1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "inode-map.h" 21 22 /* magic values for the inode_only field in btrfs_log_inode: 23 * 24 * LOG_INODE_ALL means to log everything 25 * LOG_INODE_EXISTS means to log just enough to recreate the inode 26 * during log replay 27 */ 28 enum { 29 LOG_INODE_ALL, 30 LOG_INODE_EXISTS, 31 LOG_OTHER_INODE, 32 LOG_OTHER_INODE_ALL, 33 }; 34 35 /* 36 * directory trouble cases 37 * 38 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 39 * log, we must force a full commit before doing an fsync of the directory 40 * where the unlink was done. 41 * ---> record transid of last unlink/rename per directory 42 * 43 * mkdir foo/some_dir 44 * normal commit 45 * rename foo/some_dir foo2/some_dir 46 * mkdir foo/some_dir 47 * fsync foo/some_dir/some_file 48 * 49 * The fsync above will unlink the original some_dir without recording 50 * it in its new location (foo2). After a crash, some_dir will be gone 51 * unless the fsync of some_file forces a full commit 52 * 53 * 2) we must log any new names for any file or dir that is in the fsync 54 * log. ---> check inode while renaming/linking. 55 * 56 * 2a) we must log any new names for any file or dir during rename 57 * when the directory they are being removed from was logged. 58 * ---> check inode and old parent dir during rename 59 * 60 * 2a is actually the more important variant. With the extra logging 61 * a crash might unlink the old name without recreating the new one 62 * 63 * 3) after a crash, we must go through any directories with a link count 64 * of zero and redo the rm -rf 65 * 66 * mkdir f1/foo 67 * normal commit 68 * rm -rf f1/foo 69 * fsync(f1) 70 * 71 * The directory f1 was fully removed from the FS, but fsync was never 72 * called on f1, only its parent dir. After a crash the rm -rf must 73 * be replayed. This must be able to recurse down the entire 74 * directory tree. The inode link count fixup code takes care of the 75 * ugly details. 76 */ 77 78 /* 79 * stages for the tree walking. The first 80 * stage (0) is to only pin down the blocks we find 81 * the second stage (1) is to make sure that all the inodes 82 * we find in the log are created in the subvolume. 83 * 84 * The last stage is to deal with directories and links and extents 85 * and all the other fun semantics 86 */ 87 enum { 88 LOG_WALK_PIN_ONLY, 89 LOG_WALK_REPLAY_INODES, 90 LOG_WALK_REPLAY_DIR_INDEX, 91 LOG_WALK_REPLAY_ALL, 92 }; 93 94 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, struct btrfs_inode *inode, 96 int inode_only, 97 const loff_t start, 98 const loff_t end, 99 struct btrfs_log_ctx *ctx); 100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 101 struct btrfs_root *root, 102 struct btrfs_path *path, u64 objectid); 103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 104 struct btrfs_root *root, 105 struct btrfs_root *log, 106 struct btrfs_path *path, 107 u64 dirid, int del_all); 108 109 /* 110 * tree logging is a special write ahead log used to make sure that 111 * fsyncs and O_SYNCs can happen without doing full tree commits. 112 * 113 * Full tree commits are expensive because they require commonly 114 * modified blocks to be recowed, creating many dirty pages in the 115 * extent tree an 4x-6x higher write load than ext3. 116 * 117 * Instead of doing a tree commit on every fsync, we use the 118 * key ranges and transaction ids to find items for a given file or directory 119 * that have changed in this transaction. Those items are copied into 120 * a special tree (one per subvolume root), that tree is written to disk 121 * and then the fsync is considered complete. 122 * 123 * After a crash, items are copied out of the log-tree back into the 124 * subvolume tree. Any file data extents found are recorded in the extent 125 * allocation tree, and the log-tree freed. 126 * 127 * The log tree is read three times, once to pin down all the extents it is 128 * using in ram and once, once to create all the inodes logged in the tree 129 * and once to do all the other items. 130 */ 131 132 /* 133 * start a sub transaction and setup the log tree 134 * this increments the log tree writer count to make the people 135 * syncing the tree wait for us to finish 136 */ 137 static int start_log_trans(struct btrfs_trans_handle *trans, 138 struct btrfs_root *root, 139 struct btrfs_log_ctx *ctx) 140 { 141 struct btrfs_fs_info *fs_info = root->fs_info; 142 int ret = 0; 143 144 mutex_lock(&root->log_mutex); 145 146 if (root->log_root) { 147 if (btrfs_need_log_full_commit(trans)) { 148 ret = -EAGAIN; 149 goto out; 150 } 151 152 if (!root->log_start_pid) { 153 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 154 root->log_start_pid = current->pid; 155 } else if (root->log_start_pid != current->pid) { 156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 157 } 158 } else { 159 mutex_lock(&fs_info->tree_log_mutex); 160 if (!fs_info->log_root_tree) 161 ret = btrfs_init_log_root_tree(trans, fs_info); 162 mutex_unlock(&fs_info->tree_log_mutex); 163 if (ret) 164 goto out; 165 166 ret = btrfs_add_log_tree(trans, root); 167 if (ret) 168 goto out; 169 170 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 171 root->log_start_pid = current->pid; 172 } 173 174 atomic_inc(&root->log_batch); 175 atomic_inc(&root->log_writers); 176 if (ctx) { 177 int index = root->log_transid % 2; 178 list_add_tail(&ctx->list, &root->log_ctxs[index]); 179 ctx->log_transid = root->log_transid; 180 } 181 182 out: 183 mutex_unlock(&root->log_mutex); 184 return ret; 185 } 186 187 /* 188 * returns 0 if there was a log transaction running and we were able 189 * to join, or returns -ENOENT if there were not transactions 190 * in progress 191 */ 192 static int join_running_log_trans(struct btrfs_root *root) 193 { 194 int ret = -ENOENT; 195 196 mutex_lock(&root->log_mutex); 197 if (root->log_root) { 198 ret = 0; 199 atomic_inc(&root->log_writers); 200 } 201 mutex_unlock(&root->log_mutex); 202 return ret; 203 } 204 205 /* 206 * This either makes the current running log transaction wait 207 * until you call btrfs_end_log_trans() or it makes any future 208 * log transactions wait until you call btrfs_end_log_trans() 209 */ 210 void btrfs_pin_log_trans(struct btrfs_root *root) 211 { 212 mutex_lock(&root->log_mutex); 213 atomic_inc(&root->log_writers); 214 mutex_unlock(&root->log_mutex); 215 } 216 217 /* 218 * indicate we're done making changes to the log tree 219 * and wake up anyone waiting to do a sync 220 */ 221 void btrfs_end_log_trans(struct btrfs_root *root) 222 { 223 if (atomic_dec_and_test(&root->log_writers)) { 224 /* atomic_dec_and_test implies a barrier */ 225 cond_wake_up_nomb(&root->log_writer_wait); 226 } 227 } 228 229 static int btrfs_write_tree_block(struct extent_buffer *buf) 230 { 231 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 232 buf->start + buf->len - 1); 233 } 234 235 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 236 { 237 filemap_fdatawait_range(buf->pages[0]->mapping, 238 buf->start, buf->start + buf->len - 1); 239 } 240 241 /* 242 * the walk control struct is used to pass state down the chain when 243 * processing the log tree. The stage field tells us which part 244 * of the log tree processing we are currently doing. The others 245 * are state fields used for that specific part 246 */ 247 struct walk_control { 248 /* should we free the extent on disk when done? This is used 249 * at transaction commit time while freeing a log tree 250 */ 251 int free; 252 253 /* should we write out the extent buffer? This is used 254 * while flushing the log tree to disk during a sync 255 */ 256 int write; 257 258 /* should we wait for the extent buffer io to finish? Also used 259 * while flushing the log tree to disk for a sync 260 */ 261 int wait; 262 263 /* pin only walk, we record which extents on disk belong to the 264 * log trees 265 */ 266 int pin; 267 268 /* what stage of the replay code we're currently in */ 269 int stage; 270 271 /* 272 * Ignore any items from the inode currently being processed. Needs 273 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 274 * the LOG_WALK_REPLAY_INODES stage. 275 */ 276 bool ignore_cur_inode; 277 278 /* the root we are currently replaying */ 279 struct btrfs_root *replay_dest; 280 281 /* the trans handle for the current replay */ 282 struct btrfs_trans_handle *trans; 283 284 /* the function that gets used to process blocks we find in the 285 * tree. Note the extent_buffer might not be up to date when it is 286 * passed in, and it must be checked or read if you need the data 287 * inside it 288 */ 289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 290 struct walk_control *wc, u64 gen, int level); 291 }; 292 293 /* 294 * process_func used to pin down extents, write them or wait on them 295 */ 296 static int process_one_buffer(struct btrfs_root *log, 297 struct extent_buffer *eb, 298 struct walk_control *wc, u64 gen, int level) 299 { 300 struct btrfs_fs_info *fs_info = log->fs_info; 301 int ret = 0; 302 303 /* 304 * If this fs is mixed then we need to be able to process the leaves to 305 * pin down any logged extents, so we have to read the block. 306 */ 307 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 308 ret = btrfs_read_buffer(eb, gen, level, NULL); 309 if (ret) 310 return ret; 311 } 312 313 if (wc->pin) 314 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start, 315 eb->len); 316 317 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 318 if (wc->pin && btrfs_header_level(eb) == 0) 319 ret = btrfs_exclude_logged_extents(eb); 320 if (wc->write) 321 btrfs_write_tree_block(eb); 322 if (wc->wait) 323 btrfs_wait_tree_block_writeback(eb); 324 } 325 return ret; 326 } 327 328 /* 329 * Item overwrite used by replay and tree logging. eb, slot and key all refer 330 * to the src data we are copying out. 331 * 332 * root is the tree we are copying into, and path is a scratch 333 * path for use in this function (it should be released on entry and 334 * will be released on exit). 335 * 336 * If the key is already in the destination tree the existing item is 337 * overwritten. If the existing item isn't big enough, it is extended. 338 * If it is too large, it is truncated. 339 * 340 * If the key isn't in the destination yet, a new item is inserted. 341 */ 342 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 343 struct btrfs_root *root, 344 struct btrfs_path *path, 345 struct extent_buffer *eb, int slot, 346 struct btrfs_key *key) 347 { 348 int ret; 349 u32 item_size; 350 u64 saved_i_size = 0; 351 int save_old_i_size = 0; 352 unsigned long src_ptr; 353 unsigned long dst_ptr; 354 int overwrite_root = 0; 355 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 356 357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 358 overwrite_root = 1; 359 360 item_size = btrfs_item_size_nr(eb, slot); 361 src_ptr = btrfs_item_ptr_offset(eb, slot); 362 363 /* look for the key in the destination tree */ 364 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 365 if (ret < 0) 366 return ret; 367 368 if (ret == 0) { 369 char *src_copy; 370 char *dst_copy; 371 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 372 path->slots[0]); 373 if (dst_size != item_size) 374 goto insert; 375 376 if (item_size == 0) { 377 btrfs_release_path(path); 378 return 0; 379 } 380 dst_copy = kmalloc(item_size, GFP_NOFS); 381 src_copy = kmalloc(item_size, GFP_NOFS); 382 if (!dst_copy || !src_copy) { 383 btrfs_release_path(path); 384 kfree(dst_copy); 385 kfree(src_copy); 386 return -ENOMEM; 387 } 388 389 read_extent_buffer(eb, src_copy, src_ptr, item_size); 390 391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 392 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 393 item_size); 394 ret = memcmp(dst_copy, src_copy, item_size); 395 396 kfree(dst_copy); 397 kfree(src_copy); 398 /* 399 * they have the same contents, just return, this saves 400 * us from cowing blocks in the destination tree and doing 401 * extra writes that may not have been done by a previous 402 * sync 403 */ 404 if (ret == 0) { 405 btrfs_release_path(path); 406 return 0; 407 } 408 409 /* 410 * We need to load the old nbytes into the inode so when we 411 * replay the extents we've logged we get the right nbytes. 412 */ 413 if (inode_item) { 414 struct btrfs_inode_item *item; 415 u64 nbytes; 416 u32 mode; 417 418 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 419 struct btrfs_inode_item); 420 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 421 item = btrfs_item_ptr(eb, slot, 422 struct btrfs_inode_item); 423 btrfs_set_inode_nbytes(eb, item, nbytes); 424 425 /* 426 * If this is a directory we need to reset the i_size to 427 * 0 so that we can set it up properly when replaying 428 * the rest of the items in this log. 429 */ 430 mode = btrfs_inode_mode(eb, item); 431 if (S_ISDIR(mode)) 432 btrfs_set_inode_size(eb, item, 0); 433 } 434 } else if (inode_item) { 435 struct btrfs_inode_item *item; 436 u32 mode; 437 438 /* 439 * New inode, set nbytes to 0 so that the nbytes comes out 440 * properly when we replay the extents. 441 */ 442 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 443 btrfs_set_inode_nbytes(eb, item, 0); 444 445 /* 446 * If this is a directory we need to reset the i_size to 0 so 447 * that we can set it up properly when replaying the rest of 448 * the items in this log. 449 */ 450 mode = btrfs_inode_mode(eb, item); 451 if (S_ISDIR(mode)) 452 btrfs_set_inode_size(eb, item, 0); 453 } 454 insert: 455 btrfs_release_path(path); 456 /* try to insert the key into the destination tree */ 457 path->skip_release_on_error = 1; 458 ret = btrfs_insert_empty_item(trans, root, path, 459 key, item_size); 460 path->skip_release_on_error = 0; 461 462 /* make sure any existing item is the correct size */ 463 if (ret == -EEXIST || ret == -EOVERFLOW) { 464 u32 found_size; 465 found_size = btrfs_item_size_nr(path->nodes[0], 466 path->slots[0]); 467 if (found_size > item_size) 468 btrfs_truncate_item(path, item_size, 1); 469 else if (found_size < item_size) 470 btrfs_extend_item(path, item_size - found_size); 471 } else if (ret) { 472 return ret; 473 } 474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 475 path->slots[0]); 476 477 /* don't overwrite an existing inode if the generation number 478 * was logged as zero. This is done when the tree logging code 479 * is just logging an inode to make sure it exists after recovery. 480 * 481 * Also, don't overwrite i_size on directories during replay. 482 * log replay inserts and removes directory items based on the 483 * state of the tree found in the subvolume, and i_size is modified 484 * as it goes 485 */ 486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 487 struct btrfs_inode_item *src_item; 488 struct btrfs_inode_item *dst_item; 489 490 src_item = (struct btrfs_inode_item *)src_ptr; 491 dst_item = (struct btrfs_inode_item *)dst_ptr; 492 493 if (btrfs_inode_generation(eb, src_item) == 0) { 494 struct extent_buffer *dst_eb = path->nodes[0]; 495 const u64 ino_size = btrfs_inode_size(eb, src_item); 496 497 /* 498 * For regular files an ino_size == 0 is used only when 499 * logging that an inode exists, as part of a directory 500 * fsync, and the inode wasn't fsynced before. In this 501 * case don't set the size of the inode in the fs/subvol 502 * tree, otherwise we would be throwing valid data away. 503 */ 504 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 505 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 506 ino_size != 0) { 507 struct btrfs_map_token token; 508 509 btrfs_init_map_token(&token, dst_eb); 510 btrfs_set_token_inode_size(dst_eb, dst_item, 511 ino_size, &token); 512 } 513 goto no_copy; 514 } 515 516 if (overwrite_root && 517 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 518 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 519 save_old_i_size = 1; 520 saved_i_size = btrfs_inode_size(path->nodes[0], 521 dst_item); 522 } 523 } 524 525 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 526 src_ptr, item_size); 527 528 if (save_old_i_size) { 529 struct btrfs_inode_item *dst_item; 530 dst_item = (struct btrfs_inode_item *)dst_ptr; 531 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 532 } 533 534 /* make sure the generation is filled in */ 535 if (key->type == BTRFS_INODE_ITEM_KEY) { 536 struct btrfs_inode_item *dst_item; 537 dst_item = (struct btrfs_inode_item *)dst_ptr; 538 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 539 btrfs_set_inode_generation(path->nodes[0], dst_item, 540 trans->transid); 541 } 542 } 543 no_copy: 544 btrfs_mark_buffer_dirty(path->nodes[0]); 545 btrfs_release_path(path); 546 return 0; 547 } 548 549 /* 550 * simple helper to read an inode off the disk from a given root 551 * This can only be called for subvolume roots and not for the log 552 */ 553 static noinline struct inode *read_one_inode(struct btrfs_root *root, 554 u64 objectid) 555 { 556 struct btrfs_key key; 557 struct inode *inode; 558 559 key.objectid = objectid; 560 key.type = BTRFS_INODE_ITEM_KEY; 561 key.offset = 0; 562 inode = btrfs_iget(root->fs_info->sb, &key, root); 563 if (IS_ERR(inode)) 564 inode = NULL; 565 return inode; 566 } 567 568 /* replays a single extent in 'eb' at 'slot' with 'key' into the 569 * subvolume 'root'. path is released on entry and should be released 570 * on exit. 571 * 572 * extents in the log tree have not been allocated out of the extent 573 * tree yet. So, this completes the allocation, taking a reference 574 * as required if the extent already exists or creating a new extent 575 * if it isn't in the extent allocation tree yet. 576 * 577 * The extent is inserted into the file, dropping any existing extents 578 * from the file that overlap the new one. 579 */ 580 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 581 struct btrfs_root *root, 582 struct btrfs_path *path, 583 struct extent_buffer *eb, int slot, 584 struct btrfs_key *key) 585 { 586 struct btrfs_fs_info *fs_info = root->fs_info; 587 int found_type; 588 u64 extent_end; 589 u64 start = key->offset; 590 u64 nbytes = 0; 591 struct btrfs_file_extent_item *item; 592 struct inode *inode = NULL; 593 unsigned long size; 594 int ret = 0; 595 596 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 597 found_type = btrfs_file_extent_type(eb, item); 598 599 if (found_type == BTRFS_FILE_EXTENT_REG || 600 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 601 nbytes = btrfs_file_extent_num_bytes(eb, item); 602 extent_end = start + nbytes; 603 604 /* 605 * We don't add to the inodes nbytes if we are prealloc or a 606 * hole. 607 */ 608 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 609 nbytes = 0; 610 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 611 size = btrfs_file_extent_ram_bytes(eb, item); 612 nbytes = btrfs_file_extent_ram_bytes(eb, item); 613 extent_end = ALIGN(start + size, 614 fs_info->sectorsize); 615 } else { 616 ret = 0; 617 goto out; 618 } 619 620 inode = read_one_inode(root, key->objectid); 621 if (!inode) { 622 ret = -EIO; 623 goto out; 624 } 625 626 /* 627 * first check to see if we already have this extent in the 628 * file. This must be done before the btrfs_drop_extents run 629 * so we don't try to drop this extent. 630 */ 631 ret = btrfs_lookup_file_extent(trans, root, path, 632 btrfs_ino(BTRFS_I(inode)), start, 0); 633 634 if (ret == 0 && 635 (found_type == BTRFS_FILE_EXTENT_REG || 636 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 637 struct btrfs_file_extent_item cmp1; 638 struct btrfs_file_extent_item cmp2; 639 struct btrfs_file_extent_item *existing; 640 struct extent_buffer *leaf; 641 642 leaf = path->nodes[0]; 643 existing = btrfs_item_ptr(leaf, path->slots[0], 644 struct btrfs_file_extent_item); 645 646 read_extent_buffer(eb, &cmp1, (unsigned long)item, 647 sizeof(cmp1)); 648 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 649 sizeof(cmp2)); 650 651 /* 652 * we already have a pointer to this exact extent, 653 * we don't have to do anything 654 */ 655 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 656 btrfs_release_path(path); 657 goto out; 658 } 659 } 660 btrfs_release_path(path); 661 662 /* drop any overlapping extents */ 663 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 664 if (ret) 665 goto out; 666 667 if (found_type == BTRFS_FILE_EXTENT_REG || 668 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 669 u64 offset; 670 unsigned long dest_offset; 671 struct btrfs_key ins; 672 673 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 674 btrfs_fs_incompat(fs_info, NO_HOLES)) 675 goto update_inode; 676 677 ret = btrfs_insert_empty_item(trans, root, path, key, 678 sizeof(*item)); 679 if (ret) 680 goto out; 681 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 682 path->slots[0]); 683 copy_extent_buffer(path->nodes[0], eb, dest_offset, 684 (unsigned long)item, sizeof(*item)); 685 686 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 687 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 688 ins.type = BTRFS_EXTENT_ITEM_KEY; 689 offset = key->offset - btrfs_file_extent_offset(eb, item); 690 691 /* 692 * Manually record dirty extent, as here we did a shallow 693 * file extent item copy and skip normal backref update, 694 * but modifying extent tree all by ourselves. 695 * So need to manually record dirty extent for qgroup, 696 * as the owner of the file extent changed from log tree 697 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 698 */ 699 ret = btrfs_qgroup_trace_extent(trans, 700 btrfs_file_extent_disk_bytenr(eb, item), 701 btrfs_file_extent_disk_num_bytes(eb, item), 702 GFP_NOFS); 703 if (ret < 0) 704 goto out; 705 706 if (ins.objectid > 0) { 707 struct btrfs_ref ref = { 0 }; 708 u64 csum_start; 709 u64 csum_end; 710 LIST_HEAD(ordered_sums); 711 712 /* 713 * is this extent already allocated in the extent 714 * allocation tree? If so, just add a reference 715 */ 716 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 717 ins.offset); 718 if (ret == 0) { 719 btrfs_init_generic_ref(&ref, 720 BTRFS_ADD_DELAYED_REF, 721 ins.objectid, ins.offset, 0); 722 btrfs_init_data_ref(&ref, 723 root->root_key.objectid, 724 key->objectid, offset); 725 ret = btrfs_inc_extent_ref(trans, &ref); 726 if (ret) 727 goto out; 728 } else { 729 /* 730 * insert the extent pointer in the extent 731 * allocation tree 732 */ 733 ret = btrfs_alloc_logged_file_extent(trans, 734 root->root_key.objectid, 735 key->objectid, offset, &ins); 736 if (ret) 737 goto out; 738 } 739 btrfs_release_path(path); 740 741 if (btrfs_file_extent_compression(eb, item)) { 742 csum_start = ins.objectid; 743 csum_end = csum_start + ins.offset; 744 } else { 745 csum_start = ins.objectid + 746 btrfs_file_extent_offset(eb, item); 747 csum_end = csum_start + 748 btrfs_file_extent_num_bytes(eb, item); 749 } 750 751 ret = btrfs_lookup_csums_range(root->log_root, 752 csum_start, csum_end - 1, 753 &ordered_sums, 0); 754 if (ret) 755 goto out; 756 /* 757 * Now delete all existing cums in the csum root that 758 * cover our range. We do this because we can have an 759 * extent that is completely referenced by one file 760 * extent item and partially referenced by another 761 * file extent item (like after using the clone or 762 * extent_same ioctls). In this case if we end up doing 763 * the replay of the one that partially references the 764 * extent first, and we do not do the csum deletion 765 * below, we can get 2 csum items in the csum tree that 766 * overlap each other. For example, imagine our log has 767 * the two following file extent items: 768 * 769 * key (257 EXTENT_DATA 409600) 770 * extent data disk byte 12845056 nr 102400 771 * extent data offset 20480 nr 20480 ram 102400 772 * 773 * key (257 EXTENT_DATA 819200) 774 * extent data disk byte 12845056 nr 102400 775 * extent data offset 0 nr 102400 ram 102400 776 * 777 * Where the second one fully references the 100K extent 778 * that starts at disk byte 12845056, and the log tree 779 * has a single csum item that covers the entire range 780 * of the extent: 781 * 782 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 783 * 784 * After the first file extent item is replayed, the 785 * csum tree gets the following csum item: 786 * 787 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 788 * 789 * Which covers the 20K sub-range starting at offset 20K 790 * of our extent. Now when we replay the second file 791 * extent item, if we do not delete existing csum items 792 * that cover any of its blocks, we end up getting two 793 * csum items in our csum tree that overlap each other: 794 * 795 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 796 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 797 * 798 * Which is a problem, because after this anyone trying 799 * to lookup up for the checksum of any block of our 800 * extent starting at an offset of 40K or higher, will 801 * end up looking at the second csum item only, which 802 * does not contain the checksum for any block starting 803 * at offset 40K or higher of our extent. 