1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include "ctree.h" 22 #include "transaction.h" 23 #include "disk-io.h" 24 #include "locking.h" 25 #include "print-tree.h" 26 #include "compat.h" 27 #include "tree-log.h" 28 29 /* magic values for the inode_only field in btrfs_log_inode: 30 * 31 * LOG_INODE_ALL means to log everything 32 * LOG_INODE_EXISTS means to log just enough to recreate the inode 33 * during log replay 34 */ 35 #define LOG_INODE_ALL 0 36 #define LOG_INODE_EXISTS 1 37 38 /* 39 * directory trouble cases 40 * 41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 42 * log, we must force a full commit before doing an fsync of the directory 43 * where the unlink was done. 44 * ---> record transid of last unlink/rename per directory 45 * 46 * mkdir foo/some_dir 47 * normal commit 48 * rename foo/some_dir foo2/some_dir 49 * mkdir foo/some_dir 50 * fsync foo/some_dir/some_file 51 * 52 * The fsync above will unlink the original some_dir without recording 53 * it in its new location (foo2). After a crash, some_dir will be gone 54 * unless the fsync of some_file forces a full commit 55 * 56 * 2) we must log any new names for any file or dir that is in the fsync 57 * log. ---> check inode while renaming/linking. 58 * 59 * 2a) we must log any new names for any file or dir during rename 60 * when the directory they are being removed from was logged. 61 * ---> check inode and old parent dir during rename 62 * 63 * 2a is actually the more important variant. With the extra logging 64 * a crash might unlink the old name without recreating the new one 65 * 66 * 3) after a crash, we must go through any directories with a link count 67 * of zero and redo the rm -rf 68 * 69 * mkdir f1/foo 70 * normal commit 71 * rm -rf f1/foo 72 * fsync(f1) 73 * 74 * The directory f1 was fully removed from the FS, but fsync was never 75 * called on f1, only its parent dir. After a crash the rm -rf must 76 * be replayed. This must be able to recurse down the entire 77 * directory tree. The inode link count fixup code takes care of the 78 * ugly details. 79 */ 80 81 /* 82 * stages for the tree walking. The first 83 * stage (0) is to only pin down the blocks we find 84 * the second stage (1) is to make sure that all the inodes 85 * we find in the log are created in the subvolume. 86 * 87 * The last stage is to deal with directories and links and extents 88 * and all the other fun semantics 89 */ 90 #define LOG_WALK_PIN_ONLY 0 91 #define LOG_WALK_REPLAY_INODES 1 92 #define LOG_WALK_REPLAY_ALL 2 93 94 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, struct inode *inode, 96 int inode_only); 97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 98 struct btrfs_root *root, 99 struct btrfs_path *path, u64 objectid); 100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 101 struct btrfs_root *root, 102 struct btrfs_root *log, 103 struct btrfs_path *path, 104 u64 dirid, int del_all); 105 106 /* 107 * tree logging is a special write ahead log used to make sure that 108 * fsyncs and O_SYNCs can happen without doing full tree commits. 109 * 110 * Full tree commits are expensive because they require commonly 111 * modified blocks to be recowed, creating many dirty pages in the 112 * extent tree an 4x-6x higher write load than ext3. 113 * 114 * Instead of doing a tree commit on every fsync, we use the 115 * key ranges and transaction ids to find items for a given file or directory 116 * that have changed in this transaction. Those items are copied into 117 * a special tree (one per subvolume root), that tree is written to disk 118 * and then the fsync is considered complete. 119 * 120 * After a crash, items are copied out of the log-tree back into the 121 * subvolume tree. Any file data extents found are recorded in the extent 122 * allocation tree, and the log-tree freed. 123 * 124 * The log tree is read three times, once to pin down all the extents it is 125 * using in ram and once, once to create all the inodes logged in the tree 126 * and once to do all the other items. 127 */ 128 129 /* 130 * start a sub transaction and setup the log tree 131 * this increments the log tree writer count to make the people 132 * syncing the tree wait for us to finish 133 */ 134 static int start_log_trans(struct btrfs_trans_handle *trans, 135 struct btrfs_root *root) 136 { 137 int ret; 138 int err = 0; 139 140 mutex_lock(&root->log_mutex); 141 if (root->log_root) { 142 if (!root->log_start_pid) { 143 root->log_start_pid = current->pid; 144 root->log_multiple_pids = false; 145 } else if (root->log_start_pid != current->pid) { 146 root->log_multiple_pids = true; 147 } 148 149 root->log_batch++; 150 atomic_inc(&root->log_writers); 151 mutex_unlock(&root->log_mutex); 152 return 0; 153 } 154 root->log_multiple_pids = false; 155 root->log_start_pid = current->pid; 156 mutex_lock(&root->fs_info->tree_log_mutex); 157 if (!root->fs_info->log_root_tree) { 158 ret = btrfs_init_log_root_tree(trans, root->fs_info); 159 if (ret) 160 err = ret; 161 } 162 if (err == 0 && !root->log_root) { 163 ret = btrfs_add_log_tree(trans, root); 164 if (ret) 165 err = ret; 166 } 167 mutex_unlock(&root->fs_info->tree_log_mutex); 168 root->log_batch++; 169 atomic_inc(&root->log_writers); 170 mutex_unlock(&root->log_mutex); 171 return err; 172 } 173 174 /* 175 * returns 0 if there was a log transaction running and we were able 176 * to join, or returns -ENOENT if there were not transactions 177 * in progress 178 */ 179 static int join_running_log_trans(struct btrfs_root *root) 180 { 181 int ret = -ENOENT; 182 183 smp_mb(); 184 if (!root->log_root) 185 return -ENOENT; 186 187 mutex_lock(&root->log_mutex); 188 if (root->log_root) { 189 ret = 0; 190 atomic_inc(&root->log_writers); 191 } 192 mutex_unlock(&root->log_mutex); 193 return ret; 194 } 195 196 /* 197 * This either makes the current running log transaction wait 198 * until you call btrfs_end_log_trans() or it makes any future 199 * log transactions wait until you call btrfs_end_log_trans() 200 */ 201 int btrfs_pin_log_trans(struct btrfs_root *root) 202 { 203 int ret = -ENOENT; 204 205 mutex_lock(&root->log_mutex); 206 atomic_inc(&root->log_writers); 207 mutex_unlock(&root->log_mutex); 208 return ret; 209 } 210 211 /* 212 * indicate we're done making changes to the log tree 213 * and wake up anyone waiting to do a sync 214 */ 215 int btrfs_end_log_trans(struct btrfs_root *root) 216 { 217 if (atomic_dec_and_test(&root->log_writers)) { 218 smp_mb(); 219 if (waitqueue_active(&root->log_writer_wait)) 220 wake_up(&root->log_writer_wait); 221 } 222 return 0; 223 } 224 225 226 /* 227 * the walk control struct is used to pass state down the chain when 228 * processing the log tree. The stage field tells us which part 229 * of the log tree processing we are currently doing. The others 230 * are state fields used for that specific part 231 */ 232 struct walk_control { 233 /* should we free the extent on disk when done? This is used 234 * at transaction commit time while freeing a log tree 235 */ 236 int free; 237 238 /* should we write out the extent buffer? This is used 239 * while flushing the log tree to disk during a sync 240 */ 241 int write; 242 243 /* should we wait for the extent buffer io to finish? Also used 244 * while flushing the log tree to disk for a sync 245 */ 246 int wait; 247 248 /* pin only walk, we record which extents on disk belong to the 249 * log trees 250 */ 251 int pin; 252 253 /* what stage of the replay code we're currently in */ 254 int stage; 255 256 /* the root we are currently replaying */ 257 struct btrfs_root *replay_dest; 258 259 /* the trans handle for the current replay */ 260 struct btrfs_trans_handle *trans; 261 262 /* the function that gets used to process blocks we find in the 263 * tree. Note the extent_buffer might not be up to date when it is 264 * passed in, and it must be checked or read if you need the data 265 * inside it 266 */ 267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 268 struct walk_control *wc, u64 gen); 269 }; 270 271 /* 272 * process_func used to pin down extents, write them or wait on them 273 */ 274 static int process_one_buffer(struct btrfs_root *log, 275 struct extent_buffer *eb, 276 struct walk_control *wc, u64 gen) 277 { 278 if (wc->pin) 279 btrfs_pin_extent(log->fs_info->extent_root, 280 eb->start, eb->len, 0); 281 282 if (btrfs_buffer_uptodate(eb, gen)) { 283 if (wc->write) 284 btrfs_write_tree_block(eb); 285 if (wc->wait) 286 btrfs_wait_tree_block_writeback(eb); 287 } 288 return 0; 289 } 290 291 /* 292 * Item overwrite used by replay and tree logging. eb, slot and key all refer 293 * to the src data we are copying out. 294 * 295 * root is the tree we are copying into, and path is a scratch 296 * path for use in this function (it should be released on entry and 297 * will be released on exit). 298 * 299 * If the key is already in the destination tree the existing item is 300 * overwritten. If the existing item isn't big enough, it is extended. 301 * If it is too large, it is truncated. 302 * 303 * If the key isn't in the destination yet, a new item is inserted. 304 */ 305 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 306 struct btrfs_root *root, 307 struct btrfs_path *path, 308 struct extent_buffer *eb, int slot, 309 struct btrfs_key *key) 310 { 311 int ret; 312 u32 item_size; 313 u64 saved_i_size = 0; 314 int save_old_i_size = 0; 315 unsigned long src_ptr; 316 unsigned long dst_ptr; 317 int overwrite_root = 0; 318 319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 320 overwrite_root = 1; 321 322 item_size = btrfs_item_size_nr(eb, slot); 323 src_ptr = btrfs_item_ptr_offset(eb, slot); 324 325 /* look for the key in the destination tree */ 326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 327 if (ret == 0) { 328 char *src_copy; 329 char *dst_copy; 330 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 331 path->slots[0]); 332 if (dst_size != item_size) 333 goto insert; 334 335 if (item_size == 0) { 336 btrfs_release_path(path); 337 return 0; 338 } 339 dst_copy = kmalloc(item_size, GFP_NOFS); 340 src_copy = kmalloc(item_size, GFP_NOFS); 341 if (!dst_copy || !src_copy) { 342 btrfs_release_path(path); 343 kfree(dst_copy); 344 kfree(src_copy); 345 return -ENOMEM; 346 } 347 348 read_extent_buffer(eb, src_copy, src_ptr, item_size); 349 350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 352 item_size); 353 ret = memcmp(dst_copy, src_copy, item_size); 354 355 kfree(dst_copy); 356 kfree(src_copy); 357 /* 358 * they have the same contents, just return, this saves 359 * us from cowing blocks in the destination tree and doing 360 * extra writes that may not have been done by a previous 361 * sync 362 */ 363 if (ret == 0) { 364 btrfs_release_path(path); 365 return 0; 366 } 367 368 } 369 insert: 370 btrfs_release_path(path); 371 /* try to insert the key into the destination tree */ 372 ret = btrfs_insert_empty_item(trans, root, path, 373 key, item_size); 374 375 /* make sure any existing item is the correct size */ 376 if (ret == -EEXIST) { 377 u32 found_size; 378 found_size = btrfs_item_size_nr(path->nodes[0], 379 path->slots[0]); 380 if (found_size > item_size) { 381 btrfs_truncate_item(trans, root, path, item_size, 1); 382 } else if (found_size < item_size) { 383 ret = btrfs_extend_item(trans, root, path, 384 item_size - found_size); 385 } 386 } else if (ret) { 387 return ret; 388 } 389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 390 path->slots[0]); 391 392 /* don't overwrite an existing inode if the generation number 393 * was logged as zero. This is done when the tree logging code 394 * is just logging an inode to make sure it exists after recovery. 395 * 396 * Also, don't overwrite i_size on directories during replay. 