
383 	}
384 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
385 					path->slots[0]);
386 
387 	/* don't overwrite an existing inode if the generation number
388 	 * was logged as zero.  This is done when the tree logging code
389 	 * is just logging an inode to make sure it exists after recovery.
390 	 *
391 	 * Also, don't overwrite i_size on directories during replay.
392 	 * log replay inserts and removes directory items based on the
393 	 * state of the tree found in the subvolume, and i_size is modified
394 	 * as it goes
395 	 */
396 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
397 		struct btrfs_inode_item *src_item;
398 		struct btrfs_inode_item *dst_item;
399 
400 		src_item = (struct btrfs_inode_item *)src_ptr;
401 		dst_item = (struct btrfs_inode_item *)dst_ptr;
402 
403 		if (btrfs_inode_generation(eb, src_item) == 0)
404 			goto no_copy;
405 
406 		if (overwrite_root &&
407 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
408 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
409 			save_old_i_size = 1;
410 			saved_i_size = btrfs_inode_size(path->nodes[0],
411 							dst_item);
412 		}
413 	}
414 
415 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
416 			   src_ptr, item_size);
417 
418 	if (save_old_i_size) {
419 		struct btrfs_inode_item *dst_item;
420 		dst_item = (struct btrfs_inode_item *)dst_ptr;
421 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
422 	}
423 
424 	/* make sure the generation is filled in */
425 	if (key->type == BTRFS_INODE_ITEM_KEY) {
426 		struct btrfs_inode_item *dst_item;
427 		dst_item = (struct btrfs_inode_item *)dst_ptr;
428 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
429 			btrfs_set_inode_generation(path->nodes[0], dst_item,
430 						   trans->transid);
431 		}
432 	}
433 no_copy:
434 	btrfs_mark_buffer_dirty(path->nodes[0]);
435 	btrfs_release_path(root, path);
436 	return 0;
437 }
438 
439 /*
440  * simple helper to read an inode off the disk from a given root
441  * This can only be called for subvolume roots and not for the log
442  */
443 static noinline struct inode *read_one_inode(struct btrfs_root *root,
444 					     u64 objectid)
445 {
446 	struct btrfs_key key;
447 	struct inode *inode;
448 
449 	key.objectid = objectid;
450 	key.type = BTRFS_INODE_ITEM_KEY;
451 	key.offset = 0;
452 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
453 	if (IS_ERR(inode)) {
454 		inode = NULL;
455 	} else if (is_bad_inode(inode)) {
456 		iput(inode);
457 		inode = NULL;
458 	}
459 	return inode;
460 }
461 
462 /* replays a single extent in 'eb' at 'slot' with 'key' into the
463  * subvolume 'root'.  path is released on entry and should be released
464  * on exit.
465  *
466  * extents in the log tree have not been allocated out of the extent
467  * tree yet.  So, this completes the allocation, taking a reference
468  * as required if the extent already exists or creating a new extent
469  * if it isn't in the extent allocation tree yet.
470  *
471  * The extent is inserted into the file, dropping any existing extents
472  * from the file that overlap the new one.
473  */
474 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
475 				      struct btrfs_root *root,
476 				      struct btrfs_path *path,
477 				      struct extent_buffer *eb, int slot,
478 				      struct btrfs_key *key)
479 {
480 	int found_type;
481 	u64 mask = root->sectorsize - 1;
482 	u64 extent_end;
483 	u64 alloc_hint;
484 	u64 start = key->offset;
485 	u64 saved_nbytes;
486 	struct btrfs_file_extent_item *item;
487 	struct inode *inode = NULL;
488 	unsigned long size;
489 	int ret = 0;
490 
491 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
492 	found_type = btrfs_file_extent_type(eb, item);
493 
494 	if (found_type == BTRFS_FILE_EXTENT_REG ||
495 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
496 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
497 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
498 		size = btrfs_file_extent_inline_len(eb, item);
499 		extent_end = (start + size + mask) & ~mask;
500 	} else {
501 		ret = 0;
502 		goto out;
503 	}
504 
505 	inode = read_one_inode(root, key->objectid);
506 	if (!inode) {
507 		ret = -EIO;
508 		goto out;
509 	}
510 
511 	/*
512 	 * first check to see if we already have this extent in the
513 	 * file.  This must be done before the btrfs_drop_extents run
514 	 * so we don't try to drop this extent.
515 	 */
516 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
517 				       start, 0);
518 
519 	if (ret == 0 &&
520 	    (found_type == BTRFS_FILE_EXTENT_REG ||
521 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
522 		struct btrfs_file_extent_item cmp1;
523 		struct btrfs_file_extent_item cmp2;
524 		struct btrfs_file_extent_item *existing;
525 		struct extent_buffer *leaf;
526 
527 		leaf = path->nodes[0];
528 		existing = btrfs_item_ptr(leaf, path->slots[0],
529 					  struct btrfs_file_extent_item);
530 
531 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
532 				   sizeof(cmp1));
533 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
534 				   sizeof(cmp2));
535 
536 		/*
537 		 * we already have a pointer to this exact extent,
538 		 * we don't have to do anything
539 		 */
540 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
541 			btrfs_release_path(root, path);
542 			goto out;
543 		}
544 	}
545 	btrfs_release_path(root, path);
546 
547 	saved_nbytes = inode_get_bytes(inode);
548 	/* drop any overlapping extents */
549 	ret = btrfs_drop_extents(trans, inode, start, extent_end,
550 				 &alloc_hint, 1);
551 	BUG_ON(ret);
552 
553 	if (found_type == BTRFS_FILE_EXTENT_REG ||
554 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
555 		u64 offset;
556 		unsigned long dest_offset;
557 		struct btrfs_key ins;
558 
559 		ret = btrfs_insert_empty_item(trans, root, path, key,
560 					      sizeof(*item));
561 		BUG_ON(ret);
562 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
563 						    path->slots[0]);
564 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
565 				(unsigned long)item,  sizeof(*item));
566 
567 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
568 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
569 		ins.type = BTRFS_EXTENT_ITEM_KEY;
570 		offset = key->offset - btrfs_file_extent_offset(eb, item);
571 
572 		if (ins.objectid > 0) {
573 			u64 csum_start;
574 			u64 csum_end;
575 			LIST_HEAD(ordered_sums);
576 			/*
577 			 * is this extent already allocated in the extent
578 			 * allocation tree?  If so, just add a reference
579 			 */
580 			ret = btrfs_lookup_extent(root, ins.objectid,
581 						ins.offset);
582 			if (ret == 0) {
583 				ret = btrfs_inc_extent_ref(trans, root,
584 						ins.objectid, ins.offset,
585 						0, root->root_key.objectid,
586 						key->objectid, offset);
587 			} else {
588 				/*
589 				 * insert the extent pointer in the extent
590 				 * allocation tree
591 				 */
592 				ret = btrfs_alloc_logged_file_extent(trans,
593 						root, root->root_key.objectid,
594 						key->objectid, offset, &ins);
595 				BUG_ON(ret);
596 			}
597 			btrfs_release_path(root, path);
598 
599 			if (btrfs_file_extent_compression(eb, item)) {
600 				csum_start = ins.objectid;
601 				csum_end = csum_start + ins.offset;
602 			} else {
603 				csum_start = ins.objectid +
604 					btrfs_file_extent_offset(eb, item);
605 				csum_end = csum_start +
606 					btrfs_file_extent_num_bytes(eb, item);
607 			}
608 
609 			ret = btrfs_lookup_csums_range(root->log_root,
610 						csum_start, csum_end - 1,
611 						&ordered_sums);
612 			BUG_ON(ret);
613 			while (!list_empty(&ordered_sums)) {
614 				struct btrfs_ordered_sum *sums;
615 				sums = list_entry(ordered_sums.next,
616 						struct btrfs_ordered_sum,
617 						list);
618 				ret = btrfs_csum_file_blocks(trans,
619 						root->fs_info->csum_root,
620 						sums);
621 				BUG_ON(ret);
622 				list_del(&sums->list);
623 				kfree(sums);
624 			}
625 		} else {
626 			btrfs_release_path(root, path);
627 		}
628 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
629 		/* inline extents are easy, we just overwrite them */
630 		ret = overwrite_item(trans, root, path, eb, slot, key);
631 		BUG_ON(ret);
632 	}
633 
634 	inode_set_bytes(inode, saved_nbytes);
635 	btrfs_update_inode(trans, root, inode);
636 out:
637 	if (inode)
638 		iput(inode);
639 	return ret;
640 }
641 
642 /*
643  * when cleaning up conflicts between the directory names in the
644  * subvolume, directory names in the log and directory names in the
645  * inode back references, we may have to unlink inodes from directories.
646  *
647  * This is a helper function to do the unlink of a specific directory
648  * item
649  */
650 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
651 				      struct btrfs_root *root,
652 				      struct btrfs_path *path,
653 				      struct inode *dir,
654 				      struct btrfs_dir_item *di)
655 {
656 	struct inode *inode;
657 	char *name;
658 	int name_len;
659 	struct extent_buffer *leaf;
660 	struct btrfs_key location;
661 	int ret;
662 
663 	leaf = path->nodes[0];
664 
665 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
666 	name_len = btrfs_dir_name_len(leaf, di);
667 	name = kmalloc(name_len, GFP_NOFS);
668 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
669 	btrfs_release_path(root, path);
670 
671 	inode = read_one_inode(root, location.objectid);
672 	BUG_ON(!inode);
673 
674 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
675 	BUG_ON(ret);
676 
677 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
678 	BUG_ON(ret);
679 	kfree(name);
680 
681 	iput(inode);
682 	return ret;
683 }
684 
685 /*
686  * helper function to see if a given name and sequence number found
687  * in an inode back reference are already in a directory and correctly
688  * point to this inode
689  */
690 static noinline int inode_in_dir(struct btrfs_root *root,
691 				 struct btrfs_path *path,
692 				 u64 dirid, u64 objectid, u64 index,
693 				 const char *name, int name_len)
694 {
695 	struct btrfs_dir_item *di;
696 	struct btrfs_key location;
697 	int match = 0;
698 
699 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
700 					 index, name, name_len, 0);
701 	if (di && !IS_ERR(di)) {
702 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
703 		if (location.objectid != objectid)
704 			goto out;
705 	} else
706 		goto out;
707 	btrfs_release_path(root, path);
708 
709 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
710 	if (di && !IS_ERR(di)) {
711 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
712 		if (location.objectid != objectid)
713 			goto out;
714 	} else
715 		goto out;
716 	match = 1;
717 out:
718 	btrfs_release_path(root, path);
719 	return match;
720 }
721 
722 /*
723  * helper function to check a log tree for a named back reference in
724  * an inode.  This is used to decide if a back reference that is
725  * found in the subvolume conflicts with what we find in the log.
726  *
727  * inode backreferences may have multiple refs in a single item,
728  * during replay we process one reference at a time, and we don't
729  * want to delete valid links to a file from the subvolume if that
730  * link is also in the log.
