xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 894f3009)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 #include "compression.h"
30 #include "qgroup.h"
31 
32 /* magic values for the inode_only field in btrfs_log_inode:
33  *
34  * LOG_INODE_ALL means to log everything
35  * LOG_INODE_EXISTS means to log just enough to recreate the inode
36  * during log replay
37  */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40 #define LOG_OTHER_INODE 2
41 
42 /*
43  * directory trouble cases
44  *
45  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46  * log, we must force a full commit before doing an fsync of the directory
47  * where the unlink was done.
48  * ---> record transid of last unlink/rename per directory
49  *
50  * mkdir foo/some_dir
51  * normal commit
52  * rename foo/some_dir foo2/some_dir
53  * mkdir foo/some_dir
54  * fsync foo/some_dir/some_file
55  *
56  * The fsync above will unlink the original some_dir without recording
57  * it in its new location (foo2).  After a crash, some_dir will be gone
58  * unless the fsync of some_file forces a full commit
59  *
60  * 2) we must log any new names for any file or dir that is in the fsync
61  * log. ---> check inode while renaming/linking.
62  *
63  * 2a) we must log any new names for any file or dir during rename
64  * when the directory they are being removed from was logged.
65  * ---> check inode and old parent dir during rename
66  *
67  *  2a is actually the more important variant.  With the extra logging
68  *  a crash might unlink the old name without recreating the new one
69  *
70  * 3) after a crash, we must go through any directories with a link count
71  * of zero and redo the rm -rf
72  *
73  * mkdir f1/foo
74  * normal commit
75  * rm -rf f1/foo
76  * fsync(f1)
77  *
78  * The directory f1 was fully removed from the FS, but fsync was never
79  * called on f1, only its parent dir.  After a crash the rm -rf must
80  * be replayed.  This must be able to recurse down the entire
81  * directory tree.  The inode link count fixup code takes care of the
82  * ugly details.
83  */
84 
85 /*
86  * stages for the tree walking.  The first
87  * stage (0) is to only pin down the blocks we find
88  * the second stage (1) is to make sure that all the inodes
89  * we find in the log are created in the subvolume.
90  *
91  * The last stage is to deal with directories and links and extents
92  * and all the other fun semantics
93  */
94 #define LOG_WALK_PIN_ONLY 0
95 #define LOG_WALK_REPLAY_INODES 1
96 #define LOG_WALK_REPLAY_DIR_INDEX 2
97 #define LOG_WALK_REPLAY_ALL 3
98 
99 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
100 			   struct btrfs_root *root, struct btrfs_inode *inode,
101 			   int inode_only,
102 			   const loff_t start,
103 			   const loff_t end,
104 			   struct btrfs_log_ctx *ctx);
105 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
106 			     struct btrfs_root *root,
107 			     struct btrfs_path *path, u64 objectid);
108 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
109 				       struct btrfs_root *root,
110 				       struct btrfs_root *log,
111 				       struct btrfs_path *path,
112 				       u64 dirid, int del_all);
113 
114 /*
115  * tree logging is a special write ahead log used to make sure that
116  * fsyncs and O_SYNCs can happen without doing full tree commits.
117  *
118  * Full tree commits are expensive because they require commonly
119  * modified blocks to be recowed, creating many dirty pages in the
120  * extent tree an 4x-6x higher write load than ext3.
121  *
122  * Instead of doing a tree commit on every fsync, we use the
123  * key ranges and transaction ids to find items for a given file or directory
124  * that have changed in this transaction.  Those items are copied into
125  * a special tree (one per subvolume root), that tree is written to disk
126  * and then the fsync is considered complete.
127  *
128  * After a crash, items are copied out of the log-tree back into the
129  * subvolume tree.  Any file data extents found are recorded in the extent
130  * allocation tree, and the log-tree freed.
131  *
132  * The log tree is read three times, once to pin down all the extents it is
133  * using in ram and once, once to create all the inodes logged in the tree
134  * and once to do all the other items.
135  */
136 
137 /*
138  * start a sub transaction and setup the log tree
139  * this increments the log tree writer count to make the people
140  * syncing the tree wait for us to finish
141  */
142 static int start_log_trans(struct btrfs_trans_handle *trans,
143 			   struct btrfs_root *root,
144 			   struct btrfs_log_ctx *ctx)
145 {
146 	struct btrfs_fs_info *fs_info = root->fs_info;
147 	int ret = 0;
148 
149 	mutex_lock(&root->log_mutex);
150 
151 	if (root->log_root) {
152 		if (btrfs_need_log_full_commit(fs_info, trans)) {
153 			ret = -EAGAIN;
154 			goto out;
155 		}
156 
157 		if (!root->log_start_pid) {
158 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 			root->log_start_pid = current->pid;
160 		} else if (root->log_start_pid != current->pid) {
161 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
162 		}
163 	} else {
164 		mutex_lock(&fs_info->tree_log_mutex);
165 		if (!fs_info->log_root_tree)
166 			ret = btrfs_init_log_root_tree(trans, fs_info);
167 		mutex_unlock(&fs_info->tree_log_mutex);
168 		if (ret)
169 			goto out;
170 
171 		ret = btrfs_add_log_tree(trans, root);
172 		if (ret)
173 			goto out;
174 
175 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
176 		root->log_start_pid = current->pid;
177 	}
178 
179 	atomic_inc(&root->log_batch);
180 	atomic_inc(&root->log_writers);
181 	if (ctx) {
182 		int index = root->log_transid % 2;
183 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
184 		ctx->log_transid = root->log_transid;
185 	}
186 
187 out:
188 	mutex_unlock(&root->log_mutex);
189 	return ret;
190 }
191 
192 /*
193  * returns 0 if there was a log transaction running and we were able
194  * to join, or returns -ENOENT if there were not transactions
195  * in progress
196  */
197 static int join_running_log_trans(struct btrfs_root *root)
198 {
199 	int ret = -ENOENT;
200 
201 	smp_mb();
202 	if (!root->log_root)
203 		return -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	if (root->log_root) {
207 		ret = 0;
208 		atomic_inc(&root->log_writers);
209 	}
210 	mutex_unlock(&root->log_mutex);
211 	return ret;
212 }
213 
214 /*
215  * This either makes the current running log transaction wait
216  * until you call btrfs_end_log_trans() or it makes any future
217  * log transactions wait until you call btrfs_end_log_trans()
218  */
219 int btrfs_pin_log_trans(struct btrfs_root *root)
220 {
221 	int ret = -ENOENT;
222 
223 	mutex_lock(&root->log_mutex);
224 	atomic_inc(&root->log_writers);
225 	mutex_unlock(&root->log_mutex);
226 	return ret;
227 }
228 
229 /*
230  * indicate we're done making changes to the log tree
231  * and wake up anyone waiting to do a sync
232  */
233 void btrfs_end_log_trans(struct btrfs_root *root)
234 {
235 	if (atomic_dec_and_test(&root->log_writers)) {
236 		/*
237 		 * Implicit memory barrier after atomic_dec_and_test
238 		 */
239 		if (waitqueue_active(&root->log_writer_wait))
240 			wake_up(&root->log_writer_wait);
241 	}
242 }
243 
244 
245 /*
246  * the walk control struct is used to pass state down the chain when
247  * processing the log tree.  The stage field tells us which part
248  * of the log tree processing we are currently doing.  The others
249  * are state fields used for that specific part
250  */
251 struct walk_control {
252 	/* should we free the extent on disk when done?  This is used
253 	 * at transaction commit time while freeing a log tree
254 	 */
255 	int free;
256 
257 	/* should we write out the extent buffer?  This is used
258 	 * while flushing the log tree to disk during a sync
259 	 */
260 	int write;
261 
262 	/* should we wait for the extent buffer io to finish?  Also used
263 	 * while flushing the log tree to disk for a sync
264 	 */
265 	int wait;
266 
267 	/* pin only walk, we record which extents on disk belong to the
268 	 * log trees
269 	 */
270 	int pin;
271 
272 	/* what stage of the replay code we're currently in */
273 	int stage;
274 
275 	/* the root we are currently replaying */
276 	struct btrfs_root *replay_dest;
277 
278 	/* the trans handle for the current replay */
279 	struct btrfs_trans_handle *trans;
280 
281 	/* the function that gets used to process blocks we find in the
282 	 * tree.  Note the extent_buffer might not be up to date when it is
283 	 * passed in, and it must be checked or read if you need the data
284 	 * inside it
285 	 */
286 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
287 			    struct walk_control *wc, u64 gen);
288 };
289 
290 /*
291  * process_func used to pin down extents, write them or wait on them
292  */
293 static int process_one_buffer(struct btrfs_root *log,
294 			      struct extent_buffer *eb,
295 			      struct walk_control *wc, u64 gen)
296 {
297 	struct btrfs_fs_info *fs_info = log->fs_info;
298 	int ret = 0;
299 
300 	/*
301 	 * If this fs is mixed then we need to be able to process the leaves to
302 	 * pin down any logged extents, so we have to read the block.
303 	 */
304 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
305 		ret = btrfs_read_buffer(eb, gen);
306 		if (ret)
307 			return ret;
308 	}
309 
310 	if (wc->pin)
311 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
312 						      eb->len);
313 
314 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
315 		if (wc->pin && btrfs_header_level(eb) == 0)
316 			ret = btrfs_exclude_logged_extents(fs_info, eb);
317 		if (wc->write)
318 			btrfs_write_tree_block(eb);
319 		if (wc->wait)
320 			btrfs_wait_tree_block_writeback(eb);
321 	}
322 	return ret;
323 }
324 
325 /*
326  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
327  * to the src data we are copying out.
328  *
329  * root is the tree we are copying into, and path is a scratch
330  * path for use in this function (it should be released on entry and
331  * will be released on exit).
332  *
333  * If the key is already in the destination tree the existing item is
334  * overwritten.  If the existing item isn't big enough, it is extended.
335  * If it is too large, it is truncated.
336  *
337  * If the key isn't in the destination yet, a new item is inserted.
338  */
339 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
340 				   struct btrfs_root *root,
341 				   struct btrfs_path *path,
342 				   struct extent_buffer *eb, int slot,
343 				   struct btrfs_key *key)
344 {
345 	struct btrfs_fs_info *fs_info = root->fs_info;
346 	int ret;
347 	u32 item_size;
348 	u64 saved_i_size = 0;
349 	int save_old_i_size = 0;
350 	unsigned long src_ptr;
351 	unsigned long dst_ptr;
352 	int overwrite_root = 0;
353 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
354 
355 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356 		overwrite_root = 1;
357 
358 	item_size = btrfs_item_size_nr(eb, slot);
359 	src_ptr = btrfs_item_ptr_offset(eb, slot);
360 
361 	/* look for the key in the destination tree */
362 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
363 	if (ret < 0)
364 		return ret;
365 
366 	if (ret == 0) {
367 		char *src_copy;
368 		char *dst_copy;
369 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 						  path->slots[0]);
371 		if (dst_size != item_size)
372 			goto insert;
373 
374 		if (item_size == 0) {
375 			btrfs_release_path(path);
376 			return 0;
377 		}
378 		dst_copy = kmalloc(item_size, GFP_NOFS);
379 		src_copy = kmalloc(item_size, GFP_NOFS);
380 		if (!dst_copy || !src_copy) {
381 			btrfs_release_path(path);
382 			kfree(dst_copy);
383 			kfree(src_copy);
384 			return -ENOMEM;
385 		}
386 
387 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
388 
389 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 				   item_size);
392 		ret = memcmp(dst_copy, src_copy, item_size);
393 
394 		kfree(dst_copy);
395 		kfree(src_copy);
396 		/*
397 		 * they have the same contents, just return, this saves
398 		 * us from cowing blocks in the destination tree and doing
399 		 * extra writes that may not have been done by a previous
400 		 * sync
401 		 */
402 		if (ret == 0) {
403 			btrfs_release_path(path);
404 			return 0;
405 		}
406 
407 		/*
408 		 * We need to load the old nbytes into the inode so when we
409 		 * replay the extents we've logged we get the right nbytes.
410 		 */
411 		if (inode_item) {
412 			struct btrfs_inode_item *item;
413 			u64 nbytes;
414 			u32 mode;
415 
416 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 					      struct btrfs_inode_item);
418 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 			item = btrfs_item_ptr(eb, slot,
420 					      struct btrfs_inode_item);
421 			btrfs_set_inode_nbytes(eb, item, nbytes);
422 
423 			/*
424 			 * If this is a directory we need to reset the i_size to
425 			 * 0 so that we can set it up properly when replaying
426 			 * the rest of the items in this log.
427 			 */
428 			mode = btrfs_inode_mode(eb, item);
429 			if (S_ISDIR(mode))
430 				btrfs_set_inode_size(eb, item, 0);
431 		}
432 	} else if (inode_item) {
433 		struct btrfs_inode_item *item;
434 		u32 mode;
435 
436 		/*
437 		 * New inode, set nbytes to 0 so that the nbytes comes out
438 		 * properly when we replay the extents.
439 		 */
440 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 		btrfs_set_inode_nbytes(eb, item, 0);
442 
443 		/*
444 		 * If this is a directory we need to reset the i_size to 0 so
445 		 * that we can set it up properly when replaying the rest of
446 		 * the items in this log.
447 		 */
448 		mode = btrfs_inode_mode(eb, item);
449 		if (S_ISDIR(mode))
450 			btrfs_set_inode_size(eb, item, 0);
451 	}
452 insert:
453 	btrfs_release_path(path);
454 	/* try to insert the key into the destination tree */
455 	path->skip_release_on_error = 1;
456 	ret = btrfs_insert_empty_item(trans, root, path,
457 				      key, item_size);
458 	path->skip_release_on_error = 0;
459 
460 	/* make sure any existing item is the correct size */
461 	if (ret == -EEXIST || ret == -EOVERFLOW) {
462 		u32 found_size;
463 		found_size = btrfs_item_size_nr(path->nodes[0],
464 						path->slots[0]);
465 		if (found_size > item_size)
466 			btrfs_truncate_item(fs_info, path, item_size, 1);
467 		else if (found_size < item_size)
468 			btrfs_extend_item(fs_info, path,
469 					  item_size - found_size);
470 	} else if (ret) {
471 		return ret;
472 	}
473 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 					path->slots[0]);
475 
476 	/* don't overwrite an existing inode if the generation number
477 	 * was logged as zero.  This is done when the tree logging code
478 	 * is just logging an inode to make sure it exists after recovery.
479 	 *
480 	 * Also, don't overwrite i_size on directories during replay.
481 	 * log replay inserts and removes directory items based on the
482 	 * state of the tree found in the subvolume, and i_size is modified
483 	 * as it goes
484 	 */
485 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 		struct btrfs_inode_item *src_item;
487 		struct btrfs_inode_item *dst_item;
488 
489 		src_item = (struct btrfs_inode_item *)src_ptr;
490 		dst_item = (struct btrfs_inode_item *)dst_ptr;
491 
492 		if (btrfs_inode_generation(eb, src_item) == 0) {
493 			struct extent_buffer *dst_eb = path->nodes[0];
494 			const u64 ino_size = btrfs_inode_size(eb, src_item);
495 
496 			/*
497 			 * For regular files an ino_size == 0 is used only when
498 			 * logging that an inode exists, as part of a directory
499 			 * fsync, and the inode wasn't fsynced before. In this
500 			 * case don't set the size of the inode in the fs/subvol
501 			 * tree, otherwise we would be throwing valid data away.
502 			 */
503 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
504 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 			    ino_size != 0) {
506 				struct btrfs_map_token token;
507 
508 				btrfs_init_map_token(&token);
509 				btrfs_set_token_inode_size(dst_eb, dst_item,
510 							   ino_size, &token);
511 			}
512 			goto no_copy;
513 		}
514 
515 		if (overwrite_root &&
516 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 			save_old_i_size = 1;
519 			saved_i_size = btrfs_inode_size(path->nodes[0],
520 							dst_item);
521 		}
522 	}
523 
524 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 			   src_ptr, item_size);
526 
527 	if (save_old_i_size) {
528 		struct btrfs_inode_item *dst_item;
529 		dst_item = (struct btrfs_inode_item *)dst_ptr;
530 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 	}
532 
533 	/* make sure the generation is filled in */
534 	if (key->type == BTRFS_INODE_ITEM_KEY) {
535 		struct btrfs_inode_item *dst_item;
536 		dst_item = (struct btrfs_inode_item *)dst_ptr;
537 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 			btrfs_set_inode_generation(path->nodes[0], dst_item,
539 						   trans->transid);
540 		}
541 	}
542 no_copy:
543 	btrfs_mark_buffer_dirty(path->nodes[0]);
544 	btrfs_release_path(path);
545 	return 0;
546 }
547 
548 /*
549  * simple helper to read an inode off the disk from a given root
550  * This can only be called for subvolume roots and not for the log
551  */
552 static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 					     u64 objectid)
554 {
555 	struct btrfs_key key;
556 	struct inode *inode;
557 
558 	key.objectid = objectid;
559 	key.type = BTRFS_INODE_ITEM_KEY;
560 	key.offset = 0;
561 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
562 	if (IS_ERR(inode)) {
563 		inode = NULL;
564 	} else if (is_bad_inode(inode)) {
565 		iput(inode);
566 		inode = NULL;
567 	}
568 	return inode;
569 }
570 
571 /* replays a single extent in 'eb' at 'slot' with 'key' into the
572  * subvolume 'root'.  path is released on entry and should be released
573  * on exit.
574  *
575  * extents in the log tree have not been allocated out of the extent
576  * tree yet.  So, this completes the allocation, taking a reference
577  * as required if the extent already exists or creating a new extent
578  * if it isn't in the extent allocation tree yet.
579  *
580  * The extent is inserted into the file, dropping any existing extents
581  * from the file that overlap the new one.
582  */
583 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
584 				      struct btrfs_root *root,
585 				      struct btrfs_path *path,
586 				      struct extent_buffer *eb, int slot,
587 				      struct btrfs_key *key)
588 {
589 	struct btrfs_fs_info *fs_info = root->fs_info;
590 	int found_type;
591 	u64 extent_end;
592 	u64 start = key->offset;
593 	u64 nbytes = 0;
594 	struct btrfs_file_extent_item *item;
595 	struct inode *inode = NULL;
596 	unsigned long size;
597 	int ret = 0;
598 
599 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 	found_type = btrfs_file_extent_type(eb, item);
601 
602 	if (found_type == BTRFS_FILE_EXTENT_REG ||
603 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 		nbytes = btrfs_file_extent_num_bytes(eb, item);
605 		extent_end = start + nbytes;
606 
607 		/*
608 		 * We don't add to the inodes nbytes if we are prealloc or a
609 		 * hole.
610 		 */
611 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
612 			nbytes = 0;
613 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
614 		size = btrfs_file_extent_inline_len(eb, slot, item);
615 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
616 		extent_end = ALIGN(start + size,
617 				   fs_info->sectorsize);
618 	} else {
619 		ret = 0;
620 		goto out;
621 	}
622 
623 	inode = read_one_inode(root, key->objectid);
624 	if (!inode) {
625 		ret = -EIO;
626 		goto out;
627 	}
628 
629 	/*
630 	 * first check to see if we already have this extent in the
631 	 * file.  This must be done before the btrfs_drop_extents run
632 	 * so we don't try to drop this extent.
633 	 */
634 	ret = btrfs_lookup_file_extent(trans, root, path,
635 			btrfs_ino(BTRFS_I(inode)), start, 0);
636 
637 	if (ret == 0 &&
638 	    (found_type == BTRFS_FILE_EXTENT_REG ||
639 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
640 		struct btrfs_file_extent_item cmp1;
641 		struct btrfs_file_extent_item cmp2;
642 		struct btrfs_file_extent_item *existing;
643 		struct extent_buffer *leaf;
644 
645 		leaf = path->nodes[0];
646 		existing = btrfs_item_ptr(leaf, path->slots[0],
647 					  struct btrfs_file_extent_item);
648 
649 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
650 				   sizeof(cmp1));
651 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
652 				   sizeof(cmp2));
653 
654 		/*
655 		 * we already have a pointer to this exact extent,
656 		 * we don't have to do anything
657 		 */
658 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
659 			btrfs_release_path(path);
660 			goto out;
661 		}
662 	}
663 	btrfs_release_path(path);
664 
665 	/* drop any overlapping extents */
666 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
667 	if (ret)
668 		goto out;
669 
670 	if (found_type == BTRFS_FILE_EXTENT_REG ||
671 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
672 		u64 offset;
673 		unsigned long dest_offset;
674 		struct btrfs_key ins;
675 
676 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
677 		    btrfs_fs_incompat(fs_info, NO_HOLES))
678 			goto update_inode;
679 
680 		ret = btrfs_insert_empty_item(trans, root, path, key,
681 					      sizeof(*item));
682 		if (ret)
683 			goto out;
684 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
685 						    path->slots[0]);
686 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
687 				(unsigned long)item,  sizeof(*item));
688 
689 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
690 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
691 		ins.type = BTRFS_EXTENT_ITEM_KEY;
692 		offset = key->offset - btrfs_file_extent_offset(eb, item);
693 
694 		/*
695 		 * Manually record dirty extent, as here we did a shallow
696 		 * file extent item copy and skip normal backref update,
697 		 * but modifying extent tree all by ourselves.
698 		 * So need to manually record dirty extent for qgroup,
699 		 * as the owner of the file extent changed from log tree
700 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
701 		 */
702 		ret = btrfs_qgroup_trace_extent(trans, fs_info,
703 				btrfs_file_extent_disk_bytenr(eb, item),
704 				btrfs_file_extent_disk_num_bytes(eb, item),
705 				GFP_NOFS);
706 		if (ret < 0)
707 			goto out;
708 
709 		if (ins.objectid > 0) {
710 			u64 csum_start;
711 			u64 csum_end;
712 			LIST_HEAD(ordered_sums);
713 			/*
714 			 * is this extent already allocated in the extent
715 			 * allocation tree?  If so, just add a reference
716 			 */
717 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
718 						ins.offset);
719 			if (ret == 0) {
720 				ret = btrfs_inc_extent_ref(trans, root,
721 						ins.objectid, ins.offset,
722 						0, root->root_key.objectid,
723 						key->objectid, offset);
724 				if (ret)
725 					goto out;
726 			} else {
727 				/*
728 				 * insert the extent pointer in the extent
729 				 * allocation tree
730 				 */
731 				ret = btrfs_alloc_logged_file_extent(trans,
732 						fs_info,
733 						root->root_key.objectid,
734 						key->objectid, offset, &ins);
735 				if (ret)
736 					goto out;
737 			}
738 			btrfs_release_path(path);
739 
740 			if (btrfs_file_extent_compression(eb, item)) {
741 				csum_start = ins.objectid;
742 				csum_end = csum_start + ins.offset;
743 			} else {
744 				csum_start = ins.objectid +
745 					btrfs_file_extent_offset(eb, item);
746 				csum_end = csum_start +
747 					btrfs_file_extent_num_bytes(eb, item);
748 			}
749 
750 			ret = btrfs_lookup_csums_range(root->log_root,
751 						csum_start, csum_end - 1,
752 						&ordered_sums, 0);
753 			if (ret)
754 				goto out;
755 			/*
756 			 * Now delete all existing cums in the csum root that
757 			 * cover our range. We do this because we can have an
758 			 * extent that is completely referenced by one file
759 			 * extent item and partially referenced by another
760 			 * file extent item (like after using the clone or
761 			 * extent_same ioctls). In this case if we end up doing
762 			 * the replay of the one that partially references the
763 			 * extent first, and we do not do the csum deletion
764 			 * below, we can get 2 csum items in the csum tree that
765 			 * overlap each other. For example, imagine our log has
766 			 * the two following file extent items:
767 			 *
768 			 * key (257 EXTENT_DATA 409600)
769 			 *     extent data disk byte 12845056 nr 102400
770 			 *     extent data offset 20480 nr 20480 ram 102400
771 			 *
772 			 * key (257 EXTENT_DATA 819200)
773 			 *     extent data disk byte 12845056 nr 102400
774 			 *     extent data offset 0 nr 102400 ram 102400
775 			 *
776 			 * Where the second one fully references the 100K extent
777 			 * that starts at disk byte 12845056, and the log tree
778 			 * has a single csum item that covers the entire range
779 			 * of the extent:
780 			 *
781 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
782 			 *
783 			 * After the first file extent item is replayed, the
784 			 * csum tree gets the following csum item:
785 			 *
786 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
787 			 *
788 			 * Which covers the 20K sub-range starting at offset 20K
789 			 * of our extent. Now when we replay the second file
790 			 * extent item, if we do not delete existing csum items
791 			 * that cover any of its blocks, we end up getting two
792 			 * csum items in our csum tree that overlap each other:
793 			 *
794 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
795 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
796 			 *
797 			 * Which is a problem, because after this anyone trying
798 			 * to lookup up for the checksum of any block of our
799 			 * extent starting at an offset of 40K or higher, will
800 			 * end up looking at the second csum item only, which
801 			 * does not contain the checksum for any block starting
802 			 * at offset 40K or higher of our extent.
