xref: /openbmc/linux/fs/btrfs/tree-log.c (revision b34e08d5)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "tree-log.h"
30 #include "hash.h"
31 
32 /* magic values for the inode_only field in btrfs_log_inode:
33  *
34  * LOG_INODE_ALL means to log everything
35  * LOG_INODE_EXISTS means to log just enough to recreate the inode
36  * during log replay
37  */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40 
41 /*
42  * directory trouble cases
43  *
44  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45  * log, we must force a full commit before doing an fsync of the directory
46  * where the unlink was done.
47  * ---> record transid of last unlink/rename per directory
48  *
49  * mkdir foo/some_dir
50  * normal commit
51  * rename foo/some_dir foo2/some_dir
52  * mkdir foo/some_dir
53  * fsync foo/some_dir/some_file
54  *
55  * The fsync above will unlink the original some_dir without recording
56  * it in its new location (foo2).  After a crash, some_dir will be gone
57  * unless the fsync of some_file forces a full commit
58  *
59  * 2) we must log any new names for any file or dir that is in the fsync
60  * log. ---> check inode while renaming/linking.
61  *
62  * 2a) we must log any new names for any file or dir during rename
63  * when the directory they are being removed from was logged.
64  * ---> check inode and old parent dir during rename
65  *
66  *  2a is actually the more important variant.  With the extra logging
67  *  a crash might unlink the old name without recreating the new one
68  *
69  * 3) after a crash, we must go through any directories with a link count
70  * of zero and redo the rm -rf
71  *
72  * mkdir f1/foo
73  * normal commit
74  * rm -rf f1/foo
75  * fsync(f1)
76  *
77  * The directory f1 was fully removed from the FS, but fsync was never
78  * called on f1, only its parent dir.  After a crash the rm -rf must
79  * be replayed.  This must be able to recurse down the entire
80  * directory tree.  The inode link count fixup code takes care of the
81  * ugly details.
82  */
83 
84 /*
85  * stages for the tree walking.  The first
86  * stage (0) is to only pin down the blocks we find
87  * the second stage (1) is to make sure that all the inodes
88  * we find in the log are created in the subvolume.
89  *
90  * The last stage is to deal with directories and links and extents
91  * and all the other fun semantics
92  */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
97 
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 			     struct btrfs_root *root, struct inode *inode,
100 			     int inode_only);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 			     struct btrfs_root *root,
103 			     struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 				       struct btrfs_root *root,
106 				       struct btrfs_root *log,
107 				       struct btrfs_path *path,
108 				       u64 dirid, int del_all);
109 
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132 
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 			   struct btrfs_root *root,
140 			   struct btrfs_log_ctx *ctx)
141 {
142 	int index;
143 	int ret;
144 
145 	mutex_lock(&root->log_mutex);
146 	if (root->log_root) {
147 		if (ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) ==
148 		    trans->transid) {
149 			ret = -EAGAIN;
150 			goto out;
151 		}
152 
153 		if (!root->log_start_pid) {
154 			root->log_start_pid = current->pid;
155 			root->log_multiple_pids = false;
156 		} else if (root->log_start_pid != current->pid) {
157 			root->log_multiple_pids = true;
158 		}
159 
160 		atomic_inc(&root->log_batch);
161 		atomic_inc(&root->log_writers);
162 		if (ctx) {
163 			index = root->log_transid % 2;
164 			list_add_tail(&ctx->list, &root->log_ctxs[index]);
165 			ctx->log_transid = root->log_transid;
166 		}
167 		mutex_unlock(&root->log_mutex);
168 		return 0;
169 	}
170 
171 	ret = 0;
172 	mutex_lock(&root->fs_info->tree_log_mutex);
173 	if (!root->fs_info->log_root_tree)
174 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
175 	mutex_unlock(&root->fs_info->tree_log_mutex);
176 	if (ret)
177 		goto out;
178 
179 	if (!root->log_root) {
180 		ret = btrfs_add_log_tree(trans, root);
181 		if (ret)
182 			goto out;
183 	}
184 	root->log_multiple_pids = false;
185 	root->log_start_pid = current->pid;
186 	atomic_inc(&root->log_batch);
187 	atomic_inc(&root->log_writers);
188 	if (ctx) {
189 		index = root->log_transid % 2;
190 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
191 		ctx->log_transid = root->log_transid;
192 	}
193 out:
194 	mutex_unlock(&root->log_mutex);
195 	return ret;
196 }
197 
198 /*
199  * returns 0 if there was a log transaction running and we were able
200  * to join, or returns -ENOENT if there were not transactions
201  * in progress
202  */
203 static int join_running_log_trans(struct btrfs_root *root)
204 {
205 	int ret = -ENOENT;
206 
207 	smp_mb();
208 	if (!root->log_root)
209 		return -ENOENT;
210 
211 	mutex_lock(&root->log_mutex);
212 	if (root->log_root) {
213 		ret = 0;
214 		atomic_inc(&root->log_writers);
215 	}
216 	mutex_unlock(&root->log_mutex);
217 	return ret;
218 }
219 
220 /*
221  * This either makes the current running log transaction wait
222  * until you call btrfs_end_log_trans() or it makes any future
223  * log transactions wait until you call btrfs_end_log_trans()
224  */
225 int btrfs_pin_log_trans(struct btrfs_root *root)
226 {
227 	int ret = -ENOENT;
228 
229 	mutex_lock(&root->log_mutex);
230 	atomic_inc(&root->log_writers);
231 	mutex_unlock(&root->log_mutex);
232 	return ret;
233 }
234 
235 /*
236  * indicate we're done making changes to the log tree
237  * and wake up anyone waiting to do a sync
238  */
239 void btrfs_end_log_trans(struct btrfs_root *root)
240 {
241 	if (atomic_dec_and_test(&root->log_writers)) {
242 		smp_mb();
243 		if (waitqueue_active(&root->log_writer_wait))
244 			wake_up(&root->log_writer_wait);
245 	}
246 }
247 
248 
249 /*
250  * the walk control struct is used to pass state down the chain when
251  * processing the log tree.  The stage field tells us which part
252  * of the log tree processing we are currently doing.  The others
253  * are state fields used for that specific part
254  */
255 struct walk_control {
256 	/* should we free the extent on disk when done?  This is used
257 	 * at transaction commit time while freeing a log tree
258 	 */
259 	int free;
260 
261 	/* should we write out the extent buffer?  This is used
262 	 * while flushing the log tree to disk during a sync
263 	 */
264 	int write;
265 
266 	/* should we wait for the extent buffer io to finish?  Also used
267 	 * while flushing the log tree to disk for a sync
268 	 */
269 	int wait;
270 
271 	/* pin only walk, we record which extents on disk belong to the
272 	 * log trees
273 	 */
274 	int pin;
275 
276 	/* what stage of the replay code we're currently in */
277 	int stage;
278 
279 	/* the root we are currently replaying */
280 	struct btrfs_root *replay_dest;
281 
282 	/* the trans handle for the current replay */
283 	struct btrfs_trans_handle *trans;
284 
285 	/* the function that gets used to process blocks we find in the
286 	 * tree.  Note the extent_buffer might not be up to date when it is
287 	 * passed in, and it must be checked or read if you need the data
288 	 * inside it
289 	 */
290 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
291 			    struct walk_control *wc, u64 gen);
292 };
293 
294 /*
295  * process_func used to pin down extents, write them or wait on them
296  */
297 static int process_one_buffer(struct btrfs_root *log,
298 			      struct extent_buffer *eb,
299 			      struct walk_control *wc, u64 gen)
300 {
301 	int ret = 0;
302 
303 	/*
304 	 * If this fs is mixed then we need to be able to process the leaves to
305 	 * pin down any logged extents, so we have to read the block.
306 	 */
307 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
308 		ret = btrfs_read_buffer(eb, gen);
309 		if (ret)
310 			return ret;
311 	}
312 
313 	if (wc->pin)
314 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
315 						      eb->start, eb->len);
316 
317 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
318 		if (wc->pin && btrfs_header_level(eb) == 0)
319 			ret = btrfs_exclude_logged_extents(log, eb);
320 		if (wc->write)
321 			btrfs_write_tree_block(eb);
322 		if (wc->wait)
323 			btrfs_wait_tree_block_writeback(eb);
324 	}
325 	return ret;
326 }
327 
328 /*
329  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
330  * to the src data we are copying out.
331  *
332  * root is the tree we are copying into, and path is a scratch
333  * path for use in this function (it should be released on entry and
334  * will be released on exit).
335  *
336  * If the key is already in the destination tree the existing item is
337  * overwritten.  If the existing item isn't big enough, it is extended.
338  * If it is too large, it is truncated.
339  *
340  * If the key isn't in the destination yet, a new item is inserted.
341  */
342 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
343 				   struct btrfs_root *root,
344 				   struct btrfs_path *path,
345 				   struct extent_buffer *eb, int slot,
346 				   struct btrfs_key *key)
347 {
348 	int ret;
349 	u32 item_size;
350 	u64 saved_i_size = 0;
351 	int save_old_i_size = 0;
352 	unsigned long src_ptr;
353 	unsigned long dst_ptr;
354 	int overwrite_root = 0;
355 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356 
357 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 		overwrite_root = 1;
359 
360 	item_size = btrfs_item_size_nr(eb, slot);
361 	src_ptr = btrfs_item_ptr_offset(eb, slot);
362 
363 	/* look for the key in the destination tree */
364 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365 	if (ret < 0)
366 		return ret;
367 
368 	if (ret == 0) {
369 		char *src_copy;
370 		char *dst_copy;
371 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 						  path->slots[0]);
373 		if (dst_size != item_size)
374 			goto insert;
375 
376 		if (item_size == 0) {
377 			btrfs_release_path(path);
378 			return 0;
379 		}
380 		dst_copy = kmalloc(item_size, GFP_NOFS);
381 		src_copy = kmalloc(item_size, GFP_NOFS);
382 		if (!dst_copy || !src_copy) {
383 			btrfs_release_path(path);
384 			kfree(dst_copy);
385 			kfree(src_copy);
386 			return -ENOMEM;
387 		}
388 
389 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
390 
391 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 				   item_size);
394 		ret = memcmp(dst_copy, src_copy, item_size);
395 
396 		kfree(dst_copy);
397 		kfree(src_copy);
398 		/*
399 		 * they have the same contents, just return, this saves
400 		 * us from cowing blocks in the destination tree and doing
401 		 * extra writes that may not have been done by a previous
402 		 * sync
403 		 */
404 		if (ret == 0) {
405 			btrfs_release_path(path);
406 			return 0;
407 		}
408 
409 		/*
410 		 * We need to load the old nbytes into the inode so when we
411 		 * replay the extents we've logged we get the right nbytes.
412 		 */
413 		if (inode_item) {
414 			struct btrfs_inode_item *item;
415 			u64 nbytes;
416 			u32 mode;
417 
418 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 					      struct btrfs_inode_item);
420 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 			item = btrfs_item_ptr(eb, slot,
422 					      struct btrfs_inode_item);
423 			btrfs_set_inode_nbytes(eb, item, nbytes);
424 
425 			/*
426 			 * If this is a directory we need to reset the i_size to
427 			 * 0 so that we can set it up properly when replaying
428 			 * the rest of the items in this log.
429 			 */
430 			mode = btrfs_inode_mode(eb, item);
431 			if (S_ISDIR(mode))
432 				btrfs_set_inode_size(eb, item, 0);
433 		}
434 	} else if (inode_item) {
435 		struct btrfs_inode_item *item;
436 		u32 mode;
437 
438 		/*
439 		 * New inode, set nbytes to 0 so that the nbytes comes out
440 		 * properly when we replay the extents.
441 		 */
442 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 		btrfs_set_inode_nbytes(eb, item, 0);
444 
445 		/*
446 		 * If this is a directory we need to reset the i_size to 0 so
447 		 * that we can set it up properly when replaying the rest of
448 		 * the items in this log.
449 		 */
450 		mode = btrfs_inode_mode(eb, item);
451 		if (S_ISDIR(mode))
452 			btrfs_set_inode_size(eb, item, 0);
453 	}
454 insert:
455 	btrfs_release_path(path);
456 	/* try to insert the key into the destination tree */
457 	ret = btrfs_insert_empty_item(trans, root, path,
458 				      key, item_size);
459 
460 	/* make sure any existing item is the correct size */
461 	if (ret == -EEXIST) {
462 		u32 found_size;
463 		found_size = btrfs_item_size_nr(path->nodes[0],
464 						path->slots[0]);
465 		if (found_size > item_size)
466 			btrfs_truncate_item(root, path, item_size, 1);
467 		else if (found_size < item_size)
468 			btrfs_extend_item(root, path,
469 					  item_size - found_size);
470 	} else if (ret) {
471 		return ret;
472 	}
473 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 					path->slots[0]);
475 
476 	/* don't overwrite an existing inode if the generation number
477 	 * was logged as zero.  This is done when the tree logging code
478 	 * is just logging an inode to make sure it exists after recovery.
479 	 *
480 	 * Also, don't overwrite i_size on directories during replay.
481 	 * log replay inserts and removes directory items based on the
482 	 * state of the tree found in the subvolume, and i_size is modified
483 	 * as it goes
484 	 */
485 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 		struct btrfs_inode_item *src_item;
487 		struct btrfs_inode_item *dst_item;
488 
489 		src_item = (struct btrfs_inode_item *)src_ptr;
490 		dst_item = (struct btrfs_inode_item *)dst_ptr;
491 
492 		if (btrfs_inode_generation(eb, src_item) == 0)
493 			goto no_copy;
494 
495 		if (overwrite_root &&
496 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
497 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
498 			save_old_i_size = 1;
499 			saved_i_size = btrfs_inode_size(path->nodes[0],
500 							dst_item);
501 		}
502 	}
503 
504 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
505 			   src_ptr, item_size);
506 
507 	if (save_old_i_size) {
508 		struct btrfs_inode_item *dst_item;
509 		dst_item = (struct btrfs_inode_item *)dst_ptr;
510 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
511 	}
512 
513 	/* make sure the generation is filled in */
514 	if (key->type == BTRFS_INODE_ITEM_KEY) {
515 		struct btrfs_inode_item *dst_item;
516 		dst_item = (struct btrfs_inode_item *)dst_ptr;
517 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
518 			btrfs_set_inode_generation(path->nodes[0], dst_item,
519 						   trans->transid);
520 		}
521 	}
522 no_copy:
523 	btrfs_mark_buffer_dirty(path->nodes[0]);
524 	btrfs_release_path(path);
525 	return 0;
526 }
527 
528 /*
529  * simple helper to read an inode off the disk from a given root
530  * This can only be called for subvolume roots and not for the log
531  */
532 static noinline struct inode *read_one_inode(struct btrfs_root *root,
533 					     u64 objectid)
534 {
535 	struct btrfs_key key;
536 	struct inode *inode;
537 
538 	key.objectid = objectid;
539 	key.type = BTRFS_INODE_ITEM_KEY;
540 	key.offset = 0;
541 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
542 	if (IS_ERR(inode)) {
543 		inode = NULL;
544 	} else if (is_bad_inode(inode)) {
545 		iput(inode);
546 		inode = NULL;
547 	}
548 	return inode;
549 }
550 
551 /* replays a single extent in 'eb' at 'slot' with 'key' into the
552  * subvolume 'root'.  path is released on entry and should be released
553  * on exit.
554  *
555  * extents in the log tree have not been allocated out of the extent
556  * tree yet.  So, this completes the allocation, taking a reference
557  * as required if the extent already exists or creating a new extent
558  * if it isn't in the extent allocation tree yet.
559  *
560  * The extent is inserted into the file, dropping any existing extents
561  * from the file that overlap the new one.
562  */
563 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
564 				      struct btrfs_root *root,
565 				      struct btrfs_path *path,
566 				      struct extent_buffer *eb, int slot,
567 				      struct btrfs_key *key)
568 {
569 	int found_type;
570 	u64 extent_end;
571 	u64 start = key->offset;
572 	u64 nbytes = 0;
573 	struct btrfs_file_extent_item *item;
574 	struct inode *inode = NULL;
575 	unsigned long size;
576 	int ret = 0;
577 
578 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
579 	found_type = btrfs_file_extent_type(eb, item);
580 
581 	if (found_type == BTRFS_FILE_EXTENT_REG ||
582 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
583 		nbytes = btrfs_file_extent_num_bytes(eb, item);
584 		extent_end = start + nbytes;
585 
586 		/*
587 		 * We don't add to the inodes nbytes if we are prealloc or a
588 		 * hole.
589 		 */
590 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
591 			nbytes = 0;
592 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
593 		size = btrfs_file_extent_inline_len(eb, slot, item);
594 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
595 		extent_end = ALIGN(start + size, root->sectorsize);
596 	} else {
597 		ret = 0;
598 		goto out;
599 	}
600 
601 	inode = read_one_inode(root, key->objectid);
602 	if (!inode) {
603 		ret = -EIO;
604 		goto out;
605 	}
606 
607 	/*
608 	 * first check to see if we already have this extent in the
609 	 * file.  This must be done before the btrfs_drop_extents run
610 	 * so we don't try to drop this extent.
