1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/blkdev.h> 22 #include <linux/list_sort.h> 23 #include "tree-log.h" 24 #include "disk-io.h" 25 #include "locking.h" 26 #include "print-tree.h" 27 #include "backref.h" 28 #include "hash.h" 29 #include "compression.h" 30 #include "qgroup.h" 31 32 /* magic values for the inode_only field in btrfs_log_inode: 33 * 34 * LOG_INODE_ALL means to log everything 35 * LOG_INODE_EXISTS means to log just enough to recreate the inode 36 * during log replay 37 */ 38 #define LOG_INODE_ALL 0 39 #define LOG_INODE_EXISTS 1 40 41 /* 42 * directory trouble cases 43 * 44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 45 * log, we must force a full commit before doing an fsync of the directory 46 * where the unlink was done. 47 * ---> record transid of last unlink/rename per directory 48 * 49 * mkdir foo/some_dir 50 * normal commit 51 * rename foo/some_dir foo2/some_dir 52 * mkdir foo/some_dir 53 * fsync foo/some_dir/some_file 54 * 55 * The fsync above will unlink the original some_dir without recording 56 * it in its new location (foo2). After a crash, some_dir will be gone 57 * unless the fsync of some_file forces a full commit 58 * 59 * 2) we must log any new names for any file or dir that is in the fsync 60 * log. ---> check inode while renaming/linking. 61 * 62 * 2a) we must log any new names for any file or dir during rename 63 * when the directory they are being removed from was logged. 64 * ---> check inode and old parent dir during rename 65 * 66 * 2a is actually the more important variant. With the extra logging 67 * a crash might unlink the old name without recreating the new one 68 * 69 * 3) after a crash, we must go through any directories with a link count 70 * of zero and redo the rm -rf 71 * 72 * mkdir f1/foo 73 * normal commit 74 * rm -rf f1/foo 75 * fsync(f1) 76 * 77 * The directory f1 was fully removed from the FS, but fsync was never 78 * called on f1, only its parent dir. After a crash the rm -rf must 79 * be replayed. This must be able to recurse down the entire 80 * directory tree. The inode link count fixup code takes care of the 81 * ugly details. 82 */ 83 84 /* 85 * stages for the tree walking. The first 86 * stage (0) is to only pin down the blocks we find 87 * the second stage (1) is to make sure that all the inodes 88 * we find in the log are created in the subvolume. 89 * 90 * The last stage is to deal with directories and links and extents 91 * and all the other fun semantics 92 */ 93 #define LOG_WALK_PIN_ONLY 0 94 #define LOG_WALK_REPLAY_INODES 1 95 #define LOG_WALK_REPLAY_DIR_INDEX 2 96 #define LOG_WALK_REPLAY_ALL 3 97 98 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 99 struct btrfs_root *root, struct inode *inode, 100 int inode_only, 101 const loff_t start, 102 const loff_t end, 103 struct btrfs_log_ctx *ctx); 104 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 105 struct btrfs_root *root, 106 struct btrfs_path *path, u64 objectid); 107 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 108 struct btrfs_root *root, 109 struct btrfs_root *log, 110 struct btrfs_path *path, 111 u64 dirid, int del_all); 112 113 /* 114 * tree logging is a special write ahead log used to make sure that 115 * fsyncs and O_SYNCs can happen without doing full tree commits. 116 * 117 * Full tree commits are expensive because they require commonly 118 * modified blocks to be recowed, creating many dirty pages in the 119 * extent tree an 4x-6x higher write load than ext3. 120 * 121 * Instead of doing a tree commit on every fsync, we use the 122 * key ranges and transaction ids to find items for a given file or directory 123 * that have changed in this transaction. Those items are copied into 124 * a special tree (one per subvolume root), that tree is written to disk 125 * and then the fsync is considered complete. 126 * 127 * After a crash, items are copied out of the log-tree back into the 128 * subvolume tree. Any file data extents found are recorded in the extent 129 * allocation tree, and the log-tree freed. 130 * 131 * The log tree is read three times, once to pin down all the extents it is 132 * using in ram and once, once to create all the inodes logged in the tree 133 * and once to do all the other items. 134 */ 135 136 /* 137 * start a sub transaction and setup the log tree 138 * this increments the log tree writer count to make the people 139 * syncing the tree wait for us to finish 140 */ 141 static int start_log_trans(struct btrfs_trans_handle *trans, 142 struct btrfs_root *root, 143 struct btrfs_log_ctx *ctx) 144 { 145 int ret = 0; 146 147 mutex_lock(&root->log_mutex); 148 149 if (root->log_root) { 150 if (btrfs_need_log_full_commit(root->fs_info, trans)) { 151 ret = -EAGAIN; 152 goto out; 153 } 154 155 if (!root->log_start_pid) { 156 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 157 root->log_start_pid = current->pid; 158 } else if (root->log_start_pid != current->pid) { 159 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 160 } 161 } else { 162 mutex_lock(&root->fs_info->tree_log_mutex); 163 if (!root->fs_info->log_root_tree) 164 ret = btrfs_init_log_root_tree(trans, root->fs_info); 165 mutex_unlock(&root->fs_info->tree_log_mutex); 166 if (ret) 167 goto out; 168 169 ret = btrfs_add_log_tree(trans, root); 170 if (ret) 171 goto out; 172 173 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 174 root->log_start_pid = current->pid; 175 } 176 177 atomic_inc(&root->log_batch); 178 atomic_inc(&root->log_writers); 179 if (ctx) { 180 int index = root->log_transid % 2; 181 list_add_tail(&ctx->list, &root->log_ctxs[index]); 182 ctx->log_transid = root->log_transid; 183 } 184 185 out: 186 mutex_unlock(&root->log_mutex); 187 return ret; 188 } 189 190 /* 191 * returns 0 if there was a log transaction running and we were able 192 * to join, or returns -ENOENT if there were not transactions 193 * in progress 194 */ 195 static int join_running_log_trans(struct btrfs_root *root) 196 { 197 int ret = -ENOENT; 198 199 smp_mb(); 200 if (!root->log_root) 201 return -ENOENT; 202 203 mutex_lock(&root->log_mutex); 204 if (root->log_root) { 205 ret = 0; 206 atomic_inc(&root->log_writers); 207 } 208 mutex_unlock(&root->log_mutex); 209 return ret; 210 } 211 212 /* 213 * This either makes the current running log transaction wait 214 * until you call btrfs_end_log_trans() or it makes any future 215 * log transactions wait until you call btrfs_end_log_trans() 216 */ 217 int btrfs_pin_log_trans(struct btrfs_root *root) 218 { 219 int ret = -ENOENT; 220 221 mutex_lock(&root->log_mutex); 222 atomic_inc(&root->log_writers); 223 mutex_unlock(&root->log_mutex); 224 return ret; 225 } 226 227 /* 228 * indicate we're done making changes to the log tree 229 * and wake up anyone waiting to do a sync 230 */ 231 void btrfs_end_log_trans(struct btrfs_root *root) 232 { 233 if (atomic_dec_and_test(&root->log_writers)) { 234 /* 235 * Implicit memory barrier after atomic_dec_and_test 236 */ 237 if (waitqueue_active(&root->log_writer_wait)) 238 wake_up(&root->log_writer_wait); 239 } 240 } 241 242 243 /* 244 * the walk control struct is used to pass state down the chain when 245 * processing the log tree. The stage field tells us which part 246 * of the log tree processing we are currently doing. The others 247 * are state fields used for that specific part 248 */ 249 struct walk_control { 250 /* should we free the extent on disk when done? This is used 251 * at transaction commit time while freeing a log tree 252 */ 253 int free; 254 255 /* should we write out the extent buffer? This is used 256 * while flushing the log tree to disk during a sync 257 */ 258 int write; 259 260 /* should we wait for the extent buffer io to finish? Also used 261 * while flushing the log tree to disk for a sync 262 */ 263 int wait; 264 265 /* pin only walk, we record which extents on disk belong to the 266 * log trees 267 */ 268 int pin; 269 270 /* what stage of the replay code we're currently in */ 271 int stage; 272 273 /* the root we are currently replaying */ 274 struct btrfs_root *replay_dest; 275 276 /* the trans handle for the current replay */ 277 struct btrfs_trans_handle *trans; 278 279 /* the function that gets used to process blocks we find in the 280 * tree. Note the extent_buffer might not be up to date when it is 281 * passed in, and it must be checked or read if you need the data 282 * inside it 283 */ 284 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 285 struct walk_control *wc, u64 gen); 286 }; 287 288 /* 289 * process_func used to pin down extents, write them or wait on them 290 */ 291 static int process_one_buffer(struct btrfs_root *log, 292 struct extent_buffer *eb, 293 struct walk_control *wc, u64 gen) 294 { 295 int ret = 0; 296 297 /* 298 * If this fs is mixed then we need to be able to process the leaves to 299 * pin down any logged extents, so we have to read the block. 300 */ 301 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) { 302 ret = btrfs_read_buffer(eb, gen); 303 if (ret) 304 return ret; 305 } 306 307 if (wc->pin) 308 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root, 309 eb->start, eb->len); 310 311 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 312 if (wc->pin && btrfs_header_level(eb) == 0) 313 ret = btrfs_exclude_logged_extents(log, eb); 314 if (wc->write) 315 btrfs_write_tree_block(eb); 316 if (wc->wait) 317 btrfs_wait_tree_block_writeback(eb); 318 } 319 return ret; 320 } 321 322 /* 323 * Item overwrite used by replay and tree logging. eb, slot and key all refer 324 * to the src data we are copying out. 325 * 326 * root is the tree we are copying into, and path is a scratch 327 * path for use in this function (it should be released on entry and 328 * will be released on exit). 329 * 330 * If the key is already in the destination tree the existing item is 331 * overwritten. If the existing item isn't big enough, it is extended. 332 * If it is too large, it is truncated. 333 * 334 * If the key isn't in the destination yet, a new item is inserted. 335 */ 336 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 337 struct btrfs_root *root, 338 struct btrfs_path *path, 339 struct extent_buffer *eb, int slot, 340 struct btrfs_key *key) 341 { 342 int ret; 343 u32 item_size; 344 u64 saved_i_size = 0; 345 int save_old_i_size = 0; 346 unsigned long src_ptr; 347 unsigned long dst_ptr; 348 int overwrite_root = 0; 349 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 350 351 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 352 overwrite_root = 1; 353 354 item_size = btrfs_item_size_nr(eb, slot); 355 src_ptr = btrfs_item_ptr_offset(eb, slot); 356 357 /* look for the key in the destination tree */ 358 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 359 if (ret < 0) 360 return ret; 361 362 if (ret == 0) { 363 char *src_copy; 364 char *dst_copy; 365 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 366 path->slots[0]); 367 if (dst_size != item_size) 368 goto insert; 369 370 if (item_size == 0) { 371 btrfs_release_path(path); 372 return 0; 373 } 374 dst_copy = kmalloc(item_size, GFP_NOFS); 375 src_copy = kmalloc(item_size, GFP_NOFS); 376 if (!dst_copy || !src_copy) { 377 btrfs_release_path(path); 378 kfree(dst_copy); 379 kfree(src_copy); 380 return -ENOMEM; 381 } 382 383 read_extent_buffer(eb, src_copy, src_ptr, item_size); 384 385 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 386 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 387 item_size); 388 ret = memcmp(dst_copy, src_copy, item_size); 389 390 kfree(dst_copy); 391 kfree(src_copy); 392 /* 393 * they have the same contents, just return, this saves 394 * us from cowing blocks in the destination tree and doing 395 * extra writes that may not have been done by a previous 396 * sync 397 */ 398 if (ret == 0) { 399 btrfs_release_path(path); 400 return 0; 401 } 402 403 /* 404 * We need to load the old nbytes into the inode so when we 405 * replay the extents we've logged we get the right nbytes. 406 */ 407 if (inode_item) { 408 struct btrfs_inode_item *item; 409 u64 nbytes; 410 u32 mode; 411 412 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 413 struct btrfs_inode_item); 414 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 415 item = btrfs_item_ptr(eb, slot, 416 struct btrfs_inode_item); 417 btrfs_set_inode_nbytes(eb, item, nbytes); 418 419 /* 420 * If this is a directory we need to reset the i_size to 421 * 0 so that we can set it up properly when replaying 422 * the rest of the items in this log. 423 */ 424 mode = btrfs_inode_mode(eb, item); 425 if (S_ISDIR(mode)) 426 btrfs_set_inode_size(eb, item, 0); 427 } 428 } else if (inode_item) { 429 struct btrfs_inode_item *item; 430 u32 mode; 431 432 /* 433 * New inode, set nbytes to 0 so that the nbytes comes out 434 * properly when we replay the extents. 435 */ 436 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 437 btrfs_set_inode_nbytes(eb, item, 0); 438 439 /* 440 * If this is a directory we need to reset the i_size to 0 so 441 * that we can set it up properly when replaying the rest of 442 * the items in this log. 443 */ 444 mode = btrfs_inode_mode(eb, item); 445 if (S_ISDIR(mode)) 446 btrfs_set_inode_size(eb, item, 0); 447 } 448 insert: 449 btrfs_release_path(path); 450 /* try to insert the key into the destination tree */ 451 path->skip_release_on_error = 1; 452 ret = btrfs_insert_empty_item(trans, root, path, 453 key, item_size); 454 path->skip_release_on_error = 0; 455 456 /* make sure any existing item is the correct size */ 457 if (ret == -EEXIST || ret == -EOVERFLOW) { 458 u32 found_size; 459 found_size = btrfs_item_size_nr(path->nodes[0], 460 path->slots[0]); 461 if (found_size > item_size) 462 btrfs_truncate_item(root, path, item_size, 1); 463 else if (found_size < item_size) 464 btrfs_extend_item(root, path, 465 item_size - found_size); 466 } else if (ret) { 467 return ret; 468 } 469 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 470 path->slots[0]); 471 472 /* don't overwrite an existing inode if the generation number 473 * was logged as zero. This is done when the tree logging code 474 * is just logging an inode to make sure it exists after recovery. 475 * 476 * Also, don't overwrite i_size on directories during replay. 477 * log replay inserts and removes directory items based on the 478 * state of the tree found in the subvolume, and i_size is modified 479 * as it goes 480 */ 481 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 482 struct btrfs_inode_item *src_item; 483 struct btrfs_inode_item *dst_item; 484 485 src_item = (struct btrfs_inode_item *)src_ptr; 486 dst_item = (struct btrfs_inode_item *)dst_ptr; 487 488 if (btrfs_inode_generation(eb, src_item) == 0) { 489 struct extent_buffer *dst_eb = path->nodes[0]; 490 const u64 ino_size = btrfs_inode_size(eb, src_item); 491 492 /* 493 * For regular files an ino_size == 0 is used only when 494 * logging that an inode exists, as part of a directory 495 * fsync, and the inode wasn't fsynced before. In this 496 * case don't set the size of the inode in the fs/subvol 497 * tree, otherwise we would be throwing valid data away. 498 */ 499 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 500 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 501 ino_size != 0) { 502 struct btrfs_map_token token; 503 504 btrfs_init_map_token(&token); 505 btrfs_set_token_inode_size(dst_eb, dst_item, 506 ino_size, &token); 507 } 508 goto no_copy; 509 } 510 511 if (overwrite_root && 512 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 513 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 514 save_old_i_size = 1; 515 saved_i_size = btrfs_inode_size(path->nodes[0], 516 dst_item); 517 } 518 } 519 520 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 521 src_ptr, item_size); 522 523 if (save_old_i_size) { 524 struct btrfs_inode_item *dst_item; 525 dst_item = (struct btrfs_inode_item *)dst_ptr; 526 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 527 } 528 529 /* make sure the generation is filled in */ 530 if (key->type == BTRFS_INODE_ITEM_KEY) { 531 struct btrfs_inode_item *dst_item; 532 dst_item = (struct btrfs_inode_item *)dst_ptr; 533 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 534 btrfs_set_inode_generation(path->nodes[0], dst_item, 535 trans->transid); 536 } 537 } 538 no_copy: 539 btrfs_mark_buffer_dirty(path->nodes[0]); 540 btrfs_release_path(path); 541 return 0; 542 } 543 544 /* 545 * simple helper to read an inode off the disk from a given root 546 * This can only be called for subvolume roots and not for the log 547 */ 548 static noinline struct inode *read_one_inode(struct btrfs_root *root, 549 u64 objectid) 550 { 551 struct btrfs_key key; 552 struct inode *inode; 553 554 key.objectid = objectid; 555 key.type = BTRFS_INODE_ITEM_KEY; 556 key.offset = 0; 557 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 558 if (IS_ERR(inode)) { 559 inode = NULL; 560 } else if (is_bad_inode(inode)) { 561 iput(inode); 562 inode = NULL; 563 } 564 return inode; 565 } 566 567 /* replays a single extent in 'eb' at 'slot' with 'key' into the 568 * subvolume 'root'. path is released on entry and should be released 569 * on exit. 570 * 571 * extents in the log tree have not been allocated out of the extent 572 * tree yet. So, this completes the allocation, taking a reference 573 * as required if the extent already exists or creating a new extent 574 * if it isn't in the extent allocation tree yet. 575 * 576 * The extent is inserted into the file, dropping any existing extents 577 * from the file that overlap the new one. 578 */ 579 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 580 struct btrfs_root *root, 581 struct btrfs_path *path, 582 struct extent_buffer *eb, int slot, 583 struct btrfs_key *key) 584 { 585 int found_type; 586 u64 extent_end; 587 u64 start = key->offset; 588 u64 nbytes = 0; 589 struct btrfs_file_extent_item *item; 590 struct inode *inode = NULL; 591 unsigned long size; 592 int ret = 0; 593 594 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 595 found_type = btrfs_file_extent_type(eb, item); 596 597 if (found_type == BTRFS_FILE_EXTENT_REG || 598 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 599 nbytes = btrfs_file_extent_num_bytes(eb, item); 600 extent_end = start + nbytes; 601 602 /* 603 * We don't add to the inodes nbytes if we are prealloc or a 604 * hole. 605 */ 606 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 607 nbytes = 0; 608 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 609 size = btrfs_file_extent_inline_len(eb, slot, item); 610 nbytes = btrfs_file_extent_ram_bytes(eb, item); 611 extent_end = ALIGN(start + size, root->sectorsize); 612 } else { 613 ret = 0; 614 goto out; 615 } 616 617 inode = read_one_inode(root, key->objectid); 618 if (!inode) { 619 ret = -EIO; 620 goto out; 621 } 622 623 /* 624 * first check to see if we already have this extent in the 625 * file. This must be done before the btrfs_drop_extents run 626 * so we don't try to drop this extent. 627 */ 628 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 629 start, 0); 630 631 if (ret == 0 && 632 (found_type == BTRFS_FILE_EXTENT_REG || 633 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 634 struct btrfs_file_extent_item cmp1; 635 struct btrfs_file_extent_item cmp2; 636 struct btrfs_file_extent_item *existing; 637 struct extent_buffer *leaf; 638 639 leaf = path->nodes[0]; 640 existing = btrfs_item_ptr(leaf, path->slots[0], 641 struct btrfs_file_extent_item); 642 643 read_extent_buffer(eb, &cmp1, (unsigned long)item, 644 sizeof(cmp1)); 645 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 646 sizeof(cmp2)); 647 648 /* 649 * we already have a pointer to this exact extent, 650 * we don't have to do anything 651 */ 652 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 653 btrfs_release_path(path); 654 goto out; 655 } 656 } 657 btrfs_release_path(path); 658 659 /* drop any overlapping extents */ 660 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 661 if (ret) 662 goto out; 663 664 if (found_type == BTRFS_FILE_EXTENT_REG || 665 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 666 u64 offset; 667 unsigned long dest_offset; 668 struct btrfs_key ins; 669 670 ret = btrfs_insert_empty_item(trans, root, path, key, 671 sizeof(*item)); 672 if (ret) 673 goto out; 674 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 675 path->slots[0]); 676 copy_extent_buffer(path->nodes[0], eb, dest_offset, 677 (unsigned long)item, sizeof(*item)); 678 679 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 680 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 681 ins.type = BTRFS_EXTENT_ITEM_KEY; 682 offset = key->offset - btrfs_file_extent_offset(eb, item); 683 684 /* 685 * Manually record dirty extent, as here we did a shallow 686 * file extent item copy and skip normal backref update, 687 * but modifying extent tree all by ourselves. 