1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "inode-map.h" 21 #include "block-group.h" 22 #include "space-info.h" 23 24 /* magic values for the inode_only field in btrfs_log_inode: 25 * 26 * LOG_INODE_ALL means to log everything 27 * LOG_INODE_EXISTS means to log just enough to recreate the inode 28 * during log replay 29 */ 30 enum { 31 LOG_INODE_ALL, 32 LOG_INODE_EXISTS, 33 LOG_OTHER_INODE, 34 LOG_OTHER_INODE_ALL, 35 }; 36 37 /* 38 * directory trouble cases 39 * 40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 41 * log, we must force a full commit before doing an fsync of the directory 42 * where the unlink was done. 43 * ---> record transid of last unlink/rename per directory 44 * 45 * mkdir foo/some_dir 46 * normal commit 47 * rename foo/some_dir foo2/some_dir 48 * mkdir foo/some_dir 49 * fsync foo/some_dir/some_file 50 * 51 * The fsync above will unlink the original some_dir without recording 52 * it in its new location (foo2). After a crash, some_dir will be gone 53 * unless the fsync of some_file forces a full commit 54 * 55 * 2) we must log any new names for any file or dir that is in the fsync 56 * log. ---> check inode while renaming/linking. 57 * 58 * 2a) we must log any new names for any file or dir during rename 59 * when the directory they are being removed from was logged. 60 * ---> check inode and old parent dir during rename 61 * 62 * 2a is actually the more important variant. With the extra logging 63 * a crash might unlink the old name without recreating the new one 64 * 65 * 3) after a crash, we must go through any directories with a link count 66 * of zero and redo the rm -rf 67 * 68 * mkdir f1/foo 69 * normal commit 70 * rm -rf f1/foo 71 * fsync(f1) 72 * 73 * The directory f1 was fully removed from the FS, but fsync was never 74 * called on f1, only its parent dir. After a crash the rm -rf must 75 * be replayed. This must be able to recurse down the entire 76 * directory tree. The inode link count fixup code takes care of the 77 * ugly details. 78 */ 79 80 /* 81 * stages for the tree walking. The first 82 * stage (0) is to only pin down the blocks we find 83 * the second stage (1) is to make sure that all the inodes 84 * we find in the log are created in the subvolume. 85 * 86 * The last stage is to deal with directories and links and extents 87 * and all the other fun semantics 88 */ 89 enum { 90 LOG_WALK_PIN_ONLY, 91 LOG_WALK_REPLAY_INODES, 92 LOG_WALK_REPLAY_DIR_INDEX, 93 LOG_WALK_REPLAY_ALL, 94 }; 95 96 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 97 struct btrfs_root *root, struct btrfs_inode *inode, 98 int inode_only, 99 const loff_t start, 100 const loff_t end, 101 struct btrfs_log_ctx *ctx); 102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 103 struct btrfs_root *root, 104 struct btrfs_path *path, u64 objectid); 105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 106 struct btrfs_root *root, 107 struct btrfs_root *log, 108 struct btrfs_path *path, 109 u64 dirid, int del_all); 110 111 /* 112 * tree logging is a special write ahead log used to make sure that 113 * fsyncs and O_SYNCs can happen without doing full tree commits. 114 * 115 * Full tree commits are expensive because they require commonly 116 * modified blocks to be recowed, creating many dirty pages in the 117 * extent tree an 4x-6x higher write load than ext3. 118 * 119 * Instead of doing a tree commit on every fsync, we use the 120 * key ranges and transaction ids to find items for a given file or directory 121 * that have changed in this transaction. Those items are copied into 122 * a special tree (one per subvolume root), that tree is written to disk 123 * and then the fsync is considered complete. 124 * 125 * After a crash, items are copied out of the log-tree back into the 126 * subvolume tree. Any file data extents found are recorded in the extent 127 * allocation tree, and the log-tree freed. 128 * 129 * The log tree is read three times, once to pin down all the extents it is 130 * using in ram and once, once to create all the inodes logged in the tree 131 * and once to do all the other items. 132 */ 133 134 /* 135 * start a sub transaction and setup the log tree 136 * this increments the log tree writer count to make the people 137 * syncing the tree wait for us to finish 138 */ 139 static int start_log_trans(struct btrfs_trans_handle *trans, 140 struct btrfs_root *root, 141 struct btrfs_log_ctx *ctx) 142 { 143 struct btrfs_fs_info *fs_info = root->fs_info; 144 int ret = 0; 145 146 mutex_lock(&root->log_mutex); 147 148 if (root->log_root) { 149 if (btrfs_need_log_full_commit(trans)) { 150 ret = -EAGAIN; 151 goto out; 152 } 153 154 if (!root->log_start_pid) { 155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 156 root->log_start_pid = current->pid; 157 } else if (root->log_start_pid != current->pid) { 158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 159 } 160 } else { 161 mutex_lock(&fs_info->tree_log_mutex); 162 if (!fs_info->log_root_tree) 163 ret = btrfs_init_log_root_tree(trans, fs_info); 164 mutex_unlock(&fs_info->tree_log_mutex); 165 if (ret) 166 goto out; 167 168 ret = btrfs_add_log_tree(trans, root); 169 if (ret) 170 goto out; 171 172 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 173 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 174 root->log_start_pid = current->pid; 175 } 176 177 atomic_inc(&root->log_batch); 178 atomic_inc(&root->log_writers); 179 if (ctx) { 180 int index = root->log_transid % 2; 181 list_add_tail(&ctx->list, &root->log_ctxs[index]); 182 ctx->log_transid = root->log_transid; 183 } 184 185 out: 186 mutex_unlock(&root->log_mutex); 187 return ret; 188 } 189 190 /* 191 * returns 0 if there was a log transaction running and we were able 192 * to join, or returns -ENOENT if there were not transactions 193 * in progress 194 */ 195 static int join_running_log_trans(struct btrfs_root *root) 196 { 197 int ret = -ENOENT; 198 199 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 200 return ret; 201 202 mutex_lock(&root->log_mutex); 203 if (root->log_root) { 204 ret = 0; 205 atomic_inc(&root->log_writers); 206 } 207 mutex_unlock(&root->log_mutex); 208 return ret; 209 } 210 211 /* 212 * This either makes the current running log transaction wait 213 * until you call btrfs_end_log_trans() or it makes any future 214 * log transactions wait until you call btrfs_end_log_trans() 215 */ 216 void btrfs_pin_log_trans(struct btrfs_root *root) 217 { 218 mutex_lock(&root->log_mutex); 219 atomic_inc(&root->log_writers); 220 mutex_unlock(&root->log_mutex); 221 } 222 223 /* 224 * indicate we're done making changes to the log tree 225 * and wake up anyone waiting to do a sync 226 */ 227 void btrfs_end_log_trans(struct btrfs_root *root) 228 { 229 if (atomic_dec_and_test(&root->log_writers)) { 230 /* atomic_dec_and_test implies a barrier */ 231 cond_wake_up_nomb(&root->log_writer_wait); 232 } 233 } 234 235 static int btrfs_write_tree_block(struct extent_buffer *buf) 236 { 237 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 238 buf->start + buf->len - 1); 239 } 240 241 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 242 { 243 filemap_fdatawait_range(buf->pages[0]->mapping, 244 buf->start, buf->start + buf->len - 1); 245 } 246 247 /* 248 * the walk control struct is used to pass state down the chain when 249 * processing the log tree. The stage field tells us which part 250 * of the log tree processing we are currently doing. The others 251 * are state fields used for that specific part 252 */ 253 struct walk_control { 254 /* should we free the extent on disk when done? This is used 255 * at transaction commit time while freeing a log tree 256 */ 257 int free; 258 259 /* should we write out the extent buffer? This is used 260 * while flushing the log tree to disk during a sync 261 */ 262 int write; 263 264 /* should we wait for the extent buffer io to finish? Also used 265 * while flushing the log tree to disk for a sync 266 */ 267 int wait; 268 269 /* pin only walk, we record which extents on disk belong to the 270 * log trees 271 */ 272 int pin; 273 274 /* what stage of the replay code we're currently in */ 275 int stage; 276 277 /* 278 * Ignore any items from the inode currently being processed. Needs 279 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 280 * the LOG_WALK_REPLAY_INODES stage. 281 */ 282 bool ignore_cur_inode; 283 284 /* the root we are currently replaying */ 285 struct btrfs_root *replay_dest; 286 287 /* the trans handle for the current replay */ 288 struct btrfs_trans_handle *trans; 289 290 /* the function that gets used to process blocks we find in the 291 * tree. Note the extent_buffer might not be up to date when it is 292 * passed in, and it must be checked or read if you need the data 293 * inside it 294 */ 295 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 296 struct walk_control *wc, u64 gen, int level); 297 }; 298 299 /* 300 * process_func used to pin down extents, write them or wait on them 301 */ 302 static int process_one_buffer(struct btrfs_root *log, 303 struct extent_buffer *eb, 304 struct walk_control *wc, u64 gen, int level) 305 { 306 struct btrfs_fs_info *fs_info = log->fs_info; 307 int ret = 0; 308 309 /* 310 * If this fs is mixed then we need to be able to process the leaves to 311 * pin down any logged extents, so we have to read the block. 312 */ 313 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 314 ret = btrfs_read_buffer(eb, gen, level, NULL); 315 if (ret) 316 return ret; 317 } 318 319 if (wc->pin) 320 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start, 321 eb->len); 322 323 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 324 if (wc->pin && btrfs_header_level(eb) == 0) 325 ret = btrfs_exclude_logged_extents(eb); 326 if (wc->write) 327 btrfs_write_tree_block(eb); 328 if (wc->wait) 329 btrfs_wait_tree_block_writeback(eb); 330 } 331 return ret; 332 } 333 334 /* 335 * Item overwrite used by replay and tree logging. eb, slot and key all refer 336 * to the src data we are copying out. 337 * 338 * root is the tree we are copying into, and path is a scratch 339 * path for use in this function (it should be released on entry and 340 * will be released on exit). 341 * 342 * If the key is already in the destination tree the existing item is 343 * overwritten. If the existing item isn't big enough, it is extended. 344 * If it is too large, it is truncated. 345 * 346 * If the key isn't in the destination yet, a new item is inserted. 347 */ 348 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 349 struct btrfs_root *root, 350 struct btrfs_path *path, 351 struct extent_buffer *eb, int slot, 352 struct btrfs_key *key) 353 { 354 int ret; 355 u32 item_size; 356 u64 saved_i_size = 0; 357 int save_old_i_size = 0; 358 unsigned long src_ptr; 359 unsigned long dst_ptr; 360 int overwrite_root = 0; 361 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 362 363 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 364 overwrite_root = 1; 365 366 item_size = btrfs_item_size_nr(eb, slot); 367 src_ptr = btrfs_item_ptr_offset(eb, slot); 368 369 /* look for the key in the destination tree */ 370 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 371 if (ret < 0) 372 return ret; 373 374 if (ret == 0) { 375 char *src_copy; 376 char *dst_copy; 377 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 378 path->slots[0]); 379 if (dst_size != item_size) 380 goto insert; 381 382 if (item_size == 0) { 383 btrfs_release_path(path); 384 return 0; 385 } 386 dst_copy = kmalloc(item_size, GFP_NOFS); 387 src_copy = kmalloc(item_size, GFP_NOFS); 388 if (!dst_copy || !src_copy) { 389 btrfs_release_path(path); 390 kfree(dst_copy); 391 kfree(src_copy); 392 return -ENOMEM; 393 } 394 395 read_extent_buffer(eb, src_copy, src_ptr, item_size); 396 397 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 398 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 399 item_size); 400 ret = memcmp(dst_copy, src_copy, item_size); 401 402 kfree(dst_copy); 403 kfree(src_copy); 404 /* 405 * they have the same contents, just return, this saves 406 * us from cowing blocks in the destination tree and doing 407 * extra writes that may not have been done by a previous 408 * sync 409 */ 410 if (ret == 0) { 411 btrfs_release_path(path); 412 return 0; 413 } 414 415 /* 416 * We need to load the old nbytes into the inode so when we 417 * replay the extents we've logged we get the right nbytes. 418 */ 419 if (inode_item) { 420 struct btrfs_inode_item *item; 421 u64 nbytes; 422 u32 mode; 423 424 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 425 struct btrfs_inode_item); 426 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 427 item = btrfs_item_ptr(eb, slot, 428 struct btrfs_inode_item); 429 btrfs_set_inode_nbytes(eb, item, nbytes); 430 431 /* 432 * If this is a directory we need to reset the i_size to 433 * 0 so that we can set it up properly when replaying 434 * the rest of the items in this log. 435 */ 436 mode = btrfs_inode_mode(eb, item); 437 if (S_ISDIR(mode)) 438 btrfs_set_inode_size(eb, item, 0); 439 } 440 } else if (inode_item) { 441 struct btrfs_inode_item *item; 442 u32 mode; 443 444 /* 445 * New inode, set nbytes to 0 so that the nbytes comes out 446 * properly when we replay the extents. 447 */ 448 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 449 btrfs_set_inode_nbytes(eb, item, 0); 450 451 /* 452 * If this is a directory we need to reset the i_size to 0 so 453 * that we can set it up properly when replaying the rest of 454 * the items in this log. 455 */ 456 mode = btrfs_inode_mode(eb, item); 457 if (S_ISDIR(mode)) 458 btrfs_set_inode_size(eb, item, 0); 459 } 460 insert: 461 btrfs_release_path(path); 462 /* try to insert the key into the destination tree */ 463 path->skip_release_on_error = 1; 464 ret = btrfs_insert_empty_item(trans, root, path, 465 key, item_size); 466 path->skip_release_on_error = 0; 467 468 /* make sure any existing item is the correct size */ 469 if (ret == -EEXIST || ret == -EOVERFLOW) { 470 u32 found_size; 471 found_size = btrfs_item_size_nr(path->nodes[0], 472 path->slots[0]); 473 if (found_size > item_size) 474 btrfs_truncate_item(path, item_size, 1); 475 else if (found_size < item_size) 476 btrfs_extend_item(path, item_size - found_size); 477 } else if (ret) { 478 return ret; 479 } 480 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 481 path->slots[0]); 482 483 /* don't overwrite an existing inode if the generation number 484 * was logged as zero. This is done when the tree logging code 485 * is just logging an inode to make sure it exists after recovery. 486 * 487 * Also, don't overwrite i_size on directories during replay. 488 * log replay inserts and removes directory items based on the 489 * state of the tree found in the subvolume, and i_size is modified 490 * as it goes 491 */ 492 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 493 struct btrfs_inode_item *src_item; 494 struct btrfs_inode_item *dst_item; 495 496 src_item = (struct btrfs_inode_item *)src_ptr; 497 dst_item = (struct btrfs_inode_item *)dst_ptr; 498 499 if (btrfs_inode_generation(eb, src_item) == 0) { 500 struct extent_buffer *dst_eb = path->nodes[0]; 501 const u64 ino_size = btrfs_inode_size(eb, src_item); 502 503 /* 504 * For regular files an ino_size == 0 is used only when 505 * logging that an inode exists, as part of a directory 506 * fsync, and the inode wasn't fsynced before. In this 507 * case don't set the size of the inode in the fs/subvol 508 * tree, otherwise we would be throwing valid data away. 509 */ 510 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 511 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 512 ino_size != 0) 513 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 514 goto no_copy; 515 } 516 517 if (overwrite_root && 518 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 519 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 520 save_old_i_size = 1; 521 saved_i_size = btrfs_inode_size(path->nodes[0], 522 dst_item); 523 } 524 } 525 526 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 527 src_ptr, item_size); 528 529 if (save_old_i_size) { 530 struct btrfs_inode_item *dst_item; 531 dst_item = (struct btrfs_inode_item *)dst_ptr; 532 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 533 } 534 535 /* make sure the generation is filled in */ 536 if (key->type == BTRFS_INODE_ITEM_KEY) { 537 struct btrfs_inode_item *dst_item; 538 dst_item = (struct btrfs_inode_item *)dst_ptr; 539 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 540 btrfs_set_inode_generation(path->nodes[0], dst_item, 541 trans->transid); 542 } 543 } 544 no_copy: 545 btrfs_mark_buffer_dirty(path->nodes[0]); 546 btrfs_release_path(path); 547 return 0; 548 } 549 550 /* 551 * simple helper to read an inode off the disk from a given root 552 * This can only be called for subvolume roots and not for the log 553 */ 554 static noinline struct inode *read_one_inode(struct btrfs_root *root, 555 u64 objectid) 556 { 557 struct inode *inode; 558 559 inode = btrfs_iget(root->fs_info->sb, objectid, root); 560 if (IS_ERR(inode)) 561 inode = NULL; 562 return inode; 563 } 564 565 /* replays a single extent in 'eb' at 'slot' with 'key' into the 566 * subvolume 'root'. path is released on entry and should be released 567 * on exit. 568 * 569 * extents in the log tree have not been allocated out of the extent 570 * tree yet. So, this completes the allocation, taking a reference 571 * as required if the extent already exists or creating a new extent 572 * if it isn't in the extent allocation tree yet. 573 * 574 * The extent is inserted into the file, dropping any existing extents 575 * from the file that overlap the new one. 576 */ 577 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 578 struct btrfs_root *root, 579 struct btrfs_path *path, 580 struct extent_buffer *eb, int slot, 581 struct btrfs_key *key) 582 { 583 struct btrfs_fs_info *fs_info = root->fs_info; 584 int found_type; 585 u64 extent_end; 586 u64 start = key->offset; 587 u64 nbytes = 0; 588 struct btrfs_file_extent_item *item; 589 struct inode *inode = NULL; 590 unsigned long size; 591 int ret = 0; 592 593 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 594 found_type = btrfs_file_extent_type(eb, item); 595 596 if (found_type == BTRFS_FILE_EXTENT_REG || 597 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 598 nbytes = btrfs_file_extent_num_bytes(eb, item); 599 extent_end = start + nbytes; 600 601 /* 602 * We don't add to the inodes nbytes if we are prealloc or a 603 * hole. 604 */ 605 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 606 nbytes = 0; 607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 608 size = btrfs_file_extent_ram_bytes(eb, item); 609 nbytes = btrfs_file_extent_ram_bytes(eb, item); 610 extent_end = ALIGN(start + size, 611 fs_info->sectorsize); 612 } else { 613 ret = 0; 614 goto out; 615 } 616 617 inode = read_one_inode(root, key->objectid); 618 if (!inode) { 619 ret = -EIO; 620 goto out; 621 } 622 623 /* 624 * first check to see if we already have this extent in the 625 * file. This must be done before the btrfs_drop_extents run 626 * so we don't try to drop this extent. 627 */ 628 ret = btrfs_lookup_file_extent(trans, root, path, 629 btrfs_ino(BTRFS_I(inode)), start, 0); 630 631 if (ret == 0 && 632 (found_type == BTRFS_FILE_EXTENT_REG || 633 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 634 struct btrfs_file_extent_item cmp1; 635 struct btrfs_file_extent_item cmp2; 636 struct btrfs_file_extent_item *existing; 637 struct extent_buffer *leaf; 638 639 leaf = path->nodes[0]; 640 existing = btrfs_item_ptr(leaf, path->slots[0], 641 struct btrfs_file_extent_item); 642 643 read_extent_buffer(eb, &cmp1, (unsigned long)item, 644 sizeof(cmp1)); 645 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 646 sizeof(cmp2)); 647 648 /* 649 * we already have a pointer to this exact extent, 650 * we don't have to do anything 651 */ 652 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 653 btrfs_release_path(path); 654 goto out; 655 } 656 } 657 btrfs_release_path(path); 658 659 /* drop any overlapping extents */ 660 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 661 if (ret) 662 goto out; 663 664 if (found_type == BTRFS_FILE_EXTENT_REG || 665 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 666 u64 offset; 667 unsigned long dest_offset; 668 struct btrfs_key ins; 669 670 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 671 btrfs_fs_incompat(fs_info, NO_HOLES)) 672 goto update_inode; 673 674 ret = btrfs_insert_empty_item(trans, root, path, key, 675 sizeof(*item)); 676 if (ret) 677 goto out; 678 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 679 path->slots[0]); 680 copy_extent_buffer(path->nodes[0], eb, dest_offset, 681 (unsigned long)item, sizeof(*item)); 682 683 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 684 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 685 ins.type = BTRFS_EXTENT_ITEM_KEY; 686 offset = key->offset - btrfs_file_extent_offset(eb, item); 687 688 /* 689 * Manually record dirty extent, as here we did a shallow 690 * file extent item copy and skip normal backref update, 691 * but modifying extent tree all by ourselves. 692 * So need to manually record dirty extent for qgroup, 693 * as the owner of the file extent changed from log tree 694 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 695 */ 696 ret = btrfs_qgroup_trace_extent(trans, 697 btrfs_file_extent_disk_bytenr(eb, item), 698 btrfs_file_extent_disk_num_bytes(eb, item), 699 GFP_NOFS); 700 if (ret < 0) 701 goto out; 702 703 if (ins.objectid > 0) { 704 struct btrfs_ref ref = { 0 }; 705 u64 csum_start; 706 u64 csum_end; 707 LIST_HEAD(ordered_sums); 708 709 /* 710 * is this extent already allocated in the extent 711 * allocation tree? If so, just add a reference 712 */ 713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 714 ins.offset); 715 if (ret == 0) { 716 btrfs_init_generic_ref(&ref, 717 BTRFS_ADD_DELAYED_REF, 718 ins.objectid, ins.offset, 0); 719 btrfs_init_data_ref(&ref, 720 root->root_key.objectid, 721 key->objectid, offset); 722 ret = btrfs_inc_extent_ref(trans, &ref); 723 if (ret) 724 goto out; 725 } else { 726 /* 727 * insert the extent pointer in the extent 728 * allocation tree 729 */ 730 ret = btrfs_alloc_logged_file_extent(trans, 731 root->root_key.objectid, 732 key->objectid, offset, &ins); 733 if (ret) 734 goto out; 735 } 736 btrfs_release_path(path); 737 738 if (btrfs_file_extent_compression(eb, item)) { 739 csum_start = ins.objectid; 740 csum_end = csum_start + ins.offset; 741 } else { 742 csum_start = ins.objectid + 743 btrfs_file_extent_offset(eb, item); 744 csum_end = csum_start + 745 btrfs_file_extent_num_bytes(eb, item); 746 } 747 748 ret = btrfs_lookup_csums_range(root->log_root, 749 csum_start, csum_end - 1, 750 &ordered_sums, 0); 751 if (ret) 752 goto out; 753 /* 754 * Now delete all existing cums in the csum root that 755 * cover our range. We do this because we can have an 756 * extent that is completely referenced by one file 757 * extent item and partially referenced by another 758 * file extent item (like after using the clone or 759 * extent_same ioctls). In this case if we end up doing 760 * the replay of the one that partially references the 761 * extent first, and we do not do the csum deletion 762 * below, we can get 2 csum items in the csum tree that 763 * overlap each other. For example, imagine our log has 764 * the two following file extent items: 765 * 766 * key (257 EXTENT_DATA 409600) 767 * extent data disk byte 12845056 nr 102400 768 * extent data offset 20480 nr 20480 ram 102400 769 * 770 * key (257 EXTENT_DATA 819200) 771 * extent data disk byte 12845056 nr 102400 772 * extent data offset 0 nr 102400 ram 102400 773 * 774 * Where the second one fully references the 100K extent 775 * that starts at disk byte 12845056, and the log tree 776 * has a single csum item that covers the entire range 777 * of the extent: 778 * 779 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 780 * 781 * After the first file extent item is replayed, the 782 * csum tree gets the following csum item: 783 * 784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 785 * 786 * Which covers the 20K sub-range starting at offset 20K 787 * of our extent. Now when we replay the second file 788 * extent item, if we do not delete existing csum items 789 * that cover any of its blocks, we end up getting two 790 * csum items in our csum tree that overlap each other: 791 * 792 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 793 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 794 * 795 * Which is a problem, because after this anyone trying 796 * to lookup up for the checksum of any block of our 797 * extent starting at an offset of 40K or higher, will 798 * end up looking at the second csum item only, which 799 * does not contain the checksum for any block starting 800 * at offset 40K or higher of our extent. 