1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "block-group.h" 21 #include "space-info.h" 22 #include "zoned.h" 23 24 /* magic values for the inode_only field in btrfs_log_inode: 25 * 26 * LOG_INODE_ALL means to log everything 27 * LOG_INODE_EXISTS means to log just enough to recreate the inode 28 * during log replay 29 */ 30 enum { 31 LOG_INODE_ALL, 32 LOG_INODE_EXISTS, 33 LOG_OTHER_INODE, 34 LOG_OTHER_INODE_ALL, 35 }; 36 37 /* 38 * directory trouble cases 39 * 40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 41 * log, we must force a full commit before doing an fsync of the directory 42 * where the unlink was done. 43 * ---> record transid of last unlink/rename per directory 44 * 45 * mkdir foo/some_dir 46 * normal commit 47 * rename foo/some_dir foo2/some_dir 48 * mkdir foo/some_dir 49 * fsync foo/some_dir/some_file 50 * 51 * The fsync above will unlink the original some_dir without recording 52 * it in its new location (foo2). After a crash, some_dir will be gone 53 * unless the fsync of some_file forces a full commit 54 * 55 * 2) we must log any new names for any file or dir that is in the fsync 56 * log. ---> check inode while renaming/linking. 57 * 58 * 2a) we must log any new names for any file or dir during rename 59 * when the directory they are being removed from was logged. 60 * ---> check inode and old parent dir during rename 61 * 62 * 2a is actually the more important variant. With the extra logging 63 * a crash might unlink the old name without recreating the new one 64 * 65 * 3) after a crash, we must go through any directories with a link count 66 * of zero and redo the rm -rf 67 * 68 * mkdir f1/foo 69 * normal commit 70 * rm -rf f1/foo 71 * fsync(f1) 72 * 73 * The directory f1 was fully removed from the FS, but fsync was never 74 * called on f1, only its parent dir. After a crash the rm -rf must 75 * be replayed. This must be able to recurse down the entire 76 * directory tree. The inode link count fixup code takes care of the 77 * ugly details. 78 */ 79 80 /* 81 * stages for the tree walking. The first 82 * stage (0) is to only pin down the blocks we find 83 * the second stage (1) is to make sure that all the inodes 84 * we find in the log are created in the subvolume. 85 * 86 * The last stage is to deal with directories and links and extents 87 * and all the other fun semantics 88 */ 89 enum { 90 LOG_WALK_PIN_ONLY, 91 LOG_WALK_REPLAY_INODES, 92 LOG_WALK_REPLAY_DIR_INDEX, 93 LOG_WALK_REPLAY_ALL, 94 }; 95 96 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 97 struct btrfs_root *root, struct btrfs_inode *inode, 98 int inode_only, 99 struct btrfs_log_ctx *ctx); 100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 101 struct btrfs_root *root, 102 struct btrfs_path *path, u64 objectid); 103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 104 struct btrfs_root *root, 105 struct btrfs_root *log, 106 struct btrfs_path *path, 107 u64 dirid, int del_all); 108 static void wait_log_commit(struct btrfs_root *root, int transid); 109 110 /* 111 * tree logging is a special write ahead log used to make sure that 112 * fsyncs and O_SYNCs can happen without doing full tree commits. 113 * 114 * Full tree commits are expensive because they require commonly 115 * modified blocks to be recowed, creating many dirty pages in the 116 * extent tree an 4x-6x higher write load than ext3. 117 * 118 * Instead of doing a tree commit on every fsync, we use the 119 * key ranges and transaction ids to find items for a given file or directory 120 * that have changed in this transaction. Those items are copied into 121 * a special tree (one per subvolume root), that tree is written to disk 122 * and then the fsync is considered complete. 123 * 124 * After a crash, items are copied out of the log-tree back into the 125 * subvolume tree. Any file data extents found are recorded in the extent 126 * allocation tree, and the log-tree freed. 