xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 95e9fd10)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28 
29 /* magic values for the inode_only field in btrfs_log_inode:
30  *
31  * LOG_INODE_ALL means to log everything
32  * LOG_INODE_EXISTS means to log just enough to recreate the inode
33  * during log replay
34  */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root, struct inode *inode,
96 			     int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 			     struct btrfs_root *root,
99 			     struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 				       struct btrfs_root *root,
102 				       struct btrfs_root *log,
103 				       struct btrfs_path *path,
104 				       u64 dirid, int del_all);
105 
106 /*
107  * tree logging is a special write ahead log used to make sure that
108  * fsyncs and O_SYNCs can happen without doing full tree commits.
109  *
110  * Full tree commits are expensive because they require commonly
111  * modified blocks to be recowed, creating many dirty pages in the
112  * extent tree an 4x-6x higher write load than ext3.
113  *
114  * Instead of doing a tree commit on every fsync, we use the
115  * key ranges and transaction ids to find items for a given file or directory
116  * that have changed in this transaction.  Those items are copied into
117  * a special tree (one per subvolume root), that tree is written to disk
118  * and then the fsync is considered complete.
119  *
120  * After a crash, items are copied out of the log-tree back into the
121  * subvolume tree.  Any file data extents found are recorded in the extent
122  * allocation tree, and the log-tree freed.
123  *
124  * The log tree is read three times, once to pin down all the extents it is
125  * using in ram and once, once to create all the inodes logged in the tree
126  * and once to do all the other items.
127  */
128 
129 /*
130  * start a sub transaction and setup the log tree
131  * this increments the log tree writer count to make the people
132  * syncing the tree wait for us to finish
133  */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 			   struct btrfs_root *root)
136 {
137 	int ret;
138 	int err = 0;
139 
140 	mutex_lock(&root->log_mutex);
141 	if (root->log_root) {
142 		if (!root->log_start_pid) {
143 			root->log_start_pid = current->pid;
144 			root->log_multiple_pids = false;
145 		} else if (root->log_start_pid != current->pid) {
146 			root->log_multiple_pids = true;
147 		}
148 
149 		root->log_batch++;
150 		atomic_inc(&root->log_writers);
151 		mutex_unlock(&root->log_mutex);
152 		return 0;
153 	}
154 	root->log_multiple_pids = false;
155 	root->log_start_pid = current->pid;
156 	mutex_lock(&root->fs_info->tree_log_mutex);
157 	if (!root->fs_info->log_root_tree) {
158 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 		if (ret)
160 			err = ret;
161 	}
162 	if (err == 0 && !root->log_root) {
163 		ret = btrfs_add_log_tree(trans, root);
164 		if (ret)
165 			err = ret;
166 	}
167 	mutex_unlock(&root->fs_info->tree_log_mutex);
168 	root->log_batch++;
169 	atomic_inc(&root->log_writers);
170 	mutex_unlock(&root->log_mutex);
171 	return err;
172 }
173 
174 /*
175  * returns 0 if there was a log transaction running and we were able
176  * to join, or returns -ENOENT if there were not transactions
177  * in progress
178  */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 	int ret = -ENOENT;
182 
183 	smp_mb();
184 	if (!root->log_root)
185 		return -ENOENT;
186 
187 	mutex_lock(&root->log_mutex);
188 	if (root->log_root) {
189 		ret = 0;
190 		atomic_inc(&root->log_writers);
191 	}
192 	mutex_unlock(&root->log_mutex);
193 	return ret;
194 }
195 
196 /*
197  * This either makes the current running log transaction wait
198  * until you call btrfs_end_log_trans() or it makes any future
199  * log transactions wait until you call btrfs_end_log_trans()
200  */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 	int ret = -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	atomic_inc(&root->log_writers);
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * indicate we're done making changes to the log tree
213  * and wake up anyone waiting to do a sync
214  */
215 void btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 	if (atomic_dec_and_test(&root->log_writers)) {
218 		smp_mb();
219 		if (waitqueue_active(&root->log_writer_wait))
220 			wake_up(&root->log_writer_wait);
221 	}
222 }
223 
224 
225 /*
226  * the walk control struct is used to pass state down the chain when
227  * processing the log tree.  The stage field tells us which part
228  * of the log tree processing we are currently doing.  The others
229  * are state fields used for that specific part
230  */
231 struct walk_control {
232 	/* should we free the extent on disk when done?  This is used
233 	 * at transaction commit time while freeing a log tree
234 	 */
235 	int free;
236 
237 	/* should we write out the extent buffer?  This is used
238 	 * while flushing the log tree to disk during a sync
239 	 */
240 	int write;
241 
242 	/* should we wait for the extent buffer io to finish?  Also used
243 	 * while flushing the log tree to disk for a sync
244 	 */
245 	int wait;
246 
247 	/* pin only walk, we record which extents on disk belong to the
248 	 * log trees
249 	 */
250 	int pin;
251 
252 	/* what stage of the replay code we're currently in */
253 	int stage;
254 
255 	/* the root we are currently replaying */
256 	struct btrfs_root *replay_dest;
257 
258 	/* the trans handle for the current replay */
259 	struct btrfs_trans_handle *trans;
260 
261 	/* the function that gets used to process blocks we find in the
262 	 * tree.  Note the extent_buffer might not be up to date when it is
263 	 * passed in, and it must be checked or read if you need the data
264 	 * inside it
265 	 */
266 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
267 			    struct walk_control *wc, u64 gen);
268 };
269 
270 /*
271  * process_func used to pin down extents, write them or wait on them
272  */
273 static int process_one_buffer(struct btrfs_root *log,
274 			      struct extent_buffer *eb,
275 			      struct walk_control *wc, u64 gen)
276 {
277 	if (wc->pin)
278 		btrfs_pin_extent_for_log_replay(wc->trans,
279 						log->fs_info->extent_root,
280 						eb->start, eb->len);
281 
282 	if (btrfs_buffer_uptodate(eb, gen, 0)) {
283 		if (wc->write)
284 			btrfs_write_tree_block(eb);
285 		if (wc->wait)
286 			btrfs_wait_tree_block_writeback(eb);
287 	}
288 	return 0;
289 }
290 
291 /*
292  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
293  * to the src data we are copying out.
294  *
295  * root is the tree we are copying into, and path is a scratch
296  * path for use in this function (it should be released on entry and
297  * will be released on exit).
298  *
299  * If the key is already in the destination tree the existing item is
300  * overwritten.  If the existing item isn't big enough, it is extended.
301  * If it is too large, it is truncated.
302  *
303  * If the key isn't in the destination yet, a new item is inserted.
304  */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 				   struct btrfs_root *root,
307 				   struct btrfs_path *path,
308 				   struct extent_buffer *eb, int slot,
309 				   struct btrfs_key *key)
310 {
311 	int ret;
312 	u32 item_size;
313 	u64 saved_i_size = 0;
314 	int save_old_i_size = 0;
315 	unsigned long src_ptr;
316 	unsigned long dst_ptr;
317 	int overwrite_root = 0;
318 
319 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 		overwrite_root = 1;
321 
322 	item_size = btrfs_item_size_nr(eb, slot);
323 	src_ptr = btrfs_item_ptr_offset(eb, slot);
324 
325 	/* look for the key in the destination tree */
326 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 	if (ret == 0) {
328 		char *src_copy;
329 		char *dst_copy;
330 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 						  path->slots[0]);
332 		if (dst_size != item_size)
333 			goto insert;
334 
335 		if (item_size == 0) {
336 			btrfs_release_path(path);
337 			return 0;
338 		}
339 		dst_copy = kmalloc(item_size, GFP_NOFS);
340 		src_copy = kmalloc(item_size, GFP_NOFS);
341 		if (!dst_copy || !src_copy) {
342 			btrfs_release_path(path);
343 			kfree(dst_copy);
344 			kfree(src_copy);
345 			return -ENOMEM;
346 		}
347 
348 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
349 
350 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 				   item_size);
353 		ret = memcmp(dst_copy, src_copy, item_size);
354 
355 		kfree(dst_copy);
356 		kfree(src_copy);
357 		/*
358 		 * they have the same contents, just return, this saves
359 		 * us from cowing blocks in the destination tree and doing
360 		 * extra writes that may not have been done by a previous
361 		 * sync
362 		 */
363 		if (ret == 0) {
364 			btrfs_release_path(path);
365 			return 0;
366 		}
367 
368 	}
369 insert:
370 	btrfs_release_path(path);
371 	/* try to insert the key into the destination tree */
372 	ret = btrfs_insert_empty_item(trans, root, path,
373 				      key, item_size);
374 
375 	/* make sure any existing item is the correct size */
376 	if (ret == -EEXIST) {
377 		u32 found_size;
378 		found_size = btrfs_item_size_nr(path->nodes[0],
379 						path->slots[0]);
380 		if (found_size > item_size)
381 			btrfs_truncate_item(trans, root, path, item_size, 1);
382 		else if (found_size < item_size)
383 			btrfs_extend_item(trans, root, path,
384 					  item_size - found_size);
385 	} else if (ret) {
386 		return ret;
387 	}
388 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
389 					path->slots[0]);
390 
391 	/* don't overwrite an existing inode if the generation number
392 	 * was logged as zero.  This is done when the tree logging code
393 	 * is just logging an inode to make sure it exists after recovery.
394 	 *
395 	 * Also, don't overwrite i_size on directories during replay.
396 	 * log replay inserts and removes directory items based on the
397 	 * state of the tree found in the subvolume, and i_size is modified
398 	 * as it goes
399 	 */
400 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
401 		struct btrfs_inode_item *src_item;
402 		struct btrfs_inode_item *dst_item;
403 
404 		src_item = (struct btrfs_inode_item *)src_ptr;
405 		dst_item = (struct btrfs_inode_item *)dst_ptr;
406 
407 		if (btrfs_inode_generation(eb, src_item) == 0)
408 			goto no_copy;
409 
410 		if (overwrite_root &&
411 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
412 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
413 			save_old_i_size = 1;
414 			saved_i_size = btrfs_inode_size(path->nodes[0],
415 							dst_item);
416 		}
417 	}
418 
419 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
420 			   src_ptr, item_size);
421 
422 	if (save_old_i_size) {
423 		struct btrfs_inode_item *dst_item;
424 		dst_item = (struct btrfs_inode_item *)dst_ptr;
425 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
426 	}
427 
428 	/* make sure the generation is filled in */
429 	if (key->type == BTRFS_INODE_ITEM_KEY) {
430 		struct btrfs_inode_item *dst_item;
431 		dst_item = (struct btrfs_inode_item *)dst_ptr;
432 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
433 			btrfs_set_inode_generation(path->nodes[0], dst_item,
434 						   trans->transid);
435 		}
436 	}
437 no_copy:
438 	btrfs_mark_buffer_dirty(path->nodes[0]);
439 	btrfs_release_path(path);
440 	return 0;
441 }
442 
443 /*
444  * simple helper to read an inode off the disk from a given root
445  * This can only be called for subvolume roots and not for the log
446  */
447 static noinline struct inode *read_one_inode(struct btrfs_root *root,
448 					     u64 objectid)
449 {
450 	struct btrfs_key key;
451 	struct inode *inode;
452 
453 	key.objectid = objectid;
454 	key.type = BTRFS_INODE_ITEM_KEY;
455 	key.offset = 0;
456 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
457 	if (IS_ERR(inode)) {
458 		inode = NULL;
459 	} else if (is_bad_inode(inode)) {
460 		iput(inode);
461 		inode = NULL;
462 	}
463 	return inode;
464 }
465 
466 /* replays a single extent in 'eb' at 'slot' with 'key' into the
467  * subvolume 'root'.  path is released on entry and should be released
468  * on exit.
469  *
470  * extents in the log tree have not been allocated out of the extent
471  * tree yet.  So, this completes the allocation, taking a reference
472  * as required if the extent already exists or creating a new extent
473  * if it isn't in the extent allocation tree yet.
474  *
475  * The extent is inserted into the file, dropping any existing extents
476  * from the file that overlap the new one.
477  */
478 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
479 				      struct btrfs_root *root,
480 				      struct btrfs_path *path,
481 				      struct extent_buffer *eb, int slot,
482 				      struct btrfs_key *key)
483 {
484 	int found_type;
485 	u64 mask = root->sectorsize - 1;
486 	u64 extent_end;
487 	u64 alloc_hint;
488 	u64 start = key->offset;
489 	u64 saved_nbytes;
490 	struct btrfs_file_extent_item *item;
491 	struct inode *inode = NULL;
492 	unsigned long size;
493 	int ret = 0;
494 
495 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
496 	found_type = btrfs_file_extent_type(eb, item);
497 
498 	if (found_type == BTRFS_FILE_EXTENT_REG ||
499 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
500 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
501 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
502 		size = btrfs_file_extent_inline_len(eb, item);
503 		extent_end = (start + size + mask) & ~mask;
504 	} else {
505 		ret = 0;
506 		goto out;
507 	}
508 
509 	inode = read_one_inode(root, key->objectid);
510 	if (!inode) {
511 		ret = -EIO;
512 		goto out;
513 	}
514 
515 	/*
516 	 * first check to see if we already have this extent in the
517 	 * file.  This must be done before the btrfs_drop_extents run
518 	 * so we don't try to drop this extent.
