1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "block-group.h" 21 #include "space-info.h" 22 #include "zoned.h" 23 24 /* magic values for the inode_only field in btrfs_log_inode: 25 * 26 * LOG_INODE_ALL means to log everything 27 * LOG_INODE_EXISTS means to log just enough to recreate the inode 28 * during log replay 29 */ 30 enum { 31 LOG_INODE_ALL, 32 LOG_INODE_EXISTS, 33 LOG_OTHER_INODE, 34 LOG_OTHER_INODE_ALL, 35 }; 36 37 /* 38 * directory trouble cases 39 * 40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 41 * log, we must force a full commit before doing an fsync of the directory 42 * where the unlink was done. 43 * ---> record transid of last unlink/rename per directory 44 * 45 * mkdir foo/some_dir 46 * normal commit 47 * rename foo/some_dir foo2/some_dir 48 * mkdir foo/some_dir 49 * fsync foo/some_dir/some_file 50 * 51 * The fsync above will unlink the original some_dir without recording 52 * it in its new location (foo2). After a crash, some_dir will be gone 53 * unless the fsync of some_file forces a full commit 54 * 55 * 2) we must log any new names for any file or dir that is in the fsync 56 * log. ---> check inode while renaming/linking. 57 * 58 * 2a) we must log any new names for any file or dir during rename 59 * when the directory they are being removed from was logged. 60 * ---> check inode and old parent dir during rename 61 * 62 * 2a is actually the more important variant. With the extra logging 63 * a crash might unlink the old name without recreating the new one 64 * 65 * 3) after a crash, we must go through any directories with a link count 66 * of zero and redo the rm -rf 67 * 68 * mkdir f1/foo 69 * normal commit 70 * rm -rf f1/foo 71 * fsync(f1) 72 * 73 * The directory f1 was fully removed from the FS, but fsync was never 74 * called on f1, only its parent dir. After a crash the rm -rf must 75 * be replayed. This must be able to recurse down the entire 76 * directory tree. The inode link count fixup code takes care of the 77 * ugly details. 78 */ 79 80 /* 81 * stages for the tree walking. The first 82 * stage (0) is to only pin down the blocks we find 83 * the second stage (1) is to make sure that all the inodes 84 * we find in the log are created in the subvolume. 85 * 86 * The last stage is to deal with directories and links and extents 87 * and all the other fun semantics 88 */ 89 enum { 90 LOG_WALK_PIN_ONLY, 91 LOG_WALK_REPLAY_INODES, 92 LOG_WALK_REPLAY_DIR_INDEX, 93 LOG_WALK_REPLAY_ALL, 94 }; 95 96 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 97 struct btrfs_root *root, struct btrfs_inode *inode, 98 int inode_only, 99 struct btrfs_log_ctx *ctx); 100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 101 struct btrfs_root *root, 102 struct btrfs_path *path, u64 objectid); 103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 104 struct btrfs_root *root, 105 struct btrfs_root *log, 106 struct btrfs_path *path, 107 u64 dirid, int del_all); 108 static void wait_log_commit(struct btrfs_root *root, int transid); 109 110 /* 111 * tree logging is a special write ahead log used to make sure that 112 * fsyncs and O_SYNCs can happen without doing full tree commits. 113 * 114 * Full tree commits are expensive because they require commonly 115 * modified blocks to be recowed, creating many dirty pages in the 116 * extent tree an 4x-6x higher write load than ext3. 117 * 118 * Instead of doing a tree commit on every fsync, we use the 119 * key ranges and transaction ids to find items for a given file or directory 120 * that have changed in this transaction. Those items are copied into 121 * a special tree (one per subvolume root), that tree is written to disk 122 * and then the fsync is considered complete. 123 * 124 * After a crash, items are copied out of the log-tree back into the 125 * subvolume tree. Any file data extents found are recorded in the extent 126 * allocation tree, and the log-tree freed. 127 * 128 * The log tree is read three times, once to pin down all the extents it is 129 * using in ram and once, once to create all the inodes logged in the tree 130 * and once to do all the other items. 131 */ 132 133 /* 134 * start a sub transaction and setup the log tree 135 * this increments the log tree writer count to make the people 136 * syncing the tree wait for us to finish 137 */ 138 static int start_log_trans(struct btrfs_trans_handle *trans, 139 struct btrfs_root *root, 140 struct btrfs_log_ctx *ctx) 141 { 142 struct btrfs_fs_info *fs_info = root->fs_info; 143 struct btrfs_root *tree_root = fs_info->tree_root; 144 const bool zoned = btrfs_is_zoned(fs_info); 145 int ret = 0; 146 bool created = false; 147 148 /* 149 * First check if the log root tree was already created. If not, create 150 * it before locking the root's log_mutex, just to keep lockdep happy. 151 */ 152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { 153 mutex_lock(&tree_root->log_mutex); 154 if (!fs_info->log_root_tree) { 155 ret = btrfs_init_log_root_tree(trans, fs_info); 156 if (!ret) { 157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); 158 created = true; 159 } 160 } 161 mutex_unlock(&tree_root->log_mutex); 162 if (ret) 163 return ret; 164 } 165 166 mutex_lock(&root->log_mutex); 167 168 again: 169 if (root->log_root) { 170 int index = (root->log_transid + 1) % 2; 171 172 if (btrfs_need_log_full_commit(trans)) { 173 ret = -EAGAIN; 174 goto out; 175 } 176 177 if (zoned && atomic_read(&root->log_commit[index])) { 178 wait_log_commit(root, root->log_transid - 1); 179 goto again; 180 } 181 182 if (!root->log_start_pid) { 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 184 root->log_start_pid = current->pid; 185 } else if (root->log_start_pid != current->pid) { 186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 187 } 188 } else { 189 /* 190 * This means fs_info->log_root_tree was already created 191 * for some other FS trees. Do the full commit not to mix 192 * nodes from multiple log transactions to do sequential 193 * writing. 194 */ 195 if (zoned && !created) { 196 ret = -EAGAIN; 197 goto out; 198 } 199 200 ret = btrfs_add_log_tree(trans, root); 201 if (ret) 202 goto out; 203 204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 206 root->log_start_pid = current->pid; 207 } 208 209 atomic_inc(&root->log_writers); 210 if (ctx && !ctx->logging_new_name) { 211 int index = root->log_transid % 2; 212 list_add_tail(&ctx->list, &root->log_ctxs[index]); 213 ctx->log_transid = root->log_transid; 214 } 215 216 out: 217 mutex_unlock(&root->log_mutex); 218 return ret; 219 } 220 221 /* 222 * returns 0 if there was a log transaction running and we were able 223 * to join, or returns -ENOENT if there were not transactions 224 * in progress 225 */ 226 static int join_running_log_trans(struct btrfs_root *root) 227 { 228 const bool zoned = btrfs_is_zoned(root->fs_info); 229 int ret = -ENOENT; 230 231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 232 return ret; 233 234 mutex_lock(&root->log_mutex); 235 again: 236 if (root->log_root) { 237 int index = (root->log_transid + 1) % 2; 238 239 ret = 0; 240 if (zoned && atomic_read(&root->log_commit[index])) { 241 wait_log_commit(root, root->log_transid - 1); 242 goto again; 243 } 244 atomic_inc(&root->log_writers); 245 } 246 mutex_unlock(&root->log_mutex); 247 return ret; 248 } 249 250 /* 251 * This either makes the current running log transaction wait 252 * until you call btrfs_end_log_trans() or it makes any future 253 * log transactions wait until you call btrfs_end_log_trans() 254 */ 255 void btrfs_pin_log_trans(struct btrfs_root *root) 256 { 257 atomic_inc(&root->log_writers); 258 } 259 260 /* 261 * indicate we're done making changes to the log tree 262 * and wake up anyone waiting to do a sync 263 */ 264 void btrfs_end_log_trans(struct btrfs_root *root) 265 { 266 if (atomic_dec_and_test(&root->log_writers)) { 267 /* atomic_dec_and_test implies a barrier */ 268 cond_wake_up_nomb(&root->log_writer_wait); 269 } 270 } 271 272 static int btrfs_write_tree_block(struct extent_buffer *buf) 273 { 274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 275 buf->start + buf->len - 1); 276 } 277 278 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 279 { 280 filemap_fdatawait_range(buf->pages[0]->mapping, 281 buf->start, buf->start + buf->len - 1); 282 } 283 284 /* 285 * the walk control struct is used to pass state down the chain when 286 * processing the log tree. The stage field tells us which part 287 * of the log tree processing we are currently doing. The others 288 * are state fields used for that specific part 289 */ 290 struct walk_control { 291 /* should we free the extent on disk when done? This is used 292 * at transaction commit time while freeing a log tree 293 */ 294 int free; 295 296 /* should we write out the extent buffer? This is used 297 * while flushing the log tree to disk during a sync 298 */ 299 int write; 300 301 /* should we wait for the extent buffer io to finish? Also used 302 * while flushing the log tree to disk for a sync 303 */ 304 int wait; 305 306 /* pin only walk, we record which extents on disk belong to the 307 * log trees 308 */ 309 int pin; 310 311 /* what stage of the replay code we're currently in */ 312 int stage; 313 314 /* 315 * Ignore any items from the inode currently being processed. Needs 316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 317 * the LOG_WALK_REPLAY_INODES stage. 318 */ 319 bool ignore_cur_inode; 320 321 /* the root we are currently replaying */ 322 struct btrfs_root *replay_dest; 323 324 /* the trans handle for the current replay */ 325 struct btrfs_trans_handle *trans; 326 327 /* the function that gets used to process blocks we find in the 328 * tree. Note the extent_buffer might not be up to date when it is 329 * passed in, and it must be checked or read if you need the data 330 * inside it 331 */ 332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 333 struct walk_control *wc, u64 gen, int level); 334 }; 335 336 /* 337 * process_func used to pin down extents, write them or wait on them 338 */ 339 static int process_one_buffer(struct btrfs_root *log, 340 struct extent_buffer *eb, 341 struct walk_control *wc, u64 gen, int level) 342 { 343 struct btrfs_fs_info *fs_info = log->fs_info; 344 int ret = 0; 345 346 /* 347 * If this fs is mixed then we need to be able to process the leaves to 348 * pin down any logged extents, so we have to read the block. 349 */ 350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 351 ret = btrfs_read_buffer(eb, gen, level, NULL); 352 if (ret) 353 return ret; 354 } 355 356 if (wc->pin) 357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start, 358 eb->len); 359 360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 361 if (wc->pin && btrfs_header_level(eb) == 0) 362 ret = btrfs_exclude_logged_extents(eb); 363 if (wc->write) 364 btrfs_write_tree_block(eb); 365 if (wc->wait) 366 btrfs_wait_tree_block_writeback(eb); 367 } 368 return ret; 369 } 370 371 /* 372 * Item overwrite used by replay and tree logging. eb, slot and key all refer 373 * to the src data we are copying out. 374 * 375 * root is the tree we are copying into, and path is a scratch 376 * path for use in this function (it should be released on entry and 377 * will be released on exit). 378 * 379 * If the key is already in the destination tree the existing item is 380 * overwritten. If the existing item isn't big enough, it is extended. 381 * If it is too large, it is truncated. 382 * 383 * If the key isn't in the destination yet, a new item is inserted. 384 */ 385 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 386 struct btrfs_root *root, 387 struct btrfs_path *path, 388 struct extent_buffer *eb, int slot, 389 struct btrfs_key *key) 390 { 391 int ret; 392 u32 item_size; 393 u64 saved_i_size = 0; 394 int save_old_i_size = 0; 395 unsigned long src_ptr; 396 unsigned long dst_ptr; 397 int overwrite_root = 0; 398 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 399 400 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 401 overwrite_root = 1; 402 403 item_size = btrfs_item_size_nr(eb, slot); 404 src_ptr = btrfs_item_ptr_offset(eb, slot); 405 406 /* look for the key in the destination tree */ 407 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 408 if (ret < 0) 409 return ret; 410 411 if (ret == 0) { 412 char *src_copy; 413 char *dst_copy; 414 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 415 path->slots[0]); 416 if (dst_size != item_size) 417 goto insert; 418 419 if (item_size == 0) { 420 btrfs_release_path(path); 421 return 0; 422 } 423 dst_copy = kmalloc(item_size, GFP_NOFS); 424 src_copy = kmalloc(item_size, GFP_NOFS); 425 if (!dst_copy || !src_copy) { 426 btrfs_release_path(path); 427 kfree(dst_copy); 428 kfree(src_copy); 429 return -ENOMEM; 430 } 431 432 read_extent_buffer(eb, src_copy, src_ptr, item_size); 433 434 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 435 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 436 item_size); 437 ret = memcmp(dst_copy, src_copy, item_size); 438 439 kfree(dst_copy); 440 kfree(src_copy); 441 /* 442 * they have the same contents, just return, this saves 443 * us from cowing blocks in the destination tree and doing 444 * extra writes that may not have been done by a previous 445 * sync 446 */ 447 if (ret == 0) { 448 btrfs_release_path(path); 449 return 0; 450 } 451 452 /* 453 * We need to load the old nbytes into the inode so when we 454 * replay the extents we've logged we get the right nbytes. 455 */ 456 if (inode_item) { 457 struct btrfs_inode_item *item; 458 u64 nbytes; 459 u32 mode; 460 461 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 462 struct btrfs_inode_item); 463 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 464 item = btrfs_item_ptr(eb, slot, 465 struct btrfs_inode_item); 466 btrfs_set_inode_nbytes(eb, item, nbytes); 467 468 /* 469 * If this is a directory we need to reset the i_size to 470 * 0 so that we can set it up properly when replaying 471 * the rest of the items in this log. 472 */ 473 mode = btrfs_inode_mode(eb, item); 474 if (S_ISDIR(mode)) 475 btrfs_set_inode_size(eb, item, 0); 476 } 477 } else if (inode_item) { 478 struct btrfs_inode_item *item; 479 u32 mode; 480 481 /* 482 * New inode, set nbytes to 0 so that the nbytes comes out 483 * properly when we replay the extents. 484 */ 485 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 486 btrfs_set_inode_nbytes(eb, item, 0); 487 488 /* 489 * If this is a directory we need to reset the i_size to 0 so 490 * that we can set it up properly when replaying the rest of 491 * the items in this log. 492 */ 493 mode = btrfs_inode_mode(eb, item); 494 if (S_ISDIR(mode)) 495 btrfs_set_inode_size(eb, item, 0); 496 } 497 insert: 498 btrfs_release_path(path); 499 /* try to insert the key into the destination tree */ 500 path->skip_release_on_error = 1; 501 ret = btrfs_insert_empty_item(trans, root, path, 502 key, item_size); 503 path->skip_release_on_error = 0; 504 505 /* make sure any existing item is the correct size */ 506 if (ret == -EEXIST || ret == -EOVERFLOW) { 507 u32 found_size; 508 found_size = btrfs_item_size_nr(path->nodes[0], 509 path->slots[0]); 510 if (found_size > item_size) 511 btrfs_truncate_item(path, item_size, 1); 512 else if (found_size < item_size) 513 btrfs_extend_item(path, item_size - found_size); 514 } else if (ret) { 515 return ret; 516 } 517 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 518 path->slots[0]); 519 520 /* don't overwrite an existing inode if the generation number 521 * was logged as zero. This is done when the tree logging code 522 * is just logging an inode to make sure it exists after recovery. 523 * 524 * Also, don't overwrite i_size on directories during replay. 525 * log replay inserts and removes directory items based on the 526 * state of the tree found in the subvolume, and i_size is modified 527 * as it goes 528 */ 529 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 530 struct btrfs_inode_item *src_item; 531 struct btrfs_inode_item *dst_item; 532 533 src_item = (struct btrfs_inode_item *)src_ptr; 534 dst_item = (struct btrfs_inode_item *)dst_ptr; 535 536 if (btrfs_inode_generation(eb, src_item) == 0) { 537 struct extent_buffer *dst_eb = path->nodes[0]; 538 const u64 ino_size = btrfs_inode_size(eb, src_item); 539 540 /* 541 * For regular files an ino_size == 0 is used only when 542 * logging that an inode exists, as part of a directory 543 * fsync, and the inode wasn't fsynced before. In this 544 * case don't set the size of the inode in the fs/subvol 545 * tree, otherwise we would be throwing valid data away. 546 */ 547 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 548 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 549 ino_size != 0) 550 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 551 goto no_copy; 552 } 553 554 if (overwrite_root && 555 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 556 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 557 save_old_i_size = 1; 558 saved_i_size = btrfs_inode_size(path->nodes[0], 559 dst_item); 560 } 561 } 562 563 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 564 src_ptr, item_size); 565 566 if (save_old_i_size) { 567 struct btrfs_inode_item *dst_item; 568 dst_item = (struct btrfs_inode_item *)dst_ptr; 569 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 570 } 571 572 /* make sure the generation is filled in */ 573 if (key->type == BTRFS_INODE_ITEM_KEY) { 574 struct btrfs_inode_item *dst_item; 575 dst_item = (struct btrfs_inode_item *)dst_ptr; 576 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 577 btrfs_set_inode_generation(path->nodes[0], dst_item, 578 trans->transid); 579 } 580 } 581 no_copy: 582 btrfs_mark_buffer_dirty(path->nodes[0]); 583 btrfs_release_path(path); 584 return 0; 585 } 586 587 /* 588 * simple helper to read an inode off the disk from a given root 589 * This can only be called for subvolume roots and not for the log 590 */ 591 static noinline struct inode *read_one_inode(struct btrfs_root *root, 592 u64 objectid) 593 { 594 struct inode *inode; 595 596 inode = btrfs_iget(root->fs_info->sb, objectid, root); 597 if (IS_ERR(inode)) 598 inode = NULL; 599 return inode; 600 } 601 602 /* replays a single extent in 'eb' at 'slot' with 'key' into the 603 * subvolume 'root'. path is released on entry and should be released 604 * on exit. 605 * 606 * extents in the log tree have not been allocated out of the extent 607 * tree yet. So, this completes the allocation, taking a reference 608 * as required if the extent already exists or creating a new extent 609 * if it isn't in the extent allocation tree yet. 610 * 611 * The extent is inserted into the file, dropping any existing extents 612 * from the file that overlap the new one. 613 */ 614 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 615 struct btrfs_root *root, 616 struct btrfs_path *path, 617 struct extent_buffer *eb, int slot, 618 struct btrfs_key *key) 619 { 620 struct btrfs_drop_extents_args drop_args = { 0 }; 621 struct btrfs_fs_info *fs_info = root->fs_info; 622 int found_type; 623 u64 extent_end; 624 u64 start = key->offset; 625 u64 nbytes = 0; 626 struct btrfs_file_extent_item *item; 627 struct inode *inode = NULL; 628 unsigned long size; 629 int ret = 0; 630 631 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 632 found_type = btrfs_file_extent_type(eb, item); 633 634 if (found_type == BTRFS_FILE_EXTENT_REG || 635 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 636 nbytes = btrfs_file_extent_num_bytes(eb, item); 637 extent_end = start + nbytes; 638 639 /* 640 * We don't add to the inodes nbytes if we are prealloc or a 641 * hole. 642 */ 643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 644 nbytes = 0; 645 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 646 size = btrfs_file_extent_ram_bytes(eb, item); 647 nbytes = btrfs_file_extent_ram_bytes(eb, item); 648 extent_end = ALIGN(start + size, 649 fs_info->sectorsize); 650 } else { 651 ret = 0; 652 goto out; 653 } 654 655 inode = read_one_inode(root, key->objectid); 656 if (!inode) { 657 ret = -EIO; 658 goto out; 659 } 660 661 /* 662 * first check to see if we already have this extent in the 663 * file. This must be done before the btrfs_drop_extents run 664 * so we don't try to drop this extent. 665 */ 666 ret = btrfs_lookup_file_extent(trans, root, path, 667 btrfs_ino(BTRFS_I(inode)), start, 0); 668 669 if (ret == 0 && 670 (found_type == BTRFS_FILE_EXTENT_REG || 671 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 672 struct btrfs_file_extent_item cmp1; 673 struct btrfs_file_extent_item cmp2; 674 struct btrfs_file_extent_item *existing; 675 struct extent_buffer *leaf; 676 677 leaf = path->nodes[0]; 678 existing = btrfs_item_ptr(leaf, path->slots[0], 679 struct btrfs_file_extent_item); 680 681 read_extent_buffer(eb, &cmp1, (unsigned long)item, 682 sizeof(cmp1)); 683 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 684 sizeof(cmp2)); 685 686 /* 687 * we already have a pointer to this exact extent, 688 * we don't have to do anything 689 */ 690 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 691 btrfs_release_path(path); 692 goto out; 693 } 694 } 695 btrfs_release_path(path); 696 697 /* drop any overlapping extents */ 698 drop_args.start = start; 699 drop_args.end = extent_end; 700 drop_args.drop_cache = true; 701 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args); 702 if (ret) 703 goto out; 704 705 if (found_type == BTRFS_FILE_EXTENT_REG || 706 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 707 u64 offset; 708 unsigned long dest_offset; 709 struct btrfs_key ins; 710 711 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 712 btrfs_fs_incompat(fs_info, NO_HOLES)) 713 goto update_inode; 714 715 ret = btrfs_insert_empty_item(trans, root, path, key, 716 sizeof(*item)); 717 if (ret) 718 goto out; 719 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 720 path->slots[0]); 721 copy_extent_buffer(path->nodes[0], eb, dest_offset, 722 (unsigned long)item, sizeof(*item)); 723 724 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 726 ins.type = BTRFS_EXTENT_ITEM_KEY; 727 offset = key->offset - btrfs_file_extent_offset(eb, item); 728 729 /* 730 * Manually record dirty extent, as here we did a shallow 731 * file extent item copy and skip normal backref update, 732 * but modifying extent tree all by ourselves. 