xref: /openbmc/linux/fs/btrfs/tree-log.c (revision a2818ee4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "ctree.h"
12 #include "tree-log.h"
13 #include "disk-io.h"
14 #include "locking.h"
15 #include "print-tree.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "inode-map.h"
20 
21 /* magic values for the inode_only field in btrfs_log_inode:
22  *
23  * LOG_INODE_ALL means to log everything
24  * LOG_INODE_EXISTS means to log just enough to recreate the inode
25  * during log replay
26  */
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
30 
31 /*
32  * directory trouble cases
33  *
34  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35  * log, we must force a full commit before doing an fsync of the directory
36  * where the unlink was done.
37  * ---> record transid of last unlink/rename per directory
38  *
39  * mkdir foo/some_dir
40  * normal commit
41  * rename foo/some_dir foo2/some_dir
42  * mkdir foo/some_dir
43  * fsync foo/some_dir/some_file
44  *
45  * The fsync above will unlink the original some_dir without recording
46  * it in its new location (foo2).  After a crash, some_dir will be gone
47  * unless the fsync of some_file forces a full commit
48  *
49  * 2) we must log any new names for any file or dir that is in the fsync
50  * log. ---> check inode while renaming/linking.
51  *
52  * 2a) we must log any new names for any file or dir during rename
53  * when the directory they are being removed from was logged.
54  * ---> check inode and old parent dir during rename
55  *
56  *  2a is actually the more important variant.  With the extra logging
57  *  a crash might unlink the old name without recreating the new one
58  *
59  * 3) after a crash, we must go through any directories with a link count
60  * of zero and redo the rm -rf
61  *
62  * mkdir f1/foo
63  * normal commit
64  * rm -rf f1/foo
65  * fsync(f1)
66  *
67  * The directory f1 was fully removed from the FS, but fsync was never
68  * called on f1, only its parent dir.  After a crash the rm -rf must
69  * be replayed.  This must be able to recurse down the entire
70  * directory tree.  The inode link count fixup code takes care of the
71  * ugly details.
72  */
73 
74 /*
75  * stages for the tree walking.  The first
76  * stage (0) is to only pin down the blocks we find
77  * the second stage (1) is to make sure that all the inodes
78  * we find in the log are created in the subvolume.
79  *
80  * The last stage is to deal with directories and links and extents
81  * and all the other fun semantics
82  */
83 #define LOG_WALK_PIN_ONLY 0
84 #define LOG_WALK_REPLAY_INODES 1
85 #define LOG_WALK_REPLAY_DIR_INDEX 2
86 #define LOG_WALK_REPLAY_ALL 3
87 
88 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89 			   struct btrfs_root *root, struct btrfs_inode *inode,
90 			   int inode_only,
91 			   const loff_t start,
92 			   const loff_t end,
93 			   struct btrfs_log_ctx *ctx);
94 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root,
96 			     struct btrfs_path *path, u64 objectid);
97 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 				       struct btrfs_root *root,
99 				       struct btrfs_root *log,
100 				       struct btrfs_path *path,
101 				       u64 dirid, int del_all);
102 
103 /*
104  * tree logging is a special write ahead log used to make sure that
105  * fsyncs and O_SYNCs can happen without doing full tree commits.
106  *
107  * Full tree commits are expensive because they require commonly
108  * modified blocks to be recowed, creating many dirty pages in the
109  * extent tree an 4x-6x higher write load than ext3.
110  *
111  * Instead of doing a tree commit on every fsync, we use the
112  * key ranges and transaction ids to find items for a given file or directory
113  * that have changed in this transaction.  Those items are copied into
114  * a special tree (one per subvolume root), that tree is written to disk
115  * and then the fsync is considered complete.
116  *
117  * After a crash, items are copied out of the log-tree back into the
118  * subvolume tree.  Any file data extents found are recorded in the extent
119  * allocation tree, and the log-tree freed.
120  *
121  * The log tree is read three times, once to pin down all the extents it is
122  * using in ram and once, once to create all the inodes logged in the tree
123  * and once to do all the other items.
124  */
125 
126 /*
127  * start a sub transaction and setup the log tree
128  * this increments the log tree writer count to make the people
129  * syncing the tree wait for us to finish
130  */
131 static int start_log_trans(struct btrfs_trans_handle *trans,
132 			   struct btrfs_root *root,
133 			   struct btrfs_log_ctx *ctx)
134 {
135 	struct btrfs_fs_info *fs_info = root->fs_info;
136 	int ret = 0;
137 
138 	mutex_lock(&root->log_mutex);
139 
140 	if (root->log_root) {
141 		if (btrfs_need_log_full_commit(fs_info, trans)) {
142 			ret = -EAGAIN;
143 			goto out;
144 		}
145 
146 		if (!root->log_start_pid) {
147 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148 			root->log_start_pid = current->pid;
149 		} else if (root->log_start_pid != current->pid) {
150 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
151 		}
152 	} else {
153 		mutex_lock(&fs_info->tree_log_mutex);
154 		if (!fs_info->log_root_tree)
155 			ret = btrfs_init_log_root_tree(trans, fs_info);
156 		mutex_unlock(&fs_info->tree_log_mutex);
157 		if (ret)
158 			goto out;
159 
160 		ret = btrfs_add_log_tree(trans, root);
161 		if (ret)
162 			goto out;
163 
164 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 		root->log_start_pid = current->pid;
166 	}
167 
168 	atomic_inc(&root->log_batch);
169 	atomic_inc(&root->log_writers);
170 	if (ctx) {
171 		int index = root->log_transid % 2;
172 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
173 		ctx->log_transid = root->log_transid;
174 	}
175 
176 out:
177 	mutex_unlock(&root->log_mutex);
178 	return ret;
179 }
180 
181 /*
182  * returns 0 if there was a log transaction running and we were able
183  * to join, or returns -ENOENT if there were not transactions
184  * in progress
185  */
186 static int join_running_log_trans(struct btrfs_root *root)
187 {
188 	int ret = -ENOENT;
189 
190 	smp_mb();
191 	if (!root->log_root)
192 		return -ENOENT;
193 
194 	mutex_lock(&root->log_mutex);
195 	if (root->log_root) {
196 		ret = 0;
197 		atomic_inc(&root->log_writers);
198 	}
199 	mutex_unlock(&root->log_mutex);
200 	return ret;
201 }
202 
203 /*
204  * This either makes the current running log transaction wait
205  * until you call btrfs_end_log_trans() or it makes any future
206  * log transactions wait until you call btrfs_end_log_trans()
207  */
208 void btrfs_pin_log_trans(struct btrfs_root *root)
209 {
210 	mutex_lock(&root->log_mutex);
211 	atomic_inc(&root->log_writers);
212 	mutex_unlock(&root->log_mutex);
213 }
214 
215 /*
216  * indicate we're done making changes to the log tree
217  * and wake up anyone waiting to do a sync
218  */
219 void btrfs_end_log_trans(struct btrfs_root *root)
220 {
221 	if (atomic_dec_and_test(&root->log_writers)) {
222 		/* atomic_dec_and_test implies a barrier */
223 		cond_wake_up_nomb(&root->log_writer_wait);
224 	}
225 }
226 
227 
228 /*
229  * the walk control struct is used to pass state down the chain when
230  * processing the log tree.  The stage field tells us which part
231  * of the log tree processing we are currently doing.  The others
232  * are state fields used for that specific part
233  */
234 struct walk_control {
235 	/* should we free the extent on disk when done?  This is used
236 	 * at transaction commit time while freeing a log tree
237 	 */
238 	int free;
239 
240 	/* should we write out the extent buffer?  This is used
241 	 * while flushing the log tree to disk during a sync
242 	 */
243 	int write;
244 
245 	/* should we wait for the extent buffer io to finish?  Also used
246 	 * while flushing the log tree to disk for a sync
247 	 */
248 	int wait;
249 
250 	/* pin only walk, we record which extents on disk belong to the
251 	 * log trees
252 	 */
253 	int pin;
254 
255 	/* what stage of the replay code we're currently in */
256 	int stage;
257 
258 	/*
259 	 * Ignore any items from the inode currently being processed. Needs
260 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
261 	 * the LOG_WALK_REPLAY_INODES stage.
262 	 */
263 	bool ignore_cur_inode;
264 
265 	/* the root we are currently replaying */
266 	struct btrfs_root *replay_dest;
267 
268 	/* the trans handle for the current replay */
269 	struct btrfs_trans_handle *trans;
270 
271 	/* the function that gets used to process blocks we find in the
272 	 * tree.  Note the extent_buffer might not be up to date when it is
273 	 * passed in, and it must be checked or read if you need the data
274 	 * inside it
275 	 */
276 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
277 			    struct walk_control *wc, u64 gen, int level);
278 };
279 
280 /*
281  * process_func used to pin down extents, write them or wait on them
282  */
283 static int process_one_buffer(struct btrfs_root *log,
284 			      struct extent_buffer *eb,
285 			      struct walk_control *wc, u64 gen, int level)
286 {
287 	struct btrfs_fs_info *fs_info = log->fs_info;
288 	int ret = 0;
289 
290 	/*
291 	 * If this fs is mixed then we need to be able to process the leaves to
292 	 * pin down any logged extents, so we have to read the block.
293 	 */
294 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
295 		ret = btrfs_read_buffer(eb, gen, level, NULL);
296 		if (ret)
297 			return ret;
298 	}
299 
300 	if (wc->pin)
301 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
302 						      eb->len);
303 
304 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
305 		if (wc->pin && btrfs_header_level(eb) == 0)
306 			ret = btrfs_exclude_logged_extents(fs_info, eb);
307 		if (wc->write)
308 			btrfs_write_tree_block(eb);
309 		if (wc->wait)
310 			btrfs_wait_tree_block_writeback(eb);
311 	}
312 	return ret;
313 }
314 
315 /*
316  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
317  * to the src data we are copying out.
318  *
319  * root is the tree we are copying into, and path is a scratch
320  * path for use in this function (it should be released on entry and
321  * will be released on exit).
322  *
323  * If the key is already in the destination tree the existing item is
324  * overwritten.  If the existing item isn't big enough, it is extended.
325  * If it is too large, it is truncated.
326  *
327  * If the key isn't in the destination yet, a new item is inserted.
328  */
329 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
330 				   struct btrfs_root *root,
331 				   struct btrfs_path *path,
332 				   struct extent_buffer *eb, int slot,
333 				   struct btrfs_key *key)
334 {
335 	struct btrfs_fs_info *fs_info = root->fs_info;
336 	int ret;
337 	u32 item_size;
338 	u64 saved_i_size = 0;
339 	int save_old_i_size = 0;
340 	unsigned long src_ptr;
341 	unsigned long dst_ptr;
342 	int overwrite_root = 0;
343 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
344 
345 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
346 		overwrite_root = 1;
347 
348 	item_size = btrfs_item_size_nr(eb, slot);
349 	src_ptr = btrfs_item_ptr_offset(eb, slot);
350 
351 	/* look for the key in the destination tree */
352 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
353 	if (ret < 0)
354 		return ret;
355 
356 	if (ret == 0) {
357 		char *src_copy;
358 		char *dst_copy;
359 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
360 						  path->slots[0]);
361 		if (dst_size != item_size)
362 			goto insert;
363 
364 		if (item_size == 0) {
365 			btrfs_release_path(path);
366 			return 0;
367 		}
368 		dst_copy = kmalloc(item_size, GFP_NOFS);
369 		src_copy = kmalloc(item_size, GFP_NOFS);
370 		if (!dst_copy || !src_copy) {
371 			btrfs_release_path(path);
372 			kfree(dst_copy);
373 			kfree(src_copy);
374 			return -ENOMEM;
375 		}
376 
377 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
378 
379 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
380 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
381 				   item_size);
382 		ret = memcmp(dst_copy, src_copy, item_size);
383 
384 		kfree(dst_copy);
385 		kfree(src_copy);
386 		/*
387 		 * they have the same contents, just return, this saves
388 		 * us from cowing blocks in the destination tree and doing
389 		 * extra writes that may not have been done by a previous
390 		 * sync
391 		 */
392 		if (ret == 0) {
393 			btrfs_release_path(path);
394 			return 0;
395 		}
396 
397 		/*
398 		 * We need to load the old nbytes into the inode so when we
399 		 * replay the extents we've logged we get the right nbytes.
400 		 */
401 		if (inode_item) {
402 			struct btrfs_inode_item *item;
403 			u64 nbytes;
404 			u32 mode;
405 
406 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
407 					      struct btrfs_inode_item);
408 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
409 			item = btrfs_item_ptr(eb, slot,
410 					      struct btrfs_inode_item);
411 			btrfs_set_inode_nbytes(eb, item, nbytes);
412 
413 			/*
414 			 * If this is a directory we need to reset the i_size to
415 			 * 0 so that we can set it up properly when replaying
416 			 * the rest of the items in this log.
417 			 */
418 			mode = btrfs_inode_mode(eb, item);
419 			if (S_ISDIR(mode))
420 				btrfs_set_inode_size(eb, item, 0);
421 		}
422 	} else if (inode_item) {
423 		struct btrfs_inode_item *item;
424 		u32 mode;
425 
426 		/*
427 		 * New inode, set nbytes to 0 so that the nbytes comes out
428 		 * properly when we replay the extents.
429 		 */
430 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
431 		btrfs_set_inode_nbytes(eb, item, 0);
432 
433 		/*
434 		 * If this is a directory we need to reset the i_size to 0 so
435 		 * that we can set it up properly when replaying the rest of
436 		 * the items in this log.
437 		 */
438 		mode = btrfs_inode_mode(eb, item);
439 		if (S_ISDIR(mode))
440 			btrfs_set_inode_size(eb, item, 0);
441 	}
442 insert:
443 	btrfs_release_path(path);
444 	/* try to insert the key into the destination tree */
445 	path->skip_release_on_error = 1;
446 	ret = btrfs_insert_empty_item(trans, root, path,
447 				      key, item_size);
448 	path->skip_release_on_error = 0;
449 
450 	/* make sure any existing item is the correct size */
451 	if (ret == -EEXIST || ret == -EOVERFLOW) {
452 		u32 found_size;
453 		found_size = btrfs_item_size_nr(path->nodes[0],
454 						path->slots[0]);
455 		if (found_size > item_size)
456 			btrfs_truncate_item(fs_info, path, item_size, 1);
457 		else if (found_size < item_size)
458 			btrfs_extend_item(fs_info, path,
459 					  item_size - found_size);
460 	} else if (ret) {
461 		return ret;
462 	}
463 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
464 					path->slots[0]);
465 
466 	/* don't overwrite an existing inode if the generation number
467 	 * was logged as zero.  This is done when the tree logging code
468 	 * is just logging an inode to make sure it exists after recovery.
469 	 *
470 	 * Also, don't overwrite i_size on directories during replay.
471 	 * log replay inserts and removes directory items based on the
472 	 * state of the tree found in the subvolume, and i_size is modified
473 	 * as it goes
474 	 */
475 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
476 		struct btrfs_inode_item *src_item;
477 		struct btrfs_inode_item *dst_item;
478 
479 		src_item = (struct btrfs_inode_item *)src_ptr;
480 		dst_item = (struct btrfs_inode_item *)dst_ptr;
481 
482 		if (btrfs_inode_generation(eb, src_item) == 0) {
483 			struct extent_buffer *dst_eb = path->nodes[0];
484 			const u64 ino_size = btrfs_inode_size(eb, src_item);
485 
486 			/*
487 			 * For regular files an ino_size == 0 is used only when
488 			 * logging that an inode exists, as part of a directory
489 			 * fsync, and the inode wasn't fsynced before. In this
490 			 * case don't set the size of the inode in the fs/subvol
491 			 * tree, otherwise we would be throwing valid data away.
492 			 */
493 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
494 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
495 			    ino_size != 0) {
496 				struct btrfs_map_token token;
497 
498 				btrfs_init_map_token(&token);
499 				btrfs_set_token_inode_size(dst_eb, dst_item,
500 							   ino_size, &token);
501 			}
502 			goto no_copy;
503 		}
504 
505 		if (overwrite_root &&
506 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
507 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
508 			save_old_i_size = 1;
509 			saved_i_size = btrfs_inode_size(path->nodes[0],
510 							dst_item);
511 		}
512 	}
513 
514 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
515 			   src_ptr, item_size);
516 
517 	if (save_old_i_size) {
518 		struct btrfs_inode_item *dst_item;
519 		dst_item = (struct btrfs_inode_item *)dst_ptr;
520 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
521 	}
522 
523 	/* make sure the generation is filled in */
524 	if (key->type == BTRFS_INODE_ITEM_KEY) {
525 		struct btrfs_inode_item *dst_item;
526 		dst_item = (struct btrfs_inode_item *)dst_ptr;
527 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
528 			btrfs_set_inode_generation(path->nodes[0], dst_item,
529 						   trans->transid);
530 		}
531 	}
532 no_copy:
533 	btrfs_mark_buffer_dirty(path->nodes[0]);
534 	btrfs_release_path(path);
535 	return 0;
536 }
537 
538 /*
539  * simple helper to read an inode off the disk from a given root
540  * This can only be called for subvolume roots and not for the log
541  */
542 static noinline struct inode *read_one_inode(struct btrfs_root *root,
543 					     u64 objectid)
544 {
545 	struct btrfs_key key;
546 	struct inode *inode;
547 
548 	key.objectid = objectid;
549 	key.type = BTRFS_INODE_ITEM_KEY;
550 	key.offset = 0;
551 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
552 	if (IS_ERR(inode))
553 		inode = NULL;
554 	return inode;
555 }
556 
557 /* replays a single extent in 'eb' at 'slot' with 'key' into the
558  * subvolume 'root'.  path is released on entry and should be released
559  * on exit.
560  *
561  * extents in the log tree have not been allocated out of the extent
562  * tree yet.  So, this completes the allocation, taking a reference
563  * as required if the extent already exists or creating a new extent
564  * if it isn't in the extent allocation tree yet.
565  *
566  * The extent is inserted into the file, dropping any existing extents
567  * from the file that overlap the new one.
568  */
569 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
570 				      struct btrfs_root *root,
571 				      struct btrfs_path *path,
572 				      struct extent_buffer *eb, int slot,
573 				      struct btrfs_key *key)
574 {
575 	struct btrfs_fs_info *fs_info = root->fs_info;
576 	int found_type;
577 	u64 extent_end;
578 	u64 start = key->offset;
579 	u64 nbytes = 0;
580 	struct btrfs_file_extent_item *item;
581 	struct inode *inode = NULL;
582 	unsigned long size;
583 	int ret = 0;
584 
585 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
586 	found_type = btrfs_file_extent_type(eb, item);
587 
588 	if (found_type == BTRFS_FILE_EXTENT_REG ||
589 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
590 		nbytes = btrfs_file_extent_num_bytes(eb, item);
591 		extent_end = start + nbytes;
592 
593 		/*
594 		 * We don't add to the inodes nbytes if we are prealloc or a
595 		 * hole.
596 		 */
597 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
598 			nbytes = 0;
599 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
600 		size = btrfs_file_extent_ram_bytes(eb, item);
601 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
602 		extent_end = ALIGN(start + size,
603 				   fs_info->sectorsize);
604 	} else {
605 		ret = 0;
606 		goto out;
607 	}
608 
609 	inode = read_one_inode(root, key->objectid);
610 	if (!inode) {
611 		ret = -EIO;
612 		goto out;
613 	}
614 
615 	/*
616 	 * first check to see if we already have this extent in the
617 	 * file.  This must be done before the btrfs_drop_extents run
618 	 * so we don't try to drop this extent.
619 	 */
620 	ret = btrfs_lookup_file_extent(trans, root, path,
621 			btrfs_ino(BTRFS_I(inode)), start, 0);
622 
623 	if (ret == 0 &&
624 	    (found_type == BTRFS_FILE_EXTENT_REG ||
625 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
626 		struct btrfs_file_extent_item cmp1;
627 		struct btrfs_file_extent_item cmp2;
628 		struct btrfs_file_extent_item *existing;
629 		struct extent_buffer *leaf;
630 
631 		leaf = path->nodes[0];
632 		existing = btrfs_item_ptr(leaf, path->slots[0],
633 					  struct btrfs_file_extent_item);
634 
635 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
636 				   sizeof(cmp1));
637 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
638 				   sizeof(cmp2));
639 
640 		/*
641 		 * we already have a pointer to this exact extent,
642 		 * we don't have to do anything
643 		 */
644 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
645 			btrfs_release_path(path);
646 			goto out;
647 		}
648 	}
649 	btrfs_release_path(path);
650 
651 	/* drop any overlapping extents */
652 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
653 	if (ret)
654 		goto out;
655 
656 	if (found_type == BTRFS_FILE_EXTENT_REG ||
657 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
658 		u64 offset;
659 		unsigned long dest_offset;
660 		struct btrfs_key ins;
661 
662 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
663 		    btrfs_fs_incompat(fs_info, NO_HOLES))
664 			goto update_inode;
665 
666 		ret = btrfs_insert_empty_item(trans, root, path, key,
667 					      sizeof(*item));
668 		if (ret)
669 			goto out;
670 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
671 						    path->slots[0]);
672 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
673 				(unsigned long)item,  sizeof(*item));
674 
675 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
676 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
677 		ins.type = BTRFS_EXTENT_ITEM_KEY;
678 		offset = key->offset - btrfs_file_extent_offset(eb, item);
679 
680 		/*
681 		 * Manually record dirty extent, as here we did a shallow
682 		 * file extent item copy and skip normal backref update,
683 		 * but modifying extent tree all by ourselves.
684 		 * So need to manually record dirty extent for qgroup,
685 		 * as the owner of the file extent changed from log tree
686 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
687 		 */
688 		ret = btrfs_qgroup_trace_extent(trans,
689 				btrfs_file_extent_disk_bytenr(eb, item),
690 				btrfs_file_extent_disk_num_bytes(eb, item),
691 				GFP_NOFS);
692 		if (ret < 0)
693 			goto out;
694 
695 		if (ins.objectid > 0) {
696 			u64 csum_start;
697 			u64 csum_end;
698 			LIST_HEAD(ordered_sums);
699 			/*
700 			 * is this extent already allocated in the extent
701 			 * allocation tree?  If so, just add a reference
702 			 */
703 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
704 						ins.offset);
705 			if (ret == 0) {
706 				ret = btrfs_inc_extent_ref(trans, root,
707 						ins.objectid, ins.offset,
708 						0, root->root_key.objectid,
709 						key->objectid, offset);
710 				if (ret)
711 					goto out;
712 			} else {
713 				/*
714 				 * insert the extent pointer in the extent
715 				 * allocation tree
716 				 */
717 				ret = btrfs_alloc_logged_file_extent(trans,
718 						root->root_key.objectid,
719 						key->objectid, offset, &ins);
720 				if (ret)
721 					goto out;
722 			}
723 			btrfs_release_path(path);
724 
725 			if (btrfs_file_extent_compression(eb, item)) {
726 				csum_start = ins.objectid;
727 				csum_end = csum_start + ins.offset;
728 			} else {
729 				csum_start = ins.objectid +
730 					btrfs_file_extent_offset(eb, item);
731 				csum_end = csum_start +
732 					btrfs_file_extent_num_bytes(eb, item);
733 			}
734 
735 			ret = btrfs_lookup_csums_range(root->log_root,
736 						csum_start, csum_end - 1,
737 						&ordered_sums, 0);
738 			if (ret)
739 				goto out;
740 			/*
741 			 * Now delete all existing cums in the csum root that
742 			 * cover our range. We do this because we can have an
743 			 * extent that is completely referenced by one file
744 			 * extent item and partially referenced by another
745 			 * file extent item (like after using the clone or
746 			 * extent_same ioctls). In this case if we end up doing
747 			 * the replay of the one that partially references the
748 			 * extent first, and we do not do the csum deletion
749 			 * below, we can get 2 csum items in the csum tree that
750 			 * overlap each other. For example, imagine our log has
751 			 * the two following file extent items:
752 			 *
753 			 * key (257 EXTENT_DATA 409600)
754 			 *     extent data disk byte 12845056 nr 102400
755 			 *     extent data offset 20480 nr 20480 ram 102400
756 			 *
757 			 * key (257 EXTENT_DATA 819200)
758 			 *     extent data disk byte 12845056 nr 102400
759 			 *     extent data offset 0 nr 102400 ram 102400
760 			 *
761 			 * Where the second one fully references the 100K extent
762 			 * that starts at disk byte 12845056, and the log tree
763 			 * has a single csum item that covers the entire range
764 			 * of the extent:
765 			 *
766 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
767 			 *
768 			 * After the first file extent item is replayed, the
769 			 * csum tree gets the following csum item:
770 			 *
771 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
772 			 *
773 			 * Which covers the 20K sub-range starting at offset 20K
774 			 * of our extent. Now when we replay the second file
775 			 * extent item, if we do not delete existing csum items
776 			 * that cover any of its blocks, we end up getting two
777 			 * csum items in our csum tree that overlap each other:
778 			 *
779 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
780 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
781 			 *
782 			 * Which is a problem, because after this anyone trying
783 			 * to lookup up for the checksum of any block of our
784 			 * extent starting at an offset of 40K or higher, will
785 			 * end up looking at the second csum item only, which
786 			 * does not contain the checksum for any block starting
787 			 * at offset 40K or higher of our extent.
