1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include "ctree.h" 22 #include "transaction.h" 23 #include "disk-io.h" 24 #include "locking.h" 25 #include "print-tree.h" 26 #include "compat.h" 27 #include "tree-log.h" 28 29 /* magic values for the inode_only field in btrfs_log_inode: 30 * 31 * LOG_INODE_ALL means to log everything 32 * LOG_INODE_EXISTS means to log just enough to recreate the inode 33 * during log replay 34 */ 35 #define LOG_INODE_ALL 0 36 #define LOG_INODE_EXISTS 1 37 38 /* 39 * directory trouble cases 40 * 41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 42 * log, we must force a full commit before doing an fsync of the directory 43 * where the unlink was done. 44 * ---> record transid of last unlink/rename per directory 45 * 46 * mkdir foo/some_dir 47 * normal commit 48 * rename foo/some_dir foo2/some_dir 49 * mkdir foo/some_dir 50 * fsync foo/some_dir/some_file 51 * 52 * The fsync above will unlink the original some_dir without recording 53 * it in its new location (foo2). After a crash, some_dir will be gone 54 * unless the fsync of some_file forces a full commit 55 * 56 * 2) we must log any new names for any file or dir that is in the fsync 57 * log. ---> check inode while renaming/linking. 58 * 59 * 2a) we must log any new names for any file or dir during rename 60 * when the directory they are being removed from was logged. 61 * ---> check inode and old parent dir during rename 62 * 63 * 2a is actually the more important variant. With the extra logging 64 * a crash might unlink the old name without recreating the new one 65 * 66 * 3) after a crash, we must go through any directories with a link count 67 * of zero and redo the rm -rf 68 * 69 * mkdir f1/foo 70 * normal commit 71 * rm -rf f1/foo 72 * fsync(f1) 73 * 74 * The directory f1 was fully removed from the FS, but fsync was never 75 * called on f1, only its parent dir. After a crash the rm -rf must 76 * be replayed. This must be able to recurse down the entire 77 * directory tree. The inode link count fixup code takes care of the 78 * ugly details. 79 */ 80 81 /* 82 * stages for the tree walking. The first 83 * stage (0) is to only pin down the blocks we find 84 * the second stage (1) is to make sure that all the inodes 85 * we find in the log are created in the subvolume. 86 * 87 * The last stage is to deal with directories and links and extents 88 * and all the other fun semantics 89 */ 90 #define LOG_WALK_PIN_ONLY 0 91 #define LOG_WALK_REPLAY_INODES 1 92 #define LOG_WALK_REPLAY_ALL 2 93 94 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, struct inode *inode, 96 int inode_only); 97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 98 struct btrfs_root *root, 99 struct btrfs_path *path, u64 objectid); 100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 101 struct btrfs_root *root, 102 struct btrfs_root *log, 103 struct btrfs_path *path, 104 u64 dirid, int del_all); 105 106 /* 107 * tree logging is a special write ahead log used to make sure that 108 * fsyncs and O_SYNCs can happen without doing full tree commits. 109 * 110 * Full tree commits are expensive because they require commonly 111 * modified blocks to be recowed, creating many dirty pages in the 112 * extent tree an 4x-6x higher write load than ext3. 113 * 114 * Instead of doing a tree commit on every fsync, we use the 115 * key ranges and transaction ids to find items for a given file or directory 116 * that have changed in this transaction. Those items are copied into 117 * a special tree (one per subvolume root), that tree is written to disk 118 * and then the fsync is considered complete. 119 * 120 * After a crash, items are copied out of the log-tree back into the 121 * subvolume tree. Any file data extents found are recorded in the extent 122 * allocation tree, and the log-tree freed. 123 * 124 * The log tree is read three times, once to pin down all the extents it is 125 * using in ram and once, once to create all the inodes logged in the tree 126 * and once to do all the other items. 127 */ 128 129 /* 130 * start a sub transaction and setup the log tree 131 * this increments the log tree writer count to make the people 132 * syncing the tree wait for us to finish 133 */ 134 static int start_log_trans(struct btrfs_trans_handle *trans, 135 struct btrfs_root *root) 136 { 137 int ret; 138 int err = 0; 139 140 mutex_lock(&root->log_mutex); 141 if (root->log_root) { 142 if (!root->log_start_pid) { 143 root->log_start_pid = current->pid; 144 root->log_multiple_pids = false; 145 } else if (root->log_start_pid != current->pid) { 146 root->log_multiple_pids = true; 147 } 148 149 root->log_batch++; 150 atomic_inc(&root->log_writers); 151 mutex_unlock(&root->log_mutex); 152 return 0; 153 } 154 root->log_multiple_pids = false; 155 root->log_start_pid = current->pid; 156 mutex_lock(&root->fs_info->tree_log_mutex); 157 if (!root->fs_info->log_root_tree) { 158 ret = btrfs_init_log_root_tree(trans, root->fs_info); 159 if (ret) 160 err = ret; 161 } 162 if (err == 0 && !root->log_root) { 163 ret = btrfs_add_log_tree(trans, root); 164 if (ret) 165 err = ret; 166 } 167 mutex_unlock(&root->fs_info->tree_log_mutex); 168 root->log_batch++; 169 atomic_inc(&root->log_writers); 170 mutex_unlock(&root->log_mutex); 171 return err; 172 } 173 174 /* 175 * returns 0 if there was a log transaction running and we were able 176 * to join, or returns -ENOENT if there were not transactions 177 * in progress 178 */ 179 static int join_running_log_trans(struct btrfs_root *root) 180 { 181 int ret = -ENOENT; 182 183 smp_mb(); 184 if (!root->log_root) 185 return -ENOENT; 186 187 mutex_lock(&root->log_mutex); 188 if (root->log_root) { 189 ret = 0; 190 atomic_inc(&root->log_writers); 191 } 192 mutex_unlock(&root->log_mutex); 193 return ret; 194 } 195 196 /* 197 * This either makes the current running log transaction wait 198 * until you call btrfs_end_log_trans() or it makes any future 199 * log transactions wait until you call btrfs_end_log_trans() 200 */ 201 int btrfs_pin_log_trans(struct btrfs_root *root) 202 { 203 int ret = -ENOENT; 204 205 mutex_lock(&root->log_mutex); 206 atomic_inc(&root->log_writers); 207 mutex_unlock(&root->log_mutex); 208 return ret; 209 } 210 211 /* 212 * indicate we're done making changes to the log tree 213 * and wake up anyone waiting to do a sync 214 */ 215 void btrfs_end_log_trans(struct btrfs_root *root) 216 { 217 if (atomic_dec_and_test(&root->log_writers)) { 218 smp_mb(); 219 if (waitqueue_active(&root->log_writer_wait)) 220 wake_up(&root->log_writer_wait); 221 } 222 } 223 224 225 /* 226 * the walk control struct is used to pass state down the chain when 227 * processing the log tree. The stage field tells us which part 228 * of the log tree processing we are currently doing. The others 229 * are state fields used for that specific part 230 */ 231 struct walk_control { 232 /* should we free the extent on disk when done? This is used 233 * at transaction commit time while freeing a log tree 234 */ 235 int free; 236 237 /* should we write out the extent buffer? This is used 238 * while flushing the log tree to disk during a sync 239 */ 240 int write; 241 242 /* should we wait for the extent buffer io to finish? Also used 243 * while flushing the log tree to disk for a sync 244 */ 245 int wait; 246 247 /* pin only walk, we record which extents on disk belong to the 248 * log trees 249 */ 250 int pin; 251 252 /* what stage of the replay code we're currently in */ 253 int stage; 254 255 /* the root we are currently replaying */ 256 struct btrfs_root *replay_dest; 257 258 /* the trans handle for the current replay */ 259 struct btrfs_trans_handle *trans; 260 261 /* the function that gets used to process blocks we find in the 262 * tree. Note the extent_buffer might not be up to date when it is 263 * passed in, and it must be checked or read if you need the data 264 * inside it 265 */ 266 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 267 struct walk_control *wc, u64 gen); 268 }; 269 270 /* 271 * process_func used to pin down extents, write them or wait on them 272 */ 273 static int process_one_buffer(struct btrfs_root *log, 274 struct extent_buffer *eb, 275 struct walk_control *wc, u64 gen) 276 { 277 if (wc->pin) 278 btrfs_pin_extent_for_log_replay(wc->trans, 279 log->fs_info->extent_root, 280 eb->start, eb->len); 281 282 if (btrfs_buffer_uptodate(eb, gen, 0)) { 283 if (wc->write) 284 btrfs_write_tree_block(eb); 285 if (wc->wait) 286 btrfs_wait_tree_block_writeback(eb); 287 } 288 return 0; 289 } 290 291 /* 292 * Item overwrite used by replay and tree logging. eb, slot and key all refer 293 * to the src data we are copying out. 294 * 295 * root is the tree we are copying into, and path is a scratch 296 * path for use in this function (it should be released on entry and 297 * will be released on exit). 298 * 299 * If the key is already in the destination tree the existing item is 300 * overwritten. If the existing item isn't big enough, it is extended. 301 * If it is too large, it is truncated. 302 * 303 * If the key isn't in the destination yet, a new item is inserted. 304 */ 305 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 306 struct btrfs_root *root, 307 struct btrfs_path *path, 308 struct extent_buffer *eb, int slot, 309 struct btrfs_key *key) 310 { 311 int ret; 312 u32 item_size; 313 u64 saved_i_size = 0; 314 int save_old_i_size = 0; 315 unsigned long src_ptr; 316 unsigned long dst_ptr; 317 int overwrite_root = 0; 318 319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 320 overwrite_root = 1; 321 322 item_size = btrfs_item_size_nr(eb, slot); 323 src_ptr = btrfs_item_ptr_offset(eb, slot); 324 325 /* look for the key in the destination tree */ 326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 327 if (ret == 0) { 328 char *src_copy; 329 char *dst_copy; 330 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 331 path->slots[0]); 332 if (dst_size != item_size) 333 goto insert; 334 335 if (item_size == 0) { 336 btrfs_release_path(path); 337 return 0; 338 } 339 dst_copy = kmalloc(item_size, GFP_NOFS); 340 src_copy = kmalloc(item_size, GFP_NOFS); 341 if (!dst_copy || !src_copy) { 342 btrfs_release_path(path); 343 kfree(dst_copy); 344 kfree(src_copy); 345 return -ENOMEM; 346 } 347 348 read_extent_buffer(eb, src_copy, src_ptr, item_size); 349 350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 352 item_size); 353 ret = memcmp(dst_copy, src_copy, item_size); 354 355 kfree(dst_copy); 356 kfree(src_copy); 357 /* 358 * they have the same contents, just return, this saves 359 * us from cowing blocks in the destination tree and doing 360 * extra writes that may not have been done by a previous 361 * sync 362 */ 363 if (ret == 0) { 364 btrfs_release_path(path); 365 return 0; 366 } 367 368 } 369 insert: 370 btrfs_release_path(path); 371 /* try to insert the key into the destination tree */ 372 ret = btrfs_insert_empty_item(trans, root, path, 373 key, item_size); 374 375 /* make sure any existing item is the correct size */ 376 if (ret == -EEXIST) { 377 u32 found_size; 378 found_size = btrfs_item_size_nr(path->nodes[0], 379 path->slots[0]); 380 if (found_size > item_size) 381 btrfs_truncate_item(trans, root, path, item_size, 1); 382 else if (found_size < item_size) 383 btrfs_extend_item(trans, root, path, 384 item_size - found_size); 385 } else if (ret) { 386 return ret; 387 } 388 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 389 path->slots[0]); 390 391 /* don't overwrite an existing inode if the generation number 392 * was logged as zero. This is done when the tree logging code 393 * is just logging an inode to make sure it exists after recovery. 394 * 395 * Also, don't overwrite i_size on directories during replay. 