xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 9c1f8594)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28 
29 /* magic values for the inode_only field in btrfs_log_inode:
30  *
31  * LOG_INODE_ALL means to log everything
32  * LOG_INODE_EXISTS means to log just enough to recreate the inode
33  * during log replay
34  */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root, struct inode *inode,
96 			     int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 			     struct btrfs_root *root,
99 			     struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 				       struct btrfs_root *root,
102 				       struct btrfs_root *log,
103 				       struct btrfs_path *path,
104 				       u64 dirid, int del_all);
105 
106 /*
107  * tree logging is a special write ahead log used to make sure that
108  * fsyncs and O_SYNCs can happen without doing full tree commits.
109  *
110  * Full tree commits are expensive because they require commonly
111  * modified blocks to be recowed, creating many dirty pages in the
112  * extent tree an 4x-6x higher write load than ext3.
113  *
114  * Instead of doing a tree commit on every fsync, we use the
115  * key ranges and transaction ids to find items for a given file or directory
116  * that have changed in this transaction.  Those items are copied into
117  * a special tree (one per subvolume root), that tree is written to disk
118  * and then the fsync is considered complete.
119  *
120  * After a crash, items are copied out of the log-tree back into the
121  * subvolume tree.  Any file data extents found are recorded in the extent
122  * allocation tree, and the log-tree freed.
123  *
124  * The log tree is read three times, once to pin down all the extents it is
125  * using in ram and once, once to create all the inodes logged in the tree
126  * and once to do all the other items.
127  */
128 
129 /*
130  * start a sub transaction and setup the log tree
131  * this increments the log tree writer count to make the people
132  * syncing the tree wait for us to finish
133  */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 			   struct btrfs_root *root)
136 {
137 	int ret;
138 	int err = 0;
139 
140 	mutex_lock(&root->log_mutex);
141 	if (root->log_root) {
142 		if (!root->log_start_pid) {
143 			root->log_start_pid = current->pid;
144 			root->log_multiple_pids = false;
145 		} else if (root->log_start_pid != current->pid) {
146 			root->log_multiple_pids = true;
147 		}
148 
149 		root->log_batch++;
150 		atomic_inc(&root->log_writers);
151 		mutex_unlock(&root->log_mutex);
152 		return 0;
153 	}
154 	root->log_multiple_pids = false;
155 	root->log_start_pid = current->pid;
156 	mutex_lock(&root->fs_info->tree_log_mutex);
157 	if (!root->fs_info->log_root_tree) {
158 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 		if (ret)
160 			err = ret;
161 	}
162 	if (err == 0 && !root->log_root) {
163 		ret = btrfs_add_log_tree(trans, root);
164 		if (ret)
165 			err = ret;
166 	}
167 	mutex_unlock(&root->fs_info->tree_log_mutex);
168 	root->log_batch++;
169 	atomic_inc(&root->log_writers);
170 	mutex_unlock(&root->log_mutex);
171 	return err;
172 }
173 
174 /*
175  * returns 0 if there was a log transaction running and we were able
176  * to join, or returns -ENOENT if there were not transactions
177  * in progress
178  */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 	int ret = -ENOENT;
182 
183 	smp_mb();
184 	if (!root->log_root)
185 		return -ENOENT;
186 
187 	mutex_lock(&root->log_mutex);
188 	if (root->log_root) {
189 		ret = 0;
190 		atomic_inc(&root->log_writers);
191 	}
192 	mutex_unlock(&root->log_mutex);
193 	return ret;
194 }
195 
196 /*
197  * This either makes the current running log transaction wait
198  * until you call btrfs_end_log_trans() or it makes any future
199  * log transactions wait until you call btrfs_end_log_trans()
200  */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 	int ret = -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	atomic_inc(&root->log_writers);
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * indicate we're done making changes to the log tree
213  * and wake up anyone waiting to do a sync
214  */
215 int btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 	if (atomic_dec_and_test(&root->log_writers)) {
218 		smp_mb();
219 		if (waitqueue_active(&root->log_writer_wait))
220 			wake_up(&root->log_writer_wait);
221 	}
222 	return 0;
223 }
224 
225 
226 /*
227  * the walk control struct is used to pass state down the chain when
228  * processing the log tree.  The stage field tells us which part
229  * of the log tree processing we are currently doing.  The others
230  * are state fields used for that specific part
231  */
232 struct walk_control {
233 	/* should we free the extent on disk when done?  This is used
234 	 * at transaction commit time while freeing a log tree
235 	 */
236 	int free;
237 
238 	/* should we write out the extent buffer?  This is used
239 	 * while flushing the log tree to disk during a sync
240 	 */
241 	int write;
242 
243 	/* should we wait for the extent buffer io to finish?  Also used
244 	 * while flushing the log tree to disk for a sync
245 	 */
246 	int wait;
247 
248 	/* pin only walk, we record which extents on disk belong to the
249 	 * log trees
250 	 */
251 	int pin;
252 
253 	/* what stage of the replay code we're currently in */
254 	int stage;
255 
256 	/* the root we are currently replaying */
257 	struct btrfs_root *replay_dest;
258 
259 	/* the trans handle for the current replay */
260 	struct btrfs_trans_handle *trans;
261 
262 	/* the function that gets used to process blocks we find in the
263 	 * tree.  Note the extent_buffer might not be up to date when it is
264 	 * passed in, and it must be checked or read if you need the data
265 	 * inside it
266 	 */
267 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 			    struct walk_control *wc, u64 gen);
269 };
270 
271 /*
272  * process_func used to pin down extents, write them or wait on them
273  */
274 static int process_one_buffer(struct btrfs_root *log,
275 			      struct extent_buffer *eb,
276 			      struct walk_control *wc, u64 gen)
277 {
278 	if (wc->pin)
279 		btrfs_pin_extent(log->fs_info->extent_root,
280 				 eb->start, eb->len, 0);
281 
282 	if (btrfs_buffer_uptodate(eb, gen)) {
283 		if (wc->write)
284 			btrfs_write_tree_block(eb);
285 		if (wc->wait)
286 			btrfs_wait_tree_block_writeback(eb);
287 	}
288 	return 0;
289 }
290 
291 /*
292  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
293  * to the src data we are copying out.
294  *
295  * root is the tree we are copying into, and path is a scratch
296  * path for use in this function (it should be released on entry and
297  * will be released on exit).
298  *
299  * If the key is already in the destination tree the existing item is
300  * overwritten.  If the existing item isn't big enough, it is extended.
301  * If it is too large, it is truncated.
302  *
303  * If the key isn't in the destination yet, a new item is inserted.
304  */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 				   struct btrfs_root *root,
307 				   struct btrfs_path *path,
308 				   struct extent_buffer *eb, int slot,
309 				   struct btrfs_key *key)
310 {
311 	int ret;
312 	u32 item_size;
313 	u64 saved_i_size = 0;
314 	int save_old_i_size = 0;
315 	unsigned long src_ptr;
316 	unsigned long dst_ptr;
317 	int overwrite_root = 0;
318 
319 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 		overwrite_root = 1;
321 
322 	item_size = btrfs_item_size_nr(eb, slot);
323 	src_ptr = btrfs_item_ptr_offset(eb, slot);
324 
325 	/* look for the key in the destination tree */
326 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 	if (ret == 0) {
328 		char *src_copy;
329 		char *dst_copy;
330 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 						  path->slots[0]);
332 		if (dst_size != item_size)
333 			goto insert;
334 
335 		if (item_size == 0) {
336 			btrfs_release_path(path);
337 			return 0;
338 		}
339 		dst_copy = kmalloc(item_size, GFP_NOFS);
340 		src_copy = kmalloc(item_size, GFP_NOFS);
341 		if (!dst_copy || !src_copy) {
342 			btrfs_release_path(path);
343 			kfree(dst_copy);
344 			kfree(src_copy);
345 			return -ENOMEM;
346 		}
347 
348 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
349 
350 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 				   item_size);
353 		ret = memcmp(dst_copy, src_copy, item_size);
354 
355 		kfree(dst_copy);
356 		kfree(src_copy);
357 		/*
358 		 * they have the same contents, just return, this saves
359 		 * us from cowing blocks in the destination tree and doing
360 		 * extra writes that may not have been done by a previous
361 		 * sync
362 		 */
363 		if (ret == 0) {
364 			btrfs_release_path(path);
365 			return 0;
366 		}
367 
368 	}
369 insert:
370 	btrfs_release_path(path);
371 	/* try to insert the key into the destination tree */
372 	ret = btrfs_insert_empty_item(trans, root, path,
373 				      key, item_size);
374 
375 	/* make sure any existing item is the correct size */
376 	if (ret == -EEXIST) {
377 		u32 found_size;
378 		found_size = btrfs_item_size_nr(path->nodes[0],
379 						path->slots[0]);
380 		if (found_size > item_size) {
381 			btrfs_truncate_item(trans, root, path, item_size, 1);
382 		} else if (found_size < item_size) {
383 			ret = btrfs_extend_item(trans, root, path,
384 						item_size - found_size);
385 		}
386 	} else if (ret) {
387 		return ret;
388 	}
389 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
390 					path->slots[0]);
391 
392 	/* don't overwrite an existing inode if the generation number
393 	 * was logged as zero.  This is done when the tree logging code
394 	 * is just logging an inode to make sure it exists after recovery.
395 	 *
396 	 * Also, don't overwrite i_size on directories during replay.
397 	 * log replay inserts and removes directory items based on the
398 	 * state of the tree found in the subvolume, and i_size is modified
399 	 * as it goes
400 	 */
401 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
402 		struct btrfs_inode_item *src_item;
403 		struct btrfs_inode_item *dst_item;
404 
405 		src_item = (struct btrfs_inode_item *)src_ptr;
406 		dst_item = (struct btrfs_inode_item *)dst_ptr;
407 
408 		if (btrfs_inode_generation(eb, src_item) == 0)
409 			goto no_copy;
410 
411 		if (overwrite_root &&
412 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
413 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
414 			save_old_i_size = 1;
415 			saved_i_size = btrfs_inode_size(path->nodes[0],
416 							dst_item);
417 		}
418 	}
419 
420 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
421 			   src_ptr, item_size);
422 
423 	if (save_old_i_size) {
424 		struct btrfs_inode_item *dst_item;
425 		dst_item = (struct btrfs_inode_item *)dst_ptr;
426 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
427 	}
428 
429 	/* make sure the generation is filled in */
430 	if (key->type == BTRFS_INODE_ITEM_KEY) {
431 		struct btrfs_inode_item *dst_item;
432 		dst_item = (struct btrfs_inode_item *)dst_ptr;
433 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
434 			btrfs_set_inode_generation(path->nodes[0], dst_item,
435 						   trans->transid);
436 		}
437 	}
438 no_copy:
439 	btrfs_mark_buffer_dirty(path->nodes[0]);
440 	btrfs_release_path(path);
441 	return 0;
442 }
443 
444 /*
445  * simple helper to read an inode off the disk from a given root
446  * This can only be called for subvolume roots and not for the log
447  */
448 static noinline struct inode *read_one_inode(struct btrfs_root *root,
449 					     u64 objectid)
450 {
451 	struct btrfs_key key;
452 	struct inode *inode;
453 
454 	key.objectid = objectid;
455 	key.type = BTRFS_INODE_ITEM_KEY;
456 	key.offset = 0;
457 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
458 	if (IS_ERR(inode)) {
459 		inode = NULL;
460 	} else if (is_bad_inode(inode)) {
461 		iput(inode);
462 		inode = NULL;
463 	}
464 	return inode;
465 }
466 
467 /* replays a single extent in 'eb' at 'slot' with 'key' into the
468  * subvolume 'root'.  path is released on entry and should be released
469  * on exit.
470  *
471  * extents in the log tree have not been allocated out of the extent
472  * tree yet.  So, this completes the allocation, taking a reference
473  * as required if the extent already exists or creating a new extent
474  * if it isn't in the extent allocation tree yet.
475  *
476  * The extent is inserted into the file, dropping any existing extents
477  * from the file that overlap the new one.
