1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include "ctree.h" 22 #include "transaction.h" 23 #include "disk-io.h" 24 #include "locking.h" 25 #include "print-tree.h" 26 #include "compat.h" 27 #include "tree-log.h" 28 29 /* magic values for the inode_only field in btrfs_log_inode: 30 * 31 * LOG_INODE_ALL means to log everything 32 * LOG_INODE_EXISTS means to log just enough to recreate the inode 33 * during log replay 34 */ 35 #define LOG_INODE_ALL 0 36 #define LOG_INODE_EXISTS 1 37 38 /* 39 * directory trouble cases 40 * 41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 42 * log, we must force a full commit before doing an fsync of the directory 43 * where the unlink was done. 44 * ---> record transid of last unlink/rename per directory 45 * 46 * mkdir foo/some_dir 47 * normal commit 48 * rename foo/some_dir foo2/some_dir 49 * mkdir foo/some_dir 50 * fsync foo/some_dir/some_file 51 * 52 * The fsync above will unlink the original some_dir without recording 53 * it in its new location (foo2). After a crash, some_dir will be gone 54 * unless the fsync of some_file forces a full commit 55 * 56 * 2) we must log any new names for any file or dir that is in the fsync 57 * log. ---> check inode while renaming/linking. 58 * 59 * 2a) we must log any new names for any file or dir during rename 60 * when the directory they are being removed from was logged. 61 * ---> check inode and old parent dir during rename 62 * 63 * 2a is actually the more important variant. With the extra logging 64 * a crash might unlink the old name without recreating the new one 65 * 66 * 3) after a crash, we must go through any directories with a link count 67 * of zero and redo the rm -rf 68 * 69 * mkdir f1/foo 70 * normal commit 71 * rm -rf f1/foo 72 * fsync(f1) 73 * 74 * The directory f1 was fully removed from the FS, but fsync was never 75 * called on f1, only its parent dir. After a crash the rm -rf must 76 * be replayed. This must be able to recurse down the entire 77 * directory tree. The inode link count fixup code takes care of the 78 * ugly details. 79 */ 80 81 /* 82 * stages for the tree walking. The first 83 * stage (0) is to only pin down the blocks we find 84 * the second stage (1) is to make sure that all the inodes 85 * we find in the log are created in the subvolume. 86 * 87 * The last stage is to deal with directories and links and extents 88 * and all the other fun semantics 89 */ 90 #define LOG_WALK_PIN_ONLY 0 91 #define LOG_WALK_REPLAY_INODES 1 92 #define LOG_WALK_REPLAY_ALL 2 93 94 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, struct inode *inode, 96 int inode_only); 97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 98 struct btrfs_root *root, 99 struct btrfs_path *path, u64 objectid); 100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 101 struct btrfs_root *root, 102 struct btrfs_root *log, 103 struct btrfs_path *path, 104 u64 dirid, int del_all); 105 106 /* 107 * tree logging is a special write ahead log used to make sure that 108 * fsyncs and O_SYNCs can happen without doing full tree commits. 109 * 110 * Full tree commits are expensive because they require commonly 111 * modified blocks to be recowed, creating many dirty pages in the 112 * extent tree an 4x-6x higher write load than ext3. 113 * 114 * Instead of doing a tree commit on every fsync, we use the 115 * key ranges and transaction ids to find items for a given file or directory 116 * that have changed in this transaction. Those items are copied into 117 * a special tree (one per subvolume root), that tree is written to disk 118 * and then the fsync is considered complete. 119 * 120 * After a crash, items are copied out of the log-tree back into the 121 * subvolume tree. Any file data extents found are recorded in the extent 122 * allocation tree, and the log-tree freed. 123 * 124 * The log tree is read three times, once to pin down all the extents it is 125 * using in ram and once, once to create all the inodes logged in the tree 126 * and once to do all the other items. 127 */ 128 129 /* 130 * start a sub transaction and setup the log tree 131 * this increments the log tree writer count to make the people 132 * syncing the tree wait for us to finish 133 */ 134 static int start_log_trans(struct btrfs_trans_handle *trans, 135 struct btrfs_root *root) 136 { 137 int ret; 138 int err = 0; 139 140 mutex_lock(&root->log_mutex); 141 if (root->log_root) { 142 if (!root->log_start_pid) { 143 root->log_start_pid = current->pid; 144 root->log_multiple_pids = false; 145 } else if (root->log_start_pid != current->pid) { 146 root->log_multiple_pids = true; 147 } 148 149 root->log_batch++; 150 atomic_inc(&root->log_writers); 151 mutex_unlock(&root->log_mutex); 152 return 0; 153 } 154 root->log_multiple_pids = false; 155 root->log_start_pid = current->pid; 156 mutex_lock(&root->fs_info->tree_log_mutex); 157 if (!root->fs_info->log_root_tree) { 158 ret = btrfs_init_log_root_tree(trans, root->fs_info); 159 if (ret) 160 err = ret; 161 } 162 if (err == 0 && !root->log_root) { 163 ret = btrfs_add_log_tree(trans, root); 164 if (ret) 165 err = ret; 166 } 167 mutex_unlock(&root->fs_info->tree_log_mutex); 168 root->log_batch++; 169 atomic_inc(&root->log_writers); 170 mutex_unlock(&root->log_mutex); 171 return err; 172 } 173 174 /* 175 * returns 0 if there was a log transaction running and we were able 176 * to join, or returns -ENOENT if there were not transactions 177 * in progress 178 */ 179 static int join_running_log_trans(struct btrfs_root *root) 180 { 181 int ret = -ENOENT; 182 183 smp_mb(); 184 if (!root->log_root) 185 return -ENOENT; 186 187 mutex_lock(&root->log_mutex); 188 if (root->log_root) { 189 ret = 0; 190 atomic_inc(&root->log_writers); 191 } 192 mutex_unlock(&root->log_mutex); 193 return ret; 194 } 195 196 /* 197 * This either makes the current running log transaction wait 198 * until you call btrfs_end_log_trans() or it makes any future 199 * log transactions wait until you call btrfs_end_log_trans() 200 */ 201 int btrfs_pin_log_trans(struct btrfs_root *root) 202 { 203 int ret = -ENOENT; 204 205 mutex_lock(&root->log_mutex); 206 atomic_inc(&root->log_writers); 207 mutex_unlock(&root->log_mutex); 208 return ret; 209 } 210 211 /* 212 * indicate we're done making changes to the log tree 213 * and wake up anyone waiting to do a sync 214 */ 215 void btrfs_end_log_trans(struct btrfs_root *root) 216 { 217 if (atomic_dec_and_test(&root->log_writers)) { 218 smp_mb(); 219 if (waitqueue_active(&root->log_writer_wait)) 220 wake_up(&root->log_writer_wait); 221 } 222 } 223 224 225 /* 226 * the walk control struct is used to pass state down the chain when 227 * processing the log tree. The stage field tells us which part 228 * of the log tree processing we are currently doing. The others 229 * are state fields used for that specific part 230 */ 231 struct walk_control { 232 /* should we free the extent on disk when done? This is used 233 * at transaction commit time while freeing a log tree 234 */ 235 int free; 236 237 /* should we write out the extent buffer? This is used 238 * while flushing the log tree to disk during a sync 239 */ 240 int write; 241 242 /* should we wait for the extent buffer io to finish? Also used 243 * while flushing the log tree to disk for a sync 244 */ 245 int wait; 246 247 /* pin only walk, we record which extents on disk belong to the 248 * log trees 249 */ 250 int pin; 251 252 /* what stage of the replay code we're currently in */ 253 int stage; 254 255 /* the root we are currently replaying */ 256 struct btrfs_root *replay_dest; 257 258 /* the trans handle for the current replay */ 259 struct btrfs_trans_handle *trans; 260 261 /* the function that gets used to process blocks we find in the 262 * tree. Note the extent_buffer might not be up to date when it is 263 * passed in, and it must be checked or read if you need the data 264 * inside it 265 */ 266 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 267 struct walk_control *wc, u64 gen); 268 }; 269 270 /* 271 * process_func used to pin down extents, write them or wait on them 272 */ 273 static int process_one_buffer(struct btrfs_root *log, 274 struct extent_buffer *eb, 275 struct walk_control *wc, u64 gen) 276 { 277 if (wc->pin) 278 btrfs_pin_extent_for_log_replay(wc->trans, 279 log->fs_info->extent_root, 280 eb->start, eb->len); 281 282 if (btrfs_buffer_uptodate(eb, gen, 0)) { 283 if (wc->write) 284 btrfs_write_tree_block(eb); 285 if (wc->wait) 286 btrfs_wait_tree_block_writeback(eb); 287 } 288 return 0; 289 } 290 291 /* 292 * Item overwrite used by replay and tree logging. eb, slot and key all refer 293 * to the src data we are copying out. 294 * 295 * root is the tree we are copying into, and path is a scratch 296 * path for use in this function (it should be released on entry and 297 * will be released on exit). 298 * 299 * If the key is already in the destination tree the existing item is 300 * overwritten. If the existing item isn't big enough, it is extended. 301 * If it is too large, it is truncated. 302 * 303 * If the key isn't in the destination yet, a new item is inserted. 304 */ 305 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 306 struct btrfs_root *root, 307 struct btrfs_path *path, 308 struct extent_buffer *eb, int slot, 309 struct btrfs_key *key) 310 { 311 int ret; 312 u32 item_size; 313 u64 saved_i_size = 0; 314 int save_old_i_size = 0; 315 unsigned long src_ptr; 316 unsigned long dst_ptr; 317 int overwrite_root = 0; 318 319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 320 overwrite_root = 1; 321 322 item_size = btrfs_item_size_nr(eb, slot); 323 src_ptr = btrfs_item_ptr_offset(eb, slot); 324 325 /* look for the key in the destination tree */ 326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 327 if (ret == 0) { 328 char *src_copy; 329 char *dst_copy; 330 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 331 path->slots[0]); 332 if (dst_size != item_size) 333 goto insert; 334 335 if (item_size == 0) { 336 btrfs_release_path(path); 337 return 0; 338 } 339 dst_copy = kmalloc(item_size, GFP_NOFS); 340 src_copy = kmalloc(item_size, GFP_NOFS); 341 if (!dst_copy || !src_copy) { 342 btrfs_release_path(path); 343 kfree(dst_copy); 344 kfree(src_copy); 345 return -ENOMEM; 346 } 347 348 read_extent_buffer(eb, src_copy, src_ptr, item_size); 349 350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 352 item_size); 353 ret = memcmp(dst_copy, src_copy, item_size); 354 355 kfree(dst_copy); 356 kfree(src_copy); 357 /* 358 * they have the same contents, just return, this saves 359 * us from cowing blocks in the destination tree and doing 360 * extra writes that may not have been done by a previous 361 * sync 362 */ 363 if (ret == 0) { 364 btrfs_release_path(path); 365 return 0; 366 } 367 368 } 369 insert: 370 btrfs_release_path(path); 371 /* try to insert the key into the destination tree */ 372 ret = btrfs_insert_empty_item(trans, root, path, 373 key, item_size); 374 375 /* make sure any existing item is the correct size */ 376 if (ret == -EEXIST) { 377 u32 found_size; 378 found_size = btrfs_item_size_nr(path->nodes[0], 379 path->slots[0]); 380 if (found_size > item_size) 381 btrfs_truncate_item(trans, root, path, item_size, 1); 382 else if (found_size < item_size) 383 btrfs_extend_item(trans, root, path, 384 item_size - found_size); 385 } else if (ret) { 386 return ret; 387 } 388 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 389 path->slots[0]); 390 391 /* don't overwrite an existing inode if the generation number 392 * was logged as zero. This is done when the tree logging code 393 * is just logging an inode to make sure it exists after recovery. 394 * 395 * Also, don't overwrite i_size on directories during replay. 