396 * log replay inserts and removes directory items based on the 397 * state of the tree found in the subvolume, and i_size is modified 398 * as it goes 399 */ 400 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 401 struct btrfs_inode_item *src_item; 402 struct btrfs_inode_item *dst_item; 403 404 src_item = (struct btrfs_inode_item *)src_ptr; 405 dst_item = (struct btrfs_inode_item *)dst_ptr; 406 407 if (btrfs_inode_generation(eb, src_item) == 0) 408 goto no_copy; 409 410 if (overwrite_root && 411 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 412 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 413 save_old_i_size = 1; 414 saved_i_size = btrfs_inode_size(path->nodes[0], 415 dst_item); 416 } 417 } 418 419 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 420 src_ptr, item_size); 421 422 if (save_old_i_size) { 423 struct btrfs_inode_item *dst_item; 424 dst_item = (struct btrfs_inode_item *)dst_ptr; 425 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 426 } 427 428 /* make sure the generation is filled in */ 429 if (key->type == BTRFS_INODE_ITEM_KEY) { 430 struct btrfs_inode_item *dst_item; 431 dst_item = (struct btrfs_inode_item *)dst_ptr; 432 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 433 btrfs_set_inode_generation(path->nodes[0], dst_item, 434 trans->transid); 435 } 436 } 437 no_copy: 438 btrfs_mark_buffer_dirty(path->nodes[0]); 439 btrfs_release_path(path); 440 return 0; 441 } 442 443 /* 444 * simple helper to read an inode off the disk from a given root 445 * This can only be called for subvolume roots and not for the log 446 */ 447 static noinline struct inode *read_one_inode(struct btrfs_root *root, 448 u64 objectid) 449 { 450 struct btrfs_key key; 451 struct inode *inode; 452 453 key.objectid = objectid; 454 key.type = BTRFS_INODE_ITEM_KEY; 455 key.offset = 0; 456 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 457 if (IS_ERR(inode)) { 458 inode = NULL; 459 } else if (is_bad_inode(inode)) { 460 iput(inode); 461 inode = NULL; 462 } 463 return inode; 464 } 465 466 /* replays a single extent in 'eb' at 'slot' with 'key' into the 467 * subvolume 'root'. path is released on entry and should be released 468 * on exit. 469 * 470 * extents in the log tree have not been allocated out of the extent 471 * tree yet. So, this completes the allocation, taking a reference 472 * as required if the extent already exists or creating a new extent 473 * if it isn't in the extent allocation tree yet. 474 * 475 * The extent is inserted into the file, dropping any existing extents 476 * from the file that overlap the new one. 477 */ 478 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 479 struct btrfs_root *root, 480 struct btrfs_path *path, 481 struct extent_buffer *eb, int slot, 482 struct btrfs_key *key) 483 { 484 int found_type; 485 u64 mask = root->sectorsize - 1; 486 u64 extent_end; 487 u64 alloc_hint; 488 u64 start = key->offset; 489 u64 saved_nbytes; 490 struct btrfs_file_extent_item *item; 491 struct inode *inode = NULL; 492 unsigned long size; 493 int ret = 0; 494 495 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 496 found_type = btrfs_file_extent_type(eb, item); 497 498 if (found_type == BTRFS_FILE_EXTENT_REG || 499 found_type == BTRFS_FILE_EXTENT_PREALLOC) 500 extent_end = start + btrfs_file_extent_num_bytes(eb, item); 501 else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 502 size = btrfs_file_extent_inline_len(eb, item); 503 extent_end = (start + size + mask) & ~mask; 504 } else { 505 ret = 0; 506 goto out; 507 } 508 509 inode = read_one_inode(root, key->objectid); 510 if (!inode) { 511 ret = -EIO; 512 goto out; 513 } 514 515 /* 516 * first check to see if we already have this extent in the 517 * file. This must be done before the btrfs_drop_extents run 518 * so we don't try to drop this extent. 519 */ 520 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 521 start, 0); 522 523 if (ret == 0 && 524 (found_type == BTRFS_FILE_EXTENT_REG || 525 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 526 struct btrfs_file_extent_item cmp1; 527 struct btrfs_file_extent_item cmp2; 528 struct btrfs_file_extent_item *existing; 529 struct extent_buffer *leaf; 530 531 leaf = path->nodes[0]; 532 existing = btrfs_item_ptr(leaf, path->slots[0], 533 struct btrfs_file_extent_item); 534 535 read_extent_buffer(eb, &cmp1, (unsigned long)item, 536 sizeof(cmp1)); 537 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 538 sizeof(cmp2)); 539 540 /* 541 * we already have a pointer to this exact extent, 542 * we don't have to do anything 543 */ 544 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 545 btrfs_release_path(path); 546 goto out; 547 } 548 } 549 btrfs_release_path(path); 550 551 saved_nbytes = inode_get_bytes(inode); 552 /* drop any overlapping extents */ 553 ret = btrfs_drop_extents(trans, inode, start, extent_end, 554 &alloc_hint, 1); 555 BUG_ON(ret); 556 557 if (found_type == BTRFS_FILE_EXTENT_REG || 558 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 559 u64 offset; 560 unsigned long dest_offset; 561 struct btrfs_key ins; 562 563 ret = btrfs_insert_empty_item(trans, root, path, key, 564 sizeof(*item)); 565 BUG_ON(ret); 566 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 567 path->slots[0]); 568 copy_extent_buffer(path->nodes[0], eb, dest_offset, 569 (unsigned long)item, sizeof(*item)); 570 571 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 572 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 573 ins.type = BTRFS_EXTENT_ITEM_KEY; 574 offset = key->offset - btrfs_file_extent_offset(eb, item); 575 576 if (ins.objectid > 0) { 577 u64 csum_start; 578 u64 csum_end; 579 LIST_HEAD(ordered_sums); 580 /* 581 * is this extent already allocated in the extent 582 * allocation tree? If so, just add a reference 583 */ 584 ret = btrfs_lookup_extent(root, ins.objectid, 585 ins.offset); 586 if (ret == 0) { 587 ret = btrfs_inc_extent_ref(trans, root, 588 ins.objectid, ins.offset, 589 0, root->root_key.objectid, 590 key->objectid, offset, 0); 591 BUG_ON(ret); 592 } else { 593 /* 594 * insert the extent pointer in the extent 595 * allocation tree 596 */ 597 ret = btrfs_alloc_logged_file_extent(trans, 598 root, root->root_key.objectid, 599 key->objectid, offset, &ins); 600 BUG_ON(ret); 601 } 602 btrfs_release_path(path); 603 604 if (btrfs_file_extent_compression(eb, item)) { 605 csum_start = ins.objectid; 606 csum_end = csum_start + ins.offset; 607 } else { 608 csum_start = ins.objectid + 609 btrfs_file_extent_offset(eb, item); 610 csum_end = csum_start + 611 btrfs_file_extent_num_bytes(eb, item); 612 } 613 614 ret = btrfs_lookup_csums_range(root->log_root, 615 csum_start, csum_end - 1, 616 &ordered_sums, 0); 617 BUG_ON(ret); 618 while (!list_empty(&ordered_sums)) { 619 struct btrfs_ordered_sum *sums; 620 sums = list_entry(ordered_sums.next, 621 struct btrfs_ordered_sum, 622 list); 623 ret = btrfs_csum_file_blocks(trans, 624 root->fs_info->csum_root, 625 sums); 626 BUG_ON(ret); 627 list_del(&sums->list); 628 kfree(sums); 629 } 630 } else { 631 btrfs_release_path(path); 632 } 633 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 634 /* inline extents are easy, we just overwrite them */ 635 ret = overwrite_item(trans, root, path, eb, slot, key); 636 BUG_ON(ret); 637 } 638 639 inode_set_bytes(inode, saved_nbytes); 640 ret = btrfs_update_inode(trans, root, inode); 641 out: 642 if (inode) 643 iput(inode); 644 return ret; 645 } 646 647 /* 648 * when cleaning up conflicts between the directory names in the 649 * subvolume, directory names in the log and directory names in the 650 * inode back references, we may have to unlink inodes from directories. 651 * 652 * This is a helper function to do the unlink of a specific directory 653 * item 654 */ 655 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 656 struct btrfs_root *root, 657 struct btrfs_path *path, 658 struct inode *dir, 659 struct btrfs_dir_item *di) 660 { 661 struct inode *inode; 662 char *name; 663 int name_len; 664 struct extent_buffer *leaf; 665 struct btrfs_key location; 666 int ret; 667 668 leaf = path->nodes[0]; 669 670 btrfs_dir_item_key_to_cpu(leaf, di, &location); 671 name_len = btrfs_dir_name_len(leaf, di); 672 name = kmalloc(name_len, GFP_NOFS); 673 if (!name) 674 return -ENOMEM; 675 676 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 677 btrfs_release_path(path); 678 679 inode = read_one_inode(root, location.objectid); 680 if (!inode) { 681 kfree(name); 682 return -EIO; 683 } 684 685 ret = link_to_fixup_dir(trans, root, path, location.objectid); 686 BUG_ON(ret); 687 688 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 689 BUG_ON(ret); 690 kfree(name); 691 692 iput(inode); 693 694 btrfs_run_delayed_items(trans, root); 695 return ret; 696 } 697 698 /* 699 * helper function to see if a given name and sequence number found 700 * in an inode back reference are already in a directory and correctly 701 * point to this inode 702 */ 703 static noinline int inode_in_dir(struct btrfs_root *root, 704 struct btrfs_path *path, 705 u64 dirid, u64 objectid, u64 index, 706 const char *name, int name_len) 707 { 708 struct btrfs_dir_item *di; 709 struct btrfs_key location; 710 int match = 0; 711 712 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 713 index, name, name_len, 0); 714 if (di && !IS_ERR(di)) { 715 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 716 if (location.objectid != objectid) 717 goto out; 718 } else 719 goto out; 720 btrfs_release_path(path); 721 722 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 723 if (di && !IS_ERR(di)) { 724 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 725 if (location.objectid != objectid) 726 goto out; 727 } else 728 goto out; 729 match = 1; 730 out: 731 btrfs_release_path(path); 732 return match; 733 } 734 735 /* 736 * helper function to check a log tree for a named back reference in 737 * an inode. This is used to decide if a back reference that is 738 * found in the subvolume conflicts with what we find in the log. 739 * 740 * inode backreferences may have multiple refs in a single item, 741 * during replay we process one reference at a time, and we don't 742 * want to delete valid links to a file from the subvolume if that 743 * link is also in the log. 744 */ 745 static noinline int backref_in_log(struct btrfs_root *log, 746 struct btrfs_key *key, 747 char *name, int namelen) 748 { 749 struct btrfs_path *path; 750 struct btrfs_inode_ref *ref; 751 unsigned long ptr; 752 unsigned long ptr_end; 753 unsigned long name_ptr; 754 int found_name_len; 755 int item_size; 756 int ret; 757 int match = 0; 758 759 path = btrfs_alloc_path(); 760 if (!path) 761 return -ENOMEM; 762 763 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 764 if (ret != 0) 765 goto out; 766 767 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 768 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 769 ptr_end = ptr + item_size; 770 while (ptr < ptr_end) { 771 ref = (struct btrfs_inode_ref *)ptr; 772 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 773 if (found_name_len == namelen) { 774 name_ptr = (unsigned long)(ref + 1); 775 ret = memcmp_extent_buffer(path->nodes[0], name, 776 name_ptr, namelen); 777 if (ret == 0) { 778 match = 1; 779 goto out; 780 } 781 } 782 ptr = (unsigned long)(ref + 1) + found_name_len; 783 } 784 out: 785 btrfs_free_path(path); 786 return match; 787 } 788 789 790 /* 791 * replay one inode back reference item found in the log tree. 792 * eb, slot and key refer to the buffer and key found in the log tree. 793 * root is the destination we are replaying into, and path is for temp 794 * use by this function. (it should be released on return). 