397 * log replay inserts and removes directory items based on the 398 * state of the tree found in the subvolume, and i_size is modified 399 * as it goes 400 */ 401 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 402 struct btrfs_inode_item *src_item; 403 struct btrfs_inode_item *dst_item; 404 405 src_item = (struct btrfs_inode_item *)src_ptr; 406 dst_item = (struct btrfs_inode_item *)dst_ptr; 407 408 if (btrfs_inode_generation(eb, src_item) == 0) 409 goto no_copy; 410 411 if (overwrite_root && 412 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 413 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 414 save_old_i_size = 1; 415 saved_i_size = btrfs_inode_size(path->nodes[0], 416 dst_item); 417 } 418 } 419 420 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 421 src_ptr, item_size); 422 423 if (save_old_i_size) { 424 struct btrfs_inode_item *dst_item; 425 dst_item = (struct btrfs_inode_item *)dst_ptr; 426 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 427 } 428 429 /* make sure the generation is filled in */ 430 if (key->type == BTRFS_INODE_ITEM_KEY) { 431 struct btrfs_inode_item *dst_item; 432 dst_item = (struct btrfs_inode_item *)dst_ptr; 433 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 434 btrfs_set_inode_generation(path->nodes[0], dst_item, 435 trans->transid); 436 } 437 } 438 no_copy: 439 btrfs_mark_buffer_dirty(path->nodes[0]); 440 btrfs_release_path(path); 441 return 0; 442 } 443 444 /* 445 * simple helper to read an inode off the disk from a given root 446 * This can only be called for subvolume roots and not for the log 447 */ 448 static noinline struct inode *read_one_inode(struct btrfs_root *root, 449 u64 objectid) 450 { 451 struct btrfs_key key; 452 struct inode *inode; 453 454 key.objectid = objectid; 455 key.type = BTRFS_INODE_ITEM_KEY; 456 key.offset = 0; 457 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 458 if (IS_ERR(inode)) { 459 inode = NULL; 460 } else if (is_bad_inode(inode)) { 461 iput(inode); 462 inode = NULL; 463 } 464 return inode; 465 } 466 467 /* replays a single extent in 'eb' at 'slot' with 'key' into the 468 * subvolume 'root'. path is released on entry and should be released 469 * on exit. 470 * 471 * extents in the log tree have not been allocated out of the extent 472 * tree yet. So, this completes the allocation, taking a reference 473 * as required if the extent already exists or creating a new extent 474 * if it isn't in the extent allocation tree yet. 475 * 476 * The extent is inserted into the file, dropping any existing extents 477 * from the file that overlap the new one. 478 */ 479 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 480 struct btrfs_root *root, 481 struct btrfs_path *path, 482 struct extent_buffer *eb, int slot, 483 struct btrfs_key *key) 484 { 485 int found_type; 486 u64 mask = root->sectorsize - 1; 487 u64 extent_end; 488 u64 alloc_hint; 489 u64 start = key->offset; 490 u64 saved_nbytes; 491 struct btrfs_file_extent_item *item; 492 struct inode *inode = NULL; 493 unsigned long size; 494 int ret = 0; 495 496 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 497 found_type = btrfs_file_extent_type(eb, item); 498 499 if (found_type == BTRFS_FILE_EXTENT_REG || 500 found_type == BTRFS_FILE_EXTENT_PREALLOC) 501 extent_end = start + btrfs_file_extent_num_bytes(eb, item); 502 else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 503 size = btrfs_file_extent_inline_len(eb, item); 504 extent_end = (start + size + mask) & ~mask; 505 } else { 506 ret = 0; 507 goto out; 508 } 509 510 inode = read_one_inode(root, key->objectid); 511 if (!inode) { 512 ret = -EIO; 513 goto out; 514 } 515 516 /* 517 * first check to see if we already have this extent in the 518 * file. This must be done before the btrfs_drop_extents run 519 * so we don't try to drop this extent. 520 */ 521 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 522 start, 0); 523 524 if (ret == 0 && 525 (found_type == BTRFS_FILE_EXTENT_REG || 526 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 527 struct btrfs_file_extent_item cmp1; 528 struct btrfs_file_extent_item cmp2; 529 struct btrfs_file_extent_item *existing; 530 struct extent_buffer *leaf; 531 532 leaf = path->nodes[0]; 533 existing = btrfs_item_ptr(leaf, path->slots[0], 534 struct btrfs_file_extent_item); 535 536 read_extent_buffer(eb, &cmp1, (unsigned long)item, 537 sizeof(cmp1)); 538 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 539 sizeof(cmp2)); 540 541 /* 542 * we already have a pointer to this exact extent, 543 * we don't have to do anything 544 */ 545 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 546 btrfs_release_path(path); 547 goto out; 548 } 549 } 550 btrfs_release_path(path); 551 552 saved_nbytes = inode_get_bytes(inode); 553 /* drop any overlapping extents */ 554 ret = btrfs_drop_extents(trans, inode, start, extent_end, 555 &alloc_hint, 1); 556 BUG_ON(ret); 557 558 if (found_type == BTRFS_FILE_EXTENT_REG || 559 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 560 u64 offset; 561 unsigned long dest_offset; 562 struct btrfs_key ins; 563 564 ret = btrfs_insert_empty_item(trans, root, path, key, 565 sizeof(*item)); 566 BUG_ON(ret); 567 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 568 path->slots[0]); 569 copy_extent_buffer(path->nodes[0], eb, dest_offset, 570 (unsigned long)item, sizeof(*item)); 571 572 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 573 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 574 ins.type = BTRFS_EXTENT_ITEM_KEY; 575 offset = key->offset - btrfs_file_extent_offset(eb, item); 576 577 if (ins.objectid > 0) { 578 u64 csum_start; 579 u64 csum_end; 580 LIST_HEAD(ordered_sums); 581 /* 582 * is this extent already allocated in the extent 583 * allocation tree? If so, just add a reference 584 */ 585 ret = btrfs_lookup_extent(root, ins.objectid, 586 ins.offset); 587 if (ret == 0) { 588 ret = btrfs_inc_extent_ref(trans, root, 589 ins.objectid, ins.offset, 590 0, root->root_key.objectid, 591 key->objectid, offset); 592 BUG_ON(ret); 593 } else { 594 /* 595 * insert the extent pointer in the extent 596 * allocation tree 597 */ 598 ret = btrfs_alloc_logged_file_extent(trans, 599 root, root->root_key.objectid, 600 key->objectid, offset, &ins); 601 BUG_ON(ret); 602 } 603 btrfs_release_path(path); 604 605 if (btrfs_file_extent_compression(eb, item)) { 606 csum_start = ins.objectid; 607 csum_end = csum_start + ins.offset; 608 } else { 609 csum_start = ins.objectid + 610 btrfs_file_extent_offset(eb, item); 611 csum_end = csum_start + 612 btrfs_file_extent_num_bytes(eb, item); 613 } 614 615 ret = btrfs_lookup_csums_range(root->log_root, 616 csum_start, csum_end - 1, 617 &ordered_sums, 0); 618 BUG_ON(ret); 619 while (!list_empty(&ordered_sums)) { 620 struct btrfs_ordered_sum *sums; 621 sums = list_entry(ordered_sums.next, 622 struct btrfs_ordered_sum, 623 list); 624 ret = btrfs_csum_file_blocks(trans, 625 root->fs_info->csum_root, 626 sums); 627 BUG_ON(ret); 628 list_del(&sums->list); 629 kfree(sums); 630 } 631 } else { 632 btrfs_release_path(path); 633 } 634 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 635 /* inline extents are easy, we just overwrite them */ 636 ret = overwrite_item(trans, root, path, eb, slot, key); 637 BUG_ON(ret); 638 } 639 640 inode_set_bytes(inode, saved_nbytes); 641 btrfs_update_inode(trans, root, inode); 642 out: 643 if (inode) 644 iput(inode); 645 return ret; 646 } 647 648 /* 649 * when cleaning up conflicts between the directory names in the 650 * subvolume, directory names in the log and directory names in the 651 * inode back references, we may have to unlink inodes from directories. 652 * 653 * This is a helper function to do the unlink of a specific directory 654 * item 655 */ 656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 657 struct btrfs_root *root, 658 struct btrfs_path *path, 659 struct inode *dir, 660 struct btrfs_dir_item *di) 661 { 662 struct inode *inode; 663 char *name; 664 int name_len; 665 struct extent_buffer *leaf; 666 struct btrfs_key location; 667 int ret; 668 669 leaf = path->nodes[0]; 670 671 btrfs_dir_item_key_to_cpu(leaf, di, &location); 672 name_len = btrfs_dir_name_len(leaf, di); 673 name = kmalloc(name_len, GFP_NOFS); 674 if (!name) 675 return -ENOMEM; 676 677 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 678 btrfs_release_path(path); 679 680 inode = read_one_inode(root, location.objectid); 681 if (!inode) { 682 kfree(name); 683 return -EIO; 684 } 685 686 ret = link_to_fixup_dir(trans, root, path, location.objectid); 687 BUG_ON(ret); 688 689 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 690 BUG_ON(ret); 691 kfree(name); 692 693 iput(inode); 694 return ret; 695 } 696 697 /* 698 * helper function to see if a given name and sequence number found 699 * in an inode back reference are already in a directory and correctly 700 * point to this inode 701 */ 702 static noinline int inode_in_dir(struct btrfs_root *root, 703 struct btrfs_path *path, 704 u64 dirid, u64 objectid, u64 index, 705 const char *name, int name_len) 706 { 707 struct btrfs_dir_item *di; 708 struct btrfs_key location; 709 int match = 0; 710 711 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 712 index, name, name_len, 0); 713 if (di && !IS_ERR(di)) { 714 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 715 if (location.objectid != objectid) 716 goto out; 717 } else 718 goto out; 719 btrfs_release_path(path); 720 721 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 722 if (di && !IS_ERR(di)) { 723 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 724 if (location.objectid != objectid) 725 goto out; 726 } else 727 goto out; 728 match = 1; 729 out: 730 btrfs_release_path(path); 731 return match; 732 } 733 734 /* 735 * helper function to check a log tree for a named back reference in 736 * an inode. This is used to decide if a back reference that is 737 * found in the subvolume conflicts with what we find in the log. 738 * 739 * inode backreferences may have multiple refs in a single item, 740 * during replay we process one reference at a time, and we don't 741 * want to delete valid links to a file from the subvolume if that 742 * link is also in the log. 743 */ 744 static noinline int backref_in_log(struct btrfs_root *log, 745 struct btrfs_key *key, 746 char *name, int namelen) 747 { 748 struct btrfs_path *path; 749 struct btrfs_inode_ref *ref; 750 unsigned long ptr; 751 unsigned long ptr_end; 752 unsigned long name_ptr; 753 int found_name_len; 754 int item_size; 755 int ret; 756 int match = 0; 757 758 path = btrfs_alloc_path(); 759 if (!path) 760 return -ENOMEM; 761 762 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 763 if (ret != 0) 764 goto out; 765 766 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 767 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 768 ptr_end = ptr + item_size; 769 while (ptr < ptr_end) { 770 ref = (struct btrfs_inode_ref *)ptr; 771 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 772 if (found_name_len == namelen) { 773 name_ptr = (unsigned long)(ref + 1); 774 ret = memcmp_extent_buffer(path->nodes[0], name, 775 name_ptr, namelen); 776 if (ret == 0) { 777 match = 1; 778 goto out; 779 } 780 } 781 ptr = (unsigned long)(ref + 1) + found_name_len; 782 } 783 out: 784 btrfs_free_path(path); 785 return match; 786 } 787 788 789 /* 790 * replay one inode back reference item found in the log tree. 791 * eb, slot and key refer to the buffer and key found in the log tree. 792 * root is the destination we are replaying into, and path is for temp 793 * use by this function. (it should be released on return). 