803 			 */
804 			while (!list_empty(&ordered_sums)) {
805 				struct btrfs_ordered_sum *sums;
806 				sums = list_entry(ordered_sums.next,
807 						struct btrfs_ordered_sum,
808 						list);
809 				if (!ret)
810 					ret = btrfs_del_csums(trans, fs_info,
811 							      sums->bytenr,
812 							      sums->len);
813 				if (!ret)
814 					ret = btrfs_csum_file_blocks(trans,
815 						fs_info->csum_root, sums);
816 				list_del(&sums->list);
817 				kfree(sums);
818 			}
819 			if (ret)
820 				goto out;
821 		} else {
822 			btrfs_release_path(path);
823 		}
824 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
825 		/* inline extents are easy, we just overwrite them */
826 		ret = overwrite_item(trans, root, path, eb, slot, key);
827 		if (ret)
828 			goto out;
829 	}
830 
831 	inode_add_bytes(inode, nbytes);
832 update_inode:
833 	ret = btrfs_update_inode(trans, root, inode);
834 out:
835 	if (inode)
836 		iput(inode);
837 	return ret;
838 }
839 
840 /*
841  * when cleaning up conflicts between the directory names in the
842  * subvolume, directory names in the log and directory names in the
843  * inode back references, we may have to unlink inodes from directories.
844  *
845  * This is a helper function to do the unlink of a specific directory
846  * item
847  */
848 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
849 				      struct btrfs_root *root,
850 				      struct btrfs_path *path,
851 				      struct btrfs_inode *dir,
852 				      struct btrfs_dir_item *di)
853 {
854 	struct btrfs_fs_info *fs_info = root->fs_info;
855 	struct inode *inode;
856 	char *name;
857 	int name_len;
858 	struct extent_buffer *leaf;
859 	struct btrfs_key location;
860 	int ret;
861 
862 	leaf = path->nodes[0];
863 
864 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
865 	name_len = btrfs_dir_name_len(leaf, di);
866 	name = kmalloc(name_len, GFP_NOFS);
867 	if (!name)
868 		return -ENOMEM;
869 
870 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
871 	btrfs_release_path(path);
872 
873 	inode = read_one_inode(root, location.objectid);
874 	if (!inode) {
875 		ret = -EIO;
876 		goto out;
877 	}
878 
879 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
880 	if (ret)
881 		goto out;
882 
883 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
884 			name_len);
885 	if (ret)
886 		goto out;
887 	else
888 		ret = btrfs_run_delayed_items(trans, fs_info);
889 out:
890 	kfree(name);
891 	iput(inode);
892 	return ret;
893 }
894 
895 /*
896  * helper function to see if a given name and sequence number found
897  * in an inode back reference are already in a directory and correctly
898  * point to this inode
899  */
900 static noinline int inode_in_dir(struct btrfs_root *root,
901 				 struct btrfs_path *path,
902 				 u64 dirid, u64 objectid, u64 index,
903 				 const char *name, int name_len)
904 {
905 	struct btrfs_dir_item *di;
906 	struct btrfs_key location;
907 	int match = 0;
908 
909 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
910 					 index, name, name_len, 0);
911 	if (di && !IS_ERR(di)) {
912 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
913 		if (location.objectid != objectid)
914 			goto out;
915 	} else
916 		goto out;
917 	btrfs_release_path(path);
918 
919 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
920 	if (di && !IS_ERR(di)) {
921 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
922 		if (location.objectid != objectid)
923 			goto out;
924 	} else
925 		goto out;
926 	match = 1;
927 out:
928 	btrfs_release_path(path);
929 	return match;
930 }
931 
932 /*
933  * helper function to check a log tree for a named back reference in
934  * an inode.  This is used to decide if a back reference that is
935  * found in the subvolume conflicts with what we find in the log.
936  *
937  * inode backreferences may have multiple refs in a single item,
938  * during replay we process one reference at a time, and we don't
939  * want to delete valid links to a file from the subvolume if that
940  * link is also in the log.
941  */
942 static noinline int backref_in_log(struct btrfs_root *log,
943 				   struct btrfs_key *key,
944 				   u64 ref_objectid,
945 				   const char *name, int namelen)
946 {
947 	struct btrfs_path *path;
948 	struct btrfs_inode_ref *ref;
949 	unsigned long ptr;
950 	unsigned long ptr_end;
951 	unsigned long name_ptr;
952 	int found_name_len;
953 	int item_size;
954 	int ret;
955 	int match = 0;
956 
957 	path = btrfs_alloc_path();
958 	if (!path)
959 		return -ENOMEM;
960 
961 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
962 	if (ret != 0)
963 		goto out;
964 
965 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
966 
967 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
968 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
969 						   name, namelen, NULL))
970 			match = 1;
971 
972 		goto out;
973 	}
974 
975 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
976 	ptr_end = ptr + item_size;
977 	while (ptr < ptr_end) {
978 		ref = (struct btrfs_inode_ref *)ptr;
979 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
980 		if (found_name_len == namelen) {
981 			name_ptr = (unsigned long)(ref + 1);
982 			ret = memcmp_extent_buffer(path->nodes[0], name,
983 						   name_ptr, namelen);
984 			if (ret == 0) {
985 				match = 1;
986 				goto out;
987 			}
988 		}
989 		ptr = (unsigned long)(ref + 1) + found_name_len;
990 	}
991 out:
992 	btrfs_free_path(path);
993 	return match;
994 }
995 
996 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
997 				  struct btrfs_root *root,
998 				  struct btrfs_path *path,
999 				  struct btrfs_root *log_root,
1000 				  struct btrfs_inode *dir,
1001 				  struct btrfs_inode *inode,
1002 				  u64 inode_objectid, u64 parent_objectid,
1003 				  u64 ref_index, char *name, int namelen,
1004 				  int *search_done)
1005 {
1006 	struct btrfs_fs_info *fs_info = root->fs_info;
1007 	int ret;
1008 	char *victim_name;
1009 	int victim_name_len;
1010 	struct extent_buffer *leaf;
1011 	struct btrfs_dir_item *di;
1012 	struct btrfs_key search_key;
1013 	struct btrfs_inode_extref *extref;
1014 
1015 again:
1016 	/* Search old style refs */
1017 	search_key.objectid = inode_objectid;
1018 	search_key.type = BTRFS_INODE_REF_KEY;
1019 	search_key.offset = parent_objectid;
1020 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1021 	if (ret == 0) {
1022 		struct btrfs_inode_ref *victim_ref;
1023 		unsigned long ptr;
1024 		unsigned long ptr_end;
1025 
1026 		leaf = path->nodes[0];
1027 
1028 		/* are we trying to overwrite a back ref for the root directory
1029 		 * if so, just jump out, we're done
1030 		 */
1031 		if (search_key.objectid == search_key.offset)
1032 			return 1;
1033 
1034 		/* check all the names in this back reference to see
1035 		 * if they are in the log.  if so, we allow them to stay
1036 		 * otherwise they must be unlinked as a conflict
1037 		 */
1038 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1039 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1040 		while (ptr < ptr_end) {
1041 			victim_ref = (struct btrfs_inode_ref *)ptr;
1042 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1043 								   victim_ref);
1044 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1045 			if (!victim_name)
1046 				return -ENOMEM;
1047 
1048 			read_extent_buffer(leaf, victim_name,
1049 					   (unsigned long)(victim_ref + 1),
1050 					   victim_name_len);
1051 
1052 			if (!backref_in_log(log_root, &search_key,
1053 					    parent_objectid,
1054 					    victim_name,
1055 					    victim_name_len)) {
1056 				inc_nlink(&inode->vfs_inode);
1057 				btrfs_release_path(path);
1058 
1059 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1060 						victim_name, victim_name_len);
1061 				kfree(victim_name);
1062 				if (ret)
1063 					return ret;
1064 				ret = btrfs_run_delayed_items(trans, fs_info);
1065 				if (ret)
1066 					return ret;
1067 				*search_done = 1;
1068 				goto again;
1069 			}
1070 			kfree(victim_name);
1071 
1072 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1073 		}
1074 
1075 		/*
1076 		 * NOTE: we have searched root tree and checked the
1077 		 * corresponding ref, it does not need to check again.
1078 		 */
1079 		*search_done = 1;
1080 	}
1081 	btrfs_release_path(path);
1082 
1083 	/* Same search but for extended refs */
1084 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1085 					   inode_objectid, parent_objectid, 0,
1086 					   0);
1087 	if (!IS_ERR_OR_NULL(extref)) {
1088 		u32 item_size;
1089 		u32 cur_offset = 0;
1090 		unsigned long base;
1091 		struct inode *victim_parent;
1092 
1093 		leaf = path->nodes[0];
1094 
1095 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1096 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1097 
1098 		while (cur_offset < item_size) {
1099 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1100 
1101 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1102 
1103 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1104 				goto next;
1105 
1106 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1107 			if (!victim_name)
1108 				return -ENOMEM;
1109 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1110 					   victim_name_len);
1111 
1112 			search_key.objectid = inode_objectid;
1113 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1114 			search_key.offset = btrfs_extref_hash(parent_objectid,
1115 							      victim_name,
1116 							      victim_name_len);
1117 			ret = 0;
1118 			if (!backref_in_log(log_root, &search_key,
1119 					    parent_objectid, victim_name,
1120 					    victim_name_len)) {
1121 				ret = -ENOENT;
1122 				victim_parent = read_one_inode(root,
1123 						parent_objectid);
1124 				if (victim_parent) {
1125 					inc_nlink(&inode->vfs_inode);
1126 					btrfs_release_path(path);
1127 
1128 					ret = btrfs_unlink_inode(trans, root,
1129 							BTRFS_I(victim_parent),
1130 							inode,
1131 							victim_name,
1132 							victim_name_len);
1133 					if (!ret)
1134 						ret = btrfs_run_delayed_items(
1135 								  trans,
1136 								  fs_info);
1137 				}
1138 				iput(victim_parent);
1139 				kfree(victim_name);
1140 				if (ret)
1141 					return ret;
1142 				*search_done = 1;
1143 				goto again;
1144 			}
1145 			kfree(victim_name);
1146 next:
1147 			cur_offset += victim_name_len + sizeof(*extref);
1148 		}
1149 		*search_done = 1;
1150 	}
1151 	btrfs_release_path(path);
1152 
1153 	/* look for a conflicting sequence number */
1154 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1155 					 ref_index, name, namelen, 0);
1156 	if (di && !IS_ERR(di)) {
1157 		ret = drop_one_dir_item(trans, root, path, dir, di);
1158 		if (ret)
1159 			return ret;
1160 	}
1161 	btrfs_release_path(path);
1162 
1163 	/* look for a conflicing name */
1164 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1165 				   name, namelen, 0);
1166 	if (di && !IS_ERR(di)) {
1167 		ret = drop_one_dir_item(trans, root, path, dir, di);
1168 		if (ret)
1169 			return ret;
1170 	}
1171 	btrfs_release_path(path);
1172 
1173 	return 0;
1174 }
1175 
1176 static int extref_get_fields(struct extent_buffer *eb, int slot,
1177 			     unsigned long ref_ptr, u32 *namelen, char **name,
1178 			     u64 *index, u64 *parent_objectid)
1179 {
1180 	struct btrfs_inode_extref *extref;
1181 
1182 	extref = (struct btrfs_inode_extref *)ref_ptr;
1183 
1184 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1185 	if (!btrfs_is_name_len_valid(eb, slot, (unsigned long)&extref->name,
1186 				     *namelen))
1187 		return -EIO;
1188 
1189 	*name = kmalloc(*namelen, GFP_NOFS);
1190 	if (*name == NULL)
1191 		return -ENOMEM;
1192 
1193 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1194 			   *namelen);
1195 
1196 	*index = btrfs_inode_extref_index(eb, extref);
1197 	if (parent_objectid)
1198 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1199 
1200 	return 0;
1201 }
1202 
1203 static int ref_get_fields(struct extent_buffer *eb, int slot,
1204 			  unsigned long ref_ptr, u32 *namelen, char **name,
1205 			  u64 *index)
1206 {
1207 	struct btrfs_inode_ref *ref;
1208 
1209 	ref = (struct btrfs_inode_ref *)ref_ptr;
1210 
1211 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1212 	if (!btrfs_is_name_len_valid(eb, slot, (unsigned long)(ref + 1),
1213 				     *namelen))
1214 		return -EIO;
1215 
1216 	*name = kmalloc(*namelen, GFP_NOFS);
1217 	if (*name == NULL)
1218 		return -ENOMEM;
1219 
1220 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1221 
1222 	*index = btrfs_inode_ref_index(eb, ref);
1223 
1224 	return 0;
1225 }
1226 
1227 /*
1228  * replay one inode back reference item found in the log tree.
1229  * eb, slot and key refer to the buffer and key found in the log tree.
1230  * root is the destination we are replaying into, and path is for temp
1231  * use by this function.  (it should be released on return).
1232  */
1233 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1234 				  struct btrfs_root *root,
1235 				  struct btrfs_root *log,
1236 				  struct btrfs_path *path,
1237 				  struct extent_buffer *eb, int slot,
1238 				  struct btrfs_key *key)
1239 {
1240 	struct inode *dir = NULL;
1241 	struct inode *inode = NULL;
1242 	unsigned long ref_ptr;
1243 	unsigned long ref_end;
1244 	char *name = NULL;
1245 	int namelen;
1246 	int ret;
1247 	int search_done = 0;
1248 	int log_ref_ver = 0;
1249 	u64 parent_objectid;
1250 	u64 inode_objectid;
1251 	u64 ref_index = 0;
1252 	int ref_struct_size;
1253 
1254 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1255 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1256 
1257 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1258 		struct btrfs_inode_extref *r;
1259 
1260 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1261 		log_ref_ver = 1;
1262 		r = (struct btrfs_inode_extref *)ref_ptr;
1263 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1264 	} else {
1265 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1266 		parent_objectid = key->offset;
1267 	}
1268 	inode_objectid = key->objectid;
1269 
1270 	/*
1271 	 * it is possible that we didn't log all the parent directories
1272 	 * for a given inode.  If we don't find the dir, just don't
1273 	 * copy the back ref in.  The link count fixup code will take
1274 	 * care of the rest
1275 	 */
1276 	dir = read_one_inode(root, parent_objectid);
1277 	if (!dir) {
1278 		ret = -ENOENT;
1279 		goto out;
1280 	}
1281 
1282 	inode = read_one_inode(root, inode_objectid);
1283 	if (!inode) {
1284 		ret = -EIO;
1285 		goto out;
1286 	}
1287 
1288 	while (ref_ptr < ref_end) {
1289 		if (log_ref_ver) {
1290 			ret = extref_get_fields(eb, slot, ref_ptr, &namelen,
1291 					  &name, &ref_index, &parent_objectid);
1292 			/*
1293 			 * parent object can change from one array
1294 			 * item to another.
1295 			 */
1296 			if (!dir)
1297 				dir = read_one_inode(root, parent_objectid);
1298 			if (!dir) {
1299 				ret = -ENOENT;
1300 				goto out;
1301 			}
1302 		} else {
1303 			ret = ref_get_fields(eb, slot, ref_ptr, &namelen,
1304 					     &name, &ref_index);
1305 		}
1306 		if (ret)
1307 			goto out;
1308 
1309 		/* if we already have a perfect match, we're done */
1310 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1311 					btrfs_ino(BTRFS_I(inode)), ref_index,
1312 					name, namelen)) {
1313 			/*
1314 			 * look for a conflicting back reference in the
1315 			 * metadata. if we find one we have to unlink that name
1316 			 * of the file before we add our new link.  Later on, we
1317 			 * overwrite any existing back reference, and we don't
1318 			 * want to create dangling pointers in the directory.
1319 			 */
1320 
1321 			if (!search_done) {
1322 				ret = __add_inode_ref(trans, root, path, log,
1323 						      BTRFS_I(dir),
1324 						      BTRFS_I(inode),
1325 						      inode_objectid,
1326 						      parent_objectid,
1327 						      ref_index, name, namelen,
1328 						      &search_done);
1329 				if (ret) {
1330 					if (ret == 1)
1331 						ret = 0;
1332 					goto out;
1333 				}
1334 			}
1335 
1336 			/* insert our name */
1337 			ret = btrfs_add_link(trans, BTRFS_I(dir),
1338 					BTRFS_I(inode),
1339 					name, namelen, 0, ref_index);
1340 			if (ret)
1341 				goto out;
1342 
1343 			btrfs_update_inode(trans, root, inode);
1344 		}
1345 
1346 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1347 		kfree(name);
1348 		name = NULL;
1349 		if (log_ref_ver) {
1350 			iput(dir);
1351 			dir = NULL;
1352 		}
1353 	}
1354 
1355 	/* finally write the back reference in the inode */
1356 	ret = overwrite_item(trans, root, path, eb, slot, key);
1357 out:
1358 	btrfs_release_path(path);
1359 	kfree(name);
1360 	iput(dir);
1361 	iput(inode);
1362 	return ret;
1363 }
1364 
1365 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1366 			      struct btrfs_root *root, u64 ino)
1367 {
1368 	int ret;
1369 
1370 	ret = btrfs_insert_orphan_item(trans, root, ino);
1371 	if (ret == -EEXIST)
1372 		ret = 0;
1373 
1374 	return ret;
1375 }
1376 
1377 static int count_inode_extrefs(struct btrfs_root *root,
1378 		struct btrfs_inode *inode, struct btrfs_path *path)
1379 {
1380 	int ret = 0;
1381 	int name_len;
1382 	unsigned int nlink = 0;
1383 	u32 item_size;
1384 	u32 cur_offset = 0;
1385 	u64 inode_objectid = btrfs_ino(inode);
1386 	u64 offset = 0;
1387 	unsigned long ptr;
1388 	struct btrfs_inode_extref *extref;
1389 	struct extent_buffer *leaf;
1390 
1391 	while (1) {
1392 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1393 					    &extref, &offset);
1394 		if (ret)
1395 			break;
1396 
1397 		leaf = path->nodes[0];
1398 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1399 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1400 		cur_offset = 0;
1401 
1402 		while (cur_offset < item_size) {
1403 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1404 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1405 
1406 			nlink++;
1407 
1408 			cur_offset += name_len + sizeof(*extref);
1409 		}
1410 
1411 		offset++;
1412 		btrfs_release_path(path);
1413 	}
1414 	btrfs_release_path(path);
1415 
1416 	if (ret < 0 && ret != -ENOENT)
1417 		return ret;
1418 	return nlink;
1419 }
1420 
1421 static int count_inode_refs(struct btrfs_root *root,
1422 			struct btrfs_inode *inode, struct btrfs_path *path)
1423 {
1424 	int ret;
1425 	struct btrfs_key key;
1426 	unsigned int nlink = 0;
1427 	unsigned long ptr;
1428 	unsigned long ptr_end;
1429 	int name_len;
1430 	u64 ino = btrfs_ino(inode);
1431 
1432 	key.objectid = ino;
1433 	key.type = BTRFS_INODE_REF_KEY;
1434 	key.offset = (u64)-1;
1435 
1436 	while (1) {
1437 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1438 		if (ret < 0)
1439 			break;
1440 		if (ret > 0) {
1441 			if (path->slots[0] == 0)
1442 				break;
1443 			path->slots[0]--;
1444 		}
1445 process_slot:
1446 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1447 				      path->slots[0]);
1448 		if (key.objectid != ino ||
1449 		    key.type != BTRFS_INODE_REF_KEY)
1450 			break;
1451 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1452 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1453 						   path->slots[0]);
1454 		while (ptr < ptr_end) {
1455 			struct btrfs_inode_ref *ref;
1456 
1457 			ref = (struct btrfs_inode_ref *)ptr;
1458 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1459 							    ref);
1460 			ptr = (unsigned long)(ref + 1) + name_len;
1461 			nlink++;
1462 		}
1463 
1464 		if (key.offset == 0)
1465 			break;
1466 		if (path->slots[0] > 0) {
1467 			path->slots[0]--;
1468 			goto process_slot;
1469 		}
1470 		key.offset--;
1471 		btrfs_release_path(path);
1472 	}
1473 	btrfs_release_path(path);
1474 
1475 	return nlink;
1476 }
1477 
1478 /*
1479  * There are a few corners where the link count of the file can't
1480  * be properly maintained during replay.  So, instead of adding
1481  * lots of complexity to the log code, we just scan the backrefs
1482  * for any file that has been through replay.
1483  *
1484  * The scan will update the link count on the inode to reflect the
1485  * number of back refs found.  If it goes down to zero, the iput
1486  * will free the inode.