733 * So need to manually record dirty extent for qgroup, 734 * as the owner of the file extent changed from log tree 735 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 736 */ 737 ret = btrfs_qgroup_trace_extent(trans, 738 btrfs_file_extent_disk_bytenr(eb, item), 739 btrfs_file_extent_disk_num_bytes(eb, item), 740 GFP_NOFS); 741 if (ret < 0) 742 goto out; 743 744 if (ins.objectid > 0) { 745 struct btrfs_ref ref = { 0 }; 746 u64 csum_start; 747 u64 csum_end; 748 LIST_HEAD(ordered_sums); 749 750 /* 751 * is this extent already allocated in the extent 752 * allocation tree? If so, just add a reference 753 */ 754 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 755 ins.offset); 756 if (ret == 0) { 757 btrfs_init_generic_ref(&ref, 758 BTRFS_ADD_DELAYED_REF, 759 ins.objectid, ins.offset, 0); 760 btrfs_init_data_ref(&ref, 761 root->root_key.objectid, 762 key->objectid, offset); 763 ret = btrfs_inc_extent_ref(trans, &ref); 764 if (ret) 765 goto out; 766 } else { 767 /* 768 * insert the extent pointer in the extent 769 * allocation tree 770 */ 771 ret = btrfs_alloc_logged_file_extent(trans, 772 root->root_key.objectid, 773 key->objectid, offset, &ins); 774 if (ret) 775 goto out; 776 } 777 btrfs_release_path(path); 778 779 if (btrfs_file_extent_compression(eb, item)) { 780 csum_start = ins.objectid; 781 csum_end = csum_start + ins.offset; 782 } else { 783 csum_start = ins.objectid + 784 btrfs_file_extent_offset(eb, item); 785 csum_end = csum_start + 786 btrfs_file_extent_num_bytes(eb, item); 787 } 788 789 ret = btrfs_lookup_csums_range(root->log_root, 790 csum_start, csum_end - 1, 791 &ordered_sums, 0); 792 if (ret) 793 goto out; 794 /* 795 * Now delete all existing cums in the csum root that 796 * cover our range. We do this because we can have an 797 * extent that is completely referenced by one file 798 * extent item and partially referenced by another 799 * file extent item (like after using the clone or 800 * extent_same ioctls). In this case if we end up doing 801 * the replay of the one that partially references the 802 * extent first, and we do not do the csum deletion 803 * below, we can get 2 csum items in the csum tree that 804 * overlap each other. For example, imagine our log has 805 * the two following file extent items: 806 * 807 * key (257 EXTENT_DATA 409600) 808 * extent data disk byte 12845056 nr 102400 809 * extent data offset 20480 nr 20480 ram 102400 810 * 811 * key (257 EXTENT_DATA 819200) 812 * extent data disk byte 12845056 nr 102400 813 * extent data offset 0 nr 102400 ram 102400 814 * 815 * Where the second one fully references the 100K extent 816 * that starts at disk byte 12845056, and the log tree 817 * has a single csum item that covers the entire range 818 * of the extent: 819 * 820 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 821 * 822 * After the first file extent item is replayed, the 823 * csum tree gets the following csum item: 824 * 825 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 826 * 827 * Which covers the 20K sub-range starting at offset 20K 828 * of our extent. Now when we replay the second file 829 * extent item, if we do not delete existing csum items 830 * that cover any of its blocks, we end up getting two 831 * csum items in our csum tree that overlap each other: 832 * 833 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 834 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 835 * 836 * Which is a problem, because after this anyone trying 837 * to lookup up for the checksum of any block of our 838 * extent starting at an offset of 40K or higher, will 839 * end up looking at the second csum item only, which 840 * does not contain the checksum for any block starting 841 * at offset 40K or higher of our extent. 842 */ 843 while (!list_empty(&ordered_sums)) { 844 struct btrfs_ordered_sum *sums; 845 sums = list_entry(ordered_sums.next, 846 struct btrfs_ordered_sum, 847 list); 848 if (!ret) 849 ret = btrfs_del_csums(trans, 850 fs_info->csum_root, 851 sums->bytenr, 852 sums->len); 853 if (!ret) 854 ret = btrfs_csum_file_blocks(trans, 855 fs_info->csum_root, sums); 856 list_del(&sums->list); 857 kfree(sums); 858 } 859 if (ret) 860 goto out; 861 } else { 862 btrfs_release_path(path); 863 } 864 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 865 /* inline extents are easy, we just overwrite them */ 866 ret = overwrite_item(trans, root, path, eb, slot, key); 867 if (ret) 868 goto out; 869 } 870 871 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, 872 extent_end - start); 873 if (ret) 874 goto out; 875 876 update_inode: 877 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found); 878 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 879 out: 880 if (inode) 881 iput(inode); 882 return ret; 883 } 884 885 /* 886 * when cleaning up conflicts between the directory names in the 887 * subvolume, directory names in the log and directory names in the 888 * inode back references, we may have to unlink inodes from directories. 889 * 890 * This is a helper function to do the unlink of a specific directory 891 * item 892 */ 893 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 894 struct btrfs_root *root, 895 struct btrfs_path *path, 896 struct btrfs_inode *dir, 897 struct btrfs_dir_item *di) 898 { 899 struct inode *inode; 900 char *name; 901 int name_len; 902 struct extent_buffer *leaf; 903 struct btrfs_key location; 904 int ret; 905 906 leaf = path->nodes[0]; 907 908 btrfs_dir_item_key_to_cpu(leaf, di, &location); 909 name_len = btrfs_dir_name_len(leaf, di); 910 name = kmalloc(name_len, GFP_NOFS); 911 if (!name) 912 return -ENOMEM; 913 914 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 915 btrfs_release_path(path); 916 917 inode = read_one_inode(root, location.objectid); 918 if (!inode) { 919 ret = -EIO; 920 goto out; 921 } 922 923 ret = link_to_fixup_dir(trans, root, path, location.objectid); 924 if (ret) 925 goto out; 926 927 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, 928 name_len); 929 if (ret) 930 goto out; 931 else 932 ret = btrfs_run_delayed_items(trans); 933 out: 934 kfree(name); 935 iput(inode); 936 return ret; 937 } 938 939 /* 940 * helper function to see if a given name and sequence number found 941 * in an inode back reference are already in a directory and correctly 942 * point to this inode 943 */ 944 static noinline int inode_in_dir(struct btrfs_root *root, 945 struct btrfs_path *path, 946 u64 dirid, u64 objectid, u64 index, 947 const char *name, int name_len) 948 { 949 struct btrfs_dir_item *di; 950 struct btrfs_key location; 951 int match = 0; 952 953 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 954 index, name, name_len, 0); 955 if (di && !IS_ERR(di)) { 956 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 957 if (location.objectid != objectid) 958 goto out; 959 } else 960 goto out; 961 btrfs_release_path(path); 962 963 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 964 if (di && !IS_ERR(di)) { 965 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 966 if (location.objectid != objectid) 967 goto out; 968 } else 969 goto out; 970 match = 1; 971 out: 972 btrfs_release_path(path); 973 return match; 974 } 975 976 /* 977 * helper function to check a log tree for a named back reference in 978 * an inode. This is used to decide if a back reference that is 979 * found in the subvolume conflicts with what we find in the log. 980 * 981 * inode backreferences may have multiple refs in a single item, 982 * during replay we process one reference at a time, and we don't 983 * want to delete valid links to a file from the subvolume if that 984 * link is also in the log. 985 */ 986 static noinline int backref_in_log(struct btrfs_root *log, 987 struct btrfs_key *key, 988 u64 ref_objectid, 989 const char *name, int namelen) 990 { 991 struct btrfs_path *path; 992 int ret; 993 994 path = btrfs_alloc_path(); 995 if (!path) 996 return -ENOMEM; 997 998 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 999 if (ret < 0) { 1000 goto out; 1001 } else if (ret == 1) { 1002 ret = 0; 1003 goto out; 1004 } 1005 1006 if (key->type == BTRFS_INODE_EXTREF_KEY) 1007 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1008 path->slots[0], 1009 ref_objectid, 1010 name, namelen); 1011 else 1012 ret = !!btrfs_find_name_in_backref(path->nodes[0], 1013 path->slots[0], 1014 name, namelen); 1015 out: 1016 btrfs_free_path(path); 1017 return ret; 1018 } 1019 1020 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 1021 struct btrfs_root *root, 1022 struct btrfs_path *path, 1023 struct btrfs_root *log_root, 1024 struct btrfs_inode *dir, 1025 struct btrfs_inode *inode, 1026 u64 inode_objectid, u64 parent_objectid, 1027 u64 ref_index, char *name, int namelen, 1028 int *search_done) 1029 { 1030 int ret; 1031 char *victim_name; 1032 int victim_name_len; 1033 struct extent_buffer *leaf; 1034 struct btrfs_dir_item *di; 1035 struct btrfs_key search_key; 1036 struct btrfs_inode_extref *extref; 1037 1038 again: 1039 /* Search old style refs */ 1040 search_key.objectid = inode_objectid; 1041 search_key.type = BTRFS_INODE_REF_KEY; 1042 search_key.offset = parent_objectid; 1043 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1044 if (ret == 0) { 1045 struct btrfs_inode_ref *victim_ref; 1046 unsigned long ptr; 1047 unsigned long ptr_end; 1048 1049 leaf = path->nodes[0]; 1050 1051 /* are we trying to overwrite a back ref for the root directory 1052 * if so, just jump out, we're done 1053 */ 1054 if (search_key.objectid == search_key.offset) 1055 return 1; 1056 1057 /* check all the names in this back reference to see 1058 * if they are in the log. if so, we allow them to stay 1059 * otherwise they must be unlinked as a conflict 1060 */ 1061 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1062 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1063 while (ptr < ptr_end) { 1064 victim_ref = (struct btrfs_inode_ref *)ptr; 1065 victim_name_len = btrfs_inode_ref_name_len(leaf, 1066 victim_ref); 1067 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1068 if (!victim_name) 1069 return -ENOMEM; 1070 1071 read_extent_buffer(leaf, victim_name, 1072 (unsigned long)(victim_ref + 1), 1073 victim_name_len); 1074 1075 ret = backref_in_log(log_root, &search_key, 1076 parent_objectid, victim_name, 1077 victim_name_len); 1078 if (ret < 0) { 1079 kfree(victim_name); 1080 return ret; 1081 } else if (!ret) { 1082 inc_nlink(&inode->vfs_inode); 1083 btrfs_release_path(path); 1084 1085 ret = btrfs_unlink_inode(trans, root, dir, inode, 1086 victim_name, victim_name_len); 1087 kfree(victim_name); 1088 if (ret) 1089 return ret; 1090 ret = btrfs_run_delayed_items(trans); 1091 if (ret) 1092 return ret; 1093 *search_done = 1; 1094 goto again; 1095 } 1096 kfree(victim_name); 1097 1098 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1099 } 1100 1101 /* 1102 * NOTE: we have searched root tree and checked the 1103 * corresponding ref, it does not need to check again. 1104 */ 1105 *search_done = 1; 1106 } 1107 btrfs_release_path(path); 1108 1109 /* Same search but for extended refs */ 1110 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1111 inode_objectid, parent_objectid, 0, 1112 0); 1113 if (!IS_ERR_OR_NULL(extref)) { 1114 u32 item_size; 1115 u32 cur_offset = 0; 1116 unsigned long base; 1117 struct inode *victim_parent; 1118 1119 leaf = path->nodes[0]; 1120 1121 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1122 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1123 1124 while (cur_offset < item_size) { 1125 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1126 1127 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1128 1129 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1130 goto next; 1131 1132 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1133 if (!victim_name) 1134 return -ENOMEM; 1135 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1136 victim_name_len); 1137 1138 search_key.objectid = inode_objectid; 1139 search_key.type = BTRFS_INODE_EXTREF_KEY; 1140 search_key.offset = btrfs_extref_hash(parent_objectid, 1141 victim_name, 1142 victim_name_len); 1143 ret = backref_in_log(log_root, &search_key, 1144 parent_objectid, victim_name, 1145 victim_name_len); 1146 if (ret < 0) { 1147 return ret; 1148 } else if (!ret) { 1149 ret = -ENOENT; 1150 victim_parent = read_one_inode(root, 1151 parent_objectid); 1152 if (victim_parent) { 1153 inc_nlink(&inode->vfs_inode); 1154 btrfs_release_path(path); 1155 1156 ret = btrfs_unlink_inode(trans, root, 1157 BTRFS_I(victim_parent), 1158 inode, 1159 victim_name, 1160 victim_name_len); 1161 if (!ret) 1162 ret = btrfs_run_delayed_items( 1163 trans); 1164 } 1165 iput(victim_parent); 1166 kfree(victim_name); 1167 if (ret) 1168 return ret; 1169 *search_done = 1; 1170 goto again; 1171 } 1172 kfree(victim_name); 1173 next: 1174 cur_offset += victim_name_len + sizeof(*extref); 1175 } 1176 *search_done = 1; 1177 } 1178 btrfs_release_path(path); 1179 1180 /* look for a conflicting sequence number */ 1181 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1182 ref_index, name, namelen, 0); 1183 if (di && !IS_ERR(di)) { 1184 ret = drop_one_dir_item(trans, root, path, dir, di); 1185 if (ret) 1186 return ret; 1187 } 1188 btrfs_release_path(path); 1189 1190 /* look for a conflicting name */ 1191 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1192 name, namelen, 0); 1193 if (di && !IS_ERR(di)) { 1194 ret = drop_one_dir_item(trans, root, path, dir, di); 1195 if (ret) 1196 return ret; 1197 } 1198 btrfs_release_path(path); 1199 1200 return 0; 1201 } 1202 1203 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1204 u32 *namelen, char **name, u64 *index, 1205 u64 *parent_objectid) 1206 { 1207 struct btrfs_inode_extref *extref; 1208 1209 extref = (struct btrfs_inode_extref *)ref_ptr; 1210 1211 *namelen = btrfs_inode_extref_name_len(eb, extref); 1212 *name = kmalloc(*namelen, GFP_NOFS); 1213 if (*name == NULL) 1214 return -ENOMEM; 1215 1216 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1217 *namelen); 1218 1219 if (index) 1220 *index = btrfs_inode_extref_index(eb, extref); 1221 if (parent_objectid) 1222 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1223 1224 return 0; 1225 } 1226 1227 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1228 u32 *namelen, char **name, u64 *index) 1229 { 1230 struct btrfs_inode_ref *ref; 1231 1232 ref = (struct btrfs_inode_ref *)ref_ptr; 1233 1234 *namelen = btrfs_inode_ref_name_len(eb, ref); 1235 *name = kmalloc(*namelen, GFP_NOFS); 1236 if (*name == NULL) 1237 return -ENOMEM; 1238 1239 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1240 1241 if (index) 1242 *index = btrfs_inode_ref_index(eb, ref); 1243 1244 return 0; 1245 } 1246 1247 /* 1248 * Take an inode reference item from the log tree and iterate all names from the 1249 * inode reference item in the subvolume tree with the same key (if it exists). 1250 * For any name that is not in the inode reference item from the log tree, do a 1251 * proper unlink of that name (that is, remove its entry from the inode 1252 * reference item and both dir index keys). 1253 */ 1254 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1255 struct btrfs_root *root, 1256 struct btrfs_path *path, 1257 struct btrfs_inode *inode, 1258 struct extent_buffer *log_eb, 1259 int log_slot, 1260 struct btrfs_key *key) 1261 { 1262 int ret; 1263 unsigned long ref_ptr; 1264 unsigned long ref_end; 1265 struct extent_buffer *eb; 1266 1267 again: 1268 btrfs_release_path(path); 1269 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1270 if (ret > 0) { 1271 ret = 0; 1272 goto out; 1273 } 1274 if (ret < 0) 1275 goto out; 1276 1277 eb = path->nodes[0]; 1278 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1279 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); 1280 while (ref_ptr < ref_end) { 1281 char *name = NULL; 1282 int namelen; 1283 u64 parent_id; 1284 1285 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1286 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1287 NULL, &parent_id); 1288 } else { 1289 parent_id = key->offset; 1290 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1291 NULL); 1292 } 1293 if (ret) 1294 goto out; 1295 1296 if (key->type == BTRFS_INODE_EXTREF_KEY) 1297 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1298 parent_id, name, 1299 namelen); 1300 else 1301 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, 1302 name, namelen); 1303 1304 if (!ret) { 1305 struct inode *dir; 1306 1307 btrfs_release_path(path); 1308 dir = read_one_inode(root, parent_id); 1309 if (!dir) { 1310 ret = -ENOENT; 1311 kfree(name); 1312 goto out; 1313 } 1314 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 1315 inode, name, namelen); 1316 kfree(name); 1317 iput(dir); 1318 if (ret) 1319 goto out; 1320 goto again; 1321 } 1322 1323 kfree(name); 1324 ref_ptr += namelen; 1325 if (key->type == BTRFS_INODE_EXTREF_KEY) 1326 ref_ptr += sizeof(struct btrfs_inode_extref); 1327 else 1328 ref_ptr += sizeof(struct btrfs_inode_ref); 1329 } 1330 ret = 0; 1331 out: 1332 btrfs_release_path(path); 1333 return ret; 1334 } 1335 1336 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1337 const u8 ref_type, const char *name, 1338 const int namelen) 1339 { 1340 struct btrfs_key key; 1341 struct btrfs_path *path; 1342 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1343 int ret; 1344 1345 path = btrfs_alloc_path(); 1346 if (!path) 1347 return -ENOMEM; 1348 1349 key.objectid = btrfs_ino(BTRFS_I(inode)); 1350 key.type = ref_type; 1351 if (key.type == BTRFS_INODE_REF_KEY) 1352 key.offset = parent_id; 1353 else 1354 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1355 1356 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1357 if (ret < 0) 1358 goto out; 1359 if (ret > 0) { 1360 ret = 0; 1361 goto out; 1362 } 1363 if (key.type == BTRFS_INODE_EXTREF_KEY) 1364 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1365 path->slots[0], parent_id, name, namelen); 1366 else 1367 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1368 name, namelen); 1369 1370 out: 1371 btrfs_free_path(path); 1372 return ret; 1373 } 1374 1375 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1376 struct inode *dir, struct inode *inode, const char *name, 1377 int namelen, u64 ref_index) 1378 { 1379 struct btrfs_dir_item *dir_item; 1380 struct btrfs_key key; 1381 struct btrfs_path *path; 1382 struct inode *other_inode = NULL; 1383 int ret; 1384 1385 path = btrfs_alloc_path(); 1386 if (!path) 1387 return -ENOMEM; 1388 1389 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1390 btrfs_ino(BTRFS_I(dir)), 1391 name, namelen, 0); 1392 if (!dir_item) { 1393 btrfs_release_path(path); 1394 goto add_link; 1395 } else if (IS_ERR(dir_item)) { 1396 ret = PTR_ERR(dir_item); 1397 goto out; 1398 } 1399 1400 /* 1401 * Our inode's dentry collides with the dentry of another inode which is 1402 * in the log but not yet processed since it has a higher inode number. 1403 * So delete that other dentry. 1404 */ 1405 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1406 btrfs_release_path(path); 1407 other_inode = read_one_inode(root, key.objectid); 1408 if (!other_inode) { 1409 ret = -ENOENT; 1410 goto out; 1411 } 1412 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode), 1413 name, namelen); 1414 if (ret) 1415 goto out; 1416 /* 1417 * If we dropped the link count to 0, bump it so that later the iput() 1418 * on the inode will not free it. We will fixup the link count later. 1419 */ 1420 if (other_inode->i_nlink == 0) 1421 inc_nlink(other_inode); 1422 1423 ret = btrfs_run_delayed_items(trans); 1424 if (ret) 1425 goto out; 1426 add_link: 1427 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1428 name, namelen, 0, ref_index); 1429 out: 1430 iput(other_inode); 1431 btrfs_free_path(path); 1432 1433 return ret; 1434 } 1435 1436 /* 1437 * replay one inode back reference item found in the log tree. 1438 * eb, slot and key refer to the buffer and key found in the log tree. 1439 * root is the destination we are replaying into, and path is for temp 1440 * use by this function. (it should be released on return). 1441 */ 1442 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1443 struct btrfs_root *root, 1444 struct btrfs_root *log, 1445 struct btrfs_path *path, 1446 struct extent_buffer *eb, int slot, 1447 struct btrfs_key *key) 1448 { 1449 struct inode *dir = NULL; 1450 struct inode *inode = NULL; 1451 unsigned long ref_ptr; 1452 unsigned long ref_end; 1453 char *name = NULL; 1454 int namelen; 1455 int ret; 1456 int search_done = 0; 1457 int log_ref_ver = 0; 1458 u64 parent_objectid; 1459 u64 inode_objectid; 1460 u64 ref_index = 0; 1461 int ref_struct_size; 1462 1463 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1464 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1465 1466 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1467 struct btrfs_inode_extref *r; 1468 1469 ref_struct_size = sizeof(struct btrfs_inode_extref); 1470 log_ref_ver = 1; 1471 r = (struct btrfs_inode_extref *)ref_ptr; 1472 parent_objectid = btrfs_inode_extref_parent(eb, r); 1473 } else { 1474 ref_struct_size = sizeof(struct btrfs_inode_ref); 1475 parent_objectid = key->offset; 1476 } 1477 inode_objectid = key->objectid; 1478 1479 /* 1480 * it is possible that we didn't log all the parent directories 1481 * for a given inode. If we don't find the dir, just don't 1482 * copy the back ref in. The link count fixup code will take 1483 * care of the rest 1484 */ 1485 dir = read_one_inode(root, parent_objectid); 1486 if (!dir) { 1487 ret = -ENOENT; 1488 goto out; 1489 } 1490 1491 inode = read_one_inode(root, inode_objectid); 1492 if (!inode) { 1493 ret = -EIO; 1494 goto out; 1495 } 1496 1497 while (ref_ptr < ref_end) { 1498 if (log_ref_ver) { 1499 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1500 &ref_index, &parent_objectid); 1501 /* 1502 * parent object can change from one array 1503 * item to another. 1504 */ 1505 if (!dir) 1506 dir = read_one_inode(root, parent_objectid); 1507 if (!dir) { 1508 ret = -ENOENT; 1509 goto out; 1510 } 1511 } else { 1512 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1513 &ref_index); 1514 } 1515 if (ret) 1516 goto out; 1517 1518 /* if we already have a perfect match, we're done */ 1519 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1520 btrfs_ino(BTRFS_I(inode)), ref_index, 1521 name, namelen)) { 1522 /* 1523 * look for a conflicting back reference in the 1524 * metadata. if we find one we have to unlink that name 1525 * of the file before we add our new link. Later on, we 1526 * overwrite any existing back reference, and we don't 1527 * want to create dangling pointers in the directory. 1528 */ 1529 1530 if (!search_done) { 1531 ret = __add_inode_ref(trans, root, path, log, 1532 BTRFS_I(dir), 1533 BTRFS_I(inode), 1534 inode_objectid, 1535 parent_objectid, 1536 ref_index, name, namelen, 1537 &search_done); 1538 if (ret) { 1539 if (ret == 1) 1540 ret = 0; 1541 goto out; 1542 } 1543 } 1544 1545 /* 1546 * If a reference item already exists for this inode 1547 * with the same parent and name, but different index, 1548 * drop it and the corresponding directory index entries 1549 * from the parent before adding the new reference item 1550 * and dir index entries, otherwise we would fail with 1551 * -EEXIST returned from btrfs_add_link() below. 1552 */ 1553 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1554 name, namelen); 1555 if (ret > 0) { 1556 ret = btrfs_unlink_inode(trans, root, 1557 BTRFS_I(dir), 1558 BTRFS_I(inode), 1559 name, namelen); 1560 /* 1561 * If we dropped the link count to 0, bump it so 1562 * that later the iput() on the inode will not 1563 * free it. We will fixup the link count later. 