688 * So need to manually record dirty extent for qgroup, 689 * as the owner of the file extent changed from log tree 690 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 691 */ 692 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info, 693 btrfs_file_extent_disk_bytenr(eb, item), 694 btrfs_file_extent_disk_num_bytes(eb, item), 695 GFP_NOFS); 696 if (ret < 0) 697 goto out; 698 699 if (ins.objectid > 0) { 700 u64 csum_start; 701 u64 csum_end; 702 LIST_HEAD(ordered_sums); 703 /* 704 * is this extent already allocated in the extent 705 * allocation tree? If so, just add a reference 706 */ 707 ret = btrfs_lookup_data_extent(root, ins.objectid, 708 ins.offset); 709 if (ret == 0) { 710 ret = btrfs_inc_extent_ref(trans, root, 711 ins.objectid, ins.offset, 712 0, root->root_key.objectid, 713 key->objectid, offset); 714 if (ret) 715 goto out; 716 } else { 717 /* 718 * insert the extent pointer in the extent 719 * allocation tree 720 */ 721 ret = btrfs_alloc_logged_file_extent(trans, 722 root, root->root_key.objectid, 723 key->objectid, offset, &ins); 724 if (ret) 725 goto out; 726 } 727 btrfs_release_path(path); 728 729 if (btrfs_file_extent_compression(eb, item)) { 730 csum_start = ins.objectid; 731 csum_end = csum_start + ins.offset; 732 } else { 733 csum_start = ins.objectid + 734 btrfs_file_extent_offset(eb, item); 735 csum_end = csum_start + 736 btrfs_file_extent_num_bytes(eb, item); 737 } 738 739 ret = btrfs_lookup_csums_range(root->log_root, 740 csum_start, csum_end - 1, 741 &ordered_sums, 0); 742 if (ret) 743 goto out; 744 /* 745 * Now delete all existing cums in the csum root that 746 * cover our range. We do this because we can have an 747 * extent that is completely referenced by one file 748 * extent item and partially referenced by another 749 * file extent item (like after using the clone or 750 * extent_same ioctls). In this case if we end up doing 751 * the replay of the one that partially references the 752 * extent first, and we do not do the csum deletion 753 * below, we can get 2 csum items in the csum tree that 754 * overlap each other. For example, imagine our log has 755 * the two following file extent items: 756 * 757 * key (257 EXTENT_DATA 409600) 758 * extent data disk byte 12845056 nr 102400 759 * extent data offset 20480 nr 20480 ram 102400 760 * 761 * key (257 EXTENT_DATA 819200) 762 * extent data disk byte 12845056 nr 102400 763 * extent data offset 0 nr 102400 ram 102400 764 * 765 * Where the second one fully references the 100K extent 766 * that starts at disk byte 12845056, and the log tree 767 * has a single csum item that covers the entire range 768 * of the extent: 769 * 770 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 771 * 772 * After the first file extent item is replayed, the 773 * csum tree gets the following csum item: 774 * 775 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 776 * 777 * Which covers the 20K sub-range starting at offset 20K 778 * of our extent. Now when we replay the second file 779 * extent item, if we do not delete existing csum items 780 * that cover any of its blocks, we end up getting two 781 * csum items in our csum tree that overlap each other: 782 * 783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 785 * 786 * Which is a problem, because after this anyone trying 787 * to lookup up for the checksum of any block of our 788 * extent starting at an offset of 40K or higher, will 789 * end up looking at the second csum item only, which 790 * does not contain the checksum for any block starting 791 * at offset 40K or higher of our extent. 792 */ 793 while (!list_empty(&ordered_sums)) { 794 struct btrfs_ordered_sum *sums; 795 sums = list_entry(ordered_sums.next, 796 struct btrfs_ordered_sum, 797 list); 798 if (!ret) 799 ret = btrfs_del_csums(trans, 800 root->fs_info->csum_root, 801 sums->bytenr, 802 sums->len); 803 if (!ret) 804 ret = btrfs_csum_file_blocks(trans, 805 root->fs_info->csum_root, 806 sums); 807 list_del(&sums->list); 808 kfree(sums); 809 } 810 if (ret) 811 goto out; 812 } else { 813 btrfs_release_path(path); 814 } 815 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 816 /* inline extents are easy, we just overwrite them */ 817 ret = overwrite_item(trans, root, path, eb, slot, key); 818 if (ret) 819 goto out; 820 } 821 822 inode_add_bytes(inode, nbytes); 823 ret = btrfs_update_inode(trans, root, inode); 824 out: 825 if (inode) 826 iput(inode); 827 return ret; 828 } 829 830 /* 831 * when cleaning up conflicts between the directory names in the 832 * subvolume, directory names in the log and directory names in the 833 * inode back references, we may have to unlink inodes from directories. 834 * 835 * This is a helper function to do the unlink of a specific directory 836 * item 837 */ 838 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 839 struct btrfs_root *root, 840 struct btrfs_path *path, 841 struct inode *dir, 842 struct btrfs_dir_item *di) 843 { 844 struct inode *inode; 845 char *name; 846 int name_len; 847 struct extent_buffer *leaf; 848 struct btrfs_key location; 849 int ret; 850 851 leaf = path->nodes[0]; 852 853 btrfs_dir_item_key_to_cpu(leaf, di, &location); 854 name_len = btrfs_dir_name_len(leaf, di); 855 name = kmalloc(name_len, GFP_NOFS); 856 if (!name) 857 return -ENOMEM; 858 859 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 860 btrfs_release_path(path); 861 862 inode = read_one_inode(root, location.objectid); 863 if (!inode) { 864 ret = -EIO; 865 goto out; 866 } 867 868 ret = link_to_fixup_dir(trans, root, path, location.objectid); 869 if (ret) 870 goto out; 871 872 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 873 if (ret) 874 goto out; 875 else 876 ret = btrfs_run_delayed_items(trans, root); 877 out: 878 kfree(name); 879 iput(inode); 880 return ret; 881 } 882 883 /* 884 * helper function to see if a given name and sequence number found 885 * in an inode back reference are already in a directory and correctly 886 * point to this inode 887 */ 888 static noinline int inode_in_dir(struct btrfs_root *root, 889 struct btrfs_path *path, 890 u64 dirid, u64 objectid, u64 index, 891 const char *name, int name_len) 892 { 893 struct btrfs_dir_item *di; 894 struct btrfs_key location; 895 int match = 0; 896 897 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 898 index, name, name_len, 0); 899 if (di && !IS_ERR(di)) { 900 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 901 if (location.objectid != objectid) 902 goto out; 903 } else 904 goto out; 905 btrfs_release_path(path); 906 907 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 908 if (di && !IS_ERR(di)) { 909 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 910 if (location.objectid != objectid) 911 goto out; 912 } else 913 goto out; 914 match = 1; 915 out: 916 btrfs_release_path(path); 917 return match; 918 } 919 920 /* 921 * helper function to check a log tree for a named back reference in 922 * an inode. This is used to decide if a back reference that is 923 * found in the subvolume conflicts with what we find in the log. 924 * 925 * inode backreferences may have multiple refs in a single item, 926 * during replay we process one reference at a time, and we don't 927 * want to delete valid links to a file from the subvolume if that 928 * link is also in the log. 929 */ 930 static noinline int backref_in_log(struct btrfs_root *log, 931 struct btrfs_key *key, 932 u64 ref_objectid, 933 const char *name, int namelen) 934 { 935 struct btrfs_path *path; 936 struct btrfs_inode_ref *ref; 937 unsigned long ptr; 938 unsigned long ptr_end; 939 unsigned long name_ptr; 940 int found_name_len; 941 int item_size; 942 int ret; 943 int match = 0; 944 945 path = btrfs_alloc_path(); 946 if (!path) 947 return -ENOMEM; 948 949 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 950 if (ret != 0) 951 goto out; 952 953 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 954 955 if (key->type == BTRFS_INODE_EXTREF_KEY) { 956 if (btrfs_find_name_in_ext_backref(path, ref_objectid, 957 name, namelen, NULL)) 958 match = 1; 959 960 goto out; 961 } 962 963 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 964 ptr_end = ptr + item_size; 965 while (ptr < ptr_end) { 966 ref = (struct btrfs_inode_ref *)ptr; 967 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 968 if (found_name_len == namelen) { 969 name_ptr = (unsigned long)(ref + 1); 970 ret = memcmp_extent_buffer(path->nodes[0], name, 971 name_ptr, namelen); 972 if (ret == 0) { 973 match = 1; 974 goto out; 975 } 976 } 977 ptr = (unsigned long)(ref + 1) + found_name_len; 978 } 979 out: 980 btrfs_free_path(path); 981 return match; 982 } 983 984 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 985 struct btrfs_root *root, 986 struct btrfs_path *path, 987 struct btrfs_root *log_root, 988 struct inode *dir, struct inode *inode, 989 struct extent_buffer *eb, 990 u64 inode_objectid, u64 parent_objectid, 991 u64 ref_index, char *name, int namelen, 992 int *search_done) 993 { 994 int ret; 995 char *victim_name; 996 int victim_name_len; 997 struct extent_buffer *leaf; 998 struct btrfs_dir_item *di; 999 struct btrfs_key search_key; 1000 struct btrfs_inode_extref *extref; 1001 1002 again: 1003 /* Search old style refs */ 1004 search_key.objectid = inode_objectid; 1005 search_key.type = BTRFS_INODE_REF_KEY; 1006 search_key.offset = parent_objectid; 1007 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1008 if (ret == 0) { 1009 struct btrfs_inode_ref *victim_ref; 1010 unsigned long ptr; 1011 unsigned long ptr_end; 1012 1013 leaf = path->nodes[0]; 1014 1015 /* are we trying to overwrite a back ref for the root directory 1016 * if so, just jump out, we're done 1017 */ 1018 if (search_key.objectid == search_key.offset) 1019 return 1; 1020 1021 /* check all the names in this back reference to see 1022 * if they are in the log. if so, we allow them to stay 1023 * otherwise they must be unlinked as a conflict 1024 */ 1025 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1026 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1027 while (ptr < ptr_end) { 1028 victim_ref = (struct btrfs_inode_ref *)ptr; 1029 victim_name_len = btrfs_inode_ref_name_len(leaf, 1030 victim_ref); 1031 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1032 if (!victim_name) 1033 return -ENOMEM; 1034 1035 read_extent_buffer(leaf, victim_name, 1036 (unsigned long)(victim_ref + 1), 1037 victim_name_len); 1038 1039 if (!backref_in_log(log_root, &search_key, 1040 parent_objectid, 1041 victim_name, 1042 victim_name_len)) { 1043 inc_nlink(inode); 1044 btrfs_release_path(path); 1045 1046 ret = btrfs_unlink_inode(trans, root, dir, 1047 inode, victim_name, 1048 victim_name_len); 1049 kfree(victim_name); 1050 if (ret) 1051 return ret; 1052 ret = btrfs_run_delayed_items(trans, root); 1053 if (ret) 1054 return ret; 1055 *search_done = 1; 1056 goto again; 1057 } 1058 kfree(victim_name); 1059 1060 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1061 } 1062 1063 /* 1064 * NOTE: we have searched root tree and checked the 1065 * corresponding ref, it does not need to check again. 1066 */ 1067 *search_done = 1; 1068 } 1069 btrfs_release_path(path); 1070 1071 /* Same search but for extended refs */ 1072 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1073 inode_objectid, parent_objectid, 0, 1074 0); 1075 if (!IS_ERR_OR_NULL(extref)) { 1076 u32 item_size; 1077 u32 cur_offset = 0; 1078 unsigned long base; 1079 struct inode *victim_parent; 1080 1081 leaf = path->nodes[0]; 1082 1083 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1084 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1085 1086 while (cur_offset < item_size) { 1087 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1088 1089 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1090 1091 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1092 goto next; 1093 1094 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1095 if (!victim_name) 1096 return -ENOMEM; 1097 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1098 victim_name_len); 1099 1100 search_key.objectid = inode_objectid; 1101 search_key.type = BTRFS_INODE_EXTREF_KEY; 1102 search_key.offset = btrfs_extref_hash(parent_objectid, 1103 victim_name, 1104 victim_name_len); 1105 ret = 0; 1106 if (!backref_in_log(log_root, &search_key, 1107 parent_objectid, victim_name, 1108 victim_name_len)) { 1109 ret = -ENOENT; 1110 victim_parent = read_one_inode(root, 1111 parent_objectid); 1112 if (victim_parent) { 1113 inc_nlink(inode); 1114 btrfs_release_path(path); 1115 1116 ret = btrfs_unlink_inode(trans, root, 1117 victim_parent, 1118 inode, 1119 victim_name, 1120 victim_name_len); 1121 if (!ret) 1122 ret = btrfs_run_delayed_items( 1123 trans, root); 1124 } 1125 iput(victim_parent); 1126 kfree(victim_name); 1127 if (ret) 1128 return ret; 1129 *search_done = 1; 1130 goto again; 1131 } 1132 kfree(victim_name); 1133 if (ret) 1134 return ret; 1135 next: 1136 cur_offset += victim_name_len + sizeof(*extref); 1137 } 1138 *search_done = 1; 1139 } 1140 btrfs_release_path(path); 1141 1142 /* look for a conflicting sequence number */ 1143 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1144 ref_index, name, namelen, 0); 1145 if (di && !IS_ERR(di)) { 1146 ret = drop_one_dir_item(trans, root, path, dir, di); 1147 if (ret) 1148 return ret; 1149 } 1150 btrfs_release_path(path); 1151 1152 /* look for a conflicing name */ 1153 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1154 name, namelen, 0); 1155 if (di && !IS_ERR(di)) { 1156 ret = drop_one_dir_item(trans, root, path, dir, di); 1157 if (ret) 1158 return ret; 1159 } 1160 btrfs_release_path(path); 1161 1162 return 0; 1163 } 1164 1165 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1166 u32 *namelen, char **name, u64 *index, 1167 u64 *parent_objectid) 1168 { 1169 struct btrfs_inode_extref *extref; 1170 1171 extref = (struct btrfs_inode_extref *)ref_ptr; 1172 1173 *namelen = btrfs_inode_extref_name_len(eb, extref); 1174 *name = kmalloc(*namelen, GFP_NOFS); 1175 if (*name == NULL) 1176 return -ENOMEM; 1177 1178 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1179 *namelen); 1180 1181 *index = btrfs_inode_extref_index(eb, extref); 1182 if (parent_objectid) 1183 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1184 1185 return 0; 1186 } 1187 1188 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1189 u32 *namelen, char **name, u64 *index) 1190 { 1191 struct btrfs_inode_ref *ref; 1192 1193 ref = (struct btrfs_inode_ref *)ref_ptr; 1194 1195 *namelen = btrfs_inode_ref_name_len(eb, ref); 1196 *name = kmalloc(*namelen, GFP_NOFS); 1197 if (*name == NULL) 1198 return -ENOMEM; 1199 1200 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1201 1202 *index = btrfs_inode_ref_index(eb, ref); 1203 1204 return 0; 1205 } 1206 1207 /* 1208 * replay one inode back reference item found in the log tree. 1209 * eb, slot and key refer to the buffer and key found in the log tree. 1210 * root is the destination we are replaying into, and path is for temp 1211 * use by this function. (it should be released on return). 1212 */ 1213 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1214 struct btrfs_root *root, 1215 struct btrfs_root *log, 1216 struct btrfs_path *path, 1217 struct extent_buffer *eb, int slot, 1218 struct btrfs_key *key) 1219 { 1220 struct inode *dir = NULL; 1221 struct inode *inode = NULL; 1222 unsigned long ref_ptr; 1223 unsigned long ref_end; 1224 char *name = NULL; 1225 int namelen; 1226 int ret; 1227 int search_done = 0; 1228 int log_ref_ver = 0; 1229 u64 parent_objectid; 1230 u64 inode_objectid; 1231 u64 ref_index = 0; 1232 int ref_struct_size; 1233 1234 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1235 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1236 1237 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1238 struct btrfs_inode_extref *r; 1239 1240 ref_struct_size = sizeof(struct btrfs_inode_extref); 1241 log_ref_ver = 1; 1242 r = (struct btrfs_inode_extref *)ref_ptr; 1243 parent_objectid = btrfs_inode_extref_parent(eb, r); 1244 } else { 1245 ref_struct_size = sizeof(struct btrfs_inode_ref); 1246 parent_objectid = key->offset; 1247 } 1248 inode_objectid = key->objectid; 1249 1250 /* 1251 * it is possible that we didn't log all the parent directories 1252 * for a given inode. If we don't find the dir, just don't 1253 * copy the back ref in. The link count fixup code will take 1254 * care of the rest 1255 */ 1256 dir = read_one_inode(root, parent_objectid); 1257 if (!dir) { 1258 ret = -ENOENT; 1259 goto out; 1260 } 1261 1262 inode = read_one_inode(root, inode_objectid); 1263 if (!inode) { 1264 ret = -EIO; 1265 goto out; 1266 } 1267 1268 while (ref_ptr < ref_end) { 1269 if (log_ref_ver) { 1270 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1271 &ref_index, &parent_objectid); 1272 /* 1273 * parent object can change from one array 1274 * item to another. 1275 */ 1276 if (!dir) 1277 dir = read_one_inode(root, parent_objectid); 1278 if (!dir) { 1279 ret = -ENOENT; 1280 goto out; 1281 } 1282 } else { 1283 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1284 &ref_index); 1285 } 1286 if (ret) 1287 goto out; 1288 1289 /* if we already have a perfect match, we're done */ 1290 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), 1291 ref_index, name, namelen)) { 1292 /* 1293 * look for a conflicting back reference in the 1294 * metadata. if we find one we have to unlink that name 1295 * of the file before we add our new link. Later on, we 1296 * overwrite any existing back reference, and we don't 1297 * want to create dangling pointers in the directory. 1298 */ 1299 1300 if (!search_done) { 1301 ret = __add_inode_ref(trans, root, path, log, 1302 dir, inode, eb, 1303 inode_objectid, 1304 parent_objectid, 1305 ref_index, name, namelen, 1306 &search_done); 1307 if (ret) { 1308 if (ret == 1) 1309 ret = 0; 1310 goto out; 1311 } 1312 } 1313 1314 /* insert our name */ 1315 ret = btrfs_add_link(trans, dir, inode, name, namelen, 1316 0, ref_index); 1317 if (ret) 1318 goto out; 1319 1320 btrfs_update_inode(trans, root, inode); 1321 } 1322 1323 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1324 kfree(name); 1325 name = NULL; 1326 if (log_ref_ver) { 1327 iput(dir); 1328 dir = NULL; 1329 } 1330 } 1331 1332 /* finally write the back reference in the inode */ 1333 ret = overwrite_item(trans, root, path, eb, slot, key); 1334 out: 1335 btrfs_release_path(path); 1336 kfree(name); 1337 iput(dir); 1338 iput(inode); 1339 return ret; 1340 } 1341 1342 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1343 struct btrfs_root *root, u64 ino) 1344 { 1345 int ret; 1346 1347 ret = btrfs_insert_orphan_item(trans, root, ino); 1348 if (ret == -EEXIST) 1349 ret = 0; 1350 1351 return ret; 1352 } 1353 1354 static int count_inode_extrefs(struct btrfs_root *root, 1355 struct inode *inode, struct btrfs_path *path) 1356 { 1357 int ret = 0; 1358 int name_len; 1359 unsigned int nlink = 0; 1360 u32 item_size; 1361 u32 cur_offset = 0; 1362 u64 inode_objectid = btrfs_ino(inode); 1363 u64 offset = 0; 1364 unsigned long ptr; 1365 struct btrfs_inode_extref *extref; 1366 struct extent_buffer *leaf; 1367 1368 while (1) { 1369 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1370 &extref, &offset); 1371 if (ret) 1372 break; 1373 1374 leaf = path->nodes[0]; 1375 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1376 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1377 cur_offset = 0; 1378 1379 while (cur_offset < item_size) { 1380 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1381 name_len = btrfs_inode_extref_name_len(leaf, extref); 1382 1383 nlink++; 1384 1385 cur_offset += name_len + sizeof(*extref); 1386 } 1387 1388 offset++; 1389 btrfs_release_path(path); 1390 } 1391 btrfs_release_path(path); 1392 1393 if (ret < 0 && ret != -ENOENT) 1394 return ret; 1395 return nlink; 1396 } 1397 1398 static int count_inode_refs(struct btrfs_root *root, 1399 struct inode *inode, struct btrfs_path *path) 1400 { 1401 int ret; 1402 struct btrfs_key key; 1403 unsigned int nlink = 0; 1404 unsigned long ptr; 1405 unsigned long ptr_end; 1406 int name_len; 1407 u64 ino = btrfs_ino(inode); 1408 1409 key.objectid = ino; 1410 key.type = BTRFS_INODE_REF_KEY; 1411 key.offset = (u64)-1; 1412 1413 while (1) { 1414 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1415 if (ret < 0) 1416 break; 1417 if (ret > 0) { 1418 if (path->slots[0] == 0) 1419 break; 1420 path->slots[0]--; 1421 } 1422 process_slot: 1423 btrfs_item_key_to_cpu(path->nodes[0], &key, 1424 path->slots[0]); 1425 if (key.objectid != ino || 1426 key.type != BTRFS_INODE_REF_KEY) 1427 break; 1428 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1429 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1430 path->slots[0]); 1431 while (ptr < ptr_end) { 1432 struct btrfs_inode_ref *ref; 1433 1434 ref = (struct btrfs_inode_ref *)ptr; 1435 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1436 ref); 1437 ptr = (unsigned long)(ref + 1) + name_len; 1438 nlink++; 1439 } 1440 1441 if (key.offset == 0) 1442 break; 1443 if (path->slots[0] > 0) { 1444 path->slots[0]--; 1445 goto process_slot; 1446 } 1447 key.offset--; 1448 btrfs_release_path(path); 1449 } 1450 btrfs_release_path(path); 1451 1452 return nlink; 1453 } 1454 1455 /* 1456 * There are a few corners where the link count of the file can't 1457 * be properly maintained during replay. So, instead of adding 1458 * lots of complexity to the log code, we just scan the backrefs 1459 * for any file that has been through replay. 1460 * 1461 * The scan will update the link count on the inode to reflect the 1462 * number of back refs found. If it goes down to zero, the iput 1463 * will free the inode. 