xref: /openbmc/linux/fs/btrfs/tree-log.c (revision b802fb99)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 
30 /* magic values for the inode_only field in btrfs_log_inode:
31  *
32  * LOG_INODE_ALL means to log everything
33  * LOG_INODE_EXISTS means to log just enough to recreate the inode
34  * during log replay
35  */
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
38 
39 /*
40  * directory trouble cases
41  *
42  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43  * log, we must force a full commit before doing an fsync of the directory
44  * where the unlink was done.
45  * ---> record transid of last unlink/rename per directory
46  *
47  * mkdir foo/some_dir
48  * normal commit
49  * rename foo/some_dir foo2/some_dir
50  * mkdir foo/some_dir
51  * fsync foo/some_dir/some_file
52  *
53  * The fsync above will unlink the original some_dir without recording
54  * it in its new location (foo2).  After a crash, some_dir will be gone
55  * unless the fsync of some_file forces a full commit
56  *
57  * 2) we must log any new names for any file or dir that is in the fsync
58  * log. ---> check inode while renaming/linking.
59  *
60  * 2a) we must log any new names for any file or dir during rename
61  * when the directory they are being removed from was logged.
62  * ---> check inode and old parent dir during rename
63  *
64  *  2a is actually the more important variant.  With the extra logging
65  *  a crash might unlink the old name without recreating the new one
66  *
67  * 3) after a crash, we must go through any directories with a link count
68  * of zero and redo the rm -rf
69  *
70  * mkdir f1/foo
71  * normal commit
72  * rm -rf f1/foo
73  * fsync(f1)
74  *
75  * The directory f1 was fully removed from the FS, but fsync was never
76  * called on f1, only its parent dir.  After a crash the rm -rf must
77  * be replayed.  This must be able to recurse down the entire
78  * directory tree.  The inode link count fixup code takes care of the
79  * ugly details.
80  */
81 
82 /*
83  * stages for the tree walking.  The first
84  * stage (0) is to only pin down the blocks we find
85  * the second stage (1) is to make sure that all the inodes
86  * we find in the log are created in the subvolume.
87  *
88  * The last stage is to deal with directories and links and extents
89  * and all the other fun semantics
90  */
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct inode *inode,
98 			   int inode_only,
99 			   const loff_t start,
100 			   const loff_t end,
101 			   struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 			     struct btrfs_root *root,
104 			     struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 				       struct btrfs_root *root,
107 				       struct btrfs_root *log,
108 				       struct btrfs_path *path,
109 				       u64 dirid, int del_all);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	int ret = 0;
144 
145 	mutex_lock(&root->log_mutex);
146 
147 	if (root->log_root) {
148 		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
149 			ret = -EAGAIN;
150 			goto out;
151 		}
152 
153 		if (!root->log_start_pid) {
154 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
155 			root->log_start_pid = current->pid;
156 		} else if (root->log_start_pid != current->pid) {
157 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
158 		}
159 	} else {
160 		mutex_lock(&root->fs_info->tree_log_mutex);
161 		if (!root->fs_info->log_root_tree)
162 			ret = btrfs_init_log_root_tree(trans, root->fs_info);
163 		mutex_unlock(&root->fs_info->tree_log_mutex);
164 		if (ret)
165 			goto out;
166 
167 		ret = btrfs_add_log_tree(trans, root);
168 		if (ret)
169 			goto out;
170 
171 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
172 		root->log_start_pid = current->pid;
173 	}
174 
175 	atomic_inc(&root->log_batch);
176 	atomic_inc(&root->log_writers);
177 	if (ctx) {
178 		int index = root->log_transid % 2;
179 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
180 		ctx->log_transid = root->log_transid;
181 	}
182 
183 out:
184 	mutex_unlock(&root->log_mutex);
185 	return ret;
186 }
187 
188 /*
189  * returns 0 if there was a log transaction running and we were able
190  * to join, or returns -ENOENT if there were not transactions
191  * in progress
192  */
193 static int join_running_log_trans(struct btrfs_root *root)
194 {
195 	int ret = -ENOENT;
196 
197 	smp_mb();
198 	if (!root->log_root)
199 		return -ENOENT;
200 
201 	mutex_lock(&root->log_mutex);
202 	if (root->log_root) {
203 		ret = 0;
204 		atomic_inc(&root->log_writers);
205 	}
206 	mutex_unlock(&root->log_mutex);
207 	return ret;
208 }
209 
210 /*
211  * This either makes the current running log transaction wait
212  * until you call btrfs_end_log_trans() or it makes any future
213  * log transactions wait until you call btrfs_end_log_trans()
214  */
215 int btrfs_pin_log_trans(struct btrfs_root *root)
216 {
217 	int ret = -ENOENT;
218 
219 	mutex_lock(&root->log_mutex);
220 	atomic_inc(&root->log_writers);
221 	mutex_unlock(&root->log_mutex);
222 	return ret;
223 }
224 
225 /*
226  * indicate we're done making changes to the log tree
227  * and wake up anyone waiting to do a sync
228  */
229 void btrfs_end_log_trans(struct btrfs_root *root)
230 {
231 	if (atomic_dec_and_test(&root->log_writers)) {
232 		/*
233 		 * Implicit memory barrier after atomic_dec_and_test
234 		 */
235 		if (waitqueue_active(&root->log_writer_wait))
236 			wake_up(&root->log_writer_wait);
237 	}
238 }
239 
240 
241 /*
242  * the walk control struct is used to pass state down the chain when
243  * processing the log tree.  The stage field tells us which part
244  * of the log tree processing we are currently doing.  The others
245  * are state fields used for that specific part
246  */
247 struct walk_control {
248 	/* should we free the extent on disk when done?  This is used
249 	 * at transaction commit time while freeing a log tree
250 	 */
251 	int free;
252 
253 	/* should we write out the extent buffer?  This is used
254 	 * while flushing the log tree to disk during a sync
255 	 */
256 	int write;
257 
258 	/* should we wait for the extent buffer io to finish?  Also used
259 	 * while flushing the log tree to disk for a sync
260 	 */
261 	int wait;
262 
263 	/* pin only walk, we record which extents on disk belong to the
264 	 * log trees
265 	 */
266 	int pin;
267 
268 	/* what stage of the replay code we're currently in */
269 	int stage;
270 
271 	/* the root we are currently replaying */
272 	struct btrfs_root *replay_dest;
273 
274 	/* the trans handle for the current replay */
275 	struct btrfs_trans_handle *trans;
276 
277 	/* the function that gets used to process blocks we find in the
278 	 * tree.  Note the extent_buffer might not be up to date when it is
279 	 * passed in, and it must be checked or read if you need the data
280 	 * inside it
281 	 */
282 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
283 			    struct walk_control *wc, u64 gen);
284 };
285 
286 /*
287  * process_func used to pin down extents, write them or wait on them
288  */
289 static int process_one_buffer(struct btrfs_root *log,
290 			      struct extent_buffer *eb,
291 			      struct walk_control *wc, u64 gen)
292 {
293 	int ret = 0;
294 
295 	/*
296 	 * If this fs is mixed then we need to be able to process the leaves to
297 	 * pin down any logged extents, so we have to read the block.
298 	 */
299 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
300 		ret = btrfs_read_buffer(eb, gen);
301 		if (ret)
302 			return ret;
303 	}
304 
305 	if (wc->pin)
306 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
307 						      eb->start, eb->len);
308 
309 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
310 		if (wc->pin && btrfs_header_level(eb) == 0)
311 			ret = btrfs_exclude_logged_extents(log, eb);
312 		if (wc->write)
313 			btrfs_write_tree_block(eb);
314 		if (wc->wait)
315 			btrfs_wait_tree_block_writeback(eb);
316 	}
317 	return ret;
318 }
319 
320 /*
321  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
322  * to the src data we are copying out.
323  *
324  * root is the tree we are copying into, and path is a scratch
325  * path for use in this function (it should be released on entry and
326  * will be released on exit).
327  *
328  * If the key is already in the destination tree the existing item is
329  * overwritten.  If the existing item isn't big enough, it is extended.
330  * If it is too large, it is truncated.
331  *
332  * If the key isn't in the destination yet, a new item is inserted.
333  */
334 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
335 				   struct btrfs_root *root,
336 				   struct btrfs_path *path,
337 				   struct extent_buffer *eb, int slot,
338 				   struct btrfs_key *key)
339 {
340 	int ret;
341 	u32 item_size;
342 	u64 saved_i_size = 0;
343 	int save_old_i_size = 0;
344 	unsigned long src_ptr;
345 	unsigned long dst_ptr;
346 	int overwrite_root = 0;
347 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
348 
349 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
350 		overwrite_root = 1;
351 
352 	item_size = btrfs_item_size_nr(eb, slot);
353 	src_ptr = btrfs_item_ptr_offset(eb, slot);
354 
355 	/* look for the key in the destination tree */
356 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
357 	if (ret < 0)
358 		return ret;
359 
360 	if (ret == 0) {
361 		char *src_copy;
362 		char *dst_copy;
363 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
364 						  path->slots[0]);
365 		if (dst_size != item_size)
366 			goto insert;
367 
368 		if (item_size == 0) {
369 			btrfs_release_path(path);
370 			return 0;
371 		}
372 		dst_copy = kmalloc(item_size, GFP_NOFS);
373 		src_copy = kmalloc(item_size, GFP_NOFS);
374 		if (!dst_copy || !src_copy) {
375 			btrfs_release_path(path);
376 			kfree(dst_copy);
377 			kfree(src_copy);
378 			return -ENOMEM;
379 		}
380 
381 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
382 
383 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
384 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
385 				   item_size);
386 		ret = memcmp(dst_copy, src_copy, item_size);
387 
388 		kfree(dst_copy);
389 		kfree(src_copy);
390 		/*
391 		 * they have the same contents, just return, this saves
392 		 * us from cowing blocks in the destination tree and doing
393 		 * extra writes that may not have been done by a previous
394 		 * sync
395 		 */
396 		if (ret == 0) {
397 			btrfs_release_path(path);
398 			return 0;
399 		}
400 
401 		/*
402 		 * We need to load the old nbytes into the inode so when we
403 		 * replay the extents we've logged we get the right nbytes.
404 		 */
405 		if (inode_item) {
406 			struct btrfs_inode_item *item;
407 			u64 nbytes;
408 			u32 mode;
409 
410 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
411 					      struct btrfs_inode_item);
412 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
413 			item = btrfs_item_ptr(eb, slot,
414 					      struct btrfs_inode_item);
415 			btrfs_set_inode_nbytes(eb, item, nbytes);
416 
417 			/*
418 			 * If this is a directory we need to reset the i_size to
419 			 * 0 so that we can set it up properly when replaying
420 			 * the rest of the items in this log.
421 			 */
422 			mode = btrfs_inode_mode(eb, item);
423 			if (S_ISDIR(mode))
424 				btrfs_set_inode_size(eb, item, 0);
425 		}
426 	} else if (inode_item) {
427 		struct btrfs_inode_item *item;
428 		u32 mode;
429 
430 		/*
431 		 * New inode, set nbytes to 0 so that the nbytes comes out
432 		 * properly when we replay the extents.
433 		 */
434 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
435 		btrfs_set_inode_nbytes(eb, item, 0);
436 
437 		/*
438 		 * If this is a directory we need to reset the i_size to 0 so
439 		 * that we can set it up properly when replaying the rest of
440 		 * the items in this log.
441 		 */
442 		mode = btrfs_inode_mode(eb, item);
443 		if (S_ISDIR(mode))
444 			btrfs_set_inode_size(eb, item, 0);
445 	}
446 insert:
447 	btrfs_release_path(path);
448 	/* try to insert the key into the destination tree */
449 	path->skip_release_on_error = 1;
450 	ret = btrfs_insert_empty_item(trans, root, path,
451 				      key, item_size);
452 	path->skip_release_on_error = 0;
453 
454 	/* make sure any existing item is the correct size */
455 	if (ret == -EEXIST || ret == -EOVERFLOW) {
456 		u32 found_size;
457 		found_size = btrfs_item_size_nr(path->nodes[0],
458 						path->slots[0]);
459 		if (found_size > item_size)
460 			btrfs_truncate_item(root, path, item_size, 1);
461 		else if (found_size < item_size)
462 			btrfs_extend_item(root, path,
463 					  item_size - found_size);
464 	} else if (ret) {
465 		return ret;
466 	}
467 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
468 					path->slots[0]);
469 
470 	/* don't overwrite an existing inode if the generation number
471 	 * was logged as zero.  This is done when the tree logging code
472 	 * is just logging an inode to make sure it exists after recovery.
473 	 *
474 	 * Also, don't overwrite i_size on directories during replay.
475 	 * log replay inserts and removes directory items based on the
476 	 * state of the tree found in the subvolume, and i_size is modified
477 	 * as it goes
478 	 */
479 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
480 		struct btrfs_inode_item *src_item;
481 		struct btrfs_inode_item *dst_item;
482 
483 		src_item = (struct btrfs_inode_item *)src_ptr;
484 		dst_item = (struct btrfs_inode_item *)dst_ptr;
485 
486 		if (btrfs_inode_generation(eb, src_item) == 0) {
487 			struct extent_buffer *dst_eb = path->nodes[0];
488 			const u64 ino_size = btrfs_inode_size(eb, src_item);
489 
490 			/*
491 			 * For regular files an ino_size == 0 is used only when
492 			 * logging that an inode exists, as part of a directory
493 			 * fsync, and the inode wasn't fsynced before. In this
494 			 * case don't set the size of the inode in the fs/subvol
495 			 * tree, otherwise we would be throwing valid data away.
496 			 */
497 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
498 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
499 			    ino_size != 0) {
500 				struct btrfs_map_token token;
501 
502 				btrfs_init_map_token(&token);
503 				btrfs_set_token_inode_size(dst_eb, dst_item,
504 							   ino_size, &token);
505 			}
506 			goto no_copy;
507 		}
508 
509 		if (overwrite_root &&
510 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
511 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
512 			save_old_i_size = 1;
513 			saved_i_size = btrfs_inode_size(path->nodes[0],
514 							dst_item);
515 		}
516 	}
517 
518 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
519 			   src_ptr, item_size);
520 
521 	if (save_old_i_size) {
522 		struct btrfs_inode_item *dst_item;
523 		dst_item = (struct btrfs_inode_item *)dst_ptr;
524 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
525 	}
526 
527 	/* make sure the generation is filled in */
528 	if (key->type == BTRFS_INODE_ITEM_KEY) {
529 		struct btrfs_inode_item *dst_item;
530 		dst_item = (struct btrfs_inode_item *)dst_ptr;
531 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
532 			btrfs_set_inode_generation(path->nodes[0], dst_item,
533 						   trans->transid);
534 		}
535 	}
536 no_copy:
537 	btrfs_mark_buffer_dirty(path->nodes[0]);
538 	btrfs_release_path(path);
539 	return 0;
540 }
541 
542 /*
543  * simple helper to read an inode off the disk from a given root
544  * This can only be called for subvolume roots and not for the log
545  */
546 static noinline struct inode *read_one_inode(struct btrfs_root *root,
547 					     u64 objectid)
548 {
549 	struct btrfs_key key;
550 	struct inode *inode;
551 
552 	key.objectid = objectid;
553 	key.type = BTRFS_INODE_ITEM_KEY;
554 	key.offset = 0;
555 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
556 	if (IS_ERR(inode)) {
557 		inode = NULL;
558 	} else if (is_bad_inode(inode)) {
559 		iput(inode);
560 		inode = NULL;
561 	}
562 	return inode;
563 }
564 
565 /* replays a single extent in 'eb' at 'slot' with 'key' into the
566  * subvolume 'root'.  path is released on entry and should be released
567  * on exit.
568  *
569  * extents in the log tree have not been allocated out of the extent
570  * tree yet.  So, this completes the allocation, taking a reference
571  * as required if the extent already exists or creating a new extent
572  * if it isn't in the extent allocation tree yet.
573  *
574  * The extent is inserted into the file, dropping any existing extents
575  * from the file that overlap the new one.
576  */
577 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
578 				      struct btrfs_root *root,
579 				      struct btrfs_path *path,
580 				      struct extent_buffer *eb, int slot,
581 				      struct btrfs_key *key)
582 {
583 	int found_type;
584 	u64 extent_end;
585 	u64 start = key->offset;
586 	u64 nbytes = 0;
587 	struct btrfs_file_extent_item *item;
588 	struct inode *inode = NULL;
589 	unsigned long size;
590 	int ret = 0;
591 
592 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
593 	found_type = btrfs_file_extent_type(eb, item);
594 
595 	if (found_type == BTRFS_FILE_EXTENT_REG ||
596 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
597 		nbytes = btrfs_file_extent_num_bytes(eb, item);
598 		extent_end = start + nbytes;
599 
600 		/*
601 		 * We don't add to the inodes nbytes if we are prealloc or a
602 		 * hole.
603 		 */
604 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
605 			nbytes = 0;
606 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
607 		size = btrfs_file_extent_inline_len(eb, slot, item);
608 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
609 		extent_end = ALIGN(start + size, root->sectorsize);
610 	} else {
611 		ret = 0;
612 		goto out;
613 	}
614 
615 	inode = read_one_inode(root, key->objectid);
616 	if (!inode) {
617 		ret = -EIO;
618 		goto out;
619 	}
620 
621 	/*
622 	 * first check to see if we already have this extent in the
623 	 * file.  This must be done before the btrfs_drop_extents run
624 	 * so we don't try to drop this extent.
625 	 */
626 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
627 				       start, 0);
628 
629 	if (ret == 0 &&
630 	    (found_type == BTRFS_FILE_EXTENT_REG ||
631 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
632 		struct btrfs_file_extent_item cmp1;
633 		struct btrfs_file_extent_item cmp2;
634 		struct btrfs_file_extent_item *existing;
635 		struct extent_buffer *leaf;
636 
637 		leaf = path->nodes[0];
638 		existing = btrfs_item_ptr(leaf, path->slots[0],
639 					  struct btrfs_file_extent_item);
640 
641 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
642 				   sizeof(cmp1));
643 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
644 				   sizeof(cmp2));
645 
646 		/*
647 		 * we already have a pointer to this exact extent,
648 		 * we don't have to do anything
649 		 */
650 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
651 			btrfs_release_path(path);
652 			goto out;
653 		}
654 	}
655 	btrfs_release_path(path);
656 
657 	/* drop any overlapping extents */
658 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
659 	if (ret)
660 		goto out;
661 
662 	if (found_type == BTRFS_FILE_EXTENT_REG ||
663 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
664 		u64 offset;
665 		unsigned long dest_offset;
666 		struct btrfs_key ins;
667 
668 		ret = btrfs_insert_empty_item(trans, root, path, key,
669 					      sizeof(*item));
670 		if (ret)
671 			goto out;
672 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
673 						    path->slots[0]);
674 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
675 				(unsigned long)item,  sizeof(*item));
676 
677 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
678 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
679 		ins.type = BTRFS_EXTENT_ITEM_KEY;
680 		offset = key->offset - btrfs_file_extent_offset(eb, item);
681 
682 		if (ins.objectid > 0) {
683 			u64 csum_start;
684 			u64 csum_end;
685 			LIST_HEAD(ordered_sums);
686 			/*
687 			 * is this extent already allocated in the extent
688 			 * allocation tree?  If so, just add a reference
689 			 */
690 			ret = btrfs_lookup_data_extent(root, ins.objectid,
691 						ins.offset);
692 			if (ret == 0) {
693 				ret = btrfs_inc_extent_ref(trans, root,
694 						ins.objectid, ins.offset,
695 						0, root->root_key.objectid,
696 						key->objectid, offset);
697 				if (ret)
698 					goto out;
699 			} else {
700 				/*
701 				 * insert the extent pointer in the extent
702 				 * allocation tree
703 				 */
704 				ret = btrfs_alloc_logged_file_extent(trans,
705 						root, root->root_key.objectid,
706 						key->objectid, offset, &ins);
707 				if (ret)
708 					goto out;
709 			}
710 			btrfs_release_path(path);
711 
712 			if (btrfs_file_extent_compression(eb, item)) {
713 				csum_start = ins.objectid;
714 				csum_end = csum_start + ins.offset;
715 			} else {
716 				csum_start = ins.objectid +
717 					btrfs_file_extent_offset(eb, item);
718 				csum_end = csum_start +
719 					btrfs_file_extent_num_bytes(eb, item);
720 			}
721 
722 			ret = btrfs_lookup_csums_range(root->log_root,
723 						csum_start, csum_end - 1,
724 						&ordered_sums, 0);
725 			if (ret)
726 				goto out;
727 			/*
728 			 * Now delete all existing cums in the csum root that
729 			 * cover our range. We do this because we can have an
730 			 * extent that is completely referenced by one file
731 			 * extent item and partially referenced by another
732 			 * file extent item (like after using the clone or
733 			 * extent_same ioctls). In this case if we end up doing
734 			 * the replay of the one that partially references the
735 			 * extent first, and we do not do the csum deletion
736 			 * below, we can get 2 csum items in the csum tree that
737 			 * overlap each other. For example, imagine our log has
738 			 * the two following file extent items:
739 			 *
740 			 * key (257 EXTENT_DATA 409600)
741 			 *     extent data disk byte 12845056 nr 102400
742 			 *     extent data offset 20480 nr 20480 ram 102400
743 			 *
744 			 * key (257 EXTENT_DATA 819200)
745 			 *     extent data disk byte 12845056 nr 102400
746 			 *     extent data offset 0 nr 102400 ram 102400
747 			 *
748 			 * Where the second one fully references the 100K extent
749 			 * that starts at disk byte 12845056, and the log tree
750 			 * has a single csum item that covers the entire range
751 			 * of the extent:
752 			 *
753 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
754 			 *
755 			 * After the first file extent item is replayed, the
756 			 * csum tree gets the following csum item:
757 			 *
758 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
759 			 *
760 			 * Which covers the 20K sub-range starting at offset 20K
761 			 * of our extent. Now when we replay the second file
762 			 * extent item, if we do not delete existing csum items
763 			 * that cover any of its blocks, we end up getting two
764 			 * csum items in our csum tree that overlap each other:
765 			 *
766 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
767 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
768 			 *
769 			 * Which is a problem, because after this anyone trying
770 			 * to lookup up for the checksum of any block of our
771 			 * extent starting at an offset of 40K or higher, will
772 			 * end up looking at the second csum item only, which
773 			 * does not contain the checksum for any block starting
774 			 * at offset 40K or higher of our extent.