1564 */ 1565 if (!ret && inode->i_nlink == 0) 1566 inc_nlink(inode); 1567 } 1568 if (ret < 0) 1569 goto out; 1570 1571 /* insert our name */ 1572 ret = add_link(trans, root, dir, inode, name, namelen, 1573 ref_index); 1574 if (ret) 1575 goto out; 1576 1577 btrfs_update_inode(trans, root, BTRFS_I(inode)); 1578 } 1579 1580 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1581 kfree(name); 1582 name = NULL; 1583 if (log_ref_ver) { 1584 iput(dir); 1585 dir = NULL; 1586 } 1587 } 1588 1589 /* 1590 * Before we overwrite the inode reference item in the subvolume tree 1591 * with the item from the log tree, we must unlink all names from the 1592 * parent directory that are in the subvolume's tree inode reference 1593 * item, otherwise we end up with an inconsistent subvolume tree where 1594 * dir index entries exist for a name but there is no inode reference 1595 * item with the same name. 1596 */ 1597 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1598 key); 1599 if (ret) 1600 goto out; 1601 1602 /* finally write the back reference in the inode */ 1603 ret = overwrite_item(trans, root, path, eb, slot, key); 1604 out: 1605 btrfs_release_path(path); 1606 kfree(name); 1607 iput(dir); 1608 iput(inode); 1609 return ret; 1610 } 1611 1612 static int count_inode_extrefs(struct btrfs_root *root, 1613 struct btrfs_inode *inode, struct btrfs_path *path) 1614 { 1615 int ret = 0; 1616 int name_len; 1617 unsigned int nlink = 0; 1618 u32 item_size; 1619 u32 cur_offset = 0; 1620 u64 inode_objectid = btrfs_ino(inode); 1621 u64 offset = 0; 1622 unsigned long ptr; 1623 struct btrfs_inode_extref *extref; 1624 struct extent_buffer *leaf; 1625 1626 while (1) { 1627 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1628 &extref, &offset); 1629 if (ret) 1630 break; 1631 1632 leaf = path->nodes[0]; 1633 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1634 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1635 cur_offset = 0; 1636 1637 while (cur_offset < item_size) { 1638 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1639 name_len = btrfs_inode_extref_name_len(leaf, extref); 1640 1641 nlink++; 1642 1643 cur_offset += name_len + sizeof(*extref); 1644 } 1645 1646 offset++; 1647 btrfs_release_path(path); 1648 } 1649 btrfs_release_path(path); 1650 1651 if (ret < 0 && ret != -ENOENT) 1652 return ret; 1653 return nlink; 1654 } 1655 1656 static int count_inode_refs(struct btrfs_root *root, 1657 struct btrfs_inode *inode, struct btrfs_path *path) 1658 { 1659 int ret; 1660 struct btrfs_key key; 1661 unsigned int nlink = 0; 1662 unsigned long ptr; 1663 unsigned long ptr_end; 1664 int name_len; 1665 u64 ino = btrfs_ino(inode); 1666 1667 key.objectid = ino; 1668 key.type = BTRFS_INODE_REF_KEY; 1669 key.offset = (u64)-1; 1670 1671 while (1) { 1672 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1673 if (ret < 0) 1674 break; 1675 if (ret > 0) { 1676 if (path->slots[0] == 0) 1677 break; 1678 path->slots[0]--; 1679 } 1680 process_slot: 1681 btrfs_item_key_to_cpu(path->nodes[0], &key, 1682 path->slots[0]); 1683 if (key.objectid != ino || 1684 key.type != BTRFS_INODE_REF_KEY) 1685 break; 1686 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1687 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1688 path->slots[0]); 1689 while (ptr < ptr_end) { 1690 struct btrfs_inode_ref *ref; 1691 1692 ref = (struct btrfs_inode_ref *)ptr; 1693 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1694 ref); 1695 ptr = (unsigned long)(ref + 1) + name_len; 1696 nlink++; 1697 } 1698 1699 if (key.offset == 0) 1700 break; 1701 if (path->slots[0] > 0) { 1702 path->slots[0]--; 1703 goto process_slot; 1704 } 1705 key.offset--; 1706 btrfs_release_path(path); 1707 } 1708 btrfs_release_path(path); 1709 1710 return nlink; 1711 } 1712 1713 /* 1714 * There are a few corners where the link count of the file can't 1715 * be properly maintained during replay. So, instead of adding 1716 * lots of complexity to the log code, we just scan the backrefs 1717 * for any file that has been through replay. 1718 * 1719 * The scan will update the link count on the inode to reflect the 1720 * number of back refs found. If it goes down to zero, the iput 1721 * will free the inode. 1722 */ 1723 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1724 struct btrfs_root *root, 1725 struct inode *inode) 1726 { 1727 struct btrfs_path *path; 1728 int ret; 1729 u64 nlink = 0; 1730 u64 ino = btrfs_ino(BTRFS_I(inode)); 1731 1732 path = btrfs_alloc_path(); 1733 if (!path) 1734 return -ENOMEM; 1735 1736 ret = count_inode_refs(root, BTRFS_I(inode), path); 1737 if (ret < 0) 1738 goto out; 1739 1740 nlink = ret; 1741 1742 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1743 if (ret < 0) 1744 goto out; 1745 1746 nlink += ret; 1747 1748 ret = 0; 1749 1750 if (nlink != inode->i_nlink) { 1751 set_nlink(inode, nlink); 1752 btrfs_update_inode(trans, root, BTRFS_I(inode)); 1753 } 1754 BTRFS_I(inode)->index_cnt = (u64)-1; 1755 1756 if (inode->i_nlink == 0) { 1757 if (S_ISDIR(inode->i_mode)) { 1758 ret = replay_dir_deletes(trans, root, NULL, path, 1759 ino, 1); 1760 if (ret) 1761 goto out; 1762 } 1763 ret = btrfs_insert_orphan_item(trans, root, ino); 1764 if (ret == -EEXIST) 1765 ret = 0; 1766 } 1767 1768 out: 1769 btrfs_free_path(path); 1770 return ret; 1771 } 1772 1773 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1774 struct btrfs_root *root, 1775 struct btrfs_path *path) 1776 { 1777 int ret; 1778 struct btrfs_key key; 1779 struct inode *inode; 1780 1781 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1782 key.type = BTRFS_ORPHAN_ITEM_KEY; 1783 key.offset = (u64)-1; 1784 while (1) { 1785 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1786 if (ret < 0) 1787 break; 1788 1789 if (ret == 1) { 1790 if (path->slots[0] == 0) 1791 break; 1792 path->slots[0]--; 1793 } 1794 1795 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1796 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1797 key.type != BTRFS_ORPHAN_ITEM_KEY) 1798 break; 1799 1800 ret = btrfs_del_item(trans, root, path); 1801 if (ret) 1802 goto out; 1803 1804 btrfs_release_path(path); 1805 inode = read_one_inode(root, key.offset); 1806 if (!inode) 1807 return -EIO; 1808 1809 ret = fixup_inode_link_count(trans, root, inode); 1810 iput(inode); 1811 if (ret) 1812 goto out; 1813 1814 /* 1815 * fixup on a directory may create new entries, 1816 * make sure we always look for the highset possible 1817 * offset 1818 */ 1819 key.offset = (u64)-1; 1820 } 1821 ret = 0; 1822 out: 1823 btrfs_release_path(path); 1824 return ret; 1825 } 1826 1827 1828 /* 1829 * record a given inode in the fixup dir so we can check its link 1830 * count when replay is done. The link count is incremented here 1831 * so the inode won't go away until we check it 1832 */ 1833 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1834 struct btrfs_root *root, 1835 struct btrfs_path *path, 1836 u64 objectid) 1837 { 1838 struct btrfs_key key; 1839 int ret = 0; 1840 struct inode *inode; 1841 1842 inode = read_one_inode(root, objectid); 1843 if (!inode) 1844 return -EIO; 1845 1846 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1847 key.type = BTRFS_ORPHAN_ITEM_KEY; 1848 key.offset = objectid; 1849 1850 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1851 1852 btrfs_release_path(path); 1853 if (ret == 0) { 1854 if (!inode->i_nlink) 1855 set_nlink(inode, 1); 1856 else 1857 inc_nlink(inode); 1858 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1859 } else if (ret == -EEXIST) { 1860 ret = 0; 1861 } else { 1862 BUG(); /* Logic Error */ 1863 } 1864 iput(inode); 1865 1866 return ret; 1867 } 1868 1869 /* 1870 * when replaying the log for a directory, we only insert names 1871 * for inodes that actually exist. This means an fsync on a directory 1872 * does not implicitly fsync all the new files in it 1873 */ 1874 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1875 struct btrfs_root *root, 1876 u64 dirid, u64 index, 1877 char *name, int name_len, 1878 struct btrfs_key *location) 1879 { 1880 struct inode *inode; 1881 struct inode *dir; 1882 int ret; 1883 1884 inode = read_one_inode(root, location->objectid); 1885 if (!inode) 1886 return -ENOENT; 1887 1888 dir = read_one_inode(root, dirid); 1889 if (!dir) { 1890 iput(inode); 1891 return -EIO; 1892 } 1893 1894 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1895 name_len, 1, index); 1896 1897 /* FIXME, put inode into FIXUP list */ 1898 1899 iput(inode); 1900 iput(dir); 1901 return ret; 1902 } 1903 1904 /* 1905 * take a single entry in a log directory item and replay it into 1906 * the subvolume. 1907 * 1908 * if a conflicting item exists in the subdirectory already, 1909 * the inode it points to is unlinked and put into the link count 1910 * fix up tree. 1911 * 1912 * If a name from the log points to a file or directory that does 1913 * not exist in the FS, it is skipped. fsyncs on directories 1914 * do not force down inodes inside that directory, just changes to the 1915 * names or unlinks in a directory. 1916 * 1917 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1918 * non-existing inode) and 1 if the name was replayed. 1919 */ 1920 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1921 struct btrfs_root *root, 1922 struct btrfs_path *path, 1923 struct extent_buffer *eb, 1924 struct btrfs_dir_item *di, 1925 struct btrfs_key *key) 1926 { 1927 char *name; 1928 int name_len; 1929 struct btrfs_dir_item *dst_di; 1930 struct btrfs_key found_key; 1931 struct btrfs_key log_key; 1932 struct inode *dir; 1933 u8 log_type; 1934 int exists; 1935 int ret = 0; 1936 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1937 bool name_added = false; 1938 1939 dir = read_one_inode(root, key->objectid); 1940 if (!dir) 1941 return -EIO; 1942 1943 name_len = btrfs_dir_name_len(eb, di); 1944 name = kmalloc(name_len, GFP_NOFS); 1945 if (!name) { 1946 ret = -ENOMEM; 1947 goto out; 1948 } 1949 1950 log_type = btrfs_dir_type(eb, di); 1951 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1952 name_len); 1953 1954 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1955 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1956 if (exists == 0) 1957 exists = 1; 1958 else 1959 exists = 0; 1960 btrfs_release_path(path); 1961 1962 if (key->type == BTRFS_DIR_ITEM_KEY) { 1963 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1964 name, name_len, 1); 1965 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1966 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1967 key->objectid, 1968 key->offset, name, 1969 name_len, 1); 1970 } else { 1971 /* Corruption */ 1972 ret = -EINVAL; 1973 goto out; 1974 } 1975 if (IS_ERR_OR_NULL(dst_di)) { 1976 /* we need a sequence number to insert, so we only 1977 * do inserts for the BTRFS_DIR_INDEX_KEY types 1978 */ 1979 if (key->type != BTRFS_DIR_INDEX_KEY) 1980 goto out; 1981 goto insert; 1982 } 1983 1984 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1985 /* the existing item matches the logged item */ 1986 if (found_key.objectid == log_key.objectid && 1987 found_key.type == log_key.type && 1988 found_key.offset == log_key.offset && 1989 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1990 update_size = false; 1991 goto out; 1992 } 1993 1994 /* 1995 * don't drop the conflicting directory entry if the inode 1996 * for the new entry doesn't exist 1997 */ 1998 if (!exists) 1999 goto out; 2000 2001 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); 2002 if (ret) 2003 goto out; 2004 2005 if (key->type == BTRFS_DIR_INDEX_KEY) 2006 goto insert; 2007 out: 2008 btrfs_release_path(path); 2009 if (!ret && update_size) { 2010 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 2011 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 2012 } 2013 kfree(name); 2014 iput(dir); 2015 if (!ret && name_added) 2016 ret = 1; 2017 return ret; 2018 2019 insert: 2020 /* 2021 * Check if the inode reference exists in the log for the given name, 2022 * inode and parent inode 2023 */ 2024 found_key.objectid = log_key.objectid; 2025 found_key.type = BTRFS_INODE_REF_KEY; 2026 found_key.offset = key->objectid; 2027 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len); 2028 if (ret < 0) { 2029 goto out; 2030 } else if (ret) { 2031 /* The dentry will be added later. */ 2032 ret = 0; 2033 update_size = false; 2034 goto out; 2035 } 2036 2037 found_key.objectid = log_key.objectid; 2038 found_key.type = BTRFS_INODE_EXTREF_KEY; 2039 found_key.offset = key->objectid; 2040 ret = backref_in_log(root->log_root, &found_key, key->objectid, name, 2041 name_len); 2042 if (ret < 0) { 2043 goto out; 2044 } else if (ret) { 2045 /* The dentry will be added later. */ 2046 ret = 0; 2047 update_size = false; 2048 goto out; 2049 } 2050 btrfs_release_path(path); 2051 ret = insert_one_name(trans, root, key->objectid, key->offset, 2052 name, name_len, &log_key); 2053 if (ret && ret != -ENOENT && ret != -EEXIST) 2054 goto out; 2055 if (!ret) 2056 name_added = true; 2057 update_size = false; 2058 ret = 0; 2059 goto out; 2060 } 2061 2062 /* 2063 * find all the names in a directory item and reconcile them into 2064 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 2065 * one name in a directory item, but the same code gets used for 2066 * both directory index types 2067 */ 2068 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2069 struct btrfs_root *root, 2070 struct btrfs_path *path, 2071 struct extent_buffer *eb, int slot, 2072 struct btrfs_key *key) 2073 { 2074 int ret = 0; 2075 u32 item_size = btrfs_item_size_nr(eb, slot); 2076 struct btrfs_dir_item *di; 2077 int name_len; 2078 unsigned long ptr; 2079 unsigned long ptr_end; 2080 struct btrfs_path *fixup_path = NULL; 2081 2082 ptr = btrfs_item_ptr_offset(eb, slot); 2083 ptr_end = ptr + item_size; 2084 while (ptr < ptr_end) { 2085 di = (struct btrfs_dir_item *)ptr; 2086 name_len = btrfs_dir_name_len(eb, di); 2087 ret = replay_one_name(trans, root, path, eb, di, key); 2088 if (ret < 0) 2089 break; 2090 ptr = (unsigned long)(di + 1); 2091 ptr += name_len; 2092 2093 /* 2094 * If this entry refers to a non-directory (directories can not 2095 * have a link count > 1) and it was added in the transaction 2096 * that was not committed, make sure we fixup the link count of 2097 * the inode it the entry points to. Otherwise something like 2098 * the following would result in a directory pointing to an 2099 * inode with a wrong link that does not account for this dir 2100 * entry: 2101 * 2102 * mkdir testdir 2103 * touch testdir/foo 2104 * touch testdir/bar 2105 * sync 2106 * 2107 * ln testdir/bar testdir/bar_link 2108 * ln testdir/foo testdir/foo_link 2109 * xfs_io -c "fsync" testdir/bar 2110 * 2111 * <power failure> 2112 * 2113 * mount fs, log replay happens 2114 * 2115 * File foo would remain with a link count of 1 when it has two 2116 * entries pointing to it in the directory testdir. This would 2117 * make it impossible to ever delete the parent directory has 2118 * it would result in stale dentries that can never be deleted. 2119 */ 2120 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2121 struct btrfs_key di_key; 2122 2123 if (!fixup_path) { 2124 fixup_path = btrfs_alloc_path(); 2125 if (!fixup_path) { 2126 ret = -ENOMEM; 2127 break; 2128 } 2129 } 2130 2131 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2132 ret = link_to_fixup_dir(trans, root, fixup_path, 2133 di_key.objectid); 2134 if (ret) 2135 break; 2136 } 2137 ret = 0; 2138 } 2139 btrfs_free_path(fixup_path); 2140 return ret; 2141 } 2142 2143 /* 2144 * directory replay has two parts. There are the standard directory 2145 * items in the log copied from the subvolume, and range items 2146 * created in the log while the subvolume was logged. 2147 * 2148 * The range items tell us which parts of the key space the log 2149 * is authoritative for. During replay, if a key in the subvolume 2150 * directory is in a logged range item, but not actually in the log 2151 * that means it was deleted from the directory before the fsync 2152 * and should be removed. 2153 */ 2154 static noinline int find_dir_range(struct btrfs_root *root, 2155 struct btrfs_path *path, 2156 u64 dirid, int key_type, 2157 u64 *start_ret, u64 *end_ret) 2158 { 2159 struct btrfs_key key; 2160 u64 found_end; 2161 struct btrfs_dir_log_item *item; 2162 int ret; 2163 int nritems; 2164 2165 if (*start_ret == (u64)-1) 2166 return 1; 2167 2168 key.objectid = dirid; 2169 key.type = key_type; 2170 key.offset = *start_ret; 2171 2172 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2173 if (ret < 0) 2174 goto out; 2175 if (ret > 0) { 2176 if (path->slots[0] == 0) 2177 goto out; 2178 path->slots[0]--; 2179 } 2180 if (ret != 0) 2181 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2182 2183 if (key.type != key_type || key.objectid != dirid) { 2184 ret = 1; 2185 goto next; 2186 } 2187 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2188 struct btrfs_dir_log_item); 2189 found_end = btrfs_dir_log_end(path->nodes[0], item); 2190 2191 if (*start_ret >= key.offset && *start_ret <= found_end) { 2192 ret = 0; 2193 *start_ret = key.offset; 2194 *end_ret = found_end; 2195 goto out; 2196 } 2197 ret = 1; 2198 next: 2199 /* check the next slot in the tree to see if it is a valid item */ 2200 nritems = btrfs_header_nritems(path->nodes[0]); 2201 path->slots[0]++; 2202 if (path->slots[0] >= nritems) { 2203 ret = btrfs_next_leaf(root, path); 2204 if (ret) 2205 goto out; 2206 } 2207 2208 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2209 2210 if (key.type != key_type || key.objectid != dirid) { 2211 ret = 1; 2212 goto out; 2213 } 2214 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2215 struct btrfs_dir_log_item); 2216 found_end = btrfs_dir_log_end(path->nodes[0], item); 2217 *start_ret = key.offset; 2218 *end_ret = found_end; 2219 ret = 0; 2220 out: 2221 btrfs_release_path(path); 2222 return ret; 2223 } 2224 2225 /* 2226 * this looks for a given directory item in the log. If the directory 2227 * item is not in the log, the item is removed and the inode it points 2228 * to is unlinked 2229 */ 2230 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2231 struct btrfs_root *root, 2232 struct btrfs_root *log, 2233 struct btrfs_path *path, 2234 struct btrfs_path *log_path, 2235 struct inode *dir, 2236 struct btrfs_key *dir_key) 2237 { 2238 int ret; 2239 struct extent_buffer *eb; 2240 int slot; 2241 u32 item_size; 2242 struct btrfs_dir_item *di; 2243 struct btrfs_dir_item *log_di; 2244 int name_len; 2245 unsigned long ptr; 2246 unsigned long ptr_end; 2247 char *name; 2248 struct inode *inode; 2249 struct btrfs_key location; 2250 2251 again: 2252 eb = path->nodes[0]; 2253 slot = path->slots[0]; 2254 item_size = btrfs_item_size_nr(eb, slot); 2255 ptr = btrfs_item_ptr_offset(eb, slot); 2256 ptr_end = ptr + item_size; 2257 while (ptr < ptr_end) { 2258 di = (struct btrfs_dir_item *)ptr; 2259 name_len = btrfs_dir_name_len(eb, di); 2260 name = kmalloc(name_len, GFP_NOFS); 2261 if (!name) { 2262 ret = -ENOMEM; 2263 goto out; 2264 } 2265 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2266 name_len); 2267 log_di = NULL; 2268 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2269 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2270 dir_key->objectid, 2271 name, name_len, 0); 2272 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2273 log_di = btrfs_lookup_dir_index_item(trans, log, 2274 log_path, 2275 dir_key->objectid, 2276 dir_key->offset, 2277 name, name_len, 0); 2278 } 2279 if (!log_di || log_di == ERR_PTR(-ENOENT)) { 2280 btrfs_dir_item_key_to_cpu(eb, di, &location); 2281 btrfs_release_path(path); 2282 btrfs_release_path(log_path); 2283 inode = read_one_inode(root, location.objectid); 2284 if (!inode) { 2285 kfree(name); 2286 return -EIO; 2287 } 2288 2289 ret = link_to_fixup_dir(trans, root, 2290 path, location.objectid); 2291 if (ret) { 2292 kfree(name); 2293 iput(inode); 2294 goto out; 2295 } 2296 2297 inc_nlink(inode); 2298 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 2299 BTRFS_I(inode), name, name_len); 2300 if (!ret) 2301 ret = btrfs_run_delayed_items(trans); 2302 kfree(name); 2303 iput(inode); 2304 if (ret) 2305 goto out; 2306 2307 /* there might still be more names under this key 2308 * check and repeat if required 2309 */ 2310 ret = btrfs_search_slot(NULL, root, dir_key, path, 2311 0, 0); 2312 if (ret == 0) 2313 goto again; 2314 ret = 0; 2315 goto out; 2316 } else if (IS_ERR(log_di)) { 2317 kfree(name); 2318 return PTR_ERR(log_di); 2319 } 2320 btrfs_release_path(log_path); 2321 kfree(name); 2322 2323 ptr = (unsigned long)(di + 1); 2324 ptr += name_len; 2325 } 2326 ret = 0; 2327 out: 2328 btrfs_release_path(path); 2329 btrfs_release_path(log_path); 2330 return ret; 2331 } 2332 2333 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2334 struct btrfs_root *root, 2335 struct btrfs_root *log, 2336 struct btrfs_path *path, 2337 const u64 ino) 2338 { 2339 struct btrfs_key search_key; 2340 struct btrfs_path *log_path; 2341 int i; 2342 int nritems; 2343 int ret; 2344 2345 log_path = btrfs_alloc_path(); 2346 if (!log_path) 2347 return -ENOMEM; 2348 2349 search_key.objectid = ino; 2350 search_key.type = BTRFS_XATTR_ITEM_KEY; 2351 search_key.offset = 0; 2352 again: 2353 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2354 if (ret < 0) 2355 goto out; 2356 process_leaf: 2357 nritems = btrfs_header_nritems(path->nodes[0]); 2358 for (i = path->slots[0]; i < nritems; i++) { 2359 struct btrfs_key key; 2360 struct btrfs_dir_item *di; 2361 struct btrfs_dir_item *log_di; 2362 u32 total_size; 2363 u32 cur; 2364 2365 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2366 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2367 ret = 0; 2368 goto out; 2369 } 2370 2371 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2372 total_size = btrfs_item_size_nr(path->nodes[0], i); 2373 cur = 0; 2374 while (cur < total_size) { 2375 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2376 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2377 u32 this_len = sizeof(*di) + name_len + data_len; 2378 char *name; 2379 2380 name = kmalloc(name_len, GFP_NOFS); 2381 if (!name) { 2382 ret = -ENOMEM; 2383 goto out; 2384 } 2385 read_extent_buffer(path->nodes[0], name, 2386 (unsigned long)(di + 1), name_len); 2387 2388 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2389 name, name_len, 0); 2390 btrfs_release_path(log_path); 2391 if (!log_di) { 2392 /* Doesn't exist in log tree, so delete it. */ 2393 btrfs_release_path(path); 2394 di = btrfs_lookup_xattr(trans, root, path, ino, 2395 name, name_len, -1); 2396 kfree(name); 2397 if (IS_ERR(di)) { 2398 ret = PTR_ERR(di); 2399 goto out; 2400 } 2401 ASSERT(di); 2402 ret = btrfs_delete_one_dir_name(trans, root, 2403 path, di); 2404 if (ret) 2405 goto out; 2406 btrfs_release_path(path); 2407 search_key = key; 2408 goto again; 2409 } 2410 kfree(name); 2411 if (IS_ERR(log_di)) { 2412 ret = PTR_ERR(log_di); 2413 goto out; 2414 } 2415 cur += this_len; 2416 di = (struct btrfs_dir_item *)((char *)di + this_len); 2417 } 2418 } 2419 ret = btrfs_next_leaf(root, path); 2420 if (ret > 0) 2421 ret = 0; 2422 else if (ret == 0) 2423 goto process_leaf; 2424 out: 2425 btrfs_free_path(log_path); 2426 btrfs_release_path(path); 2427 return ret; 2428 } 2429 2430 2431 /* 2432 * deletion replay happens before we copy any new directory items 2433 * out of the log or out of backreferences from inodes. It 2434 * scans the log to find ranges of keys that log is authoritative for, 2435 * and then scans the directory to find items in those ranges that are 2436 * not present in the log. 2437 * 2438 * Anything we don't find in the log is unlinked and removed from the 2439 * directory. 2440 */ 2441 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2442 struct btrfs_root *root, 2443 struct btrfs_root *log, 2444 struct btrfs_path *path, 2445 u64 dirid, int del_all) 2446 { 2447 u64 range_start; 2448 u64 range_end; 2449 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2450 int ret = 0; 2451 struct btrfs_key dir_key; 2452 struct btrfs_key found_key; 2453 struct btrfs_path *log_path; 2454 struct inode *dir; 2455 2456 dir_key.objectid = dirid; 2457 dir_key.type = BTRFS_DIR_ITEM_KEY; 2458 log_path = btrfs_alloc_path(); 2459 if (!log_path) 2460 return -ENOMEM; 2461 2462 dir = read_one_inode(root, dirid); 2463 /* it isn't an error if the inode isn't there, that can happen 2464 * because we replay the deletes before we copy in the inode item 2465 * from the log 2466 */ 2467 if (!dir) { 2468 btrfs_free_path(log_path); 2469 return 0; 2470 } 2471 again: 2472 range_start = 0; 2473 range_end = 0; 2474 while (1) { 2475 if (del_all) 2476 range_end = (u64)-1; 2477 else { 2478 ret = find_dir_range(log, path, dirid, key_type, 2479 &range_start, &range_end); 2480 if (ret != 0) 2481 break; 2482 } 2483 2484 dir_key.offset = range_start; 2485 while (1) { 2486 int nritems; 2487 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2488 0, 0); 2489 if (ret < 0) 2490 goto out; 2491 2492 nritems = btrfs_header_nritems(path->nodes[0]); 2493 if (path->slots[0] >= nritems) { 2494 ret = btrfs_next_leaf(root, path); 2495 if (ret == 1) 2496 break; 2497 else if (ret < 0) 2498 goto out; 2499 } 2500 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2501 path->slots[0]); 2502 if (found_key.objectid != dirid || 2503 found_key.type != dir_key.type) 2504 goto next_type; 2505 2506 if (found_key.offset > range_end) 2507 break; 2508 2509 ret = check_item_in_log(trans, root, log, path, 2510 log_path, dir, 2511 &found_key); 2512 if (ret) 2513 goto out; 2514 if (found_key.offset == (u64)-1) 2515 break; 2516 dir_key.offset = found_key.offset + 1; 2517 } 2518 btrfs_release_path(path); 2519 if (range_end == (u64)-1) 2520 break; 2521 range_start = range_end + 1; 2522 } 2523 2524 next_type: 2525 ret = 0; 2526 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2527 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2528 dir_key.type = BTRFS_DIR_INDEX_KEY; 2529 btrfs_release_path(path); 2530 goto again; 2531 } 2532 out: 2533 btrfs_release_path(path); 2534 btrfs_free_path(log_path); 2535 iput(dir); 2536 return ret; 2537 } 2538 2539 /* 2540 * the process_func used to replay items from the log tree. This 2541 * gets called in two different stages. The first stage just looks 2542 * for inodes and makes sure they are all copied into the subvolume. 