xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 930beb5a)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "tree-log.h"
30 #include "hash.h"
31 
32 /* magic values for the inode_only field in btrfs_log_inode:
33  *
34  * LOG_INODE_ALL means to log everything
35  * LOG_INODE_EXISTS means to log just enough to recreate the inode
36  * during log replay
37  */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40 
41 /*
42  * directory trouble cases
43  *
44  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45  * log, we must force a full commit before doing an fsync of the directory
46  * where the unlink was done.
47  * ---> record transid of last unlink/rename per directory
48  *
49  * mkdir foo/some_dir
50  * normal commit
51  * rename foo/some_dir foo2/some_dir
52  * mkdir foo/some_dir
53  * fsync foo/some_dir/some_file
54  *
55  * The fsync above will unlink the original some_dir without recording
56  * it in its new location (foo2).  After a crash, some_dir will be gone
57  * unless the fsync of some_file forces a full commit
58  *
59  * 2) we must log any new names for any file or dir that is in the fsync
60  * log. ---> check inode while renaming/linking.
61  *
62  * 2a) we must log any new names for any file or dir during rename
63  * when the directory they are being removed from was logged.
64  * ---> check inode and old parent dir during rename
65  *
66  *  2a is actually the more important variant.  With the extra logging
67  *  a crash might unlink the old name without recreating the new one
68  *
69  * 3) after a crash, we must go through any directories with a link count
70  * of zero and redo the rm -rf
71  *
72  * mkdir f1/foo
73  * normal commit
74  * rm -rf f1/foo
75  * fsync(f1)
76  *
77  * The directory f1 was fully removed from the FS, but fsync was never
78  * called on f1, only its parent dir.  After a crash the rm -rf must
79  * be replayed.  This must be able to recurse down the entire
80  * directory tree.  The inode link count fixup code takes care of the
81  * ugly details.
82  */
83 
84 /*
85  * stages for the tree walking.  The first
86  * stage (0) is to only pin down the blocks we find
87  * the second stage (1) is to make sure that all the inodes
88  * we find in the log are created in the subvolume.
89  *
90  * The last stage is to deal with directories and links and extents
91  * and all the other fun semantics
92  */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
97 
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 			     struct btrfs_root *root, struct inode *inode,
100 			     int inode_only);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 			     struct btrfs_root *root,
103 			     struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 				       struct btrfs_root *root,
106 				       struct btrfs_root *log,
107 				       struct btrfs_path *path,
108 				       u64 dirid, int del_all);
109 
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132 
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 			   struct btrfs_root *root)
140 {
141 	int ret;
142 	int err = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 	if (root->log_root) {
146 		if (!root->log_start_pid) {
147 			root->log_start_pid = current->pid;
148 			root->log_multiple_pids = false;
149 		} else if (root->log_start_pid != current->pid) {
150 			root->log_multiple_pids = true;
151 		}
152 
153 		atomic_inc(&root->log_batch);
154 		atomic_inc(&root->log_writers);
155 		mutex_unlock(&root->log_mutex);
156 		return 0;
157 	}
158 	root->log_multiple_pids = false;
159 	root->log_start_pid = current->pid;
160 	mutex_lock(&root->fs_info->tree_log_mutex);
161 	if (!root->fs_info->log_root_tree) {
162 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
163 		if (ret)
164 			err = ret;
165 	}
166 	if (err == 0 && !root->log_root) {
167 		ret = btrfs_add_log_tree(trans, root);
168 		if (ret)
169 			err = ret;
170 	}
171 	mutex_unlock(&root->fs_info->tree_log_mutex);
172 	atomic_inc(&root->log_batch);
173 	atomic_inc(&root->log_writers);
174 	mutex_unlock(&root->log_mutex);
175 	return err;
176 }
177 
178 /*
179  * returns 0 if there was a log transaction running and we were able
180  * to join, or returns -ENOENT if there were not transactions
181  * in progress
182  */
183 static int join_running_log_trans(struct btrfs_root *root)
184 {
185 	int ret = -ENOENT;
186 
187 	smp_mb();
188 	if (!root->log_root)
189 		return -ENOENT;
190 
191 	mutex_lock(&root->log_mutex);
192 	if (root->log_root) {
193 		ret = 0;
194 		atomic_inc(&root->log_writers);
195 	}
196 	mutex_unlock(&root->log_mutex);
197 	return ret;
198 }
199 
200 /*
201  * This either makes the current running log transaction wait
202  * until you call btrfs_end_log_trans() or it makes any future
203  * log transactions wait until you call btrfs_end_log_trans()
204  */
205 int btrfs_pin_log_trans(struct btrfs_root *root)
206 {
207 	int ret = -ENOENT;
208 
209 	mutex_lock(&root->log_mutex);
210 	atomic_inc(&root->log_writers);
211 	mutex_unlock(&root->log_mutex);
212 	return ret;
213 }
214 
215 /*
216  * indicate we're done making changes to the log tree
217  * and wake up anyone waiting to do a sync
218  */
219 void btrfs_end_log_trans(struct btrfs_root *root)
220 {
221 	if (atomic_dec_and_test(&root->log_writers)) {
222 		smp_mb();
223 		if (waitqueue_active(&root->log_writer_wait))
224 			wake_up(&root->log_writer_wait);
225 	}
226 }
227 
228 
229 /*
230  * the walk control struct is used to pass state down the chain when
231  * processing the log tree.  The stage field tells us which part
232  * of the log tree processing we are currently doing.  The others
233  * are state fields used for that specific part
234  */
235 struct walk_control {
236 	/* should we free the extent on disk when done?  This is used
237 	 * at transaction commit time while freeing a log tree
238 	 */
239 	int free;
240 
241 	/* should we write out the extent buffer?  This is used
242 	 * while flushing the log tree to disk during a sync
243 	 */
244 	int write;
245 
246 	/* should we wait for the extent buffer io to finish?  Also used
247 	 * while flushing the log tree to disk for a sync
248 	 */
249 	int wait;
250 
251 	/* pin only walk, we record which extents on disk belong to the
252 	 * log trees
253 	 */
254 	int pin;
255 
256 	/* what stage of the replay code we're currently in */
257 	int stage;
258 
259 	/* the root we are currently replaying */
260 	struct btrfs_root *replay_dest;
261 
262 	/* the trans handle for the current replay */
263 	struct btrfs_trans_handle *trans;
264 
265 	/* the function that gets used to process blocks we find in the
266 	 * tree.  Note the extent_buffer might not be up to date when it is
267 	 * passed in, and it must be checked or read if you need the data
268 	 * inside it
269 	 */
270 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
271 			    struct walk_control *wc, u64 gen);
272 };
273 
274 /*
275  * process_func used to pin down extents, write them or wait on them
276  */
277 static int process_one_buffer(struct btrfs_root *log,
278 			      struct extent_buffer *eb,
279 			      struct walk_control *wc, u64 gen)
280 {
281 	int ret = 0;
282 
283 	/*
284 	 * If this fs is mixed then we need to be able to process the leaves to
285 	 * pin down any logged extents, so we have to read the block.
286 	 */
287 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
288 		ret = btrfs_read_buffer(eb, gen);
289 		if (ret)
290 			return ret;
291 	}
292 
293 	if (wc->pin)
294 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
295 						      eb->start, eb->len);
296 
297 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
298 		if (wc->pin && btrfs_header_level(eb) == 0)
299 			ret = btrfs_exclude_logged_extents(log, eb);
300 		if (wc->write)
301 			btrfs_write_tree_block(eb);
302 		if (wc->wait)
303 			btrfs_wait_tree_block_writeback(eb);
304 	}
305 	return ret;
306 }
307 
308 /*
309  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
310  * to the src data we are copying out.
311  *
312  * root is the tree we are copying into, and path is a scratch
313  * path for use in this function (it should be released on entry and
314  * will be released on exit).
315  *
316  * If the key is already in the destination tree the existing item is
317  * overwritten.  If the existing item isn't big enough, it is extended.
318  * If it is too large, it is truncated.
319  *
320  * If the key isn't in the destination yet, a new item is inserted.
321  */
322 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
323 				   struct btrfs_root *root,
324 				   struct btrfs_path *path,
325 				   struct extent_buffer *eb, int slot,
326 				   struct btrfs_key *key)
327 {
328 	int ret;
329 	u32 item_size;
330 	u64 saved_i_size = 0;
331 	int save_old_i_size = 0;
332 	unsigned long src_ptr;
333 	unsigned long dst_ptr;
334 	int overwrite_root = 0;
335 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
336 
337 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
338 		overwrite_root = 1;
339 
340 	item_size = btrfs_item_size_nr(eb, slot);
341 	src_ptr = btrfs_item_ptr_offset(eb, slot);
342 
343 	/* look for the key in the destination tree */
344 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
345 	if (ret < 0)
346 		return ret;
347 
348 	if (ret == 0) {
349 		char *src_copy;
350 		char *dst_copy;
351 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
352 						  path->slots[0]);
353 		if (dst_size != item_size)
354 			goto insert;
355 
356 		if (item_size == 0) {
357 			btrfs_release_path(path);
358 			return 0;
359 		}
360 		dst_copy = kmalloc(item_size, GFP_NOFS);
361 		src_copy = kmalloc(item_size, GFP_NOFS);
362 		if (!dst_copy || !src_copy) {
363 			btrfs_release_path(path);
364 			kfree(dst_copy);
365 			kfree(src_copy);
366 			return -ENOMEM;
367 		}
368 
369 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
370 
371 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
372 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
373 				   item_size);
374 		ret = memcmp(dst_copy, src_copy, item_size);
375 
376 		kfree(dst_copy);
377 		kfree(src_copy);
378 		/*
379 		 * they have the same contents, just return, this saves
380 		 * us from cowing blocks in the destination tree and doing
381 		 * extra writes that may not have been done by a previous
382 		 * sync
383 		 */
384 		if (ret == 0) {
385 			btrfs_release_path(path);
386 			return 0;
387 		}
388 
389 		/*
390 		 * We need to load the old nbytes into the inode so when we
391 		 * replay the extents we've logged we get the right nbytes.
392 		 */
393 		if (inode_item) {
394 			struct btrfs_inode_item *item;
395 			u64 nbytes;
396 			u32 mode;
397 
398 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
399 					      struct btrfs_inode_item);
400 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
401 			item = btrfs_item_ptr(eb, slot,
402 					      struct btrfs_inode_item);
403 			btrfs_set_inode_nbytes(eb, item, nbytes);
404 
405 			/*
406 			 * If this is a directory we need to reset the i_size to
407 			 * 0 so that we can set it up properly when replaying
408 			 * the rest of the items in this log.
409 			 */
410 			mode = btrfs_inode_mode(eb, item);
411 			if (S_ISDIR(mode))
412 				btrfs_set_inode_size(eb, item, 0);
413 		}
414 	} else if (inode_item) {
415 		struct btrfs_inode_item *item;
416 		u32 mode;
417 
418 		/*
419 		 * New inode, set nbytes to 0 so that the nbytes comes out
420 		 * properly when we replay the extents.
421 		 */
422 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
423 		btrfs_set_inode_nbytes(eb, item, 0);
424 
425 		/*
426 		 * If this is a directory we need to reset the i_size to 0 so
427 		 * that we can set it up properly when replaying the rest of
428 		 * the items in this log.
429 		 */
430 		mode = btrfs_inode_mode(eb, item);
431 		if (S_ISDIR(mode))
432 			btrfs_set_inode_size(eb, item, 0);
433 	}
434 insert:
435 	btrfs_release_path(path);
436 	/* try to insert the key into the destination tree */
437 	ret = btrfs_insert_empty_item(trans, root, path,
438 				      key, item_size);
439 
440 	/* make sure any existing item is the correct size */
441 	if (ret == -EEXIST) {
442 		u32 found_size;
443 		found_size = btrfs_item_size_nr(path->nodes[0],
444 						path->slots[0]);
445 		if (found_size > item_size)
446 			btrfs_truncate_item(root, path, item_size, 1);
447 		else if (found_size < item_size)
448 			btrfs_extend_item(root, path,
449 					  item_size - found_size);
450 	} else if (ret) {
451 		return ret;
452 	}
453 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
454 					path->slots[0]);
455 
456 	/* don't overwrite an existing inode if the generation number
457 	 * was logged as zero.  This is done when the tree logging code
458 	 * is just logging an inode to make sure it exists after recovery.
459 	 *
460 	 * Also, don't overwrite i_size on directories during replay.
461 	 * log replay inserts and removes directory items based on the
462 	 * state of the tree found in the subvolume, and i_size is modified
463 	 * as it goes
464 	 */
465 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
466 		struct btrfs_inode_item *src_item;
467 		struct btrfs_inode_item *dst_item;
468 
469 		src_item = (struct btrfs_inode_item *)src_ptr;
470 		dst_item = (struct btrfs_inode_item *)dst_ptr;
471 
472 		if (btrfs_inode_generation(eb, src_item) == 0)
473 			goto no_copy;
474 
475 		if (overwrite_root &&
476 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
477 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
478 			save_old_i_size = 1;
479 			saved_i_size = btrfs_inode_size(path->nodes[0],
480 							dst_item);
481 		}
482 	}
483 
484 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
485 			   src_ptr, item_size);
486 
487 	if (save_old_i_size) {
488 		struct btrfs_inode_item *dst_item;
489 		dst_item = (struct btrfs_inode_item *)dst_ptr;
490 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
491 	}
492 
493 	/* make sure the generation is filled in */
494 	if (key->type == BTRFS_INODE_ITEM_KEY) {
495 		struct btrfs_inode_item *dst_item;
496 		dst_item = (struct btrfs_inode_item *)dst_ptr;
497 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
498 			btrfs_set_inode_generation(path->nodes[0], dst_item,
499 						   trans->transid);
500 		}
501 	}
502 no_copy:
503 	btrfs_mark_buffer_dirty(path->nodes[0]);
504 	btrfs_release_path(path);
505 	return 0;
506 }
507 
508 /*
509  * simple helper to read an inode off the disk from a given root
510  * This can only be called for subvolume roots and not for the log
511  */
512 static noinline struct inode *read_one_inode(struct btrfs_root *root,
513 					     u64 objectid)
514 {
515 	struct btrfs_key key;
516 	struct inode *inode;
517 
518 	key.objectid = objectid;
519 	key.type = BTRFS_INODE_ITEM_KEY;
520 	key.offset = 0;
521 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
522 	if (IS_ERR(inode)) {
523 		inode = NULL;
524 	} else if (is_bad_inode(inode)) {
525 		iput(inode);
526 		inode = NULL;
527 	}
528 	return inode;
529 }
530 
531 /* replays a single extent in 'eb' at 'slot' with 'key' into the
532  * subvolume 'root'.  path is released on entry and should be released
533  * on exit.
534  *
535  * extents in the log tree have not been allocated out of the extent
536  * tree yet.  So, this completes the allocation, taking a reference
537  * as required if the extent already exists or creating a new extent
538  * if it isn't in the extent allocation tree yet.
539  *
540  * The extent is inserted into the file, dropping any existing extents
541  * from the file that overlap the new one.
542  */
543 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
544 				      struct btrfs_root *root,
545 				      struct btrfs_path *path,
546 				      struct extent_buffer *eb, int slot,
547 				      struct btrfs_key *key)
548 {
549 	int found_type;
550 	u64 extent_end;
551 	u64 start = key->offset;
552 	u64 nbytes = 0;
553 	struct btrfs_file_extent_item *item;
554 	struct inode *inode = NULL;
555 	unsigned long size;
556 	int ret = 0;
557 
558 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
559 	found_type = btrfs_file_extent_type(eb, item);
560 
561 	if (found_type == BTRFS_FILE_EXTENT_REG ||
562 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
563 		nbytes = btrfs_file_extent_num_bytes(eb, item);
564 		extent_end = start + nbytes;
565 
566 		/*
567 		 * We don't add to the inodes nbytes if we are prealloc or a
568 		 * hole.