731  */
732 static noinline int backref_in_log(struct btrfs_root *log,
733 				   struct btrfs_key *key,
734 				   char *name, int namelen)
735 {
736 	struct btrfs_path *path;
737 	struct btrfs_inode_ref *ref;
738 	unsigned long ptr;
739 	unsigned long ptr_end;
740 	unsigned long name_ptr;
741 	int found_name_len;
742 	int item_size;
743 	int ret;
744 	int match = 0;
745 
746 	path = btrfs_alloc_path();
747 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
748 	if (ret != 0)
749 		goto out;
750 
751 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
752 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
753 	ptr_end = ptr + item_size;
754 	while (ptr < ptr_end) {
755 		ref = (struct btrfs_inode_ref *)ptr;
756 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
757 		if (found_name_len == namelen) {
758 			name_ptr = (unsigned long)(ref + 1);
759 			ret = memcmp_extent_buffer(path->nodes[0], name,
760 						   name_ptr, namelen);
761 			if (ret == 0) {
762 				match = 1;
763 				goto out;
764 			}
765 		}
766 		ptr = (unsigned long)(ref + 1) + found_name_len;
767 	}
768 out:
769 	btrfs_free_path(path);
770 	return match;
771 }
772 
773 
774 /*
775  * replay one inode back reference item found in the log tree.
776  * eb, slot and key refer to the buffer and key found in the log tree.
777  * root is the destination we are replaying into, and path is for temp
778  * use by this function.  (it should be released on return).
779  */
780 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
781 				  struct btrfs_root *root,
782 				  struct btrfs_root *log,
783 				  struct btrfs_path *path,
784 				  struct extent_buffer *eb, int slot,
785 				  struct btrfs_key *key)
786 {
787 	struct inode *dir;
788 	int ret;
789 	struct btrfs_inode_ref *ref;
790 	struct btrfs_dir_item *di;
791 	struct inode *inode;
792 	char *name;
793 	int namelen;
794 	unsigned long ref_ptr;
795 	unsigned long ref_end;
796 
797 	/*
798 	 * it is possible that we didn't log all the parent directories
799 	 * for a given inode.  If we don't find the dir, just don't
800 	 * copy the back ref in.  The link count fixup code will take
801 	 * care of the rest
802 	 */
803 	dir = read_one_inode(root, key->offset);
804 	if (!dir)
805 		return -ENOENT;
806 
807 	inode = read_one_inode(root, key->objectid);
808 	BUG_ON(!inode);
809 
810 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
811 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
812 
813 again:
814 	ref = (struct btrfs_inode_ref *)ref_ptr;
815 
816 	namelen = btrfs_inode_ref_name_len(eb, ref);
817 	name = kmalloc(namelen, GFP_NOFS);
818 	BUG_ON(!name);
819 
820 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
821 
822 	/* if we already have a perfect match, we're done */
823 	if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
824 			 btrfs_inode_ref_index(eb, ref),
825 			 name, namelen)) {
826 		goto out;
827 	}
828 
829 	/*
830 	 * look for a conflicting back reference in the metadata.
831 	 * if we find one we have to unlink that name of the file
832 	 * before we add our new link.  Later on, we overwrite any
833 	 * existing back reference, and we don't want to create
834 	 * dangling pointers in the directory.
835 	 */
836 conflict_again:
837 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
838 	if (ret == 0) {
839 		char *victim_name;
840 		int victim_name_len;
841 		struct btrfs_inode_ref *victim_ref;
842 		unsigned long ptr;
843 		unsigned long ptr_end;
844 		struct extent_buffer *leaf = path->nodes[0];
845 
846 		/* are we trying to overwrite a back ref for the root directory
847 		 * if so, just jump out, we're done
848 		 */
849 		if (key->objectid == key->offset)
850 			goto out_nowrite;
851 
852 		/* check all the names in this back reference to see
853 		 * if they are in the log.  if so, we allow them to stay
854 		 * otherwise they must be unlinked as a conflict
855 		 */
856 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
857 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
858 		while (ptr < ptr_end) {
859 			victim_ref = (struct btrfs_inode_ref *)ptr;
860 			victim_name_len = btrfs_inode_ref_name_len(leaf,
861 								   victim_ref);
862 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
863 			BUG_ON(!victim_name);
864 
865 			read_extent_buffer(leaf, victim_name,
866 					   (unsigned long)(victim_ref + 1),
867 					   victim_name_len);
868 
869 			if (!backref_in_log(log, key, victim_name,
870 					    victim_name_len)) {
871 				btrfs_inc_nlink(inode);
872 				btrfs_release_path(root, path);
873 
874 				ret = btrfs_unlink_inode(trans, root, dir,
875 							 inode, victim_name,
876 							 victim_name_len);
877 				kfree(victim_name);
878 				btrfs_release_path(root, path);
879 				goto conflict_again;
880 			}
881 			kfree(victim_name);
882 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
883 		}
884 		BUG_ON(ret);
885 	}
886 	btrfs_release_path(root, path);
887 
888 	/* look for a conflicting sequence number */
889 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
890 					 btrfs_inode_ref_index(eb, ref),
891 					 name, namelen, 0);
892 	if (di && !IS_ERR(di)) {
893 		ret = drop_one_dir_item(trans, root, path, dir, di);
894 		BUG_ON(ret);
895 	}
896 	btrfs_release_path(root, path);
897 
898 
899 	/* look for a conflicting name */
900 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
901 				   name, namelen, 0);
902 	if (di && !IS_ERR(di)) {
903 		ret = drop_one_dir_item(trans, root, path, dir, di);
904 		BUG_ON(ret);
905 	}
906 	btrfs_release_path(root, path);
907 
908 	/* insert our name */
909 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
910 			     btrfs_inode_ref_index(eb, ref));
911 	BUG_ON(ret);
912 
913 	btrfs_update_inode(trans, root, inode);
914 
915 out:
916 	ref_ptr = (unsigned long)(ref + 1) + namelen;
917 	kfree(name);
918 	if (ref_ptr < ref_end)
919 		goto again;
920 
921 	/* finally write the back reference in the inode */
922 	ret = overwrite_item(trans, root, path, eb, slot, key);
923 	BUG_ON(ret);
924 
925 out_nowrite:
926 	btrfs_release_path(root, path);
927 	iput(dir);
928 	iput(inode);
929 	return 0;
930 }
931 
932 static int insert_orphan_item(struct btrfs_trans_handle *trans,
933 			      struct btrfs_root *root, u64 offset)
934 {
935 	int ret;
936 	ret = btrfs_find_orphan_item(root, offset);
937 	if (ret > 0)
938 		ret = btrfs_insert_orphan_item(trans, root, offset);
939 	return ret;
940 }
941 
942 
943 /*
944  * There are a few corners where the link count of the file can't
945  * be properly maintained during replay.  So, instead of adding
946  * lots of complexity to the log code, we just scan the backrefs
947  * for any file that has been through replay.
948  *
949  * The scan will update the link count on the inode to reflect the
950  * number of back refs found.  If it goes down to zero, the iput
951  * will free the inode.
952  */
953 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
954 					   struct btrfs_root *root,
955 					   struct inode *inode)
956 {
957 	struct btrfs_path *path;
958 	int ret;
959 	struct btrfs_key key;
960 	u64 nlink = 0;
961 	unsigned long ptr;
962 	unsigned long ptr_end;
963 	int name_len;
964 
965 	key.objectid = inode->i_ino;
966 	key.type = BTRFS_INODE_REF_KEY;
967 	key.offset = (u64)-1;
968 
969 	path = btrfs_alloc_path();
970 
971 	while (1) {
972 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
973 		if (ret < 0)
974 			break;
975 		if (ret > 0) {
976 			if (path->slots[0] == 0)
977 				break;
978 			path->slots[0]--;
979 		}
980 		btrfs_item_key_to_cpu(path->nodes[0], &key,
981 				      path->slots[0]);
982 		if (key.objectid != inode->i_ino ||
983 		    key.type != BTRFS_INODE_REF_KEY)
984 			break;
985 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
986 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
987 						   path->slots[0]);
988 		while (ptr < ptr_end) {
989 			struct btrfs_inode_ref *ref;
990 
991 			ref = (struct btrfs_inode_ref *)ptr;
992 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
993 							    ref);
994 			ptr = (unsigned long)(ref + 1) + name_len;
995 			nlink++;
996 		}
997 
998 		if (key.offset == 0)
999 			break;
1000 		key.offset--;
1001 		btrfs_release_path(root, path);
1002 	}
1003 	btrfs_release_path(root, path);
1004 	if (nlink != inode->i_nlink) {
1005 		inode->i_nlink = nlink;
1006 		btrfs_update_inode(trans, root, inode);
1007 	}
1008 	BTRFS_I(inode)->index_cnt = (u64)-1;
1009 
1010 	if (inode->i_nlink == 0) {
1011 		if (S_ISDIR(inode->i_mode)) {
1012 			ret = replay_dir_deletes(trans, root, NULL, path,
1013 						 inode->i_ino, 1);
1014 			BUG_ON(ret);
1015 		}
1016 		ret = insert_orphan_item(trans, root, inode->i_ino);
1017 		BUG_ON(ret);
1018 	}
1019 	btrfs_free_path(path);
1020 
1021 	return 0;
1022 }
1023 
1024 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1025 					    struct btrfs_root *root,
1026 					    struct btrfs_path *path)
1027 {
1028 	int ret;
1029 	struct btrfs_key key;
1030 	struct inode *inode;
1031 
1032 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1033 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1034 	key.offset = (u64)-1;
1035 	while (1) {
1036 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1037 		if (ret < 0)
1038 			break;
1039 
1040 		if (ret == 1) {
1041 			if (path->slots[0] == 0)
1042 				break;
1043 			path->slots[0]--;
1044 		}
1045 
1046 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1047 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1048 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1049 			break;
1050 
1051 		ret = btrfs_del_item(trans, root, path);
1052 		BUG_ON(ret);
1053 
1054 		btrfs_release_path(root, path);
1055 		inode = read_one_inode(root, key.offset);
1056 		BUG_ON(!inode);
1057 
1058 		ret = fixup_inode_link_count(trans, root, inode);
1059 		BUG_ON(ret);
1060 
1061 		iput(inode);
1062 
1063 		/*
1064 		 * fixup on a directory may create new entries,
1065 		 * make sure we always look for the highset possible
1066 		 * offset
1067 		 */
1068 		key.offset = (u64)-1;
1069 	}
1070 	btrfs_release_path(root, path);
1071 	return 0;
1072 }
1073 
1074 
1075 /*
1076  * record a given inode in the fixup dir so we can check its link
1077  * count when replay is done.  The link count is incremented here
1078  * so the inode won't go away until we check it
1079  */
1080 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1081 				      struct btrfs_root *root,
1082 				      struct btrfs_path *path,
1083 				      u64 objectid)
1084 {
1085 	struct btrfs_key key;
1086 	int ret = 0;
1087 	struct inode *inode;
1088 
1089 	inode = read_one_inode(root, objectid);
1090 	BUG_ON(!inode);
1091 
1092 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1093 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1094 	key.offset = objectid;
1095 
1096 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1097 
1098 	btrfs_release_path(root, path);
1099 	if (ret == 0) {
1100 		btrfs_inc_nlink(inode);
1101 		btrfs_update_inode(trans, root, inode);
1102 	} else if (ret == -EEXIST) {
1103 		ret = 0;
1104 	} else {
1105 		BUG();
1106 	}
1107 	iput(inode);
1108 
1109 	return ret;
1110 }
1111 
1112 /*
1113  * when replaying the log for a directory, we only insert names
1114  * for inodes that actually exist.  This means an fsync on a directory
1115  * does not implicitly fsync all the new files in it
1116  */
1117 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1118 				    struct btrfs_root *root,
1119 				    struct btrfs_path *path,
1120 				    u64 dirid, u64 index,
1121 				    char *name, int name_len, u8 type,
1122 				    struct btrfs_key *location)
1123 {
1124 	struct inode *inode;
1125 	struct inode *dir;
1126 	int ret;
1127 
1128 	inode = read_one_inode(root, location->objectid);
1129 	if (!inode)
1130 		return -ENOENT;
1131 
1132 	dir = read_one_inode(root, dirid);
1133 	if (!dir) {
1134 		iput(inode);
1135 		return -EIO;
1136 	}
1137 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1138 
1139 	/* FIXME, put inode into FIXUP list */
1140 
1141 	iput(inode);
1142 	iput(dir);
1143 	return ret;
1144 }
1145 
1146 /*
1147  * take a single entry in a log directory item and replay it into
1148  * the subvolume.