396 * log replay inserts and removes directory items based on the 397 * state of the tree found in the subvolume, and i_size is modified 398 * as it goes 399 */ 400 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 401 struct btrfs_inode_item *src_item; 402 struct btrfs_inode_item *dst_item; 403 404 src_item = (struct btrfs_inode_item *)src_ptr; 405 dst_item = (struct btrfs_inode_item *)dst_ptr; 406 407 if (btrfs_inode_generation(eb, src_item) == 0) 408 goto no_copy; 409 410 if (overwrite_root && 411 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 412 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 413 save_old_i_size = 1; 414 saved_i_size = btrfs_inode_size(path->nodes[0], 415 dst_item); 416 } 417 } 418 419 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 420 src_ptr, item_size); 421 422 if (save_old_i_size) { 423 struct btrfs_inode_item *dst_item; 424 dst_item = (struct btrfs_inode_item *)dst_ptr; 425 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 426 } 427 428 /* make sure the generation is filled in */ 429 if (key->type == BTRFS_INODE_ITEM_KEY) { 430 struct btrfs_inode_item *dst_item; 431 dst_item = (struct btrfs_inode_item *)dst_ptr; 432 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 433 btrfs_set_inode_generation(path->nodes[0], dst_item, 434 trans->transid); 435 } 436 } 437 no_copy: 438 btrfs_mark_buffer_dirty(path->nodes[0]); 439 btrfs_release_path(path); 440 return 0; 441 } 442 443 /* 444 * simple helper to read an inode off the disk from a given root 445 * This can only be called for subvolume roots and not for the log 446 */ 447 static noinline struct inode *read_one_inode(struct btrfs_root *root, 448 u64 objectid) 449 { 450 struct btrfs_key key; 451 struct inode *inode; 452 453 key.objectid = objectid; 454 key.type = BTRFS_INODE_ITEM_KEY; 455 key.offset = 0; 456 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 457 if (IS_ERR(inode)) { 458 inode = NULL; 459 } else if (is_bad_inode(inode)) { 460 iput(inode); 461 inode = NULL; 462 } 463 return inode; 464 } 465 466 /* replays a single extent in 'eb' at 'slot' with 'key' into the 467 * subvolume 'root'. path is released on entry and should be released 468 * on exit. 469 * 470 * extents in the log tree have not been allocated out of the extent 471 * tree yet. So, this completes the allocation, taking a reference 472 * as required if the extent already exists or creating a new extent 473 * if it isn't in the extent allocation tree yet. 474 * 475 * The extent is inserted into the file, dropping any existing extents 476 * from the file that overlap the new one. 477 */ 478 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 479 struct btrfs_root *root, 480 struct btrfs_path *path, 481 struct extent_buffer *eb, int slot, 482 struct btrfs_key *key) 483 { 484 int found_type; 485 u64 mask = root->sectorsize - 1; 486 u64 extent_end; 487 u64 alloc_hint; 488 u64 start = key->offset; 489 u64 saved_nbytes; 490 struct btrfs_file_extent_item *item; 491 struct inode *inode = NULL; 492 unsigned long size; 493 int ret = 0; 494 495 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 496 found_type = btrfs_file_extent_type(eb, item); 497 498 if (found_type == BTRFS_FILE_EXTENT_REG || 499 found_type == BTRFS_FILE_EXTENT_PREALLOC) 500 extent_end = start + btrfs_file_extent_num_bytes(eb, item); 501 else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 502 size = btrfs_file_extent_inline_len(eb, item); 503 extent_end = (start + size + mask) & ~mask; 504 } else { 505 ret = 0; 506 goto out; 507 } 508 509 inode = read_one_inode(root, key->objectid); 510 if (!inode) { 511 ret = -EIO; 512 goto out; 513 } 514 515 /* 516 * first check to see if we already have this extent in the 517 * file. This must be done before the btrfs_drop_extents run 518 * so we don't try to drop this extent. 519 */ 520 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 521 start, 0); 522 523 if (ret == 0 && 524 (found_type == BTRFS_FILE_EXTENT_REG || 525 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 526 struct btrfs_file_extent_item cmp1; 527 struct btrfs_file_extent_item cmp2; 528 struct btrfs_file_extent_item *existing; 529 struct extent_buffer *leaf; 530 531 leaf = path->nodes[0]; 532 existing = btrfs_item_ptr(leaf, path->slots[0], 533 struct btrfs_file_extent_item); 534 535 read_extent_buffer(eb, &cmp1, (unsigned long)item, 536 sizeof(cmp1)); 537 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 538 sizeof(cmp2)); 539 540 /* 541 * we already have a pointer to this exact extent, 542 * we don't have to do anything 543 */ 544 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 545 btrfs_release_path(path); 546 goto out; 547 } 548 } 549 btrfs_release_path(path); 550 551 saved_nbytes = inode_get_bytes(inode); 552 /* drop any overlapping extents */ 553 ret = btrfs_drop_extents(trans, inode, start, extent_end, 554 &alloc_hint, 1); 555 BUG_ON(ret); 556 557 if (found_type == BTRFS_FILE_EXTENT_REG || 558 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 559 u64 offset; 560 unsigned long dest_offset; 561 struct btrfs_key ins; 562 563 ret = btrfs_insert_empty_item(trans, root, path, key, 564 sizeof(*item)); 565 BUG_ON(ret); 566 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 567 path->slots[0]); 568 copy_extent_buffer(path->nodes[0], eb, dest_offset, 569 (unsigned long)item, sizeof(*item)); 570 571 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 572 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 573 ins.type = BTRFS_EXTENT_ITEM_KEY; 574 offset = key->offset - btrfs_file_extent_offset(eb, item); 575 576 if (ins.objectid > 0) { 577 u64 csum_start; 578 u64 csum_end; 579 LIST_HEAD(ordered_sums); 580 /* 581 * is this extent already allocated in the extent 582 * allocation tree? If so, just add a reference 583 */ 584 ret = btrfs_lookup_extent(root, ins.objectid, 585 ins.offset); 586 if (ret == 0) { 587 ret = btrfs_inc_extent_ref(trans, root, 588 ins.objectid, ins.offset, 589 0, root->root_key.objectid, 590 key->objectid, offset, 0); 591 BUG_ON(ret); 592 } else { 593 /* 594 * insert the extent pointer in the extent 595 * allocation tree 596 */ 597 ret = btrfs_alloc_logged_file_extent(trans, 598 root, root->root_key.objectid, 599 key->objectid, offset, &ins); 600 BUG_ON(ret); 601 } 602 btrfs_release_path(path); 603 604 if (btrfs_file_extent_compression(eb, item)) { 605 csum_start = ins.objectid; 606 csum_end = csum_start + ins.offset; 607 } else { 608 csum_start = ins.objectid + 609 btrfs_file_extent_offset(eb, item); 610 csum_end = csum_start + 611 btrfs_file_extent_num_bytes(eb, item); 612 } 613 614 ret = btrfs_lookup_csums_range(root->log_root, 615 csum_start, csum_end - 1, 616 &ordered_sums, 0); 617 BUG_ON(ret); 618 while (!list_empty(&ordered_sums)) { 619 struct btrfs_ordered_sum *sums; 620 sums = list_entry(ordered_sums.next, 621 struct btrfs_ordered_sum, 622 list); 623 ret = btrfs_csum_file_blocks(trans, 624 root->fs_info->csum_root, 625 sums); 626 BUG_ON(ret); 627 list_del(&sums->list); 628 kfree(sums); 629 } 630 } else { 631 btrfs_release_path(path); 632 } 633 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 634 /* inline extents are easy, we just overwrite them */ 635 ret = overwrite_item(trans, root, path, eb, slot, key); 636 BUG_ON(ret); 637 } 638 639 inode_set_bytes(inode, saved_nbytes); 640 btrfs_update_inode(trans, root, inode); 641 out: 642 if (inode) 643 iput(inode); 644 return ret; 645 } 646 647 /* 648 * when cleaning up conflicts between the directory names in the 649 * subvolume, directory names in the log and directory names in the 650 * inode back references, we may have to unlink inodes from directories. 651 * 652 * This is a helper function to do the unlink of a specific directory 653 * item 654 */ 655 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 656 struct btrfs_root *root, 657 struct btrfs_path *path, 658 struct inode *dir, 659 struct btrfs_dir_item *di) 660 { 661 struct inode *inode; 662 char *name; 663 int name_len; 664 struct extent_buffer *leaf; 665 struct btrfs_key location; 666 int ret; 667 668 leaf = path->nodes[0]; 669 670 btrfs_dir_item_key_to_cpu(leaf, di, &location); 671 name_len = btrfs_dir_name_len(leaf, di); 672 name = kmalloc(name_len, GFP_NOFS); 673 if (!name) 674 return -ENOMEM; 675 676 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 677 btrfs_release_path(path); 678 679 inode = read_one_inode(root, location.objectid); 680 if (!inode) { 681 kfree(name); 682 return -EIO; 683 } 684 685 ret = link_to_fixup_dir(trans, root, path, location.objectid); 686 BUG_ON(ret); 687 688 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 689 BUG_ON(ret); 690 kfree(name); 691 692 iput(inode); 693 return ret; 694 } 695 696 /* 697 * helper function to see if a given name and sequence number found 698 * in an inode back reference are already in a directory and correctly 699 * point to this inode 700 */ 701 static noinline int inode_in_dir(struct btrfs_root *root, 702 struct btrfs_path *path, 703 u64 dirid, u64 objectid, u64 index, 704 const char *name, int name_len) 705 { 706 struct btrfs_dir_item *di; 707 struct btrfs_key location; 708 int match = 0; 709 710 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 711 index, name, name_len, 0); 712 if (di && !IS_ERR(di)) { 713 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 714 if (location.objectid != objectid) 715 goto out; 716 } else 717 goto out; 718 btrfs_release_path(path); 719 720 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 721 if (di && !IS_ERR(di)) { 722 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 723 if (location.objectid != objectid) 724 goto out; 725 } else 726 goto out; 727 match = 1; 728 out: 729 btrfs_release_path(path); 730 return match; 731 } 732 733 /* 734 * helper function to check a log tree for a named back reference in 735 * an inode. This is used to decide if a back reference that is 736 * found in the subvolume conflicts with what we find in the log. 737 * 738 * inode backreferences may have multiple refs in a single item, 739 * during replay we process one reference at a time, and we don't 740 * want to delete valid links to a file from the subvolume if that 741 * link is also in the log. 742 */ 743 static noinline int backref_in_log(struct btrfs_root *log, 744 struct btrfs_key *key, 745 char *name, int namelen) 746 { 747 struct btrfs_path *path; 748 struct btrfs_inode_ref *ref; 749 unsigned long ptr; 750 unsigned long ptr_end; 751 unsigned long name_ptr; 752 int found_name_len; 753 int item_size; 754 int ret; 755 int match = 0; 756 757 path = btrfs_alloc_path(); 758 if (!path) 759 return -ENOMEM; 760 761 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 762 if (ret != 0) 763 goto out; 764 765 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 766 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 767 ptr_end = ptr + item_size; 768 while (ptr < ptr_end) { 769 ref = (struct btrfs_inode_ref *)ptr; 770 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 771 if (found_name_len == namelen) { 772 name_ptr = (unsigned long)(ref + 1); 773 ret = memcmp_extent_buffer(path->nodes[0], name, 774 name_ptr, namelen); 775 if (ret == 0) { 776 match = 1; 777 goto out; 778 } 779 } 780 ptr = (unsigned long)(ref + 1) + found_name_len; 781 } 782 out: 783 btrfs_free_path(path); 784 return match; 785 } 786 787 788 /* 789 * replay one inode back reference item found in the log tree. 790 * eb, slot and key refer to the buffer and key found in the log tree. 791 * root is the destination we are replaying into, and path is for temp 792 * use by this function. (it should be released on return). 