788 			 */
789 			while (!list_empty(&ordered_sums)) {
790 				struct btrfs_ordered_sum *sums;
791 				sums = list_entry(ordered_sums.next,
792 						struct btrfs_ordered_sum,
793 						list);
794 				if (!ret)
795 					ret = btrfs_del_csums(trans, fs_info,
796 							      sums->bytenr,
797 							      sums->len);
798 				if (!ret)
799 					ret = btrfs_csum_file_blocks(trans,
800 						fs_info->csum_root, sums);
801 				list_del(&sums->list);
802 				kfree(sums);
803 			}
804 			if (ret)
805 				goto out;
806 		} else {
807 			btrfs_release_path(path);
808 		}
809 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
810 		/* inline extents are easy, we just overwrite them */
811 		ret = overwrite_item(trans, root, path, eb, slot, key);
812 		if (ret)
813 			goto out;
814 	}
815 
816 	inode_add_bytes(inode, nbytes);
817 update_inode:
818 	ret = btrfs_update_inode(trans, root, inode);
819 out:
820 	if (inode)
821 		iput(inode);
822 	return ret;
823 }
824 
825 /*
826  * when cleaning up conflicts between the directory names in the
827  * subvolume, directory names in the log and directory names in the
828  * inode back references, we may have to unlink inodes from directories.
829  *
830  * This is a helper function to do the unlink of a specific directory
831  * item
832  */
833 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
834 				      struct btrfs_root *root,
835 				      struct btrfs_path *path,
836 				      struct btrfs_inode *dir,
837 				      struct btrfs_dir_item *di)
838 {
839 	struct inode *inode;
840 	char *name;
841 	int name_len;
842 	struct extent_buffer *leaf;
843 	struct btrfs_key location;
844 	int ret;
845 
846 	leaf = path->nodes[0];
847 
848 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
849 	name_len = btrfs_dir_name_len(leaf, di);
850 	name = kmalloc(name_len, GFP_NOFS);
851 	if (!name)
852 		return -ENOMEM;
853 
854 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
855 	btrfs_release_path(path);
856 
857 	inode = read_one_inode(root, location.objectid);
858 	if (!inode) {
859 		ret = -EIO;
860 		goto out;
861 	}
862 
863 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
864 	if (ret)
865 		goto out;
866 
867 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
868 			name_len);
869 	if (ret)
870 		goto out;
871 	else
872 		ret = btrfs_run_delayed_items(trans);
873 out:
874 	kfree(name);
875 	iput(inode);
876 	return ret;
877 }
878 
879 /*
880  * helper function to see if a given name and sequence number found
881  * in an inode back reference are already in a directory and correctly
882  * point to this inode
883  */
884 static noinline int inode_in_dir(struct btrfs_root *root,
885 				 struct btrfs_path *path,
886 				 u64 dirid, u64 objectid, u64 index,
887 				 const char *name, int name_len)
888 {
889 	struct btrfs_dir_item *di;
890 	struct btrfs_key location;
891 	int match = 0;
892 
893 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
894 					 index, name, name_len, 0);
895 	if (di && !IS_ERR(di)) {
896 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
897 		if (location.objectid != objectid)
898 			goto out;
899 	} else
900 		goto out;
901 	btrfs_release_path(path);
902 
903 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
904 	if (di && !IS_ERR(di)) {
905 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
906 		if (location.objectid != objectid)
907 			goto out;
908 	} else
909 		goto out;
910 	match = 1;
911 out:
912 	btrfs_release_path(path);
913 	return match;
914 }
915 
916 /*
917  * helper function to check a log tree for a named back reference in
918  * an inode.  This is used to decide if a back reference that is
919  * found in the subvolume conflicts with what we find in the log.
920  *
921  * inode backreferences may have multiple refs in a single item,
922  * during replay we process one reference at a time, and we don't
923  * want to delete valid links to a file from the subvolume if that
924  * link is also in the log.
925  */
926 static noinline int backref_in_log(struct btrfs_root *log,
927 				   struct btrfs_key *key,
928 				   u64 ref_objectid,
929 				   const char *name, int namelen)
930 {
931 	struct btrfs_path *path;
932 	struct btrfs_inode_ref *ref;
933 	unsigned long ptr;
934 	unsigned long ptr_end;
935 	unsigned long name_ptr;
936 	int found_name_len;
937 	int item_size;
938 	int ret;
939 	int match = 0;
940 
941 	path = btrfs_alloc_path();
942 	if (!path)
943 		return -ENOMEM;
944 
945 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
946 	if (ret != 0)
947 		goto out;
948 
949 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
950 
951 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
952 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
953 						   path->slots[0],
954 						   ref_objectid,
955 						   name, namelen, NULL))
956 			match = 1;
957 
958 		goto out;
959 	}
960 
961 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
962 	ptr_end = ptr + item_size;
963 	while (ptr < ptr_end) {
964 		ref = (struct btrfs_inode_ref *)ptr;
965 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
966 		if (found_name_len == namelen) {
967 			name_ptr = (unsigned long)(ref + 1);
968 			ret = memcmp_extent_buffer(path->nodes[0], name,
969 						   name_ptr, namelen);
970 			if (ret == 0) {
971 				match = 1;
972 				goto out;
973 			}
974 		}
975 		ptr = (unsigned long)(ref + 1) + found_name_len;
976 	}
977 out:
978 	btrfs_free_path(path);
979 	return match;
980 }
981 
982 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
983 				  struct btrfs_root *root,
984 				  struct btrfs_path *path,
985 				  struct btrfs_root *log_root,
986 				  struct btrfs_inode *dir,
987 				  struct btrfs_inode *inode,
988 				  u64 inode_objectid, u64 parent_objectid,
989 				  u64 ref_index, char *name, int namelen,
990 				  int *search_done)
991 {
992 	int ret;
993 	char *victim_name;
994 	int victim_name_len;
995 	struct extent_buffer *leaf;
996 	struct btrfs_dir_item *di;
997 	struct btrfs_key search_key;
998 	struct btrfs_inode_extref *extref;
999 
1000 again:
1001 	/* Search old style refs */
1002 	search_key.objectid = inode_objectid;
1003 	search_key.type = BTRFS_INODE_REF_KEY;
1004 	search_key.offset = parent_objectid;
1005 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1006 	if (ret == 0) {
1007 		struct btrfs_inode_ref *victim_ref;
1008 		unsigned long ptr;
1009 		unsigned long ptr_end;
1010 
1011 		leaf = path->nodes[0];
1012 
1013 		/* are we trying to overwrite a back ref for the root directory
1014 		 * if so, just jump out, we're done
1015 		 */
1016 		if (search_key.objectid == search_key.offset)
1017 			return 1;
1018 
1019 		/* check all the names in this back reference to see
1020 		 * if they are in the log.  if so, we allow them to stay
1021 		 * otherwise they must be unlinked as a conflict
1022 		 */
1023 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1024 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1025 		while (ptr < ptr_end) {
1026 			victim_ref = (struct btrfs_inode_ref *)ptr;
1027 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1028 								   victim_ref);
1029 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1030 			if (!victim_name)
1031 				return -ENOMEM;
1032 
1033 			read_extent_buffer(leaf, victim_name,
1034 					   (unsigned long)(victim_ref + 1),
1035 					   victim_name_len);
1036 
1037 			if (!backref_in_log(log_root, &search_key,
1038 					    parent_objectid,
1039 					    victim_name,
1040 					    victim_name_len)) {
1041 				inc_nlink(&inode->vfs_inode);
1042 				btrfs_release_path(path);
1043 
1044 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1045 						victim_name, victim_name_len);
1046 				kfree(victim_name);
1047 				if (ret)
1048 					return ret;
1049 				ret = btrfs_run_delayed_items(trans);
1050 				if (ret)
1051 					return ret;
1052 				*search_done = 1;
1053 				goto again;
1054 			}
1055 			kfree(victim_name);
1056 
1057 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1058 		}
1059 
1060 		/*
1061 		 * NOTE: we have searched root tree and checked the
1062 		 * corresponding ref, it does not need to check again.
1063 		 */
1064 		*search_done = 1;
1065 	}
1066 	btrfs_release_path(path);
1067 
1068 	/* Same search but for extended refs */
1069 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070 					   inode_objectid, parent_objectid, 0,
1071 					   0);
1072 	if (!IS_ERR_OR_NULL(extref)) {
1073 		u32 item_size;
1074 		u32 cur_offset = 0;
1075 		unsigned long base;
1076 		struct inode *victim_parent;
1077 
1078 		leaf = path->nodes[0];
1079 
1080 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1082 
1083 		while (cur_offset < item_size) {
1084 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1085 
1086 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1087 
1088 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1089 				goto next;
1090 
1091 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1092 			if (!victim_name)
1093 				return -ENOMEM;
1094 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1095 					   victim_name_len);
1096 
1097 			search_key.objectid = inode_objectid;
1098 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1099 			search_key.offset = btrfs_extref_hash(parent_objectid,
1100 							      victim_name,
1101 							      victim_name_len);
1102 			ret = 0;
1103 			if (!backref_in_log(log_root, &search_key,
1104 					    parent_objectid, victim_name,
1105 					    victim_name_len)) {
1106 				ret = -ENOENT;
1107 				victim_parent = read_one_inode(root,
1108 						parent_objectid);
1109 				if (victim_parent) {
1110 					inc_nlink(&inode->vfs_inode);
1111 					btrfs_release_path(path);
1112 
1113 					ret = btrfs_unlink_inode(trans, root,
1114 							BTRFS_I(victim_parent),
1115 							inode,
1116 							victim_name,
1117 							victim_name_len);
1118 					if (!ret)
1119 						ret = btrfs_run_delayed_items(
1120 								  trans);
1121 				}
1122 				iput(victim_parent);
1123 				kfree(victim_name);
1124 				if (ret)
1125 					return ret;
1126 				*search_done = 1;
1127 				goto again;
1128 			}
1129 			kfree(victim_name);
1130 next:
1131 			cur_offset += victim_name_len + sizeof(*extref);
1132 		}
1133 		*search_done = 1;
1134 	}
1135 	btrfs_release_path(path);
1136 
1137 	/* look for a conflicting sequence number */
1138 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1139 					 ref_index, name, namelen, 0);
1140 	if (di && !IS_ERR(di)) {
1141 		ret = drop_one_dir_item(trans, root, path, dir, di);
1142 		if (ret)
1143 			return ret;
1144 	}
1145 	btrfs_release_path(path);
1146 
1147 	/* look for a conflicting name */
1148 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1149 				   name, namelen, 0);
1150 	if (di && !IS_ERR(di)) {
1151 		ret = drop_one_dir_item(trans, root, path, dir, di);
1152 		if (ret)
1153 			return ret;
1154 	}
1155 	btrfs_release_path(path);
1156 
1157 	return 0;
1158 }
1159 
1160 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1161 			     u32 *namelen, char **name, u64 *index,
1162 			     u64 *parent_objectid)
1163 {
1164 	struct btrfs_inode_extref *extref;
1165 
1166 	extref = (struct btrfs_inode_extref *)ref_ptr;
1167 
1168 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1169 	*name = kmalloc(*namelen, GFP_NOFS);
1170 	if (*name == NULL)
1171 		return -ENOMEM;
1172 
1173 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1174 			   *namelen);
1175 
1176 	if (index)
1177 		*index = btrfs_inode_extref_index(eb, extref);
1178 	if (parent_objectid)
1179 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1180 
1181 	return 0;
1182 }
1183 
1184 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1185 			  u32 *namelen, char **name, u64 *index)
1186 {
1187 	struct btrfs_inode_ref *ref;
1188 
1189 	ref = (struct btrfs_inode_ref *)ref_ptr;
1190 
1191 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1192 	*name = kmalloc(*namelen, GFP_NOFS);
1193 	if (*name == NULL)
1194 		return -ENOMEM;
1195 
1196 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1197 
1198 	if (index)
1199 		*index = btrfs_inode_ref_index(eb, ref);
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * Take an inode reference item from the log tree and iterate all names from the
1206  * inode reference item in the subvolume tree with the same key (if it exists).
1207  * For any name that is not in the inode reference item from the log tree, do a
1208  * proper unlink of that name (that is, remove its entry from the inode
1209  * reference item and both dir index keys).
1210  */
1211 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1212 				 struct btrfs_root *root,
1213 				 struct btrfs_path *path,
1214 				 struct btrfs_inode *inode,
1215 				 struct extent_buffer *log_eb,
1216 				 int log_slot,
1217 				 struct btrfs_key *key)
1218 {
1219 	int ret;
1220 	unsigned long ref_ptr;
1221 	unsigned long ref_end;
1222 	struct extent_buffer *eb;
1223 
1224 again:
1225 	btrfs_release_path(path);
1226 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1227 	if (ret > 0) {
1228 		ret = 0;
1229 		goto out;
1230 	}
1231 	if (ret < 0)
1232 		goto out;
1233 
1234 	eb = path->nodes[0];
1235 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1236 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1237 	while (ref_ptr < ref_end) {
1238 		char *name = NULL;
1239 		int namelen;
1240 		u64 parent_id;
1241 
1242 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1243 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1244 						NULL, &parent_id);
1245 		} else {
1246 			parent_id = key->offset;
1247 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1248 					     NULL);
1249 		}
1250 		if (ret)
1251 			goto out;
1252 
1253 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1254 			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1255 							     parent_id, name,
1256 							     namelen, NULL);
1257 		else
1258 			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1259 							 namelen, NULL);
1260 
1261 		if (!ret) {
1262 			struct inode *dir;
1263 
1264 			btrfs_release_path(path);
1265 			dir = read_one_inode(root, parent_id);
1266 			if (!dir) {
1267 				ret = -ENOENT;
1268 				kfree(name);
1269 				goto out;
1270 			}
1271 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1272 						 inode, name, namelen);
1273 			kfree(name);
1274 			iput(dir);
1275 			if (ret)
1276 				goto out;
1277 			goto again;
1278 		}
1279 
1280 		kfree(name);
1281 		ref_ptr += namelen;
1282 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1283 			ref_ptr += sizeof(struct btrfs_inode_extref);
1284 		else
1285 			ref_ptr += sizeof(struct btrfs_inode_ref);
1286 	}
1287 	ret = 0;
1288  out:
1289 	btrfs_release_path(path);
1290 	return ret;
1291 }
1292 
1293 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1294 				  const u8 ref_type, const char *name,
1295 				  const int namelen)
1296 {
1297 	struct btrfs_key key;
1298 	struct btrfs_path *path;
1299 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1300 	int ret;
1301 
1302 	path = btrfs_alloc_path();
1303 	if (!path)
1304 		return -ENOMEM;
1305 
1306 	key.objectid = btrfs_ino(BTRFS_I(inode));
1307 	key.type = ref_type;
1308 	if (key.type == BTRFS_INODE_REF_KEY)
1309 		key.offset = parent_id;
1310 	else
1311 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1312 
1313 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1314 	if (ret < 0)
1315 		goto out;
1316 	if (ret > 0) {
1317 		ret = 0;
1318 		goto out;
1319 	}
1320 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1321 		ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1322 						     path->slots[0], parent_id,
1323 						     name, namelen, NULL);
1324 	else
1325 		ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1326 						 name, namelen, NULL);
1327 
1328 out:
1329 	btrfs_free_path(path);
1330 	return ret;
1331 }
1332 
1333 /*
1334  * replay one inode back reference item found in the log tree.
1335  * eb, slot and key refer to the buffer and key found in the log tree.
1336  * root is the destination we are replaying into, and path is for temp
1337  * use by this function.  (it should be released on return).
1338  */
1339 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1340 				  struct btrfs_root *root,
1341 				  struct btrfs_root *log,
1342 				  struct btrfs_path *path,
1343 				  struct extent_buffer *eb, int slot,
1344 				  struct btrfs_key *key)
1345 {
1346 	struct inode *dir = NULL;
1347 	struct inode *inode = NULL;
1348 	unsigned long ref_ptr;
1349 	unsigned long ref_end;
1350 	char *name = NULL;
1351 	int namelen;
1352 	int ret;
1353 	int search_done = 0;
1354 	int log_ref_ver = 0;
1355 	u64 parent_objectid;
1356 	u64 inode_objectid;
1357 	u64 ref_index = 0;
1358 	int ref_struct_size;
1359 
1360 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1361 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1362 
1363 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1364 		struct btrfs_inode_extref *r;
1365 
1366 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1367 		log_ref_ver = 1;
1368 		r = (struct btrfs_inode_extref *)ref_ptr;
1369 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1370 	} else {
1371 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1372 		parent_objectid = key->offset;
1373 	}
1374 	inode_objectid = key->objectid;
1375 
1376 	/*
1377 	 * it is possible that we didn't log all the parent directories
1378 	 * for a given inode.  If we don't find the dir, just don't
1379 	 * copy the back ref in.  The link count fixup code will take
1380 	 * care of the rest
1381 	 */
1382 	dir = read_one_inode(root, parent_objectid);
1383 	if (!dir) {
1384 		ret = -ENOENT;
1385 		goto out;
1386 	}
1387 
1388 	inode = read_one_inode(root, inode_objectid);
1389 	if (!inode) {
1390 		ret = -EIO;
1391 		goto out;
1392 	}
1393 
1394 	while (ref_ptr < ref_end) {
1395 		if (log_ref_ver) {
1396 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1397 						&ref_index, &parent_objectid);
1398 			/*
1399 			 * parent object can change from one array
1400 			 * item to another.
1401 			 */
1402 			if (!dir)
1403 				dir = read_one_inode(root, parent_objectid);
1404 			if (!dir) {
1405 				ret = -ENOENT;
1406 				goto out;
1407 			}
1408 		} else {
1409 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1410 					     &ref_index);
1411 		}
1412 		if (ret)
1413 			goto out;
1414 
1415 		/* if we already have a perfect match, we're done */
1416 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1417 					btrfs_ino(BTRFS_I(inode)), ref_index,
1418 					name, namelen)) {
1419 			/*
1420 			 * look for a conflicting back reference in the
1421 			 * metadata. if we find one we have to unlink that name
1422 			 * of the file before we add our new link.  Later on, we
1423 			 * overwrite any existing back reference, and we don't
1424 			 * want to create dangling pointers in the directory.
1425 			 */
1426 
1427 			if (!search_done) {
1428 				ret = __add_inode_ref(trans, root, path, log,
1429 						      BTRFS_I(dir),
1430 						      BTRFS_I(inode),
1431 						      inode_objectid,
1432 						      parent_objectid,
1433 						      ref_index, name, namelen,
1434 						      &search_done);
1435 				if (ret) {
1436 					if (ret == 1)
1437 						ret = 0;
1438 					goto out;
1439 				}
1440 			}
1441 
1442 			/*
1443 			 * If a reference item already exists for this inode
1444 			 * with the same parent and name, but different index,
1445 			 * drop it and the corresponding directory index entries
1446 			 * from the parent before adding the new reference item
1447 			 * and dir index entries, otherwise we would fail with
1448 			 * -EEXIST returned from btrfs_add_link() below.
1449 			 */
1450 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1451 						     name, namelen);
1452 			if (ret > 0) {
1453 				ret = btrfs_unlink_inode(trans, root,
1454 							 BTRFS_I(dir),
1455 							 BTRFS_I(inode),
1456 							 name, namelen);
1457 				/*
1458 				 * If we dropped the link count to 0, bump it so
1459 				 * that later the iput() on the inode will not
1460 				 * free it. We will fixup the link count later.
1461 				 */
1462 				if (!ret && inode->i_nlink == 0)
1463 					inc_nlink(inode);
1464 			}
1465 			if (ret < 0)
1466 				goto out;
1467 
1468 			/* insert our name */
1469 			ret = btrfs_add_link(trans, BTRFS_I(dir),
1470 					BTRFS_I(inode),
1471 					name, namelen, 0, ref_index);
1472 			if (ret)
1473 				goto out;
1474 
1475 			btrfs_update_inode(trans, root, inode);
1476 		}
1477 
1478 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1479 		kfree(name);
1480 		name = NULL;
1481 		if (log_ref_ver) {
1482 			iput(dir);
1483 			dir = NULL;
1484 		}
1485 	}
1486 
1487 	/*
1488 	 * Before we overwrite the inode reference item in the subvolume tree
1489 	 * with the item from the log tree, we must unlink all names from the
1490 	 * parent directory that are in the subvolume's tree inode reference
1491 	 * item, otherwise we end up with an inconsistent subvolume tree where
1492 	 * dir index entries exist for a name but there is no inode reference
1493 	 * item with the same name.
1494 	 */
1495 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1496 				    key);
1497 	if (ret)
1498 		goto out;
1499 
1500 	/* finally write the back reference in the inode */
1501 	ret = overwrite_item(trans, root, path, eb, slot, key);
1502 out:
1503 	btrfs_release_path(path);
1504 	kfree(name);
1505 	iput(dir);
1506 	iput(inode);
1507 	return ret;
1508 }
1509 
1510 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1511 			      struct btrfs_root *root, u64 ino)
1512 {
1513 	int ret;
1514 
1515 	ret = btrfs_insert_orphan_item(trans, root, ino);
1516 	if (ret == -EEXIST)
1517 		ret = 0;
1518 
1519 	return ret;
1520 }
1521 
1522 static int count_inode_extrefs(struct btrfs_root *root,
1523 		struct btrfs_inode *inode, struct btrfs_path *path)
1524 {
1525 	int ret = 0;
1526 	int name_len;
1527 	unsigned int nlink = 0;
1528 	u32 item_size;
1529 	u32 cur_offset = 0;
1530 	u64 inode_objectid = btrfs_ino(inode);
1531 	u64 offset = 0;
1532 	unsigned long ptr;
1533 	struct btrfs_inode_extref *extref;
1534 	struct extent_buffer *leaf;
1535 
1536 	while (1) {
1537 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1538 					    &extref, &offset);
1539 		if (ret)
1540 			break;
1541 
1542 		leaf = path->nodes[0];
1543 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1544 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1545 		cur_offset = 0;
1546 
1547 		while (cur_offset < item_size) {
1548 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1549 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1550 
1551 			nlink++;
1552 
1553 			cur_offset += name_len + sizeof(*extref);
1554 		}
1555 
1556 		offset++;
1557 		btrfs_release_path(path);
1558 	}
1559 	btrfs_release_path(path);
1560 
1561 	if (ret < 0 && ret != -ENOENT)
1562 		return ret;
1563 	return nlink;
1564 }
1565 
1566 static int count_inode_refs(struct btrfs_root *root,
1567 			struct btrfs_inode *inode, struct btrfs_path *path)
1568 {
1569 	int ret;
1570 	struct btrfs_key key;
1571 	unsigned int nlink = 0;
1572 	unsigned long ptr;
1573 	unsigned long ptr_end;
1574 	int name_len;
1575 	u64 ino = btrfs_ino(inode);
1576 
1577 	key.objectid = ino;
1578 	key.type = BTRFS_INODE_REF_KEY;
1579 	key.offset = (u64)-1;
1580 
1581 	while (1) {
1582 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1583 		if (ret < 0)
1584 			break;
1585 		if (ret > 0) {
1586 			if (path->slots[0] == 0)
1587 				break;
1588 			path->slots[0]--;
1589 		}
1590 process_slot:
1591 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1592 				      path->slots[0]);
1593 		if (key.objectid != ino ||
1594 		    key.type != BTRFS_INODE_REF_KEY)
1595 			break;
1596 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1597 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1598 						   path->slots[0]);
1599 		while (ptr < ptr_end) {
1600 			struct btrfs_inode_ref *ref;
1601 
1602 			ref = (struct btrfs_inode_ref *)ptr;
1603 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1604 							    ref);
1605 			ptr = (unsigned long)(ref + 1) + name_len;
1606 			nlink++;
1607 		}
1608 
1609 		if (key.offset == 0)
1610 			break;
1611 		if (path->slots[0] > 0) {
1612 			path->slots[0]--;
1613 			goto process_slot;
1614 		}
1615 		key.offset--;
1616 		btrfs_release_path(path);
1617 	}
1618 	btrfs_release_path(path);
1619 
1620 	return nlink;
1621 }
1622 
1623 /*
1624  * There are a few corners where the link count of the file can't
1625  * be properly maintained during replay.  So, instead of adding
1626  * lots of complexity to the log code, we just scan the backrefs
1627  * for any file that has been through replay.