795 */ 796 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 797 struct btrfs_root *root, 798 struct btrfs_root *log, 799 struct btrfs_path *path, 800 struct extent_buffer *eb, int slot, 801 struct btrfs_key *key) 802 { 803 struct btrfs_inode_ref *ref; 804 struct btrfs_dir_item *di; 805 struct inode *dir; 806 struct inode *inode; 807 unsigned long ref_ptr; 808 unsigned long ref_end; 809 char *name; 810 int namelen; 811 int ret; 812 int search_done = 0; 813 814 /* 815 * it is possible that we didn't log all the parent directories 816 * for a given inode. If we don't find the dir, just don't 817 * copy the back ref in. The link count fixup code will take 818 * care of the rest 819 */ 820 dir = read_one_inode(root, key->offset); 821 if (!dir) 822 return -ENOENT; 823 824 inode = read_one_inode(root, key->objectid); 825 if (!inode) { 826 iput(dir); 827 return -EIO; 828 } 829 830 ref_ptr = btrfs_item_ptr_offset(eb, slot); 831 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 832 833 again: 834 ref = (struct btrfs_inode_ref *)ref_ptr; 835 836 namelen = btrfs_inode_ref_name_len(eb, ref); 837 name = kmalloc(namelen, GFP_NOFS); 838 BUG_ON(!name); 839 840 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); 841 842 /* if we already have a perfect match, we're done */ 843 if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), 844 btrfs_inode_ref_index(eb, ref), 845 name, namelen)) { 846 goto out; 847 } 848 849 /* 850 * look for a conflicting back reference in the metadata. 851 * if we find one we have to unlink that name of the file 852 * before we add our new link. Later on, we overwrite any 853 * existing back reference, and we don't want to create 854 * dangling pointers in the directory. 855 */ 856 857 if (search_done) 858 goto insert; 859 860 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 861 if (ret == 0) { 862 char *victim_name; 863 int victim_name_len; 864 struct btrfs_inode_ref *victim_ref; 865 unsigned long ptr; 866 unsigned long ptr_end; 867 struct extent_buffer *leaf = path->nodes[0]; 868 869 /* are we trying to overwrite a back ref for the root directory 870 * if so, just jump out, we're done 871 */ 872 if (key->objectid == key->offset) 873 goto out_nowrite; 874 875 /* check all the names in this back reference to see 876 * if they are in the log. if so, we allow them to stay 877 * otherwise they must be unlinked as a conflict 878 */ 879 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 880 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 881 while (ptr < ptr_end) { 882 victim_ref = (struct btrfs_inode_ref *)ptr; 883 victim_name_len = btrfs_inode_ref_name_len(leaf, 884 victim_ref); 885 victim_name = kmalloc(victim_name_len, GFP_NOFS); 886 BUG_ON(!victim_name); 887 888 read_extent_buffer(leaf, victim_name, 889 (unsigned long)(victim_ref + 1), 890 victim_name_len); 891 892 if (!backref_in_log(log, key, victim_name, 893 victim_name_len)) { 894 btrfs_inc_nlink(inode); 895 btrfs_release_path(path); 896 897 ret = btrfs_unlink_inode(trans, root, dir, 898 inode, victim_name, 899 victim_name_len); 900 btrfs_run_delayed_items(trans, root); 901 } 902 kfree(victim_name); 903 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 904 } 905 BUG_ON(ret); 906 907 /* 908 * NOTE: we have searched root tree and checked the 909 * coresponding ref, it does not need to check again. 910 */ 911 search_done = 1; 912 } 913 btrfs_release_path(path); 914 915 /* look for a conflicting sequence number */ 916 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 917 btrfs_inode_ref_index(eb, ref), 918 name, namelen, 0); 919 if (di && !IS_ERR(di)) { 920 ret = drop_one_dir_item(trans, root, path, dir, di); 921 BUG_ON(ret); 922 } 923 btrfs_release_path(path); 924 925 /* look for a conflicing name */ 926 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 927 name, namelen, 0); 928 if (di && !IS_ERR(di)) { 929 ret = drop_one_dir_item(trans, root, path, dir, di); 930 BUG_ON(ret); 931 } 932 btrfs_release_path(path); 933 934 insert: 935 /* insert our name */ 936 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, 937 btrfs_inode_ref_index(eb, ref)); 938 BUG_ON(ret); 939 940 btrfs_update_inode(trans, root, inode); 941 942 out: 943 ref_ptr = (unsigned long)(ref + 1) + namelen; 944 kfree(name); 945 if (ref_ptr < ref_end) 946 goto again; 947 948 /* finally write the back reference in the inode */ 949 ret = overwrite_item(trans, root, path, eb, slot, key); 950 BUG_ON(ret); 951 952 out_nowrite: 953 btrfs_release_path(path); 954 iput(dir); 955 iput(inode); 956 return 0; 957 } 958 959 static int insert_orphan_item(struct btrfs_trans_handle *trans, 960 struct btrfs_root *root, u64 offset) 961 { 962 int ret; 963 ret = btrfs_find_orphan_item(root, offset); 964 if (ret > 0) 965 ret = btrfs_insert_orphan_item(trans, root, offset); 966 return ret; 967 } 968 969 970 /* 971 * There are a few corners where the link count of the file can't 972 * be properly maintained during replay. So, instead of adding 973 * lots of complexity to the log code, we just scan the backrefs 974 * for any file that has been through replay. 975 * 976 * The scan will update the link count on the inode to reflect the 977 * number of back refs found. If it goes down to zero, the iput 978 * will free the inode. 979 */ 980 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 981 struct btrfs_root *root, 982 struct inode *inode) 983 { 984 struct btrfs_path *path; 985 int ret; 986 struct btrfs_key key; 987 u64 nlink = 0; 988 unsigned long ptr; 989 unsigned long ptr_end; 990 int name_len; 991 u64 ino = btrfs_ino(inode); 992 993 key.objectid = ino; 994 key.type = BTRFS_INODE_REF_KEY; 995 key.offset = (u64)-1; 996 997 path = btrfs_alloc_path(); 998 if (!path) 999 return -ENOMEM; 1000 1001 while (1) { 1002 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1003 if (ret < 0) 1004 break; 1005 if (ret > 0) { 1006 if (path->slots[0] == 0) 1007 break; 1008 path->slots[0]--; 1009 } 1010 btrfs_item_key_to_cpu(path->nodes[0], &key, 1011 path->slots[0]); 1012 if (key.objectid != ino || 1013 key.type != BTRFS_INODE_REF_KEY) 1014 break; 1015 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1016 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1017 path->slots[0]); 1018 while (ptr < ptr_end) { 1019 struct btrfs_inode_ref *ref; 1020 1021 ref = (struct btrfs_inode_ref *)ptr; 1022 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1023 ref); 1024 ptr = (unsigned long)(ref + 1) + name_len; 1025 nlink++; 1026 } 1027 1028 if (key.offset == 0) 1029 break; 1030 key.offset--; 1031 btrfs_release_path(path); 1032 } 1033 btrfs_release_path(path); 1034 if (nlink != inode->i_nlink) { 1035 set_nlink(inode, nlink); 1036 btrfs_update_inode(trans, root, inode); 1037 } 1038 BTRFS_I(inode)->index_cnt = (u64)-1; 1039 1040 if (inode->i_nlink == 0) { 1041 if (S_ISDIR(inode->i_mode)) { 1042 ret = replay_dir_deletes(trans, root, NULL, path, 1043 ino, 1); 1044 BUG_ON(ret); 1045 } 1046 ret = insert_orphan_item(trans, root, ino); 1047 BUG_ON(ret); 1048 } 1049 btrfs_free_path(path); 1050 1051 return 0; 1052 } 1053 1054 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1055 struct btrfs_root *root, 1056 struct btrfs_path *path) 1057 { 1058 int ret; 1059 struct btrfs_key key; 1060 struct inode *inode; 1061 1062 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1063 key.type = BTRFS_ORPHAN_ITEM_KEY; 1064 key.offset = (u64)-1; 1065 while (1) { 1066 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1067 if (ret < 0) 1068 break; 1069 1070 if (ret == 1) { 1071 if (path->slots[0] == 0) 1072 break; 1073 path->slots[0]--; 1074 } 1075 1076 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1077 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1078 key.type != BTRFS_ORPHAN_ITEM_KEY) 1079 break; 1080 1081 ret = btrfs_del_item(trans, root, path); 1082 if (ret) 1083 goto out; 1084 1085 btrfs_release_path(path); 1086 inode = read_one_inode(root, key.offset); 1087 if (!inode) 1088 return -EIO; 1089 1090 ret = fixup_inode_link_count(trans, root, inode); 1091 BUG_ON(ret); 1092 1093 iput(inode); 1094 1095 /* 1096 * fixup on a directory may create new entries, 1097 * make sure we always look for the highset possible 1098 * offset 1099 */ 1100 key.offset = (u64)-1; 1101 } 1102 ret = 0; 1103 out: 1104 btrfs_release_path(path); 1105 return ret; 1106 } 1107 1108 1109 /* 1110 * record a given inode in the fixup dir so we can check its link 1111 * count when replay is done. The link count is incremented here 1112 * so the inode won't go away until we check it 1113 */ 1114 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1115 struct btrfs_root *root, 1116 struct btrfs_path *path, 1117 u64 objectid) 1118 { 1119 struct btrfs_key key; 1120 int ret = 0; 1121 struct inode *inode; 1122 1123 inode = read_one_inode(root, objectid); 1124 if (!inode) 1125 return -EIO; 1126 1127 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1128 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1129 key.offset = objectid; 1130 1131 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1132 1133 btrfs_release_path(path); 1134 if (ret == 0) { 1135 btrfs_inc_nlink(inode); 1136 ret = btrfs_update_inode(trans, root, inode); 1137 } else if (ret == -EEXIST) { 1138 ret = 0; 1139 } else { 1140 BUG(); 1141 } 1142 iput(inode); 1143 1144 return ret; 1145 } 1146 1147 /* 1148 * when replaying the log for a directory, we only insert names 1149 * for inodes that actually exist. This means an fsync on a directory 1150 * does not implicitly fsync all the new files in it 1151 */ 1152 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1153 struct btrfs_root *root, 1154 struct btrfs_path *path, 1155 u64 dirid, u64 index, 1156 char *name, int name_len, u8 type, 1157 struct btrfs_key *location) 1158 { 1159 struct inode *inode; 1160 struct inode *dir; 1161 int ret; 1162 1163 inode = read_one_inode(root, location->objectid); 1164 if (!inode) 1165 return -ENOENT; 1166 1167 dir = read_one_inode(root, dirid); 1168 if (!dir) { 1169 iput(inode); 1170 return -EIO; 1171 } 1172 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); 1173 1174 /* FIXME, put inode into FIXUP list */ 1175 1176 iput(inode); 1177 iput(dir); 1178 return ret; 1179 } 1180 1181 /* 1182 * take a single entry in a log directory item and replay it into 1183 * the subvolume. 1184 * 1185 * if a conflicting item exists in the subdirectory already, 1186 * the inode it points to is unlinked and put into the link count 1187 * fix up tree. 1188 * 1189 * If a name from the log points to a file or directory that does 1190 * not exist in the FS, it is skipped. fsyncs on directories 1191 * do not force down inodes inside that directory, just changes to the 1192 * names or unlinks in a directory. 1193 */ 1194 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1195 struct btrfs_root *root, 1196 struct btrfs_path *path, 1197 struct extent_buffer *eb, 1198 struct btrfs_dir_item *di, 1199 struct btrfs_key *key) 1200 { 1201 char *name; 1202 int name_len; 1203 struct btrfs_dir_item *dst_di; 1204 struct btrfs_key found_key; 1205 struct btrfs_key log_key; 1206 struct inode *dir; 1207 u8 log_type; 1208 int exists; 1209 int ret; 1210 1211 dir = read_one_inode(root, key->objectid); 1212 if (!dir) 1213 return -EIO; 1214 1215 name_len = btrfs_dir_name_len(eb, di); 1216 name = kmalloc(name_len, GFP_NOFS); 1217 if (!name) 1218 return -ENOMEM; 1219 1220 log_type = btrfs_dir_type(eb, di); 1221 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1222 name_len); 1223 1224 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1225 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1226 if (exists == 0) 1227 exists = 1; 1228 else 1229 exists = 0; 1230 btrfs_release_path(path); 1231 1232 if (key->type == BTRFS_DIR_ITEM_KEY) { 1233 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1234 name, name_len, 1); 1235 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1236 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1237 key->objectid, 1238 key->offset, name, 1239 name_len, 1); 1240 } else { 1241 BUG(); 1242 } 1243 if (IS_ERR_OR_NULL(dst_di)) { 1244 /* we need a sequence number to insert, so we only 1245 * do inserts for the BTRFS_DIR_INDEX_KEY types 1246 */ 1247 if (key->type != BTRFS_DIR_INDEX_KEY) 1248 goto out; 1249 goto insert; 1250 } 1251 1252 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1253 /* the existing item matches the logged item */ 1254 if (found_key.objectid == log_key.objectid && 1255 found_key.type == log_key.type && 1256 found_key.offset == log_key.offset && 1257 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1258 goto out; 1259 } 1260 1261 /* 1262 * don't drop the conflicting directory entry if the inode 1263 * for the new entry doesn't exist 1264 */ 1265 if (!exists) 1266 goto out; 1267 1268 ret = drop_one_dir_item(trans, root, path, dir, dst_di); 1269 BUG_ON(ret); 1270 1271 if (key->type == BTRFS_DIR_INDEX_KEY) 1272 goto insert; 1273 out: 1274 btrfs_release_path(path); 1275 kfree(name); 1276 iput(dir); 1277 return 0; 1278 1279 insert: 1280 btrfs_release_path(path); 1281 ret = insert_one_name(trans, root, path, key->objectid, key->offset, 1282 name, name_len, log_type, &log_key); 1283 1284 BUG_ON(ret && ret != -ENOENT); 1285 goto out; 1286 } 1287 1288 /* 1289 * find all the names in a directory item and reconcile them into 1290 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 1291 * one name in a directory item, but the same code gets used for 1292 * both directory index types 1293 */ 1294 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1295 struct btrfs_root *root, 1296 struct btrfs_path *path, 1297 struct extent_buffer *eb, int slot, 1298 struct btrfs_key *key) 1299 { 1300 int ret; 1301 u32 item_size = btrfs_item_size_nr(eb, slot); 1302 struct btrfs_dir_item *di; 1303 int name_len; 1304 unsigned long ptr; 1305 unsigned long ptr_end; 1306 1307 ptr = btrfs_item_ptr_offset(eb, slot); 1308 ptr_end = ptr + item_size; 1309 while (ptr < ptr_end) { 1310 di = (struct btrfs_dir_item *)ptr; 1311 if (verify_dir_item(root, eb, di)) 1312 return -EIO; 1313 name_len = btrfs_dir_name_len(eb, di); 1314 ret = replay_one_name(trans, root, path, eb, di, key); 1315 BUG_ON(ret); 1316 ptr = (unsigned long)(di + 1); 1317 ptr += name_len; 1318 } 1319 return 0; 1320 } 1321 1322 /* 1323 * directory replay has two parts. There are the standard directory 1324 * items in the log copied from the subvolume, and range items 1325 * created in the log while the subvolume was logged. 