1487  */
1488 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1489 					   struct btrfs_root *root,
1490 					   struct inode *inode)
1491 {
1492 	struct btrfs_path *path;
1493 	int ret;
1494 	u64 nlink = 0;
1495 	u64 ino = btrfs_ino(BTRFS_I(inode));
1496 
1497 	path = btrfs_alloc_path();
1498 	if (!path)
1499 		return -ENOMEM;
1500 
1501 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1502 	if (ret < 0)
1503 		goto out;
1504 
1505 	nlink = ret;
1506 
1507 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1508 	if (ret < 0)
1509 		goto out;
1510 
1511 	nlink += ret;
1512 
1513 	ret = 0;
1514 
1515 	if (nlink != inode->i_nlink) {
1516 		set_nlink(inode, nlink);
1517 		btrfs_update_inode(trans, root, inode);
1518 	}
1519 	BTRFS_I(inode)->index_cnt = (u64)-1;
1520 
1521 	if (inode->i_nlink == 0) {
1522 		if (S_ISDIR(inode->i_mode)) {
1523 			ret = replay_dir_deletes(trans, root, NULL, path,
1524 						 ino, 1);
1525 			if (ret)
1526 				goto out;
1527 		}
1528 		ret = insert_orphan_item(trans, root, ino);
1529 	}
1530 
1531 out:
1532 	btrfs_free_path(path);
1533 	return ret;
1534 }
1535 
1536 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1537 					    struct btrfs_root *root,
1538 					    struct btrfs_path *path)
1539 {
1540 	int ret;
1541 	struct btrfs_key key;
1542 	struct inode *inode;
1543 
1544 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1545 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1546 	key.offset = (u64)-1;
1547 	while (1) {
1548 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1549 		if (ret < 0)
1550 			break;
1551 
1552 		if (ret == 1) {
1553 			if (path->slots[0] == 0)
1554 				break;
1555 			path->slots[0]--;
1556 		}
1557 
1558 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1559 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1560 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1561 			break;
1562 
1563 		ret = btrfs_del_item(trans, root, path);
1564 		if (ret)
1565 			goto out;
1566 
1567 		btrfs_release_path(path);
1568 		inode = read_one_inode(root, key.offset);
1569 		if (!inode)
1570 			return -EIO;
1571 
1572 		ret = fixup_inode_link_count(trans, root, inode);
1573 		iput(inode);
1574 		if (ret)
1575 			goto out;
1576 
1577 		/*
1578 		 * fixup on a directory may create new entries,
1579 		 * make sure we always look for the highset possible
1580 		 * offset
1581 		 */
1582 		key.offset = (u64)-1;
1583 	}
1584 	ret = 0;
1585 out:
1586 	btrfs_release_path(path);
1587 	return ret;
1588 }
1589 
1590 
1591 /*
1592  * record a given inode in the fixup dir so we can check its link
1593  * count when replay is done.  The link count is incremented here
1594  * so the inode won't go away until we check it
1595  */
1596 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1597 				      struct btrfs_root *root,
1598 				      struct btrfs_path *path,
1599 				      u64 objectid)
1600 {
1601 	struct btrfs_key key;
1602 	int ret = 0;
1603 	struct inode *inode;
1604 
1605 	inode = read_one_inode(root, objectid);
1606 	if (!inode)
1607 		return -EIO;
1608 
1609 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1610 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1611 	key.offset = objectid;
1612 
1613 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1614 
1615 	btrfs_release_path(path);
1616 	if (ret == 0) {
1617 		if (!inode->i_nlink)
1618 			set_nlink(inode, 1);
1619 		else
1620 			inc_nlink(inode);
1621 		ret = btrfs_update_inode(trans, root, inode);
1622 	} else if (ret == -EEXIST) {
1623 		ret = 0;
1624 	} else {
1625 		BUG(); /* Logic Error */
1626 	}
1627 	iput(inode);
1628 
1629 	return ret;
1630 }
1631 
1632 /*
1633  * when replaying the log for a directory, we only insert names
1634  * for inodes that actually exist.  This means an fsync on a directory
1635  * does not implicitly fsync all the new files in it
1636  */
1637 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1638 				    struct btrfs_root *root,
1639 				    u64 dirid, u64 index,
1640 				    char *name, int name_len,
1641 				    struct btrfs_key *location)
1642 {
1643 	struct inode *inode;
1644 	struct inode *dir;
1645 	int ret;
1646 
1647 	inode = read_one_inode(root, location->objectid);
1648 	if (!inode)
1649 		return -ENOENT;
1650 
1651 	dir = read_one_inode(root, dirid);
1652 	if (!dir) {
1653 		iput(inode);
1654 		return -EIO;
1655 	}
1656 
1657 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1658 			name_len, 1, index);
1659 
1660 	/* FIXME, put inode into FIXUP list */
1661 
1662 	iput(inode);
1663 	iput(dir);
1664 	return ret;
1665 }
1666 
1667 /*
1668  * Return true if an inode reference exists in the log for the given name,
1669  * inode and parent inode.
1670  */
1671 static bool name_in_log_ref(struct btrfs_root *log_root,
1672 			    const char *name, const int name_len,
1673 			    const u64 dirid, const u64 ino)
1674 {
1675 	struct btrfs_key search_key;
1676 
1677 	search_key.objectid = ino;
1678 	search_key.type = BTRFS_INODE_REF_KEY;
1679 	search_key.offset = dirid;
1680 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1681 		return true;
1682 
1683 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1684 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1685 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1686 		return true;
1687 
1688 	return false;
1689 }
1690 
1691 /*
1692  * take a single entry in a log directory item and replay it into
1693  * the subvolume.
1694  *
1695  * if a conflicting item exists in the subdirectory already,
1696  * the inode it points to is unlinked and put into the link count
1697  * fix up tree.
1698  *
1699  * If a name from the log points to a file or directory that does
1700  * not exist in the FS, it is skipped.  fsyncs on directories
1701  * do not force down inodes inside that directory, just changes to the
1702  * names or unlinks in a directory.
1703  *
1704  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1705  * non-existing inode) and 1 if the name was replayed.
1706  */
1707 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1708 				    struct btrfs_root *root,
1709 				    struct btrfs_path *path,
1710 				    struct extent_buffer *eb,
1711 				    struct btrfs_dir_item *di,
1712 				    struct btrfs_key *key)
1713 {
1714 	char *name;
1715 	int name_len;
1716 	struct btrfs_dir_item *dst_di;
1717 	struct btrfs_key found_key;
1718 	struct btrfs_key log_key;
1719 	struct inode *dir;
1720 	u8 log_type;
1721 	int exists;
1722 	int ret = 0;
1723 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1724 	bool name_added = false;
1725 
1726 	dir = read_one_inode(root, key->objectid);
1727 	if (!dir)
1728 		return -EIO;
1729 
1730 	name_len = btrfs_dir_name_len(eb, di);
1731 	name = kmalloc(name_len, GFP_NOFS);
1732 	if (!name) {
1733 		ret = -ENOMEM;
1734 		goto out;
1735 	}
1736 
1737 	log_type = btrfs_dir_type(eb, di);
1738 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1739 		   name_len);
1740 
1741 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1742 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1743 	if (exists == 0)
1744 		exists = 1;
1745 	else
1746 		exists = 0;
1747 	btrfs_release_path(path);
1748 
1749 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1750 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1751 				       name, name_len, 1);
1752 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1753 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1754 						     key->objectid,
1755 						     key->offset, name,
1756 						     name_len, 1);
1757 	} else {
1758 		/* Corruption */
1759 		ret = -EINVAL;
1760 		goto out;
1761 	}
1762 	if (IS_ERR_OR_NULL(dst_di)) {
1763 		/* we need a sequence number to insert, so we only
1764 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1765 		 */
1766 		if (key->type != BTRFS_DIR_INDEX_KEY)
1767 			goto out;
1768 		goto insert;
1769 	}
1770 
1771 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1772 	/* the existing item matches the logged item */
1773 	if (found_key.objectid == log_key.objectid &&
1774 	    found_key.type == log_key.type &&
1775 	    found_key.offset == log_key.offset &&
1776 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1777 		update_size = false;
1778 		goto out;
1779 	}
1780 
1781 	/*
1782 	 * don't drop the conflicting directory entry if the inode
1783 	 * for the new entry doesn't exist
1784 	 */
1785 	if (!exists)
1786 		goto out;
1787 
1788 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1789 	if (ret)
1790 		goto out;
1791 
1792 	if (key->type == BTRFS_DIR_INDEX_KEY)
1793 		goto insert;
1794 out:
1795 	btrfs_release_path(path);
1796 	if (!ret && update_size) {
1797 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1798 		ret = btrfs_update_inode(trans, root, dir);
1799 	}
1800 	kfree(name);
1801 	iput(dir);
1802 	if (!ret && name_added)
1803 		ret = 1;
1804 	return ret;
1805 
1806 insert:
1807 	if (name_in_log_ref(root->log_root, name, name_len,
1808 			    key->objectid, log_key.objectid)) {
1809 		/* The dentry will be added later. */
1810 		ret = 0;
1811 		update_size = false;
1812 		goto out;
1813 	}
1814 	btrfs_release_path(path);
1815 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1816 			      name, name_len, &log_key);
1817 	if (ret && ret != -ENOENT && ret != -EEXIST)
1818 		goto out;
1819 	if (!ret)
1820 		name_added = true;
1821 	update_size = false;
1822 	ret = 0;
1823 	goto out;
1824 }
1825 
1826 /*
1827  * find all the names in a directory item and reconcile them into
1828  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1829  * one name in a directory item, but the same code gets used for
1830  * both directory index types
1831  */
1832 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1833 					struct btrfs_root *root,
1834 					struct btrfs_path *path,
1835 					struct extent_buffer *eb, int slot,
1836 					struct btrfs_key *key)
1837 {
1838 	struct btrfs_fs_info *fs_info = root->fs_info;
1839 	int ret = 0;
1840 	u32 item_size = btrfs_item_size_nr(eb, slot);
1841 	struct btrfs_dir_item *di;
1842 	int name_len;
1843 	unsigned long ptr;
1844 	unsigned long ptr_end;
1845 	struct btrfs_path *fixup_path = NULL;
1846 
1847 	ptr = btrfs_item_ptr_offset(eb, slot);
1848 	ptr_end = ptr + item_size;
1849 	while (ptr < ptr_end) {
1850 		di = (struct btrfs_dir_item *)ptr;
1851 		if (verify_dir_item(fs_info, eb, slot, di))
1852 			return -EIO;
1853 		name_len = btrfs_dir_name_len(eb, di);
1854 		ret = replay_one_name(trans, root, path, eb, di, key);
1855 		if (ret < 0)
1856 			break;
1857 		ptr = (unsigned long)(di + 1);
1858 		ptr += name_len;
1859 
1860 		/*
1861 		 * If this entry refers to a non-directory (directories can not
1862 		 * have a link count > 1) and it was added in the transaction
1863 		 * that was not committed, make sure we fixup the link count of
1864 		 * the inode it the entry points to. Otherwise something like
1865 		 * the following would result in a directory pointing to an
1866 		 * inode with a wrong link that does not account for this dir
1867 		 * entry:
1868 		 *
1869 		 * mkdir testdir
1870 		 * touch testdir/foo
1871 		 * touch testdir/bar
1872 		 * sync
1873 		 *
1874 		 * ln testdir/bar testdir/bar_link
1875 		 * ln testdir/foo testdir/foo_link
1876 		 * xfs_io -c "fsync" testdir/bar
1877 		 *
1878 		 * <power failure>
1879 		 *
1880 		 * mount fs, log replay happens
1881 		 *
1882 		 * File foo would remain with a link count of 1 when it has two
1883 		 * entries pointing to it in the directory testdir. This would
1884 		 * make it impossible to ever delete the parent directory has
1885 		 * it would result in stale dentries that can never be deleted.
1886 		 */
1887 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1888 			struct btrfs_key di_key;
1889 
1890 			if (!fixup_path) {
1891 				fixup_path = btrfs_alloc_path();
1892 				if (!fixup_path) {
1893 					ret = -ENOMEM;
1894 					break;
1895 				}
1896 			}
1897 
1898 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1899 			ret = link_to_fixup_dir(trans, root, fixup_path,
1900 						di_key.objectid);
1901 			if (ret)
1902 				break;
1903 		}
1904 		ret = 0;
1905 	}
1906 	btrfs_free_path(fixup_path);
1907 	return ret;
1908 }
1909 
1910 /*
1911  * directory replay has two parts.  There are the standard directory
1912  * items in the log copied from the subvolume, and range items
1913  * created in the log while the subvolume was logged.
1914  *
1915  * The range items tell us which parts of the key space the log
1916  * is authoritative for.  During replay, if a key in the subvolume
1917  * directory is in a logged range item, but not actually in the log
1918  * that means it was deleted from the directory before the fsync
1919  * and should be removed.
1920  */
1921 static noinline int find_dir_range(struct btrfs_root *root,
1922 				   struct btrfs_path *path,
1923 				   u64 dirid, int key_type,
1924 				   u64 *start_ret, u64 *end_ret)
1925 {
1926 	struct btrfs_key key;
1927 	u64 found_end;
1928 	struct btrfs_dir_log_item *item;
1929 	int ret;
1930 	int nritems;
1931 
1932 	if (*start_ret == (u64)-1)
1933 		return 1;
1934 
1935 	key.objectid = dirid;
1936 	key.type = key_type;
1937 	key.offset = *start_ret;
1938 
1939 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1940 	if (ret < 0)
1941 		goto out;
1942 	if (ret > 0) {
1943 		if (path->slots[0] == 0)
1944 			goto out;
1945 		path->slots[0]--;
1946 	}
1947 	if (ret != 0)
1948 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1949 
1950 	if (key.type != key_type || key.objectid != dirid) {
1951 		ret = 1;
1952 		goto next;
1953 	}
1954 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1955 			      struct btrfs_dir_log_item);
1956 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1957 
1958 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1959 		ret = 0;
1960 		*start_ret = key.offset;
1961 		*end_ret = found_end;
1962 		goto out;
1963 	}
1964 	ret = 1;
1965 next:
1966 	/* check the next slot in the tree to see if it is a valid item */
1967 	nritems = btrfs_header_nritems(path->nodes[0]);
1968 	path->slots[0]++;
1969 	if (path->slots[0] >= nritems) {
1970 		ret = btrfs_next_leaf(root, path);
1971 		if (ret)
1972 			goto out;
1973 	}
1974 
1975 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1976 
1977 	if (key.type != key_type || key.objectid != dirid) {
1978 		ret = 1;
1979 		goto out;
1980 	}
1981 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1982 			      struct btrfs_dir_log_item);
1983 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1984 	*start_ret = key.offset;
1985 	*end_ret = found_end;
1986 	ret = 0;
1987 out:
1988 	btrfs_release_path(path);
1989 	return ret;
1990 }
1991 
1992 /*
1993  * this looks for a given directory item in the log.  If the directory
1994  * item is not in the log, the item is removed and the inode it points
1995  * to is unlinked
1996  */
1997 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1998 				      struct btrfs_root *root,
1999 				      struct btrfs_root *log,
2000 				      struct btrfs_path *path,
2001 				      struct btrfs_path *log_path,
2002 				      struct inode *dir,
2003 				      struct btrfs_key *dir_key)
2004 {
2005 	struct btrfs_fs_info *fs_info = root->fs_info;
2006 	int ret;
2007 	struct extent_buffer *eb;
2008 	int slot;
2009 	u32 item_size;
2010 	struct btrfs_dir_item *di;
2011 	struct btrfs_dir_item *log_di;
2012 	int name_len;
2013 	unsigned long ptr;
2014 	unsigned long ptr_end;
2015 	char *name;
2016 	struct inode *inode;
2017 	struct btrfs_key location;
2018 
2019 again:
2020 	eb = path->nodes[0];
2021 	slot = path->slots[0];
2022 	item_size = btrfs_item_size_nr(eb, slot);
2023 	ptr = btrfs_item_ptr_offset(eb, slot);
2024 	ptr_end = ptr + item_size;
2025 	while (ptr < ptr_end) {
2026 		di = (struct btrfs_dir_item *)ptr;
2027 		if (verify_dir_item(fs_info, eb, slot, di)) {
2028 			ret = -EIO;
2029 			goto out;
2030 		}
2031 
2032 		name_len = btrfs_dir_name_len(eb, di);
2033 		name = kmalloc(name_len, GFP_NOFS);
2034 		if (!name) {
2035 			ret = -ENOMEM;
2036 			goto out;
2037 		}
2038 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2039 				  name_len);
2040 		log_di = NULL;
2041 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2042 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2043 						       dir_key->objectid,
2044 						       name, name_len, 0);
2045 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2046 			log_di = btrfs_lookup_dir_index_item(trans, log,
2047 						     log_path,
2048 						     dir_key->objectid,
2049 						     dir_key->offset,
2050 						     name, name_len, 0);
2051 		}
2052 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2053 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2054 			btrfs_release_path(path);
2055 			btrfs_release_path(log_path);
2056 			inode = read_one_inode(root, location.objectid);
2057 			if (!inode) {
2058 				kfree(name);
2059 				return -EIO;
2060 			}
2061 
2062 			ret = link_to_fixup_dir(trans, root,
2063 						path, location.objectid);
2064 			if (ret) {
2065 				kfree(name);
2066 				iput(inode);
2067 				goto out;
2068 			}
2069 
2070 			inc_nlink(inode);
2071 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2072 					BTRFS_I(inode), name, name_len);
2073 			if (!ret)
2074 				ret = btrfs_run_delayed_items(trans, fs_info);
2075 			kfree(name);
2076 			iput(inode);
2077 			if (ret)
2078 				goto out;
2079 
2080 			/* there might still be more names under this key
2081 			 * check and repeat if required
2082 			 */
2083 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2084 						0, 0);
2085 			if (ret == 0)
2086 				goto again;
2087 			ret = 0;
2088 			goto out;
2089 		} else if (IS_ERR(log_di)) {
2090 			kfree(name);
2091 			return PTR_ERR(log_di);
2092 		}
2093 		btrfs_release_path(log_path);
2094 		kfree(name);
2095 
2096 		ptr = (unsigned long)(di + 1);
2097 		ptr += name_len;
2098 	}
2099 	ret = 0;
2100 out:
2101 	btrfs_release_path(path);
2102 	btrfs_release_path(log_path);
2103 	return ret;
2104 }
2105 
2106 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2107 			      struct btrfs_root *root,
2108 			      struct btrfs_root *log,
2109 			      struct btrfs_path *path,
2110 			      const u64 ino)
2111 {
2112 	struct btrfs_fs_info *fs_info = root->fs_info;
2113 	struct btrfs_key search_key;
2114 	struct btrfs_path *log_path;
2115 	int i;
2116 	int nritems;
2117 	int ret;
2118 
2119 	log_path = btrfs_alloc_path();
2120 	if (!log_path)
2121 		return -ENOMEM;
2122 
2123 	search_key.objectid = ino;
2124 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2125 	search_key.offset = 0;
2126 again:
2127 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2128 	if (ret < 0)
2129 		goto out;
2130 process_leaf:
2131 	nritems = btrfs_header_nritems(path->nodes[0]);
2132 	for (i = path->slots[0]; i < nritems; i++) {
2133 		struct btrfs_key key;
2134 		struct btrfs_dir_item *di;
2135 		struct btrfs_dir_item *log_di;
2136 		u32 total_size;
2137 		u32 cur;
2138 
2139 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2140 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2141 			ret = 0;
2142 			goto out;
2143 		}
2144 
2145 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2146 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2147 		cur = 0;
2148 		while (cur < total_size) {
2149 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2150 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2151 			u32 this_len = sizeof(*di) + name_len + data_len;
2152 			char *name;
2153 
2154 			ret = verify_dir_item(fs_info, path->nodes[0], i, di);
2155 			if (ret) {
2156 				ret = -EIO;
2157 				goto out;
2158 			}
2159 			name = kmalloc(name_len, GFP_NOFS);
2160 			if (!name) {
2161 				ret = -ENOMEM;
2162 				goto out;
2163 			}
2164 			read_extent_buffer(path->nodes[0], name,
2165 					   (unsigned long)(di + 1), name_len);
2166 
2167 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2168 						    name, name_len, 0);
2169 			btrfs_release_path(log_path);
2170 			if (!log_di) {
2171 				/* Doesn't exist in log tree, so delete it. */
2172 				btrfs_release_path(path);
2173 				di = btrfs_lookup_xattr(trans, root, path, ino,
2174 							name, name_len, -1);
2175 				kfree(name);
2176 				if (IS_ERR(di)) {
2177 					ret = PTR_ERR(di);
2178 					goto out;
2179 				}
2180 				ASSERT(di);
2181 				ret = btrfs_delete_one_dir_name(trans, root,
2182 								path, di);
2183 				if (ret)
2184 					goto out;
2185 				btrfs_release_path(path);
2186 				search_key = key;
2187 				goto again;
2188 			}
2189 			kfree(name);
2190 			if (IS_ERR(log_di)) {
2191 				ret = PTR_ERR(log_di);
2192 				goto out;
2193 			}
2194 			cur += this_len;
2195 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2196 		}
2197 	}
2198 	ret = btrfs_next_leaf(root, path);
2199 	if (ret > 0)
2200 		ret = 0;
2201 	else if (ret == 0)
2202 		goto process_leaf;
2203 out:
2204 	btrfs_free_path(log_path);
2205 	btrfs_release_path(path);
2206 	return ret;
2207 }
2208 
2209 
2210 /*
2211  * deletion replay happens before we copy any new directory items
2212  * out of the log or out of backreferences from inodes.  It
2213  * scans the log to find ranges of keys that log is authoritative for,
2214  * and then scans the directory to find items in those ranges that are
2215  * not present in the log.
2216  *
2217  * Anything we don't find in the log is unlinked and removed from the
2218  * directory.
2219  */
2220 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2221 				       struct btrfs_root *root,
2222 				       struct btrfs_root *log,
2223 				       struct btrfs_path *path,
2224 				       u64 dirid, int del_all)
2225 {
2226 	u64 range_start;
2227 	u64 range_end;
2228 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2229 	int ret = 0;
2230 	struct btrfs_key dir_key;
2231 	struct btrfs_key found_key;
2232 	struct btrfs_path *log_path;
2233 	struct inode *dir;
2234 
2235 	dir_key.objectid = dirid;
2236 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2237 	log_path = btrfs_alloc_path();
2238 	if (!log_path)
2239 		return -ENOMEM;
2240 
2241 	dir = read_one_inode(root, dirid);
2242 	/* it isn't an error if the inode isn't there, that can happen
2243 	 * because we replay the deletes before we copy in the inode item
2244 	 * from the log
2245 	 */
2246 	if (!dir) {
2247 		btrfs_free_path(log_path);
2248 		return 0;
2249 	}
2250 again:
2251 	range_start = 0;
2252 	range_end = 0;
2253 	while (1) {
2254 		if (del_all)
2255 			range_end = (u64)-1;
2256 		else {
2257 			ret = find_dir_range(log, path, dirid, key_type,
2258 					     &range_start, &range_end);
2259 			if (ret != 0)
2260 				break;
2261 		}
2262 
2263 		dir_key.offset = range_start;
2264 		while (1) {
2265 			int nritems;
2266 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2267 						0, 0);
2268 			if (ret < 0)
2269 				goto out;
2270 
2271 			nritems = btrfs_header_nritems(path->nodes[0]);
2272 			if (path->slots[0] >= nritems) {
2273 				ret = btrfs_next_leaf(root, path);
2274 				if (ret)
2275 					break;
2276 			}
2277 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2278 					      path->slots[0]);
2279 			if (found_key.objectid != dirid ||
2280 			    found_key.type != dir_key.type)
2281 				goto next_type;
2282 
2283 			if (found_key.offset > range_end)
2284 				break;
2285 
2286 			ret = check_item_in_log(trans, root, log, path,
2287 						log_path, dir,
2288 						&found_key);
2289 			if (ret)
2290 				goto out;
2291 			if (found_key.offset == (u64)-1)
2292 				break;
2293 			dir_key.offset = found_key.offset + 1;
2294 		}
2295 		btrfs_release_path(path);
2296 		if (range_end == (u64)-1)
2297 			break;
2298 		range_start = range_end + 1;
2299 	}
2300 
2301 next_type:
2302 	ret = 0;
2303 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2304 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2305 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2306 		btrfs_release_path(path);
2307 		goto again;
2308 	}
2309 out:
2310 	btrfs_release_path(path);
2311 	btrfs_free_path(log_path);
2312 	iput(dir);
2313 	return ret;
2314 }
2315 
2316 /*
2317  * the process_func used to replay items from the log tree.  This
2318  * gets called in two different stages.  The first stage just looks
2319  * for inodes and makes sure they are all copied into the subvolume.