1628  *
1629  * The scan will update the link count on the inode to reflect the
1630  * number of back refs found.  If it goes down to zero, the iput
1631  * will free the inode.
1632  */
1633 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1634 					   struct btrfs_root *root,
1635 					   struct inode *inode)
1636 {
1637 	struct btrfs_path *path;
1638 	int ret;
1639 	u64 nlink = 0;
1640 	u64 ino = btrfs_ino(BTRFS_I(inode));
1641 
1642 	path = btrfs_alloc_path();
1643 	if (!path)
1644 		return -ENOMEM;
1645 
1646 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1647 	if (ret < 0)
1648 		goto out;
1649 
1650 	nlink = ret;
1651 
1652 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1653 	if (ret < 0)
1654 		goto out;
1655 
1656 	nlink += ret;
1657 
1658 	ret = 0;
1659 
1660 	if (nlink != inode->i_nlink) {
1661 		set_nlink(inode, nlink);
1662 		btrfs_update_inode(trans, root, inode);
1663 	}
1664 	BTRFS_I(inode)->index_cnt = (u64)-1;
1665 
1666 	if (inode->i_nlink == 0) {
1667 		if (S_ISDIR(inode->i_mode)) {
1668 			ret = replay_dir_deletes(trans, root, NULL, path,
1669 						 ino, 1);
1670 			if (ret)
1671 				goto out;
1672 		}
1673 		ret = insert_orphan_item(trans, root, ino);
1674 	}
1675 
1676 out:
1677 	btrfs_free_path(path);
1678 	return ret;
1679 }
1680 
1681 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1682 					    struct btrfs_root *root,
1683 					    struct btrfs_path *path)
1684 {
1685 	int ret;
1686 	struct btrfs_key key;
1687 	struct inode *inode;
1688 
1689 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1690 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1691 	key.offset = (u64)-1;
1692 	while (1) {
1693 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1694 		if (ret < 0)
1695 			break;
1696 
1697 		if (ret == 1) {
1698 			if (path->slots[0] == 0)
1699 				break;
1700 			path->slots[0]--;
1701 		}
1702 
1703 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1704 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1705 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1706 			break;
1707 
1708 		ret = btrfs_del_item(trans, root, path);
1709 		if (ret)
1710 			goto out;
1711 
1712 		btrfs_release_path(path);
1713 		inode = read_one_inode(root, key.offset);
1714 		if (!inode)
1715 			return -EIO;
1716 
1717 		ret = fixup_inode_link_count(trans, root, inode);
1718 		iput(inode);
1719 		if (ret)
1720 			goto out;
1721 
1722 		/*
1723 		 * fixup on a directory may create new entries,
1724 		 * make sure we always look for the highset possible
1725 		 * offset
1726 		 */
1727 		key.offset = (u64)-1;
1728 	}
1729 	ret = 0;
1730 out:
1731 	btrfs_release_path(path);
1732 	return ret;
1733 }
1734 
1735 
1736 /*
1737  * record a given inode in the fixup dir so we can check its link
1738  * count when replay is done.  The link count is incremented here
1739  * so the inode won't go away until we check it
1740  */
1741 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1742 				      struct btrfs_root *root,
1743 				      struct btrfs_path *path,
1744 				      u64 objectid)
1745 {
1746 	struct btrfs_key key;
1747 	int ret = 0;
1748 	struct inode *inode;
1749 
1750 	inode = read_one_inode(root, objectid);
1751 	if (!inode)
1752 		return -EIO;
1753 
1754 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1755 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1756 	key.offset = objectid;
1757 
1758 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1759 
1760 	btrfs_release_path(path);
1761 	if (ret == 0) {
1762 		if (!inode->i_nlink)
1763 			set_nlink(inode, 1);
1764 		else
1765 			inc_nlink(inode);
1766 		ret = btrfs_update_inode(trans, root, inode);
1767 	} else if (ret == -EEXIST) {
1768 		ret = 0;
1769 	} else {
1770 		BUG(); /* Logic Error */
1771 	}
1772 	iput(inode);
1773 
1774 	return ret;
1775 }
1776 
1777 /*
1778  * when replaying the log for a directory, we only insert names
1779  * for inodes that actually exist.  This means an fsync on a directory
1780  * does not implicitly fsync all the new files in it
1781  */
1782 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1783 				    struct btrfs_root *root,
1784 				    u64 dirid, u64 index,
1785 				    char *name, int name_len,
1786 				    struct btrfs_key *location)
1787 {
1788 	struct inode *inode;
1789 	struct inode *dir;
1790 	int ret;
1791 
1792 	inode = read_one_inode(root, location->objectid);
1793 	if (!inode)
1794 		return -ENOENT;
1795 
1796 	dir = read_one_inode(root, dirid);
1797 	if (!dir) {
1798 		iput(inode);
1799 		return -EIO;
1800 	}
1801 
1802 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1803 			name_len, 1, index);
1804 
1805 	/* FIXME, put inode into FIXUP list */
1806 
1807 	iput(inode);
1808 	iput(dir);
1809 	return ret;
1810 }
1811 
1812 /*
1813  * Return true if an inode reference exists in the log for the given name,
1814  * inode and parent inode.
1815  */
1816 static bool name_in_log_ref(struct btrfs_root *log_root,
1817 			    const char *name, const int name_len,
1818 			    const u64 dirid, const u64 ino)
1819 {
1820 	struct btrfs_key search_key;
1821 
1822 	search_key.objectid = ino;
1823 	search_key.type = BTRFS_INODE_REF_KEY;
1824 	search_key.offset = dirid;
1825 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1826 		return true;
1827 
1828 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1829 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1830 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1831 		return true;
1832 
1833 	return false;
1834 }
1835 
1836 /*
1837  * take a single entry in a log directory item and replay it into
1838  * the subvolume.
1839  *
1840  * if a conflicting item exists in the subdirectory already,
1841  * the inode it points to is unlinked and put into the link count
1842  * fix up tree.
1843  *
1844  * If a name from the log points to a file or directory that does
1845  * not exist in the FS, it is skipped.  fsyncs on directories
1846  * do not force down inodes inside that directory, just changes to the
1847  * names or unlinks in a directory.
1848  *
1849  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1850  * non-existing inode) and 1 if the name was replayed.
1851  */
1852 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1853 				    struct btrfs_root *root,
1854 				    struct btrfs_path *path,
1855 				    struct extent_buffer *eb,
1856 				    struct btrfs_dir_item *di,
1857 				    struct btrfs_key *key)
1858 {
1859 	char *name;
1860 	int name_len;
1861 	struct btrfs_dir_item *dst_di;
1862 	struct btrfs_key found_key;
1863 	struct btrfs_key log_key;
1864 	struct inode *dir;
1865 	u8 log_type;
1866 	int exists;
1867 	int ret = 0;
1868 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1869 	bool name_added = false;
1870 
1871 	dir = read_one_inode(root, key->objectid);
1872 	if (!dir)
1873 		return -EIO;
1874 
1875 	name_len = btrfs_dir_name_len(eb, di);
1876 	name = kmalloc(name_len, GFP_NOFS);
1877 	if (!name) {
1878 		ret = -ENOMEM;
1879 		goto out;
1880 	}
1881 
1882 	log_type = btrfs_dir_type(eb, di);
1883 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1884 		   name_len);
1885 
1886 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1887 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1888 	if (exists == 0)
1889 		exists = 1;
1890 	else
1891 		exists = 0;
1892 	btrfs_release_path(path);
1893 
1894 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1895 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1896 				       name, name_len, 1);
1897 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1898 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1899 						     key->objectid,
1900 						     key->offset, name,
1901 						     name_len, 1);
1902 	} else {
1903 		/* Corruption */
1904 		ret = -EINVAL;
1905 		goto out;
1906 	}
1907 	if (IS_ERR_OR_NULL(dst_di)) {
1908 		/* we need a sequence number to insert, so we only
1909 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1910 		 */
1911 		if (key->type != BTRFS_DIR_INDEX_KEY)
1912 			goto out;
1913 		goto insert;
1914 	}
1915 
1916 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1917 	/* the existing item matches the logged item */
1918 	if (found_key.objectid == log_key.objectid &&
1919 	    found_key.type == log_key.type &&
1920 	    found_key.offset == log_key.offset &&
1921 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1922 		update_size = false;
1923 		goto out;
1924 	}
1925 
1926 	/*
1927 	 * don't drop the conflicting directory entry if the inode
1928 	 * for the new entry doesn't exist
1929 	 */
1930 	if (!exists)
1931 		goto out;
1932 
1933 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1934 	if (ret)
1935 		goto out;
1936 
1937 	if (key->type == BTRFS_DIR_INDEX_KEY)
1938 		goto insert;
1939 out:
1940 	btrfs_release_path(path);
1941 	if (!ret && update_size) {
1942 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1943 		ret = btrfs_update_inode(trans, root, dir);
1944 	}
1945 	kfree(name);
1946 	iput(dir);
1947 	if (!ret && name_added)
1948 		ret = 1;
1949 	return ret;
1950 
1951 insert:
1952 	if (name_in_log_ref(root->log_root, name, name_len,
1953 			    key->objectid, log_key.objectid)) {
1954 		/* The dentry will be added later. */
1955 		ret = 0;
1956 		update_size = false;
1957 		goto out;
1958 	}
1959 	btrfs_release_path(path);
1960 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1961 			      name, name_len, &log_key);
1962 	if (ret && ret != -ENOENT && ret != -EEXIST)
1963 		goto out;
1964 	if (!ret)
1965 		name_added = true;
1966 	update_size = false;
1967 	ret = 0;
1968 	goto out;
1969 }
1970 
1971 /*
1972  * find all the names in a directory item and reconcile them into
1973  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1974  * one name in a directory item, but the same code gets used for
1975  * both directory index types
1976  */
1977 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1978 					struct btrfs_root *root,
1979 					struct btrfs_path *path,
1980 					struct extent_buffer *eb, int slot,
1981 					struct btrfs_key *key)
1982 {
1983 	int ret = 0;
1984 	u32 item_size = btrfs_item_size_nr(eb, slot);
1985 	struct btrfs_dir_item *di;
1986 	int name_len;
1987 	unsigned long ptr;
1988 	unsigned long ptr_end;
1989 	struct btrfs_path *fixup_path = NULL;
1990 
1991 	ptr = btrfs_item_ptr_offset(eb, slot);
1992 	ptr_end = ptr + item_size;
1993 	while (ptr < ptr_end) {
1994 		di = (struct btrfs_dir_item *)ptr;
1995 		name_len = btrfs_dir_name_len(eb, di);
1996 		ret = replay_one_name(trans, root, path, eb, di, key);
1997 		if (ret < 0)
1998 			break;
1999 		ptr = (unsigned long)(di + 1);
2000 		ptr += name_len;
2001 
2002 		/*
2003 		 * If this entry refers to a non-directory (directories can not
2004 		 * have a link count > 1) and it was added in the transaction
2005 		 * that was not committed, make sure we fixup the link count of
2006 		 * the inode it the entry points to. Otherwise something like
2007 		 * the following would result in a directory pointing to an
2008 		 * inode with a wrong link that does not account for this dir
2009 		 * entry:
2010 		 *
2011 		 * mkdir testdir
2012 		 * touch testdir/foo
2013 		 * touch testdir/bar
2014 		 * sync
2015 		 *
2016 		 * ln testdir/bar testdir/bar_link
2017 		 * ln testdir/foo testdir/foo_link
2018 		 * xfs_io -c "fsync" testdir/bar
2019 		 *
2020 		 * <power failure>
2021 		 *
2022 		 * mount fs, log replay happens
2023 		 *
2024 		 * File foo would remain with a link count of 1 when it has two
2025 		 * entries pointing to it in the directory testdir. This would
2026 		 * make it impossible to ever delete the parent directory has
2027 		 * it would result in stale dentries that can never be deleted.
2028 		 */
2029 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2030 			struct btrfs_key di_key;
2031 
2032 			if (!fixup_path) {
2033 				fixup_path = btrfs_alloc_path();
2034 				if (!fixup_path) {
2035 					ret = -ENOMEM;
2036 					break;
2037 				}
2038 			}
2039 
2040 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2041 			ret = link_to_fixup_dir(trans, root, fixup_path,
2042 						di_key.objectid);
2043 			if (ret)
2044 				break;
2045 		}
2046 		ret = 0;
2047 	}
2048 	btrfs_free_path(fixup_path);
2049 	return ret;
2050 }
2051 
2052 /*
2053  * directory replay has two parts.  There are the standard directory
2054  * items in the log copied from the subvolume, and range items
2055  * created in the log while the subvolume was logged.
2056  *
2057  * The range items tell us which parts of the key space the log
2058  * is authoritative for.  During replay, if a key in the subvolume
2059  * directory is in a logged range item, but not actually in the log
2060  * that means it was deleted from the directory before the fsync
2061  * and should be removed.
2062  */
2063 static noinline int find_dir_range(struct btrfs_root *root,
2064 				   struct btrfs_path *path,
2065 				   u64 dirid, int key_type,
2066 				   u64 *start_ret, u64 *end_ret)
2067 {
2068 	struct btrfs_key key;
2069 	u64 found_end;
2070 	struct btrfs_dir_log_item *item;
2071 	int ret;
2072 	int nritems;
2073 
2074 	if (*start_ret == (u64)-1)
2075 		return 1;
2076 
2077 	key.objectid = dirid;
2078 	key.type = key_type;
2079 	key.offset = *start_ret;
2080 
2081 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2082 	if (ret < 0)
2083 		goto out;
2084 	if (ret > 0) {
2085 		if (path->slots[0] == 0)
2086 			goto out;
2087 		path->slots[0]--;
2088 	}
2089 	if (ret != 0)
2090 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2091 
2092 	if (key.type != key_type || key.objectid != dirid) {
2093 		ret = 1;
2094 		goto next;
2095 	}
2096 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2097 			      struct btrfs_dir_log_item);
2098 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2099 
2100 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2101 		ret = 0;
2102 		*start_ret = key.offset;
2103 		*end_ret = found_end;
2104 		goto out;
2105 	}
2106 	ret = 1;
2107 next:
2108 	/* check the next slot in the tree to see if it is a valid item */
2109 	nritems = btrfs_header_nritems(path->nodes[0]);
2110 	path->slots[0]++;
2111 	if (path->slots[0] >= nritems) {
2112 		ret = btrfs_next_leaf(root, path);
2113 		if (ret)
2114 			goto out;
2115 	}
2116 
2117 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2118 
2119 	if (key.type != key_type || key.objectid != dirid) {
2120 		ret = 1;
2121 		goto out;
2122 	}
2123 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2124 			      struct btrfs_dir_log_item);
2125 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2126 	*start_ret = key.offset;
2127 	*end_ret = found_end;
2128 	ret = 0;
2129 out:
2130 	btrfs_release_path(path);
2131 	return ret;
2132 }
2133 
2134 /*
2135  * this looks for a given directory item in the log.  If the directory
2136  * item is not in the log, the item is removed and the inode it points
2137  * to is unlinked
2138  */
2139 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2140 				      struct btrfs_root *root,
2141 				      struct btrfs_root *log,
2142 				      struct btrfs_path *path,
2143 				      struct btrfs_path *log_path,
2144 				      struct inode *dir,
2145 				      struct btrfs_key *dir_key)
2146 {
2147 	int ret;
2148 	struct extent_buffer *eb;
2149 	int slot;
2150 	u32 item_size;
2151 	struct btrfs_dir_item *di;
2152 	struct btrfs_dir_item *log_di;
2153 	int name_len;
2154 	unsigned long ptr;
2155 	unsigned long ptr_end;
2156 	char *name;
2157 	struct inode *inode;
2158 	struct btrfs_key location;
2159 
2160 again:
2161 	eb = path->nodes[0];
2162 	slot = path->slots[0];
2163 	item_size = btrfs_item_size_nr(eb, slot);
2164 	ptr = btrfs_item_ptr_offset(eb, slot);
2165 	ptr_end = ptr + item_size;
2166 	while (ptr < ptr_end) {
2167 		di = (struct btrfs_dir_item *)ptr;
2168 		name_len = btrfs_dir_name_len(eb, di);
2169 		name = kmalloc(name_len, GFP_NOFS);
2170 		if (!name) {
2171 			ret = -ENOMEM;
2172 			goto out;
2173 		}
2174 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2175 				  name_len);
2176 		log_di = NULL;
2177 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2178 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2179 						       dir_key->objectid,
2180 						       name, name_len, 0);
2181 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2182 			log_di = btrfs_lookup_dir_index_item(trans, log,
2183 						     log_path,
2184 						     dir_key->objectid,
2185 						     dir_key->offset,
2186 						     name, name_len, 0);
2187 		}
2188 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2189 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2190 			btrfs_release_path(path);
2191 			btrfs_release_path(log_path);
2192 			inode = read_one_inode(root, location.objectid);
2193 			if (!inode) {
2194 				kfree(name);
2195 				return -EIO;
2196 			}
2197 
2198 			ret = link_to_fixup_dir(trans, root,
2199 						path, location.objectid);
2200 			if (ret) {
2201 				kfree(name);
2202 				iput(inode);
2203 				goto out;
2204 			}
2205 
2206 			inc_nlink(inode);
2207 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2208 					BTRFS_I(inode), name, name_len);
2209 			if (!ret)
2210 				ret = btrfs_run_delayed_items(trans);
2211 			kfree(name);
2212 			iput(inode);
2213 			if (ret)
2214 				goto out;
2215 
2216 			/* there might still be more names under this key
2217 			 * check and repeat if required
2218 			 */
2219 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2220 						0, 0);
2221 			if (ret == 0)
2222 				goto again;
2223 			ret = 0;
2224 			goto out;
2225 		} else if (IS_ERR(log_di)) {
2226 			kfree(name);
2227 			return PTR_ERR(log_di);
2228 		}
2229 		btrfs_release_path(log_path);
2230 		kfree(name);
2231 
2232 		ptr = (unsigned long)(di + 1);
2233 		ptr += name_len;
2234 	}
2235 	ret = 0;
2236 out:
2237 	btrfs_release_path(path);
2238 	btrfs_release_path(log_path);
2239 	return ret;
2240 }
2241 
2242 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2243 			      struct btrfs_root *root,
2244 			      struct btrfs_root *log,
2245 			      struct btrfs_path *path,
2246 			      const u64 ino)
2247 {
2248 	struct btrfs_key search_key;
2249 	struct btrfs_path *log_path;
2250 	int i;
2251 	int nritems;
2252 	int ret;
2253 
2254 	log_path = btrfs_alloc_path();
2255 	if (!log_path)
2256 		return -ENOMEM;
2257 
2258 	search_key.objectid = ino;
2259 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2260 	search_key.offset = 0;
2261 again:
2262 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2263 	if (ret < 0)
2264 		goto out;
2265 process_leaf:
2266 	nritems = btrfs_header_nritems(path->nodes[0]);
2267 	for (i = path->slots[0]; i < nritems; i++) {
2268 		struct btrfs_key key;
2269 		struct btrfs_dir_item *di;
2270 		struct btrfs_dir_item *log_di;
2271 		u32 total_size;
2272 		u32 cur;
2273 
2274 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2275 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2276 			ret = 0;
2277 			goto out;
2278 		}
2279 
2280 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2281 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2282 		cur = 0;
2283 		while (cur < total_size) {
2284 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2285 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2286 			u32 this_len = sizeof(*di) + name_len + data_len;
2287 			char *name;
2288 
2289 			name = kmalloc(name_len, GFP_NOFS);
2290 			if (!name) {
2291 				ret = -ENOMEM;
2292 				goto out;
2293 			}
2294 			read_extent_buffer(path->nodes[0], name,
2295 					   (unsigned long)(di + 1), name_len);
2296 
2297 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2298 						    name, name_len, 0);
2299 			btrfs_release_path(log_path);
2300 			if (!log_di) {
2301 				/* Doesn't exist in log tree, so delete it. */
2302 				btrfs_release_path(path);
2303 				di = btrfs_lookup_xattr(trans, root, path, ino,
2304 							name, name_len, -1);
2305 				kfree(name);
2306 				if (IS_ERR(di)) {
2307 					ret = PTR_ERR(di);
2308 					goto out;
2309 				}
2310 				ASSERT(di);
2311 				ret = btrfs_delete_one_dir_name(trans, root,
2312 								path, di);
2313 				if (ret)
2314 					goto out;
2315 				btrfs_release_path(path);
2316 				search_key = key;
2317 				goto again;
2318 			}
2319 			kfree(name);
2320 			if (IS_ERR(log_di)) {
2321 				ret = PTR_ERR(log_di);
2322 				goto out;
2323 			}
2324 			cur += this_len;
2325 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2326 		}
2327 	}
2328 	ret = btrfs_next_leaf(root, path);
2329 	if (ret > 0)
2330 		ret = 0;
2331 	else if (ret == 0)
2332 		goto process_leaf;
2333 out:
2334 	btrfs_free_path(log_path);
2335 	btrfs_release_path(path);
2336 	return ret;
2337 }
2338 
2339 
2340 /*
2341  * deletion replay happens before we copy any new directory items
2342  * out of the log or out of backreferences from inodes.  It
2343  * scans the log to find ranges of keys that log is authoritative for,
2344  * and then scans the directory to find items in those ranges that are
2345  * not present in the log.
2346  *
2347  * Anything we don't find in the log is unlinked and removed from the
2348  * directory.
2349  */
2350 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2351 				       struct btrfs_root *root,
2352 				       struct btrfs_root *log,
2353 				       struct btrfs_path *path,
2354 				       u64 dirid, int del_all)
2355 {
2356 	u64 range_start;
2357 	u64 range_end;
2358 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2359 	int ret = 0;
2360 	struct btrfs_key dir_key;
2361 	struct btrfs_key found_key;
2362 	struct btrfs_path *log_path;
2363 	struct inode *dir;
2364 
2365 	dir_key.objectid = dirid;
2366 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2367 	log_path = btrfs_alloc_path();
2368 	if (!log_path)
2369 		return -ENOMEM;
2370 
2371 	dir = read_one_inode(root, dirid);
2372 	/* it isn't an error if the inode isn't there, that can happen
2373 	 * because we replay the deletes before we copy in the inode item
2374 	 * from the log
2375 	 */
2376 	if (!dir) {
2377 		btrfs_free_path(log_path);
2378 		return 0;
2379 	}
2380 again:
2381 	range_start = 0;
2382 	range_end = 0;
2383 	while (1) {
2384 		if (del_all)
2385 			range_end = (u64)-1;
2386 		else {
2387 			ret = find_dir_range(log, path, dirid, key_type,
2388 					     &range_start, &range_end);
2389 			if (ret != 0)
2390 				break;
2391 		}
2392 
2393 		dir_key.offset = range_start;
2394 		while (1) {
2395 			int nritems;
2396 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2397 						0, 0);
2398 			if (ret < 0)
2399 				goto out;
2400 
2401 			nritems = btrfs_header_nritems(path->nodes[0]);
2402 			if (path->slots[0] >= nritems) {
2403 				ret = btrfs_next_leaf(root, path);
2404 				if (ret == 1)
2405 					break;
2406 				else if (ret < 0)
2407 					goto out;
2408 			}
2409 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2410 					      path->slots[0]);
2411 			if (found_key.objectid != dirid ||
2412 			    found_key.type != dir_key.type)
2413 				goto next_type;
2414 
2415 			if (found_key.offset > range_end)
2416 				break;
2417 
2418 			ret = check_item_in_log(trans, root, log, path,
2419 						log_path, dir,
2420 						&found_key);
2421 			if (ret)
2422 				goto out;
2423 			if (found_key.offset == (u64)-1)
2424 				break;
2425 			dir_key.offset = found_key.offset + 1;
2426 		}
2427 		btrfs_release_path(path);
2428 		if (range_end == (u64)-1)
2429 			break;
2430 		range_start = range_end + 1;
2431 	}
2432 
2433 next_type:
2434 	ret = 0;
2435 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2436 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2437 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2438 		btrfs_release_path(path);
2439 		goto again;
2440 	}
2441 out:
2442 	btrfs_release_path(path);
2443 	btrfs_free_path(log_path);
2444 	iput(dir);
2445 	return ret;
2446 }
2447 
2448 /*
2449  * the process_func used to replay items from the log tree.  This
2450  * gets called in two different stages.  The first stage just looks
2451  * for inodes and makes sure they are all copied into the subvolume.