1326 * 1327 * The range items tell us which parts of the key space the log 1328 * is authoritative for. During replay, if a key in the subvolume 1329 * directory is in a logged range item, but not actually in the log 1330 * that means it was deleted from the directory before the fsync 1331 * and should be removed. 1332 */ 1333 static noinline int find_dir_range(struct btrfs_root *root, 1334 struct btrfs_path *path, 1335 u64 dirid, int key_type, 1336 u64 *start_ret, u64 *end_ret) 1337 { 1338 struct btrfs_key key; 1339 u64 found_end; 1340 struct btrfs_dir_log_item *item; 1341 int ret; 1342 int nritems; 1343 1344 if (*start_ret == (u64)-1) 1345 return 1; 1346 1347 key.objectid = dirid; 1348 key.type = key_type; 1349 key.offset = *start_ret; 1350 1351 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1352 if (ret < 0) 1353 goto out; 1354 if (ret > 0) { 1355 if (path->slots[0] == 0) 1356 goto out; 1357 path->slots[0]--; 1358 } 1359 if (ret != 0) 1360 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1361 1362 if (key.type != key_type || key.objectid != dirid) { 1363 ret = 1; 1364 goto next; 1365 } 1366 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1367 struct btrfs_dir_log_item); 1368 found_end = btrfs_dir_log_end(path->nodes[0], item); 1369 1370 if (*start_ret >= key.offset && *start_ret <= found_end) { 1371 ret = 0; 1372 *start_ret = key.offset; 1373 *end_ret = found_end; 1374 goto out; 1375 } 1376 ret = 1; 1377 next: 1378 /* check the next slot in the tree to see if it is a valid item */ 1379 nritems = btrfs_header_nritems(path->nodes[0]); 1380 if (path->slots[0] >= nritems) { 1381 ret = btrfs_next_leaf(root, path); 1382 if (ret) 1383 goto out; 1384 } else { 1385 path->slots[0]++; 1386 } 1387 1388 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1389 1390 if (key.type != key_type || key.objectid != dirid) { 1391 ret = 1; 1392 goto out; 1393 } 1394 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1395 struct btrfs_dir_log_item); 1396 found_end = btrfs_dir_log_end(path->nodes[0], item); 1397 *start_ret = key.offset; 1398 *end_ret = found_end; 1399 ret = 0; 1400 out: 1401 btrfs_release_path(path); 1402 return ret; 1403 } 1404 1405 /* 1406 * this looks for a given directory item in the log. If the directory 1407 * item is not in the log, the item is removed and the inode it points 1408 * to is unlinked 1409 */ 1410 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 1411 struct btrfs_root *root, 1412 struct btrfs_root *log, 1413 struct btrfs_path *path, 1414 struct btrfs_path *log_path, 1415 struct inode *dir, 1416 struct btrfs_key *dir_key) 1417 { 1418 int ret; 1419 struct extent_buffer *eb; 1420 int slot; 1421 u32 item_size; 1422 struct btrfs_dir_item *di; 1423 struct btrfs_dir_item *log_di; 1424 int name_len; 1425 unsigned long ptr; 1426 unsigned long ptr_end; 1427 char *name; 1428 struct inode *inode; 1429 struct btrfs_key location; 1430 1431 again: 1432 eb = path->nodes[0]; 1433 slot = path->slots[0]; 1434 item_size = btrfs_item_size_nr(eb, slot); 1435 ptr = btrfs_item_ptr_offset(eb, slot); 1436 ptr_end = ptr + item_size; 1437 while (ptr < ptr_end) { 1438 di = (struct btrfs_dir_item *)ptr; 1439 if (verify_dir_item(root, eb, di)) { 1440 ret = -EIO; 1441 goto out; 1442 } 1443 1444 name_len = btrfs_dir_name_len(eb, di); 1445 name = kmalloc(name_len, GFP_NOFS); 1446 if (!name) { 1447 ret = -ENOMEM; 1448 goto out; 1449 } 1450 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1451 name_len); 1452 log_di = NULL; 1453 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 1454 log_di = btrfs_lookup_dir_item(trans, log, log_path, 1455 dir_key->objectid, 1456 name, name_len, 0); 1457 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 1458 log_di = btrfs_lookup_dir_index_item(trans, log, 1459 log_path, 1460 dir_key->objectid, 1461 dir_key->offset, 1462 name, name_len, 0); 1463 } 1464 if (IS_ERR_OR_NULL(log_di)) { 1465 btrfs_dir_item_key_to_cpu(eb, di, &location); 1466 btrfs_release_path(path); 1467 btrfs_release_path(log_path); 1468 inode = read_one_inode(root, location.objectid); 1469 if (!inode) { 1470 kfree(name); 1471 return -EIO; 1472 } 1473 1474 ret = link_to_fixup_dir(trans, root, 1475 path, location.objectid); 1476 BUG_ON(ret); 1477 btrfs_inc_nlink(inode); 1478 ret = btrfs_unlink_inode(trans, root, dir, inode, 1479 name, name_len); 1480 BUG_ON(ret); 1481 1482 btrfs_run_delayed_items(trans, root); 1483 1484 kfree(name); 1485 iput(inode); 1486 1487 /* there might still be more names under this key 1488 * check and repeat if required 1489 */ 1490 ret = btrfs_search_slot(NULL, root, dir_key, path, 1491 0, 0); 1492 if (ret == 0) 1493 goto again; 1494 ret = 0; 1495 goto out; 1496 } 1497 btrfs_release_path(log_path); 1498 kfree(name); 1499 1500 ptr = (unsigned long)(di + 1); 1501 ptr += name_len; 1502 } 1503 ret = 0; 1504 out: 1505 btrfs_release_path(path); 1506 btrfs_release_path(log_path); 1507 return ret; 1508 } 1509 1510 /* 1511 * deletion replay happens before we copy any new directory items 1512 * out of the log or out of backreferences from inodes. It 1513 * scans the log to find ranges of keys that log is authoritative for, 1514 * and then scans the directory to find items in those ranges that are 1515 * not present in the log. 1516 * 1517 * Anything we don't find in the log is unlinked and removed from the 1518 * directory. 1519 */ 1520 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 1521 struct btrfs_root *root, 1522 struct btrfs_root *log, 1523 struct btrfs_path *path, 1524 u64 dirid, int del_all) 1525 { 1526 u64 range_start; 1527 u64 range_end; 1528 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 1529 int ret = 0; 1530 struct btrfs_key dir_key; 1531 struct btrfs_key found_key; 1532 struct btrfs_path *log_path; 1533 struct inode *dir; 1534 1535 dir_key.objectid = dirid; 1536 dir_key.type = BTRFS_DIR_ITEM_KEY; 1537 log_path = btrfs_alloc_path(); 1538 if (!log_path) 1539 return -ENOMEM; 1540 1541 dir = read_one_inode(root, dirid); 1542 /* it isn't an error if the inode isn't there, that can happen 1543 * because we replay the deletes before we copy in the inode item 1544 * from the log 1545 */ 1546 if (!dir) { 1547 btrfs_free_path(log_path); 1548 return 0; 1549 } 1550 again: 1551 range_start = 0; 1552 range_end = 0; 1553 while (1) { 1554 if (del_all) 1555 range_end = (u64)-1; 1556 else { 1557 ret = find_dir_range(log, path, dirid, key_type, 1558 &range_start, &range_end); 1559 if (ret != 0) 1560 break; 1561 } 1562 1563 dir_key.offset = range_start; 1564 while (1) { 1565 int nritems; 1566 ret = btrfs_search_slot(NULL, root, &dir_key, path, 1567 0, 0); 1568 if (ret < 0) 1569 goto out; 1570 1571 nritems = btrfs_header_nritems(path->nodes[0]); 1572 if (path->slots[0] >= nritems) { 1573 ret = btrfs_next_leaf(root, path); 1574 if (ret) 1575 break; 1576 } 1577 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1578 path->slots[0]); 1579 if (found_key.objectid != dirid || 1580 found_key.type != dir_key.type) 1581 goto next_type; 1582 1583 if (found_key.offset > range_end) 1584 break; 1585 1586 ret = check_item_in_log(trans, root, log, path, 1587 log_path, dir, 1588 &found_key); 1589 BUG_ON(ret); 1590 if (found_key.offset == (u64)-1) 1591 break; 1592 dir_key.offset = found_key.offset + 1; 1593 } 1594 btrfs_release_path(path); 1595 if (range_end == (u64)-1) 1596 break; 1597 range_start = range_end + 1; 1598 } 1599 1600 next_type: 1601 ret = 0; 1602 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 1603 key_type = BTRFS_DIR_LOG_INDEX_KEY; 1604 dir_key.type = BTRFS_DIR_INDEX_KEY; 1605 btrfs_release_path(path); 1606 goto again; 1607 } 1608 out: 1609 btrfs_release_path(path); 1610 btrfs_free_path(log_path); 1611 iput(dir); 1612 return ret; 1613 } 1614 1615 /* 1616 * the process_func used to replay items from the log tree. This 1617 * gets called in two different stages. The first stage just looks 1618 * for inodes and makes sure they are all copied into the subvolume. 1619 * 1620 * The second stage copies all the other item types from the log into 1621 * the subvolume. The two stage approach is slower, but gets rid of 1622 * lots of complexity around inodes referencing other inodes that exist 1623 * only in the log (references come from either directory items or inode 1624 * back refs). 1625 */ 1626 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 1627 struct walk_control *wc, u64 gen) 1628 { 1629 int nritems; 1630 struct btrfs_path *path; 1631 struct btrfs_root *root = wc->replay_dest; 1632 struct btrfs_key key; 1633 int level; 1634 int i; 1635 int ret; 1636 1637 ret = btrfs_read_buffer(eb, gen); 1638 if (ret) 1639 return ret; 1640 1641 level = btrfs_header_level(eb); 1642 1643 if (level != 0) 1644 return 0; 1645 1646 path = btrfs_alloc_path(); 1647 if (!path) 1648 return -ENOMEM; 1649 1650 nritems = btrfs_header_nritems(eb); 1651 for (i = 0; i < nritems; i++) { 1652 btrfs_item_key_to_cpu(eb, &key, i); 1653 1654 /* inode keys are done during the first stage */ 1655 if (key.type == BTRFS_INODE_ITEM_KEY && 1656 wc->stage == LOG_WALK_REPLAY_INODES) { 1657 struct btrfs_inode_item *inode_item; 1658 u32 mode; 1659 1660 inode_item = btrfs_item_ptr(eb, i, 1661 struct btrfs_inode_item); 1662 mode = btrfs_inode_mode(eb, inode_item); 1663 if (S_ISDIR(mode)) { 1664 ret = replay_dir_deletes(wc->trans, 1665 root, log, path, key.objectid, 0); 1666 BUG_ON(ret); 1667 } 1668 ret = overwrite_item(wc->trans, root, path, 1669 eb, i, &key); 1670 BUG_ON(ret); 1671 1672 /* for regular files, make sure corresponding 1673 * orhpan item exist. extents past the new EOF 1674 * will be truncated later by orphan cleanup. 