2320  *
2321  * The second stage copies all the other item types from the log into
2322  * the subvolume.  The two stage approach is slower, but gets rid of
2323  * lots of complexity around inodes referencing other inodes that exist
2324  * only in the log (references come from either directory items or inode
2325  * back refs).
2326  */
2327 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2328 			     struct walk_control *wc, u64 gen)
2329 {
2330 	int nritems;
2331 	struct btrfs_path *path;
2332 	struct btrfs_root *root = wc->replay_dest;
2333 	struct btrfs_key key;
2334 	int level;
2335 	int i;
2336 	int ret;
2337 
2338 	ret = btrfs_read_buffer(eb, gen);
2339 	if (ret)
2340 		return ret;
2341 
2342 	level = btrfs_header_level(eb);
2343 
2344 	if (level != 0)
2345 		return 0;
2346 
2347 	path = btrfs_alloc_path();
2348 	if (!path)
2349 		return -ENOMEM;
2350 
2351 	nritems = btrfs_header_nritems(eb);
2352 	for (i = 0; i < nritems; i++) {
2353 		btrfs_item_key_to_cpu(eb, &key, i);
2354 
2355 		/* inode keys are done during the first stage */
2356 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2357 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2358 			struct btrfs_inode_item *inode_item;
2359 			u32 mode;
2360 
2361 			inode_item = btrfs_item_ptr(eb, i,
2362 					    struct btrfs_inode_item);
2363 			ret = replay_xattr_deletes(wc->trans, root, log,
2364 						   path, key.objectid);
2365 			if (ret)
2366 				break;
2367 			mode = btrfs_inode_mode(eb, inode_item);
2368 			if (S_ISDIR(mode)) {
2369 				ret = replay_dir_deletes(wc->trans,
2370 					 root, log, path, key.objectid, 0);
2371 				if (ret)
2372 					break;
2373 			}
2374 			ret = overwrite_item(wc->trans, root, path,
2375 					     eb, i, &key);
2376 			if (ret)
2377 				break;
2378 
2379 			/* for regular files, make sure corresponding
2380 			 * orphan item exist. extents past the new EOF
2381 			 * will be truncated later by orphan cleanup.
2382 			 */
2383 			if (S_ISREG(mode)) {
2384 				ret = insert_orphan_item(wc->trans, root,
2385 							 key.objectid);
2386 				if (ret)
2387 					break;
2388 			}
2389 
2390 			ret = link_to_fixup_dir(wc->trans, root,
2391 						path, key.objectid);
2392 			if (ret)
2393 				break;
2394 		}
2395 
2396 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2397 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2398 			ret = replay_one_dir_item(wc->trans, root, path,
2399 						  eb, i, &key);
2400 			if (ret)
2401 				break;
2402 		}
2403 
2404 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2405 			continue;
2406 
2407 		/* these keys are simply copied */
2408 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2409 			ret = overwrite_item(wc->trans, root, path,
2410 					     eb, i, &key);
2411 			if (ret)
2412 				break;
2413 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2414 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2415 			ret = add_inode_ref(wc->trans, root, log, path,
2416 					    eb, i, &key);
2417 			if (ret && ret != -ENOENT)
2418 				break;
2419 			ret = 0;
2420 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2421 			ret = replay_one_extent(wc->trans, root, path,
2422 						eb, i, &key);
2423 			if (ret)
2424 				break;
2425 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2426 			ret = replay_one_dir_item(wc->trans, root, path,
2427 						  eb, i, &key);
2428 			if (ret)
2429 				break;
2430 		}
2431 	}
2432 	btrfs_free_path(path);
2433 	return ret;
2434 }
2435 
2436 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2437 				   struct btrfs_root *root,
2438 				   struct btrfs_path *path, int *level,
2439 				   struct walk_control *wc)
2440 {
2441 	struct btrfs_fs_info *fs_info = root->fs_info;
2442 	u64 root_owner;
2443 	u64 bytenr;
2444 	u64 ptr_gen;
2445 	struct extent_buffer *next;
2446 	struct extent_buffer *cur;
2447 	struct extent_buffer *parent;
2448 	u32 blocksize;
2449 	int ret = 0;
2450 
2451 	WARN_ON(*level < 0);
2452 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2453 
2454 	while (*level > 0) {
2455 		WARN_ON(*level < 0);
2456 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2457 		cur = path->nodes[*level];
2458 
2459 		WARN_ON(btrfs_header_level(cur) != *level);
2460 
2461 		if (path->slots[*level] >=
2462 		    btrfs_header_nritems(cur))
2463 			break;
2464 
2465 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2466 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2467 		blocksize = fs_info->nodesize;
2468 
2469 		parent = path->nodes[*level];
2470 		root_owner = btrfs_header_owner(parent);
2471 
2472 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2473 		if (IS_ERR(next))
2474 			return PTR_ERR(next);
2475 
2476 		if (*level == 1) {
2477 			ret = wc->process_func(root, next, wc, ptr_gen);
2478 			if (ret) {
2479 				free_extent_buffer(next);
2480 				return ret;
2481 			}
2482 
2483 			path->slots[*level]++;
2484 			if (wc->free) {
2485 				ret = btrfs_read_buffer(next, ptr_gen);
2486 				if (ret) {
2487 					free_extent_buffer(next);
2488 					return ret;
2489 				}
2490 
2491 				if (trans) {
2492 					btrfs_tree_lock(next);
2493 					btrfs_set_lock_blocking(next);
2494 					clean_tree_block(fs_info, next);
2495 					btrfs_wait_tree_block_writeback(next);
2496 					btrfs_tree_unlock(next);
2497 				}
2498 
2499 				WARN_ON(root_owner !=
2500 					BTRFS_TREE_LOG_OBJECTID);
2501 				ret = btrfs_free_and_pin_reserved_extent(
2502 							fs_info, bytenr,
2503 							blocksize);
2504 				if (ret) {
2505 					free_extent_buffer(next);
2506 					return ret;
2507 				}
2508 			}
2509 			free_extent_buffer(next);
2510 			continue;
2511 		}
2512 		ret = btrfs_read_buffer(next, ptr_gen);
2513 		if (ret) {
2514 			free_extent_buffer(next);
2515 			return ret;
2516 		}
2517 
2518 		WARN_ON(*level <= 0);
2519 		if (path->nodes[*level-1])
2520 			free_extent_buffer(path->nodes[*level-1]);
2521 		path->nodes[*level-1] = next;
2522 		*level = btrfs_header_level(next);
2523 		path->slots[*level] = 0;
2524 		cond_resched();
2525 	}
2526 	WARN_ON(*level < 0);
2527 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2528 
2529 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2530 
2531 	cond_resched();
2532 	return 0;
2533 }
2534 
2535 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2536 				 struct btrfs_root *root,
2537 				 struct btrfs_path *path, int *level,
2538 				 struct walk_control *wc)
2539 {
2540 	struct btrfs_fs_info *fs_info = root->fs_info;
2541 	u64 root_owner;
2542 	int i;
2543 	int slot;
2544 	int ret;
2545 
2546 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2547 		slot = path->slots[i];
2548 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2549 			path->slots[i]++;
2550 			*level = i;
2551 			WARN_ON(*level == 0);
2552 			return 0;
2553 		} else {
2554 			struct extent_buffer *parent;
2555 			if (path->nodes[*level] == root->node)
2556 				parent = path->nodes[*level];
2557 			else
2558 				parent = path->nodes[*level + 1];
2559 
2560 			root_owner = btrfs_header_owner(parent);
2561 			ret = wc->process_func(root, path->nodes[*level], wc,
2562 				 btrfs_header_generation(path->nodes[*level]));
2563 			if (ret)
2564 				return ret;
2565 
2566 			if (wc->free) {
2567 				struct extent_buffer *next;
2568 
2569 				next = path->nodes[*level];
2570 
2571 				if (trans) {
2572 					btrfs_tree_lock(next);
2573 					btrfs_set_lock_blocking(next);
2574 					clean_tree_block(fs_info, next);
2575 					btrfs_wait_tree_block_writeback(next);
2576 					btrfs_tree_unlock(next);
2577 				}
2578 
2579 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2580 				ret = btrfs_free_and_pin_reserved_extent(
2581 						fs_info,
2582 						path->nodes[*level]->start,
2583 						path->nodes[*level]->len);
2584 				if (ret)
2585 					return ret;
2586 			}
2587 			free_extent_buffer(path->nodes[*level]);
2588 			path->nodes[*level] = NULL;
2589 			*level = i + 1;
2590 		}
2591 	}
2592 	return 1;
2593 }
2594 
2595 /*
2596  * drop the reference count on the tree rooted at 'snap'.  This traverses
2597  * the tree freeing any blocks that have a ref count of zero after being
2598  * decremented.
2599  */
2600 static int walk_log_tree(struct btrfs_trans_handle *trans,
2601 			 struct btrfs_root *log, struct walk_control *wc)
2602 {
2603 	struct btrfs_fs_info *fs_info = log->fs_info;
2604 	int ret = 0;
2605 	int wret;
2606 	int level;
2607 	struct btrfs_path *path;
2608 	int orig_level;
2609 
2610 	path = btrfs_alloc_path();
2611 	if (!path)
2612 		return -ENOMEM;
2613 
2614 	level = btrfs_header_level(log->node);
2615 	orig_level = level;
2616 	path->nodes[level] = log->node;
2617 	extent_buffer_get(log->node);
2618 	path->slots[level] = 0;
2619 
2620 	while (1) {
2621 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2622 		if (wret > 0)
2623 			break;
2624 		if (wret < 0) {
2625 			ret = wret;
2626 			goto out;
2627 		}
2628 
2629 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2630 		if (wret > 0)
2631 			break;
2632 		if (wret < 0) {
2633 			ret = wret;
2634 			goto out;
2635 		}
2636 	}
2637 
2638 	/* was the root node processed? if not, catch it here */
2639 	if (path->nodes[orig_level]) {
2640 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2641 			 btrfs_header_generation(path->nodes[orig_level]));
2642 		if (ret)
2643 			goto out;
2644 		if (wc->free) {
2645 			struct extent_buffer *next;
2646 
2647 			next = path->nodes[orig_level];
2648 
2649 			if (trans) {
2650 				btrfs_tree_lock(next);
2651 				btrfs_set_lock_blocking(next);
2652 				clean_tree_block(fs_info, next);
2653 				btrfs_wait_tree_block_writeback(next);
2654 				btrfs_tree_unlock(next);
2655 			}
2656 
2657 			WARN_ON(log->root_key.objectid !=
2658 				BTRFS_TREE_LOG_OBJECTID);
2659 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2660 							next->start, next->len);
2661 			if (ret)
2662 				goto out;
2663 		}
2664 	}
2665 
2666 out:
2667 	btrfs_free_path(path);
2668 	return ret;
2669 }
2670 
2671 /*
2672  * helper function to update the item for a given subvolumes log root
2673  * in the tree of log roots
2674  */
2675 static int update_log_root(struct btrfs_trans_handle *trans,
2676 			   struct btrfs_root *log)
2677 {
2678 	struct btrfs_fs_info *fs_info = log->fs_info;
2679 	int ret;
2680 
2681 	if (log->log_transid == 1) {
2682 		/* insert root item on the first sync */
2683 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2684 				&log->root_key, &log->root_item);
2685 	} else {
2686 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2687 				&log->root_key, &log->root_item);
2688 	}
2689 	return ret;
2690 }
2691 
2692 static void wait_log_commit(struct btrfs_root *root, int transid)
2693 {
2694 	DEFINE_WAIT(wait);
2695 	int index = transid % 2;
2696 
2697 	/*
2698 	 * we only allow two pending log transactions at a time,
2699 	 * so we know that if ours is more than 2 older than the
2700 	 * current transaction, we're done
2701 	 */
2702 	for (;;) {
2703 		prepare_to_wait(&root->log_commit_wait[index],
2704 				&wait, TASK_UNINTERRUPTIBLE);
2705 
2706 		if (!(root->log_transid_committed < transid &&
2707 		      atomic_read(&root->log_commit[index])))
2708 			break;
2709 
2710 		mutex_unlock(&root->log_mutex);
2711 		schedule();
2712 		mutex_lock(&root->log_mutex);
2713 	}
2714 	finish_wait(&root->log_commit_wait[index], &wait);
2715 }
2716 
2717 static void wait_for_writer(struct btrfs_root *root)
2718 {
2719 	DEFINE_WAIT(wait);
2720 
2721 	for (;;) {
2722 		prepare_to_wait(&root->log_writer_wait, &wait,
2723 				TASK_UNINTERRUPTIBLE);
2724 		if (!atomic_read(&root->log_writers))
2725 			break;
2726 
2727 		mutex_unlock(&root->log_mutex);
2728 		schedule();
2729 		mutex_lock(&root->log_mutex);
2730 	}
2731 	finish_wait(&root->log_writer_wait, &wait);
2732 }
2733 
2734 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2735 					struct btrfs_log_ctx *ctx)
2736 {
2737 	if (!ctx)
2738 		return;
2739 
2740 	mutex_lock(&root->log_mutex);
2741 	list_del_init(&ctx->list);
2742 	mutex_unlock(&root->log_mutex);
2743 }
2744 
2745 /*
2746  * Invoked in log mutex context, or be sure there is no other task which
2747  * can access the list.
2748  */
2749 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2750 					     int index, int error)
2751 {
2752 	struct btrfs_log_ctx *ctx;
2753 	struct btrfs_log_ctx *safe;
2754 
2755 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2756 		list_del_init(&ctx->list);
2757 		ctx->log_ret = error;
2758 	}
2759 
2760 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2761 }
2762 
2763 /*
2764  * btrfs_sync_log does sends a given tree log down to the disk and
2765  * updates the super blocks to record it.  When this call is done,
2766  * you know that any inodes previously logged are safely on disk only
2767  * if it returns 0.
2768  *
2769  * Any other return value means you need to call btrfs_commit_transaction.
2770  * Some of the edge cases for fsyncing directories that have had unlinks
2771  * or renames done in the past mean that sometimes the only safe
2772  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2773  * that has happened.
2774  */
2775 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2776 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2777 {
2778 	int index1;
2779 	int index2;
2780 	int mark;
2781 	int ret;
2782 	struct btrfs_fs_info *fs_info = root->fs_info;
2783 	struct btrfs_root *log = root->log_root;
2784 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2785 	int log_transid = 0;
2786 	struct btrfs_log_ctx root_log_ctx;
2787 	struct blk_plug plug;
2788 
2789 	mutex_lock(&root->log_mutex);
2790 	log_transid = ctx->log_transid;
2791 	if (root->log_transid_committed >= log_transid) {
2792 		mutex_unlock(&root->log_mutex);
2793 		return ctx->log_ret;
2794 	}
2795 
2796 	index1 = log_transid % 2;
2797 	if (atomic_read(&root->log_commit[index1])) {
2798 		wait_log_commit(root, log_transid);
2799 		mutex_unlock(&root->log_mutex);
2800 		return ctx->log_ret;
2801 	}
2802 	ASSERT(log_transid == root->log_transid);
2803 	atomic_set(&root->log_commit[index1], 1);
2804 
2805 	/* wait for previous tree log sync to complete */
2806 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2807 		wait_log_commit(root, log_transid - 1);
2808 
2809 	while (1) {
2810 		int batch = atomic_read(&root->log_batch);
2811 		/* when we're on an ssd, just kick the log commit out */
2812 		if (!btrfs_test_opt(fs_info, SSD) &&
2813 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2814 			mutex_unlock(&root->log_mutex);
2815 			schedule_timeout_uninterruptible(1);
2816 			mutex_lock(&root->log_mutex);
2817 		}
2818 		wait_for_writer(root);
2819 		if (batch == atomic_read(&root->log_batch))
2820 			break;
2821 	}
2822 
2823 	/* bail out if we need to do a full commit */
2824 	if (btrfs_need_log_full_commit(fs_info, trans)) {
2825 		ret = -EAGAIN;
2826 		btrfs_free_logged_extents(log, log_transid);
2827 		mutex_unlock(&root->log_mutex);
2828 		goto out;
2829 	}
2830 
2831 	if (log_transid % 2 == 0)
2832 		mark = EXTENT_DIRTY;
2833 	else
2834 		mark = EXTENT_NEW;
2835 
2836 	/* we start IO on  all the marked extents here, but we don't actually
2837 	 * wait for them until later.
2838 	 */
2839 	blk_start_plug(&plug);
2840 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2841 	if (ret) {
2842 		blk_finish_plug(&plug);
2843 		btrfs_abort_transaction(trans, ret);
2844 		btrfs_free_logged_extents(log, log_transid);
2845 		btrfs_set_log_full_commit(fs_info, trans);
2846 		mutex_unlock(&root->log_mutex);
2847 		goto out;
2848 	}
2849 
2850 	btrfs_set_root_node(&log->root_item, log->node);
2851 
2852 	root->log_transid++;
2853 	log->log_transid = root->log_transid;
2854 	root->log_start_pid = 0;
2855 	/*
2856 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2857 	 * in their headers. new modifications of the log will be written to
2858 	 * new positions. so it's safe to allow log writers to go in.
2859 	 */
2860 	mutex_unlock(&root->log_mutex);
2861 
2862 	btrfs_init_log_ctx(&root_log_ctx, NULL);
2863 
2864 	mutex_lock(&log_root_tree->log_mutex);
2865 	atomic_inc(&log_root_tree->log_batch);
2866 	atomic_inc(&log_root_tree->log_writers);
2867 
2868 	index2 = log_root_tree->log_transid % 2;
2869 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2870 	root_log_ctx.log_transid = log_root_tree->log_transid;
2871 
2872 	mutex_unlock(&log_root_tree->log_mutex);
2873 
2874 	ret = update_log_root(trans, log);
2875 
2876 	mutex_lock(&log_root_tree->log_mutex);
2877 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2878 		/*
2879 		 * Implicit memory barrier after atomic_dec_and_test
2880 		 */
2881 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2882 			wake_up(&log_root_tree->log_writer_wait);
2883 	}
2884 
2885 	if (ret) {
2886 		if (!list_empty(&root_log_ctx.list))
2887 			list_del_init(&root_log_ctx.list);
2888 
2889 		blk_finish_plug(&plug);
2890 		btrfs_set_log_full_commit(fs_info, trans);
2891 
2892 		if (ret != -ENOSPC) {
2893 			btrfs_abort_transaction(trans, ret);
2894 			mutex_unlock(&log_root_tree->log_mutex);
2895 			goto out;
2896 		}
2897 		btrfs_wait_tree_log_extents(log, mark);
2898 		btrfs_free_logged_extents(log, log_transid);
2899 		mutex_unlock(&log_root_tree->log_mutex);
2900 		ret = -EAGAIN;
2901 		goto out;
2902 	}
2903 
2904 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2905 		blk_finish_plug(&plug);
2906 		list_del_init(&root_log_ctx.list);
2907 		mutex_unlock(&log_root_tree->log_mutex);
2908 		ret = root_log_ctx.log_ret;
2909 		goto out;
2910 	}
2911 
2912 	index2 = root_log_ctx.log_transid % 2;
2913 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2914 		blk_finish_plug(&plug);
2915 		ret = btrfs_wait_tree_log_extents(log, mark);
2916 		btrfs_wait_logged_extents(trans, log, log_transid);
2917 		wait_log_commit(log_root_tree,
2918 				root_log_ctx.log_transid);
2919 		mutex_unlock(&log_root_tree->log_mutex);
2920 		if (!ret)
2921 			ret = root_log_ctx.log_ret;
2922 		goto out;
2923 	}
2924 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2925 	atomic_set(&log_root_tree->log_commit[index2], 1);
2926 
2927 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2928 		wait_log_commit(log_root_tree,
2929 				root_log_ctx.log_transid - 1);
2930 	}
2931 
2932 	wait_for_writer(log_root_tree);
2933 
2934 	/*
2935 	 * now that we've moved on to the tree of log tree roots,
2936 	 * check the full commit flag again
2937 	 */
2938 	if (btrfs_need_log_full_commit(fs_info, trans)) {
2939 		blk_finish_plug(&plug);
2940 		btrfs_wait_tree_log_extents(log, mark);
2941 		btrfs_free_logged_extents(log, log_transid);
2942 		mutex_unlock(&log_root_tree->log_mutex);
2943 		ret = -EAGAIN;
2944 		goto out_wake_log_root;
2945 	}
2946 
2947 	ret = btrfs_write_marked_extents(fs_info,
2948 					 &log_root_tree->dirty_log_pages,
2949 					 EXTENT_DIRTY | EXTENT_NEW);
2950 	blk_finish_plug(&plug);
2951 	if (ret) {
2952 		btrfs_set_log_full_commit(fs_info, trans);
2953 		btrfs_abort_transaction(trans, ret);
2954 		btrfs_free_logged_extents(log, log_transid);
2955 		mutex_unlock(&log_root_tree->log_mutex);
2956 		goto out_wake_log_root;
2957 	}
2958 	ret = btrfs_wait_tree_log_extents(log, mark);
2959 	if (!ret)
2960 		ret = btrfs_wait_tree_log_extents(log_root_tree,
2961 						  EXTENT_NEW | EXTENT_DIRTY);
2962 	if (ret) {
2963 		btrfs_set_log_full_commit(fs_info, trans);
2964 		btrfs_free_logged_extents(log, log_transid);
2965 		mutex_unlock(&log_root_tree->log_mutex);
2966 		goto out_wake_log_root;
2967 	}
2968 	btrfs_wait_logged_extents(trans, log, log_transid);
2969 
2970 	btrfs_set_super_log_root(fs_info->super_for_commit,
2971 				 log_root_tree->node->start);
2972 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
2973 				       btrfs_header_level(log_root_tree->node));
2974 
2975 	log_root_tree->log_transid++;
2976 	mutex_unlock(&log_root_tree->log_mutex);
2977 
2978 	/*
2979 	 * nobody else is going to jump in and write the the ctree
2980 	 * super here because the log_commit atomic below is protecting
2981 	 * us.  We must be called with a transaction handle pinning
2982 	 * the running transaction open, so a full commit can't hop
2983 	 * in and cause problems either.
