1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "ctree.h" 12 #include "tree-log.h" 13 #include "disk-io.h" 14 #include "locking.h" 15 #include "print-tree.h" 16 #include "backref.h" 17 #include "compression.h" 18 #include "qgroup.h" 19 #include "inode-map.h" 20 21 /* magic values for the inode_only field in btrfs_log_inode: 22 * 23 * LOG_INODE_ALL means to log everything 24 * LOG_INODE_EXISTS means to log just enough to recreate the inode 25 * during log replay 26 */ 27 #define LOG_INODE_ALL 0 28 #define LOG_INODE_EXISTS 1 29 #define LOG_OTHER_INODE 2 30 #define LOG_OTHER_INODE_ALL 3 31 32 /* 33 * directory trouble cases 34 * 35 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 36 * log, we must force a full commit before doing an fsync of the directory 37 * where the unlink was done. 38 * ---> record transid of last unlink/rename per directory 39 * 40 * mkdir foo/some_dir 41 * normal commit 42 * rename foo/some_dir foo2/some_dir 43 * mkdir foo/some_dir 44 * fsync foo/some_dir/some_file 45 * 46 * The fsync above will unlink the original some_dir without recording 47 * it in its new location (foo2). After a crash, some_dir will be gone 48 * unless the fsync of some_file forces a full commit 49 * 50 * 2) we must log any new names for any file or dir that is in the fsync 51 * log. ---> check inode while renaming/linking. 52 * 53 * 2a) we must log any new names for any file or dir during rename 54 * when the directory they are being removed from was logged. 55 * ---> check inode and old parent dir during rename 56 * 57 * 2a is actually the more important variant. With the extra logging 58 * a crash might unlink the old name without recreating the new one 59 * 60 * 3) after a crash, we must go through any directories with a link count 61 * of zero and redo the rm -rf 62 * 63 * mkdir f1/foo 64 * normal commit 65 * rm -rf f1/foo 66 * fsync(f1) 67 * 68 * The directory f1 was fully removed from the FS, but fsync was never 69 * called on f1, only its parent dir. After a crash the rm -rf must 70 * be replayed. This must be able to recurse down the entire 71 * directory tree. The inode link count fixup code takes care of the 72 * ugly details. 73 */ 74 75 /* 76 * stages for the tree walking. The first 77 * stage (0) is to only pin down the blocks we find 78 * the second stage (1) is to make sure that all the inodes 79 * we find in the log are created in the subvolume. 80 * 81 * The last stage is to deal with directories and links and extents 82 * and all the other fun semantics 83 */ 84 #define LOG_WALK_PIN_ONLY 0 85 #define LOG_WALK_REPLAY_INODES 1 86 #define LOG_WALK_REPLAY_DIR_INDEX 2 87 #define LOG_WALK_REPLAY_ALL 3 88 89 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, struct btrfs_inode *inode, 91 int inode_only, 92 const loff_t start, 93 const loff_t end, 94 struct btrfs_log_ctx *ctx); 95 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 96 struct btrfs_root *root, 97 struct btrfs_path *path, u64 objectid); 98 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 99 struct btrfs_root *root, 100 struct btrfs_root *log, 101 struct btrfs_path *path, 102 u64 dirid, int del_all); 103 104 /* 105 * tree logging is a special write ahead log used to make sure that 106 * fsyncs and O_SYNCs can happen without doing full tree commits. 107 * 108 * Full tree commits are expensive because they require commonly 109 * modified blocks to be recowed, creating many dirty pages in the 110 * extent tree an 4x-6x higher write load than ext3. 111 * 112 * Instead of doing a tree commit on every fsync, we use the 113 * key ranges and transaction ids to find items for a given file or directory 114 * that have changed in this transaction. Those items are copied into 115 * a special tree (one per subvolume root), that tree is written to disk 116 * and then the fsync is considered complete. 117 * 118 * After a crash, items are copied out of the log-tree back into the 119 * subvolume tree. Any file data extents found are recorded in the extent 120 * allocation tree, and the log-tree freed. 121 * 122 * The log tree is read three times, once to pin down all the extents it is 123 * using in ram and once, once to create all the inodes logged in the tree 124 * and once to do all the other items. 125 */ 126 127 /* 128 * start a sub transaction and setup the log tree 129 * this increments the log tree writer count to make the people 130 * syncing the tree wait for us to finish 131 */ 132 static int start_log_trans(struct btrfs_trans_handle *trans, 133 struct btrfs_root *root, 134 struct btrfs_log_ctx *ctx) 135 { 136 struct btrfs_fs_info *fs_info = root->fs_info; 137 int ret = 0; 138 139 mutex_lock(&root->log_mutex); 140 141 if (root->log_root) { 142 if (btrfs_need_log_full_commit(trans)) { 143 ret = -EAGAIN; 144 goto out; 145 } 146 147 if (!root->log_start_pid) { 148 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 149 root->log_start_pid = current->pid; 150 } else if (root->log_start_pid != current->pid) { 151 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 152 } 153 } else { 154 mutex_lock(&fs_info->tree_log_mutex); 155 if (!fs_info->log_root_tree) 156 ret = btrfs_init_log_root_tree(trans, fs_info); 157 mutex_unlock(&fs_info->tree_log_mutex); 158 if (ret) 159 goto out; 160 161 ret = btrfs_add_log_tree(trans, root); 162 if (ret) 163 goto out; 164 165 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 166 root->log_start_pid = current->pid; 167 } 168 169 atomic_inc(&root->log_batch); 170 atomic_inc(&root->log_writers); 171 if (ctx) { 172 int index = root->log_transid % 2; 173 list_add_tail(&ctx->list, &root->log_ctxs[index]); 174 ctx->log_transid = root->log_transid; 175 } 176 177 out: 178 mutex_unlock(&root->log_mutex); 179 return ret; 180 } 181 182 /* 183 * returns 0 if there was a log transaction running and we were able 184 * to join, or returns -ENOENT if there were not transactions 185 * in progress 186 */ 187 static int join_running_log_trans(struct btrfs_root *root) 188 { 189 int ret = -ENOENT; 190 191 smp_mb(); 192 if (!root->log_root) 193 return -ENOENT; 194 195 mutex_lock(&root->log_mutex); 196 if (root->log_root) { 197 ret = 0; 198 atomic_inc(&root->log_writers); 199 } 200 mutex_unlock(&root->log_mutex); 201 return ret; 202 } 203 204 /* 205 * This either makes the current running log transaction wait 206 * until you call btrfs_end_log_trans() or it makes any future 207 * log transactions wait until you call btrfs_end_log_trans() 208 */ 209 void btrfs_pin_log_trans(struct btrfs_root *root) 210 { 211 mutex_lock(&root->log_mutex); 212 atomic_inc(&root->log_writers); 213 mutex_unlock(&root->log_mutex); 214 } 215 216 /* 217 * indicate we're done making changes to the log tree 218 * and wake up anyone waiting to do a sync 219 */ 220 void btrfs_end_log_trans(struct btrfs_root *root) 221 { 222 if (atomic_dec_and_test(&root->log_writers)) { 223 /* atomic_dec_and_test implies a barrier */ 224 cond_wake_up_nomb(&root->log_writer_wait); 225 } 226 } 227 228 static int btrfs_write_tree_block(struct extent_buffer *buf) 229 { 230 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 231 buf->start + buf->len - 1); 232 } 233 234 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 235 { 236 filemap_fdatawait_range(buf->pages[0]->mapping, 237 buf->start, buf->start + buf->len - 1); 238 } 239 240 /* 241 * the walk control struct is used to pass state down the chain when 242 * processing the log tree. The stage field tells us which part 243 * of the log tree processing we are currently doing. The others 244 * are state fields used for that specific part 245 */ 246 struct walk_control { 247 /* should we free the extent on disk when done? This is used 248 * at transaction commit time while freeing a log tree 249 */ 250 int free; 251 252 /* should we write out the extent buffer? This is used 253 * while flushing the log tree to disk during a sync 254 */ 255 int write; 256 257 /* should we wait for the extent buffer io to finish? Also used 258 * while flushing the log tree to disk for a sync 259 */ 260 int wait; 261 262 /* pin only walk, we record which extents on disk belong to the 263 * log trees 264 */ 265 int pin; 266 267 /* what stage of the replay code we're currently in */ 268 int stage; 269 270 /* 271 * Ignore any items from the inode currently being processed. Needs 272 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 273 * the LOG_WALK_REPLAY_INODES stage. 274 */ 275 bool ignore_cur_inode; 276 277 /* the root we are currently replaying */ 278 struct btrfs_root *replay_dest; 279 280 /* the trans handle for the current replay */ 281 struct btrfs_trans_handle *trans; 282 283 /* the function that gets used to process blocks we find in the 284 * tree. Note the extent_buffer might not be up to date when it is 285 * passed in, and it must be checked or read if you need the data 286 * inside it 287 */ 288 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 289 struct walk_control *wc, u64 gen, int level); 290 }; 291 292 /* 293 * process_func used to pin down extents, write them or wait on them 294 */ 295 static int process_one_buffer(struct btrfs_root *log, 296 struct extent_buffer *eb, 297 struct walk_control *wc, u64 gen, int level) 298 { 299 struct btrfs_fs_info *fs_info = log->fs_info; 300 int ret = 0; 301 302 /* 303 * If this fs is mixed then we need to be able to process the leaves to 304 * pin down any logged extents, so we have to read the block. 305 */ 306 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 307 ret = btrfs_read_buffer(eb, gen, level, NULL); 308 if (ret) 309 return ret; 310 } 311 312 if (wc->pin) 313 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start, 314 eb->len); 315 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 317 if (wc->pin && btrfs_header_level(eb) == 0) 318 ret = btrfs_exclude_logged_extents(eb); 319 if (wc->write) 320 btrfs_write_tree_block(eb); 321 if (wc->wait) 322 btrfs_wait_tree_block_writeback(eb); 323 } 324 return ret; 325 } 326 327 /* 328 * Item overwrite used by replay and tree logging. eb, slot and key all refer 329 * to the src data we are copying out. 330 * 331 * root is the tree we are copying into, and path is a scratch 332 * path for use in this function (it should be released on entry and 333 * will be released on exit). 334 * 335 * If the key is already in the destination tree the existing item is 336 * overwritten. If the existing item isn't big enough, it is extended. 337 * If it is too large, it is truncated. 338 * 339 * If the key isn't in the destination yet, a new item is inserted. 340 */ 341 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 342 struct btrfs_root *root, 343 struct btrfs_path *path, 344 struct extent_buffer *eb, int slot, 345 struct btrfs_key *key) 346 { 347 int ret; 348 u32 item_size; 349 u64 saved_i_size = 0; 350 int save_old_i_size = 0; 351 unsigned long src_ptr; 352 unsigned long dst_ptr; 353 int overwrite_root = 0; 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 355 356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 357 overwrite_root = 1; 358 359 item_size = btrfs_item_size_nr(eb, slot); 360 src_ptr = btrfs_item_ptr_offset(eb, slot); 361 362 /* look for the key in the destination tree */ 363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 364 if (ret < 0) 365 return ret; 366 367 if (ret == 0) { 368 char *src_copy; 369 char *dst_copy; 370 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 371 path->slots[0]); 372 if (dst_size != item_size) 373 goto insert; 374 375 if (item_size == 0) { 376 btrfs_release_path(path); 377 return 0; 378 } 379 dst_copy = kmalloc(item_size, GFP_NOFS); 380 src_copy = kmalloc(item_size, GFP_NOFS); 381 if (!dst_copy || !src_copy) { 382 btrfs_release_path(path); 383 kfree(dst_copy); 384 kfree(src_copy); 385 return -ENOMEM; 386 } 387 388 read_extent_buffer(eb, src_copy, src_ptr, item_size); 389 390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 392 item_size); 393 ret = memcmp(dst_copy, src_copy, item_size); 394 395 kfree(dst_copy); 396 kfree(src_copy); 397 /* 398 * they have the same contents, just return, this saves 399 * us from cowing blocks in the destination tree and doing 400 * extra writes that may not have been done by a previous 401 * sync 402 */ 403 if (ret == 0) { 404 btrfs_release_path(path); 405 return 0; 406 } 407 408 /* 409 * We need to load the old nbytes into the inode so when we 410 * replay the extents we've logged we get the right nbytes. 411 */ 412 if (inode_item) { 413 struct btrfs_inode_item *item; 414 u64 nbytes; 415 u32 mode; 416 417 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 418 struct btrfs_inode_item); 419 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 420 item = btrfs_item_ptr(eb, slot, 421 struct btrfs_inode_item); 422 btrfs_set_inode_nbytes(eb, item, nbytes); 423 424 /* 425 * If this is a directory we need to reset the i_size to 426 * 0 so that we can set it up properly when replaying 427 * the rest of the items in this log. 428 */ 429 mode = btrfs_inode_mode(eb, item); 430 if (S_ISDIR(mode)) 431 btrfs_set_inode_size(eb, item, 0); 432 } 433 } else if (inode_item) { 434 struct btrfs_inode_item *item; 435 u32 mode; 436 437 /* 438 * New inode, set nbytes to 0 so that the nbytes comes out 439 * properly when we replay the extents. 440 */ 441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 442 btrfs_set_inode_nbytes(eb, item, 0); 443 444 /* 445 * If this is a directory we need to reset the i_size to 0 so 446 * that we can set it up properly when replaying the rest of 447 * the items in this log. 448 */ 449 mode = btrfs_inode_mode(eb, item); 450 if (S_ISDIR(mode)) 451 btrfs_set_inode_size(eb, item, 0); 452 } 453 insert: 454 btrfs_release_path(path); 455 /* try to insert the key into the destination tree */ 456 path->skip_release_on_error = 1; 457 ret = btrfs_insert_empty_item(trans, root, path, 458 key, item_size); 459 path->skip_release_on_error = 0; 460 461 /* make sure any existing item is the correct size */ 462 if (ret == -EEXIST || ret == -EOVERFLOW) { 463 u32 found_size; 464 found_size = btrfs_item_size_nr(path->nodes[0], 465 path->slots[0]); 466 if (found_size > item_size) 467 btrfs_truncate_item(path, item_size, 1); 468 else if (found_size < item_size) 469 btrfs_extend_item(path, item_size - found_size); 470 } else if (ret) { 471 return ret; 472 } 473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 474 path->slots[0]); 475 476 /* don't overwrite an existing inode if the generation number 477 * was logged as zero. This is done when the tree logging code 478 * is just logging an inode to make sure it exists after recovery. 479 * 480 * Also, don't overwrite i_size on directories during replay. 481 * log replay inserts and removes directory items based on the 482 * state of the tree found in the subvolume, and i_size is modified 483 * as it goes 484 */ 485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 486 struct btrfs_inode_item *src_item; 487 struct btrfs_inode_item *dst_item; 488 489 src_item = (struct btrfs_inode_item *)src_ptr; 490 dst_item = (struct btrfs_inode_item *)dst_ptr; 491 492 if (btrfs_inode_generation(eb, src_item) == 0) { 493 struct extent_buffer *dst_eb = path->nodes[0]; 494 const u64 ino_size = btrfs_inode_size(eb, src_item); 495 496 /* 497 * For regular files an ino_size == 0 is used only when 498 * logging that an inode exists, as part of a directory 499 * fsync, and the inode wasn't fsynced before. In this 500 * case don't set the size of the inode in the fs/subvol 501 * tree, otherwise we would be throwing valid data away. 502 */ 503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 505 ino_size != 0) { 506 struct btrfs_map_token token; 507 508 btrfs_init_map_token(&token); 509 btrfs_set_token_inode_size(dst_eb, dst_item, 510 ino_size, &token); 511 } 512 goto no_copy; 513 } 514 515 if (overwrite_root && 516 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 518 save_old_i_size = 1; 519 saved_i_size = btrfs_inode_size(path->nodes[0], 520 dst_item); 521 } 522 } 523 524 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 525 src_ptr, item_size); 526 527 if (save_old_i_size) { 528 struct btrfs_inode_item *dst_item; 529 dst_item = (struct btrfs_inode_item *)dst_ptr; 530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 531 } 532 533 /* make sure the generation is filled in */ 534 if (key->type == BTRFS_INODE_ITEM_KEY) { 535 struct btrfs_inode_item *dst_item; 536 dst_item = (struct btrfs_inode_item *)dst_ptr; 537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 538 btrfs_set_inode_generation(path->nodes[0], dst_item, 539 trans->transid); 540 } 541 } 542 no_copy: 543 btrfs_mark_buffer_dirty(path->nodes[0]); 544 btrfs_release_path(path); 545 return 0; 546 } 547 548 /* 549 * simple helper to read an inode off the disk from a given root 550 * This can only be called for subvolume roots and not for the log 551 */ 552 static noinline struct inode *read_one_inode(struct btrfs_root *root, 553 u64 objectid) 554 { 555 struct btrfs_key key; 556 struct inode *inode; 557 558 key.objectid = objectid; 559 key.type = BTRFS_INODE_ITEM_KEY; 560 key.offset = 0; 561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 562 if (IS_ERR(inode)) 563 inode = NULL; 564 return inode; 565 } 566 567 /* replays a single extent in 'eb' at 'slot' with 'key' into the 568 * subvolume 'root'. path is released on entry and should be released 569 * on exit. 570 * 571 * extents in the log tree have not been allocated out of the extent 572 * tree yet. So, this completes the allocation, taking a reference 573 * as required if the extent already exists or creating a new extent 574 * if it isn't in the extent allocation tree yet. 575 * 576 * The extent is inserted into the file, dropping any existing extents 577 * from the file that overlap the new one. 578 */ 579 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 580 struct btrfs_root *root, 581 struct btrfs_path *path, 582 struct extent_buffer *eb, int slot, 583 struct btrfs_key *key) 584 { 585 struct btrfs_fs_info *fs_info = root->fs_info; 586 int found_type; 587 u64 extent_end; 588 u64 start = key->offset; 589 u64 nbytes = 0; 590 struct btrfs_file_extent_item *item; 591 struct inode *inode = NULL; 592 unsigned long size; 593 int ret = 0; 594 595 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 596 found_type = btrfs_file_extent_type(eb, item); 597 598 if (found_type == BTRFS_FILE_EXTENT_REG || 599 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 600 nbytes = btrfs_file_extent_num_bytes(eb, item); 601 extent_end = start + nbytes; 602 603 /* 604 * We don't add to the inodes nbytes if we are prealloc or a 605 * hole. 606 */ 607 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 608 nbytes = 0; 609 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 610 size = btrfs_file_extent_ram_bytes(eb, item); 611 nbytes = btrfs_file_extent_ram_bytes(eb, item); 612 extent_end = ALIGN(start + size, 613 fs_info->sectorsize); 614 } else { 615 ret = 0; 616 goto out; 617 } 618 619 inode = read_one_inode(root, key->objectid); 620 if (!inode) { 621 ret = -EIO; 622 goto out; 623 } 624 625 /* 626 * first check to see if we already have this extent in the 627 * file. This must be done before the btrfs_drop_extents run 628 * so we don't try to drop this extent. 629 */ 630 ret = btrfs_lookup_file_extent(trans, root, path, 631 btrfs_ino(BTRFS_I(inode)), start, 0); 632 633 if (ret == 0 && 634 (found_type == BTRFS_FILE_EXTENT_REG || 635 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 636 struct btrfs_file_extent_item cmp1; 637 struct btrfs_file_extent_item cmp2; 638 struct btrfs_file_extent_item *existing; 639 struct extent_buffer *leaf; 640 641 leaf = path->nodes[0]; 642 existing = btrfs_item_ptr(leaf, path->slots[0], 643 struct btrfs_file_extent_item); 644 645 read_extent_buffer(eb, &cmp1, (unsigned long)item, 646 sizeof(cmp1)); 647 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 648 sizeof(cmp2)); 649 650 /* 651 * we already have a pointer to this exact extent, 652 * we don't have to do anything 653 */ 654 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 655 btrfs_release_path(path); 656 goto out; 657 } 658 } 659 btrfs_release_path(path); 660 661 /* drop any overlapping extents */ 662 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 663 if (ret) 664 goto out; 665 666 if (found_type == BTRFS_FILE_EXTENT_REG || 667 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 668 u64 offset; 669 unsigned long dest_offset; 670 struct btrfs_key ins; 671 672 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 673 btrfs_fs_incompat(fs_info, NO_HOLES)) 674 goto update_inode; 675 676 ret = btrfs_insert_empty_item(trans, root, path, key, 677 sizeof(*item)); 678 if (ret) 679 goto out; 680 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 681 path->slots[0]); 682 copy_extent_buffer(path->nodes[0], eb, dest_offset, 683 (unsigned long)item, sizeof(*item)); 684 685 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 686 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 687 ins.type = BTRFS_EXTENT_ITEM_KEY; 688 offset = key->offset - btrfs_file_extent_offset(eb, item); 689 690 /* 691 * Manually record dirty extent, as here we did a shallow 692 * file extent item copy and skip normal backref update, 693 * but modifying extent tree all by ourselves. 694 * So need to manually record dirty extent for qgroup, 695 * as the owner of the file extent changed from log tree 696 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 697 */ 698 ret = btrfs_qgroup_trace_extent(trans, 699 btrfs_file_extent_disk_bytenr(eb, item), 700 btrfs_file_extent_disk_num_bytes(eb, item), 701 GFP_NOFS); 702 if (ret < 0) 703 goto out; 704 705 if (ins.objectid > 0) { 706 struct btrfs_ref ref = { 0 }; 707 u64 csum_start; 708 u64 csum_end; 709 LIST_HEAD(ordered_sums); 710 711 /* 712 * is this extent already allocated in the extent 713 * allocation tree? If so, just add a reference 714 */ 715 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 716 ins.offset); 717 if (ret == 0) { 718 btrfs_init_generic_ref(&ref, 719 BTRFS_ADD_DELAYED_REF, 720 ins.objectid, ins.offset, 0); 721 btrfs_init_data_ref(&ref, 722 root->root_key.objectid, 723 key->objectid, offset); 724 ret = btrfs_inc_extent_ref(trans, &ref); 725 if (ret) 726 goto out; 727 } else { 728 /* 729 * insert the extent pointer in the extent 730 * allocation tree 731 */ 732 ret = btrfs_alloc_logged_file_extent(trans, 733 root->root_key.objectid, 734 key->objectid, offset, &ins); 735 if (ret) 736 goto out; 737 } 738 btrfs_release_path(path); 739 740 if (btrfs_file_extent_compression(eb, item)) { 741 csum_start = ins.objectid; 742 csum_end = csum_start + ins.offset; 743 } else { 744 csum_start = ins.objectid + 745 btrfs_file_extent_offset(eb, item); 746 csum_end = csum_start + 747 btrfs_file_extent_num_bytes(eb, item); 748 } 749 750 ret = btrfs_lookup_csums_range(root->log_root, 751 csum_start, csum_end - 1, 752 &ordered_sums, 0); 753 if (ret) 754 goto out; 755 /* 756 * Now delete all existing cums in the csum root that 757 * cover our range. We do this because we can have an 758 * extent that is completely referenced by one file 759 * extent item and partially referenced by another 760 * file extent item (like after using the clone or 761 * extent_same ioctls). In this case if we end up doing 762 * the replay of the one that partially references the 763 * extent first, and we do not do the csum deletion 764 * below, we can get 2 csum items in the csum tree that 765 * overlap each other. For example, imagine our log has 766 * the two following file extent items: 767 * 768 * key (257 EXTENT_DATA 409600) 769 * extent data disk byte 12845056 nr 102400 770 * extent data offset 20480 nr 20480 ram 102400 771 * 772 * key (257 EXTENT_DATA 819200) 773 * extent data disk byte 12845056 nr 102400 774 * extent data offset 0 nr 102400 ram 102400 775 * 776 * Where the second one fully references the 100K extent 777 * that starts at disk byte 12845056, and the log tree 778 * has a single csum item that covers the entire range 779 * of the extent: 780 * 781 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 782 * 783 * After the first file extent item is replayed, the 784 * csum tree gets the following csum item: 785 * 786 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 787 * 788 * Which covers the 20K sub-range starting at offset 20K 789 * of our extent. Now when we replay the second file 790 * extent item, if we do not delete existing csum items 791 * that cover any of its blocks, we end up getting two 792 * csum items in our csum tree that overlap each other: 793 * 794 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 795 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 796 * 797 * Which is a problem, because after this anyone trying 798 * to lookup up for the checksum of any block of our 799 * extent starting at an offset of 40K or higher, will 800 * end up looking at the second csum item only, which 801 * does not contain the checksum for any block starting 802 * at offset 40K or higher of our extent. 