1149  *
1150  * if a conflicting item exists in the subdirectory already,
1151  * the inode it points to is unlinked and put into the link count
1152  * fix up tree.
1153  *
1154  * If a name from the log points to a file or directory that does
1155  * not exist in the FS, it is skipped.  fsyncs on directories
1156  * do not force down inodes inside that directory, just changes to the
1157  * names or unlinks in a directory.
1158  */
1159 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1160 				    struct btrfs_root *root,
1161 				    struct btrfs_path *path,
1162 				    struct extent_buffer *eb,
1163 				    struct btrfs_dir_item *di,
1164 				    struct btrfs_key *key)
1165 {
1166 	char *name;
1167 	int name_len;
1168 	struct btrfs_dir_item *dst_di;
1169 	struct btrfs_key found_key;
1170 	struct btrfs_key log_key;
1171 	struct inode *dir;
1172 	u8 log_type;
1173 	int exists;
1174 	int ret;
1175 
1176 	dir = read_one_inode(root, key->objectid);
1177 	BUG_ON(!dir);
1178 
1179 	name_len = btrfs_dir_name_len(eb, di);
1180 	name = kmalloc(name_len, GFP_NOFS);
1181 	log_type = btrfs_dir_type(eb, di);
1182 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1183 		   name_len);
1184 
1185 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1186 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1187 	if (exists == 0)
1188 		exists = 1;
1189 	else
1190 		exists = 0;
1191 	btrfs_release_path(root, path);
1192 
1193 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1194 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1195 				       name, name_len, 1);
1196 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1197 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1198 						     key->objectid,
1199 						     key->offset, name,
1200 						     name_len, 1);
1201 	} else {
1202 		BUG();
1203 	}
1204 	if (!dst_di || IS_ERR(dst_di)) {
1205 		/* we need a sequence number to insert, so we only
1206 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1207 		 */
1208 		if (key->type != BTRFS_DIR_INDEX_KEY)
1209 			goto out;
1210 		goto insert;
1211 	}
1212 
1213 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1214 	/* the existing item matches the logged item */
1215 	if (found_key.objectid == log_key.objectid &&
1216 	    found_key.type == log_key.type &&
1217 	    found_key.offset == log_key.offset &&
1218 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1219 		goto out;
1220 	}
1221 
1222 	/*
1223 	 * don't drop the conflicting directory entry if the inode
1224 	 * for the new entry doesn't exist
1225 	 */
1226 	if (!exists)
1227 		goto out;
1228 
1229 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1230 	BUG_ON(ret);
1231 
1232 	if (key->type == BTRFS_DIR_INDEX_KEY)
1233 		goto insert;
1234 out:
1235 	btrfs_release_path(root, path);
1236 	kfree(name);
1237 	iput(dir);
1238 	return 0;
1239 
1240 insert:
1241 	btrfs_release_path(root, path);
1242 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1243 			      name, name_len, log_type, &log_key);
1244 
1245 	BUG_ON(ret && ret != -ENOENT);
1246 	goto out;
1247 }
1248 
1249 /*
1250  * find all the names in a directory item and reconcile them into
1251  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1252  * one name in a directory item, but the same code gets used for
1253  * both directory index types
1254  */
1255 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1256 					struct btrfs_root *root,
1257 					struct btrfs_path *path,
1258 					struct extent_buffer *eb, int slot,
1259 					struct btrfs_key *key)
1260 {
1261 	int ret;
1262 	u32 item_size = btrfs_item_size_nr(eb, slot);
1263 	struct btrfs_dir_item *di;
1264 	int name_len;
1265 	unsigned long ptr;
1266 	unsigned long ptr_end;
1267 
1268 	ptr = btrfs_item_ptr_offset(eb, slot);
1269 	ptr_end = ptr + item_size;
1270 	while (ptr < ptr_end) {
1271 		di = (struct btrfs_dir_item *)ptr;
1272 		name_len = btrfs_dir_name_len(eb, di);
1273 		ret = replay_one_name(trans, root, path, eb, di, key);
1274 		BUG_ON(ret);
1275 		ptr = (unsigned long)(di + 1);
1276 		ptr += name_len;
1277 	}
1278 	return 0;
1279 }
1280 
1281 /*
1282  * directory replay has two parts.  There are the standard directory
1283  * items in the log copied from the subvolume, and range items
1284  * created in the log while the subvolume was logged.
1285  *
1286  * The range items tell us which parts of the key space the log
1287  * is authoritative for.  During replay, if a key in the subvolume
1288  * directory is in a logged range item, but not actually in the log
1289  * that means it was deleted from the directory before the fsync
1290  * and should be removed.
1291  */
1292 static noinline int find_dir_range(struct btrfs_root *root,
1293 				   struct btrfs_path *path,
1294 				   u64 dirid, int key_type,
1295 				   u64 *start_ret, u64 *end_ret)
1296 {
1297 	struct btrfs_key key;
1298 	u64 found_end;
1299 	struct btrfs_dir_log_item *item;
1300 	int ret;
1301 	int nritems;
1302 
1303 	if (*start_ret == (u64)-1)
1304 		return 1;
1305 
1306 	key.objectid = dirid;
1307 	key.type = key_type;
1308 	key.offset = *start_ret;
1309 
1310 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1311 	if (ret < 0)
1312 		goto out;
1313 	if (ret > 0) {
1314 		if (path->slots[0] == 0)
1315 			goto out;
1316 		path->slots[0]--;
1317 	}
1318 	if (ret != 0)
1319 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1320 
1321 	if (key.type != key_type || key.objectid != dirid) {
1322 		ret = 1;
1323 		goto next;
1324 	}
1325 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1326 			      struct btrfs_dir_log_item);
1327 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1328 
1329 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1330 		ret = 0;
1331 		*start_ret = key.offset;
1332 		*end_ret = found_end;
1333 		goto out;
1334 	}
1335 	ret = 1;
1336 next:
1337 	/* check the next slot in the tree to see if it is a valid item */
1338 	nritems = btrfs_header_nritems(path->nodes[0]);
1339 	if (path->slots[0] >= nritems) {
1340 		ret = btrfs_next_leaf(root, path);
1341 		if (ret)
1342 			goto out;
1343 	} else {
1344 		path->slots[0]++;
1345 	}
1346 
1347 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1348 
1349 	if (key.type != key_type || key.objectid != dirid) {
1350 		ret = 1;
1351 		goto out;
1352 	}
1353 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1354 			      struct btrfs_dir_log_item);
1355 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1356 	*start_ret = key.offset;
1357 	*end_ret = found_end;
1358 	ret = 0;
1359 out:
1360 	btrfs_release_path(root, path);
1361 	return ret;
1362 }
1363 
1364 /*
1365  * this looks for a given directory item in the log.  If the directory
1366  * item is not in the log, the item is removed and the inode it points
1367  * to is unlinked
1368  */
1369 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1370 				      struct btrfs_root *root,
1371 				      struct btrfs_root *log,
1372 				      struct btrfs_path *path,
1373 				      struct btrfs_path *log_path,
1374 				      struct inode *dir,
1375 				      struct btrfs_key *dir_key)
1376 {
1377 	int ret;
1378 	struct extent_buffer *eb;
1379 	int slot;
1380 	u32 item_size;
1381 	struct btrfs_dir_item *di;
1382 	struct btrfs_dir_item *log_di;
1383 	int name_len;
1384 	unsigned long ptr;
1385 	unsigned long ptr_end;
1386 	char *name;
1387 	struct inode *inode;
1388 	struct btrfs_key location;
1389 
1390 again:
1391 	eb = path->nodes[0];
1392 	slot = path->slots[0];
1393 	item_size = btrfs_item_size_nr(eb, slot);
1394 	ptr = btrfs_item_ptr_offset(eb, slot);
1395 	ptr_end = ptr + item_size;
1396 	while (ptr < ptr_end) {
1397 		di = (struct btrfs_dir_item *)ptr;
1398 		name_len = btrfs_dir_name_len(eb, di);
1399 		name = kmalloc(name_len, GFP_NOFS);
1400 		if (!name) {
1401 			ret = -ENOMEM;
1402 			goto out;
1403 		}
1404 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1405 				  name_len);
1406 		log_di = NULL;
1407 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1408 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1409 						       dir_key->objectid,
1410 						       name, name_len, 0);
1411 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1412 			log_di = btrfs_lookup_dir_index_item(trans, log,
1413 						     log_path,
1414 						     dir_key->objectid,
1415 						     dir_key->offset,
1416 						     name, name_len, 0);
1417 		}
1418 		if (!log_di || IS_ERR(log_di)) {
1419 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1420 			btrfs_release_path(root, path);
1421 			btrfs_release_path(log, log_path);
1422 			inode = read_one_inode(root, location.objectid);
1423 			BUG_ON(!inode);
1424 
1425 			ret = link_to_fixup_dir(trans, root,
1426 						path, location.objectid);
1427 			BUG_ON(ret);
1428 			btrfs_inc_nlink(inode);
1429 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1430 						 name, name_len);
1431 			BUG_ON(ret);
1432 			kfree(name);
1433 			iput(inode);
1434 
1435 			/* there might still be more names under this key
1436 			 * check and repeat if required
1437 			 */
1438 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1439 						0, 0);
1440 			if (ret == 0)
1441 				goto again;
1442 			ret = 0;
1443 			goto out;
1444 		}
1445 		btrfs_release_path(log, log_path);
1446 		kfree(name);
1447 
1448 		ptr = (unsigned long)(di + 1);
1449 		ptr += name_len;
1450 	}
1451 	ret = 0;
1452 out:
1453 	btrfs_release_path(root, path);
1454 	btrfs_release_path(log, log_path);
1455 	return ret;
1456 }
1457 
1458 /*
1459  * deletion replay happens before we copy any new directory items
1460  * out of the log or out of backreferences from inodes.  It
1461  * scans the log to find ranges of keys that log is authoritative for,
1462  * and then scans the directory to find items in those ranges that are
1463  * not present in the log.
1464  *
1465  * Anything we don't find in the log is unlinked and removed from the
1466  * directory.