794 */ 795 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 796 struct btrfs_root *root, 797 struct btrfs_root *log, 798 struct btrfs_path *path, 799 struct extent_buffer *eb, int slot, 800 struct btrfs_key *key) 801 { 802 struct btrfs_inode_ref *ref; 803 struct btrfs_dir_item *di; 804 struct inode *dir; 805 struct inode *inode; 806 unsigned long ref_ptr; 807 unsigned long ref_end; 808 char *name; 809 int namelen; 810 int ret; 811 int search_done = 0; 812 813 /* 814 * it is possible that we didn't log all the parent directories 815 * for a given inode. If we don't find the dir, just don't 816 * copy the back ref in. The link count fixup code will take 817 * care of the rest 818 */ 819 dir = read_one_inode(root, key->offset); 820 if (!dir) 821 return -ENOENT; 822 823 inode = read_one_inode(root, key->objectid); 824 if (!inode) { 825 iput(dir); 826 return -EIO; 827 } 828 829 ref_ptr = btrfs_item_ptr_offset(eb, slot); 830 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 831 832 again: 833 ref = (struct btrfs_inode_ref *)ref_ptr; 834 835 namelen = btrfs_inode_ref_name_len(eb, ref); 836 name = kmalloc(namelen, GFP_NOFS); 837 BUG_ON(!name); 838 839 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); 840 841 /* if we already have a perfect match, we're done */ 842 if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), 843 btrfs_inode_ref_index(eb, ref), 844 name, namelen)) { 845 goto out; 846 } 847 848 /* 849 * look for a conflicting back reference in the metadata. 850 * if we find one we have to unlink that name of the file 851 * before we add our new link. Later on, we overwrite any 852 * existing back reference, and we don't want to create 853 * dangling pointers in the directory. 854 */ 855 856 if (search_done) 857 goto insert; 858 859 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 860 if (ret == 0) { 861 char *victim_name; 862 int victim_name_len; 863 struct btrfs_inode_ref *victim_ref; 864 unsigned long ptr; 865 unsigned long ptr_end; 866 struct extent_buffer *leaf = path->nodes[0]; 867 868 /* are we trying to overwrite a back ref for the root directory 869 * if so, just jump out, we're done 870 */ 871 if (key->objectid == key->offset) 872 goto out_nowrite; 873 874 /* check all the names in this back reference to see 875 * if they are in the log. if so, we allow them to stay 876 * otherwise they must be unlinked as a conflict 877 */ 878 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 879 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 880 while (ptr < ptr_end) { 881 victim_ref = (struct btrfs_inode_ref *)ptr; 882 victim_name_len = btrfs_inode_ref_name_len(leaf, 883 victim_ref); 884 victim_name = kmalloc(victim_name_len, GFP_NOFS); 885 BUG_ON(!victim_name); 886 887 read_extent_buffer(leaf, victim_name, 888 (unsigned long)(victim_ref + 1), 889 victim_name_len); 890 891 if (!backref_in_log(log, key, victim_name, 892 victim_name_len)) { 893 btrfs_inc_nlink(inode); 894 btrfs_release_path(path); 895 896 ret = btrfs_unlink_inode(trans, root, dir, 897 inode, victim_name, 898 victim_name_len); 899 } 900 kfree(victim_name); 901 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 902 } 903 BUG_ON(ret); 904 905 /* 906 * NOTE: we have searched root tree and checked the 907 * coresponding ref, it does not need to check again. 908 */ 909 search_done = 1; 910 } 911 btrfs_release_path(path); 912 913 /* look for a conflicting sequence number */ 914 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 915 btrfs_inode_ref_index(eb, ref), 916 name, namelen, 0); 917 if (di && !IS_ERR(di)) { 918 ret = drop_one_dir_item(trans, root, path, dir, di); 919 BUG_ON(ret); 920 } 921 btrfs_release_path(path); 922 923 /* look for a conflicing name */ 924 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 925 name, namelen, 0); 926 if (di && !IS_ERR(di)) { 927 ret = drop_one_dir_item(trans, root, path, dir, di); 928 BUG_ON(ret); 929 } 930 btrfs_release_path(path); 931 932 insert: 933 /* insert our name */ 934 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, 935 btrfs_inode_ref_index(eb, ref)); 936 BUG_ON(ret); 937 938 btrfs_update_inode(trans, root, inode); 939 940 out: 941 ref_ptr = (unsigned long)(ref + 1) + namelen; 942 kfree(name); 943 if (ref_ptr < ref_end) 944 goto again; 945 946 /* finally write the back reference in the inode */ 947 ret = overwrite_item(trans, root, path, eb, slot, key); 948 BUG_ON(ret); 949 950 out_nowrite: 951 btrfs_release_path(path); 952 iput(dir); 953 iput(inode); 954 return 0; 955 } 956 957 static int insert_orphan_item(struct btrfs_trans_handle *trans, 958 struct btrfs_root *root, u64 offset) 959 { 960 int ret; 961 ret = btrfs_find_orphan_item(root, offset); 962 if (ret > 0) 963 ret = btrfs_insert_orphan_item(trans, root, offset); 964 return ret; 965 } 966 967 968 /* 969 * There are a few corners where the link count of the file can't 970 * be properly maintained during replay. So, instead of adding 971 * lots of complexity to the log code, we just scan the backrefs 972 * for any file that has been through replay. 973 * 974 * The scan will update the link count on the inode to reflect the 975 * number of back refs found. If it goes down to zero, the iput 976 * will free the inode. 977 */ 978 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 979 struct btrfs_root *root, 980 struct inode *inode) 981 { 982 struct btrfs_path *path; 983 int ret; 984 struct btrfs_key key; 985 u64 nlink = 0; 986 unsigned long ptr; 987 unsigned long ptr_end; 988 int name_len; 989 u64 ino = btrfs_ino(inode); 990 991 key.objectid = ino; 992 key.type = BTRFS_INODE_REF_KEY; 993 key.offset = (u64)-1; 994 995 path = btrfs_alloc_path(); 996 if (!path) 997 return -ENOMEM; 998 999 while (1) { 1000 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1001 if (ret < 0) 1002 break; 1003 if (ret > 0) { 1004 if (path->slots[0] == 0) 1005 break; 1006 path->slots[0]--; 1007 } 1008 btrfs_item_key_to_cpu(path->nodes[0], &key, 1009 path->slots[0]); 1010 if (key.objectid != ino || 1011 key.type != BTRFS_INODE_REF_KEY) 1012 break; 1013 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1014 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1015 path->slots[0]); 1016 while (ptr < ptr_end) { 1017 struct btrfs_inode_ref *ref; 1018 1019 ref = (struct btrfs_inode_ref *)ptr; 1020 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1021 ref); 1022 ptr = (unsigned long)(ref + 1) + name_len; 1023 nlink++; 1024 } 1025 1026 if (key.offset == 0) 1027 break; 1028 key.offset--; 1029 btrfs_release_path(path); 1030 } 1031 btrfs_release_path(path); 1032 if (nlink != inode->i_nlink) { 1033 inode->i_nlink = nlink; 1034 btrfs_update_inode(trans, root, inode); 1035 } 1036 BTRFS_I(inode)->index_cnt = (u64)-1; 1037 1038 if (inode->i_nlink == 0) { 1039 if (S_ISDIR(inode->i_mode)) { 1040 ret = replay_dir_deletes(trans, root, NULL, path, 1041 ino, 1); 1042 BUG_ON(ret); 1043 } 1044 ret = insert_orphan_item(trans, root, ino); 1045 BUG_ON(ret); 1046 } 1047 btrfs_free_path(path); 1048 1049 return 0; 1050 } 1051 1052 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1053 struct btrfs_root *root, 1054 struct btrfs_path *path) 1055 { 1056 int ret; 1057 struct btrfs_key key; 1058 struct inode *inode; 1059 1060 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1061 key.type = BTRFS_ORPHAN_ITEM_KEY; 1062 key.offset = (u64)-1; 1063 while (1) { 1064 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1065 if (ret < 0) 1066 break; 1067 1068 if (ret == 1) { 1069 if (path->slots[0] == 0) 1070 break; 1071 path->slots[0]--; 1072 } 1073 1074 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1075 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1076 key.type != BTRFS_ORPHAN_ITEM_KEY) 1077 break; 1078 1079 ret = btrfs_del_item(trans, root, path); 1080 if (ret) 1081 goto out; 1082 1083 btrfs_release_path(path); 1084 inode = read_one_inode(root, key.offset); 1085 if (!inode) 1086 return -EIO; 1087 1088 ret = fixup_inode_link_count(trans, root, inode); 1089 BUG_ON(ret); 1090 1091 iput(inode); 1092 1093 /* 1094 * fixup on a directory may create new entries, 1095 * make sure we always look for the highset possible 1096 * offset 1097 */ 1098 key.offset = (u64)-1; 1099 } 1100 ret = 0; 1101 out: 1102 btrfs_release_path(path); 1103 return ret; 1104 } 1105 1106 1107 /* 1108 * record a given inode in the fixup dir so we can check its link 1109 * count when replay is done. The link count is incremented here 1110 * so the inode won't go away until we check it 1111 */ 1112 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1113 struct btrfs_root *root, 1114 struct btrfs_path *path, 1115 u64 objectid) 1116 { 1117 struct btrfs_key key; 1118 int ret = 0; 1119 struct inode *inode; 1120 1121 inode = read_one_inode(root, objectid); 1122 if (!inode) 1123 return -EIO; 1124 1125 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1126 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1127 key.offset = objectid; 1128 1129 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1130 1131 btrfs_release_path(path); 1132 if (ret == 0) { 1133 btrfs_inc_nlink(inode); 1134 btrfs_update_inode(trans, root, inode); 1135 } else if (ret == -EEXIST) { 1136 ret = 0; 1137 } else { 1138 BUG(); 1139 } 1140 iput(inode); 1141 1142 return ret; 1143 } 1144 1145 /* 1146 * when replaying the log for a directory, we only insert names 1147 * for inodes that actually exist. This means an fsync on a directory 1148 * does not implicitly fsync all the new files in it 1149 */ 1150 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1151 struct btrfs_root *root, 1152 struct btrfs_path *path, 1153 u64 dirid, u64 index, 1154 char *name, int name_len, u8 type, 1155 struct btrfs_key *location) 1156 { 1157 struct inode *inode; 1158 struct inode *dir; 1159 int ret; 1160 1161 inode = read_one_inode(root, location->objectid); 1162 if (!inode) 1163 return -ENOENT; 1164 1165 dir = read_one_inode(root, dirid); 1166 if (!dir) { 1167 iput(inode); 1168 return -EIO; 1169 } 1170 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); 1171 1172 /* FIXME, put inode into FIXUP list */ 1173 1174 iput(inode); 1175 iput(dir); 1176 return ret; 1177 } 1178 1179 /* 1180 * take a single entry in a log directory item and replay it into 1181 * the subvolume. 1182 * 1183 * if a conflicting item exists in the subdirectory already, 1184 * the inode it points to is unlinked and put into the link count 1185 * fix up tree. 1186 * 1187 * If a name from the log points to a file or directory that does 1188 * not exist in the FS, it is skipped. fsyncs on directories 1189 * do not force down inodes inside that directory, just changes to the 1190 * names or unlinks in a directory. 