xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 812dd0202379a242f764f75aa30abfbef4398ba4)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include <linux/iversion.h>
24 #include "tree-log.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "hash.h"
30 #include "compression.h"
31 #include "qgroup.h"
32 #include "inode-map.h"
33 
34 /* magic values for the inode_only field in btrfs_log_inode:
35  *
36  * LOG_INODE_ALL means to log everything
37  * LOG_INODE_EXISTS means to log just enough to recreate the inode
38  * during log replay
39  */
40 #define LOG_INODE_ALL 0
41 #define LOG_INODE_EXISTS 1
42 #define LOG_OTHER_INODE 2
43 
44 /*
45  * directory trouble cases
46  *
47  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
48  * log, we must force a full commit before doing an fsync of the directory
49  * where the unlink was done.
50  * ---> record transid of last unlink/rename per directory
51  *
52  * mkdir foo/some_dir
53  * normal commit
54  * rename foo/some_dir foo2/some_dir
55  * mkdir foo/some_dir
56  * fsync foo/some_dir/some_file
57  *
58  * The fsync above will unlink the original some_dir without recording
59  * it in its new location (foo2).  After a crash, some_dir will be gone
60  * unless the fsync of some_file forces a full commit
61  *
62  * 2) we must log any new names for any file or dir that is in the fsync
63  * log. ---> check inode while renaming/linking.
64  *
65  * 2a) we must log any new names for any file or dir during rename
66  * when the directory they are being removed from was logged.
67  * ---> check inode and old parent dir during rename
68  *
69  *  2a is actually the more important variant.  With the extra logging
70  *  a crash might unlink the old name without recreating the new one
71  *
72  * 3) after a crash, we must go through any directories with a link count
73  * of zero and redo the rm -rf
74  *
75  * mkdir f1/foo
76  * normal commit
77  * rm -rf f1/foo
78  * fsync(f1)
79  *
80  * The directory f1 was fully removed from the FS, but fsync was never
81  * called on f1, only its parent dir.  After a crash the rm -rf must
82  * be replayed.  This must be able to recurse down the entire
83  * directory tree.  The inode link count fixup code takes care of the
84  * ugly details.
85  */
86 
87 /*
88  * stages for the tree walking.  The first
89  * stage (0) is to only pin down the blocks we find
90  * the second stage (1) is to make sure that all the inodes
91  * we find in the log are created in the subvolume.
92  *
93  * The last stage is to deal with directories and links and extents
94  * and all the other fun semantics
95  */
96 #define LOG_WALK_PIN_ONLY 0
97 #define LOG_WALK_REPLAY_INODES 1
98 #define LOG_WALK_REPLAY_DIR_INDEX 2
99 #define LOG_WALK_REPLAY_ALL 3
100 
101 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
102 			   struct btrfs_root *root, struct btrfs_inode *inode,
103 			   int inode_only,
104 			   const loff_t start,
105 			   const loff_t end,
106 			   struct btrfs_log_ctx *ctx);
107 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
108 			     struct btrfs_root *root,
109 			     struct btrfs_path *path, u64 objectid);
110 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
111 				       struct btrfs_root *root,
112 				       struct btrfs_root *log,
113 				       struct btrfs_path *path,
114 				       u64 dirid, int del_all);
115 
116 /*
117  * tree logging is a special write ahead log used to make sure that
118  * fsyncs and O_SYNCs can happen without doing full tree commits.
119  *
120  * Full tree commits are expensive because they require commonly
121  * modified blocks to be recowed, creating many dirty pages in the
122  * extent tree an 4x-6x higher write load than ext3.
123  *
124  * Instead of doing a tree commit on every fsync, we use the
125  * key ranges and transaction ids to find items for a given file or directory
126  * that have changed in this transaction.  Those items are copied into
127  * a special tree (one per subvolume root), that tree is written to disk
128  * and then the fsync is considered complete.
129  *
130  * After a crash, items are copied out of the log-tree back into the
131  * subvolume tree.  Any file data extents found are recorded in the extent
132  * allocation tree, and the log-tree freed.
133  *
134  * The log tree is read three times, once to pin down all the extents it is
135  * using in ram and once, once to create all the inodes logged in the tree
136  * and once to do all the other items.
137  */
138 
139 /*
140  * start a sub transaction and setup the log tree
141  * this increments the log tree writer count to make the people
142  * syncing the tree wait for us to finish
143  */
144 static int start_log_trans(struct btrfs_trans_handle *trans,
145 			   struct btrfs_root *root,
146 			   struct btrfs_log_ctx *ctx)
147 {
148 	struct btrfs_fs_info *fs_info = root->fs_info;
149 	int ret = 0;
150 
151 	mutex_lock(&root->log_mutex);
152 
153 	if (root->log_root) {
154 		if (btrfs_need_log_full_commit(fs_info, trans)) {
155 			ret = -EAGAIN;
156 			goto out;
157 		}
158 
159 		if (!root->log_start_pid) {
160 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
161 			root->log_start_pid = current->pid;
162 		} else if (root->log_start_pid != current->pid) {
163 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
164 		}
165 	} else {
166 		mutex_lock(&fs_info->tree_log_mutex);
167 		if (!fs_info->log_root_tree)
168 			ret = btrfs_init_log_root_tree(trans, fs_info);
169 		mutex_unlock(&fs_info->tree_log_mutex);
170 		if (ret)
171 			goto out;
172 
173 		ret = btrfs_add_log_tree(trans, root);
174 		if (ret)
175 			goto out;
176 
177 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
178 		root->log_start_pid = current->pid;
179 	}
180 
181 	atomic_inc(&root->log_batch);
182 	atomic_inc(&root->log_writers);
183 	if (ctx) {
184 		int index = root->log_transid % 2;
185 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
186 		ctx->log_transid = root->log_transid;
187 	}
188 
189 out:
190 	mutex_unlock(&root->log_mutex);
191 	return ret;
192 }
193 
194 /*
195  * returns 0 if there was a log transaction running and we were able
196  * to join, or returns -ENOENT if there were not transactions
197  * in progress
198  */
199 static int join_running_log_trans(struct btrfs_root *root)
200 {
201 	int ret = -ENOENT;
202 
203 	smp_mb();
204 	if (!root->log_root)
205 		return -ENOENT;
206 
207 	mutex_lock(&root->log_mutex);
208 	if (root->log_root) {
209 		ret = 0;
210 		atomic_inc(&root->log_writers);
211 	}
212 	mutex_unlock(&root->log_mutex);
213 	return ret;
214 }
215 
216 /*
217  * This either makes the current running log transaction wait
218  * until you call btrfs_end_log_trans() or it makes any future
219  * log transactions wait until you call btrfs_end_log_trans()
220  */
221 int btrfs_pin_log_trans(struct btrfs_root *root)
222 {
223 	int ret = -ENOENT;
224 
225 	mutex_lock(&root->log_mutex);
226 	atomic_inc(&root->log_writers);
227 	mutex_unlock(&root->log_mutex);
228 	return ret;
229 }
230 
231 /*
232  * indicate we're done making changes to the log tree
233  * and wake up anyone waiting to do a sync
234  */
235 void btrfs_end_log_trans(struct btrfs_root *root)
236 {
237 	if (atomic_dec_and_test(&root->log_writers)) {
238 		/*
239 		 * Implicit memory barrier after atomic_dec_and_test
240 		 */
241 		if (waitqueue_active(&root->log_writer_wait))
242 			wake_up(&root->log_writer_wait);
243 	}
244 }
245 
246 
247 /*
248  * the walk control struct is used to pass state down the chain when
249  * processing the log tree.  The stage field tells us which part
250  * of the log tree processing we are currently doing.  The others
251  * are state fields used for that specific part
252  */
253 struct walk_control {
254 	/* should we free the extent on disk when done?  This is used
255 	 * at transaction commit time while freeing a log tree
256 	 */
257 	int free;
258 
259 	/* should we write out the extent buffer?  This is used
260 	 * while flushing the log tree to disk during a sync
261 	 */
262 	int write;
263 
264 	/* should we wait for the extent buffer io to finish?  Also used
265 	 * while flushing the log tree to disk for a sync
266 	 */
267 	int wait;
268 
269 	/* pin only walk, we record which extents on disk belong to the
270 	 * log trees
271 	 */
272 	int pin;
273 
274 	/* what stage of the replay code we're currently in */
275 	int stage;
276 
277 	/* the root we are currently replaying */
278 	struct btrfs_root *replay_dest;
279 
280 	/* the trans handle for the current replay */
281 	struct btrfs_trans_handle *trans;
282 
283 	/* the function that gets used to process blocks we find in the
284 	 * tree.  Note the extent_buffer might not be up to date when it is
285 	 * passed in, and it must be checked or read if you need the data
286 	 * inside it
287 	 */
288 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
289 			    struct walk_control *wc, u64 gen);
290 };
291 
292 /*
293  * process_func used to pin down extents, write them or wait on them
294  */
295 static int process_one_buffer(struct btrfs_root *log,
296 			      struct extent_buffer *eb,
297 			      struct walk_control *wc, u64 gen)
298 {
299 	struct btrfs_fs_info *fs_info = log->fs_info;
300 	int ret = 0;
301 
302 	/*
303 	 * If this fs is mixed then we need to be able to process the leaves to
304 	 * pin down any logged extents, so we have to read the block.
305 	 */
306 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
307 		ret = btrfs_read_buffer(eb, gen);
308 		if (ret)
309 			return ret;
310 	}
311 
312 	if (wc->pin)
313 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
314 						      eb->len);
315 
316 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 		if (wc->pin && btrfs_header_level(eb) == 0)
318 			ret = btrfs_exclude_logged_extents(fs_info, eb);
319 		if (wc->write)
320 			btrfs_write_tree_block(eb);
321 		if (wc->wait)
322 			btrfs_wait_tree_block_writeback(eb);
323 	}
324 	return ret;
325 }
326 
327 /*
328  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
329  * to the src data we are copying out.
330  *
331  * root is the tree we are copying into, and path is a scratch
332  * path for use in this function (it should be released on entry and
333  * will be released on exit).
334  *
335  * If the key is already in the destination tree the existing item is
336  * overwritten.  If the existing item isn't big enough, it is extended.
337  * If it is too large, it is truncated.
338  *
339  * If the key isn't in the destination yet, a new item is inserted.
340  */
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 				   struct btrfs_root *root,
343 				   struct btrfs_path *path,
344 				   struct extent_buffer *eb, int slot,
345 				   struct btrfs_key *key)
346 {
347 	struct btrfs_fs_info *fs_info = root->fs_info;
348 	int ret;
349 	u32 item_size;
350 	u64 saved_i_size = 0;
351 	int save_old_i_size = 0;
352 	unsigned long src_ptr;
353 	unsigned long dst_ptr;
354 	int overwrite_root = 0;
355 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356 
357 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 		overwrite_root = 1;
359 
360 	item_size = btrfs_item_size_nr(eb, slot);
361 	src_ptr = btrfs_item_ptr_offset(eb, slot);
362 
363 	/* look for the key in the destination tree */
364 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365 	if (ret < 0)
366 		return ret;
367 
368 	if (ret == 0) {
369 		char *src_copy;
370 		char *dst_copy;
371 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 						  path->slots[0]);
373 		if (dst_size != item_size)
374 			goto insert;
375 
376 		if (item_size == 0) {
377 			btrfs_release_path(path);
378 			return 0;
379 		}
380 		dst_copy = kmalloc(item_size, GFP_NOFS);
381 		src_copy = kmalloc(item_size, GFP_NOFS);
382 		if (!dst_copy || !src_copy) {
383 			btrfs_release_path(path);
384 			kfree(dst_copy);
385 			kfree(src_copy);
386 			return -ENOMEM;
387 		}
388 
389 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
390 
391 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 				   item_size);
394 		ret = memcmp(dst_copy, src_copy, item_size);
395 
396 		kfree(dst_copy);
397 		kfree(src_copy);
398 		/*
399 		 * they have the same contents, just return, this saves
400 		 * us from cowing blocks in the destination tree and doing
401 		 * extra writes that may not have been done by a previous
402 		 * sync
403 		 */
404 		if (ret == 0) {
405 			btrfs_release_path(path);
406 			return 0;
407 		}
408 
409 		/*
410 		 * We need to load the old nbytes into the inode so when we
411 		 * replay the extents we've logged we get the right nbytes.
412 		 */
413 		if (inode_item) {
414 			struct btrfs_inode_item *item;
415 			u64 nbytes;
416 			u32 mode;
417 
418 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 					      struct btrfs_inode_item);
420 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 			item = btrfs_item_ptr(eb, slot,
422 					      struct btrfs_inode_item);
423 			btrfs_set_inode_nbytes(eb, item, nbytes);
424 
425 			/*
426 			 * If this is a directory we need to reset the i_size to
427 			 * 0 so that we can set it up properly when replaying
428 			 * the rest of the items in this log.
429 			 */
430 			mode = btrfs_inode_mode(eb, item);
431 			if (S_ISDIR(mode))
432 				btrfs_set_inode_size(eb, item, 0);
433 		}
434 	} else if (inode_item) {
435 		struct btrfs_inode_item *item;
436 		u32 mode;
437 
438 		/*
439 		 * New inode, set nbytes to 0 so that the nbytes comes out
440 		 * properly when we replay the extents.
441 		 */
442 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 		btrfs_set_inode_nbytes(eb, item, 0);
444 
445 		/*
446 		 * If this is a directory we need to reset the i_size to 0 so
447 		 * that we can set it up properly when replaying the rest of
448 		 * the items in this log.
449 		 */
450 		mode = btrfs_inode_mode(eb, item);
451 		if (S_ISDIR(mode))
452 			btrfs_set_inode_size(eb, item, 0);
453 	}
454 insert:
455 	btrfs_release_path(path);
456 	/* try to insert the key into the destination tree */
457 	path->skip_release_on_error = 1;
458 	ret = btrfs_insert_empty_item(trans, root, path,
459 				      key, item_size);
460 	path->skip_release_on_error = 0;
461 
462 	/* make sure any existing item is the correct size */
463 	if (ret == -EEXIST || ret == -EOVERFLOW) {
464 		u32 found_size;
465 		found_size = btrfs_item_size_nr(path->nodes[0],
466 						path->slots[0]);
467 		if (found_size > item_size)
468 			btrfs_truncate_item(fs_info, path, item_size, 1);
469 		else if (found_size < item_size)
470 			btrfs_extend_item(fs_info, path,
471 					  item_size - found_size);
472 	} else if (ret) {
473 		return ret;
474 	}
475 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
476 					path->slots[0]);
477 
478 	/* don't overwrite an existing inode if the generation number
479 	 * was logged as zero.  This is done when the tree logging code
480 	 * is just logging an inode to make sure it exists after recovery.
481 	 *
482 	 * Also, don't overwrite i_size on directories during replay.
483 	 * log replay inserts and removes directory items based on the
484 	 * state of the tree found in the subvolume, and i_size is modified
485 	 * as it goes
486 	 */
487 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
488 		struct btrfs_inode_item *src_item;
489 		struct btrfs_inode_item *dst_item;
490 
491 		src_item = (struct btrfs_inode_item *)src_ptr;
492 		dst_item = (struct btrfs_inode_item *)dst_ptr;
493 
494 		if (btrfs_inode_generation(eb, src_item) == 0) {
495 			struct extent_buffer *dst_eb = path->nodes[0];
496 			const u64 ino_size = btrfs_inode_size(eb, src_item);
497 
498 			/*
499 			 * For regular files an ino_size == 0 is used only when
500 			 * logging that an inode exists, as part of a directory
501 			 * fsync, and the inode wasn't fsynced before. In this
502 			 * case don't set the size of the inode in the fs/subvol
503 			 * tree, otherwise we would be throwing valid data away.
504 			 */
505 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
506 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
507 			    ino_size != 0) {
508 				struct btrfs_map_token token;
509 
510 				btrfs_init_map_token(&token);
511 				btrfs_set_token_inode_size(dst_eb, dst_item,
512 							   ino_size, &token);
513 			}
514 			goto no_copy;
515 		}
516 
517 		if (overwrite_root &&
518 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 			save_old_i_size = 1;
521 			saved_i_size = btrfs_inode_size(path->nodes[0],
522 							dst_item);
523 		}
524 	}
525 
526 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 			   src_ptr, item_size);
528 
529 	if (save_old_i_size) {
530 		struct btrfs_inode_item *dst_item;
531 		dst_item = (struct btrfs_inode_item *)dst_ptr;
532 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
533 	}
534 
535 	/* make sure the generation is filled in */
536 	if (key->type == BTRFS_INODE_ITEM_KEY) {
537 		struct btrfs_inode_item *dst_item;
538 		dst_item = (struct btrfs_inode_item *)dst_ptr;
539 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 			btrfs_set_inode_generation(path->nodes[0], dst_item,
541 						   trans->transid);
542 		}
543 	}
544 no_copy:
545 	btrfs_mark_buffer_dirty(path->nodes[0]);
546 	btrfs_release_path(path);
547 	return 0;
548 }
549 
550 /*
551  * simple helper to read an inode off the disk from a given root
552  * This can only be called for subvolume roots and not for the log
553  */
554 static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 					     u64 objectid)
556 {
557 	struct btrfs_key key;
558 	struct inode *inode;
559 
560 	key.objectid = objectid;
561 	key.type = BTRFS_INODE_ITEM_KEY;
562 	key.offset = 0;
563 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
564 	if (IS_ERR(inode)) {
565 		inode = NULL;
566 	} else if (is_bad_inode(inode)) {
567 		iput(inode);
568 		inode = NULL;
569 	}
570 	return inode;
571 }
572 
573 /* replays a single extent in 'eb' at 'slot' with 'key' into the
574  * subvolume 'root'.  path is released on entry and should be released
575  * on exit.
576  *
577  * extents in the log tree have not been allocated out of the extent
578  * tree yet.  So, this completes the allocation, taking a reference
579  * as required if the extent already exists or creating a new extent
580  * if it isn't in the extent allocation tree yet.
581  *
582  * The extent is inserted into the file, dropping any existing extents
583  * from the file that overlap the new one.
584  */
585 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
586 				      struct btrfs_root *root,
587 				      struct btrfs_path *path,
588 				      struct extent_buffer *eb, int slot,
589 				      struct btrfs_key *key)
590 {
591 	struct btrfs_fs_info *fs_info = root->fs_info;
592 	int found_type;
593 	u64 extent_end;
594 	u64 start = key->offset;
595 	u64 nbytes = 0;
596 	struct btrfs_file_extent_item *item;
597 	struct inode *inode = NULL;
598 	unsigned long size;
599 	int ret = 0;
600 
601 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
602 	found_type = btrfs_file_extent_type(eb, item);
603 
604 	if (found_type == BTRFS_FILE_EXTENT_REG ||
605 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
606 		nbytes = btrfs_file_extent_num_bytes(eb, item);
607 		extent_end = start + nbytes;
608 
609 		/*
610 		 * We don't add to the inodes nbytes if we are prealloc or a
611 		 * hole.
612 		 */
613 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
614 			nbytes = 0;
615 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
616 		size = btrfs_file_extent_inline_len(eb, slot, item);
617 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
618 		extent_end = ALIGN(start + size,
619 				   fs_info->sectorsize);
620 	} else {
621 		ret = 0;
622 		goto out;
623 	}
624 
625 	inode = read_one_inode(root, key->objectid);
626 	if (!inode) {
627 		ret = -EIO;
628 		goto out;
629 	}
630 
631 	/*
632 	 * first check to see if we already have this extent in the
633 	 * file.  This must be done before the btrfs_drop_extents run
634 	 * so we don't try to drop this extent.
635 	 */
636 	ret = btrfs_lookup_file_extent(trans, root, path,
637 			btrfs_ino(BTRFS_I(inode)), start, 0);
638 
639 	if (ret == 0 &&
640 	    (found_type == BTRFS_FILE_EXTENT_REG ||
641 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
642 		struct btrfs_file_extent_item cmp1;
643 		struct btrfs_file_extent_item cmp2;
644 		struct btrfs_file_extent_item *existing;
645 		struct extent_buffer *leaf;
646 
647 		leaf = path->nodes[0];
648 		existing = btrfs_item_ptr(leaf, path->slots[0],
649 					  struct btrfs_file_extent_item);
650 
651 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
652 				   sizeof(cmp1));
653 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
654 				   sizeof(cmp2));
655 
656 		/*
657 		 * we already have a pointer to this exact extent,
658 		 * we don't have to do anything
659 		 */
660 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
661 			btrfs_release_path(path);
662 			goto out;
663 		}
664 	}
665 	btrfs_release_path(path);
666 
667 	/* drop any overlapping extents */
668 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
669 	if (ret)
670 		goto out;
671 
672 	if (found_type == BTRFS_FILE_EXTENT_REG ||
673 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
674 		u64 offset;
675 		unsigned long dest_offset;
676 		struct btrfs_key ins;
677 
678 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
679 		    btrfs_fs_incompat(fs_info, NO_HOLES))
680 			goto update_inode;
681 
682 		ret = btrfs_insert_empty_item(trans, root, path, key,
683 					      sizeof(*item));
684 		if (ret)
685 			goto out;
686 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
687 						    path->slots[0]);
688 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
689 				(unsigned long)item,  sizeof(*item));
690 
691 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
692 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
693 		ins.type = BTRFS_EXTENT_ITEM_KEY;
694 		offset = key->offset - btrfs_file_extent_offset(eb, item);
695 
696 		/*
697 		 * Manually record dirty extent, as here we did a shallow
698 		 * file extent item copy and skip normal backref update,
699 		 * but modifying extent tree all by ourselves.
700 		 * So need to manually record dirty extent for qgroup,
701 		 * as the owner of the file extent changed from log tree
702 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
703 		 */
704 		ret = btrfs_qgroup_trace_extent(trans, fs_info,
705 				btrfs_file_extent_disk_bytenr(eb, item),
706 				btrfs_file_extent_disk_num_bytes(eb, item),
707 				GFP_NOFS);
708 		if (ret < 0)
709 			goto out;
710 
711 		if (ins.objectid > 0) {
712 			u64 csum_start;
713 			u64 csum_end;
714 			LIST_HEAD(ordered_sums);
715 			/*
716 			 * is this extent already allocated in the extent
717 			 * allocation tree?  If so, just add a reference
718 			 */
719 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
720 						ins.offset);
721 			if (ret == 0) {
722 				ret = btrfs_inc_extent_ref(trans, root,
723 						ins.objectid, ins.offset,
724 						0, root->root_key.objectid,
725 						key->objectid, offset);
726 				if (ret)
727 					goto out;
728 			} else {
729 				/*
730 				 * insert the extent pointer in the extent
731 				 * allocation tree
732 				 */
733 				ret = btrfs_alloc_logged_file_extent(trans,
734 						fs_info,
735 						root->root_key.objectid,
736 						key->objectid, offset, &ins);
737 				if (ret)
738 					goto out;
739 			}
740 			btrfs_release_path(path);
741 
742 			if (btrfs_file_extent_compression(eb, item)) {
743 				csum_start = ins.objectid;
744 				csum_end = csum_start + ins.offset;
745 			} else {
746 				csum_start = ins.objectid +
747 					btrfs_file_extent_offset(eb, item);
748 				csum_end = csum_start +
749 					btrfs_file_extent_num_bytes(eb, item);
750 			}
751 
752 			ret = btrfs_lookup_csums_range(root->log_root,
753 						csum_start, csum_end - 1,
754 						&ordered_sums, 0);
755 			if (ret)
756 				goto out;
757 			/*
758 			 * Now delete all existing cums in the csum root that
759 			 * cover our range. We do this because we can have an
760 			 * extent that is completely referenced by one file
761 			 * extent item and partially referenced by another
762 			 * file extent item (like after using the clone or
763 			 * extent_same ioctls). In this case if we end up doing
764 			 * the replay of the one that partially references the
765 			 * extent first, and we do not do the csum deletion
766 			 * below, we can get 2 csum items in the csum tree that
767 			 * overlap each other. For example, imagine our log has
768 			 * the two following file extent items:
769 			 *
770 			 * key (257 EXTENT_DATA 409600)
771 			 *     extent data disk byte 12845056 nr 102400
772 			 *     extent data offset 20480 nr 20480 ram 102400
773 			 *
774 			 * key (257 EXTENT_DATA 819200)
775 			 *     extent data disk byte 12845056 nr 102400
776 			 *     extent data offset 0 nr 102400 ram 102400
777 			 *
778 			 * Where the second one fully references the 100K extent
779 			 * that starts at disk byte 12845056, and the log tree
780 			 * has a single csum item that covers the entire range
781 			 * of the extent:
782 			 *
783 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 			 *
785 			 * After the first file extent item is replayed, the
786 			 * csum tree gets the following csum item:
787 			 *
788 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
789 			 *
790 			 * Which covers the 20K sub-range starting at offset 20K
791 			 * of our extent. Now when we replay the second file
792 			 * extent item, if we do not delete existing csum items
793 			 * that cover any of its blocks, we end up getting two
794 			 * csum items in our csum tree that overlap each other:
795 			 *
796 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
797 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
798 			 *
799 			 * Which is a problem, because after this anyone trying
800 			 * to lookup up for the checksum of any block of our
801 			 * extent starting at an offset of 40K or higher, will
802 			 * end up looking at the second csum item only, which
803 			 * does not contain the checksum for any block starting
804 			 * at offset 40K or higher of our extent.