1464 */ 1465 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1466 struct btrfs_root *root, 1467 struct inode *inode) 1468 { 1469 struct btrfs_path *path; 1470 int ret; 1471 u64 nlink = 0; 1472 u64 ino = btrfs_ino(inode); 1473 1474 path = btrfs_alloc_path(); 1475 if (!path) 1476 return -ENOMEM; 1477 1478 ret = count_inode_refs(root, inode, path); 1479 if (ret < 0) 1480 goto out; 1481 1482 nlink = ret; 1483 1484 ret = count_inode_extrefs(root, inode, path); 1485 if (ret < 0) 1486 goto out; 1487 1488 nlink += ret; 1489 1490 ret = 0; 1491 1492 if (nlink != inode->i_nlink) { 1493 set_nlink(inode, nlink); 1494 btrfs_update_inode(trans, root, inode); 1495 } 1496 BTRFS_I(inode)->index_cnt = (u64)-1; 1497 1498 if (inode->i_nlink == 0) { 1499 if (S_ISDIR(inode->i_mode)) { 1500 ret = replay_dir_deletes(trans, root, NULL, path, 1501 ino, 1); 1502 if (ret) 1503 goto out; 1504 } 1505 ret = insert_orphan_item(trans, root, ino); 1506 } 1507 1508 out: 1509 btrfs_free_path(path); 1510 return ret; 1511 } 1512 1513 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1514 struct btrfs_root *root, 1515 struct btrfs_path *path) 1516 { 1517 int ret; 1518 struct btrfs_key key; 1519 struct inode *inode; 1520 1521 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1522 key.type = BTRFS_ORPHAN_ITEM_KEY; 1523 key.offset = (u64)-1; 1524 while (1) { 1525 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1526 if (ret < 0) 1527 break; 1528 1529 if (ret == 1) { 1530 if (path->slots[0] == 0) 1531 break; 1532 path->slots[0]--; 1533 } 1534 1535 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1536 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1537 key.type != BTRFS_ORPHAN_ITEM_KEY) 1538 break; 1539 1540 ret = btrfs_del_item(trans, root, path); 1541 if (ret) 1542 goto out; 1543 1544 btrfs_release_path(path); 1545 inode = read_one_inode(root, key.offset); 1546 if (!inode) 1547 return -EIO; 1548 1549 ret = fixup_inode_link_count(trans, root, inode); 1550 iput(inode); 1551 if (ret) 1552 goto out; 1553 1554 /* 1555 * fixup on a directory may create new entries, 1556 * make sure we always look for the highset possible 1557 * offset 1558 */ 1559 key.offset = (u64)-1; 1560 } 1561 ret = 0; 1562 out: 1563 btrfs_release_path(path); 1564 return ret; 1565 } 1566 1567 1568 /* 1569 * record a given inode in the fixup dir so we can check its link 1570 * count when replay is done. The link count is incremented here 1571 * so the inode won't go away until we check it 1572 */ 1573 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1574 struct btrfs_root *root, 1575 struct btrfs_path *path, 1576 u64 objectid) 1577 { 1578 struct btrfs_key key; 1579 int ret = 0; 1580 struct inode *inode; 1581 1582 inode = read_one_inode(root, objectid); 1583 if (!inode) 1584 return -EIO; 1585 1586 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1587 key.type = BTRFS_ORPHAN_ITEM_KEY; 1588 key.offset = objectid; 1589 1590 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1591 1592 btrfs_release_path(path); 1593 if (ret == 0) { 1594 if (!inode->i_nlink) 1595 set_nlink(inode, 1); 1596 else 1597 inc_nlink(inode); 1598 ret = btrfs_update_inode(trans, root, inode); 1599 } else if (ret == -EEXIST) { 1600 ret = 0; 1601 } else { 1602 BUG(); /* Logic Error */ 1603 } 1604 iput(inode); 1605 1606 return ret; 1607 } 1608 1609 /* 1610 * when replaying the log for a directory, we only insert names 1611 * for inodes that actually exist. This means an fsync on a directory 1612 * does not implicitly fsync all the new files in it 1613 */ 1614 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1615 struct btrfs_root *root, 1616 u64 dirid, u64 index, 1617 char *name, int name_len, 1618 struct btrfs_key *location) 1619 { 1620 struct inode *inode; 1621 struct inode *dir; 1622 int ret; 1623 1624 inode = read_one_inode(root, location->objectid); 1625 if (!inode) 1626 return -ENOENT; 1627 1628 dir = read_one_inode(root, dirid); 1629 if (!dir) { 1630 iput(inode); 1631 return -EIO; 1632 } 1633 1634 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); 1635 1636 /* FIXME, put inode into FIXUP list */ 1637 1638 iput(inode); 1639 iput(dir); 1640 return ret; 1641 } 1642 1643 /* 1644 * Return true if an inode reference exists in the log for the given name, 1645 * inode and parent inode. 1646 */ 1647 static bool name_in_log_ref(struct btrfs_root *log_root, 1648 const char *name, const int name_len, 1649 const u64 dirid, const u64 ino) 1650 { 1651 struct btrfs_key search_key; 1652 1653 search_key.objectid = ino; 1654 search_key.type = BTRFS_INODE_REF_KEY; 1655 search_key.offset = dirid; 1656 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1657 return true; 1658 1659 search_key.type = BTRFS_INODE_EXTREF_KEY; 1660 search_key.offset = btrfs_extref_hash(dirid, name, name_len); 1661 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1662 return true; 1663 1664 return false; 1665 } 1666 1667 /* 1668 * take a single entry in a log directory item and replay it into 1669 * the subvolume. 1670 * 1671 * if a conflicting item exists in the subdirectory already, 1672 * the inode it points to is unlinked and put into the link count 1673 * fix up tree. 1674 * 1675 * If a name from the log points to a file or directory that does 1676 * not exist in the FS, it is skipped. fsyncs on directories 1677 * do not force down inodes inside that directory, just changes to the 1678 * names or unlinks in a directory. 1679 * 1680 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1681 * non-existing inode) and 1 if the name was replayed. 1682 */ 1683 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1684 struct btrfs_root *root, 1685 struct btrfs_path *path, 1686 struct extent_buffer *eb, 1687 struct btrfs_dir_item *di, 1688 struct btrfs_key *key) 1689 { 1690 char *name; 1691 int name_len; 1692 struct btrfs_dir_item *dst_di; 1693 struct btrfs_key found_key; 1694 struct btrfs_key log_key; 1695 struct inode *dir; 1696 u8 log_type; 1697 int exists; 1698 int ret = 0; 1699 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1700 bool name_added = false; 1701 1702 dir = read_one_inode(root, key->objectid); 1703 if (!dir) 1704 return -EIO; 1705 1706 name_len = btrfs_dir_name_len(eb, di); 1707 name = kmalloc(name_len, GFP_NOFS); 1708 if (!name) { 1709 ret = -ENOMEM; 1710 goto out; 1711 } 1712 1713 log_type = btrfs_dir_type(eb, di); 1714 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1715 name_len); 1716 1717 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1718 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1719 if (exists == 0) 1720 exists = 1; 1721 else 1722 exists = 0; 1723 btrfs_release_path(path); 1724 1725 if (key->type == BTRFS_DIR_ITEM_KEY) { 1726 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1727 name, name_len, 1); 1728 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1729 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1730 key->objectid, 1731 key->offset, name, 1732 name_len, 1); 1733 } else { 1734 /* Corruption */ 1735 ret = -EINVAL; 1736 goto out; 1737 } 1738 if (IS_ERR_OR_NULL(dst_di)) { 1739 /* we need a sequence number to insert, so we only 1740 * do inserts for the BTRFS_DIR_INDEX_KEY types 1741 */ 1742 if (key->type != BTRFS_DIR_INDEX_KEY) 1743 goto out; 1744 goto insert; 1745 } 1746 1747 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1748 /* the existing item matches the logged item */ 1749 if (found_key.objectid == log_key.objectid && 1750 found_key.type == log_key.type && 1751 found_key.offset == log_key.offset && 1752 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1753 update_size = false; 1754 goto out; 1755 } 1756 1757 /* 1758 * don't drop the conflicting directory entry if the inode 1759 * for the new entry doesn't exist 1760 */ 1761 if (!exists) 1762 goto out; 1763 1764 ret = drop_one_dir_item(trans, root, path, dir, dst_di); 1765 if (ret) 1766 goto out; 1767 1768 if (key->type == BTRFS_DIR_INDEX_KEY) 1769 goto insert; 1770 out: 1771 btrfs_release_path(path); 1772 if (!ret && update_size) { 1773 btrfs_i_size_write(dir, dir->i_size + name_len * 2); 1774 ret = btrfs_update_inode(trans, root, dir); 1775 } 1776 kfree(name); 1777 iput(dir); 1778 if (!ret && name_added) 1779 ret = 1; 1780 return ret; 1781 1782 insert: 1783 if (name_in_log_ref(root->log_root, name, name_len, 1784 key->objectid, log_key.objectid)) { 1785 /* The dentry will be added later. */ 1786 ret = 0; 1787 update_size = false; 1788 goto out; 1789 } 1790 btrfs_release_path(path); 1791 ret = insert_one_name(trans, root, key->objectid, key->offset, 1792 name, name_len, &log_key); 1793 if (ret && ret != -ENOENT && ret != -EEXIST) 1794 goto out; 1795 if (!ret) 1796 name_added = true; 1797 update_size = false; 1798 ret = 0; 1799 goto out; 1800 } 1801 1802 /* 1803 * find all the names in a directory item and reconcile them into 1804 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 1805 * one name in a directory item, but the same code gets used for 1806 * both directory index types 1807 */ 1808 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1809 struct btrfs_root *root, 1810 struct btrfs_path *path, 1811 struct extent_buffer *eb, int slot, 1812 struct btrfs_key *key) 1813 { 1814 int ret = 0; 1815 u32 item_size = btrfs_item_size_nr(eb, slot); 1816 struct btrfs_dir_item *di; 1817 int name_len; 1818 unsigned long ptr; 1819 unsigned long ptr_end; 1820 struct btrfs_path *fixup_path = NULL; 1821 1822 ptr = btrfs_item_ptr_offset(eb, slot); 1823 ptr_end = ptr + item_size; 1824 while (ptr < ptr_end) { 1825 di = (struct btrfs_dir_item *)ptr; 1826 if (verify_dir_item(root, eb, di)) 1827 return -EIO; 1828 name_len = btrfs_dir_name_len(eb, di); 1829 ret = replay_one_name(trans, root, path, eb, di, key); 1830 if (ret < 0) 1831 break; 1832 ptr = (unsigned long)(di + 1); 1833 ptr += name_len; 1834 1835 /* 1836 * If this entry refers to a non-directory (directories can not 1837 * have a link count > 1) and it was added in the transaction 1838 * that was not committed, make sure we fixup the link count of 1839 * the inode it the entry points to. Otherwise something like 1840 * the following would result in a directory pointing to an 1841 * inode with a wrong link that does not account for this dir 1842 * entry: 1843 * 1844 * mkdir testdir 1845 * touch testdir/foo 1846 * touch testdir/bar 1847 * sync 1848 * 1849 * ln testdir/bar testdir/bar_link 1850 * ln testdir/foo testdir/foo_link 1851 * xfs_io -c "fsync" testdir/bar 1852 * 1853 * <power failure> 1854 * 1855 * mount fs, log replay happens 1856 * 1857 * File foo would remain with a link count of 1 when it has two 1858 * entries pointing to it in the directory testdir. This would 1859 * make it impossible to ever delete the parent directory has 1860 * it would result in stale dentries that can never be deleted. 1861 */ 1862 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 1863 struct btrfs_key di_key; 1864 1865 if (!fixup_path) { 1866 fixup_path = btrfs_alloc_path(); 1867 if (!fixup_path) { 1868 ret = -ENOMEM; 1869 break; 1870 } 1871 } 1872 1873 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1874 ret = link_to_fixup_dir(trans, root, fixup_path, 1875 di_key.objectid); 1876 if (ret) 1877 break; 1878 } 1879 ret = 0; 1880 } 1881 btrfs_free_path(fixup_path); 1882 return ret; 1883 } 1884 1885 /* 1886 * directory replay has two parts. There are the standard directory 1887 * items in the log copied from the subvolume, and range items 1888 * created in the log while the subvolume was logged. 1889 * 1890 * The range items tell us which parts of the key space the log 1891 * is authoritative for. During replay, if a key in the subvolume 1892 * directory is in a logged range item, but not actually in the log 1893 * that means it was deleted from the directory before the fsync 1894 * and should be removed. 1895 */ 1896 static noinline int find_dir_range(struct btrfs_root *root, 1897 struct btrfs_path *path, 1898 u64 dirid, int key_type, 1899 u64 *start_ret, u64 *end_ret) 1900 { 1901 struct btrfs_key key; 1902 u64 found_end; 1903 struct btrfs_dir_log_item *item; 1904 int ret; 1905 int nritems; 1906 1907 if (*start_ret == (u64)-1) 1908 return 1; 1909 1910 key.objectid = dirid; 1911 key.type = key_type; 1912 key.offset = *start_ret; 1913 1914 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1915 if (ret < 0) 1916 goto out; 1917 if (ret > 0) { 1918 if (path->slots[0] == 0) 1919 goto out; 1920 path->slots[0]--; 1921 } 1922 if (ret != 0) 1923 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1924 1925 if (key.type != key_type || key.objectid != dirid) { 1926 ret = 1; 1927 goto next; 1928 } 1929 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1930 struct btrfs_dir_log_item); 1931 found_end = btrfs_dir_log_end(path->nodes[0], item); 1932 1933 if (*start_ret >= key.offset && *start_ret <= found_end) { 1934 ret = 0; 1935 *start_ret = key.offset; 1936 *end_ret = found_end; 1937 goto out; 1938 } 1939 ret = 1; 1940 next: 1941 /* check the next slot in the tree to see if it is a valid item */ 1942 nritems = btrfs_header_nritems(path->nodes[0]); 1943 if (path->slots[0] >= nritems) { 1944 ret = btrfs_next_leaf(root, path); 1945 if (ret) 1946 goto out; 1947 } else { 1948 path->slots[0]++; 1949 } 1950 1951 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1952 1953 if (key.type != key_type || key.objectid != dirid) { 1954 ret = 1; 1955 goto out; 1956 } 1957 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1958 struct btrfs_dir_log_item); 1959 found_end = btrfs_dir_log_end(path->nodes[0], item); 1960 *start_ret = key.offset; 1961 *end_ret = found_end; 1962 ret = 0; 1963 out: 1964 btrfs_release_path(path); 1965 return ret; 1966 } 1967 1968 /* 1969 * this looks for a given directory item in the log. If the directory 1970 * item is not in the log, the item is removed and the inode it points 1971 * to is unlinked 1972 */ 1973 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 1974 struct btrfs_root *root, 1975 struct btrfs_root *log, 1976 struct btrfs_path *path, 1977 struct btrfs_path *log_path, 1978 struct inode *dir, 1979 struct btrfs_key *dir_key) 1980 { 1981 int ret; 1982 struct extent_buffer *eb; 1983 int slot; 1984 u32 item_size; 1985 struct btrfs_dir_item *di; 1986 struct btrfs_dir_item *log_di; 1987 int name_len; 1988 unsigned long ptr; 1989 unsigned long ptr_end; 1990 char *name; 1991 struct inode *inode; 1992 struct btrfs_key location; 1993 1994 again: 1995 eb = path->nodes[0]; 1996 slot = path->slots[0]; 1997 item_size = btrfs_item_size_nr(eb, slot); 1998 ptr = btrfs_item_ptr_offset(eb, slot); 1999 ptr_end = ptr + item_size; 2000 while (ptr < ptr_end) { 2001 di = (struct btrfs_dir_item *)ptr; 2002 if (verify_dir_item(root, eb, di)) { 2003 ret = -EIO; 2004 goto out; 2005 } 2006 2007 name_len = btrfs_dir_name_len(eb, di); 2008 name = kmalloc(name_len, GFP_NOFS); 2009 if (!name) { 2010 ret = -ENOMEM; 2011 goto out; 2012 } 2013 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2014 name_len); 2015 log_di = NULL; 2016 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2017 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2018 dir_key->objectid, 2019 name, name_len, 0); 2020 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2021 log_di = btrfs_lookup_dir_index_item(trans, log, 2022 log_path, 2023 dir_key->objectid, 2024 dir_key->offset, 2025 name, name_len, 0); 2026 } 2027 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) { 2028 btrfs_dir_item_key_to_cpu(eb, di, &location); 2029 btrfs_release_path(path); 2030 btrfs_release_path(log_path); 2031 inode = read_one_inode(root, location.objectid); 2032 if (!inode) { 2033 kfree(name); 2034 return -EIO; 2035 } 2036 2037 ret = link_to_fixup_dir(trans, root, 2038 path, location.objectid); 2039 if (ret) { 2040 kfree(name); 2041 iput(inode); 2042 goto out; 2043 } 2044 2045 inc_nlink(inode); 2046 ret = btrfs_unlink_inode(trans, root, dir, inode, 2047 name, name_len); 2048 if (!ret) 2049 ret = btrfs_run_delayed_items(trans, root); 2050 kfree(name); 2051 iput(inode); 2052 if (ret) 2053 goto out; 2054 2055 /* there might still be more names under this key 2056 * check and repeat if required 2057 */ 2058 ret = btrfs_search_slot(NULL, root, dir_key, path, 2059 0, 0); 2060 if (ret == 0) 2061 goto again; 2062 ret = 0; 2063 goto out; 2064 } else if (IS_ERR(log_di)) { 2065 kfree(name); 2066 return PTR_ERR(log_di); 2067 } 2068 btrfs_release_path(log_path); 2069 kfree(name); 2070 2071 ptr = (unsigned long)(di + 1); 2072 ptr += name_len; 2073 } 2074 ret = 0; 2075 out: 2076 btrfs_release_path(path); 2077 btrfs_release_path(log_path); 2078 return ret; 2079 } 2080 2081 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2082 struct btrfs_root *root, 2083 struct btrfs_root *log, 2084 struct btrfs_path *path, 2085 const u64 ino) 2086 { 2087 struct btrfs_key search_key; 2088 struct btrfs_path *log_path; 2089 int i; 2090 int nritems; 2091 int ret; 2092 2093 log_path = btrfs_alloc_path(); 2094 if (!log_path) 2095 return -ENOMEM; 2096 2097 search_key.objectid = ino; 2098 search_key.type = BTRFS_XATTR_ITEM_KEY; 2099 search_key.offset = 0; 2100 again: 2101 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2102 if (ret < 0) 2103 goto out; 2104 process_leaf: 2105 nritems = btrfs_header_nritems(path->nodes[0]); 2106 for (i = path->slots[0]; i < nritems; i++) { 2107 struct btrfs_key key; 2108 struct btrfs_dir_item *di; 2109 struct btrfs_dir_item *log_di; 2110 u32 total_size; 2111 u32 cur; 2112 2113 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2114 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2115 ret = 0; 2116 goto out; 2117 } 2118 2119 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2120 total_size = btrfs_item_size_nr(path->nodes[0], i); 2121 cur = 0; 2122 while (cur < total_size) { 2123 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2124 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2125 u32 this_len = sizeof(*di) + name_len + data_len; 2126 char *name; 2127 2128 name = kmalloc(name_len, GFP_NOFS); 2129 if (!name) { 2130 ret = -ENOMEM; 2131 goto out; 2132 } 2133 read_extent_buffer(path->nodes[0], name, 2134 (unsigned long)(di + 1), name_len); 2135 2136 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2137 name, name_len, 0); 2138 btrfs_release_path(log_path); 2139 if (!log_di) { 2140 /* Doesn't exist in log tree, so delete it. */ 2141 btrfs_release_path(path); 2142 di = btrfs_lookup_xattr(trans, root, path, ino, 2143 name, name_len, -1); 2144 kfree(name); 2145 if (IS_ERR(di)) { 2146 ret = PTR_ERR(di); 2147 goto out; 2148 } 2149 ASSERT(di); 2150 ret = btrfs_delete_one_dir_name(trans, root, 2151 path, di); 2152 if (ret) 2153 goto out; 2154 btrfs_release_path(path); 2155 search_key = key; 2156 goto again; 2157 } 2158 kfree(name); 2159 if (IS_ERR(log_di)) { 2160 ret = PTR_ERR(log_di); 2161 goto out; 2162 } 2163 cur += this_len; 2164 di = (struct btrfs_dir_item *)((char *)di + this_len); 2165 } 2166 } 2167 ret = btrfs_next_leaf(root, path); 2168 if (ret > 0) 2169 ret = 0; 2170 else if (ret == 0) 2171 goto process_leaf; 2172 out: 2173 btrfs_free_path(log_path); 2174 btrfs_release_path(path); 2175 return ret; 2176 } 2177 2178 2179 /* 2180 * deletion replay happens before we copy any new directory items 2181 * out of the log or out of backreferences from inodes. It 2182 * scans the log to find ranges of keys that log is authoritative for, 2183 * and then scans the directory to find items in those ranges that are 2184 * not present in the log. 2185 * 2186 * Anything we don't find in the log is unlinked and removed from the 2187 * directory. 2188 */ 2189 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2190 struct btrfs_root *root, 2191 struct btrfs_root *log, 2192 struct btrfs_path *path, 2193 u64 dirid, int del_all) 2194 { 2195 u64 range_start; 2196 u64 range_end; 2197 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2198 int ret = 0; 2199 struct btrfs_key dir_key; 2200 struct btrfs_key found_key; 2201 struct btrfs_path *log_path; 2202 struct inode *dir; 2203 2204 dir_key.objectid = dirid; 2205 dir_key.type = BTRFS_DIR_ITEM_KEY; 2206 log_path = btrfs_alloc_path(); 2207 if (!log_path) 2208 return -ENOMEM; 2209 2210 dir = read_one_inode(root, dirid); 2211 /* it isn't an error if the inode isn't there, that can happen 2212 * because we replay the deletes before we copy in the inode item 2213 * from the log 2214 */ 2215 if (!dir) { 2216 btrfs_free_path(log_path); 2217 return 0; 2218 } 2219 again: 2220 range_start = 0; 2221 range_end = 0; 2222 while (1) { 2223 if (del_all) 2224 range_end = (u64)-1; 2225 else { 2226 ret = find_dir_range(log, path, dirid, key_type, 2227 &range_start, &range_end); 2228 if (ret != 0) 2229 break; 2230 } 2231 2232 dir_key.offset = range_start; 2233 while (1) { 2234 int nritems; 2235 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2236 0, 0); 2237 if (ret < 0) 2238 goto out; 2239 2240 nritems = btrfs_header_nritems(path->nodes[0]); 2241 if (path->slots[0] >= nritems) { 2242 ret = btrfs_next_leaf(root, path); 2243 if (ret) 2244 break; 2245 } 2246 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2247 path->slots[0]); 2248 if (found_key.objectid != dirid || 2249 found_key.type != dir_key.type) 2250 goto next_type; 2251 2252 if (found_key.offset > range_end) 2253 break; 2254 2255 ret = check_item_in_log(trans, root, log, path, 2256 log_path, dir, 2257 &found_key); 2258 if (ret) 2259 goto out; 2260 if (found_key.offset == (u64)-1) 2261 break; 2262 dir_key.offset = found_key.offset + 1; 2263 } 2264 btrfs_release_path(path); 2265 if (range_end == (u64)-1) 2266 break; 2267 range_start = range_end + 1; 2268 } 2269 2270 next_type: 2271 ret = 0; 2272 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2273 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2274 dir_key.type = BTRFS_DIR_INDEX_KEY; 2275 btrfs_release_path(path); 2276 goto again; 2277 } 2278 out: 2279 btrfs_release_path(path); 2280 btrfs_free_path(log_path); 2281 iput(dir); 2282 return ret; 2283 } 2284 2285 /* 2286 * the process_func used to replay items from the log tree. This 2287 * gets called in two different stages. The first stage just looks 2288 * for inodes and makes sure they are all copied into the subvolume. 