1191 */ 1192 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1193 struct btrfs_root *root, 1194 struct btrfs_path *path, 1195 struct extent_buffer *eb, 1196 struct btrfs_dir_item *di, 1197 struct btrfs_key *key) 1198 { 1199 char *name; 1200 int name_len; 1201 struct btrfs_dir_item *dst_di; 1202 struct btrfs_key found_key; 1203 struct btrfs_key log_key; 1204 struct inode *dir; 1205 u8 log_type; 1206 int exists; 1207 int ret; 1208 1209 dir = read_one_inode(root, key->objectid); 1210 if (!dir) 1211 return -EIO; 1212 1213 name_len = btrfs_dir_name_len(eb, di); 1214 name = kmalloc(name_len, GFP_NOFS); 1215 if (!name) 1216 return -ENOMEM; 1217 1218 log_type = btrfs_dir_type(eb, di); 1219 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1220 name_len); 1221 1222 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1223 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1224 if (exists == 0) 1225 exists = 1; 1226 else 1227 exists = 0; 1228 btrfs_release_path(path); 1229 1230 if (key->type == BTRFS_DIR_ITEM_KEY) { 1231 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1232 name, name_len, 1); 1233 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1234 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1235 key->objectid, 1236 key->offset, name, 1237 name_len, 1); 1238 } else { 1239 BUG(); 1240 } 1241 if (IS_ERR_OR_NULL(dst_di)) { 1242 /* we need a sequence number to insert, so we only 1243 * do inserts for the BTRFS_DIR_INDEX_KEY types 1244 */ 1245 if (key->type != BTRFS_DIR_INDEX_KEY) 1246 goto out; 1247 goto insert; 1248 } 1249 1250 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1251 /* the existing item matches the logged item */ 1252 if (found_key.objectid == log_key.objectid && 1253 found_key.type == log_key.type && 1254 found_key.offset == log_key.offset && 1255 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1256 goto out; 1257 } 1258 1259 /* 1260 * don't drop the conflicting directory entry if the inode 1261 * for the new entry doesn't exist 1262 */ 1263 if (!exists) 1264 goto out; 1265 1266 ret = drop_one_dir_item(trans, root, path, dir, dst_di); 1267 BUG_ON(ret); 1268 1269 if (key->type == BTRFS_DIR_INDEX_KEY) 1270 goto insert; 1271 out: 1272 btrfs_release_path(path); 1273 kfree(name); 1274 iput(dir); 1275 return 0; 1276 1277 insert: 1278 btrfs_release_path(path); 1279 ret = insert_one_name(trans, root, path, key->objectid, key->offset, 1280 name, name_len, log_type, &log_key); 1281 1282 BUG_ON(ret && ret != -ENOENT); 1283 goto out; 1284 } 1285 1286 /* 1287 * find all the names in a directory item and reconcile them into 1288 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 1289 * one name in a directory item, but the same code gets used for 1290 * both directory index types 1291 */ 1292 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1293 struct btrfs_root *root, 1294 struct btrfs_path *path, 1295 struct extent_buffer *eb, int slot, 1296 struct btrfs_key *key) 1297 { 1298 int ret; 1299 u32 item_size = btrfs_item_size_nr(eb, slot); 1300 struct btrfs_dir_item *di; 1301 int name_len; 1302 unsigned long ptr; 1303 unsigned long ptr_end; 1304 1305 ptr = btrfs_item_ptr_offset(eb, slot); 1306 ptr_end = ptr + item_size; 1307 while (ptr < ptr_end) { 1308 di = (struct btrfs_dir_item *)ptr; 1309 if (verify_dir_item(root, eb, di)) 1310 return -EIO; 1311 name_len = btrfs_dir_name_len(eb, di); 1312 ret = replay_one_name(trans, root, path, eb, di, key); 1313 BUG_ON(ret); 1314 ptr = (unsigned long)(di + 1); 1315 ptr += name_len; 1316 } 1317 return 0; 1318 } 1319 1320 /* 1321 * directory replay has two parts. There are the standard directory 1322 * items in the log copied from the subvolume, and range items 1323 * created in the log while the subvolume was logged. 1324 * 1325 * The range items tell us which parts of the key space the log 1326 * is authoritative for. During replay, if a key in the subvolume 1327 * directory is in a logged range item, but not actually in the log 1328 * that means it was deleted from the directory before the fsync 1329 * and should be removed. 1330 */ 1331 static noinline int find_dir_range(struct btrfs_root *root, 1332 struct btrfs_path *path, 1333 u64 dirid, int key_type, 1334 u64 *start_ret, u64 *end_ret) 1335 { 1336 struct btrfs_key key; 1337 u64 found_end; 1338 struct btrfs_dir_log_item *item; 1339 int ret; 1340 int nritems; 1341 1342 if (*start_ret == (u64)-1) 1343 return 1; 1344 1345 key.objectid = dirid; 1346 key.type = key_type; 1347 key.offset = *start_ret; 1348 1349 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1350 if (ret < 0) 1351 goto out; 1352 if (ret > 0) { 1353 if (path->slots[0] == 0) 1354 goto out; 1355 path->slots[0]--; 1356 } 1357 if (ret != 0) 1358 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1359 1360 if (key.type != key_type || key.objectid != dirid) { 1361 ret = 1; 1362 goto next; 1363 } 1364 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1365 struct btrfs_dir_log_item); 1366 found_end = btrfs_dir_log_end(path->nodes[0], item); 1367 1368 if (*start_ret >= key.offset && *start_ret <= found_end) { 1369 ret = 0; 1370 *start_ret = key.offset; 1371 *end_ret = found_end; 1372 goto out; 1373 } 1374 ret = 1; 1375 next: 1376 /* check the next slot in the tree to see if it is a valid item */ 1377 nritems = btrfs_header_nritems(path->nodes[0]); 1378 if (path->slots[0] >= nritems) { 1379 ret = btrfs_next_leaf(root, path); 1380 if (ret) 1381 goto out; 1382 } else { 1383 path->slots[0]++; 1384 } 1385 1386 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1387 1388 if (key.type != key_type || key.objectid != dirid) { 1389 ret = 1; 1390 goto out; 1391 } 1392 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1393 struct btrfs_dir_log_item); 1394 found_end = btrfs_dir_log_end(path->nodes[0], item); 1395 *start_ret = key.offset; 1396 *end_ret = found_end; 1397 ret = 0; 1398 out: 1399 btrfs_release_path(path); 1400 return ret; 1401 } 1402 1403 /* 1404 * this looks for a given directory item in the log. If the directory 1405 * item is not in the log, the item is removed and the inode it points 1406 * to is unlinked 1407 */ 1408 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 1409 struct btrfs_root *root, 1410 struct btrfs_root *log, 1411 struct btrfs_path *path, 1412 struct btrfs_path *log_path, 1413 struct inode *dir, 1414 struct btrfs_key *dir_key) 1415 { 1416 int ret; 1417 struct extent_buffer *eb; 1418 int slot; 1419 u32 item_size; 1420 struct btrfs_dir_item *di; 1421 struct btrfs_dir_item *log_di; 1422 int name_len; 1423 unsigned long ptr; 1424 unsigned long ptr_end; 1425 char *name; 1426 struct inode *inode; 1427 struct btrfs_key location; 1428 1429 again: 1430 eb = path->nodes[0]; 1431 slot = path->slots[0]; 1432 item_size = btrfs_item_size_nr(eb, slot); 1433 ptr = btrfs_item_ptr_offset(eb, slot); 1434 ptr_end = ptr + item_size; 1435 while (ptr < ptr_end) { 1436 di = (struct btrfs_dir_item *)ptr; 1437 if (verify_dir_item(root, eb, di)) { 1438 ret = -EIO; 1439 goto out; 1440 } 1441 1442 name_len = btrfs_dir_name_len(eb, di); 1443 name = kmalloc(name_len, GFP_NOFS); 1444 if (!name) { 1445 ret = -ENOMEM; 1446 goto out; 1447 } 1448 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1449 name_len); 1450 log_di = NULL; 1451 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 1452 log_di = btrfs_lookup_dir_item(trans, log, log_path, 1453 dir_key->objectid, 1454 name, name_len, 0); 1455 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 1456 log_di = btrfs_lookup_dir_index_item(trans, log, 1457 log_path, 1458 dir_key->objectid, 1459 dir_key->offset, 1460 name, name_len, 0); 1461 } 1462 if (IS_ERR_OR_NULL(log_di)) { 1463 btrfs_dir_item_key_to_cpu(eb, di, &location); 1464 btrfs_release_path(path); 1465 btrfs_release_path(log_path); 1466 inode = read_one_inode(root, location.objectid); 1467 if (!inode) { 1468 kfree(name); 1469 return -EIO; 1470 } 1471 1472 ret = link_to_fixup_dir(trans, root, 1473 path, location.objectid); 1474 BUG_ON(ret); 1475 btrfs_inc_nlink(inode); 1476 ret = btrfs_unlink_inode(trans, root, dir, inode, 1477 name, name_len); 1478 BUG_ON(ret); 1479 kfree(name); 1480 iput(inode); 1481 1482 /* there might still be more names under this key 1483 * check and repeat if required 1484 */ 1485 ret = btrfs_search_slot(NULL, root, dir_key, path, 1486 0, 0); 1487 if (ret == 0) 1488 goto again; 1489 ret = 0; 1490 goto out; 1491 } 1492 btrfs_release_path(log_path); 1493 kfree(name); 1494 1495 ptr = (unsigned long)(di + 1); 1496 ptr += name_len; 1497 } 1498 ret = 0; 1499 out: 1500 btrfs_release_path(path); 1501 btrfs_release_path(log_path); 1502 return ret; 1503 } 1504 1505 /* 1506 * deletion replay happens before we copy any new directory items 1507 * out of the log or out of backreferences from inodes. It 1508 * scans the log to find ranges of keys that log is authoritative for, 1509 * and then scans the directory to find items in those ranges that are 1510 * not present in the log. 1511 * 1512 * Anything we don't find in the log is unlinked and removed from the 1513 * directory. 1514 */ 1515 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 1516 struct btrfs_root *root, 1517 struct btrfs_root *log, 1518 struct btrfs_path *path, 1519 u64 dirid, int del_all) 1520 { 1521 u64 range_start; 1522 u64 range_end; 1523 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 1524 int ret = 0; 1525 struct btrfs_key dir_key; 1526 struct btrfs_key found_key; 1527 struct btrfs_path *log_path; 1528 struct inode *dir; 1529 1530 dir_key.objectid = dirid; 1531 dir_key.type = BTRFS_DIR_ITEM_KEY; 1532 log_path = btrfs_alloc_path(); 1533 if (!log_path) 1534 return -ENOMEM; 1535 1536 dir = read_one_inode(root, dirid); 1537 /* it isn't an error if the inode isn't there, that can happen 1538 * because we replay the deletes before we copy in the inode item 1539 * from the log 1540 */ 1541 if (!dir) { 1542 btrfs_free_path(log_path); 1543 return 0; 1544 } 1545 again: 1546 range_start = 0; 1547 range_end = 0; 1548 while (1) { 1549 if (del_all) 1550 range_end = (u64)-1; 1551 else { 1552 ret = find_dir_range(log, path, dirid, key_type, 1553 &range_start, &range_end); 1554 if (ret != 0) 1555 break; 1556 } 1557 1558 dir_key.offset = range_start; 1559 while (1) { 1560 int nritems; 1561 ret = btrfs_search_slot(NULL, root, &dir_key, path, 1562 0, 0); 1563 if (ret < 0) 1564 goto out; 1565 1566 nritems = btrfs_header_nritems(path->nodes[0]); 1567 if (path->slots[0] >= nritems) { 1568 ret = btrfs_next_leaf(root, path); 1569 if (ret) 1570 break; 1571 } 1572 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1573 path->slots[0]); 1574 if (found_key.objectid != dirid || 1575 found_key.type != dir_key.type) 1576 goto next_type; 1577 1578 if (found_key.offset > range_end) 1579 break; 1580 1581 ret = check_item_in_log(trans, root, log, path, 1582 log_path, dir, 1583 &found_key); 1584 BUG_ON(ret); 1585 if (found_key.offset == (u64)-1) 1586 break; 1587 dir_key.offset = found_key.offset + 1; 1588 } 1589 btrfs_release_path(path); 1590 if (range_end == (u64)-1) 1591 break; 1592 range_start = range_end + 1; 1593 } 1594 1595 next_type: 1596 ret = 0; 1597 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 1598 key_type = BTRFS_DIR_LOG_INDEX_KEY; 1599 dir_key.type = BTRFS_DIR_INDEX_KEY; 1600 btrfs_release_path(path); 1601 goto again; 1602 } 1603 out: 1604 btrfs_release_path(path); 1605 btrfs_free_path(log_path); 1606 iput(dir); 1607 return ret; 1608 } 1609 1610 /* 1611 * the process_func used to replay items from the log tree. This 1612 * gets called in two different stages. The first stage just looks 1613 * for inodes and makes sure they are all copied into the subvolume. 1614 * 1615 * The second stage copies all the other item types from the log into 1616 * the subvolume. The two stage approach is slower, but gets rid of 1617 * lots of complexity around inodes referencing other inodes that exist 1618 * only in the log (references come from either directory items or inode 1619 * back refs). 1620 */ 1621 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 1622 struct walk_control *wc, u64 gen) 1623 { 1624 int nritems; 1625 struct btrfs_path *path; 1626 struct btrfs_root *root = wc->replay_dest; 1627 struct btrfs_key key; 1628 int level; 1629 int i; 1630 int ret; 1631 1632 btrfs_read_buffer(eb, gen); 1633 1634 level = btrfs_header_level(eb); 1635 1636 if (level != 0) 1637 return 0; 1638 1639 path = btrfs_alloc_path(); 1640 if (!path) 1641 return -ENOMEM; 1642 1643 nritems = btrfs_header_nritems(eb); 1644 for (i = 0; i < nritems; i++) { 1645 btrfs_item_key_to_cpu(eb, &key, i); 1646 1647 /* inode keys are done during the first stage */ 1648 if (key.type == BTRFS_INODE_ITEM_KEY && 1649 wc->stage == LOG_WALK_REPLAY_INODES) { 1650 struct btrfs_inode_item *inode_item; 1651 u32 mode; 1652 1653 inode_item = btrfs_item_ptr(eb, i, 1654 struct btrfs_inode_item); 1655 mode = btrfs_inode_mode(eb, inode_item); 1656 if (S_ISDIR(mode)) { 1657 ret = replay_dir_deletes(wc->trans, 1658 root, log, path, key.objectid, 0); 1659 BUG_ON(ret); 1660 } 1661 ret = overwrite_item(wc->trans, root, path, 1662 eb, i, &key); 1663 BUG_ON(ret); 1664 1665 /* for regular files, make sure corresponding 1666 * orhpan item exist. extents past the new EOF 1667 * will be truncated later by orphan cleanup. 