801 */ 802 while (!list_empty(&ordered_sums)) { 803 struct btrfs_ordered_sum *sums; 804 sums = list_entry(ordered_sums.next, 805 struct btrfs_ordered_sum, 806 list); 807 if (!ret) 808 ret = btrfs_del_csums(trans, 809 fs_info->csum_root, 810 sums->bytenr, 811 sums->len); 812 if (!ret) 813 ret = btrfs_csum_file_blocks(trans, 814 fs_info->csum_root, sums); 815 list_del(&sums->list); 816 kfree(sums); 817 } 818 if (ret) 819 goto out; 820 } else { 821 btrfs_release_path(path); 822 } 823 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 824 /* inline extents are easy, we just overwrite them */ 825 ret = overwrite_item(trans, root, path, eb, slot, key); 826 if (ret) 827 goto out; 828 } 829 830 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, 831 extent_end - start); 832 if (ret) 833 goto out; 834 835 inode_add_bytes(inode, nbytes); 836 update_inode: 837 ret = btrfs_update_inode(trans, root, inode); 838 out: 839 if (inode) 840 iput(inode); 841 return ret; 842 } 843 844 /* 845 * when cleaning up conflicts between the directory names in the 846 * subvolume, directory names in the log and directory names in the 847 * inode back references, we may have to unlink inodes from directories. 848 * 849 * This is a helper function to do the unlink of a specific directory 850 * item 851 */ 852 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 853 struct btrfs_root *root, 854 struct btrfs_path *path, 855 struct btrfs_inode *dir, 856 struct btrfs_dir_item *di) 857 { 858 struct inode *inode; 859 char *name; 860 int name_len; 861 struct extent_buffer *leaf; 862 struct btrfs_key location; 863 int ret; 864 865 leaf = path->nodes[0]; 866 867 btrfs_dir_item_key_to_cpu(leaf, di, &location); 868 name_len = btrfs_dir_name_len(leaf, di); 869 name = kmalloc(name_len, GFP_NOFS); 870 if (!name) 871 return -ENOMEM; 872 873 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 874 btrfs_release_path(path); 875 876 inode = read_one_inode(root, location.objectid); 877 if (!inode) { 878 ret = -EIO; 879 goto out; 880 } 881 882 ret = link_to_fixup_dir(trans, root, path, location.objectid); 883 if (ret) 884 goto out; 885 886 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, 887 name_len); 888 if (ret) 889 goto out; 890 else 891 ret = btrfs_run_delayed_items(trans); 892 out: 893 kfree(name); 894 iput(inode); 895 return ret; 896 } 897 898 /* 899 * helper function to see if a given name and sequence number found 900 * in an inode back reference are already in a directory and correctly 901 * point to this inode 902 */ 903 static noinline int inode_in_dir(struct btrfs_root *root, 904 struct btrfs_path *path, 905 u64 dirid, u64 objectid, u64 index, 906 const char *name, int name_len) 907 { 908 struct btrfs_dir_item *di; 909 struct btrfs_key location; 910 int match = 0; 911 912 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 913 index, name, name_len, 0); 914 if (di && !IS_ERR(di)) { 915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 916 if (location.objectid != objectid) 917 goto out; 918 } else 919 goto out; 920 btrfs_release_path(path); 921 922 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 923 if (di && !IS_ERR(di)) { 924 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 925 if (location.objectid != objectid) 926 goto out; 927 } else 928 goto out; 929 match = 1; 930 out: 931 btrfs_release_path(path); 932 return match; 933 } 934 935 /* 936 * helper function to check a log tree for a named back reference in 937 * an inode. This is used to decide if a back reference that is 938 * found in the subvolume conflicts with what we find in the log. 939 * 940 * inode backreferences may have multiple refs in a single item, 941 * during replay we process one reference at a time, and we don't 942 * want to delete valid links to a file from the subvolume if that 943 * link is also in the log. 944 */ 945 static noinline int backref_in_log(struct btrfs_root *log, 946 struct btrfs_key *key, 947 u64 ref_objectid, 948 const char *name, int namelen) 949 { 950 struct btrfs_path *path; 951 int ret; 952 953 path = btrfs_alloc_path(); 954 if (!path) 955 return -ENOMEM; 956 957 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 958 if (ret < 0) { 959 goto out; 960 } else if (ret == 1) { 961 ret = 0; 962 goto out; 963 } 964 965 if (key->type == BTRFS_INODE_EXTREF_KEY) 966 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 967 path->slots[0], 968 ref_objectid, 969 name, namelen); 970 else 971 ret = !!btrfs_find_name_in_backref(path->nodes[0], 972 path->slots[0], 973 name, namelen); 974 out: 975 btrfs_free_path(path); 976 return ret; 977 } 978 979 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 980 struct btrfs_root *root, 981 struct btrfs_path *path, 982 struct btrfs_root *log_root, 983 struct btrfs_inode *dir, 984 struct btrfs_inode *inode, 985 u64 inode_objectid, u64 parent_objectid, 986 u64 ref_index, char *name, int namelen, 987 int *search_done) 988 { 989 int ret; 990 char *victim_name; 991 int victim_name_len; 992 struct extent_buffer *leaf; 993 struct btrfs_dir_item *di; 994 struct btrfs_key search_key; 995 struct btrfs_inode_extref *extref; 996 997 again: 998 /* Search old style refs */ 999 search_key.objectid = inode_objectid; 1000 search_key.type = BTRFS_INODE_REF_KEY; 1001 search_key.offset = parent_objectid; 1002 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1003 if (ret == 0) { 1004 struct btrfs_inode_ref *victim_ref; 1005 unsigned long ptr; 1006 unsigned long ptr_end; 1007 1008 leaf = path->nodes[0]; 1009 1010 /* are we trying to overwrite a back ref for the root directory 1011 * if so, just jump out, we're done 1012 */ 1013 if (search_key.objectid == search_key.offset) 1014 return 1; 1015 1016 /* check all the names in this back reference to see 1017 * if they are in the log. if so, we allow them to stay 1018 * otherwise they must be unlinked as a conflict 1019 */ 1020 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1021 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1022 while (ptr < ptr_end) { 1023 victim_ref = (struct btrfs_inode_ref *)ptr; 1024 victim_name_len = btrfs_inode_ref_name_len(leaf, 1025 victim_ref); 1026 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1027 if (!victim_name) 1028 return -ENOMEM; 1029 1030 read_extent_buffer(leaf, victim_name, 1031 (unsigned long)(victim_ref + 1), 1032 victim_name_len); 1033 1034 ret = backref_in_log(log_root, &search_key, 1035 parent_objectid, victim_name, 1036 victim_name_len); 1037 if (ret < 0) { 1038 kfree(victim_name); 1039 return ret; 1040 } else if (!ret) { 1041 inc_nlink(&inode->vfs_inode); 1042 btrfs_release_path(path); 1043 1044 ret = btrfs_unlink_inode(trans, root, dir, inode, 1045 victim_name, victim_name_len); 1046 kfree(victim_name); 1047 if (ret) 1048 return ret; 1049 ret = btrfs_run_delayed_items(trans); 1050 if (ret) 1051 return ret; 1052 *search_done = 1; 1053 goto again; 1054 } 1055 kfree(victim_name); 1056 1057 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1058 } 1059 1060 /* 1061 * NOTE: we have searched root tree and checked the 1062 * corresponding ref, it does not need to check again. 1063 */ 1064 *search_done = 1; 1065 } 1066 btrfs_release_path(path); 1067 1068 /* Same search but for extended refs */ 1069 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1070 inode_objectid, parent_objectid, 0, 1071 0); 1072 if (!IS_ERR_OR_NULL(extref)) { 1073 u32 item_size; 1074 u32 cur_offset = 0; 1075 unsigned long base; 1076 struct inode *victim_parent; 1077 1078 leaf = path->nodes[0]; 1079 1080 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1081 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1082 1083 while (cur_offset < item_size) { 1084 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1085 1086 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1087 1088 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1089 goto next; 1090 1091 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1092 if (!victim_name) 1093 return -ENOMEM; 1094 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1095 victim_name_len); 1096 1097 search_key.objectid = inode_objectid; 1098 search_key.type = BTRFS_INODE_EXTREF_KEY; 1099 search_key.offset = btrfs_extref_hash(parent_objectid, 1100 victim_name, 1101 victim_name_len); 1102 ret = backref_in_log(log_root, &search_key, 1103 parent_objectid, victim_name, 1104 victim_name_len); 1105 if (ret < 0) { 1106 return ret; 1107 } else if (!ret) { 1108 ret = -ENOENT; 1109 victim_parent = read_one_inode(root, 1110 parent_objectid); 1111 if (victim_parent) { 1112 inc_nlink(&inode->vfs_inode); 1113 btrfs_release_path(path); 1114 1115 ret = btrfs_unlink_inode(trans, root, 1116 BTRFS_I(victim_parent), 1117 inode, 1118 victim_name, 1119 victim_name_len); 1120 if (!ret) 1121 ret = btrfs_run_delayed_items( 1122 trans); 1123 } 1124 iput(victim_parent); 1125 kfree(victim_name); 1126 if (ret) 1127 return ret; 1128 *search_done = 1; 1129 goto again; 1130 } 1131 kfree(victim_name); 1132 next: 1133 cur_offset += victim_name_len + sizeof(*extref); 1134 } 1135 *search_done = 1; 1136 } 1137 btrfs_release_path(path); 1138 1139 /* look for a conflicting sequence number */ 1140 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1141 ref_index, name, namelen, 0); 1142 if (di && !IS_ERR(di)) { 1143 ret = drop_one_dir_item(trans, root, path, dir, di); 1144 if (ret) 1145 return ret; 1146 } 1147 btrfs_release_path(path); 1148 1149 /* look for a conflicting name */ 1150 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1151 name, namelen, 0); 1152 if (di && !IS_ERR(di)) { 1153 ret = drop_one_dir_item(trans, root, path, dir, di); 1154 if (ret) 1155 return ret; 1156 } 1157 btrfs_release_path(path); 1158 1159 return 0; 1160 } 1161 1162 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1163 u32 *namelen, char **name, u64 *index, 1164 u64 *parent_objectid) 1165 { 1166 struct btrfs_inode_extref *extref; 1167 1168 extref = (struct btrfs_inode_extref *)ref_ptr; 1169 1170 *namelen = btrfs_inode_extref_name_len(eb, extref); 1171 *name = kmalloc(*namelen, GFP_NOFS); 1172 if (*name == NULL) 1173 return -ENOMEM; 1174 1175 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1176 *namelen); 1177 1178 if (index) 1179 *index = btrfs_inode_extref_index(eb, extref); 1180 if (parent_objectid) 1181 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1182 1183 return 0; 1184 } 1185 1186 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1187 u32 *namelen, char **name, u64 *index) 1188 { 1189 struct btrfs_inode_ref *ref; 1190 1191 ref = (struct btrfs_inode_ref *)ref_ptr; 1192 1193 *namelen = btrfs_inode_ref_name_len(eb, ref); 1194 *name = kmalloc(*namelen, GFP_NOFS); 1195 if (*name == NULL) 1196 return -ENOMEM; 1197 1198 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1199 1200 if (index) 1201 *index = btrfs_inode_ref_index(eb, ref); 1202 1203 return 0; 1204 } 1205 1206 /* 1207 * Take an inode reference item from the log tree and iterate all names from the 1208 * inode reference item in the subvolume tree with the same key (if it exists). 1209 * For any name that is not in the inode reference item from the log tree, do a 1210 * proper unlink of that name (that is, remove its entry from the inode 1211 * reference item and both dir index keys). 1212 */ 1213 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1214 struct btrfs_root *root, 1215 struct btrfs_path *path, 1216 struct btrfs_inode *inode, 1217 struct extent_buffer *log_eb, 1218 int log_slot, 1219 struct btrfs_key *key) 1220 { 1221 int ret; 1222 unsigned long ref_ptr; 1223 unsigned long ref_end; 1224 struct extent_buffer *eb; 1225 1226 again: 1227 btrfs_release_path(path); 1228 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1229 if (ret > 0) { 1230 ret = 0; 1231 goto out; 1232 } 1233 if (ret < 0) 1234 goto out; 1235 1236 eb = path->nodes[0]; 1237 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1238 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); 1239 while (ref_ptr < ref_end) { 1240 char *name = NULL; 1241 int namelen; 1242 u64 parent_id; 1243 1244 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1245 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1246 NULL, &parent_id); 1247 } else { 1248 parent_id = key->offset; 1249 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1250 NULL); 1251 } 1252 if (ret) 1253 goto out; 1254 1255 if (key->type == BTRFS_INODE_EXTREF_KEY) 1256 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1257 parent_id, name, 1258 namelen); 1259 else 1260 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, 1261 name, namelen); 1262 1263 if (!ret) { 1264 struct inode *dir; 1265 1266 btrfs_release_path(path); 1267 dir = read_one_inode(root, parent_id); 1268 if (!dir) { 1269 ret = -ENOENT; 1270 kfree(name); 1271 goto out; 1272 } 1273 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 1274 inode, name, namelen); 1275 kfree(name); 1276 iput(dir); 1277 if (ret) 1278 goto out; 1279 goto again; 1280 } 1281 1282 kfree(name); 1283 ref_ptr += namelen; 1284 if (key->type == BTRFS_INODE_EXTREF_KEY) 1285 ref_ptr += sizeof(struct btrfs_inode_extref); 1286 else 1287 ref_ptr += sizeof(struct btrfs_inode_ref); 1288 } 1289 ret = 0; 1290 out: 1291 btrfs_release_path(path); 1292 return ret; 1293 } 1294 1295 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1296 const u8 ref_type, const char *name, 1297 const int namelen) 1298 { 1299 struct btrfs_key key; 1300 struct btrfs_path *path; 1301 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1302 int ret; 1303 1304 path = btrfs_alloc_path(); 1305 if (!path) 1306 return -ENOMEM; 1307 1308 key.objectid = btrfs_ino(BTRFS_I(inode)); 1309 key.type = ref_type; 1310 if (key.type == BTRFS_INODE_REF_KEY) 1311 key.offset = parent_id; 1312 else 1313 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1314 1315 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1316 if (ret < 0) 1317 goto out; 1318 if (ret > 0) { 1319 ret = 0; 1320 goto out; 1321 } 1322 if (key.type == BTRFS_INODE_EXTREF_KEY) 1323 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1324 path->slots[0], parent_id, name, namelen); 1325 else 1326 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1327 name, namelen); 1328 1329 out: 1330 btrfs_free_path(path); 1331 return ret; 1332 } 1333 1334 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1335 struct inode *dir, struct inode *inode, const char *name, 1336 int namelen, u64 ref_index) 1337 { 1338 struct btrfs_dir_item *dir_item; 1339 struct btrfs_key key; 1340 struct btrfs_path *path; 1341 struct inode *other_inode = NULL; 1342 int ret; 1343 1344 path = btrfs_alloc_path(); 1345 if (!path) 1346 return -ENOMEM; 1347 1348 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1349 btrfs_ino(BTRFS_I(dir)), 1350 name, namelen, 0); 1351 if (!dir_item) { 1352 btrfs_release_path(path); 1353 goto add_link; 1354 } else if (IS_ERR(dir_item)) { 1355 ret = PTR_ERR(dir_item); 1356 goto out; 1357 } 1358 1359 /* 1360 * Our inode's dentry collides with the dentry of another inode which is 1361 * in the log but not yet processed since it has a higher inode number. 1362 * So delete that other dentry. 1363 */ 1364 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1365 btrfs_release_path(path); 1366 other_inode = read_one_inode(root, key.objectid); 1367 if (!other_inode) { 1368 ret = -ENOENT; 1369 goto out; 1370 } 1371 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode), 1372 name, namelen); 1373 if (ret) 1374 goto out; 1375 /* 1376 * If we dropped the link count to 0, bump it so that later the iput() 1377 * on the inode will not free it. We will fixup the link count later. 1378 */ 1379 if (other_inode->i_nlink == 0) 1380 inc_nlink(other_inode); 1381 1382 ret = btrfs_run_delayed_items(trans); 1383 if (ret) 1384 goto out; 1385 add_link: 1386 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1387 name, namelen, 0, ref_index); 1388 out: 1389 iput(other_inode); 1390 btrfs_free_path(path); 1391 1392 return ret; 1393 } 1394 1395 /* 1396 * replay one inode back reference item found in the log tree. 1397 * eb, slot and key refer to the buffer and key found in the log tree. 1398 * root is the destination we are replaying into, and path is for temp 1399 * use by this function. (it should be released on return). 1400 */ 1401 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1402 struct btrfs_root *root, 1403 struct btrfs_root *log, 1404 struct btrfs_path *path, 1405 struct extent_buffer *eb, int slot, 1406 struct btrfs_key *key) 1407 { 1408 struct inode *dir = NULL; 1409 struct inode *inode = NULL; 1410 unsigned long ref_ptr; 1411 unsigned long ref_end; 1412 char *name = NULL; 1413 int namelen; 1414 int ret; 1415 int search_done = 0; 1416 int log_ref_ver = 0; 1417 u64 parent_objectid; 1418 u64 inode_objectid; 1419 u64 ref_index = 0; 1420 int ref_struct_size; 1421 1422 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1423 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1424 1425 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1426 struct btrfs_inode_extref *r; 1427 1428 ref_struct_size = sizeof(struct btrfs_inode_extref); 1429 log_ref_ver = 1; 1430 r = (struct btrfs_inode_extref *)ref_ptr; 1431 parent_objectid = btrfs_inode_extref_parent(eb, r); 1432 } else { 1433 ref_struct_size = sizeof(struct btrfs_inode_ref); 1434 parent_objectid = key->offset; 1435 } 1436 inode_objectid = key->objectid; 1437 1438 /* 1439 * it is possible that we didn't log all the parent directories 1440 * for a given inode. If we don't find the dir, just don't 1441 * copy the back ref in. The link count fixup code will take 1442 * care of the rest 1443 */ 1444 dir = read_one_inode(root, parent_objectid); 1445 if (!dir) { 1446 ret = -ENOENT; 1447 goto out; 1448 } 1449 1450 inode = read_one_inode(root, inode_objectid); 1451 if (!inode) { 1452 ret = -EIO; 1453 goto out; 1454 } 1455 1456 while (ref_ptr < ref_end) { 1457 if (log_ref_ver) { 1458 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1459 &ref_index, &parent_objectid); 1460 /* 1461 * parent object can change from one array 1462 * item to another. 1463 */ 1464 if (!dir) 1465 dir = read_one_inode(root, parent_objectid); 1466 if (!dir) { 1467 ret = -ENOENT; 1468 goto out; 1469 } 1470 } else { 1471 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1472 &ref_index); 1473 } 1474 if (ret) 1475 goto out; 1476 1477 /* if we already have a perfect match, we're done */ 1478 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1479 btrfs_ino(BTRFS_I(inode)), ref_index, 1480 name, namelen)) { 1481 /* 1482 * look for a conflicting back reference in the 1483 * metadata. if we find one we have to unlink that name 1484 * of the file before we add our new link. Later on, we 1485 * overwrite any existing back reference, and we don't 1486 * want to create dangling pointers in the directory. 1487 */ 1488 1489 if (!search_done) { 1490 ret = __add_inode_ref(trans, root, path, log, 1491 BTRFS_I(dir), 1492 BTRFS_I(inode), 1493 inode_objectid, 1494 parent_objectid, 1495 ref_index, name, namelen, 1496 &search_done); 1497 if (ret) { 1498 if (ret == 1) 1499 ret = 0; 1500 goto out; 1501 } 1502 } 1503 1504 /* 1505 * If a reference item already exists for this inode 1506 * with the same parent and name, but different index, 1507 * drop it and the corresponding directory index entries 1508 * from the parent before adding the new reference item 1509 * and dir index entries, otherwise we would fail with 1510 * -EEXIST returned from btrfs_add_link() below. 1511 */ 1512 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1513 name, namelen); 1514 if (ret > 0) { 1515 ret = btrfs_unlink_inode(trans, root, 1516 BTRFS_I(dir), 1517 BTRFS_I(inode), 1518 name, namelen); 1519 /* 1520 * If we dropped the link count to 0, bump it so 1521 * that later the iput() on the inode will not 1522 * free it. We will fixup the link count later. 1523 */ 1524 if (!ret && inode->i_nlink == 0) 1525 inc_nlink(inode); 1526 } 1527 if (ret < 0) 1528 goto out; 1529 1530 /* insert our name */ 1531 ret = add_link(trans, root, dir, inode, name, namelen, 1532 ref_index); 1533 if (ret) 1534 goto out; 1535 1536 btrfs_update_inode(trans, root, inode); 1537 } 1538 1539 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1540 kfree(name); 1541 name = NULL; 1542 if (log_ref_ver) { 1543 iput(dir); 1544 dir = NULL; 1545 } 1546 } 1547 1548 /* 1549 * Before we overwrite the inode reference item in the subvolume tree 1550 * with the item from the log tree, we must unlink all names from the 1551 * parent directory that are in the subvolume's tree inode reference 1552 * item, otherwise we end up with an inconsistent subvolume tree where 1553 * dir index entries exist for a name but there is no inode reference 1554 * item with the same name. 1555 */ 1556 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1557 key); 1558 if (ret) 1559 goto out; 1560 1561 /* finally write the back reference in the inode */ 1562 ret = overwrite_item(trans, root, path, eb, slot, key); 1563 out: 1564 btrfs_release_path(path); 1565 kfree(name); 1566 iput(dir); 1567 iput(inode); 1568 return ret; 1569 } 1570 1571 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1572 struct btrfs_root *root, u64 ino) 1573 { 1574 int ret; 1575 1576 ret = btrfs_insert_orphan_item(trans, root, ino); 1577 if (ret == -EEXIST) 1578 ret = 0; 1579 1580 return ret; 1581 } 1582 1583 static int count_inode_extrefs(struct btrfs_root *root, 1584 struct btrfs_inode *inode, struct btrfs_path *path) 1585 { 1586 int ret = 0; 1587 int name_len; 1588 unsigned int nlink = 0; 1589 u32 item_size; 1590 u32 cur_offset = 0; 1591 u64 inode_objectid = btrfs_ino(inode); 1592 u64 offset = 0; 1593 unsigned long ptr; 1594 struct btrfs_inode_extref *extref; 1595 struct extent_buffer *leaf; 1596 1597 while (1) { 1598 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1599 &extref, &offset); 1600 if (ret) 1601 break; 1602 1603 leaf = path->nodes[0]; 1604 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1605 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1606 cur_offset = 0; 1607 1608 while (cur_offset < item_size) { 1609 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1610 name_len = btrfs_inode_extref_name_len(leaf, extref); 1611 1612 nlink++; 1613 1614 cur_offset += name_len + sizeof(*extref); 1615 } 1616 1617 offset++; 1618 btrfs_release_path(path); 1619 } 1620 btrfs_release_path(path); 1621 1622 if (ret < 0 && ret != -ENOENT) 1623 return ret; 1624 return nlink; 1625 } 1626 1627 static int count_inode_refs(struct btrfs_root *root, 1628 struct btrfs_inode *inode, struct btrfs_path *path) 1629 { 1630 int ret; 1631 struct btrfs_key key; 1632 unsigned int nlink = 0; 1633 unsigned long ptr; 1634 unsigned long ptr_end; 1635 int name_len; 1636 u64 ino = btrfs_ino(inode); 1637 1638 key.objectid = ino; 1639 key.type = BTRFS_INODE_REF_KEY; 1640 key.offset = (u64)-1; 1641 1642 while (1) { 1643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1644 if (ret < 0) 1645 break; 1646 if (ret > 0) { 1647 if (path->slots[0] == 0) 1648 break; 1649 path->slots[0]--; 1650 } 1651 process_slot: 1652 btrfs_item_key_to_cpu(path->nodes[0], &key, 1653 path->slots[0]); 1654 if (key.objectid != ino || 1655 key.type != BTRFS_INODE_REF_KEY) 1656 break; 1657 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1658 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1659 path->slots[0]); 1660 while (ptr < ptr_end) { 1661 struct btrfs_inode_ref *ref; 1662 1663 ref = (struct btrfs_inode_ref *)ptr; 1664 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1665 ref); 1666 ptr = (unsigned long)(ref + 1) + name_len; 1667 nlink++; 1668 } 1669 1670 if (key.offset == 0) 1671 break; 1672 if (path->slots[0] > 0) { 1673 path->slots[0]--; 1674 goto process_slot; 1675 } 1676 key.offset--; 1677 btrfs_release_path(path); 1678 } 1679 btrfs_release_path(path); 1680 1681 return nlink; 1682 } 1683 1684 /* 1685 * There are a few corners where the link count of the file can't 1686 * be properly maintained during replay. So, instead of adding 1687 * lots of complexity to the log code, we just scan the backrefs 1688 * for any file that has been through replay. 