803 */ 804 while (!list_empty(&ordered_sums)) { 805 struct btrfs_ordered_sum *sums; 806 sums = list_entry(ordered_sums.next, 807 struct btrfs_ordered_sum, 808 list); 809 if (!ret) 810 ret = btrfs_del_csums(trans, fs_info, 811 sums->bytenr, 812 sums->len); 813 if (!ret) 814 ret = btrfs_csum_file_blocks(trans, 815 fs_info->csum_root, sums); 816 list_del(&sums->list); 817 kfree(sums); 818 } 819 if (ret) 820 goto out; 821 } else { 822 btrfs_release_path(path); 823 } 824 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 825 /* inline extents are easy, we just overwrite them */ 826 ret = overwrite_item(trans, root, path, eb, slot, key); 827 if (ret) 828 goto out; 829 } 830 831 inode_add_bytes(inode, nbytes); 832 update_inode: 833 ret = btrfs_update_inode(trans, root, inode); 834 out: 835 if (inode) 836 iput(inode); 837 return ret; 838 } 839 840 /* 841 * when cleaning up conflicts between the directory names in the 842 * subvolume, directory names in the log and directory names in the 843 * inode back references, we may have to unlink inodes from directories. 844 * 845 * This is a helper function to do the unlink of a specific directory 846 * item 847 */ 848 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 849 struct btrfs_root *root, 850 struct btrfs_path *path, 851 struct btrfs_inode *dir, 852 struct btrfs_dir_item *di) 853 { 854 struct inode *inode; 855 char *name; 856 int name_len; 857 struct extent_buffer *leaf; 858 struct btrfs_key location; 859 int ret; 860 861 leaf = path->nodes[0]; 862 863 btrfs_dir_item_key_to_cpu(leaf, di, &location); 864 name_len = btrfs_dir_name_len(leaf, di); 865 name = kmalloc(name_len, GFP_NOFS); 866 if (!name) 867 return -ENOMEM; 868 869 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 870 btrfs_release_path(path); 871 872 inode = read_one_inode(root, location.objectid); 873 if (!inode) { 874 ret = -EIO; 875 goto out; 876 } 877 878 ret = link_to_fixup_dir(trans, root, path, location.objectid); 879 if (ret) 880 goto out; 881 882 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, 883 name_len); 884 if (ret) 885 goto out; 886 else 887 ret = btrfs_run_delayed_items(trans); 888 out: 889 kfree(name); 890 iput(inode); 891 return ret; 892 } 893 894 /* 895 * helper function to see if a given name and sequence number found 896 * in an inode back reference are already in a directory and correctly 897 * point to this inode 898 */ 899 static noinline int inode_in_dir(struct btrfs_root *root, 900 struct btrfs_path *path, 901 u64 dirid, u64 objectid, u64 index, 902 const char *name, int name_len) 903 { 904 struct btrfs_dir_item *di; 905 struct btrfs_key location; 906 int match = 0; 907 908 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 909 index, name, name_len, 0); 910 if (di && !IS_ERR(di)) { 911 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 912 if (location.objectid != objectid) 913 goto out; 914 } else 915 goto out; 916 btrfs_release_path(path); 917 918 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 919 if (di && !IS_ERR(di)) { 920 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 921 if (location.objectid != objectid) 922 goto out; 923 } else 924 goto out; 925 match = 1; 926 out: 927 btrfs_release_path(path); 928 return match; 929 } 930 931 /* 932 * helper function to check a log tree for a named back reference in 933 * an inode. This is used to decide if a back reference that is 934 * found in the subvolume conflicts with what we find in the log. 935 * 936 * inode backreferences may have multiple refs in a single item, 937 * during replay we process one reference at a time, and we don't 938 * want to delete valid links to a file from the subvolume if that 939 * link is also in the log. 940 */ 941 static noinline int backref_in_log(struct btrfs_root *log, 942 struct btrfs_key *key, 943 u64 ref_objectid, 944 const char *name, int namelen) 945 { 946 struct btrfs_path *path; 947 struct btrfs_inode_ref *ref; 948 unsigned long ptr; 949 unsigned long ptr_end; 950 unsigned long name_ptr; 951 int found_name_len; 952 int item_size; 953 int ret; 954 int match = 0; 955 956 path = btrfs_alloc_path(); 957 if (!path) 958 return -ENOMEM; 959 960 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 961 if (ret != 0) 962 goto out; 963 964 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 965 966 if (key->type == BTRFS_INODE_EXTREF_KEY) { 967 if (btrfs_find_name_in_ext_backref(path->nodes[0], 968 path->slots[0], 969 ref_objectid, 970 name, namelen, NULL)) 971 match = 1; 972 973 goto out; 974 } 975 976 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 977 ptr_end = ptr + item_size; 978 while (ptr < ptr_end) { 979 ref = (struct btrfs_inode_ref *)ptr; 980 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 981 if (found_name_len == namelen) { 982 name_ptr = (unsigned long)(ref + 1); 983 ret = memcmp_extent_buffer(path->nodes[0], name, 984 name_ptr, namelen); 985 if (ret == 0) { 986 match = 1; 987 goto out; 988 } 989 } 990 ptr = (unsigned long)(ref + 1) + found_name_len; 991 } 992 out: 993 btrfs_free_path(path); 994 return match; 995 } 996 997 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 998 struct btrfs_root *root, 999 struct btrfs_path *path, 1000 struct btrfs_root *log_root, 1001 struct btrfs_inode *dir, 1002 struct btrfs_inode *inode, 1003 u64 inode_objectid, u64 parent_objectid, 1004 u64 ref_index, char *name, int namelen, 1005 int *search_done) 1006 { 1007 int ret; 1008 char *victim_name; 1009 int victim_name_len; 1010 struct extent_buffer *leaf; 1011 struct btrfs_dir_item *di; 1012 struct btrfs_key search_key; 1013 struct btrfs_inode_extref *extref; 1014 1015 again: 1016 /* Search old style refs */ 1017 search_key.objectid = inode_objectid; 1018 search_key.type = BTRFS_INODE_REF_KEY; 1019 search_key.offset = parent_objectid; 1020 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1021 if (ret == 0) { 1022 struct btrfs_inode_ref *victim_ref; 1023 unsigned long ptr; 1024 unsigned long ptr_end; 1025 1026 leaf = path->nodes[0]; 1027 1028 /* are we trying to overwrite a back ref for the root directory 1029 * if so, just jump out, we're done 1030 */ 1031 if (search_key.objectid == search_key.offset) 1032 return 1; 1033 1034 /* check all the names in this back reference to see 1035 * if they are in the log. if so, we allow them to stay 1036 * otherwise they must be unlinked as a conflict 1037 */ 1038 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1039 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1040 while (ptr < ptr_end) { 1041 victim_ref = (struct btrfs_inode_ref *)ptr; 1042 victim_name_len = btrfs_inode_ref_name_len(leaf, 1043 victim_ref); 1044 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1045 if (!victim_name) 1046 return -ENOMEM; 1047 1048 read_extent_buffer(leaf, victim_name, 1049 (unsigned long)(victim_ref + 1), 1050 victim_name_len); 1051 1052 if (!backref_in_log(log_root, &search_key, 1053 parent_objectid, 1054 victim_name, 1055 victim_name_len)) { 1056 inc_nlink(&inode->vfs_inode); 1057 btrfs_release_path(path); 1058 1059 ret = btrfs_unlink_inode(trans, root, dir, inode, 1060 victim_name, victim_name_len); 1061 kfree(victim_name); 1062 if (ret) 1063 return ret; 1064 ret = btrfs_run_delayed_items(trans); 1065 if (ret) 1066 return ret; 1067 *search_done = 1; 1068 goto again; 1069 } 1070 kfree(victim_name); 1071 1072 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1073 } 1074 1075 /* 1076 * NOTE: we have searched root tree and checked the 1077 * corresponding ref, it does not need to check again. 1078 */ 1079 *search_done = 1; 1080 } 1081 btrfs_release_path(path); 1082 1083 /* Same search but for extended refs */ 1084 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1085 inode_objectid, parent_objectid, 0, 1086 0); 1087 if (!IS_ERR_OR_NULL(extref)) { 1088 u32 item_size; 1089 u32 cur_offset = 0; 1090 unsigned long base; 1091 struct inode *victim_parent; 1092 1093 leaf = path->nodes[0]; 1094 1095 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1096 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1097 1098 while (cur_offset < item_size) { 1099 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1100 1101 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1102 1103 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1104 goto next; 1105 1106 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1107 if (!victim_name) 1108 return -ENOMEM; 1109 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1110 victim_name_len); 1111 1112 search_key.objectid = inode_objectid; 1113 search_key.type = BTRFS_INODE_EXTREF_KEY; 1114 search_key.offset = btrfs_extref_hash(parent_objectid, 1115 victim_name, 1116 victim_name_len); 1117 ret = 0; 1118 if (!backref_in_log(log_root, &search_key, 1119 parent_objectid, victim_name, 1120 victim_name_len)) { 1121 ret = -ENOENT; 1122 victim_parent = read_one_inode(root, 1123 parent_objectid); 1124 if (victim_parent) { 1125 inc_nlink(&inode->vfs_inode); 1126 btrfs_release_path(path); 1127 1128 ret = btrfs_unlink_inode(trans, root, 1129 BTRFS_I(victim_parent), 1130 inode, 1131 victim_name, 1132 victim_name_len); 1133 if (!ret) 1134 ret = btrfs_run_delayed_items( 1135 trans); 1136 } 1137 iput(victim_parent); 1138 kfree(victim_name); 1139 if (ret) 1140 return ret; 1141 *search_done = 1; 1142 goto again; 1143 } 1144 kfree(victim_name); 1145 next: 1146 cur_offset += victim_name_len + sizeof(*extref); 1147 } 1148 *search_done = 1; 1149 } 1150 btrfs_release_path(path); 1151 1152 /* look for a conflicting sequence number */ 1153 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1154 ref_index, name, namelen, 0); 1155 if (di && !IS_ERR(di)) { 1156 ret = drop_one_dir_item(trans, root, path, dir, di); 1157 if (ret) 1158 return ret; 1159 } 1160 btrfs_release_path(path); 1161 1162 /* look for a conflicting name */ 1163 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1164 name, namelen, 0); 1165 if (di && !IS_ERR(di)) { 1166 ret = drop_one_dir_item(trans, root, path, dir, di); 1167 if (ret) 1168 return ret; 1169 } 1170 btrfs_release_path(path); 1171 1172 return 0; 1173 } 1174 1175 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1176 u32 *namelen, char **name, u64 *index, 1177 u64 *parent_objectid) 1178 { 1179 struct btrfs_inode_extref *extref; 1180 1181 extref = (struct btrfs_inode_extref *)ref_ptr; 1182 1183 *namelen = btrfs_inode_extref_name_len(eb, extref); 1184 *name = kmalloc(*namelen, GFP_NOFS); 1185 if (*name == NULL) 1186 return -ENOMEM; 1187 1188 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1189 *namelen); 1190 1191 if (index) 1192 *index = btrfs_inode_extref_index(eb, extref); 1193 if (parent_objectid) 1194 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1195 1196 return 0; 1197 } 1198 1199 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1200 u32 *namelen, char **name, u64 *index) 1201 { 1202 struct btrfs_inode_ref *ref; 1203 1204 ref = (struct btrfs_inode_ref *)ref_ptr; 1205 1206 *namelen = btrfs_inode_ref_name_len(eb, ref); 1207 *name = kmalloc(*namelen, GFP_NOFS); 1208 if (*name == NULL) 1209 return -ENOMEM; 1210 1211 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1212 1213 if (index) 1214 *index = btrfs_inode_ref_index(eb, ref); 1215 1216 return 0; 1217 } 1218 1219 /* 1220 * Take an inode reference item from the log tree and iterate all names from the 1221 * inode reference item in the subvolume tree with the same key (if it exists). 1222 * For any name that is not in the inode reference item from the log tree, do a 1223 * proper unlink of that name (that is, remove its entry from the inode 1224 * reference item and both dir index keys). 1225 */ 1226 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1227 struct btrfs_root *root, 1228 struct btrfs_path *path, 1229 struct btrfs_inode *inode, 1230 struct extent_buffer *log_eb, 1231 int log_slot, 1232 struct btrfs_key *key) 1233 { 1234 int ret; 1235 unsigned long ref_ptr; 1236 unsigned long ref_end; 1237 struct extent_buffer *eb; 1238 1239 again: 1240 btrfs_release_path(path); 1241 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1242 if (ret > 0) { 1243 ret = 0; 1244 goto out; 1245 } 1246 if (ret < 0) 1247 goto out; 1248 1249 eb = path->nodes[0]; 1250 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1251 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); 1252 while (ref_ptr < ref_end) { 1253 char *name = NULL; 1254 int namelen; 1255 u64 parent_id; 1256 1257 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1258 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1259 NULL, &parent_id); 1260 } else { 1261 parent_id = key->offset; 1262 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1263 NULL); 1264 } 1265 if (ret) 1266 goto out; 1267 1268 if (key->type == BTRFS_INODE_EXTREF_KEY) 1269 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot, 1270 parent_id, name, 1271 namelen, NULL); 1272 else 1273 ret = btrfs_find_name_in_backref(log_eb, log_slot, name, 1274 namelen, NULL); 1275 1276 if (!ret) { 1277 struct inode *dir; 1278 1279 btrfs_release_path(path); 1280 dir = read_one_inode(root, parent_id); 1281 if (!dir) { 1282 ret = -ENOENT; 1283 kfree(name); 1284 goto out; 1285 } 1286 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 1287 inode, name, namelen); 1288 kfree(name); 1289 iput(dir); 1290 if (ret) 1291 goto out; 1292 goto again; 1293 } 1294 1295 kfree(name); 1296 ref_ptr += namelen; 1297 if (key->type == BTRFS_INODE_EXTREF_KEY) 1298 ref_ptr += sizeof(struct btrfs_inode_extref); 1299 else 1300 ref_ptr += sizeof(struct btrfs_inode_ref); 1301 } 1302 ret = 0; 1303 out: 1304 btrfs_release_path(path); 1305 return ret; 1306 } 1307 1308 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1309 const u8 ref_type, const char *name, 1310 const int namelen) 1311 { 1312 struct btrfs_key key; 1313 struct btrfs_path *path; 1314 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1315 int ret; 1316 1317 path = btrfs_alloc_path(); 1318 if (!path) 1319 return -ENOMEM; 1320 1321 key.objectid = btrfs_ino(BTRFS_I(inode)); 1322 key.type = ref_type; 1323 if (key.type == BTRFS_INODE_REF_KEY) 1324 key.offset = parent_id; 1325 else 1326 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1327 1328 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1329 if (ret < 0) 1330 goto out; 1331 if (ret > 0) { 1332 ret = 0; 1333 goto out; 1334 } 1335 if (key.type == BTRFS_INODE_EXTREF_KEY) 1336 ret = btrfs_find_name_in_ext_backref(path->nodes[0], 1337 path->slots[0], parent_id, 1338 name, namelen, NULL); 1339 else 1340 ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1341 name, namelen, NULL); 1342 1343 out: 1344 btrfs_free_path(path); 1345 return ret; 1346 } 1347 1348 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1349 struct inode *dir, struct inode *inode, const char *name, 1350 int namelen, u64 ref_index) 1351 { 1352 struct btrfs_dir_item *dir_item; 1353 struct btrfs_key key; 1354 struct btrfs_path *path; 1355 struct inode *other_inode = NULL; 1356 int ret; 1357 1358 path = btrfs_alloc_path(); 1359 if (!path) 1360 return -ENOMEM; 1361 1362 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1363 btrfs_ino(BTRFS_I(dir)), 1364 name, namelen, 0); 1365 if (!dir_item) { 1366 btrfs_release_path(path); 1367 goto add_link; 1368 } else if (IS_ERR(dir_item)) { 1369 ret = PTR_ERR(dir_item); 1370 goto out; 1371 } 1372 1373 /* 1374 * Our inode's dentry collides with the dentry of another inode which is 1375 * in the log but not yet processed since it has a higher inode number. 1376 * So delete that other dentry. 1377 */ 1378 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1379 btrfs_release_path(path); 1380 other_inode = read_one_inode(root, key.objectid); 1381 if (!other_inode) { 1382 ret = -ENOENT; 1383 goto out; 1384 } 1385 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode), 1386 name, namelen); 1387 if (ret) 1388 goto out; 1389 /* 1390 * If we dropped the link count to 0, bump it so that later the iput() 1391 * on the inode will not free it. We will fixup the link count later. 1392 */ 1393 if (other_inode->i_nlink == 0) 1394 inc_nlink(other_inode); 1395 1396 ret = btrfs_run_delayed_items(trans); 1397 if (ret) 1398 goto out; 1399 add_link: 1400 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1401 name, namelen, 0, ref_index); 1402 out: 1403 iput(other_inode); 1404 btrfs_free_path(path); 1405 1406 return ret; 1407 } 1408 1409 /* 1410 * replay one inode back reference item found in the log tree. 1411 * eb, slot and key refer to the buffer and key found in the log tree. 1412 * root is the destination we are replaying into, and path is for temp 1413 * use by this function. (it should be released on return). 1414 */ 1415 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1416 struct btrfs_root *root, 1417 struct btrfs_root *log, 1418 struct btrfs_path *path, 1419 struct extent_buffer *eb, int slot, 1420 struct btrfs_key *key) 1421 { 1422 struct inode *dir = NULL; 1423 struct inode *inode = NULL; 1424 unsigned long ref_ptr; 1425 unsigned long ref_end; 1426 char *name = NULL; 1427 int namelen; 1428 int ret; 1429 int search_done = 0; 1430 int log_ref_ver = 0; 1431 u64 parent_objectid; 1432 u64 inode_objectid; 1433 u64 ref_index = 0; 1434 int ref_struct_size; 1435 1436 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1437 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1438 1439 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1440 struct btrfs_inode_extref *r; 1441 1442 ref_struct_size = sizeof(struct btrfs_inode_extref); 1443 log_ref_ver = 1; 1444 r = (struct btrfs_inode_extref *)ref_ptr; 1445 parent_objectid = btrfs_inode_extref_parent(eb, r); 1446 } else { 1447 ref_struct_size = sizeof(struct btrfs_inode_ref); 1448 parent_objectid = key->offset; 1449 } 1450 inode_objectid = key->objectid; 1451 1452 /* 1453 * it is possible that we didn't log all the parent directories 1454 * for a given inode. If we don't find the dir, just don't 1455 * copy the back ref in. The link count fixup code will take 1456 * care of the rest 1457 */ 1458 dir = read_one_inode(root, parent_objectid); 1459 if (!dir) { 1460 ret = -ENOENT; 1461 goto out; 1462 } 1463 1464 inode = read_one_inode(root, inode_objectid); 1465 if (!inode) { 1466 ret = -EIO; 1467 goto out; 1468 } 1469 1470 while (ref_ptr < ref_end) { 1471 if (log_ref_ver) { 1472 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1473 &ref_index, &parent_objectid); 1474 /* 1475 * parent object can change from one array 1476 * item to another. 1477 */ 1478 if (!dir) 1479 dir = read_one_inode(root, parent_objectid); 1480 if (!dir) { 1481 ret = -ENOENT; 1482 goto out; 1483 } 1484 } else { 1485 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1486 &ref_index); 1487 } 1488 if (ret) 1489 goto out; 1490 1491 /* if we already have a perfect match, we're done */ 1492 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1493 btrfs_ino(BTRFS_I(inode)), ref_index, 1494 name, namelen)) { 1495 /* 1496 * look for a conflicting back reference in the 1497 * metadata. if we find one we have to unlink that name 1498 * of the file before we add our new link. Later on, we 1499 * overwrite any existing back reference, and we don't 1500 * want to create dangling pointers in the directory. 1501 */ 1502 1503 if (!search_done) { 1504 ret = __add_inode_ref(trans, root, path, log, 1505 BTRFS_I(dir), 1506 BTRFS_I(inode), 1507 inode_objectid, 1508 parent_objectid, 1509 ref_index, name, namelen, 1510 &search_done); 1511 if (ret) { 1512 if (ret == 1) 1513 ret = 0; 1514 goto out; 1515 } 1516 } 1517 1518 /* 1519 * If a reference item already exists for this inode 1520 * with the same parent and name, but different index, 1521 * drop it and the corresponding directory index entries 1522 * from the parent before adding the new reference item 1523 * and dir index entries, otherwise we would fail with 1524 * -EEXIST returned from btrfs_add_link() below. 1525 */ 1526 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1527 name, namelen); 1528 if (ret > 0) { 1529 ret = btrfs_unlink_inode(trans, root, 1530 BTRFS_I(dir), 1531 BTRFS_I(inode), 1532 name, namelen); 1533 /* 1534 * If we dropped the link count to 0, bump it so 1535 * that later the iput() on the inode will not 1536 * free it. We will fixup the link count later. 