1668 */ 1669 if (S_ISREG(mode)) { 1670 ret = insert_orphan_item(wc->trans, root, 1671 key.objectid); 1672 BUG_ON(ret); 1673 } 1674 1675 ret = link_to_fixup_dir(wc->trans, root, 1676 path, key.objectid); 1677 BUG_ON(ret); 1678 } 1679 if (wc->stage < LOG_WALK_REPLAY_ALL) 1680 continue; 1681 1682 /* these keys are simply copied */ 1683 if (key.type == BTRFS_XATTR_ITEM_KEY) { 1684 ret = overwrite_item(wc->trans, root, path, 1685 eb, i, &key); 1686 BUG_ON(ret); 1687 } else if (key.type == BTRFS_INODE_REF_KEY) { 1688 ret = add_inode_ref(wc->trans, root, log, path, 1689 eb, i, &key); 1690 BUG_ON(ret && ret != -ENOENT); 1691 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 1692 ret = replay_one_extent(wc->trans, root, path, 1693 eb, i, &key); 1694 BUG_ON(ret); 1695 } else if (key.type == BTRFS_DIR_ITEM_KEY || 1696 key.type == BTRFS_DIR_INDEX_KEY) { 1697 ret = replay_one_dir_item(wc->trans, root, path, 1698 eb, i, &key); 1699 BUG_ON(ret); 1700 } 1701 } 1702 btrfs_free_path(path); 1703 return 0; 1704 } 1705 1706 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 1707 struct btrfs_root *root, 1708 struct btrfs_path *path, int *level, 1709 struct walk_control *wc) 1710 { 1711 u64 root_owner; 1712 u64 bytenr; 1713 u64 ptr_gen; 1714 struct extent_buffer *next; 1715 struct extent_buffer *cur; 1716 struct extent_buffer *parent; 1717 u32 blocksize; 1718 int ret = 0; 1719 1720 WARN_ON(*level < 0); 1721 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1722 1723 while (*level > 0) { 1724 WARN_ON(*level < 0); 1725 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1726 cur = path->nodes[*level]; 1727 1728 if (btrfs_header_level(cur) != *level) 1729 WARN_ON(1); 1730 1731 if (path->slots[*level] >= 1732 btrfs_header_nritems(cur)) 1733 break; 1734 1735 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 1736 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 1737 blocksize = btrfs_level_size(root, *level - 1); 1738 1739 parent = path->nodes[*level]; 1740 root_owner = btrfs_header_owner(parent); 1741 1742 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 1743 if (!next) 1744 return -ENOMEM; 1745 1746 if (*level == 1) { 1747 ret = wc->process_func(root, next, wc, ptr_gen); 1748 if (ret) 1749 return ret; 1750 1751 path->slots[*level]++; 1752 if (wc->free) { 1753 btrfs_read_buffer(next, ptr_gen); 1754 1755 btrfs_tree_lock(next); 1756 btrfs_set_lock_blocking(next); 1757 clean_tree_block(trans, root, next); 1758 btrfs_wait_tree_block_writeback(next); 1759 btrfs_tree_unlock(next); 1760 1761 WARN_ON(root_owner != 1762 BTRFS_TREE_LOG_OBJECTID); 1763 ret = btrfs_free_reserved_extent(root, 1764 bytenr, blocksize); 1765 BUG_ON(ret); 1766 } 1767 free_extent_buffer(next); 1768 continue; 1769 } 1770 btrfs_read_buffer(next, ptr_gen); 1771 1772 WARN_ON(*level <= 0); 1773 if (path->nodes[*level-1]) 1774 free_extent_buffer(path->nodes[*level-1]); 1775 path->nodes[*level-1] = next; 1776 *level = btrfs_header_level(next); 1777 path->slots[*level] = 0; 1778 cond_resched(); 1779 } 1780 WARN_ON(*level < 0); 1781 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1782 1783 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 1784 1785 cond_resched(); 1786 return 0; 1787 } 1788 1789 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 1790 struct btrfs_root *root, 1791 struct btrfs_path *path, int *level, 1792 struct walk_control *wc) 1793 { 1794 u64 root_owner; 1795 int i; 1796 int slot; 1797 int ret; 1798 1799 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 1800 slot = path->slots[i]; 1801 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 1802 path->slots[i]++; 1803 *level = i; 1804 WARN_ON(*level == 0); 1805 return 0; 1806 } else { 1807 struct extent_buffer *parent; 1808 if (path->nodes[*level] == root->node) 1809 parent = path->nodes[*level]; 1810 else 1811 parent = path->nodes[*level + 1]; 1812 1813 root_owner = btrfs_header_owner(parent); 1814 ret = wc->process_func(root, path->nodes[*level], wc, 1815 btrfs_header_generation(path->nodes[*level])); 1816 if (ret) 1817 return ret; 1818 1819 if (wc->free) { 1820 struct extent_buffer *next; 1821 1822 next = path->nodes[*level]; 1823 1824 btrfs_tree_lock(next); 1825 btrfs_set_lock_blocking(next); 1826 clean_tree_block(trans, root, next); 1827 btrfs_wait_tree_block_writeback(next); 1828 btrfs_tree_unlock(next); 1829 1830 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 1831 ret = btrfs_free_reserved_extent(root, 1832 path->nodes[*level]->start, 1833 path->nodes[*level]->len); 1834 BUG_ON(ret); 1835 } 1836 free_extent_buffer(path->nodes[*level]); 1837 path->nodes[*level] = NULL; 1838 *level = i + 1; 1839 } 1840 } 1841 return 1; 1842 } 1843 1844 /* 1845 * drop the reference count on the tree rooted at 'snap'. This traverses 1846 * the tree freeing any blocks that have a ref count of zero after being 1847 * decremented. 1848 */ 1849 static int walk_log_tree(struct btrfs_trans_handle *trans, 1850 struct btrfs_root *log, struct walk_control *wc) 1851 { 1852 int ret = 0; 1853 int wret; 1854 int level; 1855 struct btrfs_path *path; 1856 int i; 1857 int orig_level; 1858 1859 path = btrfs_alloc_path(); 1860 if (!path) 1861 return -ENOMEM; 1862 1863 level = btrfs_header_level(log->node); 1864 orig_level = level; 1865 path->nodes[level] = log->node; 1866 extent_buffer_get(log->node); 1867 path->slots[level] = 0; 1868 1869 while (1) { 1870 wret = walk_down_log_tree(trans, log, path, &level, wc); 1871 if (wret > 0) 1872 break; 1873 if (wret < 0) 1874 ret = wret; 1875 1876 wret = walk_up_log_tree(trans, log, path, &level, wc); 1877 if (wret > 0) 1878 break; 1879 if (wret < 0) 1880 ret = wret; 1881 } 1882 1883 /* was the root node processed? if not, catch it here */ 1884 if (path->nodes[orig_level]) { 1885 wc->process_func(log, path->nodes[orig_level], wc, 1886 btrfs_header_generation(path->nodes[orig_level])); 1887 if (wc->free) { 1888 struct extent_buffer *next; 1889 1890 next = path->nodes[orig_level]; 1891 1892 btrfs_tree_lock(next); 1893 btrfs_set_lock_blocking(next); 1894 clean_tree_block(trans, log, next); 1895 btrfs_wait_tree_block_writeback(next); 1896 btrfs_tree_unlock(next); 1897 1898 WARN_ON(log->root_key.objectid != 1899 BTRFS_TREE_LOG_OBJECTID); 1900 ret = btrfs_free_reserved_extent(log, next->start, 1901 next->len); 1902 BUG_ON(ret); 1903 } 1904 } 1905 1906 for (i = 0; i <= orig_level; i++) { 1907 if (path->nodes[i]) { 1908 free_extent_buffer(path->nodes[i]); 1909 path->nodes[i] = NULL; 1910 } 1911 } 1912 btrfs_free_path(path); 1913 return ret; 1914 } 1915 1916 /* 1917 * helper function to update the item for a given subvolumes log root 1918 * in the tree of log roots 1919 */ 1920 static int update_log_root(struct btrfs_trans_handle *trans, 1921 struct btrfs_root *log) 1922 { 1923 int ret; 1924 1925 if (log->log_transid == 1) { 1926 /* insert root item on the first sync */ 1927 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, 1928 &log->root_key, &log->root_item); 1929 } else { 1930 ret = btrfs_update_root(trans, log->fs_info->log_root_tree, 1931 &log->root_key, &log->root_item); 1932 } 1933 return ret; 1934 } 1935 1936 static int wait_log_commit(struct btrfs_trans_handle *trans, 1937 struct btrfs_root *root, unsigned long transid) 1938 { 1939 DEFINE_WAIT(wait); 1940 int index = transid % 2; 1941 1942 /* 1943 * we only allow two pending log transactions at a time, 1944 * so we know that if ours is more than 2 older than the 1945 * current transaction, we're done 1946 */ 1947 do { 1948 prepare_to_wait(&root->log_commit_wait[index], 1949 &wait, TASK_UNINTERRUPTIBLE); 1950 mutex_unlock(&root->log_mutex); 1951 1952 if (root->fs_info->last_trans_log_full_commit != 1953 trans->transid && root->log_transid < transid + 2 && 1954 atomic_read(&root->log_commit[index])) 1955 schedule(); 1956 1957 finish_wait(&root->log_commit_wait[index], &wait); 1958 mutex_lock(&root->log_mutex); 1959 } while (root->log_transid < transid + 2 && 1960 atomic_read(&root->log_commit[index])); 1961 return 0; 1962 } 1963 1964 static int wait_for_writer(struct btrfs_trans_handle *trans, 1965 struct btrfs_root *root) 1966 { 1967 DEFINE_WAIT(wait); 1968 while (atomic_read(&root->log_writers)) { 1969 prepare_to_wait(&root->log_writer_wait, 1970 &wait, TASK_UNINTERRUPTIBLE); 1971 mutex_unlock(&root->log_mutex); 1972 if (root->fs_info->last_trans_log_full_commit != 1973 trans->transid && atomic_read(&root->log_writers)) 1974 schedule(); 1975 mutex_lock(&root->log_mutex); 1976 finish_wait(&root->log_writer_wait, &wait); 1977 } 1978 return 0; 1979 } 1980 1981 /* 1982 * btrfs_sync_log does sends a given tree log down to the disk and 1983 * updates the super blocks to record it. When this call is done, 1984 * you know that any inodes previously logged are safely on disk only 1985 * if it returns 0. 1986 * 1987 * Any other return value means you need to call btrfs_commit_transaction. 1988 * Some of the edge cases for fsyncing directories that have had unlinks 1989 * or renames done in the past mean that sometimes the only safe 1990 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 1991 * that has happened. 1992 */ 1993 int btrfs_sync_log(struct btrfs_trans_handle *trans, 1994 struct btrfs_root *root) 1995 { 1996 int index1; 1997 int index2; 1998 int mark; 1999 int ret; 2000 struct btrfs_root *log = root->log_root; 2001 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; 2002 unsigned long log_transid = 0; 2003 2004 mutex_lock(&root->log_mutex); 2005 index1 = root->log_transid % 2; 2006 if (atomic_read(&root->log_commit[index1])) { 2007 wait_log_commit(trans, root, root->log_transid); 2008 mutex_unlock(&root->log_mutex); 2009 return 0; 2010 } 2011 atomic_set(&root->log_commit[index1], 1); 2012 2013 /* wait for previous tree log sync to complete */ 2014 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2015 wait_log_commit(trans, root, root->log_transid - 1); 2016 2017 while (1) { 2018 unsigned long batch = root->log_batch; 2019 if (root->log_multiple_pids) { 2020 mutex_unlock(&root->log_mutex); 2021 schedule_timeout_uninterruptible(1); 2022 mutex_lock(&root->log_mutex); 2023 } 2024 wait_for_writer(trans, root); 2025 if (batch == root->log_batch) 2026 break; 2027 } 2028 2029 /* bail out if we need to do a full commit */ 2030 if (root->fs_info->last_trans_log_full_commit == trans->transid) { 2031 ret = -EAGAIN; 2032 mutex_unlock(&root->log_mutex); 2033 goto out; 2034 } 2035 2036 log_transid = root->log_transid; 2037 if (log_transid % 2 == 0) 2038 mark = EXTENT_DIRTY; 2039 else 2040 mark = EXTENT_NEW; 2041 2042 /* we start IO on all the marked extents here, but we don't actually 2043 * wait for them until later. 