611 	 */
612 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
613 				       start, 0);
614 
615 	if (ret == 0 &&
616 	    (found_type == BTRFS_FILE_EXTENT_REG ||
617 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
618 		struct btrfs_file_extent_item cmp1;
619 		struct btrfs_file_extent_item cmp2;
620 		struct btrfs_file_extent_item *existing;
621 		struct extent_buffer *leaf;
622 
623 		leaf = path->nodes[0];
624 		existing = btrfs_item_ptr(leaf, path->slots[0],
625 					  struct btrfs_file_extent_item);
626 
627 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
628 				   sizeof(cmp1));
629 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
630 				   sizeof(cmp2));
631 
632 		/*
633 		 * we already have a pointer to this exact extent,
634 		 * we don't have to do anything
635 		 */
636 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
637 			btrfs_release_path(path);
638 			goto out;
639 		}
640 	}
641 	btrfs_release_path(path);
642 
643 	/* drop any overlapping extents */
644 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
645 	if (ret)
646 		goto out;
647 
648 	if (found_type == BTRFS_FILE_EXTENT_REG ||
649 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
650 		u64 offset;
651 		unsigned long dest_offset;
652 		struct btrfs_key ins;
653 
654 		ret = btrfs_insert_empty_item(trans, root, path, key,
655 					      sizeof(*item));
656 		if (ret)
657 			goto out;
658 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
659 						    path->slots[0]);
660 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
661 				(unsigned long)item,  sizeof(*item));
662 
663 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
664 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
665 		ins.type = BTRFS_EXTENT_ITEM_KEY;
666 		offset = key->offset - btrfs_file_extent_offset(eb, item);
667 
668 		if (ins.objectid > 0) {
669 			u64 csum_start;
670 			u64 csum_end;
671 			LIST_HEAD(ordered_sums);
672 			/*
673 			 * is this extent already allocated in the extent
674 			 * allocation tree?  If so, just add a reference
675 			 */
676 			ret = btrfs_lookup_extent(root, ins.objectid,
677 						ins.offset);
678 			if (ret == 0) {
679 				ret = btrfs_inc_extent_ref(trans, root,
680 						ins.objectid, ins.offset,
681 						0, root->root_key.objectid,
682 						key->objectid, offset, 0);
683 				if (ret)
684 					goto out;
685 			} else {
686 				/*
687 				 * insert the extent pointer in the extent
688 				 * allocation tree
689 				 */
690 				ret = btrfs_alloc_logged_file_extent(trans,
691 						root, root->root_key.objectid,
692 						key->objectid, offset, &ins);
693 				if (ret)
694 					goto out;
695 			}
696 			btrfs_release_path(path);
697 
698 			if (btrfs_file_extent_compression(eb, item)) {
699 				csum_start = ins.objectid;
700 				csum_end = csum_start + ins.offset;
701 			} else {
702 				csum_start = ins.objectid +
703 					btrfs_file_extent_offset(eb, item);
704 				csum_end = csum_start +
705 					btrfs_file_extent_num_bytes(eb, item);
706 			}
707 
708 			ret = btrfs_lookup_csums_range(root->log_root,
709 						csum_start, csum_end - 1,
710 						&ordered_sums, 0);
711 			if (ret)
712 				goto out;
713 			while (!list_empty(&ordered_sums)) {
714 				struct btrfs_ordered_sum *sums;
715 				sums = list_entry(ordered_sums.next,
716 						struct btrfs_ordered_sum,
717 						list);
718 				if (!ret)
719 					ret = btrfs_csum_file_blocks(trans,
720 						root->fs_info->csum_root,
721 						sums);
722 				list_del(&sums->list);
723 				kfree(sums);
724 			}
725 			if (ret)
726 				goto out;
727 		} else {
728 			btrfs_release_path(path);
729 		}
730 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
731 		/* inline extents are easy, we just overwrite them */
732 		ret = overwrite_item(trans, root, path, eb, slot, key);
733 		if (ret)
734 			goto out;
735 	}
736 
737 	inode_add_bytes(inode, nbytes);
738 	ret = btrfs_update_inode(trans, root, inode);
739 out:
740 	if (inode)
741 		iput(inode);
742 	return ret;
743 }
744 
745 /*
746  * when cleaning up conflicts between the directory names in the
747  * subvolume, directory names in the log and directory names in the
748  * inode back references, we may have to unlink inodes from directories.
749  *
750  * This is a helper function to do the unlink of a specific directory
751  * item
752  */
753 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
754 				      struct btrfs_root *root,
755 				      struct btrfs_path *path,
756 				      struct inode *dir,
757 				      struct btrfs_dir_item *di)
758 {
759 	struct inode *inode;
760 	char *name;
761 	int name_len;
762 	struct extent_buffer *leaf;
763 	struct btrfs_key location;
764 	int ret;
765 
766 	leaf = path->nodes[0];
767 
768 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
769 	name_len = btrfs_dir_name_len(leaf, di);
770 	name = kmalloc(name_len, GFP_NOFS);
771 	if (!name)
772 		return -ENOMEM;
773 
774 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
775 	btrfs_release_path(path);
776 
777 	inode = read_one_inode(root, location.objectid);
778 	if (!inode) {
779 		ret = -EIO;
780 		goto out;
781 	}
782 
783 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
784 	if (ret)
785 		goto out;
786 
787 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
788 	if (ret)
789 		goto out;
790 	else
791 		ret = btrfs_run_delayed_items(trans, root);
792 out:
793 	kfree(name);
794 	iput(inode);
795 	return ret;
796 }
797 
798 /*
799  * helper function to see if a given name and sequence number found
800  * in an inode back reference are already in a directory and correctly
801  * point to this inode
802  */
803 static noinline int inode_in_dir(struct btrfs_root *root,
804 				 struct btrfs_path *path,
805 				 u64 dirid, u64 objectid, u64 index,
806 				 const char *name, int name_len)
807 {
808 	struct btrfs_dir_item *di;
809 	struct btrfs_key location;
810 	int match = 0;
811 
812 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
813 					 index, name, name_len, 0);
814 	if (di && !IS_ERR(di)) {
815 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
816 		if (location.objectid != objectid)
817 			goto out;
818 	} else
819 		goto out;
820 	btrfs_release_path(path);
821 
822 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
823 	if (di && !IS_ERR(di)) {
824 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
825 		if (location.objectid != objectid)
826 			goto out;
827 	} else
828 		goto out;
829 	match = 1;
830 out:
831 	btrfs_release_path(path);
832 	return match;
833 }
834 
835 /*
836  * helper function to check a log tree for a named back reference in
837  * an inode.  This is used to decide if a back reference that is
838  * found in the subvolume conflicts with what we find in the log.
839  *
840  * inode backreferences may have multiple refs in a single item,
841  * during replay we process one reference at a time, and we don't
842  * want to delete valid links to a file from the subvolume if that
843  * link is also in the log.
844  */
845 static noinline int backref_in_log(struct btrfs_root *log,
846 				   struct btrfs_key *key,
847 				   u64 ref_objectid,
848 				   char *name, int namelen)
849 {
850 	struct btrfs_path *path;
851 	struct btrfs_inode_ref *ref;
852 	unsigned long ptr;
853 	unsigned long ptr_end;
854 	unsigned long name_ptr;
855 	int found_name_len;
856 	int item_size;
857 	int ret;
858 	int match = 0;
859 
860 	path = btrfs_alloc_path();
861 	if (!path)
862 		return -ENOMEM;
863 
864 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
865 	if (ret != 0)
866 		goto out;
867 
868 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
869 
870 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
871 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
872 						   name, namelen, NULL))
873 			match = 1;
874 
875 		goto out;
876 	}
877 
878 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
879 	ptr_end = ptr + item_size;
880 	while (ptr < ptr_end) {
881 		ref = (struct btrfs_inode_ref *)ptr;
882 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
883 		if (found_name_len == namelen) {
884 			name_ptr = (unsigned long)(ref + 1);
885 			ret = memcmp_extent_buffer(path->nodes[0], name,
886 						   name_ptr, namelen);
887 			if (ret == 0) {
888 				match = 1;
889 				goto out;
890 			}
891 		}
892 		ptr = (unsigned long)(ref + 1) + found_name_len;
893 	}
894 out:
895 	btrfs_free_path(path);
896 	return match;
897 }
898 
899 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
900 				  struct btrfs_root *root,
901 				  struct btrfs_path *path,
902 				  struct btrfs_root *log_root,
903 				  struct inode *dir, struct inode *inode,
904 				  struct extent_buffer *eb,
905 				  u64 inode_objectid, u64 parent_objectid,
906 				  u64 ref_index, char *name, int namelen,
907 				  int *search_done)
908 {
909 	int ret;
910 	char *victim_name;
911 	int victim_name_len;
912 	struct extent_buffer *leaf;
913 	struct btrfs_dir_item *di;
914 	struct btrfs_key search_key;
915 	struct btrfs_inode_extref *extref;
916 
917 again:
918 	/* Search old style refs */
919 	search_key.objectid = inode_objectid;
920 	search_key.type = BTRFS_INODE_REF_KEY;
921 	search_key.offset = parent_objectid;
922 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
923 	if (ret == 0) {
924 		struct btrfs_inode_ref *victim_ref;
925 		unsigned long ptr;
926 		unsigned long ptr_end;
927 
928 		leaf = path->nodes[0];
929 
930 		/* are we trying to overwrite a back ref for the root directory
931 		 * if so, just jump out, we're done
932 		 */
933 		if (search_key.objectid == search_key.offset)
934 			return 1;
935 
936 		/* check all the names in this back reference to see
937 		 * if they are in the log.  if so, we allow them to stay
938 		 * otherwise they must be unlinked as a conflict
939 		 */
940 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
941 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
942 		while (ptr < ptr_end) {
943 			victim_ref = (struct btrfs_inode_ref *)ptr;
944 			victim_name_len = btrfs_inode_ref_name_len(leaf,
945 								   victim_ref);
946 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
947 			if (!victim_name)
948 				return -ENOMEM;
949 
950 			read_extent_buffer(leaf, victim_name,
951 					   (unsigned long)(victim_ref + 1),
952 					   victim_name_len);
953 
954 			if (!backref_in_log(log_root, &search_key,
955 					    parent_objectid,
956 					    victim_name,
957 					    victim_name_len)) {
958 				inc_nlink(inode);
959 				btrfs_release_path(path);
960 
961 				ret = btrfs_unlink_inode(trans, root, dir,
962 							 inode, victim_name,
963 							 victim_name_len);
964 				kfree(victim_name);
965 				if (ret)
966 					return ret;
967 				ret = btrfs_run_delayed_items(trans, root);
968 				if (ret)
969 					return ret;
970 				*search_done = 1;
971 				goto again;
972 			}
973 			kfree(victim_name);
974 
975 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
976 		}
977 
978 		/*
979 		 * NOTE: we have searched root tree and checked the
980 		 * coresponding ref, it does not need to check again.
981 		 */
982 		*search_done = 1;
983 	}
984 	btrfs_release_path(path);
985 
986 	/* Same search but for extended refs */
987 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
988 					   inode_objectid, parent_objectid, 0,
989 					   0);
990 	if (!IS_ERR_OR_NULL(extref)) {
991 		u32 item_size;
992 		u32 cur_offset = 0;
993 		unsigned long base;
994 		struct inode *victim_parent;
995 
996 		leaf = path->nodes[0];
997 
998 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
999 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1000 
1001 		while (cur_offset < item_size) {
1002 			extref = (struct btrfs_inode_extref *)base + cur_offset;
1003 
1004 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1005 
1006 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1007 				goto next;
1008 
1009 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1010 			if (!victim_name)
1011 				return -ENOMEM;
1012 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1013 					   victim_name_len);
1014 
1015 			search_key.objectid = inode_objectid;
1016 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1017 			search_key.offset = btrfs_extref_hash(parent_objectid,
1018 							      victim_name,
1019 							      victim_name_len);
1020 			ret = 0;
1021 			if (!backref_in_log(log_root, &search_key,
1022 					    parent_objectid, victim_name,
1023 					    victim_name_len)) {
1024 				ret = -ENOENT;
1025 				victim_parent = read_one_inode(root,
1026 							       parent_objectid);
1027 				if (victim_parent) {
1028 					inc_nlink(inode);
1029 					btrfs_release_path(path);
1030 
1031 					ret = btrfs_unlink_inode(trans, root,
1032 								 victim_parent,
1033 								 inode,
1034 								 victim_name,
1035 								 victim_name_len);
1036 					if (!ret)
1037 						ret = btrfs_run_delayed_items(
1038 								  trans, root);
1039 				}
1040 				iput(victim_parent);
1041 				kfree(victim_name);
1042 				if (ret)
1043 					return ret;
1044 				*search_done = 1;
1045 				goto again;
1046 			}
1047 			kfree(victim_name);
1048 			if (ret)
1049 				return ret;
1050 next:
1051 			cur_offset += victim_name_len + sizeof(*extref);
1052 		}
1053 		*search_done = 1;
1054 	}
1055 	btrfs_release_path(path);
1056 
1057 	/* look for a conflicting sequence number */
1058 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1059 					 ref_index, name, namelen, 0);
1060 	if (di && !IS_ERR(di)) {
1061 		ret = drop_one_dir_item(trans, root, path, dir, di);
1062 		if (ret)
1063 			return ret;
1064 	}
1065 	btrfs_release_path(path);
1066 
1067 	/* look for a conflicing name */
1068 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1069 				   name, namelen, 0);
1070 	if (di && !IS_ERR(di)) {
1071 		ret = drop_one_dir_item(trans, root, path, dir, di);
1072 		if (ret)
1073 			return ret;
1074 	}
1075 	btrfs_release_path(path);
1076 
1077 	return 0;
1078 }
1079 
1080 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1081 			     u32 *namelen, char **name, u64 *index,
1082 			     u64 *parent_objectid)
1083 {
1084 	struct btrfs_inode_extref *extref;
1085 
1086 	extref = (struct btrfs_inode_extref *)ref_ptr;
1087 
1088 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1089 	*name = kmalloc(*namelen, GFP_NOFS);
1090 	if (*name == NULL)
1091 		return -ENOMEM;
1092 
1093 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1094 			   *namelen);
1095 
1096 	*index = btrfs_inode_extref_index(eb, extref);
1097 	if (parent_objectid)
1098 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1099 
1100 	return 0;
1101 }
1102 
1103 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1104 			  u32 *namelen, char **name, u64 *index)
1105 {
1106 	struct btrfs_inode_ref *ref;
1107 
1108 	ref = (struct btrfs_inode_ref *)ref_ptr;
1109 
1110 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1111 	*name = kmalloc(*namelen, GFP_NOFS);
1112 	if (*name == NULL)
1113 		return -ENOMEM;
1114 
1115 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1116 
1117 	*index = btrfs_inode_ref_index(eb, ref);
1118 
1119 	return 0;
1120 }
1121 
1122 /*
1123  * replay one inode back reference item found in the log tree.
1124  * eb, slot and key refer to the buffer and key found in the log tree.
1125  * root is the destination we are replaying into, and path is for temp
1126  * use by this function.  (it should be released on return).
1127  */
1128 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1129 				  struct btrfs_root *root,
1130 				  struct btrfs_root *log,
1131 				  struct btrfs_path *path,
1132 				  struct extent_buffer *eb, int slot,
1133 				  struct btrfs_key *key)
1134 {
1135 	struct inode *dir = NULL;
1136 	struct inode *inode = NULL;
1137 	unsigned long ref_ptr;
1138 	unsigned long ref_end;
1139 	char *name = NULL;
1140 	int namelen;
1141 	int ret;
1142 	int search_done = 0;
1143 	int log_ref_ver = 0;
1144 	u64 parent_objectid;
1145 	u64 inode_objectid;
1146 	u64 ref_index = 0;
1147 	int ref_struct_size;
1148 
1149 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1150 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1151 
1152 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1153 		struct btrfs_inode_extref *r;
1154 
1155 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1156 		log_ref_ver = 1;
1157 		r = (struct btrfs_inode_extref *)ref_ptr;
1158 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1159 	} else {
1160 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1161 		parent_objectid = key->offset;
1162 	}
1163 	inode_objectid = key->objectid;
1164 
1165 	/*
1166 	 * it is possible that we didn't log all the parent directories
1167 	 * for a given inode.  If we don't find the dir, just don't
1168 	 * copy the back ref in.  The link count fixup code will take
1169 	 * care of the rest
1170 	 */
1171 	dir = read_one_inode(root, parent_objectid);
1172 	if (!dir) {
1173 		ret = -ENOENT;
1174 		goto out;
1175 	}
1176 
1177 	inode = read_one_inode(root, inode_objectid);
1178 	if (!inode) {
1179 		ret = -EIO;
1180 		goto out;
1181 	}
1182 
1183 	while (ref_ptr < ref_end) {
1184 		if (log_ref_ver) {
1185 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1186 						&ref_index, &parent_objectid);
1187 			/*
1188 			 * parent object can change from one array
1189 			 * item to another.