805 			 */
806 			while (!list_empty(&ordered_sums)) {
807 				struct btrfs_ordered_sum *sums;
808 				sums = list_entry(ordered_sums.next,
809 						struct btrfs_ordered_sum,
810 						list);
811 				if (!ret)
812 					ret = btrfs_del_csums(trans, fs_info,
813 							      sums->bytenr,
814 							      sums->len);
815 				if (!ret)
816 					ret = btrfs_csum_file_blocks(trans,
817 						fs_info->csum_root, sums);
818 				list_del(&sums->list);
819 				kfree(sums);
820 			}
821 			if (ret)
822 				goto out;
823 		} else {
824 			btrfs_release_path(path);
825 		}
826 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
827 		/* inline extents are easy, we just overwrite them */
828 		ret = overwrite_item(trans, root, path, eb, slot, key);
829 		if (ret)
830 			goto out;
831 	}
832 
833 	inode_add_bytes(inode, nbytes);
834 update_inode:
835 	ret = btrfs_update_inode(trans, root, inode);
836 out:
837 	if (inode)
838 		iput(inode);
839 	return ret;
840 }
841 
842 /*
843  * when cleaning up conflicts between the directory names in the
844  * subvolume, directory names in the log and directory names in the
845  * inode back references, we may have to unlink inodes from directories.
846  *
847  * This is a helper function to do the unlink of a specific directory
848  * item
849  */
850 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 				      struct btrfs_root *root,
852 				      struct btrfs_path *path,
853 				      struct btrfs_inode *dir,
854 				      struct btrfs_dir_item *di)
855 {
856 	struct btrfs_fs_info *fs_info = root->fs_info;
857 	struct inode *inode;
858 	char *name;
859 	int name_len;
860 	struct extent_buffer *leaf;
861 	struct btrfs_key location;
862 	int ret;
863 
864 	leaf = path->nodes[0];
865 
866 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
867 	name_len = btrfs_dir_name_len(leaf, di);
868 	name = kmalloc(name_len, GFP_NOFS);
869 	if (!name)
870 		return -ENOMEM;
871 
872 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
873 	btrfs_release_path(path);
874 
875 	inode = read_one_inode(root, location.objectid);
876 	if (!inode) {
877 		ret = -EIO;
878 		goto out;
879 	}
880 
881 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
882 	if (ret)
883 		goto out;
884 
885 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
886 			name_len);
887 	if (ret)
888 		goto out;
889 	else
890 		ret = btrfs_run_delayed_items(trans, fs_info);
891 out:
892 	kfree(name);
893 	iput(inode);
894 	return ret;
895 }
896 
897 /*
898  * helper function to see if a given name and sequence number found
899  * in an inode back reference are already in a directory and correctly
900  * point to this inode
901  */
902 static noinline int inode_in_dir(struct btrfs_root *root,
903 				 struct btrfs_path *path,
904 				 u64 dirid, u64 objectid, u64 index,
905 				 const char *name, int name_len)
906 {
907 	struct btrfs_dir_item *di;
908 	struct btrfs_key location;
909 	int match = 0;
910 
911 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
912 					 index, name, name_len, 0);
913 	if (di && !IS_ERR(di)) {
914 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
915 		if (location.objectid != objectid)
916 			goto out;
917 	} else
918 		goto out;
919 	btrfs_release_path(path);
920 
921 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
922 	if (di && !IS_ERR(di)) {
923 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
924 		if (location.objectid != objectid)
925 			goto out;
926 	} else
927 		goto out;
928 	match = 1;
929 out:
930 	btrfs_release_path(path);
931 	return match;
932 }
933 
934 /*
935  * helper function to check a log tree for a named back reference in
936  * an inode.  This is used to decide if a back reference that is
937  * found in the subvolume conflicts with what we find in the log.
938  *
939  * inode backreferences may have multiple refs in a single item,
940  * during replay we process one reference at a time, and we don't
941  * want to delete valid links to a file from the subvolume if that
942  * link is also in the log.
943  */
944 static noinline int backref_in_log(struct btrfs_root *log,
945 				   struct btrfs_key *key,
946 				   u64 ref_objectid,
947 				   const char *name, int namelen)
948 {
949 	struct btrfs_path *path;
950 	struct btrfs_inode_ref *ref;
951 	unsigned long ptr;
952 	unsigned long ptr_end;
953 	unsigned long name_ptr;
954 	int found_name_len;
955 	int item_size;
956 	int ret;
957 	int match = 0;
958 
959 	path = btrfs_alloc_path();
960 	if (!path)
961 		return -ENOMEM;
962 
963 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
964 	if (ret != 0)
965 		goto out;
966 
967 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
968 
969 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
970 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
971 						   path->slots[0],
972 						   ref_objectid,
973 						   name, namelen, NULL))
974 			match = 1;
975 
976 		goto out;
977 	}
978 
979 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
980 	ptr_end = ptr + item_size;
981 	while (ptr < ptr_end) {
982 		ref = (struct btrfs_inode_ref *)ptr;
983 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
984 		if (found_name_len == namelen) {
985 			name_ptr = (unsigned long)(ref + 1);
986 			ret = memcmp_extent_buffer(path->nodes[0], name,
987 						   name_ptr, namelen);
988 			if (ret == 0) {
989 				match = 1;
990 				goto out;
991 			}
992 		}
993 		ptr = (unsigned long)(ref + 1) + found_name_len;
994 	}
995 out:
996 	btrfs_free_path(path);
997 	return match;
998 }
999 
1000 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1001 				  struct btrfs_root *root,
1002 				  struct btrfs_path *path,
1003 				  struct btrfs_root *log_root,
1004 				  struct btrfs_inode *dir,
1005 				  struct btrfs_inode *inode,
1006 				  u64 inode_objectid, u64 parent_objectid,
1007 				  u64 ref_index, char *name, int namelen,
1008 				  int *search_done)
1009 {
1010 	struct btrfs_fs_info *fs_info = root->fs_info;
1011 	int ret;
1012 	char *victim_name;
1013 	int victim_name_len;
1014 	struct extent_buffer *leaf;
1015 	struct btrfs_dir_item *di;
1016 	struct btrfs_key search_key;
1017 	struct btrfs_inode_extref *extref;
1018 
1019 again:
1020 	/* Search old style refs */
1021 	search_key.objectid = inode_objectid;
1022 	search_key.type = BTRFS_INODE_REF_KEY;
1023 	search_key.offset = parent_objectid;
1024 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1025 	if (ret == 0) {
1026 		struct btrfs_inode_ref *victim_ref;
1027 		unsigned long ptr;
1028 		unsigned long ptr_end;
1029 
1030 		leaf = path->nodes[0];
1031 
1032 		/* are we trying to overwrite a back ref for the root directory
1033 		 * if so, just jump out, we're done
1034 		 */
1035 		if (search_key.objectid == search_key.offset)
1036 			return 1;
1037 
1038 		/* check all the names in this back reference to see
1039 		 * if they are in the log.  if so, we allow them to stay
1040 		 * otherwise they must be unlinked as a conflict
1041 		 */
1042 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1043 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1044 		while (ptr < ptr_end) {
1045 			victim_ref = (struct btrfs_inode_ref *)ptr;
1046 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1047 								   victim_ref);
1048 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1049 			if (!victim_name)
1050 				return -ENOMEM;
1051 
1052 			read_extent_buffer(leaf, victim_name,
1053 					   (unsigned long)(victim_ref + 1),
1054 					   victim_name_len);
1055 
1056 			if (!backref_in_log(log_root, &search_key,
1057 					    parent_objectid,
1058 					    victim_name,
1059 					    victim_name_len)) {
1060 				inc_nlink(&inode->vfs_inode);
1061 				btrfs_release_path(path);
1062 
1063 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1064 						victim_name, victim_name_len);
1065 				kfree(victim_name);
1066 				if (ret)
1067 					return ret;
1068 				ret = btrfs_run_delayed_items(trans, fs_info);
1069 				if (ret)
1070 					return ret;
1071 				*search_done = 1;
1072 				goto again;
1073 			}
1074 			kfree(victim_name);
1075 
1076 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1077 		}
1078 
1079 		/*
1080 		 * NOTE: we have searched root tree and checked the
1081 		 * corresponding ref, it does not need to check again.
1082 		 */
1083 		*search_done = 1;
1084 	}
1085 	btrfs_release_path(path);
1086 
1087 	/* Same search but for extended refs */
1088 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1089 					   inode_objectid, parent_objectid, 0,
1090 					   0);
1091 	if (!IS_ERR_OR_NULL(extref)) {
1092 		u32 item_size;
1093 		u32 cur_offset = 0;
1094 		unsigned long base;
1095 		struct inode *victim_parent;
1096 
1097 		leaf = path->nodes[0];
1098 
1099 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1100 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1101 
1102 		while (cur_offset < item_size) {
1103 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1104 
1105 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1106 
1107 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1108 				goto next;
1109 
1110 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1111 			if (!victim_name)
1112 				return -ENOMEM;
1113 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1114 					   victim_name_len);
1115 
1116 			search_key.objectid = inode_objectid;
1117 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1118 			search_key.offset = btrfs_extref_hash(parent_objectid,
1119 							      victim_name,
1120 							      victim_name_len);
1121 			ret = 0;
1122 			if (!backref_in_log(log_root, &search_key,
1123 					    parent_objectid, victim_name,
1124 					    victim_name_len)) {
1125 				ret = -ENOENT;
1126 				victim_parent = read_one_inode(root,
1127 						parent_objectid);
1128 				if (victim_parent) {
1129 					inc_nlink(&inode->vfs_inode);
1130 					btrfs_release_path(path);
1131 
1132 					ret = btrfs_unlink_inode(trans, root,
1133 							BTRFS_I(victim_parent),
1134 							inode,
1135 							victim_name,
1136 							victim_name_len);
1137 					if (!ret)
1138 						ret = btrfs_run_delayed_items(
1139 								  trans,
1140 								  fs_info);
1141 				}
1142 				iput(victim_parent);
1143 				kfree(victim_name);
1144 				if (ret)
1145 					return ret;
1146 				*search_done = 1;
1147 				goto again;
1148 			}
1149 			kfree(victim_name);
1150 next:
1151 			cur_offset += victim_name_len + sizeof(*extref);
1152 		}
1153 		*search_done = 1;
1154 	}
1155 	btrfs_release_path(path);
1156 
1157 	/* look for a conflicting sequence number */
1158 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1159 					 ref_index, name, namelen, 0);
1160 	if (di && !IS_ERR(di)) {
1161 		ret = drop_one_dir_item(trans, root, path, dir, di);
1162 		if (ret)
1163 			return ret;
1164 	}
1165 	btrfs_release_path(path);
1166 
1167 	/* look for a conflicing name */
1168 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1169 				   name, namelen, 0);
1170 	if (di && !IS_ERR(di)) {
1171 		ret = drop_one_dir_item(trans, root, path, dir, di);
1172 		if (ret)
1173 			return ret;
1174 	}
1175 	btrfs_release_path(path);
1176 
1177 	return 0;
1178 }
1179 
1180 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1181 			     u32 *namelen, char **name, u64 *index,
1182 			     u64 *parent_objectid)
1183 {
1184 	struct btrfs_inode_extref *extref;
1185 
1186 	extref = (struct btrfs_inode_extref *)ref_ptr;
1187 
1188 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1189 	*name = kmalloc(*namelen, GFP_NOFS);
1190 	if (*name == NULL)
1191 		return -ENOMEM;
1192 
1193 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1194 			   *namelen);
1195 
1196 	if (index)
1197 		*index = btrfs_inode_extref_index(eb, extref);
1198 	if (parent_objectid)
1199 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1200 
1201 	return 0;
1202 }
1203 
1204 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1205 			  u32 *namelen, char **name, u64 *index)
1206 {
1207 	struct btrfs_inode_ref *ref;
1208 
1209 	ref = (struct btrfs_inode_ref *)ref_ptr;
1210 
1211 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1212 	*name = kmalloc(*namelen, GFP_NOFS);
1213 	if (*name == NULL)
1214 		return -ENOMEM;
1215 
1216 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1217 
1218 	if (index)
1219 		*index = btrfs_inode_ref_index(eb, ref);
1220 
1221 	return 0;
1222 }
1223 
1224 /*
1225  * Take an inode reference item from the log tree and iterate all names from the
1226  * inode reference item in the subvolume tree with the same key (if it exists).
1227  * For any name that is not in the inode reference item from the log tree, do a
1228  * proper unlink of that name (that is, remove its entry from the inode
1229  * reference item and both dir index keys).
1230  */
1231 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1232 				 struct btrfs_root *root,
1233 				 struct btrfs_path *path,
1234 				 struct btrfs_inode *inode,
1235 				 struct extent_buffer *log_eb,
1236 				 int log_slot,
1237 				 struct btrfs_key *key)
1238 {
1239 	int ret;
1240 	unsigned long ref_ptr;
1241 	unsigned long ref_end;
1242 	struct extent_buffer *eb;
1243 
1244 again:
1245 	btrfs_release_path(path);
1246 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1247 	if (ret > 0) {
1248 		ret = 0;
1249 		goto out;
1250 	}
1251 	if (ret < 0)
1252 		goto out;
1253 
1254 	eb = path->nodes[0];
1255 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1256 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1257 	while (ref_ptr < ref_end) {
1258 		char *name = NULL;
1259 		int namelen;
1260 		u64 parent_id;
1261 
1262 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1263 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1264 						NULL, &parent_id);
1265 		} else {
1266 			parent_id = key->offset;
1267 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1268 					     NULL);
1269 		}
1270 		if (ret)
1271 			goto out;
1272 
1273 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1274 			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1275 							     parent_id, name,
1276 							     namelen, NULL);
1277 		else
1278 			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1279 							 namelen, NULL);
1280 
1281 		if (!ret) {
1282 			struct inode *dir;
1283 
1284 			btrfs_release_path(path);
1285 			dir = read_one_inode(root, parent_id);
1286 			if (!dir) {
1287 				ret = -ENOENT;
1288 				kfree(name);
1289 				goto out;
1290 			}
1291 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1292 						 inode, name, namelen);
1293 			kfree(name);
1294 			iput(dir);
1295 			if (ret)
1296 				goto out;
1297 			goto again;
1298 		}
1299 
1300 		kfree(name);
1301 		ref_ptr += namelen;
1302 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1303 			ref_ptr += sizeof(struct btrfs_inode_extref);
1304 		else
1305 			ref_ptr += sizeof(struct btrfs_inode_ref);
1306 	}
1307 	ret = 0;
1308  out:
1309 	btrfs_release_path(path);
1310 	return ret;
1311 }
1312 
1313 /*
1314  * replay one inode back reference item found in the log tree.
1315  * eb, slot and key refer to the buffer and key found in the log tree.
1316  * root is the destination we are replaying into, and path is for temp
1317  * use by this function.  (it should be released on return).
1318  */
1319 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1320 				  struct btrfs_root *root,
1321 				  struct btrfs_root *log,
1322 				  struct btrfs_path *path,
1323 				  struct extent_buffer *eb, int slot,
1324 				  struct btrfs_key *key)
1325 {
1326 	struct inode *dir = NULL;
1327 	struct inode *inode = NULL;
1328 	unsigned long ref_ptr;
1329 	unsigned long ref_end;
1330 	char *name = NULL;
1331 	int namelen;
1332 	int ret;
1333 	int search_done = 0;
1334 	int log_ref_ver = 0;
1335 	u64 parent_objectid;
1336 	u64 inode_objectid;
1337 	u64 ref_index = 0;
1338 	int ref_struct_size;
1339 
1340 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1341 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1342 
1343 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1344 		struct btrfs_inode_extref *r;
1345 
1346 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1347 		log_ref_ver = 1;
1348 		r = (struct btrfs_inode_extref *)ref_ptr;
1349 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1350 	} else {
1351 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1352 		parent_objectid = key->offset;
1353 	}
1354 	inode_objectid = key->objectid;
1355 
1356 	/*
1357 	 * it is possible that we didn't log all the parent directories
1358 	 * for a given inode.  If we don't find the dir, just don't
1359 	 * copy the back ref in.  The link count fixup code will take
1360 	 * care of the rest
1361 	 */
1362 	dir = read_one_inode(root, parent_objectid);
1363 	if (!dir) {
1364 		ret = -ENOENT;
1365 		goto out;
1366 	}
1367 
1368 	inode = read_one_inode(root, inode_objectid);
1369 	if (!inode) {
1370 		ret = -EIO;
1371 		goto out;
1372 	}
1373 
1374 	while (ref_ptr < ref_end) {
1375 		if (log_ref_ver) {
1376 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1377 						&ref_index, &parent_objectid);
1378 			/*
1379 			 * parent object can change from one array
1380 			 * item to another.
1381 			 */
1382 			if (!dir)
1383 				dir = read_one_inode(root, parent_objectid);
1384 			if (!dir) {
1385 				ret = -ENOENT;
1386 				goto out;
1387 			}
1388 		} else {
1389 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1390 					     &ref_index);
1391 		}
1392 		if (ret)
1393 			goto out;
1394 
1395 		/* if we already have a perfect match, we're done */
1396 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1397 					btrfs_ino(BTRFS_I(inode)), ref_index,
1398 					name, namelen)) {
1399 			/*
1400 			 * look for a conflicting back reference in the
1401 			 * metadata. if we find one we have to unlink that name
1402 			 * of the file before we add our new link.  Later on, we
1403 			 * overwrite any existing back reference, and we don't
1404 			 * want to create dangling pointers in the directory.
1405 			 */
1406 
1407 			if (!search_done) {
1408 				ret = __add_inode_ref(trans, root, path, log,
1409 						      BTRFS_I(dir),
1410 						      BTRFS_I(inode),
1411 						      inode_objectid,
1412 						      parent_objectid,
1413 						      ref_index, name, namelen,
1414 						      &search_done);
1415 				if (ret) {
1416 					if (ret == 1)
1417 						ret = 0;
1418 					goto out;
1419 				}
1420 			}
1421 
1422 			/* insert our name */
1423 			ret = btrfs_add_link(trans, BTRFS_I(dir),
1424 					BTRFS_I(inode),
1425 					name, namelen, 0, ref_index);
1426 			if (ret)
1427 				goto out;
1428 
1429 			btrfs_update_inode(trans, root, inode);
1430 		}
1431 
1432 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1433 		kfree(name);
1434 		name = NULL;
1435 		if (log_ref_ver) {
1436 			iput(dir);
1437 			dir = NULL;
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * Before we overwrite the inode reference item in the subvolume tree
1443 	 * with the item from the log tree, we must unlink all names from the
1444 	 * parent directory that are in the subvolume's tree inode reference
1445 	 * item, otherwise we end up with an inconsistent subvolume tree where
1446 	 * dir index entries exist for a name but there is no inode reference
1447 	 * item with the same name.
1448 	 */
1449 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1450 				    key);
1451 	if (ret)
1452 		goto out;
1453 
1454 	/* finally write the back reference in the inode */
1455 	ret = overwrite_item(trans, root, path, eb, slot, key);
1456 out:
1457 	btrfs_release_path(path);
1458 	kfree(name);
1459 	iput(dir);
1460 	iput(inode);
1461 	return ret;
1462 }
1463 
1464 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1465 			      struct btrfs_root *root, u64 ino)
1466 {
1467 	int ret;
1468 
1469 	ret = btrfs_insert_orphan_item(trans, root, ino);
1470 	if (ret == -EEXIST)
1471 		ret = 0;
1472 
1473 	return ret;
1474 }
1475 
1476 static int count_inode_extrefs(struct btrfs_root *root,
1477 		struct btrfs_inode *inode, struct btrfs_path *path)
1478 {
1479 	int ret = 0;
1480 	int name_len;
1481 	unsigned int nlink = 0;
1482 	u32 item_size;
1483 	u32 cur_offset = 0;
1484 	u64 inode_objectid = btrfs_ino(inode);
1485 	u64 offset = 0;
1486 	unsigned long ptr;
1487 	struct btrfs_inode_extref *extref;
1488 	struct extent_buffer *leaf;
1489 
1490 	while (1) {
1491 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1492 					    &extref, &offset);
1493 		if (ret)
1494 			break;
1495 
1496 		leaf = path->nodes[0];
1497 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1498 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1499 		cur_offset = 0;
1500 
1501 		while (cur_offset < item_size) {
1502 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1503 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1504 
1505 			nlink++;
1506 
1507 			cur_offset += name_len + sizeof(*extref);
1508 		}
1509 
1510 		offset++;
1511 		btrfs_release_path(path);
1512 	}
1513 	btrfs_release_path(path);
1514 
1515 	if (ret < 0 && ret != -ENOENT)
1516 		return ret;
1517 	return nlink;
1518 }
1519 
1520 static int count_inode_refs(struct btrfs_root *root,
1521 			struct btrfs_inode *inode, struct btrfs_path *path)
1522 {
1523 	int ret;
1524 	struct btrfs_key key;
1525 	unsigned int nlink = 0;
1526 	unsigned long ptr;
1527 	unsigned long ptr_end;
1528 	int name_len;
1529 	u64 ino = btrfs_ino(inode);
1530 
1531 	key.objectid = ino;
1532 	key.type = BTRFS_INODE_REF_KEY;
1533 	key.offset = (u64)-1;
1534 
1535 	while (1) {
1536 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1537 		if (ret < 0)
1538 			break;
1539 		if (ret > 0) {
1540 			if (path->slots[0] == 0)
1541 				break;
1542 			path->slots[0]--;
1543 		}
1544 process_slot:
1545 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1546 				      path->slots[0]);
1547 		if (key.objectid != ino ||
1548 		    key.type != BTRFS_INODE_REF_KEY)
1549 			break;
1550 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1551 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1552 						   path->slots[0]);
1553 		while (ptr < ptr_end) {
1554 			struct btrfs_inode_ref *ref;
1555 
1556 			ref = (struct btrfs_inode_ref *)ptr;
1557 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1558 							    ref);
1559 			ptr = (unsigned long)(ref + 1) + name_len;
1560 			nlink++;
1561 		}
1562 
1563 		if (key.offset == 0)
1564 			break;
1565 		if (path->slots[0] > 0) {
1566 			path->slots[0]--;
1567 			goto process_slot;
1568 		}
1569 		key.offset--;
1570 		btrfs_release_path(path);
1571 	}
1572 	btrfs_release_path(path);
1573 
1574 	return nlink;
1575 }
1576 
1577 /*
1578  * There are a few corners where the link count of the file can't
1579  * be properly maintained during replay.  So, instead of adding
1580  * lots of complexity to the log code, we just scan the backrefs
1581  * for any file that has been through replay.
