1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "block-group.h" 21 #include "space-info.h" 22 #include "zoned.h" 23 #include "inode-item.h" 24 25 /* magic values for the inode_only field in btrfs_log_inode: 26 * 27 * LOG_INODE_ALL means to log everything 28 * LOG_INODE_EXISTS means to log just enough to recreate the inode 29 * during log replay 30 */ 31 enum { 32 LOG_INODE_ALL, 33 LOG_INODE_EXISTS, 34 LOG_OTHER_INODE, 35 LOG_OTHER_INODE_ALL, 36 }; 37 38 /* 39 * directory trouble cases 40 * 41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 42 * log, we must force a full commit before doing an fsync of the directory 43 * where the unlink was done. 44 * ---> record transid of last unlink/rename per directory 45 * 46 * mkdir foo/some_dir 47 * normal commit 48 * rename foo/some_dir foo2/some_dir 49 * mkdir foo/some_dir 50 * fsync foo/some_dir/some_file 51 * 52 * The fsync above will unlink the original some_dir without recording 53 * it in its new location (foo2). After a crash, some_dir will be gone 54 * unless the fsync of some_file forces a full commit 55 * 56 * 2) we must log any new names for any file or dir that is in the fsync 57 * log. ---> check inode while renaming/linking. 58 * 59 * 2a) we must log any new names for any file or dir during rename 60 * when the directory they are being removed from was logged. 61 * ---> check inode and old parent dir during rename 62 * 63 * 2a is actually the more important variant. With the extra logging 64 * a crash might unlink the old name without recreating the new one 65 * 66 * 3) after a crash, we must go through any directories with a link count 67 * of zero and redo the rm -rf 68 * 69 * mkdir f1/foo 70 * normal commit 71 * rm -rf f1/foo 72 * fsync(f1) 73 * 74 * The directory f1 was fully removed from the FS, but fsync was never 75 * called on f1, only its parent dir. After a crash the rm -rf must 76 * be replayed. This must be able to recurse down the entire 77 * directory tree. The inode link count fixup code takes care of the 78 * ugly details. 79 */ 80 81 /* 82 * stages for the tree walking. The first 83 * stage (0) is to only pin down the blocks we find 84 * the second stage (1) is to make sure that all the inodes 85 * we find in the log are created in the subvolume. 86 * 87 * The last stage is to deal with directories and links and extents 88 * and all the other fun semantics 89 */ 90 enum { 91 LOG_WALK_PIN_ONLY, 92 LOG_WALK_REPLAY_INODES, 93 LOG_WALK_REPLAY_DIR_INDEX, 94 LOG_WALK_REPLAY_ALL, 95 }; 96 97 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 98 struct btrfs_inode *inode, 99 int inode_only, 100 struct btrfs_log_ctx *ctx); 101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 102 struct btrfs_root *root, 103 struct btrfs_path *path, u64 objectid); 104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 105 struct btrfs_root *root, 106 struct btrfs_root *log, 107 struct btrfs_path *path, 108 u64 dirid, int del_all); 109 static void wait_log_commit(struct btrfs_root *root, int transid); 110 111 /* 112 * tree logging is a special write ahead log used to make sure that 113 * fsyncs and O_SYNCs can happen without doing full tree commits. 114 * 115 * Full tree commits are expensive because they require commonly 116 * modified blocks to be recowed, creating many dirty pages in the 117 * extent tree an 4x-6x higher write load than ext3. 118 * 119 * Instead of doing a tree commit on every fsync, we use the 120 * key ranges and transaction ids to find items for a given file or directory 121 * that have changed in this transaction. Those items are copied into 122 * a special tree (one per subvolume root), that tree is written to disk 123 * and then the fsync is considered complete. 124 * 125 * After a crash, items are copied out of the log-tree back into the 126 * subvolume tree. Any file data extents found are recorded in the extent 127 * allocation tree, and the log-tree freed. 128 * 129 * The log tree is read three times, once to pin down all the extents it is 130 * using in ram and once, once to create all the inodes logged in the tree 131 * and once to do all the other items. 132 */ 133 134 /* 135 * start a sub transaction and setup the log tree 136 * this increments the log tree writer count to make the people 137 * syncing the tree wait for us to finish 138 */ 139 static int start_log_trans(struct btrfs_trans_handle *trans, 140 struct btrfs_root *root, 141 struct btrfs_log_ctx *ctx) 142 { 143 struct btrfs_fs_info *fs_info = root->fs_info; 144 struct btrfs_root *tree_root = fs_info->tree_root; 145 const bool zoned = btrfs_is_zoned(fs_info); 146 int ret = 0; 147 bool created = false; 148 149 /* 150 * First check if the log root tree was already created. If not, create 151 * it before locking the root's log_mutex, just to keep lockdep happy. 152 */ 153 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { 154 mutex_lock(&tree_root->log_mutex); 155 if (!fs_info->log_root_tree) { 156 ret = btrfs_init_log_root_tree(trans, fs_info); 157 if (!ret) { 158 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); 159 created = true; 160 } 161 } 162 mutex_unlock(&tree_root->log_mutex); 163 if (ret) 164 return ret; 165 } 166 167 mutex_lock(&root->log_mutex); 168 169 again: 170 if (root->log_root) { 171 int index = (root->log_transid + 1) % 2; 172 173 if (btrfs_need_log_full_commit(trans)) { 174 ret = -EAGAIN; 175 goto out; 176 } 177 178 if (zoned && atomic_read(&root->log_commit[index])) { 179 wait_log_commit(root, root->log_transid - 1); 180 goto again; 181 } 182 183 if (!root->log_start_pid) { 184 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 185 root->log_start_pid = current->pid; 186 } else if (root->log_start_pid != current->pid) { 187 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 188 } 189 } else { 190 /* 191 * This means fs_info->log_root_tree was already created 192 * for some other FS trees. Do the full commit not to mix 193 * nodes from multiple log transactions to do sequential 194 * writing. 195 */ 196 if (zoned && !created) { 197 ret = -EAGAIN; 198 goto out; 199 } 200 201 ret = btrfs_add_log_tree(trans, root); 202 if (ret) 203 goto out; 204 205 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 206 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 207 root->log_start_pid = current->pid; 208 } 209 210 atomic_inc(&root->log_writers); 211 if (!ctx->logging_new_name) { 212 int index = root->log_transid % 2; 213 list_add_tail(&ctx->list, &root->log_ctxs[index]); 214 ctx->log_transid = root->log_transid; 215 } 216 217 out: 218 mutex_unlock(&root->log_mutex); 219 return ret; 220 } 221 222 /* 223 * returns 0 if there was a log transaction running and we were able 224 * to join, or returns -ENOENT if there were not transactions 225 * in progress 226 */ 227 static int join_running_log_trans(struct btrfs_root *root) 228 { 229 const bool zoned = btrfs_is_zoned(root->fs_info); 230 int ret = -ENOENT; 231 232 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 233 return ret; 234 235 mutex_lock(&root->log_mutex); 236 again: 237 if (root->log_root) { 238 int index = (root->log_transid + 1) % 2; 239 240 ret = 0; 241 if (zoned && atomic_read(&root->log_commit[index])) { 242 wait_log_commit(root, root->log_transid - 1); 243 goto again; 244 } 245 atomic_inc(&root->log_writers); 246 } 247 mutex_unlock(&root->log_mutex); 248 return ret; 249 } 250 251 /* 252 * This either makes the current running log transaction wait 253 * until you call btrfs_end_log_trans() or it makes any future 254 * log transactions wait until you call btrfs_end_log_trans() 255 */ 256 void btrfs_pin_log_trans(struct btrfs_root *root) 257 { 258 atomic_inc(&root->log_writers); 259 } 260 261 /* 262 * indicate we're done making changes to the log tree 263 * and wake up anyone waiting to do a sync 264 */ 265 void btrfs_end_log_trans(struct btrfs_root *root) 266 { 267 if (atomic_dec_and_test(&root->log_writers)) { 268 /* atomic_dec_and_test implies a barrier */ 269 cond_wake_up_nomb(&root->log_writer_wait); 270 } 271 } 272 273 static int btrfs_write_tree_block(struct extent_buffer *buf) 274 { 275 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 276 buf->start + buf->len - 1); 277 } 278 279 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 280 { 281 filemap_fdatawait_range(buf->pages[0]->mapping, 282 buf->start, buf->start + buf->len - 1); 283 } 284 285 /* 286 * the walk control struct is used to pass state down the chain when 287 * processing the log tree. The stage field tells us which part 288 * of the log tree processing we are currently doing. The others 289 * are state fields used for that specific part 290 */ 291 struct walk_control { 292 /* should we free the extent on disk when done? This is used 293 * at transaction commit time while freeing a log tree 294 */ 295 int free; 296 297 /* should we write out the extent buffer? This is used 298 * while flushing the log tree to disk during a sync 299 */ 300 int write; 301 302 /* should we wait for the extent buffer io to finish? Also used 303 * while flushing the log tree to disk for a sync 304 */ 305 int wait; 306 307 /* pin only walk, we record which extents on disk belong to the 308 * log trees 309 */ 310 int pin; 311 312 /* what stage of the replay code we're currently in */ 313 int stage; 314 315 /* 316 * Ignore any items from the inode currently being processed. Needs 317 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 318 * the LOG_WALK_REPLAY_INODES stage. 319 */ 320 bool ignore_cur_inode; 321 322 /* the root we are currently replaying */ 323 struct btrfs_root *replay_dest; 324 325 /* the trans handle for the current replay */ 326 struct btrfs_trans_handle *trans; 327 328 /* the function that gets used to process blocks we find in the 329 * tree. Note the extent_buffer might not be up to date when it is 330 * passed in, and it must be checked or read if you need the data 331 * inside it 332 */ 333 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 334 struct walk_control *wc, u64 gen, int level); 335 }; 336 337 /* 338 * process_func used to pin down extents, write them or wait on them 339 */ 340 static int process_one_buffer(struct btrfs_root *log, 341 struct extent_buffer *eb, 342 struct walk_control *wc, u64 gen, int level) 343 { 344 struct btrfs_fs_info *fs_info = log->fs_info; 345 int ret = 0; 346 347 /* 348 * If this fs is mixed then we need to be able to process the leaves to 349 * pin down any logged extents, so we have to read the block. 350 */ 351 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 352 ret = btrfs_read_buffer(eb, gen, level, NULL); 353 if (ret) 354 return ret; 355 } 356 357 if (wc->pin) 358 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start, 359 eb->len); 360 361 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 362 if (wc->pin && btrfs_header_level(eb) == 0) 363 ret = btrfs_exclude_logged_extents(eb); 364 if (wc->write) 365 btrfs_write_tree_block(eb); 366 if (wc->wait) 367 btrfs_wait_tree_block_writeback(eb); 368 } 369 return ret; 370 } 371 372 static int do_overwrite_item(struct btrfs_trans_handle *trans, 373 struct btrfs_root *root, 374 struct btrfs_path *path, 375 struct extent_buffer *eb, int slot, 376 struct btrfs_key *key) 377 { 378 int ret; 379 u32 item_size; 380 u64 saved_i_size = 0; 381 int save_old_i_size = 0; 382 unsigned long src_ptr; 383 unsigned long dst_ptr; 384 int overwrite_root = 0; 385 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 386 387 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 388 overwrite_root = 1; 389 390 item_size = btrfs_item_size(eb, slot); 391 src_ptr = btrfs_item_ptr_offset(eb, slot); 392 393 /* Our caller must have done a search for the key for us. */ 394 ASSERT(path->nodes[0] != NULL); 395 396 /* 397 * And the slot must point to the exact key or the slot where the key 398 * should be at (the first item with a key greater than 'key') 399 */ 400 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 401 struct btrfs_key found_key; 402 403 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 404 ret = btrfs_comp_cpu_keys(&found_key, key); 405 ASSERT(ret >= 0); 406 } else { 407 ret = 1; 408 } 409 410 if (ret == 0) { 411 char *src_copy; 412 char *dst_copy; 413 u32 dst_size = btrfs_item_size(path->nodes[0], 414 path->slots[0]); 415 if (dst_size != item_size) 416 goto insert; 417 418 if (item_size == 0) { 419 btrfs_release_path(path); 420 return 0; 421 } 422 dst_copy = kmalloc(item_size, GFP_NOFS); 423 src_copy = kmalloc(item_size, GFP_NOFS); 424 if (!dst_copy || !src_copy) { 425 btrfs_release_path(path); 426 kfree(dst_copy); 427 kfree(src_copy); 428 return -ENOMEM; 429 } 430 431 read_extent_buffer(eb, src_copy, src_ptr, item_size); 432 433 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 434 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 435 item_size); 436 ret = memcmp(dst_copy, src_copy, item_size); 437 438 kfree(dst_copy); 439 kfree(src_copy); 440 /* 441 * they have the same contents, just return, this saves 442 * us from cowing blocks in the destination tree and doing 443 * extra writes that may not have been done by a previous 444 * sync 445 */ 446 if (ret == 0) { 447 btrfs_release_path(path); 448 return 0; 449 } 450 451 /* 452 * We need to load the old nbytes into the inode so when we 453 * replay the extents we've logged we get the right nbytes. 454 */ 455 if (inode_item) { 456 struct btrfs_inode_item *item; 457 u64 nbytes; 458 u32 mode; 459 460 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 461 struct btrfs_inode_item); 462 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 463 item = btrfs_item_ptr(eb, slot, 464 struct btrfs_inode_item); 465 btrfs_set_inode_nbytes(eb, item, nbytes); 466 467 /* 468 * If this is a directory we need to reset the i_size to 469 * 0 so that we can set it up properly when replaying 470 * the rest of the items in this log. 471 */ 472 mode = btrfs_inode_mode(eb, item); 473 if (S_ISDIR(mode)) 474 btrfs_set_inode_size(eb, item, 0); 475 } 476 } else if (inode_item) { 477 struct btrfs_inode_item *item; 478 u32 mode; 479 480 /* 481 * New inode, set nbytes to 0 so that the nbytes comes out 482 * properly when we replay the extents. 483 */ 484 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 485 btrfs_set_inode_nbytes(eb, item, 0); 486 487 /* 488 * If this is a directory we need to reset the i_size to 0 so 489 * that we can set it up properly when replaying the rest of 490 * the items in this log. 491 */ 492 mode = btrfs_inode_mode(eb, item); 493 if (S_ISDIR(mode)) 494 btrfs_set_inode_size(eb, item, 0); 495 } 496 insert: 497 btrfs_release_path(path); 498 /* try to insert the key into the destination tree */ 499 path->skip_release_on_error = 1; 500 ret = btrfs_insert_empty_item(trans, root, path, 501 key, item_size); 502 path->skip_release_on_error = 0; 503 504 /* make sure any existing item is the correct size */ 505 if (ret == -EEXIST || ret == -EOVERFLOW) { 506 u32 found_size; 507 found_size = btrfs_item_size(path->nodes[0], 508 path->slots[0]); 509 if (found_size > item_size) 510 btrfs_truncate_item(path, item_size, 1); 511 else if (found_size < item_size) 512 btrfs_extend_item(path, item_size - found_size); 513 } else if (ret) { 514 return ret; 515 } 516 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 517 path->slots[0]); 518 519 /* don't overwrite an existing inode if the generation number 520 * was logged as zero. This is done when the tree logging code 521 * is just logging an inode to make sure it exists after recovery. 522 * 523 * Also, don't overwrite i_size on directories during replay. 524 * log replay inserts and removes directory items based on the 525 * state of the tree found in the subvolume, and i_size is modified 526 * as it goes 527 */ 528 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 529 struct btrfs_inode_item *src_item; 530 struct btrfs_inode_item *dst_item; 531 532 src_item = (struct btrfs_inode_item *)src_ptr; 533 dst_item = (struct btrfs_inode_item *)dst_ptr; 534 535 if (btrfs_inode_generation(eb, src_item) == 0) { 536 struct extent_buffer *dst_eb = path->nodes[0]; 537 const u64 ino_size = btrfs_inode_size(eb, src_item); 538 539 /* 540 * For regular files an ino_size == 0 is used only when 541 * logging that an inode exists, as part of a directory 542 * fsync, and the inode wasn't fsynced before. In this 543 * case don't set the size of the inode in the fs/subvol 544 * tree, otherwise we would be throwing valid data away. 545 */ 546 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 547 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 548 ino_size != 0) 549 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 550 goto no_copy; 551 } 552 553 if (overwrite_root && 554 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 555 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 556 save_old_i_size = 1; 557 saved_i_size = btrfs_inode_size(path->nodes[0], 558 dst_item); 559 } 560 } 561 562 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 563 src_ptr, item_size); 564 565 if (save_old_i_size) { 566 struct btrfs_inode_item *dst_item; 567 dst_item = (struct btrfs_inode_item *)dst_ptr; 568 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 569 } 570 571 /* make sure the generation is filled in */ 572 if (key->type == BTRFS_INODE_ITEM_KEY) { 573 struct btrfs_inode_item *dst_item; 574 dst_item = (struct btrfs_inode_item *)dst_ptr; 575 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 576 btrfs_set_inode_generation(path->nodes[0], dst_item, 577 trans->transid); 578 } 579 } 580 no_copy: 581 btrfs_mark_buffer_dirty(path->nodes[0]); 582 btrfs_release_path(path); 583 return 0; 584 } 585 586 /* 587 * Item overwrite used by replay and tree logging. eb, slot and key all refer 588 * to the src data we are copying out. 589 * 590 * root is the tree we are copying into, and path is a scratch 591 * path for use in this function (it should be released on entry and 592 * will be released on exit). 593 * 594 * If the key is already in the destination tree the existing item is 595 * overwritten. If the existing item isn't big enough, it is extended. 596 * If it is too large, it is truncated. 597 * 598 * If the key isn't in the destination yet, a new item is inserted. 599 */ 600 static int overwrite_item(struct btrfs_trans_handle *trans, 601 struct btrfs_root *root, 602 struct btrfs_path *path, 603 struct extent_buffer *eb, int slot, 604 struct btrfs_key *key) 605 { 606 int ret; 607 608 /* Look for the key in the destination tree. */ 609 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 610 if (ret < 0) 611 return ret; 612 613 return do_overwrite_item(trans, root, path, eb, slot, key); 614 } 615 616 /* 617 * simple helper to read an inode off the disk from a given root 618 * This can only be called for subvolume roots and not for the log 619 */ 620 static noinline struct inode *read_one_inode(struct btrfs_root *root, 621 u64 objectid) 622 { 623 struct inode *inode; 624 625 inode = btrfs_iget(root->fs_info->sb, objectid, root); 626 if (IS_ERR(inode)) 627 inode = NULL; 628 return inode; 629 } 630 631 /* replays a single extent in 'eb' at 'slot' with 'key' into the 632 * subvolume 'root'. path is released on entry and should be released 633 * on exit. 634 * 635 * extents in the log tree have not been allocated out of the extent 636 * tree yet. So, this completes the allocation, taking a reference 637 * as required if the extent already exists or creating a new extent 638 * if it isn't in the extent allocation tree yet. 639 * 640 * The extent is inserted into the file, dropping any existing extents 641 * from the file that overlap the new one. 642 */ 643 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 644 struct btrfs_root *root, 645 struct btrfs_path *path, 646 struct extent_buffer *eb, int slot, 647 struct btrfs_key *key) 648 { 649 struct btrfs_drop_extents_args drop_args = { 0 }; 650 struct btrfs_fs_info *fs_info = root->fs_info; 651 int found_type; 652 u64 extent_end; 653 u64 start = key->offset; 654 u64 nbytes = 0; 655 struct btrfs_file_extent_item *item; 656 struct inode *inode = NULL; 657 unsigned long size; 658 int ret = 0; 659 660 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 661 found_type = btrfs_file_extent_type(eb, item); 662 663 if (found_type == BTRFS_FILE_EXTENT_REG || 664 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 665 nbytes = btrfs_file_extent_num_bytes(eb, item); 666 extent_end = start + nbytes; 667 668 /* 669 * We don't add to the inodes nbytes if we are prealloc or a 670 * hole. 671 */ 672 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 673 nbytes = 0; 674 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 675 size = btrfs_file_extent_ram_bytes(eb, item); 676 nbytes = btrfs_file_extent_ram_bytes(eb, item); 677 extent_end = ALIGN(start + size, 678 fs_info->sectorsize); 679 } else { 680 ret = 0; 681 goto out; 682 } 683 684 inode = read_one_inode(root, key->objectid); 685 if (!inode) { 686 ret = -EIO; 687 goto out; 688 } 689 690 /* 691 * first check to see if we already have this extent in the 692 * file. This must be done before the btrfs_drop_extents run 693 * so we don't try to drop this extent. 694 */ 695 ret = btrfs_lookup_file_extent(trans, root, path, 696 btrfs_ino(BTRFS_I(inode)), start, 0); 697 698 if (ret == 0 && 699 (found_type == BTRFS_FILE_EXTENT_REG || 700 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 701 struct btrfs_file_extent_item cmp1; 702 struct btrfs_file_extent_item cmp2; 703 struct btrfs_file_extent_item *existing; 704 struct extent_buffer *leaf; 705 706 leaf = path->nodes[0]; 707 existing = btrfs_item_ptr(leaf, path->slots[0], 708 struct btrfs_file_extent_item); 709 710 read_extent_buffer(eb, &cmp1, (unsigned long)item, 711 sizeof(cmp1)); 712 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 713 sizeof(cmp2)); 714 715 /* 716 * we already have a pointer to this exact extent, 717 * we don't have to do anything 718 */ 719 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 720 btrfs_release_path(path); 721 goto out; 722 } 723 } 724 btrfs_release_path(path); 725 726 /* drop any overlapping extents */ 727 drop_args.start = start; 728 drop_args.end = extent_end; 729 drop_args.drop_cache = true; 730 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args); 731 if (ret) 732 goto out; 733 734 if (found_type == BTRFS_FILE_EXTENT_REG || 735 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 736 u64 offset; 737 unsigned long dest_offset; 738 struct btrfs_key ins; 739 740 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 741 btrfs_fs_incompat(fs_info, NO_HOLES)) 742 goto update_inode; 743 744 ret = btrfs_insert_empty_item(trans, root, path, key, 745 sizeof(*item)); 746 if (ret) 747 goto out; 748 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 749 path->slots[0]); 750 copy_extent_buffer(path->nodes[0], eb, dest_offset, 751 (unsigned long)item, sizeof(*item)); 752 753 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 754 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 755 ins.type = BTRFS_EXTENT_ITEM_KEY; 756 offset = key->offset - btrfs_file_extent_offset(eb, item); 757 758 /* 759 * Manually record dirty extent, as here we did a shallow 760 * file extent item copy and skip normal backref update, 761 * but modifying extent tree all by ourselves. 762 * So need to manually record dirty extent for qgroup, 763 * as the owner of the file extent changed from log tree 764 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 765 */ 766 ret = btrfs_qgroup_trace_extent(trans, 767 btrfs_file_extent_disk_bytenr(eb, item), 768 btrfs_file_extent_disk_num_bytes(eb, item), 769 GFP_NOFS); 770 if (ret < 0) 771 goto out; 772 773 if (ins.objectid > 0) { 774 struct btrfs_ref ref = { 0 }; 775 u64 csum_start; 776 u64 csum_end; 777 LIST_HEAD(ordered_sums); 778 779 /* 780 * is this extent already allocated in the extent 781 * allocation tree? If so, just add a reference 782 */ 783 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 784 ins.offset); 785 if (ret < 0) { 786 goto out; 787 } else if (ret == 0) { 788 btrfs_init_generic_ref(&ref, 789 BTRFS_ADD_DELAYED_REF, 790 ins.objectid, ins.offset, 0); 791 btrfs_init_data_ref(&ref, 792 root->root_key.objectid, 793 key->objectid, offset, 0, false); 794 ret = btrfs_inc_extent_ref(trans, &ref); 795 if (ret) 796 goto out; 797 } else { 798 /* 799 * insert the extent pointer in the extent 800 * allocation tree 801 */ 802 ret = btrfs_alloc_logged_file_extent(trans, 803 root->root_key.objectid, 804 key->objectid, offset, &ins); 805 if (ret) 806 goto out; 807 } 808 btrfs_release_path(path); 809 810 if (btrfs_file_extent_compression(eb, item)) { 811 csum_start = ins.objectid; 812 csum_end = csum_start + ins.offset; 813 } else { 814 csum_start = ins.objectid + 815 btrfs_file_extent_offset(eb, item); 816 csum_end = csum_start + 817 btrfs_file_extent_num_bytes(eb, item); 818 } 819 820 ret = btrfs_lookup_csums_range(root->log_root, 821 csum_start, csum_end - 1, 822 &ordered_sums, 0); 823 if (ret) 824 goto out; 825 /* 826 * Now delete all existing cums in the csum root that 827 * cover our range. We do this because we can have an 828 * extent that is completely referenced by one file 829 * extent item and partially referenced by another 830 * file extent item (like after using the clone or 831 * extent_same ioctls). In this case if we end up doing 832 * the replay of the one that partially references the 833 * extent first, and we do not do the csum deletion 834 * below, we can get 2 csum items in the csum tree that 835 * overlap each other. For example, imagine our log has 836 * the two following file extent items: 837 * 838 * key (257 EXTENT_DATA 409600) 839 * extent data disk byte 12845056 nr 102400 840 * extent data offset 20480 nr 20480 ram 102400 841 * 842 * key (257 EXTENT_DATA 819200) 843 * extent data disk byte 12845056 nr 102400 844 * extent data offset 0 nr 102400 ram 102400 845 * 846 * Where the second one fully references the 100K extent 847 * that starts at disk byte 12845056, and the log tree 848 * has a single csum item that covers the entire range 849 * of the extent: 850 * 851 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 852 * 853 * After the first file extent item is replayed, the 854 * csum tree gets the following csum item: 855 * 856 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 857 * 858 * Which covers the 20K sub-range starting at offset 20K 859 * of our extent. Now when we replay the second file 860 * extent item, if we do not delete existing csum items 861 * that cover any of its blocks, we end up getting two 862 * csum items in our csum tree that overlap each other: 863 * 864 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 865 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 866 * 867 * Which is a problem, because after this anyone trying 868 * to lookup up for the checksum of any block of our 869 * extent starting at an offset of 40K or higher, will 870 * end up looking at the second csum item only, which 871 * does not contain the checksum for any block starting 872 * at offset 40K or higher of our extent. 