775 			 */
776 			while (!list_empty(&ordered_sums)) {
777 				struct btrfs_ordered_sum *sums;
778 				sums = list_entry(ordered_sums.next,
779 						struct btrfs_ordered_sum,
780 						list);
781 				if (!ret)
782 					ret = btrfs_del_csums(trans,
783 						      root->fs_info->csum_root,
784 						      sums->bytenr,
785 						      sums->len);
786 				if (!ret)
787 					ret = btrfs_csum_file_blocks(trans,
788 						root->fs_info->csum_root,
789 						sums);
790 				list_del(&sums->list);
791 				kfree(sums);
792 			}
793 			if (ret)
794 				goto out;
795 		} else {
796 			btrfs_release_path(path);
797 		}
798 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
799 		/* inline extents are easy, we just overwrite them */
800 		ret = overwrite_item(trans, root, path, eb, slot, key);
801 		if (ret)
802 			goto out;
803 	}
804 
805 	inode_add_bytes(inode, nbytes);
806 	ret = btrfs_update_inode(trans, root, inode);
807 out:
808 	if (inode)
809 		iput(inode);
810 	return ret;
811 }
812 
813 /*
814  * when cleaning up conflicts between the directory names in the
815  * subvolume, directory names in the log and directory names in the
816  * inode back references, we may have to unlink inodes from directories.
817  *
818  * This is a helper function to do the unlink of a specific directory
819  * item
820  */
821 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
822 				      struct btrfs_root *root,
823 				      struct btrfs_path *path,
824 				      struct inode *dir,
825 				      struct btrfs_dir_item *di)
826 {
827 	struct inode *inode;
828 	char *name;
829 	int name_len;
830 	struct extent_buffer *leaf;
831 	struct btrfs_key location;
832 	int ret;
833 
834 	leaf = path->nodes[0];
835 
836 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
837 	name_len = btrfs_dir_name_len(leaf, di);
838 	name = kmalloc(name_len, GFP_NOFS);
839 	if (!name)
840 		return -ENOMEM;
841 
842 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
843 	btrfs_release_path(path);
844 
845 	inode = read_one_inode(root, location.objectid);
846 	if (!inode) {
847 		ret = -EIO;
848 		goto out;
849 	}
850 
851 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
852 	if (ret)
853 		goto out;
854 
855 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
856 	if (ret)
857 		goto out;
858 	else
859 		ret = btrfs_run_delayed_items(trans, root);
860 out:
861 	kfree(name);
862 	iput(inode);
863 	return ret;
864 }
865 
866 /*
867  * helper function to see if a given name and sequence number found
868  * in an inode back reference are already in a directory and correctly
869  * point to this inode
870  */
871 static noinline int inode_in_dir(struct btrfs_root *root,
872 				 struct btrfs_path *path,
873 				 u64 dirid, u64 objectid, u64 index,
874 				 const char *name, int name_len)
875 {
876 	struct btrfs_dir_item *di;
877 	struct btrfs_key location;
878 	int match = 0;
879 
880 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
881 					 index, name, name_len, 0);
882 	if (di && !IS_ERR(di)) {
883 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
884 		if (location.objectid != objectid)
885 			goto out;
886 	} else
887 		goto out;
888 	btrfs_release_path(path);
889 
890 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
891 	if (di && !IS_ERR(di)) {
892 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
893 		if (location.objectid != objectid)
894 			goto out;
895 	} else
896 		goto out;
897 	match = 1;
898 out:
899 	btrfs_release_path(path);
900 	return match;
901 }
902 
903 /*
904  * helper function to check a log tree for a named back reference in
905  * an inode.  This is used to decide if a back reference that is
906  * found in the subvolume conflicts with what we find in the log.
907  *
908  * inode backreferences may have multiple refs in a single item,
909  * during replay we process one reference at a time, and we don't
910  * want to delete valid links to a file from the subvolume if that
911  * link is also in the log.
912  */
913 static noinline int backref_in_log(struct btrfs_root *log,
914 				   struct btrfs_key *key,
915 				   u64 ref_objectid,
916 				   const char *name, int namelen)
917 {
918 	struct btrfs_path *path;
919 	struct btrfs_inode_ref *ref;
920 	unsigned long ptr;
921 	unsigned long ptr_end;
922 	unsigned long name_ptr;
923 	int found_name_len;
924 	int item_size;
925 	int ret;
926 	int match = 0;
927 
928 	path = btrfs_alloc_path();
929 	if (!path)
930 		return -ENOMEM;
931 
932 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
933 	if (ret != 0)
934 		goto out;
935 
936 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
937 
938 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
939 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
940 						   name, namelen, NULL))
941 			match = 1;
942 
943 		goto out;
944 	}
945 
946 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
947 	ptr_end = ptr + item_size;
948 	while (ptr < ptr_end) {
949 		ref = (struct btrfs_inode_ref *)ptr;
950 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
951 		if (found_name_len == namelen) {
952 			name_ptr = (unsigned long)(ref + 1);
953 			ret = memcmp_extent_buffer(path->nodes[0], name,
954 						   name_ptr, namelen);
955 			if (ret == 0) {
956 				match = 1;
957 				goto out;
958 			}
959 		}
960 		ptr = (unsigned long)(ref + 1) + found_name_len;
961 	}
962 out:
963 	btrfs_free_path(path);
964 	return match;
965 }
966 
967 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
968 				  struct btrfs_root *root,
969 				  struct btrfs_path *path,
970 				  struct btrfs_root *log_root,
971 				  struct inode *dir, struct inode *inode,
972 				  struct extent_buffer *eb,
973 				  u64 inode_objectid, u64 parent_objectid,
974 				  u64 ref_index, char *name, int namelen,
975 				  int *search_done)
976 {
977 	int ret;
978 	char *victim_name;
979 	int victim_name_len;
980 	struct extent_buffer *leaf;
981 	struct btrfs_dir_item *di;
982 	struct btrfs_key search_key;
983 	struct btrfs_inode_extref *extref;
984 
985 again:
986 	/* Search old style refs */
987 	search_key.objectid = inode_objectid;
988 	search_key.type = BTRFS_INODE_REF_KEY;
989 	search_key.offset = parent_objectid;
990 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
991 	if (ret == 0) {
992 		struct btrfs_inode_ref *victim_ref;
993 		unsigned long ptr;
994 		unsigned long ptr_end;
995 
996 		leaf = path->nodes[0];
997 
998 		/* are we trying to overwrite a back ref for the root directory
999 		 * if so, just jump out, we're done
1000 		 */
1001 		if (search_key.objectid == search_key.offset)
1002 			return 1;
1003 
1004 		/* check all the names in this back reference to see
1005 		 * if they are in the log.  if so, we allow them to stay
1006 		 * otherwise they must be unlinked as a conflict
1007 		 */
1008 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1009 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1010 		while (ptr < ptr_end) {
1011 			victim_ref = (struct btrfs_inode_ref *)ptr;
1012 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1013 								   victim_ref);
1014 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1015 			if (!victim_name)
1016 				return -ENOMEM;
1017 
1018 			read_extent_buffer(leaf, victim_name,
1019 					   (unsigned long)(victim_ref + 1),
1020 					   victim_name_len);
1021 
1022 			if (!backref_in_log(log_root, &search_key,
1023 					    parent_objectid,
1024 					    victim_name,
1025 					    victim_name_len)) {
1026 				inc_nlink(inode);
1027 				btrfs_release_path(path);
1028 
1029 				ret = btrfs_unlink_inode(trans, root, dir,
1030 							 inode, victim_name,
1031 							 victim_name_len);
1032 				kfree(victim_name);
1033 				if (ret)
1034 					return ret;
1035 				ret = btrfs_run_delayed_items(trans, root);
1036 				if (ret)
1037 					return ret;
1038 				*search_done = 1;
1039 				goto again;
1040 			}
1041 			kfree(victim_name);
1042 
1043 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1044 		}
1045 
1046 		/*
1047 		 * NOTE: we have searched root tree and checked the
1048 		 * coresponding ref, it does not need to check again.
1049 		 */
1050 		*search_done = 1;
1051 	}
1052 	btrfs_release_path(path);
1053 
1054 	/* Same search but for extended refs */
1055 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1056 					   inode_objectid, parent_objectid, 0,
1057 					   0);
1058 	if (!IS_ERR_OR_NULL(extref)) {
1059 		u32 item_size;
1060 		u32 cur_offset = 0;
1061 		unsigned long base;
1062 		struct inode *victim_parent;
1063 
1064 		leaf = path->nodes[0];
1065 
1066 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1067 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1068 
1069 		while (cur_offset < item_size) {
1070 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1071 
1072 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1073 
1074 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1075 				goto next;
1076 
1077 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1078 			if (!victim_name)
1079 				return -ENOMEM;
1080 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1081 					   victim_name_len);
1082 
1083 			search_key.objectid = inode_objectid;
1084 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1085 			search_key.offset = btrfs_extref_hash(parent_objectid,
1086 							      victim_name,
1087 							      victim_name_len);
1088 			ret = 0;
1089 			if (!backref_in_log(log_root, &search_key,
1090 					    parent_objectid, victim_name,
1091 					    victim_name_len)) {
1092 				ret = -ENOENT;
1093 				victim_parent = read_one_inode(root,
1094 							       parent_objectid);
1095 				if (victim_parent) {
1096 					inc_nlink(inode);
1097 					btrfs_release_path(path);
1098 
1099 					ret = btrfs_unlink_inode(trans, root,
1100 								 victim_parent,
1101 								 inode,
1102 								 victim_name,
1103 								 victim_name_len);
1104 					if (!ret)
1105 						ret = btrfs_run_delayed_items(
1106 								  trans, root);
1107 				}
1108 				iput(victim_parent);
1109 				kfree(victim_name);
1110 				if (ret)
1111 					return ret;
1112 				*search_done = 1;
1113 				goto again;
1114 			}
1115 			kfree(victim_name);
1116 			if (ret)
1117 				return ret;
1118 next:
1119 			cur_offset += victim_name_len + sizeof(*extref);
1120 		}
1121 		*search_done = 1;
1122 	}
1123 	btrfs_release_path(path);
1124 
1125 	/* look for a conflicting sequence number */
1126 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1127 					 ref_index, name, namelen, 0);
1128 	if (di && !IS_ERR(di)) {
1129 		ret = drop_one_dir_item(trans, root, path, dir, di);
1130 		if (ret)
1131 			return ret;
1132 	}
1133 	btrfs_release_path(path);
1134 
1135 	/* look for a conflicing name */
1136 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1137 				   name, namelen, 0);
1138 	if (di && !IS_ERR(di)) {
1139 		ret = drop_one_dir_item(trans, root, path, dir, di);
1140 		if (ret)
1141 			return ret;
1142 	}
1143 	btrfs_release_path(path);
1144 
1145 	return 0;
1146 }
1147 
1148 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1149 			     u32 *namelen, char **name, u64 *index,
1150 			     u64 *parent_objectid)
1151 {
1152 	struct btrfs_inode_extref *extref;
1153 
1154 	extref = (struct btrfs_inode_extref *)ref_ptr;
1155 
1156 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1157 	*name = kmalloc(*namelen, GFP_NOFS);
1158 	if (*name == NULL)
1159 		return -ENOMEM;
1160 
1161 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1162 			   *namelen);
1163 
1164 	*index = btrfs_inode_extref_index(eb, extref);
1165 	if (parent_objectid)
1166 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1167 
1168 	return 0;
1169 }
1170 
1171 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1172 			  u32 *namelen, char **name, u64 *index)
1173 {
1174 	struct btrfs_inode_ref *ref;
1175 
1176 	ref = (struct btrfs_inode_ref *)ref_ptr;
1177 
1178 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1179 	*name = kmalloc(*namelen, GFP_NOFS);
1180 	if (*name == NULL)
1181 		return -ENOMEM;
1182 
1183 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1184 
1185 	*index = btrfs_inode_ref_index(eb, ref);
1186 
1187 	return 0;
1188 }
1189 
1190 /*
1191  * replay one inode back reference item found in the log tree.
1192  * eb, slot and key refer to the buffer and key found in the log tree.
1193  * root is the destination we are replaying into, and path is for temp
1194  * use by this function.  (it should be released on return).
1195  */
1196 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1197 				  struct btrfs_root *root,
1198 				  struct btrfs_root *log,
1199 				  struct btrfs_path *path,
1200 				  struct extent_buffer *eb, int slot,
1201 				  struct btrfs_key *key)
1202 {
1203 	struct inode *dir = NULL;
1204 	struct inode *inode = NULL;
1205 	unsigned long ref_ptr;
1206 	unsigned long ref_end;
1207 	char *name = NULL;
1208 	int namelen;
1209 	int ret;
1210 	int search_done = 0;
1211 	int log_ref_ver = 0;
1212 	u64 parent_objectid;
1213 	u64 inode_objectid;
1214 	u64 ref_index = 0;
1215 	int ref_struct_size;
1216 
1217 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1218 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1219 
1220 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1221 		struct btrfs_inode_extref *r;
1222 
1223 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1224 		log_ref_ver = 1;
1225 		r = (struct btrfs_inode_extref *)ref_ptr;
1226 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1227 	} else {
1228 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1229 		parent_objectid = key->offset;
1230 	}
1231 	inode_objectid = key->objectid;
1232 
1233 	/*
1234 	 * it is possible that we didn't log all the parent directories
1235 	 * for a given inode.  If we don't find the dir, just don't
1236 	 * copy the back ref in.  The link count fixup code will take
1237 	 * care of the rest
1238 	 */
1239 	dir = read_one_inode(root, parent_objectid);
1240 	if (!dir) {
1241 		ret = -ENOENT;
1242 		goto out;
1243 	}
1244 
1245 	inode = read_one_inode(root, inode_objectid);
1246 	if (!inode) {
1247 		ret = -EIO;
1248 		goto out;
1249 	}
1250 
1251 	while (ref_ptr < ref_end) {
1252 		if (log_ref_ver) {
1253 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1254 						&ref_index, &parent_objectid);
1255 			/*
1256 			 * parent object can change from one array
1257 			 * item to another.
1258 			 */
1259 			if (!dir)
1260 				dir = read_one_inode(root, parent_objectid);
1261 			if (!dir) {
1262 				ret = -ENOENT;
1263 				goto out;
1264 			}
1265 		} else {
1266 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1267 					     &ref_index);
1268 		}
1269 		if (ret)
1270 			goto out;
1271 
1272 		/* if we already have a perfect match, we're done */
1273 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1274 				  ref_index, name, namelen)) {
1275 			/*
1276 			 * look for a conflicting back reference in the
1277 			 * metadata. if we find one we have to unlink that name
1278 			 * of the file before we add our new link.  Later on, we
1279 			 * overwrite any existing back reference, and we don't
1280 			 * want to create dangling pointers in the directory.
1281 			 */
1282 
1283 			if (!search_done) {
1284 				ret = __add_inode_ref(trans, root, path, log,
1285 						      dir, inode, eb,
1286 						      inode_objectid,
1287 						      parent_objectid,
1288 						      ref_index, name, namelen,
1289 						      &search_done);
1290 				if (ret) {
1291 					if (ret == 1)
1292 						ret = 0;
1293 					goto out;
1294 				}
1295 			}
1296 
1297 			/* insert our name */
1298 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1299 					     0, ref_index);
1300 			if (ret)
1301 				goto out;
1302 
1303 			btrfs_update_inode(trans, root, inode);
1304 		}
1305 
1306 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1307 		kfree(name);
1308 		name = NULL;
1309 		if (log_ref_ver) {
1310 			iput(dir);
1311 			dir = NULL;
1312 		}
1313 	}
1314 
1315 	/* finally write the back reference in the inode */
1316 	ret = overwrite_item(trans, root, path, eb, slot, key);
1317 out:
1318 	btrfs_release_path(path);
1319 	kfree(name);
1320 	iput(dir);
1321 	iput(inode);
1322 	return ret;
1323 }
1324 
1325 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1326 			      struct btrfs_root *root, u64 ino)
1327 {
1328 	int ret;
1329 
1330 	ret = btrfs_insert_orphan_item(trans, root, ino);
1331 	if (ret == -EEXIST)
1332 		ret = 0;
1333 
1334 	return ret;
1335 }
1336 
1337 static int count_inode_extrefs(struct btrfs_root *root,
1338 			       struct inode *inode, struct btrfs_path *path)
1339 {
1340 	int ret = 0;
1341 	int name_len;
1342 	unsigned int nlink = 0;
1343 	u32 item_size;
1344 	u32 cur_offset = 0;
1345 	u64 inode_objectid = btrfs_ino(inode);
1346 	u64 offset = 0;
1347 	unsigned long ptr;
1348 	struct btrfs_inode_extref *extref;
1349 	struct extent_buffer *leaf;
1350 
1351 	while (1) {
1352 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1353 					    &extref, &offset);
1354 		if (ret)
1355 			break;
1356 
1357 		leaf = path->nodes[0];
1358 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1359 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1360 		cur_offset = 0;
1361 
1362 		while (cur_offset < item_size) {
1363 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1364 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1365 
1366 			nlink++;
1367 
1368 			cur_offset += name_len + sizeof(*extref);
1369 		}
1370 
1371 		offset++;
1372 		btrfs_release_path(path);
1373 	}
1374 	btrfs_release_path(path);
1375 
1376 	if (ret < 0 && ret != -ENOENT)
1377 		return ret;
1378 	return nlink;
1379 }
1380 
1381 static int count_inode_refs(struct btrfs_root *root,
1382 			       struct inode *inode, struct btrfs_path *path)
1383 {
1384 	int ret;
1385 	struct btrfs_key key;
1386 	unsigned int nlink = 0;
1387 	unsigned long ptr;
1388 	unsigned long ptr_end;
1389 	int name_len;
1390 	u64 ino = btrfs_ino(inode);
1391 
1392 	key.objectid = ino;
1393 	key.type = BTRFS_INODE_REF_KEY;
1394 	key.offset = (u64)-1;
1395 
1396 	while (1) {
1397 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1398 		if (ret < 0)
1399 			break;
1400 		if (ret > 0) {
1401 			if (path->slots[0] == 0)
1402 				break;
1403 			path->slots[0]--;
1404 		}
1405 process_slot:
1406 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1407 				      path->slots[0]);
1408 		if (key.objectid != ino ||
1409 		    key.type != BTRFS_INODE_REF_KEY)
1410 			break;
1411 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1412 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1413 						   path->slots[0]);
1414 		while (ptr < ptr_end) {
1415 			struct btrfs_inode_ref *ref;
1416 
1417 			ref = (struct btrfs_inode_ref *)ptr;
1418 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1419 							    ref);
1420 			ptr = (unsigned long)(ref + 1) + name_len;
1421 			nlink++;
1422 		}
1423 
1424 		if (key.offset == 0)
1425 			break;
1426 		if (path->slots[0] > 0) {
1427 			path->slots[0]--;
1428 			goto process_slot;
1429 		}
1430 		key.offset--;
1431 		btrfs_release_path(path);
1432 	}
1433 	btrfs_release_path(path);
1434 
1435 	return nlink;
1436 }
1437 
1438 /*
1439  * There are a few corners where the link count of the file can't
1440  * be properly maintained during replay.  So, instead of adding
1441  * lots of complexity to the log code, we just scan the backrefs
1442  * for any file that has been through replay.
1443  *
1444  * The scan will update the link count on the inode to reflect the
1445  * number of back refs found.  If it goes down to zero, the iput
1446  * will free the inode.