2452  *
2453  * The second stage copies all the other item types from the log into
2454  * the subvolume.  The two stage approach is slower, but gets rid of
2455  * lots of complexity around inodes referencing other inodes that exist
2456  * only in the log (references come from either directory items or inode
2457  * back refs).
2458  */
2459 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2460 			     struct walk_control *wc, u64 gen, int level)
2461 {
2462 	int nritems;
2463 	struct btrfs_path *path;
2464 	struct btrfs_root *root = wc->replay_dest;
2465 	struct btrfs_key key;
2466 	int i;
2467 	int ret;
2468 
2469 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2470 	if (ret)
2471 		return ret;
2472 
2473 	level = btrfs_header_level(eb);
2474 
2475 	if (level != 0)
2476 		return 0;
2477 
2478 	path = btrfs_alloc_path();
2479 	if (!path)
2480 		return -ENOMEM;
2481 
2482 	nritems = btrfs_header_nritems(eb);
2483 	for (i = 0; i < nritems; i++) {
2484 		btrfs_item_key_to_cpu(eb, &key, i);
2485 
2486 		/* inode keys are done during the first stage */
2487 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2488 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2489 			struct btrfs_inode_item *inode_item;
2490 			u32 mode;
2491 
2492 			inode_item = btrfs_item_ptr(eb, i,
2493 					    struct btrfs_inode_item);
2494 			/*
2495 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2496 			 * and never got linked before the fsync, skip it, as
2497 			 * replaying it is pointless since it would be deleted
2498 			 * later. We skip logging tmpfiles, but it's always
2499 			 * possible we are replaying a log created with a kernel
2500 			 * that used to log tmpfiles.
2501 			 */
2502 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2503 				wc->ignore_cur_inode = true;
2504 				continue;
2505 			} else {
2506 				wc->ignore_cur_inode = false;
2507 			}
2508 			ret = replay_xattr_deletes(wc->trans, root, log,
2509 						   path, key.objectid);
2510 			if (ret)
2511 				break;
2512 			mode = btrfs_inode_mode(eb, inode_item);
2513 			if (S_ISDIR(mode)) {
2514 				ret = replay_dir_deletes(wc->trans,
2515 					 root, log, path, key.objectid, 0);
2516 				if (ret)
2517 					break;
2518 			}
2519 			ret = overwrite_item(wc->trans, root, path,
2520 					     eb, i, &key);
2521 			if (ret)
2522 				break;
2523 
2524 			/*
2525 			 * Before replaying extents, truncate the inode to its
2526 			 * size. We need to do it now and not after log replay
2527 			 * because before an fsync we can have prealloc extents
2528 			 * added beyond the inode's i_size. If we did it after,
2529 			 * through orphan cleanup for example, we would drop
2530 			 * those prealloc extents just after replaying them.
2531 			 */
2532 			if (S_ISREG(mode)) {
2533 				struct inode *inode;
2534 				u64 from;
2535 
2536 				inode = read_one_inode(root, key.objectid);
2537 				if (!inode) {
2538 					ret = -EIO;
2539 					break;
2540 				}
2541 				from = ALIGN(i_size_read(inode),
2542 					     root->fs_info->sectorsize);
2543 				ret = btrfs_drop_extents(wc->trans, root, inode,
2544 							 from, (u64)-1, 1);
2545 				if (!ret) {
2546 					/* Update the inode's nbytes. */
2547 					ret = btrfs_update_inode(wc->trans,
2548 								 root, inode);
2549 				}
2550 				iput(inode);
2551 				if (ret)
2552 					break;
2553 			}
2554 
2555 			ret = link_to_fixup_dir(wc->trans, root,
2556 						path, key.objectid);
2557 			if (ret)
2558 				break;
2559 		}
2560 
2561 		if (wc->ignore_cur_inode)
2562 			continue;
2563 
2564 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2565 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2566 			ret = replay_one_dir_item(wc->trans, root, path,
2567 						  eb, i, &key);
2568 			if (ret)
2569 				break;
2570 		}
2571 
2572 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2573 			continue;
2574 
2575 		/* these keys are simply copied */
2576 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2577 			ret = overwrite_item(wc->trans, root, path,
2578 					     eb, i, &key);
2579 			if (ret)
2580 				break;
2581 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2582 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2583 			ret = add_inode_ref(wc->trans, root, log, path,
2584 					    eb, i, &key);
2585 			if (ret && ret != -ENOENT)
2586 				break;
2587 			ret = 0;
2588 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2589 			ret = replay_one_extent(wc->trans, root, path,
2590 						eb, i, &key);
2591 			if (ret)
2592 				break;
2593 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2594 			ret = replay_one_dir_item(wc->trans, root, path,
2595 						  eb, i, &key);
2596 			if (ret)
2597 				break;
2598 		}
2599 	}
2600 	btrfs_free_path(path);
2601 	return ret;
2602 }
2603 
2604 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2605 				   struct btrfs_root *root,
2606 				   struct btrfs_path *path, int *level,
2607 				   struct walk_control *wc)
2608 {
2609 	struct btrfs_fs_info *fs_info = root->fs_info;
2610 	u64 root_owner;
2611 	u64 bytenr;
2612 	u64 ptr_gen;
2613 	struct extent_buffer *next;
2614 	struct extent_buffer *cur;
2615 	struct extent_buffer *parent;
2616 	u32 blocksize;
2617 	int ret = 0;
2618 
2619 	WARN_ON(*level < 0);
2620 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2621 
2622 	while (*level > 0) {
2623 		struct btrfs_key first_key;
2624 
2625 		WARN_ON(*level < 0);
2626 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2627 		cur = path->nodes[*level];
2628 
2629 		WARN_ON(btrfs_header_level(cur) != *level);
2630 
2631 		if (path->slots[*level] >=
2632 		    btrfs_header_nritems(cur))
2633 			break;
2634 
2635 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2636 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2637 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2638 		blocksize = fs_info->nodesize;
2639 
2640 		parent = path->nodes[*level];
2641 		root_owner = btrfs_header_owner(parent);
2642 
2643 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2644 		if (IS_ERR(next))
2645 			return PTR_ERR(next);
2646 
2647 		if (*level == 1) {
2648 			ret = wc->process_func(root, next, wc, ptr_gen,
2649 					       *level - 1);
2650 			if (ret) {
2651 				free_extent_buffer(next);
2652 				return ret;
2653 			}
2654 
2655 			path->slots[*level]++;
2656 			if (wc->free) {
2657 				ret = btrfs_read_buffer(next, ptr_gen,
2658 							*level - 1, &first_key);
2659 				if (ret) {
2660 					free_extent_buffer(next);
2661 					return ret;
2662 				}
2663 
2664 				if (trans) {
2665 					btrfs_tree_lock(next);
2666 					btrfs_set_lock_blocking(next);
2667 					clean_tree_block(fs_info, next);
2668 					btrfs_wait_tree_block_writeback(next);
2669 					btrfs_tree_unlock(next);
2670 				} else {
2671 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2672 						clear_extent_buffer_dirty(next);
2673 				}
2674 
2675 				WARN_ON(root_owner !=
2676 					BTRFS_TREE_LOG_OBJECTID);
2677 				ret = btrfs_free_and_pin_reserved_extent(
2678 							fs_info, bytenr,
2679 							blocksize);
2680 				if (ret) {
2681 					free_extent_buffer(next);
2682 					return ret;
2683 				}
2684 			}
2685 			free_extent_buffer(next);
2686 			continue;
2687 		}
2688 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2689 		if (ret) {
2690 			free_extent_buffer(next);
2691 			return ret;
2692 		}
2693 
2694 		WARN_ON(*level <= 0);
2695 		if (path->nodes[*level-1])
2696 			free_extent_buffer(path->nodes[*level-1]);
2697 		path->nodes[*level-1] = next;
2698 		*level = btrfs_header_level(next);
2699 		path->slots[*level] = 0;
2700 		cond_resched();
2701 	}
2702 	WARN_ON(*level < 0);
2703 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2704 
2705 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2706 
2707 	cond_resched();
2708 	return 0;
2709 }
2710 
2711 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2712 				 struct btrfs_root *root,
2713 				 struct btrfs_path *path, int *level,
2714 				 struct walk_control *wc)
2715 {
2716 	struct btrfs_fs_info *fs_info = root->fs_info;
2717 	u64 root_owner;
2718 	int i;
2719 	int slot;
2720 	int ret;
2721 
2722 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2723 		slot = path->slots[i];
2724 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2725 			path->slots[i]++;
2726 			*level = i;
2727 			WARN_ON(*level == 0);
2728 			return 0;
2729 		} else {
2730 			struct extent_buffer *parent;
2731 			if (path->nodes[*level] == root->node)
2732 				parent = path->nodes[*level];
2733 			else
2734 				parent = path->nodes[*level + 1];
2735 
2736 			root_owner = btrfs_header_owner(parent);
2737 			ret = wc->process_func(root, path->nodes[*level], wc,
2738 				 btrfs_header_generation(path->nodes[*level]),
2739 				 *level);
2740 			if (ret)
2741 				return ret;
2742 
2743 			if (wc->free) {
2744 				struct extent_buffer *next;
2745 
2746 				next = path->nodes[*level];
2747 
2748 				if (trans) {
2749 					btrfs_tree_lock(next);
2750 					btrfs_set_lock_blocking(next);
2751 					clean_tree_block(fs_info, next);
2752 					btrfs_wait_tree_block_writeback(next);
2753 					btrfs_tree_unlock(next);
2754 				} else {
2755 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2756 						clear_extent_buffer_dirty(next);
2757 				}
2758 
2759 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2760 				ret = btrfs_free_and_pin_reserved_extent(
2761 						fs_info,
2762 						path->nodes[*level]->start,
2763 						path->nodes[*level]->len);
2764 				if (ret)
2765 					return ret;
2766 			}
2767 			free_extent_buffer(path->nodes[*level]);
2768 			path->nodes[*level] = NULL;
2769 			*level = i + 1;
2770 		}
2771 	}
2772 	return 1;
2773 }
2774 
2775 /*
2776  * drop the reference count on the tree rooted at 'snap'.  This traverses
2777  * the tree freeing any blocks that have a ref count of zero after being
2778  * decremented.
2779  */
2780 static int walk_log_tree(struct btrfs_trans_handle *trans,
2781 			 struct btrfs_root *log, struct walk_control *wc)
2782 {
2783 	struct btrfs_fs_info *fs_info = log->fs_info;
2784 	int ret = 0;
2785 	int wret;
2786 	int level;
2787 	struct btrfs_path *path;
2788 	int orig_level;
2789 
2790 	path = btrfs_alloc_path();
2791 	if (!path)
2792 		return -ENOMEM;
2793 
2794 	level = btrfs_header_level(log->node);
2795 	orig_level = level;
2796 	path->nodes[level] = log->node;
2797 	extent_buffer_get(log->node);
2798 	path->slots[level] = 0;
2799 
2800 	while (1) {
2801 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2802 		if (wret > 0)
2803 			break;
2804 		if (wret < 0) {
2805 			ret = wret;
2806 			goto out;
2807 		}
2808 
2809 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2810 		if (wret > 0)
2811 			break;
2812 		if (wret < 0) {
2813 			ret = wret;
2814 			goto out;
2815 		}
2816 	}
2817 
2818 	/* was the root node processed? if not, catch it here */
2819 	if (path->nodes[orig_level]) {
2820 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2821 			 btrfs_header_generation(path->nodes[orig_level]),
2822 			 orig_level);
2823 		if (ret)
2824 			goto out;
2825 		if (wc->free) {
2826 			struct extent_buffer *next;
2827 
2828 			next = path->nodes[orig_level];
2829 
2830 			if (trans) {
2831 				btrfs_tree_lock(next);
2832 				btrfs_set_lock_blocking(next);
2833 				clean_tree_block(fs_info, next);
2834 				btrfs_wait_tree_block_writeback(next);
2835 				btrfs_tree_unlock(next);
2836 			} else {
2837 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2838 					clear_extent_buffer_dirty(next);
2839 			}
2840 
2841 			WARN_ON(log->root_key.objectid !=
2842 				BTRFS_TREE_LOG_OBJECTID);
2843 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2844 							next->start, next->len);
2845 			if (ret)
2846 				goto out;
2847 		}
2848 	}
2849 
2850 out:
2851 	btrfs_free_path(path);
2852 	return ret;
2853 }
2854 
2855 /*
2856  * helper function to update the item for a given subvolumes log root
2857  * in the tree of log roots
2858  */
2859 static int update_log_root(struct btrfs_trans_handle *trans,
2860 			   struct btrfs_root *log)
2861 {
2862 	struct btrfs_fs_info *fs_info = log->fs_info;
2863 	int ret;
2864 
2865 	if (log->log_transid == 1) {
2866 		/* insert root item on the first sync */
2867 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2868 				&log->root_key, &log->root_item);
2869 	} else {
2870 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2871 				&log->root_key, &log->root_item);
2872 	}
2873 	return ret;
2874 }
2875 
2876 static void wait_log_commit(struct btrfs_root *root, int transid)
2877 {
2878 	DEFINE_WAIT(wait);
2879 	int index = transid % 2;
2880 
2881 	/*
2882 	 * we only allow two pending log transactions at a time,
2883 	 * so we know that if ours is more than 2 older than the
2884 	 * current transaction, we're done
2885 	 */
2886 	for (;;) {
2887 		prepare_to_wait(&root->log_commit_wait[index],
2888 				&wait, TASK_UNINTERRUPTIBLE);
2889 
2890 		if (!(root->log_transid_committed < transid &&
2891 		      atomic_read(&root->log_commit[index])))
2892 			break;
2893 
2894 		mutex_unlock(&root->log_mutex);
2895 		schedule();
2896 		mutex_lock(&root->log_mutex);
2897 	}
2898 	finish_wait(&root->log_commit_wait[index], &wait);
2899 }
2900 
2901 static void wait_for_writer(struct btrfs_root *root)
2902 {
2903 	DEFINE_WAIT(wait);
2904 
2905 	for (;;) {
2906 		prepare_to_wait(&root->log_writer_wait, &wait,
2907 				TASK_UNINTERRUPTIBLE);
2908 		if (!atomic_read(&root->log_writers))
2909 			break;
2910 
2911 		mutex_unlock(&root->log_mutex);
2912 		schedule();
2913 		mutex_lock(&root->log_mutex);
2914 	}
2915 	finish_wait(&root->log_writer_wait, &wait);
2916 }
2917 
2918 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2919 					struct btrfs_log_ctx *ctx)
2920 {
2921 	if (!ctx)
2922 		return;
2923 
2924 	mutex_lock(&root->log_mutex);
2925 	list_del_init(&ctx->list);
2926 	mutex_unlock(&root->log_mutex);
2927 }
2928 
2929 /*
2930  * Invoked in log mutex context, or be sure there is no other task which
2931  * can access the list.
2932  */
2933 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2934 					     int index, int error)
2935 {
2936 	struct btrfs_log_ctx *ctx;
2937 	struct btrfs_log_ctx *safe;
2938 
2939 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2940 		list_del_init(&ctx->list);
2941 		ctx->log_ret = error;
2942 	}
2943 
2944 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2945 }
2946 
2947 /*
2948  * btrfs_sync_log does sends a given tree log down to the disk and
2949  * updates the super blocks to record it.  When this call is done,
2950  * you know that any inodes previously logged are safely on disk only
2951  * if it returns 0.
2952  *
2953  * Any other return value means you need to call btrfs_commit_transaction.
2954  * Some of the edge cases for fsyncing directories that have had unlinks
2955  * or renames done in the past mean that sometimes the only safe
2956  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2957  * that has happened.
2958  */
2959 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2960 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2961 {
2962 	int index1;
2963 	int index2;
2964 	int mark;
2965 	int ret;
2966 	struct btrfs_fs_info *fs_info = root->fs_info;
2967 	struct btrfs_root *log = root->log_root;
2968 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2969 	int log_transid = 0;
2970 	struct btrfs_log_ctx root_log_ctx;
2971 	struct blk_plug plug;
2972 
2973 	mutex_lock(&root->log_mutex);
2974 	log_transid = ctx->log_transid;
2975 	if (root->log_transid_committed >= log_transid) {
2976 		mutex_unlock(&root->log_mutex);
2977 		return ctx->log_ret;
2978 	}
2979 
2980 	index1 = log_transid % 2;
2981 	if (atomic_read(&root->log_commit[index1])) {
2982 		wait_log_commit(root, log_transid);
2983 		mutex_unlock(&root->log_mutex);
2984 		return ctx->log_ret;
2985 	}
2986 	ASSERT(log_transid == root->log_transid);
2987 	atomic_set(&root->log_commit[index1], 1);
2988 
2989 	/* wait for previous tree log sync to complete */
2990 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2991 		wait_log_commit(root, log_transid - 1);
2992 
2993 	while (1) {
2994 		int batch = atomic_read(&root->log_batch);
2995 		/* when we're on an ssd, just kick the log commit out */
2996 		if (!btrfs_test_opt(fs_info, SSD) &&
2997 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2998 			mutex_unlock(&root->log_mutex);
2999 			schedule_timeout_uninterruptible(1);
3000 			mutex_lock(&root->log_mutex);
3001 		}
3002 		wait_for_writer(root);
3003 		if (batch == atomic_read(&root->log_batch))
3004 			break;
3005 	}
3006 
3007 	/* bail out if we need to do a full commit */
3008 	if (btrfs_need_log_full_commit(fs_info, trans)) {
3009 		ret = -EAGAIN;
3010 		mutex_unlock(&root->log_mutex);
3011 		goto out;
3012 	}
3013 
3014 	if (log_transid % 2 == 0)
3015 		mark = EXTENT_DIRTY;
3016 	else
3017 		mark = EXTENT_NEW;
3018 
3019 	/* we start IO on  all the marked extents here, but we don't actually
3020 	 * wait for them until later.
3021 	 */
3022 	blk_start_plug(&plug);
3023 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3024 	if (ret) {
3025 		blk_finish_plug(&plug);
3026 		btrfs_abort_transaction(trans, ret);
3027 		btrfs_set_log_full_commit(fs_info, trans);
3028 		mutex_unlock(&root->log_mutex);
3029 		goto out;
3030 	}
3031 
3032 	btrfs_set_root_node(&log->root_item, log->node);
3033 
3034 	root->log_transid++;
3035 	log->log_transid = root->log_transid;
3036 	root->log_start_pid = 0;
3037 	/*
3038 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3039 	 * in their headers. new modifications of the log will be written to
3040 	 * new positions. so it's safe to allow log writers to go in.
3041 	 */
3042 	mutex_unlock(&root->log_mutex);
3043 
3044 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3045 
3046 	mutex_lock(&log_root_tree->log_mutex);
3047 	atomic_inc(&log_root_tree->log_batch);
3048 	atomic_inc(&log_root_tree->log_writers);
3049 
3050 	index2 = log_root_tree->log_transid % 2;
3051 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3052 	root_log_ctx.log_transid = log_root_tree->log_transid;
3053 
3054 	mutex_unlock(&log_root_tree->log_mutex);
3055 
3056 	ret = update_log_root(trans, log);
3057 
3058 	mutex_lock(&log_root_tree->log_mutex);
3059 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3060 		/* atomic_dec_and_test implies a barrier */
3061 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3062 	}
3063 
3064 	if (ret) {
3065 		if (!list_empty(&root_log_ctx.list))
3066 			list_del_init(&root_log_ctx.list);
3067 
3068 		blk_finish_plug(&plug);
3069 		btrfs_set_log_full_commit(fs_info, trans);
3070 
3071 		if (ret != -ENOSPC) {
3072 			btrfs_abort_transaction(trans, ret);
3073 			mutex_unlock(&log_root_tree->log_mutex);
3074 			goto out;
3075 		}
3076 		btrfs_wait_tree_log_extents(log, mark);
3077 		mutex_unlock(&log_root_tree->log_mutex);
3078 		ret = -EAGAIN;
3079 		goto out;
3080 	}
3081 
3082 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3083 		blk_finish_plug(&plug);
3084 		list_del_init(&root_log_ctx.list);
3085 		mutex_unlock(&log_root_tree->log_mutex);
3086 		ret = root_log_ctx.log_ret;
3087 		goto out;
3088 	}
3089 
3090 	index2 = root_log_ctx.log_transid % 2;
3091 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3092 		blk_finish_plug(&plug);
3093 		ret = btrfs_wait_tree_log_extents(log, mark);
3094 		wait_log_commit(log_root_tree,
3095 				root_log_ctx.log_transid);
3096 		mutex_unlock(&log_root_tree->log_mutex);
3097 		if (!ret)
3098 			ret = root_log_ctx.log_ret;
3099 		goto out;
3100 	}
3101 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3102 	atomic_set(&log_root_tree->log_commit[index2], 1);
3103 
3104 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3105 		wait_log_commit(log_root_tree,
3106 				root_log_ctx.log_transid - 1);
3107 	}
3108 
3109 	wait_for_writer(log_root_tree);
3110 
3111 	/*
3112 	 * now that we've moved on to the tree of log tree roots,
3113 	 * check the full commit flag again
3114 	 */
3115 	if (btrfs_need_log_full_commit(fs_info, trans)) {
3116 		blk_finish_plug(&plug);
3117 		btrfs_wait_tree_log_extents(log, mark);
3118 		mutex_unlock(&log_root_tree->log_mutex);
3119 		ret = -EAGAIN;
3120 		goto out_wake_log_root;
3121 	}
3122 
3123 	ret = btrfs_write_marked_extents(fs_info,
3124 					 &log_root_tree->dirty_log_pages,
3125 					 EXTENT_DIRTY | EXTENT_NEW);
3126 	blk_finish_plug(&plug);
3127 	if (ret) {
3128 		btrfs_set_log_full_commit(fs_info, trans);
3129 		btrfs_abort_transaction(trans, ret);
3130 		mutex_unlock(&log_root_tree->log_mutex);
3131 		goto out_wake_log_root;
3132 	}
3133 	ret = btrfs_wait_tree_log_extents(log, mark);
3134 	if (!ret)
3135 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3136 						  EXTENT_NEW | EXTENT_DIRTY);
3137 	if (ret) {
3138 		btrfs_set_log_full_commit(fs_info, trans);
3139 		mutex_unlock(&log_root_tree->log_mutex);
3140 		goto out_wake_log_root;
3141 	}
3142 
3143 	btrfs_set_super_log_root(fs_info->super_for_commit,
3144 				 log_root_tree->node->start);
3145 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3146 				       btrfs_header_level(log_root_tree->node));
3147 
3148 	log_root_tree->log_transid++;
3149 	mutex_unlock(&log_root_tree->log_mutex);
3150 
3151 	/*
3152 	 * Nobody else is going to jump in and write the ctree
3153 	 * super here because the log_commit atomic below is protecting
3154 	 * us.  We must be called with a transaction handle pinning
3155 	 * the running transaction open, so a full commit can't hop
3156 	 * in and cause problems either.