1190 			 */
1191 			if (!dir)
1192 				dir = read_one_inode(root, parent_objectid);
1193 			if (!dir) {
1194 				ret = -ENOENT;
1195 				goto out;
1196 			}
1197 		} else {
1198 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1199 					     &ref_index);
1200 		}
1201 		if (ret)
1202 			goto out;
1203 
1204 		/* if we already have a perfect match, we're done */
1205 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1206 				  ref_index, name, namelen)) {
1207 			/*
1208 			 * look for a conflicting back reference in the
1209 			 * metadata. if we find one we have to unlink that name
1210 			 * of the file before we add our new link.  Later on, we
1211 			 * overwrite any existing back reference, and we don't
1212 			 * want to create dangling pointers in the directory.
1213 			 */
1214 
1215 			if (!search_done) {
1216 				ret = __add_inode_ref(trans, root, path, log,
1217 						      dir, inode, eb,
1218 						      inode_objectid,
1219 						      parent_objectid,
1220 						      ref_index, name, namelen,
1221 						      &search_done);
1222 				if (ret) {
1223 					if (ret == 1)
1224 						ret = 0;
1225 					goto out;
1226 				}
1227 			}
1228 
1229 			/* insert our name */
1230 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1231 					     0, ref_index);
1232 			if (ret)
1233 				goto out;
1234 
1235 			btrfs_update_inode(trans, root, inode);
1236 		}
1237 
1238 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1239 		kfree(name);
1240 		name = NULL;
1241 		if (log_ref_ver) {
1242 			iput(dir);
1243 			dir = NULL;
1244 		}
1245 	}
1246 
1247 	/* finally write the back reference in the inode */
1248 	ret = overwrite_item(trans, root, path, eb, slot, key);
1249 out:
1250 	btrfs_release_path(path);
1251 	kfree(name);
1252 	iput(dir);
1253 	iput(inode);
1254 	return ret;
1255 }
1256 
1257 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1258 			      struct btrfs_root *root, u64 offset)
1259 {
1260 	int ret;
1261 	ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1262 			offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1263 	if (ret > 0)
1264 		ret = btrfs_insert_orphan_item(trans, root, offset);
1265 	return ret;
1266 }
1267 
1268 static int count_inode_extrefs(struct btrfs_root *root,
1269 			       struct inode *inode, struct btrfs_path *path)
1270 {
1271 	int ret = 0;
1272 	int name_len;
1273 	unsigned int nlink = 0;
1274 	u32 item_size;
1275 	u32 cur_offset = 0;
1276 	u64 inode_objectid = btrfs_ino(inode);
1277 	u64 offset = 0;
1278 	unsigned long ptr;
1279 	struct btrfs_inode_extref *extref;
1280 	struct extent_buffer *leaf;
1281 
1282 	while (1) {
1283 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1284 					    &extref, &offset);
1285 		if (ret)
1286 			break;
1287 
1288 		leaf = path->nodes[0];
1289 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1290 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1291 
1292 		while (cur_offset < item_size) {
1293 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1294 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1295 
1296 			nlink++;
1297 
1298 			cur_offset += name_len + sizeof(*extref);
1299 		}
1300 
1301 		offset++;
1302 		btrfs_release_path(path);
1303 	}
1304 	btrfs_release_path(path);
1305 
1306 	if (ret < 0)
1307 		return ret;
1308 	return nlink;
1309 }
1310 
1311 static int count_inode_refs(struct btrfs_root *root,
1312 			       struct inode *inode, struct btrfs_path *path)
1313 {
1314 	int ret;
1315 	struct btrfs_key key;
1316 	unsigned int nlink = 0;
1317 	unsigned long ptr;
1318 	unsigned long ptr_end;
1319 	int name_len;
1320 	u64 ino = btrfs_ino(inode);
1321 
1322 	key.objectid = ino;
1323 	key.type = BTRFS_INODE_REF_KEY;
1324 	key.offset = (u64)-1;
1325 
1326 	while (1) {
1327 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1328 		if (ret < 0)
1329 			break;
1330 		if (ret > 0) {
1331 			if (path->slots[0] == 0)
1332 				break;
1333 			path->slots[0]--;
1334 		}
1335 process_slot:
1336 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1337 				      path->slots[0]);
1338 		if (key.objectid != ino ||
1339 		    key.type != BTRFS_INODE_REF_KEY)
1340 			break;
1341 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1342 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1343 						   path->slots[0]);
1344 		while (ptr < ptr_end) {
1345 			struct btrfs_inode_ref *ref;
1346 
1347 			ref = (struct btrfs_inode_ref *)ptr;
1348 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1349 							    ref);
1350 			ptr = (unsigned long)(ref + 1) + name_len;
1351 			nlink++;
1352 		}
1353 
1354 		if (key.offset == 0)
1355 			break;
1356 		if (path->slots[0] > 0) {
1357 			path->slots[0]--;
1358 			goto process_slot;
1359 		}
1360 		key.offset--;
1361 		btrfs_release_path(path);
1362 	}
1363 	btrfs_release_path(path);
1364 
1365 	return nlink;
1366 }
1367 
1368 /*
1369  * There are a few corners where the link count of the file can't
1370  * be properly maintained during replay.  So, instead of adding
1371  * lots of complexity to the log code, we just scan the backrefs
1372  * for any file that has been through replay.
1373  *
1374  * The scan will update the link count on the inode to reflect the
1375  * number of back refs found.  If it goes down to zero, the iput
1376  * will free the inode.
1377  */
1378 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1379 					   struct btrfs_root *root,
1380 					   struct inode *inode)
1381 {
1382 	struct btrfs_path *path;
1383 	int ret;
1384 	u64 nlink = 0;
1385 	u64 ino = btrfs_ino(inode);
1386 
1387 	path = btrfs_alloc_path();
1388 	if (!path)
1389 		return -ENOMEM;
1390 
1391 	ret = count_inode_refs(root, inode, path);
1392 	if (ret < 0)
1393 		goto out;
1394 
1395 	nlink = ret;
1396 
1397 	ret = count_inode_extrefs(root, inode, path);
1398 	if (ret == -ENOENT)
1399 		ret = 0;
1400 
1401 	if (ret < 0)
1402 		goto out;
1403 
1404 	nlink += ret;
1405 
1406 	ret = 0;
1407 
1408 	if (nlink != inode->i_nlink) {
1409 		set_nlink(inode, nlink);
1410 		btrfs_update_inode(trans, root, inode);
1411 	}
1412 	BTRFS_I(inode)->index_cnt = (u64)-1;
1413 
1414 	if (inode->i_nlink == 0) {
1415 		if (S_ISDIR(inode->i_mode)) {
1416 			ret = replay_dir_deletes(trans, root, NULL, path,
1417 						 ino, 1);
1418 			if (ret)
1419 				goto out;
1420 		}
1421 		ret = insert_orphan_item(trans, root, ino);
1422 	}
1423 
1424 out:
1425 	btrfs_free_path(path);
1426 	return ret;
1427 }
1428 
1429 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1430 					    struct btrfs_root *root,
1431 					    struct btrfs_path *path)
1432 {
1433 	int ret;
1434 	struct btrfs_key key;
1435 	struct inode *inode;
1436 
1437 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1438 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1439 	key.offset = (u64)-1;
1440 	while (1) {
1441 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442 		if (ret < 0)
1443 			break;
1444 
1445 		if (ret == 1) {
1446 			if (path->slots[0] == 0)
1447 				break;
1448 			path->slots[0]--;
1449 		}
1450 
1451 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1452 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1453 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1454 			break;
1455 
1456 		ret = btrfs_del_item(trans, root, path);
1457 		if (ret)
1458 			goto out;
1459 
1460 		btrfs_release_path(path);
1461 		inode = read_one_inode(root, key.offset);
1462 		if (!inode)
1463 			return -EIO;
1464 
1465 		ret = fixup_inode_link_count(trans, root, inode);
1466 		iput(inode);
1467 		if (ret)
1468 			goto out;
1469 
1470 		/*
1471 		 * fixup on a directory may create new entries,
1472 		 * make sure we always look for the highset possible
1473 		 * offset
1474 		 */
1475 		key.offset = (u64)-1;
1476 	}
1477 	ret = 0;
1478 out:
1479 	btrfs_release_path(path);
1480 	return ret;
1481 }
1482 
1483 
1484 /*
1485  * record a given inode in the fixup dir so we can check its link
1486  * count when replay is done.  The link count is incremented here
1487  * so the inode won't go away until we check it
1488  */
1489 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1490 				      struct btrfs_root *root,
1491 				      struct btrfs_path *path,
1492 				      u64 objectid)
1493 {
1494 	struct btrfs_key key;
1495 	int ret = 0;
1496 	struct inode *inode;
1497 
1498 	inode = read_one_inode(root, objectid);
1499 	if (!inode)
1500 		return -EIO;
1501 
1502 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1503 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1504 	key.offset = objectid;
1505 
1506 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1507 
1508 	btrfs_release_path(path);
1509 	if (ret == 0) {
1510 		if (!inode->i_nlink)
1511 			set_nlink(inode, 1);
1512 		else
1513 			inc_nlink(inode);
1514 		ret = btrfs_update_inode(trans, root, inode);
1515 	} else if (ret == -EEXIST) {
1516 		ret = 0;
1517 	} else {
1518 		BUG(); /* Logic Error */
1519 	}
1520 	iput(inode);
1521 
1522 	return ret;
1523 }
1524 
1525 /*
1526  * when replaying the log for a directory, we only insert names
1527  * for inodes that actually exist.  This means an fsync on a directory
1528  * does not implicitly fsync all the new files in it
1529  */
1530 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1531 				    struct btrfs_root *root,
1532 				    struct btrfs_path *path,
1533 				    u64 dirid, u64 index,
1534 				    char *name, int name_len, u8 type,
1535 				    struct btrfs_key *location)
1536 {
1537 	struct inode *inode;
1538 	struct inode *dir;
1539 	int ret;
1540 
1541 	inode = read_one_inode(root, location->objectid);
1542 	if (!inode)
1543 		return -ENOENT;
1544 
1545 	dir = read_one_inode(root, dirid);
1546 	if (!dir) {
1547 		iput(inode);
1548 		return -EIO;
1549 	}
1550 
1551 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1552 
1553 	/* FIXME, put inode into FIXUP list */
1554 
1555 	iput(inode);
1556 	iput(dir);
1557 	return ret;
1558 }
1559 
1560 /*
1561  * take a single entry in a log directory item and replay it into
1562  * the subvolume.
1563  *
1564  * if a conflicting item exists in the subdirectory already,
1565  * the inode it points to is unlinked and put into the link count
1566  * fix up tree.
1567  *
1568  * If a name from the log points to a file or directory that does
1569  * not exist in the FS, it is skipped.  fsyncs on directories
1570  * do not force down inodes inside that directory, just changes to the
1571  * names or unlinks in a directory.
1572  */
1573 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1574 				    struct btrfs_root *root,
1575 				    struct btrfs_path *path,
1576 				    struct extent_buffer *eb,
1577 				    struct btrfs_dir_item *di,
1578 				    struct btrfs_key *key)
1579 {
1580 	char *name;
1581 	int name_len;
1582 	struct btrfs_dir_item *dst_di;
1583 	struct btrfs_key found_key;
1584 	struct btrfs_key log_key;
1585 	struct inode *dir;
1586 	u8 log_type;
1587 	int exists;
1588 	int ret = 0;
1589 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1590 
1591 	dir = read_one_inode(root, key->objectid);
1592 	if (!dir)
1593 		return -EIO;
1594 
1595 	name_len = btrfs_dir_name_len(eb, di);
1596 	name = kmalloc(name_len, GFP_NOFS);
1597 	if (!name) {
1598 		ret = -ENOMEM;
1599 		goto out;
1600 	}
1601 
1602 	log_type = btrfs_dir_type(eb, di);
1603 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1604 		   name_len);
1605 
1606 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1607 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1608 	if (exists == 0)
1609 		exists = 1;
1610 	else
1611 		exists = 0;
1612 	btrfs_release_path(path);
1613 
1614 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1615 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1616 				       name, name_len, 1);
1617 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1618 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1619 						     key->objectid,
1620 						     key->offset, name,
1621 						     name_len, 1);
1622 	} else {
1623 		/* Corruption */
1624 		ret = -EINVAL;
1625 		goto out;
1626 	}
1627 	if (IS_ERR_OR_NULL(dst_di)) {
1628 		/* we need a sequence number to insert, so we only
1629 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1630 		 */
1631 		if (key->type != BTRFS_DIR_INDEX_KEY)
1632 			goto out;
1633 		goto insert;
1634 	}
1635 
1636 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1637 	/* the existing item matches the logged item */
1638 	if (found_key.objectid == log_key.objectid &&
1639 	    found_key.type == log_key.type &&
1640 	    found_key.offset == log_key.offset &&
1641 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1642 		goto out;
1643 	}
1644 
1645 	/*
1646 	 * don't drop the conflicting directory entry if the inode
1647 	 * for the new entry doesn't exist
1648 	 */
1649 	if (!exists)
1650 		goto out;
1651 
1652 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1653 	if (ret)
1654 		goto out;
1655 
1656 	if (key->type == BTRFS_DIR_INDEX_KEY)
1657 		goto insert;
1658 out:
1659 	btrfs_release_path(path);
1660 	if (!ret && update_size) {
1661 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1662 		ret = btrfs_update_inode(trans, root, dir);
1663 	}
1664 	kfree(name);
1665 	iput(dir);
1666 	return ret;
1667 
1668 insert:
1669 	btrfs_release_path(path);
1670 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1671 			      name, name_len, log_type, &log_key);
1672 	if (ret && ret != -ENOENT)
1673 		goto out;
1674 	update_size = false;
1675 	ret = 0;
1676 	goto out;
1677 }
1678 
1679 /*
1680  * find all the names in a directory item and reconcile them into
1681  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1682  * one name in a directory item, but the same code gets used for
1683  * both directory index types
1684  */
1685 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1686 					struct btrfs_root *root,
1687 					struct btrfs_path *path,
1688 					struct extent_buffer *eb, int slot,
1689 					struct btrfs_key *key)
1690 {
1691 	int ret;
1692 	u32 item_size = btrfs_item_size_nr(eb, slot);
1693 	struct btrfs_dir_item *di;
1694 	int name_len;
1695 	unsigned long ptr;
1696 	unsigned long ptr_end;
1697 
1698 	ptr = btrfs_item_ptr_offset(eb, slot);
1699 	ptr_end = ptr + item_size;
1700 	while (ptr < ptr_end) {
1701 		di = (struct btrfs_dir_item *)ptr;
1702 		if (verify_dir_item(root, eb, di))
1703 			return -EIO;
1704 		name_len = btrfs_dir_name_len(eb, di);
1705 		ret = replay_one_name(trans, root, path, eb, di, key);
1706 		if (ret)
1707 			return ret;
1708 		ptr = (unsigned long)(di + 1);
1709 		ptr += name_len;
1710 	}
1711 	return 0;
1712 }
1713 
1714 /*
1715  * directory replay has two parts.  There are the standard directory
1716  * items in the log copied from the subvolume, and range items
1717  * created in the log while the subvolume was logged.
1718  *
1719  * The range items tell us which parts of the key space the log
1720  * is authoritative for.  During replay, if a key in the subvolume
1721  * directory is in a logged range item, but not actually in the log
1722  * that means it was deleted from the directory before the fsync
1723  * and should be removed.