2543 * 2544 * The second stage copies all the other item types from the log into 2545 * the subvolume. The two stage approach is slower, but gets rid of 2546 * lots of complexity around inodes referencing other inodes that exist 2547 * only in the log (references come from either directory items or inode 2548 * back refs). 2549 */ 2550 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2551 struct walk_control *wc, u64 gen, int level) 2552 { 2553 int nritems; 2554 struct btrfs_path *path; 2555 struct btrfs_root *root = wc->replay_dest; 2556 struct btrfs_key key; 2557 int i; 2558 int ret; 2559 2560 ret = btrfs_read_buffer(eb, gen, level, NULL); 2561 if (ret) 2562 return ret; 2563 2564 level = btrfs_header_level(eb); 2565 2566 if (level != 0) 2567 return 0; 2568 2569 path = btrfs_alloc_path(); 2570 if (!path) 2571 return -ENOMEM; 2572 2573 nritems = btrfs_header_nritems(eb); 2574 for (i = 0; i < nritems; i++) { 2575 btrfs_item_key_to_cpu(eb, &key, i); 2576 2577 /* inode keys are done during the first stage */ 2578 if (key.type == BTRFS_INODE_ITEM_KEY && 2579 wc->stage == LOG_WALK_REPLAY_INODES) { 2580 struct btrfs_inode_item *inode_item; 2581 u32 mode; 2582 2583 inode_item = btrfs_item_ptr(eb, i, 2584 struct btrfs_inode_item); 2585 /* 2586 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2587 * and never got linked before the fsync, skip it, as 2588 * replaying it is pointless since it would be deleted 2589 * later. We skip logging tmpfiles, but it's always 2590 * possible we are replaying a log created with a kernel 2591 * that used to log tmpfiles. 2592 */ 2593 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2594 wc->ignore_cur_inode = true; 2595 continue; 2596 } else { 2597 wc->ignore_cur_inode = false; 2598 } 2599 ret = replay_xattr_deletes(wc->trans, root, log, 2600 path, key.objectid); 2601 if (ret) 2602 break; 2603 mode = btrfs_inode_mode(eb, inode_item); 2604 if (S_ISDIR(mode)) { 2605 ret = replay_dir_deletes(wc->trans, 2606 root, log, path, key.objectid, 0); 2607 if (ret) 2608 break; 2609 } 2610 ret = overwrite_item(wc->trans, root, path, 2611 eb, i, &key); 2612 if (ret) 2613 break; 2614 2615 /* 2616 * Before replaying extents, truncate the inode to its 2617 * size. We need to do it now and not after log replay 2618 * because before an fsync we can have prealloc extents 2619 * added beyond the inode's i_size. If we did it after, 2620 * through orphan cleanup for example, we would drop 2621 * those prealloc extents just after replaying them. 2622 */ 2623 if (S_ISREG(mode)) { 2624 struct btrfs_drop_extents_args drop_args = { 0 }; 2625 struct inode *inode; 2626 u64 from; 2627 2628 inode = read_one_inode(root, key.objectid); 2629 if (!inode) { 2630 ret = -EIO; 2631 break; 2632 } 2633 from = ALIGN(i_size_read(inode), 2634 root->fs_info->sectorsize); 2635 drop_args.start = from; 2636 drop_args.end = (u64)-1; 2637 drop_args.drop_cache = true; 2638 ret = btrfs_drop_extents(wc->trans, root, 2639 BTRFS_I(inode), 2640 &drop_args); 2641 if (!ret) { 2642 inode_sub_bytes(inode, 2643 drop_args.bytes_found); 2644 /* Update the inode's nbytes. */ 2645 ret = btrfs_update_inode(wc->trans, 2646 root, BTRFS_I(inode)); 2647 } 2648 iput(inode); 2649 if (ret) 2650 break; 2651 } 2652 2653 ret = link_to_fixup_dir(wc->trans, root, 2654 path, key.objectid); 2655 if (ret) 2656 break; 2657 } 2658 2659 if (wc->ignore_cur_inode) 2660 continue; 2661 2662 if (key.type == BTRFS_DIR_INDEX_KEY && 2663 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2664 ret = replay_one_dir_item(wc->trans, root, path, 2665 eb, i, &key); 2666 if (ret) 2667 break; 2668 } 2669 2670 if (wc->stage < LOG_WALK_REPLAY_ALL) 2671 continue; 2672 2673 /* these keys are simply copied */ 2674 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2675 ret = overwrite_item(wc->trans, root, path, 2676 eb, i, &key); 2677 if (ret) 2678 break; 2679 } else if (key.type == BTRFS_INODE_REF_KEY || 2680 key.type == BTRFS_INODE_EXTREF_KEY) { 2681 ret = add_inode_ref(wc->trans, root, log, path, 2682 eb, i, &key); 2683 if (ret && ret != -ENOENT) 2684 break; 2685 ret = 0; 2686 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2687 ret = replay_one_extent(wc->trans, root, path, 2688 eb, i, &key); 2689 if (ret) 2690 break; 2691 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2692 ret = replay_one_dir_item(wc->trans, root, path, 2693 eb, i, &key); 2694 if (ret) 2695 break; 2696 } 2697 } 2698 btrfs_free_path(path); 2699 return ret; 2700 } 2701 2702 /* 2703 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2704 */ 2705 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2706 { 2707 struct btrfs_block_group *cache; 2708 2709 cache = btrfs_lookup_block_group(fs_info, start); 2710 if (!cache) { 2711 btrfs_err(fs_info, "unable to find block group for %llu", start); 2712 return; 2713 } 2714 2715 spin_lock(&cache->space_info->lock); 2716 spin_lock(&cache->lock); 2717 cache->reserved -= fs_info->nodesize; 2718 cache->space_info->bytes_reserved -= fs_info->nodesize; 2719 spin_unlock(&cache->lock); 2720 spin_unlock(&cache->space_info->lock); 2721 2722 btrfs_put_block_group(cache); 2723 } 2724 2725 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2726 struct btrfs_root *root, 2727 struct btrfs_path *path, int *level, 2728 struct walk_control *wc) 2729 { 2730 struct btrfs_fs_info *fs_info = root->fs_info; 2731 u64 bytenr; 2732 u64 ptr_gen; 2733 struct extent_buffer *next; 2734 struct extent_buffer *cur; 2735 u32 blocksize; 2736 int ret = 0; 2737 2738 while (*level > 0) { 2739 struct btrfs_key first_key; 2740 2741 cur = path->nodes[*level]; 2742 2743 WARN_ON(btrfs_header_level(cur) != *level); 2744 2745 if (path->slots[*level] >= 2746 btrfs_header_nritems(cur)) 2747 break; 2748 2749 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2750 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2751 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2752 blocksize = fs_info->nodesize; 2753 2754 next = btrfs_find_create_tree_block(fs_info, bytenr, 2755 btrfs_header_owner(cur), 2756 *level - 1); 2757 if (IS_ERR(next)) 2758 return PTR_ERR(next); 2759 2760 if (*level == 1) { 2761 ret = wc->process_func(root, next, wc, ptr_gen, 2762 *level - 1); 2763 if (ret) { 2764 free_extent_buffer(next); 2765 return ret; 2766 } 2767 2768 path->slots[*level]++; 2769 if (wc->free) { 2770 ret = btrfs_read_buffer(next, ptr_gen, 2771 *level - 1, &first_key); 2772 if (ret) { 2773 free_extent_buffer(next); 2774 return ret; 2775 } 2776 2777 if (trans) { 2778 btrfs_tree_lock(next); 2779 btrfs_clean_tree_block(next); 2780 btrfs_wait_tree_block_writeback(next); 2781 btrfs_tree_unlock(next); 2782 ret = btrfs_pin_reserved_extent(trans, 2783 bytenr, blocksize); 2784 if (ret) { 2785 free_extent_buffer(next); 2786 return ret; 2787 } 2788 btrfs_redirty_list_add( 2789 trans->transaction, next); 2790 } else { 2791 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2792 clear_extent_buffer_dirty(next); 2793 unaccount_log_buffer(fs_info, bytenr); 2794 } 2795 } 2796 free_extent_buffer(next); 2797 continue; 2798 } 2799 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2800 if (ret) { 2801 free_extent_buffer(next); 2802 return ret; 2803 } 2804 2805 if (path->nodes[*level-1]) 2806 free_extent_buffer(path->nodes[*level-1]); 2807 path->nodes[*level-1] = next; 2808 *level = btrfs_header_level(next); 2809 path->slots[*level] = 0; 2810 cond_resched(); 2811 } 2812 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2813 2814 cond_resched(); 2815 return 0; 2816 } 2817 2818 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2819 struct btrfs_root *root, 2820 struct btrfs_path *path, int *level, 2821 struct walk_control *wc) 2822 { 2823 struct btrfs_fs_info *fs_info = root->fs_info; 2824 int i; 2825 int slot; 2826 int ret; 2827 2828 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2829 slot = path->slots[i]; 2830 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2831 path->slots[i]++; 2832 *level = i; 2833 WARN_ON(*level == 0); 2834 return 0; 2835 } else { 2836 ret = wc->process_func(root, path->nodes[*level], wc, 2837 btrfs_header_generation(path->nodes[*level]), 2838 *level); 2839 if (ret) 2840 return ret; 2841 2842 if (wc->free) { 2843 struct extent_buffer *next; 2844 2845 next = path->nodes[*level]; 2846 2847 if (trans) { 2848 btrfs_tree_lock(next); 2849 btrfs_clean_tree_block(next); 2850 btrfs_wait_tree_block_writeback(next); 2851 btrfs_tree_unlock(next); 2852 ret = btrfs_pin_reserved_extent(trans, 2853 path->nodes[*level]->start, 2854 path->nodes[*level]->len); 2855 if (ret) 2856 return ret; 2857 } else { 2858 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2859 clear_extent_buffer_dirty(next); 2860 2861 unaccount_log_buffer(fs_info, 2862 path->nodes[*level]->start); 2863 } 2864 } 2865 free_extent_buffer(path->nodes[*level]); 2866 path->nodes[*level] = NULL; 2867 *level = i + 1; 2868 } 2869 } 2870 return 1; 2871 } 2872 2873 /* 2874 * drop the reference count on the tree rooted at 'snap'. This traverses 2875 * the tree freeing any blocks that have a ref count of zero after being 2876 * decremented. 2877 */ 2878 static int walk_log_tree(struct btrfs_trans_handle *trans, 2879 struct btrfs_root *log, struct walk_control *wc) 2880 { 2881 struct btrfs_fs_info *fs_info = log->fs_info; 2882 int ret = 0; 2883 int wret; 2884 int level; 2885 struct btrfs_path *path; 2886 int orig_level; 2887 2888 path = btrfs_alloc_path(); 2889 if (!path) 2890 return -ENOMEM; 2891 2892 level = btrfs_header_level(log->node); 2893 orig_level = level; 2894 path->nodes[level] = log->node; 2895 atomic_inc(&log->node->refs); 2896 path->slots[level] = 0; 2897 2898 while (1) { 2899 wret = walk_down_log_tree(trans, log, path, &level, wc); 2900 if (wret > 0) 2901 break; 2902 if (wret < 0) { 2903 ret = wret; 2904 goto out; 2905 } 2906 2907 wret = walk_up_log_tree(trans, log, path, &level, wc); 2908 if (wret > 0) 2909 break; 2910 if (wret < 0) { 2911 ret = wret; 2912 goto out; 2913 } 2914 } 2915 2916 /* was the root node processed? if not, catch it here */ 2917 if (path->nodes[orig_level]) { 2918 ret = wc->process_func(log, path->nodes[orig_level], wc, 2919 btrfs_header_generation(path->nodes[orig_level]), 2920 orig_level); 2921 if (ret) 2922 goto out; 2923 if (wc->free) { 2924 struct extent_buffer *next; 2925 2926 next = path->nodes[orig_level]; 2927 2928 if (trans) { 2929 btrfs_tree_lock(next); 2930 btrfs_clean_tree_block(next); 2931 btrfs_wait_tree_block_writeback(next); 2932 btrfs_tree_unlock(next); 2933 ret = btrfs_pin_reserved_extent(trans, 2934 next->start, next->len); 2935 if (ret) 2936 goto out; 2937 } else { 2938 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2939 clear_extent_buffer_dirty(next); 2940 unaccount_log_buffer(fs_info, next->start); 2941 } 2942 } 2943 } 2944 2945 out: 2946 btrfs_free_path(path); 2947 return ret; 2948 } 2949 2950 /* 2951 * helper function to update the item for a given subvolumes log root 2952 * in the tree of log roots 2953 */ 2954 static int update_log_root(struct btrfs_trans_handle *trans, 2955 struct btrfs_root *log, 2956 struct btrfs_root_item *root_item) 2957 { 2958 struct btrfs_fs_info *fs_info = log->fs_info; 2959 int ret; 2960 2961 if (log->log_transid == 1) { 2962 /* insert root item on the first sync */ 2963 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2964 &log->root_key, root_item); 2965 } else { 2966 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2967 &log->root_key, root_item); 2968 } 2969 return ret; 2970 } 2971 2972 static void wait_log_commit(struct btrfs_root *root, int transid) 2973 { 2974 DEFINE_WAIT(wait); 2975 int index = transid % 2; 2976 2977 /* 2978 * we only allow two pending log transactions at a time, 2979 * so we know that if ours is more than 2 older than the 2980 * current transaction, we're done 2981 */ 2982 for (;;) { 2983 prepare_to_wait(&root->log_commit_wait[index], 2984 &wait, TASK_UNINTERRUPTIBLE); 2985 2986 if (!(root->log_transid_committed < transid && 2987 atomic_read(&root->log_commit[index]))) 2988 break; 2989 2990 mutex_unlock(&root->log_mutex); 2991 schedule(); 2992 mutex_lock(&root->log_mutex); 2993 } 2994 finish_wait(&root->log_commit_wait[index], &wait); 2995 } 2996 2997 static void wait_for_writer(struct btrfs_root *root) 2998 { 2999 DEFINE_WAIT(wait); 3000 3001 for (;;) { 3002 prepare_to_wait(&root->log_writer_wait, &wait, 3003 TASK_UNINTERRUPTIBLE); 3004 if (!atomic_read(&root->log_writers)) 3005 break; 3006 3007 mutex_unlock(&root->log_mutex); 3008 schedule(); 3009 mutex_lock(&root->log_mutex); 3010 } 3011 finish_wait(&root->log_writer_wait, &wait); 3012 } 3013 3014 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 3015 struct btrfs_log_ctx *ctx) 3016 { 3017 if (!ctx) 3018 return; 3019 3020 mutex_lock(&root->log_mutex); 3021 list_del_init(&ctx->list); 3022 mutex_unlock(&root->log_mutex); 3023 } 3024 3025 /* 3026 * Invoked in log mutex context, or be sure there is no other task which 3027 * can access the list. 3028 */ 3029 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 3030 int index, int error) 3031 { 3032 struct btrfs_log_ctx *ctx; 3033 struct btrfs_log_ctx *safe; 3034 3035 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 3036 list_del_init(&ctx->list); 3037 ctx->log_ret = error; 3038 } 3039 3040 INIT_LIST_HEAD(&root->log_ctxs[index]); 3041 } 3042 3043 /* 3044 * btrfs_sync_log does sends a given tree log down to the disk and 3045 * updates the super blocks to record it. When this call is done, 3046 * you know that any inodes previously logged are safely on disk only 3047 * if it returns 0. 3048 * 3049 * Any other return value means you need to call btrfs_commit_transaction. 3050 * Some of the edge cases for fsyncing directories that have had unlinks 3051 * or renames done in the past mean that sometimes the only safe 3052 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3053 * that has happened. 3054 */ 3055 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3056 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3057 { 3058 int index1; 3059 int index2; 3060 int mark; 3061 int ret; 3062 struct btrfs_fs_info *fs_info = root->fs_info; 3063 struct btrfs_root *log = root->log_root; 3064 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3065 struct btrfs_root_item new_root_item; 3066 int log_transid = 0; 3067 struct btrfs_log_ctx root_log_ctx; 3068 struct blk_plug plug; 3069 u64 log_root_start; 3070 u64 log_root_level; 3071 3072 mutex_lock(&root->log_mutex); 3073 log_transid = ctx->log_transid; 3074 if (root->log_transid_committed >= log_transid) { 3075 mutex_unlock(&root->log_mutex); 3076 return ctx->log_ret; 3077 } 3078 3079 index1 = log_transid % 2; 3080 if (atomic_read(&root->log_commit[index1])) { 3081 wait_log_commit(root, log_transid); 3082 mutex_unlock(&root->log_mutex); 3083 return ctx->log_ret; 3084 } 3085 ASSERT(log_transid == root->log_transid); 3086 atomic_set(&root->log_commit[index1], 1); 3087 3088 /* wait for previous tree log sync to complete */ 3089 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3090 wait_log_commit(root, log_transid - 1); 3091 3092 while (1) { 3093 int batch = atomic_read(&root->log_batch); 3094 /* when we're on an ssd, just kick the log commit out */ 3095 if (!btrfs_test_opt(fs_info, SSD) && 3096 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3097 mutex_unlock(&root->log_mutex); 3098 schedule_timeout_uninterruptible(1); 3099 mutex_lock(&root->log_mutex); 3100 } 3101 wait_for_writer(root); 3102 if (batch == atomic_read(&root->log_batch)) 3103 break; 3104 } 3105 3106 /* bail out if we need to do a full commit */ 3107 if (btrfs_need_log_full_commit(trans)) { 3108 ret = -EAGAIN; 3109 mutex_unlock(&root->log_mutex); 3110 goto out; 3111 } 3112 3113 if (log_transid % 2 == 0) 3114 mark = EXTENT_DIRTY; 3115 else 3116 mark = EXTENT_NEW; 3117 3118 /* we start IO on all the marked extents here, but we don't actually 3119 * wait for them until later. 3120 */ 3121 blk_start_plug(&plug); 3122 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3123 /* 3124 * -EAGAIN happens when someone, e.g., a concurrent transaction 3125 * commit, writes a dirty extent in this tree-log commit. This 3126 * concurrent write will create a hole writing out the extents, 3127 * and we cannot proceed on a zoned filesystem, requiring 3128 * sequential writing. While we can bail out to a full commit 3129 * here, but we can continue hoping the concurrent writing fills 3130 * the hole. 3131 */ 3132 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) 3133 ret = 0; 3134 if (ret) { 3135 blk_finish_plug(&plug); 3136 btrfs_abort_transaction(trans, ret); 3137 btrfs_set_log_full_commit(trans); 3138 mutex_unlock(&root->log_mutex); 3139 goto out; 3140 } 3141 3142 /* 3143 * We _must_ update under the root->log_mutex in order to make sure we 3144 * have a consistent view of the log root we are trying to commit at 3145 * this moment. 3146 * 3147 * We _must_ copy this into a local copy, because we are not holding the 3148 * log_root_tree->log_mutex yet. This is important because when we 3149 * commit the log_root_tree we must have a consistent view of the 3150 * log_root_tree when we update the super block to point at the 3151 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3152 * with the commit and possibly point at the new block which we may not 3153 * have written out. 3154 */ 3155 btrfs_set_root_node(&log->root_item, log->node); 3156 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3157 3158 root->log_transid++; 3159 log->log_transid = root->log_transid; 3160 root->log_start_pid = 0; 3161 /* 3162 * IO has been started, blocks of the log tree have WRITTEN flag set 3163 * in their headers. new modifications of the log will be written to 3164 * new positions. so it's safe to allow log writers to go in. 3165 */ 3166 mutex_unlock(&root->log_mutex); 3167 3168 btrfs_init_log_ctx(&root_log_ctx, NULL); 3169 3170 mutex_lock(&log_root_tree->log_mutex); 3171 3172 if (btrfs_is_zoned(fs_info)) { 3173 if (!log_root_tree->node) { 3174 ret = btrfs_alloc_log_tree_node(trans, log_root_tree); 3175 if (ret) { 3176 mutex_unlock(&log_root_tree->log_mutex); 3177 goto out; 3178 } 3179 } 3180 } 3181 3182 index2 = log_root_tree->log_transid % 2; 3183 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3184 root_log_ctx.log_transid = log_root_tree->log_transid; 3185 3186 /* 3187 * Now we are safe to update the log_root_tree because we're under the 3188 * log_mutex, and we're a current writer so we're holding the commit 3189 * open until we drop the log_mutex. 3190 */ 3191 ret = update_log_root(trans, log, &new_root_item); 3192 if (ret) { 3193 if (!list_empty(&root_log_ctx.list)) 3194 list_del_init(&root_log_ctx.list); 3195 3196 blk_finish_plug(&plug); 3197 btrfs_set_log_full_commit(trans); 3198 3199 if (ret != -ENOSPC) { 3200 btrfs_abort_transaction(trans, ret); 3201 mutex_unlock(&log_root_tree->log_mutex); 3202 goto out; 3203 } 3204 btrfs_wait_tree_log_extents(log, mark); 3205 mutex_unlock(&log_root_tree->log_mutex); 3206 ret = -EAGAIN; 3207 goto out; 3208 } 3209 3210 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3211 blk_finish_plug(&plug); 3212 list_del_init(&root_log_ctx.list); 3213 mutex_unlock(&log_root_tree->log_mutex); 3214 ret = root_log_ctx.log_ret; 3215 goto out; 3216 } 3217 3218 index2 = root_log_ctx.log_transid % 2; 3219 if (atomic_read(&log_root_tree->log_commit[index2])) { 3220 blk_finish_plug(&plug); 3221 ret = btrfs_wait_tree_log_extents(log, mark); 3222 wait_log_commit(log_root_tree, 3223 root_log_ctx.log_transid); 3224 mutex_unlock(&log_root_tree->log_mutex); 3225 if (!ret) 3226 ret = root_log_ctx.log_ret; 3227 goto out; 3228 } 3229 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3230 atomic_set(&log_root_tree->log_commit[index2], 1); 3231 3232 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3233 wait_log_commit(log_root_tree, 3234 root_log_ctx.log_transid - 1); 3235 } 3236 3237 /* 3238 * now that we've moved on to the tree of log tree roots, 3239 * check the full commit flag again 3240 */ 3241 if (btrfs_need_log_full_commit(trans)) { 3242 blk_finish_plug(&plug); 3243 btrfs_wait_tree_log_extents(log, mark); 3244 mutex_unlock(&log_root_tree->log_mutex); 3245 ret = -EAGAIN; 3246 goto out_wake_log_root; 3247 } 3248 3249 ret = btrfs_write_marked_extents(fs_info, 3250 &log_root_tree->dirty_log_pages, 3251 EXTENT_DIRTY | EXTENT_NEW); 3252 blk_finish_plug(&plug); 3253 /* 3254 * As described above, -EAGAIN indicates a hole in the extents. We 3255 * cannot wait for these write outs since the waiting cause a 3256 * deadlock. Bail out to the full commit instead. 3257 */ 3258 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { 3259 btrfs_set_log_full_commit(trans); 3260 btrfs_wait_tree_log_extents(log, mark); 3261 mutex_unlock(&log_root_tree->log_mutex); 3262 goto out_wake_log_root; 3263 } else if (ret) { 3264 btrfs_set_log_full_commit(trans); 3265 btrfs_abort_transaction(trans, ret); 3266 mutex_unlock(&log_root_tree->log_mutex); 3267 goto out_wake_log_root; 3268 } 3269 ret = btrfs_wait_tree_log_extents(log, mark); 3270 if (!ret) 3271 ret = btrfs_wait_tree_log_extents(log_root_tree, 3272 EXTENT_NEW | EXTENT_DIRTY); 3273 if (ret) { 3274 btrfs_set_log_full_commit(trans); 3275 mutex_unlock(&log_root_tree->log_mutex); 3276 goto out_wake_log_root; 3277 } 3278 3279 log_root_start = log_root_tree->node->start; 3280 log_root_level = btrfs_header_level(log_root_tree->node); 3281 log_root_tree->log_transid++; 3282 mutex_unlock(&log_root_tree->log_mutex); 3283 3284 /* 3285 * Here we are guaranteed that nobody is going to write the superblock 3286 * for the current transaction before us and that neither we do write 3287 * our superblock before the previous transaction finishes its commit 3288 * and writes its superblock, because: 3289 * 3290 * 1) We are holding a handle on the current transaction, so no body 3291 * can commit it until we release the handle; 3292 * 3293 * 2) Before writing our superblock we acquire the tree_log_mutex, so 3294 * if the previous transaction is still committing, and hasn't yet 3295 * written its superblock, we wait for it to do it, because a 3296 * transaction commit acquires the tree_log_mutex when the commit 3297 * begins and releases it only after writing its superblock. 