519 	 */
520 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
521 				       start, 0);
522 
523 	if (ret == 0 &&
524 	    (found_type == BTRFS_FILE_EXTENT_REG ||
525 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
526 		struct btrfs_file_extent_item cmp1;
527 		struct btrfs_file_extent_item cmp2;
528 		struct btrfs_file_extent_item *existing;
529 		struct extent_buffer *leaf;
530 
531 		leaf = path->nodes[0];
532 		existing = btrfs_item_ptr(leaf, path->slots[0],
533 					  struct btrfs_file_extent_item);
534 
535 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
536 				   sizeof(cmp1));
537 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
538 				   sizeof(cmp2));
539 
540 		/*
541 		 * we already have a pointer to this exact extent,
542 		 * we don't have to do anything
543 		 */
544 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
545 			btrfs_release_path(path);
546 			goto out;
547 		}
548 	}
549 	btrfs_release_path(path);
550 
551 	saved_nbytes = inode_get_bytes(inode);
552 	/* drop any overlapping extents */
553 	ret = btrfs_drop_extents(trans, inode, start, extent_end,
554 				 &alloc_hint, 1);
555 	BUG_ON(ret);
556 
557 	if (found_type == BTRFS_FILE_EXTENT_REG ||
558 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
559 		u64 offset;
560 		unsigned long dest_offset;
561 		struct btrfs_key ins;
562 
563 		ret = btrfs_insert_empty_item(trans, root, path, key,
564 					      sizeof(*item));
565 		BUG_ON(ret);
566 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
567 						    path->slots[0]);
568 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
569 				(unsigned long)item,  sizeof(*item));
570 
571 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
572 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
573 		ins.type = BTRFS_EXTENT_ITEM_KEY;
574 		offset = key->offset - btrfs_file_extent_offset(eb, item);
575 
576 		if (ins.objectid > 0) {
577 			u64 csum_start;
578 			u64 csum_end;
579 			LIST_HEAD(ordered_sums);
580 			/*
581 			 * is this extent already allocated in the extent
582 			 * allocation tree?  If so, just add a reference
583 			 */
584 			ret = btrfs_lookup_extent(root, ins.objectid,
585 						ins.offset);
586 			if (ret == 0) {
587 				ret = btrfs_inc_extent_ref(trans, root,
588 						ins.objectid, ins.offset,
589 						0, root->root_key.objectid,
590 						key->objectid, offset, 0);
591 				BUG_ON(ret);
592 			} else {
593 				/*
594 				 * insert the extent pointer in the extent
595 				 * allocation tree
596 				 */
597 				ret = btrfs_alloc_logged_file_extent(trans,
598 						root, root->root_key.objectid,
599 						key->objectid, offset, &ins);
600 				BUG_ON(ret);
601 			}
602 			btrfs_release_path(path);
603 
604 			if (btrfs_file_extent_compression(eb, item)) {
605 				csum_start = ins.objectid;
606 				csum_end = csum_start + ins.offset;
607 			} else {
608 				csum_start = ins.objectid +
609 					btrfs_file_extent_offset(eb, item);
610 				csum_end = csum_start +
611 					btrfs_file_extent_num_bytes(eb, item);
612 			}
613 
614 			ret = btrfs_lookup_csums_range(root->log_root,
615 						csum_start, csum_end - 1,
616 						&ordered_sums, 0);
617 			BUG_ON(ret);
618 			while (!list_empty(&ordered_sums)) {
619 				struct btrfs_ordered_sum *sums;
620 				sums = list_entry(ordered_sums.next,
621 						struct btrfs_ordered_sum,
622 						list);
623 				ret = btrfs_csum_file_blocks(trans,
624 						root->fs_info->csum_root,
625 						sums);
626 				BUG_ON(ret);
627 				list_del(&sums->list);
628 				kfree(sums);
629 			}
630 		} else {
631 			btrfs_release_path(path);
632 		}
633 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
634 		/* inline extents are easy, we just overwrite them */
635 		ret = overwrite_item(trans, root, path, eb, slot, key);
636 		BUG_ON(ret);
637 	}
638 
639 	inode_set_bytes(inode, saved_nbytes);
640 	ret = btrfs_update_inode(trans, root, inode);
641 out:
642 	if (inode)
643 		iput(inode);
644 	return ret;
645 }
646 
647 /*
648  * when cleaning up conflicts between the directory names in the
649  * subvolume, directory names in the log and directory names in the
650  * inode back references, we may have to unlink inodes from directories.
651  *
652  * This is a helper function to do the unlink of a specific directory
653  * item
654  */
655 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
656 				      struct btrfs_root *root,
657 				      struct btrfs_path *path,
658 				      struct inode *dir,
659 				      struct btrfs_dir_item *di)
660 {
661 	struct inode *inode;
662 	char *name;
663 	int name_len;
664 	struct extent_buffer *leaf;
665 	struct btrfs_key location;
666 	int ret;
667 
668 	leaf = path->nodes[0];
669 
670 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
671 	name_len = btrfs_dir_name_len(leaf, di);
672 	name = kmalloc(name_len, GFP_NOFS);
673 	if (!name)
674 		return -ENOMEM;
675 
676 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
677 	btrfs_release_path(path);
678 
679 	inode = read_one_inode(root, location.objectid);
680 	if (!inode) {
681 		kfree(name);
682 		return -EIO;
683 	}
684 
685 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
686 	BUG_ON(ret);
687 
688 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
689 	BUG_ON(ret);
690 	kfree(name);
691 
692 	iput(inode);
693 
694 	btrfs_run_delayed_items(trans, root);
695 	return ret;
696 }
697 
698 /*
699  * helper function to see if a given name and sequence number found
700  * in an inode back reference are already in a directory and correctly
701  * point to this inode
702  */
703 static noinline int inode_in_dir(struct btrfs_root *root,
704 				 struct btrfs_path *path,
705 				 u64 dirid, u64 objectid, u64 index,
706 				 const char *name, int name_len)
707 {
708 	struct btrfs_dir_item *di;
709 	struct btrfs_key location;
710 	int match = 0;
711 
712 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
713 					 index, name, name_len, 0);
714 	if (di && !IS_ERR(di)) {
715 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
716 		if (location.objectid != objectid)
717 			goto out;
718 	} else
719 		goto out;
720 	btrfs_release_path(path);
721 
722 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
723 	if (di && !IS_ERR(di)) {
724 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
725 		if (location.objectid != objectid)
726 			goto out;
727 	} else
728 		goto out;
729 	match = 1;
730 out:
731 	btrfs_release_path(path);
732 	return match;
733 }
734 
735 /*
736  * helper function to check a log tree for a named back reference in
737  * an inode.  This is used to decide if a back reference that is
738  * found in the subvolume conflicts with what we find in the log.
739  *
740  * inode backreferences may have multiple refs in a single item,
741  * during replay we process one reference at a time, and we don't
742  * want to delete valid links to a file from the subvolume if that
743  * link is also in the log.
744  */
745 static noinline int backref_in_log(struct btrfs_root *log,
746 				   struct btrfs_key *key,
747 				   char *name, int namelen)
748 {
749 	struct btrfs_path *path;
750 	struct btrfs_inode_ref *ref;
751 	unsigned long ptr;
752 	unsigned long ptr_end;
753 	unsigned long name_ptr;
754 	int found_name_len;
755 	int item_size;
756 	int ret;
757 	int match = 0;
758 
759 	path = btrfs_alloc_path();
760 	if (!path)
761 		return -ENOMEM;
762 
763 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
764 	if (ret != 0)
765 		goto out;
766 
767 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
768 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
769 	ptr_end = ptr + item_size;
770 	while (ptr < ptr_end) {
771 		ref = (struct btrfs_inode_ref *)ptr;
772 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
773 		if (found_name_len == namelen) {
774 			name_ptr = (unsigned long)(ref + 1);
775 			ret = memcmp_extent_buffer(path->nodes[0], name,
776 						   name_ptr, namelen);
777 			if (ret == 0) {
778 				match = 1;
779 				goto out;
780 			}
781 		}
782 		ptr = (unsigned long)(ref + 1) + found_name_len;
783 	}
784 out:
785 	btrfs_free_path(path);
786 	return match;
787 }
788 
789 
790 /*
791  * replay one inode back reference item found in the log tree.
792  * eb, slot and key refer to the buffer and key found in the log tree.
793  * root is the destination we are replaying into, and path is for temp
794  * use by this function.  (it should be released on return).
795  */
796 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
797 				  struct btrfs_root *root,
798 				  struct btrfs_root *log,
799 				  struct btrfs_path *path,
800 				  struct extent_buffer *eb, int slot,
801 				  struct btrfs_key *key)
802 {
803 	struct btrfs_inode_ref *ref;
804 	struct btrfs_dir_item *di;
805 	struct inode *dir;
806 	struct inode *inode;
807 	unsigned long ref_ptr;
808 	unsigned long ref_end;
809 	char *name;
810 	int namelen;
811 	int ret;
812 	int search_done = 0;
813 
814 	/*
815 	 * it is possible that we didn't log all the parent directories
816 	 * for a given inode.  If we don't find the dir, just don't
817 	 * copy the back ref in.  The link count fixup code will take
818 	 * care of the rest
819 	 */
820 	dir = read_one_inode(root, key->offset);
821 	if (!dir)
822 		return -ENOENT;
823 
824 	inode = read_one_inode(root, key->objectid);
825 	if (!inode) {
826 		iput(dir);
827 		return -EIO;
828 	}
829 
830 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
831 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
832 
833 again:
834 	ref = (struct btrfs_inode_ref *)ref_ptr;
835 
836 	namelen = btrfs_inode_ref_name_len(eb, ref);
837 	name = kmalloc(namelen, GFP_NOFS);
838 	BUG_ON(!name);
839 
840 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
841 
842 	/* if we already have a perfect match, we're done */
843 	if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
844 			 btrfs_inode_ref_index(eb, ref),
845 			 name, namelen)) {
846 		goto out;
847 	}
848 
849 	/*
850 	 * look for a conflicting back reference in the metadata.
851 	 * if we find one we have to unlink that name of the file
852 	 * before we add our new link.  Later on, we overwrite any
853 	 * existing back reference, and we don't want to create
854 	 * dangling pointers in the directory.
855 	 */
856 
857 	if (search_done)
858 		goto insert;
859 
860 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
861 	if (ret == 0) {
862 		char *victim_name;
863 		int victim_name_len;
864 		struct btrfs_inode_ref *victim_ref;
865 		unsigned long ptr;
866 		unsigned long ptr_end;
867 		struct extent_buffer *leaf = path->nodes[0];
868 
869 		/* are we trying to overwrite a back ref for the root directory
870 		 * if so, just jump out, we're done
871 		 */
872 		if (key->objectid == key->offset)
873 			goto out_nowrite;
874 
875 		/* check all the names in this back reference to see
876 		 * if they are in the log.  if so, we allow them to stay
877 		 * otherwise they must be unlinked as a conflict
878 		 */
879 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
880 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
881 		while (ptr < ptr_end) {
882 			victim_ref = (struct btrfs_inode_ref *)ptr;
883 			victim_name_len = btrfs_inode_ref_name_len(leaf,
884 								   victim_ref);
885 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
886 			BUG_ON(!victim_name);
887 
888 			read_extent_buffer(leaf, victim_name,
889 					   (unsigned long)(victim_ref + 1),
890 					   victim_name_len);
891 
892 			if (!backref_in_log(log, key, victim_name,
893 					    victim_name_len)) {
894 				btrfs_inc_nlink(inode);
895 				btrfs_release_path(path);
896 
897 				ret = btrfs_unlink_inode(trans, root, dir,
898 							 inode, victim_name,
899 							 victim_name_len);
900 				btrfs_run_delayed_items(trans, root);
901 			}
902 			kfree(victim_name);
903 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
904 		}
905 		BUG_ON(ret);
906 
907 		/*
908 		 * NOTE: we have searched root tree and checked the
909 		 * coresponding ref, it does not need to check again.