3157 	 */
3158 	ret = write_all_supers(fs_info, 1);
3159 	if (ret) {
3160 		btrfs_set_log_full_commit(fs_info, trans);
3161 		btrfs_abort_transaction(trans, ret);
3162 		goto out_wake_log_root;
3163 	}
3164 
3165 	mutex_lock(&root->log_mutex);
3166 	if (root->last_log_commit < log_transid)
3167 		root->last_log_commit = log_transid;
3168 	mutex_unlock(&root->log_mutex);
3169 
3170 out_wake_log_root:
3171 	mutex_lock(&log_root_tree->log_mutex);
3172 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3173 
3174 	log_root_tree->log_transid_committed++;
3175 	atomic_set(&log_root_tree->log_commit[index2], 0);
3176 	mutex_unlock(&log_root_tree->log_mutex);
3177 
3178 	/*
3179 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3180 	 * all the updates above are seen by the woken threads. It might not be
3181 	 * necessary, but proving that seems to be hard.
3182 	 */
3183 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3184 out:
3185 	mutex_lock(&root->log_mutex);
3186 	btrfs_remove_all_log_ctxs(root, index1, ret);
3187 	root->log_transid_committed++;
3188 	atomic_set(&root->log_commit[index1], 0);
3189 	mutex_unlock(&root->log_mutex);
3190 
3191 	/*
3192 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3193 	 * all the updates above are seen by the woken threads. It might not be
3194 	 * necessary, but proving that seems to be hard.
3195 	 */
3196 	cond_wake_up(&root->log_commit_wait[index1]);
3197 	return ret;
3198 }
3199 
3200 static void free_log_tree(struct btrfs_trans_handle *trans,
3201 			  struct btrfs_root *log)
3202 {
3203 	int ret;
3204 	struct walk_control wc = {
3205 		.free = 1,
3206 		.process_func = process_one_buffer
3207 	};
3208 
3209 	ret = walk_log_tree(trans, log, &wc);
3210 	if (ret) {
3211 		if (trans)
3212 			btrfs_abort_transaction(trans, ret);
3213 		else
3214 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3215 	}
3216 
3217 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3218 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3219 	free_extent_buffer(log->node);
3220 	kfree(log);
3221 }
3222 
3223 /*
3224  * free all the extents used by the tree log.  This should be called
3225  * at commit time of the full transaction
3226  */
3227 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3228 {
3229 	if (root->log_root) {
3230 		free_log_tree(trans, root->log_root);
3231 		root->log_root = NULL;
3232 	}
3233 	return 0;
3234 }
3235 
3236 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3237 			     struct btrfs_fs_info *fs_info)
3238 {
3239 	if (fs_info->log_root_tree) {
3240 		free_log_tree(trans, fs_info->log_root_tree);
3241 		fs_info->log_root_tree = NULL;
3242 	}
3243 	return 0;
3244 }
3245 
3246 /*
3247  * If both a file and directory are logged, and unlinks or renames are
3248  * mixed in, we have a few interesting corners:
3249  *
3250  * create file X in dir Y
3251  * link file X to X.link in dir Y
3252  * fsync file X
3253  * unlink file X but leave X.link
3254  * fsync dir Y
3255  *
3256  * After a crash we would expect only X.link to exist.  But file X
3257  * didn't get fsync'd again so the log has back refs for X and X.link.
3258  *
3259  * We solve this by removing directory entries and inode backrefs from the
3260  * log when a file that was logged in the current transaction is
3261  * unlinked.  Any later fsync will include the updated log entries, and
3262  * we'll be able to reconstruct the proper directory items from backrefs.
3263  *
3264  * This optimizations allows us to avoid relogging the entire inode
3265  * or the entire directory.
3266  */
3267 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3268 				 struct btrfs_root *root,
3269 				 const char *name, int name_len,
3270 				 struct btrfs_inode *dir, u64 index)
3271 {
3272 	struct btrfs_root *log;
3273 	struct btrfs_dir_item *di;
3274 	struct btrfs_path *path;
3275 	int ret;
3276 	int err = 0;
3277 	int bytes_del = 0;
3278 	u64 dir_ino = btrfs_ino(dir);
3279 
3280 	if (dir->logged_trans < trans->transid)
3281 		return 0;
3282 
3283 	ret = join_running_log_trans(root);
3284 	if (ret)
3285 		return 0;
3286 
3287 	mutex_lock(&dir->log_mutex);
3288 
3289 	log = root->log_root;
3290 	path = btrfs_alloc_path();
3291 	if (!path) {
3292 		err = -ENOMEM;
3293 		goto out_unlock;
3294 	}
3295 
3296 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3297 				   name, name_len, -1);
3298 	if (IS_ERR(di)) {
3299 		err = PTR_ERR(di);
3300 		goto fail;
3301 	}
3302 	if (di) {
3303 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3304 		bytes_del += name_len;
3305 		if (ret) {
3306 			err = ret;
3307 			goto fail;
3308 		}
3309 	}
3310 	btrfs_release_path(path);
3311 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3312 					 index, name, name_len, -1);
3313 	if (IS_ERR(di)) {
3314 		err = PTR_ERR(di);
3315 		goto fail;
3316 	}
3317 	if (di) {
3318 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3319 		bytes_del += name_len;
3320 		if (ret) {
3321 			err = ret;
3322 			goto fail;
3323 		}
3324 	}
3325 
3326 	/* update the directory size in the log to reflect the names
3327 	 * we have removed
3328 	 */
3329 	if (bytes_del) {
3330 		struct btrfs_key key;
3331 
3332 		key.objectid = dir_ino;
3333 		key.offset = 0;
3334 		key.type = BTRFS_INODE_ITEM_KEY;
3335 		btrfs_release_path(path);
3336 
3337 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3338 		if (ret < 0) {
3339 			err = ret;
3340 			goto fail;
3341 		}
3342 		if (ret == 0) {
3343 			struct btrfs_inode_item *item;
3344 			u64 i_size;
3345 
3346 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3347 					      struct btrfs_inode_item);
3348 			i_size = btrfs_inode_size(path->nodes[0], item);
3349 			if (i_size > bytes_del)
3350 				i_size -= bytes_del;
3351 			else
3352 				i_size = 0;
3353 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3354 			btrfs_mark_buffer_dirty(path->nodes[0]);
3355 		} else
3356 			ret = 0;
3357 		btrfs_release_path(path);
3358 	}
3359 fail:
3360 	btrfs_free_path(path);
3361 out_unlock:
3362 	mutex_unlock(&dir->log_mutex);
3363 	if (ret == -ENOSPC) {
3364 		btrfs_set_log_full_commit(root->fs_info, trans);
3365 		ret = 0;
3366 	} else if (ret < 0)
3367 		btrfs_abort_transaction(trans, ret);
3368 
3369 	btrfs_end_log_trans(root);
3370 
3371 	return err;
3372 }
3373 
3374 /* see comments for btrfs_del_dir_entries_in_log */
3375 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3376 			       struct btrfs_root *root,
3377 			       const char *name, int name_len,
3378 			       struct btrfs_inode *inode, u64 dirid)
3379 {
3380 	struct btrfs_fs_info *fs_info = root->fs_info;
3381 	struct btrfs_root *log;
3382 	u64 index;
3383 	int ret;
3384 
3385 	if (inode->logged_trans < trans->transid)
3386 		return 0;
3387 
3388 	ret = join_running_log_trans(root);
3389 	if (ret)
3390 		return 0;
3391 	log = root->log_root;
3392 	mutex_lock(&inode->log_mutex);
3393 
3394 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3395 				  dirid, &index);
3396 	mutex_unlock(&inode->log_mutex);
3397 	if (ret == -ENOSPC) {
3398 		btrfs_set_log_full_commit(fs_info, trans);
3399 		ret = 0;
3400 	} else if (ret < 0 && ret != -ENOENT)
3401 		btrfs_abort_transaction(trans, ret);
3402 	btrfs_end_log_trans(root);
3403 
3404 	return ret;
3405 }
3406 
3407 /*
3408  * creates a range item in the log for 'dirid'.  first_offset and
3409  * last_offset tell us which parts of the key space the log should
3410  * be considered authoritative for.
3411  */
3412 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3413 				       struct btrfs_root *log,
3414 				       struct btrfs_path *path,
3415 				       int key_type, u64 dirid,
3416 				       u64 first_offset, u64 last_offset)
3417 {
3418 	int ret;
3419 	struct btrfs_key key;
3420 	struct btrfs_dir_log_item *item;
3421 
3422 	key.objectid = dirid;
3423 	key.offset = first_offset;
3424 	if (key_type == BTRFS_DIR_ITEM_KEY)
3425 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3426 	else
3427 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3428 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3429 	if (ret)
3430 		return ret;
3431 
3432 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3433 			      struct btrfs_dir_log_item);
3434 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3435 	btrfs_mark_buffer_dirty(path->nodes[0]);
3436 	btrfs_release_path(path);
3437 	return 0;
3438 }
3439 
3440 /*
3441  * log all the items included in the current transaction for a given
3442  * directory.  This also creates the range items in the log tree required
3443  * to replay anything deleted before the fsync
3444  */
3445 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3446 			  struct btrfs_root *root, struct btrfs_inode *inode,
3447 			  struct btrfs_path *path,
3448 			  struct btrfs_path *dst_path, int key_type,
3449 			  struct btrfs_log_ctx *ctx,
3450 			  u64 min_offset, u64 *last_offset_ret)
3451 {
3452 	struct btrfs_key min_key;
3453 	struct btrfs_root *log = root->log_root;
3454 	struct extent_buffer *src;
3455 	int err = 0;
3456 	int ret;
3457 	int i;
3458 	int nritems;
3459 	u64 first_offset = min_offset;
3460 	u64 last_offset = (u64)-1;
3461 	u64 ino = btrfs_ino(inode);
3462 
3463 	log = root->log_root;
3464 
3465 	min_key.objectid = ino;
3466 	min_key.type = key_type;
3467 	min_key.offset = min_offset;
3468 
3469 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3470 
3471 	/*
3472 	 * we didn't find anything from this transaction, see if there
3473 	 * is anything at all
3474 	 */
3475 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3476 		min_key.objectid = ino;
3477 		min_key.type = key_type;
3478 		min_key.offset = (u64)-1;
3479 		btrfs_release_path(path);
3480 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3481 		if (ret < 0) {
3482 			btrfs_release_path(path);
3483 			return ret;
3484 		}
3485 		ret = btrfs_previous_item(root, path, ino, key_type);
3486 
3487 		/* if ret == 0 there are items for this type,
3488 		 * create a range to tell us the last key of this type.
3489 		 * otherwise, there are no items in this directory after
3490 		 * *min_offset, and we create a range to indicate that.
3491 		 */
3492 		if (ret == 0) {
3493 			struct btrfs_key tmp;
3494 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3495 					      path->slots[0]);
3496 			if (key_type == tmp.type)
3497 				first_offset = max(min_offset, tmp.offset) + 1;
3498 		}
3499 		goto done;
3500 	}
3501 
3502 	/* go backward to find any previous key */
3503 	ret = btrfs_previous_item(root, path, ino, key_type);
3504 	if (ret == 0) {
3505 		struct btrfs_key tmp;
3506 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3507 		if (key_type == tmp.type) {
3508 			first_offset = tmp.offset;
3509 			ret = overwrite_item(trans, log, dst_path,
3510 					     path->nodes[0], path->slots[0],
3511 					     &tmp);
3512 			if (ret) {
3513 				err = ret;
3514 				goto done;
3515 			}
3516 		}
3517 	}
3518 	btrfs_release_path(path);
3519 
3520 	/* find the first key from this transaction again */
3521 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3522 	if (WARN_ON(ret != 0))
3523 		goto done;
3524 
3525 	/*
3526 	 * we have a block from this transaction, log every item in it
3527 	 * from our directory
3528 	 */
3529 	while (1) {
3530 		struct btrfs_key tmp;
3531 		src = path->nodes[0];
3532 		nritems = btrfs_header_nritems(src);
3533 		for (i = path->slots[0]; i < nritems; i++) {
3534 			struct btrfs_dir_item *di;
3535 
3536 			btrfs_item_key_to_cpu(src, &min_key, i);
3537 
3538 			if (min_key.objectid != ino || min_key.type != key_type)
3539 				goto done;
3540 			ret = overwrite_item(trans, log, dst_path, src, i,
3541 					     &min_key);
3542 			if (ret) {
3543 				err = ret;
3544 				goto done;
3545 			}
3546 
3547 			/*
3548 			 * We must make sure that when we log a directory entry,
3549 			 * the corresponding inode, after log replay, has a
3550 			 * matching link count. For example:
3551 			 *
3552 			 * touch foo
3553 			 * mkdir mydir
3554 			 * sync
3555 			 * ln foo mydir/bar
3556 			 * xfs_io -c "fsync" mydir
3557 			 * <crash>
3558 			 * <mount fs and log replay>
3559 			 *
3560 			 * Would result in a fsync log that when replayed, our
3561 			 * file inode would have a link count of 1, but we get
3562 			 * two directory entries pointing to the same inode.
3563 			 * After removing one of the names, it would not be
3564 			 * possible to remove the other name, which resulted
3565 			 * always in stale file handle errors, and would not
3566 			 * be possible to rmdir the parent directory, since
3567 			 * its i_size could never decrement to the value
3568 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3569 			 */
3570 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3571 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3572 			if (ctx &&
3573 			    (btrfs_dir_transid(src, di) == trans->transid ||
3574 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3575 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3576 				ctx->log_new_dentries = true;
3577 		}
3578 		path->slots[0] = nritems;
3579 
3580 		/*
3581 		 * look ahead to the next item and see if it is also
3582 		 * from this directory and from this transaction
3583 		 */
3584 		ret = btrfs_next_leaf(root, path);
3585 		if (ret) {
3586 			if (ret == 1)
3587 				last_offset = (u64)-1;
3588 			else
3589 				err = ret;
3590 			goto done;
3591 		}
3592 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3593 		if (tmp.objectid != ino || tmp.type != key_type) {
3594 			last_offset = (u64)-1;
3595 			goto done;
3596 		}
3597 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3598 			ret = overwrite_item(trans, log, dst_path,
3599 					     path->nodes[0], path->slots[0],
3600 					     &tmp);
3601 			if (ret)
3602 				err = ret;
3603 			else
3604 				last_offset = tmp.offset;
3605 			goto done;
3606 		}
3607 	}
3608 done:
3609 	btrfs_release_path(path);
3610 	btrfs_release_path(dst_path);
3611 
3612 	if (err == 0) {
3613 		*last_offset_ret = last_offset;
3614 		/*
3615 		 * insert the log range keys to indicate where the log
3616 		 * is valid
3617 		 */
3618 		ret = insert_dir_log_key(trans, log, path, key_type,
3619 					 ino, first_offset, last_offset);
3620 		if (ret)
3621 			err = ret;
3622 	}
3623 	return err;
3624 }
3625 
3626 /*
3627  * logging directories is very similar to logging inodes, We find all the items
3628  * from the current transaction and write them to the log.
3629  *
3630  * The recovery code scans the directory in the subvolume, and if it finds a
3631  * key in the range logged that is not present in the log tree, then it means
3632  * that dir entry was unlinked during the transaction.
3633  *
3634  * In order for that scan to work, we must include one key smaller than
3635  * the smallest logged by this transaction and one key larger than the largest
3636  * key logged by this transaction.
3637  */
3638 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3639 			  struct btrfs_root *root, struct btrfs_inode *inode,
3640 			  struct btrfs_path *path,
3641 			  struct btrfs_path *dst_path,
3642 			  struct btrfs_log_ctx *ctx)
3643 {
3644 	u64 min_key;
3645 	u64 max_key;
3646 	int ret;
3647 	int key_type = BTRFS_DIR_ITEM_KEY;
3648 
3649 again:
3650 	min_key = 0;
3651 	max_key = 0;
3652 	while (1) {
3653 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3654 				ctx, min_key, &max_key);
3655 		if (ret)
3656 			return ret;
3657 		if (max_key == (u64)-1)
3658 			break;
3659 		min_key = max_key + 1;
3660 	}
3661 
3662 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3663 		key_type = BTRFS_DIR_INDEX_KEY;
3664 		goto again;
3665 	}
3666 	return 0;
3667 }
3668 
3669 /*
3670  * a helper function to drop items from the log before we relog an
3671  * inode.  max_key_type indicates the highest item type to remove.
3672  * This cannot be run for file data extents because it does not
3673  * free the extents they point to.
3674  */
3675 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3676 				  struct btrfs_root *log,
3677 				  struct btrfs_path *path,
3678 				  u64 objectid, int max_key_type)
3679 {
3680 	int ret;
3681 	struct btrfs_key key;
3682 	struct btrfs_key found_key;
3683 	int start_slot;
3684 
3685 	key.objectid = objectid;
3686 	key.type = max_key_type;
3687 	key.offset = (u64)-1;
3688 
3689 	while (1) {
3690 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3691 		BUG_ON(ret == 0); /* Logic error */
3692 		if (ret < 0)
3693 			break;
3694 
3695 		if (path->slots[0] == 0)
3696 			break;
3697 
3698 		path->slots[0]--;
3699 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3700 				      path->slots[0]);
3701 
3702 		if (found_key.objectid != objectid)
3703 			break;
3704 
3705 		found_key.offset = 0;
3706 		found_key.type = 0;
3707 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3708 				       &start_slot);
3709 
3710 		ret = btrfs_del_items(trans, log, path, start_slot,
3711 				      path->slots[0] - start_slot + 1);
3712 		/*
3713 		 * If start slot isn't 0 then we don't need to re-search, we've
3714 		 * found the last guy with the objectid in this tree.
3715 		 */
3716 		if (ret || start_slot != 0)
3717 			break;
3718 		btrfs_release_path(path);
3719 	}
3720 	btrfs_release_path(path);
3721 	if (ret > 0)
3722 		ret = 0;
3723 	return ret;
3724 }
3725 
3726 static void fill_inode_item(struct btrfs_trans_handle *trans,
3727 			    struct extent_buffer *leaf,
3728 			    struct btrfs_inode_item *item,
3729 			    struct inode *inode, int log_inode_only,
3730 			    u64 logged_isize)
3731 {
3732 	struct btrfs_map_token token;
3733 
3734 	btrfs_init_map_token(&token);
3735 
3736 	if (log_inode_only) {
3737 		/* set the generation to zero so the recover code
3738 		 * can tell the difference between an logging
3739 		 * just to say 'this inode exists' and a logging
3740 		 * to say 'update this inode with these values'
3741 		 */
3742 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3743 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3744 	} else {
3745 		btrfs_set_token_inode_generation(leaf, item,
3746 						 BTRFS_I(inode)->generation,
3747 						 &token);
3748 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3749 	}
3750 
3751 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3752 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3753 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3754 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3755 
3756 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3757 				     inode->i_atime.tv_sec, &token);
3758 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3759 				      inode->i_atime.tv_nsec, &token);
3760 
3761 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3762 				     inode->i_mtime.tv_sec, &token);
3763 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3764 				      inode->i_mtime.tv_nsec, &token);
3765 
3766 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3767 				     inode->i_ctime.tv_sec, &token);
3768 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3769 				      inode->i_ctime.tv_nsec, &token);
3770 
3771 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3772 				     &token);
3773 
3774 	btrfs_set_token_inode_sequence(leaf, item,
3775 				       inode_peek_iversion(inode), &token);
3776 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3777 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3778 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3779 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3780 }
3781 
3782 static int log_inode_item(struct btrfs_trans_handle *trans,
3783 			  struct btrfs_root *log, struct btrfs_path *path,
3784 			  struct btrfs_inode *inode)
3785 {
3786 	struct btrfs_inode_item *inode_item;
3787 	int ret;
3788 
3789 	ret = btrfs_insert_empty_item(trans, log, path,
3790 				      &inode->location, sizeof(*inode_item));
3791 	if (ret && ret != -EEXIST)
3792 		return ret;
3793 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3794 				    struct btrfs_inode_item);
3795 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3796 			0, 0);
3797 	btrfs_release_path(path);
3798 	return 0;
3799 }
3800 
3801 static noinline int copy_items(struct btrfs_trans_handle *trans,
3802 			       struct btrfs_inode *inode,
3803 			       struct btrfs_path *dst_path,
3804 			       struct btrfs_path *src_path, u64 *last_extent,
3805 			       int start_slot, int nr, int inode_only,
3806 			       u64 logged_isize)
3807 {
3808 	struct btrfs_fs_info *fs_info = trans->fs_info;
3809 	unsigned long src_offset;
3810 	unsigned long dst_offset;
3811 	struct btrfs_root *log = inode->root->log_root;
3812 	struct btrfs_file_extent_item *extent;
3813 	struct btrfs_inode_item *inode_item;
3814 	struct extent_buffer *src = src_path->nodes[0];
3815 	struct btrfs_key first_key, last_key, key;
3816 	int ret;
3817 	struct btrfs_key *ins_keys;
3818 	u32 *ins_sizes;
3819 	char *ins_data;
3820 	int i;
3821 	struct list_head ordered_sums;
3822 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3823 	bool has_extents = false;
3824 	bool need_find_last_extent = true;
3825 	bool done = false;
3826 
3827 	INIT_LIST_HEAD(&ordered_sums);
3828 
3829 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3830 			   nr * sizeof(u32), GFP_NOFS);
3831 	if (!ins_data)
3832 		return -ENOMEM;
3833 
3834 	first_key.objectid = (u64)-1;
3835 
3836 	ins_sizes = (u32 *)ins_data;
3837 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3838 
3839 	for (i = 0; i < nr; i++) {
3840 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3841 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3842 	}
3843 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3844 				       ins_keys, ins_sizes, nr);
3845 	if (ret) {
3846 		kfree(ins_data);
3847 		return ret;
3848 	}
3849 
3850 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3851 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3852 						   dst_path->slots[0]);
3853 
3854 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3855 
3856 		if (i == nr - 1)
3857 			last_key = ins_keys[i];
3858 
3859 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3860 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3861 						    dst_path->slots[0],
3862 						    struct btrfs_inode_item);
3863 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3864 					&inode->vfs_inode,
3865 					inode_only == LOG_INODE_EXISTS,
3866 					logged_isize);
3867 		} else {
3868 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3869 					   src_offset, ins_sizes[i]);
3870 		}
3871 
3872 		/*
3873 		 * We set need_find_last_extent here in case we know we were
3874 		 * processing other items and then walk into the first extent in
3875 		 * the inode.  If we don't hit an extent then nothing changes,
3876 		 * we'll do the last search the next time around.
3877 		 */
3878 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3879 			has_extents = true;
3880 			if (first_key.objectid == (u64)-1)
3881 				first_key = ins_keys[i];
3882 		} else {
3883 			need_find_last_extent = false;
3884 		}
3885 
3886 		/* take a reference on file data extents so that truncates
3887 		 * or deletes of this inode don't have to relog the inode
3888 		 * again
3889 		 */
3890 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3891 		    !skip_csum) {
3892 			int found_type;
3893 			extent = btrfs_item_ptr(src, start_slot + i,
3894 						struct btrfs_file_extent_item);
3895 
3896 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3897 				continue;
3898 
3899 			found_type = btrfs_file_extent_type(src, extent);
3900 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3901 				u64 ds, dl, cs, cl;
3902 				ds = btrfs_file_extent_disk_bytenr(src,
3903 								extent);
3904 				/* ds == 0 is a hole */
3905 				if (ds == 0)
3906 					continue;
3907 
3908 				dl = btrfs_file_extent_disk_num_bytes(src,
3909 								extent);
3910 				cs = btrfs_file_extent_offset(src, extent);
3911 				cl = btrfs_file_extent_num_bytes(src,
3912 								extent);
3913 				if (btrfs_file_extent_compression(src,
3914 								  extent)) {
3915 					cs = 0;
3916 					cl = dl;
3917 				}
3918 
3919 				ret = btrfs_lookup_csums_range(
3920 						fs_info->csum_root,
3921 						ds + cs, ds + cs + cl - 1,
3922 						&ordered_sums, 0);
3923 				if (ret) {
3924 					btrfs_release_path(dst_path);
3925 					kfree(ins_data);
3926 					return ret;
3927 				}
3928 			}
3929 		}
3930 	}
3931 
3932 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3933 	btrfs_release_path(dst_path);
3934 	kfree(ins_data);
3935 
3936 	/*
3937 	 * we have to do this after the loop above to avoid changing the
3938 	 * log tree while trying to change the log tree.