873 */ 874 while (!list_empty(&ordered_sums)) { 875 struct btrfs_ordered_sum *sums; 876 struct btrfs_root *csum_root; 877 878 sums = list_entry(ordered_sums.next, 879 struct btrfs_ordered_sum, 880 list); 881 csum_root = btrfs_csum_root(fs_info, 882 sums->bytenr); 883 if (!ret) 884 ret = btrfs_del_csums(trans, csum_root, 885 sums->bytenr, 886 sums->len); 887 if (!ret) 888 ret = btrfs_csum_file_blocks(trans, 889 csum_root, 890 sums); 891 list_del(&sums->list); 892 kfree(sums); 893 } 894 if (ret) 895 goto out; 896 } else { 897 btrfs_release_path(path); 898 } 899 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 900 /* inline extents are easy, we just overwrite them */ 901 ret = overwrite_item(trans, root, path, eb, slot, key); 902 if (ret) 903 goto out; 904 } 905 906 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, 907 extent_end - start); 908 if (ret) 909 goto out; 910 911 update_inode: 912 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found); 913 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 914 out: 915 if (inode) 916 iput(inode); 917 return ret; 918 } 919 920 /* 921 * when cleaning up conflicts between the directory names in the 922 * subvolume, directory names in the log and directory names in the 923 * inode back references, we may have to unlink inodes from directories. 924 * 925 * This is a helper function to do the unlink of a specific directory 926 * item 927 */ 928 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 929 struct btrfs_path *path, 930 struct btrfs_inode *dir, 931 struct btrfs_dir_item *di) 932 { 933 struct btrfs_root *root = dir->root; 934 struct inode *inode; 935 char *name; 936 int name_len; 937 struct extent_buffer *leaf; 938 struct btrfs_key location; 939 int ret; 940 941 leaf = path->nodes[0]; 942 943 btrfs_dir_item_key_to_cpu(leaf, di, &location); 944 name_len = btrfs_dir_name_len(leaf, di); 945 name = kmalloc(name_len, GFP_NOFS); 946 if (!name) 947 return -ENOMEM; 948 949 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 950 btrfs_release_path(path); 951 952 inode = read_one_inode(root, location.objectid); 953 if (!inode) { 954 ret = -EIO; 955 goto out; 956 } 957 958 ret = link_to_fixup_dir(trans, root, path, location.objectid); 959 if (ret) 960 goto out; 961 962 ret = btrfs_unlink_inode(trans, dir, BTRFS_I(inode), name, 963 name_len); 964 if (ret) 965 goto out; 966 else 967 ret = btrfs_run_delayed_items(trans); 968 out: 969 kfree(name); 970 iput(inode); 971 return ret; 972 } 973 974 /* 975 * See if a given name and sequence number found in an inode back reference are 976 * already in a directory and correctly point to this inode. 977 * 978 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it 979 * exists. 980 */ 981 static noinline int inode_in_dir(struct btrfs_root *root, 982 struct btrfs_path *path, 983 u64 dirid, u64 objectid, u64 index, 984 const char *name, int name_len) 985 { 986 struct btrfs_dir_item *di; 987 struct btrfs_key location; 988 int ret = 0; 989 990 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 991 index, name, name_len, 0); 992 if (IS_ERR(di)) { 993 ret = PTR_ERR(di); 994 goto out; 995 } else if (di) { 996 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 997 if (location.objectid != objectid) 998 goto out; 999 } else { 1000 goto out; 1001 } 1002 1003 btrfs_release_path(path); 1004 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 1005 if (IS_ERR(di)) { 1006 ret = PTR_ERR(di); 1007 goto out; 1008 } else if (di) { 1009 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1010 if (location.objectid == objectid) 1011 ret = 1; 1012 } 1013 out: 1014 btrfs_release_path(path); 1015 return ret; 1016 } 1017 1018 /* 1019 * helper function to check a log tree for a named back reference in 1020 * an inode. This is used to decide if a back reference that is 1021 * found in the subvolume conflicts with what we find in the log. 1022 * 1023 * inode backreferences may have multiple refs in a single item, 1024 * during replay we process one reference at a time, and we don't 1025 * want to delete valid links to a file from the subvolume if that 1026 * link is also in the log. 1027 */ 1028 static noinline int backref_in_log(struct btrfs_root *log, 1029 struct btrfs_key *key, 1030 u64 ref_objectid, 1031 const char *name, int namelen) 1032 { 1033 struct btrfs_path *path; 1034 int ret; 1035 1036 path = btrfs_alloc_path(); 1037 if (!path) 1038 return -ENOMEM; 1039 1040 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 1041 if (ret < 0) { 1042 goto out; 1043 } else if (ret == 1) { 1044 ret = 0; 1045 goto out; 1046 } 1047 1048 if (key->type == BTRFS_INODE_EXTREF_KEY) 1049 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1050 path->slots[0], 1051 ref_objectid, 1052 name, namelen); 1053 else 1054 ret = !!btrfs_find_name_in_backref(path->nodes[0], 1055 path->slots[0], 1056 name, namelen); 1057 out: 1058 btrfs_free_path(path); 1059 return ret; 1060 } 1061 1062 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 1063 struct btrfs_root *root, 1064 struct btrfs_path *path, 1065 struct btrfs_root *log_root, 1066 struct btrfs_inode *dir, 1067 struct btrfs_inode *inode, 1068 u64 inode_objectid, u64 parent_objectid, 1069 u64 ref_index, char *name, int namelen, 1070 int *search_done) 1071 { 1072 int ret; 1073 char *victim_name; 1074 int victim_name_len; 1075 struct extent_buffer *leaf; 1076 struct btrfs_dir_item *di; 1077 struct btrfs_key search_key; 1078 struct btrfs_inode_extref *extref; 1079 1080 again: 1081 /* Search old style refs */ 1082 search_key.objectid = inode_objectid; 1083 search_key.type = BTRFS_INODE_REF_KEY; 1084 search_key.offset = parent_objectid; 1085 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1086 if (ret == 0) { 1087 struct btrfs_inode_ref *victim_ref; 1088 unsigned long ptr; 1089 unsigned long ptr_end; 1090 1091 leaf = path->nodes[0]; 1092 1093 /* are we trying to overwrite a back ref for the root directory 1094 * if so, just jump out, we're done 1095 */ 1096 if (search_key.objectid == search_key.offset) 1097 return 1; 1098 1099 /* check all the names in this back reference to see 1100 * if they are in the log. if so, we allow them to stay 1101 * otherwise they must be unlinked as a conflict 1102 */ 1103 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1104 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]); 1105 while (ptr < ptr_end) { 1106 victim_ref = (struct btrfs_inode_ref *)ptr; 1107 victim_name_len = btrfs_inode_ref_name_len(leaf, 1108 victim_ref); 1109 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1110 if (!victim_name) 1111 return -ENOMEM; 1112 1113 read_extent_buffer(leaf, victim_name, 1114 (unsigned long)(victim_ref + 1), 1115 victim_name_len); 1116 1117 ret = backref_in_log(log_root, &search_key, 1118 parent_objectid, victim_name, 1119 victim_name_len); 1120 if (ret < 0) { 1121 kfree(victim_name); 1122 return ret; 1123 } else if (!ret) { 1124 inc_nlink(&inode->vfs_inode); 1125 btrfs_release_path(path); 1126 1127 ret = btrfs_unlink_inode(trans, dir, inode, 1128 victim_name, victim_name_len); 1129 kfree(victim_name); 1130 if (ret) 1131 return ret; 1132 ret = btrfs_run_delayed_items(trans); 1133 if (ret) 1134 return ret; 1135 *search_done = 1; 1136 goto again; 1137 } 1138 kfree(victim_name); 1139 1140 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1141 } 1142 1143 /* 1144 * NOTE: we have searched root tree and checked the 1145 * corresponding ref, it does not need to check again. 1146 */ 1147 *search_done = 1; 1148 } 1149 btrfs_release_path(path); 1150 1151 /* Same search but for extended refs */ 1152 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1153 inode_objectid, parent_objectid, 0, 1154 0); 1155 if (!IS_ERR_OR_NULL(extref)) { 1156 u32 item_size; 1157 u32 cur_offset = 0; 1158 unsigned long base; 1159 struct inode *victim_parent; 1160 1161 leaf = path->nodes[0]; 1162 1163 item_size = btrfs_item_size(leaf, path->slots[0]); 1164 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1165 1166 while (cur_offset < item_size) { 1167 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1168 1169 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1170 1171 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1172 goto next; 1173 1174 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1175 if (!victim_name) 1176 return -ENOMEM; 1177 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1178 victim_name_len); 1179 1180 search_key.objectid = inode_objectid; 1181 search_key.type = BTRFS_INODE_EXTREF_KEY; 1182 search_key.offset = btrfs_extref_hash(parent_objectid, 1183 victim_name, 1184 victim_name_len); 1185 ret = backref_in_log(log_root, &search_key, 1186 parent_objectid, victim_name, 1187 victim_name_len); 1188 if (ret < 0) { 1189 kfree(victim_name); 1190 return ret; 1191 } else if (!ret) { 1192 ret = -ENOENT; 1193 victim_parent = read_one_inode(root, 1194 parent_objectid); 1195 if (victim_parent) { 1196 inc_nlink(&inode->vfs_inode); 1197 btrfs_release_path(path); 1198 1199 ret = btrfs_unlink_inode(trans, 1200 BTRFS_I(victim_parent), 1201 inode, 1202 victim_name, 1203 victim_name_len); 1204 if (!ret) 1205 ret = btrfs_run_delayed_items( 1206 trans); 1207 } 1208 iput(victim_parent); 1209 kfree(victim_name); 1210 if (ret) 1211 return ret; 1212 *search_done = 1; 1213 goto again; 1214 } 1215 kfree(victim_name); 1216 next: 1217 cur_offset += victim_name_len + sizeof(*extref); 1218 } 1219 *search_done = 1; 1220 } 1221 btrfs_release_path(path); 1222 1223 /* look for a conflicting sequence number */ 1224 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1225 ref_index, name, namelen, 0); 1226 if (IS_ERR(di)) { 1227 return PTR_ERR(di); 1228 } else if (di) { 1229 ret = drop_one_dir_item(trans, path, dir, di); 1230 if (ret) 1231 return ret; 1232 } 1233 btrfs_release_path(path); 1234 1235 /* look for a conflicting name */ 1236 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1237 name, namelen, 0); 1238 if (IS_ERR(di)) { 1239 return PTR_ERR(di); 1240 } else if (di) { 1241 ret = drop_one_dir_item(trans, path, dir, di); 1242 if (ret) 1243 return ret; 1244 } 1245 btrfs_release_path(path); 1246 1247 return 0; 1248 } 1249 1250 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1251 u32 *namelen, char **name, u64 *index, 1252 u64 *parent_objectid) 1253 { 1254 struct btrfs_inode_extref *extref; 1255 1256 extref = (struct btrfs_inode_extref *)ref_ptr; 1257 1258 *namelen = btrfs_inode_extref_name_len(eb, extref); 1259 *name = kmalloc(*namelen, GFP_NOFS); 1260 if (*name == NULL) 1261 return -ENOMEM; 1262 1263 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1264 *namelen); 1265 1266 if (index) 1267 *index = btrfs_inode_extref_index(eb, extref); 1268 if (parent_objectid) 1269 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1270 1271 return 0; 1272 } 1273 1274 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1275 u32 *namelen, char **name, u64 *index) 1276 { 1277 struct btrfs_inode_ref *ref; 1278 1279 ref = (struct btrfs_inode_ref *)ref_ptr; 1280 1281 *namelen = btrfs_inode_ref_name_len(eb, ref); 1282 *name = kmalloc(*namelen, GFP_NOFS); 1283 if (*name == NULL) 1284 return -ENOMEM; 1285 1286 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1287 1288 if (index) 1289 *index = btrfs_inode_ref_index(eb, ref); 1290 1291 return 0; 1292 } 1293 1294 /* 1295 * Take an inode reference item from the log tree and iterate all names from the 1296 * inode reference item in the subvolume tree with the same key (if it exists). 1297 * For any name that is not in the inode reference item from the log tree, do a 1298 * proper unlink of that name (that is, remove its entry from the inode 1299 * reference item and both dir index keys). 1300 */ 1301 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1302 struct btrfs_root *root, 1303 struct btrfs_path *path, 1304 struct btrfs_inode *inode, 1305 struct extent_buffer *log_eb, 1306 int log_slot, 1307 struct btrfs_key *key) 1308 { 1309 int ret; 1310 unsigned long ref_ptr; 1311 unsigned long ref_end; 1312 struct extent_buffer *eb; 1313 1314 again: 1315 btrfs_release_path(path); 1316 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1317 if (ret > 0) { 1318 ret = 0; 1319 goto out; 1320 } 1321 if (ret < 0) 1322 goto out; 1323 1324 eb = path->nodes[0]; 1325 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1326 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]); 1327 while (ref_ptr < ref_end) { 1328 char *name = NULL; 1329 int namelen; 1330 u64 parent_id; 1331 1332 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1333 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1334 NULL, &parent_id); 1335 } else { 1336 parent_id = key->offset; 1337 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1338 NULL); 1339 } 1340 if (ret) 1341 goto out; 1342 1343 if (key->type == BTRFS_INODE_EXTREF_KEY) 1344 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1345 parent_id, name, 1346 namelen); 1347 else 1348 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, 1349 name, namelen); 1350 1351 if (!ret) { 1352 struct inode *dir; 1353 1354 btrfs_release_path(path); 1355 dir = read_one_inode(root, parent_id); 1356 if (!dir) { 1357 ret = -ENOENT; 1358 kfree(name); 1359 goto out; 1360 } 1361 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), 1362 inode, name, namelen); 1363 kfree(name); 1364 iput(dir); 1365 if (ret) 1366 goto out; 1367 goto again; 1368 } 1369 1370 kfree(name); 1371 ref_ptr += namelen; 1372 if (key->type == BTRFS_INODE_EXTREF_KEY) 1373 ref_ptr += sizeof(struct btrfs_inode_extref); 1374 else 1375 ref_ptr += sizeof(struct btrfs_inode_ref); 1376 } 1377 ret = 0; 1378 out: 1379 btrfs_release_path(path); 1380 return ret; 1381 } 1382 1383 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1384 const u8 ref_type, const char *name, 1385 const int namelen) 1386 { 1387 struct btrfs_key key; 1388 struct btrfs_path *path; 1389 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1390 int ret; 1391 1392 path = btrfs_alloc_path(); 1393 if (!path) 1394 return -ENOMEM; 1395 1396 key.objectid = btrfs_ino(BTRFS_I(inode)); 1397 key.type = ref_type; 1398 if (key.type == BTRFS_INODE_REF_KEY) 1399 key.offset = parent_id; 1400 else 1401 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1402 1403 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1404 if (ret < 0) 1405 goto out; 1406 if (ret > 0) { 1407 ret = 0; 1408 goto out; 1409 } 1410 if (key.type == BTRFS_INODE_EXTREF_KEY) 1411 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1412 path->slots[0], parent_id, name, namelen); 1413 else 1414 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1415 name, namelen); 1416 1417 out: 1418 btrfs_free_path(path); 1419 return ret; 1420 } 1421 1422 static int add_link(struct btrfs_trans_handle *trans, 1423 struct inode *dir, struct inode *inode, const char *name, 1424 int namelen, u64 ref_index) 1425 { 1426 struct btrfs_root *root = BTRFS_I(dir)->root; 1427 struct btrfs_dir_item *dir_item; 1428 struct btrfs_key key; 1429 struct btrfs_path *path; 1430 struct inode *other_inode = NULL; 1431 int ret; 1432 1433 path = btrfs_alloc_path(); 1434 if (!path) 1435 return -ENOMEM; 1436 1437 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1438 btrfs_ino(BTRFS_I(dir)), 1439 name, namelen, 0); 1440 if (!dir_item) { 1441 btrfs_release_path(path); 1442 goto add_link; 1443 } else if (IS_ERR(dir_item)) { 1444 ret = PTR_ERR(dir_item); 1445 goto out; 1446 } 1447 1448 /* 1449 * Our inode's dentry collides with the dentry of another inode which is 1450 * in the log but not yet processed since it has a higher inode number. 1451 * So delete that other dentry. 1452 */ 1453 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1454 btrfs_release_path(path); 1455 other_inode = read_one_inode(root, key.objectid); 1456 if (!other_inode) { 1457 ret = -ENOENT; 1458 goto out; 1459 } 1460 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(other_inode), 1461 name, namelen); 1462 if (ret) 1463 goto out; 1464 /* 1465 * If we dropped the link count to 0, bump it so that later the iput() 1466 * on the inode will not free it. We will fixup the link count later. 1467 */ 1468 if (other_inode->i_nlink == 0) 1469 inc_nlink(other_inode); 1470 1471 ret = btrfs_run_delayed_items(trans); 1472 if (ret) 1473 goto out; 1474 add_link: 1475 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1476 name, namelen, 0, ref_index); 1477 out: 1478 iput(other_inode); 1479 btrfs_free_path(path); 1480 1481 return ret; 1482 } 1483 1484 /* 1485 * replay one inode back reference item found in the log tree. 1486 * eb, slot and key refer to the buffer and key found in the log tree. 1487 * root is the destination we are replaying into, and path is for temp 1488 * use by this function. (it should be released on return). 1489 */ 1490 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1491 struct btrfs_root *root, 1492 struct btrfs_root *log, 1493 struct btrfs_path *path, 1494 struct extent_buffer *eb, int slot, 1495 struct btrfs_key *key) 1496 { 1497 struct inode *dir = NULL; 1498 struct inode *inode = NULL; 1499 unsigned long ref_ptr; 1500 unsigned long ref_end; 1501 char *name = NULL; 1502 int namelen; 1503 int ret; 1504 int search_done = 0; 1505 int log_ref_ver = 0; 1506 u64 parent_objectid; 1507 u64 inode_objectid; 1508 u64 ref_index = 0; 1509 int ref_struct_size; 1510 1511 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1512 ref_end = ref_ptr + btrfs_item_size(eb, slot); 1513 1514 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1515 struct btrfs_inode_extref *r; 1516 1517 ref_struct_size = sizeof(struct btrfs_inode_extref); 1518 log_ref_ver = 1; 1519 r = (struct btrfs_inode_extref *)ref_ptr; 1520 parent_objectid = btrfs_inode_extref_parent(eb, r); 1521 } else { 1522 ref_struct_size = sizeof(struct btrfs_inode_ref); 1523 parent_objectid = key->offset; 1524 } 1525 inode_objectid = key->objectid; 1526 1527 /* 1528 * it is possible that we didn't log all the parent directories 1529 * for a given inode. If we don't find the dir, just don't 1530 * copy the back ref in. The link count fixup code will take 1531 * care of the rest 1532 */ 1533 dir = read_one_inode(root, parent_objectid); 1534 if (!dir) { 1535 ret = -ENOENT; 1536 goto out; 1537 } 1538 1539 inode = read_one_inode(root, inode_objectid); 1540 if (!inode) { 1541 ret = -EIO; 1542 goto out; 1543 } 1544 1545 while (ref_ptr < ref_end) { 1546 if (log_ref_ver) { 1547 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1548 &ref_index, &parent_objectid); 1549 /* 1550 * parent object can change from one array 1551 * item to another. 1552 */ 1553 if (!dir) 1554 dir = read_one_inode(root, parent_objectid); 1555 if (!dir) { 1556 ret = -ENOENT; 1557 goto out; 1558 } 1559 } else { 1560 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1561 &ref_index); 1562 } 1563 if (ret) 1564 goto out; 1565 1566 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1567 btrfs_ino(BTRFS_I(inode)), ref_index, 1568 name, namelen); 1569 if (ret < 0) { 1570 goto out; 1571 } else if (ret == 0) { 1572 /* 1573 * look for a conflicting back reference in the 1574 * metadata. if we find one we have to unlink that name 1575 * of the file before we add our new link. Later on, we 1576 * overwrite any existing back reference, and we don't 1577 * want to create dangling pointers in the directory. 1578 */ 1579 1580 if (!search_done) { 1581 ret = __add_inode_ref(trans, root, path, log, 1582 BTRFS_I(dir), 1583 BTRFS_I(inode), 1584 inode_objectid, 1585 parent_objectid, 1586 ref_index, name, namelen, 1587 &search_done); 1588 if (ret) { 1589 if (ret == 1) 1590 ret = 0; 1591 goto out; 1592 } 1593 } 1594 1595 /* 1596 * If a reference item already exists for this inode 1597 * with the same parent and name, but different index, 1598 * drop it and the corresponding directory index entries 1599 * from the parent before adding the new reference item 1600 * and dir index entries, otherwise we would fail with 1601 * -EEXIST returned from btrfs_add_link() below. 1602 */ 1603 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1604 name, namelen); 1605 if (ret > 0) { 1606 ret = btrfs_unlink_inode(trans, 1607 BTRFS_I(dir), 1608 BTRFS_I(inode), 1609 name, namelen); 1610 /* 1611 * If we dropped the link count to 0, bump it so 1612 * that later the iput() on the inode will not 1613 * free it. We will fixup the link count later. 1614 */ 1615 if (!ret && inode->i_nlink == 0) 1616 inc_nlink(inode); 1617 } 1618 if (ret < 0) 1619 goto out; 1620 1621 /* insert our name */ 1622 ret = add_link(trans, dir, inode, name, namelen, 1623 ref_index); 1624 if (ret) 1625 goto out; 1626 1627 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1628 if (ret) 1629 goto out; 1630 } 1631 /* Else, ret == 1, we already have a perfect match, we're done. */ 1632 1633 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1634 kfree(name); 1635 name = NULL; 1636 if (log_ref_ver) { 1637 iput(dir); 1638 dir = NULL; 1639 } 1640 } 1641 1642 /* 1643 * Before we overwrite the inode reference item in the subvolume tree 1644 * with the item from the log tree, we must unlink all names from the 1645 * parent directory that are in the subvolume's tree inode reference 1646 * item, otherwise we end up with an inconsistent subvolume tree where 1647 * dir index entries exist for a name but there is no inode reference 1648 * item with the same name. 1649 */ 1650 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1651 key); 1652 if (ret) 1653 goto out; 1654 1655 /* finally write the back reference in the inode */ 1656 ret = overwrite_item(trans, root, path, eb, slot, key); 1657 out: 1658 btrfs_release_path(path); 1659 kfree(name); 1660 iput(dir); 1661 iput(inode); 1662 return ret; 1663 } 1664 1665 static int count_inode_extrefs(struct btrfs_root *root, 1666 struct btrfs_inode *inode, struct btrfs_path *path) 1667 { 1668 int ret = 0; 1669 int name_len; 1670 unsigned int nlink = 0; 1671 u32 item_size; 1672 u32 cur_offset = 0; 1673 u64 inode_objectid = btrfs_ino(inode); 1674 u64 offset = 0; 1675 unsigned long ptr; 1676 struct btrfs_inode_extref *extref; 1677 struct extent_buffer *leaf; 1678 1679 while (1) { 1680 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1681 &extref, &offset); 1682 if (ret) 1683 break; 1684 1685 leaf = path->nodes[0]; 1686 item_size = btrfs_item_size(leaf, path->slots[0]); 1687 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1688 cur_offset = 0; 1689 1690 while (cur_offset < item_size) { 1691 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1692 name_len = btrfs_inode_extref_name_len(leaf, extref); 1693 1694 nlink++; 1695 1696 cur_offset += name_len + sizeof(*extref); 1697 } 1698 1699 offset++; 1700 btrfs_release_path(path); 1701 } 1702 btrfs_release_path(path); 1703 1704 if (ret < 0 && ret != -ENOENT) 1705 return ret; 1706 return nlink; 1707 } 1708 1709 static int count_inode_refs(struct btrfs_root *root, 1710 struct btrfs_inode *inode, struct btrfs_path *path) 1711 { 1712 int ret; 1713 struct btrfs_key key; 1714 unsigned int nlink = 0; 1715 unsigned long ptr; 1716 unsigned long ptr_end; 1717 int name_len; 1718 u64 ino = btrfs_ino(inode); 1719 1720 key.objectid = ino; 1721 key.type = BTRFS_INODE_REF_KEY; 1722 key.offset = (u64)-1; 1723 1724 while (1) { 1725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1726 if (ret < 0) 1727 break; 1728 if (ret > 0) { 1729 if (path->slots[0] == 0) 1730 break; 1731 path->slots[0]--; 1732 } 1733 process_slot: 1734 btrfs_item_key_to_cpu(path->nodes[0], &key, 1735 path->slots[0]); 1736 if (key.objectid != ino || 1737 key.type != BTRFS_INODE_REF_KEY) 1738 break; 1739 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1740 ptr_end = ptr + btrfs_item_size(path->nodes[0], 1741 path->slots[0]); 1742 while (ptr < ptr_end) { 1743 struct btrfs_inode_ref *ref; 1744 1745 ref = (struct btrfs_inode_ref *)ptr; 1746 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1747 ref); 1748 ptr = (unsigned long)(ref + 1) + name_len; 1749 nlink++; 1750 } 1751 1752 if (key.offset == 0) 1753 break; 1754 if (path->slots[0] > 0) { 1755 path->slots[0]--; 1756 goto process_slot; 1757 } 1758 key.offset--; 1759 btrfs_release_path(path); 1760 } 1761 btrfs_release_path(path); 1762 1763 return nlink; 1764 } 1765 1766 /* 1767 * There are a few corners where the link count of the file can't 1768 * be properly maintained during replay. So, instead of adding 1769 * lots of complexity to the log code, we just scan the backrefs 1770 * for any file that has been through replay. 