910 		 */
911 		search_done = 1;
912 	}
913 	btrfs_release_path(path);
914 
915 	/* look for a conflicting sequence number */
916 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
917 					 btrfs_inode_ref_index(eb, ref),
918 					 name, namelen, 0);
919 	if (di && !IS_ERR(di)) {
920 		ret = drop_one_dir_item(trans, root, path, dir, di);
921 		BUG_ON(ret);
922 	}
923 	btrfs_release_path(path);
924 
925 	/* look for a conflicing name */
926 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
927 				   name, namelen, 0);
928 	if (di && !IS_ERR(di)) {
929 		ret = drop_one_dir_item(trans, root, path, dir, di);
930 		BUG_ON(ret);
931 	}
932 	btrfs_release_path(path);
933 
934 insert:
935 	/* insert our name */
936 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
937 			     btrfs_inode_ref_index(eb, ref));
938 	BUG_ON(ret);
939 
940 	btrfs_update_inode(trans, root, inode);
941 
942 out:
943 	ref_ptr = (unsigned long)(ref + 1) + namelen;
944 	kfree(name);
945 	if (ref_ptr < ref_end)
946 		goto again;
947 
948 	/* finally write the back reference in the inode */
949 	ret = overwrite_item(trans, root, path, eb, slot, key);
950 	BUG_ON(ret);
951 
952 out_nowrite:
953 	btrfs_release_path(path);
954 	iput(dir);
955 	iput(inode);
956 	return 0;
957 }
958 
959 static int insert_orphan_item(struct btrfs_trans_handle *trans,
960 			      struct btrfs_root *root, u64 offset)
961 {
962 	int ret;
963 	ret = btrfs_find_orphan_item(root, offset);
964 	if (ret > 0)
965 		ret = btrfs_insert_orphan_item(trans, root, offset);
966 	return ret;
967 }
968 
969 
970 /*
971  * There are a few corners where the link count of the file can't
972  * be properly maintained during replay.  So, instead of adding
973  * lots of complexity to the log code, we just scan the backrefs
974  * for any file that has been through replay.
975  *
976  * The scan will update the link count on the inode to reflect the
977  * number of back refs found.  If it goes down to zero, the iput
978  * will free the inode.
979  */
980 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
981 					   struct btrfs_root *root,
982 					   struct inode *inode)
983 {
984 	struct btrfs_path *path;
985 	int ret;
986 	struct btrfs_key key;
987 	u64 nlink = 0;
988 	unsigned long ptr;
989 	unsigned long ptr_end;
990 	int name_len;
991 	u64 ino = btrfs_ino(inode);
992 
993 	key.objectid = ino;
994 	key.type = BTRFS_INODE_REF_KEY;
995 	key.offset = (u64)-1;
996 
997 	path = btrfs_alloc_path();
998 	if (!path)
999 		return -ENOMEM;
1000 
1001 	while (1) {
1002 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1003 		if (ret < 0)
1004 			break;
1005 		if (ret > 0) {
1006 			if (path->slots[0] == 0)
1007 				break;
1008 			path->slots[0]--;
1009 		}
1010 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1011 				      path->slots[0]);
1012 		if (key.objectid != ino ||
1013 		    key.type != BTRFS_INODE_REF_KEY)
1014 			break;
1015 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1016 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1017 						   path->slots[0]);
1018 		while (ptr < ptr_end) {
1019 			struct btrfs_inode_ref *ref;
1020 
1021 			ref = (struct btrfs_inode_ref *)ptr;
1022 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1023 							    ref);
1024 			ptr = (unsigned long)(ref + 1) + name_len;
1025 			nlink++;
1026 		}
1027 
1028 		if (key.offset == 0)
1029 			break;
1030 		key.offset--;
1031 		btrfs_release_path(path);
1032 	}
1033 	btrfs_release_path(path);
1034 	if (nlink != inode->i_nlink) {
1035 		set_nlink(inode, nlink);
1036 		btrfs_update_inode(trans, root, inode);
1037 	}
1038 	BTRFS_I(inode)->index_cnt = (u64)-1;
1039 
1040 	if (inode->i_nlink == 0) {
1041 		if (S_ISDIR(inode->i_mode)) {
1042 			ret = replay_dir_deletes(trans, root, NULL, path,
1043 						 ino, 1);
1044 			BUG_ON(ret);
1045 		}
1046 		ret = insert_orphan_item(trans, root, ino);
1047 		BUG_ON(ret);
1048 	}
1049 	btrfs_free_path(path);
1050 
1051 	return 0;
1052 }
1053 
1054 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1055 					    struct btrfs_root *root,
1056 					    struct btrfs_path *path)
1057 {
1058 	int ret;
1059 	struct btrfs_key key;
1060 	struct inode *inode;
1061 
1062 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1063 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1064 	key.offset = (u64)-1;
1065 	while (1) {
1066 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1067 		if (ret < 0)
1068 			break;
1069 
1070 		if (ret == 1) {
1071 			if (path->slots[0] == 0)
1072 				break;
1073 			path->slots[0]--;
1074 		}
1075 
1076 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1077 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1078 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1079 			break;
1080 
1081 		ret = btrfs_del_item(trans, root, path);
1082 		if (ret)
1083 			goto out;
1084 
1085 		btrfs_release_path(path);
1086 		inode = read_one_inode(root, key.offset);
1087 		if (!inode)
1088 			return -EIO;
1089 
1090 		ret = fixup_inode_link_count(trans, root, inode);
1091 		BUG_ON(ret);
1092 
1093 		iput(inode);
1094 
1095 		/*
1096 		 * fixup on a directory may create new entries,
1097 		 * make sure we always look for the highset possible
1098 		 * offset
1099 		 */
1100 		key.offset = (u64)-1;
1101 	}
1102 	ret = 0;
1103 out:
1104 	btrfs_release_path(path);
1105 	return ret;
1106 }
1107 
1108 
1109 /*
1110  * record a given inode in the fixup dir so we can check its link
1111  * count when replay is done.  The link count is incremented here
1112  * so the inode won't go away until we check it
1113  */
1114 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1115 				      struct btrfs_root *root,
1116 				      struct btrfs_path *path,
1117 				      u64 objectid)
1118 {
1119 	struct btrfs_key key;
1120 	int ret = 0;
1121 	struct inode *inode;
1122 
1123 	inode = read_one_inode(root, objectid);
1124 	if (!inode)
1125 		return -EIO;
1126 
1127 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1128 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1129 	key.offset = objectid;
1130 
1131 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1132 
1133 	btrfs_release_path(path);
1134 	if (ret == 0) {
1135 		btrfs_inc_nlink(inode);
1136 		ret = btrfs_update_inode(trans, root, inode);
1137 	} else if (ret == -EEXIST) {
1138 		ret = 0;
1139 	} else {
1140 		BUG();
1141 	}
1142 	iput(inode);
1143 
1144 	return ret;
1145 }
1146 
1147 /*
1148  * when replaying the log for a directory, we only insert names
1149  * for inodes that actually exist.  This means an fsync on a directory
1150  * does not implicitly fsync all the new files in it
1151  */
1152 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1153 				    struct btrfs_root *root,
1154 				    struct btrfs_path *path,
1155 				    u64 dirid, u64 index,
1156 				    char *name, int name_len, u8 type,
1157 				    struct btrfs_key *location)
1158 {
1159 	struct inode *inode;
1160 	struct inode *dir;
1161 	int ret;
1162 
1163 	inode = read_one_inode(root, location->objectid);
1164 	if (!inode)
1165 		return -ENOENT;
1166 
1167 	dir = read_one_inode(root, dirid);
1168 	if (!dir) {
1169 		iput(inode);
1170 		return -EIO;
1171 	}
1172 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1173 
1174 	/* FIXME, put inode into FIXUP list */
1175 
1176 	iput(inode);
1177 	iput(dir);
1178 	return ret;
1179 }
1180 
1181 /*
1182  * take a single entry in a log directory item and replay it into
1183  * the subvolume.
1184  *
1185  * if a conflicting item exists in the subdirectory already,
1186  * the inode it points to is unlinked and put into the link count
1187  * fix up tree.
1188  *
1189  * If a name from the log points to a file or directory that does
1190  * not exist in the FS, it is skipped.  fsyncs on directories
1191  * do not force down inodes inside that directory, just changes to the
1192  * names or unlinks in a directory.
1193  */
1194 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1195 				    struct btrfs_root *root,
1196 				    struct btrfs_path *path,
1197 				    struct extent_buffer *eb,
1198 				    struct btrfs_dir_item *di,
1199 				    struct btrfs_key *key)
1200 {
1201 	char *name;
1202 	int name_len;
1203 	struct btrfs_dir_item *dst_di;
1204 	struct btrfs_key found_key;
1205 	struct btrfs_key log_key;
1206 	struct inode *dir;
1207 	u8 log_type;
1208 	int exists;
1209 	int ret;
1210 
1211 	dir = read_one_inode(root, key->objectid);
1212 	if (!dir)
1213 		return -EIO;
1214 
1215 	name_len = btrfs_dir_name_len(eb, di);
1216 	name = kmalloc(name_len, GFP_NOFS);
1217 	if (!name)
1218 		return -ENOMEM;
1219 
1220 	log_type = btrfs_dir_type(eb, di);
1221 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1222 		   name_len);
1223 
1224 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1225 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1226 	if (exists == 0)
1227 		exists = 1;
1228 	else
1229 		exists = 0;
1230 	btrfs_release_path(path);
1231 
1232 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1233 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1234 				       name, name_len, 1);
1235 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1236 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1237 						     key->objectid,
1238 						     key->offset, name,
1239 						     name_len, 1);
1240 	} else {
1241 		BUG();
1242 	}
1243 	if (IS_ERR_OR_NULL(dst_di)) {
1244 		/* we need a sequence number to insert, so we only
1245 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1246 		 */
1247 		if (key->type != BTRFS_DIR_INDEX_KEY)
1248 			goto out;
1249 		goto insert;
1250 	}
1251 
1252 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1253 	/* the existing item matches the logged item */
1254 	if (found_key.objectid == log_key.objectid &&
1255 	    found_key.type == log_key.type &&
1256 	    found_key.offset == log_key.offset &&
1257 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1258 		goto out;
1259 	}
1260 
1261 	/*
1262 	 * don't drop the conflicting directory entry if the inode
1263 	 * for the new entry doesn't exist
1264 	 */
1265 	if (!exists)
1266 		goto out;
1267 
1268 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1269 	BUG_ON(ret);
1270 
1271 	if (key->type == BTRFS_DIR_INDEX_KEY)
1272 		goto insert;
1273 out:
1274 	btrfs_release_path(path);
1275 	kfree(name);
1276 	iput(dir);
1277 	return 0;
1278 
1279 insert:
1280 	btrfs_release_path(path);
1281 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1282 			      name, name_len, log_type, &log_key);
1283 
1284 	BUG_ON(ret && ret != -ENOENT);
1285 	goto out;
1286 }
1287 
1288 /*
1289  * find all the names in a directory item and reconcile them into
1290  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1291  * one name in a directory item, but the same code gets used for
1292  * both directory index types
1293  */
1294 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1295 					struct btrfs_root *root,
1296 					struct btrfs_path *path,
1297 					struct extent_buffer *eb, int slot,
1298 					struct btrfs_key *key)
1299 {
1300 	int ret;
1301 	u32 item_size = btrfs_item_size_nr(eb, slot);
1302 	struct btrfs_dir_item *di;
1303 	int name_len;
1304 	unsigned long ptr;
1305 	unsigned long ptr_end;
1306 
1307 	ptr = btrfs_item_ptr_offset(eb, slot);
1308 	ptr_end = ptr + item_size;
1309 	while (ptr < ptr_end) {
1310 		di = (struct btrfs_dir_item *)ptr;
1311 		if (verify_dir_item(root, eb, di))
1312 			return -EIO;
1313 		name_len = btrfs_dir_name_len(eb, di);
1314 		ret = replay_one_name(trans, root, path, eb, di, key);
1315 		BUG_ON(ret);
1316 		ptr = (unsigned long)(di + 1);
1317 		ptr += name_len;
1318 	}
1319 	return 0;
1320 }
1321 
1322 /*
1323  * directory replay has two parts.  There are the standard directory
1324  * items in the log copied from the subvolume, and range items
1325  * created in the log while the subvolume was logged.
1326  *
1327  * The range items tell us which parts of the key space the log
1328  * is authoritative for.  During replay, if a key in the subvolume
1329  * directory is in a logged range item, but not actually in the log
1330  * that means it was deleted from the directory before the fsync
1331  * and should be removed.