1582  *
1583  * The scan will update the link count on the inode to reflect the
1584  * number of back refs found.  If it goes down to zero, the iput
1585  * will free the inode.
1586  */
1587 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1588 					   struct btrfs_root *root,
1589 					   struct inode *inode)
1590 {
1591 	struct btrfs_path *path;
1592 	int ret;
1593 	u64 nlink = 0;
1594 	u64 ino = btrfs_ino(BTRFS_I(inode));
1595 
1596 	path = btrfs_alloc_path();
1597 	if (!path)
1598 		return -ENOMEM;
1599 
1600 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1601 	if (ret < 0)
1602 		goto out;
1603 
1604 	nlink = ret;
1605 
1606 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1607 	if (ret < 0)
1608 		goto out;
1609 
1610 	nlink += ret;
1611 
1612 	ret = 0;
1613 
1614 	if (nlink != inode->i_nlink) {
1615 		set_nlink(inode, nlink);
1616 		btrfs_update_inode(trans, root, inode);
1617 	}
1618 	BTRFS_I(inode)->index_cnt = (u64)-1;
1619 
1620 	if (inode->i_nlink == 0) {
1621 		if (S_ISDIR(inode->i_mode)) {
1622 			ret = replay_dir_deletes(trans, root, NULL, path,
1623 						 ino, 1);
1624 			if (ret)
1625 				goto out;
1626 		}
1627 		ret = insert_orphan_item(trans, root, ino);
1628 	}
1629 
1630 out:
1631 	btrfs_free_path(path);
1632 	return ret;
1633 }
1634 
1635 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1636 					    struct btrfs_root *root,
1637 					    struct btrfs_path *path)
1638 {
1639 	int ret;
1640 	struct btrfs_key key;
1641 	struct inode *inode;
1642 
1643 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1644 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1645 	key.offset = (u64)-1;
1646 	while (1) {
1647 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1648 		if (ret < 0)
1649 			break;
1650 
1651 		if (ret == 1) {
1652 			if (path->slots[0] == 0)
1653 				break;
1654 			path->slots[0]--;
1655 		}
1656 
1657 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1658 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1659 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1660 			break;
1661 
1662 		ret = btrfs_del_item(trans, root, path);
1663 		if (ret)
1664 			goto out;
1665 
1666 		btrfs_release_path(path);
1667 		inode = read_one_inode(root, key.offset);
1668 		if (!inode)
1669 			return -EIO;
1670 
1671 		ret = fixup_inode_link_count(trans, root, inode);
1672 		iput(inode);
1673 		if (ret)
1674 			goto out;
1675 
1676 		/*
1677 		 * fixup on a directory may create new entries,
1678 		 * make sure we always look for the highset possible
1679 		 * offset
1680 		 */
1681 		key.offset = (u64)-1;
1682 	}
1683 	ret = 0;
1684 out:
1685 	btrfs_release_path(path);
1686 	return ret;
1687 }
1688 
1689 
1690 /*
1691  * record a given inode in the fixup dir so we can check its link
1692  * count when replay is done.  The link count is incremented here
1693  * so the inode won't go away until we check it
1694  */
1695 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1696 				      struct btrfs_root *root,
1697 				      struct btrfs_path *path,
1698 				      u64 objectid)
1699 {
1700 	struct btrfs_key key;
1701 	int ret = 0;
1702 	struct inode *inode;
1703 
1704 	inode = read_one_inode(root, objectid);
1705 	if (!inode)
1706 		return -EIO;
1707 
1708 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1709 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1710 	key.offset = objectid;
1711 
1712 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1713 
1714 	btrfs_release_path(path);
1715 	if (ret == 0) {
1716 		if (!inode->i_nlink)
1717 			set_nlink(inode, 1);
1718 		else
1719 			inc_nlink(inode);
1720 		ret = btrfs_update_inode(trans, root, inode);
1721 	} else if (ret == -EEXIST) {
1722 		ret = 0;
1723 	} else {
1724 		BUG(); /* Logic Error */
1725 	}
1726 	iput(inode);
1727 
1728 	return ret;
1729 }
1730 
1731 /*
1732  * when replaying the log for a directory, we only insert names
1733  * for inodes that actually exist.  This means an fsync on a directory
1734  * does not implicitly fsync all the new files in it
1735  */
1736 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1737 				    struct btrfs_root *root,
1738 				    u64 dirid, u64 index,
1739 				    char *name, int name_len,
1740 				    struct btrfs_key *location)
1741 {
1742 	struct inode *inode;
1743 	struct inode *dir;
1744 	int ret;
1745 
1746 	inode = read_one_inode(root, location->objectid);
1747 	if (!inode)
1748 		return -ENOENT;
1749 
1750 	dir = read_one_inode(root, dirid);
1751 	if (!dir) {
1752 		iput(inode);
1753 		return -EIO;
1754 	}
1755 
1756 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1757 			name_len, 1, index);
1758 
1759 	/* FIXME, put inode into FIXUP list */
1760 
1761 	iput(inode);
1762 	iput(dir);
1763 	return ret;
1764 }
1765 
1766 /*
1767  * Return true if an inode reference exists in the log for the given name,
1768  * inode and parent inode.
1769  */
1770 static bool name_in_log_ref(struct btrfs_root *log_root,
1771 			    const char *name, const int name_len,
1772 			    const u64 dirid, const u64 ino)
1773 {
1774 	struct btrfs_key search_key;
1775 
1776 	search_key.objectid = ino;
1777 	search_key.type = BTRFS_INODE_REF_KEY;
1778 	search_key.offset = dirid;
1779 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1780 		return true;
1781 
1782 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1783 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1784 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1785 		return true;
1786 
1787 	return false;
1788 }
1789 
1790 /*
1791  * take a single entry in a log directory item and replay it into
1792  * the subvolume.
1793  *
1794  * if a conflicting item exists in the subdirectory already,
1795  * the inode it points to is unlinked and put into the link count
1796  * fix up tree.
1797  *
1798  * If a name from the log points to a file or directory that does
1799  * not exist in the FS, it is skipped.  fsyncs on directories
1800  * do not force down inodes inside that directory, just changes to the
1801  * names or unlinks in a directory.
1802  *
1803  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1804  * non-existing inode) and 1 if the name was replayed.
1805  */
1806 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1807 				    struct btrfs_root *root,
1808 				    struct btrfs_path *path,
1809 				    struct extent_buffer *eb,
1810 				    struct btrfs_dir_item *di,
1811 				    struct btrfs_key *key)
1812 {
1813 	char *name;
1814 	int name_len;
1815 	struct btrfs_dir_item *dst_di;
1816 	struct btrfs_key found_key;
1817 	struct btrfs_key log_key;
1818 	struct inode *dir;
1819 	u8 log_type;
1820 	int exists;
1821 	int ret = 0;
1822 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1823 	bool name_added = false;
1824 
1825 	dir = read_one_inode(root, key->objectid);
1826 	if (!dir)
1827 		return -EIO;
1828 
1829 	name_len = btrfs_dir_name_len(eb, di);
1830 	name = kmalloc(name_len, GFP_NOFS);
1831 	if (!name) {
1832 		ret = -ENOMEM;
1833 		goto out;
1834 	}
1835 
1836 	log_type = btrfs_dir_type(eb, di);
1837 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1838 		   name_len);
1839 
1840 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1841 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1842 	if (exists == 0)
1843 		exists = 1;
1844 	else
1845 		exists = 0;
1846 	btrfs_release_path(path);
1847 
1848 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1849 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1850 				       name, name_len, 1);
1851 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1852 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1853 						     key->objectid,
1854 						     key->offset, name,
1855 						     name_len, 1);
1856 	} else {
1857 		/* Corruption */
1858 		ret = -EINVAL;
1859 		goto out;
1860 	}
1861 	if (IS_ERR_OR_NULL(dst_di)) {
1862 		/* we need a sequence number to insert, so we only
1863 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1864 		 */
1865 		if (key->type != BTRFS_DIR_INDEX_KEY)
1866 			goto out;
1867 		goto insert;
1868 	}
1869 
1870 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1871 	/* the existing item matches the logged item */
1872 	if (found_key.objectid == log_key.objectid &&
1873 	    found_key.type == log_key.type &&
1874 	    found_key.offset == log_key.offset &&
1875 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1876 		update_size = false;
1877 		goto out;
1878 	}
1879 
1880 	/*
1881 	 * don't drop the conflicting directory entry if the inode
1882 	 * for the new entry doesn't exist
1883 	 */
1884 	if (!exists)
1885 		goto out;
1886 
1887 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1888 	if (ret)
1889 		goto out;
1890 
1891 	if (key->type == BTRFS_DIR_INDEX_KEY)
1892 		goto insert;
1893 out:
1894 	btrfs_release_path(path);
1895 	if (!ret && update_size) {
1896 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1897 		ret = btrfs_update_inode(trans, root, dir);
1898 	}
1899 	kfree(name);
1900 	iput(dir);
1901 	if (!ret && name_added)
1902 		ret = 1;
1903 	return ret;
1904 
1905 insert:
1906 	if (name_in_log_ref(root->log_root, name, name_len,
1907 			    key->objectid, log_key.objectid)) {
1908 		/* The dentry will be added later. */
1909 		ret = 0;
1910 		update_size = false;
1911 		goto out;
1912 	}
1913 	btrfs_release_path(path);
1914 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1915 			      name, name_len, &log_key);
1916 	if (ret && ret != -ENOENT && ret != -EEXIST)
1917 		goto out;
1918 	if (!ret)
1919 		name_added = true;
1920 	update_size = false;
1921 	ret = 0;
1922 	goto out;
1923 }
1924 
1925 /*
1926  * find all the names in a directory item and reconcile them into
1927  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1928  * one name in a directory item, but the same code gets used for
1929  * both directory index types
1930  */
1931 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1932 					struct btrfs_root *root,
1933 					struct btrfs_path *path,
1934 					struct extent_buffer *eb, int slot,
1935 					struct btrfs_key *key)
1936 {
1937 	int ret = 0;
1938 	u32 item_size = btrfs_item_size_nr(eb, slot);
1939 	struct btrfs_dir_item *di;
1940 	int name_len;
1941 	unsigned long ptr;
1942 	unsigned long ptr_end;
1943 	struct btrfs_path *fixup_path = NULL;
1944 
1945 	ptr = btrfs_item_ptr_offset(eb, slot);
1946 	ptr_end = ptr + item_size;
1947 	while (ptr < ptr_end) {
1948 		di = (struct btrfs_dir_item *)ptr;
1949 		name_len = btrfs_dir_name_len(eb, di);
1950 		ret = replay_one_name(trans, root, path, eb, di, key);
1951 		if (ret < 0)
1952 			break;
1953 		ptr = (unsigned long)(di + 1);
1954 		ptr += name_len;
1955 
1956 		/*
1957 		 * If this entry refers to a non-directory (directories can not
1958 		 * have a link count > 1) and it was added in the transaction
1959 		 * that was not committed, make sure we fixup the link count of
1960 		 * the inode it the entry points to. Otherwise something like
1961 		 * the following would result in a directory pointing to an
1962 		 * inode with a wrong link that does not account for this dir
1963 		 * entry:
1964 		 *
1965 		 * mkdir testdir
1966 		 * touch testdir/foo
1967 		 * touch testdir/bar
1968 		 * sync
1969 		 *
1970 		 * ln testdir/bar testdir/bar_link
1971 		 * ln testdir/foo testdir/foo_link
1972 		 * xfs_io -c "fsync" testdir/bar
1973 		 *
1974 		 * <power failure>
1975 		 *
1976 		 * mount fs, log replay happens
1977 		 *
1978 		 * File foo would remain with a link count of 1 when it has two
1979 		 * entries pointing to it in the directory testdir. This would
1980 		 * make it impossible to ever delete the parent directory has
1981 		 * it would result in stale dentries that can never be deleted.
1982 		 */
1983 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1984 			struct btrfs_key di_key;
1985 
1986 			if (!fixup_path) {
1987 				fixup_path = btrfs_alloc_path();
1988 				if (!fixup_path) {
1989 					ret = -ENOMEM;
1990 					break;
1991 				}
1992 			}
1993 
1994 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1995 			ret = link_to_fixup_dir(trans, root, fixup_path,
1996 						di_key.objectid);
1997 			if (ret)
1998 				break;
1999 		}
2000 		ret = 0;
2001 	}
2002 	btrfs_free_path(fixup_path);
2003 	return ret;
2004 }
2005 
2006 /*
2007  * directory replay has two parts.  There are the standard directory
2008  * items in the log copied from the subvolume, and range items
2009  * created in the log while the subvolume was logged.
2010  *
2011  * The range items tell us which parts of the key space the log
2012  * is authoritative for.  During replay, if a key in the subvolume
2013  * directory is in a logged range item, but not actually in the log
2014  * that means it was deleted from the directory before the fsync
2015  * and should be removed.
2016  */
2017 static noinline int find_dir_range(struct btrfs_root *root,
2018 				   struct btrfs_path *path,
2019 				   u64 dirid, int key_type,
2020 				   u64 *start_ret, u64 *end_ret)
2021 {
2022 	struct btrfs_key key;
2023 	u64 found_end;
2024 	struct btrfs_dir_log_item *item;
2025 	int ret;
2026 	int nritems;
2027 
2028 	if (*start_ret == (u64)-1)
2029 		return 1;
2030 
2031 	key.objectid = dirid;
2032 	key.type = key_type;
2033 	key.offset = *start_ret;
2034 
2035 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2036 	if (ret < 0)
2037 		goto out;
2038 	if (ret > 0) {
2039 		if (path->slots[0] == 0)
2040 			goto out;
2041 		path->slots[0]--;
2042 	}
2043 	if (ret != 0)
2044 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2045 
2046 	if (key.type != key_type || key.objectid != dirid) {
2047 		ret = 1;
2048 		goto next;
2049 	}
2050 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2051 			      struct btrfs_dir_log_item);
2052 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2053 
2054 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2055 		ret = 0;
2056 		*start_ret = key.offset;
2057 		*end_ret = found_end;
2058 		goto out;
2059 	}
2060 	ret = 1;
2061 next:
2062 	/* check the next slot in the tree to see if it is a valid item */
2063 	nritems = btrfs_header_nritems(path->nodes[0]);
2064 	path->slots[0]++;
2065 	if (path->slots[0] >= nritems) {
2066 		ret = btrfs_next_leaf(root, path);
2067 		if (ret)
2068 			goto out;
2069 	}
2070 
2071 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2072 
2073 	if (key.type != key_type || key.objectid != dirid) {
2074 		ret = 1;
2075 		goto out;
2076 	}
2077 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2078 			      struct btrfs_dir_log_item);
2079 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2080 	*start_ret = key.offset;
2081 	*end_ret = found_end;
2082 	ret = 0;
2083 out:
2084 	btrfs_release_path(path);
2085 	return ret;
2086 }
2087 
2088 /*
2089  * this looks for a given directory item in the log.  If the directory
2090  * item is not in the log, the item is removed and the inode it points
2091  * to is unlinked
2092  */
2093 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2094 				      struct btrfs_root *root,
2095 				      struct btrfs_root *log,
2096 				      struct btrfs_path *path,
2097 				      struct btrfs_path *log_path,
2098 				      struct inode *dir,
2099 				      struct btrfs_key *dir_key)
2100 {
2101 	struct btrfs_fs_info *fs_info = root->fs_info;
2102 	int ret;
2103 	struct extent_buffer *eb;
2104 	int slot;
2105 	u32 item_size;
2106 	struct btrfs_dir_item *di;
2107 	struct btrfs_dir_item *log_di;
2108 	int name_len;
2109 	unsigned long ptr;
2110 	unsigned long ptr_end;
2111 	char *name;
2112 	struct inode *inode;
2113 	struct btrfs_key location;
2114 
2115 again:
2116 	eb = path->nodes[0];
2117 	slot = path->slots[0];
2118 	item_size = btrfs_item_size_nr(eb, slot);
2119 	ptr = btrfs_item_ptr_offset(eb, slot);
2120 	ptr_end = ptr + item_size;
2121 	while (ptr < ptr_end) {
2122 		di = (struct btrfs_dir_item *)ptr;
2123 		name_len = btrfs_dir_name_len(eb, di);
2124 		name = kmalloc(name_len, GFP_NOFS);
2125 		if (!name) {
2126 			ret = -ENOMEM;
2127 			goto out;
2128 		}
2129 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2130 				  name_len);
2131 		log_di = NULL;
2132 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2133 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2134 						       dir_key->objectid,
2135 						       name, name_len, 0);
2136 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2137 			log_di = btrfs_lookup_dir_index_item(trans, log,
2138 						     log_path,
2139 						     dir_key->objectid,
2140 						     dir_key->offset,
2141 						     name, name_len, 0);
2142 		}
2143 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2144 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2145 			btrfs_release_path(path);
2146 			btrfs_release_path(log_path);
2147 			inode = read_one_inode(root, location.objectid);
2148 			if (!inode) {
2149 				kfree(name);
2150 				return -EIO;
2151 			}
2152 
2153 			ret = link_to_fixup_dir(trans, root,
2154 						path, location.objectid);
2155 			if (ret) {
2156 				kfree(name);
2157 				iput(inode);
2158 				goto out;
2159 			}
2160 
2161 			inc_nlink(inode);
2162 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2163 					BTRFS_I(inode), name, name_len);
2164 			if (!ret)
2165 				ret = btrfs_run_delayed_items(trans, fs_info);
2166 			kfree(name);
2167 			iput(inode);
2168 			if (ret)
2169 				goto out;
2170 
2171 			/* there might still be more names under this key
2172 			 * check and repeat if required
2173 			 */
2174 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2175 						0, 0);
2176 			if (ret == 0)
2177 				goto again;
2178 			ret = 0;
2179 			goto out;
2180 		} else if (IS_ERR(log_di)) {
2181 			kfree(name);
2182 			return PTR_ERR(log_di);
2183 		}
2184 		btrfs_release_path(log_path);
2185 		kfree(name);
2186 
2187 		ptr = (unsigned long)(di + 1);
2188 		ptr += name_len;
2189 	}
2190 	ret = 0;
2191 out:
2192 	btrfs_release_path(path);
2193 	btrfs_release_path(log_path);
2194 	return ret;
2195 }
2196 
2197 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2198 			      struct btrfs_root *root,
2199 			      struct btrfs_root *log,
2200 			      struct btrfs_path *path,
2201 			      const u64 ino)
2202 {
2203 	struct btrfs_key search_key;
2204 	struct btrfs_path *log_path;
2205 	int i;
2206 	int nritems;
2207 	int ret;
2208 
2209 	log_path = btrfs_alloc_path();
2210 	if (!log_path)
2211 		return -ENOMEM;
2212 
2213 	search_key.objectid = ino;
2214 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2215 	search_key.offset = 0;
2216 again:
2217 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2218 	if (ret < 0)
2219 		goto out;
2220 process_leaf:
2221 	nritems = btrfs_header_nritems(path->nodes[0]);
2222 	for (i = path->slots[0]; i < nritems; i++) {
2223 		struct btrfs_key key;
2224 		struct btrfs_dir_item *di;
2225 		struct btrfs_dir_item *log_di;
2226 		u32 total_size;
2227 		u32 cur;
2228 
2229 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2230 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2231 			ret = 0;
2232 			goto out;
2233 		}
2234 
2235 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2236 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2237 		cur = 0;
2238 		while (cur < total_size) {
2239 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2240 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2241 			u32 this_len = sizeof(*di) + name_len + data_len;
2242 			char *name;
2243 
2244 			name = kmalloc(name_len, GFP_NOFS);
2245 			if (!name) {
2246 				ret = -ENOMEM;
2247 				goto out;
2248 			}
2249 			read_extent_buffer(path->nodes[0], name,
2250 					   (unsigned long)(di + 1), name_len);
2251 
2252 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2253 						    name, name_len, 0);
2254 			btrfs_release_path(log_path);
2255 			if (!log_di) {
2256 				/* Doesn't exist in log tree, so delete it. */
2257 				btrfs_release_path(path);
2258 				di = btrfs_lookup_xattr(trans, root, path, ino,
2259 							name, name_len, -1);
2260 				kfree(name);
2261 				if (IS_ERR(di)) {
2262 					ret = PTR_ERR(di);
2263 					goto out;
2264 				}
2265 				ASSERT(di);
2266 				ret = btrfs_delete_one_dir_name(trans, root,
2267 								path, di);
2268 				if (ret)
2269 					goto out;
2270 				btrfs_release_path(path);
2271 				search_key = key;
2272 				goto again;
2273 			}
2274 			kfree(name);
2275 			if (IS_ERR(log_di)) {
2276 				ret = PTR_ERR(log_di);
2277 				goto out;
2278 			}
2279 			cur += this_len;
2280 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2281 		}
2282 	}
2283 	ret = btrfs_next_leaf(root, path);
2284 	if (ret > 0)
2285 		ret = 0;
2286 	else if (ret == 0)
2287 		goto process_leaf;
2288 out:
2289 	btrfs_free_path(log_path);
2290 	btrfs_release_path(path);
2291 	return ret;
2292 }
2293 
2294 
2295 /*
2296  * deletion replay happens before we copy any new directory items
2297  * out of the log or out of backreferences from inodes.  It
2298  * scans the log to find ranges of keys that log is authoritative for,
2299  * and then scans the directory to find items in those ranges that are
2300  * not present in the log.
2301  *
2302  * Anything we don't find in the log is unlinked and removed from the
2303  * directory.