2984 	 */
2985 	ret = write_all_supers(fs_info, 1);
2986 	if (ret) {
2987 		btrfs_set_log_full_commit(fs_info, trans);
2988 		btrfs_abort_transaction(trans, ret);
2989 		goto out_wake_log_root;
2990 	}
2991 
2992 	mutex_lock(&root->log_mutex);
2993 	if (root->last_log_commit < log_transid)
2994 		root->last_log_commit = log_transid;
2995 	mutex_unlock(&root->log_mutex);
2996 
2997 out_wake_log_root:
2998 	mutex_lock(&log_root_tree->log_mutex);
2999 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3000 
3001 	log_root_tree->log_transid_committed++;
3002 	atomic_set(&log_root_tree->log_commit[index2], 0);
3003 	mutex_unlock(&log_root_tree->log_mutex);
3004 
3005 	/*
3006 	 * The barrier before waitqueue_active is implied by mutex_unlock
3007 	 */
3008 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3009 		wake_up(&log_root_tree->log_commit_wait[index2]);
3010 out:
3011 	mutex_lock(&root->log_mutex);
3012 	btrfs_remove_all_log_ctxs(root, index1, ret);
3013 	root->log_transid_committed++;
3014 	atomic_set(&root->log_commit[index1], 0);
3015 	mutex_unlock(&root->log_mutex);
3016 
3017 	/*
3018 	 * The barrier before waitqueue_active is implied by mutex_unlock
3019 	 */
3020 	if (waitqueue_active(&root->log_commit_wait[index1]))
3021 		wake_up(&root->log_commit_wait[index1]);
3022 	return ret;
3023 }
3024 
3025 static void free_log_tree(struct btrfs_trans_handle *trans,
3026 			  struct btrfs_root *log)
3027 {
3028 	int ret;
3029 	u64 start;
3030 	u64 end;
3031 	struct walk_control wc = {
3032 		.free = 1,
3033 		.process_func = process_one_buffer
3034 	};
3035 
3036 	ret = walk_log_tree(trans, log, &wc);
3037 	/* I don't think this can happen but just in case */
3038 	if (ret)
3039 		btrfs_abort_transaction(trans, ret);
3040 
3041 	while (1) {
3042 		ret = find_first_extent_bit(&log->dirty_log_pages,
3043 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3044 				NULL);
3045 		if (ret)
3046 			break;
3047 
3048 		clear_extent_bits(&log->dirty_log_pages, start, end,
3049 				  EXTENT_DIRTY | EXTENT_NEW);
3050 	}
3051 
3052 	/*
3053 	 * We may have short-circuited the log tree with the full commit logic
3054 	 * and left ordered extents on our list, so clear these out to keep us
3055 	 * from leaking inodes and memory.
3056 	 */
3057 	btrfs_free_logged_extents(log, 0);
3058 	btrfs_free_logged_extents(log, 1);
3059 
3060 	free_extent_buffer(log->node);
3061 	kfree(log);
3062 }
3063 
3064 /*
3065  * free all the extents used by the tree log.  This should be called
3066  * at commit time of the full transaction
3067  */
3068 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3069 {
3070 	if (root->log_root) {
3071 		free_log_tree(trans, root->log_root);
3072 		root->log_root = NULL;
3073 	}
3074 	return 0;
3075 }
3076 
3077 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3078 			     struct btrfs_fs_info *fs_info)
3079 {
3080 	if (fs_info->log_root_tree) {
3081 		free_log_tree(trans, fs_info->log_root_tree);
3082 		fs_info->log_root_tree = NULL;
3083 	}
3084 	return 0;
3085 }
3086 
3087 /*
3088  * If both a file and directory are logged, and unlinks or renames are
3089  * mixed in, we have a few interesting corners:
3090  *
3091  * create file X in dir Y
3092  * link file X to X.link in dir Y
3093  * fsync file X
3094  * unlink file X but leave X.link
3095  * fsync dir Y
3096  *
3097  * After a crash we would expect only X.link to exist.  But file X
3098  * didn't get fsync'd again so the log has back refs for X and X.link.
3099  *
3100  * We solve this by removing directory entries and inode backrefs from the
3101  * log when a file that was logged in the current transaction is
3102  * unlinked.  Any later fsync will include the updated log entries, and
3103  * we'll be able to reconstruct the proper directory items from backrefs.
3104  *
3105  * This optimizations allows us to avoid relogging the entire inode
3106  * or the entire directory.
3107  */
3108 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3109 				 struct btrfs_root *root,
3110 				 const char *name, int name_len,
3111 				 struct btrfs_inode *dir, u64 index)
3112 {
3113 	struct btrfs_root *log;
3114 	struct btrfs_dir_item *di;
3115 	struct btrfs_path *path;
3116 	int ret;
3117 	int err = 0;
3118 	int bytes_del = 0;
3119 	u64 dir_ino = btrfs_ino(dir);
3120 
3121 	if (dir->logged_trans < trans->transid)
3122 		return 0;
3123 
3124 	ret = join_running_log_trans(root);
3125 	if (ret)
3126 		return 0;
3127 
3128 	mutex_lock(&dir->log_mutex);
3129 
3130 	log = root->log_root;
3131 	path = btrfs_alloc_path();
3132 	if (!path) {
3133 		err = -ENOMEM;
3134 		goto out_unlock;
3135 	}
3136 
3137 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3138 				   name, name_len, -1);
3139 	if (IS_ERR(di)) {
3140 		err = PTR_ERR(di);
3141 		goto fail;
3142 	}
3143 	if (di) {
3144 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3145 		bytes_del += name_len;
3146 		if (ret) {
3147 			err = ret;
3148 			goto fail;
3149 		}
3150 	}
3151 	btrfs_release_path(path);
3152 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3153 					 index, name, name_len, -1);
3154 	if (IS_ERR(di)) {
3155 		err = PTR_ERR(di);
3156 		goto fail;
3157 	}
3158 	if (di) {
3159 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3160 		bytes_del += name_len;
3161 		if (ret) {
3162 			err = ret;
3163 			goto fail;
3164 		}
3165 	}
3166 
3167 	/* update the directory size in the log to reflect the names
3168 	 * we have removed
3169 	 */
3170 	if (bytes_del) {
3171 		struct btrfs_key key;
3172 
3173 		key.objectid = dir_ino;
3174 		key.offset = 0;
3175 		key.type = BTRFS_INODE_ITEM_KEY;
3176 		btrfs_release_path(path);
3177 
3178 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3179 		if (ret < 0) {
3180 			err = ret;
3181 			goto fail;
3182 		}
3183 		if (ret == 0) {
3184 			struct btrfs_inode_item *item;
3185 			u64 i_size;
3186 
3187 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3188 					      struct btrfs_inode_item);
3189 			i_size = btrfs_inode_size(path->nodes[0], item);
3190 			if (i_size > bytes_del)
3191 				i_size -= bytes_del;
3192 			else
3193 				i_size = 0;
3194 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3195 			btrfs_mark_buffer_dirty(path->nodes[0]);
3196 		} else
3197 			ret = 0;
3198 		btrfs_release_path(path);
3199 	}
3200 fail:
3201 	btrfs_free_path(path);
3202 out_unlock:
3203 	mutex_unlock(&dir->log_mutex);
3204 	if (ret == -ENOSPC) {
3205 		btrfs_set_log_full_commit(root->fs_info, trans);
3206 		ret = 0;
3207 	} else if (ret < 0)
3208 		btrfs_abort_transaction(trans, ret);
3209 
3210 	btrfs_end_log_trans(root);
3211 
3212 	return err;
3213 }
3214 
3215 /* see comments for btrfs_del_dir_entries_in_log */
3216 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3217 			       struct btrfs_root *root,
3218 			       const char *name, int name_len,
3219 			       struct btrfs_inode *inode, u64 dirid)
3220 {
3221 	struct btrfs_fs_info *fs_info = root->fs_info;
3222 	struct btrfs_root *log;
3223 	u64 index;
3224 	int ret;
3225 
3226 	if (inode->logged_trans < trans->transid)
3227 		return 0;
3228 
3229 	ret = join_running_log_trans(root);
3230 	if (ret)
3231 		return 0;
3232 	log = root->log_root;
3233 	mutex_lock(&inode->log_mutex);
3234 
3235 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3236 				  dirid, &index);
3237 	mutex_unlock(&inode->log_mutex);
3238 	if (ret == -ENOSPC) {
3239 		btrfs_set_log_full_commit(fs_info, trans);
3240 		ret = 0;
3241 	} else if (ret < 0 && ret != -ENOENT)
3242 		btrfs_abort_transaction(trans, ret);
3243 	btrfs_end_log_trans(root);
3244 
3245 	return ret;
3246 }
3247 
3248 /*
3249  * creates a range item in the log for 'dirid'.  first_offset and
3250  * last_offset tell us which parts of the key space the log should
3251  * be considered authoritative for.
3252  */
3253 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3254 				       struct btrfs_root *log,
3255 				       struct btrfs_path *path,
3256 				       int key_type, u64 dirid,
3257 				       u64 first_offset, u64 last_offset)
3258 {
3259 	int ret;
3260 	struct btrfs_key key;
3261 	struct btrfs_dir_log_item *item;
3262 
3263 	key.objectid = dirid;
3264 	key.offset = first_offset;
3265 	if (key_type == BTRFS_DIR_ITEM_KEY)
3266 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3267 	else
3268 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3269 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3270 	if (ret)
3271 		return ret;
3272 
3273 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3274 			      struct btrfs_dir_log_item);
3275 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3276 	btrfs_mark_buffer_dirty(path->nodes[0]);
3277 	btrfs_release_path(path);
3278 	return 0;
3279 }
3280 
3281 /*
3282  * log all the items included in the current transaction for a given
3283  * directory.  This also creates the range items in the log tree required
3284  * to replay anything deleted before the fsync
3285  */
3286 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3287 			  struct btrfs_root *root, struct btrfs_inode *inode,
3288 			  struct btrfs_path *path,
3289 			  struct btrfs_path *dst_path, int key_type,
3290 			  struct btrfs_log_ctx *ctx,
3291 			  u64 min_offset, u64 *last_offset_ret)
3292 {
3293 	struct btrfs_key min_key;
3294 	struct btrfs_root *log = root->log_root;
3295 	struct extent_buffer *src;
3296 	int err = 0;
3297 	int ret;
3298 	int i;
3299 	int nritems;
3300 	u64 first_offset = min_offset;
3301 	u64 last_offset = (u64)-1;
3302 	u64 ino = btrfs_ino(inode);
3303 
3304 	log = root->log_root;
3305 
3306 	min_key.objectid = ino;
3307 	min_key.type = key_type;
3308 	min_key.offset = min_offset;
3309 
3310 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3311 
3312 	/*
3313 	 * we didn't find anything from this transaction, see if there
3314 	 * is anything at all
3315 	 */
3316 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3317 		min_key.objectid = ino;
3318 		min_key.type = key_type;
3319 		min_key.offset = (u64)-1;
3320 		btrfs_release_path(path);
3321 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3322 		if (ret < 0) {
3323 			btrfs_release_path(path);
3324 			return ret;
3325 		}
3326 		ret = btrfs_previous_item(root, path, ino, key_type);
3327 
3328 		/* if ret == 0 there are items for this type,
3329 		 * create a range to tell us the last key of this type.
3330 		 * otherwise, there are no items in this directory after
3331 		 * *min_offset, and we create a range to indicate that.
3332 		 */
3333 		if (ret == 0) {
3334 			struct btrfs_key tmp;
3335 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3336 					      path->slots[0]);
3337 			if (key_type == tmp.type)
3338 				first_offset = max(min_offset, tmp.offset) + 1;
3339 		}
3340 		goto done;
3341 	}
3342 
3343 	/* go backward to find any previous key */
3344 	ret = btrfs_previous_item(root, path, ino, key_type);
3345 	if (ret == 0) {
3346 		struct btrfs_key tmp;
3347 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3348 		if (key_type == tmp.type) {
3349 			first_offset = tmp.offset;
3350 			ret = overwrite_item(trans, log, dst_path,
3351 					     path->nodes[0], path->slots[0],
3352 					     &tmp);
3353 			if (ret) {
3354 				err = ret;
3355 				goto done;
3356 			}
3357 		}
3358 	}
3359 	btrfs_release_path(path);
3360 
3361 	/* find the first key from this transaction again */
3362 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3363 	if (WARN_ON(ret != 0))
3364 		goto done;
3365 
3366 	/*
3367 	 * we have a block from this transaction, log every item in it
3368 	 * from our directory
3369 	 */
3370 	while (1) {
3371 		struct btrfs_key tmp;
3372 		src = path->nodes[0];
3373 		nritems = btrfs_header_nritems(src);
3374 		for (i = path->slots[0]; i < nritems; i++) {
3375 			struct btrfs_dir_item *di;
3376 
3377 			btrfs_item_key_to_cpu(src, &min_key, i);
3378 
3379 			if (min_key.objectid != ino || min_key.type != key_type)
3380 				goto done;
3381 			ret = overwrite_item(trans, log, dst_path, src, i,
3382 					     &min_key);
3383 			if (ret) {
3384 				err = ret;
3385 				goto done;
3386 			}
3387 
3388 			/*
3389 			 * We must make sure that when we log a directory entry,
3390 			 * the corresponding inode, after log replay, has a
3391 			 * matching link count. For example:
3392 			 *
3393 			 * touch foo
3394 			 * mkdir mydir
3395 			 * sync
3396 			 * ln foo mydir/bar
3397 			 * xfs_io -c "fsync" mydir
3398 			 * <crash>
3399 			 * <mount fs and log replay>
3400 			 *
3401 			 * Would result in a fsync log that when replayed, our
3402 			 * file inode would have a link count of 1, but we get
3403 			 * two directory entries pointing to the same inode.
3404 			 * After removing one of the names, it would not be
3405 			 * possible to remove the other name, which resulted
3406 			 * always in stale file handle errors, and would not
3407 			 * be possible to rmdir the parent directory, since
3408 			 * its i_size could never decrement to the value
3409 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3410 			 */
3411 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3412 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3413 			if (ctx &&
3414 			    (btrfs_dir_transid(src, di) == trans->transid ||
3415 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3416 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3417 				ctx->log_new_dentries = true;
3418 		}
3419 		path->slots[0] = nritems;
3420 
3421 		/*
3422 		 * look ahead to the next item and see if it is also
3423 		 * from this directory and from this transaction
3424 		 */
3425 		ret = btrfs_next_leaf(root, path);
3426 		if (ret == 1) {
3427 			last_offset = (u64)-1;
3428 			goto done;
3429 		}
3430 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3431 		if (tmp.objectid != ino || tmp.type != key_type) {
3432 			last_offset = (u64)-1;
3433 			goto done;
3434 		}
3435 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3436 			ret = overwrite_item(trans, log, dst_path,
3437 					     path->nodes[0], path->slots[0],
3438 					     &tmp);
3439 			if (ret)
3440 				err = ret;
3441 			else
3442 				last_offset = tmp.offset;
3443 			goto done;
3444 		}
3445 	}
3446 done:
3447 	btrfs_release_path(path);
3448 	btrfs_release_path(dst_path);
3449 
3450 	if (err == 0) {
3451 		*last_offset_ret = last_offset;
3452 		/*
3453 		 * insert the log range keys to indicate where the log
3454 		 * is valid
3455 		 */
3456 		ret = insert_dir_log_key(trans, log, path, key_type,
3457 					 ino, first_offset, last_offset);
3458 		if (ret)
3459 			err = ret;
3460 	}
3461 	return err;
3462 }
3463 
3464 /*
3465  * logging directories is very similar to logging inodes, We find all the items
3466  * from the current transaction and write them to the log.
3467  *
3468  * The recovery code scans the directory in the subvolume, and if it finds a
3469  * key in the range logged that is not present in the log tree, then it means
3470  * that dir entry was unlinked during the transaction.
3471  *
3472  * In order for that scan to work, we must include one key smaller than
3473  * the smallest logged by this transaction and one key larger than the largest
3474  * key logged by this transaction.
3475  */
3476 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3477 			  struct btrfs_root *root, struct btrfs_inode *inode,
3478 			  struct btrfs_path *path,
3479 			  struct btrfs_path *dst_path,
3480 			  struct btrfs_log_ctx *ctx)
3481 {
3482 	u64 min_key;
3483 	u64 max_key;
3484 	int ret;
3485 	int key_type = BTRFS_DIR_ITEM_KEY;
3486 
3487 again:
3488 	min_key = 0;
3489 	max_key = 0;
3490 	while (1) {
3491 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3492 				ctx, min_key, &max_key);
3493 		if (ret)
3494 			return ret;
3495 		if (max_key == (u64)-1)
3496 			break;
3497 		min_key = max_key + 1;
3498 	}
3499 
3500 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3501 		key_type = BTRFS_DIR_INDEX_KEY;
3502 		goto again;
3503 	}
3504 	return 0;
3505 }
3506 
3507 /*
3508  * a helper function to drop items from the log before we relog an
3509  * inode.  max_key_type indicates the highest item type to remove.
3510  * This cannot be run for file data extents because it does not
3511  * free the extents they point to.
3512  */
3513 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3514 				  struct btrfs_root *log,
3515 				  struct btrfs_path *path,
3516 				  u64 objectid, int max_key_type)
3517 {
3518 	int ret;
3519 	struct btrfs_key key;
3520 	struct btrfs_key found_key;
3521 	int start_slot;
3522 
3523 	key.objectid = objectid;
3524 	key.type = max_key_type;
3525 	key.offset = (u64)-1;
3526 
3527 	while (1) {
3528 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3529 		BUG_ON(ret == 0); /* Logic error */
3530 		if (ret < 0)
3531 			break;
3532 
3533 		if (path->slots[0] == 0)
3534 			break;
3535 
3536 		path->slots[0]--;
3537 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3538 				      path->slots[0]);
3539 
3540 		if (found_key.objectid != objectid)
3541 			break;
3542 
3543 		found_key.offset = 0;
3544 		found_key.type = 0;
3545 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3546 				       &start_slot);
3547 
3548 		ret = btrfs_del_items(trans, log, path, start_slot,
3549 				      path->slots[0] - start_slot + 1);
3550 		/*
3551 		 * If start slot isn't 0 then we don't need to re-search, we've
3552 		 * found the last guy with the objectid in this tree.
3553 		 */
3554 		if (ret || start_slot != 0)
3555 			break;
3556 		btrfs_release_path(path);
3557 	}
3558 	btrfs_release_path(path);
3559 	if (ret > 0)
3560 		ret = 0;
3561 	return ret;
3562 }
3563 
3564 static void fill_inode_item(struct btrfs_trans_handle *trans,
3565 			    struct extent_buffer *leaf,
3566 			    struct btrfs_inode_item *item,
3567 			    struct inode *inode, int log_inode_only,
3568 			    u64 logged_isize)
3569 {
3570 	struct btrfs_map_token token;
3571 
3572 	btrfs_init_map_token(&token);
3573 
3574 	if (log_inode_only) {
3575 		/* set the generation to zero so the recover code
3576 		 * can tell the difference between an logging
3577 		 * just to say 'this inode exists' and a logging
3578 		 * to say 'update this inode with these values'
3579 		 */
3580 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3581 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3582 	} else {
3583 		btrfs_set_token_inode_generation(leaf, item,
3584 						 BTRFS_I(inode)->generation,
3585 						 &token);
3586 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3587 	}
3588 
3589 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3590 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3591 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3592 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3593 
3594 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3595 				     inode->i_atime.tv_sec, &token);
3596 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3597 				      inode->i_atime.tv_nsec, &token);
3598 
3599 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3600 				     inode->i_mtime.tv_sec, &token);
3601 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3602 				      inode->i_mtime.tv_nsec, &token);
3603 
3604 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3605 				     inode->i_ctime.tv_sec, &token);
3606 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3607 				      inode->i_ctime.tv_nsec, &token);
3608 
3609 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3610 				     &token);
3611 
3612 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3613 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3614 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3615 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3616 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3617 }
3618 
3619 static int log_inode_item(struct btrfs_trans_handle *trans,
3620 			  struct btrfs_root *log, struct btrfs_path *path,
3621 			  struct btrfs_inode *inode)
3622 {
3623 	struct btrfs_inode_item *inode_item;
3624 	int ret;
3625 
3626 	ret = btrfs_insert_empty_item(trans, log, path,
3627 				      &inode->location, sizeof(*inode_item));
3628 	if (ret && ret != -EEXIST)
3629 		return ret;
3630 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3631 				    struct btrfs_inode_item);
3632 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3633 			0, 0);
3634 	btrfs_release_path(path);
3635 	return 0;
3636 }
3637 
3638 static noinline int copy_items(struct btrfs_trans_handle *trans,
3639 			       struct btrfs_inode *inode,
3640 			       struct btrfs_path *dst_path,
3641 			       struct btrfs_path *src_path, u64 *last_extent,
3642 			       int start_slot, int nr, int inode_only,
3643 			       u64 logged_isize)
3644 {
3645 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3646 	unsigned long src_offset;
3647 	unsigned long dst_offset;
3648 	struct btrfs_root *log = inode->root->log_root;
3649 	struct btrfs_file_extent_item *extent;
3650 	struct btrfs_inode_item *inode_item;
3651 	struct extent_buffer *src = src_path->nodes[0];
3652 	struct btrfs_key first_key, last_key, key;
3653 	int ret;
3654 	struct btrfs_key *ins_keys;
3655 	u32 *ins_sizes;
3656 	char *ins_data;
3657 	int i;
3658 	struct list_head ordered_sums;
3659 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3660 	bool has_extents = false;
3661 	bool need_find_last_extent = true;
3662 	bool done = false;
3663 
3664 	INIT_LIST_HEAD(&ordered_sums);
3665 
3666 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3667 			   nr * sizeof(u32), GFP_NOFS);
3668 	if (!ins_data)
3669 		return -ENOMEM;
3670 
3671 	first_key.objectid = (u64)-1;
3672 
3673 	ins_sizes = (u32 *)ins_data;
3674 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3675 
3676 	for (i = 0; i < nr; i++) {
3677 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3678 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3679 	}
3680 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3681 				       ins_keys, ins_sizes, nr);
3682 	if (ret) {
3683 		kfree(ins_data);
3684 		return ret;
3685 	}
3686 
3687 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3688 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3689 						   dst_path->slots[0]);
3690 
3691 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3692 
3693 		if (i == nr - 1)
3694 			last_key = ins_keys[i];
3695 
3696 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3697 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3698 						    dst_path->slots[0],
3699 						    struct btrfs_inode_item);
3700 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3701 					&inode->vfs_inode,
3702 					inode_only == LOG_INODE_EXISTS,
3703 					logged_isize);
3704 		} else {
3705 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3706 					   src_offset, ins_sizes[i]);
3707 		}
3708 
3709 		/*
3710 		 * We set need_find_last_extent here in case we know we were
3711 		 * processing other items and then walk into the first extent in
3712 		 * the inode.  If we don't hit an extent then nothing changes,
3713 		 * we'll do the last search the next time around.
