xref: /openbmc/linux/fs/btrfs/tree-log.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include <linux/iversion.h>
24 #include "ctree.h"
25 #include "tree-log.h"
26 #include "disk-io.h"
27 #include "locking.h"
28 #include "print-tree.h"
29 #include "backref.h"
30 #include "compression.h"
31 #include "qgroup.h"
32 #include "inode-map.h"
33 
34 /* magic values for the inode_only field in btrfs_log_inode:
35  *
36  * LOG_INODE_ALL means to log everything
37  * LOG_INODE_EXISTS means to log just enough to recreate the inode
38  * during log replay
39  */
40 #define LOG_INODE_ALL 0
41 #define LOG_INODE_EXISTS 1
42 #define LOG_OTHER_INODE 2
43 
44 /*
45  * directory trouble cases
46  *
47  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
48  * log, we must force a full commit before doing an fsync of the directory
49  * where the unlink was done.
50  * ---> record transid of last unlink/rename per directory
51  *
52  * mkdir foo/some_dir
53  * normal commit
54  * rename foo/some_dir foo2/some_dir
55  * mkdir foo/some_dir
56  * fsync foo/some_dir/some_file
57  *
58  * The fsync above will unlink the original some_dir without recording
59  * it in its new location (foo2).  After a crash, some_dir will be gone
60  * unless the fsync of some_file forces a full commit
61  *
62  * 2) we must log any new names for any file or dir that is in the fsync
63  * log. ---> check inode while renaming/linking.
64  *
65  * 2a) we must log any new names for any file or dir during rename
66  * when the directory they are being removed from was logged.
67  * ---> check inode and old parent dir during rename
68  *
69  *  2a is actually the more important variant.  With the extra logging
70  *  a crash might unlink the old name without recreating the new one
71  *
72  * 3) after a crash, we must go through any directories with a link count
73  * of zero and redo the rm -rf
74  *
75  * mkdir f1/foo
76  * normal commit
77  * rm -rf f1/foo
78  * fsync(f1)
79  *
80  * The directory f1 was fully removed from the FS, but fsync was never
81  * called on f1, only its parent dir.  After a crash the rm -rf must
82  * be replayed.  This must be able to recurse down the entire
83  * directory tree.  The inode link count fixup code takes care of the
84  * ugly details.
85  */
86 
87 /*
88  * stages for the tree walking.  The first
89  * stage (0) is to only pin down the blocks we find
90  * the second stage (1) is to make sure that all the inodes
91  * we find in the log are created in the subvolume.
92  *
93  * The last stage is to deal with directories and links and extents
94  * and all the other fun semantics
95  */
96 #define LOG_WALK_PIN_ONLY 0
97 #define LOG_WALK_REPLAY_INODES 1
98 #define LOG_WALK_REPLAY_DIR_INDEX 2
99 #define LOG_WALK_REPLAY_ALL 3
100 
101 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
102 			   struct btrfs_root *root, struct btrfs_inode *inode,
103 			   int inode_only,
104 			   const loff_t start,
105 			   const loff_t end,
106 			   struct btrfs_log_ctx *ctx);
107 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
108 			     struct btrfs_root *root,
109 			     struct btrfs_path *path, u64 objectid);
110 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
111 				       struct btrfs_root *root,
112 				       struct btrfs_root *log,
113 				       struct btrfs_path *path,
114 				       u64 dirid, int del_all);
115 
116 /*
117  * tree logging is a special write ahead log used to make sure that
118  * fsyncs and O_SYNCs can happen without doing full tree commits.
119  *
120  * Full tree commits are expensive because they require commonly
121  * modified blocks to be recowed, creating many dirty pages in the
122  * extent tree an 4x-6x higher write load than ext3.
123  *
124  * Instead of doing a tree commit on every fsync, we use the
125  * key ranges and transaction ids to find items for a given file or directory
126  * that have changed in this transaction.  Those items are copied into
127  * a special tree (one per subvolume root), that tree is written to disk
128  * and then the fsync is considered complete.
129  *
130  * After a crash, items are copied out of the log-tree back into the
131  * subvolume tree.  Any file data extents found are recorded in the extent
132  * allocation tree, and the log-tree freed.
133  *
134  * The log tree is read three times, once to pin down all the extents it is
135  * using in ram and once, once to create all the inodes logged in the tree
136  * and once to do all the other items.
137  */
138 
139 /*
140  * start a sub transaction and setup the log tree
141  * this increments the log tree writer count to make the people
142  * syncing the tree wait for us to finish
143  */
144 static int start_log_trans(struct btrfs_trans_handle *trans,
145 			   struct btrfs_root *root,
146 			   struct btrfs_log_ctx *ctx)
147 {
148 	struct btrfs_fs_info *fs_info = root->fs_info;
149 	int ret = 0;
150 
151 	mutex_lock(&root->log_mutex);
152 
153 	if (root->log_root) {
154 		if (btrfs_need_log_full_commit(fs_info, trans)) {
155 			ret = -EAGAIN;
156 			goto out;
157 		}
158 
159 		if (!root->log_start_pid) {
160 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
161 			root->log_start_pid = current->pid;
162 		} else if (root->log_start_pid != current->pid) {
163 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
164 		}
165 	} else {
166 		mutex_lock(&fs_info->tree_log_mutex);
167 		if (!fs_info->log_root_tree)
168 			ret = btrfs_init_log_root_tree(trans, fs_info);
169 		mutex_unlock(&fs_info->tree_log_mutex);
170 		if (ret)
171 			goto out;
172 
173 		ret = btrfs_add_log_tree(trans, root);
174 		if (ret)
175 			goto out;
176 
177 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
178 		root->log_start_pid = current->pid;
179 	}
180 
181 	atomic_inc(&root->log_batch);
182 	atomic_inc(&root->log_writers);
183 	if (ctx) {
184 		int index = root->log_transid % 2;
185 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
186 		ctx->log_transid = root->log_transid;
187 	}
188 
189 out:
190 	mutex_unlock(&root->log_mutex);
191 	return ret;
192 }
193 
194 /*
195  * returns 0 if there was a log transaction running and we were able
196  * to join, or returns -ENOENT if there were not transactions
197  * in progress
198  */
199 static int join_running_log_trans(struct btrfs_root *root)
200 {
201 	int ret = -ENOENT;
202 
203 	smp_mb();
204 	if (!root->log_root)
205 		return -ENOENT;
206 
207 	mutex_lock(&root->log_mutex);
208 	if (root->log_root) {
209 		ret = 0;
210 		atomic_inc(&root->log_writers);
211 	}
212 	mutex_unlock(&root->log_mutex);
213 	return ret;
214 }
215 
216 /*
217  * This either makes the current running log transaction wait
218  * until you call btrfs_end_log_trans() or it makes any future
219  * log transactions wait until you call btrfs_end_log_trans()
220  */
221 int btrfs_pin_log_trans(struct btrfs_root *root)
222 {
223 	int ret = -ENOENT;
224 
225 	mutex_lock(&root->log_mutex);
226 	atomic_inc(&root->log_writers);
227 	mutex_unlock(&root->log_mutex);
228 	return ret;
229 }
230 
231 /*
232  * indicate we're done making changes to the log tree
233  * and wake up anyone waiting to do a sync
234  */
235 void btrfs_end_log_trans(struct btrfs_root *root)
236 {
237 	if (atomic_dec_and_test(&root->log_writers)) {
238 		/*
239 		 * Implicit memory barrier after atomic_dec_and_test
240 		 */
241 		if (waitqueue_active(&root->log_writer_wait))
242 			wake_up(&root->log_writer_wait);
243 	}
244 }
245 
246 
247 /*
248  * the walk control struct is used to pass state down the chain when
249  * processing the log tree.  The stage field tells us which part
250  * of the log tree processing we are currently doing.  The others
251  * are state fields used for that specific part
252  */
253 struct walk_control {
254 	/* should we free the extent on disk when done?  This is used
255 	 * at transaction commit time while freeing a log tree
256 	 */
257 	int free;
258 
259 	/* should we write out the extent buffer?  This is used
260 	 * while flushing the log tree to disk during a sync
261 	 */
262 	int write;
263 
264 	/* should we wait for the extent buffer io to finish?  Also used
265 	 * while flushing the log tree to disk for a sync
266 	 */
267 	int wait;
268 
269 	/* pin only walk, we record which extents on disk belong to the
270 	 * log trees
271 	 */
272 	int pin;
273 
274 	/* what stage of the replay code we're currently in */
275 	int stage;
276 
277 	/* the root we are currently replaying */
278 	struct btrfs_root *replay_dest;
279 
280 	/* the trans handle for the current replay */
281 	struct btrfs_trans_handle *trans;
282 
283 	/* the function that gets used to process blocks we find in the
284 	 * tree.  Note the extent_buffer might not be up to date when it is
285 	 * passed in, and it must be checked or read if you need the data
286 	 * inside it
287 	 */
288 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
289 			    struct walk_control *wc, u64 gen, int level);
290 };
291 
292 /*
293  * process_func used to pin down extents, write them or wait on them
294  */
295 static int process_one_buffer(struct btrfs_root *log,
296 			      struct extent_buffer *eb,
297 			      struct walk_control *wc, u64 gen, int level)
298 {
299 	struct btrfs_fs_info *fs_info = log->fs_info;
300 	int ret = 0;
301 
302 	/*
303 	 * If this fs is mixed then we need to be able to process the leaves to
304 	 * pin down any logged extents, so we have to read the block.
305 	 */
306 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
307 		ret = btrfs_read_buffer(eb, gen, level, NULL);
308 		if (ret)
309 			return ret;
310 	}
311 
312 	if (wc->pin)
313 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
314 						      eb->len);
315 
316 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 		if (wc->pin && btrfs_header_level(eb) == 0)
318 			ret = btrfs_exclude_logged_extents(fs_info, eb);
319 		if (wc->write)
320 			btrfs_write_tree_block(eb);
321 		if (wc->wait)
322 			btrfs_wait_tree_block_writeback(eb);
323 	}
324 	return ret;
325 }
326 
327 /*
328  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
329  * to the src data we are copying out.
330  *
331  * root is the tree we are copying into, and path is a scratch
332  * path for use in this function (it should be released on entry and
333  * will be released on exit).
334  *
335  * If the key is already in the destination tree the existing item is
336  * overwritten.  If the existing item isn't big enough, it is extended.
337  * If it is too large, it is truncated.
338  *
339  * If the key isn't in the destination yet, a new item is inserted.
340  */
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 				   struct btrfs_root *root,
343 				   struct btrfs_path *path,
344 				   struct extent_buffer *eb, int slot,
345 				   struct btrfs_key *key)
346 {
347 	struct btrfs_fs_info *fs_info = root->fs_info;
348 	int ret;
349 	u32 item_size;
350 	u64 saved_i_size = 0;
351 	int save_old_i_size = 0;
352 	unsigned long src_ptr;
353 	unsigned long dst_ptr;
354 	int overwrite_root = 0;
355 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356 
357 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 		overwrite_root = 1;
359 
360 	item_size = btrfs_item_size_nr(eb, slot);
361 	src_ptr = btrfs_item_ptr_offset(eb, slot);
362 
363 	/* look for the key in the destination tree */
364 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365 	if (ret < 0)
366 		return ret;
367 
368 	if (ret == 0) {
369 		char *src_copy;
370 		char *dst_copy;
371 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 						  path->slots[0]);
373 		if (dst_size != item_size)
374 			goto insert;
375 
376 		if (item_size == 0) {
377 			btrfs_release_path(path);
378 			return 0;
379 		}
380 		dst_copy = kmalloc(item_size, GFP_NOFS);
381 		src_copy = kmalloc(item_size, GFP_NOFS);
382 		if (!dst_copy || !src_copy) {
383 			btrfs_release_path(path);
384 			kfree(dst_copy);
385 			kfree(src_copy);
386 			return -ENOMEM;
387 		}
388 
389 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
390 
391 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 				   item_size);
394 		ret = memcmp(dst_copy, src_copy, item_size);
395 
396 		kfree(dst_copy);
397 		kfree(src_copy);
398 		/*
399 		 * they have the same contents, just return, this saves
400 		 * us from cowing blocks in the destination tree and doing
401 		 * extra writes that may not have been done by a previous
402 		 * sync
403 		 */
404 		if (ret == 0) {
405 			btrfs_release_path(path);
406 			return 0;
407 		}
408 
409 		/*
410 		 * We need to load the old nbytes into the inode so when we
411 		 * replay the extents we've logged we get the right nbytes.
412 		 */
413 		if (inode_item) {
414 			struct btrfs_inode_item *item;
415 			u64 nbytes;
416 			u32 mode;
417 
418 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 					      struct btrfs_inode_item);
420 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 			item = btrfs_item_ptr(eb, slot,
422 					      struct btrfs_inode_item);
423 			btrfs_set_inode_nbytes(eb, item, nbytes);
424 
425 			/*
426 			 * If this is a directory we need to reset the i_size to
427 			 * 0 so that we can set it up properly when replaying
428 			 * the rest of the items in this log.
429 			 */
430 			mode = btrfs_inode_mode(eb, item);
431 			if (S_ISDIR(mode))
432 				btrfs_set_inode_size(eb, item, 0);
433 		}
434 	} else if (inode_item) {
435 		struct btrfs_inode_item *item;
436 		u32 mode;
437 
438 		/*
439 		 * New inode, set nbytes to 0 so that the nbytes comes out
440 		 * properly when we replay the extents.
441 		 */
442 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 		btrfs_set_inode_nbytes(eb, item, 0);
444 
445 		/*
446 		 * If this is a directory we need to reset the i_size to 0 so
447 		 * that we can set it up properly when replaying the rest of
448 		 * the items in this log.
449 		 */
450 		mode = btrfs_inode_mode(eb, item);
451 		if (S_ISDIR(mode))
452 			btrfs_set_inode_size(eb, item, 0);
453 	}
454 insert:
455 	btrfs_release_path(path);
456 	/* try to insert the key into the destination tree */
457 	path->skip_release_on_error = 1;
458 	ret = btrfs_insert_empty_item(trans, root, path,
459 				      key, item_size);
460 	path->skip_release_on_error = 0;
461 
462 	/* make sure any existing item is the correct size */
463 	if (ret == -EEXIST || ret == -EOVERFLOW) {
464 		u32 found_size;
465 		found_size = btrfs_item_size_nr(path->nodes[0],
466 						path->slots[0]);
467 		if (found_size > item_size)
468 			btrfs_truncate_item(fs_info, path, item_size, 1);
469 		else if (found_size < item_size)
470 			btrfs_extend_item(fs_info, path,
471 					  item_size - found_size);
472 	} else if (ret) {
473 		return ret;
474 	}
475 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
476 					path->slots[0]);
477 
478 	/* don't overwrite an existing inode if the generation number
479 	 * was logged as zero.  This is done when the tree logging code
480 	 * is just logging an inode to make sure it exists after recovery.
481 	 *
482 	 * Also, don't overwrite i_size on directories during replay.
483 	 * log replay inserts and removes directory items based on the
484 	 * state of the tree found in the subvolume, and i_size is modified
485 	 * as it goes
486 	 */
487 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
488 		struct btrfs_inode_item *src_item;
489 		struct btrfs_inode_item *dst_item;
490 
491 		src_item = (struct btrfs_inode_item *)src_ptr;
492 		dst_item = (struct btrfs_inode_item *)dst_ptr;
493 
494 		if (btrfs_inode_generation(eb, src_item) == 0) {
495 			struct extent_buffer *dst_eb = path->nodes[0];
496 			const u64 ino_size = btrfs_inode_size(eb, src_item);
497 
498 			/*
499 			 * For regular files an ino_size == 0 is used only when
500 			 * logging that an inode exists, as part of a directory
501 			 * fsync, and the inode wasn't fsynced before. In this
502 			 * case don't set the size of the inode in the fs/subvol
503 			 * tree, otherwise we would be throwing valid data away.
504 			 */
505 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
506 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
507 			    ino_size != 0) {
508 				struct btrfs_map_token token;
509 
510 				btrfs_init_map_token(&token);
511 				btrfs_set_token_inode_size(dst_eb, dst_item,
512 							   ino_size, &token);
513 			}
514 			goto no_copy;
515 		}
516 
517 		if (overwrite_root &&
518 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 			save_old_i_size = 1;
521 			saved_i_size = btrfs_inode_size(path->nodes[0],
522 							dst_item);
523 		}
524 	}
525 
526 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 			   src_ptr, item_size);
528 
529 	if (save_old_i_size) {
530 		struct btrfs_inode_item *dst_item;
531 		dst_item = (struct btrfs_inode_item *)dst_ptr;
532 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
533 	}
534 
535 	/* make sure the generation is filled in */
536 	if (key->type == BTRFS_INODE_ITEM_KEY) {
537 		struct btrfs_inode_item *dst_item;
538 		dst_item = (struct btrfs_inode_item *)dst_ptr;
539 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 			btrfs_set_inode_generation(path->nodes[0], dst_item,
541 						   trans->transid);
542 		}
543 	}
544 no_copy:
545 	btrfs_mark_buffer_dirty(path->nodes[0]);
546 	btrfs_release_path(path);
547 	return 0;
548 }
549 
550 /*
551  * simple helper to read an inode off the disk from a given root
552  * This can only be called for subvolume roots and not for the log
553  */
554 static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 					     u64 objectid)
556 {
557 	struct btrfs_key key;
558 	struct inode *inode;
559 
560 	key.objectid = objectid;
561 	key.type = BTRFS_INODE_ITEM_KEY;
562 	key.offset = 0;
563 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
564 	if (IS_ERR(inode)) {
565 		inode = NULL;
566 	} else if (is_bad_inode(inode)) {
567 		iput(inode);
568 		inode = NULL;
569 	}
570 	return inode;
571 }
572 
573 /* replays a single extent in 'eb' at 'slot' with 'key' into the
574  * subvolume 'root'.  path is released on entry and should be released
575  * on exit.
576  *
577  * extents in the log tree have not been allocated out of the extent
578  * tree yet.  So, this completes the allocation, taking a reference
579  * as required if the extent already exists or creating a new extent
580  * if it isn't in the extent allocation tree yet.
581  *
582  * The extent is inserted into the file, dropping any existing extents
583  * from the file that overlap the new one.
584  */
585 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
586 				      struct btrfs_root *root,
587 				      struct btrfs_path *path,
588 				      struct extent_buffer *eb, int slot,
589 				      struct btrfs_key *key)
590 {
591 	struct btrfs_fs_info *fs_info = root->fs_info;
592 	int found_type;
593 	u64 extent_end;
594 	u64 start = key->offset;
595 	u64 nbytes = 0;
596 	struct btrfs_file_extent_item *item;
597 	struct inode *inode = NULL;
598 	unsigned long size;
599 	int ret = 0;
600 
601 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
602 	found_type = btrfs_file_extent_type(eb, item);
603 
604 	if (found_type == BTRFS_FILE_EXTENT_REG ||
605 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
606 		nbytes = btrfs_file_extent_num_bytes(eb, item);
607 		extent_end = start + nbytes;
608 
609 		/*
610 		 * We don't add to the inodes nbytes if we are prealloc or a
611 		 * hole.
612 		 */
613 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
614 			nbytes = 0;
615 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
616 		size = btrfs_file_extent_inline_len(eb, slot, item);
617 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
618 		extent_end = ALIGN(start + size,
619 				   fs_info->sectorsize);
620 	} else {
621 		ret = 0;
622 		goto out;
623 	}
624 
625 	inode = read_one_inode(root, key->objectid);
626 	if (!inode) {
627 		ret = -EIO;
628 		goto out;
629 	}
630 
631 	/*
632 	 * first check to see if we already have this extent in the
633 	 * file.  This must be done before the btrfs_drop_extents run
634 	 * so we don't try to drop this extent.
635 	 */
636 	ret = btrfs_lookup_file_extent(trans, root, path,
637 			btrfs_ino(BTRFS_I(inode)), start, 0);
638 
639 	if (ret == 0 &&
640 	    (found_type == BTRFS_FILE_EXTENT_REG ||
641 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
642 		struct btrfs_file_extent_item cmp1;
643 		struct btrfs_file_extent_item cmp2;
644 		struct btrfs_file_extent_item *existing;
645 		struct extent_buffer *leaf;
646 
647 		leaf = path->nodes[0];
648 		existing = btrfs_item_ptr(leaf, path->slots[0],
649 					  struct btrfs_file_extent_item);
650 
651 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
652 				   sizeof(cmp1));
653 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
654 				   sizeof(cmp2));
655 
656 		/*
657 		 * we already have a pointer to this exact extent,
658 		 * we don't have to do anything
659 		 */
660 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
661 			btrfs_release_path(path);
662 			goto out;
663 		}
664 	}
665 	btrfs_release_path(path);
666 
667 	/* drop any overlapping extents */
668 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
669 	if (ret)
670 		goto out;
671 
672 	if (found_type == BTRFS_FILE_EXTENT_REG ||
673 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
674 		u64 offset;
675 		unsigned long dest_offset;
676 		struct btrfs_key ins;
677 
678 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
679 		    btrfs_fs_incompat(fs_info, NO_HOLES))
680 			goto update_inode;
681 
682 		ret = btrfs_insert_empty_item(trans, root, path, key,
683 					      sizeof(*item));
684 		if (ret)
685 			goto out;
686 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
687 						    path->slots[0]);
688 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
689 				(unsigned long)item,  sizeof(*item));
690 
691 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
692 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
693 		ins.type = BTRFS_EXTENT_ITEM_KEY;
694 		offset = key->offset - btrfs_file_extent_offset(eb, item);
695 
696 		/*
697 		 * Manually record dirty extent, as here we did a shallow
698 		 * file extent item copy and skip normal backref update,
699 		 * but modifying extent tree all by ourselves.
700 		 * So need to manually record dirty extent for qgroup,
701 		 * as the owner of the file extent changed from log tree
702 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
703 		 */
704 		ret = btrfs_qgroup_trace_extent(trans, fs_info,
705 				btrfs_file_extent_disk_bytenr(eb, item),
706 				btrfs_file_extent_disk_num_bytes(eb, item),
707 				GFP_NOFS);
708 		if (ret < 0)
709 			goto out;
710 
711 		if (ins.objectid > 0) {
712 			u64 csum_start;
713 			u64 csum_end;
714 			LIST_HEAD(ordered_sums);
715 			/*
716 			 * is this extent already allocated in the extent
717 			 * allocation tree?  If so, just add a reference
718 			 */
719 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
720 						ins.offset);
721 			if (ret == 0) {
722 				ret = btrfs_inc_extent_ref(trans, root,
723 						ins.objectid, ins.offset,
724 						0, root->root_key.objectid,
725 						key->objectid, offset);
726 				if (ret)
727 					goto out;
728 			} else {
729 				/*
730 				 * insert the extent pointer in the extent
731 				 * allocation tree
732 				 */
733 				ret = btrfs_alloc_logged_file_extent(trans,
734 						fs_info,
735 						root->root_key.objectid,
736 						key->objectid, offset, &ins);
737 				if (ret)
738 					goto out;
739 			}
740 			btrfs_release_path(path);
741 
742 			if (btrfs_file_extent_compression(eb, item)) {
743 				csum_start = ins.objectid;
744 				csum_end = csum_start + ins.offset;
745 			} else {
746 				csum_start = ins.objectid +
747 					btrfs_file_extent_offset(eb, item);
748 				csum_end = csum_start +
749 					btrfs_file_extent_num_bytes(eb, item);
750 			}
751 
752 			ret = btrfs_lookup_csums_range(root->log_root,
753 						csum_start, csum_end - 1,
754 						&ordered_sums, 0);
755 			if (ret)
756 				goto out;
757 			/*
758 			 * Now delete all existing cums in the csum root that
759 			 * cover our range. We do this because we can have an
760 			 * extent that is completely referenced by one file
761 			 * extent item and partially referenced by another
762 			 * file extent item (like after using the clone or
763 			 * extent_same ioctls). In this case if we end up doing
764 			 * the replay of the one that partially references the
765 			 * extent first, and we do not do the csum deletion
766 			 * below, we can get 2 csum items in the csum tree that
767 			 * overlap each other. For example, imagine our log has
768 			 * the two following file extent items:
769 			 *
770 			 * key (257 EXTENT_DATA 409600)
771 			 *     extent data disk byte 12845056 nr 102400
772 			 *     extent data offset 20480 nr 20480 ram 102400
773 			 *
774 			 * key (257 EXTENT_DATA 819200)
775 			 *     extent data disk byte 12845056 nr 102400
776 			 *     extent data offset 0 nr 102400 ram 102400
777 			 *
778 			 * Where the second one fully references the 100K extent
779 			 * that starts at disk byte 12845056, and the log tree
780 			 * has a single csum item that covers the entire range
781 			 * of the extent:
782 			 *
783 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 			 *
785 			 * After the first file extent item is replayed, the
786 			 * csum tree gets the following csum item:
787 			 *
788 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
789 			 *
790 			 * Which covers the 20K sub-range starting at offset 20K
791 			 * of our extent. Now when we replay the second file
792 			 * extent item, if we do not delete existing csum items
793 			 * that cover any of its blocks, we end up getting two
794 			 * csum items in our csum tree that overlap each other:
795 			 *
796 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
797 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
798 			 *
799 			 * Which is a problem, because after this anyone trying
800 			 * to lookup up for the checksum of any block of our
801 			 * extent starting at an offset of 40K or higher, will
802 			 * end up looking at the second csum item only, which
803 			 * does not contain the checksum for any block starting
804 			 * at offset 40K or higher of our extent.