127 * 128 * The log tree is read three times, once to pin down all the extents it is 129 * using in ram and once, once to create all the inodes logged in the tree 130 * and once to do all the other items. 131 */ 132 133 /* 134 * start a sub transaction and setup the log tree 135 * this increments the log tree writer count to make the people 136 * syncing the tree wait for us to finish 137 */ 138 static int start_log_trans(struct btrfs_trans_handle *trans, 139 struct btrfs_root *root, 140 struct btrfs_log_ctx *ctx) 141 { 142 struct btrfs_fs_info *fs_info = root->fs_info; 143 struct btrfs_root *tree_root = fs_info->tree_root; 144 const bool zoned = btrfs_is_zoned(fs_info); 145 int ret = 0; 146 bool created = false; 147 148 /* 149 * First check if the log root tree was already created. If not, create 150 * it before locking the root's log_mutex, just to keep lockdep happy. 151 */ 152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { 153 mutex_lock(&tree_root->log_mutex); 154 if (!fs_info->log_root_tree) { 155 ret = btrfs_init_log_root_tree(trans, fs_info); 156 if (!ret) { 157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); 158 created = true; 159 } 160 } 161 mutex_unlock(&tree_root->log_mutex); 162 if (ret) 163 return ret; 164 } 165 166 mutex_lock(&root->log_mutex); 167 168 again: 169 if (root->log_root) { 170 int index = (root->log_transid + 1) % 2; 171 172 if (btrfs_need_log_full_commit(trans)) { 173 ret = -EAGAIN; 174 goto out; 175 } 176 177 if (zoned && atomic_read(&root->log_commit[index])) { 178 wait_log_commit(root, root->log_transid - 1); 179 goto again; 180 } 181 182 if (!root->log_start_pid) { 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 184 root->log_start_pid = current->pid; 185 } else if (root->log_start_pid != current->pid) { 186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 187 } 188 } else { 189 /* 190 * This means fs_info->log_root_tree was already created 191 * for some other FS trees. Do the full commit not to mix 192 * nodes from multiple log transactions to do sequential 193 * writing. 194 */ 195 if (zoned && !created) { 196 ret = -EAGAIN; 197 goto out; 198 } 199 200 ret = btrfs_add_log_tree(trans, root); 201 if (ret) 202 goto out; 203 204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 206 root->log_start_pid = current->pid; 207 } 208 209 atomic_inc(&root->log_writers); 210 if (ctx && !ctx->logging_new_name) { 211 int index = root->log_transid % 2; 212 list_add_tail(&ctx->list, &root->log_ctxs[index]); 213 ctx->log_transid = root->log_transid; 214 } 215 216 out: 217 mutex_unlock(&root->log_mutex); 218 return ret; 219 } 220 221 /* 222 * returns 0 if there was a log transaction running and we were able 223 * to join, or returns -ENOENT if there were not transactions 224 * in progress 225 */ 226 static int join_running_log_trans(struct btrfs_root *root) 227 { 228 const bool zoned = btrfs_is_zoned(root->fs_info); 229 int ret = -ENOENT; 230 231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 232 return ret; 233 234 mutex_lock(&root->log_mutex); 235 again: 236 if (root->log_root) { 237 int index = (root->log_transid + 1) % 2; 238 239 ret = 0; 240 if (zoned && atomic_read(&root->log_commit[index])) { 241 wait_log_commit(root, root->log_transid - 1); 242 goto again; 243 } 244 atomic_inc(&root->log_writers); 245 } 246 mutex_unlock(&root->log_mutex); 247 return ret; 248 } 249 250 /* 251 * This either makes the current running log transaction wait 252 * until you call btrfs_end_log_trans() or it makes any future 253 * log transactions wait until you call btrfs_end_log_trans() 254 */ 255 void btrfs_pin_log_trans(struct btrfs_root *root) 256 { 257 atomic_inc(&root->log_writers); 258 } 259 260 /* 261 * indicate we're done making changes to the log tree 262 * and wake up anyone waiting to do a sync 263 */ 264 void btrfs_end_log_trans(struct btrfs_root *root) 265 { 266 if (atomic_dec_and_test(&root->log_writers)) { 267 /* atomic_dec_and_test implies a