xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 63dc02bd)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28 
29 /* magic values for the inode_only field in btrfs_log_inode:
30  *
31  * LOG_INODE_ALL means to log everything
32  * LOG_INODE_EXISTS means to log just enough to recreate the inode
33  * during log replay
34  */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root, struct inode *inode,
96 			     int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 			     struct btrfs_root *root,
99 			     struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 				       struct btrfs_root *root,
102 				       struct btrfs_root *log,
103 				       struct btrfs_path *path,
104 				       u64 dirid, int del_all);
105 
106 /*
107  * tree logging is a special write ahead log used to make sure that
108  * fsyncs and O_SYNCs can happen without doing full tree commits.
109  *
110  * Full tree commits are expensive because they require commonly
111  * modified blocks to be recowed, creating many dirty pages in the
112  * extent tree an 4x-6x higher write load than ext3.
113  *
114  * Instead of doing a tree commit on every fsync, we use the
115  * key ranges and transaction ids to find items for a given file or directory
116  * that have changed in this transaction.  Those items are copied into
117  * a special tree (one per subvolume root), that tree is written to disk
118  * and then the fsync is considered complete.
119  *
120  * After a crash, items are copied out of the log-tree back into the
121  * subvolume tree.  Any file data extents found are recorded in the extent
122  * allocation tree, and the log-tree freed.
123  *
124  * The log tree is read three times, once to pin down all the extents it is
125  * using in ram and once, once to create all the inodes logged in the tree
126  * and once to do all the other items.
127  */
128 
129 /*
130  * start a sub transaction and setup the log tree
131  * this increments the log tree writer count to make the people
132  * syncing the tree wait for us to finish
133  */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 			   struct btrfs_root *root)
136 {
137 	int ret;
138 	int err = 0;
139 
140 	mutex_lock(&root->log_mutex);
141 	if (root->log_root) {
142 		if (!root->log_start_pid) {
143 			root->log_start_pid = current->pid;
144 			root->log_multiple_pids = false;
145 		} else if (root->log_start_pid != current->pid) {
146 			root->log_multiple_pids = true;
147 		}
148 
149 		root->log_batch++;
150 		atomic_inc(&root->log_writers);
151 		mutex_unlock(&root->log_mutex);
152 		return 0;
153 	}
154 	root->log_multiple_pids = false;
155 	root->log_start_pid = current->pid;
156 	mutex_lock(&root->fs_info->tree_log_mutex);
157 	if (!root->fs_info->log_root_tree) {
158 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 		if (ret)
160 			err = ret;
161 	}
162 	if (err == 0 && !root->log_root) {
163 		ret = btrfs_add_log_tree(trans, root);
164 		if (ret)
165 			err = ret;
166 	}
167 	mutex_unlock(&root->fs_info->tree_log_mutex);
168 	root->log_batch++;
169 	atomic_inc(&root->log_writers);
170 	mutex_unlock(&root->log_mutex);
171 	return err;
172 }
173 
174 /*
175  * returns 0 if there was a log transaction running and we were able
176  * to join, or returns -ENOENT if there were not transactions
177  * in progress
178  */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 	int ret = -ENOENT;
182 
183 	smp_mb();
184 	if (!root->log_root)
185 		return -ENOENT;
186 
187 	mutex_lock(&root->log_mutex);
188 	if (root->log_root) {
189 		ret = 0;
190 		atomic_inc(&root->log_writers);
191 	}
192 	mutex_unlock(&root->log_mutex);
193 	return ret;
194 }
195 
196 /*
197  * This either makes the current running log transaction wait
198  * until you call btrfs_end_log_trans() or it makes any future
199  * log transactions wait until you call btrfs_end_log_trans()
200  */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 	int ret = -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	atomic_inc(&root->log_writers);
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * indicate we're done making changes to the log tree
213  * and wake up anyone waiting to do a sync
214  */
215 void btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 	if (atomic_dec_and_test(&root->log_writers)) {
218 		smp_mb();
219 		if (waitqueue_active(&root->log_writer_wait))
220 			wake_up(&root->log_writer_wait);
221 	}
222 }
223 
224 
225 /*
226  * the walk control struct is used to pass state down the chain when
227  * processing the log tree.  The stage field tells us which part
228  * of the log tree processing we are currently doing.  The others
229  * are state fields used for that specific part
230  */
231 struct walk_control {
232 	/* should we free the extent on disk when done?  This is used
233 	 * at transaction commit time while freeing a log tree
234 	 */
235 	int free;
236 
237 	/* should we write out the extent buffer?  This is used
238 	 * while flushing the log tree to disk during a sync
239 	 */
240 	int write;
241 
242 	/* should we wait for the extent buffer io to finish?  Also used
243 	 * while flushing the log tree to disk for a sync
244 	 */
245 	int wait;
246 
247 	/* pin only walk, we record which extents on disk belong to the
248 	 * log trees
249 	 */
250 	int pin;
251 
252 	/* what stage of the replay code we're currently in */
253 	int stage;
254 
255 	/* the root we are currently replaying */
256 	struct btrfs_root *replay_dest;
257 
258 	/* the trans handle for the current replay */
259 	struct btrfs_trans_handle *trans;
260 
261 	/* the function that gets used to process blocks we find in the
262 	 * tree.  Note the extent_buffer might not be up to date when it is
263 	 * passed in, and it must be checked or read if you need the data
264 	 * inside it
265 	 */
266 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
267 			    struct walk_control *wc, u64 gen);
268 };
269 
270 /*
271  * process_func used to pin down extents, write them or wait on them
272  */
273 static int process_one_buffer(struct btrfs_root *log,
274 			      struct extent_buffer *eb,
275 			      struct walk_control *wc, u64 gen)
276 {
277 	if (wc->pin)
278 		btrfs_pin_extent_for_log_replay(wc->trans,
279 						log->fs_info->extent_root,
280 						eb->start, eb->len);
281 
282 	if (btrfs_buffer_uptodate(eb, gen, 0)) {
283 		if (wc->write)
284 			btrfs_write_tree_block(eb);
285 		if (wc->wait)
286 			btrfs_wait_tree_block_writeback(eb);
287 	}
288 	return 0;
289 }
290 
291 /*
292  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
293  * to the src data we are copying out.
294  *
295  * root is the tree we are copying into, and path is a scratch
296  * path for use in this function (it should be released on entry and
297  * will be released on exit).
298  *
299  * If the key is already in the destination tree the existing item is
300  * overwritten.  If the existing item isn't big enough, it is extended.
301  * If it is too large, it is truncated.
302  *
303  * If the key isn't in the destination yet, a new item is inserted.
304  */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 				   struct btrfs_root *root,
307 				   struct btrfs_path *path,
308 				   struct extent_buffer *eb, int slot,
309 				   struct btrfs_key *key)
310 {
311 	int ret;
312 	u32 item_size;
313 	u64 saved_i_size = 0;
314 	int save_old_i_size = 0;
315 	unsigned long src_ptr;
316 	unsigned long dst_ptr;
317 	int overwrite_root = 0;
318 
319 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 		overwrite_root = 1;
321 
322 	item_size = btrfs_item_size_nr(eb, slot);
323 	src_ptr = btrfs_item_ptr_offset(eb, slot);
324 
325 	/* look for the key in the destination tree */
326 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 	if (ret == 0) {
328 		char *src_copy;
329 		char *dst_copy;
330 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 						  path->slots[0]);
332 		if (dst_size != item_size)
333 			goto insert;
334 
335 		if (item_size == 0) {
336 			btrfs_release_path(path);
337 			return 0;
338 		}
339 		dst_copy = kmalloc(item_size, GFP_NOFS);
340 		src_copy = kmalloc(item_size, GFP_NOFS);
341 		if (!dst_copy || !src_copy) {
342 			btrfs_release_path(path);
343 			kfree(dst_copy);
344 			kfree(src_copy);
345 			return -ENOMEM;
346 		}
347 
348 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
349 
350 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 				   item_size);
353 		ret = memcmp(dst_copy, src_copy, item_size);
354 
355 		kfree(dst_copy);
356 		kfree(src_copy);
357 		/*
358 		 * they have the same contents, just return, this saves
359 		 * us from cowing blocks in the destination tree and doing
360 		 * extra writes that may not have been done by a previous
361 		 * sync
362 		 */
363 		if (ret == 0) {
364 			btrfs_release_path(path);
365 			return 0;
366 		}
367 
368 	}
369 insert:
370 	btrfs_release_path(path);
371 	/* try to insert the key into the destination tree */
372 	ret = btrfs_insert_empty_item(trans, root, path,
373 				      key, item_size);
374 
375 	/* make sure any existing item is the correct size */
376 	if (ret == -EEXIST) {
377 		u32 found_size;
378 		found_size = btrfs_item_size_nr(path->nodes[0],
379 						path->slots[0]);
380 		if (found_size > item_size)
381 			btrfs_truncate_item(trans, root, path, item_size, 1);
382 		else if (found_size < item_size)
383 			btrfs_extend_item(trans, root, path,
384 					  item_size - found_size);
385 	} else if (ret) {
386 		return ret;
387 	}
388 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
389 					path->slots[0]);
390 
391 	/* don't overwrite an existing inode if the generation number
392 	 * was logged as zero.  This is done when the tree logging code
393 	 * is just logging an inode to make sure it exists after recovery.
394 	 *
395 	 * Also, don't overwrite i_size on directories during replay.
396 	 * log replay inserts and removes directory items based on the
397 	 * state of the tree found in the subvolume, and i_size is modified
398 	 * as it goes
399 	 */
400 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
401 		struct btrfs_inode_item *src_item;
402 		struct btrfs_inode_item *dst_item;
403 
404 		src_item = (struct btrfs_inode_item *)src_ptr;
405 		dst_item = (struct btrfs_inode_item *)dst_ptr;
406 
407 		if (btrfs_inode_generation(eb, src_item) == 0)
408 			goto no_copy;
409 
410 		if (overwrite_root &&
411 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
412 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
413 			save_old_i_size = 1;
414 			saved_i_size = btrfs_inode_size(path->nodes[0],
415 							dst_item);
416 		}
417 	}
418 
419 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
420 			   src_ptr, item_size);
421 
422 	if (save_old_i_size) {
423 		struct btrfs_inode_item *dst_item;
424 		dst_item = (struct btrfs_inode_item *)dst_ptr;
425 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
426 	}
427 
428 	/* make sure the generation is filled in */
429 	if (key->type == BTRFS_INODE_ITEM_KEY) {
430 		struct btrfs_inode_item *dst_item;
431 		dst_item = (struct btrfs_inode_item *)dst_ptr;
432 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
433 			btrfs_set_inode_generation(path->nodes[0], dst_item,
434 						   trans->transid);
435 		}
436 	}
437 no_copy:
438 	btrfs_mark_buffer_dirty(path->nodes[0]);
439 	btrfs_release_path(path);
440 	return 0;
441 }
442 
443 /*
444  * simple helper to read an inode off the disk from a given root
445  * This can only be called for subvolume roots and not for the log
446  */
447 static noinline struct inode *read_one_inode(struct btrfs_root *root,
448 					     u64 objectid)
449 {
450 	struct btrfs_key key;
451 	struct inode *inode;
452 
453 	key.objectid = objectid;
454 	key.type = BTRFS_INODE_ITEM_KEY;
455 	key.offset = 0;
456 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
457 	if (IS_ERR(inode)) {
458 		inode = NULL;
459 	} else if (is_bad_inode(inode)) {
460 		iput(inode);
461 		inode = NULL;
462 	}
463 	return inode;
464 }
465 
466 /* replays a single extent in 'eb' at 'slot' with 'key' into the
467  * subvolume 'root'.  path is released on entry and should be released
468  * on exit.
469  *
470  * extents in the log tree have not been allocated out of the extent
471  * tree yet.  So, this completes the allocation, taking a reference
472  * as required if the extent already exists or creating a new extent
473  * if it isn't in the extent allocation tree yet.
474  *
475  * The extent is inserted into the file, dropping any existing extents
476  * from the file that overlap the new one.
477  */
478 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
479 				      struct btrfs_root *root,
480 				      struct btrfs_path *path,
481 				      struct extent_buffer *eb, int slot,
482 				      struct btrfs_key *key)
483 {
484 	int found_type;
485 	u64 mask = root->sectorsize - 1;
486 	u64 extent_end;
487 	u64 alloc_hint;
488 	u64 start = key->offset;
489 	u64 saved_nbytes;
490 	struct btrfs_file_extent_item *item;
491 	struct inode *inode = NULL;
492 	unsigned long size;
493 	int ret = 0;
494 
495 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
496 	found_type = btrfs_file_extent_type(eb, item);
497 
498 	if (found_type == BTRFS_FILE_EXTENT_REG ||
499 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
500 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
501 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
502 		size = btrfs_file_extent_inline_len(eb, item);
503 		extent_end = (start + size + mask) & ~mask;
504 	} else {
505 		ret = 0;
506 		goto out;
507 	}
508 
509 	inode = read_one_inode(root, key->objectid);
510 	if (!inode) {
511 		ret = -EIO;
512 		goto out;
513 	}
514 
515 	/*
516 	 * first check to see if we already have this extent in the
517 	 * file.  This must be done before the btrfs_drop_extents run
518 	 * so we don't try to drop this extent.