805 			 */
806 			while (!list_empty(&ordered_sums)) {
807 				struct btrfs_ordered_sum *sums;
808 				sums = list_entry(ordered_sums.next,
809 						struct btrfs_ordered_sum,
810 						list);
811 				if (!ret)
812 					ret = btrfs_del_csums(trans, fs_info,
813 							      sums->bytenr,
814 							      sums->len);
815 				if (!ret)
816 					ret = btrfs_csum_file_blocks(trans,
817 						fs_info->csum_root, sums);
818 				list_del(&sums->list);
819 				kfree(sums);
820 			}
821 			if (ret)
822 				goto out;
823 		} else {
824 			btrfs_release_path(path);
825 		}
826 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
827 		/* inline extents are easy, we just overwrite them */
828 		ret = overwrite_item(trans, root, path, eb, slot, key);
829 		if (ret)
830 			goto out;
831 	}
832 
833 	inode_add_bytes(inode, nbytes);
834 update_inode:
835 	ret = btrfs_update_inode(trans, root, inode);
836 out:
837 	if (inode)
838 		iput(inode);
839 	return ret;
840 }
841 
842 /*
843  * when cleaning up conflicts between the directory names in the
844  * subvolume, directory names in the log and directory names in the
845  * inode back references, we may have to unlink inodes from directories.
846  *
847  * This is a helper function to do the unlink of a specific directory
848  * item
849  */
850 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 				      struct btrfs_root *root,
852 				      struct btrfs_path *path,
853 				      struct btrfs_inode *dir,
854 				      struct btrfs_dir_item *di)
855 {
856 	struct inode *inode;
857 	char *name;
858 	int name_len;
859 	struct extent_buffer *leaf;
860 	struct btrfs_key location;
861 	int ret;
862 
863 	leaf = path->nodes[0];
864 
865 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 	name_len = btrfs_dir_name_len(leaf, di);
867 	name = kmalloc(name_len, GFP_NOFS);
868 	if (!name)
869 		return -ENOMEM;
870 
871 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
872 	btrfs_release_path(path);
873 
874 	inode = read_one_inode(root, location.objectid);
875 	if (!inode) {
876 		ret = -EIO;
877 		goto out;
878 	}
879 
880 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
881 	if (ret)
882 		goto out;
883 
884 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
885 			name_len);
886 	if (ret)
887 		goto out;
888 	else
889 		ret = btrfs_run_delayed_items(trans);
890 out:
891 	kfree(name);
892 	iput(inode);
893 	return ret;
894 }
895 
896 /*
897  * helper function to see if a given name and sequence number found
898  * in an inode back reference are already in a directory and correctly
899  * point to this inode
900  */
901 static noinline int inode_in_dir(struct btrfs_root *root,
902 				 struct btrfs_path *path,
903 				 u64 dirid, u64 objectid, u64 index,
904 				 const char *name, int name_len)
905 {
906 	struct btrfs_dir_item *di;
907 	struct btrfs_key location;
908 	int match = 0;
909 
910 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
911 					 index, name, name_len, 0);
912 	if (di && !IS_ERR(di)) {
913 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
914 		if (location.objectid != objectid)
915 			goto out;
916 	} else
917 		goto out;
918 	btrfs_release_path(path);
919 
920 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
921 	if (di && !IS_ERR(di)) {
922 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
923 		if (location.objectid != objectid)
924 			goto out;
925 	} else
926 		goto out;
927 	match = 1;
928 out:
929 	btrfs_release_path(path);
930 	return match;
931 }
932 
933 /*
934  * helper function to check a log tree for a named back reference in
935  * an inode.  This is used to decide if a back reference that is
936  * found in the subvolume conflicts with what we find in the log.
937  *
938  * inode backreferences may have multiple refs in a single item,
939  * during replay we process one reference at a time, and we don't
940  * want to delete valid links to a file from the subvolume if that
941  * link is also in the log.
942  */
943 static noinline int backref_in_log(struct btrfs_root *log,
944 				   struct btrfs_key *key,
945 				   u64 ref_objectid,
946 				   const char *name, int namelen)
947 {
948 	struct btrfs_path *path;
949 	struct btrfs_inode_ref *ref;
950 	unsigned long ptr;
951 	unsigned long ptr_end;
952 	unsigned long name_ptr;
953 	int found_name_len;
954 	int item_size;
955 	int ret;
956 	int match = 0;
957 
958 	path = btrfs_alloc_path();
959 	if (!path)
960 		return -ENOMEM;
961 
962 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
963 	if (ret != 0)
964 		goto out;
965 
966 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
967 
968 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
969 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
970 						   path->slots[0],
971 						   ref_objectid,
972 						   name, namelen, NULL))
973 			match = 1;
974 
975 		goto out;
976 	}
977 
978 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
979 	ptr_end = ptr + item_size;
980 	while (ptr < ptr_end) {
981 		ref = (struct btrfs_inode_ref *)ptr;
982 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
983 		if (found_name_len == namelen) {
984 			name_ptr = (unsigned long)(ref + 1);
985 			ret = memcmp_extent_buffer(path->nodes[0], name,
986 						   name_ptr, namelen);
987 			if (ret == 0) {
988 				match = 1;
989 				goto out;
990 			}
991 		}
992 		ptr = (unsigned long)(ref + 1) + found_name_len;
993 	}
994 out:
995 	btrfs_free_path(path);
996 	return match;
997 }
998 
999 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1000 				  struct btrfs_root *root,
1001 				  struct btrfs_path *path,
1002 				  struct btrfs_root *log_root,
1003 				  struct btrfs_inode *dir,
1004 				  struct btrfs_inode *inode,
1005 				  u64 inode_objectid, u64 parent_objectid,
1006 				  u64 ref_index, char *name, int namelen,
1007 				  int *search_done)
1008 {
1009 	int ret;
1010 	char *victim_name;
1011 	int victim_name_len;
1012 	struct extent_buffer *leaf;
1013 	struct btrfs_dir_item *di;
1014 	struct btrfs_key search_key;
1015 	struct btrfs_inode_extref *extref;
1016 
1017 again:
1018 	/* Search old style refs */
1019 	search_key.objectid = inode_objectid;
1020 	search_key.type = BTRFS_INODE_REF_KEY;
1021 	search_key.offset = parent_objectid;
1022 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1023 	if (ret == 0) {
1024 		struct btrfs_inode_ref *victim_ref;
1025 		unsigned long ptr;
1026 		unsigned long ptr_end;
1027 
1028 		leaf = path->nodes[0];
1029 
1030 		/* are we trying to overwrite a back ref for the root directory
1031 		 * if so, just jump out, we're done
1032 		 */
1033 		if (search_key.objectid == search_key.offset)
1034 			return 1;
1035 
1036 		/* check all the names in this back reference to see
1037 		 * if they are in the log.  if so, we allow them to stay
1038 		 * otherwise they must be unlinked as a conflict
1039 		 */
1040 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1041 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1042 		while (ptr < ptr_end) {
1043 			victim_ref = (struct btrfs_inode_ref *)ptr;
1044 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1045 								   victim_ref);
1046 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1047 			if (!victim_name)
1048 				return -ENOMEM;
1049 
1050 			read_extent_buffer(leaf, victim_name,
1051 					   (unsigned long)(victim_ref + 1),
1052 					   victim_name_len);
1053 
1054 			if (!backref_in_log(log_root, &search_key,
1055 					    parent_objectid,
1056 					    victim_name,
1057 					    victim_name_len)) {
1058 				inc_nlink(&inode->vfs_inode);
1059 				btrfs_release_path(path);
1060 
1061 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1062 						victim_name, victim_name_len);
1063 				kfree(victim_name);
1064 				if (ret)
1065 					return ret;
1066 				ret = btrfs_run_delayed_items(trans);
1067 				if (ret)
1068 					return ret;
1069 				*search_done = 1;
1070 				goto again;
1071 			}
1072 			kfree(victim_name);
1073 
1074 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1075 		}
1076 
1077 		/*
1078 		 * NOTE: we have searched root tree and checked the
1079 		 * corresponding ref, it does not need to check again.
1080 		 */
1081 		*search_done = 1;
1082 	}
1083 	btrfs_release_path(path);
1084 
1085 	/* Same search but for extended refs */
1086 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1087 					   inode_objectid, parent_objectid, 0,
1088 					   0);
1089 	if (!IS_ERR_OR_NULL(extref)) {
1090 		u32 item_size;
1091 		u32 cur_offset = 0;
1092 		unsigned long base;
1093 		struct inode *victim_parent;
1094 
1095 		leaf = path->nodes[0];
1096 
1097 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1098 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1099 
1100 		while (cur_offset < item_size) {
1101 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1102 
1103 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1104 
1105 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1106 				goto next;
1107 
1108 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1109 			if (!victim_name)
1110 				return -ENOMEM;
1111 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1112 					   victim_name_len);
1113 
1114 			search_key.objectid = inode_objectid;
1115 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1116 			search_key.offset = btrfs_extref_hash(parent_objectid,
1117 							      victim_name,
1118 							      victim_name_len);
1119 			ret = 0;
1120 			if (!backref_in_log(log_root, &search_key,
1121 					    parent_objectid, victim_name,
1122 					    victim_name_len)) {
1123 				ret = -ENOENT;
1124 				victim_parent = read_one_inode(root,
1125 						parent_objectid);
1126 				if (victim_parent) {
1127 					inc_nlink(&inode->vfs_inode);
1128 					btrfs_release_path(path);
1129 
1130 					ret = btrfs_unlink_inode(trans, root,
1131 							BTRFS_I(victim_parent),
1132 							inode,
1133 							victim_name,
1134 							victim_name_len);
1135 					if (!ret)
1136 						ret = btrfs_run_delayed_items(
1137 								  trans);
1138 				}
1139 				iput(victim_parent);
1140 				kfree(victim_name);
1141 				if (ret)
1142 					return ret;
1143 				*search_done = 1;
1144 				goto again;
1145 			}
1146 			kfree(victim_name);
1147 next:
1148 			cur_offset += victim_name_len + sizeof(*extref);
1149 		}
1150 		*search_done = 1;
1151 	}
1152 	btrfs_release_path(path);
1153 
1154 	/* look for a conflicting sequence number */
1155 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1156 					 ref_index, name, namelen, 0);
1157 	if (di && !IS_ERR(di)) {
1158 		ret = drop_one_dir_item(trans, root, path, dir, di);
1159 		if (ret)
1160 			return ret;
1161 	}
1162 	btrfs_release_path(path);
1163 
1164 	/* look for a conflicing name */
1165 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1166 				   name, namelen, 0);
1167 	if (di && !IS_ERR(di)) {
1168 		ret = drop_one_dir_item(trans, root, path, dir, di);
1169 		if (ret)
1170 			return ret;
1171 	}
1172 	btrfs_release_path(path);
1173 
1174 	return 0;
1175 }
1176 
1177 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1178 			     u32 *namelen, char **name, u64 *index,
1179 			     u64 *parent_objectid)
1180 {
1181 	struct btrfs_inode_extref *extref;
1182 
1183 	extref = (struct btrfs_inode_extref *)ref_ptr;
1184 
1185 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1186 	*name = kmalloc(*namelen, GFP_NOFS);
1187 	if (*name == NULL)
1188 		return -ENOMEM;
1189 
1190 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1191 			   *namelen);
1192 
1193 	if (index)
1194 		*index = btrfs_inode_extref_index(eb, extref);
1195 	if (parent_objectid)
1196 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1197 
1198 	return 0;
1199 }
1200 
1201 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1202 			  u32 *namelen, char **name, u64 *index)
1203 {
1204 	struct btrfs_inode_ref *ref;
1205 
1206 	ref = (struct btrfs_inode_ref *)ref_ptr;
1207 
1208 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1209 	*name = kmalloc(*namelen, GFP_NOFS);
1210 	if (*name == NULL)
1211 		return -ENOMEM;
1212 
1213 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1214 
1215 	if (index)
1216 		*index = btrfs_inode_ref_index(eb, ref);
1217 
1218 	return 0;
1219 }
1220 
1221 /*
1222  * Take an inode reference item from the log tree and iterate all names from the
1223  * inode reference item in the subvolume tree with the same key (if it exists).
1224  * For any name that is not in the inode reference item from the log tree, do a
1225  * proper unlink of that name (that is, remove its entry from the inode
1226  * reference item and both dir index keys).
1227  */
1228 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1229 				 struct btrfs_root *root,
1230 				 struct btrfs_path *path,
1231 				 struct btrfs_inode *inode,
1232 				 struct extent_buffer *log_eb,
1233 				 int log_slot,
1234 				 struct btrfs_key *key)
1235 {
1236 	int ret;
1237 	unsigned long ref_ptr;
1238 	unsigned long ref_end;
1239 	struct extent_buffer *eb;
1240 
1241 again:
1242 	btrfs_release_path(path);
1243 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1244 	if (ret > 0) {
1245 		ret = 0;
1246 		goto out;
1247 	}
1248 	if (ret < 0)
1249 		goto out;
1250 
1251 	eb = path->nodes[0];
1252 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1253 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1254 	while (ref_ptr < ref_end) {
1255 		char *name = NULL;
1256 		int namelen;
1257 		u64 parent_id;
1258 
1259 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1260 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1261 						NULL, &parent_id);
1262 		} else {
1263 			parent_id = key->offset;
1264 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1265 					     NULL);
1266 		}
1267 		if (ret)
1268 			goto out;
1269 
1270 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1271 			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1272 							     parent_id, name,
1273 							     namelen, NULL);
1274 		else
1275 			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1276 							 namelen, NULL);
1277 
1278 		if (!ret) {
1279 			struct inode *dir;
1280 
1281 			btrfs_release_path(path);
1282 			dir = read_one_inode(root, parent_id);
1283 			if (!dir) {
1284 				ret = -ENOENT;
1285 				kfree(name);
1286 				goto out;
1287 			}
1288 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1289 						 inode, name, namelen);
1290 			kfree(name);
1291 			iput(dir);
1292 			if (ret)
1293 				goto out;
1294 			goto again;
1295 		}
1296 
1297 		kfree(name);
1298 		ref_ptr += namelen;
1299 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1300 			ref_ptr += sizeof(struct btrfs_inode_extref);
1301 		else
1302 			ref_ptr += sizeof(struct btrfs_inode_ref);
1303 	}
1304 	ret = 0;
1305  out:
1306 	btrfs_release_path(path);
1307 	return ret;
1308 }
1309 
1310 /*
1311  * replay one inode back reference item found in the log tree.
1312  * eb, slot and key refer to the buffer and key found in the log tree.
1313  * root is the destination we are replaying into, and path is for temp
1314  * use by this function.  (it should be released on return).
1315  */
1316 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1317 				  struct btrfs_root *root,
1318 				  struct btrfs_root *log,
1319 				  struct btrfs_path *path,
1320 				  struct extent_buffer *eb, int slot,
1321 				  struct btrfs_key *key)
1322 {
1323 	struct inode *dir = NULL;
1324 	struct inode *inode = NULL;
1325 	unsigned long ref_ptr;
1326 	unsigned long ref_end;
1327 	char *name = NULL;
1328 	int namelen;
1329 	int ret;
1330 	int search_done = 0;
1331 	int log_ref_ver = 0;
1332 	u64 parent_objectid;
1333 	u64 inode_objectid;
1334 	u64 ref_index = 0;
1335 	int ref_struct_size;
1336 
1337 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1338 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1339 
1340 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1341 		struct btrfs_inode_extref *r;
1342 
1343 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1344 		log_ref_ver = 1;
1345 		r = (struct btrfs_inode_extref *)ref_ptr;
1346 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1347 	} else {
1348 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1349 		parent_objectid = key->offset;
1350 	}
1351 	inode_objectid = key->objectid;
1352 
1353 	/*
1354 	 * it is possible that we didn't log all the parent directories
1355 	 * for a given inode.  If we don't find the dir, just don't
1356 	 * copy the back ref in.  The link count fixup code will take
1357 	 * care of the rest
1358 	 */
1359 	dir = read_one_inode(root, parent_objectid);
1360 	if (!dir) {
1361 		ret = -ENOENT;
1362 		goto out;
1363 	}
1364 
1365 	inode = read_one_inode(root, inode_objectid);
1366 	if (!inode) {
1367 		ret = -EIO;
1368 		goto out;
1369 	}
1370 
1371 	while (ref_ptr < ref_end) {
1372 		if (log_ref_ver) {
1373 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1374 						&ref_index, &parent_objectid);
1375 			/*
1376 			 * parent object can change from one array
1377 			 * item to another.
1378 			 */
1379 			if (!dir)
1380 				dir = read_one_inode(root, parent_objectid);
1381 			if (!dir) {
1382 				ret = -ENOENT;
1383 				goto out;
1384 			}
1385 		} else {
1386 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1387 					     &ref_index);
1388 		}
1389 		if (ret)
1390 			goto out;
1391 
1392 		/* if we already have a perfect match, we're done */
1393 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1394 					btrfs_ino(BTRFS_I(inode)), ref_index,
1395 					name, namelen)) {
1396 			/*
1397 			 * look for a conflicting back reference in the
1398 			 * metadata. if we find one we have to unlink that name
1399 			 * of the file before we add our new link.  Later on, we
1400 			 * overwrite any existing back reference, and we don't
1401 			 * want to create dangling pointers in the directory.
1402 			 */
1403 
1404 			if (!search_done) {
1405 				ret = __add_inode_ref(trans, root, path, log,
1406 						      BTRFS_I(dir),
1407 						      BTRFS_I(inode),
1408 						      inode_objectid,
1409 						      parent_objectid,
1410 						      ref_index, name, namelen,
1411 						      &search_done);
1412 				if (ret) {
1413 					if (ret == 1)
1414 						ret = 0;
1415 					goto out;
1416 				}
1417 			}
1418 
1419 			/* insert our name */
1420 			ret = btrfs_add_link(trans, BTRFS_I(dir),
1421 					BTRFS_I(inode),
1422 					name, namelen, 0, ref_index);
1423 			if (ret)
1424 				goto out;
1425 
1426 			btrfs_update_inode(trans, root, inode);
1427 		}
1428 
1429 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1430 		kfree(name);
1431 		name = NULL;
1432 		if (log_ref_ver) {
1433 			iput(dir);
1434 			dir = NULL;
1435 		}
1436 	}
1437 
1438 	/*
1439 	 * Before we overwrite the inode reference item in the subvolume tree
1440 	 * with the item from the log tree, we must unlink all names from the
1441 	 * parent directory that are in the subvolume's tree inode reference
1442 	 * item, otherwise we end up with an inconsistent subvolume tree where
1443 	 * dir index entries exist for a name but there is no inode reference
1444 	 * item with the same name.
1445 	 */
1446 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1447 				    key);
1448 	if (ret)
1449 		goto out;
1450 
1451 	/* finally write the back reference in the inode */
1452 	ret = overwrite_item(trans, root, path, eb, slot, key);
1453 out:
1454 	btrfs_release_path(path);
1455 	kfree(name);
1456 	iput(dir);
1457 	iput(inode);
1458 	return ret;
1459 }
1460 
1461 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1462 			      struct btrfs_root *root, u64 ino)
1463 {
1464 	int ret;
1465 
1466 	ret = btrfs_insert_orphan_item(trans, root, ino);
1467 	if (ret == -EEXIST)
1468 		ret = 0;
1469 
1470 	return ret;
1471 }
1472 
1473 static int count_inode_extrefs(struct btrfs_root *root,
1474 		struct btrfs_inode *inode, struct btrfs_path *path)
1475 {
1476 	int ret = 0;
1477 	int name_len;
1478 	unsigned int nlink = 0;
1479 	u32 item_size;
1480 	u32 cur_offset = 0;
1481 	u64 inode_objectid = btrfs_ino(inode);
1482 	u64 offset = 0;
1483 	unsigned long ptr;
1484 	struct btrfs_inode_extref *extref;
1485 	struct extent_buffer *leaf;
1486 
1487 	while (1) {
1488 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1489 					    &extref, &offset);
1490 		if (ret)
1491 			break;
1492 
1493 		leaf = path->nodes[0];
1494 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1495 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1496 		cur_offset = 0;
1497 
1498 		while (cur_offset < item_size) {
1499 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1500 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1501 
1502 			nlink++;
1503 
1504 			cur_offset += name_len + sizeof(*extref);
1505 		}
1506 
1507 		offset++;
1508 		btrfs_release_path(path);
1509 	}
1510 	btrfs_release_path(path);
1511 
1512 	if (ret < 0 && ret != -ENOENT)
1513 		return ret;
1514 	return nlink;
1515 }
1516 
1517 static int count_inode_refs(struct btrfs_root *root,
1518 			struct btrfs_inode *inode, struct btrfs_path *path)
1519 {
1520 	int ret;
1521 	struct btrfs_key key;
1522 	unsigned int nlink = 0;
1523 	unsigned long ptr;
1524 	unsigned long ptr_end;
1525 	int name_len;
1526 	u64 ino = btrfs_ino(inode);
1527 
1528 	key.objectid = ino;
1529 	key.type = BTRFS_INODE_REF_KEY;
1530 	key.offset = (u64)-1;
1531 
1532 	while (1) {
1533 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1534 		if (ret < 0)
1535 			break;
1536 		if (ret > 0) {
1537 			if (path->slots[0] == 0)
1538 				break;
1539 			path->slots[0]--;
1540 		}
1541 process_slot:
1542 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1543 				      path->slots[0]);
1544 		if (key.objectid != ino ||
1545 		    key.type != BTRFS_INODE_REF_KEY)
1546 			break;
1547 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1548 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1549 						   path->slots[0]);
1550 		while (ptr < ptr_end) {
1551 			struct btrfs_inode_ref *ref;
1552 
1553 			ref = (struct btrfs_inode_ref *)ptr;
1554 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1555 							    ref);
1556 			ptr = (unsigned long)(ref + 1) + name_len;
1557 			nlink++;
1558 		}
1559 
1560 		if (key.offset == 0)
1561 			break;
1562 		if (path->slots[0] > 0) {
1563 			path->slots[0]--;
1564 			goto process_slot;
1565 		}
1566 		key.offset--;
1567 		btrfs_release_path(path);
1568 	}
1569 	btrfs_release_path(path);
1570 
1571 	return nlink;
1572 }
1573 
1574 /*
1575  * There are a few corners where the link count of the file can't
1576  * be properly maintained during replay.  So, instead of adding
1577  * lots of complexity to the log code, we just scan the backrefs
1578  * for any file that has been through replay.