3939 	 */
3940 	ret = 0;
3941 	while (!list_empty(&ordered_sums)) {
3942 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3943 						   struct btrfs_ordered_sum,
3944 						   list);
3945 		if (!ret)
3946 			ret = btrfs_csum_file_blocks(trans, log, sums);
3947 		list_del(&sums->list);
3948 		kfree(sums);
3949 	}
3950 
3951 	if (!has_extents)
3952 		return ret;
3953 
3954 	if (need_find_last_extent && *last_extent == first_key.offset) {
3955 		/*
3956 		 * We don't have any leafs between our current one and the one
3957 		 * we processed before that can have file extent items for our
3958 		 * inode (and have a generation number smaller than our current
3959 		 * transaction id).
3960 		 */
3961 		need_find_last_extent = false;
3962 	}
3963 
3964 	/*
3965 	 * Because we use btrfs_search_forward we could skip leaves that were
3966 	 * not modified and then assume *last_extent is valid when it really
3967 	 * isn't.  So back up to the previous leaf and read the end of the last
3968 	 * extent before we go and fill in holes.
3969 	 */
3970 	if (need_find_last_extent) {
3971 		u64 len;
3972 
3973 		ret = btrfs_prev_leaf(inode->root, src_path);
3974 		if (ret < 0)
3975 			return ret;
3976 		if (ret)
3977 			goto fill_holes;
3978 		if (src_path->slots[0])
3979 			src_path->slots[0]--;
3980 		src = src_path->nodes[0];
3981 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3982 		if (key.objectid != btrfs_ino(inode) ||
3983 		    key.type != BTRFS_EXTENT_DATA_KEY)
3984 			goto fill_holes;
3985 		extent = btrfs_item_ptr(src, src_path->slots[0],
3986 					struct btrfs_file_extent_item);
3987 		if (btrfs_file_extent_type(src, extent) ==
3988 		    BTRFS_FILE_EXTENT_INLINE) {
3989 			len = btrfs_file_extent_ram_bytes(src, extent);
3990 			*last_extent = ALIGN(key.offset + len,
3991 					     fs_info->sectorsize);
3992 		} else {
3993 			len = btrfs_file_extent_num_bytes(src, extent);
3994 			*last_extent = key.offset + len;
3995 		}
3996 	}
3997 fill_holes:
3998 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3999 	 * things could have happened
4000 	 *
4001 	 * 1) A merge could have happened, so we could currently be on a leaf
4002 	 * that holds what we were copying in the first place.
4003 	 * 2) A split could have happened, and now not all of the items we want
4004 	 * are on the same leaf.
4005 	 *
4006 	 * So we need to adjust how we search for holes, we need to drop the
4007 	 * path and re-search for the first extent key we found, and then walk
4008 	 * forward until we hit the last one we copied.
4009 	 */
4010 	if (need_find_last_extent) {
4011 		/* btrfs_prev_leaf could return 1 without releasing the path */
4012 		btrfs_release_path(src_path);
4013 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
4014 				src_path, 0, 0);
4015 		if (ret < 0)
4016 			return ret;
4017 		ASSERT(ret == 0);
4018 		src = src_path->nodes[0];
4019 		i = src_path->slots[0];
4020 	} else {
4021 		i = start_slot;
4022 	}
4023 
4024 	/*
4025 	 * Ok so here we need to go through and fill in any holes we may have
4026 	 * to make sure that holes are punched for those areas in case they had
4027 	 * extents previously.
4028 	 */
4029 	while (!done) {
4030 		u64 offset, len;
4031 		u64 extent_end;
4032 
4033 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4034 			ret = btrfs_next_leaf(inode->root, src_path);
4035 			if (ret < 0)
4036 				return ret;
4037 			ASSERT(ret == 0);
4038 			src = src_path->nodes[0];
4039 			i = 0;
4040 			need_find_last_extent = true;
4041 		}
4042 
4043 		btrfs_item_key_to_cpu(src, &key, i);
4044 		if (!btrfs_comp_cpu_keys(&key, &last_key))
4045 			done = true;
4046 		if (key.objectid != btrfs_ino(inode) ||
4047 		    key.type != BTRFS_EXTENT_DATA_KEY) {
4048 			i++;
4049 			continue;
4050 		}
4051 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4052 		if (btrfs_file_extent_type(src, extent) ==
4053 		    BTRFS_FILE_EXTENT_INLINE) {
4054 			len = btrfs_file_extent_ram_bytes(src, extent);
4055 			extent_end = ALIGN(key.offset + len,
4056 					   fs_info->sectorsize);
4057 		} else {
4058 			len = btrfs_file_extent_num_bytes(src, extent);
4059 			extent_end = key.offset + len;
4060 		}
4061 		i++;
4062 
4063 		if (*last_extent == key.offset) {
4064 			*last_extent = extent_end;
4065 			continue;
4066 		}
4067 		offset = *last_extent;
4068 		len = key.offset - *last_extent;
4069 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4070 				offset, 0, 0, len, 0, len, 0, 0, 0);
4071 		if (ret)
4072 			break;
4073 		*last_extent = extent_end;
4074 	}
4075 
4076 	/*
4077 	 * Check if there is a hole between the last extent found in our leaf
4078 	 * and the first extent in the next leaf. If there is one, we need to
4079 	 * log an explicit hole so that at replay time we can punch the hole.
4080 	 */
4081 	if (ret == 0 &&
4082 	    key.objectid == btrfs_ino(inode) &&
4083 	    key.type == BTRFS_EXTENT_DATA_KEY &&
4084 	    i == btrfs_header_nritems(src_path->nodes[0])) {
4085 		ret = btrfs_next_leaf(inode->root, src_path);
4086 		need_find_last_extent = true;
4087 		if (ret > 0) {
4088 			ret = 0;
4089 		} else if (ret == 0) {
4090 			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4091 					      src_path->slots[0]);
4092 			if (key.objectid == btrfs_ino(inode) &&
4093 			    key.type == BTRFS_EXTENT_DATA_KEY &&
4094 			    *last_extent < key.offset) {
4095 				const u64 len = key.offset - *last_extent;
4096 
4097 				ret = btrfs_insert_file_extent(trans, log,
4098 							       btrfs_ino(inode),
4099 							       *last_extent, 0,
4100 							       0, len, 0, len,
4101 							       0, 0, 0);
4102 			}
4103 		}
4104 	}
4105 	/*
4106 	 * Need to let the callers know we dropped the path so they should
4107 	 * re-search.
4108 	 */
4109 	if (!ret && need_find_last_extent)
4110 		ret = 1;
4111 	return ret;
4112 }
4113 
4114 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4115 {
4116 	struct extent_map *em1, *em2;
4117 
4118 	em1 = list_entry(a, struct extent_map, list);
4119 	em2 = list_entry(b, struct extent_map, list);
4120 
4121 	if (em1->start < em2->start)
4122 		return -1;
4123 	else if (em1->start > em2->start)
4124 		return 1;
4125 	return 0;
4126 }
4127 
4128 static int log_extent_csums(struct btrfs_trans_handle *trans,
4129 			    struct btrfs_inode *inode,
4130 			    struct btrfs_root *log_root,
4131 			    const struct extent_map *em)
4132 {
4133 	u64 csum_offset;
4134 	u64 csum_len;
4135 	LIST_HEAD(ordered_sums);
4136 	int ret = 0;
4137 
4138 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4139 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4140 	    em->block_start == EXTENT_MAP_HOLE)
4141 		return 0;
4142 
4143 	/* If we're compressed we have to save the entire range of csums. */
4144 	if (em->compress_type) {
4145 		csum_offset = 0;
4146 		csum_len = max(em->block_len, em->orig_block_len);
4147 	} else {
4148 		csum_offset = em->mod_start - em->start;
4149 		csum_len = em->mod_len;
4150 	}
4151 
4152 	/* block start is already adjusted for the file extent offset. */
4153 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4154 				       em->block_start + csum_offset,
4155 				       em->block_start + csum_offset +
4156 				       csum_len - 1, &ordered_sums, 0);
4157 	if (ret)
4158 		return ret;
4159 
4160 	while (!list_empty(&ordered_sums)) {
4161 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4162 						   struct btrfs_ordered_sum,
4163 						   list);
4164 		if (!ret)
4165 			ret = btrfs_csum_file_blocks(trans, log_root, sums);
4166 		list_del(&sums->list);
4167 		kfree(sums);
4168 	}
4169 
4170 	return ret;
4171 }
4172 
4173 static int log_one_extent(struct btrfs_trans_handle *trans,
4174 			  struct btrfs_inode *inode, struct btrfs_root *root,
4175 			  const struct extent_map *em,
4176 			  struct btrfs_path *path,
4177 			  struct btrfs_log_ctx *ctx)
4178 {
4179 	struct btrfs_root *log = root->log_root;
4180 	struct btrfs_file_extent_item *fi;
4181 	struct extent_buffer *leaf;
4182 	struct btrfs_map_token token;
4183 	struct btrfs_key key;
4184 	u64 extent_offset = em->start - em->orig_start;
4185 	u64 block_len;
4186 	int ret;
4187 	int extent_inserted = 0;
4188 
4189 	ret = log_extent_csums(trans, inode, log, em);
4190 	if (ret)
4191 		return ret;
4192 
4193 	btrfs_init_map_token(&token);
4194 
4195 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4196 				   em->start + em->len, NULL, 0, 1,
4197 				   sizeof(*fi), &extent_inserted);
4198 	if (ret)
4199 		return ret;
4200 
4201 	if (!extent_inserted) {
4202 		key.objectid = btrfs_ino(inode);
4203 		key.type = BTRFS_EXTENT_DATA_KEY;
4204 		key.offset = em->start;
4205 
4206 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4207 					      sizeof(*fi));
4208 		if (ret)
4209 			return ret;
4210 	}
4211 	leaf = path->nodes[0];
4212 	fi = btrfs_item_ptr(leaf, path->slots[0],
4213 			    struct btrfs_file_extent_item);
4214 
4215 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4216 					       &token);
4217 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4218 		btrfs_set_token_file_extent_type(leaf, fi,
4219 						 BTRFS_FILE_EXTENT_PREALLOC,
4220 						 &token);
4221 	else
4222 		btrfs_set_token_file_extent_type(leaf, fi,
4223 						 BTRFS_FILE_EXTENT_REG,
4224 						 &token);
4225 
4226 	block_len = max(em->block_len, em->orig_block_len);
4227 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4228 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4229 							em->block_start,
4230 							&token);
4231 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4232 							   &token);
4233 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4234 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4235 							em->block_start -
4236 							extent_offset, &token);
4237 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4238 							   &token);
4239 	} else {
4240 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4241 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4242 							   &token);
4243 	}
4244 
4245 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4246 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4247 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4248 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4249 						&token);
4250 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4251 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4252 	btrfs_mark_buffer_dirty(leaf);
4253 
4254 	btrfs_release_path(path);
4255 
4256 	return ret;
4257 }
4258 
4259 /*
4260  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4261  * lose them after doing a fast fsync and replaying the log. We scan the
4262  * subvolume's root instead of iterating the inode's extent map tree because
4263  * otherwise we can log incorrect extent items based on extent map conversion.
4264  * That can happen due to the fact that extent maps are merged when they
4265  * are not in the extent map tree's list of modified extents.
4266  */
4267 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4268 				      struct btrfs_inode *inode,
4269 				      struct btrfs_path *path)
4270 {
4271 	struct btrfs_root *root = inode->root;
4272 	struct btrfs_key key;
4273 	const u64 i_size = i_size_read(&inode->vfs_inode);
4274 	const u64 ino = btrfs_ino(inode);
4275 	struct btrfs_path *dst_path = NULL;
4276 	u64 last_extent = (u64)-1;
4277 	int ins_nr = 0;
4278 	int start_slot;
4279 	int ret;
4280 
4281 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4282 		return 0;
4283 
4284 	key.objectid = ino;
4285 	key.type = BTRFS_EXTENT_DATA_KEY;
4286 	key.offset = i_size;
4287 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4288 	if (ret < 0)
4289 		goto out;
4290 
4291 	while (true) {
4292 		struct extent_buffer *leaf = path->nodes[0];
4293 		int slot = path->slots[0];
4294 
4295 		if (slot >= btrfs_header_nritems(leaf)) {
4296 			if (ins_nr > 0) {
4297 				ret = copy_items(trans, inode, dst_path, path,
4298 						 &last_extent, start_slot,
4299 						 ins_nr, 1, 0);
4300 				if (ret < 0)
4301 					goto out;
4302 				ins_nr = 0;
4303 			}
4304 			ret = btrfs_next_leaf(root, path);
4305 			if (ret < 0)
4306 				goto out;
4307 			if (ret > 0) {
4308 				ret = 0;
4309 				break;
4310 			}
4311 			continue;
4312 		}
4313 
4314 		btrfs_item_key_to_cpu(leaf, &key, slot);
4315 		if (key.objectid > ino)
4316 			break;
4317 		if (WARN_ON_ONCE(key.objectid < ino) ||
4318 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4319 		    key.offset < i_size) {
4320 			path->slots[0]++;
4321 			continue;
4322 		}
4323 		if (last_extent == (u64)-1) {
4324 			last_extent = key.offset;
4325 			/*
4326 			 * Avoid logging extent items logged in past fsync calls
4327 			 * and leading to duplicate keys in the log tree.
4328 			 */
4329 			do {
4330 				ret = btrfs_truncate_inode_items(trans,
4331 							 root->log_root,
4332 							 &inode->vfs_inode,
4333 							 i_size,
4334 							 BTRFS_EXTENT_DATA_KEY);
4335 			} while (ret == -EAGAIN);
4336 			if (ret)
4337 				goto out;
4338 		}
4339 		if (ins_nr == 0)
4340 			start_slot = slot;
4341 		ins_nr++;
4342 		path->slots[0]++;
4343 		if (!dst_path) {
4344 			dst_path = btrfs_alloc_path();
4345 			if (!dst_path) {
4346 				ret = -ENOMEM;
4347 				goto out;
4348 			}
4349 		}
4350 	}
4351 	if (ins_nr > 0) {
4352 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4353 				 start_slot, ins_nr, 1, 0);
4354 		if (ret > 0)
4355 			ret = 0;
4356 	}
4357 out:
4358 	btrfs_release_path(path);
4359 	btrfs_free_path(dst_path);
4360 	return ret;
4361 }
4362 
4363 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4364 				     struct btrfs_root *root,
4365 				     struct btrfs_inode *inode,
4366 				     struct btrfs_path *path,
4367 				     struct btrfs_log_ctx *ctx,
4368 				     const u64 start,
4369 				     const u64 end)
4370 {
4371 	struct extent_map *em, *n;
4372 	struct list_head extents;
4373 	struct extent_map_tree *tree = &inode->extent_tree;
4374 	u64 test_gen;
4375 	int ret = 0;
4376 	int num = 0;
4377 
4378 	INIT_LIST_HEAD(&extents);
4379 
4380 	write_lock(&tree->lock);
4381 	test_gen = root->fs_info->last_trans_committed;
4382 
4383 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4384 		/*
4385 		 * Skip extents outside our logging range. It's important to do
4386 		 * it for correctness because if we don't ignore them, we may
4387 		 * log them before their ordered extent completes, and therefore
4388 		 * we could log them without logging their respective checksums
4389 		 * (the checksum items are added to the csum tree at the very
4390 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4391 		 * outside of our range in the list, since we may have another
4392 		 * ranged fsync in the near future that needs them. If an extent
4393 		 * outside our range corresponds to a hole, log it to avoid
4394 		 * leaving gaps between extents (fsck will complain when we are
4395 		 * not using the NO_HOLES feature).
4396 		 */
4397 		if ((em->start > end || em->start + em->len <= start) &&
4398 		    em->block_start != EXTENT_MAP_HOLE)
4399 			continue;
4400 
4401 		list_del_init(&em->list);
4402 		/*
4403 		 * Just an arbitrary number, this can be really CPU intensive
4404 		 * once we start getting a lot of extents, and really once we
4405 		 * have a bunch of extents we just want to commit since it will
4406 		 * be faster.
4407 		 */
4408 		if (++num > 32768) {
4409 			list_del_init(&tree->modified_extents);
4410 			ret = -EFBIG;
4411 			goto process;
4412 		}
4413 
4414 		if (em->generation <= test_gen)
4415 			continue;
4416 
4417 		/* We log prealloc extents beyond eof later. */
4418 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4419 		    em->start >= i_size_read(&inode->vfs_inode))
4420 			continue;
4421 
4422 		/* Need a ref to keep it from getting evicted from cache */
4423 		refcount_inc(&em->refs);
4424 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4425 		list_add_tail(&em->list, &extents);
4426 		num++;
4427 	}
4428 
4429 	list_sort(NULL, &extents, extent_cmp);
4430 process:
4431 	while (!list_empty(&extents)) {
4432 		em = list_entry(extents.next, struct extent_map, list);
4433 
4434 		list_del_init(&em->list);
4435 
4436 		/*
4437 		 * If we had an error we just need to delete everybody from our
4438 		 * private list.
4439 		 */
4440 		if (ret) {
4441 			clear_em_logging(tree, em);
4442 			free_extent_map(em);
4443 			continue;
4444 		}
4445 
4446 		write_unlock(&tree->lock);
4447 
4448 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4449 		write_lock(&tree->lock);
4450 		clear_em_logging(tree, em);
4451 		free_extent_map(em);
4452 	}
4453 	WARN_ON(!list_empty(&extents));
4454 	write_unlock(&tree->lock);
4455 
4456 	btrfs_release_path(path);
4457 	if (!ret)
4458 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4459 
4460 	return ret;
4461 }
4462 
4463 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4464 			     struct btrfs_path *path, u64 *size_ret)
4465 {
4466 	struct btrfs_key key;
4467 	int ret;
4468 
4469 	key.objectid = btrfs_ino(inode);
4470 	key.type = BTRFS_INODE_ITEM_KEY;
4471 	key.offset = 0;
4472 
4473 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4474 	if (ret < 0) {
4475 		return ret;
4476 	} else if (ret > 0) {
4477 		*size_ret = 0;
4478 	} else {
4479 		struct btrfs_inode_item *item;
4480 
4481 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4482 				      struct btrfs_inode_item);
4483 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4484 	}
4485 
4486 	btrfs_release_path(path);
4487 	return 0;
4488 }
4489 
4490 /*
4491  * At the moment we always log all xattrs. This is to figure out at log replay
4492  * time which xattrs must have their deletion replayed. If a xattr is missing
4493  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4494  * because if a xattr is deleted, the inode is fsynced and a power failure
4495  * happens, causing the log to be replayed the next time the fs is mounted,
4496  * we want the xattr to not exist anymore (same behaviour as other filesystems
4497  * with a journal, ext3/4, xfs, f2fs, etc).
4498  */
4499 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4500 				struct btrfs_root *root,
4501 				struct btrfs_inode *inode,
4502 				struct btrfs_path *path,
4503 				struct btrfs_path *dst_path)
4504 {
4505 	int ret;
4506 	struct btrfs_key key;
4507 	const u64 ino = btrfs_ino(inode);
4508 	int ins_nr = 0;
4509 	int start_slot = 0;
4510 
4511 	key.objectid = ino;
4512 	key.type = BTRFS_XATTR_ITEM_KEY;
4513 	key.offset = 0;
4514 
4515 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4516 	if (ret < 0)
4517 		return ret;
4518 
4519 	while (true) {
4520 		int slot = path->slots[0];
4521 		struct extent_buffer *leaf = path->nodes[0];
4522 		int nritems = btrfs_header_nritems(leaf);
4523 
4524 		if (slot >= nritems) {
4525 			if (ins_nr > 0) {
4526 				u64 last_extent = 0;
4527 
4528 				ret = copy_items(trans, inode, dst_path, path,
4529 						 &last_extent, start_slot,
4530 						 ins_nr, 1, 0);
4531 				/* can't be 1, extent items aren't processed */
4532 				ASSERT(ret <= 0);
4533 				if (ret < 0)
4534 					return ret;
4535 				ins_nr = 0;
4536 			}
4537 			ret = btrfs_next_leaf(root, path);
4538 			if (ret < 0)
4539 				return ret;
4540 			else if (ret > 0)
4541 				break;
4542 			continue;
4543 		}
4544 
4545 		btrfs_item_key_to_cpu(leaf, &key, slot);
4546 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4547 			break;
4548 
4549 		if (ins_nr == 0)
4550 			start_slot = slot;
4551 		ins_nr++;
4552 		path->slots[0]++;
4553 		cond_resched();
4554 	}
4555 	if (ins_nr > 0) {
4556 		u64 last_extent = 0;
4557 
4558 		ret = copy_items(trans, inode, dst_path, path,
4559 				 &last_extent, start_slot,
4560 				 ins_nr, 1, 0);
4561 		/* can't be 1, extent items aren't processed */
4562 		ASSERT(ret <= 0);
4563 		if (ret < 0)
4564 			return ret;
4565 	}
4566 
4567 	return 0;
4568 }
4569 
4570 /*
4571  * If the no holes feature is enabled we need to make sure any hole between the
4572  * last extent and the i_size of our inode is explicitly marked in the log. This
4573  * is to make sure that doing something like:
4574  *
4575  *      1) create file with 128Kb of data
4576  *      2) truncate file to 64Kb
4577  *      3) truncate file to 256Kb
4578  *      4) fsync file
4579  *      5) <crash/power failure>
4580  *      6) mount fs and trigger log replay
4581  *
4582  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4583  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4584  * file correspond to a hole. The presence of explicit holes in a log tree is
4585  * what guarantees that log replay will remove/adjust file extent items in the
4586  * fs/subvol tree.
4587  *
4588  * Here we do not need to care about holes between extents, that is already done
4589  * by copy_items(). We also only need to do this in the full sync path, where we
4590  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4591  * lookup the list of modified extent maps and if any represents a hole, we
4592  * insert a corresponding extent representing a hole in the log tree.
4593  */
4594 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4595 				   struct btrfs_root *root,
4596 				   struct btrfs_inode *inode,
4597 				   struct btrfs_path *path)
4598 {
4599 	struct btrfs_fs_info *fs_info = root->fs_info;
4600 	int ret;
4601 	struct btrfs_key key;
4602 	u64 hole_start;
4603 	u64 hole_size;
4604 	struct extent_buffer *leaf;
4605 	struct btrfs_root *log = root->log_root;
4606 	const u64 ino = btrfs_ino(inode);
4607 	const u64 i_size = i_size_read(&inode->vfs_inode);
4608 
4609 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4610 		return 0;
4611 
4612 	key.objectid = ino;
4613 	key.type = BTRFS_EXTENT_DATA_KEY;
4614 	key.offset = (u64)-1;
4615 
4616 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4617 	ASSERT(ret != 0);
4618 	if (ret < 0)
4619 		return ret;
4620 
4621 	ASSERT(path->slots[0] > 0);
4622 	path->slots[0]--;
4623 	leaf = path->nodes[0];
4624 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4625 
4626 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4627 		/* inode does not have any extents */
4628 		hole_start = 0;
4629 		hole_size = i_size;
4630 	} else {
4631 		struct btrfs_file_extent_item *extent;
4632 		u64 len;
4633 
4634 		/*
4635 		 * If there's an extent beyond i_size, an explicit hole was
4636 		 * already inserted by copy_items().