519 	 */
520 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
521 				       start, 0);
522 
523 	if (ret == 0 &&
524 	    (found_type == BTRFS_FILE_EXTENT_REG ||
525 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
526 		struct btrfs_file_extent_item cmp1;
527 		struct btrfs_file_extent_item cmp2;
528 		struct btrfs_file_extent_item *existing;
529 		struct extent_buffer *leaf;
530 
531 		leaf = path->nodes[0];
532 		existing = btrfs_item_ptr(leaf, path->slots[0],
533 					  struct btrfs_file_extent_item);
534 
535 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
536 				   sizeof(cmp1));
537 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
538 				   sizeof(cmp2));
539 
540 		/*
541 		 * we already have a pointer to this exact extent,
542 		 * we don't have to do anything
543 		 */
544 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
545 			btrfs_release_path(path);
546 			goto out;
547 		}
548 	}
549 	btrfs_release_path(path);
550 
551 	saved_nbytes = inode_get_bytes(inode);
552 	/* drop any overlapping extents */
553 	ret = btrfs_drop_extents(trans, inode, start, extent_end,
554 				 &alloc_hint, 1);
555 	BUG_ON(ret);
556 
557 	if (found_type == BTRFS_FILE_EXTENT_REG ||
558 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
559 		u64 offset;
560 		unsigned long dest_offset;
561 		struct btrfs_key ins;
562 
563 		ret = btrfs_insert_empty_item(trans, root, path, key,
564 					      sizeof(*item));
565 		BUG_ON(ret);
566 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
567 						    path->slots[0]);
568 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
569 				(unsigned long)item,  sizeof(*item));
570 
571 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
572 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
573 		ins.type = BTRFS_EXTENT_ITEM_KEY;
574 		offset = key->offset - btrfs_file_extent_offset(eb, item);
575 
576 		if (ins.objectid > 0) {
577 			u64 csum_start;
578 			u64 csum_end;
579 			LIST_HEAD(ordered_sums);
580 			/*
581 			 * is this extent already allocated in the extent
582 			 * allocation tree?  If so, just add a reference
583 			 */
584 			ret = btrfs_lookup_extent(root, ins.objectid,
585 						ins.offset);
586 			if (ret == 0) {
587 				ret = btrfs_inc_extent_ref(trans, root,
588 						ins.objectid, ins.offset,
589 						0, root->root_key.objectid,
590 						key->objectid, offset, 0);
591 				BUG_ON(ret);
592 			} else {
593 				/*
594 				 * insert the extent pointer in the extent
595 				 * allocation tree
596 				 */
597 				ret = btrfs_alloc_logged_file_extent(trans,
598 						root, root->root_key.objectid,
599 						key->objectid, offset, &ins);
600 				BUG_ON(ret);
601 			}
602 			btrfs_release_path(path);
603 
604 			if (btrfs_file_extent_compression(eb, item)) {
605 				csum_start = ins.objectid;
606 				csum_end = csum_start + ins.offset;
607 			} else {
608 				csum_start = ins.objectid +
609 					btrfs_file_extent_offset(eb, item);
610 				csum_end = csum_start +
611 					btrfs_file_extent_num_bytes(eb, item);
612 			}
613 
614 			ret = btrfs_lookup_csums_range(root->log_root,
615 						csum_start, csum_end - 1,
616 						&ordered_sums, 0);
617 			BUG_ON(ret);
618 			while (!list_empty(&ordered_sums)) {
619 				struct btrfs_ordered_sum *sums;
620 				sums = list_entry(ordered_sums.next,
621 						struct btrfs_ordered_sum,
622 						list);
623 				ret = btrfs_csum_file_blocks(trans,
624 						root->fs_info->csum_root,
625 						sums);
626 				BUG_ON(ret);
627 				list_del(&sums->list);
628 				kfree(sums);
629 			}
630 		} else {
631 			btrfs_release_path(path);
632 		}
633 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
634 		/* inline extents are easy, we just overwrite them */
635 		ret = overwrite_item(trans, root, path, eb, slot, key);
636 		BUG_ON(ret);
637 	}
638 
639 	inode_set_bytes(inode, saved_nbytes);
640 	btrfs_update_inode(trans, root, inode);
641 out:
642 	if (inode)
643 		iput(inode);
644 	return ret;
645 }
646 
647 /*
648  * when cleaning up conflicts between the directory names in the
649  * subvolume, directory names in the log and directory names in the
650  * inode back references, we may have to unlink inodes from directories.
651  *
652  * This is a helper function to do the unlink of a specific directory
653  * item
654  */
655 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
656 				      struct btrfs_root *root,
657 				      struct btrfs_path *path,
658 				      struct inode *dir,
659 				      struct btrfs_dir_item *di)
660 {
661 	struct inode *inode;
662 	char *name;
663 	int name_len;
664 	struct extent_buffer *leaf;
665 	struct btrfs_key location;
666 	int ret;
667 
668 	leaf = path->nodes[0];
669 
670 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
671 	name_len = btrfs_dir_name_len(leaf, di);
672 	name = kmalloc(name_len, GFP_NOFS);
673 	if (!name)
674 		return -ENOMEM;
675 
676 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
677 	btrfs_release_path(path);
678 
679 	inode = read_one_inode(root, location.objectid);
680 	if (!inode) {
681 		kfree(name);
682 		return -EIO;
683 	}
684 
685 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
686 	BUG_ON(ret);
687 
688 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
689 	BUG_ON(ret);
690 	kfree(name);
691 
692 	iput(inode);
693 	return ret;
694 }
695 
696 /*
697  * helper function to see if a given name and sequence number found
698  * in an inode back reference are already in a directory and correctly
699  * point to this inode
700  */
701 static noinline int inode_in_dir(struct btrfs_root *root,
702 				 struct btrfs_path *path,
703 				 u64 dirid, u64 objectid, u64 index,
704 				 const char *name, int name_len)
705 {
706 	struct btrfs_dir_item *di;
707 	struct btrfs_key location;
708 	int match = 0;
709 
710 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
711 					 index, name, name_len, 0);
712 	if (di && !IS_ERR(di)) {
713 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
714 		if (location.objectid != objectid)
715 			goto out;
716 	} else
717 		goto out;
718 	btrfs_release_path(path);
719 
720 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
721 	if (di && !IS_ERR(di)) {
722 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
723 		if (location.objectid != objectid)
724 			goto out;
725 	} else
726 		goto out;
727 	match = 1;
728 out:
729 	btrfs_release_path(path);
730 	return match;
731 }
732 
733 /*
734  * helper function to check a log tree for a named back reference in
735  * an inode.  This is used to decide if a back reference that is
736  * found in the subvolume conflicts with what we find in the log.
737  *
738  * inode backreferences may have multiple refs in a single item,
739  * during replay we process one reference at a time, and we don't
740  * want to delete valid links to a file from the subvolume if that
741  * link is also in the log.
742  */
743 static noinline int backref_in_log(struct btrfs_root *log,
744 				   struct btrfs_key *key,
745 				   char *name, int namelen)
746 {
747 	struct btrfs_path *path;
748 	struct btrfs_inode_ref *ref;
749 	unsigned long ptr;
750 	unsigned long ptr_end;
751 	unsigned long name_ptr;
752 	int found_name_len;
753 	int item_size;
754 	int ret;
755 	int match = 0;
756 
757 	path = btrfs_alloc_path();
758 	if (!path)
759 		return -ENOMEM;
760 
761 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
762 	if (ret != 0)
763 		goto out;
764 
765 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
766 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
767 	ptr_end = ptr + item_size;
768 	while (ptr < ptr_end) {
769 		ref = (struct btrfs_inode_ref *)ptr;
770 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
771 		if (found_name_len == namelen) {
772 			name_ptr = (unsigned long)(ref + 1);
773 			ret = memcmp_extent_buffer(path->nodes[0], name,
774 						   name_ptr, namelen);
775 			if (ret == 0) {
776 				match = 1;
777 				goto out;
778 			}
779 		}
780 		ptr = (unsigned long)(ref + 1) + found_name_len;
781 	}
782 out:
783 	btrfs_free_path(path);
784 	return match;
785 }
786 
787 
788 /*
789  * replay one inode back reference item found in the log tree.
790  * eb, slot and key refer to the buffer and key found in the log tree.
791  * root is the destination we are replaying into, and path is for temp
792  * use by this function.  (it should be released on return).
793  */
794 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
795 				  struct btrfs_root *root,
796 				  struct btrfs_root *log,
797 				  struct btrfs_path *path,
798 				  struct extent_buffer *eb, int slot,
799 				  struct btrfs_key *key)
800 {
801 	struct btrfs_inode_ref *ref;
802 	struct btrfs_dir_item *di;
803 	struct inode *dir;
804 	struct inode *inode;
805 	unsigned long ref_ptr;
806 	unsigned long ref_end;
807 	char *name;
808 	int namelen;
809 	int ret;
810 	int search_done = 0;
811 
812 	/*
813 	 * it is possible that we didn't log all the parent directories
814 	 * for a given inode.  If we don't find the dir, just don't
815 	 * copy the back ref in.  The link count fixup code will take
816 	 * care of the rest
817 	 */
818 	dir = read_one_inode(root, key->offset);
819 	if (!dir)
820 		return -ENOENT;
821 
822 	inode = read_one_inode(root, key->objectid);
823 	if (!inode) {
824 		iput(dir);
825 		return -EIO;
826 	}
827 
828 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
829 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
830 
831 again:
832 	ref = (struct btrfs_inode_ref *)ref_ptr;
833 
834 	namelen = btrfs_inode_ref_name_len(eb, ref);
835 	name = kmalloc(namelen, GFP_NOFS);
836 	BUG_ON(!name);
837 
838 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
839 
840 	/* if we already have a perfect match, we're done */
841 	if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
842 			 btrfs_inode_ref_index(eb, ref),
843 			 name, namelen)) {
844 		goto out;
845 	}
846 
847 	/*
848 	 * look for a conflicting back reference in the metadata.
849 	 * if we find one we have to unlink that name of the file
850 	 * before we add our new link.  Later on, we overwrite any
851 	 * existing back reference, and we don't want to create
852 	 * dangling pointers in the directory.
853 	 */
854 
855 	if (search_done)
856 		goto insert;
857 
858 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
859 	if (ret == 0) {
860 		char *victim_name;
861 		int victim_name_len;
862 		struct btrfs_inode_ref *victim_ref;
863 		unsigned long ptr;
864 		unsigned long ptr_end;
865 		struct extent_buffer *leaf = path->nodes[0];
866 
867 		/* are we trying to overwrite a back ref for the root directory
868 		 * if so, just jump out, we're done
869 		 */
870 		if (key->objectid == key->offset)
871 			goto out_nowrite;
872 
873 		/* check all the names in this back reference to see
874 		 * if they are in the log.  if so, we allow them to stay
875 		 * otherwise they must be unlinked as a conflict
876 		 */
877 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
878 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
879 		while (ptr < ptr_end) {
880 			victim_ref = (struct btrfs_inode_ref *)ptr;
881 			victim_name_len = btrfs_inode_ref_name_len(leaf,
882 								   victim_ref);
883 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
884 			BUG_ON(!victim_name);
885 
886 			read_extent_buffer(leaf, victim_name,
887 					   (unsigned long)(victim_ref + 1),
888 					   victim_name_len);
889 
890 			if (!backref_in_log(log, key, victim_name,
891 					    victim_name_len)) {
892 				btrfs_inc_nlink(inode);
893 				btrfs_release_path(path);
894 
895 				ret = btrfs_unlink_inode(trans, root, dir,
896 							 inode, victim_name,
897 							 victim_name_len);
898 			}
899 			kfree(victim_name);
900 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
901 		}
902 		BUG_ON(ret);
903 
904 		/*
905 		 * NOTE: we have searched root tree and checked the
906 		 * coresponding ref, it does not need to check again.