3298 */ 3299 mutex_lock(&fs_info->tree_log_mutex); 3300 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); 3301 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); 3302 ret = write_all_supers(fs_info, 1); 3303 mutex_unlock(&fs_info->tree_log_mutex); 3304 if (ret) { 3305 btrfs_set_log_full_commit(trans); 3306 btrfs_abort_transaction(trans, ret); 3307 goto out_wake_log_root; 3308 } 3309 3310 mutex_lock(&root->log_mutex); 3311 if (root->last_log_commit < log_transid) 3312 root->last_log_commit = log_transid; 3313 mutex_unlock(&root->log_mutex); 3314 3315 out_wake_log_root: 3316 mutex_lock(&log_root_tree->log_mutex); 3317 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3318 3319 log_root_tree->log_transid_committed++; 3320 atomic_set(&log_root_tree->log_commit[index2], 0); 3321 mutex_unlock(&log_root_tree->log_mutex); 3322 3323 /* 3324 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3325 * all the updates above are seen by the woken threads. It might not be 3326 * necessary, but proving that seems to be hard. 3327 */ 3328 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3329 out: 3330 mutex_lock(&root->log_mutex); 3331 btrfs_remove_all_log_ctxs(root, index1, ret); 3332 root->log_transid_committed++; 3333 atomic_set(&root->log_commit[index1], 0); 3334 mutex_unlock(&root->log_mutex); 3335 3336 /* 3337 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3338 * all the updates above are seen by the woken threads. It might not be 3339 * necessary, but proving that seems to be hard. 3340 */ 3341 cond_wake_up(&root->log_commit_wait[index1]); 3342 return ret; 3343 } 3344 3345 static void free_log_tree(struct btrfs_trans_handle *trans, 3346 struct btrfs_root *log) 3347 { 3348 int ret; 3349 struct walk_control wc = { 3350 .free = 1, 3351 .process_func = process_one_buffer 3352 }; 3353 3354 if (log->node) { 3355 ret = walk_log_tree(trans, log, &wc); 3356 if (ret) { 3357 if (trans) 3358 btrfs_abort_transaction(trans, ret); 3359 else 3360 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3361 } 3362 } 3363 3364 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3365 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3366 extent_io_tree_release(&log->log_csum_range); 3367 3368 if (trans && log->node) 3369 btrfs_redirty_list_add(trans->transaction, log->node); 3370 btrfs_put_root(log); 3371 } 3372 3373 /* 3374 * free all the extents used by the tree log. This should be called 3375 * at commit time of the full transaction 3376 */ 3377 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3378 { 3379 if (root->log_root) { 3380 free_log_tree(trans, root->log_root); 3381 root->log_root = NULL; 3382 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3383 } 3384 return 0; 3385 } 3386 3387 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3388 struct btrfs_fs_info *fs_info) 3389 { 3390 if (fs_info->log_root_tree) { 3391 free_log_tree(trans, fs_info->log_root_tree); 3392 fs_info->log_root_tree = NULL; 3393 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); 3394 } 3395 return 0; 3396 } 3397 3398 /* 3399 * Check if an inode was logged in the current transaction. We can't always rely 3400 * on an inode's logged_trans value, because it's an in-memory only field and 3401 * therefore not persisted. This means that its value is lost if the inode gets 3402 * evicted and loaded again from disk (in which case it has a value of 0, and 3403 * certainly it is smaller then any possible transaction ID), when that happens 3404 * the full_sync flag is set in the inode's runtime flags, so on that case we 3405 * assume eviction happened and ignore the logged_trans value, assuming the 3406 * worst case, that the inode was logged before in the current transaction. 3407 */ 3408 static bool inode_logged(struct btrfs_trans_handle *trans, 3409 struct btrfs_inode *inode) 3410 { 3411 if (inode->logged_trans == trans->transid) 3412 return true; 3413 3414 if (inode->last_trans == trans->transid && 3415 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && 3416 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags)) 3417 return true; 3418 3419 return false; 3420 } 3421 3422 /* 3423 * If both a file and directory are logged, and unlinks or renames are 3424 * mixed in, we have a few interesting corners: 3425 * 3426 * create file X in dir Y 3427 * link file X to X.link in dir Y 3428 * fsync file X 3429 * unlink file X but leave X.link 3430 * fsync dir Y 3431 * 3432 * After a crash we would expect only X.link to exist. But file X 3433 * didn't get fsync'd again so the log has back refs for X and X.link. 3434 * 3435 * We solve this by removing directory entries and inode backrefs from the 3436 * log when a file that was logged in the current transaction is 3437 * unlinked. Any later fsync will include the updated log entries, and 3438 * we'll be able to reconstruct the proper directory items from backrefs. 3439 * 3440 * This optimizations allows us to avoid relogging the entire inode 3441 * or the entire directory. 3442 */ 3443 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3444 struct btrfs_root *root, 3445 const char *name, int name_len, 3446 struct btrfs_inode *dir, u64 index) 3447 { 3448 struct btrfs_root *log; 3449 struct btrfs_dir_item *di; 3450 struct btrfs_path *path; 3451 int ret; 3452 int err = 0; 3453 u64 dir_ino = btrfs_ino(dir); 3454 3455 if (!inode_logged(trans, dir)) 3456 return 0; 3457 3458 ret = join_running_log_trans(root); 3459 if (ret) 3460 return 0; 3461 3462 mutex_lock(&dir->log_mutex); 3463 3464 log = root->log_root; 3465 path = btrfs_alloc_path(); 3466 if (!path) { 3467 err = -ENOMEM; 3468 goto out_unlock; 3469 } 3470 3471 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3472 name, name_len, -1); 3473 if (IS_ERR(di)) { 3474 err = PTR_ERR(di); 3475 goto fail; 3476 } 3477 if (di) { 3478 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3479 if (ret) { 3480 err = ret; 3481 goto fail; 3482 } 3483 } 3484 btrfs_release_path(path); 3485 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3486 index, name, name_len, -1); 3487 if (IS_ERR(di)) { 3488 err = PTR_ERR(di); 3489 goto fail; 3490 } 3491 if (di) { 3492 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3493 if (ret) { 3494 err = ret; 3495 goto fail; 3496 } 3497 } 3498 3499 /* 3500 * We do not need to update the size field of the directory's inode item 3501 * because on log replay we update the field to reflect all existing 3502 * entries in the directory (see overwrite_item()). 3503 */ 3504 fail: 3505 btrfs_free_path(path); 3506 out_unlock: 3507 mutex_unlock(&dir->log_mutex); 3508 if (err == -ENOSPC) { 3509 btrfs_set_log_full_commit(trans); 3510 err = 0; 3511 } else if (err < 0 && err != -ENOENT) { 3512 /* ENOENT can be returned if the entry hasn't been fsynced yet */ 3513 btrfs_abort_transaction(trans, err); 3514 } 3515 3516 btrfs_end_log_trans(root); 3517 3518 return err; 3519 } 3520 3521 /* see comments for btrfs_del_dir_entries_in_log */ 3522 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3523 struct btrfs_root *root, 3524 const char *name, int name_len, 3525 struct btrfs_inode *inode, u64 dirid) 3526 { 3527 struct btrfs_root *log; 3528 u64 index; 3529 int ret; 3530 3531 if (!inode_logged(trans, inode)) 3532 return 0; 3533 3534 ret = join_running_log_trans(root); 3535 if (ret) 3536 return 0; 3537 log = root->log_root; 3538 mutex_lock(&inode->log_mutex); 3539 3540 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3541 dirid, &index); 3542 mutex_unlock(&inode->log_mutex); 3543 if (ret == -ENOSPC) { 3544 btrfs_set_log_full_commit(trans); 3545 ret = 0; 3546 } else if (ret < 0 && ret != -ENOENT) 3547 btrfs_abort_transaction(trans, ret); 3548 btrfs_end_log_trans(root); 3549 3550 return ret; 3551 } 3552 3553 /* 3554 * creates a range item in the log for 'dirid'. first_offset and 3555 * last_offset tell us which parts of the key space the log should 3556 * be considered authoritative for. 3557 */ 3558 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3559 struct btrfs_root *log, 3560 struct btrfs_path *path, 3561 int key_type, u64 dirid, 3562 u64 first_offset, u64 last_offset) 3563 { 3564 int ret; 3565 struct btrfs_key key; 3566 struct btrfs_dir_log_item *item; 3567 3568 key.objectid = dirid; 3569 key.offset = first_offset; 3570 if (key_type == BTRFS_DIR_ITEM_KEY) 3571 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3572 else 3573 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3574 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3575 if (ret) 3576 return ret; 3577 3578 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3579 struct btrfs_dir_log_item); 3580 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3581 btrfs_mark_buffer_dirty(path->nodes[0]); 3582 btrfs_release_path(path); 3583 return 0; 3584 } 3585 3586 /* 3587 * log all the items included in the current transaction for a given 3588 * directory. This also creates the range items in the log tree required 3589 * to replay anything deleted before the fsync 3590 */ 3591 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3592 struct btrfs_root *root, struct btrfs_inode *inode, 3593 struct btrfs_path *path, 3594 struct btrfs_path *dst_path, int key_type, 3595 struct btrfs_log_ctx *ctx, 3596 u64 min_offset, u64 *last_offset_ret) 3597 { 3598 struct btrfs_key min_key; 3599 struct btrfs_root *log = root->log_root; 3600 struct extent_buffer *src; 3601 int err = 0; 3602 int ret; 3603 int i; 3604 int nritems; 3605 u64 first_offset = min_offset; 3606 u64 last_offset = (u64)-1; 3607 u64 ino = btrfs_ino(inode); 3608 3609 log = root->log_root; 3610 3611 min_key.objectid = ino; 3612 min_key.type = key_type; 3613 min_key.offset = min_offset; 3614 3615 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3616 3617 /* 3618 * we didn't find anything from this transaction, see if there 3619 * is anything at all 3620 */ 3621 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3622 min_key.objectid = ino; 3623 min_key.type = key_type; 3624 min_key.offset = (u64)-1; 3625 btrfs_release_path(path); 3626 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3627 if (ret < 0) { 3628 btrfs_release_path(path); 3629 return ret; 3630 } 3631 ret = btrfs_previous_item(root, path, ino, key_type); 3632 3633 /* if ret == 0 there are items for this type, 3634 * create a range to tell us the last key of this type. 3635 * otherwise, there are no items in this directory after 3636 * *min_offset, and we create a range to indicate that. 3637 */ 3638 if (ret == 0) { 3639 struct btrfs_key tmp; 3640 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3641 path->slots[0]); 3642 if (key_type == tmp.type) 3643 first_offset = max(min_offset, tmp.offset) + 1; 3644 } 3645 goto done; 3646 } 3647 3648 /* go backward to find any previous key */ 3649 ret = btrfs_previous_item(root, path, ino, key_type); 3650 if (ret == 0) { 3651 struct btrfs_key tmp; 3652 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3653 if (key_type == tmp.type) { 3654 first_offset = tmp.offset; 3655 ret = overwrite_item(trans, log, dst_path, 3656 path->nodes[0], path->slots[0], 3657 &tmp); 3658 if (ret) { 3659 err = ret; 3660 goto done; 3661 } 3662 } 3663 } 3664 btrfs_release_path(path); 3665 3666 /* 3667 * Find the first key from this transaction again. See the note for 3668 * log_new_dir_dentries, if we're logging a directory recursively we 3669 * won't be holding its i_mutex, which means we can modify the directory 3670 * while we're logging it. If we remove an entry between our first 3671 * search and this search we'll not find the key again and can just 3672 * bail. 3673 */ 3674 search: 3675 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3676 if (ret != 0) 3677 goto done; 3678 3679 /* 3680 * we have a block from this transaction, log every item in it 3681 * from our directory 3682 */ 3683 while (1) { 3684 struct btrfs_key tmp; 3685 src = path->nodes[0]; 3686 nritems = btrfs_header_nritems(src); 3687 for (i = path->slots[0]; i < nritems; i++) { 3688 struct btrfs_dir_item *di; 3689 3690 btrfs_item_key_to_cpu(src, &min_key, i); 3691 3692 if (min_key.objectid != ino || min_key.type != key_type) 3693 goto done; 3694 3695 if (need_resched()) { 3696 btrfs_release_path(path); 3697 cond_resched(); 3698 goto search; 3699 } 3700 3701 ret = overwrite_item(trans, log, dst_path, src, i, 3702 &min_key); 3703 if (ret) { 3704 err = ret; 3705 goto done; 3706 } 3707 3708 /* 3709 * We must make sure that when we log a directory entry, 3710 * the corresponding inode, after log replay, has a 3711 * matching link count. For example: 3712 * 3713 * touch foo 3714 * mkdir mydir 3715 * sync 3716 * ln foo mydir/bar 3717 * xfs_io -c "fsync" mydir 3718 * <crash> 3719 * <mount fs and log replay> 3720 * 3721 * Would result in a fsync log that when replayed, our 3722 * file inode would have a link count of 1, but we get 3723 * two directory entries pointing to the same inode. 3724 * After removing one of the names, it would not be 3725 * possible to remove the other name, which resulted 3726 * always in stale file handle errors, and would not 3727 * be possible to rmdir the parent directory, since 3728 * its i_size could never decrement to the value 3729 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3730 */ 3731 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3732 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3733 if (ctx && 3734 (btrfs_dir_transid(src, di) == trans->transid || 3735 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3736 tmp.type != BTRFS_ROOT_ITEM_KEY) 3737 ctx->log_new_dentries = true; 3738 } 3739 path->slots[0] = nritems; 3740 3741 /* 3742 * look ahead to the next item and see if it is also 3743 * from this directory and from this transaction 3744 */ 3745 ret = btrfs_next_leaf(root, path); 3746 if (ret) { 3747 if (ret == 1) 3748 last_offset = (u64)-1; 3749 else 3750 err = ret; 3751 goto done; 3752 } 3753 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3754 if (tmp.objectid != ino || tmp.type != key_type) { 3755 last_offset = (u64)-1; 3756 goto done; 3757 } 3758 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3759 ret = overwrite_item(trans, log, dst_path, 3760 path->nodes[0], path->slots[0], 3761 &tmp); 3762 if (ret) 3763 err = ret; 3764 else 3765 last_offset = tmp.offset; 3766 goto done; 3767 } 3768 } 3769 done: 3770 btrfs_release_path(path); 3771 btrfs_release_path(dst_path); 3772 3773 if (err == 0) { 3774 *last_offset_ret = last_offset; 3775 /* 3776 * insert the log range keys to indicate where the log 3777 * is valid 3778 */ 3779 ret = insert_dir_log_key(trans, log, path, key_type, 3780 ino, first_offset, last_offset); 3781 if (ret) 3782 err = ret; 3783 } 3784 return err; 3785 } 3786 3787 /* 3788 * logging directories is very similar to logging inodes, We find all the items 3789 * from the current transaction and write them to the log. 3790 * 3791 * The recovery code scans the directory in the subvolume, and if it finds a 3792 * key in the range logged that is not present in the log tree, then it means 3793 * that dir entry was unlinked during the transaction. 3794 * 3795 * In order for that scan to work, we must include one key smaller than 3796 * the smallest logged by this transaction and one key larger than the largest 3797 * key logged by this transaction. 3798 */ 3799 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3800 struct btrfs_root *root, struct btrfs_inode *inode, 3801 struct btrfs_path *path, 3802 struct btrfs_path *dst_path, 3803 struct btrfs_log_ctx *ctx) 3804 { 3805 u64 min_key; 3806 u64 max_key; 3807 int ret; 3808 int key_type = BTRFS_DIR_ITEM_KEY; 3809 3810 again: 3811 min_key = 0; 3812 max_key = 0; 3813 while (1) { 3814 ret = log_dir_items(trans, root, inode, path, dst_path, key_type, 3815 ctx, min_key, &max_key); 3816 if (ret) 3817 return ret; 3818 if (max_key == (u64)-1) 3819 break; 3820 min_key = max_key + 1; 3821 } 3822 3823 if (key_type == BTRFS_DIR_ITEM_KEY) { 3824 key_type = BTRFS_DIR_INDEX_KEY; 3825 goto again; 3826 } 3827 return 0; 3828 } 3829 3830 /* 3831 * a helper function to drop items from the log before we relog an 3832 * inode. max_key_type indicates the highest item type to remove. 3833 * This cannot be run for file data extents because it does not 3834 * free the extents they point to. 3835 */ 3836 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3837 struct btrfs_root *log, 3838 struct btrfs_path *path, 3839 u64 objectid, int max_key_type) 3840 { 3841 int ret; 3842 struct btrfs_key key; 3843 struct btrfs_key found_key; 3844 int start_slot; 3845 3846 key.objectid = objectid; 3847 key.type = max_key_type; 3848 key.offset = (u64)-1; 3849 3850 while (1) { 3851 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3852 BUG_ON(ret == 0); /* Logic error */ 3853 if (ret < 0) 3854 break; 3855 3856 if (path->slots[0] == 0) 3857 break; 3858 3859 path->slots[0]--; 3860 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3861 path->slots[0]); 3862 3863 if (found_key.objectid != objectid) 3864 break; 3865 3866 found_key.offset = 0; 3867 found_key.type = 0; 3868 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot); 3869 if (ret < 0) 3870 break; 3871 3872 ret = btrfs_del_items(trans, log, path, start_slot, 3873 path->slots[0] - start_slot + 1); 3874 /* 3875 * If start slot isn't 0 then we don't need to re-search, we've 3876 * found the last guy with the objectid in this tree. 3877 */ 3878 if (ret || start_slot != 0) 3879 break; 3880 btrfs_release_path(path); 3881 } 3882 btrfs_release_path(path); 3883 if (ret > 0) 3884 ret = 0; 3885 return ret; 3886 } 3887 3888 static void fill_inode_item(struct btrfs_trans_handle *trans, 3889 struct extent_buffer *leaf, 3890 struct btrfs_inode_item *item, 3891 struct inode *inode, int log_inode_only, 3892 u64 logged_isize) 3893 { 3894 struct btrfs_map_token token; 3895 3896 btrfs_init_map_token(&token, leaf); 3897 3898 if (log_inode_only) { 3899 /* set the generation to zero so the recover code 3900 * can tell the difference between an logging 3901 * just to say 'this inode exists' and a logging 3902 * to say 'update this inode with these values' 3903 */ 3904 btrfs_set_token_inode_generation(&token, item, 0); 3905 btrfs_set_token_inode_size(&token, item, logged_isize); 3906 } else { 3907 btrfs_set_token_inode_generation(&token, item, 3908 BTRFS_I(inode)->generation); 3909 btrfs_set_token_inode_size(&token, item, inode->i_size); 3910 } 3911 3912 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3913 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3914 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3915 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3916 3917 btrfs_set_token_timespec_sec(&token, &item->atime, 3918 inode->i_atime.tv_sec); 3919 btrfs_set_token_timespec_nsec(&token, &item->atime, 3920 inode->i_atime.tv_nsec); 3921 3922 btrfs_set_token_timespec_sec(&token, &item->mtime, 3923 inode->i_mtime.tv_sec); 3924 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3925 inode->i_mtime.tv_nsec); 3926 3927 btrfs_set_token_timespec_sec(&token, &item->ctime, 3928 inode->i_ctime.tv_sec); 3929 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3930 inode->i_ctime.tv_nsec); 3931 3932 /* 3933 * We do not need to set the nbytes field, in fact during a fast fsync 3934 * its value may not even be correct, since a fast fsync does not wait 3935 * for ordered extent completion, which is where we update nbytes, it 3936 * only waits for writeback to complete. During log replay as we find 3937 * file extent items and replay them, we adjust the nbytes field of the 3938 * inode item in subvolume tree as needed (see overwrite_item()). 3939 */ 3940 3941 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3942 btrfs_set_token_inode_transid(&token, item, trans->transid); 3943 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3944 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3945 btrfs_set_token_inode_block_group(&token, item, 0); 3946 } 3947 3948 static int log_inode_item(struct btrfs_trans_handle *trans, 3949 struct btrfs_root *log, struct btrfs_path *path, 3950 struct btrfs_inode *inode) 3951 { 3952 struct btrfs_inode_item *inode_item; 3953 int ret; 3954 3955 ret = btrfs_insert_empty_item(trans, log, path, 3956 &inode->location, sizeof(*inode_item)); 3957 if (ret && ret != -EEXIST) 3958 return ret; 3959 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3960 struct btrfs_inode_item); 3961 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 3962 0, 0); 3963 btrfs_release_path(path); 3964 return 0; 3965 } 3966 3967 static int log_csums(struct btrfs_trans_handle *trans, 3968 struct btrfs_inode *inode, 3969 struct btrfs_root *log_root, 3970 struct btrfs_ordered_sum *sums) 3971 { 3972 const u64 lock_end = sums->bytenr + sums->len - 1; 3973 struct extent_state *cached_state = NULL; 3974 int ret; 3975 3976 /* 3977 * If this inode was not used for reflink operations in the current 3978 * transaction with new extents, then do the fast path, no need to 3979 * worry about logging checksum items with overlapping ranges. 3980 */ 3981 if (inode->last_reflink_trans < trans->transid) 3982 return btrfs_csum_file_blocks(trans, log_root, sums); 3983 3984 /* 3985 * Serialize logging for checksums. This is to avoid racing with the 3986 * same checksum being logged by another task that is logging another 3987 * file which happens to refer to the same extent as well. Such races 3988 * can leave checksum items in the log with overlapping ranges. 3989 */ 3990 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr, 3991 lock_end, &cached_state); 3992 if (ret) 3993 return ret; 3994 /* 3995 * Due to extent cloning, we might have logged a csum item that covers a 3996 * subrange of a cloned extent, and later we can end up logging a csum 3997 * item for a larger subrange of the same extent or the entire range. 3998 * This would leave csum items in the log tree that cover the same range 3999 * and break the searches for checksums in the log tree, resulting in 4000 * some checksums missing in the fs/subvolume tree. So just delete (or 4001 * trim and adjust) any existing csum items in the log for this range. 4002 */ 4003 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len); 4004 if (!ret) 4005 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4006 4007 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end, 4008 &cached_state); 4009 4010 return ret; 4011 } 4012 4013 static noinline int copy_items(struct btrfs_trans_handle *trans, 4014 struct btrfs_inode *inode, 4015 struct btrfs_path *dst_path, 4016 struct btrfs_path *src_path, 4017 int start_slot, int nr, int inode_only, 4018 u64 logged_isize) 4019 { 4020 struct btrfs_fs_info *fs_info = trans->fs_info; 4021 unsigned long src_offset; 4022 unsigned long dst_offset; 4023 struct btrfs_root *log = inode->root->log_root; 4024 struct btrfs_file_extent_item *extent; 4025 struct btrfs_inode_item *inode_item; 4026 struct extent_buffer *src = src_path->nodes[0]; 4027 int ret; 4028 struct btrfs_key *ins_keys; 4029 u32 *ins_sizes; 4030 char *ins_data; 4031 int i; 4032 struct list_head ordered_sums; 4033 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 4034 4035 INIT_LIST_HEAD(&ordered_sums); 4036 4037 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 4038 nr * sizeof(u32), GFP_NOFS); 4039 if (!ins_data) 4040 return -ENOMEM; 4041 4042 ins_sizes = (u32 *)ins_data; 4043 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 4044 4045 for (i = 0; i < nr; i++) { 4046 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 4047 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 4048 } 4049 ret = btrfs_insert_empty_items(trans, log, dst_path, 4050 ins_keys, ins_sizes, nr); 4051 if (ret) { 4052 kfree(ins_data); 4053 return ret; 4054 } 4055 4056 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 4057 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 4058 dst_path->slots[0]); 4059 4060 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 4061 4062 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 4063 inode_item = btrfs_item_ptr(dst_path->nodes[0], 4064 dst_path->slots[0], 4065 struct btrfs_inode_item); 4066 fill_inode_item(trans, dst_path->nodes[0], inode_item, 4067 &inode->vfs_inode, 4068 inode_only == LOG_INODE_EXISTS, 4069 logged_isize); 4070 } else { 4071 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4072 src_offset, ins_sizes[i]); 4073 } 4074 4075 /* take a reference on file data extents so that truncates 4076 * or deletes of this inode don't have to relog the inode 4077 * again 4078 */ 4079 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 4080 !skip_csum) { 4081 int found_type; 4082 extent = btrfs_item_ptr(src, start_slot + i, 4083 struct btrfs_file_extent_item); 4084 4085 if (btrfs_file_extent_generation(src, extent) < trans->transid) 4086 continue; 4087 4088 found_type = btrfs_file_extent_type(src, extent); 4089 if (found_type == BTRFS_FILE_EXTENT_REG) { 4090 u64 ds, dl, cs, cl; 4091 ds = btrfs_file_extent_disk_bytenr(src, 4092 extent); 4093 /* ds == 0 is a hole */ 4094 if (ds == 0) 4095 continue; 4096 4097 dl = btrfs_file_extent_disk_num_bytes(src, 4098 extent); 4099 cs = btrfs_file_extent_offset(src, extent); 4100 cl = btrfs_file_extent_num_bytes(src, 4101 extent); 4102 if (btrfs_file_extent_compression(src, 4103 extent)) { 4104 cs = 0; 4105 cl = dl; 4106 } 4107 4108 ret = btrfs_lookup_csums_range( 4109 fs_info->csum_root, 4110 ds + cs, ds + cs + cl - 1, 4111 &ordered_sums, 0); 4112 if (ret) 4113 break; 4114 } 4115 } 4116 } 4117 4118 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4119 btrfs_release_path(dst_path); 4120 kfree(ins_data); 4121 4122 /* 4123 * we have to do this after the loop above to avoid changing the 4124 * log tree while trying to change the log tree. 4125 */ 4126 while (!list_empty(&ordered_sums)) { 4127 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4128 struct btrfs_ordered_sum, 4129 list); 4130 if (!ret) 4131 ret = log_csums(trans, inode, log, sums); 4132 list_del(&sums->list); 4133 kfree(sums); 4134 } 4135 4136 return ret; 4137 } 4138 4139 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 4140 { 4141 struct extent_map *em1, *em2; 4142 4143 em1 = list_entry(a, struct extent_map, list); 4144 em2 = list_entry(b, struct extent_map, list); 4145 4146 if (em1->start < em2->start) 4147 return -1; 4148 else if (em1->start > em2->start) 4149 return 1; 4150 return 0; 4151 } 4152 4153 static int log_extent_csums(struct btrfs_trans_handle *trans, 4154 struct btrfs_inode *inode, 4155 struct btrfs_root *log_root, 4156 const struct extent_map *em, 4157 struct btrfs_log_ctx *ctx) 4158 { 4159 struct btrfs_ordered_extent *ordered; 4160 u64 csum_offset; 4161 u64 csum_len; 4162 u64 mod_start = em->mod_start; 4163 u64 mod_len = em->mod_len; 4164 LIST_HEAD(ordered_sums); 4165 int ret = 0; 4166 4167 if (inode->flags & BTRFS_INODE_NODATASUM || 4168 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4169 em->block_start == EXTENT_MAP_HOLE) 4170 return 0; 4171 4172 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { 4173 const u64 ordered_end = ordered->file_offset + ordered->num_bytes; 4174 const u64 mod_end = mod_start + mod_len; 4175 struct btrfs_ordered_sum *sums; 4176 4177 if (mod_len == 0) 4178 break; 4179 4180 if (ordered_end <= mod_start) 4181 continue; 4182 if (mod_end <= ordered->file_offset) 4183 break; 4184 4185 /* 4186 * We are going to copy all the csums on this ordered extent, so 4187 * go ahead and adjust mod_start and mod_len in case this ordered 4188 * extent has already been logged. 