793 */ 794 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 795 struct btrfs_root *root, 796 struct btrfs_root *log, 797 struct btrfs_path *path, 798 struct extent_buffer *eb, int slot, 799 struct btrfs_key *key) 800 { 801 struct btrfs_inode_ref *ref; 802 struct btrfs_dir_item *di; 803 struct inode *dir; 804 struct inode *inode; 805 unsigned long ref_ptr; 806 unsigned long ref_end; 807 char *name; 808 int namelen; 809 int ret; 810 int search_done = 0; 811 812 /* 813 * it is possible that we didn't log all the parent directories 814 * for a given inode. If we don't find the dir, just don't 815 * copy the back ref in. The link count fixup code will take 816 * care of the rest 817 */ 818 dir = read_one_inode(root, key->offset); 819 if (!dir) 820 return -ENOENT; 821 822 inode = read_one_inode(root, key->objectid); 823 if (!inode) { 824 iput(dir); 825 return -EIO; 826 } 827 828 ref_ptr = btrfs_item_ptr_offset(eb, slot); 829 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 830 831 again: 832 ref = (struct btrfs_inode_ref *)ref_ptr; 833 834 namelen = btrfs_inode_ref_name_len(eb, ref); 835 name = kmalloc(namelen, GFP_NOFS); 836 BUG_ON(!name); 837 838 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); 839 840 /* if we already have a perfect match, we're done */ 841 if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), 842 btrfs_inode_ref_index(eb, ref), 843 name, namelen)) { 844 goto out; 845 } 846 847 /* 848 * look for a conflicting back reference in the metadata. 849 * if we find one we have to unlink that name of the file 850 * before we add our new link. Later on, we overwrite any 851 * existing back reference, and we don't want to create 852 * dangling pointers in the directory. 853 */ 854 855 if (search_done) 856 goto insert; 857 858 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 859 if (ret == 0) { 860 char *victim_name; 861 int victim_name_len; 862 struct btrfs_inode_ref *victim_ref; 863 unsigned long ptr; 864 unsigned long ptr_end; 865 struct extent_buffer *leaf = path->nodes[0]; 866 867 /* are we trying to overwrite a back ref for the root directory 868 * if so, just jump out, we're done 869 */ 870 if (key->objectid == key->offset) 871 goto out_nowrite; 872 873 /* check all the names in this back reference to see 874 * if they are in the log. if so, we allow them to stay 875 * otherwise they must be unlinked as a conflict 876 */ 877 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 878 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 879 while (ptr < ptr_end) { 880 victim_ref = (struct btrfs_inode_ref *)ptr; 881 victim_name_len = btrfs_inode_ref_name_len(leaf, 882 victim_ref); 883 victim_name = kmalloc(victim_name_len, GFP_NOFS); 884 BUG_ON(!victim_name); 885 886 read_extent_buffer(leaf, victim_name, 887 (unsigned long)(victim_ref + 1), 888 victim_name_len); 889 890 if (!backref_in_log(log, key, victim_name, 891 victim_name_len)) { 892 btrfs_inc_nlink(inode); 893 btrfs_release_path(path); 894 895 ret = btrfs_unlink_inode(trans, root, dir, 896 inode, victim_name, 897 victim_name_len); 898 } 899 kfree(victim_name); 900 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 901 } 902 BUG_ON(ret); 903 904 /* 905 * NOTE: we have searched root tree and checked the 906 * coresponding ref, it does not need to check again. 907 */ 908 search_done = 1; 909 } 910 btrfs_release_path(path); 911 912 /* look for a conflicting sequence number */ 913 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 914 btrfs_inode_ref_index(eb, ref), 915 name, namelen, 0); 916 if (di && !IS_ERR(di)) { 917 ret = drop_one_dir_item(trans, root, path, dir, di); 918 BUG_ON(ret); 919 } 920 btrfs_release_path(path); 921 922 /* look for a conflicing name */ 923 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 924 name, namelen, 0); 925 if (di && !IS_ERR(di)) { 926 ret = drop_one_dir_item(trans, root, path, dir, di); 927 BUG_ON(ret); 928 } 929 btrfs_release_path(path); 930 931 insert: 932 /* insert our name */ 933 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, 934 btrfs_inode_ref_index(eb, ref)); 935 BUG_ON(ret); 936 937 btrfs_update_inode(trans, root, inode); 938 939 out: 940 ref_ptr = (unsigned long)(ref + 1) + namelen; 941 kfree(name); 942 if (ref_ptr < ref_end) 943 goto again; 944 945 /* finally write the back reference in the inode */ 946 ret = overwrite_item(trans, root, path, eb, slot, key); 947 BUG_ON(ret); 948 949 out_nowrite: 950 btrfs_release_path(path); 951 iput(dir); 952 iput(inode); 953 return 0; 954 } 955 956 static int insert_orphan_item(struct btrfs_trans_handle *trans, 957 struct btrfs_root *root, u64 offset) 958 { 959 int ret; 960 ret = btrfs_find_orphan_item(root, offset); 961 if (ret > 0) 962 ret = btrfs_insert_orphan_item(trans, root, offset); 963 return ret; 964 } 965 966 967 /* 968 * There are a few corners where the link count of the file can't 969 * be properly maintained during replay. So, instead of adding 970 * lots of complexity to the log code, we just scan the backrefs 971 * for any file that has been through replay. 972 * 973 * The scan will update the link count on the inode to reflect the 974 * number of back refs found. If it goes down to zero, the iput 975 * will free the inode. 976 */ 977 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 978 struct btrfs_root *root, 979 struct inode *inode) 980 { 981 struct btrfs_path *path; 982 int ret; 983 struct btrfs_key key; 984 u64 nlink = 0; 985 unsigned long ptr; 986 unsigned long ptr_end; 987 int name_len; 988 u64 ino = btrfs_ino(inode); 989 990 key.objectid = ino; 991 key.type = BTRFS_INODE_REF_KEY; 992 key.offset = (u64)-1; 993 994 path = btrfs_alloc_path(); 995 if (!path) 996 return -ENOMEM; 997 998 while (1) { 999 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1000 if (ret < 0) 1001 break; 1002 if (ret > 0) { 1003 if (path->slots[0] == 0) 1004 break; 1005 path->slots[0]--; 1006 } 1007 btrfs_item_key_to_cpu(path->nodes[0], &key, 1008 path->slots[0]); 1009 if (key.objectid != ino || 1010 key.type != BTRFS_INODE_REF_KEY) 1011 break; 1012 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1013 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1014 path->slots[0]); 1015 while (ptr < ptr_end) { 1016 struct btrfs_inode_ref *ref; 1017 1018 ref = (struct btrfs_inode_ref *)ptr; 1019 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1020 ref); 1021 ptr = (unsigned long)(ref + 1) + name_len; 1022 nlink++; 1023 } 1024 1025 if (key.offset == 0) 1026 break; 1027 key.offset--; 1028 btrfs_release_path(path); 1029 } 1030 btrfs_release_path(path); 1031 if (nlink != inode->i_nlink) { 1032 set_nlink(inode, nlink); 1033 btrfs_update_inode(trans, root, inode); 1034 } 1035 BTRFS_I(inode)->index_cnt = (u64)-1; 1036 1037 if (inode->i_nlink == 0) { 1038 if (S_ISDIR(inode->i_mode)) { 1039 ret = replay_dir_deletes(trans, root, NULL, path, 1040 ino, 1); 1041 BUG_ON(ret); 1042 } 1043 ret = insert_orphan_item(trans, root, ino); 1044 BUG_ON(ret); 1045 } 1046 btrfs_free_path(path); 1047 1048 return 0; 1049 } 1050 1051 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1052 struct btrfs_root *root, 1053 struct btrfs_path *path) 1054 { 1055 int ret; 1056 struct btrfs_key key; 1057 struct inode *inode; 1058 1059 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1060 key.type = BTRFS_ORPHAN_ITEM_KEY; 1061 key.offset = (u64)-1; 1062 while (1) { 1063 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1064 if (ret < 0) 1065 break; 1066 1067 if (ret == 1) { 1068 if (path->slots[0] == 0) 1069 break; 1070 path->slots[0]--; 1071 } 1072 1073 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1074 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1075 key.type != BTRFS_ORPHAN_ITEM_KEY) 1076 break; 1077 1078 ret = btrfs_del_item(trans, root, path); 1079 if (ret) 1080 goto out; 1081 1082 btrfs_release_path(path); 1083 inode = read_one_inode(root, key.offset); 1084 if (!inode) 1085 return -EIO; 1086 1087 ret = fixup_inode_link_count(trans, root, inode); 1088 BUG_ON(ret); 1089 1090 iput(inode); 1091 1092 /* 1093 * fixup on a directory may create new entries, 1094 * make sure we always look for the highset possible 1095 * offset 1096 */ 1097 key.offset = (u64)-1; 1098 } 1099 ret = 0; 1100 out: 1101 btrfs_release_path(path); 1102 return ret; 1103 } 1104 1105 1106 /* 1107 * record a given inode in the fixup dir so we can check its link 1108 * count when replay is done. The link count is incremented here 1109 * so the inode won't go away until we check it 1110 */ 1111 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1112 struct btrfs_root *root, 1113 struct btrfs_path *path, 1114 u64 objectid) 1115 { 1116 struct btrfs_key key; 1117 int ret = 0; 1118 struct inode *inode; 1119 1120 inode = read_one_inode(root, objectid); 1121 if (!inode) 1122 return -EIO; 1123 1124 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1125 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1126 key.offset = objectid; 1127 1128 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1129 1130 btrfs_release_path(path); 1131 if (ret == 0) { 1132 btrfs_inc_nlink(inode); 1133 btrfs_update_inode(trans, root, inode); 1134 } else if (ret == -EEXIST) { 1135 ret = 0; 1136 } else { 1137 BUG(); 1138 } 1139 iput(inode); 1140 1141 return ret; 1142 } 1143 1144 /* 1145 * when replaying the log for a directory, we only insert names 1146 * for inodes that actually exist. This means an fsync on a directory 1147 * does not implicitly fsync all the new files in it 1148 */ 1149 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1150 struct btrfs_root *root, 1151 struct btrfs_path *path, 1152 u64 dirid, u64 index, 1153 char *name, int name_len, u8 type, 1154 struct btrfs_key *location) 1155 { 1156 struct inode *inode; 1157 struct inode *dir; 1158 int ret; 1159 1160 inode = read_one_inode(root, location->objectid); 1161 if (!inode) 1162 return -ENOENT; 1163 1164 dir = read_one_inode(root, dirid); 1165 if (!dir) { 1166 iput(inode); 1167 return -EIO; 1168 } 1169 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); 1170 1171 /* FIXME, put inode into FIXUP list */ 1172 1173 iput(inode); 1174 iput(dir); 1175 return ret; 1176 } 1177 1178 /* 1179 * take a single entry in a log directory item and replay it into 1180 * the subvolume. 1181 * 1182 * if a conflicting item exists in the subdirectory already, 1183 * the inode it points to is unlinked and put into the link count 1184 * fix up tree. 1185 * 1186 * If a name from the log points to a file or directory that does 1187 * not exist in the FS, it is skipped. fsyncs on directories 1188 * do not force down inodes inside that directory, just changes to the 1189 * names or unlinks in a directory. 1190 */ 1191 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1192 struct btrfs_root *root, 1193 struct btrfs_path *path, 1194 struct extent_buffer *eb, 1195 struct btrfs_dir_item *di, 1196 struct btrfs_key *key) 1197 { 1198 char *name; 1199 int name_len; 1200 struct btrfs_dir_item *dst_di; 1201 struct btrfs_key found_key; 1202 struct btrfs_key log_key; 1203 struct inode *dir; 1204 u8 log_type; 1205 int exists; 1206 int ret; 1207 1208 dir = read_one_inode(root, key->objectid); 1209 if (!dir) 1210 return -EIO; 1211 1212 name_len = btrfs_dir_name_len(eb, di); 1213 name = kmalloc(name_len, GFP_NOFS); 1214 if (!name) 1215 return -ENOMEM; 1216 1217 log_type = btrfs_dir_type(eb, di); 1218 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1219 name_len); 1220 1221 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1222 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1223 if (exists == 0) 1224 exists = 1; 1225 else 1226 exists = 0; 1227 btrfs_release_path(path); 1228 1229 if (key->type == BTRFS_DIR_ITEM_KEY) { 1230 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1231 name, name_len, 1); 1232 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1233 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1234 key->objectid, 1235 key->offset, name, 1236 name_len, 1); 1237 } else { 1238 BUG(); 1239 } 1240 if (IS_ERR_OR_NULL(dst_di)) { 1241 /* we need a sequence number to insert, so we only 1242 * do inserts for the BTRFS_DIR_INDEX_KEY types 1243 */ 1244 if (key->type != BTRFS_DIR_INDEX_KEY) 1245 goto out; 1246 goto insert; 1247 } 1248 1249 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1250 /* the existing item matches the logged item */ 1251 if (found_key.objectid == log_key.objectid && 1252 found_key.type == log_key.type && 1253 found_key.offset == log_key.offset && 1254 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1255 goto out; 1256 } 1257 1258 /* 1259 * don't drop the conflicting directory entry if the inode 1260 * for the new entry doesn't exist 1261 */ 1262 if (!exists) 1263 goto out; 1264 1265 ret = drop_one_dir_item(trans, root, path, dir, dst_di); 1266 BUG_ON(ret); 1267 1268 if (key->type == BTRFS_DIR_INDEX_KEY) 1269 goto insert; 1270 out: 1271 btrfs_release_path(path); 1272 kfree(name); 1273 iput(dir); 1274 return 0; 1275 1276 insert: 1277 btrfs_release_path(path); 1278 ret = insert_one_name(trans, root, path, key->objectid, key->offset, 1279 name, name_len, log_type, &log_key); 1280 1281 BUG_ON(ret && ret != -ENOENT); 1282 goto out; 1283 } 1284 1285 /* 1286 * find all the names in a directory item and reconcile them into 1287 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 1288 * one name in a directory item, but the same code gets used for 1289 * both directory index types 1290 */ 1291 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1292 struct btrfs_root *root, 1293 struct btrfs_path *path, 1294 struct extent_buffer *eb, int slot, 1295 struct btrfs_key *key) 1296 { 1297 int ret; 1298 u32 item_size = btrfs_item_size_nr(eb, slot); 1299 struct btrfs_dir_item *di; 1300 int name_len; 1301 unsigned long ptr; 1302 unsigned long ptr_end; 1303 1304 ptr = btrfs_item_ptr_offset(eb, slot); 1305 ptr_end = ptr + item_size; 1306 while (ptr < ptr_end) { 1307 di = (struct btrfs_dir_item *)ptr; 1308 if (verify_dir_item(root, eb, di)) 1309 return -EIO; 1310 name_len = btrfs_dir_name_len(eb, di); 1311 ret = replay_one_name(trans, root, path, eb, di, key); 1312 BUG_ON(ret); 1313 ptr = (unsigned long)(di + 1); 1314 ptr += name_len; 1315 } 1316 return 0; 1317 } 1318 1319 /* 1320 * directory replay has two parts. There are the standard directory 1321 * items in the log copied from the subvolume, and range items 1322 * created in the log while the subvolume was logged. 