1689 * 1690 * The scan will update the link count on the inode to reflect the 1691 * number of back refs found. If it goes down to zero, the iput 1692 * will free the inode. 1693 */ 1694 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1695 struct btrfs_root *root, 1696 struct inode *inode) 1697 { 1698 struct btrfs_path *path; 1699 int ret; 1700 u64 nlink = 0; 1701 u64 ino = btrfs_ino(BTRFS_I(inode)); 1702 1703 path = btrfs_alloc_path(); 1704 if (!path) 1705 return -ENOMEM; 1706 1707 ret = count_inode_refs(root, BTRFS_I(inode), path); 1708 if (ret < 0) 1709 goto out; 1710 1711 nlink = ret; 1712 1713 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1714 if (ret < 0) 1715 goto out; 1716 1717 nlink += ret; 1718 1719 ret = 0; 1720 1721 if (nlink != inode->i_nlink) { 1722 set_nlink(inode, nlink); 1723 btrfs_update_inode(trans, root, inode); 1724 } 1725 BTRFS_I(inode)->index_cnt = (u64)-1; 1726 1727 if (inode->i_nlink == 0) { 1728 if (S_ISDIR(inode->i_mode)) { 1729 ret = replay_dir_deletes(trans, root, NULL, path, 1730 ino, 1); 1731 if (ret) 1732 goto out; 1733 } 1734 ret = insert_orphan_item(trans, root, ino); 1735 } 1736 1737 out: 1738 btrfs_free_path(path); 1739 return ret; 1740 } 1741 1742 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1743 struct btrfs_root *root, 1744 struct btrfs_path *path) 1745 { 1746 int ret; 1747 struct btrfs_key key; 1748 struct inode *inode; 1749 1750 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1751 key.type = BTRFS_ORPHAN_ITEM_KEY; 1752 key.offset = (u64)-1; 1753 while (1) { 1754 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1755 if (ret < 0) 1756 break; 1757 1758 if (ret == 1) { 1759 if (path->slots[0] == 0) 1760 break; 1761 path->slots[0]--; 1762 } 1763 1764 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1765 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1766 key.type != BTRFS_ORPHAN_ITEM_KEY) 1767 break; 1768 1769 ret = btrfs_del_item(trans, root, path); 1770 if (ret) 1771 goto out; 1772 1773 btrfs_release_path(path); 1774 inode = read_one_inode(root, key.offset); 1775 if (!inode) 1776 return -EIO; 1777 1778 ret = fixup_inode_link_count(trans, root, inode); 1779 iput(inode); 1780 if (ret) 1781 goto out; 1782 1783 /* 1784 * fixup on a directory may create new entries, 1785 * make sure we always look for the highset possible 1786 * offset 1787 */ 1788 key.offset = (u64)-1; 1789 } 1790 ret = 0; 1791 out: 1792 btrfs_release_path(path); 1793 return ret; 1794 } 1795 1796 1797 /* 1798 * record a given inode in the fixup dir so we can check its link 1799 * count when replay is done. The link count is incremented here 1800 * so the inode won't go away until we check it 1801 */ 1802 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1803 struct btrfs_root *root, 1804 struct btrfs_path *path, 1805 u64 objectid) 1806 { 1807 struct btrfs_key key; 1808 int ret = 0; 1809 struct inode *inode; 1810 1811 inode = read_one_inode(root, objectid); 1812 if (!inode) 1813 return -EIO; 1814 1815 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1816 key.type = BTRFS_ORPHAN_ITEM_KEY; 1817 key.offset = objectid; 1818 1819 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1820 1821 btrfs_release_path(path); 1822 if (ret == 0) { 1823 if (!inode->i_nlink) 1824 set_nlink(inode, 1); 1825 else 1826 inc_nlink(inode); 1827 ret = btrfs_update_inode(trans, root, inode); 1828 } else if (ret == -EEXIST) { 1829 ret = 0; 1830 } else { 1831 BUG(); /* Logic Error */ 1832 } 1833 iput(inode); 1834 1835 return ret; 1836 } 1837 1838 /* 1839 * when replaying the log for a directory, we only insert names 1840 * for inodes that actually exist. This means an fsync on a directory 1841 * does not implicitly fsync all the new files in it 1842 */ 1843 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1844 struct btrfs_root *root, 1845 u64 dirid, u64 index, 1846 char *name, int name_len, 1847 struct btrfs_key *location) 1848 { 1849 struct inode *inode; 1850 struct inode *dir; 1851 int ret; 1852 1853 inode = read_one_inode(root, location->objectid); 1854 if (!inode) 1855 return -ENOENT; 1856 1857 dir = read_one_inode(root, dirid); 1858 if (!dir) { 1859 iput(inode); 1860 return -EIO; 1861 } 1862 1863 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1864 name_len, 1, index); 1865 1866 /* FIXME, put inode into FIXUP list */ 1867 1868 iput(inode); 1869 iput(dir); 1870 return ret; 1871 } 1872 1873 /* 1874 * take a single entry in a log directory item and replay it into 1875 * the subvolume. 1876 * 1877 * if a conflicting item exists in the subdirectory already, 1878 * the inode it points to is unlinked and put into the link count 1879 * fix up tree. 1880 * 1881 * If a name from the log points to a file or directory that does 1882 * not exist in the FS, it is skipped. fsyncs on directories 1883 * do not force down inodes inside that directory, just changes to the 1884 * names or unlinks in a directory. 1885 * 1886 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1887 * non-existing inode) and 1 if the name was replayed. 1888 */ 1889 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1890 struct btrfs_root *root, 1891 struct btrfs_path *path, 1892 struct extent_buffer *eb, 1893 struct btrfs_dir_item *di, 1894 struct btrfs_key *key) 1895 { 1896 char *name; 1897 int name_len; 1898 struct btrfs_dir_item *dst_di; 1899 struct btrfs_key found_key; 1900 struct btrfs_key log_key; 1901 struct inode *dir; 1902 u8 log_type; 1903 int exists; 1904 int ret = 0; 1905 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1906 bool name_added = false; 1907 1908 dir = read_one_inode(root, key->objectid); 1909 if (!dir) 1910 return -EIO; 1911 1912 name_len = btrfs_dir_name_len(eb, di); 1913 name = kmalloc(name_len, GFP_NOFS); 1914 if (!name) { 1915 ret = -ENOMEM; 1916 goto out; 1917 } 1918 1919 log_type = btrfs_dir_type(eb, di); 1920 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1921 name_len); 1922 1923 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1924 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1925 if (exists == 0) 1926 exists = 1; 1927 else 1928 exists = 0; 1929 btrfs_release_path(path); 1930 1931 if (key->type == BTRFS_DIR_ITEM_KEY) { 1932 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1933 name, name_len, 1); 1934 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1935 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1936 key->objectid, 1937 key->offset, name, 1938 name_len, 1); 1939 } else { 1940 /* Corruption */ 1941 ret = -EINVAL; 1942 goto out; 1943 } 1944 if (IS_ERR_OR_NULL(dst_di)) { 1945 /* we need a sequence number to insert, so we only 1946 * do inserts for the BTRFS_DIR_INDEX_KEY types 1947 */ 1948 if (key->type != BTRFS_DIR_INDEX_KEY) 1949 goto out; 1950 goto insert; 1951 } 1952 1953 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1954 /* the existing item matches the logged item */ 1955 if (found_key.objectid == log_key.objectid && 1956 found_key.type == log_key.type && 1957 found_key.offset == log_key.offset && 1958 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1959 update_size = false; 1960 goto out; 1961 } 1962 1963 /* 1964 * don't drop the conflicting directory entry if the inode 1965 * for the new entry doesn't exist 1966 */ 1967 if (!exists) 1968 goto out; 1969 1970 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); 1971 if (ret) 1972 goto out; 1973 1974 if (key->type == BTRFS_DIR_INDEX_KEY) 1975 goto insert; 1976 out: 1977 btrfs_release_path(path); 1978 if (!ret && update_size) { 1979 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 1980 ret = btrfs_update_inode(trans, root, dir); 1981 } 1982 kfree(name); 1983 iput(dir); 1984 if (!ret && name_added) 1985 ret = 1; 1986 return ret; 1987 1988 insert: 1989 /* 1990 * Check if the inode reference exists in the log for the given name, 1991 * inode and parent inode 1992 */ 1993 found_key.objectid = log_key.objectid; 1994 found_key.type = BTRFS_INODE_REF_KEY; 1995 found_key.offset = key->objectid; 1996 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len); 1997 if (ret < 0) { 1998 goto out; 1999 } else if (ret) { 2000 /* The dentry will be added later. */ 2001 ret = 0; 2002 update_size = false; 2003 goto out; 2004 } 2005 2006 found_key.objectid = log_key.objectid; 2007 found_key.type = BTRFS_INODE_EXTREF_KEY; 2008 found_key.offset = key->objectid; 2009 ret = backref_in_log(root->log_root, &found_key, key->objectid, name, 2010 name_len); 2011 if (ret < 0) { 2012 goto out; 2013 } else if (ret) { 2014 /* The dentry will be added later. */ 2015 ret = 0; 2016 update_size = false; 2017 goto out; 2018 } 2019 btrfs_release_path(path); 2020 ret = insert_one_name(trans, root, key->objectid, key->offset, 2021 name, name_len, &log_key); 2022 if (ret && ret != -ENOENT && ret != -EEXIST) 2023 goto out; 2024 if (!ret) 2025 name_added = true; 2026 update_size = false; 2027 ret = 0; 2028 goto out; 2029 } 2030 2031 /* 2032 * find all the names in a directory item and reconcile them into 2033 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 2034 * one name in a directory item, but the same code gets used for 2035 * both directory index types 2036 */ 2037 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2038 struct btrfs_root *root, 2039 struct btrfs_path *path, 2040 struct extent_buffer *eb, int slot, 2041 struct btrfs_key *key) 2042 { 2043 int ret = 0; 2044 u32 item_size = btrfs_item_size_nr(eb, slot); 2045 struct btrfs_dir_item *di; 2046 int name_len; 2047 unsigned long ptr; 2048 unsigned long ptr_end; 2049 struct btrfs_path *fixup_path = NULL; 2050 2051 ptr = btrfs_item_ptr_offset(eb, slot); 2052 ptr_end = ptr + item_size; 2053 while (ptr < ptr_end) { 2054 di = (struct btrfs_dir_item *)ptr; 2055 name_len = btrfs_dir_name_len(eb, di); 2056 ret = replay_one_name(trans, root, path, eb, di, key); 2057 if (ret < 0) 2058 break; 2059 ptr = (unsigned long)(di + 1); 2060 ptr += name_len; 2061 2062 /* 2063 * If this entry refers to a non-directory (directories can not 2064 * have a link count > 1) and it was added in the transaction 2065 * that was not committed, make sure we fixup the link count of 2066 * the inode it the entry points to. Otherwise something like 2067 * the following would result in a directory pointing to an 2068 * inode with a wrong link that does not account for this dir 2069 * entry: 2070 * 2071 * mkdir testdir 2072 * touch testdir/foo 2073 * touch testdir/bar 2074 * sync 2075 * 2076 * ln testdir/bar testdir/bar_link 2077 * ln testdir/foo testdir/foo_link 2078 * xfs_io -c "fsync" testdir/bar 2079 * 2080 * <power failure> 2081 * 2082 * mount fs, log replay happens 2083 * 2084 * File foo would remain with a link count of 1 when it has two 2085 * entries pointing to it in the directory testdir. This would 2086 * make it impossible to ever delete the parent directory has 2087 * it would result in stale dentries that can never be deleted. 2088 */ 2089 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2090 struct btrfs_key di_key; 2091 2092 if (!fixup_path) { 2093 fixup_path = btrfs_alloc_path(); 2094 if (!fixup_path) { 2095 ret = -ENOMEM; 2096 break; 2097 } 2098 } 2099 2100 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2101 ret = link_to_fixup_dir(trans, root, fixup_path, 2102 di_key.objectid); 2103 if (ret) 2104 break; 2105 } 2106 ret = 0; 2107 } 2108 btrfs_free_path(fixup_path); 2109 return ret; 2110 } 2111 2112 /* 2113 * directory replay has two parts. There are the standard directory 2114 * items in the log copied from the subvolume, and range items 2115 * created in the log while the subvolume was logged. 2116 * 2117 * The range items tell us which parts of the key space the log 2118 * is authoritative for. During replay, if a key in the subvolume 2119 * directory is in a logged range item, but not actually in the log 2120 * that means it was deleted from the directory before the fsync 2121 * and should be removed. 2122 */ 2123 static noinline int find_dir_range(struct btrfs_root *root, 2124 struct btrfs_path *path, 2125 u64 dirid, int key_type, 2126 u64 *start_ret, u64 *end_ret) 2127 { 2128 struct btrfs_key key; 2129 u64 found_end; 2130 struct btrfs_dir_log_item *item; 2131 int ret; 2132 int nritems; 2133 2134 if (*start_ret == (u64)-1) 2135 return 1; 2136 2137 key.objectid = dirid; 2138 key.type = key_type; 2139 key.offset = *start_ret; 2140 2141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2142 if (ret < 0) 2143 goto out; 2144 if (ret > 0) { 2145 if (path->slots[0] == 0) 2146 goto out; 2147 path->slots[0]--; 2148 } 2149 if (ret != 0) 2150 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2151 2152 if (key.type != key_type || key.objectid != dirid) { 2153 ret = 1; 2154 goto next; 2155 } 2156 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2157 struct btrfs_dir_log_item); 2158 found_end = btrfs_dir_log_end(path->nodes[0], item); 2159 2160 if (*start_ret >= key.offset && *start_ret <= found_end) { 2161 ret = 0; 2162 *start_ret = key.offset; 2163 *end_ret = found_end; 2164 goto out; 2165 } 2166 ret = 1; 2167 next: 2168 /* check the next slot in the tree to see if it is a valid item */ 2169 nritems = btrfs_header_nritems(path->nodes[0]); 2170 path->slots[0]++; 2171 if (path->slots[0] >= nritems) { 2172 ret = btrfs_next_leaf(root, path); 2173 if (ret) 2174 goto out; 2175 } 2176 2177 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2178 2179 if (key.type != key_type || key.objectid != dirid) { 2180 ret = 1; 2181 goto out; 2182 } 2183 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2184 struct btrfs_dir_log_item); 2185 found_end = btrfs_dir_log_end(path->nodes[0], item); 2186 *start_ret = key.offset; 2187 *end_ret = found_end; 2188 ret = 0; 2189 out: 2190 btrfs_release_path(path); 2191 return ret; 2192 } 2193 2194 /* 2195 * this looks for a given directory item in the log. If the directory 2196 * item is not in the log, the item is removed and the inode it points 2197 * to is unlinked 2198 */ 2199 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2200 struct btrfs_root *root, 2201 struct btrfs_root *log, 2202 struct btrfs_path *path, 2203 struct btrfs_path *log_path, 2204 struct inode *dir, 2205 struct btrfs_key *dir_key) 2206 { 2207 int ret; 2208 struct extent_buffer *eb; 2209 int slot; 2210 u32 item_size; 2211 struct btrfs_dir_item *di; 2212 struct btrfs_dir_item *log_di; 2213 int name_len; 2214 unsigned long ptr; 2215 unsigned long ptr_end; 2216 char *name; 2217 struct inode *inode; 2218 struct btrfs_key location; 2219 2220 again: 2221 eb = path->nodes[0]; 2222 slot = path->slots[0]; 2223 item_size = btrfs_item_size_nr(eb, slot); 2224 ptr = btrfs_item_ptr_offset(eb, slot); 2225 ptr_end = ptr + item_size; 2226 while (ptr < ptr_end) { 2227 di = (struct btrfs_dir_item *)ptr; 2228 name_len = btrfs_dir_name_len(eb, di); 2229 name = kmalloc(name_len, GFP_NOFS); 2230 if (!name) { 2231 ret = -ENOMEM; 2232 goto out; 2233 } 2234 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2235 name_len); 2236 log_di = NULL; 2237 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2238 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2239 dir_key->objectid, 2240 name, name_len, 0); 2241 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2242 log_di = btrfs_lookup_dir_index_item(trans, log, 2243 log_path, 2244 dir_key->objectid, 2245 dir_key->offset, 2246 name, name_len, 0); 2247 } 2248 if (!log_di || log_di == ERR_PTR(-ENOENT)) { 2249 btrfs_dir_item_key_to_cpu(eb, di, &location); 2250 btrfs_release_path(path); 2251 btrfs_release_path(log_path); 2252 inode = read_one_inode(root, location.objectid); 2253 if (!inode) { 2254 kfree(name); 2255 return -EIO; 2256 } 2257 2258 ret = link_to_fixup_dir(trans, root, 2259 path, location.objectid); 2260 if (ret) { 2261 kfree(name); 2262 iput(inode); 2263 goto out; 2264 } 2265 2266 inc_nlink(inode); 2267 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 2268 BTRFS_I(inode), name, name_len); 2269 if (!ret) 2270 ret = btrfs_run_delayed_items(trans); 2271 kfree(name); 2272 iput(inode); 2273 if (ret) 2274 goto out; 2275 2276 /* there might still be more names under this key 2277 * check and repeat if required 2278 */ 2279 ret = btrfs_search_slot(NULL, root, dir_key, path, 2280 0, 0); 2281 if (ret == 0) 2282 goto again; 2283 ret = 0; 2284 goto out; 2285 } else if (IS_ERR(log_di)) { 2286 kfree(name); 2287 return PTR_ERR(log_di); 2288 } 2289 btrfs_release_path(log_path); 2290 kfree(name); 2291 2292 ptr = (unsigned long)(di + 1); 2293 ptr += name_len; 2294 } 2295 ret = 0; 2296 out: 2297 btrfs_release_path(path); 2298 btrfs_release_path(log_path); 2299 return ret; 2300 } 2301 2302 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2303 struct btrfs_root *root, 2304 struct btrfs_root *log, 2305 struct btrfs_path *path, 2306 const u64 ino) 2307 { 2308 struct btrfs_key search_key; 2309 struct btrfs_path *log_path; 2310 int i; 2311 int nritems; 2312 int ret; 2313 2314 log_path = btrfs_alloc_path(); 2315 if (!log_path) 2316 return -ENOMEM; 2317 2318 search_key.objectid = ino; 2319 search_key.type = BTRFS_XATTR_ITEM_KEY; 2320 search_key.offset = 0; 2321 again: 2322 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2323 if (ret < 0) 2324 goto out; 2325 process_leaf: 2326 nritems = btrfs_header_nritems(path->nodes[0]); 2327 for (i = path->slots[0]; i < nritems; i++) { 2328 struct btrfs_key key; 2329 struct btrfs_dir_item *di; 2330 struct btrfs_dir_item *log_di; 2331 u32 total_size; 2332 u32 cur; 2333 2334 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2335 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2336 ret = 0; 2337 goto out; 2338 } 2339 2340 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2341 total_size = btrfs_item_size_nr(path->nodes[0], i); 2342 cur = 0; 2343 while (cur < total_size) { 2344 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2345 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2346 u32 this_len = sizeof(*di) + name_len + data_len; 2347 char *name; 2348 2349 name = kmalloc(name_len, GFP_NOFS); 2350 if (!name) { 2351 ret = -ENOMEM; 2352 goto out; 2353 } 2354 read_extent_buffer(path->nodes[0], name, 2355 (unsigned long)(di + 1), name_len); 2356 2357 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2358 name, name_len, 0); 2359 btrfs_release_path(log_path); 2360 if (!log_di) { 2361 /* Doesn't exist in log tree, so delete it. */ 2362 btrfs_release_path(path); 2363 di = btrfs_lookup_xattr(trans, root, path, ino, 2364 name, name_len, -1); 2365 kfree(name); 2366 if (IS_ERR(di)) { 2367 ret = PTR_ERR(di); 2368 goto out; 2369 } 2370 ASSERT(di); 2371 ret = btrfs_delete_one_dir_name(trans, root, 2372 path, di); 2373 if (ret) 2374 goto out; 2375 btrfs_release_path(path); 2376 search_key = key; 2377 goto again; 2378 } 2379 kfree(name); 2380 if (IS_ERR(log_di)) { 2381 ret = PTR_ERR(log_di); 2382 goto out; 2383 } 2384 cur += this_len; 2385 di = (struct btrfs_dir_item *)((char *)di + this_len); 2386 } 2387 } 2388 ret = btrfs_next_leaf(root, path); 2389 if (ret > 0) 2390 ret = 0; 2391 else if (ret == 0) 2392 goto process_leaf; 2393 out: 2394 btrfs_free_path(log_path); 2395 btrfs_release_path(path); 2396 return ret; 2397 } 2398 2399 2400 /* 2401 * deletion replay happens before we copy any new directory items 2402 * out of the log or out of backreferences from inodes. It 2403 * scans the log to find ranges of keys that log is authoritative for, 2404 * and then scans the directory to find items in those ranges that are 2405 * not present in the log. 2406 * 2407 * Anything we don't find in the log is unlinked and removed from the 2408 * directory. 2409 */ 2410 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2411 struct btrfs_root *root, 2412 struct btrfs_root *log, 2413 struct btrfs_path *path, 2414 u64 dirid, int del_all) 2415 { 2416 u64 range_start; 2417 u64 range_end; 2418 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2419 int ret = 0; 2420 struct btrfs_key dir_key; 2421 struct btrfs_key found_key; 2422 struct btrfs_path *log_path; 2423 struct inode *dir; 2424 2425 dir_key.objectid = dirid; 2426 dir_key.type = BTRFS_DIR_ITEM_KEY; 2427 log_path = btrfs_alloc_path(); 2428 if (!log_path) 2429 return -ENOMEM; 2430 2431 dir = read_one_inode(root, dirid); 2432 /* it isn't an error if the inode isn't there, that can happen 2433 * because we replay the deletes before we copy in the inode item 2434 * from the log 2435 */ 2436 if (!dir) { 2437 btrfs_free_path(log_path); 2438 return 0; 2439 } 2440 again: 2441 range_start = 0; 2442 range_end = 0; 2443 while (1) { 2444 if (del_all) 2445 range_end = (u64)-1; 2446 else { 2447 ret = find_dir_range(log, path, dirid, key_type, 2448 &range_start, &range_end); 2449 if (ret != 0) 2450 break; 2451 } 2452 2453 dir_key.offset = range_start; 2454 while (1) { 2455 int nritems; 2456 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2457 0, 0); 2458 if (ret < 0) 2459 goto out; 2460 2461 nritems = btrfs_header_nritems(path->nodes[0]); 2462 if (path->slots[0] >= nritems) { 2463 ret = btrfs_next_leaf(root, path); 2464 if (ret == 1) 2465 break; 2466 else if (ret < 0) 2467 goto out; 2468 } 2469 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2470 path->slots[0]); 2471 if (found_key.objectid != dirid || 2472 found_key.type != dir_key.type) 2473 goto next_type; 2474 2475 if (found_key.offset > range_end) 2476 break; 2477 2478 ret = check_item_in_log(trans, root, log, path, 2479 log_path, dir, 2480 &found_key); 2481 if (ret) 2482 goto out; 2483 if (found_key.offset == (u64)-1) 2484 break; 2485 dir_key.offset = found_key.offset + 1; 2486 } 2487 btrfs_release_path(path); 2488 if (range_end == (u64)-1) 2489 break; 2490 range_start = range_end + 1; 2491 } 2492 2493 next_type: 2494 ret = 0; 2495 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2496 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2497 dir_key.type = BTRFS_DIR_INDEX_KEY; 2498 btrfs_release_path(path); 2499 goto again; 2500 } 2501 out: 2502 btrfs_release_path(path); 2503 btrfs_free_path(log_path); 2504 iput(dir); 2505 return ret; 2506 } 2507 2508 /* 2509 * the process_func used to replay items from the log tree. This 2510 * gets called in two different stages. The first stage just looks 2511 * for inodes and makes sure they are all copied into the subvolume. 