2044 */ 2045 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); 2046 BUG_ON(ret); 2047 2048 btrfs_set_root_node(&log->root_item, log->node); 2049 2050 root->log_batch = 0; 2051 root->log_transid++; 2052 log->log_transid = root->log_transid; 2053 root->log_start_pid = 0; 2054 smp_mb(); 2055 /* 2056 * IO has been started, blocks of the log tree have WRITTEN flag set 2057 * in their headers. new modifications of the log will be written to 2058 * new positions. so it's safe to allow log writers to go in. 2059 */ 2060 mutex_unlock(&root->log_mutex); 2061 2062 mutex_lock(&log_root_tree->log_mutex); 2063 log_root_tree->log_batch++; 2064 atomic_inc(&log_root_tree->log_writers); 2065 mutex_unlock(&log_root_tree->log_mutex); 2066 2067 ret = update_log_root(trans, log); 2068 2069 mutex_lock(&log_root_tree->log_mutex); 2070 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 2071 smp_mb(); 2072 if (waitqueue_active(&log_root_tree->log_writer_wait)) 2073 wake_up(&log_root_tree->log_writer_wait); 2074 } 2075 2076 if (ret) { 2077 BUG_ON(ret != -ENOSPC); 2078 root->fs_info->last_trans_log_full_commit = trans->transid; 2079 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2080 mutex_unlock(&log_root_tree->log_mutex); 2081 ret = -EAGAIN; 2082 goto out; 2083 } 2084 2085 index2 = log_root_tree->log_transid % 2; 2086 if (atomic_read(&log_root_tree->log_commit[index2])) { 2087 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2088 wait_log_commit(trans, log_root_tree, 2089 log_root_tree->log_transid); 2090 mutex_unlock(&log_root_tree->log_mutex); 2091 ret = 0; 2092 goto out; 2093 } 2094 atomic_set(&log_root_tree->log_commit[index2], 1); 2095 2096 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 2097 wait_log_commit(trans, log_root_tree, 2098 log_root_tree->log_transid - 1); 2099 } 2100 2101 wait_for_writer(trans, log_root_tree); 2102 2103 /* 2104 * now that we've moved on to the tree of log tree roots, 2105 * check the full commit flag again 2106 */ 2107 if (root->fs_info->last_trans_log_full_commit == trans->transid) { 2108 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2109 mutex_unlock(&log_root_tree->log_mutex); 2110 ret = -EAGAIN; 2111 goto out_wake_log_root; 2112 } 2113 2114 ret = btrfs_write_and_wait_marked_extents(log_root_tree, 2115 &log_root_tree->dirty_log_pages, 2116 EXTENT_DIRTY | EXTENT_NEW); 2117 BUG_ON(ret); 2118 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2119 2120 btrfs_set_super_log_root(&root->fs_info->super_for_commit, 2121 log_root_tree->node->start); 2122 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit, 2123 btrfs_header_level(log_root_tree->node)); 2124 2125 log_root_tree->log_batch = 0; 2126 log_root_tree->log_transid++; 2127 smp_mb(); 2128 2129 mutex_unlock(&log_root_tree->log_mutex); 2130 2131 /* 2132 * nobody else is going to jump in and write the the ctree 2133 * super here because the log_commit atomic below is protecting 2134 * us. We must be called with a transaction handle pinning 2135 * the running transaction open, so a full commit can't hop 2136 * in and cause problems either. 2137 */ 2138 btrfs_scrub_pause_super(root); 2139 write_ctree_super(trans, root->fs_info->tree_root, 1); 2140 btrfs_scrub_continue_super(root); 2141 ret = 0; 2142 2143 mutex_lock(&root->log_mutex); 2144 if (root->last_log_commit < log_transid) 2145 root->last_log_commit = log_transid; 2146 mutex_unlock(&root->log_mutex); 2147 2148 out_wake_log_root: 2149 atomic_set(&log_root_tree->log_commit[index2], 0); 2150 smp_mb(); 2151 if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) 2152 wake_up(&log_root_tree->log_commit_wait[index2]); 2153 out: 2154 atomic_set(&root->log_commit[index1], 0); 2155 smp_mb(); 2156 if (waitqueue_active(&root->log_commit_wait[index1])) 2157 wake_up(&root->log_commit_wait[index1]); 2158 return ret; 2159 } 2160 2161 static void free_log_tree(struct btrfs_trans_handle *trans, 2162 struct btrfs_root *log) 2163 { 2164 int ret; 2165 u64 start; 2166 u64 end; 2167 struct walk_control wc = { 2168 .free = 1, 2169 .process_func = process_one_buffer 2170 }; 2171 2172 ret = walk_log_tree(trans, log, &wc); 2173 BUG_ON(ret); 2174 2175 while (1) { 2176 ret = find_first_extent_bit(&log->dirty_log_pages, 2177 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW); 2178 if (ret) 2179 break; 2180 2181 clear_extent_bits(&log->dirty_log_pages, start, end, 2182 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); 2183 } 2184 2185 free_extent_buffer(log->node); 2186 kfree(log); 2187 } 2188 2189 /* 2190 * free all the extents used by the tree log. This should be called 2191 * at commit time of the full transaction 2192 */ 2193 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 2194 { 2195 if (root->log_root) { 2196 free_log_tree(trans, root->log_root); 2197 root->log_root = NULL; 2198 } 2199 return 0; 2200 } 2201 2202 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 2203 struct btrfs_fs_info *fs_info) 2204 { 2205 if (fs_info->log_root_tree) { 2206 free_log_tree(trans, fs_info->log_root_tree); 2207 fs_info->log_root_tree = NULL; 2208 } 2209 return 0; 2210 } 2211 2212 /* 2213 * If both a file and directory are logged, and unlinks or renames are 2214 * mixed in, we have a few interesting corners: 2215 * 2216 * create file X in dir Y 2217 * link file X to X.link in dir Y 2218 * fsync file X 2219 * unlink file X but leave X.link 2220 * fsync dir Y 2221 * 2222 * After a crash we would expect only X.link to exist. But file X 2223 * didn't get fsync'd again so the log has back refs for X and X.link. 2224 * 2225 * We solve this by removing directory entries and inode backrefs from the 2226 * log when a file that was logged in the current transaction is 2227 * unlinked. Any later fsync will include the updated log entries, and 2228 * we'll be able to reconstruct the proper directory items from backrefs. 2229 * 2230 * This optimizations allows us to avoid relogging the entire inode 2231 * or the entire directory. 2232 */ 2233 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 2234 struct btrfs_root *root, 2235 const char *name, int name_len, 2236 struct inode *dir, u64 index) 2237 { 2238 struct btrfs_root *log; 2239 struct btrfs_dir_item *di; 2240 struct btrfs_path *path; 2241 int ret; 2242 int err = 0; 2243 int bytes_del = 0; 2244 u64 dir_ino = btrfs_ino(dir); 2245 2246 if (BTRFS_I(dir)->logged_trans < trans->transid) 2247 return 0; 2248 2249 ret = join_running_log_trans(root); 2250 if (ret) 2251 return 0; 2252 2253 mutex_lock(&BTRFS_I(dir)->log_mutex); 2254 2255 log = root->log_root; 2256 path = btrfs_alloc_path(); 2257 if (!path) { 2258 err = -ENOMEM; 2259 goto out_unlock; 2260 } 2261 2262 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 2263 name, name_len, -1); 2264 if (IS_ERR(di)) { 2265 err = PTR_ERR(di); 2266 goto fail; 2267 } 2268 if (di) { 2269 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2270 bytes_del += name_len; 2271 BUG_ON(ret); 2272 } 2273 btrfs_release_path(path); 2274 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 2275 index, name, name_len, -1); 2276 if (IS_ERR(di)) { 2277 err = PTR_ERR(di); 2278 goto fail; 2279 } 2280 if (di) { 2281 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2282 bytes_del += name_len; 2283 BUG_ON(ret); 2284 } 2285 2286 /* update the directory size in the log to reflect the names 2287 * we have removed 2288 */ 2289 if (bytes_del) { 2290 struct btrfs_key key; 2291 2292 key.objectid = dir_ino; 2293 key.offset = 0; 2294 key.type = BTRFS_INODE_ITEM_KEY; 2295 btrfs_release_path(path); 2296 2297 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 2298 if (ret < 0) { 2299 err = ret; 2300 goto fail; 2301 } 2302 if (ret == 0) { 2303 struct btrfs_inode_item *item; 2304 u64 i_size; 2305 2306 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2307 struct btrfs_inode_item); 2308 i_size = btrfs_inode_size(path->nodes[0], item); 2309 if (i_size > bytes_del) 2310 i_size -= bytes_del; 2311 else 2312 i_size = 0; 2313 btrfs_set_inode_size(path->nodes[0], item, i_size); 2314 btrfs_mark_buffer_dirty(path->nodes[0]); 2315 } else 2316 ret = 0; 2317 btrfs_release_path(path); 2318 } 2319 fail: 2320 btrfs_free_path(path); 2321 out_unlock: 2322 mutex_unlock(&BTRFS_I(dir)->log_mutex); 2323 if (ret == -ENOSPC) { 2324 root->fs_info->last_trans_log_full_commit = trans->transid; 2325 ret = 0; 2326 } 2327 btrfs_end_log_trans(root); 2328 2329 return err; 2330 } 2331 2332 /* see comments for btrfs_del_dir_entries_in_log */ 2333 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 2334 struct btrfs_root *root, 2335 const char *name, int name_len, 2336 struct inode *inode, u64 dirid) 2337 { 2338 struct btrfs_root *log; 2339 u64 index; 2340 int ret; 2341 2342 if (BTRFS_I(inode)->logged_trans < trans->transid) 2343 return 0; 2344 2345 ret = join_running_log_trans(root); 2346 if (ret) 2347 return 0; 2348 log = root->log_root; 2349 mutex_lock(&BTRFS_I(inode)->log_mutex); 2350 2351 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 2352 dirid, &index); 2353 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2354 if (ret == -ENOSPC) { 2355 root->fs_info->last_trans_log_full_commit = trans->transid; 2356 ret = 0; 2357 } 2358 btrfs_end_log_trans(root); 2359 2360 return ret; 2361 } 2362 2363 /* 2364 * creates a range item in the log for 'dirid'. first_offset and 2365 * last_offset tell us which parts of the key space the log should 2366 * be considered authoritative for. 2367 */ 2368 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 2369 struct btrfs_root *log, 2370 struct btrfs_path *path, 2371 int key_type, u64 dirid, 2372 u64 first_offset, u64 last_offset) 2373 { 2374 int ret; 2375 struct btrfs_key key; 2376 struct btrfs_dir_log_item *item; 2377 2378 key.objectid = dirid; 2379 key.offset = first_offset; 2380 if (key_type == BTRFS_DIR_ITEM_KEY) 2381 key.type = BTRFS_DIR_LOG_ITEM_KEY; 2382 else 2383 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2384 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 2385 if (ret) 2386 return ret; 2387 2388 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2389 struct btrfs_dir_log_item); 2390 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 2391 btrfs_mark_buffer_dirty(path->nodes[0]); 2392 btrfs_release_path(path); 2393 return 0; 2394 } 2395 2396 /* 2397 * log all the items included in the current transaction for a given 2398 * directory. This also creates the range items in the log tree required 2399 * to replay anything deleted before the fsync 2400 */ 2401 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 2402 struct btrfs_root *root, struct inode *inode, 2403 struct btrfs_path *path, 2404 struct btrfs_path *dst_path, int key_type, 2405 u64 min_offset, u64 *last_offset_ret) 2406 { 2407 struct btrfs_key min_key; 2408 struct btrfs_key max_key; 2409 struct btrfs_root *log = root->log_root; 2410 struct extent_buffer *src; 2411 int err = 0; 2412 int ret; 2413 int i; 2414 int nritems; 2415 u64 first_offset = min_offset; 2416 u64 last_offset = (u64)-1; 2417 u64 ino = btrfs_ino(inode); 2418 2419 log = root->log_root; 2420 max_key.objectid = ino; 2421 max_key.offset = (u64)-1; 2422 max_key.type = key_type; 2423 2424 min_key.objectid = ino; 2425 min_key.type = key_type; 2426 min_key.offset = min_offset; 2427 2428 path->keep_locks = 1; 2429 2430 ret = btrfs_search_forward(root, &min_key, &max_key, 2431 path, 0, trans->transid); 2432 2433 /* 2434 * we didn't find anything from this transaction, see if there 2435 * is anything at all 2436 */ 2437 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 2438 min_key.objectid = ino; 2439 min_key.type = key_type; 2440 min_key.offset = (u64)-1; 2441 btrfs_release_path(path); 2442 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2443 if (ret < 0) { 2444 btrfs_release_path(path); 2445 return ret; 2446 } 2447 ret = btrfs_previous_item(root, path, ino, key_type); 2448 2449 /* if ret == 0 there are items for this type, 2450 * create a range to tell us the last key of this type. 2451 * otherwise, there are no items in this directory after 2452 * *min_offset, and we create a range to indicate that. 2453 */ 2454 if (ret == 0) { 2455 struct btrfs_key tmp; 2456 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 2457 path->slots[0]); 2458 if (key_type == tmp.type) 2459 first_offset = max(min_offset, tmp.offset) + 1; 2460 } 2461 goto done; 2462 } 2463 2464 /* go backward to find any previous key */ 2465 ret = btrfs_previous_item(root, path, ino, key_type); 2466 if (ret == 0) { 2467 struct btrfs_key tmp; 2468 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2469 if (key_type == tmp.type) { 2470 first_offset = tmp.offset; 2471 ret = overwrite_item(trans, log, dst_path, 2472 path->nodes[0], path->slots[0], 2473 &tmp); 2474 if (ret) { 2475 err = ret; 2476 goto done; 2477 } 2478 } 2479 } 2480 btrfs_release_path(path); 2481 2482 /* find the first key from this transaction again */ 2483 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2484 if (ret != 0) { 2485 WARN_ON(1); 2486 goto done; 2487 } 2488 2489 /* 2490 * we have a block from this transaction, log every item in it 2491 * from our directory 2492 */ 2493 while (1) { 2494 struct btrfs_key tmp; 2495 src = path->nodes[0]; 2496 nritems = btrfs_header_nritems(src); 2497 