1323 * 1324 * The range items tell us which parts of the key space the log 1325 * is authoritative for. During replay, if a key in the subvolume 1326 * directory is in a logged range item, but not actually in the log 1327 * that means it was deleted from the directory before the fsync 1328 * and should be removed. 1329 */ 1330 static noinline int find_dir_range(struct btrfs_root *root, 1331 struct btrfs_path *path, 1332 u64 dirid, int key_type, 1333 u64 *start_ret, u64 *end_ret) 1334 { 1335 struct btrfs_key key; 1336 u64 found_end; 1337 struct btrfs_dir_log_item *item; 1338 int ret; 1339 int nritems; 1340 1341 if (*start_ret == (u64)-1) 1342 return 1; 1343 1344 key.objectid = dirid; 1345 key.type = key_type; 1346 key.offset = *start_ret; 1347 1348 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1349 if (ret < 0) 1350 goto out; 1351 if (ret > 0) { 1352 if (path->slots[0] == 0) 1353 goto out; 1354 path->slots[0]--; 1355 } 1356 if (ret != 0) 1357 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1358 1359 if (key.type != key_type || key.objectid != dirid) { 1360 ret = 1; 1361 goto next; 1362 } 1363 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1364 struct btrfs_dir_log_item); 1365 found_end = btrfs_dir_log_end(path->nodes[0], item); 1366 1367 if (*start_ret >= key.offset && *start_ret <= found_end) { 1368 ret = 0; 1369 *start_ret = key.offset; 1370 *end_ret = found_end; 1371 goto out; 1372 } 1373 ret = 1; 1374 next: 1375 /* check the next slot in the tree to see if it is a valid item */ 1376 nritems = btrfs_header_nritems(path->nodes[0]); 1377 if (path->slots[0] >= nritems) { 1378 ret = btrfs_next_leaf(root, path); 1379 if (ret) 1380 goto out; 1381 } else { 1382 path->slots[0]++; 1383 } 1384 1385 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1386 1387 if (key.type != key_type || key.objectid != dirid) { 1388 ret = 1; 1389 goto out; 1390 } 1391 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1392 struct btrfs_dir_log_item); 1393 found_end = btrfs_dir_log_end(path->nodes[0], item); 1394 *start_ret = key.offset; 1395 *end_ret = found_end; 1396 ret = 0; 1397 out: 1398 btrfs_release_path(path); 1399 return ret; 1400 } 1401 1402 /* 1403 * this looks for a given directory item in the log. If the directory 1404 * item is not in the log, the item is removed and the inode it points 1405 * to is unlinked 1406 */ 1407 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 1408 struct btrfs_root *root, 1409 struct btrfs_root *log, 1410 struct btrfs_path *path, 1411 struct btrfs_path *log_path, 1412 struct inode *dir, 1413 struct btrfs_key *dir_key) 1414 { 1415 int ret; 1416 struct extent_buffer *eb; 1417 int slot; 1418 u32 item_size; 1419 struct btrfs_dir_item *di; 1420 struct btrfs_dir_item *log_di; 1421 int name_len; 1422 unsigned long ptr; 1423 unsigned long ptr_end; 1424 char *name; 1425 struct inode *inode; 1426 struct btrfs_key location; 1427 1428 again: 1429 eb = path->nodes[0]; 1430 slot = path->slots[0]; 1431 item_size = btrfs_item_size_nr(eb, slot); 1432 ptr = btrfs_item_ptr_offset(eb, slot); 1433 ptr_end = ptr + item_size; 1434 while (ptr < ptr_end) { 1435 di = (struct btrfs_dir_item *)ptr; 1436 if (verify_dir_item(root, eb, di)) { 1437 ret = -EIO; 1438 goto out; 1439 } 1440 1441 name_len = btrfs_dir_name_len(eb, di); 1442 name = kmalloc(name_len, GFP_NOFS); 1443 if (!name) { 1444 ret = -ENOMEM; 1445 goto out; 1446 } 1447 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1448 name_len); 1449 log_di = NULL; 1450 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 1451 log_di = btrfs_lookup_dir_item(trans, log, log_path, 1452 dir_key->objectid, 1453 name, name_len, 0); 1454 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 1455 log_di = btrfs_lookup_dir_index_item(trans, log, 1456 log_path, 1457 dir_key->objectid, 1458 dir_key->offset, 1459 name, name_len, 0); 1460 } 1461 if (IS_ERR_OR_NULL(log_di)) { 1462 btrfs_dir_item_key_to_cpu(eb, di, &location); 1463 btrfs_release_path(path); 1464 btrfs_release_path(log_path); 1465 inode = read_one_inode(root, location.objectid); 1466 if (!inode) { 1467 kfree(name); 1468 return -EIO; 1469 } 1470 1471 ret = link_to_fixup_dir(trans, root, 1472 path, location.objectid); 1473 BUG_ON(ret); 1474 btrfs_inc_nlink(inode); 1475 ret = btrfs_unlink_inode(trans, root, dir, inode, 1476 name, name_len); 1477 BUG_ON(ret); 1478 kfree(name); 1479 iput(inode); 1480 1481 /* there might still be more names under this key 1482 * check and repeat if required 1483 */ 1484 ret = btrfs_search_slot(NULL, root, dir_key, path, 1485 0, 0); 1486 if (ret == 0) 1487 goto again; 1488 ret = 0; 1489 goto out; 1490 } 1491 btrfs_release_path(log_path); 1492 kfree(name); 1493 1494 ptr = (unsigned long)(di + 1); 1495 ptr += name_len; 1496 } 1497 ret = 0; 1498 out: 1499 btrfs_release_path(path); 1500 btrfs_release_path(log_path); 1501 return ret; 1502 } 1503 1504 /* 1505 * deletion replay happens before we copy any new directory items 1506 * out of the log or out of backreferences from inodes. It 1507 * scans the log to find ranges of keys that log is authoritative for, 1508 * and then scans the directory to find items in those ranges that are 1509 * not present in the log. 1510 * 1511 * Anything we don't find in the log is unlinked and removed from the 1512 * directory. 1513 */ 1514 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 1515 struct btrfs_root *root, 1516 struct btrfs_root *log, 1517 struct btrfs_path *path, 1518 u64 dirid, int del_all) 1519 { 1520 u64 range_start; 1521 u64 range_end; 1522 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 1523 int ret = 0; 1524 struct btrfs_key dir_key; 1525 struct btrfs_key found_key; 1526 struct btrfs_path *log_path; 1527 struct inode *dir; 1528 1529 dir_key.objectid = dirid; 1530 dir_key.type = BTRFS_DIR_ITEM_KEY; 1531 log_path = btrfs_alloc_path(); 1532 if (!log_path) 1533 return -ENOMEM; 1534 1535 dir = read_one_inode(root, dirid); 1536 /* it isn't an error if the inode isn't there, that can happen 1537 * because we replay the deletes before we copy in the inode item 1538 * from the log 1539 */ 1540 if (!dir) { 1541 btrfs_free_path(log_path); 1542 return 0; 1543 } 1544 again: 1545 range_start = 0; 1546 range_end = 0; 1547 while (1) { 1548 if (del_all) 1549 range_end = (u64)-1; 1550 else { 1551 ret = find_dir_range(log, path, dirid, key_type, 1552 &range_start, &range_end); 1553 if (ret != 0) 1554 break; 1555 } 1556 1557 dir_key.offset = range_start; 1558 while (1) { 1559 int nritems; 1560 ret = btrfs_search_slot(NULL, root, &dir_key, path, 1561 0, 0); 1562 if (ret < 0) 1563 goto out; 1564 1565 nritems = btrfs_header_nritems(path->nodes[0]); 1566 if (path->slots[0] >= nritems) { 1567 ret = btrfs_next_leaf(root, path); 1568 if (ret) 1569 break; 1570 } 1571 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1572 path->slots[0]); 1573 if (found_key.objectid != dirid || 1574 found_key.type != dir_key.type) 1575 goto next_type; 1576 1577 if (found_key.offset > range_end) 1578 break; 1579 1580 ret = check_item_in_log(trans, root, log, path, 1581 log_path, dir, 1582 &found_key); 1583 BUG_ON(ret); 1584 if (found_key.offset == (u64)-1) 1585 break; 1586 dir_key.offset = found_key.offset + 1; 1587 } 1588 btrfs_release_path(path); 1589 if (range_end == (u64)-1) 1590 break; 1591 range_start = range_end + 1; 1592 } 1593 1594 next_type: 1595 ret = 0; 1596 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 1597 key_type = BTRFS_DIR_LOG_INDEX_KEY; 1598 dir_key.type = BTRFS_DIR_INDEX_KEY; 1599 btrfs_release_path(path); 1600 goto again; 1601 } 1602 out: 1603 btrfs_release_path(path); 1604 btrfs_free_path(log_path); 1605 iput(dir); 1606 return ret; 1607 } 1608 1609 /* 1610 * the process_func used to replay items from the log tree. This 1611 * gets called in two different stages. The first stage just looks 1612 * for inodes and makes sure they are all copied into the subvolume. 1613 * 1614 * The second stage copies all the other item types from the log into 1615 * the subvolume. The two stage approach is slower, but gets rid of 1616 * lots of complexity around inodes referencing other inodes that exist 1617 * only in the log (references come from either directory items or inode 1618 * back refs). 1619 */ 1620 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 1621 struct walk_control *wc, u64 gen) 1622 { 1623 int nritems; 1624 struct btrfs_path *path; 1625 struct btrfs_root *root = wc->replay_dest; 1626 struct btrfs_key key; 1627 int level; 1628 int i; 1629 int ret; 1630 1631 btrfs_read_buffer(eb, gen); 1632 1633 level = btrfs_header_level(eb); 1634 1635 if (level != 0) 1636 return 0; 1637 1638 path = btrfs_alloc_path(); 1639 if (!path) 1640 return -ENOMEM; 1641 1642 nritems = btrfs_header_nritems(eb); 1643 for (i = 0; i < nritems; i++) { 1644 btrfs_item_key_to_cpu(eb, &key, i); 1645 1646 /* inode keys are done during the first stage */ 1647 if (key.type == BTRFS_INODE_ITEM_KEY && 1648 wc->stage == LOG_WALK_REPLAY_INODES) { 1649 struct btrfs_inode_item *inode_item; 1650 u32 mode; 1651 1652 inode_item = btrfs_item_ptr(eb, i, 1653 struct btrfs_inode_item); 1654 mode = btrfs_inode_mode(eb, inode_item); 1655 if (S_ISDIR(mode)) { 1656 ret = replay_dir_deletes(wc->trans, 1657 root, log, path, key.objectid, 0); 1658 BUG_ON(ret); 1659 } 1660 ret = overwrite_item(wc->trans, root, path, 1661 eb, i, &key); 1662 BUG_ON(ret); 1663 1664 /* for regular files, make sure corresponding 1665 * orhpan item exist. extents past the new EOF 1666 * will be truncated later by orphan cleanup. 