1724  */
1725 static noinline int find_dir_range(struct btrfs_root *root,
1726 				   struct btrfs_path *path,
1727 				   u64 dirid, int key_type,
1728 				   u64 *start_ret, u64 *end_ret)
1729 {
1730 	struct btrfs_key key;
1731 	u64 found_end;
1732 	struct btrfs_dir_log_item *item;
1733 	int ret;
1734 	int nritems;
1735 
1736 	if (*start_ret == (u64)-1)
1737 		return 1;
1738 
1739 	key.objectid = dirid;
1740 	key.type = key_type;
1741 	key.offset = *start_ret;
1742 
1743 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1744 	if (ret < 0)
1745 		goto out;
1746 	if (ret > 0) {
1747 		if (path->slots[0] == 0)
1748 			goto out;
1749 		path->slots[0]--;
1750 	}
1751 	if (ret != 0)
1752 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1753 
1754 	if (key.type != key_type || key.objectid != dirid) {
1755 		ret = 1;
1756 		goto next;
1757 	}
1758 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1759 			      struct btrfs_dir_log_item);
1760 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1761 
1762 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1763 		ret = 0;
1764 		*start_ret = key.offset;
1765 		*end_ret = found_end;
1766 		goto out;
1767 	}
1768 	ret = 1;
1769 next:
1770 	/* check the next slot in the tree to see if it is a valid item */
1771 	nritems = btrfs_header_nritems(path->nodes[0]);
1772 	if (path->slots[0] >= nritems) {
1773 		ret = btrfs_next_leaf(root, path);
1774 		if (ret)
1775 			goto out;
1776 	} else {
1777 		path->slots[0]++;
1778 	}
1779 
1780 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1781 
1782 	if (key.type != key_type || key.objectid != dirid) {
1783 		ret = 1;
1784 		goto out;
1785 	}
1786 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1787 			      struct btrfs_dir_log_item);
1788 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1789 	*start_ret = key.offset;
1790 	*end_ret = found_end;
1791 	ret = 0;
1792 out:
1793 	btrfs_release_path(path);
1794 	return ret;
1795 }
1796 
1797 /*
1798  * this looks for a given directory item in the log.  If the directory
1799  * item is not in the log, the item is removed and the inode it points
1800  * to is unlinked
1801  */
1802 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1803 				      struct btrfs_root *root,
1804 				      struct btrfs_root *log,
1805 				      struct btrfs_path *path,
1806 				      struct btrfs_path *log_path,
1807 				      struct inode *dir,
1808 				      struct btrfs_key *dir_key)
1809 {
1810 	int ret;
1811 	struct extent_buffer *eb;
1812 	int slot;
1813 	u32 item_size;
1814 	struct btrfs_dir_item *di;
1815 	struct btrfs_dir_item *log_di;
1816 	int name_len;
1817 	unsigned long ptr;
1818 	unsigned long ptr_end;
1819 	char *name;
1820 	struct inode *inode;
1821 	struct btrfs_key location;
1822 
1823 again:
1824 	eb = path->nodes[0];
1825 	slot = path->slots[0];
1826 	item_size = btrfs_item_size_nr(eb, slot);
1827 	ptr = btrfs_item_ptr_offset(eb, slot);
1828 	ptr_end = ptr + item_size;
1829 	while (ptr < ptr_end) {
1830 		di = (struct btrfs_dir_item *)ptr;
1831 		if (verify_dir_item(root, eb, di)) {
1832 			ret = -EIO;
1833 			goto out;
1834 		}
1835 
1836 		name_len = btrfs_dir_name_len(eb, di);
1837 		name = kmalloc(name_len, GFP_NOFS);
1838 		if (!name) {
1839 			ret = -ENOMEM;
1840 			goto out;
1841 		}
1842 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1843 				  name_len);
1844 		log_di = NULL;
1845 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1846 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1847 						       dir_key->objectid,
1848 						       name, name_len, 0);
1849 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1850 			log_di = btrfs_lookup_dir_index_item(trans, log,
1851 						     log_path,
1852 						     dir_key->objectid,
1853 						     dir_key->offset,
1854 						     name, name_len, 0);
1855 		}
1856 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1857 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1858 			btrfs_release_path(path);
1859 			btrfs_release_path(log_path);
1860 			inode = read_one_inode(root, location.objectid);
1861 			if (!inode) {
1862 				kfree(name);
1863 				return -EIO;
1864 			}
1865 
1866 			ret = link_to_fixup_dir(trans, root,
1867 						path, location.objectid);
1868 			if (ret) {
1869 				kfree(name);
1870 				iput(inode);
1871 				goto out;
1872 			}
1873 
1874 			inc_nlink(inode);
1875 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1876 						 name, name_len);
1877 			if (!ret)
1878 				ret = btrfs_run_delayed_items(trans, root);
1879 			kfree(name);
1880 			iput(inode);
1881 			if (ret)
1882 				goto out;
1883 
1884 			/* there might still be more names under this key
1885 			 * check and repeat if required
1886 			 */
1887 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1888 						0, 0);
1889 			if (ret == 0)
1890 				goto again;
1891 			ret = 0;
1892 			goto out;
1893 		} else if (IS_ERR(log_di)) {
1894 			kfree(name);
1895 			return PTR_ERR(log_di);
1896 		}
1897 		btrfs_release_path(log_path);
1898 		kfree(name);
1899 
1900 		ptr = (unsigned long)(di + 1);
1901 		ptr += name_len;
1902 	}
1903 	ret = 0;
1904 out:
1905 	btrfs_release_path(path);
1906 	btrfs_release_path(log_path);
1907 	return ret;
1908 }
1909 
1910 /*
1911  * deletion replay happens before we copy any new directory items
1912  * out of the log or out of backreferences from inodes.  It
1913  * scans the log to find ranges of keys that log is authoritative for,
1914  * and then scans the directory to find items in those ranges that are
1915  * not present in the log.
1916  *
1917  * Anything we don't find in the log is unlinked and removed from the
1918  * directory.
1919  */
1920 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1921 				       struct btrfs_root *root,
1922 				       struct btrfs_root *log,
1923 				       struct btrfs_path *path,
1924 				       u64 dirid, int del_all)
1925 {
1926 	u64 range_start;
1927 	u64 range_end;
1928 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1929 	int ret = 0;
1930 	struct btrfs_key dir_key;
1931 	struct btrfs_key found_key;
1932 	struct btrfs_path *log_path;
1933 	struct inode *dir;
1934 
1935 	dir_key.objectid = dirid;
1936 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1937 	log_path = btrfs_alloc_path();
1938 	if (!log_path)
1939 		return -ENOMEM;
1940 
1941 	dir = read_one_inode(root, dirid);
1942 	/* it isn't an error if the inode isn't there, that can happen
1943 	 * because we replay the deletes before we copy in the inode item
1944 	 * from the log
1945 	 */
1946 	if (!dir) {
1947 		btrfs_free_path(log_path);
1948 		return 0;
1949 	}
1950 again:
1951 	range_start = 0;
1952 	range_end = 0;
1953 	while (1) {
1954 		if (del_all)
1955 			range_end = (u64)-1;
1956 		else {
1957 			ret = find_dir_range(log, path, dirid, key_type,
1958 					     &range_start, &range_end);
1959 			if (ret != 0)
1960 				break;
1961 		}
1962 
1963 		dir_key.offset = range_start;
1964 		while (1) {
1965 			int nritems;
1966 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1967 						0, 0);
1968 			if (ret < 0)
1969 				goto out;
1970 
1971 			nritems = btrfs_header_nritems(path->nodes[0]);
1972 			if (path->slots[0] >= nritems) {
1973 				ret = btrfs_next_leaf(root, path);
1974 				if (ret)
1975 					break;
1976 			}
1977 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1978 					      path->slots[0]);
1979 			if (found_key.objectid != dirid ||
1980 			    found_key.type != dir_key.type)
1981 				goto next_type;
1982 
1983 			if (found_key.offset > range_end)
1984 				break;
1985 
1986 			ret = check_item_in_log(trans, root, log, path,
1987 						log_path, dir,
1988 						&found_key);
1989 			if (ret)
1990 				goto out;
1991 			if (found_key.offset == (u64)-1)
1992 				break;
1993 			dir_key.offset = found_key.offset + 1;
1994 		}
1995 		btrfs_release_path(path);
1996 		if (range_end == (u64)-1)
1997 			break;
1998 		range_start = range_end + 1;
1999 	}
2000 
2001 next_type:
2002 	ret = 0;
2003 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2004 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2005 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2006 		btrfs_release_path(path);
2007 		goto again;
2008 	}
2009 out:
2010 	btrfs_release_path(path);
2011 	btrfs_free_path(log_path);
2012 	iput(dir);
2013 	return ret;
2014 }
2015 
2016 /*
2017  * the process_func used to replay items from the log tree.  This
2018  * gets called in two different stages.  The first stage just looks
2019  * for inodes and makes sure they are all copied into the subvolume.
2020  *
2021  * The second stage copies all the other item types from the log into
2022  * the subvolume.  The two stage approach is slower, but gets rid of
2023  * lots of complexity around inodes referencing other inodes that exist
2024  * only in the log (references come from either directory items or inode
2025  * back refs).
2026  */
2027 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2028 			     struct walk_control *wc, u64 gen)
2029 {
2030 	int nritems;
2031 	struct btrfs_path *path;
2032 	struct btrfs_root *root = wc->replay_dest;
2033 	struct btrfs_key key;
2034 	int level;
2035 	int i;
2036 	int ret;
2037 
2038 	ret = btrfs_read_buffer(eb, gen);
2039 	if (ret)
2040 		return ret;
2041 
2042 	level = btrfs_header_level(eb);
2043 
2044 	if (level != 0)
2045 		return 0;
2046 
2047 	path = btrfs_alloc_path();
2048 	if (!path)
2049 		return -ENOMEM;
2050 
2051 	nritems = btrfs_header_nritems(eb);
2052 	for (i = 0; i < nritems; i++) {
2053 		btrfs_item_key_to_cpu(eb, &key, i);
2054 
2055 		/* inode keys are done during the first stage */
2056 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2057 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2058 			struct btrfs_inode_item *inode_item;
2059 			u32 mode;
2060 
2061 			inode_item = btrfs_item_ptr(eb, i,
2062 					    struct btrfs_inode_item);
2063 			mode = btrfs_inode_mode(eb, inode_item);
2064 			if (S_ISDIR(mode)) {
2065 				ret = replay_dir_deletes(wc->trans,
2066 					 root, log, path, key.objectid, 0);
2067 				if (ret)
2068 					break;
2069 			}
2070 			ret = overwrite_item(wc->trans, root, path,
2071 					     eb, i, &key);
2072 			if (ret)
2073 				break;
2074 
2075 			/* for regular files, make sure corresponding
2076 			 * orhpan item exist. extents past the new EOF
2077 			 * will be truncated later by orphan cleanup.
2078 			 */
2079 			if (S_ISREG(mode)) {
2080 				ret = insert_orphan_item(wc->trans, root,
2081 							 key.objectid);
2082 				if (ret)
2083 					break;
2084 			}
2085 
2086 			ret = link_to_fixup_dir(wc->trans, root,
2087 						path, key.objectid);
2088 			if (ret)
2089 				break;
2090 		}
2091 
2092 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2093 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2094 			ret = replay_one_dir_item(wc->trans, root, path,
2095 						  eb, i, &key);
2096 			if (ret)
2097 				break;
2098 		}
2099 
2100 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2101 			continue;
2102 
2103 		/* these keys are simply copied */
2104 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2105 			ret = overwrite_item(wc->trans, root, path,
2106 					     eb, i, &key);
2107 			if (ret)
2108 				break;
2109 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2110 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2111 			ret = add_inode_ref(wc->trans, root, log, path,
2112 					    eb, i, &key);
2113 			if (ret && ret != -ENOENT)
2114 				break;
2115 			ret = 0;
2116 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2117 			ret = replay_one_extent(wc->trans, root, path,
2118 						eb, i, &key);
2119 			if (ret)
2120 				break;
2121 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2122 			ret = replay_one_dir_item(wc->trans, root, path,
2123 						  eb, i, &key);
2124 			if (ret)
2125 				break;
2126 		}
2127 	}
2128 	btrfs_free_path(path);
2129 	return ret;
2130 }
2131 
2132 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2133 				   struct btrfs_root *root,
2134 				   struct btrfs_path *path, int *level,
2135 				   struct walk_control *wc)
2136 {
2137 	u64 root_owner;
2138 	u64 bytenr;
2139 	u64 ptr_gen;
2140 	struct extent_buffer *next;
2141 	struct extent_buffer *cur;
2142 	struct extent_buffer *parent;
2143 	u32 blocksize;
2144 	int ret = 0;
2145 
2146 	WARN_ON(*level < 0);
2147 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2148 
2149 	while (*level > 0) {
2150 		WARN_ON(*level < 0);
2151 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2152 		cur = path->nodes[*level];
2153 
2154 		WARN_ON(btrfs_header_level(cur) != *level);
2155 
2156 		if (path->slots[*level] >=
2157 		    btrfs_header_nritems(cur))
2158 			break;
2159 
2160 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2161 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2162 		blocksize = btrfs_level_size(root, *level - 1);
2163 
2164 		parent = path->nodes[*level];
2165 		root_owner = btrfs_header_owner(parent);
2166 
2167 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2168 		if (!next)
2169 			return -ENOMEM;
2170 
2171 		if (*level == 1) {
2172 			ret = wc->process_func(root, next, wc, ptr_gen);
2173 			if (ret) {
2174 				free_extent_buffer(next);
2175 				return ret;
2176 			}
2177 
2178 			path->slots[*level]++;
2179 			if (wc->free) {
2180 				ret = btrfs_read_buffer(next, ptr_gen);
2181 				if (ret) {
2182 					free_extent_buffer(next);
2183 					return ret;
2184 				}
2185 
2186 				if (trans) {
2187 					btrfs_tree_lock(next);
2188 					btrfs_set_lock_blocking(next);
2189 					clean_tree_block(trans, root, next);
2190 					btrfs_wait_tree_block_writeback(next);
2191 					btrfs_tree_unlock(next);
2192 				}
2193 
2194 				WARN_ON(root_owner !=
2195 					BTRFS_TREE_LOG_OBJECTID);
2196 				ret = btrfs_free_and_pin_reserved_extent(root,
2197 							 bytenr, blocksize);
2198 				if (ret) {
2199 					free_extent_buffer(next);
2200 					return ret;
2201 				}
2202 			}
2203 			free_extent_buffer(next);
2204 			continue;
2205 		}
2206 		ret = btrfs_read_buffer(next, ptr_gen);
2207 		if (ret) {
2208 			free_extent_buffer(next);
2209 			return ret;
2210 		}
2211 
2212 		WARN_ON(*level <= 0);
2213 		if (path->nodes[*level-1])
2214 			free_extent_buffer(path->nodes[*level-1]);
2215 		path->nodes[*level-1] = next;
2216 		*level = btrfs_header_level(next);
2217 		path->slots[*level] = 0;
2218 		cond_resched();
2219 	}
2220 	WARN_ON(*level < 0);
2221 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2222 
2223 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2224 
2225 	cond_resched();
2226 	return 0;
2227 }
2228 
2229 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2230 				 struct btrfs_root *root,
2231 				 struct btrfs_path *path, int *level,
2232 				 struct walk_control *wc)
2233 {
2234 	u64 root_owner;
2235 	int i;
2236 	int slot;
2237 	int ret;
2238 
2239 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2240 		slot = path->slots[i];
2241 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2242 			path->slots[i]++;
2243 			*level = i;
2244 			WARN_ON(*level == 0);
2245 			return 0;
2246 		} else {
2247 			struct extent_buffer *parent;
2248 			if (path->nodes[*level] == root->node)
2249 				parent = path->nodes[*level];
2250 			else
2251 				parent = path->nodes[*level + 1];
2252 
2253 			root_owner = btrfs_header_owner(parent);
2254 			ret = wc->process_func(root, path->nodes[*level], wc,
2255 				 btrfs_header_generation(path->nodes[*level]));
2256 			if (ret)
2257 				return ret;
2258 
2259 			if (wc->free) {
2260 				struct extent_buffer *next;
2261 
2262 				next = path->nodes[*level];
2263 
2264 				if (trans) {
2265 					btrfs_tree_lock(next);
2266 					btrfs_set_lock_blocking(next);
2267 					clean_tree_block(trans, root, next);
2268 					btrfs_wait_tree_block_writeback(next);
2269 					btrfs_tree_unlock(next);
2270 				}
2271 
2272 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2273 				ret = btrfs_free_and_pin_reserved_extent(root,
2274 						path->nodes[*level]->start,
2275 						path->nodes[*level]->len);
2276 				if (ret)
2277 					return ret;
2278 			}
2279 			free_extent_buffer(path->nodes[*level]);
2280 			path->nodes[*level] = NULL;
2281 			*level = i + 1;
2282 		}
2283 	}
2284 	return 1;
2285 }
2286 
2287 /*
2288  * drop the reference count on the tree rooted at 'snap'.  This traverses
2289  * the tree freeing any blocks that have a ref count of zero after being
2290  * decremented.