2304  */
2305 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2306 				       struct btrfs_root *root,
2307 				       struct btrfs_root *log,
2308 				       struct btrfs_path *path,
2309 				       u64 dirid, int del_all)
2310 {
2311 	u64 range_start;
2312 	u64 range_end;
2313 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2314 	int ret = 0;
2315 	struct btrfs_key dir_key;
2316 	struct btrfs_key found_key;
2317 	struct btrfs_path *log_path;
2318 	struct inode *dir;
2319 
2320 	dir_key.objectid = dirid;
2321 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2322 	log_path = btrfs_alloc_path();
2323 	if (!log_path)
2324 		return -ENOMEM;
2325 
2326 	dir = read_one_inode(root, dirid);
2327 	/* it isn't an error if the inode isn't there, that can happen
2328 	 * because we replay the deletes before we copy in the inode item
2329 	 * from the log
2330 	 */
2331 	if (!dir) {
2332 		btrfs_free_path(log_path);
2333 		return 0;
2334 	}
2335 again:
2336 	range_start = 0;
2337 	range_end = 0;
2338 	while (1) {
2339 		if (del_all)
2340 			range_end = (u64)-1;
2341 		else {
2342 			ret = find_dir_range(log, path, dirid, key_type,
2343 					     &range_start, &range_end);
2344 			if (ret != 0)
2345 				break;
2346 		}
2347 
2348 		dir_key.offset = range_start;
2349 		while (1) {
2350 			int nritems;
2351 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2352 						0, 0);
2353 			if (ret < 0)
2354 				goto out;
2355 
2356 			nritems = btrfs_header_nritems(path->nodes[0]);
2357 			if (path->slots[0] >= nritems) {
2358 				ret = btrfs_next_leaf(root, path);
2359 				if (ret)
2360 					break;
2361 			}
2362 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2363 					      path->slots[0]);
2364 			if (found_key.objectid != dirid ||
2365 			    found_key.type != dir_key.type)
2366 				goto next_type;
2367 
2368 			if (found_key.offset > range_end)
2369 				break;
2370 
2371 			ret = check_item_in_log(trans, root, log, path,
2372 						log_path, dir,
2373 						&found_key);
2374 			if (ret)
2375 				goto out;
2376 			if (found_key.offset == (u64)-1)
2377 				break;
2378 			dir_key.offset = found_key.offset + 1;
2379 		}
2380 		btrfs_release_path(path);
2381 		if (range_end == (u64)-1)
2382 			break;
2383 		range_start = range_end + 1;
2384 	}
2385 
2386 next_type:
2387 	ret = 0;
2388 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2389 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2390 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2391 		btrfs_release_path(path);
2392 		goto again;
2393 	}
2394 out:
2395 	btrfs_release_path(path);
2396 	btrfs_free_path(log_path);
2397 	iput(dir);
2398 	return ret;
2399 }
2400 
2401 /*
2402  * the process_func used to replay items from the log tree.  This
2403  * gets called in two different stages.  The first stage just looks
2404  * for inodes and makes sure they are all copied into the subvolume.
2405  *
2406  * The second stage copies all the other item types from the log into
2407  * the subvolume.  The two stage approach is slower, but gets rid of
2408  * lots of complexity around inodes referencing other inodes that exist
2409  * only in the log (references come from either directory items or inode
2410  * back refs).
2411  */
2412 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2413 			     struct walk_control *wc, u64 gen)
2414 {
2415 	int nritems;
2416 	struct btrfs_path *path;
2417 	struct btrfs_root *root = wc->replay_dest;
2418 	struct btrfs_key key;
2419 	int level;
2420 	int i;
2421 	int ret;
2422 
2423 	ret = btrfs_read_buffer(eb, gen);
2424 	if (ret)
2425 		return ret;
2426 
2427 	level = btrfs_header_level(eb);
2428 
2429 	if (level != 0)
2430 		return 0;
2431 
2432 	path = btrfs_alloc_path();
2433 	if (!path)
2434 		return -ENOMEM;
2435 
2436 	nritems = btrfs_header_nritems(eb);
2437 	for (i = 0; i < nritems; i++) {
2438 		btrfs_item_key_to_cpu(eb, &key, i);
2439 
2440 		/* inode keys are done during the first stage */
2441 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2442 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2443 			struct btrfs_inode_item *inode_item;
2444 			u32 mode;
2445 
2446 			inode_item = btrfs_item_ptr(eb, i,
2447 					    struct btrfs_inode_item);
2448 			ret = replay_xattr_deletes(wc->trans, root, log,
2449 						   path, key.objectid);
2450 			if (ret)
2451 				break;
2452 			mode = btrfs_inode_mode(eb, inode_item);
2453 			if (S_ISDIR(mode)) {
2454 				ret = replay_dir_deletes(wc->trans,
2455 					 root, log, path, key.objectid, 0);
2456 				if (ret)
2457 					break;
2458 			}
2459 			ret = overwrite_item(wc->trans, root, path,
2460 					     eb, i, &key);
2461 			if (ret)
2462 				break;
2463 
2464 			/* for regular files, make sure corresponding
2465 			 * orphan item exist. extents past the new EOF
2466 			 * will be truncated later by orphan cleanup.
2467 			 */
2468 			if (S_ISREG(mode)) {
2469 				ret = insert_orphan_item(wc->trans, root,
2470 							 key.objectid);
2471 				if (ret)
2472 					break;
2473 			}
2474 
2475 			ret = link_to_fixup_dir(wc->trans, root,
2476 						path, key.objectid);
2477 			if (ret)
2478 				break;
2479 		}
2480 
2481 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2482 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2483 			ret = replay_one_dir_item(wc->trans, root, path,
2484 						  eb, i, &key);
2485 			if (ret)
2486 				break;
2487 		}
2488 
2489 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2490 			continue;
2491 
2492 		/* these keys are simply copied */
2493 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2494 			ret = overwrite_item(wc->trans, root, path,
2495 					     eb, i, &key);
2496 			if (ret)
2497 				break;
2498 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2499 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2500 			ret = add_inode_ref(wc->trans, root, log, path,
2501 					    eb, i, &key);
2502 			if (ret && ret != -ENOENT)
2503 				break;
2504 			ret = 0;
2505 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2506 			ret = replay_one_extent(wc->trans, root, path,
2507 						eb, i, &key);
2508 			if (ret)
2509 				break;
2510 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2511 			ret = replay_one_dir_item(wc->trans, root, path,
2512 						  eb, i, &key);
2513 			if (ret)
2514 				break;
2515 		}
2516 	}
2517 	btrfs_free_path(path);
2518 	return ret;
2519 }
2520 
2521 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2522 				   struct btrfs_root *root,
2523 				   struct btrfs_path *path, int *level,
2524 				   struct walk_control *wc)
2525 {
2526 	struct btrfs_fs_info *fs_info = root->fs_info;
2527 	u64 root_owner;
2528 	u64 bytenr;
2529 	u64 ptr_gen;
2530 	struct extent_buffer *next;
2531 	struct extent_buffer *cur;
2532 	struct extent_buffer *parent;
2533 	u32 blocksize;
2534 	int ret = 0;
2535 
2536 	WARN_ON(*level < 0);
2537 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2538 
2539 	while (*level > 0) {
2540 		WARN_ON(*level < 0);
2541 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2542 		cur = path->nodes[*level];
2543 
2544 		WARN_ON(btrfs_header_level(cur) != *level);
2545 
2546 		if (path->slots[*level] >=
2547 		    btrfs_header_nritems(cur))
2548 			break;
2549 
2550 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2551 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2552 		blocksize = fs_info->nodesize;
2553 
2554 		parent = path->nodes[*level];
2555 		root_owner = btrfs_header_owner(parent);
2556 
2557 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2558 		if (IS_ERR(next))
2559 			return PTR_ERR(next);
2560 
2561 		if (*level == 1) {
2562 			ret = wc->process_func(root, next, wc, ptr_gen);
2563 			if (ret) {
2564 				free_extent_buffer(next);
2565 				return ret;
2566 			}
2567 
2568 			path->slots[*level]++;
2569 			if (wc->free) {
2570 				ret = btrfs_read_buffer(next, ptr_gen);
2571 				if (ret) {
2572 					free_extent_buffer(next);
2573 					return ret;
2574 				}
2575 
2576 				if (trans) {
2577 					btrfs_tree_lock(next);
2578 					btrfs_set_lock_blocking(next);
2579 					clean_tree_block(fs_info, next);
2580 					btrfs_wait_tree_block_writeback(next);
2581 					btrfs_tree_unlock(next);
2582 				} else {
2583 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2584 						clear_extent_buffer_dirty(next);
2585 				}
2586 
2587 				WARN_ON(root_owner !=
2588 					BTRFS_TREE_LOG_OBJECTID);
2589 				ret = btrfs_free_and_pin_reserved_extent(
2590 							fs_info, bytenr,
2591 							blocksize);
2592 				if (ret) {
2593 					free_extent_buffer(next);
2594 					return ret;
2595 				}
2596 			}
2597 			free_extent_buffer(next);
2598 			continue;
2599 		}
2600 		ret = btrfs_read_buffer(next, ptr_gen);
2601 		if (ret) {
2602 			free_extent_buffer(next);
2603 			return ret;
2604 		}
2605 
2606 		WARN_ON(*level <= 0);
2607 		if (path->nodes[*level-1])
2608 			free_extent_buffer(path->nodes[*level-1]);
2609 		path->nodes[*level-1] = next;
2610 		*level = btrfs_header_level(next);
2611 		path->slots[*level] = 0;
2612 		cond_resched();
2613 	}
2614 	WARN_ON(*level < 0);
2615 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2616 
2617 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2618 
2619 	cond_resched();
2620 	return 0;
2621 }
2622 
2623 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2624 				 struct btrfs_root *root,
2625 				 struct btrfs_path *path, int *level,
2626 				 struct walk_control *wc)
2627 {
2628 	struct btrfs_fs_info *fs_info = root->fs_info;
2629 	u64 root_owner;
2630 	int i;
2631 	int slot;
2632 	int ret;
2633 
2634 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2635 		slot = path->slots[i];
2636 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2637 			path->slots[i]++;
2638 			*level = i;
2639 			WARN_ON(*level == 0);
2640 			return 0;
2641 		} else {
2642 			struct extent_buffer *parent;
2643 			if (path->nodes[*level] == root->node)
2644 				parent = path->nodes[*level];
2645 			else
2646 				parent = path->nodes[*level + 1];
2647 
2648 			root_owner = btrfs_header_owner(parent);
2649 			ret = wc->process_func(root, path->nodes[*level], wc,
2650 				 btrfs_header_generation(path->nodes[*level]));
2651 			if (ret)
2652 				return ret;
2653 
2654 			if (wc->free) {
2655 				struct extent_buffer *next;
2656 
2657 				next = path->nodes[*level];
2658 
2659 				if (trans) {
2660 					btrfs_tree_lock(next);
2661 					btrfs_set_lock_blocking(next);
2662 					clean_tree_block(fs_info, next);
2663 					btrfs_wait_tree_block_writeback(next);
2664 					btrfs_tree_unlock(next);
2665 				} else {
2666 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2667 						clear_extent_buffer_dirty(next);
2668 				}
2669 
2670 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2671 				ret = btrfs_free_and_pin_reserved_extent(
2672 						fs_info,
2673 						path->nodes[*level]->start,
2674 						path->nodes[*level]->len);
2675 				if (ret)
2676 					return ret;
2677 			}
2678 			free_extent_buffer(path->nodes[*level]);
2679 			path->nodes[*level] = NULL;
2680 			*level = i + 1;
2681 		}
2682 	}
2683 	return 1;
2684 }
2685 
2686 /*
2687  * drop the reference count on the tree rooted at 'snap'.  This traverses
2688  * the tree freeing any blocks that have a ref count of zero after being
2689  * decremented.
2690  */
2691 static int walk_log_tree(struct btrfs_trans_handle *trans,
2692 			 struct btrfs_root *log, struct walk_control *wc)
2693 {
2694 	struct btrfs_fs_info *fs_info = log->fs_info;
2695 	int ret = 0;
2696 	int wret;
2697 	int level;
2698 	struct btrfs_path *path;
2699 	int orig_level;
2700 
2701 	path = btrfs_alloc_path();
2702 	if (!path)
2703 		return -ENOMEM;
2704 
2705 	level = btrfs_header_level(log->node);
2706 	orig_level = level;
2707 	path->nodes[level] = log->node;
2708 	extent_buffer_get(log->node);
2709 	path->slots[level] = 0;
2710 
2711 	while (1) {
2712 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2713 		if (wret > 0)
2714 			break;
2715 		if (wret < 0) {
2716 			ret = wret;
2717 			goto out;
2718 		}
2719 
2720 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2721 		if (wret > 0)
2722 			break;
2723 		if (wret < 0) {
2724 			ret = wret;
2725 			goto out;
2726 		}
2727 	}
2728 
2729 	/* was the root node processed? if not, catch it here */
2730 	if (path->nodes[orig_level]) {
2731 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2732 			 btrfs_header_generation(path->nodes[orig_level]));
2733 		if (ret)
2734 			goto out;
2735 		if (wc->free) {
2736 			struct extent_buffer *next;
2737 
2738 			next = path->nodes[orig_level];
2739 
2740 			if (trans) {
2741 				btrfs_tree_lock(next);
2742 				btrfs_set_lock_blocking(next);
2743 				clean_tree_block(fs_info, next);
2744 				btrfs_wait_tree_block_writeback(next);
2745 				btrfs_tree_unlock(next);
2746 			} else {
2747 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2748 					clear_extent_buffer_dirty(next);
2749 			}
2750 
2751 			WARN_ON(log->root_key.objectid !=
2752 				BTRFS_TREE_LOG_OBJECTID);
2753 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2754 							next->start, next->len);
2755 			if (ret)
2756 				goto out;
2757 		}
2758 	}
2759 
2760 out:
2761 	btrfs_free_path(path);
2762 	return ret;
2763 }
2764 
2765 /*
2766  * helper function to update the item for a given subvolumes log root
2767  * in the tree of log roots
2768  */
2769 static int update_log_root(struct btrfs_trans_handle *trans,
2770 			   struct btrfs_root *log)
2771 {
2772 	struct btrfs_fs_info *fs_info = log->fs_info;
2773 	int ret;
2774 
2775 	if (log->log_transid == 1) {
2776 		/* insert root item on the first sync */
2777 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2778 				&log->root_key, &log->root_item);
2779 	} else {
2780 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2781 				&log->root_key, &log->root_item);
2782 	}
2783 	return ret;
2784 }
2785 
2786 static void wait_log_commit(struct btrfs_root *root, int transid)
2787 {
2788 	DEFINE_WAIT(wait);
2789 	int index = transid % 2;
2790 
2791 	/*
2792 	 * we only allow two pending log transactions at a time,
2793 	 * so we know that if ours is more than 2 older than the
2794 	 * current transaction, we're done
2795 	 */
2796 	for (;;) {
2797 		prepare_to_wait(&root->log_commit_wait[index],
2798 				&wait, TASK_UNINTERRUPTIBLE);
2799 
2800 		if (!(root->log_transid_committed < transid &&
2801 		      atomic_read(&root->log_commit[index])))
2802 			break;
2803 
2804 		mutex_unlock(&root->log_mutex);
2805 		schedule();
2806 		mutex_lock(&root->log_mutex);
2807 	}
2808 	finish_wait(&root->log_commit_wait[index], &wait);
2809 }
2810 
2811 static void wait_for_writer(struct btrfs_root *root)
2812 {
2813 	DEFINE_WAIT(wait);
2814 
2815 	for (;;) {
2816 		prepare_to_wait(&root->log_writer_wait, &wait,
2817 				TASK_UNINTERRUPTIBLE);
2818 		if (!atomic_read(&root->log_writers))
2819 			break;
2820 
2821 		mutex_unlock(&root->log_mutex);
2822 		schedule();
2823 		mutex_lock(&root->log_mutex);
2824 	}
2825 	finish_wait(&root->log_writer_wait, &wait);
2826 }
2827 
2828 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2829 					struct btrfs_log_ctx *ctx)
2830 {
2831 	if (!ctx)
2832 		return;
2833 
2834 	mutex_lock(&root->log_mutex);
2835 	list_del_init(&ctx->list);
2836 	mutex_unlock(&root->log_mutex);
2837 }
2838 
2839 /*
2840  * Invoked in log mutex context, or be sure there is no other task which
2841  * can access the list.
2842  */
2843 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2844 					     int index, int error)
2845 {
2846 	struct btrfs_log_ctx *ctx;
2847 	struct btrfs_log_ctx *safe;
2848 
2849 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2850 		list_del_init(&ctx->list);
2851 		ctx->log_ret = error;
2852 	}
2853 
2854 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2855 }
2856 
2857 /*
2858  * btrfs_sync_log does sends a given tree log down to the disk and
2859  * updates the super blocks to record it.  When this call is done,
2860  * you know that any inodes previously logged are safely on disk only
2861  * if it returns 0.
2862  *
2863  * Any other return value means you need to call btrfs_commit_transaction.
2864  * Some of the edge cases for fsyncing directories that have had unlinks
2865  * or renames done in the past mean that sometimes the only safe
2866  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2867  * that has happened.
2868  */
2869 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2870 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2871 {
2872 	int index1;
2873 	int index2;
2874 	int mark;
2875 	int ret;
2876 	struct btrfs_fs_info *fs_info = root->fs_info;
2877 	struct btrfs_root *log = root->log_root;
2878 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2879 	int log_transid = 0;
2880 	struct btrfs_log_ctx root_log_ctx;
2881 	struct blk_plug plug;
2882 
2883 	mutex_lock(&root->log_mutex);
2884 	log_transid = ctx->log_transid;
2885 	if (root->log_transid_committed >= log_transid) {
2886 		mutex_unlock(&root->log_mutex);
2887 		return ctx->log_ret;
2888 	}
2889 
2890 	index1 = log_transid % 2;
2891 	if (atomic_read(&root->log_commit[index1])) {
2892 		wait_log_commit(root, log_transid);
2893 		mutex_unlock(&root->log_mutex);
2894 		return ctx->log_ret;
2895 	}
2896 	ASSERT(log_transid == root->log_transid);
2897 	atomic_set(&root->log_commit[index1], 1);
2898 
2899 	/* wait for previous tree log sync to complete */
2900 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2901 		wait_log_commit(root, log_transid - 1);
2902 
2903 	while (1) {
2904 		int batch = atomic_read(&root->log_batch);
2905 		/* when we're on an ssd, just kick the log commit out */
2906 		if (!btrfs_test_opt(fs_info, SSD) &&
2907 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2908 			mutex_unlock(&root->log_mutex);
2909 			schedule_timeout_uninterruptible(1);
2910 			mutex_lock(&root->log_mutex);
2911 		}
2912 		wait_for_writer(root);
2913 		if (batch == atomic_read(&root->log_batch))
2914 			break;
2915 	}
2916 
2917 	/* bail out if we need to do a full commit */
2918 	if (btrfs_need_log_full_commit(fs_info, trans)) {
2919 		ret = -EAGAIN;
2920 		btrfs_free_logged_extents(log, log_transid);
2921 		mutex_unlock(&root->log_mutex);
2922 		goto out;
2923 	}
2924 
2925 	if (log_transid % 2 == 0)
2926 		mark = EXTENT_DIRTY;
2927 	else
2928 		mark = EXTENT_NEW;
2929 
2930 	/* we start IO on  all the marked extents here, but we don't actually
2931 	 * wait for them until later.
2932 	 */
2933 	blk_start_plug(&plug);
2934 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2935 	if (ret) {
2936 		blk_finish_plug(&plug);
2937 		btrfs_abort_transaction(trans, ret);
2938 		btrfs_free_logged_extents(log, log_transid);
2939 		btrfs_set_log_full_commit(fs_info, trans);
2940 		mutex_unlock(&root->log_mutex);
2941 		goto out;
2942 	}
2943 
2944 	btrfs_set_root_node(&log->root_item, log->node);
2945 
2946 	root->log_transid++;
2947 	log->log_transid = root->log_transid;
2948 	root->log_start_pid = 0;
2949 	/*
2950 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2951 	 * in their headers. new modifications of the log will be written to
2952 	 * new positions. so it's safe to allow log writers to go in.
2953 	 */
2954 	mutex_unlock(&root->log_mutex);
2955 
2956 	btrfs_init_log_ctx(&root_log_ctx, NULL);
2957 
2958 	mutex_lock(&log_root_tree->log_mutex);
2959 	atomic_inc(&log_root_tree->log_batch);
2960 	atomic_inc(&log_root_tree->log_writers);
2961 
2962 	index2 = log_root_tree->log_transid % 2;
2963 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2964 	root_log_ctx.log_transid = log_root_tree->log_transid;
2965 
2966 	mutex_unlock(&log_root_tree->log_mutex);
2967 
2968 	ret = update_log_root(trans, log);
2969 
2970 	mutex_lock(&log_root_tree->log_mutex);
2971 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2972 		/*
2973 		 * Implicit memory barrier after atomic_dec_and_test
2974 		 */
2975 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2976 			wake_up(&log_root_tree->log_writer_wait);
2977 	}
2978 
2979 	if (ret) {
2980 		if (!list_empty(&root_log_ctx.list))
2981 			list_del_init(&root_log_ctx.list);
2982 
2983 		blk_finish_plug(&plug);
2984 		btrfs_set_log_full_commit(fs_info, trans);
2985 
2986 		if (ret != -ENOSPC) {
2987 			btrfs_abort_transaction(trans, ret);
2988 			mutex_unlock(&log_root_tree->log_mutex);
2989 			goto out;
2990 		}
2991 		btrfs_wait_tree_log_extents(log, mark);
2992 		btrfs_free_logged_extents(log, log_transid);
2993 		mutex_unlock(&log_root_tree->log_mutex);
2994 		ret = -EAGAIN;
2995 		goto out;
2996 	}
2997 
2998 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2999 		blk_finish_plug(&plug);
3000 		list_del_init(&root_log_ctx.list);
3001 		mutex_unlock(&log_root_tree->log_mutex);
3002 		ret = root_log_ctx.log_ret;
3003 		goto out;
3004 	}
3005 
3006 	index2 = root_log_ctx.log_transid % 2;
3007 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3008 		blk_finish_plug(&plug);
3009 		ret = btrfs_wait_tree_log_extents(log, mark);
3010 		btrfs_wait_logged_extents(trans, log, log_transid);
3011 		wait_log_commit(log_root_tree,
3012 				root_log_ctx.log_transid);
3013 		mutex_unlock(&log_root_tree->log_mutex);
3014 		if (!ret)
3015 			ret = root_log_ctx.log_ret;
3016 		goto out;
3017 	}
3018 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3019 	atomic_set(&log_root_tree->log_commit[index2], 1);
3020 
3021 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3022 		wait_log_commit(log_root_tree,
3023 				root_log_ctx.log_transid - 1);
3024 	}
3025 
3026 	wait_for_writer(log_root_tree);
3027 
3028 	/*
3029 	 * now that we've moved on to the tree of log tree roots,
3030 	 * check the full commit flag again
3031 	 */
3032 	if (btrfs_need_log_full_commit(fs_info, trans)) {
3033 		blk_finish_plug(&plug);
3034 		btrfs_wait_tree_log_extents(log, mark);
3035 		btrfs_free_logged_extents(log, log_transid);
3036 		mutex_unlock(&log_root_tree->log_mutex);
3037 		ret = -EAGAIN;
3038 		goto out_wake_log_root;
3039 	}
3040 
3041 	ret = btrfs_write_marked_extents(fs_info,
3042 					 &log_root_tree->dirty_log_pages,
3043 					 EXTENT_DIRTY | EXTENT_NEW);
3044 	blk_finish_plug(&plug);
3045 	if (ret) {
3046 		btrfs_set_log_full_commit(fs_info, trans);
3047 		btrfs_abort_transaction(trans, ret);
3048 		btrfs_free_logged_extents(log, log_transid);
3049 		mutex_unlock(&log_root_tree->log_mutex);
3050 		goto out_wake_log_root;
3051 	}
3052 	ret = btrfs_wait_tree_log_extents(log, mark);
3053 	if (!ret)
3054 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3055 						  EXTENT_NEW | EXTENT_DIRTY);
3056 	if (ret) {
3057 		btrfs_set_log_full_commit(fs_info, trans);
3058 		btrfs_free_logged_extents(log, log_transid);
3059 		mutex_unlock(&log_root_tree->log_mutex);
3060 		goto out_wake_log_root;
3061 	}
3062 	btrfs_wait_logged_extents(trans, log, log_transid);
3063 
3064 	btrfs_set_super_log_root(fs_info->super_for_commit,
3065 				 log_root_tree->node->start);
3066 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3067 				       btrfs_header_level(log_root_tree->node));
3068 
3069 	log_root_tree->log_transid++;
3070 	mutex_unlock(&log_root_tree->log_mutex);
3071 
3072 	/*
3073 	 * nobody else is going to jump in and write the the ctree
3074 	 * super here because the log_commit atomic below is protecting
3075 	 * us.  We must be called with a transaction handle pinning
3076 	 * the running transaction open, so a full commit can't hop
3077 	 * in and cause problems either.