1332  */
1333 static noinline int find_dir_range(struct btrfs_root *root,
1334 				   struct btrfs_path *path,
1335 				   u64 dirid, int key_type,
1336 				   u64 *start_ret, u64 *end_ret)
1337 {
1338 	struct btrfs_key key;
1339 	u64 found_end;
1340 	struct btrfs_dir_log_item *item;
1341 	int ret;
1342 	int nritems;
1343 
1344 	if (*start_ret == (u64)-1)
1345 		return 1;
1346 
1347 	key.objectid = dirid;
1348 	key.type = key_type;
1349 	key.offset = *start_ret;
1350 
1351 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1352 	if (ret < 0)
1353 		goto out;
1354 	if (ret > 0) {
1355 		if (path->slots[0] == 0)
1356 			goto out;
1357 		path->slots[0]--;
1358 	}
1359 	if (ret != 0)
1360 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1361 
1362 	if (key.type != key_type || key.objectid != dirid) {
1363 		ret = 1;
1364 		goto next;
1365 	}
1366 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1367 			      struct btrfs_dir_log_item);
1368 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1369 
1370 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1371 		ret = 0;
1372 		*start_ret = key.offset;
1373 		*end_ret = found_end;
1374 		goto out;
1375 	}
1376 	ret = 1;
1377 next:
1378 	/* check the next slot in the tree to see if it is a valid item */
1379 	nritems = btrfs_header_nritems(path->nodes[0]);
1380 	if (path->slots[0] >= nritems) {
1381 		ret = btrfs_next_leaf(root, path);
1382 		if (ret)
1383 			goto out;
1384 	} else {
1385 		path->slots[0]++;
1386 	}
1387 
1388 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1389 
1390 	if (key.type != key_type || key.objectid != dirid) {
1391 		ret = 1;
1392 		goto out;
1393 	}
1394 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1395 			      struct btrfs_dir_log_item);
1396 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1397 	*start_ret = key.offset;
1398 	*end_ret = found_end;
1399 	ret = 0;
1400 out:
1401 	btrfs_release_path(path);
1402 	return ret;
1403 }
1404 
1405 /*
1406  * this looks for a given directory item in the log.  If the directory
1407  * item is not in the log, the item is removed and the inode it points
1408  * to is unlinked
1409  */
1410 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1411 				      struct btrfs_root *root,
1412 				      struct btrfs_root *log,
1413 				      struct btrfs_path *path,
1414 				      struct btrfs_path *log_path,
1415 				      struct inode *dir,
1416 				      struct btrfs_key *dir_key)
1417 {
1418 	int ret;
1419 	struct extent_buffer *eb;
1420 	int slot;
1421 	u32 item_size;
1422 	struct btrfs_dir_item *di;
1423 	struct btrfs_dir_item *log_di;
1424 	int name_len;
1425 	unsigned long ptr;
1426 	unsigned long ptr_end;
1427 	char *name;
1428 	struct inode *inode;
1429 	struct btrfs_key location;
1430 
1431 again:
1432 	eb = path->nodes[0];
1433 	slot = path->slots[0];
1434 	item_size = btrfs_item_size_nr(eb, slot);
1435 	ptr = btrfs_item_ptr_offset(eb, slot);
1436 	ptr_end = ptr + item_size;
1437 	while (ptr < ptr_end) {
1438 		di = (struct btrfs_dir_item *)ptr;
1439 		if (verify_dir_item(root, eb, di)) {
1440 			ret = -EIO;
1441 			goto out;
1442 		}
1443 
1444 		name_len = btrfs_dir_name_len(eb, di);
1445 		name = kmalloc(name_len, GFP_NOFS);
1446 		if (!name) {
1447 			ret = -ENOMEM;
1448 			goto out;
1449 		}
1450 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1451 				  name_len);
1452 		log_di = NULL;
1453 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1454 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1455 						       dir_key->objectid,
1456 						       name, name_len, 0);
1457 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1458 			log_di = btrfs_lookup_dir_index_item(trans, log,
1459 						     log_path,
1460 						     dir_key->objectid,
1461 						     dir_key->offset,
1462 						     name, name_len, 0);
1463 		}
1464 		if (IS_ERR_OR_NULL(log_di)) {
1465 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1466 			btrfs_release_path(path);
1467 			btrfs_release_path(log_path);
1468 			inode = read_one_inode(root, location.objectid);
1469 			if (!inode) {
1470 				kfree(name);
1471 				return -EIO;
1472 			}
1473 
1474 			ret = link_to_fixup_dir(trans, root,
1475 						path, location.objectid);
1476 			BUG_ON(ret);
1477 			btrfs_inc_nlink(inode);
1478 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1479 						 name, name_len);
1480 			BUG_ON(ret);
1481 
1482 			btrfs_run_delayed_items(trans, root);
1483 
1484 			kfree(name);
1485 			iput(inode);
1486 
1487 			/* there might still be more names under this key
1488 			 * check and repeat if required
1489 			 */
1490 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1491 						0, 0);
1492 			if (ret == 0)
1493 				goto again;
1494 			ret = 0;
1495 			goto out;
1496 		}
1497 		btrfs_release_path(log_path);
1498 		kfree(name);
1499 
1500 		ptr = (unsigned long)(di + 1);
1501 		ptr += name_len;
1502 	}
1503 	ret = 0;
1504 out:
1505 	btrfs_release_path(path);
1506 	btrfs_release_path(log_path);
1507 	return ret;
1508 }
1509 
1510 /*
1511  * deletion replay happens before we copy any new directory items
1512  * out of the log or out of backreferences from inodes.  It
1513  * scans the log to find ranges of keys that log is authoritative for,
1514  * and then scans the directory to find items in those ranges that are
1515  * not present in the log.
1516  *
1517  * Anything we don't find in the log is unlinked and removed from the
1518  * directory.
1519  */
1520 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1521 				       struct btrfs_root *root,
1522 				       struct btrfs_root *log,
1523 				       struct btrfs_path *path,
1524 				       u64 dirid, int del_all)
1525 {
1526 	u64 range_start;
1527 	u64 range_end;
1528 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1529 	int ret = 0;
1530 	struct btrfs_key dir_key;
1531 	struct btrfs_key found_key;
1532 	struct btrfs_path *log_path;
1533 	struct inode *dir;
1534 
1535 	dir_key.objectid = dirid;
1536 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1537 	log_path = btrfs_alloc_path();
1538 	if (!log_path)
1539 		return -ENOMEM;
1540 
1541 	dir = read_one_inode(root, dirid);
1542 	/* it isn't an error if the inode isn't there, that can happen
1543 	 * because we replay the deletes before we copy in the inode item
1544 	 * from the log
1545 	 */
1546 	if (!dir) {
1547 		btrfs_free_path(log_path);
1548 		return 0;
1549 	}
1550 again:
1551 	range_start = 0;
1552 	range_end = 0;
1553 	while (1) {
1554 		if (del_all)
1555 			range_end = (u64)-1;
1556 		else {
1557 			ret = find_dir_range(log, path, dirid, key_type,
1558 					     &range_start, &range_end);
1559 			if (ret != 0)
1560 				break;
1561 		}
1562 
1563 		dir_key.offset = range_start;
1564 		while (1) {
1565 			int nritems;
1566 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1567 						0, 0);
1568 			if (ret < 0)
1569 				goto out;
1570 
1571 			nritems = btrfs_header_nritems(path->nodes[0]);
1572 			if (path->slots[0] >= nritems) {
1573 				ret = btrfs_next_leaf(root, path);
1574 				if (ret)
1575 					break;
1576 			}
1577 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1578 					      path->slots[0]);
1579 			if (found_key.objectid != dirid ||
1580 			    found_key.type != dir_key.type)
1581 				goto next_type;
1582 
1583 			if (found_key.offset > range_end)
1584 				break;
1585 
1586 			ret = check_item_in_log(trans, root, log, path,
1587 						log_path, dir,
1588 						&found_key);
1589 			BUG_ON(ret);
1590 			if (found_key.offset == (u64)-1)
1591 				break;
1592 			dir_key.offset = found_key.offset + 1;
1593 		}
1594 		btrfs_release_path(path);
1595 		if (range_end == (u64)-1)
1596 			break;
1597 		range_start = range_end + 1;
1598 	}
1599 
1600 next_type:
1601 	ret = 0;
1602 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1603 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1604 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1605 		btrfs_release_path(path);
1606 		goto again;
1607 	}
1608 out:
1609 	btrfs_release_path(path);
1610 	btrfs_free_path(log_path);
1611 	iput(dir);
1612 	return ret;
1613 }
1614 
1615 /*
1616  * the process_func used to replay items from the log tree.  This
1617  * gets called in two different stages.  The first stage just looks
1618  * for inodes and makes sure they are all copied into the subvolume.
1619  *
1620  * The second stage copies all the other item types from the log into
1621  * the subvolume.  The two stage approach is slower, but gets rid of
1622  * lots of complexity around inodes referencing other inodes that exist
1623  * only in the log (references come from either directory items or inode
1624  * back refs).
1625  */
1626 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1627 			     struct walk_control *wc, u64 gen)
1628 {
1629 	int nritems;
1630 	struct btrfs_path *path;
1631 	struct btrfs_root *root = wc->replay_dest;
1632 	struct btrfs_key key;
1633 	int level;
1634 	int i;
1635 	int ret;
1636 
1637 	ret = btrfs_read_buffer(eb, gen);
1638 	if (ret)
1639 		return ret;
1640 
1641 	level = btrfs_header_level(eb);
1642 
1643 	if (level != 0)
1644 		return 0;
1645 
1646 	path = btrfs_alloc_path();
1647 	if (!path)
1648 		return -ENOMEM;
1649 
1650 	nritems = btrfs_header_nritems(eb);
1651 	for (i = 0; i < nritems; i++) {
1652 		btrfs_item_key_to_cpu(eb, &key, i);
1653 
1654 		/* inode keys are done during the first stage */
1655 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1656 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1657 			struct btrfs_inode_item *inode_item;
1658 			u32 mode;
1659 
1660 			inode_item = btrfs_item_ptr(eb, i,
1661 					    struct btrfs_inode_item);
1662 			mode = btrfs_inode_mode(eb, inode_item);
1663 			if (S_ISDIR(mode)) {
1664 				ret = replay_dir_deletes(wc->trans,
1665 					 root, log, path, key.objectid, 0);
1666 				BUG_ON(ret);
1667 			}
1668 			ret = overwrite_item(wc->trans, root, path,
1669 					     eb, i, &key);
1670 			BUG_ON(ret);
1671 
1672 			/* for regular files, make sure corresponding
1673 			 * orhpan item exist. extents past the new EOF
1674 			 * will be truncated later by orphan cleanup.