569 		 */
570 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
571 			nbytes = 0;
572 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
573 		size = btrfs_file_extent_inline_len(eb, item);
574 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
575 		extent_end = ALIGN(start + size, root->sectorsize);
576 	} else {
577 		ret = 0;
578 		goto out;
579 	}
580 
581 	inode = read_one_inode(root, key->objectid);
582 	if (!inode) {
583 		ret = -EIO;
584 		goto out;
585 	}
586 
587 	/*
588 	 * first check to see if we already have this extent in the
589 	 * file.  This must be done before the btrfs_drop_extents run
590 	 * so we don't try to drop this extent.
591 	 */
592 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
593 				       start, 0);
594 
595 	if (ret == 0 &&
596 	    (found_type == BTRFS_FILE_EXTENT_REG ||
597 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
598 		struct btrfs_file_extent_item cmp1;
599 		struct btrfs_file_extent_item cmp2;
600 		struct btrfs_file_extent_item *existing;
601 		struct extent_buffer *leaf;
602 
603 		leaf = path->nodes[0];
604 		existing = btrfs_item_ptr(leaf, path->slots[0],
605 					  struct btrfs_file_extent_item);
606 
607 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
608 				   sizeof(cmp1));
609 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
610 				   sizeof(cmp2));
611 
612 		/*
613 		 * we already have a pointer to this exact extent,
614 		 * we don't have to do anything
615 		 */
616 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
617 			btrfs_release_path(path);
618 			goto out;
619 		}
620 	}
621 	btrfs_release_path(path);
622 
623 	/* drop any overlapping extents */
624 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
625 	if (ret)
626 		goto out;
627 
628 	if (found_type == BTRFS_FILE_EXTENT_REG ||
629 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
630 		u64 offset;
631 		unsigned long dest_offset;
632 		struct btrfs_key ins;
633 
634 		ret = btrfs_insert_empty_item(trans, root, path, key,
635 					      sizeof(*item));
636 		if (ret)
637 			goto out;
638 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
639 						    path->slots[0]);
640 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
641 				(unsigned long)item,  sizeof(*item));
642 
643 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
644 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
645 		ins.type = BTRFS_EXTENT_ITEM_KEY;
646 		offset = key->offset - btrfs_file_extent_offset(eb, item);
647 
648 		if (ins.objectid > 0) {
649 			u64 csum_start;
650 			u64 csum_end;
651 			LIST_HEAD(ordered_sums);
652 			/*
653 			 * is this extent already allocated in the extent
654 			 * allocation tree?  If so, just add a reference
655 			 */
656 			ret = btrfs_lookup_extent(root, ins.objectid,
657 						ins.offset);
658 			if (ret == 0) {
659 				ret = btrfs_inc_extent_ref(trans, root,
660 						ins.objectid, ins.offset,
661 						0, root->root_key.objectid,
662 						key->objectid, offset, 0);
663 				if (ret)
664 					goto out;
665 			} else {
666 				/*
667 				 * insert the extent pointer in the extent
668 				 * allocation tree
669 				 */
670 				ret = btrfs_alloc_logged_file_extent(trans,
671 						root, root->root_key.objectid,
672 						key->objectid, offset, &ins);
673 				if (ret)
674 					goto out;
675 			}
676 			btrfs_release_path(path);
677 
678 			if (btrfs_file_extent_compression(eb, item)) {
679 				csum_start = ins.objectid;
680 				csum_end = csum_start + ins.offset;
681 			} else {
682 				csum_start = ins.objectid +
683 					btrfs_file_extent_offset(eb, item);
684 				csum_end = csum_start +
685 					btrfs_file_extent_num_bytes(eb, item);
686 			}
687 
688 			ret = btrfs_lookup_csums_range(root->log_root,
689 						csum_start, csum_end - 1,
690 						&ordered_sums, 0);
691 			if (ret)
692 				goto out;
693 			while (!list_empty(&ordered_sums)) {
694 				struct btrfs_ordered_sum *sums;
695 				sums = list_entry(ordered_sums.next,
696 						struct btrfs_ordered_sum,
697 						list);
698 				if (!ret)
699 					ret = btrfs_csum_file_blocks(trans,
700 						root->fs_info->csum_root,
701 						sums);
702 				list_del(&sums->list);
703 				kfree(sums);
704 			}
705 			if (ret)
706 				goto out;
707 		} else {
708 			btrfs_release_path(path);
709 		}
710 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
711 		/* inline extents are easy, we just overwrite them */
712 		ret = overwrite_item(trans, root, path, eb, slot, key);
713 		if (ret)
714 			goto out;
715 	}
716 
717 	inode_add_bytes(inode, nbytes);
718 	ret = btrfs_update_inode(trans, root, inode);
719 out:
720 	if (inode)
721 		iput(inode);
722 	return ret;
723 }
724 
725 /*
726  * when cleaning up conflicts between the directory names in the
727  * subvolume, directory names in the log and directory names in the
728  * inode back references, we may have to unlink inodes from directories.
729  *
730  * This is a helper function to do the unlink of a specific directory
731  * item
732  */
733 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
734 				      struct btrfs_root *root,
735 				      struct btrfs_path *path,
736 				      struct inode *dir,
737 				      struct btrfs_dir_item *di)
738 {
739 	struct inode *inode;
740 	char *name;
741 	int name_len;
742 	struct extent_buffer *leaf;
743 	struct btrfs_key location;
744 	int ret;
745 
746 	leaf = path->nodes[0];
747 
748 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
749 	name_len = btrfs_dir_name_len(leaf, di);
750 	name = kmalloc(name_len, GFP_NOFS);
751 	if (!name)
752 		return -ENOMEM;
753 
754 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
755 	btrfs_release_path(path);
756 
757 	inode = read_one_inode(root, location.objectid);
758 	if (!inode) {
759 		ret = -EIO;
760 		goto out;
761 	}
762 
763 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
764 	if (ret)
765 		goto out;
766 
767 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
768 	if (ret)
769 		goto out;
770 	else
771 		ret = btrfs_run_delayed_items(trans, root);
772 out:
773 	kfree(name);
774 	iput(inode);
775 	return ret;
776 }
777 
778 /*
779  * helper function to see if a given name and sequence number found
780  * in an inode back reference are already in a directory and correctly
781  * point to this inode
782  */
783 static noinline int inode_in_dir(struct btrfs_root *root,
784 				 struct btrfs_path *path,
785 				 u64 dirid, u64 objectid, u64 index,
786 				 const char *name, int name_len)
787 {
788 	struct btrfs_dir_item *di;
789 	struct btrfs_key location;
790 	int match = 0;
791 
792 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
793 					 index, name, name_len, 0);
794 	if (di && !IS_ERR(di)) {
795 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
796 		if (location.objectid != objectid)
797 			goto out;
798 	} else
799 		goto out;
800 	btrfs_release_path(path);
801 
802 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
803 	if (di && !IS_ERR(di)) {
804 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
805 		if (location.objectid != objectid)
806 			goto out;
807 	} else
808 		goto out;
809 	match = 1;
810 out:
811 	btrfs_release_path(path);
812 	return match;
813 }
814 
815 /*
816  * helper function to check a log tree for a named back reference in
817  * an inode.  This is used to decide if a back reference that is
818  * found in the subvolume conflicts with what we find in the log.
819  *
820  * inode backreferences may have multiple refs in a single item,
821  * during replay we process one reference at a time, and we don't
822  * want to delete valid links to a file from the subvolume if that
823  * link is also in the log.
824  */
825 static noinline int backref_in_log(struct btrfs_root *log,
826 				   struct btrfs_key *key,
827 				   u64 ref_objectid,
828 				   char *name, int namelen)
829 {
830 	struct btrfs_path *path;
831 	struct btrfs_inode_ref *ref;
832 	unsigned long ptr;
833 	unsigned long ptr_end;
834 	unsigned long name_ptr;
835 	int found_name_len;
836 	int item_size;
837 	int ret;
838 	int match = 0;
839 
840 	path = btrfs_alloc_path();
841 	if (!path)
842 		return -ENOMEM;
843 
844 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
845 	if (ret != 0)
846 		goto out;
847 
848 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
849 
850 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
851 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
852 						   name, namelen, NULL))
853 			match = 1;
854 
855 		goto out;
856 	}
857 
858 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
859 	ptr_end = ptr + item_size;
860 	while (ptr < ptr_end) {
861 		ref = (struct btrfs_inode_ref *)ptr;
862 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
863 		if (found_name_len == namelen) {
864 			name_ptr = (unsigned long)(ref + 1);
865 			ret = memcmp_extent_buffer(path->nodes[0], name,
866 						   name_ptr, namelen);
867 			if (ret == 0) {
868 				match = 1;
869 				goto out;
870 			}
871 		}
872 		ptr = (unsigned long)(ref + 1) + found_name_len;
873 	}
874 out:
875 	btrfs_free_path(path);
876 	return match;
877 }
878 
879 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
880 				  struct btrfs_root *root,
881 				  struct btrfs_path *path,
882 				  struct btrfs_root *log_root,
883 				  struct inode *dir, struct inode *inode,
884 				  struct extent_buffer *eb,
885 				  u64 inode_objectid, u64 parent_objectid,
886 				  u64 ref_index, char *name, int namelen,
887 				  int *search_done)
888 {
889 	int ret;
890 	char *victim_name;
891 	int victim_name_len;
892 	struct extent_buffer *leaf;
893 	struct btrfs_dir_item *di;
894 	struct btrfs_key search_key;
895 	struct btrfs_inode_extref *extref;
896 
897 again:
898 	/* Search old style refs */
899 	search_key.objectid = inode_objectid;
900 	search_key.type = BTRFS_INODE_REF_KEY;
901 	search_key.offset = parent_objectid;
902 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
903 	if (ret == 0) {
904 		struct btrfs_inode_ref *victim_ref;
905 		unsigned long ptr;
906 		unsigned long ptr_end;
907 
908 		leaf = path->nodes[0];
909 
910 		/* are we trying to overwrite a back ref for the root directory
911 		 * if so, just jump out, we're done
912 		 */
913 		if (search_key.objectid == search_key.offset)
914 			return 1;
915 
916 		/* check all the names in this back reference to see
917 		 * if they are in the log.  if so, we allow them to stay
918 		 * otherwise they must be unlinked as a conflict
919 		 */
920 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
921 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
922 		while (ptr < ptr_end) {
923 			victim_ref = (struct btrfs_inode_ref *)ptr;
924 			victim_name_len = btrfs_inode_ref_name_len(leaf,
925 								   victim_ref);
926 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
927 			if (!victim_name)
928 				return -ENOMEM;
929 
930 			read_extent_buffer(leaf, victim_name,
931 					   (unsigned long)(victim_ref + 1),
932 					   victim_name_len);
933 
934 			if (!backref_in_log(log_root, &search_key,
935 					    parent_objectid,
936 					    victim_name,
937 					    victim_name_len)) {
938 				inc_nlink(inode);
939 				btrfs_release_path(path);
940 
941 				ret = btrfs_unlink_inode(trans, root, dir,
942 							 inode, victim_name,
943 							 victim_name_len);
944 				kfree(victim_name);
945 				if (ret)
946 					return ret;
947 				ret = btrfs_run_delayed_items(trans, root);
948 				if (ret)
949 					return ret;
950 				*search_done = 1;
951 				goto again;
952 			}
953 			kfree(victim_name);
954 
955 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
956 		}
957 
958 		/*
959 		 * NOTE: we have searched root tree and checked the
960 		 * coresponding ref, it does not need to check again.
961 		 */
962 		*search_done = 1;
963 	}
964 	btrfs_release_path(path);
965 
966 	/* Same search but for extended refs */
967 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
968 					   inode_objectid, parent_objectid, 0,
969 					   0);
970 	if (!IS_ERR_OR_NULL(extref)) {
971 		u32 item_size;
972 		u32 cur_offset = 0;
973 		unsigned long base;
974 		struct inode *victim_parent;
975 
976 		leaf = path->nodes[0];
977 
978 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
979 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
980 
981 		while (cur_offset < item_size) {
982 			extref = (struct btrfs_inode_extref *)base + cur_offset;
983 
984 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
985 
986 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
987 				goto next;
988 
989 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
990 			if (!victim_name)
991 				return -ENOMEM;
992 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
993 					   victim_name_len);
994 
995 			search_key.objectid = inode_objectid;
996 			search_key.type = BTRFS_INODE_EXTREF_KEY;
997 			search_key.offset = btrfs_extref_hash(parent_objectid,
998 							      victim_name,
999 							      victim_name_len);
1000 			ret = 0;
1001 			if (!backref_in_log(log_root, &search_key,
1002 					    parent_objectid, victim_name,
1003 					    victim_name_len)) {
1004 				ret = -ENOENT;
1005 				victim_parent = read_one_inode(root,
1006 							       parent_objectid);
1007 				if (victim_parent) {
1008 					inc_nlink(inode);
1009 					btrfs_release_path(path);
1010 
1011 					ret = btrfs_unlink_inode(trans, root,
1012 								 victim_parent,
1013 								 inode,
1014 								 victim_name,
1015 								 victim_name_len);
1016 					if (!ret)
1017 						ret = btrfs_run_delayed_items(
1018 								  trans, root);
1019 				}
1020 				iput(victim_parent);
1021 				kfree(victim_name);
1022 				if (ret)
1023 					return ret;
1024 				*search_done = 1;
1025 				goto again;
1026 			}
1027 			kfree(victim_name);
1028 			if (ret)
1029 				return ret;
1030 next:
1031 			cur_offset += victim_name_len + sizeof(*extref);
1032 		}
1033 		*search_done = 1;
1034 	}
1035 	btrfs_release_path(path);
1036 
1037 	/* look for a conflicting sequence number */
1038 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1039 					 ref_index, name, namelen, 0);
1040 	if (di && !IS_ERR(di)) {
1041 		ret = drop_one_dir_item(trans, root, path, dir, di);
1042 		if (ret)
1043 			return ret;
1044 	}
1045 	btrfs_release_path(path);
1046 
1047 	/* look for a conflicing name */
1048 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1049 				   name, namelen, 0);
1050 	if (di && !IS_ERR(di)) {
1051 		ret = drop_one_dir_item(trans, root, path, dir, di);
1052 		if (ret)
1053 			return ret;
1054 	}
1055 	btrfs_release_path(path);
1056 
1057 	return 0;
1058 }
1059 
1060 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1061 			     u32 *namelen, char **name, u64 *index,
1062 			     u64 *parent_objectid)
1063 {
1064 	struct btrfs_inode_extref *extref;
1065 
1066 	extref = (struct btrfs_inode_extref *)ref_ptr;
1067 
1068 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1069 	*name = kmalloc(*namelen, GFP_NOFS);
1070 	if (*name == NULL)
1071 		return -ENOMEM;
1072 
1073 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1074 			   *namelen);
1075 
1076 	*index = btrfs_inode_extref_index(eb, extref);
1077 	if (parent_objectid)
1078 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1079 
1080 	return 0;
1081 }
1082 
1083 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1084 			  u32 *namelen, char **name, u64 *index)
1085 {
1086 	struct btrfs_inode_ref *ref;
1087 
1088 	ref = (struct btrfs_inode_ref *)ref_ptr;
1089 
1090 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1091 	*name = kmalloc(*namelen, GFP_NOFS);
1092 	if (*name == NULL)
1093 		return -ENOMEM;
1094 
1095 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1096 
1097 	*index = btrfs_inode_ref_index(eb, ref);
1098 
1099 	return 0;
1100 }
1101 
1102 /*
1103  * replay one inode back reference item found in the log tree.
1104  * eb, slot and key refer to the buffer and key found in the log tree.
1105  * root is the destination we are replaying into, and path is for temp
1106  * use by this function.  (it should be released on return).