2512 * 2513 * The second stage copies all the other item types from the log into 2514 * the subvolume. The two stage approach is slower, but gets rid of 2515 * lots of complexity around inodes referencing other inodes that exist 2516 * only in the log (references come from either directory items or inode 2517 * back refs). 2518 */ 2519 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2520 struct walk_control *wc, u64 gen, int level) 2521 { 2522 int nritems; 2523 struct btrfs_path *path; 2524 struct btrfs_root *root = wc->replay_dest; 2525 struct btrfs_key key; 2526 int i; 2527 int ret; 2528 2529 ret = btrfs_read_buffer(eb, gen, level, NULL); 2530 if (ret) 2531 return ret; 2532 2533 level = btrfs_header_level(eb); 2534 2535 if (level != 0) 2536 return 0; 2537 2538 path = btrfs_alloc_path(); 2539 if (!path) 2540 return -ENOMEM; 2541 2542 nritems = btrfs_header_nritems(eb); 2543 for (i = 0; i < nritems; i++) { 2544 btrfs_item_key_to_cpu(eb, &key, i); 2545 2546 /* inode keys are done during the first stage */ 2547 if (key.type == BTRFS_INODE_ITEM_KEY && 2548 wc->stage == LOG_WALK_REPLAY_INODES) { 2549 struct btrfs_inode_item *inode_item; 2550 u32 mode; 2551 2552 inode_item = btrfs_item_ptr(eb, i, 2553 struct btrfs_inode_item); 2554 /* 2555 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2556 * and never got linked before the fsync, skip it, as 2557 * replaying it is pointless since it would be deleted 2558 * later. We skip logging tmpfiles, but it's always 2559 * possible we are replaying a log created with a kernel 2560 * that used to log tmpfiles. 2561 */ 2562 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2563 wc->ignore_cur_inode = true; 2564 continue; 2565 } else { 2566 wc->ignore_cur_inode = false; 2567 } 2568 ret = replay_xattr_deletes(wc->trans, root, log, 2569 path, key.objectid); 2570 if (ret) 2571 break; 2572 mode = btrfs_inode_mode(eb, inode_item); 2573 if (S_ISDIR(mode)) { 2574 ret = replay_dir_deletes(wc->trans, 2575 root, log, path, key.objectid, 0); 2576 if (ret) 2577 break; 2578 } 2579 ret = overwrite_item(wc->trans, root, path, 2580 eb, i, &key); 2581 if (ret) 2582 break; 2583 2584 /* 2585 * Before replaying extents, truncate the inode to its 2586 * size. We need to do it now and not after log replay 2587 * because before an fsync we can have prealloc extents 2588 * added beyond the inode's i_size. If we did it after, 2589 * through orphan cleanup for example, we would drop 2590 * those prealloc extents just after replaying them. 2591 */ 2592 if (S_ISREG(mode)) { 2593 struct inode *inode; 2594 u64 from; 2595 2596 inode = read_one_inode(root, key.objectid); 2597 if (!inode) { 2598 ret = -EIO; 2599 break; 2600 } 2601 from = ALIGN(i_size_read(inode), 2602 root->fs_info->sectorsize); 2603 ret = btrfs_drop_extents(wc->trans, root, inode, 2604 from, (u64)-1, 1); 2605 if (!ret) { 2606 /* Update the inode's nbytes. */ 2607 ret = btrfs_update_inode(wc->trans, 2608 root, inode); 2609 } 2610 iput(inode); 2611 if (ret) 2612 break; 2613 } 2614 2615 ret = link_to_fixup_dir(wc->trans, root, 2616 path, key.objectid); 2617 if (ret) 2618 break; 2619 } 2620 2621 if (wc->ignore_cur_inode) 2622 continue; 2623 2624 if (key.type == BTRFS_DIR_INDEX_KEY && 2625 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2626 ret = replay_one_dir_item(wc->trans, root, path, 2627 eb, i, &key); 2628 if (ret) 2629 break; 2630 } 2631 2632 if (wc->stage < LOG_WALK_REPLAY_ALL) 2633 continue; 2634 2635 /* these keys are simply copied */ 2636 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2637 ret = overwrite_item(wc->trans, root, path, 2638 eb, i, &key); 2639 if (ret) 2640 break; 2641 } else if (key.type == BTRFS_INODE_REF_KEY || 2642 key.type == BTRFS_INODE_EXTREF_KEY) { 2643 ret = add_inode_ref(wc->trans, root, log, path, 2644 eb, i, &key); 2645 if (ret && ret != -ENOENT) 2646 break; 2647 ret = 0; 2648 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2649 ret = replay_one_extent(wc->trans, root, path, 2650 eb, i, &key); 2651 if (ret) 2652 break; 2653 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2654 ret = replay_one_dir_item(wc->trans, root, path, 2655 eb, i, &key); 2656 if (ret) 2657 break; 2658 } 2659 } 2660 btrfs_free_path(path); 2661 return ret; 2662 } 2663 2664 /* 2665 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2666 */ 2667 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2668 { 2669 struct btrfs_block_group *cache; 2670 2671 cache = btrfs_lookup_block_group(fs_info, start); 2672 if (!cache) { 2673 btrfs_err(fs_info, "unable to find block group for %llu", start); 2674 return; 2675 } 2676 2677 spin_lock(&cache->space_info->lock); 2678 spin_lock(&cache->lock); 2679 cache->reserved -= fs_info->nodesize; 2680 cache->space_info->bytes_reserved -= fs_info->nodesize; 2681 spin_unlock(&cache->lock); 2682 spin_unlock(&cache->space_info->lock); 2683 2684 btrfs_put_block_group(cache); 2685 } 2686 2687 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2688 struct btrfs_root *root, 2689 struct btrfs_path *path, int *level, 2690 struct walk_control *wc) 2691 { 2692 struct btrfs_fs_info *fs_info = root->fs_info; 2693 u64 bytenr; 2694 u64 ptr_gen; 2695 struct extent_buffer *next; 2696 struct extent_buffer *cur; 2697 u32 blocksize; 2698 int ret = 0; 2699 2700 while (*level > 0) { 2701 struct btrfs_key first_key; 2702 2703 cur = path->nodes[*level]; 2704 2705 WARN_ON(btrfs_header_level(cur) != *level); 2706 2707 if (path->slots[*level] >= 2708 btrfs_header_nritems(cur)) 2709 break; 2710 2711 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2712 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2713 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2714 blocksize = fs_info->nodesize; 2715 2716 next = btrfs_find_create_tree_block(fs_info, bytenr); 2717 if (IS_ERR(next)) 2718 return PTR_ERR(next); 2719 2720 if (*level == 1) { 2721 ret = wc->process_func(root, next, wc, ptr_gen, 2722 *level - 1); 2723 if (ret) { 2724 free_extent_buffer(next); 2725 return ret; 2726 } 2727 2728 path->slots[*level]++; 2729 if (wc->free) { 2730 ret = btrfs_read_buffer(next, ptr_gen, 2731 *level - 1, &first_key); 2732 if (ret) { 2733 free_extent_buffer(next); 2734 return ret; 2735 } 2736 2737 if (trans) { 2738 btrfs_tree_lock(next); 2739 btrfs_set_lock_blocking_write(next); 2740 btrfs_clean_tree_block(next); 2741 btrfs_wait_tree_block_writeback(next); 2742 btrfs_tree_unlock(next); 2743 ret = btrfs_pin_reserved_extent(trans, 2744 bytenr, blocksize); 2745 if (ret) { 2746 free_extent_buffer(next); 2747 return ret; 2748 } 2749 } else { 2750 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2751 clear_extent_buffer_dirty(next); 2752 unaccount_log_buffer(fs_info, bytenr); 2753 } 2754 } 2755 free_extent_buffer(next); 2756 continue; 2757 } 2758 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2759 if (ret) { 2760 free_extent_buffer(next); 2761 return ret; 2762 } 2763 2764 if (path->nodes[*level-1]) 2765 free_extent_buffer(path->nodes[*level-1]); 2766 path->nodes[*level-1] = next; 2767 *level = btrfs_header_level(next); 2768 path->slots[*level] = 0; 2769 cond_resched(); 2770 } 2771 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2772 2773 cond_resched(); 2774 return 0; 2775 } 2776 2777 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2778 struct btrfs_root *root, 2779 struct btrfs_path *path, int *level, 2780 struct walk_control *wc) 2781 { 2782 struct btrfs_fs_info *fs_info = root->fs_info; 2783 int i; 2784 int slot; 2785 int ret; 2786 2787 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2788 slot = path->slots[i]; 2789 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2790 path->slots[i]++; 2791 *level = i; 2792 WARN_ON(*level == 0); 2793 return 0; 2794 } else { 2795 ret = wc->process_func(root, path->nodes[*level], wc, 2796 btrfs_header_generation(path->nodes[*level]), 2797 *level); 2798 if (ret) 2799 return ret; 2800 2801 if (wc->free) { 2802 struct extent_buffer *next; 2803 2804 next = path->nodes[*level]; 2805 2806 if (trans) { 2807 btrfs_tree_lock(next); 2808 btrfs_set_lock_blocking_write(next); 2809 btrfs_clean_tree_block(next); 2810 btrfs_wait_tree_block_writeback(next); 2811 btrfs_tree_unlock(next); 2812 ret = btrfs_pin_reserved_extent(trans, 2813 path->nodes[*level]->start, 2814 path->nodes[*level]->len); 2815 if (ret) 2816 return ret; 2817 } else { 2818 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2819 clear_extent_buffer_dirty(next); 2820 2821 unaccount_log_buffer(fs_info, 2822 path->nodes[*level]->start); 2823 } 2824 } 2825 free_extent_buffer(path->nodes[*level]); 2826 path->nodes[*level] = NULL; 2827 *level = i + 1; 2828 } 2829 } 2830 return 1; 2831 } 2832 2833 /* 2834 * drop the reference count on the tree rooted at 'snap'. This traverses 2835 * the tree freeing any blocks that have a ref count of zero after being 2836 * decremented. 2837 */ 2838 static int walk_log_tree(struct btrfs_trans_handle *trans, 2839 struct btrfs_root *log, struct walk_control *wc) 2840 { 2841 struct btrfs_fs_info *fs_info = log->fs_info; 2842 int ret = 0; 2843 int wret; 2844 int level; 2845 struct btrfs_path *path; 2846 int orig_level; 2847 2848 path = btrfs_alloc_path(); 2849 if (!path) 2850 return -ENOMEM; 2851 2852 level = btrfs_header_level(log->node); 2853 orig_level = level; 2854 path->nodes[level] = log->node; 2855 atomic_inc(&log->node->refs); 2856 path->slots[level] = 0; 2857 2858 while (1) { 2859 wret = walk_down_log_tree(trans, log, path, &level, wc); 2860 if (wret > 0) 2861 break; 2862 if (wret < 0) { 2863 ret = wret; 2864 goto out; 2865 } 2866 2867 wret = walk_up_log_tree(trans, log, path, &level, wc); 2868 if (wret > 0) 2869 break; 2870 if (wret < 0) { 2871 ret = wret; 2872 goto out; 2873 } 2874 } 2875 2876 /* was the root node processed? if not, catch it here */ 2877 if (path->nodes[orig_level]) { 2878 ret = wc->process_func(log, path->nodes[orig_level], wc, 2879 btrfs_header_generation(path->nodes[orig_level]), 2880 orig_level); 2881 if (ret) 2882 goto out; 2883 if (wc->free) { 2884 struct extent_buffer *next; 2885 2886 next = path->nodes[orig_level]; 2887 2888 if (trans) { 2889 btrfs_tree_lock(next); 2890 btrfs_set_lock_blocking_write(next); 2891 btrfs_clean_tree_block(next); 2892 btrfs_wait_tree_block_writeback(next); 2893 btrfs_tree_unlock(next); 2894 ret = btrfs_pin_reserved_extent(trans, 2895 next->start, next->len); 2896 if (ret) 2897 goto out; 2898 } else { 2899 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2900 clear_extent_buffer_dirty(next); 2901 unaccount_log_buffer(fs_info, next->start); 2902 } 2903 } 2904 } 2905 2906 out: 2907 btrfs_free_path(path); 2908 return ret; 2909 } 2910 2911 /* 2912 * helper function to update the item for a given subvolumes log root 2913 * in the tree of log roots 2914 */ 2915 static int update_log_root(struct btrfs_trans_handle *trans, 2916 struct btrfs_root *log, 2917 struct btrfs_root_item *root_item) 2918 { 2919 struct btrfs_fs_info *fs_info = log->fs_info; 2920 int ret; 2921 2922 if (log->log_transid == 1) { 2923 /* insert root item on the first sync */ 2924 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2925 &log->root_key, root_item); 2926 } else { 2927 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2928 &log->root_key, root_item); 2929 } 2930 return ret; 2931 } 2932 2933 static void wait_log_commit(struct btrfs_root *root, int transid) 2934 { 2935 DEFINE_WAIT(wait); 2936 int index = transid % 2; 2937 2938 /* 2939 * we only allow two pending log transactions at a time, 2940 * so we know that if ours is more than 2 older than the 2941 * current transaction, we're done 2942 */ 2943 for (;;) { 2944 prepare_to_wait(&root->log_commit_wait[index], 2945 &wait, TASK_UNINTERRUPTIBLE); 2946 2947 if (!(root->log_transid_committed < transid && 2948 atomic_read(&root->log_commit[index]))) 2949 break; 2950 2951 mutex_unlock(&root->log_mutex); 2952 schedule(); 2953 mutex_lock(&root->log_mutex); 2954 } 2955 finish_wait(&root->log_commit_wait[index], &wait); 2956 } 2957 2958 static void wait_for_writer(struct btrfs_root *root) 2959 { 2960 DEFINE_WAIT(wait); 2961 2962 for (;;) { 2963 prepare_to_wait(&root->log_writer_wait, &wait, 2964 TASK_UNINTERRUPTIBLE); 2965 if (!atomic_read(&root->log_writers)) 2966 break; 2967 2968 mutex_unlock(&root->log_mutex); 2969 schedule(); 2970 mutex_lock(&root->log_mutex); 2971 } 2972 finish_wait(&root->log_writer_wait, &wait); 2973 } 2974 2975 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2976 struct btrfs_log_ctx *ctx) 2977 { 2978 if (!ctx) 2979 return; 2980 2981 mutex_lock(&root->log_mutex); 2982 list_del_init(&ctx->list); 2983 mutex_unlock(&root->log_mutex); 2984 } 2985 2986 /* 2987 * Invoked in log mutex context, or be sure there is no other task which 2988 * can access the list. 2989 */ 2990 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2991 int index, int error) 2992 { 2993 struct btrfs_log_ctx *ctx; 2994 struct btrfs_log_ctx *safe; 2995 2996 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 2997 list_del_init(&ctx->list); 2998 ctx->log_ret = error; 2999 } 3000 3001 INIT_LIST_HEAD(&root->log_ctxs[index]); 3002 } 3003 3004 /* 3005 * btrfs_sync_log does sends a given tree log down to the disk and 3006 * updates the super blocks to record it. When this call is done, 3007 * you know that any inodes previously logged are safely on disk only 3008 * if it returns 0. 3009 * 3010 * Any other return value means you need to call btrfs_commit_transaction. 3011 * Some of the edge cases for fsyncing directories that have had unlinks 3012 * or renames done in the past mean that sometimes the only safe 3013 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3014 * that has happened. 3015 */ 3016 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3017 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3018 { 3019 int index1; 3020 int index2; 3021 int mark; 3022 int ret; 3023 struct btrfs_fs_info *fs_info = root->fs_info; 3024 struct btrfs_root *log = root->log_root; 3025 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3026 struct btrfs_root_item new_root_item; 3027 int log_transid = 0; 3028 struct btrfs_log_ctx root_log_ctx; 3029 struct blk_plug plug; 3030 3031 mutex_lock(&root->log_mutex); 3032 log_transid = ctx->log_transid; 3033 if (root->log_transid_committed >= log_transid) { 3034 mutex_unlock(&root->log_mutex); 3035 return ctx->log_ret; 3036 } 3037 3038 index1 = log_transid % 2; 3039 if (atomic_read(&root->log_commit[index1])) { 3040 wait_log_commit(root, log_transid); 3041 mutex_unlock(&root->log_mutex); 3042 return ctx->log_ret; 3043 } 3044 ASSERT(log_transid == root->log_transid); 3045 atomic_set(&root->log_commit[index1], 1); 3046 3047 /* wait for previous tree log sync to complete */ 3048 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3049 wait_log_commit(root, log_transid - 1); 3050 3051 while (1) { 3052 int batch = atomic_read(&root->log_batch); 3053 /* when we're on an ssd, just kick the log commit out */ 3054 if (!btrfs_test_opt(fs_info, SSD) && 3055 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3056 mutex_unlock(&root->log_mutex); 3057 schedule_timeout_uninterruptible(1); 3058 mutex_lock(&root->log_mutex); 3059 } 3060 wait_for_writer(root); 3061 if (batch == atomic_read(&root->log_batch)) 3062 break; 3063 } 3064 3065 /* bail out if we need to do a full commit */ 3066 if (btrfs_need_log_full_commit(trans)) { 3067 ret = -EAGAIN; 3068 mutex_unlock(&root->log_mutex); 3069 goto out; 3070 } 3071 3072 if (log_transid % 2 == 0) 3073 mark = EXTENT_DIRTY; 3074 else 3075 mark = EXTENT_NEW; 3076 3077 /* we start IO on all the marked extents here, but we don't actually 3078 * wait for them until later. 3079 */ 3080 blk_start_plug(&plug); 3081 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3082 if (ret) { 3083 blk_finish_plug(&plug); 3084 btrfs_abort_transaction(trans, ret); 3085 btrfs_set_log_full_commit(trans); 3086 mutex_unlock(&root->log_mutex); 3087 goto out; 3088 } 3089 3090 /* 3091 * We _must_ update under the root->log_mutex in order to make sure we 3092 * have a consistent view of the log root we are trying to commit at 3093 * this moment. 3094 * 3095 * We _must_ copy this into a local copy, because we are not holding the 3096 * log_root_tree->log_mutex yet. This is important because when we 3097 * commit the log_root_tree we must have a consistent view of the 3098 * log_root_tree when we update the super block to point at the 3099 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3100 * with the commit and possibly point at the new block which we may not 3101 * have written out. 3102 */ 3103 btrfs_set_root_node(&log->root_item, log->node); 3104 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3105 3106 root->log_transid++; 3107 log->log_transid = root->log_transid; 3108 root->log_start_pid = 0; 3109 /* 3110 * IO has been started, blocks of the log tree have WRITTEN flag set 3111 * in their headers. new modifications of the log will be written to 3112 * new positions. so it's safe to allow log writers to go in. 3113 */ 3114 mutex_unlock(&root->log_mutex); 3115 3116 btrfs_init_log_ctx(&root_log_ctx, NULL); 3117 3118 mutex_lock(&log_root_tree->log_mutex); 3119 atomic_inc(&log_root_tree->log_batch); 3120 atomic_inc(&log_root_tree->log_writers); 3121 3122 index2 = log_root_tree->log_transid % 2; 3123 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3124 root_log_ctx.log_transid = log_root_tree->log_transid; 3125 3126 mutex_unlock(&log_root_tree->log_mutex); 3127 3128 mutex_lock(&log_root_tree->log_mutex); 3129 3130 /* 3131 * Now we are safe to update the log_root_tree because we're under the 3132 * log_mutex, and we're a current writer so we're holding the commit 3133 * open until we drop the log_mutex. 3134 */ 3135 ret = update_log_root(trans, log, &new_root_item); 3136 3137 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 3138 /* atomic_dec_and_test implies a barrier */ 3139 cond_wake_up_nomb(&log_root_tree->log_writer_wait); 3140 } 3141 3142 if (ret) { 3143 if (!list_empty(&root_log_ctx.list)) 3144 list_del_init(&root_log_ctx.list); 3145 3146 blk_finish_plug(&plug); 3147 btrfs_set_log_full_commit(trans); 3148 3149 if (ret != -ENOSPC) { 3150 btrfs_abort_transaction(trans, ret); 3151 mutex_unlock(&log_root_tree->log_mutex); 3152 goto out; 3153 } 3154 btrfs_wait_tree_log_extents(log, mark); 3155 mutex_unlock(&log_root_tree->log_mutex); 3156 ret = -EAGAIN; 3157 goto out; 3158 } 3159 3160 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3161 blk_finish_plug(&plug); 3162 list_del_init(&root_log_ctx.list); 3163 mutex_unlock(&log_root_tree->log_mutex); 3164 ret = root_log_ctx.log_ret; 3165 goto out; 3166 } 3167 3168 index2 = root_log_ctx.log_transid % 2; 3169 if (atomic_read(&log_root_tree->log_commit[index2])) { 3170 blk_finish_plug(&plug); 3171 ret = btrfs_wait_tree_log_extents(log, mark); 3172 wait_log_commit(log_root_tree, 3173 root_log_ctx.log_transid); 3174 mutex_unlock(&log_root_tree->log_mutex); 3175 if (!ret) 3176 ret = root_log_ctx.log_ret; 3177 goto out; 3178 } 3179 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3180 atomic_set(&log_root_tree->log_commit[index2], 1); 3181 3182 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3183 wait_log_commit(log_root_tree, 3184 root_log_ctx.log_transid - 1); 3185 } 3186 3187 wait_for_writer(log_root_tree); 3188 3189 /* 3190 * now that we've moved on to the tree of log tree roots, 3191 * check the full commit flag again 3192 */ 3193 if (btrfs_need_log_full_commit(trans)) { 3194 blk_finish_plug(&plug); 3195 btrfs_wait_tree_log_extents(log, mark); 3196 mutex_unlock(&log_root_tree->log_mutex); 3197 ret = -EAGAIN; 3198 goto out_wake_log_root; 3199 } 3200 3201 ret = btrfs_write_marked_extents(fs_info, 3202 &log_root_tree->dirty_log_pages, 3203 EXTENT_DIRTY | EXTENT_NEW); 3204 blk_finish_plug(&plug); 3205 if (ret) { 3206 btrfs_set_log_full_commit(trans); 3207 btrfs_abort_transaction(trans, ret); 3208 mutex_unlock(&log_root_tree->log_mutex); 3209 goto out_wake_log_root; 3210 } 3211 ret = btrfs_wait_tree_log_extents(log, mark); 3212 if (!ret) 3213 ret = btrfs_wait_tree_log_extents(log_root_tree, 3214 EXTENT_NEW | EXTENT_DIRTY); 3215 if (ret) { 3216 btrfs_set_log_full_commit(trans); 3217 mutex_unlock(&log_root_tree->log_mutex); 3218 goto out_wake_log_root; 3219 } 3220 3221 btrfs_set_super_log_root(fs_info->super_for_commit, 3222 log_root_tree->node->start); 3223 btrfs_set_super_log_root_level(fs_info->super_for_commit, 3224 btrfs_header_level(log_root_tree->node)); 3225 3226 log_root_tree->log_transid++; 3227 mutex_unlock(&log_root_tree->log_mutex); 3228 3229 /* 3230 * Nobody else is going to jump in and write the ctree 3231 * super here because the log_commit atomic below is protecting 3232 * us. We must be called with a transaction handle pinning 3233 * the running transaction open, so a full commit can't hop 3234 * in and cause problems either. 3235 */ 3236 ret = write_all_supers(fs_info, 1); 3237 if (ret) { 3238 btrfs_set_log_full_commit(trans); 3239 btrfs_abort_transaction(trans, ret); 3240 goto out_wake_log_root; 3241 } 3242 3243 mutex_lock(&root->log_mutex); 3244 if (root->last_log_commit < log_transid) 3245 root->last_log_commit = log_transid; 3246 mutex_unlock(&root->log_mutex); 3247 3248 out_wake_log_root: 3249 mutex_lock(&log_root_tree->log_mutex); 3250 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3251 3252 log_root_tree->log_transid_committed++; 3253 atomic_set(&log_root_tree->log_commit[index2], 0); 3254 mutex_unlock(&log_root_tree->log_mutex); 3255 3256 /* 3257 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3258 * all the updates above are seen by the woken threads. It might not be 3259 * necessary, but proving that seems to be hard. 3260 */ 3261 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3262 out: 3263 mutex_lock(&root->log_mutex); 3264 btrfs_remove_all_log_ctxs(root, index1, ret); 3265 root->log_transid_committed++; 3266 atomic_set(&root->log_commit[index1], 0); 3267 mutex_unlock(&root->log_mutex); 3268 3269 /* 3270 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3271 * all the updates above are seen by the woken threads. It might not be 3272 * necessary, but proving that seems to be hard. 3273 */ 3274 cond_wake_up(&root->log_commit_wait[index1]); 3275 return ret; 3276 } 3277 3278 static void free_log_tree(struct btrfs_trans_handle *trans, 3279 struct btrfs_root *log) 3280 { 3281 int ret; 3282 struct walk_control wc = { 3283 .free = 1, 3284 .process_func = process_one_buffer 3285 }; 3286 3287 ret = walk_log_tree(trans, log, &wc); 3288 if (ret) { 3289 if (trans) 3290 btrfs_abort_transaction(trans, ret); 3291 else 3292 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3293 } 3294 3295 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3296 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3297 extent_io_tree_release(&log->log_csum_range); 3298 btrfs_put_root(log); 3299 } 3300 3301 /* 3302 * free all the extents used by the tree log. This should be called 3303 * at commit time of the full transaction 3304 */ 3305 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3306 { 3307 if (root->log_root) { 3308 free_log_tree(trans, root->log_root); 3309 root->log_root = NULL; 3310 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3311 } 3312 return 0; 3313 } 3314 3315 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3316 struct btrfs_fs_info *fs_info) 3317 { 3318 if (fs_info->log_root_tree) { 3319 free_log_tree(trans, fs_info->log_root_tree); 3320 fs_info->log_root_tree = NULL; 3321 } 3322 return 0; 3323 } 3324 3325 /* 3326 * Check if an inode was logged in the current transaction. We can't always rely 3327 * on an inode's logged_trans value, because it's an in-memory only field and 3328 * therefore not persisted. This means that its value is lost if the inode gets 3329 * evicted and loaded again from disk (in which case it has a value of 0, and 3330 * certainly it is smaller then any possible transaction ID), when that happens 3331 * the full_sync flag is set in the inode's runtime flags, so on that case we 3332 * assume eviction happened and ignore the logged_trans value, assuming the 3333 * worst case, that the inode was logged before in the current transaction. 