4637 		 */
4638 		if (key.offset >= i_size)
4639 			return 0;
4640 
4641 		extent = btrfs_item_ptr(leaf, path->slots[0],
4642 					struct btrfs_file_extent_item);
4643 
4644 		if (btrfs_file_extent_type(leaf, extent) ==
4645 		    BTRFS_FILE_EXTENT_INLINE) {
4646 			len = btrfs_file_extent_ram_bytes(leaf, extent);
4647 			ASSERT(len == i_size ||
4648 			       (len == fs_info->sectorsize &&
4649 				btrfs_file_extent_compression(leaf, extent) !=
4650 				BTRFS_COMPRESS_NONE) ||
4651 			       (len < i_size && i_size < fs_info->sectorsize));
4652 			return 0;
4653 		}
4654 
4655 		len = btrfs_file_extent_num_bytes(leaf, extent);
4656 		/* Last extent goes beyond i_size, no need to log a hole. */
4657 		if (key.offset + len > i_size)
4658 			return 0;
4659 		hole_start = key.offset + len;
4660 		hole_size = i_size - hole_start;
4661 	}
4662 	btrfs_release_path(path);
4663 
4664 	/* Last extent ends at i_size. */
4665 	if (hole_size == 0)
4666 		return 0;
4667 
4668 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4669 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4670 				       hole_size, 0, hole_size, 0, 0, 0);
4671 	return ret;
4672 }
4673 
4674 /*
4675  * When we are logging a new inode X, check if it doesn't have a reference that
4676  * matches the reference from some other inode Y created in a past transaction
4677  * and that was renamed in the current transaction. If we don't do this, then at
4678  * log replay time we can lose inode Y (and all its files if it's a directory):
4679  *
4680  * mkdir /mnt/x
4681  * echo "hello world" > /mnt/x/foobar
4682  * sync
4683  * mv /mnt/x /mnt/y
4684  * mkdir /mnt/x                 # or touch /mnt/x
4685  * xfs_io -c fsync /mnt/x
4686  * <power fail>
4687  * mount fs, trigger log replay
4688  *
4689  * After the log replay procedure, we would lose the first directory and all its
4690  * files (file foobar).
4691  * For the case where inode Y is not a directory we simply end up losing it:
4692  *
4693  * echo "123" > /mnt/foo
4694  * sync
4695  * mv /mnt/foo /mnt/bar
4696  * echo "abc" > /mnt/foo
4697  * xfs_io -c fsync /mnt/foo
4698  * <power fail>
4699  *
4700  * We also need this for cases where a snapshot entry is replaced by some other
4701  * entry (file or directory) otherwise we end up with an unreplayable log due to
4702  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4703  * if it were a regular entry:
4704  *
4705  * mkdir /mnt/x
4706  * btrfs subvolume snapshot /mnt /mnt/x/snap
4707  * btrfs subvolume delete /mnt/x/snap
4708  * rmdir /mnt/x
4709  * mkdir /mnt/x
4710  * fsync /mnt/x or fsync some new file inside it
4711  * <power fail>
4712  *
4713  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4714  * the same transaction.
4715  */
4716 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4717 					 const int slot,
4718 					 const struct btrfs_key *key,
4719 					 struct btrfs_inode *inode,
4720 					 u64 *other_ino)
4721 {
4722 	int ret;
4723 	struct btrfs_path *search_path;
4724 	char *name = NULL;
4725 	u32 name_len = 0;
4726 	u32 item_size = btrfs_item_size_nr(eb, slot);
4727 	u32 cur_offset = 0;
4728 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4729 
4730 	search_path = btrfs_alloc_path();
4731 	if (!search_path)
4732 		return -ENOMEM;
4733 	search_path->search_commit_root = 1;
4734 	search_path->skip_locking = 1;
4735 
4736 	while (cur_offset < item_size) {
4737 		u64 parent;
4738 		u32 this_name_len;
4739 		u32 this_len;
4740 		unsigned long name_ptr;
4741 		struct btrfs_dir_item *di;
4742 
4743 		if (key->type == BTRFS_INODE_REF_KEY) {
4744 			struct btrfs_inode_ref *iref;
4745 
4746 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4747 			parent = key->offset;
4748 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4749 			name_ptr = (unsigned long)(iref + 1);
4750 			this_len = sizeof(*iref) + this_name_len;
4751 		} else {
4752 			struct btrfs_inode_extref *extref;
4753 
4754 			extref = (struct btrfs_inode_extref *)(ptr +
4755 							       cur_offset);
4756 			parent = btrfs_inode_extref_parent(eb, extref);
4757 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4758 			name_ptr = (unsigned long)&extref->name;
4759 			this_len = sizeof(*extref) + this_name_len;
4760 		}
4761 
4762 		if (this_name_len > name_len) {
4763 			char *new_name;
4764 
4765 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4766 			if (!new_name) {
4767 				ret = -ENOMEM;
4768 				goto out;
4769 			}
4770 			name_len = this_name_len;
4771 			name = new_name;
4772 		}
4773 
4774 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4775 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4776 				parent, name, this_name_len, 0);
4777 		if (di && !IS_ERR(di)) {
4778 			struct btrfs_key di_key;
4779 
4780 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4781 						  di, &di_key);
4782 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4783 				ret = 1;
4784 				*other_ino = di_key.objectid;
4785 			} else {
4786 				ret = -EAGAIN;
4787 			}
4788 			goto out;
4789 		} else if (IS_ERR(di)) {
4790 			ret = PTR_ERR(di);
4791 			goto out;
4792 		}
4793 		btrfs_release_path(search_path);
4794 
4795 		cur_offset += this_len;
4796 	}
4797 	ret = 0;
4798 out:
4799 	btrfs_free_path(search_path);
4800 	kfree(name);
4801 	return ret;
4802 }
4803 
4804 /* log a single inode in the tree log.
4805  * At least one parent directory for this inode must exist in the tree
4806  * or be logged already.
4807  *
4808  * Any items from this inode changed by the current transaction are copied
4809  * to the log tree.  An extra reference is taken on any extents in this
4810  * file, allowing us to avoid a whole pile of corner cases around logging
4811  * blocks that have been removed from the tree.
4812  *
4813  * See LOG_INODE_ALL and related defines for a description of what inode_only
4814  * does.
4815  *
4816  * This handles both files and directories.
4817  */
4818 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4819 			   struct btrfs_root *root, struct btrfs_inode *inode,
4820 			   int inode_only,
4821 			   const loff_t start,
4822 			   const loff_t end,
4823 			   struct btrfs_log_ctx *ctx)
4824 {
4825 	struct btrfs_fs_info *fs_info = root->fs_info;
4826 	struct btrfs_path *path;
4827 	struct btrfs_path *dst_path;
4828 	struct btrfs_key min_key;
4829 	struct btrfs_key max_key;
4830 	struct btrfs_root *log = root->log_root;
4831 	u64 last_extent = 0;
4832 	int err = 0;
4833 	int ret;
4834 	int nritems;
4835 	int ins_start_slot = 0;
4836 	int ins_nr;
4837 	bool fast_search = false;
4838 	u64 ino = btrfs_ino(inode);
4839 	struct extent_map_tree *em_tree = &inode->extent_tree;
4840 	u64 logged_isize = 0;
4841 	bool need_log_inode_item = true;
4842 	bool xattrs_logged = false;
4843 
4844 	path = btrfs_alloc_path();
4845 	if (!path)
4846 		return -ENOMEM;
4847 	dst_path = btrfs_alloc_path();
4848 	if (!dst_path) {
4849 		btrfs_free_path(path);
4850 		return -ENOMEM;
4851 	}
4852 
4853 	min_key.objectid = ino;
4854 	min_key.type = BTRFS_INODE_ITEM_KEY;
4855 	min_key.offset = 0;
4856 
4857 	max_key.objectid = ino;
4858 
4859 
4860 	/* today the code can only do partial logging of directories */
4861 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4862 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4863 		       &inode->runtime_flags) &&
4864 	     inode_only >= LOG_INODE_EXISTS))
4865 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4866 	else
4867 		max_key.type = (u8)-1;
4868 	max_key.offset = (u64)-1;
4869 
4870 	/*
4871 	 * Only run delayed items if we are a dir or a new file.
4872 	 * Otherwise commit the delayed inode only, which is needed in
4873 	 * order for the log replay code to mark inodes for link count
4874 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4875 	 */
4876 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4877 	    inode->generation > fs_info->last_trans_committed)
4878 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4879 	else
4880 		ret = btrfs_commit_inode_delayed_inode(inode);
4881 
4882 	if (ret) {
4883 		btrfs_free_path(path);
4884 		btrfs_free_path(dst_path);
4885 		return ret;
4886 	}
4887 
4888 	if (inode_only == LOG_OTHER_INODE) {
4889 		inode_only = LOG_INODE_EXISTS;
4890 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4891 	} else {
4892 		mutex_lock(&inode->log_mutex);
4893 	}
4894 
4895 	/*
4896 	 * a brute force approach to making sure we get the most uptodate
4897 	 * copies of everything.
4898 	 */
4899 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
4900 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4901 
4902 		if (inode_only == LOG_INODE_EXISTS)
4903 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4904 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4905 	} else {
4906 		if (inode_only == LOG_INODE_EXISTS) {
4907 			/*
4908 			 * Make sure the new inode item we write to the log has
4909 			 * the same isize as the current one (if it exists).
4910 			 * This is necessary to prevent data loss after log
4911 			 * replay, and also to prevent doing a wrong expanding
4912 			 * truncate - for e.g. create file, write 4K into offset
4913 			 * 0, fsync, write 4K into offset 4096, add hard link,
4914 			 * fsync some other file (to sync log), power fail - if
4915 			 * we use the inode's current i_size, after log replay
4916 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4917 			 * (zeroes), as if an expanding truncate happened,
4918 			 * instead of getting a file of 4Kb only.
4919 			 */
4920 			err = logged_inode_size(log, inode, path, &logged_isize);
4921 			if (err)
4922 				goto out_unlock;
4923 		}
4924 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4925 			     &inode->runtime_flags)) {
4926 			if (inode_only == LOG_INODE_EXISTS) {
4927 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4928 				ret = drop_objectid_items(trans, log, path, ino,
4929 							  max_key.type);
4930 			} else {
4931 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4932 					  &inode->runtime_flags);
4933 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4934 					  &inode->runtime_flags);
4935 				while(1) {
4936 					ret = btrfs_truncate_inode_items(trans,
4937 						log, &inode->vfs_inode, 0, 0);
4938 					if (ret != -EAGAIN)
4939 						break;
4940 				}
4941 			}
4942 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4943 					      &inode->runtime_flags) ||
4944 			   inode_only == LOG_INODE_EXISTS) {
4945 			if (inode_only == LOG_INODE_ALL)
4946 				fast_search = true;
4947 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4948 			ret = drop_objectid_items(trans, log, path, ino,
4949 						  max_key.type);
4950 		} else {
4951 			if (inode_only == LOG_INODE_ALL)
4952 				fast_search = true;
4953 			goto log_extents;
4954 		}
4955 
4956 	}
4957 	if (ret) {
4958 		err = ret;
4959 		goto out_unlock;
4960 	}
4961 
4962 	while (1) {
4963 		ins_nr = 0;
4964 		ret = btrfs_search_forward(root, &min_key,
4965 					   path, trans->transid);
4966 		if (ret < 0) {
4967 			err = ret;
4968 			goto out_unlock;
4969 		}
4970 		if (ret != 0)
4971 			break;
4972 again:
4973 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4974 		if (min_key.objectid != ino)
4975 			break;
4976 		if (min_key.type > max_key.type)
4977 			break;
4978 
4979 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4980 			need_log_inode_item = false;
4981 
4982 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4983 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4984 		    inode->generation == trans->transid) {
4985 			u64 other_ino = 0;
4986 
4987 			ret = btrfs_check_ref_name_override(path->nodes[0],
4988 					path->slots[0], &min_key, inode,
4989 					&other_ino);
4990 			if (ret < 0) {
4991 				err = ret;
4992 				goto out_unlock;
4993 			} else if (ret > 0 && ctx &&
4994 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4995 				struct btrfs_key inode_key;
4996 				struct inode *other_inode;
4997 
4998 				if (ins_nr > 0) {
4999 					ins_nr++;
5000 				} else {
5001 					ins_nr = 1;
5002 					ins_start_slot = path->slots[0];
5003 				}
5004 				ret = copy_items(trans, inode, dst_path, path,
5005 						 &last_extent, ins_start_slot,
5006 						 ins_nr, inode_only,
5007 						 logged_isize);
5008 				if (ret < 0) {
5009 					err = ret;
5010 					goto out_unlock;
5011 				}
5012 				ins_nr = 0;
5013 				btrfs_release_path(path);
5014 				inode_key.objectid = other_ino;
5015 				inode_key.type = BTRFS_INODE_ITEM_KEY;
5016 				inode_key.offset = 0;
5017 				other_inode = btrfs_iget(fs_info->sb,
5018 							 &inode_key, root,
5019 							 NULL);
5020 				/*
5021 				 * If the other inode that had a conflicting dir
5022 				 * entry was deleted in the current transaction,
5023 				 * we don't need to do more work nor fallback to
5024 				 * a transaction commit.
5025 				 */
5026 				if (other_inode == ERR_PTR(-ENOENT)) {
5027 					goto next_key;
5028 				} else if (IS_ERR(other_inode)) {
5029 					err = PTR_ERR(other_inode);
5030 					goto out_unlock;
5031 				}
5032 				/*
5033 				 * We are safe logging the other inode without
5034 				 * acquiring its i_mutex as long as we log with
5035 				 * the LOG_INODE_EXISTS mode. We're safe against
5036 				 * concurrent renames of the other inode as well
5037 				 * because during a rename we pin the log and
5038 				 * update the log with the new name before we
5039 				 * unpin it.
5040 				 */
5041 				err = btrfs_log_inode(trans, root,
5042 						BTRFS_I(other_inode),
5043 						LOG_OTHER_INODE, 0, LLONG_MAX,
5044 						ctx);
5045 				iput(other_inode);
5046 				if (err)
5047 					goto out_unlock;
5048 				else
5049 					goto next_key;
5050 			}
5051 		}
5052 
5053 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5054 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5055 			if (ins_nr == 0)
5056 				goto next_slot;
5057 			ret = copy_items(trans, inode, dst_path, path,
5058 					 &last_extent, ins_start_slot,
5059 					 ins_nr, inode_only, logged_isize);
5060 			if (ret < 0) {
5061 				err = ret;
5062 				goto out_unlock;
5063 			}
5064 			ins_nr = 0;
5065 			if (ret) {
5066 				btrfs_release_path(path);
5067 				continue;
5068 			}
5069 			goto next_slot;
5070 		}
5071 
5072 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5073 			ins_nr++;
5074 			goto next_slot;
5075 		} else if (!ins_nr) {
5076 			ins_start_slot = path->slots[0];
5077 			ins_nr = 1;
5078 			goto next_slot;
5079 		}
5080 
5081 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5082 				 ins_start_slot, ins_nr, inode_only,
5083 				 logged_isize);
5084 		if (ret < 0) {
5085 			err = ret;
5086 			goto out_unlock;
5087 		}
5088 		if (ret) {
5089 			ins_nr = 0;
5090 			btrfs_release_path(path);
5091 			continue;
5092 		}
5093 		ins_nr = 1;
5094 		ins_start_slot = path->slots[0];
5095 next_slot:
5096 
5097 		nritems = btrfs_header_nritems(path->nodes[0]);
5098 		path->slots[0]++;
5099 		if (path->slots[0] < nritems) {
5100 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5101 					      path->slots[0]);
5102 			goto again;
5103 		}
5104 		if (ins_nr) {
5105 			ret = copy_items(trans, inode, dst_path, path,
5106 					 &last_extent, ins_start_slot,
5107 					 ins_nr, inode_only, logged_isize);
5108 			if (ret < 0) {
5109 				err = ret;
5110 				goto out_unlock;
5111 			}
5112 			ret = 0;
5113 			ins_nr = 0;
5114 		}
5115 		btrfs_release_path(path);
5116 next_key:
5117 		if (min_key.offset < (u64)-1) {
5118 			min_key.offset++;
5119 		} else if (min_key.type < max_key.type) {
5120 			min_key.type++;
5121 			min_key.offset = 0;
5122 		} else {
5123 			break;
5124 		}
5125 	}
5126 	if (ins_nr) {
5127 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5128 				 ins_start_slot, ins_nr, inode_only,
5129 				 logged_isize);
5130 		if (ret < 0) {
5131 			err = ret;
5132 			goto out_unlock;
5133 		}
5134 		ret = 0;
5135 		ins_nr = 0;
5136 	}
5137 
5138 	btrfs_release_path(path);
5139 	btrfs_release_path(dst_path);
5140 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5141 	if (err)
5142 		goto out_unlock;
5143 	xattrs_logged = true;
5144 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5145 		btrfs_release_path(path);
5146 		btrfs_release_path(dst_path);
5147 		err = btrfs_log_trailing_hole(trans, root, inode, path);
5148 		if (err)
5149 			goto out_unlock;
5150 	}
5151 log_extents:
5152 	btrfs_release_path(path);
5153 	btrfs_release_path(dst_path);
5154 	if (need_log_inode_item) {
5155 		err = log_inode_item(trans, log, dst_path, inode);
5156 		if (!err && !xattrs_logged) {
5157 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5158 						   dst_path);
5159 			btrfs_release_path(path);
5160 		}
5161 		if (err)
5162 			goto out_unlock;
5163 	}
5164 	if (fast_search) {
5165 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5166 						ctx, start, end);
5167 		if (ret) {
5168 			err = ret;
5169 			goto out_unlock;
5170 		}
5171 	} else if (inode_only == LOG_INODE_ALL) {
5172 		struct extent_map *em, *n;
5173 
5174 		write_lock(&em_tree->lock);
5175 		/*
5176 		 * We can't just remove every em if we're called for a ranged
5177 		 * fsync - that is, one that doesn't cover the whole possible
5178 		 * file range (0 to LLONG_MAX). This is because we can have
5179 		 * em's that fall outside the range we're logging and therefore
5180 		 * their ordered operations haven't completed yet
5181 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5182 		 * didn't get their respective file extent item in the fs/subvol
5183 		 * tree yet, and need to let the next fast fsync (one which
5184 		 * consults the list of modified extent maps) find the em so
5185 		 * that it logs a matching file extent item and waits for the
5186 		 * respective ordered operation to complete (if it's still
5187 		 * running).
5188 		 *
5189 		 * Removing every em outside the range we're logging would make
5190 		 * the next fast fsync not log their matching file extent items,
5191 		 * therefore making us lose data after a log replay.
5192 		 */
5193 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5194 					 list) {
5195 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5196 
5197 			if (em->mod_start >= start && mod_end <= end)
5198 				list_del_init(&em->list);
5199 		}
5200 		write_unlock(&em_tree->lock);
5201 	}
5202 
5203 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5204 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5205 					ctx);
5206 		if (ret) {
5207 			err = ret;
5208 			goto out_unlock;
5209 		}
5210 	}
5211 
5212 	spin_lock(&inode->lock);
5213 	inode->logged_trans = trans->transid;
5214 	inode->last_log_commit = inode->last_sub_trans;
5215 	spin_unlock(&inode->lock);
5216 out_unlock:
5217 	mutex_unlock(&inode->log_mutex);
5218 
5219 	btrfs_free_path(path);
5220 	btrfs_free_path(dst_path);
5221 	return err;
5222 }
5223 
5224 /*
5225  * Check if we must fallback to a transaction commit when logging an inode.
5226  * This must be called after logging the inode and is used only in the context
5227  * when fsyncing an inode requires the need to log some other inode - in which
5228  * case we can't lock the i_mutex of each other inode we need to log as that
5229  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5230  * log inodes up or down in the hierarchy) or rename operations for example. So
5231  * we take the log_mutex of the inode after we have logged it and then check for
5232  * its last_unlink_trans value - this is safe because any task setting
5233  * last_unlink_trans must take the log_mutex and it must do this before it does
5234  * the actual unlink operation, so if we do this check before a concurrent task
5235  * sets last_unlink_trans it means we've logged a consistent version/state of
5236  * all the inode items, otherwise we are not sure and must do a transaction
5237  * commit (the concurrent task might have only updated last_unlink_trans before
5238  * we logged the inode or it might have also done the unlink).
5239  */
5240 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5241 					  struct btrfs_inode *inode)
5242 {
5243 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5244 	bool ret = false;
5245 
5246 	mutex_lock(&inode->log_mutex);
5247 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5248 		/*
5249 		 * Make sure any commits to the log are forced to be full
5250 		 * commits.
5251 		 */
5252 		btrfs_set_log_full_commit(fs_info, trans);
5253 		ret = true;
5254 	}
5255 	mutex_unlock(&inode->log_mutex);
5256 
5257 	return ret;
5258 }
5259 
5260 /*
5261  * follow the dentry parent pointers up the chain and see if any
5262  * of the directories in it require a full commit before they can
5263  * be logged.  Returns zero if nothing special needs to be done or 1 if
5264  * a full commit is required.
5265  */
5266 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5267 					       struct btrfs_inode *inode,
5268 					       struct dentry *parent,
5269 					       struct super_block *sb,
5270 					       u64 last_committed)
5271 {
5272 	int ret = 0;
5273 	struct dentry *old_parent = NULL;
5274 	struct btrfs_inode *orig_inode = inode;
5275 
5276 	/*
5277 	 * for regular files, if its inode is already on disk, we don't
5278 	 * have to worry about the parents at all.  This is because
5279 	 * we can use the last_unlink_trans field to record renames
5280 	 * and other fun in this file.
5281 	 */
5282 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5283 	    inode->generation <= last_committed &&
5284 	    inode->last_unlink_trans <= last_committed)
5285 		goto out;
5286 
5287 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5288 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5289 			goto out;
5290 		inode = BTRFS_I(d_inode(parent));
5291 	}
5292 
5293 	while (1) {
5294 		/*
5295 		 * If we are logging a directory then we start with our inode,
5296 		 * not our parent's inode, so we need to skip setting the
5297 		 * logged_trans so that further down in the log code we don't
5298 		 * think this inode has already been logged.
5299 		 */
5300 		if (inode != orig_inode)
5301 			inode->logged_trans = trans->transid;
5302 		smp_mb();
5303 
5304 		if (btrfs_must_commit_transaction(trans, inode)) {
5305 			ret = 1;
5306 			break;
5307 		}
5308 
5309 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5310 			break;
5311 
5312 		if (IS_ROOT(parent)) {
5313 			inode = BTRFS_I(d_inode(parent));
5314 			if (btrfs_must_commit_transaction(trans, inode))
5315 				ret = 1;
5316 			break;
5317 		}
5318 
5319 		parent = dget_parent(parent);
5320 		dput(old_parent);
5321 		old_parent = parent;
5322 		inode = BTRFS_I(d_inode(parent));
5323 
5324 	}
5325 	dput(old_parent);
5326 out:
5327 	return ret;
5328 }
5329 
5330 struct btrfs_dir_list {
5331 	u64 ino;
5332 	struct list_head list;
5333 };
5334 
5335 /*
5336  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5337  * details about the why it is needed.
5338  * This is a recursive operation - if an existing dentry corresponds to a
5339  * directory, that directory's new entries are logged too (same behaviour as
5340  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5341  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5342  * complains about the following circular lock dependency / possible deadlock:
5343  *
5344  *        CPU0                                        CPU1
5345  *        ----                                        ----
5346  * lock(&type->i_mutex_dir_key#3/2);
5347  *                                            lock(sb_internal#2);
5348  *                                            lock(&type->i_mutex_dir_key#3/2);
5349  * lock(&sb->s_type->i_mutex_key#14);
5350  *
5351  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5352  * sb_start_intwrite() in btrfs_start_transaction().
5353  * Not locking i_mutex of the inodes is still safe because:
5354  *
5355  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5356  *    that while logging the inode new references (names) are added or removed
5357  *    from the inode, leaving the logged inode item with a link count that does
5358  *    not match the number of logged inode reference items. This is fine because
5359  *    at log replay time we compute the real number of links and correct the
5360  *    link count in the inode item (see replay_one_buffer() and
5361  *    link_to_fixup_dir());
5362  *
5363  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5364  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5365  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5366  *    has a size that doesn't match the sum of the lengths of all the logged
5367  *    names. This does not result in a problem because if a dir_item key is
5368  *    logged but its matching dir_index key is not logged, at log replay time we
5369  *    don't use it to replay the respective name (see replay_one_name()). On the
5370  *    other hand if only the dir_index key ends up being logged, the respective
5371  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5372  *    keys created (see replay_one_name()).
5373  *    The directory's inode item with a wrong i_size is not a problem as well,
5374  *    since we don't use it at log replay time to set the i_size in the inode
5375  *    item of the fs/subvol tree (see overwrite_item()).