907 		 */
908 		search_done = 1;
909 	}
910 	btrfs_release_path(path);
911 
912 	/* look for a conflicting sequence number */
913 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
914 					 btrfs_inode_ref_index(eb, ref),
915 					 name, namelen, 0);
916 	if (di && !IS_ERR(di)) {
917 		ret = drop_one_dir_item(trans, root, path, dir, di);
918 		BUG_ON(ret);
919 	}
920 	btrfs_release_path(path);
921 
922 	/* look for a conflicing name */
923 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
924 				   name, namelen, 0);
925 	if (di && !IS_ERR(di)) {
926 		ret = drop_one_dir_item(trans, root, path, dir, di);
927 		BUG_ON(ret);
928 	}
929 	btrfs_release_path(path);
930 
931 insert:
932 	/* insert our name */
933 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
934 			     btrfs_inode_ref_index(eb, ref));
935 	BUG_ON(ret);
936 
937 	btrfs_update_inode(trans, root, inode);
938 
939 out:
940 	ref_ptr = (unsigned long)(ref + 1) + namelen;
941 	kfree(name);
942 	if (ref_ptr < ref_end)
943 		goto again;
944 
945 	/* finally write the back reference in the inode */
946 	ret = overwrite_item(trans, root, path, eb, slot, key);
947 	BUG_ON(ret);
948 
949 out_nowrite:
950 	btrfs_release_path(path);
951 	iput(dir);
952 	iput(inode);
953 	return 0;
954 }
955 
956 static int insert_orphan_item(struct btrfs_trans_handle *trans,
957 			      struct btrfs_root *root, u64 offset)
958 {
959 	int ret;
960 	ret = btrfs_find_orphan_item(root, offset);
961 	if (ret > 0)
962 		ret = btrfs_insert_orphan_item(trans, root, offset);
963 	return ret;
964 }
965 
966 
967 /*
968  * There are a few corners where the link count of the file can't
969  * be properly maintained during replay.  So, instead of adding
970  * lots of complexity to the log code, we just scan the backrefs
971  * for any file that has been through replay.
972  *
973  * The scan will update the link count on the inode to reflect the
974  * number of back refs found.  If it goes down to zero, the iput
975  * will free the inode.
976  */
977 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
978 					   struct btrfs_root *root,
979 					   struct inode *inode)
980 {
981 	struct btrfs_path *path;
982 	int ret;
983 	struct btrfs_key key;
984 	u64 nlink = 0;
985 	unsigned long ptr;
986 	unsigned long ptr_end;
987 	int name_len;
988 	u64 ino = btrfs_ino(inode);
989 
990 	key.objectid = ino;
991 	key.type = BTRFS_INODE_REF_KEY;
992 	key.offset = (u64)-1;
993 
994 	path = btrfs_alloc_path();
995 	if (!path)
996 		return -ENOMEM;
997 
998 	while (1) {
999 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1000 		if (ret < 0)
1001 			break;
1002 		if (ret > 0) {
1003 			if (path->slots[0] == 0)
1004 				break;
1005 			path->slots[0]--;
1006 		}
1007 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1008 				      path->slots[0]);
1009 		if (key.objectid != ino ||
1010 		    key.type != BTRFS_INODE_REF_KEY)
1011 			break;
1012 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1013 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1014 						   path->slots[0]);
1015 		while (ptr < ptr_end) {
1016 			struct btrfs_inode_ref *ref;
1017 
1018 			ref = (struct btrfs_inode_ref *)ptr;
1019 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1020 							    ref);
1021 			ptr = (unsigned long)(ref + 1) + name_len;
1022 			nlink++;
1023 		}
1024 
1025 		if (key.offset == 0)
1026 			break;
1027 		key.offset--;
1028 		btrfs_release_path(path);
1029 	}
1030 	btrfs_release_path(path);
1031 	if (nlink != inode->i_nlink) {
1032 		set_nlink(inode, nlink);
1033 		btrfs_update_inode(trans, root, inode);
1034 	}
1035 	BTRFS_I(inode)->index_cnt = (u64)-1;
1036 
1037 	if (inode->i_nlink == 0) {
1038 		if (S_ISDIR(inode->i_mode)) {
1039 			ret = replay_dir_deletes(trans, root, NULL, path,
1040 						 ino, 1);
1041 			BUG_ON(ret);
1042 		}
1043 		ret = insert_orphan_item(trans, root, ino);
1044 		BUG_ON(ret);
1045 	}
1046 	btrfs_free_path(path);
1047 
1048 	return 0;
1049 }
1050 
1051 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1052 					    struct btrfs_root *root,
1053 					    struct btrfs_path *path)
1054 {
1055 	int ret;
1056 	struct btrfs_key key;
1057 	struct inode *inode;
1058 
1059 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1060 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1061 	key.offset = (u64)-1;
1062 	while (1) {
1063 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1064 		if (ret < 0)
1065 			break;
1066 
1067 		if (ret == 1) {
1068 			if (path->slots[0] == 0)
1069 				break;
1070 			path->slots[0]--;
1071 		}
1072 
1073 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1074 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1075 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1076 			break;
1077 
1078 		ret = btrfs_del_item(trans, root, path);
1079 		if (ret)
1080 			goto out;
1081 
1082 		btrfs_release_path(path);
1083 		inode = read_one_inode(root, key.offset);
1084 		if (!inode)
1085 			return -EIO;
1086 
1087 		ret = fixup_inode_link_count(trans, root, inode);
1088 		BUG_ON(ret);
1089 
1090 		iput(inode);
1091 
1092 		/*
1093 		 * fixup on a directory may create new entries,
1094 		 * make sure we always look for the highset possible
1095 		 * offset
1096 		 */
1097 		key.offset = (u64)-1;
1098 	}
1099 	ret = 0;
1100 out:
1101 	btrfs_release_path(path);
1102 	return ret;
1103 }
1104 
1105 
1106 /*
1107  * record a given inode in the fixup dir so we can check its link
1108  * count when replay is done.  The link count is incremented here
1109  * so the inode won't go away until we check it
1110  */
1111 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1112 				      struct btrfs_root *root,
1113 				      struct btrfs_path *path,
1114 				      u64 objectid)
1115 {
1116 	struct btrfs_key key;
1117 	int ret = 0;
1118 	struct inode *inode;
1119 
1120 	inode = read_one_inode(root, objectid);
1121 	if (!inode)
1122 		return -EIO;
1123 
1124 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1125 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1126 	key.offset = objectid;
1127 
1128 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1129 
1130 	btrfs_release_path(path);
1131 	if (ret == 0) {
1132 		btrfs_inc_nlink(inode);
1133 		btrfs_update_inode(trans, root, inode);
1134 	} else if (ret == -EEXIST) {
1135 		ret = 0;
1136 	} else {
1137 		BUG();
1138 	}
1139 	iput(inode);
1140 
1141 	return ret;
1142 }
1143 
1144 /*
1145  * when replaying the log for a directory, we only insert names
1146  * for inodes that actually exist.  This means an fsync on a directory
1147  * does not implicitly fsync all the new files in it
1148  */
1149 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1150 				    struct btrfs_root *root,
1151 				    struct btrfs_path *path,
1152 				    u64 dirid, u64 index,
1153 				    char *name, int name_len, u8 type,
1154 				    struct btrfs_key *location)
1155 {
1156 	struct inode *inode;
1157 	struct inode *dir;
1158 	int ret;
1159 
1160 	inode = read_one_inode(root, location->objectid);
1161 	if (!inode)
1162 		return -ENOENT;
1163 
1164 	dir = read_one_inode(root, dirid);
1165 	if (!dir) {
1166 		iput(inode);
1167 		return -EIO;
1168 	}
1169 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1170 
1171 	/* FIXME, put inode into FIXUP list */
1172 
1173 	iput(inode);
1174 	iput(dir);
1175 	return ret;
1176 }
1177 
1178 /*
1179  * take a single entry in a log directory item and replay it into
1180  * the subvolume.
1181  *
1182  * if a conflicting item exists in the subdirectory already,
1183  * the inode it points to is unlinked and put into the link count
1184  * fix up tree.
1185  *
1186  * If a name from the log points to a file or directory that does
1187  * not exist in the FS, it is skipped.  fsyncs on directories
1188  * do not force down inodes inside that directory, just changes to the
1189  * names or unlinks in a directory.
1190  */
1191 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1192 				    struct btrfs_root *root,
1193 				    struct btrfs_path *path,
1194 				    struct extent_buffer *eb,
1195 				    struct btrfs_dir_item *di,
1196 				    struct btrfs_key *key)
1197 {
1198 	char *name;
1199 	int name_len;
1200 	struct btrfs_dir_item *dst_di;
1201 	struct btrfs_key found_key;
1202 	struct btrfs_key log_key;
1203 	struct inode *dir;
1204 	u8 log_type;
1205 	int exists;
1206 	int ret;
1207 
1208 	dir = read_one_inode(root, key->objectid);
1209 	if (!dir)
1210 		return -EIO;
1211 
1212 	name_len = btrfs_dir_name_len(eb, di);
1213 	name = kmalloc(name_len, GFP_NOFS);
1214 	if (!name)
1215 		return -ENOMEM;
1216 
1217 	log_type = btrfs_dir_type(eb, di);
1218 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1219 		   name_len);
1220 
1221 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1222 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1223 	if (exists == 0)
1224 		exists = 1;
1225 	else
1226 		exists = 0;
1227 	btrfs_release_path(path);
1228 
1229 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1230 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1231 				       name, name_len, 1);
1232 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1233 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1234 						     key->objectid,
1235 						     key->offset, name,
1236 						     name_len, 1);
1237 	} else {
1238 		BUG();
1239 	}
1240 	if (IS_ERR_OR_NULL(dst_di)) {
1241 		/* we need a sequence number to insert, so we only
1242 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1243 		 */
1244 		if (key->type != BTRFS_DIR_INDEX_KEY)
1245 			goto out;
1246 		goto insert;
1247 	}
1248 
1249 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1250 	/* the existing item matches the logged item */
1251 	if (found_key.objectid == log_key.objectid &&
1252 	    found_key.type == log_key.type &&
1253 	    found_key.offset == log_key.offset &&
1254 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1255 		goto out;
1256 	}
1257 
1258 	/*
1259 	 * don't drop the conflicting directory entry if the inode
1260 	 * for the new entry doesn't exist
1261 	 */
1262 	if (!exists)
1263 		goto out;
1264 
1265 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1266 	BUG_ON(ret);
1267 
1268 	if (key->type == BTRFS_DIR_INDEX_KEY)
1269 		goto insert;
1270 out:
1271 	btrfs_release_path(path);
1272 	kfree(name);
1273 	iput(dir);
1274 	return 0;
1275 
1276 insert:
1277 	btrfs_release_path(path);
1278 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1279 			      name, name_len, log_type, &log_key);
1280 
1281 	BUG_ON(ret && ret != -ENOENT);
1282 	goto out;
1283 }
1284 
1285 /*
1286  * find all the names in a directory item and reconcile them into
1287  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1288  * one name in a directory item, but the same code gets used for
1289  * both directory index types
1290  */
1291 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1292 					struct btrfs_root *root,
1293 					struct btrfs_path *path,
1294 					struct extent_buffer *eb, int slot,
1295 					struct btrfs_key *key)
1296 {
1297 	int ret;
1298 	u32 item_size = btrfs_item_size_nr(eb, slot);
1299 	struct btrfs_dir_item *di;
1300 	int name_len;
1301 	unsigned long ptr;
1302 	unsigned long ptr_end;
1303 
1304 	ptr = btrfs_item_ptr_offset(eb, slot);
1305 	ptr_end = ptr + item_size;
1306 	while (ptr < ptr_end) {
1307 		di = (struct btrfs_dir_item *)ptr;
1308 		if (verify_dir_item(root, eb, di))
1309 			return -EIO;
1310 		name_len = btrfs_dir_name_len(eb, di);
1311 		ret = replay_one_name(trans, root, path, eb, di, key);
1312 		BUG_ON(ret);
1313 		ptr = (unsigned long)(di + 1);
1314 		ptr += name_len;
1315 	}
1316 	return 0;
1317 }
1318 
1319 /*
1320  * directory replay has two parts.  There are the standard directory
1321  * items in the log copied from the subvolume, and range items
1322  * created in the log while the subvolume was logged.
1323  *
1324  * The range items tell us which parts of the key space the log
1325  * is authoritative for.  During replay, if a key in the subvolume
1326  * directory is in a logged range item, but not actually in the log
1327  * that means it was deleted from the directory before the fsync
1328  * and should be removed.