1667 */ 1668 if (S_ISREG(mode)) { 1669 ret = insert_orphan_item(wc->trans, root, 1670 key.objectid); 1671 BUG_ON(ret); 1672 } 1673 1674 ret = link_to_fixup_dir(wc->trans, root, 1675 path, key.objectid); 1676 BUG_ON(ret); 1677 } 1678 if (wc->stage < LOG_WALK_REPLAY_ALL) 1679 continue; 1680 1681 /* these keys are simply copied */ 1682 if (key.type == BTRFS_XATTR_ITEM_KEY) { 1683 ret = overwrite_item(wc->trans, root, path, 1684 eb, i, &key); 1685 BUG_ON(ret); 1686 } else if (key.type == BTRFS_INODE_REF_KEY) { 1687 ret = add_inode_ref(wc->trans, root, log, path, 1688 eb, i, &key); 1689 BUG_ON(ret && ret != -ENOENT); 1690 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 1691 ret = replay_one_extent(wc->trans, root, path, 1692 eb, i, &key); 1693 BUG_ON(ret); 1694 } else if (key.type == BTRFS_DIR_ITEM_KEY || 1695 key.type == BTRFS_DIR_INDEX_KEY) { 1696 ret = replay_one_dir_item(wc->trans, root, path, 1697 eb, i, &key); 1698 BUG_ON(ret); 1699 } 1700 } 1701 btrfs_free_path(path); 1702 return 0; 1703 } 1704 1705 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 1706 struct btrfs_root *root, 1707 struct btrfs_path *path, int *level, 1708 struct walk_control *wc) 1709 { 1710 u64 root_owner; 1711 u64 bytenr; 1712 u64 ptr_gen; 1713 struct extent_buffer *next; 1714 struct extent_buffer *cur; 1715 struct extent_buffer *parent; 1716 u32 blocksize; 1717 int ret = 0; 1718 1719 WARN_ON(*level < 0); 1720 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1721 1722 while (*level > 0) { 1723 WARN_ON(*level < 0); 1724 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1725 cur = path->nodes[*level]; 1726 1727 if (btrfs_header_level(cur) != *level) 1728 WARN_ON(1); 1729 1730 if (path->slots[*level] >= 1731 btrfs_header_nritems(cur)) 1732 break; 1733 1734 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 1735 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 1736 blocksize = btrfs_level_size(root, *level - 1); 1737 1738 parent = path->nodes[*level]; 1739 root_owner = btrfs_header_owner(parent); 1740 1741 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 1742 if (!next) 1743 return -ENOMEM; 1744 1745 if (*level == 1) { 1746 ret = wc->process_func(root, next, wc, ptr_gen); 1747 if (ret) 1748 return ret; 1749 1750 path->slots[*level]++; 1751 if (wc->free) { 1752 btrfs_read_buffer(next, ptr_gen); 1753 1754 btrfs_tree_lock(next); 1755 btrfs_set_lock_blocking(next); 1756 clean_tree_block(trans, root, next); 1757 btrfs_wait_tree_block_writeback(next); 1758 btrfs_tree_unlock(next); 1759 1760 WARN_ON(root_owner != 1761 BTRFS_TREE_LOG_OBJECTID); 1762 ret = btrfs_free_and_pin_reserved_extent(root, 1763 bytenr, blocksize); 1764 BUG_ON(ret); /* -ENOMEM or logic errors */ 1765 } 1766 free_extent_buffer(next); 1767 continue; 1768 } 1769 btrfs_read_buffer(next, ptr_gen); 1770 1771 WARN_ON(*level <= 0); 1772 if (path->nodes[*level-1]) 1773 free_extent_buffer(path->nodes[*level-1]); 1774 path->nodes[*level-1] = next; 1775 *level = btrfs_header_level(next); 1776 path->slots[*level] = 0; 1777 cond_resched(); 1778 } 1779 WARN_ON(*level < 0); 1780 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1781 1782 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 1783 1784 cond_resched(); 1785 return 0; 1786 } 1787 1788 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 1789 struct btrfs_root *root, 1790 struct btrfs_path *path, int *level, 1791 struct walk_control *wc) 1792 { 1793 u64 root_owner; 1794 int i; 1795 int slot; 1796 int ret; 1797 1798 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 1799 slot = path->slots[i]; 1800 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 1801 path->slots[i]++; 1802 *level = i; 1803 WARN_ON(*level == 0); 1804 return 0; 1805 } else { 1806 struct extent_buffer *parent; 1807 if (path->nodes[*level] == root->node) 1808 parent = path->nodes[*level]; 1809 else 1810 parent = path->nodes[*level + 1]; 1811 1812 root_owner = btrfs_header_owner(parent); 1813 ret = wc->process_func(root, path->nodes[*level], wc, 1814 btrfs_header_generation(path->nodes[*level])); 1815 if (ret) 1816 return ret; 1817 1818 if (wc->free) { 1819 struct extent_buffer *next; 1820 1821 next = path->nodes[*level]; 1822 1823 btrfs_tree_lock(next); 1824 btrfs_set_lock_blocking(next); 1825 clean_tree_block(trans, root, next); 1826 btrfs_wait_tree_block_writeback(next); 1827 btrfs_tree_unlock(next); 1828 1829 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 1830 ret = btrfs_free_and_pin_reserved_extent(root, 1831 path->nodes[*level]->start, 1832 path->nodes[*level]->len); 1833 BUG_ON(ret); 1834 } 1835 free_extent_buffer(path->nodes[*level]); 1836 path->nodes[*level] = NULL; 1837 *level = i + 1; 1838 } 1839 } 1840 return 1; 1841 } 1842 1843 /* 1844 * drop the reference count on the tree rooted at 'snap'. This traverses 1845 * the tree freeing any blocks that have a ref count of zero after being 1846 * decremented. 1847 */ 1848 static int walk_log_tree(struct btrfs_trans_handle *trans, 1849 struct btrfs_root *log, struct walk_control *wc) 1850 { 1851 int ret = 0; 1852 int wret; 1853 int level; 1854 struct btrfs_path *path; 1855 int i; 1856 int orig_level; 1857 1858 path = btrfs_alloc_path(); 1859 if (!path) 1860 return -ENOMEM; 1861 1862 level = btrfs_header_level(log->node); 1863 orig_level = level; 1864 path->nodes[level] = log->node; 1865 extent_buffer_get(log->node); 1866 path->slots[level] = 0; 1867 1868 while (1) { 1869 wret = walk_down_log_tree(trans, log, path, &level, wc); 1870 if (wret > 0) 1871 break; 1872 if (wret < 0) { 1873 ret = wret; 1874 goto out; 1875 } 1876 1877 wret = walk_up_log_tree(trans, log, path, &level, wc); 1878 if (wret > 0) 1879 break; 1880 if (wret < 0) { 1881 ret = wret; 1882 goto out; 1883 } 1884 } 1885 1886 /* was the root node processed? if not, catch it here */ 1887 if (path->nodes[orig_level]) { 1888 ret = wc->process_func(log, path->nodes[orig_level], wc, 1889 btrfs_header_generation(path->nodes[orig_level])); 1890 if (ret) 1891 goto out; 1892 if (wc->free) { 1893 struct extent_buffer *next; 1894 1895 next = path->nodes[orig_level]; 1896 1897 btrfs_tree_lock(next); 1898 btrfs_set_lock_blocking(next); 1899 clean_tree_block(trans, log, next); 1900 btrfs_wait_tree_block_writeback(next); 1901 btrfs_tree_unlock(next); 1902 1903 WARN_ON(log->root_key.objectid != 1904 BTRFS_TREE_LOG_OBJECTID); 1905 ret = btrfs_free_and_pin_reserved_extent(log, next->start, 1906 next->len); 1907 BUG_ON(ret); /* -ENOMEM or logic errors */ 1908 } 1909 } 1910 1911 out: 1912 for (i = 0; i <= orig_level; i++) { 1913 if (path->nodes[i]) { 1914 free_extent_buffer(path->nodes[i]); 1915 path->nodes[i] = NULL; 1916 } 1917 } 1918 btrfs_free_path(path); 1919 return ret; 1920 } 1921 1922 /* 1923 * helper function to update the item for a given subvolumes log root 1924 * in the tree of log roots 1925 */ 1926 static int update_log_root(struct btrfs_trans_handle *trans, 1927 struct btrfs_root *log) 1928 { 1929 int ret; 1930 1931 if (log->log_transid == 1) { 1932 /* insert root item on the first sync */ 1933 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, 1934 &log->root_key, &log->root_item); 1935 } else { 1936 ret = btrfs_update_root(trans, log->fs_info->log_root_tree, 1937 &log->root_key, &log->root_item); 1938 } 1939 return ret; 1940 } 1941 1942 static int wait_log_commit(struct btrfs_trans_handle *trans, 1943 struct btrfs_root *root, unsigned long transid) 1944 { 1945 DEFINE_WAIT(wait); 1946 int index = transid % 2; 1947 1948 /* 1949 * we only allow two pending log transactions at a time, 1950 * so we know that if ours is more than 2 older than the 1951 * current transaction, we're done 1952 */ 1953 do { 1954 prepare_to_wait(&root->log_commit_wait[index], 1955 &wait, TASK_UNINTERRUPTIBLE); 1956 mutex_unlock(&root->log_mutex); 1957 1958 if (root->fs_info->last_trans_log_full_commit != 1959 trans->transid && root->log_transid < transid + 2 && 1960 atomic_read(&root->log_commit[index])) 1961 schedule(); 1962 1963 finish_wait(&root->log_commit_wait[index], &wait); 1964 mutex_lock(&root->log_mutex); 1965 } while (root->fs_info->last_trans_log_full_commit != 1966 trans->transid && root->log_transid < transid + 2 && 1967 atomic_read(&root->log_commit[index])); 1968 return 0; 1969 } 1970 1971 static void wait_for_writer(struct btrfs_trans_handle *trans, 1972 struct btrfs_root *root) 1973 { 1974 DEFINE_WAIT(wait); 1975 while (root->fs_info->last_trans_log_full_commit != 1976 trans->transid && atomic_read(&root->log_writers)) { 1977 prepare_to_wait(&root->log_writer_wait, 1978 &wait, TASK_UNINTERRUPTIBLE); 1979 mutex_unlock(&root->log_mutex); 1980 if (root->fs_info->last_trans_log_full_commit != 1981 trans->transid && atomic_read(&root->log_writers)) 1982 schedule(); 1983 mutex_lock(&root->log_mutex); 1984 finish_wait(&root->log_writer_wait, &wait); 1985 } 1986 } 1987 1988 /* 1989 * btrfs_sync_log does sends a given tree log down to the disk and 1990 * updates the super blocks to record it. When this call is done, 1991 * you know that any inodes previously logged are safely on disk only 1992 * if it returns 0. 1993 * 1994 * Any other return value means you need to call btrfs_commit_transaction. 1995 * Some of the edge cases for fsyncing directories that have had unlinks 1996 * or renames done in the past mean that sometimes the only safe 1997 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 1998 * that has happened. 1999 */ 2000 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2001 struct btrfs_root *root) 2002 { 2003 int index1; 2004 int index2; 2005 int mark; 2006 int ret; 2007 struct btrfs_root *log = root->log_root; 2008 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; 2009 unsigned long log_transid = 0; 2010 2011 mutex_lock(&root->log_mutex); 2012 index1 = root->log_transid % 2; 2013 if (atomic_read(&root->log_commit[index1])) { 2014 wait_log_commit(trans, root, root->log_transid); 2015 mutex_unlock(&root->log_mutex); 2016 return 0; 2017 } 2018 atomic_set(&root->log_commit[index1], 1); 2019 2020 /* wait for previous tree log sync to complete */ 2021 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2022 wait_log_commit(trans, root, root->log_transid - 1); 2023 while (1) { 2024 unsigned long batch = root->log_batch; 2025 /* when we're on an ssd, just kick the log commit out */ 2026 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) { 2027 mutex_unlock(&root->log_mutex); 2028 schedule_timeout_uninterruptible(1); 2029 mutex_lock(&root->log_mutex); 2030 } 2031 wait_for_writer(trans, root); 2032 if (batch == root->log_batch) 2033 break; 2034 } 2035 2036 /* bail out if we need to do a full commit */ 2037 if (root->fs_info->last_trans_log_full_commit == trans->transid) { 2038 ret = -EAGAIN; 2039 mutex_unlock(&root->log_mutex); 2040 goto out; 2041 } 2042 2043 log_transid = root->log_transid; 2044 if (log_transid % 2 == 0) 2045 mark = EXTENT_DIRTY; 2046 else 2047 mark = EXTENT_NEW; 2048 2049 /* we start IO on all the marked extents here, but we don't actually 2050 * wait for them until later. 2051 */ 2052 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); 2053 if (ret) { 2054 btrfs_abort_transaction(trans, root, ret); 2055 mutex_unlock(&root->log_mutex); 2056 goto out; 2057 } 2058 2059 btrfs_set_root_node(&log->root_item, log->node); 2060 2061 root->log_batch = 0; 2062 root->log_transid++; 2063 log->log_transid = root->log_transid; 2064 root->log_start_pid = 0; 2065 smp_mb(); 2066 /* 2067 * IO has been started, blocks of the log tree have WRITTEN flag set 2068 * in their headers. new modifications of the log will be written to 2069 * new positions. so it's safe to allow log writers to go in. 2070 */ 2071 mutex_unlock(&root->log_mutex); 2072 2073 mutex_lock(&log_root_tree->log_mutex); 2074 log_root_tree->log_batch++; 2075 atomic_inc(&log_root_tree->log_writers); 2076 mutex_unlock(&log_root_tree->log_mutex); 2077 2078 ret = update_log_root(trans, log); 2079 2080 mutex_lock(&log_root_tree->log_mutex); 2081 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 2082 smp_mb(); 2083 if (waitqueue_active(&log_root_tree->log_writer_wait)) 2084 wake_up(&log_root_tree->log_writer_wait); 2085 } 2086 2087 if (ret) { 2088 if (ret != -ENOSPC) { 2089 btrfs_abort_transaction(trans, root, ret); 2090 mutex_unlock(&log_root_tree->log_mutex); 2091 goto out; 2092 } 2093 root->fs_info->last_trans_log_full_commit = trans->transid; 2094 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2095 mutex_unlock(&log_root_tree->log_mutex); 2096 ret = -EAGAIN; 2097 goto out; 2098 } 2099 2100 index2 = log_root_tree->log_transid % 2; 2101 if (atomic_read(&log_root_tree->log_commit[index2])) { 2102 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2103 wait_log_commit(trans, log_root_tree, 2104 log_root_tree->log_transid); 2105 mutex_unlock(&log_root_tree->log_mutex); 2106 ret = 0; 2107 goto out; 2108 } 2109 atomic_set(&log_root_tree->log_commit[index2], 1); 2110 2111 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 2112 wait_log_commit(trans, log_root_tree, 2113 log_root_tree->log_transid - 1); 2114 } 2115 2116 wait_for_writer(trans, log_root_tree); 2117 2118 /* 2119 * now that we've moved on to the tree of log tree roots, 2120 * check the full commit flag again 2121 */ 2122 if (root->fs_info->last_trans_log_full_commit == trans->transid) { 2123 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2124 mutex_unlock(&log_root_tree->log_mutex); 2125 ret = -EAGAIN; 2126 goto out_wake_log_root; 2127 } 2128 2129 ret = btrfs_write_and_wait_marked_extents(log_root_tree, 2130 &log_root_tree->dirty_log_pages, 2131 EXTENT_DIRTY | EXTENT_NEW); 2132 if (ret) { 2133 btrfs_abort_transaction(trans, root, ret); 2134 mutex_unlock(&log_root_tree->log_mutex); 2135 goto out_wake_log_root; 2136 } 2137 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2138 2139 btrfs_set_super_log_root(root->fs_info->super_for_commit, 2140 log_root_tree->node->start); 2141 btrfs_set_super_log_root_level(root->fs_info->super_for_commit, 2142 btrfs_header_level(log_root_tree->node)); 2143 2144 log_root_tree->log_batch = 0; 2145 log_root_tree->log_transid++; 2146 smp_mb(); 2147 2148 mutex_unlock(&log_root_tree->log_mutex); 2149 2150 /* 2151 * nobody else is going to jump in and write the the ctree 2152 * super here because the log_commit atomic below is protecting 2153 * us. We must be called with a transaction handle pinning 2154 * the running transaction open, so a full commit can't hop 2155 * in and cause problems either. 