1579  *
1580  * The scan will update the link count on the inode to reflect the
1581  * number of back refs found.  If it goes down to zero, the iput
1582  * will free the inode.
1583  */
1584 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1585 					   struct btrfs_root *root,
1586 					   struct inode *inode)
1587 {
1588 	struct btrfs_path *path;
1589 	int ret;
1590 	u64 nlink = 0;
1591 	u64 ino = btrfs_ino(BTRFS_I(inode));
1592 
1593 	path = btrfs_alloc_path();
1594 	if (!path)
1595 		return -ENOMEM;
1596 
1597 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1598 	if (ret < 0)
1599 		goto out;
1600 
1601 	nlink = ret;
1602 
1603 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1604 	if (ret < 0)
1605 		goto out;
1606 
1607 	nlink += ret;
1608 
1609 	ret = 0;
1610 
1611 	if (nlink != inode->i_nlink) {
1612 		set_nlink(inode, nlink);
1613 		btrfs_update_inode(trans, root, inode);
1614 	}
1615 	BTRFS_I(inode)->index_cnt = (u64)-1;
1616 
1617 	if (inode->i_nlink == 0) {
1618 		if (S_ISDIR(inode->i_mode)) {
1619 			ret = replay_dir_deletes(trans, root, NULL, path,
1620 						 ino, 1);
1621 			if (ret)
1622 				goto out;
1623 		}
1624 		ret = insert_orphan_item(trans, root, ino);
1625 	}
1626 
1627 out:
1628 	btrfs_free_path(path);
1629 	return ret;
1630 }
1631 
1632 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1633 					    struct btrfs_root *root,
1634 					    struct btrfs_path *path)
1635 {
1636 	int ret;
1637 	struct btrfs_key key;
1638 	struct inode *inode;
1639 
1640 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1641 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1642 	key.offset = (u64)-1;
1643 	while (1) {
1644 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1645 		if (ret < 0)
1646 			break;
1647 
1648 		if (ret == 1) {
1649 			if (path->slots[0] == 0)
1650 				break;
1651 			path->slots[0]--;
1652 		}
1653 
1654 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1655 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1656 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1657 			break;
1658 
1659 		ret = btrfs_del_item(trans, root, path);
1660 		if (ret)
1661 			goto out;
1662 
1663 		btrfs_release_path(path);
1664 		inode = read_one_inode(root, key.offset);
1665 		if (!inode)
1666 			return -EIO;
1667 
1668 		ret = fixup_inode_link_count(trans, root, inode);
1669 		iput(inode);
1670 		if (ret)
1671 			goto out;
1672 
1673 		/*
1674 		 * fixup on a directory may create new entries,
1675 		 * make sure we always look for the highset possible
1676 		 * offset
1677 		 */
1678 		key.offset = (u64)-1;
1679 	}
1680 	ret = 0;
1681 out:
1682 	btrfs_release_path(path);
1683 	return ret;
1684 }
1685 
1686 
1687 /*
1688  * record a given inode in the fixup dir so we can check its link
1689  * count when replay is done.  The link count is incremented here
1690  * so the inode won't go away until we check it
1691  */
1692 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1693 				      struct btrfs_root *root,
1694 				      struct btrfs_path *path,
1695 				      u64 objectid)
1696 {
1697 	struct btrfs_key key;
1698 	int ret = 0;
1699 	struct inode *inode;
1700 
1701 	inode = read_one_inode(root, objectid);
1702 	if (!inode)
1703 		return -EIO;
1704 
1705 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1706 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1707 	key.offset = objectid;
1708 
1709 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1710 
1711 	btrfs_release_path(path);
1712 	if (ret == 0) {
1713 		if (!inode->i_nlink)
1714 			set_nlink(inode, 1);
1715 		else
1716 			inc_nlink(inode);
1717 		ret = btrfs_update_inode(trans, root, inode);
1718 	} else if (ret == -EEXIST) {
1719 		ret = 0;
1720 	} else {
1721 		BUG(); /* Logic Error */
1722 	}
1723 	iput(inode);
1724 
1725 	return ret;
1726 }
1727 
1728 /*
1729  * when replaying the log for a directory, we only insert names
1730  * for inodes that actually exist.  This means an fsync on a directory
1731  * does not implicitly fsync all the new files in it
1732  */
1733 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1734 				    struct btrfs_root *root,
1735 				    u64 dirid, u64 index,
1736 				    char *name, int name_len,
1737 				    struct btrfs_key *location)
1738 {
1739 	struct inode *inode;
1740 	struct inode *dir;
1741 	int ret;
1742 
1743 	inode = read_one_inode(root, location->objectid);
1744 	if (!inode)
1745 		return -ENOENT;
1746 
1747 	dir = read_one_inode(root, dirid);
1748 	if (!dir) {
1749 		iput(inode);
1750 		return -EIO;
1751 	}
1752 
1753 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1754 			name_len, 1, index);
1755 
1756 	/* FIXME, put inode into FIXUP list */
1757 
1758 	iput(inode);
1759 	iput(dir);
1760 	return ret;
1761 }
1762 
1763 /*
1764  * Return true if an inode reference exists in the log for the given name,
1765  * inode and parent inode.
1766  */
1767 static bool name_in_log_ref(struct btrfs_root *log_root,
1768 			    const char *name, const int name_len,
1769 			    const u64 dirid, const u64 ino)
1770 {
1771 	struct btrfs_key search_key;
1772 
1773 	search_key.objectid = ino;
1774 	search_key.type = BTRFS_INODE_REF_KEY;
1775 	search_key.offset = dirid;
1776 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1777 		return true;
1778 
1779 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1780 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1781 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1782 		return true;
1783 
1784 	return false;
1785 }
1786 
1787 /*
1788  * take a single entry in a log directory item and replay it into
1789  * the subvolume.
1790  *
1791  * if a conflicting item exists in the subdirectory already,
1792  * the inode it points to is unlinked and put into the link count
1793  * fix up tree.
1794  *
1795  * If a name from the log points to a file or directory that does
1796  * not exist in the FS, it is skipped.  fsyncs on directories
1797  * do not force down inodes inside that directory, just changes to the
1798  * names or unlinks in a directory.
1799  *
1800  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1801  * non-existing inode) and 1 if the name was replayed.
1802  */
1803 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1804 				    struct btrfs_root *root,
1805 				    struct btrfs_path *path,
1806 				    struct extent_buffer *eb,
1807 				    struct btrfs_dir_item *di,
1808 				    struct btrfs_key *key)
1809 {
1810 	char *name;
1811 	int name_len;
1812 	struct btrfs_dir_item *dst_di;
1813 	struct btrfs_key found_key;
1814 	struct btrfs_key log_key;
1815 	struct inode *dir;
1816 	u8 log_type;
1817 	int exists;
1818 	int ret = 0;
1819 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1820 	bool name_added = false;
1821 
1822 	dir = read_one_inode(root, key->objectid);
1823 	if (!dir)
1824 		return -EIO;
1825 
1826 	name_len = btrfs_dir_name_len(eb, di);
1827 	name = kmalloc(name_len, GFP_NOFS);
1828 	if (!name) {
1829 		ret = -ENOMEM;
1830 		goto out;
1831 	}
1832 
1833 	log_type = btrfs_dir_type(eb, di);
1834 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1835 		   name_len);
1836 
1837 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1838 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1839 	if (exists == 0)
1840 		exists = 1;
1841 	else
1842 		exists = 0;
1843 	btrfs_release_path(path);
1844 
1845 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1846 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1847 				       name, name_len, 1);
1848 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1849 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1850 						     key->objectid,
1851 						     key->offset, name,
1852 						     name_len, 1);
1853 	} else {
1854 		/* Corruption */
1855 		ret = -EINVAL;
1856 		goto out;
1857 	}
1858 	if (IS_ERR_OR_NULL(dst_di)) {
1859 		/* we need a sequence number to insert, so we only
1860 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1861 		 */
1862 		if (key->type != BTRFS_DIR_INDEX_KEY)
1863 			goto out;
1864 		goto insert;
1865 	}
1866 
1867 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1868 	/* the existing item matches the logged item */
1869 	if (found_key.objectid == log_key.objectid &&
1870 	    found_key.type == log_key.type &&
1871 	    found_key.offset == log_key.offset &&
1872 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1873 		update_size = false;
1874 		goto out;
1875 	}
1876 
1877 	/*
1878 	 * don't drop the conflicting directory entry if the inode
1879 	 * for the new entry doesn't exist
1880 	 */
1881 	if (!exists)
1882 		goto out;
1883 
1884 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1885 	if (ret)
1886 		goto out;
1887 
1888 	if (key->type == BTRFS_DIR_INDEX_KEY)
1889 		goto insert;
1890 out:
1891 	btrfs_release_path(path);
1892 	if (!ret && update_size) {
1893 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1894 		ret = btrfs_update_inode(trans, root, dir);
1895 	}
1896 	kfree(name);
1897 	iput(dir);
1898 	if (!ret && name_added)
1899 		ret = 1;
1900 	return ret;
1901 
1902 insert:
1903 	if (name_in_log_ref(root->log_root, name, name_len,
1904 			    key->objectid, log_key.objectid)) {
1905 		/* The dentry will be added later. */
1906 		ret = 0;
1907 		update_size = false;
1908 		goto out;
1909 	}
1910 	btrfs_release_path(path);
1911 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1912 			      name, name_len, &log_key);
1913 	if (ret && ret != -ENOENT && ret != -EEXIST)
1914 		goto out;
1915 	if (!ret)
1916 		name_added = true;
1917 	update_size = false;
1918 	ret = 0;
1919 	goto out;
1920 }
1921 
1922 /*
1923  * find all the names in a directory item and reconcile them into
1924  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1925  * one name in a directory item, but the same code gets used for
1926  * both directory index types
1927  */
1928 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1929 					struct btrfs_root *root,
1930 					struct btrfs_path *path,
1931 					struct extent_buffer *eb, int slot,
1932 					struct btrfs_key *key)
1933 {
1934 	int ret = 0;
1935 	u32 item_size = btrfs_item_size_nr(eb, slot);
1936 	struct btrfs_dir_item *di;
1937 	int name_len;
1938 	unsigned long ptr;
1939 	unsigned long ptr_end;
1940 	struct btrfs_path *fixup_path = NULL;
1941 
1942 	ptr = btrfs_item_ptr_offset(eb, slot);
1943 	ptr_end = ptr + item_size;
1944 	while (ptr < ptr_end) {
1945 		di = (struct btrfs_dir_item *)ptr;
1946 		name_len = btrfs_dir_name_len(eb, di);
1947 		ret = replay_one_name(trans, root, path, eb, di, key);
1948 		if (ret < 0)
1949 			break;
1950 		ptr = (unsigned long)(di + 1);
1951 		ptr += name_len;
1952 
1953 		/*
1954 		 * If this entry refers to a non-directory (directories can not
1955 		 * have a link count > 1) and it was added in the transaction
1956 		 * that was not committed, make sure we fixup the link count of
1957 		 * the inode it the entry points to. Otherwise something like
1958 		 * the following would result in a directory pointing to an
1959 		 * inode with a wrong link that does not account for this dir
1960 		 * entry:
1961 		 *
1962 		 * mkdir testdir
1963 		 * touch testdir/foo
1964 		 * touch testdir/bar
1965 		 * sync
1966 		 *
1967 		 * ln testdir/bar testdir/bar_link
1968 		 * ln testdir/foo testdir/foo_link
1969 		 * xfs_io -c "fsync" testdir/bar
1970 		 *
1971 		 * <power failure>
1972 		 *
1973 		 * mount fs, log replay happens
1974 		 *
1975 		 * File foo would remain with a link count of 1 when it has two
1976 		 * entries pointing to it in the directory testdir. This would
1977 		 * make it impossible to ever delete the parent directory has
1978 		 * it would result in stale dentries that can never be deleted.
1979 		 */
1980 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1981 			struct btrfs_key di_key;
1982 
1983 			if (!fixup_path) {
1984 				fixup_path = btrfs_alloc_path();
1985 				if (!fixup_path) {
1986 					ret = -ENOMEM;
1987 					break;
1988 				}
1989 			}
1990 
1991 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1992 			ret = link_to_fixup_dir(trans, root, fixup_path,
1993 						di_key.objectid);
1994 			if (ret)
1995 				break;
1996 		}
1997 		ret = 0;
1998 	}
1999 	btrfs_free_path(fixup_path);
2000 	return ret;
2001 }
2002 
2003 /*
2004  * directory replay has two parts.  There are the standard directory
2005  * items in the log copied from the subvolume, and range items
2006  * created in the log while the subvolume was logged.
2007  *
2008  * The range items tell us which parts of the key space the log
2009  * is authoritative for.  During replay, if a key in the subvolume
2010  * directory is in a logged range item, but not actually in the log
2011  * that means it was deleted from the directory before the fsync
2012  * and should be removed.
2013  */
2014 static noinline int find_dir_range(struct btrfs_root *root,
2015 				   struct btrfs_path *path,
2016 				   u64 dirid, int key_type,
2017 				   u64 *start_ret, u64 *end_ret)
2018 {
2019 	struct btrfs_key key;
2020 	u64 found_end;
2021 	struct btrfs_dir_log_item *item;
2022 	int ret;
2023 	int nritems;
2024 
2025 	if (*start_ret == (u64)-1)
2026 		return 1;
2027 
2028 	key.objectid = dirid;
2029 	key.type = key_type;
2030 	key.offset = *start_ret;
2031 
2032 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2033 	if (ret < 0)
2034 		goto out;
2035 	if (ret > 0) {
2036 		if (path->slots[0] == 0)
2037 			goto out;
2038 		path->slots[0]--;
2039 	}
2040 	if (ret != 0)
2041 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2042 
2043 	if (key.type != key_type || key.objectid != dirid) {
2044 		ret = 1;
2045 		goto next;
2046 	}
2047 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2048 			      struct btrfs_dir_log_item);
2049 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2050 
2051 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2052 		ret = 0;
2053 		*start_ret = key.offset;
2054 		*end_ret = found_end;
2055 		goto out;
2056 	}
2057 	ret = 1;
2058 next:
2059 	/* check the next slot in the tree to see if it is a valid item */
2060 	nritems = btrfs_header_nritems(path->nodes[0]);
2061 	path->slots[0]++;
2062 	if (path->slots[0] >= nritems) {
2063 		ret = btrfs_next_leaf(root, path);
2064 		if (ret)
2065 			goto out;
2066 	}
2067 
2068 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2069 
2070 	if (key.type != key_type || key.objectid != dirid) {
2071 		ret = 1;
2072 		goto out;
2073 	}
2074 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2075 			      struct btrfs_dir_log_item);
2076 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2077 	*start_ret = key.offset;
2078 	*end_ret = found_end;
2079 	ret = 0;
2080 out:
2081 	btrfs_release_path(path);
2082 	return ret;
2083 }
2084 
2085 /*
2086  * this looks for a given directory item in the log.  If the directory
2087  * item is not in the log, the item is removed and the inode it points
2088  * to is unlinked
2089  */
2090 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2091 				      struct btrfs_root *root,
2092 				      struct btrfs_root *log,
2093 				      struct btrfs_path *path,
2094 				      struct btrfs_path *log_path,
2095 				      struct inode *dir,
2096 				      struct btrfs_key *dir_key)
2097 {
2098 	int ret;
2099 	struct extent_buffer *eb;
2100 	int slot;
2101 	u32 item_size;
2102 	struct btrfs_dir_item *di;
2103 	struct btrfs_dir_item *log_di;
2104 	int name_len;
2105 	unsigned long ptr;
2106 	unsigned long ptr_end;
2107 	char *name;
2108 	struct inode *inode;
2109 	struct btrfs_key location;
2110 
2111 again:
2112 	eb = path->nodes[0];
2113 	slot = path->slots[0];
2114 	item_size = btrfs_item_size_nr(eb, slot);
2115 	ptr = btrfs_item_ptr_offset(eb, slot);
2116 	ptr_end = ptr + item_size;
2117 	while (ptr < ptr_end) {
2118 		di = (struct btrfs_dir_item *)ptr;
2119 		name_len = btrfs_dir_name_len(eb, di);
2120 		name = kmalloc(name_len, GFP_NOFS);
2121 		if (!name) {
2122 			ret = -ENOMEM;
2123 			goto out;
2124 		}
2125 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2126 				  name_len);
2127 		log_di = NULL;
2128 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2129 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2130 						       dir_key->objectid,
2131 						       name, name_len, 0);
2132 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2133 			log_di = btrfs_lookup_dir_index_item(trans, log,
2134 						     log_path,
2135 						     dir_key->objectid,
2136 						     dir_key->offset,
2137 						     name, name_len, 0);
2138 		}
2139 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2140 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2141 			btrfs_release_path(path);
2142 			btrfs_release_path(log_path);
2143 			inode = read_one_inode(root, location.objectid);
2144 			if (!inode) {
2145 				kfree(name);
2146 				return -EIO;
2147 			}
2148 
2149 			ret = link_to_fixup_dir(trans, root,
2150 						path, location.objectid);
2151 			if (ret) {
2152 				kfree(name);
2153 				iput(inode);
2154 				goto out;
2155 			}
2156 
2157 			inc_nlink(inode);
2158 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2159 					BTRFS_I(inode), name, name_len);
2160 			if (!ret)
2161 				ret = btrfs_run_delayed_items(trans);
2162 			kfree(name);
2163 			iput(inode);
2164 			if (ret)
2165 				goto out;
2166 
2167 			/* there might still be more names under this key
2168 			 * check and repeat if required
2169 			 */
2170 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2171 						0, 0);
2172 			if (ret == 0)
2173 				goto again;
2174 			ret = 0;
2175 			goto out;
2176 		} else if (IS_ERR(log_di)) {
2177 			kfree(name);
2178 			return PTR_ERR(log_di);
2179 		}
2180 		btrfs_release_path(log_path);
2181 		kfree(name);
2182 
2183 		ptr = (unsigned long)(di + 1);
2184 		ptr += name_len;
2185 	}
2186 	ret = 0;
2187 out:
2188 	btrfs_release_path(path);
2189 	btrfs_release_path(log_path);
2190 	return ret;
2191 }
2192 
2193 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2194 			      struct btrfs_root *root,
2195 			      struct btrfs_root *log,
2196 			      struct btrfs_path *path,
2197 			      const u64 ino)
2198 {
2199 	struct btrfs_key search_key;
2200 	struct btrfs_path *log_path;
2201 	int i;
2202 	int nritems;
2203 	int ret;
2204 
2205 	log_path = btrfs_alloc_path();
2206 	if (!log_path)
2207 		return -ENOMEM;
2208 
2209 	search_key.objectid = ino;
2210 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2211 	search_key.offset = 0;
2212 again:
2213 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2214 	if (ret < 0)
2215 		goto out;
2216 process_leaf:
2217 	nritems = btrfs_header_nritems(path->nodes[0]);
2218 	for (i = path->slots[0]; i < nritems; i++) {
2219 		struct btrfs_key key;
2220 		struct btrfs_dir_item *di;
2221 		struct btrfs_dir_item *log_di;
2222 		u32 total_size;
2223 		u32 cur;
2224 
2225 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2226 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2227 			ret = 0;
2228 			goto out;
2229 		}
2230 
2231 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2232 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2233 		cur = 0;
2234 		while (cur < total_size) {
2235 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2236 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2237 			u32 this_len = sizeof(*di) + name_len + data_len;
2238 			char *name;
2239 
2240 			name = kmalloc(name_len, GFP_NOFS);
2241 			if (!name) {
2242 				ret = -ENOMEM;
2243 				goto out;
2244 			}
2245 			read_extent_buffer(path->nodes[0], name,
2246 					   (unsigned long)(di + 1), name_len);
2247 
2248 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2249 						    name, name_len, 0);
2250 			btrfs_release_path(log_path);
2251 			if (!log_di) {
2252 				/* Doesn't exist in log tree, so delete it. */
2253 				btrfs_release_path(path);
2254 				di = btrfs_lookup_xattr(trans, root, path, ino,
2255 							name, name_len, -1);
2256 				kfree(name);
2257 				if (IS_ERR(di)) {
2258 					ret = PTR_ERR(di);
2259 					goto out;
2260 				}
2261 				ASSERT(di);
2262 				ret = btrfs_delete_one_dir_name(trans, root,
2263 								path, di);
2264 				if (ret)
2265 					goto out;
2266 				btrfs_release_path(path);
2267 				search_key = key;
2268 				goto again;
2269 			}
2270 			kfree(name);
2271 			if (IS_ERR(log_di)) {
2272 				ret = PTR_ERR(log_di);
2273 				goto out;
2274 			}
2275 			cur += this_len;
2276 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2277 		}
2278 	}
2279 	ret = btrfs_next_leaf(root, path);
2280 	if (ret > 0)
2281 		ret = 0;
2282 	else if (ret == 0)
2283 		goto process_leaf;
2284 out:
2285 	btrfs_free_path(log_path);
2286 	btrfs_release_path(path);
2287 	return ret;
2288 }
2289 
2290 
2291 /*
2292  * deletion replay happens before we copy any new directory items
2293  * out of the log or out of backreferences from inodes.  It
2294  * scans the log to find ranges of keys that log is authoritative for,
2295  * and then scans the directory to find items in those ranges that are
2296  * not present in the log.
2297  *
2298  * Anything we don't find in the log is unlinked and removed from the
2299  * directory.
2300  */
2301 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2302 				       struct btrfs_root *root,
2303 				       struct btrfs_root *log,
2304 				       struct btrfs_path *path,
2305 				       u64 dirid, int del_all)
2306 {
2307 	u64 range_start;
2308 	u64 range_end;
2309 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2310 	int ret = 0;
2311 	struct btrfs_key dir_key;
2312 	struct btrfs_key found_key;
2313 	struct btrfs_path *log_path;
2314 	struct inode *dir;
2315 
2316 	dir_key.objectid = dirid;
2317 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2318 	log_path = btrfs_alloc_path();
2319 	if (!log_path)
2320 		return -ENOMEM;
2321 
2322 	dir = read_one_inode(root, dirid);
2323 	/* it isn't an error if the inode isn't there, that can happen
2324 	 * because we replay the deletes before we copy in the inode item
2325 	 * from the log
2326 	 */
2327 	if (!dir) {
2328 		btrfs_free_path(log_path);
2329 		return 0;
2330 	}
2331 again:
2332 	range_start = 0;
2333 	range_end = 0;
2334 	while (1) {
2335 		if (del_all)
2336 			range_end = (u64)-1;
2337 		else {
2338 			ret = find_dir_range(log, path, dirid, key_type,
2339 					     &range_start, &range_end);
2340 			if (ret != 0)
2341 				break;
2342 		}
2343 
2344 		dir_key.offset = range_start;
2345 		while (1) {
2346 			int nritems;
2347 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2348 						0, 0);
2349 			if (ret < 0)
2350 				goto out;
2351 
2352 			nritems = btrfs_header_nritems(path->nodes[0]);
2353 			if (path->slots[0] >= nritems) {
2354 				ret = btrfs_next_leaf(root, path);
2355 				if (ret)
2356 					break;
2357 			}
2358 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2359 					      path->slots[0]);
2360 			if (found_key.objectid != dirid ||
2361 			    found_key.type != dir_key.type)
2362 				goto next_type;
2363 
2364 			if (found_key.offset > range_end)
2365 				break;
2366 
2367 			ret = check_item_in_log(trans, root, log, path,
2368 						log_path, dir,
2369 						&found_key);
2370 			if (ret)
2371 				goto out;
2372 			if (found_key.offset == (u64)-1)
2373 				break;
2374 			dir_key.offset = found_key.offset + 1;
2375 		}
2376 		btrfs_release_path(path);
2377 		if (range_end == (u64)-1)
2378 			break;
2379 		range_start = range_end + 1;
2380 	}
2381 
2382 next_type:
2383 	ret = 0;
2384 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2385 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2386 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2387 		btrfs_release_path(path);
2388 		goto again;
2389 	}
2390 out:
2391 	btrfs_release_path(path);
2392 	btrfs_free_path(log_path);
2393 	iput(dir);
2394 	return ret;
2395 }
2396 
2397 /*
2398  * the process_func used to replay items from the log tree.  This
2399  * gets called in two different stages.  The first stage just looks
2400  * for inodes and makes sure they are all copied into the subvolume.