2289 * 2290 * The second stage copies all the other item types from the log into 2291 * the subvolume. The two stage approach is slower, but gets rid of 2292 * lots of complexity around inodes referencing other inodes that exist 2293 * only in the log (references come from either directory items or inode 2294 * back refs). 2295 */ 2296 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2297 struct walk_control *wc, u64 gen) 2298 { 2299 int nritems; 2300 struct btrfs_path *path; 2301 struct btrfs_root *root = wc->replay_dest; 2302 struct btrfs_key key; 2303 int level; 2304 int i; 2305 int ret; 2306 2307 ret = btrfs_read_buffer(eb, gen); 2308 if (ret) 2309 return ret; 2310 2311 level = btrfs_header_level(eb); 2312 2313 if (level != 0) 2314 return 0; 2315 2316 path = btrfs_alloc_path(); 2317 if (!path) 2318 return -ENOMEM; 2319 2320 nritems = btrfs_header_nritems(eb); 2321 for (i = 0; i < nritems; i++) { 2322 btrfs_item_key_to_cpu(eb, &key, i); 2323 2324 /* inode keys are done during the first stage */ 2325 if (key.type == BTRFS_INODE_ITEM_KEY && 2326 wc->stage == LOG_WALK_REPLAY_INODES) { 2327 struct btrfs_inode_item *inode_item; 2328 u32 mode; 2329 2330 inode_item = btrfs_item_ptr(eb, i, 2331 struct btrfs_inode_item); 2332 ret = replay_xattr_deletes(wc->trans, root, log, 2333 path, key.objectid); 2334 if (ret) 2335 break; 2336 mode = btrfs_inode_mode(eb, inode_item); 2337 if (S_ISDIR(mode)) { 2338 ret = replay_dir_deletes(wc->trans, 2339 root, log, path, key.objectid, 0); 2340 if (ret) 2341 break; 2342 } 2343 ret = overwrite_item(wc->trans, root, path, 2344 eb, i, &key); 2345 if (ret) 2346 break; 2347 2348 /* for regular files, make sure corresponding 2349 * orphan item exist. extents past the new EOF 2350 * will be truncated later by orphan cleanup. 2351 */ 2352 if (S_ISREG(mode)) { 2353 ret = insert_orphan_item(wc->trans, root, 2354 key.objectid); 2355 if (ret) 2356 break; 2357 } 2358 2359 ret = link_to_fixup_dir(wc->trans, root, 2360 path, key.objectid); 2361 if (ret) 2362 break; 2363 } 2364 2365 if (key.type == BTRFS_DIR_INDEX_KEY && 2366 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2367 ret = replay_one_dir_item(wc->trans, root, path, 2368 eb, i, &key); 2369 if (ret) 2370 break; 2371 } 2372 2373 if (wc->stage < LOG_WALK_REPLAY_ALL) 2374 continue; 2375 2376 /* these keys are simply copied */ 2377 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2378 ret = overwrite_item(wc->trans, root, path, 2379 eb, i, &key); 2380 if (ret) 2381 break; 2382 } else if (key.type == BTRFS_INODE_REF_KEY || 2383 key.type == BTRFS_INODE_EXTREF_KEY) { 2384 ret = add_inode_ref(wc->trans, root, log, path, 2385 eb, i, &key); 2386 if (ret && ret != -ENOENT) 2387 break; 2388 ret = 0; 2389 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2390 ret = replay_one_extent(wc->trans, root, path, 2391 eb, i, &key); 2392 if (ret) 2393 break; 2394 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2395 ret = replay_one_dir_item(wc->trans, root, path, 2396 eb, i, &key); 2397 if (ret) 2398 break; 2399 } 2400 } 2401 btrfs_free_path(path); 2402 return ret; 2403 } 2404 2405 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2406 struct btrfs_root *root, 2407 struct btrfs_path *path, int *level, 2408 struct walk_control *wc) 2409 { 2410 u64 root_owner; 2411 u64 bytenr; 2412 u64 ptr_gen; 2413 struct extent_buffer *next; 2414 struct extent_buffer *cur; 2415 struct extent_buffer *parent; 2416 u32 blocksize; 2417 int ret = 0; 2418 2419 WARN_ON(*level < 0); 2420 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2421 2422 while (*level > 0) { 2423 WARN_ON(*level < 0); 2424 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2425 cur = path->nodes[*level]; 2426 2427 WARN_ON(btrfs_header_level(cur) != *level); 2428 2429 if (path->slots[*level] >= 2430 btrfs_header_nritems(cur)) 2431 break; 2432 2433 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2434 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2435 blocksize = root->nodesize; 2436 2437 parent = path->nodes[*level]; 2438 root_owner = btrfs_header_owner(parent); 2439 2440 next = btrfs_find_create_tree_block(root, bytenr); 2441 if (IS_ERR(next)) 2442 return PTR_ERR(next); 2443 2444 if (*level == 1) { 2445 ret = wc->process_func(root, next, wc, ptr_gen); 2446 if (ret) { 2447 free_extent_buffer(next); 2448 return ret; 2449 } 2450 2451 path->slots[*level]++; 2452 if (wc->free) { 2453 ret = btrfs_read_buffer(next, ptr_gen); 2454 if (ret) { 2455 free_extent_buffer(next); 2456 return ret; 2457 } 2458 2459 if (trans) { 2460 btrfs_tree_lock(next); 2461 btrfs_set_lock_blocking(next); 2462 clean_tree_block(trans, root->fs_info, 2463 next); 2464 btrfs_wait_tree_block_writeback(next); 2465 btrfs_tree_unlock(next); 2466 } 2467 2468 WARN_ON(root_owner != 2469 BTRFS_TREE_LOG_OBJECTID); 2470 ret = btrfs_free_and_pin_reserved_extent(root, 2471 bytenr, blocksize); 2472 if (ret) { 2473 free_extent_buffer(next); 2474 return ret; 2475 } 2476 } 2477 free_extent_buffer(next); 2478 continue; 2479 } 2480 ret = btrfs_read_buffer(next, ptr_gen); 2481 if (ret) { 2482 free_extent_buffer(next); 2483 return ret; 2484 } 2485 2486 WARN_ON(*level <= 0); 2487 if (path->nodes[*level-1]) 2488 free_extent_buffer(path->nodes[*level-1]); 2489 path->nodes[*level-1] = next; 2490 *level = btrfs_header_level(next); 2491 path->slots[*level] = 0; 2492 cond_resched(); 2493 } 2494 WARN_ON(*level < 0); 2495 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2496 2497 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2498 2499 cond_resched(); 2500 return 0; 2501 } 2502 2503 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2504 struct btrfs_root *root, 2505 struct btrfs_path *path, int *level, 2506 struct walk_control *wc) 2507 { 2508 u64 root_owner; 2509 int i; 2510 int slot; 2511 int ret; 2512 2513 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2514 slot = path->slots[i]; 2515 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2516 path->slots[i]++; 2517 *level = i; 2518 WARN_ON(*level == 0); 2519 return 0; 2520 } else { 2521 struct extent_buffer *parent; 2522 if (path->nodes[*level] == root->node) 2523 parent = path->nodes[*level]; 2524 else 2525 parent = path->nodes[*level + 1]; 2526 2527 root_owner = btrfs_header_owner(parent); 2528 ret = wc->process_func(root, path->nodes[*level], wc, 2529 btrfs_header_generation(path->nodes[*level])); 2530 if (ret) 2531 return ret; 2532 2533 if (wc->free) { 2534 struct extent_buffer *next; 2535 2536 next = path->nodes[*level]; 2537 2538 if (trans) { 2539 btrfs_tree_lock(next); 2540 btrfs_set_lock_blocking(next); 2541 clean_tree_block(trans, root->fs_info, 2542 next); 2543 btrfs_wait_tree_block_writeback(next); 2544 btrfs_tree_unlock(next); 2545 } 2546 2547 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 2548 ret = btrfs_free_and_pin_reserved_extent(root, 2549 path->nodes[*level]->start, 2550 path->nodes[*level]->len); 2551 if (ret) 2552 return ret; 2553 } 2554 free_extent_buffer(path->nodes[*level]); 2555 path->nodes[*level] = NULL; 2556 *level = i + 1; 2557 } 2558 } 2559 return 1; 2560 } 2561 2562 /* 2563 * drop the reference count on the tree rooted at 'snap'. This traverses 2564 * the tree freeing any blocks that have a ref count of zero after being 2565 * decremented. 2566 */ 2567 static int walk_log_tree(struct btrfs_trans_handle *trans, 2568 struct btrfs_root *log, struct walk_control *wc) 2569 { 2570 int ret = 0; 2571 int wret; 2572 int level; 2573 struct btrfs_path *path; 2574 int orig_level; 2575 2576 path = btrfs_alloc_path(); 2577 if (!path) 2578 return -ENOMEM; 2579 2580 level = btrfs_header_level(log->node); 2581 orig_level = level; 2582 path->nodes[level] = log->node; 2583 extent_buffer_get(log->node); 2584 path->slots[level] = 0; 2585 2586 while (1) { 2587 wret = walk_down_log_tree(trans, log, path, &level, wc); 2588 if (wret > 0) 2589 break; 2590 if (wret < 0) { 2591 ret = wret; 2592 goto out; 2593 } 2594 2595 wret = walk_up_log_tree(trans, log, path, &level, wc); 2596 if (wret > 0) 2597 break; 2598 if (wret < 0) { 2599 ret = wret; 2600 goto out; 2601 } 2602 } 2603 2604 /* was the root node processed? if not, catch it here */ 2605 if (path->nodes[orig_level]) { 2606 ret = wc->process_func(log, path->nodes[orig_level], wc, 2607 btrfs_header_generation(path->nodes[orig_level])); 2608 if (ret) 2609 goto out; 2610 if (wc->free) { 2611 struct extent_buffer *next; 2612 2613 next = path->nodes[orig_level]; 2614 2615 if (trans) { 2616 btrfs_tree_lock(next); 2617 btrfs_set_lock_blocking(next); 2618 clean_tree_block(trans, log->fs_info, next); 2619 btrfs_wait_tree_block_writeback(next); 2620 btrfs_tree_unlock(next); 2621 } 2622 2623 WARN_ON(log->root_key.objectid != 2624 BTRFS_TREE_LOG_OBJECTID); 2625 ret = btrfs_free_and_pin_reserved_extent(log, next->start, 2626 next->len); 2627 if (ret) 2628 goto out; 2629 } 2630 } 2631 2632 out: 2633 btrfs_free_path(path); 2634 return ret; 2635 } 2636 2637 /* 2638 * helper function to update the item for a given subvolumes log root 2639 * in the tree of log roots 2640 */ 2641 static int update_log_root(struct btrfs_trans_handle *trans, 2642 struct btrfs_root *log) 2643 { 2644 int ret; 2645 2646 if (log->log_transid == 1) { 2647 /* insert root item on the first sync */ 2648 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, 2649 &log->root_key, &log->root_item); 2650 } else { 2651 ret = btrfs_update_root(trans, log->fs_info->log_root_tree, 2652 &log->root_key, &log->root_item); 2653 } 2654 return ret; 2655 } 2656 2657 static void wait_log_commit(struct btrfs_root *root, int transid) 2658 { 2659 DEFINE_WAIT(wait); 2660 int index = transid % 2; 2661 2662 /* 2663 * we only allow two pending log transactions at a time, 2664 * so we know that if ours is more than 2 older than the 2665 * current transaction, we're done 2666 */ 2667 do { 2668 prepare_to_wait(&root->log_commit_wait[index], 2669 &wait, TASK_UNINTERRUPTIBLE); 2670 mutex_unlock(&root->log_mutex); 2671 2672 if (root->log_transid_committed < transid && 2673 atomic_read(&root->log_commit[index])) 2674 schedule(); 2675 2676 finish_wait(&root->log_commit_wait[index], &wait); 2677 mutex_lock(&root->log_mutex); 2678 } while (root->log_transid_committed < transid && 2679 atomic_read(&root->log_commit[index])); 2680 } 2681 2682 static void wait_for_writer(struct btrfs_root *root) 2683 { 2684 DEFINE_WAIT(wait); 2685 2686 while (atomic_read(&root->log_writers)) { 2687 prepare_to_wait(&root->log_writer_wait, 2688 &wait, TASK_UNINTERRUPTIBLE); 2689 mutex_unlock(&root->log_mutex); 2690 if (atomic_read(&root->log_writers)) 2691 schedule(); 2692 finish_wait(&root->log_writer_wait, &wait); 2693 mutex_lock(&root->log_mutex); 2694 } 2695 } 2696 2697 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2698 struct btrfs_log_ctx *ctx) 2699 { 2700 if (!ctx) 2701 return; 2702 2703 mutex_lock(&root->log_mutex); 2704 list_del_init(&ctx->list); 2705 mutex_unlock(&root->log_mutex); 2706 } 2707 2708 /* 2709 * Invoked in log mutex context, or be sure there is no other task which 2710 * can access the list. 2711 */ 2712 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2713 int index, int error) 2714 { 2715 struct btrfs_log_ctx *ctx; 2716 2717 if (!error) { 2718 INIT_LIST_HEAD(&root->log_ctxs[index]); 2719 return; 2720 } 2721 2722 list_for_each_entry(ctx, &root->log_ctxs[index], list) 2723 ctx->log_ret = error; 2724 2725 INIT_LIST_HEAD(&root->log_ctxs[index]); 2726 } 2727 2728 /* 2729 * btrfs_sync_log does sends a given tree log down to the disk and 2730 * updates the super blocks to record it. When this call is done, 2731 * you know that any inodes previously logged are safely on disk only 2732 * if it returns 0. 2733 * 2734 * Any other return value means you need to call btrfs_commit_transaction. 2735 * Some of the edge cases for fsyncing directories that have had unlinks 2736 * or renames done in the past mean that sometimes the only safe 2737 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2738 * that has happened. 2739 */ 2740 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2741 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 2742 { 2743 int index1; 2744 int index2; 2745 int mark; 2746 int ret; 2747 struct btrfs_root *log = root->log_root; 2748 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; 2749 int log_transid = 0; 2750 struct btrfs_log_ctx root_log_ctx; 2751 struct blk_plug plug; 2752 2753 mutex_lock(&root->log_mutex); 2754 log_transid = ctx->log_transid; 2755 if (root->log_transid_committed >= log_transid) { 2756 mutex_unlock(&root->log_mutex); 2757 return ctx->log_ret; 2758 } 2759 2760 index1 = log_transid % 2; 2761 if (atomic_read(&root->log_commit[index1])) { 2762 wait_log_commit(root, log_transid); 2763 mutex_unlock(&root->log_mutex); 2764 return ctx->log_ret; 2765 } 2766 ASSERT(log_transid == root->log_transid); 2767 atomic_set(&root->log_commit[index1], 1); 2768 2769 /* wait for previous tree log sync to complete */ 2770 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2771 wait_log_commit(root, log_transid - 1); 2772 2773 while (1) { 2774 int batch = atomic_read(&root->log_batch); 2775 /* when we're on an ssd, just kick the log commit out */ 2776 if (!btrfs_test_opt(root->fs_info, SSD) && 2777 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 2778 mutex_unlock(&root->log_mutex); 2779 schedule_timeout_uninterruptible(1); 2780 mutex_lock(&root->log_mutex); 2781 } 2782 wait_for_writer(root); 2783 if (batch == atomic_read(&root->log_batch)) 2784 break; 2785 } 2786 2787 /* bail out if we need to do a full commit */ 2788 if (btrfs_need_log_full_commit(root->fs_info, trans)) { 2789 ret = -EAGAIN; 2790 btrfs_free_logged_extents(log, log_transid); 2791 mutex_unlock(&root->log_mutex); 2792 goto out; 2793 } 2794 2795 if (log_transid % 2 == 0) 2796 mark = EXTENT_DIRTY; 2797 else 2798 mark = EXTENT_NEW; 2799 2800 /* we start IO on all the marked extents here, but we don't actually 2801 * wait for them until later. 2802 */ 2803 blk_start_plug(&plug); 2804 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); 2805 if (ret) { 2806 blk_finish_plug(&plug); 2807 btrfs_abort_transaction(trans, ret); 2808 btrfs_free_logged_extents(log, log_transid); 2809 btrfs_set_log_full_commit(root->fs_info, trans); 2810 mutex_unlock(&root->log_mutex); 2811 goto out; 2812 } 2813 2814 btrfs_set_root_node(&log->root_item, log->node); 2815 2816 root->log_transid++; 2817 log->log_transid = root->log_transid; 2818 root->log_start_pid = 0; 2819 /* 2820 * IO has been started, blocks of the log tree have WRITTEN flag set 2821 * in their headers. new modifications of the log will be written to 2822 * new positions. so it's safe to allow log writers to go in. 2823 */ 2824 mutex_unlock(&root->log_mutex); 2825 2826 btrfs_init_log_ctx(&root_log_ctx, NULL); 2827 2828 mutex_lock(&log_root_tree->log_mutex); 2829 atomic_inc(&log_root_tree->log_batch); 2830 atomic_inc(&log_root_tree->log_writers); 2831 2832 index2 = log_root_tree->log_transid % 2; 2833 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 2834 root_log_ctx.log_transid = log_root_tree->log_transid; 2835 2836 mutex_unlock(&log_root_tree->log_mutex); 2837 2838 ret = update_log_root(trans, log); 2839 2840 mutex_lock(&log_root_tree->log_mutex); 2841 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 2842 /* 2843 * Implicit memory barrier after atomic_dec_and_test 2844 */ 2845 if (waitqueue_active(&log_root_tree->log_writer_wait)) 2846 wake_up(&log_root_tree->log_writer_wait); 2847 } 2848 2849 if (ret) { 2850 if (!list_empty(&root_log_ctx.list)) 2851 list_del_init(&root_log_ctx.list); 2852 2853 blk_finish_plug(&plug); 2854 btrfs_set_log_full_commit(root->fs_info, trans); 2855 2856 if (ret != -ENOSPC) { 2857 btrfs_abort_transaction(trans, ret); 2858 mutex_unlock(&log_root_tree->log_mutex); 2859 goto out; 2860 } 2861 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2862 btrfs_free_logged_extents(log, log_transid); 2863 mutex_unlock(&log_root_tree->log_mutex); 2864 ret = -EAGAIN; 2865 goto out; 2866 } 2867 2868 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 2869 blk_finish_plug(&plug); 2870 list_del_init(&root_log_ctx.list); 2871 mutex_unlock(&log_root_tree->log_mutex); 2872 ret = root_log_ctx.log_ret; 2873 goto out; 2874 } 2875 2876 index2 = root_log_ctx.log_transid % 2; 2877 if (atomic_read(&log_root_tree->log_commit[index2])) { 2878 blk_finish_plug(&plug); 2879 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, 2880 mark); 2881 btrfs_wait_logged_extents(trans, log, log_transid); 2882 wait_log_commit(log_root_tree, 2883 root_log_ctx.log_transid); 2884 mutex_unlock(&log_root_tree->log_mutex); 2885 if (!ret) 2886 ret = root_log_ctx.log_ret; 2887 goto out; 2888 } 2889 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 2890 atomic_set(&log_root_tree->log_commit[index2], 1); 2891 2892 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 2893 wait_log_commit(log_root_tree, 2894 root_log_ctx.log_transid - 1); 2895 } 2896 2897 wait_for_writer(log_root_tree); 2898 2899 /* 2900 * now that we've moved on to the tree of log tree roots, 2901 * check the full commit flag again 2902 */ 2903 if (btrfs_need_log_full_commit(root->fs_info, trans)) { 2904 blk_finish_plug(&plug); 2905 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2906 btrfs_free_logged_extents(log, log_transid); 2907 mutex_unlock(&log_root_tree->log_mutex); 2908 ret = -EAGAIN; 2909 goto out_wake_log_root; 2910 } 2911 2912 ret = btrfs_write_marked_extents(log_root_tree, 2913 &log_root_tree->dirty_log_pages, 2914 EXTENT_DIRTY | EXTENT_NEW); 2915 blk_finish_plug(&plug); 2916 if (ret) { 2917 btrfs_set_log_full_commit(root->fs_info, trans); 2918 btrfs_abort_transaction(trans, ret); 2919 btrfs_free_logged_extents(log, log_transid); 2920 mutex_unlock(&log_root_tree->log_mutex); 2921 goto out_wake_log_root; 2922 } 2923 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2924 if (!ret) 2925 ret = btrfs_wait_marked_extents(log_root_tree, 2926 &log_root_tree->dirty_log_pages, 2927 EXTENT_NEW | EXTENT_DIRTY); 2928 if (ret) { 2929 btrfs_set_log_full_commit(root->fs_info, trans); 2930 btrfs_free_logged_extents(log, log_transid); 2931 mutex_unlock(&log_root_tree->log_mutex); 2932 goto out_wake_log_root; 2933 } 2934 btrfs_wait_logged_extents(trans, log, log_transid); 2935 2936 btrfs_set_super_log_root(root->fs_info->super_for_commit, 2937 log_root_tree->node->start); 2938 btrfs_set_super_log_root_level(root->fs_info->super_for_commit, 2939 btrfs_header_level(log_root_tree->node)); 2940 2941 log_root_tree->log_transid++; 2942 mutex_unlock(&log_root_tree->log_mutex); 2943 2944 /* 2945 * nobody else is going to jump in and write the the ctree 2946 * super here because the log_commit atomic below is protecting 2947 * us. We must be called with a transaction handle pinning 2948 * the running transaction open, so a full commit can't hop 2949 * in and cause problems either. 2950 */ 2951 ret = write_ctree_super(trans, root->fs_info->tree_root, 1); 2952 if (ret) { 2953 btrfs_set_log_full_commit(root->fs_info, trans); 2954 btrfs_abort_transaction(trans, ret); 2955 goto out_wake_log_root; 2956 } 2957 2958 mutex_lock(&root->log_mutex); 2959 if (root->last_log_commit < log_transid) 2960 root->last_log_commit = log_transid; 2961 mutex_unlock(&root->log_mutex); 2962 2963 out_wake_log_root: 2964 /* 2965 * We needn't get log_mutex here because we are sure all 2966 * the other tasks are blocked. 