1675 			 */
1676 			if (S_ISREG(mode)) {
1677 				ret = insert_orphan_item(wc->trans, root,
1678 							 key.objectid);
1679 				BUG_ON(ret);
1680 			}
1681 
1682 			ret = link_to_fixup_dir(wc->trans, root,
1683 						path, key.objectid);
1684 			BUG_ON(ret);
1685 		}
1686 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1687 			continue;
1688 
1689 		/* these keys are simply copied */
1690 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1691 			ret = overwrite_item(wc->trans, root, path,
1692 					     eb, i, &key);
1693 			BUG_ON(ret);
1694 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1695 			ret = add_inode_ref(wc->trans, root, log, path,
1696 					    eb, i, &key);
1697 			BUG_ON(ret && ret != -ENOENT);
1698 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1699 			ret = replay_one_extent(wc->trans, root, path,
1700 						eb, i, &key);
1701 			BUG_ON(ret);
1702 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1703 			   key.type == BTRFS_DIR_INDEX_KEY) {
1704 			ret = replay_one_dir_item(wc->trans, root, path,
1705 						  eb, i, &key);
1706 			BUG_ON(ret);
1707 		}
1708 	}
1709 	btrfs_free_path(path);
1710 	return 0;
1711 }
1712 
1713 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1714 				   struct btrfs_root *root,
1715 				   struct btrfs_path *path, int *level,
1716 				   struct walk_control *wc)
1717 {
1718 	u64 root_owner;
1719 	u64 bytenr;
1720 	u64 ptr_gen;
1721 	struct extent_buffer *next;
1722 	struct extent_buffer *cur;
1723 	struct extent_buffer *parent;
1724 	u32 blocksize;
1725 	int ret = 0;
1726 
1727 	WARN_ON(*level < 0);
1728 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1729 
1730 	while (*level > 0) {
1731 		WARN_ON(*level < 0);
1732 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1733 		cur = path->nodes[*level];
1734 
1735 		if (btrfs_header_level(cur) != *level)
1736 			WARN_ON(1);
1737 
1738 		if (path->slots[*level] >=
1739 		    btrfs_header_nritems(cur))
1740 			break;
1741 
1742 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1743 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1744 		blocksize = btrfs_level_size(root, *level - 1);
1745 
1746 		parent = path->nodes[*level];
1747 		root_owner = btrfs_header_owner(parent);
1748 
1749 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1750 		if (!next)
1751 			return -ENOMEM;
1752 
1753 		if (*level == 1) {
1754 			ret = wc->process_func(root, next, wc, ptr_gen);
1755 			if (ret)
1756 				return ret;
1757 
1758 			path->slots[*level]++;
1759 			if (wc->free) {
1760 				ret = btrfs_read_buffer(next, ptr_gen);
1761 				if (ret) {
1762 					free_extent_buffer(next);
1763 					return ret;
1764 				}
1765 
1766 				btrfs_tree_lock(next);
1767 				btrfs_set_lock_blocking(next);
1768 				clean_tree_block(trans, root, next);
1769 				btrfs_wait_tree_block_writeback(next);
1770 				btrfs_tree_unlock(next);
1771 
1772 				WARN_ON(root_owner !=
1773 					BTRFS_TREE_LOG_OBJECTID);
1774 				ret = btrfs_free_and_pin_reserved_extent(root,
1775 							 bytenr, blocksize);
1776 				BUG_ON(ret); /* -ENOMEM or logic errors */
1777 			}
1778 			free_extent_buffer(next);
1779 			continue;
1780 		}
1781 		ret = btrfs_read_buffer(next, ptr_gen);
1782 		if (ret) {
1783 			free_extent_buffer(next);
1784 			return ret;
1785 		}
1786 
1787 		WARN_ON(*level <= 0);
1788 		if (path->nodes[*level-1])
1789 			free_extent_buffer(path->nodes[*level-1]);
1790 		path->nodes[*level-1] = next;
1791 		*level = btrfs_header_level(next);
1792 		path->slots[*level] = 0;
1793 		cond_resched();
1794 	}
1795 	WARN_ON(*level < 0);
1796 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1797 
1798 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1799 
1800 	cond_resched();
1801 	return 0;
1802 }
1803 
1804 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1805 				 struct btrfs_root *root,
1806 				 struct btrfs_path *path, int *level,
1807 				 struct walk_control *wc)
1808 {
1809 	u64 root_owner;
1810 	int i;
1811 	int slot;
1812 	int ret;
1813 
1814 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1815 		slot = path->slots[i];
1816 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1817 			path->slots[i]++;
1818 			*level = i;
1819 			WARN_ON(*level == 0);
1820 			return 0;
1821 		} else {
1822 			struct extent_buffer *parent;
1823 			if (path->nodes[*level] == root->node)
1824 				parent = path->nodes[*level];
1825 			else
1826 				parent = path->nodes[*level + 1];
1827 
1828 			root_owner = btrfs_header_owner(parent);
1829 			ret = wc->process_func(root, path->nodes[*level], wc,
1830 				 btrfs_header_generation(path->nodes[*level]));
1831 			if (ret)
1832 				return ret;
1833 
1834 			if (wc->free) {
1835 				struct extent_buffer *next;
1836 
1837 				next = path->nodes[*level];
1838 
1839 				btrfs_tree_lock(next);
1840 				btrfs_set_lock_blocking(next);
1841 				clean_tree_block(trans, root, next);
1842 				btrfs_wait_tree_block_writeback(next);
1843 				btrfs_tree_unlock(next);
1844 
1845 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1846 				ret = btrfs_free_and_pin_reserved_extent(root,
1847 						path->nodes[*level]->start,
1848 						path->nodes[*level]->len);
1849 				BUG_ON(ret);
1850 			}
1851 			free_extent_buffer(path->nodes[*level]);
1852 			path->nodes[*level] = NULL;
1853 			*level = i + 1;
1854 		}
1855 	}
1856 	return 1;
1857 }
1858 
1859 /*
1860  * drop the reference count on the tree rooted at 'snap'.  This traverses
1861  * the tree freeing any blocks that have a ref count of zero after being
1862  * decremented.
1863  */
1864 static int walk_log_tree(struct btrfs_trans_handle *trans,
1865 			 struct btrfs_root *log, struct walk_control *wc)
1866 {
1867 	int ret = 0;
1868 	int wret;
1869 	int level;
1870 	struct btrfs_path *path;
1871 	int i;
1872 	int orig_level;
1873 
1874 	path = btrfs_alloc_path();
1875 	if (!path)
1876 		return -ENOMEM;
1877 
1878 	level = btrfs_header_level(log->node);
1879 	orig_level = level;
1880 	path->nodes[level] = log->node;
1881 	extent_buffer_get(log->node);
1882 	path->slots[level] = 0;
1883 
1884 	while (1) {
1885 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1886 		if (wret > 0)
1887 			break;
1888 		if (wret < 0) {
1889 			ret = wret;
1890 			goto out;
1891 		}
1892 
1893 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1894 		if (wret > 0)
1895 			break;
1896 		if (wret < 0) {
1897 			ret = wret;
1898 			goto out;
1899 		}
1900 	}
1901 
1902 	/* was the root node processed? if not, catch it here */
1903 	if (path->nodes[orig_level]) {
1904 		ret = wc->process_func(log, path->nodes[orig_level], wc,
1905 			 btrfs_header_generation(path->nodes[orig_level]));
1906 		if (ret)
1907 			goto out;
1908 		if (wc->free) {
1909 			struct extent_buffer *next;
1910 
1911 			next = path->nodes[orig_level];
1912 
1913 			btrfs_tree_lock(next);
1914 			btrfs_set_lock_blocking(next);
1915 			clean_tree_block(trans, log, next);
1916 			btrfs_wait_tree_block_writeback(next);
1917 			btrfs_tree_unlock(next);
1918 
1919 			WARN_ON(log->root_key.objectid !=
1920 				BTRFS_TREE_LOG_OBJECTID);
1921 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
1922 							 next->len);
1923 			BUG_ON(ret); /* -ENOMEM or logic errors */
1924 		}
1925 	}
1926 
1927 out:
1928 	for (i = 0; i <= orig_level; i++) {
1929 		if (path->nodes[i]) {
1930 			free_extent_buffer(path->nodes[i]);
1931 			path->nodes[i] = NULL;
1932 		}
1933 	}
1934 	btrfs_free_path(path);
1935 	return ret;
1936 }
1937 
1938 /*
1939  * helper function to update the item for a given subvolumes log root
1940  * in the tree of log roots
1941  */
1942 static int update_log_root(struct btrfs_trans_handle *trans,
1943 			   struct btrfs_root *log)
1944 {
1945 	int ret;
1946 
1947 	if (log->log_transid == 1) {
1948 		/* insert root item on the first sync */
1949 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1950 				&log->root_key, &log->root_item);
1951 	} else {
1952 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1953 				&log->root_key, &log->root_item);
1954 	}
1955 	return ret;
1956 }
1957 
1958 static int wait_log_commit(struct btrfs_trans_handle *trans,
1959 			   struct btrfs_root *root, unsigned long transid)
1960 {
1961 	DEFINE_WAIT(wait);
1962 	int index = transid % 2;
1963 
1964 	/*
1965 	 * we only allow two pending log transactions at a time,
1966 	 * so we know that if ours is more than 2 older than the
1967 	 * current transaction, we're done
1968 	 */
1969 	do {
1970 		prepare_to_wait(&root->log_commit_wait[index],
1971 				&wait, TASK_UNINTERRUPTIBLE);
1972 		mutex_unlock(&root->log_mutex);
1973 
1974 		if (root->fs_info->last_trans_log_full_commit !=
1975 		    trans->transid && root->log_transid < transid + 2 &&
1976 		    atomic_read(&root->log_commit[index]))
1977 			schedule();
1978 
1979 		finish_wait(&root->log_commit_wait[index], &wait);
1980 		mutex_lock(&root->log_mutex);
1981 	} while (root->fs_info->last_trans_log_full_commit !=
1982 		 trans->transid && root->log_transid < transid + 2 &&
1983 		 atomic_read(&root->log_commit[index]));
1984 	return 0;
1985 }
1986 
1987 static void wait_for_writer(struct btrfs_trans_handle *trans,
1988 			    struct btrfs_root *root)
1989 {
1990 	DEFINE_WAIT(wait);
1991 	while (root->fs_info->last_trans_log_full_commit !=
1992 	       trans->transid && atomic_read(&root->log_writers)) {
1993 		prepare_to_wait(&root->log_writer_wait,
1994 				&wait, TASK_UNINTERRUPTIBLE);
1995 		mutex_unlock(&root->log_mutex);
1996 		if (root->fs_info->last_trans_log_full_commit !=
1997 		    trans->transid && atomic_read(&root->log_writers))
1998 			schedule();
1999 		mutex_lock(&root->log_mutex);
2000 		finish_wait(&root->log_writer_wait, &wait);
2001 	}
2002 }
2003 
2004 /*
2005  * btrfs_sync_log does sends a given tree log down to the disk and
2006  * updates the super blocks to record it.  When this call is done,
2007  * you know that any inodes previously logged are safely on disk only
2008  * if it returns 0.
2009  *
2010  * Any other return value means you need to call btrfs_commit_transaction.
2011  * Some of the edge cases for fsyncing directories that have had unlinks
2012  * or renames done in the past mean that sometimes the only safe
2013  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2014  * that has happened.
2015  */
2016 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2017 		   struct btrfs_root *root)
2018 {
2019 	int index1;
2020 	int index2;
2021 	int mark;
2022 	int ret;
2023 	struct btrfs_root *log = root->log_root;
2024 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2025 	unsigned long log_transid = 0;
2026 
2027 	mutex_lock(&root->log_mutex);
2028 	index1 = root->log_transid % 2;
2029 	if (atomic_read(&root->log_commit[index1])) {
2030 		wait_log_commit(trans, root, root->log_transid);
2031 		mutex_unlock(&root->log_mutex);
2032 		return 0;
2033 	}
2034 	atomic_set(&root->log_commit[index1], 1);
2035 
2036 	/* wait for previous tree log sync to complete */
2037 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2038 		wait_log_commit(trans, root, root->log_transid - 1);
2039 	while (1) {
2040 		unsigned long batch = root->log_batch;
2041 		/* when we're on an ssd, just kick the log commit out */
2042 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2043 			mutex_unlock(&root->log_mutex);
2044 			schedule_timeout_uninterruptible(1);
2045 			mutex_lock(&root->log_mutex);
2046 		}
2047 		wait_for_writer(trans, root);
2048 		if (batch == root->log_batch)
2049 			break;
2050 	}
2051 
2052 	/* bail out if we need to do a full commit */
2053 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2054 		ret = -EAGAIN;
2055 		mutex_unlock(&root->log_mutex);
2056 		goto out;
2057 	}
2058 
2059 	log_transid = root->log_transid;
2060 	if (log_transid % 2 == 0)
2061 		mark = EXTENT_DIRTY;
2062 	else
2063 		mark = EXTENT_NEW;
2064 
2065 	/* we start IO on  all the marked extents here, but we don't actually
2066 	 * wait for them until later.
2067 	 */
2068 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2069 	if (ret) {
2070 		btrfs_abort_transaction(trans, root, ret);
2071 		mutex_unlock(&root->log_mutex);
2072 		goto out;
2073 	}
2074 
2075 	btrfs_set_root_node(&log->root_item, log->node);
2076 
2077 	root->log_batch = 0;
2078 	root->log_transid++;
2079 	log->log_transid = root->log_transid;
2080 	root->log_start_pid = 0;
2081 	smp_mb();
2082 	/*
2083 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2084 	 * in their headers. new modifications of the log will be written to
2085 	 * new positions. so it's safe to allow log writers to go in.
2086 	 */
2087 	mutex_unlock(&root->log_mutex);
2088 
2089 	mutex_lock(&log_root_tree->log_mutex);
2090 	log_root_tree->log_batch++;
2091 	atomic_inc(&log_root_tree->log_writers);
2092 	mutex_unlock(&log_root_tree->log_mutex);
2093 
2094 	ret = update_log_root(trans, log);
2095 
2096 	mutex_lock(&log_root_tree->log_mutex);
2097 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2098 		smp_mb();
2099 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2100 			wake_up(&log_root_tree->log_writer_wait);
2101 	}
2102 
2103 	if (ret) {
2104 		if (ret != -ENOSPC) {
2105 			btrfs_abort_transaction(trans, root, ret);
2106 			mutex_unlock(&log_root_tree->log_mutex);
2107 			goto out;
2108 		}
2109 		root->fs_info->last_trans_log_full_commit = trans->transid;
2110 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2111 		mutex_unlock(&log_root_tree->log_mutex);
2112 		ret = -EAGAIN;
2113 		goto out;
2114 	}
2115 
2116 	index2 = log_root_tree->log_transid % 2;
2117 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2118 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2119 		wait_log_commit(trans, log_root_tree,
2120 				log_root_tree->log_transid);
2121 		mutex_unlock(&log_root_tree->log_mutex);
2122 		ret = 0;
2123 		goto out;
2124 	}
2125 	atomic_set(&log_root_tree->log_commit[index2], 1);
2126 
2127 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2128 		wait_log_commit(trans, log_root_tree,
2129 				log_root_tree->log_transid - 1);
2130 	}
2131 
2132 	wait_for_writer(trans, log_root_tree);
2133 
2134 	/*
2135 	 * now that we've moved on to the tree of log tree roots,
2136 	 * check the full commit flag again
2137 	 */
2138 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2139 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2140 		mutex_unlock(&log_root_tree->log_mutex);
2141 		ret = -EAGAIN;
2142 		goto out_wake_log_root;
2143 	}
2144 
2145 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2146 				&log_root_tree->dirty_log_pages,
2147 				EXTENT_DIRTY | EXTENT_NEW);
2148 	if (ret) {
2149 		btrfs_abort_transaction(trans, root, ret);
2150 		mutex_unlock(&log_root_tree->log_mutex);
2151 		goto out_wake_log_root;
2152 	}
2153 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2154 
2155 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2156 				log_root_tree->node->start);
2157 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2158 				btrfs_header_level(log_root_tree->node));
2159 
2160 	log_root_tree->log_batch = 0;
2161 	log_root_tree->log_transid++;
2162 	smp_mb();
2163 
2164 	mutex_unlock(&log_root_tree->log_mutex);
2165 
2166 	/*
2167 	 * nobody else is going to jump in and write the the ctree
2168 	 * super here because the log_commit atomic below is protecting
2169 	 * us.  We must be called with a transaction handle pinning
2170 	 * the running transaction open, so a full commit can't hop
2171 	 * in and cause problems either.