barrier */ 268 cond_wake_up_nomb(&root->log_writer_wait); 269 } 270 } 271 272 static int btrfs_write_tree_block(struct extent_buffer *buf) 273 { 274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 275 buf->start + buf->len - 1); 276 } 277 278 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 279 { 280 filemap_fdatawait_range(buf->pages[0]->mapping, 281 buf->start, buf->start + buf->len - 1); 282 } 283 284 /* 285 * the walk control struct is used to pass state down the chain when 286 * processing the log tree. The stage field tells us which part 287 * of the log tree processing we are currently doing. The others 288 * are state fields used for that specific part 289 */ 290 struct walk_control { 291 /* should we free the extent on disk when done? This is used 292 * at transaction commit time while freeing a log tree 293 */ 294 int free; 295 296 /* should we write out the extent buffer? This is used 297 * while flushing the log tree to disk during a sync 298 */ 299 int write; 300 301 /* should we wait for the extent buffer io to finish? Also used 302 * while flushing the log tree to disk for a sync 303 */ 304 int wait; 305 306 /* pin only walk, we record which extents on disk belong to the 307 * log trees 308 */ 309 int pin; 310 311 /* what stage of the replay code we're currently in */ 312 int stage; 313 314 /* 315 * Ignore any items from the inode currently being processed. Needs 316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 317 * the LOG_WALK_REPLAY_INODES stage. 318 */ 319 bool ignore_cur_inode; 320 321 /* the root we are currently replaying */ 322 struct btrfs_root *replay_dest; 323 324 /* the trans handle for the current replay */ 325 struct btrfs_trans_handle *trans; 326 327 /* the function that gets used to process blocks we find in the 328 * tree. Note the extent_buffer might not be up to date when it is 329 * passed in, and it must be checked or read if you need the data 330 * inside it 331 */ 332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 333 struct walk_control *wc, u64 gen, int level); 334 }; 335 336 /* 337 * process_func used to pin down extents, write them or wait on them 338 */ 339 static int process_one_buffer(struct btrfs_root *log, 340 struct extent_buffer *eb, 341 struct walk_control *wc, u64 gen, int level) 342 { 343 struct btrfs_fs_info *fs_info = log->fs_info; 344 int ret = 0; 345 346 /* 347 * If this fs is mixed then we need to be able to process the leaves to 348 * pin down any logged extents, so we have to read the block. 349 */ 350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 351 ret = btrfs_read_buffer(eb, gen, level, NULL); 352 if (ret) 353 return ret; 354 } 355 356 if (wc->pin) 357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start, 358 eb->len); 359 360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 361 if (wc->pin && btrfs_header_level(eb) == 0) 362 ret = btrfs_exclude_logged_extents(eb); 363 if (wc->write) 364 btrfs_write_tree_block(eb); 365 if (wc->wait) 366 btrfs_wait_tree_block_writeback(eb); 367 } 368 return ret; 369 } 370 371 /* 372 * Item overwrite used by replay and tree logging. eb, slot and key all refer 373 * to the src data we are copying out. 374 * 375 * root is the tree we are copying into, and path is a scratch 376 * path for use in this function (it should be released on entry and 377 * will be released on exit). 378 * 379 * If the key is already in the destination tree the existing item is 380 * overwritten. If the existing item isn't big enough, it is extended. 381 * If it is too large, it is truncated. 382 * 383 * If the key isn't in the destination yet, a new item is inserted. 