1107  */
1108 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1109 				  struct btrfs_root *root,
1110 				  struct btrfs_root *log,
1111 				  struct btrfs_path *path,
1112 				  struct extent_buffer *eb, int slot,
1113 				  struct btrfs_key *key)
1114 {
1115 	struct inode *dir = NULL;
1116 	struct inode *inode = NULL;
1117 	unsigned long ref_ptr;
1118 	unsigned long ref_end;
1119 	char *name = NULL;
1120 	int namelen;
1121 	int ret;
1122 	int search_done = 0;
1123 	int log_ref_ver = 0;
1124 	u64 parent_objectid;
1125 	u64 inode_objectid;
1126 	u64 ref_index = 0;
1127 	int ref_struct_size;
1128 
1129 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1130 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1131 
1132 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1133 		struct btrfs_inode_extref *r;
1134 
1135 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1136 		log_ref_ver = 1;
1137 		r = (struct btrfs_inode_extref *)ref_ptr;
1138 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1139 	} else {
1140 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1141 		parent_objectid = key->offset;
1142 	}
1143 	inode_objectid = key->objectid;
1144 
1145 	/*
1146 	 * it is possible that we didn't log all the parent directories
1147 	 * for a given inode.  If we don't find the dir, just don't
1148 	 * copy the back ref in.  The link count fixup code will take
1149 	 * care of the rest
1150 	 */
1151 	dir = read_one_inode(root, parent_objectid);
1152 	if (!dir) {
1153 		ret = -ENOENT;
1154 		goto out;
1155 	}
1156 
1157 	inode = read_one_inode(root, inode_objectid);
1158 	if (!inode) {
1159 		ret = -EIO;
1160 		goto out;
1161 	}
1162 
1163 	while (ref_ptr < ref_end) {
1164 		if (log_ref_ver) {
1165 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1166 						&ref_index, &parent_objectid);
1167 			/*
1168 			 * parent object can change from one array
1169 			 * item to another.
1170 			 */
1171 			if (!dir)
1172 				dir = read_one_inode(root, parent_objectid);
1173 			if (!dir) {
1174 				ret = -ENOENT;
1175 				goto out;
1176 			}
1177 		} else {
1178 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1179 					     &ref_index);
1180 		}
1181 		if (ret)
1182 			goto out;
1183 
1184 		/* if we already have a perfect match, we're done */
1185 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1186 				  ref_index, name, namelen)) {
1187 			/*
1188 			 * look for a conflicting back reference in the
1189 			 * metadata. if we find one we have to unlink that name
1190 			 * of the file before we add our new link.  Later on, we
1191 			 * overwrite any existing back reference, and we don't
1192 			 * want to create dangling pointers in the directory.
1193 			 */
1194 
1195 			if (!search_done) {
1196 				ret = __add_inode_ref(trans, root, path, log,
1197 						      dir, inode, eb,
1198 						      inode_objectid,
1199 						      parent_objectid,
1200 						      ref_index, name, namelen,
1201 						      &search_done);
1202 				if (ret) {
1203 					if (ret == 1)
1204 						ret = 0;
1205 					goto out;
1206 				}
1207 			}
1208 
1209 			/* insert our name */
1210 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1211 					     0, ref_index);
1212 			if (ret)
1213 				goto out;
1214 
1215 			btrfs_update_inode(trans, root, inode);
1216 		}
1217 
1218 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1219 		kfree(name);
1220 		name = NULL;
1221 		if (log_ref_ver) {
1222 			iput(dir);
1223 			dir = NULL;
1224 		}
1225 	}
1226 
1227 	/* finally write the back reference in the inode */
1228 	ret = overwrite_item(trans, root, path, eb, slot, key);
1229 out:
1230 	btrfs_release_path(path);
1231 	kfree(name);
1232 	iput(dir);
1233 	iput(inode);
1234 	return ret;
1235 }
1236 
1237 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1238 			      struct btrfs_root *root, u64 offset)
1239 {
1240 	int ret;
1241 	ret = btrfs_find_orphan_item(root, offset);
1242 	if (ret > 0)
1243 		ret = btrfs_insert_orphan_item(trans, root, offset);
1244 	return ret;
1245 }
1246 
1247 static int count_inode_extrefs(struct btrfs_root *root,
1248 			       struct inode *inode, struct btrfs_path *path)
1249 {
1250 	int ret = 0;
1251 	int name_len;
1252 	unsigned int nlink = 0;
1253 	u32 item_size;
1254 	u32 cur_offset = 0;
1255 	u64 inode_objectid = btrfs_ino(inode);
1256 	u64 offset = 0;
1257 	unsigned long ptr;
1258 	struct btrfs_inode_extref *extref;
1259 	struct extent_buffer *leaf;
1260 
1261 	while (1) {
1262 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1263 					    &extref, &offset);
1264 		if (ret)
1265 			break;
1266 
1267 		leaf = path->nodes[0];
1268 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1269 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1270 
1271 		while (cur_offset < item_size) {
1272 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1273 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1274 
1275 			nlink++;
1276 
1277 			cur_offset += name_len + sizeof(*extref);
1278 		}
1279 
1280 		offset++;
1281 		btrfs_release_path(path);
1282 	}
1283 	btrfs_release_path(path);
1284 
1285 	if (ret < 0)
1286 		return ret;
1287 	return nlink;
1288 }
1289 
1290 static int count_inode_refs(struct btrfs_root *root,
1291 			       struct inode *inode, struct btrfs_path *path)
1292 {
1293 	int ret;
1294 	struct btrfs_key key;
1295 	unsigned int nlink = 0;
1296 	unsigned long ptr;
1297 	unsigned long ptr_end;
1298 	int name_len;
1299 	u64 ino = btrfs_ino(inode);
1300 
1301 	key.objectid = ino;
1302 	key.type = BTRFS_INODE_REF_KEY;
1303 	key.offset = (u64)-1;
1304 
1305 	while (1) {
1306 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1307 		if (ret < 0)
1308 			break;
1309 		if (ret > 0) {
1310 			if (path->slots[0] == 0)
1311 				break;
1312 			path->slots[0]--;
1313 		}
1314 process_slot:
1315 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1316 				      path->slots[0]);
1317 		if (key.objectid != ino ||
1318 		    key.type != BTRFS_INODE_REF_KEY)
1319 			break;
1320 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1321 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1322 						   path->slots[0]);
1323 		while (ptr < ptr_end) {
1324 			struct btrfs_inode_ref *ref;
1325 
1326 			ref = (struct btrfs_inode_ref *)ptr;
1327 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1328 							    ref);
1329 			ptr = (unsigned long)(ref + 1) + name_len;
1330 			nlink++;
1331 		}
1332 
1333 		if (key.offset == 0)
1334 			break;
1335 		if (path->slots[0] > 0) {
1336 			path->slots[0]--;
1337 			goto process_slot;
1338 		}
1339 		key.offset--;
1340 		btrfs_release_path(path);
1341 	}
1342 	btrfs_release_path(path);
1343 
1344 	return nlink;
1345 }
1346 
1347 /*
1348  * There are a few corners where the link count of the file can't
1349  * be properly maintained during replay.  So, instead of adding
1350  * lots of complexity to the log code, we just scan the backrefs
1351  * for any file that has been through replay.
1352  *
1353  * The scan will update the link count on the inode to reflect the
1354  * number of back refs found.  If it goes down to zero, the iput
1355  * will free the inode.
1356  */
1357 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1358 					   struct btrfs_root *root,
1359 					   struct inode *inode)
1360 {
1361 	struct btrfs_path *path;
1362 	int ret;
1363 	u64 nlink = 0;
1364 	u64 ino = btrfs_ino(inode);
1365 
1366 	path = btrfs_alloc_path();
1367 	if (!path)
1368 		return -ENOMEM;
1369 
1370 	ret = count_inode_refs(root, inode, path);
1371 	if (ret < 0)
1372 		goto out;
1373 
1374 	nlink = ret;
1375 
1376 	ret = count_inode_extrefs(root, inode, path);
1377 	if (ret == -ENOENT)
1378 		ret = 0;
1379 
1380 	if (ret < 0)
1381 		goto out;
1382 
1383 	nlink += ret;
1384 
1385 	ret = 0;
1386 
1387 	if (nlink != inode->i_nlink) {
1388 		set_nlink(inode, nlink);
1389 		btrfs_update_inode(trans, root, inode);
1390 	}
1391 	BTRFS_I(inode)->index_cnt = (u64)-1;
1392 
1393 	if (inode->i_nlink == 0) {
1394 		if (S_ISDIR(inode->i_mode)) {
1395 			ret = replay_dir_deletes(trans, root, NULL, path,
1396 						 ino, 1);
1397 			if (ret)
1398 				goto out;
1399 		}
1400 		ret = insert_orphan_item(trans, root, ino);
1401 	}
1402 
1403 out:
1404 	btrfs_free_path(path);
1405 	return ret;
1406 }
1407 
1408 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1409 					    struct btrfs_root *root,
1410 					    struct btrfs_path *path)
1411 {
1412 	int ret;
1413 	struct btrfs_key key;
1414 	struct inode *inode;
1415 
1416 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1417 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1418 	key.offset = (u64)-1;
1419 	while (1) {
1420 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1421 		if (ret < 0)
1422 			break;
1423 
1424 		if (ret == 1) {
1425 			if (path->slots[0] == 0)
1426 				break;
1427 			path->slots[0]--;
1428 		}
1429 
1430 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1431 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1432 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1433 			break;
1434 
1435 		ret = btrfs_del_item(trans, root, path);
1436 		if (ret)
1437 			goto out;
1438 
1439 		btrfs_release_path(path);
1440 		inode = read_one_inode(root, key.offset);
1441 		if (!inode)
1442 			return -EIO;
1443 
1444 		ret = fixup_inode_link_count(trans, root, inode);
1445 		iput(inode);
1446 		if (ret)
1447 			goto out;
1448 
1449 		/*
1450 		 * fixup on a directory may create new entries,
1451 		 * make sure we always look for the highset possible
1452 		 * offset
1453 		 */
1454 		key.offset = (u64)-1;
1455 	}
1456 	ret = 0;
1457 out:
1458 	btrfs_release_path(path);
1459 	return ret;
1460 }
1461 
1462 
1463 /*
1464  * record a given inode in the fixup dir so we can check its link
1465  * count when replay is done.  The link count is incremented here
1466  * so the inode won't go away until we check it
1467  */
1468 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1469 				      struct btrfs_root *root,
1470 				      struct btrfs_path *path,
1471 				      u64 objectid)
1472 {
1473 	struct btrfs_key key;
1474 	int ret = 0;
1475 	struct inode *inode;
1476 
1477 	inode = read_one_inode(root, objectid);
1478 	if (!inode)
1479 		return -EIO;
1480 
1481 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1482 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1483 	key.offset = objectid;
1484 
1485 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1486 
1487 	btrfs_release_path(path);
1488 	if (ret == 0) {
1489 		if (!inode->i_nlink)
1490 			set_nlink(inode, 1);
1491 		else
1492 			inc_nlink(inode);
1493 		ret = btrfs_update_inode(trans, root, inode);
1494 	} else if (ret == -EEXIST) {
1495 		ret = 0;
1496 	} else {
1497 		BUG(); /* Logic Error */
1498 	}
1499 	iput(inode);
1500 
1501 	return ret;
1502 }
1503 
1504 /*
1505  * when replaying the log for a directory, we only insert names
1506  * for inodes that actually exist.  This means an fsync on a directory
1507  * does not implicitly fsync all the new files in it
1508  */
1509 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1510 				    struct btrfs_root *root,
1511 				    struct btrfs_path *path,
1512 				    u64 dirid, u64 index,
1513 				    char *name, int name_len, u8 type,
1514 				    struct btrfs_key *location)
1515 {
1516 	struct inode *inode;
1517 	struct inode *dir;
1518 	int ret;
1519 
1520 	inode = read_one_inode(root, location->objectid);
1521 	if (!inode)
1522 		return -ENOENT;
1523 
1524 	dir = read_one_inode(root, dirid);
1525 	if (!dir) {
1526 		iput(inode);
1527 		return -EIO;
1528 	}
1529 
1530 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1531 
1532 	/* FIXME, put inode into FIXUP list */
1533 
1534 	iput(inode);
1535 	iput(dir);
1536 	return ret;
1537 }
1538 
1539 /*
1540  * take a single entry in a log directory item and replay it into
1541  * the subvolume.
1542  *
1543  * if a conflicting item exists in the subdirectory already,
1544  * the inode it points to is unlinked and put into the link count
1545  * fix up tree.
1546  *
1547  * If a name from the log points to a file or directory that does
1548  * not exist in the FS, it is skipped.  fsyncs on directories
1549  * do not force down inodes inside that directory, just changes to the
1550  * names or unlinks in a directory.
1551  */
1552 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1553 				    struct btrfs_root *root,
1554 				    struct btrfs_path *path,
1555 				    struct extent_buffer *eb,
1556 				    struct btrfs_dir_item *di,
1557 				    struct btrfs_key *key)
1558 {
1559 	char *name;
1560 	int name_len;
1561 	struct btrfs_dir_item *dst_di;
1562 	struct btrfs_key found_key;
1563 	struct btrfs_key log_key;
1564 	struct inode *dir;
1565 	u8 log_type;
1566 	int exists;
1567 	int ret = 0;
1568 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1569 
1570 	dir = read_one_inode(root, key->objectid);
1571 	if (!dir)
1572 		return -EIO;
1573 
1574 	name_len = btrfs_dir_name_len(eb, di);
1575 	name = kmalloc(name_len, GFP_NOFS);
1576 	if (!name) {
1577 		ret = -ENOMEM;
1578 		goto out;
1579 	}
1580 
1581 	log_type = btrfs_dir_type(eb, di);
1582 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1583 		   name_len);
1584 
1585 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1586 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1587 	if (exists == 0)
1588 		exists = 1;
1589 	else
1590 		exists = 0;
1591 	btrfs_release_path(path);
1592 
1593 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1594 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1595 				       name, name_len, 1);
1596 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1597 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1598 						     key->objectid,
1599 						     key->offset, name,
1600 						     name_len, 1);
1601 	} else {
1602 		/* Corruption */
1603 		ret = -EINVAL;
1604 		goto out;
1605 	}
1606 	if (IS_ERR_OR_NULL(dst_di)) {
1607 		/* we need a sequence number to insert, so we only
1608 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1609 		 */
1610 		if (key->type != BTRFS_DIR_INDEX_KEY)
1611 			goto out;
1612 		goto insert;
1613 	}
1614 
1615 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1616 	/* the existing item matches the logged item */
1617 	if (found_key.objectid == log_key.objectid &&
1618 	    found_key.type == log_key.type &&
1619 	    found_key.offset == log_key.offset &&
1620 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1621 		goto out;
1622 	}
1623 
1624 	/*
1625 	 * don't drop the conflicting directory entry if the inode
1626 	 * for the new entry doesn't exist
1627 	 */
1628 	if (!exists)
1629 		goto out;
1630 
1631 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1632 	if (ret)
1633 		goto out;
1634 
1635 	if (key->type == BTRFS_DIR_INDEX_KEY)
1636 		goto insert;
1637 out:
1638 	btrfs_release_path(path);
1639 	if (!ret && update_size) {
1640 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1641 		ret = btrfs_update_inode(trans, root, dir);
1642 	}
1643 	kfree(name);
1644 	iput(dir);
1645 	return ret;
1646 
1647 insert:
1648 	btrfs_release_path(path);
1649 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1650 			      name, name_len, log_type, &log_key);
1651 	if (ret && ret != -ENOENT)
1652 		goto out;
1653 	update_size = false;
1654 	ret = 0;
1655 	goto out;
1656 }
1657 
1658 /*
1659  * find all the names in a directory item and reconcile them into
1660  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1661  * one name in a directory item, but the same code gets used for
1662  * both directory index types
1663  */
1664 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1665 					struct btrfs_root *root,
1666 					struct btrfs_path *path,
1667 					struct extent_buffer *eb, int slot,
1668 					struct btrfs_key *key)
1669 {
1670 	int ret;
1671 	u32 item_size = btrfs_item_size_nr(eb, slot);
1672 	struct btrfs_dir_item *di;
1673 	int name_len;
1674 	unsigned long ptr;
1675 	unsigned long ptr_end;
1676 
1677 	ptr = btrfs_item_ptr_offset(eb, slot);
1678 	ptr_end = ptr + item_size;
1679 	while (ptr < ptr_end) {
1680 		di = (struct btrfs_dir_item *)ptr;
1681 		if (verify_dir_item(root, eb, di))
1682 			return -EIO;
1683 		name_len = btrfs_dir_name_len(eb, di);
1684 		ret = replay_one_name(trans, root, path, eb, di, key);
1685 		if (ret)
1686 			return ret;
1687 		ptr = (unsigned long)(di + 1);
1688 		ptr += name_len;
1689 	}
1690 	return 0;
1691 }
1692 
1693 /*
1694  * directory replay has two parts.  There are the standard directory
1695  * items in the log copied from the subvolume, and range items
1696  * created in the log while the subvolume was logged.