3078 	 */
3079 	ret = write_all_supers(fs_info, 1);
3080 	if (ret) {
3081 		btrfs_set_log_full_commit(fs_info, trans);
3082 		btrfs_abort_transaction(trans, ret);
3083 		goto out_wake_log_root;
3084 	}
3085 
3086 	mutex_lock(&root->log_mutex);
3087 	if (root->last_log_commit < log_transid)
3088 		root->last_log_commit = log_transid;
3089 	mutex_unlock(&root->log_mutex);
3090 
3091 out_wake_log_root:
3092 	mutex_lock(&log_root_tree->log_mutex);
3093 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3094 
3095 	log_root_tree->log_transid_committed++;
3096 	atomic_set(&log_root_tree->log_commit[index2], 0);
3097 	mutex_unlock(&log_root_tree->log_mutex);
3098 
3099 	/*
3100 	 * The barrier before waitqueue_active is implied by mutex_unlock
3101 	 */
3102 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3103 		wake_up(&log_root_tree->log_commit_wait[index2]);
3104 out:
3105 	mutex_lock(&root->log_mutex);
3106 	btrfs_remove_all_log_ctxs(root, index1, ret);
3107 	root->log_transid_committed++;
3108 	atomic_set(&root->log_commit[index1], 0);
3109 	mutex_unlock(&root->log_mutex);
3110 
3111 	/*
3112 	 * The barrier before waitqueue_active is implied by mutex_unlock
3113 	 */
3114 	if (waitqueue_active(&root->log_commit_wait[index1]))
3115 		wake_up(&root->log_commit_wait[index1]);
3116 	return ret;
3117 }
3118 
3119 static void free_log_tree(struct btrfs_trans_handle *trans,
3120 			  struct btrfs_root *log)
3121 {
3122 	int ret;
3123 	u64 start;
3124 	u64 end;
3125 	struct walk_control wc = {
3126 		.free = 1,
3127 		.process_func = process_one_buffer
3128 	};
3129 
3130 	ret = walk_log_tree(trans, log, &wc);
3131 	/* I don't think this can happen but just in case */
3132 	if (ret)
3133 		btrfs_abort_transaction(trans, ret);
3134 
3135 	while (1) {
3136 		ret = find_first_extent_bit(&log->dirty_log_pages,
3137 				0, &start, &end,
3138 				EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3139 				NULL);
3140 		if (ret)
3141 			break;
3142 
3143 		clear_extent_bits(&log->dirty_log_pages, start, end,
3144 				  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3145 	}
3146 
3147 	/*
3148 	 * We may have short-circuited the log tree with the full commit logic
3149 	 * and left ordered extents on our list, so clear these out to keep us
3150 	 * from leaking inodes and memory.
3151 	 */
3152 	btrfs_free_logged_extents(log, 0);
3153 	btrfs_free_logged_extents(log, 1);
3154 
3155 	free_extent_buffer(log->node);
3156 	kfree(log);
3157 }
3158 
3159 /*
3160  * free all the extents used by the tree log.  This should be called
3161  * at commit time of the full transaction
3162  */
3163 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3164 {
3165 	if (root->log_root) {
3166 		free_log_tree(trans, root->log_root);
3167 		root->log_root = NULL;
3168 	}
3169 	return 0;
3170 }
3171 
3172 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3173 			     struct btrfs_fs_info *fs_info)
3174 {
3175 	if (fs_info->log_root_tree) {
3176 		free_log_tree(trans, fs_info->log_root_tree);
3177 		fs_info->log_root_tree = NULL;
3178 	}
3179 	return 0;
3180 }
3181 
3182 /*
3183  * If both a file and directory are logged, and unlinks or renames are
3184  * mixed in, we have a few interesting corners:
3185  *
3186  * create file X in dir Y
3187  * link file X to X.link in dir Y
3188  * fsync file X
3189  * unlink file X but leave X.link
3190  * fsync dir Y
3191  *
3192  * After a crash we would expect only X.link to exist.  But file X
3193  * didn't get fsync'd again so the log has back refs for X and X.link.
3194  *
3195  * We solve this by removing directory entries and inode backrefs from the
3196  * log when a file that was logged in the current transaction is
3197  * unlinked.  Any later fsync will include the updated log entries, and
3198  * we'll be able to reconstruct the proper directory items from backrefs.
3199  *
3200  * This optimizations allows us to avoid relogging the entire inode
3201  * or the entire directory.
3202  */
3203 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3204 				 struct btrfs_root *root,
3205 				 const char *name, int name_len,
3206 				 struct btrfs_inode *dir, u64 index)
3207 {
3208 	struct btrfs_root *log;
3209 	struct btrfs_dir_item *di;
3210 	struct btrfs_path *path;
3211 	int ret;
3212 	int err = 0;
3213 	int bytes_del = 0;
3214 	u64 dir_ino = btrfs_ino(dir);
3215 
3216 	if (dir->logged_trans < trans->transid)
3217 		return 0;
3218 
3219 	ret = join_running_log_trans(root);
3220 	if (ret)
3221 		return 0;
3222 
3223 	mutex_lock(&dir->log_mutex);
3224 
3225 	log = root->log_root;
3226 	path = btrfs_alloc_path();
3227 	if (!path) {
3228 		err = -ENOMEM;
3229 		goto out_unlock;
3230 	}
3231 
3232 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3233 				   name, name_len, -1);
3234 	if (IS_ERR(di)) {
3235 		err = PTR_ERR(di);
3236 		goto fail;
3237 	}
3238 	if (di) {
3239 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3240 		bytes_del += name_len;
3241 		if (ret) {
3242 			err = ret;
3243 			goto fail;
3244 		}
3245 	}
3246 	btrfs_release_path(path);
3247 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3248 					 index, name, name_len, -1);
3249 	if (IS_ERR(di)) {
3250 		err = PTR_ERR(di);
3251 		goto fail;
3252 	}
3253 	if (di) {
3254 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3255 		bytes_del += name_len;
3256 		if (ret) {
3257 			err = ret;
3258 			goto fail;
3259 		}
3260 	}
3261 
3262 	/* update the directory size in the log to reflect the names
3263 	 * we have removed
3264 	 */
3265 	if (bytes_del) {
3266 		struct btrfs_key key;
3267 
3268 		key.objectid = dir_ino;
3269 		key.offset = 0;
3270 		key.type = BTRFS_INODE_ITEM_KEY;
3271 		btrfs_release_path(path);
3272 
3273 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3274 		if (ret < 0) {
3275 			err = ret;
3276 			goto fail;
3277 		}
3278 		if (ret == 0) {
3279 			struct btrfs_inode_item *item;
3280 			u64 i_size;
3281 
3282 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3283 					      struct btrfs_inode_item);
3284 			i_size = btrfs_inode_size(path->nodes[0], item);
3285 			if (i_size > bytes_del)
3286 				i_size -= bytes_del;
3287 			else
3288 				i_size = 0;
3289 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3290 			btrfs_mark_buffer_dirty(path->nodes[0]);
3291 		} else
3292 			ret = 0;
3293 		btrfs_release_path(path);
3294 	}
3295 fail:
3296 	btrfs_free_path(path);
3297 out_unlock:
3298 	mutex_unlock(&dir->log_mutex);
3299 	if (ret == -ENOSPC) {
3300 		btrfs_set_log_full_commit(root->fs_info, trans);
3301 		ret = 0;
3302 	} else if (ret < 0)
3303 		btrfs_abort_transaction(trans, ret);
3304 
3305 	btrfs_end_log_trans(root);
3306 
3307 	return err;
3308 }
3309 
3310 /* see comments for btrfs_del_dir_entries_in_log */
3311 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3312 			       struct btrfs_root *root,
3313 			       const char *name, int name_len,
3314 			       struct btrfs_inode *inode, u64 dirid)
3315 {
3316 	struct btrfs_fs_info *fs_info = root->fs_info;
3317 	struct btrfs_root *log;
3318 	u64 index;
3319 	int ret;
3320 
3321 	if (inode->logged_trans < trans->transid)
3322 		return 0;
3323 
3324 	ret = join_running_log_trans(root);
3325 	if (ret)
3326 		return 0;
3327 	log = root->log_root;
3328 	mutex_lock(&inode->log_mutex);
3329 
3330 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3331 				  dirid, &index);
3332 	mutex_unlock(&inode->log_mutex);
3333 	if (ret == -ENOSPC) {
3334 		btrfs_set_log_full_commit(fs_info, trans);
3335 		ret = 0;
3336 	} else if (ret < 0 && ret != -ENOENT)
3337 		btrfs_abort_transaction(trans, ret);
3338 	btrfs_end_log_trans(root);
3339 
3340 	return ret;
3341 }
3342 
3343 /*
3344  * creates a range item in the log for 'dirid'.  first_offset and
3345  * last_offset tell us which parts of the key space the log should
3346  * be considered authoritative for.
3347  */
3348 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3349 				       struct btrfs_root *log,
3350 				       struct btrfs_path *path,
3351 				       int key_type, u64 dirid,
3352 				       u64 first_offset, u64 last_offset)
3353 {
3354 	int ret;
3355 	struct btrfs_key key;
3356 	struct btrfs_dir_log_item *item;
3357 
3358 	key.objectid = dirid;
3359 	key.offset = first_offset;
3360 	if (key_type == BTRFS_DIR_ITEM_KEY)
3361 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3362 	else
3363 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3364 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3365 	if (ret)
3366 		return ret;
3367 
3368 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3369 			      struct btrfs_dir_log_item);
3370 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3371 	btrfs_mark_buffer_dirty(path->nodes[0]);
3372 	btrfs_release_path(path);
3373 	return 0;
3374 }
3375 
3376 /*
3377  * log all the items included in the current transaction for a given
3378  * directory.  This also creates the range items in the log tree required
3379  * to replay anything deleted before the fsync
3380  */
3381 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3382 			  struct btrfs_root *root, struct btrfs_inode *inode,
3383 			  struct btrfs_path *path,
3384 			  struct btrfs_path *dst_path, int key_type,
3385 			  struct btrfs_log_ctx *ctx,
3386 			  u64 min_offset, u64 *last_offset_ret)
3387 {
3388 	struct btrfs_key min_key;
3389 	struct btrfs_root *log = root->log_root;
3390 	struct extent_buffer *src;
3391 	int err = 0;
3392 	int ret;
3393 	int i;
3394 	int nritems;
3395 	u64 first_offset = min_offset;
3396 	u64 last_offset = (u64)-1;
3397 	u64 ino = btrfs_ino(inode);
3398 
3399 	log = root->log_root;
3400 
3401 	min_key.objectid = ino;
3402 	min_key.type = key_type;
3403 	min_key.offset = min_offset;
3404 
3405 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3406 
3407 	/*
3408 	 * we didn't find anything from this transaction, see if there
3409 	 * is anything at all
3410 	 */
3411 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3412 		min_key.objectid = ino;
3413 		min_key.type = key_type;
3414 		min_key.offset = (u64)-1;
3415 		btrfs_release_path(path);
3416 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3417 		if (ret < 0) {
3418 			btrfs_release_path(path);
3419 			return ret;
3420 		}
3421 		ret = btrfs_previous_item(root, path, ino, key_type);
3422 
3423 		/* if ret == 0 there are items for this type,
3424 		 * create a range to tell us the last key of this type.
3425 		 * otherwise, there are no items in this directory after
3426 		 * *min_offset, and we create a range to indicate that.
3427 		 */
3428 		if (ret == 0) {
3429 			struct btrfs_key tmp;
3430 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3431 					      path->slots[0]);
3432 			if (key_type == tmp.type)
3433 				first_offset = max(min_offset, tmp.offset) + 1;
3434 		}
3435 		goto done;
3436 	}
3437 
3438 	/* go backward to find any previous key */
3439 	ret = btrfs_previous_item(root, path, ino, key_type);
3440 	if (ret == 0) {
3441 		struct btrfs_key tmp;
3442 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3443 		if (key_type == tmp.type) {
3444 			first_offset = tmp.offset;
3445 			ret = overwrite_item(trans, log, dst_path,
3446 					     path->nodes[0], path->slots[0],
3447 					     &tmp);
3448 			if (ret) {
3449 				err = ret;
3450 				goto done;
3451 			}
3452 		}
3453 	}
3454 	btrfs_release_path(path);
3455 
3456 	/* find the first key from this transaction again */
3457 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3458 	if (WARN_ON(ret != 0))
3459 		goto done;
3460 
3461 	/*
3462 	 * we have a block from this transaction, log every item in it
3463 	 * from our directory
3464 	 */
3465 	while (1) {
3466 		struct btrfs_key tmp;
3467 		src = path->nodes[0];
3468 		nritems = btrfs_header_nritems(src);
3469 		for (i = path->slots[0]; i < nritems; i++) {
3470 			struct btrfs_dir_item *di;
3471 
3472 			btrfs_item_key_to_cpu(src, &min_key, i);
3473 
3474 			if (min_key.objectid != ino || min_key.type != key_type)
3475 				goto done;
3476 			ret = overwrite_item(trans, log, dst_path, src, i,
3477 					     &min_key);
3478 			if (ret) {
3479 				err = ret;
3480 				goto done;
3481 			}
3482 
3483 			/*
3484 			 * We must make sure that when we log a directory entry,
3485 			 * the corresponding inode, after log replay, has a
3486 			 * matching link count. For example:
3487 			 *
3488 			 * touch foo
3489 			 * mkdir mydir
3490 			 * sync
3491 			 * ln foo mydir/bar
3492 			 * xfs_io -c "fsync" mydir
3493 			 * <crash>
3494 			 * <mount fs and log replay>
3495 			 *
3496 			 * Would result in a fsync log that when replayed, our
3497 			 * file inode would have a link count of 1, but we get
3498 			 * two directory entries pointing to the same inode.
3499 			 * After removing one of the names, it would not be
3500 			 * possible to remove the other name, which resulted
3501 			 * always in stale file handle errors, and would not
3502 			 * be possible to rmdir the parent directory, since
3503 			 * its i_size could never decrement to the value
3504 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3505 			 */
3506 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3507 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3508 			if (ctx &&
3509 			    (btrfs_dir_transid(src, di) == trans->transid ||
3510 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3511 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3512 				ctx->log_new_dentries = true;
3513 		}
3514 		path->slots[0] = nritems;
3515 
3516 		/*
3517 		 * look ahead to the next item and see if it is also
3518 		 * from this directory and from this transaction
3519 		 */
3520 		ret = btrfs_next_leaf(root, path);
3521 		if (ret == 1) {
3522 			last_offset = (u64)-1;
3523 			goto done;
3524 		}
3525 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3526 		if (tmp.objectid != ino || tmp.type != key_type) {
3527 			last_offset = (u64)-1;
3528 			goto done;
3529 		}
3530 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3531 			ret = overwrite_item(trans, log, dst_path,
3532 					     path->nodes[0], path->slots[0],
3533 					     &tmp);
3534 			if (ret)
3535 				err = ret;
3536 			else
3537 				last_offset = tmp.offset;
3538 			goto done;
3539 		}
3540 	}
3541 done:
3542 	btrfs_release_path(path);
3543 	btrfs_release_path(dst_path);
3544 
3545 	if (err == 0) {
3546 		*last_offset_ret = last_offset;
3547 		/*
3548 		 * insert the log range keys to indicate where the log
3549 		 * is valid
3550 		 */
3551 		ret = insert_dir_log_key(trans, log, path, key_type,
3552 					 ino, first_offset, last_offset);
3553 		if (ret)
3554 			err = ret;
3555 	}
3556 	return err;
3557 }
3558 
3559 /*
3560  * logging directories is very similar to logging inodes, We find all the items
3561  * from the current transaction and write them to the log.
3562  *
3563  * The recovery code scans the directory in the subvolume, and if it finds a
3564  * key in the range logged that is not present in the log tree, then it means
3565  * that dir entry was unlinked during the transaction.
3566  *
3567  * In order for that scan to work, we must include one key smaller than
3568  * the smallest logged by this transaction and one key larger than the largest
3569  * key logged by this transaction.
3570  */
3571 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3572 			  struct btrfs_root *root, struct btrfs_inode *inode,
3573 			  struct btrfs_path *path,
3574 			  struct btrfs_path *dst_path,
3575 			  struct btrfs_log_ctx *ctx)
3576 {
3577 	u64 min_key;
3578 	u64 max_key;
3579 	int ret;
3580 	int key_type = BTRFS_DIR_ITEM_KEY;
3581 
3582 again:
3583 	min_key = 0;
3584 	max_key = 0;
3585 	while (1) {
3586 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3587 				ctx, min_key, &max_key);
3588 		if (ret)
3589 			return ret;
3590 		if (max_key == (u64)-1)
3591 			break;
3592 		min_key = max_key + 1;
3593 	}
3594 
3595 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3596 		key_type = BTRFS_DIR_INDEX_KEY;
3597 		goto again;
3598 	}
3599 	return 0;
3600 }
3601 
3602 /*
3603  * a helper function to drop items from the log before we relog an
3604  * inode.  max_key_type indicates the highest item type to remove.
3605  * This cannot be run for file data extents because it does not
3606  * free the extents they point to.
3607  */
3608 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3609 				  struct btrfs_root *log,
3610 				  struct btrfs_path *path,
3611 				  u64 objectid, int max_key_type)
3612 {
3613 	int ret;
3614 	struct btrfs_key key;
3615 	struct btrfs_key found_key;
3616 	int start_slot;
3617 
3618 	key.objectid = objectid;
3619 	key.type = max_key_type;
3620 	key.offset = (u64)-1;
3621 
3622 	while (1) {
3623 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3624 		BUG_ON(ret == 0); /* Logic error */
3625 		if (ret < 0)
3626 			break;
3627 
3628 		if (path->slots[0] == 0)
3629 			break;
3630 
3631 		path->slots[0]--;
3632 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3633 				      path->slots[0]);
3634 
3635 		if (found_key.objectid != objectid)
3636 			break;
3637 
3638 		found_key.offset = 0;
3639 		found_key.type = 0;
3640 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3641 				       &start_slot);
3642 
3643 		ret = btrfs_del_items(trans, log, path, start_slot,
3644 				      path->slots[0] - start_slot + 1);
3645 		/*
3646 		 * If start slot isn't 0 then we don't need to re-search, we've
3647 		 * found the last guy with the objectid in this tree.
3648 		 */
3649 		if (ret || start_slot != 0)
3650 			break;
3651 		btrfs_release_path(path);
3652 	}
3653 	btrfs_release_path(path);
3654 	if (ret > 0)
3655 		ret = 0;
3656 	return ret;
3657 }
3658 
3659 static void fill_inode_item(struct btrfs_trans_handle *trans,
3660 			    struct extent_buffer *leaf,
3661 			    struct btrfs_inode_item *item,
3662 			    struct inode *inode, int log_inode_only,
3663 			    u64 logged_isize)
3664 {
3665 	struct btrfs_map_token token;
3666 
3667 	btrfs_init_map_token(&token);
3668 
3669 	if (log_inode_only) {
3670 		/* set the generation to zero so the recover code
3671 		 * can tell the difference between an logging
3672 		 * just to say 'this inode exists' and a logging
3673 		 * to say 'update this inode with these values'
3674 		 */
3675 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3676 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3677 	} else {
3678 		btrfs_set_token_inode_generation(leaf, item,
3679 						 BTRFS_I(inode)->generation,
3680 						 &token);
3681 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3682 	}
3683 
3684 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3685 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3686 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3687 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3688 
3689 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3690 				     inode->i_atime.tv_sec, &token);
3691 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3692 				      inode->i_atime.tv_nsec, &token);
3693 
3694 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3695 				     inode->i_mtime.tv_sec, &token);
3696 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3697 				      inode->i_mtime.tv_nsec, &token);
3698 
3699 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3700 				     inode->i_ctime.tv_sec, &token);
3701 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3702 				      inode->i_ctime.tv_nsec, &token);
3703 
3704 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3705 				     &token);
3706 
3707 	btrfs_set_token_inode_sequence(leaf, item,
3708 				       inode_peek_iversion(inode), &token);
3709 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3710 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3711 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3712 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3713 }
3714 
3715 static int log_inode_item(struct btrfs_trans_handle *trans,
3716 			  struct btrfs_root *log, struct btrfs_path *path,
3717 			  struct btrfs_inode *inode)
3718 {
3719 	struct btrfs_inode_item *inode_item;
3720 	int ret;
3721 
3722 	ret = btrfs_insert_empty_item(trans, log, path,
3723 				      &inode->location, sizeof(*inode_item));
3724 	if (ret && ret != -EEXIST)
3725 		return ret;
3726 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3727 				    struct btrfs_inode_item);
3728 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3729 			0, 0);
3730 	btrfs_release_path(path);
3731 	return 0;
3732 }
3733 
3734 static noinline int copy_items(struct btrfs_trans_handle *trans,
3735 			       struct btrfs_inode *inode,
3736 			       struct btrfs_path *dst_path,
3737 			       struct btrfs_path *src_path, u64 *last_extent,
3738 			       int start_slot, int nr, int inode_only,
3739 			       u64 logged_isize)
3740 {
3741 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3742 	unsigned long src_offset;
3743 	unsigned long dst_offset;
3744 	struct btrfs_root *log = inode->root->log_root;
3745 	struct btrfs_file_extent_item *extent;
3746 	struct btrfs_inode_item *inode_item;
3747 	struct extent_buffer *src = src_path->nodes[0];
3748 	struct btrfs_key first_key, last_key, key;
3749 	int ret;
3750 	struct btrfs_key *ins_keys;
3751 	u32 *ins_sizes;
3752 	char *ins_data;
3753 	int i;
3754 	struct list_head ordered_sums;
3755 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3756 	bool has_extents = false;
3757 	bool need_find_last_extent = true;
3758 	bool done = false;
3759 
3760 	INIT_LIST_HEAD(&ordered_sums);
3761 
3762 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3763 			   nr * sizeof(u32), GFP_NOFS);
3764 	if (!ins_data)
3765 		return -ENOMEM;
3766 
3767 	first_key.objectid = (u64)-1;
3768 
3769 	ins_sizes = (u32 *)ins_data;
3770 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3771 
3772 	for (i = 0; i < nr; i++) {
3773 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3774 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3775 	}
3776 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3777 				       ins_keys, ins_sizes, nr);
3778 	if (ret) {
3779 		kfree(ins_data);
3780 		return ret;
3781 	}
3782 
3783 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3784 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3785 						   dst_path->slots[0]);
3786 
3787 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3788 
3789 		if (i == nr - 1)
3790 			last_key = ins_keys[i];
3791 
3792 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3793 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3794 						    dst_path->slots[0],
3795 						    struct btrfs_inode_item);
3796 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3797 					&inode->vfs_inode,
3798 					inode_only == LOG_INODE_EXISTS,
3799 					logged_isize);
3800 		} else {
3801 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3802 					   src_offset, ins_sizes[i]);
3803 		}
3804 
3805 		/*
3806 		 * We set need_find_last_extent here in case we know we were
3807 		 * processing other items and then walk into the first extent in
3808 		 * the inode.  If we don't hit an extent then nothing changes,
3809 		 * we'll do the last search the next time around.