478  */
479 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
480 				      struct btrfs_root *root,
481 				      struct btrfs_path *path,
482 				      struct extent_buffer *eb, int slot,
483 				      struct btrfs_key *key)
484 {
485 	int found_type;
486 	u64 mask = root->sectorsize - 1;
487 	u64 extent_end;
488 	u64 alloc_hint;
489 	u64 start = key->offset;
490 	u64 saved_nbytes;
491 	struct btrfs_file_extent_item *item;
492 	struct inode *inode = NULL;
493 	unsigned long size;
494 	int ret = 0;
495 
496 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
497 	found_type = btrfs_file_extent_type(eb, item);
498 
499 	if (found_type == BTRFS_FILE_EXTENT_REG ||
500 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
501 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
502 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
503 		size = btrfs_file_extent_inline_len(eb, item);
504 		extent_end = (start + size + mask) & ~mask;
505 	} else {
506 		ret = 0;
507 		goto out;
508 	}
509 
510 	inode = read_one_inode(root, key->objectid);
511 	if (!inode) {
512 		ret = -EIO;
513 		goto out;
514 	}
515 
516 	/*
517 	 * first check to see if we already have this extent in the
518 	 * file.  This must be done before the btrfs_drop_extents run
519 	 * so we don't try to drop this extent.
520 	 */
521 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
522 				       start, 0);
523 
524 	if (ret == 0 &&
525 	    (found_type == BTRFS_FILE_EXTENT_REG ||
526 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
527 		struct btrfs_file_extent_item cmp1;
528 		struct btrfs_file_extent_item cmp2;
529 		struct btrfs_file_extent_item *existing;
530 		struct extent_buffer *leaf;
531 
532 		leaf = path->nodes[0];
533 		existing = btrfs_item_ptr(leaf, path->slots[0],
534 					  struct btrfs_file_extent_item);
535 
536 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
537 				   sizeof(cmp1));
538 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
539 				   sizeof(cmp2));
540 
541 		/*
542 		 * we already have a pointer to this exact extent,
543 		 * we don't have to do anything
544 		 */
545 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
546 			btrfs_release_path(path);
547 			goto out;
548 		}
549 	}
550 	btrfs_release_path(path);
551 
552 	saved_nbytes = inode_get_bytes(inode);
553 	/* drop any overlapping extents */
554 	ret = btrfs_drop_extents(trans, inode, start, extent_end,
555 				 &alloc_hint, 1);
556 	BUG_ON(ret);
557 
558 	if (found_type == BTRFS_FILE_EXTENT_REG ||
559 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
560 		u64 offset;
561 		unsigned long dest_offset;
562 		struct btrfs_key ins;
563 
564 		ret = btrfs_insert_empty_item(trans, root, path, key,
565 					      sizeof(*item));
566 		BUG_ON(ret);
567 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
568 						    path->slots[0]);
569 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
570 				(unsigned long)item,  sizeof(*item));
571 
572 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
573 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
574 		ins.type = BTRFS_EXTENT_ITEM_KEY;
575 		offset = key->offset - btrfs_file_extent_offset(eb, item);
576 
577 		if (ins.objectid > 0) {
578 			u64 csum_start;
579 			u64 csum_end;
580 			LIST_HEAD(ordered_sums);
581 			/*
582 			 * is this extent already allocated in the extent
583 			 * allocation tree?  If so, just add a reference
584 			 */
585 			ret = btrfs_lookup_extent(root, ins.objectid,
586 						ins.offset);
587 			if (ret == 0) {
588 				ret = btrfs_inc_extent_ref(trans, root,
589 						ins.objectid, ins.offset,
590 						0, root->root_key.objectid,
591 						key->objectid, offset);
592 				BUG_ON(ret);
593 			} else {
594 				/*
595 				 * insert the extent pointer in the extent
596 				 * allocation tree
597 				 */
598 				ret = btrfs_alloc_logged_file_extent(trans,
599 						root, root->root_key.objectid,
600 						key->objectid, offset, &ins);
601 				BUG_ON(ret);
602 			}
603 			btrfs_release_path(path);
604 
605 			if (btrfs_file_extent_compression(eb, item)) {
606 				csum_start = ins.objectid;
607 				csum_end = csum_start + ins.offset;
608 			} else {
609 				csum_start = ins.objectid +
610 					btrfs_file_extent_offset(eb, item);
611 				csum_end = csum_start +
612 					btrfs_file_extent_num_bytes(eb, item);
613 			}
614 
615 			ret = btrfs_lookup_csums_range(root->log_root,
616 						csum_start, csum_end - 1,
617 						&ordered_sums, 0);
618 			BUG_ON(ret);
619 			while (!list_empty(&ordered_sums)) {
620 				struct btrfs_ordered_sum *sums;
621 				sums = list_entry(ordered_sums.next,
622 						struct btrfs_ordered_sum,
623 						list);
624 				ret = btrfs_csum_file_blocks(trans,
625 						root->fs_info->csum_root,
626 						sums);
627 				BUG_ON(ret);
628 				list_del(&sums->list);
629 				kfree(sums);
630 			}
631 		} else {
632 			btrfs_release_path(path);
633 		}
634 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 		/* inline extents are easy, we just overwrite them */
636 		ret = overwrite_item(trans, root, path, eb, slot, key);
637 		BUG_ON(ret);
638 	}
639 
640 	inode_set_bytes(inode, saved_nbytes);
641 	btrfs_update_inode(trans, root, inode);
642 out:
643 	if (inode)
644 		iput(inode);
645 	return ret;
646 }
647 
648 /*
649  * when cleaning up conflicts between the directory names in the
650  * subvolume, directory names in the log and directory names in the
651  * inode back references, we may have to unlink inodes from directories.
652  *
653  * This is a helper function to do the unlink of a specific directory
654  * item
655  */
656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 				      struct btrfs_root *root,
658 				      struct btrfs_path *path,
659 				      struct inode *dir,
660 				      struct btrfs_dir_item *di)
661 {
662 	struct inode *inode;
663 	char *name;
664 	int name_len;
665 	struct extent_buffer *leaf;
666 	struct btrfs_key location;
667 	int ret;
668 
669 	leaf = path->nodes[0];
670 
671 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 	name_len = btrfs_dir_name_len(leaf, di);
673 	name = kmalloc(name_len, GFP_NOFS);
674 	if (!name)
675 		return -ENOMEM;
676 
677 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 	btrfs_release_path(path);
679 
680 	inode = read_one_inode(root, location.objectid);
681 	if (!inode) {
682 		kfree(name);
683 		return -EIO;
684 	}
685 
686 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
687 	BUG_ON(ret);
688 
689 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
690 	BUG_ON(ret);
691 	kfree(name);
692 
693 	iput(inode);
694 	return ret;
695 }
696 
697 /*
698  * helper function to see if a given name and sequence number found
699  * in an inode back reference are already in a directory and correctly
700  * point to this inode
701  */
702 static noinline int inode_in_dir(struct btrfs_root *root,
703 				 struct btrfs_path *path,
704 				 u64 dirid, u64 objectid, u64 index,
705 				 const char *name, int name_len)
706 {
707 	struct btrfs_dir_item *di;
708 	struct btrfs_key location;
709 	int match = 0;
710 
711 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
712 					 index, name, name_len, 0);
713 	if (di && !IS_ERR(di)) {
714 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
715 		if (location.objectid != objectid)
716 			goto out;
717 	} else
718 		goto out;
719 	btrfs_release_path(path);
720 
721 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
722 	if (di && !IS_ERR(di)) {
723 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
724 		if (location.objectid != objectid)
725 			goto out;
726 	} else
727 		goto out;
728 	match = 1;
729 out:
730 	btrfs_release_path(path);
731 	return match;
732 }
733 
734 /*
735  * helper function to check a log tree for a named back reference in
736  * an inode.  This is used to decide if a back reference that is
737  * found in the subvolume conflicts with what we find in the log.
738  *
739  * inode backreferences may have multiple refs in a single item,
740  * during replay we process one reference at a time, and we don't
741  * want to delete valid links to a file from the subvolume if that
742  * link is also in the log.
743  */
744 static noinline int backref_in_log(struct btrfs_root *log,
745 				   struct btrfs_key *key,
746 				   char *name, int namelen)
747 {
748 	struct btrfs_path *path;
749 	struct btrfs_inode_ref *ref;
750 	unsigned long ptr;
751 	unsigned long ptr_end;
752 	unsigned long name_ptr;
753 	int found_name_len;
754 	int item_size;
755 	int ret;
756 	int match = 0;
757 
758 	path = btrfs_alloc_path();
759 	if (!path)
760 		return -ENOMEM;
761 
762 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
763 	if (ret != 0)
764 		goto out;
765 
766 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
767 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
768 	ptr_end = ptr + item_size;
769 	while (ptr < ptr_end) {
770 		ref = (struct btrfs_inode_ref *)ptr;
771 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
772 		if (found_name_len == namelen) {
773 			name_ptr = (unsigned long)(ref + 1);
774 			ret = memcmp_extent_buffer(path->nodes[0], name,
775 						   name_ptr, namelen);
776 			if (ret == 0) {
777 				match = 1;
778 				goto out;
779 			}
780 		}
781 		ptr = (unsigned long)(ref + 1) + found_name_len;
782 	}
783 out:
784 	btrfs_free_path(path);
785 	return match;
786 }
787 
788 
789 /*
790  * replay one inode back reference item found in the log tree.
791  * eb, slot and key refer to the buffer and key found in the log tree.
792  * root is the destination we are replaying into, and path is for temp
793  * use by this function.  (it should be released on return).
794  */
795 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
796 				  struct btrfs_root *root,
797 				  struct btrfs_root *log,
798 				  struct btrfs_path *path,
799 				  struct extent_buffer *eb, int slot,
800 				  struct btrfs_key *key)
801 {
802 	struct btrfs_inode_ref *ref;
803 	struct btrfs_dir_item *di;
804 	struct inode *dir;
805 	struct inode *inode;
806 	unsigned long ref_ptr;
807 	unsigned long ref_end;
808 	char *name;
809 	int namelen;
810 	int ret;
811 	int search_done = 0;
812 
813 	/*
814 	 * it is possible that we didn't log all the parent directories
815 	 * for a given inode.  If we don't find the dir, just don't
816 	 * copy the back ref in.  The link count fixup code will take
817 	 * care of the rest
818 	 */
819 	dir = read_one_inode(root, key->offset);
820 	if (!dir)
821 		return -ENOENT;
822 
823 	inode = read_one_inode(root, key->objectid);
824 	if (!inode) {
825 		iput(dir);
826 		return -EIO;
827 	}
828 
829 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
830 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
831 
832 again:
833 	ref = (struct btrfs_inode_ref *)ref_ptr;
834 
835 	namelen = btrfs_inode_ref_name_len(eb, ref);
836 	name = kmalloc(namelen, GFP_NOFS);
837 	BUG_ON(!name);
838 
839 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
840 
841 	/* if we already have a perfect match, we're done */
842 	if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
843 			 btrfs_inode_ref_index(eb, ref),
844 			 name, namelen)) {
845 		goto out;
846 	}
847 
848 	/*
849 	 * look for a conflicting back reference in the metadata.
850 	 * if we find one we have to unlink that name of the file
851 	 * before we add our new link.  Later on, we overwrite any
852 	 * existing back reference, and we don't want to create
853 	 * dangling pointers in the directory.
854 	 */
855 
856 	if (search_done)
857 		goto insert;
858 
859 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
860 	if (ret == 0) {
861 		char *victim_name;
862 		int victim_name_len;
863 		struct btrfs_inode_ref *victim_ref;
864 		unsigned long ptr;
865 		unsigned long ptr_end;
866 		struct extent_buffer *leaf = path->nodes[0];
867 
868 		/* are we trying to overwrite a back ref for the root directory
869 		 * if so, just jump out, we're done
870 		 */
871 		if (key->objectid == key->offset)
872 			goto out_nowrite;
873 
874 		/* check all the names in this back reference to see
875 		 * if they are in the log.  if so, we allow them to stay
876 		 * otherwise they must be unlinked as a conflict
877 		 */
878 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
879 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
880 		while (ptr < ptr_end) {
881 			victim_ref = (struct btrfs_inode_ref *)ptr;
882 			victim_name_len = btrfs_inode_ref_name_len(leaf,
883 								   victim_ref);
884 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
885 			BUG_ON(!victim_name);
886 
887 			read_extent_buffer(leaf, victim_name,
888 					   (unsigned long)(victim_ref + 1),
889 					   victim_name_len);
890 
891 			if (!backref_in_log(log, key, victim_name,
892 					    victim_name_len)) {
893 				btrfs_inc_nlink(inode);
894 				btrfs_release_path(path);
895 
896 				ret = btrfs_unlink_inode(trans, root, dir,
897 							 inode, victim_name,
898 							 victim_name_len);
899 			}
900 			kfree(victim_name);
901 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
902 		}
903 		BUG_ON(ret);
904 
905 		/*
906 		 * NOTE: we have searched root tree and checked the
907 		 * coresponding ref, it does not need to check again.