2967 */ 2968 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 2969 2970 mutex_lock(&log_root_tree->log_mutex); 2971 log_root_tree->log_transid_committed++; 2972 atomic_set(&log_root_tree->log_commit[index2], 0); 2973 mutex_unlock(&log_root_tree->log_mutex); 2974 2975 /* 2976 * The barrier before waitqueue_active is implied by mutex_unlock 2977 */ 2978 if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) 2979 wake_up(&log_root_tree->log_commit_wait[index2]); 2980 out: 2981 /* See above. */ 2982 btrfs_remove_all_log_ctxs(root, index1, ret); 2983 2984 mutex_lock(&root->log_mutex); 2985 root->log_transid_committed++; 2986 atomic_set(&root->log_commit[index1], 0); 2987 mutex_unlock(&root->log_mutex); 2988 2989 /* 2990 * The barrier before waitqueue_active is implied by mutex_unlock 2991 */ 2992 if (waitqueue_active(&root->log_commit_wait[index1])) 2993 wake_up(&root->log_commit_wait[index1]); 2994 return ret; 2995 } 2996 2997 static void free_log_tree(struct btrfs_trans_handle *trans, 2998 struct btrfs_root *log) 2999 { 3000 int ret; 3001 u64 start; 3002 u64 end; 3003 struct walk_control wc = { 3004 .free = 1, 3005 .process_func = process_one_buffer 3006 }; 3007 3008 ret = walk_log_tree(trans, log, &wc); 3009 /* I don't think this can happen but just in case */ 3010 if (ret) 3011 btrfs_abort_transaction(trans, ret); 3012 3013 while (1) { 3014 ret = find_first_extent_bit(&log->dirty_log_pages, 3015 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW, 3016 NULL); 3017 if (ret) 3018 break; 3019 3020 clear_extent_bits(&log->dirty_log_pages, start, end, 3021 EXTENT_DIRTY | EXTENT_NEW); 3022 } 3023 3024 /* 3025 * We may have short-circuited the log tree with the full commit logic 3026 * and left ordered extents on our list, so clear these out to keep us 3027 * from leaking inodes and memory. 3028 */ 3029 btrfs_free_logged_extents(log, 0); 3030 btrfs_free_logged_extents(log, 1); 3031 3032 free_extent_buffer(log->node); 3033 kfree(log); 3034 } 3035 3036 /* 3037 * free all the extents used by the tree log. This should be called 3038 * at commit time of the full transaction 3039 */ 3040 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3041 { 3042 if (root->log_root) { 3043 free_log_tree(trans, root->log_root); 3044 root->log_root = NULL; 3045 } 3046 return 0; 3047 } 3048 3049 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3050 struct btrfs_fs_info *fs_info) 3051 { 3052 if (fs_info->log_root_tree) { 3053 free_log_tree(trans, fs_info->log_root_tree); 3054 fs_info->log_root_tree = NULL; 3055 } 3056 return 0; 3057 } 3058 3059 /* 3060 * If both a file and directory are logged, and unlinks or renames are 3061 * mixed in, we have a few interesting corners: 3062 * 3063 * create file X in dir Y 3064 * link file X to X.link in dir Y 3065 * fsync file X 3066 * unlink file X but leave X.link 3067 * fsync dir Y 3068 * 3069 * After a crash we would expect only X.link to exist. But file X 3070 * didn't get fsync'd again so the log has back refs for X and X.link. 3071 * 3072 * We solve this by removing directory entries and inode backrefs from the 3073 * log when a file that was logged in the current transaction is 3074 * unlinked. Any later fsync will include the updated log entries, and 3075 * we'll be able to reconstruct the proper directory items from backrefs. 3076 * 3077 * This optimizations allows us to avoid relogging the entire inode 3078 * or the entire directory. 3079 */ 3080 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3081 struct btrfs_root *root, 3082 const char *name, int name_len, 3083 struct inode *dir, u64 index) 3084 { 3085 struct btrfs_root *log; 3086 struct btrfs_dir_item *di; 3087 struct btrfs_path *path; 3088 int ret; 3089 int err = 0; 3090 int bytes_del = 0; 3091 u64 dir_ino = btrfs_ino(dir); 3092 3093 if (BTRFS_I(dir)->logged_trans < trans->transid) 3094 return 0; 3095 3096 ret = join_running_log_trans(root); 3097 if (ret) 3098 return 0; 3099 3100 mutex_lock(&BTRFS_I(dir)->log_mutex); 3101 3102 log = root->log_root; 3103 path = btrfs_alloc_path(); 3104 if (!path) { 3105 err = -ENOMEM; 3106 goto out_unlock; 3107 } 3108 3109 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3110 name, name_len, -1); 3111 if (IS_ERR(di)) { 3112 err = PTR_ERR(di); 3113 goto fail; 3114 } 3115 if (di) { 3116 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3117 bytes_del += name_len; 3118 if (ret) { 3119 err = ret; 3120 goto fail; 3121 } 3122 } 3123 btrfs_release_path(path); 3124 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3125 index, name, name_len, -1); 3126 if (IS_ERR(di)) { 3127 err = PTR_ERR(di); 3128 goto fail; 3129 } 3130 if (di) { 3131 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3132 bytes_del += name_len; 3133 if (ret) { 3134 err = ret; 3135 goto fail; 3136 } 3137 } 3138 3139 /* update the directory size in the log to reflect the names 3140 * we have removed 3141 */ 3142 if (bytes_del) { 3143 struct btrfs_key key; 3144 3145 key.objectid = dir_ino; 3146 key.offset = 0; 3147 key.type = BTRFS_INODE_ITEM_KEY; 3148 btrfs_release_path(path); 3149 3150 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 3151 if (ret < 0) { 3152 err = ret; 3153 goto fail; 3154 } 3155 if (ret == 0) { 3156 struct btrfs_inode_item *item; 3157 u64 i_size; 3158 3159 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3160 struct btrfs_inode_item); 3161 i_size = btrfs_inode_size(path->nodes[0], item); 3162 if (i_size > bytes_del) 3163 i_size -= bytes_del; 3164 else 3165 i_size = 0; 3166 btrfs_set_inode_size(path->nodes[0], item, i_size); 3167 btrfs_mark_buffer_dirty(path->nodes[0]); 3168 } else 3169 ret = 0; 3170 btrfs_release_path(path); 3171 } 3172 fail: 3173 btrfs_free_path(path); 3174 out_unlock: 3175 mutex_unlock(&BTRFS_I(dir)->log_mutex); 3176 if (ret == -ENOSPC) { 3177 btrfs_set_log_full_commit(root->fs_info, trans); 3178 ret = 0; 3179 } else if (ret < 0) 3180 btrfs_abort_transaction(trans, ret); 3181 3182 btrfs_end_log_trans(root); 3183 3184 return err; 3185 } 3186 3187 /* see comments for btrfs_del_dir_entries_in_log */ 3188 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3189 struct btrfs_root *root, 3190 const char *name, int name_len, 3191 struct inode *inode, u64 dirid) 3192 { 3193 struct btrfs_root *log; 3194 u64 index; 3195 int ret; 3196 3197 if (BTRFS_I(inode)->logged_trans < trans->transid) 3198 return 0; 3199 3200 ret = join_running_log_trans(root); 3201 if (ret) 3202 return 0; 3203 log = root->log_root; 3204 mutex_lock(&BTRFS_I(inode)->log_mutex); 3205 3206 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3207 dirid, &index); 3208 mutex_unlock(&BTRFS_I(inode)->log_mutex); 3209 if (ret == -ENOSPC) { 3210 btrfs_set_log_full_commit(root->fs_info, trans); 3211 ret = 0; 3212 } else if (ret < 0 && ret != -ENOENT) 3213 btrfs_abort_transaction(trans, ret); 3214 btrfs_end_log_trans(root); 3215 3216 return ret; 3217 } 3218 3219 /* 3220 * creates a range item in the log for 'dirid'. first_offset and 3221 * last_offset tell us which parts of the key space the log should 3222 * be considered authoritative for. 3223 */ 3224 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3225 struct btrfs_root *log, 3226 struct btrfs_path *path, 3227 int key_type, u64 dirid, 3228 u64 first_offset, u64 last_offset) 3229 { 3230 int ret; 3231 struct btrfs_key key; 3232 struct btrfs_dir_log_item *item; 3233 3234 key.objectid = dirid; 3235 key.offset = first_offset; 3236 if (key_type == BTRFS_DIR_ITEM_KEY) 3237 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3238 else 3239 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3240 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3241 if (ret) 3242 return ret; 3243 3244 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3245 struct btrfs_dir_log_item); 3246 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3247 btrfs_mark_buffer_dirty(path->nodes[0]); 3248 btrfs_release_path(path); 3249 return 0; 3250 } 3251 3252 /* 3253 * log all the items included in the current transaction for a given 3254 * directory. This also creates the range items in the log tree required 3255 * to replay anything deleted before the fsync 3256 */ 3257 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3258 struct btrfs_root *root, struct inode *inode, 3259 struct btrfs_path *path, 3260 struct btrfs_path *dst_path, int key_type, 3261 struct btrfs_log_ctx *ctx, 3262 u64 min_offset, u64 *last_offset_ret) 3263 { 3264 struct btrfs_key min_key; 3265 struct btrfs_root *log = root->log_root; 3266 struct extent_buffer *src; 3267 int err = 0; 3268 int ret; 3269 int i; 3270 int nritems; 3271 u64 first_offset = min_offset; 3272 u64 last_offset = (u64)-1; 3273 u64 ino = btrfs_ino(inode); 3274 3275 log = root->log_root; 3276 3277 min_key.objectid = ino; 3278 min_key.type = key_type; 3279 min_key.offset = min_offset; 3280 3281 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3282 3283 /* 3284 * we didn't find anything from this transaction, see if there 3285 * is anything at all 3286 */ 3287 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3288 min_key.objectid = ino; 3289 min_key.type = key_type; 3290 min_key.offset = (u64)-1; 3291 btrfs_release_path(path); 3292 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3293 if (ret < 0) { 3294 btrfs_release_path(path); 3295 return ret; 3296 } 3297 ret = btrfs_previous_item(root, path, ino, key_type); 3298 3299 /* if ret == 0 there are items for this type, 3300 * create a range to tell us the last key of this type. 3301 * otherwise, there are no items in this directory after 3302 * *min_offset, and we create a range to indicate that. 3303 */ 3304 if (ret == 0) { 3305 struct btrfs_key tmp; 3306 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3307 path->slots[0]); 3308 if (key_type == tmp.type) 3309 first_offset = max(min_offset, tmp.offset) + 1; 3310 } 3311 goto done; 3312 } 3313 3314 /* go backward to find any previous key */ 3315 ret = btrfs_previous_item(root, path, ino, key_type); 3316 if (ret == 0) { 3317 struct btrfs_key tmp; 3318 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3319 if (key_type == tmp.type) { 3320 first_offset = tmp.offset; 3321 ret = overwrite_item(trans, log, dst_path, 3322 path->nodes[0], path->slots[0], 3323 &tmp); 3324 if (ret) { 3325 err = ret; 3326 goto done; 3327 } 3328 } 3329 } 3330 btrfs_release_path(path); 3331 3332 /* find the first key from this transaction again */ 3333 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3334 if (WARN_ON(ret != 0)) 3335 goto done; 3336 3337 /* 3338 * we have a block from this transaction, log every item in it 3339 * from our directory 3340 */ 3341 while (1) { 3342 struct btrfs_key tmp; 3343 src = path->nodes[0]; 3344 nritems = btrfs_header_nritems(src); 3345 for (i = path->slots[0]; i < nritems; i++) { 3346 struct btrfs_dir_item *di; 3347 3348 btrfs_item_key_to_cpu(src, &min_key, i); 3349 3350 if (min_key.objectid != ino || min_key.type != key_type) 3351 goto done; 3352 ret = overwrite_item(trans, log, dst_path, src, i, 3353 &min_key); 3354 if (ret) { 3355 err = ret; 3356 goto done; 3357 } 3358 3359 /* 3360 * We must make sure that when we log a directory entry, 3361 * the corresponding inode, after log replay, has a 3362 * matching link count. For example: 3363 * 3364 * touch foo 3365 * mkdir mydir 3366 * sync 3367 * ln foo mydir/bar 3368 * xfs_io -c "fsync" mydir 3369 * <crash> 3370 * <mount fs and log replay> 3371 * 3372 * Would result in a fsync log that when replayed, our 3373 * file inode would have a link count of 1, but we get 3374 * two directory entries pointing to the same inode. 3375 * After removing one of the names, it would not be 3376 * possible to remove the other name, which resulted 3377 * always in stale file handle errors, and would not 3378 * be possible to rmdir the parent directory, since 3379 * its i_size could never decrement to the value 3380 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3381 */ 3382 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3383 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3384 if (ctx && 3385 (btrfs_dir_transid(src, di) == trans->transid || 3386 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3387 tmp.type != BTRFS_ROOT_ITEM_KEY) 3388 ctx->log_new_dentries = true; 3389 } 3390 path->slots[0] = nritems; 3391 3392 /* 3393 * look ahead to the next item and see if it is also 3394 * from this directory and from this transaction 3395 */ 3396 ret = btrfs_next_leaf(root, path); 3397 if (ret == 1) { 3398 last_offset = (u64)-1; 3399 goto done; 3400 } 3401 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3402 if (tmp.objectid != ino || tmp.type != key_type) { 3403 last_offset = (u64)-1; 3404 goto done; 3405 } 3406 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3407 ret = overwrite_item(trans, log, dst_path, 3408 path->nodes[0], path->slots[0], 3409 &tmp); 3410 if (ret) 3411 err = ret; 3412 else 3413 last_offset = tmp.offset; 3414 goto done; 3415 } 3416 } 3417 done: 3418 btrfs_release_path(path); 3419 btrfs_release_path(dst_path); 3420 3421 if (err == 0) { 3422 *last_offset_ret = last_offset; 3423 /* 3424 * insert the log range keys to indicate where the log 3425 * is valid 3426 */ 3427 ret = insert_dir_log_key(trans, log, path, key_type, 3428 ino, first_offset, last_offset); 3429 if (ret) 3430 err = ret; 3431 } 3432 return err; 3433 } 3434 3435 /* 3436 * logging directories is very similar to logging inodes, We find all the items 3437 * from the current transaction and write them to the log. 3438 * 3439 * The recovery code scans the directory in the subvolume, and if it finds a 3440 * key in the range logged that is not present in the log tree, then it means 3441 * that dir entry was unlinked during the transaction. 3442 * 3443 * In order for that scan to work, we must include one key smaller than 3444 * the smallest logged by this transaction and one key larger than the largest 3445 * key logged by this transaction. 3446 */ 3447 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3448 struct btrfs_root *root, struct inode *inode, 3449 struct btrfs_path *path, 3450 struct btrfs_path *dst_path, 3451 struct btrfs_log_ctx *ctx) 3452 { 3453 u64 min_key; 3454 u64 max_key; 3455 int ret; 3456 int key_type = BTRFS_DIR_ITEM_KEY; 3457 3458 again: 3459 min_key = 0; 3460 max_key = 0; 3461 while (1) { 3462 ret = log_dir_items(trans, root, inode, path, 3463 dst_path, key_type, ctx, min_key, 3464 &max_key); 3465 if (ret) 3466 return ret; 3467 if (max_key == (u64)-1) 3468 break; 3469 min_key = max_key + 1; 3470 } 3471 3472 if (key_type == BTRFS_DIR_ITEM_KEY) { 3473 key_type = BTRFS_DIR_INDEX_KEY; 3474 goto again; 3475 } 3476 return 0; 3477 } 3478 3479 /* 3480 * a helper function to drop items from the log before we relog an 3481 * inode. max_key_type indicates the highest item type to remove. 3482 * This cannot be run for file data extents because it does not 3483 * free the extents they point to. 3484 */ 3485 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3486 struct btrfs_root *log, 3487 struct btrfs_path *path, 3488 u64 objectid, int max_key_type) 3489 { 3490 int ret; 3491 struct btrfs_key key; 3492 struct btrfs_key found_key; 3493 int start_slot; 3494 3495 key.objectid = objectid; 3496 key.type = max_key_type; 3497 key.offset = (u64)-1; 3498 3499 while (1) { 3500 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3501 BUG_ON(ret == 0); /* Logic error */ 3502 if (ret < 0) 3503 break; 3504 3505 if (path->slots[0] == 0) 3506 break; 3507 3508 path->slots[0]--; 3509 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3510 path->slots[0]); 3511 3512 if (found_key.objectid != objectid) 3513 break; 3514 3515 found_key.offset = 0; 3516 found_key.type = 0; 3517 ret = btrfs_bin_search(path->nodes[0], &found_key, 0, 3518 &start_slot); 3519 3520 ret = btrfs_del_items(trans, log, path, start_slot, 3521 path->slots[0] - start_slot + 1); 3522 /* 3523 * If start slot isn't 0 then we don't need to re-search, we've 3524 * found the last guy with the objectid in this tree. 3525 */ 3526 if (ret || start_slot != 0) 3527 break; 3528 btrfs_release_path(path); 3529 } 3530 btrfs_release_path(path); 3531 if (ret > 0) 3532 ret = 0; 3533 return ret; 3534 } 3535 3536 static void fill_inode_item(struct btrfs_trans_handle *trans, 3537 struct extent_buffer *leaf, 3538 struct btrfs_inode_item *item, 3539 struct inode *inode, int log_inode_only, 3540 u64 logged_isize) 3541 { 3542 struct btrfs_map_token token; 3543 3544 btrfs_init_map_token(&token); 3545 3546 if (log_inode_only) { 3547 /* set the generation to zero so the recover code 3548 * can tell the difference between an logging 3549 * just to say 'this inode exists' and a logging 3550 * to say 'update this inode with these values' 3551 */ 3552 btrfs_set_token_inode_generation(leaf, item, 0, &token); 3553 btrfs_set_token_inode_size(leaf, item, logged_isize, &token); 3554 } else { 3555 btrfs_set_token_inode_generation(leaf, item, 3556 BTRFS_I(inode)->generation, 3557 &token); 3558 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); 3559 } 3560 3561 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3562 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3563 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3564 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3565 3566 btrfs_set_token_timespec_sec(leaf, &item->atime, 3567 inode->i_atime.tv_sec, &token); 3568 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3569 inode->i_atime.tv_nsec, &token); 3570 3571 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3572 inode->i_mtime.tv_sec, &token); 3573 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3574 inode->i_mtime.tv_nsec, &token); 3575 3576 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3577 inode->i_ctime.tv_sec, &token); 3578 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3579 inode->i_ctime.tv_nsec, &token); 3580 3581 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3582 &token); 3583 3584 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3585 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3586 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3587 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3588 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3589 } 3590 3591 static int log_inode_item(struct btrfs_trans_handle *trans, 3592 struct btrfs_root *log, struct btrfs_path *path, 3593 struct inode *inode) 3594 { 3595 struct btrfs_inode_item *inode_item; 3596 int ret; 3597 3598 ret = btrfs_insert_empty_item(trans, log, path, 3599 &BTRFS_I(inode)->location, 3600 sizeof(*inode_item)); 3601 if (ret && ret != -EEXIST) 3602 return ret; 3603 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3604 struct btrfs_inode_item); 3605 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0); 3606 btrfs_release_path(path); 3607 return 0; 3608 } 3609 3610 static noinline int copy_items(struct btrfs_trans_handle *trans, 3611 struct inode *inode, 3612 struct btrfs_path *dst_path, 3613 struct btrfs_path *src_path, u64 *last_extent, 3614 int start_slot, int nr, int inode_only, 3615 u64 logged_isize) 3616 { 3617 unsigned long src_offset; 3618 unsigned long dst_offset; 3619 struct btrfs_root *log = BTRFS_I(inode)->root->log_root; 3620 struct btrfs_file_extent_item *extent; 3621 struct btrfs_inode_item *inode_item; 3622 struct extent_buffer *src = src_path->nodes[0]; 3623 struct btrfs_key first_key, last_key, key; 3624 int ret; 3625 struct btrfs_key *ins_keys; 3626 u32 *ins_sizes; 3627 char *ins_data; 3628 int i; 3629 struct list_head ordered_sums; 3630 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 3631 bool has_extents = false; 3632 bool need_find_last_extent = true; 3633 bool done = false; 3634 3635 INIT_LIST_HEAD(&ordered_sums); 3636 3637 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3638 nr * sizeof(u32), GFP_NOFS); 3639 if (!ins_data) 3640 return -ENOMEM; 3641 3642 first_key.objectid = (u64)-1; 3643 3644 ins_sizes = (u32 *)ins_data; 3645 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3646 3647 for (i = 0; i < nr; i++) { 3648 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3649 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3650 } 3651 ret = btrfs_insert_empty_items(trans, log, dst_path, 3652 ins_keys, ins_sizes, nr); 3653 if (ret) { 3654 kfree(ins_data); 3655 return ret; 3656 } 3657 3658 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3659 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3660 dst_path->slots[0]); 3661 3662 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3663 3664 if ((i == (nr - 1))) 3665 last_key = ins_keys[i]; 3666 3667 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3668 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3669 dst_path->slots[0], 3670 struct btrfs_inode_item); 3671 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3672 inode, inode_only == LOG_INODE_EXISTS, 3673 logged_isize); 3674 } else { 3675 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3676 src_offset, ins_sizes[i]); 3677 } 3678 3679 /* 3680 * We set need_find_last_extent here in case we know we were 3681 * processing other items and then walk into the first extent in 3682 * the inode. If we don't hit an extent then nothing changes, 3683 * we'll do the last search the next time around. 