1329  */
1330 static noinline int find_dir_range(struct btrfs_root *root,
1331 				   struct btrfs_path *path,
1332 				   u64 dirid, int key_type,
1333 				   u64 *start_ret, u64 *end_ret)
1334 {
1335 	struct btrfs_key key;
1336 	u64 found_end;
1337 	struct btrfs_dir_log_item *item;
1338 	int ret;
1339 	int nritems;
1340 
1341 	if (*start_ret == (u64)-1)
1342 		return 1;
1343 
1344 	key.objectid = dirid;
1345 	key.type = key_type;
1346 	key.offset = *start_ret;
1347 
1348 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1349 	if (ret < 0)
1350 		goto out;
1351 	if (ret > 0) {
1352 		if (path->slots[0] == 0)
1353 			goto out;
1354 		path->slots[0]--;
1355 	}
1356 	if (ret != 0)
1357 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1358 
1359 	if (key.type != key_type || key.objectid != dirid) {
1360 		ret = 1;
1361 		goto next;
1362 	}
1363 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1364 			      struct btrfs_dir_log_item);
1365 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1366 
1367 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1368 		ret = 0;
1369 		*start_ret = key.offset;
1370 		*end_ret = found_end;
1371 		goto out;
1372 	}
1373 	ret = 1;
1374 next:
1375 	/* check the next slot in the tree to see if it is a valid item */
1376 	nritems = btrfs_header_nritems(path->nodes[0]);
1377 	if (path->slots[0] >= nritems) {
1378 		ret = btrfs_next_leaf(root, path);
1379 		if (ret)
1380 			goto out;
1381 	} else {
1382 		path->slots[0]++;
1383 	}
1384 
1385 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1386 
1387 	if (key.type != key_type || key.objectid != dirid) {
1388 		ret = 1;
1389 		goto out;
1390 	}
1391 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1392 			      struct btrfs_dir_log_item);
1393 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1394 	*start_ret = key.offset;
1395 	*end_ret = found_end;
1396 	ret = 0;
1397 out:
1398 	btrfs_release_path(path);
1399 	return ret;
1400 }
1401 
1402 /*
1403  * this looks for a given directory item in the log.  If the directory
1404  * item is not in the log, the item is removed and the inode it points
1405  * to is unlinked
1406  */
1407 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1408 				      struct btrfs_root *root,
1409 				      struct btrfs_root *log,
1410 				      struct btrfs_path *path,
1411 				      struct btrfs_path *log_path,
1412 				      struct inode *dir,
1413 				      struct btrfs_key *dir_key)
1414 {
1415 	int ret;
1416 	struct extent_buffer *eb;
1417 	int slot;
1418 	u32 item_size;
1419 	struct btrfs_dir_item *di;
1420 	struct btrfs_dir_item *log_di;
1421 	int name_len;
1422 	unsigned long ptr;
1423 	unsigned long ptr_end;
1424 	char *name;
1425 	struct inode *inode;
1426 	struct btrfs_key location;
1427 
1428 again:
1429 	eb = path->nodes[0];
1430 	slot = path->slots[0];
1431 	item_size = btrfs_item_size_nr(eb, slot);
1432 	ptr = btrfs_item_ptr_offset(eb, slot);
1433 	ptr_end = ptr + item_size;
1434 	while (ptr < ptr_end) {
1435 		di = (struct btrfs_dir_item *)ptr;
1436 		if (verify_dir_item(root, eb, di)) {
1437 			ret = -EIO;
1438 			goto out;
1439 		}
1440 
1441 		name_len = btrfs_dir_name_len(eb, di);
1442 		name = kmalloc(name_len, GFP_NOFS);
1443 		if (!name) {
1444 			ret = -ENOMEM;
1445 			goto out;
1446 		}
1447 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1448 				  name_len);
1449 		log_di = NULL;
1450 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1451 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1452 						       dir_key->objectid,
1453 						       name, name_len, 0);
1454 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1455 			log_di = btrfs_lookup_dir_index_item(trans, log,
1456 						     log_path,
1457 						     dir_key->objectid,
1458 						     dir_key->offset,
1459 						     name, name_len, 0);
1460 		}
1461 		if (IS_ERR_OR_NULL(log_di)) {
1462 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1463 			btrfs_release_path(path);
1464 			btrfs_release_path(log_path);
1465 			inode = read_one_inode(root, location.objectid);
1466 			if (!inode) {
1467 				kfree(name);
1468 				return -EIO;
1469 			}
1470 
1471 			ret = link_to_fixup_dir(trans, root,
1472 						path, location.objectid);
1473 			BUG_ON(ret);
1474 			btrfs_inc_nlink(inode);
1475 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1476 						 name, name_len);
1477 			BUG_ON(ret);
1478 			kfree(name);
1479 			iput(inode);
1480 
1481 			/* there might still be more names under this key
1482 			 * check and repeat if required
1483 			 */
1484 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1485 						0, 0);
1486 			if (ret == 0)
1487 				goto again;
1488 			ret = 0;
1489 			goto out;
1490 		}
1491 		btrfs_release_path(log_path);
1492 		kfree(name);
1493 
1494 		ptr = (unsigned long)(di + 1);
1495 		ptr += name_len;
1496 	}
1497 	ret = 0;
1498 out:
1499 	btrfs_release_path(path);
1500 	btrfs_release_path(log_path);
1501 	return ret;
1502 }
1503 
1504 /*
1505  * deletion replay happens before we copy any new directory items
1506  * out of the log or out of backreferences from inodes.  It
1507  * scans the log to find ranges of keys that log is authoritative for,
1508  * and then scans the directory to find items in those ranges that are
1509  * not present in the log.
1510  *
1511  * Anything we don't find in the log is unlinked and removed from the
1512  * directory.
1513  */
1514 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1515 				       struct btrfs_root *root,
1516 				       struct btrfs_root *log,
1517 				       struct btrfs_path *path,
1518 				       u64 dirid, int del_all)
1519 {
1520 	u64 range_start;
1521 	u64 range_end;
1522 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1523 	int ret = 0;
1524 	struct btrfs_key dir_key;
1525 	struct btrfs_key found_key;
1526 	struct btrfs_path *log_path;
1527 	struct inode *dir;
1528 
1529 	dir_key.objectid = dirid;
1530 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1531 	log_path = btrfs_alloc_path();
1532 	if (!log_path)
1533 		return -ENOMEM;
1534 
1535 	dir = read_one_inode(root, dirid);
1536 	/* it isn't an error if the inode isn't there, that can happen
1537 	 * because we replay the deletes before we copy in the inode item
1538 	 * from the log
1539 	 */
1540 	if (!dir) {
1541 		btrfs_free_path(log_path);
1542 		return 0;
1543 	}
1544 again:
1545 	range_start = 0;
1546 	range_end = 0;
1547 	while (1) {
1548 		if (del_all)
1549 			range_end = (u64)-1;
1550 		else {
1551 			ret = find_dir_range(log, path, dirid, key_type,
1552 					     &range_start, &range_end);
1553 			if (ret != 0)
1554 				break;
1555 		}
1556 
1557 		dir_key.offset = range_start;
1558 		while (1) {
1559 			int nritems;
1560 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1561 						0, 0);
1562 			if (ret < 0)
1563 				goto out;
1564 
1565 			nritems = btrfs_header_nritems(path->nodes[0]);
1566 			if (path->slots[0] >= nritems) {
1567 				ret = btrfs_next_leaf(root, path);
1568 				if (ret)
1569 					break;
1570 			}
1571 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1572 					      path->slots[0]);
1573 			if (found_key.objectid != dirid ||
1574 			    found_key.type != dir_key.type)
1575 				goto next_type;
1576 
1577 			if (found_key.offset > range_end)
1578 				break;
1579 
1580 			ret = check_item_in_log(trans, root, log, path,
1581 						log_path, dir,
1582 						&found_key);
1583 			BUG_ON(ret);
1584 			if (found_key.offset == (u64)-1)
1585 				break;
1586 			dir_key.offset = found_key.offset + 1;
1587 		}
1588 		btrfs_release_path(path);
1589 		if (range_end == (u64)-1)
1590 			break;
1591 		range_start = range_end + 1;
1592 	}
1593 
1594 next_type:
1595 	ret = 0;
1596 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1597 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1598 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1599 		btrfs_release_path(path);
1600 		goto again;
1601 	}
1602 out:
1603 	btrfs_release_path(path);
1604 	btrfs_free_path(log_path);
1605 	iput(dir);
1606 	return ret;
1607 }
1608 
1609 /*
1610  * the process_func used to replay items from the log tree.  This
1611  * gets called in two different stages.  The first stage just looks
1612  * for inodes and makes sure they are all copied into the subvolume.
1613  *
1614  * The second stage copies all the other item types from the log into
1615  * the subvolume.  The two stage approach is slower, but gets rid of
1616  * lots of complexity around inodes referencing other inodes that exist
1617  * only in the log (references come from either directory items or inode
1618  * back refs).
1619  */
1620 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1621 			     struct walk_control *wc, u64 gen)
1622 {
1623 	int nritems;
1624 	struct btrfs_path *path;
1625 	struct btrfs_root *root = wc->replay_dest;
1626 	struct btrfs_key key;
1627 	int level;
1628 	int i;
1629 	int ret;
1630 
1631 	btrfs_read_buffer(eb, gen);
1632 
1633 	level = btrfs_header_level(eb);
1634 
1635 	if (level != 0)
1636 		return 0;
1637 
1638 	path = btrfs_alloc_path();
1639 	if (!path)
1640 		return -ENOMEM;
1641 
1642 	nritems = btrfs_header_nritems(eb);
1643 	for (i = 0; i < nritems; i++) {
1644 		btrfs_item_key_to_cpu(eb, &key, i);
1645 
1646 		/* inode keys are done during the first stage */
1647 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1648 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1649 			struct btrfs_inode_item *inode_item;
1650 			u32 mode;
1651 
1652 			inode_item = btrfs_item_ptr(eb, i,
1653 					    struct btrfs_inode_item);
1654 			mode = btrfs_inode_mode(eb, inode_item);
1655 			if (S_ISDIR(mode)) {
1656 				ret = replay_dir_deletes(wc->trans,
1657 					 root, log, path, key.objectid, 0);
1658 				BUG_ON(ret);
1659 			}
1660 			ret = overwrite_item(wc->trans, root, path,
1661 					     eb, i, &key);
1662 			BUG_ON(ret);
1663 
1664 			/* for regular files, make sure corresponding
1665 			 * orhpan item exist. extents past the new EOF
1666 			 * will be truncated later by orphan cleanup.
1667 			 */
1668 			if (S_ISREG(mode)) {
1669 				ret = insert_orphan_item(wc->trans, root,
1670 							 key.objectid);
1671 				BUG_ON(ret);
1672 			}
1673 
1674 			ret = link_to_fixup_dir(wc->trans, root,
1675 						path, key.objectid);
1676 			BUG_ON(ret);
1677 		}
1678 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1679 			continue;
1680 
1681 		/* these keys are simply copied */
1682 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1683 			ret = overwrite_item(wc->trans, root, path,
1684 					     eb, i, &key);
1685 			BUG_ON(ret);
1686 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1687 			ret = add_inode_ref(wc->trans, root, log, path,
1688 					    eb, i, &key);
1689 			BUG_ON(ret && ret != -ENOENT);
1690 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1691 			ret = replay_one_extent(wc->trans, root, path,
1692 						eb, i, &key);
1693 			BUG_ON(ret);
1694 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1695 			   key.type == BTRFS_DIR_INDEX_KEY) {
1696 			ret = replay_one_dir_item(wc->trans, root, path,
1697 						  eb, i, &key);
1698 			BUG_ON(ret);
1699 		}
1700 	}
1701 	btrfs_free_path(path);
1702 	return 0;
1703 }
1704 
1705 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1706 				   struct btrfs_root *root,
1707 				   struct btrfs_path *path, int *level,
1708 				   struct walk_control *wc)
1709 {
1710 	u64 root_owner;
1711 	u64 bytenr;
1712 	u64 ptr_gen;
1713 	struct extent_buffer *next;
1714 	struct extent_buffer *cur;
1715 	struct extent_buffer *parent;
1716 	u32 blocksize;
1717 	int ret = 0;
1718 
1719 	WARN_ON(*level < 0);
1720 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1721 
1722 	while (*level > 0) {
1723 		WARN_ON(*level < 0);
1724 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1725 		cur = path->nodes[*level];
1726 
1727 		if (btrfs_header_level(cur) != *level)
1728 			WARN_ON(1);
1729 
1730 		if (path->slots[*level] >=
1731 		    btrfs_header_nritems(cur))
1732 			break;
1733 
1734 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1735 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1736 		blocksize = btrfs_level_size(root, *level - 1);
1737 
1738 		parent = path->nodes[*level];
1739 		root_owner = btrfs_header_owner(parent);
1740 
1741 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1742 		if (!next)
1743 			return -ENOMEM;
1744 
1745 		if (*level == 1) {
1746 			ret = wc->process_func(root, next, wc, ptr_gen);
1747 			if (ret)
1748 				return ret;
1749 
1750 			path->slots[*level]++;
1751 			if (wc->free) {
1752 				btrfs_read_buffer(next, ptr_gen);
1753 
1754 				btrfs_tree_lock(next);
1755 				btrfs_set_lock_blocking(next);
1756 				clean_tree_block(trans, root, next);
1757 				btrfs_wait_tree_block_writeback(next);
1758 				btrfs_tree_unlock(next);
1759 
1760 				WARN_ON(root_owner !=
1761 					BTRFS_TREE_LOG_OBJECTID);
1762 				ret = btrfs_free_and_pin_reserved_extent(root,
1763 							 bytenr, blocksize);
1764 				BUG_ON(ret); /* -ENOMEM or logic errors */
1765 			}
1766 			free_extent_buffer(next);
1767 			continue;
1768 		}
1769 		btrfs_read_buffer(next, ptr_gen);
1770 
1771 		WARN_ON(*level <= 0);
1772 		if (path->nodes[*level-1])
1773 			free_extent_buffer(path->nodes[*level-1]);
1774 		path->nodes[*level-1] = next;
1775 		*level = btrfs_header_level(next);
1776 		path->slots[*level] = 0;
1777 		cond_resched();
1778 	}
1779 	WARN_ON(*level < 0);
1780 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1781 
1782 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1783 
1784 	cond_resched();
1785 	return 0;
1786 }
1787 
1788 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1789 				 struct btrfs_root *root,
1790 				 struct btrfs_path *path, int *level,
1791 				 struct walk_control *wc)
1792 {
1793 	u64 root_owner;
1794 	int i;
1795 	int slot;
1796 	int ret;
1797 
1798 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1799 		slot = path->slots[i];
1800 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1801 			path->slots[i]++;
1802 			*level = i;
1803 			WARN_ON(*level == 0);
1804 			return 0;
1805 		} else {
1806 			struct extent_buffer *parent;
1807 			if (path->nodes[*level] == root->node)
1808 				parent = path->nodes[*level];
1809 			else
1810 				parent = path->nodes[*level + 1];
1811 
1812 			root_owner = btrfs_header_owner(parent);
1813 			ret = wc->process_func(root, path->nodes[*level], wc,
1814 				 btrfs_header_generation(path->nodes[*level]));
1815 			if (ret)
1816 				return ret;
1817 
1818 			if (wc->free) {
1819 				struct extent_buffer *next;
1820 
1821 				next = path->nodes[*level];
1822 
1823 				btrfs_tree_lock(next);
1824 				btrfs_set_lock_blocking(next);
1825 				clean_tree_block(trans, root, next);
1826 				btrfs_wait_tree_block_writeback(next);
1827 				btrfs_tree_unlock(next);
1828 
1829 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1830 				ret = btrfs_free_and_pin_reserved_extent(root,
1831 						path->nodes[*level]->start,
1832 						path->nodes[*level]->len);
1833 				BUG_ON(ret);
1834 			}
1835 			free_extent_buffer(path->nodes[*level]);
1836 			path->nodes[*level] = NULL;
1837 			*level = i + 1;
1838 		}
1839 	}
1840 	return 1;
1841 }
1842 
1843 /*
1844  * drop the reference count on the tree rooted at 'snap'.  This traverses
1845  * the tree freeing any blocks that have a ref count of zero after being
1846  * decremented.