1537 */ 1538 if (!ret && inode->i_nlink == 0) 1539 inc_nlink(inode); 1540 } 1541 if (ret < 0) 1542 goto out; 1543 1544 /* insert our name */ 1545 ret = add_link(trans, root, dir, inode, name, namelen, 1546 ref_index); 1547 if (ret) 1548 goto out; 1549 1550 btrfs_update_inode(trans, root, inode); 1551 } 1552 1553 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1554 kfree(name); 1555 name = NULL; 1556 if (log_ref_ver) { 1557 iput(dir); 1558 dir = NULL; 1559 } 1560 } 1561 1562 /* 1563 * Before we overwrite the inode reference item in the subvolume tree 1564 * with the item from the log tree, we must unlink all names from the 1565 * parent directory that are in the subvolume's tree inode reference 1566 * item, otherwise we end up with an inconsistent subvolume tree where 1567 * dir index entries exist for a name but there is no inode reference 1568 * item with the same name. 1569 */ 1570 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1571 key); 1572 if (ret) 1573 goto out; 1574 1575 /* finally write the back reference in the inode */ 1576 ret = overwrite_item(trans, root, path, eb, slot, key); 1577 out: 1578 btrfs_release_path(path); 1579 kfree(name); 1580 iput(dir); 1581 iput(inode); 1582 return ret; 1583 } 1584 1585 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1586 struct btrfs_root *root, u64 ino) 1587 { 1588 int ret; 1589 1590 ret = btrfs_insert_orphan_item(trans, root, ino); 1591 if (ret == -EEXIST) 1592 ret = 0; 1593 1594 return ret; 1595 } 1596 1597 static int count_inode_extrefs(struct btrfs_root *root, 1598 struct btrfs_inode *inode, struct btrfs_path *path) 1599 { 1600 int ret = 0; 1601 int name_len; 1602 unsigned int nlink = 0; 1603 u32 item_size; 1604 u32 cur_offset = 0; 1605 u64 inode_objectid = btrfs_ino(inode); 1606 u64 offset = 0; 1607 unsigned long ptr; 1608 struct btrfs_inode_extref *extref; 1609 struct extent_buffer *leaf; 1610 1611 while (1) { 1612 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1613 &extref, &offset); 1614 if (ret) 1615 break; 1616 1617 leaf = path->nodes[0]; 1618 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1619 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1620 cur_offset = 0; 1621 1622 while (cur_offset < item_size) { 1623 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1624 name_len = btrfs_inode_extref_name_len(leaf, extref); 1625 1626 nlink++; 1627 1628 cur_offset += name_len + sizeof(*extref); 1629 } 1630 1631 offset++; 1632 btrfs_release_path(path); 1633 } 1634 btrfs_release_path(path); 1635 1636 if (ret < 0 && ret != -ENOENT) 1637 return ret; 1638 return nlink; 1639 } 1640 1641 static int count_inode_refs(struct btrfs_root *root, 1642 struct btrfs_inode *inode, struct btrfs_path *path) 1643 { 1644 int ret; 1645 struct btrfs_key key; 1646 unsigned int nlink = 0; 1647 unsigned long ptr; 1648 unsigned long ptr_end; 1649 int name_len; 1650 u64 ino = btrfs_ino(inode); 1651 1652 key.objectid = ino; 1653 key.type = BTRFS_INODE_REF_KEY; 1654 key.offset = (u64)-1; 1655 1656 while (1) { 1657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1658 if (ret < 0) 1659 break; 1660 if (ret > 0) { 1661 if (path->slots[0] == 0) 1662 break; 1663 path->slots[0]--; 1664 } 1665 process_slot: 1666 btrfs_item_key_to_cpu(path->nodes[0], &key, 1667 path->slots[0]); 1668 if (key.objectid != ino || 1669 key.type != BTRFS_INODE_REF_KEY) 1670 break; 1671 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1672 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1673 path->slots[0]); 1674 while (ptr < ptr_end) { 1675 struct btrfs_inode_ref *ref; 1676 1677 ref = (struct btrfs_inode_ref *)ptr; 1678 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1679 ref); 1680 ptr = (unsigned long)(ref + 1) + name_len; 1681 nlink++; 1682 } 1683 1684 if (key.offset == 0) 1685 break; 1686 if (path->slots[0] > 0) { 1687 path->slots[0]--; 1688 goto process_slot; 1689 } 1690 key.offset--; 1691 btrfs_release_path(path); 1692 } 1693 btrfs_release_path(path); 1694 1695 return nlink; 1696 } 1697 1698 /* 1699 * There are a few corners where the link count of the file can't 1700 * be properly maintained during replay. So, instead of adding 1701 * lots of complexity to the log code, we just scan the backrefs 1702 * for any file that has been through replay. 1703 * 1704 * The scan will update the link count on the inode to reflect the 1705 * number of back refs found. If it goes down to zero, the iput 1706 * will free the inode. 1707 */ 1708 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1709 struct btrfs_root *root, 1710 struct inode *inode) 1711 { 1712 struct btrfs_path *path; 1713 int ret; 1714 u64 nlink = 0; 1715 u64 ino = btrfs_ino(BTRFS_I(inode)); 1716 1717 path = btrfs_alloc_path(); 1718 if (!path) 1719 return -ENOMEM; 1720 1721 ret = count_inode_refs(root, BTRFS_I(inode), path); 1722 if (ret < 0) 1723 goto out; 1724 1725 nlink = ret; 1726 1727 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1728 if (ret < 0) 1729 goto out; 1730 1731 nlink += ret; 1732 1733 ret = 0; 1734 1735 if (nlink != inode->i_nlink) { 1736 set_nlink(inode, nlink); 1737 btrfs_update_inode(trans, root, inode); 1738 } 1739 BTRFS_I(inode)->index_cnt = (u64)-1; 1740 1741 if (inode->i_nlink == 0) { 1742 if (S_ISDIR(inode->i_mode)) { 1743 ret = replay_dir_deletes(trans, root, NULL, path, 1744 ino, 1); 1745 if (ret) 1746 goto out; 1747 } 1748 ret = insert_orphan_item(trans, root, ino); 1749 } 1750 1751 out: 1752 btrfs_free_path(path); 1753 return ret; 1754 } 1755 1756 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1757 struct btrfs_root *root, 1758 struct btrfs_path *path) 1759 { 1760 int ret; 1761 struct btrfs_key key; 1762 struct inode *inode; 1763 1764 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1765 key.type = BTRFS_ORPHAN_ITEM_KEY; 1766 key.offset = (u64)-1; 1767 while (1) { 1768 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1769 if (ret < 0) 1770 break; 1771 1772 if (ret == 1) { 1773 if (path->slots[0] == 0) 1774 break; 1775 path->slots[0]--; 1776 } 1777 1778 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1779 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1780 key.type != BTRFS_ORPHAN_ITEM_KEY) 1781 break; 1782 1783 ret = btrfs_del_item(trans, root, path); 1784 if (ret) 1785 goto out; 1786 1787 btrfs_release_path(path); 1788 inode = read_one_inode(root, key.offset); 1789 if (!inode) 1790 return -EIO; 1791 1792 ret = fixup_inode_link_count(trans, root, inode); 1793 iput(inode); 1794 if (ret) 1795 goto out; 1796 1797 /* 1798 * fixup on a directory may create new entries, 1799 * make sure we always look for the highset possible 1800 * offset 1801 */ 1802 key.offset = (u64)-1; 1803 } 1804 ret = 0; 1805 out: 1806 btrfs_release_path(path); 1807 return ret; 1808 } 1809 1810 1811 /* 1812 * record a given inode in the fixup dir so we can check its link 1813 * count when replay is done. The link count is incremented here 1814 * so the inode won't go away until we check it 1815 */ 1816 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1817 struct btrfs_root *root, 1818 struct btrfs_path *path, 1819 u64 objectid) 1820 { 1821 struct btrfs_key key; 1822 int ret = 0; 1823 struct inode *inode; 1824 1825 inode = read_one_inode(root, objectid); 1826 if (!inode) 1827 return -EIO; 1828 1829 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1830 key.type = BTRFS_ORPHAN_ITEM_KEY; 1831 key.offset = objectid; 1832 1833 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1834 1835 btrfs_release_path(path); 1836 if (ret == 0) { 1837 if (!inode->i_nlink) 1838 set_nlink(inode, 1); 1839 else 1840 inc_nlink(inode); 1841 ret = btrfs_update_inode(trans, root, inode); 1842 } else if (ret == -EEXIST) { 1843 ret = 0; 1844 } else { 1845 BUG(); /* Logic Error */ 1846 } 1847 iput(inode); 1848 1849 return ret; 1850 } 1851 1852 /* 1853 * when replaying the log for a directory, we only insert names 1854 * for inodes that actually exist. This means an fsync on a directory 1855 * does not implicitly fsync all the new files in it 1856 */ 1857 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1858 struct btrfs_root *root, 1859 u64 dirid, u64 index, 1860 char *name, int name_len, 1861 struct btrfs_key *location) 1862 { 1863 struct inode *inode; 1864 struct inode *dir; 1865 int ret; 1866 1867 inode = read_one_inode(root, location->objectid); 1868 if (!inode) 1869 return -ENOENT; 1870 1871 dir = read_one_inode(root, dirid); 1872 if (!dir) { 1873 iput(inode); 1874 return -EIO; 1875 } 1876 1877 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1878 name_len, 1, index); 1879 1880 /* FIXME, put inode into FIXUP list */ 1881 1882 iput(inode); 1883 iput(dir); 1884 return ret; 1885 } 1886 1887 /* 1888 * Return true if an inode reference exists in the log for the given name, 1889 * inode and parent inode. 1890 */ 1891 static bool name_in_log_ref(struct btrfs_root *log_root, 1892 const char *name, const int name_len, 1893 const u64 dirid, const u64 ino) 1894 { 1895 struct btrfs_key search_key; 1896 1897 search_key.objectid = ino; 1898 search_key.type = BTRFS_INODE_REF_KEY; 1899 search_key.offset = dirid; 1900 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1901 return true; 1902 1903 search_key.type = BTRFS_INODE_EXTREF_KEY; 1904 search_key.offset = btrfs_extref_hash(dirid, name, name_len); 1905 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1906 return true; 1907 1908 return false; 1909 } 1910 1911 /* 1912 * take a single entry in a log directory item and replay it into 1913 * the subvolume. 1914 * 1915 * if a conflicting item exists in the subdirectory already, 1916 * the inode it points to is unlinked and put into the link count 1917 * fix up tree. 1918 * 1919 * If a name from the log points to a file or directory that does 1920 * not exist in the FS, it is skipped. fsyncs on directories 1921 * do not force down inodes inside that directory, just changes to the 1922 * names or unlinks in a directory. 1923 * 1924 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1925 * non-existing inode) and 1 if the name was replayed. 1926 */ 1927 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1928 struct btrfs_root *root, 1929 struct btrfs_path *path, 1930 struct extent_buffer *eb, 1931 struct btrfs_dir_item *di, 1932 struct btrfs_key *key) 1933 { 1934 char *name; 1935 int name_len; 1936 struct btrfs_dir_item *dst_di; 1937 struct btrfs_key found_key; 1938 struct btrfs_key log_key; 1939 struct inode *dir; 1940 u8 log_type; 1941 int exists; 1942 int ret = 0; 1943 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1944 bool name_added = false; 1945 1946 dir = read_one_inode(root, key->objectid); 1947 if (!dir) 1948 return -EIO; 1949 1950 name_len = btrfs_dir_name_len(eb, di); 1951 name = kmalloc(name_len, GFP_NOFS); 1952 if (!name) { 1953 ret = -ENOMEM; 1954 goto out; 1955 } 1956 1957 log_type = btrfs_dir_type(eb, di); 1958 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1959 name_len); 1960 1961 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1962 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1963 if (exists == 0) 1964 exists = 1; 1965 else 1966 exists = 0; 1967 btrfs_release_path(path); 1968 1969 if (key->type == BTRFS_DIR_ITEM_KEY) { 1970 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1971 name, name_len, 1); 1972 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1973 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1974 key->objectid, 1975 key->offset, name, 1976 name_len, 1); 1977 } else { 1978 /* Corruption */ 1979 ret = -EINVAL; 1980 goto out; 1981 } 1982 if (IS_ERR_OR_NULL(dst_di)) { 1983 /* we need a sequence number to insert, so we only 1984 * do inserts for the BTRFS_DIR_INDEX_KEY types 1985 */ 1986 if (key->type != BTRFS_DIR_INDEX_KEY) 1987 goto out; 1988 goto insert; 1989 } 1990 1991 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1992 /* the existing item matches the logged item */ 1993 if (found_key.objectid == log_key.objectid && 1994 found_key.type == log_key.type && 1995 found_key.offset == log_key.offset && 1996 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1997 update_size = false; 1998 goto out; 1999 } 2000 2001 /* 2002 * don't drop the conflicting directory entry if the inode 2003 * for the new entry doesn't exist 2004 */ 2005 if (!exists) 2006 goto out; 2007 2008 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); 2009 if (ret) 2010 goto out; 2011 2012 if (key->type == BTRFS_DIR_INDEX_KEY) 2013 goto insert; 2014 out: 2015 btrfs_release_path(path); 2016 if (!ret && update_size) { 2017 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 2018 ret = btrfs_update_inode(trans, root, dir); 2019 } 2020 kfree(name); 2021 iput(dir); 2022 if (!ret && name_added) 2023 ret = 1; 2024 return ret; 2025 2026 insert: 2027 if (name_in_log_ref(root->log_root, name, name_len, 2028 key->objectid, log_key.objectid)) { 2029 /* The dentry will be added later. */ 2030 ret = 0; 2031 update_size = false; 2032 goto out; 2033 } 2034 btrfs_release_path(path); 2035 ret = insert_one_name(trans, root, key->objectid, key->offset, 2036 name, name_len, &log_key); 2037 if (ret && ret != -ENOENT && ret != -EEXIST) 2038 goto out; 2039 if (!ret) 2040 name_added = true; 2041 update_size = false; 2042 ret = 0; 2043 goto out; 2044 } 2045 2046 /* 2047 * find all the names in a directory item and reconcile them into 2048 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 2049 * one name in a directory item, but the same code gets used for 2050 * both directory index types 2051 */ 2052 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2053 struct btrfs_root *root, 2054 struct btrfs_path *path, 2055 struct extent_buffer *eb, int slot, 2056 struct btrfs_key *key) 2057 { 2058 int ret = 0; 2059 u32 item_size = btrfs_item_size_nr(eb, slot); 2060 struct btrfs_dir_item *di; 2061 int name_len; 2062 unsigned long ptr; 2063 unsigned long ptr_end; 2064 struct btrfs_path *fixup_path = NULL; 2065 2066 ptr = btrfs_item_ptr_offset(eb, slot); 2067 ptr_end = ptr + item_size; 2068 while (ptr < ptr_end) { 2069 di = (struct btrfs_dir_item *)ptr; 2070 name_len = btrfs_dir_name_len(eb, di); 2071 ret = replay_one_name(trans, root, path, eb, di, key); 2072 if (ret < 0) 2073 break; 2074 ptr = (unsigned long)(di + 1); 2075 ptr += name_len; 2076 2077 /* 2078 * If this entry refers to a non-directory (directories can not 2079 * have a link count > 1) and it was added in the transaction 2080 * that was not committed, make sure we fixup the link count of 2081 * the inode it the entry points to. Otherwise something like 2082 * the following would result in a directory pointing to an 2083 * inode with a wrong link that does not account for this dir 2084 * entry: 2085 * 2086 * mkdir testdir 2087 * touch testdir/foo 2088 * touch testdir/bar 2089 * sync 2090 * 2091 * ln testdir/bar testdir/bar_link 2092 * ln testdir/foo testdir/foo_link 2093 * xfs_io -c "fsync" testdir/bar 2094 * 2095 * <power failure> 2096 * 2097 * mount fs, log replay happens 2098 * 2099 * File foo would remain with a link count of 1 when it has two 2100 * entries pointing to it in the directory testdir. This would 2101 * make it impossible to ever delete the parent directory has 2102 * it would result in stale dentries that can never be deleted. 2103 */ 2104 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2105 struct btrfs_key di_key; 2106 2107 if (!fixup_path) { 2108 fixup_path = btrfs_alloc_path(); 2109 if (!fixup_path) { 2110 ret = -ENOMEM; 2111 break; 2112 } 2113 } 2114 2115 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2116 ret = link_to_fixup_dir(trans, root, fixup_path, 2117 di_key.objectid); 2118 if (ret) 2119 break; 2120 } 2121 ret = 0; 2122 } 2123 btrfs_free_path(fixup_path); 2124 return ret; 2125 } 2126 2127 /* 2128 * directory replay has two parts. There are the standard directory 2129 * items in the log copied from the subvolume, and range items 2130 * created in the log while the subvolume was logged. 2131 * 2132 * The range items tell us which parts of the key space the log 2133 * is authoritative for. During replay, if a key in the subvolume 2134 * directory is in a logged range item, but not actually in the log 2135 * that means it was deleted from the directory before the fsync 2136 * and should be removed. 2137 */ 2138 static noinline int find_dir_range(struct btrfs_root *root, 2139 struct btrfs_path *path, 2140 u64 dirid, int key_type, 2141 u64 *start_ret, u64 *end_ret) 2142 { 2143 struct btrfs_key key; 2144 u64 found_end; 2145 struct btrfs_dir_log_item *item; 2146 int ret; 2147 int nritems; 2148 2149 if (*start_ret == (u64)-1) 2150 return 1; 2151 2152 key.objectid = dirid; 2153 key.type = key_type; 2154 key.offset = *start_ret; 2155 2156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2157 if (ret < 0) 2158 goto out; 2159 if (ret > 0) { 2160 if (path->slots[0] == 0) 2161 goto out; 2162 path->slots[0]--; 2163 } 2164 if (ret != 0) 2165 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2166 2167 if (key.type != key_type || key.objectid != dirid) { 2168 ret = 1; 2169 goto next; 2170 } 2171 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2172 struct btrfs_dir_log_item); 2173 found_end = btrfs_dir_log_end(path->nodes[0], item); 2174 2175 if (*start_ret >= key.offset && *start_ret <= found_end) { 2176 ret = 0; 2177 *start_ret = key.offset; 2178 *end_ret = found_end; 2179 goto out; 2180 } 2181 ret = 1; 2182 next: 2183 /* check the next slot in the tree to see if it is a valid item */ 2184 nritems = btrfs_header_nritems(path->nodes[0]); 2185 path->slots[0]++; 2186 if (path->slots[0] >= nritems) { 2187 ret = btrfs_next_leaf(root, path); 2188 if (ret) 2189 goto out; 2190 } 2191 2192 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2193 2194 if (key.type != key_type || key.objectid != dirid) { 2195 ret = 1; 2196 goto out; 2197 } 2198 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2199 struct btrfs_dir_log_item); 2200 found_end = btrfs_dir_log_end(path->nodes[0], item); 2201 *start_ret = key.offset; 2202 *end_ret = found_end; 2203 ret = 0; 2204 out: 2205 btrfs_release_path(path); 2206 return ret; 2207 } 2208 2209 /* 2210 * this looks for a given directory item in the log. If the directory 2211 * item is not in the log, the item is removed and the inode it points 2212 * to is unlinked 2213 */ 2214 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2215 struct btrfs_root *root, 2216 struct btrfs_root *log, 2217 struct btrfs_path *path, 2218 struct btrfs_path *log_path, 2219 struct inode *dir, 2220 struct btrfs_key *dir_key) 2221 { 2222 int ret; 2223 struct extent_buffer *eb; 2224 int slot; 2225 u32 item_size; 2226 struct btrfs_dir_item *di; 2227 struct btrfs_dir_item *log_di; 2228 int name_len; 2229 unsigned long ptr; 2230 unsigned long ptr_end; 2231 char *name; 2232 struct inode *inode; 2233 struct btrfs_key location; 2234 2235 again: 2236 eb = path->nodes[0]; 2237 slot = path->slots[0]; 2238 item_size = btrfs_item_size_nr(eb, slot); 2239 ptr = btrfs_item_ptr_offset(eb, slot); 2240 ptr_end = ptr + item_size; 2241 while (ptr < ptr_end) { 2242 di = (struct btrfs_dir_item *)ptr; 2243 name_len = btrfs_dir_name_len(eb, di); 2244 name = kmalloc(name_len, GFP_NOFS); 2245 if (!name) { 2246 ret = -ENOMEM; 2247 goto out; 2248 } 2249 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2250 name_len); 2251 log_di = NULL; 2252 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2253 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2254 dir_key->objectid, 2255 name, name_len, 0); 2256 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2257 log_di = btrfs_lookup_dir_index_item(trans, log, 2258 log_path, 2259 dir_key->objectid, 2260 dir_key->offset, 2261 name, name_len, 0); 2262 } 2263 if (!log_di || log_di == ERR_PTR(-ENOENT)) { 2264 btrfs_dir_item_key_to_cpu(eb, di, &location); 2265 btrfs_release_path(path); 2266 btrfs_release_path(log_path); 2267 inode = read_one_inode(root, location.objectid); 2268 if (!inode) { 2269 kfree(name); 2270 return -EIO; 2271 } 2272 2273 ret = link_to_fixup_dir(trans, root, 2274 path, location.objectid); 2275 if (ret) { 2276 kfree(name); 2277 iput(inode); 2278 goto out; 2279 } 2280 2281 inc_nlink(inode); 2282 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 2283 BTRFS_I(inode), name, name_len); 2284 if (!ret) 2285 ret = btrfs_run_delayed_items(trans); 2286 kfree(name); 2287 iput(inode); 2288 if (ret) 2289 goto out; 2290 2291 /* there might still be more names under this key 2292 * check and repeat if required 2293 */ 2294 ret = btrfs_search_slot(NULL, root, dir_key, path, 2295 0, 0); 2296 if (ret == 0) 2297 goto again; 2298 ret = 0; 2299 goto out; 2300 } else if (IS_ERR(log_di)) { 2301 kfree(name); 2302 return PTR_ERR(log_di); 2303 } 2304 btrfs_release_path(log_path); 2305 kfree(name); 2306 2307 ptr = (unsigned long)(di + 1); 2308 ptr += name_len; 2309 } 2310 ret = 0; 2311 out: 2312 btrfs_release_path(path); 2313 btrfs_release_path(log_path); 2314 return ret; 2315 } 2316 2317 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2318 struct btrfs_root *root, 2319 struct btrfs_root *log, 2320 struct btrfs_path *path, 2321 const u64 ino) 2322 { 2323 struct btrfs_key search_key; 2324 struct btrfs_path *log_path; 2325 int i; 2326 int nritems; 2327 int ret; 2328 2329 log_path = btrfs_alloc_path(); 2330 if (!log_path) 2331 return -ENOMEM; 2332 2333 search_key.objectid = ino; 2334 search_key.type = BTRFS_XATTR_ITEM_KEY; 2335 search_key.offset = 0; 2336 again: 2337 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2338 if (ret < 0) 2339 goto out; 2340 process_leaf: 2341 nritems = btrfs_header_nritems(path->nodes[0]); 2342 for (i = path->slots[0]; i < nritems; i++) { 2343 struct btrfs_key key; 2344 struct btrfs_dir_item *di; 2345 struct btrfs_dir_item *log_di; 2346 u32 total_size; 2347 u32 cur; 2348 2349 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2350 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2351 ret = 0; 2352 goto out; 2353 } 2354 2355 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2356 total_size = btrfs_item_size_nr(path->nodes[0], i); 2357 cur = 0; 2358 while (cur < total_size) { 2359 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2360 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2361 u32 this_len = sizeof(*di) + name_len + data_len; 2362 char *name; 2363 2364 name = kmalloc(name_len, GFP_NOFS); 2365 if (!name) { 2366 ret = -ENOMEM; 2367 goto out; 2368 } 2369 read_extent_buffer(path->nodes[0], name, 2370 (unsigned long)(di + 1), name_len); 2371 2372 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2373 name, name_len, 0); 2374 btrfs_release_path(log_path); 2375 if (!log_di) { 2376 /* Doesn't exist in log tree, so delete it. */ 2377 btrfs_release_path(path); 2378 di = btrfs_lookup_xattr(trans, root, path, ino, 2379 name, name_len, -1); 2380 kfree(name); 2381 if (IS_ERR(di)) { 2382 ret = PTR_ERR(di); 2383 goto out; 2384 } 2385 ASSERT(di); 2386 ret = btrfs_delete_one_dir_name(trans, root, 2387 path, di); 2388 if (ret) 2389 goto out; 2390 btrfs_release_path(path); 2391 search_key = key; 2392 goto again; 2393 } 2394 kfree(name); 2395 if (IS_ERR(log_di)) { 2396 ret = PTR_ERR(log_di); 2397 goto out; 2398 } 2399 cur += this_len; 2400 di = (struct btrfs_dir_item *)((char *)di + this_len); 2401 } 2402 } 2403 ret = btrfs_next_leaf(root, path); 2404 if (ret > 0) 2405 ret = 0; 2406 else if (ret == 0) 2407 goto process_leaf; 2408 out: 2409 btrfs_free_path(log_path); 2410 btrfs_release_path(path); 2411 return ret; 2412 } 2413 2414 2415 /* 2416 * deletion replay happens before we copy any new directory items 2417 * out of the log or out of backreferences from inodes. It 2418 * scans the log to find ranges of keys that log is authoritative for, 2419 * and then scans the directory to find items in those ranges that are 2420 * not present in the log. 2421 * 2422 * Anything we don't find in the log is unlinked and removed from the 2423 * directory. 2424 */ 2425 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2426 struct btrfs_root *root, 2427 struct btrfs_root *log, 2428 struct btrfs_path *path, 2429 u64 dirid, int del_all) 2430 { 2431 u64 range_start; 2432 u64 range_end; 2433 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2434 int ret = 0; 2435 struct btrfs_key dir_key; 2436 struct btrfs_key found_key; 2437 struct btrfs_path *log_path; 2438 struct inode *dir; 2439 2440 dir_key.objectid = dirid; 2441 dir_key.type = BTRFS_DIR_ITEM_KEY; 2442 log_path = btrfs_alloc_path(); 2443 if (!log_path) 2444 return -ENOMEM; 2445 2446 dir = read_one_inode(root, dirid); 2447 /* it isn't an error if the inode isn't there, that can happen 2448 * because we replay the deletes before we copy in the inode item 2449 * from the log 2450 */ 2451 if (!dir) { 2452 btrfs_free_path(log_path); 2453 return 0; 2454 } 2455 again: 2456 range_start = 0; 2457 range_end = 0; 2458 while (1) { 2459 if (del_all) 2460 range_end = (u64)-1; 2461 else { 2462 ret = find_dir_range(log, path, dirid, key_type, 2463 &range_start, &range_end); 2464 if (ret != 0) 2465 break; 2466 } 2467 2468 dir_key.offset = range_start; 2469 while (1) { 2470 int nritems; 2471 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2472 0, 0); 2473 if (ret < 0) 2474 goto out; 2475 2476 nritems = btrfs_header_nritems(path->nodes[0]); 2477 if (path->slots[0] >= nritems) { 2478 ret = btrfs_next_leaf(root, path); 2479 if (ret == 1) 2480 break; 2481 else if (ret < 0) 2482 goto out; 2483 } 2484 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2485 path->slots[0]); 2486 if (found_key.objectid != dirid || 2487 found_key.type != dir_key.type) 2488 goto next_type; 2489 2490 if (found_key.offset > range_end) 2491 break; 2492 2493 ret = check_item_in_log(trans, root, log, path, 2494 log_path, dir, 2495 &found_key); 2496 if (ret) 2497 goto out; 2498 if (found_key.offset == (u64)-1) 2499 break; 2500 dir_key.offset = found_key.offset + 1; 2501 } 2502 btrfs_release_path(path); 2503 if (range_end == (u64)-1) 2504 break; 2505 range_start = range_end + 1; 2506 } 2507 2508 next_type: 2509 ret = 0; 2510 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2511 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2512 dir_key.type = BTRFS_DIR_INDEX_KEY; 2513 btrfs_release_path(path); 2514 goto again; 2515 } 2516 out: 2517 btrfs_release_path(path); 2518 btrfs_free_path(log_path); 2519 iput(dir); 2520 return ret; 2521 } 2522 2523 /* 2524 * the process_func used to replay items from the log tree. This 2525 * gets called in two different stages. The first stage just looks 2526 * for inodes and makes sure they are all copied into the subvolume. 