384 */ 385 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 386 struct btrfs_root *root, 387 struct btrfs_path *path, 388 struct extent_buffer *eb, int slot, 389 struct btrfs_key *key) 390 { 391 int ret; 392 u32 item_size; 393 u64 saved_i_size = 0; 394 int save_old_i_size = 0; 395 unsigned long src_ptr; 396 unsigned long dst_ptr; 397 int overwrite_root = 0; 398 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 399 400 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 401 overwrite_root = 1; 402 403 item_size = btrfs_item_size_nr(eb, slot); 404 src_ptr = btrfs_item_ptr_offset(eb, slot); 405 406 /* look for the key in the destination tree */ 407 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 408 if (ret < 0) 409 return ret; 410 411 if (ret == 0) { 412 char *src_copy; 413 char *dst_copy; 414 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 415 path->slots[0]); 416 if (dst_size != item_size) 417 goto insert; 418 419 if (item_size == 0) { 420 btrfs_release_path(path); 421 return 0; 422 } 423 dst_copy = kmalloc(item_size, GFP_NOFS); 424 src_copy = kmalloc(item_size, GFP_NOFS); 425 if (!dst_copy || !src_copy) { 426 btrfs_release_path(path); 427 kfree(dst_copy); 428 kfree(src_copy); 429 return -ENOMEM; 430 } 431 432 read_extent_buffer(eb, src_copy, src_ptr, item_size); 433 434 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 435 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 436 item_size); 437 ret = memcmp(dst_copy, src_copy, item_size); 438 439 kfree(dst_copy); 440 kfree(src_copy); 441 /* 442 * they have the same contents, just return, this saves 443 * us from cowing blocks in the destination tree and doing 444 * extra writes that may not have been done by a previous 445 * sync 446 */ 447 if (ret == 0) { 448 btrfs_release_path(path); 449 return 0; 450 } 451 452 /* 453 * We need to load the old nbytes into the inode so when we 454 * replay the extents we've logged we get the right nbytes. 455 */ 456 if (inode_item) { 457 struct btrfs_inode_item *item; 458 u64 nbytes; 459 u32 mode; 460 461 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 462 struct btrfs_inode_item); 463 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 464 item = btrfs_item_ptr(eb, slot, 465 struct btrfs_inode_item); 466 btrfs_set_inode_nbytes(eb, item, nbytes); 467 468 /* 469 * If this is a directory we need to reset the i_size to 470 * 0 so that we can set it up properly when replaying 471 * the rest of the items in this log. 472 */ 473 mode = btrfs_inode_mode(eb, item); 474 if (S_ISDIR(mode)) 475 btrfs_set_inode_size(eb, item, 0); 476 } 477 } else if (inode_item) { 478 struct btrfs_inode_item *item; 479 u32 mode; 480 481 /* 482 * New inode, set nbytes to 0 so that the nbytes comes out 483 * properly when we replay the extents. 484 */ 485 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 486 btrfs_set_inode_nbytes(eb, item, 0); 487 488 /* 489 * If this is a directory we need to reset the i_size to 0 so 490 * that we can set it up properly when replaying the rest of 491 * the items in this log. 492 */ 493 mode = btrfs_inode_mode(eb, item); 494 if (S_ISDIR(mode)) 495 btrfs_set_inode_size(eb, item, 0); 496 } 497 insert: 498 btrfs_release_path(path); 499 /* try to insert the key into the destination tree */ 500 path->skip_release_on_error = 1; 501 ret = btrfs_insert_empty_item(trans, root, path, 502 key, item_size); 503 path->skip_release_on_error = 0; 504 505 /* make sure any existing item is the correct size */ 506 if (ret == -EEXIST || ret == -EOVERFLOW) { 507 u32 found_size; 508 found_size = btrfs_item_size_nr(path->nodes[0], 509 path->slots[0]); 510 if (found_size > item_size) 511 btrfs_truncate_item(path, item_size, 1); 512 else if (found_size < item_size) 513 btrfs_extend_item(path, item_size - found_size); 514 } else if (ret) { 515 return ret; 516 } 517 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 518 path->slots[0]); 519 520 /* don't overwrite an existing inode if the generation number 521 * was logged as zero. This is done when the tree logging code 522 * is just logging an inode to make sure it exists after recovery. 523 * 524 * Also, don't overwrite i_size on directories during replay. 