804 */ 805 while (!list_empty(&ordered_sums)) { 806 struct btrfs_ordered_sum *sums; 807 sums = list_entry(ordered_sums.next, 808 struct btrfs_ordered_sum, 809 list); 810 if (!ret) 811 ret = btrfs_del_csums(trans, 812 fs_info->csum_root, 813 sums->bytenr, 814 sums->len); 815 if (!ret) 816 ret = btrfs_csum_file_blocks(trans, 817 fs_info->csum_root, sums); 818 list_del(&sums->list); 819 kfree(sums); 820 } 821 if (ret) 822 goto out; 823 } else { 824 btrfs_release_path(path); 825 } 826 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 827 /* inline extents are easy, we just overwrite them */ 828 ret = overwrite_item(trans, root, path, eb, slot, key); 829 if (ret) 830 goto out; 831 } 832 833 inode_add_bytes(inode, nbytes); 834 update_inode: 835 ret = btrfs_update_inode(trans, root, inode); 836 out: 837 if (inode) 838 iput(inode); 839 return ret; 840 } 841 842 /* 843 * when cleaning up conflicts between the directory names in the 844 * subvolume, directory names in the log and directory names in the 845 * inode back references, we may have to unlink inodes from directories. 846 * 847 * This is a helper function to do the unlink of a specific directory 848 * item 849 */ 850 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 851 struct btrfs_root *root, 852 struct btrfs_path *path, 853 struct btrfs_inode *dir, 854 struct btrfs_dir_item *di) 855 { 856 struct inode *inode; 857 char *name; 858 int name_len; 859 struct extent_buffer *leaf; 860 struct btrfs_key location; 861 int ret; 862 863 leaf = path->nodes[0]; 864 865 btrfs_dir_item_key_to_cpu(leaf, di, &location); 866 name_len = btrfs_dir_name_len(leaf, di); 867 name = kmalloc(name_len, GFP_NOFS); 868 if (!name) 869 return -ENOMEM; 870 871 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 872 btrfs_release_path(path); 873 874 inode = read_one_inode(root, location.objectid); 875 if (!inode) { 876 ret = -EIO; 877 goto out; 878 } 879 880 ret = link_to_fixup_dir(trans, root, path, location.objectid); 881 if (ret) 882 goto out; 883 884 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, 885 name_len); 886 if (ret) 887 goto out; 888 else 889 ret = btrfs_run_delayed_items(trans); 890 out: 891 kfree(name); 892 iput(inode); 893 return ret; 894 } 895 896 /* 897 * helper function to see if a given name and sequence number found 898 * in an inode back reference are already in a directory and correctly 899 * point to this inode 900 */ 901 static noinline int inode_in_dir(struct btrfs_root *root, 902 struct btrfs_path *path, 903 u64 dirid, u64 objectid, u64 index, 904 const char *name, int name_len) 905 { 906 struct btrfs_dir_item *di; 907 struct btrfs_key location; 908 int match = 0; 909 910 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 911 index, name, name_len, 0); 912 if (di && !IS_ERR(di)) { 913 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 914 if (location.objectid != objectid) 915 goto out; 916 } else 917 goto out; 918 btrfs_release_path(path); 919 920 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 921 if (di && !IS_ERR(di)) { 922 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 923 if (location.objectid != objectid) 924 goto out; 925 } else 926 goto out; 927 match = 1; 928 out: 929 btrfs_release_path(path); 930 return match; 931 } 932 933 /* 934 * helper function to check a log tree for a named back reference in 935 * an inode. This is used to decide if a back reference that is 936 * found in the subvolume conflicts with what we find in the log. 937 * 938 * inode backreferences may have multiple refs in a single item, 939 * during replay we process one reference at a time, and we don't 940 * want to delete valid links to a file from the subvolume if that 941 * link is also in the log. 942 */ 943 static noinline int backref_in_log(struct btrfs_root *log, 944 struct btrfs_key *key, 945 u64 ref_objectid, 946 const char *name, int namelen) 947 { 948 struct btrfs_path *path; 949 int ret; 950 951 path = btrfs_alloc_path(); 952 if (!path) 953 return -ENOMEM; 954 955 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 956 if (ret < 0) { 957 goto out; 958 } else if (ret == 1) { 959 ret = 0; 960 goto out; 961 } 962 963 if (key->type == BTRFS_INODE_EXTREF_KEY) 964 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 965 path->slots[0], 966 ref_objectid, 967 name, namelen); 968 else 969 ret = !!btrfs_find_name_in_backref(path->nodes[0], 970 path->slots[0], 971 name, namelen); 972 out: 973 btrfs_free_path(path); 974 return ret; 975 } 976 977 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 978 struct btrfs_root *root, 979 struct btrfs_path *path, 980 struct btrfs_root *log_root, 981 struct btrfs_inode *dir, 982 struct btrfs_inode *inode, 983 u64 inode_objectid, u64 parent_objectid, 984 u64 ref_index, char *name, int namelen, 985 int *search_done) 986 { 987 int ret; 988 char *victim_name; 989 int victim_name_len; 990 struct extent_buffer *leaf; 991 struct btrfs_dir_item *di; 992 struct btrfs_key search_key; 993 struct btrfs_inode_extref *extref; 994 995 again: 996 /* Search old style refs */ 997 search_key.objectid = inode_objectid; 998 search_key.type = BTRFS_INODE_REF_KEY; 999 search_key.offset = parent_objectid; 1000 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1001 if (ret == 0) { 1002 struct btrfs_inode_ref *victim_ref; 1003 unsigned long ptr; 1004 unsigned long ptr_end; 1005 1006 leaf = path->nodes[0]; 1007 1008 /* are we trying to overwrite a back ref for the root directory 1009 * if so, just jump out, we're done 1010 */ 1011 if (search_key.objectid == search_key.offset) 1012 return 1; 1013 1014 /* check all the names in this back reference to see 1015 * if they are in the log. if so, we allow them to stay 1016 * otherwise they must be unlinked as a conflict 1017 */ 1018 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1019 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1020 while (ptr < ptr_end) { 1021 victim_ref = (struct btrfs_inode_ref *)ptr; 1022 victim_name_len = btrfs_inode_ref_name_len(leaf, 1023 victim_ref); 1024 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1025 if (!victim_name) 1026 return -ENOMEM; 1027 1028 read_extent_buffer(leaf, victim_name, 1029 (unsigned long)(victim_ref + 1), 1030 victim_name_len); 1031 1032 ret = backref_in_log(log_root, &search_key, 1033 parent_objectid, victim_name, 1034 victim_name_len); 1035 if (ret < 0) { 1036 kfree(victim_name); 1037 return ret; 1038 } else if (!ret) { 1039 inc_nlink(&inode->vfs_inode); 1040 btrfs_release_path(path); 1041 1042 ret = btrfs_unlink_inode(trans, root, dir, inode, 1043 victim_name, victim_name_len); 1044 kfree(victim_name); 1045 if (ret) 1046 return ret; 1047 ret = btrfs_run_delayed_items(trans); 1048 if (ret) 1049 return ret; 1050 *search_done = 1; 1051 goto again; 1052 } 1053 kfree(victim_name); 1054 1055 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1056 } 1057 1058 /* 1059 * NOTE: we have searched root tree and checked the 1060 * corresponding ref, it does not need to check again. 1061 */ 1062 *search_done = 1; 1063 } 1064 btrfs_release_path(path); 1065 1066 /* Same search but for extended refs */ 1067 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1068 inode_objectid, parent_objectid, 0, 1069 0); 1070 if (!IS_ERR_OR_NULL(extref)) { 1071 u32 item_size; 1072 u32 cur_offset = 0; 1073 unsigned long base; 1074 struct inode *victim_parent; 1075 1076 leaf = path->nodes[0]; 1077 1078 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1079 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1080 1081 while (cur_offset < item_size) { 1082 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1083 1084 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1085 1086 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1087 goto next; 1088 1089 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1090 if (!victim_name) 1091 return -ENOMEM; 1092 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1093 victim_name_len); 1094 1095 search_key.objectid = inode_objectid; 1096 search_key.type = BTRFS_INODE_EXTREF_KEY; 1097 search_key.offset = btrfs_extref_hash(parent_objectid, 1098 victim_name, 1099 victim_name_len); 1100 ret = backref_in_log(log_root, &search_key, 1101 parent_objectid, victim_name, 1102 victim_name_len); 1103 if (ret < 0) { 1104 return ret; 1105 } else if (!ret) { 1106 ret = -ENOENT; 1107 victim_parent = read_one_inode(root, 1108 parent_objectid); 1109 if (victim_parent) { 1110 inc_nlink(&inode->vfs_inode); 1111 btrfs_release_path(path); 1112 1113 ret = btrfs_unlink_inode(trans, root, 1114 BTRFS_I(victim_parent), 1115 inode, 1116 victim_name, 1117 victim_name_len); 1118 if (!ret) 1119 ret = btrfs_run_delayed_items( 1120 trans); 1121 } 1122 iput(victim_parent); 1123 kfree(victim_name); 1124 if (ret) 1125 return ret; 1126 *search_done = 1; 1127 goto again; 1128 } 1129 kfree(victim_name); 1130 next: 1131 cur_offset += victim_name_len + sizeof(*extref); 1132 } 1133 *search_done = 1; 1134 } 1135 btrfs_release_path(path); 1136 1137 /* look for a conflicting sequence number */ 1138 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1139 ref_index, name, namelen, 0); 1140 if (di && !IS_ERR(di)) { 1141 ret = drop_one_dir_item(trans, root, path, dir, di); 1142 if (ret) 1143 return ret; 1144 } 1145 btrfs_release_path(path); 1146 1147 /* look for a conflicting name */ 1148 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1149 name, namelen, 0); 1150 if (di && !IS_ERR(di)) { 1151 ret = drop_one_dir_item(trans, root, path, dir, di); 1152 if (ret) 1153 return ret; 1154 } 1155 btrfs_release_path(path); 1156 1157 return 0; 1158 } 1159 1160 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1161 u32 *namelen, char **name, u64 *index, 1162 u64 *parent_objectid) 1163 { 1164 struct btrfs_inode_extref *extref; 1165 1166 extref = (struct btrfs_inode_extref *)ref_ptr; 1167 1168 *namelen = btrfs_inode_extref_name_len(eb, extref); 1169 *name = kmalloc(*namelen, GFP_NOFS); 1170 if (*name == NULL) 1171 return -ENOMEM; 1172 1173 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1174 *namelen); 1175 1176 if (index) 1177 *index = btrfs_inode_extref_index(eb, extref); 1178 if (parent_objectid) 1179 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1180 1181 return 0; 1182 } 1183 1184 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1185 u32 *namelen, char **name, u64 *index) 1186 { 1187 struct btrfs_inode_ref *ref; 1188 1189 ref = (struct btrfs_inode_ref *)ref_ptr; 1190 1191 *namelen = btrfs_inode_ref_name_len(eb, ref); 1192 *name = kmalloc(*namelen, GFP_NOFS); 1193 if (*name == NULL) 1194 return -ENOMEM; 1195 1196 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1197 1198 if (index) 1199 *index = btrfs_inode_ref_index(eb, ref); 1200 1201 return 0; 1202 } 1203 1204 /* 1205 * Take an inode reference item from the log tree and iterate all names from the 1206 * inode reference item in the subvolume tree with the same key (if it exists). 1207 * For any name that is not in the inode reference item from the log tree, do a 1208 * proper unlink of that name (that is, remove its entry from the inode 1209 * reference item and both dir index keys). 1210 */ 1211 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1212 struct btrfs_root *root, 1213 struct btrfs_path *path, 1214 struct btrfs_inode *inode, 1215 struct extent_buffer *log_eb, 1216 int log_slot, 1217 struct btrfs_key *key) 1218 { 1219 int ret; 1220 unsigned long ref_ptr; 1221 unsigned long ref_end; 1222 struct extent_buffer *eb; 1223 1224 again: 1225 btrfs_release_path(path); 1226 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1227 if (ret > 0) { 1228 ret = 0; 1229 goto out; 1230 } 1231 if (ret < 0) 1232 goto out; 1233 1234 eb = path->nodes[0]; 1235 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1236 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); 1237 while (ref_ptr < ref_end) { 1238 char *name = NULL; 1239 int namelen; 1240 u64 parent_id; 1241 1242 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1243 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1244 NULL, &parent_id); 1245 } else { 1246 parent_id = key->offset; 1247 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1248 NULL); 1249 } 1250 if (ret) 1251 goto out; 1252 1253 if (key->type == BTRFS_INODE_EXTREF_KEY) 1254 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1255 parent_id, name, 1256 namelen); 1257 else 1258 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, 1259 name, namelen); 1260 1261 if (!ret) { 1262 struct inode *dir; 1263 1264 btrfs_release_path(path); 1265 dir = read_one_inode(root, parent_id); 1266 if (!dir) { 1267 ret = -ENOENT; 1268 kfree(name); 1269 goto out; 1270 } 1271 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 1272 inode, name, namelen); 1273 kfree(name); 1274 iput(dir); 1275 if (ret) 1276 goto out; 1277 goto again; 1278 } 1279 1280 kfree(name); 1281 ref_ptr += namelen; 1282 if (key->type == BTRFS_INODE_EXTREF_KEY) 1283 ref_ptr += sizeof(struct btrfs_inode_extref); 1284 else 1285 ref_ptr += sizeof(struct btrfs_inode_ref); 1286 } 1287 ret = 0; 1288 out: 1289 btrfs_release_path(path); 1290 return ret; 1291 } 1292 1293 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1294 const u8 ref_type, const char *name, 1295 const int namelen) 1296 { 1297 struct btrfs_key key; 1298 struct btrfs_path *path; 1299 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1300 int ret; 1301 1302 path = btrfs_alloc_path(); 1303 if (!path) 1304 return -ENOMEM; 1305 1306 key.objectid = btrfs_ino(BTRFS_I(inode)); 1307 key.type = ref_type; 1308 if (key.type == BTRFS_INODE_REF_KEY) 1309 key.offset = parent_id; 1310 else 1311 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1312 1313 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1314 if (ret < 0) 1315 goto out; 1316 if (ret > 0) { 1317 ret = 0; 1318 goto out; 1319 } 1320 if (key.type == BTRFS_INODE_EXTREF_KEY) 1321 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1322 path->slots[0], parent_id, name, namelen); 1323 else 1324 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1325 name, namelen); 1326 1327 out: 1328 btrfs_free_path(path); 1329 return ret; 1330 } 1331 1332 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1333 struct inode *dir, struct inode *inode, const char *name, 1334 int namelen, u64 ref_index) 1335 { 1336 struct btrfs_dir_item *dir_item; 1337 struct btrfs_key key; 1338 struct btrfs_path *path; 1339 struct inode *other_inode = NULL; 1340 int ret; 1341 1342 path = btrfs_alloc_path(); 1343 if (!path) 1344 return -ENOMEM; 1345 1346 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1347 btrfs_ino(BTRFS_I(dir)), 1348 name, namelen, 0); 1349 if (!dir_item) { 1350 btrfs_release_path(path); 1351 goto add_link; 1352 } else if (IS_ERR(dir_item)) { 1353 ret = PTR_ERR(dir_item); 1354 goto out; 1355 } 1356 1357 /* 1358 * Our inode's dentry collides with the dentry of another inode which is 1359 * in the log but not yet processed since it has a higher inode number. 1360 * So delete that other dentry. 1361 */ 1362 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1363 btrfs_release_path(path); 1364 other_inode = read_one_inode(root, key.objectid); 1365 if (!other_inode) { 1366 ret = -ENOENT; 1367 goto out; 1368 } 1369 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode), 1370 name, namelen); 1371 if (ret) 1372 goto out; 1373 /* 1374 * If we dropped the link count to 0, bump it so that later the iput() 1375 * on the inode will not free it. We will fixup the link count later. 1376 */ 1377 if (other_inode->i_nlink == 0) 1378 inc_nlink(other_inode); 1379 1380 ret = btrfs_run_delayed_items(trans); 1381 if (ret) 1382 goto out; 1383 add_link: 1384 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1385 name, namelen, 0, ref_index); 1386 out: 1387 iput(other_inode); 1388 btrfs_free_path(path); 1389 1390 return ret; 1391 } 1392 1393 /* 1394 * replay one inode back reference item found in the log tree. 1395 * eb, slot and key refer to the buffer and key found in the log tree. 1396 * root is the destination we are replaying into, and path is for temp 1397 * use by this function. (it should be released on return). 1398 */ 1399 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1400 struct btrfs_root *root, 1401 struct btrfs_root *log, 1402 struct btrfs_path *path, 1403 struct extent_buffer *eb, int slot, 1404 struct btrfs_key *key) 1405 { 1406 struct inode *dir = NULL; 1407 struct inode *inode = NULL; 1408 unsigned long ref_ptr; 1409 unsigned long ref_end; 1410 char *name = NULL; 1411 int namelen; 1412 int ret; 1413 int search_done = 0; 1414 int log_ref_ver = 0; 1415 u64 parent_objectid; 1416 u64 inode_objectid; 1417 u64 ref_index = 0; 1418 int ref_struct_size; 1419 1420 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1421 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1422 1423 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1424 struct btrfs_inode_extref *r; 1425 1426 ref_struct_size = sizeof(struct btrfs_inode_extref); 1427 log_ref_ver = 1; 1428 r = (struct btrfs_inode_extref *)ref_ptr; 1429 parent_objectid = btrfs_inode_extref_parent(eb, r); 1430 } else { 1431 ref_struct_size = sizeof(struct btrfs_inode_ref); 1432 parent_objectid = key->offset; 1433 } 1434 inode_objectid = key->objectid; 1435 1436 /* 1437 * it is possible that we didn't log all the parent directories 1438 * for a given inode. If we don't find the dir, just don't 1439 * copy the back ref in. The link count fixup code will take 1440 * care of the rest 1441 */ 1442 dir = read_one_inode(root, parent_objectid); 1443 if (!dir) { 1444 ret = -ENOENT; 1445 goto out; 1446 } 1447 1448 inode = read_one_inode(root, inode_objectid); 1449 if (!inode) { 1450 ret = -EIO; 1451 goto out; 1452 } 1453 1454 while (ref_ptr < ref_end) { 1455 if (log_ref_ver) { 1456 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1457 &ref_index, &parent_objectid); 1458 /* 1459 * parent object can change from one array 1460 * item to another. 1461 */ 1462 if (!dir) 1463 dir = read_one_inode(root, parent_objectid); 1464 if (!dir) { 1465 ret = -ENOENT; 1466 goto out; 1467 } 1468 } else { 1469 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1470 &ref_index); 1471 } 1472 if (ret) 1473 goto out; 1474 1475 /* if we already have a perfect match, we're done */ 1476 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1477 btrfs_ino(BTRFS_I(inode)), ref_index, 1478 name, namelen)) { 1479 /* 1480 * look for a conflicting back reference in the 1481 * metadata. if we find one we have to unlink that name 1482 * of the file before we add our new link. Later on, we 1483 * overwrite any existing back reference, and we don't 1484 * want to create dangling pointers in the directory. 1485 */ 1486 1487 if (!search_done) { 1488 ret = __add_inode_ref(trans, root, path, log, 1489 BTRFS_I(dir), 1490 BTRFS_I(inode), 1491 inode_objectid, 1492 parent_objectid, 1493 ref_index, name, namelen, 1494 &search_done); 1495 if (ret) { 1496 if (ret == 1) 1497 ret = 0; 1498 goto out; 1499 } 1500 } 1501 1502 /* 1503 * If a reference item already exists for this inode 1504 * with the same parent and name, but different index, 1505 * drop it and the corresponding directory index entries 1506 * from the parent before adding the new reference item 1507 * and dir index entries, otherwise we would fail with 1508 * -EEXIST returned from btrfs_add_link() below. 1509 */ 1510 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1511 name, namelen); 1512 if (ret > 0) { 1513 ret = btrfs_unlink_inode(trans, root, 1514 BTRFS_I(dir), 1515 BTRFS_I(inode), 1516 name, namelen); 1517 /* 1518 * If we dropped the link count to 0, bump it so 1519 * that later the iput() on the inode will not 1520 * free it. We will fixup the link count later. 1521 */ 1522 if (!ret && inode->i_nlink == 0) 1523 inc_nlink(inode); 1524 } 1525 if (ret < 0) 1526 goto out; 1527 1528 /* insert our name */ 1529 ret = add_link(trans, root, dir, inode, name, namelen, 1530 ref_index); 1531 if (ret) 1532 goto out; 1533 1534 btrfs_update_inode(trans, root, inode); 1535 } 1536 1537 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1538 kfree(name); 1539 name = NULL; 1540 if (log_ref_ver) { 1541 iput(dir); 1542 dir = NULL; 1543 } 1544 } 1545 1546 /* 1547 * Before we overwrite the inode reference item in the subvolume tree 1548 * with the item from the log tree, we must unlink all names from the 1549 * parent directory that are in the subvolume's tree inode reference 1550 * item, otherwise we end up with an inconsistent subvolume tree where 1551 * dir index entries exist for a name but there is no inode reference 1552 * item with the same name. 1553 */ 1554 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1555 key); 1556 if (ret) 1557 goto out; 1558 1559 /* finally write the back reference in the inode */ 1560 ret = overwrite_item(trans, root, path, eb, slot, key); 1561 out: 1562 btrfs_release_path(path); 1563 kfree(name); 1564 iput(dir); 1565 iput(inode); 1566 return ret; 1567 } 1568 1569 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1570 struct btrfs_root *root, u64 ino) 1571 { 1572 int ret; 1573 1574 ret = btrfs_insert_orphan_item(trans, root, ino); 1575 if (ret == -EEXIST) 1576 ret = 0; 1577 1578 return ret; 1579 } 1580 1581 static int count_inode_extrefs(struct btrfs_root *root, 1582 struct btrfs_inode *inode, struct btrfs_path *path) 1583 { 1584 int ret = 0; 1585 int name_len; 1586 unsigned int nlink = 0; 1587 u32 item_size; 1588 u32 cur_offset = 0; 1589 u64 inode_objectid = btrfs_ino(inode); 1590 u64 offset = 0; 1591 unsigned long ptr; 1592 struct btrfs_inode_extref *extref; 1593 struct extent_buffer *leaf; 1594 1595 while (1) { 1596 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1597 &extref, &offset); 1598 if (ret) 1599 break; 1600 1601 leaf = path->nodes[0]; 1602 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1603 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1604 cur_offset = 0; 1605 1606 while (cur_offset < item_size) { 1607 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1608 name_len = btrfs_inode_extref_name_len(leaf, extref); 1609 1610 nlink++; 1611 1612 cur_offset += name_len + sizeof(*extref); 1613 } 1614 1615 offset++; 1616 btrfs_release_path(path); 1617 } 1618 btrfs_release_path(path); 1619 1620 if (ret < 0 && ret != -ENOENT) 1621 return ret; 1622 return nlink; 1623 } 1624 1625 static int count_inode_refs(struct btrfs_root *root, 1626 struct btrfs_inode *inode, struct btrfs_path *path) 1627 { 1628 int ret; 1629 struct btrfs_key key; 1630 unsigned int nlink = 0; 1631 unsigned long ptr; 1632 unsigned long ptr_end; 1633 int name_len; 1634 u64 ino = btrfs_ino(inode); 1635 1636 key.objectid = ino; 1637 key.type = BTRFS_INODE_REF_KEY; 1638 key.offset = (u64)-1; 1639 1640 while (1) { 1641 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1642 if (ret < 0) 1643 break; 1644 if (ret > 0) { 1645 if (path->slots[0] == 0) 1646 break; 1647 path->slots[0]--; 1648 } 1649 process_slot: 1650 btrfs_item_key_to_cpu(path->nodes[0], &key, 1651 path->slots[0]); 1652 if (key.objectid != ino || 1653 key.type != BTRFS_INODE_REF_KEY) 1654 break; 1655 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1656 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1657 path->slots[0]); 1658 while (ptr < ptr_end) { 1659 struct btrfs_inode_ref *ref; 1660 1661 ref = (struct btrfs_inode_ref *)ptr; 1662 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1663 ref); 1664 ptr = (unsigned long)(ref + 1) + name_len; 1665 nlink++; 1666 } 1667 1668 if (key.offset == 0) 1669 break; 1670 if (path->slots[0] > 0) { 1671 path->slots[0]--; 1672 goto process_slot; 1673 } 1674 key.offset--; 1675 btrfs_release_path(path); 1676 } 1677 btrfs_release_path(path); 1678 1679 return nlink; 1680 } 1681 1682 /* 1683 * There are a few corners where the link count of the file can't 1684 * be properly maintained during replay. So, instead of adding 1685 * lots of complexity to the log code, we just scan the backrefs 1686 * for any file that has been through replay. 