1847  */
1848 static int walk_log_tree(struct btrfs_trans_handle *trans,
1849 			 struct btrfs_root *log, struct walk_control *wc)
1850 {
1851 	int ret = 0;
1852 	int wret;
1853 	int level;
1854 	struct btrfs_path *path;
1855 	int i;
1856 	int orig_level;
1857 
1858 	path = btrfs_alloc_path();
1859 	if (!path)
1860 		return -ENOMEM;
1861 
1862 	level = btrfs_header_level(log->node);
1863 	orig_level = level;
1864 	path->nodes[level] = log->node;
1865 	extent_buffer_get(log->node);
1866 	path->slots[level] = 0;
1867 
1868 	while (1) {
1869 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1870 		if (wret > 0)
1871 			break;
1872 		if (wret < 0) {
1873 			ret = wret;
1874 			goto out;
1875 		}
1876 
1877 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1878 		if (wret > 0)
1879 			break;
1880 		if (wret < 0) {
1881 			ret = wret;
1882 			goto out;
1883 		}
1884 	}
1885 
1886 	/* was the root node processed? if not, catch it here */
1887 	if (path->nodes[orig_level]) {
1888 		ret = wc->process_func(log, path->nodes[orig_level], wc,
1889 			 btrfs_header_generation(path->nodes[orig_level]));
1890 		if (ret)
1891 			goto out;
1892 		if (wc->free) {
1893 			struct extent_buffer *next;
1894 
1895 			next = path->nodes[orig_level];
1896 
1897 			btrfs_tree_lock(next);
1898 			btrfs_set_lock_blocking(next);
1899 			clean_tree_block(trans, log, next);
1900 			btrfs_wait_tree_block_writeback(next);
1901 			btrfs_tree_unlock(next);
1902 
1903 			WARN_ON(log->root_key.objectid !=
1904 				BTRFS_TREE_LOG_OBJECTID);
1905 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
1906 							 next->len);
1907 			BUG_ON(ret); /* -ENOMEM or logic errors */
1908 		}
1909 	}
1910 
1911 out:
1912 	for (i = 0; i <= orig_level; i++) {
1913 		if (path->nodes[i]) {
1914 			free_extent_buffer(path->nodes[i]);
1915 			path->nodes[i] = NULL;
1916 		}
1917 	}
1918 	btrfs_free_path(path);
1919 	return ret;
1920 }
1921 
1922 /*
1923  * helper function to update the item for a given subvolumes log root
1924  * in the tree of log roots
1925  */
1926 static int update_log_root(struct btrfs_trans_handle *trans,
1927 			   struct btrfs_root *log)
1928 {
1929 	int ret;
1930 
1931 	if (log->log_transid == 1) {
1932 		/* insert root item on the first sync */
1933 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1934 				&log->root_key, &log->root_item);
1935 	} else {
1936 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1937 				&log->root_key, &log->root_item);
1938 	}
1939 	return ret;
1940 }
1941 
1942 static int wait_log_commit(struct btrfs_trans_handle *trans,
1943 			   struct btrfs_root *root, unsigned long transid)
1944 {
1945 	DEFINE_WAIT(wait);
1946 	int index = transid % 2;
1947 
1948 	/*
1949 	 * we only allow two pending log transactions at a time,
1950 	 * so we know that if ours is more than 2 older than the
1951 	 * current transaction, we're done
1952 	 */
1953 	do {
1954 		prepare_to_wait(&root->log_commit_wait[index],
1955 				&wait, TASK_UNINTERRUPTIBLE);
1956 		mutex_unlock(&root->log_mutex);
1957 
1958 		if (root->fs_info->last_trans_log_full_commit !=
1959 		    trans->transid && root->log_transid < transid + 2 &&
1960 		    atomic_read(&root->log_commit[index]))
1961 			schedule();
1962 
1963 		finish_wait(&root->log_commit_wait[index], &wait);
1964 		mutex_lock(&root->log_mutex);
1965 	} while (root->fs_info->last_trans_log_full_commit !=
1966 		 trans->transid && root->log_transid < transid + 2 &&
1967 		 atomic_read(&root->log_commit[index]));
1968 	return 0;
1969 }
1970 
1971 static void wait_for_writer(struct btrfs_trans_handle *trans,
1972 			    struct btrfs_root *root)
1973 {
1974 	DEFINE_WAIT(wait);
1975 	while (root->fs_info->last_trans_log_full_commit !=
1976 	       trans->transid && atomic_read(&root->log_writers)) {
1977 		prepare_to_wait(&root->log_writer_wait,
1978 				&wait, TASK_UNINTERRUPTIBLE);
1979 		mutex_unlock(&root->log_mutex);
1980 		if (root->fs_info->last_trans_log_full_commit !=
1981 		    trans->transid && atomic_read(&root->log_writers))
1982 			schedule();
1983 		mutex_lock(&root->log_mutex);
1984 		finish_wait(&root->log_writer_wait, &wait);
1985 	}
1986 }
1987 
1988 /*
1989  * btrfs_sync_log does sends a given tree log down to the disk and
1990  * updates the super blocks to record it.  When this call is done,
1991  * you know that any inodes previously logged are safely on disk only
1992  * if it returns 0.
1993  *
1994  * Any other return value means you need to call btrfs_commit_transaction.
1995  * Some of the edge cases for fsyncing directories that have had unlinks
1996  * or renames done in the past mean that sometimes the only safe
1997  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1998  * that has happened.
1999  */
2000 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2001 		   struct btrfs_root *root)
2002 {
2003 	int index1;
2004 	int index2;
2005 	int mark;
2006 	int ret;
2007 	struct btrfs_root *log = root->log_root;
2008 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2009 	unsigned long log_transid = 0;
2010 
2011 	mutex_lock(&root->log_mutex);
2012 	index1 = root->log_transid % 2;
2013 	if (atomic_read(&root->log_commit[index1])) {
2014 		wait_log_commit(trans, root, root->log_transid);
2015 		mutex_unlock(&root->log_mutex);
2016 		return 0;
2017 	}
2018 	atomic_set(&root->log_commit[index1], 1);
2019 
2020 	/* wait for previous tree log sync to complete */
2021 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2022 		wait_log_commit(trans, root, root->log_transid - 1);
2023 	while (1) {
2024 		unsigned long batch = root->log_batch;
2025 		/* when we're on an ssd, just kick the log commit out */
2026 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2027 			mutex_unlock(&root->log_mutex);
2028 			schedule_timeout_uninterruptible(1);
2029 			mutex_lock(&root->log_mutex);
2030 		}
2031 		wait_for_writer(trans, root);
2032 		if (batch == root->log_batch)
2033 			break;
2034 	}
2035 
2036 	/* bail out if we need to do a full commit */
2037 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2038 		ret = -EAGAIN;
2039 		mutex_unlock(&root->log_mutex);
2040 		goto out;
2041 	}
2042 
2043 	log_transid = root->log_transid;
2044 	if (log_transid % 2 == 0)
2045 		mark = EXTENT_DIRTY;
2046 	else
2047 		mark = EXTENT_NEW;
2048 
2049 	/* we start IO on  all the marked extents here, but we don't actually
2050 	 * wait for them until later.
2051 	 */
2052 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2053 	if (ret) {
2054 		btrfs_abort_transaction(trans, root, ret);
2055 		mutex_unlock(&root->log_mutex);
2056 		goto out;
2057 	}
2058 
2059 	btrfs_set_root_node(&log->root_item, log->node);
2060 
2061 	root->log_batch = 0;
2062 	root->log_transid++;
2063 	log->log_transid = root->log_transid;
2064 	root->log_start_pid = 0;
2065 	smp_mb();
2066 	/*
2067 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2068 	 * in their headers. new modifications of the log will be written to
2069 	 * new positions. so it's safe to allow log writers to go in.
2070 	 */
2071 	mutex_unlock(&root->log_mutex);
2072 
2073 	mutex_lock(&log_root_tree->log_mutex);
2074 	log_root_tree->log_batch++;
2075 	atomic_inc(&log_root_tree->log_writers);
2076 	mutex_unlock(&log_root_tree->log_mutex);
2077 
2078 	ret = update_log_root(trans, log);
2079 
2080 	mutex_lock(&log_root_tree->log_mutex);
2081 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2082 		smp_mb();
2083 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2084 			wake_up(&log_root_tree->log_writer_wait);
2085 	}
2086 
2087 	if (ret) {
2088 		if (ret != -ENOSPC) {
2089 			btrfs_abort_transaction(trans, root, ret);
2090 			mutex_unlock(&log_root_tree->log_mutex);
2091 			goto out;
2092 		}
2093 		root->fs_info->last_trans_log_full_commit = trans->transid;
2094 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2095 		mutex_unlock(&log_root_tree->log_mutex);
2096 		ret = -EAGAIN;
2097 		goto out;
2098 	}
2099 
2100 	index2 = log_root_tree->log_transid % 2;
2101 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2102 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2103 		wait_log_commit(trans, log_root_tree,
2104 				log_root_tree->log_transid);
2105 		mutex_unlock(&log_root_tree->log_mutex);
2106 		ret = 0;
2107 		goto out;
2108 	}
2109 	atomic_set(&log_root_tree->log_commit[index2], 1);
2110 
2111 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2112 		wait_log_commit(trans, log_root_tree,
2113 				log_root_tree->log_transid - 1);
2114 	}
2115 
2116 	wait_for_writer(trans, log_root_tree);
2117 
2118 	/*
2119 	 * now that we've moved on to the tree of log tree roots,
2120 	 * check the full commit flag again
2121 	 */
2122 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2123 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2124 		mutex_unlock(&log_root_tree->log_mutex);
2125 		ret = -EAGAIN;
2126 		goto out_wake_log_root;
2127 	}
2128 
2129 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2130 				&log_root_tree->dirty_log_pages,
2131 				EXTENT_DIRTY | EXTENT_NEW);
2132 	if (ret) {
2133 		btrfs_abort_transaction(trans, root, ret);
2134 		mutex_unlock(&log_root_tree->log_mutex);
2135 		goto out_wake_log_root;
2136 	}
2137 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2138 
2139 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2140 				log_root_tree->node->start);
2141 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2142 				btrfs_header_level(log_root_tree->node));
2143 
2144 	log_root_tree->log_batch = 0;
2145 	log_root_tree->log_transid++;
2146 	smp_mb();
2147 
2148 	mutex_unlock(&log_root_tree->log_mutex);
2149 
2150 	/*
2151 	 * nobody else is going to jump in and write the the ctree
2152 	 * super here because the log_commit atomic below is protecting
2153 	 * us.  We must be called with a transaction handle pinning
2154 	 * the running transaction open, so a full commit can't hop
2155 	 * in and cause problems either.