2527 * 2528 * The second stage copies all the other item types from the log into 2529 * the subvolume. The two stage approach is slower, but gets rid of 2530 * lots of complexity around inodes referencing other inodes that exist 2531 * only in the log (references come from either directory items or inode 2532 * back refs). 2533 */ 2534 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2535 struct walk_control *wc, u64 gen, int level) 2536 { 2537 int nritems; 2538 struct btrfs_path *path; 2539 struct btrfs_root *root = wc->replay_dest; 2540 struct btrfs_key key; 2541 int i; 2542 int ret; 2543 2544 ret = btrfs_read_buffer(eb, gen, level, NULL); 2545 if (ret) 2546 return ret; 2547 2548 level = btrfs_header_level(eb); 2549 2550 if (level != 0) 2551 return 0; 2552 2553 path = btrfs_alloc_path(); 2554 if (!path) 2555 return -ENOMEM; 2556 2557 nritems = btrfs_header_nritems(eb); 2558 for (i = 0; i < nritems; i++) { 2559 btrfs_item_key_to_cpu(eb, &key, i); 2560 2561 /* inode keys are done during the first stage */ 2562 if (key.type == BTRFS_INODE_ITEM_KEY && 2563 wc->stage == LOG_WALK_REPLAY_INODES) { 2564 struct btrfs_inode_item *inode_item; 2565 u32 mode; 2566 2567 inode_item = btrfs_item_ptr(eb, i, 2568 struct btrfs_inode_item); 2569 /* 2570 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2571 * and never got linked before the fsync, skip it, as 2572 * replaying it is pointless since it would be deleted 2573 * later. We skip logging tmpfiles, but it's always 2574 * possible we are replaying a log created with a kernel 2575 * that used to log tmpfiles. 2576 */ 2577 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2578 wc->ignore_cur_inode = true; 2579 continue; 2580 } else { 2581 wc->ignore_cur_inode = false; 2582 } 2583 ret = replay_xattr_deletes(wc->trans, root, log, 2584 path, key.objectid); 2585 if (ret) 2586 break; 2587 mode = btrfs_inode_mode(eb, inode_item); 2588 if (S_ISDIR(mode)) { 2589 ret = replay_dir_deletes(wc->trans, 2590 root, log, path, key.objectid, 0); 2591 if (ret) 2592 break; 2593 } 2594 ret = overwrite_item(wc->trans, root, path, 2595 eb, i, &key); 2596 if (ret) 2597 break; 2598 2599 /* 2600 * Before replaying extents, truncate the inode to its 2601 * size. We need to do it now and not after log replay 2602 * because before an fsync we can have prealloc extents 2603 * added beyond the inode's i_size. If we did it after, 2604 * through orphan cleanup for example, we would drop 2605 * those prealloc extents just after replaying them. 2606 */ 2607 if (S_ISREG(mode)) { 2608 struct inode *inode; 2609 u64 from; 2610 2611 inode = read_one_inode(root, key.objectid); 2612 if (!inode) { 2613 ret = -EIO; 2614 break; 2615 } 2616 from = ALIGN(i_size_read(inode), 2617 root->fs_info->sectorsize); 2618 ret = btrfs_drop_extents(wc->trans, root, inode, 2619 from, (u64)-1, 1); 2620 if (!ret) { 2621 /* Update the inode's nbytes. */ 2622 ret = btrfs_update_inode(wc->trans, 2623 root, inode); 2624 } 2625 iput(inode); 2626 if (ret) 2627 break; 2628 } 2629 2630 ret = link_to_fixup_dir(wc->trans, root, 2631 path, key.objectid); 2632 if (ret) 2633 break; 2634 } 2635 2636 if (wc->ignore_cur_inode) 2637 continue; 2638 2639 if (key.type == BTRFS_DIR_INDEX_KEY && 2640 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2641 ret = replay_one_dir_item(wc->trans, root, path, 2642 eb, i, &key); 2643 if (ret) 2644 break; 2645 } 2646 2647 if (wc->stage < LOG_WALK_REPLAY_ALL) 2648 continue; 2649 2650 /* these keys are simply copied */ 2651 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2652 ret = overwrite_item(wc->trans, root, path, 2653 eb, i, &key); 2654 if (ret) 2655 break; 2656 } else if (key.type == BTRFS_INODE_REF_KEY || 2657 key.type == BTRFS_INODE_EXTREF_KEY) { 2658 ret = add_inode_ref(wc->trans, root, log, path, 2659 eb, i, &key); 2660 if (ret && ret != -ENOENT) 2661 break; 2662 ret = 0; 2663 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2664 ret = replay_one_extent(wc->trans, root, path, 2665 eb, i, &key); 2666 if (ret) 2667 break; 2668 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2669 ret = replay_one_dir_item(wc->trans, root, path, 2670 eb, i, &key); 2671 if (ret) 2672 break; 2673 } 2674 } 2675 btrfs_free_path(path); 2676 return ret; 2677 } 2678 2679 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2680 struct btrfs_root *root, 2681 struct btrfs_path *path, int *level, 2682 struct walk_control *wc) 2683 { 2684 struct btrfs_fs_info *fs_info = root->fs_info; 2685 u64 root_owner; 2686 u64 bytenr; 2687 u64 ptr_gen; 2688 struct extent_buffer *next; 2689 struct extent_buffer *cur; 2690 struct extent_buffer *parent; 2691 u32 blocksize; 2692 int ret = 0; 2693 2694 WARN_ON(*level < 0); 2695 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2696 2697 while (*level > 0) { 2698 struct btrfs_key first_key; 2699 2700 WARN_ON(*level < 0); 2701 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2702 cur = path->nodes[*level]; 2703 2704 WARN_ON(btrfs_header_level(cur) != *level); 2705 2706 if (path->slots[*level] >= 2707 btrfs_header_nritems(cur)) 2708 break; 2709 2710 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2711 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2712 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2713 blocksize = fs_info->nodesize; 2714 2715 parent = path->nodes[*level]; 2716 root_owner = btrfs_header_owner(parent); 2717 2718 next = btrfs_find_create_tree_block(fs_info, bytenr); 2719 if (IS_ERR(next)) 2720 return PTR_ERR(next); 2721 2722 if (*level == 1) { 2723 ret = wc->process_func(root, next, wc, ptr_gen, 2724 *level - 1); 2725 if (ret) { 2726 free_extent_buffer(next); 2727 return ret; 2728 } 2729 2730 path->slots[*level]++; 2731 if (wc->free) { 2732 ret = btrfs_read_buffer(next, ptr_gen, 2733 *level - 1, &first_key); 2734 if (ret) { 2735 free_extent_buffer(next); 2736 return ret; 2737 } 2738 2739 if (trans) { 2740 btrfs_tree_lock(next); 2741 btrfs_set_lock_blocking_write(next); 2742 btrfs_clean_tree_block(next); 2743 btrfs_wait_tree_block_writeback(next); 2744 btrfs_tree_unlock(next); 2745 } else { 2746 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2747 clear_extent_buffer_dirty(next); 2748 } 2749 2750 WARN_ON(root_owner != 2751 BTRFS_TREE_LOG_OBJECTID); 2752 ret = btrfs_free_and_pin_reserved_extent( 2753 fs_info, bytenr, 2754 blocksize); 2755 if (ret) { 2756 free_extent_buffer(next); 2757 return ret; 2758 } 2759 } 2760 free_extent_buffer(next); 2761 continue; 2762 } 2763 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2764 if (ret) { 2765 free_extent_buffer(next); 2766 return ret; 2767 } 2768 2769 WARN_ON(*level <= 0); 2770 if (path->nodes[*level-1]) 2771 free_extent_buffer(path->nodes[*level-1]); 2772 path->nodes[*level-1] = next; 2773 *level = btrfs_header_level(next); 2774 path->slots[*level] = 0; 2775 cond_resched(); 2776 } 2777 WARN_ON(*level < 0); 2778 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2779 2780 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2781 2782 cond_resched(); 2783 return 0; 2784 } 2785 2786 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2787 struct btrfs_root *root, 2788 struct btrfs_path *path, int *level, 2789 struct walk_control *wc) 2790 { 2791 struct btrfs_fs_info *fs_info = root->fs_info; 2792 u64 root_owner; 2793 int i; 2794 int slot; 2795 int ret; 2796 2797 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2798 slot = path->slots[i]; 2799 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2800 path->slots[i]++; 2801 *level = i; 2802 WARN_ON(*level == 0); 2803 return 0; 2804 } else { 2805 struct extent_buffer *parent; 2806 if (path->nodes[*level] == root->node) 2807 parent = path->nodes[*level]; 2808 else 2809 parent = path->nodes[*level + 1]; 2810 2811 root_owner = btrfs_header_owner(parent); 2812 ret = wc->process_func(root, path->nodes[*level], wc, 2813 btrfs_header_generation(path->nodes[*level]), 2814 *level); 2815 if (ret) 2816 return ret; 2817 2818 if (wc->free) { 2819 struct extent_buffer *next; 2820 2821 next = path->nodes[*level]; 2822 2823 if (trans) { 2824 btrfs_tree_lock(next); 2825 btrfs_set_lock_blocking_write(next); 2826 btrfs_clean_tree_block(next); 2827 btrfs_wait_tree_block_writeback(next); 2828 btrfs_tree_unlock(next); 2829 } else { 2830 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2831 clear_extent_buffer_dirty(next); 2832 } 2833 2834 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 2835 ret = btrfs_free_and_pin_reserved_extent( 2836 fs_info, 2837 path->nodes[*level]->start, 2838 path->nodes[*level]->len); 2839 if (ret) 2840 return ret; 2841 } 2842 free_extent_buffer(path->nodes[*level]); 2843 path->nodes[*level] = NULL; 2844 *level = i + 1; 2845 } 2846 } 2847 return 1; 2848 } 2849 2850 /* 2851 * drop the reference count on the tree rooted at 'snap'. This traverses 2852 * the tree freeing any blocks that have a ref count of zero after being 2853 * decremented. 2854 */ 2855 static int walk_log_tree(struct btrfs_trans_handle *trans, 2856 struct btrfs_root *log, struct walk_control *wc) 2857 { 2858 struct btrfs_fs_info *fs_info = log->fs_info; 2859 int ret = 0; 2860 int wret; 2861 int level; 2862 struct btrfs_path *path; 2863 int orig_level; 2864 2865 path = btrfs_alloc_path(); 2866 if (!path) 2867 return -ENOMEM; 2868 2869 level = btrfs_header_level(log->node); 2870 orig_level = level; 2871 path->nodes[level] = log->node; 2872 extent_buffer_get(log->node); 2873 path->slots[level] = 0; 2874 2875 while (1) { 2876 wret = walk_down_log_tree(trans, log, path, &level, wc); 2877 if (wret > 0) 2878 break; 2879 if (wret < 0) { 2880 ret = wret; 2881 goto out; 2882 } 2883 2884 wret = walk_up_log_tree(trans, log, path, &level, wc); 2885 if (wret > 0) 2886 break; 2887 if (wret < 0) { 2888 ret = wret; 2889 goto out; 2890 } 2891 } 2892 2893 /* was the root node processed? if not, catch it here */ 2894 if (path->nodes[orig_level]) { 2895 ret = wc->process_func(log, path->nodes[orig_level], wc, 2896 btrfs_header_generation(path->nodes[orig_level]), 2897 orig_level); 2898 if (ret) 2899 goto out; 2900 if (wc->free) { 2901 struct extent_buffer *next; 2902 2903 next = path->nodes[orig_level]; 2904 2905 if (trans) { 2906 btrfs_tree_lock(next); 2907 btrfs_set_lock_blocking_write(next); 2908 btrfs_clean_tree_block(next); 2909 btrfs_wait_tree_block_writeback(next); 2910 btrfs_tree_unlock(next); 2911 } else { 2912 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2913 clear_extent_buffer_dirty(next); 2914 } 2915 2916 WARN_ON(log->root_key.objectid != 2917 BTRFS_TREE_LOG_OBJECTID); 2918 ret = btrfs_free_and_pin_reserved_extent(fs_info, 2919 next->start, next->len); 2920 if (ret) 2921 goto out; 2922 } 2923 } 2924 2925 out: 2926 btrfs_free_path(path); 2927 return ret; 2928 } 2929 2930 /* 2931 * helper function to update the item for a given subvolumes log root 2932 * in the tree of log roots 2933 */ 2934 static int update_log_root(struct btrfs_trans_handle *trans, 2935 struct btrfs_root *log) 2936 { 2937 struct btrfs_fs_info *fs_info = log->fs_info; 2938 int ret; 2939 2940 if (log->log_transid == 1) { 2941 /* insert root item on the first sync */ 2942 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2943 &log->root_key, &log->root_item); 2944 } else { 2945 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2946 &log->root_key, &log->root_item); 2947 } 2948 return ret; 2949 } 2950 2951 static void wait_log_commit(struct btrfs_root *root, int transid) 2952 { 2953 DEFINE_WAIT(wait); 2954 int index = transid % 2; 2955 2956 /* 2957 * we only allow two pending log transactions at a time, 2958 * so we know that if ours is more than 2 older than the 2959 * current transaction, we're done 2960 */ 2961 for (;;) { 2962 prepare_to_wait(&root->log_commit_wait[index], 2963 &wait, TASK_UNINTERRUPTIBLE); 2964 2965 if (!(root->log_transid_committed < transid && 2966 atomic_read(&root->log_commit[index]))) 2967 break; 2968 2969 mutex_unlock(&root->log_mutex); 2970 schedule(); 2971 mutex_lock(&root->log_mutex); 2972 } 2973 finish_wait(&root->log_commit_wait[index], &wait); 2974 } 2975 2976 static void wait_for_writer(struct btrfs_root *root) 2977 { 2978 DEFINE_WAIT(wait); 2979 2980 for (;;) { 2981 prepare_to_wait(&root->log_writer_wait, &wait, 2982 TASK_UNINTERRUPTIBLE); 2983 if (!atomic_read(&root->log_writers)) 2984 break; 2985 2986 mutex_unlock(&root->log_mutex); 2987 schedule(); 2988 mutex_lock(&root->log_mutex); 2989 } 2990 finish_wait(&root->log_writer_wait, &wait); 2991 } 2992 2993 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2994 struct btrfs_log_ctx *ctx) 2995 { 2996 if (!ctx) 2997 return; 2998 2999 mutex_lock(&root->log_mutex); 3000 list_del_init(&ctx->list); 3001 mutex_unlock(&root->log_mutex); 3002 } 3003 3004 /* 3005 * Invoked in log mutex context, or be sure there is no other task which 3006 * can access the list. 3007 */ 3008 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 3009 int index, int error) 3010 { 3011 struct btrfs_log_ctx *ctx; 3012 struct btrfs_log_ctx *safe; 3013 3014 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 3015 list_del_init(&ctx->list); 3016 ctx->log_ret = error; 3017 } 3018 3019 INIT_LIST_HEAD(&root->log_ctxs[index]); 3020 } 3021 3022 /* 3023 * btrfs_sync_log does sends a given tree log down to the disk and 3024 * updates the super blocks to record it. When this call is done, 3025 * you know that any inodes previously logged are safely on disk only 3026 * if it returns 0. 3027 * 3028 * Any other return value means you need to call btrfs_commit_transaction. 3029 * Some of the edge cases for fsyncing directories that have had unlinks 3030 * or renames done in the past mean that sometimes the only safe 3031 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3032 * that has happened. 3033 */ 3034 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3035 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3036 { 3037 int index1; 3038 int index2; 3039 int mark; 3040 int ret; 3041 struct btrfs_fs_info *fs_info = root->fs_info; 3042 struct btrfs_root *log = root->log_root; 3043 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3044 int log_transid = 0; 3045 struct btrfs_log_ctx root_log_ctx; 3046 struct blk_plug plug; 3047 3048 mutex_lock(&root->log_mutex); 3049 log_transid = ctx->log_transid; 3050 if (root->log_transid_committed >= log_transid) { 3051 mutex_unlock(&root->log_mutex); 3052 return ctx->log_ret; 3053 } 3054 3055 index1 = log_transid % 2; 3056 if (atomic_read(&root->log_commit[index1])) { 3057 wait_log_commit(root, log_transid); 3058 mutex_unlock(&root->log_mutex); 3059 return ctx->log_ret; 3060 } 3061 ASSERT(log_transid == root->log_transid); 3062 atomic_set(&root->log_commit[index1], 1); 3063 3064 /* wait for previous tree log sync to complete */ 3065 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3066 wait_log_commit(root, log_transid - 1); 3067 3068 while (1) { 3069 int batch = atomic_read(&root->log_batch); 3070 /* when we're on an ssd, just kick the log commit out */ 3071 if (!btrfs_test_opt(fs_info, SSD) && 3072 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3073 mutex_unlock(&root->log_mutex); 3074 schedule_timeout_uninterruptible(1); 3075 mutex_lock(&root->log_mutex); 3076 } 3077 wait_for_writer(root); 3078 if (batch == atomic_read(&root->log_batch)) 3079 break; 3080 } 3081 3082 /* bail out if we need to do a full commit */ 3083 if (btrfs_need_log_full_commit(trans)) { 3084 ret = -EAGAIN; 3085 mutex_unlock(&root->log_mutex); 3086 goto out; 3087 } 3088 3089 if (log_transid % 2 == 0) 3090 mark = EXTENT_DIRTY; 3091 else 3092 mark = EXTENT_NEW; 3093 3094 /* we start IO on all the marked extents here, but we don't actually 3095 * wait for them until later. 3096 */ 3097 blk_start_plug(&plug); 3098 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3099 if (ret) { 3100 blk_finish_plug(&plug); 3101 btrfs_abort_transaction(trans, ret); 3102 btrfs_set_log_full_commit(trans); 3103 mutex_unlock(&root->log_mutex); 3104 goto out; 3105 } 3106 3107 btrfs_set_root_node(&log->root_item, log->node); 3108 3109 root->log_transid++; 3110 log->log_transid = root->log_transid; 3111 root->log_start_pid = 0; 3112 /* 3113 * IO has been started, blocks of the log tree have WRITTEN flag set 3114 * in their headers. new modifications of the log will be written to 3115 * new positions. so it's safe to allow log writers to go in. 3116 */ 3117 mutex_unlock(&root->log_mutex); 3118 3119 btrfs_init_log_ctx(&root_log_ctx, NULL); 3120 3121 mutex_lock(&log_root_tree->log_mutex); 3122 atomic_inc(&log_root_tree->log_batch); 3123 atomic_inc(&log_root_tree->log_writers); 3124 3125 index2 = log_root_tree->log_transid % 2; 3126 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3127 root_log_ctx.log_transid = log_root_tree->log_transid; 3128 3129 mutex_unlock(&log_root_tree->log_mutex); 3130 3131 ret = update_log_root(trans, log); 3132 3133 mutex_lock(&log_root_tree->log_mutex); 3134 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 3135 /* atomic_dec_and_test implies a barrier */ 3136 cond_wake_up_nomb(&log_root_tree->log_writer_wait); 3137 } 3138 3139 if (ret) { 3140 if (!list_empty(&root_log_ctx.list)) 3141 list_del_init(&root_log_ctx.list); 3142 3143 blk_finish_plug(&plug); 3144 btrfs_set_log_full_commit(trans); 3145 3146 if (ret != -ENOSPC) { 3147 btrfs_abort_transaction(trans, ret); 3148 mutex_unlock(&log_root_tree->log_mutex); 3149 goto out; 3150 } 3151 btrfs_wait_tree_log_extents(log, mark); 3152 mutex_unlock(&log_root_tree->log_mutex); 3153 ret = -EAGAIN; 3154 goto out; 3155 } 3156 3157 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3158 blk_finish_plug(&plug); 3159 list_del_init(&root_log_ctx.list); 3160 mutex_unlock(&log_root_tree->log_mutex); 3161 ret = root_log_ctx.log_ret; 3162 goto out; 3163 } 3164 3165 index2 = root_log_ctx.log_transid % 2; 3166 if (atomic_read(&log_root_tree->log_commit[index2])) { 3167 blk_finish_plug(&plug); 3168 ret = btrfs_wait_tree_log_extents(log, mark); 3169 wait_log_commit(log_root_tree, 3170 root_log_ctx.log_transid); 3171 mutex_unlock(&log_root_tree->log_mutex); 3172 if (!ret) 3173 ret = root_log_ctx.log_ret; 3174 goto out; 3175 } 3176 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3177 atomic_set(&log_root_tree->log_commit[index2], 1); 3178 3179 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3180 wait_log_commit(log_root_tree, 3181 root_log_ctx.log_transid - 1); 3182 } 3183 3184 wait_for_writer(log_root_tree); 3185 3186 /* 3187 * now that we've moved on to the tree of log tree roots, 3188 * check the full commit flag again 3189 */ 3190 if (btrfs_need_log_full_commit(trans)) { 3191 blk_finish_plug(&plug); 3192 btrfs_wait_tree_log_extents(log, mark); 3193 mutex_unlock(&log_root_tree->log_mutex); 3194 ret = -EAGAIN; 3195 goto out_wake_log_root; 3196 } 3197 3198 ret = btrfs_write_marked_extents(fs_info, 3199 &log_root_tree->dirty_log_pages, 3200 EXTENT_DIRTY | EXTENT_NEW); 3201 blk_finish_plug(&plug); 3202 if (ret) { 3203 btrfs_set_log_full_commit(trans); 3204 btrfs_abort_transaction(trans, ret); 3205 mutex_unlock(&log_root_tree->log_mutex); 3206 goto out_wake_log_root; 3207 } 3208 ret = btrfs_wait_tree_log_extents(log, mark); 3209 if (!ret) 3210 ret = btrfs_wait_tree_log_extents(log_root_tree, 3211 EXTENT_NEW | EXTENT_DIRTY); 3212 if (ret) { 3213 btrfs_set_log_full_commit(trans); 3214 mutex_unlock(&log_root_tree->log_mutex); 3215 goto out_wake_log_root; 3216 } 3217 3218 btrfs_set_super_log_root(fs_info->super_for_commit, 3219 log_root_tree->node->start); 3220 btrfs_set_super_log_root_level(fs_info->super_for_commit, 3221 btrfs_header_level(log_root_tree->node)); 3222 3223 log_root_tree->log_transid++; 3224 mutex_unlock(&log_root_tree->log_mutex); 3225 3226 /* 3227 * Nobody else is going to jump in and write the ctree 3228 * super here because the log_commit atomic below is protecting 3229 * us. We must be called with a transaction handle pinning 3230 * the running transaction open, so a full commit can't hop 3231 * in and cause problems either. 3232 */ 3233 ret = write_all_supers(fs_info, 1); 3234 if (ret) { 3235 btrfs_set_log_full_commit(trans); 3236 btrfs_abort_transaction(trans, ret); 3237 goto out_wake_log_root; 3238 } 3239 3240 mutex_lock(&root->log_mutex); 3241 if (root->last_log_commit < log_transid) 3242 root->last_log_commit = log_transid; 3243 mutex_unlock(&root->log_mutex); 3244 3245 out_wake_log_root: 3246 mutex_lock(&log_root_tree->log_mutex); 3247 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3248 3249 log_root_tree->log_transid_committed++; 3250 atomic_set(&log_root_tree->log_commit[index2], 0); 3251 mutex_unlock(&log_root_tree->log_mutex); 3252 3253 /* 3254 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3255 * all the updates above are seen by the woken threads. It might not be 3256 * necessary, but proving that seems to be hard. 3257 */ 3258 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3259 out: 3260 mutex_lock(&root->log_mutex); 3261 btrfs_remove_all_log_ctxs(root, index1, ret); 3262 root->log_transid_committed++; 3263 atomic_set(&root->log_commit[index1], 0); 3264 mutex_unlock(&root->log_mutex); 3265 3266 /* 3267 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3268 * all the updates above are seen by the woken threads. It might not be 3269 * necessary, but proving that seems to be hard. 3270 */ 3271 cond_wake_up(&root->log_commit_wait[index1]); 3272 return ret; 3273 } 3274 3275 static void free_log_tree(struct btrfs_trans_handle *trans, 3276 struct btrfs_root *log) 3277 { 3278 int ret; 3279 struct walk_control wc = { 3280 .free = 1, 3281 .process_func = process_one_buffer 3282 }; 3283 3284 ret = walk_log_tree(trans, log, &wc); 3285 if (ret) { 3286 if (trans) 3287 btrfs_abort_transaction(trans, ret); 3288 else 3289 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3290 } 3291 3292 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3293 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3294 free_extent_buffer(log->node); 3295 kfree(log); 3296 } 3297 3298 /* 3299 * free all the extents used by the tree log. This should be called 3300 * at commit time of the full transaction 3301 */ 3302 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3303 { 3304 if (root->log_root) { 3305 free_log_tree(trans, root->log_root); 3306 root->log_root = NULL; 3307 } 3308 return 0; 3309 } 3310 3311 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3312 struct btrfs_fs_info *fs_info) 3313 { 3314 if (fs_info->log_root_tree) { 3315 free_log_tree(trans, fs_info->log_root_tree); 3316 fs_info->log_root_tree = NULL; 3317 } 3318 return 0; 3319 } 3320 3321 /* 3322 * If both a file and directory are logged, and unlinks or renames are 3323 * mixed in, we have a few interesting corners: 3324 * 3325 * create file X in dir Y 3326 * link file X to X.link in dir Y 3327 * fsync file X 3328 * unlink file X but leave X.link 3329 * fsync dir Y 3330 * 3331 * After a crash we would expect only X.link to exist. But file X 3332 * didn't get fsync'd again so the log has back refs for X and X.link. 3333 * 3334 * We solve this by removing directory entries and inode backrefs from the 3335 * log when a file that was logged in the current transaction is 3336 * unlinked. Any later fsync will include the updated log entries, and 3337 * we'll be able to reconstruct the proper directory items from backrefs. 