2401  *
2402  * The second stage copies all the other item types from the log into
2403  * the subvolume.  The two stage approach is slower, but gets rid of
2404  * lots of complexity around inodes referencing other inodes that exist
2405  * only in the log (references come from either directory items or inode
2406  * back refs).
2407  */
2408 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2409 			     struct walk_control *wc, u64 gen, int level)
2410 {
2411 	int nritems;
2412 	struct btrfs_path *path;
2413 	struct btrfs_root *root = wc->replay_dest;
2414 	struct btrfs_key key;
2415 	int i;
2416 	int ret;
2417 
2418 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2419 	if (ret)
2420 		return ret;
2421 
2422 	level = btrfs_header_level(eb);
2423 
2424 	if (level != 0)
2425 		return 0;
2426 
2427 	path = btrfs_alloc_path();
2428 	if (!path)
2429 		return -ENOMEM;
2430 
2431 	nritems = btrfs_header_nritems(eb);
2432 	for (i = 0; i < nritems; i++) {
2433 		btrfs_item_key_to_cpu(eb, &key, i);
2434 
2435 		/* inode keys are done during the first stage */
2436 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2437 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2438 			struct btrfs_inode_item *inode_item;
2439 			u32 mode;
2440 
2441 			inode_item = btrfs_item_ptr(eb, i,
2442 					    struct btrfs_inode_item);
2443 			ret = replay_xattr_deletes(wc->trans, root, log,
2444 						   path, key.objectid);
2445 			if (ret)
2446 				break;
2447 			mode = btrfs_inode_mode(eb, inode_item);
2448 			if (S_ISDIR(mode)) {
2449 				ret = replay_dir_deletes(wc->trans,
2450 					 root, log, path, key.objectid, 0);
2451 				if (ret)
2452 					break;
2453 			}
2454 			ret = overwrite_item(wc->trans, root, path,
2455 					     eb, i, &key);
2456 			if (ret)
2457 				break;
2458 
2459 			/* for regular files, make sure corresponding
2460 			 * orphan item exist. extents past the new EOF
2461 			 * will be truncated later by orphan cleanup.
2462 			 */
2463 			if (S_ISREG(mode)) {
2464 				ret = insert_orphan_item(wc->trans, root,
2465 							 key.objectid);
2466 				if (ret)
2467 					break;
2468 			}
2469 
2470 			ret = link_to_fixup_dir(wc->trans, root,
2471 						path, key.objectid);
2472 			if (ret)
2473 				break;
2474 		}
2475 
2476 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2477 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2478 			ret = replay_one_dir_item(wc->trans, root, path,
2479 						  eb, i, &key);
2480 			if (ret)
2481 				break;
2482 		}
2483 
2484 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2485 			continue;
2486 
2487 		/* these keys are simply copied */
2488 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2489 			ret = overwrite_item(wc->trans, root, path,
2490 					     eb, i, &key);
2491 			if (ret)
2492 				break;
2493 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2494 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2495 			ret = add_inode_ref(wc->trans, root, log, path,
2496 					    eb, i, &key);
2497 			if (ret && ret != -ENOENT)
2498 				break;
2499 			ret = 0;
2500 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2501 			ret = replay_one_extent(wc->trans, root, path,
2502 						eb, i, &key);
2503 			if (ret)
2504 				break;
2505 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2506 			ret = replay_one_dir_item(wc->trans, root, path,
2507 						  eb, i, &key);
2508 			if (ret)
2509 				break;
2510 		}
2511 	}
2512 	btrfs_free_path(path);
2513 	return ret;
2514 }
2515 
2516 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2517 				   struct btrfs_root *root,
2518 				   struct btrfs_path *path, int *level,
2519 				   struct walk_control *wc)
2520 {
2521 	struct btrfs_fs_info *fs_info = root->fs_info;
2522 	u64 root_owner;
2523 	u64 bytenr;
2524 	u64 ptr_gen;
2525 	struct extent_buffer *next;
2526 	struct extent_buffer *cur;
2527 	struct extent_buffer *parent;
2528 	u32 blocksize;
2529 	int ret = 0;
2530 
2531 	WARN_ON(*level < 0);
2532 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2533 
2534 	while (*level > 0) {
2535 		struct btrfs_key first_key;
2536 
2537 		WARN_ON(*level < 0);
2538 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2539 		cur = path->nodes[*level];
2540 
2541 		WARN_ON(btrfs_header_level(cur) != *level);
2542 
2543 		if (path->slots[*level] >=
2544 		    btrfs_header_nritems(cur))
2545 			break;
2546 
2547 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2548 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2549 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2550 		blocksize = fs_info->nodesize;
2551 
2552 		parent = path->nodes[*level];
2553 		root_owner = btrfs_header_owner(parent);
2554 
2555 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2556 		if (IS_ERR(next))
2557 			return PTR_ERR(next);
2558 
2559 		if (*level == 1) {
2560 			ret = wc->process_func(root, next, wc, ptr_gen,
2561 					       *level - 1);
2562 			if (ret) {
2563 				free_extent_buffer(next);
2564 				return ret;
2565 			}
2566 
2567 			path->slots[*level]++;
2568 			if (wc->free) {
2569 				ret = btrfs_read_buffer(next, ptr_gen,
2570 							*level - 1, &first_key);
2571 				if (ret) {
2572 					free_extent_buffer(next);
2573 					return ret;
2574 				}
2575 
2576 				if (trans) {
2577 					btrfs_tree_lock(next);
2578 					btrfs_set_lock_blocking(next);
2579 					clean_tree_block(fs_info, next);
2580 					btrfs_wait_tree_block_writeback(next);
2581 					btrfs_tree_unlock(next);
2582 				} else {
2583 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2584 						clear_extent_buffer_dirty(next);
2585 				}
2586 
2587 				WARN_ON(root_owner !=
2588 					BTRFS_TREE_LOG_OBJECTID);
2589 				ret = btrfs_free_and_pin_reserved_extent(
2590 							fs_info, bytenr,
2591 							blocksize);
2592 				if (ret) {
2593 					free_extent_buffer(next);
2594 					return ret;
2595 				}
2596 			}
2597 			free_extent_buffer(next);
2598 			continue;
2599 		}
2600 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2601 		if (ret) {
2602 			free_extent_buffer(next);
2603 			return ret;
2604 		}
2605 
2606 		WARN_ON(*level <= 0);
2607 		if (path->nodes[*level-1])
2608 			free_extent_buffer(path->nodes[*level-1]);
2609 		path->nodes[*level-1] = next;
2610 		*level = btrfs_header_level(next);
2611 		path->slots[*level] = 0;
2612 		cond_resched();
2613 	}
2614 	WARN_ON(*level < 0);
2615 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2616 
2617 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2618 
2619 	cond_resched();
2620 	return 0;
2621 }
2622 
2623 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2624 				 struct btrfs_root *root,
2625 				 struct btrfs_path *path, int *level,
2626 				 struct walk_control *wc)
2627 {
2628 	struct btrfs_fs_info *fs_info = root->fs_info;
2629 	u64 root_owner;
2630 	int i;
2631 	int slot;
2632 	int ret;
2633 
2634 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2635 		slot = path->slots[i];
2636 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2637 			path->slots[i]++;
2638 			*level = i;
2639 			WARN_ON(*level == 0);
2640 			return 0;
2641 		} else {
2642 			struct extent_buffer *parent;
2643 			if (path->nodes[*level] == root->node)
2644 				parent = path->nodes[*level];
2645 			else
2646 				parent = path->nodes[*level + 1];
2647 
2648 			root_owner = btrfs_header_owner(parent);
2649 			ret = wc->process_func(root, path->nodes[*level], wc,
2650 				 btrfs_header_generation(path->nodes[*level]),
2651 				 *level);
2652 			if (ret)
2653 				return ret;
2654 
2655 			if (wc->free) {
2656 				struct extent_buffer *next;
2657 
2658 				next = path->nodes[*level];
2659 
2660 				if (trans) {
2661 					btrfs_tree_lock(next);
2662 					btrfs_set_lock_blocking(next);
2663 					clean_tree_block(fs_info, next);
2664 					btrfs_wait_tree_block_writeback(next);
2665 					btrfs_tree_unlock(next);
2666 				} else {
2667 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2668 						clear_extent_buffer_dirty(next);
2669 				}
2670 
2671 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2672 				ret = btrfs_free_and_pin_reserved_extent(
2673 						fs_info,
2674 						path->nodes[*level]->start,
2675 						path->nodes[*level]->len);
2676 				if (ret)
2677 					return ret;
2678 			}
2679 			free_extent_buffer(path->nodes[*level]);
2680 			path->nodes[*level] = NULL;
2681 			*level = i + 1;
2682 		}
2683 	}
2684 	return 1;
2685 }
2686 
2687 /*
2688  * drop the reference count on the tree rooted at 'snap'.  This traverses
2689  * the tree freeing any blocks that have a ref count of zero after being
2690  * decremented.
2691  */
2692 static int walk_log_tree(struct btrfs_trans_handle *trans,
2693 			 struct btrfs_root *log, struct walk_control *wc)
2694 {
2695 	struct btrfs_fs_info *fs_info = log->fs_info;
2696 	int ret = 0;
2697 	int wret;
2698 	int level;
2699 	struct btrfs_path *path;
2700 	int orig_level;
2701 
2702 	path = btrfs_alloc_path();
2703 	if (!path)
2704 		return -ENOMEM;
2705 
2706 	level = btrfs_header_level(log->node);
2707 	orig_level = level;
2708 	path->nodes[level] = log->node;
2709 	extent_buffer_get(log->node);
2710 	path->slots[level] = 0;
2711 
2712 	while (1) {
2713 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2714 		if (wret > 0)
2715 			break;
2716 		if (wret < 0) {
2717 			ret = wret;
2718 			goto out;
2719 		}
2720 
2721 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2722 		if (wret > 0)
2723 			break;
2724 		if (wret < 0) {
2725 			ret = wret;
2726 			goto out;
2727 		}
2728 	}
2729 
2730 	/* was the root node processed? if not, catch it here */
2731 	if (path->nodes[orig_level]) {
2732 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2733 			 btrfs_header_generation(path->nodes[orig_level]),
2734 			 orig_level);
2735 		if (ret)
2736 			goto out;
2737 		if (wc->free) {
2738 			struct extent_buffer *next;
2739 
2740 			next = path->nodes[orig_level];
2741 
2742 			if (trans) {
2743 				btrfs_tree_lock(next);
2744 				btrfs_set_lock_blocking(next);
2745 				clean_tree_block(fs_info, next);
2746 				btrfs_wait_tree_block_writeback(next);
2747 				btrfs_tree_unlock(next);
2748 			} else {
2749 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2750 					clear_extent_buffer_dirty(next);
2751 			}
2752 
2753 			WARN_ON(log->root_key.objectid !=
2754 				BTRFS_TREE_LOG_OBJECTID);
2755 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2756 							next->start, next->len);
2757 			if (ret)
2758 				goto out;
2759 		}
2760 	}
2761 
2762 out:
2763 	btrfs_free_path(path);
2764 	return ret;
2765 }
2766 
2767 /*
2768  * helper function to update the item for a given subvolumes log root
2769  * in the tree of log roots
2770  */
2771 static int update_log_root(struct btrfs_trans_handle *trans,
2772 			   struct btrfs_root *log)
2773 {
2774 	struct btrfs_fs_info *fs_info = log->fs_info;
2775 	int ret;
2776 
2777 	if (log->log_transid == 1) {
2778 		/* insert root item on the first sync */
2779 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2780 				&log->root_key, &log->root_item);
2781 	} else {
2782 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2783 				&log->root_key, &log->root_item);
2784 	}
2785 	return ret;
2786 }
2787 
2788 static void wait_log_commit(struct btrfs_root *root, int transid)
2789 {
2790 	DEFINE_WAIT(wait);
2791 	int index = transid % 2;
2792 
2793 	/*
2794 	 * we only allow two pending log transactions at a time,
2795 	 * so we know that if ours is more than 2 older than the
2796 	 * current transaction, we're done
2797 	 */
2798 	for (;;) {
2799 		prepare_to_wait(&root->log_commit_wait[index],
2800 				&wait, TASK_UNINTERRUPTIBLE);
2801 
2802 		if (!(root->log_transid_committed < transid &&
2803 		      atomic_read(&root->log_commit[index])))
2804 			break;
2805 
2806 		mutex_unlock(&root->log_mutex);
2807 		schedule();
2808 		mutex_lock(&root->log_mutex);
2809 	}
2810 	finish_wait(&root->log_commit_wait[index], &wait);
2811 }
2812 
2813 static void wait_for_writer(struct btrfs_root *root)
2814 {
2815 	DEFINE_WAIT(wait);
2816 
2817 	for (;;) {
2818 		prepare_to_wait(&root->log_writer_wait, &wait,
2819 				TASK_UNINTERRUPTIBLE);
2820 		if (!atomic_read(&root->log_writers))
2821 			break;
2822 
2823 		mutex_unlock(&root->log_mutex);
2824 		schedule();
2825 		mutex_lock(&root->log_mutex);
2826 	}
2827 	finish_wait(&root->log_writer_wait, &wait);
2828 }
2829 
2830 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2831 					struct btrfs_log_ctx *ctx)
2832 {
2833 	if (!ctx)
2834 		return;
2835 
2836 	mutex_lock(&root->log_mutex);
2837 	list_del_init(&ctx->list);
2838 	mutex_unlock(&root->log_mutex);
2839 }
2840 
2841 /*
2842  * Invoked in log mutex context, or be sure there is no other task which
2843  * can access the list.
2844  */
2845 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2846 					     int index, int error)
2847 {
2848 	struct btrfs_log_ctx *ctx;
2849 	struct btrfs_log_ctx *safe;
2850 
2851 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2852 		list_del_init(&ctx->list);
2853 		ctx->log_ret = error;
2854 	}
2855 
2856 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2857 }
2858 
2859 /*
2860  * btrfs_sync_log does sends a given tree log down to the disk and
2861  * updates the super blocks to record it.  When this call is done,
2862  * you know that any inodes previously logged are safely on disk only
2863  * if it returns 0.
2864  *
2865  * Any other return value means you need to call btrfs_commit_transaction.
2866  * Some of the edge cases for fsyncing directories that have had unlinks
2867  * or renames done in the past mean that sometimes the only safe
2868  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2869  * that has happened.
2870  */
2871 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2872 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2873 {
2874 	int index1;
2875 	int index2;
2876 	int mark;
2877 	int ret;
2878 	struct btrfs_fs_info *fs_info = root->fs_info;
2879 	struct btrfs_root *log = root->log_root;
2880 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2881 	int log_transid = 0;
2882 	struct btrfs_log_ctx root_log_ctx;
2883 	struct blk_plug plug;
2884 
2885 	mutex_lock(&root->log_mutex);
2886 	log_transid = ctx->log_transid;
2887 	if (root->log_transid_committed >= log_transid) {
2888 		mutex_unlock(&root->log_mutex);
2889 		return ctx->log_ret;
2890 	}
2891 
2892 	index1 = log_transid % 2;
2893 	if (atomic_read(&root->log_commit[index1])) {
2894 		wait_log_commit(root, log_transid);
2895 		mutex_unlock(&root->log_mutex);
2896 		return ctx->log_ret;
2897 	}
2898 	ASSERT(log_transid == root->log_transid);
2899 	atomic_set(&root->log_commit[index1], 1);
2900 
2901 	/* wait for previous tree log sync to complete */
2902 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2903 		wait_log_commit(root, log_transid - 1);
2904 
2905 	while (1) {
2906 		int batch = atomic_read(&root->log_batch);
2907 		/* when we're on an ssd, just kick the log commit out */
2908 		if (!btrfs_test_opt(fs_info, SSD) &&
2909 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2910 			mutex_unlock(&root->log_mutex);
2911 			schedule_timeout_uninterruptible(1);
2912 			mutex_lock(&root->log_mutex);
2913 		}
2914 		wait_for_writer(root);
2915 		if (batch == atomic_read(&root->log_batch))
2916 			break;
2917 	}
2918 
2919 	/* bail out if we need to do a full commit */
2920 	if (btrfs_need_log_full_commit(fs_info, trans)) {
2921 		ret = -EAGAIN;
2922 		btrfs_free_logged_extents(log, log_transid);
2923 		mutex_unlock(&root->log_mutex);
2924 		goto out;
2925 	}
2926 
2927 	if (log_transid % 2 == 0)
2928 		mark = EXTENT_DIRTY;
2929 	else
2930 		mark = EXTENT_NEW;
2931 
2932 	/* we start IO on  all the marked extents here, but we don't actually
2933 	 * wait for them until later.
2934 	 */
2935 	blk_start_plug(&plug);
2936 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2937 	if (ret) {
2938 		blk_finish_plug(&plug);
2939 		btrfs_abort_transaction(trans, ret);
2940 		btrfs_free_logged_extents(log, log_transid);
2941 		btrfs_set_log_full_commit(fs_info, trans);
2942 		mutex_unlock(&root->log_mutex);
2943 		goto out;
2944 	}
2945 
2946 	btrfs_set_root_node(&log->root_item, log->node);
2947 
2948 	root->log_transid++;
2949 	log->log_transid = root->log_transid;
2950 	root->log_start_pid = 0;
2951 	/*
2952 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2953 	 * in their headers. new modifications of the log will be written to
2954 	 * new positions. so it's safe to allow log writers to go in.
2955 	 */
2956 	mutex_unlock(&root->log_mutex);
2957 
2958 	btrfs_init_log_ctx(&root_log_ctx, NULL);
2959 
2960 	mutex_lock(&log_root_tree->log_mutex);
2961 	atomic_inc(&log_root_tree->log_batch);
2962 	atomic_inc(&log_root_tree->log_writers);
2963 
2964 	index2 = log_root_tree->log_transid % 2;
2965 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2966 	root_log_ctx.log_transid = log_root_tree->log_transid;
2967 
2968 	mutex_unlock(&log_root_tree->log_mutex);
2969 
2970 	ret = update_log_root(trans, log);
2971 
2972 	mutex_lock(&log_root_tree->log_mutex);
2973 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2974 		/*
2975 		 * Implicit memory barrier after atomic_dec_and_test
2976 		 */
2977 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2978 			wake_up(&log_root_tree->log_writer_wait);
2979 	}
2980 
2981 	if (ret) {
2982 		if (!list_empty(&root_log_ctx.list))
2983 			list_del_init(&root_log_ctx.list);
2984 
2985 		blk_finish_plug(&plug);
2986 		btrfs_set_log_full_commit(fs_info, trans);
2987 
2988 		if (ret != -ENOSPC) {
2989 			btrfs_abort_transaction(trans, ret);
2990 			mutex_unlock(&log_root_tree->log_mutex);
2991 			goto out;
2992 		}
2993 		btrfs_wait_tree_log_extents(log, mark);
2994 		btrfs_free_logged_extents(log, log_transid);
2995 		mutex_unlock(&log_root_tree->log_mutex);
2996 		ret = -EAGAIN;
2997 		goto out;
2998 	}
2999 
3000 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3001 		blk_finish_plug(&plug);
3002 		list_del_init(&root_log_ctx.list);
3003 		mutex_unlock(&log_root_tree->log_mutex);
3004 		ret = root_log_ctx.log_ret;
3005 		goto out;
3006 	}
3007 
3008 	index2 = root_log_ctx.log_transid % 2;
3009 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3010 		blk_finish_plug(&plug);
3011 		ret = btrfs_wait_tree_log_extents(log, mark);
3012 		btrfs_wait_logged_extents(trans, log, log_transid);
3013 		wait_log_commit(log_root_tree,
3014 				root_log_ctx.log_transid);
3015 		mutex_unlock(&log_root_tree->log_mutex);
3016 		if (!ret)
3017 			ret = root_log_ctx.log_ret;
3018 		goto out;
3019 	}
3020 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3021 	atomic_set(&log_root_tree->log_commit[index2], 1);
3022 
3023 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3024 		wait_log_commit(log_root_tree,
3025 				root_log_ctx.log_transid - 1);
3026 	}
3027 
3028 	wait_for_writer(log_root_tree);
3029 
3030 	/*
3031 	 * now that we've moved on to the tree of log tree roots,
3032 	 * check the full commit flag again
3033 	 */
3034 	if (btrfs_need_log_full_commit(fs_info, trans)) {
3035 		blk_finish_plug(&plug);
3036 		btrfs_wait_tree_log_extents(log, mark);
3037 		btrfs_free_logged_extents(log, log_transid);
3038 		mutex_unlock(&log_root_tree->log_mutex);
3039 		ret = -EAGAIN;
3040 		goto out_wake_log_root;
3041 	}
3042 
3043 	ret = btrfs_write_marked_extents(fs_info,
3044 					 &log_root_tree->dirty_log_pages,
3045 					 EXTENT_DIRTY | EXTENT_NEW);
3046 	blk_finish_plug(&plug);
3047 	if (ret) {
3048 		btrfs_set_log_full_commit(fs_info, trans);
3049 		btrfs_abort_transaction(trans, ret);
3050 		btrfs_free_logged_extents(log, log_transid);
3051 		mutex_unlock(&log_root_tree->log_mutex);
3052 		goto out_wake_log_root;
3053 	}
3054 	ret = btrfs_wait_tree_log_extents(log, mark);
3055 	if (!ret)
3056 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3057 						  EXTENT_NEW | EXTENT_DIRTY);
3058 	if (ret) {
3059 		btrfs_set_log_full_commit(fs_info, trans);
3060 		btrfs_free_logged_extents(log, log_transid);
3061 		mutex_unlock(&log_root_tree->log_mutex);
3062 		goto out_wake_log_root;
3063 	}
3064 	btrfs_wait_logged_extents(trans, log, log_transid);
3065 
3066 	btrfs_set_super_log_root(fs_info->super_for_commit,
3067 				 log_root_tree->node->start);
3068 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3069 				       btrfs_header_level(log_root_tree->node));
3070 
3071 	log_root_tree->log_transid++;
3072 	mutex_unlock(&log_root_tree->log_mutex);
3073 
3074 	/*
3075 	 * nobody else is going to jump in and write the the ctree
3076 	 * super here because the log_commit atomic below is protecting
3077 	 * us.  We must be called with a transaction handle pinning
3078 	 * the running transaction open, so a full commit can't hop
3079 	 * in and cause problems either.