2172 	 */
2173 	btrfs_scrub_pause_super(root);
2174 	write_ctree_super(trans, root->fs_info->tree_root, 1);
2175 	btrfs_scrub_continue_super(root);
2176 	ret = 0;
2177 
2178 	mutex_lock(&root->log_mutex);
2179 	if (root->last_log_commit < log_transid)
2180 		root->last_log_commit = log_transid;
2181 	mutex_unlock(&root->log_mutex);
2182 
2183 out_wake_log_root:
2184 	atomic_set(&log_root_tree->log_commit[index2], 0);
2185 	smp_mb();
2186 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2187 		wake_up(&log_root_tree->log_commit_wait[index2]);
2188 out:
2189 	atomic_set(&root->log_commit[index1], 0);
2190 	smp_mb();
2191 	if (waitqueue_active(&root->log_commit_wait[index1]))
2192 		wake_up(&root->log_commit_wait[index1]);
2193 	return ret;
2194 }
2195 
2196 static void free_log_tree(struct btrfs_trans_handle *trans,
2197 			  struct btrfs_root *log)
2198 {
2199 	int ret;
2200 	u64 start;
2201 	u64 end;
2202 	struct walk_control wc = {
2203 		.free = 1,
2204 		.process_func = process_one_buffer
2205 	};
2206 
2207 	ret = walk_log_tree(trans, log, &wc);
2208 	BUG_ON(ret);
2209 
2210 	while (1) {
2211 		ret = find_first_extent_bit(&log->dirty_log_pages,
2212 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2213 		if (ret)
2214 			break;
2215 
2216 		clear_extent_bits(&log->dirty_log_pages, start, end,
2217 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2218 	}
2219 
2220 	free_extent_buffer(log->node);
2221 	kfree(log);
2222 }
2223 
2224 /*
2225  * free all the extents used by the tree log.  This should be called
2226  * at commit time of the full transaction
2227  */
2228 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2229 {
2230 	if (root->log_root) {
2231 		free_log_tree(trans, root->log_root);
2232 		root->log_root = NULL;
2233 	}
2234 	return 0;
2235 }
2236 
2237 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2238 			     struct btrfs_fs_info *fs_info)
2239 {
2240 	if (fs_info->log_root_tree) {
2241 		free_log_tree(trans, fs_info->log_root_tree);
2242 		fs_info->log_root_tree = NULL;
2243 	}
2244 	return 0;
2245 }
2246 
2247 /*
2248  * If both a file and directory are logged, and unlinks or renames are
2249  * mixed in, we have a few interesting corners:
2250  *
2251  * create file X in dir Y
2252  * link file X to X.link in dir Y
2253  * fsync file X
2254  * unlink file X but leave X.link
2255  * fsync dir Y
2256  *
2257  * After a crash we would expect only X.link to exist.  But file X
2258  * didn't get fsync'd again so the log has back refs for X and X.link.
2259  *
2260  * We solve this by removing directory entries and inode backrefs from the
2261  * log when a file that was logged in the current transaction is
2262  * unlinked.  Any later fsync will include the updated log entries, and
2263  * we'll be able to reconstruct the proper directory items from backrefs.
2264  *
2265  * This optimizations allows us to avoid relogging the entire inode
2266  * or the entire directory.
2267  */
2268 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2269 				 struct btrfs_root *root,
2270 				 const char *name, int name_len,
2271 				 struct inode *dir, u64 index)
2272 {
2273 	struct btrfs_root *log;
2274 	struct btrfs_dir_item *di;
2275 	struct btrfs_path *path;
2276 	int ret;
2277 	int err = 0;
2278 	int bytes_del = 0;
2279 	u64 dir_ino = btrfs_ino(dir);
2280 
2281 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2282 		return 0;
2283 
2284 	ret = join_running_log_trans(root);
2285 	if (ret)
2286 		return 0;
2287 
2288 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2289 
2290 	log = root->log_root;
2291 	path = btrfs_alloc_path();
2292 	if (!path) {
2293 		err = -ENOMEM;
2294 		goto out_unlock;
2295 	}
2296 
2297 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2298 				   name, name_len, -1);
2299 	if (IS_ERR(di)) {
2300 		err = PTR_ERR(di);
2301 		goto fail;
2302 	}
2303 	if (di) {
2304 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2305 		bytes_del += name_len;
2306 		BUG_ON(ret);
2307 	}
2308 	btrfs_release_path(path);
2309 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2310 					 index, name, name_len, -1);
2311 	if (IS_ERR(di)) {
2312 		err = PTR_ERR(di);
2313 		goto fail;
2314 	}
2315 	if (di) {
2316 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2317 		bytes_del += name_len;
2318 		BUG_ON(ret);
2319 	}
2320 
2321 	/* update the directory size in the log to reflect the names
2322 	 * we have removed
2323 	 */
2324 	if (bytes_del) {
2325 		struct btrfs_key key;
2326 
2327 		key.objectid = dir_ino;
2328 		key.offset = 0;
2329 		key.type = BTRFS_INODE_ITEM_KEY;
2330 		btrfs_release_path(path);
2331 
2332 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2333 		if (ret < 0) {
2334 			err = ret;
2335 			goto fail;
2336 		}
2337 		if (ret == 0) {
2338 			struct btrfs_inode_item *item;
2339 			u64 i_size;
2340 
2341 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2342 					      struct btrfs_inode_item);
2343 			i_size = btrfs_inode_size(path->nodes[0], item);
2344 			if (i_size > bytes_del)
2345 				i_size -= bytes_del;
2346 			else
2347 				i_size = 0;
2348 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2349 			btrfs_mark_buffer_dirty(path->nodes[0]);
2350 		} else
2351 			ret = 0;
2352 		btrfs_release_path(path);
2353 	}
2354 fail:
2355 	btrfs_free_path(path);
2356 out_unlock:
2357 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2358 	if (ret == -ENOSPC) {
2359 		root->fs_info->last_trans_log_full_commit = trans->transid;
2360 		ret = 0;
2361 	} else if (ret < 0)
2362 		btrfs_abort_transaction(trans, root, ret);
2363 
2364 	btrfs_end_log_trans(root);
2365 
2366 	return err;
2367 }
2368 
2369 /* see comments for btrfs_del_dir_entries_in_log */
2370 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2371 			       struct btrfs_root *root,
2372 			       const char *name, int name_len,
2373 			       struct inode *inode, u64 dirid)
2374 {
2375 	struct btrfs_root *log;
2376 	u64 index;
2377 	int ret;
2378 
2379 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2380 		return 0;
2381 
2382 	ret = join_running_log_trans(root);
2383 	if (ret)
2384 		return 0;
2385 	log = root->log_root;
2386 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2387 
2388 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2389 				  dirid, &index);
2390 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2391 	if (ret == -ENOSPC) {
2392 		root->fs_info->last_trans_log_full_commit = trans->transid;
2393 		ret = 0;
2394 	} else if (ret < 0 && ret != -ENOENT)
2395 		btrfs_abort_transaction(trans, root, ret);
2396 	btrfs_end_log_trans(root);
2397 
2398 	return ret;
2399 }
2400 
2401 /*
2402  * creates a range item in the log for 'dirid'.  first_offset and
2403  * last_offset tell us which parts of the key space the log should
2404  * be considered authoritative for.
2405  */
2406 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2407 				       struct btrfs_root *log,
2408 				       struct btrfs_path *path,
2409 				       int key_type, u64 dirid,
2410 				       u64 first_offset, u64 last_offset)
2411 {
2412 	int ret;
2413 	struct btrfs_key key;
2414 	struct btrfs_dir_log_item *item;
2415 
2416 	key.objectid = dirid;
2417 	key.offset = first_offset;
2418 	if (key_type == BTRFS_DIR_ITEM_KEY)
2419 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2420 	else
2421 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2422 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2423 	if (ret)
2424 		return ret;
2425 
2426 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2427 			      struct btrfs_dir_log_item);
2428 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2429 	btrfs_mark_buffer_dirty(path->nodes[0]);
2430 	btrfs_release_path(path);
2431 	return 0;
2432 }
2433 
2434 /*
2435  * log all the items included in the current transaction for a given
2436  * directory.  This also creates the range items in the log tree required
2437  * to replay anything deleted before the fsync
2438  */
2439 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2440 			  struct btrfs_root *root, struct inode *inode,
2441 			  struct btrfs_path *path,
2442 			  struct btrfs_path *dst_path, int key_type,
2443 			  u64 min_offset, u64 *last_offset_ret)
2444 {
2445 	struct btrfs_key min_key;
2446 	struct btrfs_key max_key;
2447 	struct btrfs_root *log = root->log_root;
2448 	struct extent_buffer *src;
2449 	int err = 0;
2450 	int ret;
2451 	int i;
2452 	int nritems;
2453 	u64 first_offset = min_offset;
2454 	u64 last_offset = (u64)-1;
2455 	u64 ino = btrfs_ino(inode);
2456 
2457 	log = root->log_root;
2458 	max_key.objectid = ino;
2459 	max_key.offset = (u64)-1;
2460 	max_key.type = key_type;
2461 
2462 	min_key.objectid = ino;
2463 	min_key.type = key_type;
2464 	min_key.offset = min_offset;
2465 
2466 	path->keep_locks = 1;
2467 
2468 	ret = btrfs_search_forward(root, &min_key, &max_key,
2469 				   path, 0, trans->transid);
2470 
2471 	/*
2472 	 * we didn't find anything from this transaction, see if there
2473 	 * is anything at all
2474 	 */
2475 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2476 		min_key.objectid = ino;
2477 		min_key.type = key_type;
2478 		min_key.offset = (u64)-1;
2479 		btrfs_release_path(path);
2480 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2481 		if (ret < 0) {
2482 			btrfs_release_path(path);
2483 			return ret;
2484 		}
2485 		ret = btrfs_previous_item(root, path, ino, key_type);
2486 
2487 		/* if ret == 0 there are items for this type,
2488 		 * create a range to tell us the last key of this type.
2489 		 * otherwise, there are no items in this directory after
2490 		 * *min_offset, and we create a range to indicate that.
2491 		 */
2492 		if (ret == 0) {
2493 			struct btrfs_key tmp;
2494 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2495 					      path->slots[0]);
2496 			if (key_type == tmp.type)
2497 				first_offset = max(min_offset, tmp.offset) + 1;
2498 		}
2499 		goto done;
2500 	}
2501 
2502 	/* go backward to find any previous key */
2503 	ret = btrfs_previous_item(root, path, ino, key_type);
2504 	if (ret == 0) {
2505 		struct btrfs_key tmp;
2506 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2507 		if (key_type == tmp.type) {
2508 			first_offset = tmp.offset;
2509 			ret = overwrite_item(trans, log, dst_path,
2510 					     path->nodes[0], path->slots[0],
2511 					     &tmp);
2512 			if (ret) {
2513 				err = ret;
2514 				goto done;
2515 			}
2516 		}
2517 	}
2518 	btrfs_release_path(path);
2519 
2520 	/* find the first key from this transaction again */
2521 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2522 	if (ret != 0) {
2523 		WARN_ON(1);
2524 		goto done;
2525 	}
2526 
2527 	/*
2528 	 * we have a block from this transaction, log every item in it
2529 	 * from our directory
2530 	 */
2531 	while (1) {
2532 		struct btrfs_key tmp;
2533 		src = path->nodes[0];
2534 		nritems = btrfs_header_nritems(src);
2535 		for (i = path->slots[0]; i < nritems; i++) {
2536 			btrfs_item_key_to_cpu(src, &min_key, i);
2537 
2538 			if (min_key.objectid != ino || min_key.type != key_type)
2539 				goto done;
2540 			ret = overwrite_item(trans, log, dst_path, src, i,
2541 					     &min_key);
2542 			if (ret) {
2543 				err = ret;
2544 				goto done;
2545 			}
2546 		}
2547 		path->slots[0] = nritems;
2548 
2549 		/*
2550 		 * look ahead to the next item and see if it is also
2551 		 * from this directory and from this transaction
2552 		 */
2553 		ret = btrfs_next_leaf(root, path);
2554 		if (ret == 1) {
2555 			last_offset = (u64)-1;
2556 			goto done;
2557 		}
2558 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2559 		if (tmp.objectid != ino || tmp.type != key_type) {
2560 			last_offset = (u64)-1;
2561 			goto done;
2562 		}
2563 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2564 			ret = overwrite_item(trans, log, dst_path,
2565 					     path->nodes[0], path->slots[0],
2566 					     &tmp);
2567 			if (ret)
2568 				err = ret;
2569 			else
2570 				last_offset = tmp.offset;
2571 			goto done;
2572 		}
2573 	}
2574 done:
2575 	btrfs_release_path(path);
2576 	btrfs_release_path(dst_path);
2577 
2578 	if (err == 0) {
2579 		*last_offset_ret = last_offset;
2580 		/*
2581 		 * insert the log range keys to indicate where the log
2582 		 * is valid
2583 		 */
2584 		ret = insert_dir_log_key(trans, log, path, key_type,
2585 					 ino, first_offset, last_offset);
2586 		if (ret)
2587 			err = ret;
2588 	}
2589 	return err;
2590 }
2591 
2592 /*
2593  * logging directories is very similar to logging inodes, We find all the items
2594  * from the current transaction and write them to the log.