525 * log replay inserts and removes directory items based on the 526 * state of the tree found in the subvolume, and i_size is modified 527 * as it goes 528 */ 529 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 530 struct btrfs_inode_item *src_item; 531 struct btrfs_inode_item *dst_item; 532 533 src_item = (struct btrfs_inode_item *)src_ptr; 534 dst_item = (struct btrfs_inode_item *)dst_ptr; 535 536 if (btrfs_inode_generation(eb, src_item) == 0) { 537 struct extent_buffer *dst_eb = path->nodes[0]; 538 const u64 ino_size = btrfs_inode_size(eb, src_item); 539 540 /* 541 * For regular files an ino_size == 0 is used only when 542 * logging that an inode exists, as part of a directory 543 * fsync, and the inode wasn't fsynced before. In this 544 * case don't set the size of the inode in the fs/subvol 545 * tree, otherwise we would be throwing valid data away. 546 */ 547 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 548 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 549 ino_size != 0) 550 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 551 goto no_copy; 552 } 553 554 if (overwrite_root && 555 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 556 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 557 save_old_i_size = 1; 558 saved_i_size = btrfs_inode_size(path->nodes[0], 559 dst_item); 560 } 561 } 562 563 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 564 src_ptr, item_size); 565 566 if (save_old_i_size) { 567 struct btrfs_inode_item *dst_item; 568 dst_item = (struct btrfs_inode_item *)dst_ptr; 569 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 570 } 571 572 /* make sure the generation is filled in */ 573 if (key->type == BTRFS_INODE_ITEM_KEY) { 574 struct btrfs_inode_item *dst_item; 575 dst_item = (struct btrfs_inode_item *)dst_ptr; 576 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 577 btrfs_set_inode_generation(path->nodes[0], dst_item, 578 trans->transid); 579 } 580 } 581 no_copy: 582 btrfs_mark_buffer_dirty(path->nodes[0]); 583 btrfs_release_path(path); 584 return 0; 585 } 586 587 /* 588 * simple helper to read an inode off the disk from a given root 589 * This can only be called for subvolume roots and not for the log 590 */ 591 static noinline struct inode *read_one_inode(struct btrfs_root *root, 592 u64 objectid) 593 { 594 struct inode *inode; 595 596 inode = btrfs_iget(root->fs_info->sb, objectid, root); 597 if (IS_ERR(inode)) 598 inode = NULL; 599 return inode; 600 } 601 602 /* replays a single extent in 'eb' at 'slot' with 'key' into the 603 * subvolume 'root'. path is released on entry and should be released 604 * on exit. 605 * 606 * extents in the log tree have not been allocated out of the extent 607 * tree yet. So, this completes the allocation, taking a reference 608 * as required if the extent already exists or creating a new extent 609 * if it isn't in the extent allocation tree yet. 610 * 611 * The extent is inserted into the file, dropping any existing extents 612 * from the file that overlap the new one. 613 */ 614 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 615 struct btrfs_root *root, 616 struct btrfs_path *path, 617 struct extent_buffer *eb, int slot, 618 struct btrfs_key *key) 619 { 620 struct btrfs_drop_extents_args drop_args = { 0 }; 621 struct btrfs_fs_info *fs_info = root->fs_info; 622 int found_type; 623 u64 extent_end; 624 u64 start = key->offset; 625 u64 nbytes = 0; 626 struct btrfs_file_extent_item *item; 627 struct inode *inode = NULL; 628 unsigned long size; 629 int ret = 0; 630 631 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 632 found_type = btrfs_file_extent_type(eb, item); 633 634 if (found_type == BTRFS_FILE_EXTENT_REG || 635 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 636 nbytes = btrfs_file_extent_num_bytes(eb, item); 637 extent_end = start + nbytes; 638 639 /* 640 * We don't add to the inodes nbytes if we are prealloc or a 641 * hole. 642 */ 643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 644 nbytes = 0; 645 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 646 size = btrfs_file_extent_ram_bytes(eb, item); 647 nbytes = btrfs_file_extent_ram_bytes(eb, item); 648 extent_end = ALIGN(start + size, 649 fs_info->sectorsize); 650 } else { 651 ret = 0; 652 goto out; 653 } 654 655 inode = read_one_inode(root, key->objectid); 656 if (!inode) { 657 ret = -EIO; 658 goto out; 659 } 660 661 /* 662 * first check to see if we already have this extent in the 663 * file. This must be done before the btrfs_drop_extents run 664 * so we don't try to drop this extent. 