908 		 */
909 		search_done = 1;
910 	}
911 	btrfs_release_path(path);
912 
913 	/* look for a conflicting sequence number */
914 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
915 					 btrfs_inode_ref_index(eb, ref),
916 					 name, namelen, 0);
917 	if (di && !IS_ERR(di)) {
918 		ret = drop_one_dir_item(trans, root, path, dir, di);
919 		BUG_ON(ret);
920 	}
921 	btrfs_release_path(path);
922 
923 	/* look for a conflicing name */
924 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
925 				   name, namelen, 0);
926 	if (di && !IS_ERR(di)) {
927 		ret = drop_one_dir_item(trans, root, path, dir, di);
928 		BUG_ON(ret);
929 	}
930 	btrfs_release_path(path);
931 
932 insert:
933 	/* insert our name */
934 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
935 			     btrfs_inode_ref_index(eb, ref));
936 	BUG_ON(ret);
937 
938 	btrfs_update_inode(trans, root, inode);
939 
940 out:
941 	ref_ptr = (unsigned long)(ref + 1) + namelen;
942 	kfree(name);
943 	if (ref_ptr < ref_end)
944 		goto again;
945 
946 	/* finally write the back reference in the inode */
947 	ret = overwrite_item(trans, root, path, eb, slot, key);
948 	BUG_ON(ret);
949 
950 out_nowrite:
951 	btrfs_release_path(path);
952 	iput(dir);
953 	iput(inode);
954 	return 0;
955 }
956 
957 static int insert_orphan_item(struct btrfs_trans_handle *trans,
958 			      struct btrfs_root *root, u64 offset)
959 {
960 	int ret;
961 	ret = btrfs_find_orphan_item(root, offset);
962 	if (ret > 0)
963 		ret = btrfs_insert_orphan_item(trans, root, offset);
964 	return ret;
965 }
966 
967 
968 /*
969  * There are a few corners where the link count of the file can't
970  * be properly maintained during replay.  So, instead of adding
971  * lots of complexity to the log code, we just scan the backrefs
972  * for any file that has been through replay.
973  *
974  * The scan will update the link count on the inode to reflect the
975  * number of back refs found.  If it goes down to zero, the iput
976  * will free the inode.
977  */
978 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
979 					   struct btrfs_root *root,
980 					   struct inode *inode)
981 {
982 	struct btrfs_path *path;
983 	int ret;
984 	struct btrfs_key key;
985 	u64 nlink = 0;
986 	unsigned long ptr;
987 	unsigned long ptr_end;
988 	int name_len;
989 	u64 ino = btrfs_ino(inode);
990 
991 	key.objectid = ino;
992 	key.type = BTRFS_INODE_REF_KEY;
993 	key.offset = (u64)-1;
994 
995 	path = btrfs_alloc_path();
996 	if (!path)
997 		return -ENOMEM;
998 
999 	while (1) {
1000 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1001 		if (ret < 0)
1002 			break;
1003 		if (ret > 0) {
1004 			if (path->slots[0] == 0)
1005 				break;
1006 			path->slots[0]--;
1007 		}
1008 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1009 				      path->slots[0]);
1010 		if (key.objectid != ino ||
1011 		    key.type != BTRFS_INODE_REF_KEY)
1012 			break;
1013 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1014 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1015 						   path->slots[0]);
1016 		while (ptr < ptr_end) {
1017 			struct btrfs_inode_ref *ref;
1018 
1019 			ref = (struct btrfs_inode_ref *)ptr;
1020 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1021 							    ref);
1022 			ptr = (unsigned long)(ref + 1) + name_len;
1023 			nlink++;
1024 		}
1025 
1026 		if (key.offset == 0)
1027 			break;
1028 		key.offset--;
1029 		btrfs_release_path(path);
1030 	}
1031 	btrfs_release_path(path);
1032 	if (nlink != inode->i_nlink) {
1033 		inode->i_nlink = nlink;
1034 		btrfs_update_inode(trans, root, inode);
1035 	}
1036 	BTRFS_I(inode)->index_cnt = (u64)-1;
1037 
1038 	if (inode->i_nlink == 0) {
1039 		if (S_ISDIR(inode->i_mode)) {
1040 			ret = replay_dir_deletes(trans, root, NULL, path,
1041 						 ino, 1);
1042 			BUG_ON(ret);
1043 		}
1044 		ret = insert_orphan_item(trans, root, ino);
1045 		BUG_ON(ret);
1046 	}
1047 	btrfs_free_path(path);
1048 
1049 	return 0;
1050 }
1051 
1052 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1053 					    struct btrfs_root *root,
1054 					    struct btrfs_path *path)
1055 {
1056 	int ret;
1057 	struct btrfs_key key;
1058 	struct inode *inode;
1059 
1060 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1061 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1062 	key.offset = (u64)-1;
1063 	while (1) {
1064 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1065 		if (ret < 0)
1066 			break;
1067 
1068 		if (ret == 1) {
1069 			if (path->slots[0] == 0)
1070 				break;
1071 			path->slots[0]--;
1072 		}
1073 
1074 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1075 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1076 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1077 			break;
1078 
1079 		ret = btrfs_del_item(trans, root, path);
1080 		if (ret)
1081 			goto out;
1082 
1083 		btrfs_release_path(path);
1084 		inode = read_one_inode(root, key.offset);
1085 		if (!inode)
1086 			return -EIO;
1087 
1088 		ret = fixup_inode_link_count(trans, root, inode);
1089 		BUG_ON(ret);
1090 
1091 		iput(inode);
1092 
1093 		/*
1094 		 * fixup on a directory may create new entries,
1095 		 * make sure we always look for the highset possible
1096 		 * offset
1097 		 */
1098 		key.offset = (u64)-1;
1099 	}
1100 	ret = 0;
1101 out:
1102 	btrfs_release_path(path);
1103 	return ret;
1104 }
1105 
1106 
1107 /*
1108  * record a given inode in the fixup dir so we can check its link
1109  * count when replay is done.  The link count is incremented here
1110  * so the inode won't go away until we check it
1111  */
1112 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1113 				      struct btrfs_root *root,
1114 				      struct btrfs_path *path,
1115 				      u64 objectid)
1116 {
1117 	struct btrfs_key key;
1118 	int ret = 0;
1119 	struct inode *inode;
1120 
1121 	inode = read_one_inode(root, objectid);
1122 	if (!inode)
1123 		return -EIO;
1124 
1125 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1126 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1127 	key.offset = objectid;
1128 
1129 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1130 
1131 	btrfs_release_path(path);
1132 	if (ret == 0) {
1133 		btrfs_inc_nlink(inode);
1134 		btrfs_update_inode(trans, root, inode);
1135 	} else if (ret == -EEXIST) {
1136 		ret = 0;
1137 	} else {
1138 		BUG();
1139 	}
1140 	iput(inode);
1141 
1142 	return ret;
1143 }
1144 
1145 /*
1146  * when replaying the log for a directory, we only insert names
1147  * for inodes that actually exist.  This means an fsync on a directory
1148  * does not implicitly fsync all the new files in it
1149  */
1150 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1151 				    struct btrfs_root *root,
1152 				    struct btrfs_path *path,
1153 				    u64 dirid, u64 index,
1154 				    char *name, int name_len, u8 type,
1155 				    struct btrfs_key *location)
1156 {
1157 	struct inode *inode;
1158 	struct inode *dir;
1159 	int ret;
1160 
1161 	inode = read_one_inode(root, location->objectid);
1162 	if (!inode)
1163 		return -ENOENT;
1164 
1165 	dir = read_one_inode(root, dirid);
1166 	if (!dir) {
1167 		iput(inode);
1168 		return -EIO;
1169 	}
1170 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1171 
1172 	/* FIXME, put inode into FIXUP list */
1173 
1174 	iput(inode);
1175 	iput(dir);
1176 	return ret;
1177 }
1178 
1179 /*
1180  * take a single entry in a log directory item and replay it into
1181  * the subvolume.
1182  *
1183  * if a conflicting item exists in the subdirectory already,
1184  * the inode it points to is unlinked and put into the link count
1185  * fix up tree.
1186  *
1187  * If a name from the log points to a file or directory that does
1188  * not exist in the FS, it is skipped.  fsyncs on directories
1189  * do not force down inodes inside that directory, just changes to the
1190  * names or unlinks in a directory.
1191  */
1192 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1193 				    struct btrfs_root *root,
1194 				    struct btrfs_path *path,
1195 				    struct extent_buffer *eb,
1196 				    struct btrfs_dir_item *di,
1197 				    struct btrfs_key *key)
1198 {
1199 	char *name;
1200 	int name_len;
1201 	struct btrfs_dir_item *dst_di;
1202 	struct btrfs_key found_key;
1203 	struct btrfs_key log_key;
1204 	struct inode *dir;
1205 	u8 log_type;
1206 	int exists;
1207 	int ret;
1208 
1209 	dir = read_one_inode(root, key->objectid);
1210 	if (!dir)
1211 		return -EIO;
1212 
1213 	name_len = btrfs_dir_name_len(eb, di);
1214 	name = kmalloc(name_len, GFP_NOFS);
1215 	if (!name)
1216 		return -ENOMEM;
1217 
1218 	log_type = btrfs_dir_type(eb, di);
1219 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1220 		   name_len);
1221 
1222 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1223 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1224 	if (exists == 0)
1225 		exists = 1;
1226 	else
1227 		exists = 0;
1228 	btrfs_release_path(path);
1229 
1230 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1231 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1232 				       name, name_len, 1);
1233 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1234 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1235 						     key->objectid,
1236 						     key->offset, name,
1237 						     name_len, 1);
1238 	} else {
1239 		BUG();
1240 	}
1241 	if (IS_ERR_OR_NULL(dst_di)) {
1242 		/* we need a sequence number to insert, so we only
1243 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1244 		 */
1245 		if (key->type != BTRFS_DIR_INDEX_KEY)
1246 			goto out;
1247 		goto insert;
1248 	}
1249 
1250 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1251 	/* the existing item matches the logged item */
1252 	if (found_key.objectid == log_key.objectid &&
1253 	    found_key.type == log_key.type &&
1254 	    found_key.offset == log_key.offset &&
1255 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1256 		goto out;
1257 	}
1258 
1259 	/*
1260 	 * don't drop the conflicting directory entry if the inode
1261 	 * for the new entry doesn't exist
1262 	 */
1263 	if (!exists)
1264 		goto out;
1265 
1266 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1267 	BUG_ON(ret);
1268 
1269 	if (key->type == BTRFS_DIR_INDEX_KEY)
1270 		goto insert;
1271 out:
1272 	btrfs_release_path(path);
1273 	kfree(name);
1274 	iput(dir);
1275 	return 0;
1276 
1277 insert:
1278 	btrfs_release_path(path);
1279 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1280 			      name, name_len, log_type, &log_key);
1281 
1282 	BUG_ON(ret && ret != -ENOENT);
1283 	goto out;
1284 }
1285 
1286 /*
1287  * find all the names in a directory item and reconcile them into
1288  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1289  * one name in a directory item, but the same code gets used for
1290  * both directory index types
1291  */
1292 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1293 					struct btrfs_root *root,
1294 					struct btrfs_path *path,
1295 					struct extent_buffer *eb, int slot,
1296 					struct btrfs_key *key)
1297 {
1298 	int ret;
1299 	u32 item_size = btrfs_item_size_nr(eb, slot);
1300 	struct btrfs_dir_item *di;
1301 	int name_len;
1302 	unsigned long ptr;
1303 	unsigned long ptr_end;
1304 
1305 	ptr = btrfs_item_ptr_offset(eb, slot);
1306 	ptr_end = ptr + item_size;
1307 	while (ptr < ptr_end) {
1308 		di = (struct btrfs_dir_item *)ptr;
1309 		if (verify_dir_item(root, eb, di))
1310 			return -EIO;
1311 		name_len = btrfs_dir_name_len(eb, di);
1312 		ret = replay_one_name(trans, root, path, eb, di, key);
1313 		BUG_ON(ret);
1314 		ptr = (unsigned long)(di + 1);
1315 		ptr += name_len;
1316 	}
1317 	return 0;
1318 }
1319 
1320 /*
1321  * directory replay has two parts.  There are the standard directory
1322  * items in the log copied from the subvolume, and range items
1323  * created in the log while the subvolume was logged.
1324  *
1325  * The range items tell us which parts of the key space the log
1326  * is authoritative for.  During replay, if a key in the subvolume
1327  * directory is in a logged range item, but not actually in the log
1328  * that means it was deleted from the directory before the fsync
1329  * and should be removed.