3810 		 */
3811 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3812 			has_extents = true;
3813 			if (first_key.objectid == (u64)-1)
3814 				first_key = ins_keys[i];
3815 		} else {
3816 			need_find_last_extent = false;
3817 		}
3818 
3819 		/* take a reference on file data extents so that truncates
3820 		 * or deletes of this inode don't have to relog the inode
3821 		 * again
3822 		 */
3823 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3824 		    !skip_csum) {
3825 			int found_type;
3826 			extent = btrfs_item_ptr(src, start_slot + i,
3827 						struct btrfs_file_extent_item);
3828 
3829 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3830 				continue;
3831 
3832 			found_type = btrfs_file_extent_type(src, extent);
3833 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3834 				u64 ds, dl, cs, cl;
3835 				ds = btrfs_file_extent_disk_bytenr(src,
3836 								extent);
3837 				/* ds == 0 is a hole */
3838 				if (ds == 0)
3839 					continue;
3840 
3841 				dl = btrfs_file_extent_disk_num_bytes(src,
3842 								extent);
3843 				cs = btrfs_file_extent_offset(src, extent);
3844 				cl = btrfs_file_extent_num_bytes(src,
3845 								extent);
3846 				if (btrfs_file_extent_compression(src,
3847 								  extent)) {
3848 					cs = 0;
3849 					cl = dl;
3850 				}
3851 
3852 				ret = btrfs_lookup_csums_range(
3853 						fs_info->csum_root,
3854 						ds + cs, ds + cs + cl - 1,
3855 						&ordered_sums, 0);
3856 				if (ret) {
3857 					btrfs_release_path(dst_path);
3858 					kfree(ins_data);
3859 					return ret;
3860 				}
3861 			}
3862 		}
3863 	}
3864 
3865 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3866 	btrfs_release_path(dst_path);
3867 	kfree(ins_data);
3868 
3869 	/*
3870 	 * we have to do this after the loop above to avoid changing the
3871 	 * log tree while trying to change the log tree.
3872 	 */
3873 	ret = 0;
3874 	while (!list_empty(&ordered_sums)) {
3875 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3876 						   struct btrfs_ordered_sum,
3877 						   list);
3878 		if (!ret)
3879 			ret = btrfs_csum_file_blocks(trans, log, sums);
3880 		list_del(&sums->list);
3881 		kfree(sums);
3882 	}
3883 
3884 	if (!has_extents)
3885 		return ret;
3886 
3887 	if (need_find_last_extent && *last_extent == first_key.offset) {
3888 		/*
3889 		 * We don't have any leafs between our current one and the one
3890 		 * we processed before that can have file extent items for our
3891 		 * inode (and have a generation number smaller than our current
3892 		 * transaction id).
3893 		 */
3894 		need_find_last_extent = false;
3895 	}
3896 
3897 	/*
3898 	 * Because we use btrfs_search_forward we could skip leaves that were
3899 	 * not modified and then assume *last_extent is valid when it really
3900 	 * isn't.  So back up to the previous leaf and read the end of the last
3901 	 * extent before we go and fill in holes.
3902 	 */
3903 	if (need_find_last_extent) {
3904 		u64 len;
3905 
3906 		ret = btrfs_prev_leaf(inode->root, src_path);
3907 		if (ret < 0)
3908 			return ret;
3909 		if (ret)
3910 			goto fill_holes;
3911 		if (src_path->slots[0])
3912 			src_path->slots[0]--;
3913 		src = src_path->nodes[0];
3914 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3915 		if (key.objectid != btrfs_ino(inode) ||
3916 		    key.type != BTRFS_EXTENT_DATA_KEY)
3917 			goto fill_holes;
3918 		extent = btrfs_item_ptr(src, src_path->slots[0],
3919 					struct btrfs_file_extent_item);
3920 		if (btrfs_file_extent_type(src, extent) ==
3921 		    BTRFS_FILE_EXTENT_INLINE) {
3922 			len = btrfs_file_extent_inline_len(src,
3923 							   src_path->slots[0],
3924 							   extent);
3925 			*last_extent = ALIGN(key.offset + len,
3926 					     fs_info->sectorsize);
3927 		} else {
3928 			len = btrfs_file_extent_num_bytes(src, extent);
3929 			*last_extent = key.offset + len;
3930 		}
3931 	}
3932 fill_holes:
3933 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3934 	 * things could have happened
3935 	 *
3936 	 * 1) A merge could have happened, so we could currently be on a leaf
3937 	 * that holds what we were copying in the first place.
3938 	 * 2) A split could have happened, and now not all of the items we want
3939 	 * are on the same leaf.
3940 	 *
3941 	 * So we need to adjust how we search for holes, we need to drop the
3942 	 * path and re-search for the first extent key we found, and then walk
3943 	 * forward until we hit the last one we copied.
3944 	 */
3945 	if (need_find_last_extent) {
3946 		/* btrfs_prev_leaf could return 1 without releasing the path */
3947 		btrfs_release_path(src_path);
3948 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
3949 				src_path, 0, 0);
3950 		if (ret < 0)
3951 			return ret;
3952 		ASSERT(ret == 0);
3953 		src = src_path->nodes[0];
3954 		i = src_path->slots[0];
3955 	} else {
3956 		i = start_slot;
3957 	}
3958 
3959 	/*
3960 	 * Ok so here we need to go through and fill in any holes we may have
3961 	 * to make sure that holes are punched for those areas in case they had
3962 	 * extents previously.
3963 	 */
3964 	while (!done) {
3965 		u64 offset, len;
3966 		u64 extent_end;
3967 
3968 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3969 			ret = btrfs_next_leaf(inode->root, src_path);
3970 			if (ret < 0)
3971 				return ret;
3972 			ASSERT(ret == 0);
3973 			src = src_path->nodes[0];
3974 			i = 0;
3975 		}
3976 
3977 		btrfs_item_key_to_cpu(src, &key, i);
3978 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3979 			done = true;
3980 		if (key.objectid != btrfs_ino(inode) ||
3981 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3982 			i++;
3983 			continue;
3984 		}
3985 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3986 		if (btrfs_file_extent_type(src, extent) ==
3987 		    BTRFS_FILE_EXTENT_INLINE) {
3988 			len = btrfs_file_extent_inline_len(src, i, extent);
3989 			extent_end = ALIGN(key.offset + len,
3990 					   fs_info->sectorsize);
3991 		} else {
3992 			len = btrfs_file_extent_num_bytes(src, extent);
3993 			extent_end = key.offset + len;
3994 		}
3995 		i++;
3996 
3997 		if (*last_extent == key.offset) {
3998 			*last_extent = extent_end;
3999 			continue;
4000 		}
4001 		offset = *last_extent;
4002 		len = key.offset - *last_extent;
4003 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4004 				offset, 0, 0, len, 0, len, 0, 0, 0);
4005 		if (ret)
4006 			break;
4007 		*last_extent = extent_end;
4008 	}
4009 	/*
4010 	 * Need to let the callers know we dropped the path so they should
4011 	 * re-search.
4012 	 */
4013 	if (!ret && need_find_last_extent)
4014 		ret = 1;
4015 	return ret;
4016 }
4017 
4018 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4019 {
4020 	struct extent_map *em1, *em2;
4021 
4022 	em1 = list_entry(a, struct extent_map, list);
4023 	em2 = list_entry(b, struct extent_map, list);
4024 
4025 	if (em1->start < em2->start)
4026 		return -1;
4027 	else if (em1->start > em2->start)
4028 		return 1;
4029 	return 0;
4030 }
4031 
4032 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
4033 				struct inode *inode,
4034 				struct btrfs_root *root,
4035 				const struct extent_map *em,
4036 				const struct list_head *logged_list,
4037 				bool *ordered_io_error)
4038 {
4039 	struct btrfs_fs_info *fs_info = root->fs_info;
4040 	struct btrfs_ordered_extent *ordered;
4041 	struct btrfs_root *log = root->log_root;
4042 	u64 mod_start = em->mod_start;
4043 	u64 mod_len = em->mod_len;
4044 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
4045 	u64 csum_offset;
4046 	u64 csum_len;
4047 	LIST_HEAD(ordered_sums);
4048 	int ret = 0;
4049 
4050 	*ordered_io_error = false;
4051 
4052 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4053 	    em->block_start == EXTENT_MAP_HOLE)
4054 		return 0;
4055 
4056 	/*
4057 	 * Wait far any ordered extent that covers our extent map. If it
4058 	 * finishes without an error, first check and see if our csums are on
4059 	 * our outstanding ordered extents.
4060 	 */
4061 	list_for_each_entry(ordered, logged_list, log_list) {
4062 		struct btrfs_ordered_sum *sum;
4063 
4064 		if (!mod_len)
4065 			break;
4066 
4067 		if (ordered->file_offset + ordered->len <= mod_start ||
4068 		    mod_start + mod_len <= ordered->file_offset)
4069 			continue;
4070 
4071 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
4072 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
4073 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
4074 			const u64 start = ordered->file_offset;
4075 			const u64 end = ordered->file_offset + ordered->len - 1;
4076 
4077 			WARN_ON(ordered->inode != inode);
4078 			filemap_fdatawrite_range(inode->i_mapping, start, end);
4079 		}
4080 
4081 		wait_event(ordered->wait,
4082 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
4083 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
4084 
4085 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
4086 			/*
4087 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4088 			 * i_mapping flags, so that the next fsync won't get
4089 			 * an outdated io error too.
4090 			 */
4091 			filemap_check_errors(inode->i_mapping);
4092 			*ordered_io_error = true;
4093 			break;
4094 		}
4095 		/*
4096 		 * We are going to copy all the csums on this ordered extent, so
4097 		 * go ahead and adjust mod_start and mod_len in case this
4098 		 * ordered extent has already been logged.
4099 		 */
4100 		if (ordered->file_offset > mod_start) {
4101 			if (ordered->file_offset + ordered->len >=
4102 			    mod_start + mod_len)
4103 				mod_len = ordered->file_offset - mod_start;
4104 			/*
4105 			 * If we have this case
4106 			 *
4107 			 * |--------- logged extent ---------|
4108 			 *       |----- ordered extent ----|
4109 			 *
4110 			 * Just don't mess with mod_start and mod_len, we'll
4111 			 * just end up logging more csums than we need and it
4112 			 * will be ok.
4113 			 */
4114 		} else {
4115 			if (ordered->file_offset + ordered->len <
4116 			    mod_start + mod_len) {
4117 				mod_len = (mod_start + mod_len) -
4118 					(ordered->file_offset + ordered->len);
4119 				mod_start = ordered->file_offset +
4120 					ordered->len;
4121 			} else {
4122 				mod_len = 0;
4123 			}
4124 		}
4125 
4126 		if (skip_csum)
4127 			continue;
4128 
4129 		/*
4130 		 * To keep us from looping for the above case of an ordered
4131 		 * extent that falls inside of the logged extent.
4132 		 */
4133 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4134 				     &ordered->flags))
4135 			continue;
4136 
4137 		list_for_each_entry(sum, &ordered->list, list) {
4138 			ret = btrfs_csum_file_blocks(trans, log, sum);
4139 			if (ret)
4140 				break;
4141 		}
4142 	}
4143 
4144 	if (*ordered_io_error || !mod_len || ret || skip_csum)
4145 		return ret;
4146 
4147 	if (em->compress_type) {
4148 		csum_offset = 0;
4149 		csum_len = max(em->block_len, em->orig_block_len);
4150 	} else {
4151 		csum_offset = mod_start - em->start;
4152 		csum_len = mod_len;
4153 	}
4154 
4155 	/* block start is already adjusted for the file extent offset. */
4156 	ret = btrfs_lookup_csums_range(fs_info->csum_root,
4157 				       em->block_start + csum_offset,
4158 				       em->block_start + csum_offset +
4159 				       csum_len - 1, &ordered_sums, 0);
4160 	if (ret)
4161 		return ret;
4162 
4163 	while (!list_empty(&ordered_sums)) {
4164 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4165 						   struct btrfs_ordered_sum,
4166 						   list);
4167 		if (!ret)
4168 			ret = btrfs_csum_file_blocks(trans, log, sums);
4169 		list_del(&sums->list);
4170 		kfree(sums);
4171 	}
4172 
4173 	return ret;
4174 }
4175 
4176 static int log_one_extent(struct btrfs_trans_handle *trans,
4177 			  struct btrfs_inode *inode, struct btrfs_root *root,
4178 			  const struct extent_map *em,
4179 			  struct btrfs_path *path,
4180 			  const struct list_head *logged_list,
4181 			  struct btrfs_log_ctx *ctx)
4182 {
4183 	struct btrfs_root *log = root->log_root;
4184 	struct btrfs_file_extent_item *fi;
4185 	struct extent_buffer *leaf;
4186 	struct btrfs_map_token token;
4187 	struct btrfs_key key;
4188 	u64 extent_offset = em->start - em->orig_start;
4189 	u64 block_len;
4190 	int ret;
4191 	int extent_inserted = 0;
4192 	bool ordered_io_err = false;
4193 
4194 	ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4195 			logged_list, &ordered_io_err);
4196 	if (ret)
4197 		return ret;
4198 
4199 	if (ordered_io_err) {
4200 		ctx->io_err = -EIO;
4201 		return ctx->io_err;
4202 	}
4203 
4204 	btrfs_init_map_token(&token);
4205 
4206 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4207 				   em->start + em->len, NULL, 0, 1,
4208 				   sizeof(*fi), &extent_inserted);
4209 	if (ret)
4210 		return ret;
4211 
4212 	if (!extent_inserted) {
4213 		key.objectid = btrfs_ino(inode);
4214 		key.type = BTRFS_EXTENT_DATA_KEY;
4215 		key.offset = em->start;
4216 
4217 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4218 					      sizeof(*fi));
4219 		if (ret)
4220 			return ret;
4221 	}
4222 	leaf = path->nodes[0];
4223 	fi = btrfs_item_ptr(leaf, path->slots[0],
4224 			    struct btrfs_file_extent_item);
4225 
4226 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4227 					       &token);
4228 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4229 		btrfs_set_token_file_extent_type(leaf, fi,
4230 						 BTRFS_FILE_EXTENT_PREALLOC,
4231 						 &token);
4232 	else
4233 		btrfs_set_token_file_extent_type(leaf, fi,
4234 						 BTRFS_FILE_EXTENT_REG,
4235 						 &token);
4236 
4237 	block_len = max(em->block_len, em->orig_block_len);
4238 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4239 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4240 							em->block_start,
4241 							&token);
4242 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4243 							   &token);
4244 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4245 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4246 							em->block_start -
4247 							extent_offset, &token);
4248 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4249 							   &token);
4250 	} else {
4251 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4252 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4253 							   &token);
4254 	}
4255 
4256 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4257 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4258 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4259 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4260 						&token);
4261 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4262 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4263 	btrfs_mark_buffer_dirty(leaf);
4264 
4265 	btrfs_release_path(path);
4266 
4267 	return ret;
4268 }
4269 
4270 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4271 				     struct btrfs_root *root,
4272 				     struct btrfs_inode *inode,
4273 				     struct btrfs_path *path,
4274 				     struct list_head *logged_list,
4275 				     struct btrfs_log_ctx *ctx,
4276 				     const u64 start,
4277 				     const u64 end)
4278 {
4279 	struct extent_map *em, *n;
4280 	struct list_head extents;
4281 	struct extent_map_tree *tree = &inode->extent_tree;
4282 	u64 logged_start, logged_end;
4283 	u64 test_gen;
4284 	int ret = 0;
4285 	int num = 0;
4286 
4287 	INIT_LIST_HEAD(&extents);
4288 
4289 	down_write(&inode->dio_sem);
4290 	write_lock(&tree->lock);
4291 	test_gen = root->fs_info->last_trans_committed;
4292 	logged_start = start;
4293 	logged_end = end;
4294 
4295 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4296 		list_del_init(&em->list);
4297 		/*
4298 		 * Just an arbitrary number, this can be really CPU intensive
4299 		 * once we start getting a lot of extents, and really once we
4300 		 * have a bunch of extents we just want to commit since it will
4301 		 * be faster.
4302 		 */
4303 		if (++num > 32768) {
4304 			list_del_init(&tree->modified_extents);
4305 			ret = -EFBIG;
4306 			goto process;
4307 		}
4308 
4309 		if (em->generation <= test_gen)
4310 			continue;
4311 
4312 		if (em->start < logged_start)
4313 			logged_start = em->start;
4314 		if ((em->start + em->len - 1) > logged_end)
4315 			logged_end = em->start + em->len - 1;
4316 
4317 		/* Need a ref to keep it from getting evicted from cache */
4318 		refcount_inc(&em->refs);
4319 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4320 		list_add_tail(&em->list, &extents);
4321 		num++;
4322 	}
4323 
4324 	list_sort(NULL, &extents, extent_cmp);
4325 	btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
4326 	/*
4327 	 * Some ordered extents started by fsync might have completed
4328 	 * before we could collect them into the list logged_list, which
4329 	 * means they're gone, not in our logged_list nor in the inode's
4330 	 * ordered tree. We want the application/user space to know an
4331 	 * error happened while attempting to persist file data so that
4332 	 * it can take proper action. If such error happened, we leave
4333 	 * without writing to the log tree and the fsync must report the
4334 	 * file data write error and not commit the current transaction.
4335 	 */
4336 	ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4337 	if (ret)
4338 		ctx->io_err = ret;
4339 process:
4340 	while (!list_empty(&extents)) {
4341 		em = list_entry(extents.next, struct extent_map, list);
4342 
4343 		list_del_init(&em->list);
4344 
4345 		/*
4346 		 * If we had an error we just need to delete everybody from our
4347 		 * private list.
4348 		 */
4349 		if (ret) {
4350 			clear_em_logging(tree, em);
4351 			free_extent_map(em);
4352 			continue;
4353 		}
4354 
4355 		write_unlock(&tree->lock);
4356 
4357 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4358 				     ctx);
4359 		write_lock(&tree->lock);
4360 		clear_em_logging(tree, em);
4361 		free_extent_map(em);
4362 	}
4363 	WARN_ON(!list_empty(&extents));
4364 	write_unlock(&tree->lock);
4365 	up_write(&inode->dio_sem);
4366 
4367 	btrfs_release_path(path);
4368 	return ret;
4369 }
4370 
4371 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4372 			     struct btrfs_path *path, u64 *size_ret)
4373 {
4374 	struct btrfs_key key;
4375 	int ret;
4376 
4377 	key.objectid = btrfs_ino(inode);
4378 	key.type = BTRFS_INODE_ITEM_KEY;
4379 	key.offset = 0;
4380 
4381 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4382 	if (ret < 0) {
4383 		return ret;
4384 	} else if (ret > 0) {
4385 		*size_ret = 0;
4386 	} else {
4387 		struct btrfs_inode_item *item;
4388 
4389 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4390 				      struct btrfs_inode_item);
4391 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4392 	}
4393 
4394 	btrfs_release_path(path);
4395 	return 0;
4396 }
4397 
4398 /*
4399  * At the moment we always log all xattrs. This is to figure out at log replay
4400  * time which xattrs must have their deletion replayed. If a xattr is missing
4401  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4402  * because if a xattr is deleted, the inode is fsynced and a power failure
4403  * happens, causing the log to be replayed the next time the fs is mounted,
4404  * we want the xattr to not exist anymore (same behaviour as other filesystems
4405  * with a journal, ext3/4, xfs, f2fs, etc).
4406  */
4407 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4408 				struct btrfs_root *root,
4409 				struct btrfs_inode *inode,
4410 				struct btrfs_path *path,
4411 				struct btrfs_path *dst_path)
4412 {
4413 	int ret;
4414 	struct btrfs_key key;
4415 	const u64 ino = btrfs_ino(inode);
4416 	int ins_nr = 0;
4417 	int start_slot = 0;
4418 
4419 	key.objectid = ino;
4420 	key.type = BTRFS_XATTR_ITEM_KEY;
4421 	key.offset = 0;
4422 
4423 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4424 	if (ret < 0)
4425 		return ret;
4426 
4427 	while (true) {
4428 		int slot = path->slots[0];
4429 		struct extent_buffer *leaf = path->nodes[0];
4430 		int nritems = btrfs_header_nritems(leaf);
4431 
4432 		if (slot >= nritems) {
4433 			if (ins_nr > 0) {
4434 				u64 last_extent = 0;
4435 
4436 				ret = copy_items(trans, inode, dst_path, path,
4437 						 &last_extent, start_slot,
4438 						 ins_nr, 1, 0);
4439 				/* can't be 1, extent items aren't processed */
4440 				ASSERT(ret <= 0);
4441 				if (ret < 0)
4442 					return ret;
4443 				ins_nr = 0;
4444 			}
4445 			ret = btrfs_next_leaf(root, path);
4446 			if (ret < 0)
4447 				return ret;
4448 			else if (ret > 0)
4449 				break;
4450 			continue;
4451 		}
4452 
4453 		btrfs_item_key_to_cpu(leaf, &key, slot);
4454 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4455 			break;
4456 
4457 		if (ins_nr == 0)
4458 			start_slot = slot;
4459 		ins_nr++;
4460 		path->slots[0]++;
4461 		cond_resched();
4462 	}
4463 	if (ins_nr > 0) {
4464 		u64 last_extent = 0;
4465 
4466 		ret = copy_items(trans, inode, dst_path, path,
4467 				 &last_extent, start_slot,
4468 				 ins_nr, 1, 0);
4469 		/* can't be 1, extent items aren't processed */
4470 		ASSERT(ret <= 0);
4471 		if (ret < 0)
4472 			return ret;
4473 	}
4474 
4475 	return 0;
4476 }
4477 
4478 /*
4479  * If the no holes feature is enabled we need to make sure any hole between the
4480  * last extent and the i_size of our inode is explicitly marked in the log. This
4481  * is to make sure that doing something like:
4482  *
4483  *      1) create file with 128Kb of data
4484  *      2) truncate file to 64Kb
4485  *      3) truncate file to 256Kb
4486  *      4) fsync file
4487  *      5) <crash/power failure>
4488  *      6) mount fs and trigger log replay
4489  *
4490  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4491  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4492  * file correspond to a hole. The presence of explicit holes in a log tree is
4493  * what guarantees that log replay will remove/adjust file extent items in the
4494  * fs/subvol tree.
4495  *
4496  * Here we do not need to care about holes between extents, that is already done
4497  * by copy_items(). We also only need to do this in the full sync path, where we
4498  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4499  * lookup the list of modified extent maps and if any represents a hole, we
4500  * insert a corresponding extent representing a hole in the log tree.
4501  */
4502 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4503 				   struct btrfs_root *root,
4504 				   struct btrfs_inode *inode,
4505 				   struct btrfs_path *path)
4506 {
4507 	struct btrfs_fs_info *fs_info = root->fs_info;
4508 	int ret;
4509 	struct btrfs_key key;
4510 	u64 hole_start;
4511 	u64 hole_size;
4512 	struct extent_buffer *leaf;
4513 	struct btrfs_root *log = root->log_root;
4514 	const u64 ino = btrfs_ino(inode);
4515 	const u64 i_size = i_size_read(&inode->vfs_inode);
4516 
4517 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4518 		return 0;
4519 
4520 	key.objectid = ino;
4521 	key.type = BTRFS_EXTENT_DATA_KEY;
4522 	key.offset = (u64)-1;
4523 
4524 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4525 	ASSERT(ret != 0);
4526 	if (ret < 0)
4527 		return ret;
4528 
4529 	ASSERT(path->slots[0] > 0);
4530 	path->slots[0]--;
4531 	leaf = path->nodes[0];
4532 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4533 
4534 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4535 		/* inode does not have any extents */
4536 		hole_start = 0;
4537 		hole_size = i_size;
4538 	} else {
4539 		struct btrfs_file_extent_item *extent;
4540 		u64 len;
4541 
4542 		/*
4543 		 * If there's an extent beyond i_size, an explicit hole was
4544 		 * already inserted by copy_items().