2156 	 */
2157 	btrfs_scrub_pause_super(root);
2158 	write_ctree_super(trans, root->fs_info->tree_root, 1);
2159 	btrfs_scrub_continue_super(root);
2160 	ret = 0;
2161 
2162 	mutex_lock(&root->log_mutex);
2163 	if (root->last_log_commit < log_transid)
2164 		root->last_log_commit = log_transid;
2165 	mutex_unlock(&root->log_mutex);
2166 
2167 out_wake_log_root:
2168 	atomic_set(&log_root_tree->log_commit[index2], 0);
2169 	smp_mb();
2170 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2171 		wake_up(&log_root_tree->log_commit_wait[index2]);
2172 out:
2173 	atomic_set(&root->log_commit[index1], 0);
2174 	smp_mb();
2175 	if (waitqueue_active(&root->log_commit_wait[index1]))
2176 		wake_up(&root->log_commit_wait[index1]);
2177 	return ret;
2178 }
2179 
2180 static void free_log_tree(struct btrfs_trans_handle *trans,
2181 			  struct btrfs_root *log)
2182 {
2183 	int ret;
2184 	u64 start;
2185 	u64 end;
2186 	struct walk_control wc = {
2187 		.free = 1,
2188 		.process_func = process_one_buffer
2189 	};
2190 
2191 	ret = walk_log_tree(trans, log, &wc);
2192 	BUG_ON(ret);
2193 
2194 	while (1) {
2195 		ret = find_first_extent_bit(&log->dirty_log_pages,
2196 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2197 		if (ret)
2198 			break;
2199 
2200 		clear_extent_bits(&log->dirty_log_pages, start, end,
2201 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2202 	}
2203 
2204 	free_extent_buffer(log->node);
2205 	kfree(log);
2206 }
2207 
2208 /*
2209  * free all the extents used by the tree log.  This should be called
2210  * at commit time of the full transaction
2211  */
2212 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2213 {
2214 	if (root->log_root) {
2215 		free_log_tree(trans, root->log_root);
2216 		root->log_root = NULL;
2217 	}
2218 	return 0;
2219 }
2220 
2221 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2222 			     struct btrfs_fs_info *fs_info)
2223 {
2224 	if (fs_info->log_root_tree) {
2225 		free_log_tree(trans, fs_info->log_root_tree);
2226 		fs_info->log_root_tree = NULL;
2227 	}
2228 	return 0;
2229 }
2230 
2231 /*
2232  * If both a file and directory are logged, and unlinks or renames are
2233  * mixed in, we have a few interesting corners:
2234  *
2235  * create file X in dir Y
2236  * link file X to X.link in dir Y
2237  * fsync file X
2238  * unlink file X but leave X.link
2239  * fsync dir Y
2240  *
2241  * After a crash we would expect only X.link to exist.  But file X
2242  * didn't get fsync'd again so the log has back refs for X and X.link.
2243  *
2244  * We solve this by removing directory entries and inode backrefs from the
2245  * log when a file that was logged in the current transaction is
2246  * unlinked.  Any later fsync will include the updated log entries, and
2247  * we'll be able to reconstruct the proper directory items from backrefs.
2248  *
2249  * This optimizations allows us to avoid relogging the entire inode
2250  * or the entire directory.
2251  */
2252 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2253 				 struct btrfs_root *root,
2254 				 const char *name, int name_len,
2255 				 struct inode *dir, u64 index)
2256 {
2257 	struct btrfs_root *log;
2258 	struct btrfs_dir_item *di;
2259 	struct btrfs_path *path;
2260 	int ret;
2261 	int err = 0;
2262 	int bytes_del = 0;
2263 	u64 dir_ino = btrfs_ino(dir);
2264 
2265 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2266 		return 0;
2267 
2268 	ret = join_running_log_trans(root);
2269 	if (ret)
2270 		return 0;
2271 
2272 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2273 
2274 	log = root->log_root;
2275 	path = btrfs_alloc_path();
2276 	if (!path) {
2277 		err = -ENOMEM;
2278 		goto out_unlock;
2279 	}
2280 
2281 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2282 				   name, name_len, -1);
2283 	if (IS_ERR(di)) {
2284 		err = PTR_ERR(di);
2285 		goto fail;
2286 	}
2287 	if (di) {
2288 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2289 		bytes_del += name_len;
2290 		BUG_ON(ret);
2291 	}
2292 	btrfs_release_path(path);
2293 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2294 					 index, name, name_len, -1);
2295 	if (IS_ERR(di)) {
2296 		err = PTR_ERR(di);
2297 		goto fail;
2298 	}
2299 	if (di) {
2300 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2301 		bytes_del += name_len;
2302 		BUG_ON(ret);
2303 	}
2304 
2305 	/* update the directory size in the log to reflect the names
2306 	 * we have removed
2307 	 */
2308 	if (bytes_del) {
2309 		struct btrfs_key key;
2310 
2311 		key.objectid = dir_ino;
2312 		key.offset = 0;
2313 		key.type = BTRFS_INODE_ITEM_KEY;
2314 		btrfs_release_path(path);
2315 
2316 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2317 		if (ret < 0) {
2318 			err = ret;
2319 			goto fail;
2320 		}
2321 		if (ret == 0) {
2322 			struct btrfs_inode_item *item;
2323 			u64 i_size;
2324 
2325 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2326 					      struct btrfs_inode_item);
2327 			i_size = btrfs_inode_size(path->nodes[0], item);
2328 			if (i_size > bytes_del)
2329 				i_size -= bytes_del;
2330 			else
2331 				i_size = 0;
2332 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2333 			btrfs_mark_buffer_dirty(path->nodes[0]);
2334 		} else
2335 			ret = 0;
2336 		btrfs_release_path(path);
2337 	}
2338 fail:
2339 	btrfs_free_path(path);
2340 out_unlock:
2341 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2342 	if (ret == -ENOSPC) {
2343 		root->fs_info->last_trans_log_full_commit = trans->transid;
2344 		ret = 0;
2345 	} else if (ret < 0)
2346 		btrfs_abort_transaction(trans, root, ret);
2347 
2348 	btrfs_end_log_trans(root);
2349 
2350 	return err;
2351 }
2352 
2353 /* see comments for btrfs_del_dir_entries_in_log */
2354 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2355 			       struct btrfs_root *root,
2356 			       const char *name, int name_len,
2357 			       struct inode *inode, u64 dirid)
2358 {
2359 	struct btrfs_root *log;
2360 	u64 index;
2361 	int ret;
2362 
2363 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2364 		return 0;
2365 
2366 	ret = join_running_log_trans(root);
2367 	if (ret)
2368 		return 0;
2369 	log = root->log_root;
2370 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2371 
2372 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2373 				  dirid, &index);
2374 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2375 	if (ret == -ENOSPC) {
2376 		root->fs_info->last_trans_log_full_commit = trans->transid;
2377 		ret = 0;
2378 	} else if (ret < 0 && ret != -ENOENT)
2379 		btrfs_abort_transaction(trans, root, ret);
2380 	btrfs_end_log_trans(root);
2381 
2382 	return ret;
2383 }
2384 
2385 /*
2386  * creates a range item in the log for 'dirid'.  first_offset and
2387  * last_offset tell us which parts of the key space the log should
2388  * be considered authoritative for.
2389  */
2390 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2391 				       struct btrfs_root *log,
2392 				       struct btrfs_path *path,
2393 				       int key_type, u64 dirid,
2394 				       u64 first_offset, u64 last_offset)
2395 {
2396 	int ret;
2397 	struct btrfs_key key;
2398 	struct btrfs_dir_log_item *item;
2399 
2400 	key.objectid = dirid;
2401 	key.offset = first_offset;
2402 	if (key_type == BTRFS_DIR_ITEM_KEY)
2403 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2404 	else
2405 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2406 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2407 	if (ret)
2408 		return ret;
2409 
2410 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2411 			      struct btrfs_dir_log_item);
2412 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2413 	btrfs_mark_buffer_dirty(path->nodes[0]);
2414 	btrfs_release_path(path);
2415 	return 0;
2416 }
2417 
2418 /*
2419  * log all the items included in the current transaction for a given
2420  * directory.  This also creates the range items in the log tree required
2421  * to replay anything deleted before the fsync
2422  */
2423 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2424 			  struct btrfs_root *root, struct inode *inode,
2425 			  struct btrfs_path *path,
2426 			  struct btrfs_path *dst_path, int key_type,
2427 			  u64 min_offset, u64 *last_offset_ret)
2428 {
2429 	struct btrfs_key min_key;
2430 	struct btrfs_key max_key;
2431 	struct btrfs_root *log = root->log_root;
2432 	struct extent_buffer *src;
2433 	int err = 0;
2434 	int ret;
2435 	int i;
2436 	int nritems;
2437 	u64 first_offset = min_offset;
2438 	u64 last_offset = (u64)-1;
2439 	u64 ino = btrfs_ino(inode);
2440 
2441 	log = root->log_root;
2442 	max_key.objectid = ino;
2443 	max_key.offset = (u64)-1;
2444 	max_key.type = key_type;
2445 
2446 	min_key.objectid = ino;
2447 	min_key.type = key_type;
2448 	min_key.offset = min_offset;
2449 
2450 	path->keep_locks = 1;
2451 
2452 	ret = btrfs_search_forward(root, &min_key, &max_key,
2453 				   path, 0, trans->transid);
2454 
2455 	/*
2456 	 * we didn't find anything from this transaction, see if there
2457 	 * is anything at all
2458 	 */
2459 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2460 		min_key.objectid = ino;
2461 		min_key.type = key_type;
2462 		min_key.offset = (u64)-1;
2463 		btrfs_release_path(path);
2464 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2465 		if (ret < 0) {
2466 			btrfs_release_path(path);
2467 			return ret;
2468 		}
2469 		ret = btrfs_previous_item(root, path, ino, key_type);
2470 
2471 		/* if ret == 0 there are items for this type,
2472 		 * create a range to tell us the last key of this type.
2473 		 * otherwise, there are no items in this directory after
2474 		 * *min_offset, and we create a range to indicate that.
2475 		 */
2476 		if (ret == 0) {
2477 			struct btrfs_key tmp;
2478 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2479 					      path->slots[0]);
2480 			if (key_type == tmp.type)
2481 				first_offset = max(min_offset, tmp.offset) + 1;
2482 		}
2483 		goto done;
2484 	}
2485 
2486 	/* go backward to find any previous key */
2487 	ret = btrfs_previous_item(root, path, ino, key_type);
2488 	if (ret == 0) {
2489 		struct btrfs_key tmp;
2490 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2491 		if (key_type == tmp.type) {
2492 			first_offset = tmp.offset;
2493 			ret = overwrite_item(trans, log, dst_path,
2494 					     path->nodes[0], path->slots[0],
2495 					     &tmp);
2496 			if (ret) {
2497 				err = ret;
2498 				goto done;
2499 			}
2500 		}
2501 	}
2502 	btrfs_release_path(path);
2503 
2504 	/* find the first key from this transaction again */
2505 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2506 	if (ret != 0) {
2507 		WARN_ON(1);
2508 		goto done;
2509 	}
2510 
2511 	/*
2512 	 * we have a block from this transaction, log every item in it
2513 	 * from our directory
2514 	 */
2515 	while (1) {
2516 		struct btrfs_key tmp;
2517 		src = path->nodes[0];
2518 		nritems = btrfs_header_nritems(src);
2519 		for (i = path->slots[0]; i < nritems; i++) {
2520 			btrfs_item_key_to_cpu(src, &min_key, i);
2521 
2522 			if (min_key.objectid != ino || min_key.type != key_type)
2523 				goto done;
2524 			ret = overwrite_item(trans, log, dst_path, src, i,
2525 					     &min_key);
2526 			if (ret) {
2527 				err = ret;
2528 				goto done;
2529 			}
2530 		}
2531 		path->slots[0] = nritems;
2532 
2533 		/*
2534 		 * look ahead to the next item and see if it is also
2535 		 * from this directory and from this transaction
2536 		 */
2537 		ret = btrfs_next_leaf(root, path);
2538 		if (ret == 1) {
2539 			last_offset = (u64)-1;
2540 			goto done;
2541 		}
2542 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2543 		if (tmp.objectid != ino || tmp.type != key_type) {
2544 			last_offset = (u64)-1;
2545 			goto done;
2546 		}
2547 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2548 			ret = overwrite_item(trans, log, dst_path,
2549 					     path->nodes[0], path->slots[0],
2550 					     &tmp);
2551 			if (ret)
2552 				err = ret;
2553 			else
2554 				last_offset = tmp.offset;
2555 			goto done;
2556 		}
2557 	}
2558 done:
2559 	btrfs_release_path(path);
2560 	btrfs_release_path(dst_path);
2561 
2562 	if (err == 0) {
2563 		*last_offset_ret = last_offset;
2564 		/*
2565 		 * insert the log range keys to indicate where the log
2566 		 * is valid
2567 		 */
2568 		ret = insert_dir_log_key(trans, log, path, key_type,
2569 					 ino, first_offset, last_offset);
2570 		if (ret)
2571 			err = ret;
2572 	}
2573 	return err;
2574 }
2575 
2576 /*
2577  * logging directories is very similar to logging inodes, We find all the items
2578  * from the current transaction and write them to the log.