1447  */
1448 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1449 					   struct btrfs_root *root,
1450 					   struct inode *inode)
1451 {
1452 	struct btrfs_path *path;
1453 	int ret;
1454 	u64 nlink = 0;
1455 	u64 ino = btrfs_ino(inode);
1456 
1457 	path = btrfs_alloc_path();
1458 	if (!path)
1459 		return -ENOMEM;
1460 
1461 	ret = count_inode_refs(root, inode, path);
1462 	if (ret < 0)
1463 		goto out;
1464 
1465 	nlink = ret;
1466 
1467 	ret = count_inode_extrefs(root, inode, path);
1468 	if (ret < 0)
1469 		goto out;
1470 
1471 	nlink += ret;
1472 
1473 	ret = 0;
1474 
1475 	if (nlink != inode->i_nlink) {
1476 		set_nlink(inode, nlink);
1477 		btrfs_update_inode(trans, root, inode);
1478 	}
1479 	BTRFS_I(inode)->index_cnt = (u64)-1;
1480 
1481 	if (inode->i_nlink == 0) {
1482 		if (S_ISDIR(inode->i_mode)) {
1483 			ret = replay_dir_deletes(trans, root, NULL, path,
1484 						 ino, 1);
1485 			if (ret)
1486 				goto out;
1487 		}
1488 		ret = insert_orphan_item(trans, root, ino);
1489 	}
1490 
1491 out:
1492 	btrfs_free_path(path);
1493 	return ret;
1494 }
1495 
1496 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1497 					    struct btrfs_root *root,
1498 					    struct btrfs_path *path)
1499 {
1500 	int ret;
1501 	struct btrfs_key key;
1502 	struct inode *inode;
1503 
1504 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1505 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1506 	key.offset = (u64)-1;
1507 	while (1) {
1508 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1509 		if (ret < 0)
1510 			break;
1511 
1512 		if (ret == 1) {
1513 			if (path->slots[0] == 0)
1514 				break;
1515 			path->slots[0]--;
1516 		}
1517 
1518 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1519 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1520 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1521 			break;
1522 
1523 		ret = btrfs_del_item(trans, root, path);
1524 		if (ret)
1525 			goto out;
1526 
1527 		btrfs_release_path(path);
1528 		inode = read_one_inode(root, key.offset);
1529 		if (!inode)
1530 			return -EIO;
1531 
1532 		ret = fixup_inode_link_count(trans, root, inode);
1533 		iput(inode);
1534 		if (ret)
1535 			goto out;
1536 
1537 		/*
1538 		 * fixup on a directory may create new entries,
1539 		 * make sure we always look for the highset possible
1540 		 * offset
1541 		 */
1542 		key.offset = (u64)-1;
1543 	}
1544 	ret = 0;
1545 out:
1546 	btrfs_release_path(path);
1547 	return ret;
1548 }
1549 
1550 
1551 /*
1552  * record a given inode in the fixup dir so we can check its link
1553  * count when replay is done.  The link count is incremented here
1554  * so the inode won't go away until we check it
1555  */
1556 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1557 				      struct btrfs_root *root,
1558 				      struct btrfs_path *path,
1559 				      u64 objectid)
1560 {
1561 	struct btrfs_key key;
1562 	int ret = 0;
1563 	struct inode *inode;
1564 
1565 	inode = read_one_inode(root, objectid);
1566 	if (!inode)
1567 		return -EIO;
1568 
1569 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1570 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1571 	key.offset = objectid;
1572 
1573 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1574 
1575 	btrfs_release_path(path);
1576 	if (ret == 0) {
1577 		if (!inode->i_nlink)
1578 			set_nlink(inode, 1);
1579 		else
1580 			inc_nlink(inode);
1581 		ret = btrfs_update_inode(trans, root, inode);
1582 	} else if (ret == -EEXIST) {
1583 		ret = 0;
1584 	} else {
1585 		BUG(); /* Logic Error */
1586 	}
1587 	iput(inode);
1588 
1589 	return ret;
1590 }
1591 
1592 /*
1593  * when replaying the log for a directory, we only insert names
1594  * for inodes that actually exist.  This means an fsync on a directory
1595  * does not implicitly fsync all the new files in it
1596  */
1597 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1598 				    struct btrfs_root *root,
1599 				    u64 dirid, u64 index,
1600 				    char *name, int name_len,
1601 				    struct btrfs_key *location)
1602 {
1603 	struct inode *inode;
1604 	struct inode *dir;
1605 	int ret;
1606 
1607 	inode = read_one_inode(root, location->objectid);
1608 	if (!inode)
1609 		return -ENOENT;
1610 
1611 	dir = read_one_inode(root, dirid);
1612 	if (!dir) {
1613 		iput(inode);
1614 		return -EIO;
1615 	}
1616 
1617 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1618 
1619 	/* FIXME, put inode into FIXUP list */
1620 
1621 	iput(inode);
1622 	iput(dir);
1623 	return ret;
1624 }
1625 
1626 /*
1627  * Return true if an inode reference exists in the log for the given name,
1628  * inode and parent inode.
1629  */
1630 static bool name_in_log_ref(struct btrfs_root *log_root,
1631 			    const char *name, const int name_len,
1632 			    const u64 dirid, const u64 ino)
1633 {
1634 	struct btrfs_key search_key;
1635 
1636 	search_key.objectid = ino;
1637 	search_key.type = BTRFS_INODE_REF_KEY;
1638 	search_key.offset = dirid;
1639 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1640 		return true;
1641 
1642 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1643 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1644 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1645 		return true;
1646 
1647 	return false;
1648 }
1649 
1650 /*
1651  * take a single entry in a log directory item and replay it into
1652  * the subvolume.
1653  *
1654  * if a conflicting item exists in the subdirectory already,
1655  * the inode it points to is unlinked and put into the link count
1656  * fix up tree.
1657  *
1658  * If a name from the log points to a file or directory that does
1659  * not exist in the FS, it is skipped.  fsyncs on directories
1660  * do not force down inodes inside that directory, just changes to the
1661  * names or unlinks in a directory.
1662  *
1663  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1664  * non-existing inode) and 1 if the name was replayed.
1665  */
1666 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1667 				    struct btrfs_root *root,
1668 				    struct btrfs_path *path,
1669 				    struct extent_buffer *eb,
1670 				    struct btrfs_dir_item *di,
1671 				    struct btrfs_key *key)
1672 {
1673 	char *name;
1674 	int name_len;
1675 	struct btrfs_dir_item *dst_di;
1676 	struct btrfs_key found_key;
1677 	struct btrfs_key log_key;
1678 	struct inode *dir;
1679 	u8 log_type;
1680 	int exists;
1681 	int ret = 0;
1682 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1683 	bool name_added = false;
1684 
1685 	dir = read_one_inode(root, key->objectid);
1686 	if (!dir)
1687 		return -EIO;
1688 
1689 	name_len = btrfs_dir_name_len(eb, di);
1690 	name = kmalloc(name_len, GFP_NOFS);
1691 	if (!name) {
1692 		ret = -ENOMEM;
1693 		goto out;
1694 	}
1695 
1696 	log_type = btrfs_dir_type(eb, di);
1697 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1698 		   name_len);
1699 
1700 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1701 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1702 	if (exists == 0)
1703 		exists = 1;
1704 	else
1705 		exists = 0;
1706 	btrfs_release_path(path);
1707 
1708 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1709 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1710 				       name, name_len, 1);
1711 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1712 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1713 						     key->objectid,
1714 						     key->offset, name,
1715 						     name_len, 1);
1716 	} else {
1717 		/* Corruption */
1718 		ret = -EINVAL;
1719 		goto out;
1720 	}
1721 	if (IS_ERR_OR_NULL(dst_di)) {
1722 		/* we need a sequence number to insert, so we only
1723 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1724 		 */
1725 		if (key->type != BTRFS_DIR_INDEX_KEY)
1726 			goto out;
1727 		goto insert;
1728 	}
1729 
1730 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1731 	/* the existing item matches the logged item */
1732 	if (found_key.objectid == log_key.objectid &&
1733 	    found_key.type == log_key.type &&
1734 	    found_key.offset == log_key.offset &&
1735 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1736 		update_size = false;
1737 		goto out;
1738 	}
1739 
1740 	/*
1741 	 * don't drop the conflicting directory entry if the inode
1742 	 * for the new entry doesn't exist
1743 	 */
1744 	if (!exists)
1745 		goto out;
1746 
1747 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1748 	if (ret)
1749 		goto out;
1750 
1751 	if (key->type == BTRFS_DIR_INDEX_KEY)
1752 		goto insert;
1753 out:
1754 	btrfs_release_path(path);
1755 	if (!ret && update_size) {
1756 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1757 		ret = btrfs_update_inode(trans, root, dir);
1758 	}
1759 	kfree(name);
1760 	iput(dir);
1761 	if (!ret && name_added)
1762 		ret = 1;
1763 	return ret;
1764 
1765 insert:
1766 	if (name_in_log_ref(root->log_root, name, name_len,
1767 			    key->objectid, log_key.objectid)) {
1768 		/* The dentry will be added later. */
1769 		ret = 0;
1770 		update_size = false;
1771 		goto out;
1772 	}
1773 	btrfs_release_path(path);
1774 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1775 			      name, name_len, &log_key);
1776 	if (ret && ret != -ENOENT && ret != -EEXIST)
1777 		goto out;
1778 	if (!ret)
1779 		name_added = true;
1780 	update_size = false;
1781 	ret = 0;
1782 	goto out;
1783 }
1784 
1785 /*
1786  * find all the names in a directory item and reconcile them into
1787  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1788  * one name in a directory item, but the same code gets used for
1789  * both directory index types
1790  */
1791 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1792 					struct btrfs_root *root,
1793 					struct btrfs_path *path,
1794 					struct extent_buffer *eb, int slot,
1795 					struct btrfs_key *key)
1796 {
1797 	int ret = 0;
1798 	u32 item_size = btrfs_item_size_nr(eb, slot);
1799 	struct btrfs_dir_item *di;
1800 	int name_len;
1801 	unsigned long ptr;
1802 	unsigned long ptr_end;
1803 	struct btrfs_path *fixup_path = NULL;
1804 
1805 	ptr = btrfs_item_ptr_offset(eb, slot);
1806 	ptr_end = ptr + item_size;
1807 	while (ptr < ptr_end) {
1808 		di = (struct btrfs_dir_item *)ptr;
1809 		if (verify_dir_item(root, eb, di))
1810 			return -EIO;
1811 		name_len = btrfs_dir_name_len(eb, di);
1812 		ret = replay_one_name(trans, root, path, eb, di, key);
1813 		if (ret < 0)
1814 			break;
1815 		ptr = (unsigned long)(di + 1);
1816 		ptr += name_len;
1817 
1818 		/*
1819 		 * If this entry refers to a non-directory (directories can not
1820 		 * have a link count > 1) and it was added in the transaction
1821 		 * that was not committed, make sure we fixup the link count of
1822 		 * the inode it the entry points to. Otherwise something like
1823 		 * the following would result in a directory pointing to an
1824 		 * inode with a wrong link that does not account for this dir
1825 		 * entry:
1826 		 *
1827 		 * mkdir testdir
1828 		 * touch testdir/foo
1829 		 * touch testdir/bar
1830 		 * sync
1831 		 *
1832 		 * ln testdir/bar testdir/bar_link
1833 		 * ln testdir/foo testdir/foo_link
1834 		 * xfs_io -c "fsync" testdir/bar
1835 		 *
1836 		 * <power failure>
1837 		 *
1838 		 * mount fs, log replay happens
1839 		 *
1840 		 * File foo would remain with a link count of 1 when it has two
1841 		 * entries pointing to it in the directory testdir. This would
1842 		 * make it impossible to ever delete the parent directory has
1843 		 * it would result in stale dentries that can never be deleted.
1844 		 */
1845 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1846 			struct btrfs_key di_key;
1847 
1848 			if (!fixup_path) {
1849 				fixup_path = btrfs_alloc_path();
1850 				if (!fixup_path) {
1851 					ret = -ENOMEM;
1852 					break;
1853 				}
1854 			}
1855 
1856 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1857 			ret = link_to_fixup_dir(trans, root, fixup_path,
1858 						di_key.objectid);
1859 			if (ret)
1860 				break;
1861 		}
1862 		ret = 0;
1863 	}
1864 	btrfs_free_path(fixup_path);
1865 	return ret;
1866 }
1867 
1868 /*
1869  * directory replay has two parts.  There are the standard directory
1870  * items in the log copied from the subvolume, and range items
1871  * created in the log while the subvolume was logged.
1872  *
1873  * The range items tell us which parts of the key space the log
1874  * is authoritative for.  During replay, if a key in the subvolume
1875  * directory is in a logged range item, but not actually in the log
1876  * that means it was deleted from the directory before the fsync
1877  * and should be removed.
1878  */
1879 static noinline int find_dir_range(struct btrfs_root *root,
1880 				   struct btrfs_path *path,
1881 				   u64 dirid, int key_type,
1882 				   u64 *start_ret, u64 *end_ret)
1883 {
1884 	struct btrfs_key key;
1885 	u64 found_end;
1886 	struct btrfs_dir_log_item *item;
1887 	int ret;
1888 	int nritems;
1889 
1890 	if (*start_ret == (u64)-1)
1891 		return 1;
1892 
1893 	key.objectid = dirid;
1894 	key.type = key_type;
1895 	key.offset = *start_ret;
1896 
1897 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1898 	if (ret < 0)
1899 		goto out;
1900 	if (ret > 0) {
1901 		if (path->slots[0] == 0)
1902 			goto out;
1903 		path->slots[0]--;
1904 	}
1905 	if (ret != 0)
1906 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1907 
1908 	if (key.type != key_type || key.objectid != dirid) {
1909 		ret = 1;
1910 		goto next;
1911 	}
1912 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1913 			      struct btrfs_dir_log_item);
1914 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1915 
1916 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1917 		ret = 0;
1918 		*start_ret = key.offset;
1919 		*end_ret = found_end;
1920 		goto out;
1921 	}
1922 	ret = 1;
1923 next:
1924 	/* check the next slot in the tree to see if it is a valid item */
1925 	nritems = btrfs_header_nritems(path->nodes[0]);
1926 	if (path->slots[0] >= nritems) {
1927 		ret = btrfs_next_leaf(root, path);
1928 		if (ret)
1929 			goto out;
1930 	} else {
1931 		path->slots[0]++;
1932 	}
1933 
1934 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1935 
1936 	if (key.type != key_type || key.objectid != dirid) {
1937 		ret = 1;
1938 		goto out;
1939 	}
1940 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1941 			      struct btrfs_dir_log_item);
1942 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1943 	*start_ret = key.offset;
1944 	*end_ret = found_end;
1945 	ret = 0;
1946 out:
1947 	btrfs_release_path(path);
1948 	return ret;
1949 }
1950 
1951 /*
1952  * this looks for a given directory item in the log.  If the directory
1953  * item is not in the log, the item is removed and the inode it points
1954  * to is unlinked
1955  */
1956 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1957 				      struct btrfs_root *root,
1958 				      struct btrfs_root *log,
1959 				      struct btrfs_path *path,
1960 				      struct btrfs_path *log_path,
1961 				      struct inode *dir,
1962 				      struct btrfs_key *dir_key)
1963 {
1964 	int ret;
1965 	struct extent_buffer *eb;
1966 	int slot;
1967 	u32 item_size;
1968 	struct btrfs_dir_item *di;
1969 	struct btrfs_dir_item *log_di;
1970 	int name_len;
1971 	unsigned long ptr;
1972 	unsigned long ptr_end;
1973 	char *name;
1974 	struct inode *inode;
1975 	struct btrfs_key location;
1976 
1977 again:
1978 	eb = path->nodes[0];
1979 	slot = path->slots[0];
1980 	item_size = btrfs_item_size_nr(eb, slot);
1981 	ptr = btrfs_item_ptr_offset(eb, slot);
1982 	ptr_end = ptr + item_size;
1983 	while (ptr < ptr_end) {
1984 		di = (struct btrfs_dir_item *)ptr;
1985 		if (verify_dir_item(root, eb, di)) {
1986 			ret = -EIO;
1987 			goto out;
1988 		}
1989 
1990 		name_len = btrfs_dir_name_len(eb, di);
1991 		name = kmalloc(name_len, GFP_NOFS);
1992 		if (!name) {
1993 			ret = -ENOMEM;
1994 			goto out;
1995 		}
1996 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1997 				  name_len);
1998 		log_di = NULL;
1999 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2000 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2001 						       dir_key->objectid,
2002 						       name, name_len, 0);
2003 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2004 			log_di = btrfs_lookup_dir_index_item(trans, log,
2005 						     log_path,
2006 						     dir_key->objectid,
2007 						     dir_key->offset,
2008 						     name, name_len, 0);
2009 		}
2010 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2011 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2012 			btrfs_release_path(path);
2013 			btrfs_release_path(log_path);
2014 			inode = read_one_inode(root, location.objectid);
2015 			if (!inode) {
2016 				kfree(name);
2017 				return -EIO;
2018 			}
2019 
2020 			ret = link_to_fixup_dir(trans, root,
2021 						path, location.objectid);
2022 			if (ret) {
2023 				kfree(name);
2024 				iput(inode);
2025 				goto out;
2026 			}
2027 
2028 			inc_nlink(inode);
2029 			ret = btrfs_unlink_inode(trans, root, dir, inode,
2030 						 name, name_len);
2031 			if (!ret)
2032 				ret = btrfs_run_delayed_items(trans, root);
2033 			kfree(name);
2034 			iput(inode);
2035 			if (ret)
2036 				goto out;
2037 
2038 			/* there might still be more names under this key
2039 			 * check and repeat if required
2040 			 */
2041 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2042 						0, 0);
2043 			if (ret == 0)
2044 				goto again;
2045 			ret = 0;
2046 			goto out;
2047 		} else if (IS_ERR(log_di)) {
2048 			kfree(name);
2049 			return PTR_ERR(log_di);
2050 		}
2051 		btrfs_release_path(log_path);
2052 		kfree(name);
2053 
2054 		ptr = (unsigned long)(di + 1);
2055 		ptr += name_len;
2056 	}
2057 	ret = 0;
2058 out:
2059 	btrfs_release_path(path);
2060 	btrfs_release_path(log_path);
2061 	return ret;
2062 }
2063 
2064 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2065 			      struct btrfs_root *root,
2066 			      struct btrfs_root *log,
2067 			      struct btrfs_path *path,
2068 			      const u64 ino)
2069 {
2070 	struct btrfs_key search_key;
2071 	struct btrfs_path *log_path;
2072 	int i;
2073 	int nritems;
2074 	int ret;
2075 
2076 	log_path = btrfs_alloc_path();
2077 	if (!log_path)
2078 		return -ENOMEM;
2079 
2080 	search_key.objectid = ino;
2081 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2082 	search_key.offset = 0;
2083 again:
2084 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2085 	if (ret < 0)
2086 		goto out;
2087 process_leaf:
2088 	nritems = btrfs_header_nritems(path->nodes[0]);
2089 	for (i = path->slots[0]; i < nritems; i++) {
2090 		struct btrfs_key key;
2091 		struct btrfs_dir_item *di;
2092 		struct btrfs_dir_item *log_di;
2093 		u32 total_size;
2094 		u32 cur;
2095 
2096 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2097 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2098 			ret = 0;
2099 			goto out;
2100 		}
2101 
2102 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2103 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2104 		cur = 0;
2105 		while (cur < total_size) {
2106 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2107 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2108 			u32 this_len = sizeof(*di) + name_len + data_len;
2109 			char *name;
2110 
2111 			name = kmalloc(name_len, GFP_NOFS);
2112 			if (!name) {
2113 				ret = -ENOMEM;
2114 				goto out;
2115 			}
2116 			read_extent_buffer(path->nodes[0], name,
2117 					   (unsigned long)(di + 1), name_len);
2118 
2119 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2120 						    name, name_len, 0);
2121 			btrfs_release_path(log_path);
2122 			if (!log_di) {
2123 				/* Doesn't exist in log tree, so delete it. */
2124 				btrfs_release_path(path);
2125 				di = btrfs_lookup_xattr(trans, root, path, ino,
2126 							name, name_len, -1);
2127 				kfree(name);
2128 				if (IS_ERR(di)) {
2129 					ret = PTR_ERR(di);
2130 					goto out;
2131 				}
2132 				ASSERT(di);
2133 				ret = btrfs_delete_one_dir_name(trans, root,
2134 								path, di);
2135 				if (ret)
2136 					goto out;
2137 				btrfs_release_path(path);
2138 				search_key = key;
2139 				goto again;
2140 			}
2141 			kfree(name);
2142 			if (IS_ERR(log_di)) {
2143 				ret = PTR_ERR(log_di);
2144 				goto out;
2145 			}
2146 			cur += this_len;
2147 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2148 		}
2149 	}
2150 	ret = btrfs_next_leaf(root, path);
2151 	if (ret > 0)
2152 		ret = 0;
2153 	else if (ret == 0)
2154 		goto process_leaf;
2155 out:
2156 	btrfs_free_path(log_path);
2157 	btrfs_release_path(path);
2158 	return ret;
2159 }
2160 
2161 
2162 /*
2163  * deletion replay happens before we copy any new directory items
2164  * out of the log or out of backreferences from inodes.  It
2165  * scans the log to find ranges of keys that log is authoritative for,
2166  * and then scans the directory to find items in those ranges that are
2167  * not present in the log.
2168  *
2169  * Anything we don't find in the log is unlinked and removed from the
2170  * directory.