3338 * 3339 * This optimizations allows us to avoid relogging the entire inode 3340 * or the entire directory. 3341 */ 3342 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3343 struct btrfs_root *root, 3344 const char *name, int name_len, 3345 struct btrfs_inode *dir, u64 index) 3346 { 3347 struct btrfs_root *log; 3348 struct btrfs_dir_item *di; 3349 struct btrfs_path *path; 3350 int ret; 3351 int err = 0; 3352 int bytes_del = 0; 3353 u64 dir_ino = btrfs_ino(dir); 3354 3355 if (dir->logged_trans < trans->transid) 3356 return 0; 3357 3358 ret = join_running_log_trans(root); 3359 if (ret) 3360 return 0; 3361 3362 mutex_lock(&dir->log_mutex); 3363 3364 log = root->log_root; 3365 path = btrfs_alloc_path(); 3366 if (!path) { 3367 err = -ENOMEM; 3368 goto out_unlock; 3369 } 3370 3371 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3372 name, name_len, -1); 3373 if (IS_ERR(di)) { 3374 err = PTR_ERR(di); 3375 goto fail; 3376 } 3377 if (di) { 3378 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3379 bytes_del += name_len; 3380 if (ret) { 3381 err = ret; 3382 goto fail; 3383 } 3384 } 3385 btrfs_release_path(path); 3386 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3387 index, name, name_len, -1); 3388 if (IS_ERR(di)) { 3389 err = PTR_ERR(di); 3390 goto fail; 3391 } 3392 if (di) { 3393 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3394 bytes_del += name_len; 3395 if (ret) { 3396 err = ret; 3397 goto fail; 3398 } 3399 } 3400 3401 /* update the directory size in the log to reflect the names 3402 * we have removed 3403 */ 3404 if (bytes_del) { 3405 struct btrfs_key key; 3406 3407 key.objectid = dir_ino; 3408 key.offset = 0; 3409 key.type = BTRFS_INODE_ITEM_KEY; 3410 btrfs_release_path(path); 3411 3412 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 3413 if (ret < 0) { 3414 err = ret; 3415 goto fail; 3416 } 3417 if (ret == 0) { 3418 struct btrfs_inode_item *item; 3419 u64 i_size; 3420 3421 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3422 struct btrfs_inode_item); 3423 i_size = btrfs_inode_size(path->nodes[0], item); 3424 if (i_size > bytes_del) 3425 i_size -= bytes_del; 3426 else 3427 i_size = 0; 3428 btrfs_set_inode_size(path->nodes[0], item, i_size); 3429 btrfs_mark_buffer_dirty(path->nodes[0]); 3430 } else 3431 ret = 0; 3432 btrfs_release_path(path); 3433 } 3434 fail: 3435 btrfs_free_path(path); 3436 out_unlock: 3437 mutex_unlock(&dir->log_mutex); 3438 if (ret == -ENOSPC) { 3439 btrfs_set_log_full_commit(trans); 3440 ret = 0; 3441 } else if (ret < 0) 3442 btrfs_abort_transaction(trans, ret); 3443 3444 btrfs_end_log_trans(root); 3445 3446 return err; 3447 } 3448 3449 /* see comments for btrfs_del_dir_entries_in_log */ 3450 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3451 struct btrfs_root *root, 3452 const char *name, int name_len, 3453 struct btrfs_inode *inode, u64 dirid) 3454 { 3455 struct btrfs_root *log; 3456 u64 index; 3457 int ret; 3458 3459 if (inode->logged_trans < trans->transid) 3460 return 0; 3461 3462 ret = join_running_log_trans(root); 3463 if (ret) 3464 return 0; 3465 log = root->log_root; 3466 mutex_lock(&inode->log_mutex); 3467 3468 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3469 dirid, &index); 3470 mutex_unlock(&inode->log_mutex); 3471 if (ret == -ENOSPC) { 3472 btrfs_set_log_full_commit(trans); 3473 ret = 0; 3474 } else if (ret < 0 && ret != -ENOENT) 3475 btrfs_abort_transaction(trans, ret); 3476 btrfs_end_log_trans(root); 3477 3478 return ret; 3479 } 3480 3481 /* 3482 * creates a range item in the log for 'dirid'. first_offset and 3483 * last_offset tell us which parts of the key space the log should 3484 * be considered authoritative for. 3485 */ 3486 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3487 struct btrfs_root *log, 3488 struct btrfs_path *path, 3489 int key_type, u64 dirid, 3490 u64 first_offset, u64 last_offset) 3491 { 3492 int ret; 3493 struct btrfs_key key; 3494 struct btrfs_dir_log_item *item; 3495 3496 key.objectid = dirid; 3497 key.offset = first_offset; 3498 if (key_type == BTRFS_DIR_ITEM_KEY) 3499 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3500 else 3501 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3502 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3503 if (ret) 3504 return ret; 3505 3506 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3507 struct btrfs_dir_log_item); 3508 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3509 btrfs_mark_buffer_dirty(path->nodes[0]); 3510 btrfs_release_path(path); 3511 return 0; 3512 } 3513 3514 /* 3515 * log all the items included in the current transaction for a given 3516 * directory. This also creates the range items in the log tree required 3517 * to replay anything deleted before the fsync 3518 */ 3519 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3520 struct btrfs_root *root, struct btrfs_inode *inode, 3521 struct btrfs_path *path, 3522 struct btrfs_path *dst_path, int key_type, 3523 struct btrfs_log_ctx *ctx, 3524 u64 min_offset, u64 *last_offset_ret) 3525 { 3526 struct btrfs_key min_key; 3527 struct btrfs_root *log = root->log_root; 3528 struct extent_buffer *src; 3529 int err = 0; 3530 int ret; 3531 int i; 3532 int nritems; 3533 u64 first_offset = min_offset; 3534 u64 last_offset = (u64)-1; 3535 u64 ino = btrfs_ino(inode); 3536 3537 log = root->log_root; 3538 3539 min_key.objectid = ino; 3540 min_key.type = key_type; 3541 min_key.offset = min_offset; 3542 3543 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3544 3545 /* 3546 * we didn't find anything from this transaction, see if there 3547 * is anything at all 3548 */ 3549 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3550 min_key.objectid = ino; 3551 min_key.type = key_type; 3552 min_key.offset = (u64)-1; 3553 btrfs_release_path(path); 3554 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3555 if (ret < 0) { 3556 btrfs_release_path(path); 3557 return ret; 3558 } 3559 ret = btrfs_previous_item(root, path, ino, key_type); 3560 3561 /* if ret == 0 there are items for this type, 3562 * create a range to tell us the last key of this type. 3563 * otherwise, there are no items in this directory after 3564 * *min_offset, and we create a range to indicate that. 3565 */ 3566 if (ret == 0) { 3567 struct btrfs_key tmp; 3568 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3569 path->slots[0]); 3570 if (key_type == tmp.type) 3571 first_offset = max(min_offset, tmp.offset) + 1; 3572 } 3573 goto done; 3574 } 3575 3576 /* go backward to find any previous key */ 3577 ret = btrfs_previous_item(root, path, ino, key_type); 3578 if (ret == 0) { 3579 struct btrfs_key tmp; 3580 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3581 if (key_type == tmp.type) { 3582 first_offset = tmp.offset; 3583 ret = overwrite_item(trans, log, dst_path, 3584 path->nodes[0], path->slots[0], 3585 &tmp); 3586 if (ret) { 3587 err = ret; 3588 goto done; 3589 } 3590 } 3591 } 3592 btrfs_release_path(path); 3593 3594 /* 3595 * Find the first key from this transaction again. See the note for 3596 * log_new_dir_dentries, if we're logging a directory recursively we 3597 * won't be holding its i_mutex, which means we can modify the directory 3598 * while we're logging it. If we remove an entry between our first 3599 * search and this search we'll not find the key again and can just 3600 * bail. 3601 */ 3602 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3603 if (ret != 0) 3604 goto done; 3605 3606 /* 3607 * we have a block from this transaction, log every item in it 3608 * from our directory 3609 */ 3610 while (1) { 3611 struct btrfs_key tmp; 3612 src = path->nodes[0]; 3613 nritems = btrfs_header_nritems(src); 3614 for (i = path->slots[0]; i < nritems; i++) { 3615 struct btrfs_dir_item *di; 3616 3617 btrfs_item_key_to_cpu(src, &min_key, i); 3618 3619 if (min_key.objectid != ino || min_key.type != key_type) 3620 goto done; 3621 ret = overwrite_item(trans, log, dst_path, src, i, 3622 &min_key); 3623 if (ret) { 3624 err = ret; 3625 goto done; 3626 } 3627 3628 /* 3629 * We must make sure that when we log a directory entry, 3630 * the corresponding inode, after log replay, has a 3631 * matching link count. For example: 3632 * 3633 * touch foo 3634 * mkdir mydir 3635 * sync 3636 * ln foo mydir/bar 3637 * xfs_io -c "fsync" mydir 3638 * <crash> 3639 * <mount fs and log replay> 3640 * 3641 * Would result in a fsync log that when replayed, our 3642 * file inode would have a link count of 1, but we get 3643 * two directory entries pointing to the same inode. 3644 * After removing one of the names, it would not be 3645 * possible to remove the other name, which resulted 3646 * always in stale file handle errors, and would not 3647 * be possible to rmdir the parent directory, since 3648 * its i_size could never decrement to the value 3649 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3650 */ 3651 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3652 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3653 if (ctx && 3654 (btrfs_dir_transid(src, di) == trans->transid || 3655 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3656 tmp.type != BTRFS_ROOT_ITEM_KEY) 3657 ctx->log_new_dentries = true; 3658 } 3659 path->slots[0] = nritems; 3660 3661 /* 3662 * look ahead to the next item and see if it is also 3663 * from this directory and from this transaction 3664 */ 3665 ret = btrfs_next_leaf(root, path); 3666 if (ret) { 3667 if (ret == 1) 3668 last_offset = (u64)-1; 3669 else 3670 err = ret; 3671 goto done; 3672 } 3673 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3674 if (tmp.objectid != ino || tmp.type != key_type) { 3675 last_offset = (u64)-1; 3676 goto done; 3677 } 3678 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3679 ret = overwrite_item(trans, log, dst_path, 3680 path->nodes[0], path->slots[0], 3681 &tmp); 3682 if (ret) 3683 err = ret; 3684 else 3685 last_offset = tmp.offset; 3686 goto done; 3687 } 3688 } 3689 done: 3690 btrfs_release_path(path); 3691 btrfs_release_path(dst_path); 3692 3693 if (err == 0) { 3694 *last_offset_ret = last_offset; 3695 /* 3696 * insert the log range keys to indicate where the log 3697 * is valid 3698 */ 3699 ret = insert_dir_log_key(trans, log, path, key_type, 3700 ino, first_offset, last_offset); 3701 if (ret) 3702 err = ret; 3703 } 3704 return err; 3705 } 3706 3707 /* 3708 * logging directories is very similar to logging inodes, We find all the items 3709 * from the current transaction and write them to the log. 3710 * 3711 * The recovery code scans the directory in the subvolume, and if it finds a 3712 * key in the range logged that is not present in the log tree, then it means 3713 * that dir entry was unlinked during the transaction. 3714 * 3715 * In order for that scan to work, we must include one key smaller than 3716 * the smallest logged by this transaction and one key larger than the largest 3717 * key logged by this transaction. 3718 */ 3719 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3720 struct btrfs_root *root, struct btrfs_inode *inode, 3721 struct btrfs_path *path, 3722 struct btrfs_path *dst_path, 3723 struct btrfs_log_ctx *ctx) 3724 { 3725 u64 min_key; 3726 u64 max_key; 3727 int ret; 3728 int key_type = BTRFS_DIR_ITEM_KEY; 3729 3730 again: 3731 min_key = 0; 3732 max_key = 0; 3733 while (1) { 3734 ret = log_dir_items(trans, root, inode, path, dst_path, key_type, 3735 ctx, min_key, &max_key); 3736 if (ret) 3737 return ret; 3738 if (max_key == (u64)-1) 3739 break; 3740 min_key = max_key + 1; 3741 } 3742 3743 if (key_type == BTRFS_DIR_ITEM_KEY) { 3744 key_type = BTRFS_DIR_INDEX_KEY; 3745 goto again; 3746 } 3747 return 0; 3748 } 3749 3750 /* 3751 * a helper function to drop items from the log before we relog an 3752 * inode. max_key_type indicates the highest item type to remove. 3753 * This cannot be run for file data extents because it does not 3754 * free the extents they point to. 3755 */ 3756 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3757 struct btrfs_root *log, 3758 struct btrfs_path *path, 3759 u64 objectid, int max_key_type) 3760 { 3761 int ret; 3762 struct btrfs_key key; 3763 struct btrfs_key found_key; 3764 int start_slot; 3765 3766 key.objectid = objectid; 3767 key.type = max_key_type; 3768 key.offset = (u64)-1; 3769 3770 while (1) { 3771 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3772 BUG_ON(ret == 0); /* Logic error */ 3773 if (ret < 0) 3774 break; 3775 3776 if (path->slots[0] == 0) 3777 break; 3778 3779 path->slots[0]--; 3780 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3781 path->slots[0]); 3782 3783 if (found_key.objectid != objectid) 3784 break; 3785 3786 found_key.offset = 0; 3787 found_key.type = 0; 3788 ret = btrfs_bin_search(path->nodes[0], &found_key, 0, 3789 &start_slot); 3790 if (ret < 0) 3791 break; 3792 3793 ret = btrfs_del_items(trans, log, path, start_slot, 3794 path->slots[0] - start_slot + 1); 3795 /* 3796 * If start slot isn't 0 then we don't need to re-search, we've 3797 * found the last guy with the objectid in this tree. 3798 */ 3799 if (ret || start_slot != 0) 3800 break; 3801 btrfs_release_path(path); 3802 } 3803 btrfs_release_path(path); 3804 if (ret > 0) 3805 ret = 0; 3806 return ret; 3807 } 3808 3809 static void fill_inode_item(struct btrfs_trans_handle *trans, 3810 struct extent_buffer *leaf, 3811 struct btrfs_inode_item *item, 3812 struct inode *inode, int log_inode_only, 3813 u64 logged_isize) 3814 { 3815 struct btrfs_map_token token; 3816 3817 btrfs_init_map_token(&token); 3818 3819 if (log_inode_only) { 3820 /* set the generation to zero so the recover code 3821 * can tell the difference between an logging 3822 * just to say 'this inode exists' and a logging 3823 * to say 'update this inode with these values' 3824 */ 3825 btrfs_set_token_inode_generation(leaf, item, 0, &token); 3826 btrfs_set_token_inode_size(leaf, item, logged_isize, &token); 3827 } else { 3828 btrfs_set_token_inode_generation(leaf, item, 3829 BTRFS_I(inode)->generation, 3830 &token); 3831 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); 3832 } 3833 3834 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3835 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3836 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3837 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3838 3839 btrfs_set_token_timespec_sec(leaf, &item->atime, 3840 inode->i_atime.tv_sec, &token); 3841 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3842 inode->i_atime.tv_nsec, &token); 3843 3844 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3845 inode->i_mtime.tv_sec, &token); 3846 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3847 inode->i_mtime.tv_nsec, &token); 3848 3849 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3850 inode->i_ctime.tv_sec, &token); 3851 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3852 inode->i_ctime.tv_nsec, &token); 3853 3854 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3855 &token); 3856 3857 btrfs_set_token_inode_sequence(leaf, item, 3858 inode_peek_iversion(inode), &token); 3859 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3860 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3861 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3862 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3863 } 3864 3865 static int log_inode_item(struct btrfs_trans_handle *trans, 3866 struct btrfs_root *log, struct btrfs_path *path, 3867 struct btrfs_inode *inode) 3868 { 3869 struct btrfs_inode_item *inode_item; 3870 int ret; 3871 3872 ret = btrfs_insert_empty_item(trans, log, path, 3873 &inode->location, sizeof(*inode_item)); 3874 if (ret && ret != -EEXIST) 3875 return ret; 3876 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3877 struct btrfs_inode_item); 3878 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 3879 0, 0); 3880 btrfs_release_path(path); 3881 return 0; 3882 } 3883 3884 static noinline int copy_items(struct btrfs_trans_handle *trans, 3885 struct btrfs_inode *inode, 3886 struct btrfs_path *dst_path, 3887 struct btrfs_path *src_path, u64 *last_extent, 3888 int start_slot, int nr, int inode_only, 3889 u64 logged_isize) 3890 { 3891 struct btrfs_fs_info *fs_info = trans->fs_info; 3892 unsigned long src_offset; 3893 unsigned long dst_offset; 3894 struct btrfs_root *log = inode->root->log_root; 3895 struct btrfs_file_extent_item *extent; 3896 struct btrfs_inode_item *inode_item; 3897 struct extent_buffer *src = src_path->nodes[0]; 3898 struct btrfs_key first_key, last_key, key; 3899 int ret; 3900 struct btrfs_key *ins_keys; 3901 u32 *ins_sizes; 3902 char *ins_data; 3903 int i; 3904 struct list_head ordered_sums; 3905 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 3906 bool has_extents = false; 3907 bool need_find_last_extent = true; 3908 bool done = false; 3909 3910 INIT_LIST_HEAD(&ordered_sums); 3911 3912 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3913 nr * sizeof(u32), GFP_NOFS); 3914 if (!ins_data) 3915 return -ENOMEM; 3916 3917 first_key.objectid = (u64)-1; 3918 3919 ins_sizes = (u32 *)ins_data; 3920 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3921 3922 for (i = 0; i < nr; i++) { 3923 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3924 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3925 } 3926 ret = btrfs_insert_empty_items(trans, log, dst_path, 3927 ins_keys, ins_sizes, nr); 3928 if (ret) { 3929 kfree(ins_data); 3930 return ret; 3931 } 3932 3933 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3934 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3935 dst_path->slots[0]); 3936 3937 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3938 3939 if (i == nr - 1) 3940 last_key = ins_keys[i]; 3941 3942 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3943 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3944 dst_path->slots[0], 3945 struct btrfs_inode_item); 3946 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3947 &inode->vfs_inode, 3948 inode_only == LOG_INODE_EXISTS, 3949 logged_isize); 3950 } else { 3951 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3952 src_offset, ins_sizes[i]); 3953 } 3954 3955 /* 3956 * We set need_find_last_extent here in case we know we were 3957 * processing other items and then walk into the first extent in 3958 * the inode. If we don't hit an extent then nothing changes, 3959 * we'll do the last search the next time around. 3960 */ 3961 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) { 3962 has_extents = true; 3963 if (first_key.objectid == (u64)-1) 3964 first_key = ins_keys[i]; 3965 } else { 3966 need_find_last_extent = false; 3967 } 3968 3969 /* take a reference on file data extents so that truncates 3970 * or deletes of this inode don't have to relog the inode 3971 * again 3972 */ 3973 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 3974 !skip_csum) { 3975 int found_type; 3976 extent = btrfs_item_ptr(src, start_slot + i, 3977 struct btrfs_file_extent_item); 3978 3979 if (btrfs_file_extent_generation(src, extent) < trans->transid) 3980 continue; 3981 3982 found_type = btrfs_file_extent_type(src, extent); 3983 if (found_type == BTRFS_FILE_EXTENT_REG) { 3984 u64 ds, dl, cs, cl; 3985 ds = btrfs_file_extent_disk_bytenr(src, 3986 extent); 3987 /* ds == 0 is a hole */ 3988 if (ds == 0) 3989 continue; 3990 3991 dl = btrfs_file_extent_disk_num_bytes(src, 3992 extent); 3993 cs = btrfs_file_extent_offset(src, extent); 3994 cl = btrfs_file_extent_num_bytes(src, 3995 extent); 3996 if (btrfs_file_extent_compression(src, 3997 extent)) { 3998 cs = 0; 3999 cl = dl; 4000 } 4001 4002 ret = btrfs_lookup_csums_range( 4003 fs_info->csum_root, 4004 ds + cs, ds + cs + cl - 1, 4005 &ordered_sums, 0); 4006 if (ret) { 4007 btrfs_release_path(dst_path); 4008 kfree(ins_data); 4009 return ret; 4010 } 4011 } 4012 } 4013 } 4014 4015 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4016 btrfs_release_path(dst_path); 4017 kfree(ins_data); 4018 4019 /* 4020 * we have to do this after the loop above to avoid changing the 4021 * log tree while trying to change the log tree. 4022 */ 4023 ret = 0; 4024 while (!list_empty(&ordered_sums)) { 4025 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4026 struct btrfs_ordered_sum, 4027 list); 4028 if (!ret) 4029 ret = btrfs_csum_file_blocks(trans, log, sums); 4030 list_del(&sums->list); 4031 kfree(sums); 4032 } 4033 4034 if (!has_extents) 4035 return ret; 4036 4037 if (need_find_last_extent && *last_extent == first_key.offset) { 4038 /* 4039 * We don't have any leafs between our current one and the one 4040 * we processed before that can have file extent items for our 4041 * inode (and have a generation number smaller than our current 4042 * transaction id). 4043 */ 4044 need_find_last_extent = false; 4045 } 4046 4047 /* 4048 * Because we use btrfs_search_forward we could skip leaves that were 4049 * not modified and then assume *last_extent is valid when it really 4050 * isn't. So back up to the previous leaf and read the end of the last 4051 * extent before we go and fill in holes. 4052 */ 4053 if (need_find_last_extent) { 4054 u64 len; 4055 4056 ret = btrfs_prev_leaf(inode->root, src_path); 4057 if (ret < 0) 4058 return ret; 4059 if (ret) 4060 goto fill_holes; 4061 if (src_path->slots[0]) 4062 src_path->slots[0]--; 4063 src = src_path->nodes[0]; 4064 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]); 4065 if (key.objectid != btrfs_ino(inode) || 4066 key.type != BTRFS_EXTENT_DATA_KEY) 4067 goto fill_holes; 4068 extent = btrfs_item_ptr(src, src_path->slots[0], 4069 struct btrfs_file_extent_item); 4070 if (btrfs_file_extent_type(src, extent) == 4071 BTRFS_FILE_EXTENT_INLINE) { 4072 len = btrfs_file_extent_ram_bytes(src, extent); 4073 *last_extent = ALIGN(key.offset + len, 4074 fs_info->sectorsize); 4075 } else { 4076 len = btrfs_file_extent_num_bytes(src, extent); 4077 *last_extent = key.offset + len; 4078 } 4079 } 4080 fill_holes: 4081 /* So we did prev_leaf, now we need to move to the next leaf, but a few 4082 * things could have happened 4083 * 4084 * 1) A merge could have happened, so we could currently be on a leaf 4085 * that holds what we were copying in the first place. 4086 * 2) A split could have happened, and now not all of the items we want 4087 * are on the same leaf. 4088 * 4089 * So we need to adjust how we search for holes, we need to drop the 4090 * path and re-search for the first extent key we found, and then walk 4091 * forward until we hit the last one we copied. 4092 */ 4093 if (need_find_last_extent) { 4094 /* btrfs_prev_leaf could return 1 without releasing the path */ 4095 btrfs_release_path(src_path); 4096 ret = btrfs_search_slot(NULL, inode->root, &first_key, 4097 src_path, 0, 0); 4098 if (ret < 0) 4099 return ret; 4100 ASSERT(ret == 0); 4101 src = src_path->nodes[0]; 4102 i = src_path->slots[0]; 4103 } else { 4104 i = start_slot; 4105 } 4106 4107 /* 4108 * Ok so here we need to go through and fill in any holes we may have 4109 * to make sure that holes are punched for those areas in case they had 4110 * extents previously. 