2291  */
2292 static int walk_log_tree(struct btrfs_trans_handle *trans,
2293 			 struct btrfs_root *log, struct walk_control *wc)
2294 {
2295 	int ret = 0;
2296 	int wret;
2297 	int level;
2298 	struct btrfs_path *path;
2299 	int orig_level;
2300 
2301 	path = btrfs_alloc_path();
2302 	if (!path)
2303 		return -ENOMEM;
2304 
2305 	level = btrfs_header_level(log->node);
2306 	orig_level = level;
2307 	path->nodes[level] = log->node;
2308 	extent_buffer_get(log->node);
2309 	path->slots[level] = 0;
2310 
2311 	while (1) {
2312 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2313 		if (wret > 0)
2314 			break;
2315 		if (wret < 0) {
2316 			ret = wret;
2317 			goto out;
2318 		}
2319 
2320 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2321 		if (wret > 0)
2322 			break;
2323 		if (wret < 0) {
2324 			ret = wret;
2325 			goto out;
2326 		}
2327 	}
2328 
2329 	/* was the root node processed? if not, catch it here */
2330 	if (path->nodes[orig_level]) {
2331 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2332 			 btrfs_header_generation(path->nodes[orig_level]));
2333 		if (ret)
2334 			goto out;
2335 		if (wc->free) {
2336 			struct extent_buffer *next;
2337 
2338 			next = path->nodes[orig_level];
2339 
2340 			if (trans) {
2341 				btrfs_tree_lock(next);
2342 				btrfs_set_lock_blocking(next);
2343 				clean_tree_block(trans, log, next);
2344 				btrfs_wait_tree_block_writeback(next);
2345 				btrfs_tree_unlock(next);
2346 			}
2347 
2348 			WARN_ON(log->root_key.objectid !=
2349 				BTRFS_TREE_LOG_OBJECTID);
2350 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2351 							 next->len);
2352 			if (ret)
2353 				goto out;
2354 		}
2355 	}
2356 
2357 out:
2358 	btrfs_free_path(path);
2359 	return ret;
2360 }
2361 
2362 /*
2363  * helper function to update the item for a given subvolumes log root
2364  * in the tree of log roots
2365  */
2366 static int update_log_root(struct btrfs_trans_handle *trans,
2367 			   struct btrfs_root *log)
2368 {
2369 	int ret;
2370 
2371 	if (log->log_transid == 1) {
2372 		/* insert root item on the first sync */
2373 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2374 				&log->root_key, &log->root_item);
2375 	} else {
2376 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2377 				&log->root_key, &log->root_item);
2378 	}
2379 	return ret;
2380 }
2381 
2382 static void wait_log_commit(struct btrfs_trans_handle *trans,
2383 			    struct btrfs_root *root, int transid)
2384 {
2385 	DEFINE_WAIT(wait);
2386 	int index = transid % 2;
2387 
2388 	/*
2389 	 * we only allow two pending log transactions at a time,
2390 	 * so we know that if ours is more than 2 older than the
2391 	 * current transaction, we're done
2392 	 */
2393 	do {
2394 		prepare_to_wait(&root->log_commit_wait[index],
2395 				&wait, TASK_UNINTERRUPTIBLE);
2396 		mutex_unlock(&root->log_mutex);
2397 
2398 		if (root->log_transid_committed < transid &&
2399 		    atomic_read(&root->log_commit[index]))
2400 			schedule();
2401 
2402 		finish_wait(&root->log_commit_wait[index], &wait);
2403 		mutex_lock(&root->log_mutex);
2404 	} while (root->log_transid_committed < transid &&
2405 		 atomic_read(&root->log_commit[index]));
2406 }
2407 
2408 static void wait_for_writer(struct btrfs_trans_handle *trans,
2409 			    struct btrfs_root *root)
2410 {
2411 	DEFINE_WAIT(wait);
2412 
2413 	while (atomic_read(&root->log_writers)) {
2414 		prepare_to_wait(&root->log_writer_wait,
2415 				&wait, TASK_UNINTERRUPTIBLE);
2416 		mutex_unlock(&root->log_mutex);
2417 		if (atomic_read(&root->log_writers))
2418 			schedule();
2419 		mutex_lock(&root->log_mutex);
2420 		finish_wait(&root->log_writer_wait, &wait);
2421 	}
2422 }
2423 
2424 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2425 					struct btrfs_log_ctx *ctx)
2426 {
2427 	if (!ctx)
2428 		return;
2429 
2430 	mutex_lock(&root->log_mutex);
2431 	list_del_init(&ctx->list);
2432 	mutex_unlock(&root->log_mutex);
2433 }
2434 
2435 /*
2436  * Invoked in log mutex context, or be sure there is no other task which
2437  * can access the list.
2438  */
2439 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2440 					     int index, int error)
2441 {
2442 	struct btrfs_log_ctx *ctx;
2443 
2444 	if (!error) {
2445 		INIT_LIST_HEAD(&root->log_ctxs[index]);
2446 		return;
2447 	}
2448 
2449 	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2450 		ctx->log_ret = error;
2451 
2452 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2453 }
2454 
2455 /*
2456  * btrfs_sync_log does sends a given tree log down to the disk and
2457  * updates the super blocks to record it.  When this call is done,
2458  * you know that any inodes previously logged are safely on disk only
2459  * if it returns 0.
2460  *
2461  * Any other return value means you need to call btrfs_commit_transaction.
2462  * Some of the edge cases for fsyncing directories that have had unlinks
2463  * or renames done in the past mean that sometimes the only safe
2464  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2465  * that has happened.
2466  */
2467 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2468 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2469 {
2470 	int index1;
2471 	int index2;
2472 	int mark;
2473 	int ret;
2474 	struct btrfs_root *log = root->log_root;
2475 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2476 	int log_transid = 0;
2477 	struct btrfs_log_ctx root_log_ctx;
2478 	struct blk_plug plug;
2479 
2480 	mutex_lock(&root->log_mutex);
2481 	log_transid = ctx->log_transid;
2482 	if (root->log_transid_committed >= log_transid) {
2483 		mutex_unlock(&root->log_mutex);
2484 		return ctx->log_ret;
2485 	}
2486 
2487 	index1 = log_transid % 2;
2488 	if (atomic_read(&root->log_commit[index1])) {
2489 		wait_log_commit(trans, root, log_transid);
2490 		mutex_unlock(&root->log_mutex);
2491 		return ctx->log_ret;
2492 	}
2493 	ASSERT(log_transid == root->log_transid);
2494 	atomic_set(&root->log_commit[index1], 1);
2495 
2496 	/* wait for previous tree log sync to complete */
2497 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2498 		wait_log_commit(trans, root, log_transid - 1);
2499 
2500 	while (1) {
2501 		int batch = atomic_read(&root->log_batch);
2502 		/* when we're on an ssd, just kick the log commit out */
2503 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2504 			mutex_unlock(&root->log_mutex);
2505 			schedule_timeout_uninterruptible(1);
2506 			mutex_lock(&root->log_mutex);
2507 		}
2508 		wait_for_writer(trans, root);
2509 		if (batch == atomic_read(&root->log_batch))
2510 			break;
2511 	}
2512 
2513 	/* bail out if we need to do a full commit */
2514 	if (ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) ==
2515 	    trans->transid) {
2516 		ret = -EAGAIN;
2517 		btrfs_free_logged_extents(log, log_transid);
2518 		mutex_unlock(&root->log_mutex);
2519 		goto out;
2520 	}
2521 
2522 	if (log_transid % 2 == 0)
2523 		mark = EXTENT_DIRTY;
2524 	else
2525 		mark = EXTENT_NEW;
2526 
2527 	/* we start IO on  all the marked extents here, but we don't actually
2528 	 * wait for them until later.
2529 	 */
2530 	blk_start_plug(&plug);
2531 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2532 	if (ret) {
2533 		blk_finish_plug(&plug);
2534 		btrfs_abort_transaction(trans, root, ret);
2535 		btrfs_free_logged_extents(log, log_transid);
2536 		ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2537 								trans->transid;
2538 		mutex_unlock(&root->log_mutex);
2539 		goto out;
2540 	}
2541 
2542 	btrfs_set_root_node(&log->root_item, log->node);
2543 
2544 	root->log_transid++;
2545 	log->log_transid = root->log_transid;
2546 	root->log_start_pid = 0;
2547 	/*
2548 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2549 	 * in their headers. new modifications of the log will be written to
2550 	 * new positions. so it's safe to allow log writers to go in.
2551 	 */
2552 	mutex_unlock(&root->log_mutex);
2553 
2554 	btrfs_init_log_ctx(&root_log_ctx);
2555 
2556 	mutex_lock(&log_root_tree->log_mutex);
2557 	atomic_inc(&log_root_tree->log_batch);
2558 	atomic_inc(&log_root_tree->log_writers);
2559 
2560 	index2 = log_root_tree->log_transid % 2;
2561 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2562 	root_log_ctx.log_transid = log_root_tree->log_transid;
2563 
2564 	mutex_unlock(&log_root_tree->log_mutex);
2565 
2566 	ret = update_log_root(trans, log);
2567 
2568 	mutex_lock(&log_root_tree->log_mutex);
2569 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2570 		smp_mb();
2571 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2572 			wake_up(&log_root_tree->log_writer_wait);
2573 	}
2574 
2575 	if (ret) {
2576 		if (!list_empty(&root_log_ctx.list))
2577 			list_del_init(&root_log_ctx.list);
2578 
2579 		blk_finish_plug(&plug);
2580 		ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2581 								trans->transid;
2582 		if (ret != -ENOSPC) {
2583 			btrfs_abort_transaction(trans, root, ret);
2584 			mutex_unlock(&log_root_tree->log_mutex);
2585 			goto out;
2586 		}
2587 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2588 		btrfs_free_logged_extents(log, log_transid);
2589 		mutex_unlock(&log_root_tree->log_mutex);
2590 		ret = -EAGAIN;
2591 		goto out;
2592 	}
2593 
2594 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2595 		mutex_unlock(&log_root_tree->log_mutex);
2596 		ret = root_log_ctx.log_ret;
2597 		goto out;
2598 	}
2599 
2600 	index2 = root_log_ctx.log_transid % 2;
2601 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2602 		blk_finish_plug(&plug);
2603 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2604 		wait_log_commit(trans, log_root_tree,
2605 				root_log_ctx.log_transid);
2606 		btrfs_free_logged_extents(log, log_transid);
2607 		mutex_unlock(&log_root_tree->log_mutex);
2608 		ret = root_log_ctx.log_ret;
2609 		goto out;
2610 	}
2611 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2612 	atomic_set(&log_root_tree->log_commit[index2], 1);
2613 
2614 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2615 		wait_log_commit(trans, log_root_tree,
2616 				root_log_ctx.log_transid - 1);
2617 	}
2618 
2619 	wait_for_writer(trans, log_root_tree);
2620 
2621 	/*
2622 	 * now that we've moved on to the tree of log tree roots,
2623 	 * check the full commit flag again
2624 	 */
2625 	if (ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) ==
2626 	    trans->transid) {
2627 		blk_finish_plug(&plug);
2628 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2629 		btrfs_free_logged_extents(log, log_transid);
2630 		mutex_unlock(&log_root_tree->log_mutex);
2631 		ret = -EAGAIN;
2632 		goto out_wake_log_root;
2633 	}
2634 
2635 	ret = btrfs_write_marked_extents(log_root_tree,
2636 					 &log_root_tree->dirty_log_pages,
2637 					 EXTENT_DIRTY | EXTENT_NEW);
2638 	blk_finish_plug(&plug);
2639 	if (ret) {
2640 		ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2641 								trans->transid;
2642 		btrfs_abort_transaction(trans, root, ret);
2643 		btrfs_free_logged_extents(log, log_transid);
2644 		mutex_unlock(&log_root_tree->log_mutex);
2645 		goto out_wake_log_root;
2646 	}
2647 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2648 	btrfs_wait_marked_extents(log_root_tree,
2649 				  &log_root_tree->dirty_log_pages,
2650 				  EXTENT_NEW | EXTENT_DIRTY);
2651 	btrfs_wait_logged_extents(log, log_transid);
2652 
2653 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2654 				log_root_tree->node->start);
2655 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2656 				btrfs_header_level(log_root_tree->node));
2657 
2658 	log_root_tree->log_transid++;
2659 	mutex_unlock(&log_root_tree->log_mutex);
2660 
2661 	/*
2662 	 * nobody else is going to jump in and write the the ctree
2663 	 * super here because the log_commit atomic below is protecting
2664 	 * us.  We must be called with a transaction handle pinning
2665 	 * the running transaction open, so a full commit can't hop
2666 	 * in and cause problems either.
2667 	 */
2668 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2669 	if (ret) {
2670 		ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2671 								trans->transid;
2672 		btrfs_abort_transaction(trans, root, ret);
2673 		goto out_wake_log_root;
2674 	}
2675 
2676 	mutex_lock(&root->log_mutex);
2677 	if (root->last_log_commit < log_transid)
2678 		root->last_log_commit = log_transid;
2679 	mutex_unlock(&root->log_mutex);
2680 
2681 out_wake_log_root:
2682 	/*
2683 	 * We needn't get log_mutex here because we are sure all
2684 	 * the other tasks are blocked.
2685 	 */
2686 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2687 
2688 	mutex_lock(&log_root_tree->log_mutex);
2689 	log_root_tree->log_transid_committed++;
2690 	atomic_set(&log_root_tree->log_commit[index2], 0);
2691 	mutex_unlock(&log_root_tree->log_mutex);
2692 
2693 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2694 		wake_up(&log_root_tree->log_commit_wait[index2]);
2695 out:
2696 	/* See above. */
2697 	btrfs_remove_all_log_ctxs(root, index1, ret);
2698 
2699 	mutex_lock(&root->log_mutex);
2700 	root->log_transid_committed++;
2701 	atomic_set(&root->log_commit[index1], 0);
2702 	mutex_unlock(&root->log_mutex);
2703 
2704 	if (waitqueue_active(&root->log_commit_wait[index1]))
2705 		wake_up(&root->log_commit_wait[index1]);
2706 	return ret;
2707 }
2708 
2709 static void free_log_tree(struct btrfs_trans_handle *trans,
2710 			  struct btrfs_root *log)
2711 {
2712 	int ret;
2713 	u64 start;
2714 	u64 end;
2715 	struct walk_control wc = {
2716 		.free = 1,
2717 		.process_func = process_one_buffer
2718 	};
2719 
2720 	ret = walk_log_tree(trans, log, &wc);
2721 	/* I don't think this can happen but just in case */
2722 	if (ret)
2723 		btrfs_abort_transaction(trans, log, ret);
2724 
2725 	while (1) {
2726 		ret = find_first_extent_bit(&log->dirty_log_pages,
2727 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2728 				NULL);
2729 		if (ret)
2730 			break;
2731 
2732 		clear_extent_bits(&log->dirty_log_pages, start, end,
2733 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2734 	}
2735 
2736 	/*
2737 	 * We may have short-circuited the log tree with the full commit logic
2738 	 * and left ordered extents on our list, so clear these out to keep us
2739 	 * from leaking inodes and memory.
2740 	 */
2741 	btrfs_free_logged_extents(log, 0);
2742 	btrfs_free_logged_extents(log, 1);
2743 
2744 	free_extent_buffer(log->node);
2745 	kfree(log);
2746 }
2747 
2748 /*
2749  * free all the extents used by the tree log.  This should be called
2750  * at commit time of the full transaction
2751  */
2752 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2753 {
2754 	if (root->log_root) {
2755 		free_log_tree(trans, root->log_root);
2756 		root->log_root = NULL;
2757 	}
2758 	return 0;
2759 }
2760 
2761 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2762 			     struct btrfs_fs_info *fs_info)
2763 {
2764 	if (fs_info->log_root_tree) {
2765 		free_log_tree(trans, fs_info->log_root_tree);
2766 		fs_info->log_root_tree = NULL;
2767 	}
2768 	return 0;
2769 }
2770 
2771 /*
2772  * If both a file and directory are logged, and unlinks or renames are
2773  * mixed in, we have a few interesting corners:
2774  *
2775  * create file X in dir Y
2776  * link file X to X.link in dir Y
2777  * fsync file X
2778  * unlink file X but leave X.link
2779  * fsync dir Y
2780  *
2781  * After a crash we would expect only X.link to exist.  But file X
2782  * didn't get fsync'd again so the log has back refs for X and X.link.
2783  *
2784  * We solve this by removing directory entries and inode backrefs from the
2785  * log when a file that was logged in the current transaction is
2786  * unlinked.  Any later fsync will include the updated log entries, and
2787  * we'll be able to reconstruct the proper directory items from backrefs.
2788  *
2789  * This optimizations allows us to avoid relogging the entire inode
2790  * or the entire directory.
2791  */
2792 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2793 				 struct btrfs_root *root,
2794 				 const char *name, int name_len,
2795 				 struct inode *dir, u64 index)
2796 {
2797 	struct btrfs_root *log;
2798 	struct btrfs_dir_item *di;
2799 	struct btrfs_path *path;
2800 	int ret;
2801 	int err = 0;
2802 	int bytes_del = 0;
2803 	u64 dir_ino = btrfs_ino(dir);
2804 
2805 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2806 		return 0;
2807 
2808 	ret = join_running_log_trans(root);
2809 	if (ret)
2810 		return 0;
2811 
2812 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2813 
2814 	log = root->log_root;
2815 	path = btrfs_alloc_path();
2816 	if (!path) {
2817 		err = -ENOMEM;
2818 		goto out_unlock;
2819 	}
2820 
2821 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2822 				   name, name_len, -1);
2823 	if (IS_ERR(di)) {
2824 		err = PTR_ERR(di);
2825 		goto fail;
2826 	}
2827 	if (di) {
2828 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2829 		bytes_del += name_len;
2830 		if (ret) {
2831 			err = ret;
2832 			goto fail;
2833 		}
2834 	}
2835 	btrfs_release_path(path);
2836 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2837 					 index, name, name_len, -1);
2838 	if (IS_ERR(di)) {
2839 		err = PTR_ERR(di);
2840 		goto fail;
2841 	}
2842 	if (di) {
2843 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2844 		bytes_del += name_len;
2845 		if (ret) {
2846 			err = ret;
2847 			goto fail;
2848 		}
2849 	}
2850 
2851 	/* update the directory size in the log to reflect the names
2852 	 * we have removed
2853 	 */
2854 	if (bytes_del) {
2855 		struct btrfs_key key;
2856 
2857 		key.objectid = dir_ino;
2858 		key.offset = 0;
2859 		key.type = BTRFS_INODE_ITEM_KEY;
2860 		btrfs_release_path(path);
2861 
2862 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2863 		if (ret < 0) {
2864 			err = ret;
2865 			goto fail;
2866 		}
2867 		if (ret == 0) {
2868 			struct btrfs_inode_item *item;
2869 			u64 i_size;
2870 
2871 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2872 					      struct btrfs_inode_item);
2873 			i_size = btrfs_inode_size(path->nodes[0], item);
2874 			if (i_size > bytes_del)
2875 				i_size -= bytes_del;
2876 			else
2877 				i_size = 0;
2878 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2879 			btrfs_mark_buffer_dirty(path->nodes[0]);
2880 		} else
2881 			ret = 0;
2882 		btrfs_release_path(path);
2883 	}
2884 fail:
2885 	btrfs_free_path(path);
2886 out_unlock:
2887 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2888 	if (ret == -ENOSPC) {
2889 		root->fs_info->last_trans_log_full_commit = trans->transid;
2890 		ret = 0;
2891 	} else if (ret < 0)
2892 		btrfs_abort_transaction(trans, root, ret);
2893 
2894 	btrfs_end_log_trans(root);
2895 
2896 	return err;
2897 }
2898 
2899 /* see comments for btrfs_del_dir_entries_in_log */
2900 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2901 			       struct btrfs_root *root,
2902 			       const char *name, int name_len,
2903 			       struct inode *inode, u64 dirid)
2904 {
2905 	struct btrfs_root *log;
2906 	u64 index;
2907 	int ret;
2908 
2909 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2910 		return 0;
2911 
2912 	ret = join_running_log_trans(root);
2913 	if (ret)
2914 		return 0;
2915 	log = root->log_root;
2916 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2917 
2918 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2919 				  dirid, &index);
2920 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2921 	if (ret == -ENOSPC) {
2922 		root->fs_info->last_trans_log_full_commit = trans->transid;
2923 		ret = 0;
2924 	} else if (ret < 0 && ret != -ENOENT)
2925 		btrfs_abort_transaction(trans, root, ret);
2926 	btrfs_end_log_trans(root);
2927 
2928 	return ret;
2929 }
2930 
2931 /*
2932  * creates a range item in the log for 'dirid'.  first_offset and
2933  * last_offset tell us which parts of the key space the log should
2934  * be considered authoritative for.