1675 */ 1676 if (S_ISREG(mode)) { 1677 ret = insert_orphan_item(wc->trans, root, 1678 key.objectid); 1679 BUG_ON(ret); 1680 } 1681 1682 ret = link_to_fixup_dir(wc->trans, root, 1683 path, key.objectid); 1684 BUG_ON(ret); 1685 } 1686 if (wc->stage < LOG_WALK_REPLAY_ALL) 1687 continue; 1688 1689 /* these keys are simply copied */ 1690 if (key.type == BTRFS_XATTR_ITEM_KEY) { 1691 ret = overwrite_item(wc->trans, root, path, 1692 eb, i, &key); 1693 BUG_ON(ret); 1694 } else if (key.type == BTRFS_INODE_REF_KEY) { 1695 ret = add_inode_ref(wc->trans, root, log, path, 1696 eb, i, &key); 1697 BUG_ON(ret && ret != -ENOENT); 1698 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 1699 ret = replay_one_extent(wc->trans, root, path, 1700 eb, i, &key); 1701 BUG_ON(ret); 1702 } else if (key.type == BTRFS_DIR_ITEM_KEY || 1703 key.type == BTRFS_DIR_INDEX_KEY) { 1704 ret = replay_one_dir_item(wc->trans, root, path, 1705 eb, i, &key); 1706 BUG_ON(ret); 1707 } 1708 } 1709 btrfs_free_path(path); 1710 return 0; 1711 } 1712 1713 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 1714 struct btrfs_root *root, 1715 struct btrfs_path *path, int *level, 1716 struct walk_control *wc) 1717 { 1718 u64 root_owner; 1719 u64 bytenr; 1720 u64 ptr_gen; 1721 struct extent_buffer *next; 1722 struct extent_buffer *cur; 1723 struct extent_buffer *parent; 1724 u32 blocksize; 1725 int ret = 0; 1726 1727 WARN_ON(*level < 0); 1728 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1729 1730 while (*level > 0) { 1731 WARN_ON(*level < 0); 1732 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1733 cur = path->nodes[*level]; 1734 1735 if (btrfs_header_level(cur) != *level) 1736 WARN_ON(1); 1737 1738 if (path->slots[*level] >= 1739 btrfs_header_nritems(cur)) 1740 break; 1741 1742 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 1743 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 1744 blocksize = btrfs_level_size(root, *level - 1); 1745 1746 parent = path->nodes[*level]; 1747 root_owner = btrfs_header_owner(parent); 1748 1749 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 1750 if (!next) 1751 return -ENOMEM; 1752 1753 if (*level == 1) { 1754 ret = wc->process_func(root, next, wc, ptr_gen); 1755 if (ret) 1756 return ret; 1757 1758 path->slots[*level]++; 1759 if (wc->free) { 1760 ret = btrfs_read_buffer(next, ptr_gen); 1761 if (ret) { 1762 free_extent_buffer(next); 1763 return ret; 1764 } 1765 1766 btrfs_tree_lock(next); 1767 btrfs_set_lock_blocking(next); 1768 clean_tree_block(trans, root, next); 1769 btrfs_wait_tree_block_writeback(next); 1770 btrfs_tree_unlock(next); 1771 1772 WARN_ON(root_owner != 1773 BTRFS_TREE_LOG_OBJECTID); 1774 ret = btrfs_free_and_pin_reserved_extent(root, 1775 bytenr, blocksize); 1776 BUG_ON(ret); /* -ENOMEM or logic errors */ 1777 } 1778 free_extent_buffer(next); 1779 continue; 1780 } 1781 ret = btrfs_read_buffer(next, ptr_gen); 1782 if (ret) { 1783 free_extent_buffer(next); 1784 return ret; 1785 } 1786 1787 WARN_ON(*level <= 0); 1788 if (path->nodes[*level-1]) 1789 free_extent_buffer(path->nodes[*level-1]); 1790 path->nodes[*level-1] = next; 1791 *level = btrfs_header_level(next); 1792 path->slots[*level] = 0; 1793 cond_resched(); 1794 } 1795 WARN_ON(*level < 0); 1796 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1797 1798 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 1799 1800 cond_resched(); 1801 return 0; 1802 } 1803 1804 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 1805 struct btrfs_root *root, 1806 struct btrfs_path *path, int *level, 1807 struct walk_control *wc) 1808 { 1809 u64 root_owner; 1810 int i; 1811 int slot; 1812 int ret; 1813 1814 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 1815 slot = path->slots[i]; 1816 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 1817 path->slots[i]++; 1818 *level = i; 1819 WARN_ON(*level == 0); 1820 return 0; 1821 } else { 1822 struct extent_buffer *parent; 1823 if (path->nodes[*level] == root->node) 1824 parent = path->nodes[*level]; 1825 else 1826 parent = path->nodes[*level + 1]; 1827 1828 root_owner = btrfs_header_owner(parent); 1829 ret = wc->process_func(root, path->nodes[*level], wc, 1830 btrfs_header_generation(path->nodes[*level])); 1831 if (ret) 1832 return ret; 1833 1834 if (wc->free) { 1835 struct extent_buffer *next; 1836 1837 next = path->nodes[*level]; 1838 1839 btrfs_tree_lock(next); 1840 btrfs_set_lock_blocking(next); 1841 clean_tree_block(trans, root, next); 1842 btrfs_wait_tree_block_writeback(next); 1843 btrfs_tree_unlock(next); 1844 1845 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 1846 ret = btrfs_free_and_pin_reserved_extent(root, 1847 path->nodes[*level]->start, 1848 path->nodes[*level]->len); 1849 BUG_ON(ret); 1850 } 1851 free_extent_buffer(path->nodes[*level]); 1852 path->nodes[*level] = NULL; 1853 *level = i + 1; 1854 } 1855 } 1856 return 1; 1857 } 1858 1859 /* 1860 * drop the reference count on the tree rooted at 'snap'. This traverses 1861 * the tree freeing any blocks that have a ref count of zero after being 1862 * decremented. 1863 */ 1864 static int walk_log_tree(struct btrfs_trans_handle *trans, 1865 struct btrfs_root *log, struct walk_control *wc) 1866 { 1867 int ret = 0; 1868 int wret; 1869 int level; 1870 struct btrfs_path *path; 1871 int i; 1872 int orig_level; 1873 1874 path = btrfs_alloc_path(); 1875 if (!path) 1876 return -ENOMEM; 1877 1878 level = btrfs_header_level(log->node); 1879 orig_level = level; 1880 path->nodes[level] = log->node; 1881 extent_buffer_get(log->node); 1882 path->slots[level] = 0; 1883 1884 while (1) { 1885 wret = walk_down_log_tree(trans, log, path, &level, wc); 1886 if (wret > 0) 1887 break; 1888 if (wret < 0) { 1889 ret = wret; 1890 goto out; 1891 } 1892 1893 wret = walk_up_log_tree(trans, log, path, &level, wc); 1894 if (wret > 0) 1895 break; 1896 if (wret < 0) { 1897 ret = wret; 1898 goto out; 1899 } 1900 } 1901 1902 /* was the root node processed? if not, catch it here */ 1903 if (path->nodes[orig_level]) { 1904 ret = wc->process_func(log, path->nodes[orig_level], wc, 1905 btrfs_header_generation(path->nodes[orig_level])); 1906 if (ret) 1907 goto out; 1908 if (wc->free) { 1909 struct extent_buffer *next; 1910 1911 next = path->nodes[orig_level]; 1912 1913 btrfs_tree_lock(next); 1914 btrfs_set_lock_blocking(next); 1915 clean_tree_block(trans, log, next); 1916 btrfs_wait_tree_block_writeback(next); 1917 btrfs_tree_unlock(next); 1918 1919 WARN_ON(log->root_key.objectid != 1920 BTRFS_TREE_LOG_OBJECTID); 1921 ret = btrfs_free_and_pin_reserved_extent(log, next->start, 1922 next->len); 1923 BUG_ON(ret); /* -ENOMEM or logic errors */ 1924 } 1925 } 1926 1927 out: 1928 for (i = 0; i <= orig_level; i++) { 1929 if (path->nodes[i]) { 1930 free_extent_buffer(path->nodes[i]); 1931 path->nodes[i] = NULL; 1932 } 1933 } 1934 btrfs_free_path(path); 1935 return ret; 1936 } 1937 1938 /* 1939 * helper function to update the item for a given subvolumes log root 1940 * in the tree of log roots 1941 */ 1942 static int update_log_root(struct btrfs_trans_handle *trans, 1943 struct btrfs_root *log) 1944 { 1945 int ret; 1946 1947 if (log->log_transid == 1) { 1948 /* insert root item on the first sync */ 1949 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, 1950 &log->root_key, &log->root_item); 1951 } else { 1952 ret = btrfs_update_root(trans, log->fs_info->log_root_tree, 1953 &log->root_key, &log->root_item); 1954 } 1955 return ret; 1956 } 1957 1958 static int wait_log_commit(struct btrfs_trans_handle *trans, 1959 struct btrfs_root *root, unsigned long transid) 1960 { 1961 DEFINE_WAIT(wait); 1962 int index = transid % 2; 1963 1964 /* 1965 * we only allow two pending log transactions at a time, 1966 * so we know that if ours is more than 2 older than the 1967 * current transaction, we're done 1968 */ 1969 do { 1970 prepare_to_wait(&root->log_commit_wait[index], 1971 &wait, TASK_UNINTERRUPTIBLE); 1972 mutex_unlock(&root->log_mutex); 1973 1974 if (root->fs_info->last_trans_log_full_commit != 1975 trans->transid && root->log_transid < transid + 2 && 1976 atomic_read(&root->log_commit[index])) 1977 schedule(); 1978 1979 finish_wait(&root->log_commit_wait[index], &wait); 1980 mutex_lock(&root->log_mutex); 1981 } while (root->fs_info->last_trans_log_full_commit != 1982 trans->transid && root->log_transid < transid + 2 && 1983 atomic_read(&root->log_commit[index])); 1984 return 0; 1985 } 1986 1987 static void wait_for_writer(struct btrfs_trans_handle *trans, 1988 struct btrfs_root *root) 1989 { 1990 DEFINE_WAIT(wait); 1991 while (root->fs_info->last_trans_log_full_commit != 1992 trans->transid && atomic_read(&root->log_writers)) { 1993 prepare_to_wait(&root->log_writer_wait, 1994 &wait, TASK_UNINTERRUPTIBLE); 1995 mutex_unlock(&root->log_mutex); 1996 if (root->fs_info->last_trans_log_full_commit != 1997 trans->transid && atomic_read(&root->log_writers)) 1998 schedule(); 1999 mutex_lock(&root->log_mutex); 2000 finish_wait(&root->log_writer_wait, &wait); 2001 } 2002 } 2003 2004 /* 2005 * btrfs_sync_log does sends a given tree log down to the disk and 2006 * updates the super blocks to record it. When this call is done, 2007 * you know that any inodes previously logged are safely on disk only 2008 * if it returns 0. 2009 * 2010 * Any other return value means you need to call btrfs_commit_transaction. 2011 * Some of the edge cases for fsyncing directories that have had unlinks 2012 * or renames done in the past mean that sometimes the only safe 2013 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2014 * that has happened. 2015 */ 2016 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2017 struct btrfs_root *root) 2018 { 2019 int index1; 2020 int index2; 2021 int mark; 2022 int ret; 2023 struct btrfs_root *log = root->log_root; 2024 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; 2025 unsigned long log_transid = 0; 2026 2027 mutex_lock(&root->log_mutex); 2028 index1 = root->log_transid % 2; 2029 if (atomic_read(&root->log_commit[index1])) { 2030 wait_log_commit(trans, root, root->log_transid); 2031 mutex_unlock(&root->log_mutex); 2032 return 0; 2033 } 2034 atomic_set(&root->log_commit[index1], 1); 2035 2036 /* wait for previous tree log sync to complete */ 2037 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2038 wait_log_commit(trans, root, root->log_transid - 1); 2039 while (1) { 2040 unsigned long batch = root->log_batch; 2041 /* when we're on an ssd, just kick the log commit out */ 2042 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) { 2043 mutex_unlock(&root->log_mutex); 2044 schedule_timeout_uninterruptible(1); 2045 mutex_lock(&root->log_mutex); 2046 } 2047 wait_for_writer(trans, root); 2048 if (batch == root->log_batch) 2049 break; 2050 } 2051 2052 /* bail out if we need to do a full commit */ 2053 if (root->fs_info->last_trans_log_full_commit == trans->transid) { 2054 ret = -EAGAIN; 2055 mutex_unlock(&root->log_mutex); 2056 goto out; 2057 } 2058 2059 log_transid = root->log_transid; 2060 if (log_transid % 2 == 0) 2061 mark = EXTENT_DIRTY; 2062 else 2063 mark = EXTENT_NEW; 2064 2065 /* we start IO on all the marked extents here, but we don't actually 2066 * wait for them until later. 