4545 		 */
4546 		if (key.offset >= i_size)
4547 			return 0;
4548 
4549 		extent = btrfs_item_ptr(leaf, path->slots[0],
4550 					struct btrfs_file_extent_item);
4551 
4552 		if (btrfs_file_extent_type(leaf, extent) ==
4553 		    BTRFS_FILE_EXTENT_INLINE) {
4554 			len = btrfs_file_extent_inline_len(leaf,
4555 							   path->slots[0],
4556 							   extent);
4557 			ASSERT(len == i_size ||
4558 			       (len == fs_info->sectorsize &&
4559 				btrfs_file_extent_compression(leaf, extent) !=
4560 				BTRFS_COMPRESS_NONE));
4561 			return 0;
4562 		}
4563 
4564 		len = btrfs_file_extent_num_bytes(leaf, extent);
4565 		/* Last extent goes beyond i_size, no need to log a hole. */
4566 		if (key.offset + len > i_size)
4567 			return 0;
4568 		hole_start = key.offset + len;
4569 		hole_size = i_size - hole_start;
4570 	}
4571 	btrfs_release_path(path);
4572 
4573 	/* Last extent ends at i_size. */
4574 	if (hole_size == 0)
4575 		return 0;
4576 
4577 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4578 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4579 				       hole_size, 0, hole_size, 0, 0, 0);
4580 	return ret;
4581 }
4582 
4583 /*
4584  * When we are logging a new inode X, check if it doesn't have a reference that
4585  * matches the reference from some other inode Y created in a past transaction
4586  * and that was renamed in the current transaction. If we don't do this, then at
4587  * log replay time we can lose inode Y (and all its files if it's a directory):
4588  *
4589  * mkdir /mnt/x
4590  * echo "hello world" > /mnt/x/foobar
4591  * sync
4592  * mv /mnt/x /mnt/y
4593  * mkdir /mnt/x                 # or touch /mnt/x
4594  * xfs_io -c fsync /mnt/x
4595  * <power fail>
4596  * mount fs, trigger log replay
4597  *
4598  * After the log replay procedure, we would lose the first directory and all its
4599  * files (file foobar).
4600  * For the case where inode Y is not a directory we simply end up losing it:
4601  *
4602  * echo "123" > /mnt/foo
4603  * sync
4604  * mv /mnt/foo /mnt/bar
4605  * echo "abc" > /mnt/foo
4606  * xfs_io -c fsync /mnt/foo
4607  * <power fail>
4608  *
4609  * We also need this for cases where a snapshot entry is replaced by some other
4610  * entry (file or directory) otherwise we end up with an unreplayable log due to
4611  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4612  * if it were a regular entry:
4613  *
4614  * mkdir /mnt/x
4615  * btrfs subvolume snapshot /mnt /mnt/x/snap
4616  * btrfs subvolume delete /mnt/x/snap
4617  * rmdir /mnt/x
4618  * mkdir /mnt/x
4619  * fsync /mnt/x or fsync some new file inside it
4620  * <power fail>
4621  *
4622  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4623  * the same transaction.
4624  */
4625 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4626 					 const int slot,
4627 					 const struct btrfs_key *key,
4628 					 struct btrfs_inode *inode,
4629 					 u64 *other_ino)
4630 {
4631 	int ret;
4632 	struct btrfs_path *search_path;
4633 	char *name = NULL;
4634 	u32 name_len = 0;
4635 	u32 item_size = btrfs_item_size_nr(eb, slot);
4636 	u32 cur_offset = 0;
4637 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4638 
4639 	search_path = btrfs_alloc_path();
4640 	if (!search_path)
4641 		return -ENOMEM;
4642 	search_path->search_commit_root = 1;
4643 	search_path->skip_locking = 1;
4644 
4645 	while (cur_offset < item_size) {
4646 		u64 parent;
4647 		u32 this_name_len;
4648 		u32 this_len;
4649 		unsigned long name_ptr;
4650 		struct btrfs_dir_item *di;
4651 
4652 		if (key->type == BTRFS_INODE_REF_KEY) {
4653 			struct btrfs_inode_ref *iref;
4654 
4655 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4656 			parent = key->offset;
4657 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4658 			name_ptr = (unsigned long)(iref + 1);
4659 			this_len = sizeof(*iref) + this_name_len;
4660 		} else {
4661 			struct btrfs_inode_extref *extref;
4662 
4663 			extref = (struct btrfs_inode_extref *)(ptr +
4664 							       cur_offset);
4665 			parent = btrfs_inode_extref_parent(eb, extref);
4666 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4667 			name_ptr = (unsigned long)&extref->name;
4668 			this_len = sizeof(*extref) + this_name_len;
4669 		}
4670 
4671 		if (this_name_len > name_len) {
4672 			char *new_name;
4673 
4674 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4675 			if (!new_name) {
4676 				ret = -ENOMEM;
4677 				goto out;
4678 			}
4679 			name_len = this_name_len;
4680 			name = new_name;
4681 		}
4682 
4683 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4684 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4685 				parent, name, this_name_len, 0);
4686 		if (di && !IS_ERR(di)) {
4687 			struct btrfs_key di_key;
4688 
4689 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4690 						  di, &di_key);
4691 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4692 				ret = 1;
4693 				*other_ino = di_key.objectid;
4694 			} else {
4695 				ret = -EAGAIN;
4696 			}
4697 			goto out;
4698 		} else if (IS_ERR(di)) {
4699 			ret = PTR_ERR(di);
4700 			goto out;
4701 		}
4702 		btrfs_release_path(search_path);
4703 
4704 		cur_offset += this_len;
4705 	}
4706 	ret = 0;
4707 out:
4708 	btrfs_free_path(search_path);
4709 	kfree(name);
4710 	return ret;
4711 }
4712 
4713 /* log a single inode in the tree log.
4714  * At least one parent directory for this inode must exist in the tree
4715  * or be logged already.
4716  *
4717  * Any items from this inode changed by the current transaction are copied
4718  * to the log tree.  An extra reference is taken on any extents in this
4719  * file, allowing us to avoid a whole pile of corner cases around logging
4720  * blocks that have been removed from the tree.
4721  *
4722  * See LOG_INODE_ALL and related defines for a description of what inode_only
4723  * does.
4724  *
4725  * This handles both files and directories.
4726  */
4727 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4728 			   struct btrfs_root *root, struct btrfs_inode *inode,
4729 			   int inode_only,
4730 			   const loff_t start,
4731 			   const loff_t end,
4732 			   struct btrfs_log_ctx *ctx)
4733 {
4734 	struct btrfs_fs_info *fs_info = root->fs_info;
4735 	struct btrfs_path *path;
4736 	struct btrfs_path *dst_path;
4737 	struct btrfs_key min_key;
4738 	struct btrfs_key max_key;
4739 	struct btrfs_root *log = root->log_root;
4740 	LIST_HEAD(logged_list);
4741 	u64 last_extent = 0;
4742 	int err = 0;
4743 	int ret;
4744 	int nritems;
4745 	int ins_start_slot = 0;
4746 	int ins_nr;
4747 	bool fast_search = false;
4748 	u64 ino = btrfs_ino(inode);
4749 	struct extent_map_tree *em_tree = &inode->extent_tree;
4750 	u64 logged_isize = 0;
4751 	bool need_log_inode_item = true;
4752 
4753 	path = btrfs_alloc_path();
4754 	if (!path)
4755 		return -ENOMEM;
4756 	dst_path = btrfs_alloc_path();
4757 	if (!dst_path) {
4758 		btrfs_free_path(path);
4759 		return -ENOMEM;
4760 	}
4761 
4762 	min_key.objectid = ino;
4763 	min_key.type = BTRFS_INODE_ITEM_KEY;
4764 	min_key.offset = 0;
4765 
4766 	max_key.objectid = ino;
4767 
4768 
4769 	/* today the code can only do partial logging of directories */
4770 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4771 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4772 		       &inode->runtime_flags) &&
4773 	     inode_only >= LOG_INODE_EXISTS))
4774 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4775 	else
4776 		max_key.type = (u8)-1;
4777 	max_key.offset = (u64)-1;
4778 
4779 	/*
4780 	 * Only run delayed items if we are a dir or a new file.
4781 	 * Otherwise commit the delayed inode only, which is needed in
4782 	 * order for the log replay code to mark inodes for link count
4783 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4784 	 */
4785 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4786 	    inode->generation > fs_info->last_trans_committed)
4787 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4788 	else
4789 		ret = btrfs_commit_inode_delayed_inode(inode);
4790 
4791 	if (ret) {
4792 		btrfs_free_path(path);
4793 		btrfs_free_path(dst_path);
4794 		return ret;
4795 	}
4796 
4797 	if (inode_only == LOG_OTHER_INODE) {
4798 		inode_only = LOG_INODE_EXISTS;
4799 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4800 	} else {
4801 		mutex_lock(&inode->log_mutex);
4802 	}
4803 
4804 	/*
4805 	 * a brute force approach to making sure we get the most uptodate
4806 	 * copies of everything.
4807 	 */
4808 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
4809 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4810 
4811 		if (inode_only == LOG_INODE_EXISTS)
4812 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4813 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4814 	} else {
4815 		if (inode_only == LOG_INODE_EXISTS) {
4816 			/*
4817 			 * Make sure the new inode item we write to the log has
4818 			 * the same isize as the current one (if it exists).
4819 			 * This is necessary to prevent data loss after log
4820 			 * replay, and also to prevent doing a wrong expanding
4821 			 * truncate - for e.g. create file, write 4K into offset
4822 			 * 0, fsync, write 4K into offset 4096, add hard link,
4823 			 * fsync some other file (to sync log), power fail - if
4824 			 * we use the inode's current i_size, after log replay
4825 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4826 			 * (zeroes), as if an expanding truncate happened,
4827 			 * instead of getting a file of 4Kb only.
4828 			 */
4829 			err = logged_inode_size(log, inode, path, &logged_isize);
4830 			if (err)
4831 				goto out_unlock;
4832 		}
4833 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4834 			     &inode->runtime_flags)) {
4835 			if (inode_only == LOG_INODE_EXISTS) {
4836 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4837 				ret = drop_objectid_items(trans, log, path, ino,
4838 							  max_key.type);
4839 			} else {
4840 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4841 					  &inode->runtime_flags);
4842 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4843 					  &inode->runtime_flags);
4844 				while(1) {
4845 					ret = btrfs_truncate_inode_items(trans,
4846 						log, &inode->vfs_inode, 0, 0);
4847 					if (ret != -EAGAIN)
4848 						break;
4849 				}
4850 			}
4851 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4852 					      &inode->runtime_flags) ||
4853 			   inode_only == LOG_INODE_EXISTS) {
4854 			if (inode_only == LOG_INODE_ALL)
4855 				fast_search = true;
4856 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4857 			ret = drop_objectid_items(trans, log, path, ino,
4858 						  max_key.type);
4859 		} else {
4860 			if (inode_only == LOG_INODE_ALL)
4861 				fast_search = true;
4862 			goto log_extents;
4863 		}
4864 
4865 	}
4866 	if (ret) {
4867 		err = ret;
4868 		goto out_unlock;
4869 	}
4870 
4871 	while (1) {
4872 		ins_nr = 0;
4873 		ret = btrfs_search_forward(root, &min_key,
4874 					   path, trans->transid);
4875 		if (ret < 0) {
4876 			err = ret;
4877 			goto out_unlock;
4878 		}
4879 		if (ret != 0)
4880 			break;
4881 again:
4882 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4883 		if (min_key.objectid != ino)
4884 			break;
4885 		if (min_key.type > max_key.type)
4886 			break;
4887 
4888 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4889 			need_log_inode_item = false;
4890 
4891 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4892 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4893 		    inode->generation == trans->transid) {
4894 			u64 other_ino = 0;
4895 
4896 			ret = btrfs_check_ref_name_override(path->nodes[0],
4897 					path->slots[0], &min_key, inode,
4898 					&other_ino);
4899 			if (ret < 0) {
4900 				err = ret;
4901 				goto out_unlock;
4902 			} else if (ret > 0 && ctx &&
4903 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4904 				struct btrfs_key inode_key;
4905 				struct inode *other_inode;
4906 
4907 				if (ins_nr > 0) {
4908 					ins_nr++;
4909 				} else {
4910 					ins_nr = 1;
4911 					ins_start_slot = path->slots[0];
4912 				}
4913 				ret = copy_items(trans, inode, dst_path, path,
4914 						 &last_extent, ins_start_slot,
4915 						 ins_nr, inode_only,
4916 						 logged_isize);
4917 				if (ret < 0) {
4918 					err = ret;
4919 					goto out_unlock;
4920 				}
4921 				ins_nr = 0;
4922 				btrfs_release_path(path);
4923 				inode_key.objectid = other_ino;
4924 				inode_key.type = BTRFS_INODE_ITEM_KEY;
4925 				inode_key.offset = 0;
4926 				other_inode = btrfs_iget(fs_info->sb,
4927 							 &inode_key, root,
4928 							 NULL);
4929 				/*
4930 				 * If the other inode that had a conflicting dir
4931 				 * entry was deleted in the current transaction,
4932 				 * we don't need to do more work nor fallback to
4933 				 * a transaction commit.
4934 				 */
4935 				if (IS_ERR(other_inode) &&
4936 				    PTR_ERR(other_inode) == -ENOENT) {
4937 					goto next_key;
4938 				} else if (IS_ERR(other_inode)) {
4939 					err = PTR_ERR(other_inode);
4940 					goto out_unlock;
4941 				}
4942 				/*
4943 				 * We are safe logging the other inode without
4944 				 * acquiring its i_mutex as long as we log with
4945 				 * the LOG_INODE_EXISTS mode. We're safe against
4946 				 * concurrent renames of the other inode as well
4947 				 * because during a rename we pin the log and
4948 				 * update the log with the new name before we
4949 				 * unpin it.
4950 				 */
4951 				err = btrfs_log_inode(trans, root,
4952 						BTRFS_I(other_inode),
4953 						LOG_OTHER_INODE, 0, LLONG_MAX,
4954 						ctx);
4955 				iput(other_inode);
4956 				if (err)
4957 					goto out_unlock;
4958 				else
4959 					goto next_key;
4960 			}
4961 		}
4962 
4963 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4964 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4965 			if (ins_nr == 0)
4966 				goto next_slot;
4967 			ret = copy_items(trans, inode, dst_path, path,
4968 					 &last_extent, ins_start_slot,
4969 					 ins_nr, inode_only, logged_isize);
4970 			if (ret < 0) {
4971 				err = ret;
4972 				goto out_unlock;
4973 			}
4974 			ins_nr = 0;
4975 			if (ret) {
4976 				btrfs_release_path(path);
4977 				continue;
4978 			}
4979 			goto next_slot;
4980 		}
4981 
4982 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4983 			ins_nr++;
4984 			goto next_slot;
4985 		} else if (!ins_nr) {
4986 			ins_start_slot = path->slots[0];
4987 			ins_nr = 1;
4988 			goto next_slot;
4989 		}
4990 
4991 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4992 				 ins_start_slot, ins_nr, inode_only,
4993 				 logged_isize);
4994 		if (ret < 0) {
4995 			err = ret;
4996 			goto out_unlock;
4997 		}
4998 		if (ret) {
4999 			ins_nr = 0;
5000 			btrfs_release_path(path);
5001 			continue;
5002 		}
5003 		ins_nr = 1;
5004 		ins_start_slot = path->slots[0];
5005 next_slot:
5006 
5007 		nritems = btrfs_header_nritems(path->nodes[0]);
5008 		path->slots[0]++;
5009 		if (path->slots[0] < nritems) {
5010 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5011 					      path->slots[0]);
5012 			goto again;
5013 		}
5014 		if (ins_nr) {
5015 			ret = copy_items(trans, inode, dst_path, path,
5016 					 &last_extent, ins_start_slot,
5017 					 ins_nr, inode_only, logged_isize);
5018 			if (ret < 0) {
5019 				err = ret;
5020 				goto out_unlock;
5021 			}
5022 			ret = 0;
5023 			ins_nr = 0;
5024 		}
5025 		btrfs_release_path(path);
5026 next_key:
5027 		if (min_key.offset < (u64)-1) {
5028 			min_key.offset++;
5029 		} else if (min_key.type < max_key.type) {
5030 			min_key.type++;
5031 			min_key.offset = 0;
5032 		} else {
5033 			break;
5034 		}
5035 	}
5036 	if (ins_nr) {
5037 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5038 				 ins_start_slot, ins_nr, inode_only,
5039 				 logged_isize);
5040 		if (ret < 0) {
5041 			err = ret;
5042 			goto out_unlock;
5043 		}
5044 		ret = 0;
5045 		ins_nr = 0;
5046 	}
5047 
5048 	btrfs_release_path(path);
5049 	btrfs_release_path(dst_path);
5050 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5051 	if (err)
5052 		goto out_unlock;
5053 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5054 		btrfs_release_path(path);
5055 		btrfs_release_path(dst_path);
5056 		err = btrfs_log_trailing_hole(trans, root, inode, path);
5057 		if (err)
5058 			goto out_unlock;
5059 	}
5060 log_extents:
5061 	btrfs_release_path(path);
5062 	btrfs_release_path(dst_path);
5063 	if (need_log_inode_item) {
5064 		err = log_inode_item(trans, log, dst_path, inode);
5065 		if (err)
5066 			goto out_unlock;
5067 	}
5068 	if (fast_search) {
5069 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5070 						&logged_list, ctx, start, end);
5071 		if (ret) {
5072 			err = ret;
5073 			goto out_unlock;
5074 		}
5075 	} else if (inode_only == LOG_INODE_ALL) {
5076 		struct extent_map *em, *n;
5077 
5078 		write_lock(&em_tree->lock);
5079 		/*
5080 		 * We can't just remove every em if we're called for a ranged
5081 		 * fsync - that is, one that doesn't cover the whole possible
5082 		 * file range (0 to LLONG_MAX). This is because we can have
5083 		 * em's that fall outside the range we're logging and therefore
5084 		 * their ordered operations haven't completed yet
5085 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5086 		 * didn't get their respective file extent item in the fs/subvol
5087 		 * tree yet, and need to let the next fast fsync (one which
5088 		 * consults the list of modified extent maps) find the em so
5089 		 * that it logs a matching file extent item and waits for the
5090 		 * respective ordered operation to complete (if it's still
5091 		 * running).
5092 		 *
5093 		 * Removing every em outside the range we're logging would make
5094 		 * the next fast fsync not log their matching file extent items,
5095 		 * therefore making us lose data after a log replay.
5096 		 */
5097 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5098 					 list) {
5099 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5100 
5101 			if (em->mod_start >= start && mod_end <= end)
5102 				list_del_init(&em->list);
5103 		}
5104 		write_unlock(&em_tree->lock);
5105 	}
5106 
5107 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5108 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5109 					ctx);
5110 		if (ret) {
5111 			err = ret;
5112 			goto out_unlock;
5113 		}
5114 	}
5115 
5116 	spin_lock(&inode->lock);
5117 	inode->logged_trans = trans->transid;
5118 	inode->last_log_commit = inode->last_sub_trans;
5119 	spin_unlock(&inode->lock);
5120 out_unlock:
5121 	if (unlikely(err))
5122 		btrfs_put_logged_extents(&logged_list);
5123 	else
5124 		btrfs_submit_logged_extents(&logged_list, log);
5125 	mutex_unlock(&inode->log_mutex);
5126 
5127 	btrfs_free_path(path);
5128 	btrfs_free_path(dst_path);
5129 	return err;
5130 }
5131 
5132 /*
5133  * Check if we must fallback to a transaction commit when logging an inode.
5134  * This must be called after logging the inode and is used only in the context
5135  * when fsyncing an inode requires the need to log some other inode - in which
5136  * case we can't lock the i_mutex of each other inode we need to log as that
5137  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5138  * log inodes up or down in the hierarchy) or rename operations for example. So
5139  * we take the log_mutex of the inode after we have logged it and then check for
5140  * its last_unlink_trans value - this is safe because any task setting
5141  * last_unlink_trans must take the log_mutex and it must do this before it does
5142  * the actual unlink operation, so if we do this check before a concurrent task
5143  * sets last_unlink_trans it means we've logged a consistent version/state of
5144  * all the inode items, otherwise we are not sure and must do a transaction
5145  * commit (the concurrent task might have only updated last_unlink_trans before
5146  * we logged the inode or it might have also done the unlink).
5147  */
5148 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5149 					  struct btrfs_inode *inode)
5150 {
5151 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5152 	bool ret = false;
5153 
5154 	mutex_lock(&inode->log_mutex);
5155 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5156 		/*
5157 		 * Make sure any commits to the log are forced to be full
5158 		 * commits.
5159 		 */
5160 		btrfs_set_log_full_commit(fs_info, trans);
5161 		ret = true;
5162 	}
5163 	mutex_unlock(&inode->log_mutex);
5164 
5165 	return ret;
5166 }
5167 
5168 /*
5169  * follow the dentry parent pointers up the chain and see if any
5170  * of the directories in it require a full commit before they can
5171  * be logged.  Returns zero if nothing special needs to be done or 1 if
5172  * a full commit is required.
5173  */
5174 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5175 					       struct btrfs_inode *inode,
5176 					       struct dentry *parent,
5177 					       struct super_block *sb,
5178 					       u64 last_committed)
5179 {
5180 	int ret = 0;
5181 	struct dentry *old_parent = NULL;
5182 	struct btrfs_inode *orig_inode = inode;
5183 
5184 	/*
5185 	 * for regular files, if its inode is already on disk, we don't
5186 	 * have to worry about the parents at all.  This is because
5187 	 * we can use the last_unlink_trans field to record renames
5188 	 * and other fun in this file.
5189 	 */
5190 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5191 	    inode->generation <= last_committed &&
5192 	    inode->last_unlink_trans <= last_committed)
5193 		goto out;
5194 
5195 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5196 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5197 			goto out;
5198 		inode = BTRFS_I(d_inode(parent));
5199 	}
5200 
5201 	while (1) {
5202 		/*
5203 		 * If we are logging a directory then we start with our inode,
5204 		 * not our parent's inode, so we need to skip setting the
5205 		 * logged_trans so that further down in the log code we don't
5206 		 * think this inode has already been logged.
5207 		 */
5208 		if (inode != orig_inode)
5209 			inode->logged_trans = trans->transid;
5210 		smp_mb();
5211 
5212 		if (btrfs_must_commit_transaction(trans, inode)) {
5213 			ret = 1;
5214 			break;
5215 		}
5216 
5217 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5218 			break;
5219 
5220 		if (IS_ROOT(parent)) {
5221 			inode = BTRFS_I(d_inode(parent));
5222 			if (btrfs_must_commit_transaction(trans, inode))
5223 				ret = 1;
5224 			break;
5225 		}
5226 
5227 		parent = dget_parent(parent);
5228 		dput(old_parent);
5229 		old_parent = parent;
5230 		inode = BTRFS_I(d_inode(parent));
5231 
5232 	}
5233 	dput(old_parent);
5234 out:
5235 	return ret;
5236 }
5237 
5238 struct btrfs_dir_list {
5239 	u64 ino;
5240 	struct list_head list;
5241 };
5242 
5243 /*
5244  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5245  * details about the why it is needed.