1697  *
1698  * The range items tell us which parts of the key space the log
1699  * is authoritative for.  During replay, if a key in the subvolume
1700  * directory is in a logged range item, but not actually in the log
1701  * that means it was deleted from the directory before the fsync
1702  * and should be removed.
1703  */
1704 static noinline int find_dir_range(struct btrfs_root *root,
1705 				   struct btrfs_path *path,
1706 				   u64 dirid, int key_type,
1707 				   u64 *start_ret, u64 *end_ret)
1708 {
1709 	struct btrfs_key key;
1710 	u64 found_end;
1711 	struct btrfs_dir_log_item *item;
1712 	int ret;
1713 	int nritems;
1714 
1715 	if (*start_ret == (u64)-1)
1716 		return 1;
1717 
1718 	key.objectid = dirid;
1719 	key.type = key_type;
1720 	key.offset = *start_ret;
1721 
1722 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1723 	if (ret < 0)
1724 		goto out;
1725 	if (ret > 0) {
1726 		if (path->slots[0] == 0)
1727 			goto out;
1728 		path->slots[0]--;
1729 	}
1730 	if (ret != 0)
1731 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1732 
1733 	if (key.type != key_type || key.objectid != dirid) {
1734 		ret = 1;
1735 		goto next;
1736 	}
1737 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1738 			      struct btrfs_dir_log_item);
1739 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1740 
1741 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1742 		ret = 0;
1743 		*start_ret = key.offset;
1744 		*end_ret = found_end;
1745 		goto out;
1746 	}
1747 	ret = 1;
1748 next:
1749 	/* check the next slot in the tree to see if it is a valid item */
1750 	nritems = btrfs_header_nritems(path->nodes[0]);
1751 	if (path->slots[0] >= nritems) {
1752 		ret = btrfs_next_leaf(root, path);
1753 		if (ret)
1754 			goto out;
1755 	} else {
1756 		path->slots[0]++;
1757 	}
1758 
1759 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1760 
1761 	if (key.type != key_type || key.objectid != dirid) {
1762 		ret = 1;
1763 		goto out;
1764 	}
1765 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1766 			      struct btrfs_dir_log_item);
1767 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1768 	*start_ret = key.offset;
1769 	*end_ret = found_end;
1770 	ret = 0;
1771 out:
1772 	btrfs_release_path(path);
1773 	return ret;
1774 }
1775 
1776 /*
1777  * this looks for a given directory item in the log.  If the directory
1778  * item is not in the log, the item is removed and the inode it points
1779  * to is unlinked
1780  */
1781 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1782 				      struct btrfs_root *root,
1783 				      struct btrfs_root *log,
1784 				      struct btrfs_path *path,
1785 				      struct btrfs_path *log_path,
1786 				      struct inode *dir,
1787 				      struct btrfs_key *dir_key)
1788 {
1789 	int ret;
1790 	struct extent_buffer *eb;
1791 	int slot;
1792 	u32 item_size;
1793 	struct btrfs_dir_item *di;
1794 	struct btrfs_dir_item *log_di;
1795 	int name_len;
1796 	unsigned long ptr;
1797 	unsigned long ptr_end;
1798 	char *name;
1799 	struct inode *inode;
1800 	struct btrfs_key location;
1801 
1802 again:
1803 	eb = path->nodes[0];
1804 	slot = path->slots[0];
1805 	item_size = btrfs_item_size_nr(eb, slot);
1806 	ptr = btrfs_item_ptr_offset(eb, slot);
1807 	ptr_end = ptr + item_size;
1808 	while (ptr < ptr_end) {
1809 		di = (struct btrfs_dir_item *)ptr;
1810 		if (verify_dir_item(root, eb, di)) {
1811 			ret = -EIO;
1812 			goto out;
1813 		}
1814 
1815 		name_len = btrfs_dir_name_len(eb, di);
1816 		name = kmalloc(name_len, GFP_NOFS);
1817 		if (!name) {
1818 			ret = -ENOMEM;
1819 			goto out;
1820 		}
1821 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1822 				  name_len);
1823 		log_di = NULL;
1824 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1825 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1826 						       dir_key->objectid,
1827 						       name, name_len, 0);
1828 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1829 			log_di = btrfs_lookup_dir_index_item(trans, log,
1830 						     log_path,
1831 						     dir_key->objectid,
1832 						     dir_key->offset,
1833 						     name, name_len, 0);
1834 		}
1835 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1836 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1837 			btrfs_release_path(path);
1838 			btrfs_release_path(log_path);
1839 			inode = read_one_inode(root, location.objectid);
1840 			if (!inode) {
1841 				kfree(name);
1842 				return -EIO;
1843 			}
1844 
1845 			ret = link_to_fixup_dir(trans, root,
1846 						path, location.objectid);
1847 			if (ret) {
1848 				kfree(name);
1849 				iput(inode);
1850 				goto out;
1851 			}
1852 
1853 			inc_nlink(inode);
1854 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1855 						 name, name_len);
1856 			if (!ret)
1857 				ret = btrfs_run_delayed_items(trans, root);
1858 			kfree(name);
1859 			iput(inode);
1860 			if (ret)
1861 				goto out;
1862 
1863 			/* there might still be more names under this key
1864 			 * check and repeat if required
1865 			 */
1866 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1867 						0, 0);
1868 			if (ret == 0)
1869 				goto again;
1870 			ret = 0;
1871 			goto out;
1872 		} else if (IS_ERR(log_di)) {
1873 			kfree(name);
1874 			return PTR_ERR(log_di);
1875 		}
1876 		btrfs_release_path(log_path);
1877 		kfree(name);
1878 
1879 		ptr = (unsigned long)(di + 1);
1880 		ptr += name_len;
1881 	}
1882 	ret = 0;
1883 out:
1884 	btrfs_release_path(path);
1885 	btrfs_release_path(log_path);
1886 	return ret;
1887 }
1888 
1889 /*
1890  * deletion replay happens before we copy any new directory items
1891  * out of the log or out of backreferences from inodes.  It
1892  * scans the log to find ranges of keys that log is authoritative for,
1893  * and then scans the directory to find items in those ranges that are
1894  * not present in the log.
1895  *
1896  * Anything we don't find in the log is unlinked and removed from the
1897  * directory.
1898  */
1899 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1900 				       struct btrfs_root *root,
1901 				       struct btrfs_root *log,
1902 				       struct btrfs_path *path,
1903 				       u64 dirid, int del_all)
1904 {
1905 	u64 range_start;
1906 	u64 range_end;
1907 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1908 	int ret = 0;
1909 	struct btrfs_key dir_key;
1910 	struct btrfs_key found_key;
1911 	struct btrfs_path *log_path;
1912 	struct inode *dir;
1913 
1914 	dir_key.objectid = dirid;
1915 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1916 	log_path = btrfs_alloc_path();
1917 	if (!log_path)
1918 		return -ENOMEM;
1919 
1920 	dir = read_one_inode(root, dirid);
1921 	/* it isn't an error if the inode isn't there, that can happen
1922 	 * because we replay the deletes before we copy in the inode item
1923 	 * from the log
1924 	 */
1925 	if (!dir) {
1926 		btrfs_free_path(log_path);
1927 		return 0;
1928 	}
1929 again:
1930 	range_start = 0;
1931 	range_end = 0;
1932 	while (1) {
1933 		if (del_all)
1934 			range_end = (u64)-1;
1935 		else {
1936 			ret = find_dir_range(log, path, dirid, key_type,
1937 					     &range_start, &range_end);
1938 			if (ret != 0)
1939 				break;
1940 		}
1941 
1942 		dir_key.offset = range_start;
1943 		while (1) {
1944 			int nritems;
1945 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1946 						0, 0);
1947 			if (ret < 0)
1948 				goto out;
1949 
1950 			nritems = btrfs_header_nritems(path->nodes[0]);
1951 			if (path->slots[0] >= nritems) {
1952 				ret = btrfs_next_leaf(root, path);
1953 				if (ret)
1954 					break;
1955 			}
1956 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1957 					      path->slots[0]);
1958 			if (found_key.objectid != dirid ||
1959 			    found_key.type != dir_key.type)
1960 				goto next_type;
1961 
1962 			if (found_key.offset > range_end)
1963 				break;
1964 
1965 			ret = check_item_in_log(trans, root, log, path,
1966 						log_path, dir,
1967 						&found_key);
1968 			if (ret)
1969 				goto out;
1970 			if (found_key.offset == (u64)-1)
1971 				break;
1972 			dir_key.offset = found_key.offset + 1;
1973 		}
1974 		btrfs_release_path(path);
1975 		if (range_end == (u64)-1)
1976 			break;
1977 		range_start = range_end + 1;
1978 	}
1979 
1980 next_type:
1981 	ret = 0;
1982 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1983 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1984 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1985 		btrfs_release_path(path);
1986 		goto again;
1987 	}
1988 out:
1989 	btrfs_release_path(path);
1990 	btrfs_free_path(log_path);
1991 	iput(dir);
1992 	return ret;
1993 }
1994 
1995 /*
1996  * the process_func used to replay items from the log tree.  This
1997  * gets called in two different stages.  The first stage just looks
1998  * for inodes and makes sure they are all copied into the subvolume.
1999  *
2000  * The second stage copies all the other item types from the log into
2001  * the subvolume.  The two stage approach is slower, but gets rid of
2002  * lots of complexity around inodes referencing other inodes that exist
2003  * only in the log (references come from either directory items or inode
2004  * back refs).
2005  */
2006 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2007 			     struct walk_control *wc, u64 gen)
2008 {
2009 	int nritems;
2010 	struct btrfs_path *path;
2011 	struct btrfs_root *root = wc->replay_dest;
2012 	struct btrfs_key key;
2013 	int level;
2014 	int i;
2015 	int ret;
2016 
2017 	ret = btrfs_read_buffer(eb, gen);
2018 	if (ret)
2019 		return ret;
2020 
2021 	level = btrfs_header_level(eb);
2022 
2023 	if (level != 0)
2024 		return 0;
2025 
2026 	path = btrfs_alloc_path();
2027 	if (!path)
2028 		return -ENOMEM;
2029 
2030 	nritems = btrfs_header_nritems(eb);
2031 	for (i = 0; i < nritems; i++) {
2032 		btrfs_item_key_to_cpu(eb, &key, i);
2033 
2034 		/* inode keys are done during the first stage */
2035 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2036 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2037 			struct btrfs_inode_item *inode_item;
2038 			u32 mode;
2039 
2040 			inode_item = btrfs_item_ptr(eb, i,
2041 					    struct btrfs_inode_item);
2042 			mode = btrfs_inode_mode(eb, inode_item);
2043 			if (S_ISDIR(mode)) {
2044 				ret = replay_dir_deletes(wc->trans,
2045 					 root, log, path, key.objectid, 0);
2046 				if (ret)
2047 					break;
2048 			}
2049 			ret = overwrite_item(wc->trans, root, path,
2050 					     eb, i, &key);
2051 			if (ret)
2052 				break;
2053 
2054 			/* for regular files, make sure corresponding
2055 			 * orhpan item exist. extents past the new EOF
2056 			 * will be truncated later by orphan cleanup.
2057 			 */
2058 			if (S_ISREG(mode)) {
2059 				ret = insert_orphan_item(wc->trans, root,
2060 							 key.objectid);
2061 				if (ret)
2062 					break;
2063 			}
2064 
2065 			ret = link_to_fixup_dir(wc->trans, root,
2066 						path, key.objectid);
2067 			if (ret)
2068 				break;
2069 		}
2070 
2071 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2072 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2073 			ret = replay_one_dir_item(wc->trans, root, path,
2074 						  eb, i, &key);
2075 			if (ret)
2076 				break;
2077 		}
2078 
2079 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2080 			continue;
2081 
2082 		/* these keys are simply copied */
2083 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2084 			ret = overwrite_item(wc->trans, root, path,
2085 					     eb, i, &key);
2086 			if (ret)
2087 				break;
2088 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2089 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2090 			ret = add_inode_ref(wc->trans, root, log, path,
2091 					    eb, i, &key);
2092 			if (ret && ret != -ENOENT)
2093 				break;
2094 			ret = 0;
2095 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2096 			ret = replay_one_extent(wc->trans, root, path,
2097 						eb, i, &key);
2098 			if (ret)
2099 				break;
2100 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2101 			ret = replay_one_dir_item(wc->trans, root, path,
2102 						  eb, i, &key);
2103 			if (ret)
2104 				break;
2105 		}
2106 	}
2107 	btrfs_free_path(path);
2108 	return ret;
2109 }
2110 
2111 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2112 				   struct btrfs_root *root,
2113 				   struct btrfs_path *path, int *level,
2114 				   struct walk_control *wc)
2115 {
2116 	u64 root_owner;
2117 	u64 bytenr;
2118 	u64 ptr_gen;
2119 	struct extent_buffer *next;
2120 	struct extent_buffer *cur;
2121 	struct extent_buffer *parent;
2122 	u32 blocksize;
2123 	int ret = 0;
2124 
2125 	WARN_ON(*level < 0);
2126 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2127 
2128 	while (*level > 0) {
2129 		WARN_ON(*level < 0);
2130 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2131 		cur = path->nodes[*level];
2132 
2133 		WARN_ON(btrfs_header_level(cur) != *level);
2134 
2135 		if (path->slots[*level] >=
2136 		    btrfs_header_nritems(cur))
2137 			break;
2138 
2139 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2140 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2141 		blocksize = btrfs_level_size(root, *level - 1);
2142 
2143 		parent = path->nodes[*level];
2144 		root_owner = btrfs_header_owner(parent);
2145 
2146 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2147 		if (!next)
2148 			return -ENOMEM;
2149 
2150 		if (*level == 1) {
2151 			ret = wc->process_func(root, next, wc, ptr_gen);
2152 			if (ret) {
2153 				free_extent_buffer(next);
2154 				return ret;
2155 			}
2156 
2157 			path->slots[*level]++;
2158 			if (wc->free) {
2159 				ret = btrfs_read_buffer(next, ptr_gen);
2160 				if (ret) {
2161 					free_extent_buffer(next);
2162 					return ret;
2163 				}
2164 
2165 				if (trans) {
2166 					btrfs_tree_lock(next);
2167 					btrfs_set_lock_blocking(next);
2168 					clean_tree_block(trans, root, next);
2169 					btrfs_wait_tree_block_writeback(next);
2170 					btrfs_tree_unlock(next);
2171 				}
2172 
2173 				WARN_ON(root_owner !=
2174 					BTRFS_TREE_LOG_OBJECTID);
2175 				ret = btrfs_free_and_pin_reserved_extent(root,
2176 							 bytenr, blocksize);
2177 				if (ret) {
2178 					free_extent_buffer(next);
2179 					return ret;
2180 				}
2181 			}
2182 			free_extent_buffer(next);
2183 			continue;
2184 		}
2185 		ret = btrfs_read_buffer(next, ptr_gen);
2186 		if (ret) {
2187 			free_extent_buffer(next);
2188 			return ret;
2189 		}
2190 
2191 		WARN_ON(*level <= 0);
2192 		if (path->nodes[*level-1])
2193 			free_extent_buffer(path->nodes[*level-1]);
2194 		path->nodes[*level-1] = next;
2195 		*level = btrfs_header_level(next);
2196 		path->slots[*level] = 0;
2197 		cond_resched();
2198 	}
2199 	WARN_ON(*level < 0);
2200 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2201 
2202 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2203 
2204 	cond_resched();
2205 	return 0;
2206 }
2207 
2208 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2209 				 struct btrfs_root *root,
2210 				 struct btrfs_path *path, int *level,
2211 				 struct walk_control *wc)
2212 {
2213 	u64 root_owner;
2214 	int i;
2215 	int slot;
2216 	int ret;
2217 
2218 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2219 		slot = path->slots[i];
2220 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2221 			path->slots[i]++;
2222 			*level = i;
2223 			WARN_ON(*level == 0);
2224 			return 0;
2225 		} else {
2226 			struct extent_buffer *parent;
2227 			if (path->nodes[*level] == root->node)
2228 				parent = path->nodes[*level];
2229 			else
2230 				parent = path->nodes[*level + 1];
2231 
2232 			root_owner = btrfs_header_owner(parent);
2233 			ret = wc->process_func(root, path->nodes[*level], wc,
2234 				 btrfs_header_generation(path->nodes[*level]));
2235 			if (ret)
2236 				return ret;
2237 
2238 			if (wc->free) {
2239 				struct extent_buffer *next;
2240 
2241 				next = path->nodes[*level];
2242 
2243 				if (trans) {
2244 					btrfs_tree_lock(next);
2245 					btrfs_set_lock_blocking(next);
2246 					clean_tree_block(trans, root, next);
2247 					btrfs_wait_tree_block_writeback(next);
2248 					btrfs_tree_unlock(next);
2249 				}
2250 
2251 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2252 				ret = btrfs_free_and_pin_reserved_extent(root,
2253 						path->nodes[*level]->start,
2254 						path->nodes[*level]->len);
2255 				if (ret)
2256 					return ret;
2257 			}
2258 			free_extent_buffer(path->nodes[*level]);
2259 			path->nodes[*level] = NULL;
2260 			*level = i + 1;
2261 		}
2262 	}
2263 	return 1;
2264 }
2265 
2266 /*
2267  * drop the reference count on the tree rooted at 'snap'.  This traverses
2268  * the tree freeing any blocks that have a ref count of zero after being
2269  * decremented.