4189 */ 4190 if (ordered->file_offset > mod_start) { 4191 if (ordered_end >= mod_end) 4192 mod_len = ordered->file_offset - mod_start; 4193 /* 4194 * If we have this case 4195 * 4196 * |--------- logged extent ---------| 4197 * |----- ordered extent ----| 4198 * 4199 * Just don't mess with mod_start and mod_len, we'll 4200 * just end up logging more csums than we need and it 4201 * will be ok. 4202 */ 4203 } else { 4204 if (ordered_end < mod_end) { 4205 mod_len = mod_end - ordered_end; 4206 mod_start = ordered_end; 4207 } else { 4208 mod_len = 0; 4209 } 4210 } 4211 4212 /* 4213 * To keep us from looping for the above case of an ordered 4214 * extent that falls inside of the logged extent. 4215 */ 4216 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) 4217 continue; 4218 4219 list_for_each_entry(sums, &ordered->list, list) { 4220 ret = log_csums(trans, inode, log_root, sums); 4221 if (ret) 4222 return ret; 4223 } 4224 } 4225 4226 /* We're done, found all csums in the ordered extents. */ 4227 if (mod_len == 0) 4228 return 0; 4229 4230 /* If we're compressed we have to save the entire range of csums. */ 4231 if (em->compress_type) { 4232 csum_offset = 0; 4233 csum_len = max(em->block_len, em->orig_block_len); 4234 } else { 4235 csum_offset = mod_start - em->start; 4236 csum_len = mod_len; 4237 } 4238 4239 /* block start is already adjusted for the file extent offset. */ 4240 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, 4241 em->block_start + csum_offset, 4242 em->block_start + csum_offset + 4243 csum_len - 1, &ordered_sums, 0); 4244 if (ret) 4245 return ret; 4246 4247 while (!list_empty(&ordered_sums)) { 4248 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4249 struct btrfs_ordered_sum, 4250 list); 4251 if (!ret) 4252 ret = log_csums(trans, inode, log_root, sums); 4253 list_del(&sums->list); 4254 kfree(sums); 4255 } 4256 4257 return ret; 4258 } 4259 4260 static int log_one_extent(struct btrfs_trans_handle *trans, 4261 struct btrfs_inode *inode, struct btrfs_root *root, 4262 const struct extent_map *em, 4263 struct btrfs_path *path, 4264 struct btrfs_log_ctx *ctx) 4265 { 4266 struct btrfs_drop_extents_args drop_args = { 0 }; 4267 struct btrfs_root *log = root->log_root; 4268 struct btrfs_file_extent_item *fi; 4269 struct extent_buffer *leaf; 4270 struct btrfs_map_token token; 4271 struct btrfs_key key; 4272 u64 extent_offset = em->start - em->orig_start; 4273 u64 block_len; 4274 int ret; 4275 4276 ret = log_extent_csums(trans, inode, log, em, ctx); 4277 if (ret) 4278 return ret; 4279 4280 drop_args.path = path; 4281 drop_args.start = em->start; 4282 drop_args.end = em->start + em->len; 4283 drop_args.replace_extent = true; 4284 drop_args.extent_item_size = sizeof(*fi); 4285 ret = btrfs_drop_extents(trans, log, inode, &drop_args); 4286 if (ret) 4287 return ret; 4288 4289 if (!drop_args.extent_inserted) { 4290 key.objectid = btrfs_ino(inode); 4291 key.type = BTRFS_EXTENT_DATA_KEY; 4292 key.offset = em->start; 4293 4294 ret = btrfs_insert_empty_item(trans, log, path, &key, 4295 sizeof(*fi)); 4296 if (ret) 4297 return ret; 4298 } 4299 leaf = path->nodes[0]; 4300 btrfs_init_map_token(&token, leaf); 4301 fi = btrfs_item_ptr(leaf, path->slots[0], 4302 struct btrfs_file_extent_item); 4303 4304 btrfs_set_token_file_extent_generation(&token, fi, trans->transid); 4305 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4306 btrfs_set_token_file_extent_type(&token, fi, 4307 BTRFS_FILE_EXTENT_PREALLOC); 4308 else 4309 btrfs_set_token_file_extent_type(&token, fi, 4310 BTRFS_FILE_EXTENT_REG); 4311 4312 block_len = max(em->block_len, em->orig_block_len); 4313 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4314 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4315 em->block_start); 4316 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4317 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4318 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4319 em->block_start - 4320 extent_offset); 4321 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4322 } else { 4323 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0); 4324 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0); 4325 } 4326 4327 btrfs_set_token_file_extent_offset(&token, fi, extent_offset); 4328 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len); 4329 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes); 4330 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type); 4331 btrfs_set_token_file_extent_encryption(&token, fi, 0); 4332 btrfs_set_token_file_extent_other_encoding(&token, fi, 0); 4333 btrfs_mark_buffer_dirty(leaf); 4334 4335 btrfs_release_path(path); 4336 4337 return ret; 4338 } 4339 4340 /* 4341 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4342 * lose them after doing a fast fsync and replaying the log. We scan the 4343 * subvolume's root instead of iterating the inode's extent map tree because 4344 * otherwise we can log incorrect extent items based on extent map conversion. 4345 * That can happen due to the fact that extent maps are merged when they 4346 * are not in the extent map tree's list of modified extents. 4347 */ 4348 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4349 struct btrfs_inode *inode, 4350 struct btrfs_path *path) 4351 { 4352 struct btrfs_root *root = inode->root; 4353 struct btrfs_key key; 4354 const u64 i_size = i_size_read(&inode->vfs_inode); 4355 const u64 ino = btrfs_ino(inode); 4356 struct btrfs_path *dst_path = NULL; 4357 bool dropped_extents = false; 4358 u64 truncate_offset = i_size; 4359 struct extent_buffer *leaf; 4360 int slot; 4361 int ins_nr = 0; 4362 int start_slot; 4363 int ret; 4364 4365 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4366 return 0; 4367 4368 key.objectid = ino; 4369 key.type = BTRFS_EXTENT_DATA_KEY; 4370 key.offset = i_size; 4371 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4372 if (ret < 0) 4373 goto out; 4374 4375 /* 4376 * We must check if there is a prealloc extent that starts before the 4377 * i_size and crosses the i_size boundary. This is to ensure later we 4378 * truncate down to the end of that extent and not to the i_size, as 4379 * otherwise we end up losing part of the prealloc extent after a log 4380 * replay and with an implicit hole if there is another prealloc extent 4381 * that starts at an offset beyond i_size. 4382 */ 4383 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4384 if (ret < 0) 4385 goto out; 4386 4387 if (ret == 0) { 4388 struct btrfs_file_extent_item *ei; 4389 4390 leaf = path->nodes[0]; 4391 slot = path->slots[0]; 4392 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4393 4394 if (btrfs_file_extent_type(leaf, ei) == 4395 BTRFS_FILE_EXTENT_PREALLOC) { 4396 u64 extent_end; 4397 4398 btrfs_item_key_to_cpu(leaf, &key, slot); 4399 extent_end = key.offset + 4400 btrfs_file_extent_num_bytes(leaf, ei); 4401 4402 if (extent_end > i_size) 4403 truncate_offset = extent_end; 4404 } 4405 } else { 4406 ret = 0; 4407 } 4408 4409 while (true) { 4410 leaf = path->nodes[0]; 4411 slot = path->slots[0]; 4412 4413 if (slot >= btrfs_header_nritems(leaf)) { 4414 if (ins_nr > 0) { 4415 ret = copy_items(trans, inode, dst_path, path, 4416 start_slot, ins_nr, 1, 0); 4417 if (ret < 0) 4418 goto out; 4419 ins_nr = 0; 4420 } 4421 ret = btrfs_next_leaf(root, path); 4422 if (ret < 0) 4423 goto out; 4424 if (ret > 0) { 4425 ret = 0; 4426 break; 4427 } 4428 continue; 4429 } 4430 4431 btrfs_item_key_to_cpu(leaf, &key, slot); 4432 if (key.objectid > ino) 4433 break; 4434 if (WARN_ON_ONCE(key.objectid < ino) || 4435 key.type < BTRFS_EXTENT_DATA_KEY || 4436 key.offset < i_size) { 4437 path->slots[0]++; 4438 continue; 4439 } 4440 if (!dropped_extents) { 4441 /* 4442 * Avoid logging extent items logged in past fsync calls 4443 * and leading to duplicate keys in the log tree. 4444 */ 4445 do { 4446 ret = btrfs_truncate_inode_items(trans, 4447 root->log_root, 4448 inode, truncate_offset, 4449 BTRFS_EXTENT_DATA_KEY); 4450 } while (ret == -EAGAIN); 4451 if (ret) 4452 goto out; 4453 dropped_extents = true; 4454 } 4455 if (ins_nr == 0) 4456 start_slot = slot; 4457 ins_nr++; 4458 path->slots[0]++; 4459 if (!dst_path) { 4460 dst_path = btrfs_alloc_path(); 4461 if (!dst_path) { 4462 ret = -ENOMEM; 4463 goto out; 4464 } 4465 } 4466 } 4467 if (ins_nr > 0) 4468 ret = copy_items(trans, inode, dst_path, path, 4469 start_slot, ins_nr, 1, 0); 4470 out: 4471 btrfs_release_path(path); 4472 btrfs_free_path(dst_path); 4473 return ret; 4474 } 4475 4476 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4477 struct btrfs_root *root, 4478 struct btrfs_inode *inode, 4479 struct btrfs_path *path, 4480 struct btrfs_log_ctx *ctx) 4481 { 4482 struct btrfs_ordered_extent *ordered; 4483 struct btrfs_ordered_extent *tmp; 4484 struct extent_map *em, *n; 4485 struct list_head extents; 4486 struct extent_map_tree *tree = &inode->extent_tree; 4487 int ret = 0; 4488 int num = 0; 4489 4490 INIT_LIST_HEAD(&extents); 4491 4492 write_lock(&tree->lock); 4493 4494 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4495 list_del_init(&em->list); 4496 /* 4497 * Just an arbitrary number, this can be really CPU intensive 4498 * once we start getting a lot of extents, and really once we 4499 * have a bunch of extents we just want to commit since it will 4500 * be faster. 4501 */ 4502 if (++num > 32768) { 4503 list_del_init(&tree->modified_extents); 4504 ret = -EFBIG; 4505 goto process; 4506 } 4507 4508 if (em->generation < trans->transid) 4509 continue; 4510 4511 /* We log prealloc extents beyond eof later. */ 4512 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4513 em->start >= i_size_read(&inode->vfs_inode)) 4514 continue; 4515 4516 /* Need a ref to keep it from getting evicted from cache */ 4517 refcount_inc(&em->refs); 4518 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4519 list_add_tail(&em->list, &extents); 4520 num++; 4521 } 4522 4523 list_sort(NULL, &extents, extent_cmp); 4524 process: 4525 while (!list_empty(&extents)) { 4526 em = list_entry(extents.next, struct extent_map, list); 4527 4528 list_del_init(&em->list); 4529 4530 /* 4531 * If we had an error we just need to delete everybody from our 4532 * private list. 4533 */ 4534 if (ret) { 4535 clear_em_logging(tree, em); 4536 free_extent_map(em); 4537 continue; 4538 } 4539 4540 write_unlock(&tree->lock); 4541 4542 ret = log_one_extent(trans, inode, root, em, path, ctx); 4543 write_lock(&tree->lock); 4544 clear_em_logging(tree, em); 4545 free_extent_map(em); 4546 } 4547 WARN_ON(!list_empty(&extents)); 4548 write_unlock(&tree->lock); 4549 4550 btrfs_release_path(path); 4551 if (!ret) 4552 ret = btrfs_log_prealloc_extents(trans, inode, path); 4553 if (ret) 4554 return ret; 4555 4556 /* 4557 * We have logged all extents successfully, now make sure the commit of 4558 * the current transaction waits for the ordered extents to complete 4559 * before it commits and wipes out the log trees, otherwise we would 4560 * lose data if an ordered extents completes after the transaction 4561 * commits and a power failure happens after the transaction commit. 4562 */ 4563 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 4564 list_del_init(&ordered->log_list); 4565 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); 4566 4567 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4568 spin_lock_irq(&inode->ordered_tree.lock); 4569 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4570 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 4571 atomic_inc(&trans->transaction->pending_ordered); 4572 } 4573 spin_unlock_irq(&inode->ordered_tree.lock); 4574 } 4575 btrfs_put_ordered_extent(ordered); 4576 } 4577 4578 return 0; 4579 } 4580 4581 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4582 struct btrfs_path *path, u64 *size_ret) 4583 { 4584 struct btrfs_key key; 4585 int ret; 4586 4587 key.objectid = btrfs_ino(inode); 4588 key.type = BTRFS_INODE_ITEM_KEY; 4589 key.offset = 0; 4590 4591 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4592 if (ret < 0) { 4593 return ret; 4594 } else if (ret > 0) { 4595 *size_ret = 0; 4596 } else { 4597 struct btrfs_inode_item *item; 4598 4599 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4600 struct btrfs_inode_item); 4601 *size_ret = btrfs_inode_size(path->nodes[0], item); 4602 /* 4603 * If the in-memory inode's i_size is smaller then the inode 4604 * size stored in the btree, return the inode's i_size, so 4605 * that we get a correct inode size after replaying the log 4606 * when before a power failure we had a shrinking truncate 4607 * followed by addition of a new name (rename / new hard link). 4608 * Otherwise return the inode size from the btree, to avoid 4609 * data loss when replaying a log due to previously doing a 4610 * write that expands the inode's size and logging a new name 4611 * immediately after. 4612 */ 4613 if (*size_ret > inode->vfs_inode.i_size) 4614 *size_ret = inode->vfs_inode.i_size; 4615 } 4616 4617 btrfs_release_path(path); 4618 return 0; 4619 } 4620 4621 /* 4622 * At the moment we always log all xattrs. This is to figure out at log replay 4623 * time which xattrs must have their deletion replayed. If a xattr is missing 4624 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4625 * because if a xattr is deleted, the inode is fsynced and a power failure 4626 * happens, causing the log to be replayed the next time the fs is mounted, 4627 * we want the xattr to not exist anymore (same behaviour as other filesystems 4628 * with a journal, ext3/4, xfs, f2fs, etc). 4629 */ 4630 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4631 struct btrfs_root *root, 4632 struct btrfs_inode *inode, 4633 struct btrfs_path *path, 4634 struct btrfs_path *dst_path) 4635 { 4636 int ret; 4637 struct btrfs_key key; 4638 const u64 ino = btrfs_ino(inode); 4639 int ins_nr = 0; 4640 int start_slot = 0; 4641 bool found_xattrs = false; 4642 4643 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) 4644 return 0; 4645 4646 key.objectid = ino; 4647 key.type = BTRFS_XATTR_ITEM_KEY; 4648 key.offset = 0; 4649 4650 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4651 if (ret < 0) 4652 return ret; 4653 4654 while (true) { 4655 int slot = path->slots[0]; 4656 struct extent_buffer *leaf = path->nodes[0]; 4657 int nritems = btrfs_header_nritems(leaf); 4658 4659 if (slot >= nritems) { 4660 if (ins_nr > 0) { 4661 ret = copy_items(trans, inode, dst_path, path, 4662 start_slot, ins_nr, 1, 0); 4663 if (ret < 0) 4664 return ret; 4665 ins_nr = 0; 4666 } 4667 ret = btrfs_next_leaf(root, path); 4668 if (ret < 0) 4669 return ret; 4670 else if (ret > 0) 4671 break; 4672 continue; 4673 } 4674 4675 btrfs_item_key_to_cpu(leaf, &key, slot); 4676 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4677 break; 4678 4679 if (ins_nr == 0) 4680 start_slot = slot; 4681 ins_nr++; 4682 path->slots[0]++; 4683 found_xattrs = true; 4684 cond_resched(); 4685 } 4686 if (ins_nr > 0) { 4687 ret = copy_items(trans, inode, dst_path, path, 4688 start_slot, ins_nr, 1, 0); 4689 if (ret < 0) 4690 return ret; 4691 } 4692 4693 if (!found_xattrs) 4694 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); 4695 4696 return 0; 4697 } 4698 4699 /* 4700 * When using the NO_HOLES feature if we punched a hole that causes the 4701 * deletion of entire leafs or all the extent items of the first leaf (the one 4702 * that contains the inode item and references) we may end up not processing 4703 * any extents, because there are no leafs with a generation matching the 4704 * current transaction that have extent items for our inode. So we need to find 4705 * if any holes exist and then log them. We also need to log holes after any 4706 * truncate operation that changes the inode's size. 4707 */ 4708 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 4709 struct btrfs_root *root, 4710 struct btrfs_inode *inode, 4711 struct btrfs_path *path) 4712 { 4713 struct btrfs_fs_info *fs_info = root->fs_info; 4714 struct btrfs_key key; 4715 const u64 ino = btrfs_ino(inode); 4716 const u64 i_size = i_size_read(&inode->vfs_inode); 4717 u64 prev_extent_end = 0; 4718 int ret; 4719 4720 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 4721 return 0; 4722 4723 key.objectid = ino; 4724 key.type = BTRFS_EXTENT_DATA_KEY; 4725 key.offset = 0; 4726 4727 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4728 if (ret < 0) 4729 return ret; 4730 4731 while (true) { 4732 struct extent_buffer *leaf = path->nodes[0]; 4733 4734 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 4735 ret = btrfs_next_leaf(root, path); 4736 if (ret < 0) 4737 return ret; 4738 if (ret > 0) { 4739 ret = 0; 4740 break; 4741 } 4742 leaf = path->nodes[0]; 4743 } 4744 4745 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4746 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 4747 break; 4748 4749 /* We have a hole, log it. */ 4750 if (prev_extent_end < key.offset) { 4751 const u64 hole_len = key.offset - prev_extent_end; 4752 4753 /* 4754 * Release the path to avoid deadlocks with other code 4755 * paths that search the root while holding locks on 4756 * leafs from the log root. 4757 */ 4758 btrfs_release_path(path); 4759 ret = btrfs_insert_file_extent(trans, root->log_root, 4760 ino, prev_extent_end, 0, 4761 0, hole_len, 0, hole_len, 4762 0, 0, 0); 4763 if (ret < 0) 4764 return ret; 4765 4766 /* 4767 * Search for the same key again in the root. Since it's 4768 * an extent item and we are holding the inode lock, the 4769 * key must still exist. If it doesn't just emit warning 4770 * and return an error to fall back to a transaction 4771 * commit. 4772 */ 4773 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4774 if (ret < 0) 4775 return ret; 4776 if (WARN_ON(ret > 0)) 4777 return -ENOENT; 4778 leaf = path->nodes[0]; 4779 } 4780 4781 prev_extent_end = btrfs_file_extent_end(path); 4782 path->slots[0]++; 4783 cond_resched(); 4784 } 4785 4786 if (prev_extent_end < i_size) { 4787 u64 hole_len; 4788 4789 btrfs_release_path(path); 4790 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 4791 ret = btrfs_insert_file_extent(trans, root->log_root, 4792 ino, prev_extent_end, 0, 0, 4793 hole_len, 0, hole_len, 4794 0, 0, 0); 4795 if (ret < 0) 4796 return ret; 4797 } 4798 4799 return 0; 4800 } 4801 4802 /* 4803 * When we are logging a new inode X, check if it doesn't have a reference that 4804 * matches the reference from some other inode Y created in a past transaction 4805 * and that was renamed in the current transaction. If we don't do this, then at 4806 * log replay time we can lose inode Y (and all its files if it's a directory): 4807 * 4808 * mkdir /mnt/x 4809 * echo "hello world" > /mnt/x/foobar 4810 * sync 4811 * mv /mnt/x /mnt/y 4812 * mkdir /mnt/x # or touch /mnt/x 4813 * xfs_io -c fsync /mnt/x 4814 * <power fail> 4815 * mount fs, trigger log replay 4816 * 4817 * After the log replay procedure, we would lose the first directory and all its 4818 * files (file foobar). 4819 * For the case where inode Y is not a directory we simply end up losing it: 4820 * 4821 * echo "123" > /mnt/foo 4822 * sync 4823 * mv /mnt/foo /mnt/bar 4824 * echo "abc" > /mnt/foo 4825 * xfs_io -c fsync /mnt/foo 4826 * <power fail> 4827 * 4828 * We also need this for cases where a snapshot entry is replaced by some other 4829 * entry (file or directory) otherwise we end up with an unreplayable log due to 4830 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4831 * if it were a regular entry: 4832 * 4833 * mkdir /mnt/x 4834 * btrfs subvolume snapshot /mnt /mnt/x/snap 4835 * btrfs subvolume delete /mnt/x/snap 4836 * rmdir /mnt/x 4837 * mkdir /mnt/x 4838 * fsync /mnt/x or fsync some new file inside it 4839 * <power fail> 4840 * 4841 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4842 * the same transaction. 