1771 * 1772 * The scan will update the link count on the inode to reflect the 1773 * number of back refs found. If it goes down to zero, the iput 1774 * will free the inode. 1775 */ 1776 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1777 struct btrfs_root *root, 1778 struct inode *inode) 1779 { 1780 struct btrfs_path *path; 1781 int ret; 1782 u64 nlink = 0; 1783 u64 ino = btrfs_ino(BTRFS_I(inode)); 1784 1785 path = btrfs_alloc_path(); 1786 if (!path) 1787 return -ENOMEM; 1788 1789 ret = count_inode_refs(root, BTRFS_I(inode), path); 1790 if (ret < 0) 1791 goto out; 1792 1793 nlink = ret; 1794 1795 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1796 if (ret < 0) 1797 goto out; 1798 1799 nlink += ret; 1800 1801 ret = 0; 1802 1803 if (nlink != inode->i_nlink) { 1804 set_nlink(inode, nlink); 1805 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1806 if (ret) 1807 goto out; 1808 } 1809 BTRFS_I(inode)->index_cnt = (u64)-1; 1810 1811 if (inode->i_nlink == 0) { 1812 if (S_ISDIR(inode->i_mode)) { 1813 ret = replay_dir_deletes(trans, root, NULL, path, 1814 ino, 1); 1815 if (ret) 1816 goto out; 1817 } 1818 ret = btrfs_insert_orphan_item(trans, root, ino); 1819 if (ret == -EEXIST) 1820 ret = 0; 1821 } 1822 1823 out: 1824 btrfs_free_path(path); 1825 return ret; 1826 } 1827 1828 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1829 struct btrfs_root *root, 1830 struct btrfs_path *path) 1831 { 1832 int ret; 1833 struct btrfs_key key; 1834 struct inode *inode; 1835 1836 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1837 key.type = BTRFS_ORPHAN_ITEM_KEY; 1838 key.offset = (u64)-1; 1839 while (1) { 1840 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1841 if (ret < 0) 1842 break; 1843 1844 if (ret == 1) { 1845 ret = 0; 1846 if (path->slots[0] == 0) 1847 break; 1848 path->slots[0]--; 1849 } 1850 1851 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1852 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1853 key.type != BTRFS_ORPHAN_ITEM_KEY) 1854 break; 1855 1856 ret = btrfs_del_item(trans, root, path); 1857 if (ret) 1858 break; 1859 1860 btrfs_release_path(path); 1861 inode = read_one_inode(root, key.offset); 1862 if (!inode) { 1863 ret = -EIO; 1864 break; 1865 } 1866 1867 ret = fixup_inode_link_count(trans, root, inode); 1868 iput(inode); 1869 if (ret) 1870 break; 1871 1872 /* 1873 * fixup on a directory may create new entries, 1874 * make sure we always look for the highset possible 1875 * offset 1876 */ 1877 key.offset = (u64)-1; 1878 } 1879 btrfs_release_path(path); 1880 return ret; 1881 } 1882 1883 1884 /* 1885 * record a given inode in the fixup dir so we can check its link 1886 * count when replay is done. The link count is incremented here 1887 * so the inode won't go away until we check it 1888 */ 1889 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1890 struct btrfs_root *root, 1891 struct btrfs_path *path, 1892 u64 objectid) 1893 { 1894 struct btrfs_key key; 1895 int ret = 0; 1896 struct inode *inode; 1897 1898 inode = read_one_inode(root, objectid); 1899 if (!inode) 1900 return -EIO; 1901 1902 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1903 key.type = BTRFS_ORPHAN_ITEM_KEY; 1904 key.offset = objectid; 1905 1906 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1907 1908 btrfs_release_path(path); 1909 if (ret == 0) { 1910 if (!inode->i_nlink) 1911 set_nlink(inode, 1); 1912 else 1913 inc_nlink(inode); 1914 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1915 } else if (ret == -EEXIST) { 1916 ret = 0; 1917 } 1918 iput(inode); 1919 1920 return ret; 1921 } 1922 1923 /* 1924 * when replaying the log for a directory, we only insert names 1925 * for inodes that actually exist. This means an fsync on a directory 1926 * does not implicitly fsync all the new files in it 1927 */ 1928 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1929 struct btrfs_root *root, 1930 u64 dirid, u64 index, 1931 char *name, int name_len, 1932 struct btrfs_key *location) 1933 { 1934 struct inode *inode; 1935 struct inode *dir; 1936 int ret; 1937 1938 inode = read_one_inode(root, location->objectid); 1939 if (!inode) 1940 return -ENOENT; 1941 1942 dir = read_one_inode(root, dirid); 1943 if (!dir) { 1944 iput(inode); 1945 return -EIO; 1946 } 1947 1948 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1949 name_len, 1, index); 1950 1951 /* FIXME, put inode into FIXUP list */ 1952 1953 iput(inode); 1954 iput(dir); 1955 return ret; 1956 } 1957 1958 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans, 1959 struct btrfs_inode *dir, 1960 struct btrfs_path *path, 1961 struct btrfs_dir_item *dst_di, 1962 const struct btrfs_key *log_key, 1963 u8 log_type, 1964 bool exists) 1965 { 1966 struct btrfs_key found_key; 1967 1968 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1969 /* The existing dentry points to the same inode, don't delete it. */ 1970 if (found_key.objectid == log_key->objectid && 1971 found_key.type == log_key->type && 1972 found_key.offset == log_key->offset && 1973 btrfs_dir_type(path->nodes[0], dst_di) == log_type) 1974 return 1; 1975 1976 /* 1977 * Don't drop the conflicting directory entry if the inode for the new 1978 * entry doesn't exist. 1979 */ 1980 if (!exists) 1981 return 0; 1982 1983 return drop_one_dir_item(trans, path, dir, dst_di); 1984 } 1985 1986 /* 1987 * take a single entry in a log directory item and replay it into 1988 * the subvolume. 1989 * 1990 * if a conflicting item exists in the subdirectory already, 1991 * the inode it points to is unlinked and put into the link count 1992 * fix up tree. 1993 * 1994 * If a name from the log points to a file or directory that does 1995 * not exist in the FS, it is skipped. fsyncs on directories 1996 * do not force down inodes inside that directory, just changes to the 1997 * names or unlinks in a directory. 1998 * 1999 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 2000 * non-existing inode) and 1 if the name was replayed. 2001 */ 2002 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 2003 struct btrfs_root *root, 2004 struct btrfs_path *path, 2005 struct extent_buffer *eb, 2006 struct btrfs_dir_item *di, 2007 struct btrfs_key *key) 2008 { 2009 char *name; 2010 int name_len; 2011 struct btrfs_dir_item *dir_dst_di; 2012 struct btrfs_dir_item *index_dst_di; 2013 bool dir_dst_matches = false; 2014 bool index_dst_matches = false; 2015 struct btrfs_key log_key; 2016 struct btrfs_key search_key; 2017 struct inode *dir; 2018 u8 log_type; 2019 bool exists; 2020 int ret; 2021 bool update_size = true; 2022 bool name_added = false; 2023 2024 dir = read_one_inode(root, key->objectid); 2025 if (!dir) 2026 return -EIO; 2027 2028 name_len = btrfs_dir_name_len(eb, di); 2029 name = kmalloc(name_len, GFP_NOFS); 2030 if (!name) { 2031 ret = -ENOMEM; 2032 goto out; 2033 } 2034 2035 log_type = btrfs_dir_type(eb, di); 2036 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2037 name_len); 2038 2039 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 2040 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); 2041 btrfs_release_path(path); 2042 if (ret < 0) 2043 goto out; 2044 exists = (ret == 0); 2045 ret = 0; 2046 2047 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 2048 name, name_len, 1); 2049 if (IS_ERR(dir_dst_di)) { 2050 ret = PTR_ERR(dir_dst_di); 2051 goto out; 2052 } else if (dir_dst_di) { 2053 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, 2054 dir_dst_di, &log_key, log_type, 2055 exists); 2056 if (ret < 0) 2057 goto out; 2058 dir_dst_matches = (ret == 1); 2059 } 2060 2061 btrfs_release_path(path); 2062 2063 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path, 2064 key->objectid, key->offset, 2065 name, name_len, 1); 2066 if (IS_ERR(index_dst_di)) { 2067 ret = PTR_ERR(index_dst_di); 2068 goto out; 2069 } else if (index_dst_di) { 2070 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, 2071 index_dst_di, &log_key, 2072 log_type, exists); 2073 if (ret < 0) 2074 goto out; 2075 index_dst_matches = (ret == 1); 2076 } 2077 2078 btrfs_release_path(path); 2079 2080 if (dir_dst_matches && index_dst_matches) { 2081 ret = 0; 2082 update_size = false; 2083 goto out; 2084 } 2085 2086 /* 2087 * Check if the inode reference exists in the log for the given name, 2088 * inode and parent inode 2089 */ 2090 search_key.objectid = log_key.objectid; 2091 search_key.type = BTRFS_INODE_REF_KEY; 2092 search_key.offset = key->objectid; 2093 ret = backref_in_log(root->log_root, &search_key, 0, name, name_len); 2094 if (ret < 0) { 2095 goto out; 2096 } else if (ret) { 2097 /* The dentry will be added later. */ 2098 ret = 0; 2099 update_size = false; 2100 goto out; 2101 } 2102 2103 search_key.objectid = log_key.objectid; 2104 search_key.type = BTRFS_INODE_EXTREF_KEY; 2105 search_key.offset = key->objectid; 2106 ret = backref_in_log(root->log_root, &search_key, key->objectid, name, 2107 name_len); 2108 if (ret < 0) { 2109 goto out; 2110 } else if (ret) { 2111 /* The dentry will be added later. */ 2112 ret = 0; 2113 update_size = false; 2114 goto out; 2115 } 2116 btrfs_release_path(path); 2117 ret = insert_one_name(trans, root, key->objectid, key->offset, 2118 name, name_len, &log_key); 2119 if (ret && ret != -ENOENT && ret != -EEXIST) 2120 goto out; 2121 if (!ret) 2122 name_added = true; 2123 update_size = false; 2124 ret = 0; 2125 2126 out: 2127 if (!ret && update_size) { 2128 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 2129 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 2130 } 2131 kfree(name); 2132 iput(dir); 2133 if (!ret && name_added) 2134 ret = 1; 2135 return ret; 2136 } 2137 2138 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ 2139 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2140 struct btrfs_root *root, 2141 struct btrfs_path *path, 2142 struct extent_buffer *eb, int slot, 2143 struct btrfs_key *key) 2144 { 2145 int ret; 2146 struct btrfs_dir_item *di; 2147 2148 /* We only log dir index keys, which only contain a single dir item. */ 2149 ASSERT(key->type == BTRFS_DIR_INDEX_KEY); 2150 2151 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2152 ret = replay_one_name(trans, root, path, eb, di, key); 2153 if (ret < 0) 2154 return ret; 2155 2156 /* 2157 * If this entry refers to a non-directory (directories can not have a 2158 * link count > 1) and it was added in the transaction that was not 2159 * committed, make sure we fixup the link count of the inode the entry 2160 * points to. Otherwise something like the following would result in a 2161 * directory pointing to an inode with a wrong link that does not account 2162 * for this dir entry: 2163 * 2164 * mkdir testdir 2165 * touch testdir/foo 2166 * touch testdir/bar 2167 * sync 2168 * 2169 * ln testdir/bar testdir/bar_link 2170 * ln testdir/foo testdir/foo_link 2171 * xfs_io -c "fsync" testdir/bar 2172 * 2173 * <power failure> 2174 * 2175 * mount fs, log replay happens 2176 * 2177 * File foo would remain with a link count of 1 when it has two entries 2178 * pointing to it in the directory testdir. This would make it impossible 2179 * to ever delete the parent directory has it would result in stale 2180 * dentries that can never be deleted. 2181 */ 2182 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2183 struct btrfs_path *fixup_path; 2184 struct btrfs_key di_key; 2185 2186 fixup_path = btrfs_alloc_path(); 2187 if (!fixup_path) 2188 return -ENOMEM; 2189 2190 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2191 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid); 2192 btrfs_free_path(fixup_path); 2193 } 2194 2195 return ret; 2196 } 2197 2198 /* 2199 * directory replay has two parts. There are the standard directory 2200 * items in the log copied from the subvolume, and range items 2201 * created in the log while the subvolume was logged. 2202 * 2203 * The range items tell us which parts of the key space the log 2204 * is authoritative for. During replay, if a key in the subvolume 2205 * directory is in a logged range item, but not actually in the log 2206 * that means it was deleted from the directory before the fsync 2207 * and should be removed. 2208 */ 2209 static noinline int find_dir_range(struct btrfs_root *root, 2210 struct btrfs_path *path, 2211 u64 dirid, 2212 u64 *start_ret, u64 *end_ret) 2213 { 2214 struct btrfs_key key; 2215 u64 found_end; 2216 struct btrfs_dir_log_item *item; 2217 int ret; 2218 int nritems; 2219 2220 if (*start_ret == (u64)-1) 2221 return 1; 2222 2223 key.objectid = dirid; 2224 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2225 key.offset = *start_ret; 2226 2227 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2228 if (ret < 0) 2229 goto out; 2230 if (ret > 0) { 2231 if (path->slots[0] == 0) 2232 goto out; 2233 path->slots[0]--; 2234 } 2235 if (ret != 0) 2236 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2237 2238 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2239 ret = 1; 2240 goto next; 2241 } 2242 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2243 struct btrfs_dir_log_item); 2244 found_end = btrfs_dir_log_end(path->nodes[0], item); 2245 2246 if (*start_ret >= key.offset && *start_ret <= found_end) { 2247 ret = 0; 2248 *start_ret = key.offset; 2249 *end_ret = found_end; 2250 goto out; 2251 } 2252 ret = 1; 2253 next: 2254 /* check the next slot in the tree to see if it is a valid item */ 2255 nritems = btrfs_header_nritems(path->nodes[0]); 2256 path->slots[0]++; 2257 if (path->slots[0] >= nritems) { 2258 ret = btrfs_next_leaf(root, path); 2259 if (ret) 2260 goto out; 2261 } 2262 2263 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2264 2265 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2266 ret = 1; 2267 goto out; 2268 } 2269 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2270 struct btrfs_dir_log_item); 2271 found_end = btrfs_dir_log_end(path->nodes[0], item); 2272 *start_ret = key.offset; 2273 *end_ret = found_end; 2274 ret = 0; 2275 out: 2276 btrfs_release_path(path); 2277 return ret; 2278 } 2279 2280 /* 2281 * this looks for a given directory item in the log. If the directory 2282 * item is not in the log, the item is removed and the inode it points 2283 * to is unlinked 2284 */ 2285 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2286 struct btrfs_root *log, 2287 struct btrfs_path *path, 2288 struct btrfs_path *log_path, 2289 struct inode *dir, 2290 struct btrfs_key *dir_key) 2291 { 2292 struct btrfs_root *root = BTRFS_I(dir)->root; 2293 int ret; 2294 struct extent_buffer *eb; 2295 int slot; 2296 struct btrfs_dir_item *di; 2297 int name_len; 2298 char *name; 2299 struct inode *inode = NULL; 2300 struct btrfs_key location; 2301 2302 /* 2303 * Currenly we only log dir index keys. Even if we replay a log created 2304 * by an older kernel that logged both dir index and dir item keys, all 2305 * we need to do is process the dir index keys, we (and our caller) can 2306 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). 2307 */ 2308 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); 2309 2310 eb = path->nodes[0]; 2311 slot = path->slots[0]; 2312 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2313 name_len = btrfs_dir_name_len(eb, di); 2314 name = kmalloc(name_len, GFP_NOFS); 2315 if (!name) { 2316 ret = -ENOMEM; 2317 goto out; 2318 } 2319 2320 read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len); 2321 2322 if (log) { 2323 struct btrfs_dir_item *log_di; 2324 2325 log_di = btrfs_lookup_dir_index_item(trans, log, log_path, 2326 dir_key->objectid, 2327 dir_key->offset, 2328 name, name_len, 0); 2329 if (IS_ERR(log_di)) { 2330 ret = PTR_ERR(log_di); 2331 goto out; 2332 } else if (log_di) { 2333 /* The dentry exists in the log, we have nothing to do. */ 2334 ret = 0; 2335 goto out; 2336 } 2337 } 2338 2339 btrfs_dir_item_key_to_cpu(eb, di, &location); 2340 btrfs_release_path(path); 2341 btrfs_release_path(log_path); 2342 inode = read_one_inode(root, location.objectid); 2343 if (!inode) { 2344 ret = -EIO; 2345 goto out; 2346 } 2347 2348 ret = link_to_fixup_dir(trans, root, path, location.objectid); 2349 if (ret) 2350 goto out; 2351 2352 inc_nlink(inode); 2353 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(inode), name, 2354 name_len); 2355 if (ret) 2356 goto out; 2357 2358 ret = btrfs_run_delayed_items(trans); 2359 if (ret) 2360 goto out; 2361 2362 /* 2363 * Unlike dir item keys, dir index keys can only have one name (entry) in 2364 * them, as there are no key collisions since each key has a unique offset 2365 * (an index number), so we're done. 2366 */ 2367 out: 2368 btrfs_release_path(path); 2369 btrfs_release_path(log_path); 2370 kfree(name); 2371 iput(inode); 2372 return ret; 2373 } 2374 2375 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2376 struct btrfs_root *root, 2377 struct btrfs_root *log, 2378 struct btrfs_path *path, 2379 const u64 ino) 2380 { 2381 struct btrfs_key search_key; 2382 struct btrfs_path *log_path; 2383 int i; 2384 int nritems; 2385 int ret; 2386 2387 log_path = btrfs_alloc_path(); 2388 if (!log_path) 2389 return -ENOMEM; 2390 2391 search_key.objectid = ino; 2392 search_key.type = BTRFS_XATTR_ITEM_KEY; 2393 search_key.offset = 0; 2394 again: 2395 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2396 if (ret < 0) 2397 goto out; 2398 process_leaf: 2399 nritems = btrfs_header_nritems(path->nodes[0]); 2400 for (i = path->slots[0]; i < nritems; i++) { 2401 struct btrfs_key key; 2402 struct btrfs_dir_item *di; 2403 struct btrfs_dir_item *log_di; 2404 u32 total_size; 2405 u32 cur; 2406 2407 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2408 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2409 ret = 0; 2410 goto out; 2411 } 2412 2413 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2414 total_size = btrfs_item_size(path->nodes[0], i); 2415 cur = 0; 2416 while (cur < total_size) { 2417 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2418 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2419 u32 this_len = sizeof(*di) + name_len + data_len; 2420 char *name; 2421 2422 name = kmalloc(name_len, GFP_NOFS); 2423 if (!name) { 2424 ret = -ENOMEM; 2425 goto out; 2426 } 2427 read_extent_buffer(path->nodes[0], name, 2428 (unsigned long)(di + 1), name_len); 2429 2430 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2431 name, name_len, 0); 2432 btrfs_release_path(log_path); 2433 if (!log_di) { 2434 /* Doesn't exist in log tree, so delete it. */ 2435 btrfs_release_path(path); 2436 di = btrfs_lookup_xattr(trans, root, path, ino, 2437 name, name_len, -1); 2438 kfree(name); 2439 if (IS_ERR(di)) { 2440 ret = PTR_ERR(di); 2441 goto out; 2442 } 2443 ASSERT(di); 2444 ret = btrfs_delete_one_dir_name(trans, root, 2445 path, di); 2446 if (ret) 2447 goto out; 2448 btrfs_release_path(path); 2449 search_key = key; 2450 goto again; 2451 } 2452 kfree(name); 2453 if (IS_ERR(log_di)) { 2454 ret = PTR_ERR(log_di); 2455 goto out; 2456 } 2457 cur += this_len; 2458 di = (struct btrfs_dir_item *)((char *)di + this_len); 2459 } 2460 } 2461 ret = btrfs_next_leaf(root, path); 2462 if (ret > 0) 2463 ret = 0; 2464 else if (ret == 0) 2465 goto process_leaf; 2466 out: 2467 btrfs_free_path(log_path); 2468 btrfs_release_path(path); 2469 return ret; 2470 } 2471 2472 2473 /* 2474 * deletion replay happens before we copy any new directory items 2475 * out of the log or out of backreferences from inodes. It 2476 * scans the log to find ranges of keys that log is authoritative for, 2477 * and then scans the directory to find items in those ranges that are 2478 * not present in the log. 2479 * 2480 * Anything we don't find in the log is unlinked and removed from the 2481 * directory. 2482 */ 2483 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2484 struct btrfs_root *root, 2485 struct btrfs_root *log, 2486 struct btrfs_path *path, 2487 u64 dirid, int del_all) 2488 { 2489 u64 range_start; 2490 u64 range_end; 2491 int ret = 0; 2492 struct btrfs_key dir_key; 2493 struct btrfs_key found_key; 2494 struct btrfs_path *log_path; 2495 struct inode *dir; 2496 2497 dir_key.objectid = dirid; 2498 dir_key.type = BTRFS_DIR_INDEX_KEY; 2499 log_path = btrfs_alloc_path(); 2500 if (!log_path) 2501 return -ENOMEM; 2502 2503 dir = read_one_inode(root, dirid); 2504 /* it isn't an error if the inode isn't there, that can happen 2505 * because we replay the deletes before we copy in the inode item 2506 * from the log 2507 */ 2508 if (!dir) { 2509 btrfs_free_path(log_path); 2510 return 0; 2511 } 2512 2513 range_start = 0; 2514 range_end = 0; 2515 while (1) { 2516 if (del_all) 2517 range_end = (u64)-1; 2518 else { 2519 ret = find_dir_range(log, path, dirid, 2520 &range_start, &range_end); 2521 if (ret < 0) 2522 goto out; 2523 else if (ret > 0) 2524 break; 2525 } 2526 2527 dir_key.offset = range_start; 2528 while (1) { 2529 int nritems; 2530 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2531 0, 0); 2532 if (ret < 0) 2533 goto out; 2534 2535 nritems = btrfs_header_nritems(path->nodes[0]); 2536 if (path->slots[0] >= nritems) { 2537 ret = btrfs_next_leaf(root, path); 2538 if (ret == 1) 2539 break; 2540 else if (ret < 0) 2541 goto out; 2542 } 2543 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2544 path->slots[0]); 2545 if (found_key.objectid != dirid || 2546 found_key.type != dir_key.type) { 2547 ret = 0; 2548 goto out; 2549 } 2550 2551 if (found_key.offset > range_end) 2552 break; 2553 2554 ret = check_item_in_log(trans, log, path, 2555 log_path, dir, 2556 &found_key); 2557 if (ret) 2558 goto out; 2559 if (found_key.offset == (u64)-1) 2560 break; 2561 dir_key.offset = found_key.offset + 1; 2562 } 2563 btrfs_release_path(path); 2564 if (range_end == (u64)-1) 2565 break; 2566 range_start = range_end + 1; 2567 } 2568 ret = 0; 2569 out: 2570 btrfs_release_path(path); 2571 btrfs_free_path(log_path); 2572 iput(dir); 2573 return ret; 2574 } 2575 2576 /* 2577 * the process_func used to replay items from the log tree. This 2578 * gets called in two different stages. The first stage just looks 2579 * for inodes and makes sure they are all copied into the subvolume. 2580 * 2581 * The second stage copies all the other item types from the log into 2582 * the subvolume. The two stage approach is slower, but gets rid of 2583 * lots of complexity around inodes referencing other inodes that exist 2584 * only in the log (references come from either directory items or inode 2585 * back refs). 2586 */ 2587 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2588 struct walk_control *wc, u64 gen, int level) 2589 { 2590 int nritems; 2591 struct btrfs_path *path; 2592 struct btrfs_root *root = wc->replay_dest; 2593 struct btrfs_key key; 2594 int i; 2595 int ret; 2596 2597 ret = btrfs_read_buffer(eb, gen, level, NULL); 2598 if (ret) 2599 return ret; 2600 2601 level = btrfs_header_level(eb); 2602 2603 if (level != 0) 2604 return 0; 2605 2606 path = btrfs_alloc_path(); 2607 if (!path) 2608 return -ENOMEM; 2609 2610 nritems = btrfs_header_nritems(eb); 2611 for (i = 0; i < nritems; i++) { 2612 btrfs_item_key_to_cpu(eb, &key, i); 2613 2614 /* inode keys are done during the first stage */ 2615 if (key.type == BTRFS_INODE_ITEM_KEY && 2616 wc->stage == LOG_WALK_REPLAY_INODES) { 2617 struct btrfs_inode_item *inode_item; 2618 u32 mode; 2619 2620 inode_item = btrfs_item_ptr(eb, i, 2621 struct btrfs_inode_item); 2622 /* 2623 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2624 * and never got linked before the fsync, skip it, as 2625 * replaying it is pointless since it would be deleted 2626 * later. We skip logging tmpfiles, but it's always 2627 * possible we are replaying a log created with a kernel 2628 * that used to log tmpfiles. 