2067 */ 2068 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); 2069 if (ret) { 2070 btrfs_abort_transaction(trans, root, ret); 2071 mutex_unlock(&root->log_mutex); 2072 goto out; 2073 } 2074 2075 btrfs_set_root_node(&log->root_item, log->node); 2076 2077 root->log_batch = 0; 2078 root->log_transid++; 2079 log->log_transid = root->log_transid; 2080 root->log_start_pid = 0; 2081 smp_mb(); 2082 /* 2083 * IO has been started, blocks of the log tree have WRITTEN flag set 2084 * in their headers. new modifications of the log will be written to 2085 * new positions. so it's safe to allow log writers to go in. 2086 */ 2087 mutex_unlock(&root->log_mutex); 2088 2089 mutex_lock(&log_root_tree->log_mutex); 2090 log_root_tree->log_batch++; 2091 atomic_inc(&log_root_tree->log_writers); 2092 mutex_unlock(&log_root_tree->log_mutex); 2093 2094 ret = update_log_root(trans, log); 2095 2096 mutex_lock(&log_root_tree->log_mutex); 2097 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 2098 smp_mb(); 2099 if (waitqueue_active(&log_root_tree->log_writer_wait)) 2100 wake_up(&log_root_tree->log_writer_wait); 2101 } 2102 2103 if (ret) { 2104 if (ret != -ENOSPC) { 2105 btrfs_abort_transaction(trans, root, ret); 2106 mutex_unlock(&log_root_tree->log_mutex); 2107 goto out; 2108 } 2109 root->fs_info->last_trans_log_full_commit = trans->transid; 2110 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2111 mutex_unlock(&log_root_tree->log_mutex); 2112 ret = -EAGAIN; 2113 goto out; 2114 } 2115 2116 index2 = log_root_tree->log_transid % 2; 2117 if (atomic_read(&log_root_tree->log_commit[index2])) { 2118 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2119 wait_log_commit(trans, log_root_tree, 2120 log_root_tree->log_transid); 2121 mutex_unlock(&log_root_tree->log_mutex); 2122 ret = 0; 2123 goto out; 2124 } 2125 atomic_set(&log_root_tree->log_commit[index2], 1); 2126 2127 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 2128 wait_log_commit(trans, log_root_tree, 2129 log_root_tree->log_transid - 1); 2130 } 2131 2132 wait_for_writer(trans, log_root_tree); 2133 2134 /* 2135 * now that we've moved on to the tree of log tree roots, 2136 * check the full commit flag again 2137 */ 2138 if (root->fs_info->last_trans_log_full_commit == trans->transid) { 2139 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2140 mutex_unlock(&log_root_tree->log_mutex); 2141 ret = -EAGAIN; 2142 goto out_wake_log_root; 2143 } 2144 2145 ret = btrfs_write_and_wait_marked_extents(log_root_tree, 2146 &log_root_tree->dirty_log_pages, 2147 EXTENT_DIRTY | EXTENT_NEW); 2148 if (ret) { 2149 btrfs_abort_transaction(trans, root, ret); 2150 mutex_unlock(&log_root_tree->log_mutex); 2151 goto out_wake_log_root; 2152 } 2153 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2154 2155 btrfs_set_super_log_root(root->fs_info->super_for_commit, 2156 log_root_tree->node->start); 2157 btrfs_set_super_log_root_level(root->fs_info->super_for_commit, 2158 btrfs_header_level(log_root_tree->node)); 2159 2160 log_root_tree->log_batch = 0; 2161 log_root_tree->log_transid++; 2162 smp_mb(); 2163 2164 mutex_unlock(&log_root_tree->log_mutex); 2165 2166 /* 2167 * nobody else is going to jump in and write the the ctree 2168 * super here because the log_commit atomic below is protecting 2169 * us. We must be called with a transaction handle pinning 2170 * the running transaction open, so a full commit can't hop 2171 * in and cause problems either. 2172 */ 2173 btrfs_scrub_pause_super(root); 2174 write_ctree_super(trans, root->fs_info->tree_root, 1); 2175 btrfs_scrub_continue_super(root); 2176 ret = 0; 2177 2178 mutex_lock(&root->log_mutex); 2179 if (root->last_log_commit < log_transid) 2180 root->last_log_commit = log_transid; 2181 mutex_unlock(&root->log_mutex); 2182 2183 out_wake_log_root: 2184 atomic_set(&log_root_tree->log_commit[index2], 0); 2185 smp_mb(); 2186 if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) 2187 wake_up(&log_root_tree->log_commit_wait[index2]); 2188 out: 2189 atomic_set(&root->log_commit[index1], 0); 2190 smp_mb(); 2191 if (waitqueue_active(&root->log_commit_wait[index1])) 2192 wake_up(&root->log_commit_wait[index1]); 2193 return ret; 2194 } 2195 2196 static void free_log_tree(struct btrfs_trans_handle *trans, 2197 struct btrfs_root *log) 2198 { 2199 int ret; 2200 u64 start; 2201 u64 end; 2202 struct walk_control wc = { 2203 .free = 1, 2204 .process_func = process_one_buffer 2205 }; 2206 2207 ret = walk_log_tree(trans, log, &wc); 2208 BUG_ON(ret); 2209 2210 while (1) { 2211 ret = find_first_extent_bit(&log->dirty_log_pages, 2212 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW); 2213 if (ret) 2214 break; 2215 2216 clear_extent_bits(&log->dirty_log_pages, start, end, 2217 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); 2218 } 2219 2220 free_extent_buffer(log->node); 2221 kfree(log); 2222 } 2223 2224 /* 2225 * free all the extents used by the tree log. This should be called 2226 * at commit time of the full transaction 2227 */ 2228 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 2229 { 2230 if (root->log_root) { 2231 free_log_tree(trans, root->log_root); 2232 root->log_root = NULL; 2233 } 2234 return 0; 2235 } 2236 2237 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 2238 struct btrfs_fs_info *fs_info) 2239 { 2240 if (fs_info->log_root_tree) { 2241 free_log_tree(trans, fs_info->log_root_tree); 2242 fs_info->log_root_tree = NULL; 2243 } 2244 return 0; 2245 } 2246 2247 /* 2248 * If both a file and directory are logged, and unlinks or renames are 2249 * mixed in, we have a few interesting corners: 2250 * 2251 * create file X in dir Y 2252 * link file X to X.link in dir Y 2253 * fsync file X 2254 * unlink file X but leave X.link 2255 * fsync dir Y 2256 * 2257 * After a crash we would expect only X.link to exist. But file X 2258 * didn't get fsync'd again so the log has back refs for X and X.link. 2259 * 2260 * We solve this by removing directory entries and inode backrefs from the 2261 * log when a file that was logged in the current transaction is 2262 * unlinked. Any later fsync will include the updated log entries, and 2263 * we'll be able to reconstruct the proper directory items from backrefs. 2264 * 2265 * This optimizations allows us to avoid relogging the entire inode 2266 * or the entire directory. 2267 */ 2268 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 2269 struct btrfs_root *root, 2270 const char *name, int name_len, 2271 struct inode *dir, u64 index) 2272 { 2273 struct btrfs_root *log; 2274 struct btrfs_dir_item *di; 2275 struct btrfs_path *path; 2276 int ret; 2277 int err = 0; 2278 int bytes_del = 0; 2279 u64 dir_ino = btrfs_ino(dir); 2280 2281 if (BTRFS_I(dir)->logged_trans < trans->transid) 2282 return 0; 2283 2284 ret = join_running_log_trans(root); 2285 if (ret) 2286 return 0; 2287 2288 mutex_lock(&BTRFS_I(dir)->log_mutex); 2289 2290 log = root->log_root; 2291 path = btrfs_alloc_path(); 2292 if (!path) { 2293 err = -ENOMEM; 2294 goto out_unlock; 2295 } 2296 2297 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 2298 name, name_len, -1); 2299 if (IS_ERR(di)) { 2300 err = PTR_ERR(di); 2301 goto fail; 2302 } 2303 if (di) { 2304 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2305 bytes_del += name_len; 2306 BUG_ON(ret); 2307 } 2308 btrfs_release_path(path); 2309 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 2310 index, name, name_len, -1); 2311 if (IS_ERR(di)) { 2312 err = PTR_ERR(di); 2313 goto fail; 2314 } 2315 if (di) { 2316 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2317 bytes_del += name_len; 2318 BUG_ON(ret); 2319 } 2320 2321 /* update the directory size in the log to reflect the names 2322 * we have removed 2323 */ 2324 if (bytes_del) { 2325 struct btrfs_key key; 2326 2327 key.objectid = dir_ino; 2328 key.offset = 0; 2329 key.type = BTRFS_INODE_ITEM_KEY; 2330 btrfs_release_path(path); 2331 2332 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 2333 if (ret < 0) { 2334 err = ret; 2335 goto fail; 2336 } 2337 if (ret == 0) { 2338 struct btrfs_inode_item *item; 2339 u64 i_size; 2340 2341 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2342 struct btrfs_inode_item); 2343 i_size = btrfs_inode_size(path->nodes[0], item); 2344 if (i_size > bytes_del) 2345 i_size -= bytes_del; 2346 else 2347 i_size = 0; 2348 btrfs_set_inode_size(path->nodes[0], item, i_size); 2349 btrfs_mark_buffer_dirty(path->nodes[0]); 2350 } else 2351 ret = 0; 2352 btrfs_release_path(path); 2353 } 2354 fail: 2355 btrfs_free_path(path); 2356 out_unlock: 2357 mutex_unlock(&BTRFS_I(dir)->log_mutex); 2358 if (ret == -ENOSPC) { 2359 root->fs_info->last_trans_log_full_commit = trans->transid; 2360 ret = 0; 2361 } else if (ret < 0) 2362 btrfs_abort_transaction(trans, root, ret); 2363 2364 btrfs_end_log_trans(root); 2365 2366 return err; 2367 } 2368 2369 /* see comments for btrfs_del_dir_entries_in_log */ 2370 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 2371 struct btrfs_root *root, 2372 const char *name, int name_len, 2373 struct inode *inode, u64 dirid) 2374 { 2375 struct btrfs_root *log; 2376 u64 index; 2377 int ret; 2378 2379 if (BTRFS_I(inode)->logged_trans < trans->transid) 2380 return 0; 2381 2382 ret = join_running_log_trans(root); 2383 if (ret) 2384 return 0; 2385 log = root->log_root; 2386 mutex_lock(&BTRFS_I(inode)->log_mutex); 2387 2388 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 2389 dirid, &index); 2390 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2391 if (ret == -ENOSPC) { 2392 root->fs_info->last_trans_log_full_commit = trans->transid; 2393 ret = 0; 2394 } else if (ret < 0 && ret != -ENOENT) 2395 btrfs_abort_transaction(trans, root, ret); 2396 btrfs_end_log_trans(root); 2397 2398 return ret; 2399 } 2400 2401 /* 2402 * creates a range item in the log for 'dirid'. first_offset and 2403 * last_offset tell us which parts of the key space the log should 2404 * be considered authoritative for. 2405 */ 2406 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 2407 struct btrfs_root *log, 2408 struct btrfs_path *path, 2409 int key_type, u64 dirid, 2410 u64 first_offset, u64 last_offset) 2411 { 2412 int ret; 2413 struct btrfs_key key; 2414 struct btrfs_dir_log_item *item; 2415 2416 key.objectid = dirid; 2417 key.offset = first_offset; 2418 if (key_type == BTRFS_DIR_ITEM_KEY) 2419 key.type = BTRFS_DIR_LOG_ITEM_KEY; 2420 else 2421 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2422 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 2423 if (ret) 2424 return ret; 2425 2426 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2427 struct btrfs_dir_log_item); 2428 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 2429 btrfs_mark_buffer_dirty(path->nodes[0]); 2430 btrfs_release_path(path); 2431 return 0; 2432 } 2433 2434 /* 2435 * log all the items included in the current transaction for a given 2436 * directory. This also creates the range items in the log tree required 2437 * to replay anything deleted before the fsync 2438 */ 2439 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 2440 struct btrfs_root *root, struct inode *inode, 2441 struct btrfs_path *path, 2442 struct btrfs_path *dst_path, int key_type, 2443 u64 min_offset, u64 *last_offset_ret) 2444 { 2445 struct btrfs_key min_key; 2446 struct btrfs_key max_key; 2447 struct btrfs_root *log = root->log_root; 2448 struct extent_buffer *src; 2449 int err = 0; 2450 int ret; 2451 int i; 2452 int nritems; 2453 u64 first_offset = min_offset; 2454 u64 last_offset = (u64)-1; 2455 u64 ino = btrfs_ino(inode); 2456 2457 log = root->log_root; 2458 max_key.objectid = ino; 2459 max_key.offset = (u64)-1; 2460 max_key.type = key_type; 2461 2462 min_key.objectid = ino; 2463 min_key.type = key_type; 2464 min_key.offset = min_offset; 2465 2466 path->keep_locks = 1; 2467 2468 ret = btrfs_search_forward(root, &min_key, &max_key, 2469 path, 0, trans->transid); 2470 2471 /* 2472 * we didn't find anything from this transaction, see if there 2473 * is anything at all 2474 */ 2475 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 2476 min_key.objectid = ino; 2477 min_key.type = key_type; 2478 min_key.offset = (u64)-1; 2479 btrfs_release_path(path); 2480 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2481 if (ret < 0) { 2482 btrfs_release_path(path); 2483 return ret; 2484 } 2485 ret = btrfs_previous_item(root, path, ino, key_type); 2486 2487 /* if ret == 0 there are items for this type, 2488 * create a range to tell us the last key of this type. 2489 * otherwise, there are no items in this directory after 2490 * *min_offset, and we create a range to indicate that. 2491 */ 2492 if (ret == 0) { 2493 struct btrfs_key tmp; 2494 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 2495 path->slots[0]); 2496 if (key_type == tmp.type) 2497 first_offset = max(min_offset, tmp.offset) + 1; 2498 } 2499 goto done; 2500 } 2501 2502 /* go backward to find any previous key */ 2503 ret = btrfs_previous_item(root, path, ino, key_type); 2504 if (ret == 0) { 2505 struct btrfs_key tmp; 2506 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2507 if (key_type == tmp.type) { 2508 first_offset = tmp.offset; 2509 ret = overwrite_item(trans, log, dst_path, 2510 path->nodes[0], path->slots[0], 2511 &tmp); 2512 if (ret) { 2513 err = ret; 2514 goto done; 2515 } 2516 } 2517 } 2518 btrfs_release_path(path); 2519 2520 /* find the first key from this transaction again */ 2521 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2522 if (ret != 0) { 2523 WARN_ON(1); 2524 goto done; 2525 } 2526 2527 /* 2528 * we have a block from this transaction, log every item in