5376  */
5377 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5378 				struct btrfs_root *root,
5379 				struct btrfs_inode *start_inode,
5380 				struct btrfs_log_ctx *ctx)
5381 {
5382 	struct btrfs_fs_info *fs_info = root->fs_info;
5383 	struct btrfs_root *log = root->log_root;
5384 	struct btrfs_path *path;
5385 	LIST_HEAD(dir_list);
5386 	struct btrfs_dir_list *dir_elem;
5387 	int ret = 0;
5388 
5389 	path = btrfs_alloc_path();
5390 	if (!path)
5391 		return -ENOMEM;
5392 
5393 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5394 	if (!dir_elem) {
5395 		btrfs_free_path(path);
5396 		return -ENOMEM;
5397 	}
5398 	dir_elem->ino = btrfs_ino(start_inode);
5399 	list_add_tail(&dir_elem->list, &dir_list);
5400 
5401 	while (!list_empty(&dir_list)) {
5402 		struct extent_buffer *leaf;
5403 		struct btrfs_key min_key;
5404 		int nritems;
5405 		int i;
5406 
5407 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5408 					    list);
5409 		if (ret)
5410 			goto next_dir_inode;
5411 
5412 		min_key.objectid = dir_elem->ino;
5413 		min_key.type = BTRFS_DIR_ITEM_KEY;
5414 		min_key.offset = 0;
5415 again:
5416 		btrfs_release_path(path);
5417 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5418 		if (ret < 0) {
5419 			goto next_dir_inode;
5420 		} else if (ret > 0) {
5421 			ret = 0;
5422 			goto next_dir_inode;
5423 		}
5424 
5425 process_leaf:
5426 		leaf = path->nodes[0];
5427 		nritems = btrfs_header_nritems(leaf);
5428 		for (i = path->slots[0]; i < nritems; i++) {
5429 			struct btrfs_dir_item *di;
5430 			struct btrfs_key di_key;
5431 			struct inode *di_inode;
5432 			struct btrfs_dir_list *new_dir_elem;
5433 			int log_mode = LOG_INODE_EXISTS;
5434 			int type;
5435 
5436 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5437 			if (min_key.objectid != dir_elem->ino ||
5438 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5439 				goto next_dir_inode;
5440 
5441 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5442 			type = btrfs_dir_type(leaf, di);
5443 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5444 			    type != BTRFS_FT_DIR)
5445 				continue;
5446 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5447 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5448 				continue;
5449 
5450 			btrfs_release_path(path);
5451 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5452 			if (IS_ERR(di_inode)) {
5453 				ret = PTR_ERR(di_inode);
5454 				goto next_dir_inode;
5455 			}
5456 
5457 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5458 				iput(di_inode);
5459 				break;
5460 			}
5461 
5462 			ctx->log_new_dentries = false;
5463 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5464 				log_mode = LOG_INODE_ALL;
5465 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5466 					      log_mode, 0, LLONG_MAX, ctx);
5467 			if (!ret &&
5468 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5469 				ret = 1;
5470 			iput(di_inode);
5471 			if (ret)
5472 				goto next_dir_inode;
5473 			if (ctx->log_new_dentries) {
5474 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5475 						       GFP_NOFS);
5476 				if (!new_dir_elem) {
5477 					ret = -ENOMEM;
5478 					goto next_dir_inode;
5479 				}
5480 				new_dir_elem->ino = di_key.objectid;
5481 				list_add_tail(&new_dir_elem->list, &dir_list);
5482 			}
5483 			break;
5484 		}
5485 		if (i == nritems) {
5486 			ret = btrfs_next_leaf(log, path);
5487 			if (ret < 0) {
5488 				goto next_dir_inode;
5489 			} else if (ret > 0) {
5490 				ret = 0;
5491 				goto next_dir_inode;
5492 			}
5493 			goto process_leaf;
5494 		}
5495 		if (min_key.offset < (u64)-1) {
5496 			min_key.offset++;
5497 			goto again;
5498 		}
5499 next_dir_inode:
5500 		list_del(&dir_elem->list);
5501 		kfree(dir_elem);
5502 	}
5503 
5504 	btrfs_free_path(path);
5505 	return ret;
5506 }
5507 
5508 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5509 				 struct btrfs_inode *inode,
5510 				 struct btrfs_log_ctx *ctx)
5511 {
5512 	struct btrfs_fs_info *fs_info = trans->fs_info;
5513 	int ret;
5514 	struct btrfs_path *path;
5515 	struct btrfs_key key;
5516 	struct btrfs_root *root = inode->root;
5517 	const u64 ino = btrfs_ino(inode);
5518 
5519 	path = btrfs_alloc_path();
5520 	if (!path)
5521 		return -ENOMEM;
5522 	path->skip_locking = 1;
5523 	path->search_commit_root = 1;
5524 
5525 	key.objectid = ino;
5526 	key.type = BTRFS_INODE_REF_KEY;
5527 	key.offset = 0;
5528 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5529 	if (ret < 0)
5530 		goto out;
5531 
5532 	while (true) {
5533 		struct extent_buffer *leaf = path->nodes[0];
5534 		int slot = path->slots[0];
5535 		u32 cur_offset = 0;
5536 		u32 item_size;
5537 		unsigned long ptr;
5538 
5539 		if (slot >= btrfs_header_nritems(leaf)) {
5540 			ret = btrfs_next_leaf(root, path);
5541 			if (ret < 0)
5542 				goto out;
5543 			else if (ret > 0)
5544 				break;
5545 			continue;
5546 		}
5547 
5548 		btrfs_item_key_to_cpu(leaf, &key, slot);
5549 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5550 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5551 			break;
5552 
5553 		item_size = btrfs_item_size_nr(leaf, slot);
5554 		ptr = btrfs_item_ptr_offset(leaf, slot);
5555 		while (cur_offset < item_size) {
5556 			struct btrfs_key inode_key;
5557 			struct inode *dir_inode;
5558 
5559 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5560 			inode_key.offset = 0;
5561 
5562 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5563 				struct btrfs_inode_extref *extref;
5564 
5565 				extref = (struct btrfs_inode_extref *)
5566 					(ptr + cur_offset);
5567 				inode_key.objectid = btrfs_inode_extref_parent(
5568 					leaf, extref);
5569 				cur_offset += sizeof(*extref);
5570 				cur_offset += btrfs_inode_extref_name_len(leaf,
5571 					extref);
5572 			} else {
5573 				inode_key.objectid = key.offset;
5574 				cur_offset = item_size;
5575 			}
5576 
5577 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5578 					       root, NULL);
5579 			/*
5580 			 * If the parent inode was deleted, return an error to
5581 			 * fallback to a transaction commit. This is to prevent
5582 			 * getting an inode that was moved from one parent A to
5583 			 * a parent B, got its former parent A deleted and then
5584 			 * it got fsync'ed, from existing at both parents after
5585 			 * a log replay (and the old parent still existing).
5586 			 * Example:
5587 			 *
5588 			 * mkdir /mnt/A
5589 			 * mkdir /mnt/B
5590 			 * touch /mnt/B/bar
5591 			 * sync
5592 			 * mv /mnt/B/bar /mnt/A/bar
5593 			 * mv -T /mnt/A /mnt/B
5594 			 * fsync /mnt/B/bar
5595 			 * <power fail>
5596 			 *
5597 			 * If we ignore the old parent B which got deleted,
5598 			 * after a log replay we would have file bar linked
5599 			 * at both parents and the old parent B would still
5600 			 * exist.
5601 			 */
5602 			if (IS_ERR(dir_inode)) {
5603 				ret = PTR_ERR(dir_inode);
5604 				goto out;
5605 			}
5606 
5607 			if (ctx)
5608 				ctx->log_new_dentries = false;
5609 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5610 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5611 			if (!ret &&
5612 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5613 				ret = 1;
5614 			if (!ret && ctx && ctx->log_new_dentries)
5615 				ret = log_new_dir_dentries(trans, root,
5616 						   BTRFS_I(dir_inode), ctx);
5617 			iput(dir_inode);
5618 			if (ret)
5619 				goto out;
5620 		}
5621 		path->slots[0]++;
5622 	}
5623 	ret = 0;
5624 out:
5625 	btrfs_free_path(path);
5626 	return ret;
5627 }
5628 
5629 /*
5630  * helper function around btrfs_log_inode to make sure newly created
5631  * parent directories also end up in the log.  A minimal inode and backref
5632  * only logging is done of any parent directories that are older than
5633  * the last committed transaction
5634  */
5635 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5636 				  struct btrfs_inode *inode,
5637 				  struct dentry *parent,
5638 				  const loff_t start,
5639 				  const loff_t end,
5640 				  int inode_only,
5641 				  struct btrfs_log_ctx *ctx)
5642 {
5643 	struct btrfs_root *root = inode->root;
5644 	struct btrfs_fs_info *fs_info = root->fs_info;
5645 	struct super_block *sb;
5646 	struct dentry *old_parent = NULL;
5647 	int ret = 0;
5648 	u64 last_committed = fs_info->last_trans_committed;
5649 	bool log_dentries = false;
5650 	struct btrfs_inode *orig_inode = inode;
5651 
5652 	sb = inode->vfs_inode.i_sb;
5653 
5654 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5655 		ret = 1;
5656 		goto end_no_trans;
5657 	}
5658 
5659 	/*
5660 	 * The prev transaction commit doesn't complete, we need do
5661 	 * full commit by ourselves.
5662 	 */
5663 	if (fs_info->last_trans_log_full_commit >
5664 	    fs_info->last_trans_committed) {
5665 		ret = 1;
5666 		goto end_no_trans;
5667 	}
5668 
5669 	if (btrfs_root_refs(&root->root_item) == 0) {
5670 		ret = 1;
5671 		goto end_no_trans;
5672 	}
5673 
5674 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5675 			last_committed);
5676 	if (ret)
5677 		goto end_no_trans;
5678 
5679 	/*
5680 	 * Skip already logged inodes or inodes corresponding to tmpfiles
5681 	 * (since logging them is pointless, a link count of 0 means they
5682 	 * will never be accessible).
5683 	 */
5684 	if (btrfs_inode_in_log(inode, trans->transid) ||
5685 	    inode->vfs_inode.i_nlink == 0) {
5686 		ret = BTRFS_NO_LOG_SYNC;
5687 		goto end_no_trans;
5688 	}
5689 
5690 	ret = start_log_trans(trans, root, ctx);
5691 	if (ret)
5692 		goto end_no_trans;
5693 
5694 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5695 	if (ret)
5696 		goto end_trans;
5697 
5698 	/*
5699 	 * for regular files, if its inode is already on disk, we don't
5700 	 * have to worry about the parents at all.  This is because
5701 	 * we can use the last_unlink_trans field to record renames
5702 	 * and other fun in this file.
5703 	 */
5704 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5705 	    inode->generation <= last_committed &&
5706 	    inode->last_unlink_trans <= last_committed) {
5707 		ret = 0;
5708 		goto end_trans;
5709 	}
5710 
5711 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5712 		log_dentries = true;
5713 
5714 	/*
5715 	 * On unlink we must make sure all our current and old parent directory
5716 	 * inodes are fully logged. This is to prevent leaving dangling
5717 	 * directory index entries in directories that were our parents but are
5718 	 * not anymore. Not doing this results in old parent directory being
5719 	 * impossible to delete after log replay (rmdir will always fail with
5720 	 * error -ENOTEMPTY).
5721 	 *
5722 	 * Example 1:
5723 	 *
5724 	 * mkdir testdir
5725 	 * touch testdir/foo
5726 	 * ln testdir/foo testdir/bar
5727 	 * sync
5728 	 * unlink testdir/bar
5729 	 * xfs_io -c fsync testdir/foo
5730 	 * <power failure>
5731 	 * mount fs, triggers log replay
5732 	 *
5733 	 * If we don't log the parent directory (testdir), after log replay the
5734 	 * directory still has an entry pointing to the file inode using the bar
5735 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5736 	 * the file inode has a link count of 1.
5737 	 *
5738 	 * Example 2:
5739 	 *
5740 	 * mkdir testdir
5741 	 * touch foo
5742 	 * ln foo testdir/foo2
5743 	 * ln foo testdir/foo3
5744 	 * sync
5745 	 * unlink testdir/foo3
5746 	 * xfs_io -c fsync foo
5747 	 * <power failure>
5748 	 * mount fs, triggers log replay
5749 	 *
5750 	 * Similar as the first example, after log replay the parent directory
5751 	 * testdir still has an entry pointing to the inode file with name foo3
5752 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5753 	 * and has a link count of 2.
5754 	 */
5755 	if (inode->last_unlink_trans > last_committed) {
5756 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5757 		if (ret)
5758 			goto end_trans;
5759 	}
5760 
5761 	/*
5762 	 * If a new hard link was added to the inode in the current transaction
5763 	 * and its link count is now greater than 1, we need to fallback to a
5764 	 * transaction commit, otherwise we can end up not logging all its new
5765 	 * parents for all the hard links. Here just from the dentry used to
5766 	 * fsync, we can not visit the ancestor inodes for all the other hard
5767 	 * links to figure out if any is new, so we fallback to a transaction
5768 	 * commit (instead of adding a lot of complexity of scanning a btree,
5769 	 * since this scenario is not a common use case).
5770 	 */
5771 	if (inode->vfs_inode.i_nlink > 1 &&
5772 	    inode->last_link_trans > last_committed) {
5773 		ret = -EMLINK;
5774 		goto end_trans;
5775 	}
5776 
5777 	while (1) {
5778 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5779 			break;
5780 
5781 		inode = BTRFS_I(d_inode(parent));
5782 		if (root != inode->root)
5783 			break;
5784 
5785 		if (inode->generation > last_committed) {
5786 			ret = btrfs_log_inode(trans, root, inode,
5787 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5788 			if (ret)
5789 				goto end_trans;
5790 		}
5791 		if (IS_ROOT(parent))
5792 			break;
5793 
5794 		parent = dget_parent(parent);
5795 		dput(old_parent);
5796 		old_parent = parent;
5797 	}
5798 	if (log_dentries)
5799 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5800 	else
5801 		ret = 0;
5802 end_trans:
5803 	dput(old_parent);
5804 	if (ret < 0) {
5805 		btrfs_set_log_full_commit(fs_info, trans);
5806 		ret = 1;
5807 	}
5808 
5809 	if (ret)
5810 		btrfs_remove_log_ctx(root, ctx);
5811 	btrfs_end_log_trans(root);
5812 end_no_trans:
5813 	return ret;
5814 }
5815 
5816 /*
5817  * it is not safe to log dentry if the chunk root has added new
5818  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5819  * If this returns 1, you must commit the transaction to safely get your
5820  * data on disk.
5821  */
5822 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5823 			  struct dentry *dentry,
5824 			  const loff_t start,
5825 			  const loff_t end,
5826 			  struct btrfs_log_ctx *ctx)
5827 {
5828 	struct dentry *parent = dget_parent(dentry);
5829 	int ret;
5830 
5831 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5832 				     start, end, LOG_INODE_ALL, ctx);
5833 	dput(parent);
5834 
5835 	return ret;
5836 }
5837 
5838 /*
5839  * should be called during mount to recover any replay any log trees
5840  * from the FS
5841  */
5842 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5843 {
5844 	int ret;
5845 	struct btrfs_path *path;
5846 	struct btrfs_trans_handle *trans;
5847 	struct btrfs_key key;
5848 	struct btrfs_key found_key;
5849 	struct btrfs_key tmp_key;
5850 	struct btrfs_root *log;
5851 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5852 	struct walk_control wc = {
5853 		.process_func = process_one_buffer,
5854 		.stage = 0,
5855 	};
5856 
5857 	path = btrfs_alloc_path();
5858 	if (!path)
5859 		return -ENOMEM;
5860 
5861 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5862 
5863 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5864 	if (IS_ERR(trans)) {
5865 		ret = PTR_ERR(trans);
5866 		goto error;
5867 	}
5868 
5869 	wc.trans = trans;
5870 	wc.pin = 1;
5871 
5872 	ret = walk_log_tree(trans, log_root_tree, &wc);
5873 	if (ret) {
5874 		btrfs_handle_fs_error(fs_info, ret,
5875 			"Failed to pin buffers while recovering log root tree.");
5876 		goto error;
5877 	}
5878 
5879 again:
5880 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5881 	key.offset = (u64)-1;
5882 	key.type = BTRFS_ROOT_ITEM_KEY;
5883 
5884 	while (1) {
5885 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5886 
5887 		if (ret < 0) {
5888 			btrfs_handle_fs_error(fs_info, ret,
5889 				    "Couldn't find tree log root.");
5890 			goto error;
5891 		}
5892 		if (ret > 0) {
5893 			if (path->slots[0] == 0)
5894 				break;
5895 			path->slots[0]--;
5896 		}
5897 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5898 				      path->slots[0]);
5899 		btrfs_release_path(path);
5900 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5901 			break;
5902 
5903 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5904 		if (IS_ERR(log)) {
5905 			ret = PTR_ERR(log);
5906 			btrfs_handle_fs_error(fs_info, ret,
5907 				    "Couldn't read tree log root.");
5908 			goto error;
5909 		}
5910 
5911 		tmp_key.objectid = found_key.offset;
5912 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5913 		tmp_key.offset = (u64)-1;
5914 
5915 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5916 		if (IS_ERR(wc.replay_dest)) {
5917 			ret = PTR_ERR(wc.replay_dest);
5918 			free_extent_buffer(log->node);
5919 			free_extent_buffer(log->commit_root);
5920 			kfree(log);
5921 			btrfs_handle_fs_error(fs_info, ret,
5922 				"Couldn't read target root for tree log recovery.");
5923 			goto error;
5924 		}
5925 
5926 		wc.replay_dest->log_root = log;
5927 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5928 		ret = walk_log_tree(trans, log, &wc);
5929 
5930 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5931 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5932 						      path);
5933 		}
5934 
5935 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5936 			struct btrfs_root *root = wc.replay_dest;
5937 
5938 			btrfs_release_path(path);
5939 
5940 			/*
5941 			 * We have just replayed everything, and the highest
5942 			 * objectid of fs roots probably has changed in case
5943 			 * some inode_item's got replayed.
5944 			 *
5945 			 * root->objectid_mutex is not acquired as log replay
5946 			 * could only happen during mount.
5947 			 */
5948 			ret = btrfs_find_highest_objectid(root,
5949 						  &root->highest_objectid);
5950 		}
5951 
5952 		key.offset = found_key.offset - 1;
5953 		wc.replay_dest->log_root = NULL;
5954 		free_extent_buffer(log->node);
5955 		free_extent_buffer(log->commit_root);
5956 		kfree(log);
5957 
5958 		if (ret)
5959 			goto error;
5960 
5961 		if (found_key.offset == 0)
5962 			break;
5963 	}
5964 	btrfs_release_path(path);
5965 
5966 	/* step one is to pin it all, step two is to replay just inodes */
5967 	if (wc.pin) {
5968 		wc.pin = 0;
5969 		wc.process_func = replay_one_buffer;
5970 		wc.stage = LOG_WALK_REPLAY_INODES;
5971 		goto again;
5972 	}
5973 	/* step three is to replay everything */
5974 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5975 		wc.stage++;
5976 		goto again;
5977 	}
5978 
5979 	btrfs_free_path(path);
5980 
5981 	/* step 4: commit the transaction, which also unpins the blocks */
5982 	ret = btrfs_commit_transaction(trans);
5983 	if (ret)
5984 		return ret;
5985 
5986 	free_extent_buffer(log_root_tree->node);
5987 	log_root_tree->log_root = NULL;
5988 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5989 	kfree(log_root_tree);
5990 
5991 	return 0;
5992 error:
5993 	if (wc.trans)
5994 		btrfs_end_transaction(wc.trans);
5995 	btrfs_free_path(path);
5996 	return ret;
5997 }
5998 
5999 /*
6000  * there are some corner cases where we want to force a full
6001  * commit instead of allowing a directory to be logged.
6002  *
6003  * They revolve around files there were unlinked from the directory, and
6004  * this function updates the parent directory so that a full commit is
6005  * properly done if it is fsync'd later after the unlinks are done.
6006  *
6007  * Must be called before the unlink operations (updates to the subvolume tree,
6008  * inodes, etc) are done.
6009  */
6010 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6011 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6012 			     int for_rename)
6013 {
6014 	/*
6015 	 * when we're logging a file, if it hasn't been renamed
6016 	 * or unlinked, and its inode is fully committed on disk,
6017 	 * we don't have to worry about walking up the directory chain
6018 	 * to log its parents.
6019 	 *
6020 	 * So, we use the last_unlink_trans field to put this transid
6021 	 * into the file.  When the file is logged we check it and
6022 	 * don't log the parents if the file is fully on disk.
6023 	 */
6024 	mutex_lock(&inode->log_mutex);
6025 	inode->last_unlink_trans = trans->transid;
6026 	mutex_unlock(&inode->log_mutex);
6027 
6028 	/*
6029 	 * if this directory was already logged any new
6030 	 * names for this file/dir will get recorded
6031 	 */
6032 	smp_mb();
6033 	if (dir->logged_trans == trans->transid)
6034 		return;
6035 
6036 	/*
6037 	 * if the inode we're about to unlink was logged,
6038 	 * the log will be properly updated for any new names
6039 	 */
6040 	if (inode->logged_trans == trans->transid)
6041 		return;
6042 
6043 	/*
6044 	 * when renaming files across directories, if the directory
6045 	 * there we're unlinking from gets fsync'd later on, there's
6046 	 * no way to find the destination directory later and fsync it
6047 	 * properly.  So, we have to be conservative and force commits
6048 	 * so the new name gets discovered.
6049 	 */
6050 	if (for_rename)
6051 		goto record;
6052 
6053 	/* we can safely do the unlink without any special recording */
6054 	return;
6055 
6056 record:
6057 	mutex_lock(&dir->log_mutex);
6058 	dir->last_unlink_trans = trans->transid;
6059 	mutex_unlock(&dir->log_mutex);
6060 }
6061 
6062 /*
6063  * Make sure that if someone attempts to fsync the parent directory of a deleted
6064  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6065  * that after replaying the log tree of the parent directory's root we will not
6066  * see the snapshot anymore and at log replay time we will not see any log tree
6067  * corresponding to the deleted snapshot's root, which could lead to replaying
6068  * it after replaying the log tree of the parent directory (which would replay
6069  * the snapshot delete operation).
6070  *
6071  * Must be called before the actual snapshot destroy operation (updates to the
6072  * parent root and tree of tree roots trees, etc) are done.
6073  */
6074 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6075 				   struct btrfs_inode *dir)
6076 {
6077 	mutex_lock(&dir->log_mutex);
6078 	dir->last_unlink_trans = trans->transid;
6079 	mutex_unlock(&dir->log_mutex);
6080 }
6081 
6082 /*
6083  * Call this after adding a new name for a file and it will properly
6084  * update the log to reflect the new name.
6085  *
6086  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6087  * true (because it's not used).
6088  *
6089  * Return value depends on whether @sync_log is true or false.
6090  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6091  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6092  *            otherwise.
6093  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6094  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6095  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6096  *             committed (without attempting to sync the log).
6097  */
6098 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6099 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6100 			struct dentry *parent,
6101 			bool sync_log, struct btrfs_log_ctx *ctx)
6102 {
6103 	struct btrfs_fs_info *fs_info = trans->fs_info;
6104 	int ret;
6105 
6106 	/*
6107 	 * this will force the logging code to walk the dentry chain
6108 	 * up for the file
6109 	 */
6110 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6111 		inode->last_unlink_trans = trans->transid;
6112 
6113 	/*
6114 	 * if this inode hasn't been logged and directory we're renaming it
6115 	 * from hasn't been logged, we don't need to log it
6116 	 */
6117 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6118 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6119 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6120 			BTRFS_DONT_NEED_LOG_SYNC;
6121 
6122 	if (sync_log) {
6123 		struct btrfs_log_ctx ctx2;
6124 
6125 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6126 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6127 					     LOG_INODE_EXISTS, &ctx2);
6128 		if (ret == BTRFS_NO_LOG_SYNC)
6129 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6130 		else if (ret)
6131 			return BTRFS_NEED_TRANS_COMMIT;
6132 
6133 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6134 		if (ret)
6135 			return BTRFS_NEED_TRANS_COMMIT;
6136 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6137 	}
6138 
6139 	ASSERT(ctx);
6140 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6141 				     LOG_INODE_EXISTS, ctx);
6142 	if (ret == BTRFS_NO_LOG_SYNC)
6143 		return BTRFS_DONT_NEED_LOG_SYNC;
6144 	else if (ret)
6145 		return BTRFS_NEED_TRANS_COMMIT;
6146 
6147 	return BTRFS_NEED_LOG_SYNC;
6148 }
6149 
6150