665 */ 666 ret = btrfs_lookup_file_extent(trans, root, path, 667 btrfs_ino(BTRFS_I(inode)), start, 0); 668 669 if (ret == 0 && 670 (found_type == BTRFS_FILE_EXTENT_REG || 671 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 672 struct btrfs_file_extent_item cmp1; 673 struct btrfs_file_extent_item cmp2; 674 struct btrfs_file_extent_item *existing; 675 struct extent_buffer *leaf; 676 677 leaf = path->nodes[0]; 678 existing = btrfs_item_ptr(leaf, path->slots[0], 679 struct btrfs_file_extent_item); 680 681 read_extent_buffer(eb, &cmp1, (unsigned long)item, 682 sizeof(cmp1)); 683 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 684 sizeof(cmp2)); 685 686 /* 687 * we already have a pointer to this exact extent, 688 * we don't have to do anything 689 */ 690 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 691 btrfs_release_path(path); 692 goto out; 693 } 694 } 695 btrfs_release_path(path); 696 697 /* drop any overlapping extents */ 698 drop_args.start = start; 699 drop_args.end = extent_end; 700 drop_args.drop_cache = true; 701 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args); 702 if (ret) 703 goto out; 704 705 if (found_type == BTRFS_FILE_EXTENT_REG || 706 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 707 u64 offset; 708 unsigned long dest_offset; 709 struct btrfs_key ins; 710 711 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 712 btrfs_fs_incompat(fs_info, NO_HOLES)) 713 goto update_inode; 714 715 ret = btrfs_insert_empty_item(trans, root, path, key, 716 sizeof(*item)); 717 if (ret) 718 goto out; 719 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 720 path->slots[0]); 721 copy_extent_buffer(path->nodes[0], eb, dest_offset, 722 (unsigned long)item, sizeof(*item)); 723 724 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 726 ins.type = BTRFS_EXTENT_ITEM_KEY; 727 offset = key->offset - btrfs_file_extent_offset(eb, item); 728 729 /* 730 * Manually record dirty extent, as here we did a shallow 731 * file extent item copy and skip normal backref update, 732 * but modifying extent tree all by ourselves. 733 * So need to manually record dirty extent for qgroup, 734 * as the owner of the file extent changed from log tree 735 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 736 */ 737 ret = btrfs_qgroup_trace_extent(trans, 738 btrfs_file_extent_disk_bytenr(eb, item), 739 btrfs_file_extent_disk_num_bytes(eb, item), 740 GFP_NOFS); 741 if (ret < 0) 742 goto out; 743 744 if (ins.objectid > 0) { 745 struct btrfs_ref ref = { 0 }; 746 u64 csum_start; 747 u64 csum_end; 748 LIST_HEAD(ordered_sums); 749 750 /* 751 * is this extent already allocated in the extent 752 * allocation tree? If so, just add a reference 753 */ 754 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 755 ins.offset); 756 if (ret == 0) { 757 btrfs_init_generic_ref(&ref, 758 BTRFS_ADD_DELAYED_REF, 759 ins.objectid, ins.offset, 0); 760 btrfs_init_data_ref(&ref, 761 root->root_key.objectid, 762 key->objectid, offset); 763 ret = btrfs_inc_extent_ref(trans, &ref); 764 if (ret) 765 goto out; 766 } else { 767 /* 768 * insert the extent pointer in the extent 769 * allocation tree 770 */ 771 ret = btrfs_alloc_logged_file_extent(trans, 772 root->root_key.objectid, 773 key->objectid, offset, &ins); 774 if (ret) 775 goto out; 776 } 777 btrfs_release_path(path); 778 779 if (btrfs_file_extent_compression(eb, item)) { 