2171  */
2172 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2173 				       struct btrfs_root *root,
2174 				       struct btrfs_root *log,
2175 				       struct btrfs_path *path,
2176 				       u64 dirid, int del_all)
2177 {
2178 	u64 range_start;
2179 	u64 range_end;
2180 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2181 	int ret = 0;
2182 	struct btrfs_key dir_key;
2183 	struct btrfs_key found_key;
2184 	struct btrfs_path *log_path;
2185 	struct inode *dir;
2186 
2187 	dir_key.objectid = dirid;
2188 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2189 	log_path = btrfs_alloc_path();
2190 	if (!log_path)
2191 		return -ENOMEM;
2192 
2193 	dir = read_one_inode(root, dirid);
2194 	/* it isn't an error if the inode isn't there, that can happen
2195 	 * because we replay the deletes before we copy in the inode item
2196 	 * from the log
2197 	 */
2198 	if (!dir) {
2199 		btrfs_free_path(log_path);
2200 		return 0;
2201 	}
2202 again:
2203 	range_start = 0;
2204 	range_end = 0;
2205 	while (1) {
2206 		if (del_all)
2207 			range_end = (u64)-1;
2208 		else {
2209 			ret = find_dir_range(log, path, dirid, key_type,
2210 					     &range_start, &range_end);
2211 			if (ret != 0)
2212 				break;
2213 		}
2214 
2215 		dir_key.offset = range_start;
2216 		while (1) {
2217 			int nritems;
2218 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2219 						0, 0);
2220 			if (ret < 0)
2221 				goto out;
2222 
2223 			nritems = btrfs_header_nritems(path->nodes[0]);
2224 			if (path->slots[0] >= nritems) {
2225 				ret = btrfs_next_leaf(root, path);
2226 				if (ret)
2227 					break;
2228 			}
2229 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2230 					      path->slots[0]);
2231 			if (found_key.objectid != dirid ||
2232 			    found_key.type != dir_key.type)
2233 				goto next_type;
2234 
2235 			if (found_key.offset > range_end)
2236 				break;
2237 
2238 			ret = check_item_in_log(trans, root, log, path,
2239 						log_path, dir,
2240 						&found_key);
2241 			if (ret)
2242 				goto out;
2243 			if (found_key.offset == (u64)-1)
2244 				break;
2245 			dir_key.offset = found_key.offset + 1;
2246 		}
2247 		btrfs_release_path(path);
2248 		if (range_end == (u64)-1)
2249 			break;
2250 		range_start = range_end + 1;
2251 	}
2252 
2253 next_type:
2254 	ret = 0;
2255 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2256 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2257 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2258 		btrfs_release_path(path);
2259 		goto again;
2260 	}
2261 out:
2262 	btrfs_release_path(path);
2263 	btrfs_free_path(log_path);
2264 	iput(dir);
2265 	return ret;
2266 }
2267 
2268 /*
2269  * the process_func used to replay items from the log tree.  This
2270  * gets called in two different stages.  The first stage just looks
2271  * for inodes and makes sure they are all copied into the subvolume.
2272  *
2273  * The second stage copies all the other item types from the log into
2274  * the subvolume.  The two stage approach is slower, but gets rid of
2275  * lots of complexity around inodes referencing other inodes that exist
2276  * only in the log (references come from either directory items or inode
2277  * back refs).
2278  */
2279 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2280 			     struct walk_control *wc, u64 gen)
2281 {
2282 	int nritems;
2283 	struct btrfs_path *path;
2284 	struct btrfs_root *root = wc->replay_dest;
2285 	struct btrfs_key key;
2286 	int level;
2287 	int i;
2288 	int ret;
2289 
2290 	ret = btrfs_read_buffer(eb, gen);
2291 	if (ret)
2292 		return ret;
2293 
2294 	level = btrfs_header_level(eb);
2295 
2296 	if (level != 0)
2297 		return 0;
2298 
2299 	path = btrfs_alloc_path();
2300 	if (!path)
2301 		return -ENOMEM;
2302 
2303 	nritems = btrfs_header_nritems(eb);
2304 	for (i = 0; i < nritems; i++) {
2305 		btrfs_item_key_to_cpu(eb, &key, i);
2306 
2307 		/* inode keys are done during the first stage */
2308 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2309 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2310 			struct btrfs_inode_item *inode_item;
2311 			u32 mode;
2312 
2313 			inode_item = btrfs_item_ptr(eb, i,
2314 					    struct btrfs_inode_item);
2315 			ret = replay_xattr_deletes(wc->trans, root, log,
2316 						   path, key.objectid);
2317 			if (ret)
2318 				break;
2319 			mode = btrfs_inode_mode(eb, inode_item);
2320 			if (S_ISDIR(mode)) {
2321 				ret = replay_dir_deletes(wc->trans,
2322 					 root, log, path, key.objectid, 0);
2323 				if (ret)
2324 					break;
2325 			}
2326 			ret = overwrite_item(wc->trans, root, path,
2327 					     eb, i, &key);
2328 			if (ret)
2329 				break;
2330 
2331 			/* for regular files, make sure corresponding
2332 			 * orhpan item exist. extents past the new EOF
2333 			 * will be truncated later by orphan cleanup.
2334 			 */
2335 			if (S_ISREG(mode)) {
2336 				ret = insert_orphan_item(wc->trans, root,
2337 							 key.objectid);
2338 				if (ret)
2339 					break;
2340 			}
2341 
2342 			ret = link_to_fixup_dir(wc->trans, root,
2343 						path, key.objectid);
2344 			if (ret)
2345 				break;
2346 		}
2347 
2348 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2349 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2350 			ret = replay_one_dir_item(wc->trans, root, path,
2351 						  eb, i, &key);
2352 			if (ret)
2353 				break;
2354 		}
2355 
2356 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2357 			continue;
2358 
2359 		/* these keys are simply copied */
2360 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2361 			ret = overwrite_item(wc->trans, root, path,
2362 					     eb, i, &key);
2363 			if (ret)
2364 				break;
2365 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2366 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2367 			ret = add_inode_ref(wc->trans, root, log, path,
2368 					    eb, i, &key);
2369 			if (ret && ret != -ENOENT)
2370 				break;
2371 			ret = 0;
2372 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2373 			ret = replay_one_extent(wc->trans, root, path,
2374 						eb, i, &key);
2375 			if (ret)
2376 				break;
2377 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2378 			ret = replay_one_dir_item(wc->trans, root, path,
2379 						  eb, i, &key);
2380 			if (ret)
2381 				break;
2382 		}
2383 	}
2384 	btrfs_free_path(path);
2385 	return ret;
2386 }
2387 
2388 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2389 				   struct btrfs_root *root,
2390 				   struct btrfs_path *path, int *level,
2391 				   struct walk_control *wc)
2392 {
2393 	u64 root_owner;
2394 	u64 bytenr;
2395 	u64 ptr_gen;
2396 	struct extent_buffer *next;
2397 	struct extent_buffer *cur;
2398 	struct extent_buffer *parent;
2399 	u32 blocksize;
2400 	int ret = 0;
2401 
2402 	WARN_ON(*level < 0);
2403 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2404 
2405 	while (*level > 0) {
2406 		WARN_ON(*level < 0);
2407 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2408 		cur = path->nodes[*level];
2409 
2410 		WARN_ON(btrfs_header_level(cur) != *level);
2411 
2412 		if (path->slots[*level] >=
2413 		    btrfs_header_nritems(cur))
2414 			break;
2415 
2416 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2417 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2418 		blocksize = root->nodesize;
2419 
2420 		parent = path->nodes[*level];
2421 		root_owner = btrfs_header_owner(parent);
2422 
2423 		next = btrfs_find_create_tree_block(root, bytenr);
2424 		if (!next)
2425 			return -ENOMEM;
2426 
2427 		if (*level == 1) {
2428 			ret = wc->process_func(root, next, wc, ptr_gen);
2429 			if (ret) {
2430 				free_extent_buffer(next);
2431 				return ret;
2432 			}
2433 
2434 			path->slots[*level]++;
2435 			if (wc->free) {
2436 				ret = btrfs_read_buffer(next, ptr_gen);
2437 				if (ret) {
2438 					free_extent_buffer(next);
2439 					return ret;
2440 				}
2441 
2442 				if (trans) {
2443 					btrfs_tree_lock(next);
2444 					btrfs_set_lock_blocking(next);
2445 					clean_tree_block(trans, root->fs_info,
2446 							next);
2447 					btrfs_wait_tree_block_writeback(next);
2448 					btrfs_tree_unlock(next);
2449 				}
2450 
2451 				WARN_ON(root_owner !=
2452 					BTRFS_TREE_LOG_OBJECTID);
2453 				ret = btrfs_free_and_pin_reserved_extent(root,
2454 							 bytenr, blocksize);
2455 				if (ret) {
2456 					free_extent_buffer(next);
2457 					return ret;
2458 				}
2459 			}
2460 			free_extent_buffer(next);
2461 			continue;
2462 		}
2463 		ret = btrfs_read_buffer(next, ptr_gen);
2464 		if (ret) {
2465 			free_extent_buffer(next);
2466 			return ret;
2467 		}
2468 
2469 		WARN_ON(*level <= 0);
2470 		if (path->nodes[*level-1])
2471 			free_extent_buffer(path->nodes[*level-1]);
2472 		path->nodes[*level-1] = next;
2473 		*level = btrfs_header_level(next);
2474 		path->slots[*level] = 0;
2475 		cond_resched();
2476 	}
2477 	WARN_ON(*level < 0);
2478 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2479 
2480 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2481 
2482 	cond_resched();
2483 	return 0;
2484 }
2485 
2486 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2487 				 struct btrfs_root *root,
2488 				 struct btrfs_path *path, int *level,
2489 				 struct walk_control *wc)
2490 {
2491 	u64 root_owner;
2492 	int i;
2493 	int slot;
2494 	int ret;
2495 
2496 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2497 		slot = path->slots[i];
2498 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2499 			path->slots[i]++;
2500 			*level = i;
2501 			WARN_ON(*level == 0);
2502 			return 0;
2503 		} else {
2504 			struct extent_buffer *parent;
2505 			if (path->nodes[*level] == root->node)
2506 				parent = path->nodes[*level];
2507 			else
2508 				parent = path->nodes[*level + 1];
2509 
2510 			root_owner = btrfs_header_owner(parent);
2511 			ret = wc->process_func(root, path->nodes[*level], wc,
2512 				 btrfs_header_generation(path->nodes[*level]));
2513 			if (ret)
2514 				return ret;
2515 
2516 			if (wc->free) {
2517 				struct extent_buffer *next;
2518 
2519 				next = path->nodes[*level];
2520 
2521 				if (trans) {
2522 					btrfs_tree_lock(next);
2523 					btrfs_set_lock_blocking(next);
2524 					clean_tree_block(trans, root->fs_info,
2525 							next);
2526 					btrfs_wait_tree_block_writeback(next);
2527 					btrfs_tree_unlock(next);
2528 				}
2529 
2530 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2531 				ret = btrfs_free_and_pin_reserved_extent(root,
2532 						path->nodes[*level]->start,
2533 						path->nodes[*level]->len);
2534 				if (ret)
2535 					return ret;
2536 			}
2537 			free_extent_buffer(path->nodes[*level]);
2538 			path->nodes[*level] = NULL;
2539 			*level = i + 1;
2540 		}
2541 	}
2542 	return 1;
2543 }
2544 
2545 /*
2546  * drop the reference count on the tree rooted at 'snap'.  This traverses
2547  * the tree freeing any blocks that have a ref count of zero after being
2548  * decremented.
2549  */
2550 static int walk_log_tree(struct btrfs_trans_handle *trans,
2551 			 struct btrfs_root *log, struct walk_control *wc)
2552 {
2553 	int ret = 0;
2554 	int wret;
2555 	int level;
2556 	struct btrfs_path *path;
2557 	int orig_level;
2558 
2559 	path = btrfs_alloc_path();
2560 	if (!path)
2561 		return -ENOMEM;
2562 
2563 	level = btrfs_header_level(log->node);
2564 	orig_level = level;
2565 	path->nodes[level] = log->node;
2566 	extent_buffer_get(log->node);
2567 	path->slots[level] = 0;
2568 
2569 	while (1) {
2570 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2571 		if (wret > 0)
2572 			break;
2573 		if (wret < 0) {
2574 			ret = wret;
2575 			goto out;
2576 		}
2577 
2578 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2579 		if (wret > 0)
2580 			break;
2581 		if (wret < 0) {
2582 			ret = wret;
2583 			goto out;
2584 		}
2585 	}
2586 
2587 	/* was the root node processed? if not, catch it here */
2588 	if (path->nodes[orig_level]) {
2589 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2590 			 btrfs_header_generation(path->nodes[orig_level]));
2591 		if (ret)
2592 			goto out;
2593 		if (wc->free) {
2594 			struct extent_buffer *next;
2595 
2596 			next = path->nodes[orig_level];
2597 
2598 			if (trans) {
2599 				btrfs_tree_lock(next);
2600 				btrfs_set_lock_blocking(next);
2601 				clean_tree_block(trans, log->fs_info, next);
2602 				btrfs_wait_tree_block_writeback(next);
2603 				btrfs_tree_unlock(next);
2604 			}
2605 
2606 			WARN_ON(log->root_key.objectid !=
2607 				BTRFS_TREE_LOG_OBJECTID);
2608 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2609 							 next->len);
2610 			if (ret)
2611 				goto out;
2612 		}
2613 	}
2614 
2615 out:
2616 	btrfs_free_path(path);
2617 	return ret;
2618 }
2619 
2620 /*
2621  * helper function to update the item for a given subvolumes log root
2622  * in the tree of log roots
2623  */
2624 static int update_log_root(struct btrfs_trans_handle *trans,
2625 			   struct btrfs_root *log)
2626 {
2627 	int ret;
2628 
2629 	if (log->log_transid == 1) {
2630 		/* insert root item on the first sync */
2631 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2632 				&log->root_key, &log->root_item);
2633 	} else {
2634 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2635 				&log->root_key, &log->root_item);
2636 	}
2637 	return ret;
2638 }
2639 
2640 static void wait_log_commit(struct btrfs_root *root, int transid)
2641 {
2642 	DEFINE_WAIT(wait);
2643 	int index = transid % 2;
2644 
2645 	/*
2646 	 * we only allow two pending log transactions at a time,
2647 	 * so we know that if ours is more than 2 older than the
2648 	 * current transaction, we're done
2649 	 */
2650 	do {
2651 		prepare_to_wait(&root->log_commit_wait[index],
2652 				&wait, TASK_UNINTERRUPTIBLE);
2653 		mutex_unlock(&root->log_mutex);
2654 
2655 		if (root->log_transid_committed < transid &&
2656 		    atomic_read(&root->log_commit[index]))
2657 			schedule();
2658 
2659 		finish_wait(&root->log_commit_wait[index], &wait);
2660 		mutex_lock(&root->log_mutex);
2661 	} while (root->log_transid_committed < transid &&
2662 		 atomic_read(&root->log_commit[index]));
2663 }
2664 
2665 static void wait_for_writer(struct btrfs_root *root)
2666 {
2667 	DEFINE_WAIT(wait);
2668 
2669 	while (atomic_read(&root->log_writers)) {
2670 		prepare_to_wait(&root->log_writer_wait,
2671 				&wait, TASK_UNINTERRUPTIBLE);
2672 		mutex_unlock(&root->log_mutex);
2673 		if (atomic_read(&root->log_writers))
2674 			schedule();
2675 		finish_wait(&root->log_writer_wait, &wait);
2676 		mutex_lock(&root->log_mutex);
2677 	}
2678 }
2679 
2680 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2681 					struct btrfs_log_ctx *ctx)
2682 {
2683 	if (!ctx)
2684 		return;
2685 
2686 	mutex_lock(&root->log_mutex);
2687 	list_del_init(&ctx->list);
2688 	mutex_unlock(&root->log_mutex);
2689 }
2690 
2691 /*
2692  * Invoked in log mutex context, or be sure there is no other task which
2693  * can access the list.
2694  */
2695 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2696 					     int index, int error)
2697 {
2698 	struct btrfs_log_ctx *ctx;
2699 
2700 	if (!error) {
2701 		INIT_LIST_HEAD(&root->log_ctxs[index]);
2702 		return;
2703 	}
2704 
2705 	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2706 		ctx->log_ret = error;
2707 
2708 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2709 }
2710 
2711 /*
2712  * btrfs_sync_log does sends a given tree log down to the disk and
2713  * updates the super blocks to record it.  When this call is done,
2714  * you know that any inodes previously logged are safely on disk only
2715  * if it returns 0.
2716  *
2717  * Any other return value means you need to call btrfs_commit_transaction.
2718  * Some of the edge cases for fsyncing directories that have had unlinks
2719  * or renames done in the past mean that sometimes the only safe
2720  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2721  * that has happened.
2722  */
2723 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2724 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2725 {
2726 	int index1;
2727 	int index2;
2728 	int mark;
2729 	int ret;
2730 	struct btrfs_root *log = root->log_root;
2731 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2732 	int log_transid = 0;
2733 	struct btrfs_log_ctx root_log_ctx;
2734 	struct blk_plug plug;
2735 
2736 	mutex_lock(&root->log_mutex);
2737 	log_transid = ctx->log_transid;
2738 	if (root->log_transid_committed >= log_transid) {
2739 		mutex_unlock(&root->log_mutex);
2740 		return ctx->log_ret;
2741 	}
2742 
2743 	index1 = log_transid % 2;
2744 	if (atomic_read(&root->log_commit[index1])) {
2745 		wait_log_commit(root, log_transid);
2746 		mutex_unlock(&root->log_mutex);
2747 		return ctx->log_ret;
2748 	}
2749 	ASSERT(log_transid == root->log_transid);
2750 	atomic_set(&root->log_commit[index1], 1);
2751 
2752 	/* wait for previous tree log sync to complete */
2753 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2754 		wait_log_commit(root, log_transid - 1);
2755 
2756 	while (1) {
2757 		int batch = atomic_read(&root->log_batch);
2758 		/* when we're on an ssd, just kick the log commit out */
2759 		if (!btrfs_test_opt(root, SSD) &&
2760 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2761 			mutex_unlock(&root->log_mutex);
2762 			schedule_timeout_uninterruptible(1);
2763 			mutex_lock(&root->log_mutex);
2764 		}
2765 		wait_for_writer(root);
2766 		if (batch == atomic_read(&root->log_batch))
2767 			break;
2768 	}
2769 
2770 	/* bail out if we need to do a full commit */
2771 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2772 		ret = -EAGAIN;
2773 		btrfs_free_logged_extents(log, log_transid);
2774 		mutex_unlock(&root->log_mutex);
2775 		goto out;
2776 	}
2777 
2778 	if (log_transid % 2 == 0)
2779 		mark = EXTENT_DIRTY;
2780 	else
2781 		mark = EXTENT_NEW;
2782 
2783 	/* we start IO on  all the marked extents here, but we don't actually
2784 	 * wait for them until later.
2785 	 */
2786 	blk_start_plug(&plug);
2787 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2788 	if (ret) {
2789 		blk_finish_plug(&plug);
2790 		btrfs_abort_transaction(trans, root, ret);
2791 		btrfs_free_logged_extents(log, log_transid);
2792 		btrfs_set_log_full_commit(root->fs_info, trans);
2793 		mutex_unlock(&root->log_mutex);
2794 		goto out;
2795 	}
2796 
2797 	btrfs_set_root_node(&log->root_item, log->node);
2798 
2799 	root->log_transid++;
2800 	log->log_transid = root->log_transid;
2801 	root->log_start_pid = 0;
2802 	/*
2803 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2804 	 * in their headers. new modifications of the log will be written to
2805 	 * new positions. so it's safe to allow log writers to go in.
2806 	 */
2807 	mutex_unlock(&root->log_mutex);
2808 
2809 	btrfs_init_log_ctx(&root_log_ctx);
2810 
2811 	mutex_lock(&log_root_tree->log_mutex);
2812 	atomic_inc(&log_root_tree->log_batch);
2813 	atomic_inc(&log_root_tree->log_writers);
2814 
2815 	index2 = log_root_tree->log_transid % 2;
2816 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2817 	root_log_ctx.log_transid = log_root_tree->log_transid;
2818 
2819 	mutex_unlock(&log_root_tree->log_mutex);
2820 
2821 	ret = update_log_root(trans, log);
2822 
2823 	mutex_lock(&log_root_tree->log_mutex);
2824 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2825 		/*
2826 		 * Implicit memory barrier after atomic_dec_and_test
2827 		 */
2828 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2829 			wake_up(&log_root_tree->log_writer_wait);
2830 	}
2831 
2832 	if (ret) {
2833 		if (!list_empty(&root_log_ctx.list))
2834 			list_del_init(&root_log_ctx.list);
2835 
2836 		blk_finish_plug(&plug);
2837 		btrfs_set_log_full_commit(root->fs_info, trans);
2838 
2839 		if (ret != -ENOSPC) {
2840 			btrfs_abort_transaction(trans, root, ret);
2841 			mutex_unlock(&log_root_tree->log_mutex);
2842 			goto out;
2843 		}
2844 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2845 		btrfs_free_logged_extents(log, log_transid);
2846 		mutex_unlock(&log_root_tree->log_mutex);
2847 		ret = -EAGAIN;
2848 		goto out;
2849 	}
2850 
2851 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2852 		blk_finish_plug(&plug);
2853 		mutex_unlock(&log_root_tree->log_mutex);
2854 		ret = root_log_ctx.log_ret;
2855 		goto out;
2856 	}
2857 
2858 	index2 = root_log_ctx.log_transid % 2;
2859 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2860 		blk_finish_plug(&plug);
2861 		ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2862 						mark);
2863 		btrfs_wait_logged_extents(trans, log, log_transid);
2864 		wait_log_commit(log_root_tree,
2865 				root_log_ctx.log_transid);
2866 		mutex_unlock(&log_root_tree->log_mutex);
2867 		if (!ret)
2868 			ret = root_log_ctx.log_ret;
2869 		goto out;
2870 	}
2871 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2872 	atomic_set(&log_root_tree->log_commit[index2], 1);
2873 
2874 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2875 		wait_log_commit(log_root_tree,
2876 				root_log_ctx.log_transid - 1);
2877 	}
2878 
2879 	wait_for_writer(log_root_tree);
2880 
2881 	/*
2882 	 * now that we've moved on to the tree of log tree roots,
2883 	 * check the full commit flag again
2884 	 */
2885 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2886 		blk_finish_plug(&plug);
2887 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2888 		btrfs_free_logged_extents(log, log_transid);
2889 		mutex_unlock(&log_root_tree->log_mutex);
2890 		ret = -EAGAIN;
2891 		goto out_wake_log_root;
2892 	}
2893 
2894 	ret = btrfs_write_marked_extents(log_root_tree,
2895 					 &log_root_tree->dirty_log_pages,
2896 					 EXTENT_DIRTY | EXTENT_NEW);
2897 	blk_finish_plug(&plug);
2898 	if (ret) {
2899 		btrfs_set_log_full_commit(root->fs_info, trans);
2900 		btrfs_abort_transaction(trans, root, ret);
2901 		btrfs_free_logged_extents(log, log_transid);
2902 		mutex_unlock(&log_root_tree->log_mutex);
2903 		goto out_wake_log_root;
2904 	}
2905 	ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2906 	if (!ret)
2907 		ret = btrfs_wait_marked_extents(log_root_tree,
2908 						&log_root_tree->dirty_log_pages,
2909 						EXTENT_NEW | EXTENT_DIRTY);
2910 	if (ret) {
2911 		btrfs_set_log_full_commit(root->fs_info, trans);
2912 		btrfs_free_logged_extents(log, log_transid);
2913 		mutex_unlock(&log_root_tree->log_mutex);
2914 		goto out_wake_log_root;
2915 	}
2916 	btrfs_wait_logged_extents(trans, log, log_transid);
2917 
2918 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2919 				log_root_tree->node->start);
2920 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2921 				btrfs_header_level(log_root_tree->node));
2922 
2923 	log_root_tree->log_transid++;
2924 	mutex_unlock(&log_root_tree->log_mutex);
2925 
2926 	/*
2927 	 * nobody else is going to jump in and write the the ctree
2928 	 * super here because the log_commit atomic below is protecting
2929 	 * us.  We must be called with a transaction handle pinning
2930 	 * the running transaction open, so a full commit can't hop
2931 	 * in and cause problems either.