2579  *
2580  * The recovery code scans the directory in the subvolume, and if it finds a
2581  * key in the range logged that is not present in the log tree, then it means
2582  * that dir entry was unlinked during the transaction.
2583  *
2584  * In order for that scan to work, we must include one key smaller than
2585  * the smallest logged by this transaction and one key larger than the largest
2586  * key logged by this transaction.
2587  */
2588 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2589 			  struct btrfs_root *root, struct inode *inode,
2590 			  struct btrfs_path *path,
2591 			  struct btrfs_path *dst_path)
2592 {
2593 	u64 min_key;
2594 	u64 max_key;
2595 	int ret;
2596 	int key_type = BTRFS_DIR_ITEM_KEY;
2597 
2598 again:
2599 	min_key = 0;
2600 	max_key = 0;
2601 	while (1) {
2602 		ret = log_dir_items(trans, root, inode, path,
2603 				    dst_path, key_type, min_key,
2604 				    &max_key);
2605 		if (ret)
2606 			return ret;
2607 		if (max_key == (u64)-1)
2608 			break;
2609 		min_key = max_key + 1;
2610 	}
2611 
2612 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2613 		key_type = BTRFS_DIR_INDEX_KEY;
2614 		goto again;
2615 	}
2616 	return 0;
2617 }
2618 
2619 /*
2620  * a helper function to drop items from the log before we relog an
2621  * inode.  max_key_type indicates the highest item type to remove.
2622  * This cannot be run for file data extents because it does not
2623  * free the extents they point to.
2624  */
2625 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2626 				  struct btrfs_root *log,
2627 				  struct btrfs_path *path,
2628 				  u64 objectid, int max_key_type)
2629 {
2630 	int ret;
2631 	struct btrfs_key key;
2632 	struct btrfs_key found_key;
2633 
2634 	key.objectid = objectid;
2635 	key.type = max_key_type;
2636 	key.offset = (u64)-1;
2637 
2638 	while (1) {
2639 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2640 		BUG_ON(ret == 0);
2641 		if (ret < 0)
2642 			break;
2643 
2644 		if (path->slots[0] == 0)
2645 			break;
2646 
2647 		path->slots[0]--;
2648 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2649 				      path->slots[0]);
2650 
2651 		if (found_key.objectid != objectid)
2652 			break;
2653 
2654 		ret = btrfs_del_item(trans, log, path);
2655 		if (ret)
2656 			break;
2657 		btrfs_release_path(path);
2658 	}
2659 	btrfs_release_path(path);
2660 	return ret;
2661 }
2662 
2663 static noinline int copy_items(struct btrfs_trans_handle *trans,
2664 			       struct btrfs_root *log,
2665 			       struct btrfs_path *dst_path,
2666 			       struct extent_buffer *src,
2667 			       int start_slot, int nr, int inode_only)
2668 {
2669 	unsigned long src_offset;
2670 	unsigned long dst_offset;
2671 	struct btrfs_file_extent_item *extent;
2672 	struct btrfs_inode_item *inode_item;
2673 	int ret;
2674 	struct btrfs_key *ins_keys;
2675 	u32 *ins_sizes;
2676 	char *ins_data;
2677 	int i;
2678 	struct list_head ordered_sums;
2679 
2680 	INIT_LIST_HEAD(&ordered_sums);
2681 
2682 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2683 			   nr * sizeof(u32), GFP_NOFS);
2684 	if (!ins_data)
2685 		return -ENOMEM;
2686 
2687 	ins_sizes = (u32 *)ins_data;
2688 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2689 
2690 	for (i = 0; i < nr; i++) {
2691 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2692 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2693 	}
2694 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2695 				       ins_keys, ins_sizes, nr);
2696 	if (ret) {
2697 		kfree(ins_data);
2698 		return ret;
2699 	}
2700 
2701 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2702 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2703 						   dst_path->slots[0]);
2704 
2705 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2706 
2707 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2708 				   src_offset, ins_sizes[i]);
2709 
2710 		if (inode_only == LOG_INODE_EXISTS &&
2711 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2712 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2713 						    dst_path->slots[0],
2714 						    struct btrfs_inode_item);
2715 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2716 
2717 			/* set the generation to zero so the recover code
2718 			 * can tell the difference between an logging
2719 			 * just to say 'this inode exists' and a logging
2720 			 * to say 'update this inode with these values'
2721 			 */
2722 			btrfs_set_inode_generation(dst_path->nodes[0],
2723 						   inode_item, 0);
2724 		}
2725 		/* take a reference on file data extents so that truncates
2726 		 * or deletes of this inode don't have to relog the inode
2727 		 * again
2728 		 */
2729 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2730 			int found_type;
2731 			extent = btrfs_item_ptr(src, start_slot + i,
2732 						struct btrfs_file_extent_item);
2733 
2734 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
2735 				continue;
2736 
2737 			found_type = btrfs_file_extent_type(src, extent);
2738 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2739 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2740 				u64 ds, dl, cs, cl;
2741 				ds = btrfs_file_extent_disk_bytenr(src,
2742 								extent);
2743 				/* ds == 0 is a hole */
2744 				if (ds == 0)
2745 					continue;
2746 
2747 				dl = btrfs_file_extent_disk_num_bytes(src,
2748 								extent);
2749 				cs = btrfs_file_extent_offset(src, extent);
2750 				cl = btrfs_file_extent_num_bytes(src,
2751 								extent);
2752 				if (btrfs_file_extent_compression(src,
2753 								  extent)) {
2754 					cs = 0;
2755 					cl = dl;
2756 				}
2757 
2758 				ret = btrfs_lookup_csums_range(
2759 						log->fs_info->csum_root,
2760 						ds + cs, ds + cs + cl - 1,
2761 						&ordered_sums, 0);
2762 				BUG_ON(ret);
2763 			}
2764 		}
2765 	}
2766 
2767 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2768 	btrfs_release_path(dst_path);
2769 	kfree(ins_data);
2770 
2771 	/*
2772 	 * we have to do this after the loop above to avoid changing the
2773 	 * log tree while trying to change the log tree.
2774 	 */
2775 	ret = 0;
2776 	while (!list_empty(&ordered_sums)) {
2777 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2778 						   struct btrfs_ordered_sum,
2779 						   list);
2780 		if (!ret)
2781 			ret = btrfs_csum_file_blocks(trans, log, sums);
2782 		list_del(&sums->list);
2783 		kfree(sums);
2784 	}
2785 	return ret;
2786 }
2787 
2788 /* log a single inode in the tree log.
2789  * At least one parent directory for this inode must exist in the tree
2790  * or be logged already.
2791  *
2792  * Any items from this inode changed by the current transaction are copied
2793  * to the log tree.  An extra reference is taken on any extents in this
2794  * file, allowing us to avoid a whole pile of corner cases around logging
2795  * blocks that have been removed from the tree.
2796  *
2797  * See LOG_INODE_ALL and related defines for a description of what inode_only
2798  * does.
2799  *
2800  * This handles both files and directories.
2801  */
2802 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2803 			     struct btrfs_root *root, struct inode *inode,
2804 			     int inode_only)
2805 {
2806 	struct btrfs_path *path;
2807 	struct btrfs_path *dst_path;
2808 	struct btrfs_key min_key;
2809 	struct btrfs_key max_key;
2810 	struct btrfs_root *log = root->log_root;
2811 	struct extent_buffer *src = NULL;
2812 	int err = 0;
2813 	int ret;
2814 	int nritems;
2815 	int ins_start_slot = 0;
2816 	int ins_nr;
2817 	u64 ino = btrfs_ino(inode);
2818 
2819 	log = root->log_root;
2820 
2821 	path = btrfs_alloc_path();
2822 	if (!path)
2823 		return -ENOMEM;
2824 	dst_path = btrfs_alloc_path();
2825 	if (!dst_path) {
2826 		btrfs_free_path(path);
2827 		return -ENOMEM;
2828 	}
2829 
2830 	min_key.objectid = ino;
2831 	min_key.type = BTRFS_INODE_ITEM_KEY;
2832 	min_key.offset = 0;
2833 
2834 	max_key.objectid = ino;
2835 
2836 	/* today the code can only do partial logging of directories */
2837 	if (!S_ISDIR(inode->i_mode))
2838 	    inode_only = LOG_INODE_ALL;
2839 
2840 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2841 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2842 	else
2843 		max_key.type = (u8)-1;
2844 	max_key.offset = (u64)-1;
2845 
2846 	ret = btrfs_commit_inode_delayed_items(trans, inode);
2847 	if (ret) {
2848 		btrfs_free_path(path);
2849 		btrfs_free_path(dst_path);
2850 		return ret;
2851 	}
2852 
2853 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2854 
2855 	/*
2856 	 * a brute force approach to making sure we get the most uptodate
2857 	 * copies of everything.
2858 	 */
2859 	if (S_ISDIR(inode->i_mode)) {
2860 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2861 
2862 		if (inode_only == LOG_INODE_EXISTS)
2863 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2864 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2865 	} else {
2866 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2867 	}
2868 	if (ret) {
2869 		err = ret;
2870 		goto out_unlock;
2871 	}
2872 	path->keep_locks = 1;
2873 
2874 	while (1) {
2875 		ins_nr = 0;
2876 		ret = btrfs_search_forward(root, &min_key, &max_key,
2877 					   path, 0, trans->transid);
2878 		if (ret != 0)
2879 			break;
2880 again:
2881 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2882 		if (min_key.objectid != ino)
2883 			break;
2884 		if (min_key.type > max_key.type)
2885 			break;
2886 
2887 		src = path->nodes[0];
2888 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2889 			ins_nr++;
2890 			goto next_slot;
2891 		} else if (!ins_nr) {
2892 			ins_start_slot = path->slots[0];
2893 			ins_nr = 1;
2894 			goto next_slot;
2895 		}
2896 
2897 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2898 				 ins_nr, inode_only);
2899 		if (ret) {
2900 			err = ret;
2901 			goto out_unlock;
2902 		}
2903 		ins_nr = 1;
2904 		ins_start_slot = path->slots[0];
2905 next_slot:
2906 
2907 		nritems = btrfs_header_nritems(path->nodes[0]);
2908 		path->slots[0]++;
2909 		if (path->slots[0] < nritems) {
2910 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2911 					      path->slots[0]);
2912 			goto again;
2913 		}
2914 		if (ins_nr) {
2915 			ret = copy_items(trans, log, dst_path, src,
2916 					 ins_start_slot,
2917 					 ins_nr, inode_only);
2918 			if (ret) {
2919 				err = ret;
2920 				goto out_unlock;
2921 			}
2922 			ins_nr = 0;
2923 		}
2924 		btrfs_release_path(path);
2925 
2926 		if (min_key.offset < (u64)-1)
2927 			min_key.offset++;
2928 		else if (min_key.type < (u8)-1)
2929 			min_key.type++;
2930 		else if (min_key.objectid < (u64)-1)
2931 			min_key.objectid++;
2932 		else
2933 			break;
2934 	}
2935 	if (ins_nr) {
2936 		ret = copy_items(trans, log, dst_path, src,
2937 				 ins_start_slot,
2938 				 ins_nr, inode_only);
2939 		if (ret) {
2940 			err = ret;
2941 			goto out_unlock;
2942 		}
2943 		ins_nr = 0;
2944 	}
2945 	WARN_ON(ins_nr);
2946 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2947 		btrfs_release_path(path);
2948 		btrfs_release_path(dst_path);
2949 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2950 		if (ret) {
2951 			err = ret;
2952 			goto out_unlock;
2953 		}
2954 	}
2955 	BTRFS_I(inode)->logged_trans = trans->transid;
2956 out_unlock:
2957 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2958 
2959 	btrfs_free_path(path);
2960 	btrfs_free_path(dst_path);
2961 	return err;
2962 }
2963 
2964 /*
2965  * follow the dentry parent pointers up the chain and see if any
2966  * of the directories in it require a full commit before they can
2967  * be logged.  Returns zero if nothing special needs to be done or 1 if
2968  * a full commit is required.