2935  */
2936 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2937 				       struct btrfs_root *log,
2938 				       struct btrfs_path *path,
2939 				       int key_type, u64 dirid,
2940 				       u64 first_offset, u64 last_offset)
2941 {
2942 	int ret;
2943 	struct btrfs_key key;
2944 	struct btrfs_dir_log_item *item;
2945 
2946 	key.objectid = dirid;
2947 	key.offset = first_offset;
2948 	if (key_type == BTRFS_DIR_ITEM_KEY)
2949 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2950 	else
2951 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2952 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2953 	if (ret)
2954 		return ret;
2955 
2956 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2957 			      struct btrfs_dir_log_item);
2958 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2959 	btrfs_mark_buffer_dirty(path->nodes[0]);
2960 	btrfs_release_path(path);
2961 	return 0;
2962 }
2963 
2964 /*
2965  * log all the items included in the current transaction for a given
2966  * directory.  This also creates the range items in the log tree required
2967  * to replay anything deleted before the fsync
2968  */
2969 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2970 			  struct btrfs_root *root, struct inode *inode,
2971 			  struct btrfs_path *path,
2972 			  struct btrfs_path *dst_path, int key_type,
2973 			  u64 min_offset, u64 *last_offset_ret)
2974 {
2975 	struct btrfs_key min_key;
2976 	struct btrfs_root *log = root->log_root;
2977 	struct extent_buffer *src;
2978 	int err = 0;
2979 	int ret;
2980 	int i;
2981 	int nritems;
2982 	u64 first_offset = min_offset;
2983 	u64 last_offset = (u64)-1;
2984 	u64 ino = btrfs_ino(inode);
2985 
2986 	log = root->log_root;
2987 
2988 	min_key.objectid = ino;
2989 	min_key.type = key_type;
2990 	min_key.offset = min_offset;
2991 
2992 	path->keep_locks = 1;
2993 
2994 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2995 
2996 	/*
2997 	 * we didn't find anything from this transaction, see if there
2998 	 * is anything at all
2999 	 */
3000 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3001 		min_key.objectid = ino;
3002 		min_key.type = key_type;
3003 		min_key.offset = (u64)-1;
3004 		btrfs_release_path(path);
3005 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3006 		if (ret < 0) {
3007 			btrfs_release_path(path);
3008 			return ret;
3009 		}
3010 		ret = btrfs_previous_item(root, path, ino, key_type);
3011 
3012 		/* if ret == 0 there are items for this type,
3013 		 * create a range to tell us the last key of this type.
3014 		 * otherwise, there are no items in this directory after
3015 		 * *min_offset, and we create a range to indicate that.
3016 		 */
3017 		if (ret == 0) {
3018 			struct btrfs_key tmp;
3019 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3020 					      path->slots[0]);
3021 			if (key_type == tmp.type)
3022 				first_offset = max(min_offset, tmp.offset) + 1;
3023 		}
3024 		goto done;
3025 	}
3026 
3027 	/* go backward to find any previous key */
3028 	ret = btrfs_previous_item(root, path, ino, key_type);
3029 	if (ret == 0) {
3030 		struct btrfs_key tmp;
3031 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3032 		if (key_type == tmp.type) {
3033 			first_offset = tmp.offset;
3034 			ret = overwrite_item(trans, log, dst_path,
3035 					     path->nodes[0], path->slots[0],
3036 					     &tmp);
3037 			if (ret) {
3038 				err = ret;
3039 				goto done;
3040 			}
3041 		}
3042 	}
3043 	btrfs_release_path(path);
3044 
3045 	/* find the first key from this transaction again */
3046 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3047 	if (WARN_ON(ret != 0))
3048 		goto done;
3049 
3050 	/*
3051 	 * we have a block from this transaction, log every item in it
3052 	 * from our directory
3053 	 */
3054 	while (1) {
3055 		struct btrfs_key tmp;
3056 		src = path->nodes[0];
3057 		nritems = btrfs_header_nritems(src);
3058 		for (i = path->slots[0]; i < nritems; i++) {
3059 			btrfs_item_key_to_cpu(src, &min_key, i);
3060 
3061 			if (min_key.objectid != ino || min_key.type != key_type)
3062 				goto done;
3063 			ret = overwrite_item(trans, log, dst_path, src, i,
3064 					     &min_key);
3065 			if (ret) {
3066 				err = ret;
3067 				goto done;
3068 			}
3069 		}
3070 		path->slots[0] = nritems;
3071 
3072 		/*
3073 		 * look ahead to the next item and see if it is also
3074 		 * from this directory and from this transaction
3075 		 */
3076 		ret = btrfs_next_leaf(root, path);
3077 		if (ret == 1) {
3078 			last_offset = (u64)-1;
3079 			goto done;
3080 		}
3081 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3082 		if (tmp.objectid != ino || tmp.type != key_type) {
3083 			last_offset = (u64)-1;
3084 			goto done;
3085 		}
3086 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3087 			ret = overwrite_item(trans, log, dst_path,
3088 					     path->nodes[0], path->slots[0],
3089 					     &tmp);
3090 			if (ret)
3091 				err = ret;
3092 			else
3093 				last_offset = tmp.offset;
3094 			goto done;
3095 		}
3096 	}
3097 done:
3098 	btrfs_release_path(path);
3099 	btrfs_release_path(dst_path);
3100 
3101 	if (err == 0) {
3102 		*last_offset_ret = last_offset;
3103 		/*
3104 		 * insert the log range keys to indicate where the log
3105 		 * is valid
3106 		 */
3107 		ret = insert_dir_log_key(trans, log, path, key_type,
3108 					 ino, first_offset, last_offset);
3109 		if (ret)
3110 			err = ret;
3111 	}
3112 	return err;
3113 }
3114 
3115 /*
3116  * logging directories is very similar to logging inodes, We find all the items
3117  * from the current transaction and write them to the log.
3118  *
3119  * The recovery code scans the directory in the subvolume, and if it finds a
3120  * key in the range logged that is not present in the log tree, then it means
3121  * that dir entry was unlinked during the transaction.
3122  *
3123  * In order for that scan to work, we must include one key smaller than
3124  * the smallest logged by this transaction and one key larger than the largest
3125  * key logged by this transaction.
3126  */
3127 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3128 			  struct btrfs_root *root, struct inode *inode,
3129 			  struct btrfs_path *path,
3130 			  struct btrfs_path *dst_path)
3131 {
3132 	u64 min_key;
3133 	u64 max_key;
3134 	int ret;
3135 	int key_type = BTRFS_DIR_ITEM_KEY;
3136 
3137 again:
3138 	min_key = 0;
3139 	max_key = 0;
3140 	while (1) {
3141 		ret = log_dir_items(trans, root, inode, path,
3142 				    dst_path, key_type, min_key,
3143 				    &max_key);
3144 		if (ret)
3145 			return ret;
3146 		if (max_key == (u64)-1)
3147 			break;
3148 		min_key = max_key + 1;
3149 	}
3150 
3151 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3152 		key_type = BTRFS_DIR_INDEX_KEY;
3153 		goto again;
3154 	}
3155 	return 0;
3156 }
3157 
3158 /*
3159  * a helper function to drop items from the log before we relog an
3160  * inode.  max_key_type indicates the highest item type to remove.
3161  * This cannot be run for file data extents because it does not
3162  * free the extents they point to.
3163  */
3164 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3165 				  struct btrfs_root *log,
3166 				  struct btrfs_path *path,
3167 				  u64 objectid, int max_key_type)
3168 {
3169 	int ret;
3170 	struct btrfs_key key;
3171 	struct btrfs_key found_key;
3172 	int start_slot;
3173 
3174 	key.objectid = objectid;
3175 	key.type = max_key_type;
3176 	key.offset = (u64)-1;
3177 
3178 	while (1) {
3179 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3180 		BUG_ON(ret == 0); /* Logic error */
3181 		if (ret < 0)
3182 			break;
3183 
3184 		if (path->slots[0] == 0)
3185 			break;
3186 
3187 		path->slots[0]--;
3188 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3189 				      path->slots[0]);
3190 
3191 		if (found_key.objectid != objectid)
3192 			break;
3193 
3194 		found_key.offset = 0;
3195 		found_key.type = 0;
3196 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3197 				       &start_slot);
3198 
3199 		ret = btrfs_del_items(trans, log, path, start_slot,
3200 				      path->slots[0] - start_slot + 1);
3201 		/*
3202 		 * If start slot isn't 0 then we don't need to re-search, we've
3203 		 * found the last guy with the objectid in this tree.
3204 		 */
3205 		if (ret || start_slot != 0)
3206 			break;
3207 		btrfs_release_path(path);
3208 	}
3209 	btrfs_release_path(path);
3210 	if (ret > 0)
3211 		ret = 0;
3212 	return ret;
3213 }
3214 
3215 static void fill_inode_item(struct btrfs_trans_handle *trans,
3216 			    struct extent_buffer *leaf,
3217 			    struct btrfs_inode_item *item,
3218 			    struct inode *inode, int log_inode_only)
3219 {
3220 	struct btrfs_map_token token;
3221 
3222 	btrfs_init_map_token(&token);
3223 
3224 	if (log_inode_only) {
3225 		/* set the generation to zero so the recover code
3226 		 * can tell the difference between an logging
3227 		 * just to say 'this inode exists' and a logging
3228 		 * to say 'update this inode with these values'
3229 		 */
3230 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3231 		btrfs_set_token_inode_size(leaf, item, 0, &token);
3232 	} else {
3233 		btrfs_set_token_inode_generation(leaf, item,
3234 						 BTRFS_I(inode)->generation,
3235 						 &token);
3236 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3237 	}
3238 
3239 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3240 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3241 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3242 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3243 
3244 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3245 				     inode->i_atime.tv_sec, &token);
3246 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3247 				      inode->i_atime.tv_nsec, &token);
3248 
3249 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3250 				     inode->i_mtime.tv_sec, &token);
3251 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3252 				      inode->i_mtime.tv_nsec, &token);
3253 
3254 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3255 				     inode->i_ctime.tv_sec, &token);
3256 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3257 				      inode->i_ctime.tv_nsec, &token);
3258 
3259 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3260 				     &token);
3261 
3262 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3263 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3264 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3265 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3266 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3267 }
3268 
3269 static int log_inode_item(struct btrfs_trans_handle *trans,
3270 			  struct btrfs_root *log, struct btrfs_path *path,
3271 			  struct inode *inode)
3272 {
3273 	struct btrfs_inode_item *inode_item;
3274 	int ret;
3275 
3276 	ret = btrfs_insert_empty_item(trans, log, path,
3277 				      &BTRFS_I(inode)->location,
3278 				      sizeof(*inode_item));
3279 	if (ret && ret != -EEXIST)
3280 		return ret;
3281 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3282 				    struct btrfs_inode_item);
3283 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3284 	btrfs_release_path(path);
3285 	return 0;
3286 }
3287 
3288 static noinline int copy_items(struct btrfs_trans_handle *trans,
3289 			       struct inode *inode,
3290 			       struct btrfs_path *dst_path,
3291 			       struct btrfs_path *src_path, u64 *last_extent,
3292 			       int start_slot, int nr, int inode_only)
3293 {
3294 	unsigned long src_offset;
3295 	unsigned long dst_offset;
3296 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3297 	struct btrfs_file_extent_item *extent;
3298 	struct btrfs_inode_item *inode_item;
3299 	struct extent_buffer *src = src_path->nodes[0];
3300 	struct btrfs_key first_key, last_key, key;
3301 	int ret;
3302 	struct btrfs_key *ins_keys;
3303 	u32 *ins_sizes;
3304 	char *ins_data;
3305 	int i;
3306 	struct list_head ordered_sums;
3307 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3308 	bool has_extents = false;
3309 	bool need_find_last_extent = (*last_extent == 0);
3310 	bool done = false;
3311 
3312 	INIT_LIST_HEAD(&ordered_sums);
3313 
3314 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3315 			   nr * sizeof(u32), GFP_NOFS);
3316 	if (!ins_data)
3317 		return -ENOMEM;
3318 
3319 	first_key.objectid = (u64)-1;
3320 
3321 	ins_sizes = (u32 *)ins_data;
3322 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3323 
3324 	for (i = 0; i < nr; i++) {
3325 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3326 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3327 	}
3328 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3329 				       ins_keys, ins_sizes, nr);
3330 	if (ret) {
3331 		kfree(ins_data);
3332 		return ret;
3333 	}
3334 
3335 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3336 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3337 						   dst_path->slots[0]);
3338 
3339 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3340 
3341 		if ((i == (nr - 1)))
3342 			last_key = ins_keys[i];
3343 
3344 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3345 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3346 						    dst_path->slots[0],
3347 						    struct btrfs_inode_item);
3348 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3349 					inode, inode_only == LOG_INODE_EXISTS);
3350 		} else {
3351 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3352 					   src_offset, ins_sizes[i]);
3353 		}
3354 
3355 		/*
3356 		 * We set need_find_last_extent here in case we know we were
3357 		 * processing other items and then walk into the first extent in
3358 		 * the inode.  If we don't hit an extent then nothing changes,
3359 		 * we'll do the last search the next time around.
3360 		 */
3361 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3362 			has_extents = true;
3363 			if (need_find_last_extent &&
3364 			    first_key.objectid == (u64)-1)
3365 				first_key = ins_keys[i];
3366 		} else {
3367 			need_find_last_extent = false;
3368 		}
3369 
3370 		/* take a reference on file data extents so that truncates
3371 		 * or deletes of this inode don't have to relog the inode
3372 		 * again
3373 		 */
3374 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3375 		    !skip_csum) {
3376 			int found_type;
3377 			extent = btrfs_item_ptr(src, start_slot + i,
3378 						struct btrfs_file_extent_item);
3379 
3380 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3381 				continue;
3382 
3383 			found_type = btrfs_file_extent_type(src, extent);
3384 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3385 				u64 ds, dl, cs, cl;
3386 				ds = btrfs_file_extent_disk_bytenr(src,
3387 								extent);
3388 				/* ds == 0 is a hole */
3389 				if (ds == 0)
3390 					continue;
3391 
3392 				dl = btrfs_file_extent_disk_num_bytes(src,
3393 								extent);
3394 				cs = btrfs_file_extent_offset(src, extent);
3395 				cl = btrfs_file_extent_num_bytes(src,
3396 								extent);
3397 				if (btrfs_file_extent_compression(src,
3398 								  extent)) {
3399 					cs = 0;
3400 					cl = dl;
3401 				}
3402 
3403 				ret = btrfs_lookup_csums_range(
3404 						log->fs_info->csum_root,
3405 						ds + cs, ds + cs + cl - 1,
3406 						&ordered_sums, 0);
3407 				if (ret) {
3408 					btrfs_release_path(dst_path);
3409 					kfree(ins_data);
3410 					return ret;
3411 				}
3412 			}
3413 		}
3414 	}
3415 
3416 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3417 	btrfs_release_path(dst_path);
3418 	kfree(ins_data);
3419 
3420 	/*
3421 	 * we have to do this after the loop above to avoid changing the
3422 	 * log tree while trying to change the log tree.
3423 	 */
3424 	ret = 0;
3425 	while (!list_empty(&ordered_sums)) {
3426 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3427 						   struct btrfs_ordered_sum,
3428 						   list);
3429 		if (!ret)
3430 			ret = btrfs_csum_file_blocks(trans, log, sums);
3431 		list_del(&sums->list);
3432 		kfree(sums);
3433 	}
3434 
3435 	if (!has_extents)
3436 		return ret;
3437 
3438 	/*
3439 	 * Because we use btrfs_search_forward we could skip leaves that were
3440 	 * not modified and then assume *last_extent is valid when it really
3441 	 * isn't.  So back up to the previous leaf and read the end of the last
3442 	 * extent before we go and fill in holes.