2932 	 */
2933 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2934 	if (ret) {
2935 		btrfs_set_log_full_commit(root->fs_info, trans);
2936 		btrfs_abort_transaction(trans, root, ret);
2937 		goto out_wake_log_root;
2938 	}
2939 
2940 	mutex_lock(&root->log_mutex);
2941 	if (root->last_log_commit < log_transid)
2942 		root->last_log_commit = log_transid;
2943 	mutex_unlock(&root->log_mutex);
2944 
2945 out_wake_log_root:
2946 	/*
2947 	 * We needn't get log_mutex here because we are sure all
2948 	 * the other tasks are blocked.
2949 	 */
2950 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2951 
2952 	mutex_lock(&log_root_tree->log_mutex);
2953 	log_root_tree->log_transid_committed++;
2954 	atomic_set(&log_root_tree->log_commit[index2], 0);
2955 	mutex_unlock(&log_root_tree->log_mutex);
2956 
2957 	/*
2958 	 * The barrier before waitqueue_active is implied by mutex_unlock
2959 	 */
2960 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2961 		wake_up(&log_root_tree->log_commit_wait[index2]);
2962 out:
2963 	/* See above. */
2964 	btrfs_remove_all_log_ctxs(root, index1, ret);
2965 
2966 	mutex_lock(&root->log_mutex);
2967 	root->log_transid_committed++;
2968 	atomic_set(&root->log_commit[index1], 0);
2969 	mutex_unlock(&root->log_mutex);
2970 
2971 	/*
2972 	 * The barrier before waitqueue_active is implied by mutex_unlock
2973 	 */
2974 	if (waitqueue_active(&root->log_commit_wait[index1]))
2975 		wake_up(&root->log_commit_wait[index1]);
2976 	return ret;
2977 }
2978 
2979 static void free_log_tree(struct btrfs_trans_handle *trans,
2980 			  struct btrfs_root *log)
2981 {
2982 	int ret;
2983 	u64 start;
2984 	u64 end;
2985 	struct walk_control wc = {
2986 		.free = 1,
2987 		.process_func = process_one_buffer
2988 	};
2989 
2990 	ret = walk_log_tree(trans, log, &wc);
2991 	/* I don't think this can happen but just in case */
2992 	if (ret)
2993 		btrfs_abort_transaction(trans, log, ret);
2994 
2995 	while (1) {
2996 		ret = find_first_extent_bit(&log->dirty_log_pages,
2997 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2998 				NULL);
2999 		if (ret)
3000 			break;
3001 
3002 		clear_extent_bits(&log->dirty_log_pages, start, end,
3003 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
3004 	}
3005 
3006 	/*
3007 	 * We may have short-circuited the log tree with the full commit logic
3008 	 * and left ordered extents on our list, so clear these out to keep us
3009 	 * from leaking inodes and memory.
3010 	 */
3011 	btrfs_free_logged_extents(log, 0);
3012 	btrfs_free_logged_extents(log, 1);
3013 
3014 	free_extent_buffer(log->node);
3015 	kfree(log);
3016 }
3017 
3018 /*
3019  * free all the extents used by the tree log.  This should be called
3020  * at commit time of the full transaction
3021  */
3022 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3023 {
3024 	if (root->log_root) {
3025 		free_log_tree(trans, root->log_root);
3026 		root->log_root = NULL;
3027 	}
3028 	return 0;
3029 }
3030 
3031 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3032 			     struct btrfs_fs_info *fs_info)
3033 {
3034 	if (fs_info->log_root_tree) {
3035 		free_log_tree(trans, fs_info->log_root_tree);
3036 		fs_info->log_root_tree = NULL;
3037 	}
3038 	return 0;
3039 }
3040 
3041 /*
3042  * If both a file and directory are logged, and unlinks or renames are
3043  * mixed in, we have a few interesting corners:
3044  *
3045  * create file X in dir Y
3046  * link file X to X.link in dir Y
3047  * fsync file X
3048  * unlink file X but leave X.link
3049  * fsync dir Y
3050  *
3051  * After a crash we would expect only X.link to exist.  But file X
3052  * didn't get fsync'd again so the log has back refs for X and X.link.
3053  *
3054  * We solve this by removing directory entries and inode backrefs from the
3055  * log when a file that was logged in the current transaction is
3056  * unlinked.  Any later fsync will include the updated log entries, and
3057  * we'll be able to reconstruct the proper directory items from backrefs.
3058  *
3059  * This optimizations allows us to avoid relogging the entire inode
3060  * or the entire directory.
3061  */
3062 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3063 				 struct btrfs_root *root,
3064 				 const char *name, int name_len,
3065 				 struct inode *dir, u64 index)
3066 {
3067 	struct btrfs_root *log;
3068 	struct btrfs_dir_item *di;
3069 	struct btrfs_path *path;
3070 	int ret;
3071 	int err = 0;
3072 	int bytes_del = 0;
3073 	u64 dir_ino = btrfs_ino(dir);
3074 
3075 	if (BTRFS_I(dir)->logged_trans < trans->transid)
3076 		return 0;
3077 
3078 	ret = join_running_log_trans(root);
3079 	if (ret)
3080 		return 0;
3081 
3082 	mutex_lock(&BTRFS_I(dir)->log_mutex);
3083 
3084 	log = root->log_root;
3085 	path = btrfs_alloc_path();
3086 	if (!path) {
3087 		err = -ENOMEM;
3088 		goto out_unlock;
3089 	}
3090 
3091 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3092 				   name, name_len, -1);
3093 	if (IS_ERR(di)) {
3094 		err = PTR_ERR(di);
3095 		goto fail;
3096 	}
3097 	if (di) {
3098 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3099 		bytes_del += name_len;
3100 		if (ret) {
3101 			err = ret;
3102 			goto fail;
3103 		}
3104 	}
3105 	btrfs_release_path(path);
3106 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3107 					 index, name, name_len, -1);
3108 	if (IS_ERR(di)) {
3109 		err = PTR_ERR(di);
3110 		goto fail;
3111 	}
3112 	if (di) {
3113 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3114 		bytes_del += name_len;
3115 		if (ret) {
3116 			err = ret;
3117 			goto fail;
3118 		}
3119 	}
3120 
3121 	/* update the directory size in the log to reflect the names
3122 	 * we have removed
3123 	 */
3124 	if (bytes_del) {
3125 		struct btrfs_key key;
3126 
3127 		key.objectid = dir_ino;
3128 		key.offset = 0;
3129 		key.type = BTRFS_INODE_ITEM_KEY;
3130 		btrfs_release_path(path);
3131 
3132 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3133 		if (ret < 0) {
3134 			err = ret;
3135 			goto fail;
3136 		}
3137 		if (ret == 0) {
3138 			struct btrfs_inode_item *item;
3139 			u64 i_size;
3140 
3141 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3142 					      struct btrfs_inode_item);
3143 			i_size = btrfs_inode_size(path->nodes[0], item);
3144 			if (i_size > bytes_del)
3145 				i_size -= bytes_del;
3146 			else
3147 				i_size = 0;
3148 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3149 			btrfs_mark_buffer_dirty(path->nodes[0]);
3150 		} else
3151 			ret = 0;
3152 		btrfs_release_path(path);
3153 	}
3154 fail:
3155 	btrfs_free_path(path);
3156 out_unlock:
3157 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
3158 	if (ret == -ENOSPC) {
3159 		btrfs_set_log_full_commit(root->fs_info, trans);
3160 		ret = 0;
3161 	} else if (ret < 0)
3162 		btrfs_abort_transaction(trans, root, ret);
3163 
3164 	btrfs_end_log_trans(root);
3165 
3166 	return err;
3167 }
3168 
3169 /* see comments for btrfs_del_dir_entries_in_log */
3170 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3171 			       struct btrfs_root *root,
3172 			       const char *name, int name_len,
3173 			       struct inode *inode, u64 dirid)
3174 {
3175 	struct btrfs_root *log;
3176 	u64 index;
3177 	int ret;
3178 
3179 	if (BTRFS_I(inode)->logged_trans < trans->transid)
3180 		return 0;
3181 
3182 	ret = join_running_log_trans(root);
3183 	if (ret)
3184 		return 0;
3185 	log = root->log_root;
3186 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3187 
3188 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3189 				  dirid, &index);
3190 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3191 	if (ret == -ENOSPC) {
3192 		btrfs_set_log_full_commit(root->fs_info, trans);
3193 		ret = 0;
3194 	} else if (ret < 0 && ret != -ENOENT)
3195 		btrfs_abort_transaction(trans, root, ret);
3196 	btrfs_end_log_trans(root);
3197 
3198 	return ret;
3199 }
3200 
3201 /*
3202  * creates a range item in the log for 'dirid'.  first_offset and
3203  * last_offset tell us which parts of the key space the log should
3204  * be considered authoritative for.
3205  */
3206 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3207 				       struct btrfs_root *log,
3208 				       struct btrfs_path *path,
3209 				       int key_type, u64 dirid,
3210 				       u64 first_offset, u64 last_offset)
3211 {
3212 	int ret;
3213 	struct btrfs_key key;
3214 	struct btrfs_dir_log_item *item;
3215 
3216 	key.objectid = dirid;
3217 	key.offset = first_offset;
3218 	if (key_type == BTRFS_DIR_ITEM_KEY)
3219 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3220 	else
3221 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3222 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3223 	if (ret)
3224 		return ret;
3225 
3226 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3227 			      struct btrfs_dir_log_item);
3228 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3229 	btrfs_mark_buffer_dirty(path->nodes[0]);
3230 	btrfs_release_path(path);
3231 	return 0;
3232 }
3233 
3234 /*
3235  * log all the items included in the current transaction for a given
3236  * directory.  This also creates the range items in the log tree required
3237  * to replay anything deleted before the fsync
3238  */
3239 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3240 			  struct btrfs_root *root, struct inode *inode,
3241 			  struct btrfs_path *path,
3242 			  struct btrfs_path *dst_path, int key_type,
3243 			  struct btrfs_log_ctx *ctx,
3244 			  u64 min_offset, u64 *last_offset_ret)
3245 {
3246 	struct btrfs_key min_key;
3247 	struct btrfs_root *log = root->log_root;
3248 	struct extent_buffer *src;
3249 	int err = 0;
3250 	int ret;
3251 	int i;
3252 	int nritems;
3253 	u64 first_offset = min_offset;
3254 	u64 last_offset = (u64)-1;
3255 	u64 ino = btrfs_ino(inode);
3256 
3257 	log = root->log_root;
3258 
3259 	min_key.objectid = ino;
3260 	min_key.type = key_type;
3261 	min_key.offset = min_offset;
3262 
3263 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3264 
3265 	/*
3266 	 * we didn't find anything from this transaction, see if there
3267 	 * is anything at all
3268 	 */
3269 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3270 		min_key.objectid = ino;
3271 		min_key.type = key_type;
3272 		min_key.offset = (u64)-1;
3273 		btrfs_release_path(path);
3274 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3275 		if (ret < 0) {
3276 			btrfs_release_path(path);
3277 			return ret;
3278 		}
3279 		ret = btrfs_previous_item(root, path, ino, key_type);
3280 
3281 		/* if ret == 0 there are items for this type,
3282 		 * create a range to tell us the last key of this type.
3283 		 * otherwise, there are no items in this directory after
3284 		 * *min_offset, and we create a range to indicate that.
3285 		 */
3286 		if (ret == 0) {
3287 			struct btrfs_key tmp;
3288 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3289 					      path->slots[0]);
3290 			if (key_type == tmp.type)
3291 				first_offset = max(min_offset, tmp.offset) + 1;
3292 		}
3293 		goto done;
3294 	}
3295 
3296 	/* go backward to find any previous key */
3297 	ret = btrfs_previous_item(root, path, ino, key_type);
3298 	if (ret == 0) {
3299 		struct btrfs_key tmp;
3300 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3301 		if (key_type == tmp.type) {
3302 			first_offset = tmp.offset;
3303 			ret = overwrite_item(trans, log, dst_path,
3304 					     path->nodes[0], path->slots[0],
3305 					     &tmp);
3306 			if (ret) {
3307 				err = ret;
3308 				goto done;
3309 			}
3310 		}
3311 	}
3312 	btrfs_release_path(path);
3313 
3314 	/* find the first key from this transaction again */
3315 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3316 	if (WARN_ON(ret != 0))
3317 		goto done;
3318 
3319 	/*
3320 	 * we have a block from this transaction, log every item in it
3321 	 * from our directory
3322 	 */
3323 	while (1) {
3324 		struct btrfs_key tmp;
3325 		src = path->nodes[0];
3326 		nritems = btrfs_header_nritems(src);
3327 		for (i = path->slots[0]; i < nritems; i++) {
3328 			struct btrfs_dir_item *di;
3329 
3330 			btrfs_item_key_to_cpu(src, &min_key, i);
3331 
3332 			if (min_key.objectid != ino || min_key.type != key_type)
3333 				goto done;
3334 			ret = overwrite_item(trans, log, dst_path, src, i,
3335 					     &min_key);
3336 			if (ret) {
3337 				err = ret;
3338 				goto done;
3339 			}
3340 
3341 			/*
3342 			 * We must make sure that when we log a directory entry,
3343 			 * the corresponding inode, after log replay, has a
3344 			 * matching link count. For example:
3345 			 *
3346 			 * touch foo
3347 			 * mkdir mydir
3348 			 * sync
3349 			 * ln foo mydir/bar
3350 			 * xfs_io -c "fsync" mydir
3351 			 * <crash>
3352 			 * <mount fs and log replay>
3353 			 *
3354 			 * Would result in a fsync log that when replayed, our
3355 			 * file inode would have a link count of 1, but we get
3356 			 * two directory entries pointing to the same inode.
3357 			 * After removing one of the names, it would not be
3358 			 * possible to remove the other name, which resulted
3359 			 * always in stale file handle errors, and would not
3360 			 * be possible to rmdir the parent directory, since
3361 			 * its i_size could never decrement to the value
3362 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3363 			 */
3364 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3365 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3366 			if (ctx &&
3367 			    (btrfs_dir_transid(src, di) == trans->transid ||
3368 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3369 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3370 				ctx->log_new_dentries = true;
3371 		}
3372 		path->slots[0] = nritems;
3373 
3374 		/*
3375 		 * look ahead to the next item and see if it is also
3376 		 * from this directory and from this transaction
3377 		 */
3378 		ret = btrfs_next_leaf(root, path);
3379 		if (ret == 1) {
3380 			last_offset = (u64)-1;
3381 			goto done;
3382 		}
3383 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3384 		if (tmp.objectid != ino || tmp.type != key_type) {
3385 			last_offset = (u64)-1;
3386 			goto done;
3387 		}
3388 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3389 			ret = overwrite_item(trans, log, dst_path,
3390 					     path->nodes[0], path->slots[0],
3391 					     &tmp);
3392 			if (ret)
3393 				err = ret;
3394 			else
3395 				last_offset = tmp.offset;
3396 			goto done;
3397 		}
3398 	}
3399 done:
3400 	btrfs_release_path(path);
3401 	btrfs_release_path(dst_path);
3402 
3403 	if (err == 0) {
3404 		*last_offset_ret = last_offset;
3405 		/*
3406 		 * insert the log range keys to indicate where the log
3407 		 * is valid
3408 		 */
3409 		ret = insert_dir_log_key(trans, log, path, key_type,
3410 					 ino, first_offset, last_offset);
3411 		if (ret)
3412 			err = ret;
3413 	}
3414 	return err;
3415 }
3416 
3417 /*
3418  * logging directories is very similar to logging inodes, We find all the items
3419  * from the current transaction and write them to the log.
3420  *
3421  * The recovery code scans the directory in the subvolume, and if it finds a
3422  * key in the range logged that is not present in the log tree, then it means
3423  * that dir entry was unlinked during the transaction.
3424  *
3425  * In order for that scan to work, we must include one key smaller than
3426  * the smallest logged by this transaction and one key larger than the largest
3427  * key logged by this transaction.
3428  */
3429 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3430 			  struct btrfs_root *root, struct inode *inode,
3431 			  struct btrfs_path *path,
3432 			  struct btrfs_path *dst_path,
3433 			  struct btrfs_log_ctx *ctx)
3434 {
3435 	u64 min_key;
3436 	u64 max_key;
3437 	int ret;
3438 	int key_type = BTRFS_DIR_ITEM_KEY;
3439 
3440 again:
3441 	min_key = 0;
3442 	max_key = 0;
3443 	while (1) {
3444 		ret = log_dir_items(trans, root, inode, path,
3445 				    dst_path, key_type, ctx, min_key,
3446 				    &max_key);
3447 		if (ret)
3448 			return ret;
3449 		if (max_key == (u64)-1)
3450 			break;
3451 		min_key = max_key + 1;
3452 	}
3453 
3454 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3455 		key_type = BTRFS_DIR_INDEX_KEY;
3456 		goto again;
3457 	}
3458 	return 0;
3459 }
3460 
3461 /*
3462  * a helper function to drop items from the log before we relog an
3463  * inode.  max_key_type indicates the highest item type to remove.
3464  * This cannot be run for file data extents because it does not
3465  * free the extents they point to.
3466  */
3467 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3468 				  struct btrfs_root *log,
3469 				  struct btrfs_path *path,
3470 				  u64 objectid, int max_key_type)
3471 {
3472 	int ret;
3473 	struct btrfs_key key;
3474 	struct btrfs_key found_key;
3475 	int start_slot;
3476 
3477 	key.objectid = objectid;
3478 	key.type = max_key_type;
3479 	key.offset = (u64)-1;
3480 
3481 	while (1) {
3482 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3483 		BUG_ON(ret == 0); /* Logic error */
3484 		if (ret < 0)
3485 			break;
3486 
3487 		if (path->slots[0] == 0)
3488 			break;
3489 
3490 		path->slots[0]--;
3491 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3492 				      path->slots[0]);
3493 
3494 		if (found_key.objectid != objectid)
3495 			break;
3496 
3497 		found_key.offset = 0;
3498 		found_key.type = 0;
3499 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3500 				       &start_slot);
3501 
3502 		ret = btrfs_del_items(trans, log, path, start_slot,
3503 				      path->slots[0] - start_slot + 1);
3504 		/*
3505 		 * If start slot isn't 0 then we don't need to re-search, we've
3506 		 * found the last guy with the objectid in this tree.