3684 */ 3685 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) { 3686 has_extents = true; 3687 if (first_key.objectid == (u64)-1) 3688 first_key = ins_keys[i]; 3689 } else { 3690 need_find_last_extent = false; 3691 } 3692 3693 /* take a reference on file data extents so that truncates 3694 * or deletes of this inode don't have to relog the inode 3695 * again 3696 */ 3697 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 3698 !skip_csum) { 3699 int found_type; 3700 extent = btrfs_item_ptr(src, start_slot + i, 3701 struct btrfs_file_extent_item); 3702 3703 if (btrfs_file_extent_generation(src, extent) < trans->transid) 3704 continue; 3705 3706 found_type = btrfs_file_extent_type(src, extent); 3707 if (found_type == BTRFS_FILE_EXTENT_REG) { 3708 u64 ds, dl, cs, cl; 3709 ds = btrfs_file_extent_disk_bytenr(src, 3710 extent); 3711 /* ds == 0 is a hole */ 3712 if (ds == 0) 3713 continue; 3714 3715 dl = btrfs_file_extent_disk_num_bytes(src, 3716 extent); 3717 cs = btrfs_file_extent_offset(src, extent); 3718 cl = btrfs_file_extent_num_bytes(src, 3719 extent); 3720 if (btrfs_file_extent_compression(src, 3721 extent)) { 3722 cs = 0; 3723 cl = dl; 3724 } 3725 3726 ret = btrfs_lookup_csums_range( 3727 log->fs_info->csum_root, 3728 ds + cs, ds + cs + cl - 1, 3729 &ordered_sums, 0); 3730 if (ret) { 3731 btrfs_release_path(dst_path); 3732 kfree(ins_data); 3733 return ret; 3734 } 3735 } 3736 } 3737 } 3738 3739 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 3740 btrfs_release_path(dst_path); 3741 kfree(ins_data); 3742 3743 /* 3744 * we have to do this after the loop above to avoid changing the 3745 * log tree while trying to change the log tree. 3746 */ 3747 ret = 0; 3748 while (!list_empty(&ordered_sums)) { 3749 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 3750 struct btrfs_ordered_sum, 3751 list); 3752 if (!ret) 3753 ret = btrfs_csum_file_blocks(trans, log, sums); 3754 list_del(&sums->list); 3755 kfree(sums); 3756 } 3757 3758 if (!has_extents) 3759 return ret; 3760 3761 if (need_find_last_extent && *last_extent == first_key.offset) { 3762 /* 3763 * We don't have any leafs between our current one and the one 3764 * we processed before that can have file extent items for our 3765 * inode (and have a generation number smaller than our current 3766 * transaction id). 3767 */ 3768 need_find_last_extent = false; 3769 } 3770 3771 /* 3772 * Because we use btrfs_search_forward we could skip leaves that were 3773 * not modified and then assume *last_extent is valid when it really 3774 * isn't. So back up to the previous leaf and read the end of the last 3775 * extent before we go and fill in holes. 3776 */ 3777 if (need_find_last_extent) { 3778 u64 len; 3779 3780 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path); 3781 if (ret < 0) 3782 return ret; 3783 if (ret) 3784 goto fill_holes; 3785 if (src_path->slots[0]) 3786 src_path->slots[0]--; 3787 src = src_path->nodes[0]; 3788 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]); 3789 if (key.objectid != btrfs_ino(inode) || 3790 key.type != BTRFS_EXTENT_DATA_KEY) 3791 goto fill_holes; 3792 extent = btrfs_item_ptr(src, src_path->slots[0], 3793 struct btrfs_file_extent_item); 3794 if (btrfs_file_extent_type(src, extent) == 3795 BTRFS_FILE_EXTENT_INLINE) { 3796 len = btrfs_file_extent_inline_len(src, 3797 src_path->slots[0], 3798 extent); 3799 *last_extent = ALIGN(key.offset + len, 3800 log->sectorsize); 3801 } else { 3802 len = btrfs_file_extent_num_bytes(src, extent); 3803 *last_extent = key.offset + len; 3804 } 3805 } 3806 fill_holes: 3807 /* So we did prev_leaf, now we need to move to the next leaf, but a few 3808 * things could have happened 3809 * 3810 * 1) A merge could have happened, so we could currently be on a leaf 3811 * that holds what we were copying in the first place. 3812 * 2) A split could have happened, and now not all of the items we want 3813 * are on the same leaf. 3814 * 3815 * So we need to adjust how we search for holes, we need to drop the 3816 * path and re-search for the first extent key we found, and then walk 3817 * forward until we hit the last one we copied. 3818 */ 3819 if (need_find_last_extent) { 3820 /* btrfs_prev_leaf could return 1 without releasing the path */ 3821 btrfs_release_path(src_path); 3822 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key, 3823 src_path, 0, 0); 3824 if (ret < 0) 3825 return ret; 3826 ASSERT(ret == 0); 3827 src = src_path->nodes[0]; 3828 i = src_path->slots[0]; 3829 } else { 3830 i = start_slot; 3831 } 3832 3833 /* 3834 * Ok so here we need to go through and fill in any holes we may have 3835 * to make sure that holes are punched for those areas in case they had 3836 * extents previously. 3837 */ 3838 while (!done) { 3839 u64 offset, len; 3840 u64 extent_end; 3841 3842 if (i >= btrfs_header_nritems(src_path->nodes[0])) { 3843 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path); 3844 if (ret < 0) 3845 return ret; 3846 ASSERT(ret == 0); 3847 src = src_path->nodes[0]; 3848 i = 0; 3849 } 3850 3851 btrfs_item_key_to_cpu(src, &key, i); 3852 if (!btrfs_comp_cpu_keys(&key, &last_key)) 3853 done = true; 3854 if (key.objectid != btrfs_ino(inode) || 3855 key.type != BTRFS_EXTENT_DATA_KEY) { 3856 i++; 3857 continue; 3858 } 3859 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); 3860 if (btrfs_file_extent_type(src, extent) == 3861 BTRFS_FILE_EXTENT_INLINE) { 3862 len = btrfs_file_extent_inline_len(src, i, extent); 3863 extent_end = ALIGN(key.offset + len, log->sectorsize); 3864 } else { 3865 len = btrfs_file_extent_num_bytes(src, extent); 3866 extent_end = key.offset + len; 3867 } 3868 i++; 3869 3870 if (*last_extent == key.offset) { 3871 *last_extent = extent_end; 3872 continue; 3873 } 3874 offset = *last_extent; 3875 len = key.offset - *last_extent; 3876 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode), 3877 offset, 0, 0, len, 0, len, 0, 3878 0, 0); 3879 if (ret) 3880 break; 3881 *last_extent = extent_end; 3882 } 3883 /* 3884 * Need to let the callers know we dropped the path so they should 3885 * re-search. 3886 */ 3887 if (!ret && need_find_last_extent) 3888 ret = 1; 3889 return ret; 3890 } 3891 3892 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 3893 { 3894 struct extent_map *em1, *em2; 3895 3896 em1 = list_entry(a, struct extent_map, list); 3897 em2 = list_entry(b, struct extent_map, list); 3898 3899 if (em1->start < em2->start) 3900 return -1; 3901 else if (em1->start > em2->start) 3902 return 1; 3903 return 0; 3904 } 3905 3906 static int wait_ordered_extents(struct btrfs_trans_handle *trans, 3907 struct inode *inode, 3908 struct btrfs_root *root, 3909 const struct extent_map *em, 3910 const struct list_head *logged_list, 3911 bool *ordered_io_error) 3912 { 3913 struct btrfs_ordered_extent *ordered; 3914 struct btrfs_root *log = root->log_root; 3915 u64 mod_start = em->mod_start; 3916 u64 mod_len = em->mod_len; 3917 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 3918 u64 csum_offset; 3919 u64 csum_len; 3920 LIST_HEAD(ordered_sums); 3921 int ret = 0; 3922 3923 *ordered_io_error = false; 3924 3925 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 3926 em->block_start == EXTENT_MAP_HOLE) 3927 return 0; 3928 3929 /* 3930 * Wait far any ordered extent that covers our extent map. If it 3931 * finishes without an error, first check and see if our csums are on 3932 * our outstanding ordered extents. 3933 */ 3934 list_for_each_entry(ordered, logged_list, log_list) { 3935 struct btrfs_ordered_sum *sum; 3936 3937 if (!mod_len) 3938 break; 3939 3940 if (ordered->file_offset + ordered->len <= mod_start || 3941 mod_start + mod_len <= ordered->file_offset) 3942 continue; 3943 3944 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && 3945 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3946 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 3947 const u64 start = ordered->file_offset; 3948 const u64 end = ordered->file_offset + ordered->len - 1; 3949 3950 WARN_ON(ordered->inode != inode); 3951 filemap_fdatawrite_range(inode->i_mapping, start, end); 3952 } 3953 3954 wait_event(ordered->wait, 3955 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) || 3956 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))); 3957 3958 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) { 3959 /* 3960 * Clear the AS_EIO/AS_ENOSPC flags from the inode's 3961 * i_mapping flags, so that the next fsync won't get 3962 * an outdated io error too. 3963 */ 3964 filemap_check_errors(inode->i_mapping); 3965 *ordered_io_error = true; 3966 break; 3967 } 3968 /* 3969 * We are going to copy all the csums on this ordered extent, so 3970 * go ahead and adjust mod_start and mod_len in case this 3971 * ordered extent has already been logged. 3972 */ 3973 if (ordered->file_offset > mod_start) { 3974 if (ordered->file_offset + ordered->len >= 3975 mod_start + mod_len) 3976 mod_len = ordered->file_offset - mod_start; 3977 /* 3978 * If we have this case 3979 * 3980 * |--------- logged extent ---------| 3981 * |----- ordered extent ----| 3982 * 3983 * Just don't mess with mod_start and mod_len, we'll 3984 * just end up logging more csums than we need and it 3985 * will be ok. 3986 */ 3987 } else { 3988 if (ordered->file_offset + ordered->len < 3989 mod_start + mod_len) { 3990 mod_len = (mod_start + mod_len) - 3991 (ordered->file_offset + ordered->len); 3992 mod_start = ordered->file_offset + 3993 ordered->len; 3994 } else { 3995 mod_len = 0; 3996 } 3997 } 3998 3999 if (skip_csum) 4000 continue; 4001 4002 /* 4003 * To keep us from looping for the above case of an ordered 4004 * extent that falls inside of the logged extent. 4005 */ 4006 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, 4007 &ordered->flags)) 4008 continue; 4009 4010 list_for_each_entry(sum, &ordered->list, list) { 4011 ret = btrfs_csum_file_blocks(trans, log, sum); 4012 if (ret) 4013 break; 4014 } 4015 } 4016 4017 if (*ordered_io_error || !mod_len || ret || skip_csum) 4018 return ret; 4019 4020 if (em->compress_type) { 4021 csum_offset = 0; 4022 csum_len = max(em->block_len, em->orig_block_len); 4023 } else { 4024 csum_offset = mod_start - em->start; 4025 csum_len = mod_len; 4026 } 4027 4028 /* block start is already adjusted for the file extent offset. */ 4029 ret = btrfs_lookup_csums_range(log->fs_info->csum_root, 4030 em->block_start + csum_offset, 4031 em->block_start + csum_offset + 4032 csum_len - 1, &ordered_sums, 0); 4033 if (ret) 4034 return ret; 4035 4036 while (!list_empty(&ordered_sums)) { 4037 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4038 struct btrfs_ordered_sum, 4039 list); 4040 if (!ret) 4041 ret = btrfs_csum_file_blocks(trans, log, sums); 4042 list_del(&sums->list); 4043 kfree(sums); 4044 } 4045 4046 return ret; 4047 } 4048 4049 static int log_one_extent(struct btrfs_trans_handle *trans, 4050 struct inode *inode, struct btrfs_root *root, 4051 const struct extent_map *em, 4052 struct btrfs_path *path, 4053 const struct list_head *logged_list, 4054 struct btrfs_log_ctx *ctx) 4055 { 4056 struct btrfs_root *log = root->log_root; 4057 struct btrfs_file_extent_item *fi; 4058 struct extent_buffer *leaf; 4059 struct btrfs_map_token token; 4060 struct btrfs_key key; 4061 u64 extent_offset = em->start - em->orig_start; 4062 u64 block_len; 4063 int ret; 4064 int extent_inserted = 0; 4065 bool ordered_io_err = false; 4066 4067 ret = wait_ordered_extents(trans, inode, root, em, logged_list, 4068 &ordered_io_err); 4069 if (ret) 4070 return ret; 4071 4072 if (ordered_io_err) { 4073 ctx->io_err = -EIO; 4074 return 0; 4075 } 4076 4077 btrfs_init_map_token(&token); 4078 4079 ret = __btrfs_drop_extents(trans, log, inode, path, em->start, 4080 em->start + em->len, NULL, 0, 1, 4081 sizeof(*fi), &extent_inserted); 4082 if (ret) 4083 return ret; 4084 4085 if (!extent_inserted) { 4086 key.objectid = btrfs_ino(inode); 4087 key.type = BTRFS_EXTENT_DATA_KEY; 4088 key.offset = em->start; 4089 4090 ret = btrfs_insert_empty_item(trans, log, path, &key, 4091 sizeof(*fi)); 4092 if (ret) 4093 return ret; 4094 } 4095 leaf = path->nodes[0]; 4096 fi = btrfs_item_ptr(leaf, path->slots[0], 4097 struct btrfs_file_extent_item); 4098 4099 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, 4100 &token); 4101 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4102 btrfs_set_token_file_extent_type(leaf, fi, 4103 BTRFS_FILE_EXTENT_PREALLOC, 4104 &token); 4105 else 4106 btrfs_set_token_file_extent_type(leaf, fi, 4107 BTRFS_FILE_EXTENT_REG, 4108 &token); 4109 4110 block_len = max(em->block_len, em->orig_block_len); 4111 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4112 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4113 em->block_start, 4114 &token); 4115 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4116 &token); 4117 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4118 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4119 em->block_start - 4120 extent_offset, &token); 4121 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4122 &token); 4123 } else { 4124 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); 4125 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, 4126 &token); 4127 } 4128 4129 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); 4130 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); 4131 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); 4132 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, 4133 &token); 4134 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); 4135 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); 4136 btrfs_mark_buffer_dirty(leaf); 4137 4138 btrfs_release_path(path); 4139 4140 return ret; 4141 } 4142 4143 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4144 struct btrfs_root *root, 4145 struct inode *inode, 4146 struct btrfs_path *path, 4147 struct list_head *logged_list, 4148 struct btrfs_log_ctx *ctx, 4149 const u64 start, 4150 const u64 end) 4151 { 4152 struct extent_map *em, *n; 4153 struct list_head extents; 4154 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree; 4155 u64 test_gen; 4156 int ret = 0; 4157 int num = 0; 4158 4159 INIT_LIST_HEAD(&extents); 4160 4161 down_write(&BTRFS_I(inode)->dio_sem); 4162 write_lock(&tree->lock); 4163 test_gen = root->fs_info->last_trans_committed; 4164 4165 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4166 list_del_init(&em->list); 4167 4168 /* 4169 * Just an arbitrary number, this can be really CPU intensive 4170 * once we start getting a lot of extents, and really once we 4171 * have a bunch of extents we just want to commit since it will 4172 * be faster. 4173 */ 4174 if (++num > 32768) { 4175 list_del_init(&tree->modified_extents); 4176 ret = -EFBIG; 4177 goto process; 4178 } 4179 4180 if (em->generation <= test_gen) 4181 continue; 4182 /* Need a ref to keep it from getting evicted from cache */ 4183 atomic_inc(&em->refs); 4184 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4185 list_add_tail(&em->list, &extents); 4186 num++; 4187 } 4188 4189 list_sort(NULL, &extents, extent_cmp); 4190 btrfs_get_logged_extents(inode, logged_list, start, end); 4191 /* 4192 * Some ordered extents started by fsync might have completed 4193 * before we could collect them into the list logged_list, which 4194 * means they're gone, not in our logged_list nor in the inode's 4195 * ordered tree. We want the application/user space to know an 4196 * error happened while attempting to persist file data so that 4197 * it can take proper action. If such error happened, we leave 4198 * without writing to the log tree and the fsync must report the 4199 * file data write error and not commit the current transaction. 4200 */ 4201 ret = filemap_check_errors(inode->i_mapping); 4202 if (ret) 4203 ctx->io_err = ret; 4204 process: 4205 while (!list_empty(&extents)) { 4206 em = list_entry(extents.next, struct extent_map, list); 4207 4208 list_del_init(&em->list); 4209 4210 /* 4211 * If we had an error we just need to delete everybody from our 4212 * private list. 4213 */ 4214 if (ret) { 4215 clear_em_logging(tree, em); 4216 free_extent_map(em); 4217 continue; 4218 } 4219 4220 write_unlock(&tree->lock); 4221 4222 ret = log_one_extent(trans, inode, root, em, path, logged_list, 4223 ctx); 4224 write_lock(&tree->lock); 4225 clear_em_logging(tree, em); 4226 free_extent_map(em); 4227 } 4228 WARN_ON(!list_empty(&extents)); 4229 write_unlock(&tree->lock); 4230 up_write(&BTRFS_I(inode)->dio_sem); 4231 4232 btrfs_release_path(path); 4233 return ret; 4234 } 4235 4236 static int logged_inode_size(struct btrfs_root *log, struct inode *inode, 4237 struct btrfs_path *path, u64 *size_ret) 4238 { 4239 struct btrfs_key key; 4240 int ret; 4241 4242 key.objectid = btrfs_ino(inode); 4243 key.type = BTRFS_INODE_ITEM_KEY; 4244 key.offset = 0; 4245 4246 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4247 if (ret < 0) { 4248 return ret; 4249 } else if (ret > 0) { 4250 *size_ret = 0; 4251 } else { 4252 struct btrfs_inode_item *item; 4253 4254 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4255 struct btrfs_inode_item); 4256 *size_ret = btrfs_inode_size(path->nodes[0], item); 4257 } 4258 4259 btrfs_release_path(path); 4260 return 0; 4261 } 4262 4263 /* 4264 * At the moment we always log all xattrs. This is to figure out at log replay 4265 * time which xattrs must have their deletion replayed. If a xattr is missing 4266 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4267 * because if a xattr is deleted, the inode is fsynced and a power failure 4268 * happens, causing the log to be replayed the next time the fs is mounted, 4269 * we want the xattr to not exist anymore (same behaviour as other filesystems 4270 * with a journal, ext3/4, xfs, f2fs, etc). 4271 */ 4272 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4273 struct btrfs_root *root, 4274 struct inode *inode, 4275 struct btrfs_path *path, 4276 struct btrfs_path *dst_path) 4277 { 4278 int ret; 4279 struct btrfs_key key; 4280 const u64 ino = btrfs_ino(inode); 4281 int ins_nr = 0; 4282 int start_slot = 0; 4283 4284 key.objectid = ino; 4285 key.type = BTRFS_XATTR_ITEM_KEY; 4286 key.offset = 0; 4287 4288 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4289 if (ret < 0) 4290 return ret; 4291 4292 while (true) { 4293 int slot = path->slots[0]; 4294 struct extent_buffer *leaf = path->nodes[0]; 4295 int nritems = btrfs_header_nritems(leaf); 4296 4297 if (slot >= nritems) { 4298 if (ins_nr > 0) { 4299 u64 last_extent = 0; 4300 4301 ret = copy_items(trans, inode, dst_path, path, 4302 &last_extent, start_slot, 4303 ins_nr, 1, 0); 4304 /* can't be 1, extent items aren't processed */ 4305 ASSERT(ret <= 0); 4306 if (ret < 0) 4307 return ret; 4308 ins_nr = 0; 4309 } 4310 ret = btrfs_next_leaf(root, path); 4311 if (ret < 0) 4312 return ret; 4313 else if (ret > 0) 4314 break; 4315 continue; 4316 } 4317 4318 btrfs_item_key_to_cpu(leaf, &key, slot); 4319 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4320 break; 4321 4322 if (ins_nr == 0) 4323 start_slot = slot; 4324 ins_nr++; 4325 path->slots[0]++; 4326 cond_resched(); 4327 } 4328 if (ins_nr > 0) { 4329 u64 last_extent = 0; 4330 4331 ret = copy_items(trans, inode, dst_path, path, 4332 &last_extent, start_slot, 4333 ins_nr, 1, 0); 4334 /* can't be 1, extent items aren't processed */ 4335 ASSERT(ret <= 0); 4336 if (ret < 0) 4337 return ret; 4338 } 4339 4340 return 0; 4341 } 4342 4343 /* 4344 * If the no holes feature is enabled we need to make sure any hole between the 4345 * last extent and the i_size of our inode is explicitly marked in the log. This 4346 * is to make sure that doing something like: 4347 * 4348 * 1) create file with 128Kb of data 4349 * 2) truncate file to 64Kb 4350 * 3) truncate file to 256Kb 4351 * 4) fsync file 4352 * 5) <crash/power failure> 4353 * 6) mount fs and trigger log replay 4354 * 4355 * Will give us a file with a size of 256Kb, the first 64Kb of data match what 4356 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the 4357 * file correspond to a hole. The presence of explicit holes in a log tree is 4358 * what guarantees that log replay will remove/adjust file extent items in the 4359 * fs/subvol tree. 4360 * 4361 * Here we do not need to care about holes between extents, that is already done 4362 * by copy_items(). We also only need to do this in the full sync path, where we 4363 * lookup for extents from the fs/subvol tree only. In the fast path case, we 4364 * lookup the list of modified extent maps and if any represents a hole, we 4365 * insert a corresponding extent representing a hole in the log tree. 4366 */ 4367 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans, 4368 struct btrfs_root *root, 4369 struct inode *inode, 4370 struct btrfs_path *path) 4371 { 4372 int ret; 4373 struct btrfs_key key; 4374 u64 hole_start; 4375 u64 hole_size; 4376 struct extent_buffer *leaf; 4377 struct btrfs_root *log = root->log_root; 4378 const u64 ino = btrfs_ino(inode); 4379 const u64 i_size = i_size_read(inode); 4380 4381 if (!btrfs_fs_incompat(root->fs_info, NO_HOLES)) 4382 return 0; 4383 4384 key.objectid = ino; 4385 key.type = BTRFS_EXTENT_DATA_KEY; 4386 key.offset = (u64)-1; 4387 4388 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4389 ASSERT(ret != 0); 4390 if (ret < 0) 4391 return ret; 4392 4393 ASSERT(path->slots[0] > 0); 4394 path->slots[0]--; 4395 leaf = path->nodes[0]; 4396 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4397 4398 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 4399 /* inode does not have any extents */ 4400 hole_start = 0; 4401 hole_size = i_size; 4402 } else { 4403 struct btrfs_file_extent_item *extent; 4404 u64 len; 4405 4406 /* 4407 * If there's an extent beyond i_size, an explicit hole was 4408 * already inserted by copy_items(). 