3714 		 */
3715 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3716 			has_extents = true;
3717 			if (first_key.objectid == (u64)-1)
3718 				first_key = ins_keys[i];
3719 		} else {
3720 			need_find_last_extent = false;
3721 		}
3722 
3723 		/* take a reference on file data extents so that truncates
3724 		 * or deletes of this inode don't have to relog the inode
3725 		 * again
3726 		 */
3727 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3728 		    !skip_csum) {
3729 			int found_type;
3730 			extent = btrfs_item_ptr(src, start_slot + i,
3731 						struct btrfs_file_extent_item);
3732 
3733 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3734 				continue;
3735 
3736 			found_type = btrfs_file_extent_type(src, extent);
3737 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3738 				u64 ds, dl, cs, cl;
3739 				ds = btrfs_file_extent_disk_bytenr(src,
3740 								extent);
3741 				/* ds == 0 is a hole */
3742 				if (ds == 0)
3743 					continue;
3744 
3745 				dl = btrfs_file_extent_disk_num_bytes(src,
3746 								extent);
3747 				cs = btrfs_file_extent_offset(src, extent);
3748 				cl = btrfs_file_extent_num_bytes(src,
3749 								extent);
3750 				if (btrfs_file_extent_compression(src,
3751 								  extent)) {
3752 					cs = 0;
3753 					cl = dl;
3754 				}
3755 
3756 				ret = btrfs_lookup_csums_range(
3757 						fs_info->csum_root,
3758 						ds + cs, ds + cs + cl - 1,
3759 						&ordered_sums, 0);
3760 				if (ret) {
3761 					btrfs_release_path(dst_path);
3762 					kfree(ins_data);
3763 					return ret;
3764 				}
3765 			}
3766 		}
3767 	}
3768 
3769 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3770 	btrfs_release_path(dst_path);
3771 	kfree(ins_data);
3772 
3773 	/*
3774 	 * we have to do this after the loop above to avoid changing the
3775 	 * log tree while trying to change the log tree.
3776 	 */
3777 	ret = 0;
3778 	while (!list_empty(&ordered_sums)) {
3779 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3780 						   struct btrfs_ordered_sum,
3781 						   list);
3782 		if (!ret)
3783 			ret = btrfs_csum_file_blocks(trans, log, sums);
3784 		list_del(&sums->list);
3785 		kfree(sums);
3786 	}
3787 
3788 	if (!has_extents)
3789 		return ret;
3790 
3791 	if (need_find_last_extent && *last_extent == first_key.offset) {
3792 		/*
3793 		 * We don't have any leafs between our current one and the one
3794 		 * we processed before that can have file extent items for our
3795 		 * inode (and have a generation number smaller than our current
3796 		 * transaction id).
3797 		 */
3798 		need_find_last_extent = false;
3799 	}
3800 
3801 	/*
3802 	 * Because we use btrfs_search_forward we could skip leaves that were
3803 	 * not modified and then assume *last_extent is valid when it really
3804 	 * isn't.  So back up to the previous leaf and read the end of the last
3805 	 * extent before we go and fill in holes.
3806 	 */
3807 	if (need_find_last_extent) {
3808 		u64 len;
3809 
3810 		ret = btrfs_prev_leaf(inode->root, src_path);
3811 		if (ret < 0)
3812 			return ret;
3813 		if (ret)
3814 			goto fill_holes;
3815 		if (src_path->slots[0])
3816 			src_path->slots[0]--;
3817 		src = src_path->nodes[0];
3818 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3819 		if (key.objectid != btrfs_ino(inode) ||
3820 		    key.type != BTRFS_EXTENT_DATA_KEY)
3821 			goto fill_holes;
3822 		extent = btrfs_item_ptr(src, src_path->slots[0],
3823 					struct btrfs_file_extent_item);
3824 		if (btrfs_file_extent_type(src, extent) ==
3825 		    BTRFS_FILE_EXTENT_INLINE) {
3826 			len = btrfs_file_extent_inline_len(src,
3827 							   src_path->slots[0],
3828 							   extent);
3829 			*last_extent = ALIGN(key.offset + len,
3830 					     fs_info->sectorsize);
3831 		} else {
3832 			len = btrfs_file_extent_num_bytes(src, extent);
3833 			*last_extent = key.offset + len;
3834 		}
3835 	}
3836 fill_holes:
3837 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3838 	 * things could have happened
3839 	 *
3840 	 * 1) A merge could have happened, so we could currently be on a leaf
3841 	 * that holds what we were copying in the first place.
3842 	 * 2) A split could have happened, and now not all of the items we want
3843 	 * are on the same leaf.
3844 	 *
3845 	 * So we need to adjust how we search for holes, we need to drop the
3846 	 * path and re-search for the first extent key we found, and then walk
3847 	 * forward until we hit the last one we copied.
3848 	 */
3849 	if (need_find_last_extent) {
3850 		/* btrfs_prev_leaf could return 1 without releasing the path */
3851 		btrfs_release_path(src_path);
3852 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
3853 				src_path, 0, 0);
3854 		if (ret < 0)
3855 			return ret;
3856 		ASSERT(ret == 0);
3857 		src = src_path->nodes[0];
3858 		i = src_path->slots[0];
3859 	} else {
3860 		i = start_slot;
3861 	}
3862 
3863 	/*
3864 	 * Ok so here we need to go through and fill in any holes we may have
3865 	 * to make sure that holes are punched for those areas in case they had
3866 	 * extents previously.
3867 	 */
3868 	while (!done) {
3869 		u64 offset, len;
3870 		u64 extent_end;
3871 
3872 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3873 			ret = btrfs_next_leaf(inode->root, src_path);
3874 			if (ret < 0)
3875 				return ret;
3876 			ASSERT(ret == 0);
3877 			src = src_path->nodes[0];
3878 			i = 0;
3879 		}
3880 
3881 		btrfs_item_key_to_cpu(src, &key, i);
3882 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3883 			done = true;
3884 		if (key.objectid != btrfs_ino(inode) ||
3885 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3886 			i++;
3887 			continue;
3888 		}
3889 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3890 		if (btrfs_file_extent_type(src, extent) ==
3891 		    BTRFS_FILE_EXTENT_INLINE) {
3892 			len = btrfs_file_extent_inline_len(src, i, extent);
3893 			extent_end = ALIGN(key.offset + len,
3894 					   fs_info->sectorsize);
3895 		} else {
3896 			len = btrfs_file_extent_num_bytes(src, extent);
3897 			extent_end = key.offset + len;
3898 		}
3899 		i++;
3900 
3901 		if (*last_extent == key.offset) {
3902 			*last_extent = extent_end;
3903 			continue;
3904 		}
3905 		offset = *last_extent;
3906 		len = key.offset - *last_extent;
3907 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3908 				offset, 0, 0, len, 0, len, 0, 0, 0);
3909 		if (ret)
3910 			break;
3911 		*last_extent = extent_end;
3912 	}
3913 	/*
3914 	 * Need to let the callers know we dropped the path so they should
3915 	 * re-search.
3916 	 */
3917 	if (!ret && need_find_last_extent)
3918 		ret = 1;
3919 	return ret;
3920 }
3921 
3922 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3923 {
3924 	struct extent_map *em1, *em2;
3925 
3926 	em1 = list_entry(a, struct extent_map, list);
3927 	em2 = list_entry(b, struct extent_map, list);
3928 
3929 	if (em1->start < em2->start)
3930 		return -1;
3931 	else if (em1->start > em2->start)
3932 		return 1;
3933 	return 0;
3934 }
3935 
3936 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3937 				struct inode *inode,
3938 				struct btrfs_root *root,
3939 				const struct extent_map *em,
3940 				const struct list_head *logged_list,
3941 				bool *ordered_io_error)
3942 {
3943 	struct btrfs_fs_info *fs_info = root->fs_info;
3944 	struct btrfs_ordered_extent *ordered;
3945 	struct btrfs_root *log = root->log_root;
3946 	u64 mod_start = em->mod_start;
3947 	u64 mod_len = em->mod_len;
3948 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3949 	u64 csum_offset;
3950 	u64 csum_len;
3951 	LIST_HEAD(ordered_sums);
3952 	int ret = 0;
3953 
3954 	*ordered_io_error = false;
3955 
3956 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3957 	    em->block_start == EXTENT_MAP_HOLE)
3958 		return 0;
3959 
3960 	/*
3961 	 * Wait far any ordered extent that covers our extent map. If it
3962 	 * finishes without an error, first check and see if our csums are on
3963 	 * our outstanding ordered extents.
3964 	 */
3965 	list_for_each_entry(ordered, logged_list, log_list) {
3966 		struct btrfs_ordered_sum *sum;
3967 
3968 		if (!mod_len)
3969 			break;
3970 
3971 		if (ordered->file_offset + ordered->len <= mod_start ||
3972 		    mod_start + mod_len <= ordered->file_offset)
3973 			continue;
3974 
3975 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3976 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3977 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3978 			const u64 start = ordered->file_offset;
3979 			const u64 end = ordered->file_offset + ordered->len - 1;
3980 
3981 			WARN_ON(ordered->inode != inode);
3982 			filemap_fdatawrite_range(inode->i_mapping, start, end);
3983 		}
3984 
3985 		wait_event(ordered->wait,
3986 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3987 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3988 
3989 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3990 			/*
3991 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3992 			 * i_mapping flags, so that the next fsync won't get
3993 			 * an outdated io error too.
3994 			 */
3995 			filemap_check_errors(inode->i_mapping);
3996 			*ordered_io_error = true;
3997 			break;
3998 		}
3999 		/*
4000 		 * We are going to copy all the csums on this ordered extent, so
4001 		 * go ahead and adjust mod_start and mod_len in case this
4002 		 * ordered extent has already been logged.
4003 		 */
4004 		if (ordered->file_offset > mod_start) {
4005 			if (ordered->file_offset + ordered->len >=
4006 			    mod_start + mod_len)
4007 				mod_len = ordered->file_offset - mod_start;
4008 			/*
4009 			 * If we have this case
4010 			 *
4011 			 * |--------- logged extent ---------|
4012 			 *       |----- ordered extent ----|
4013 			 *
4014 			 * Just don't mess with mod_start and mod_len, we'll
4015 			 * just end up logging more csums than we need and it
4016 			 * will be ok.
4017 			 */
4018 		} else {
4019 			if (ordered->file_offset + ordered->len <
4020 			    mod_start + mod_len) {
4021 				mod_len = (mod_start + mod_len) -
4022 					(ordered->file_offset + ordered->len);
4023 				mod_start = ordered->file_offset +
4024 					ordered->len;
4025 			} else {
4026 				mod_len = 0;
4027 			}
4028 		}
4029 
4030 		if (skip_csum)
4031 			continue;
4032 
4033 		/*
4034 		 * To keep us from looping for the above case of an ordered
4035 		 * extent that falls inside of the logged extent.
4036 		 */
4037 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4038 				     &ordered->flags))
4039 			continue;
4040 
4041 		list_for_each_entry(sum, &ordered->list, list) {
4042 			ret = btrfs_csum_file_blocks(trans, log, sum);
4043 			if (ret)
4044 				break;
4045 		}
4046 	}
4047 
4048 	if (*ordered_io_error || !mod_len || ret || skip_csum)
4049 		return ret;
4050 
4051 	if (em->compress_type) {
4052 		csum_offset = 0;
4053 		csum_len = max(em->block_len, em->orig_block_len);
4054 	} else {
4055 		csum_offset = mod_start - em->start;
4056 		csum_len = mod_len;
4057 	}
4058 
4059 	/* block start is already adjusted for the file extent offset. */
4060 	ret = btrfs_lookup_csums_range(fs_info->csum_root,
4061 				       em->block_start + csum_offset,
4062 				       em->block_start + csum_offset +
4063 				       csum_len - 1, &ordered_sums, 0);
4064 	if (ret)
4065 		return ret;
4066 
4067 	while (!list_empty(&ordered_sums)) {
4068 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4069 						   struct btrfs_ordered_sum,
4070 						   list);
4071 		if (!ret)
4072 			ret = btrfs_csum_file_blocks(trans, log, sums);
4073 		list_del(&sums->list);
4074 		kfree(sums);
4075 	}
4076 
4077 	return ret;
4078 }
4079 
4080 static int log_one_extent(struct btrfs_trans_handle *trans,
4081 			  struct btrfs_inode *inode, struct btrfs_root *root,
4082 			  const struct extent_map *em,
4083 			  struct btrfs_path *path,
4084 			  const struct list_head *logged_list,
4085 			  struct btrfs_log_ctx *ctx)
4086 {
4087 	struct btrfs_root *log = root->log_root;
4088 	struct btrfs_file_extent_item *fi;
4089 	struct extent_buffer *leaf;
4090 	struct btrfs_map_token token;
4091 	struct btrfs_key key;
4092 	u64 extent_offset = em->start - em->orig_start;
4093 	u64 block_len;
4094 	int ret;
4095 	int extent_inserted = 0;
4096 	bool ordered_io_err = false;
4097 
4098 	ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4099 			logged_list, &ordered_io_err);
4100 	if (ret)
4101 		return ret;
4102 
4103 	if (ordered_io_err) {
4104 		ctx->io_err = -EIO;
4105 		return ctx->io_err;
4106 	}
4107 
4108 	btrfs_init_map_token(&token);
4109 
4110 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4111 				   em->start + em->len, NULL, 0, 1,
4112 				   sizeof(*fi), &extent_inserted);
4113 	if (ret)
4114 		return ret;
4115 
4116 	if (!extent_inserted) {
4117 		key.objectid = btrfs_ino(inode);
4118 		key.type = BTRFS_EXTENT_DATA_KEY;
4119 		key.offset = em->start;
4120 
4121 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4122 					      sizeof(*fi));
4123 		if (ret)
4124 			return ret;
4125 	}
4126 	leaf = path->nodes[0];
4127 	fi = btrfs_item_ptr(leaf, path->slots[0],
4128 			    struct btrfs_file_extent_item);
4129 
4130 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4131 					       &token);
4132 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4133 		btrfs_set_token_file_extent_type(leaf, fi,
4134 						 BTRFS_FILE_EXTENT_PREALLOC,
4135 						 &token);
4136 	else
4137 		btrfs_set_token_file_extent_type(leaf, fi,
4138 						 BTRFS_FILE_EXTENT_REG,
4139 						 &token);
4140 
4141 	block_len = max(em->block_len, em->orig_block_len);
4142 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4143 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4144 							em->block_start,
4145 							&token);
4146 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4147 							   &token);
4148 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4149 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4150 							em->block_start -
4151 							extent_offset, &token);
4152 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4153 							   &token);
4154 	} else {
4155 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4156 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4157 							   &token);
4158 	}
4159 
4160 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4161 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4162 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4163 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4164 						&token);
4165 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4166 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4167 	btrfs_mark_buffer_dirty(leaf);
4168 
4169 	btrfs_release_path(path);
4170 
4171 	return ret;
4172 }
4173 
4174 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4175 				     struct btrfs_root *root,
4176 				     struct btrfs_inode *inode,
4177 				     struct btrfs_path *path,
4178 				     struct list_head *logged_list,
4179 				     struct btrfs_log_ctx *ctx,
4180 				     const u64 start,
4181 				     const u64 end)
4182 {
4183 	struct extent_map *em, *n;
4184 	struct list_head extents;
4185 	struct extent_map_tree *tree = &inode->extent_tree;
4186 	u64 logged_start, logged_end;
4187 	u64 test_gen;
4188 	int ret = 0;
4189 	int num = 0;
4190 
4191 	INIT_LIST_HEAD(&extents);
4192 
4193 	down_write(&inode->dio_sem);
4194 	write_lock(&tree->lock);
4195 	test_gen = root->fs_info->last_trans_committed;
4196 	logged_start = start;
4197 	logged_end = end;
4198 
4199 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4200 		list_del_init(&em->list);
4201 		/*
4202 		 * Just an arbitrary number, this can be really CPU intensive
4203 		 * once we start getting a lot of extents, and really once we
4204 		 * have a bunch of extents we just want to commit since it will
4205 		 * be faster.
4206 		 */
4207 		if (++num > 32768) {
4208 			list_del_init(&tree->modified_extents);
4209 			ret = -EFBIG;
4210 			goto process;
4211 		}
4212 
4213 		if (em->generation <= test_gen)
4214 			continue;
4215 
4216 		if (em->start < logged_start)
4217 			logged_start = em->start;
4218 		if ((em->start + em->len - 1) > logged_end)
4219 			logged_end = em->start + em->len - 1;
4220 
4221 		/* Need a ref to keep it from getting evicted from cache */
4222 		refcount_inc(&em->refs);
4223 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4224 		list_add_tail(&em->list, &extents);
4225 		num++;
4226 	}
4227 
4228 	list_sort(NULL, &extents, extent_cmp);
4229 	btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
4230 	/*
4231 	 * Some ordered extents started by fsync might have completed
4232 	 * before we could collect them into the list logged_list, which
4233 	 * means they're gone, not in our logged_list nor in the inode's
4234 	 * ordered tree. We want the application/user space to know an
4235 	 * error happened while attempting to persist file data so that
4236 	 * it can take proper action. If such error happened, we leave
4237 	 * without writing to the log tree and the fsync must report the
4238 	 * file data write error and not commit the current transaction.
4239 	 */
4240 	ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4241 	if (ret)
4242 		ctx->io_err = ret;
4243 process:
4244 	while (!list_empty(&extents)) {
4245 		em = list_entry(extents.next, struct extent_map, list);
4246 
4247 		list_del_init(&em->list);
4248 
4249 		/*
4250 		 * If we had an error we just need to delete everybody from our
4251 		 * private list.
4252 		 */
4253 		if (ret) {
4254 			clear_em_logging(tree, em);
4255 			free_extent_map(em);
4256 			continue;
4257 		}
4258 
4259 		write_unlock(&tree->lock);
4260 
4261 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4262 				     ctx);
4263 		write_lock(&tree->lock);
4264 		clear_em_logging(tree, em);
4265 		free_extent_map(em);
4266 	}
4267 	WARN_ON(!list_empty(&extents));
4268 	write_unlock(&tree->lock);
4269 	up_write(&inode->dio_sem);
4270 
4271 	btrfs_release_path(path);
4272 	return ret;
4273 }
4274 
4275 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4276 			     struct btrfs_path *path, u64 *size_ret)
4277 {
4278 	struct btrfs_key key;
4279 	int ret;
4280 
4281 	key.objectid = btrfs_ino(inode);
4282 	key.type = BTRFS_INODE_ITEM_KEY;
4283 	key.offset = 0;
4284 
4285 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4286 	if (ret < 0) {
4287 		return ret;
4288 	} else if (ret > 0) {
4289 		*size_ret = 0;
4290 	} else {
4291 		struct btrfs_inode_item *item;
4292 
4293 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4294 				      struct btrfs_inode_item);
4295 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4296 	}
4297 
4298 	btrfs_release_path(path);
4299 	return 0;
4300 }
4301 
4302 /*
4303  * At the moment we always log all xattrs. This is to figure out at log replay
4304  * time which xattrs must have their deletion replayed. If a xattr is missing
4305  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4306  * because if a xattr is deleted, the inode is fsynced and a power failure
4307  * happens, causing the log to be replayed the next time the fs is mounted,
4308  * we want the xattr to not exist anymore (same behaviour as other filesystems
4309  * with a journal, ext3/4, xfs, f2fs, etc).
4310  */
4311 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4312 				struct btrfs_root *root,
4313 				struct btrfs_inode *inode,
4314 				struct btrfs_path *path,
4315 				struct btrfs_path *dst_path)
4316 {
4317 	int ret;
4318 	struct btrfs_key key;
4319 	const u64 ino = btrfs_ino(inode);
4320 	int ins_nr = 0;
4321 	int start_slot = 0;
4322 
4323 	key.objectid = ino;
4324 	key.type = BTRFS_XATTR_ITEM_KEY;
4325 	key.offset = 0;
4326 
4327 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4328 	if (ret < 0)
4329 		return ret;
4330 
4331 	while (true) {
4332 		int slot = path->slots[0];
4333 		struct extent_buffer *leaf = path->nodes[0];
4334 		int nritems = btrfs_header_nritems(leaf);
4335 
4336 		if (slot >= nritems) {
4337 			if (ins_nr > 0) {
4338 				u64 last_extent = 0;
4339 
4340 				ret = copy_items(trans, inode, dst_path, path,
4341 						 &last_extent, start_slot,
4342 						 ins_nr, 1, 0);
4343 				/* can't be 1, extent items aren't processed */
4344 				ASSERT(ret <= 0);
4345 				if (ret < 0)
4346 					return ret;
4347 				ins_nr = 0;
4348 			}
4349 			ret = btrfs_next_leaf(root, path);
4350 			if (ret < 0)
4351 				return ret;
4352 			else if (ret > 0)
4353 				break;
4354 			continue;
4355 		}
4356 
4357 		btrfs_item_key_to_cpu(leaf, &key, slot);
4358 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4359 			break;
4360 
4361 		if (ins_nr == 0)
4362 			start_slot = slot;
4363 		ins_nr++;
4364 		path->slots[0]++;
4365 		cond_resched();
4366 	}
4367 	if (ins_nr > 0) {
4368 		u64 last_extent = 0;
4369 
4370 		ret = copy_items(trans, inode, dst_path, path,
4371 				 &last_extent, start_slot,
4372 				 ins_nr, 1, 0);
4373 		/* can't be 1, extent items aren't processed */
4374 		ASSERT(ret <= 0);
4375 		if (ret < 0)
4376 			return ret;
4377 	}
4378 
4379 	return 0;
4380 }
4381 
4382 /*
4383  * If the no holes feature is enabled we need to make sure any hole between the
4384  * last extent and the i_size of our inode is explicitly marked in the log. This
4385  * is to make sure that doing something like:
4386  *
4387  *      1) create file with 128Kb of data
4388  *      2) truncate file to 64Kb
4389  *      3) truncate file to 256Kb
4390  *      4) fsync file
4391  *      5) <crash/power failure>
4392  *      6) mount fs and trigger log replay
4393  *
4394  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4395  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4396  * file correspond to a hole. The presence of explicit holes in a log tree is
4397  * what guarantees that log replay will remove/adjust file extent items in the
4398  * fs/subvol tree.
4399  *
4400  * Here we do not need to care about holes between extents, that is already done
4401  * by copy_items(). We also only need to do this in the full sync path, where we
4402  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4403  * lookup the list of modified extent maps and if any represents a hole, we
4404  * insert a corresponding extent representing a hole in the log tree.
4405  */
4406 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4407 				   struct btrfs_root *root,
4408 				   struct btrfs_inode *inode,
4409 				   struct btrfs_path *path)
4410 {
4411 	struct btrfs_fs_info *fs_info = root->fs_info;
4412 	int ret;
4413 	struct btrfs_key key;
4414 	u64 hole_start;
4415 	u64 hole_size;
4416 	struct extent_buffer *leaf;
4417 	struct btrfs_root *log = root->log_root;
4418 	const u64 ino = btrfs_ino(inode);
4419 	const u64 i_size = i_size_read(&inode->vfs_inode);
4420 
4421 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4422 		return 0;
4423 
4424 	key.objectid = ino;
4425 	key.type = BTRFS_EXTENT_DATA_KEY;
4426 	key.offset = (u64)-1;
4427 
4428 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4429 	ASSERT(ret != 0);
4430 	if (ret < 0)
4431 		return ret;
4432 
4433 	ASSERT(path->slots[0] > 0);
4434 	path->slots[0]--;
4435 	leaf = path->nodes[0];
4436 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4437 
4438 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4439 		/* inode does not have any extents */
4440 		hole_start = 0;
4441 		hole_size = i_size;
4442 	} else {
4443 		struct btrfs_file_extent_item *extent;
4444 		u64 len;
4445 
4446 		/*
4447 		 * If there's an extent beyond i_size, an explicit hole was
4448 		 * already inserted by copy_items().