3507 		 */
3508 		if (ret || start_slot != 0)
3509 			break;
3510 		btrfs_release_path(path);
3511 	}
3512 	btrfs_release_path(path);
3513 	if (ret > 0)
3514 		ret = 0;
3515 	return ret;
3516 }
3517 
3518 static void fill_inode_item(struct btrfs_trans_handle *trans,
3519 			    struct extent_buffer *leaf,
3520 			    struct btrfs_inode_item *item,
3521 			    struct inode *inode, int log_inode_only,
3522 			    u64 logged_isize)
3523 {
3524 	struct btrfs_map_token token;
3525 
3526 	btrfs_init_map_token(&token);
3527 
3528 	if (log_inode_only) {
3529 		/* set the generation to zero so the recover code
3530 		 * can tell the difference between an logging
3531 		 * just to say 'this inode exists' and a logging
3532 		 * to say 'update this inode with these values'
3533 		 */
3534 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3535 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3536 	} else {
3537 		btrfs_set_token_inode_generation(leaf, item,
3538 						 BTRFS_I(inode)->generation,
3539 						 &token);
3540 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3541 	}
3542 
3543 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3544 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3545 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3546 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3547 
3548 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3549 				     inode->i_atime.tv_sec, &token);
3550 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3551 				      inode->i_atime.tv_nsec, &token);
3552 
3553 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3554 				     inode->i_mtime.tv_sec, &token);
3555 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3556 				      inode->i_mtime.tv_nsec, &token);
3557 
3558 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3559 				     inode->i_ctime.tv_sec, &token);
3560 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3561 				      inode->i_ctime.tv_nsec, &token);
3562 
3563 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3564 				     &token);
3565 
3566 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3567 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3568 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3569 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3570 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3571 }
3572 
3573 static int log_inode_item(struct btrfs_trans_handle *trans,
3574 			  struct btrfs_root *log, struct btrfs_path *path,
3575 			  struct inode *inode)
3576 {
3577 	struct btrfs_inode_item *inode_item;
3578 	int ret;
3579 
3580 	ret = btrfs_insert_empty_item(trans, log, path,
3581 				      &BTRFS_I(inode)->location,
3582 				      sizeof(*inode_item));
3583 	if (ret && ret != -EEXIST)
3584 		return ret;
3585 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3586 				    struct btrfs_inode_item);
3587 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3588 	btrfs_release_path(path);
3589 	return 0;
3590 }
3591 
3592 static noinline int copy_items(struct btrfs_trans_handle *trans,
3593 			       struct inode *inode,
3594 			       struct btrfs_path *dst_path,
3595 			       struct btrfs_path *src_path, u64 *last_extent,
3596 			       int start_slot, int nr, int inode_only,
3597 			       u64 logged_isize)
3598 {
3599 	unsigned long src_offset;
3600 	unsigned long dst_offset;
3601 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3602 	struct btrfs_file_extent_item *extent;
3603 	struct btrfs_inode_item *inode_item;
3604 	struct extent_buffer *src = src_path->nodes[0];
3605 	struct btrfs_key first_key, last_key, key;
3606 	int ret;
3607 	struct btrfs_key *ins_keys;
3608 	u32 *ins_sizes;
3609 	char *ins_data;
3610 	int i;
3611 	struct list_head ordered_sums;
3612 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3613 	bool has_extents = false;
3614 	bool need_find_last_extent = true;
3615 	bool done = false;
3616 
3617 	INIT_LIST_HEAD(&ordered_sums);
3618 
3619 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3620 			   nr * sizeof(u32), GFP_NOFS);
3621 	if (!ins_data)
3622 		return -ENOMEM;
3623 
3624 	first_key.objectid = (u64)-1;
3625 
3626 	ins_sizes = (u32 *)ins_data;
3627 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3628 
3629 	for (i = 0; i < nr; i++) {
3630 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3631 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3632 	}
3633 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3634 				       ins_keys, ins_sizes, nr);
3635 	if (ret) {
3636 		kfree(ins_data);
3637 		return ret;
3638 	}
3639 
3640 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3641 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3642 						   dst_path->slots[0]);
3643 
3644 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3645 
3646 		if ((i == (nr - 1)))
3647 			last_key = ins_keys[i];
3648 
3649 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3650 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3651 						    dst_path->slots[0],
3652 						    struct btrfs_inode_item);
3653 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3654 					inode, inode_only == LOG_INODE_EXISTS,
3655 					logged_isize);
3656 		} else {
3657 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3658 					   src_offset, ins_sizes[i]);
3659 		}
3660 
3661 		/*
3662 		 * We set need_find_last_extent here in case we know we were
3663 		 * processing other items and then walk into the first extent in
3664 		 * the inode.  If we don't hit an extent then nothing changes,
3665 		 * we'll do the last search the next time around.
3666 		 */
3667 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3668 			has_extents = true;
3669 			if (first_key.objectid == (u64)-1)
3670 				first_key = ins_keys[i];
3671 		} else {
3672 			need_find_last_extent = false;
3673 		}
3674 
3675 		/* take a reference on file data extents so that truncates
3676 		 * or deletes of this inode don't have to relog the inode
3677 		 * again
3678 		 */
3679 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3680 		    !skip_csum) {
3681 			int found_type;
3682 			extent = btrfs_item_ptr(src, start_slot + i,
3683 						struct btrfs_file_extent_item);
3684 
3685 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3686 				continue;
3687 
3688 			found_type = btrfs_file_extent_type(src, extent);
3689 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3690 				u64 ds, dl, cs, cl;
3691 				ds = btrfs_file_extent_disk_bytenr(src,
3692 								extent);
3693 				/* ds == 0 is a hole */
3694 				if (ds == 0)
3695 					continue;
3696 
3697 				dl = btrfs_file_extent_disk_num_bytes(src,
3698 								extent);
3699 				cs = btrfs_file_extent_offset(src, extent);
3700 				cl = btrfs_file_extent_num_bytes(src,
3701 								extent);
3702 				if (btrfs_file_extent_compression(src,
3703 								  extent)) {
3704 					cs = 0;
3705 					cl = dl;
3706 				}
3707 
3708 				ret = btrfs_lookup_csums_range(
3709 						log->fs_info->csum_root,
3710 						ds + cs, ds + cs + cl - 1,
3711 						&ordered_sums, 0);
3712 				if (ret) {
3713 					btrfs_release_path(dst_path);
3714 					kfree(ins_data);
3715 					return ret;
3716 				}
3717 			}
3718 		}
3719 	}
3720 
3721 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3722 	btrfs_release_path(dst_path);
3723 	kfree(ins_data);
3724 
3725 	/*
3726 	 * we have to do this after the loop above to avoid changing the
3727 	 * log tree while trying to change the log tree.
3728 	 */
3729 	ret = 0;
3730 	while (!list_empty(&ordered_sums)) {
3731 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3732 						   struct btrfs_ordered_sum,
3733 						   list);
3734 		if (!ret)
3735 			ret = btrfs_csum_file_blocks(trans, log, sums);
3736 		list_del(&sums->list);
3737 		kfree(sums);
3738 	}
3739 
3740 	if (!has_extents)
3741 		return ret;
3742 
3743 	if (need_find_last_extent && *last_extent == first_key.offset) {
3744 		/*
3745 		 * We don't have any leafs between our current one and the one
3746 		 * we processed before that can have file extent items for our
3747 		 * inode (and have a generation number smaller than our current
3748 		 * transaction id).
3749 		 */
3750 		need_find_last_extent = false;
3751 	}
3752 
3753 	/*
3754 	 * Because we use btrfs_search_forward we could skip leaves that were
3755 	 * not modified and then assume *last_extent is valid when it really
3756 	 * isn't.  So back up to the previous leaf and read the end of the last
3757 	 * extent before we go and fill in holes.
3758 	 */
3759 	if (need_find_last_extent) {
3760 		u64 len;
3761 
3762 		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3763 		if (ret < 0)
3764 			return ret;
3765 		if (ret)
3766 			goto fill_holes;
3767 		if (src_path->slots[0])
3768 			src_path->slots[0]--;
3769 		src = src_path->nodes[0];
3770 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3771 		if (key.objectid != btrfs_ino(inode) ||
3772 		    key.type != BTRFS_EXTENT_DATA_KEY)
3773 			goto fill_holes;
3774 		extent = btrfs_item_ptr(src, src_path->slots[0],
3775 					struct btrfs_file_extent_item);
3776 		if (btrfs_file_extent_type(src, extent) ==
3777 		    BTRFS_FILE_EXTENT_INLINE) {
3778 			len = btrfs_file_extent_inline_len(src,
3779 							   src_path->slots[0],
3780 							   extent);
3781 			*last_extent = ALIGN(key.offset + len,
3782 					     log->sectorsize);
3783 		} else {
3784 			len = btrfs_file_extent_num_bytes(src, extent);
3785 			*last_extent = key.offset + len;
3786 		}
3787 	}
3788 fill_holes:
3789 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3790 	 * things could have happened
3791 	 *
3792 	 * 1) A merge could have happened, so we could currently be on a leaf
3793 	 * that holds what we were copying in the first place.
3794 	 * 2) A split could have happened, and now not all of the items we want
3795 	 * are on the same leaf.
3796 	 *
3797 	 * So we need to adjust how we search for holes, we need to drop the
3798 	 * path and re-search for the first extent key we found, and then walk
3799 	 * forward until we hit the last one we copied.
3800 	 */
3801 	if (need_find_last_extent) {
3802 		/* btrfs_prev_leaf could return 1 without releasing the path */
3803 		btrfs_release_path(src_path);
3804 		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3805 					src_path, 0, 0);
3806 		if (ret < 0)
3807 			return ret;
3808 		ASSERT(ret == 0);
3809 		src = src_path->nodes[0];
3810 		i = src_path->slots[0];
3811 	} else {
3812 		i = start_slot;
3813 	}
3814 
3815 	/*
3816 	 * Ok so here we need to go through and fill in any holes we may have
3817 	 * to make sure that holes are punched for those areas in case they had
3818 	 * extents previously.
3819 	 */
3820 	while (!done) {
3821 		u64 offset, len;
3822 		u64 extent_end;
3823 
3824 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3825 			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3826 			if (ret < 0)
3827 				return ret;
3828 			ASSERT(ret == 0);
3829 			src = src_path->nodes[0];
3830 			i = 0;
3831 		}
3832 
3833 		btrfs_item_key_to_cpu(src, &key, i);
3834 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3835 			done = true;
3836 		if (key.objectid != btrfs_ino(inode) ||
3837 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3838 			i++;
3839 			continue;
3840 		}
3841 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3842 		if (btrfs_file_extent_type(src, extent) ==
3843 		    BTRFS_FILE_EXTENT_INLINE) {
3844 			len = btrfs_file_extent_inline_len(src, i, extent);
3845 			extent_end = ALIGN(key.offset + len, log->sectorsize);
3846 		} else {
3847 			len = btrfs_file_extent_num_bytes(src, extent);
3848 			extent_end = key.offset + len;
3849 		}
3850 		i++;
3851 
3852 		if (*last_extent == key.offset) {
3853 			*last_extent = extent_end;
3854 			continue;
3855 		}
3856 		offset = *last_extent;
3857 		len = key.offset - *last_extent;
3858 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3859 					       offset, 0, 0, len, 0, len, 0,
3860 					       0, 0);
3861 		if (ret)
3862 			break;
3863 		*last_extent = extent_end;
3864 	}
3865 	/*
3866 	 * Need to let the callers know we dropped the path so they should
3867 	 * re-search.
3868 	 */
3869 	if (!ret && need_find_last_extent)
3870 		ret = 1;
3871 	return ret;
3872 }
3873 
3874 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3875 {
3876 	struct extent_map *em1, *em2;
3877 
3878 	em1 = list_entry(a, struct extent_map, list);
3879 	em2 = list_entry(b, struct extent_map, list);
3880 
3881 	if (em1->start < em2->start)
3882 		return -1;
3883 	else if (em1->start > em2->start)
3884 		return 1;
3885 	return 0;
3886 }
3887 
3888 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3889 				struct inode *inode,
3890 				struct btrfs_root *root,
3891 				const struct extent_map *em,
3892 				const struct list_head *logged_list,
3893 				bool *ordered_io_error)
3894 {
3895 	struct btrfs_ordered_extent *ordered;
3896 	struct btrfs_root *log = root->log_root;
3897 	u64 mod_start = em->mod_start;
3898 	u64 mod_len = em->mod_len;
3899 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3900 	u64 csum_offset;
3901 	u64 csum_len;
3902 	LIST_HEAD(ordered_sums);
3903 	int ret = 0;
3904 
3905 	*ordered_io_error = false;
3906 
3907 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3908 	    em->block_start == EXTENT_MAP_HOLE)
3909 		return 0;
3910 
3911 	/*
3912 	 * Wait far any ordered extent that covers our extent map. If it
3913 	 * finishes without an error, first check and see if our csums are on
3914 	 * our outstanding ordered extents.
3915 	 */
3916 	list_for_each_entry(ordered, logged_list, log_list) {
3917 		struct btrfs_ordered_sum *sum;
3918 
3919 		if (!mod_len)
3920 			break;
3921 
3922 		if (ordered->file_offset + ordered->len <= mod_start ||
3923 		    mod_start + mod_len <= ordered->file_offset)
3924 			continue;
3925 
3926 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3927 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3928 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3929 			const u64 start = ordered->file_offset;
3930 			const u64 end = ordered->file_offset + ordered->len - 1;
3931 
3932 			WARN_ON(ordered->inode != inode);
3933 			filemap_fdatawrite_range(inode->i_mapping, start, end);
3934 		}
3935 
3936 		wait_event(ordered->wait,
3937 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3938 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3939 
3940 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3941 			/*
3942 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3943 			 * i_mapping flags, so that the next fsync won't get
3944 			 * an outdated io error too.
3945 			 */
3946 			btrfs_inode_check_errors(inode);
3947 			*ordered_io_error = true;
3948 			break;
3949 		}
3950 		/*
3951 		 * We are going to copy all the csums on this ordered extent, so
3952 		 * go ahead and adjust mod_start and mod_len in case this
3953 		 * ordered extent has already been logged.
3954 		 */
3955 		if (ordered->file_offset > mod_start) {
3956 			if (ordered->file_offset + ordered->len >=
3957 			    mod_start + mod_len)
3958 				mod_len = ordered->file_offset - mod_start;
3959 			/*
3960 			 * If we have this case
3961 			 *
3962 			 * |--------- logged extent ---------|
3963 			 *       |----- ordered extent ----|
3964 			 *
3965 			 * Just don't mess with mod_start and mod_len, we'll
3966 			 * just end up logging more csums than we need and it
3967 			 * will be ok.
3968 			 */
3969 		} else {
3970 			if (ordered->file_offset + ordered->len <
3971 			    mod_start + mod_len) {
3972 				mod_len = (mod_start + mod_len) -
3973 					(ordered->file_offset + ordered->len);
3974 				mod_start = ordered->file_offset +
3975 					ordered->len;
3976 			} else {
3977 				mod_len = 0;
3978 			}
3979 		}
3980 
3981 		if (skip_csum)
3982 			continue;
3983 
3984 		/*
3985 		 * To keep us from looping for the above case of an ordered
3986 		 * extent that falls inside of the logged extent.
3987 		 */
3988 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3989 				     &ordered->flags))
3990 			continue;
3991 
3992 		list_for_each_entry(sum, &ordered->list, list) {
3993 			ret = btrfs_csum_file_blocks(trans, log, sum);
3994 			if (ret)
3995 				break;
3996 		}
3997 	}
3998 
3999 	if (*ordered_io_error || !mod_len || ret || skip_csum)
4000 		return ret;
4001 
4002 	if (em->compress_type) {
4003 		csum_offset = 0;
4004 		csum_len = max(em->block_len, em->orig_block_len);
4005 	} else {
4006 		csum_offset = mod_start - em->start;
4007 		csum_len = mod_len;
4008 	}
4009 
4010 	/* block start is already adjusted for the file extent offset. */
4011 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4012 				       em->block_start + csum_offset,
4013 				       em->block_start + csum_offset +
4014 				       csum_len - 1, &ordered_sums, 0);
4015 	if (ret)
4016 		return ret;
4017 
4018 	while (!list_empty(&ordered_sums)) {
4019 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4020 						   struct btrfs_ordered_sum,
4021 						   list);
4022 		if (!ret)
4023 			ret = btrfs_csum_file_blocks(trans, log, sums);
4024 		list_del(&sums->list);
4025 		kfree(sums);
4026 	}
4027 
4028 	return ret;
4029 }
4030 
4031 static int log_one_extent(struct btrfs_trans_handle *trans,
4032 			  struct inode *inode, struct btrfs_root *root,
4033 			  const struct extent_map *em,
4034 			  struct btrfs_path *path,
4035 			  const struct list_head *logged_list,
4036 			  struct btrfs_log_ctx *ctx)
4037 {
4038 	struct btrfs_root *log = root->log_root;
4039 	struct btrfs_file_extent_item *fi;
4040 	struct extent_buffer *leaf;
4041 	struct btrfs_map_token token;
4042 	struct btrfs_key key;
4043 	u64 extent_offset = em->start - em->orig_start;
4044 	u64 block_len;
4045 	int ret;
4046 	int extent_inserted = 0;
4047 	bool ordered_io_err = false;
4048 
4049 	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4050 				   &ordered_io_err);
4051 	if (ret)
4052 		return ret;
4053 
4054 	if (ordered_io_err) {
4055 		ctx->io_err = -EIO;
4056 		return 0;
4057 	}
4058 
4059 	btrfs_init_map_token(&token);
4060 
4061 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4062 				   em->start + em->len, NULL, 0, 1,
4063 				   sizeof(*fi), &extent_inserted);
4064 	if (ret)
4065 		return ret;
4066 
4067 	if (!extent_inserted) {
4068 		key.objectid = btrfs_ino(inode);
4069 		key.type = BTRFS_EXTENT_DATA_KEY;
4070 		key.offset = em->start;
4071 
4072 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4073 					      sizeof(*fi));
4074 		if (ret)
4075 			return ret;
4076 	}
4077 	leaf = path->nodes[0];
4078 	fi = btrfs_item_ptr(leaf, path->slots[0],
4079 			    struct btrfs_file_extent_item);
4080 
4081 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4082 					       &token);
4083 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4084 		btrfs_set_token_file_extent_type(leaf, fi,
4085 						 BTRFS_FILE_EXTENT_PREALLOC,
4086 						 &token);
4087 	else
4088 		btrfs_set_token_file_extent_type(leaf, fi,
4089 						 BTRFS_FILE_EXTENT_REG,
4090 						 &token);
4091 
4092 	block_len = max(em->block_len, em->orig_block_len);
4093 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4094 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4095 							em->block_start,
4096 							&token);
4097 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4098 							   &token);
4099 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4100 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4101 							em->block_start -
4102 							extent_offset, &token);
4103 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4104 							   &token);
4105 	} else {
4106 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4107 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4108 							   &token);
4109 	}
4110 
4111 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4112 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4113 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4114 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4115 						&token);
4116 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4117 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4118 	btrfs_mark_buffer_dirty(leaf);
4119 
4120 	btrfs_release_path(path);
4121 
4122 	return ret;
4123 }
4124 
4125 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4126 				     struct btrfs_root *root,
4127 				     struct inode *inode,
4128 				     struct btrfs_path *path,
4129 				     struct list_head *logged_list,
4130 				     struct btrfs_log_ctx *ctx,
4131 				     const u64 start,
4132 				     const u64 end)
4133 {
4134 	struct extent_map *em, *n;
4135 	struct list_head extents;
4136 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4137 	u64 test_gen;
4138 	int ret = 0;
4139 	int num = 0;
4140 
4141 	INIT_LIST_HEAD(&extents);
4142 
4143 	write_lock(&tree->lock);
4144 	test_gen = root->fs_info->last_trans_committed;
4145 
4146 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4147 		list_del_init(&em->list);
4148 
4149 		/*
4150 		 * Just an arbitrary number, this can be really CPU intensive
4151 		 * once we start getting a lot of extents, and really once we
4152 		 * have a bunch of extents we just want to commit since it will
4153 		 * be faster.
4154 		 */
4155 		if (++num > 32768) {
4156 			list_del_init(&tree->modified_extents);
4157 			ret = -EFBIG;
4158 			goto process;
4159 		}
4160 
4161 		if (em->generation <= test_gen)
4162 			continue;
4163 		/* Need a ref to keep it from getting evicted from cache */
4164 		atomic_inc(&em->refs);
4165 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4166 		list_add_tail(&em->list, &extents);
4167 		num++;
4168 	}
4169 
4170 	list_sort(NULL, &extents, extent_cmp);
4171 	/*
4172 	 * Collect any new ordered extents within the range. This is to
4173 	 * prevent logging file extent items without waiting for the disk
4174 	 * location they point to being written. We do this only to deal
4175 	 * with races against concurrent lockless direct IO writes.
4176 	 */
4177 	btrfs_get_logged_extents(inode, logged_list, start, end);
4178 process:
4179 	while (!list_empty(&extents)) {
4180 		em = list_entry(extents.next, struct extent_map, list);
4181 
4182 		list_del_init(&em->list);
4183 
4184 		/*
4185 		 * If we had an error we just need to delete everybody from our
4186 		 * private list.
4187 		 */
4188 		if (ret) {
4189 			clear_em_logging(tree, em);
4190 			free_extent_map(em);
4191 			continue;
4192 		}
4193 
4194 		write_unlock(&tree->lock);
4195 
4196 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4197 				     ctx);
4198 		write_lock(&tree->lock);
4199 		clear_em_logging(tree, em);
4200 		free_extent_map(em);
4201 	}
4202 	WARN_ON(!list_empty(&extents));
4203 	write_unlock(&tree->lock);
4204 
4205 	btrfs_release_path(path);
4206 	return ret;
4207 }
4208 
4209 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4210 			     struct btrfs_path *path, u64 *size_ret)
4211 {
4212 	struct btrfs_key key;
4213 	int ret;
4214 
4215 	key.objectid = btrfs_ino(inode);
4216 	key.type = BTRFS_INODE_ITEM_KEY;
4217 	key.offset = 0;
4218 
4219 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4220 	if (ret < 0) {
4221 		return ret;
4222 	} else if (ret > 0) {
4223 		*size_ret = 0;
4224 	} else {
4225 		struct btrfs_inode_item *item;
4226 
4227 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4228 				      struct btrfs_inode_item);
4229 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4230 	}
4231 
4232 	btrfs_release_path(path);
4233 	return 0;
4234 }
4235 
4236 /*
4237  * At the moment we always log all xattrs. This is to figure out at log replay
4238  * time which xattrs must have their deletion replayed. If a xattr is missing
4239  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4240  * because if a xattr is deleted, the inode is fsynced and a power failure
4241  * happens, causing the log to be replayed the next time the fs is mounted,
4242  * we want the xattr to not exist anymore (same behaviour as other filesystems
4243  * with a journal, ext3/4, xfs, f2fs, etc).