1330  */
1331 static noinline int find_dir_range(struct btrfs_root *root,
1332 				   struct btrfs_path *path,
1333 				   u64 dirid, int key_type,
1334 				   u64 *start_ret, u64 *end_ret)
1335 {
1336 	struct btrfs_key key;
1337 	u64 found_end;
1338 	struct btrfs_dir_log_item *item;
1339 	int ret;
1340 	int nritems;
1341 
1342 	if (*start_ret == (u64)-1)
1343 		return 1;
1344 
1345 	key.objectid = dirid;
1346 	key.type = key_type;
1347 	key.offset = *start_ret;
1348 
1349 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1350 	if (ret < 0)
1351 		goto out;
1352 	if (ret > 0) {
1353 		if (path->slots[0] == 0)
1354 			goto out;
1355 		path->slots[0]--;
1356 	}
1357 	if (ret != 0)
1358 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1359 
1360 	if (key.type != key_type || key.objectid != dirid) {
1361 		ret = 1;
1362 		goto next;
1363 	}
1364 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1365 			      struct btrfs_dir_log_item);
1366 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1367 
1368 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1369 		ret = 0;
1370 		*start_ret = key.offset;
1371 		*end_ret = found_end;
1372 		goto out;
1373 	}
1374 	ret = 1;
1375 next:
1376 	/* check the next slot in the tree to see if it is a valid item */
1377 	nritems = btrfs_header_nritems(path->nodes[0]);
1378 	if (path->slots[0] >= nritems) {
1379 		ret = btrfs_next_leaf(root, path);
1380 		if (ret)
1381 			goto out;
1382 	} else {
1383 		path->slots[0]++;
1384 	}
1385 
1386 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1387 
1388 	if (key.type != key_type || key.objectid != dirid) {
1389 		ret = 1;
1390 		goto out;
1391 	}
1392 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1393 			      struct btrfs_dir_log_item);
1394 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1395 	*start_ret = key.offset;
1396 	*end_ret = found_end;
1397 	ret = 0;
1398 out:
1399 	btrfs_release_path(path);
1400 	return ret;
1401 }
1402 
1403 /*
1404  * this looks for a given directory item in the log.  If the directory
1405  * item is not in the log, the item is removed and the inode it points
1406  * to is unlinked
1407  */
1408 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1409 				      struct btrfs_root *root,
1410 				      struct btrfs_root *log,
1411 				      struct btrfs_path *path,
1412 				      struct btrfs_path *log_path,
1413 				      struct inode *dir,
1414 				      struct btrfs_key *dir_key)
1415 {
1416 	int ret;
1417 	struct extent_buffer *eb;
1418 	int slot;
1419 	u32 item_size;
1420 	struct btrfs_dir_item *di;
1421 	struct btrfs_dir_item *log_di;
1422 	int name_len;
1423 	unsigned long ptr;
1424 	unsigned long ptr_end;
1425 	char *name;
1426 	struct inode *inode;
1427 	struct btrfs_key location;
1428 
1429 again:
1430 	eb = path->nodes[0];
1431 	slot = path->slots[0];
1432 	item_size = btrfs_item_size_nr(eb, slot);
1433 	ptr = btrfs_item_ptr_offset(eb, slot);
1434 	ptr_end = ptr + item_size;
1435 	while (ptr < ptr_end) {
1436 		di = (struct btrfs_dir_item *)ptr;
1437 		if (verify_dir_item(root, eb, di)) {
1438 			ret = -EIO;
1439 			goto out;
1440 		}
1441 
1442 		name_len = btrfs_dir_name_len(eb, di);
1443 		name = kmalloc(name_len, GFP_NOFS);
1444 		if (!name) {
1445 			ret = -ENOMEM;
1446 			goto out;
1447 		}
1448 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1449 				  name_len);
1450 		log_di = NULL;
1451 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1452 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1453 						       dir_key->objectid,
1454 						       name, name_len, 0);
1455 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1456 			log_di = btrfs_lookup_dir_index_item(trans, log,
1457 						     log_path,
1458 						     dir_key->objectid,
1459 						     dir_key->offset,
1460 						     name, name_len, 0);
1461 		}
1462 		if (IS_ERR_OR_NULL(log_di)) {
1463 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1464 			btrfs_release_path(path);
1465 			btrfs_release_path(log_path);
1466 			inode = read_one_inode(root, location.objectid);
1467 			if (!inode) {
1468 				kfree(name);
1469 				return -EIO;
1470 			}
1471 
1472 			ret = link_to_fixup_dir(trans, root,
1473 						path, location.objectid);
1474 			BUG_ON(ret);
1475 			btrfs_inc_nlink(inode);
1476 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1477 						 name, name_len);
1478 			BUG_ON(ret);
1479 			kfree(name);
1480 			iput(inode);
1481 
1482 			/* there might still be more names under this key
1483 			 * check and repeat if required
1484 			 */
1485 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1486 						0, 0);
1487 			if (ret == 0)
1488 				goto again;
1489 			ret = 0;
1490 			goto out;
1491 		}
1492 		btrfs_release_path(log_path);
1493 		kfree(name);
1494 
1495 		ptr = (unsigned long)(di + 1);
1496 		ptr += name_len;
1497 	}
1498 	ret = 0;
1499 out:
1500 	btrfs_release_path(path);
1501 	btrfs_release_path(log_path);
1502 	return ret;
1503 }
1504 
1505 /*
1506  * deletion replay happens before we copy any new directory items
1507  * out of the log or out of backreferences from inodes.  It
1508  * scans the log to find ranges of keys that log is authoritative for,
1509  * and then scans the directory to find items in those ranges that are
1510  * not present in the log.
1511  *
1512  * Anything we don't find in the log is unlinked and removed from the
1513  * directory.
1514  */
1515 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1516 				       struct btrfs_root *root,
1517 				       struct btrfs_root *log,
1518 				       struct btrfs_path *path,
1519 				       u64 dirid, int del_all)
1520 {
1521 	u64 range_start;
1522 	u64 range_end;
1523 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1524 	int ret = 0;
1525 	struct btrfs_key dir_key;
1526 	struct btrfs_key found_key;
1527 	struct btrfs_path *log_path;
1528 	struct inode *dir;
1529 
1530 	dir_key.objectid = dirid;
1531 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1532 	log_path = btrfs_alloc_path();
1533 	if (!log_path)
1534 		return -ENOMEM;
1535 
1536 	dir = read_one_inode(root, dirid);
1537 	/* it isn't an error if the inode isn't there, that can happen
1538 	 * because we replay the deletes before we copy in the inode item
1539 	 * from the log
1540 	 */
1541 	if (!dir) {
1542 		btrfs_free_path(log_path);
1543 		return 0;
1544 	}
1545 again:
1546 	range_start = 0;
1547 	range_end = 0;
1548 	while (1) {
1549 		if (del_all)
1550 			range_end = (u64)-1;
1551 		else {
1552 			ret = find_dir_range(log, path, dirid, key_type,
1553 					     &range_start, &range_end);
1554 			if (ret != 0)
1555 				break;
1556 		}
1557 
1558 		dir_key.offset = range_start;
1559 		while (1) {
1560 			int nritems;
1561 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1562 						0, 0);
1563 			if (ret < 0)
1564 				goto out;
1565 
1566 			nritems = btrfs_header_nritems(path->nodes[0]);
1567 			if (path->slots[0] >= nritems) {
1568 				ret = btrfs_next_leaf(root, path);
1569 				if (ret)
1570 					break;
1571 			}
1572 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1573 					      path->slots[0]);
1574 			if (found_key.objectid != dirid ||
1575 			    found_key.type != dir_key.type)
1576 				goto next_type;
1577 
1578 			if (found_key.offset > range_end)
1579 				break;
1580 
1581 			ret = check_item_in_log(trans, root, log, path,
1582 						log_path, dir,
1583 						&found_key);
1584 			BUG_ON(ret);
1585 			if (found_key.offset == (u64)-1)
1586 				break;
1587 			dir_key.offset = found_key.offset + 1;
1588 		}
1589 		btrfs_release_path(path);
1590 		if (range_end == (u64)-1)
1591 			break;
1592 		range_start = range_end + 1;
1593 	}
1594 
1595 next_type:
1596 	ret = 0;
1597 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1598 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1599 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1600 		btrfs_release_path(path);
1601 		goto again;
1602 	}
1603 out:
1604 	btrfs_release_path(path);
1605 	btrfs_free_path(log_path);
1606 	iput(dir);
1607 	return ret;
1608 }
1609 
1610 /*
1611  * the process_func used to replay items from the log tree.  This
1612  * gets called in two different stages.  The first stage just looks
1613  * for inodes and makes sure they are all copied into the subvolume.
1614  *
1615  * The second stage copies all the other item types from the log into
1616  * the subvolume.  The two stage approach is slower, but gets rid of
1617  * lots of complexity around inodes referencing other inodes that exist
1618  * only in the log (references come from either directory items or inode
1619  * back refs).
1620  */
1621 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1622 			     struct walk_control *wc, u64 gen)
1623 {
1624 	int nritems;
1625 	struct btrfs_path *path;
1626 	struct btrfs_root *root = wc->replay_dest;
1627 	struct btrfs_key key;
1628 	int level;
1629 	int i;
1630 	int ret;
1631 
1632 	btrfs_read_buffer(eb, gen);
1633 
1634 	level = btrfs_header_level(eb);
1635 
1636 	if (level != 0)
1637 		return 0;
1638 
1639 	path = btrfs_alloc_path();
1640 	if (!path)
1641 		return -ENOMEM;
1642 
1643 	nritems = btrfs_header_nritems(eb);
1644 	for (i = 0; i < nritems; i++) {
1645 		btrfs_item_key_to_cpu(eb, &key, i);
1646 
1647 		/* inode keys are done during the first stage */
1648 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1649 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1650 			struct btrfs_inode_item *inode_item;
1651 			u32 mode;
1652 
1653 			inode_item = btrfs_item_ptr(eb, i,
1654 					    struct btrfs_inode_item);
1655 			mode = btrfs_inode_mode(eb, inode_item);
1656 			if (S_ISDIR(mode)) {
1657 				ret = replay_dir_deletes(wc->trans,
1658 					 root, log, path, key.objectid, 0);
1659 				BUG_ON(ret);
1660 			}
1661 			ret = overwrite_item(wc->trans, root, path,
1662 					     eb, i, &key);
1663 			BUG_ON(ret);
1664 
1665 			/* for regular files, make sure corresponding
1666 			 * orhpan item exist. extents past the new EOF
1667 			 * will be truncated later by orphan cleanup.