4409 */ 4410 if (key.offset >= i_size) 4411 return 0; 4412 4413 extent = btrfs_item_ptr(leaf, path->slots[0], 4414 struct btrfs_file_extent_item); 4415 4416 if (btrfs_file_extent_type(leaf, extent) == 4417 BTRFS_FILE_EXTENT_INLINE) { 4418 len = btrfs_file_extent_inline_len(leaf, 4419 path->slots[0], 4420 extent); 4421 ASSERT(len == i_size); 4422 return 0; 4423 } 4424 4425 len = btrfs_file_extent_num_bytes(leaf, extent); 4426 /* Last extent goes beyond i_size, no need to log a hole. */ 4427 if (key.offset + len > i_size) 4428 return 0; 4429 hole_start = key.offset + len; 4430 hole_size = i_size - hole_start; 4431 } 4432 btrfs_release_path(path); 4433 4434 /* Last extent ends at i_size. */ 4435 if (hole_size == 0) 4436 return 0; 4437 4438 hole_size = ALIGN(hole_size, root->sectorsize); 4439 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0, 4440 hole_size, 0, hole_size, 0, 0, 0); 4441 return ret; 4442 } 4443 4444 /* 4445 * When we are logging a new inode X, check if it doesn't have a reference that 4446 * matches the reference from some other inode Y created in a past transaction 4447 * and that was renamed in the current transaction. If we don't do this, then at 4448 * log replay time we can lose inode Y (and all its files if it's a directory): 4449 * 4450 * mkdir /mnt/x 4451 * echo "hello world" > /mnt/x/foobar 4452 * sync 4453 * mv /mnt/x /mnt/y 4454 * mkdir /mnt/x # or touch /mnt/x 4455 * xfs_io -c fsync /mnt/x 4456 * <power fail> 4457 * mount fs, trigger log replay 4458 * 4459 * After the log replay procedure, we would lose the first directory and all its 4460 * files (file foobar). 4461 * For the case where inode Y is not a directory we simply end up losing it: 4462 * 4463 * echo "123" > /mnt/foo 4464 * sync 4465 * mv /mnt/foo /mnt/bar 4466 * echo "abc" > /mnt/foo 4467 * xfs_io -c fsync /mnt/foo 4468 * <power fail> 4469 * 4470 * We also need this for cases where a snapshot entry is replaced by some other 4471 * entry (file or directory) otherwise we end up with an unreplayable log due to 4472 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4473 * if it were a regular entry: 4474 * 4475 * mkdir /mnt/x 4476 * btrfs subvolume snapshot /mnt /mnt/x/snap 4477 * btrfs subvolume delete /mnt/x/snap 4478 * rmdir /mnt/x 4479 * mkdir /mnt/x 4480 * fsync /mnt/x or fsync some new file inside it 4481 * <power fail> 4482 * 4483 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4484 * the same transaction. 4485 */ 4486 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4487 const int slot, 4488 const struct btrfs_key *key, 4489 struct inode *inode, 4490 u64 *other_ino) 4491 { 4492 int ret; 4493 struct btrfs_path *search_path; 4494 char *name = NULL; 4495 u32 name_len = 0; 4496 u32 item_size = btrfs_item_size_nr(eb, slot); 4497 u32 cur_offset = 0; 4498 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4499 4500 search_path = btrfs_alloc_path(); 4501 if (!search_path) 4502 return -ENOMEM; 4503 search_path->search_commit_root = 1; 4504 search_path->skip_locking = 1; 4505 4506 while (cur_offset < item_size) { 4507 u64 parent; 4508 u32 this_name_len; 4509 u32 this_len; 4510 unsigned long name_ptr; 4511 struct btrfs_dir_item *di; 4512 4513 if (key->type == BTRFS_INODE_REF_KEY) { 4514 struct btrfs_inode_ref *iref; 4515 4516 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4517 parent = key->offset; 4518 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4519 name_ptr = (unsigned long)(iref + 1); 4520 this_len = sizeof(*iref) + this_name_len; 4521 } else { 4522 struct btrfs_inode_extref *extref; 4523 4524 extref = (struct btrfs_inode_extref *)(ptr + 4525 cur_offset); 4526 parent = btrfs_inode_extref_parent(eb, extref); 4527 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4528 name_ptr = (unsigned long)&extref->name; 4529 this_len = sizeof(*extref) + this_name_len; 4530 } 4531 4532 if (this_name_len > name_len) { 4533 char *new_name; 4534 4535 new_name = krealloc(name, this_name_len, GFP_NOFS); 4536 if (!new_name) { 4537 ret = -ENOMEM; 4538 goto out; 4539 } 4540 name_len = this_name_len; 4541 name = new_name; 4542 } 4543 4544 read_extent_buffer(eb, name, name_ptr, this_name_len); 4545 di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root, 4546 search_path, parent, 4547 name, this_name_len, 0); 4548 if (di && !IS_ERR(di)) { 4549 struct btrfs_key di_key; 4550 4551 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4552 di, &di_key); 4553 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4554 ret = 1; 4555 *other_ino = di_key.objectid; 4556 } else { 4557 ret = -EAGAIN; 4558 } 4559 goto out; 4560 } else if (IS_ERR(di)) { 4561 ret = PTR_ERR(di); 4562 goto out; 4563 } 4564 btrfs_release_path(search_path); 4565 4566 cur_offset += this_len; 4567 } 4568 ret = 0; 4569 out: 4570 btrfs_free_path(search_path); 4571 kfree(name); 4572 return ret; 4573 } 4574 4575 /* log a single inode in the tree log. 4576 * At least one parent directory for this inode must exist in the tree 4577 * or be logged already. 4578 * 4579 * Any items from this inode changed by the current transaction are copied 4580 * to the log tree. An extra reference is taken on any extents in this 4581 * file, allowing us to avoid a whole pile of corner cases around logging 4582 * blocks that have been removed from the tree. 4583 * 4584 * See LOG_INODE_ALL and related defines for a description of what inode_only 4585 * does. 4586 * 4587 * This handles both files and directories. 4588 */ 4589 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 4590 struct btrfs_root *root, struct inode *inode, 4591 int inode_only, 4592 const loff_t start, 4593 const loff_t end, 4594 struct btrfs_log_ctx *ctx) 4595 { 4596 struct btrfs_path *path; 4597 struct btrfs_path *dst_path; 4598 struct btrfs_key min_key; 4599 struct btrfs_key max_key; 4600 struct btrfs_root *log = root->log_root; 4601 struct extent_buffer *src = NULL; 4602 LIST_HEAD(logged_list); 4603 u64 last_extent = 0; 4604 int err = 0; 4605 int ret; 4606 int nritems; 4607 int ins_start_slot = 0; 4608 int ins_nr; 4609 bool fast_search = false; 4610 u64 ino = btrfs_ino(inode); 4611 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4612 u64 logged_isize = 0; 4613 bool need_log_inode_item = true; 4614 4615 path = btrfs_alloc_path(); 4616 if (!path) 4617 return -ENOMEM; 4618 dst_path = btrfs_alloc_path(); 4619 if (!dst_path) { 4620 btrfs_free_path(path); 4621 return -ENOMEM; 4622 } 4623 4624 min_key.objectid = ino; 4625 min_key.type = BTRFS_INODE_ITEM_KEY; 4626 min_key.offset = 0; 4627 4628 max_key.objectid = ino; 4629 4630 4631 /* today the code can only do partial logging of directories */ 4632 if (S_ISDIR(inode->i_mode) || 4633 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4634 &BTRFS_I(inode)->runtime_flags) && 4635 inode_only == LOG_INODE_EXISTS)) 4636 max_key.type = BTRFS_XATTR_ITEM_KEY; 4637 else 4638 max_key.type = (u8)-1; 4639 max_key.offset = (u64)-1; 4640 4641 /* 4642 * Only run delayed items if we are a dir or a new file. 4643 * Otherwise commit the delayed inode only, which is needed in 4644 * order for the log replay code to mark inodes for link count 4645 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items). 4646 */ 4647 if (S_ISDIR(inode->i_mode) || 4648 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) 4649 ret = btrfs_commit_inode_delayed_items(trans, inode); 4650 else 4651 ret = btrfs_commit_inode_delayed_inode(inode); 4652 4653 if (ret) { 4654 btrfs_free_path(path); 4655 btrfs_free_path(dst_path); 4656 return ret; 4657 } 4658 4659 mutex_lock(&BTRFS_I(inode)->log_mutex); 4660 4661 /* 4662 * a brute force approach to making sure we get the most uptodate 4663 * copies of everything. 4664 */ 4665 if (S_ISDIR(inode->i_mode)) { 4666 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 4667 4668 if (inode_only == LOG_INODE_EXISTS) 4669 max_key_type = BTRFS_XATTR_ITEM_KEY; 4670 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 4671 } else { 4672 if (inode_only == LOG_INODE_EXISTS) { 4673 /* 4674 * Make sure the new inode item we write to the log has 4675 * the same isize as the current one (if it exists). 4676 * This is necessary to prevent data loss after log 4677 * replay, and also to prevent doing a wrong expanding 4678 * truncate - for e.g. create file, write 4K into offset 4679 * 0, fsync, write 4K into offset 4096, add hard link, 4680 * fsync some other file (to sync log), power fail - if 4681 * we use the inode's current i_size, after log replay 4682 * we get a 8Kb file, with the last 4Kb extent as a hole 4683 * (zeroes), as if an expanding truncate happened, 4684 * instead of getting a file of 4Kb only. 4685 */ 4686 err = logged_inode_size(log, inode, path, 4687 &logged_isize); 4688 if (err) 4689 goto out_unlock; 4690 } 4691 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4692 &BTRFS_I(inode)->runtime_flags)) { 4693 if (inode_only == LOG_INODE_EXISTS) { 4694 max_key.type = BTRFS_XATTR_ITEM_KEY; 4695 ret = drop_objectid_items(trans, log, path, ino, 4696 max_key.type); 4697 } else { 4698 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4699 &BTRFS_I(inode)->runtime_flags); 4700 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 4701 &BTRFS_I(inode)->runtime_flags); 4702 while(1) { 4703 ret = btrfs_truncate_inode_items(trans, 4704 log, inode, 0, 0); 4705 if (ret != -EAGAIN) 4706 break; 4707 } 4708 } 4709 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 4710 &BTRFS_I(inode)->runtime_flags) || 4711 inode_only == LOG_INODE_EXISTS) { 4712 if (inode_only == LOG_INODE_ALL) 4713 fast_search = true; 4714 max_key.type = BTRFS_XATTR_ITEM_KEY; 4715 ret = drop_objectid_items(trans, log, path, ino, 4716 max_key.type); 4717 } else { 4718 if (inode_only == LOG_INODE_ALL) 4719 fast_search = true; 4720 goto log_extents; 4721 } 4722 4723 } 4724 if (ret) { 4725 err = ret; 4726 goto out_unlock; 4727 } 4728 4729 while (1) { 4730 ins_nr = 0; 4731 ret = btrfs_search_forward(root, &min_key, 4732 path, trans->transid); 4733 if (ret < 0) { 4734 err = ret; 4735 goto out_unlock; 4736 } 4737 if (ret != 0) 4738 break; 4739 again: 4740 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 4741 if (min_key.objectid != ino) 4742 break; 4743 if (min_key.type > max_key.type) 4744 break; 4745 4746 if (min_key.type == BTRFS_INODE_ITEM_KEY) 4747 need_log_inode_item = false; 4748 4749 if ((min_key.type == BTRFS_INODE_REF_KEY || 4750 min_key.type == BTRFS_INODE_EXTREF_KEY) && 4751 BTRFS_I(inode)->generation == trans->transid) { 4752 u64 other_ino = 0; 4753 4754 ret = btrfs_check_ref_name_override(path->nodes[0], 4755 path->slots[0], 4756 &min_key, inode, 4757 &other_ino); 4758 if (ret < 0) { 4759 err = ret; 4760 goto out_unlock; 4761 } else if (ret > 0 && ctx && 4762 other_ino != btrfs_ino(ctx->inode)) { 4763 struct btrfs_key inode_key; 4764 struct inode *other_inode; 4765 4766 if (ins_nr > 0) { 4767 ins_nr++; 4768 } else { 4769 ins_nr = 1; 4770 ins_start_slot = path->slots[0]; 4771 } 4772 ret = copy_items(trans, inode, dst_path, path, 4773 &last_extent, ins_start_slot, 4774 ins_nr, inode_only, 4775 logged_isize); 4776 if (ret < 0) { 4777 err = ret; 4778 goto out_unlock; 4779 } 4780 ins_nr = 0; 4781 btrfs_release_path(path); 4782 inode_key.objectid = other_ino; 4783 inode_key.type = BTRFS_INODE_ITEM_KEY; 4784 inode_key.offset = 0; 4785 other_inode = btrfs_iget(root->fs_info->sb, 4786 &inode_key, root, 4787 NULL); 4788 /* 4789 * If the other inode that had a conflicting dir 4790 * entry was deleted in the current transaction, 4791 * we don't need to do more work nor fallback to 4792 * a transaction commit. 4793 */ 4794 if (IS_ERR(other_inode) && 4795 PTR_ERR(other_inode) == -ENOENT) { 4796 goto next_key; 4797 } else if (IS_ERR(other_inode)) { 4798 err = PTR_ERR(other_inode); 4799 goto out_unlock; 4800 } 4801 /* 4802 * We are safe logging the other inode without 4803 * acquiring its i_mutex as long as we log with 4804 * the LOG_INODE_EXISTS mode. We're safe against 4805 * concurrent renames of the other inode as well 4806 * because during a rename we pin the log and 4807 * update the log with the new name before we 4808 * unpin it. 4809 */ 4810 err = btrfs_log_inode(trans, root, other_inode, 4811 LOG_INODE_EXISTS, 4812 0, LLONG_MAX, ctx); 4813 iput(other_inode); 4814 if (err) 4815 goto out_unlock; 4816 else 4817 goto next_key; 4818 } 4819 } 4820 4821 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 4822 if (min_key.type == BTRFS_XATTR_ITEM_KEY) { 4823 if (ins_nr == 0) 4824 goto next_slot; 4825 ret = copy_items(trans, inode, dst_path, path, 4826 &last_extent, ins_start_slot, 4827 ins_nr, inode_only, logged_isize); 4828 if (ret < 0) { 4829 err = ret; 4830 goto out_unlock; 4831 } 4832 ins_nr = 0; 4833 if (ret) { 4834 btrfs_release_path(path); 4835 continue; 4836 } 4837 goto next_slot; 4838 } 4839 4840 src = path->nodes[0]; 4841 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 4842 ins_nr++; 4843 goto next_slot; 4844 } else if (!ins_nr) { 4845 ins_start_slot = path->slots[0]; 4846 ins_nr = 1; 4847 goto next_slot; 4848 } 4849 4850 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4851 ins_start_slot, ins_nr, inode_only, 4852 logged_isize); 4853 if (ret < 0) { 4854 err = ret; 4855 goto out_unlock; 4856 } 4857 if (ret) { 4858 ins_nr = 0; 4859 btrfs_release_path(path); 4860 continue; 4861 } 4862 ins_nr = 1; 4863 ins_start_slot = path->slots[0]; 4864 next_slot: 4865 4866 nritems = btrfs_header_nritems(path->nodes[0]); 4867 path->slots[0]++; 4868 if (path->slots[0] < nritems) { 4869 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 4870 path->slots[0]); 4871 goto again; 4872 } 4873 if (ins_nr) { 4874 ret = copy_items(trans, inode, dst_path, path, 4875 &last_extent, ins_start_slot, 4876 ins_nr, inode_only, logged_isize); 4877 if (ret < 0) { 4878 err = ret; 4879 goto out_unlock; 4880 } 4881 ret = 0; 4882 ins_nr = 0; 4883 } 4884 btrfs_release_path(path); 4885 next_key: 4886 if (min_key.offset < (u64)-1) { 4887 min_key.offset++; 4888 } else if (min_key.type < max_key.type) { 4889 min_key.type++; 4890 min_key.offset = 0; 4891 } else { 4892 break; 4893 } 4894 } 4895 if (ins_nr) { 4896 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4897 ins_start_slot, ins_nr, inode_only, 4898 logged_isize); 4899 if (ret < 0) { 4900 err = ret; 4901 goto out_unlock; 4902 } 4903 ret = 0; 4904 ins_nr = 0; 4905 } 4906 4907 btrfs_release_path(path); 4908 btrfs_release_path(dst_path); 4909 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 4910 if (err) 4911 goto out_unlock; 4912 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 4913 btrfs_release_path(path); 4914 btrfs_release_path(dst_path); 4915 err = btrfs_log_trailing_hole(trans, root, inode, path); 4916 if (err) 4917 goto out_unlock; 4918 } 4919 log_extents: 4920 btrfs_release_path(path); 4921 btrfs_release_path(dst_path); 4922 if (need_log_inode_item) { 4923 err = log_inode_item(trans, log, dst_path, inode); 4924 if (err) 4925 goto out_unlock; 4926 } 4927 if (fast_search) { 4928 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 4929 &logged_list, ctx, start, end); 4930 if (ret) { 4931 err = ret; 4932 goto out_unlock; 4933 } 4934 } else if (inode_only == LOG_INODE_ALL) { 4935 struct extent_map *em, *n; 4936 4937 write_lock(&em_tree->lock); 4938 /* 4939 * We can't just remove every em if we're called for a ranged 4940 * fsync - that is, one that doesn't cover the whole possible 4941 * file range (0 to LLONG_MAX). This is because we can have 4942 * em's that fall outside the range we're logging and therefore 4943 * their ordered operations haven't completed yet 4944 * (btrfs_finish_ordered_io() not invoked yet). This means we 4945 * didn't get their respective file extent item in the fs/subvol 4946 * tree yet, and need to let the next fast fsync (one which 4947 * consults the list of modified extent maps) find the em so 4948 * that it logs a matching file extent item and waits for the 4949 * respective ordered operation to complete (if it's still 4950 * running). 4951 * 4952 * Removing every em outside the range we're logging would make 4953 * the next fast fsync not log their matching file extent items, 4954 * therefore making us lose data after a log replay. 4955 */ 4956 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 4957 list) { 4958 const u64 mod_end = em->mod_start + em->mod_len - 1; 4959 4960 if (em->mod_start >= start && mod_end <= end) 4961 list_del_init(&em->list); 4962 } 4963 write_unlock(&em_tree->lock); 4964 } 4965 4966 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { 4967 ret = log_directory_changes(trans, root, inode, path, dst_path, 4968 ctx); 4969 if (ret) { 4970 err = ret; 4971 goto out_unlock; 4972 } 4973 } 4974 4975 spin_lock(&BTRFS_I(inode)->lock); 4976 BTRFS_I(inode)->logged_trans = trans->transid; 4977 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans; 4978 spin_unlock(&BTRFS_I(inode)->lock); 4979 out_unlock: 4980 if (unlikely(err)) 4981 btrfs_put_logged_extents(&logged_list); 4982 else 4983 btrfs_submit_logged_extents(&logged_list, log); 4984 mutex_unlock(&BTRFS_I(inode)->log_mutex); 4985 4986 btrfs_free_path(path); 4987 btrfs_free_path(dst_path); 4988 return err; 4989 } 4990 4991 /* 4992 * Check if we must fallback to a transaction commit when logging an inode. 4993 * This must be called after logging the inode and is used only in the context 4994 * when fsyncing an inode requires the need to log some other inode - in which 4995 * case we can't lock the i_mutex of each other inode we need to log as that 4996 * can lead to deadlocks with concurrent fsync against other inodes (as we can 4997 * log inodes up or down in the hierarchy) or rename operations for example. So 4998 * we take the log_mutex of the inode after we have logged it and then check for 4999 * its last_unlink_trans value - this is safe because any task setting 5000 * last_unlink_trans must take the log_mutex and it must do this before it does 5001 * the actual unlink operation, so if we do this check before a concurrent task 5002 * sets last_unlink_trans it means we've logged a consistent version/state of 5003 * all the inode items, otherwise we are not sure and must do a transaction 5004 * commit (the concurrent task might have only updated last_unlink_trans before 5005 * we logged the inode or it might have also done the unlink). 5006 */ 5007 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, 5008 struct inode *inode) 5009 { 5010 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 5011 bool ret = false; 5012 5013 mutex_lock(&BTRFS_I(inode)->log_mutex); 5014 if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) { 5015 /* 5016 * Make sure any commits to the log are forced to be full 5017 * commits. 5018 */ 5019 btrfs_set_log_full_commit(fs_info, trans); 5020 ret = true; 5021 } 5022 mutex_unlock(&BTRFS_I(inode)->log_mutex); 5023 5024 return ret; 5025 } 5026 5027 /* 5028 * follow the dentry parent pointers up the chain and see if any 5029 * of the directories in it require a full commit before they can 5030 * be logged. Returns zero if nothing special needs to be done or 1 if 5031 * a full commit is required. 5032 */ 5033 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 5034 struct inode *inode, 5035 struct dentry *parent, 5036 struct super_block *sb, 5037 u64 last_committed) 5038 { 5039 int ret = 0; 5040 struct dentry *old_parent = NULL; 5041 struct inode *orig_inode = inode; 5042 5043 /* 5044 * for regular files, if its inode is already on disk, we don't 5045 * have to worry about the parents at all. This is because 5046 * we can use the last_unlink_trans field to record renames 5047 * and other fun in this file. 5048 */ 5049 if (S_ISREG(inode->i_mode) && 5050 BTRFS_I(inode)->generation <= last_committed && 5051 BTRFS_I(inode)->last_unlink_trans <= last_committed) 5052 goto out; 5053 5054 if (!S_ISDIR(inode->i_mode)) { 5055 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5056 goto out; 5057 inode = d_inode(parent); 5058 } 5059 5060 while (1) { 5061 /* 5062 * If we are logging a directory then we start with our inode, 5063 * not our parent's inode, so we need to skip setting the 5064 * logged_trans so that further down in the log code we don't 5065 * think this inode has already been logged. 5066 */ 5067 if (inode != orig_inode) 5068 BTRFS_I(inode)->logged_trans = trans->transid; 5069 smp_mb(); 5070 5071 if (btrfs_must_commit_transaction(trans, inode)) { 5072 ret = 1; 5073 break; 5074 } 5075 5076 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5077 break; 5078 5079 if (IS_ROOT(parent)) { 5080 inode = d_inode(parent); 5081 if (btrfs_must_commit_transaction(trans, inode)) 5082 ret = 1; 5083 break; 5084 } 5085 5086 parent = dget_parent(parent); 5087 dput(old_parent); 5088 old_parent = parent; 5089 inode = d_inode(parent); 5090 5091 } 5092 dput(old_parent); 5093 out: 5094 return ret; 5095 } 5096 5097 struct btrfs_dir_list { 5098 u64 ino; 5099 struct list_head list; 5100 }; 5101 5102 /* 5103 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5104 * details about the why it is needed. 5105 * This is a recursive operation - if an existing dentry corresponds to a 5106 * directory, that directory's new entries are logged too (same behaviour as 5107 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5108 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5109 * complains about the following circular lock dependency / possible deadlock: 5110 * 5111 * CPU0 CPU1 5112 * ---- ---- 5113 * lock(&type->i_mutex_dir_key#3/2); 5114 * lock(sb_internal#2); 5115 * lock(&type->i_mutex_dir_key#3/2); 5116 * lock(&sb->s_type->i_mutex_key#14); 5117 * 5118 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5119 * sb_start_intwrite() in btrfs_start_transaction(). 