4843 */ 4844 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4845 const int slot, 4846 const struct btrfs_key *key, 4847 struct btrfs_inode *inode, 4848 u64 *other_ino, u64 *other_parent) 4849 { 4850 int ret; 4851 struct btrfs_path *search_path; 4852 char *name = NULL; 4853 u32 name_len = 0; 4854 u32 item_size = btrfs_item_size_nr(eb, slot); 4855 u32 cur_offset = 0; 4856 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4857 4858 search_path = btrfs_alloc_path(); 4859 if (!search_path) 4860 return -ENOMEM; 4861 search_path->search_commit_root = 1; 4862 search_path->skip_locking = 1; 4863 4864 while (cur_offset < item_size) { 4865 u64 parent; 4866 u32 this_name_len; 4867 u32 this_len; 4868 unsigned long name_ptr; 4869 struct btrfs_dir_item *di; 4870 4871 if (key->type == BTRFS_INODE_REF_KEY) { 4872 struct btrfs_inode_ref *iref; 4873 4874 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4875 parent = key->offset; 4876 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4877 name_ptr = (unsigned long)(iref + 1); 4878 this_len = sizeof(*iref) + this_name_len; 4879 } else { 4880 struct btrfs_inode_extref *extref; 4881 4882 extref = (struct btrfs_inode_extref *)(ptr + 4883 cur_offset); 4884 parent = btrfs_inode_extref_parent(eb, extref); 4885 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4886 name_ptr = (unsigned long)&extref->name; 4887 this_len = sizeof(*extref) + this_name_len; 4888 } 4889 4890 if (this_name_len > name_len) { 4891 char *new_name; 4892 4893 new_name = krealloc(name, this_name_len, GFP_NOFS); 4894 if (!new_name) { 4895 ret = -ENOMEM; 4896 goto out; 4897 } 4898 name_len = this_name_len; 4899 name = new_name; 4900 } 4901 4902 read_extent_buffer(eb, name, name_ptr, this_name_len); 4903 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 4904 parent, name, this_name_len, 0); 4905 if (di && !IS_ERR(di)) { 4906 struct btrfs_key di_key; 4907 4908 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4909 di, &di_key); 4910 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4911 if (di_key.objectid != key->objectid) { 4912 ret = 1; 4913 *other_ino = di_key.objectid; 4914 *other_parent = parent; 4915 } else { 4916 ret = 0; 4917 } 4918 } else { 4919 ret = -EAGAIN; 4920 } 4921 goto out; 4922 } else if (IS_ERR(di)) { 4923 ret = PTR_ERR(di); 4924 goto out; 4925 } 4926 btrfs_release_path(search_path); 4927 4928 cur_offset += this_len; 4929 } 4930 ret = 0; 4931 out: 4932 btrfs_free_path(search_path); 4933 kfree(name); 4934 return ret; 4935 } 4936 4937 struct btrfs_ino_list { 4938 u64 ino; 4939 u64 parent; 4940 struct list_head list; 4941 }; 4942 4943 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 4944 struct btrfs_root *root, 4945 struct btrfs_path *path, 4946 struct btrfs_log_ctx *ctx, 4947 u64 ino, u64 parent) 4948 { 4949 struct btrfs_ino_list *ino_elem; 4950 LIST_HEAD(inode_list); 4951 int ret = 0; 4952 4953 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4954 if (!ino_elem) 4955 return -ENOMEM; 4956 ino_elem->ino = ino; 4957 ino_elem->parent = parent; 4958 list_add_tail(&ino_elem->list, &inode_list); 4959 4960 while (!list_empty(&inode_list)) { 4961 struct btrfs_fs_info *fs_info = root->fs_info; 4962 struct btrfs_key key; 4963 struct inode *inode; 4964 4965 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 4966 list); 4967 ino = ino_elem->ino; 4968 parent = ino_elem->parent; 4969 list_del(&ino_elem->list); 4970 kfree(ino_elem); 4971 if (ret) 4972 continue; 4973 4974 btrfs_release_path(path); 4975 4976 inode = btrfs_iget(fs_info->sb, ino, root); 4977 /* 4978 * If the other inode that had a conflicting dir entry was 4979 * deleted in the current transaction, we need to log its parent 4980 * directory. 4981 */ 4982 if (IS_ERR(inode)) { 4983 ret = PTR_ERR(inode); 4984 if (ret == -ENOENT) { 4985 inode = btrfs_iget(fs_info->sb, parent, root); 4986 if (IS_ERR(inode)) { 4987 ret = PTR_ERR(inode); 4988 } else { 4989 ret = btrfs_log_inode(trans, root, 4990 BTRFS_I(inode), 4991 LOG_OTHER_INODE_ALL, 4992 ctx); 4993 btrfs_add_delayed_iput(inode); 4994 } 4995 } 4996 continue; 4997 } 4998 /* 4999 * If the inode was already logged skip it - otherwise we can 5000 * hit an infinite loop. Example: 5001 * 5002 * From the commit root (previous transaction) we have the 5003 * following inodes: 5004 * 5005 * inode 257 a directory 5006 * inode 258 with references "zz" and "zz_link" on inode 257 5007 * inode 259 with reference "a" on inode 257 5008 * 5009 * And in the current (uncommitted) transaction we have: 5010 * 5011 * inode 257 a directory, unchanged 5012 * inode 258 with references "a" and "a2" on inode 257 5013 * inode 259 with reference "zz_link" on inode 257 5014 * inode 261 with reference "zz" on inode 257 5015 * 5016 * When logging inode 261 the following infinite loop could 5017 * happen if we don't skip already logged inodes: 5018 * 5019 * - we detect inode 258 as a conflicting inode, with inode 261 5020 * on reference "zz", and log it; 5021 * 5022 * - we detect inode 259 as a conflicting inode, with inode 258 5023 * on reference "a", and log it; 5024 * 5025 * - we detect inode 258 as a conflicting inode, with inode 259 5026 * on reference "zz_link", and log it - again! After this we 5027 * repeat the above steps forever. 5028 */ 5029 spin_lock(&BTRFS_I(inode)->lock); 5030 /* 5031 * Check the inode's logged_trans only instead of 5032 * btrfs_inode_in_log(). This is because the last_log_commit of 5033 * the inode is not updated when we only log that it exists and 5034 * it has the full sync bit set (see btrfs_log_inode()). 5035 */ 5036 if (BTRFS_I(inode)->logged_trans == trans->transid) { 5037 spin_unlock(&BTRFS_I(inode)->lock); 5038 btrfs_add_delayed_iput(inode); 5039 continue; 5040 } 5041 spin_unlock(&BTRFS_I(inode)->lock); 5042 /* 5043 * We are safe logging the other inode without acquiring its 5044 * lock as long as we log with the LOG_INODE_EXISTS mode. We 5045 * are safe against concurrent renames of the other inode as 5046 * well because during a rename we pin the log and update the 5047 * log with the new name before we unpin it. 5048 */ 5049 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5050 LOG_OTHER_INODE, ctx); 5051 if (ret) { 5052 btrfs_add_delayed_iput(inode); 5053 continue; 5054 } 5055 5056 key.objectid = ino; 5057 key.type = BTRFS_INODE_REF_KEY; 5058 key.offset = 0; 5059 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5060 if (ret < 0) { 5061 btrfs_add_delayed_iput(inode); 5062 continue; 5063 } 5064 5065 while (true) { 5066 struct extent_buffer *leaf = path->nodes[0]; 5067 int slot = path->slots[0]; 5068 u64 other_ino = 0; 5069 u64 other_parent = 0; 5070 5071 if (slot >= btrfs_header_nritems(leaf)) { 5072 ret = btrfs_next_leaf(root, path); 5073 if (ret < 0) { 5074 break; 5075 } else if (ret > 0) { 5076 ret = 0; 5077 break; 5078 } 5079 continue; 5080 } 5081 5082 btrfs_item_key_to_cpu(leaf, &key, slot); 5083 if (key.objectid != ino || 5084 (key.type != BTRFS_INODE_REF_KEY && 5085 key.type != BTRFS_INODE_EXTREF_KEY)) { 5086 ret = 0; 5087 break; 5088 } 5089 5090 ret = btrfs_check_ref_name_override(leaf, slot, &key, 5091 BTRFS_I(inode), &other_ino, 5092 &other_parent); 5093 if (ret < 0) 5094 break; 5095 if (ret > 0) { 5096 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5097 if (!ino_elem) { 5098 ret = -ENOMEM; 5099 break; 5100 } 5101 ino_elem->ino = other_ino; 5102 ino_elem->parent = other_parent; 5103 list_add_tail(&ino_elem->list, &inode_list); 5104 ret = 0; 5105 } 5106 path->slots[0]++; 5107 } 5108 btrfs_add_delayed_iput(inode); 5109 } 5110 5111 return ret; 5112 } 5113 5114 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 5115 struct btrfs_inode *inode, 5116 struct btrfs_key *min_key, 5117 const struct btrfs_key *max_key, 5118 struct btrfs_path *path, 5119 struct btrfs_path *dst_path, 5120 const u64 logged_isize, 5121 const bool recursive_logging, 5122 const int inode_only, 5123 struct btrfs_log_ctx *ctx, 5124 bool *need_log_inode_item) 5125 { 5126 struct btrfs_root *root = inode->root; 5127 int ins_start_slot = 0; 5128 int ins_nr = 0; 5129 int ret; 5130 5131 while (1) { 5132 ret = btrfs_search_forward(root, min_key, path, trans->transid); 5133 if (ret < 0) 5134 return ret; 5135 if (ret > 0) { 5136 ret = 0; 5137 break; 5138 } 5139 again: 5140 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 5141 if (min_key->objectid != max_key->objectid) 5142 break; 5143 if (min_key->type > max_key->type) 5144 break; 5145 5146 if (min_key->type == BTRFS_INODE_ITEM_KEY) 5147 *need_log_inode_item = false; 5148 5149 if ((min_key->type == BTRFS_INODE_REF_KEY || 5150 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5151 inode->generation == trans->transid && 5152 !recursive_logging) { 5153 u64 other_ino = 0; 5154 u64 other_parent = 0; 5155 5156 ret = btrfs_check_ref_name_override(path->nodes[0], 5157 path->slots[0], min_key, inode, 5158 &other_ino, &other_parent); 5159 if (ret < 0) { 5160 return ret; 5161 } else if (ret > 0 && ctx && 5162 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5163 if (ins_nr > 0) { 5164 ins_nr++; 5165 } else { 5166 ins_nr = 1; 5167 ins_start_slot = path->slots[0]; 5168 } 5169 ret = copy_items(trans, inode, dst_path, path, 5170 ins_start_slot, ins_nr, 5171 inode_only, logged_isize); 5172 if (ret < 0) 5173 return ret; 5174 ins_nr = 0; 5175 5176 ret = log_conflicting_inodes(trans, root, path, 5177 ctx, other_ino, other_parent); 5178 if (ret) 5179 return ret; 5180 btrfs_release_path(path); 5181 goto next_key; 5182 } 5183 } 5184 5185 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5186 if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5187 if (ins_nr == 0) 5188 goto next_slot; 5189 ret = copy_items(trans, inode, dst_path, path, 5190 ins_start_slot, 5191 ins_nr, inode_only, logged_isize); 5192 if (ret < 0) 5193 return ret; 5194 ins_nr = 0; 5195 goto next_slot; 5196 } 5197 5198 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5199 ins_nr++; 5200 goto next_slot; 5201 } else if (!ins_nr) { 5202 ins_start_slot = path->slots[0]; 5203 ins_nr = 1; 5204 goto next_slot; 5205 } 5206 5207 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5208 ins_nr, inode_only, logged_isize); 5209 if (ret < 0) 5210 return ret; 5211 ins_nr = 1; 5212 ins_start_slot = path->slots[0]; 5213 next_slot: 5214 path->slots[0]++; 5215 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 5216 btrfs_item_key_to_cpu(path->nodes[0], min_key, 5217 path->slots[0]); 5218 goto again; 5219 } 5220 if (ins_nr) { 5221 ret = copy_items(trans, inode, dst_path, path, 5222 ins_start_slot, ins_nr, inode_only, 5223 logged_isize); 5224 if (ret < 0) 5225 return ret; 5226 ins_nr = 0; 5227 } 5228 btrfs_release_path(path); 5229 next_key: 5230 if (min_key->offset < (u64)-1) { 5231 min_key->offset++; 5232 } else if (min_key->type < max_key->type) { 5233 min_key->type++; 5234 min_key->offset = 0; 5235 } else { 5236 break; 5237 } 5238 } 5239 if (ins_nr) 5240 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5241 ins_nr, inode_only, logged_isize); 5242 5243 return ret; 5244 } 5245 5246 /* log a single inode in the tree log. 5247 * At least one parent directory for this inode must exist in the tree 5248 * or be logged already. 5249 * 5250 * Any items from this inode changed by the current transaction are copied 5251 * to the log tree. An extra reference is taken on any extents in this 5252 * file, allowing us to avoid a whole pile of corner cases around logging 5253 * blocks that have been removed from the tree. 5254 * 5255 * See LOG_INODE_ALL and related defines for a description of what inode_only 5256 * does. 5257 * 5258 * This handles both files and directories. 5259 */ 5260 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5261 struct btrfs_root *root, struct btrfs_inode *inode, 5262 int inode_only, 5263 struct btrfs_log_ctx *ctx) 5264 { 5265 struct btrfs_path *path; 5266 struct btrfs_path *dst_path; 5267 struct btrfs_key min_key; 5268 struct btrfs_key max_key; 5269 struct btrfs_root *log = root->log_root; 5270 int err = 0; 5271 int ret = 0; 5272 bool fast_search = false; 5273 u64 ino = btrfs_ino(inode); 5274 struct extent_map_tree *em_tree = &inode->extent_tree; 5275 u64 logged_isize = 0; 5276 bool need_log_inode_item = true; 5277 bool xattrs_logged = false; 5278 bool recursive_logging = false; 5279 5280 path = btrfs_alloc_path(); 5281 if (!path) 5282 return -ENOMEM; 5283 dst_path = btrfs_alloc_path(); 5284 if (!dst_path) { 5285 btrfs_free_path(path); 5286 return -ENOMEM; 5287 } 5288 5289 min_key.objectid = ino; 5290 min_key.type = BTRFS_INODE_ITEM_KEY; 5291 min_key.offset = 0; 5292 5293 max_key.objectid = ino; 5294 5295 5296 /* today the code can only do partial logging of directories */ 5297 if (S_ISDIR(inode->vfs_inode.i_mode) || 5298 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5299 &inode->runtime_flags) && 5300 inode_only >= LOG_INODE_EXISTS)) 5301 max_key.type = BTRFS_XATTR_ITEM_KEY; 5302 else 5303 max_key.type = (u8)-1; 5304 max_key.offset = (u64)-1; 5305 5306 /* 5307 * Only run delayed items if we are a directory. We want to make sure 5308 * all directory indexes hit the fs/subvolume tree so we can find them 5309 * and figure out which index ranges have to be logged. 5310 * 5311 * Otherwise commit the delayed inode only if the full sync flag is set, 5312 * as we want to make sure an up to date version is in the subvolume 5313 * tree so copy_inode_items_to_log() / copy_items() can find it and copy 5314 * it to the log tree. For a non full sync, we always log the inode item 5315 * based on the in-memory struct btrfs_inode which is always up to date. 5316 */ 5317 if (S_ISDIR(inode->vfs_inode.i_mode)) 5318 ret = btrfs_commit_inode_delayed_items(trans, inode); 5319 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) 5320 ret = btrfs_commit_inode_delayed_inode(inode); 5321 5322 if (ret) { 5323 btrfs_free_path(path); 5324 btrfs_free_path(dst_path); 5325 return ret; 5326 } 5327 5328 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5329 recursive_logging = true; 5330 if (inode_only == LOG_OTHER_INODE) 5331 inode_only = LOG_INODE_EXISTS; 5332 else 5333 inode_only = LOG_INODE_ALL; 5334 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5335 } else { 5336 mutex_lock(&inode->log_mutex); 5337 } 5338 5339 /* 5340 * This is for cases where logging a directory could result in losing a 5341 * a file after replaying the log. For example, if we move a file from a 5342 * directory A to a directory B, then fsync directory A, we have no way 5343 * to known the file was moved from A to B, so logging just A would 5344 * result in losing the file after a log replay. 5345 */ 5346 if (S_ISDIR(inode->vfs_inode.i_mode) && 5347 inode_only == LOG_INODE_ALL && 5348 inode->last_unlink_trans >= trans->transid) { 5349 btrfs_set_log_full_commit(trans); 5350 err = 1; 5351 goto out_unlock; 5352 } 5353 5354 /* 5355 * a brute force approach to making sure we get the most uptodate 5356 * copies of everything. 5357 */ 5358 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5359 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5360 5361 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); 5362 if (inode_only == LOG_INODE_EXISTS) 5363 max_key_type = BTRFS_XATTR_ITEM_KEY; 5364 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 5365 } else { 5366 if (inode_only == LOG_INODE_EXISTS) { 5367 /* 5368 * Make sure the new inode item we write to the log has 5369 * the same isize as the current one (if it exists). 5370 * This is necessary to prevent data loss after log 5371 * replay, and also to prevent doing a wrong expanding 5372 * truncate - for e.g. create file, write 4K into offset 5373 * 0, fsync, write 4K into offset 4096, add hard link, 5374 * fsync some other file (to sync log), power fail - if 5375 * we use the inode's current i_size, after log replay 5376 * we get a 8Kb file, with the last 4Kb extent as a hole 5377 * (zeroes), as if an expanding truncate happened, 5378 * instead of getting a file of 4Kb only. 5379 */ 5380 err = logged_inode_size(log, inode, path, &logged_isize); 5381 if (err) 5382 goto out_unlock; 5383 } 5384 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5385 &inode->runtime_flags)) { 5386 if (inode_only == LOG_INODE_EXISTS) { 5387 max_key.type = BTRFS_XATTR_ITEM_KEY; 5388 ret = drop_objectid_items(trans, log, path, ino, 5389 max_key.type); 5390 } else { 5391 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5392 &inode->runtime_flags); 5393 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5394 &inode->runtime_flags); 5395 while(1) { 5396 ret = btrfs_truncate_inode_items(trans, 5397 log, inode, 0, 0); 5398 if (ret != -EAGAIN) 5399 break; 5400 } 5401 } 5402 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5403 &inode->runtime_flags) || 5404 inode_only == LOG_INODE_EXISTS) { 5405 if (inode_only == LOG_INODE_ALL) 5406 fast_search = true; 5407 max_key.type = BTRFS_XATTR_ITEM_KEY; 5408 ret = drop_objectid_items(trans, log, path, ino, 5409 max_key.type); 5410 } else { 5411 if (inode_only == LOG_INODE_ALL) 5412 fast_search = true; 5413 goto log_extents; 5414 } 5415 5416 } 5417 if (ret) { 5418 err = ret; 5419 goto out_unlock; 5420 } 5421 5422 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 5423 path, dst_path, logged_isize, 5424 recursive_logging, inode_only, ctx, 5425 &need_log_inode_item); 5426 if (err) 5427 goto out_unlock; 5428 5429 btrfs_release_path(path); 5430 btrfs_release_path(dst_path); 5431 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 5432 if (err) 5433 goto out_unlock; 5434 xattrs_logged = true; 5435 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5436 btrfs_release_path(path); 5437 btrfs_release_path(dst_path); 5438 err = btrfs_log_holes(trans, root, inode, path); 5439 if (err) 5440 goto out_unlock; 5441 } 5442 log_extents: 5443 btrfs_release_path(path); 5444 btrfs_release_path(dst_path); 5445 if (need_log_inode_item) { 5446 err = log_inode_item(trans, log, dst_path, inode); 5447 if (!err && !xattrs_logged) { 5448 err = btrfs_log_all_xattrs(trans, root, inode, path, 5449 dst_path); 5450 btrfs_release_path(path); 5451 } 5452 if (err) 5453 goto out_unlock; 5454 } 5455 if (fast_search) { 5456 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 5457 ctx); 5458 if (ret) { 5459 err = ret; 5460 goto out_unlock; 5461 } 5462 } else if (inode_only == LOG_INODE_ALL) { 5463 struct extent_map *em, *n; 5464 5465 write_lock(&em_tree->lock); 5466 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) 5467 list_del_init(&em->list); 5468 write_unlock(&em_tree->lock); 5469 } 5470 5471 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5472 ret = log_directory_changes(trans, root, inode, path, dst_path, 5473 ctx); 5474 if (ret) { 5475 err = ret; 5476 goto out_unlock; 5477 } 5478 } 5479 5480 /* 5481 * If we are logging that an ancestor inode exists as part of logging a 5482 * new name from a link or rename operation, don't mark the inode as 5483 * logged - otherwise if an explicit fsync is made against an ancestor, 5484 * the fsync considers the inode in the log and doesn't sync the log, 5485 * resulting in the ancestor missing after a power failure unless the 5486 * log was synced as part of an fsync against any other unrelated inode. 5487 * So keep it simple for this case and just don't flag the ancestors as 5488 * logged. 5489 */ 5490 if (!ctx || 5491 !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name && 5492 &inode->vfs_inode != ctx->inode)) { 5493 spin_lock(&inode->lock); 5494 inode->logged_trans = trans->transid; 5495 /* 5496 * Don't update last_log_commit if we logged that an inode exists 5497 * after it was loaded to memory (full_sync bit set). 5498 * This is to prevent data loss when we do a write to the inode, 5499 * then the inode gets evicted after all delalloc was flushed, 5500 * then we log it exists (due to a rename for example) and then 5501 * fsync it. This last fsync would do nothing (not logging the 5502 * extents previously written). 5503 */ 5504 if (inode_only != LOG_INODE_EXISTS || 5505 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) 5506 inode->last_log_commit = inode->last_sub_trans; 5507 spin_unlock(&inode->lock); 5508 } 5509 out_unlock: 5510 mutex_unlock(&inode->log_mutex); 5511 5512 btrfs_free_path(path); 5513 btrfs_free_path(dst_path); 5514 return err; 5515 } 5516 5517 /* 5518 * Check if we need to log an inode. This is used in contexts where while 5519 * logging an inode we need to log another inode (either that it exists or in 5520 * full mode). This is used instead of btrfs_inode_in_log() because the later 5521 * requires the inode to be in the log and have the log transaction committed, 5522 * while here we do not care if the log transaction was already committed - our 5523 * caller will commit the log later - and we want to avoid logging an inode 5524 * multiple times when multiple tasks have joined the same log transaction. 5525 */ 5526 static bool need_log_inode(struct btrfs_trans_handle *trans, 5527 struct btrfs_inode *inode) 5528 { 5529 /* 5530 * If this inode does not have new/updated/deleted xattrs since the last 5531 * time it was logged and is flagged as logged in the current transaction, 5532 * we can skip logging it. As for new/deleted names, those are updated in 5533 * the log by link/unlink/rename operations. 5534 * In case the inode was logged and then evicted and reloaded, its 5535 * logged_trans will be 0, in which case we have to fully log it since 5536 * logged_trans is a transient field, not persisted. 5537 */ 5538 if (inode->logged_trans == trans->transid && 5539 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 5540 return false; 5541 5542 return true; 5543 } 5544 5545 struct btrfs_dir_list { 5546 u64 ino; 5547 struct list_head list; 5548 }; 5549 5550 /* 5551 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5552 * details about the why it is needed. 5553 * This is a recursive operation - if an existing dentry corresponds to a 5554 * directory, that directory's new entries are logged too (same behaviour as 5555 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5556 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5557 * complains about the following circular lock dependency / possible deadlock: 5558 * 5559 * CPU0 CPU1 5560 * ---- ---- 5561 * lock(&type->i_mutex_dir_key#3/2); 5562 * lock(sb_internal#2); 5563 * lock(&type->i_mutex_dir_key#3/2); 5564 * lock(&sb->s_type->i_mutex_key#14); 5565 * 5566 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5567 * sb_start_intwrite() in btrfs_start_transaction(). 5568 * Not locking i_mutex of the inodes is still safe because: 5569 * 5570 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5571 * that while logging the inode new references (names) are added or removed 5572 * from the inode, leaving the logged inode item with a link count that does 5573 * not match the number of logged inode reference items. This is fine because 5574 * at log replay time we compute the real number of links and correct the 5575 * link count in the inode item (see replay_one_buffer() and 5576 * link_to_fixup_dir()); 5577 * 5578 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5579 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5580 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5581 * has a size that doesn't match the sum of the lengths of all the logged 5582 * names. This does not result in a problem because if a dir_item key is 5583 * logged but its matching dir_index key is not logged, at log replay time we 5584 * don't use it to replay the respective name (see replay_one_name()). On the 5585 * other hand if only the dir_index key ends up being logged, the respective 5586 * name is added to the fs/subvol tree with both the dir_item and dir_index 5587 * keys created (see replay_one_name()). 5588 * The directory's inode item with a wrong i_size is not a problem as well, 5589 * since we don't use it at log replay time to set the i_size in the inode 5590 * item of the fs/subvol tree (see overwrite_item()). 