1687 * 1688 * The scan will update the link count on the inode to reflect the 1689 * number of back refs found. If it goes down to zero, the iput 1690 * will free the inode. 1691 */ 1692 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1693 struct btrfs_root *root, 1694 struct inode *inode) 1695 { 1696 struct btrfs_path *path; 1697 int ret; 1698 u64 nlink = 0; 1699 u64 ino = btrfs_ino(BTRFS_I(inode)); 1700 1701 path = btrfs_alloc_path(); 1702 if (!path) 1703 return -ENOMEM; 1704 1705 ret = count_inode_refs(root, BTRFS_I(inode), path); 1706 if (ret < 0) 1707 goto out; 1708 1709 nlink = ret; 1710 1711 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1712 if (ret < 0) 1713 goto out; 1714 1715 nlink += ret; 1716 1717 ret = 0; 1718 1719 if (nlink != inode->i_nlink) { 1720 set_nlink(inode, nlink); 1721 btrfs_update_inode(trans, root, inode); 1722 } 1723 BTRFS_I(inode)->index_cnt = (u64)-1; 1724 1725 if (inode->i_nlink == 0) { 1726 if (S_ISDIR(inode->i_mode)) { 1727 ret = replay_dir_deletes(trans, root, NULL, path, 1728 ino, 1); 1729 if (ret) 1730 goto out; 1731 } 1732 ret = insert_orphan_item(trans, root, ino); 1733 } 1734 1735 out: 1736 btrfs_free_path(path); 1737 return ret; 1738 } 1739 1740 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1741 struct btrfs_root *root, 1742 struct btrfs_path *path) 1743 { 1744 int ret; 1745 struct btrfs_key key; 1746 struct inode *inode; 1747 1748 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1749 key.type = BTRFS_ORPHAN_ITEM_KEY; 1750 key.offset = (u64)-1; 1751 while (1) { 1752 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1753 if (ret < 0) 1754 break; 1755 1756 if (ret == 1) { 1757 if (path->slots[0] == 0) 1758 break; 1759 path->slots[0]--; 1760 } 1761 1762 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1763 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1764 key.type != BTRFS_ORPHAN_ITEM_KEY) 1765 break; 1766 1767 ret = btrfs_del_item(trans, root, path); 1768 if (ret) 1769 goto out; 1770 1771 btrfs_release_path(path); 1772 inode = read_one_inode(root, key.offset); 1773 if (!inode) 1774 return -EIO; 1775 1776 ret = fixup_inode_link_count(trans, root, inode); 1777 iput(inode); 1778 if (ret) 1779 goto out; 1780 1781 /* 1782 * fixup on a directory may create new entries, 1783 * make sure we always look for the highset possible 1784 * offset 1785 */ 1786 key.offset = (u64)-1; 1787 } 1788 ret = 0; 1789 out: 1790 btrfs_release_path(path); 1791 return ret; 1792 } 1793 1794 1795 /* 1796 * record a given inode in the fixup dir so we can check its link 1797 * count when replay is done. The link count is incremented here 1798 * so the inode won't go away until we check it 1799 */ 1800 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1801 struct btrfs_root *root, 1802 struct btrfs_path *path, 1803 u64 objectid) 1804 { 1805 struct btrfs_key key; 1806 int ret = 0; 1807 struct inode *inode; 1808 1809 inode = read_one_inode(root, objectid); 1810 if (!inode) 1811 return -EIO; 1812 1813 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1814 key.type = BTRFS_ORPHAN_ITEM_KEY; 1815 key.offset = objectid; 1816 1817 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1818 1819 btrfs_release_path(path); 1820 if (ret == 0) { 1821 if (!inode->i_nlink) 1822 set_nlink(inode, 1); 1823 else 1824 inc_nlink(inode); 1825 ret = btrfs_update_inode(trans, root, inode); 1826 } else if (ret == -EEXIST) { 1827 ret = 0; 1828 } else { 1829 BUG(); /* Logic Error */ 1830 } 1831 iput(inode); 1832 1833 return ret; 1834 } 1835 1836 /* 1837 * when replaying the log for a directory, we only insert names 1838 * for inodes that actually exist. This means an fsync on a directory 1839 * does not implicitly fsync all the new files in it 1840 */ 1841 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1842 struct btrfs_root *root, 1843 u64 dirid, u64 index, 1844 char *name, int name_len, 1845 struct btrfs_key *location) 1846 { 1847 struct inode *inode; 1848 struct inode *dir; 1849 int ret; 1850 1851 inode = read_one_inode(root, location->objectid); 1852 if (!inode) 1853 return -ENOENT; 1854 1855 dir = read_one_inode(root, dirid); 1856 if (!dir) { 1857 iput(inode); 1858 return -EIO; 1859 } 1860 1861 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1862 name_len, 1, index); 1863 1864 /* FIXME, put inode into FIXUP list */ 1865 1866 iput(inode); 1867 iput(dir); 1868 return ret; 1869 } 1870 1871 /* 1872 * take a single entry in a log directory item and replay it into 1873 * the subvolume. 1874 * 1875 * if a conflicting item exists in the subdirectory already, 1876 * the inode it points to is unlinked and put into the link count 1877 * fix up tree. 1878 * 1879 * If a name from the log points to a file or directory that does 1880 * not exist in the FS, it is skipped. fsyncs on directories 1881 * do not force down inodes inside that directory, just changes to the 1882 * names or unlinks in a directory. 1883 * 1884 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1885 * non-existing inode) and 1 if the name was replayed. 1886 */ 1887 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1888 struct btrfs_root *root, 1889 struct btrfs_path *path, 1890 struct extent_buffer *eb, 1891 struct btrfs_dir_item *di, 1892 struct btrfs_key *key) 1893 { 1894 char *name; 1895 int name_len; 1896 struct btrfs_dir_item *dst_di; 1897 struct btrfs_key found_key; 1898 struct btrfs_key log_key; 1899 struct inode *dir; 1900 u8 log_type; 1901 int exists; 1902 int ret = 0; 1903 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1904 bool name_added = false; 1905 1906 dir = read_one_inode(root, key->objectid); 1907 if (!dir) 1908 return -EIO; 1909 1910 name_len = btrfs_dir_name_len(eb, di); 1911 name = kmalloc(name_len, GFP_NOFS); 1912 if (!name) { 1913 ret = -ENOMEM; 1914 goto out; 1915 } 1916 1917 log_type = btrfs_dir_type(eb, di); 1918 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1919 name_len); 1920 1921 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1922 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1923 if (exists == 0) 1924 exists = 1; 1925 else 1926 exists = 0; 1927 btrfs_release_path(path); 1928 1929 if (key->type == BTRFS_DIR_ITEM_KEY) { 1930 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1931 name, name_len, 1); 1932 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1933 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1934 key->objectid, 1935 key->offset, name, 1936 name_len, 1); 1937 } else { 1938 /* Corruption */ 1939 ret = -EINVAL; 1940 goto out; 1941 } 1942 if (IS_ERR_OR_NULL(dst_di)) { 1943 /* we need a sequence number to insert, so we only 1944 * do inserts for the BTRFS_DIR_INDEX_KEY types 1945 */ 1946 if (key->type != BTRFS_DIR_INDEX_KEY) 1947 goto out; 1948 goto insert; 1949 } 1950 1951 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1952 /* the existing item matches the logged item */ 1953 if (found_key.objectid == log_key.objectid && 1954 found_key.type == log_key.type && 1955 found_key.offset == log_key.offset && 1956 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1957 update_size = false; 1958 goto out; 1959 } 1960 1961 /* 1962 * don't drop the conflicting directory entry if the inode 1963 * for the new entry doesn't exist 1964 */ 1965 if (!exists) 1966 goto out; 1967 1968 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); 1969 if (ret) 1970 goto out; 1971 1972 if (key->type == BTRFS_DIR_INDEX_KEY) 1973 goto insert; 1974 out: 1975 btrfs_release_path(path); 1976 if (!ret && update_size) { 1977 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 1978 ret = btrfs_update_inode(trans, root, dir); 1979 } 1980 kfree(name); 1981 iput(dir); 1982 if (!ret && name_added) 1983 ret = 1; 1984 return ret; 1985 1986 insert: 1987 /* 1988 * Check if the inode reference exists in the log for the given name, 1989 * inode and parent inode 1990 */ 1991 found_key.objectid = log_key.objectid; 1992 found_key.type = BTRFS_INODE_REF_KEY; 1993 found_key.offset = key->objectid; 1994 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len); 1995 if (ret < 0) { 1996 goto out; 1997 } else if (ret) { 1998 /* The dentry will be added later. */ 1999 ret = 0; 2000 update_size = false; 2001 goto out; 2002 } 2003 2004 found_key.objectid = log_key.objectid; 2005 found_key.type = BTRFS_INODE_EXTREF_KEY; 2006 found_key.offset = key->objectid; 2007 ret = backref_in_log(root->log_root, &found_key, key->objectid, name, 2008 name_len); 2009 if (ret < 0) { 2010 goto out; 2011 } else if (ret) { 2012 /* The dentry will be added later. */ 2013 ret = 0; 2014 update_size = false; 2015 goto out; 2016 } 2017 btrfs_release_path(path); 2018 ret = insert_one_name(trans, root, key->objectid, key->offset, 2019 name, name_len, &log_key); 2020 if (ret && ret != -ENOENT && ret != -EEXIST) 2021 goto out; 2022 if (!ret) 2023 name_added = true; 2024 update_size = false; 2025 ret = 0; 2026 goto out; 2027 } 2028 2029 /* 2030 * find all the names in a directory item and reconcile them into 2031 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 2032 * one name in a directory item, but the same code gets used for 2033 * both directory index types 2034 */ 2035 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2036 struct btrfs_root *root, 2037 struct btrfs_path *path, 2038 struct extent_buffer *eb, int slot, 2039 struct btrfs_key *key) 2040 { 2041 int ret = 0; 2042 u32 item_size = btrfs_item_size_nr(eb, slot); 2043 struct btrfs_dir_item *di; 2044 int name_len; 2045 unsigned long ptr; 2046 unsigned long ptr_end; 2047 struct btrfs_path *fixup_path = NULL; 2048 2049 ptr = btrfs_item_ptr_offset(eb, slot); 2050 ptr_end = ptr + item_size; 2051 while (ptr < ptr_end) { 2052 di = (struct btrfs_dir_item *)ptr; 2053 name_len = btrfs_dir_name_len(eb, di); 2054 ret = replay_one_name(trans, root, path, eb, di, key); 2055 if (ret < 0) 2056 break; 2057 ptr = (unsigned long)(di + 1); 2058 ptr += name_len; 2059 2060 /* 2061 * If this entry refers to a non-directory (directories can not 2062 * have a link count > 1) and it was added in the transaction 2063 * that was not committed, make sure we fixup the link count of 2064 * the inode it the entry points to. Otherwise something like 2065 * the following would result in a directory pointing to an 2066 * inode with a wrong link that does not account for this dir 2067 * entry: 2068 * 2069 * mkdir testdir 2070 * touch testdir/foo 2071 * touch testdir/bar 2072 * sync 2073 * 2074 * ln testdir/bar testdir/bar_link 2075 * ln testdir/foo testdir/foo_link 2076 * xfs_io -c "fsync" testdir/bar 2077 * 2078 * <power failure> 2079 * 2080 * mount fs, log replay happens 2081 * 2082 * File foo would remain with a link count of 1 when it has two 2083 * entries pointing to it in the directory testdir. This would 2084 * make it impossible to ever delete the parent directory has 2085 * it would result in stale dentries that can never be deleted. 2086 */ 2087 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2088 struct btrfs_key di_key; 2089 2090 if (!fixup_path) { 2091 fixup_path = btrfs_alloc_path(); 2092 if (!fixup_path) { 2093 ret = -ENOMEM; 2094 break; 2095 } 2096 } 2097 2098 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2099 ret = link_to_fixup_dir(trans, root, fixup_path, 2100 di_key.objectid); 2101 if (ret) 2102 break; 2103 } 2104 ret = 0; 2105 } 2106 btrfs_free_path(fixup_path); 2107 return ret; 2108 } 2109 2110 /* 2111 * directory replay has two parts. There are the standard directory 2112 * items in the log copied from the subvolume, and range items 2113 * created in the log while the subvolume was logged. 2114 * 2115 * The range items tell us which parts of the key space the log 2116 * is authoritative for. During replay, if a key in the subvolume 2117 * directory is in a logged range item, but not actually in the log 2118 * that means it was deleted from the directory before the fsync 2119 * and should be removed. 2120 */ 2121 static noinline int find_dir_range(struct btrfs_root *root, 2122 struct btrfs_path *path, 2123 u64 dirid, int key_type, 2124 u64 *start_ret, u64 *end_ret) 2125 { 2126 struct btrfs_key key; 2127 u64 found_end; 2128 struct btrfs_dir_log_item *item; 2129 int ret; 2130 int nritems; 2131 2132 if (*start_ret == (u64)-1) 2133 return 1; 2134 2135 key.objectid = dirid; 2136 key.type = key_type; 2137 key.offset = *start_ret; 2138 2139 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2140 if (ret < 0) 2141 goto out; 2142 if (ret > 0) { 2143 if (path->slots[0] == 0) 2144 goto out; 2145 path->slots[0]--; 2146 } 2147 if (ret != 0) 2148 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2149 2150 if (key.type != key_type || key.objectid != dirid) { 2151 ret = 1; 2152 goto next; 2153 } 2154 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2155 struct btrfs_dir_log_item); 2156 found_end = btrfs_dir_log_end(path->nodes[0], item); 2157 2158 if (*start_ret >= key.offset && *start_ret <= found_end) { 2159 ret = 0; 2160 *start_ret = key.offset; 2161 *end_ret = found_end; 2162 goto out; 2163 } 2164 ret = 1; 2165 next: 2166 /* check the next slot in the tree to see if it is a valid item */ 2167 nritems = btrfs_header_nritems(path->nodes[0]); 2168 path->slots[0]++; 2169 if (path->slots[0] >= nritems) { 2170 ret = btrfs_next_leaf(root, path); 2171 if (ret) 2172 goto out; 2173 } 2174 2175 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2176 2177 if (key.type != key_type || key.objectid != dirid) { 2178 ret = 1; 2179 goto out; 2180 } 2181 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2182 struct btrfs_dir_log_item); 2183 found_end = btrfs_dir_log_end(path->nodes[0], item); 2184 *start_ret = key.offset; 2185 *end_ret = found_end; 2186 ret = 0; 2187 out: 2188 btrfs_release_path(path); 2189 return ret; 2190 } 2191 2192 /* 2193 * this looks for a given directory item in the log. If the directory 2194 * item is not in the log, the item is removed and the inode it points 2195 * to is unlinked 2196 */ 2197 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2198 struct btrfs_root *root, 2199 struct btrfs_root *log, 2200 struct btrfs_path *path, 2201 struct btrfs_path *log_path, 2202 struct inode *dir, 2203 struct btrfs_key *dir_key) 2204 { 2205 int ret; 2206 struct extent_buffer *eb; 2207 int slot; 2208 u32 item_size; 2209 struct btrfs_dir_item *di; 2210 struct btrfs_dir_item *log_di; 2211 int name_len; 2212 unsigned long ptr; 2213 unsigned long ptr_end; 2214 char *name; 2215 struct inode *inode; 2216 struct btrfs_key location; 2217 2218 again: 2219 eb = path->nodes[0]; 2220 slot = path->slots[0]; 2221 item_size = btrfs_item_size_nr(eb, slot); 2222 ptr = btrfs_item_ptr_offset(eb, slot); 2223 ptr_end = ptr + item_size; 2224 while (ptr < ptr_end) { 2225 di = (struct btrfs_dir_item *)ptr; 2226 name_len = btrfs_dir_name_len(eb, di); 2227 name = kmalloc(name_len, GFP_NOFS); 2228 if (!name) { 2229 ret = -ENOMEM; 2230 goto out; 2231 } 2232 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2233 name_len); 2234 log_di = NULL; 2235 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2236 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2237 dir_key->objectid, 2238 name, name_len, 0); 2239 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2240 log_di = btrfs_lookup_dir_index_item(trans, log, 2241 log_path, 2242 dir_key->objectid, 2243 dir_key->offset, 2244 name, name_len, 0); 2245 } 2246 if (!log_di || log_di == ERR_PTR(-ENOENT)) { 2247 btrfs_dir_item_key_to_cpu(eb, di, &location); 2248 btrfs_release_path(path); 2249 btrfs_release_path(log_path); 2250 inode = read_one_inode(root, location.objectid); 2251 if (!inode) { 2252 kfree(name); 2253 return -EIO; 2254 } 2255 2256 ret = link_to_fixup_dir(trans, root, 2257 path, location.objectid); 2258 if (ret) { 2259 kfree(name); 2260 iput(inode); 2261 goto out; 2262 } 2263 2264 inc_nlink(inode); 2265 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 2266 BTRFS_I(inode), name, name_len); 2267 if (!ret) 2268 ret = btrfs_run_delayed_items(trans); 2269 kfree(name); 2270 iput(inode); 2271 if (ret) 2272 goto out; 2273 2274 /* there might still be more names under this key 2275 * check and repeat if required 2276 */ 2277 ret = btrfs_search_slot(NULL, root, dir_key, path, 2278 0, 0); 2279 if (ret == 0) 2280 goto again; 2281 ret = 0; 2282 goto out; 2283 } else if (IS_ERR(log_di)) { 2284 kfree(name); 2285 return PTR_ERR(log_di); 2286 } 2287 btrfs_release_path(log_path); 2288 kfree(name); 2289 2290 ptr = (unsigned long)(di + 1); 2291 ptr += name_len; 2292 } 2293 ret = 0; 2294 out: 2295 btrfs_release_path(path); 2296 btrfs_release_path(log_path); 2297 return ret; 2298 } 2299 2300 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2301 struct btrfs_root *root, 2302 struct btrfs_root *log, 2303 struct btrfs_path *path, 2304 const u64 ino) 2305 { 2306 struct btrfs_key search_key; 2307 struct btrfs_path *log_path; 2308 int i; 2309 int nritems; 2310 int ret; 2311 2312 log_path = btrfs_alloc_path(); 2313 if (!log_path) 2314 return -ENOMEM; 2315 2316 search_key.objectid = ino; 2317 search_key.type = BTRFS_XATTR_ITEM_KEY; 2318 search_key.offset = 0; 2319 again: 2320 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2321 if (ret < 0) 2322 goto out; 2323 process_leaf: 2324 nritems = btrfs_header_nritems(path->nodes[0]); 2325 for (i = path->slots[0]; i < nritems; i++) { 2326 struct btrfs_key key; 2327 struct btrfs_dir_item *di; 2328 struct btrfs_dir_item *log_di; 2329 u32 total_size; 2330 u32 cur; 2331 2332 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2333 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2334 ret = 0; 2335 goto out; 2336 } 2337 2338 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2339 total_size = btrfs_item_size_nr(path->nodes[0], i); 2340 cur = 0; 2341 while (cur < total_size) { 2342 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2343 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2344 u32 this_len = sizeof(*di) + name_len + data_len; 2345 char *name; 2346 2347 name = kmalloc(name_len, GFP_NOFS); 2348 if (!name) { 2349 ret = -ENOMEM; 2350 goto out; 2351 } 2352 read_extent_buffer(path->nodes[0], name, 2353 (unsigned long)(di + 1), name_len); 2354 2355 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2356 name, name_len, 0); 2357 btrfs_release_path(log_path); 2358 if (!log_di) { 2359 /* Doesn't exist in log tree, so delete it. */ 2360 btrfs_release_path(path); 2361 di = btrfs_lookup_xattr(trans, root, path, ino, 2362 name, name_len, -1); 2363 kfree(name); 2364 if (IS_ERR(di)) { 2365 ret = PTR_ERR(di); 2366 goto out; 2367 } 2368 ASSERT(di); 2369 ret = btrfs_delete_one_dir_name(trans, root, 2370 path, di); 2371 if (ret) 2372 goto out; 2373 btrfs_release_path(path); 2374 search_key = key; 2375 goto again; 2376 } 2377 kfree(name); 2378 if (IS_ERR(log_di)) { 2379 ret = PTR_ERR(log_di); 2380 goto out; 2381 } 2382 cur += this_len; 2383 di = (struct btrfs_dir_item *)((char *)di + this_len); 2384 } 2385 } 2386 ret = btrfs_next_leaf(root, path); 2387 if (ret > 0) 2388 ret = 0; 2389 else if (ret == 0) 2390 goto process_leaf; 2391 out: 2392 btrfs_free_path(log_path); 2393 btrfs_release_path(path); 2394 return ret; 2395 } 2396 2397 2398 /* 2399 * deletion replay happens before we copy any new directory items 2400 * out of the log or out of backreferences from inodes. It 2401 * scans the log to find ranges of keys that log is authoritative for, 2402 * and then scans the directory to find items in those ranges that are 2403 * not present in the log. 2404 * 2405 * Anything we don't find in the log is unlinked and removed from the 2406 * directory. 2407 */ 2408 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2409 struct btrfs_root *root, 2410 struct btrfs_root *log, 2411 struct btrfs_path *path, 2412 u64 dirid, int del_all) 2413 { 2414 u64 range_start; 2415 u64 range_end; 2416 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2417 int ret = 0; 2418 struct btrfs_key dir_key; 2419 struct btrfs_key found_key; 2420 struct btrfs_path *log_path; 2421 struct inode *dir; 2422 2423 dir_key.objectid = dirid; 2424 dir_key.type = BTRFS_DIR_ITEM_KEY; 2425 log_path = btrfs_alloc_path(); 2426 if (!log_path) 2427 return -ENOMEM; 2428 2429 dir = read_one_inode(root, dirid); 2430 /* it isn't an error if the inode isn't there, that can happen 2431 * because we replay the deletes before we copy in the inode item 2432 * from the log 2433 */ 2434 if (!dir) { 2435 btrfs_free_path(log_path); 2436 return 0; 2437 } 2438 again: 2439 range_start = 0; 2440 range_end = 0; 2441 while (1) { 2442 if (del_all) 2443 range_end = (u64)-1; 2444 else { 2445 ret = find_dir_range(log, path, dirid, key_type, 2446 &range_start, &range_end); 2447 if (ret != 0) 2448 break; 2449 } 2450 2451 dir_key.offset = range_start; 2452 while (1) { 2453 int nritems; 2454 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2455 0, 0); 2456 if (ret < 0) 2457 goto out; 2458 2459 nritems = btrfs_header_nritems(path->nodes[0]); 2460 if (path->slots[0] >= nritems) { 2461 ret = btrfs_next_leaf(root, path); 2462 if (ret == 1) 2463 break; 2464 else if (ret < 0) 2465 goto out; 2466 } 2467 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2468 path->slots[0]); 2469 if (found_key.objectid != dirid || 2470 found_key.type != dir_key.type) 2471 goto next_type; 2472 2473 if (found_key.offset > range_end) 2474 break; 2475 2476 ret = check_item_in_log(trans, root, log, path, 2477 log_path, dir, 2478 &found_key); 2479 if (ret) 2480 goto out; 2481 if (found_key.offset == (u64)-1) 2482 break; 2483 dir_key.offset = found_key.offset + 1; 2484 } 2485 btrfs_release_path(path); 2486 if (range_end == (u64)-1) 2487 break; 2488 range_start = range_end + 1; 2489 } 2490 2491 next_type: 2492 ret = 0; 2493 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2494 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2495 dir_key.type = BTRFS_DIR_INDEX_KEY; 2496 btrfs_release_path(path); 2497 goto again; 2498 } 2499 out: 2500 btrfs_release_path(path); 2501 btrfs_free_path(log_path); 2502 iput(dir); 2503 return ret; 2504 } 2505 2506 /* 2507 * the process_func used to replay items from the log tree. This 2508 * gets called in two different stages. The first stage just looks 2509 * for inodes and makes sure they are all copied into the subvolume. 