5120 * Not locking i_mutex of the inodes is still safe because: 5121 * 5122 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5123 * that while logging the inode new references (names) are added or removed 5124 * from the inode, leaving the logged inode item with a link count that does 5125 * not match the number of logged inode reference items. This is fine because 5126 * at log replay time we compute the real number of links and correct the 5127 * link count in the inode item (see replay_one_buffer() and 5128 * link_to_fixup_dir()); 5129 * 5130 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5131 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5132 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5133 * has a size that doesn't match the sum of the lengths of all the logged 5134 * names. This does not result in a problem because if a dir_item key is 5135 * logged but its matching dir_index key is not logged, at log replay time we 5136 * don't use it to replay the respective name (see replay_one_name()). On the 5137 * other hand if only the dir_index key ends up being logged, the respective 5138 * name is added to the fs/subvol tree with both the dir_item and dir_index 5139 * keys created (see replay_one_name()). 5140 * The directory's inode item with a wrong i_size is not a problem as well, 5141 * since we don't use it at log replay time to set the i_size in the inode 5142 * item of the fs/subvol tree (see overwrite_item()). 5143 */ 5144 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5145 struct btrfs_root *root, 5146 struct inode *start_inode, 5147 struct btrfs_log_ctx *ctx) 5148 { 5149 struct btrfs_root *log = root->log_root; 5150 struct btrfs_path *path; 5151 LIST_HEAD(dir_list); 5152 struct btrfs_dir_list *dir_elem; 5153 int ret = 0; 5154 5155 path = btrfs_alloc_path(); 5156 if (!path) 5157 return -ENOMEM; 5158 5159 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5160 if (!dir_elem) { 5161 btrfs_free_path(path); 5162 return -ENOMEM; 5163 } 5164 dir_elem->ino = btrfs_ino(start_inode); 5165 list_add_tail(&dir_elem->list, &dir_list); 5166 5167 while (!list_empty(&dir_list)) { 5168 struct extent_buffer *leaf; 5169 struct btrfs_key min_key; 5170 int nritems; 5171 int i; 5172 5173 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5174 list); 5175 if (ret) 5176 goto next_dir_inode; 5177 5178 min_key.objectid = dir_elem->ino; 5179 min_key.type = BTRFS_DIR_ITEM_KEY; 5180 min_key.offset = 0; 5181 again: 5182 btrfs_release_path(path); 5183 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5184 if (ret < 0) { 5185 goto next_dir_inode; 5186 } else if (ret > 0) { 5187 ret = 0; 5188 goto next_dir_inode; 5189 } 5190 5191 process_leaf: 5192 leaf = path->nodes[0]; 5193 nritems = btrfs_header_nritems(leaf); 5194 for (i = path->slots[0]; i < nritems; i++) { 5195 struct btrfs_dir_item *di; 5196 struct btrfs_key di_key; 5197 struct inode *di_inode; 5198 struct btrfs_dir_list *new_dir_elem; 5199 int log_mode = LOG_INODE_EXISTS; 5200 int type; 5201 5202 btrfs_item_key_to_cpu(leaf, &min_key, i); 5203 if (min_key.objectid != dir_elem->ino || 5204 min_key.type != BTRFS_DIR_ITEM_KEY) 5205 goto next_dir_inode; 5206 5207 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5208 type = btrfs_dir_type(leaf, di); 5209 if (btrfs_dir_transid(leaf, di) < trans->transid && 5210 type != BTRFS_FT_DIR) 5211 continue; 5212 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5213 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5214 continue; 5215 5216 di_inode = btrfs_iget(root->fs_info->sb, &di_key, 5217 root, NULL); 5218 if (IS_ERR(di_inode)) { 5219 ret = PTR_ERR(di_inode); 5220 goto next_dir_inode; 5221 } 5222 5223 if (btrfs_inode_in_log(di_inode, trans->transid)) { 5224 iput(di_inode); 5225 continue; 5226 } 5227 5228 ctx->log_new_dentries = false; 5229 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5230 log_mode = LOG_INODE_ALL; 5231 btrfs_release_path(path); 5232 ret = btrfs_log_inode(trans, root, di_inode, 5233 log_mode, 0, LLONG_MAX, ctx); 5234 if (!ret && 5235 btrfs_must_commit_transaction(trans, di_inode)) 5236 ret = 1; 5237 iput(di_inode); 5238 if (ret) 5239 goto next_dir_inode; 5240 if (ctx->log_new_dentries) { 5241 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5242 GFP_NOFS); 5243 if (!new_dir_elem) { 5244 ret = -ENOMEM; 5245 goto next_dir_inode; 5246 } 5247 new_dir_elem->ino = di_key.objectid; 5248 list_add_tail(&new_dir_elem->list, &dir_list); 5249 } 5250 break; 5251 } 5252 if (i == nritems) { 5253 ret = btrfs_next_leaf(log, path); 5254 if (ret < 0) { 5255 goto next_dir_inode; 5256 } else if (ret > 0) { 5257 ret = 0; 5258 goto next_dir_inode; 5259 } 5260 goto process_leaf; 5261 } 5262 if (min_key.offset < (u64)-1) { 5263 min_key.offset++; 5264 goto again; 5265 } 5266 next_dir_inode: 5267 list_del(&dir_elem->list); 5268 kfree(dir_elem); 5269 } 5270 5271 btrfs_free_path(path); 5272 return ret; 5273 } 5274 5275 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5276 struct inode *inode, 5277 struct btrfs_log_ctx *ctx) 5278 { 5279 int ret; 5280 struct btrfs_path *path; 5281 struct btrfs_key key; 5282 struct btrfs_root *root = BTRFS_I(inode)->root; 5283 const u64 ino = btrfs_ino(inode); 5284 5285 path = btrfs_alloc_path(); 5286 if (!path) 5287 return -ENOMEM; 5288 path->skip_locking = 1; 5289 path->search_commit_root = 1; 5290 5291 key.objectid = ino; 5292 key.type = BTRFS_INODE_REF_KEY; 5293 key.offset = 0; 5294 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5295 if (ret < 0) 5296 goto out; 5297 5298 while (true) { 5299 struct extent_buffer *leaf = path->nodes[0]; 5300 int slot = path->slots[0]; 5301 u32 cur_offset = 0; 5302 u32 item_size; 5303 unsigned long ptr; 5304 5305 if (slot >= btrfs_header_nritems(leaf)) { 5306 ret = btrfs_next_leaf(root, path); 5307 if (ret < 0) 5308 goto out; 5309 else if (ret > 0) 5310 break; 5311 continue; 5312 } 5313 5314 btrfs_item_key_to_cpu(leaf, &key, slot); 5315 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5316 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5317 break; 5318 5319 item_size = btrfs_item_size_nr(leaf, slot); 5320 ptr = btrfs_item_ptr_offset(leaf, slot); 5321 while (cur_offset < item_size) { 5322 struct btrfs_key inode_key; 5323 struct inode *dir_inode; 5324 5325 inode_key.type = BTRFS_INODE_ITEM_KEY; 5326 inode_key.offset = 0; 5327 5328 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5329 struct btrfs_inode_extref *extref; 5330 5331 extref = (struct btrfs_inode_extref *) 5332 (ptr + cur_offset); 5333 inode_key.objectid = btrfs_inode_extref_parent( 5334 leaf, extref); 5335 cur_offset += sizeof(*extref); 5336 cur_offset += btrfs_inode_extref_name_len(leaf, 5337 extref); 5338 } else { 5339 inode_key.objectid = key.offset; 5340 cur_offset = item_size; 5341 } 5342 5343 dir_inode = btrfs_iget(root->fs_info->sb, &inode_key, 5344 root, NULL); 5345 /* If parent inode was deleted, skip it. */ 5346 if (IS_ERR(dir_inode)) 5347 continue; 5348 5349 if (ctx) 5350 ctx->log_new_dentries = false; 5351 ret = btrfs_log_inode(trans, root, dir_inode, 5352 LOG_INODE_ALL, 0, LLONG_MAX, ctx); 5353 if (!ret && 5354 btrfs_must_commit_transaction(trans, dir_inode)) 5355 ret = 1; 5356 if (!ret && ctx && ctx->log_new_dentries) 5357 ret = log_new_dir_dentries(trans, root, 5358 dir_inode, ctx); 5359 iput(dir_inode); 5360 if (ret) 5361 goto out; 5362 } 5363 path->slots[0]++; 5364 } 5365 ret = 0; 5366 out: 5367 btrfs_free_path(path); 5368 return ret; 5369 } 5370 5371 /* 5372 * helper function around btrfs_log_inode to make sure newly created 5373 * parent directories also end up in the log. A minimal inode and backref 5374 * only logging is done of any parent directories that are older than 5375 * the last committed transaction 5376 */ 5377 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 5378 struct btrfs_root *root, struct inode *inode, 5379 struct dentry *parent, 5380 const loff_t start, 5381 const loff_t end, 5382 int exists_only, 5383 struct btrfs_log_ctx *ctx) 5384 { 5385 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; 5386 struct super_block *sb; 5387 struct dentry *old_parent = NULL; 5388 int ret = 0; 5389 u64 last_committed = root->fs_info->last_trans_committed; 5390 bool log_dentries = false; 5391 struct inode *orig_inode = inode; 5392 5393 sb = inode->i_sb; 5394 5395 if (btrfs_test_opt(root->fs_info, NOTREELOG)) { 5396 ret = 1; 5397 goto end_no_trans; 5398 } 5399 5400 /* 5401 * The prev transaction commit doesn't complete, we need do 5402 * full commit by ourselves. 5403 */ 5404 if (root->fs_info->last_trans_log_full_commit > 5405 root->fs_info->last_trans_committed) { 5406 ret = 1; 5407 goto end_no_trans; 5408 } 5409 5410 if (root != BTRFS_I(inode)->root || 5411 btrfs_root_refs(&root->root_item) == 0) { 5412 ret = 1; 5413 goto end_no_trans; 5414 } 5415 5416 ret = check_parent_dirs_for_sync(trans, inode, parent, 5417 sb, last_committed); 5418 if (ret) 5419 goto end_no_trans; 5420 5421 if (btrfs_inode_in_log(inode, trans->transid)) { 5422 ret = BTRFS_NO_LOG_SYNC; 5423 goto end_no_trans; 5424 } 5425 5426 ret = start_log_trans(trans, root, ctx); 5427 if (ret) 5428 goto end_no_trans; 5429 5430 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 5431 if (ret) 5432 goto end_trans; 5433 5434 /* 5435 * for regular files, if its inode is already on disk, we don't 5436 * have to worry about the parents at all. This is because 5437 * we can use the last_unlink_trans field to record renames 5438 * and other fun in this file. 5439 */ 5440 if (S_ISREG(inode->i_mode) && 5441 BTRFS_I(inode)->generation <= last_committed && 5442 BTRFS_I(inode)->last_unlink_trans <= last_committed) { 5443 ret = 0; 5444 goto end_trans; 5445 } 5446 5447 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries) 5448 log_dentries = true; 5449 5450 /* 5451 * On unlink we must make sure all our current and old parent directory 5452 * inodes are fully logged. This is to prevent leaving dangling 5453 * directory index entries in directories that were our parents but are 5454 * not anymore. Not doing this results in old parent directory being 5455 * impossible to delete after log replay (rmdir will always fail with 5456 * error -ENOTEMPTY). 5457 * 5458 * Example 1: 5459 * 5460 * mkdir testdir 5461 * touch testdir/foo 5462 * ln testdir/foo testdir/bar 5463 * sync 5464 * unlink testdir/bar 5465 * xfs_io -c fsync testdir/foo 5466 * <power failure> 5467 * mount fs, triggers log replay 5468 * 5469 * If we don't log the parent directory (testdir), after log replay the 5470 * directory still has an entry pointing to the file inode using the bar 5471 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 5472 * the file inode has a link count of 1. 5473 * 5474 * Example 2: 5475 * 5476 * mkdir testdir 5477 * touch foo 5478 * ln foo testdir/foo2 5479 * ln foo testdir/foo3 5480 * sync 5481 * unlink testdir/foo3 5482 * xfs_io -c fsync foo 5483 * <power failure> 5484 * mount fs, triggers log replay 5485 * 5486 * Similar as the first example, after log replay the parent directory 5487 * testdir still has an entry pointing to the inode file with name foo3 5488 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 5489 * and has a link count of 2. 5490 */ 5491 if (BTRFS_I(inode)->last_unlink_trans > last_committed) { 5492 ret = btrfs_log_all_parents(trans, orig_inode, ctx); 5493 if (ret) 5494 goto end_trans; 5495 } 5496 5497 while (1) { 5498 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5499 break; 5500 5501 inode = d_inode(parent); 5502 if (root != BTRFS_I(inode)->root) 5503 break; 5504 5505 if (BTRFS_I(inode)->generation > last_committed) { 5506 ret = btrfs_log_inode(trans, root, inode, 5507 LOG_INODE_EXISTS, 5508 0, LLONG_MAX, ctx); 5509 if (ret) 5510 goto end_trans; 5511 } 5512 if (IS_ROOT(parent)) 5513 break; 5514 5515 parent = dget_parent(parent); 5516 dput(old_parent); 5517 old_parent = parent; 5518 } 5519 if (log_dentries) 5520 ret = log_new_dir_dentries(trans, root, orig_inode, ctx); 5521 else 5522 ret = 0; 5523 end_trans: 5524 dput(old_parent); 5525 if (ret < 0) { 5526 btrfs_set_log_full_commit(root->fs_info, trans); 5527 ret = 1; 5528 } 5529 5530 if (ret) 5531 btrfs_remove_log_ctx(root, ctx); 5532 btrfs_end_log_trans(root); 5533 end_no_trans: 5534 return ret; 5535 } 5536 5537 /* 5538 * it is not safe to log dentry if the chunk root has added new 5539 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 5540 * If this returns 1, you must commit the transaction to safely get your 5541 * data on disk. 5542 */ 5543 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 5544 struct btrfs_root *root, struct dentry *dentry, 5545 const loff_t start, 5546 const loff_t end, 5547 struct btrfs_log_ctx *ctx) 5548 { 5549 struct dentry *parent = dget_parent(dentry); 5550 int ret; 5551 5552 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent, 5553 start, end, 0, ctx); 5554 dput(parent); 5555 5556 return ret; 5557 } 5558 5559 /* 5560 * should be called during mount to recover any replay any log trees 5561 * from the FS 5562 */ 5563 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 5564 { 5565 int ret; 5566 struct btrfs_path *path; 5567 struct btrfs_trans_handle *trans; 5568 struct btrfs_key key; 5569 struct btrfs_key found_key; 5570 struct btrfs_key tmp_key; 5571 struct btrfs_root *log; 5572 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 5573 struct walk_control wc = { 5574 .process_func = process_one_buffer, 5575 .stage = 0, 5576 }; 5577 5578 path = btrfs_alloc_path(); 5579 if (!path) 5580 return -ENOMEM; 5581 5582 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 5583 5584 trans = btrfs_start_transaction(fs_info->tree_root, 0); 5585 if (IS_ERR(trans)) { 5586 ret = PTR_ERR(trans); 5587 goto error; 5588 } 5589 5590 wc.trans = trans; 5591 wc.pin = 1; 5592 5593 ret = walk_log_tree(trans, log_root_tree, &wc); 5594 if (ret) { 5595 btrfs_handle_fs_error(fs_info, ret, 5596 "Failed to pin buffers while recovering log root tree."); 5597 goto error; 5598 } 5599 5600 again: 5601 key.objectid = BTRFS_TREE_LOG_OBJECTID; 5602 key.offset = (u64)-1; 5603 key.type = BTRFS_ROOT_ITEM_KEY; 5604 5605 while (1) { 5606 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 5607 5608 if (ret < 0) { 5609 btrfs_handle_fs_error(fs_info, ret, 5610 "Couldn't find tree log root."); 5611 goto error; 5612 } 5613 if (ret > 0) { 5614 if (path->slots[0] == 0) 5615 break; 5616 path->slots[0]--; 5617 } 5618 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 5619 path->slots[0]); 5620 btrfs_release_path(path); 5621 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 5622 break; 5623 5624 log = btrfs_read_fs_root(log_root_tree, &found_key); 5625 if (IS_ERR(log)) { 5626 ret = PTR_ERR(log); 5627 btrfs_handle_fs_error(fs_info, ret, 5628 "Couldn't read tree log root."); 5629 goto error; 5630 } 5631 5632 tmp_key.objectid = found_key.offset; 5633 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 5634 tmp_key.offset = (u64)-1; 5635 5636 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 5637 if (IS_ERR(wc.replay_dest)) { 5638 ret = PTR_ERR(wc.replay_dest); 5639 free_extent_buffer(log->node); 5640 free_extent_buffer(log->commit_root); 5641 kfree(log); 5642 btrfs_handle_fs_error(fs_info, ret, 5643 "Couldn't read target root for tree log recovery."); 5644 goto error; 5645 } 5646 5647 wc.replay_dest->log_root = log; 5648 btrfs_record_root_in_trans(trans, wc.replay_dest); 5649 ret = walk_log_tree(trans, log, &wc); 5650 5651 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 5652 ret = fixup_inode_link_counts(trans, wc.replay_dest, 5653 path); 5654 } 5655 5656 key.offset = found_key.offset - 1; 5657 wc.replay_dest->log_root = NULL; 5658 free_extent_buffer(log->node); 5659 free_extent_buffer(log->commit_root); 5660 kfree(log); 5661 5662 if (ret) 5663 goto error; 5664 5665 if (found_key.offset == 0) 5666 break; 5667 } 5668 btrfs_release_path(path); 5669 5670 /* step one is to pin it all, step two is to replay just inodes */ 5671 if (wc.pin) { 5672 wc.pin = 0; 5673 wc.process_func = replay_one_buffer; 5674 wc.stage = LOG_WALK_REPLAY_INODES; 5675 goto again; 5676 } 5677 /* step three is to replay everything */ 5678 if (wc.stage < LOG_WALK_REPLAY_ALL) { 5679 wc.stage++; 5680 goto again; 5681 } 5682 5683 btrfs_free_path(path); 5684 5685 /* step 4: commit the transaction, which also unpins the blocks */ 5686 ret = btrfs_commit_transaction(trans, fs_info->tree_root); 5687 if (ret) 5688 return ret; 5689 5690 free_extent_buffer(log_root_tree->node); 5691 log_root_tree->log_root = NULL; 5692 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 5693 kfree(log_root_tree); 5694 5695 return 0; 5696 error: 5697 if (wc.trans) 5698 btrfs_end_transaction(wc.trans, fs_info->tree_root); 5699 btrfs_free_path(path); 5700 return ret; 5701 } 5702 5703 /* 5704 * there are some corner cases where we want to force a full 5705 * commit instead of allowing a directory to be logged. 5706 * 5707 * They revolve around files there were unlinked from the directory, and 5708 * this function updates the parent directory so that a full commit is 5709 * properly done if it is fsync'd later after the unlinks are done. 5710 * 5711 * Must be called before the unlink operations (updates to the subvolume tree, 5712 * inodes, etc) are done. 5713 */ 5714 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 5715 struct inode *dir, struct inode *inode, 5716 int for_rename) 5717 { 5718 /* 5719 * when we're logging a file, if it hasn't been renamed 5720 * or unlinked, and its inode is fully committed on disk, 5721 * we don't have to worry about walking up the directory chain 5722 * to log its parents. 5723 * 5724 * So, we use the last_unlink_trans field to put this transid 5725 * into the file. When the file is logged we check it and 5726 * don't log the parents if the file is fully on disk. 5727 */ 5728 mutex_lock(&BTRFS_I(inode)->log_mutex); 5729 BTRFS_I(inode)->last_unlink_trans = trans->transid; 5730 mutex_unlock(&BTRFS_I(inode)->log_mutex); 5731 5732 /* 5733 * if this directory was already logged any new 5734 * names for this file/dir will get recorded 5735 */ 5736 smp_mb(); 5737 if (BTRFS_I(dir)->logged_trans == trans->transid) 5738 return; 5739 5740 /* 5741 * if the inode we're about to unlink was logged, 5742 * the log will be properly updated for any new names 5743 */ 5744 if (BTRFS_I(inode)->logged_trans == trans->transid) 5745 return; 5746 5747 /* 5748 * when renaming files across directories, if the directory 5749 * there we're unlinking from gets fsync'd later on, there's 5750 * no way to find the destination directory later and fsync it 5751 * properly. So, we have to be conservative and force commits 5752 * so the new name gets discovered. 5753 */ 5754 if (for_rename) 5755 goto record; 5756 5757 /* we can safely do the unlink without any special recording */ 5758 return; 5759 5760 record: 5761 mutex_lock(&BTRFS_I(dir)->log_mutex); 5762 BTRFS_I(dir)->last_unlink_trans = trans->transid; 5763 mutex_unlock(&BTRFS_I(dir)->log_mutex); 5764 } 5765 5766 /* 5767 * Make sure that if someone attempts to fsync the parent directory of a deleted 5768 * snapshot, it ends up triggering a transaction commit. This is to guarantee 5769 * that after replaying the log tree of the parent directory's root we will not 5770 * see the snapshot anymore and at log replay time we will not see any log tree 5771 * corresponding to the deleted snapshot's root, which could lead to replaying 5772 * it after replaying the log tree of the parent directory (which would replay 5773 * the snapshot delete operation). 5774 * 5775 * Must be called before the actual snapshot destroy operation (updates to the 5776 * parent root and tree of tree roots trees, etc) are done. 5777 */ 5778 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 5779 struct inode *dir) 5780 { 5781 mutex_lock(&BTRFS_I(dir)->log_mutex); 5782 BTRFS_I(dir)->last_unlink_trans = trans->transid; 5783 mutex_unlock(&BTRFS_I(dir)->log_mutex); 5784 } 5785 5786 /* 5787 * Call this after adding a new name for a file and it will properly 5788 * update the log to reflect the new name. 5789 * 5790 * It will return zero if all goes well, and it will return 1 if a 5791 * full transaction commit is required. 5792 */ 5793 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 5794 struct inode *inode, struct inode *old_dir, 5795 struct dentry *parent) 5796 { 5797 struct btrfs_root * root = BTRFS_I(inode)->root; 5798 5799 /* 5800 * this will force the logging code to walk the dentry chain 5801 * up for the file 5802 */ 5803 if (S_ISREG(inode->i_mode)) 5804 BTRFS_I(inode)->last_unlink_trans = trans->transid; 5805 5806 /* 5807 * if this inode hasn't been logged and directory we're renaming it 5808 * from hasn't been logged, we don't need to log it 5809 */ 5810 if (BTRFS_I(inode)->logged_trans <= 5811 root->fs_info->last_trans_committed && 5812 (!old_dir || BTRFS_I(old_dir)->logged_trans <= 5813 root->fs_info->last_trans_committed)) 5814 return 0; 5815 5816 return btrfs_log_inode_parent(trans, root, inode, parent, 0, 5817 LLONG_MAX, 1, NULL); 5818 } 5819 5820