3443 	 */
3444 	if (need_find_last_extent) {
3445 		u64 len;
3446 
3447 		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3448 		if (ret < 0)
3449 			return ret;
3450 		if (ret)
3451 			goto fill_holes;
3452 		if (src_path->slots[0])
3453 			src_path->slots[0]--;
3454 		src = src_path->nodes[0];
3455 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3456 		if (key.objectid != btrfs_ino(inode) ||
3457 		    key.type != BTRFS_EXTENT_DATA_KEY)
3458 			goto fill_holes;
3459 		extent = btrfs_item_ptr(src, src_path->slots[0],
3460 					struct btrfs_file_extent_item);
3461 		if (btrfs_file_extent_type(src, extent) ==
3462 		    BTRFS_FILE_EXTENT_INLINE) {
3463 			len = btrfs_file_extent_inline_len(src,
3464 							   src_path->slots[0],
3465 							   extent);
3466 			*last_extent = ALIGN(key.offset + len,
3467 					     log->sectorsize);
3468 		} else {
3469 			len = btrfs_file_extent_num_bytes(src, extent);
3470 			*last_extent = key.offset + len;
3471 		}
3472 	}
3473 fill_holes:
3474 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3475 	 * things could have happened
3476 	 *
3477 	 * 1) A merge could have happened, so we could currently be on a leaf
3478 	 * that holds what we were copying in the first place.
3479 	 * 2) A split could have happened, and now not all of the items we want
3480 	 * are on the same leaf.
3481 	 *
3482 	 * So we need to adjust how we search for holes, we need to drop the
3483 	 * path and re-search for the first extent key we found, and then walk
3484 	 * forward until we hit the last one we copied.
3485 	 */
3486 	if (need_find_last_extent) {
3487 		/* btrfs_prev_leaf could return 1 without releasing the path */
3488 		btrfs_release_path(src_path);
3489 		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3490 					src_path, 0, 0);
3491 		if (ret < 0)
3492 			return ret;
3493 		ASSERT(ret == 0);
3494 		src = src_path->nodes[0];
3495 		i = src_path->slots[0];
3496 	} else {
3497 		i = start_slot;
3498 	}
3499 
3500 	/*
3501 	 * Ok so here we need to go through and fill in any holes we may have
3502 	 * to make sure that holes are punched for those areas in case they had
3503 	 * extents previously.
3504 	 */
3505 	while (!done) {
3506 		u64 offset, len;
3507 		u64 extent_end;
3508 
3509 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3510 			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3511 			if (ret < 0)
3512 				return ret;
3513 			ASSERT(ret == 0);
3514 			src = src_path->nodes[0];
3515 			i = 0;
3516 		}
3517 
3518 		btrfs_item_key_to_cpu(src, &key, i);
3519 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3520 			done = true;
3521 		if (key.objectid != btrfs_ino(inode) ||
3522 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3523 			i++;
3524 			continue;
3525 		}
3526 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3527 		if (btrfs_file_extent_type(src, extent) ==
3528 		    BTRFS_FILE_EXTENT_INLINE) {
3529 			len = btrfs_file_extent_inline_len(src, i, extent);
3530 			extent_end = ALIGN(key.offset + len, log->sectorsize);
3531 		} else {
3532 			len = btrfs_file_extent_num_bytes(src, extent);
3533 			extent_end = key.offset + len;
3534 		}
3535 		i++;
3536 
3537 		if (*last_extent == key.offset) {
3538 			*last_extent = extent_end;
3539 			continue;
3540 		}
3541 		offset = *last_extent;
3542 		len = key.offset - *last_extent;
3543 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3544 					       offset, 0, 0, len, 0, len, 0,
3545 					       0, 0);
3546 		if (ret)
3547 			break;
3548 		*last_extent = offset + len;
3549 	}
3550 	/*
3551 	 * Need to let the callers know we dropped the path so they should
3552 	 * re-search.
3553 	 */
3554 	if (!ret && need_find_last_extent)
3555 		ret = 1;
3556 	return ret;
3557 }
3558 
3559 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3560 {
3561 	struct extent_map *em1, *em2;
3562 
3563 	em1 = list_entry(a, struct extent_map, list);
3564 	em2 = list_entry(b, struct extent_map, list);
3565 
3566 	if (em1->start < em2->start)
3567 		return -1;
3568 	else if (em1->start > em2->start)
3569 		return 1;
3570 	return 0;
3571 }
3572 
3573 static int log_one_extent(struct btrfs_trans_handle *trans,
3574 			  struct inode *inode, struct btrfs_root *root,
3575 			  struct extent_map *em, struct btrfs_path *path,
3576 			  struct list_head *logged_list)
3577 {
3578 	struct btrfs_root *log = root->log_root;
3579 	struct btrfs_file_extent_item *fi;
3580 	struct extent_buffer *leaf;
3581 	struct btrfs_ordered_extent *ordered;
3582 	struct list_head ordered_sums;
3583 	struct btrfs_map_token token;
3584 	struct btrfs_key key;
3585 	u64 mod_start = em->mod_start;
3586 	u64 mod_len = em->mod_len;
3587 	u64 csum_offset;
3588 	u64 csum_len;
3589 	u64 extent_offset = em->start - em->orig_start;
3590 	u64 block_len;
3591 	int ret;
3592 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3593 	int extent_inserted = 0;
3594 
3595 	INIT_LIST_HEAD(&ordered_sums);
3596 	btrfs_init_map_token(&token);
3597 
3598 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3599 				   em->start + em->len, NULL, 0, 1,
3600 				   sizeof(*fi), &extent_inserted);
3601 	if (ret)
3602 		return ret;
3603 
3604 	if (!extent_inserted) {
3605 		key.objectid = btrfs_ino(inode);
3606 		key.type = BTRFS_EXTENT_DATA_KEY;
3607 		key.offset = em->start;
3608 
3609 		ret = btrfs_insert_empty_item(trans, log, path, &key,
3610 					      sizeof(*fi));
3611 		if (ret)
3612 			return ret;
3613 	}
3614 	leaf = path->nodes[0];
3615 	fi = btrfs_item_ptr(leaf, path->slots[0],
3616 			    struct btrfs_file_extent_item);
3617 
3618 	btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3619 					       &token);
3620 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3621 		skip_csum = true;
3622 		btrfs_set_token_file_extent_type(leaf, fi,
3623 						 BTRFS_FILE_EXTENT_PREALLOC,
3624 						 &token);
3625 	} else {
3626 		btrfs_set_token_file_extent_type(leaf, fi,
3627 						 BTRFS_FILE_EXTENT_REG,
3628 						 &token);
3629 		if (em->block_start == EXTENT_MAP_HOLE)
3630 			skip_csum = true;
3631 	}
3632 
3633 	block_len = max(em->block_len, em->orig_block_len);
3634 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3635 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3636 							em->block_start,
3637 							&token);
3638 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3639 							   &token);
3640 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3641 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3642 							em->block_start -
3643 							extent_offset, &token);
3644 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3645 							   &token);
3646 	} else {
3647 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3648 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3649 							   &token);
3650 	}
3651 
3652 	btrfs_set_token_file_extent_offset(leaf, fi,
3653 					   em->start - em->orig_start,
3654 					   &token);
3655 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3656 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3657 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3658 						&token);
3659 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3660 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3661 	btrfs_mark_buffer_dirty(leaf);
3662 
3663 	btrfs_release_path(path);
3664 	if (ret) {
3665 		return ret;
3666 	}
3667 
3668 	if (skip_csum)
3669 		return 0;
3670 
3671 	/*
3672 	 * First check and see if our csums are on our outstanding ordered
3673 	 * extents.
3674 	 */
3675 	list_for_each_entry(ordered, logged_list, log_list) {
3676 		struct btrfs_ordered_sum *sum;
3677 
3678 		if (!mod_len)
3679 			break;
3680 
3681 		if (ordered->file_offset + ordered->len <= mod_start ||
3682 		    mod_start + mod_len <= ordered->file_offset)
3683 			continue;
3684 
3685 		/*
3686 		 * We are going to copy all the csums on this ordered extent, so
3687 		 * go ahead and adjust mod_start and mod_len in case this
3688 		 * ordered extent has already been logged.
3689 		 */
3690 		if (ordered->file_offset > mod_start) {
3691 			if (ordered->file_offset + ordered->len >=
3692 			    mod_start + mod_len)
3693 				mod_len = ordered->file_offset - mod_start;
3694 			/*
3695 			 * If we have this case
3696 			 *
3697 			 * |--------- logged extent ---------|
3698 			 *       |----- ordered extent ----|
3699 			 *
3700 			 * Just don't mess with mod_start and mod_len, we'll
3701 			 * just end up logging more csums than we need and it
3702 			 * will be ok.
3703 			 */
3704 		} else {
3705 			if (ordered->file_offset + ordered->len <
3706 			    mod_start + mod_len) {
3707 				mod_len = (mod_start + mod_len) -
3708 					(ordered->file_offset + ordered->len);
3709 				mod_start = ordered->file_offset +
3710 					ordered->len;
3711 			} else {
3712 				mod_len = 0;
3713 			}
3714 		}
3715 
3716 		/*
3717 		 * To keep us from looping for the above case of an ordered
3718 		 * extent that falls inside of the logged extent.
3719 		 */
3720 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3721 				     &ordered->flags))
3722 			continue;
3723 
3724 		if (ordered->csum_bytes_left) {
3725 			btrfs_start_ordered_extent(inode, ordered, 0);
3726 			wait_event(ordered->wait,
3727 				   ordered->csum_bytes_left == 0);
3728 		}
3729 
3730 		list_for_each_entry(sum, &ordered->list, list) {
3731 			ret = btrfs_csum_file_blocks(trans, log, sum);
3732 			if (ret)
3733 				goto unlocked;
3734 		}
3735 
3736 	}
3737 unlocked:
3738 
3739 	if (!mod_len || ret)
3740 		return ret;
3741 
3742 	if (em->compress_type) {
3743 		csum_offset = 0;
3744 		csum_len = block_len;
3745 	} else {
3746 		csum_offset = mod_start - em->start;
3747 		csum_len = mod_len;
3748 	}
3749 
3750 	/* block start is already adjusted for the file extent offset. */
3751 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3752 				       em->block_start + csum_offset,
3753 				       em->block_start + csum_offset +
3754 				       csum_len - 1, &ordered_sums, 0);
3755 	if (ret)
3756 		return ret;
3757 
3758 	while (!list_empty(&ordered_sums)) {
3759 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3760 						   struct btrfs_ordered_sum,
3761 						   list);
3762 		if (!ret)
3763 			ret = btrfs_csum_file_blocks(trans, log, sums);
3764 		list_del(&sums->list);
3765 		kfree(sums);
3766 	}
3767 
3768 	return ret;
3769 }
3770 
3771 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3772 				     struct btrfs_root *root,
3773 				     struct inode *inode,
3774 				     struct btrfs_path *path,
3775 				     struct list_head *logged_list)
3776 {
3777 	struct extent_map *em, *n;
3778 	struct list_head extents;
3779 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3780 	u64 test_gen;
3781 	int ret = 0;
3782 	int num = 0;
3783 
3784 	INIT_LIST_HEAD(&extents);
3785 
3786 	write_lock(&tree->lock);
3787 	test_gen = root->fs_info->last_trans_committed;
3788 
3789 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3790 		list_del_init(&em->list);
3791 
3792 		/*
3793 		 * Just an arbitrary number, this can be really CPU intensive
3794 		 * once we start getting a lot of extents, and really once we
3795 		 * have a bunch of extents we just want to commit since it will
3796 		 * be faster.
3797 		 */
3798 		if (++num > 32768) {
3799 			list_del_init(&tree->modified_extents);
3800 			ret = -EFBIG;
3801 			goto process;
3802 		}
3803 
3804 		if (em->generation <= test_gen)
3805 			continue;
3806 		/* Need a ref to keep it from getting evicted from cache */
3807 		atomic_inc(&em->refs);
3808 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3809 		list_add_tail(&em->list, &extents);
3810 		num++;
3811 	}
3812 
3813 	list_sort(NULL, &extents, extent_cmp);
3814 
3815 process:
3816 	while (!list_empty(&extents)) {
3817 		em = list_entry(extents.next, struct extent_map, list);
3818 
3819 		list_del_init(&em->list);
3820 
3821 		/*
3822 		 * If we had an error we just need to delete everybody from our
3823 		 * private list.
3824 		 */
3825 		if (ret) {
3826 			clear_em_logging(tree, em);
3827 			free_extent_map(em);
3828 			continue;
3829 		}
3830 
3831 		write_unlock(&tree->lock);
3832 
3833 		ret = log_one_extent(trans, inode, root, em, path, logged_list);
3834 		write_lock(&tree->lock);
3835 		clear_em_logging(tree, em);
3836 		free_extent_map(em);
3837 	}
3838 	WARN_ON(!list_empty(&extents));
3839 	write_unlock(&tree->lock);
3840 
3841 	btrfs_release_path(path);
3842 	return ret;
3843 }
3844 
3845 /* log a single inode in the tree log.
3846  * At least one parent directory for this inode must exist in the tree
3847  * or be logged already.
3848  *
3849  * Any items from this inode changed by the current transaction are copied
3850  * to the log tree.  An extra reference is taken on any extents in this
3851  * file, allowing us to avoid a whole pile of corner cases around logging
3852  * blocks that have been removed from the tree.
3853  *
3854  * See LOG_INODE_ALL and related defines for a description of what inode_only
3855  * does.
3856  *
3857  * This handles both files and directories.
3858  */
3859 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3860 			     struct btrfs_root *root, struct inode *inode,
3861 			     int inode_only)
3862 {
3863 	struct btrfs_path *path;
3864 	struct btrfs_path *dst_path;
3865 	struct btrfs_key min_key;
3866 	struct btrfs_key max_key;
3867 	struct btrfs_root *log = root->log_root;
3868 	struct extent_buffer *src = NULL;
3869 	LIST_HEAD(logged_list);
3870 	u64 last_extent = 0;
3871 	int err = 0;
3872 	int ret;
3873 	int nritems;
3874 	int ins_start_slot = 0;
3875 	int ins_nr;
3876 	bool fast_search = false;
3877 	u64 ino = btrfs_ino(inode);
3878 
3879 	path = btrfs_alloc_path();
3880 	if (!path)
3881 		return -ENOMEM;
3882 	dst_path = btrfs_alloc_path();
3883 	if (!dst_path) {
3884 		btrfs_free_path(path);
3885 		return -ENOMEM;
3886 	}
3887 
3888 	min_key.objectid = ino;
3889 	min_key.type = BTRFS_INODE_ITEM_KEY;
3890 	min_key.offset = 0;
3891 
3892 	max_key.objectid = ino;
3893 
3894 
3895 	/* today the code can only do partial logging of directories */
3896 	if (S_ISDIR(inode->i_mode) ||
3897 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3898 		       &BTRFS_I(inode)->runtime_flags) &&
3899 	     inode_only == LOG_INODE_EXISTS))
3900 		max_key.type = BTRFS_XATTR_ITEM_KEY;
3901 	else
3902 		max_key.type = (u8)-1;
3903 	max_key.offset = (u64)-1;
3904 
3905 	/* Only run delayed items if we are a dir or a new file */
3906 	if (S_ISDIR(inode->i_mode) ||
3907 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3908 		ret = btrfs_commit_inode_delayed_items(trans, inode);
3909 		if (ret) {
3910 			btrfs_free_path(path);
3911 			btrfs_free_path(dst_path);
3912 			return ret;
3913 		}
3914 	}
3915 
3916 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3917 
3918 	btrfs_get_logged_extents(inode, &logged_list);
3919 
3920 	/*
3921 	 * a brute force approach to making sure we get the most uptodate
3922 	 * copies of everything.