2510 * 2511 * The second stage copies all the other item types from the log into 2512 * the subvolume. The two stage approach is slower, but gets rid of 2513 * lots of complexity around inodes referencing other inodes that exist 2514 * only in the log (references come from either directory items or inode 2515 * back refs). 2516 */ 2517 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2518 struct walk_control *wc, u64 gen, int level) 2519 { 2520 int nritems; 2521 struct btrfs_path *path; 2522 struct btrfs_root *root = wc->replay_dest; 2523 struct btrfs_key key; 2524 int i; 2525 int ret; 2526 2527 ret = btrfs_read_buffer(eb, gen, level, NULL); 2528 if (ret) 2529 return ret; 2530 2531 level = btrfs_header_level(eb); 2532 2533 if (level != 0) 2534 return 0; 2535 2536 path = btrfs_alloc_path(); 2537 if (!path) 2538 return -ENOMEM; 2539 2540 nritems = btrfs_header_nritems(eb); 2541 for (i = 0; i < nritems; i++) { 2542 btrfs_item_key_to_cpu(eb, &key, i); 2543 2544 /* inode keys are done during the first stage */ 2545 if (key.type == BTRFS_INODE_ITEM_KEY && 2546 wc->stage == LOG_WALK_REPLAY_INODES) { 2547 struct btrfs_inode_item *inode_item; 2548 u32 mode; 2549 2550 inode_item = btrfs_item_ptr(eb, i, 2551 struct btrfs_inode_item); 2552 /* 2553 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2554 * and never got linked before the fsync, skip it, as 2555 * replaying it is pointless since it would be deleted 2556 * later. We skip logging tmpfiles, but it's always 2557 * possible we are replaying a log created with a kernel 2558 * that used to log tmpfiles. 2559 */ 2560 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2561 wc->ignore_cur_inode = true; 2562 continue; 2563 } else { 2564 wc->ignore_cur_inode = false; 2565 } 2566 ret = replay_xattr_deletes(wc->trans, root, log, 2567 path, key.objectid); 2568 if (ret) 2569 break; 2570 mode = btrfs_inode_mode(eb, inode_item); 2571 if (S_ISDIR(mode)) { 2572 ret = replay_dir_deletes(wc->trans, 2573 root, log, path, key.objectid, 0); 2574 if (ret) 2575 break; 2576 } 2577 ret = overwrite_item(wc->trans, root, path, 2578 eb, i, &key); 2579 if (ret) 2580 break; 2581 2582 /* 2583 * Before replaying extents, truncate the inode to its 2584 * size. We need to do it now and not after log replay 2585 * because before an fsync we can have prealloc extents 2586 * added beyond the inode's i_size. If we did it after, 2587 * through orphan cleanup for example, we would drop 2588 * those prealloc extents just after replaying them. 2589 */ 2590 if (S_ISREG(mode)) { 2591 struct inode *inode; 2592 u64 from; 2593 2594 inode = read_one_inode(root, key.objectid); 2595 if (!inode) { 2596 ret = -EIO; 2597 break; 2598 } 2599 from = ALIGN(i_size_read(inode), 2600 root->fs_info->sectorsize); 2601 ret = btrfs_drop_extents(wc->trans, root, inode, 2602 from, (u64)-1, 1); 2603 if (!ret) { 2604 /* Update the inode's nbytes. */ 2605 ret = btrfs_update_inode(wc->trans, 2606 root, inode); 2607 } 2608 iput(inode); 2609 if (ret) 2610 break; 2611 } 2612 2613 ret = link_to_fixup_dir(wc->trans, root, 2614 path, key.objectid); 2615 if (ret) 2616 break; 2617 } 2618 2619 if (wc->ignore_cur_inode) 2620 continue; 2621 2622 if (key.type == BTRFS_DIR_INDEX_KEY && 2623 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2624 ret = replay_one_dir_item(wc->trans, root, path, 2625 eb, i, &key); 2626 if (ret) 2627 break; 2628 } 2629 2630 if (wc->stage < LOG_WALK_REPLAY_ALL) 2631 continue; 2632 2633 /* these keys are simply copied */ 2634 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2635 ret = overwrite_item(wc->trans, root, path, 2636 eb, i, &key); 2637 if (ret) 2638 break; 2639 } else if (key.type == BTRFS_INODE_REF_KEY || 2640 key.type == BTRFS_INODE_EXTREF_KEY) { 2641 ret = add_inode_ref(wc->trans, root, log, path, 2642 eb, i, &key); 2643 if (ret && ret != -ENOENT) 2644 break; 2645 ret = 0; 2646 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2647 ret = replay_one_extent(wc->trans, root, path, 2648 eb, i, &key); 2649 if (ret) 2650 break; 2651 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2652 ret = replay_one_dir_item(wc->trans, root, path, 2653 eb, i, &key); 2654 if (ret) 2655 break; 2656 } 2657 } 2658 btrfs_free_path(path); 2659 return ret; 2660 } 2661 2662 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2663 struct btrfs_root *root, 2664 struct btrfs_path *path, int *level, 2665 struct walk_control *wc) 2666 { 2667 struct btrfs_fs_info *fs_info = root->fs_info; 2668 u64 root_owner; 2669 u64 bytenr; 2670 u64 ptr_gen; 2671 struct extent_buffer *next; 2672 struct extent_buffer *cur; 2673 struct extent_buffer *parent; 2674 u32 blocksize; 2675 int ret = 0; 2676 2677 while (*level > 0) { 2678 struct btrfs_key first_key; 2679 2680 cur = path->nodes[*level]; 2681 2682 WARN_ON(btrfs_header_level(cur) != *level); 2683 2684 if (path->slots[*level] >= 2685 btrfs_header_nritems(cur)) 2686 break; 2687 2688 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2689 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2690 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2691 blocksize = fs_info->nodesize; 2692 2693 parent = path->nodes[*level]; 2694 root_owner = btrfs_header_owner(parent); 2695 2696 next = btrfs_find_create_tree_block(fs_info, bytenr); 2697 if (IS_ERR(next)) 2698 return PTR_ERR(next); 2699 2700 if (*level == 1) { 2701 ret = wc->process_func(root, next, wc, ptr_gen, 2702 *level - 1); 2703 if (ret) { 2704 free_extent_buffer(next); 2705 return ret; 2706 } 2707 2708 path->slots[*level]++; 2709 if (wc->free) { 2710 ret = btrfs_read_buffer(next, ptr_gen, 2711 *level - 1, &first_key); 2712 if (ret) { 2713 free_extent_buffer(next); 2714 return ret; 2715 } 2716 2717 if (trans) { 2718 btrfs_tree_lock(next); 2719 btrfs_set_lock_blocking_write(next); 2720 btrfs_clean_tree_block(next); 2721 btrfs_wait_tree_block_writeback(next); 2722 btrfs_tree_unlock(next); 2723 } else { 2724 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2725 clear_extent_buffer_dirty(next); 2726 } 2727 2728 WARN_ON(root_owner != 2729 BTRFS_TREE_LOG_OBJECTID); 2730 ret = btrfs_pin_reserved_extent(fs_info, 2731 bytenr, blocksize); 2732 if (ret) { 2733 free_extent_buffer(next); 2734 return ret; 2735 } 2736 } 2737 free_extent_buffer(next); 2738 continue; 2739 } 2740 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2741 if (ret) { 2742 free_extent_buffer(next); 2743 return ret; 2744 } 2745 2746 if (path->nodes[*level-1]) 2747 free_extent_buffer(path->nodes[*level-1]); 2748 path->nodes[*level-1] = next; 2749 *level = btrfs_header_level(next); 2750 path->slots[*level] = 0; 2751 cond_resched(); 2752 } 2753 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2754 2755 cond_resched(); 2756 return 0; 2757 } 2758 2759 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2760 struct btrfs_root *root, 2761 struct btrfs_path *path, int *level, 2762 struct walk_control *wc) 2763 { 2764 struct btrfs_fs_info *fs_info = root->fs_info; 2765 u64 root_owner; 2766 int i; 2767 int slot; 2768 int ret; 2769 2770 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2771 slot = path->slots[i]; 2772 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2773 path->slots[i]++; 2774 *level = i; 2775 WARN_ON(*level == 0); 2776 return 0; 2777 } else { 2778 struct extent_buffer *parent; 2779 if (path->nodes[*level] == root->node) 2780 parent = path->nodes[*level]; 2781 else 2782 parent = path->nodes[*level + 1]; 2783 2784 root_owner = btrfs_header_owner(parent); 2785 ret = wc->process_func(root, path->nodes[*level], wc, 2786 btrfs_header_generation(path->nodes[*level]), 2787 *level); 2788 if (ret) 2789 return ret; 2790 2791 if (wc->free) { 2792 struct extent_buffer *next; 2793 2794 next = path->nodes[*level]; 2795 2796 if (trans) { 2797 btrfs_tree_lock(next); 2798 btrfs_set_lock_blocking_write(next); 2799 btrfs_clean_tree_block(next); 2800 btrfs_wait_tree_block_writeback(next); 2801 btrfs_tree_unlock(next); 2802 } else { 2803 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2804 clear_extent_buffer_dirty(next); 2805 } 2806 2807 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 2808 ret = btrfs_pin_reserved_extent(fs_info, 2809 path->nodes[*level]->start, 2810 path->nodes[*level]->len); 2811 if (ret) 2812 return ret; 2813 } 2814 free_extent_buffer(path->nodes[*level]); 2815 path->nodes[*level] = NULL; 2816 *level = i + 1; 2817 } 2818 } 2819 return 1; 2820 } 2821 2822 /* 2823 * drop the reference count on the tree rooted at 'snap'. This traverses 2824 * the tree freeing any blocks that have a ref count of zero after being 2825 * decremented. 2826 */ 2827 static int walk_log_tree(struct btrfs_trans_handle *trans, 2828 struct btrfs_root *log, struct walk_control *wc) 2829 { 2830 struct btrfs_fs_info *fs_info = log->fs_info; 2831 int ret = 0; 2832 int wret; 2833 int level; 2834 struct btrfs_path *path; 2835 int orig_level; 2836 2837 path = btrfs_alloc_path(); 2838 if (!path) 2839 return -ENOMEM; 2840 2841 level = btrfs_header_level(log->node); 2842 orig_level = level; 2843 path->nodes[level] = log->node; 2844 atomic_inc(&log->node->refs); 2845 path->slots[level] = 0; 2846 2847 while (1) { 2848 wret = walk_down_log_tree(trans, log, path, &level, wc); 2849 if (wret > 0) 2850 break; 2851 if (wret < 0) { 2852 ret = wret; 2853 goto out; 2854 } 2855 2856 wret = walk_up_log_tree(trans, log, path, &level, wc); 2857 if (wret > 0) 2858 break; 2859 if (wret < 0) { 2860 ret = wret; 2861 goto out; 2862 } 2863 } 2864 2865 /* was the root node processed? if not, catch it here */ 2866 if (path->nodes[orig_level]) { 2867 ret = wc->process_func(log, path->nodes[orig_level], wc, 2868 btrfs_header_generation(path->nodes[orig_level]), 2869 orig_level); 2870 if (ret) 2871 goto out; 2872 if (wc->free) { 2873 struct extent_buffer *next; 2874 2875 next = path->nodes[orig_level]; 2876 2877 if (trans) { 2878 btrfs_tree_lock(next); 2879 btrfs_set_lock_blocking_write(next); 2880 btrfs_clean_tree_block(next); 2881 btrfs_wait_tree_block_writeback(next); 2882 btrfs_tree_unlock(next); 2883 } else { 2884 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2885 clear_extent_buffer_dirty(next); 2886 } 2887 2888 ret = btrfs_pin_reserved_extent(fs_info, next->start, 2889 next->len); 2890 if (ret) 2891 goto out; 2892 } 2893 } 2894 2895 out: 2896 btrfs_free_path(path); 2897 return ret; 2898 } 2899 2900 /* 2901 * helper function to update the item for a given subvolumes log root 2902 * in the tree of log roots 2903 */ 2904 static int update_log_root(struct btrfs_trans_handle *trans, 2905 struct btrfs_root *log, 2906 struct btrfs_root_item *root_item) 2907 { 2908 struct btrfs_fs_info *fs_info = log->fs_info; 2909 int ret; 2910 2911 if (log->log_transid == 1) { 2912 /* insert root item on the first sync */ 2913 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2914 &log->root_key, root_item); 2915 } else { 2916 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2917 &log->root_key, root_item); 2918 } 2919 return ret; 2920 } 2921 2922 static void wait_log_commit(struct btrfs_root *root, int transid) 2923 { 2924 DEFINE_WAIT(wait); 2925 int index = transid % 2; 2926 2927 /* 2928 * we only allow two pending log transactions at a time, 2929 * so we know that if ours is more than 2 older than the 2930 * current transaction, we're done 2931 */ 2932 for (;;) { 2933 prepare_to_wait(&root->log_commit_wait[index], 2934 &wait, TASK_UNINTERRUPTIBLE); 2935 2936 if (!(root->log_transid_committed < transid && 2937 atomic_read(&root->log_commit[index]))) 2938 break; 2939 2940 mutex_unlock(&root->log_mutex); 2941 schedule(); 2942 mutex_lock(&root->log_mutex); 2943 } 2944 finish_wait(&root->log_commit_wait[index], &wait); 2945 } 2946 2947 static void wait_for_writer(struct btrfs_root *root) 2948 { 2949 DEFINE_WAIT(wait); 2950 2951 for (;;) { 2952 prepare_to_wait(&root->log_writer_wait, &wait, 2953 TASK_UNINTERRUPTIBLE); 2954 if (!atomic_read(&root->log_writers)) 2955 break; 2956 2957 mutex_unlock(&root->log_mutex); 2958 schedule(); 2959 mutex_lock(&root->log_mutex); 2960 } 2961 finish_wait(&root->log_writer_wait, &wait); 2962 } 2963 2964 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2965 struct btrfs_log_ctx *ctx) 2966 { 2967 if (!ctx) 2968 return; 2969 2970 mutex_lock(&root->log_mutex); 2971 list_del_init(&ctx->list); 2972 mutex_unlock(&root->log_mutex); 2973 } 2974 2975 /* 2976 * Invoked in log mutex context, or be sure there is no other task which 2977 * can access the list. 2978 */ 2979 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2980 int index, int error) 2981 { 2982 struct btrfs_log_ctx *ctx; 2983 struct btrfs_log_ctx *safe; 2984 2985 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 2986 list_del_init(&ctx->list); 2987 ctx->log_ret = error; 2988 } 2989 2990 INIT_LIST_HEAD(&root->log_ctxs[index]); 2991 } 2992 2993 /* 2994 * btrfs_sync_log does sends a given tree log down to the disk and 2995 * updates the super blocks to record it. When this call is done, 2996 * you know that any inodes previously logged are safely on disk only 2997 * if it returns 0. 2998 * 2999 * Any other return value means you need to call btrfs_commit_transaction. 3000 * Some of the edge cases for fsyncing directories that have had unlinks 3001 * or renames done in the past mean that sometimes the only safe 3002 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3003 * that has happened. 3004 */ 3005 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3006 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3007 { 3008 int index1; 3009 int index2; 3010 int mark; 3011 int ret; 3012 struct btrfs_fs_info *fs_info = root->fs_info; 3013 struct btrfs_root *log = root->log_root; 3014 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3015 struct btrfs_root_item new_root_item; 3016 int log_transid = 0; 3017 struct btrfs_log_ctx root_log_ctx; 3018 struct blk_plug plug; 3019 3020 mutex_lock(&root->log_mutex); 3021 log_transid = ctx->log_transid; 3022 if (root->log_transid_committed >= log_transid) { 3023 mutex_unlock(&root->log_mutex); 3024 return ctx->log_ret; 3025 } 3026 3027 index1 = log_transid % 2; 3028 if (atomic_read(&root->log_commit[index1])) { 3029 wait_log_commit(root, log_transid); 3030 mutex_unlock(&root->log_mutex); 3031 return ctx->log_ret; 3032 } 3033 ASSERT(log_transid == root->log_transid); 3034 atomic_set(&root->log_commit[index1], 1); 3035 3036 /* wait for previous tree log sync to complete */ 3037 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3038 wait_log_commit(root, log_transid - 1); 3039 3040 while (1) { 3041 int batch = atomic_read(&root->log_batch); 3042 /* when we're on an ssd, just kick the log commit out */ 3043 if (!btrfs_test_opt(fs_info, SSD) && 3044 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3045 mutex_unlock(&root->log_mutex); 3046 schedule_timeout_uninterruptible(1); 3047 mutex_lock(&root->log_mutex); 3048 } 3049 wait_for_writer(root); 3050 if (batch == atomic_read(&root->log_batch)) 3051 break; 3052 } 3053 3054 /* bail out if we need to do a full commit */ 3055 if (btrfs_need_log_full_commit(trans)) { 3056 ret = -EAGAIN; 3057 mutex_unlock(&root->log_mutex); 3058 goto out; 3059 } 3060 3061 if (log_transid % 2 == 0) 3062 mark = EXTENT_DIRTY; 3063 else 3064 mark = EXTENT_NEW; 3065 3066 /* we start IO on all the marked extents here, but we don't actually 3067 * wait for them until later. 3068 */ 3069 blk_start_plug(&plug); 3070 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3071 if (ret) { 3072 blk_finish_plug(&plug); 3073 btrfs_abort_transaction(trans, ret); 3074 btrfs_set_log_full_commit(trans); 3075 mutex_unlock(&root->log_mutex); 3076 goto out; 3077 } 3078 3079 /* 3080 * We _must_ update under the root->log_mutex in order to make sure we 3081 * have a consistent view of the log root we are trying to commit at 3082 * this moment. 3083 * 3084 * We _must_ copy this into a local copy, because we are not holding the 3085 * log_root_tree->log_mutex yet. This is important because when we 3086 * commit the log_root_tree we must have a consistent view of the 3087 * log_root_tree when we update the super block to point at the 3088 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3089 * with the commit and possibly point at the new block which we may not 3090 * have written out. 3091 */ 3092 btrfs_set_root_node(&log->root_item, log->node); 3093 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3094 3095 root->log_transid++; 3096 log->log_transid = root->log_transid; 3097 root->log_start_pid = 0; 3098 /* 3099 * IO has been started, blocks of the log tree have WRITTEN flag set 3100 * in their headers. new modifications of the log will be written to 3101 * new positions. so it's safe to allow log writers to go in. 3102 */ 3103 mutex_unlock(&root->log_mutex); 3104 3105 btrfs_init_log_ctx(&root_log_ctx, NULL); 3106 3107 mutex_lock(&log_root_tree->log_mutex); 3108 atomic_inc(&log_root_tree->log_batch); 3109 atomic_inc(&log_root_tree->log_writers); 3110 3111 index2 = log_root_tree->log_transid % 2; 3112 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3113 root_log_ctx.log_transid = log_root_tree->log_transid; 3114 3115 mutex_unlock(&log_root_tree->log_mutex); 3116 3117 mutex_lock(&log_root_tree->log_mutex); 3118 3119 /* 3120 * Now we are safe to update the log_root_tree because we're under the 3121 * log_mutex, and we're a current writer so we're holding the commit 3122 * open until we drop the log_mutex. 3123 */ 3124 ret = update_log_root(trans, log, &new_root_item); 3125 3126 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 3127 /* atomic_dec_and_test implies a barrier */ 3128 cond_wake_up_nomb(&log_root_tree->log_writer_wait); 3129 } 3130 3131 if (ret) { 3132 if (!list_empty(&root_log_ctx.list)) 3133 list_del_init(&root_log_ctx.list); 3134 3135 blk_finish_plug(&plug); 3136 btrfs_set_log_full_commit(trans); 3137 3138 if (ret != -ENOSPC) { 3139 btrfs_abort_transaction(trans, ret); 3140 mutex_unlock(&log_root_tree->log_mutex); 3141 goto out; 3142 } 3143 btrfs_wait_tree_log_extents(log, mark); 3144 mutex_unlock(&log_root_tree->log_mutex); 3145 ret = -EAGAIN; 3146 goto out; 3147 } 3148 3149 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3150 blk_finish_plug(&plug); 3151 list_del_init(&root_log_ctx.list); 3152 mutex_unlock(&log_root_tree->log_mutex); 3153 ret = root_log_ctx.log_ret; 3154 goto out; 3155 } 3156 3157 index2 = root_log_ctx.log_transid % 2; 3158 if (atomic_read(&log_root_tree->log_commit[index2])) { 3159 blk_finish_plug(&plug); 3160 ret = btrfs_wait_tree_log_extents(log, mark); 3161 wait_log_commit(log_root_tree, 3162 root_log_ctx.log_transid); 3163 mutex_unlock(&log_root_tree->log_mutex); 3164 if (!ret) 3165 ret = root_log_ctx.log_ret; 3166 goto out; 3167 } 3168 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3169 atomic_set(&log_root_tree->log_commit[index2], 1); 3170 3171 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3172 wait_log_commit(log_root_tree, 3173 root_log_ctx.log_transid - 1); 3174 } 3175 3176 wait_for_writer(log_root_tree); 3177 3178 /* 3179 * now that we've moved on to the tree of log tree roots, 3180 * check the full commit flag again 3181 */ 3182 if (btrfs_need_log_full_commit(trans)) { 3183 blk_finish_plug(&plug); 3184 btrfs_wait_tree_log_extents(log, mark); 3185 mutex_unlock(&log_root_tree->log_mutex); 3186 ret = -EAGAIN; 3187 goto out_wake_log_root; 3188 } 3189 3190 ret = btrfs_write_marked_extents(fs_info, 3191 &log_root_tree->dirty_log_pages, 3192 EXTENT_DIRTY | EXTENT_NEW); 3193 blk_finish_plug(&plug); 3194 if (ret) { 3195 btrfs_set_log_full_commit(trans); 3196 btrfs_abort_transaction(trans, ret); 3197 mutex_unlock(&log_root_tree->log_mutex); 3198 goto out_wake_log_root; 3199 } 3200 ret = btrfs_wait_tree_log_extents(log, mark); 3201 if (!ret) 3202 ret = btrfs_wait_tree_log_extents(log_root_tree, 3203 EXTENT_NEW | EXTENT_DIRTY); 3204 if (ret) { 3205 btrfs_set_log_full_commit(trans); 3206 mutex_unlock(&log_root_tree->log_mutex); 3207 goto out_wake_log_root; 3208 } 3209 3210 btrfs_set_super_log_root(fs_info->super_for_commit, 3211 log_root_tree->node->start); 3212 btrfs_set_super_log_root_level(fs_info->super_for_commit, 3213 btrfs_header_level(log_root_tree->node)); 3214 3215 log_root_tree->log_transid++; 3216 mutex_unlock(&log_root_tree->log_mutex); 3217 3218 /* 3219 * Nobody else is going to jump in and write the ctree 3220 * super here because the log_commit atomic below is protecting 3221 * us. We must be called with a transaction handle pinning 3222 * the running transaction open, so a full commit can't hop 3223 * in and cause problems either. 3224 */ 3225 ret = write_all_supers(fs_info, 1); 3226 if (ret) { 3227 btrfs_set_log_full_commit(trans); 3228 btrfs_abort_transaction(trans, ret); 3229 goto out_wake_log_root; 3230 } 3231 3232 mutex_lock(&root->log_mutex); 3233 if (root->last_log_commit < log_transid) 3234 root->last_log_commit = log_transid; 3235 mutex_unlock(&root->log_mutex); 3236 3237 out_wake_log_root: 3238 mutex_lock(&log_root_tree->log_mutex); 3239 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3240 3241 log_root_tree->log_transid_committed++; 3242 atomic_set(&log_root_tree->log_commit[index2], 0); 3243 mutex_unlock(&log_root_tree->log_mutex); 3244 3245 /* 3246 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3247 * all the updates above are seen by the woken threads. It might not be 3248 * necessary, but proving that seems to be hard. 3249 */ 3250 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3251 out: 3252 mutex_lock(&root->log_mutex); 3253 btrfs_remove_all_log_ctxs(root, index1, ret); 3254 root->log_transid_committed++; 3255 atomic_set(&root->log_commit[index1], 0); 3256 mutex_unlock(&root->log_mutex); 3257 3258 /* 3259 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3260 * all the updates above are seen by the woken threads. It might not be 3261 * necessary, but proving that seems to be hard. 3262 */ 3263 cond_wake_up(&root->log_commit_wait[index1]); 3264 return ret; 3265 } 3266 3267 static void free_log_tree(struct btrfs_trans_handle *trans, 3268 struct btrfs_root *log) 3269 { 3270 int ret; 3271 struct walk_control wc = { 3272 .free = 1, 3273 .process_func = process_one_buffer 3274 }; 3275 3276 ret = walk_log_tree(trans, log, &wc); 3277 if (ret) { 3278 if (trans) 3279 btrfs_abort_transaction(trans, ret); 3280 else 3281 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3282 } 3283 3284 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3285 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3286 free_extent_buffer(log->node); 3287 kfree(log); 3288 } 3289 3290 /* 3291 * free all the extents used by the tree log. This should be called 3292 * at commit time of the full transaction 3293 */ 3294 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3295 { 3296 if (root->log_root) { 3297 free_log_tree(trans, root->log_root); 3298 root->log_root = NULL; 3299 } 3300 return 0; 3301 } 3302 3303 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3304 struct btrfs_fs_info *fs_info) 3305 { 3306 if (fs_info->log_root_tree) { 3307 free_log_tree(trans, fs_info->log_root_tree); 3308 fs_info->log_root_tree = NULL; 3309 } 3310 return 0; 3311 } 3312 3313 /* 3314 * Check if an inode was logged in the current transaction. We can't always rely 3315 * on an inode's logged_trans value, because it's an in-memory only field and 3316 * therefore not persisted. This means that its value is lost if the inode gets 3317 * evicted and loaded again from disk (in which case it has a value of 0, and 3318 * certainly it is smaller then any possible transaction ID), when that happens 3319 * the full_sync flag is set in the inode's runtime flags, so on that case we 3320 * assume eviction happened and ignore the logged_trans value, assuming the 3321 * worst case, that the inode was logged before in the current transaction. 