4244  */
4245 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4246 				struct btrfs_root *root,
4247 				struct inode *inode,
4248 				struct btrfs_path *path,
4249 				struct btrfs_path *dst_path)
4250 {
4251 	int ret;
4252 	struct btrfs_key key;
4253 	const u64 ino = btrfs_ino(inode);
4254 	int ins_nr = 0;
4255 	int start_slot = 0;
4256 
4257 	key.objectid = ino;
4258 	key.type = BTRFS_XATTR_ITEM_KEY;
4259 	key.offset = 0;
4260 
4261 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4262 	if (ret < 0)
4263 		return ret;
4264 
4265 	while (true) {
4266 		int slot = path->slots[0];
4267 		struct extent_buffer *leaf = path->nodes[0];
4268 		int nritems = btrfs_header_nritems(leaf);
4269 
4270 		if (slot >= nritems) {
4271 			if (ins_nr > 0) {
4272 				u64 last_extent = 0;
4273 
4274 				ret = copy_items(trans, inode, dst_path, path,
4275 						 &last_extent, start_slot,
4276 						 ins_nr, 1, 0);
4277 				/* can't be 1, extent items aren't processed */
4278 				ASSERT(ret <= 0);
4279 				if (ret < 0)
4280 					return ret;
4281 				ins_nr = 0;
4282 			}
4283 			ret = btrfs_next_leaf(root, path);
4284 			if (ret < 0)
4285 				return ret;
4286 			else if (ret > 0)
4287 				break;
4288 			continue;
4289 		}
4290 
4291 		btrfs_item_key_to_cpu(leaf, &key, slot);
4292 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4293 			break;
4294 
4295 		if (ins_nr == 0)
4296 			start_slot = slot;
4297 		ins_nr++;
4298 		path->slots[0]++;
4299 		cond_resched();
4300 	}
4301 	if (ins_nr > 0) {
4302 		u64 last_extent = 0;
4303 
4304 		ret = copy_items(trans, inode, dst_path, path,
4305 				 &last_extent, start_slot,
4306 				 ins_nr, 1, 0);
4307 		/* can't be 1, extent items aren't processed */
4308 		ASSERT(ret <= 0);
4309 		if (ret < 0)
4310 			return ret;
4311 	}
4312 
4313 	return 0;
4314 }
4315 
4316 /*
4317  * If the no holes feature is enabled we need to make sure any hole between the
4318  * last extent and the i_size of our inode is explicitly marked in the log. This
4319  * is to make sure that doing something like:
4320  *
4321  *      1) create file with 128Kb of data
4322  *      2) truncate file to 64Kb
4323  *      3) truncate file to 256Kb
4324  *      4) fsync file
4325  *      5) <crash/power failure>
4326  *      6) mount fs and trigger log replay
4327  *
4328  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4329  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4330  * file correspond to a hole. The presence of explicit holes in a log tree is
4331  * what guarantees that log replay will remove/adjust file extent items in the
4332  * fs/subvol tree.
4333  *
4334  * Here we do not need to care about holes between extents, that is already done
4335  * by copy_items(). We also only need to do this in the full sync path, where we
4336  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4337  * lookup the list of modified extent maps and if any represents a hole, we
4338  * insert a corresponding extent representing a hole in the log tree.
4339  */
4340 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4341 				   struct btrfs_root *root,
4342 				   struct inode *inode,
4343 				   struct btrfs_path *path)
4344 {
4345 	int ret;
4346 	struct btrfs_key key;
4347 	u64 hole_start;
4348 	u64 hole_size;
4349 	struct extent_buffer *leaf;
4350 	struct btrfs_root *log = root->log_root;
4351 	const u64 ino = btrfs_ino(inode);
4352 	const u64 i_size = i_size_read(inode);
4353 
4354 	if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4355 		return 0;
4356 
4357 	key.objectid = ino;
4358 	key.type = BTRFS_EXTENT_DATA_KEY;
4359 	key.offset = (u64)-1;
4360 
4361 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4362 	ASSERT(ret != 0);
4363 	if (ret < 0)
4364 		return ret;
4365 
4366 	ASSERT(path->slots[0] > 0);
4367 	path->slots[0]--;
4368 	leaf = path->nodes[0];
4369 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4370 
4371 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4372 		/* inode does not have any extents */
4373 		hole_start = 0;
4374 		hole_size = i_size;
4375 	} else {
4376 		struct btrfs_file_extent_item *extent;
4377 		u64 len;
4378 
4379 		/*
4380 		 * If there's an extent beyond i_size, an explicit hole was
4381 		 * already inserted by copy_items().
4382 		 */
4383 		if (key.offset >= i_size)
4384 			return 0;
4385 
4386 		extent = btrfs_item_ptr(leaf, path->slots[0],
4387 					struct btrfs_file_extent_item);
4388 
4389 		if (btrfs_file_extent_type(leaf, extent) ==
4390 		    BTRFS_FILE_EXTENT_INLINE) {
4391 			len = btrfs_file_extent_inline_len(leaf,
4392 							   path->slots[0],
4393 							   extent);
4394 			ASSERT(len == i_size);
4395 			return 0;
4396 		}
4397 
4398 		len = btrfs_file_extent_num_bytes(leaf, extent);
4399 		/* Last extent goes beyond i_size, no need to log a hole. */
4400 		if (key.offset + len > i_size)
4401 			return 0;
4402 		hole_start = key.offset + len;
4403 		hole_size = i_size - hole_start;
4404 	}
4405 	btrfs_release_path(path);
4406 
4407 	/* Last extent ends at i_size. */
4408 	if (hole_size == 0)
4409 		return 0;
4410 
4411 	hole_size = ALIGN(hole_size, root->sectorsize);
4412 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4413 				       hole_size, 0, hole_size, 0, 0, 0);
4414 	return ret;
4415 }
4416 
4417 /* log a single inode in the tree log.
4418  * At least one parent directory for this inode must exist in the tree
4419  * or be logged already.
4420  *
4421  * Any items from this inode changed by the current transaction are copied
4422  * to the log tree.  An extra reference is taken on any extents in this
4423  * file, allowing us to avoid a whole pile of corner cases around logging
4424  * blocks that have been removed from the tree.
4425  *
4426  * See LOG_INODE_ALL and related defines for a description of what inode_only
4427  * does.
4428  *
4429  * This handles both files and directories.
4430  */
4431 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4432 			   struct btrfs_root *root, struct inode *inode,
4433 			   int inode_only,
4434 			   const loff_t start,
4435 			   const loff_t end,
4436 			   struct btrfs_log_ctx *ctx)
4437 {
4438 	struct btrfs_path *path;
4439 	struct btrfs_path *dst_path;
4440 	struct btrfs_key min_key;
4441 	struct btrfs_key max_key;
4442 	struct btrfs_root *log = root->log_root;
4443 	struct extent_buffer *src = NULL;
4444 	LIST_HEAD(logged_list);
4445 	u64 last_extent = 0;
4446 	int err = 0;
4447 	int ret;
4448 	int nritems;
4449 	int ins_start_slot = 0;
4450 	int ins_nr;
4451 	bool fast_search = false;
4452 	u64 ino = btrfs_ino(inode);
4453 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4454 	u64 logged_isize = 0;
4455 	bool need_log_inode_item = true;
4456 
4457 	path = btrfs_alloc_path();
4458 	if (!path)
4459 		return -ENOMEM;
4460 	dst_path = btrfs_alloc_path();
4461 	if (!dst_path) {
4462 		btrfs_free_path(path);
4463 		return -ENOMEM;
4464 	}
4465 
4466 	min_key.objectid = ino;
4467 	min_key.type = BTRFS_INODE_ITEM_KEY;
4468 	min_key.offset = 0;
4469 
4470 	max_key.objectid = ino;
4471 
4472 
4473 	/* today the code can only do partial logging of directories */
4474 	if (S_ISDIR(inode->i_mode) ||
4475 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4476 		       &BTRFS_I(inode)->runtime_flags) &&
4477 	     inode_only == LOG_INODE_EXISTS))
4478 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4479 	else
4480 		max_key.type = (u8)-1;
4481 	max_key.offset = (u64)-1;
4482 
4483 	/*
4484 	 * Only run delayed items if we are a dir or a new file.
4485 	 * Otherwise commit the delayed inode only, which is needed in
4486 	 * order for the log replay code to mark inodes for link count
4487 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4488 	 */
4489 	if (S_ISDIR(inode->i_mode) ||
4490 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4491 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4492 	else
4493 		ret = btrfs_commit_inode_delayed_inode(inode);
4494 
4495 	if (ret) {
4496 		btrfs_free_path(path);
4497 		btrfs_free_path(dst_path);
4498 		return ret;
4499 	}
4500 
4501 	mutex_lock(&BTRFS_I(inode)->log_mutex);
4502 
4503 	btrfs_get_logged_extents(inode, &logged_list, start, end);
4504 
4505 	/*
4506 	 * a brute force approach to making sure we get the most uptodate
4507 	 * copies of everything.
4508 	 */
4509 	if (S_ISDIR(inode->i_mode)) {
4510 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4511 
4512 		if (inode_only == LOG_INODE_EXISTS)
4513 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4514 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4515 	} else {
4516 		if (inode_only == LOG_INODE_EXISTS) {
4517 			/*
4518 			 * Make sure the new inode item we write to the log has
4519 			 * the same isize as the current one (if it exists).
4520 			 * This is necessary to prevent data loss after log
4521 			 * replay, and also to prevent doing a wrong expanding
4522 			 * truncate - for e.g. create file, write 4K into offset
4523 			 * 0, fsync, write 4K into offset 4096, add hard link,
4524 			 * fsync some other file (to sync log), power fail - if
4525 			 * we use the inode's current i_size, after log replay
4526 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4527 			 * (zeroes), as if an expanding truncate happened,
4528 			 * instead of getting a file of 4Kb only.
4529 			 */
4530 			err = logged_inode_size(log, inode, path,
4531 						&logged_isize);
4532 			if (err)
4533 				goto out_unlock;
4534 		}
4535 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4536 			     &BTRFS_I(inode)->runtime_flags)) {
4537 			if (inode_only == LOG_INODE_EXISTS) {
4538 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4539 				ret = drop_objectid_items(trans, log, path, ino,
4540 							  max_key.type);
4541 			} else {
4542 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4543 					  &BTRFS_I(inode)->runtime_flags);
4544 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4545 					  &BTRFS_I(inode)->runtime_flags);
4546 				while(1) {
4547 					ret = btrfs_truncate_inode_items(trans,
4548 							 log, inode, 0, 0);
4549 					if (ret != -EAGAIN)
4550 						break;
4551 				}
4552 			}
4553 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4554 					      &BTRFS_I(inode)->runtime_flags) ||
4555 			   inode_only == LOG_INODE_EXISTS) {
4556 			if (inode_only == LOG_INODE_ALL)
4557 				fast_search = true;
4558 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4559 			ret = drop_objectid_items(trans, log, path, ino,
4560 						  max_key.type);
4561 		} else {
4562 			if (inode_only == LOG_INODE_ALL)
4563 				fast_search = true;
4564 			goto log_extents;
4565 		}
4566 
4567 	}
4568 	if (ret) {
4569 		err = ret;
4570 		goto out_unlock;
4571 	}
4572 
4573 	while (1) {
4574 		ins_nr = 0;
4575 		ret = btrfs_search_forward(root, &min_key,
4576 					   path, trans->transid);
4577 		if (ret != 0)
4578 			break;
4579 again:
4580 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4581 		if (min_key.objectid != ino)
4582 			break;
4583 		if (min_key.type > max_key.type)
4584 			break;
4585 
4586 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4587 			need_log_inode_item = false;
4588 
4589 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4590 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4591 			if (ins_nr == 0)
4592 				goto next_slot;
4593 			ret = copy_items(trans, inode, dst_path, path,
4594 					 &last_extent, ins_start_slot,
4595 					 ins_nr, inode_only, logged_isize);
4596 			if (ret < 0) {
4597 				err = ret;
4598 				goto out_unlock;
4599 			}
4600 			ins_nr = 0;
4601 			if (ret) {
4602 				btrfs_release_path(path);
4603 				continue;
4604 			}
4605 			goto next_slot;
4606 		}
4607 
4608 		src = path->nodes[0];
4609 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4610 			ins_nr++;
4611 			goto next_slot;
4612 		} else if (!ins_nr) {
4613 			ins_start_slot = path->slots[0];
4614 			ins_nr = 1;
4615 			goto next_slot;
4616 		}
4617 
4618 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4619 				 ins_start_slot, ins_nr, inode_only,
4620 				 logged_isize);
4621 		if (ret < 0) {
4622 			err = ret;
4623 			goto out_unlock;
4624 		}
4625 		if (ret) {
4626 			ins_nr = 0;
4627 			btrfs_release_path(path);
4628 			continue;
4629 		}
4630 		ins_nr = 1;
4631 		ins_start_slot = path->slots[0];
4632 next_slot:
4633 
4634 		nritems = btrfs_header_nritems(path->nodes[0]);
4635 		path->slots[0]++;
4636 		if (path->slots[0] < nritems) {
4637 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4638 					      path->slots[0]);
4639 			goto again;
4640 		}
4641 		if (ins_nr) {
4642 			ret = copy_items(trans, inode, dst_path, path,
4643 					 &last_extent, ins_start_slot,
4644 					 ins_nr, inode_only, logged_isize);
4645 			if (ret < 0) {
4646 				err = ret;
4647 				goto out_unlock;
4648 			}
4649 			ret = 0;
4650 			ins_nr = 0;
4651 		}
4652 		btrfs_release_path(path);
4653 
4654 		if (min_key.offset < (u64)-1) {
4655 			min_key.offset++;
4656 		} else if (min_key.type < max_key.type) {
4657 			min_key.type++;
4658 			min_key.offset = 0;
4659 		} else {
4660 			break;
4661 		}
4662 	}
4663 	if (ins_nr) {
4664 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4665 				 ins_start_slot, ins_nr, inode_only,
4666 				 logged_isize);
4667 		if (ret < 0) {
4668 			err = ret;
4669 			goto out_unlock;
4670 		}
4671 		ret = 0;
4672 		ins_nr = 0;
4673 	}
4674 
4675 	btrfs_release_path(path);
4676 	btrfs_release_path(dst_path);
4677 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4678 	if (err)
4679 		goto out_unlock;
4680 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4681 		btrfs_release_path(path);
4682 		btrfs_release_path(dst_path);
4683 		err = btrfs_log_trailing_hole(trans, root, inode, path);
4684 		if (err)
4685 			goto out_unlock;
4686 	}
4687 log_extents:
4688 	btrfs_release_path(path);
4689 	btrfs_release_path(dst_path);
4690 	if (need_log_inode_item) {
4691 		err = log_inode_item(trans, log, dst_path, inode);
4692 		if (err)
4693 			goto out_unlock;
4694 	}
4695 	if (fast_search) {
4696 		/*
4697 		 * Some ordered extents started by fsync might have completed
4698 		 * before we collected the ordered extents in logged_list, which
4699 		 * means they're gone, not in our logged_list nor in the inode's
4700 		 * ordered tree. We want the application/user space to know an
4701 		 * error happened while attempting to persist file data so that
4702 		 * it can take proper action. If such error happened, we leave
4703 		 * without writing to the log tree and the fsync must report the
4704 		 * file data write error and not commit the current transaction.
4705 		 */
4706 		err = btrfs_inode_check_errors(inode);
4707 		if (err) {
4708 			ctx->io_err = err;
4709 			goto out_unlock;
4710 		}
4711 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4712 						&logged_list, ctx, start, end);
4713 		if (ret) {
4714 			err = ret;
4715 			goto out_unlock;
4716 		}
4717 	} else if (inode_only == LOG_INODE_ALL) {
4718 		struct extent_map *em, *n;
4719 
4720 		write_lock(&em_tree->lock);
4721 		/*
4722 		 * We can't just remove every em if we're called for a ranged
4723 		 * fsync - that is, one that doesn't cover the whole possible
4724 		 * file range (0 to LLONG_MAX). This is because we can have
4725 		 * em's that fall outside the range we're logging and therefore
4726 		 * their ordered operations haven't completed yet
4727 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4728 		 * didn't get their respective file extent item in the fs/subvol
4729 		 * tree yet, and need to let the next fast fsync (one which
4730 		 * consults the list of modified extent maps) find the em so
4731 		 * that it logs a matching file extent item and waits for the
4732 		 * respective ordered operation to complete (if it's still
4733 		 * running).
4734 		 *
4735 		 * Removing every em outside the range we're logging would make
4736 		 * the next fast fsync not log their matching file extent items,
4737 		 * therefore making us lose data after a log replay.
4738 		 */
4739 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4740 					 list) {
4741 			const u64 mod_end = em->mod_start + em->mod_len - 1;
4742 
4743 			if (em->mod_start >= start && mod_end <= end)
4744 				list_del_init(&em->list);
4745 		}
4746 		write_unlock(&em_tree->lock);
4747 	}
4748 
4749 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4750 		ret = log_directory_changes(trans, root, inode, path, dst_path,
4751 					    ctx);
4752 		if (ret) {
4753 			err = ret;
4754 			goto out_unlock;
4755 		}
4756 	}
4757 
4758 	spin_lock(&BTRFS_I(inode)->lock);
4759 	BTRFS_I(inode)->logged_trans = trans->transid;
4760 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4761 	spin_unlock(&BTRFS_I(inode)->lock);
4762 out_unlock:
4763 	if (unlikely(err))
4764 		btrfs_put_logged_extents(&logged_list);
4765 	else
4766 		btrfs_submit_logged_extents(&logged_list, log);
4767 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4768 
4769 	btrfs_free_path(path);
4770 	btrfs_free_path(dst_path);
4771 	return err;
4772 }
4773 
4774 /*
4775  * follow the dentry parent pointers up the chain and see if any
4776  * of the directories in it require a full commit before they can
4777  * be logged.  Returns zero if nothing special needs to be done or 1 if
4778  * a full commit is required.
4779  */
4780 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4781 					       struct inode *inode,
4782 					       struct dentry *parent,
4783 					       struct super_block *sb,
4784 					       u64 last_committed)
4785 {
4786 	int ret = 0;
4787 	struct btrfs_root *root;
4788 	struct dentry *old_parent = NULL;
4789 	struct inode *orig_inode = inode;
4790 
4791 	/*
4792 	 * for regular files, if its inode is already on disk, we don't
4793 	 * have to worry about the parents at all.  This is because
4794 	 * we can use the last_unlink_trans field to record renames
4795 	 * and other fun in this file.
4796 	 */
4797 	if (S_ISREG(inode->i_mode) &&
4798 	    BTRFS_I(inode)->generation <= last_committed &&
4799 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4800 			goto out;
4801 
4802 	if (!S_ISDIR(inode->i_mode)) {
4803 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4804 			goto out;
4805 		inode = d_inode(parent);
4806 	}
4807 
4808 	while (1) {
4809 		/*
4810 		 * If we are logging a directory then we start with our inode,
4811 		 * not our parents inode, so we need to skipp setting the
4812 		 * logged_trans so that further down in the log code we don't
4813 		 * think this inode has already been logged.
4814 		 */
4815 		if (inode != orig_inode)
4816 			BTRFS_I(inode)->logged_trans = trans->transid;
4817 		smp_mb();
4818 
4819 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4820 			root = BTRFS_I(inode)->root;
4821 
4822 			/*
4823 			 * make sure any commits to the log are forced
4824 			 * to be full commits
4825 			 */
4826 			btrfs_set_log_full_commit(root->fs_info, trans);
4827 			ret = 1;
4828 			break;
4829 		}
4830 
4831 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4832 			break;
4833 
4834 		if (IS_ROOT(parent))
4835 			break;
4836 
4837 		parent = dget_parent(parent);
4838 		dput(old_parent);
4839 		old_parent = parent;
4840 		inode = d_inode(parent);
4841 
4842 	}
4843 	dput(old_parent);
4844 out:
4845 	return ret;
4846 }
4847 
4848 struct btrfs_dir_list {
4849 	u64 ino;
4850 	struct list_head list;
4851 };
4852 
4853 /*
4854  * Log the inodes of the new dentries of a directory. See log_dir_items() for
4855  * details about the why it is needed.
4856  * This is a recursive operation - if an existing dentry corresponds to a
4857  * directory, that directory's new entries are logged too (same behaviour as
4858  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
4859  * the dentries point to we do not lock their i_mutex, otherwise lockdep
4860  * complains about the following circular lock dependency / possible deadlock:
4861  *
4862  *        CPU0                                        CPU1
4863  *        ----                                        ----
4864  * lock(&type->i_mutex_dir_key#3/2);
4865  *                                            lock(sb_internal#2);
4866  *                                            lock(&type->i_mutex_dir_key#3/2);
4867  * lock(&sb->s_type->i_mutex_key#14);
4868  *
4869  * Where sb_internal is the lock (a counter that works as a lock) acquired by
4870  * sb_start_intwrite() in btrfs_start_transaction().