3334 */ 3335 static bool inode_logged(struct btrfs_trans_handle *trans, 3336 struct btrfs_inode *inode) 3337 { 3338 if (inode->logged_trans == trans->transid) 3339 return true; 3340 3341 if (inode->last_trans == trans->transid && 3342 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && 3343 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags)) 3344 return true; 3345 3346 return false; 3347 } 3348 3349 /* 3350 * If both a file and directory are logged, and unlinks or renames are 3351 * mixed in, we have a few interesting corners: 3352 * 3353 * create file X in dir Y 3354 * link file X to X.link in dir Y 3355 * fsync file X 3356 * unlink file X but leave X.link 3357 * fsync dir Y 3358 * 3359 * After a crash we would expect only X.link to exist. But file X 3360 * didn't get fsync'd again so the log has back refs for X and X.link. 3361 * 3362 * We solve this by removing directory entries and inode backrefs from the 3363 * log when a file that was logged in the current transaction is 3364 * unlinked. Any later fsync will include the updated log entries, and 3365 * we'll be able to reconstruct the proper directory items from backrefs. 3366 * 3367 * This optimizations allows us to avoid relogging the entire inode 3368 * or the entire directory. 3369 */ 3370 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3371 struct btrfs_root *root, 3372 const char *name, int name_len, 3373 struct btrfs_inode *dir, u64 index) 3374 { 3375 struct btrfs_root *log; 3376 struct btrfs_dir_item *di; 3377 struct btrfs_path *path; 3378 int ret; 3379 int err = 0; 3380 int bytes_del = 0; 3381 u64 dir_ino = btrfs_ino(dir); 3382 3383 if (!inode_logged(trans, dir)) 3384 return 0; 3385 3386 ret = join_running_log_trans(root); 3387 if (ret) 3388 return 0; 3389 3390 mutex_lock(&dir->log_mutex); 3391 3392 log = root->log_root; 3393 path = btrfs_alloc_path(); 3394 if (!path) { 3395 err = -ENOMEM; 3396 goto out_unlock; 3397 } 3398 3399 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3400 name, name_len, -1); 3401 if (IS_ERR(di)) { 3402 err = PTR_ERR(di); 3403 goto fail; 3404 } 3405 if (di) { 3406 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3407 bytes_del += name_len; 3408 if (ret) { 3409 err = ret; 3410 goto fail; 3411 } 3412 } 3413 btrfs_release_path(path); 3414 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3415 index, name, name_len, -1); 3416 if (IS_ERR(di)) { 3417 err = PTR_ERR(di); 3418 goto fail; 3419 } 3420 if (di) { 3421 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3422 bytes_del += name_len; 3423 if (ret) { 3424 err = ret; 3425 goto fail; 3426 } 3427 } 3428 3429 /* update the directory size in the log to reflect the names 3430 * we have removed 3431 */ 3432 if (bytes_del) { 3433 struct btrfs_key key; 3434 3435 key.objectid = dir_ino; 3436 key.offset = 0; 3437 key.type = BTRFS_INODE_ITEM_KEY; 3438 btrfs_release_path(path); 3439 3440 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 3441 if (ret < 0) { 3442 err = ret; 3443 goto fail; 3444 } 3445 if (ret == 0) { 3446 struct btrfs_inode_item *item; 3447 u64 i_size; 3448 3449 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3450 struct btrfs_inode_item); 3451 i_size = btrfs_inode_size(path->nodes[0], item); 3452 if (i_size > bytes_del) 3453 i_size -= bytes_del; 3454 else 3455 i_size = 0; 3456 btrfs_set_inode_size(path->nodes[0], item, i_size); 3457 btrfs_mark_buffer_dirty(path->nodes[0]); 3458 } else 3459 ret = 0; 3460 btrfs_release_path(path); 3461 } 3462 fail: 3463 btrfs_free_path(path); 3464 out_unlock: 3465 mutex_unlock(&dir->log_mutex); 3466 if (ret == -ENOSPC) { 3467 btrfs_set_log_full_commit(trans); 3468 ret = 0; 3469 } else if (ret < 0) 3470 btrfs_abort_transaction(trans, ret); 3471 3472 btrfs_end_log_trans(root); 3473 3474 return err; 3475 } 3476 3477 /* see comments for btrfs_del_dir_entries_in_log */ 3478 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3479 struct btrfs_root *root, 3480 const char *name, int name_len, 3481 struct btrfs_inode *inode, u64 dirid) 3482 { 3483 struct btrfs_root *log; 3484 u64 index; 3485 int ret; 3486 3487 if (!inode_logged(trans, inode)) 3488 return 0; 3489 3490 ret = join_running_log_trans(root); 3491 if (ret) 3492 return 0; 3493 log = root->log_root; 3494 mutex_lock(&inode->log_mutex); 3495 3496 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3497 dirid, &index); 3498 mutex_unlock(&inode->log_mutex); 3499 if (ret == -ENOSPC) { 3500 btrfs_set_log_full_commit(trans); 3501 ret = 0; 3502 } else if (ret < 0 && ret != -ENOENT) 3503 btrfs_abort_transaction(trans, ret); 3504 btrfs_end_log_trans(root); 3505 3506 return ret; 3507 } 3508 3509 /* 3510 * creates a range item in the log for 'dirid'. first_offset and 3511 * last_offset tell us which parts of the key space the log should 3512 * be considered authoritative for. 3513 */ 3514 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3515 struct btrfs_root *log, 3516 struct btrfs_path *path, 3517 int key_type, u64 dirid, 3518 u64 first_offset, u64 last_offset) 3519 { 3520 int ret; 3521 struct btrfs_key key; 3522 struct btrfs_dir_log_item *item; 3523 3524 key.objectid = dirid; 3525 key.offset = first_offset; 3526 if (key_type == BTRFS_DIR_ITEM_KEY) 3527 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3528 else 3529 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3530 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3531 if (ret) 3532 return ret; 3533 3534 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3535 struct btrfs_dir_log_item); 3536 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3537 btrfs_mark_buffer_dirty(path->nodes[0]); 3538 btrfs_release_path(path); 3539 return 0; 3540 } 3541 3542 /* 3543 * log all the items included in the current transaction for a given 3544 * directory. This also creates the range items in the log tree required 3545 * to replay anything deleted before the fsync 3546 */ 3547 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3548 struct btrfs_root *root, struct btrfs_inode *inode, 3549 struct btrfs_path *path, 3550 struct btrfs_path *dst_path, int key_type, 3551 struct btrfs_log_ctx *ctx, 3552 u64 min_offset, u64 *last_offset_ret) 3553 { 3554 struct btrfs_key min_key; 3555 struct btrfs_root *log = root->log_root; 3556 struct extent_buffer *src; 3557 int err = 0; 3558 int ret; 3559 int i; 3560 int nritems; 3561 u64 first_offset = min_offset; 3562 u64 last_offset = (u64)-1; 3563 u64 ino = btrfs_ino(inode); 3564 3565 log = root->log_root; 3566 3567 min_key.objectid = ino; 3568 min_key.type = key_type; 3569 min_key.offset = min_offset; 3570 3571 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3572 3573 /* 3574 * we didn't find anything from this transaction, see if there 3575 * is anything at all 3576 */ 3577 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3578 min_key.objectid = ino; 3579 min_key.type = key_type; 3580 min_key.offset = (u64)-1; 3581 btrfs_release_path(path); 3582 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3583 if (ret < 0) { 3584 btrfs_release_path(path); 3585 return ret; 3586 } 3587 ret = btrfs_previous_item(root, path, ino, key_type); 3588 3589 /* if ret == 0 there are items for this type, 3590 * create a range to tell us the last key of this type. 3591 * otherwise, there are no items in this directory after 3592 * *min_offset, and we create a range to indicate that. 3593 */ 3594 if (ret == 0) { 3595 struct btrfs_key tmp; 3596 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3597 path->slots[0]); 3598 if (key_type == tmp.type) 3599 first_offset = max(min_offset, tmp.offset) + 1; 3600 } 3601 goto done; 3602 } 3603 3604 /* go backward to find any previous key */ 3605 ret = btrfs_previous_item(root, path, ino, key_type); 3606 if (ret == 0) { 3607 struct btrfs_key tmp; 3608 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3609 if (key_type == tmp.type) { 3610 first_offset = tmp.offset; 3611 ret = overwrite_item(trans, log, dst_path, 3612 path->nodes[0], path->slots[0], 3613 &tmp); 3614 if (ret) { 3615 err = ret; 3616 goto done; 3617 } 3618 } 3619 } 3620 btrfs_release_path(path); 3621 3622 /* 3623 * Find the first key from this transaction again. See the note for 3624 * log_new_dir_dentries, if we're logging a directory recursively we 3625 * won't be holding its i_mutex, which means we can modify the directory 3626 * while we're logging it. If we remove an entry between our first 3627 * search and this search we'll not find the key again and can just 3628 * bail. 3629 */ 3630 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3631 if (ret != 0) 3632 goto done; 3633 3634 /* 3635 * we have a block from this transaction, log every item in it 3636 * from our directory 3637 */ 3638 while (1) { 3639 struct btrfs_key tmp; 3640 src = path->nodes[0]; 3641 nritems = btrfs_header_nritems(src); 3642 for (i = path->slots[0]; i < nritems; i++) { 3643 struct btrfs_dir_item *di; 3644 3645 btrfs_item_key_to_cpu(src, &min_key, i); 3646 3647 if (min_key.objectid != ino || min_key.type != key_type) 3648 goto done; 3649 ret = overwrite_item(trans, log, dst_path, src, i, 3650 &min_key); 3651 if (ret) { 3652 err = ret; 3653 goto done; 3654 } 3655 3656 /* 3657 * We must make sure that when we log a directory entry, 3658 * the corresponding inode, after log replay, has a 3659 * matching link count. For example: 3660 * 3661 * touch foo 3662 * mkdir mydir 3663 * sync 3664 * ln foo mydir/bar 3665 * xfs_io -c "fsync" mydir 3666 * <crash> 3667 * <mount fs and log replay> 3668 * 3669 * Would result in a fsync log that when replayed, our 3670 * file inode would have a link count of 1, but we get 3671 * two directory entries pointing to the same inode. 3672 * After removing one of the names, it would not be 3673 * possible to remove the other name, which resulted 3674 * always in stale file handle errors, and would not 3675 * be possible to rmdir the parent directory, since 3676 * its i_size could never decrement to the value 3677 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3678 */ 3679 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3680 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3681 if (ctx && 3682 (btrfs_dir_transid(src, di) == trans->transid || 3683 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3684 tmp.type != BTRFS_ROOT_ITEM_KEY) 3685 ctx->log_new_dentries = true; 3686 } 3687 path->slots[0] = nritems; 3688 3689 /* 3690 * look ahead to the next item and see if it is also 3691 * from this directory and from this transaction 3692 */ 3693 ret = btrfs_next_leaf(root, path); 3694 if (ret) { 3695 if (ret == 1) 3696 last_offset = (u64)-1; 3697 else 3698 err = ret; 3699 goto done; 3700 } 3701 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3702 if (tmp.objectid != ino || tmp.type != key_type) { 3703 last_offset = (u64)-1; 3704 goto done; 3705 } 3706 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3707 ret = overwrite_item(trans, log, dst_path, 3708 path->nodes[0], path->slots[0], 3709 &tmp); 3710 if (ret) 3711 err = ret; 3712 else 3713 last_offset = tmp.offset; 3714 goto done; 3715 } 3716 } 3717 done: 3718 btrfs_release_path(path); 3719 btrfs_release_path(dst_path); 3720 3721 if (err == 0) { 3722 *last_offset_ret = last_offset; 3723 /* 3724 * insert the log range keys to indicate where the log 3725 * is valid 3726 */ 3727 ret = insert_dir_log_key(trans, log, path, key_type, 3728 ino, first_offset, last_offset); 3729 if (ret) 3730 err = ret; 3731 } 3732 return err; 3733 } 3734 3735 /* 3736 * logging directories is very similar to logging inodes, We find all the items 3737 * from the current transaction and write them to the log. 3738 * 3739 * The recovery code scans the directory in the subvolume, and if it finds a 3740 * key in the range logged that is not present in the log tree, then it means 3741 * that dir entry was unlinked during the transaction. 3742 * 3743 * In order for that scan to work, we must include one key smaller than 3744 * the smallest logged by this transaction and one key larger than the largest 3745 * key logged by this transaction. 3746 */ 3747 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3748 struct btrfs_root *root, struct btrfs_inode *inode, 3749 struct btrfs_path *path, 3750 struct btrfs_path *dst_path, 3751 struct btrfs_log_ctx *ctx) 3752 { 3753 u64 min_key; 3754 u64 max_key; 3755 int ret; 3756 int key_type = BTRFS_DIR_ITEM_KEY; 3757 3758 again: 3759 min_key = 0; 3760 max_key = 0; 3761 while (1) { 3762 ret = log_dir_items(trans, root, inode, path, dst_path, key_type, 3763 ctx, min_key, &max_key); 3764 if (ret) 3765 return ret; 3766 if (max_key == (u64)-1) 3767 break; 3768 min_key = max_key + 1; 3769 } 3770 3771 if (key_type == BTRFS_DIR_ITEM_KEY) { 3772 key_type = BTRFS_DIR_INDEX_KEY; 3773 goto again; 3774 } 3775 return 0; 3776 } 3777 3778 /* 3779 * a helper function to drop items from the log before we relog an 3780 * inode. max_key_type indicates the highest item type to remove. 3781 * This cannot be run for file data extents because it does not 3782 * free the extents they point to. 3783 */ 3784 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3785 struct btrfs_root *log, 3786 struct btrfs_path *path, 3787 u64 objectid, int max_key_type) 3788 { 3789 int ret; 3790 struct btrfs_key key; 3791 struct btrfs_key found_key; 3792 int start_slot; 3793 3794 key.objectid = objectid; 3795 key.type = max_key_type; 3796 key.offset = (u64)-1; 3797 3798 while (1) { 3799 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3800 BUG_ON(ret == 0); /* Logic error */ 3801 if (ret < 0) 3802 break; 3803 3804 if (path->slots[0] == 0) 3805 break; 3806 3807 path->slots[0]--; 3808 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3809 path->slots[0]); 3810 3811 if (found_key.objectid != objectid) 3812 break; 3813 3814 found_key.offset = 0; 3815 found_key.type = 0; 3816 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot); 3817 if (ret < 0) 3818 break; 3819 3820 ret = btrfs_del_items(trans, log, path, start_slot, 3821 path->slots[0] - start_slot + 1); 3822 /* 3823 * If start slot isn't 0 then we don't need to re-search, we've 3824 * found the last guy with the objectid in this tree. 3825 */ 3826 if (ret || start_slot != 0) 3827 break; 3828 btrfs_release_path(path); 3829 } 3830 btrfs_release_path(path); 3831 if (ret > 0) 3832 ret = 0; 3833 return ret; 3834 } 3835 3836 static void fill_inode_item(struct btrfs_trans_handle *trans, 3837 struct extent_buffer *leaf, 3838 struct btrfs_inode_item *item, 3839 struct inode *inode, int log_inode_only, 3840 u64 logged_isize) 3841 { 3842 struct btrfs_map_token token; 3843 3844 btrfs_init_map_token(&token, leaf); 3845 3846 if (log_inode_only) { 3847 /* set the generation to zero so the recover code 3848 * can tell the difference between an logging 3849 * just to say 'this inode exists' and a logging 3850 * to say 'update this inode with these values' 3851 */ 3852 btrfs_set_token_inode_generation(&token, item, 0); 3853 btrfs_set_token_inode_size(&token, item, logged_isize); 3854 } else { 3855 btrfs_set_token_inode_generation(&token, item, 3856 BTRFS_I(inode)->generation); 3857 btrfs_set_token_inode_size(&token, item, inode->i_size); 3858 } 3859 3860 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3861 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3862 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3863 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3864 3865 btrfs_set_token_timespec_sec(&token, &item->atime, 3866 inode->i_atime.tv_sec); 3867 btrfs_set_token_timespec_nsec(&token, &item->atime, 3868 inode->i_atime.tv_nsec); 3869 3870 btrfs_set_token_timespec_sec(&token, &item->mtime, 3871 inode->i_mtime.tv_sec); 3872 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3873 inode->i_mtime.tv_nsec); 3874 3875 btrfs_set_token_timespec_sec(&token, &item->ctime, 3876 inode->i_ctime.tv_sec); 3877 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3878 inode->i_ctime.tv_nsec); 3879 3880 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3881 3882 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3883 btrfs_set_token_inode_transid(&token, item, trans->transid); 3884 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3885 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3886 btrfs_set_token_inode_block_group(&token, item, 0); 3887 } 3888 3889 static int log_inode_item(struct btrfs_trans_handle *trans, 3890 struct btrfs_root *log, struct btrfs_path *path, 3891 struct btrfs_inode *inode) 3892 { 3893 struct btrfs_inode_item *inode_item; 3894 int ret; 3895 3896 ret = btrfs_insert_empty_item(trans, log, path, 3897 &inode->location, sizeof(*inode_item)); 3898 if (ret && ret != -EEXIST) 3899 return ret; 3900 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3901 struct btrfs_inode_item); 3902 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 3903 0, 0); 3904 btrfs_release_path(path); 3905 return 0; 3906 } 3907 3908 static int log_csums(struct btrfs_trans_handle *trans, 3909 struct btrfs_root *log_root, 3910 struct btrfs_ordered_sum *sums) 3911 { 3912 const u64 lock_end = sums->bytenr + sums->len - 1; 3913 struct extent_state *cached_state = NULL; 3914 int ret; 3915 3916 /* 3917 * Serialize logging for checksums. This is to avoid racing with the 3918 * same checksum being logged by another task that is logging another 3919 * file which happens to refer to the same extent as well. Such races 3920 * can leave checksum items in the log with overlapping ranges. 3921 */ 3922 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr, 3923 lock_end, &cached_state); 3924 if (ret) 3925 return ret; 3926 /* 3927 * Due to extent cloning, we might have logged a csum item that covers a 3928 * subrange of a cloned extent, and later we can end up logging a csum 3929 * item for a larger subrange of the same extent or the entire range. 3930 * This would leave csum items in the log tree that cover the same range 3931 * and break the searches for checksums in the log tree, resulting in 3932 * some checksums missing in the fs/subvolume tree. So just delete (or 3933 * trim and adjust) any existing csum items in the log for this range. 3934 */ 3935 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len); 3936 if (!ret) 3937 ret = btrfs_csum_file_blocks(trans, log_root, sums); 3938 3939 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end, 3940 &cached_state); 3941 3942 return ret; 3943 } 3944 3945 static noinline int copy_items(struct btrfs_trans_handle *trans, 3946 struct btrfs_inode *inode, 3947 struct btrfs_path *dst_path, 3948 struct btrfs_path *src_path, 3949 int start_slot, int nr, int inode_only, 3950 u64 logged_isize) 3951 { 3952 struct btrfs_fs_info *fs_info = trans->fs_info; 3953 unsigned long src_offset; 3954 unsigned long dst_offset; 3955 struct btrfs_root *log = inode->root->log_root; 3956 struct btrfs_file_extent_item *extent; 3957 struct btrfs_inode_item *inode_item; 3958 struct extent_buffer *src = src_path->nodes[0]; 3959 int ret; 3960 struct btrfs_key *ins_keys; 3961 u32 *ins_sizes; 3962 char *ins_data; 3963 int i; 3964 struct list_head ordered_sums; 3965 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 3966 3967 INIT_LIST_HEAD(&ordered_sums); 3968 3969 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3970 nr * sizeof(u32), GFP_NOFS); 3971 if (!ins_data) 3972 return -ENOMEM; 3973 3974 ins_sizes = (u32 *)ins_data; 3975 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3976 3977 for (i = 0; i < nr; i++) { 3978 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3979 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3980 } 3981 ret = btrfs_insert_empty_items(trans, log, dst_path, 3982 ins_keys, ins_sizes, nr); 3983 if (ret) { 3984 kfree(ins_data); 3985 return ret; 3986 } 3987 3988 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3989 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3990 dst_path->slots[0]); 3991 3992 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3993 3994 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3995 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3996 dst_path->slots[0], 3997 struct btrfs_inode_item); 3998 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3999 &inode->vfs_inode, 4000 inode_only == LOG_INODE_EXISTS, 4001 logged_isize); 4002 } else { 4003 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4004 src_offset, ins_sizes[i]); 4005 } 4006 4007 /* take a reference on file data extents so that truncates 4008 * or deletes of this inode don't have to relog the inode 4009 * again 4010 */ 4011 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 4012 !skip_csum) { 4013 int found_type; 4014 extent = btrfs_item_ptr(src, start_slot + i, 4015 struct btrfs_file_extent_item); 4016 4017 if (btrfs_file_extent_generation(src, extent) < trans->transid) 4018 continue; 4019 4020 found_type = btrfs_file_extent_type(src, extent); 4021 if (found_type == BTRFS_FILE_EXTENT_REG) { 4022 u64 ds, dl, cs, cl; 4023 ds = btrfs_file_extent_disk_bytenr(src, 4024 extent); 4025 /* ds == 0 is a hole */ 4026 if (ds == 0) 4027 continue; 4028 4029 dl = btrfs_file_extent_disk_num_bytes(src, 4030 extent); 4031 cs = btrfs_file_extent_offset(src, extent); 4032 cl = btrfs_file_extent_num_bytes(src, 4033 extent); 4034 if (btrfs_file_extent_compression(src, 4035 extent)) { 4036 cs = 0; 4037 cl = dl; 4038 } 4039 4040 ret = btrfs_lookup_csums_range( 4041 fs_info->csum_root, 4042 ds + cs, ds + cs + cl - 1, 4043 &ordered_sums, 0); 4044 if (ret) { 4045 btrfs_release_path(dst_path); 4046 kfree(ins_data); 4047 return ret; 4048 } 4049 } 4050 } 4051 } 4052 4053 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4054 btrfs_release_path(dst_path); 4055 kfree(ins_data); 4056 4057 /* 4058 * we have to do this after the loop above to avoid changing the 4059 * log tree while trying to change the log tree. 4060 */ 4061 ret = 0; 4062 while (!list_empty(&ordered_sums)) { 4063 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4064 struct btrfs_ordered_sum, 4065 list); 4066 if (!ret) 4067 ret = log_csums(trans, log, sums); 4068 list_del(&sums->list); 4069 kfree(sums); 4070 } 4071 4072 return ret; 4073 } 4074 4075 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 4076 { 4077 struct extent_map *em1, *em2; 4078 4079 em1 = list_entry(a, struct extent_map, list); 4080 em2 = list_entry(b, struct extent_map, list); 4081 4082 if (em1->start < em2->start) 4083 return -1; 4084 else if (em1->start > em2->start) 4085 return 1; 4086 return 0; 4087 } 4088 4089 static int log_extent_csums(struct btrfs_trans_handle *trans, 4090 struct btrfs_inode *inode, 4091 struct btrfs_root *log_root, 4092 const struct extent_map *em) 4093 { 4094 u64 csum_offset; 4095 u64 csum_len; 4096 LIST_HEAD(ordered_sums); 4097 int ret = 0; 4098 4099 if (inode->flags & BTRFS_INODE_NODATASUM || 4100 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4101 