1668 			 */
1669 			if (S_ISREG(mode)) {
1670 				ret = insert_orphan_item(wc->trans, root,
1671 							 key.objectid);
1672 				BUG_ON(ret);
1673 			}
1674 
1675 			ret = link_to_fixup_dir(wc->trans, root,
1676 						path, key.objectid);
1677 			BUG_ON(ret);
1678 		}
1679 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1680 			continue;
1681 
1682 		/* these keys are simply copied */
1683 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1684 			ret = overwrite_item(wc->trans, root, path,
1685 					     eb, i, &key);
1686 			BUG_ON(ret);
1687 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1688 			ret = add_inode_ref(wc->trans, root, log, path,
1689 					    eb, i, &key);
1690 			BUG_ON(ret && ret != -ENOENT);
1691 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1692 			ret = replay_one_extent(wc->trans, root, path,
1693 						eb, i, &key);
1694 			BUG_ON(ret);
1695 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1696 			   key.type == BTRFS_DIR_INDEX_KEY) {
1697 			ret = replay_one_dir_item(wc->trans, root, path,
1698 						  eb, i, &key);
1699 			BUG_ON(ret);
1700 		}
1701 	}
1702 	btrfs_free_path(path);
1703 	return 0;
1704 }
1705 
1706 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1707 				   struct btrfs_root *root,
1708 				   struct btrfs_path *path, int *level,
1709 				   struct walk_control *wc)
1710 {
1711 	u64 root_owner;
1712 	u64 bytenr;
1713 	u64 ptr_gen;
1714 	struct extent_buffer *next;
1715 	struct extent_buffer *cur;
1716 	struct extent_buffer *parent;
1717 	u32 blocksize;
1718 	int ret = 0;
1719 
1720 	WARN_ON(*level < 0);
1721 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1722 
1723 	while (*level > 0) {
1724 		WARN_ON(*level < 0);
1725 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1726 		cur = path->nodes[*level];
1727 
1728 		if (btrfs_header_level(cur) != *level)
1729 			WARN_ON(1);
1730 
1731 		if (path->slots[*level] >=
1732 		    btrfs_header_nritems(cur))
1733 			break;
1734 
1735 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1736 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1737 		blocksize = btrfs_level_size(root, *level - 1);
1738 
1739 		parent = path->nodes[*level];
1740 		root_owner = btrfs_header_owner(parent);
1741 
1742 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1743 		if (!next)
1744 			return -ENOMEM;
1745 
1746 		if (*level == 1) {
1747 			ret = wc->process_func(root, next, wc, ptr_gen);
1748 			if (ret)
1749 				return ret;
1750 
1751 			path->slots[*level]++;
1752 			if (wc->free) {
1753 				btrfs_read_buffer(next, ptr_gen);
1754 
1755 				btrfs_tree_lock(next);
1756 				btrfs_set_lock_blocking(next);
1757 				clean_tree_block(trans, root, next);
1758 				btrfs_wait_tree_block_writeback(next);
1759 				btrfs_tree_unlock(next);
1760 
1761 				WARN_ON(root_owner !=
1762 					BTRFS_TREE_LOG_OBJECTID);
1763 				ret = btrfs_free_reserved_extent(root,
1764 							 bytenr, blocksize);
1765 				BUG_ON(ret);
1766 			}
1767 			free_extent_buffer(next);
1768 			continue;
1769 		}
1770 		btrfs_read_buffer(next, ptr_gen);
1771 
1772 		WARN_ON(*level <= 0);
1773 		if (path->nodes[*level-1])
1774 			free_extent_buffer(path->nodes[*level-1]);
1775 		path->nodes[*level-1] = next;
1776 		*level = btrfs_header_level(next);
1777 		path->slots[*level] = 0;
1778 		cond_resched();
1779 	}
1780 	WARN_ON(*level < 0);
1781 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1782 
1783 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1784 
1785 	cond_resched();
1786 	return 0;
1787 }
1788 
1789 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1790 				 struct btrfs_root *root,
1791 				 struct btrfs_path *path, int *level,
1792 				 struct walk_control *wc)
1793 {
1794 	u64 root_owner;
1795 	int i;
1796 	int slot;
1797 	int ret;
1798 
1799 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1800 		slot = path->slots[i];
1801 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1802 			path->slots[i]++;
1803 			*level = i;
1804 			WARN_ON(*level == 0);
1805 			return 0;
1806 		} else {
1807 			struct extent_buffer *parent;
1808 			if (path->nodes[*level] == root->node)
1809 				parent = path->nodes[*level];
1810 			else
1811 				parent = path->nodes[*level + 1];
1812 
1813 			root_owner = btrfs_header_owner(parent);
1814 			ret = wc->process_func(root, path->nodes[*level], wc,
1815 				 btrfs_header_generation(path->nodes[*level]));
1816 			if (ret)
1817 				return ret;
1818 
1819 			if (wc->free) {
1820 				struct extent_buffer *next;
1821 
1822 				next = path->nodes[*level];
1823 
1824 				btrfs_tree_lock(next);
1825 				btrfs_set_lock_blocking(next);
1826 				clean_tree_block(trans, root, next);
1827 				btrfs_wait_tree_block_writeback(next);
1828 				btrfs_tree_unlock(next);
1829 
1830 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1831 				ret = btrfs_free_reserved_extent(root,
1832 						path->nodes[*level]->start,
1833 						path->nodes[*level]->len);
1834 				BUG_ON(ret);
1835 			}
1836 			free_extent_buffer(path->nodes[*level]);
1837 			path->nodes[*level] = NULL;
1838 			*level = i + 1;
1839 		}
1840 	}
1841 	return 1;
1842 }
1843 
1844 /*
1845  * drop the reference count on the tree rooted at 'snap'.  This traverses
1846  * the tree freeing any blocks that have a ref count of zero after being
1847  * decremented.
1848  */
1849 static int walk_log_tree(struct btrfs_trans_handle *trans,
1850 			 struct btrfs_root *log, struct walk_control *wc)
1851 {
1852 	int ret = 0;
1853 	int wret;
1854 	int level;
1855 	struct btrfs_path *path;
1856 	int i;
1857 	int orig_level;
1858 
1859 	path = btrfs_alloc_path();
1860 	if (!path)
1861 		return -ENOMEM;
1862 
1863 	level = btrfs_header_level(log->node);
1864 	orig_level = level;
1865 	path->nodes[level] = log->node;
1866 	extent_buffer_get(log->node);
1867 	path->slots[level] = 0;
1868 
1869 	while (1) {
1870 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1871 		if (wret > 0)
1872 			break;
1873 		if (wret < 0)
1874 			ret = wret;
1875 
1876 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1877 		if (wret > 0)
1878 			break;
1879 		if (wret < 0)
1880 			ret = wret;
1881 	}
1882 
1883 	/* was the root node processed? if not, catch it here */
1884 	if (path->nodes[orig_level]) {
1885 		wc->process_func(log, path->nodes[orig_level], wc,
1886 			 btrfs_header_generation(path->nodes[orig_level]));
1887 		if (wc->free) {
1888 			struct extent_buffer *next;
1889 
1890 			next = path->nodes[orig_level];
1891 
1892 			btrfs_tree_lock(next);
1893 			btrfs_set_lock_blocking(next);
1894 			clean_tree_block(trans, log, next);
1895 			btrfs_wait_tree_block_writeback(next);
1896 			btrfs_tree_unlock(next);
1897 
1898 			WARN_ON(log->root_key.objectid !=
1899 				BTRFS_TREE_LOG_OBJECTID);
1900 			ret = btrfs_free_reserved_extent(log, next->start,
1901 							 next->len);
1902 			BUG_ON(ret);
1903 		}
1904 	}
1905 
1906 	for (i = 0; i <= orig_level; i++) {
1907 		if (path->nodes[i]) {
1908 			free_extent_buffer(path->nodes[i]);
1909 			path->nodes[i] = NULL;
1910 		}
1911 	}
1912 	btrfs_free_path(path);
1913 	return ret;
1914 }
1915 
1916 /*
1917  * helper function to update the item for a given subvolumes log root
1918  * in the tree of log roots
1919  */
1920 static int update_log_root(struct btrfs_trans_handle *trans,
1921 			   struct btrfs_root *log)
1922 {
1923 	int ret;
1924 
1925 	if (log->log_transid == 1) {
1926 		/* insert root item on the first sync */
1927 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1928 				&log->root_key, &log->root_item);
1929 	} else {
1930 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1931 				&log->root_key, &log->root_item);
1932 	}
1933 	return ret;
1934 }
1935 
1936 static int wait_log_commit(struct btrfs_trans_handle *trans,
1937 			   struct btrfs_root *root, unsigned long transid)
1938 {
1939 	DEFINE_WAIT(wait);
1940 	int index = transid % 2;
1941 
1942 	/*
1943 	 * we only allow two pending log transactions at a time,
1944 	 * so we know that if ours is more than 2 older than the
1945 	 * current transaction, we're done
1946 	 */
1947 	do {
1948 		prepare_to_wait(&root->log_commit_wait[index],
1949 				&wait, TASK_UNINTERRUPTIBLE);
1950 		mutex_unlock(&root->log_mutex);
1951 
1952 		if (root->fs_info->last_trans_log_full_commit !=
1953 		    trans->transid && root->log_transid < transid + 2 &&
1954 		    atomic_read(&root->log_commit[index]))
1955 			schedule();
1956 
1957 		finish_wait(&root->log_commit_wait[index], &wait);
1958 		mutex_lock(&root->log_mutex);
1959 	} while (root->log_transid < transid + 2 &&
1960 		 atomic_read(&root->log_commit[index]));
1961 	return 0;
1962 }
1963 
1964 static int wait_for_writer(struct btrfs_trans_handle *trans,
1965 			   struct btrfs_root *root)
1966 {
1967 	DEFINE_WAIT(wait);
1968 	while (atomic_read(&root->log_writers)) {
1969 		prepare_to_wait(&root->log_writer_wait,
1970 				&wait, TASK_UNINTERRUPTIBLE);
1971 		mutex_unlock(&root->log_mutex);
1972 		if (root->fs_info->last_trans_log_full_commit !=
1973 		    trans->transid && atomic_read(&root->log_writers))
1974 			schedule();
1975 		mutex_lock(&root->log_mutex);
1976 		finish_wait(&root->log_writer_wait, &wait);
1977 	}
1978 	return 0;
1979 }
1980 
1981 /*
1982  * btrfs_sync_log does sends a given tree log down to the disk and
1983  * updates the super blocks to record it.  When this call is done,
1984  * you know that any inodes previously logged are safely on disk only
1985  * if it returns 0.
1986  *
1987  * Any other return value means you need to call btrfs_commit_transaction.
1988  * Some of the edge cases for fsyncing directories that have had unlinks
1989  * or renames done in the past mean that sometimes the only safe
1990  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1991  * that has happened.
1992  */
1993 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1994 		   struct btrfs_root *root)
1995 {
1996 	int index1;
1997 	int index2;
1998 	int mark;
1999 	int ret;
2000 	struct btrfs_root *log = root->log_root;
2001 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2002 	unsigned long log_transid = 0;
2003 
2004 	mutex_lock(&root->log_mutex);
2005 	index1 = root->log_transid % 2;
2006 	if (atomic_read(&root->log_commit[index1])) {
2007 		wait_log_commit(trans, root, root->log_transid);
2008 		mutex_unlock(&root->log_mutex);
2009 		return 0;
2010 	}
2011 	atomic_set(&root->log_commit[index1], 1);
2012 
2013 	/* wait for previous tree log sync to complete */
2014 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2015 		wait_log_commit(trans, root, root->log_transid - 1);
2016 
2017 	while (1) {
2018 		unsigned long batch = root->log_batch;
2019 		if (root->log_multiple_pids) {
2020 			mutex_unlock(&root->log_mutex);
2021 			schedule_timeout_uninterruptible(1);
2022 			mutex_lock(&root->log_mutex);
2023 		}
2024 		wait_for_writer(trans, root);
2025 		if (batch == root->log_batch)
2026 			break;
2027 	}
2028 
2029 	/* bail out if we need to do a full commit */
2030 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2031 		ret = -EAGAIN;
2032 		mutex_unlock(&root->log_mutex);
2033 		goto out;
2034 	}
2035 
2036 	log_transid = root->log_transid;
2037 	if (log_transid % 2 == 0)
2038 		mark = EXTENT_DIRTY;
2039 	else
2040 		mark = EXTENT_NEW;
2041 
2042 	/* we start IO on  all the marked extents here, but we don't actually
2043 	 * wait for them until later.
2044 	 */
2045 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2046 	BUG_ON(ret);
2047 
2048 	btrfs_set_root_node(&log->root_item, log->node);
2049 
2050 	root->log_batch = 0;
2051 	root->log_transid++;
2052 	log->log_transid = root->log_transid;
2053 	root->log_start_pid = 0;
2054 	smp_mb();
2055 	/*
2056 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2057 	 * in their headers. new modifications of the log will be written to
2058 	 * new positions. so it's safe to allow log writers to go in.
2059 	 */
2060 	mutex_unlock(&root->log_mutex);
2061 
2062 	mutex_lock(&log_root_tree->log_mutex);
2063 	log_root_tree->log_batch++;
2064 	atomic_inc(&log_root_tree->log_writers);
2065 	mutex_unlock(&log_root_tree->log_mutex);
2066 
2067 	ret = update_log_root(trans, log);
2068 
2069 	mutex_lock(&log_root_tree->log_mutex);
2070 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2071 		smp_mb();
2072 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2073 			wake_up(&log_root_tree->log_writer_wait);
2074 	}
2075 
2076 	if (ret) {
2077 		BUG_ON(ret != -ENOSPC);
2078 		root->fs_info->last_trans_log_full_commit = trans->transid;
2079 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2080 		mutex_unlock(&log_root_tree->log_mutex);
2081 		ret = -EAGAIN;
2082 		goto out;
2083 	}
2084 
2085 	index2 = log_root_tree->log_transid % 2;
2086 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2087 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2088 		wait_log_commit(trans, log_root_tree,
2089 				log_root_tree->log_transid);
2090 		mutex_unlock(&log_root_tree->log_mutex);
2091 		ret = 0;
2092 		goto out;
2093 	}
2094 	atomic_set(&log_root_tree->log_commit[index2], 1);
2095 
2096 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2097 		wait_log_commit(trans, log_root_tree,
2098 				log_root_tree->log_transid - 1);
2099 	}
2100 
2101 	wait_for_writer(trans, log_root_tree);
2102 
2103 	/*
2104 	 * now that we've moved on to the tree of log tree roots,
2105 	 * check the full commit flag again
2106 	 */
2107 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2108 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2109 		mutex_unlock(&log_root_tree->log_mutex);
2110 		ret = -EAGAIN;
2111 		goto out_wake_log_root;
2112 	}
2113 
2114 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2115 				&log_root_tree->dirty_log_pages,
2116 				EXTENT_DIRTY | EXTENT_NEW);
2117 	BUG_ON(ret);
2118 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2119 
2120 	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2121 				log_root_tree->node->start);
2122 	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2123 				btrfs_header_level(log_root_tree->node));
2124 
2125 	log_root_tree->log_batch = 0;
2126 	log_root_tree->log_transid++;
2127 	smp_mb();
2128 
2129 	mutex_unlock(&log_root_tree->log_mutex);
2130 
2131 	/*
2132 	 * nobody else is going to jump in and write the the ctree
2133 	 * super here because the log_commit atomic below is protecting
2134 	 * us.  We must be called with a transaction handle pinning
2135 	 * the running transaction open, so a full commit can't hop
2136 	 * in and cause problems either.