3923 	 */
3924 	if (S_ISDIR(inode->i_mode)) {
3925 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3926 
3927 		if (inode_only == LOG_INODE_EXISTS)
3928 			max_key_type = BTRFS_XATTR_ITEM_KEY;
3929 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3930 	} else {
3931 		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3932 				       &BTRFS_I(inode)->runtime_flags)) {
3933 			clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3934 				  &BTRFS_I(inode)->runtime_flags);
3935 			ret = btrfs_truncate_inode_items(trans, log,
3936 							 inode, 0, 0);
3937 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3938 					      &BTRFS_I(inode)->runtime_flags) ||
3939 			   inode_only == LOG_INODE_EXISTS) {
3940 			if (inode_only == LOG_INODE_ALL)
3941 				fast_search = true;
3942 			max_key.type = BTRFS_XATTR_ITEM_KEY;
3943 			ret = drop_objectid_items(trans, log, path, ino,
3944 						  max_key.type);
3945 		} else {
3946 			if (inode_only == LOG_INODE_ALL)
3947 				fast_search = true;
3948 			ret = log_inode_item(trans, log, dst_path, inode);
3949 			if (ret) {
3950 				err = ret;
3951 				goto out_unlock;
3952 			}
3953 			goto log_extents;
3954 		}
3955 
3956 	}
3957 	if (ret) {
3958 		err = ret;
3959 		goto out_unlock;
3960 	}
3961 	path->keep_locks = 1;
3962 
3963 	while (1) {
3964 		ins_nr = 0;
3965 		ret = btrfs_search_forward(root, &min_key,
3966 					   path, trans->transid);
3967 		if (ret != 0)
3968 			break;
3969 again:
3970 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
3971 		if (min_key.objectid != ino)
3972 			break;
3973 		if (min_key.type > max_key.type)
3974 			break;
3975 
3976 		src = path->nodes[0];
3977 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3978 			ins_nr++;
3979 			goto next_slot;
3980 		} else if (!ins_nr) {
3981 			ins_start_slot = path->slots[0];
3982 			ins_nr = 1;
3983 			goto next_slot;
3984 		}
3985 
3986 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
3987 				 ins_start_slot, ins_nr, inode_only);
3988 		if (ret < 0) {
3989 			err = ret;
3990 			goto out_unlock;
3991 		} if (ret) {
3992 			ins_nr = 0;
3993 			btrfs_release_path(path);
3994 			continue;
3995 		}
3996 		ins_nr = 1;
3997 		ins_start_slot = path->slots[0];
3998 next_slot:
3999 
4000 		nritems = btrfs_header_nritems(path->nodes[0]);
4001 		path->slots[0]++;
4002 		if (path->slots[0] < nritems) {
4003 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4004 					      path->slots[0]);
4005 			goto again;
4006 		}
4007 		if (ins_nr) {
4008 			ret = copy_items(trans, inode, dst_path, path,
4009 					 &last_extent, ins_start_slot,
4010 					 ins_nr, inode_only);
4011 			if (ret < 0) {
4012 				err = ret;
4013 				goto out_unlock;
4014 			}
4015 			ret = 0;
4016 			ins_nr = 0;
4017 		}
4018 		btrfs_release_path(path);
4019 
4020 		if (min_key.offset < (u64)-1) {
4021 			min_key.offset++;
4022 		} else if (min_key.type < max_key.type) {
4023 			min_key.type++;
4024 			min_key.offset = 0;
4025 		} else {
4026 			break;
4027 		}
4028 	}
4029 	if (ins_nr) {
4030 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4031 				 ins_start_slot, ins_nr, inode_only);
4032 		if (ret < 0) {
4033 			err = ret;
4034 			goto out_unlock;
4035 		}
4036 		ret = 0;
4037 		ins_nr = 0;
4038 	}
4039 
4040 log_extents:
4041 	btrfs_release_path(path);
4042 	btrfs_release_path(dst_path);
4043 	if (fast_search) {
4044 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4045 						&logged_list);
4046 		if (ret) {
4047 			err = ret;
4048 			goto out_unlock;
4049 		}
4050 	} else if (inode_only == LOG_INODE_ALL) {
4051 		struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4052 		struct extent_map *em, *n;
4053 
4054 		write_lock(&tree->lock);
4055 		list_for_each_entry_safe(em, n, &tree->modified_extents, list)
4056 			list_del_init(&em->list);
4057 		write_unlock(&tree->lock);
4058 	}
4059 
4060 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4061 		ret = log_directory_changes(trans, root, inode, path, dst_path);
4062 		if (ret) {
4063 			err = ret;
4064 			goto out_unlock;
4065 		}
4066 	}
4067 	BTRFS_I(inode)->logged_trans = trans->transid;
4068 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4069 out_unlock:
4070 	if (unlikely(err))
4071 		btrfs_put_logged_extents(&logged_list);
4072 	else
4073 		btrfs_submit_logged_extents(&logged_list, log);
4074 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4075 
4076 	btrfs_free_path(path);
4077 	btrfs_free_path(dst_path);
4078 	return err;
4079 }
4080 
4081 /*
4082  * follow the dentry parent pointers up the chain and see if any
4083  * of the directories in it require a full commit before they can
4084  * be logged.  Returns zero if nothing special needs to be done or 1 if
4085  * a full commit is required.
4086  */
4087 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4088 					       struct inode *inode,
4089 					       struct dentry *parent,
4090 					       struct super_block *sb,
4091 					       u64 last_committed)
4092 {
4093 	int ret = 0;
4094 	struct btrfs_root *root;
4095 	struct dentry *old_parent = NULL;
4096 	struct inode *orig_inode = inode;
4097 
4098 	/*
4099 	 * for regular files, if its inode is already on disk, we don't
4100 	 * have to worry about the parents at all.  This is because
4101 	 * we can use the last_unlink_trans field to record renames
4102 	 * and other fun in this file.
4103 	 */
4104 	if (S_ISREG(inode->i_mode) &&
4105 	    BTRFS_I(inode)->generation <= last_committed &&
4106 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4107 			goto out;
4108 
4109 	if (!S_ISDIR(inode->i_mode)) {
4110 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4111 			goto out;
4112 		inode = parent->d_inode;
4113 	}
4114 
4115 	while (1) {
4116 		/*
4117 		 * If we are logging a directory then we start with our inode,
4118 		 * not our parents inode, so we need to skipp setting the
4119 		 * logged_trans so that further down in the log code we don't
4120 		 * think this inode has already been logged.
4121 		 */
4122 		if (inode != orig_inode)
4123 			BTRFS_I(inode)->logged_trans = trans->transid;
4124 		smp_mb();
4125 
4126 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4127 			root = BTRFS_I(inode)->root;
4128 
4129 			/*
4130 			 * make sure any commits to the log are forced
4131 			 * to be full commits
4132 			 */
4133 			root->fs_info->last_trans_log_full_commit =
4134 				trans->transid;
4135 			ret = 1;
4136 			break;
4137 		}
4138 
4139 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4140 			break;
4141 
4142 		if (IS_ROOT(parent))
4143 			break;
4144 
4145 		parent = dget_parent(parent);
4146 		dput(old_parent);
4147 		old_parent = parent;
4148 		inode = parent->d_inode;
4149 
4150 	}
4151 	dput(old_parent);
4152 out:
4153 	return ret;
4154 }
4155 
4156 /*
4157  * helper function around btrfs_log_inode to make sure newly created
4158  * parent directories also end up in the log.  A minimal inode and backref
4159  * only logging is done of any parent directories that are older than
4160  * the last committed transaction
4161  */
4162 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4163 			    	  struct btrfs_root *root, struct inode *inode,
4164 			    	  struct dentry *parent, int exists_only,
4165 				  struct btrfs_log_ctx *ctx)
4166 {
4167 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4168 	struct super_block *sb;
4169 	struct dentry *old_parent = NULL;
4170 	int ret = 0;
4171 	u64 last_committed = root->fs_info->last_trans_committed;
4172 
4173 	sb = inode->i_sb;
4174 
4175 	if (btrfs_test_opt(root, NOTREELOG)) {
4176 		ret = 1;
4177 		goto end_no_trans;
4178 	}
4179 
4180 	if (root->fs_info->last_trans_log_full_commit >
4181 	    root->fs_info->last_trans_committed) {
4182 		ret = 1;
4183 		goto end_no_trans;
4184 	}
4185 
4186 	if (root != BTRFS_I(inode)->root ||
4187 	    btrfs_root_refs(&root->root_item) == 0) {
4188 		ret = 1;
4189 		goto end_no_trans;
4190 	}
4191 
4192 	ret = check_parent_dirs_for_sync(trans, inode, parent,
4193 					 sb, last_committed);
4194 	if (ret)
4195 		goto end_no_trans;
4196 
4197 	if (btrfs_inode_in_log(inode, trans->transid)) {
4198 		ret = BTRFS_NO_LOG_SYNC;
4199 		goto end_no_trans;
4200 	}
4201 
4202 	ret = start_log_trans(trans, root, ctx);
4203 	if (ret)
4204 		goto end_no_trans;
4205 
4206 	ret = btrfs_log_inode(trans, root, inode, inode_only);
4207 	if (ret)
4208 		goto end_trans;
4209 
4210 	/*
4211 	 * for regular files, if its inode is already on disk, we don't
4212 	 * have to worry about the parents at all.  This is because
4213 	 * we can use the last_unlink_trans field to record renames
4214 	 * and other fun in this file.
4215 	 */
4216 	if (S_ISREG(inode->i_mode) &&
4217 	    BTRFS_I(inode)->generation <= last_committed &&
4218 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4219 		ret = 0;
4220 		goto end_trans;
4221 	}
4222 
4223 	inode_only = LOG_INODE_EXISTS;
4224 	while (1) {
4225 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4226 			break;
4227 
4228 		inode = parent->d_inode;
4229 		if (root != BTRFS_I(inode)->root)
4230 			break;
4231 
4232 		if (BTRFS_I(inode)->generation >
4233 		    root->fs_info->last_trans_committed) {
4234 			ret = btrfs_log_inode(trans, root, inode, inode_only);
4235 			if (ret)
4236 				goto end_trans;
4237 		}
4238 		if (IS_ROOT(parent))
4239 			break;
4240 
4241 		parent = dget_parent(parent);
4242 		dput(old_parent);
4243 		old_parent = parent;
4244 	}
4245 	ret = 0;
4246 end_trans:
4247 	dput(old_parent);
4248 	if (ret < 0) {
4249 		root->fs_info->last_trans_log_full_commit = trans->transid;
4250 		ret = 1;
4251 	}
4252 
4253 	if (ret)
4254 		btrfs_remove_log_ctx(root, ctx);
4255 	btrfs_end_log_trans(root);
4256 end_no_trans:
4257 	return ret;
4258 }
4259 
4260 /*
4261  * it is not safe to log dentry if the chunk root has added new
4262  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4263  * If this returns 1, you must commit the transaction to safely get your
4264  * data on disk.
4265  */
4266 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4267 			  struct btrfs_root *root, struct dentry *dentry,
4268 			  struct btrfs_log_ctx *ctx)
4269 {
4270 	struct dentry *parent = dget_parent(dentry);
4271 	int ret;
4272 
4273 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4274 				     0, ctx);
4275 	dput(parent);
4276 
4277 	return ret;
4278 }
4279 
4280 /*
4281  * should be called during mount to recover any replay any log trees
4282  * from the FS
4283  */
4284 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4285 {
4286 	int ret;
4287 	struct btrfs_path *path;
4288 	struct btrfs_trans_handle *trans;
4289 	struct btrfs_key key;
4290 	struct btrfs_key found_key;
4291 	struct btrfs_key tmp_key;
4292 	struct btrfs_root *log;
4293 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4294 	struct walk_control wc = {
4295 		.process_func = process_one_buffer,
4296 		.stage = 0,
4297 	};
4298 
4299 	path = btrfs_alloc_path();
4300 	if (!path)
4301 		return -ENOMEM;
4302 
4303 	fs_info->log_root_recovering = 1;
4304 
4305 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4306 	if (IS_ERR(trans)) {
4307 		ret = PTR_ERR(trans);
4308 		goto error;
4309 	}
4310 
4311 	wc.trans = trans;
4312 	wc.pin = 1;
4313 
4314 	ret = walk_log_tree(trans, log_root_tree, &wc);
4315 	if (ret) {
4316 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
4317 			    "recovering log root tree.");
4318 		goto error;
4319 	}
4320 
4321 again:
4322 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
4323 	key.offset = (u64)-1;
4324 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4325 
4326 	while (1) {
4327 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4328 
4329 		if (ret < 0) {
4330 			btrfs_error(fs_info, ret,
4331 				    "Couldn't find tree log root.");
4332 			goto error;
4333 		}
4334 		if (ret > 0) {
4335 			if (path->slots[0] == 0)
4336 				break;
4337 			path->slots[0]--;
4338 		}
4339 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4340 				      path->slots[0]);
4341 		btrfs_release_path(path);
4342 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4343 			break;
4344 
4345 		log = btrfs_read_fs_root(log_root_tree, &found_key);
4346 		if (IS_ERR(log)) {
4347 			ret = PTR_ERR(log);
4348 			btrfs_error(fs_info, ret,
4349 				    "Couldn't read tree log root.");
4350 			goto error;
4351 		}
4352 
4353 		tmp_key.objectid = found_key.offset;
4354 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4355 		tmp_key.offset = (u64)-1;
4356 
4357 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4358 		if (IS_ERR(wc.replay_dest)) {
4359 			ret = PTR_ERR(wc.replay_dest);
4360 			free_extent_buffer(log->node);
4361 			free_extent_buffer(log->commit_root);
4362 			kfree(log);
4363 			btrfs_error(fs_info, ret, "Couldn't read target root "
4364 				    "for tree log recovery.");
4365 			goto error;
4366 		}
4367 
4368 		wc.replay_dest->log_root = log;
4369 		btrfs_record_root_in_trans(trans, wc.replay_dest);
4370 		ret = walk_log_tree(trans, log, &wc);
4371 
4372 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4373 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4374 						      path);
4375 		}
4376 
4377 		key.offset = found_key.offset - 1;
4378 		wc.replay_dest->log_root = NULL;
4379 		free_extent_buffer(log->node);
4380 		free_extent_buffer(log->commit_root);
4381 		kfree(log);
4382 
4383 		if (ret)
4384 			goto error;
4385 
4386 		if (found_key.offset == 0)
4387 			break;
4388 	}
4389 	btrfs_release_path(path);
4390 
4391 	/* step one is to pin it all, step two is to replay just inodes */
4392 	if (wc.pin) {
4393 		wc.pin = 0;
4394 		wc.process_func = replay_one_buffer;
4395 		wc.stage = LOG_WALK_REPLAY_INODES;
4396 		goto again;
4397 	}
4398 	/* step three is to replay everything */
4399 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4400 		wc.stage++;
4401 		goto again;
4402 	}
4403 
4404 	btrfs_free_path(path);
4405 
4406 	/* step 4: commit the transaction, which also unpins the blocks */
4407 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4408 	if (ret)
4409 		return ret;
4410 
4411 	free_extent_buffer(log_root_tree->node);
4412 	log_root_tree->log_root = NULL;
4413 	fs_info->log_root_recovering = 0;
4414 	kfree(log_root_tree);
4415 
4416 	return 0;
4417 error:
4418 	if (wc.trans)
4419 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4420 	btrfs_free_path(path);
4421 	return ret;
4422 }
4423 
4424 /*
4425  * there are some corner cases where we want to force a full
4426  * commit instead of allowing a directory to be logged.
4427  *
4428  * They revolve around files there were unlinked from the directory, and
4429  * this function updates the parent directory so that a full commit is
4430  * properly done if it is fsync'd later after the unlinks are done.
4431  */
4432 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4433 			     struct inode *dir, struct inode *inode,
4434 			     int for_rename)
4435 {
4436 	/*
4437 	 * when we're logging a file, if it hasn't been renamed
4438 	 * or unlinked, and its inode is fully committed on disk,
4439 	 * we don't have to worry about walking up the directory chain
4440 	 * to log its parents.
4441 	 *
4442 	 * So, we use the last_unlink_trans field to put this transid
4443 	 * into the file.  When the file is logged we check it and
4444 	 * don't log the parents if the file is fully on disk.
4445 	 */
4446 	if (S_ISREG(inode->i_mode))
4447 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4448 
4449 	/*
4450 	 * if this directory was already logged any new
4451 	 * names for this file/dir will get recorded
4452 	 */
4453 	smp_mb();
4454 	if (BTRFS_I(dir)->logged_trans == trans->transid)
4455 		return;
4456 
4457 	/*
4458 	 * if the inode we're about to unlink was logged,
4459 	 * the log will be properly updated for any new names
4460 	 */
4461 	if (BTRFS_I(inode)->logged_trans == trans->transid)
4462 		return;
4463 
4464 	/*
4465 	 * when renaming files across directories, if the directory
4466 	 * there we're unlinking from gets fsync'd later on, there's
4467 	 * no way to find the destination directory later and fsync it
4468 	 * properly.  So, we have to be conservative and force commits
4469 	 * so the new name gets discovered.
4470 	 */
4471 	if (for_rename)
4472 		goto record;
4473 
4474 	/* we can safely do the unlink without any special recording */
4475 	return;
4476 
4477 record:
4478 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
4479 }
4480 
4481 /*
4482  * Call this after adding a new name for a file and it will properly
4483  * update the log to reflect the new name.
4484  *
4485  * It will return zero if all goes well, and it will return 1 if a
4486  * full transaction commit is required.
4487  */
4488 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4489 			struct inode *inode, struct inode *old_dir,
4490 			struct dentry *parent)
4491 {
4492 	struct btrfs_root * root = BTRFS_I(inode)->root;
4493 
4494 	/*
4495 	 * this will force the logging code to walk the dentry chain
4496 	 * up for the file
4497 	 */
4498 	if (S_ISREG(inode->i_mode))
4499 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4500 
4501 	/*
4502 	 * if this inode hasn't been logged and directory we're renaming it
4503 	 * from hasn't been logged, we don't need to log it
4504 	 */
4505 	if (BTRFS_I(inode)->logged_trans <=
4506 	    root->fs_info->last_trans_committed &&
4507 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4508 		    root->fs_info->last_trans_committed))
4509 		return 0;
4510 
4511 	return btrfs_log_inode_parent(trans, root, inode, parent, 1, NULL);
4512 }
4513 
4514