it 2529 * from our directory 2530 */ 2531 while (1) { 2532 struct btrfs_key tmp; 2533 src = path->nodes[0]; 2534 nritems = btrfs_header_nritems(src); 2535 for (i = path->slots[0]; i < nritems; i++) { 2536 btrfs_item_key_to_cpu(src, &min_key, i); 2537 2538 if (min_key.objectid != ino || min_key.type != key_type) 2539 goto done; 2540 ret = overwrite_item(trans, log, dst_path, src, i, 2541 &min_key); 2542 if (ret) { 2543 err = ret; 2544 goto done; 2545 } 2546 } 2547 path->slots[0] = nritems; 2548 2549 /* 2550 * look ahead to the next item and see if it is also 2551 * from this directory and from this transaction 2552 */ 2553 ret = btrfs_next_leaf(root, path); 2554 if (ret == 1) { 2555 last_offset = (u64)-1; 2556 goto done; 2557 } 2558 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2559 if (tmp.objectid != ino || tmp.type != key_type) { 2560 last_offset = (u64)-1; 2561 goto done; 2562 } 2563 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 2564 ret = overwrite_item(trans, log, dst_path, 2565 path->nodes[0], path->slots[0], 2566 &tmp); 2567 if (ret) 2568 err = ret; 2569 else 2570 last_offset = tmp.offset; 2571 goto done; 2572 } 2573 } 2574 done: 2575 btrfs_release_path(path); 2576 btrfs_release_path(dst_path); 2577 2578 if (err == 0) { 2579 *last_offset_ret = last_offset; 2580 /* 2581 * insert the log range keys to indicate where the log 2582 * is valid 2583 */ 2584 ret = insert_dir_log_key(trans, log, path, key_type, 2585 ino, first_offset, last_offset); 2586 if (ret) 2587 err = ret; 2588 } 2589 return err; 2590 } 2591 2592 /* 2593 * logging directories is very similar to logging inodes, We find all the items 2594 * from the current transaction and write them to the log. 2595 * 2596 * The recovery code scans the directory in the subvolume, and if it finds a 2597 * key in the range logged that is not present in the log tree, then it means 2598 * that dir entry was unlinked during the transaction. 2599 * 2600 * In order for that scan to work, we must include one key smaller than 2601 * the smallest logged by this transaction and one key larger than the largest 2602 * key logged by this transaction. 2603 */ 2604 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 2605 struct btrfs_root *root, struct inode *inode, 2606 struct btrfs_path *path, 2607 struct btrfs_path *dst_path) 2608 { 2609 u64 min_key; 2610 u64 max_key; 2611 int ret; 2612 int key_type = BTRFS_DIR_ITEM_KEY; 2613 2614 again: 2615 min_key = 0; 2616 max_key = 0; 2617 while (1) { 2618 ret = log_dir_items(trans, root, inode, path, 2619 dst_path, key_type, min_key, 2620 &max_key); 2621 if (ret) 2622 return ret; 2623 if (max_key == (u64)-1) 2624 break; 2625 min_key = max_key + 1; 2626 } 2627 2628 if (key_type == BTRFS_DIR_ITEM_KEY) { 2629 key_type = BTRFS_DIR_INDEX_KEY; 2630 goto again; 2631 } 2632 return 0; 2633 } 2634 2635 /* 2636 * a helper function to drop items from the log before we relog an 2637 * inode. max_key_type indicates the highest item type to remove. 2638 * This cannot be run for file data extents because it does not 2639 * free the extents they point to. 2640 */ 2641 static int drop_objectid_items(struct btrfs_trans_handle *trans, 2642 struct btrfs_root *log, 2643 struct btrfs_path *path, 2644 u64 objectid, int max_key_type) 2645 { 2646 int ret; 2647 struct btrfs_key key; 2648 struct btrfs_key found_key; 2649 2650 key.objectid = objectid; 2651 key.type = max_key_type; 2652 key.offset = (u64)-1; 2653 2654 while (1) { 2655 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 2656 BUG_ON(ret == 0); 2657 if (ret < 0) 2658 break; 2659 2660 if (path->slots[0] == 0) 2661 break; 2662 2663 path->slots[0]--; 2664 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2665 path->slots[0]); 2666 2667 if (found_key.objectid != objectid) 2668 break; 2669 2670 ret = btrfs_del_item(trans, log, path); 2671 if (ret) 2672 break; 2673 btrfs_release_path(path); 2674 } 2675 btrfs_release_path(path); 2676 if (ret > 0) 2677 ret = 0; 2678 return ret; 2679 } 2680 2681 static noinline int copy_items(struct btrfs_trans_handle *trans, 2682 struct btrfs_root *log, 2683 struct btrfs_path *dst_path, 2684 struct extent_buffer *src, 2685 int start_slot, int nr, int inode_only) 2686 { 2687 unsigned long src_offset; 2688 unsigned long dst_offset; 2689 struct btrfs_file_extent_item *extent; 2690 struct btrfs_inode_item *inode_item; 2691 int ret; 2692 struct btrfs_key *ins_keys; 2693 u32 *ins_sizes; 2694 char *ins_data; 2695 int i; 2696 struct list_head ordered_sums; 2697 2698 INIT_LIST_HEAD(&ordered_sums); 2699 2700 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 2701 nr * sizeof(u32), GFP_NOFS); 2702 if (!ins_data) 2703 return -ENOMEM; 2704 2705 ins_sizes = (u32 *)ins_data; 2706 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 2707 2708 for (i = 0; i < nr; i++) { 2709 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 2710 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 2711 } 2712 ret = btrfs_insert_empty_items(trans, log, dst_path, 2713 ins_keys, ins_sizes, nr); 2714 if (ret) { 2715 kfree(ins_data); 2716 return ret; 2717 } 2718 2719 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 2720 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 2721 dst_path->slots[0]); 2722 2723 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 2724 2725 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 2726 src_offset, ins_sizes[i]); 2727 2728 if (inode_only == LOG_INODE_EXISTS && 2729 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 2730 inode_item = btrfs_item_ptr(dst_path->nodes[0], 2731 dst_path->slots[0], 2732 struct btrfs_inode_item); 2733 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); 2734 2735 /* set the generation to zero so the recover code 2736 * can tell the difference between an logging 2737 * just to say 'this inode exists' and a logging 2738 * to say 'update this inode with these values' 2739 */ 2740 btrfs_set_inode_generation(dst_path->nodes[0], 2741 inode_item, 0); 2742 } 2743 /* take a reference on file data extents so that truncates 2744 * or deletes of this inode don't have to relog the inode 2745 * again 2746 */ 2747 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { 2748 int found_type; 2749 extent = btrfs_item_ptr(src, start_slot + i, 2750 struct btrfs_file_extent_item); 2751 2752 if (btrfs_file_extent_generation(src, extent) < trans->transid) 2753 continue; 2754 2755 found_type = btrfs_file_extent_type(src, extent); 2756 if (found_type == BTRFS_FILE_EXTENT_REG || 2757 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 2758 u64 ds, dl, cs, cl; 2759 ds = btrfs_file_extent_disk_bytenr(src, 2760 extent); 2761 /* ds == 0 is a hole */ 2762 if (ds == 0) 2763 continue; 2764 2765 dl = btrfs_file_extent_disk_num_bytes(src, 2766 extent); 2767 cs = btrfs_file_extent_offset(src, extent); 2768 cl = btrfs_file_extent_num_bytes(src, 2769 extent); 2770 if (btrfs_file_extent_compression(src, 2771 extent)) { 2772 cs = 0; 2773 cl = dl; 2774 } 2775 2776 ret = btrfs_lookup_csums_range( 2777 log->fs_info->csum_root, 2778 ds + cs, ds + cs + cl - 1, 2779 &ordered_sums, 0); 2780 BUG_ON(ret); 2781 } 2782 } 2783 } 2784 2785 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 2786 btrfs_release_path(dst_path); 2787 kfree(ins_data); 2788 2789 /* 2790 * we have to do this after the loop above to avoid changing the 2791 * log tree while trying to change the log tree. 2792 */ 2793 ret = 0; 2794 while (!list_empty(&ordered_sums)) { 2795 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 2796 struct btrfs_ordered_sum, 2797 list); 2798 if (!ret) 2799 ret = btrfs_csum_file_blocks(trans, log, sums); 2800 list_del(&sums->list); 2801 kfree(sums); 2802 } 2803 return ret; 2804 } 2805 2806 /* log a single inode in the tree log. 2807 * At least one parent directory for this inode must exist in the tree 2808 * or be logged already. 2809 * 2810 * Any items from this inode changed by the current transaction are copied 2811 * to the log tree. An extra reference is taken on any extents in this 2812 * file, allowing us to avoid a whole pile of corner cases around logging 2813 * blocks that have been removed from the tree. 2814 * 2815 * See LOG_INODE_ALL and related defines for a description of what inode_only 2816 * does. 2817 * 2818 * This handles both files and directories. 2819 */ 2820 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 2821 struct btrfs_root *root, struct inode *inode, 2822 int inode_only) 2823 { 2824 struct btrfs_path *path; 2825 struct btrfs_path *dst_path; 2826 struct btrfs_key min_key; 2827 struct btrfs_key max_key; 2828 struct btrfs_root *log = root->log_root; 2829 struct extent_buffer *src = NULL; 2830 int err = 0; 2831 int ret; 2832 int nritems; 2833 int ins_start_slot = 0; 2834 int ins_nr; 2835 u64 ino = btrfs_ino(inode); 2836 2837 log = root->log_root; 2838 2839 path = btrfs_alloc_path(); 2840 if (!path) 2841 return -ENOMEM; 2842 dst_path = btrfs_alloc_path(); 2843 if (!dst_path) { 2844 btrfs_free_path(path); 2845 return -ENOMEM; 2846 } 2847 2848 min_key.objectid = ino; 2849 min_key.type = BTRFS_INODE_ITEM_KEY; 2850 min_key.offset = 0; 2851 2852 max_key.objectid = ino; 2853 2854 /* today the code can only do partial logging of directories */ 2855 if (!S_ISDIR(inode->i_mode)) 2856 inode_only = LOG_INODE_ALL; 2857 2858 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) 2859 max_key.type = BTRFS_XATTR_ITEM_KEY; 2860 else 2861 max_key.type = (u8)-1; 2862 max_key.offset = (u64)-1; 2863 2864 ret = btrfs_commit_inode_delayed_items(trans, inode); 2865 if (ret) { 2866 btrfs_free_path(path); 2867 btrfs_free_path(dst_path); 2868 return ret; 2869 } 2870 2871 mutex_lock(&BTRFS_I(inode)->log_mutex); 2872 2873 /* 2874 * a brute force approach to making sure we get the most uptodate 2875 * copies of everything. 2876 */ 2877 if (S_ISDIR(inode->i_mode)) { 2878 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 2879 2880 if (inode_only == LOG_INODE_EXISTS) 2881 max_key_type = BTRFS_XATTR_ITEM_KEY; 2882 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 2883 } else { 2884 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); 2885 } 2886 if (ret) { 2887 err = ret; 2888 goto out_unlock; 2889 } 2890 path->keep_locks = 1; 2891 2892 while (1) { 2893 ins_nr = 0; 2894 ret = btrfs_search_forward(root, &min_key, &max_key, 2895 path, 0, trans->transid); 2896 if (ret != 0) 2897 break; 2898 again: 2899 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 2900 if (min_key.objectid != ino) 2901 break; 2902 if (min_key.type > max_key.type) 2903 break; 2904 2905 src = path->nodes[0]; 2906 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 2907 ins_nr++; 2908 goto next_slot; 2909 } else if (!ins_nr) { 2910 ins_start_slot = path->slots[0]; 2911 ins_nr = 1; 2912 goto next_slot; 2913 } 2914 2915 ret = copy_items(trans, log, dst_path, src, ins_start_slot, 2916 ins_nr, inode_only); 2917 if (ret) { 2918 err = ret; 2919 goto out_unlock; 2920 } 2921 ins_nr = 1; 2922 ins_start_slot = path->slots[0]; 2923 next_slot: 2924 2925 nritems = btrfs_header_nritems(path->nodes[0]); 2926 path->slots[0]++; 2927 if (path->slots[0] < nritems) { 2928 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 2929 path->slots[0]); 2930 goto again; 2931 } 2932 if (ins_nr) { 2933 ret = copy_items(trans, log, dst_path, src, 2934 ins_start_slot, 2935 ins_nr, inode_only); 2936 if (ret) { 2937 err = ret; 2938 goto out_unlock; 2939 } 2940 ins_nr = 0; 2941 } 2942 btrfs_release_path(path); 2943 2944 if (min_key.offset < (u64)-1) 2945 min_key.offset++; 2946 else if (min_key.type < (u8)-1) 2947 min_key.type++; 2948 else if (min_key.objectid < (u64)-1) 2949 min_key.objectid++; 2950 else 2951 break; 2952 } 2953 if (ins_nr) { 2954 ret = copy_items(trans, log, dst_path, src, 2955 ins_start_slot, 2956 ins_nr, inode_only); 2957 if (ret) { 2958 err = ret; 2959 goto out_unlock; 2960 } 2961 ins_nr = 0; 2962 } 2963 WARN_ON(ins_nr); 2964 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { 2965 btrfs_release_path(path); 2966 btrfs_release_path(dst_path); 2967 ret = log_directory_changes(trans, root, inode, path, dst_path); 2968 if (ret) { 2969 err = ret; 2970 goto out_unlock; 2971 } 2972 } 2973 BTRFS_I(inode)->logged_trans = trans->transid; 2974 out_unlock: 2975 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2976 2977 btrfs_free_path(path); 2978 btrfs_free_path(dst_path); 2979 return err; 2980 } 2981 2982 /* 2983 * follow the dentry parent pointers up the chain and see if any 2984 * of the directories in it require a full commit before they can 2985 * be logged. Returns zero if nothing special needs to be done or 1 if 2986 * a full commit is required. 