em->block_start == EXTENT_MAP_HOLE) 4102 return 0; 4103 4104 /* If we're compressed we have to save the entire range of csums. */ 4105 if (em->compress_type) { 4106 csum_offset = 0; 4107 csum_len = max(em->block_len, em->orig_block_len); 4108 } else { 4109 csum_offset = em->mod_start - em->start; 4110 csum_len = em->mod_len; 4111 } 4112 4113 /* block start is already adjusted for the file extent offset. */ 4114 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, 4115 em->block_start + csum_offset, 4116 em->block_start + csum_offset + 4117 csum_len - 1, &ordered_sums, 0); 4118 if (ret) 4119 return ret; 4120 4121 while (!list_empty(&ordered_sums)) { 4122 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4123 struct btrfs_ordered_sum, 4124 list); 4125 if (!ret) 4126 ret = log_csums(trans, log_root, sums); 4127 list_del(&sums->list); 4128 kfree(sums); 4129 } 4130 4131 return ret; 4132 } 4133 4134 static int log_one_extent(struct btrfs_trans_handle *trans, 4135 struct btrfs_inode *inode, struct btrfs_root *root, 4136 const struct extent_map *em, 4137 struct btrfs_path *path, 4138 struct btrfs_log_ctx *ctx) 4139 { 4140 struct btrfs_root *log = root->log_root; 4141 struct btrfs_file_extent_item *fi; 4142 struct extent_buffer *leaf; 4143 struct btrfs_map_token token; 4144 struct btrfs_key key; 4145 u64 extent_offset = em->start - em->orig_start; 4146 u64 block_len; 4147 int ret; 4148 int extent_inserted = 0; 4149 4150 ret = log_extent_csums(trans, inode, log, em); 4151 if (ret) 4152 return ret; 4153 4154 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start, 4155 em->start + em->len, NULL, 0, 1, 4156 sizeof(*fi), &extent_inserted); 4157 if (ret) 4158 return ret; 4159 4160 if (!extent_inserted) { 4161 key.objectid = btrfs_ino(inode); 4162 key.type = BTRFS_EXTENT_DATA_KEY; 4163 key.offset = em->start; 4164 4165 ret = btrfs_insert_empty_item(trans, log, path, &key, 4166 sizeof(*fi)); 4167 if (ret) 4168 return ret; 4169 } 4170 leaf = path->nodes[0]; 4171 btrfs_init_map_token(&token, leaf); 4172 fi = btrfs_item_ptr(leaf, path->slots[0], 4173 struct btrfs_file_extent_item); 4174 4175 btrfs_set_token_file_extent_generation(&token, fi, trans->transid); 4176 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4177 btrfs_set_token_file_extent_type(&token, fi, 4178 BTRFS_FILE_EXTENT_PREALLOC); 4179 else 4180 btrfs_set_token_file_extent_type(&token, fi, 4181 BTRFS_FILE_EXTENT_REG); 4182 4183 block_len = max(em->block_len, em->orig_block_len); 4184 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4185 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4186 em->block_start); 4187 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4188 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4189 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4190 em->block_start - 4191 extent_offset); 4192 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4193 } else { 4194 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0); 4195 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0); 4196 } 4197 4198 btrfs_set_token_file_extent_offset(&token, fi, extent_offset); 4199 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len); 4200 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes); 4201 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type); 4202 btrfs_set_token_file_extent_encryption(&token, fi, 0); 4203 btrfs_set_token_file_extent_other_encoding(&token, fi, 0); 4204 btrfs_mark_buffer_dirty(leaf); 4205 4206 btrfs_release_path(path); 4207 4208 return ret; 4209 } 4210 4211 /* 4212 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4213 * lose them after doing a fast fsync and replaying the log. We scan the 4214 * subvolume's root instead of iterating the inode's extent map tree because 4215 * otherwise we can log incorrect extent items based on extent map conversion. 4216 * That can happen due to the fact that extent maps are merged when they 4217 * are not in the extent map tree's list of modified extents. 4218 */ 4219 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4220 struct btrfs_inode *inode, 4221 struct btrfs_path *path) 4222 { 4223 struct btrfs_root *root = inode->root; 4224 struct btrfs_key key; 4225 const u64 i_size = i_size_read(&inode->vfs_inode); 4226 const u64 ino = btrfs_ino(inode); 4227 struct btrfs_path *dst_path = NULL; 4228 bool dropped_extents = false; 4229 u64 truncate_offset = i_size; 4230 struct extent_buffer *leaf; 4231 int slot; 4232 int ins_nr = 0; 4233 int start_slot; 4234 int ret; 4235 4236 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4237 return 0; 4238 4239 key.objectid = ino; 4240 key.type = BTRFS_EXTENT_DATA_KEY; 4241 key.offset = i_size; 4242 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4243 if (ret < 0) 4244 goto out; 4245 4246 /* 4247 * We must check if there is a prealloc extent that starts before the 4248 * i_size and crosses the i_size boundary. This is to ensure later we 4249 * truncate down to the end of that extent and not to the i_size, as 4250 * otherwise we end up losing part of the prealloc extent after a log 4251 * replay and with an implicit hole if there is another prealloc extent 4252 * that starts at an offset beyond i_size. 4253 */ 4254 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4255 if (ret < 0) 4256 goto out; 4257 4258 if (ret == 0) { 4259 struct btrfs_file_extent_item *ei; 4260 4261 leaf = path->nodes[0]; 4262 slot = path->slots[0]; 4263 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4264 4265 if (btrfs_file_extent_type(leaf, ei) == 4266 BTRFS_FILE_EXTENT_PREALLOC) { 4267 u64 extent_end; 4268 4269 btrfs_item_key_to_cpu(leaf, &key, slot); 4270 extent_end = key.offset + 4271 btrfs_file_extent_num_bytes(leaf, ei); 4272 4273 if (extent_end > i_size) 4274 truncate_offset = extent_end; 4275 } 4276 } else { 4277 ret = 0; 4278 } 4279 4280 while (true) { 4281 leaf = path->nodes[0]; 4282 slot = path->slots[0]; 4283 4284 if (slot >= btrfs_header_nritems(leaf)) { 4285 if (ins_nr > 0) { 4286 ret = copy_items(trans, inode, dst_path, path, 4287 start_slot, ins_nr, 1, 0); 4288 if (ret < 0) 4289 goto out; 4290 ins_nr = 0; 4291 } 4292 ret = btrfs_next_leaf(root, path); 4293 if (ret < 0) 4294 goto out; 4295 if (ret > 0) { 4296 ret = 0; 4297 break; 4298 } 4299 continue; 4300 } 4301 4302 btrfs_item_key_to_cpu(leaf, &key, slot); 4303 if (key.objectid > ino) 4304 break; 4305 if (WARN_ON_ONCE(key.objectid < ino) || 4306 key.type < BTRFS_EXTENT_DATA_KEY || 4307 key.offset < i_size) { 4308 path->slots[0]++; 4309 continue; 4310 } 4311 if (!dropped_extents) { 4312 /* 4313 * Avoid logging extent items logged in past fsync calls 4314 * and leading to duplicate keys in the log tree. 4315 */ 4316 do { 4317 ret = btrfs_truncate_inode_items(trans, 4318 root->log_root, 4319 &inode->vfs_inode, 4320 truncate_offset, 4321 BTRFS_EXTENT_DATA_KEY); 4322 } while (ret == -EAGAIN); 4323 if (ret) 4324 goto out; 4325 dropped_extents = true; 4326 } 4327 if (ins_nr == 0) 4328 start_slot = slot; 4329 ins_nr++; 4330 path->slots[0]++; 4331 if (!dst_path) { 4332 dst_path = btrfs_alloc_path(); 4333 if (!dst_path) { 4334 ret = -ENOMEM; 4335 goto out; 4336 } 4337 } 4338 } 4339 if (ins_nr > 0) 4340 ret = copy_items(trans, inode, dst_path, path, 4341 start_slot, ins_nr, 1, 0); 4342 out: 4343 btrfs_release_path(path); 4344 btrfs_free_path(dst_path); 4345 return ret; 4346 } 4347 4348 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4349 struct btrfs_root *root, 4350 struct btrfs_inode *inode, 4351 struct btrfs_path *path, 4352 struct btrfs_log_ctx *ctx, 4353 const u64 start, 4354 const u64 end) 4355 { 4356 struct extent_map *em, *n; 4357 struct list_head extents; 4358 struct extent_map_tree *tree = &inode->extent_tree; 4359 u64 test_gen; 4360 int ret = 0; 4361 int num = 0; 4362 4363 INIT_LIST_HEAD(&extents); 4364 4365 write_lock(&tree->lock); 4366 test_gen = root->fs_info->last_trans_committed; 4367 4368 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4369 /* 4370 * Skip extents outside our logging range. It's important to do 4371 * it for correctness because if we don't ignore them, we may 4372 * log them before their ordered extent completes, and therefore 4373 * we could log them without logging their respective checksums 4374 * (the checksum items are added to the csum tree at the very 4375 * end of btrfs_finish_ordered_io()). Also leave such extents 4376 * outside of our range in the list, since we may have another 4377 * ranged fsync in the near future that needs them. If an extent 4378 * outside our range corresponds to a hole, log it to avoid 4379 * leaving gaps between extents (fsck will complain when we are 4380 * not using the NO_HOLES feature). 4381 */ 4382 if ((em->start > end || em->start + em->len <= start) && 4383 em->block_start != EXTENT_MAP_HOLE) 4384 continue; 4385 4386 list_del_init(&em->list); 4387 /* 4388 * Just an arbitrary number, this can be really CPU intensive 4389 * once we start getting a lot of extents, and really once we 4390 * have a bunch of extents we just want to commit since it will 4391 * be faster. 4392 */ 4393 if (++num > 32768) { 4394 list_del_init(&tree->modified_extents); 4395 ret = -EFBIG; 4396 goto process; 4397 } 4398 4399 if (em->generation <= test_gen) 4400 continue; 4401 4402 /* We log prealloc extents beyond eof later. */ 4403 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4404 em->start >= i_size_read(&inode->vfs_inode)) 4405 continue; 4406 4407 /* Need a ref to keep it from getting evicted from cache */ 4408 refcount_inc(&em->refs); 4409 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4410 list_add_tail(&em->list, &extents); 4411 num++; 4412 } 4413 4414 list_sort(NULL, &extents, extent_cmp); 4415 process: 4416 while (!list_empty(&extents)) { 4417 em = list_entry(extents.next, struct extent_map, list); 4418 4419 list_del_init(&em->list); 4420 4421 /* 4422 * If we had an error we just need to delete everybody from our 4423 * private list. 4424 */ 4425 if (ret) { 4426 clear_em_logging(tree, em); 4427 free_extent_map(em); 4428 continue; 4429 } 4430 4431 write_unlock(&tree->lock); 4432 4433 ret = log_one_extent(trans, inode, root, em, path, ctx); 4434 write_lock(&tree->lock); 4435 clear_em_logging(tree, em); 4436 free_extent_map(em); 4437 } 4438 WARN_ON(!list_empty(&extents)); 4439 write_unlock(&tree->lock); 4440 4441 btrfs_release_path(path); 4442 if (!ret) 4443 ret = btrfs_log_prealloc_extents(trans, inode, path); 4444 4445 return ret; 4446 } 4447 4448 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4449 struct btrfs_path *path, u64 *size_ret) 4450 { 4451 struct btrfs_key key; 4452 int ret; 4453 4454 key.objectid = btrfs_ino(inode); 4455 key.type = BTRFS_INODE_ITEM_KEY; 4456 key.offset = 0; 4457 4458 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4459 if (ret < 0) { 4460 return ret; 4461 } else if (ret > 0) { 4462 *size_ret = 0; 4463 } else { 4464 struct btrfs_inode_item *item; 4465 4466 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4467 struct btrfs_inode_item); 4468 *size_ret = btrfs_inode_size(path->nodes[0], item); 4469 /* 4470 * If the in-memory inode's i_size is smaller then the inode 4471 * size stored in the btree, return the inode's i_size, so 4472 * that we get a correct inode size after replaying the log 4473 * when before a power failure we had a shrinking truncate 4474 * followed by addition of a new name (rename / new hard link). 4475 * Otherwise return the inode size from the btree, to avoid 4476 * data loss when replaying a log due to previously doing a 4477 * write that expands the inode's size and logging a new name 4478 * immediately after. 4479 */ 4480 if (*size_ret > inode->vfs_inode.i_size) 4481 *size_ret = inode->vfs_inode.i_size; 4482 } 4483 4484 btrfs_release_path(path); 4485 return 0; 4486 } 4487 4488 /* 4489 * At the moment we always log all xattrs. This is to figure out at log replay 4490 * time which xattrs must have their deletion replayed. If a xattr is missing 4491 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4492 * because if a xattr is deleted, the inode is fsynced and a power failure 4493 * happens, causing the log to be replayed the next time the fs is mounted, 4494 * we want the xattr to not exist anymore (same behaviour as other filesystems 4495 * with a journal, ext3/4, xfs, f2fs, etc). 4496 */ 4497 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4498 struct btrfs_root *root, 4499 struct btrfs_inode *inode, 4500 struct btrfs_path *path, 4501 struct btrfs_path *dst_path) 4502 { 4503 int ret; 4504 struct btrfs_key key; 4505 const u64 ino = btrfs_ino(inode); 4506 int ins_nr = 0; 4507 int start_slot = 0; 4508 4509 key.objectid = ino; 4510 key.type = BTRFS_XATTR_ITEM_KEY; 4511 key.offset = 0; 4512 4513 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4514 if (ret < 0) 4515 return ret; 4516 4517 while (true) { 4518 int slot = path->slots[0]; 4519 struct extent_buffer *leaf = path->nodes[0]; 4520 int nritems = btrfs_header_nritems(leaf); 4521 4522 if (slot >= nritems) { 4523 if (ins_nr > 0) { 4524 ret = copy_items(trans, inode, dst_path, path, 4525 start_slot, ins_nr, 1, 0); 4526 if (ret < 0) 4527 return ret; 4528 ins_nr = 0; 4529 } 4530 ret = btrfs_next_leaf(root, path); 4531 if (ret < 0) 4532 return ret; 4533 else if (ret > 0) 4534 break; 4535 continue; 4536 } 4537 4538 btrfs_item_key_to_cpu(leaf, &key, slot); 4539 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4540 break; 4541 4542 if (ins_nr == 0) 4543 start_slot = slot; 4544 ins_nr++; 4545 path->slots[0]++; 4546 cond_resched(); 4547 } 4548 if (ins_nr > 0) { 4549 ret = copy_items(trans, inode, dst_path, path, 4550 start_slot, ins_nr, 1, 0); 4551 if (ret < 0) 4552 return ret; 4553 } 4554 4555 return 0; 4556 } 4557 4558 /* 4559 * When using the NO_HOLES feature if we punched a hole that causes the 4560 * deletion of entire leafs or all the extent items of the first leaf (the one 4561 * that contains the inode item and references) we may end up not processing 4562 * any extents, because there are no leafs with a generation matching the 4563 * current transaction that have extent items for our inode. So we need to find 4564 * if any holes exist and then log them. We also need to log holes after any 4565 * truncate operation that changes the inode's size. 4566 */ 4567 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 4568 struct btrfs_root *root, 4569 struct btrfs_inode *inode, 4570 struct btrfs_path *path) 4571 { 4572 struct btrfs_fs_info *fs_info = root->fs_info; 4573 struct btrfs_key key; 4574 const u64 ino = btrfs_ino(inode); 4575 const u64 i_size = i_size_read(&inode->vfs_inode); 4576 u64 prev_extent_end = 0; 4577 int ret; 4578 4579 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 4580 return 0; 4581 4582 key.objectid = ino; 4583 key.type = BTRFS_EXTENT_DATA_KEY; 4584 key.offset = 0; 4585 4586 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4587 if (ret < 0) 4588 return ret; 4589 4590 while (true) { 4591 struct extent_buffer *leaf = path->nodes[0]; 4592 4593 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 4594 ret = btrfs_next_leaf(root, path); 4595 if (ret < 0) 4596 return ret; 4597 if (ret > 0) { 4598 ret = 0; 4599 break; 4600 } 4601 leaf = path->nodes[0]; 4602 } 4603 4604 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4605 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 4606 break; 4607 4608 /* We have a hole, log it. */ 4609 if (prev_extent_end < key.offset) { 4610 const u64 hole_len = key.offset - prev_extent_end; 4611 4612 /* 4613 * Release the path to avoid deadlocks with other code 4614 * paths that search the root while holding locks on 4615 * leafs from the log root. 4616 */ 4617 btrfs_release_path(path); 4618 ret = btrfs_insert_file_extent(trans, root->log_root, 4619 ino, prev_extent_end, 0, 4620 0, hole_len, 0, hole_len, 4621 0, 0, 0); 4622 if (ret < 0) 4623 return ret; 4624 4625 /* 4626 * Search for the same key again in the root. Since it's 4627 * an extent item and we are holding the inode lock, the 4628 * key must still exist. If it doesn't just emit warning 4629 * and return an error to fall back to a transaction 4630 * commit. 4631 */ 4632 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4633 if (ret < 0) 4634 return ret; 4635 if (WARN_ON(ret > 0)) 4636 return -ENOENT; 4637 leaf = path->nodes[0]; 4638 } 4639 4640 prev_extent_end = btrfs_file_extent_end(path); 4641 path->slots[0]++; 4642 cond_resched(); 4643 } 4644 4645 if (prev_extent_end < i_size) { 4646 u64 hole_len; 4647 4648 btrfs_release_path(path); 4649 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 4650 ret = btrfs_insert_file_extent(trans, root->log_root, 4651 ino, prev_extent_end, 0, 0, 4652 hole_len, 0, hole_len, 4653 0, 0, 0); 4654 if (ret < 0) 4655 return ret; 4656 } 4657 4658 return 0; 4659 } 4660 4661 /* 4662 * When we are logging a new inode X, check if it doesn't have a reference that 4663 * matches the reference from some other inode Y created in a past transaction 4664 * and that was renamed in the current transaction. If we don't do this, then at 4665 * log replay time we can lose inode Y (and all its files if it's a directory): 4666 * 4667 * mkdir /mnt/x 4668 * echo "hello world" > /mnt/x/foobar 4669 * sync 4670 * mv /mnt/x /mnt/y 4671 * mkdir /mnt/x # or touch /mnt/x 4672 * xfs_io -c fsync /mnt/x 4673 * <power fail> 4674 * mount fs, trigger log replay 4675 * 4676 * After the log replay procedure, we would lose the first directory and all its 4677 * files (file foobar). 4678 * For the case where inode Y is not a directory we simply end up losing it: 4679 * 4680 * echo "123" > /mnt/foo 4681 * sync 4682 * mv /mnt/foo /mnt/bar 4683 * echo "abc" > /mnt/foo 4684 * xfs_io -c fsync /mnt/foo 4685 * <power fail> 4686 * 4687 * We also need this for cases where a snapshot entry is replaced by some other 4688 * entry (file or directory) otherwise we end up with an unreplayable log due to 4689 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4690 * if it were a regular entry: 4691 * 4692 * mkdir /mnt/x 4693 * btrfs subvolume snapshot /mnt /mnt/x/snap 4694 * btrfs subvolume delete /mnt/x/snap 4695 * rmdir /mnt/x 4696 * mkdir /mnt/x 4697 * fsync /mnt/x or fsync some new file inside it 4698 * <power fail> 4699 * 4700 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4701 * the same transaction. 4702 */ 4703 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4704 const int slot, 4705 const struct btrfs_key *key, 4706 struct btrfs_inode *inode, 4707 u64 *other_ino, u64 *other_parent) 4708 { 4709 int ret; 4710 struct btrfs_path *search_path; 4711 char *name = NULL; 4712 u32 name_len = 0; 4713 u32 item_size = btrfs_item_size_nr(eb, slot); 4714 u32 cur_offset = 0; 4715 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4716 4717 search_path = btrfs_alloc_path(); 4718 if (!search_path) 4719 return -ENOMEM; 4720 search_path->search_commit_root = 1; 4721 search_path->skip_locking = 1; 4722 4723 while (cur_offset < item_size) { 4724 u64 parent; 4725 u32 this_name_len; 4726 u32 this_len; 4727 unsigned long name_ptr; 4728 struct btrfs_dir_item *di; 4729 4730 if (key->type == BTRFS_INODE_REF_KEY) { 4731 struct btrfs_inode_ref *iref; 4732 4733 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4734 parent = key->offset; 4735 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4736 name_ptr = (unsigned long)(iref + 1); 4737 this_len = sizeof(*iref) + this_name_len; 4738 } else { 4739 struct btrfs_inode_extref *extref; 4740 4741 extref = (struct btrfs_inode_extref *)(ptr + 4742 cur_offset); 4743 parent = btrfs_inode_extref_parent(eb, extref); 4744 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4745 name_ptr = (unsigned long)&extref->name; 4746 this_len = sizeof(*extref) + this_name_len; 4747 } 4748 4749 if (this_name_len > name_len) { 4750 char *new_name; 4751 4752 new_name = krealloc(name, this_name_len, GFP_NOFS); 4753 if (!new_name) { 4754 ret = -ENOMEM; 4755 goto out; 4756 } 4757 name_len = this_name_len; 4758 name = new_name; 4759 } 4760 4761 read_extent_buffer(eb, name, name_ptr, this_name_len); 4762 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 4763 parent, name, this_name_len, 0); 4764 if (di && !IS_ERR(di)) { 4765 struct btrfs_key di_key; 4766 4767 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4768 di, &di_key); 4769 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4770 if (di_key.objectid != key->objectid) { 4771 ret = 1; 4772 *other_ino = di_key.objectid; 4773 *other_parent = parent; 4774 } else { 4775 ret = 0; 4776 } 4777 } else { 4778 ret = -EAGAIN; 4779 } 4780 goto out; 4781 } else if (IS_ERR(di)) { 4782 ret = PTR_ERR(di); 4783 goto out; 4784 } 4785 btrfs_release_path(search_path); 4786 4787 cur_offset += this_len; 4788 } 4789 ret = 0; 4790 out: 4791 btrfs_free_path(search_path); 4792 kfree(name); 4793 return ret; 4794 } 4795 4796 struct btrfs_ino_list { 4797 u64 ino; 4798 u64 parent; 4799 struct list_head list; 4800 }; 4801 4802 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 4803 struct btrfs_root *root, 4804 struct btrfs_path *path, 4805 struct btrfs_log_ctx *ctx, 4806 u64 ino, u64 parent) 4807 { 4808 struct btrfs_ino_list *ino_elem; 4809 LIST_HEAD(inode_list); 4810 int ret = 0; 4811 4812 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4813 if (!ino_elem) 4814 return -ENOMEM; 4815 ino_elem->ino = ino; 4816 ino_elem->parent = parent; 4817 list_add_tail(&ino_elem->list, &inode_list); 4818 4819 while (!list_empty(&inode_list)) { 4820 struct btrfs_fs_info *fs_info = root->fs_info; 4821 struct btrfs_key key; 4822 struct inode *inode; 4823 4824 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 4825 list); 4826 ino = ino_elem->ino; 4827 parent = ino_elem->parent; 4828 list_del(&ino_elem->list); 4829 kfree(ino_elem); 4830 if (ret) 4831 continue; 4832 4833 btrfs_release_path(path); 4834 4835 inode = btrfs_iget(fs_info->sb, ino, root); 4836 /* 4837 * If the other inode that had a conflicting dir entry was 4838 * deleted in the current transaction, we need to log its parent 4839 * directory. 4840 */ 4841 if (IS_ERR(inode)) { 4842 ret = PTR_ERR(inode); 4843 if (ret == -ENOENT) { 4844 inode = btrfs_iget(fs_info->sb, parent, root); 4845 if (IS_ERR(inode)) { 4846 ret = PTR_ERR(inode); 4847 } else { 4848 ret = btrfs_log_inode(trans, root, 4849 BTRFS_I(inode), 4850 LOG_OTHER_INODE_ALL, 4851 0, LLONG_MAX, ctx); 4852 btrfs_add_delayed_iput(inode); 4853 } 4854 } 4855 continue; 4856 } 4857 /* 4858 * If the inode was already logged skip it - otherwise we can 4859 * hit an infinite loop. Example: 4860 * 4861 * From the commit root (previous transaction) we have the 4862 * following inodes: 4863 * 4864 * inode 257 a directory 4865 * inode 258 with references "zz" and "zz_link" on inode 257 4866 * inode 259 with reference "a" on inode 257 4867 * 4868 * And in the current (uncommitted) transaction we have: 4869 * 4870 * inode 257 a directory, unchanged 4871 * inode 258 with references "a" and "a2" on inode 257 4872 * inode 259 with reference "zz_link" on inode 257 4873 * inode 261 with reference "zz" on inode 257 4874 * 4875 * When logging inode 261 the following infinite loop could 4876 * happen if we don't skip already logged inodes: 4877 * 4878 * - we detect inode 258 as a conflicting inode, with inode 261 4879 * on reference "zz", and log it; 4880 * 4881 * - we detect inode 259 as a conflicting inode, with inode 258 4882 * on reference "a", and log it; 4883 * 4884 * - we detect inode 258 as a conflicting inode, with inode 259 4885 * on reference "zz_link", and log it - again! After this we 4886 * repeat the above steps forever. 