1467  */
1468 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1469 				       struct btrfs_root *root,
1470 				       struct btrfs_root *log,
1471 				       struct btrfs_path *path,
1472 				       u64 dirid, int del_all)
1473 {
1474 	u64 range_start;
1475 	u64 range_end;
1476 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1477 	int ret = 0;
1478 	struct btrfs_key dir_key;
1479 	struct btrfs_key found_key;
1480 	struct btrfs_path *log_path;
1481 	struct inode *dir;
1482 
1483 	dir_key.objectid = dirid;
1484 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1485 	log_path = btrfs_alloc_path();
1486 	if (!log_path)
1487 		return -ENOMEM;
1488 
1489 	dir = read_one_inode(root, dirid);
1490 	/* it isn't an error if the inode isn't there, that can happen
1491 	 * because we replay the deletes before we copy in the inode item
1492 	 * from the log
1493 	 */
1494 	if (!dir) {
1495 		btrfs_free_path(log_path);
1496 		return 0;
1497 	}
1498 again:
1499 	range_start = 0;
1500 	range_end = 0;
1501 	while (1) {
1502 		if (del_all)
1503 			range_end = (u64)-1;
1504 		else {
1505 			ret = find_dir_range(log, path, dirid, key_type,
1506 					     &range_start, &range_end);
1507 			if (ret != 0)
1508 				break;
1509 		}
1510 
1511 		dir_key.offset = range_start;
1512 		while (1) {
1513 			int nritems;
1514 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1515 						0, 0);
1516 			if (ret < 0)
1517 				goto out;
1518 
1519 			nritems = btrfs_header_nritems(path->nodes[0]);
1520 			if (path->slots[0] >= nritems) {
1521 				ret = btrfs_next_leaf(root, path);
1522 				if (ret)
1523 					break;
1524 			}
1525 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1526 					      path->slots[0]);
1527 			if (found_key.objectid != dirid ||
1528 			    found_key.type != dir_key.type)
1529 				goto next_type;
1530 
1531 			if (found_key.offset > range_end)
1532 				break;
1533 
1534 			ret = check_item_in_log(trans, root, log, path,
1535 						log_path, dir,
1536 						&found_key);
1537 			BUG_ON(ret);
1538 			if (found_key.offset == (u64)-1)
1539 				break;
1540 			dir_key.offset = found_key.offset + 1;
1541 		}
1542 		btrfs_release_path(root, path);
1543 		if (range_end == (u64)-1)
1544 			break;
1545 		range_start = range_end + 1;
1546 	}
1547 
1548 next_type:
1549 	ret = 0;
1550 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1551 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1552 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1553 		btrfs_release_path(root, path);
1554 		goto again;
1555 	}
1556 out:
1557 	btrfs_release_path(root, path);
1558 	btrfs_free_path(log_path);
1559 	iput(dir);
1560 	return ret;
1561 }
1562 
1563 /*
1564  * the process_func used to replay items from the log tree.  This
1565  * gets called in two different stages.  The first stage just looks
1566  * for inodes and makes sure they are all copied into the subvolume.
1567  *
1568  * The second stage copies all the other item types from the log into
1569  * the subvolume.  The two stage approach is slower, but gets rid of
1570  * lots of complexity around inodes referencing other inodes that exist
1571  * only in the log (references come from either directory items or inode
1572  * back refs).
1573  */
1574 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1575 			     struct walk_control *wc, u64 gen)
1576 {
1577 	int nritems;
1578 	struct btrfs_path *path;
1579 	struct btrfs_root *root = wc->replay_dest;
1580 	struct btrfs_key key;
1581 	int level;
1582 	int i;
1583 	int ret;
1584 
1585 	btrfs_read_buffer(eb, gen);
1586 
1587 	level = btrfs_header_level(eb);
1588 
1589 	if (level != 0)
1590 		return 0;
1591 
1592 	path = btrfs_alloc_path();
1593 	BUG_ON(!path);
1594 
1595 	nritems = btrfs_header_nritems(eb);
1596 	for (i = 0; i < nritems; i++) {
1597 		btrfs_item_key_to_cpu(eb, &key, i);
1598 
1599 		/* inode keys are done during the first stage */
1600 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1601 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1602 			struct btrfs_inode_item *inode_item;
1603 			u32 mode;
1604 
1605 			inode_item = btrfs_item_ptr(eb, i,
1606 					    struct btrfs_inode_item);
1607 			mode = btrfs_inode_mode(eb, inode_item);
1608 			if (S_ISDIR(mode)) {
1609 				ret = replay_dir_deletes(wc->trans,
1610 					 root, log, path, key.objectid, 0);
1611 				BUG_ON(ret);
1612 			}
1613 			ret = overwrite_item(wc->trans, root, path,
1614 					     eb, i, &key);
1615 			BUG_ON(ret);
1616 
1617 			/* for regular files, make sure corresponding
1618 			 * orhpan item exist. extents past the new EOF
1619 			 * will be truncated later by orphan cleanup.
1620 			 */
1621 			if (S_ISREG(mode)) {
1622 				ret = insert_orphan_item(wc->trans, root,
1623 							 key.objectid);
1624 				BUG_ON(ret);
1625 			}
1626 
1627 			ret = link_to_fixup_dir(wc->trans, root,
1628 						path, key.objectid);
1629 			BUG_ON(ret);
1630 		}
1631 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1632 			continue;
1633 
1634 		/* these keys are simply copied */
1635 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1636 			ret = overwrite_item(wc->trans, root, path,
1637 					     eb, i, &key);
1638 			BUG_ON(ret);
1639 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1640 			ret = add_inode_ref(wc->trans, root, log, path,
1641 					    eb, i, &key);
1642 			BUG_ON(ret && ret != -ENOENT);
1643 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1644 			ret = replay_one_extent(wc->trans, root, path,
1645 						eb, i, &key);
1646 			BUG_ON(ret);
1647 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1648 			   key.type == BTRFS_DIR_INDEX_KEY) {
1649 			ret = replay_one_dir_item(wc->trans, root, path,
1650 						  eb, i, &key);
1651 			BUG_ON(ret);
1652 		}
1653 	}
1654 	btrfs_free_path(path);
1655 	return 0;
1656 }
1657 
1658 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1659 				   struct btrfs_root *root,
1660 				   struct btrfs_path *path, int *level,
1661 				   struct walk_control *wc)
1662 {
1663 	u64 root_owner;
1664 	u64 bytenr;
1665 	u64 ptr_gen;
1666 	struct extent_buffer *next;
1667 	struct extent_buffer *cur;
1668 	struct extent_buffer *parent;
1669 	u32 blocksize;
1670 	int ret = 0;
1671 
1672 	WARN_ON(*level < 0);
1673 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1674 
1675 	while (*level > 0) {
1676 		WARN_ON(*level < 0);
1677 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1678 		cur = path->nodes[*level];
1679 
1680 		if (btrfs_header_level(cur) != *level)
1681 			WARN_ON(1);
1682 
1683 		if (path->slots[*level] >=
1684 		    btrfs_header_nritems(cur))
1685 			break;
1686 
1687 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1688 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1689 		blocksize = btrfs_level_size(root, *level - 1);
1690 
1691 		parent = path->nodes[*level];
1692 		root_owner = btrfs_header_owner(parent);
1693 
1694 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1695 
1696 		if (*level == 1) {
1697 			wc->process_func(root, next, wc, ptr_gen);
1698 
1699 			path->slots[*level]++;
1700 			if (wc->free) {
1701 				btrfs_read_buffer(next, ptr_gen);
1702 
1703 				btrfs_tree_lock(next);
1704 				clean_tree_block(trans, root, next);
1705 				btrfs_set_lock_blocking(next);
1706 				btrfs_wait_tree_block_writeback(next);
1707 				btrfs_tree_unlock(next);
1708 
1709 				WARN_ON(root_owner !=
1710 					BTRFS_TREE_LOG_OBJECTID);
1711 				ret = btrfs_free_reserved_extent(root,
1712 							 bytenr, blocksize);
1713 				BUG_ON(ret);
1714 			}
1715 			free_extent_buffer(next);
1716 			continue;
1717 		}
1718 		btrfs_read_buffer(next, ptr_gen);
1719 
1720 		WARN_ON(*level <= 0);
1721 		if (path->nodes[*level-1])
1722 			free_extent_buffer(path->nodes[*level-1]);
1723 		path->nodes[*level-1] = next;
1724 		*level = btrfs_header_level(next);
1725 		path->slots[*level] = 0;
1726 		cond_resched();
1727 	}
1728 	WARN_ON(*level < 0);
1729 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1730 
1731 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1732 
1733 	cond_resched();
1734 	return 0;
1735 }
1736 
1737 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1738 				 struct btrfs_root *root,
1739 				 struct btrfs_path *path, int *level,
1740 				 struct walk_control *wc)
1741 {
1742 	u64 root_owner;
1743 	int i;
1744 	int slot;
1745 	int ret;
1746 
1747 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1748 		slot = path->slots[i];
1749 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1750 			path->slots[i]++;
1751 			*level = i;
1752 			WARN_ON(*level == 0);
1753 			return 0;
1754 		} else {
1755 			struct extent_buffer *parent;
1756 			if (path->nodes[*level] == root->node)
1757 				parent = path->nodes[*level];
1758 			else
1759 				parent = path->nodes[*level + 1];
1760 
1761 			root_owner = btrfs_header_owner(parent);
1762 			wc->process_func(root, path->nodes[*level], wc,
1763 				 btrfs_header_generation(path->nodes[*level]));
1764 			if (wc->free) {
1765 				struct extent_buffer *next;
1766 
1767 				next = path->nodes[*level];
1768 
1769 				btrfs_tree_lock(next);
1770 				clean_tree_block(trans, root, next);
1771 				btrfs_set_lock_blocking(next);
1772 				btrfs_wait_tree_block_writeback(next);
1773 				btrfs_tree_unlock(next);
1774 
1775 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1776 				ret = btrfs_free_reserved_extent(root,
1777 						path->nodes[*level]->start,
1778 						path->nodes[*level]->len);
1779 				BUG_ON(ret);
1780 			}
1781 			free_extent_buffer(path->nodes[*level]);
1782 			path->nodes[*level] = NULL;
1783 			*level = i + 1;
1784 		}
1785 	}
1786 	return 1;
1787 }
1788 
1789 /*
1790  * drop the reference count on the tree rooted at 'snap'.  This traverses
1791  * the tree freeing any blocks that have a ref count of zero after being
1792  * decremented.