2595  *
2596  * The recovery code scans the directory in the subvolume, and if it finds a
2597  * key in the range logged that is not present in the log tree, then it means
2598  * that dir entry was unlinked during the transaction.
2599  *
2600  * In order for that scan to work, we must include one key smaller than
2601  * the smallest logged by this transaction and one key larger than the largest
2602  * key logged by this transaction.
2603  */
2604 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2605 			  struct btrfs_root *root, struct inode *inode,
2606 			  struct btrfs_path *path,
2607 			  struct btrfs_path *dst_path)
2608 {
2609 	u64 min_key;
2610 	u64 max_key;
2611 	int ret;
2612 	int key_type = BTRFS_DIR_ITEM_KEY;
2613 
2614 again:
2615 	min_key = 0;
2616 	max_key = 0;
2617 	while (1) {
2618 		ret = log_dir_items(trans, root, inode, path,
2619 				    dst_path, key_type, min_key,
2620 				    &max_key);
2621 		if (ret)
2622 			return ret;
2623 		if (max_key == (u64)-1)
2624 			break;
2625 		min_key = max_key + 1;
2626 	}
2627 
2628 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2629 		key_type = BTRFS_DIR_INDEX_KEY;
2630 		goto again;
2631 	}
2632 	return 0;
2633 }
2634 
2635 /*
2636  * a helper function to drop items from the log before we relog an
2637  * inode.  max_key_type indicates the highest item type to remove.
2638  * This cannot be run for file data extents because it does not
2639  * free the extents they point to.
2640  */
2641 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2642 				  struct btrfs_root *log,
2643 				  struct btrfs_path *path,
2644 				  u64 objectid, int max_key_type)
2645 {
2646 	int ret;
2647 	struct btrfs_key key;
2648 	struct btrfs_key found_key;
2649 
2650 	key.objectid = objectid;
2651 	key.type = max_key_type;
2652 	key.offset = (u64)-1;
2653 
2654 	while (1) {
2655 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2656 		BUG_ON(ret == 0);
2657 		if (ret < 0)
2658 			break;
2659 
2660 		if (path->slots[0] == 0)
2661 			break;
2662 
2663 		path->slots[0]--;
2664 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2665 				      path->slots[0]);
2666 
2667 		if (found_key.objectid != objectid)
2668 			break;
2669 
2670 		ret = btrfs_del_item(trans, log, path);
2671 		if (ret)
2672 			break;
2673 		btrfs_release_path(path);
2674 	}
2675 	btrfs_release_path(path);
2676 	if (ret > 0)
2677 		ret = 0;
2678 	return ret;
2679 }
2680 
2681 static noinline int copy_items(struct btrfs_trans_handle *trans,
2682 			       struct btrfs_root *log,
2683 			       struct btrfs_path *dst_path,
2684 			       struct extent_buffer *src,
2685 			       int start_slot, int nr, int inode_only)
2686 {
2687 	unsigned long src_offset;
2688 	unsigned long dst_offset;
2689 	struct btrfs_file_extent_item *extent;
2690 	struct btrfs_inode_item *inode_item;
2691 	int ret;
2692 	struct btrfs_key *ins_keys;
2693 	u32 *ins_sizes;
2694 	char *ins_data;
2695 	int i;
2696 	struct list_head ordered_sums;
2697 
2698 	INIT_LIST_HEAD(&ordered_sums);
2699 
2700 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2701 			   nr * sizeof(u32), GFP_NOFS);
2702 	if (!ins_data)
2703 		return -ENOMEM;
2704 
2705 	ins_sizes = (u32 *)ins_data;
2706 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2707 
2708 	for (i = 0; i < nr; i++) {
2709 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2710 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2711 	}
2712 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2713 				       ins_keys, ins_sizes, nr);
2714 	if (ret) {
2715 		kfree(ins_data);
2716 		return ret;
2717 	}
2718 
2719 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2720 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2721 						   dst_path->slots[0]);
2722 
2723 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2724 
2725 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2726 				   src_offset, ins_sizes[i]);
2727 
2728 		if (inode_only == LOG_INODE_EXISTS &&
2729 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2730 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2731 						    dst_path->slots[0],
2732 						    struct btrfs_inode_item);
2733 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2734 
2735 			/* set the generation to zero so the recover code
2736 			 * can tell the difference between an logging
2737 			 * just to say 'this inode exists' and a logging
2738 			 * to say 'update this inode with these values'
2739 			 */
2740 			btrfs_set_inode_generation(dst_path->nodes[0],
2741 						   inode_item, 0);
2742 		}
2743 		/* take a reference on file data extents so that truncates
2744 		 * or deletes of this inode don't have to relog the inode
2745 		 * again
2746 		 */
2747 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2748 			int found_type;
2749 			extent = btrfs_item_ptr(src, start_slot + i,
2750 						struct btrfs_file_extent_item);
2751 
2752 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
2753 				continue;
2754 
2755 			found_type = btrfs_file_extent_type(src, extent);
2756 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2757 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2758 				u64 ds, dl, cs, cl;
2759 				ds = btrfs_file_extent_disk_bytenr(src,
2760 								extent);
2761 				/* ds == 0 is a hole */
2762 				if (ds == 0)
2763 					continue;
2764 
2765 				dl = btrfs_file_extent_disk_num_bytes(src,
2766 								extent);
2767 				cs = btrfs_file_extent_offset(src, extent);
2768 				cl = btrfs_file_extent_num_bytes(src,
2769 								extent);
2770 				if (btrfs_file_extent_compression(src,
2771 								  extent)) {
2772 					cs = 0;
2773 					cl = dl;
2774 				}
2775 
2776 				ret = btrfs_lookup_csums_range(
2777 						log->fs_info->csum_root,
2778 						ds + cs, ds + cs + cl - 1,
2779 						&ordered_sums, 0);
2780 				BUG_ON(ret);
2781 			}
2782 		}
2783 	}
2784 
2785 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2786 	btrfs_release_path(dst_path);
2787 	kfree(ins_data);
2788 
2789 	/*
2790 	 * we have to do this after the loop above to avoid changing the
2791 	 * log tree while trying to change the log tree.
2792 	 */
2793 	ret = 0;
2794 	while (!list_empty(&ordered_sums)) {
2795 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2796 						   struct btrfs_ordered_sum,
2797 						   list);
2798 		if (!ret)
2799 			ret = btrfs_csum_file_blocks(trans, log, sums);
2800 		list_del(&sums->list);
2801 		kfree(sums);
2802 	}
2803 	return ret;
2804 }
2805 
2806 /* log a single inode in the tree log.
2807  * At least one parent directory for this inode must exist in the tree
2808  * or be logged already.
2809  *
2810  * Any items from this inode changed by the current transaction are copied
2811  * to the log tree.  An extra reference is taken on any extents in this
2812  * file, allowing us to avoid a whole pile of corner cases around logging
2813  * blocks that have been removed from the tree.
2814  *
2815  * See LOG_INODE_ALL and related defines for a description of what inode_only
2816  * does.
2817  *
2818  * This handles both files and directories.
2819  */
2820 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2821 			     struct btrfs_root *root, struct inode *inode,
2822 			     int inode_only)
2823 {
2824 	struct btrfs_path *path;
2825 	struct btrfs_path *dst_path;
2826 	struct btrfs_key min_key;
2827 	struct btrfs_key max_key;
2828 	struct btrfs_root *log = root->log_root;
2829 	struct extent_buffer *src = NULL;
2830 	int err = 0;
2831 	int ret;
2832 	int nritems;
2833 	int ins_start_slot = 0;
2834 	int ins_nr;
2835 	u64 ino = btrfs_ino(inode);
2836 
2837 	log = root->log_root;
2838 
2839 	path = btrfs_alloc_path();
2840 	if (!path)
2841 		return -ENOMEM;
2842 	dst_path = btrfs_alloc_path();
2843 	if (!dst_path) {
2844 		btrfs_free_path(path);
2845 		return -ENOMEM;
2846 	}
2847 
2848 	min_key.objectid = ino;
2849 	min_key.type = BTRFS_INODE_ITEM_KEY;
2850 	min_key.offset = 0;
2851 
2852 	max_key.objectid = ino;
2853 
2854 	/* today the code can only do partial logging of directories */
2855 	if (!S_ISDIR(inode->i_mode))
2856 	    inode_only = LOG_INODE_ALL;
2857 
2858 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2859 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2860 	else
2861 		max_key.type = (u8)-1;
2862 	max_key.offset = (u64)-1;
2863 
2864 	ret = btrfs_commit_inode_delayed_items(trans, inode);
2865 	if (ret) {
2866 		btrfs_free_path(path);
2867 		btrfs_free_path(dst_path);
2868 		return ret;
2869 	}
2870 
2871 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2872 
2873 	/*
2874 	 * a brute force approach to making sure we get the most uptodate
2875 	 * copies of everything.
2876 	 */
2877 	if (S_ISDIR(inode->i_mode)) {
2878 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2879 
2880 		if (inode_only == LOG_INODE_EXISTS)
2881 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2882 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2883 	} else {
2884 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2885 	}
2886 	if (ret) {
2887 		err = ret;
2888 		goto out_unlock;
2889 	}
2890 	path->keep_locks = 1;
2891 
2892 	while (1) {
2893 		ins_nr = 0;
2894 		ret = btrfs_search_forward(root, &min_key, &max_key,
2895 					   path, 0, trans->transid);
2896 		if (ret != 0)
2897 			break;
2898 again:
2899 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2900 		if (min_key.objectid != ino)
2901 			break;
2902 		if (min_key.type > max_key.type)
2903 			break;
2904 
2905 		src = path->nodes[0];
2906 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2907 			ins_nr++;
2908 			goto next_slot;
2909 		} else if (!ins_nr) {
2910 			ins_start_slot = path->slots[0];
2911 			ins_nr = 1;
2912 			goto next_slot;
2913 		}
2914 
2915 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2916 				 ins_nr, inode_only);
2917 		if (ret) {
2918 			err = ret;
2919 			goto out_unlock;
2920 		}
2921 		ins_nr = 1;
2922 		ins_start_slot = path->slots[0];
2923 next_slot:
2924 
2925 		nritems = btrfs_header_nritems(path->nodes[0]);
2926 		path->slots[0]++;
2927 		if (path->slots[0] < nritems) {
2928 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2929 					      path->slots[0]);
2930 			goto again;
2931 		}
2932 		if (ins_nr) {
2933 			ret = copy_items(trans, log, dst_path, src,
2934 					 ins_start_slot,
2935 					 ins_nr, inode_only);
2936 			if (ret) {
2937 				err = ret;
2938 				goto out_unlock;
2939 			}
2940 			ins_nr = 0;
2941 		}
2942 		btrfs_release_path(path);
2943 
2944 		if (min_key.offset < (u64)-1)
2945 			min_key.offset++;
2946 		else if (min_key.type < (u8)-1)
2947 			min_key.type++;
2948 		else if (min_key.objectid < (u64)-1)
2949 			min_key.objectid++;
2950 		else
2951 			break;
2952 	}
2953 	if (ins_nr) {
2954 		ret = copy_items(trans, log, dst_path, src,
2955 				 ins_start_slot,
2956 				 ins_nr, inode_only);
2957 		if (ret) {
2958 			err = ret;
2959 			goto out_unlock;
2960 		}
2961 		ins_nr = 0;
2962 	}
2963 	WARN_ON(ins_nr);
2964 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2965 		btrfs_release_path(path);
2966 		btrfs_release_path(dst_path);
2967 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2968 		if (ret) {
2969 			err = ret;
2970 			goto out_unlock;
2971 		}
2972 	}
2973 	BTRFS_I(inode)->logged_trans = trans->transid;
2974 out_unlock:
2975 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2976 
2977 	btrfs_free_path(path);
2978 	btrfs_free_path(dst_path);
2979 	return err;
2980 }
2981 
2982 /*
2983  * follow the dentry parent pointers up the chain and see if any
2984  * of the directories in it require a full commit before they can
2985  * be logged.  Returns zero if nothing special needs to be done or 1 if
2986  * a full commit is required.