3322 */ 3323 static bool inode_logged(struct btrfs_trans_handle *trans, 3324 struct btrfs_inode *inode) 3325 { 3326 if (inode->logged_trans == trans->transid) 3327 return true; 3328 3329 if (inode->last_trans == trans->transid && 3330 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && 3331 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags)) 3332 return true; 3333 3334 return false; 3335 } 3336 3337 /* 3338 * If both a file and directory are logged, and unlinks or renames are 3339 * mixed in, we have a few interesting corners: 3340 * 3341 * create file X in dir Y 3342 * link file X to X.link in dir Y 3343 * fsync file X 3344 * unlink file X but leave X.link 3345 * fsync dir Y 3346 * 3347 * After a crash we would expect only X.link to exist. But file X 3348 * didn't get fsync'd again so the log has back refs for X and X.link. 3349 * 3350 * We solve this by removing directory entries and inode backrefs from the 3351 * log when a file that was logged in the current transaction is 3352 * unlinked. Any later fsync will include the updated log entries, and 3353 * we'll be able to reconstruct the proper directory items from backrefs. 3354 * 3355 * This optimizations allows us to avoid relogging the entire inode 3356 * or the entire directory. 3357 */ 3358 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3359 struct btrfs_root *root, 3360 const char *name, int name_len, 3361 struct btrfs_inode *dir, u64 index) 3362 { 3363 struct btrfs_root *log; 3364 struct btrfs_dir_item *di; 3365 struct btrfs_path *path; 3366 int ret; 3367 int err = 0; 3368 int bytes_del = 0; 3369 u64 dir_ino = btrfs_ino(dir); 3370 3371 if (!inode_logged(trans, dir)) 3372 return 0; 3373 3374 ret = join_running_log_trans(root); 3375 if (ret) 3376 return 0; 3377 3378 mutex_lock(&dir->log_mutex); 3379 3380 log = root->log_root; 3381 path = btrfs_alloc_path(); 3382 if (!path) { 3383 err = -ENOMEM; 3384 goto out_unlock; 3385 } 3386 3387 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3388 name, name_len, -1); 3389 if (IS_ERR(di)) { 3390 err = PTR_ERR(di); 3391 goto fail; 3392 } 3393 if (di) { 3394 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3395 bytes_del += name_len; 3396 if (ret) { 3397 err = ret; 3398 goto fail; 3399 } 3400 } 3401 btrfs_release_path(path); 3402 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3403 index, name, name_len, -1); 3404 if (IS_ERR(di)) { 3405 err = PTR_ERR(di); 3406 goto fail; 3407 } 3408 if (di) { 3409 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3410 bytes_del += name_len; 3411 if (ret) { 3412 err = ret; 3413 goto fail; 3414 } 3415 } 3416 3417 /* update the directory size in the log to reflect the names 3418 * we have removed 3419 */ 3420 if (bytes_del) { 3421 struct btrfs_key key; 3422 3423 key.objectid = dir_ino; 3424 key.offset = 0; 3425 key.type = BTRFS_INODE_ITEM_KEY; 3426 btrfs_release_path(path); 3427 3428 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 3429 if (ret < 0) { 3430 err = ret; 3431 goto fail; 3432 } 3433 if (ret == 0) { 3434 struct btrfs_inode_item *item; 3435 u64 i_size; 3436 3437 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3438 struct btrfs_inode_item); 3439 i_size = btrfs_inode_size(path->nodes[0], item); 3440 if (i_size > bytes_del) 3441 i_size -= bytes_del; 3442 else 3443 i_size = 0; 3444 btrfs_set_inode_size(path->nodes[0], item, i_size); 3445 btrfs_mark_buffer_dirty(path->nodes[0]); 3446 } else 3447 ret = 0; 3448 btrfs_release_path(path); 3449 } 3450 fail: 3451 btrfs_free_path(path); 3452 out_unlock: 3453 mutex_unlock(&dir->log_mutex); 3454 if (ret == -ENOSPC) { 3455 btrfs_set_log_full_commit(trans); 3456 ret = 0; 3457 } else if (ret < 0) 3458 btrfs_abort_transaction(trans, ret); 3459 3460 btrfs_end_log_trans(root); 3461 3462 return err; 3463 } 3464 3465 /* see comments for btrfs_del_dir_entries_in_log */ 3466 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3467 struct btrfs_root *root, 3468 const char *name, int name_len, 3469 struct btrfs_inode *inode, u64 dirid) 3470 { 3471 struct btrfs_root *log; 3472 u64 index; 3473 int ret; 3474 3475 if (!inode_logged(trans, inode)) 3476 return 0; 3477 3478 ret = join_running_log_trans(root); 3479 if (ret) 3480 return 0; 3481 log = root->log_root; 3482 mutex_lock(&inode->log_mutex); 3483 3484 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3485 dirid, &index); 3486 mutex_unlock(&inode->log_mutex); 3487 if (ret == -ENOSPC) { 3488 btrfs_set_log_full_commit(trans); 3489 ret = 0; 3490 } else if (ret < 0 && ret != -ENOENT) 3491 btrfs_abort_transaction(trans, ret); 3492 btrfs_end_log_trans(root); 3493 3494 return ret; 3495 } 3496 3497 /* 3498 * creates a range item in the log for 'dirid'. first_offset and 3499 * last_offset tell us which parts of the key space the log should 3500 * be considered authoritative for. 3501 */ 3502 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3503 struct btrfs_root *log, 3504 struct btrfs_path *path, 3505 int key_type, u64 dirid, 3506 u64 first_offset, u64 last_offset) 3507 { 3508 int ret; 3509 struct btrfs_key key; 3510 struct btrfs_dir_log_item *item; 3511 3512 key.objectid = dirid; 3513 key.offset = first_offset; 3514 if (key_type == BTRFS_DIR_ITEM_KEY) 3515 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3516 else 3517 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3518 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3519 if (ret) 3520 return ret; 3521 3522 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3523 struct btrfs_dir_log_item); 3524 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3525 btrfs_mark_buffer_dirty(path->nodes[0]); 3526 btrfs_release_path(path); 3527 return 0; 3528 } 3529 3530 /* 3531 * log all the items included in the current transaction for a given 3532 * directory. This also creates the range items in the log tree required 3533 * to replay anything deleted before the fsync 3534 */ 3535 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3536 struct btrfs_root *root, struct btrfs_inode *inode, 3537 struct btrfs_path *path, 3538 struct btrfs_path *dst_path, int key_type, 3539 struct btrfs_log_ctx *ctx, 3540 u64 min_offset, u64 *last_offset_ret) 3541 { 3542 struct btrfs_key min_key; 3543 struct btrfs_root *log = root->log_root; 3544 struct extent_buffer *src; 3545 int err = 0; 3546 int ret; 3547 int i; 3548 int nritems; 3549 u64 first_offset = min_offset; 3550 u64 last_offset = (u64)-1; 3551 u64 ino = btrfs_ino(inode); 3552 3553 log = root->log_root; 3554 3555 min_key.objectid = ino; 3556 min_key.type = key_type; 3557 min_key.offset = min_offset; 3558 3559 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3560 3561 /* 3562 * we didn't find anything from this transaction, see if there 3563 * is anything at all 3564 */ 3565 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3566 min_key.objectid = ino; 3567 min_key.type = key_type; 3568 min_key.offset = (u64)-1; 3569 btrfs_release_path(path); 3570 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3571 if (ret < 0) { 3572 btrfs_release_path(path); 3573 return ret; 3574 } 3575 ret = btrfs_previous_item(root, path, ino, key_type); 3576 3577 /* if ret == 0 there are items for this type, 3578 * create a range to tell us the last key of this type. 3579 * otherwise, there are no items in this directory after 3580 * *min_offset, and we create a range to indicate that. 3581 */ 3582 if (ret == 0) { 3583 struct btrfs_key tmp; 3584 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3585 path->slots[0]); 3586 if (key_type == tmp.type) 3587 first_offset = max(min_offset, tmp.offset) + 1; 3588 } 3589 goto done; 3590 } 3591 3592 /* go backward to find any previous key */ 3593 ret = btrfs_previous_item(root, path, ino, key_type); 3594 if (ret == 0) { 3595 struct btrfs_key tmp; 3596 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3597 if (key_type == tmp.type) { 3598 first_offset = tmp.offset; 3599 ret = overwrite_item(trans, log, dst_path, 3600 path->nodes[0], path->slots[0], 3601 &tmp); 3602 if (ret) { 3603 err = ret; 3604 goto done; 3605 } 3606 } 3607 } 3608 btrfs_release_path(path); 3609 3610 /* 3611 * Find the first key from this transaction again. See the note for 3612 * log_new_dir_dentries, if we're logging a directory recursively we 3613 * won't be holding its i_mutex, which means we can modify the directory 3614 * while we're logging it. If we remove an entry between our first 3615 * search and this search we'll not find the key again and can just 3616 * bail. 3617 */ 3618 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3619 if (ret != 0) 3620 goto done; 3621 3622 /* 3623 * we have a block from this transaction, log every item in it 3624 * from our directory 3625 */ 3626 while (1) { 3627 struct btrfs_key tmp; 3628 src = path->nodes[0]; 3629 nritems = btrfs_header_nritems(src); 3630 for (i = path->slots[0]; i < nritems; i++) { 3631 struct btrfs_dir_item *di; 3632 3633 btrfs_item_key_to_cpu(src, &min_key, i); 3634 3635 if (min_key.objectid != ino || min_key.type != key_type) 3636 goto done; 3637 ret = overwrite_item(trans, log, dst_path, src, i, 3638 &min_key); 3639 if (ret) { 3640 err = ret; 3641 goto done; 3642 } 3643 3644 /* 3645 * We must make sure that when we log a directory entry, 3646 * the corresponding inode, after log replay, has a 3647 * matching link count. For example: 3648 * 3649 * touch foo 3650 * mkdir mydir 3651 * sync 3652 * ln foo mydir/bar 3653 * xfs_io -c "fsync" mydir 3654 * <crash> 3655 * <mount fs and log replay> 3656 * 3657 * Would result in a fsync log that when replayed, our 3658 * file inode would have a link count of 1, but we get 3659 * two directory entries pointing to the same inode. 3660 * After removing one of the names, it would not be 3661 * possible to remove the other name, which resulted 3662 * always in stale file handle errors, and would not 3663 * be possible to rmdir the parent directory, since 3664 * its i_size could never decrement to the value 3665 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3666 */ 3667 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3668 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3669 if (ctx && 3670 (btrfs_dir_transid(src, di) == trans->transid || 3671 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3672 tmp.type != BTRFS_ROOT_ITEM_KEY) 3673 ctx->log_new_dentries = true; 3674 } 3675 path->slots[0] = nritems; 3676 3677 /* 3678 * look ahead to the next item and see if it is also 3679 * from this directory and from this transaction 3680 */ 3681 ret = btrfs_next_leaf(root, path); 3682 if (ret) { 3683 if (ret == 1) 3684 last_offset = (u64)-1; 3685 else 3686 err = ret; 3687 goto done; 3688 } 3689 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3690 if (tmp.objectid != ino || tmp.type != key_type) { 3691 last_offset = (u64)-1; 3692 goto done; 3693 } 3694 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3695 ret = overwrite_item(trans, log, dst_path, 3696 path->nodes[0], path->slots[0], 3697 &tmp); 3698 if (ret) 3699 err = ret; 3700 else 3701 last_offset = tmp.offset; 3702 goto done; 3703 } 3704 } 3705 done: 3706 btrfs_release_path(path); 3707 btrfs_release_path(dst_path); 3708 3709 if (err == 0) { 3710 *last_offset_ret = last_offset; 3711 /* 3712 * insert the log range keys to indicate where the log 3713 * is valid 3714 */ 3715 ret = insert_dir_log_key(trans, log, path, key_type, 3716 ino, first_offset, last_offset); 3717 if (ret) 3718 err = ret; 3719 } 3720 return err; 3721 } 3722 3723 /* 3724 * logging directories is very similar to logging inodes, We find all the items 3725 * from the current transaction and write them to the log. 3726 * 3727 * The recovery code scans the directory in the subvolume, and if it finds a 3728 * key in the range logged that is not present in the log tree, then it means 3729 * that dir entry was unlinked during the transaction. 3730 * 3731 * In order for that scan to work, we must include one key smaller than 3732 * the smallest logged by this transaction and one key larger than the largest 3733 * key logged by this transaction. 3734 */ 3735 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3736 struct btrfs_root *root, struct btrfs_inode *inode, 3737 struct btrfs_path *path, 3738 struct btrfs_path *dst_path, 3739 struct btrfs_log_ctx *ctx) 3740 { 3741 u64 min_key; 3742 u64 max_key; 3743 int ret; 3744 int key_type = BTRFS_DIR_ITEM_KEY; 3745 3746 again: 3747 min_key = 0; 3748 max_key = 0; 3749 while (1) { 3750 ret = log_dir_items(trans, root, inode, path, dst_path, key_type, 3751 ctx, min_key, &max_key); 3752 if (ret) 3753 return ret; 3754 if (max_key == (u64)-1) 3755 break; 3756 min_key = max_key + 1; 3757 } 3758 3759 if (key_type == BTRFS_DIR_ITEM_KEY) { 3760 key_type = BTRFS_DIR_INDEX_KEY; 3761 goto again; 3762 } 3763 return 0; 3764 } 3765 3766 /* 3767 * a helper function to drop items from the log before we relog an 3768 * inode. max_key_type indicates the highest item type to remove. 3769 * This cannot be run for file data extents because it does not 3770 * free the extents they point to. 3771 */ 3772 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3773 struct btrfs_root *log, 3774 struct btrfs_path *path, 3775 u64 objectid, int max_key_type) 3776 { 3777 int ret; 3778 struct btrfs_key key; 3779 struct btrfs_key found_key; 3780 int start_slot; 3781 3782 key.objectid = objectid; 3783 key.type = max_key_type; 3784 key.offset = (u64)-1; 3785 3786 while (1) { 3787 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3788 BUG_ON(ret == 0); /* Logic error */ 3789 if (ret < 0) 3790 break; 3791 3792 if (path->slots[0] == 0) 3793 break; 3794 3795 path->slots[0]--; 3796 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3797 path->slots[0]); 3798 3799 if (found_key.objectid != objectid) 3800 break; 3801 3802 found_key.offset = 0; 3803 found_key.type = 0; 3804 ret = btrfs_bin_search(path->nodes[0], &found_key, 0, 3805 &start_slot); 3806 if (ret < 0) 3807 break; 3808 3809 ret = btrfs_del_items(trans, log, path, start_slot, 3810 path->slots[0] - start_slot + 1); 3811 /* 3812 * If start slot isn't 0 then we don't need to re-search, we've 3813 * found the last guy with the objectid in this tree. 3814 */ 3815 if (ret || start_slot != 0) 3816 break; 3817 btrfs_release_path(path); 3818 } 3819 btrfs_release_path(path); 3820 if (ret > 0) 3821 ret = 0; 3822 return ret; 3823 } 3824 3825 static void fill_inode_item(struct btrfs_trans_handle *trans, 3826 struct extent_buffer *leaf, 3827 struct btrfs_inode_item *item, 3828 struct inode *inode, int log_inode_only, 3829 u64 logged_isize) 3830 { 3831 struct btrfs_map_token token; 3832 3833 btrfs_init_map_token(&token, leaf); 3834 3835 if (log_inode_only) { 3836 /* set the generation to zero so the recover code 3837 * can tell the difference between an logging 3838 * just to say 'this inode exists' and a logging 3839 * to say 'update this inode with these values' 3840 */ 3841 btrfs_set_token_inode_generation(leaf, item, 0, &token); 3842 btrfs_set_token_inode_size(leaf, item, logged_isize, &token); 3843 } else { 3844 btrfs_set_token_inode_generation(leaf, item, 3845 BTRFS_I(inode)->generation, 3846 &token); 3847 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); 3848 } 3849 3850 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3851 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3852 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3853 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3854 3855 btrfs_set_token_timespec_sec(leaf, &item->atime, 3856 inode->i_atime.tv_sec, &token); 3857 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3858 inode->i_atime.tv_nsec, &token); 3859 3860 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3861 inode->i_mtime.tv_sec, &token); 3862 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3863 inode->i_mtime.tv_nsec, &token); 3864 3865 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3866 inode->i_ctime.tv_sec, &token); 3867 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3868 inode->i_ctime.tv_nsec, &token); 3869 3870 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3871 &token); 3872 3873 btrfs_set_token_inode_sequence(leaf, item, 3874 inode_peek_iversion(inode), &token); 3875 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3876 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3877 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3878 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3879 } 3880 3881 static int log_inode_item(struct btrfs_trans_handle *trans, 3882 struct btrfs_root *log, struct btrfs_path *path, 3883 struct btrfs_inode *inode) 3884 { 3885 struct btrfs_inode_item *inode_item; 3886 int ret; 3887 3888 ret = btrfs_insert_empty_item(trans, log, path, 3889 &inode->location, sizeof(*inode_item)); 3890 if (ret && ret != -EEXIST) 3891 return ret; 3892 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3893 struct btrfs_inode_item); 3894 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 3895 0, 0); 3896 btrfs_release_path(path); 3897 return 0; 3898 } 3899 3900 static int log_csums(struct btrfs_trans_handle *trans, 3901 struct btrfs_root *log_root, 3902 struct btrfs_ordered_sum *sums) 3903 { 3904 int ret; 3905 3906 /* 3907 * Due to extent cloning, we might have logged a csum item that covers a 3908 * subrange of a cloned extent, and later we can end up logging a csum 3909 * item for a larger subrange of the same extent or the entire range. 3910 * This would leave csum items in the log tree that cover the same range 3911 * and break the searches for checksums in the log tree, resulting in 3912 * some checksums missing in the fs/subvolume tree. So just delete (or 3913 * trim and adjust) any existing csum items in the log for this range. 3914 */ 3915 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len); 3916 if (ret) 3917 return ret; 3918 3919 return btrfs_csum_file_blocks(trans, log_root, sums); 3920 } 3921 3922 static noinline int copy_items(struct btrfs_trans_handle *trans, 3923 struct btrfs_inode *inode, 3924 struct btrfs_path *dst_path, 3925 struct btrfs_path *src_path, 3926 int start_slot, int nr, int inode_only, 3927 u64 logged_isize) 3928 { 3929 struct btrfs_fs_info *fs_info = trans->fs_info; 3930 unsigned long src_offset; 3931 unsigned long dst_offset; 3932 struct btrfs_root *log = inode->root->log_root; 3933 struct btrfs_file_extent_item *extent; 3934 struct btrfs_inode_item *inode_item; 3935 struct extent_buffer *src = src_path->nodes[0]; 3936 int ret; 3937 struct btrfs_key *ins_keys; 3938 u32 *ins_sizes; 3939 char *ins_data; 3940 int i; 3941 struct list_head ordered_sums; 3942 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 3943 3944 INIT_LIST_HEAD(&ordered_sums); 3945 3946 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3947 nr * sizeof(u32), GFP_NOFS); 3948 if (!ins_data) 3949 return -ENOMEM; 3950 3951 ins_sizes = (u32 *)ins_data; 3952 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3953 3954 for (i = 0; i < nr; i++) { 3955 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3956 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3957 } 3958 ret = btrfs_insert_empty_items(trans, log, dst_path, 3959 ins_keys, ins_sizes, nr); 3960 if (ret) { 3961 kfree(ins_data); 3962 return ret; 3963 } 3964 3965 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3966 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3967 dst_path->slots[0]); 3968 3969 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3970 3971 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3972 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3973 dst_path->slots[0], 3974 struct btrfs_inode_item); 3975 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3976 &inode->vfs_inode, 3977 inode_only == LOG_INODE_EXISTS, 3978 logged_isize); 3979 } else { 3980 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3981 src_offset, ins_sizes[i]); 3982 } 3983 3984 /* take a reference on file data extents so that truncates 3985 * or deletes of this inode don't have to relog the inode 3986 * again 3987 */ 3988 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 3989 !skip_csum) { 3990 int found_type; 3991 extent = btrfs_item_ptr(src, start_slot + i, 3992 struct btrfs_file_extent_item); 3993 3994 if (btrfs_file_extent_generation(src, extent) < trans->transid) 3995 continue; 3996 3997 found_type = btrfs_file_extent_type(src, extent); 3998 if (found_type == BTRFS_FILE_EXTENT_REG) { 3999 u64 ds, dl, cs, cl; 4000 ds = btrfs_file_extent_disk_bytenr(src, 4001 extent); 4002 /* ds == 0 is a hole */ 4003 if (ds == 0) 4004 continue; 4005 4006 dl = btrfs_file_extent_disk_num_bytes(src, 4007 extent); 4008 cs = btrfs_file_extent_offset(src, extent); 4009 cl = btrfs_file_extent_num_bytes(src, 4010 extent); 4011 if (btrfs_file_extent_compression(src, 4012 extent)) { 4013 cs = 0; 4014 cl = dl; 4015 } 4016 4017 ret = btrfs_lookup_csums_range( 4018 fs_info->csum_root, 4019 ds + cs, ds + cs + cl - 1, 4020 &ordered_sums, 0); 4021 if (ret) { 4022 btrfs_release_path(dst_path); 4023 kfree(ins_data); 4024 return ret; 4025 } 4026 } 4027 } 4028 } 4029 4030 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4031 btrfs_release_path(dst_path); 4032 kfree(ins_data); 4033 4034 /* 4035 * we have to do this after the loop above to avoid changing the 4036 * log tree while trying to change the log tree. 4037 */ 4038 ret = 0; 4039 while (!list_empty(&ordered_sums)) { 4040 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4041 struct btrfs_ordered_sum, 4042 list); 4043 if (!ret) 4044 ret = log_csums(trans, log, sums); 4045 list_del(&sums->list); 4046 kfree(sums); 4047 } 4048 4049 return ret; 4050 } 4051 4052 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 4053 { 4054 struct extent_map *em1, *em2; 4055 4056 em1 = list_entry(a, struct extent_map, list); 4057 em2 = list_entry(b, struct extent_map, list); 4058 4059 if (em1->start < em2->start) 4060 return -1; 4061 else if (em1->start > em2->start) 4062 return 1; 4063 return 0; 4064 } 4065 4066 static int log_extent_csums(struct btrfs_trans_handle *trans, 4067 struct btrfs_inode *inode, 4068 struct btrfs_root *log_root, 4069 const struct extent_map *em) 4070 { 4071 u64 csum_offset; 4072 u64 csum_len; 4073 LIST_HEAD(ordered_sums); 4074 int ret = 0; 4075 4076 if (inode->flags & BTRFS_INODE_NODATASUM || 4077 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4078 