2270  */
2271 static int walk_log_tree(struct btrfs_trans_handle *trans,
2272 			 struct btrfs_root *log, struct walk_control *wc)
2273 {
2274 	int ret = 0;
2275 	int wret;
2276 	int level;
2277 	struct btrfs_path *path;
2278 	int orig_level;
2279 
2280 	path = btrfs_alloc_path();
2281 	if (!path)
2282 		return -ENOMEM;
2283 
2284 	level = btrfs_header_level(log->node);
2285 	orig_level = level;
2286 	path->nodes[level] = log->node;
2287 	extent_buffer_get(log->node);
2288 	path->slots[level] = 0;
2289 
2290 	while (1) {
2291 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2292 		if (wret > 0)
2293 			break;
2294 		if (wret < 0) {
2295 			ret = wret;
2296 			goto out;
2297 		}
2298 
2299 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2300 		if (wret > 0)
2301 			break;
2302 		if (wret < 0) {
2303 			ret = wret;
2304 			goto out;
2305 		}
2306 	}
2307 
2308 	/* was the root node processed? if not, catch it here */
2309 	if (path->nodes[orig_level]) {
2310 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2311 			 btrfs_header_generation(path->nodes[orig_level]));
2312 		if (ret)
2313 			goto out;
2314 		if (wc->free) {
2315 			struct extent_buffer *next;
2316 
2317 			next = path->nodes[orig_level];
2318 
2319 			if (trans) {
2320 				btrfs_tree_lock(next);
2321 				btrfs_set_lock_blocking(next);
2322 				clean_tree_block(trans, log, next);
2323 				btrfs_wait_tree_block_writeback(next);
2324 				btrfs_tree_unlock(next);
2325 			}
2326 
2327 			WARN_ON(log->root_key.objectid !=
2328 				BTRFS_TREE_LOG_OBJECTID);
2329 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2330 							 next->len);
2331 			if (ret)
2332 				goto out;
2333 		}
2334 	}
2335 
2336 out:
2337 	btrfs_free_path(path);
2338 	return ret;
2339 }
2340 
2341 /*
2342  * helper function to update the item for a given subvolumes log root
2343  * in the tree of log roots
2344  */
2345 static int update_log_root(struct btrfs_trans_handle *trans,
2346 			   struct btrfs_root *log)
2347 {
2348 	int ret;
2349 
2350 	if (log->log_transid == 1) {
2351 		/* insert root item on the first sync */
2352 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2353 				&log->root_key, &log->root_item);
2354 	} else {
2355 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2356 				&log->root_key, &log->root_item);
2357 	}
2358 	return ret;
2359 }
2360 
2361 static int wait_log_commit(struct btrfs_trans_handle *trans,
2362 			   struct btrfs_root *root, unsigned long transid)
2363 {
2364 	DEFINE_WAIT(wait);
2365 	int index = transid % 2;
2366 
2367 	/*
2368 	 * we only allow two pending log transactions at a time,
2369 	 * so we know that if ours is more than 2 older than the
2370 	 * current transaction, we're done
2371 	 */
2372 	do {
2373 		prepare_to_wait(&root->log_commit_wait[index],
2374 				&wait, TASK_UNINTERRUPTIBLE);
2375 		mutex_unlock(&root->log_mutex);
2376 
2377 		if (root->fs_info->last_trans_log_full_commit !=
2378 		    trans->transid && root->log_transid < transid + 2 &&
2379 		    atomic_read(&root->log_commit[index]))
2380 			schedule();
2381 
2382 		finish_wait(&root->log_commit_wait[index], &wait);
2383 		mutex_lock(&root->log_mutex);
2384 	} while (root->fs_info->last_trans_log_full_commit !=
2385 		 trans->transid && root->log_transid < transid + 2 &&
2386 		 atomic_read(&root->log_commit[index]));
2387 	return 0;
2388 }
2389 
2390 static void wait_for_writer(struct btrfs_trans_handle *trans,
2391 			    struct btrfs_root *root)
2392 {
2393 	DEFINE_WAIT(wait);
2394 	while (root->fs_info->last_trans_log_full_commit !=
2395 	       trans->transid && atomic_read(&root->log_writers)) {
2396 		prepare_to_wait(&root->log_writer_wait,
2397 				&wait, TASK_UNINTERRUPTIBLE);
2398 		mutex_unlock(&root->log_mutex);
2399 		if (root->fs_info->last_trans_log_full_commit !=
2400 		    trans->transid && atomic_read(&root->log_writers))
2401 			schedule();
2402 		mutex_lock(&root->log_mutex);
2403 		finish_wait(&root->log_writer_wait, &wait);
2404 	}
2405 }
2406 
2407 /*
2408  * btrfs_sync_log does sends a given tree log down to the disk and
2409  * updates the super blocks to record it.  When this call is done,
2410  * you know that any inodes previously logged are safely on disk only
2411  * if it returns 0.
2412  *
2413  * Any other return value means you need to call btrfs_commit_transaction.
2414  * Some of the edge cases for fsyncing directories that have had unlinks
2415  * or renames done in the past mean that sometimes the only safe
2416  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2417  * that has happened.
2418  */
2419 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2420 		   struct btrfs_root *root)
2421 {
2422 	int index1;
2423 	int index2;
2424 	int mark;
2425 	int ret;
2426 	struct btrfs_root *log = root->log_root;
2427 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2428 	unsigned long log_transid = 0;
2429 	struct blk_plug plug;
2430 
2431 	mutex_lock(&root->log_mutex);
2432 	log_transid = root->log_transid;
2433 	index1 = root->log_transid % 2;
2434 	if (atomic_read(&root->log_commit[index1])) {
2435 		wait_log_commit(trans, root, root->log_transid);
2436 		mutex_unlock(&root->log_mutex);
2437 		return 0;
2438 	}
2439 	atomic_set(&root->log_commit[index1], 1);
2440 
2441 	/* wait for previous tree log sync to complete */
2442 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2443 		wait_log_commit(trans, root, root->log_transid - 1);
2444 	while (1) {
2445 		int batch = atomic_read(&root->log_batch);
2446 		/* when we're on an ssd, just kick the log commit out */
2447 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2448 			mutex_unlock(&root->log_mutex);
2449 			schedule_timeout_uninterruptible(1);
2450 			mutex_lock(&root->log_mutex);
2451 		}
2452 		wait_for_writer(trans, root);
2453 		if (batch == atomic_read(&root->log_batch))
2454 			break;
2455 	}
2456 
2457 	/* bail out if we need to do a full commit */
2458 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2459 		ret = -EAGAIN;
2460 		btrfs_free_logged_extents(log, log_transid);
2461 		mutex_unlock(&root->log_mutex);
2462 		goto out;
2463 	}
2464 
2465 	if (log_transid % 2 == 0)
2466 		mark = EXTENT_DIRTY;
2467 	else
2468 		mark = EXTENT_NEW;
2469 
2470 	/* we start IO on  all the marked extents here, but we don't actually
2471 	 * wait for them until later.
2472 	 */
2473 	blk_start_plug(&plug);
2474 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2475 	if (ret) {
2476 		blk_finish_plug(&plug);
2477 		btrfs_abort_transaction(trans, root, ret);
2478 		btrfs_free_logged_extents(log, log_transid);
2479 		mutex_unlock(&root->log_mutex);
2480 		goto out;
2481 	}
2482 
2483 	btrfs_set_root_node(&log->root_item, log->node);
2484 
2485 	root->log_transid++;
2486 	log->log_transid = root->log_transid;
2487 	root->log_start_pid = 0;
2488 	smp_mb();
2489 	/*
2490 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2491 	 * in their headers. new modifications of the log will be written to
2492 	 * new positions. so it's safe to allow log writers to go in.
2493 	 */
2494 	mutex_unlock(&root->log_mutex);
2495 
2496 	mutex_lock(&log_root_tree->log_mutex);
2497 	atomic_inc(&log_root_tree->log_batch);
2498 	atomic_inc(&log_root_tree->log_writers);
2499 	mutex_unlock(&log_root_tree->log_mutex);
2500 
2501 	ret = update_log_root(trans, log);
2502 
2503 	mutex_lock(&log_root_tree->log_mutex);
2504 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2505 		smp_mb();
2506 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2507 			wake_up(&log_root_tree->log_writer_wait);
2508 	}
2509 
2510 	if (ret) {
2511 		blk_finish_plug(&plug);
2512 		if (ret != -ENOSPC) {
2513 			btrfs_abort_transaction(trans, root, ret);
2514 			mutex_unlock(&log_root_tree->log_mutex);
2515 			goto out;
2516 		}
2517 		root->fs_info->last_trans_log_full_commit = trans->transid;
2518 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2519 		btrfs_free_logged_extents(log, log_transid);
2520 		mutex_unlock(&log_root_tree->log_mutex);
2521 		ret = -EAGAIN;
2522 		goto out;
2523 	}
2524 
2525 	index2 = log_root_tree->log_transid % 2;
2526 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2527 		blk_finish_plug(&plug);
2528 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2529 		wait_log_commit(trans, log_root_tree,
2530 				log_root_tree->log_transid);
2531 		btrfs_free_logged_extents(log, log_transid);
2532 		mutex_unlock(&log_root_tree->log_mutex);
2533 		ret = 0;
2534 		goto out;
2535 	}
2536 	atomic_set(&log_root_tree->log_commit[index2], 1);
2537 
2538 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2539 		wait_log_commit(trans, log_root_tree,
2540 				log_root_tree->log_transid - 1);
2541 	}
2542 
2543 	wait_for_writer(trans, log_root_tree);
2544 
2545 	/*
2546 	 * now that we've moved on to the tree of log tree roots,
2547 	 * check the full commit flag again
2548 	 */
2549 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2550 		blk_finish_plug(&plug);
2551 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2552 		btrfs_free_logged_extents(log, log_transid);
2553 		mutex_unlock(&log_root_tree->log_mutex);
2554 		ret = -EAGAIN;
2555 		goto out_wake_log_root;
2556 	}
2557 
2558 	ret = btrfs_write_marked_extents(log_root_tree,
2559 					 &log_root_tree->dirty_log_pages,
2560 					 EXTENT_DIRTY | EXTENT_NEW);
2561 	blk_finish_plug(&plug);
2562 	if (ret) {
2563 		btrfs_abort_transaction(trans, root, ret);
2564 		btrfs_free_logged_extents(log, log_transid);
2565 		mutex_unlock(&log_root_tree->log_mutex);
2566 		goto out_wake_log_root;
2567 	}
2568 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2569 	btrfs_wait_marked_extents(log_root_tree,
2570 				  &log_root_tree->dirty_log_pages,
2571 				  EXTENT_NEW | EXTENT_DIRTY);
2572 	btrfs_wait_logged_extents(log, log_transid);
2573 
2574 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2575 				log_root_tree->node->start);
2576 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2577 				btrfs_header_level(log_root_tree->node));
2578 
2579 	log_root_tree->log_transid++;
2580 	smp_mb();
2581 
2582 	mutex_unlock(&log_root_tree->log_mutex);
2583 
2584 	/*
2585 	 * nobody else is going to jump in and write the the ctree
2586 	 * super here because the log_commit atomic below is protecting
2587 	 * us.  We must be called with a transaction handle pinning
2588 	 * the running transaction open, so a full commit can't hop
2589 	 * in and cause problems either.
2590 	 */
2591 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2592 	if (ret) {
2593 		btrfs_abort_transaction(trans, root, ret);
2594 		goto out_wake_log_root;
2595 	}
2596 
2597 	mutex_lock(&root->log_mutex);
2598 	if (root->last_log_commit < log_transid)
2599 		root->last_log_commit = log_transid;
2600 	mutex_unlock(&root->log_mutex);
2601 
2602 out_wake_log_root:
2603 	atomic_set(&log_root_tree->log_commit[index2], 0);
2604 	smp_mb();
2605 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2606 		wake_up(&log_root_tree->log_commit_wait[index2]);
2607 out:
2608 	atomic_set(&root->log_commit[index1], 0);
2609 	smp_mb();
2610 	if (waitqueue_active(&root->log_commit_wait[index1]))
2611 		wake_up(&root->log_commit_wait[index1]);
2612 	return ret;
2613 }
2614 
2615 static void free_log_tree(struct btrfs_trans_handle *trans,
2616 			  struct btrfs_root *log)
2617 {
2618 	int ret;
2619 	u64 start;
2620 	u64 end;
2621 	struct walk_control wc = {
2622 		.free = 1,
2623 		.process_func = process_one_buffer
2624 	};
2625 
2626 	ret = walk_log_tree(trans, log, &wc);
2627 	/* I don't think this can happen but just in case */
2628 	if (ret)
2629 		btrfs_abort_transaction(trans, log, ret);
2630 
2631 	while (1) {
2632 		ret = find_first_extent_bit(&log->dirty_log_pages,
2633 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2634 				NULL);
2635 		if (ret)
2636 			break;
2637 
2638 		clear_extent_bits(&log->dirty_log_pages, start, end,
2639 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2640 	}
2641 
2642 	/*
2643 	 * We may have short-circuited the log tree with the full commit logic
2644 	 * and left ordered extents on our list, so clear these out to keep us
2645 	 * from leaking inodes and memory.
2646 	 */
2647 	btrfs_free_logged_extents(log, 0);
2648 	btrfs_free_logged_extents(log, 1);
2649 
2650 	free_extent_buffer(log->node);
2651 	kfree(log);
2652 }
2653 
2654 /*
2655  * free all the extents used by the tree log.  This should be called
2656  * at commit time of the full transaction
2657  */
2658 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2659 {
2660 	if (root->log_root) {
2661 		free_log_tree(trans, root->log_root);
2662 		root->log_root = NULL;
2663 	}
2664 	return 0;
2665 }
2666 
2667 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2668 			     struct btrfs_fs_info *fs_info)
2669 {
2670 	if (fs_info->log_root_tree) {
2671 		free_log_tree(trans, fs_info->log_root_tree);
2672 		fs_info->log_root_tree = NULL;
2673 	}
2674 	return 0;
2675 }
2676 
2677 /*
2678  * If both a file and directory are logged, and unlinks or renames are
2679  * mixed in, we have a few interesting corners:
2680  *
2681  * create file X in dir Y
2682  * link file X to X.link in dir Y
2683  * fsync file X
2684  * unlink file X but leave X.link
2685  * fsync dir Y
2686  *
2687  * After a crash we would expect only X.link to exist.  But file X
2688  * didn't get fsync'd again so the log has back refs for X and X.link.