3080 	 */
3081 	ret = write_all_supers(fs_info, 1);
3082 	if (ret) {
3083 		btrfs_set_log_full_commit(fs_info, trans);
3084 		btrfs_abort_transaction(trans, ret);
3085 		goto out_wake_log_root;
3086 	}
3087 
3088 	mutex_lock(&root->log_mutex);
3089 	if (root->last_log_commit < log_transid)
3090 		root->last_log_commit = log_transid;
3091 	mutex_unlock(&root->log_mutex);
3092 
3093 out_wake_log_root:
3094 	mutex_lock(&log_root_tree->log_mutex);
3095 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3096 
3097 	log_root_tree->log_transid_committed++;
3098 	atomic_set(&log_root_tree->log_commit[index2], 0);
3099 	mutex_unlock(&log_root_tree->log_mutex);
3100 
3101 	/*
3102 	 * The barrier before waitqueue_active is implied by mutex_unlock
3103 	 */
3104 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3105 		wake_up(&log_root_tree->log_commit_wait[index2]);
3106 out:
3107 	mutex_lock(&root->log_mutex);
3108 	btrfs_remove_all_log_ctxs(root, index1, ret);
3109 	root->log_transid_committed++;
3110 	atomic_set(&root->log_commit[index1], 0);
3111 	mutex_unlock(&root->log_mutex);
3112 
3113 	/*
3114 	 * The barrier before waitqueue_active is implied by mutex_unlock
3115 	 */
3116 	if (waitqueue_active(&root->log_commit_wait[index1]))
3117 		wake_up(&root->log_commit_wait[index1]);
3118 	return ret;
3119 }
3120 
3121 static void free_log_tree(struct btrfs_trans_handle *trans,
3122 			  struct btrfs_root *log)
3123 {
3124 	int ret;
3125 	u64 start;
3126 	u64 end;
3127 	struct walk_control wc = {
3128 		.free = 1,
3129 		.process_func = process_one_buffer
3130 	};
3131 
3132 	ret = walk_log_tree(trans, log, &wc);
3133 	/* I don't think this can happen but just in case */
3134 	if (ret)
3135 		btrfs_abort_transaction(trans, ret);
3136 
3137 	while (1) {
3138 		ret = find_first_extent_bit(&log->dirty_log_pages,
3139 				0, &start, &end,
3140 				EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3141 				NULL);
3142 		if (ret)
3143 			break;
3144 
3145 		clear_extent_bits(&log->dirty_log_pages, start, end,
3146 				  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3147 	}
3148 
3149 	/*
3150 	 * We may have short-circuited the log tree with the full commit logic
3151 	 * and left ordered extents on our list, so clear these out to keep us
3152 	 * from leaking inodes and memory.
3153 	 */
3154 	btrfs_free_logged_extents(log, 0);
3155 	btrfs_free_logged_extents(log, 1);
3156 
3157 	free_extent_buffer(log->node);
3158 	kfree(log);
3159 }
3160 
3161 /*
3162  * free all the extents used by the tree log.  This should be called
3163  * at commit time of the full transaction
3164  */
3165 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3166 {
3167 	if (root->log_root) {
3168 		free_log_tree(trans, root->log_root);
3169 		root->log_root = NULL;
3170 	}
3171 	return 0;
3172 }
3173 
3174 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3175 			     struct btrfs_fs_info *fs_info)
3176 {
3177 	if (fs_info->log_root_tree) {
3178 		free_log_tree(trans, fs_info->log_root_tree);
3179 		fs_info->log_root_tree = NULL;
3180 	}
3181 	return 0;
3182 }
3183 
3184 /*
3185  * If both a file and directory are logged, and unlinks or renames are
3186  * mixed in, we have a few interesting corners:
3187  *
3188  * create file X in dir Y
3189  * link file X to X.link in dir Y
3190  * fsync file X
3191  * unlink file X but leave X.link
3192  * fsync dir Y
3193  *
3194  * After a crash we would expect only X.link to exist.  But file X
3195  * didn't get fsync'd again so the log has back refs for X and X.link.
3196  *
3197  * We solve this by removing directory entries and inode backrefs from the
3198  * log when a file that was logged in the current transaction is
3199  * unlinked.  Any later fsync will include the updated log entries, and
3200  * we'll be able to reconstruct the proper directory items from backrefs.
3201  *
3202  * This optimizations allows us to avoid relogging the entire inode
3203  * or the entire directory.
3204  */
3205 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3206 				 struct btrfs_root *root,
3207 				 const char *name, int name_len,
3208 				 struct btrfs_inode *dir, u64 index)
3209 {
3210 	struct btrfs_root *log;
3211 	struct btrfs_dir_item *di;
3212 	struct btrfs_path *path;
3213 	int ret;
3214 	int err = 0;
3215 	int bytes_del = 0;
3216 	u64 dir_ino = btrfs_ino(dir);
3217 
3218 	if (dir->logged_trans < trans->transid)
3219 		return 0;
3220 
3221 	ret = join_running_log_trans(root);
3222 	if (ret)
3223 		return 0;
3224 
3225 	mutex_lock(&dir->log_mutex);
3226 
3227 	log = root->log_root;
3228 	path = btrfs_alloc_path();
3229 	if (!path) {
3230 		err = -ENOMEM;
3231 		goto out_unlock;
3232 	}
3233 
3234 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3235 				   name, name_len, -1);
3236 	if (IS_ERR(di)) {
3237 		err = PTR_ERR(di);
3238 		goto fail;
3239 	}
3240 	if (di) {
3241 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3242 		bytes_del += name_len;
3243 		if (ret) {
3244 			err = ret;
3245 			goto fail;
3246 		}
3247 	}
3248 	btrfs_release_path(path);
3249 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3250 					 index, name, name_len, -1);
3251 	if (IS_ERR(di)) {
3252 		err = PTR_ERR(di);
3253 		goto fail;
3254 	}
3255 	if (di) {
3256 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3257 		bytes_del += name_len;
3258 		if (ret) {
3259 			err = ret;
3260 			goto fail;
3261 		}
3262 	}
3263 
3264 	/* update the directory size in the log to reflect the names
3265 	 * we have removed
3266 	 */
3267 	if (bytes_del) {
3268 		struct btrfs_key key;
3269 
3270 		key.objectid = dir_ino;
3271 		key.offset = 0;
3272 		key.type = BTRFS_INODE_ITEM_KEY;
3273 		btrfs_release_path(path);
3274 
3275 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3276 		if (ret < 0) {
3277 			err = ret;
3278 			goto fail;
3279 		}
3280 		if (ret == 0) {
3281 			struct btrfs_inode_item *item;
3282 			u64 i_size;
3283 
3284 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3285 					      struct btrfs_inode_item);
3286 			i_size = btrfs_inode_size(path->nodes[0], item);
3287 			if (i_size > bytes_del)
3288 				i_size -= bytes_del;
3289 			else
3290 				i_size = 0;
3291 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3292 			btrfs_mark_buffer_dirty(path->nodes[0]);
3293 		} else
3294 			ret = 0;
3295 		btrfs_release_path(path);
3296 	}
3297 fail:
3298 	btrfs_free_path(path);
3299 out_unlock:
3300 	mutex_unlock(&dir->log_mutex);
3301 	if (ret == -ENOSPC) {
3302 		btrfs_set_log_full_commit(root->fs_info, trans);
3303 		ret = 0;
3304 	} else if (ret < 0)
3305 		btrfs_abort_transaction(trans, ret);
3306 
3307 	btrfs_end_log_trans(root);
3308 
3309 	return err;
3310 }
3311 
3312 /* see comments for btrfs_del_dir_entries_in_log */
3313 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3314 			       struct btrfs_root *root,
3315 			       const char *name, int name_len,
3316 			       struct btrfs_inode *inode, u64 dirid)
3317 {
3318 	struct btrfs_fs_info *fs_info = root->fs_info;
3319 	struct btrfs_root *log;
3320 	u64 index;
3321 	int ret;
3322 
3323 	if (inode->logged_trans < trans->transid)
3324 		return 0;
3325 
3326 	ret = join_running_log_trans(root);
3327 	if (ret)
3328 		return 0;
3329 	log = root->log_root;
3330 	mutex_lock(&inode->log_mutex);
3331 
3332 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3333 				  dirid, &index);
3334 	mutex_unlock(&inode->log_mutex);
3335 	if (ret == -ENOSPC) {
3336 		btrfs_set_log_full_commit(fs_info, trans);
3337 		ret = 0;
3338 	} else if (ret < 0 && ret != -ENOENT)
3339 		btrfs_abort_transaction(trans, ret);
3340 	btrfs_end_log_trans(root);
3341 
3342 	return ret;
3343 }
3344 
3345 /*
3346  * creates a range item in the log for 'dirid'.  first_offset and
3347  * last_offset tell us which parts of the key space the log should
3348  * be considered authoritative for.
3349  */
3350 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3351 				       struct btrfs_root *log,
3352 				       struct btrfs_path *path,
3353 				       int key_type, u64 dirid,
3354 				       u64 first_offset, u64 last_offset)
3355 {
3356 	int ret;
3357 	struct btrfs_key key;
3358 	struct btrfs_dir_log_item *item;
3359 
3360 	key.objectid = dirid;
3361 	key.offset = first_offset;
3362 	if (key_type == BTRFS_DIR_ITEM_KEY)
3363 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3364 	else
3365 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3366 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3367 	if (ret)
3368 		return ret;
3369 
3370 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3371 			      struct btrfs_dir_log_item);
3372 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3373 	btrfs_mark_buffer_dirty(path->nodes[0]);
3374 	btrfs_release_path(path);
3375 	return 0;
3376 }
3377 
3378 /*
3379  * log all the items included in the current transaction for a given
3380  * directory.  This also creates the range items in the log tree required
3381  * to replay anything deleted before the fsync
3382  */
3383 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3384 			  struct btrfs_root *root, struct btrfs_inode *inode,
3385 			  struct btrfs_path *path,
3386 			  struct btrfs_path *dst_path, int key_type,
3387 			  struct btrfs_log_ctx *ctx,
3388 			  u64 min_offset, u64 *last_offset_ret)
3389 {
3390 	struct btrfs_key min_key;
3391 	struct btrfs_root *log = root->log_root;
3392 	struct extent_buffer *src;
3393 	int err = 0;
3394 	int ret;
3395 	int i;
3396 	int nritems;
3397 	u64 first_offset = min_offset;
3398 	u64 last_offset = (u64)-1;
3399 	u64 ino = btrfs_ino(inode);
3400 
3401 	log = root->log_root;
3402 
3403 	min_key.objectid = ino;
3404 	min_key.type = key_type;
3405 	min_key.offset = min_offset;
3406 
3407 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3408 
3409 	/*
3410 	 * we didn't find anything from this transaction, see if there
3411 	 * is anything at all
3412 	 */
3413 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3414 		min_key.objectid = ino;
3415 		min_key.type = key_type;
3416 		min_key.offset = (u64)-1;
3417 		btrfs_release_path(path);
3418 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3419 		if (ret < 0) {
3420 			btrfs_release_path(path);
3421 			return ret;
3422 		}
3423 		ret = btrfs_previous_item(root, path, ino, key_type);
3424 
3425 		/* if ret == 0 there are items for this type,
3426 		 * create a range to tell us the last key of this type.
3427 		 * otherwise, there are no items in this directory after
3428 		 * *min_offset, and we create a range to indicate that.
3429 		 */
3430 		if (ret == 0) {
3431 			struct btrfs_key tmp;
3432 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3433 					      path->slots[0]);
3434 			if (key_type == tmp.type)
3435 				first_offset = max(min_offset, tmp.offset) + 1;
3436 		}
3437 		goto done;
3438 	}
3439 
3440 	/* go backward to find any previous key */
3441 	ret = btrfs_previous_item(root, path, ino, key_type);
3442 	if (ret == 0) {
3443 		struct btrfs_key tmp;
3444 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3445 		if (key_type == tmp.type) {
3446 			first_offset = tmp.offset;
3447 			ret = overwrite_item(trans, log, dst_path,
3448 					     path->nodes[0], path->slots[0],
3449 					     &tmp);
3450 			if (ret) {
3451 				err = ret;
3452 				goto done;
3453 			}
3454 		}
3455 	}
3456 	btrfs_release_path(path);
3457 
3458 	/* find the first key from this transaction again */
3459 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3460 	if (WARN_ON(ret != 0))
3461 		goto done;
3462 
3463 	/*
3464 	 * we have a block from this transaction, log every item in it
3465 	 * from our directory
3466 	 */
3467 	while (1) {
3468 		struct btrfs_key tmp;
3469 		src = path->nodes[0];
3470 		nritems = btrfs_header_nritems(src);
3471 		for (i = path->slots[0]; i < nritems; i++) {
3472 			struct btrfs_dir_item *di;
3473 
3474 			btrfs_item_key_to_cpu(src, &min_key, i);
3475 
3476 			if (min_key.objectid != ino || min_key.type != key_type)
3477 				goto done;
3478 			ret = overwrite_item(trans, log, dst_path, src, i,
3479 					     &min_key);
3480 			if (ret) {
3481 				err = ret;
3482 				goto done;
3483 			}
3484 
3485 			/*
3486 			 * We must make sure that when we log a directory entry,
3487 			 * the corresponding inode, after log replay, has a
3488 			 * matching link count. For example:
3489 			 *
3490 			 * touch foo
3491 			 * mkdir mydir
3492 			 * sync
3493 			 * ln foo mydir/bar
3494 			 * xfs_io -c "fsync" mydir
3495 			 * <crash>
3496 			 * <mount fs and log replay>
3497 			 *
3498 			 * Would result in a fsync log that when replayed, our
3499 			 * file inode would have a link count of 1, but we get
3500 			 * two directory entries pointing to the same inode.
3501 			 * After removing one of the names, it would not be
3502 			 * possible to remove the other name, which resulted
3503 			 * always in stale file handle errors, and would not
3504 			 * be possible to rmdir the parent directory, since
3505 			 * its i_size could never decrement to the value
3506 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3507 			 */
3508 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3509 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3510 			if (ctx &&
3511 			    (btrfs_dir_transid(src, di) == trans->transid ||
3512 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3513 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3514 				ctx->log_new_dentries = true;
3515 		}
3516 		path->slots[0] = nritems;
3517 
3518 		/*
3519 		 * look ahead to the next item and see if it is also
3520 		 * from this directory and from this transaction
3521 		 */
3522 		ret = btrfs_next_leaf(root, path);
3523 		if (ret == 1) {
3524 			last_offset = (u64)-1;
3525 			goto done;
3526 		}
3527 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3528 		if (tmp.objectid != ino || tmp.type != key_type) {
3529 			last_offset = (u64)-1;
3530 			goto done;
3531 		}
3532 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3533 			ret = overwrite_item(trans, log, dst_path,
3534 					     path->nodes[0], path->slots[0],
3535 					     &tmp);
3536 			if (ret)
3537 				err = ret;
3538 			else
3539 				last_offset = tmp.offset;
3540 			goto done;
3541 		}
3542 	}
3543 done:
3544 	btrfs_release_path(path);
3545 	btrfs_release_path(dst_path);
3546 
3547 	if (err == 0) {
3548 		*last_offset_ret = last_offset;
3549 		/*
3550 		 * insert the log range keys to indicate where the log
3551 		 * is valid
3552 		 */
3553 		ret = insert_dir_log_key(trans, log, path, key_type,
3554 					 ino, first_offset, last_offset);
3555 		if (ret)
3556 			err = ret;
3557 	}
3558 	return err;
3559 }
3560 
3561 /*
3562  * logging directories is very similar to logging inodes, We find all the items
3563  * from the current transaction and write them to the log.
3564  *
3565  * The recovery code scans the directory in the subvolume, and if it finds a
3566  * key in the range logged that is not present in the log tree, then it means
3567  * that dir entry was unlinked during the transaction.
3568  *
3569  * In order for that scan to work, we must include one key smaller than
3570  * the smallest logged by this transaction and one key larger than the largest
3571  * key logged by this transaction.
3572  */
3573 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3574 			  struct btrfs_root *root, struct btrfs_inode *inode,
3575 			  struct btrfs_path *path,
3576 			  struct btrfs_path *dst_path,
3577 			  struct btrfs_log_ctx *ctx)
3578 {
3579 	u64 min_key;
3580 	u64 max_key;
3581 	int ret;
3582 	int key_type = BTRFS_DIR_ITEM_KEY;
3583 
3584 again:
3585 	min_key = 0;
3586 	max_key = 0;
3587 	while (1) {
3588 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3589 				ctx, min_key, &max_key);
3590 		if (ret)
3591 			return ret;
3592 		if (max_key == (u64)-1)
3593 			break;
3594 		min_key = max_key + 1;
3595 	}
3596 
3597 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3598 		key_type = BTRFS_DIR_INDEX_KEY;
3599 		goto again;
3600 	}
3601 	return 0;
3602 }
3603 
3604 /*
3605  * a helper function to drop items from the log before we relog an
3606  * inode.  max_key_type indicates the highest item type to remove.
3607  * This cannot be run for file data extents because it does not
3608  * free the extents they point to.
3609  */
3610 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3611 				  struct btrfs_root *log,
3612 				  struct btrfs_path *path,
3613 				  u64 objectid, int max_key_type)
3614 {
3615 	int ret;
3616 	struct btrfs_key key;
3617 	struct btrfs_key found_key;
3618 	int start_slot;
3619 
3620 	key.objectid = objectid;
3621 	key.type = max_key_type;
3622 	key.offset = (u64)-1;
3623 
3624 	while (1) {
3625 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3626 		BUG_ON(ret == 0); /* Logic error */
3627 		if (ret < 0)
3628 			break;
3629 
3630 		if (path->slots[0] == 0)
3631 			break;
3632 
3633 		path->slots[0]--;
3634 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3635 				      path->slots[0]);
3636 
3637 		if (found_key.objectid != objectid)
3638 			break;
3639 
3640 		found_key.offset = 0;
3641 		found_key.type = 0;
3642 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3643 				       &start_slot);
3644 
3645 		ret = btrfs_del_items(trans, log, path, start_slot,
3646 				      path->slots[0] - start_slot + 1);
3647 		/*
3648 		 * If start slot isn't 0 then we don't need to re-search, we've
3649 		 * found the last guy with the objectid in this tree.
3650 		 */
3651 		if (ret || start_slot != 0)
3652 			break;
3653 		btrfs_release_path(path);
3654 	}
3655 	btrfs_release_path(path);
3656 	if (ret > 0)
3657 		ret = 0;
3658 	return ret;
3659 }
3660 
3661 static void fill_inode_item(struct btrfs_trans_handle *trans,
3662 			    struct extent_buffer *leaf,
3663 			    struct btrfs_inode_item *item,
3664 			    struct inode *inode, int log_inode_only,
3665 			    u64 logged_isize)
3666 {
3667 	struct btrfs_map_token token;
3668 
3669 	btrfs_init_map_token(&token);
3670 
3671 	if (log_inode_only) {
3672 		/* set the generation to zero so the recover code
3673 		 * can tell the difference between an logging
3674 		 * just to say 'this inode exists' and a logging
3675 		 * to say 'update this inode with these values'
3676 		 */
3677 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3678 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3679 	} else {
3680 		btrfs_set_token_inode_generation(leaf, item,
3681 						 BTRFS_I(inode)->generation,
3682 						 &token);
3683 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3684 	}
3685 
3686 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3687 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3688 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3689 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3690 
3691 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3692 				     inode->i_atime.tv_sec, &token);
3693 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3694 				      inode->i_atime.tv_nsec, &token);
3695 
3696 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3697 				     inode->i_mtime.tv_sec, &token);
3698 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3699 				      inode->i_mtime.tv_nsec, &token);
3700 
3701 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3702 				     inode->i_ctime.tv_sec, &token);
3703 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3704 				      inode->i_ctime.tv_nsec, &token);
3705 
3706 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3707 				     &token);
3708 
3709 	btrfs_set_token_inode_sequence(leaf, item,
3710 				       inode_peek_iversion(inode), &token);
3711 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3712 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3713 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3714 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3715 }
3716 
3717 static int log_inode_item(struct btrfs_trans_handle *trans,
3718 			  struct btrfs_root *log, struct btrfs_path *path,
3719 			  struct btrfs_inode *inode)
3720 {
3721 	struct btrfs_inode_item *inode_item;
3722 	int ret;
3723 
3724 	ret = btrfs_insert_empty_item(trans, log, path,
3725 				      &inode->location, sizeof(*inode_item));
3726 	if (ret && ret != -EEXIST)
3727 		return ret;
3728 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3729 				    struct btrfs_inode_item);
3730 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3731 			0, 0);
3732 	btrfs_release_path(path);
3733 	return 0;
3734 }
3735 
3736 static noinline int copy_items(struct btrfs_trans_handle *trans,
3737 			       struct btrfs_inode *inode,
3738 			       struct btrfs_path *dst_path,
3739 			       struct btrfs_path *src_path, u64 *last_extent,
3740 			       int start_slot, int nr, int inode_only,
3741 			       u64 logged_isize)
3742 {
3743 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3744 	unsigned long src_offset;
3745 	unsigned long dst_offset;
3746 	struct btrfs_root *log = inode->root->log_root;
3747 	struct btrfs_file_extent_item *extent;
3748 	struct btrfs_inode_item *inode_item;
3749 	struct extent_buffer *src = src_path->nodes[0];
3750 	struct btrfs_key first_key, last_key, key;
3751 	int ret;
3752 	struct btrfs_key *ins_keys;
3753 	u32 *ins_sizes;
3754 	char *ins_data;
3755 	int i;
3756 	struct list_head ordered_sums;
3757 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3758 	bool has_extents = false;
3759 	bool need_find_last_extent = true;
3760 	bool done = false;
3761 
3762 	INIT_LIST_HEAD(&ordered_sums);
3763 
3764 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3765 			   nr * sizeof(u32), GFP_NOFS);
3766 	if (!ins_data)
3767 		return -ENOMEM;
3768 
3769 	first_key.objectid = (u64)-1;
3770 
3771 	ins_sizes = (u32 *)ins_data;
3772 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3773 
3774 	for (i = 0; i < nr; i++) {
3775 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3776 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3777 	}
3778 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3779 				       ins_keys, ins_sizes, nr);
3780 	if (ret) {
3781 		kfree(ins_data);
3782 		return ret;
3783 	}
3784 
3785 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3786 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3787 						   dst_path->slots[0]);
3788 
3789 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3790 
3791 		if (i == nr - 1)
3792 			last_key = ins_keys[i];
3793 
3794 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3795 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3796 						    dst_path->slots[0],
3797 						    struct btrfs_inode_item);
3798 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3799 					&inode->vfs_inode,
3800 					inode_only == LOG_INODE_EXISTS,
3801 					logged_isize);
3802 		} else {
3803 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3804 					   src_offset, ins_sizes[i]);
3805 		}
3806 
3807 		/*
3808 		 * We set need_find_last_extent here in case we know we were
3809 		 * processing other items and then walk into the first extent in
3810 		 * the inode.  If we don't hit an extent then nothing changes,
3811 		 * we'll do the last search the next time around.