1793  */
1794 static int walk_log_tree(struct btrfs_trans_handle *trans,
1795 			 struct btrfs_root *log, struct walk_control *wc)
1796 {
1797 	int ret = 0;
1798 	int wret;
1799 	int level;
1800 	struct btrfs_path *path;
1801 	int i;
1802 	int orig_level;
1803 
1804 	path = btrfs_alloc_path();
1805 	BUG_ON(!path);
1806 
1807 	level = btrfs_header_level(log->node);
1808 	orig_level = level;
1809 	path->nodes[level] = log->node;
1810 	extent_buffer_get(log->node);
1811 	path->slots[level] = 0;
1812 
1813 	while (1) {
1814 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1815 		if (wret > 0)
1816 			break;
1817 		if (wret < 0)
1818 			ret = wret;
1819 
1820 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1821 		if (wret > 0)
1822 			break;
1823 		if (wret < 0)
1824 			ret = wret;
1825 	}
1826 
1827 	/* was the root node processed? if not, catch it here */
1828 	if (path->nodes[orig_level]) {
1829 		wc->process_func(log, path->nodes[orig_level], wc,
1830 			 btrfs_header_generation(path->nodes[orig_level]));
1831 		if (wc->free) {
1832 			struct extent_buffer *next;
1833 
1834 			next = path->nodes[orig_level];
1835 
1836 			btrfs_tree_lock(next);
1837 			clean_tree_block(trans, log, next);
1838 			btrfs_set_lock_blocking(next);
1839 			btrfs_wait_tree_block_writeback(next);
1840 			btrfs_tree_unlock(next);
1841 
1842 			WARN_ON(log->root_key.objectid !=
1843 				BTRFS_TREE_LOG_OBJECTID);
1844 			ret = btrfs_free_reserved_extent(log, next->start,
1845 							 next->len);
1846 			BUG_ON(ret);
1847 		}
1848 	}
1849 
1850 	for (i = 0; i <= orig_level; i++) {
1851 		if (path->nodes[i]) {
1852 			free_extent_buffer(path->nodes[i]);
1853 			path->nodes[i] = NULL;
1854 		}
1855 	}
1856 	btrfs_free_path(path);
1857 	return ret;
1858 }
1859 
1860 /*
1861  * helper function to update the item for a given subvolumes log root
1862  * in the tree of log roots
1863  */
1864 static int update_log_root(struct btrfs_trans_handle *trans,
1865 			   struct btrfs_root *log)
1866 {
1867 	int ret;
1868 
1869 	if (log->log_transid == 1) {
1870 		/* insert root item on the first sync */
1871 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1872 				&log->root_key, &log->root_item);
1873 	} else {
1874 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1875 				&log->root_key, &log->root_item);
1876 	}
1877 	return ret;
1878 }
1879 
1880 static int wait_log_commit(struct btrfs_trans_handle *trans,
1881 			   struct btrfs_root *root, unsigned long transid)
1882 {
1883 	DEFINE_WAIT(wait);
1884 	int index = transid % 2;
1885 
1886 	/*
1887 	 * we only allow two pending log transactions at a time,
1888 	 * so we know that if ours is more than 2 older than the
1889 	 * current transaction, we're done
1890 	 */
1891 	do {
1892 		prepare_to_wait(&root->log_commit_wait[index],
1893 				&wait, TASK_UNINTERRUPTIBLE);
1894 		mutex_unlock(&root->log_mutex);
1895 
1896 		if (root->fs_info->last_trans_log_full_commit !=
1897 		    trans->transid && root->log_transid < transid + 2 &&
1898 		    atomic_read(&root->log_commit[index]))
1899 			schedule();
1900 
1901 		finish_wait(&root->log_commit_wait[index], &wait);
1902 		mutex_lock(&root->log_mutex);
1903 	} while (root->log_transid < transid + 2 &&
1904 		 atomic_read(&root->log_commit[index]));
1905 	return 0;
1906 }
1907 
1908 static int wait_for_writer(struct btrfs_trans_handle *trans,
1909 			   struct btrfs_root *root)
1910 {
1911 	DEFINE_WAIT(wait);
1912 	while (atomic_read(&root->log_writers)) {
1913 		prepare_to_wait(&root->log_writer_wait,
1914 				&wait, TASK_UNINTERRUPTIBLE);
1915 		mutex_unlock(&root->log_mutex);
1916 		if (root->fs_info->last_trans_log_full_commit !=
1917 		    trans->transid && atomic_read(&root->log_writers))
1918 			schedule();
1919 		mutex_lock(&root->log_mutex);
1920 		finish_wait(&root->log_writer_wait, &wait);
1921 	}
1922 	return 0;
1923 }
1924 
1925 /*
1926  * btrfs_sync_log does sends a given tree log down to the disk and
1927  * updates the super blocks to record it.  When this call is done,
1928  * you know that any inodes previously logged are safely on disk only
1929  * if it returns 0.
1930  *
1931  * Any other return value means you need to call btrfs_commit_transaction.
1932  * Some of the edge cases for fsyncing directories that have had unlinks
1933  * or renames done in the past mean that sometimes the only safe
1934  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1935  * that has happened.
1936  */
1937 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1938 		   struct btrfs_root *root)
1939 {
1940 	int index1;
1941 	int index2;
1942 	int mark;
1943 	int ret;
1944 	struct btrfs_root *log = root->log_root;
1945 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1946 	unsigned long log_transid = 0;
1947 
1948 	mutex_lock(&root->log_mutex);
1949 	index1 = root->log_transid % 2;
1950 	if (atomic_read(&root->log_commit[index1])) {
1951 		wait_log_commit(trans, root, root->log_transid);
1952 		mutex_unlock(&root->log_mutex);
1953 		return 0;
1954 	}
1955 	atomic_set(&root->log_commit[index1], 1);
1956 
1957 	/* wait for previous tree log sync to complete */
1958 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1959 		wait_log_commit(trans, root, root->log_transid - 1);
1960 
1961 	while (1) {
1962 		unsigned long batch = root->log_batch;
1963 		if (root->log_multiple_pids) {
1964 			mutex_unlock(&root->log_mutex);
1965 			schedule_timeout_uninterruptible(1);
1966 			mutex_lock(&root->log_mutex);
1967 		}
1968 		wait_for_writer(trans, root);
1969 		if (batch == root->log_batch)
1970 			break;
1971 	}
1972 
1973 	/* bail out if we need to do a full commit */
1974 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
1975 		ret = -EAGAIN;
1976 		mutex_unlock(&root->log_mutex);
1977 		goto out;
1978 	}
1979 
1980 	log_transid = root->log_transid;
1981 	if (log_transid % 2 == 0)
1982 		mark = EXTENT_DIRTY;
1983 	else
1984 		mark = EXTENT_NEW;
1985 
1986 	/* we start IO on  all the marked extents here, but we don't actually
1987 	 * wait for them until later.
1988 	 */
1989 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
1990 	BUG_ON(ret);
1991 
1992 	btrfs_set_root_node(&log->root_item, log->node);
1993 
1994 	root->log_batch = 0;
1995 	root->log_transid++;
1996 	log->log_transid = root->log_transid;
1997 	root->log_start_pid = 0;
1998 	smp_mb();
1999 	/*
2000 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2001 	 * in their headers. new modifications of the log will be written to
2002 	 * new positions. so it's safe to allow log writers to go in.
2003 	 */
2004 	mutex_unlock(&root->log_mutex);
2005 
2006 	mutex_lock(&log_root_tree->log_mutex);
2007 	log_root_tree->log_batch++;
2008 	atomic_inc(&log_root_tree->log_writers);
2009 	mutex_unlock(&log_root_tree->log_mutex);
2010 
2011 	ret = update_log_root(trans, log);
2012 
2013 	mutex_lock(&log_root_tree->log_mutex);
2014 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2015 		smp_mb();
2016 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2017 			wake_up(&log_root_tree->log_writer_wait);
2018 	}
2019 
2020 	if (ret) {
2021 		BUG_ON(ret != -ENOSPC);
2022 		root->fs_info->last_trans_log_full_commit = trans->transid;
2023 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2024 		mutex_unlock(&log_root_tree->log_mutex);
2025 		ret = -EAGAIN;
2026 		goto out;
2027 	}
2028 
2029 	index2 = log_root_tree->log_transid % 2;
2030 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2031 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2032 		wait_log_commit(trans, log_root_tree,
2033 				log_root_tree->log_transid);
2034 		mutex_unlock(&log_root_tree->log_mutex);
2035 		goto out;
2036 	}
2037 	atomic_set(&log_root_tree->log_commit[index2], 1);
2038 
2039 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2040 		wait_log_commit(trans, log_root_tree,
2041 				log_root_tree->log_transid - 1);
2042 	}
2043 
2044 	wait_for_writer(trans, log_root_tree);
2045 
2046 	/*
2047 	 * now that we've moved on to the tree of log tree roots,
2048 	 * check the full commit flag again
2049 	 */
2050 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2051 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2052 		mutex_unlock(&log_root_tree->log_mutex);
2053 		ret = -EAGAIN;
2054 		goto out_wake_log_root;
2055 	}
2056 
2057 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2058 				&log_root_tree->dirty_log_pages,
2059 				EXTENT_DIRTY | EXTENT_NEW);
2060 	BUG_ON(ret);
2061 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2062 
2063 	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2064 				log_root_tree->node->start);
2065 	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2066 				btrfs_header_level(log_root_tree->node));
2067 
2068 	log_root_tree->log_batch = 0;
2069 	log_root_tree->log_transid++;
2070 	smp_mb();
2071 
2072 	mutex_unlock(&log_root_tree->log_mutex);
2073 
2074 	/*
2075 	 * nobody else is going to jump in and write the the ctree
2076 	 * super here because the log_commit atomic below is protecting
2077 	 * us.  We must be called with a transaction handle pinning
2078 	 * the running transaction open, so a full commit can't hop
2079 	 * in and cause problems either.
2080 	 */
2081 	write_ctree_super(trans, root->fs_info->tree_root, 1);
2082 	ret = 0;
2083 
2084 	mutex_lock(&root->log_mutex);
2085 	if (root->last_log_commit < log_transid)
2086 		root->last_log_commit = log_transid;
2087 	mutex_unlock(&root->log_mutex);
2088 
2089 out_wake_log_root:
2090 	atomic_set(&log_root_tree->log_commit[index2], 0);
2091 	smp_mb();
2092 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2093 		wake_up(&log_root_tree->log_commit_wait[index2]);
2094 out:
2095 	atomic_set(&root->log_commit[index1], 0);
2096 	smp_mb();
2097 	if (waitqueue_active(&root->log_commit_wait[index1]))
2098 		wake_up(&root->log_commit_wait[index1]);
2099 	return 0;
2100 }
2101 
2102 static void free_log_tree(struct btrfs_trans_handle *trans,
2103 			  struct btrfs_root *log)
2104 {
2105 	int ret;
2106 	u64 start;
2107 	u64 end;
2108 	struct walk_control wc = {
2109 		.free = 1,
2110 		.process_func = process_one_buffer
2111 	};
2112 
2113 	ret = walk_log_tree(trans, log, &wc);
2114 	BUG_ON(ret);
2115 
2116 	while (1) {
2117 		ret = find_first_extent_bit(&log->dirty_log_pages,
2118 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2119 		if (ret)
2120 			break;
2121 
2122 		clear_extent_bits(&log->dirty_log_pages, start, end,
2123 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2124 	}
2125 
2126 	free_extent_buffer(log->node);
2127 	kfree(log);
2128 }
2129 
2130 /*
2131  * free all the extents used by the tree log.  This should be called
2132  * at commit time of the full transaction
2133  */
2134 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2135 {
2136 	if (root->log_root) {
2137 		free_log_tree(trans, root->log_root);
2138 		root->log_root = NULL;
2139 	}
2140 	return 0;
2141 }
2142 
2143 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2144 			     struct btrfs_fs_info *fs_info)
2145 {
2146 	if (fs_info->log_root_tree) {
2147 		free_log_tree(trans, fs_info->log_root_tree);
2148 		fs_info->log_root_tree = NULL;
2149 	}
2150 	return 0;
2151 }
2152 
2153 /*
2154  * If both a file and directory are logged, and unlinks or renames are
2155  * mixed in, we have a few interesting corners:
2156  *
2157  * create file X in dir Y
2158  * link file X to X.link in dir Y
2159  * fsync file X
2160  * unlink file X but leave X.link
2161  * fsync dir Y
2162  *
2163  * After a crash we would expect only X.link to exist.  But file X
2164  * didn't get fsync'd again so the log has back refs for X and X.link.