em->block_start == EXTENT_MAP_HOLE) 4079 return 0; 4080 4081 /* If we're compressed we have to save the entire range of csums. */ 4082 if (em->compress_type) { 4083 csum_offset = 0; 4084 csum_len = max(em->block_len, em->orig_block_len); 4085 } else { 4086 csum_offset = em->mod_start - em->start; 4087 csum_len = em->mod_len; 4088 } 4089 4090 /* block start is already adjusted for the file extent offset. */ 4091 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, 4092 em->block_start + csum_offset, 4093 em->block_start + csum_offset + 4094 csum_len - 1, &ordered_sums, 0); 4095 if (ret) 4096 return ret; 4097 4098 while (!list_empty(&ordered_sums)) { 4099 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4100 struct btrfs_ordered_sum, 4101 list); 4102 if (!ret) 4103 ret = log_csums(trans, log_root, sums); 4104 list_del(&sums->list); 4105 kfree(sums); 4106 } 4107 4108 return ret; 4109 } 4110 4111 static int log_one_extent(struct btrfs_trans_handle *trans, 4112 struct btrfs_inode *inode, struct btrfs_root *root, 4113 const struct extent_map *em, 4114 struct btrfs_path *path, 4115 struct btrfs_log_ctx *ctx) 4116 { 4117 struct btrfs_root *log = root->log_root; 4118 struct btrfs_file_extent_item *fi; 4119 struct extent_buffer *leaf; 4120 struct btrfs_map_token token; 4121 struct btrfs_key key; 4122 u64 extent_offset = em->start - em->orig_start; 4123 u64 block_len; 4124 int ret; 4125 int extent_inserted = 0; 4126 4127 ret = log_extent_csums(trans, inode, log, em); 4128 if (ret) 4129 return ret; 4130 4131 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start, 4132 em->start + em->len, NULL, 0, 1, 4133 sizeof(*fi), &extent_inserted); 4134 if (ret) 4135 return ret; 4136 4137 if (!extent_inserted) { 4138 key.objectid = btrfs_ino(inode); 4139 key.type = BTRFS_EXTENT_DATA_KEY; 4140 key.offset = em->start; 4141 4142 ret = btrfs_insert_empty_item(trans, log, path, &key, 4143 sizeof(*fi)); 4144 if (ret) 4145 return ret; 4146 } 4147 leaf = path->nodes[0]; 4148 btrfs_init_map_token(&token, leaf); 4149 fi = btrfs_item_ptr(leaf, path->slots[0], 4150 struct btrfs_file_extent_item); 4151 4152 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, 4153 &token); 4154 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4155 btrfs_set_token_file_extent_type(leaf, fi, 4156 BTRFS_FILE_EXTENT_PREALLOC, 4157 &token); 4158 else 4159 btrfs_set_token_file_extent_type(leaf, fi, 4160 BTRFS_FILE_EXTENT_REG, 4161 &token); 4162 4163 block_len = max(em->block_len, em->orig_block_len); 4164 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4165 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4166 em->block_start, 4167 &token); 4168 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4169 &token); 4170 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4171 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4172 em->block_start - 4173 extent_offset, &token); 4174 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4175 &token); 4176 } else { 4177 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); 4178 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, 4179 &token); 4180 } 4181 4182 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); 4183 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); 4184 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); 4185 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, 4186 &token); 4187 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); 4188 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); 4189 btrfs_mark_buffer_dirty(leaf); 4190 4191 btrfs_release_path(path); 4192 4193 return ret; 4194 } 4195 4196 /* 4197 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4198 * lose them after doing a fast fsync and replaying the log. We scan the 4199 * subvolume's root instead of iterating the inode's extent map tree because 4200 * otherwise we can log incorrect extent items based on extent map conversion. 4201 * That can happen due to the fact that extent maps are merged when they 4202 * are not in the extent map tree's list of modified extents. 4203 */ 4204 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4205 struct btrfs_inode *inode, 4206 struct btrfs_path *path) 4207 { 4208 struct btrfs_root *root = inode->root; 4209 struct btrfs_key key; 4210 const u64 i_size = i_size_read(&inode->vfs_inode); 4211 const u64 ino = btrfs_ino(inode); 4212 struct btrfs_path *dst_path = NULL; 4213 bool dropped_extents = false; 4214 int ins_nr = 0; 4215 int start_slot; 4216 int ret; 4217 4218 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4219 return 0; 4220 4221 key.objectid = ino; 4222 key.type = BTRFS_EXTENT_DATA_KEY; 4223 key.offset = i_size; 4224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4225 if (ret < 0) 4226 goto out; 4227 4228 while (true) { 4229 struct extent_buffer *leaf = path->nodes[0]; 4230 int slot = path->slots[0]; 4231 4232 if (slot >= btrfs_header_nritems(leaf)) { 4233 if (ins_nr > 0) { 4234 ret = copy_items(trans, inode, dst_path, path, 4235 start_slot, ins_nr, 1, 0); 4236 if (ret < 0) 4237 goto out; 4238 ins_nr = 0; 4239 } 4240 ret = btrfs_next_leaf(root, path); 4241 if (ret < 0) 4242 goto out; 4243 if (ret > 0) { 4244 ret = 0; 4245 break; 4246 } 4247 continue; 4248 } 4249 4250 btrfs_item_key_to_cpu(leaf, &key, slot); 4251 if (key.objectid > ino) 4252 break; 4253 if (WARN_ON_ONCE(key.objectid < ino) || 4254 key.type < BTRFS_EXTENT_DATA_KEY || 4255 key.offset < i_size) { 4256 path->slots[0]++; 4257 continue; 4258 } 4259 if (!dropped_extents) { 4260 /* 4261 * Avoid logging extent items logged in past fsync calls 4262 * and leading to duplicate keys in the log tree. 4263 */ 4264 do { 4265 ret = btrfs_truncate_inode_items(trans, 4266 root->log_root, 4267 &inode->vfs_inode, 4268 i_size, 4269 BTRFS_EXTENT_DATA_KEY); 4270 } while (ret == -EAGAIN); 4271 if (ret) 4272 goto out; 4273 dropped_extents = true; 4274 } 4275 if (ins_nr == 0) 4276 start_slot = slot; 4277 ins_nr++; 4278 path->slots[0]++; 4279 if (!dst_path) { 4280 dst_path = btrfs_alloc_path(); 4281 if (!dst_path) { 4282 ret = -ENOMEM; 4283 goto out; 4284 } 4285 } 4286 } 4287 if (ins_nr > 0) { 4288 ret = copy_items(trans, inode, dst_path, path, 4289 start_slot, ins_nr, 1, 0); 4290 if (ret > 0) 4291 ret = 0; 4292 } 4293 out: 4294 btrfs_release_path(path); 4295 btrfs_free_path(dst_path); 4296 return ret; 4297 } 4298 4299 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4300 struct btrfs_root *root, 4301 struct btrfs_inode *inode, 4302 struct btrfs_path *path, 4303 struct btrfs_log_ctx *ctx, 4304 const u64 start, 4305 const u64 end) 4306 { 4307 struct extent_map *em, *n; 4308 struct list_head extents; 4309 struct extent_map_tree *tree = &inode->extent_tree; 4310 u64 test_gen; 4311 int ret = 0; 4312 int num = 0; 4313 4314 INIT_LIST_HEAD(&extents); 4315 4316 write_lock(&tree->lock); 4317 test_gen = root->fs_info->last_trans_committed; 4318 4319 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4320 /* 4321 * Skip extents outside our logging range. It's important to do 4322 * it for correctness because if we don't ignore them, we may 4323 * log them before their ordered extent completes, and therefore 4324 * we could log them without logging their respective checksums 4325 * (the checksum items are added to the csum tree at the very 4326 * end of btrfs_finish_ordered_io()). Also leave such extents 4327 * outside of our range in the list, since we may have another 4328 * ranged fsync in the near future that needs them. If an extent 4329 * outside our range corresponds to a hole, log it to avoid 4330 * leaving gaps between extents (fsck will complain when we are 4331 * not using the NO_HOLES feature). 4332 */ 4333 if ((em->start > end || em->start + em->len <= start) && 4334 em->block_start != EXTENT_MAP_HOLE) 4335 continue; 4336 4337 list_del_init(&em->list); 4338 /* 4339 * Just an arbitrary number, this can be really CPU intensive 4340 * once we start getting a lot of extents, and really once we 4341 * have a bunch of extents we just want to commit since it will 4342 * be faster. 4343 */ 4344 if (++num > 32768) { 4345 list_del_init(&tree->modified_extents); 4346 ret = -EFBIG; 4347 goto process; 4348 } 4349 4350 if (em->generation <= test_gen) 4351 continue; 4352 4353 /* We log prealloc extents beyond eof later. */ 4354 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4355 em->start >= i_size_read(&inode->vfs_inode)) 4356 continue; 4357 4358 /* Need a ref to keep it from getting evicted from cache */ 4359 refcount_inc(&em->refs); 4360 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4361 list_add_tail(&em->list, &extents); 4362 num++; 4363 } 4364 4365 list_sort(NULL, &extents, extent_cmp); 4366 process: 4367 while (!list_empty(&extents)) { 4368 em = list_entry(extents.next, struct extent_map, list); 4369 4370 list_del_init(&em->list); 4371 4372 /* 4373 * If we had an error we just need to delete everybody from our 4374 * private list. 4375 */ 4376 if (ret) { 4377 clear_em_logging(tree, em); 4378 free_extent_map(em); 4379 continue; 4380 } 4381 4382 write_unlock(&tree->lock); 4383 4384 ret = log_one_extent(trans, inode, root, em, path, ctx); 4385 write_lock(&tree->lock); 4386 clear_em_logging(tree, em); 4387 free_extent_map(em); 4388 } 4389 WARN_ON(!list_empty(&extents)); 4390 write_unlock(&tree->lock); 4391 4392 btrfs_release_path(path); 4393 if (!ret) 4394 ret = btrfs_log_prealloc_extents(trans, inode, path); 4395 4396 return ret; 4397 } 4398 4399 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4400 struct btrfs_path *path, u64 *size_ret) 4401 { 4402 struct btrfs_key key; 4403 int ret; 4404 4405 key.objectid = btrfs_ino(inode); 4406 key.type = BTRFS_INODE_ITEM_KEY; 4407 key.offset = 0; 4408 4409 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4410 if (ret < 0) { 4411 return ret; 4412 } else if (ret > 0) { 4413 *size_ret = 0; 4414 } else { 4415 struct btrfs_inode_item *item; 4416 4417 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4418 struct btrfs_inode_item); 4419 *size_ret = btrfs_inode_size(path->nodes[0], item); 4420 /* 4421 * If the in-memory inode's i_size is smaller then the inode 4422 * size stored in the btree, return the inode's i_size, so 4423 * that we get a correct inode size after replaying the log 4424 * when before a power failure we had a shrinking truncate 4425 * followed by addition of a new name (rename / new hard link). 4426 * Otherwise return the inode size from the btree, to avoid 4427 * data loss when replaying a log due to previously doing a 4428 * write that expands the inode's size and logging a new name 4429 * immediately after. 4430 */ 4431 if (*size_ret > inode->vfs_inode.i_size) 4432 *size_ret = inode->vfs_inode.i_size; 4433 } 4434 4435 btrfs_release_path(path); 4436 return 0; 4437 } 4438 4439 /* 4440 * At the moment we always log all xattrs. This is to figure out at log replay 4441 * time which xattrs must have their deletion replayed. If a xattr is missing 4442 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4443 * because if a xattr is deleted, the inode is fsynced and a power failure 4444 * happens, causing the log to be replayed the next time the fs is mounted, 4445 * we want the xattr to not exist anymore (same behaviour as other filesystems 4446 * with a journal, ext3/4, xfs, f2fs, etc). 4447 */ 4448 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4449 struct btrfs_root *root, 4450 struct btrfs_inode *inode, 4451 struct btrfs_path *path, 4452 struct btrfs_path *dst_path) 4453 { 4454 int ret; 4455 struct btrfs_key key; 4456 const u64 ino = btrfs_ino(inode); 4457 int ins_nr = 0; 4458 int start_slot = 0; 4459 4460 key.objectid = ino; 4461 key.type = BTRFS_XATTR_ITEM_KEY; 4462 key.offset = 0; 4463 4464 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4465 if (ret < 0) 4466 return ret; 4467 4468 while (true) { 4469 int slot = path->slots[0]; 4470 struct extent_buffer *leaf = path->nodes[0]; 4471 int nritems = btrfs_header_nritems(leaf); 4472 4473 if (slot >= nritems) { 4474 if (ins_nr > 0) { 4475 ret = copy_items(trans, inode, dst_path, path, 4476 start_slot, ins_nr, 1, 0); 4477 if (ret < 0) 4478 return ret; 4479 ins_nr = 0; 4480 } 4481 ret = btrfs_next_leaf(root, path); 4482 if (ret < 0) 4483 return ret; 4484 else if (ret > 0) 4485 break; 4486 continue; 4487 } 4488 4489 btrfs_item_key_to_cpu(leaf, &key, slot); 4490 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4491 break; 4492 4493 if (ins_nr == 0) 4494 start_slot = slot; 4495 ins_nr++; 4496 path->slots[0]++; 4497 cond_resched(); 4498 } 4499 if (ins_nr > 0) { 4500 ret = copy_items(trans, inode, dst_path, path, 4501 start_slot, ins_nr, 1, 0); 4502 if (ret < 0) 4503 return ret; 4504 } 4505 4506 return 0; 4507 } 4508 4509 /* 4510 * When using the NO_HOLES feature if we punched a hole that causes the 4511 * deletion of entire leafs or all the extent items of the first leaf (the one 4512 * that contains the inode item and references) we may end up not processing 4513 * any extents, because there are no leafs with a generation matching the 4514 * current transaction that have extent items for our inode. So we need to find 4515 * if any holes exist and then log them. We also need to log holes after any 4516 * truncate operation that changes the inode's size. 4517 */ 4518 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 4519 struct btrfs_root *root, 4520 struct btrfs_inode *inode, 4521 struct btrfs_path *path) 4522 { 4523 struct btrfs_fs_info *fs_info = root->fs_info; 4524 struct btrfs_key key; 4525 const u64 ino = btrfs_ino(inode); 4526 const u64 i_size = i_size_read(&inode->vfs_inode); 4527 u64 prev_extent_end = 0; 4528 int ret; 4529 4530 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 4531 return 0; 4532 4533 key.objectid = ino; 4534 key.type = BTRFS_EXTENT_DATA_KEY; 4535 key.offset = 0; 4536 4537 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4538 if (ret < 0) 4539 return ret; 4540 4541 while (true) { 4542 struct btrfs_file_extent_item *extent; 4543 struct extent_buffer *leaf = path->nodes[0]; 4544 u64 len; 4545 4546 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 4547 ret = btrfs_next_leaf(root, path); 4548 if (ret < 0) 4549 return ret; 4550 if (ret > 0) { 4551 ret = 0; 4552 break; 4553 } 4554 leaf = path->nodes[0]; 4555 } 4556 4557 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4558 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 4559 break; 4560 4561 /* We have a hole, log it. */ 4562 if (prev_extent_end < key.offset) { 4563 const u64 hole_len = key.offset - prev_extent_end; 4564 4565 /* 4566 * Release the path to avoid deadlocks with other code 4567 * paths that search the root while holding locks on 4568 * leafs from the log root. 4569 */ 4570 btrfs_release_path(path); 4571 ret = btrfs_insert_file_extent(trans, root->log_root, 4572 ino, prev_extent_end, 0, 4573 0, hole_len, 0, hole_len, 4574 0, 0, 0); 4575 if (ret < 0) 4576 return ret; 4577 4578 /* 4579 * Search for the same key again in the root. Since it's 4580 * an extent item and we are holding the inode lock, the 4581 * key must still exist. If it doesn't just emit warning 4582 * and return an error to fall back to a transaction 4583 * commit. 4584 */ 4585 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4586 if (ret < 0) 4587 return ret; 4588 if (WARN_ON(ret > 0)) 4589 return -ENOENT; 4590 leaf = path->nodes[0]; 4591 } 4592 4593 extent = btrfs_item_ptr(leaf, path->slots[0], 4594 struct btrfs_file_extent_item); 4595 if (btrfs_file_extent_type(leaf, extent) == 4596 BTRFS_FILE_EXTENT_INLINE) { 4597 len = btrfs_file_extent_ram_bytes(leaf, extent); 4598 prev_extent_end = ALIGN(key.offset + len, 4599 fs_info->sectorsize); 4600 } else { 4601 len = btrfs_file_extent_num_bytes(leaf, extent); 4602 prev_extent_end = key.offset + len; 4603 } 4604 4605 path->slots[0]++; 4606 cond_resched(); 4607 } 4608 4609 if (prev_extent_end < i_size) { 4610 u64 hole_len; 4611 4612 btrfs_release_path(path); 4613 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 4614 ret = btrfs_insert_file_extent(trans, root->log_root, 4615 ino, prev_extent_end, 0, 0, 4616 hole_len, 0, hole_len, 4617 0, 0, 0); 4618 if (ret < 0) 4619 return ret; 4620 } 4621 4622 return 0; 4623 } 4624 4625 /* 4626 * When we are logging a new inode X, check if it doesn't have a reference that 4627 * matches the reference from some other inode Y created in a past transaction 4628 * and that was renamed in the current transaction. If we don't do this, then at 4629 * log replay time we can lose inode Y (and all its files if it's a directory): 4630 * 4631 * mkdir /mnt/x 4632 * echo "hello world" > /mnt/x/foobar 4633 * sync 4634 * mv /mnt/x /mnt/y 4635 * mkdir /mnt/x # or touch /mnt/x 4636 * xfs_io -c fsync /mnt/x 4637 * <power fail> 4638 * mount fs, trigger log replay 4639 * 4640 * After the log replay procedure, we would lose the first directory and all its 4641 * files (file foobar). 4642 * For the case where inode Y is not a directory we simply end up losing it: 4643 * 4644 * echo "123" > /mnt/foo 4645 * sync 4646 * mv /mnt/foo /mnt/bar 4647 * echo "abc" > /mnt/foo 4648 * xfs_io -c fsync /mnt/foo 4649 * <power fail> 4650 * 4651 * We also need this for cases where a snapshot entry is replaced by some other 4652 * entry (file or directory) otherwise we end up with an unreplayable log due to 4653 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4654 * if it were a regular entry: 4655 * 4656 * mkdir /mnt/x 4657 * btrfs subvolume snapshot /mnt /mnt/x/snap 4658 * btrfs subvolume delete /mnt/x/snap 4659 * rmdir /mnt/x 4660 * mkdir /mnt/x 4661 * fsync /mnt/x or fsync some new file inside it 4662 * <power fail> 4663 * 4664 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4665 * the same transaction. 4666 */ 4667 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4668 const int slot, 4669 const struct btrfs_key *key, 4670 struct btrfs_inode *inode, 4671 u64 *other_ino, u64 *other_parent) 4672 { 4673 int ret; 4674 struct btrfs_path *search_path; 4675 char *name = NULL; 4676 u32 name_len = 0; 4677 u32 item_size = btrfs_item_size_nr(eb, slot); 4678 u32 cur_offset = 0; 4679 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4680 4681 search_path = btrfs_alloc_path(); 4682 if (!search_path) 4683 return -ENOMEM; 4684 search_path->search_commit_root = 1; 4685 search_path->skip_locking = 1; 4686 4687 while (cur_offset < item_size) { 4688 u64 parent; 4689 u32 this_name_len; 4690 u32 this_len; 4691 unsigned long name_ptr; 4692 struct btrfs_dir_item *di; 4693 4694 if (key->type == BTRFS_INODE_REF_KEY) { 4695 struct btrfs_inode_ref *iref; 4696 4697 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4698 parent = key->offset; 4699 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4700 name_ptr = (unsigned long)(iref + 1); 4701 this_len = sizeof(*iref) + this_name_len; 4702 } else { 4703 struct btrfs_inode_extref *extref; 4704 4705 extref = (struct btrfs_inode_extref *)(ptr + 4706 cur_offset); 4707 parent = btrfs_inode_extref_parent(eb, extref); 4708 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4709 name_ptr = (unsigned long)&extref->name; 4710 this_len = sizeof(*extref) + this_name_len; 4711 } 4712 4713 if (this_name_len > name_len) { 4714 char *new_name; 4715 4716 new_name = krealloc(name, this_name_len, GFP_NOFS); 4717 if (!new_name) { 4718 ret = -ENOMEM; 4719 goto out; 4720 } 4721 name_len = this_name_len; 4722 name = new_name; 4723 } 4724 4725 read_extent_buffer(eb, name, name_ptr, this_name_len); 4726 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 4727 parent, name, this_name_len, 0); 4728 if (di && !IS_ERR(di)) { 4729 struct btrfs_key di_key; 4730 4731 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4732 di, &di_key); 4733 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4734 if (di_key.objectid != key->objectid) { 4735 ret = 1; 4736 *other_ino = di_key.objectid; 4737 *other_parent = parent; 4738 } else { 4739 ret = 0; 4740 } 4741 } else { 4742 ret = -EAGAIN; 4743 } 4744 goto out; 4745 } else if (IS_ERR(di)) { 4746 ret = PTR_ERR(di); 4747 goto out; 4748 } 4749 btrfs_release_path(search_path); 4750 4751 cur_offset += this_len; 4752 } 4753 ret = 0; 4754 out: 4755 btrfs_free_path(search_path); 4756 kfree(name); 4757 return ret; 4758 } 4759 4760 struct btrfs_ino_list { 4761 u64 ino; 4762 u64 parent; 4763 struct list_head list; 4764 }; 4765 4766 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 4767 struct btrfs_root *root, 4768 struct btrfs_path *path, 4769 struct btrfs_log_ctx *ctx, 4770 u64 ino, u64 parent) 4771 { 4772 struct btrfs_ino_list *ino_elem; 4773 LIST_HEAD(inode_list); 4774 int ret = 0; 4775 4776 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4777 if (!ino_elem) 4778 return -ENOMEM; 4779 ino_elem->ino = ino; 4780 ino_elem->parent = parent; 4781 list_add_tail(&ino_elem->list, &inode_list); 4782 4783 while (!list_empty(&inode_list)) { 4784 struct btrfs_fs_info *fs_info = root->fs_info; 4785 struct btrfs_key key; 4786 struct inode *inode; 4787 4788 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 4789 list); 4790 ino = ino_elem->ino; 4791 parent = ino_elem->parent; 4792 list_del(&ino_elem->list); 4793 kfree(ino_elem); 4794 if (ret) 4795 continue; 4796 4797 btrfs_release_path(path); 4798 4799 key.objectid = ino; 4800 key.type = BTRFS_INODE_ITEM_KEY; 4801 key.offset = 0; 4802 inode = btrfs_iget(fs_info->sb, &key, root); 4803 /* 4804 * If the other inode that had a conflicting dir entry was 4805 * deleted in the current transaction, we need to log its parent 4806 * directory. 4807 */ 4808 if (IS_ERR(inode)) { 4809 ret = PTR_ERR(inode); 4810 if (ret == -ENOENT) { 4811 key.objectid = parent; 4812 inode = btrfs_iget(fs_info->sb, &key, root); 4813 if (IS_ERR(inode)) { 4814 ret = PTR_ERR(inode); 4815 } else { 4816 ret = btrfs_log_inode(trans, root, 4817 BTRFS_I(inode), 4818 LOG_OTHER_INODE_ALL, 4819 0, LLONG_MAX, ctx); 4820 btrfs_add_delayed_iput(inode); 4821 } 4822 } 4823 continue; 4824 } 4825 /* 4826 * If the inode was already logged skip it - otherwise we can 4827 * hit an infinite loop. Example: 4828 * 4829 * From the commit root (previous transaction) we have the 4830 * following inodes: 4831 * 4832 * inode 257 a directory 4833 * inode 258 with references "zz" and "zz_link" on inode 257 4834 * inode 259 with reference "a" on inode 257 4835 * 4836 * And in the current (uncommitted) transaction we have: 4837 * 4838 * inode 257 a directory, unchanged 4839 * inode 258 with references "a" and "a2" on inode 257 4840 * inode 259 with reference "zz_link" on inode 257 4841 * inode 261 with reference "zz" on inode 257 4842 * 4843 * When logging inode 261 the following infinite loop could 4844 * happen if we don't skip already logged inodes: 4845 * 4846 * - we detect inode 258 as a conflicting inode, with inode 261 4847 * on reference "zz", and log it; 4848 * 4849 * - we detect inode 259 as a conflicting inode, with inode 258 4850 * on reference "a", and log it; 4851 * 4852 * - we detect inode 258 as a conflicting inode, with inode 259 4853 * on reference "zz_link", and log it - again! After this we 4854 * repeat the above steps forever. 4855 */ 4856 spin_lock(&BTRFS_I(inode)->lock); 4857 /* 4858 * Check the inode's logged_trans only instead of 4859 * btrfs_inode_in_log(). This is because the last_log_commit of 4860 * the inode is not updated when we only log that it exists and 4861 * and it has the full sync bit set (see btrfs_log_inode()). 