3812 		 */
3813 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3814 			has_extents = true;
3815 			if (first_key.objectid == (u64)-1)
3816 				first_key = ins_keys[i];
3817 		} else {
3818 			need_find_last_extent = false;
3819 		}
3820 
3821 		/* take a reference on file data extents so that truncates
3822 		 * or deletes of this inode don't have to relog the inode
3823 		 * again
3824 		 */
3825 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3826 		    !skip_csum) {
3827 			int found_type;
3828 			extent = btrfs_item_ptr(src, start_slot + i,
3829 						struct btrfs_file_extent_item);
3830 
3831 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3832 				continue;
3833 
3834 			found_type = btrfs_file_extent_type(src, extent);
3835 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3836 				u64 ds, dl, cs, cl;
3837 				ds = btrfs_file_extent_disk_bytenr(src,
3838 								extent);
3839 				/* ds == 0 is a hole */
3840 				if (ds == 0)
3841 					continue;
3842 
3843 				dl = btrfs_file_extent_disk_num_bytes(src,
3844 								extent);
3845 				cs = btrfs_file_extent_offset(src, extent);
3846 				cl = btrfs_file_extent_num_bytes(src,
3847 								extent);
3848 				if (btrfs_file_extent_compression(src,
3849 								  extent)) {
3850 					cs = 0;
3851 					cl = dl;
3852 				}
3853 
3854 				ret = btrfs_lookup_csums_range(
3855 						fs_info->csum_root,
3856 						ds + cs, ds + cs + cl - 1,
3857 						&ordered_sums, 0);
3858 				if (ret) {
3859 					btrfs_release_path(dst_path);
3860 					kfree(ins_data);
3861 					return ret;
3862 				}
3863 			}
3864 		}
3865 	}
3866 
3867 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3868 	btrfs_release_path(dst_path);
3869 	kfree(ins_data);
3870 
3871 	/*
3872 	 * we have to do this after the loop above to avoid changing the
3873 	 * log tree while trying to change the log tree.
3874 	 */
3875 	ret = 0;
3876 	while (!list_empty(&ordered_sums)) {
3877 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3878 						   struct btrfs_ordered_sum,
3879 						   list);
3880 		if (!ret)
3881 			ret = btrfs_csum_file_blocks(trans, log, sums);
3882 		list_del(&sums->list);
3883 		kfree(sums);
3884 	}
3885 
3886 	if (!has_extents)
3887 		return ret;
3888 
3889 	if (need_find_last_extent && *last_extent == first_key.offset) {
3890 		/*
3891 		 * We don't have any leafs between our current one and the one
3892 		 * we processed before that can have file extent items for our
3893 		 * inode (and have a generation number smaller than our current
3894 		 * transaction id).
3895 		 */
3896 		need_find_last_extent = false;
3897 	}
3898 
3899 	/*
3900 	 * Because we use btrfs_search_forward we could skip leaves that were
3901 	 * not modified and then assume *last_extent is valid when it really
3902 	 * isn't.  So back up to the previous leaf and read the end of the last
3903 	 * extent before we go and fill in holes.
3904 	 */
3905 	if (need_find_last_extent) {
3906 		u64 len;
3907 
3908 		ret = btrfs_prev_leaf(inode->root, src_path);
3909 		if (ret < 0)
3910 			return ret;
3911 		if (ret)
3912 			goto fill_holes;
3913 		if (src_path->slots[0])
3914 			src_path->slots[0]--;
3915 		src = src_path->nodes[0];
3916 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3917 		if (key.objectid != btrfs_ino(inode) ||
3918 		    key.type != BTRFS_EXTENT_DATA_KEY)
3919 			goto fill_holes;
3920 		extent = btrfs_item_ptr(src, src_path->slots[0],
3921 					struct btrfs_file_extent_item);
3922 		if (btrfs_file_extent_type(src, extent) ==
3923 		    BTRFS_FILE_EXTENT_INLINE) {
3924 			len = btrfs_file_extent_inline_len(src,
3925 							   src_path->slots[0],
3926 							   extent);
3927 			*last_extent = ALIGN(key.offset + len,
3928 					     fs_info->sectorsize);
3929 		} else {
3930 			len = btrfs_file_extent_num_bytes(src, extent);
3931 			*last_extent = key.offset + len;
3932 		}
3933 	}
3934 fill_holes:
3935 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3936 	 * things could have happened
3937 	 *
3938 	 * 1) A merge could have happened, so we could currently be on a leaf
3939 	 * that holds what we were copying in the first place.
3940 	 * 2) A split could have happened, and now not all of the items we want
3941 	 * are on the same leaf.
3942 	 *
3943 	 * So we need to adjust how we search for holes, we need to drop the
3944 	 * path and re-search for the first extent key we found, and then walk
3945 	 * forward until we hit the last one we copied.
3946 	 */
3947 	if (need_find_last_extent) {
3948 		/* btrfs_prev_leaf could return 1 without releasing the path */
3949 		btrfs_release_path(src_path);
3950 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
3951 				src_path, 0, 0);
3952 		if (ret < 0)
3953 			return ret;
3954 		ASSERT(ret == 0);
3955 		src = src_path->nodes[0];
3956 		i = src_path->slots[0];
3957 	} else {
3958 		i = start_slot;
3959 	}
3960 
3961 	/*
3962 	 * Ok so here we need to go through and fill in any holes we may have
3963 	 * to make sure that holes are punched for those areas in case they had
3964 	 * extents previously.
3965 	 */
3966 	while (!done) {
3967 		u64 offset, len;
3968 		u64 extent_end;
3969 
3970 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3971 			ret = btrfs_next_leaf(inode->root, src_path);
3972 			if (ret < 0)
3973 				return ret;
3974 			ASSERT(ret == 0);
3975 			src = src_path->nodes[0];
3976 			i = 0;
3977 			need_find_last_extent = true;
3978 		}
3979 
3980 		btrfs_item_key_to_cpu(src, &key, i);
3981 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3982 			done = true;
3983 		if (key.objectid != btrfs_ino(inode) ||
3984 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3985 			i++;
3986 			continue;
3987 		}
3988 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3989 		if (btrfs_file_extent_type(src, extent) ==
3990 		    BTRFS_FILE_EXTENT_INLINE) {
3991 			len = btrfs_file_extent_inline_len(src, i, extent);
3992 			extent_end = ALIGN(key.offset + len,
3993 					   fs_info->sectorsize);
3994 		} else {
3995 			len = btrfs_file_extent_num_bytes(src, extent);
3996 			extent_end = key.offset + len;
3997 		}
3998 		i++;
3999 
4000 		if (*last_extent == key.offset) {
4001 			*last_extent = extent_end;
4002 			continue;
4003 		}
4004 		offset = *last_extent;
4005 		len = key.offset - *last_extent;
4006 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4007 				offset, 0, 0, len, 0, len, 0, 0, 0);
4008 		if (ret)
4009 			break;
4010 		*last_extent = extent_end;
4011 	}
4012 
4013 	/*
4014 	 * Check if there is a hole between the last extent found in our leaf
4015 	 * and the first extent in the next leaf. If there is one, we need to
4016 	 * log an explicit hole so that at replay time we can punch the hole.
4017 	 */
4018 	if (ret == 0 &&
4019 	    key.objectid == btrfs_ino(inode) &&
4020 	    key.type == BTRFS_EXTENT_DATA_KEY &&
4021 	    i == btrfs_header_nritems(src_path->nodes[0])) {
4022 		ret = btrfs_next_leaf(inode->root, src_path);
4023 		need_find_last_extent = true;
4024 		if (ret > 0) {
4025 			ret = 0;
4026 		} else if (ret == 0) {
4027 			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4028 					      src_path->slots[0]);
4029 			if (key.objectid == btrfs_ino(inode) &&
4030 			    key.type == BTRFS_EXTENT_DATA_KEY &&
4031 			    *last_extent < key.offset) {
4032 				const u64 len = key.offset - *last_extent;
4033 
4034 				ret = btrfs_insert_file_extent(trans, log,
4035 							       btrfs_ino(inode),
4036 							       *last_extent, 0,
4037 							       0, len, 0, len,
4038 							       0, 0, 0);
4039 			}
4040 		}
4041 	}
4042 	/*
4043 	 * Need to let the callers know we dropped the path so they should
4044 	 * re-search.
4045 	 */
4046 	if (!ret && need_find_last_extent)
4047 		ret = 1;
4048 	return ret;
4049 }
4050 
4051 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4052 {
4053 	struct extent_map *em1, *em2;
4054 
4055 	em1 = list_entry(a, struct extent_map, list);
4056 	em2 = list_entry(b, struct extent_map, list);
4057 
4058 	if (em1->start < em2->start)
4059 		return -1;
4060 	else if (em1->start > em2->start)
4061 		return 1;
4062 	return 0;
4063 }
4064 
4065 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
4066 				struct inode *inode,
4067 				struct btrfs_root *root,
4068 				const struct extent_map *em,
4069 				const struct list_head *logged_list,
4070 				bool *ordered_io_error)
4071 {
4072 	struct btrfs_fs_info *fs_info = root->fs_info;
4073 	struct btrfs_ordered_extent *ordered;
4074 	struct btrfs_root *log = root->log_root;
4075 	u64 mod_start = em->mod_start;
4076 	u64 mod_len = em->mod_len;
4077 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
4078 	u64 csum_offset;
4079 	u64 csum_len;
4080 	LIST_HEAD(ordered_sums);
4081 	int ret = 0;
4082 
4083 	*ordered_io_error = false;
4084 
4085 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4086 	    em->block_start == EXTENT_MAP_HOLE)
4087 		return 0;
4088 
4089 	/*
4090 	 * Wait far any ordered extent that covers our extent map. If it
4091 	 * finishes without an error, first check and see if our csums are on
4092 	 * our outstanding ordered extents.
4093 	 */
4094 	list_for_each_entry(ordered, logged_list, log_list) {
4095 		struct btrfs_ordered_sum *sum;
4096 
4097 		if (!mod_len)
4098 			break;
4099 
4100 		if (ordered->file_offset + ordered->len <= mod_start ||
4101 		    mod_start + mod_len <= ordered->file_offset)
4102 			continue;
4103 
4104 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
4105 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
4106 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
4107 			const u64 start = ordered->file_offset;
4108 			const u64 end = ordered->file_offset + ordered->len - 1;
4109 
4110 			WARN_ON(ordered->inode != inode);
4111 			filemap_fdatawrite_range(inode->i_mapping, start, end);
4112 		}
4113 
4114 		wait_event(ordered->wait,
4115 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
4116 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
4117 
4118 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
4119 			/*
4120 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4121 			 * i_mapping flags, so that the next fsync won't get
4122 			 * an outdated io error too.
4123 			 */
4124 			filemap_check_errors(inode->i_mapping);
4125 			*ordered_io_error = true;
4126 			break;
4127 		}
4128 		/*
4129 		 * We are going to copy all the csums on this ordered extent, so
4130 		 * go ahead and adjust mod_start and mod_len in case this
4131 		 * ordered extent has already been logged.
4132 		 */
4133 		if (ordered->file_offset > mod_start) {
4134 			if (ordered->file_offset + ordered->len >=
4135 			    mod_start + mod_len)
4136 				mod_len = ordered->file_offset - mod_start;
4137 			/*
4138 			 * If we have this case
4139 			 *
4140 			 * |--------- logged extent ---------|
4141 			 *       |----- ordered extent ----|
4142 			 *
4143 			 * Just don't mess with mod_start and mod_len, we'll
4144 			 * just end up logging more csums than we need and it
4145 			 * will be ok.
4146 			 */
4147 		} else {
4148 			if (ordered->file_offset + ordered->len <
4149 			    mod_start + mod_len) {
4150 				mod_len = (mod_start + mod_len) -
4151 					(ordered->file_offset + ordered->len);
4152 				mod_start = ordered->file_offset +
4153 					ordered->len;
4154 			} else {
4155 				mod_len = 0;
4156 			}
4157 		}
4158 
4159 		if (skip_csum)
4160 			continue;
4161 
4162 		/*
4163 		 * To keep us from looping for the above case of an ordered
4164 		 * extent that falls inside of the logged extent.
4165 		 */
4166 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4167 				     &ordered->flags))
4168 			continue;
4169 
4170 		list_for_each_entry(sum, &ordered->list, list) {
4171 			ret = btrfs_csum_file_blocks(trans, log, sum);
4172 			if (ret)
4173 				break;
4174 		}
4175 	}
4176 
4177 	if (*ordered_io_error || !mod_len || ret || skip_csum)
4178 		return ret;
4179 
4180 	if (em->compress_type) {
4181 		csum_offset = 0;
4182 		csum_len = max(em->block_len, em->orig_block_len);
4183 	} else {
4184 		csum_offset = mod_start - em->start;
4185 		csum_len = mod_len;
4186 	}
4187 
4188 	/* block start is already adjusted for the file extent offset. */
4189 	ret = btrfs_lookup_csums_range(fs_info->csum_root,
4190 				       em->block_start + csum_offset,
4191 				       em->block_start + csum_offset +
4192 				       csum_len - 1, &ordered_sums, 0);
4193 	if (ret)
4194 		return ret;
4195 
4196 	while (!list_empty(&ordered_sums)) {
4197 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4198 						   struct btrfs_ordered_sum,
4199 						   list);
4200 		if (!ret)
4201 			ret = btrfs_csum_file_blocks(trans, log, sums);
4202 		list_del(&sums->list);
4203 		kfree(sums);
4204 	}
4205 
4206 	return ret;
4207 }
4208 
4209 static int log_one_extent(struct btrfs_trans_handle *trans,
4210 			  struct btrfs_inode *inode, struct btrfs_root *root,
4211 			  const struct extent_map *em,
4212 			  struct btrfs_path *path,
4213 			  const struct list_head *logged_list,
4214 			  struct btrfs_log_ctx *ctx)
4215 {
4216 	struct btrfs_root *log = root->log_root;
4217 	struct btrfs_file_extent_item *fi;
4218 	struct extent_buffer *leaf;
4219 	struct btrfs_map_token token;
4220 	struct btrfs_key key;
4221 	u64 extent_offset = em->start - em->orig_start;
4222 	u64 block_len;
4223 	int ret;
4224 	int extent_inserted = 0;
4225 	bool ordered_io_err = false;
4226 
4227 	ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4228 			logged_list, &ordered_io_err);
4229 	if (ret)
4230 		return ret;
4231 
4232 	if (ordered_io_err) {
4233 		ctx->io_err = -EIO;
4234 		return ctx->io_err;
4235 	}
4236 
4237 	btrfs_init_map_token(&token);
4238 
4239 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4240 				   em->start + em->len, NULL, 0, 1,
4241 				   sizeof(*fi), &extent_inserted);
4242 	if (ret)
4243 		return ret;
4244 
4245 	if (!extent_inserted) {
4246 		key.objectid = btrfs_ino(inode);
4247 		key.type = BTRFS_EXTENT_DATA_KEY;
4248 		key.offset = em->start;
4249 
4250 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4251 					      sizeof(*fi));
4252 		if (ret)
4253 			return ret;
4254 	}
4255 	leaf = path->nodes[0];
4256 	fi = btrfs_item_ptr(leaf, path->slots[0],
4257 			    struct btrfs_file_extent_item);
4258 
4259 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4260 					       &token);
4261 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4262 		btrfs_set_token_file_extent_type(leaf, fi,
4263 						 BTRFS_FILE_EXTENT_PREALLOC,
4264 						 &token);
4265 	else
4266 		btrfs_set_token_file_extent_type(leaf, fi,
4267 						 BTRFS_FILE_EXTENT_REG,
4268 						 &token);
4269 
4270 	block_len = max(em->block_len, em->orig_block_len);
4271 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4272 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4273 							em->block_start,
4274 							&token);
4275 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4276 							   &token);
4277 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4278 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4279 							em->block_start -
4280 							extent_offset, &token);
4281 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4282 							   &token);
4283 	} else {
4284 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4285 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4286 							   &token);
4287 	}
4288 
4289 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4290 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4291 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4292 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4293 						&token);
4294 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4295 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4296 	btrfs_mark_buffer_dirty(leaf);
4297 
4298 	btrfs_release_path(path);
4299 
4300 	return ret;
4301 }
4302 
4303 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4304 				     struct btrfs_root *root,
4305 				     struct btrfs_inode *inode,
4306 				     struct btrfs_path *path,
4307 				     struct list_head *logged_list,
4308 				     struct btrfs_log_ctx *ctx,
4309 				     const u64 start,
4310 				     const u64 end)
4311 {
4312 	struct extent_map *em, *n;
4313 	struct list_head extents;
4314 	struct extent_map_tree *tree = &inode->extent_tree;
4315 	u64 logged_start, logged_end;
4316 	u64 test_gen;
4317 	int ret = 0;
4318 	int num = 0;
4319 
4320 	INIT_LIST_HEAD(&extents);
4321 
4322 	down_write(&inode->dio_sem);
4323 	write_lock(&tree->lock);
4324 	test_gen = root->fs_info->last_trans_committed;
4325 	logged_start = start;
4326 	logged_end = end;
4327 
4328 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4329 		list_del_init(&em->list);
4330 		/*
4331 		 * Just an arbitrary number, this can be really CPU intensive
4332 		 * once we start getting a lot of extents, and really once we
4333 		 * have a bunch of extents we just want to commit since it will
4334 		 * be faster.
4335 		 */
4336 		if (++num > 32768) {
4337 			list_del_init(&tree->modified_extents);
4338 			ret = -EFBIG;
4339 			goto process;
4340 		}
4341 
4342 		if (em->generation <= test_gen)
4343 			continue;
4344 
4345 		if (em->start < logged_start)
4346 			logged_start = em->start;
4347 		if ((em->start + em->len - 1) > logged_end)
4348 			logged_end = em->start + em->len - 1;
4349 
4350 		/* Need a ref to keep it from getting evicted from cache */
4351 		refcount_inc(&em->refs);
4352 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4353 		list_add_tail(&em->list, &extents);
4354 		num++;
4355 	}
4356 
4357 	list_sort(NULL, &extents, extent_cmp);
4358 	btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
4359 	/*
4360 	 * Some ordered extents started by fsync might have completed
4361 	 * before we could collect them into the list logged_list, which
4362 	 * means they're gone, not in our logged_list nor in the inode's
4363 	 * ordered tree. We want the application/user space to know an
4364 	 * error happened while attempting to persist file data so that
4365 	 * it can take proper action. If such error happened, we leave
4366 	 * without writing to the log tree and the fsync must report the
4367 	 * file data write error and not commit the current transaction.
4368 	 */
4369 	ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4370 	if (ret)
4371 		ctx->io_err = ret;
4372 process:
4373 	while (!list_empty(&extents)) {
4374 		em = list_entry(extents.next, struct extent_map, list);
4375 
4376 		list_del_init(&em->list);
4377 
4378 		/*
4379 		 * If we had an error we just need to delete everybody from our
4380 		 * private list.
4381 		 */
4382 		if (ret) {
4383 			clear_em_logging(tree, em);
4384 			free_extent_map(em);
4385 			continue;
4386 		}
4387 
4388 		write_unlock(&tree->lock);
4389 
4390 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4391 				     ctx);
4392 		write_lock(&tree->lock);
4393 		clear_em_logging(tree, em);
4394 		free_extent_map(em);
4395 	}
4396 	WARN_ON(!list_empty(&extents));
4397 	write_unlock(&tree->lock);
4398 	up_write(&inode->dio_sem);
4399 
4400 	btrfs_release_path(path);
4401 	return ret;
4402 }
4403 
4404 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4405 			     struct btrfs_path *path, u64 *size_ret)
4406 {
4407 	struct btrfs_key key;
4408 	int ret;
4409 
4410 	key.objectid = btrfs_ino(inode);
4411 	key.type = BTRFS_INODE_ITEM_KEY;
4412 	key.offset = 0;
4413 
4414 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4415 	if (ret < 0) {
4416 		return ret;
4417 	} else if (ret > 0) {
4418 		*size_ret = 0;
4419 	} else {
4420 		struct btrfs_inode_item *item;
4421 
4422 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4423 				      struct btrfs_inode_item);
4424 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4425 	}
4426 
4427 	btrfs_release_path(path);
4428 	return 0;
4429 }
4430 
4431 /*
4432  * At the moment we always log all xattrs. This is to figure out at log replay
4433  * time which xattrs must have their deletion replayed. If a xattr is missing
4434  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4435  * because if a xattr is deleted, the inode is fsynced and a power failure
4436  * happens, causing the log to be replayed the next time the fs is mounted,
4437  * we want the xattr to not exist anymore (same behaviour as other filesystems
4438  * with a journal, ext3/4, xfs, f2fs, etc).
4439  */
4440 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4441 				struct btrfs_root *root,
4442 				struct btrfs_inode *inode,
4443 				struct btrfs_path *path,
4444 				struct btrfs_path *dst_path)
4445 {
4446 	int ret;
4447 	struct btrfs_key key;
4448 	const u64 ino = btrfs_ino(inode);
4449 	int ins_nr = 0;
4450 	int start_slot = 0;
4451 
4452 	key.objectid = ino;
4453 	key.type = BTRFS_XATTR_ITEM_KEY;
4454 	key.offset = 0;
4455 
4456 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4457 	if (ret < 0)
4458 		return ret;
4459 
4460 	while (true) {
4461 		int slot = path->slots[0];
4462 		struct extent_buffer *leaf = path->nodes[0];
4463 		int nritems = btrfs_header_nritems(leaf);
4464 
4465 		if (slot >= nritems) {
4466 			if (ins_nr > 0) {
4467 				u64 last_extent = 0;
4468 
4469 				ret = copy_items(trans, inode, dst_path, path,
4470 						 &last_extent, start_slot,
4471 						 ins_nr, 1, 0);
4472 				/* can't be 1, extent items aren't processed */
4473 				ASSERT(ret <= 0);
4474 				if (ret < 0)
4475 					return ret;
4476 				ins_nr = 0;
4477 			}
4478 			ret = btrfs_next_leaf(root, path);
4479 			if (ret < 0)
4480 				return ret;
4481 			else if (ret > 0)
4482 				break;
4483 			continue;
4484 		}
4485 
4486 		btrfs_item_key_to_cpu(leaf, &key, slot);
4487 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4488 			break;
4489 
4490 		if (ins_nr == 0)
4491 			start_slot = slot;
4492 		ins_nr++;
4493 		path->slots[0]++;
4494 		cond_resched();
4495 	}
4496 	if (ins_nr > 0) {
4497 		u64 last_extent = 0;
4498 
4499 		ret = copy_items(trans, inode, dst_path, path,
4500 				 &last_extent, start_slot,
4501 				 ins_nr, 1, 0);
4502 		/* can't be 1, extent items aren't processed */
4503 		ASSERT(ret <= 0);
4504 		if (ret < 0)
4505 			return ret;
4506 	}
4507 
4508 	return 0;
4509 }
4510 
4511 /*
4512  * If the no holes feature is enabled we need to make sure any hole between the
4513  * last extent and the i_size of our inode is explicitly marked in the log. This
4514  * is to make sure that doing something like:
4515  *
4516  *      1) create file with 128Kb of data
4517  *      2) truncate file to 64Kb
4518  *      3) truncate file to 256Kb
4519  *      4) fsync file
4520  *      5) <crash/power failure>
4521  *      6) mount fs and trigger log replay
4522  *
4523  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4524  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4525  * file correspond to a hole. The presence of explicit holes in a log tree is
4526  * what guarantees that log replay will remove/adjust file extent items in the
4527  * fs/subvol tree.
4528  *
4529  * Here we do not need to care about holes between extents, that is already done
4530  * by copy_items(). We also only need to do this in the full sync path, where we
4531  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4532  * lookup the list of modified extent maps and if any represents a hole, we
4533  * insert a corresponding extent representing a hole in the log tree.