2165  *
2166  * We solve this by removing directory entries and inode backrefs from the
2167  * log when a file that was logged in the current transaction is
2168  * unlinked.  Any later fsync will include the updated log entries, and
2169  * we'll be able to reconstruct the proper directory items from backrefs.
2170  *
2171  * This optimizations allows us to avoid relogging the entire inode
2172  * or the entire directory.
2173  */
2174 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2175 				 struct btrfs_root *root,
2176 				 const char *name, int name_len,
2177 				 struct inode *dir, u64 index)
2178 {
2179 	struct btrfs_root *log;
2180 	struct btrfs_dir_item *di;
2181 	struct btrfs_path *path;
2182 	int ret;
2183 	int err = 0;
2184 	int bytes_del = 0;
2185 
2186 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2187 		return 0;
2188 
2189 	ret = join_running_log_trans(root);
2190 	if (ret)
2191 		return 0;
2192 
2193 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2194 
2195 	log = root->log_root;
2196 	path = btrfs_alloc_path();
2197 	di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2198 				   name, name_len, -1);
2199 	if (IS_ERR(di)) {
2200 		err = PTR_ERR(di);
2201 		goto fail;
2202 	}
2203 	if (di) {
2204 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2205 		bytes_del += name_len;
2206 		BUG_ON(ret);
2207 	}
2208 	btrfs_release_path(log, path);
2209 	di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2210 					 index, name, name_len, -1);
2211 	if (IS_ERR(di)) {
2212 		err = PTR_ERR(di);
2213 		goto fail;
2214 	}
2215 	if (di) {
2216 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2217 		bytes_del += name_len;
2218 		BUG_ON(ret);
2219 	}
2220 
2221 	/* update the directory size in the log to reflect the names
2222 	 * we have removed
2223 	 */
2224 	if (bytes_del) {
2225 		struct btrfs_key key;
2226 
2227 		key.objectid = dir->i_ino;
2228 		key.offset = 0;
2229 		key.type = BTRFS_INODE_ITEM_KEY;
2230 		btrfs_release_path(log, path);
2231 
2232 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2233 		if (ret < 0) {
2234 			err = ret;
2235 			goto fail;
2236 		}
2237 		if (ret == 0) {
2238 			struct btrfs_inode_item *item;
2239 			u64 i_size;
2240 
2241 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2242 					      struct btrfs_inode_item);
2243 			i_size = btrfs_inode_size(path->nodes[0], item);
2244 			if (i_size > bytes_del)
2245 				i_size -= bytes_del;
2246 			else
2247 				i_size = 0;
2248 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2249 			btrfs_mark_buffer_dirty(path->nodes[0]);
2250 		} else
2251 			ret = 0;
2252 		btrfs_release_path(log, path);
2253 	}
2254 fail:
2255 	btrfs_free_path(path);
2256 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2257 	if (ret == -ENOSPC) {
2258 		root->fs_info->last_trans_log_full_commit = trans->transid;
2259 		ret = 0;
2260 	}
2261 	btrfs_end_log_trans(root);
2262 
2263 	return err;
2264 }
2265 
2266 /* see comments for btrfs_del_dir_entries_in_log */
2267 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2268 			       struct btrfs_root *root,
2269 			       const char *name, int name_len,
2270 			       struct inode *inode, u64 dirid)
2271 {
2272 	struct btrfs_root *log;
2273 	u64 index;
2274 	int ret;
2275 
2276 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2277 		return 0;
2278 
2279 	ret = join_running_log_trans(root);
2280 	if (ret)
2281 		return 0;
2282 	log = root->log_root;
2283 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2284 
2285 	ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2286 				  dirid, &index);
2287 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2288 	if (ret == -ENOSPC) {
2289 		root->fs_info->last_trans_log_full_commit = trans->transid;
2290 		ret = 0;
2291 	}
2292 	btrfs_end_log_trans(root);
2293 
2294 	return ret;
2295 }
2296 
2297 /*
2298  * creates a range item in the log for 'dirid'.  first_offset and
2299  * last_offset tell us which parts of the key space the log should
2300  * be considered authoritative for.
2301  */
2302 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2303 				       struct btrfs_root *log,
2304 				       struct btrfs_path *path,
2305 				       int key_type, u64 dirid,
2306 				       u64 first_offset, u64 last_offset)
2307 {
2308 	int ret;
2309 	struct btrfs_key key;
2310 	struct btrfs_dir_log_item *item;
2311 
2312 	key.objectid = dirid;
2313 	key.offset = first_offset;
2314 	if (key_type == BTRFS_DIR_ITEM_KEY)
2315 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2316 	else
2317 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2318 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2319 	if (ret)
2320 		return ret;
2321 
2322 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2323 			      struct btrfs_dir_log_item);
2324 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2325 	btrfs_mark_buffer_dirty(path->nodes[0]);
2326 	btrfs_release_path(log, path);
2327 	return 0;
2328 }
2329 
2330 /*
2331  * log all the items included in the current transaction for a given
2332  * directory.  This also creates the range items in the log tree required
2333  * to replay anything deleted before the fsync
2334  */
2335 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2336 			  struct btrfs_root *root, struct inode *inode,
2337 			  struct btrfs_path *path,
2338 			  struct btrfs_path *dst_path, int key_type,
2339 			  u64 min_offset, u64 *last_offset_ret)
2340 {
2341 	struct btrfs_key min_key;
2342 	struct btrfs_key max_key;
2343 	struct btrfs_root *log = root->log_root;
2344 	struct extent_buffer *src;
2345 	int err = 0;
2346 	int ret;
2347 	int i;
2348 	int nritems;
2349 	u64 first_offset = min_offset;
2350 	u64 last_offset = (u64)-1;
2351 
2352 	log = root->log_root;
2353 	max_key.objectid = inode->i_ino;
2354 	max_key.offset = (u64)-1;
2355 	max_key.type = key_type;
2356 
2357 	min_key.objectid = inode->i_ino;
2358 	min_key.type = key_type;
2359 	min_key.offset = min_offset;
2360 
2361 	path->keep_locks = 1;
2362 
2363 	ret = btrfs_search_forward(root, &min_key, &max_key,
2364 				   path, 0, trans->transid);
2365 
2366 	/*
2367 	 * we didn't find anything from this transaction, see if there
2368 	 * is anything at all
2369 	 */
2370 	if (ret != 0 || min_key.objectid != inode->i_ino ||
2371 	    min_key.type != key_type) {
2372 		min_key.objectid = inode->i_ino;
2373 		min_key.type = key_type;
2374 		min_key.offset = (u64)-1;
2375 		btrfs_release_path(root, path);
2376 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2377 		if (ret < 0) {
2378 			btrfs_release_path(root, path);
2379 			return ret;
2380 		}
2381 		ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2382 
2383 		/* if ret == 0 there are items for this type,
2384 		 * create a range to tell us the last key of this type.
2385 		 * otherwise, there are no items in this directory after
2386 		 * *min_offset, and we create a range to indicate that.
2387 		 */
2388 		if (ret == 0) {
2389 			struct btrfs_key tmp;
2390 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2391 					      path->slots[0]);
2392 			if (key_type == tmp.type)
2393 				first_offset = max(min_offset, tmp.offset) + 1;
2394 		}
2395 		goto done;
2396 	}
2397 
2398 	/* go backward to find any previous key */
2399 	ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2400 	if (ret == 0) {
2401 		struct btrfs_key tmp;
2402 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2403 		if (key_type == tmp.type) {
2404 			first_offset = tmp.offset;
2405 			ret = overwrite_item(trans, log, dst_path,
2406 					     path->nodes[0], path->slots[0],
2407 					     &tmp);
2408 			if (ret) {
2409 				err = ret;
2410 				goto done;
2411 			}
2412 		}
2413 	}
2414 	btrfs_release_path(root, path);
2415 
2416 	/* find the first key from this transaction again */
2417 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2418 	if (ret != 0) {
2419 		WARN_ON(1);
2420 		goto done;
2421 	}
2422 
2423 	/*
2424 	 * we have a block from this transaction, log every item in it
2425 	 * from our directory
2426 	 */
2427 	while (1) {
2428 		struct btrfs_key tmp;
2429 		src = path->nodes[0];
2430 		nritems = btrfs_header_nritems(src);
2431 		for (i = path->slots[0]; i < nritems; i++) {
2432 			btrfs_item_key_to_cpu(src, &min_key, i);
2433 
2434 			if (min_key.objectid != inode->i_ino ||
2435 			    min_key.type != key_type)
2436 				goto done;
2437 			ret = overwrite_item(trans, log, dst_path, src, i,
2438 					     &min_key);
2439 			if (ret) {
2440 				err = ret;
2441 				goto done;
2442 			}
2443 		}
2444 		path->slots[0] = nritems;
2445 
2446 		/*
2447 		 * look ahead to the next item and see if it is also
2448 		 * from this directory and from this transaction
2449 		 */
2450 		ret = btrfs_next_leaf(root, path);
2451 		if (ret == 1) {
2452 			last_offset = (u64)-1;
2453 			goto done;
2454 		}
2455 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2456 		if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2457 			last_offset = (u64)-1;
2458 			goto done;
2459 		}
2460 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2461 			ret = overwrite_item(trans, log, dst_path,
2462 					     path->nodes[0], path->slots[0],
2463 					     &tmp);
2464 			if (ret)
2465 				err = ret;
2466 			else
2467 				last_offset = tmp.offset;
2468 			goto done;
2469 		}
2470 	}
2471 done:
2472 	btrfs_release_path(root, path);
2473 	btrfs_release_path(log, dst_path);
2474 
2475 	if (err == 0) {
2476 		*last_offset_ret = last_offset;
2477 		/*
2478 		 * insert the log range keys to indicate where the log
2479 		 * is valid
2480 		 */
2481 		ret = insert_dir_log_key(trans, log, path, key_type,
2482 					 inode->i_ino, first_offset,
2483 					 last_offset);
2484 		if (ret)
2485 			err = ret;
2486 	}
2487 	return err;
2488 }
2489 
2490 /*
2491  * logging directories is very similar to logging inodes, We find all the items
2492  * from the current transaction and write them to the log.
2493  *
2494  * The recovery code scans the directory in the subvolume, and if it finds a
2495  * key in the range logged that is not present in the log tree, then it means
2496  * that dir entry was unlinked during the transaction.
2497  *
2498  * In order for that scan to work, we must include one key smaller than
2499  * the smallest logged by this transaction and one key larger than the largest
2500  * key logged by this transaction.
2501  */
2502 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2503 			  struct btrfs_root *root, struct inode *inode,
2504 			  struct btrfs_path *path,
2505 			  struct btrfs_path *dst_path)
2506 {
2507 	u64 min_key;
2508 	u64 max_key;
2509 	int ret;
2510 	int key_type = BTRFS_DIR_ITEM_KEY;
2511 
2512 again:
2513 	min_key = 0;
2514 	max_key = 0;
2515 	while (1) {
2516 		ret = log_dir_items(trans, root, inode, path,
2517 				    dst_path, key_type, min_key,
2518 				    &max_key);
2519 		if (ret)
2520 			return ret;
2521 		if (max_key == (u64)-1)
2522 			break;
2523 		min_key = max_key + 1;
2524 	}
2525 
2526 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2527 		key_type = BTRFS_DIR_INDEX_KEY;
2528 		goto again;
2529 	}
2530 	return 0;
2531 }
2532 
2533 /*
2534  * a helper function to drop items from the log before we relog an
2535  * inode.  max_key_type indicates the highest item type to remove.