2969  */
2970 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2971 					       struct inode *inode,
2972 					       struct dentry *parent,
2973 					       struct super_block *sb,
2974 					       u64 last_committed)
2975 {
2976 	int ret = 0;
2977 	struct btrfs_root *root;
2978 	struct dentry *old_parent = NULL;
2979 
2980 	/*
2981 	 * for regular files, if its inode is already on disk, we don't
2982 	 * have to worry about the parents at all.  This is because
2983 	 * we can use the last_unlink_trans field to record renames
2984 	 * and other fun in this file.
2985 	 */
2986 	if (S_ISREG(inode->i_mode) &&
2987 	    BTRFS_I(inode)->generation <= last_committed &&
2988 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2989 			goto out;
2990 
2991 	if (!S_ISDIR(inode->i_mode)) {
2992 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2993 			goto out;
2994 		inode = parent->d_inode;
2995 	}
2996 
2997 	while (1) {
2998 		BTRFS_I(inode)->logged_trans = trans->transid;
2999 		smp_mb();
3000 
3001 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3002 			root = BTRFS_I(inode)->root;
3003 
3004 			/*
3005 			 * make sure any commits to the log are forced
3006 			 * to be full commits
3007 			 */
3008 			root->fs_info->last_trans_log_full_commit =
3009 				trans->transid;
3010 			ret = 1;
3011 			break;
3012 		}
3013 
3014 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3015 			break;
3016 
3017 		if (IS_ROOT(parent))
3018 			break;
3019 
3020 		parent = dget_parent(parent);
3021 		dput(old_parent);
3022 		old_parent = parent;
3023 		inode = parent->d_inode;
3024 
3025 	}
3026 	dput(old_parent);
3027 out:
3028 	return ret;
3029 }
3030 
3031 static int inode_in_log(struct btrfs_trans_handle *trans,
3032 		 struct inode *inode)
3033 {
3034 	struct btrfs_root *root = BTRFS_I(inode)->root;
3035 	int ret = 0;
3036 
3037 	mutex_lock(&root->log_mutex);
3038 	if (BTRFS_I(inode)->logged_trans == trans->transid &&
3039 	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
3040 		ret = 1;
3041 	mutex_unlock(&root->log_mutex);
3042 	return ret;
3043 }
3044 
3045 
3046 /*
3047  * helper function around btrfs_log_inode to make sure newly created
3048  * parent directories also end up in the log.  A minimal inode and backref
3049  * only logging is done of any parent directories that are older than
3050  * the last committed transaction
3051  */
3052 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3053 		    struct btrfs_root *root, struct inode *inode,
3054 		    struct dentry *parent, int exists_only)
3055 {
3056 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3057 	struct super_block *sb;
3058 	struct dentry *old_parent = NULL;
3059 	int ret = 0;
3060 	u64 last_committed = root->fs_info->last_trans_committed;
3061 
3062 	sb = inode->i_sb;
3063 
3064 	if (btrfs_test_opt(root, NOTREELOG)) {
3065 		ret = 1;
3066 		goto end_no_trans;
3067 	}
3068 
3069 	if (root->fs_info->last_trans_log_full_commit >
3070 	    root->fs_info->last_trans_committed) {
3071 		ret = 1;
3072 		goto end_no_trans;
3073 	}
3074 
3075 	if (root != BTRFS_I(inode)->root ||
3076 	    btrfs_root_refs(&root->root_item) == 0) {
3077 		ret = 1;
3078 		goto end_no_trans;
3079 	}
3080 
3081 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3082 					 sb, last_committed);
3083 	if (ret)
3084 		goto end_no_trans;
3085 
3086 	if (inode_in_log(trans, inode)) {
3087 		ret = BTRFS_NO_LOG_SYNC;
3088 		goto end_no_trans;
3089 	}
3090 
3091 	ret = start_log_trans(trans, root);
3092 	if (ret)
3093 		goto end_trans;
3094 
3095 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3096 	if (ret)
3097 		goto end_trans;
3098 
3099 	/*
3100 	 * for regular files, if its inode is already on disk, we don't
3101 	 * have to worry about the parents at all.  This is because
3102 	 * we can use the last_unlink_trans field to record renames
3103 	 * and other fun in this file.
3104 	 */
3105 	if (S_ISREG(inode->i_mode) &&
3106 	    BTRFS_I(inode)->generation <= last_committed &&
3107 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3108 		ret = 0;
3109 		goto end_trans;
3110 	}
3111 
3112 	inode_only = LOG_INODE_EXISTS;
3113 	while (1) {
3114 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3115 			break;
3116 
3117 		inode = parent->d_inode;
3118 		if (root != BTRFS_I(inode)->root)
3119 			break;
3120 
3121 		if (BTRFS_I(inode)->generation >
3122 		    root->fs_info->last_trans_committed) {
3123 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3124 			if (ret)
3125 				goto end_trans;
3126 		}
3127 		if (IS_ROOT(parent))
3128 			break;
3129 
3130 		parent = dget_parent(parent);
3131 		dput(old_parent);
3132 		old_parent = parent;
3133 	}
3134 	ret = 0;
3135 end_trans:
3136 	dput(old_parent);
3137 	if (ret < 0) {
3138 		BUG_ON(ret != -ENOSPC);
3139 		root->fs_info->last_trans_log_full_commit = trans->transid;
3140 		ret = 1;
3141 	}
3142 	btrfs_end_log_trans(root);
3143 end_no_trans:
3144 	return ret;
3145 }
3146 
3147 /*
3148  * it is not safe to log dentry if the chunk root has added new
3149  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3150  * If this returns 1, you must commit the transaction to safely get your
3151  * data on disk.
3152  */
3153 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3154 			  struct btrfs_root *root, struct dentry *dentry)
3155 {
3156 	struct dentry *parent = dget_parent(dentry);
3157 	int ret;
3158 
3159 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3160 	dput(parent);
3161 
3162 	return ret;
3163 }
3164 
3165 /*
3166  * should be called during mount to recover any replay any log trees
3167  * from the FS
3168  */
3169 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3170 {
3171 	int ret;
3172 	struct btrfs_path *path;
3173 	struct btrfs_trans_handle *trans;
3174 	struct btrfs_key key;
3175 	struct btrfs_key found_key;
3176 	struct btrfs_key tmp_key;
3177 	struct btrfs_root *log;
3178 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3179 	struct walk_control wc = {
3180 		.process_func = process_one_buffer,
3181 		.stage = 0,
3182 	};
3183 
3184 	path = btrfs_alloc_path();
3185 	if (!path)
3186 		return -ENOMEM;
3187 
3188 	fs_info->log_root_recovering = 1;
3189 
3190 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3191 	if (IS_ERR(trans)) {
3192 		ret = PTR_ERR(trans);
3193 		goto error;
3194 	}
3195 
3196 	wc.trans = trans;
3197 	wc.pin = 1;
3198 
3199 	ret = walk_log_tree(trans, log_root_tree, &wc);
3200 	if (ret) {
3201 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
3202 			    "recovering log root tree.");
3203 		goto error;
3204 	}
3205 
3206 again:
3207 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3208 	key.offset = (u64)-1;
3209 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3210 
3211 	while (1) {
3212 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3213 
3214 		if (ret < 0) {
3215 			btrfs_error(fs_info, ret,
3216 				    "Couldn't find tree log root.");
3217 			goto error;
3218 		}
3219 		if (ret > 0) {
3220 			if (path->slots[0] == 0)
3221 				break;
3222 			path->slots[0]--;
3223 		}
3224 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3225 				      path->slots[0]);
3226 		btrfs_release_path(path);
3227 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3228 			break;
3229 
3230 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3231 						  &found_key);
3232 		if (IS_ERR(log)) {
3233 			ret = PTR_ERR(log);
3234 			btrfs_error(fs_info, ret,
3235 				    "Couldn't read tree log root.");
3236 			goto error;
3237 		}
3238 
3239 		tmp_key.objectid = found_key.offset;
3240 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3241 		tmp_key.offset = (u64)-1;
3242 
3243 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3244 		if (IS_ERR(wc.replay_dest)) {
3245 			ret = PTR_ERR(wc.replay_dest);
3246 			btrfs_error(fs_info, ret, "Couldn't read target root "
3247 				    "for tree log recovery.");
3248 			goto error;
3249 		}
3250 
3251 		wc.replay_dest->log_root = log;
3252 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3253 		ret = walk_log_tree(trans, log, &wc);
3254 		BUG_ON(ret);
3255 
3256 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3257 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3258 						      path);
3259 			BUG_ON(ret);
3260 		}
3261 
3262 		key.offset = found_key.offset - 1;
3263 		wc.replay_dest->log_root = NULL;
3264 		free_extent_buffer(log->node);
3265 		free_extent_buffer(log->commit_root);
3266 		kfree(log);
3267 
3268 		if (found_key.offset == 0)
3269 			break;
3270 	}
3271 	btrfs_release_path(path);
3272 
3273 	/* step one is to pin it all, step two is to replay just inodes */
3274 	if (wc.pin) {
3275 		wc.pin = 0;
3276 		wc.process_func = replay_one_buffer;
3277 		wc.stage = LOG_WALK_REPLAY_INODES;
3278 		goto again;
3279 	}
3280 	/* step three is to replay everything */
3281 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3282 		wc.stage++;
3283 		goto again;
3284 	}
3285 
3286 	btrfs_free_path(path);
3287 
3288 	free_extent_buffer(log_root_tree->node);
3289 	log_root_tree->log_root = NULL;
3290 	fs_info->log_root_recovering = 0;
3291 
3292 	/* step 4: commit the transaction, which also unpins the blocks */
3293 	btrfs_commit_transaction(trans, fs_info->tree_root);
3294 
3295 	kfree(log_root_tree);
3296 	return 0;
3297 
3298 error:
3299 	btrfs_free_path(path);
3300 	return ret;
3301 }
3302 
3303 /*
3304  * there are some corner cases where we want to force a full
3305  * commit instead of allowing a directory to be logged.
3306  *
3307  * They revolve around files there were unlinked from the directory, and
3308  * this function updates the parent directory so that a full commit is
3309  * properly done if it is fsync'd later after the unlinks are done.
3310  */
3311 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3312 			     struct inode *dir, struct inode *inode,
3313 			     int for_rename)
3314 {
3315 	/*
3316 	 * when we're logging a file, if it hasn't been renamed
3317 	 * or unlinked, and its inode is fully committed on disk,
3318 	 * we don't have to worry about walking up the directory chain
3319 	 * to log its parents.
3320 	 *
3321 	 * So, we use the last_unlink_trans field to put this transid
3322 	 * into the file.  When the file is logged we check it and
3323 	 * don't log the parents if the file is fully on disk.
3324 	 */
3325 	if (S_ISREG(inode->i_mode))
3326 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3327 
3328 	/*
3329 	 * if this directory was already logged any new
3330 	 * names for this file/dir will get recorded
3331 	 */
3332 	smp_mb();
3333 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3334 		return;
3335 
3336 	/*
3337 	 * if the inode we're about to unlink was logged,
3338 	 * the log will be properly updated for any new names
3339 	 */
3340 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3341 		return;
3342 
3343 	/*
3344 	 * when renaming files across directories, if the directory
3345 	 * there we're unlinking from gets fsync'd later on, there's
3346 	 * no way to find the destination directory later and fsync it
3347 	 * properly.  So, we have to be conservative and force commits
3348 	 * so the new name gets discovered.
3349 	 */
3350 	if (for_rename)
3351 		goto record;
3352 
3353 	/* we can safely do the unlink without any special recording */
3354 	return;
3355 
3356 record:
3357 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3358 }
3359 
3360 /*
3361  * Call this after adding a new name for a file and it will properly
3362  * update the log to reflect the new name.
3363  *
3364  * It will return zero if all goes well, and it will return 1 if a
3365  * full transaction commit is required.
3366  */
3367 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3368 			struct inode *inode, struct inode *old_dir,
3369 			struct dentry *parent)
3370 {
3371 	struct btrfs_root * root = BTRFS_I(inode)->root;
3372 
3373 	/*
3374 	 * this will force the logging code to walk the dentry chain
3375 	 * up for the file
3376 	 */
3377 	if (S_ISREG(inode->i_mode))
3378 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3379 
3380 	/*
3381 	 * if this inode hasn't been logged and directory we're renaming it
3382 	 * from hasn't been logged, we don't need to log it
3383 	 */
3384 	if (BTRFS_I(inode)->logged_trans <=
3385 	    root->fs_info->last_trans_committed &&
3386 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3387 		    root->fs_info->last_trans_committed))
3388 		return 0;
3389 
3390 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3391 }
3392 
3393