2156 */ 2157 btrfs_scrub_pause_super(root); 2158 write_ctree_super(trans, root->fs_info->tree_root, 1); 2159 btrfs_scrub_continue_super(root); 2160 ret = 0; 2161 2162 mutex_lock(&root->log_mutex); 2163 if (root->last_log_commit < log_transid) 2164 root->last_log_commit = log_transid; 2165 mutex_unlock(&root->log_mutex); 2166 2167 out_wake_log_root: 2168 atomic_set(&log_root_tree->log_commit[index2], 0); 2169 smp_mb(); 2170 if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) 2171 wake_up(&log_root_tree->log_commit_wait[index2]); 2172 out: 2173 atomic_set(&root->log_commit[index1], 0); 2174 smp_mb(); 2175 if (waitqueue_active(&root->log_commit_wait[index1])) 2176 wake_up(&root->log_commit_wait[index1]); 2177 return ret; 2178 } 2179 2180 static void free_log_tree(struct btrfs_trans_handle *trans, 2181 struct btrfs_root *log) 2182 { 2183 int ret; 2184 u64 start; 2185 u64 end; 2186 struct walk_control wc = { 2187 .free = 1, 2188 .process_func = process_one_buffer 2189 }; 2190 2191 ret = walk_log_tree(trans, log, &wc); 2192 BUG_ON(ret); 2193 2194 while (1) { 2195 ret = find_first_extent_bit(&log->dirty_log_pages, 2196 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW); 2197 if (ret) 2198 break; 2199 2200 clear_extent_bits(&log->dirty_log_pages, start, end, 2201 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); 2202 } 2203 2204 free_extent_buffer(log->node); 2205 kfree(log); 2206 } 2207 2208 /* 2209 * free all the extents used by the tree log. This should be called 2210 * at commit time of the full transaction 2211 */ 2212 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 2213 { 2214 if (root->log_root) { 2215 free_log_tree(trans, root->log_root); 2216 root->log_root = NULL; 2217 } 2218 return 0; 2219 } 2220 2221 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 2222 struct btrfs_fs_info *fs_info) 2223 { 2224 if (fs_info->log_root_tree) { 2225 free_log_tree(trans, fs_info->log_root_tree); 2226 fs_info->log_root_tree = NULL; 2227 } 2228 return 0; 2229 } 2230 2231 /* 2232 * If both a file and directory are logged, and unlinks or renames are 2233 * mixed in, we have a few interesting corners: 2234 * 2235 * create file X in dir Y 2236 * link file X to X.link in dir Y 2237 * fsync file X 2238 * unlink file X but leave X.link 2239 * fsync dir Y 2240 * 2241 * After a crash we would expect only X.link to exist. But file X 2242 * didn't get fsync'd again so the log has back refs for X and X.link. 2243 * 2244 * We solve this by removing directory entries and inode backrefs from the 2245 * log when a file that was logged in the current transaction is 2246 * unlinked. Any later fsync will include the updated log entries, and 2247 * we'll be able to reconstruct the proper directory items from backrefs. 2248 * 2249 * This optimizations allows us to avoid relogging the entire inode 2250 * or the entire directory. 2251 */ 2252 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 2253 struct btrfs_root *root, 2254 const char *name, int name_len, 2255 struct inode *dir, u64 index) 2256 { 2257 struct btrfs_root *log; 2258 struct btrfs_dir_item *di; 2259 struct btrfs_path *path; 2260 int ret; 2261 int err = 0; 2262 int bytes_del = 0; 2263 u64 dir_ino = btrfs_ino(dir); 2264 2265 if (BTRFS_I(dir)->logged_trans < trans->transid) 2266 return 0; 2267 2268 ret = join_running_log_trans(root); 2269 if (ret) 2270 return 0; 2271 2272 mutex_lock(&BTRFS_I(dir)->log_mutex); 2273 2274 log = root->log_root; 2275 path = btrfs_alloc_path(); 2276 if (!path) { 2277 err = -ENOMEM; 2278 goto out_unlock; 2279 } 2280 2281 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 2282 name, name_len, -1); 2283 if (IS_ERR(di)) { 2284 err = PTR_ERR(di); 2285 goto fail; 2286 } 2287 if (di) { 2288 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2289 bytes_del += name_len; 2290 BUG_ON(ret); 2291 } 2292 btrfs_release_path(path); 2293 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 2294 index, name, name_len, -1); 2295 if (IS_ERR(di)) { 2296 err = PTR_ERR(di); 2297 goto fail; 2298 } 2299 if (di) { 2300 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2301 bytes_del += name_len; 2302 BUG_ON(ret); 2303 } 2304 2305 /* update the directory size in the log to reflect the names 2306 * we have removed 2307 */ 2308 if (bytes_del) { 2309 struct btrfs_key key; 2310 2311 key.objectid = dir_ino; 2312 key.offset = 0; 2313 key.type = BTRFS_INODE_ITEM_KEY; 2314 btrfs_release_path(path); 2315 2316 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 2317 if (ret < 0) { 2318 err = ret; 2319 goto fail; 2320 } 2321 if (ret == 0) { 2322 struct btrfs_inode_item *item; 2323 u64 i_size; 2324 2325 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2326 struct btrfs_inode_item); 2327 i_size = btrfs_inode_size(path->nodes[0], item); 2328 if (i_size > bytes_del) 2329 i_size -= bytes_del; 2330 else 2331 i_size = 0; 2332 btrfs_set_inode_size(path->nodes[0], item, i_size); 2333 btrfs_mark_buffer_dirty(path->nodes[0]); 2334 } else 2335 ret = 0; 2336 btrfs_release_path(path); 2337 } 2338 fail: 2339 btrfs_free_path(path); 2340 out_unlock: 2341 mutex_unlock(&BTRFS_I(dir)->log_mutex); 2342 if (ret == -ENOSPC) { 2343 root->fs_info->last_trans_log_full_commit = trans->transid; 2344 ret = 0; 2345 } else if (ret < 0) 2346 btrfs_abort_transaction(trans, root, ret); 2347 2348 btrfs_end_log_trans(root); 2349 2350 return err; 2351 } 2352 2353 /* see comments for btrfs_del_dir_entries_in_log */ 2354 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 2355 struct btrfs_root *root, 2356 const char *name, int name_len, 2357 struct inode *inode, u64 dirid) 2358 { 2359 struct btrfs_root *log; 2360 u64 index; 2361 int ret; 2362 2363 if (BTRFS_I(inode)->logged_trans < trans->transid) 2364 return 0; 2365 2366 ret = join_running_log_trans(root); 2367 if (ret) 2368 return 0; 2369 log = root->log_root; 2370 mutex_lock(&BTRFS_I(inode)->log_mutex); 2371 2372 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 2373 dirid, &index); 2374 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2375 if (ret == -ENOSPC) { 2376 root->fs_info->last_trans_log_full_commit = trans->transid; 2377 ret = 0; 2378 } else if (ret < 0 && ret != -ENOENT) 2379 btrfs_abort_transaction(trans, root, ret); 2380 btrfs_end_log_trans(root); 2381 2382 return ret; 2383 } 2384 2385 /* 2386 * creates a range item in the log for 'dirid'. first_offset and 2387 * last_offset tell us which parts of the key space the log should 2388 * be considered authoritative for. 2389 */ 2390 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 2391 struct btrfs_root *log, 2392 struct btrfs_path *path, 2393 int key_type, u64 dirid, 2394 u64 first_offset, u64 last_offset) 2395 { 2396 int ret; 2397 struct btrfs_key key; 2398 struct btrfs_dir_log_item *item; 2399 2400 key.objectid = dirid; 2401 key.offset = first_offset; 2402 if (key_type == BTRFS_DIR_ITEM_KEY) 2403 key.type = BTRFS_DIR_LOG_ITEM_KEY; 2404 else 2405 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2406 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 2407 if (ret) 2408 return ret; 2409 2410 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2411 struct btrfs_dir_log_item); 2412 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 2413 btrfs_mark_buffer_dirty(path->nodes[0]); 2414 btrfs_release_path(path); 2415 return 0; 2416 } 2417 2418 /* 2419 * log all the items included in the current transaction for a given 2420 * directory. This also creates the range items in the log tree required 2421 * to replay anything deleted before the fsync 2422 */ 2423 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 2424 struct btrfs_root *root, struct inode *inode, 2425 struct btrfs_path *path, 2426 struct btrfs_path *dst_path, int key_type, 2427 u64 min_offset, u64 *last_offset_ret) 2428 { 2429 struct btrfs_key min_key; 2430 struct btrfs_key max_key; 2431 struct btrfs_root *log = root->log_root; 2432 struct extent_buffer *src; 2433 int err = 0; 2434 int ret; 2435 int i; 2436 int nritems; 2437 u64 first_offset = min_offset; 2438 u64 last_offset = (u64)-1; 2439 u64 ino = btrfs_ino(inode); 2440 2441 log = root->log_root; 2442 max_key.objectid = ino; 2443 max_key.offset = (u64)-1; 2444 max_key.type = key_type; 2445 2446 min_key.objectid = ino; 2447 min_key.type = key_type; 2448 min_key.offset = min_offset; 2449 2450 path->keep_locks = 1; 2451 2452 ret = btrfs_search_forward(root, &min_key, &max_key, 2453 path, 0, trans->transid); 2454 2455 /* 2456 * we didn't find anything from this transaction, see if there 2457 * is anything at all 2458 */ 2459 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 2460 min_key.objectid = ino; 2461 min_key.type = key_type; 2462 min_key.offset = (u64)-1; 2463 btrfs_release_path(path); 2464 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2465 if (ret < 0) { 2466 btrfs_release_path(path); 2467 return ret; 2468 } 2469 ret = btrfs_previous_item(root, path, ino, key_type); 2470 2471 /* if ret == 0 there are items for this type, 2472 * create a range to tell us the last key of this type. 2473 * otherwise, there are no items in this directory after 2474 * *min_offset, and we create a range to indicate that. 2475 */ 2476 if (ret == 0) { 2477 struct btrfs_key tmp; 2478 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 2479 path->slots[0]); 2480 if (key_type == tmp.type) 2481 first_offset = max(min_offset, tmp.offset) + 1; 2482 } 2483 goto done; 2484 } 2485 2486 /* go backward to find any previous key */ 2487 ret = btrfs_previous_item(root, path, ino, key_type); 2488 if (ret == 0) { 2489 struct btrfs_key tmp; 2490 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2491 if (key_type == tmp.type) { 2492 first_offset = tmp.offset; 2493 ret = overwrite_item(trans, log, dst_path, 2494 path->nodes[0], path->slots[0], 2495 &tmp); 2496 if (ret) { 2497 err = ret; 2498 goto done; 2499 } 2500 } 2501 } 2502 btrfs_release_path(path); 2503 2504 /* find the first key from this transaction again */ 2505 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2506 if (ret != 0) { 2507 WARN_ON(1); 2508 goto done; 2509 } 2510 2511 /* 2512 * we have a block from this transaction, log every item in it 2513 * from our directory 2514 */ 2515 while (1) { 2516 struct btrfs_key tmp; 2517 src = path->nodes[0]; 2518 nritems = btrfs_header_nritems(src); 2519 for (i = path->slots[0]; i < nritems; i++) { 2520 btrfs_item_key_to_cpu(src, &min_key, i); 2521 2522 if (min_key.objectid != ino || min_key.type != key_type) 2523 goto done; 2524 ret = overwrite_item(trans, log, dst_path, src, i, 2525 &min_key); 2526 if (ret) { 2527 err = ret; 2528 goto done; 2529 } 2530 } 2531 path->slots[0] = nritems; 2532 2533 /* 2534 * look ahead to the next item and see if it is also 2535 * from this directory and from this transaction 2536 */ 2537 ret = btrfs_next_leaf(root, path); 2538 if (ret == 1) { 2539 last_offset = (u64)-1; 2540 goto done; 2541 } 2542 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2543 if (tmp.objectid != ino || tmp.type != key_type) { 2544 last_offset = (u64)-1; 2545 goto done; 2546 } 2547 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 2548 ret = overwrite_item(trans, log, dst_path, 2549 path->nodes[0], path->slots[0], 2550 &tmp); 2551 if (ret) 2552 err = ret; 2553 else 2554 last_offset = tmp.offset; 2555 goto done; 2556 } 2557 } 2558 done: 2559 btrfs_release_path(path); 2560 btrfs_release_path(dst_path); 2561 2562 if (err == 0) { 2563 *last_offset_ret = last_offset; 2564 /* 2565 * insert the log range keys to indicate where the log 2566 * is valid 2567 */ 2568 ret = insert_dir_log_key(trans, log, path, key_type, 2569 ino, first_offset, last_offset); 2570 if (ret) 2571 err = ret; 2572 } 2573 return err; 2574 } 2575 2576 /* 2577 * logging directories is very similar to logging inodes, We find all the items 2578 * from the current transaction and write them to the log. 2579 * 2580 * The recovery code scans the directory in the subvolume, and if it finds a 2581 * key in the range logged that is not present in the log tree, then it means 2582 * that dir entry was unlinked during the transaction. 