4534  */
4535 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4536 				   struct btrfs_root *root,
4537 				   struct btrfs_inode *inode,
4538 				   struct btrfs_path *path)
4539 {
4540 	struct btrfs_fs_info *fs_info = root->fs_info;
4541 	int ret;
4542 	struct btrfs_key key;
4543 	u64 hole_start;
4544 	u64 hole_size;
4545 	struct extent_buffer *leaf;
4546 	struct btrfs_root *log = root->log_root;
4547 	const u64 ino = btrfs_ino(inode);
4548 	const u64 i_size = i_size_read(&inode->vfs_inode);
4549 
4550 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4551 		return 0;
4552 
4553 	key.objectid = ino;
4554 	key.type = BTRFS_EXTENT_DATA_KEY;
4555 	key.offset = (u64)-1;
4556 
4557 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4558 	ASSERT(ret != 0);
4559 	if (ret < 0)
4560 		return ret;
4561 
4562 	ASSERT(path->slots[0] > 0);
4563 	path->slots[0]--;
4564 	leaf = path->nodes[0];
4565 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4566 
4567 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4568 		/* inode does not have any extents */
4569 		hole_start = 0;
4570 		hole_size = i_size;
4571 	} else {
4572 		struct btrfs_file_extent_item *extent;
4573 		u64 len;
4574 
4575 		/*
4576 		 * If there's an extent beyond i_size, an explicit hole was
4577 		 * already inserted by copy_items().
4578 		 */
4579 		if (key.offset >= i_size)
4580 			return 0;
4581 
4582 		extent = btrfs_item_ptr(leaf, path->slots[0],
4583 					struct btrfs_file_extent_item);
4584 
4585 		if (btrfs_file_extent_type(leaf, extent) ==
4586 		    BTRFS_FILE_EXTENT_INLINE) {
4587 			len = btrfs_file_extent_inline_len(leaf,
4588 							   path->slots[0],
4589 							   extent);
4590 			ASSERT(len == i_size ||
4591 			       (len == fs_info->sectorsize &&
4592 				btrfs_file_extent_compression(leaf, extent) !=
4593 				BTRFS_COMPRESS_NONE));
4594 			return 0;
4595 		}
4596 
4597 		len = btrfs_file_extent_num_bytes(leaf, extent);
4598 		/* Last extent goes beyond i_size, no need to log a hole. */
4599 		if (key.offset + len > i_size)
4600 			return 0;
4601 		hole_start = key.offset + len;
4602 		hole_size = i_size - hole_start;
4603 	}
4604 	btrfs_release_path(path);
4605 
4606 	/* Last extent ends at i_size. */
4607 	if (hole_size == 0)
4608 		return 0;
4609 
4610 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4611 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4612 				       hole_size, 0, hole_size, 0, 0, 0);
4613 	return ret;
4614 }
4615 
4616 /*
4617  * When we are logging a new inode X, check if it doesn't have a reference that
4618  * matches the reference from some other inode Y created in a past transaction
4619  * and that was renamed in the current transaction. If we don't do this, then at
4620  * log replay time we can lose inode Y (and all its files if it's a directory):
4621  *
4622  * mkdir /mnt/x
4623  * echo "hello world" > /mnt/x/foobar
4624  * sync
4625  * mv /mnt/x /mnt/y
4626  * mkdir /mnt/x                 # or touch /mnt/x
4627  * xfs_io -c fsync /mnt/x
4628  * <power fail>
4629  * mount fs, trigger log replay
4630  *
4631  * After the log replay procedure, we would lose the first directory and all its
4632  * files (file foobar).
4633  * For the case where inode Y is not a directory we simply end up losing it:
4634  *
4635  * echo "123" > /mnt/foo
4636  * sync
4637  * mv /mnt/foo /mnt/bar
4638  * echo "abc" > /mnt/foo
4639  * xfs_io -c fsync /mnt/foo
4640  * <power fail>
4641  *
4642  * We also need this for cases where a snapshot entry is replaced by some other
4643  * entry (file or directory) otherwise we end up with an unreplayable log due to
4644  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4645  * if it were a regular entry:
4646  *
4647  * mkdir /mnt/x
4648  * btrfs subvolume snapshot /mnt /mnt/x/snap
4649  * btrfs subvolume delete /mnt/x/snap
4650  * rmdir /mnt/x
4651  * mkdir /mnt/x
4652  * fsync /mnt/x or fsync some new file inside it
4653  * <power fail>
4654  *
4655  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4656  * the same transaction.
4657  */
4658 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4659 					 const int slot,
4660 					 const struct btrfs_key *key,
4661 					 struct btrfs_inode *inode,
4662 					 u64 *other_ino)
4663 {
4664 	int ret;
4665 	struct btrfs_path *search_path;
4666 	char *name = NULL;
4667 	u32 name_len = 0;
4668 	u32 item_size = btrfs_item_size_nr(eb, slot);
4669 	u32 cur_offset = 0;
4670 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4671 
4672 	search_path = btrfs_alloc_path();
4673 	if (!search_path)
4674 		return -ENOMEM;
4675 	search_path->search_commit_root = 1;
4676 	search_path->skip_locking = 1;
4677 
4678 	while (cur_offset < item_size) {
4679 		u64 parent;
4680 		u32 this_name_len;
4681 		u32 this_len;
4682 		unsigned long name_ptr;
4683 		struct btrfs_dir_item *di;
4684 
4685 		if (key->type == BTRFS_INODE_REF_KEY) {
4686 			struct btrfs_inode_ref *iref;
4687 
4688 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4689 			parent = key->offset;
4690 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4691 			name_ptr = (unsigned long)(iref + 1);
4692 			this_len = sizeof(*iref) + this_name_len;
4693 		} else {
4694 			struct btrfs_inode_extref *extref;
4695 
4696 			extref = (struct btrfs_inode_extref *)(ptr +
4697 							       cur_offset);
4698 			parent = btrfs_inode_extref_parent(eb, extref);
4699 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4700 			name_ptr = (unsigned long)&extref->name;
4701 			this_len = sizeof(*extref) + this_name_len;
4702 		}
4703 
4704 		if (this_name_len > name_len) {
4705 			char *new_name;
4706 
4707 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4708 			if (!new_name) {
4709 				ret = -ENOMEM;
4710 				goto out;
4711 			}
4712 			name_len = this_name_len;
4713 			name = new_name;
4714 		}
4715 
4716 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4717 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4718 				parent, name, this_name_len, 0);
4719 		if (di && !IS_ERR(di)) {
4720 			struct btrfs_key di_key;
4721 
4722 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4723 						  di, &di_key);
4724 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4725 				ret = 1;
4726 				*other_ino = di_key.objectid;
4727 			} else {
4728 				ret = -EAGAIN;
4729 			}
4730 			goto out;
4731 		} else if (IS_ERR(di)) {
4732 			ret = PTR_ERR(di);
4733 			goto out;
4734 		}
4735 		btrfs_release_path(search_path);
4736 
4737 		cur_offset += this_len;
4738 	}
4739 	ret = 0;
4740 out:
4741 	btrfs_free_path(search_path);
4742 	kfree(name);
4743 	return ret;
4744 }
4745 
4746 /* log a single inode in the tree log.
4747  * At least one parent directory for this inode must exist in the tree
4748  * or be logged already.
4749  *
4750  * Any items from this inode changed by the current transaction are copied
4751  * to the log tree.  An extra reference is taken on any extents in this
4752  * file, allowing us to avoid a whole pile of corner cases around logging
4753  * blocks that have been removed from the tree.
4754  *
4755  * See LOG_INODE_ALL and related defines for a description of what inode_only
4756  * does.
4757  *
4758  * This handles both files and directories.
4759  */
4760 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4761 			   struct btrfs_root *root, struct btrfs_inode *inode,
4762 			   int inode_only,
4763 			   const loff_t start,
4764 			   const loff_t end,
4765 			   struct btrfs_log_ctx *ctx)
4766 {
4767 	struct btrfs_fs_info *fs_info = root->fs_info;
4768 	struct btrfs_path *path;
4769 	struct btrfs_path *dst_path;
4770 	struct btrfs_key min_key;
4771 	struct btrfs_key max_key;
4772 	struct btrfs_root *log = root->log_root;
4773 	LIST_HEAD(logged_list);
4774 	u64 last_extent = 0;
4775 	int err = 0;
4776 	int ret;
4777 	int nritems;
4778 	int ins_start_slot = 0;
4779 	int ins_nr;
4780 	bool fast_search = false;
4781 	u64 ino = btrfs_ino(inode);
4782 	struct extent_map_tree *em_tree = &inode->extent_tree;
4783 	u64 logged_isize = 0;
4784 	bool need_log_inode_item = true;
4785 
4786 	path = btrfs_alloc_path();
4787 	if (!path)
4788 		return -ENOMEM;
4789 	dst_path = btrfs_alloc_path();
4790 	if (!dst_path) {
4791 		btrfs_free_path(path);
4792 		return -ENOMEM;
4793 	}
4794 
4795 	min_key.objectid = ino;
4796 	min_key.type = BTRFS_INODE_ITEM_KEY;
4797 	min_key.offset = 0;
4798 
4799 	max_key.objectid = ino;
4800 
4801 
4802 	/* today the code can only do partial logging of directories */
4803 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4804 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4805 		       &inode->runtime_flags) &&
4806 	     inode_only >= LOG_INODE_EXISTS))
4807 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4808 	else
4809 		max_key.type = (u8)-1;
4810 	max_key.offset = (u64)-1;
4811 
4812 	/*
4813 	 * Only run delayed items if we are a dir or a new file.
4814 	 * Otherwise commit the delayed inode only, which is needed in
4815 	 * order for the log replay code to mark inodes for link count
4816 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4817 	 */
4818 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4819 	    inode->generation > fs_info->last_trans_committed)
4820 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4821 	else
4822 		ret = btrfs_commit_inode_delayed_inode(inode);
4823 
4824 	if (ret) {
4825 		btrfs_free_path(path);
4826 		btrfs_free_path(dst_path);
4827 		return ret;
4828 	}
4829 
4830 	if (inode_only == LOG_OTHER_INODE) {
4831 		inode_only = LOG_INODE_EXISTS;
4832 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4833 	} else {
4834 		mutex_lock(&inode->log_mutex);
4835 	}
4836 
4837 	/*
4838 	 * a brute force approach to making sure we get the most uptodate
4839 	 * copies of everything.
4840 	 */
4841 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
4842 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4843 
4844 		if (inode_only == LOG_INODE_EXISTS)
4845 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4846 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4847 	} else {
4848 		if (inode_only == LOG_INODE_EXISTS) {
4849 			/*
4850 			 * Make sure the new inode item we write to the log has
4851 			 * the same isize as the current one (if it exists).
4852 			 * This is necessary to prevent data loss after log
4853 			 * replay, and also to prevent doing a wrong expanding
4854 			 * truncate - for e.g. create file, write 4K into offset
4855 			 * 0, fsync, write 4K into offset 4096, add hard link,
4856 			 * fsync some other file (to sync log), power fail - if
4857 			 * we use the inode's current i_size, after log replay
4858 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4859 			 * (zeroes), as if an expanding truncate happened,
4860 			 * instead of getting a file of 4Kb only.
4861 			 */
4862 			err = logged_inode_size(log, inode, path, &logged_isize);
4863 			if (err)
4864 				goto out_unlock;
4865 		}
4866 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4867 			     &inode->runtime_flags)) {
4868 			if (inode_only == LOG_INODE_EXISTS) {
4869 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4870 				ret = drop_objectid_items(trans, log, path, ino,
4871 							  max_key.type);
4872 			} else {
4873 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4874 					  &inode->runtime_flags);
4875 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4876 					  &inode->runtime_flags);
4877 				while(1) {
4878 					ret = btrfs_truncate_inode_items(trans,
4879 						log, &inode->vfs_inode, 0, 0);
4880 					if (ret != -EAGAIN)
4881 						break;
4882 				}
4883 			}
4884 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4885 					      &inode->runtime_flags) ||
4886 			   inode_only == LOG_INODE_EXISTS) {
4887 			if (inode_only == LOG_INODE_ALL)
4888 				fast_search = true;
4889 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4890 			ret = drop_objectid_items(trans, log, path, ino,
4891 						  max_key.type);
4892 		} else {
4893 			if (inode_only == LOG_INODE_ALL)
4894 				fast_search = true;
4895 			goto log_extents;
4896 		}
4897 
4898 	}
4899 	if (ret) {
4900 		err = ret;
4901 		goto out_unlock;
4902 	}
4903 
4904 	while (1) {
4905 		ins_nr = 0;
4906 		ret = btrfs_search_forward(root, &min_key,
4907 					   path, trans->transid);
4908 		if (ret < 0) {
4909 			err = ret;
4910 			goto out_unlock;
4911 		}
4912 		if (ret != 0)
4913 			break;
4914 again:
4915 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4916 		if (min_key.objectid != ino)
4917 			break;
4918 		if (min_key.type > max_key.type)
4919 			break;
4920 
4921 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4922 			need_log_inode_item = false;
4923 
4924 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4925 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4926 		    inode->generation == trans->transid) {
4927 			u64 other_ino = 0;
4928 
4929 			ret = btrfs_check_ref_name_override(path->nodes[0],
4930 					path->slots[0], &min_key, inode,
4931 					&other_ino);
4932 			if (ret < 0) {
4933 				err = ret;
4934 				goto out_unlock;
4935 			} else if (ret > 0 && ctx &&
4936 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4937 				struct btrfs_key inode_key;
4938 				struct inode *other_inode;
4939 
4940 				if (ins_nr > 0) {
4941 					ins_nr++;
4942 				} else {
4943 					ins_nr = 1;
4944 					ins_start_slot = path->slots[0];
4945 				}
4946 				ret = copy_items(trans, inode, dst_path, path,
4947 						 &last_extent, ins_start_slot,
4948 						 ins_nr, inode_only,
4949 						 logged_isize);
4950 				if (ret < 0) {
4951 					err = ret;
4952 					goto out_unlock;
4953 				}
4954 				ins_nr = 0;
4955 				btrfs_release_path(path);
4956 				inode_key.objectid = other_ino;
4957 				inode_key.type = BTRFS_INODE_ITEM_KEY;
4958 				inode_key.offset = 0;
4959 				other_inode = btrfs_iget(fs_info->sb,
4960 							 &inode_key, root,
4961 							 NULL);
4962 				/*
4963 				 * If the other inode that had a conflicting dir
4964 				 * entry was deleted in the current transaction,
4965 				 * we don't need to do more work nor fallback to
4966 				 * a transaction commit.
4967 				 */
4968 				if (IS_ERR(other_inode) &&
4969 				    PTR_ERR(other_inode) == -ENOENT) {
4970 					goto next_key;
4971 				} else if (IS_ERR(other_inode)) {
4972 					err = PTR_ERR(other_inode);
4973 					goto out_unlock;
4974 				}
4975 				/*
4976 				 * We are safe logging the other inode without
4977 				 * acquiring its i_mutex as long as we log with
4978 				 * the LOG_INODE_EXISTS mode. We're safe against
4979 				 * concurrent renames of the other inode as well
4980 				 * because during a rename we pin the log and
4981 				 * update the log with the new name before we
4982 				 * unpin it.
4983 				 */
4984 				err = btrfs_log_inode(trans, root,
4985 						BTRFS_I(other_inode),
4986 						LOG_OTHER_INODE, 0, LLONG_MAX,
4987 						ctx);
4988 				iput(other_inode);
4989 				if (err)
4990 					goto out_unlock;
4991 				else
4992 					goto next_key;
4993 			}
4994 		}
4995 
4996 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4997 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4998 			if (ins_nr == 0)
4999 				goto next_slot;
5000 			ret = copy_items(trans, inode, dst_path, path,
5001 					 &last_extent, ins_start_slot,
5002 					 ins_nr, inode_only, logged_isize);
5003 			if (ret < 0) {
5004 				err = ret;
5005 				goto out_unlock;
5006 			}
5007 			ins_nr = 0;
5008 			if (ret) {
5009 				btrfs_release_path(path);
5010 				continue;
5011 			}
5012 			goto next_slot;
5013 		}
5014 
5015 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5016 			ins_nr++;
5017 			goto next_slot;
5018 		} else if (!ins_nr) {
5019 			ins_start_slot = path->slots[0];
5020 			ins_nr = 1;
5021 			goto next_slot;
5022 		}
5023 
5024 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5025 				 ins_start_slot, ins_nr, inode_only,
5026 				 logged_isize);
5027 		if (ret < 0) {
5028 			err = ret;
5029 			goto out_unlock;
5030 		}
5031 		if (ret) {
5032 			ins_nr = 0;
5033 			btrfs_release_path(path);
5034 			continue;
5035 		}
5036 		ins_nr = 1;
5037 		ins_start_slot = path->slots[0];
5038 next_slot:
5039 
5040 		nritems = btrfs_header_nritems(path->nodes[0]);
5041 		path->slots[0]++;
5042 		if (path->slots[0] < nritems) {
5043 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5044 					      path->slots[0]);
5045 			goto again;
5046 		}
5047 		if (ins_nr) {
5048 			ret = copy_items(trans, inode, dst_path, path,
5049 					 &last_extent, ins_start_slot,
5050 					 ins_nr, inode_only, logged_isize);
5051 			if (ret < 0) {
5052 				err = ret;
5053 				goto out_unlock;
5054 			}
5055 			ret = 0;
5056 			ins_nr = 0;
5057 		}
5058 		btrfs_release_path(path);
5059 next_key:
5060 		if (min_key.offset < (u64)-1) {
5061 			min_key.offset++;
5062 		} else if (min_key.type < max_key.type) {
5063 			min_key.type++;
5064 			min_key.offset = 0;
5065 		} else {
5066 			break;
5067 		}
5068 	}
5069 	if (ins_nr) {
5070 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5071 				 ins_start_slot, ins_nr, inode_only,
5072 				 logged_isize);
5073 		if (ret < 0) {
5074 			err = ret;
5075 			goto out_unlock;
5076 		}
5077 		ret = 0;
5078 		ins_nr = 0;
5079 	}
5080 
5081 	btrfs_release_path(path);
5082 	btrfs_release_path(dst_path);
5083 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5084 	if (err)
5085 		goto out_unlock;
5086 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5087 		btrfs_release_path(path);
5088 		btrfs_release_path(dst_path);
5089 		err = btrfs_log_trailing_hole(trans, root, inode, path);
5090 		if (err)
5091 			goto out_unlock;
5092 	}
5093 log_extents:
5094 	btrfs_release_path(path);
5095 	btrfs_release_path(dst_path);
5096 	if (need_log_inode_item) {
5097 		err = log_inode_item(trans, log, dst_path, inode);
5098 		if (err)
5099 			goto out_unlock;
5100 	}
5101 	if (fast_search) {
5102 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5103 						&logged_list, ctx, start, end);
5104 		if (ret) {
5105 			err = ret;
5106 			goto out_unlock;
5107 		}
5108 	} else if (inode_only == LOG_INODE_ALL) {
5109 		struct extent_map *em, *n;
5110 
5111 		write_lock(&em_tree->lock);
5112 		/*
5113 		 * We can't just remove every em if we're called for a ranged
5114 		 * fsync - that is, one that doesn't cover the whole possible
5115 		 * file range (0 to LLONG_MAX). This is because we can have
5116 		 * em's that fall outside the range we're logging and therefore
5117 		 * their ordered operations haven't completed yet
5118 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5119 		 * didn't get their respective file extent item in the fs/subvol
5120 		 * tree yet, and need to let the next fast fsync (one which
5121 		 * consults the list of modified extent maps) find the em so
5122 		 * that it logs a matching file extent item and waits for the
5123 		 * respective ordered operation to complete (if it's still
5124 		 * running).
5125 		 *
5126 		 * Removing every em outside the range we're logging would make
5127 		 * the next fast fsync not log their matching file extent items,
5128 		 * therefore making us lose data after a log replay.
5129 		 */
5130 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5131 					 list) {
5132 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5133 
5134 			if (em->mod_start >= start && mod_end <= end)
5135 				list_del_init(&em->list);
5136 		}
5137 		write_unlock(&em_tree->lock);
5138 	}
5139 
5140 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5141 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5142 					ctx);
5143 		if (ret) {
5144 			err = ret;
5145 			goto out_unlock;
5146 		}
5147 	}
5148 
5149 	spin_lock(&inode->lock);
5150 	inode->logged_trans = trans->transid;
5151 	inode->last_log_commit = inode->last_sub_trans;
5152 	spin_unlock(&inode->lock);
5153 out_unlock:
5154 	if (unlikely(err))
5155 		btrfs_put_logged_extents(&logged_list);
5156 	else
5157 		btrfs_submit_logged_extents(&logged_list, log);
5158 	mutex_unlock(&inode->log_mutex);
5159 
5160 	btrfs_free_path(path);
5161 	btrfs_free_path(dst_path);
5162 	return err;
5163 }
5164 
5165 /*
5166  * Check if we must fallback to a transaction commit when logging an inode.
5167  * This must be called after logging the inode and is used only in the context
5168  * when fsyncing an inode requires the need to log some other inode - in which
5169  * case we can't lock the i_mutex of each other inode we need to log as that
5170  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5171  * log inodes up or down in the hierarchy) or rename operations for example. So
5172  * we take the log_mutex of the inode after we have logged it and then check for
5173  * its last_unlink_trans value - this is safe because any task setting
5174  * last_unlink_trans must take the log_mutex and it must do this before it does
5175  * the actual unlink operation, so if we do this check before a concurrent task
5176  * sets last_unlink_trans it means we've logged a consistent version/state of
5177  * all the inode items, otherwise we are not sure and must do a transaction
5178  * commit (the concurrent task might have only updated last_unlink_trans before
5179  * we logged the inode or it might have also done the unlink).
5180  */
5181 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5182 					  struct btrfs_inode *inode)
5183 {
5184 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5185 	bool ret = false;
5186 
5187 	mutex_lock(&inode->log_mutex);
5188 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5189 		/*
5190 		 * Make sure any commits to the log are forced to be full
5191 		 * commits.
5192 		 */
5193 		btrfs_set_log_full_commit(fs_info, trans);
5194 		ret = true;
5195 	}
5196 	mutex_unlock(&inode->log_mutex);
5197 
5198 	return ret;
5199 }
5200 
5201 /*
5202  * follow the dentry parent pointers up the chain and see if any
5203  * of the directories in it require a full commit before they can
5204  * be logged.  Returns zero if nothing special needs to be done or 1 if
5205  * a full commit is required.
5206  */
5207 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5208 					       struct btrfs_inode *inode,
5209 					       struct dentry *parent,
5210 					       struct super_block *sb,
5211 					       u64 last_committed)
5212 {
5213 	int ret = 0;
5214 	struct dentry *old_parent = NULL;
5215 	struct btrfs_inode *orig_inode = inode;
5216 
5217 	/*
5218 	 * for regular files, if its inode is already on disk, we don't
5219 	 * have to worry about the parents at all.  This is because
5220 	 * we can use the last_unlink_trans field to record renames
5221 	 * and other fun in this file.
5222 	 */
5223 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5224 	    inode->generation <= last_committed &&
5225 	    inode->last_unlink_trans <= last_committed)
5226 		goto out;
5227 
5228 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5229 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5230 			goto out;
5231 		inode = BTRFS_I(d_inode(parent));
5232 	}
5233 
5234 	while (1) {
5235 		/*
5236 		 * If we are logging a directory then we start with our inode,
5237 		 * not our parent's inode, so we need to skip setting the
5238 		 * logged_trans so that further down in the log code we don't
5239 		 * think this inode has already been logged.
5240 		 */
5241 		if (inode != orig_inode)
5242 			inode->logged_trans = trans->transid;
5243 		smp_mb();
5244 
5245 		if (btrfs_must_commit_transaction(trans, inode)) {
5246 			ret = 1;
5247 			break;
5248 		}
5249 
5250 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5251 			break;
5252 
5253 		if (IS_ROOT(parent)) {
5254 			inode = BTRFS_I(d_inode(parent));
5255 			if (btrfs_must_commit_transaction(trans, inode))
5256 				ret = 1;
5257 			break;
5258 		}
5259 
5260 		parent = dget_parent(parent);
5261 		dput(old_parent);
5262 		old_parent = parent;
5263 		inode = BTRFS_I(d_inode(parent));
5264 
5265 	}
5266 	dput(old_parent);
5267 out:
5268 	return ret;
5269 }
5270 
5271 struct btrfs_dir_list {
5272 	u64 ino;
5273 	struct list_head list;
5274 };
5275 
5276 /*
5277  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5278  * details about the why it is needed.