2536  * This cannot be run for file data extents because it does not
2537  * free the extents they point to.
2538  */
2539 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2540 				  struct btrfs_root *log,
2541 				  struct btrfs_path *path,
2542 				  u64 objectid, int max_key_type)
2543 {
2544 	int ret;
2545 	struct btrfs_key key;
2546 	struct btrfs_key found_key;
2547 
2548 	key.objectid = objectid;
2549 	key.type = max_key_type;
2550 	key.offset = (u64)-1;
2551 
2552 	while (1) {
2553 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2554 		BUG_ON(ret == 0);
2555 		if (ret < 0)
2556 			break;
2557 
2558 		if (path->slots[0] == 0)
2559 			break;
2560 
2561 		path->slots[0]--;
2562 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2563 				      path->slots[0]);
2564 
2565 		if (found_key.objectid != objectid)
2566 			break;
2567 
2568 		ret = btrfs_del_item(trans, log, path);
2569 		BUG_ON(ret);
2570 		btrfs_release_path(log, path);
2571 	}
2572 	btrfs_release_path(log, path);
2573 	return ret;
2574 }
2575 
2576 static noinline int copy_items(struct btrfs_trans_handle *trans,
2577 			       struct btrfs_root *log,
2578 			       struct btrfs_path *dst_path,
2579 			       struct extent_buffer *src,
2580 			       int start_slot, int nr, int inode_only)
2581 {
2582 	unsigned long src_offset;
2583 	unsigned long dst_offset;
2584 	struct btrfs_file_extent_item *extent;
2585 	struct btrfs_inode_item *inode_item;
2586 	int ret;
2587 	struct btrfs_key *ins_keys;
2588 	u32 *ins_sizes;
2589 	char *ins_data;
2590 	int i;
2591 	struct list_head ordered_sums;
2592 
2593 	INIT_LIST_HEAD(&ordered_sums);
2594 
2595 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2596 			   nr * sizeof(u32), GFP_NOFS);
2597 	ins_sizes = (u32 *)ins_data;
2598 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2599 
2600 	for (i = 0; i < nr; i++) {
2601 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2602 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2603 	}
2604 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2605 				       ins_keys, ins_sizes, nr);
2606 	if (ret) {
2607 		kfree(ins_data);
2608 		return ret;
2609 	}
2610 
2611 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2612 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2613 						   dst_path->slots[0]);
2614 
2615 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2616 
2617 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2618 				   src_offset, ins_sizes[i]);
2619 
2620 		if (inode_only == LOG_INODE_EXISTS &&
2621 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2622 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2623 						    dst_path->slots[0],
2624 						    struct btrfs_inode_item);
2625 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2626 
2627 			/* set the generation to zero so the recover code
2628 			 * can tell the difference between an logging
2629 			 * just to say 'this inode exists' and a logging
2630 			 * to say 'update this inode with these values'
2631 			 */
2632 			btrfs_set_inode_generation(dst_path->nodes[0],
2633 						   inode_item, 0);
2634 		}
2635 		/* take a reference on file data extents so that truncates
2636 		 * or deletes of this inode don't have to relog the inode
2637 		 * again
2638 		 */
2639 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2640 			int found_type;
2641 			extent = btrfs_item_ptr(src, start_slot + i,
2642 						struct btrfs_file_extent_item);
2643 
2644 			found_type = btrfs_file_extent_type(src, extent);
2645 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2646 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2647 				u64 ds, dl, cs, cl;
2648 				ds = btrfs_file_extent_disk_bytenr(src,
2649 								extent);
2650 				/* ds == 0 is a hole */
2651 				if (ds == 0)
2652 					continue;
2653 
2654 				dl = btrfs_file_extent_disk_num_bytes(src,
2655 								extent);
2656 				cs = btrfs_file_extent_offset(src, extent);
2657 				cl = btrfs_file_extent_num_bytes(src,
2658 								extent);
2659 				if (btrfs_file_extent_compression(src,
2660 								  extent)) {
2661 					cs = 0;
2662 					cl = dl;
2663 				}
2664 
2665 				ret = btrfs_lookup_csums_range(
2666 						log->fs_info->csum_root,
2667 						ds + cs, ds + cs + cl - 1,
2668 						&ordered_sums);
2669 				BUG_ON(ret);
2670 			}
2671 		}
2672 	}
2673 
2674 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2675 	btrfs_release_path(log, dst_path);
2676 	kfree(ins_data);
2677 
2678 	/*
2679 	 * we have to do this after the loop above to avoid changing the
2680 	 * log tree while trying to change the log tree.
2681 	 */
2682 	ret = 0;
2683 	while (!list_empty(&ordered_sums)) {
2684 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2685 						   struct btrfs_ordered_sum,
2686 						   list);
2687 		if (!ret)
2688 			ret = btrfs_csum_file_blocks(trans, log, sums);
2689 		list_del(&sums->list);
2690 		kfree(sums);
2691 	}
2692 	return ret;
2693 }
2694 
2695 /* log a single inode in the tree log.
2696  * At least one parent directory for this inode must exist in the tree
2697  * or be logged already.
2698  *
2699  * Any items from this inode changed by the current transaction are copied
2700  * to the log tree.  An extra reference is taken on any extents in this
2701  * file, allowing us to avoid a whole pile of corner cases around logging
2702  * blocks that have been removed from the tree.
2703  *
2704  * See LOG_INODE_ALL and related defines for a description of what inode_only
2705  * does.
2706  *
2707  * This handles both files and directories.
2708  */
2709 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2710 			     struct btrfs_root *root, struct inode *inode,
2711 			     int inode_only)
2712 {
2713 	struct btrfs_path *path;
2714 	struct btrfs_path *dst_path;
2715 	struct btrfs_key min_key;
2716 	struct btrfs_key max_key;
2717 	struct btrfs_root *log = root->log_root;
2718 	struct extent_buffer *src = NULL;
2719 	int err = 0;
2720 	int ret;
2721 	int nritems;
2722 	int ins_start_slot = 0;
2723 	int ins_nr;
2724 
2725 	log = root->log_root;
2726 
2727 	path = btrfs_alloc_path();
2728 	dst_path = btrfs_alloc_path();
2729 
2730 	min_key.objectid = inode->i_ino;
2731 	min_key.type = BTRFS_INODE_ITEM_KEY;
2732 	min_key.offset = 0;
2733 
2734 	max_key.objectid = inode->i_ino;
2735 
2736 	/* today the code can only do partial logging of directories */
2737 	if (!S_ISDIR(inode->i_mode))
2738 	    inode_only = LOG_INODE_ALL;
2739 
2740 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2741 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2742 	else
2743 		max_key.type = (u8)-1;
2744 	max_key.offset = (u64)-1;
2745 
2746 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2747 
2748 	/*
2749 	 * a brute force approach to making sure we get the most uptodate
2750 	 * copies of everything.
2751 	 */
2752 	if (S_ISDIR(inode->i_mode)) {
2753 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2754 
2755 		if (inode_only == LOG_INODE_EXISTS)
2756 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2757 		ret = drop_objectid_items(trans, log, path,
2758 					  inode->i_ino, max_key_type);
2759 	} else {
2760 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2761 	}
2762 	if (ret) {
2763 		err = ret;
2764 		goto out_unlock;
2765 	}
2766 	path->keep_locks = 1;
2767 
2768 	while (1) {
2769 		ins_nr = 0;
2770 		ret = btrfs_search_forward(root, &min_key, &max_key,
2771 					   path, 0, trans->transid);
2772 		if (ret != 0)
2773 			break;
2774 again:
2775 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2776 		if (min_key.objectid != inode->i_ino)
2777 			break;
2778 		if (min_key.type > max_key.type)
2779 			break;
2780 
2781 		src = path->nodes[0];
2782 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2783 			ins_nr++;
2784 			goto next_slot;
2785 		} else if (!ins_nr) {
2786 			ins_start_slot = path->slots[0];
2787 			ins_nr = 1;
2788 			goto next_slot;
2789 		}
2790 
2791 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2792 				 ins_nr, inode_only);
2793 		if (ret) {
2794 			err = ret;
2795 			goto out_unlock;
2796 		}
2797 		ins_nr = 1;
2798 		ins_start_slot = path->slots[0];
2799 next_slot:
2800 
2801 		nritems = btrfs_header_nritems(path->nodes[0]);
2802 		path->slots[0]++;
2803 		if (path->slots[0] < nritems) {
2804 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2805 					      path->slots[0]);
2806 			goto again;
2807 		}
2808 		if (ins_nr) {
2809 			ret = copy_items(trans, log, dst_path, src,
2810 					 ins_start_slot,
2811 					 ins_nr, inode_only);
2812 			if (ret) {
2813 				err = ret;
2814 				goto out_unlock;
2815 			}
2816 			ins_nr = 0;
2817 		}
2818 		btrfs_release_path(root, path);
2819 
2820 		if (min_key.offset < (u64)-1)
2821 			min_key.offset++;
2822 		else if (min_key.type < (u8)-1)
2823 			min_key.type++;
2824 		else if (min_key.objectid < (u64)-1)
2825 			min_key.objectid++;
2826 		else
2827 			break;
2828 	}
2829 	if (ins_nr) {
2830 		ret = copy_items(trans, log, dst_path, src,
2831 				 ins_start_slot,
2832 				 ins_nr, inode_only);
2833 		if (ret) {
2834 			err = ret;
2835 			goto out_unlock;
2836 		}
2837 		ins_nr = 0;
2838 	}
2839 	WARN_ON(ins_nr);
2840 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2841 		btrfs_release_path(root, path);
2842 		btrfs_release_path(log, dst_path);
2843 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2844 		if (ret) {
2845 			err = ret;
2846 			goto out_unlock;
2847 		}
2848 	}
2849 	BTRFS_I(inode)->logged_trans = trans->transid;
2850 out_unlock:
2851 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2852 
2853 	btrfs_free_path(path);
2854 	btrfs_free_path(dst_path);
2855 	return err;
2856 }
2857 
2858 /*
2859  * follow the dentry parent pointers up the chain and see if any
2860  * of the directories in it require a full commit before they can
2861  * be logged.  Returns zero if nothing special needs to be done or 1 if
2862  * a full commit is required.
2863  */
2864 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2865 					       struct inode *inode,
2866 					       struct dentry *parent,
2867 					       struct super_block *sb,
2868 					       u64 last_committed)
2869 {
2870 	int ret = 0;
2871 	struct btrfs_root *root;
2872 	struct dentry *old_parent = NULL;
2873 
2874 	/*
2875 	 * for regular files, if its inode is already on disk, we don't
2876 	 * have to worry about the parents at all.  This is because
2877 	 * we can use the last_unlink_trans field to record renames
2878 	 * and other fun in this file.