4449 		 */
4450 		if (key.offset >= i_size)
4451 			return 0;
4452 
4453 		extent = btrfs_item_ptr(leaf, path->slots[0],
4454 					struct btrfs_file_extent_item);
4455 
4456 		if (btrfs_file_extent_type(leaf, extent) ==
4457 		    BTRFS_FILE_EXTENT_INLINE) {
4458 			len = btrfs_file_extent_inline_len(leaf,
4459 							   path->slots[0],
4460 							   extent);
4461 			ASSERT(len == i_size ||
4462 			       (len == fs_info->sectorsize &&
4463 				btrfs_file_extent_compression(leaf, extent) !=
4464 				BTRFS_COMPRESS_NONE));
4465 			return 0;
4466 		}
4467 
4468 		len = btrfs_file_extent_num_bytes(leaf, extent);
4469 		/* Last extent goes beyond i_size, no need to log a hole. */
4470 		if (key.offset + len > i_size)
4471 			return 0;
4472 		hole_start = key.offset + len;
4473 		hole_size = i_size - hole_start;
4474 	}
4475 	btrfs_release_path(path);
4476 
4477 	/* Last extent ends at i_size. */
4478 	if (hole_size == 0)
4479 		return 0;
4480 
4481 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4482 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4483 				       hole_size, 0, hole_size, 0, 0, 0);
4484 	return ret;
4485 }
4486 
4487 /*
4488  * When we are logging a new inode X, check if it doesn't have a reference that
4489  * matches the reference from some other inode Y created in a past transaction
4490  * and that was renamed in the current transaction. If we don't do this, then at
4491  * log replay time we can lose inode Y (and all its files if it's a directory):
4492  *
4493  * mkdir /mnt/x
4494  * echo "hello world" > /mnt/x/foobar
4495  * sync
4496  * mv /mnt/x /mnt/y
4497  * mkdir /mnt/x                 # or touch /mnt/x
4498  * xfs_io -c fsync /mnt/x
4499  * <power fail>
4500  * mount fs, trigger log replay
4501  *
4502  * After the log replay procedure, we would lose the first directory and all its
4503  * files (file foobar).
4504  * For the case where inode Y is not a directory we simply end up losing it:
4505  *
4506  * echo "123" > /mnt/foo
4507  * sync
4508  * mv /mnt/foo /mnt/bar
4509  * echo "abc" > /mnt/foo
4510  * xfs_io -c fsync /mnt/foo
4511  * <power fail>
4512  *
4513  * We also need this for cases where a snapshot entry is replaced by some other
4514  * entry (file or directory) otherwise we end up with an unreplayable log due to
4515  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4516  * if it were a regular entry:
4517  *
4518  * mkdir /mnt/x
4519  * btrfs subvolume snapshot /mnt /mnt/x/snap
4520  * btrfs subvolume delete /mnt/x/snap
4521  * rmdir /mnt/x
4522  * mkdir /mnt/x
4523  * fsync /mnt/x or fsync some new file inside it
4524  * <power fail>
4525  *
4526  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4527  * the same transaction.
4528  */
4529 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4530 					 const int slot,
4531 					 const struct btrfs_key *key,
4532 					 struct btrfs_inode *inode,
4533 					 u64 *other_ino)
4534 {
4535 	int ret;
4536 	struct btrfs_path *search_path;
4537 	char *name = NULL;
4538 	u32 name_len = 0;
4539 	u32 item_size = btrfs_item_size_nr(eb, slot);
4540 	u32 cur_offset = 0;
4541 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4542 
4543 	search_path = btrfs_alloc_path();
4544 	if (!search_path)
4545 		return -ENOMEM;
4546 	search_path->search_commit_root = 1;
4547 	search_path->skip_locking = 1;
4548 
4549 	while (cur_offset < item_size) {
4550 		u64 parent;
4551 		u32 this_name_len;
4552 		u32 this_len;
4553 		unsigned long name_ptr;
4554 		struct btrfs_dir_item *di;
4555 
4556 		if (key->type == BTRFS_INODE_REF_KEY) {
4557 			struct btrfs_inode_ref *iref;
4558 
4559 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4560 			parent = key->offset;
4561 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4562 			name_ptr = (unsigned long)(iref + 1);
4563 			this_len = sizeof(*iref) + this_name_len;
4564 		} else {
4565 			struct btrfs_inode_extref *extref;
4566 
4567 			extref = (struct btrfs_inode_extref *)(ptr +
4568 							       cur_offset);
4569 			parent = btrfs_inode_extref_parent(eb, extref);
4570 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4571 			name_ptr = (unsigned long)&extref->name;
4572 			this_len = sizeof(*extref) + this_name_len;
4573 		}
4574 
4575 		ret = btrfs_is_name_len_valid(eb, slot, name_ptr,
4576 					      this_name_len);
4577 		if (!ret) {
4578 			ret = -EIO;
4579 			goto out;
4580 		}
4581 		if (this_name_len > name_len) {
4582 			char *new_name;
4583 
4584 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4585 			if (!new_name) {
4586 				ret = -ENOMEM;
4587 				goto out;
4588 			}
4589 			name_len = this_name_len;
4590 			name = new_name;
4591 		}
4592 
4593 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4594 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4595 				parent, name, this_name_len, 0);
4596 		if (di && !IS_ERR(di)) {
4597 			struct btrfs_key di_key;
4598 
4599 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4600 						  di, &di_key);
4601 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4602 				ret = 1;
4603 				*other_ino = di_key.objectid;
4604 			} else {
4605 				ret = -EAGAIN;
4606 			}
4607 			goto out;
4608 		} else if (IS_ERR(di)) {
4609 			ret = PTR_ERR(di);
4610 			goto out;
4611 		}
4612 		btrfs_release_path(search_path);
4613 
4614 		cur_offset += this_len;
4615 	}
4616 	ret = 0;
4617 out:
4618 	btrfs_free_path(search_path);
4619 	kfree(name);
4620 	return ret;
4621 }
4622 
4623 /* log a single inode in the tree log.
4624  * At least one parent directory for this inode must exist in the tree
4625  * or be logged already.
4626  *
4627  * Any items from this inode changed by the current transaction are copied
4628  * to the log tree.  An extra reference is taken on any extents in this
4629  * file, allowing us to avoid a whole pile of corner cases around logging
4630  * blocks that have been removed from the tree.
4631  *
4632  * See LOG_INODE_ALL and related defines for a description of what inode_only
4633  * does.
4634  *
4635  * This handles both files and directories.
4636  */
4637 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4638 			   struct btrfs_root *root, struct btrfs_inode *inode,
4639 			   int inode_only,
4640 			   const loff_t start,
4641 			   const loff_t end,
4642 			   struct btrfs_log_ctx *ctx)
4643 {
4644 	struct btrfs_fs_info *fs_info = root->fs_info;
4645 	struct btrfs_path *path;
4646 	struct btrfs_path *dst_path;
4647 	struct btrfs_key min_key;
4648 	struct btrfs_key max_key;
4649 	struct btrfs_root *log = root->log_root;
4650 	LIST_HEAD(logged_list);
4651 	u64 last_extent = 0;
4652 	int err = 0;
4653 	int ret;
4654 	int nritems;
4655 	int ins_start_slot = 0;
4656 	int ins_nr;
4657 	bool fast_search = false;
4658 	u64 ino = btrfs_ino(inode);
4659 	struct extent_map_tree *em_tree = &inode->extent_tree;
4660 	u64 logged_isize = 0;
4661 	bool need_log_inode_item = true;
4662 
4663 	path = btrfs_alloc_path();
4664 	if (!path)
4665 		return -ENOMEM;
4666 	dst_path = btrfs_alloc_path();
4667 	if (!dst_path) {
4668 		btrfs_free_path(path);
4669 		return -ENOMEM;
4670 	}
4671 
4672 	min_key.objectid = ino;
4673 	min_key.type = BTRFS_INODE_ITEM_KEY;
4674 	min_key.offset = 0;
4675 
4676 	max_key.objectid = ino;
4677 
4678 
4679 	/* today the code can only do partial logging of directories */
4680 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4681 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4682 		       &inode->runtime_flags) &&
4683 	     inode_only >= LOG_INODE_EXISTS))
4684 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4685 	else
4686 		max_key.type = (u8)-1;
4687 	max_key.offset = (u64)-1;
4688 
4689 	/*
4690 	 * Only run delayed items if we are a dir or a new file.
4691 	 * Otherwise commit the delayed inode only, which is needed in
4692 	 * order for the log replay code to mark inodes for link count
4693 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4694 	 */
4695 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4696 	    inode->generation > fs_info->last_trans_committed)
4697 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4698 	else
4699 		ret = btrfs_commit_inode_delayed_inode(inode);
4700 
4701 	if (ret) {
4702 		btrfs_free_path(path);
4703 		btrfs_free_path(dst_path);
4704 		return ret;
4705 	}
4706 
4707 	if (inode_only == LOG_OTHER_INODE) {
4708 		inode_only = LOG_INODE_EXISTS;
4709 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4710 	} else {
4711 		mutex_lock(&inode->log_mutex);
4712 	}
4713 
4714 	/*
4715 	 * a brute force approach to making sure we get the most uptodate
4716 	 * copies of everything.
4717 	 */
4718 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
4719 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4720 
4721 		if (inode_only == LOG_INODE_EXISTS)
4722 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4723 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4724 	} else {
4725 		if (inode_only == LOG_INODE_EXISTS) {
4726 			/*
4727 			 * Make sure the new inode item we write to the log has
4728 			 * the same isize as the current one (if it exists).
4729 			 * This is necessary to prevent data loss after log
4730 			 * replay, and also to prevent doing a wrong expanding
4731 			 * truncate - for e.g. create file, write 4K into offset
4732 			 * 0, fsync, write 4K into offset 4096, add hard link,
4733 			 * fsync some other file (to sync log), power fail - if
4734 			 * we use the inode's current i_size, after log replay
4735 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4736 			 * (zeroes), as if an expanding truncate happened,
4737 			 * instead of getting a file of 4Kb only.
4738 			 */
4739 			err = logged_inode_size(log, inode, path, &logged_isize);
4740 			if (err)
4741 				goto out_unlock;
4742 		}
4743 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4744 			     &inode->runtime_flags)) {
4745 			if (inode_only == LOG_INODE_EXISTS) {
4746 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4747 				ret = drop_objectid_items(trans, log, path, ino,
4748 							  max_key.type);
4749 			} else {
4750 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4751 					  &inode->runtime_flags);
4752 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4753 					  &inode->runtime_flags);
4754 				while(1) {
4755 					ret = btrfs_truncate_inode_items(trans,
4756 						log, &inode->vfs_inode, 0, 0);
4757 					if (ret != -EAGAIN)
4758 						break;
4759 				}
4760 			}
4761 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4762 					      &inode->runtime_flags) ||
4763 			   inode_only == LOG_INODE_EXISTS) {
4764 			if (inode_only == LOG_INODE_ALL)
4765 				fast_search = true;
4766 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4767 			ret = drop_objectid_items(trans, log, path, ino,
4768 						  max_key.type);
4769 		} else {
4770 			if (inode_only == LOG_INODE_ALL)
4771 				fast_search = true;
4772 			goto log_extents;
4773 		}
4774 
4775 	}
4776 	if (ret) {
4777 		err = ret;
4778 		goto out_unlock;
4779 	}
4780 
4781 	while (1) {
4782 		ins_nr = 0;
4783 		ret = btrfs_search_forward(root, &min_key,
4784 					   path, trans->transid);
4785 		if (ret < 0) {
4786 			err = ret;
4787 			goto out_unlock;
4788 		}
4789 		if (ret != 0)
4790 			break;
4791 again:
4792 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4793 		if (min_key.objectid != ino)
4794 			break;
4795 		if (min_key.type > max_key.type)
4796 			break;
4797 
4798 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4799 			need_log_inode_item = false;
4800 
4801 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4802 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4803 		    inode->generation == trans->transid) {
4804 			u64 other_ino = 0;
4805 
4806 			ret = btrfs_check_ref_name_override(path->nodes[0],
4807 					path->slots[0], &min_key, inode,
4808 					&other_ino);
4809 			if (ret < 0) {
4810 				err = ret;
4811 				goto out_unlock;
4812 			} else if (ret > 0 && ctx &&
4813 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4814 				struct btrfs_key inode_key;
4815 				struct inode *other_inode;
4816 
4817 				if (ins_nr > 0) {
4818 					ins_nr++;
4819 				} else {
4820 					ins_nr = 1;
4821 					ins_start_slot = path->slots[0];
4822 				}
4823 				ret = copy_items(trans, inode, dst_path, path,
4824 						 &last_extent, ins_start_slot,
4825 						 ins_nr, inode_only,
4826 						 logged_isize);
4827 				if (ret < 0) {
4828 					err = ret;
4829 					goto out_unlock;
4830 				}
4831 				ins_nr = 0;
4832 				btrfs_release_path(path);
4833 				inode_key.objectid = other_ino;
4834 				inode_key.type = BTRFS_INODE_ITEM_KEY;
4835 				inode_key.offset = 0;
4836 				other_inode = btrfs_iget(fs_info->sb,
4837 							 &inode_key, root,
4838 							 NULL);
4839 				/*
4840 				 * If the other inode that had a conflicting dir
4841 				 * entry was deleted in the current transaction,
4842 				 * we don't need to do more work nor fallback to
4843 				 * a transaction commit.
4844 				 */
4845 				if (IS_ERR(other_inode) &&
4846 				    PTR_ERR(other_inode) == -ENOENT) {
4847 					goto next_key;
4848 				} else if (IS_ERR(other_inode)) {
4849 					err = PTR_ERR(other_inode);
4850 					goto out_unlock;
4851 				}
4852 				/*
4853 				 * We are safe logging the other inode without
4854 				 * acquiring its i_mutex as long as we log with
4855 				 * the LOG_INODE_EXISTS mode. We're safe against
4856 				 * concurrent renames of the other inode as well
4857 				 * because during a rename we pin the log and
4858 				 * update the log with the new name before we
4859 				 * unpin it.
4860 				 */
4861 				err = btrfs_log_inode(trans, root,
4862 						BTRFS_I(other_inode),
4863 						LOG_OTHER_INODE, 0, LLONG_MAX,
4864 						ctx);
4865 				iput(other_inode);
4866 				if (err)
4867 					goto out_unlock;
4868 				else
4869 					goto next_key;
4870 			}
4871 		}
4872 
4873 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4874 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4875 			if (ins_nr == 0)
4876 				goto next_slot;
4877 			ret = copy_items(trans, inode, dst_path, path,
4878 					 &last_extent, ins_start_slot,
4879 					 ins_nr, inode_only, logged_isize);
4880 			if (ret < 0) {
4881 				err = ret;
4882 				goto out_unlock;
4883 			}
4884 			ins_nr = 0;
4885 			if (ret) {
4886 				btrfs_release_path(path);
4887 				continue;
4888 			}
4889 			goto next_slot;
4890 		}
4891 
4892 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4893 			ins_nr++;
4894 			goto next_slot;
4895 		} else if (!ins_nr) {
4896 			ins_start_slot = path->slots[0];
4897 			ins_nr = 1;
4898 			goto next_slot;
4899 		}
4900 
4901 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4902 				 ins_start_slot, ins_nr, inode_only,
4903 				 logged_isize);
4904 		if (ret < 0) {
4905 			err = ret;
4906 			goto out_unlock;
4907 		}
4908 		if (ret) {
4909 			ins_nr = 0;
4910 			btrfs_release_path(path);
4911 			continue;
4912 		}
4913 		ins_nr = 1;
4914 		ins_start_slot = path->slots[0];
4915 next_slot:
4916 
4917 		nritems = btrfs_header_nritems(path->nodes[0]);
4918 		path->slots[0]++;
4919 		if (path->slots[0] < nritems) {
4920 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4921 					      path->slots[0]);
4922 			goto again;
4923 		}
4924 		if (ins_nr) {
4925 			ret = copy_items(trans, inode, dst_path, path,
4926 					 &last_extent, ins_start_slot,
4927 					 ins_nr, inode_only, logged_isize);
4928 			if (ret < 0) {
4929 				err = ret;
4930 				goto out_unlock;
4931 			}
4932 			ret = 0;
4933 			ins_nr = 0;
4934 		}
4935 		btrfs_release_path(path);
4936 next_key:
4937 		if (min_key.offset < (u64)-1) {
4938 			min_key.offset++;
4939 		} else if (min_key.type < max_key.type) {
4940 			min_key.type++;
4941 			min_key.offset = 0;
4942 		} else {
4943 			break;
4944 		}
4945 	}
4946 	if (ins_nr) {
4947 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4948 				 ins_start_slot, ins_nr, inode_only,
4949 				 logged_isize);
4950 		if (ret < 0) {
4951 			err = ret;
4952 			goto out_unlock;
4953 		}
4954 		ret = 0;
4955 		ins_nr = 0;
4956 	}
4957 
4958 	btrfs_release_path(path);
4959 	btrfs_release_path(dst_path);
4960 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4961 	if (err)
4962 		goto out_unlock;
4963 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4964 		btrfs_release_path(path);
4965 		btrfs_release_path(dst_path);
4966 		err = btrfs_log_trailing_hole(trans, root, inode, path);
4967 		if (err)
4968 			goto out_unlock;
4969 	}
4970 log_extents:
4971 	btrfs_release_path(path);
4972 	btrfs_release_path(dst_path);
4973 	if (need_log_inode_item) {
4974 		err = log_inode_item(trans, log, dst_path, inode);
4975 		if (err)
4976 			goto out_unlock;
4977 	}
4978 	if (fast_search) {
4979 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4980 						&logged_list, ctx, start, end);
4981 		if (ret) {
4982 			err = ret;
4983 			goto out_unlock;
4984 		}
4985 	} else if (inode_only == LOG_INODE_ALL) {
4986 		struct extent_map *em, *n;
4987 
4988 		write_lock(&em_tree->lock);
4989 		/*
4990 		 * We can't just remove every em if we're called for a ranged
4991 		 * fsync - that is, one that doesn't cover the whole possible
4992 		 * file range (0 to LLONG_MAX). This is because we can have
4993 		 * em's that fall outside the range we're logging and therefore
4994 		 * their ordered operations haven't completed yet
4995 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4996 		 * didn't get their respective file extent item in the fs/subvol
4997 		 * tree yet, and need to let the next fast fsync (one which
4998 		 * consults the list of modified extent maps) find the em so
4999 		 * that it logs a matching file extent item and waits for the
5000 		 * respective ordered operation to complete (if it's still
5001 		 * running).
5002 		 *
5003 		 * Removing every em outside the range we're logging would make
5004 		 * the next fast fsync not log their matching file extent items,
5005 		 * therefore making us lose data after a log replay.
5006 		 */
5007 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5008 					 list) {
5009 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5010 
5011 			if (em->mod_start >= start && mod_end <= end)
5012 				list_del_init(&em->list);
5013 		}
5014 		write_unlock(&em_tree->lock);
5015 	}
5016 
5017 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5018 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5019 					ctx);
5020 		if (ret) {
5021 			err = ret;
5022 			goto out_unlock;
5023 		}
5024 	}
5025 
5026 	spin_lock(&inode->lock);
5027 	inode->logged_trans = trans->transid;
5028 	inode->last_log_commit = inode->last_sub_trans;
5029 	spin_unlock(&inode->lock);
5030 out_unlock:
5031 	if (unlikely(err))
5032 		btrfs_put_logged_extents(&logged_list);
5033 	else
5034 		btrfs_submit_logged_extents(&logged_list, log);
5035 	mutex_unlock(&inode->log_mutex);
5036 
5037 	btrfs_free_path(path);
5038 	btrfs_free_path(dst_path);
5039 	return err;
5040 }
5041 
5042 /*
5043  * Check if we must fallback to a transaction commit when logging an inode.
5044  * This must be called after logging the inode and is used only in the context
5045  * when fsyncing an inode requires the need to log some other inode - in which
5046  * case we can't lock the i_mutex of each other inode we need to log as that
5047  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5048  * log inodes up or down in the hierarchy) or rename operations for example. So
5049  * we take the log_mutex of the inode after we have logged it and then check for
5050  * its last_unlink_trans value - this is safe because any task setting
5051  * last_unlink_trans must take the log_mutex and it must do this before it does
5052  * the actual unlink operation, so if we do this check before a concurrent task
5053  * sets last_unlink_trans it means we've logged a consistent version/state of
5054  * all the inode items, otherwise we are not sure and must do a transaction
5055  * commit (the concurrent task might have only updated last_unlink_trans before
5056  * we logged the inode or it might have also done the unlink).
5057  */
5058 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5059 					  struct btrfs_inode *inode)
5060 {
5061 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5062 	bool ret = false;
5063 
5064 	mutex_lock(&inode->log_mutex);
5065 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5066 		/*
5067 		 * Make sure any commits to the log are forced to be full
5068 		 * commits.
5069 		 */
5070 		btrfs_set_log_full_commit(fs_info, trans);
5071 		ret = true;
5072 	}
5073 	mutex_unlock(&inode->log_mutex);
5074 
5075 	return ret;
5076 }
5077 
5078 /*
5079  * follow the dentry parent pointers up the chain and see if any
5080  * of the directories in it require a full commit before they can
5081  * be logged.  Returns zero if nothing special needs to be done or 1 if
5082  * a full commit is required.
5083  */
5084 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5085 					       struct btrfs_inode *inode,
5086 					       struct dentry *parent,
5087 					       struct super_block *sb,
5088 					       u64 last_committed)
5089 {
5090 	int ret = 0;
5091 	struct dentry *old_parent = NULL;
5092 	struct btrfs_inode *orig_inode = inode;
5093 
5094 	/*
5095 	 * for regular files, if its inode is already on disk, we don't
5096 	 * have to worry about the parents at all.  This is because
5097 	 * we can use the last_unlink_trans field to record renames
5098 	 * and other fun in this file.
5099 	 */
5100 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5101 	    inode->generation <= last_committed &&
5102 	    inode->last_unlink_trans <= last_committed)
5103 		goto out;
5104 
5105 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5106 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5107 			goto out;
5108 		inode = BTRFS_I(d_inode(parent));
5109 	}
5110 
5111 	while (1) {
5112 		/*
5113 		 * If we are logging a directory then we start with our inode,
5114 		 * not our parent's inode, so we need to skip setting the
5115 		 * logged_trans so that further down in the log code we don't
5116 		 * think this inode has already been logged.
5117 		 */
5118 		if (inode != orig_inode)
5119 			inode->logged_trans = trans->transid;
5120 		smp_mb();
5121 
5122 		if (btrfs_must_commit_transaction(trans, inode)) {
5123 			ret = 1;
5124 			break;
5125 		}
5126 
5127 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5128 			break;
5129 
5130 		if (IS_ROOT(parent)) {
5131 			inode = BTRFS_I(d_inode(parent));
5132 			if (btrfs_must_commit_transaction(trans, inode))
5133 				ret = 1;
5134 			break;
5135 		}
5136 
5137 		parent = dget_parent(parent);
5138 		dput(old_parent);
5139 		old_parent = parent;
5140 		inode = BTRFS_I(d_inode(parent));
5141 
5142 	}
5143 	dput(old_parent);
5144 out:
5145 	return ret;
5146 }
5147 
5148 struct btrfs_dir_list {
5149 	u64 ino;
5150 	struct list_head list;
5151 };
5152 
5153 /*
5154  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5155  * details about the why it is needed.