5279  * This is a recursive operation - if an existing dentry corresponds to a
5280  * directory, that directory's new entries are logged too (same behaviour as
5281  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5282  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5283  * complains about the following circular lock dependency / possible deadlock:
5284  *
5285  *        CPU0                                        CPU1
5286  *        ----                                        ----
5287  * lock(&type->i_mutex_dir_key#3/2);
5288  *                                            lock(sb_internal#2);
5289  *                                            lock(&type->i_mutex_dir_key#3/2);
5290  * lock(&sb->s_type->i_mutex_key#14);
5291  *
5292  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5293  * sb_start_intwrite() in btrfs_start_transaction().
5294  * Not locking i_mutex of the inodes is still safe because:
5295  *
5296  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5297  *    that while logging the inode new references (names) are added or removed
5298  *    from the inode, leaving the logged inode item with a link count that does
5299  *    not match the number of logged inode reference items. This is fine because
5300  *    at log replay time we compute the real number of links and correct the
5301  *    link count in the inode item (see replay_one_buffer() and
5302  *    link_to_fixup_dir());
5303  *
5304  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5305  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5306  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5307  *    has a size that doesn't match the sum of the lengths of all the logged
5308  *    names. This does not result in a problem because if a dir_item key is
5309  *    logged but its matching dir_index key is not logged, at log replay time we
5310  *    don't use it to replay the respective name (see replay_one_name()). On the
5311  *    other hand if only the dir_index key ends up being logged, the respective
5312  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5313  *    keys created (see replay_one_name()).
5314  *    The directory's inode item with a wrong i_size is not a problem as well,
5315  *    since we don't use it at log replay time to set the i_size in the inode
5316  *    item of the fs/subvol tree (see overwrite_item()).
5317  */
5318 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5319 				struct btrfs_root *root,
5320 				struct btrfs_inode *start_inode,
5321 				struct btrfs_log_ctx *ctx)
5322 {
5323 	struct btrfs_fs_info *fs_info = root->fs_info;
5324 	struct btrfs_root *log = root->log_root;
5325 	struct btrfs_path *path;
5326 	LIST_HEAD(dir_list);
5327 	struct btrfs_dir_list *dir_elem;
5328 	int ret = 0;
5329 
5330 	path = btrfs_alloc_path();
5331 	if (!path)
5332 		return -ENOMEM;
5333 
5334 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5335 	if (!dir_elem) {
5336 		btrfs_free_path(path);
5337 		return -ENOMEM;
5338 	}
5339 	dir_elem->ino = btrfs_ino(start_inode);
5340 	list_add_tail(&dir_elem->list, &dir_list);
5341 
5342 	while (!list_empty(&dir_list)) {
5343 		struct extent_buffer *leaf;
5344 		struct btrfs_key min_key;
5345 		int nritems;
5346 		int i;
5347 
5348 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5349 					    list);
5350 		if (ret)
5351 			goto next_dir_inode;
5352 
5353 		min_key.objectid = dir_elem->ino;
5354 		min_key.type = BTRFS_DIR_ITEM_KEY;
5355 		min_key.offset = 0;
5356 again:
5357 		btrfs_release_path(path);
5358 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5359 		if (ret < 0) {
5360 			goto next_dir_inode;
5361 		} else if (ret > 0) {
5362 			ret = 0;
5363 			goto next_dir_inode;
5364 		}
5365 
5366 process_leaf:
5367 		leaf = path->nodes[0];
5368 		nritems = btrfs_header_nritems(leaf);
5369 		for (i = path->slots[0]; i < nritems; i++) {
5370 			struct btrfs_dir_item *di;
5371 			struct btrfs_key di_key;
5372 			struct inode *di_inode;
5373 			struct btrfs_dir_list *new_dir_elem;
5374 			int log_mode = LOG_INODE_EXISTS;
5375 			int type;
5376 
5377 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5378 			if (min_key.objectid != dir_elem->ino ||
5379 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5380 				goto next_dir_inode;
5381 
5382 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5383 			type = btrfs_dir_type(leaf, di);
5384 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5385 			    type != BTRFS_FT_DIR)
5386 				continue;
5387 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5388 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5389 				continue;
5390 
5391 			btrfs_release_path(path);
5392 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5393 			if (IS_ERR(di_inode)) {
5394 				ret = PTR_ERR(di_inode);
5395 				goto next_dir_inode;
5396 			}
5397 
5398 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5399 				iput(di_inode);
5400 				break;
5401 			}
5402 
5403 			ctx->log_new_dentries = false;
5404 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5405 				log_mode = LOG_INODE_ALL;
5406 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5407 					      log_mode, 0, LLONG_MAX, ctx);
5408 			if (!ret &&
5409 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5410 				ret = 1;
5411 			iput(di_inode);
5412 			if (ret)
5413 				goto next_dir_inode;
5414 			if (ctx->log_new_dentries) {
5415 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5416 						       GFP_NOFS);
5417 				if (!new_dir_elem) {
5418 					ret = -ENOMEM;
5419 					goto next_dir_inode;
5420 				}
5421 				new_dir_elem->ino = di_key.objectid;
5422 				list_add_tail(&new_dir_elem->list, &dir_list);
5423 			}
5424 			break;
5425 		}
5426 		if (i == nritems) {
5427 			ret = btrfs_next_leaf(log, path);
5428 			if (ret < 0) {
5429 				goto next_dir_inode;
5430 			} else if (ret > 0) {
5431 				ret = 0;
5432 				goto next_dir_inode;
5433 			}
5434 			goto process_leaf;
5435 		}
5436 		if (min_key.offset < (u64)-1) {
5437 			min_key.offset++;
5438 			goto again;
5439 		}
5440 next_dir_inode:
5441 		list_del(&dir_elem->list);
5442 		kfree(dir_elem);
5443 	}
5444 
5445 	btrfs_free_path(path);
5446 	return ret;
5447 }
5448 
5449 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5450 				 struct btrfs_inode *inode,
5451 				 struct btrfs_log_ctx *ctx)
5452 {
5453 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5454 	int ret;
5455 	struct btrfs_path *path;
5456 	struct btrfs_key key;
5457 	struct btrfs_root *root = inode->root;
5458 	const u64 ino = btrfs_ino(inode);
5459 
5460 	path = btrfs_alloc_path();
5461 	if (!path)
5462 		return -ENOMEM;
5463 	path->skip_locking = 1;
5464 	path->search_commit_root = 1;
5465 
5466 	key.objectid = ino;
5467 	key.type = BTRFS_INODE_REF_KEY;
5468 	key.offset = 0;
5469 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5470 	if (ret < 0)
5471 		goto out;
5472 
5473 	while (true) {
5474 		struct extent_buffer *leaf = path->nodes[0];
5475 		int slot = path->slots[0];
5476 		u32 cur_offset = 0;
5477 		u32 item_size;
5478 		unsigned long ptr;
5479 
5480 		if (slot >= btrfs_header_nritems(leaf)) {
5481 			ret = btrfs_next_leaf(root, path);
5482 			if (ret < 0)
5483 				goto out;
5484 			else if (ret > 0)
5485 				break;
5486 			continue;
5487 		}
5488 
5489 		btrfs_item_key_to_cpu(leaf, &key, slot);
5490 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5491 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5492 			break;
5493 
5494 		item_size = btrfs_item_size_nr(leaf, slot);
5495 		ptr = btrfs_item_ptr_offset(leaf, slot);
5496 		while (cur_offset < item_size) {
5497 			struct btrfs_key inode_key;
5498 			struct inode *dir_inode;
5499 
5500 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5501 			inode_key.offset = 0;
5502 
5503 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5504 				struct btrfs_inode_extref *extref;
5505 
5506 				extref = (struct btrfs_inode_extref *)
5507 					(ptr + cur_offset);
5508 				inode_key.objectid = btrfs_inode_extref_parent(
5509 					leaf, extref);
5510 				cur_offset += sizeof(*extref);
5511 				cur_offset += btrfs_inode_extref_name_len(leaf,
5512 					extref);
5513 			} else {
5514 				inode_key.objectid = key.offset;
5515 				cur_offset = item_size;
5516 			}
5517 
5518 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5519 					       root, NULL);
5520 			/* If parent inode was deleted, skip it. */
5521 			if (IS_ERR(dir_inode))
5522 				continue;
5523 
5524 			if (ctx)
5525 				ctx->log_new_dentries = false;
5526 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5527 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5528 			if (!ret &&
5529 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5530 				ret = 1;
5531 			if (!ret && ctx && ctx->log_new_dentries)
5532 				ret = log_new_dir_dentries(trans, root,
5533 						   BTRFS_I(dir_inode), ctx);
5534 			iput(dir_inode);
5535 			if (ret)
5536 				goto out;
5537 		}
5538 		path->slots[0]++;
5539 	}
5540 	ret = 0;
5541 out:
5542 	btrfs_free_path(path);
5543 	return ret;
5544 }
5545 
5546 /*
5547  * helper function around btrfs_log_inode to make sure newly created
5548  * parent directories also end up in the log.  A minimal inode and backref
5549  * only logging is done of any parent directories that are older than
5550  * the last committed transaction
5551  */
5552 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5553 				  struct btrfs_inode *inode,
5554 				  struct dentry *parent,
5555 				  const loff_t start,
5556 				  const loff_t end,
5557 				  int inode_only,
5558 				  struct btrfs_log_ctx *ctx)
5559 {
5560 	struct btrfs_root *root = inode->root;
5561 	struct btrfs_fs_info *fs_info = root->fs_info;
5562 	struct super_block *sb;
5563 	struct dentry *old_parent = NULL;
5564 	int ret = 0;
5565 	u64 last_committed = fs_info->last_trans_committed;
5566 	bool log_dentries = false;
5567 	struct btrfs_inode *orig_inode = inode;
5568 
5569 	sb = inode->vfs_inode.i_sb;
5570 
5571 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5572 		ret = 1;
5573 		goto end_no_trans;
5574 	}
5575 
5576 	/*
5577 	 * The prev transaction commit doesn't complete, we need do
5578 	 * full commit by ourselves.
5579 	 */
5580 	if (fs_info->last_trans_log_full_commit >
5581 	    fs_info->last_trans_committed) {
5582 		ret = 1;
5583 		goto end_no_trans;
5584 	}
5585 
5586 	if (btrfs_root_refs(&root->root_item) == 0) {
5587 		ret = 1;
5588 		goto end_no_trans;
5589 	}
5590 
5591 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5592 			last_committed);
5593 	if (ret)
5594 		goto end_no_trans;
5595 
5596 	if (btrfs_inode_in_log(inode, trans->transid)) {
5597 		ret = BTRFS_NO_LOG_SYNC;
5598 		goto end_no_trans;
5599 	}
5600 
5601 	ret = start_log_trans(trans, root, ctx);
5602 	if (ret)
5603 		goto end_no_trans;
5604 
5605 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5606 	if (ret)
5607 		goto end_trans;
5608 
5609 	/*
5610 	 * for regular files, if its inode is already on disk, we don't
5611 	 * have to worry about the parents at all.  This is because
5612 	 * we can use the last_unlink_trans field to record renames
5613 	 * and other fun in this file.
5614 	 */
5615 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5616 	    inode->generation <= last_committed &&
5617 	    inode->last_unlink_trans <= last_committed) {
5618 		ret = 0;
5619 		goto end_trans;
5620 	}
5621 
5622 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5623 		log_dentries = true;
5624 
5625 	/*
5626 	 * On unlink we must make sure all our current and old parent directory
5627 	 * inodes are fully logged. This is to prevent leaving dangling
5628 	 * directory index entries in directories that were our parents but are
5629 	 * not anymore. Not doing this results in old parent directory being
5630 	 * impossible to delete after log replay (rmdir will always fail with
5631 	 * error -ENOTEMPTY).
5632 	 *
5633 	 * Example 1:
5634 	 *
5635 	 * mkdir testdir
5636 	 * touch testdir/foo
5637 	 * ln testdir/foo testdir/bar
5638 	 * sync
5639 	 * unlink testdir/bar
5640 	 * xfs_io -c fsync testdir/foo
5641 	 * <power failure>
5642 	 * mount fs, triggers log replay
5643 	 *
5644 	 * If we don't log the parent directory (testdir), after log replay the
5645 	 * directory still has an entry pointing to the file inode using the bar
5646 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5647 	 * the file inode has a link count of 1.
5648 	 *
5649 	 * Example 2:
5650 	 *
5651 	 * mkdir testdir
5652 	 * touch foo
5653 	 * ln foo testdir/foo2
5654 	 * ln foo testdir/foo3
5655 	 * sync
5656 	 * unlink testdir/foo3
5657 	 * xfs_io -c fsync foo
5658 	 * <power failure>
5659 	 * mount fs, triggers log replay
5660 	 *
5661 	 * Similar as the first example, after log replay the parent directory
5662 	 * testdir still has an entry pointing to the inode file with name foo3
5663 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5664 	 * and has a link count of 2.
5665 	 */
5666 	if (inode->last_unlink_trans > last_committed) {
5667 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5668 		if (ret)
5669 			goto end_trans;
5670 	}
5671 
5672 	while (1) {
5673 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5674 			break;
5675 
5676 		inode = BTRFS_I(d_inode(parent));
5677 		if (root != inode->root)
5678 			break;
5679 
5680 		if (inode->generation > last_committed) {
5681 			ret = btrfs_log_inode(trans, root, inode,
5682 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5683 			if (ret)
5684 				goto end_trans;
5685 		}
5686 		if (IS_ROOT(parent))
5687 			break;
5688 
5689 		parent = dget_parent(parent);
5690 		dput(old_parent);
5691 		old_parent = parent;
5692 	}
5693 	if (log_dentries)
5694 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5695 	else
5696 		ret = 0;
5697 end_trans:
5698 	dput(old_parent);
5699 	if (ret < 0) {
5700 		btrfs_set_log_full_commit(fs_info, trans);
5701 		ret = 1;
5702 	}
5703 
5704 	if (ret)
5705 		btrfs_remove_log_ctx(root, ctx);
5706 	btrfs_end_log_trans(root);
5707 end_no_trans:
5708 	return ret;
5709 }
5710 
5711 /*
5712  * it is not safe to log dentry if the chunk root has added new
5713  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5714  * If this returns 1, you must commit the transaction to safely get your
5715  * data on disk.
5716  */
5717 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5718 			  struct dentry *dentry,
5719 			  const loff_t start,
5720 			  const loff_t end,
5721 			  struct btrfs_log_ctx *ctx)
5722 {
5723 	struct dentry *parent = dget_parent(dentry);
5724 	int ret;
5725 
5726 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5727 				     start, end, LOG_INODE_ALL, ctx);
5728 	dput(parent);
5729 
5730 	return ret;
5731 }
5732 
5733 /*
5734  * should be called during mount to recover any replay any log trees
5735  * from the FS
5736  */
5737 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5738 {
5739 	int ret;
5740 	struct btrfs_path *path;
5741 	struct btrfs_trans_handle *trans;
5742 	struct btrfs_key key;
5743 	struct btrfs_key found_key;
5744 	struct btrfs_key tmp_key;
5745 	struct btrfs_root *log;
5746 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5747 	struct walk_control wc = {
5748 		.process_func = process_one_buffer,
5749 		.stage = 0,
5750 	};
5751 
5752 	path = btrfs_alloc_path();
5753 	if (!path)
5754 		return -ENOMEM;
5755 
5756 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5757 
5758 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5759 	if (IS_ERR(trans)) {
5760 		ret = PTR_ERR(trans);
5761 		goto error;
5762 	}
5763 
5764 	wc.trans = trans;
5765 	wc.pin = 1;
5766 
5767 	ret = walk_log_tree(trans, log_root_tree, &wc);
5768 	if (ret) {
5769 		btrfs_handle_fs_error(fs_info, ret,
5770 			"Failed to pin buffers while recovering log root tree.");
5771 		goto error;
5772 	}
5773 
5774 again:
5775 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5776 	key.offset = (u64)-1;
5777 	key.type = BTRFS_ROOT_ITEM_KEY;
5778 
5779 	while (1) {
5780 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5781 
5782 		if (ret < 0) {
5783 			btrfs_handle_fs_error(fs_info, ret,
5784 				    "Couldn't find tree log root.");
5785 			goto error;
5786 		}
5787 		if (ret > 0) {
5788 			if (path->slots[0] == 0)
5789 				break;
5790 			path->slots[0]--;
5791 		}
5792 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5793 				      path->slots[0]);
5794 		btrfs_release_path(path);
5795 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5796 			break;
5797 
5798 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5799 		if (IS_ERR(log)) {
5800 			ret = PTR_ERR(log);
5801 			btrfs_handle_fs_error(fs_info, ret,
5802 				    "Couldn't read tree log root.");
5803 			goto error;
5804 		}
5805 
5806 		tmp_key.objectid = found_key.offset;
5807 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5808 		tmp_key.offset = (u64)-1;
5809 
5810 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5811 		if (IS_ERR(wc.replay_dest)) {
5812 			ret = PTR_ERR(wc.replay_dest);
5813 			free_extent_buffer(log->node);
5814 			free_extent_buffer(log->commit_root);
5815 			kfree(log);
5816 			btrfs_handle_fs_error(fs_info, ret,
5817 				"Couldn't read target root for tree log recovery.");
5818 			goto error;
5819 		}
5820 
5821 		wc.replay_dest->log_root = log;
5822 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5823 		ret = walk_log_tree(trans, log, &wc);
5824 
5825 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5826 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5827 						      path);
5828 		}
5829 
5830 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5831 			struct btrfs_root *root = wc.replay_dest;
5832 
5833 			btrfs_release_path(path);
5834 
5835 			/*
5836 			 * We have just replayed everything, and the highest
5837 			 * objectid of fs roots probably has changed in case
5838 			 * some inode_item's got replayed.
5839 			 *
5840 			 * root->objectid_mutex is not acquired as log replay
5841 			 * could only happen during mount.
5842 			 */
5843 			ret = btrfs_find_highest_objectid(root,
5844 						  &root->highest_objectid);
5845 		}
5846 
5847 		key.offset = found_key.offset - 1;
5848 		wc.replay_dest->log_root = NULL;
5849 		free_extent_buffer(log->node);
5850 		free_extent_buffer(log->commit_root);
5851 		kfree(log);
5852 
5853 		if (ret)
5854 			goto error;
5855 
5856 		if (found_key.offset == 0)
5857 			break;
5858 	}
5859 	btrfs_release_path(path);
5860 
5861 	/* step one is to pin it all, step two is to replay just inodes */
5862 	if (wc.pin) {
5863 		wc.pin = 0;
5864 		wc.process_func = replay_one_buffer;
5865 		wc.stage = LOG_WALK_REPLAY_INODES;
5866 		goto again;
5867 	}
5868 	/* step three is to replay everything */
5869 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5870 		wc.stage++;
5871 		goto again;
5872 	}
5873 
5874 	btrfs_free_path(path);
5875 
5876 	/* step 4: commit the transaction, which also unpins the blocks */
5877 	ret = btrfs_commit_transaction(trans);
5878 	if (ret)
5879 		return ret;
5880 
5881 	free_extent_buffer(log_root_tree->node);
5882 	log_root_tree->log_root = NULL;
5883 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5884 	kfree(log_root_tree);
5885 
5886 	return 0;
5887 error:
5888 	if (wc.trans)
5889 		btrfs_end_transaction(wc.trans);
5890 	btrfs_free_path(path);
5891 	return ret;
5892 }
5893 
5894 /*
5895  * there are some corner cases where we want to force a full
5896  * commit instead of allowing a directory to be logged.
5897  *
5898  * They revolve around files there were unlinked from the directory, and
5899  * this function updates the parent directory so that a full commit is
5900  * properly done if it is fsync'd later after the unlinks are done.
5901  *
5902  * Must be called before the unlink operations (updates to the subvolume tree,
5903  * inodes, etc) are done.
5904  */
5905 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5906 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
5907 			     int for_rename)
5908 {
5909 	/*
5910 	 * when we're logging a file, if it hasn't been renamed
5911 	 * or unlinked, and its inode is fully committed on disk,
5912 	 * we don't have to worry about walking up the directory chain
5913 	 * to log its parents.
5914 	 *
5915 	 * So, we use the last_unlink_trans field to put this transid
5916 	 * into the file.  When the file is logged we check it and
5917 	 * don't log the parents if the file is fully on disk.
5918 	 */
5919 	mutex_lock(&inode->log_mutex);
5920 	inode->last_unlink_trans = trans->transid;
5921 	mutex_unlock(&inode->log_mutex);
5922 
5923 	/*
5924 	 * if this directory was already logged any new
5925 	 * names for this file/dir will get recorded
5926 	 */
5927 	smp_mb();
5928 	if (dir->logged_trans == trans->transid)
5929 		return;
5930 
5931 	/*
5932 	 * if the inode we're about to unlink was logged,
5933 	 * the log will be properly updated for any new names
5934 	 */
5935 	if (inode->logged_trans == trans->transid)
5936 		return;
5937 
5938 	/*
5939 	 * when renaming files across directories, if the directory
5940 	 * there we're unlinking from gets fsync'd later on, there's
5941 	 * no way to find the destination directory later and fsync it
5942 	 * properly.  So, we have to be conservative and force commits
5943 	 * so the new name gets discovered.
5944 	 */
5945 	if (for_rename)
5946 		goto record;
5947 
5948 	/* we can safely do the unlink without any special recording */
5949 	return;
5950 
5951 record:
5952 	mutex_lock(&dir->log_mutex);
5953 	dir->last_unlink_trans = trans->transid;
5954 	mutex_unlock(&dir->log_mutex);
5955 }
5956 
5957 /*
5958  * Make sure that if someone attempts to fsync the parent directory of a deleted
5959  * snapshot, it ends up triggering a transaction commit. This is to guarantee
5960  * that after replaying the log tree of the parent directory's root we will not
5961  * see the snapshot anymore and at log replay time we will not see any log tree
5962  * corresponding to the deleted snapshot's root, which could lead to replaying
5963  * it after replaying the log tree of the parent directory (which would replay
5964  * the snapshot delete operation).
5965  *
5966  * Must be called before the actual snapshot destroy operation (updates to the
5967  * parent root and tree of tree roots trees, etc) are done.
5968  */
5969 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5970 				   struct btrfs_inode *dir)
5971 {
5972 	mutex_lock(&dir->log_mutex);
5973 	dir->last_unlink_trans = trans->transid;
5974 	mutex_unlock(&dir->log_mutex);
5975 }
5976 
5977 /*
5978  * Call this after adding a new name for a file and it will properly
5979  * update the log to reflect the new name.
5980  *
5981  * It will return zero if all goes well, and it will return 1 if a
5982  * full transaction commit is required.
5983  */
5984 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5985 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
5986 			struct dentry *parent)
5987 {
5988 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5989 
5990 	/*
5991 	 * this will force the logging code to walk the dentry chain
5992 	 * up for the file
5993 	 */
5994 	if (!S_ISDIR(inode->vfs_inode.i_mode))
5995 		inode->last_unlink_trans = trans->transid;
5996 
5997 	/*
5998 	 * if this inode hasn't been logged and directory we're renaming it
5999 	 * from hasn't been logged, we don't need to log it
6000 	 */
6001 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6002 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6003 		return 0;
6004 
6005 	return btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6006 				      LOG_INODE_EXISTS, NULL);
6007 }
6008 
6009