2137 	 */
2138 	btrfs_scrub_pause_super(root);
2139 	write_ctree_super(trans, root->fs_info->tree_root, 1);
2140 	btrfs_scrub_continue_super(root);
2141 	ret = 0;
2142 
2143 	mutex_lock(&root->log_mutex);
2144 	if (root->last_log_commit < log_transid)
2145 		root->last_log_commit = log_transid;
2146 	mutex_unlock(&root->log_mutex);
2147 
2148 out_wake_log_root:
2149 	atomic_set(&log_root_tree->log_commit[index2], 0);
2150 	smp_mb();
2151 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2152 		wake_up(&log_root_tree->log_commit_wait[index2]);
2153 out:
2154 	atomic_set(&root->log_commit[index1], 0);
2155 	smp_mb();
2156 	if (waitqueue_active(&root->log_commit_wait[index1]))
2157 		wake_up(&root->log_commit_wait[index1]);
2158 	return ret;
2159 }
2160 
2161 static void free_log_tree(struct btrfs_trans_handle *trans,
2162 			  struct btrfs_root *log)
2163 {
2164 	int ret;
2165 	u64 start;
2166 	u64 end;
2167 	struct walk_control wc = {
2168 		.free = 1,
2169 		.process_func = process_one_buffer
2170 	};
2171 
2172 	ret = walk_log_tree(trans, log, &wc);
2173 	BUG_ON(ret);
2174 
2175 	while (1) {
2176 		ret = find_first_extent_bit(&log->dirty_log_pages,
2177 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2178 		if (ret)
2179 			break;
2180 
2181 		clear_extent_bits(&log->dirty_log_pages, start, end,
2182 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2183 	}
2184 
2185 	free_extent_buffer(log->node);
2186 	kfree(log);
2187 }
2188 
2189 /*
2190  * free all the extents used by the tree log.  This should be called
2191  * at commit time of the full transaction
2192  */
2193 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2194 {
2195 	if (root->log_root) {
2196 		free_log_tree(trans, root->log_root);
2197 		root->log_root = NULL;
2198 	}
2199 	return 0;
2200 }
2201 
2202 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2203 			     struct btrfs_fs_info *fs_info)
2204 {
2205 	if (fs_info->log_root_tree) {
2206 		free_log_tree(trans, fs_info->log_root_tree);
2207 		fs_info->log_root_tree = NULL;
2208 	}
2209 	return 0;
2210 }
2211 
2212 /*
2213  * If both a file and directory are logged, and unlinks or renames are
2214  * mixed in, we have a few interesting corners:
2215  *
2216  * create file X in dir Y
2217  * link file X to X.link in dir Y
2218  * fsync file X
2219  * unlink file X but leave X.link
2220  * fsync dir Y
2221  *
2222  * After a crash we would expect only X.link to exist.  But file X
2223  * didn't get fsync'd again so the log has back refs for X and X.link.
2224  *
2225  * We solve this by removing directory entries and inode backrefs from the
2226  * log when a file that was logged in the current transaction is
2227  * unlinked.  Any later fsync will include the updated log entries, and
2228  * we'll be able to reconstruct the proper directory items from backrefs.
2229  *
2230  * This optimizations allows us to avoid relogging the entire inode
2231  * or the entire directory.
2232  */
2233 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2234 				 struct btrfs_root *root,
2235 				 const char *name, int name_len,
2236 				 struct inode *dir, u64 index)
2237 {
2238 	struct btrfs_root *log;
2239 	struct btrfs_dir_item *di;
2240 	struct btrfs_path *path;
2241 	int ret;
2242 	int err = 0;
2243 	int bytes_del = 0;
2244 	u64 dir_ino = btrfs_ino(dir);
2245 
2246 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2247 		return 0;
2248 
2249 	ret = join_running_log_trans(root);
2250 	if (ret)
2251 		return 0;
2252 
2253 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2254 
2255 	log = root->log_root;
2256 	path = btrfs_alloc_path();
2257 	if (!path) {
2258 		err = -ENOMEM;
2259 		goto out_unlock;
2260 	}
2261 
2262 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2263 				   name, name_len, -1);
2264 	if (IS_ERR(di)) {
2265 		err = PTR_ERR(di);
2266 		goto fail;
2267 	}
2268 	if (di) {
2269 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2270 		bytes_del += name_len;
2271 		BUG_ON(ret);
2272 	}
2273 	btrfs_release_path(path);
2274 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2275 					 index, name, name_len, -1);
2276 	if (IS_ERR(di)) {
2277 		err = PTR_ERR(di);
2278 		goto fail;
2279 	}
2280 	if (di) {
2281 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2282 		bytes_del += name_len;
2283 		BUG_ON(ret);
2284 	}
2285 
2286 	/* update the directory size in the log to reflect the names
2287 	 * we have removed
2288 	 */
2289 	if (bytes_del) {
2290 		struct btrfs_key key;
2291 
2292 		key.objectid = dir_ino;
2293 		key.offset = 0;
2294 		key.type = BTRFS_INODE_ITEM_KEY;
2295 		btrfs_release_path(path);
2296 
2297 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2298 		if (ret < 0) {
2299 			err = ret;
2300 			goto fail;
2301 		}
2302 		if (ret == 0) {
2303 			struct btrfs_inode_item *item;
2304 			u64 i_size;
2305 
2306 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2307 					      struct btrfs_inode_item);
2308 			i_size = btrfs_inode_size(path->nodes[0], item);
2309 			if (i_size > bytes_del)
2310 				i_size -= bytes_del;
2311 			else
2312 				i_size = 0;
2313 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2314 			btrfs_mark_buffer_dirty(path->nodes[0]);
2315 		} else
2316 			ret = 0;
2317 		btrfs_release_path(path);
2318 	}
2319 fail:
2320 	btrfs_free_path(path);
2321 out_unlock:
2322 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2323 	if (ret == -ENOSPC) {
2324 		root->fs_info->last_trans_log_full_commit = trans->transid;
2325 		ret = 0;
2326 	}
2327 	btrfs_end_log_trans(root);
2328 
2329 	return err;
2330 }
2331 
2332 /* see comments for btrfs_del_dir_entries_in_log */
2333 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2334 			       struct btrfs_root *root,
2335 			       const char *name, int name_len,
2336 			       struct inode *inode, u64 dirid)
2337 {
2338 	struct btrfs_root *log;
2339 	u64 index;
2340 	int ret;
2341 
2342 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2343 		return 0;
2344 
2345 	ret = join_running_log_trans(root);
2346 	if (ret)
2347 		return 0;
2348 	log = root->log_root;
2349 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2350 
2351 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2352 				  dirid, &index);
2353 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2354 	if (ret == -ENOSPC) {
2355 		root->fs_info->last_trans_log_full_commit = trans->transid;
2356 		ret = 0;
2357 	}
2358 	btrfs_end_log_trans(root);
2359 
2360 	return ret;
2361 }
2362 
2363 /*
2364  * creates a range item in the log for 'dirid'.  first_offset and
2365  * last_offset tell us which parts of the key space the log should
2366  * be considered authoritative for.
2367  */
2368 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2369 				       struct btrfs_root *log,
2370 				       struct btrfs_path *path,
2371 				       int key_type, u64 dirid,
2372 				       u64 first_offset, u64 last_offset)
2373 {
2374 	int ret;
2375 	struct btrfs_key key;
2376 	struct btrfs_dir_log_item *item;
2377 
2378 	key.objectid = dirid;
2379 	key.offset = first_offset;
2380 	if (key_type == BTRFS_DIR_ITEM_KEY)
2381 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2382 	else
2383 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2384 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2385 	if (ret)
2386 		return ret;
2387 
2388 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2389 			      struct btrfs_dir_log_item);
2390 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2391 	btrfs_mark_buffer_dirty(path->nodes[0]);
2392 	btrfs_release_path(path);
2393 	return 0;
2394 }
2395 
2396 /*
2397  * log all the items included in the current transaction for a given
2398  * directory.  This also creates the range items in the log tree required
2399  * to replay anything deleted before the fsync
2400  */
2401 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2402 			  struct btrfs_root *root, struct inode *inode,
2403 			  struct btrfs_path *path,
2404 			  struct btrfs_path *dst_path, int key_type,
2405 			  u64 min_offset, u64 *last_offset_ret)
2406 {
2407 	struct btrfs_key min_key;
2408 	struct btrfs_key max_key;
2409 	struct btrfs_root *log = root->log_root;
2410 	struct extent_buffer *src;
2411 	int err = 0;
2412 	int ret;
2413 	int i;
2414 	int nritems;
2415 	u64 first_offset = min_offset;
2416 	u64 last_offset = (u64)-1;
2417 	u64 ino = btrfs_ino(inode);
2418 
2419 	log = root->log_root;
2420 	max_key.objectid = ino;
2421 	max_key.offset = (u64)-1;
2422 	max_key.type = key_type;
2423 
2424 	min_key.objectid = ino;
2425 	min_key.type = key_type;
2426 	min_key.offset = min_offset;
2427 
2428 	path->keep_locks = 1;
2429 
2430 	ret = btrfs_search_forward(root, &min_key, &max_key,
2431 				   path, 0, trans->transid);
2432 
2433 	/*
2434 	 * we didn't find anything from this transaction, see if there
2435 	 * is anything at all
2436 	 */
2437 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2438 		min_key.objectid = ino;
2439 		min_key.type = key_type;
2440 		min_key.offset = (u64)-1;
2441 		btrfs_release_path(path);
2442 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2443 		if (ret < 0) {
2444 			btrfs_release_path(path);
2445 			return ret;
2446 		}
2447 		ret = btrfs_previous_item(root, path, ino, key_type);
2448 
2449 		/* if ret == 0 there are items for this type,
2450 		 * create a range to tell us the last key of this type.
2451 		 * otherwise, there are no items in this directory after
2452 		 * *min_offset, and we create a range to indicate that.
2453 		 */
2454 		if (ret == 0) {
2455 			struct btrfs_key tmp;
2456 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2457 					      path->slots[0]);
2458 			if (key_type == tmp.type)
2459 				first_offset = max(min_offset, tmp.offset) + 1;
2460 		}
2461 		goto done;
2462 	}
2463 
2464 	/* go backward to find any previous key */
2465 	ret = btrfs_previous_item(root, path, ino, key_type);
2466 	if (ret == 0) {
2467 		struct btrfs_key tmp;
2468 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2469 		if (key_type == tmp.type) {
2470 			first_offset = tmp.offset;
2471 			ret = overwrite_item(trans, log, dst_path,
2472 					     path->nodes[0], path->slots[0],
2473 					     &tmp);
2474 			if (ret) {
2475 				err = ret;
2476 				goto done;
2477 			}
2478 		}
2479 	}
2480 	btrfs_release_path(path);
2481 
2482 	/* find the first key from this transaction again */
2483 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2484 	if (ret != 0) {
2485 		WARN_ON(1);
2486 		goto done;
2487 	}
2488 
2489 	/*
2490 	 * we have a block from this transaction, log every item in it
2491 	 * from our directory
2492 	 */
2493 	while (1) {
2494 		struct btrfs_key tmp;
2495 		src = path->nodes[0];
2496 		nritems = btrfs_header_nritems(src);
2497 		for (i = path->slots[0]; i < nritems; i++) {
2498 			btrfs_item_key_to_cpu(src, &min_key, i);
2499 
2500 			if (min_key.objectid != ino || min_key.type != key_type)
2501 				goto done;
2502 			ret = overwrite_item(trans, log, dst_path, src, i,
2503 					     &min_key);
2504 			if (ret) {
2505 				err = ret;
2506 				goto done;
2507 			}
2508 		}
2509 		path->slots[0] = nritems;
2510 
2511 		/*
2512 		 * look ahead to the next item and see if it is also
2513 		 * from this directory and from this transaction
2514 		 */
2515 		ret = btrfs_next_leaf(root, path);
2516 		if (ret == 1) {
2517 			last_offset = (u64)-1;
2518 			goto done;
2519 		}
2520 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2521 		if (tmp.objectid != ino || tmp.type != key_type) {
2522 			last_offset = (u64)-1;
2523 			goto done;
2524 		}
2525 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2526 			ret = overwrite_item(trans, log, dst_path,
2527 					     path->nodes[0], path->slots[0],
2528 					     &tmp);
2529 			if (ret)
2530 				err = ret;
2531 			else
2532 				last_offset = tmp.offset;
2533 			goto done;
2534 		}
2535 	}
2536 done:
2537 	btrfs_release_path(path);
2538 	btrfs_release_path(dst_path);
2539 
2540 	if (err == 0) {
2541 		*last_offset_ret = last_offset;
2542 		/*
2543 		 * insert the log range keys to indicate where the log
2544 		 * is valid
2545 		 */
2546 		ret = insert_dir_log_key(trans, log, path, key_type,
2547 					 ino, first_offset, last_offset);
2548 		if (ret)
2549 			err = ret;
2550 	}
2551 	return err;
2552 }
2553 
2554 /*
2555  * logging directories is very similar to logging inodes, We find all the items
2556  * from the current transaction and write them to the log.