2879 	 */
2880 	if (S_ISREG(inode->i_mode) &&
2881 	    BTRFS_I(inode)->generation <= last_committed &&
2882 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2883 			goto out;
2884 
2885 	if (!S_ISDIR(inode->i_mode)) {
2886 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2887 			goto out;
2888 		inode = parent->d_inode;
2889 	}
2890 
2891 	while (1) {
2892 		BTRFS_I(inode)->logged_trans = trans->transid;
2893 		smp_mb();
2894 
2895 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2896 			root = BTRFS_I(inode)->root;
2897 
2898 			/*
2899 			 * make sure any commits to the log are forced
2900 			 * to be full commits
2901 			 */
2902 			root->fs_info->last_trans_log_full_commit =
2903 				trans->transid;
2904 			ret = 1;
2905 			break;
2906 		}
2907 
2908 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2909 			break;
2910 
2911 		if (IS_ROOT(parent))
2912 			break;
2913 
2914 		parent = dget_parent(parent);
2915 		dput(old_parent);
2916 		old_parent = parent;
2917 		inode = parent->d_inode;
2918 
2919 	}
2920 	dput(old_parent);
2921 out:
2922 	return ret;
2923 }
2924 
2925 static int inode_in_log(struct btrfs_trans_handle *trans,
2926 		 struct inode *inode)
2927 {
2928 	struct btrfs_root *root = BTRFS_I(inode)->root;
2929 	int ret = 0;
2930 
2931 	mutex_lock(&root->log_mutex);
2932 	if (BTRFS_I(inode)->logged_trans == trans->transid &&
2933 	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2934 		ret = 1;
2935 	mutex_unlock(&root->log_mutex);
2936 	return ret;
2937 }
2938 
2939 
2940 /*
2941  * helper function around btrfs_log_inode to make sure newly created
2942  * parent directories also end up in the log.  A minimal inode and backref
2943  * only logging is done of any parent directories that are older than
2944  * the last committed transaction
2945  */
2946 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2947 		    struct btrfs_root *root, struct inode *inode,
2948 		    struct dentry *parent, int exists_only)
2949 {
2950 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2951 	struct super_block *sb;
2952 	struct dentry *old_parent = NULL;
2953 	int ret = 0;
2954 	u64 last_committed = root->fs_info->last_trans_committed;
2955 
2956 	sb = inode->i_sb;
2957 
2958 	if (btrfs_test_opt(root, NOTREELOG)) {
2959 		ret = 1;
2960 		goto end_no_trans;
2961 	}
2962 
2963 	if (root->fs_info->last_trans_log_full_commit >
2964 	    root->fs_info->last_trans_committed) {
2965 		ret = 1;
2966 		goto end_no_trans;
2967 	}
2968 
2969 	if (root != BTRFS_I(inode)->root ||
2970 	    btrfs_root_refs(&root->root_item) == 0) {
2971 		ret = 1;
2972 		goto end_no_trans;
2973 	}
2974 
2975 	ret = check_parent_dirs_for_sync(trans, inode, parent,
2976 					 sb, last_committed);
2977 	if (ret)
2978 		goto end_no_trans;
2979 
2980 	if (inode_in_log(trans, inode)) {
2981 		ret = BTRFS_NO_LOG_SYNC;
2982 		goto end_no_trans;
2983 	}
2984 
2985 	ret = start_log_trans(trans, root);
2986 	if (ret)
2987 		goto end_trans;
2988 
2989 	ret = btrfs_log_inode(trans, root, inode, inode_only);
2990 	if (ret)
2991 		goto end_trans;
2992 
2993 	/*
2994 	 * for regular files, if its inode is already on disk, we don't
2995 	 * have to worry about the parents at all.  This is because
2996 	 * we can use the last_unlink_trans field to record renames
2997 	 * and other fun in this file.
2998 	 */
2999 	if (S_ISREG(inode->i_mode) &&
3000 	    BTRFS_I(inode)->generation <= last_committed &&
3001 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3002 		ret = 0;
3003 		goto end_trans;
3004 	}
3005 
3006 	inode_only = LOG_INODE_EXISTS;
3007 	while (1) {
3008 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3009 			break;
3010 
3011 		inode = parent->d_inode;
3012 		if (root != BTRFS_I(inode)->root)
3013 			break;
3014 
3015 		if (BTRFS_I(inode)->generation >
3016 		    root->fs_info->last_trans_committed) {
3017 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3018 			if (ret)
3019 				goto end_trans;
3020 		}
3021 		if (IS_ROOT(parent))
3022 			break;
3023 
3024 		parent = dget_parent(parent);
3025 		dput(old_parent);
3026 		old_parent = parent;
3027 	}
3028 	ret = 0;
3029 end_trans:
3030 	dput(old_parent);
3031 	if (ret < 0) {
3032 		BUG_ON(ret != -ENOSPC);
3033 		root->fs_info->last_trans_log_full_commit = trans->transid;
3034 		ret = 1;
3035 	}
3036 	btrfs_end_log_trans(root);
3037 end_no_trans:
3038 	return ret;
3039 }
3040 
3041 /*
3042  * it is not safe to log dentry if the chunk root has added new
3043  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3044  * If this returns 1, you must commit the transaction to safely get your
3045  * data on disk.
3046  */
3047 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3048 			  struct btrfs_root *root, struct dentry *dentry)
3049 {
3050 	struct dentry *parent = dget_parent(dentry);
3051 	int ret;
3052 
3053 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3054 	dput(parent);
3055 
3056 	return ret;
3057 }
3058 
3059 /*
3060  * should be called during mount to recover any replay any log trees
3061  * from the FS
3062  */
3063 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3064 {
3065 	int ret;
3066 	struct btrfs_path *path;
3067 	struct btrfs_trans_handle *trans;
3068 	struct btrfs_key key;
3069 	struct btrfs_key found_key;
3070 	struct btrfs_key tmp_key;
3071 	struct btrfs_root *log;
3072 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3073 	struct walk_control wc = {
3074 		.process_func = process_one_buffer,
3075 		.stage = 0,
3076 	};
3077 
3078 	fs_info->log_root_recovering = 1;
3079 	path = btrfs_alloc_path();
3080 	BUG_ON(!path);
3081 
3082 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3083 
3084 	wc.trans = trans;
3085 	wc.pin = 1;
3086 
3087 	walk_log_tree(trans, log_root_tree, &wc);
3088 
3089 again:
3090 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3091 	key.offset = (u64)-1;
3092 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3093 
3094 	while (1) {
3095 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3096 		if (ret < 0)
3097 			break;
3098 		if (ret > 0) {
3099 			if (path->slots[0] == 0)
3100 				break;
3101 			path->slots[0]--;
3102 		}
3103 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3104 				      path->slots[0]);
3105 		btrfs_release_path(log_root_tree, path);
3106 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3107 			break;
3108 
3109 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3110 						  &found_key);
3111 		BUG_ON(!log);
3112 
3113 
3114 		tmp_key.objectid = found_key.offset;
3115 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3116 		tmp_key.offset = (u64)-1;
3117 
3118 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3119 		BUG_ON(!wc.replay_dest);
3120 
3121 		wc.replay_dest->log_root = log;
3122 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3123 		ret = walk_log_tree(trans, log, &wc);
3124 		BUG_ON(ret);
3125 
3126 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3127 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3128 						      path);
3129 			BUG_ON(ret);
3130 		}
3131 
3132 		key.offset = found_key.offset - 1;
3133 		wc.replay_dest->log_root = NULL;
3134 		free_extent_buffer(log->node);
3135 		free_extent_buffer(log->commit_root);
3136 		kfree(log);
3137 
3138 		if (found_key.offset == 0)
3139 			break;
3140 	}
3141 	btrfs_release_path(log_root_tree, path);
3142 
3143 	/* step one is to pin it all, step two is to replay just inodes */
3144 	if (wc.pin) {
3145 		wc.pin = 0;
3146 		wc.process_func = replay_one_buffer;
3147 		wc.stage = LOG_WALK_REPLAY_INODES;
3148 		goto again;
3149 	}
3150 	/* step three is to replay everything */
3151 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3152 		wc.stage++;
3153 		goto again;
3154 	}
3155 
3156 	btrfs_free_path(path);
3157 
3158 	free_extent_buffer(log_root_tree->node);
3159 	log_root_tree->log_root = NULL;
3160 	fs_info->log_root_recovering = 0;
3161 
3162 	/* step 4: commit the transaction, which also unpins the blocks */
3163 	btrfs_commit_transaction(trans, fs_info->tree_root);
3164 
3165 	kfree(log_root_tree);
3166 	return 0;
3167 }
3168 
3169 /*
3170  * there are some corner cases where we want to force a full
3171  * commit instead of allowing a directory to be logged.
3172  *
3173  * They revolve around files there were unlinked from the directory, and
3174  * this function updates the parent directory so that a full commit is
3175  * properly done if it is fsync'd later after the unlinks are done.
3176  */
3177 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3178 			     struct inode *dir, struct inode *inode,
3179 			     int for_rename)
3180 {
3181 	/*
3182 	 * when we're logging a file, if it hasn't been renamed
3183 	 * or unlinked, and its inode is fully committed on disk,
3184 	 * we don't have to worry about walking up the directory chain
3185 	 * to log its parents.
3186 	 *
3187 	 * So, we use the last_unlink_trans field to put this transid
3188 	 * into the file.  When the file is logged we check it and
3189 	 * don't log the parents if the file is fully on disk.
3190 	 */
3191 	if (S_ISREG(inode->i_mode))
3192 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3193 
3194 	/*
3195 	 * if this directory was already logged any new
3196 	 * names for this file/dir will get recorded
3197 	 */
3198 	smp_mb();
3199 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3200 		return;
3201 
3202 	/*
3203 	 * if the inode we're about to unlink was logged,
3204 	 * the log will be properly updated for any new names
3205 	 */
3206 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3207 		return;
3208 
3209 	/*
3210 	 * when renaming files across directories, if the directory
3211 	 * there we're unlinking from gets fsync'd later on, there's
3212 	 * no way to find the destination directory later and fsync it
3213 	 * properly.  So, we have to be conservative and force commits
3214 	 * so the new name gets discovered.
3215 	 */
3216 	if (for_rename)
3217 		goto record;
3218 
3219 	/* we can safely do the unlink without any special recording */
3220 	return;
3221 
3222 record:
3223 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3224 }
3225 
3226 /*
3227  * Call this after adding a new name for a file and it will properly
3228  * update the log to reflect the new name.
3229  *
3230  * It will return zero if all goes well, and it will return 1 if a
3231  * full transaction commit is required.
3232  */
3233 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3234 			struct inode *inode, struct inode *old_dir,
3235 			struct dentry *parent)
3236 {
3237 	struct btrfs_root * root = BTRFS_I(inode)->root;
3238 
3239 	/*
3240 	 * this will force the logging code to walk the dentry chain
3241 	 * up for the file
3242 	 */
3243 	if (S_ISREG(inode->i_mode))
3244 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3245 
3246 	/*
3247 	 * if this inode hasn't been logged and directory we're renaming it
3248 	 * from hasn't been logged, we don't need to log it
3249 	 */
3250 	if (BTRFS_I(inode)->logged_trans <=
3251 	    root->fs_info->last_trans_committed &&
3252 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3253 		    root->fs_info->last_trans_committed))
3254 		return 0;
3255 
3256 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3257 }
3258 
3259