5591 */ 5592 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5593 struct btrfs_root *root, 5594 struct btrfs_inode *start_inode, 5595 struct btrfs_log_ctx *ctx) 5596 { 5597 struct btrfs_fs_info *fs_info = root->fs_info; 5598 struct btrfs_root *log = root->log_root; 5599 struct btrfs_path *path; 5600 LIST_HEAD(dir_list); 5601 struct btrfs_dir_list *dir_elem; 5602 int ret = 0; 5603 5604 path = btrfs_alloc_path(); 5605 if (!path) 5606 return -ENOMEM; 5607 5608 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5609 if (!dir_elem) { 5610 btrfs_free_path(path); 5611 return -ENOMEM; 5612 } 5613 dir_elem->ino = btrfs_ino(start_inode); 5614 list_add_tail(&dir_elem->list, &dir_list); 5615 5616 while (!list_empty(&dir_list)) { 5617 struct extent_buffer *leaf; 5618 struct btrfs_key min_key; 5619 int nritems; 5620 int i; 5621 5622 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5623 list); 5624 if (ret) 5625 goto next_dir_inode; 5626 5627 min_key.objectid = dir_elem->ino; 5628 min_key.type = BTRFS_DIR_ITEM_KEY; 5629 min_key.offset = 0; 5630 again: 5631 btrfs_release_path(path); 5632 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5633 if (ret < 0) { 5634 goto next_dir_inode; 5635 } else if (ret > 0) { 5636 ret = 0; 5637 goto next_dir_inode; 5638 } 5639 5640 process_leaf: 5641 leaf = path->nodes[0]; 5642 nritems = btrfs_header_nritems(leaf); 5643 for (i = path->slots[0]; i < nritems; i++) { 5644 struct btrfs_dir_item *di; 5645 struct btrfs_key di_key; 5646 struct inode *di_inode; 5647 struct btrfs_dir_list *new_dir_elem; 5648 int log_mode = LOG_INODE_EXISTS; 5649 int type; 5650 5651 btrfs_item_key_to_cpu(leaf, &min_key, i); 5652 if (min_key.objectid != dir_elem->ino || 5653 min_key.type != BTRFS_DIR_ITEM_KEY) 5654 goto next_dir_inode; 5655 5656 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5657 type = btrfs_dir_type(leaf, di); 5658 if (btrfs_dir_transid(leaf, di) < trans->transid && 5659 type != BTRFS_FT_DIR) 5660 continue; 5661 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5662 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5663 continue; 5664 5665 btrfs_release_path(path); 5666 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root); 5667 if (IS_ERR(di_inode)) { 5668 ret = PTR_ERR(di_inode); 5669 goto next_dir_inode; 5670 } 5671 5672 if (!need_log_inode(trans, BTRFS_I(di_inode))) { 5673 btrfs_add_delayed_iput(di_inode); 5674 break; 5675 } 5676 5677 ctx->log_new_dentries = false; 5678 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5679 log_mode = LOG_INODE_ALL; 5680 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), 5681 log_mode, ctx); 5682 btrfs_add_delayed_iput(di_inode); 5683 if (ret) 5684 goto next_dir_inode; 5685 if (ctx->log_new_dentries) { 5686 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5687 GFP_NOFS); 5688 if (!new_dir_elem) { 5689 ret = -ENOMEM; 5690 goto next_dir_inode; 5691 } 5692 new_dir_elem->ino = di_key.objectid; 5693 list_add_tail(&new_dir_elem->list, &dir_list); 5694 } 5695 break; 5696 } 5697 if (i == nritems) { 5698 ret = btrfs_next_leaf(log, path); 5699 if (ret < 0) { 5700 goto next_dir_inode; 5701 } else if (ret > 0) { 5702 ret = 0; 5703 goto next_dir_inode; 5704 } 5705 goto process_leaf; 5706 } 5707 if (min_key.offset < (u64)-1) { 5708 min_key.offset++; 5709 goto again; 5710 } 5711 next_dir_inode: 5712 list_del(&dir_elem->list); 5713 kfree(dir_elem); 5714 } 5715 5716 btrfs_free_path(path); 5717 return ret; 5718 } 5719 5720 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5721 struct btrfs_inode *inode, 5722 struct btrfs_log_ctx *ctx) 5723 { 5724 struct btrfs_fs_info *fs_info = trans->fs_info; 5725 int ret; 5726 struct btrfs_path *path; 5727 struct btrfs_key key; 5728 struct btrfs_root *root = inode->root; 5729 const u64 ino = btrfs_ino(inode); 5730 5731 path = btrfs_alloc_path(); 5732 if (!path) 5733 return -ENOMEM; 5734 path->skip_locking = 1; 5735 path->search_commit_root = 1; 5736 5737 key.objectid = ino; 5738 key.type = BTRFS_INODE_REF_KEY; 5739 key.offset = 0; 5740 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5741 if (ret < 0) 5742 goto out; 5743 5744 while (true) { 5745 struct extent_buffer *leaf = path->nodes[0]; 5746 int slot = path->slots[0]; 5747 u32 cur_offset = 0; 5748 u32 item_size; 5749 unsigned long ptr; 5750 5751 if (slot >= btrfs_header_nritems(leaf)) { 5752 ret = btrfs_next_leaf(root, path); 5753 if (ret < 0) 5754 goto out; 5755 else if (ret > 0) 5756 break; 5757 continue; 5758 } 5759 5760 btrfs_item_key_to_cpu(leaf, &key, slot); 5761 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5762 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5763 break; 5764 5765 item_size = btrfs_item_size_nr(leaf, slot); 5766 ptr = btrfs_item_ptr_offset(leaf, slot); 5767 while (cur_offset < item_size) { 5768 struct btrfs_key inode_key; 5769 struct inode *dir_inode; 5770 5771 inode_key.type = BTRFS_INODE_ITEM_KEY; 5772 inode_key.offset = 0; 5773 5774 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5775 struct btrfs_inode_extref *extref; 5776 5777 extref = (struct btrfs_inode_extref *) 5778 (ptr + cur_offset); 5779 inode_key.objectid = btrfs_inode_extref_parent( 5780 leaf, extref); 5781 cur_offset += sizeof(*extref); 5782 cur_offset += btrfs_inode_extref_name_len(leaf, 5783 extref); 5784 } else { 5785 inode_key.objectid = key.offset; 5786 cur_offset = item_size; 5787 } 5788 5789 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid, 5790 root); 5791 /* 5792 * If the parent inode was deleted, return an error to 5793 * fallback to a transaction commit. This is to prevent 5794 * getting an inode that was moved from one parent A to 5795 * a parent B, got its former parent A deleted and then 5796 * it got fsync'ed, from existing at both parents after 5797 * a log replay (and the old parent still existing). 5798 * Example: 5799 * 5800 * mkdir /mnt/A 5801 * mkdir /mnt/B 5802 * touch /mnt/B/bar 5803 * sync 5804 * mv /mnt/B/bar /mnt/A/bar 5805 * mv -T /mnt/A /mnt/B 5806 * fsync /mnt/B/bar 5807 * <power fail> 5808 * 5809 * If we ignore the old parent B which got deleted, 5810 * after a log replay we would have file bar linked 5811 * at both parents and the old parent B would still 5812 * exist. 5813 */ 5814 if (IS_ERR(dir_inode)) { 5815 ret = PTR_ERR(dir_inode); 5816 goto out; 5817 } 5818 5819 if (!need_log_inode(trans, BTRFS_I(dir_inode))) { 5820 btrfs_add_delayed_iput(dir_inode); 5821 continue; 5822 } 5823 5824 if (ctx) 5825 ctx->log_new_dentries = false; 5826 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), 5827 LOG_INODE_ALL, ctx); 5828 if (!ret && ctx && ctx->log_new_dentries) 5829 ret = log_new_dir_dentries(trans, root, 5830 BTRFS_I(dir_inode), ctx); 5831 btrfs_add_delayed_iput(dir_inode); 5832 if (ret) 5833 goto out; 5834 } 5835 path->slots[0]++; 5836 } 5837 ret = 0; 5838 out: 5839 btrfs_free_path(path); 5840 return ret; 5841 } 5842 5843 static int log_new_ancestors(struct btrfs_trans_handle *trans, 5844 struct btrfs_root *root, 5845 struct btrfs_path *path, 5846 struct btrfs_log_ctx *ctx) 5847 { 5848 struct btrfs_key found_key; 5849 5850 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5851 5852 while (true) { 5853 struct btrfs_fs_info *fs_info = root->fs_info; 5854 struct extent_buffer *leaf = path->nodes[0]; 5855 int slot = path->slots[0]; 5856 struct btrfs_key search_key; 5857 struct inode *inode; 5858 u64 ino; 5859 int ret = 0; 5860 5861 btrfs_release_path(path); 5862 5863 ino = found_key.offset; 5864 5865 search_key.objectid = found_key.offset; 5866 search_key.type = BTRFS_INODE_ITEM_KEY; 5867 search_key.offset = 0; 5868 inode = btrfs_iget(fs_info->sb, ino, root); 5869 if (IS_ERR(inode)) 5870 return PTR_ERR(inode); 5871 5872 if (BTRFS_I(inode)->generation >= trans->transid && 5873 need_log_inode(trans, BTRFS_I(inode))) 5874 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5875 LOG_INODE_EXISTS, ctx); 5876 btrfs_add_delayed_iput(inode); 5877 if (ret) 5878 return ret; 5879 5880 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 5881 break; 5882 5883 search_key.type = BTRFS_INODE_REF_KEY; 5884 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5885 if (ret < 0) 5886 return ret; 5887 5888 leaf = path->nodes[0]; 5889 slot = path->slots[0]; 5890 if (slot >= btrfs_header_nritems(leaf)) { 5891 ret = btrfs_next_leaf(root, path); 5892 if (ret < 0) 5893 return ret; 5894 else if (ret > 0) 5895 return -ENOENT; 5896 leaf = path->nodes[0]; 5897 slot = path->slots[0]; 5898 } 5899 5900 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5901 if (found_key.objectid != search_key.objectid || 5902 found_key.type != BTRFS_INODE_REF_KEY) 5903 return -ENOENT; 5904 } 5905 return 0; 5906 } 5907 5908 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 5909 struct btrfs_inode *inode, 5910 struct dentry *parent, 5911 struct btrfs_log_ctx *ctx) 5912 { 5913 struct btrfs_root *root = inode->root; 5914 struct dentry *old_parent = NULL; 5915 struct super_block *sb = inode->vfs_inode.i_sb; 5916 int ret = 0; 5917 5918 while (true) { 5919 if (!parent || d_really_is_negative(parent) || 5920 sb != parent->d_sb) 5921 break; 5922 5923 inode = BTRFS_I(d_inode(parent)); 5924 if (root != inode->root) 5925 break; 5926 5927 if (inode->generation >= trans->transid && 5928 need_log_inode(trans, inode)) { 5929 ret = btrfs_log_inode(trans, root, inode, 5930 LOG_INODE_EXISTS, ctx); 5931 if (ret) 5932 break; 5933 } 5934 if (IS_ROOT(parent)) 5935 break; 5936 5937 parent = dget_parent(parent); 5938 dput(old_parent); 5939 old_parent = parent; 5940 } 5941 dput(old_parent); 5942 5943 return ret; 5944 } 5945 5946 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 5947 struct btrfs_inode *inode, 5948 struct dentry *parent, 5949 struct btrfs_log_ctx *ctx) 5950 { 5951 struct btrfs_root *root = inode->root; 5952 const u64 ino = btrfs_ino(inode); 5953 struct btrfs_path *path; 5954 struct btrfs_key search_key; 5955 int ret; 5956 5957 /* 5958 * For a single hard link case, go through a fast path that does not 5959 * need to iterate the fs/subvolume tree. 5960 */ 5961 if (inode->vfs_inode.i_nlink < 2) 5962 return log_new_ancestors_fast(trans, inode, parent, ctx); 5963 5964 path = btrfs_alloc_path(); 5965 if (!path) 5966 return -ENOMEM; 5967 5968 search_key.objectid = ino; 5969 search_key.type = BTRFS_INODE_REF_KEY; 5970 search_key.offset = 0; 5971 again: 5972 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5973 if (ret < 0) 5974 goto out; 5975 if (ret == 0) 5976 path->slots[0]++; 5977 5978 while (true) { 5979 struct extent_buffer *leaf = path->nodes[0]; 5980 int slot = path->slots[0]; 5981 struct btrfs_key found_key; 5982 5983 if (slot >= btrfs_header_nritems(leaf)) { 5984 ret = btrfs_next_leaf(root, path); 5985 if (ret < 0) 5986 goto out; 5987 else if (ret > 0) 5988 break; 5989 continue; 5990 } 5991 5992 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5993 if (found_key.objectid != ino || 5994 found_key.type > BTRFS_INODE_EXTREF_KEY) 5995 break; 5996 5997 /* 5998 * Don't deal with extended references because they are rare 5999 * cases and too complex to deal with (we would need to keep 6000 * track of which subitem we are processing for each item in 6001 * this loop, etc). So just return some error to fallback to 6002 * a transaction commit. 6003 */ 6004 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 6005 ret = -EMLINK; 6006 goto out; 6007 } 6008 6009 /* 6010 * Logging ancestors needs to do more searches on the fs/subvol 6011 * tree, so it releases the path as needed to avoid deadlocks. 6012 * Keep track of the last inode ref key and resume from that key 6013 * after logging all new ancestors for the current hard link. 6014 */ 6015 memcpy(&search_key, &found_key, sizeof(search_key)); 6016 6017 ret = log_new_ancestors(trans, root, path, ctx); 6018 if (ret) 6019 goto out; 6020 btrfs_release_path(path); 6021 goto again; 6022 } 6023 ret = 0; 6024 out: 6025 btrfs_free_path(path); 6026 return ret; 6027 } 6028 6029 /* 6030 * helper function around btrfs_log_inode to make sure newly created 6031 * parent directories also end up in the log. A minimal inode and backref 6032 * only logging is done of any parent directories that are older than 6033 * the last committed transaction 6034 */ 6035 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 6036 struct btrfs_inode *inode, 6037 struct dentry *parent, 6038 int inode_only, 6039 struct btrfs_log_ctx *ctx) 6040 { 6041 struct btrfs_root *root = inode->root; 6042 struct btrfs_fs_info *fs_info = root->fs_info; 6043 int ret = 0; 6044 bool log_dentries = false; 6045 6046 if (btrfs_test_opt(fs_info, NOTREELOG)) { 6047 ret = 1; 6048 goto end_no_trans; 6049 } 6050 6051 if (btrfs_root_refs(&root->root_item) == 0) { 6052 ret = 1; 6053 goto end_no_trans; 6054 } 6055 6056 /* 6057 * Skip already logged inodes or inodes corresponding to tmpfiles 6058 * (since logging them is pointless, a link count of 0 means they 6059 * will never be accessible). 6060 */ 6061 if (btrfs_inode_in_log(inode, trans->transid) || 6062 inode->vfs_inode.i_nlink == 0) { 6063 ret = BTRFS_NO_LOG_SYNC; 6064 goto end_no_trans; 6065 } 6066 6067 ret = start_log_trans(trans, root, ctx); 6068 if (ret) 6069 goto end_no_trans; 6070 6071 ret = btrfs_log_inode(trans, root, inode, inode_only, ctx); 6072 if (ret) 6073 goto end_trans; 6074 6075 /* 6076 * for regular files, if its inode is already on disk, we don't 6077 * have to worry about the parents at all. This is because 6078 * we can use the last_unlink_trans field to record renames 6079 * and other fun in this file. 6080 */ 6081 if (S_ISREG(inode->vfs_inode.i_mode) && 6082 inode->generation < trans->transid && 6083 inode->last_unlink_trans < trans->transid) { 6084 ret = 0; 6085 goto end_trans; 6086 } 6087 6088 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) 6089 log_dentries = true; 6090 6091 /* 6092 * On unlink we must make sure all our current and old parent directory 6093 * inodes are fully logged. This is to prevent leaving dangling 6094 * directory index entries in directories that were our parents but are 6095 * not anymore. Not doing this results in old parent directory being 6096 * impossible to delete after log replay (rmdir will always fail with 6097 * error -ENOTEMPTY). 6098 * 6099 * Example 1: 6100 * 6101 * mkdir testdir 6102 * touch testdir/foo 6103 * ln testdir/foo testdir/bar 6104 * sync 6105 * unlink testdir/bar 6106 * xfs_io -c fsync testdir/foo 6107 * <power failure> 6108 * mount fs, triggers log replay 6109 * 6110 * If we don't log the parent directory (testdir), after log replay the 6111 * directory still has an entry pointing to the file inode using the bar 6112 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6113 * the file inode has a link count of 1. 6114 * 6115 * Example 2: 6116 * 6117 * mkdir testdir 6118 * touch foo 6119 * ln foo testdir/foo2 6120 * ln foo testdir/foo3 6121 * sync 6122 * unlink testdir/foo3 6123 * xfs_io -c fsync foo 6124 * <power failure> 6125 * mount fs, triggers log replay 6126 * 6127 * Similar as the first example, after log replay the parent directory 6128 * testdir still has an entry pointing to the inode file with name foo3 6129 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6130 * and has a link count of 2. 6131 */ 6132 if (inode->last_unlink_trans >= trans->transid) { 6133 ret = btrfs_log_all_parents(trans, inode, ctx); 6134 if (ret) 6135 goto end_trans; 6136 } 6137 6138 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6139 if (ret) 6140 goto end_trans; 6141 6142 if (log_dentries) 6143 ret = log_new_dir_dentries(trans, root, inode, ctx); 6144 else 6145 ret = 0; 6146 end_trans: 6147 if (ret < 0) { 6148 btrfs_set_log_full_commit(trans); 6149 ret = 1; 6150 } 6151 6152 if (ret) 6153 btrfs_remove_log_ctx(root, ctx); 6154 btrfs_end_log_trans(root); 6155 end_no_trans: 6156 return ret; 6157 } 6158 6159 /* 6160 * it is not safe to log dentry if the chunk root has added new 6161 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6162 * If this returns 1, you must commit the transaction to safely get your 6163 * data on disk. 6164 */ 6165 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6166 struct dentry *dentry, 6167 struct btrfs_log_ctx *ctx) 6168 { 6169 struct dentry *parent = dget_parent(dentry); 6170 int ret; 6171 6172 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6173 LOG_INODE_ALL, ctx); 6174 dput(parent); 6175 6176 return ret; 6177 } 6178 6179 /* 6180 * should be called during mount to recover any replay any log trees 6181 * from the FS 6182 */ 6183 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6184 { 6185 int ret; 6186 struct btrfs_path *path; 6187 struct btrfs_trans_handle *trans; 6188 struct btrfs_key key; 6189 struct btrfs_key found_key; 6190 struct btrfs_root *log; 6191 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6192 struct walk_control wc = { 6193 .process_func = process_one_buffer, 6194 .stage = LOG_WALK_PIN_ONLY, 6195 }; 6196 6197 path = btrfs_alloc_path(); 6198 if (!path) 6199 return -ENOMEM; 6200 6201 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6202 6203 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6204 if (IS_ERR(trans)) { 6205 ret = PTR_ERR(trans); 6206 goto error; 6207 } 6208 6209 wc.trans = trans; 6210 wc.pin = 1; 6211 6212 ret = walk_log_tree(trans, log_root_tree, &wc); 6213 if (ret) { 6214 btrfs_handle_fs_error(fs_info, ret, 6215 "Failed to pin buffers while recovering log root tree."); 6216 goto error; 6217 } 6218 6219 again: 6220 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6221 key.offset = (u64)-1; 6222 key.type = BTRFS_ROOT_ITEM_KEY; 6223 6224 while (1) { 6225 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6226 6227 if (ret < 0) { 6228 btrfs_handle_fs_error(fs_info, ret, 6229 "Couldn't find tree log root."); 6230 goto error; 6231 } 6232 if (ret > 0) { 6233 if (path->slots[0] == 0) 6234 break; 6235 path->slots[0]--; 6236 } 6237 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6238 path->slots[0]); 6239 btrfs_release_path(path); 6240 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6241 break; 6242 6243 log = btrfs_read_tree_root(log_root_tree, &found_key); 6244 if (IS_ERR(log)) { 6245 ret = PTR_ERR(log); 6246 btrfs_handle_fs_error(fs_info, ret, 6247 "Couldn't read tree log root."); 6248 goto error; 6249 } 6250 6251 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 6252 true); 6253 if (IS_ERR(wc.replay_dest)) { 6254 ret = PTR_ERR(wc.replay_dest); 6255 6256 /* 6257 * We didn't find the subvol, likely because it was 6258 * deleted. This is ok, simply skip this log and go to 6259 * the next one. 6260 * 6261 * We need to exclude the root because we can't have 6262 * other log replays overwriting this log as we'll read 6263 * it back in a few more times. This will keep our 6264 * block from being modified, and we'll just bail for 6265 * each subsequent pass. 6266 */ 6267 if (ret == -ENOENT) 6268 ret = btrfs_pin_extent_for_log_replay(trans, 6269 log->node->start, 6270 log->node->len); 6271 btrfs_put_root(log); 6272 6273 if (!ret) 6274 goto next; 6275 btrfs_handle_fs_error(fs_info, ret, 6276 "Couldn't read target root for tree log recovery."); 6277 goto error; 6278 } 6279 6280 wc.replay_dest->log_root = log; 6281 btrfs_record_root_in_trans(trans, wc.replay_dest); 6282 ret = walk_log_tree(trans, log, &wc); 6283 6284 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6285 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6286 path); 6287 } 6288 6289 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6290 struct btrfs_root *root = wc.replay_dest; 6291 6292 btrfs_release_path(path); 6293 6294 /* 6295 * We have just replayed everything, and the highest 6296 * objectid of fs roots probably has changed in case 6297 * some inode_item's got replayed. 6298 * 6299 * root->objectid_mutex is not acquired as log replay 6300 * could only happen during mount. 6301 */ 6302 ret = btrfs_init_root_free_objectid(root); 6303 } 6304 6305 wc.replay_dest->log_root = NULL; 6306 btrfs_put_root(wc.replay_dest); 6307 btrfs_put_root(log); 6308 6309 if (ret) 6310 goto error; 6311 next: 6312 if (found_key.offset == 0) 6313 break; 6314 key.offset = found_key.offset - 1; 6315 } 6316 btrfs_release_path(path); 6317 6318 /* step one is to pin it all, step two is to replay just inodes */ 6319 if (wc.pin) { 6320 wc.pin = 0; 6321 wc.process_func = replay_one_buffer; 6322 wc.stage = LOG_WALK_REPLAY_INODES; 6323 goto again; 6324 } 6325 /* step three is to replay everything */ 6326 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6327 wc.stage++; 6328 goto again; 6329 } 6330 6331 btrfs_free_path(path); 6332 6333 /* step 4: commit the transaction, which also unpins the blocks */ 6334 ret = btrfs_commit_transaction(trans); 6335 if (ret) 6336 return ret; 6337 6338 log_root_tree->log_root = NULL; 6339 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6340 btrfs_put_root(log_root_tree); 6341 6342 return 0; 6343 error: 6344 if (wc.trans) 6345 btrfs_end_transaction(wc.trans); 6346 btrfs_free_path(path); 6347 return ret; 6348 } 6349 6350 /* 6351 * there are some corner cases where we want to force a full 6352 * commit instead of allowing a directory to be logged. 6353 * 6354 * They revolve around files there were unlinked from the directory, and 6355 * this function updates the parent directory so that a full commit is 6356 * properly done if it is fsync'd later after the unlinks are done. 6357 * 6358 * Must be called before the unlink operations (updates to the subvolume tree, 6359 * inodes, etc) are done. 6360 */ 6361 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6362 struct btrfs_inode *dir, struct btrfs_inode *inode, 6363 int for_rename) 6364 { 6365 /* 6366 * when we're logging a file, if it hasn't been renamed 6367 * or unlinked, and its inode is fully committed on disk, 6368 * we don't have to worry about walking up the directory chain 6369 * to log its parents. 6370 * 6371 * So, we use the last_unlink_trans field to put this transid 6372 * into the file. When the file is logged we check it and 6373 * don't log the parents if the file is fully on disk. 6374 */ 6375 mutex_lock(&inode->log_mutex); 6376 inode->last_unlink_trans = trans->transid; 6377 mutex_unlock(&inode->log_mutex); 6378 6379 /* 6380 * if this directory was already logged any new 6381 * names for this file/dir will get recorded 6382 */ 6383 if (dir->logged_trans == trans->transid) 6384 return; 6385 6386 /* 6387 * if the inode we're about to unlink was logged, 6388 * the log will be properly updated for any new names 6389 */ 6390 if (inode->logged_trans == trans->transid) 6391 return; 6392 6393 /* 6394 * when renaming files across directories, if the directory 6395 * there we're unlinking from gets fsync'd later on, there's 6396 * no way to find the destination directory later and fsync it 6397 * properly. So, we have to be conservative and force commits 6398 * so the new name gets discovered. 6399 */ 6400 if (for_rename) 6401 goto record; 6402 6403 /* we can safely do the unlink without any special recording */ 6404 return; 6405 6406 record: 6407 mutex_lock(&dir->log_mutex); 6408 dir->last_unlink_trans = trans->transid; 6409 mutex_unlock(&dir->log_mutex); 6410 } 6411 6412 /* 6413 * Make sure that if someone attempts to fsync the parent directory of a deleted 6414 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6415 * that after replaying the log tree of the parent directory's root we will not 6416 * see the snapshot anymore and at log replay time we will not see any log tree 6417 * corresponding to the deleted snapshot's root, which could lead to replaying 6418 * it after replaying the log tree of the parent directory (which would replay 6419 * the snapshot delete operation). 6420 * 6421 * Must be called before the actual snapshot destroy operation (updates to the 6422 * parent root and tree of tree roots trees, etc) are done. 6423 */ 6424 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6425 struct btrfs_inode *dir) 6426 { 6427 mutex_lock(&dir->log_mutex); 6428 dir->last_unlink_trans = trans->transid; 6429 mutex_unlock(&dir->log_mutex); 6430 } 6431 6432 /* 6433 * Call this after adding a new name for a file and it will properly 6434 * update the log to reflect the new name. 6435 */ 6436 void btrfs_log_new_name(struct btrfs_trans_handle *trans, 6437 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6438 struct dentry *parent) 6439 { 6440 struct btrfs_log_ctx ctx; 6441 6442 /* 6443 * this will force the logging code to walk the dentry chain 6444 * up for the file 6445 */ 6446 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6447 inode->last_unlink_trans = trans->transid; 6448 6449 /* 6450 * if this inode hasn't been logged and directory we're renaming it 6451 * from hasn't been logged, we don't need to log it 6452 */ 6453 if (inode->logged_trans < trans->transid && 6454 (!old_dir || old_dir->logged_trans < trans->transid)) 6455 return; 6456 6457 btrfs_init_log_ctx(&ctx, &inode->vfs_inode); 6458 ctx.logging_new_name = true; 6459 /* 6460 * We don't care about the return value. If we fail to log the new name 6461 * then we know the next attempt to sync the log will fallback to a full 6462 * transaction commit (due to a call to btrfs_set_log_full_commit()), so 6463 * we don't need to worry about getting a log committed that has an 6464 * inconsistent state after a rename operation. 6465 */ 6466 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); 6467 } 6468 6469