2583 * 2584 * In order for that scan to work, we must include one key smaller than 2585 * the smallest logged by this transaction and one key larger than the largest 2586 * key logged by this transaction. 2587 */ 2588 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 2589 struct btrfs_root *root, struct inode *inode, 2590 struct btrfs_path *path, 2591 struct btrfs_path *dst_path) 2592 { 2593 u64 min_key; 2594 u64 max_key; 2595 int ret; 2596 int key_type = BTRFS_DIR_ITEM_KEY; 2597 2598 again: 2599 min_key = 0; 2600 max_key = 0; 2601 while (1) { 2602 ret = log_dir_items(trans, root, inode, path, 2603 dst_path, key_type, min_key, 2604 &max_key); 2605 if (ret) 2606 return ret; 2607 if (max_key == (u64)-1) 2608 break; 2609 min_key = max_key + 1; 2610 } 2611 2612 if (key_type == BTRFS_DIR_ITEM_KEY) { 2613 key_type = BTRFS_DIR_INDEX_KEY; 2614 goto again; 2615 } 2616 return 0; 2617 } 2618 2619 /* 2620 * a helper function to drop items from the log before we relog an 2621 * inode. max_key_type indicates the highest item type to remove. 2622 * This cannot be run for file data extents because it does not 2623 * free the extents they point to. 2624 */ 2625 static int drop_objectid_items(struct btrfs_trans_handle *trans, 2626 struct btrfs_root *log, 2627 struct btrfs_path *path, 2628 u64 objectid, int max_key_type) 2629 { 2630 int ret; 2631 struct btrfs_key key; 2632 struct btrfs_key found_key; 2633 2634 key.objectid = objectid; 2635 key.type = max_key_type; 2636 key.offset = (u64)-1; 2637 2638 while (1) { 2639 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 2640 BUG_ON(ret == 0); 2641 if (ret < 0) 2642 break; 2643 2644 if (path->slots[0] == 0) 2645 break; 2646 2647 path->slots[0]--; 2648 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2649 path->slots[0]); 2650 2651 if (found_key.objectid != objectid) 2652 break; 2653 2654 ret = btrfs_del_item(trans, log, path); 2655 if (ret) 2656 break; 2657 btrfs_release_path(path); 2658 } 2659 btrfs_release_path(path); 2660 return ret; 2661 } 2662 2663 static noinline int copy_items(struct btrfs_trans_handle *trans, 2664 struct btrfs_root *log, 2665 struct btrfs_path *dst_path, 2666 struct extent_buffer *src, 2667 int start_slot, int nr, int inode_only) 2668 { 2669 unsigned long src_offset; 2670 unsigned long dst_offset; 2671 struct btrfs_file_extent_item *extent; 2672 struct btrfs_inode_item *inode_item; 2673 int ret; 2674 struct btrfs_key *ins_keys; 2675 u32 *ins_sizes; 2676 char *ins_data; 2677 int i; 2678 struct list_head ordered_sums; 2679 2680 INIT_LIST_HEAD(&ordered_sums); 2681 2682 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 2683 nr * sizeof(u32), GFP_NOFS); 2684 if (!ins_data) 2685 return -ENOMEM; 2686 2687 ins_sizes = (u32 *)ins_data; 2688 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 2689 2690 for (i = 0; i < nr; i++) { 2691 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 2692 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 2693 } 2694 ret = btrfs_insert_empty_items(trans, log, dst_path, 2695 ins_keys, ins_sizes, nr); 2696 if (ret) { 2697 kfree(ins_data); 2698 return ret; 2699 } 2700 2701 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 2702 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 2703 dst_path->slots[0]); 2704 2705 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 2706 2707 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 2708 src_offset, ins_sizes[i]); 2709 2710 if (inode_only == LOG_INODE_EXISTS && 2711 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 2712 inode_item = btrfs_item_ptr(dst_path->nodes[0], 2713 dst_path->slots[0], 2714 struct btrfs_inode_item); 2715 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); 2716 2717 /* set the generation to zero so the recover code 2718 * can tell the difference between an logging 2719 * just to say 'this inode exists' and a logging 2720 * to say 'update this inode with these values' 2721 */ 2722 btrfs_set_inode_generation(dst_path->nodes[0], 2723 inode_item, 0); 2724 } 2725 /* take a reference on file data extents so that truncates 2726 * or deletes of this inode don't have to relog the inode 2727 * again 2728 */ 2729 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { 2730 int found_type; 2731 extent = btrfs_item_ptr(src, start_slot + i, 2732 struct btrfs_file_extent_item); 2733 2734 if (btrfs_file_extent_generation(src, extent) < trans->transid) 2735 continue; 2736 2737 found_type = btrfs_file_extent_type(src, extent); 2738 if (found_type == BTRFS_FILE_EXTENT_REG || 2739 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 2740 u64 ds, dl, cs, cl; 2741 ds = btrfs_file_extent_disk_bytenr(src, 2742 extent); 2743 /* ds == 0 is a hole */ 2744 if (ds == 0) 2745 continue; 2746 2747 dl = btrfs_file_extent_disk_num_bytes(src, 2748 extent); 2749 cs = btrfs_file_extent_offset(src, extent); 2750 cl = btrfs_file_extent_num_bytes(src, 2751 extent); 2752 if (btrfs_file_extent_compression(src, 2753 extent)) { 2754 cs = 0; 2755 cl = dl; 2756 } 2757 2758 ret = btrfs_lookup_csums_range( 2759 log->fs_info->csum_root, 2760 ds + cs, ds + cs + cl - 1, 2761 &ordered_sums, 0); 2762 BUG_ON(ret); 2763 } 2764 } 2765 } 2766 2767 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 2768 btrfs_release_path(dst_path); 2769 kfree(ins_data); 2770 2771 /* 2772 * we have to do this after the loop above to avoid changing the 2773 * log tree while trying to change the log tree. 2774 */ 2775 ret = 0; 2776 while (!list_empty(&ordered_sums)) { 2777 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 2778 struct btrfs_ordered_sum, 2779 list); 2780 if (!ret) 2781 ret = btrfs_csum_file_blocks(trans, log, sums); 2782 list_del(&sums->list); 2783 kfree(sums); 2784 } 2785 return ret; 2786 } 2787 2788 /* log a single inode in the tree log. 2789 * At least one parent directory for this inode must exist in the tree 2790 * or be logged already. 2791 * 2792 * Any items from this inode changed by the current transaction are copied 2793 * to the log tree. An extra reference is taken on any extents in this 2794 * file, allowing us to avoid a whole pile of corner cases around logging 2795 * blocks that have been removed from the tree. 2796 * 2797 * See LOG_INODE_ALL and related defines for a description of what inode_only 2798 * does. 2799 * 2800 * This handles both files and directories. 2801 */ 2802 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 2803 struct btrfs_root *root, struct inode *inode, 2804 int inode_only) 2805 { 2806 struct btrfs_path *path; 2807 struct btrfs_path *dst_path; 2808 struct btrfs_key min_key; 2809 struct btrfs_key max_key; 2810 struct btrfs_root *log = root->log_root; 2811 struct extent_buffer *src = NULL; 2812 int err = 0; 2813 int ret; 2814 int nritems; 2815 int ins_start_slot = 0; 2816 int ins_nr; 2817 u64 ino = btrfs_ino(inode); 2818 2819 log = root->log_root; 2820 2821 path = btrfs_alloc_path(); 2822 if (!path) 2823 return -ENOMEM; 2824 dst_path = btrfs_alloc_path(); 2825 if (!dst_path) { 2826 btrfs_free_path(path); 2827 return -ENOMEM; 2828 } 2829 2830 min_key.objectid = ino; 2831 min_key.type = BTRFS_INODE_ITEM_KEY; 2832 min_key.offset = 0; 2833 2834 max_key.objectid = ino; 2835 2836 /* today the code can only do partial logging of directories */ 2837 if (!S_ISDIR(inode->i_mode)) 2838 inode_only = LOG_INODE_ALL; 2839 2840 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) 2841 max_key.type = BTRFS_XATTR_ITEM_KEY; 2842 else 2843 max_key.type = (u8)-1; 2844 max_key.offset = (u64)-1; 2845 2846 ret = btrfs_commit_inode_delayed_items(trans, inode); 2847 if (ret) { 2848 btrfs_free_path(path); 2849 btrfs_free_path(dst_path); 2850 return ret; 2851 } 2852 2853 mutex_lock(&BTRFS_I(inode)->log_mutex); 2854 2855 /* 2856 * a brute force approach to making sure we get the most uptodate 2857 * copies of everything. 2858 */ 2859 if (S_ISDIR(inode->i_mode)) { 2860 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 2861 2862 if (inode_only == LOG_INODE_EXISTS) 2863 max_key_type = BTRFS_XATTR_ITEM_KEY; 2864 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 2865 } else { 2866 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); 2867 } 2868 if (ret) { 2869 err = ret; 2870 goto out_unlock; 2871 } 2872 path->keep_locks = 1; 2873 2874 while (1) { 2875 ins_nr = 0; 2876 ret = btrfs_search_forward(root, &min_key, &max_key, 2877 path, 0, trans->transid); 2878 if (ret != 0) 2879 break; 2880 again: 2881 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 2882 if (min_key.objectid != ino) 2883 break; 2884 if (min_key.type > max_key.type) 2885 break; 2886 2887 src = path->nodes[0]; 2888 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 2889 ins_nr++; 2890 goto next_slot; 2891 } else if (!ins_nr) { 2892 ins_start_slot = path->slots[0]; 2893 ins_nr = 1; 2894 goto next_slot; 2895 } 2896 2897 ret = copy_items(trans, log, dst_path, src, ins_start_slot, 2898 ins_nr, inode_only); 2899 if (ret) { 2900 err = ret; 2901 goto out_unlock; 2902 } 2903 ins_nr = 1; 2904 ins_start_slot = path->slots[0]; 2905 next_slot: 2906 2907 nritems = btrfs_header_nritems(path->nodes[0]); 2908 path->slots[0]++; 2909 if (path->slots[0] < nritems) { 2910 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 2911 path->slots[0]); 2912 goto again; 2913 } 2914 if (ins_nr) { 2915 ret = copy_items(trans, log, dst_path, src, 2916 ins_start_slot, 2917 ins_nr, inode_only); 2918 if (ret) { 2919 err = ret; 2920 goto out_unlock; 2921 } 2922 ins_nr = 0; 2923 } 2924 btrfs_release_path(path); 2925 2926 if (min_key.offset < (u64)-1) 2927 min_key.offset++; 2928 else if (min_key.type < (u8)-1) 2929 min_key.type++; 2930 else if (min_key.objectid < (u64)-1) 2931 min_key.objectid++; 2932 else 2933 break; 2934 } 2935 if (ins_nr) { 2936 ret = copy_items(trans, log, dst_path, src, 2937 ins_start_slot, 2938 ins_nr, inode_only); 2939 if (ret) { 2940 err = ret; 2941 goto out_unlock; 2942 } 2943 ins_nr = 0; 2944 } 2945 WARN_ON(ins_nr); 2946 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { 2947 btrfs_release_path(path); 2948 btrfs_release_path(dst_path); 2949 ret = log_directory_changes(trans, root, inode, path, dst_path); 2950 if (ret) { 2951 err = ret; 2952 goto out_unlock; 2953 } 2954 } 2955 BTRFS_I(inode)->logged_trans = trans->transid; 2956 out_unlock: 2957 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2958 2959 btrfs_free_path(path); 2960 btrfs_free_path(dst_path); 2961 return err; 2962 } 2963 2964 /* 2965 * follow the dentry parent pointers up the chain and see if any 2966 * of the directories in it require a full commit before they can 2967 * be logged. Returns zero if nothing special needs to be done or 1 if 2968 * a full commit is required. 