2629 */ 2630 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2631 wc->ignore_cur_inode = true; 2632 continue; 2633 } else { 2634 wc->ignore_cur_inode = false; 2635 } 2636 ret = replay_xattr_deletes(wc->trans, root, log, 2637 path, key.objectid); 2638 if (ret) 2639 break; 2640 mode = btrfs_inode_mode(eb, inode_item); 2641 if (S_ISDIR(mode)) { 2642 ret = replay_dir_deletes(wc->trans, 2643 root, log, path, key.objectid, 0); 2644 if (ret) 2645 break; 2646 } 2647 ret = overwrite_item(wc->trans, root, path, 2648 eb, i, &key); 2649 if (ret) 2650 break; 2651 2652 /* 2653 * Before replaying extents, truncate the inode to its 2654 * size. We need to do it now and not after log replay 2655 * because before an fsync we can have prealloc extents 2656 * added beyond the inode's i_size. If we did it after, 2657 * through orphan cleanup for example, we would drop 2658 * those prealloc extents just after replaying them. 2659 */ 2660 if (S_ISREG(mode)) { 2661 struct btrfs_drop_extents_args drop_args = { 0 }; 2662 struct inode *inode; 2663 u64 from; 2664 2665 inode = read_one_inode(root, key.objectid); 2666 if (!inode) { 2667 ret = -EIO; 2668 break; 2669 } 2670 from = ALIGN(i_size_read(inode), 2671 root->fs_info->sectorsize); 2672 drop_args.start = from; 2673 drop_args.end = (u64)-1; 2674 drop_args.drop_cache = true; 2675 ret = btrfs_drop_extents(wc->trans, root, 2676 BTRFS_I(inode), 2677 &drop_args); 2678 if (!ret) { 2679 inode_sub_bytes(inode, 2680 drop_args.bytes_found); 2681 /* Update the inode's nbytes. */ 2682 ret = btrfs_update_inode(wc->trans, 2683 root, BTRFS_I(inode)); 2684 } 2685 iput(inode); 2686 if (ret) 2687 break; 2688 } 2689 2690 ret = link_to_fixup_dir(wc->trans, root, 2691 path, key.objectid); 2692 if (ret) 2693 break; 2694 } 2695 2696 if (wc->ignore_cur_inode) 2697 continue; 2698 2699 if (key.type == BTRFS_DIR_INDEX_KEY && 2700 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2701 ret = replay_one_dir_item(wc->trans, root, path, 2702 eb, i, &key); 2703 if (ret) 2704 break; 2705 } 2706 2707 if (wc->stage < LOG_WALK_REPLAY_ALL) 2708 continue; 2709 2710 /* these keys are simply copied */ 2711 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2712 ret = overwrite_item(wc->trans, root, path, 2713 eb, i, &key); 2714 if (ret) 2715 break; 2716 } else if (key.type == BTRFS_INODE_REF_KEY || 2717 key.type == BTRFS_INODE_EXTREF_KEY) { 2718 ret = add_inode_ref(wc->trans, root, log, path, 2719 eb, i, &key); 2720 if (ret && ret != -ENOENT) 2721 break; 2722 ret = 0; 2723 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2724 ret = replay_one_extent(wc->trans, root, path, 2725 eb, i, &key); 2726 if (ret) 2727 break; 2728 } 2729 /* 2730 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the 2731 * BTRFS_DIR_INDEX_KEY items which we use to derive the 2732 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an 2733 * older kernel with such keys, ignore them. 2734 */ 2735 } 2736 btrfs_free_path(path); 2737 return ret; 2738 } 2739 2740 /* 2741 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2742 */ 2743 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2744 { 2745 struct btrfs_block_group *cache; 2746 2747 cache = btrfs_lookup_block_group(fs_info, start); 2748 if (!cache) { 2749 btrfs_err(fs_info, "unable to find block group for %llu", start); 2750 return; 2751 } 2752 2753 spin_lock(&cache->space_info->lock); 2754 spin_lock(&cache->lock); 2755 cache->reserved -= fs_info->nodesize; 2756 cache->space_info->bytes_reserved -= fs_info->nodesize; 2757 spin_unlock(&cache->lock); 2758 spin_unlock(&cache->space_info->lock); 2759 2760 btrfs_put_block_group(cache); 2761 } 2762 2763 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2764 struct btrfs_root *root, 2765 struct btrfs_path *path, int *level, 2766 struct walk_control *wc) 2767 { 2768 struct btrfs_fs_info *fs_info = root->fs_info; 2769 u64 bytenr; 2770 u64 ptr_gen; 2771 struct extent_buffer *next; 2772 struct extent_buffer *cur; 2773 u32 blocksize; 2774 int ret = 0; 2775 2776 while (*level > 0) { 2777 struct btrfs_key first_key; 2778 2779 cur = path->nodes[*level]; 2780 2781 WARN_ON(btrfs_header_level(cur) != *level); 2782 2783 if (path->slots[*level] >= 2784 btrfs_header_nritems(cur)) 2785 break; 2786 2787 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2788 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2789 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2790 blocksize = fs_info->nodesize; 2791 2792 next = btrfs_find_create_tree_block(fs_info, bytenr, 2793 btrfs_header_owner(cur), 2794 *level - 1); 2795 if (IS_ERR(next)) 2796 return PTR_ERR(next); 2797 2798 if (*level == 1) { 2799 ret = wc->process_func(root, next, wc, ptr_gen, 2800 *level - 1); 2801 if (ret) { 2802 free_extent_buffer(next); 2803 return ret; 2804 } 2805 2806 path->slots[*level]++; 2807 if (wc->free) { 2808 ret = btrfs_read_buffer(next, ptr_gen, 2809 *level - 1, &first_key); 2810 if (ret) { 2811 free_extent_buffer(next); 2812 return ret; 2813 } 2814 2815 if (trans) { 2816 btrfs_tree_lock(next); 2817 btrfs_clean_tree_block(next); 2818 btrfs_wait_tree_block_writeback(next); 2819 btrfs_tree_unlock(next); 2820 ret = btrfs_pin_reserved_extent(trans, 2821 bytenr, blocksize); 2822 if (ret) { 2823 free_extent_buffer(next); 2824 return ret; 2825 } 2826 btrfs_redirty_list_add( 2827 trans->transaction, next); 2828 } else { 2829 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2830 clear_extent_buffer_dirty(next); 2831 unaccount_log_buffer(fs_info, bytenr); 2832 } 2833 } 2834 free_extent_buffer(next); 2835 continue; 2836 } 2837 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2838 if (ret) { 2839 free_extent_buffer(next); 2840 return ret; 2841 } 2842 2843 if (path->nodes[*level-1]) 2844 free_extent_buffer(path->nodes[*level-1]); 2845 path->nodes[*level-1] = next; 2846 *level = btrfs_header_level(next); 2847 path->slots[*level] = 0; 2848 cond_resched(); 2849 } 2850 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2851 2852 cond_resched(); 2853 return 0; 2854 } 2855 2856 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2857 struct btrfs_root *root, 2858 struct btrfs_path *path, int *level, 2859 struct walk_control *wc) 2860 { 2861 struct btrfs_fs_info *fs_info = root->fs_info; 2862 int i; 2863 int slot; 2864 int ret; 2865 2866 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2867 slot = path->slots[i]; 2868 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2869 path->slots[i]++; 2870 *level = i; 2871 WARN_ON(*level == 0); 2872 return 0; 2873 } else { 2874 ret = wc->process_func(root, path->nodes[*level], wc, 2875 btrfs_header_generation(path->nodes[*level]), 2876 *level); 2877 if (ret) 2878 return ret; 2879 2880 if (wc->free) { 2881 struct extent_buffer *next; 2882 2883 next = path->nodes[*level]; 2884 2885 if (trans) { 2886 btrfs_tree_lock(next); 2887 btrfs_clean_tree_block(next); 2888 btrfs_wait_tree_block_writeback(next); 2889 btrfs_tree_unlock(next); 2890 ret = btrfs_pin_reserved_extent(trans, 2891 path->nodes[*level]->start, 2892 path->nodes[*level]->len); 2893 if (ret) 2894 return ret; 2895 btrfs_redirty_list_add(trans->transaction, 2896 next); 2897 } else { 2898 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2899 clear_extent_buffer_dirty(next); 2900 2901 unaccount_log_buffer(fs_info, 2902 path->nodes[*level]->start); 2903 } 2904 } 2905 free_extent_buffer(path->nodes[*level]); 2906 path->nodes[*level] = NULL; 2907 *level = i + 1; 2908 } 2909 } 2910 return 1; 2911 } 2912 2913 /* 2914 * drop the reference count on the tree rooted at 'snap'. This traverses 2915 * the tree freeing any blocks that have a ref count of zero after being 2916 * decremented. 2917 */ 2918 static int walk_log_tree(struct btrfs_trans_handle *trans, 2919 struct btrfs_root *log, struct walk_control *wc) 2920 { 2921 struct btrfs_fs_info *fs_info = log->fs_info; 2922 int ret = 0; 2923 int wret; 2924 int level; 2925 struct btrfs_path *path; 2926 int orig_level; 2927 2928 path = btrfs_alloc_path(); 2929 if (!path) 2930 return -ENOMEM; 2931 2932 level = btrfs_header_level(log->node); 2933 orig_level = level; 2934 path->nodes[level] = log->node; 2935 atomic_inc(&log->node->refs); 2936 path->slots[level] = 0; 2937 2938 while (1) { 2939 wret = walk_down_log_tree(trans, log, path, &level, wc); 2940 if (wret > 0) 2941 break; 2942 if (wret < 0) { 2943 ret = wret; 2944 goto out; 2945 } 2946 2947 wret = walk_up_log_tree(trans, log, path, &level, wc); 2948 if (wret > 0) 2949 break; 2950 if (wret < 0) { 2951 ret = wret; 2952 goto out; 2953 } 2954 } 2955 2956 /* was the root node processed? if not, catch it here */ 2957 if (path->nodes[orig_level]) { 2958 ret = wc->process_func(log, path->nodes[orig_level], wc, 2959 btrfs_header_generation(path->nodes[orig_level]), 2960 orig_level); 2961 if (ret) 2962 goto out; 2963 if (wc->free) { 2964 struct extent_buffer *next; 2965 2966 next = path->nodes[orig_level]; 2967 2968 if (trans) { 2969 btrfs_tree_lock(next); 2970 btrfs_clean_tree_block(next); 2971 btrfs_wait_tree_block_writeback(next); 2972 btrfs_tree_unlock(next); 2973 ret = btrfs_pin_reserved_extent(trans, 2974 next->start, next->len); 2975 if (ret) 2976 goto out; 2977 btrfs_redirty_list_add(trans->transaction, next); 2978 } else { 2979 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2980 clear_extent_buffer_dirty(next); 2981 unaccount_log_buffer(fs_info, next->start); 2982 } 2983 } 2984 } 2985 2986 out: 2987 btrfs_free_path(path); 2988 return ret; 2989 } 2990 2991 /* 2992 * helper function to update the item for a given subvolumes log root 2993 * in the tree of log roots 2994 */ 2995 static int update_log_root(struct btrfs_trans_handle *trans, 2996 struct btrfs_root *log, 2997 struct btrfs_root_item *root_item) 2998 { 2999 struct btrfs_fs_info *fs_info = log->fs_info; 3000 int ret; 3001 3002 if (log->log_transid == 1) { 3003 /* insert root item on the first sync */ 3004 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 3005 &log->root_key, root_item); 3006 } else { 3007 ret = btrfs_update_root(trans, fs_info->log_root_tree, 3008 &log->root_key, root_item); 3009 } 3010 return ret; 3011 } 3012 3013 static void wait_log_commit(struct btrfs_root *root, int transid) 3014 { 3015 DEFINE_WAIT(wait); 3016 int index = transid % 2; 3017 3018 /* 3019 * we only allow two pending log transactions at a time, 3020 * so we know that if ours is more than 2 older than the 3021 * current transaction, we're done 3022 */ 3023 for (;;) { 3024 prepare_to_wait(&root->log_commit_wait[index], 3025 &wait, TASK_UNINTERRUPTIBLE); 3026 3027 if (!(root->log_transid_committed < transid && 3028 atomic_read(&root->log_commit[index]))) 3029 break; 3030 3031 mutex_unlock(&root->log_mutex); 3032 schedule(); 3033 mutex_lock(&root->log_mutex); 3034 } 3035 finish_wait(&root->log_commit_wait[index], &wait); 3036 } 3037 3038 static void wait_for_writer(struct btrfs_root *root) 3039 { 3040 DEFINE_WAIT(wait); 3041 3042 for (;;) { 3043 prepare_to_wait(&root->log_writer_wait, &wait, 3044 TASK_UNINTERRUPTIBLE); 3045 if (!atomic_read(&root->log_writers)) 3046 break; 3047 3048 mutex_unlock(&root->log_mutex); 3049 schedule(); 3050 mutex_lock(&root->log_mutex); 3051 } 3052 finish_wait(&root->log_writer_wait, &wait); 3053 } 3054 3055 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 3056 struct btrfs_log_ctx *ctx) 3057 { 3058 mutex_lock(&root->log_mutex); 3059 list_del_init(&ctx->list); 3060 mutex_unlock(&root->log_mutex); 3061 } 3062 3063 /* 3064 * Invoked in log mutex context, or be sure there is no other task which 3065 * can access the list. 3066 */ 3067 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 3068 int index, int error) 3069 { 3070 struct btrfs_log_ctx *ctx; 3071 struct btrfs_log_ctx *safe; 3072 3073 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 3074 list_del_init(&ctx->list); 3075 ctx->log_ret = error; 3076 } 3077 } 3078 3079 /* 3080 * btrfs_sync_log does sends a given tree log down to the disk and 3081 * updates the super blocks to record it. When this call is done, 3082 * you know that any inodes previously logged are safely on disk only 3083 * if it returns 0. 3084 * 3085 * Any other return value means you need to call btrfs_commit_transaction. 3086 * Some of the edge cases for fsyncing directories that have had unlinks 3087 * or renames done in the past mean that sometimes the only safe 3088 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3089 * that has happened. 3090 */ 3091 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3092 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3093 { 3094 int index1; 3095 int index2; 3096 int mark; 3097 int ret; 3098 struct btrfs_fs_info *fs_info = root->fs_info; 3099 struct btrfs_root *log = root->log_root; 3100 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3101 struct btrfs_root_item new_root_item; 3102 int log_transid = 0; 3103 struct btrfs_log_ctx root_log_ctx; 3104 struct blk_plug plug; 3105 u64 log_root_start; 3106 u64 log_root_level; 3107 3108 mutex_lock(&root->log_mutex); 3109 log_transid = ctx->log_transid; 3110 if (root->log_transid_committed >= log_transid) { 3111 mutex_unlock(&root->log_mutex); 3112 return ctx->log_ret; 3113 } 3114 3115 index1 = log_transid % 2; 3116 if (atomic_read(&root->log_commit[index1])) { 3117 wait_log_commit(root, log_transid); 3118 mutex_unlock(&root->log_mutex); 3119 return ctx->log_ret; 3120 } 3121 ASSERT(log_transid == root->log_transid); 3122 atomic_set(&root->log_commit[index1], 1); 3123 3124 /* wait for previous tree log sync to complete */ 3125 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3126 wait_log_commit(root, log_transid - 1); 3127 3128 while (1) { 3129 int batch = atomic_read(&root->log_batch); 3130 /* when we're on an ssd, just kick the log commit out */ 3131 if (!btrfs_test_opt(fs_info, SSD) && 3132 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3133 mutex_unlock(&root->log_mutex); 3134 schedule_timeout_uninterruptible(1); 3135 mutex_lock(&root->log_mutex); 3136 } 3137 wait_for_writer(root); 3138 if (batch == atomic_read(&root->log_batch)) 3139 break; 3140 } 3141 3142 /* bail out if we need to do a full commit */ 3143 if (btrfs_need_log_full_commit(trans)) { 3144 ret = -EAGAIN; 3145 mutex_unlock(&root->log_mutex); 3146 goto out; 3147 } 3148 3149 if (log_transid % 2 == 0) 3150 mark = EXTENT_DIRTY; 3151 else 3152 mark = EXTENT_NEW; 3153 3154 /* we start IO on all the marked extents here, but we don't actually 3155 * wait for them until later. 3156 */ 3157 blk_start_plug(&plug); 3158 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3159 /* 3160 * -EAGAIN happens when someone, e.g., a concurrent transaction 3161 * commit, writes a dirty extent in this tree-log commit. This 3162 * concurrent write will create a hole writing out the extents, 3163 * and we cannot proceed on a zoned filesystem, requiring 3164 * sequential writing. While we can bail out to a full commit 3165 * here, but we can continue hoping the concurrent writing fills 3166 * the hole. 3167 */ 3168 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) 3169 ret = 0; 3170 if (ret) { 3171 blk_finish_plug(&plug); 3172 btrfs_abort_transaction(trans, ret); 3173 btrfs_set_log_full_commit(trans); 3174 mutex_unlock(&root->log_mutex); 3175 goto out; 3176 } 3177 3178 /* 3179 * We _must_ update under the root->log_mutex in order to make sure we 3180 * have a consistent view of the log root we are trying to commit at 3181 * this moment. 3182 * 3183 * We _must_ copy this into a local copy, because we are not holding the 3184 * log_root_tree->log_mutex yet. This is important because when we 3185 * commit the log_root_tree we must have a consistent view of the 3186 * log_root_tree when we update the super block to point at the 3187 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3188 * with the commit and possibly point at the new block which we may not 3189 * have written out. 3190 */ 3191 btrfs_set_root_node(&log->root_item, log->node); 3192 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3193 3194 root->log_transid++; 3195 log->log_transid = root->log_transid; 3196 root->log_start_pid = 0; 3197 /* 3198 * IO has been started, blocks of the log tree have WRITTEN flag set 3199 * in their headers. new modifications of the log will be written to 3200 * new positions. so it's safe to allow log writers to go in. 3201 */ 3202 mutex_unlock(&root->log_mutex); 3203 3204 if (btrfs_is_zoned(fs_info)) { 3205 mutex_lock(&fs_info->tree_root->log_mutex); 3206 if (!log_root_tree->node) { 3207 ret = btrfs_alloc_log_tree_node(trans, log_root_tree); 3208 if (ret) { 3209 mutex_unlock(&fs_info->tree_root->log_mutex); 3210 goto out; 3211 } 3212 } 3213 mutex_unlock(&fs_info->tree_root->log_mutex); 3214 } 3215 3216 btrfs_init_log_ctx(&root_log_ctx, NULL); 3217 3218 mutex_lock(&log_root_tree->log_mutex); 3219 3220 index2 = log_root_tree->log_transid % 2; 3221 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3222 root_log_ctx.log_transid = log_root_tree->log_transid; 3223 3224 /* 3225 * Now we are safe to update the log_root_tree because we're under the 3226 * log_mutex, and we're a current writer so we're holding the commit 3227 * open until we drop the log_mutex. 3228 */ 3229 ret = update_log_root(trans, log, &new_root_item); 3230 if (ret) { 3231 if (!list_empty(&root_log_ctx.list)) 3232 list_del_init(&root_log_ctx.list); 3233 3234 blk_finish_plug(&plug); 3235 btrfs_set_log_full_commit(trans); 3236 3237 if (ret != -ENOSPC) { 3238 btrfs_abort_transaction(trans, ret); 3239 mutex_unlock(&log_root_tree->log_mutex); 3240 goto out; 3241 } 3242 btrfs_wait_tree_log_extents(log, mark); 3243 mutex_unlock(&log_root_tree->log_mutex); 3244 ret = -EAGAIN; 3245 goto out; 3246 } 3247 3248 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3249 blk_finish_plug(&plug); 3250 list_del_init(&root_log_ctx.list); 3251 mutex_unlock(&log_root_tree->log_mutex); 3252 ret = root_log_ctx.log_ret; 3253 goto out; 3254 } 3255 3256 index2 = root_log_ctx.log_transid % 2; 3257 if (atomic_read(&log_root_tree->log_commit[index2])) { 3258 blk_finish_plug(&plug); 3259 ret = btrfs_wait_tree_log_extents(log, mark); 3260 wait_log_commit(log_root_tree, 3261 root_log_ctx.log_transid); 3262 mutex_unlock(&log_root_tree->log_mutex); 3263 if (!ret) 3264 ret = root_log_ctx.log_ret; 3265 goto out; 3266 } 3267 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3268 atomic_set(&log_root_tree->log_commit[index2], 1); 3269 3270 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3271 wait_log_commit(log_root_tree, 3272 root_log_ctx.log_transid - 1); 3273 } 3274 3275 /* 3276 * now that we've moved on to the tree of log tree roots, 3277 * check the full commit flag again 3278 */ 3279 if (btrfs_need_log_full_commit(trans)) { 3280 blk_finish_plug(&plug); 3281 btrfs_wait_tree_log_extents(log, mark); 3282 mutex_unlock(&log_root_tree->log_mutex); 3283 ret = -EAGAIN; 3284 goto out_wake_log_root; 3285 } 3286 3287 ret = btrfs_write_marked_extents(fs_info, 3288 &log_root_tree->dirty_log_pages, 3289 EXTENT_DIRTY | EXTENT_NEW); 3290 blk_finish_plug(&plug); 3291 /* 3292 * As described above, -EAGAIN indicates a hole in the extents. We 3293 * cannot wait for these write outs since the waiting cause a 3294 * deadlock. Bail out to the full commit instead. 3295 */ 3296 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { 3297 btrfs_set_log_full_commit(trans); 3298 btrfs_wait_tree_log_extents(log, mark); 3299 mutex_unlock(&log_root_tree->log_mutex); 3300 goto out_wake_log_root; 3301 } else if (ret) { 3302 btrfs_set_log_full_commit(trans); 3303 btrfs_abort_transaction(trans, ret); 3304 mutex_unlock(&log_root_tree->log_mutex); 3305 goto out_wake_log_root; 3306 } 3307 ret = btrfs_wait_tree_log_extents(log, mark); 3308 if (!ret) 3309 ret = btrfs_wait_tree_log_extents(log_root_tree, 3310 EXTENT_NEW | EXTENT_DIRTY); 3311 if (ret) { 3312 btrfs_set_log_full_commit(trans); 3313 mutex_unlock(&log_root_tree->log_mutex); 3314 goto out_wake_log_root; 3315 } 3316 3317 log_root_start = log_root_tree->node->start; 3318 log_root_level = btrfs_header_level(log_root_tree->node); 3319 log_root_tree->log_transid++; 3320 mutex_unlock(&log_root_tree->log_mutex); 3321 3322 /* 3323 * Here we are guaranteed that nobody is going to write the superblock 3324 * for the current transaction before us and that neither we do write 3325 * our superblock before the previous transaction finishes its commit 3326 * and writes its superblock, because: 3327 * 3328 * 1) We are holding a handle on the current transaction, so no body 3329 * can commit it until we release the handle; 3330 * 3331 * 2) Before writing our superblock we acquire the tree_log_mutex, so 3332 * if the previous transaction is still committing, and hasn't yet 3333 * written its superblock, we wait for it to do it, because a 3334 * transaction commit acquires the tree_log_mutex when the commit 3335 * begins and releases it only after writing its superblock. 3336 */ 3337 mutex_lock(&fs_info->tree_log_mutex); 3338 3339 /* 3340 * The previous transaction writeout phase could have failed, and thus 3341 * marked the fs in an error state. We must not commit here, as we 3342 * could have updated our generation in the super_for_commit and 3343 * writing the super here would result in transid mismatches. If there 3344 * is an error here just bail. 3345 */ 3346 if (BTRFS_FS_ERROR(fs_info)) { 3347 ret = -EIO; 3348 btrfs_set_log_full_commit(trans); 3349 btrfs_abort_transaction(trans, ret); 3350 mutex_unlock(&fs_info->tree_log_mutex); 3351 goto out_wake_log_root; 3352 } 3353 3354 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); 3355 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); 3356 ret = write_all_supers(fs_info, 1); 3357 mutex_unlock(&fs_info->tree_log_mutex); 3358 if (ret) { 3359 btrfs_set_log_full_commit(trans); 3360 btrfs_abort_transaction(trans, ret); 3361 goto out_wake_log_root; 3362 } 3363 3364 /* 3365 * We know there can only be one task here, since we have not yet set 3366 * root->log_commit[index1] to 0 and any task attempting to sync the 3367 * log must wait for the previous log transaction to commit if it's 3368 * still in progress or wait for the current log transaction commit if 3369 * someone else already started it. We use <= and not < because the 3370 * first log transaction has an ID of 0. 3371 */ 3372 ASSERT(root->last_log_commit <= log_transid); 3373 root->last_log_commit = log_transid; 3374 3375 out_wake_log_root: 3376 mutex_lock(&log_root_tree->log_mutex); 3377 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3378 3379 log_root_tree->log_transid_committed++; 3380 atomic_set(&log_root_tree->log_commit[index2], 0); 3381 mutex_unlock(&log_root_tree->log_mutex); 3382 3383 /* 3384 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3385 * all the updates above are seen by the woken threads. It might not be 3386 * necessary, but proving that seems to be hard. 3387 */ 3388 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3389 out: 3390 mutex_lock(&root->log_mutex); 3391 btrfs_remove_all_log_ctxs(root, index1, ret); 3392 root->log_transid_committed++; 3393 atomic_set(&root->log_commit[index1], 0); 3394 mutex_unlock(&root->log_mutex); 3395 3396 /* 3397 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3398 * all the updates above are seen by the woken threads. It might not be 3399 * necessary, but proving that seems to be hard. 3400 */ 3401 cond_wake_up(&root->log_commit_wait[index1]); 3402 return ret; 3403 } 3404 3405 static void free_log_tree(struct btrfs_trans_handle *trans, 3406 struct btrfs_root *log) 3407 { 3408 int ret; 3409 struct walk_control wc = { 3410 .free = 1, 3411 .process_func = process_one_buffer 3412 }; 3413 3414 if (log->node) { 3415 ret = walk_log_tree(trans, log, &wc); 3416 if (ret) { 3417 /* 3418 * We weren't able to traverse the entire log tree, the 3419 * typical scenario is getting an -EIO when reading an 3420 * extent buffer of the tree, due to a previous writeback 3421 * failure of it. 3422 */ 3423 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 3424 &log->fs_info->fs_state); 3425 3426 /* 3427 * Some extent buffers of the log tree may still be dirty 3428 * and not yet written back to storage, because we may 3429 * have updates to a log tree without syncing a log tree, 3430 * such as during rename and link operations. So flush 3431 * them out and wait for their writeback to complete, so 3432 * that we properly cleanup their state and pages. 3433 */ 3434 btrfs_write_marked_extents(log->fs_info, 3435 &log->dirty_log_pages, 3436 EXTENT_DIRTY | EXTENT_NEW); 3437 btrfs_wait_tree_log_extents(log, 3438 EXTENT_DIRTY | EXTENT_NEW); 3439 3440 if (trans) 3441 btrfs_abort_transaction(trans, ret); 3442 else 3443 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3444 } 3445 } 3446 3447 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3448 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3449 extent_io_tree_release(&log->log_csum_range); 3450 3451 btrfs_put_root(log); 3452 } 3453 3454 /* 3455 * free all the extents used by the tree log. This should be called 3456 * at commit time of the full transaction 3457 */ 3458 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3459 { 3460 if (root->log_root) { 3461 free_log_tree(trans, root->log_root); 3462 root->log_root = NULL; 3463 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3464 } 3465 return 0; 3466 } 3467 3468 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3469 struct btrfs_fs_info *fs_info) 3470 { 3471 if (fs_info->log_root_tree) { 3472 free_log_tree(trans, fs_info->log_root_tree); 3473 fs_info->log_root_tree = NULL; 3474 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); 3475 } 3476 return 0; 3477 } 3478 3479 /* 3480 * Check if an inode was logged in the current transaction. This may often 3481 * return some false positives, because logged_trans is an in memory only field, 3482 * not persisted anywhere. This is meant to be used in contexts where a false 3483 * positive has no functional consequences. 