4111 */ 4112 while (!done) { 4113 u64 offset, len; 4114 u64 extent_end; 4115 4116 if (i >= btrfs_header_nritems(src_path->nodes[0])) { 4117 ret = btrfs_next_leaf(inode->root, src_path); 4118 if (ret < 0) 4119 return ret; 4120 ASSERT(ret == 0); 4121 src = src_path->nodes[0]; 4122 i = 0; 4123 need_find_last_extent = true; 4124 } 4125 4126 btrfs_item_key_to_cpu(src, &key, i); 4127 if (!btrfs_comp_cpu_keys(&key, &last_key)) 4128 done = true; 4129 if (key.objectid != btrfs_ino(inode) || 4130 key.type != BTRFS_EXTENT_DATA_KEY) { 4131 i++; 4132 continue; 4133 } 4134 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); 4135 if (btrfs_file_extent_type(src, extent) == 4136 BTRFS_FILE_EXTENT_INLINE) { 4137 len = btrfs_file_extent_ram_bytes(src, extent); 4138 extent_end = ALIGN(key.offset + len, 4139 fs_info->sectorsize); 4140 } else { 4141 len = btrfs_file_extent_num_bytes(src, extent); 4142 extent_end = key.offset + len; 4143 } 4144 i++; 4145 4146 if (*last_extent == key.offset) { 4147 *last_extent = extent_end; 4148 continue; 4149 } 4150 offset = *last_extent; 4151 len = key.offset - *last_extent; 4152 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode), 4153 offset, 0, 0, len, 0, len, 0, 0, 0); 4154 if (ret) 4155 break; 4156 *last_extent = extent_end; 4157 } 4158 4159 /* 4160 * Check if there is a hole between the last extent found in our leaf 4161 * and the first extent in the next leaf. If there is one, we need to 4162 * log an explicit hole so that at replay time we can punch the hole. 4163 */ 4164 if (ret == 0 && 4165 key.objectid == btrfs_ino(inode) && 4166 key.type == BTRFS_EXTENT_DATA_KEY && 4167 i == btrfs_header_nritems(src_path->nodes[0])) { 4168 ret = btrfs_next_leaf(inode->root, src_path); 4169 need_find_last_extent = true; 4170 if (ret > 0) { 4171 ret = 0; 4172 } else if (ret == 0) { 4173 btrfs_item_key_to_cpu(src_path->nodes[0], &key, 4174 src_path->slots[0]); 4175 if (key.objectid == btrfs_ino(inode) && 4176 key.type == BTRFS_EXTENT_DATA_KEY && 4177 *last_extent < key.offset) { 4178 const u64 len = key.offset - *last_extent; 4179 4180 ret = btrfs_insert_file_extent(trans, log, 4181 btrfs_ino(inode), 4182 *last_extent, 0, 4183 0, len, 0, len, 4184 0, 0, 0); 4185 *last_extent += len; 4186 } 4187 } 4188 } 4189 /* 4190 * Need to let the callers know we dropped the path so they should 4191 * re-search. 4192 */ 4193 if (!ret && need_find_last_extent) 4194 ret = 1; 4195 return ret; 4196 } 4197 4198 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 4199 { 4200 struct extent_map *em1, *em2; 4201 4202 em1 = list_entry(a, struct extent_map, list); 4203 em2 = list_entry(b, struct extent_map, list); 4204 4205 if (em1->start < em2->start) 4206 return -1; 4207 else if (em1->start > em2->start) 4208 return 1; 4209 return 0; 4210 } 4211 4212 static int log_extent_csums(struct btrfs_trans_handle *trans, 4213 struct btrfs_inode *inode, 4214 struct btrfs_root *log_root, 4215 const struct extent_map *em) 4216 { 4217 u64 csum_offset; 4218 u64 csum_len; 4219 LIST_HEAD(ordered_sums); 4220 int ret = 0; 4221 4222 if (inode->flags & BTRFS_INODE_NODATASUM || 4223 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4224 em->block_start == EXTENT_MAP_HOLE) 4225 return 0; 4226 4227 /* If we're compressed we have to save the entire range of csums. */ 4228 if (em->compress_type) { 4229 csum_offset = 0; 4230 csum_len = max(em->block_len, em->orig_block_len); 4231 } else { 4232 csum_offset = em->mod_start - em->start; 4233 csum_len = em->mod_len; 4234 } 4235 4236 /* block start is already adjusted for the file extent offset. */ 4237 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, 4238 em->block_start + csum_offset, 4239 em->block_start + csum_offset + 4240 csum_len - 1, &ordered_sums, 0); 4241 if (ret) 4242 return ret; 4243 4244 while (!list_empty(&ordered_sums)) { 4245 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4246 struct btrfs_ordered_sum, 4247 list); 4248 if (!ret) 4249 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4250 list_del(&sums->list); 4251 kfree(sums); 4252 } 4253 4254 return ret; 4255 } 4256 4257 static int log_one_extent(struct btrfs_trans_handle *trans, 4258 struct btrfs_inode *inode, struct btrfs_root *root, 4259 const struct extent_map *em, 4260 struct btrfs_path *path, 4261 struct btrfs_log_ctx *ctx) 4262 { 4263 struct btrfs_root *log = root->log_root; 4264 struct btrfs_file_extent_item *fi; 4265 struct extent_buffer *leaf; 4266 struct btrfs_map_token token; 4267 struct btrfs_key key; 4268 u64 extent_offset = em->start - em->orig_start; 4269 u64 block_len; 4270 int ret; 4271 int extent_inserted = 0; 4272 4273 ret = log_extent_csums(trans, inode, log, em); 4274 if (ret) 4275 return ret; 4276 4277 btrfs_init_map_token(&token); 4278 4279 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start, 4280 em->start + em->len, NULL, 0, 1, 4281 sizeof(*fi), &extent_inserted); 4282 if (ret) 4283 return ret; 4284 4285 if (!extent_inserted) { 4286 key.objectid = btrfs_ino(inode); 4287 key.type = BTRFS_EXTENT_DATA_KEY; 4288 key.offset = em->start; 4289 4290 ret = btrfs_insert_empty_item(trans, log, path, &key, 4291 sizeof(*fi)); 4292 if (ret) 4293 return ret; 4294 } 4295 leaf = path->nodes[0]; 4296 fi = btrfs_item_ptr(leaf, path->slots[0], 4297 struct btrfs_file_extent_item); 4298 4299 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, 4300 &token); 4301 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4302 btrfs_set_token_file_extent_type(leaf, fi, 4303 BTRFS_FILE_EXTENT_PREALLOC, 4304 &token); 4305 else 4306 btrfs_set_token_file_extent_type(leaf, fi, 4307 BTRFS_FILE_EXTENT_REG, 4308 &token); 4309 4310 block_len = max(em->block_len, em->orig_block_len); 4311 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4312 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4313 em->block_start, 4314 &token); 4315 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4316 &token); 4317 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4318 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4319 em->block_start - 4320 extent_offset, &token); 4321 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4322 &token); 4323 } else { 4324 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); 4325 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, 4326 &token); 4327 } 4328 4329 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); 4330 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); 4331 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); 4332 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, 4333 &token); 4334 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); 4335 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); 4336 btrfs_mark_buffer_dirty(leaf); 4337 4338 btrfs_release_path(path); 4339 4340 return ret; 4341 } 4342 4343 /* 4344 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4345 * lose them after doing a fast fsync and replaying the log. We scan the 4346 * subvolume's root instead of iterating the inode's extent map tree because 4347 * otherwise we can log incorrect extent items based on extent map conversion. 4348 * That can happen due to the fact that extent maps are merged when they 4349 * are not in the extent map tree's list of modified extents. 4350 */ 4351 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4352 struct btrfs_inode *inode, 4353 struct btrfs_path *path) 4354 { 4355 struct btrfs_root *root = inode->root; 4356 struct btrfs_key key; 4357 const u64 i_size = i_size_read(&inode->vfs_inode); 4358 const u64 ino = btrfs_ino(inode); 4359 struct btrfs_path *dst_path = NULL; 4360 u64 last_extent = (u64)-1; 4361 int ins_nr = 0; 4362 int start_slot; 4363 int ret; 4364 4365 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4366 return 0; 4367 4368 key.objectid = ino; 4369 key.type = BTRFS_EXTENT_DATA_KEY; 4370 key.offset = i_size; 4371 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4372 if (ret < 0) 4373 goto out; 4374 4375 while (true) { 4376 struct extent_buffer *leaf = path->nodes[0]; 4377 int slot = path->slots[0]; 4378 4379 if (slot >= btrfs_header_nritems(leaf)) { 4380 if (ins_nr > 0) { 4381 ret = copy_items(trans, inode, dst_path, path, 4382 &last_extent, start_slot, 4383 ins_nr, 1, 0); 4384 if (ret < 0) 4385 goto out; 4386 ins_nr = 0; 4387 } 4388 ret = btrfs_next_leaf(root, path); 4389 if (ret < 0) 4390 goto out; 4391 if (ret > 0) { 4392 ret = 0; 4393 break; 4394 } 4395 continue; 4396 } 4397 4398 btrfs_item_key_to_cpu(leaf, &key, slot); 4399 if (key.objectid > ino) 4400 break; 4401 if (WARN_ON_ONCE(key.objectid < ino) || 4402 key.type < BTRFS_EXTENT_DATA_KEY || 4403 key.offset < i_size) { 4404 path->slots[0]++; 4405 continue; 4406 } 4407 if (last_extent == (u64)-1) { 4408 last_extent = key.offset; 4409 /* 4410 * Avoid logging extent items logged in past fsync calls 4411 * and leading to duplicate keys in the log tree. 4412 */ 4413 do { 4414 ret = btrfs_truncate_inode_items(trans, 4415 root->log_root, 4416 &inode->vfs_inode, 4417 i_size, 4418 BTRFS_EXTENT_DATA_KEY); 4419 } while (ret == -EAGAIN); 4420 if (ret) 4421 goto out; 4422 } 4423 if (ins_nr == 0) 4424 start_slot = slot; 4425 ins_nr++; 4426 path->slots[0]++; 4427 if (!dst_path) { 4428 dst_path = btrfs_alloc_path(); 4429 if (!dst_path) { 4430 ret = -ENOMEM; 4431 goto out; 4432 } 4433 } 4434 } 4435 if (ins_nr > 0) { 4436 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4437 start_slot, ins_nr, 1, 0); 4438 if (ret > 0) 4439 ret = 0; 4440 } 4441 out: 4442 btrfs_release_path(path); 4443 btrfs_free_path(dst_path); 4444 return ret; 4445 } 4446 4447 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4448 struct btrfs_root *root, 4449 struct btrfs_inode *inode, 4450 struct btrfs_path *path, 4451 struct btrfs_log_ctx *ctx, 4452 const u64 start, 4453 const u64 end) 4454 { 4455 struct extent_map *em, *n; 4456 struct list_head extents; 4457 struct extent_map_tree *tree = &inode->extent_tree; 4458 u64 test_gen; 4459 int ret = 0; 4460 int num = 0; 4461 4462 INIT_LIST_HEAD(&extents); 4463 4464 write_lock(&tree->lock); 4465 test_gen = root->fs_info->last_trans_committed; 4466 4467 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4468 /* 4469 * Skip extents outside our logging range. It's important to do 4470 * it for correctness because if we don't ignore them, we may 4471 * log them before their ordered extent completes, and therefore 4472 * we could log them without logging their respective checksums 4473 * (the checksum items are added to the csum tree at the very 4474 * end of btrfs_finish_ordered_io()). Also leave such extents 4475 * outside of our range in the list, since we may have another 4476 * ranged fsync in the near future that needs them. If an extent 4477 * outside our range corresponds to a hole, log it to avoid 4478 * leaving gaps between extents (fsck will complain when we are 4479 * not using the NO_HOLES feature). 4480 */ 4481 if ((em->start > end || em->start + em->len <= start) && 4482 em->block_start != EXTENT_MAP_HOLE) 4483 continue; 4484 4485 list_del_init(&em->list); 4486 /* 4487 * Just an arbitrary number, this can be really CPU intensive 4488 * once we start getting a lot of extents, and really once we 4489 * have a bunch of extents we just want to commit since it will 4490 * be faster. 4491 */ 4492 if (++num > 32768) { 4493 list_del_init(&tree->modified_extents); 4494 ret = -EFBIG; 4495 goto process; 4496 } 4497 4498 if (em->generation <= test_gen) 4499 continue; 4500 4501 /* We log prealloc extents beyond eof later. */ 4502 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4503 em->start >= i_size_read(&inode->vfs_inode)) 4504 continue; 4505 4506 /* Need a ref to keep it from getting evicted from cache */ 4507 refcount_inc(&em->refs); 4508 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4509 list_add_tail(&em->list, &extents); 4510 num++; 4511 } 4512 4513 list_sort(NULL, &extents, extent_cmp); 4514 process: 4515 while (!list_empty(&extents)) { 4516 em = list_entry(extents.next, struct extent_map, list); 4517 4518 list_del_init(&em->list); 4519 4520 /* 4521 * If we had an error we just need to delete everybody from our 4522 * private list. 4523 */ 4524 if (ret) { 4525 clear_em_logging(tree, em); 4526 free_extent_map(em); 4527 continue; 4528 } 4529 4530 write_unlock(&tree->lock); 4531 4532 ret = log_one_extent(trans, inode, root, em, path, ctx); 4533 write_lock(&tree->lock); 4534 clear_em_logging(tree, em); 4535 free_extent_map(em); 4536 } 4537 WARN_ON(!list_empty(&extents)); 4538 write_unlock(&tree->lock); 4539 4540 btrfs_release_path(path); 4541 if (!ret) 4542 ret = btrfs_log_prealloc_extents(trans, inode, path); 4543 4544 return ret; 4545 } 4546 4547 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4548 struct btrfs_path *path, u64 *size_ret) 4549 { 4550 struct btrfs_key key; 4551 int ret; 4552 4553 key.objectid = btrfs_ino(inode); 4554 key.type = BTRFS_INODE_ITEM_KEY; 4555 key.offset = 0; 4556 4557 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4558 if (ret < 0) { 4559 return ret; 4560 } else if (ret > 0) { 4561 *size_ret = 0; 4562 } else { 4563 struct btrfs_inode_item *item; 4564 4565 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4566 struct btrfs_inode_item); 4567 *size_ret = btrfs_inode_size(path->nodes[0], item); 4568 /* 4569 * If the in-memory inode's i_size is smaller then the inode 4570 * size stored in the btree, return the inode's i_size, so 4571 * that we get a correct inode size after replaying the log 4572 * when before a power failure we had a shrinking truncate 4573 * followed by addition of a new name (rename / new hard link). 4574 * Otherwise return the inode size from the btree, to avoid 4575 * data loss when replaying a log due to previously doing a 4576 * write that expands the inode's size and logging a new name 4577 * immediately after. 4578 */ 4579 if (*size_ret > inode->vfs_inode.i_size) 4580 *size_ret = inode->vfs_inode.i_size; 4581 } 4582 4583 btrfs_release_path(path); 4584 return 0; 4585 } 4586 4587 /* 4588 * At the moment we always log all xattrs. This is to figure out at log replay 4589 * time which xattrs must have their deletion replayed. If a xattr is missing 4590 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4591 * because if a xattr is deleted, the inode is fsynced and a power failure 4592 * happens, causing the log to be replayed the next time the fs is mounted, 4593 * we want the xattr to not exist anymore (same behaviour as other filesystems 4594 * with a journal, ext3/4, xfs, f2fs, etc). 4595 */ 4596 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4597 struct btrfs_root *root, 4598 struct btrfs_inode *inode, 4599 struct btrfs_path *path, 4600 struct btrfs_path *dst_path) 4601 { 4602 int ret; 4603 struct btrfs_key key; 4604 const u64 ino = btrfs_ino(inode); 4605 int ins_nr = 0; 4606 int start_slot = 0; 4607 4608 key.objectid = ino; 4609 key.type = BTRFS_XATTR_ITEM_KEY; 4610 key.offset = 0; 4611 4612 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4613 if (ret < 0) 4614 return ret; 4615 4616 while (true) { 4617 int slot = path->slots[0]; 4618 struct extent_buffer *leaf = path->nodes[0]; 4619 int nritems = btrfs_header_nritems(leaf); 4620 4621 if (slot >= nritems) { 4622 if (ins_nr > 0) { 4623 u64 last_extent = 0; 4624 4625 ret = copy_items(trans, inode, dst_path, path, 4626 &last_extent, start_slot, 4627 ins_nr, 1, 0); 4628 /* can't be 1, extent items aren't processed */ 4629 ASSERT(ret <= 0); 4630 if (ret < 0) 4631 return ret; 4632 ins_nr = 0; 4633 } 4634 ret = btrfs_next_leaf(root, path); 4635 if (ret < 0) 4636 return ret; 4637 else if (ret > 0) 4638 break; 4639 continue; 4640 } 4641 4642 btrfs_item_key_to_cpu(leaf, &key, slot); 4643 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4644 break; 4645 4646 if (ins_nr == 0) 4647 start_slot = slot; 4648 ins_nr++; 4649 path->slots[0]++; 4650 cond_resched(); 4651 } 4652 if (ins_nr > 0) { 4653 u64 last_extent = 0; 4654 4655 ret = copy_items(trans, inode, dst_path, path, 4656 &last_extent, start_slot, 4657 ins_nr, 1, 0); 4658 /* can't be 1, extent items aren't processed */ 4659 ASSERT(ret <= 0); 4660 if (ret < 0) 4661 return ret; 4662 } 4663 4664 return 0; 4665 } 4666 4667 /* 4668 * If the no holes feature is enabled we need to make sure any hole between the 4669 * last extent and the i_size of our inode is explicitly marked in the log. This 4670 * is to make sure that doing something like: 4671 * 4672 * 1) create file with 128Kb of data 4673 * 2) truncate file to 64Kb 4674 * 3) truncate file to 256Kb 4675 * 4) fsync file 4676 * 5) <crash/power failure> 4677 * 6) mount fs and trigger log replay 4678 * 4679 * Will give us a file with a size of 256Kb, the first 64Kb of data match what 4680 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the 4681 * file correspond to a hole. The presence of explicit holes in a log tree is 4682 * what guarantees that log replay will remove/adjust file extent items in the 4683 * fs/subvol tree. 4684 * 4685 * Here we do not need to care about holes between extents, that is already done 4686 * by copy_items(). We also only need to do this in the full sync path, where we 4687 * lookup for extents from the fs/subvol tree only. In the fast path case, we 4688 * lookup the list of modified extent maps and if any represents a hole, we 4689 * insert a corresponding extent representing a hole in the log tree. 4690 */ 4691 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans, 4692 struct btrfs_root *root, 4693 struct btrfs_inode *inode, 4694 struct btrfs_path *path) 4695 { 4696 struct btrfs_fs_info *fs_info = root->fs_info; 4697 int ret; 4698 struct btrfs_key key; 4699 u64 hole_start; 4700 u64 hole_size; 4701 struct extent_buffer *leaf; 4702 struct btrfs_root *log = root->log_root; 4703 const u64 ino = btrfs_ino(inode); 4704 const u64 i_size = i_size_read(&inode->vfs_inode); 4705 4706 if (!btrfs_fs_incompat(fs_info, NO_HOLES)) 4707 return 0; 4708 4709 key.objectid = ino; 4710 key.type = BTRFS_EXTENT_DATA_KEY; 4711 key.offset = (u64)-1; 4712 4713 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4714 ASSERT(ret != 0); 4715 if (ret < 0) 4716 return ret; 4717 4718 ASSERT(path->slots[0] > 0); 4719 path->slots[0]--; 4720 leaf = path->nodes[0]; 4721 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4722 4723 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 4724 /* inode does not have any extents */ 4725 hole_start = 0; 4726 hole_size = i_size; 4727 } else { 4728 struct btrfs_file_extent_item *extent; 4729 u64 len; 4730 4731 /* 4732 * If there's an extent beyond i_size, an explicit hole was 4733 * already inserted by copy_items(). 4734 */ 4735 if (key.offset >= i_size) 4736 return 0; 4737 4738 extent = btrfs_item_ptr(leaf, path->slots[0], 4739 struct btrfs_file_extent_item); 4740 4741 if (btrfs_file_extent_type(leaf, extent) == 4742 BTRFS_FILE_EXTENT_INLINE) 4743 return 0; 4744 4745 len = btrfs_file_extent_num_bytes(leaf, extent); 4746 /* Last extent goes beyond i_size, no need to log a hole. */ 4747 if (key.offset + len > i_size) 4748 return 0; 4749 hole_start = key.offset + len; 4750 hole_size = i_size - hole_start; 4751 } 4752 btrfs_release_path(path); 4753 4754 /* Last extent ends at i_size. */ 4755 if (hole_size == 0) 4756 return 0; 4757 4758 hole_size = ALIGN(hole_size, fs_info->sectorsize); 4759 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0, 4760 hole_size, 0, hole_size, 0, 0, 0); 4761 return ret; 4762 } 4763 4764 /* 4765 * When we are logging a new inode X, check if it doesn't have a reference that 4766 * matches the reference from some other inode Y created in a past transaction 4767 * and that was renamed in the current transaction. If we don't do this, then at 4768 * log replay time we can lose inode Y (and all its files if it's a directory): 4769 * 4770 * mkdir /mnt/x 4771 * echo "hello world" > /mnt/x/foobar 4772 * sync 4773 * mv /mnt/x /mnt/y 4774 * mkdir /mnt/x # or touch /mnt/x 4775 * xfs_io -c fsync /mnt/x 4776 * <power fail> 4777 * mount fs, trigger log replay 4778 * 4779 * After the log replay procedure, we would lose the first directory and all its 4780 * files (file foobar). 4781 * For the case where inode Y is not a directory we simply end up losing it: 4782 * 4783 * echo "123" > /mnt/foo 4784 * sync 4785 * mv /mnt/foo /mnt/bar 4786 * echo "abc" > /mnt/foo 4787 * xfs_io -c fsync /mnt/foo 4788 * <power fail> 4789 * 4790 * We also need this for cases where a snapshot entry is replaced by some other 4791 * entry (file or directory) otherwise we end up with an unreplayable log due to 4792 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4793 * if it were a regular entry: 4794 * 4795 * mkdir /mnt/x 4796 * btrfs subvolume snapshot /mnt /mnt/x/snap 4797 * btrfs subvolume delete /mnt/x/snap 4798 * rmdir /mnt/x 4799 * mkdir /mnt/x 4800 * fsync /mnt/x or fsync some new file inside it 4801 * <power fail> 4802 * 4803 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4804 * the same transaction. 4805 */ 4806 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4807 const int slot, 4808 const struct btrfs_key *key, 4809 struct btrfs_inode *inode, 4810 u64 *other_ino, u64 *other_parent) 4811 { 4812 int ret; 4813 struct btrfs_path *search_path; 4814 char *name = NULL; 4815 u32 name_len = 0; 4816 u32 item_size = btrfs_item_size_nr(eb, slot); 4817 u32 cur_offset = 0; 4818 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4819 4820 search_path = btrfs_alloc_path(); 4821 if (!search_path) 4822 return -ENOMEM; 4823 search_path->search_commit_root = 1; 4824 search_path->skip_locking = 1; 4825 4826 while (cur_offset < item_size) { 4827 u64 parent; 4828 u32 this_name_len; 4829 u32 this_len; 4830 unsigned long name_ptr; 4831 struct btrfs_dir_item *di; 4832 4833 if (key->type == BTRFS_INODE_REF_KEY) { 4834 struct btrfs_inode_ref *iref; 4835 4836 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4837 parent = key->offset; 4838 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4839 name_ptr = (unsigned long)(iref + 1); 4840 this_len = sizeof(*iref) + this_name_len; 4841 } else { 4842 struct btrfs_inode_extref *extref; 4843 4844 extref = (struct btrfs_inode_extref *)(ptr + 4845 cur_offset); 4846 parent = btrfs_inode_extref_parent(eb, extref); 4847 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4848 name_ptr = (unsigned long)&extref->name; 4849 this_len = sizeof(*extref) + this_name_len; 4850 } 4851 4852 if (this_name_len > name_len) { 4853 char *new_name; 4854 4855 new_name = krealloc(name, this_name_len, GFP_NOFS); 4856 if (!new_name) { 4857 ret = -ENOMEM; 4858 goto out; 4859 } 4860 name_len = this_name_len; 4861 name = new_name; 4862 } 4863 4864 read_extent_buffer(eb, name, name_ptr, this_name_len); 4865 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 4866 parent, name, this_name_len, 0); 4867 if (di && !IS_ERR(di)) { 4868 struct btrfs_key di_key; 4869 4870 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4871 di, &di_key); 4872 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4873 if (di_key.objectid != key->objectid) { 4874 ret = 1; 4875 *other_ino = di_key.objectid; 4876 *other_parent = parent; 4877 } else { 4878 ret = 0; 4879 } 4880 } else { 4881 ret = -EAGAIN; 4882 } 4883 goto out; 4884 } else if (IS_ERR(di)) { 4885 ret = PTR_ERR(di); 4886 goto out; 4887 } 4888 btrfs_release_path(search_path); 4889 4890 cur_offset += this_len; 4891 } 4892 ret = 0; 4893 out: 4894 btrfs_free_path(search_path); 4895 kfree(name); 4896 return ret; 4897 } 4898 4899 struct btrfs_ino_list { 4900 u64 ino; 4901 u64 parent; 4902 struct list_head list; 4903 }; 4904 4905 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 4906 struct btrfs_root *root, 4907 struct btrfs_path *path, 4908 struct btrfs_log_ctx *ctx, 4909 u64 ino, u64 parent) 4910 { 4911 struct btrfs_ino_list *ino_elem; 4912 LIST_HEAD(inode_list); 4913 int ret = 0; 4914 4915 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4916 if (!ino_elem) 4917 return -ENOMEM; 4918 ino_elem->ino = ino; 4919 ino_elem->parent = parent; 4920 list_add_tail(&ino_elem->list, &inode_list); 4921 4922 while (!list_empty(&inode_list)) { 4923 struct btrfs_fs_info *fs_info = root->fs_info; 4924 struct btrfs_key key; 4925 struct inode *inode; 4926 4927 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 4928 list); 4929 ino = ino_elem->ino; 4930 parent = ino_elem->parent; 4931 list_del(&ino_elem->list); 4932 kfree(ino_elem); 4933 if (ret) 4934 continue; 4935 4936 btrfs_release_path(path); 4937 4938 key.objectid = ino; 4939 key.type = BTRFS_INODE_ITEM_KEY; 4940 key.offset = 0; 4941 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4942 /* 4943 * If the other inode that had a conflicting dir entry was 4944 * deleted in the current transaction, we need to log its parent 4945 * directory. 