2557  *
2558  * The recovery code scans the directory in the subvolume, and if it finds a
2559  * key in the range logged that is not present in the log tree, then it means
2560  * that dir entry was unlinked during the transaction.
2561  *
2562  * In order for that scan to work, we must include one key smaller than
2563  * the smallest logged by this transaction and one key larger than the largest
2564  * key logged by this transaction.
2565  */
2566 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2567 			  struct btrfs_root *root, struct inode *inode,
2568 			  struct btrfs_path *path,
2569 			  struct btrfs_path *dst_path)
2570 {
2571 	u64 min_key;
2572 	u64 max_key;
2573 	int ret;
2574 	int key_type = BTRFS_DIR_ITEM_KEY;
2575 
2576 again:
2577 	min_key = 0;
2578 	max_key = 0;
2579 	while (1) {
2580 		ret = log_dir_items(trans, root, inode, path,
2581 				    dst_path, key_type, min_key,
2582 				    &max_key);
2583 		if (ret)
2584 			return ret;
2585 		if (max_key == (u64)-1)
2586 			break;
2587 		min_key = max_key + 1;
2588 	}
2589 
2590 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2591 		key_type = BTRFS_DIR_INDEX_KEY;
2592 		goto again;
2593 	}
2594 	return 0;
2595 }
2596 
2597 /*
2598  * a helper function to drop items from the log before we relog an
2599  * inode.  max_key_type indicates the highest item type to remove.
2600  * This cannot be run for file data extents because it does not
2601  * free the extents they point to.
2602  */
2603 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2604 				  struct btrfs_root *log,
2605 				  struct btrfs_path *path,
2606 				  u64 objectid, int max_key_type)
2607 {
2608 	int ret;
2609 	struct btrfs_key key;
2610 	struct btrfs_key found_key;
2611 
2612 	key.objectid = objectid;
2613 	key.type = max_key_type;
2614 	key.offset = (u64)-1;
2615 
2616 	while (1) {
2617 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2618 		BUG_ON(ret == 0);
2619 		if (ret < 0)
2620 			break;
2621 
2622 		if (path->slots[0] == 0)
2623 			break;
2624 
2625 		path->slots[0]--;
2626 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2627 				      path->slots[0]);
2628 
2629 		if (found_key.objectid != objectid)
2630 			break;
2631 
2632 		ret = btrfs_del_item(trans, log, path);
2633 		if (ret)
2634 			break;
2635 		btrfs_release_path(path);
2636 	}
2637 	btrfs_release_path(path);
2638 	return ret;
2639 }
2640 
2641 static noinline int copy_items(struct btrfs_trans_handle *trans,
2642 			       struct btrfs_root *log,
2643 			       struct btrfs_path *dst_path,
2644 			       struct extent_buffer *src,
2645 			       int start_slot, int nr, int inode_only)
2646 {
2647 	unsigned long src_offset;
2648 	unsigned long dst_offset;
2649 	struct btrfs_file_extent_item *extent;
2650 	struct btrfs_inode_item *inode_item;
2651 	int ret;
2652 	struct btrfs_key *ins_keys;
2653 	u32 *ins_sizes;
2654 	char *ins_data;
2655 	int i;
2656 	struct list_head ordered_sums;
2657 
2658 	INIT_LIST_HEAD(&ordered_sums);
2659 
2660 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2661 			   nr * sizeof(u32), GFP_NOFS);
2662 	if (!ins_data)
2663 		return -ENOMEM;
2664 
2665 	ins_sizes = (u32 *)ins_data;
2666 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2667 
2668 	for (i = 0; i < nr; i++) {
2669 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2670 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2671 	}
2672 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2673 				       ins_keys, ins_sizes, nr);
2674 	if (ret) {
2675 		kfree(ins_data);
2676 		return ret;
2677 	}
2678 
2679 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2680 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2681 						   dst_path->slots[0]);
2682 
2683 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2684 
2685 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2686 				   src_offset, ins_sizes[i]);
2687 
2688 		if (inode_only == LOG_INODE_EXISTS &&
2689 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2690 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2691 						    dst_path->slots[0],
2692 						    struct btrfs_inode_item);
2693 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2694 
2695 			/* set the generation to zero so the recover code
2696 			 * can tell the difference between an logging
2697 			 * just to say 'this inode exists' and a logging
2698 			 * to say 'update this inode with these values'
2699 			 */
2700 			btrfs_set_inode_generation(dst_path->nodes[0],
2701 						   inode_item, 0);
2702 		}
2703 		/* take a reference on file data extents so that truncates
2704 		 * or deletes of this inode don't have to relog the inode
2705 		 * again
2706 		 */
2707 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2708 			int found_type;
2709 			extent = btrfs_item_ptr(src, start_slot + i,
2710 						struct btrfs_file_extent_item);
2711 
2712 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
2713 				continue;
2714 
2715 			found_type = btrfs_file_extent_type(src, extent);
2716 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2717 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2718 				u64 ds, dl, cs, cl;
2719 				ds = btrfs_file_extent_disk_bytenr(src,
2720 								extent);
2721 				/* ds == 0 is a hole */
2722 				if (ds == 0)
2723 					continue;
2724 
2725 				dl = btrfs_file_extent_disk_num_bytes(src,
2726 								extent);
2727 				cs = btrfs_file_extent_offset(src, extent);
2728 				cl = btrfs_file_extent_num_bytes(src,
2729 								extent);
2730 				if (btrfs_file_extent_compression(src,
2731 								  extent)) {
2732 					cs = 0;
2733 					cl = dl;
2734 				}
2735 
2736 				ret = btrfs_lookup_csums_range(
2737 						log->fs_info->csum_root,
2738 						ds + cs, ds + cs + cl - 1,
2739 						&ordered_sums, 0);
2740 				BUG_ON(ret);
2741 			}
2742 		}
2743 	}
2744 
2745 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2746 	btrfs_release_path(dst_path);
2747 	kfree(ins_data);
2748 
2749 	/*
2750 	 * we have to do this after the loop above to avoid changing the
2751 	 * log tree while trying to change the log tree.
2752 	 */
2753 	ret = 0;
2754 	while (!list_empty(&ordered_sums)) {
2755 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2756 						   struct btrfs_ordered_sum,
2757 						   list);
2758 		if (!ret)
2759 			ret = btrfs_csum_file_blocks(trans, log, sums);
2760 		list_del(&sums->list);
2761 		kfree(sums);
2762 	}
2763 	return ret;
2764 }
2765 
2766 /* log a single inode in the tree log.
2767  * At least one parent directory for this inode must exist in the tree
2768  * or be logged already.
2769  *
2770  * Any items from this inode changed by the current transaction are copied
2771  * to the log tree.  An extra reference is taken on any extents in this
2772  * file, allowing us to avoid a whole pile of corner cases around logging
2773  * blocks that have been removed from the tree.
2774  *
2775  * See LOG_INODE_ALL and related defines for a description of what inode_only
2776  * does.
2777  *
2778  * This handles both files and directories.
2779  */
2780 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2781 			     struct btrfs_root *root, struct inode *inode,
2782 			     int inode_only)
2783 {
2784 	struct btrfs_path *path;
2785 	struct btrfs_path *dst_path;
2786 	struct btrfs_key min_key;
2787 	struct btrfs_key max_key;
2788 	struct btrfs_root *log = root->log_root;
2789 	struct extent_buffer *src = NULL;
2790 	int err = 0;
2791 	int ret;
2792 	int nritems;
2793 	int ins_start_slot = 0;
2794 	int ins_nr;
2795 	u64 ino = btrfs_ino(inode);
2796 
2797 	log = root->log_root;
2798 
2799 	path = btrfs_alloc_path();
2800 	if (!path)
2801 		return -ENOMEM;
2802 	dst_path = btrfs_alloc_path();
2803 	if (!dst_path) {
2804 		btrfs_free_path(path);
2805 		return -ENOMEM;
2806 	}
2807 
2808 	min_key.objectid = ino;
2809 	min_key.type = BTRFS_INODE_ITEM_KEY;
2810 	min_key.offset = 0;
2811 
2812 	max_key.objectid = ino;
2813 
2814 	/* today the code can only do partial logging of directories */
2815 	if (!S_ISDIR(inode->i_mode))
2816 	    inode_only = LOG_INODE_ALL;
2817 
2818 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2819 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2820 	else
2821 		max_key.type = (u8)-1;
2822 	max_key.offset = (u64)-1;
2823 
2824 	ret = btrfs_commit_inode_delayed_items(trans, inode);
2825 	if (ret) {
2826 		btrfs_free_path(path);
2827 		btrfs_free_path(dst_path);
2828 		return ret;
2829 	}
2830 
2831 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2832 
2833 	/*
2834 	 * a brute force approach to making sure we get the most uptodate
2835 	 * copies of everything.
2836 	 */
2837 	if (S_ISDIR(inode->i_mode)) {
2838 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2839 
2840 		if (inode_only == LOG_INODE_EXISTS)
2841 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2842 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2843 	} else {
2844 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2845 	}
2846 	if (ret) {
2847 		err = ret;
2848 		goto out_unlock;
2849 	}
2850 	path->keep_locks = 1;
2851 
2852 	while (1) {
2853 		ins_nr = 0;
2854 		ret = btrfs_search_forward(root, &min_key, &max_key,
2855 					   path, 0, trans->transid);
2856 		if (ret != 0)
2857 			break;
2858 again:
2859 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2860 		if (min_key.objectid != ino)
2861 			break;
2862 		if (min_key.type > max_key.type)
2863 			break;
2864 
2865 		src = path->nodes[0];
2866 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2867 			ins_nr++;
2868 			goto next_slot;
2869 		} else if (!ins_nr) {
2870 			ins_start_slot = path->slots[0];
2871 			ins_nr = 1;
2872 			goto next_slot;
2873 		}
2874 
2875 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2876 				 ins_nr, inode_only);
2877 		if (ret) {
2878 			err = ret;
2879 			goto out_unlock;
2880 		}
2881 		ins_nr = 1;
2882 		ins_start_slot = path->slots[0];
2883 next_slot:
2884 
2885 		nritems = btrfs_header_nritems(path->nodes[0]);
2886 		path->slots[0]++;
2887 		if (path->slots[0] < nritems) {
2888 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2889 					      path->slots[0]);
2890 			goto again;
2891 		}
2892 		if (ins_nr) {
2893 			ret = copy_items(trans, log, dst_path, src,
2894 					 ins_start_slot,
2895 					 ins_nr, inode_only);
2896 			if (ret) {
2897 				err = ret;
2898 				goto out_unlock;
2899 			}
2900 			ins_nr = 0;
2901 		}
2902 		btrfs_release_path(path);
2903 
2904 		if (min_key.offset < (u64)-1)
2905 			min_key.offset++;
2906 		else if (min_key.type < (u8)-1)
2907 			min_key.type++;
2908 		else if (min_key.objectid < (u64)-1)
2909 			min_key.objectid++;
2910 		else
2911 			break;
2912 	}
2913 	if (ins_nr) {
2914 		ret = copy_items(trans, log, dst_path, src,
2915 				 ins_start_slot,
2916 				 ins_nr, inode_only);
2917 		if (ret) {
2918 			err = ret;
2919 			goto out_unlock;
2920 		}
2921 		ins_nr = 0;
2922 	}
2923 	WARN_ON(ins_nr);
2924 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2925 		btrfs_release_path(path);
2926 		btrfs_release_path(dst_path);
2927 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2928 		if (ret) {
2929 			err = ret;
2930 			goto out_unlock;
2931 		}
2932 	}
2933 	BTRFS_I(inode)->logged_trans = trans->transid;
2934 out_unlock:
2935 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2936 
2937 	btrfs_free_path(path);
2938 	btrfs_free_path(dst_path);
2939 	return err;
2940 }
2941 
2942 /*
2943  * follow the dentry parent pointers up the chain and see if any
2944  * of the directories in it require a full commit before they can
2945  * be logged.  Returns zero if nothing special needs to be done or 1 if
2946  * a full commit is required.