4871  * Not locking i_mutex of the inodes is still safe because:
4872  *
4873  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
4874  *    that while logging the inode new references (names) are added or removed
4875  *    from the inode, leaving the logged inode item with a link count that does
4876  *    not match the number of logged inode reference items. This is fine because
4877  *    at log replay time we compute the real number of links and correct the
4878  *    link count in the inode item (see replay_one_buffer() and
4879  *    link_to_fixup_dir());
4880  *
4881  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
4882  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
4883  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
4884  *    has a size that doesn't match the sum of the lengths of all the logged
4885  *    names. This does not result in a problem because if a dir_item key is
4886  *    logged but its matching dir_index key is not logged, at log replay time we
4887  *    don't use it to replay the respective name (see replay_one_name()). On the
4888  *    other hand if only the dir_index key ends up being logged, the respective
4889  *    name is added to the fs/subvol tree with both the dir_item and dir_index
4890  *    keys created (see replay_one_name()).
4891  *    The directory's inode item with a wrong i_size is not a problem as well,
4892  *    since we don't use it at log replay time to set the i_size in the inode
4893  *    item of the fs/subvol tree (see overwrite_item()).
4894  */
4895 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
4896 				struct btrfs_root *root,
4897 				struct inode *start_inode,
4898 				struct btrfs_log_ctx *ctx)
4899 {
4900 	struct btrfs_root *log = root->log_root;
4901 	struct btrfs_path *path;
4902 	LIST_HEAD(dir_list);
4903 	struct btrfs_dir_list *dir_elem;
4904 	int ret = 0;
4905 
4906 	path = btrfs_alloc_path();
4907 	if (!path)
4908 		return -ENOMEM;
4909 
4910 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
4911 	if (!dir_elem) {
4912 		btrfs_free_path(path);
4913 		return -ENOMEM;
4914 	}
4915 	dir_elem->ino = btrfs_ino(start_inode);
4916 	list_add_tail(&dir_elem->list, &dir_list);
4917 
4918 	while (!list_empty(&dir_list)) {
4919 		struct extent_buffer *leaf;
4920 		struct btrfs_key min_key;
4921 		int nritems;
4922 		int i;
4923 
4924 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
4925 					    list);
4926 		if (ret)
4927 			goto next_dir_inode;
4928 
4929 		min_key.objectid = dir_elem->ino;
4930 		min_key.type = BTRFS_DIR_ITEM_KEY;
4931 		min_key.offset = 0;
4932 again:
4933 		btrfs_release_path(path);
4934 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
4935 		if (ret < 0) {
4936 			goto next_dir_inode;
4937 		} else if (ret > 0) {
4938 			ret = 0;
4939 			goto next_dir_inode;
4940 		}
4941 
4942 process_leaf:
4943 		leaf = path->nodes[0];
4944 		nritems = btrfs_header_nritems(leaf);
4945 		for (i = path->slots[0]; i < nritems; i++) {
4946 			struct btrfs_dir_item *di;
4947 			struct btrfs_key di_key;
4948 			struct inode *di_inode;
4949 			struct btrfs_dir_list *new_dir_elem;
4950 			int log_mode = LOG_INODE_EXISTS;
4951 			int type;
4952 
4953 			btrfs_item_key_to_cpu(leaf, &min_key, i);
4954 			if (min_key.objectid != dir_elem->ino ||
4955 			    min_key.type != BTRFS_DIR_ITEM_KEY)
4956 				goto next_dir_inode;
4957 
4958 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
4959 			type = btrfs_dir_type(leaf, di);
4960 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
4961 			    type != BTRFS_FT_DIR)
4962 				continue;
4963 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
4964 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
4965 				continue;
4966 
4967 			di_inode = btrfs_iget(root->fs_info->sb, &di_key,
4968 					      root, NULL);
4969 			if (IS_ERR(di_inode)) {
4970 				ret = PTR_ERR(di_inode);
4971 				goto next_dir_inode;
4972 			}
4973 
4974 			if (btrfs_inode_in_log(di_inode, trans->transid)) {
4975 				iput(di_inode);
4976 				continue;
4977 			}
4978 
4979 			ctx->log_new_dentries = false;
4980 			if (type == BTRFS_FT_DIR)
4981 				log_mode = LOG_INODE_ALL;
4982 			btrfs_release_path(path);
4983 			ret = btrfs_log_inode(trans, root, di_inode,
4984 					      log_mode, 0, LLONG_MAX, ctx);
4985 			iput(di_inode);
4986 			if (ret)
4987 				goto next_dir_inode;
4988 			if (ctx->log_new_dentries) {
4989 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
4990 						       GFP_NOFS);
4991 				if (!new_dir_elem) {
4992 					ret = -ENOMEM;
4993 					goto next_dir_inode;
4994 				}
4995 				new_dir_elem->ino = di_key.objectid;
4996 				list_add_tail(&new_dir_elem->list, &dir_list);
4997 			}
4998 			break;
4999 		}
5000 		if (i == nritems) {
5001 			ret = btrfs_next_leaf(log, path);
5002 			if (ret < 0) {
5003 				goto next_dir_inode;
5004 			} else if (ret > 0) {
5005 				ret = 0;
5006 				goto next_dir_inode;
5007 			}
5008 			goto process_leaf;
5009 		}
5010 		if (min_key.offset < (u64)-1) {
5011 			min_key.offset++;
5012 			goto again;
5013 		}
5014 next_dir_inode:
5015 		list_del(&dir_elem->list);
5016 		kfree(dir_elem);
5017 	}
5018 
5019 	btrfs_free_path(path);
5020 	return ret;
5021 }
5022 
5023 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5024 				 struct inode *inode,
5025 				 struct btrfs_log_ctx *ctx)
5026 {
5027 	int ret;
5028 	struct btrfs_path *path;
5029 	struct btrfs_key key;
5030 	struct btrfs_root *root = BTRFS_I(inode)->root;
5031 	const u64 ino = btrfs_ino(inode);
5032 
5033 	path = btrfs_alloc_path();
5034 	if (!path)
5035 		return -ENOMEM;
5036 	path->skip_locking = 1;
5037 	path->search_commit_root = 1;
5038 
5039 	key.objectid = ino;
5040 	key.type = BTRFS_INODE_REF_KEY;
5041 	key.offset = 0;
5042 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5043 	if (ret < 0)
5044 		goto out;
5045 
5046 	while (true) {
5047 		struct extent_buffer *leaf = path->nodes[0];
5048 		int slot = path->slots[0];
5049 		u32 cur_offset = 0;
5050 		u32 item_size;
5051 		unsigned long ptr;
5052 
5053 		if (slot >= btrfs_header_nritems(leaf)) {
5054 			ret = btrfs_next_leaf(root, path);
5055 			if (ret < 0)
5056 				goto out;
5057 			else if (ret > 0)
5058 				break;
5059 			continue;
5060 		}
5061 
5062 		btrfs_item_key_to_cpu(leaf, &key, slot);
5063 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5064 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5065 			break;
5066 
5067 		item_size = btrfs_item_size_nr(leaf, slot);
5068 		ptr = btrfs_item_ptr_offset(leaf, slot);
5069 		while (cur_offset < item_size) {
5070 			struct btrfs_key inode_key;
5071 			struct inode *dir_inode;
5072 
5073 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5074 			inode_key.offset = 0;
5075 
5076 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5077 				struct btrfs_inode_extref *extref;
5078 
5079 				extref = (struct btrfs_inode_extref *)
5080 					(ptr + cur_offset);
5081 				inode_key.objectid = btrfs_inode_extref_parent(
5082 					leaf, extref);
5083 				cur_offset += sizeof(*extref);
5084 				cur_offset += btrfs_inode_extref_name_len(leaf,
5085 					extref);
5086 			} else {
5087 				inode_key.objectid = key.offset;
5088 				cur_offset = item_size;
5089 			}
5090 
5091 			dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5092 					       root, NULL);
5093 			/* If parent inode was deleted, skip it. */
5094 			if (IS_ERR(dir_inode))
5095 				continue;
5096 
5097 			ret = btrfs_log_inode(trans, root, dir_inode,
5098 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5099 			iput(dir_inode);
5100 			if (ret)
5101 				goto out;
5102 		}
5103 		path->slots[0]++;
5104 	}
5105 	ret = 0;
5106 out:
5107 	btrfs_free_path(path);
5108 	return ret;
5109 }
5110 
5111 /*
5112  * helper function around btrfs_log_inode to make sure newly created
5113  * parent directories also end up in the log.  A minimal inode and backref
5114  * only logging is done of any parent directories that are older than
5115  * the last committed transaction
5116  */
5117 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5118 			    	  struct btrfs_root *root, struct inode *inode,
5119 				  struct dentry *parent,
5120 				  const loff_t start,
5121 				  const loff_t end,
5122 				  int exists_only,
5123 				  struct btrfs_log_ctx *ctx)
5124 {
5125 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5126 	struct super_block *sb;
5127 	struct dentry *old_parent = NULL;
5128 	int ret = 0;
5129 	u64 last_committed = root->fs_info->last_trans_committed;
5130 	bool log_dentries = false;
5131 	struct inode *orig_inode = inode;
5132 
5133 	sb = inode->i_sb;
5134 
5135 	if (btrfs_test_opt(root, NOTREELOG)) {
5136 		ret = 1;
5137 		goto end_no_trans;
5138 	}
5139 
5140 	/*
5141 	 * The prev transaction commit doesn't complete, we need do
5142 	 * full commit by ourselves.
5143 	 */
5144 	if (root->fs_info->last_trans_log_full_commit >
5145 	    root->fs_info->last_trans_committed) {
5146 		ret = 1;
5147 		goto end_no_trans;
5148 	}
5149 
5150 	if (root != BTRFS_I(inode)->root ||
5151 	    btrfs_root_refs(&root->root_item) == 0) {
5152 		ret = 1;
5153 		goto end_no_trans;
5154 	}
5155 
5156 	ret = check_parent_dirs_for_sync(trans, inode, parent,
5157 					 sb, last_committed);
5158 	if (ret)
5159 		goto end_no_trans;
5160 
5161 	if (btrfs_inode_in_log(inode, trans->transid)) {
5162 		ret = BTRFS_NO_LOG_SYNC;
5163 		goto end_no_trans;
5164 	}
5165 
5166 	ret = start_log_trans(trans, root, ctx);
5167 	if (ret)
5168 		goto end_no_trans;
5169 
5170 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5171 	if (ret)
5172 		goto end_trans;
5173 
5174 	/*
5175 	 * for regular files, if its inode is already on disk, we don't
5176 	 * have to worry about the parents at all.  This is because
5177 	 * we can use the last_unlink_trans field to record renames
5178 	 * and other fun in this file.
5179 	 */
5180 	if (S_ISREG(inode->i_mode) &&
5181 	    BTRFS_I(inode)->generation <= last_committed &&
5182 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5183 		ret = 0;
5184 		goto end_trans;
5185 	}
5186 
5187 	if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5188 		log_dentries = true;
5189 
5190 	/*
5191 	 * On unlink we must make sure all our current and old parent directores
5192 	 * inodes are fully logged. This is to prevent leaving dangling
5193 	 * directory index entries in directories that were our parents but are
5194 	 * not anymore. Not doing this results in old parent directory being
5195 	 * impossible to delete after log replay (rmdir will always fail with
5196 	 * error -ENOTEMPTY).
5197 	 *
5198 	 * Example 1:
5199 	 *
5200 	 * mkdir testdir
5201 	 * touch testdir/foo
5202 	 * ln testdir/foo testdir/bar
5203 	 * sync
5204 	 * unlink testdir/bar
5205 	 * xfs_io -c fsync testdir/foo
5206 	 * <power failure>
5207 	 * mount fs, triggers log replay
5208 	 *
5209 	 * If we don't log the parent directory (testdir), after log replay the
5210 	 * directory still has an entry pointing to the file inode using the bar
5211 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5212 	 * the file inode has a link count of 1.
5213 	 *
5214 	 * Example 2:
5215 	 *
5216 	 * mkdir testdir
5217 	 * touch foo
5218 	 * ln foo testdir/foo2
5219 	 * ln foo testdir/foo3
5220 	 * sync
5221 	 * unlink testdir/foo3
5222 	 * xfs_io -c fsync foo
5223 	 * <power failure>
5224 	 * mount fs, triggers log replay
5225 	 *
5226 	 * Similar as the first example, after log replay the parent directory
5227 	 * testdir still has an entry pointing to the inode file with name foo3
5228 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5229 	 * and has a link count of 2.
5230 	 */
5231 	if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5232 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5233 		if (ret)
5234 			goto end_trans;
5235 	}
5236 
5237 	while (1) {
5238 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5239 			break;
5240 
5241 		inode = d_inode(parent);
5242 		if (root != BTRFS_I(inode)->root)
5243 			break;
5244 
5245 		if (BTRFS_I(inode)->generation > last_committed) {
5246 			ret = btrfs_log_inode(trans, root, inode,
5247 					      LOG_INODE_EXISTS,
5248 					      0, LLONG_MAX, ctx);
5249 			if (ret)
5250 				goto end_trans;
5251 		}
5252 		if (IS_ROOT(parent))
5253 			break;
5254 
5255 		parent = dget_parent(parent);
5256 		dput(old_parent);
5257 		old_parent = parent;
5258 	}
5259 	if (log_dentries)
5260 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5261 	else
5262 		ret = 0;
5263 end_trans:
5264 	dput(old_parent);
5265 	if (ret < 0) {
5266 		btrfs_set_log_full_commit(root->fs_info, trans);
5267 		ret = 1;
5268 	}
5269 
5270 	if (ret)
5271 		btrfs_remove_log_ctx(root, ctx);
5272 	btrfs_end_log_trans(root);
5273 end_no_trans:
5274 	return ret;
5275 }
5276 
5277 /*
5278  * it is not safe to log dentry if the chunk root has added new
5279  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5280  * If this returns 1, you must commit the transaction to safely get your
5281  * data on disk.
5282  */
5283 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5284 			  struct btrfs_root *root, struct dentry *dentry,
5285 			  const loff_t start,
5286 			  const loff_t end,
5287 			  struct btrfs_log_ctx *ctx)
5288 {
5289 	struct dentry *parent = dget_parent(dentry);
5290 	int ret;
5291 
5292 	ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5293 				     start, end, 0, ctx);
5294 	dput(parent);
5295 
5296 	return ret;
5297 }
5298 
5299 /*
5300  * should be called during mount to recover any replay any log trees
5301  * from the FS
5302  */
5303 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5304 {
5305 	int ret;
5306 	struct btrfs_path *path;
5307 	struct btrfs_trans_handle *trans;
5308 	struct btrfs_key key;
5309 	struct btrfs_key found_key;
5310 	struct btrfs_key tmp_key;
5311 	struct btrfs_root *log;
5312 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5313 	struct walk_control wc = {
5314 		.process_func = process_one_buffer,
5315 		.stage = 0,
5316 	};
5317 
5318 	path = btrfs_alloc_path();
5319 	if (!path)
5320 		return -ENOMEM;
5321 
5322 	fs_info->log_root_recovering = 1;
5323 
5324 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5325 	if (IS_ERR(trans)) {
5326 		ret = PTR_ERR(trans);
5327 		goto error;
5328 	}
5329 
5330 	wc.trans = trans;
5331 	wc.pin = 1;
5332 
5333 	ret = walk_log_tree(trans, log_root_tree, &wc);
5334 	if (ret) {
5335 		btrfs_std_error(fs_info, ret, "Failed to pin buffers while "
5336 			    "recovering log root tree.");
5337 		goto error;
5338 	}
5339 
5340 again:
5341 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5342 	key.offset = (u64)-1;
5343 	key.type = BTRFS_ROOT_ITEM_KEY;
5344 
5345 	while (1) {
5346 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5347 
5348 		if (ret < 0) {
5349 			btrfs_std_error(fs_info, ret,
5350 				    "Couldn't find tree log root.");
5351 			goto error;
5352 		}
5353 		if (ret > 0) {
5354 			if (path->slots[0] == 0)
5355 				break;
5356 			path->slots[0]--;
5357 		}
5358 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5359 				      path->slots[0]);
5360 		btrfs_release_path(path);
5361 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5362 			break;
5363 
5364 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5365 		if (IS_ERR(log)) {
5366 			ret = PTR_ERR(log);
5367 			btrfs_std_error(fs_info, ret,
5368 				    "Couldn't read tree log root.");
5369 			goto error;
5370 		}
5371 
5372 		tmp_key.objectid = found_key.offset;
5373 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5374 		tmp_key.offset = (u64)-1;
5375 
5376 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5377 		if (IS_ERR(wc.replay_dest)) {
5378 			ret = PTR_ERR(wc.replay_dest);
5379 			free_extent_buffer(log->node);
5380 			free_extent_buffer(log->commit_root);
5381 			kfree(log);
5382 			btrfs_std_error(fs_info, ret, "Couldn't read target root "
5383 				    "for tree log recovery.");
5384 			goto error;
5385 		}
5386 
5387 		wc.replay_dest->log_root = log;
5388 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5389 		ret = walk_log_tree(trans, log, &wc);
5390 
5391 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5392 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5393 						      path);
5394 		}
5395 
5396 		key.offset = found_key.offset - 1;
5397 		wc.replay_dest->log_root = NULL;
5398 		free_extent_buffer(log->node);
5399 		free_extent_buffer(log->commit_root);
5400 		kfree(log);
5401 
5402 		if (ret)
5403 			goto error;
5404 
5405 		if (found_key.offset == 0)
5406 			break;
5407 	}
5408 	btrfs_release_path(path);
5409 
5410 	/* step one is to pin it all, step two is to replay just inodes */
5411 	if (wc.pin) {
5412 		wc.pin = 0;
5413 		wc.process_func = replay_one_buffer;
5414 		wc.stage = LOG_WALK_REPLAY_INODES;
5415 		goto again;
5416 	}
5417 	/* step three is to replay everything */
5418 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5419 		wc.stage++;
5420 		goto again;
5421 	}
5422 
5423 	btrfs_free_path(path);
5424 
5425 	/* step 4: commit the transaction, which also unpins the blocks */
5426 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5427 	if (ret)
5428 		return ret;
5429 
5430 	free_extent_buffer(log_root_tree->node);
5431 	log_root_tree->log_root = NULL;
5432 	fs_info->log_root_recovering = 0;
5433 	kfree(log_root_tree);
5434 
5435 	return 0;
5436 error:
5437 	if (wc.trans)
5438 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
5439 	btrfs_free_path(path);
5440 	return ret;
5441 }
5442 
5443 /*
5444  * there are some corner cases where we want to force a full
5445  * commit instead of allowing a directory to be logged.
5446  *
5447  * They revolve around files there were unlinked from the directory, and
5448  * this function updates the parent directory so that a full commit is
5449  * properly done if it is fsync'd later after the unlinks are done.
5450  */
5451 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5452 			     struct inode *dir, struct inode *inode,
5453 			     int for_rename)
5454 {
5455 	/*
5456 	 * when we're logging a file, if it hasn't been renamed
5457 	 * or unlinked, and its inode is fully committed on disk,
5458 	 * we don't have to worry about walking up the directory chain
5459 	 * to log its parents.
5460 	 *
5461 	 * So, we use the last_unlink_trans field to put this transid
5462 	 * into the file.  When the file is logged we check it and
5463 	 * don't log the parents if the file is fully on disk.
5464 	 */
5465 	if (S_ISREG(inode->i_mode))
5466 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5467 
5468 	/*
5469 	 * if this directory was already logged any new
5470 	 * names for this file/dir will get recorded
5471 	 */
5472 	smp_mb();
5473 	if (BTRFS_I(dir)->logged_trans == trans->transid)
5474 		return;
5475 
5476 	/*
5477 	 * if the inode we're about to unlink was logged,
5478 	 * the log will be properly updated for any new names
5479 	 */
5480 	if (BTRFS_I(inode)->logged_trans == trans->transid)
5481 		return;
5482 
5483 	/*
5484 	 * when renaming files across directories, if the directory
5485 	 * there we're unlinking from gets fsync'd later on, there's
5486 	 * no way to find the destination directory later and fsync it
5487 	 * properly.  So, we have to be conservative and force commits
5488 	 * so the new name gets discovered.
5489 	 */
5490 	if (for_rename)
5491 		goto record;
5492 
5493 	/* we can safely do the unlink without any special recording */
5494 	return;
5495 
5496 record:
5497 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5498 }
5499 
5500 /*
5501  * Call this after adding a new name for a file and it will properly
5502  * update the log to reflect the new name.
5503  *
5504  * It will return zero if all goes well, and it will return 1 if a
5505  * full transaction commit is required.
5506  */
5507 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5508 			struct inode *inode, struct inode *old_dir,
5509 			struct dentry *parent)
5510 {
5511 	struct btrfs_root * root = BTRFS_I(inode)->root;
5512 
5513 	/*
5514 	 * this will force the logging code to walk the dentry chain
5515 	 * up for the file
5516 	 */
5517 	if (S_ISREG(inode->i_mode))
5518 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5519 
5520 	/*
5521 	 * if this inode hasn't been logged and directory we're renaming it
5522 	 * from hasn't been logged, we don't need to log it
5523 	 */
5524 	if (BTRFS_I(inode)->logged_trans <=
5525 	    root->fs_info->last_trans_committed &&
5526 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5527 		    root->fs_info->last_trans_committed))
5528 		return 0;
5529 
5530 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5531 				      LLONG_MAX, 1, NULL);
5532 }
5533 
5534