3484 */ 3485 static bool inode_logged(struct btrfs_trans_handle *trans, 3486 struct btrfs_inode *inode) 3487 { 3488 if (inode->logged_trans == trans->transid) 3489 return true; 3490 3491 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) 3492 return false; 3493 3494 /* 3495 * The inode's logged_trans is always 0 when we load it (because it is 3496 * not persisted in the inode item or elsewhere). So if it is 0, the 3497 * inode was last modified in the current transaction then the inode may 3498 * have been logged before in the current transaction, then evicted and 3499 * loaded again in the current transaction - or may have never been logged 3500 * in the current transaction, but since we can not be sure, we have to 3501 * assume it was, otherwise our callers can leave an inconsistent log. 3502 */ 3503 if (inode->logged_trans == 0 && 3504 inode->last_trans == trans->transid && 3505 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags)) 3506 return true; 3507 3508 return false; 3509 } 3510 3511 /* 3512 * If both a file and directory are logged, and unlinks or renames are 3513 * mixed in, we have a few interesting corners: 3514 * 3515 * create file X in dir Y 3516 * link file X to X.link in dir Y 3517 * fsync file X 3518 * unlink file X but leave X.link 3519 * fsync dir Y 3520 * 3521 * After a crash we would expect only X.link to exist. But file X 3522 * didn't get fsync'd again so the log has back refs for X and X.link. 3523 * 3524 * We solve this by removing directory entries and inode backrefs from the 3525 * log when a file that was logged in the current transaction is 3526 * unlinked. Any later fsync will include the updated log entries, and 3527 * we'll be able to reconstruct the proper directory items from backrefs. 3528 * 3529 * This optimizations allows us to avoid relogging the entire inode 3530 * or the entire directory. 3531 */ 3532 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3533 struct btrfs_root *root, 3534 const char *name, int name_len, 3535 struct btrfs_inode *dir, u64 index) 3536 { 3537 struct btrfs_root *log; 3538 struct btrfs_dir_item *di; 3539 struct btrfs_path *path; 3540 int ret; 3541 int err = 0; 3542 u64 dir_ino = btrfs_ino(dir); 3543 3544 if (!inode_logged(trans, dir)) 3545 return; 3546 3547 ret = join_running_log_trans(root); 3548 if (ret) 3549 return; 3550 3551 mutex_lock(&dir->log_mutex); 3552 3553 log = root->log_root; 3554 path = btrfs_alloc_path(); 3555 if (!path) { 3556 err = -ENOMEM; 3557 goto out_unlock; 3558 } 3559 3560 /* 3561 * We only log dir index items of a directory, so we don't need to look 3562 * for dir item keys. 3563 */ 3564 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3565 index, name, name_len, -1); 3566 if (IS_ERR(di)) { 3567 err = PTR_ERR(di); 3568 goto fail; 3569 } 3570 if (di) { 3571 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3572 if (ret) { 3573 err = ret; 3574 goto fail; 3575 } 3576 } 3577 3578 /* 3579 * We do not need to update the size field of the directory's inode item 3580 * because on log replay we update the field to reflect all existing 3581 * entries in the directory (see overwrite_item()). 3582 */ 3583 fail: 3584 btrfs_free_path(path); 3585 out_unlock: 3586 mutex_unlock(&dir->log_mutex); 3587 if (err < 0) 3588 btrfs_set_log_full_commit(trans); 3589 btrfs_end_log_trans(root); 3590 } 3591 3592 /* see comments for btrfs_del_dir_entries_in_log */ 3593 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3594 struct btrfs_root *root, 3595 const char *name, int name_len, 3596 struct btrfs_inode *inode, u64 dirid) 3597 { 3598 struct btrfs_root *log; 3599 u64 index; 3600 int ret; 3601 3602 if (!inode_logged(trans, inode)) 3603 return; 3604 3605 ret = join_running_log_trans(root); 3606 if (ret) 3607 return; 3608 log = root->log_root; 3609 mutex_lock(&inode->log_mutex); 3610 3611 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3612 dirid, &index); 3613 mutex_unlock(&inode->log_mutex); 3614 if (ret < 0 && ret != -ENOENT) 3615 btrfs_set_log_full_commit(trans); 3616 btrfs_end_log_trans(root); 3617 } 3618 3619 /* 3620 * creates a range item in the log for 'dirid'. first_offset and 3621 * last_offset tell us which parts of the key space the log should 3622 * be considered authoritative for. 3623 */ 3624 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3625 struct btrfs_root *log, 3626 struct btrfs_path *path, 3627 u64 dirid, 3628 u64 first_offset, u64 last_offset) 3629 { 3630 int ret; 3631 struct btrfs_key key; 3632 struct btrfs_dir_log_item *item; 3633 3634 key.objectid = dirid; 3635 key.offset = first_offset; 3636 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3637 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3638 if (ret) 3639 return ret; 3640 3641 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3642 struct btrfs_dir_log_item); 3643 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3644 btrfs_mark_buffer_dirty(path->nodes[0]); 3645 btrfs_release_path(path); 3646 return 0; 3647 } 3648 3649 static int flush_dir_items_batch(struct btrfs_trans_handle *trans, 3650 struct btrfs_root *log, 3651 struct extent_buffer *src, 3652 struct btrfs_path *dst_path, 3653 int start_slot, 3654 int count) 3655 { 3656 char *ins_data = NULL; 3657 struct btrfs_item_batch batch; 3658 struct extent_buffer *dst; 3659 unsigned long src_offset; 3660 unsigned long dst_offset; 3661 struct btrfs_key key; 3662 u32 item_size; 3663 int ret; 3664 int i; 3665 3666 ASSERT(count > 0); 3667 batch.nr = count; 3668 3669 if (count == 1) { 3670 btrfs_item_key_to_cpu(src, &key, start_slot); 3671 item_size = btrfs_item_size(src, start_slot); 3672 batch.keys = &key; 3673 batch.data_sizes = &item_size; 3674 batch.total_data_size = item_size; 3675 } else { 3676 struct btrfs_key *ins_keys; 3677 u32 *ins_sizes; 3678 3679 ins_data = kmalloc(count * sizeof(u32) + 3680 count * sizeof(struct btrfs_key), GFP_NOFS); 3681 if (!ins_data) 3682 return -ENOMEM; 3683 3684 ins_sizes = (u32 *)ins_data; 3685 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); 3686 batch.keys = ins_keys; 3687 batch.data_sizes = ins_sizes; 3688 batch.total_data_size = 0; 3689 3690 for (i = 0; i < count; i++) { 3691 const int slot = start_slot + i; 3692 3693 btrfs_item_key_to_cpu(src, &ins_keys[i], slot); 3694 ins_sizes[i] = btrfs_item_size(src, slot); 3695 batch.total_data_size += ins_sizes[i]; 3696 } 3697 } 3698 3699 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 3700 if (ret) 3701 goto out; 3702 3703 dst = dst_path->nodes[0]; 3704 /* 3705 * Copy all the items in bulk, in a single copy operation. Item data is 3706 * organized such that it's placed at the end of a leaf and from right 3707 * to left. For example, the data for the second item ends at an offset 3708 * that matches the offset where the data for the first item starts, the 3709 * data for the third item ends at an offset that matches the offset 3710 * where the data of the second items starts, and so on. 3711 * Therefore our source and destination start offsets for copy match the 3712 * offsets of the last items (highest slots). 3713 */ 3714 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); 3715 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); 3716 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); 3717 btrfs_release_path(dst_path); 3718 out: 3719 kfree(ins_data); 3720 3721 return ret; 3722 } 3723 3724 static int process_dir_items_leaf(struct btrfs_trans_handle *trans, 3725 struct btrfs_inode *inode, 3726 struct btrfs_path *path, 3727 struct btrfs_path *dst_path, 3728 struct btrfs_log_ctx *ctx) 3729 { 3730 struct btrfs_root *log = inode->root->log_root; 3731 struct extent_buffer *src = path->nodes[0]; 3732 const int nritems = btrfs_header_nritems(src); 3733 const u64 ino = btrfs_ino(inode); 3734 const bool inode_logged_before = inode_logged(trans, inode); 3735 bool last_found = false; 3736 int batch_start = 0; 3737 int batch_size = 0; 3738 int i; 3739 3740 for (i = path->slots[0]; i < nritems; i++) { 3741 struct btrfs_key key; 3742 int ret; 3743 3744 btrfs_item_key_to_cpu(src, &key, i); 3745 3746 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { 3747 last_found = true; 3748 break; 3749 } 3750 3751 ctx->last_dir_item_offset = key.offset; 3752 /* 3753 * We must make sure that when we log a directory entry, the 3754 * corresponding inode, after log replay, has a matching link 3755 * count. For example: 3756 * 3757 * touch foo 3758 * mkdir mydir 3759 * sync 3760 * ln foo mydir/bar 3761 * xfs_io -c "fsync" mydir 3762 * <crash> 3763 * <mount fs and log replay> 3764 * 3765 * Would result in a fsync log that when replayed, our file inode 3766 * would have a link count of 1, but we get two directory entries 3767 * pointing to the same inode. After removing one of the names, 3768 * it would not be possible to remove the other name, which 3769 * resulted always in stale file handle errors, and would not be 3770 * possible to rmdir the parent directory, since its i_size could 3771 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, 3772 * resulting in -ENOTEMPTY errors. 3773 */ 3774 if (!ctx->log_new_dentries) { 3775 struct btrfs_dir_item *di; 3776 struct btrfs_key di_key; 3777 3778 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3779 btrfs_dir_item_key_to_cpu(src, di, &di_key); 3780 if ((btrfs_dir_transid(src, di) == trans->transid || 3781 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3782 di_key.type != BTRFS_ROOT_ITEM_KEY) 3783 ctx->log_new_dentries = true; 3784 } 3785 3786 if (!inode_logged_before) 3787 goto add_to_batch; 3788 3789 /* 3790 * If we were logged before and have logged dir items, we can skip 3791 * checking if any item with a key offset larger than the last one 3792 * we logged is in the log tree, saving time and avoiding adding 3793 * contention on the log tree. 3794 */ 3795 if (key.offset > inode->last_dir_index_offset) 3796 goto add_to_batch; 3797 /* 3798 * Check if the key was already logged before. If not we can add 3799 * it to a batch for bulk insertion. 3800 */ 3801 ret = btrfs_search_slot(NULL, log, &key, dst_path, 0, 0); 3802 if (ret < 0) { 3803 return ret; 3804 } else if (ret > 0) { 3805 btrfs_release_path(dst_path); 3806 goto add_to_batch; 3807 } 3808 3809 /* 3810 * Item exists in the log. Overwrite the item in the log if it 3811 * has different content or do nothing if it has exactly the same 3812 * content. And then flush the current batch if any - do it after 3813 * overwriting the current item, or we would deadlock otherwise, 3814 * since we are holding a path for the existing item. 3815 */ 3816 ret = do_overwrite_item(trans, log, dst_path, src, i, &key); 3817 if (ret < 0) 3818 return ret; 3819 3820 if (batch_size > 0) { 3821 ret = flush_dir_items_batch(trans, log, src, dst_path, 3822 batch_start, batch_size); 3823 if (ret < 0) 3824 return ret; 3825 batch_size = 0; 3826 } 3827 continue; 3828 add_to_batch: 3829 if (batch_size == 0) 3830 batch_start = i; 3831 batch_size++; 3832 } 3833 3834 if (batch_size > 0) { 3835 int ret; 3836 3837 ret = flush_dir_items_batch(trans, log, src, dst_path, 3838 batch_start, batch_size); 3839 if (ret < 0) 3840 return ret; 3841 } 3842 3843 return last_found ? 1 : 0; 3844 } 3845 3846 /* 3847 * log all the items included in the current transaction for a given 3848 * directory. This also creates the range items in the log tree required 3849 * to replay anything deleted before the fsync 3850 */ 3851 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3852 struct btrfs_inode *inode, 3853 struct btrfs_path *path, 3854 struct btrfs_path *dst_path, 3855 struct btrfs_log_ctx *ctx, 3856 u64 min_offset, u64 *last_offset_ret) 3857 { 3858 struct btrfs_key min_key; 3859 struct btrfs_root *root = inode->root; 3860 struct btrfs_root *log = root->log_root; 3861 int err = 0; 3862 int ret; 3863 u64 first_offset = min_offset; 3864 u64 last_offset = (u64)-1; 3865 u64 ino = btrfs_ino(inode); 3866 3867 min_key.objectid = ino; 3868 min_key.type = BTRFS_DIR_INDEX_KEY; 3869 min_key.offset = min_offset; 3870 3871 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3872 3873 /* 3874 * we didn't find anything from this transaction, see if there 3875 * is anything at all 3876 */ 3877 if (ret != 0 || min_key.objectid != ino || 3878 min_key.type != BTRFS_DIR_INDEX_KEY) { 3879 min_key.objectid = ino; 3880 min_key.type = BTRFS_DIR_INDEX_KEY; 3881 min_key.offset = (u64)-1; 3882 btrfs_release_path(path); 3883 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3884 if (ret < 0) { 3885 btrfs_release_path(path); 3886 return ret; 3887 } 3888 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3889 3890 /* if ret == 0 there are items for this type, 3891 * create a range to tell us the last key of this type. 3892 * otherwise, there are no items in this directory after 3893 * *min_offset, and we create a range to indicate that. 3894 */ 3895 if (ret == 0) { 3896 struct btrfs_key tmp; 3897 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3898 path->slots[0]); 3899 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3900 first_offset = max(min_offset, tmp.offset) + 1; 3901 } 3902 goto done; 3903 } 3904 3905 /* go backward to find any previous key */ 3906 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3907 if (ret == 0) { 3908 struct btrfs_key tmp; 3909 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3910 if (tmp.type == BTRFS_DIR_INDEX_KEY) { 3911 first_offset = tmp.offset; 3912 ret = overwrite_item(trans, log, dst_path, 3913 path->nodes[0], path->slots[0], 3914 &tmp); 3915 if (ret) { 3916 err = ret; 3917 goto done; 3918 } 3919 } 3920 } 3921 btrfs_release_path(path); 3922 3923 /* 3924 * Find the first key from this transaction again. See the note for 3925 * log_new_dir_dentries, if we're logging a directory recursively we 3926 * won't be holding its i_mutex, which means we can modify the directory 3927 * while we're logging it. If we remove an entry between our first 3928 * search and this search we'll not find the key again and can just 3929 * bail. 3930 */ 3931 search: 3932 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3933 if (ret != 0) 3934 goto done; 3935 3936 /* 3937 * we have a block from this transaction, log every item in it 3938 * from our directory 3939 */ 3940 while (1) { 3941 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx); 3942 if (ret != 0) { 3943 if (ret < 0) 3944 err = ret; 3945 goto done; 3946 } 3947 path->slots[0] = btrfs_header_nritems(path->nodes[0]); 3948 3949 /* 3950 * look ahead to the next item and see if it is also 3951 * from this directory and from this transaction 3952 */ 3953 ret = btrfs_next_leaf(root, path); 3954 if (ret) { 3955 if (ret == 1) 3956 last_offset = (u64)-1; 3957 else 3958 err = ret; 3959 goto done; 3960 } 3961 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); 3962 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { 3963 last_offset = (u64)-1; 3964 goto done; 3965 } 3966 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3967 ctx->last_dir_item_offset = min_key.offset; 3968 ret = overwrite_item(trans, log, dst_path, 3969 path->nodes[0], path->slots[0], 3970 &min_key); 3971 if (ret) 3972 err = ret; 3973 else 3974 last_offset = min_key.offset; 3975 goto done; 3976 } 3977 if (need_resched()) { 3978 btrfs_release_path(path); 3979 cond_resched(); 3980 goto search; 3981 } 3982 } 3983 done: 3984 btrfs_release_path(path); 3985 btrfs_release_path(dst_path); 3986 3987 if (err == 0) { 3988 *last_offset_ret = last_offset; 3989 /* 3990 * insert the log range keys to indicate where the log 3991 * is valid 3992 */ 3993 ret = insert_dir_log_key(trans, log, path, ino, first_offset, 3994 last_offset); 3995 if (ret) 3996 err = ret; 3997 } 3998 return err; 3999 } 4000 4001 /* 4002 * logging directories is very similar to logging inodes, We find all the items 4003 * from the current transaction and write them to the log. 4004 * 4005 * The recovery code scans the directory in the subvolume, and if it finds a 4006 * key in the range logged that is not present in the log tree, then it means 4007 * that dir entry was unlinked during the transaction. 4008 * 4009 * In order for that scan to work, we must include one key smaller than 4010 * the smallest logged by this transaction and one key larger than the largest 4011 * key logged by this transaction. 4012 */ 4013 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 4014 struct btrfs_inode *inode, 4015 struct btrfs_path *path, 4016 struct btrfs_path *dst_path, 4017 struct btrfs_log_ctx *ctx) 4018 { 4019 u64 min_key; 4020 u64 max_key; 4021 int ret; 4022 4023 /* 4024 * If this is the first time we are being logged in the current 4025 * transaction, or we were logged before but the inode was evicted and 4026 * reloaded later, in which case its logged_trans is 0, reset the value 4027 * of the last logged key offset. Note that we don't use the helper 4028 * function inode_logged() here - that is because the function returns 4029 * true after an inode eviction, assuming the worst case as it can not 4030 * know for sure if the inode was logged before. So we can not skip key 4031 * searches in the case the inode was evicted, because it may not have 4032 * been logged in this transaction and may have been logged in a past 4033 * transaction, so we need to reset the last dir index offset to (u64)-1. 4034 */ 4035 if (inode->logged_trans != trans->transid) 4036 inode->last_dir_index_offset = (u64)-1; 4037 4038 min_key = 0; 4039 max_key = 0; 4040 ctx->last_dir_item_offset = inode->last_dir_index_offset; 4041 4042 while (1) { 4043 ret = log_dir_items(trans, inode, path, dst_path, 4044 ctx, min_key, &max_key); 4045 if (ret) 4046 return ret; 4047 if (max_key == (u64)-1) 4048 break; 4049 min_key = max_key + 1; 4050 } 4051 4052 inode->last_dir_index_offset = ctx->last_dir_item_offset; 4053 4054 return 0; 4055 } 4056 4057 /* 4058 * a helper function to drop items from the log before we relog an 4059 * inode. max_key_type indicates the highest item type to remove. 4060 * This cannot be run for file data extents because it does not 4061 * free the extents they point to. 4062 */ 4063 static int drop_inode_items(struct btrfs_trans_handle *trans, 4064 struct btrfs_root *log, 4065 struct btrfs_path *path, 4066 struct btrfs_inode *inode, 4067 int max_key_type) 4068 { 4069 int ret; 4070 struct btrfs_key key; 4071 struct btrfs_key found_key; 4072 int start_slot; 4073 4074 if (!inode_logged(trans, inode)) 4075 return 0; 4076 4077 key.objectid = btrfs_ino(inode); 4078 key.type = max_key_type; 4079 key.offset = (u64)-1; 4080 4081 while (1) { 4082 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 4083 BUG_ON(ret == 0); /* Logic error */ 4084 if (ret < 0) 4085 break; 4086 4087 if (path->slots[0] == 0) 4088 break; 4089 4090 path->slots[0]--; 4091 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4092 path->slots[0]); 4093 4094 if (found_key.objectid != key.objectid) 4095 break; 4096 4097 found_key.offset = 0; 4098 found_key.type = 0; 4099 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot); 4100 if (ret < 0) 4101 break; 4102 4103 ret = btrfs_del_items(trans, log, path, start_slot, 4104 path->slots[0] - start_slot + 1); 4105 /* 4106 * If start slot isn't 0 then we don't need to re-search, we've 4107 * found the last guy with the objectid in this tree. 4108 */ 4109 if (ret || start_slot != 0) 4110 break; 4111 btrfs_release_path(path); 4112 } 4113 btrfs_release_path(path); 4114 if (ret > 0) 4115 ret = 0; 4116 return ret; 4117 } 4118 4119 static int truncate_inode_items(struct btrfs_trans_handle *trans, 4120 struct btrfs_root *log_root, 4121 struct btrfs_inode *inode, 4122 u64 new_size, u32 min_type) 4123 { 4124 struct btrfs_truncate_control control = { 4125 .new_size = new_size, 4126 .ino = btrfs_ino(inode), 4127 .min_type = min_type, 4128 .skip_ref_updates = true, 4129 }; 4130 4131 return btrfs_truncate_inode_items(trans, log_root, &control); 4132 } 4133 4134 static void fill_inode_item(struct btrfs_trans_handle *trans, 4135 struct extent_buffer *leaf, 4136 struct btrfs_inode_item *item, 4137 struct inode *inode, int log_inode_only, 4138 u64 logged_isize) 4139 { 4140 struct btrfs_map_token token; 4141 u64 flags; 4142 4143 btrfs_init_map_token(&token, leaf); 4144 4145 if (log_inode_only) { 4146 /* set the generation to zero so the recover code 4147 * can tell the difference between an logging 4148 * just to say 'this inode exists' and a logging 4149 * to say 'update this inode with these values' 4150 */ 4151 btrfs_set_token_inode_generation(&token, item, 0); 4152 btrfs_set_token_inode_size(&token, item, logged_isize); 4153 } else { 4154 btrfs_set_token_inode_generation(&token, item, 4155 BTRFS_I(inode)->generation); 4156 btrfs_set_token_inode_size(&token, item, inode->i_size); 4157 } 4158 4159 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4160 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4161 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4162 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4163 4164 btrfs_set_token_timespec_sec(&token, &item->atime, 4165 inode->i_atime.tv_sec); 4166 btrfs_set_token_timespec_nsec(&token, &item->atime, 4167 inode->i_atime.tv_nsec); 4168 4169 btrfs_set_token_timespec_sec(&token, &item->mtime, 4170 inode->i_mtime.tv_sec); 4171 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4172 inode->i_mtime.tv_nsec); 4173 4174 btrfs_set_token_timespec_sec(&token, &item->ctime, 4175 inode->i_ctime.tv_sec); 4176 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4177 inode->i_ctime.tv_nsec); 4178 4179 /* 4180 * We do not need to set the nbytes field, in fact during a fast fsync 4181 * its value may not even be correct, since a fast fsync does not wait 4182 * for ordered extent completion, which is where we update nbytes, it 4183 * only waits for writeback to complete. During log replay as we find 4184 * file extent items and replay them, we adjust the nbytes field of the 4185 * inode item in subvolume tree as needed (see overwrite_item()). 4186 */ 4187 4188 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4189 btrfs_set_token_inode_transid(&token, item, trans->transid); 4190 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4191 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4192 BTRFS_I(inode)->ro_flags); 4193 btrfs_set_token_inode_flags(&token, item, flags); 4194 btrfs_set_token_inode_block_group(&token, item, 0); 4195 } 4196 4197 static int log_inode_item(struct btrfs_trans_handle *trans, 4198 struct btrfs_root *log, struct btrfs_path *path, 4199 struct btrfs_inode *inode, bool inode_item_dropped) 4200 { 4201 struct btrfs_inode_item *inode_item; 4202 int ret; 4203 4204 /* 4205 * If we are doing a fast fsync and the inode was logged before in the 4206 * current transaction, then we know the inode was previously logged and 4207 * it exists in the log tree. For performance reasons, in this case use 4208 * btrfs_search_slot() directly with ins_len set to 0 so that we never 4209 * attempt a write lock on the leaf's parent, which adds unnecessary lock 4210 * contention in case there are concurrent fsyncs for other inodes of the 4211 * same subvolume. Using btrfs_insert_empty_item() when the inode item 4212 * already exists can also result in unnecessarily splitting a leaf. 4213 */ 4214 if (!inode_item_dropped && inode->logged_trans == trans->transid) { 4215 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1); 4216 ASSERT(ret <= 0); 4217 if (ret > 0) 4218 ret = -ENOENT; 4219 } else { 4220 /* 4221 * This means it is the first fsync in the current transaction, 4222 * so the inode item is not in the log and we need to insert it. 4223 * We can never get -EEXIST because we are only called for a fast 4224 * fsync and in case an inode eviction happens after the inode was 4225 * logged before in the current transaction, when we load again 4226 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime 4227 * flags and set ->logged_trans to 0. 4228 */ 4229 ret = btrfs_insert_empty_item(trans, log, path, &inode->location, 4230 sizeof(*inode_item)); 4231 ASSERT(ret != -EEXIST); 4232 } 4233 if (ret) 4234 return ret; 4235 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4236 struct btrfs_inode_item); 4237 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 4238 0, 0); 4239 btrfs_release_path(path); 4240 return 0; 4241 } 4242 4243 static int log_csums(struct btrfs_trans_handle *trans, 4244 struct btrfs_inode *inode, 4245 struct btrfs_root *log_root, 4246 struct btrfs_ordered_sum *sums) 4247 { 4248 const u64 lock_end = sums->bytenr + sums->len - 1; 4249 struct extent_state *cached_state = NULL; 4250 int ret; 4251 4252 /* 4253 * If this inode was not used for reflink operations in the current 4254 * transaction with new extents, then do the fast path, no need to 4255 * worry about logging checksum items with overlapping ranges. 4256 */ 4257 if (inode->last_reflink_trans < trans->transid) 4258 return btrfs_csum_file_blocks(trans, log_root, sums); 4259 4260 /* 4261 * Serialize logging for checksums. This is to avoid racing with the 4262 * same checksum being logged by another task that is logging another 4263 * file which happens to refer to the same extent as well. Such races 4264 * can leave checksum items in the log with overlapping ranges. 4265 */ 4266 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr, 4267 lock_end, &cached_state); 4268 if (ret) 4269 return ret; 4270 /* 4271 * Due to extent cloning, we might have logged a csum item that covers a 4272 * subrange of a cloned extent, and later we can end up logging a csum 4273 * item for a larger subrange of the same extent or the entire range. 4274 * This would leave csum items in the log tree that cover the same range 4275 * and break the searches for checksums in the log tree, resulting in 4276 * some checksums missing in the fs/subvolume tree. So just delete (or 4277 * trim and adjust) any existing csum items in the log for this range. 