5246  * This is a recursive operation - if an existing dentry corresponds to a
5247  * directory, that directory's new entries are logged too (same behaviour as
5248  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5249  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5250  * complains about the following circular lock dependency / possible deadlock:
5251  *
5252  *        CPU0                                        CPU1
5253  *        ----                                        ----
5254  * lock(&type->i_mutex_dir_key#3/2);
5255  *                                            lock(sb_internal#2);
5256  *                                            lock(&type->i_mutex_dir_key#3/2);
5257  * lock(&sb->s_type->i_mutex_key#14);
5258  *
5259  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5260  * sb_start_intwrite() in btrfs_start_transaction().
5261  * Not locking i_mutex of the inodes is still safe because:
5262  *
5263  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5264  *    that while logging the inode new references (names) are added or removed
5265  *    from the inode, leaving the logged inode item with a link count that does
5266  *    not match the number of logged inode reference items. This is fine because
5267  *    at log replay time we compute the real number of links and correct the
5268  *    link count in the inode item (see replay_one_buffer() and
5269  *    link_to_fixup_dir());
5270  *
5271  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5272  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5273  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5274  *    has a size that doesn't match the sum of the lengths of all the logged
5275  *    names. This does not result in a problem because if a dir_item key is
5276  *    logged but its matching dir_index key is not logged, at log replay time we
5277  *    don't use it to replay the respective name (see replay_one_name()). On the
5278  *    other hand if only the dir_index key ends up being logged, the respective
5279  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5280  *    keys created (see replay_one_name()).
5281  *    The directory's inode item with a wrong i_size is not a problem as well,
5282  *    since we don't use it at log replay time to set the i_size in the inode
5283  *    item of the fs/subvol tree (see overwrite_item()).
5284  */
5285 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5286 				struct btrfs_root *root,
5287 				struct btrfs_inode *start_inode,
5288 				struct btrfs_log_ctx *ctx)
5289 {
5290 	struct btrfs_fs_info *fs_info = root->fs_info;
5291 	struct btrfs_root *log = root->log_root;
5292 	struct btrfs_path *path;
5293 	LIST_HEAD(dir_list);
5294 	struct btrfs_dir_list *dir_elem;
5295 	int ret = 0;
5296 
5297 	path = btrfs_alloc_path();
5298 	if (!path)
5299 		return -ENOMEM;
5300 
5301 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5302 	if (!dir_elem) {
5303 		btrfs_free_path(path);
5304 		return -ENOMEM;
5305 	}
5306 	dir_elem->ino = btrfs_ino(start_inode);
5307 	list_add_tail(&dir_elem->list, &dir_list);
5308 
5309 	while (!list_empty(&dir_list)) {
5310 		struct extent_buffer *leaf;
5311 		struct btrfs_key min_key;
5312 		int nritems;
5313 		int i;
5314 
5315 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5316 					    list);
5317 		if (ret)
5318 			goto next_dir_inode;
5319 
5320 		min_key.objectid = dir_elem->ino;
5321 		min_key.type = BTRFS_DIR_ITEM_KEY;
5322 		min_key.offset = 0;
5323 again:
5324 		btrfs_release_path(path);
5325 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5326 		if (ret < 0) {
5327 			goto next_dir_inode;
5328 		} else if (ret > 0) {
5329 			ret = 0;
5330 			goto next_dir_inode;
5331 		}
5332 
5333 process_leaf:
5334 		leaf = path->nodes[0];
5335 		nritems = btrfs_header_nritems(leaf);
5336 		for (i = path->slots[0]; i < nritems; i++) {
5337 			struct btrfs_dir_item *di;
5338 			struct btrfs_key di_key;
5339 			struct inode *di_inode;
5340 			struct btrfs_dir_list *new_dir_elem;
5341 			int log_mode = LOG_INODE_EXISTS;
5342 			int type;
5343 
5344 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5345 			if (min_key.objectid != dir_elem->ino ||
5346 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5347 				goto next_dir_inode;
5348 
5349 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5350 			type = btrfs_dir_type(leaf, di);
5351 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5352 			    type != BTRFS_FT_DIR)
5353 				continue;
5354 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5355 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5356 				continue;
5357 
5358 			btrfs_release_path(path);
5359 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5360 			if (IS_ERR(di_inode)) {
5361 				ret = PTR_ERR(di_inode);
5362 				goto next_dir_inode;
5363 			}
5364 
5365 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5366 				iput(di_inode);
5367 				break;
5368 			}
5369 
5370 			ctx->log_new_dentries = false;
5371 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5372 				log_mode = LOG_INODE_ALL;
5373 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5374 					      log_mode, 0, LLONG_MAX, ctx);
5375 			if (!ret &&
5376 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5377 				ret = 1;
5378 			iput(di_inode);
5379 			if (ret)
5380 				goto next_dir_inode;
5381 			if (ctx->log_new_dentries) {
5382 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5383 						       GFP_NOFS);
5384 				if (!new_dir_elem) {
5385 					ret = -ENOMEM;
5386 					goto next_dir_inode;
5387 				}
5388 				new_dir_elem->ino = di_key.objectid;
5389 				list_add_tail(&new_dir_elem->list, &dir_list);
5390 			}
5391 			break;
5392 		}
5393 		if (i == nritems) {
5394 			ret = btrfs_next_leaf(log, path);
5395 			if (ret < 0) {
5396 				goto next_dir_inode;
5397 			} else if (ret > 0) {
5398 				ret = 0;
5399 				goto next_dir_inode;
5400 			}
5401 			goto process_leaf;
5402 		}
5403 		if (min_key.offset < (u64)-1) {
5404 			min_key.offset++;
5405 			goto again;
5406 		}
5407 next_dir_inode:
5408 		list_del(&dir_elem->list);
5409 		kfree(dir_elem);
5410 	}
5411 
5412 	btrfs_free_path(path);
5413 	return ret;
5414 }
5415 
5416 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5417 				 struct btrfs_inode *inode,
5418 				 struct btrfs_log_ctx *ctx)
5419 {
5420 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5421 	int ret;
5422 	struct btrfs_path *path;
5423 	struct btrfs_key key;
5424 	struct btrfs_root *root = inode->root;
5425 	const u64 ino = btrfs_ino(inode);
5426 
5427 	path = btrfs_alloc_path();
5428 	if (!path)
5429 		return -ENOMEM;
5430 	path->skip_locking = 1;
5431 	path->search_commit_root = 1;
5432 
5433 	key.objectid = ino;
5434 	key.type = BTRFS_INODE_REF_KEY;
5435 	key.offset = 0;
5436 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5437 	if (ret < 0)
5438 		goto out;
5439 
5440 	while (true) {
5441 		struct extent_buffer *leaf = path->nodes[0];
5442 		int slot = path->slots[0];
5443 		u32 cur_offset = 0;
5444 		u32 item_size;
5445 		unsigned long ptr;
5446 
5447 		if (slot >= btrfs_header_nritems(leaf)) {
5448 			ret = btrfs_next_leaf(root, path);
5449 			if (ret < 0)
5450 				goto out;
5451 			else if (ret > 0)
5452 				break;
5453 			continue;
5454 		}
5455 
5456 		btrfs_item_key_to_cpu(leaf, &key, slot);
5457 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5458 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5459 			break;
5460 
5461 		item_size = btrfs_item_size_nr(leaf, slot);
5462 		ptr = btrfs_item_ptr_offset(leaf, slot);
5463 		while (cur_offset < item_size) {
5464 			struct btrfs_key inode_key;
5465 			struct inode *dir_inode;
5466 
5467 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5468 			inode_key.offset = 0;
5469 
5470 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5471 				struct btrfs_inode_extref *extref;
5472 
5473 				extref = (struct btrfs_inode_extref *)
5474 					(ptr + cur_offset);
5475 				inode_key.objectid = btrfs_inode_extref_parent(
5476 					leaf, extref);
5477 				cur_offset += sizeof(*extref);
5478 				cur_offset += btrfs_inode_extref_name_len(leaf,
5479 					extref);
5480 			} else {
5481 				inode_key.objectid = key.offset;
5482 				cur_offset = item_size;
5483 			}
5484 
5485 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5486 					       root, NULL);
5487 			/* If parent inode was deleted, skip it. */
5488 			if (IS_ERR(dir_inode))
5489 				continue;
5490 
5491 			if (ctx)
5492 				ctx->log_new_dentries = false;
5493 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5494 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5495 			if (!ret &&
5496 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5497 				ret = 1;
5498 			if (!ret && ctx && ctx->log_new_dentries)
5499 				ret = log_new_dir_dentries(trans, root,
5500 						   BTRFS_I(dir_inode), ctx);
5501 			iput(dir_inode);
5502 			if (ret)
5503 				goto out;
5504 		}
5505 		path->slots[0]++;
5506 	}
5507 	ret = 0;
5508 out:
5509 	btrfs_free_path(path);
5510 	return ret;
5511 }
5512 
5513 /*
5514  * helper function around btrfs_log_inode to make sure newly created
5515  * parent directories also end up in the log.  A minimal inode and backref
5516  * only logging is done of any parent directories that are older than
5517  * the last committed transaction
5518  */
5519 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5520 				  struct btrfs_root *root,
5521 				  struct btrfs_inode *inode,
5522 				  struct dentry *parent,
5523 				  const loff_t start,
5524 				  const loff_t end,
5525 				  int inode_only,
5526 				  struct btrfs_log_ctx *ctx)
5527 {
5528 	struct btrfs_fs_info *fs_info = root->fs_info;
5529 	struct super_block *sb;
5530 	struct dentry *old_parent = NULL;
5531 	int ret = 0;
5532 	u64 last_committed = fs_info->last_trans_committed;
5533 	bool log_dentries = false;
5534 	struct btrfs_inode *orig_inode = inode;
5535 
5536 	sb = inode->vfs_inode.i_sb;
5537 
5538 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5539 		ret = 1;
5540 		goto end_no_trans;
5541 	}
5542 
5543 	/*
5544 	 * The prev transaction commit doesn't complete, we need do
5545 	 * full commit by ourselves.
5546 	 */
5547 	if (fs_info->last_trans_log_full_commit >
5548 	    fs_info->last_trans_committed) {
5549 		ret = 1;
5550 		goto end_no_trans;
5551 	}
5552 
5553 	if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) {
5554 		ret = 1;
5555 		goto end_no_trans;
5556 	}
5557 
5558 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5559 			last_committed);
5560 	if (ret)
5561 		goto end_no_trans;
5562 
5563 	if (btrfs_inode_in_log(inode, trans->transid)) {
5564 		ret = BTRFS_NO_LOG_SYNC;
5565 		goto end_no_trans;
5566 	}
5567 
5568 	ret = start_log_trans(trans, root, ctx);
5569 	if (ret)
5570 		goto end_no_trans;
5571 
5572 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5573 	if (ret)
5574 		goto end_trans;
5575 
5576 	/*
5577 	 * for regular files, if its inode is already on disk, we don't
5578 	 * have to worry about the parents at all.  This is because
5579 	 * we can use the last_unlink_trans field to record renames
5580 	 * and other fun in this file.
5581 	 */
5582 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5583 	    inode->generation <= last_committed &&
5584 	    inode->last_unlink_trans <= last_committed) {
5585 		ret = 0;
5586 		goto end_trans;
5587 	}
5588 
5589 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5590 		log_dentries = true;
5591 
5592 	/*
5593 	 * On unlink we must make sure all our current and old parent directory
5594 	 * inodes are fully logged. This is to prevent leaving dangling
5595 	 * directory index entries in directories that were our parents but are
5596 	 * not anymore. Not doing this results in old parent directory being
5597 	 * impossible to delete after log replay (rmdir will always fail with
5598 	 * error -ENOTEMPTY).
5599 	 *
5600 	 * Example 1:
5601 	 *
5602 	 * mkdir testdir
5603 	 * touch testdir/foo
5604 	 * ln testdir/foo testdir/bar
5605 	 * sync
5606 	 * unlink testdir/bar
5607 	 * xfs_io -c fsync testdir/foo
5608 	 * <power failure>
5609 	 * mount fs, triggers log replay
5610 	 *
5611 	 * If we don't log the parent directory (testdir), after log replay the
5612 	 * directory still has an entry pointing to the file inode using the bar
5613 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5614 	 * the file inode has a link count of 1.
5615 	 *
5616 	 * Example 2:
5617 	 *
5618 	 * mkdir testdir
5619 	 * touch foo
5620 	 * ln foo testdir/foo2
5621 	 * ln foo testdir/foo3
5622 	 * sync
5623 	 * unlink testdir/foo3
5624 	 * xfs_io -c fsync foo
5625 	 * <power failure>
5626 	 * mount fs, triggers log replay
5627 	 *
5628 	 * Similar as the first example, after log replay the parent directory
5629 	 * testdir still has an entry pointing to the inode file with name foo3
5630 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5631 	 * and has a link count of 2.
5632 	 */
5633 	if (inode->last_unlink_trans > last_committed) {
5634 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5635 		if (ret)
5636 			goto end_trans;
5637 	}
5638 
5639 	while (1) {
5640 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5641 			break;
5642 
5643 		inode = BTRFS_I(d_inode(parent));
5644 		if (root != inode->root)
5645 			break;
5646 
5647 		if (inode->generation > last_committed) {
5648 			ret = btrfs_log_inode(trans, root, inode,
5649 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5650 			if (ret)
5651 				goto end_trans;
5652 		}
5653 		if (IS_ROOT(parent))
5654 			break;
5655 
5656 		parent = dget_parent(parent);
5657 		dput(old_parent);
5658 		old_parent = parent;
5659 	}
5660 	if (log_dentries)
5661 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5662 	else
5663 		ret = 0;
5664 end_trans:
5665 	dput(old_parent);
5666 	if (ret < 0) {
5667 		btrfs_set_log_full_commit(fs_info, trans);
5668 		ret = 1;
5669 	}
5670 
5671 	if (ret)
5672 		btrfs_remove_log_ctx(root, ctx);
5673 	btrfs_end_log_trans(root);
5674 end_no_trans:
5675 	return ret;
5676 }
5677 
5678 /*
5679  * it is not safe to log dentry if the chunk root has added new
5680  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5681  * If this returns 1, you must commit the transaction to safely get your
5682  * data on disk.
5683  */
5684 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5685 			  struct btrfs_root *root, struct dentry *dentry,
5686 			  const loff_t start,
5687 			  const loff_t end,
5688 			  struct btrfs_log_ctx *ctx)
5689 {
5690 	struct dentry *parent = dget_parent(dentry);
5691 	int ret;
5692 
5693 	ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)),
5694 			parent, start, end, LOG_INODE_ALL, ctx);
5695 	dput(parent);
5696 
5697 	return ret;
5698 }
5699 
5700 /*
5701  * should be called during mount to recover any replay any log trees
5702  * from the FS
5703  */
5704 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5705 {
5706 	int ret;
5707 	struct btrfs_path *path;
5708 	struct btrfs_trans_handle *trans;
5709 	struct btrfs_key key;
5710 	struct btrfs_key found_key;
5711 	struct btrfs_key tmp_key;
5712 	struct btrfs_root *log;
5713 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5714 	struct walk_control wc = {
5715 		.process_func = process_one_buffer,
5716 		.stage = 0,
5717 	};
5718 
5719 	path = btrfs_alloc_path();
5720 	if (!path)
5721 		return -ENOMEM;
5722 
5723 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5724 
5725 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5726 	if (IS_ERR(trans)) {
5727 		ret = PTR_ERR(trans);
5728 		goto error;
5729 	}
5730 
5731 	wc.trans = trans;
5732 	wc.pin = 1;
5733 
5734 	ret = walk_log_tree(trans, log_root_tree, &wc);
5735 	if (ret) {
5736 		btrfs_handle_fs_error(fs_info, ret,
5737 			"Failed to pin buffers while recovering log root tree.");
5738 		goto error;
5739 	}
5740 
5741 again:
5742 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5743 	key.offset = (u64)-1;
5744 	key.type = BTRFS_ROOT_ITEM_KEY;
5745 
5746 	while (1) {
5747 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5748 
5749 		if (ret < 0) {
5750 			btrfs_handle_fs_error(fs_info, ret,
5751 				    "Couldn't find tree log root.");
5752 			goto error;
5753 		}
5754 		if (ret > 0) {
5755 			if (path->slots[0] == 0)
5756 				break;
5757 			path->slots[0]--;
5758 		}
5759 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5760 				      path->slots[0]);
5761 		btrfs_release_path(path);
5762 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5763 			break;
5764 
5765 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5766 		if (IS_ERR(log)) {
5767 			ret = PTR_ERR(log);
5768 			btrfs_handle_fs_error(fs_info, ret,
5769 				    "Couldn't read tree log root.");
5770 			goto error;
5771 		}
5772 
5773 		tmp_key.objectid = found_key.offset;
5774 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5775 		tmp_key.offset = (u64)-1;
5776 
5777 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5778 		if (IS_ERR(wc.replay_dest)) {
5779 			ret = PTR_ERR(wc.replay_dest);
5780 			free_extent_buffer(log->node);
5781 			free_extent_buffer(log->commit_root);
5782 			kfree(log);
5783 			btrfs_handle_fs_error(fs_info, ret,
5784 				"Couldn't read target root for tree log recovery.");
5785 			goto error;
5786 		}
5787 
5788 		wc.replay_dest->log_root = log;
5789 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5790 		ret = walk_log_tree(trans, log, &wc);
5791 
5792 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5793 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5794 						      path);
5795 		}
5796 
5797 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5798 			struct btrfs_root *root = wc.replay_dest;
5799 
5800 			btrfs_release_path(path);
5801 
5802 			/*
5803 			 * We have just replayed everything, and the highest
5804 			 * objectid of fs roots probably has changed in case
5805 			 * some inode_item's got replayed.
5806 			 *
5807 			 * root->objectid_mutex is not acquired as log replay
5808 			 * could only happen during mount.
5809 			 */
5810 			ret = btrfs_find_highest_objectid(root,
5811 						  &root->highest_objectid);
5812 		}
5813 
5814 		key.offset = found_key.offset - 1;
5815 		wc.replay_dest->log_root = NULL;
5816 		free_extent_buffer(log->node);
5817 		free_extent_buffer(log->commit_root);
5818 		kfree(log);
5819 
5820 		if (ret)
5821 			goto error;
5822 
5823 		if (found_key.offset == 0)
5824 			break;
5825 	}
5826 	btrfs_release_path(path);
5827 
5828 	/* step one is to pin it all, step two is to replay just inodes */
5829 	if (wc.pin) {
5830 		wc.pin = 0;
5831 		wc.process_func = replay_one_buffer;
5832 		wc.stage = LOG_WALK_REPLAY_INODES;
5833 		goto again;
5834 	}
5835 	/* step three is to replay everything */
5836 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5837 		wc.stage++;
5838 		goto again;
5839 	}
5840 
5841 	btrfs_free_path(path);
5842 
5843 	/* step 4: commit the transaction, which also unpins the blocks */
5844 	ret = btrfs_commit_transaction(trans);
5845 	if (ret)
5846 		return ret;
5847 
5848 	free_extent_buffer(log_root_tree->node);
5849 	log_root_tree->log_root = NULL;
5850 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5851 	kfree(log_root_tree);
5852 
5853 	return 0;
5854 error:
5855 	if (wc.trans)
5856 		btrfs_end_transaction(wc.trans);
5857 	btrfs_free_path(path);
5858 	return ret;
5859 }
5860 
5861 /*
5862  * there are some corner cases where we want to force a full
5863  * commit instead of allowing a directory to be logged.
5864  *
5865  * They revolve around files there were unlinked from the directory, and
5866  * this function updates the parent directory so that a full commit is
5867  * properly done if it is fsync'd later after the unlinks are done.
5868  *
5869  * Must be called before the unlink operations (updates to the subvolume tree,
5870  * inodes, etc) are done.
5871  */
5872 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5873 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
5874 			     int for_rename)
5875 {
5876 	/*
5877 	 * when we're logging a file, if it hasn't been renamed
5878 	 * or unlinked, and its inode is fully committed on disk,
5879 	 * we don't have to worry about walking up the directory chain
5880 	 * to log its parents.
5881 	 *
5882 	 * So, we use the last_unlink_trans field to put this transid
5883 	 * into the file.  When the file is logged we check it and
5884 	 * don't log the parents if the file is fully on disk.
5885 	 */
5886 	mutex_lock(&inode->log_mutex);
5887 	inode->last_unlink_trans = trans->transid;
5888 	mutex_unlock(&inode->log_mutex);
5889 
5890 	/*
5891 	 * if this directory was already logged any new
5892 	 * names for this file/dir will get recorded
5893 	 */
5894 	smp_mb();
5895 	if (dir->logged_trans == trans->transid)
5896 		return;
5897 
5898 	/*
5899 	 * if the inode we're about to unlink was logged,
5900 	 * the log will be properly updated for any new names
5901 	 */
5902 	if (inode->logged_trans == trans->transid)
5903 		return;
5904 
5905 	/*
5906 	 * when renaming files across directories, if the directory
5907 	 * there we're unlinking from gets fsync'd later on, there's
5908 	 * no way to find the destination directory later and fsync it
5909 	 * properly.  So, we have to be conservative and force commits
5910 	 * so the new name gets discovered.
5911 	 */
5912 	if (for_rename)
5913 		goto record;
5914 
5915 	/* we can safely do the unlink without any special recording */
5916 	return;
5917 
5918 record:
5919 	mutex_lock(&dir->log_mutex);
5920 	dir->last_unlink_trans = trans->transid;
5921 	mutex_unlock(&dir->log_mutex);
5922 }
5923 
5924 /*
5925  * Make sure that if someone attempts to fsync the parent directory of a deleted
5926  * snapshot, it ends up triggering a transaction commit. This is to guarantee
5927  * that after replaying the log tree of the parent directory's root we will not
5928  * see the snapshot anymore and at log replay time we will not see any log tree
5929  * corresponding to the deleted snapshot's root, which could lead to replaying
5930  * it after replaying the log tree of the parent directory (which would replay
5931  * the snapshot delete operation).
5932  *
5933  * Must be called before the actual snapshot destroy operation (updates to the
5934  * parent root and tree of tree roots trees, etc) are done.
5935  */
5936 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5937 				   struct btrfs_inode *dir)
5938 {
5939 	mutex_lock(&dir->log_mutex);
5940 	dir->last_unlink_trans = trans->transid;
5941 	mutex_unlock(&dir->log_mutex);
5942 }
5943 
5944 /*
5945  * Call this after adding a new name for a file and it will properly
5946  * update the log to reflect the new name.
5947  *
5948  * It will return zero if all goes well, and it will return 1 if a
5949  * full transaction commit is required.
5950  */
5951 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5952 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
5953 			struct dentry *parent)
5954 {
5955 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5956 	struct btrfs_root *root = inode->root;
5957 
5958 	/*
5959 	 * this will force the logging code to walk the dentry chain
5960 	 * up for the file
5961 	 */
5962 	if (!S_ISDIR(inode->vfs_inode.i_mode))
5963 		inode->last_unlink_trans = trans->transid;
5964 
5965 	/*
5966 	 * if this inode hasn't been logged and directory we're renaming it
5967 	 * from hasn't been logged, we don't need to log it
5968 	 */
5969 	if (inode->logged_trans <= fs_info->last_trans_committed &&
5970 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
5971 		return 0;
5972 
5973 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5974 				      LLONG_MAX, LOG_INODE_EXISTS, NULL);
5975 }
5976 
5977