for (i = path->slots[0]; i < nritems; i++) { 2498 btrfs_item_key_to_cpu(src, &min_key, i); 2499 2500 if (min_key.objectid != ino || min_key.type != key_type) 2501 goto done; 2502 ret = overwrite_item(trans, log, dst_path, src, i, 2503 &min_key); 2504 if (ret) { 2505 err = ret; 2506 goto done; 2507 } 2508 } 2509 path->slots[0] = nritems; 2510 2511 /* 2512 * look ahead to the next item and see if it is also 2513 * from this directory and from this transaction 2514 */ 2515 ret = btrfs_next_leaf(root, path); 2516 if (ret == 1) { 2517 last_offset = (u64)-1; 2518 goto done; 2519 } 2520 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2521 if (tmp.objectid != ino || tmp.type != key_type) { 2522 last_offset = (u64)-1; 2523 goto done; 2524 } 2525 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 2526 ret = overwrite_item(trans, log, dst_path, 2527 path->nodes[0], path->slots[0], 2528 &tmp); 2529 if (ret) 2530 err = ret; 2531 else 2532 last_offset = tmp.offset; 2533 goto done; 2534 } 2535 } 2536 done: 2537 btrfs_release_path(path); 2538 btrfs_release_path(dst_path); 2539 2540 if (err == 0) { 2541 *last_offset_ret = last_offset; 2542 /* 2543 * insert the log range keys to indicate where the log 2544 * is valid 2545 */ 2546 ret = insert_dir_log_key(trans, log, path, key_type, 2547 ino, first_offset, last_offset); 2548 if (ret) 2549 err = ret; 2550 } 2551 return err; 2552 } 2553 2554 /* 2555 * logging directories is very similar to logging inodes, We find all the items 2556 * from the current transaction and write them to the log. 2557 * 2558 * The recovery code scans the directory in the subvolume, and if it finds a 2559 * key in the range logged that is not present in the log tree, then it means 2560 * that dir entry was unlinked during the transaction. 2561 * 2562 * In order for that scan to work, we must include one key smaller than 2563 * the smallest logged by this transaction and one key larger than the largest 2564 * key logged by this transaction. 2565 */ 2566 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 2567 struct btrfs_root *root, struct inode *inode, 2568 struct btrfs_path *path, 2569 struct btrfs_path *dst_path) 2570 { 2571 u64 min_key; 2572 u64 max_key; 2573 int ret; 2574 int key_type = BTRFS_DIR_ITEM_KEY; 2575 2576 again: 2577 min_key = 0; 2578 max_key = 0; 2579 while (1) { 2580 ret = log_dir_items(trans, root, inode, path, 2581 dst_path, key_type, min_key, 2582 &max_key); 2583 if (ret) 2584 return ret; 2585 if (max_key == (u64)-1) 2586 break; 2587 min_key = max_key + 1; 2588 } 2589 2590 if (key_type == BTRFS_DIR_ITEM_KEY) { 2591 key_type = BTRFS_DIR_INDEX_KEY; 2592 goto again; 2593 } 2594 return 0; 2595 } 2596 2597 /* 2598 * a helper function to drop items from the log before we relog an 2599 * inode. max_key_type indicates the highest item type to remove. 2600 * This cannot be run for file data extents because it does not 2601 * free the extents they point to. 2602 */ 2603 static int drop_objectid_items(struct btrfs_trans_handle *trans, 2604 struct btrfs_root *log, 2605 struct btrfs_path *path, 2606 u64 objectid, int max_key_type) 2607 { 2608 int ret; 2609 struct btrfs_key key; 2610 struct btrfs_key found_key; 2611 2612 key.objectid = objectid; 2613 key.type = max_key_type; 2614 key.offset = (u64)-1; 2615 2616 while (1) { 2617 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 2618 BUG_ON(ret == 0); 2619 if (ret < 0) 2620 break; 2621 2622 if (path->slots[0] == 0) 2623 break; 2624 2625 path->slots[0]--; 2626 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2627 path->slots[0]); 2628 2629 if (found_key.objectid != objectid) 2630 break; 2631 2632 ret = btrfs_del_item(trans, log, path); 2633 if (ret) 2634 break; 2635 btrfs_release_path(path); 2636 } 2637 btrfs_release_path(path); 2638 return ret; 2639 } 2640 2641 static noinline int copy_items(struct btrfs_trans_handle *trans, 2642 struct btrfs_root *log, 2643 struct btrfs_path *dst_path, 2644 struct extent_buffer *src, 2645 int start_slot, int nr, int inode_only) 2646 { 2647 unsigned long src_offset; 2648 unsigned long dst_offset; 2649 struct btrfs_file_extent_item *extent; 2650 struct btrfs_inode_item *inode_item; 2651 int ret; 2652 struct btrfs_key *ins_keys; 2653 u32 *ins_sizes; 2654 char *ins_data; 2655 int i; 2656 struct list_head ordered_sums; 2657 2658 INIT_LIST_HEAD(&ordered_sums); 2659 2660 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 2661 nr * sizeof(u32), GFP_NOFS); 2662 if (!ins_data) 2663 return -ENOMEM; 2664 2665 ins_sizes = (u32 *)ins_data; 2666 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 2667 2668 for (i = 0; i < nr; i++) { 2669 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 2670 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 2671 } 2672 ret = btrfs_insert_empty_items(trans, log, dst_path, 2673 ins_keys, ins_sizes, nr); 2674 if (ret) { 2675 kfree(ins_data); 2676 return ret; 2677 } 2678 2679 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 2680 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 2681 dst_path->slots[0]); 2682 2683 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 2684 2685 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 2686 src_offset, ins_sizes[i]); 2687 2688 if (inode_only == LOG_INODE_EXISTS && 2689 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 2690 inode_item = btrfs_item_ptr(dst_path->nodes[0], 2691 dst_path->slots[0], 2692 struct btrfs_inode_item); 2693 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); 2694 2695 /* set the generation to zero so the recover code 2696 * can tell the difference between an logging 2697 * just to say 'this inode exists' and a logging 2698 * to say 'update this inode with these values' 2699 */ 2700 btrfs_set_inode_generation(dst_path->nodes[0], 2701 inode_item, 0); 2702 } 2703 /* take a reference on file data extents so that truncates 2704 * or deletes of this inode don't have to relog the inode 2705 * again 2706 */ 2707 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { 2708 int found_type; 2709 extent = btrfs_item_ptr(src, start_slot + i, 2710 struct btrfs_file_extent_item); 2711 2712 if (btrfs_file_extent_generation(src, extent) < trans->transid) 2713 continue; 2714 2715 found_type = btrfs_file_extent_type(src, extent); 2716 if (found_type == BTRFS_FILE_EXTENT_REG || 2717 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 2718 u64 ds, dl, cs, cl; 2719 ds = btrfs_file_extent_disk_bytenr(src, 2720 extent); 2721 /* ds == 0 is a hole */ 2722 if (ds == 0) 2723 continue; 2724 2725 dl = btrfs_file_extent_disk_num_bytes(src, 2726 extent); 2727 cs = btrfs_file_extent_offset(src, extent); 2728 cl = btrfs_file_extent_num_bytes(src, 2729 extent); 2730 if (btrfs_file_extent_compression(src, 2731 extent)) { 2732 cs = 0; 2733 cl = dl; 2734 } 2735 2736 ret = btrfs_lookup_csums_range( 2737 log->fs_info->csum_root, 2738 ds + cs, ds + cs + cl - 1, 2739 &ordered_sums, 0); 2740 BUG_ON(ret); 2741 } 2742 } 2743 } 2744 2745 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 2746 btrfs_release_path(dst_path); 2747 kfree(ins_data); 2748 2749 /* 2750 * we have to do this after the loop above to avoid changing the 2751 * log tree while trying to change the log tree. 2752 */ 2753 ret = 0; 2754 while (!list_empty(&ordered_sums)) { 2755 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 2756 struct btrfs_ordered_sum, 2757 list); 2758 if (!ret) 2759 ret = btrfs_csum_file_blocks(trans, log, sums); 2760 list_del(&sums->list); 2761 kfree(sums); 2762 } 2763 return ret; 2764 } 2765 2766 /* log a single inode in the tree log. 2767 * At least one parent directory for this inode must exist in the tree 2768 * or be logged already. 2769 * 2770 * Any items from this inode changed by the current transaction are copied 2771 * to the log tree. An extra reference is taken on any extents in this 2772 * file, allowing us to avoid a whole pile of corner cases around logging 2773 * blocks that have been removed from the tree. 2774 * 2775 * See LOG_INODE_ALL and related defines for a description of what inode_only 2776 * does. 2777 * 2778 * This handles both files and directories. 2779 */ 2780 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 2781 struct btrfs_root *root, struct inode *inode, 2782 int inode_only) 2783 { 2784 struct btrfs_path *path; 2785 struct btrfs_path *dst_path; 2786 struct btrfs_key min_key; 2787 struct btrfs_key max_key; 2788 struct btrfs_root *log = root->log_root; 2789 struct extent_buffer *src = NULL; 2790 int err = 0; 2791 int ret; 2792 int nritems; 2793 int ins_start_slot = 0; 2794 int ins_nr; 2795 u64 ino = btrfs_ino(inode); 2796 2797 log = root->log_root; 2798 2799 path = btrfs_alloc_path(); 2800 if (!path) 2801 return -ENOMEM; 2802 dst_path = btrfs_alloc_path(); 2803 if (!dst_path) { 2804 btrfs_free_path(path); 2805 return -ENOMEM; 2806 } 2807 2808 min_key.objectid = ino; 2809 min_key.type = BTRFS_INODE_ITEM_KEY; 2810 min_key.offset = 0; 2811 2812 max_key.objectid = ino; 2813 2814 /* today the code can only do partial logging of directories */ 2815 if (!S_ISDIR(inode->i_mode)) 2816 inode_only = LOG_INODE_ALL; 2817 2818 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) 2819 max_key.type = BTRFS_XATTR_ITEM_KEY; 2820 else 2821 max_key.type = (u8)-1; 2822 max_key.offset = (u64)-1; 2823 2824 ret = btrfs_commit_inode_delayed_items(trans, inode); 2825 if (ret) { 2826 btrfs_free_path(path); 2827 btrfs_free_path(dst_path); 2828 return ret; 2829 } 2830 2831 mutex_lock(&BTRFS_I(inode)->log_mutex); 2832 2833 /* 2834 * a brute force approach to making sure we get the most uptodate 2835 * copies of everything. 2836 */ 2837 if (S_ISDIR(inode->i_mode)) { 2838 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 2839 2840 if (inode_only == LOG_INODE_EXISTS) 2841 max_key_type = BTRFS_XATTR_ITEM_KEY; 2842 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 2843 } else { 2844 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); 2845 } 2846 if (ret) { 2847 err = ret; 2848 goto out_unlock; 2849 } 2850 path->keep_locks = 1; 2851 2852 while (1) { 2853 ins_nr = 0; 2854 ret = btrfs_search_forward(root, &min_key, &max_key, 2855 path, 0, trans->transid); 2856 if (ret != 0) 2857 break; 2858 again: 2859 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 2860 if (min_key.objectid != ino) 2861 break; 2862 if (min_key.type > max_key.type) 2863 break; 2864 2865 src = path->nodes[0]; 2866 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 2867 ins_nr++; 2868 goto next_slot; 2869 } else if (!ins_nr) { 2870 ins_start_slot = path->slots[0]; 2871 ins_nr = 1; 2872 goto next_slot; 2873 } 2874 2875 ret = copy_items(trans, log, dst_path, src, ins_start_slot, 2876 ins_nr, inode_only); 2877 if (ret) { 2878 err = ret; 2879 goto out_unlock; 2880 } 2881 ins_nr = 1; 2882 ins_start_slot = path->slots[0]; 2883 next_slot: 2884 2885 nritems = btrfs_header_nritems(path->nodes[0]); 2886 path->slots[0]++; 2887 if (path->slots[0] < nritems) { 2888 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 2889 path->slots[0]); 2890 goto again; 2891 } 2892 if (ins_nr) { 2893 ret = copy_items(trans, log, dst_path, src, 2894 ins_start_slot, 2895 ins_nr, inode_only); 2896 if (ret) { 2897 err = ret; 2898 goto out_unlock; 2899 } 2900 ins_nr = 0; 2901 } 2902 btrfs_release_path(path); 2903 2904 if (min_key.offset < (u64)-1) 2905 min_key.offset++; 2906 else if (min_key.type < (u8)-1) 2907 min_key.type++; 2908 else if (min_key.objectid < (u64)-1) 2909 min_key.objectid++; 2910 else 2911 break; 2912 } 2913 if (ins_nr) { 2914 ret = copy_items(trans, log, dst_path, src, 2915 ins_start_slot, 2916 ins_nr, inode_only); 2917 if (ret) { 2918 err = ret; 2919 goto out_unlock; 2920 } 2921 ins_nr = 0; 2922 } 2923 WARN_ON(ins_nr); 2924 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { 2925 btrfs_release_path(path); 2926 btrfs_release_path(dst_path); 2927 ret = log_directory_changes(trans, root, inode, path, dst_path); 2928 if (ret) { 2929 err = ret; 2930 goto out_unlock; 2931 } 2932 } 2933 BTRFS_I(inode)->logged_trans = trans->transid; 2934 out_unlock: 2935 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2936 2937 btrfs_free_path(path); 2938 btrfs_free_path(dst_path); 2939 return err; 2940 } 2941 2942 /* 2943 * follow the dentry parent pointers up the chain and see if any 2944 * of the directories in it require a full commit before they can 2945 * be logged. Returns zero if nothing special needs to be done or 1 if 2946 * a full commit is required. 