4278 */ 4279 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len); 4280 if (!ret) 4281 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4282 4283 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end, 4284 &cached_state); 4285 4286 return ret; 4287 } 4288 4289 static noinline int copy_items(struct btrfs_trans_handle *trans, 4290 struct btrfs_inode *inode, 4291 struct btrfs_path *dst_path, 4292 struct btrfs_path *src_path, 4293 int start_slot, int nr, int inode_only, 4294 u64 logged_isize) 4295 { 4296 struct btrfs_fs_info *fs_info = trans->fs_info; 4297 unsigned long src_offset; 4298 unsigned long dst_offset; 4299 struct btrfs_root *log = inode->root->log_root; 4300 struct btrfs_file_extent_item *extent; 4301 struct btrfs_inode_item *inode_item; 4302 struct extent_buffer *src = src_path->nodes[0]; 4303 int ret; 4304 struct btrfs_key *ins_keys; 4305 u32 *ins_sizes; 4306 struct btrfs_item_batch batch; 4307 char *ins_data; 4308 int i; 4309 struct list_head ordered_sums; 4310 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 4311 4312 INIT_LIST_HEAD(&ordered_sums); 4313 4314 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 4315 nr * sizeof(u32), GFP_NOFS); 4316 if (!ins_data) 4317 return -ENOMEM; 4318 4319 ins_sizes = (u32 *)ins_data; 4320 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 4321 batch.keys = ins_keys; 4322 batch.data_sizes = ins_sizes; 4323 batch.total_data_size = 0; 4324 batch.nr = nr; 4325 4326 for (i = 0; i < nr; i++) { 4327 ins_sizes[i] = btrfs_item_size(src, i + start_slot); 4328 batch.total_data_size += ins_sizes[i]; 4329 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 4330 } 4331 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 4332 if (ret) { 4333 kfree(ins_data); 4334 return ret; 4335 } 4336 4337 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 4338 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 4339 dst_path->slots[0]); 4340 4341 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 4342 4343 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 4344 inode_item = btrfs_item_ptr(dst_path->nodes[0], 4345 dst_path->slots[0], 4346 struct btrfs_inode_item); 4347 fill_inode_item(trans, dst_path->nodes[0], inode_item, 4348 &inode->vfs_inode, 4349 inode_only == LOG_INODE_EXISTS, 4350 logged_isize); 4351 } else { 4352 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4353 src_offset, ins_sizes[i]); 4354 } 4355 4356 /* take a reference on file data extents so that truncates 4357 * or deletes of this inode don't have to relog the inode 4358 * again 4359 */ 4360 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 4361 !skip_csum) { 4362 int found_type; 4363 extent = btrfs_item_ptr(src, start_slot + i, 4364 struct btrfs_file_extent_item); 4365 4366 if (btrfs_file_extent_generation(src, extent) < trans->transid) 4367 continue; 4368 4369 found_type = btrfs_file_extent_type(src, extent); 4370 if (found_type == BTRFS_FILE_EXTENT_REG) { 4371 struct btrfs_root *csum_root; 4372 u64 ds, dl, cs, cl; 4373 ds = btrfs_file_extent_disk_bytenr(src, 4374 extent); 4375 /* ds == 0 is a hole */ 4376 if (ds == 0) 4377 continue; 4378 4379 dl = btrfs_file_extent_disk_num_bytes(src, 4380 extent); 4381 cs = btrfs_file_extent_offset(src, extent); 4382 cl = btrfs_file_extent_num_bytes(src, 4383 extent); 4384 if (btrfs_file_extent_compression(src, 4385 extent)) { 4386 cs = 0; 4387 cl = dl; 4388 } 4389 4390 csum_root = btrfs_csum_root(fs_info, ds); 4391 ret = btrfs_lookup_csums_range(csum_root, 4392 ds + cs, ds + cs + cl - 1, 4393 &ordered_sums, 0); 4394 if (ret) 4395 break; 4396 } 4397 } 4398 } 4399 4400 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4401 btrfs_release_path(dst_path); 4402 kfree(ins_data); 4403 4404 /* 4405 * we have to do this after the loop above to avoid changing the 4406 * log tree while trying to change the log tree. 4407 */ 4408 while (!list_empty(&ordered_sums)) { 4409 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4410 struct btrfs_ordered_sum, 4411 list); 4412 if (!ret) 4413 ret = log_csums(trans, inode, log, sums); 4414 list_del(&sums->list); 4415 kfree(sums); 4416 } 4417 4418 return ret; 4419 } 4420 4421 static int extent_cmp(void *priv, const struct list_head *a, 4422 const struct list_head *b) 4423 { 4424 const struct extent_map *em1, *em2; 4425 4426 em1 = list_entry(a, struct extent_map, list); 4427 em2 = list_entry(b, struct extent_map, list); 4428 4429 if (em1->start < em2->start) 4430 return -1; 4431 else if (em1->start > em2->start) 4432 return 1; 4433 return 0; 4434 } 4435 4436 static int log_extent_csums(struct btrfs_trans_handle *trans, 4437 struct btrfs_inode *inode, 4438 struct btrfs_root *log_root, 4439 const struct extent_map *em, 4440 struct btrfs_log_ctx *ctx) 4441 { 4442 struct btrfs_ordered_extent *ordered; 4443 struct btrfs_root *csum_root; 4444 u64 csum_offset; 4445 u64 csum_len; 4446 u64 mod_start = em->mod_start; 4447 u64 mod_len = em->mod_len; 4448 LIST_HEAD(ordered_sums); 4449 int ret = 0; 4450 4451 if (inode->flags & BTRFS_INODE_NODATASUM || 4452 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4453 em->block_start == EXTENT_MAP_HOLE) 4454 return 0; 4455 4456 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { 4457 const u64 ordered_end = ordered->file_offset + ordered->num_bytes; 4458 const u64 mod_end = mod_start + mod_len; 4459 struct btrfs_ordered_sum *sums; 4460 4461 if (mod_len == 0) 4462 break; 4463 4464 if (ordered_end <= mod_start) 4465 continue; 4466 if (mod_end <= ordered->file_offset) 4467 break; 4468 4469 /* 4470 * We are going to copy all the csums on this ordered extent, so 4471 * go ahead and adjust mod_start and mod_len in case this ordered 4472 * extent has already been logged. 4473 */ 4474 if (ordered->file_offset > mod_start) { 4475 if (ordered_end >= mod_end) 4476 mod_len = ordered->file_offset - mod_start; 4477 /* 4478 * If we have this case 4479 * 4480 * |--------- logged extent ---------| 4481 * |----- ordered extent ----| 4482 * 4483 * Just don't mess with mod_start and mod_len, we'll 4484 * just end up logging more csums than we need and it 4485 * will be ok. 4486 */ 4487 } else { 4488 if (ordered_end < mod_end) { 4489 mod_len = mod_end - ordered_end; 4490 mod_start = ordered_end; 4491 } else { 4492 mod_len = 0; 4493 } 4494 } 4495 4496 /* 4497 * To keep us from looping for the above case of an ordered 4498 * extent that falls inside of the logged extent. 4499 */ 4500 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) 4501 continue; 4502 4503 list_for_each_entry(sums, &ordered->list, list) { 4504 ret = log_csums(trans, inode, log_root, sums); 4505 if (ret) 4506 return ret; 4507 } 4508 } 4509 4510 /* We're done, found all csums in the ordered extents. */ 4511 if (mod_len == 0) 4512 return 0; 4513 4514 /* If we're compressed we have to save the entire range of csums. */ 4515 if (em->compress_type) { 4516 csum_offset = 0; 4517 csum_len = max(em->block_len, em->orig_block_len); 4518 } else { 4519 csum_offset = mod_start - em->start; 4520 csum_len = mod_len; 4521 } 4522 4523 /* block start is already adjusted for the file extent offset. */ 4524 csum_root = btrfs_csum_root(trans->fs_info, em->block_start); 4525 ret = btrfs_lookup_csums_range(csum_root, 4526 em->block_start + csum_offset, 4527 em->block_start + csum_offset + 4528 csum_len - 1, &ordered_sums, 0); 4529 if (ret) 4530 return ret; 4531 4532 while (!list_empty(&ordered_sums)) { 4533 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4534 struct btrfs_ordered_sum, 4535 list); 4536 if (!ret) 4537 ret = log_csums(trans, inode, log_root, sums); 4538 list_del(&sums->list); 4539 kfree(sums); 4540 } 4541 4542 return ret; 4543 } 4544 4545 static int log_one_extent(struct btrfs_trans_handle *trans, 4546 struct btrfs_inode *inode, 4547 const struct extent_map *em, 4548 struct btrfs_path *path, 4549 struct btrfs_log_ctx *ctx) 4550 { 4551 struct btrfs_drop_extents_args drop_args = { 0 }; 4552 struct btrfs_root *log = inode->root->log_root; 4553 struct btrfs_file_extent_item *fi; 4554 struct extent_buffer *leaf; 4555 struct btrfs_map_token token; 4556 struct btrfs_key key; 4557 u64 extent_offset = em->start - em->orig_start; 4558 u64 block_len; 4559 int ret; 4560 4561 ret = log_extent_csums(trans, inode, log, em, ctx); 4562 if (ret) 4563 return ret; 4564 4565 /* 4566 * If this is the first time we are logging the inode in the current 4567 * transaction, we can avoid btrfs_drop_extents(), which is expensive 4568 * because it does a deletion search, which always acquires write locks 4569 * for extent buffers at levels 2, 1 and 0. This not only wastes time 4570 * but also adds significant contention in a log tree, since log trees 4571 * are small, with a root at level 2 or 3 at most, due to their short 4572 * life span. 4573 */ 4574 if (inode_logged(trans, inode)) { 4575 drop_args.path = path; 4576 drop_args.start = em->start; 4577 drop_args.end = em->start + em->len; 4578 drop_args.replace_extent = true; 4579 drop_args.extent_item_size = sizeof(*fi); 4580 ret = btrfs_drop_extents(trans, log, inode, &drop_args); 4581 if (ret) 4582 return ret; 4583 } 4584 4585 if (!drop_args.extent_inserted) { 4586 key.objectid = btrfs_ino(inode); 4587 key.type = BTRFS_EXTENT_DATA_KEY; 4588 key.offset = em->start; 4589 4590 ret = btrfs_insert_empty_item(trans, log, path, &key, 4591 sizeof(*fi)); 4592 if (ret) 4593 return ret; 4594 } 4595 leaf = path->nodes[0]; 4596 btrfs_init_map_token(&token, leaf); 4597 fi = btrfs_item_ptr(leaf, path->slots[0], 4598 struct btrfs_file_extent_item); 4599 4600 btrfs_set_token_file_extent_generation(&token, fi, trans->transid); 4601 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4602 btrfs_set_token_file_extent_type(&token, fi, 4603 BTRFS_FILE_EXTENT_PREALLOC); 4604 else 4605 btrfs_set_token_file_extent_type(&token, fi, 4606 BTRFS_FILE_EXTENT_REG); 4607 4608 block_len = max(em->block_len, em->orig_block_len); 4609 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4610 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4611 em->block_start); 4612 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4613 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4614 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4615 em->block_start - 4616 extent_offset); 4617 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4618 } else { 4619 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0); 4620 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0); 4621 } 4622 4623 btrfs_set_token_file_extent_offset(&token, fi, extent_offset); 4624 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len); 4625 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes); 4626 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type); 4627 btrfs_set_token_file_extent_encryption(&token, fi, 0); 4628 btrfs_set_token_file_extent_other_encoding(&token, fi, 0); 4629 btrfs_mark_buffer_dirty(leaf); 4630 4631 btrfs_release_path(path); 4632 4633 return ret; 4634 } 4635 4636 /* 4637 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4638 * lose them after doing a fast fsync and replaying the log. We scan the 4639 * subvolume's root instead of iterating the inode's extent map tree because 4640 * otherwise we can log incorrect extent items based on extent map conversion. 4641 * That can happen due to the fact that extent maps are merged when they 4642 * are not in the extent map tree's list of modified extents. 4643 */ 4644 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4645 struct btrfs_inode *inode, 4646 struct btrfs_path *path) 4647 { 4648 struct btrfs_root *root = inode->root; 4649 struct btrfs_key key; 4650 const u64 i_size = i_size_read(&inode->vfs_inode); 4651 const u64 ino = btrfs_ino(inode); 4652 struct btrfs_path *dst_path = NULL; 4653 bool dropped_extents = false; 4654 u64 truncate_offset = i_size; 4655 struct extent_buffer *leaf; 4656 int slot; 4657 int ins_nr = 0; 4658 int start_slot; 4659 int ret; 4660 4661 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4662 return 0; 4663 4664 key.objectid = ino; 4665 key.type = BTRFS_EXTENT_DATA_KEY; 4666 key.offset = i_size; 4667 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4668 if (ret < 0) 4669 goto out; 4670 4671 /* 4672 * We must check if there is a prealloc extent that starts before the 4673 * i_size and crosses the i_size boundary. This is to ensure later we 4674 * truncate down to the end of that extent and not to the i_size, as 4675 * otherwise we end up losing part of the prealloc extent after a log 4676 * replay and with an implicit hole if there is another prealloc extent 4677 * that starts at an offset beyond i_size. 4678 */ 4679 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4680 if (ret < 0) 4681 goto out; 4682 4683 if (ret == 0) { 4684 struct btrfs_file_extent_item *ei; 4685 4686 leaf = path->nodes[0]; 4687 slot = path->slots[0]; 4688 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4689 4690 if (btrfs_file_extent_type(leaf, ei) == 4691 BTRFS_FILE_EXTENT_PREALLOC) { 4692 u64 extent_end; 4693 4694 btrfs_item_key_to_cpu(leaf, &key, slot); 4695 extent_end = key.offset + 4696 btrfs_file_extent_num_bytes(leaf, ei); 4697 4698 if (extent_end > i_size) 4699 truncate_offset = extent_end; 4700 } 4701 } else { 4702 ret = 0; 4703 } 4704 4705 while (true) { 4706 leaf = path->nodes[0]; 4707 slot = path->slots[0]; 4708 4709 if (slot >= btrfs_header_nritems(leaf)) { 4710 if (ins_nr > 0) { 4711 ret = copy_items(trans, inode, dst_path, path, 4712 start_slot, ins_nr, 1, 0); 4713 if (ret < 0) 4714 goto out; 4715 ins_nr = 0; 4716 } 4717 ret = btrfs_next_leaf(root, path); 4718 if (ret < 0) 4719 goto out; 4720 if (ret > 0) { 4721 ret = 0; 4722 break; 4723 } 4724 continue; 4725 } 4726 4727 btrfs_item_key_to_cpu(leaf, &key, slot); 4728 if (key.objectid > ino) 4729 break; 4730 if (WARN_ON_ONCE(key.objectid < ino) || 4731 key.type < BTRFS_EXTENT_DATA_KEY || 4732 key.offset < i_size) { 4733 path->slots[0]++; 4734 continue; 4735 } 4736 if (!dropped_extents) { 4737 /* 4738 * Avoid logging extent items logged in past fsync calls 4739 * and leading to duplicate keys in the log tree. 4740 */ 4741 ret = truncate_inode_items(trans, root->log_root, inode, 4742 truncate_offset, 4743 BTRFS_EXTENT_DATA_KEY); 4744 if (ret) 4745 goto out; 4746 dropped_extents = true; 4747 } 4748 if (ins_nr == 0) 4749 start_slot = slot; 4750 ins_nr++; 4751 path->slots[0]++; 4752 if (!dst_path) { 4753 dst_path = btrfs_alloc_path(); 4754 if (!dst_path) { 4755 ret = -ENOMEM; 4756 goto out; 4757 } 4758 } 4759 } 4760 if (ins_nr > 0) 4761 ret = copy_items(trans, inode, dst_path, path, 4762 start_slot, ins_nr, 1, 0); 4763 out: 4764 btrfs_release_path(path); 4765 btrfs_free_path(dst_path); 4766 return ret; 4767 } 4768 4769 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4770 struct btrfs_inode *inode, 4771 struct btrfs_path *path, 4772 struct btrfs_log_ctx *ctx) 4773 { 4774 struct btrfs_ordered_extent *ordered; 4775 struct btrfs_ordered_extent *tmp; 4776 struct extent_map *em, *n; 4777 struct list_head extents; 4778 struct extent_map_tree *tree = &inode->extent_tree; 4779 int ret = 0; 4780 int num = 0; 4781 4782 INIT_LIST_HEAD(&extents); 4783 4784 write_lock(&tree->lock); 4785 4786 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4787 list_del_init(&em->list); 4788 /* 4789 * Just an arbitrary number, this can be really CPU intensive 4790 * once we start getting a lot of extents, and really once we 4791 * have a bunch of extents we just want to commit since it will 4792 * be faster. 4793 */ 4794 if (++num > 32768) { 4795 list_del_init(&tree->modified_extents); 4796 ret = -EFBIG; 4797 goto process; 4798 } 4799 4800 if (em->generation < trans->transid) 4801 continue; 4802 4803 /* We log prealloc extents beyond eof later. */ 4804 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4805 em->start >= i_size_read(&inode->vfs_inode)) 4806 continue; 4807 4808 /* Need a ref to keep it from getting evicted from cache */ 4809 refcount_inc(&em->refs); 4810 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4811 list_add_tail(&em->list, &extents); 4812 num++; 4813 } 4814 4815 list_sort(NULL, &extents, extent_cmp); 4816 process: 4817 while (!list_empty(&extents)) { 4818 em = list_entry(extents.next, struct extent_map, list); 4819 4820 list_del_init(&em->list); 4821 4822 /* 4823 * If we had an error we just need to delete everybody from our 4824 * private list. 4825 */ 4826 if (ret) { 4827 clear_em_logging(tree, em); 4828 free_extent_map(em); 4829 continue; 4830 } 4831 4832 write_unlock(&tree->lock); 4833 4834 ret = log_one_extent(trans, inode, em, path, ctx); 4835 write_lock(&tree->lock); 4836 clear_em_logging(tree, em); 4837 free_extent_map(em); 4838 } 4839 WARN_ON(!list_empty(&extents)); 4840 write_unlock(&tree->lock); 4841 4842 btrfs_release_path(path); 4843 if (!ret) 4844 ret = btrfs_log_prealloc_extents(trans, inode, path); 4845 if (ret) 4846 return ret; 4847 4848 /* 4849 * We have logged all extents successfully, now make sure the commit of 4850 * the current transaction waits for the ordered extents to complete 4851 * before it commits and wipes out the log trees, otherwise we would 4852 * lose data if an ordered extents completes after the transaction 4853 * commits and a power failure happens after the transaction commit. 4854 */ 4855 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 4856 list_del_init(&ordered->log_list); 4857 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); 4858 4859 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4860 spin_lock_irq(&inode->ordered_tree.lock); 4861 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4862 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 4863 atomic_inc(&trans->transaction->pending_ordered); 4864 } 4865 spin_unlock_irq(&inode->ordered_tree.lock); 4866 } 4867 btrfs_put_ordered_extent(ordered); 4868 } 4869 4870 return 0; 4871 } 4872 4873 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4874 struct btrfs_path *path, u64 *size_ret) 4875 { 4876 struct btrfs_key key; 4877 int ret; 4878 4879 key.objectid = btrfs_ino(inode); 4880 key.type = BTRFS_INODE_ITEM_KEY; 4881 key.offset = 0; 4882 4883 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4884 if (ret < 0) { 4885 return ret; 4886 } else if (ret > 0) { 4887 *size_ret = 0; 4888 } else { 4889 struct btrfs_inode_item *item; 4890 4891 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4892 struct btrfs_inode_item); 4893 *size_ret = btrfs_inode_size(path->nodes[0], item); 4894 /* 4895 * If the in-memory inode's i_size is smaller then the inode 4896 * size stored in the btree, return the inode's i_size, so 4897 * that we get a correct inode size after replaying the log 4898 * when before a power failure we had a shrinking truncate 4899 * followed by addition of a new name (rename / new hard link). 4900 * Otherwise return the inode size from the btree, to avoid 4901 * data loss when replaying a log due to previously doing a 4902 * write that expands the inode's size and logging a new name 4903 * immediately after. 4904 */ 4905 if (*size_ret > inode->vfs_inode.i_size) 4906 *size_ret = inode->vfs_inode.i_size; 4907 } 4908 4909 btrfs_release_path(path); 4910 return 0; 4911 } 4912 4913 /* 4914 * At the moment we always log all xattrs. This is to figure out at log replay 4915 * time which xattrs must have their deletion replayed. If a xattr is missing 4916 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4917 * because if a xattr is deleted, the inode is fsynced and a power failure 4918 * happens, causing the log to be replayed the next time the fs is mounted, 4919 * we want the xattr to not exist anymore (same behaviour as other filesystems 4920 * with a journal, ext3/4, xfs, f2fs, etc). 4921 */ 4922 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4923 struct btrfs_inode *inode, 4924 struct btrfs_path *path, 4925 struct btrfs_path *dst_path) 4926 { 4927 struct btrfs_root *root = inode->root; 4928 int ret; 4929 struct btrfs_key key; 4930 const u64 ino = btrfs_ino(inode); 4931 int ins_nr = 0; 4932 int start_slot = 0; 4933 bool found_xattrs = false; 4934 4935 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) 4936 return 0; 4937 4938 key.objectid = ino; 4939 key.type = BTRFS_XATTR_ITEM_KEY; 4940 key.offset = 0; 4941 4942 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4943 if (ret < 0) 4944 return ret; 4945 4946 while (true) { 4947 int slot = path->slots[0]; 4948 struct extent_buffer *leaf = path->nodes[0]; 4949 int nritems = btrfs_header_nritems(leaf); 4950 4951 if (slot >= nritems) { 4952 if (ins_nr > 0) { 4953 ret = copy_items(trans, inode, dst_path, path, 4954 start_slot, ins_nr, 1, 0); 4955 if (ret < 0) 4956 return ret; 4957 ins_nr = 0; 4958 } 4959 ret = btrfs_next_leaf(root, path); 4960 if (ret < 0) 4961 return ret; 4962 else if (ret > 0) 4963 break; 4964 continue; 4965 } 4966 4967 btrfs_item_key_to_cpu(leaf, &key, slot); 4968 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4969 break; 4970 4971 if (ins_nr == 0) 4972 start_slot = slot; 4973 ins_nr++; 4974 path->slots[0]++; 4975 found_xattrs = true; 4976 cond_resched(); 4977 } 4978 if (ins_nr > 0) { 4979 ret = copy_items(trans, inode, dst_path, path, 4980 start_slot, ins_nr, 1, 0); 4981 if (ret < 0) 4982 return ret; 4983 } 4984 4985 if (!found_xattrs) 4986 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); 4987 4988 return 0; 4989 } 4990 4991 /* 4992 * When using the NO_HOLES feature if we punched a hole that causes the 4993 * deletion of entire leafs or all the extent items of the first leaf (the one 4994 * that contains the inode item and references) we may end up not processing 4995 * any extents, because there are no leafs with a generation matching the 4996 * current transaction that have extent items for our inode. So we need to find 4997 * if any holes exist and then log them. We also need to log holes after any 4998 * truncate operation that changes the inode's size. 4999 */ 5000 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 5001 struct btrfs_inode *inode, 5002 struct btrfs_path *path) 5003 { 5004 struct btrfs_root *root = inode->root; 5005 struct btrfs_fs_info *fs_info = root->fs_info; 5006 struct btrfs_key key; 5007 const u64 ino = btrfs_ino(inode); 5008 const u64 i_size = i_size_read(&inode->vfs_inode); 5009 u64 prev_extent_end = 0; 5010 int ret; 5011 5012 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 5013 return 0; 5014 5015 key.objectid = ino; 5016 key.type = BTRFS_EXTENT_DATA_KEY; 5017 key.offset = 0; 5018 5019 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5020 if (ret < 0) 5021 return ret; 5022 5023 while (true) { 5024 struct extent_buffer *leaf = path->nodes[0]; 5025 5026 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 5027 ret = btrfs_next_leaf(root, path); 5028 if (ret < 0) 5029 return ret; 5030 if (ret > 0) { 5031 ret = 0; 5032 break; 5033 } 5034 leaf = path->nodes[0]; 5035 } 5036 5037 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5038 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 5039 break; 5040 5041 /* We have a hole, log it. */ 5042 if (prev_extent_end < key.offset) { 5043 const u64 hole_len = key.offset - prev_extent_end; 5044 5045 /* 5046 * Release the path to avoid deadlocks with other code 5047 * paths that search the root while holding locks on 5048 * leafs from the log root. 5049 */ 5050 btrfs_release_path(path); 5051 ret = btrfs_insert_file_extent(trans, root->log_root, 5052 ino, prev_extent_end, 0, 5053 0, hole_len, 0, hole_len, 5054 0, 0, 0); 5055 if (ret < 0) 5056 return ret; 5057 5058 /* 5059 * Search for the same key again in the root. Since it's 5060 * an extent item and we are holding the inode lock, the 5061 * key must still exist. If it doesn't just emit warning 5062 * and return an error to fall back to a transaction 5063 * commit. 5064 */ 5065 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5066 if (ret < 0) 5067 return ret; 5068 if (WARN_ON(ret > 0)) 5069 return -ENOENT; 5070 leaf = path->nodes[0]; 5071 } 5072 5073 prev_extent_end = btrfs_file_extent_end(path); 5074 path->slots[0]++; 5075 cond_resched(); 5076 } 5077 5078 if (prev_extent_end < i_size) { 5079 u64 hole_len; 5080 5081 btrfs_release_path(path); 5082 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 5083 ret = btrfs_insert_file_extent(trans, root->log_root, 5084 ino, prev_extent_end, 0, 0, 5085 hole_len, 0, hole_len, 5086 0, 0, 0); 5087 if (ret < 0) 5088 return ret; 5089 } 5090 5091 return 0; 5092 } 5093 5094 /* 5095 * When we are logging a new inode X, check if it doesn't have a reference that 5096 * matches the reference from some other inode Y created in a past transaction 5097 * and that was renamed in the current transaction. If we don't do this, then at 5098 * log replay time we can lose inode Y (and all its files if it's a directory): 5099 * 5100 * mkdir /mnt/x 5101 * echo "hello world" > /mnt/x/foobar 5102 * sync 5103 * mv /mnt/x /mnt/y 5104 * mkdir /mnt/x # or touch /mnt/x 5105 * xfs_io -c fsync /mnt/x 5106 * <power fail> 5107 * mount fs, trigger log replay 5108 * 5109 * After the log replay procedure, we would lose the first directory and all its 5110 * files (file foobar). 5111 * For the case where inode Y is not a directory we simply end up losing it: 5112 * 5113 * echo "123" > /mnt/foo 5114 * sync 5115 * mv /mnt/foo /mnt/bar 5116 * echo "abc" > /mnt/foo 5117 * xfs_io -c fsync /mnt/foo 5118 * <power fail> 5119 * 5120 * We also need this for cases where a snapshot entry is replaced by some other 5121 * entry (file or directory) otherwise we end up with an unreplayable log due to 5122 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 5123 * if it were a regular entry: 5124 * 5125 * mkdir /mnt/x 5126 * btrfs subvolume snapshot /mnt /mnt/x/snap 5127 * btrfs subvolume delete /mnt/x/snap 5128 * rmdir /mnt/x 5129 * mkdir /mnt/x 5130 * fsync /mnt/x or fsync some new file inside it 5131 * <power fail> 5132 * 5133 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 5134 * the same transaction. 