4887 */ 4888 spin_lock(&BTRFS_I(inode)->lock); 4889 /* 4890 * Check the inode's logged_trans only instead of 4891 * btrfs_inode_in_log(). This is because the last_log_commit of 4892 * the inode is not updated when we only log that it exists and 4893 * and it has the full sync bit set (see btrfs_log_inode()). 4894 */ 4895 if (BTRFS_I(inode)->logged_trans == trans->transid) { 4896 spin_unlock(&BTRFS_I(inode)->lock); 4897 btrfs_add_delayed_iput(inode); 4898 continue; 4899 } 4900 spin_unlock(&BTRFS_I(inode)->lock); 4901 /* 4902 * We are safe logging the other inode without acquiring its 4903 * lock as long as we log with the LOG_INODE_EXISTS mode. We 4904 * are safe against concurrent renames of the other inode as 4905 * well because during a rename we pin the log and update the 4906 * log with the new name before we unpin it. 4907 */ 4908 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 4909 LOG_OTHER_INODE, 0, LLONG_MAX, ctx); 4910 if (ret) { 4911 btrfs_add_delayed_iput(inode); 4912 continue; 4913 } 4914 4915 key.objectid = ino; 4916 key.type = BTRFS_INODE_REF_KEY; 4917 key.offset = 0; 4918 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4919 if (ret < 0) { 4920 btrfs_add_delayed_iput(inode); 4921 continue; 4922 } 4923 4924 while (true) { 4925 struct extent_buffer *leaf = path->nodes[0]; 4926 int slot = path->slots[0]; 4927 u64 other_ino = 0; 4928 u64 other_parent = 0; 4929 4930 if (slot >= btrfs_header_nritems(leaf)) { 4931 ret = btrfs_next_leaf(root, path); 4932 if (ret < 0) { 4933 break; 4934 } else if (ret > 0) { 4935 ret = 0; 4936 break; 4937 } 4938 continue; 4939 } 4940 4941 btrfs_item_key_to_cpu(leaf, &key, slot); 4942 if (key.objectid != ino || 4943 (key.type != BTRFS_INODE_REF_KEY && 4944 key.type != BTRFS_INODE_EXTREF_KEY)) { 4945 ret = 0; 4946 break; 4947 } 4948 4949 ret = btrfs_check_ref_name_override(leaf, slot, &key, 4950 BTRFS_I(inode), &other_ino, 4951 &other_parent); 4952 if (ret < 0) 4953 break; 4954 if (ret > 0) { 4955 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4956 if (!ino_elem) { 4957 ret = -ENOMEM; 4958 break; 4959 } 4960 ino_elem->ino = other_ino; 4961 ino_elem->parent = other_parent; 4962 list_add_tail(&ino_elem->list, &inode_list); 4963 ret = 0; 4964 } 4965 path->slots[0]++; 4966 } 4967 btrfs_add_delayed_iput(inode); 4968 } 4969 4970 return ret; 4971 } 4972 4973 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 4974 struct btrfs_inode *inode, 4975 struct btrfs_key *min_key, 4976 const struct btrfs_key *max_key, 4977 struct btrfs_path *path, 4978 struct btrfs_path *dst_path, 4979 const u64 logged_isize, 4980 const bool recursive_logging, 4981 const int inode_only, 4982 struct btrfs_log_ctx *ctx, 4983 bool *need_log_inode_item) 4984 { 4985 struct btrfs_root *root = inode->root; 4986 int ins_start_slot = 0; 4987 int ins_nr = 0; 4988 int ret; 4989 4990 while (1) { 4991 ret = btrfs_search_forward(root, min_key, path, trans->transid); 4992 if (ret < 0) 4993 return ret; 4994 if (ret > 0) { 4995 ret = 0; 4996 break; 4997 } 4998 again: 4999 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 5000 if (min_key->objectid != max_key->objectid) 5001 break; 5002 if (min_key->type > max_key->type) 5003 break; 5004 5005 if (min_key->type == BTRFS_INODE_ITEM_KEY) 5006 *need_log_inode_item = false; 5007 5008 if ((min_key->type == BTRFS_INODE_REF_KEY || 5009 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5010 inode->generation == trans->transid && 5011 !recursive_logging) { 5012 u64 other_ino = 0; 5013 u64 other_parent = 0; 5014 5015 ret = btrfs_check_ref_name_override(path->nodes[0], 5016 path->slots[0], min_key, inode, 5017 &other_ino, &other_parent); 5018 if (ret < 0) { 5019 return ret; 5020 } else if (ret > 0 && ctx && 5021 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5022 if (ins_nr > 0) { 5023 ins_nr++; 5024 } else { 5025 ins_nr = 1; 5026 ins_start_slot = path->slots[0]; 5027 } 5028 ret = copy_items(trans, inode, dst_path, path, 5029 ins_start_slot, ins_nr, 5030 inode_only, logged_isize); 5031 if (ret < 0) 5032 return ret; 5033 ins_nr = 0; 5034 5035 ret = log_conflicting_inodes(trans, root, path, 5036 ctx, other_ino, other_parent); 5037 if (ret) 5038 return ret; 5039 btrfs_release_path(path); 5040 goto next_key; 5041 } 5042 } 5043 5044 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5045 if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5046 if (ins_nr == 0) 5047 goto next_slot; 5048 ret = copy_items(trans, inode, dst_path, path, 5049 ins_start_slot, 5050 ins_nr, inode_only, logged_isize); 5051 if (ret < 0) 5052 return ret; 5053 ins_nr = 0; 5054 goto next_slot; 5055 } 5056 5057 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5058 ins_nr++; 5059 goto next_slot; 5060 } else if (!ins_nr) { 5061 ins_start_slot = path->slots[0]; 5062 ins_nr = 1; 5063 goto next_slot; 5064 } 5065 5066 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5067 ins_nr, inode_only, logged_isize); 5068 if (ret < 0) 5069 return ret; 5070 ins_nr = 1; 5071 ins_start_slot = path->slots[0]; 5072 next_slot: 5073 path->slots[0]++; 5074 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 5075 btrfs_item_key_to_cpu(path->nodes[0], min_key, 5076 path->slots[0]); 5077 goto again; 5078 } 5079 if (ins_nr) { 5080 ret = copy_items(trans, inode, dst_path, path, 5081 ins_start_slot, ins_nr, inode_only, 5082 logged_isize); 5083 if (ret < 0) 5084 return ret; 5085 ins_nr = 0; 5086 } 5087 btrfs_release_path(path); 5088 next_key: 5089 if (min_key->offset < (u64)-1) { 5090 min_key->offset++; 5091 } else if (min_key->type < max_key->type) { 5092 min_key->type++; 5093 min_key->offset = 0; 5094 } else { 5095 break; 5096 } 5097 } 5098 if (ins_nr) 5099 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5100 ins_nr, inode_only, logged_isize); 5101 5102 return ret; 5103 } 5104 5105 /* log a single inode in the tree log. 5106 * At least one parent directory for this inode must exist in the tree 5107 * or be logged already. 5108 * 5109 * Any items from this inode changed by the current transaction are copied 5110 * to the log tree. An extra reference is taken on any extents in this 5111 * file, allowing us to avoid a whole pile of corner cases around logging 5112 * blocks that have been removed from the tree. 5113 * 5114 * See LOG_INODE_ALL and related defines for a description of what inode_only 5115 * does. 5116 * 5117 * This handles both files and directories. 5118 */ 5119 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5120 struct btrfs_root *root, struct btrfs_inode *inode, 5121 int inode_only, 5122 const loff_t start, 5123 const loff_t end, 5124 struct btrfs_log_ctx *ctx) 5125 { 5126 struct btrfs_fs_info *fs_info = root->fs_info; 5127 struct btrfs_path *path; 5128 struct btrfs_path *dst_path; 5129 struct btrfs_key min_key; 5130 struct btrfs_key max_key; 5131 struct btrfs_root *log = root->log_root; 5132 int err = 0; 5133 int ret; 5134 bool fast_search = false; 5135 u64 ino = btrfs_ino(inode); 5136 struct extent_map_tree *em_tree = &inode->extent_tree; 5137 u64 logged_isize = 0; 5138 bool need_log_inode_item = true; 5139 bool xattrs_logged = false; 5140 bool recursive_logging = false; 5141 5142 path = btrfs_alloc_path(); 5143 if (!path) 5144 return -ENOMEM; 5145 dst_path = btrfs_alloc_path(); 5146 if (!dst_path) { 5147 btrfs_free_path(path); 5148 return -ENOMEM; 5149 } 5150 5151 min_key.objectid = ino; 5152 min_key.type = BTRFS_INODE_ITEM_KEY; 5153 min_key.offset = 0; 5154 5155 max_key.objectid = ino; 5156 5157 5158 /* today the code can only do partial logging of directories */ 5159 if (S_ISDIR(inode->vfs_inode.i_mode) || 5160 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5161 &inode->runtime_flags) && 5162 inode_only >= LOG_INODE_EXISTS)) 5163 max_key.type = BTRFS_XATTR_ITEM_KEY; 5164 else 5165 max_key.type = (u8)-1; 5166 max_key.offset = (u64)-1; 5167 5168 /* 5169 * Only run delayed items if we are a dir or a new file. 5170 * Otherwise commit the delayed inode only, which is needed in 5171 * order for the log replay code to mark inodes for link count 5172 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items). 5173 */ 5174 if (S_ISDIR(inode->vfs_inode.i_mode) || 5175 inode->generation > fs_info->last_trans_committed) 5176 ret = btrfs_commit_inode_delayed_items(trans, inode); 5177 else 5178 ret = btrfs_commit_inode_delayed_inode(inode); 5179 5180 if (ret) { 5181 btrfs_free_path(path); 5182 btrfs_free_path(dst_path); 5183 return ret; 5184 } 5185 5186 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5187 recursive_logging = true; 5188 if (inode_only == LOG_OTHER_INODE) 5189 inode_only = LOG_INODE_EXISTS; 5190 else 5191 inode_only = LOG_INODE_ALL; 5192 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5193 } else { 5194 mutex_lock(&inode->log_mutex); 5195 } 5196 5197 /* 5198 * a brute force approach to making sure we get the most uptodate 5199 * copies of everything. 5200 */ 5201 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5202 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5203 5204 if (inode_only == LOG_INODE_EXISTS) 5205 max_key_type = BTRFS_XATTR_ITEM_KEY; 5206 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 5207 } else { 5208 if (inode_only == LOG_INODE_EXISTS) { 5209 /* 5210 * Make sure the new inode item we write to the log has 5211 * the same isize as the current one (if it exists). 5212 * This is necessary to prevent data loss after log 5213 * replay, and also to prevent doing a wrong expanding 5214 * truncate - for e.g. create file, write 4K into offset 5215 * 0, fsync, write 4K into offset 4096, add hard link, 5216 * fsync some other file (to sync log), power fail - if 5217 * we use the inode's current i_size, after log replay 5218 * we get a 8Kb file, with the last 4Kb extent as a hole 5219 * (zeroes), as if an expanding truncate happened, 5220 * instead of getting a file of 4Kb only. 5221 */ 5222 err = logged_inode_size(log, inode, path, &logged_isize); 5223 if (err) 5224 goto out_unlock; 5225 } 5226 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5227 &inode->runtime_flags)) { 5228 if (inode_only == LOG_INODE_EXISTS) { 5229 max_key.type = BTRFS_XATTR_ITEM_KEY; 5230 ret = drop_objectid_items(trans, log, path, ino, 5231 max_key.type); 5232 } else { 5233 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5234 &inode->runtime_flags); 5235 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5236 &inode->runtime_flags); 5237 while(1) { 5238 ret = btrfs_truncate_inode_items(trans, 5239 log, &inode->vfs_inode, 0, 0); 5240 if (ret != -EAGAIN) 5241 break; 5242 } 5243 } 5244 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5245 &inode->runtime_flags) || 5246 inode_only == LOG_INODE_EXISTS) { 5247 if (inode_only == LOG_INODE_ALL) 5248 fast_search = true; 5249 max_key.type = BTRFS_XATTR_ITEM_KEY; 5250 ret = drop_objectid_items(trans, log, path, ino, 5251 max_key.type); 5252 } else { 5253 if (inode_only == LOG_INODE_ALL) 5254 fast_search = true; 5255 goto log_extents; 5256 } 5257 5258 } 5259 if (ret) { 5260 err = ret; 5261 goto out_unlock; 5262 } 5263 5264 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 5265 path, dst_path, logged_isize, 5266 recursive_logging, inode_only, ctx, 5267 &need_log_inode_item); 5268 if (err) 5269 goto out_unlock; 5270 5271 btrfs_release_path(path); 5272 btrfs_release_path(dst_path); 5273 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 5274 if (err) 5275 goto out_unlock; 5276 xattrs_logged = true; 5277 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5278 btrfs_release_path(path); 5279 btrfs_release_path(dst_path); 5280 err = btrfs_log_holes(trans, root, inode, path); 5281 if (err) 5282 goto out_unlock; 5283 } 5284 log_extents: 5285 btrfs_release_path(path); 5286 btrfs_release_path(dst_path); 5287 if (need_log_inode_item) { 5288 err = log_inode_item(trans, log, dst_path, inode); 5289 if (!err && !xattrs_logged) { 5290 err = btrfs_log_all_xattrs(trans, root, inode, path, 5291 dst_path); 5292 btrfs_release_path(path); 5293 } 5294 if (err) 5295 goto out_unlock; 5296 } 5297 if (fast_search) { 5298 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 5299 ctx, start, end); 5300 if (ret) { 5301 err = ret; 5302 goto out_unlock; 5303 } 5304 } else if (inode_only == LOG_INODE_ALL) { 5305 struct extent_map *em, *n; 5306 5307 write_lock(&em_tree->lock); 5308 /* 5309 * We can't just remove every em if we're called for a ranged 5310 * fsync - that is, one that doesn't cover the whole possible 5311 * file range (0 to LLONG_MAX). This is because we can have 5312 * em's that fall outside the range we're logging and therefore 5313 * their ordered operations haven't completed yet 5314 * (btrfs_finish_ordered_io() not invoked yet). This means we 5315 * didn't get their respective file extent item in the fs/subvol 5316 * tree yet, and need to let the next fast fsync (one which 5317 * consults the list of modified extent maps) find the em so 5318 * that it logs a matching file extent item and waits for the 5319 * respective ordered operation to complete (if it's still 5320 * running). 5321 * 5322 * Removing every em outside the range we're logging would make 5323 * the next fast fsync not log their matching file extent items, 5324 * therefore making us lose data after a log replay. 5325 */ 5326 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 5327 list) { 5328 const u64 mod_end = em->mod_start + em->mod_len - 1; 5329 5330 if (em->mod_start >= start && mod_end <= end) 5331 list_del_init(&em->list); 5332 } 5333 write_unlock(&em_tree->lock); 5334 } 5335 5336 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5337 ret = log_directory_changes(trans, root, inode, path, dst_path, 5338 ctx); 5339 if (ret) { 5340 err = ret; 5341 goto out_unlock; 5342 } 5343 } 5344 5345 /* 5346 * Don't update last_log_commit if we logged that an inode exists after 5347 * it was loaded to memory (full_sync bit set). 5348 * This is to prevent data loss when we do a write to the inode, then 5349 * the inode gets evicted after all delalloc was flushed, then we log 5350 * it exists (due to a rename for example) and then fsync it. This last 5351 * fsync would do nothing (not logging the extents previously written). 5352 */ 5353 spin_lock(&inode->lock); 5354 inode->logged_trans = trans->transid; 5355 if (inode_only != LOG_INODE_EXISTS || 5356 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) 5357 inode->last_log_commit = inode->last_sub_trans; 5358 spin_unlock(&inode->lock); 5359 out_unlock: 5360 mutex_unlock(&inode->log_mutex); 5361 5362 btrfs_free_path(path); 5363 btrfs_free_path(dst_path); 5364 return err; 5365 } 5366 5367 /* 5368 * Check if we must fallback to a transaction commit when logging an inode. 5369 * This must be called after logging the inode and is used only in the context 5370 * when fsyncing an inode requires the need to log some other inode - in which 5371 * case we can't lock the i_mutex of each other inode we need to log as that 5372 * can lead to deadlocks with concurrent fsync against other inodes (as we can 5373 * log inodes up or down in the hierarchy) or rename operations for example. So 5374 * we take the log_mutex of the inode after we have logged it and then check for 5375 * its last_unlink_trans value - this is safe because any task setting 5376 * last_unlink_trans must take the log_mutex and it must do this before it does 5377 * the actual unlink operation, so if we do this check before a concurrent task 5378 * sets last_unlink_trans it means we've logged a consistent version/state of 5379 * all the inode items, otherwise we are not sure and must do a transaction 5380 * commit (the concurrent task might have only updated last_unlink_trans before 5381 * we logged the inode or it might have also done the unlink). 5382 */ 5383 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, 5384 struct btrfs_inode *inode) 5385 { 5386 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5387 bool ret = false; 5388 5389 mutex_lock(&inode->log_mutex); 5390 if (inode->last_unlink_trans > fs_info->last_trans_committed) { 5391 /* 5392 * Make sure any commits to the log are forced to be full 5393 * commits. 5394 */ 5395 btrfs_set_log_full_commit(trans); 5396 ret = true; 5397 } 5398 mutex_unlock(&inode->log_mutex); 5399 5400 return ret; 5401 } 5402 5403 /* 5404 * follow the dentry parent pointers up the chain and see if any 5405 * of the directories in it require a full commit before they can 5406 * be logged. Returns zero if nothing special needs to be done or 1 if 5407 * a full commit is required. 5408 */ 5409 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 5410 struct btrfs_inode *inode, 5411 struct dentry *parent, 5412 struct super_block *sb, 5413 u64 last_committed) 5414 { 5415 int ret = 0; 5416 struct dentry *old_parent = NULL; 5417 5418 /* 5419 * for regular files, if its inode is already on disk, we don't 5420 * have to worry about the parents at all. This is because 5421 * we can use the last_unlink_trans field to record renames 5422 * and other fun in this file. 5423 */ 5424 if (S_ISREG(inode->vfs_inode.i_mode) && 5425 inode->generation <= last_committed && 5426 inode->last_unlink_trans <= last_committed) 5427 goto out; 5428 5429 if (!S_ISDIR(inode->vfs_inode.i_mode)) { 5430 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5431 goto out; 5432 inode = BTRFS_I(d_inode(parent)); 5433 } 5434 5435 while (1) { 5436 if (btrfs_must_commit_transaction(trans, inode)) { 5437 ret = 1; 5438 break; 5439 } 5440 5441 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5442 break; 5443 5444 if (IS_ROOT(parent)) { 5445 inode = BTRFS_I(d_inode(parent)); 5446 if (btrfs_must_commit_transaction(trans, inode)) 5447 ret = 1; 5448 break; 5449 } 5450 5451 parent = dget_parent(parent); 5452 dput(old_parent); 5453 old_parent = parent; 5454 inode = BTRFS_I(d_inode(parent)); 5455 5456 } 5457 dput(old_parent); 5458 out: 5459 return ret; 5460 } 5461 5462 struct btrfs_dir_list { 5463 u64 ino; 5464 struct list_head list; 5465 }; 5466 5467 /* 5468 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5469 * details about the why it is needed. 5470 * This is a recursive operation - if an existing dentry corresponds to a 5471 * directory, that directory's new entries are logged too (same behaviour as 5472 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5473 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5474 * complains about the following circular lock dependency / possible deadlock: 5475 * 5476 * CPU0 CPU1 5477 * ---- ---- 5478 * lock(&type->i_mutex_dir_key#3/2); 5479 * lock(sb_internal#2); 5480 * lock(&type->i_mutex_dir_key#3/2); 5481 * lock(&sb->s_type->i_mutex_key#14); 5482 * 5483 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5484 * sb_start_intwrite() in btrfs_start_transaction(). 5485 * Not locking i_mutex of the inodes is still safe because: 5486 * 5487 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5488 * that while logging the inode new references (names) are added or removed 5489 * from the inode, leaving the logged inode item with a link count that does 5490 * not match the number of logged inode reference items. This is fine because 5491 * at log replay time we compute the real number of links and correct the 5492 * link count in the inode item (see replay_one_buffer() and 5493 * link_to_fixup_dir()); 5494 * 5495 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5496 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5497 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5498 * has a size that doesn't match the sum of the lengths of all the logged 5499 * names. This does not result in a problem because if a dir_item key is 5500 * logged but its matching dir_index key is not logged, at log replay time we 5501 * don't use it to replay the respective name (see replay_one_name()). On the 5502 * other hand if only the dir_index key ends up being logged, the respective 5503 * name is added to the fs/subvol tree with both the dir_item and dir_index 5504 * keys created (see replay_one_name()). 5505 * The directory's inode item with a wrong i_size is not a problem as well, 5506 * since we don't use it at log replay time to set the i_size in the inode 5507 * item of the fs/subvol tree (see overwrite_item()). 5508 */ 5509 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5510 struct btrfs_root *root, 5511 struct btrfs_inode *start_inode, 5512 struct btrfs_log_ctx *ctx) 5513 { 5514 struct btrfs_fs_info *fs_info = root->fs_info; 5515 struct btrfs_root *log = root->log_root; 5516 struct btrfs_path *path; 5517 LIST_HEAD(dir_list); 5518 struct btrfs_dir_list *dir_elem; 5519 int ret = 0; 5520 5521 path = btrfs_alloc_path(); 5522 if (!path) 5523 return -ENOMEM; 5524 5525 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5526 if (!dir_elem) { 5527 btrfs_free_path(path); 5528 return -ENOMEM; 5529 } 5530 dir_elem->ino = btrfs_ino(start_inode); 5531 list_add_tail(&dir_elem->list, &dir_list); 5532 5533 while (!list_empty(&dir_list)) { 5534 struct extent_buffer *leaf; 5535 struct btrfs_key min_key; 5536 int nritems; 5537 int i; 5538 5539 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5540 list); 5541 if (ret) 5542 goto next_dir_inode; 5543 5544 min_key.objectid = dir_elem->ino; 5545 min_key.type = BTRFS_DIR_ITEM_KEY; 5546 min_key.offset = 0; 5547 again: 5548 btrfs_release_path(path); 5549 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5550 if (ret < 0) { 5551 goto next_dir_inode; 5552 } else if (ret > 0) { 5553 ret = 0; 5554 goto next_dir_inode; 5555 } 5556 5557 process_leaf: 5558 leaf = path->nodes[0]; 5559 nritems = btrfs_header_nritems(leaf); 5560 for (i = path->slots[0]; i < nritems; i++) { 5561 struct btrfs_dir_item *di; 5562 struct btrfs_key di_key; 5563 struct inode *di_inode; 5564 struct btrfs_dir_list *new_dir_elem; 5565 int log_mode = LOG_INODE_EXISTS; 5566 int type; 5567 5568 btrfs_item_key_to_cpu(leaf, &min_key, i); 5569 if (min_key.objectid != dir_elem->ino || 5570 min_key.type != BTRFS_DIR_ITEM_KEY) 5571 goto next_dir_inode; 5572 5573 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5574 type = btrfs_dir_type(leaf, di); 5575 if (btrfs_dir_transid(leaf, di) < trans->transid && 5576 type != BTRFS_FT_DIR) 5577 continue; 5578 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5579 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5580 continue; 5581 5582 btrfs_release_path(path); 5583 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root); 5584 if (IS_ERR(di_inode)) { 5585 ret = PTR_ERR(di_inode); 5586 goto next_dir_inode; 5587 } 5588 5589 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) { 5590 btrfs_add_delayed_iput(di_inode); 5591 break; 5592 } 5593 5594 ctx->log_new_dentries = false; 5595 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5596 log_mode = LOG_INODE_ALL; 5597 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), 5598 log_mode, 0, LLONG_MAX, ctx); 5599 if (!ret && 5600 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode))) 5601 ret = 1; 5602 btrfs_add_delayed_iput(di_inode); 5603 if (ret) 5604 goto next_dir_inode; 5605 if (ctx->log_new_dentries) { 5606 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5607 GFP_NOFS); 5608 if (!new_dir_elem) { 5609 ret = -ENOMEM; 5610 goto next_dir_inode; 5611 } 5612 new_dir_elem->ino = di_key.objectid; 5613 list_add_tail(&new_dir_elem->list, &dir_list); 5614 } 5615 break; 5616 } 5617 if (i == nritems) { 5618 ret = btrfs_next_leaf(log, path); 5619 if (ret < 0) { 5620 goto next_dir_inode; 5621 } else if (ret > 0) { 5622 ret = 0; 5623 goto next_dir_inode; 5624 } 5625 goto process_leaf; 5626 } 5627 if (min_key.offset < (u64)-1) { 5628 min_key.offset++; 5629 goto again; 5630 } 5631 next_dir_inode: 5632 list_del(&dir_elem->list); 5633 kfree(dir_elem); 5634 } 5635 5636 btrfs_free_path(path); 5637 return ret; 5638 } 5639 5640 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5641 struct btrfs_inode *inode, 5642 struct btrfs_log_ctx *ctx) 5643 { 5644 struct btrfs_fs_info *fs_info = trans->fs_info; 5645 int ret; 5646 struct btrfs_path *path; 5647 struct btrfs_key key; 5648 struct btrfs_root *root = inode->root; 5649 const u64 ino = btrfs_ino(inode); 5650 5651 path = btrfs_alloc_path(); 5652 if (!path) 5653 return -ENOMEM; 5654 path->skip_locking = 1; 5655 path->search_commit_root = 1; 5656 5657 key.objectid = ino; 5658 key.type = BTRFS_INODE_REF_KEY; 5659 key.offset = 0; 5660 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5661 if (ret < 0) 5662 goto out; 5663 5664 while (true) { 5665 struct extent_buffer *leaf = path->nodes[0]; 5666 int slot = path->slots[0]; 5667 u32 cur_offset = 0; 5668 u32 item_size; 5669 unsigned long ptr; 5670 5671 if (slot >= btrfs_header_nritems(leaf)) { 5672 ret = btrfs_next_leaf(root, path); 5673 if (ret < 0) 5674 goto out; 5675 else if (ret > 0) 5676 break; 5677 continue; 5678 } 5679 5680 btrfs_item_key_to_cpu(leaf, &key, slot); 5681 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5682 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5683 break; 5684 5685 item_size = btrfs_item_size_nr(leaf, slot); 5686 ptr = btrfs_item_ptr_offset(leaf, slot); 5687 while (cur_offset < item_size) { 5688 struct btrfs_key inode_key; 5689 struct inode *dir_inode; 5690 5691 inode_key.type = BTRFS_INODE_ITEM_KEY; 5692 inode_key.offset = 0; 5693 5694 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5695 struct btrfs_inode_extref *extref; 5696 5697 extref = (struct btrfs_inode_extref *) 5698 (ptr + cur_offset); 5699 inode_key.objectid = btrfs_inode_extref_parent( 5700 leaf, extref); 5701 cur_offset += sizeof(*extref); 5702 cur_offset += btrfs_inode_extref_name_len(leaf, 5703 extref); 5704 } else { 5705 inode_key.objectid = key.offset; 5706 cur_offset = item_size; 5707 } 5708 5709 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid, 5710 root); 5711 /* 5712 * If the parent inode was deleted, return an error to 5713 * fallback to a transaction commit. This is to prevent 5714 * getting an inode that was moved from one parent A to 5715 * a parent B, got its former parent A deleted and then 5716 * it got fsync'ed, from existing at both parents after 5717 * a log replay (and the old parent still existing). 