2689  *
2690  * We solve this by removing directory entries and inode backrefs from the
2691  * log when a file that was logged in the current transaction is
2692  * unlinked.  Any later fsync will include the updated log entries, and
2693  * we'll be able to reconstruct the proper directory items from backrefs.
2694  *
2695  * This optimizations allows us to avoid relogging the entire inode
2696  * or the entire directory.
2697  */
2698 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2699 				 struct btrfs_root *root,
2700 				 const char *name, int name_len,
2701 				 struct inode *dir, u64 index)
2702 {
2703 	struct btrfs_root *log;
2704 	struct btrfs_dir_item *di;
2705 	struct btrfs_path *path;
2706 	int ret;
2707 	int err = 0;
2708 	int bytes_del = 0;
2709 	u64 dir_ino = btrfs_ino(dir);
2710 
2711 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2712 		return 0;
2713 
2714 	ret = join_running_log_trans(root);
2715 	if (ret)
2716 		return 0;
2717 
2718 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2719 
2720 	log = root->log_root;
2721 	path = btrfs_alloc_path();
2722 	if (!path) {
2723 		err = -ENOMEM;
2724 		goto out_unlock;
2725 	}
2726 
2727 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2728 				   name, name_len, -1);
2729 	if (IS_ERR(di)) {
2730 		err = PTR_ERR(di);
2731 		goto fail;
2732 	}
2733 	if (di) {
2734 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2735 		bytes_del += name_len;
2736 		if (ret) {
2737 			err = ret;
2738 			goto fail;
2739 		}
2740 	}
2741 	btrfs_release_path(path);
2742 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2743 					 index, name, name_len, -1);
2744 	if (IS_ERR(di)) {
2745 		err = PTR_ERR(di);
2746 		goto fail;
2747 	}
2748 	if (di) {
2749 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2750 		bytes_del += name_len;
2751 		if (ret) {
2752 			err = ret;
2753 			goto fail;
2754 		}
2755 	}
2756 
2757 	/* update the directory size in the log to reflect the names
2758 	 * we have removed
2759 	 */
2760 	if (bytes_del) {
2761 		struct btrfs_key key;
2762 
2763 		key.objectid = dir_ino;
2764 		key.offset = 0;
2765 		key.type = BTRFS_INODE_ITEM_KEY;
2766 		btrfs_release_path(path);
2767 
2768 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2769 		if (ret < 0) {
2770 			err = ret;
2771 			goto fail;
2772 		}
2773 		if (ret == 0) {
2774 			struct btrfs_inode_item *item;
2775 			u64 i_size;
2776 
2777 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2778 					      struct btrfs_inode_item);
2779 			i_size = btrfs_inode_size(path->nodes[0], item);
2780 			if (i_size > bytes_del)
2781 				i_size -= bytes_del;
2782 			else
2783 				i_size = 0;
2784 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2785 			btrfs_mark_buffer_dirty(path->nodes[0]);
2786 		} else
2787 			ret = 0;
2788 		btrfs_release_path(path);
2789 	}
2790 fail:
2791 	btrfs_free_path(path);
2792 out_unlock:
2793 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2794 	if (ret == -ENOSPC) {
2795 		root->fs_info->last_trans_log_full_commit = trans->transid;
2796 		ret = 0;
2797 	} else if (ret < 0)
2798 		btrfs_abort_transaction(trans, root, ret);
2799 
2800 	btrfs_end_log_trans(root);
2801 
2802 	return err;
2803 }
2804 
2805 /* see comments for btrfs_del_dir_entries_in_log */
2806 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2807 			       struct btrfs_root *root,
2808 			       const char *name, int name_len,
2809 			       struct inode *inode, u64 dirid)
2810 {
2811 	struct btrfs_root *log;
2812 	u64 index;
2813 	int ret;
2814 
2815 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2816 		return 0;
2817 
2818 	ret = join_running_log_trans(root);
2819 	if (ret)
2820 		return 0;
2821 	log = root->log_root;
2822 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2823 
2824 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2825 				  dirid, &index);
2826 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2827 	if (ret == -ENOSPC) {
2828 		root->fs_info->last_trans_log_full_commit = trans->transid;
2829 		ret = 0;
2830 	} else if (ret < 0 && ret != -ENOENT)
2831 		btrfs_abort_transaction(trans, root, ret);
2832 	btrfs_end_log_trans(root);
2833 
2834 	return ret;
2835 }
2836 
2837 /*
2838  * creates a range item in the log for 'dirid'.  first_offset and
2839  * last_offset tell us which parts of the key space the log should
2840  * be considered authoritative for.
2841  */
2842 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2843 				       struct btrfs_root *log,
2844 				       struct btrfs_path *path,
2845 				       int key_type, u64 dirid,
2846 				       u64 first_offset, u64 last_offset)
2847 {
2848 	int ret;
2849 	struct btrfs_key key;
2850 	struct btrfs_dir_log_item *item;
2851 
2852 	key.objectid = dirid;
2853 	key.offset = first_offset;
2854 	if (key_type == BTRFS_DIR_ITEM_KEY)
2855 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2856 	else
2857 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2858 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2859 	if (ret)
2860 		return ret;
2861 
2862 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2863 			      struct btrfs_dir_log_item);
2864 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2865 	btrfs_mark_buffer_dirty(path->nodes[0]);
2866 	btrfs_release_path(path);
2867 	return 0;
2868 }
2869 
2870 /*
2871  * log all the items included in the current transaction for a given
2872  * directory.  This also creates the range items in the log tree required
2873  * to replay anything deleted before the fsync
2874  */
2875 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2876 			  struct btrfs_root *root, struct inode *inode,
2877 			  struct btrfs_path *path,
2878 			  struct btrfs_path *dst_path, int key_type,
2879 			  u64 min_offset, u64 *last_offset_ret)
2880 {
2881 	struct btrfs_key min_key;
2882 	struct btrfs_root *log = root->log_root;
2883 	struct extent_buffer *src;
2884 	int err = 0;
2885 	int ret;
2886 	int i;
2887 	int nritems;
2888 	u64 first_offset = min_offset;
2889 	u64 last_offset = (u64)-1;
2890 	u64 ino = btrfs_ino(inode);
2891 
2892 	log = root->log_root;
2893 
2894 	min_key.objectid = ino;
2895 	min_key.type = key_type;
2896 	min_key.offset = min_offset;
2897 
2898 	path->keep_locks = 1;
2899 
2900 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2901 
2902 	/*
2903 	 * we didn't find anything from this transaction, see if there
2904 	 * is anything at all
2905 	 */
2906 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2907 		min_key.objectid = ino;
2908 		min_key.type = key_type;
2909 		min_key.offset = (u64)-1;
2910 		btrfs_release_path(path);
2911 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2912 		if (ret < 0) {
2913 			btrfs_release_path(path);
2914 			return ret;
2915 		}
2916 		ret = btrfs_previous_item(root, path, ino, key_type);
2917 
2918 		/* if ret == 0 there are items for this type,
2919 		 * create a range to tell us the last key of this type.
2920 		 * otherwise, there are no items in this directory after
2921 		 * *min_offset, and we create a range to indicate that.
2922 		 */
2923 		if (ret == 0) {
2924 			struct btrfs_key tmp;
2925 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2926 					      path->slots[0]);
2927 			if (key_type == tmp.type)
2928 				first_offset = max(min_offset, tmp.offset) + 1;
2929 		}
2930 		goto done;
2931 	}
2932 
2933 	/* go backward to find any previous key */
2934 	ret = btrfs_previous_item(root, path, ino, key_type);
2935 	if (ret == 0) {
2936 		struct btrfs_key tmp;
2937 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2938 		if (key_type == tmp.type) {
2939 			first_offset = tmp.offset;
2940 			ret = overwrite_item(trans, log, dst_path,
2941 					     path->nodes[0], path->slots[0],
2942 					     &tmp);
2943 			if (ret) {
2944 				err = ret;
2945 				goto done;
2946 			}
2947 		}
2948 	}
2949 	btrfs_release_path(path);
2950 
2951 	/* find the first key from this transaction again */
2952 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2953 	if (WARN_ON(ret != 0))
2954 		goto done;
2955 
2956 	/*
2957 	 * we have a block from this transaction, log every item in it
2958 	 * from our directory
2959 	 */
2960 	while (1) {
2961 		struct btrfs_key tmp;
2962 		src = path->nodes[0];
2963 		nritems = btrfs_header_nritems(src);
2964 		for (i = path->slots[0]; i < nritems; i++) {
2965 			btrfs_item_key_to_cpu(src, &min_key, i);
2966 
2967 			if (min_key.objectid != ino || min_key.type != key_type)
2968 				goto done;
2969 			ret = overwrite_item(trans, log, dst_path, src, i,
2970 					     &min_key);
2971 			if (ret) {
2972 				err = ret;
2973 				goto done;
2974 			}
2975 		}
2976 		path->slots[0] = nritems;
2977 
2978 		/*
2979 		 * look ahead to the next item and see if it is also
2980 		 * from this directory and from this transaction
2981 		 */
2982 		ret = btrfs_next_leaf(root, path);
2983 		if (ret == 1) {
2984 			last_offset = (u64)-1;
2985 			goto done;
2986 		}
2987 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2988 		if (tmp.objectid != ino || tmp.type != key_type) {
2989 			last_offset = (u64)-1;
2990 			goto done;
2991 		}
2992 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2993 			ret = overwrite_item(trans, log, dst_path,
2994 					     path->nodes[0], path->slots[0],
2995 					     &tmp);
2996 			if (ret)
2997 				err = ret;
2998 			else
2999 				last_offset = tmp.offset;
3000 			goto done;
3001 		}
3002 	}
3003 done:
3004 	btrfs_release_path(path);
3005 	btrfs_release_path(dst_path);
3006 
3007 	if (err == 0) {
3008 		*last_offset_ret = last_offset;
3009 		/*
3010 		 * insert the log range keys to indicate where the log
3011 		 * is valid
3012 		 */
3013 		ret = insert_dir_log_key(trans, log, path, key_type,
3014 					 ino, first_offset, last_offset);
3015 		if (ret)
3016 			err = ret;
3017 	}
3018 	return err;
3019 }
3020 
3021 /*
3022  * logging directories is very similar to logging inodes, We find all the items
3023  * from the current transaction and write them to the log.
3024  *
3025  * The recovery code scans the directory in the subvolume, and if it finds a
3026  * key in the range logged that is not present in the log tree, then it means
3027  * that dir entry was unlinked during the transaction.
3028  *
3029  * In order for that scan to work, we must include one key smaller than
3030  * the smallest logged by this transaction and one key larger than the largest
3031  * key logged by this transaction.
3032  */
3033 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3034 			  struct btrfs_root *root, struct inode *inode,
3035 			  struct btrfs_path *path,
3036 			  struct btrfs_path *dst_path)
3037 {
3038 	u64 min_key;
3039 	u64 max_key;
3040 	int ret;
3041 	int key_type = BTRFS_DIR_ITEM_KEY;
3042 
3043 again:
3044 	min_key = 0;
3045 	max_key = 0;
3046 	while (1) {
3047 		ret = log_dir_items(trans, root, inode, path,
3048 				    dst_path, key_type, min_key,
3049 				    &max_key);
3050 		if (ret)
3051 			return ret;
3052 		if (max_key == (u64)-1)
3053 			break;
3054 		min_key = max_key + 1;
3055 	}
3056 
3057 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3058 		key_type = BTRFS_DIR_INDEX_KEY;
3059 		goto again;
3060 	}
3061 	return 0;
3062 }
3063 
3064 /*
3065  * a helper function to drop items from the log before we relog an
3066  * inode.  max_key_type indicates the highest item type to remove.
3067  * This cannot be run for file data extents because it does not
3068  * free the extents they point to.
3069  */
3070 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3071 				  struct btrfs_root *log,
3072 				  struct btrfs_path *path,
3073 				  u64 objectid, int max_key_type)
3074 {
3075 	int ret;
3076 	struct btrfs_key key;
3077 	struct btrfs_key found_key;
3078 	int start_slot;
3079 
3080 	key.objectid = objectid;
3081 	key.type = max_key_type;
3082 	key.offset = (u64)-1;
3083 
3084 	while (1) {
3085 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3086 		BUG_ON(ret == 0); /* Logic error */
3087 		if (ret < 0)
3088 			break;
3089 
3090 		if (path->slots[0] == 0)
3091 			break;
3092 
3093 		path->slots[0]--;
3094 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3095 				      path->slots[0]);
3096 
3097 		if (found_key.objectid != objectid)
3098 			break;
3099 
3100 		found_key.offset = 0;
3101 		found_key.type = 0;
3102 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3103 				       &start_slot);
3104 
3105 		ret = btrfs_del_items(trans, log, path, start_slot,
3106 				      path->slots[0] - start_slot + 1);
3107 		/*
3108 		 * If start slot isn't 0 then we don't need to re-search, we've
3109 		 * found the last guy with the objectid in this tree.
3110 		 */
3111 		if (ret || start_slot != 0)
3112 			break;
3113 		btrfs_release_path(path);
3114 	}
3115 	btrfs_release_path(path);
3116 	if (ret > 0)
3117 		ret = 0;
3118 	return ret;
3119 }
3120 
3121 static void fill_inode_item(struct btrfs_trans_handle *trans,
3122 			    struct extent_buffer *leaf,
3123 			    struct btrfs_inode_item *item,
3124 			    struct inode *inode, int log_inode_only)
3125 {
3126 	struct btrfs_map_token token;
3127 
3128 	btrfs_init_map_token(&token);
3129 
3130 	if (log_inode_only) {
3131 		/* set the generation to zero so the recover code
3132 		 * can tell the difference between an logging
3133 		 * just to say 'this inode exists' and a logging
3134 		 * to say 'update this inode with these values'
3135 		 */
3136 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3137 		btrfs_set_token_inode_size(leaf, item, 0, &token);
3138 	} else {
3139 		btrfs_set_token_inode_generation(leaf, item,
3140 						 BTRFS_I(inode)->generation,
3141 						 &token);
3142 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3143 	}
3144 
3145 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3146 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3147 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3148 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3149 
3150 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3151 				     inode->i_atime.tv_sec, &token);
3152 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3153 				      inode->i_atime.tv_nsec, &token);
3154 
3155 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3156 				     inode->i_mtime.tv_sec, &token);
3157 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3158 				      inode->i_mtime.tv_nsec, &token);
3159 
3160 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3161 				     inode->i_ctime.tv_sec, &token);
3162 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3163 				      inode->i_ctime.tv_nsec, &token);
3164 
3165 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3166 				     &token);
3167 
3168 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3169 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3170 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3171 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3172 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3173 }
3174 
3175 static int log_inode_item(struct btrfs_trans_handle *trans,
3176 			  struct btrfs_root *log, struct btrfs_path *path,
3177 			  struct inode *inode)
3178 {
3179 	struct btrfs_inode_item *inode_item;
3180 	int ret;
3181 
3182 	ret = btrfs_insert_empty_item(trans, log, path,
3183 				      &BTRFS_I(inode)->location,
3184 				      sizeof(*inode_item));
3185 	if (ret && ret != -EEXIST)
3186 		return ret;
3187 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3188 				    struct btrfs_inode_item);
3189 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3190 	btrfs_release_path(path);
3191 	return 0;
3192 }
3193 
3194 static noinline int copy_items(struct btrfs_trans_handle *trans,
3195 			       struct inode *inode,
3196 			       struct btrfs_path *dst_path,
3197 			       struct extent_buffer *src,
3198 			       int start_slot, int nr, int inode_only)
3199 {
3200 	unsigned long src_offset;
3201 	unsigned long dst_offset;
3202 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3203 	struct btrfs_file_extent_item *extent;
3204 	struct btrfs_inode_item *inode_item;
3205 	int ret;
3206 	struct btrfs_key *ins_keys;
3207 	u32 *ins_sizes;
3208 	char *ins_data;
3209 	int i;
3210 	struct list_head ordered_sums;
3211 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3212 
3213 	INIT_LIST_HEAD(&ordered_sums);
3214 
3215 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3216 			   nr * sizeof(u32), GFP_NOFS);
3217 	if (!ins_data)
3218 		return -ENOMEM;
3219 
3220 	ins_sizes = (u32 *)ins_data;
3221 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3222 
3223 	for (i = 0; i < nr; i++) {
3224 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3225 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3226 	}
3227 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3228 				       ins_keys, ins_sizes, nr);
3229 	if (ret) {
3230 		kfree(ins_data);
3231 		return ret;
3232 	}
3233 
3234 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3235 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3236 						   dst_path->slots[0]);
3237 
3238 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3239 
3240 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3241 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3242 						    dst_path->slots[0],
3243 						    struct btrfs_inode_item);
3244 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3245 					inode, inode_only == LOG_INODE_EXISTS);
3246 		} else {
3247 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3248 					   src_offset, ins_sizes[i]);
3249 		}
3250 
3251 		/* take a reference on file data extents so that truncates
3252 		 * or deletes of this inode don't have to relog the inode
3253 		 * again
3254 		 */
3255 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3256 		    !skip_csum) {
3257 			int found_type;
3258 			extent = btrfs_item_ptr(src, start_slot + i,
3259 						struct btrfs_file_extent_item);
3260 
3261 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3262 				continue;
3263 
3264 			found_type = btrfs_file_extent_type(src, extent);
3265 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3266 				u64 ds, dl, cs, cl;
3267 				ds = btrfs_file_extent_disk_bytenr(src,
3268 								extent);
3269 				/* ds == 0 is a hole */
3270 				if (ds == 0)
3271 					continue;
3272 
3273 				dl = btrfs_file_extent_disk_num_bytes(src,
3274 								extent);
3275 				cs = btrfs_file_extent_offset(src, extent);
3276 				cl = btrfs_file_extent_num_bytes(src,
3277 								extent);
3278 				if (btrfs_file_extent_compression(src,
3279 								  extent)) {
3280 					cs = 0;
3281 					cl = dl;
3282 				}
3283 
3284 				ret = btrfs_lookup_csums_range(
3285 						log->fs_info->csum_root,
3286 						ds + cs, ds + cs + cl - 1,
3287 						&ordered_sums, 0);
3288 				if (ret) {
3289 					btrfs_release_path(dst_path);
3290 					kfree(ins_data);
3291 					return ret;
3292 				}
3293 			}
3294 		}
3295 	}
3296 
3297 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3298 	btrfs_release_path(dst_path);
3299 	kfree(ins_data);
3300 
3301 	/*
3302 	 * we have to do this after the loop above to avoid changing the
3303 	 * log tree while trying to change the log tree.