5135 */ 5136 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 5137 const int slot, 5138 const struct btrfs_key *key, 5139 struct btrfs_inode *inode, 5140 u64 *other_ino, u64 *other_parent) 5141 { 5142 int ret; 5143 struct btrfs_path *search_path; 5144 char *name = NULL; 5145 u32 name_len = 0; 5146 u32 item_size = btrfs_item_size(eb, slot); 5147 u32 cur_offset = 0; 5148 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 5149 5150 search_path = btrfs_alloc_path(); 5151 if (!search_path) 5152 return -ENOMEM; 5153 search_path->search_commit_root = 1; 5154 search_path->skip_locking = 1; 5155 5156 while (cur_offset < item_size) { 5157 u64 parent; 5158 u32 this_name_len; 5159 u32 this_len; 5160 unsigned long name_ptr; 5161 struct btrfs_dir_item *di; 5162 5163 if (key->type == BTRFS_INODE_REF_KEY) { 5164 struct btrfs_inode_ref *iref; 5165 5166 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 5167 parent = key->offset; 5168 this_name_len = btrfs_inode_ref_name_len(eb, iref); 5169 name_ptr = (unsigned long)(iref + 1); 5170 this_len = sizeof(*iref) + this_name_len; 5171 } else { 5172 struct btrfs_inode_extref *extref; 5173 5174 extref = (struct btrfs_inode_extref *)(ptr + 5175 cur_offset); 5176 parent = btrfs_inode_extref_parent(eb, extref); 5177 this_name_len = btrfs_inode_extref_name_len(eb, extref); 5178 name_ptr = (unsigned long)&extref->name; 5179 this_len = sizeof(*extref) + this_name_len; 5180 } 5181 5182 if (this_name_len > name_len) { 5183 char *new_name; 5184 5185 new_name = krealloc(name, this_name_len, GFP_NOFS); 5186 if (!new_name) { 5187 ret = -ENOMEM; 5188 goto out; 5189 } 5190 name_len = this_name_len; 5191 name = new_name; 5192 } 5193 5194 read_extent_buffer(eb, name, name_ptr, this_name_len); 5195 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 5196 parent, name, this_name_len, 0); 5197 if (di && !IS_ERR(di)) { 5198 struct btrfs_key di_key; 5199 5200 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 5201 di, &di_key); 5202 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 5203 if (di_key.objectid != key->objectid) { 5204 ret = 1; 5205 *other_ino = di_key.objectid; 5206 *other_parent = parent; 5207 } else { 5208 ret = 0; 5209 } 5210 } else { 5211 ret = -EAGAIN; 5212 } 5213 goto out; 5214 } else if (IS_ERR(di)) { 5215 ret = PTR_ERR(di); 5216 goto out; 5217 } 5218 btrfs_release_path(search_path); 5219 5220 cur_offset += this_len; 5221 } 5222 ret = 0; 5223 out: 5224 btrfs_free_path(search_path); 5225 kfree(name); 5226 return ret; 5227 } 5228 5229 struct btrfs_ino_list { 5230 u64 ino; 5231 u64 parent; 5232 struct list_head list; 5233 }; 5234 5235 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 5236 struct btrfs_root *root, 5237 struct btrfs_path *path, 5238 struct btrfs_log_ctx *ctx, 5239 u64 ino, u64 parent) 5240 { 5241 struct btrfs_ino_list *ino_elem; 5242 LIST_HEAD(inode_list); 5243 int ret = 0; 5244 5245 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5246 if (!ino_elem) 5247 return -ENOMEM; 5248 ino_elem->ino = ino; 5249 ino_elem->parent = parent; 5250 list_add_tail(&ino_elem->list, &inode_list); 5251 5252 while (!list_empty(&inode_list)) { 5253 struct btrfs_fs_info *fs_info = root->fs_info; 5254 struct btrfs_key key; 5255 struct inode *inode; 5256 5257 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 5258 list); 5259 ino = ino_elem->ino; 5260 parent = ino_elem->parent; 5261 list_del(&ino_elem->list); 5262 kfree(ino_elem); 5263 if (ret) 5264 continue; 5265 5266 btrfs_release_path(path); 5267 5268 inode = btrfs_iget(fs_info->sb, ino, root); 5269 /* 5270 * If the other inode that had a conflicting dir entry was 5271 * deleted in the current transaction, we need to log its parent 5272 * directory. 5273 */ 5274 if (IS_ERR(inode)) { 5275 ret = PTR_ERR(inode); 5276 if (ret == -ENOENT) { 5277 inode = btrfs_iget(fs_info->sb, parent, root); 5278 if (IS_ERR(inode)) { 5279 ret = PTR_ERR(inode); 5280 } else { 5281 ret = btrfs_log_inode(trans, 5282 BTRFS_I(inode), 5283 LOG_OTHER_INODE_ALL, 5284 ctx); 5285 btrfs_add_delayed_iput(inode); 5286 } 5287 } 5288 continue; 5289 } 5290 /* 5291 * If the inode was already logged skip it - otherwise we can 5292 * hit an infinite loop. Example: 5293 * 5294 * From the commit root (previous transaction) we have the 5295 * following inodes: 5296 * 5297 * inode 257 a directory 5298 * inode 258 with references "zz" and "zz_link" on inode 257 5299 * inode 259 with reference "a" on inode 257 5300 * 5301 * And in the current (uncommitted) transaction we have: 5302 * 5303 * inode 257 a directory, unchanged 5304 * inode 258 with references "a" and "a2" on inode 257 5305 * inode 259 with reference "zz_link" on inode 257 5306 * inode 261 with reference "zz" on inode 257 5307 * 5308 * When logging inode 261 the following infinite loop could 5309 * happen if we don't skip already logged inodes: 5310 * 5311 * - we detect inode 258 as a conflicting inode, with inode 261 5312 * on reference "zz", and log it; 5313 * 5314 * - we detect inode 259 as a conflicting inode, with inode 258 5315 * on reference "a", and log it; 5316 * 5317 * - we detect inode 258 as a conflicting inode, with inode 259 5318 * on reference "zz_link", and log it - again! After this we 5319 * repeat the above steps forever. 5320 */ 5321 spin_lock(&BTRFS_I(inode)->lock); 5322 /* 5323 * Check the inode's logged_trans only instead of 5324 * btrfs_inode_in_log(). This is because the last_log_commit of 5325 * the inode is not updated when we only log that it exists (see 5326 * btrfs_log_inode()). 5327 */ 5328 if (BTRFS_I(inode)->logged_trans == trans->transid) { 5329 spin_unlock(&BTRFS_I(inode)->lock); 5330 btrfs_add_delayed_iput(inode); 5331 continue; 5332 } 5333 spin_unlock(&BTRFS_I(inode)->lock); 5334 /* 5335 * We are safe logging the other inode without acquiring its 5336 * lock as long as we log with the LOG_INODE_EXISTS mode. We 5337 * are safe against concurrent renames of the other inode as 5338 * well because during a rename we pin the log and update the 5339 * log with the new name before we unpin it. 5340 */ 5341 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx); 5342 if (ret) { 5343 btrfs_add_delayed_iput(inode); 5344 continue; 5345 } 5346 5347 key.objectid = ino; 5348 key.type = BTRFS_INODE_REF_KEY; 5349 key.offset = 0; 5350 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5351 if (ret < 0) { 5352 btrfs_add_delayed_iput(inode); 5353 continue; 5354 } 5355 5356 while (true) { 5357 struct extent_buffer *leaf = path->nodes[0]; 5358 int slot = path->slots[0]; 5359 u64 other_ino = 0; 5360 u64 other_parent = 0; 5361 5362 if (slot >= btrfs_header_nritems(leaf)) { 5363 ret = btrfs_next_leaf(root, path); 5364 if (ret < 0) { 5365 break; 5366 } else if (ret > 0) { 5367 ret = 0; 5368 break; 5369 } 5370 continue; 5371 } 5372 5373 btrfs_item_key_to_cpu(leaf, &key, slot); 5374 if (key.objectid != ino || 5375 (key.type != BTRFS_INODE_REF_KEY && 5376 key.type != BTRFS_INODE_EXTREF_KEY)) { 5377 ret = 0; 5378 break; 5379 } 5380 5381 ret = btrfs_check_ref_name_override(leaf, slot, &key, 5382 BTRFS_I(inode), &other_ino, 5383 &other_parent); 5384 if (ret < 0) 5385 break; 5386 if (ret > 0) { 5387 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5388 if (!ino_elem) { 5389 ret = -ENOMEM; 5390 break; 5391 } 5392 ino_elem->ino = other_ino; 5393 ino_elem->parent = other_parent; 5394 list_add_tail(&ino_elem->list, &inode_list); 5395 ret = 0; 5396 } 5397 path->slots[0]++; 5398 } 5399 btrfs_add_delayed_iput(inode); 5400 } 5401 5402 return ret; 5403 } 5404 5405 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 5406 struct btrfs_inode *inode, 5407 struct btrfs_key *min_key, 5408 const struct btrfs_key *max_key, 5409 struct btrfs_path *path, 5410 struct btrfs_path *dst_path, 5411 const u64 logged_isize, 5412 const bool recursive_logging, 5413 const int inode_only, 5414 struct btrfs_log_ctx *ctx, 5415 bool *need_log_inode_item) 5416 { 5417 struct btrfs_root *root = inode->root; 5418 int ins_start_slot = 0; 5419 int ins_nr = 0; 5420 int ret; 5421 5422 while (1) { 5423 ret = btrfs_search_forward(root, min_key, path, trans->transid); 5424 if (ret < 0) 5425 return ret; 5426 if (ret > 0) { 5427 ret = 0; 5428 break; 5429 } 5430 again: 5431 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 5432 if (min_key->objectid != max_key->objectid) 5433 break; 5434 if (min_key->type > max_key->type) 5435 break; 5436 5437 if (min_key->type == BTRFS_INODE_ITEM_KEY) 5438 *need_log_inode_item = false; 5439 5440 if ((min_key->type == BTRFS_INODE_REF_KEY || 5441 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5442 inode->generation == trans->transid && 5443 !recursive_logging) { 5444 u64 other_ino = 0; 5445 u64 other_parent = 0; 5446 5447 ret = btrfs_check_ref_name_override(path->nodes[0], 5448 path->slots[0], min_key, inode, 5449 &other_ino, &other_parent); 5450 if (ret < 0) { 5451 return ret; 5452 } else if (ret > 0 && 5453 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5454 if (ins_nr > 0) { 5455 ins_nr++; 5456 } else { 5457 ins_nr = 1; 5458 ins_start_slot = path->slots[0]; 5459 } 5460 ret = copy_items(trans, inode, dst_path, path, 5461 ins_start_slot, ins_nr, 5462 inode_only, logged_isize); 5463 if (ret < 0) 5464 return ret; 5465 ins_nr = 0; 5466 5467 ret = log_conflicting_inodes(trans, root, path, 5468 ctx, other_ino, other_parent); 5469 if (ret) 5470 return ret; 5471 btrfs_release_path(path); 5472 goto next_key; 5473 } 5474 } 5475 5476 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5477 if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5478 if (ins_nr == 0) 5479 goto next_slot; 5480 ret = copy_items(trans, inode, dst_path, path, 5481 ins_start_slot, 5482 ins_nr, inode_only, logged_isize); 5483 if (ret < 0) 5484 return ret; 5485 ins_nr = 0; 5486 goto next_slot; 5487 } 5488 5489 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5490 ins_nr++; 5491 goto next_slot; 5492 } else if (!ins_nr) { 5493 ins_start_slot = path->slots[0]; 5494 ins_nr = 1; 5495 goto next_slot; 5496 } 5497 5498 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5499 ins_nr, inode_only, logged_isize); 5500 if (ret < 0) 5501 return ret; 5502 ins_nr = 1; 5503 ins_start_slot = path->slots[0]; 5504 next_slot: 5505 path->slots[0]++; 5506 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 5507 btrfs_item_key_to_cpu(path->nodes[0], min_key, 5508 path->slots[0]); 5509 goto again; 5510 } 5511 if (ins_nr) { 5512 ret = copy_items(trans, inode, dst_path, path, 5513 ins_start_slot, ins_nr, inode_only, 5514 logged_isize); 5515 if (ret < 0) 5516 return ret; 5517 ins_nr = 0; 5518 } 5519 btrfs_release_path(path); 5520 next_key: 5521 if (min_key->offset < (u64)-1) { 5522 min_key->offset++; 5523 } else if (min_key->type < max_key->type) { 5524 min_key->type++; 5525 min_key->offset = 0; 5526 } else { 5527 break; 5528 } 5529 } 5530 if (ins_nr) 5531 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5532 ins_nr, inode_only, logged_isize); 5533 5534 return ret; 5535 } 5536 5537 /* log a single inode in the tree log. 5538 * At least one parent directory for this inode must exist in the tree 5539 * or be logged already. 5540 * 5541 * Any items from this inode changed by the current transaction are copied 5542 * to the log tree. An extra reference is taken on any extents in this 5543 * file, allowing us to avoid a whole pile of corner cases around logging 5544 * blocks that have been removed from the tree. 5545 * 5546 * See LOG_INODE_ALL and related defines for a description of what inode_only 5547 * does. 5548 * 5549 * This handles both files and directories. 5550 */ 5551 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5552 struct btrfs_inode *inode, 5553 int inode_only, 5554 struct btrfs_log_ctx *ctx) 5555 { 5556 struct btrfs_path *path; 5557 struct btrfs_path *dst_path; 5558 struct btrfs_key min_key; 5559 struct btrfs_key max_key; 5560 struct btrfs_root *log = inode->root->log_root; 5561 int err = 0; 5562 int ret = 0; 5563 bool fast_search = false; 5564 u64 ino = btrfs_ino(inode); 5565 struct extent_map_tree *em_tree = &inode->extent_tree; 5566 u64 logged_isize = 0; 5567 bool need_log_inode_item = true; 5568 bool xattrs_logged = false; 5569 bool recursive_logging = false; 5570 bool inode_item_dropped = true; 5571 5572 path = btrfs_alloc_path(); 5573 if (!path) 5574 return -ENOMEM; 5575 dst_path = btrfs_alloc_path(); 5576 if (!dst_path) { 5577 btrfs_free_path(path); 5578 return -ENOMEM; 5579 } 5580 5581 min_key.objectid = ino; 5582 min_key.type = BTRFS_INODE_ITEM_KEY; 5583 min_key.offset = 0; 5584 5585 max_key.objectid = ino; 5586 5587 5588 /* today the code can only do partial logging of directories */ 5589 if (S_ISDIR(inode->vfs_inode.i_mode) || 5590 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5591 &inode->runtime_flags) && 5592 inode_only >= LOG_INODE_EXISTS)) 5593 max_key.type = BTRFS_XATTR_ITEM_KEY; 5594 else 5595 max_key.type = (u8)-1; 5596 max_key.offset = (u64)-1; 5597 5598 /* 5599 * Only run delayed items if we are a directory. We want to make sure 5600 * all directory indexes hit the fs/subvolume tree so we can find them 5601 * and figure out which index ranges have to be logged. 5602 */ 5603 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5604 err = btrfs_commit_inode_delayed_items(trans, inode); 5605 if (err) 5606 goto out; 5607 } 5608 5609 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5610 recursive_logging = true; 5611 if (inode_only == LOG_OTHER_INODE) 5612 inode_only = LOG_INODE_EXISTS; 5613 else 5614 inode_only = LOG_INODE_ALL; 5615 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5616 } else { 5617 mutex_lock(&inode->log_mutex); 5618 } 5619 5620 /* 5621 * This is for cases where logging a directory could result in losing a 5622 * a file after replaying the log. For example, if we move a file from a 5623 * directory A to a directory B, then fsync directory A, we have no way 5624 * to known the file was moved from A to B, so logging just A would 5625 * result in losing the file after a log replay. 5626 */ 5627 if (S_ISDIR(inode->vfs_inode.i_mode) && 5628 inode_only == LOG_INODE_ALL && 5629 inode->last_unlink_trans >= trans->transid) { 5630 btrfs_set_log_full_commit(trans); 5631 err = 1; 5632 goto out_unlock; 5633 } 5634 5635 /* 5636 * a brute force approach to making sure we get the most uptodate 5637 * copies of everything. 5638 */ 5639 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5640 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5641 5642 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); 5643 if (inode_only == LOG_INODE_EXISTS) 5644 max_key_type = BTRFS_XATTR_ITEM_KEY; 5645 ret = drop_inode_items(trans, log, path, inode, max_key_type); 5646 } else { 5647 if (inode_only == LOG_INODE_EXISTS && inode_logged(trans, inode)) { 5648 /* 5649 * Make sure the new inode item we write to the log has 5650 * the same isize as the current one (if it exists). 5651 * This is necessary to prevent data loss after log 5652 * replay, and also to prevent doing a wrong expanding 5653 * truncate - for e.g. create file, write 4K into offset 5654 * 0, fsync, write 4K into offset 4096, add hard link, 5655 * fsync some other file (to sync log), power fail - if 5656 * we use the inode's current i_size, after log replay 5657 * we get a 8Kb file, with the last 4Kb extent as a hole 5658 * (zeroes), as if an expanding truncate happened, 5659 * instead of getting a file of 4Kb only. 5660 */ 5661 err = logged_inode_size(log, inode, path, &logged_isize); 5662 if (err) 5663 goto out_unlock; 5664 } 5665 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5666 &inode->runtime_flags)) { 5667 if (inode_only == LOG_INODE_EXISTS) { 5668 max_key.type = BTRFS_XATTR_ITEM_KEY; 5669 ret = drop_inode_items(trans, log, path, inode, 5670 max_key.type); 5671 } else { 5672 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5673 &inode->runtime_flags); 5674 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5675 &inode->runtime_flags); 5676 if (inode_logged(trans, inode)) 5677 ret = truncate_inode_items(trans, log, 5678 inode, 0, 0); 5679 } 5680 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5681 &inode->runtime_flags) || 5682 inode_only == LOG_INODE_EXISTS) { 5683 if (inode_only == LOG_INODE_ALL) 5684 fast_search = true; 5685 max_key.type = BTRFS_XATTR_ITEM_KEY; 5686 ret = drop_inode_items(trans, log, path, inode, 5687 max_key.type); 5688 } else { 5689 if (inode_only == LOG_INODE_ALL) 5690 fast_search = true; 5691 inode_item_dropped = false; 5692 goto log_extents; 5693 } 5694 5695 } 5696 if (ret) { 5697 err = ret; 5698 goto out_unlock; 5699 } 5700 5701 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 5702 path, dst_path, logged_isize, 5703 recursive_logging, inode_only, ctx, 5704 &need_log_inode_item); 5705 if (err) 5706 goto out_unlock; 5707 5708 btrfs_release_path(path); 5709 btrfs_release_path(dst_path); 5710 err = btrfs_log_all_xattrs(trans, inode, path, dst_path); 5711 if (err) 5712 goto out_unlock; 5713 xattrs_logged = true; 5714 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5715 btrfs_release_path(path); 5716 btrfs_release_path(dst_path); 5717 err = btrfs_log_holes(trans, inode, path); 5718 if (err) 5719 goto out_unlock; 5720 } 5721 log_extents: 5722 btrfs_release_path(path); 5723 btrfs_release_path(dst_path); 5724 if (need_log_inode_item) { 5725 err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); 5726 if (err) 5727 goto out_unlock; 5728 /* 5729 * If we are doing a fast fsync and the inode was logged before 5730 * in this transaction, we don't need to log the xattrs because 5731 * they were logged before. If xattrs were added, changed or 5732 * deleted since the last time we logged the inode, then we have 5733 * already logged them because the inode had the runtime flag 5734 * BTRFS_INODE_COPY_EVERYTHING set. 5735 */ 5736 if (!xattrs_logged && inode->logged_trans < trans->transid) { 5737 err = btrfs_log_all_xattrs(trans, inode, path, dst_path); 5738 if (err) 5739 goto out_unlock; 5740 btrfs_release_path(path); 5741 } 5742 } 5743 if (fast_search) { 5744 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); 5745 if (ret) { 5746 err = ret; 5747 goto out_unlock; 5748 } 5749 } else if (inode_only == LOG_INODE_ALL) { 5750 struct extent_map *em, *n; 5751 5752 write_lock(&em_tree->lock); 5753 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) 5754 list_del_init(&em->list); 5755 write_unlock(&em_tree->lock); 5756 } 5757 5758 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5759 ret = log_directory_changes(trans, inode, path, dst_path, ctx); 5760 if (ret) { 5761 err = ret; 5762 goto out_unlock; 5763 } 5764 } 5765 5766 spin_lock(&inode->lock); 5767 inode->logged_trans = trans->transid; 5768 /* 5769 * Don't update last_log_commit if we logged that an inode exists. 5770 * We do this for three reasons: 5771 * 5772 * 1) We might have had buffered writes to this inode that were 5773 * flushed and had their ordered extents completed in this 5774 * transaction, but we did not previously log the inode with 5775 * LOG_INODE_ALL. Later the inode was evicted and after that 5776 * it was loaded again and this LOG_INODE_EXISTS log operation 5777 * happened. We must make sure that if an explicit fsync against 5778 * the inode is performed later, it logs the new extents, an 5779 * updated inode item, etc, and syncs the log. The same logic 5780 * applies to direct IO writes instead of buffered writes. 5781 * 5782 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item 5783 * is logged with an i_size of 0 or whatever value was logged 5784 * before. If later the i_size of the inode is increased by a 5785 * truncate operation, the log is synced through an fsync of 5786 * some other inode and then finally an explicit fsync against 5787 * this inode is made, we must make sure this fsync logs the 5788 * inode with the new i_size, the hole between old i_size and 5789 * the new i_size, and syncs the log. 5790 * 5791 * 3) If we are logging that an ancestor inode exists as part of 5792 * logging a new name from a link or rename operation, don't update 5793 * its last_log_commit - otherwise if an explicit fsync is made 5794 * against an ancestor, the fsync considers the inode in the log 5795 * and doesn't sync the log, resulting in the ancestor missing after 5796 * a power failure unless the log was synced as part of an fsync 5797 * against any other unrelated inode. 5798 */ 5799 if (inode_only != LOG_INODE_EXISTS) 5800 inode->last_log_commit = inode->last_sub_trans; 5801 spin_unlock(&inode->lock); 5802 out_unlock: 5803 mutex_unlock(&inode->log_mutex); 5804 out: 5805 btrfs_free_path(path); 5806 btrfs_free_path(dst_path); 5807 return err; 5808 } 5809 5810 /* 5811 * Check if we need to log an inode. This is used in contexts where while 5812 * logging an inode we need to log another inode (either that it exists or in 5813 * full mode). This is used instead of btrfs_inode_in_log() because the later 5814 * requires the inode to be in the log and have the log transaction committed, 5815 * while here we do not care if the log transaction was already committed - our 5816 * caller will commit the log later - and we want to avoid logging an inode 5817 * multiple times when multiple tasks have joined the same log transaction. 5818 */ 5819 static bool need_log_inode(struct btrfs_trans_handle *trans, 5820 struct btrfs_inode *inode) 5821 { 5822 /* 5823 * If a directory was not modified, no dentries added or removed, we can 5824 * and should avoid logging it. 5825 */ 5826 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) 5827 return false; 5828 5829 /* 5830 * If this inode does not have new/updated/deleted xattrs since the last 5831 * time it was logged and is flagged as logged in the current transaction, 5832 * we can skip logging it. As for new/deleted names, those are updated in 5833 * the log by link/unlink/rename operations. 5834 * In case the inode was logged and then evicted and reloaded, its 5835 * logged_trans will be 0, in which case we have to fully log it since 5836 * logged_trans is a transient field, not persisted. 5837 */ 5838 if (inode->logged_trans == trans->transid && 5839 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 5840 return false; 5841 5842 return true; 5843 } 5844 5845 struct btrfs_dir_list { 5846 u64 ino; 5847 struct list_head list; 5848 }; 5849 5850 /* 5851 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5852 * details about the why it is needed. 5853 * This is a recursive operation - if an existing dentry corresponds to a 5854 * directory, that directory's new entries are logged too (same behaviour as 5855 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5856 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5857 * complains about the following circular lock dependency / possible deadlock: 5858 * 5859 * CPU0 CPU1 5860 * ---- ---- 5861 * lock(&type->i_mutex_dir_key#3/2); 5862 * lock(sb_internal#2); 5863 * lock(&type->i_mutex_dir_key#3/2); 5864 * lock(&sb->s_type->i_mutex_key#14); 5865 * 5866 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5867 * sb_start_intwrite() in btrfs_start_transaction(). 5868 * Not locking i_mutex of the inodes is still safe because: 5869 * 5870 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5871 * that while logging the inode new references (names) are added or removed 5872 * from the inode, leaving the logged inode item with a link count that does 5873 * not match the number of logged inode reference items. This is fine because 5874 * at log replay time we compute the real number of links and correct the 5875 * link count in the inode item (see replay_one_buffer() and 5876 * link_to_fixup_dir()); 5877 * 5878 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5879 * while logging the inode's items new index items (key type 5880 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item 5881 * has a size that doesn't match the sum of the lengths of all the logged 5882 * names - this is ok, not a problem, because at log replay time we set the 5883 * directory's i_size to the correct value (see replay_one_name() and 5884 * do_overwrite_item()). 5885 */ 5886 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5887 struct btrfs_root *root, 5888 struct btrfs_inode *start_inode, 5889 struct btrfs_log_ctx *ctx) 5890 { 5891 struct btrfs_fs_info *fs_info = root->fs_info; 5892 struct btrfs_root *log = root->log_root; 5893 struct btrfs_path *path; 5894 LIST_HEAD(dir_list); 5895 struct btrfs_dir_list *dir_elem; 5896 int ret = 0; 5897 5898 /* 5899 * If we are logging a new name, as part of a link or rename operation, 5900 * don't bother logging new dentries, as we just want to log the names 5901 * of an inode and that any new parents exist. 