2987 */ 2988 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 2989 struct inode *inode, 2990 struct dentry *parent, 2991 struct super_block *sb, 2992 u64 last_committed) 2993 { 2994 int ret = 0; 2995 struct btrfs_root *root; 2996 struct dentry *old_parent = NULL; 2997 2998 /* 2999 * for regular files, if its inode is already on disk, we don't 3000 * have to worry about the parents at all. This is because 3001 * we can use the last_unlink_trans field to record renames 3002 * and other fun in this file. 3003 */ 3004 if (S_ISREG(inode->i_mode) && 3005 BTRFS_I(inode)->generation <= last_committed && 3006 BTRFS_I(inode)->last_unlink_trans <= last_committed) 3007 goto out; 3008 3009 if (!S_ISDIR(inode->i_mode)) { 3010 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 3011 goto out; 3012 inode = parent->d_inode; 3013 } 3014 3015 while (1) { 3016 BTRFS_I(inode)->logged_trans = trans->transid; 3017 smp_mb(); 3018 3019 if (BTRFS_I(inode)->last_unlink_trans > last_committed) { 3020 root = BTRFS_I(inode)->root; 3021 3022 /* 3023 * make sure any commits to the log are forced 3024 * to be full commits 3025 */ 3026 root->fs_info->last_trans_log_full_commit = 3027 trans->transid; 3028 ret = 1; 3029 break; 3030 } 3031 3032 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 3033 break; 3034 3035 if (IS_ROOT(parent)) 3036 break; 3037 3038 parent = dget_parent(parent); 3039 dput(old_parent); 3040 old_parent = parent; 3041 inode = parent->d_inode; 3042 3043 } 3044 dput(old_parent); 3045 out: 3046 return ret; 3047 } 3048 3049 /* 3050 * helper function around btrfs_log_inode to make sure newly created 3051 * parent directories also end up in the log. A minimal inode and backref 3052 * only logging is done of any parent directories that are older than 3053 * the last committed transaction 3054 */ 3055 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 3056 struct btrfs_root *root, struct inode *inode, 3057 struct dentry *parent, int exists_only) 3058 { 3059 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; 3060 struct super_block *sb; 3061 struct dentry *old_parent = NULL; 3062 int ret = 0; 3063 u64 last_committed = root->fs_info->last_trans_committed; 3064 3065 sb = inode->i_sb; 3066 3067 if (btrfs_test_opt(root, NOTREELOG)) { 3068 ret = 1; 3069 goto end_no_trans; 3070 } 3071 3072 if (root->fs_info->last_trans_log_full_commit > 3073 root->fs_info->last_trans_committed) { 3074 ret = 1; 3075 goto end_no_trans; 3076 } 3077 3078 if (root != BTRFS_I(inode)->root || 3079 btrfs_root_refs(&root->root_item) == 0) { 3080 ret = 1; 3081 goto end_no_trans; 3082 } 3083 3084 ret = check_parent_dirs_for_sync(trans, inode, parent, 3085 sb, last_committed); 3086 if (ret) 3087 goto end_no_trans; 3088 3089 if (btrfs_inode_in_log(inode, trans->transid)) { 3090 ret = BTRFS_NO_LOG_SYNC; 3091 goto end_no_trans; 3092 } 3093 3094 ret = start_log_trans(trans, root); 3095 if (ret) 3096 goto end_trans; 3097 3098 ret = btrfs_log_inode(trans, root, inode, inode_only); 3099 if (ret) 3100 goto end_trans; 3101 3102 /* 3103 * for regular files, if its inode is already on disk, we don't 3104 * have to worry about the parents at all. This is because 3105 * we can use the last_unlink_trans field to record renames 3106 * and other fun in this file. 3107 */ 3108 if (S_ISREG(inode->i_mode) && 3109 BTRFS_I(inode)->generation <= last_committed && 3110 BTRFS_I(inode)->last_unlink_trans <= last_committed) { 3111 ret = 0; 3112 goto end_trans; 3113 } 3114 3115 inode_only = LOG_INODE_EXISTS; 3116 while (1) { 3117 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 3118 break; 3119 3120 inode = parent->d_inode; 3121 if (root != BTRFS_I(inode)->root) 3122 break; 3123 3124 if (BTRFS_I(inode)->generation > 3125 root->fs_info->last_trans_committed) { 3126 ret = btrfs_log_inode(trans, root, inode, inode_only); 3127 if (ret) 3128 goto end_trans; 3129 } 3130 if (IS_ROOT(parent)) 3131 break; 3132 3133 parent = dget_parent(parent); 3134 dput(old_parent); 3135 old_parent = parent; 3136 } 3137 ret = 0; 3138 end_trans: 3139 dput(old_parent); 3140 if (ret < 0) { 3141 BUG_ON(ret != -ENOSPC); 3142 root->fs_info->last_trans_log_full_commit = trans->transid; 3143 ret = 1; 3144 } 3145 btrfs_end_log_trans(root); 3146 end_no_trans: 3147 return ret; 3148 } 3149 3150 /* 3151 * it is not safe to log dentry if the chunk root has added new 3152 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 3153 * If this returns 1, you must commit the transaction to safely get your 3154 * data on disk. 3155 */ 3156 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 3157 struct btrfs_root *root, struct dentry *dentry) 3158 { 3159 struct dentry *parent = dget_parent(dentry); 3160 int ret; 3161 3162 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0); 3163 dput(parent); 3164 3165 return ret; 3166 } 3167 3168 /* 3169 * should be called during mount to recover any replay any log trees 3170 * from the FS 3171 */ 3172 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 3173 { 3174 int ret; 3175 struct btrfs_path *path; 3176 struct btrfs_trans_handle *trans; 3177 struct btrfs_key key; 3178 struct btrfs_key found_key; 3179 struct btrfs_key tmp_key; 3180 struct btrfs_root *log; 3181 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 3182 struct walk_control wc = { 3183 .process_func = process_one_buffer, 3184 .stage = 0, 3185 }; 3186 3187 path = btrfs_alloc_path(); 3188 if (!path) 3189 return -ENOMEM; 3190 3191 fs_info->log_root_recovering = 1; 3192 3193 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3194 if (IS_ERR(trans)) { 3195 ret = PTR_ERR(trans); 3196 goto error; 3197 } 3198 3199 wc.trans = trans; 3200 wc.pin = 1; 3201 3202 ret = walk_log_tree(trans, log_root_tree, &wc); 3203 if (ret) { 3204 btrfs_error(fs_info, ret, "Failed to pin buffers while " 3205 "recovering log root tree."); 3206 goto error; 3207 } 3208 3209 again: 3210 key.objectid = BTRFS_TREE_LOG_OBJECTID; 3211 key.offset = (u64)-1; 3212 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 3213 3214 while (1) { 3215 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 3216 3217 if (ret < 0) { 3218 btrfs_error(fs_info, ret, 3219 "Couldn't find tree log root."); 3220 goto error; 3221 } 3222 if (ret > 0) { 3223 if (path->slots[0] == 0) 3224 break; 3225 path->slots[0]--; 3226 } 3227 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3228 path->slots[0]); 3229 btrfs_release_path(path); 3230 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 3231 break; 3232 3233 log = btrfs_read_fs_root_no_radix(log_root_tree, 3234 &found_key); 3235 if (IS_ERR(log)) { 3236 ret = PTR_ERR(log); 3237 btrfs_error(fs_info, ret, 3238 "Couldn't read tree log root."); 3239 goto error; 3240 } 3241 3242 tmp_key.objectid = found_key.offset; 3243 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 3244 tmp_key.offset = (u64)-1; 3245 3246 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 3247 if (IS_ERR(wc.replay_dest)) { 3248 ret = PTR_ERR(wc.replay_dest); 3249 btrfs_error(fs_info, ret, "Couldn't read target root " 3250 "for tree log recovery."); 3251 goto error; 3252 } 3253 3254 wc.replay_dest->log_root = log; 3255 btrfs_record_root_in_trans(trans, wc.replay_dest); 3256 ret = walk_log_tree(trans, log, &wc); 3257 BUG_ON(ret); 3258 3259 if (wc.stage == LOG_WALK_REPLAY_ALL) { 3260 ret = fixup_inode_link_counts(trans, wc.replay_dest, 3261 path); 3262 BUG_ON(ret); 3263 } 3264 3265 key.offset = found_key.offset - 1; 3266 wc.replay_dest->log_root = NULL; 3267 free_extent_buffer(log->node); 3268 free_extent_buffer(log->commit_root); 3269 kfree(log); 3270 3271 if (found_key.offset == 0) 3272 break; 3273 } 3274 btrfs_release_path(path); 3275 3276 /* step one is to pin it all, step two is to replay just inodes */ 3277 if (wc.pin) { 3278 wc.pin = 0; 3279 wc.process_func = replay_one_buffer; 3280 wc.stage = LOG_WALK_REPLAY_INODES; 3281 goto again; 3282 } 3283 /* step three is to replay everything */ 3284 if (wc.stage < LOG_WALK_REPLAY_ALL) { 3285 wc.stage++; 3286 goto again; 3287 } 3288 3289 btrfs_free_path(path); 3290 3291 free_extent_buffer(log_root_tree->node); 3292 log_root_tree->log_root = NULL; 3293 fs_info->log_root_recovering = 0; 3294 3295 /* step 4: commit the transaction, which also unpins the blocks */ 3296 btrfs_commit_transaction(trans, fs_info->tree_root); 3297 3298 kfree(log_root_tree); 3299 return 0; 3300 3301 error: 3302 btrfs_free_path(path); 3303 return ret; 3304 } 3305 3306 /* 3307 * there are some corner cases where we want to force a full 3308 * commit instead of allowing a directory to be logged. 3309 * 3310 * They revolve around files there were unlinked from the directory, and 3311 * this function updates the parent directory so that a full commit is 3312 * properly done if it is fsync'd later after the unlinks are done. 3313 */ 3314 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 3315 struct inode *dir, struct inode *inode, 3316 int for_rename) 3317 { 3318 /* 3319 * when we're logging a file, if it hasn't been renamed 3320 * or unlinked, and its inode is fully committed on disk, 3321 * we don't have to worry about walking up the directory chain 3322 * to log its parents. 3323 * 3324 * So, we use the last_unlink_trans field to put this transid 3325 * into the file. When the file is logged we check it and 3326 * don't log the parents if the file is fully on disk. 3327 */ 3328 if (S_ISREG(inode->i_mode)) 3329 BTRFS_I(inode)->last_unlink_trans = trans->transid; 3330 3331 /* 3332 * if this directory was already logged any new 3333 * names for this file/dir will get recorded 3334 */ 3335 smp_mb(); 3336 if (BTRFS_I(dir)->logged_trans == trans->transid) 3337 return; 3338 3339 /* 3340 * if the inode we're about to unlink was logged, 3341 * the log will be properly updated for any new names 3342 */ 3343 if (BTRFS_I(inode)->logged_trans == trans->transid) 3344 return; 3345 3346 /* 3347 * when renaming files across directories, if the directory 3348 * there we're unlinking from gets fsync'd later on, there's 3349 * no way to find the destination directory later and fsync it 3350 * properly. So, we have to be conservative and force commits 3351 * so the new name gets discovered. 3352 */ 3353 if (for_rename) 3354 goto record; 3355 3356 /* we can safely do the unlink without any special recording */ 3357 return; 3358 3359 record: 3360 BTRFS_I(dir)->last_unlink_trans = trans->transid; 3361 } 3362 3363 /* 3364 * Call this after adding a new name for a file and it will properly 3365 * update the log to reflect the new name. 3366 * 3367 * It will return zero if all goes well, and it will return 1 if a 3368 * full transaction commit is required. 3369 */ 3370 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 3371 struct inode *inode, struct inode *old_dir, 3372 struct dentry *parent) 3373 { 3374 struct btrfs_root * root = BTRFS_I(inode)->root; 3375 3376 /* 3377 * this will force the logging code to walk the dentry chain 3378 * up for the file 3379 */ 3380 if (S_ISREG(inode->i_mode)) 3381 BTRFS_I(inode)->last_unlink_trans = trans->transid; 3382 3383 /* 3384 * if this inode hasn't been logged and directory we're renaming it 3385 * from hasn't been logged, we don't need to log it 3386 */ 3387 if (BTRFS_I(inode)->logged_trans <= 3388 root->fs_info->last_trans_committed && 3389 (!old_dir || BTRFS_I(old_dir)->logged_trans <= 3390 root->fs_info->last_trans_committed)) 3391 return 0; 3392 3393 return btrfs_log_inode_parent(trans, root, inode, parent, 1); 3394 } 3395 3396