2969 */ 2970 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 2971 struct inode *inode, 2972 struct dentry *parent, 2973 struct super_block *sb, 2974 u64 last_committed) 2975 { 2976 int ret = 0; 2977 struct btrfs_root *root; 2978 struct dentry *old_parent = NULL; 2979 2980 /* 2981 * for regular files, if its inode is already on disk, we don't 2982 * have to worry about the parents at all. This is because 2983 * we can use the last_unlink_trans field to record renames 2984 * and other fun in this file. 2985 */ 2986 if (S_ISREG(inode->i_mode) && 2987 BTRFS_I(inode)->generation <= last_committed && 2988 BTRFS_I(inode)->last_unlink_trans <= last_committed) 2989 goto out; 2990 2991 if (!S_ISDIR(inode->i_mode)) { 2992 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 2993 goto out; 2994 inode = parent->d_inode; 2995 } 2996 2997 while (1) { 2998 BTRFS_I(inode)->logged_trans = trans->transid; 2999 smp_mb(); 3000 3001 if (BTRFS_I(inode)->last_unlink_trans > last_committed) { 3002 root = BTRFS_I(inode)->root; 3003 3004 /* 3005 * make sure any commits to the log are forced 3006 * to be full commits 3007 */ 3008 root->fs_info->last_trans_log_full_commit = 3009 trans->transid; 3010 ret = 1; 3011 break; 3012 } 3013 3014 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 3015 break; 3016 3017 if (IS_ROOT(parent)) 3018 break; 3019 3020 parent = dget_parent(parent); 3021 dput(old_parent); 3022 old_parent = parent; 3023 inode = parent->d_inode; 3024 3025 } 3026 dput(old_parent); 3027 out: 3028 return ret; 3029 } 3030 3031 static int inode_in_log(struct btrfs_trans_handle *trans, 3032 struct inode *inode) 3033 { 3034 struct btrfs_root *root = BTRFS_I(inode)->root; 3035 int ret = 0; 3036 3037 mutex_lock(&root->log_mutex); 3038 if (BTRFS_I(inode)->logged_trans == trans->transid && 3039 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit) 3040 ret = 1; 3041 mutex_unlock(&root->log_mutex); 3042 return ret; 3043 } 3044 3045 3046 /* 3047 * helper function around btrfs_log_inode to make sure newly created 3048 * parent directories also end up in the log. A minimal inode and backref 3049 * only logging is done of any parent directories that are older than 3050 * the last committed transaction 3051 */ 3052 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 3053 struct btrfs_root *root, struct inode *inode, 3054 struct dentry *parent, int exists_only) 3055 { 3056 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; 3057 struct super_block *sb; 3058 struct dentry *old_parent = NULL; 3059 int ret = 0; 3060 u64 last_committed = root->fs_info->last_trans_committed; 3061 3062 sb = inode->i_sb; 3063 3064 if (btrfs_test_opt(root, NOTREELOG)) { 3065 ret = 1; 3066 goto end_no_trans; 3067 } 3068 3069 if (root->fs_info->last_trans_log_full_commit > 3070 root->fs_info->last_trans_committed) { 3071 ret = 1; 3072 goto end_no_trans; 3073 } 3074 3075 if (root != BTRFS_I(inode)->root || 3076 btrfs_root_refs(&root->root_item) == 0) { 3077 ret = 1; 3078 goto end_no_trans; 3079 } 3080 3081 ret = check_parent_dirs_for_sync(trans, inode, parent, 3082 sb, last_committed); 3083 if (ret) 3084 goto end_no_trans; 3085 3086 if (inode_in_log(trans, inode)) { 3087 ret = BTRFS_NO_LOG_SYNC; 3088 goto end_no_trans; 3089 } 3090 3091 ret = start_log_trans(trans, root); 3092 if (ret) 3093 goto end_trans; 3094 3095 ret = btrfs_log_inode(trans, root, inode, inode_only); 3096 if (ret) 3097 goto end_trans; 3098 3099 /* 3100 * for regular files, if its inode is already on disk, we don't 3101 * have to worry about the parents at all. This is because 3102 * we can use the last_unlink_trans field to record renames 3103 * and other fun in this file. 3104 */ 3105 if (S_ISREG(inode->i_mode) && 3106 BTRFS_I(inode)->generation <= last_committed && 3107 BTRFS_I(inode)->last_unlink_trans <= last_committed) { 3108 ret = 0; 3109 goto end_trans; 3110 } 3111 3112 inode_only = LOG_INODE_EXISTS; 3113 while (1) { 3114 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 3115 break; 3116 3117 inode = parent->d_inode; 3118 if (root != BTRFS_I(inode)->root) 3119 break; 3120 3121 if (BTRFS_I(inode)->generation > 3122 root->fs_info->last_trans_committed) { 3123 ret = btrfs_log_inode(trans, root, inode, inode_only); 3124 if (ret) 3125 goto end_trans; 3126 } 3127 if (IS_ROOT(parent)) 3128 break; 3129 3130 parent = dget_parent(parent); 3131 dput(old_parent); 3132 old_parent = parent; 3133 } 3134 ret = 0; 3135 end_trans: 3136 dput(old_parent); 3137 if (ret < 0) { 3138 BUG_ON(ret != -ENOSPC); 3139 root->fs_info->last_trans_log_full_commit = trans->transid; 3140 ret = 1; 3141 } 3142 btrfs_end_log_trans(root); 3143 end_no_trans: 3144 return ret; 3145 } 3146 3147 /* 3148 * it is not safe to log dentry if the chunk root has added new 3149 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 3150 * If this returns 1, you must commit the transaction to safely get your 3151 * data on disk. 3152 */ 3153 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 3154 struct btrfs_root *root, struct dentry *dentry) 3155 { 3156 struct dentry *parent = dget_parent(dentry); 3157 int ret; 3158 3159 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0); 3160 dput(parent); 3161 3162 return ret; 3163 } 3164 3165 /* 3166 * should be called during mount to recover any replay any log trees 3167 * from the FS 3168 */ 3169 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 3170 { 3171 int ret; 3172 struct btrfs_path *path; 3173 struct btrfs_trans_handle *trans; 3174 struct btrfs_key key; 3175 struct btrfs_key found_key; 3176 struct btrfs_key tmp_key; 3177 struct btrfs_root *log; 3178 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 3179 struct walk_control wc = { 3180 .process_func = process_one_buffer, 3181 .stage = 0, 3182 }; 3183 3184 path = btrfs_alloc_path(); 3185 if (!path) 3186 return -ENOMEM; 3187 3188 fs_info->log_root_recovering = 1; 3189 3190 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3191 if (IS_ERR(trans)) { 3192 ret = PTR_ERR(trans); 3193 goto error; 3194 } 3195 3196 wc.trans = trans; 3197 wc.pin = 1; 3198 3199 ret = walk_log_tree(trans, log_root_tree, &wc); 3200 if (ret) { 3201 btrfs_error(fs_info, ret, "Failed to pin buffers while " 3202 "recovering log root tree."); 3203 goto error; 3204 } 3205 3206 again: 3207 key.objectid = BTRFS_TREE_LOG_OBJECTID; 3208 key.offset = (u64)-1; 3209 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 3210 3211 while (1) { 3212 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 3213 3214 if (ret < 0) { 3215 btrfs_error(fs_info, ret, 3216 "Couldn't find tree log root."); 3217 goto error; 3218 } 3219 if (ret > 0) { 3220 if (path->slots[0] == 0) 3221 break; 3222 path->slots[0]--; 3223 } 3224 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3225 path->slots[0]); 3226 btrfs_release_path(path); 3227 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 3228 break; 3229 3230 log = btrfs_read_fs_root_no_radix(log_root_tree, 3231 &found_key); 3232 if (IS_ERR(log)) { 3233 ret = PTR_ERR(log); 3234 btrfs_error(fs_info, ret, 3235 "Couldn't read tree log root."); 3236 goto error; 3237 } 3238 3239 tmp_key.objectid = found_key.offset; 3240 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 3241 tmp_key.offset = (u64)-1; 3242 3243 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 3244 if (IS_ERR(wc.replay_dest)) { 3245 ret = PTR_ERR(wc.replay_dest); 3246 btrfs_error(fs_info, ret, "Couldn't read target root " 3247 "for tree log recovery."); 3248 goto error; 3249 } 3250 3251 wc.replay_dest->log_root = log; 3252 btrfs_record_root_in_trans(trans, wc.replay_dest); 3253 ret = walk_log_tree(trans, log, &wc); 3254 BUG_ON(ret); 3255 3256 if (wc.stage == LOG_WALK_REPLAY_ALL) { 3257 ret = fixup_inode_link_counts(trans, wc.replay_dest, 3258 path); 3259 BUG_ON(ret); 3260 } 3261 3262 key.offset = found_key.offset - 1; 3263 wc.replay_dest->log_root = NULL; 3264 free_extent_buffer(log->node); 3265 free_extent_buffer(log->commit_root); 3266 kfree(log); 3267 3268 if (found_key.offset == 0) 3269 break; 3270 } 3271 btrfs_release_path(path); 3272 3273 /* step one is to pin it all, step two is to replay just inodes */ 3274 if (wc.pin) { 3275 wc.pin = 0; 3276 wc.process_func = replay_one_buffer; 3277 wc.stage = LOG_WALK_REPLAY_INODES; 3278 goto again; 3279 } 3280 /* step three is to replay everything */ 3281 if (wc.stage < LOG_WALK_REPLAY_ALL) { 3282 wc.stage++; 3283 goto again; 3284 } 3285 3286 btrfs_free_path(path); 3287 3288 free_extent_buffer(log_root_tree->node); 3289 log_root_tree->log_root = NULL; 3290 fs_info->log_root_recovering = 0; 3291 3292 /* step 4: commit the transaction, which also unpins the blocks */ 3293 btrfs_commit_transaction(trans, fs_info->tree_root); 3294 3295 kfree(log_root_tree); 3296 return 0; 3297 3298 error: 3299 btrfs_free_path(path); 3300 return ret; 3301 } 3302 3303 /* 3304 * there are some corner cases where we want to force a full 3305 * commit instead of allowing a directory to be logged. 3306 * 3307 * They revolve around files there were unlinked from the directory, and 3308 * this function updates the parent directory so that a full commit is 3309 * properly done if it is fsync'd later after the unlinks are done. 3310 */ 3311 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 3312 struct inode *dir, struct inode *inode, 3313 int for_rename) 3314 { 3315 /* 3316 * when we're logging a file, if it hasn't been renamed 3317 * or unlinked, and its inode is fully committed on disk, 3318 * we don't have to worry about walking up the directory chain 3319 * to log its parents. 3320 * 3321 * So, we use the last_unlink_trans field to put this transid 3322 * into the file. When the file is logged we check it and 3323 * don't log the parents if the file is fully on disk. 3324 */ 3325 if (S_ISREG(inode->i_mode)) 3326 BTRFS_I(inode)->last_unlink_trans = trans->transid; 3327 3328 /* 3329 * if this directory was already logged any new 3330 * names for this file/dir will get recorded 3331 */ 3332 smp_mb(); 3333 if (BTRFS_I(dir)->logged_trans == trans->transid) 3334 return; 3335 3336 /* 3337 * if the inode we're about to unlink was logged, 3338 * the log will be properly updated for any new names 3339 */ 3340 if (BTRFS_I(inode)->logged_trans == trans->transid) 3341 return; 3342 3343 /* 3344 * when renaming files across directories, if the directory 3345 * there we're unlinking from gets fsync'd later on, there's 3346 * no way to find the destination directory later and fsync it 3347 * properly. So, we have to be conservative and force commits 3348 * so the new name gets discovered. 3349 */ 3350 if (for_rename) 3351 goto record; 3352 3353 /* we can safely do the unlink without any special recording */ 3354 return; 3355 3356 record: 3357 BTRFS_I(dir)->last_unlink_trans = trans->transid; 3358 } 3359 3360 /* 3361 * Call this after adding a new name for a file and it will properly 3362 * update the log to reflect the new name. 3363 * 3364 * It will return zero if all goes well, and it will return 1 if a 3365 * full transaction commit is required. 3366 */ 3367 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 3368 struct inode *inode, struct inode *old_dir, 3369 struct dentry *parent) 3370 { 3371 struct btrfs_root * root = BTRFS_I(inode)->root; 3372 3373 /* 3374 * this will force the logging code to walk the dentry chain 3375 * up for the file 3376 */ 3377 if (S_ISREG(inode->i_mode)) 3378 BTRFS_I(inode)->last_unlink_trans = trans->transid; 3379 3380 /* 3381 * if this inode hasn't been logged and directory we're renaming it 3382 * from hasn't been logged, we don't need to log it 3383 */ 3384 if (BTRFS_I(inode)->logged_trans <= 3385 root->fs_info->last_trans_committed && 3386 (!old_dir || BTRFS_I(old_dir)->logged_trans <= 3387 root->fs_info->last_trans_committed)) 3388 return 0; 3389 3390 return btrfs_log_inode_parent(trans, root, inode, parent, 1); 3391 } 3392 3393