4862 */ 4863 if (BTRFS_I(inode)->logged_trans == trans->transid) { 4864 spin_unlock(&BTRFS_I(inode)->lock); 4865 btrfs_add_delayed_iput(inode); 4866 continue; 4867 } 4868 spin_unlock(&BTRFS_I(inode)->lock); 4869 /* 4870 * We are safe logging the other inode without acquiring its 4871 * lock as long as we log with the LOG_INODE_EXISTS mode. We 4872 * are safe against concurrent renames of the other inode as 4873 * well because during a rename we pin the log and update the 4874 * log with the new name before we unpin it. 4875 */ 4876 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 4877 LOG_OTHER_INODE, 0, LLONG_MAX, ctx); 4878 if (ret) { 4879 btrfs_add_delayed_iput(inode); 4880 continue; 4881 } 4882 4883 key.objectid = ino; 4884 key.type = BTRFS_INODE_REF_KEY; 4885 key.offset = 0; 4886 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4887 if (ret < 0) { 4888 btrfs_add_delayed_iput(inode); 4889 continue; 4890 } 4891 4892 while (true) { 4893 struct extent_buffer *leaf = path->nodes[0]; 4894 int slot = path->slots[0]; 4895 u64 other_ino = 0; 4896 u64 other_parent = 0; 4897 4898 if (slot >= btrfs_header_nritems(leaf)) { 4899 ret = btrfs_next_leaf(root, path); 4900 if (ret < 0) { 4901 break; 4902 } else if (ret > 0) { 4903 ret = 0; 4904 break; 4905 } 4906 continue; 4907 } 4908 4909 btrfs_item_key_to_cpu(leaf, &key, slot); 4910 if (key.objectid != ino || 4911 (key.type != BTRFS_INODE_REF_KEY && 4912 key.type != BTRFS_INODE_EXTREF_KEY)) { 4913 ret = 0; 4914 break; 4915 } 4916 4917 ret = btrfs_check_ref_name_override(leaf, slot, &key, 4918 BTRFS_I(inode), &other_ino, 4919 &other_parent); 4920 if (ret < 0) 4921 break; 4922 if (ret > 0) { 4923 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4924 if (!ino_elem) { 4925 ret = -ENOMEM; 4926 break; 4927 } 4928 ino_elem->ino = other_ino; 4929 ino_elem->parent = other_parent; 4930 list_add_tail(&ino_elem->list, &inode_list); 4931 ret = 0; 4932 } 4933 path->slots[0]++; 4934 } 4935 btrfs_add_delayed_iput(inode); 4936 } 4937 4938 return ret; 4939 } 4940 4941 /* log a single inode in the tree log. 4942 * At least one parent directory for this inode must exist in the tree 4943 * or be logged already. 4944 * 4945 * Any items from this inode changed by the current transaction are copied 4946 * to the log tree. An extra reference is taken on any extents in this 4947 * file, allowing us to avoid a whole pile of corner cases around logging 4948 * blocks that have been removed from the tree. 4949 * 4950 * See LOG_INODE_ALL and related defines for a description of what inode_only 4951 * does. 4952 * 4953 * This handles both files and directories. 4954 */ 4955 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 4956 struct btrfs_root *root, struct btrfs_inode *inode, 4957 int inode_only, 4958 const loff_t start, 4959 const loff_t end, 4960 struct btrfs_log_ctx *ctx) 4961 { 4962 struct btrfs_fs_info *fs_info = root->fs_info; 4963 struct btrfs_path *path; 4964 struct btrfs_path *dst_path; 4965 struct btrfs_key min_key; 4966 struct btrfs_key max_key; 4967 struct btrfs_root *log = root->log_root; 4968 int err = 0; 4969 int ret; 4970 int nritems; 4971 int ins_start_slot = 0; 4972 int ins_nr; 4973 bool fast_search = false; 4974 u64 ino = btrfs_ino(inode); 4975 struct extent_map_tree *em_tree = &inode->extent_tree; 4976 u64 logged_isize = 0; 4977 bool need_log_inode_item = true; 4978 bool xattrs_logged = false; 4979 bool recursive_logging = false; 4980 4981 path = btrfs_alloc_path(); 4982 if (!path) 4983 return -ENOMEM; 4984 dst_path = btrfs_alloc_path(); 4985 if (!dst_path) { 4986 btrfs_free_path(path); 4987 return -ENOMEM; 4988 } 4989 4990 min_key.objectid = ino; 4991 min_key.type = BTRFS_INODE_ITEM_KEY; 4992 min_key.offset = 0; 4993 4994 max_key.objectid = ino; 4995 4996 4997 /* today the code can only do partial logging of directories */ 4998 if (S_ISDIR(inode->vfs_inode.i_mode) || 4999 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5000 &inode->runtime_flags) && 5001 inode_only >= LOG_INODE_EXISTS)) 5002 max_key.type = BTRFS_XATTR_ITEM_KEY; 5003 else 5004 max_key.type = (u8)-1; 5005 max_key.offset = (u64)-1; 5006 5007 /* 5008 * Only run delayed items if we are a dir or a new file. 5009 * Otherwise commit the delayed inode only, which is needed in 5010 * order for the log replay code to mark inodes for link count 5011 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items). 5012 */ 5013 if (S_ISDIR(inode->vfs_inode.i_mode) || 5014 inode->generation > fs_info->last_trans_committed) 5015 ret = btrfs_commit_inode_delayed_items(trans, inode); 5016 else 5017 ret = btrfs_commit_inode_delayed_inode(inode); 5018 5019 if (ret) { 5020 btrfs_free_path(path); 5021 btrfs_free_path(dst_path); 5022 return ret; 5023 } 5024 5025 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5026 recursive_logging = true; 5027 if (inode_only == LOG_OTHER_INODE) 5028 inode_only = LOG_INODE_EXISTS; 5029 else 5030 inode_only = LOG_INODE_ALL; 5031 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5032 } else { 5033 mutex_lock(&inode->log_mutex); 5034 } 5035 5036 /* 5037 * a brute force approach to making sure we get the most uptodate 5038 * copies of everything. 5039 */ 5040 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5041 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5042 5043 if (inode_only == LOG_INODE_EXISTS) 5044 max_key_type = BTRFS_XATTR_ITEM_KEY; 5045 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 5046 } else { 5047 if (inode_only == LOG_INODE_EXISTS) { 5048 /* 5049 * Make sure the new inode item we write to the log has 5050 * the same isize as the current one (if it exists). 5051 * This is necessary to prevent data loss after log 5052 * replay, and also to prevent doing a wrong expanding 5053 * truncate - for e.g. create file, write 4K into offset 5054 * 0, fsync, write 4K into offset 4096, add hard link, 5055 * fsync some other file (to sync log), power fail - if 5056 * we use the inode's current i_size, after log replay 5057 * we get a 8Kb file, with the last 4Kb extent as a hole 5058 * (zeroes), as if an expanding truncate happened, 5059 * instead of getting a file of 4Kb only. 5060 */ 5061 err = logged_inode_size(log, inode, path, &logged_isize); 5062 if (err) 5063 goto out_unlock; 5064 } 5065 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5066 &inode->runtime_flags)) { 5067 if (inode_only == LOG_INODE_EXISTS) { 5068 max_key.type = BTRFS_XATTR_ITEM_KEY; 5069 ret = drop_objectid_items(trans, log, path, ino, 5070 max_key.type); 5071 } else { 5072 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5073 &inode->runtime_flags); 5074 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5075 &inode->runtime_flags); 5076 while(1) { 5077 ret = btrfs_truncate_inode_items(trans, 5078 log, &inode->vfs_inode, 0, 0); 5079 if (ret != -EAGAIN) 5080 break; 5081 } 5082 } 5083 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5084 &inode->runtime_flags) || 5085 inode_only == LOG_INODE_EXISTS) { 5086 if (inode_only == LOG_INODE_ALL) 5087 fast_search = true; 5088 max_key.type = BTRFS_XATTR_ITEM_KEY; 5089 ret = drop_objectid_items(trans, log, path, ino, 5090 max_key.type); 5091 } else { 5092 if (inode_only == LOG_INODE_ALL) 5093 fast_search = true; 5094 goto log_extents; 5095 } 5096 5097 } 5098 if (ret) { 5099 err = ret; 5100 goto out_unlock; 5101 } 5102 5103 while (1) { 5104 ins_nr = 0; 5105 ret = btrfs_search_forward(root, &min_key, 5106 path, trans->transid); 5107 if (ret < 0) { 5108 err = ret; 5109 goto out_unlock; 5110 } 5111 if (ret != 0) 5112 break; 5113 again: 5114 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 5115 if (min_key.objectid != ino) 5116 break; 5117 if (min_key.type > max_key.type) 5118 break; 5119 5120 if (min_key.type == BTRFS_INODE_ITEM_KEY) 5121 need_log_inode_item = false; 5122 5123 if ((min_key.type == BTRFS_INODE_REF_KEY || 5124 min_key.type == BTRFS_INODE_EXTREF_KEY) && 5125 inode->generation == trans->transid && 5126 !recursive_logging) { 5127 u64 other_ino = 0; 5128 u64 other_parent = 0; 5129 5130 ret = btrfs_check_ref_name_override(path->nodes[0], 5131 path->slots[0], &min_key, inode, 5132 &other_ino, &other_parent); 5133 if (ret < 0) { 5134 err = ret; 5135 goto out_unlock; 5136 } else if (ret > 0 && ctx && 5137 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5138 if (ins_nr > 0) { 5139 ins_nr++; 5140 } else { 5141 ins_nr = 1; 5142 ins_start_slot = path->slots[0]; 5143 } 5144 ret = copy_items(trans, inode, dst_path, path, 5145 ins_start_slot, 5146 ins_nr, inode_only, 5147 logged_isize); 5148 if (ret < 0) { 5149 err = ret; 5150 goto out_unlock; 5151 } 5152 ins_nr = 0; 5153 5154 err = log_conflicting_inodes(trans, root, path, 5155 ctx, other_ino, other_parent); 5156 if (err) 5157 goto out_unlock; 5158 btrfs_release_path(path); 5159 goto next_key; 5160 } 5161 } 5162 5163 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5164 if (min_key.type == BTRFS_XATTR_ITEM_KEY) { 5165 if (ins_nr == 0) 5166 goto next_slot; 5167 ret = copy_items(trans, inode, dst_path, path, 5168 ins_start_slot, 5169 ins_nr, inode_only, logged_isize); 5170 if (ret < 0) { 5171 err = ret; 5172 goto out_unlock; 5173 } 5174 ins_nr = 0; 5175 goto next_slot; 5176 } 5177 5178 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5179 ins_nr++; 5180 goto next_slot; 5181 } else if (!ins_nr) { 5182 ins_start_slot = path->slots[0]; 5183 ins_nr = 1; 5184 goto next_slot; 5185 } 5186 5187 ret = copy_items(trans, inode, dst_path, path, 5188 ins_start_slot, ins_nr, inode_only, 5189 logged_isize); 5190 if (ret < 0) { 5191 err = ret; 5192 goto out_unlock; 5193 } 5194 ins_nr = 1; 5195 ins_start_slot = path->slots[0]; 5196 next_slot: 5197 5198 nritems = btrfs_header_nritems(path->nodes[0]); 5199 path->slots[0]++; 5200 if (path->slots[0] < nritems) { 5201 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 5202 path->slots[0]); 5203 goto again; 5204 } 5205 if (ins_nr) { 5206 ret = copy_items(trans, inode, dst_path, path, 5207 ins_start_slot, 5208 ins_nr, inode_only, logged_isize); 5209 if (ret < 0) { 5210 err = ret; 5211 goto out_unlock; 5212 } 5213 ins_nr = 0; 5214 } 5215 btrfs_release_path(path); 5216 next_key: 5217 if (min_key.offset < (u64)-1) { 5218 min_key.offset++; 5219 } else if (min_key.type < max_key.type) { 5220 min_key.type++; 5221 min_key.offset = 0; 5222 } else { 5223 break; 5224 } 5225 } 5226 if (ins_nr) { 5227 ret = copy_items(trans, inode, dst_path, path, 5228 ins_start_slot, ins_nr, inode_only, 5229 logged_isize); 5230 if (ret < 0) { 5231 err = ret; 5232 goto out_unlock; 5233 } 5234 ins_nr = 0; 5235 } 5236 5237 btrfs_release_path(path); 5238 btrfs_release_path(dst_path); 5239 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 5240 if (err) 5241 goto out_unlock; 5242 xattrs_logged = true; 5243 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5244 btrfs_release_path(path); 5245 btrfs_release_path(dst_path); 5246 err = btrfs_log_holes(trans, root, inode, path); 5247 if (err) 5248 goto out_unlock; 5249 } 5250 log_extents: 5251 btrfs_release_path(path); 5252 btrfs_release_path(dst_path); 5253 if (need_log_inode_item) { 5254 err = log_inode_item(trans, log, dst_path, inode); 5255 if (!err && !xattrs_logged) { 5256 err = btrfs_log_all_xattrs(trans, root, inode, path, 5257 dst_path); 5258 btrfs_release_path(path); 5259 } 5260 if (err) 5261 goto out_unlock; 5262 } 5263 if (fast_search) { 5264 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 5265 ctx, start, end); 5266 if (ret) { 5267 err = ret; 5268 goto out_unlock; 5269 } 5270 } else if (inode_only == LOG_INODE_ALL) { 5271 struct extent_map *em, *n; 5272 5273 write_lock(&em_tree->lock); 5274 /* 5275 * We can't just remove every em if we're called for a ranged 5276 * fsync - that is, one that doesn't cover the whole possible 5277 * file range (0 to LLONG_MAX). This is because we can have 5278 * em's that fall outside the range we're logging and therefore 5279 * their ordered operations haven't completed yet 5280 * (btrfs_finish_ordered_io() not invoked yet). This means we 5281 * didn't get their respective file extent item in the fs/subvol 5282 * tree yet, and need to let the next fast fsync (one which 5283 * consults the list of modified extent maps) find the em so 5284 * that it logs a matching file extent item and waits for the 5285 * respective ordered operation to complete (if it's still 5286 * running). 5287 * 5288 * Removing every em outside the range we're logging would make 5289 * the next fast fsync not log their matching file extent items, 5290 * therefore making us lose data after a log replay. 5291 */ 5292 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 5293 list) { 5294 const u64 mod_end = em->mod_start + em->mod_len - 1; 5295 5296 if (em->mod_start >= start && mod_end <= end) 5297 list_del_init(&em->list); 5298 } 5299 write_unlock(&em_tree->lock); 5300 } 5301 5302 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5303 ret = log_directory_changes(trans, root, inode, path, dst_path, 5304 ctx); 5305 if (ret) { 5306 err = ret; 5307 goto out_unlock; 5308 } 5309 } 5310 5311 /* 5312 * Don't update last_log_commit if we logged that an inode exists after 5313 * it was loaded to memory (full_sync bit set). 5314 * This is to prevent data loss when we do a write to the inode, then 5315 * the inode gets evicted after all delalloc was flushed, then we log 5316 * it exists (due to a rename for example) and then fsync it. This last 5317 * fsync would do nothing (not logging the extents previously written). 5318 */ 5319 spin_lock(&inode->lock); 5320 inode->logged_trans = trans->transid; 5321 if (inode_only != LOG_INODE_EXISTS || 5322 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) 5323 inode->last_log_commit = inode->last_sub_trans; 5324 spin_unlock(&inode->lock); 5325 out_unlock: 5326 mutex_unlock(&inode->log_mutex); 5327 5328 btrfs_free_path(path); 5329 btrfs_free_path(dst_path); 5330 return err; 5331 } 5332 5333 /* 5334 * Check if we must fallback to a transaction commit when logging an inode. 5335 * This must be called after logging the inode and is used only in the context 5336 * when fsyncing an inode requires the need to log some other inode - in which 5337 * case we can't lock the i_mutex of each other inode we need to log as that 5338 * can lead to deadlocks with concurrent fsync against other inodes (as we can 5339 * log inodes up or down in the hierarchy) or rename operations for example. So 5340 * we take the log_mutex of the inode after we have logged it and then check for 5341 * its last_unlink_trans value - this is safe because any task setting 5342 * last_unlink_trans must take the log_mutex and it must do this before it does 5343 * the actual unlink operation, so if we do this check before a concurrent task 5344 * sets last_unlink_trans it means we've logged a consistent version/state of 5345 * all the inode items, otherwise we are not sure and must do a transaction 5346 * commit (the concurrent task might have only updated last_unlink_trans before 5347 * we logged the inode or it might have also done the unlink). 5348 */ 5349 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, 5350 struct btrfs_inode *inode) 5351 { 5352 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5353 bool ret = false; 5354 5355 mutex_lock(&inode->log_mutex); 5356 if (inode->last_unlink_trans > fs_info->last_trans_committed) { 5357 /* 5358 * Make sure any commits to the log are forced to be full 5359 * commits. 5360 */ 5361 btrfs_set_log_full_commit(trans); 5362 ret = true; 5363 } 5364 mutex_unlock(&inode->log_mutex); 5365 5366 return ret; 5367 } 5368 5369 /* 5370 * follow the dentry parent pointers up the chain and see if any 5371 * of the directories in it require a full commit before they can 5372 * be logged. Returns zero if nothing special needs to be done or 1 if 5373 * a full commit is required. 5374 */ 5375 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 5376 struct btrfs_inode *inode, 5377 struct dentry *parent, 5378 struct super_block *sb, 5379 u64 last_committed) 5380 { 5381 int ret = 0; 5382 struct dentry *old_parent = NULL; 5383 5384 /* 5385 * for regular files, if its inode is already on disk, we don't 5386 * have to worry about the parents at all. This is because 5387 * we can use the last_unlink_trans field to record renames 5388 * and other fun in this file. 5389 */ 5390 if (S_ISREG(inode->vfs_inode.i_mode) && 5391 inode->generation <= last_committed && 5392 inode->last_unlink_trans <= last_committed) 5393 goto out; 5394 5395 if (!S_ISDIR(inode->vfs_inode.i_mode)) { 5396 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5397 goto out; 5398 inode = BTRFS_I(d_inode(parent)); 5399 } 5400 5401 while (1) { 5402 if (btrfs_must_commit_transaction(trans, inode)) { 5403 ret = 1; 5404 break; 5405 } 5406 5407 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5408 break; 5409 5410 if (IS_ROOT(parent)) { 5411 inode = BTRFS_I(d_inode(parent)); 5412 if (btrfs_must_commit_transaction(trans, inode)) 5413 ret = 1; 5414 break; 5415 } 5416 5417 parent = dget_parent(parent); 5418 dput(old_parent); 5419 old_parent = parent; 5420 inode = BTRFS_I(d_inode(parent)); 5421 5422 } 5423 dput(old_parent); 5424 out: 5425 return ret; 5426 } 5427 5428 struct btrfs_dir_list { 5429 u64 ino; 5430 struct list_head list; 5431 }; 5432 5433 /* 5434 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5435 * details about the why it is needed. 5436 * This is a recursive operation - if an existing dentry corresponds to a 5437 * directory, that directory's new entries are logged too (same behaviour as 5438 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5439 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5440 * complains about the following circular lock dependency / possible deadlock: 5441 * 5442 * CPU0 CPU1 5443 * ---- ---- 5444 * lock(&type->i_mutex_dir_key#3/2); 5445 * lock(sb_internal#2); 5446 * lock(&type->i_mutex_dir_key#3/2); 5447 * lock(&sb->s_type->i_mutex_key#14); 5448 * 5449 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5450 * sb_start_intwrite() in btrfs_start_transaction(). 5451 * Not locking i_mutex of the inodes is still safe because: 5452 * 5453 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5454 * that while logging the inode new references (names) are added or removed 5455 * from the inode, leaving the logged inode item with a link count that does 5456 * not match the number of logged inode reference items. This is fine because 5457 * at log replay time we compute the real number of links and correct the 5458 * link count in the inode item (see replay_one_buffer() and 5459 * link_to_fixup_dir()); 5460 * 5461 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5462 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5463 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5464 * has a size that doesn't match the sum of the lengths of all the logged 5465 * names. This does not result in a problem because if a dir_item key is 5466 * logged but its matching dir_index key is not logged, at log replay time we 5467 * don't use it to replay the respective name (see replay_one_name()). On the 5468 * other hand if only the dir_index key ends up being logged, the respective 5469 * name is added to the fs/subvol tree with both the dir_item and dir_index 5470 * keys created (see replay_one_name()). 5471 * The directory's inode item with a wrong i_size is not a problem as well, 5472 * since we don't use it at log replay time to set the i_size in the inode 5473 * item of the fs/subvol tree (see overwrite_item()). 5474 */ 5475 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5476 struct btrfs_root *root, 5477 struct btrfs_inode *start_inode, 5478 struct btrfs_log_ctx *ctx) 5479 { 5480 struct btrfs_fs_info *fs_info = root->fs_info; 5481 struct btrfs_root *log = root->log_root; 5482 struct btrfs_path *path; 5483 LIST_HEAD(dir_list); 5484 struct btrfs_dir_list *dir_elem; 5485 int ret = 0; 5486 5487 path = btrfs_alloc_path(); 5488 if (!path) 5489 return -ENOMEM; 5490 5491 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5492 if (!dir_elem) { 5493 btrfs_free_path(path); 5494 return -ENOMEM; 5495 } 5496 dir_elem->ino = btrfs_ino(start_inode); 5497 list_add_tail(&dir_elem->list, &dir_list); 5498 5499 while (!list_empty(&dir_list)) { 5500 struct extent_buffer *leaf; 5501 struct btrfs_key min_key; 5502 int nritems; 5503 int i; 5504 5505 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5506 list); 5507 if (ret) 5508 goto next_dir_inode; 5509 5510 min_key.objectid = dir_elem->ino; 5511 min_key.type = BTRFS_DIR_ITEM_KEY; 5512 min_key.offset = 0; 5513 again: 5514 btrfs_release_path(path); 5515 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5516 if (ret < 0) { 5517 goto next_dir_inode; 5518 } else if (ret > 0) { 5519 ret = 0; 5520 goto next_dir_inode; 5521 } 5522 5523 process_leaf: 5524 leaf = path->nodes[0]; 5525 nritems = btrfs_header_nritems(leaf); 5526 for (i = path->slots[0]; i < nritems; i++) { 5527 struct btrfs_dir_item *di; 5528 struct btrfs_key di_key; 5529 struct inode *di_inode; 5530 struct btrfs_dir_list *new_dir_elem; 5531 int log_mode = LOG_INODE_EXISTS; 5532 int type; 5533 5534 btrfs_item_key_to_cpu(leaf, &min_key, i); 5535 if (min_key.objectid != dir_elem->ino || 5536 min_key.type != BTRFS_DIR_ITEM_KEY) 5537 goto next_dir_inode; 5538 5539 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5540 type = btrfs_dir_type(leaf, di); 5541 if (btrfs_dir_transid(leaf, di) < trans->transid && 5542 type != BTRFS_FT_DIR) 5543 continue; 5544 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5545 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5546 continue; 5547 5548 btrfs_release_path(path); 5549 di_inode = btrfs_iget(fs_info->sb, &di_key, root); 5550 if (IS_ERR(di_inode)) { 5551 ret = PTR_ERR(di_inode); 5552 goto next_dir_inode; 5553 } 5554 5555 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) { 5556 btrfs_add_delayed_iput(di_inode); 5557 break; 5558 } 5559 5560 ctx->log_new_dentries = false; 5561 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5562 log_mode = LOG_INODE_ALL; 5563 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), 5564 log_mode, 0, LLONG_MAX, ctx); 5565 if (!ret && 5566 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode))) 5567 ret = 1; 5568 btrfs_add_delayed_iput(di_inode); 5569 if (ret) 5570 goto next_dir_inode; 5571 if (ctx->log_new_dentries) { 5572 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5573 GFP_NOFS); 5574 if (!new_dir_elem) { 5575 ret = -ENOMEM; 5576 goto next_dir_inode; 5577 } 5578 new_dir_elem->ino = di_key.objectid; 5579 list_add_tail(&new_dir_elem->list, &dir_list); 5580 } 5581 break; 5582 } 5583 if (i == nritems) { 5584 ret = btrfs_next_leaf(log, path); 5585 if (ret < 0) { 5586 goto next_dir_inode; 5587 } else if (ret > 0) { 5588 ret = 0; 5589 goto next_dir_inode; 5590 } 5591 goto process_leaf; 5592 } 5593 if (min_key.offset < (u64)-1) { 5594 min_key.offset++; 5595 goto again; 5596 } 5597 next_dir_inode: 5598 list_del(&dir_elem->list); 5599 kfree(dir_elem); 5600 } 5601 5602 btrfs_free_path(path); 5603 return ret; 5604 } 5605 5606 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5607 struct btrfs_inode *inode, 5608 struct btrfs_log_ctx *ctx) 5609 { 5610 struct btrfs_fs_info *fs_info = trans->fs_info; 5611 int ret; 5612 struct btrfs_path *path; 5613 struct btrfs_key key; 5614 struct btrfs_root *root = inode->root; 5615 const u64 ino = btrfs_ino(inode); 5616 5617 path = btrfs_alloc_path(); 5618 if (!path) 5619 return -ENOMEM; 5620 path->skip_locking = 1; 5621 path->search_commit_root = 1; 5622 5623 key.objectid = ino; 5624 key.type = BTRFS_INODE_REF_KEY; 5625 key.offset = 0; 5626 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5627 if (ret < 0) 5628 goto out; 5629 5630 while (true) { 5631 struct extent_buffer *leaf = path->nodes[0]; 5632 int slot = path->slots[0]; 5633 u32 cur_offset = 0; 5634 u32 item_size; 5635 unsigned long ptr; 5636 5637 if (slot >= btrfs_header_nritems(leaf)) { 5638 ret = btrfs_next_leaf(root, path); 5639 if (ret < 0) 5640 goto out; 5641 else if (ret > 0) 5642 break; 5643 continue; 5644 } 5645 5646 btrfs_item_key_to_cpu(leaf, &key, slot); 5647 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5648 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5649 break; 5650 5651 item_size = btrfs_item_size_nr(leaf, slot); 5652 ptr = btrfs_item_ptr_offset(leaf, slot); 5653 while (cur_offset < item_size) { 5654 struct btrfs_key inode_key; 5655 struct inode *dir_inode; 5656 5657 inode_key.type = BTRFS_INODE_ITEM_KEY; 5658 inode_key.offset = 0; 5659 5660 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5661 struct btrfs_inode_extref *extref; 5662 5663 extref = (struct btrfs_inode_extref *) 5664 (ptr + cur_offset); 5665 inode_key.objectid = btrfs_inode_extref_parent( 5666 leaf, extref); 5667 cur_offset += sizeof(*extref); 5668 cur_offset += btrfs_inode_extref_name_len(leaf, 5669 extref); 5670 } else { 5671 inode_key.objectid = key.offset; 5672 cur_offset = item_size; 5673 } 5674 5675 dir_inode = btrfs_iget(fs_info->sb, &inode_key, root); 5676 /* 5677 * If the parent inode was deleted, return an error to 5678 * fallback to a transaction commit. This is to prevent 5679 * getting an inode that was moved from one parent A to 5680 * a parent B, got its former parent A deleted and then 5681 * it got fsync'ed, from existing at both parents after 5682 * a log replay (and the old parent still existing). 