4946 */ 4947 if (IS_ERR(inode)) { 4948 ret = PTR_ERR(inode); 4949 if (ret == -ENOENT) { 4950 key.objectid = parent; 4951 inode = btrfs_iget(fs_info->sb, &key, root, 4952 NULL); 4953 if (IS_ERR(inode)) { 4954 ret = PTR_ERR(inode); 4955 } else { 4956 ret = btrfs_log_inode(trans, root, 4957 BTRFS_I(inode), 4958 LOG_OTHER_INODE_ALL, 4959 0, LLONG_MAX, ctx); 4960 iput(inode); 4961 } 4962 } 4963 continue; 4964 } 4965 /* 4966 * We are safe logging the other inode without acquiring its 4967 * lock as long as we log with the LOG_INODE_EXISTS mode. We 4968 * are safe against concurrent renames of the other inode as 4969 * well because during a rename we pin the log and update the 4970 * log with the new name before we unpin it. 4971 */ 4972 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 4973 LOG_OTHER_INODE, 0, LLONG_MAX, ctx); 4974 if (ret) { 4975 iput(inode); 4976 continue; 4977 } 4978 4979 key.objectid = ino; 4980 key.type = BTRFS_INODE_REF_KEY; 4981 key.offset = 0; 4982 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4983 if (ret < 0) { 4984 iput(inode); 4985 continue; 4986 } 4987 4988 while (true) { 4989 struct extent_buffer *leaf = path->nodes[0]; 4990 int slot = path->slots[0]; 4991 u64 other_ino = 0; 4992 u64 other_parent = 0; 4993 4994 if (slot >= btrfs_header_nritems(leaf)) { 4995 ret = btrfs_next_leaf(root, path); 4996 if (ret < 0) { 4997 break; 4998 } else if (ret > 0) { 4999 ret = 0; 5000 break; 5001 } 5002 continue; 5003 } 5004 5005 btrfs_item_key_to_cpu(leaf, &key, slot); 5006 if (key.objectid != ino || 5007 (key.type != BTRFS_INODE_REF_KEY && 5008 key.type != BTRFS_INODE_EXTREF_KEY)) { 5009 ret = 0; 5010 break; 5011 } 5012 5013 ret = btrfs_check_ref_name_override(leaf, slot, &key, 5014 BTRFS_I(inode), &other_ino, 5015 &other_parent); 5016 if (ret < 0) 5017 break; 5018 if (ret > 0) { 5019 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5020 if (!ino_elem) { 5021 ret = -ENOMEM; 5022 break; 5023 } 5024 ino_elem->ino = other_ino; 5025 ino_elem->parent = other_parent; 5026 list_add_tail(&ino_elem->list, &inode_list); 5027 ret = 0; 5028 } 5029 path->slots[0]++; 5030 } 5031 iput(inode); 5032 } 5033 5034 return ret; 5035 } 5036 5037 /* log a single inode in the tree log. 5038 * At least one parent directory for this inode must exist in the tree 5039 * or be logged already. 5040 * 5041 * Any items from this inode changed by the current transaction are copied 5042 * to the log tree. An extra reference is taken on any extents in this 5043 * file, allowing us to avoid a whole pile of corner cases around logging 5044 * blocks that have been removed from the tree. 5045 * 5046 * See LOG_INODE_ALL and related defines for a description of what inode_only 5047 * does. 5048 * 5049 * This handles both files and directories. 5050 */ 5051 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5052 struct btrfs_root *root, struct btrfs_inode *inode, 5053 int inode_only, 5054 const loff_t start, 5055 const loff_t end, 5056 struct btrfs_log_ctx *ctx) 5057 { 5058 struct btrfs_fs_info *fs_info = root->fs_info; 5059 struct btrfs_path *path; 5060 struct btrfs_path *dst_path; 5061 struct btrfs_key min_key; 5062 struct btrfs_key max_key; 5063 struct btrfs_root *log = root->log_root; 5064 u64 last_extent = 0; 5065 int err = 0; 5066 int ret; 5067 int nritems; 5068 int ins_start_slot = 0; 5069 int ins_nr; 5070 bool fast_search = false; 5071 u64 ino = btrfs_ino(inode); 5072 struct extent_map_tree *em_tree = &inode->extent_tree; 5073 u64 logged_isize = 0; 5074 bool need_log_inode_item = true; 5075 bool xattrs_logged = false; 5076 bool recursive_logging = false; 5077 5078 path = btrfs_alloc_path(); 5079 if (!path) 5080 return -ENOMEM; 5081 dst_path = btrfs_alloc_path(); 5082 if (!dst_path) { 5083 btrfs_free_path(path); 5084 return -ENOMEM; 5085 } 5086 5087 min_key.objectid = ino; 5088 min_key.type = BTRFS_INODE_ITEM_KEY; 5089 min_key.offset = 0; 5090 5091 max_key.objectid = ino; 5092 5093 5094 /* today the code can only do partial logging of directories */ 5095 if (S_ISDIR(inode->vfs_inode.i_mode) || 5096 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5097 &inode->runtime_flags) && 5098 inode_only >= LOG_INODE_EXISTS)) 5099 max_key.type = BTRFS_XATTR_ITEM_KEY; 5100 else 5101 max_key.type = (u8)-1; 5102 max_key.offset = (u64)-1; 5103 5104 /* 5105 * Only run delayed items if we are a dir or a new file. 5106 * Otherwise commit the delayed inode only, which is needed in 5107 * order for the log replay code to mark inodes for link count 5108 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items). 5109 */ 5110 if (S_ISDIR(inode->vfs_inode.i_mode) || 5111 inode->generation > fs_info->last_trans_committed) 5112 ret = btrfs_commit_inode_delayed_items(trans, inode); 5113 else 5114 ret = btrfs_commit_inode_delayed_inode(inode); 5115 5116 if (ret) { 5117 btrfs_free_path(path); 5118 btrfs_free_path(dst_path); 5119 return ret; 5120 } 5121 5122 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5123 recursive_logging = true; 5124 if (inode_only == LOG_OTHER_INODE) 5125 inode_only = LOG_INODE_EXISTS; 5126 else 5127 inode_only = LOG_INODE_ALL; 5128 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5129 } else { 5130 mutex_lock(&inode->log_mutex); 5131 } 5132 5133 /* 5134 * a brute force approach to making sure we get the most uptodate 5135 * copies of everything. 5136 */ 5137 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5138 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5139 5140 if (inode_only == LOG_INODE_EXISTS) 5141 max_key_type = BTRFS_XATTR_ITEM_KEY; 5142 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 5143 } else { 5144 if (inode_only == LOG_INODE_EXISTS) { 5145 /* 5146 * Make sure the new inode item we write to the log has 5147 * the same isize as the current one (if it exists). 5148 * This is necessary to prevent data loss after log 5149 * replay, and also to prevent doing a wrong expanding 5150 * truncate - for e.g. create file, write 4K into offset 5151 * 0, fsync, write 4K into offset 4096, add hard link, 5152 * fsync some other file (to sync log), power fail - if 5153 * we use the inode's current i_size, after log replay 5154 * we get a 8Kb file, with the last 4Kb extent as a hole 5155 * (zeroes), as if an expanding truncate happened, 5156 * instead of getting a file of 4Kb only. 5157 */ 5158 err = logged_inode_size(log, inode, path, &logged_isize); 5159 if (err) 5160 goto out_unlock; 5161 } 5162 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5163 &inode->runtime_flags)) { 5164 if (inode_only == LOG_INODE_EXISTS) { 5165 max_key.type = BTRFS_XATTR_ITEM_KEY; 5166 ret = drop_objectid_items(trans, log, path, ino, 5167 max_key.type); 5168 } else { 5169 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5170 &inode->runtime_flags); 5171 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5172 &inode->runtime_flags); 5173 while(1) { 5174 ret = btrfs_truncate_inode_items(trans, 5175 log, &inode->vfs_inode, 0, 0); 5176 if (ret != -EAGAIN) 5177 break; 5178 } 5179 } 5180 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5181 &inode->runtime_flags) || 5182 inode_only == LOG_INODE_EXISTS) { 5183 if (inode_only == LOG_INODE_ALL) 5184 fast_search = true; 5185 max_key.type = BTRFS_XATTR_ITEM_KEY; 5186 ret = drop_objectid_items(trans, log, path, ino, 5187 max_key.type); 5188 } else { 5189 if (inode_only == LOG_INODE_ALL) 5190 fast_search = true; 5191 goto log_extents; 5192 } 5193 5194 } 5195 if (ret) { 5196 err = ret; 5197 goto out_unlock; 5198 } 5199 5200 while (1) { 5201 ins_nr = 0; 5202 ret = btrfs_search_forward(root, &min_key, 5203 path, trans->transid); 5204 if (ret < 0) { 5205 err = ret; 5206 goto out_unlock; 5207 } 5208 if (ret != 0) 5209 break; 5210 again: 5211 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 5212 if (min_key.objectid != ino) 5213 break; 5214 if (min_key.type > max_key.type) 5215 break; 5216 5217 if (min_key.type == BTRFS_INODE_ITEM_KEY) 5218 need_log_inode_item = false; 5219 5220 if ((min_key.type == BTRFS_INODE_REF_KEY || 5221 min_key.type == BTRFS_INODE_EXTREF_KEY) && 5222 inode->generation == trans->transid && 5223 !recursive_logging) { 5224 u64 other_ino = 0; 5225 u64 other_parent = 0; 5226 5227 ret = btrfs_check_ref_name_override(path->nodes[0], 5228 path->slots[0], &min_key, inode, 5229 &other_ino, &other_parent); 5230 if (ret < 0) { 5231 err = ret; 5232 goto out_unlock; 5233 } else if (ret > 0 && ctx && 5234 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5235 if (ins_nr > 0) { 5236 ins_nr++; 5237 } else { 5238 ins_nr = 1; 5239 ins_start_slot = path->slots[0]; 5240 } 5241 ret = copy_items(trans, inode, dst_path, path, 5242 &last_extent, ins_start_slot, 5243 ins_nr, inode_only, 5244 logged_isize); 5245 if (ret < 0) { 5246 err = ret; 5247 goto out_unlock; 5248 } 5249 ins_nr = 0; 5250 5251 err = log_conflicting_inodes(trans, root, path, 5252 ctx, other_ino, other_parent); 5253 if (err) 5254 goto out_unlock; 5255 btrfs_release_path(path); 5256 goto next_key; 5257 } 5258 } 5259 5260 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5261 if (min_key.type == BTRFS_XATTR_ITEM_KEY) { 5262 if (ins_nr == 0) 5263 goto next_slot; 5264 ret = copy_items(trans, inode, dst_path, path, 5265 &last_extent, ins_start_slot, 5266 ins_nr, inode_only, logged_isize); 5267 if (ret < 0) { 5268 err = ret; 5269 goto out_unlock; 5270 } 5271 ins_nr = 0; 5272 if (ret) { 5273 btrfs_release_path(path); 5274 continue; 5275 } 5276 goto next_slot; 5277 } 5278 5279 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5280 ins_nr++; 5281 goto next_slot; 5282 } else if (!ins_nr) { 5283 ins_start_slot = path->slots[0]; 5284 ins_nr = 1; 5285 goto next_slot; 5286 } 5287 5288 ret = copy_items(trans, inode, dst_path, path, &last_extent, 5289 ins_start_slot, ins_nr, inode_only, 5290 logged_isize); 5291 if (ret < 0) { 5292 err = ret; 5293 goto out_unlock; 5294 } 5295 if (ret) { 5296 ins_nr = 0; 5297 btrfs_release_path(path); 5298 continue; 5299 } 5300 ins_nr = 1; 5301 ins_start_slot = path->slots[0]; 5302 next_slot: 5303 5304 nritems = btrfs_header_nritems(path->nodes[0]); 5305 path->slots[0]++; 5306 if (path->slots[0] < nritems) { 5307 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 5308 path->slots[0]); 5309 goto again; 5310 } 5311 if (ins_nr) { 5312 ret = copy_items(trans, inode, dst_path, path, 5313 &last_extent, ins_start_slot, 5314 ins_nr, inode_only, logged_isize); 5315 if (ret < 0) { 5316 err = ret; 5317 goto out_unlock; 5318 } 5319 ret = 0; 5320 ins_nr = 0; 5321 } 5322 btrfs_release_path(path); 5323 next_key: 5324 if (min_key.offset < (u64)-1) { 5325 min_key.offset++; 5326 } else if (min_key.type < max_key.type) { 5327 min_key.type++; 5328 min_key.offset = 0; 5329 } else { 5330 break; 5331 } 5332 } 5333 if (ins_nr) { 5334 ret = copy_items(trans, inode, dst_path, path, &last_extent, 5335 ins_start_slot, ins_nr, inode_only, 5336 logged_isize); 5337 if (ret < 0) { 5338 err = ret; 5339 goto out_unlock; 5340 } 5341 ret = 0; 5342 ins_nr = 0; 5343 } 5344 5345 btrfs_release_path(path); 5346 btrfs_release_path(dst_path); 5347 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 5348 if (err) 5349 goto out_unlock; 5350 xattrs_logged = true; 5351 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5352 btrfs_release_path(path); 5353 btrfs_release_path(dst_path); 5354 err = btrfs_log_trailing_hole(trans, root, inode, path); 5355 if (err) 5356 goto out_unlock; 5357 } 5358 log_extents: 5359 btrfs_release_path(path); 5360 btrfs_release_path(dst_path); 5361 if (need_log_inode_item) { 5362 err = log_inode_item(trans, log, dst_path, inode); 5363 if (!err && !xattrs_logged) { 5364 err = btrfs_log_all_xattrs(trans, root, inode, path, 5365 dst_path); 5366 btrfs_release_path(path); 5367 } 5368 if (err) 5369 goto out_unlock; 5370 } 5371 if (fast_search) { 5372 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 5373 ctx, start, end); 5374 if (ret) { 5375 err = ret; 5376 goto out_unlock; 5377 } 5378 } else if (inode_only == LOG_INODE_ALL) { 5379 struct extent_map *em, *n; 5380 5381 write_lock(&em_tree->lock); 5382 /* 5383 * We can't just remove every em if we're called for a ranged 5384 * fsync - that is, one that doesn't cover the whole possible 5385 * file range (0 to LLONG_MAX). This is because we can have 5386 * em's that fall outside the range we're logging and therefore 5387 * their ordered operations haven't completed yet 5388 * (btrfs_finish_ordered_io() not invoked yet). This means we 5389 * didn't get their respective file extent item in the fs/subvol 5390 * tree yet, and need to let the next fast fsync (one which 5391 * consults the list of modified extent maps) find the em so 5392 * that it logs a matching file extent item and waits for the 5393 * respective ordered operation to complete (if it's still 5394 * running). 5395 * 5396 * Removing every em outside the range we're logging would make 5397 * the next fast fsync not log their matching file extent items, 5398 * therefore making us lose data after a log replay. 5399 */ 5400 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 5401 list) { 5402 const u64 mod_end = em->mod_start + em->mod_len - 1; 5403 5404 if (em->mod_start >= start && mod_end <= end) 5405 list_del_init(&em->list); 5406 } 5407 write_unlock(&em_tree->lock); 5408 } 5409 5410 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5411 ret = log_directory_changes(trans, root, inode, path, dst_path, 5412 ctx); 5413 if (ret) { 5414 err = ret; 5415 goto out_unlock; 5416 } 5417 } 5418 5419 spin_lock(&inode->lock); 5420 inode->logged_trans = trans->transid; 5421 inode->last_log_commit = inode->last_sub_trans; 5422 spin_unlock(&inode->lock); 5423 out_unlock: 5424 mutex_unlock(&inode->log_mutex); 5425 5426 btrfs_free_path(path); 5427 btrfs_free_path(dst_path); 5428 return err; 5429 } 5430 5431 /* 5432 * Check if we must fallback to a transaction commit when logging an inode. 5433 * This must be called after logging the inode and is used only in the context 5434 * when fsyncing an inode requires the need to log some other inode - in which 5435 * case we can't lock the i_mutex of each other inode we need to log as that 5436 * can lead to deadlocks with concurrent fsync against other inodes (as we can 5437 * log inodes up or down in the hierarchy) or rename operations for example. So 5438 * we take the log_mutex of the inode after we have logged it and then check for 5439 * its last_unlink_trans value - this is safe because any task setting 5440 * last_unlink_trans must take the log_mutex and it must do this before it does 5441 * the actual unlink operation, so if we do this check before a concurrent task 5442 * sets last_unlink_trans it means we've logged a consistent version/state of 5443 * all the inode items, otherwise we are not sure and must do a transaction 5444 * commit (the concurrent task might have only updated last_unlink_trans before 5445 * we logged the inode or it might have also done the unlink). 5446 */ 5447 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, 5448 struct btrfs_inode *inode) 5449 { 5450 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5451 bool ret = false; 5452 5453 mutex_lock(&inode->log_mutex); 5454 if (inode->last_unlink_trans > fs_info->last_trans_committed) { 5455 /* 5456 * Make sure any commits to the log are forced to be full 5457 * commits. 5458 */ 5459 btrfs_set_log_full_commit(trans); 5460 ret = true; 5461 } 5462 mutex_unlock(&inode->log_mutex); 5463 5464 return ret; 5465 } 5466 5467 /* 5468 * follow the dentry parent pointers up the chain and see if any 5469 * of the directories in it require a full commit before they can 5470 * be logged. Returns zero if nothing special needs to be done or 1 if 5471 * a full commit is required. 5472 */ 5473 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 5474 struct btrfs_inode *inode, 5475 struct dentry *parent, 5476 struct super_block *sb, 5477 u64 last_committed) 5478 { 5479 int ret = 0; 5480 struct dentry *old_parent = NULL; 5481 struct btrfs_inode *orig_inode = inode; 5482 5483 /* 5484 * for regular files, if its inode is already on disk, we don't 5485 * have to worry about the parents at all. This is because 5486 * we can use the last_unlink_trans field to record renames 5487 * and other fun in this file. 5488 */ 5489 if (S_ISREG(inode->vfs_inode.i_mode) && 5490 inode->generation <= last_committed && 5491 inode->last_unlink_trans <= last_committed) 5492 goto out; 5493 5494 if (!S_ISDIR(inode->vfs_inode.i_mode)) { 5495 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5496 goto out; 5497 inode = BTRFS_I(d_inode(parent)); 5498 } 5499 5500 while (1) { 5501 /* 5502 * If we are logging a directory then we start with our inode, 5503 * not our parent's inode, so we need to skip setting the 5504 * logged_trans so that further down in the log code we don't 5505 * think this inode has already been logged. 5506 */ 5507 if (inode != orig_inode) 5508 inode->logged_trans = trans->transid; 5509 smp_mb(); 5510 5511 if (btrfs_must_commit_transaction(trans, inode)) { 5512 ret = 1; 5513 break; 5514 } 5515 5516 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5517 break; 5518 5519 if (IS_ROOT(parent)) { 5520 inode = BTRFS_I(d_inode(parent)); 5521 if (btrfs_must_commit_transaction(trans, inode)) 5522 ret = 1; 5523 break; 5524 } 5525 5526 parent = dget_parent(parent); 5527 dput(old_parent); 5528 old_parent = parent; 5529 inode = BTRFS_I(d_inode(parent)); 5530 5531 } 5532 dput(old_parent); 5533 out: 5534 return ret; 5535 } 5536 5537 struct btrfs_dir_list { 5538 u64 ino; 5539 struct list_head list; 5540 }; 5541 5542 /* 5543 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5544 * details about the why it is needed. 5545 * This is a recursive operation - if an existing dentry corresponds to a 5546 * directory, that directory's new entries are logged too (same behaviour as 5547 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5548 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5549 * complains about the following circular lock dependency / possible deadlock: 5550 * 5551 * CPU0 CPU1 5552 * ---- ---- 5553 * lock(&type->i_mutex_dir_key#3/2); 5554 * lock(sb_internal#2); 5555 * lock(&type->i_mutex_dir_key#3/2); 5556 * lock(&sb->s_type->i_mutex_key#14); 5557 * 5558 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5559 * sb_start_intwrite() in btrfs_start_transaction(). 5560 * Not locking i_mutex of the inodes is still safe because: 5561 * 5562 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5563 * that while logging the inode new references (names) are added or removed 5564 * from the inode, leaving the logged inode item with a link count that does 5565 * not match the number of logged inode reference items. This is fine because 5566 * at log replay time we compute the real number of links and correct the 5567 * link count in the inode item (see replay_one_buffer() and 5568 * link_to_fixup_dir()); 5569 * 5570 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5571 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5572 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5573 * has a size that doesn't match the sum of the lengths of all the logged 5574 * names. This does not result in a problem because if a dir_item key is 5575 * logged but its matching dir_index key is not logged, at log replay time we 5576 * don't use it to replay the respective name (see replay_one_name()). On the 5577 * other hand if only the dir_index key ends up being logged, the respective 5578 * name is added to the fs/subvol tree with both the dir_item and dir_index 5579 * keys created (see replay_one_name()). 5580 * The directory's inode item with a wrong i_size is not a problem as well, 5581 * since we don't use it at log replay time to set the i_size in the inode 5582 * item of the fs/subvol tree (see overwrite_item()). 5583 */ 5584 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5585 struct btrfs_root *root, 5586 struct btrfs_inode *start_inode, 5587 struct btrfs_log_ctx *ctx) 5588 { 5589 struct btrfs_fs_info *fs_info = root->fs_info; 5590 struct btrfs_root *log = root->log_root; 5591 struct btrfs_path *path; 5592 LIST_HEAD(dir_list); 5593 struct btrfs_dir_list *dir_elem; 5594 int ret = 0; 5595 5596 path = btrfs_alloc_path(); 5597 if (!path) 5598 return -ENOMEM; 5599 5600 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5601 if (!dir_elem) { 5602 btrfs_free_path(path); 5603 return -ENOMEM; 5604 } 5605 dir_elem->ino = btrfs_ino(start_inode); 5606 list_add_tail(&dir_elem->list, &dir_list); 5607 5608 while (!list_empty(&dir_list)) { 5609 struct extent_buffer *leaf; 5610 struct btrfs_key min_key; 5611 int nritems; 5612 int i; 5613 5614 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5615 list); 5616 if (ret) 5617 goto next_dir_inode; 5618 5619 min_key.objectid = dir_elem->ino; 5620 min_key.type = BTRFS_DIR_ITEM_KEY; 5621 min_key.offset = 0; 5622 again: 5623 btrfs_release_path(path); 5624 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5625 if (ret < 0) { 5626 goto next_dir_inode; 5627 } else if (ret > 0) { 5628 ret = 0; 5629 goto next_dir_inode; 5630 } 5631 5632 process_leaf: 5633 leaf = path->nodes[0]; 5634 nritems = btrfs_header_nritems(leaf); 5635 for (i = path->slots[0]; i < nritems; i++) { 5636 struct btrfs_dir_item *di; 5637 struct btrfs_key di_key; 5638 struct inode *di_inode; 5639 struct btrfs_dir_list *new_dir_elem; 5640 int log_mode = LOG_INODE_EXISTS; 5641 int type; 5642 5643 btrfs_item_key_to_cpu(leaf, &min_key, i); 5644 if (min_key.objectid != dir_elem->ino || 5645 min_key.type != BTRFS_DIR_ITEM_KEY) 5646 goto next_dir_inode; 5647 5648 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5649 type = btrfs_dir_type(leaf, di); 5650 if (btrfs_dir_transid(leaf, di) < trans->transid && 5651 type != BTRFS_FT_DIR) 5652 continue; 5653 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5654 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5655 continue; 5656 5657 btrfs_release_path(path); 5658 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL); 5659 if (IS_ERR(di_inode)) { 5660 ret = PTR_ERR(di_inode); 5661 goto next_dir_inode; 5662 } 5663 5664 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) { 5665 iput(di_inode); 5666 break; 5667 } 5668 5669 ctx->log_new_dentries = false; 5670 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5671 log_mode = LOG_INODE_ALL; 5672 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), 5673 log_mode, 0, LLONG_MAX, ctx); 5674 if (!ret && 5675 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode))) 5676 ret = 1; 5677 iput(di_inode); 5678 if (ret) 5679 goto next_dir_inode; 5680 if (ctx->log_new_dentries) { 5681 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5682 GFP_NOFS); 5683 if (!new_dir_elem) { 5684 ret = -ENOMEM; 5685 goto next_dir_inode; 5686 } 5687 new_dir_elem->ino = di_key.objectid; 5688 list_add_tail(&new_dir_elem->list, &dir_list); 5689 } 5690 break; 5691 } 5692 if (i == nritems) { 5693 ret = btrfs_next_leaf(log, path); 5694 if (ret < 0) { 5695 goto next_dir_inode; 5696 } else if (ret > 0) { 5697 ret = 0; 5698 goto next_dir_inode; 5699 } 5700 goto process_leaf; 5701 } 5702 if (min_key.offset < (u64)-1) { 5703 min_key.offset++; 5704 goto again; 5705 } 5706 next_dir_inode: 5707 list_del(&dir_elem->list); 5708 kfree(dir_elem); 5709 } 5710 5711 btrfs_free_path(path); 5712 return ret; 5713 } 5714 5715 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5716 struct btrfs_inode *inode, 5717 struct btrfs_log_ctx *ctx) 5718 { 5719 struct btrfs_fs_info *fs_info = trans->fs_info; 5720 int ret; 5721 struct btrfs_path *path; 5722 struct btrfs_key key; 5723 struct btrfs_root *root = inode->root; 5724 const u64 ino = btrfs_ino(inode); 5725 5726 path = btrfs_alloc_path(); 5727 if (!path) 5728 return -ENOMEM; 5729 path->skip_locking = 1; 5730 path->search_commit_root = 1; 5731 5732 key.objectid = ino; 5733 key.type = BTRFS_INODE_REF_KEY; 5734 key.offset = 0; 5735 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5736 if (ret < 0) 5737 goto out; 5738 5739 while (true) { 5740 struct extent_buffer *leaf = path->nodes[0]; 5741 int slot = path->slots[0]; 5742 u32 cur_offset = 0; 5743 u32 item_size; 5744 unsigned long ptr; 5745 5746 if (slot >= btrfs_header_nritems(leaf)) { 5747 ret = btrfs_next_leaf(root, path); 5748 if (ret < 0) 5749 goto out; 5750 else if (ret > 0) 5751 break; 5752 continue; 5753 } 5754 5755 btrfs_item_key_to_cpu(leaf, &key, slot); 5756 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5757 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5758 break; 5759 5760 item_size = btrfs_item_size_nr(leaf, slot); 5761 ptr = btrfs_item_ptr_offset(leaf, slot); 5762 while (cur_offset < item_size) { 5763 struct btrfs_key inode_key; 5764 struct inode *dir_inode; 5765 5766 inode_key.type = BTRFS_INODE_ITEM_KEY; 5767 inode_key.offset = 0; 5768 5769 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5770 struct btrfs_inode_extref *extref; 5771 5772 extref = (struct btrfs_inode_extref *) 5773 (ptr + cur_offset); 5774 inode_key.objectid = btrfs_inode_extref_parent( 5775 leaf, extref); 5776 cur_offset += sizeof(*extref); 5777 cur_offset += btrfs_inode_extref_name_len(leaf, 5778 extref); 5779 } else { 5780 inode_key.objectid = key.offset; 5781 cur_offset = item_size; 5782 } 5783 5784 dir_inode = btrfs_iget(fs_info->sb, &inode_key, 5785 root, NULL); 5786 /* 5787 * If the parent inode was deleted, return an error to 5788 * fallback to a transaction commit. This is to prevent 5789 * getting an inode that was moved from one parent A to 5790 * a parent B, got its former parent A deleted and then 5791 * it got fsync'ed, from existing at both parents after 5792 * a log replay (and the old parent still existing). 