3304 	 */
3305 	ret = 0;
3306 	while (!list_empty(&ordered_sums)) {
3307 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3308 						   struct btrfs_ordered_sum,
3309 						   list);
3310 		if (!ret)
3311 			ret = btrfs_csum_file_blocks(trans, log, sums);
3312 		list_del(&sums->list);
3313 		kfree(sums);
3314 	}
3315 	return ret;
3316 }
3317 
3318 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3319 {
3320 	struct extent_map *em1, *em2;
3321 
3322 	em1 = list_entry(a, struct extent_map, list);
3323 	em2 = list_entry(b, struct extent_map, list);
3324 
3325 	if (em1->start < em2->start)
3326 		return -1;
3327 	else if (em1->start > em2->start)
3328 		return 1;
3329 	return 0;
3330 }
3331 
3332 static int log_one_extent(struct btrfs_trans_handle *trans,
3333 			  struct inode *inode, struct btrfs_root *root,
3334 			  struct extent_map *em, struct btrfs_path *path)
3335 {
3336 	struct btrfs_root *log = root->log_root;
3337 	struct btrfs_file_extent_item *fi;
3338 	struct extent_buffer *leaf;
3339 	struct btrfs_ordered_extent *ordered;
3340 	struct list_head ordered_sums;
3341 	struct btrfs_map_token token;
3342 	struct btrfs_key key;
3343 	u64 mod_start = em->mod_start;
3344 	u64 mod_len = em->mod_len;
3345 	u64 csum_offset;
3346 	u64 csum_len;
3347 	u64 extent_offset = em->start - em->orig_start;
3348 	u64 block_len;
3349 	int ret;
3350 	int index = log->log_transid % 2;
3351 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3352 
3353 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3354 				   em->start + em->len, NULL, 0);
3355 	if (ret)
3356 		return ret;
3357 
3358 	INIT_LIST_HEAD(&ordered_sums);
3359 	btrfs_init_map_token(&token);
3360 	key.objectid = btrfs_ino(inode);
3361 	key.type = BTRFS_EXTENT_DATA_KEY;
3362 	key.offset = em->start;
3363 
3364 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3365 	if (ret)
3366 		return ret;
3367 	leaf = path->nodes[0];
3368 	fi = btrfs_item_ptr(leaf, path->slots[0],
3369 			    struct btrfs_file_extent_item);
3370 
3371 	btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3372 					       &token);
3373 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3374 		skip_csum = true;
3375 		btrfs_set_token_file_extent_type(leaf, fi,
3376 						 BTRFS_FILE_EXTENT_PREALLOC,
3377 						 &token);
3378 	} else {
3379 		btrfs_set_token_file_extent_type(leaf, fi,
3380 						 BTRFS_FILE_EXTENT_REG,
3381 						 &token);
3382 		if (em->block_start == EXTENT_MAP_HOLE)
3383 			skip_csum = true;
3384 	}
3385 
3386 	block_len = max(em->block_len, em->orig_block_len);
3387 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3388 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3389 							em->block_start,
3390 							&token);
3391 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3392 							   &token);
3393 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3394 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3395 							em->block_start -
3396 							extent_offset, &token);
3397 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3398 							   &token);
3399 	} else {
3400 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3401 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3402 							   &token);
3403 	}
3404 
3405 	btrfs_set_token_file_extent_offset(leaf, fi,
3406 					   em->start - em->orig_start,
3407 					   &token);
3408 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3409 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3410 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3411 						&token);
3412 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3413 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3414 	btrfs_mark_buffer_dirty(leaf);
3415 
3416 	btrfs_release_path(path);
3417 	if (ret) {
3418 		return ret;
3419 	}
3420 
3421 	if (skip_csum)
3422 		return 0;
3423 
3424 	/*
3425 	 * First check and see if our csums are on our outstanding ordered
3426 	 * extents.
3427 	 */
3428 again:
3429 	spin_lock_irq(&log->log_extents_lock[index]);
3430 	list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3431 		struct btrfs_ordered_sum *sum;
3432 
3433 		if (!mod_len)
3434 			break;
3435 
3436 		if (ordered->inode != inode)
3437 			continue;
3438 
3439 		if (ordered->file_offset + ordered->len <= mod_start ||
3440 		    mod_start + mod_len <= ordered->file_offset)
3441 			continue;
3442 
3443 		/*
3444 		 * We are going to copy all the csums on this ordered extent, so
3445 		 * go ahead and adjust mod_start and mod_len in case this
3446 		 * ordered extent has already been logged.
3447 		 */
3448 		if (ordered->file_offset > mod_start) {
3449 			if (ordered->file_offset + ordered->len >=
3450 			    mod_start + mod_len)
3451 				mod_len = ordered->file_offset - mod_start;
3452 			/*
3453 			 * If we have this case
3454 			 *
3455 			 * |--------- logged extent ---------|
3456 			 *       |----- ordered extent ----|
3457 			 *
3458 			 * Just don't mess with mod_start and mod_len, we'll
3459 			 * just end up logging more csums than we need and it
3460 			 * will be ok.
3461 			 */
3462 		} else {
3463 			if (ordered->file_offset + ordered->len <
3464 			    mod_start + mod_len) {
3465 				mod_len = (mod_start + mod_len) -
3466 					(ordered->file_offset + ordered->len);
3467 				mod_start = ordered->file_offset +
3468 					ordered->len;
3469 			} else {
3470 				mod_len = 0;
3471 			}
3472 		}
3473 
3474 		/*
3475 		 * To keep us from looping for the above case of an ordered
3476 		 * extent that falls inside of the logged extent.
3477 		 */
3478 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3479 				     &ordered->flags))
3480 			continue;
3481 		atomic_inc(&ordered->refs);
3482 		spin_unlock_irq(&log->log_extents_lock[index]);
3483 		/*
3484 		 * we've dropped the lock, we must either break or
3485 		 * start over after this.
3486 		 */
3487 
3488 		wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3489 
3490 		list_for_each_entry(sum, &ordered->list, list) {
3491 			ret = btrfs_csum_file_blocks(trans, log, sum);
3492 			if (ret) {
3493 				btrfs_put_ordered_extent(ordered);
3494 				goto unlocked;
3495 			}
3496 		}
3497 		btrfs_put_ordered_extent(ordered);
3498 		goto again;
3499 
3500 	}
3501 	spin_unlock_irq(&log->log_extents_lock[index]);
3502 unlocked:
3503 
3504 	if (!mod_len || ret)
3505 		return ret;
3506 
3507 	if (em->compress_type) {
3508 		csum_offset = 0;
3509 		csum_len = block_len;
3510 	} else {
3511 		csum_offset = mod_start - em->start;
3512 		csum_len = mod_len;
3513 	}
3514 
3515 	/* block start is already adjusted for the file extent offset. */
3516 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3517 				       em->block_start + csum_offset,
3518 				       em->block_start + csum_offset +
3519 				       csum_len - 1, &ordered_sums, 0);
3520 	if (ret)
3521 		return ret;
3522 
3523 	while (!list_empty(&ordered_sums)) {
3524 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3525 						   struct btrfs_ordered_sum,
3526 						   list);
3527 		if (!ret)
3528 			ret = btrfs_csum_file_blocks(trans, log, sums);
3529 		list_del(&sums->list);
3530 		kfree(sums);
3531 	}
3532 
3533 	return ret;
3534 }
3535 
3536 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3537 				     struct btrfs_root *root,
3538 				     struct inode *inode,
3539 				     struct btrfs_path *path)
3540 {
3541 	struct extent_map *em, *n;
3542 	struct list_head extents;
3543 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3544 	u64 test_gen;
3545 	int ret = 0;
3546 	int num = 0;
3547 
3548 	INIT_LIST_HEAD(&extents);
3549 
3550 	write_lock(&tree->lock);
3551 	test_gen = root->fs_info->last_trans_committed;
3552 
3553 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3554 		list_del_init(&em->list);
3555 
3556 		/*
3557 		 * Just an arbitrary number, this can be really CPU intensive
3558 		 * once we start getting a lot of extents, and really once we
3559 		 * have a bunch of extents we just want to commit since it will
3560 		 * be faster.
3561 		 */
3562 		if (++num > 32768) {
3563 			list_del_init(&tree->modified_extents);
3564 			ret = -EFBIG;
3565 			goto process;
3566 		}
3567 
3568 		if (em->generation <= test_gen)
3569 			continue;
3570 		/* Need a ref to keep it from getting evicted from cache */
3571 		atomic_inc(&em->refs);
3572 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3573 		list_add_tail(&em->list, &extents);
3574 		num++;
3575 	}
3576 
3577 	list_sort(NULL, &extents, extent_cmp);
3578 
3579 process:
3580 	while (!list_empty(&extents)) {
3581 		em = list_entry(extents.next, struct extent_map, list);
3582 
3583 		list_del_init(&em->list);
3584 
3585 		/*
3586 		 * If we had an error we just need to delete everybody from our
3587 		 * private list.
3588 		 */
3589 		if (ret) {
3590 			clear_em_logging(tree, em);
3591 			free_extent_map(em);
3592 			continue;
3593 		}
3594 
3595 		write_unlock(&tree->lock);
3596 
3597 		ret = log_one_extent(trans, inode, root, em, path);
3598 		write_lock(&tree->lock);
3599 		clear_em_logging(tree, em);
3600 		free_extent_map(em);
3601 	}
3602 	WARN_ON(!list_empty(&extents));
3603 	write_unlock(&tree->lock);
3604 
3605 	btrfs_release_path(path);
3606 	return ret;
3607 }
3608 
3609 /* log a single inode in the tree log.
3610  * At least one parent directory for this inode must exist in the tree
3611  * or be logged already.
3612  *
3613  * Any items from this inode changed by the current transaction are copied
3614  * to the log tree.  An extra reference is taken on any extents in this
3615  * file, allowing us to avoid a whole pile of corner cases around logging
3616  * blocks that have been removed from the tree.
3617  *
3618  * See LOG_INODE_ALL and related defines for a description of what inode_only
3619  * does.
3620  *
3621  * This handles both files and directories.
3622  */
3623 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3624 			     struct btrfs_root *root, struct inode *inode,
3625 			     int inode_only)
3626 {
3627 	struct btrfs_path *path;
3628 	struct btrfs_path *dst_path;
3629 	struct btrfs_key min_key;
3630 	struct btrfs_key max_key;
3631 	struct btrfs_root *log = root->log_root;
3632 	struct extent_buffer *src = NULL;
3633 	int err = 0;
3634 	int ret;
3635 	int nritems;
3636 	int ins_start_slot = 0;
3637 	int ins_nr;
3638 	bool fast_search = false;
3639 	u64 ino = btrfs_ino(inode);
3640 
3641 	path = btrfs_alloc_path();
3642 	if (!path)
3643 		return -ENOMEM;
3644 	dst_path = btrfs_alloc_path();
3645 	if (!dst_path) {
3646 		btrfs_free_path(path);
3647 		return -ENOMEM;
3648 	}
3649 
3650 	min_key.objectid = ino;
3651 	min_key.type = BTRFS_INODE_ITEM_KEY;
3652 	min_key.offset = 0;
3653 
3654 	max_key.objectid = ino;
3655 
3656 
3657 	/* today the code can only do partial logging of directories */
3658 	if (S_ISDIR(inode->i_mode) ||
3659 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3660 		       &BTRFS_I(inode)->runtime_flags) &&
3661 	     inode_only == LOG_INODE_EXISTS))
3662 		max_key.type = BTRFS_XATTR_ITEM_KEY;
3663 	else
3664 		max_key.type = (u8)-1;
3665 	max_key.offset = (u64)-1;
3666 
3667 	/* Only run delayed items if we are a dir or a new file */
3668 	if (S_ISDIR(inode->i_mode) ||
3669 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3670 		ret = btrfs_commit_inode_delayed_items(trans, inode);
3671 		if (ret) {
3672 			btrfs_free_path(path);
3673 			btrfs_free_path(dst_path);
3674 			return ret;
3675 		}
3676 	}
3677 
3678 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3679 
3680 	btrfs_get_logged_extents(log, inode);
3681 
3682 	/*
3683 	 * a brute force approach to making sure we get the most uptodate
3684 	 * copies of everything.