5902 */ 5903 if (ctx->logging_new_name) 5904 return 0; 5905 5906 path = btrfs_alloc_path(); 5907 if (!path) 5908 return -ENOMEM; 5909 5910 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5911 if (!dir_elem) { 5912 btrfs_free_path(path); 5913 return -ENOMEM; 5914 } 5915 dir_elem->ino = btrfs_ino(start_inode); 5916 list_add_tail(&dir_elem->list, &dir_list); 5917 5918 while (!list_empty(&dir_list)) { 5919 struct extent_buffer *leaf; 5920 struct btrfs_key min_key; 5921 int nritems; 5922 int i; 5923 5924 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5925 list); 5926 if (ret) 5927 goto next_dir_inode; 5928 5929 min_key.objectid = dir_elem->ino; 5930 min_key.type = BTRFS_DIR_INDEX_KEY; 5931 min_key.offset = 0; 5932 again: 5933 btrfs_release_path(path); 5934 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5935 if (ret < 0) { 5936 goto next_dir_inode; 5937 } else if (ret > 0) { 5938 ret = 0; 5939 goto next_dir_inode; 5940 } 5941 5942 process_leaf: 5943 leaf = path->nodes[0]; 5944 nritems = btrfs_header_nritems(leaf); 5945 for (i = path->slots[0]; i < nritems; i++) { 5946 struct btrfs_dir_item *di; 5947 struct btrfs_key di_key; 5948 struct inode *di_inode; 5949 struct btrfs_dir_list *new_dir_elem; 5950 int log_mode = LOG_INODE_EXISTS; 5951 int type; 5952 5953 btrfs_item_key_to_cpu(leaf, &min_key, i); 5954 if (min_key.objectid != dir_elem->ino || 5955 min_key.type != BTRFS_DIR_INDEX_KEY) 5956 goto next_dir_inode; 5957 5958 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5959 type = btrfs_dir_type(leaf, di); 5960 if (btrfs_dir_transid(leaf, di) < trans->transid && 5961 type != BTRFS_FT_DIR) 5962 continue; 5963 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5964 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5965 continue; 5966 5967 btrfs_release_path(path); 5968 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root); 5969 if (IS_ERR(di_inode)) { 5970 ret = PTR_ERR(di_inode); 5971 goto next_dir_inode; 5972 } 5973 5974 if (!need_log_inode(trans, BTRFS_I(di_inode))) { 5975 btrfs_add_delayed_iput(di_inode); 5976 break; 5977 } 5978 5979 ctx->log_new_dentries = false; 5980 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5981 log_mode = LOG_INODE_ALL; 5982 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), 5983 log_mode, ctx); 5984 btrfs_add_delayed_iput(di_inode); 5985 if (ret) 5986 goto next_dir_inode; 5987 if (ctx->log_new_dentries) { 5988 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5989 GFP_NOFS); 5990 if (!new_dir_elem) { 5991 ret = -ENOMEM; 5992 goto next_dir_inode; 5993 } 5994 new_dir_elem->ino = di_key.objectid; 5995 list_add_tail(&new_dir_elem->list, &dir_list); 5996 } 5997 break; 5998 } 5999 if (i == nritems) { 6000 ret = btrfs_next_leaf(log, path); 6001 if (ret < 0) { 6002 goto next_dir_inode; 6003 } else if (ret > 0) { 6004 ret = 0; 6005 goto next_dir_inode; 6006 } 6007 goto process_leaf; 6008 } 6009 if (min_key.offset < (u64)-1) { 6010 min_key.offset++; 6011 goto again; 6012 } 6013 next_dir_inode: 6014 list_del(&dir_elem->list); 6015 kfree(dir_elem); 6016 } 6017 6018 btrfs_free_path(path); 6019 return ret; 6020 } 6021 6022 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 6023 struct btrfs_inode *inode, 6024 struct btrfs_log_ctx *ctx) 6025 { 6026 struct btrfs_fs_info *fs_info = trans->fs_info; 6027 int ret; 6028 struct btrfs_path *path; 6029 struct btrfs_key key; 6030 struct btrfs_root *root = inode->root; 6031 const u64 ino = btrfs_ino(inode); 6032 6033 path = btrfs_alloc_path(); 6034 if (!path) 6035 return -ENOMEM; 6036 path->skip_locking = 1; 6037 path->search_commit_root = 1; 6038 6039 key.objectid = ino; 6040 key.type = BTRFS_INODE_REF_KEY; 6041 key.offset = 0; 6042 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6043 if (ret < 0) 6044 goto out; 6045 6046 while (true) { 6047 struct extent_buffer *leaf = path->nodes[0]; 6048 int slot = path->slots[0]; 6049 u32 cur_offset = 0; 6050 u32 item_size; 6051 unsigned long ptr; 6052 6053 if (slot >= btrfs_header_nritems(leaf)) { 6054 ret = btrfs_next_leaf(root, path); 6055 if (ret < 0) 6056 goto out; 6057 else if (ret > 0) 6058 break; 6059 continue; 6060 } 6061 6062 btrfs_item_key_to_cpu(leaf, &key, slot); 6063 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 6064 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 6065 break; 6066 6067 item_size = btrfs_item_size(leaf, slot); 6068 ptr = btrfs_item_ptr_offset(leaf, slot); 6069 while (cur_offset < item_size) { 6070 struct btrfs_key inode_key; 6071 struct inode *dir_inode; 6072 6073 inode_key.type = BTRFS_INODE_ITEM_KEY; 6074 inode_key.offset = 0; 6075 6076 if (key.type == BTRFS_INODE_EXTREF_KEY) { 6077 struct btrfs_inode_extref *extref; 6078 6079 extref = (struct btrfs_inode_extref *) 6080 (ptr + cur_offset); 6081 inode_key.objectid = btrfs_inode_extref_parent( 6082 leaf, extref); 6083 cur_offset += sizeof(*extref); 6084 cur_offset += btrfs_inode_extref_name_len(leaf, 6085 extref); 6086 } else { 6087 inode_key.objectid = key.offset; 6088 cur_offset = item_size; 6089 } 6090 6091 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid, 6092 root); 6093 /* 6094 * If the parent inode was deleted, return an error to 6095 * fallback to a transaction commit. This is to prevent 6096 * getting an inode that was moved from one parent A to 6097 * a parent B, got its former parent A deleted and then 6098 * it got fsync'ed, from existing at both parents after 6099 * a log replay (and the old parent still existing). 6100 * Example: 6101 * 6102 * mkdir /mnt/A 6103 * mkdir /mnt/B 6104 * touch /mnt/B/bar 6105 * sync 6106 * mv /mnt/B/bar /mnt/A/bar 6107 * mv -T /mnt/A /mnt/B 6108 * fsync /mnt/B/bar 6109 * <power fail> 6110 * 6111 * If we ignore the old parent B which got deleted, 6112 * after a log replay we would have file bar linked 6113 * at both parents and the old parent B would still 6114 * exist. 6115 */ 6116 if (IS_ERR(dir_inode)) { 6117 ret = PTR_ERR(dir_inode); 6118 goto out; 6119 } 6120 6121 if (!need_log_inode(trans, BTRFS_I(dir_inode))) { 6122 btrfs_add_delayed_iput(dir_inode); 6123 continue; 6124 } 6125 6126 ctx->log_new_dentries = false; 6127 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode), 6128 LOG_INODE_ALL, ctx); 6129 if (!ret && ctx->log_new_dentries) 6130 ret = log_new_dir_dentries(trans, root, 6131 BTRFS_I(dir_inode), ctx); 6132 btrfs_add_delayed_iput(dir_inode); 6133 if (ret) 6134 goto out; 6135 } 6136 path->slots[0]++; 6137 } 6138 ret = 0; 6139 out: 6140 btrfs_free_path(path); 6141 return ret; 6142 } 6143 6144 static int log_new_ancestors(struct btrfs_trans_handle *trans, 6145 struct btrfs_root *root, 6146 struct btrfs_path *path, 6147 struct btrfs_log_ctx *ctx) 6148 { 6149 struct btrfs_key found_key; 6150 6151 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 6152 6153 while (true) { 6154 struct btrfs_fs_info *fs_info = root->fs_info; 6155 struct extent_buffer *leaf = path->nodes[0]; 6156 int slot = path->slots[0]; 6157 struct btrfs_key search_key; 6158 struct inode *inode; 6159 u64 ino; 6160 int ret = 0; 6161 6162 btrfs_release_path(path); 6163 6164 ino = found_key.offset; 6165 6166 search_key.objectid = found_key.offset; 6167 search_key.type = BTRFS_INODE_ITEM_KEY; 6168 search_key.offset = 0; 6169 inode = btrfs_iget(fs_info->sb, ino, root); 6170 if (IS_ERR(inode)) 6171 return PTR_ERR(inode); 6172 6173 if (BTRFS_I(inode)->generation >= trans->transid && 6174 need_log_inode(trans, BTRFS_I(inode))) 6175 ret = btrfs_log_inode(trans, BTRFS_I(inode), 6176 LOG_INODE_EXISTS, ctx); 6177 btrfs_add_delayed_iput(inode); 6178 if (ret) 6179 return ret; 6180 6181 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 6182 break; 6183 6184 search_key.type = BTRFS_INODE_REF_KEY; 6185 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6186 if (ret < 0) 6187 return ret; 6188 6189 leaf = path->nodes[0]; 6190 slot = path->slots[0]; 6191 if (slot >= btrfs_header_nritems(leaf)) { 6192 ret = btrfs_next_leaf(root, path); 6193 if (ret < 0) 6194 return ret; 6195 else if (ret > 0) 6196 return -ENOENT; 6197 leaf = path->nodes[0]; 6198 slot = path->slots[0]; 6199 } 6200 6201 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6202 if (found_key.objectid != search_key.objectid || 6203 found_key.type != BTRFS_INODE_REF_KEY) 6204 return -ENOENT; 6205 } 6206 return 0; 6207 } 6208 6209 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 6210 struct btrfs_inode *inode, 6211 struct dentry *parent, 6212 struct btrfs_log_ctx *ctx) 6213 { 6214 struct btrfs_root *root = inode->root; 6215 struct dentry *old_parent = NULL; 6216 struct super_block *sb = inode->vfs_inode.i_sb; 6217 int ret = 0; 6218 6219 while (true) { 6220 if (!parent || d_really_is_negative(parent) || 6221 sb != parent->d_sb) 6222 break; 6223 6224 inode = BTRFS_I(d_inode(parent)); 6225 if (root != inode->root) 6226 break; 6227 6228 if (inode->generation >= trans->transid && 6229 need_log_inode(trans, inode)) { 6230 ret = btrfs_log_inode(trans, inode, 6231 LOG_INODE_EXISTS, ctx); 6232 if (ret) 6233 break; 6234 } 6235 if (IS_ROOT(parent)) 6236 break; 6237 6238 parent = dget_parent(parent); 6239 dput(old_parent); 6240 old_parent = parent; 6241 } 6242 dput(old_parent); 6243 6244 return ret; 6245 } 6246 6247 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 6248 struct btrfs_inode *inode, 6249 struct dentry *parent, 6250 struct btrfs_log_ctx *ctx) 6251 { 6252 struct btrfs_root *root = inode->root; 6253 const u64 ino = btrfs_ino(inode); 6254 struct btrfs_path *path; 6255 struct btrfs_key search_key; 6256 int ret; 6257 6258 /* 6259 * For a single hard link case, go through a fast path that does not 6260 * need to iterate the fs/subvolume tree. 6261 */ 6262 if (inode->vfs_inode.i_nlink < 2) 6263 return log_new_ancestors_fast(trans, inode, parent, ctx); 6264 6265 path = btrfs_alloc_path(); 6266 if (!path) 6267 return -ENOMEM; 6268 6269 search_key.objectid = ino; 6270 search_key.type = BTRFS_INODE_REF_KEY; 6271 search_key.offset = 0; 6272 again: 6273 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6274 if (ret < 0) 6275 goto out; 6276 if (ret == 0) 6277 path->slots[0]++; 6278 6279 while (true) { 6280 struct extent_buffer *leaf = path->nodes[0]; 6281 int slot = path->slots[0]; 6282 struct btrfs_key found_key; 6283 6284 if (slot >= btrfs_header_nritems(leaf)) { 6285 ret = btrfs_next_leaf(root, path); 6286 if (ret < 0) 6287 goto out; 6288 else if (ret > 0) 6289 break; 6290 continue; 6291 } 6292 6293 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6294 if (found_key.objectid != ino || 6295 found_key.type > BTRFS_INODE_EXTREF_KEY) 6296 break; 6297 6298 /* 6299 * Don't deal with extended references because they are rare 6300 * cases and too complex to deal with (we would need to keep 6301 * track of which subitem we are processing for each item in 6302 * this loop, etc). So just return some error to fallback to 6303 * a transaction commit. 6304 */ 6305 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 6306 ret = -EMLINK; 6307 goto out; 6308 } 6309 6310 /* 6311 * Logging ancestors needs to do more searches on the fs/subvol 6312 * tree, so it releases the path as needed to avoid deadlocks. 6313 * Keep track of the last inode ref key and resume from that key 6314 * after logging all new ancestors for the current hard link. 6315 */ 6316 memcpy(&search_key, &found_key, sizeof(search_key)); 6317 6318 ret = log_new_ancestors(trans, root, path, ctx); 6319 if (ret) 6320 goto out; 6321 btrfs_release_path(path); 6322 goto again; 6323 } 6324 ret = 0; 6325 out: 6326 btrfs_free_path(path); 6327 return ret; 6328 } 6329 6330 /* 6331 * helper function around btrfs_log_inode to make sure newly created 6332 * parent directories also end up in the log. A minimal inode and backref 6333 * only logging is done of any parent directories that are older than 6334 * the last committed transaction 6335 */ 6336 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 6337 struct btrfs_inode *inode, 6338 struct dentry *parent, 6339 int inode_only, 6340 struct btrfs_log_ctx *ctx) 6341 { 6342 struct btrfs_root *root = inode->root; 6343 struct btrfs_fs_info *fs_info = root->fs_info; 6344 int ret = 0; 6345 bool log_dentries = false; 6346 6347 if (btrfs_test_opt(fs_info, NOTREELOG)) { 6348 ret = 1; 6349 goto end_no_trans; 6350 } 6351 6352 if (btrfs_root_refs(&root->root_item) == 0) { 6353 ret = 1; 6354 goto end_no_trans; 6355 } 6356 6357 /* 6358 * Skip already logged inodes or inodes corresponding to tmpfiles 6359 * (since logging them is pointless, a link count of 0 means they 6360 * will never be accessible). 6361 */ 6362 if ((btrfs_inode_in_log(inode, trans->transid) && 6363 list_empty(&ctx->ordered_extents)) || 6364 inode->vfs_inode.i_nlink == 0) { 6365 ret = BTRFS_NO_LOG_SYNC; 6366 goto end_no_trans; 6367 } 6368 6369 ret = start_log_trans(trans, root, ctx); 6370 if (ret) 6371 goto end_no_trans; 6372 6373 ret = btrfs_log_inode(trans, inode, inode_only, ctx); 6374 if (ret) 6375 goto end_trans; 6376 6377 /* 6378 * for regular files, if its inode is already on disk, we don't 6379 * have to worry about the parents at all. This is because 6380 * we can use the last_unlink_trans field to record renames 6381 * and other fun in this file. 6382 */ 6383 if (S_ISREG(inode->vfs_inode.i_mode) && 6384 inode->generation < trans->transid && 6385 inode->last_unlink_trans < trans->transid) { 6386 ret = 0; 6387 goto end_trans; 6388 } 6389 6390 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries) 6391 log_dentries = true; 6392 6393 /* 6394 * On unlink we must make sure all our current and old parent directory 6395 * inodes are fully logged. This is to prevent leaving dangling 6396 * directory index entries in directories that were our parents but are 6397 * not anymore. Not doing this results in old parent directory being 6398 * impossible to delete after log replay (rmdir will always fail with 6399 * error -ENOTEMPTY). 6400 * 6401 * Example 1: 6402 * 6403 * mkdir testdir 6404 * touch testdir/foo 6405 * ln testdir/foo testdir/bar 6406 * sync 6407 * unlink testdir/bar 6408 * xfs_io -c fsync testdir/foo 6409 * <power failure> 6410 * mount fs, triggers log replay 6411 * 6412 * If we don't log the parent directory (testdir), after log replay the 6413 * directory still has an entry pointing to the file inode using the bar 6414 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6415 * the file inode has a link count of 1. 6416 * 6417 * Example 2: 6418 * 6419 * mkdir testdir 6420 * touch foo 6421 * ln foo testdir/foo2 6422 * ln foo testdir/foo3 6423 * sync 6424 * unlink testdir/foo3 6425 * xfs_io -c fsync foo 6426 * <power failure> 6427 * mount fs, triggers log replay 6428 * 6429 * Similar as the first example, after log replay the parent directory 6430 * testdir still has an entry pointing to the inode file with name foo3 6431 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6432 * and has a link count of 2. 6433 */ 6434 if (inode->last_unlink_trans >= trans->transid) { 6435 ret = btrfs_log_all_parents(trans, inode, ctx); 6436 if (ret) 6437 goto end_trans; 6438 } 6439 6440 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6441 if (ret) 6442 goto end_trans; 6443 6444 if (log_dentries) 6445 ret = log_new_dir_dentries(trans, root, inode, ctx); 6446 else 6447 ret = 0; 6448 end_trans: 6449 if (ret < 0) { 6450 btrfs_set_log_full_commit(trans); 6451 ret = 1; 6452 } 6453 6454 if (ret) 6455 btrfs_remove_log_ctx(root, ctx); 6456 btrfs_end_log_trans(root); 6457 end_no_trans: 6458 return ret; 6459 } 6460 6461 /* 6462 * it is not safe to log dentry if the chunk root has added new 6463 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6464 * If this returns 1, you must commit the transaction to safely get your 6465 * data on disk. 6466 */ 6467 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6468 struct dentry *dentry, 6469 struct btrfs_log_ctx *ctx) 6470 { 6471 struct dentry *parent = dget_parent(dentry); 6472 int ret; 6473 6474 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6475 LOG_INODE_ALL, ctx); 6476 dput(parent); 6477 6478 return ret; 6479 } 6480 6481 /* 6482 * should be called during mount to recover any replay any log trees 6483 * from the FS 6484 */ 6485 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6486 { 6487 int ret; 6488 struct btrfs_path *path; 6489 struct btrfs_trans_handle *trans; 6490 struct btrfs_key key; 6491 struct btrfs_key found_key; 6492 struct btrfs_root *log; 6493 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6494 struct walk_control wc = { 6495 .process_func = process_one_buffer, 6496 .stage = LOG_WALK_PIN_ONLY, 6497 }; 6498 6499 path = btrfs_alloc_path(); 6500 if (!path) 6501 return -ENOMEM; 6502 6503 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6504 6505 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6506 if (IS_ERR(trans)) { 6507 ret = PTR_ERR(trans); 6508 goto error; 6509 } 6510 6511 wc.trans = trans; 6512 wc.pin = 1; 6513 6514 ret = walk_log_tree(trans, log_root_tree, &wc); 6515 if (ret) { 6516 btrfs_abort_transaction(trans, ret); 6517 goto error; 6518 } 6519 6520 again: 6521 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6522 key.offset = (u64)-1; 6523 key.type = BTRFS_ROOT_ITEM_KEY; 6524 6525 while (1) { 6526 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6527 6528 if (ret < 0) { 6529 btrfs_abort_transaction(trans, ret); 6530 goto error; 6531 } 6532 if (ret > 0) { 6533 if (path->slots[0] == 0) 6534 break; 6535 path->slots[0]--; 6536 } 6537 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6538 path->slots[0]); 6539 btrfs_release_path(path); 6540 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6541 break; 6542 6543 log = btrfs_read_tree_root(log_root_tree, &found_key); 6544 if (IS_ERR(log)) { 6545 ret = PTR_ERR(log); 6546 btrfs_abort_transaction(trans, ret); 6547 goto error; 6548 } 6549 6550 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 6551 true); 6552 if (IS_ERR(wc.replay_dest)) { 6553 ret = PTR_ERR(wc.replay_dest); 6554 6555 /* 6556 * We didn't find the subvol, likely because it was 6557 * deleted. This is ok, simply skip this log and go to 6558 * the next one. 6559 * 6560 * We need to exclude the root because we can't have 6561 * other log replays overwriting this log as we'll read 6562 * it back in a few more times. This will keep our 6563 * block from being modified, and we'll just bail for 6564 * each subsequent pass. 6565 */ 6566 if (ret == -ENOENT) 6567 ret = btrfs_pin_extent_for_log_replay(trans, 6568 log->node->start, 6569 log->node->len); 6570 btrfs_put_root(log); 6571 6572 if (!ret) 6573 goto next; 6574 btrfs_abort_transaction(trans, ret); 6575 goto error; 6576 } 6577 6578 wc.replay_dest->log_root = log; 6579 ret = btrfs_record_root_in_trans(trans, wc.replay_dest); 6580 if (ret) 6581 /* The loop needs to continue due to the root refs */ 6582 btrfs_abort_transaction(trans, ret); 6583 else 6584 ret = walk_log_tree(trans, log, &wc); 6585 6586 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6587 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6588 path); 6589 if (ret) 6590 btrfs_abort_transaction(trans, ret); 6591 } 6592 6593 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6594 struct btrfs_root *root = wc.replay_dest; 6595 6596 btrfs_release_path(path); 6597 6598 /* 6599 * We have just replayed everything, and the highest 6600 * objectid of fs roots probably has changed in case 6601 * some inode_item's got replayed. 6602 * 6603 * root->objectid_mutex is not acquired as log replay 6604 * could only happen during mount. 6605 */ 6606 ret = btrfs_init_root_free_objectid(root); 6607 if (ret) 6608 btrfs_abort_transaction(trans, ret); 6609 } 6610 6611 wc.replay_dest->log_root = NULL; 6612 btrfs_put_root(wc.replay_dest); 6613 btrfs_put_root(log); 6614 6615 if (ret) 6616 goto error; 6617 next: 6618 if (found_key.offset == 0) 6619 break; 6620 key.offset = found_key.offset - 1; 6621 } 6622 btrfs_release_path(path); 6623 6624 /* step one is to pin it all, step two is to replay just inodes */ 6625 if (wc.pin) { 6626 wc.pin = 0; 6627 wc.process_func = replay_one_buffer; 6628 wc.stage = LOG_WALK_REPLAY_INODES; 6629 goto again; 6630 } 6631 /* step three is to replay everything */ 6632 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6633 wc.stage++; 6634 goto again; 6635 } 6636 6637 btrfs_free_path(path); 6638 6639 /* step 4: commit the transaction, which also unpins the blocks */ 6640 ret = btrfs_commit_transaction(trans); 6641 if (ret) 6642 return ret; 6643 6644 log_root_tree->log_root = NULL; 6645 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6646 btrfs_put_root(log_root_tree); 6647 6648 return 0; 6649 error: 6650 if (wc.trans) 6651 btrfs_end_transaction(wc.trans); 6652 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6653 btrfs_free_path(path); 6654 return ret; 6655 } 6656 6657 /* 6658 * there are some corner cases where we want to force a full 6659 * commit instead of allowing a directory to be logged. 6660 * 6661 * They revolve around files there were unlinked from the directory, and 6662 * this function updates the parent directory so that a full commit is 6663 * properly done if it is fsync'd later after the unlinks are done. 6664 * 6665 * Must be called before the unlink operations (updates to the subvolume tree, 6666 * inodes, etc) are done. 6667 */ 6668 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6669 struct btrfs_inode *dir, struct btrfs_inode *inode, 6670 int for_rename) 6671 { 6672 /* 6673 * when we're logging a file, if it hasn't been renamed 6674 * or unlinked, and its inode is fully committed on disk, 6675 * we don't have to worry about walking up the directory chain 6676 * to log its parents. 6677 * 6678 * So, we use the last_unlink_trans field to put this transid 6679 * into the file. When the file is logged we check it and 6680 * don't log the parents if the file is fully on disk. 6681 */ 6682 mutex_lock(&inode->log_mutex); 6683 inode->last_unlink_trans = trans->transid; 6684 mutex_unlock(&inode->log_mutex); 6685 6686 /* 6687 * if this directory was already logged any new 6688 * names for this file/dir will get recorded 6689 */ 6690 if (dir->logged_trans == trans->transid) 6691 return; 6692 6693 /* 6694 * if the inode we're about to unlink was logged, 6695 * the log will be properly updated for any new names 6696 */ 6697 if (inode->logged_trans == trans->transid) 6698 return; 6699 6700 /* 6701 * when renaming files across directories, if the directory 6702 * there we're unlinking from gets fsync'd later on, there's 6703 * no way to find the destination directory later and fsync it 6704 * properly. So, we have to be conservative and force commits 6705 * so the new name gets discovered. 6706 */ 6707 if (for_rename) 6708 goto record; 6709 6710 /* we can safely do the unlink without any special recording */ 6711 return; 6712 6713 record: 6714 mutex_lock(&dir->log_mutex); 6715 dir->last_unlink_trans = trans->transid; 6716 mutex_unlock(&dir->log_mutex); 6717 } 6718 6719 /* 6720 * Make sure that if someone attempts to fsync the parent directory of a deleted 6721 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6722 * that after replaying the log tree of the parent directory's root we will not 6723 * see the snapshot anymore and at log replay time we will not see any log tree 6724 * corresponding to the deleted snapshot's root, which could lead to replaying 6725 * it after replaying the log tree of the parent directory (which would replay 6726 * the snapshot delete operation). 6727 * 6728 * Must be called before the actual snapshot destroy operation (updates to the 6729 * parent root and tree of tree roots trees, etc) are done. 6730 */ 6731 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6732 struct btrfs_inode *dir) 6733 { 6734 mutex_lock(&dir->log_mutex); 6735 dir->last_unlink_trans = trans->transid; 6736 mutex_unlock(&dir->log_mutex); 6737 } 6738 6739 /* 6740 * Call this after adding a new name for a file and it will properly 6741 * update the log to reflect the new name. 6742 */ 6743 void btrfs_log_new_name(struct btrfs_trans_handle *trans, 6744 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6745 struct dentry *parent) 6746 { 6747 struct btrfs_log_ctx ctx; 6748 6749 /* 6750 * this will force the logging code to walk the dentry chain 6751 * up for the file 6752 */ 6753 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6754 inode->last_unlink_trans = trans->transid; 6755 6756 /* 6757 * if this inode hasn't been logged and directory we're renaming it 6758 * from hasn't been logged, we don't need to log it 6759 */ 6760 if (!inode_logged(trans, inode) && 6761 (!old_dir || !inode_logged(trans, old_dir))) 6762 return; 6763 6764 /* 6765 * If we are doing a rename (old_dir is not NULL) from a directory that 6766 * was previously logged, make sure the next log attempt on the directory 6767 * is not skipped and logs the inode again. This is because the log may 6768 * not currently be authoritative for a range including the old 6769 * BTRFS_DIR_INDEX_KEY key, so we want to make sure after a log replay we 6770 * do not end up with both the new and old dentries around (in case the 6771 * inode is a directory we would have a directory with two hard links and 6772 * 2 inode references for different parents). The next log attempt of 6773 * old_dir will happen at btrfs_log_all_parents(), called through 6774 * btrfs_log_inode_parent() below, because we have previously set 6775 * inode->last_unlink_trans to the current transaction ID, either here or 6776 * at btrfs_record_unlink_dir() in case the inode is a directory. 6777 */ 6778 if (old_dir) 6779 old_dir->logged_trans = 0; 6780 6781 btrfs_init_log_ctx(&ctx, &inode->vfs_inode); 6782 ctx.logging_new_name = true; 6783 /* 6784 * We don't care about the return value. If we fail to log the new name 6785 * then we know the next attempt to sync the log will fallback to a full 6786 * transaction commit (due to a call to btrfs_set_log_full_commit()), so 6787 * we don't need to worry about getting a log committed that has an 6788 * inconsistent state after a rename operation. 6789 */ 6790 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); 6791 } 6792 6793