5793 * Example: 5794 * 5795 * mkdir /mnt/A 5796 * mkdir /mnt/B 5797 * touch /mnt/B/bar 5798 * sync 5799 * mv /mnt/B/bar /mnt/A/bar 5800 * mv -T /mnt/A /mnt/B 5801 * fsync /mnt/B/bar 5802 * <power fail> 5803 * 5804 * If we ignore the old parent B which got deleted, 5805 * after a log replay we would have file bar linked 5806 * at both parents and the old parent B would still 5807 * exist. 5808 */ 5809 if (IS_ERR(dir_inode)) { 5810 ret = PTR_ERR(dir_inode); 5811 goto out; 5812 } 5813 5814 if (ctx) 5815 ctx->log_new_dentries = false; 5816 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), 5817 LOG_INODE_ALL, 0, LLONG_MAX, ctx); 5818 if (!ret && 5819 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode))) 5820 ret = 1; 5821 if (!ret && ctx && ctx->log_new_dentries) 5822 ret = log_new_dir_dentries(trans, root, 5823 BTRFS_I(dir_inode), ctx); 5824 iput(dir_inode); 5825 if (ret) 5826 goto out; 5827 } 5828 path->slots[0]++; 5829 } 5830 ret = 0; 5831 out: 5832 btrfs_free_path(path); 5833 return ret; 5834 } 5835 5836 static int log_new_ancestors(struct btrfs_trans_handle *trans, 5837 struct btrfs_root *root, 5838 struct btrfs_path *path, 5839 struct btrfs_log_ctx *ctx) 5840 { 5841 struct btrfs_key found_key; 5842 5843 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5844 5845 while (true) { 5846 struct btrfs_fs_info *fs_info = root->fs_info; 5847 const u64 last_committed = fs_info->last_trans_committed; 5848 struct extent_buffer *leaf = path->nodes[0]; 5849 int slot = path->slots[0]; 5850 struct btrfs_key search_key; 5851 struct inode *inode; 5852 int ret = 0; 5853 5854 btrfs_release_path(path); 5855 5856 search_key.objectid = found_key.offset; 5857 search_key.type = BTRFS_INODE_ITEM_KEY; 5858 search_key.offset = 0; 5859 inode = btrfs_iget(fs_info->sb, &search_key, root, NULL); 5860 if (IS_ERR(inode)) 5861 return PTR_ERR(inode); 5862 5863 if (BTRFS_I(inode)->generation > last_committed) 5864 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5865 LOG_INODE_EXISTS, 5866 0, LLONG_MAX, ctx); 5867 iput(inode); 5868 if (ret) 5869 return ret; 5870 5871 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 5872 break; 5873 5874 search_key.type = BTRFS_INODE_REF_KEY; 5875 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5876 if (ret < 0) 5877 return ret; 5878 5879 leaf = path->nodes[0]; 5880 slot = path->slots[0]; 5881 if (slot >= btrfs_header_nritems(leaf)) { 5882 ret = btrfs_next_leaf(root, path); 5883 if (ret < 0) 5884 return ret; 5885 else if (ret > 0) 5886 return -ENOENT; 5887 leaf = path->nodes[0]; 5888 slot = path->slots[0]; 5889 } 5890 5891 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5892 if (found_key.objectid != search_key.objectid || 5893 found_key.type != BTRFS_INODE_REF_KEY) 5894 return -ENOENT; 5895 } 5896 return 0; 5897 } 5898 5899 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 5900 struct btrfs_inode *inode, 5901 struct dentry *parent, 5902 struct btrfs_log_ctx *ctx) 5903 { 5904 struct btrfs_root *root = inode->root; 5905 struct btrfs_fs_info *fs_info = root->fs_info; 5906 struct dentry *old_parent = NULL; 5907 struct super_block *sb = inode->vfs_inode.i_sb; 5908 int ret = 0; 5909 5910 while (true) { 5911 if (!parent || d_really_is_negative(parent) || 5912 sb != parent->d_sb) 5913 break; 5914 5915 inode = BTRFS_I(d_inode(parent)); 5916 if (root != inode->root) 5917 break; 5918 5919 if (inode->generation > fs_info->last_trans_committed) { 5920 ret = btrfs_log_inode(trans, root, inode, 5921 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx); 5922 if (ret) 5923 break; 5924 } 5925 if (IS_ROOT(parent)) 5926 break; 5927 5928 parent = dget_parent(parent); 5929 dput(old_parent); 5930 old_parent = parent; 5931 } 5932 dput(old_parent); 5933 5934 return ret; 5935 } 5936 5937 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 5938 struct btrfs_inode *inode, 5939 struct dentry *parent, 5940 struct btrfs_log_ctx *ctx) 5941 { 5942 struct btrfs_root *root = inode->root; 5943 const u64 ino = btrfs_ino(inode); 5944 struct btrfs_path *path; 5945 struct btrfs_key search_key; 5946 int ret; 5947 5948 /* 5949 * For a single hard link case, go through a fast path that does not 5950 * need to iterate the fs/subvolume tree. 5951 */ 5952 if (inode->vfs_inode.i_nlink < 2) 5953 return log_new_ancestors_fast(trans, inode, parent, ctx); 5954 5955 path = btrfs_alloc_path(); 5956 if (!path) 5957 return -ENOMEM; 5958 5959 search_key.objectid = ino; 5960 search_key.type = BTRFS_INODE_REF_KEY; 5961 search_key.offset = 0; 5962 again: 5963 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5964 if (ret < 0) 5965 goto out; 5966 if (ret == 0) 5967 path->slots[0]++; 5968 5969 while (true) { 5970 struct extent_buffer *leaf = path->nodes[0]; 5971 int slot = path->slots[0]; 5972 struct btrfs_key found_key; 5973 5974 if (slot >= btrfs_header_nritems(leaf)) { 5975 ret = btrfs_next_leaf(root, path); 5976 if (ret < 0) 5977 goto out; 5978 else if (ret > 0) 5979 break; 5980 continue; 5981 } 5982 5983 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5984 if (found_key.objectid != ino || 5985 found_key.type > BTRFS_INODE_EXTREF_KEY) 5986 break; 5987 5988 /* 5989 * Don't deal with extended references because they are rare 5990 * cases and too complex to deal with (we would need to keep 5991 * track of which subitem we are processing for each item in 5992 * this loop, etc). So just return some error to fallback to 5993 * a transaction commit. 5994 */ 5995 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 5996 ret = -EMLINK; 5997 goto out; 5998 } 5999 6000 /* 6001 * Logging ancestors needs to do more searches on the fs/subvol 6002 * tree, so it releases the path as needed to avoid deadlocks. 6003 * Keep track of the last inode ref key and resume from that key 6004 * after logging all new ancestors for the current hard link. 6005 */ 6006 memcpy(&search_key, &found_key, sizeof(search_key)); 6007 6008 ret = log_new_ancestors(trans, root, path, ctx); 6009 if (ret) 6010 goto out; 6011 btrfs_release_path(path); 6012 goto again; 6013 } 6014 ret = 0; 6015 out: 6016 btrfs_free_path(path); 6017 return ret; 6018 } 6019 6020 /* 6021 * helper function around btrfs_log_inode to make sure newly created 6022 * parent directories also end up in the log. A minimal inode and backref 6023 * only logging is done of any parent directories that are older than 6024 * the last committed transaction 6025 */ 6026 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 6027 struct btrfs_inode *inode, 6028 struct dentry *parent, 6029 const loff_t start, 6030 const loff_t end, 6031 int inode_only, 6032 struct btrfs_log_ctx *ctx) 6033 { 6034 struct btrfs_root *root = inode->root; 6035 struct btrfs_fs_info *fs_info = root->fs_info; 6036 struct super_block *sb; 6037 int ret = 0; 6038 u64 last_committed = fs_info->last_trans_committed; 6039 bool log_dentries = false; 6040 6041 sb = inode->vfs_inode.i_sb; 6042 6043 if (btrfs_test_opt(fs_info, NOTREELOG)) { 6044 ret = 1; 6045 goto end_no_trans; 6046 } 6047 6048 /* 6049 * The prev transaction commit doesn't complete, we need do 6050 * full commit by ourselves. 6051 */ 6052 if (fs_info->last_trans_log_full_commit > 6053 fs_info->last_trans_committed) { 6054 ret = 1; 6055 goto end_no_trans; 6056 } 6057 6058 if (btrfs_root_refs(&root->root_item) == 0) { 6059 ret = 1; 6060 goto end_no_trans; 6061 } 6062 6063 ret = check_parent_dirs_for_sync(trans, inode, parent, sb, 6064 last_committed); 6065 if (ret) 6066 goto end_no_trans; 6067 6068 /* 6069 * Skip already logged inodes or inodes corresponding to tmpfiles 6070 * (since logging them is pointless, a link count of 0 means they 6071 * will never be accessible). 6072 */ 6073 if (btrfs_inode_in_log(inode, trans->transid) || 6074 inode->vfs_inode.i_nlink == 0) { 6075 ret = BTRFS_NO_LOG_SYNC; 6076 goto end_no_trans; 6077 } 6078 6079 ret = start_log_trans(trans, root, ctx); 6080 if (ret) 6081 goto end_no_trans; 6082 6083 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 6084 if (ret) 6085 goto end_trans; 6086 6087 /* 6088 * for regular files, if its inode is already on disk, we don't 6089 * have to worry about the parents at all. This is because 6090 * we can use the last_unlink_trans field to record renames 6091 * and other fun in this file. 6092 */ 6093 if (S_ISREG(inode->vfs_inode.i_mode) && 6094 inode->generation <= last_committed && 6095 inode->last_unlink_trans <= last_committed) { 6096 ret = 0; 6097 goto end_trans; 6098 } 6099 6100 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) 6101 log_dentries = true; 6102 6103 /* 6104 * On unlink we must make sure all our current and old parent directory 6105 * inodes are fully logged. This is to prevent leaving dangling 6106 * directory index entries in directories that were our parents but are 6107 * not anymore. Not doing this results in old parent directory being 6108 * impossible to delete after log replay (rmdir will always fail with 6109 * error -ENOTEMPTY). 6110 * 6111 * Example 1: 6112 * 6113 * mkdir testdir 6114 * touch testdir/foo 6115 * ln testdir/foo testdir/bar 6116 * sync 6117 * unlink testdir/bar 6118 * xfs_io -c fsync testdir/foo 6119 * <power failure> 6120 * mount fs, triggers log replay 6121 * 6122 * If we don't log the parent directory (testdir), after log replay the 6123 * directory still has an entry pointing to the file inode using the bar 6124 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6125 * the file inode has a link count of 1. 6126 * 6127 * Example 2: 6128 * 6129 * mkdir testdir 6130 * touch foo 6131 * ln foo testdir/foo2 6132 * ln foo testdir/foo3 6133 * sync 6134 * unlink testdir/foo3 6135 * xfs_io -c fsync foo 6136 * <power failure> 6137 * mount fs, triggers log replay 6138 * 6139 * Similar as the first example, after log replay the parent directory 6140 * testdir still has an entry pointing to the inode file with name foo3 6141 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6142 * and has a link count of 2. 6143 */ 6144 if (inode->last_unlink_trans > last_committed) { 6145 ret = btrfs_log_all_parents(trans, inode, ctx); 6146 if (ret) 6147 goto end_trans; 6148 } 6149 6150 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6151 if (ret) 6152 goto end_trans; 6153 6154 if (log_dentries) 6155 ret = log_new_dir_dentries(trans, root, inode, ctx); 6156 else 6157 ret = 0; 6158 end_trans: 6159 if (ret < 0) { 6160 btrfs_set_log_full_commit(trans); 6161 ret = 1; 6162 } 6163 6164 if (ret) 6165 btrfs_remove_log_ctx(root, ctx); 6166 btrfs_end_log_trans(root); 6167 end_no_trans: 6168 return ret; 6169 } 6170 6171 /* 6172 * it is not safe to log dentry if the chunk root has added new 6173 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6174 * If this returns 1, you must commit the transaction to safely get your 6175 * data on disk. 6176 */ 6177 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6178 struct dentry *dentry, 6179 const loff_t start, 6180 const loff_t end, 6181 struct btrfs_log_ctx *ctx) 6182 { 6183 struct dentry *parent = dget_parent(dentry); 6184 int ret; 6185 6186 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6187 start, end, LOG_INODE_ALL, ctx); 6188 dput(parent); 6189 6190 return ret; 6191 } 6192 6193 /* 6194 * should be called during mount to recover any replay any log trees 6195 * from the FS 6196 */ 6197 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6198 { 6199 int ret; 6200 struct btrfs_path *path; 6201 struct btrfs_trans_handle *trans; 6202 struct btrfs_key key; 6203 struct btrfs_key found_key; 6204 struct btrfs_key tmp_key; 6205 struct btrfs_root *log; 6206 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6207 struct walk_control wc = { 6208 .process_func = process_one_buffer, 6209 .stage = 0, 6210 }; 6211 6212 path = btrfs_alloc_path(); 6213 if (!path) 6214 return -ENOMEM; 6215 6216 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6217 6218 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6219 if (IS_ERR(trans)) { 6220 ret = PTR_ERR(trans); 6221 goto error; 6222 } 6223 6224 wc.trans = trans; 6225 wc.pin = 1; 6226 6227 ret = walk_log_tree(trans, log_root_tree, &wc); 6228 if (ret) { 6229 btrfs_handle_fs_error(fs_info, ret, 6230 "Failed to pin buffers while recovering log root tree."); 6231 goto error; 6232 } 6233 6234 again: 6235 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6236 key.offset = (u64)-1; 6237 key.type = BTRFS_ROOT_ITEM_KEY; 6238 6239 while (1) { 6240 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6241 6242 if (ret < 0) { 6243 btrfs_handle_fs_error(fs_info, ret, 6244 "Couldn't find tree log root."); 6245 goto error; 6246 } 6247 if (ret > 0) { 6248 if (path->slots[0] == 0) 6249 break; 6250 path->slots[0]--; 6251 } 6252 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6253 path->slots[0]); 6254 btrfs_release_path(path); 6255 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6256 break; 6257 6258 log = btrfs_read_fs_root(log_root_tree, &found_key); 6259 if (IS_ERR(log)) { 6260 ret = PTR_ERR(log); 6261 btrfs_handle_fs_error(fs_info, ret, 6262 "Couldn't read tree log root."); 6263 goto error; 6264 } 6265 6266 tmp_key.objectid = found_key.offset; 6267 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 6268 tmp_key.offset = (u64)-1; 6269 6270 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 6271 if (IS_ERR(wc.replay_dest)) { 6272 ret = PTR_ERR(wc.replay_dest); 6273 free_extent_buffer(log->node); 6274 free_extent_buffer(log->commit_root); 6275 kfree(log); 6276 btrfs_handle_fs_error(fs_info, ret, 6277 "Couldn't read target root for tree log recovery."); 6278 goto error; 6279 } 6280 6281 wc.replay_dest->log_root = log; 6282 btrfs_record_root_in_trans(trans, wc.replay_dest); 6283 ret = walk_log_tree(trans, log, &wc); 6284 6285 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6286 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6287 path); 6288 } 6289 6290 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6291 struct btrfs_root *root = wc.replay_dest; 6292 6293 btrfs_release_path(path); 6294 6295 /* 6296 * We have just replayed everything, and the highest 6297 * objectid of fs roots probably has changed in case 6298 * some inode_item's got replayed. 6299 * 6300 * root->objectid_mutex is not acquired as log replay 6301 * could only happen during mount. 6302 */ 6303 ret = btrfs_find_highest_objectid(root, 6304 &root->highest_objectid); 6305 } 6306 6307 key.offset = found_key.offset - 1; 6308 wc.replay_dest->log_root = NULL; 6309 free_extent_buffer(log->node); 6310 free_extent_buffer(log->commit_root); 6311 kfree(log); 6312 6313 if (ret) 6314 goto error; 6315 6316 if (found_key.offset == 0) 6317 break; 6318 } 6319 btrfs_release_path(path); 6320 6321 /* step one is to pin it all, step two is to replay just inodes */ 6322 if (wc.pin) { 6323 wc.pin = 0; 6324 wc.process_func = replay_one_buffer; 6325 wc.stage = LOG_WALK_REPLAY_INODES; 6326 goto again; 6327 } 6328 /* step three is to replay everything */ 6329 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6330 wc.stage++; 6331 goto again; 6332 } 6333 6334 btrfs_free_path(path); 6335 6336 /* step 4: commit the transaction, which also unpins the blocks */ 6337 ret = btrfs_commit_transaction(trans); 6338 if (ret) 6339 return ret; 6340 6341 free_extent_buffer(log_root_tree->node); 6342 log_root_tree->log_root = NULL; 6343 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6344 kfree(log_root_tree); 6345 6346 return 0; 6347 error: 6348 if (wc.trans) 6349 btrfs_end_transaction(wc.trans); 6350 btrfs_free_path(path); 6351 return ret; 6352 } 6353 6354 /* 6355 * there are some corner cases where we want to force a full 6356 * commit instead of allowing a directory to be logged. 6357 * 6358 * They revolve around files there were unlinked from the directory, and 6359 * this function updates the parent directory so that a full commit is 6360 * properly done if it is fsync'd later after the unlinks are done. 6361 * 6362 * Must be called before the unlink operations (updates to the subvolume tree, 6363 * inodes, etc) are done. 6364 */ 6365 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6366 struct btrfs_inode *dir, struct btrfs_inode *inode, 6367 int for_rename) 6368 { 6369 /* 6370 * when we're logging a file, if it hasn't been renamed 6371 * or unlinked, and its inode is fully committed on disk, 6372 * we don't have to worry about walking up the directory chain 6373 * to log its parents. 6374 * 6375 * So, we use the last_unlink_trans field to put this transid 6376 * into the file. When the file is logged we check it and 6377 * don't log the parents if the file is fully on disk. 6378 */ 6379 mutex_lock(&inode->log_mutex); 6380 inode->last_unlink_trans = trans->transid; 6381 mutex_unlock(&inode->log_mutex); 6382 6383 /* 6384 * if this directory was already logged any new 6385 * names for this file/dir will get recorded 6386 */ 6387 smp_mb(); 6388 if (dir->logged_trans == trans->transid) 6389 return; 6390 6391 /* 6392 * if the inode we're about to unlink was logged, 6393 * the log will be properly updated for any new names 6394 */ 6395 if (inode->logged_trans == trans->transid) 6396 return; 6397 6398 /* 6399 * when renaming files across directories, if the directory 6400 * there we're unlinking from gets fsync'd later on, there's 6401 * no way to find the destination directory later and fsync it 6402 * properly. So, we have to be conservative and force commits 6403 * so the new name gets discovered. 6404 */ 6405 if (for_rename) 6406 goto record; 6407 6408 /* we can safely do the unlink without any special recording */ 6409 return; 6410 6411 record: 6412 mutex_lock(&dir->log_mutex); 6413 dir->last_unlink_trans = trans->transid; 6414 mutex_unlock(&dir->log_mutex); 6415 } 6416 6417 /* 6418 * Make sure that if someone attempts to fsync the parent directory of a deleted 6419 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6420 * that after replaying the log tree of the parent directory's root we will not 6421 * see the snapshot anymore and at log replay time we will not see any log tree 6422 * corresponding to the deleted snapshot's root, which could lead to replaying 6423 * it after replaying the log tree of the parent directory (which would replay 6424 * the snapshot delete operation). 6425 * 6426 * Must be called before the actual snapshot destroy operation (updates to the 6427 * parent root and tree of tree roots trees, etc) are done. 6428 */ 6429 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6430 struct btrfs_inode *dir) 6431 { 6432 mutex_lock(&dir->log_mutex); 6433 dir->last_unlink_trans = trans->transid; 6434 mutex_unlock(&dir->log_mutex); 6435 } 6436 6437 /* 6438 * Call this after adding a new name for a file and it will properly 6439 * update the log to reflect the new name. 6440 * 6441 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's 6442 * true (because it's not used). 6443 * 6444 * Return value depends on whether @sync_log is true or false. 6445 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6446 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT 6447 * otherwise. 6448 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to 6449 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log, 6450 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6451 * committed (without attempting to sync the log). 6452 */ 6453 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 6454 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6455 struct dentry *parent, 6456 bool sync_log, struct btrfs_log_ctx *ctx) 6457 { 6458 struct btrfs_fs_info *fs_info = trans->fs_info; 6459 int ret; 6460 6461 /* 6462 * this will force the logging code to walk the dentry chain 6463 * up for the file 6464 */ 6465 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6466 inode->last_unlink_trans = trans->transid; 6467 6468 /* 6469 * if this inode hasn't been logged and directory we're renaming it 6470 * from hasn't been logged, we don't need to log it 6471 */ 6472 if (inode->logged_trans <= fs_info->last_trans_committed && 6473 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed)) 6474 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT : 6475 BTRFS_DONT_NEED_LOG_SYNC; 6476 6477 if (sync_log) { 6478 struct btrfs_log_ctx ctx2; 6479 6480 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode); 6481 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6482 LOG_INODE_EXISTS, &ctx2); 6483 if (ret == BTRFS_NO_LOG_SYNC) 6484 return BTRFS_DONT_NEED_TRANS_COMMIT; 6485 else if (ret) 6486 return BTRFS_NEED_TRANS_COMMIT; 6487 6488 ret = btrfs_sync_log(trans, inode->root, &ctx2); 6489 if (ret) 6490 return BTRFS_NEED_TRANS_COMMIT; 6491 return BTRFS_DONT_NEED_TRANS_COMMIT; 6492 } 6493 6494 ASSERT(ctx); 6495 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6496 LOG_INODE_EXISTS, ctx); 6497 if (ret == BTRFS_NO_LOG_SYNC) 6498 return BTRFS_DONT_NEED_LOG_SYNC; 6499 else if (ret) 6500 return BTRFS_NEED_TRANS_COMMIT; 6501 6502 return BTRFS_NEED_LOG_SYNC; 6503 } 6504 6505