5718 * Example: 5719 * 5720 * mkdir /mnt/A 5721 * mkdir /mnt/B 5722 * touch /mnt/B/bar 5723 * sync 5724 * mv /mnt/B/bar /mnt/A/bar 5725 * mv -T /mnt/A /mnt/B 5726 * fsync /mnt/B/bar 5727 * <power fail> 5728 * 5729 * If we ignore the old parent B which got deleted, 5730 * after a log replay we would have file bar linked 5731 * at both parents and the old parent B would still 5732 * exist. 5733 */ 5734 if (IS_ERR(dir_inode)) { 5735 ret = PTR_ERR(dir_inode); 5736 goto out; 5737 } 5738 5739 if (ctx) 5740 ctx->log_new_dentries = false; 5741 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), 5742 LOG_INODE_ALL, 0, LLONG_MAX, ctx); 5743 if (!ret && 5744 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode))) 5745 ret = 1; 5746 if (!ret && ctx && ctx->log_new_dentries) 5747 ret = log_new_dir_dentries(trans, root, 5748 BTRFS_I(dir_inode), ctx); 5749 btrfs_add_delayed_iput(dir_inode); 5750 if (ret) 5751 goto out; 5752 } 5753 path->slots[0]++; 5754 } 5755 ret = 0; 5756 out: 5757 btrfs_free_path(path); 5758 return ret; 5759 } 5760 5761 static int log_new_ancestors(struct btrfs_trans_handle *trans, 5762 struct btrfs_root *root, 5763 struct btrfs_path *path, 5764 struct btrfs_log_ctx *ctx) 5765 { 5766 struct btrfs_key found_key; 5767 5768 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5769 5770 while (true) { 5771 struct btrfs_fs_info *fs_info = root->fs_info; 5772 const u64 last_committed = fs_info->last_trans_committed; 5773 struct extent_buffer *leaf = path->nodes[0]; 5774 int slot = path->slots[0]; 5775 struct btrfs_key search_key; 5776 struct inode *inode; 5777 u64 ino; 5778 int ret = 0; 5779 5780 btrfs_release_path(path); 5781 5782 ino = found_key.offset; 5783 5784 search_key.objectid = found_key.offset; 5785 search_key.type = BTRFS_INODE_ITEM_KEY; 5786 search_key.offset = 0; 5787 inode = btrfs_iget(fs_info->sb, ino, root); 5788 if (IS_ERR(inode)) 5789 return PTR_ERR(inode); 5790 5791 if (BTRFS_I(inode)->generation > last_committed) 5792 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5793 LOG_INODE_EXISTS, 5794 0, LLONG_MAX, ctx); 5795 btrfs_add_delayed_iput(inode); 5796 if (ret) 5797 return ret; 5798 5799 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 5800 break; 5801 5802 search_key.type = BTRFS_INODE_REF_KEY; 5803 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5804 if (ret < 0) 5805 return ret; 5806 5807 leaf = path->nodes[0]; 5808 slot = path->slots[0]; 5809 if (slot >= btrfs_header_nritems(leaf)) { 5810 ret = btrfs_next_leaf(root, path); 5811 if (ret < 0) 5812 return ret; 5813 else if (ret > 0) 5814 return -ENOENT; 5815 leaf = path->nodes[0]; 5816 slot = path->slots[0]; 5817 } 5818 5819 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5820 if (found_key.objectid != search_key.objectid || 5821 found_key.type != BTRFS_INODE_REF_KEY) 5822 return -ENOENT; 5823 } 5824 return 0; 5825 } 5826 5827 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 5828 struct btrfs_inode *inode, 5829 struct dentry *parent, 5830 struct btrfs_log_ctx *ctx) 5831 { 5832 struct btrfs_root *root = inode->root; 5833 struct btrfs_fs_info *fs_info = root->fs_info; 5834 struct dentry *old_parent = NULL; 5835 struct super_block *sb = inode->vfs_inode.i_sb; 5836 int ret = 0; 5837 5838 while (true) { 5839 if (!parent || d_really_is_negative(parent) || 5840 sb != parent->d_sb) 5841 break; 5842 5843 inode = BTRFS_I(d_inode(parent)); 5844 if (root != inode->root) 5845 break; 5846 5847 if (inode->generation > fs_info->last_trans_committed) { 5848 ret = btrfs_log_inode(trans, root, inode, 5849 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx); 5850 if (ret) 5851 break; 5852 } 5853 if (IS_ROOT(parent)) 5854 break; 5855 5856 parent = dget_parent(parent); 5857 dput(old_parent); 5858 old_parent = parent; 5859 } 5860 dput(old_parent); 5861 5862 return ret; 5863 } 5864 5865 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 5866 struct btrfs_inode *inode, 5867 struct dentry *parent, 5868 struct btrfs_log_ctx *ctx) 5869 { 5870 struct btrfs_root *root = inode->root; 5871 const u64 ino = btrfs_ino(inode); 5872 struct btrfs_path *path; 5873 struct btrfs_key search_key; 5874 int ret; 5875 5876 /* 5877 * For a single hard link case, go through a fast path that does not 5878 * need to iterate the fs/subvolume tree. 5879 */ 5880 if (inode->vfs_inode.i_nlink < 2) 5881 return log_new_ancestors_fast(trans, inode, parent, ctx); 5882 5883 path = btrfs_alloc_path(); 5884 if (!path) 5885 return -ENOMEM; 5886 5887 search_key.objectid = ino; 5888 search_key.type = BTRFS_INODE_REF_KEY; 5889 search_key.offset = 0; 5890 again: 5891 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5892 if (ret < 0) 5893 goto out; 5894 if (ret == 0) 5895 path->slots[0]++; 5896 5897 while (true) { 5898 struct extent_buffer *leaf = path->nodes[0]; 5899 int slot = path->slots[0]; 5900 struct btrfs_key found_key; 5901 5902 if (slot >= btrfs_header_nritems(leaf)) { 5903 ret = btrfs_next_leaf(root, path); 5904 if (ret < 0) 5905 goto out; 5906 else if (ret > 0) 5907 break; 5908 continue; 5909 } 5910 5911 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5912 if (found_key.objectid != ino || 5913 found_key.type > BTRFS_INODE_EXTREF_KEY) 5914 break; 5915 5916 /* 5917 * Don't deal with extended references because they are rare 5918 * cases and too complex to deal with (we would need to keep 5919 * track of which subitem we are processing for each item in 5920 * this loop, etc). So just return some error to fallback to 5921 * a transaction commit. 5922 */ 5923 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 5924 ret = -EMLINK; 5925 goto out; 5926 } 5927 5928 /* 5929 * Logging ancestors needs to do more searches on the fs/subvol 5930 * tree, so it releases the path as needed to avoid deadlocks. 5931 * Keep track of the last inode ref key and resume from that key 5932 * after logging all new ancestors for the current hard link. 5933 */ 5934 memcpy(&search_key, &found_key, sizeof(search_key)); 5935 5936 ret = log_new_ancestors(trans, root, path, ctx); 5937 if (ret) 5938 goto out; 5939 btrfs_release_path(path); 5940 goto again; 5941 } 5942 ret = 0; 5943 out: 5944 btrfs_free_path(path); 5945 return ret; 5946 } 5947 5948 /* 5949 * helper function around btrfs_log_inode to make sure newly created 5950 * parent directories also end up in the log. A minimal inode and backref 5951 * only logging is done of any parent directories that are older than 5952 * the last committed transaction 5953 */ 5954 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 5955 struct btrfs_inode *inode, 5956 struct dentry *parent, 5957 const loff_t start, 5958 const loff_t end, 5959 int inode_only, 5960 struct btrfs_log_ctx *ctx) 5961 { 5962 struct btrfs_root *root = inode->root; 5963 struct btrfs_fs_info *fs_info = root->fs_info; 5964 struct super_block *sb; 5965 int ret = 0; 5966 u64 last_committed = fs_info->last_trans_committed; 5967 bool log_dentries = false; 5968 5969 sb = inode->vfs_inode.i_sb; 5970 5971 if (btrfs_test_opt(fs_info, NOTREELOG)) { 5972 ret = 1; 5973 goto end_no_trans; 5974 } 5975 5976 /* 5977 * The prev transaction commit doesn't complete, we need do 5978 * full commit by ourselves. 5979 */ 5980 if (fs_info->last_trans_log_full_commit > 5981 fs_info->last_trans_committed) { 5982 ret = 1; 5983 goto end_no_trans; 5984 } 5985 5986 if (btrfs_root_refs(&root->root_item) == 0) { 5987 ret = 1; 5988 goto end_no_trans; 5989 } 5990 5991 ret = check_parent_dirs_for_sync(trans, inode, parent, sb, 5992 last_committed); 5993 if (ret) 5994 goto end_no_trans; 5995 5996 /* 5997 * Skip already logged inodes or inodes corresponding to tmpfiles 5998 * (since logging them is pointless, a link count of 0 means they 5999 * will never be accessible). 6000 */ 6001 if (btrfs_inode_in_log(inode, trans->transid) || 6002 inode->vfs_inode.i_nlink == 0) { 6003 ret = BTRFS_NO_LOG_SYNC; 6004 goto end_no_trans; 6005 } 6006 6007 ret = start_log_trans(trans, root, ctx); 6008 if (ret) 6009 goto end_no_trans; 6010 6011 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 6012 if (ret) 6013 goto end_trans; 6014 6015 /* 6016 * for regular files, if its inode is already on disk, we don't 6017 * have to worry about the parents at all. This is because 6018 * we can use the last_unlink_trans field to record renames 6019 * and other fun in this file. 6020 */ 6021 if (S_ISREG(inode->vfs_inode.i_mode) && 6022 inode->generation <= last_committed && 6023 inode->last_unlink_trans <= last_committed) { 6024 ret = 0; 6025 goto end_trans; 6026 } 6027 6028 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) 6029 log_dentries = true; 6030 6031 /* 6032 * On unlink we must make sure all our current and old parent directory 6033 * inodes are fully logged. This is to prevent leaving dangling 6034 * directory index entries in directories that were our parents but are 6035 * not anymore. Not doing this results in old parent directory being 6036 * impossible to delete after log replay (rmdir will always fail with 6037 * error -ENOTEMPTY). 6038 * 6039 * Example 1: 6040 * 6041 * mkdir testdir 6042 * touch testdir/foo 6043 * ln testdir/foo testdir/bar 6044 * sync 6045 * unlink testdir/bar 6046 * xfs_io -c fsync testdir/foo 6047 * <power failure> 6048 * mount fs, triggers log replay 6049 * 6050 * If we don't log the parent directory (testdir), after log replay the 6051 * directory still has an entry pointing to the file inode using the bar 6052 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6053 * the file inode has a link count of 1. 6054 * 6055 * Example 2: 6056 * 6057 * mkdir testdir 6058 * touch foo 6059 * ln foo testdir/foo2 6060 * ln foo testdir/foo3 6061 * sync 6062 * unlink testdir/foo3 6063 * xfs_io -c fsync foo 6064 * <power failure> 6065 * mount fs, triggers log replay 6066 * 6067 * Similar as the first example, after log replay the parent directory 6068 * testdir still has an entry pointing to the inode file with name foo3 6069 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6070 * and has a link count of 2. 6071 */ 6072 if (inode->last_unlink_trans > last_committed) { 6073 ret = btrfs_log_all_parents(trans, inode, ctx); 6074 if (ret) 6075 goto end_trans; 6076 } 6077 6078 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6079 if (ret) 6080 goto end_trans; 6081 6082 if (log_dentries) 6083 ret = log_new_dir_dentries(trans, root, inode, ctx); 6084 else 6085 ret = 0; 6086 end_trans: 6087 if (ret < 0) { 6088 btrfs_set_log_full_commit(trans); 6089 ret = 1; 6090 } 6091 6092 if (ret) 6093 btrfs_remove_log_ctx(root, ctx); 6094 btrfs_end_log_trans(root); 6095 end_no_trans: 6096 return ret; 6097 } 6098 6099 /* 6100 * it is not safe to log dentry if the chunk root has added new 6101 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6102 * If this returns 1, you must commit the transaction to safely get your 6103 * data on disk. 6104 */ 6105 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6106 struct dentry *dentry, 6107 const loff_t start, 6108 const loff_t end, 6109 struct btrfs_log_ctx *ctx) 6110 { 6111 struct dentry *parent = dget_parent(dentry); 6112 int ret; 6113 6114 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6115 start, end, LOG_INODE_ALL, ctx); 6116 dput(parent); 6117 6118 return ret; 6119 } 6120 6121 /* 6122 * should be called during mount to recover any replay any log trees 6123 * from the FS 6124 */ 6125 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6126 { 6127 int ret; 6128 struct btrfs_path *path; 6129 struct btrfs_trans_handle *trans; 6130 struct btrfs_key key; 6131 struct btrfs_key found_key; 6132 struct btrfs_root *log; 6133 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6134 struct walk_control wc = { 6135 .process_func = process_one_buffer, 6136 .stage = LOG_WALK_PIN_ONLY, 6137 }; 6138 6139 path = btrfs_alloc_path(); 6140 if (!path) 6141 return -ENOMEM; 6142 6143 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6144 6145 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6146 if (IS_ERR(trans)) { 6147 ret = PTR_ERR(trans); 6148 goto error; 6149 } 6150 6151 wc.trans = trans; 6152 wc.pin = 1; 6153 6154 ret = walk_log_tree(trans, log_root_tree, &wc); 6155 if (ret) { 6156 btrfs_handle_fs_error(fs_info, ret, 6157 "Failed to pin buffers while recovering log root tree."); 6158 goto error; 6159 } 6160 6161 again: 6162 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6163 key.offset = (u64)-1; 6164 key.type = BTRFS_ROOT_ITEM_KEY; 6165 6166 while (1) { 6167 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6168 6169 if (ret < 0) { 6170 btrfs_handle_fs_error(fs_info, ret, 6171 "Couldn't find tree log root."); 6172 goto error; 6173 } 6174 if (ret > 0) { 6175 if (path->slots[0] == 0) 6176 break; 6177 path->slots[0]--; 6178 } 6179 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6180 path->slots[0]); 6181 btrfs_release_path(path); 6182 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6183 break; 6184 6185 log = btrfs_read_tree_root(log_root_tree, &found_key); 6186 if (IS_ERR(log)) { 6187 ret = PTR_ERR(log); 6188 btrfs_handle_fs_error(fs_info, ret, 6189 "Couldn't read tree log root."); 6190 goto error; 6191 } 6192 6193 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 6194 true); 6195 if (IS_ERR(wc.replay_dest)) { 6196 ret = PTR_ERR(wc.replay_dest); 6197 6198 /* 6199 * We didn't find the subvol, likely because it was 6200 * deleted. This is ok, simply skip this log and go to 6201 * the next one. 6202 * 6203 * We need to exclude the root because we can't have 6204 * other log replays overwriting this log as we'll read 6205 * it back in a few more times. This will keep our 6206 * block from being modified, and we'll just bail for 6207 * each subsequent pass. 6208 */ 6209 if (ret == -ENOENT) 6210 ret = btrfs_pin_extent_for_log_replay(trans, 6211 log->node->start, 6212 log->node->len); 6213 btrfs_put_root(log); 6214 6215 if (!ret) 6216 goto next; 6217 btrfs_handle_fs_error(fs_info, ret, 6218 "Couldn't read target root for tree log recovery."); 6219 goto error; 6220 } 6221 6222 wc.replay_dest->log_root = log; 6223 btrfs_record_root_in_trans(trans, wc.replay_dest); 6224 ret = walk_log_tree(trans, log, &wc); 6225 6226 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6227 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6228 path); 6229 } 6230 6231 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6232 struct btrfs_root *root = wc.replay_dest; 6233 6234 btrfs_release_path(path); 6235 6236 /* 6237 * We have just replayed everything, and the highest 6238 * objectid of fs roots probably has changed in case 6239 * some inode_item's got replayed. 6240 * 6241 * root->objectid_mutex is not acquired as log replay 6242 * could only happen during mount. 6243 */ 6244 ret = btrfs_find_highest_objectid(root, 6245 &root->highest_objectid); 6246 } 6247 6248 wc.replay_dest->log_root = NULL; 6249 btrfs_put_root(wc.replay_dest); 6250 btrfs_put_root(log); 6251 6252 if (ret) 6253 goto error; 6254 next: 6255 if (found_key.offset == 0) 6256 break; 6257 key.offset = found_key.offset - 1; 6258 } 6259 btrfs_release_path(path); 6260 6261 /* step one is to pin it all, step two is to replay just inodes */ 6262 if (wc.pin) { 6263 wc.pin = 0; 6264 wc.process_func = replay_one_buffer; 6265 wc.stage = LOG_WALK_REPLAY_INODES; 6266 goto again; 6267 } 6268 /* step three is to replay everything */ 6269 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6270 wc.stage++; 6271 goto again; 6272 } 6273 6274 btrfs_free_path(path); 6275 6276 /* step 4: commit the transaction, which also unpins the blocks */ 6277 ret = btrfs_commit_transaction(trans); 6278 if (ret) 6279 return ret; 6280 6281 log_root_tree->log_root = NULL; 6282 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6283 btrfs_put_root(log_root_tree); 6284 6285 return 0; 6286 error: 6287 if (wc.trans) 6288 btrfs_end_transaction(wc.trans); 6289 btrfs_free_path(path); 6290 return ret; 6291 } 6292 6293 /* 6294 * there are some corner cases where we want to force a full 6295 * commit instead of allowing a directory to be logged. 6296 * 6297 * They revolve around files there were unlinked from the directory, and 6298 * this function updates the parent directory so that a full commit is 6299 * properly done if it is fsync'd later after the unlinks are done. 6300 * 6301 * Must be called before the unlink operations (updates to the subvolume tree, 6302 * inodes, etc) are done. 6303 */ 6304 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6305 struct btrfs_inode *dir, struct btrfs_inode *inode, 6306 int for_rename) 6307 { 6308 /* 6309 * when we're logging a file, if it hasn't been renamed 6310 * or unlinked, and its inode is fully committed on disk, 6311 * we don't have to worry about walking up the directory chain 6312 * to log its parents. 6313 * 6314 * So, we use the last_unlink_trans field to put this transid 6315 * into the file. When the file is logged we check it and 6316 * don't log the parents if the file is fully on disk. 6317 */ 6318 mutex_lock(&inode->log_mutex); 6319 inode->last_unlink_trans = trans->transid; 6320 mutex_unlock(&inode->log_mutex); 6321 6322 /* 6323 * if this directory was already logged any new 6324 * names for this file/dir will get recorded 6325 */ 6326 if (dir->logged_trans == trans->transid) 6327 return; 6328 6329 /* 6330 * if the inode we're about to unlink was logged, 6331 * the log will be properly updated for any new names 6332 */ 6333 if (inode->logged_trans == trans->transid) 6334 return; 6335 6336 /* 6337 * when renaming files across directories, if the directory 6338 * there we're unlinking from gets fsync'd later on, there's 6339 * no way to find the destination directory later and fsync it 6340 * properly. So, we have to be conservative and force commits 6341 * so the new name gets discovered. 6342 */ 6343 if (for_rename) 6344 goto record; 6345 6346 /* we can safely do the unlink without any special recording */ 6347 return; 6348 6349 record: 6350 mutex_lock(&dir->log_mutex); 6351 dir->last_unlink_trans = trans->transid; 6352 mutex_unlock(&dir->log_mutex); 6353 } 6354 6355 /* 6356 * Make sure that if someone attempts to fsync the parent directory of a deleted 6357 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6358 * that after replaying the log tree of the parent directory's root we will not 6359 * see the snapshot anymore and at log replay time we will not see any log tree 6360 * corresponding to the deleted snapshot's root, which could lead to replaying 6361 * it after replaying the log tree of the parent directory (which would replay 6362 * the snapshot delete operation). 6363 * 6364 * Must be called before the actual snapshot destroy operation (updates to the 6365 * parent root and tree of tree roots trees, etc) are done. 6366 */ 6367 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6368 struct btrfs_inode *dir) 6369 { 6370 mutex_lock(&dir->log_mutex); 6371 dir->last_unlink_trans = trans->transid; 6372 mutex_unlock(&dir->log_mutex); 6373 } 6374 6375 /* 6376 * Call this after adding a new name for a file and it will properly 6377 * update the log to reflect the new name. 6378 * 6379 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's 6380 * true (because it's not used). 6381 * 6382 * Return value depends on whether @sync_log is true or false. 6383 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6384 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT 6385 * otherwise. 6386 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to 6387 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log, 6388 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6389 * committed (without attempting to sync the log). 6390 */ 6391 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 6392 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6393 struct dentry *parent, 6394 bool sync_log, struct btrfs_log_ctx *ctx) 6395 { 6396 struct btrfs_fs_info *fs_info = trans->fs_info; 6397 int ret; 6398 6399 /* 6400 * this will force the logging code to walk the dentry chain 6401 * up for the file 6402 */ 6403 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6404 inode->last_unlink_trans = trans->transid; 6405 6406 /* 6407 * if this inode hasn't been logged and directory we're renaming it 6408 * from hasn't been logged, we don't need to log it 6409 */ 6410 if (inode->logged_trans <= fs_info->last_trans_committed && 6411 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed)) 6412 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT : 6413 BTRFS_DONT_NEED_LOG_SYNC; 6414 6415 if (sync_log) { 6416 struct btrfs_log_ctx ctx2; 6417 6418 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode); 6419 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6420 LOG_INODE_EXISTS, &ctx2); 6421 if (ret == BTRFS_NO_LOG_SYNC) 6422 return BTRFS_DONT_NEED_TRANS_COMMIT; 6423 else if (ret) 6424 return BTRFS_NEED_TRANS_COMMIT; 6425 6426 ret = btrfs_sync_log(trans, inode->root, &ctx2); 6427 if (ret) 6428 return BTRFS_NEED_TRANS_COMMIT; 6429 return BTRFS_DONT_NEED_TRANS_COMMIT; 6430 } 6431 6432 ASSERT(ctx); 6433 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6434 LOG_INODE_EXISTS, ctx); 6435 if (ret == BTRFS_NO_LOG_SYNC) 6436 return BTRFS_DONT_NEED_LOG_SYNC; 6437 else if (ret) 6438 return BTRFS_NEED_TRANS_COMMIT; 6439 6440 return BTRFS_NEED_LOG_SYNC; 6441 } 6442 6443