5683 * Example: 5684 * 5685 * mkdir /mnt/A 5686 * mkdir /mnt/B 5687 * touch /mnt/B/bar 5688 * sync 5689 * mv /mnt/B/bar /mnt/A/bar 5690 * mv -T /mnt/A /mnt/B 5691 * fsync /mnt/B/bar 5692 * <power fail> 5693 * 5694 * If we ignore the old parent B which got deleted, 5695 * after a log replay we would have file bar linked 5696 * at both parents and the old parent B would still 5697 * exist. 5698 */ 5699 if (IS_ERR(dir_inode)) { 5700 ret = PTR_ERR(dir_inode); 5701 goto out; 5702 } 5703 5704 if (ctx) 5705 ctx->log_new_dentries = false; 5706 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), 5707 LOG_INODE_ALL, 0, LLONG_MAX, ctx); 5708 if (!ret && 5709 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode))) 5710 ret = 1; 5711 if (!ret && ctx && ctx->log_new_dentries) 5712 ret = log_new_dir_dentries(trans, root, 5713 BTRFS_I(dir_inode), ctx); 5714 btrfs_add_delayed_iput(dir_inode); 5715 if (ret) 5716 goto out; 5717 } 5718 path->slots[0]++; 5719 } 5720 ret = 0; 5721 out: 5722 btrfs_free_path(path); 5723 return ret; 5724 } 5725 5726 static int log_new_ancestors(struct btrfs_trans_handle *trans, 5727 struct btrfs_root *root, 5728 struct btrfs_path *path, 5729 struct btrfs_log_ctx *ctx) 5730 { 5731 struct btrfs_key found_key; 5732 5733 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5734 5735 while (true) { 5736 struct btrfs_fs_info *fs_info = root->fs_info; 5737 const u64 last_committed = fs_info->last_trans_committed; 5738 struct extent_buffer *leaf = path->nodes[0]; 5739 int slot = path->slots[0]; 5740 struct btrfs_key search_key; 5741 struct inode *inode; 5742 int ret = 0; 5743 5744 btrfs_release_path(path); 5745 5746 search_key.objectid = found_key.offset; 5747 search_key.type = BTRFS_INODE_ITEM_KEY; 5748 search_key.offset = 0; 5749 inode = btrfs_iget(fs_info->sb, &search_key, root); 5750 if (IS_ERR(inode)) 5751 return PTR_ERR(inode); 5752 5753 if (BTRFS_I(inode)->generation > last_committed) 5754 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5755 LOG_INODE_EXISTS, 5756 0, LLONG_MAX, ctx); 5757 btrfs_add_delayed_iput(inode); 5758 if (ret) 5759 return ret; 5760 5761 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 5762 break; 5763 5764 search_key.type = BTRFS_INODE_REF_KEY; 5765 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5766 if (ret < 0) 5767 return ret; 5768 5769 leaf = path->nodes[0]; 5770 slot = path->slots[0]; 5771 if (slot >= btrfs_header_nritems(leaf)) { 5772 ret = btrfs_next_leaf(root, path); 5773 if (ret < 0) 5774 return ret; 5775 else if (ret > 0) 5776 return -ENOENT; 5777 leaf = path->nodes[0]; 5778 slot = path->slots[0]; 5779 } 5780 5781 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5782 if (found_key.objectid != search_key.objectid || 5783 found_key.type != BTRFS_INODE_REF_KEY) 5784 return -ENOENT; 5785 } 5786 return 0; 5787 } 5788 5789 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 5790 struct btrfs_inode *inode, 5791 struct dentry *parent, 5792 struct btrfs_log_ctx *ctx) 5793 { 5794 struct btrfs_root *root = inode->root; 5795 struct btrfs_fs_info *fs_info = root->fs_info; 5796 struct dentry *old_parent = NULL; 5797 struct super_block *sb = inode->vfs_inode.i_sb; 5798 int ret = 0; 5799 5800 while (true) { 5801 if (!parent || d_really_is_negative(parent) || 5802 sb != parent->d_sb) 5803 break; 5804 5805 inode = BTRFS_I(d_inode(parent)); 5806 if (root != inode->root) 5807 break; 5808 5809 if (inode->generation > fs_info->last_trans_committed) { 5810 ret = btrfs_log_inode(trans, root, inode, 5811 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx); 5812 if (ret) 5813 break; 5814 } 5815 if (IS_ROOT(parent)) 5816 break; 5817 5818 parent = dget_parent(parent); 5819 dput(old_parent); 5820 old_parent = parent; 5821 } 5822 dput(old_parent); 5823 5824 return ret; 5825 } 5826 5827 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 5828 struct btrfs_inode *inode, 5829 struct dentry *parent, 5830 struct btrfs_log_ctx *ctx) 5831 { 5832 struct btrfs_root *root = inode->root; 5833 const u64 ino = btrfs_ino(inode); 5834 struct btrfs_path *path; 5835 struct btrfs_key search_key; 5836 int ret; 5837 5838 /* 5839 * For a single hard link case, go through a fast path that does not 5840 * need to iterate the fs/subvolume tree. 5841 */ 5842 if (inode->vfs_inode.i_nlink < 2) 5843 return log_new_ancestors_fast(trans, inode, parent, ctx); 5844 5845 path = btrfs_alloc_path(); 5846 if (!path) 5847 return -ENOMEM; 5848 5849 search_key.objectid = ino; 5850 search_key.type = BTRFS_INODE_REF_KEY; 5851 search_key.offset = 0; 5852 again: 5853 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5854 if (ret < 0) 5855 goto out; 5856 if (ret == 0) 5857 path->slots[0]++; 5858 5859 while (true) { 5860 struct extent_buffer *leaf = path->nodes[0]; 5861 int slot = path->slots[0]; 5862 struct btrfs_key found_key; 5863 5864 if (slot >= btrfs_header_nritems(leaf)) { 5865 ret = btrfs_next_leaf(root, path); 5866 if (ret < 0) 5867 goto out; 5868 else if (ret > 0) 5869 break; 5870 continue; 5871 } 5872 5873 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5874 if (found_key.objectid != ino || 5875 found_key.type > BTRFS_INODE_EXTREF_KEY) 5876 break; 5877 5878 /* 5879 * Don't deal with extended references because they are rare 5880 * cases and too complex to deal with (we would need to keep 5881 * track of which subitem we are processing for each item in 5882 * this loop, etc). So just return some error to fallback to 5883 * a transaction commit. 5884 */ 5885 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 5886 ret = -EMLINK; 5887 goto out; 5888 } 5889 5890 /* 5891 * Logging ancestors needs to do more searches on the fs/subvol 5892 * tree, so it releases the path as needed to avoid deadlocks. 5893 * Keep track of the last inode ref key and resume from that key 5894 * after logging all new ancestors for the current hard link. 5895 */ 5896 memcpy(&search_key, &found_key, sizeof(search_key)); 5897 5898 ret = log_new_ancestors(trans, root, path, ctx); 5899 if (ret) 5900 goto out; 5901 btrfs_release_path(path); 5902 goto again; 5903 } 5904 ret = 0; 5905 out: 5906 btrfs_free_path(path); 5907 return ret; 5908 } 5909 5910 /* 5911 * helper function around btrfs_log_inode to make sure newly created 5912 * parent directories also end up in the log. A minimal inode and backref 5913 * only logging is done of any parent directories that are older than 5914 * the last committed transaction 5915 */ 5916 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 5917 struct btrfs_inode *inode, 5918 struct dentry *parent, 5919 const loff_t start, 5920 const loff_t end, 5921 int inode_only, 5922 struct btrfs_log_ctx *ctx) 5923 { 5924 struct btrfs_root *root = inode->root; 5925 struct btrfs_fs_info *fs_info = root->fs_info; 5926 struct super_block *sb; 5927 int ret = 0; 5928 u64 last_committed = fs_info->last_trans_committed; 5929 bool log_dentries = false; 5930 5931 sb = inode->vfs_inode.i_sb; 5932 5933 if (btrfs_test_opt(fs_info, NOTREELOG)) { 5934 ret = 1; 5935 goto end_no_trans; 5936 } 5937 5938 /* 5939 * The prev transaction commit doesn't complete, we need do 5940 * full commit by ourselves. 5941 */ 5942 if (fs_info->last_trans_log_full_commit > 5943 fs_info->last_trans_committed) { 5944 ret = 1; 5945 goto end_no_trans; 5946 } 5947 5948 if (btrfs_root_refs(&root->root_item) == 0) { 5949 ret = 1; 5950 goto end_no_trans; 5951 } 5952 5953 ret = check_parent_dirs_for_sync(trans, inode, parent, sb, 5954 last_committed); 5955 if (ret) 5956 goto end_no_trans; 5957 5958 /* 5959 * Skip already logged inodes or inodes corresponding to tmpfiles 5960 * (since logging them is pointless, a link count of 0 means they 5961 * will never be accessible). 5962 */ 5963 if (btrfs_inode_in_log(inode, trans->transid) || 5964 inode->vfs_inode.i_nlink == 0) { 5965 ret = BTRFS_NO_LOG_SYNC; 5966 goto end_no_trans; 5967 } 5968 5969 ret = start_log_trans(trans, root, ctx); 5970 if (ret) 5971 goto end_no_trans; 5972 5973 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 5974 if (ret) 5975 goto end_trans; 5976 5977 /* 5978 * for regular files, if its inode is already on disk, we don't 5979 * have to worry about the parents at all. This is because 5980 * we can use the last_unlink_trans field to record renames 5981 * and other fun in this file. 5982 */ 5983 if (S_ISREG(inode->vfs_inode.i_mode) && 5984 inode->generation <= last_committed && 5985 inode->last_unlink_trans <= last_committed) { 5986 ret = 0; 5987 goto end_trans; 5988 } 5989 5990 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) 5991 log_dentries = true; 5992 5993 /* 5994 * On unlink we must make sure all our current and old parent directory 5995 * inodes are fully logged. This is to prevent leaving dangling 5996 * directory index entries in directories that were our parents but are 5997 * not anymore. Not doing this results in old parent directory being 5998 * impossible to delete after log replay (rmdir will always fail with 5999 * error -ENOTEMPTY). 6000 * 6001 * Example 1: 6002 * 6003 * mkdir testdir 6004 * touch testdir/foo 6005 * ln testdir/foo testdir/bar 6006 * sync 6007 * unlink testdir/bar 6008 * xfs_io -c fsync testdir/foo 6009 * <power failure> 6010 * mount fs, triggers log replay 6011 * 6012 * If we don't log the parent directory (testdir), after log replay the 6013 * directory still has an entry pointing to the file inode using the bar 6014 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6015 * the file inode has a link count of 1. 6016 * 6017 * Example 2: 6018 * 6019 * mkdir testdir 6020 * touch foo 6021 * ln foo testdir/foo2 6022 * ln foo testdir/foo3 6023 * sync 6024 * unlink testdir/foo3 6025 * xfs_io -c fsync foo 6026 * <power failure> 6027 * mount fs, triggers log replay 6028 * 6029 * Similar as the first example, after log replay the parent directory 6030 * testdir still has an entry pointing to the inode file with name foo3 6031 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6032 * and has a link count of 2. 6033 */ 6034 if (inode->last_unlink_trans > last_committed) { 6035 ret = btrfs_log_all_parents(trans, inode, ctx); 6036 if (ret) 6037 goto end_trans; 6038 } 6039 6040 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6041 if (ret) 6042 goto end_trans; 6043 6044 if (log_dentries) 6045 ret = log_new_dir_dentries(trans, root, inode, ctx); 6046 else 6047 ret = 0; 6048 end_trans: 6049 if (ret < 0) { 6050 btrfs_set_log_full_commit(trans); 6051 ret = 1; 6052 } 6053 6054 if (ret) 6055 btrfs_remove_log_ctx(root, ctx); 6056 btrfs_end_log_trans(root); 6057 end_no_trans: 6058 return ret; 6059 } 6060 6061 /* 6062 * it is not safe to log dentry if the chunk root has added new 6063 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6064 * If this returns 1, you must commit the transaction to safely get your 6065 * data on disk. 6066 */ 6067 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6068 struct dentry *dentry, 6069 const loff_t start, 6070 const loff_t end, 6071 struct btrfs_log_ctx *ctx) 6072 { 6073 struct dentry *parent = dget_parent(dentry); 6074 int ret; 6075 6076 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6077 start, end, LOG_INODE_ALL, ctx); 6078 dput(parent); 6079 6080 return ret; 6081 } 6082 6083 /* 6084 * should be called during mount to recover any replay any log trees 6085 * from the FS 6086 */ 6087 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6088 { 6089 int ret; 6090 struct btrfs_path *path; 6091 struct btrfs_trans_handle *trans; 6092 struct btrfs_key key; 6093 struct btrfs_key found_key; 6094 struct btrfs_key tmp_key; 6095 struct btrfs_root *log; 6096 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6097 struct walk_control wc = { 6098 .process_func = process_one_buffer, 6099 .stage = LOG_WALK_PIN_ONLY, 6100 }; 6101 6102 path = btrfs_alloc_path(); 6103 if (!path) 6104 return -ENOMEM; 6105 6106 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6107 6108 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6109 if (IS_ERR(trans)) { 6110 ret = PTR_ERR(trans); 6111 goto error; 6112 } 6113 6114 wc.trans = trans; 6115 wc.pin = 1; 6116 6117 ret = walk_log_tree(trans, log_root_tree, &wc); 6118 if (ret) { 6119 btrfs_handle_fs_error(fs_info, ret, 6120 "Failed to pin buffers while recovering log root tree."); 6121 goto error; 6122 } 6123 6124 again: 6125 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6126 key.offset = (u64)-1; 6127 key.type = BTRFS_ROOT_ITEM_KEY; 6128 6129 while (1) { 6130 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6131 6132 if (ret < 0) { 6133 btrfs_handle_fs_error(fs_info, ret, 6134 "Couldn't find tree log root."); 6135 goto error; 6136 } 6137 if (ret > 0) { 6138 if (path->slots[0] == 0) 6139 break; 6140 path->slots[0]--; 6141 } 6142 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6143 path->slots[0]); 6144 btrfs_release_path(path); 6145 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6146 break; 6147 6148 log = btrfs_read_fs_root(log_root_tree, &found_key); 6149 if (IS_ERR(log)) { 6150 ret = PTR_ERR(log); 6151 btrfs_handle_fs_error(fs_info, ret, 6152 "Couldn't read tree log root."); 6153 goto error; 6154 } 6155 6156 tmp_key.objectid = found_key.offset; 6157 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 6158 tmp_key.offset = (u64)-1; 6159 6160 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 6161 if (IS_ERR(wc.replay_dest)) { 6162 ret = PTR_ERR(wc.replay_dest); 6163 6164 /* 6165 * We didn't find the subvol, likely because it was 6166 * deleted. This is ok, simply skip this log and go to 6167 * the next one. 6168 * 6169 * We need to exclude the root because we can't have 6170 * other log replays overwriting this log as we'll read 6171 * it back in a few more times. This will keep our 6172 * block from being modified, and we'll just bail for 6173 * each subsequent pass. 6174 */ 6175 if (ret == -ENOENT) 6176 ret = btrfs_pin_extent_for_log_replay(fs_info, 6177 log->node->start, 6178 log->node->len); 6179 free_extent_buffer(log->node); 6180 free_extent_buffer(log->commit_root); 6181 kfree(log); 6182 6183 if (!ret) 6184 goto next; 6185 btrfs_handle_fs_error(fs_info, ret, 6186 "Couldn't read target root for tree log recovery."); 6187 goto error; 6188 } 6189 6190 wc.replay_dest->log_root = log; 6191 btrfs_record_root_in_trans(trans, wc.replay_dest); 6192 ret = walk_log_tree(trans, log, &wc); 6193 6194 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6195 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6196 path); 6197 } 6198 6199 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6200 struct btrfs_root *root = wc.replay_dest; 6201 6202 btrfs_release_path(path); 6203 6204 /* 6205 * We have just replayed everything, and the highest 6206 * objectid of fs roots probably has changed in case 6207 * some inode_item's got replayed. 6208 * 6209 * root->objectid_mutex is not acquired as log replay 6210 * could only happen during mount. 6211 */ 6212 ret = btrfs_find_highest_objectid(root, 6213 &root->highest_objectid); 6214 } 6215 6216 wc.replay_dest->log_root = NULL; 6217 free_extent_buffer(log->node); 6218 free_extent_buffer(log->commit_root); 6219 kfree(log); 6220 6221 if (ret) 6222 goto error; 6223 next: 6224 if (found_key.offset == 0) 6225 break; 6226 key.offset = found_key.offset - 1; 6227 } 6228 btrfs_release_path(path); 6229 6230 /* step one is to pin it all, step two is to replay just inodes */ 6231 if (wc.pin) { 6232 wc.pin = 0; 6233 wc.process_func = replay_one_buffer; 6234 wc.stage = LOG_WALK_REPLAY_INODES; 6235 goto again; 6236 } 6237 /* step three is to replay everything */ 6238 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6239 wc.stage++; 6240 goto again; 6241 } 6242 6243 btrfs_free_path(path); 6244 6245 /* step 4: commit the transaction, which also unpins the blocks */ 6246 ret = btrfs_commit_transaction(trans); 6247 if (ret) 6248 return ret; 6249 6250 free_extent_buffer(log_root_tree->node); 6251 log_root_tree->log_root = NULL; 6252 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6253 kfree(log_root_tree); 6254 6255 return 0; 6256 error: 6257 if (wc.trans) 6258 btrfs_end_transaction(wc.trans); 6259 btrfs_free_path(path); 6260 return ret; 6261 } 6262 6263 /* 6264 * there are some corner cases where we want to force a full 6265 * commit instead of allowing a directory to be logged. 6266 * 6267 * They revolve around files there were unlinked from the directory, and 6268 * this function updates the parent directory so that a full commit is 6269 * properly done if it is fsync'd later after the unlinks are done. 6270 * 6271 * Must be called before the unlink operations (updates to the subvolume tree, 6272 * inodes, etc) are done. 6273 */ 6274 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6275 struct btrfs_inode *dir, struct btrfs_inode *inode, 6276 int for_rename) 6277 { 6278 /* 6279 * when we're logging a file, if it hasn't been renamed 6280 * or unlinked, and its inode is fully committed on disk, 6281 * we don't have to worry about walking up the directory chain 6282 * to log its parents. 6283 * 6284 * So, we use the last_unlink_trans field to put this transid 6285 * into the file. When the file is logged we check it and 6286 * don't log the parents if the file is fully on disk. 6287 */ 6288 mutex_lock(&inode->log_mutex); 6289 inode->last_unlink_trans = trans->transid; 6290 mutex_unlock(&inode->log_mutex); 6291 6292 /* 6293 * if this directory was already logged any new 6294 * names for this file/dir will get recorded 6295 */ 6296 if (dir->logged_trans == trans->transid) 6297 return; 6298 6299 /* 6300 * if the inode we're about to unlink was logged, 6301 * the log will be properly updated for any new names 6302 */ 6303 if (inode->logged_trans == trans->transid) 6304 return; 6305 6306 /* 6307 * when renaming files across directories, if the directory 6308 * there we're unlinking from gets fsync'd later on, there's 6309 * no way to find the destination directory later and fsync it 6310 * properly. So, we have to be conservative and force commits 6311 * so the new name gets discovered. 6312 */ 6313 if (for_rename) 6314 goto record; 6315 6316 /* we can safely do the unlink without any special recording */ 6317 return; 6318 6319 record: 6320 mutex_lock(&dir->log_mutex); 6321 dir->last_unlink_trans = trans->transid; 6322 mutex_unlock(&dir->log_mutex); 6323 } 6324 6325 /* 6326 * Make sure that if someone attempts to fsync the parent directory of a deleted 6327 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6328 * that after replaying the log tree of the parent directory's root we will not 6329 * see the snapshot anymore and at log replay time we will not see any log tree 6330 * corresponding to the deleted snapshot's root, which could lead to replaying 6331 * it after replaying the log tree of the parent directory (which would replay 6332 * the snapshot delete operation). 6333 * 6334 * Must be called before the actual snapshot destroy operation (updates to the 6335 * parent root and tree of tree roots trees, etc) are done. 6336 */ 6337 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6338 struct btrfs_inode *dir) 6339 { 6340 mutex_lock(&dir->log_mutex); 6341 dir->last_unlink_trans = trans->transid; 6342 mutex_unlock(&dir->log_mutex); 6343 } 6344 6345 /* 6346 * Call this after adding a new name for a file and it will properly 6347 * update the log to reflect the new name. 6348 * 6349 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's 6350 * true (because it's not used). 6351 * 6352 * Return value depends on whether @sync_log is true or false. 6353 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6354 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT 6355 * otherwise. 6356 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to 6357 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log, 6358 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6359 * committed (without attempting to sync the log). 6360 */ 6361 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 6362 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6363 struct dentry *parent, 6364 bool sync_log, struct btrfs_log_ctx *ctx) 6365 { 6366 struct btrfs_fs_info *fs_info = trans->fs_info; 6367 int ret; 6368 6369 /* 6370 * this will force the logging code to walk the dentry chain 6371 * up for the file 6372 */ 6373 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6374 inode->last_unlink_trans = trans->transid; 6375 6376 /* 6377 * if this inode hasn't been logged and directory we're renaming it 6378 * from hasn't been logged, we don't need to log it 6379 */ 6380 if (inode->logged_trans <= fs_info->last_trans_committed && 6381 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed)) 6382 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT : 6383 BTRFS_DONT_NEED_LOG_SYNC; 6384 6385 if (sync_log) { 6386 struct btrfs_log_ctx ctx2; 6387 6388 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode); 6389 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6390 LOG_INODE_EXISTS, &ctx2); 6391 if (ret == BTRFS_NO_LOG_SYNC) 6392 return BTRFS_DONT_NEED_TRANS_COMMIT; 6393 else if (ret) 6394 return BTRFS_NEED_TRANS_COMMIT; 6395 6396 ret = btrfs_sync_log(trans, inode->root, &ctx2); 6397 if (ret) 6398 return BTRFS_NEED_TRANS_COMMIT; 6399 return BTRFS_DONT_NEED_TRANS_COMMIT; 6400 } 6401 6402 ASSERT(ctx); 6403 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6404 LOG_INODE_EXISTS, ctx); 6405 if (ret == BTRFS_NO_LOG_SYNC) 6406 return BTRFS_DONT_NEED_LOG_SYNC; 6407 else if (ret) 6408 return BTRFS_NEED_TRANS_COMMIT; 6409 6410 return BTRFS_NEED_LOG_SYNC; 6411 } 6412 6413