2987  */
2988 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2989 					       struct inode *inode,
2990 					       struct dentry *parent,
2991 					       struct super_block *sb,
2992 					       u64 last_committed)
2993 {
2994 	int ret = 0;
2995 	struct btrfs_root *root;
2996 	struct dentry *old_parent = NULL;
2997 
2998 	/*
2999 	 * for regular files, if its inode is already on disk, we don't
3000 	 * have to worry about the parents at all.  This is because
3001 	 * we can use the last_unlink_trans field to record renames
3002 	 * and other fun in this file.
3003 	 */
3004 	if (S_ISREG(inode->i_mode) &&
3005 	    BTRFS_I(inode)->generation <= last_committed &&
3006 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
3007 			goto out;
3008 
3009 	if (!S_ISDIR(inode->i_mode)) {
3010 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3011 			goto out;
3012 		inode = parent->d_inode;
3013 	}
3014 
3015 	while (1) {
3016 		BTRFS_I(inode)->logged_trans = trans->transid;
3017 		smp_mb();
3018 
3019 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3020 			root = BTRFS_I(inode)->root;
3021 
3022 			/*
3023 			 * make sure any commits to the log are forced
3024 			 * to be full commits
3025 			 */
3026 			root->fs_info->last_trans_log_full_commit =
3027 				trans->transid;
3028 			ret = 1;
3029 			break;
3030 		}
3031 
3032 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3033 			break;
3034 
3035 		if (IS_ROOT(parent))
3036 			break;
3037 
3038 		parent = dget_parent(parent);
3039 		dput(old_parent);
3040 		old_parent = parent;
3041 		inode = parent->d_inode;
3042 
3043 	}
3044 	dput(old_parent);
3045 out:
3046 	return ret;
3047 }
3048 
3049 /*
3050  * helper function around btrfs_log_inode to make sure newly created
3051  * parent directories also end up in the log.  A minimal inode and backref
3052  * only logging is done of any parent directories that are older than
3053  * the last committed transaction
3054  */
3055 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3056 		    struct btrfs_root *root, struct inode *inode,
3057 		    struct dentry *parent, int exists_only)
3058 {
3059 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3060 	struct super_block *sb;
3061 	struct dentry *old_parent = NULL;
3062 	int ret = 0;
3063 	u64 last_committed = root->fs_info->last_trans_committed;
3064 
3065 	sb = inode->i_sb;
3066 
3067 	if (btrfs_test_opt(root, NOTREELOG)) {
3068 		ret = 1;
3069 		goto end_no_trans;
3070 	}
3071 
3072 	if (root->fs_info->last_trans_log_full_commit >
3073 	    root->fs_info->last_trans_committed) {
3074 		ret = 1;
3075 		goto end_no_trans;
3076 	}
3077 
3078 	if (root != BTRFS_I(inode)->root ||
3079 	    btrfs_root_refs(&root->root_item) == 0) {
3080 		ret = 1;
3081 		goto end_no_trans;
3082 	}
3083 
3084 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3085 					 sb, last_committed);
3086 	if (ret)
3087 		goto end_no_trans;
3088 
3089 	if (btrfs_inode_in_log(inode, trans->transid)) {
3090 		ret = BTRFS_NO_LOG_SYNC;
3091 		goto end_no_trans;
3092 	}
3093 
3094 	ret = start_log_trans(trans, root);
3095 	if (ret)
3096 		goto end_trans;
3097 
3098 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3099 	if (ret)
3100 		goto end_trans;
3101 
3102 	/*
3103 	 * for regular files, if its inode is already on disk, we don't
3104 	 * have to worry about the parents at all.  This is because
3105 	 * we can use the last_unlink_trans field to record renames
3106 	 * and other fun in this file.
3107 	 */
3108 	if (S_ISREG(inode->i_mode) &&
3109 	    BTRFS_I(inode)->generation <= last_committed &&
3110 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3111 		ret = 0;
3112 		goto end_trans;
3113 	}
3114 
3115 	inode_only = LOG_INODE_EXISTS;
3116 	while (1) {
3117 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3118 			break;
3119 
3120 		inode = parent->d_inode;
3121 		if (root != BTRFS_I(inode)->root)
3122 			break;
3123 
3124 		if (BTRFS_I(inode)->generation >
3125 		    root->fs_info->last_trans_committed) {
3126 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3127 			if (ret)
3128 				goto end_trans;
3129 		}
3130 		if (IS_ROOT(parent))
3131 			break;
3132 
3133 		parent = dget_parent(parent);
3134 		dput(old_parent);
3135 		old_parent = parent;
3136 	}
3137 	ret = 0;
3138 end_trans:
3139 	dput(old_parent);
3140 	if (ret < 0) {
3141 		BUG_ON(ret != -ENOSPC);
3142 		root->fs_info->last_trans_log_full_commit = trans->transid;
3143 		ret = 1;
3144 	}
3145 	btrfs_end_log_trans(root);
3146 end_no_trans:
3147 	return ret;
3148 }
3149 
3150 /*
3151  * it is not safe to log dentry if the chunk root has added new
3152  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3153  * If this returns 1, you must commit the transaction to safely get your
3154  * data on disk.
3155  */
3156 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3157 			  struct btrfs_root *root, struct dentry *dentry)
3158 {
3159 	struct dentry *parent = dget_parent(dentry);
3160 	int ret;
3161 
3162 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3163 	dput(parent);
3164 
3165 	return ret;
3166 }
3167 
3168 /*
3169  * should be called during mount to recover any replay any log trees
3170  * from the FS
3171  */
3172 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3173 {
3174 	int ret;
3175 	struct btrfs_path *path;
3176 	struct btrfs_trans_handle *trans;
3177 	struct btrfs_key key;
3178 	struct btrfs_key found_key;
3179 	struct btrfs_key tmp_key;
3180 	struct btrfs_root *log;
3181 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3182 	struct walk_control wc = {
3183 		.process_func = process_one_buffer,
3184 		.stage = 0,
3185 	};
3186 
3187 	path = btrfs_alloc_path();
3188 	if (!path)
3189 		return -ENOMEM;
3190 
3191 	fs_info->log_root_recovering = 1;
3192 
3193 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3194 	if (IS_ERR(trans)) {
3195 		ret = PTR_ERR(trans);
3196 		goto error;
3197 	}
3198 
3199 	wc.trans = trans;
3200 	wc.pin = 1;
3201 
3202 	ret = walk_log_tree(trans, log_root_tree, &wc);
3203 	if (ret) {
3204 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
3205 			    "recovering log root tree.");
3206 		goto error;
3207 	}
3208 
3209 again:
3210 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3211 	key.offset = (u64)-1;
3212 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3213 
3214 	while (1) {
3215 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3216 
3217 		if (ret < 0) {
3218 			btrfs_error(fs_info, ret,
3219 				    "Couldn't find tree log root.");
3220 			goto error;
3221 		}
3222 		if (ret > 0) {
3223 			if (path->slots[0] == 0)
3224 				break;
3225 			path->slots[0]--;
3226 		}
3227 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3228 				      path->slots[0]);
3229 		btrfs_release_path(path);
3230 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3231 			break;
3232 
3233 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3234 						  &found_key);
3235 		if (IS_ERR(log)) {
3236 			ret = PTR_ERR(log);
3237 			btrfs_error(fs_info, ret,
3238 				    "Couldn't read tree log root.");
3239 			goto error;
3240 		}
3241 
3242 		tmp_key.objectid = found_key.offset;
3243 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3244 		tmp_key.offset = (u64)-1;
3245 
3246 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3247 		if (IS_ERR(wc.replay_dest)) {
3248 			ret = PTR_ERR(wc.replay_dest);
3249 			btrfs_error(fs_info, ret, "Couldn't read target root "
3250 				    "for tree log recovery.");
3251 			goto error;
3252 		}
3253 
3254 		wc.replay_dest->log_root = log;
3255 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3256 		ret = walk_log_tree(trans, log, &wc);
3257 		BUG_ON(ret);
3258 
3259 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3260 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3261 						      path);
3262 			BUG_ON(ret);
3263 		}
3264 
3265 		key.offset = found_key.offset - 1;
3266 		wc.replay_dest->log_root = NULL;
3267 		free_extent_buffer(log->node);
3268 		free_extent_buffer(log->commit_root);
3269 		kfree(log);
3270 
3271 		if (found_key.offset == 0)
3272 			break;
3273 	}
3274 	btrfs_release_path(path);
3275 
3276 	/* step one is to pin it all, step two is to replay just inodes */
3277 	if (wc.pin) {
3278 		wc.pin = 0;
3279 		wc.process_func = replay_one_buffer;
3280 		wc.stage = LOG_WALK_REPLAY_INODES;
3281 		goto again;
3282 	}
3283 	/* step three is to replay everything */
3284 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3285 		wc.stage++;
3286 		goto again;
3287 	}
3288 
3289 	btrfs_free_path(path);
3290 
3291 	free_extent_buffer(log_root_tree->node);
3292 	log_root_tree->log_root = NULL;
3293 	fs_info->log_root_recovering = 0;
3294 
3295 	/* step 4: commit the transaction, which also unpins the blocks */
3296 	btrfs_commit_transaction(trans, fs_info->tree_root);
3297 
3298 	kfree(log_root_tree);
3299 	return 0;
3300 
3301 error:
3302 	btrfs_free_path(path);
3303 	return ret;
3304 }
3305 
3306 /*
3307  * there are some corner cases where we want to force a full
3308  * commit instead of allowing a directory to be logged.
3309  *
3310  * They revolve around files there were unlinked from the directory, and
3311  * this function updates the parent directory so that a full commit is
3312  * properly done if it is fsync'd later after the unlinks are done.
3313  */
3314 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3315 			     struct inode *dir, struct inode *inode,
3316 			     int for_rename)
3317 {
3318 	/*
3319 	 * when we're logging a file, if it hasn't been renamed
3320 	 * or unlinked, and its inode is fully committed on disk,
3321 	 * we don't have to worry about walking up the directory chain
3322 	 * to log its parents.
3323 	 *
3324 	 * So, we use the last_unlink_trans field to put this transid
3325 	 * into the file.  When the file is logged we check it and
3326 	 * don't log the parents if the file is fully on disk.
3327 	 */
3328 	if (S_ISREG(inode->i_mode))
3329 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3330 
3331 	/*
3332 	 * if this directory was already logged any new
3333 	 * names for this file/dir will get recorded
3334 	 */
3335 	smp_mb();
3336 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3337 		return;
3338 
3339 	/*
3340 	 * if the inode we're about to unlink was logged,
3341 	 * the log will be properly updated for any new names
3342 	 */
3343 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3344 		return;
3345 
3346 	/*
3347 	 * when renaming files across directories, if the directory
3348 	 * there we're unlinking from gets fsync'd later on, there's
3349 	 * no way to find the destination directory later and fsync it
3350 	 * properly.  So, we have to be conservative and force commits
3351 	 * so the new name gets discovered.
3352 	 */
3353 	if (for_rename)
3354 		goto record;
3355 
3356 	/* we can safely do the unlink without any special recording */
3357 	return;
3358 
3359 record:
3360 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3361 }
3362 
3363 /*
3364  * Call this after adding a new name for a file and it will properly
3365  * update the log to reflect the new name.
3366  *
3367  * It will return zero if all goes well, and it will return 1 if a
3368  * full transaction commit is required.
3369  */
3370 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3371 			struct inode *inode, struct inode *old_dir,
3372 			struct dentry *parent)
3373 {
3374 	struct btrfs_root * root = BTRFS_I(inode)->root;
3375 
3376 	/*
3377 	 * this will force the logging code to walk the dentry chain
3378 	 * up for the file
3379 	 */
3380 	if (S_ISREG(inode->i_mode))
3381 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3382 
3383 	/*
3384 	 * if this inode hasn't been logged and directory we're renaming it
3385 	 * from hasn't been logged, we don't need to log it
3386 	 */
3387 	if (BTRFS_I(inode)->logged_trans <=
3388 	    root->fs_info->last_trans_committed &&
3389 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3390 		    root->fs_info->last_trans_committed))
3391 		return 0;
3392 
3393 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3394 }
3395 
3396