2947  */
2948 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2949 					       struct inode *inode,
2950 					       struct dentry *parent,
2951 					       struct super_block *sb,
2952 					       u64 last_committed)
2953 {
2954 	int ret = 0;
2955 	struct btrfs_root *root;
2956 	struct dentry *old_parent = NULL;
2957 
2958 	/*
2959 	 * for regular files, if its inode is already on disk, we don't
2960 	 * have to worry about the parents at all.  This is because
2961 	 * we can use the last_unlink_trans field to record renames
2962 	 * and other fun in this file.
2963 	 */
2964 	if (S_ISREG(inode->i_mode) &&
2965 	    BTRFS_I(inode)->generation <= last_committed &&
2966 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2967 			goto out;
2968 
2969 	if (!S_ISDIR(inode->i_mode)) {
2970 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2971 			goto out;
2972 		inode = parent->d_inode;
2973 	}
2974 
2975 	while (1) {
2976 		BTRFS_I(inode)->logged_trans = trans->transid;
2977 		smp_mb();
2978 
2979 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2980 			root = BTRFS_I(inode)->root;
2981 
2982 			/*
2983 			 * make sure any commits to the log are forced
2984 			 * to be full commits
2985 			 */
2986 			root->fs_info->last_trans_log_full_commit =
2987 				trans->transid;
2988 			ret = 1;
2989 			break;
2990 		}
2991 
2992 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2993 			break;
2994 
2995 		if (IS_ROOT(parent))
2996 			break;
2997 
2998 		parent = dget_parent(parent);
2999 		dput(old_parent);
3000 		old_parent = parent;
3001 		inode = parent->d_inode;
3002 
3003 	}
3004 	dput(old_parent);
3005 out:
3006 	return ret;
3007 }
3008 
3009 static int inode_in_log(struct btrfs_trans_handle *trans,
3010 		 struct inode *inode)
3011 {
3012 	struct btrfs_root *root = BTRFS_I(inode)->root;
3013 	int ret = 0;
3014 
3015 	mutex_lock(&root->log_mutex);
3016 	if (BTRFS_I(inode)->logged_trans == trans->transid &&
3017 	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
3018 		ret = 1;
3019 	mutex_unlock(&root->log_mutex);
3020 	return ret;
3021 }
3022 
3023 
3024 /*
3025  * helper function around btrfs_log_inode to make sure newly created
3026  * parent directories also end up in the log.  A minimal inode and backref
3027  * only logging is done of any parent directories that are older than
3028  * the last committed transaction
3029  */
3030 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3031 		    struct btrfs_root *root, struct inode *inode,
3032 		    struct dentry *parent, int exists_only)
3033 {
3034 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3035 	struct super_block *sb;
3036 	struct dentry *old_parent = NULL;
3037 	int ret = 0;
3038 	u64 last_committed = root->fs_info->last_trans_committed;
3039 
3040 	sb = inode->i_sb;
3041 
3042 	if (btrfs_test_opt(root, NOTREELOG)) {
3043 		ret = 1;
3044 		goto end_no_trans;
3045 	}
3046 
3047 	if (root->fs_info->last_trans_log_full_commit >
3048 	    root->fs_info->last_trans_committed) {
3049 		ret = 1;
3050 		goto end_no_trans;
3051 	}
3052 
3053 	if (root != BTRFS_I(inode)->root ||
3054 	    btrfs_root_refs(&root->root_item) == 0) {
3055 		ret = 1;
3056 		goto end_no_trans;
3057 	}
3058 
3059 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3060 					 sb, last_committed);
3061 	if (ret)
3062 		goto end_no_trans;
3063 
3064 	if (inode_in_log(trans, inode)) {
3065 		ret = BTRFS_NO_LOG_SYNC;
3066 		goto end_no_trans;
3067 	}
3068 
3069 	ret = start_log_trans(trans, root);
3070 	if (ret)
3071 		goto end_trans;
3072 
3073 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3074 	if (ret)
3075 		goto end_trans;
3076 
3077 	/*
3078 	 * for regular files, if its inode is already on disk, we don't
3079 	 * have to worry about the parents at all.  This is because
3080 	 * we can use the last_unlink_trans field to record renames
3081 	 * and other fun in this file.
3082 	 */
3083 	if (S_ISREG(inode->i_mode) &&
3084 	    BTRFS_I(inode)->generation <= last_committed &&
3085 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3086 		ret = 0;
3087 		goto end_trans;
3088 	}
3089 
3090 	inode_only = LOG_INODE_EXISTS;
3091 	while (1) {
3092 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3093 			break;
3094 
3095 		inode = parent->d_inode;
3096 		if (root != BTRFS_I(inode)->root)
3097 			break;
3098 
3099 		if (BTRFS_I(inode)->generation >
3100 		    root->fs_info->last_trans_committed) {
3101 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3102 			if (ret)
3103 				goto end_trans;
3104 		}
3105 		if (IS_ROOT(parent))
3106 			break;
3107 
3108 		parent = dget_parent(parent);
3109 		dput(old_parent);
3110 		old_parent = parent;
3111 	}
3112 	ret = 0;
3113 end_trans:
3114 	dput(old_parent);
3115 	if (ret < 0) {
3116 		BUG_ON(ret != -ENOSPC);
3117 		root->fs_info->last_trans_log_full_commit = trans->transid;
3118 		ret = 1;
3119 	}
3120 	btrfs_end_log_trans(root);
3121 end_no_trans:
3122 	return ret;
3123 }
3124 
3125 /*
3126  * it is not safe to log dentry if the chunk root has added new
3127  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3128  * If this returns 1, you must commit the transaction to safely get your
3129  * data on disk.
3130  */
3131 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3132 			  struct btrfs_root *root, struct dentry *dentry)
3133 {
3134 	struct dentry *parent = dget_parent(dentry);
3135 	int ret;
3136 
3137 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3138 	dput(parent);
3139 
3140 	return ret;
3141 }
3142 
3143 /*
3144  * should be called during mount to recover any replay any log trees
3145  * from the FS
3146  */
3147 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3148 {
3149 	int ret;
3150 	struct btrfs_path *path;
3151 	struct btrfs_trans_handle *trans;
3152 	struct btrfs_key key;
3153 	struct btrfs_key found_key;
3154 	struct btrfs_key tmp_key;
3155 	struct btrfs_root *log;
3156 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3157 	struct walk_control wc = {
3158 		.process_func = process_one_buffer,
3159 		.stage = 0,
3160 	};
3161 
3162 	path = btrfs_alloc_path();
3163 	if (!path)
3164 		return -ENOMEM;
3165 
3166 	fs_info->log_root_recovering = 1;
3167 
3168 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3169 	BUG_ON(IS_ERR(trans));
3170 
3171 	wc.trans = trans;
3172 	wc.pin = 1;
3173 
3174 	ret = walk_log_tree(trans, log_root_tree, &wc);
3175 	BUG_ON(ret);
3176 
3177 again:
3178 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3179 	key.offset = (u64)-1;
3180 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3181 
3182 	while (1) {
3183 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3184 		if (ret < 0)
3185 			break;
3186 		if (ret > 0) {
3187 			if (path->slots[0] == 0)
3188 				break;
3189 			path->slots[0]--;
3190 		}
3191 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3192 				      path->slots[0]);
3193 		btrfs_release_path(path);
3194 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3195 			break;
3196 
3197 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3198 						  &found_key);
3199 		BUG_ON(IS_ERR(log));
3200 
3201 		tmp_key.objectid = found_key.offset;
3202 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3203 		tmp_key.offset = (u64)-1;
3204 
3205 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3206 		BUG_ON(IS_ERR_OR_NULL(wc.replay_dest));
3207 
3208 		wc.replay_dest->log_root = log;
3209 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3210 		ret = walk_log_tree(trans, log, &wc);
3211 		BUG_ON(ret);
3212 
3213 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3214 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3215 						      path);
3216 			BUG_ON(ret);
3217 		}
3218 
3219 		key.offset = found_key.offset - 1;
3220 		wc.replay_dest->log_root = NULL;
3221 		free_extent_buffer(log->node);
3222 		free_extent_buffer(log->commit_root);
3223 		kfree(log);
3224 
3225 		if (found_key.offset == 0)
3226 			break;
3227 	}
3228 	btrfs_release_path(path);
3229 
3230 	/* step one is to pin it all, step two is to replay just inodes */
3231 	if (wc.pin) {
3232 		wc.pin = 0;
3233 		wc.process_func = replay_one_buffer;
3234 		wc.stage = LOG_WALK_REPLAY_INODES;
3235 		goto again;
3236 	}
3237 	/* step three is to replay everything */
3238 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3239 		wc.stage++;
3240 		goto again;
3241 	}
3242 
3243 	btrfs_free_path(path);
3244 
3245 	free_extent_buffer(log_root_tree->node);
3246 	log_root_tree->log_root = NULL;
3247 	fs_info->log_root_recovering = 0;
3248 
3249 	/* step 4: commit the transaction, which also unpins the blocks */
3250 	btrfs_commit_transaction(trans, fs_info->tree_root);
3251 
3252 	kfree(log_root_tree);
3253 	return 0;
3254 }
3255 
3256 /*
3257  * there are some corner cases where we want to force a full
3258  * commit instead of allowing a directory to be logged.
3259  *
3260  * They revolve around files there were unlinked from the directory, and
3261  * this function updates the parent directory so that a full commit is
3262  * properly done if it is fsync'd later after the unlinks are done.
3263  */
3264 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3265 			     struct inode *dir, struct inode *inode,
3266 			     int for_rename)
3267 {
3268 	/*
3269 	 * when we're logging a file, if it hasn't been renamed
3270 	 * or unlinked, and its inode is fully committed on disk,
3271 	 * we don't have to worry about walking up the directory chain
3272 	 * to log its parents.
3273 	 *
3274 	 * So, we use the last_unlink_trans field to put this transid
3275 	 * into the file.  When the file is logged we check it and
3276 	 * don't log the parents if the file is fully on disk.
3277 	 */
3278 	if (S_ISREG(inode->i_mode))
3279 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3280 
3281 	/*
3282 	 * if this directory was already logged any new
3283 	 * names for this file/dir will get recorded
3284 	 */
3285 	smp_mb();
3286 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3287 		return;
3288 
3289 	/*
3290 	 * if the inode we're about to unlink was logged,
3291 	 * the log will be properly updated for any new names
3292 	 */
3293 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3294 		return;
3295 
3296 	/*
3297 	 * when renaming files across directories, if the directory
3298 	 * there we're unlinking from gets fsync'd later on, there's
3299 	 * no way to find the destination directory later and fsync it
3300 	 * properly.  So, we have to be conservative and force commits
3301 	 * so the new name gets discovered.
3302 	 */
3303 	if (for_rename)
3304 		goto record;
3305 
3306 	/* we can safely do the unlink without any special recording */
3307 	return;
3308 
3309 record:
3310 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3311 }
3312 
3313 /*
3314  * Call this after adding a new name for a file and it will properly
3315  * update the log to reflect the new name.
3316  *
3317  * It will return zero if all goes well, and it will return 1 if a
3318  * full transaction commit is required.
3319  */
3320 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3321 			struct inode *inode, struct inode *old_dir,
3322 			struct dentry *parent)
3323 {
3324 	struct btrfs_root * root = BTRFS_I(inode)->root;
3325 
3326 	/*
3327 	 * this will force the logging code to walk the dentry chain
3328 	 * up for the file
3329 	 */
3330 	if (S_ISREG(inode->i_mode))
3331 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3332 
3333 	/*
3334 	 * if this inode hasn't been logged and directory we're renaming it
3335 	 * from hasn't been logged, we don't need to log it
3336 	 */
3337 	if (BTRFS_I(inode)->logged_trans <=
3338 	    root->fs_info->last_trans_committed &&
3339 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3340 		    root->fs_info->last_trans_committed))
3341 		return 0;
3342 
3343 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3344 }
3345 
3346