2947 */ 2948 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 2949 struct inode *inode, 2950 struct dentry *parent, 2951 struct super_block *sb, 2952 u64 last_committed) 2953 { 2954 int ret = 0; 2955 struct btrfs_root *root; 2956 struct dentry *old_parent = NULL; 2957 2958 /* 2959 * for regular files, if its inode is already on disk, we don't 2960 * have to worry about the parents at all. This is because 2961 * we can use the last_unlink_trans field to record renames 2962 * and other fun in this file. 2963 */ 2964 if (S_ISREG(inode->i_mode) && 2965 BTRFS_I(inode)->generation <= last_committed && 2966 BTRFS_I(inode)->last_unlink_trans <= last_committed) 2967 goto out; 2968 2969 if (!S_ISDIR(inode->i_mode)) { 2970 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 2971 goto out; 2972 inode = parent->d_inode; 2973 } 2974 2975 while (1) { 2976 BTRFS_I(inode)->logged_trans = trans->transid; 2977 smp_mb(); 2978 2979 if (BTRFS_I(inode)->last_unlink_trans > last_committed) { 2980 root = BTRFS_I(inode)->root; 2981 2982 /* 2983 * make sure any commits to the log are forced 2984 * to be full commits 2985 */ 2986 root->fs_info->last_trans_log_full_commit = 2987 trans->transid; 2988 ret = 1; 2989 break; 2990 } 2991 2992 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 2993 break; 2994 2995 if (IS_ROOT(parent)) 2996 break; 2997 2998 parent = dget_parent(parent); 2999 dput(old_parent); 3000 old_parent = parent; 3001 inode = parent->d_inode; 3002 3003 } 3004 dput(old_parent); 3005 out: 3006 return ret; 3007 } 3008 3009 static int inode_in_log(struct btrfs_trans_handle *trans, 3010 struct inode *inode) 3011 { 3012 struct btrfs_root *root = BTRFS_I(inode)->root; 3013 int ret = 0; 3014 3015 mutex_lock(&root->log_mutex); 3016 if (BTRFS_I(inode)->logged_trans == trans->transid && 3017 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit) 3018 ret = 1; 3019 mutex_unlock(&root->log_mutex); 3020 return ret; 3021 } 3022 3023 3024 /* 3025 * helper function around btrfs_log_inode to make sure newly created 3026 * parent directories also end up in the log. A minimal inode and backref 3027 * only logging is done of any parent directories that are older than 3028 * the last committed transaction 3029 */ 3030 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 3031 struct btrfs_root *root, struct inode *inode, 3032 struct dentry *parent, int exists_only) 3033 { 3034 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; 3035 struct super_block *sb; 3036 struct dentry *old_parent = NULL; 3037 int ret = 0; 3038 u64 last_committed = root->fs_info->last_trans_committed; 3039 3040 sb = inode->i_sb; 3041 3042 if (btrfs_test_opt(root, NOTREELOG)) { 3043 ret = 1; 3044 goto end_no_trans; 3045 } 3046 3047 if (root->fs_info->last_trans_log_full_commit > 3048 root->fs_info->last_trans_committed) { 3049 ret = 1; 3050 goto end_no_trans; 3051 } 3052 3053 if (root != BTRFS_I(inode)->root || 3054 btrfs_root_refs(&root->root_item) == 0) { 3055 ret = 1; 3056 goto end_no_trans; 3057 } 3058 3059 ret = check_parent_dirs_for_sync(trans, inode, parent, 3060 sb, last_committed); 3061 if (ret) 3062 goto end_no_trans; 3063 3064 if (inode_in_log(trans, inode)) { 3065 ret = BTRFS_NO_LOG_SYNC; 3066 goto end_no_trans; 3067 } 3068 3069 ret = start_log_trans(trans, root); 3070 if (ret) 3071 goto end_trans; 3072 3073 ret = btrfs_log_inode(trans, root, inode, inode_only); 3074 if (ret) 3075 goto end_trans; 3076 3077 /* 3078 * for regular files, if its inode is already on disk, we don't 3079 * have to worry about the parents at all. This is because 3080 * we can use the last_unlink_trans field to record renames 3081 * and other fun in this file. 3082 */ 3083 if (S_ISREG(inode->i_mode) && 3084 BTRFS_I(inode)->generation <= last_committed && 3085 BTRFS_I(inode)->last_unlink_trans <= last_committed) { 3086 ret = 0; 3087 goto end_trans; 3088 } 3089 3090 inode_only = LOG_INODE_EXISTS; 3091 while (1) { 3092 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 3093 break; 3094 3095 inode = parent->d_inode; 3096 if (root != BTRFS_I(inode)->root) 3097 break; 3098 3099 if (BTRFS_I(inode)->generation > 3100 root->fs_info->last_trans_committed) { 3101 ret = btrfs_log_inode(trans, root, inode, inode_only); 3102 if (ret) 3103 goto end_trans; 3104 } 3105 if (IS_ROOT(parent)) 3106 break; 3107 3108 parent = dget_parent(parent); 3109 dput(old_parent); 3110 old_parent = parent; 3111 } 3112 ret = 0; 3113 end_trans: 3114 dput(old_parent); 3115 if (ret < 0) { 3116 BUG_ON(ret != -ENOSPC); 3117 root->fs_info->last_trans_log_full_commit = trans->transid; 3118 ret = 1; 3119 } 3120 btrfs_end_log_trans(root); 3121 end_no_trans: 3122 return ret; 3123 } 3124 3125 /* 3126 * it is not safe to log dentry if the chunk root has added new 3127 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 3128 * If this returns 1, you must commit the transaction to safely get your 3129 * data on disk. 3130 */ 3131 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 3132 struct btrfs_root *root, struct dentry *dentry) 3133 { 3134 struct dentry *parent = dget_parent(dentry); 3135 int ret; 3136 3137 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0); 3138 dput(parent); 3139 3140 return ret; 3141 } 3142 3143 /* 3144 * should be called during mount to recover any replay any log trees 3145 * from the FS 3146 */ 3147 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 3148 { 3149 int ret; 3150 struct btrfs_path *path; 3151 struct btrfs_trans_handle *trans; 3152 struct btrfs_key key; 3153 struct btrfs_key found_key; 3154 struct btrfs_key tmp_key; 3155 struct btrfs_root *log; 3156 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 3157 struct walk_control wc = { 3158 .process_func = process_one_buffer, 3159 .stage = 0, 3160 }; 3161 3162 path = btrfs_alloc_path(); 3163 if (!path) 3164 return -ENOMEM; 3165 3166 fs_info->log_root_recovering = 1; 3167 3168 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3169 BUG_ON(IS_ERR(trans)); 3170 3171 wc.trans = trans; 3172 wc.pin = 1; 3173 3174 ret = walk_log_tree(trans, log_root_tree, &wc); 3175 BUG_ON(ret); 3176 3177 again: 3178 key.objectid = BTRFS_TREE_LOG_OBJECTID; 3179 key.offset = (u64)-1; 3180 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 3181 3182 while (1) { 3183 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 3184 if (ret < 0) 3185 break; 3186 if (ret > 0) { 3187 if (path->slots[0] == 0) 3188 break; 3189 path->slots[0]--; 3190 } 3191 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3192 path->slots[0]); 3193 btrfs_release_path(path); 3194 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 3195 break; 3196 3197 log = btrfs_read_fs_root_no_radix(log_root_tree, 3198 &found_key); 3199 BUG_ON(IS_ERR(log)); 3200 3201 tmp_key.objectid = found_key.offset; 3202 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 3203 tmp_key.offset = (u64)-1; 3204 3205 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 3206 BUG_ON(IS_ERR_OR_NULL(wc.replay_dest)); 3207 3208 wc.replay_dest->log_root = log; 3209 btrfs_record_root_in_trans(trans, wc.replay_dest); 3210 ret = walk_log_tree(trans, log, &wc); 3211 BUG_ON(ret); 3212 3213 if (wc.stage == LOG_WALK_REPLAY_ALL) { 3214 ret = fixup_inode_link_counts(trans, wc.replay_dest, 3215 path); 3216 BUG_ON(ret); 3217 } 3218 3219 key.offset = found_key.offset - 1; 3220 wc.replay_dest->log_root = NULL; 3221 free_extent_buffer(log->node); 3222 free_extent_buffer(log->commit_root); 3223 kfree(log); 3224 3225 if (found_key.offset == 0) 3226 break; 3227 } 3228 btrfs_release_path(path); 3229 3230 /* step one is to pin it all, step two is to replay just inodes */ 3231 if (wc.pin) { 3232 wc.pin = 0; 3233 wc.process_func = replay_one_buffer; 3234 wc.stage = LOG_WALK_REPLAY_INODES; 3235 goto again; 3236 } 3237 /* step three is to replay everything */ 3238 if (wc.stage < LOG_WALK_REPLAY_ALL) { 3239 wc.stage++; 3240 goto again; 3241 } 3242 3243 btrfs_free_path(path); 3244 3245 free_extent_buffer(log_root_tree->node); 3246 log_root_tree->log_root = NULL; 3247 fs_info->log_root_recovering = 0; 3248 3249 /* step 4: commit the transaction, which also unpins the blocks */ 3250 btrfs_commit_transaction(trans, fs_info->tree_root); 3251 3252 kfree(log_root_tree); 3253 return 0; 3254 } 3255 3256 /* 3257 * there are some corner cases where we want to force a full 3258 * commit instead of allowing a directory to be logged. 3259 * 3260 * They revolve around files there were unlinked from the directory, and 3261 * this function updates the parent directory so that a full commit is 3262 * properly done if it is fsync'd later after the unlinks are done. 3263 */ 3264 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 3265 struct inode *dir, struct inode *inode, 3266 int for_rename) 3267 { 3268 /* 3269 * when we're logging a file, if it hasn't been renamed 3270 * or unlinked, and its inode is fully committed on disk, 3271 * we don't have to worry about walking up the directory chain 3272 * to log its parents. 3273 * 3274 * So, we use the last_unlink_trans field to put this transid 3275 * into the file. When the file is logged we check it and 3276 * don't log the parents if the file is fully on disk. 3277 */ 3278 if (S_ISREG(inode->i_mode)) 3279 BTRFS_I(inode)->last_unlink_trans = trans->transid; 3280 3281 /* 3282 * if this directory was already logged any new 3283 * names for this file/dir will get recorded 3284 */ 3285 smp_mb(); 3286 if (BTRFS_I(dir)->logged_trans == trans->transid) 3287 return; 3288 3289 /* 3290 * if the inode we're about to unlink was logged, 3291 * the log will be properly updated for any new names 3292 */ 3293 if (BTRFS_I(inode)->logged_trans == trans->transid) 3294 return; 3295 3296 /* 3297 * when renaming files across directories, if the directory 3298 * there we're unlinking from gets fsync'd later on, there's 3299 * no way to find the destination directory later and fsync it 3300 * properly. So, we have to be conservative and force commits 3301 * so the new name gets discovered. 3302 */ 3303 if (for_rename) 3304 goto record; 3305 3306 /* we can safely do the unlink without any special recording */ 3307 return; 3308 3309 record: 3310 BTRFS_I(dir)->last_unlink_trans = trans->transid; 3311 } 3312 3313 /* 3314 * Call this after adding a new name for a file and it will properly 3315 * update the log to reflect the new name. 3316 * 3317 * It will return zero if all goes well, and it will return 1 if a 3318 * full transaction commit is required. 3319 */ 3320 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 3321 struct inode *inode, struct inode *old_dir, 3322 struct dentry *parent) 3323 { 3324 struct btrfs_root * root = BTRFS_I(inode)->root; 3325 3326 /* 3327 * this will force the logging code to walk the dentry chain 3328 * up for the file 3329 */ 3330 if (S_ISREG(inode->i_mode)) 3331 BTRFS_I(inode)->last_unlink_trans = trans->transid; 3332 3333 /* 3334 * if this inode hasn't been logged and directory we're renaming it 3335 * from hasn't been logged, we don't need to log it 3336 */ 3337 if (BTRFS_I(inode)->logged_trans <= 3338 root->fs_info->last_trans_committed && 3339 (!old_dir || BTRFS_I(old_dir)->logged_trans <= 3340 root->fs_info->last_trans_committed)) 3341 return 0; 3342 3343 return btrfs_log_inode_parent(trans, root, inode, parent, 1); 3344 } 3345 3346