3685 	 */
3686 	if (S_ISDIR(inode->i_mode)) {
3687 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3688 
3689 		if (inode_only == LOG_INODE_EXISTS)
3690 			max_key_type = BTRFS_XATTR_ITEM_KEY;
3691 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3692 	} else {
3693 		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3694 				       &BTRFS_I(inode)->runtime_flags)) {
3695 			clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3696 				  &BTRFS_I(inode)->runtime_flags);
3697 			ret = btrfs_truncate_inode_items(trans, log,
3698 							 inode, 0, 0);
3699 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3700 					      &BTRFS_I(inode)->runtime_flags) ||
3701 			   inode_only == LOG_INODE_EXISTS) {
3702 			if (inode_only == LOG_INODE_ALL)
3703 				fast_search = true;
3704 			max_key.type = BTRFS_XATTR_ITEM_KEY;
3705 			ret = drop_objectid_items(trans, log, path, ino,
3706 						  max_key.type);
3707 		} else {
3708 			if (inode_only == LOG_INODE_ALL)
3709 				fast_search = true;
3710 			ret = log_inode_item(trans, log, dst_path, inode);
3711 			if (ret) {
3712 				err = ret;
3713 				goto out_unlock;
3714 			}
3715 			goto log_extents;
3716 		}
3717 
3718 	}
3719 	if (ret) {
3720 		err = ret;
3721 		goto out_unlock;
3722 	}
3723 	path->keep_locks = 1;
3724 
3725 	while (1) {
3726 		ins_nr = 0;
3727 		ret = btrfs_search_forward(root, &min_key,
3728 					   path, trans->transid);
3729 		if (ret != 0)
3730 			break;
3731 again:
3732 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
3733 		if (min_key.objectid != ino)
3734 			break;
3735 		if (min_key.type > max_key.type)
3736 			break;
3737 
3738 		src = path->nodes[0];
3739 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3740 			ins_nr++;
3741 			goto next_slot;
3742 		} else if (!ins_nr) {
3743 			ins_start_slot = path->slots[0];
3744 			ins_nr = 1;
3745 			goto next_slot;
3746 		}
3747 
3748 		ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3749 				 ins_nr, inode_only);
3750 		if (ret) {
3751 			err = ret;
3752 			goto out_unlock;
3753 		}
3754 		ins_nr = 1;
3755 		ins_start_slot = path->slots[0];
3756 next_slot:
3757 
3758 		nritems = btrfs_header_nritems(path->nodes[0]);
3759 		path->slots[0]++;
3760 		if (path->slots[0] < nritems) {
3761 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3762 					      path->slots[0]);
3763 			goto again;
3764 		}
3765 		if (ins_nr) {
3766 			ret = copy_items(trans, inode, dst_path, src,
3767 					 ins_start_slot,
3768 					 ins_nr, inode_only);
3769 			if (ret) {
3770 				err = ret;
3771 				goto out_unlock;
3772 			}
3773 			ins_nr = 0;
3774 		}
3775 		btrfs_release_path(path);
3776 
3777 		if (min_key.offset < (u64)-1) {
3778 			min_key.offset++;
3779 		} else if (min_key.type < max_key.type) {
3780 			min_key.type++;
3781 			min_key.offset = 0;
3782 		} else {
3783 			break;
3784 		}
3785 	}
3786 	if (ins_nr) {
3787 		ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3788 				 ins_nr, inode_only);
3789 		if (ret) {
3790 			err = ret;
3791 			goto out_unlock;
3792 		}
3793 		ins_nr = 0;
3794 	}
3795 
3796 log_extents:
3797 	btrfs_release_path(path);
3798 	btrfs_release_path(dst_path);
3799 	if (fast_search) {
3800 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3801 		if (ret) {
3802 			err = ret;
3803 			goto out_unlock;
3804 		}
3805 	} else if (inode_only == LOG_INODE_ALL) {
3806 		struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3807 		struct extent_map *em, *n;
3808 
3809 		write_lock(&tree->lock);
3810 		list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3811 			list_del_init(&em->list);
3812 		write_unlock(&tree->lock);
3813 	}
3814 
3815 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3816 		ret = log_directory_changes(trans, root, inode, path, dst_path);
3817 		if (ret) {
3818 			err = ret;
3819 			goto out_unlock;
3820 		}
3821 	}
3822 	BTRFS_I(inode)->logged_trans = trans->transid;
3823 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3824 out_unlock:
3825 	if (err)
3826 		btrfs_free_logged_extents(log, log->log_transid);
3827 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3828 
3829 	btrfs_free_path(path);
3830 	btrfs_free_path(dst_path);
3831 	return err;
3832 }
3833 
3834 /*
3835  * follow the dentry parent pointers up the chain and see if any
3836  * of the directories in it require a full commit before they can
3837  * be logged.  Returns zero if nothing special needs to be done or 1 if
3838  * a full commit is required.
3839  */
3840 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3841 					       struct inode *inode,
3842 					       struct dentry *parent,
3843 					       struct super_block *sb,
3844 					       u64 last_committed)
3845 {
3846 	int ret = 0;
3847 	struct btrfs_root *root;
3848 	struct dentry *old_parent = NULL;
3849 	struct inode *orig_inode = inode;
3850 
3851 	/*
3852 	 * for regular files, if its inode is already on disk, we don't
3853 	 * have to worry about the parents at all.  This is because
3854 	 * we can use the last_unlink_trans field to record renames
3855 	 * and other fun in this file.
3856 	 */
3857 	if (S_ISREG(inode->i_mode) &&
3858 	    BTRFS_I(inode)->generation <= last_committed &&
3859 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
3860 			goto out;
3861 
3862 	if (!S_ISDIR(inode->i_mode)) {
3863 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3864 			goto out;
3865 		inode = parent->d_inode;
3866 	}
3867 
3868 	while (1) {
3869 		/*
3870 		 * If we are logging a directory then we start with our inode,
3871 		 * not our parents inode, so we need to skipp setting the
3872 		 * logged_trans so that further down in the log code we don't
3873 		 * think this inode has already been logged.
3874 		 */
3875 		if (inode != orig_inode)
3876 			BTRFS_I(inode)->logged_trans = trans->transid;
3877 		smp_mb();
3878 
3879 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3880 			root = BTRFS_I(inode)->root;
3881 
3882 			/*
3883 			 * make sure any commits to the log are forced
3884 			 * to be full commits
3885 			 */
3886 			root->fs_info->last_trans_log_full_commit =
3887 				trans->transid;
3888 			ret = 1;
3889 			break;
3890 		}
3891 
3892 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3893 			break;
3894 
3895 		if (IS_ROOT(parent))
3896 			break;
3897 
3898 		parent = dget_parent(parent);
3899 		dput(old_parent);
3900 		old_parent = parent;
3901 		inode = parent->d_inode;
3902 
3903 	}
3904 	dput(old_parent);
3905 out:
3906 	return ret;
3907 }
3908 
3909 /*
3910  * helper function around btrfs_log_inode to make sure newly created
3911  * parent directories also end up in the log.  A minimal inode and backref
3912  * only logging is done of any parent directories that are older than
3913  * the last committed transaction
3914  */
3915 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3916 			    	  struct btrfs_root *root, struct inode *inode,
3917 			    	  struct dentry *parent, int exists_only)
3918 {
3919 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3920 	struct super_block *sb;
3921 	struct dentry *old_parent = NULL;
3922 	int ret = 0;
3923 	u64 last_committed = root->fs_info->last_trans_committed;
3924 
3925 	sb = inode->i_sb;
3926 
3927 	if (btrfs_test_opt(root, NOTREELOG)) {
3928 		ret = 1;
3929 		goto end_no_trans;
3930 	}
3931 
3932 	if (root->fs_info->last_trans_log_full_commit >
3933 	    root->fs_info->last_trans_committed) {
3934 		ret = 1;
3935 		goto end_no_trans;
3936 	}
3937 
3938 	if (root != BTRFS_I(inode)->root ||
3939 	    btrfs_root_refs(&root->root_item) == 0) {
3940 		ret = 1;
3941 		goto end_no_trans;
3942 	}
3943 
3944 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3945 					 sb, last_committed);
3946 	if (ret)
3947 		goto end_no_trans;
3948 
3949 	if (btrfs_inode_in_log(inode, trans->transid)) {
3950 		ret = BTRFS_NO_LOG_SYNC;
3951 		goto end_no_trans;
3952 	}
3953 
3954 	ret = start_log_trans(trans, root);
3955 	if (ret)
3956 		goto end_trans;
3957 
3958 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3959 	if (ret)
3960 		goto end_trans;
3961 
3962 	/*
3963 	 * for regular files, if its inode is already on disk, we don't
3964 	 * have to worry about the parents at all.  This is because
3965 	 * we can use the last_unlink_trans field to record renames
3966 	 * and other fun in this file.
3967 	 */
3968 	if (S_ISREG(inode->i_mode) &&
3969 	    BTRFS_I(inode)->generation <= last_committed &&
3970 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3971 		ret = 0;
3972 		goto end_trans;
3973 	}
3974 
3975 	inode_only = LOG_INODE_EXISTS;
3976 	while (1) {
3977 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3978 			break;
3979 
3980 		inode = parent->d_inode;
3981 		if (root != BTRFS_I(inode)->root)
3982 			break;
3983 
3984 		if (BTRFS_I(inode)->generation >
3985 		    root->fs_info->last_trans_committed) {
3986 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3987 			if (ret)
3988 				goto end_trans;
3989 		}
3990 		if (IS_ROOT(parent))
3991 			break;
3992 
3993 		parent = dget_parent(parent);
3994 		dput(old_parent);
3995 		old_parent = parent;
3996 	}
3997 	ret = 0;
3998 end_trans:
3999 	dput(old_parent);
4000 	if (ret < 0) {
4001 		root->fs_info->last_trans_log_full_commit = trans->transid;
4002 		ret = 1;
4003 	}
4004 	btrfs_end_log_trans(root);
4005 end_no_trans:
4006 	return ret;
4007 }
4008 
4009 /*
4010  * it is not safe to log dentry if the chunk root has added new
4011  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4012  * If this returns 1, you must commit the transaction to safely get your
4013  * data on disk.
4014  */
4015 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4016 			  struct btrfs_root *root, struct dentry *dentry)
4017 {
4018 	struct dentry *parent = dget_parent(dentry);
4019 	int ret;
4020 
4021 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
4022 	dput(parent);
4023 
4024 	return ret;
4025 }
4026 
4027 /*
4028  * should be called during mount to recover any replay any log trees
4029  * from the FS
4030  */
4031 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4032 {
4033 	int ret;
4034 	struct btrfs_path *path;
4035 	struct btrfs_trans_handle *trans;
4036 	struct btrfs_key key;
4037 	struct btrfs_key found_key;
4038 	struct btrfs_key tmp_key;
4039 	struct btrfs_root *log;
4040 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4041 	struct walk_control wc = {
4042 		.process_func = process_one_buffer,
4043 		.stage = 0,
4044 	};
4045 
4046 	path = btrfs_alloc_path();
4047 	if (!path)
4048 		return -ENOMEM;
4049 
4050 	fs_info->log_root_recovering = 1;
4051 
4052 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4053 	if (IS_ERR(trans)) {
4054 		ret = PTR_ERR(trans);
4055 		goto error;
4056 	}
4057 
4058 	wc.trans = trans;
4059 	wc.pin = 1;
4060 
4061 	ret = walk_log_tree(trans, log_root_tree, &wc);
4062 	if (ret) {
4063 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
4064 			    "recovering log root tree.");
4065 		goto error;
4066 	}
4067 
4068 again:
4069 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
4070 	key.offset = (u64)-1;
4071 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4072 
4073 	while (1) {
4074 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4075 
4076 		if (ret < 0) {
4077 			btrfs_error(fs_info, ret,
4078 				    "Couldn't find tree log root.");
4079 			goto error;
4080 		}
4081 		if (ret > 0) {
4082 			if (path->slots[0] == 0)
4083 				break;
4084 			path->slots[0]--;
4085 		}
4086 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4087 				      path->slots[0]);
4088 		btrfs_release_path(path);
4089 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4090 			break;
4091 
4092 		log = btrfs_read_fs_root(log_root_tree, &found_key);
4093 		if (IS_ERR(log)) {
4094 			ret = PTR_ERR(log);
4095 			btrfs_error(fs_info, ret,
4096 				    "Couldn't read tree log root.");
4097 			goto error;
4098 		}
4099 
4100 		tmp_key.objectid = found_key.offset;
4101 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4102 		tmp_key.offset = (u64)-1;
4103 
4104 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4105 		if (IS_ERR(wc.replay_dest)) {
4106 			ret = PTR_ERR(wc.replay_dest);
4107 			free_extent_buffer(log->node);
4108 			free_extent_buffer(log->commit_root);
4109 			kfree(log);
4110 			btrfs_error(fs_info, ret, "Couldn't read target root "
4111 				    "for tree log recovery.");
4112 			goto error;
4113 		}
4114 
4115 		wc.replay_dest->log_root = log;
4116 		btrfs_record_root_in_trans(trans, wc.replay_dest);
4117 		ret = walk_log_tree(trans, log, &wc);
4118 
4119 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4120 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4121 						      path);
4122 		}
4123 
4124 		key.offset = found_key.offset - 1;
4125 		wc.replay_dest->log_root = NULL;
4126 		free_extent_buffer(log->node);
4127 		free_extent_buffer(log->commit_root);
4128 		kfree(log);
4129 
4130 		if (ret)
4131 			goto error;
4132 
4133 		if (found_key.offset == 0)
4134 			break;
4135 	}
4136 	btrfs_release_path(path);
4137 
4138 	/* step one is to pin it all, step two is to replay just inodes */
4139 	if (wc.pin) {
4140 		wc.pin = 0;
4141 		wc.process_func = replay_one_buffer;
4142 		wc.stage = LOG_WALK_REPLAY_INODES;
4143 		goto again;
4144 	}
4145 	/* step three is to replay everything */
4146 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4147 		wc.stage++;
4148 		goto again;
4149 	}
4150 
4151 	btrfs_free_path(path);
4152 
4153 	/* step 4: commit the transaction, which also unpins the blocks */
4154 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4155 	if (ret)
4156 		return ret;
4157 
4158 	free_extent_buffer(log_root_tree->node);
4159 	log_root_tree->log_root = NULL;
4160 	fs_info->log_root_recovering = 0;
4161 	kfree(log_root_tree);
4162 
4163 	return 0;
4164 error:
4165 	if (wc.trans)
4166 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4167 	btrfs_free_path(path);
4168 	return ret;
4169 }
4170 
4171 /*
4172  * there are some corner cases where we want to force a full
4173  * commit instead of allowing a directory to be logged.
4174  *
4175  * They revolve around files there were unlinked from the directory, and
4176  * this function updates the parent directory so that a full commit is
4177  * properly done if it is fsync'd later after the unlinks are done.
4178  */
4179 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4180 			     struct inode *dir, struct inode *inode,
4181 			     int for_rename)
4182 {
4183 	/*
4184 	 * when we're logging a file, if it hasn't been renamed
4185 	 * or unlinked, and its inode is fully committed on disk,
4186 	 * we don't have to worry about walking up the directory chain
4187 	 * to log its parents.
4188 	 *
4189 	 * So, we use the last_unlink_trans field to put this transid
4190 	 * into the file.  When the file is logged we check it and
4191 	 * don't log the parents if the file is fully on disk.
4192 	 */
4193 	if (S_ISREG(inode->i_mode))
4194 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4195 
4196 	/*
4197 	 * if this directory was already logged any new
4198 	 * names for this file/dir will get recorded
4199 	 */
4200 	smp_mb();
4201 	if (BTRFS_I(dir)->logged_trans == trans->transid)
4202 		return;
4203 
4204 	/*
4205 	 * if the inode we're about to unlink was logged,
4206 	 * the log will be properly updated for any new names
4207 	 */
4208 	if (BTRFS_I(inode)->logged_trans == trans->transid)
4209 		return;
4210 
4211 	/*
4212 	 * when renaming files across directories, if the directory
4213 	 * there we're unlinking from gets fsync'd later on, there's
4214 	 * no way to find the destination directory later and fsync it
4215 	 * properly.  So, we have to be conservative and force commits
4216 	 * so the new name gets discovered.
4217 	 */
4218 	if (for_rename)
4219 		goto record;
4220 
4221 	/* we can safely do the unlink without any special recording */
4222 	return;
4223 
4224 record:
4225 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
4226 }
4227 
4228 /*
4229  * Call this after adding a new name for a file and it will properly
4230  * update the log to reflect the new name.
4231  *
4232  * It will return zero if all goes well, and it will return 1 if a
4233  * full transaction commit is required.
4234  */
4235 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4236 			struct inode *inode, struct inode *old_dir,
4237 			struct dentry *parent)
4238 {
4239 	struct btrfs_root * root = BTRFS_I(inode)->root;
4240 
4241 	/*
4242 	 * this will force the logging code to walk the dentry chain
4243 	 * up for the file
4244 	 */
4245 	if (S_ISREG(inode->i_mode))
4246 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4247 
4248 	/*
4249 	 * if this inode hasn't been logged and directory we're renaming it
4250 	 * from hasn't been logged, we don't need to log it
4251 	 */
4252 	if (BTRFS_I(inode)->logged_trans <=
4253 	    root->fs_info->last_trans_committed &&
4254 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4255 		    root->fs_info->last_trans_committed))
4256 		return 0;
4257 
4258 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4259 }
4260 
4261