5156  * This is a recursive operation - if an existing dentry corresponds to a
5157  * directory, that directory's new entries are logged too (same behaviour as
5158  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5159  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5160  * complains about the following circular lock dependency / possible deadlock:
5161  *
5162  *        CPU0                                        CPU1
5163  *        ----                                        ----
5164  * lock(&type->i_mutex_dir_key#3/2);
5165  *                                            lock(sb_internal#2);
5166  *                                            lock(&type->i_mutex_dir_key#3/2);
5167  * lock(&sb->s_type->i_mutex_key#14);
5168  *
5169  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5170  * sb_start_intwrite() in btrfs_start_transaction().
5171  * Not locking i_mutex of the inodes is still safe because:
5172  *
5173  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5174  *    that while logging the inode new references (names) are added or removed
5175  *    from the inode, leaving the logged inode item with a link count that does
5176  *    not match the number of logged inode reference items. This is fine because
5177  *    at log replay time we compute the real number of links and correct the
5178  *    link count in the inode item (see replay_one_buffer() and
5179  *    link_to_fixup_dir());
5180  *
5181  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5182  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5183  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5184  *    has a size that doesn't match the sum of the lengths of all the logged
5185  *    names. This does not result in a problem because if a dir_item key is
5186  *    logged but its matching dir_index key is not logged, at log replay time we
5187  *    don't use it to replay the respective name (see replay_one_name()). On the
5188  *    other hand if only the dir_index key ends up being logged, the respective
5189  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5190  *    keys created (see replay_one_name()).
5191  *    The directory's inode item with a wrong i_size is not a problem as well,
5192  *    since we don't use it at log replay time to set the i_size in the inode
5193  *    item of the fs/subvol tree (see overwrite_item()).
5194  */
5195 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5196 				struct btrfs_root *root,
5197 				struct btrfs_inode *start_inode,
5198 				struct btrfs_log_ctx *ctx)
5199 {
5200 	struct btrfs_fs_info *fs_info = root->fs_info;
5201 	struct btrfs_root *log = root->log_root;
5202 	struct btrfs_path *path;
5203 	LIST_HEAD(dir_list);
5204 	struct btrfs_dir_list *dir_elem;
5205 	int ret = 0;
5206 
5207 	path = btrfs_alloc_path();
5208 	if (!path)
5209 		return -ENOMEM;
5210 
5211 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5212 	if (!dir_elem) {
5213 		btrfs_free_path(path);
5214 		return -ENOMEM;
5215 	}
5216 	dir_elem->ino = btrfs_ino(start_inode);
5217 	list_add_tail(&dir_elem->list, &dir_list);
5218 
5219 	while (!list_empty(&dir_list)) {
5220 		struct extent_buffer *leaf;
5221 		struct btrfs_key min_key;
5222 		int nritems;
5223 		int i;
5224 
5225 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5226 					    list);
5227 		if (ret)
5228 			goto next_dir_inode;
5229 
5230 		min_key.objectid = dir_elem->ino;
5231 		min_key.type = BTRFS_DIR_ITEM_KEY;
5232 		min_key.offset = 0;
5233 again:
5234 		btrfs_release_path(path);
5235 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5236 		if (ret < 0) {
5237 			goto next_dir_inode;
5238 		} else if (ret > 0) {
5239 			ret = 0;
5240 			goto next_dir_inode;
5241 		}
5242 
5243 process_leaf:
5244 		leaf = path->nodes[0];
5245 		nritems = btrfs_header_nritems(leaf);
5246 		for (i = path->slots[0]; i < nritems; i++) {
5247 			struct btrfs_dir_item *di;
5248 			struct btrfs_key di_key;
5249 			struct inode *di_inode;
5250 			struct btrfs_dir_list *new_dir_elem;
5251 			int log_mode = LOG_INODE_EXISTS;
5252 			int type;
5253 
5254 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5255 			if (min_key.objectid != dir_elem->ino ||
5256 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5257 				goto next_dir_inode;
5258 
5259 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5260 			type = btrfs_dir_type(leaf, di);
5261 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5262 			    type != BTRFS_FT_DIR)
5263 				continue;
5264 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5265 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5266 				continue;
5267 
5268 			btrfs_release_path(path);
5269 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5270 			if (IS_ERR(di_inode)) {
5271 				ret = PTR_ERR(di_inode);
5272 				goto next_dir_inode;
5273 			}
5274 
5275 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5276 				iput(di_inode);
5277 				break;
5278 			}
5279 
5280 			ctx->log_new_dentries = false;
5281 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5282 				log_mode = LOG_INODE_ALL;
5283 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5284 					      log_mode, 0, LLONG_MAX, ctx);
5285 			if (!ret &&
5286 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5287 				ret = 1;
5288 			iput(di_inode);
5289 			if (ret)
5290 				goto next_dir_inode;
5291 			if (ctx->log_new_dentries) {
5292 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5293 						       GFP_NOFS);
5294 				if (!new_dir_elem) {
5295 					ret = -ENOMEM;
5296 					goto next_dir_inode;
5297 				}
5298 				new_dir_elem->ino = di_key.objectid;
5299 				list_add_tail(&new_dir_elem->list, &dir_list);
5300 			}
5301 			break;
5302 		}
5303 		if (i == nritems) {
5304 			ret = btrfs_next_leaf(log, path);
5305 			if (ret < 0) {
5306 				goto next_dir_inode;
5307 			} else if (ret > 0) {
5308 				ret = 0;
5309 				goto next_dir_inode;
5310 			}
5311 			goto process_leaf;
5312 		}
5313 		if (min_key.offset < (u64)-1) {
5314 			min_key.offset++;
5315 			goto again;
5316 		}
5317 next_dir_inode:
5318 		list_del(&dir_elem->list);
5319 		kfree(dir_elem);
5320 	}
5321 
5322 	btrfs_free_path(path);
5323 	return ret;
5324 }
5325 
5326 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5327 				 struct btrfs_inode *inode,
5328 				 struct btrfs_log_ctx *ctx)
5329 {
5330 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5331 	int ret;
5332 	struct btrfs_path *path;
5333 	struct btrfs_key key;
5334 	struct btrfs_root *root = inode->root;
5335 	const u64 ino = btrfs_ino(inode);
5336 
5337 	path = btrfs_alloc_path();
5338 	if (!path)
5339 		return -ENOMEM;
5340 	path->skip_locking = 1;
5341 	path->search_commit_root = 1;
5342 
5343 	key.objectid = ino;
5344 	key.type = BTRFS_INODE_REF_KEY;
5345 	key.offset = 0;
5346 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5347 	if (ret < 0)
5348 		goto out;
5349 
5350 	while (true) {
5351 		struct extent_buffer *leaf = path->nodes[0];
5352 		int slot = path->slots[0];
5353 		u32 cur_offset = 0;
5354 		u32 item_size;
5355 		unsigned long ptr;
5356 
5357 		if (slot >= btrfs_header_nritems(leaf)) {
5358 			ret = btrfs_next_leaf(root, path);
5359 			if (ret < 0)
5360 				goto out;
5361 			else if (ret > 0)
5362 				break;
5363 			continue;
5364 		}
5365 
5366 		btrfs_item_key_to_cpu(leaf, &key, slot);
5367 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5368 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5369 			break;
5370 
5371 		item_size = btrfs_item_size_nr(leaf, slot);
5372 		ptr = btrfs_item_ptr_offset(leaf, slot);
5373 		while (cur_offset < item_size) {
5374 			struct btrfs_key inode_key;
5375 			struct inode *dir_inode;
5376 
5377 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5378 			inode_key.offset = 0;
5379 
5380 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5381 				struct btrfs_inode_extref *extref;
5382 
5383 				extref = (struct btrfs_inode_extref *)
5384 					(ptr + cur_offset);
5385 				inode_key.objectid = btrfs_inode_extref_parent(
5386 					leaf, extref);
5387 				cur_offset += sizeof(*extref);
5388 				cur_offset += btrfs_inode_extref_name_len(leaf,
5389 					extref);
5390 			} else {
5391 				inode_key.objectid = key.offset;
5392 				cur_offset = item_size;
5393 			}
5394 
5395 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5396 					       root, NULL);
5397 			/* If parent inode was deleted, skip it. */
5398 			if (IS_ERR(dir_inode))
5399 				continue;
5400 
5401 			if (ctx)
5402 				ctx->log_new_dentries = false;
5403 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5404 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5405 			if (!ret &&
5406 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5407 				ret = 1;
5408 			if (!ret && ctx && ctx->log_new_dentries)
5409 				ret = log_new_dir_dentries(trans, root,
5410 						   BTRFS_I(dir_inode), ctx);
5411 			iput(dir_inode);
5412 			if (ret)
5413 				goto out;
5414 		}
5415 		path->slots[0]++;
5416 	}
5417 	ret = 0;
5418 out:
5419 	btrfs_free_path(path);
5420 	return ret;
5421 }
5422 
5423 /*
5424  * helper function around btrfs_log_inode to make sure newly created
5425  * parent directories also end up in the log.  A minimal inode and backref
5426  * only logging is done of any parent directories that are older than
5427  * the last committed transaction
5428  */
5429 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5430 				  struct btrfs_root *root,
5431 				  struct btrfs_inode *inode,
5432 				  struct dentry *parent,
5433 				  const loff_t start,
5434 				  const loff_t end,
5435 				  int exists_only,
5436 				  struct btrfs_log_ctx *ctx)
5437 {
5438 	struct btrfs_fs_info *fs_info = root->fs_info;
5439 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5440 	struct super_block *sb;
5441 	struct dentry *old_parent = NULL;
5442 	int ret = 0;
5443 	u64 last_committed = fs_info->last_trans_committed;
5444 	bool log_dentries = false;
5445 	struct btrfs_inode *orig_inode = inode;
5446 
5447 	sb = inode->vfs_inode.i_sb;
5448 
5449 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5450 		ret = 1;
5451 		goto end_no_trans;
5452 	}
5453 
5454 	/*
5455 	 * The prev transaction commit doesn't complete, we need do
5456 	 * full commit by ourselves.
5457 	 */
5458 	if (fs_info->last_trans_log_full_commit >
5459 	    fs_info->last_trans_committed) {
5460 		ret = 1;
5461 		goto end_no_trans;
5462 	}
5463 
5464 	if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) {
5465 		ret = 1;
5466 		goto end_no_trans;
5467 	}
5468 
5469 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5470 			last_committed);
5471 	if (ret)
5472 		goto end_no_trans;
5473 
5474 	if (btrfs_inode_in_log(inode, trans->transid)) {
5475 		ret = BTRFS_NO_LOG_SYNC;
5476 		goto end_no_trans;
5477 	}
5478 
5479 	ret = start_log_trans(trans, root, ctx);
5480 	if (ret)
5481 		goto end_no_trans;
5482 
5483 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5484 	if (ret)
5485 		goto end_trans;
5486 
5487 	/*
5488 	 * for regular files, if its inode is already on disk, we don't
5489 	 * have to worry about the parents at all.  This is because
5490 	 * we can use the last_unlink_trans field to record renames
5491 	 * and other fun in this file.
5492 	 */
5493 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5494 	    inode->generation <= last_committed &&
5495 	    inode->last_unlink_trans <= last_committed) {
5496 		ret = 0;
5497 		goto end_trans;
5498 	}
5499 
5500 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5501 		log_dentries = true;
5502 
5503 	/*
5504 	 * On unlink we must make sure all our current and old parent directory
5505 	 * inodes are fully logged. This is to prevent leaving dangling
5506 	 * directory index entries in directories that were our parents but are
5507 	 * not anymore. Not doing this results in old parent directory being
5508 	 * impossible to delete after log replay (rmdir will always fail with
5509 	 * error -ENOTEMPTY).
5510 	 *
5511 	 * Example 1:
5512 	 *
5513 	 * mkdir testdir
5514 	 * touch testdir/foo
5515 	 * ln testdir/foo testdir/bar
5516 	 * sync
5517 	 * unlink testdir/bar
5518 	 * xfs_io -c fsync testdir/foo
5519 	 * <power failure>
5520 	 * mount fs, triggers log replay
5521 	 *
5522 	 * If we don't log the parent directory (testdir), after log replay the
5523 	 * directory still has an entry pointing to the file inode using the bar
5524 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5525 	 * the file inode has a link count of 1.
5526 	 *
5527 	 * Example 2:
5528 	 *
5529 	 * mkdir testdir
5530 	 * touch foo
5531 	 * ln foo testdir/foo2
5532 	 * ln foo testdir/foo3
5533 	 * sync
5534 	 * unlink testdir/foo3
5535 	 * xfs_io -c fsync foo
5536 	 * <power failure>
5537 	 * mount fs, triggers log replay
5538 	 *
5539 	 * Similar as the first example, after log replay the parent directory
5540 	 * testdir still has an entry pointing to the inode file with name foo3
5541 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5542 	 * and has a link count of 2.
5543 	 */
5544 	if (inode->last_unlink_trans > last_committed) {
5545 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5546 		if (ret)
5547 			goto end_trans;
5548 	}
5549 
5550 	while (1) {
5551 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5552 			break;
5553 
5554 		inode = BTRFS_I(d_inode(parent));
5555 		if (root != inode->root)
5556 			break;
5557 
5558 		if (inode->generation > last_committed) {
5559 			ret = btrfs_log_inode(trans, root, inode,
5560 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5561 			if (ret)
5562 				goto end_trans;
5563 		}
5564 		if (IS_ROOT(parent))
5565 			break;
5566 
5567 		parent = dget_parent(parent);
5568 		dput(old_parent);
5569 		old_parent = parent;
5570 	}
5571 	if (log_dentries)
5572 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5573 	else
5574 		ret = 0;
5575 end_trans:
5576 	dput(old_parent);
5577 	if (ret < 0) {
5578 		btrfs_set_log_full_commit(fs_info, trans);
5579 		ret = 1;
5580 	}
5581 
5582 	if (ret)
5583 		btrfs_remove_log_ctx(root, ctx);
5584 	btrfs_end_log_trans(root);
5585 end_no_trans:
5586 	return ret;
5587 }
5588 
5589 /*
5590  * it is not safe to log dentry if the chunk root has added new
5591  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5592  * If this returns 1, you must commit the transaction to safely get your
5593  * data on disk.
5594  */
5595 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5596 			  struct btrfs_root *root, struct dentry *dentry,
5597 			  const loff_t start,
5598 			  const loff_t end,
5599 			  struct btrfs_log_ctx *ctx)
5600 {
5601 	struct dentry *parent = dget_parent(dentry);
5602 	int ret;
5603 
5604 	ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)),
5605 			parent, start, end, 0, ctx);
5606 	dput(parent);
5607 
5608 	return ret;
5609 }
5610 
5611 /*
5612  * should be called during mount to recover any replay any log trees
5613  * from the FS
5614  */
5615 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5616 {
5617 	int ret;
5618 	struct btrfs_path *path;
5619 	struct btrfs_trans_handle *trans;
5620 	struct btrfs_key key;
5621 	struct btrfs_key found_key;
5622 	struct btrfs_key tmp_key;
5623 	struct btrfs_root *log;
5624 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5625 	struct walk_control wc = {
5626 		.process_func = process_one_buffer,
5627 		.stage = 0,
5628 	};
5629 
5630 	path = btrfs_alloc_path();
5631 	if (!path)
5632 		return -ENOMEM;
5633 
5634 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5635 
5636 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5637 	if (IS_ERR(trans)) {
5638 		ret = PTR_ERR(trans);
5639 		goto error;
5640 	}
5641 
5642 	wc.trans = trans;
5643 	wc.pin = 1;
5644 
5645 	ret = walk_log_tree(trans, log_root_tree, &wc);
5646 	if (ret) {
5647 		btrfs_handle_fs_error(fs_info, ret,
5648 			"Failed to pin buffers while recovering log root tree.");
5649 		goto error;
5650 	}
5651 
5652 again:
5653 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5654 	key.offset = (u64)-1;
5655 	key.type = BTRFS_ROOT_ITEM_KEY;
5656 
5657 	while (1) {
5658 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5659 
5660 		if (ret < 0) {
5661 			btrfs_handle_fs_error(fs_info, ret,
5662 				    "Couldn't find tree log root.");
5663 			goto error;
5664 		}
5665 		if (ret > 0) {
5666 			if (path->slots[0] == 0)
5667 				break;
5668 			path->slots[0]--;
5669 		}
5670 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5671 				      path->slots[0]);
5672 		btrfs_release_path(path);
5673 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5674 			break;
5675 
5676 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5677 		if (IS_ERR(log)) {
5678 			ret = PTR_ERR(log);
5679 			btrfs_handle_fs_error(fs_info, ret,
5680 				    "Couldn't read tree log root.");
5681 			goto error;
5682 		}
5683 
5684 		tmp_key.objectid = found_key.offset;
5685 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5686 		tmp_key.offset = (u64)-1;
5687 
5688 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5689 		if (IS_ERR(wc.replay_dest)) {
5690 			ret = PTR_ERR(wc.replay_dest);
5691 			free_extent_buffer(log->node);
5692 			free_extent_buffer(log->commit_root);
5693 			kfree(log);
5694 			btrfs_handle_fs_error(fs_info, ret,
5695 				"Couldn't read target root for tree log recovery.");
5696 			goto error;
5697 		}
5698 
5699 		wc.replay_dest->log_root = log;
5700 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5701 		ret = walk_log_tree(trans, log, &wc);
5702 
5703 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5704 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5705 						      path);
5706 		}
5707 
5708 		key.offset = found_key.offset - 1;
5709 		wc.replay_dest->log_root = NULL;
5710 		free_extent_buffer(log->node);
5711 		free_extent_buffer(log->commit_root);
5712 		kfree(log);
5713 
5714 		if (ret)
5715 			goto error;
5716 
5717 		if (found_key.offset == 0)
5718 			break;
5719 	}
5720 	btrfs_release_path(path);
5721 
5722 	/* step one is to pin it all, step two is to replay just inodes */
5723 	if (wc.pin) {
5724 		wc.pin = 0;
5725 		wc.process_func = replay_one_buffer;
5726 		wc.stage = LOG_WALK_REPLAY_INODES;
5727 		goto again;
5728 	}
5729 	/* step three is to replay everything */
5730 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5731 		wc.stage++;
5732 		goto again;
5733 	}
5734 
5735 	btrfs_free_path(path);
5736 
5737 	/* step 4: commit the transaction, which also unpins the blocks */
5738 	ret = btrfs_commit_transaction(trans);
5739 	if (ret)
5740 		return ret;
5741 
5742 	free_extent_buffer(log_root_tree->node);
5743 	log_root_tree->log_root = NULL;
5744 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5745 	kfree(log_root_tree);
5746 
5747 	return 0;
5748 error:
5749 	if (wc.trans)
5750 		btrfs_end_transaction(wc.trans);
5751 	btrfs_free_path(path);
5752 	return ret;
5753 }
5754 
5755 /*
5756  * there are some corner cases where we want to force a full
5757  * commit instead of allowing a directory to be logged.
5758  *
5759  * They revolve around files there were unlinked from the directory, and
5760  * this function updates the parent directory so that a full commit is
5761  * properly done if it is fsync'd later after the unlinks are done.
5762  *
5763  * Must be called before the unlink operations (updates to the subvolume tree,
5764  * inodes, etc) are done.
5765  */
5766 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5767 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
5768 			     int for_rename)
5769 {
5770 	/*
5771 	 * when we're logging a file, if it hasn't been renamed
5772 	 * or unlinked, and its inode is fully committed on disk,
5773 	 * we don't have to worry about walking up the directory chain
5774 	 * to log its parents.
5775 	 *
5776 	 * So, we use the last_unlink_trans field to put this transid
5777 	 * into the file.  When the file is logged we check it and
5778 	 * don't log the parents if the file is fully on disk.
5779 	 */
5780 	mutex_lock(&inode->log_mutex);
5781 	inode->last_unlink_trans = trans->transid;
5782 	mutex_unlock(&inode->log_mutex);
5783 
5784 	/*
5785 	 * if this directory was already logged any new
5786 	 * names for this file/dir will get recorded
5787 	 */
5788 	smp_mb();
5789 	if (dir->logged_trans == trans->transid)
5790 		return;
5791 
5792 	/*
5793 	 * if the inode we're about to unlink was logged,
5794 	 * the log will be properly updated for any new names
5795 	 */
5796 	if (inode->logged_trans == trans->transid)
5797 		return;
5798 
5799 	/*
5800 	 * when renaming files across directories, if the directory
5801 	 * there we're unlinking from gets fsync'd later on, there's
5802 	 * no way to find the destination directory later and fsync it
5803 	 * properly.  So, we have to be conservative and force commits
5804 	 * so the new name gets discovered.
5805 	 */
5806 	if (for_rename)
5807 		goto record;
5808 
5809 	/* we can safely do the unlink without any special recording */
5810 	return;
5811 
5812 record:
5813 	mutex_lock(&dir->log_mutex);
5814 	dir->last_unlink_trans = trans->transid;
5815 	mutex_unlock(&dir->log_mutex);
5816 }
5817 
5818 /*
5819  * Make sure that if someone attempts to fsync the parent directory of a deleted
5820  * snapshot, it ends up triggering a transaction commit. This is to guarantee
5821  * that after replaying the log tree of the parent directory's root we will not
5822  * see the snapshot anymore and at log replay time we will not see any log tree
5823  * corresponding to the deleted snapshot's root, which could lead to replaying
5824  * it after replaying the log tree of the parent directory (which would replay
5825  * the snapshot delete operation).
5826  *
5827  * Must be called before the actual snapshot destroy operation (updates to the
5828  * parent root and tree of tree roots trees, etc) are done.
5829  */
5830 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5831 				   struct btrfs_inode *dir)
5832 {
5833 	mutex_lock(&dir->log_mutex);
5834 	dir->last_unlink_trans = trans->transid;
5835 	mutex_unlock(&dir->log_mutex);
5836 }
5837 
5838 /*
5839  * Call this after adding a new name for a file and it will properly
5840  * update the log to reflect the new name.
5841  *
5842  * It will return zero if all goes well, and it will return 1 if a
5843  * full transaction commit is required.
5844  */
5845 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5846 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
5847 			struct dentry *parent)
5848 {
5849 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5850 	struct btrfs_root *root = inode->root;
5851 
5852 	/*
5853 	 * this will force the logging code to walk the dentry chain
5854 	 * up for the file
5855 	 */
5856 	if (S_ISREG(inode->vfs_inode.i_mode))
5857 		inode->last_unlink_trans = trans->transid;
5858 
5859 	/*
5860 	 * if this inode hasn't been logged and directory we're renaming it
5861 	 * from hasn't been logged, we don't need to log it
5862 	 */
5863 	if (inode->logged_trans <= fs_info->last_trans_committed &&
5864 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
5865 		return 0;
5866 
5867 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5868 				      LLONG_MAX, 1, NULL);
5869 }
5870 
5871