780 csum_start = ins.objectid; 781 csum_end = csum_start + ins.offset; 782 } else { 783 csum_start = ins.objectid + 784 btrfs_file_extent_offset(eb, item); 785 csum_end = csum_start + 786 btrfs_file_extent_num_bytes(eb, item); 787 } 788 789 ret = btrfs_lookup_csums_range(root->log_root, 790 csum_start, csum_end - 1, 791 &ordered_sums, 0); 792 if (ret) 793 goto out; 794 /* 795 * Now delete all existing cums in the csum root that 796 * cover our range. We do this because we can have an 797 * extent that is completely referenced by one file 798 * extent item and partially referenced by another 799 * file extent item (like after using the clone or 800 * extent_same ioctls). In this case if we end up doing 801 * the replay of the one that partially references the 802 * extent first, and we do not do the csum deletion 803 * below, we can get 2 csum items in the csum tree that 804 * overlap each other. For example, imagine our log has 805 * the two following file extent items: 806 * 807 * key (257 EXTENT_DATA 409600) 808 * extent data disk byte 12845056 nr 102400 809 * extent data offset 20480 nr 20480 ram 102400 810 * 811 * key (257 EXTENT_DATA 819200) 812 * extent data disk byte 12845056 nr 102400 813 * extent data offset 0 nr 102400 ram 102400 814 * 815 * Where the second one fully references the 100K extent 816 * that starts at disk byte 12845056, and the log tree 817 * has a single csum item that covers the entire range 818 * of the extent: 819 * 820 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 821 * 822 * After the first file extent item is replayed, the 823 * csum tree gets the following csum item: 824 * 825 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 826 * 827 * Which covers the 20K sub-range starting at offset 20K 828 * of our extent. Now when we replay the second file 829 * extent item, if we do not delete existing csum items 830 * that cover any of its blocks, we end up getting two 831 * csum items in our csum tree that overlap each other: 832 * 833 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 834 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 835 * 836 * Which is a problem, because after this anyone trying 837 * to lookup up for the checksum of any block of our 838 * extent starting at an offset of 40K or higher, will 839 * end up looking at the second csum item only, which 840 * does not contain the checksum for any block starting 841 * at offset 40K or higher of our extent. 842 */ 843 while (!list_empty(&ordered_sums)) { 844 struct btrfs_ordered_sum *sums; 845 sums = list_entry(ordered_sums.next, 846 struct btrfs_ordered_sum, 847 list); 848 if (!ret) 849 ret = btrfs_del_csums(trans, 850 fs_info->csum_root, 851 sums->bytenr, 852 sums->len); 853 if (!ret) 854 ret = btrfs_csum_file_blocks(trans, 855 fs_info->csum_root, sums); 856 list_del(&sums->list); 857 kfree(sums); 858 } 859 if (ret) 860 goto out; 861 } else { 862 btrfs_release_path(path); 863 } 864 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 865 /* inline extents are easy, we just overwrite them */ 866 ret = overwrite_item(trans, root, path, eb, slot, key); 867 if (ret) 868 goto out; 869 } 870 871 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, 872 extent_end - start); 873 if (ret) 874 goto out; 875 876 update_inode: 877 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found); 878 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 879 out: 880 if (inode) 881 iput(inode); 882 return ret; 883 } 884 885 /* 886 * when cleaning up conflicts between the directory names in the 887 * subvolume, directory names in the log and directory names in the 888 * inode back references, we may have to unlink inodes from directories. 889 * 890 * This is a helper function to do the unlink of a specific directory 891 * item 892 */ 893 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 894 struct btrfs_root *root, 895 struct btrfs_path *path, 896 struct btrfs_inode *dir, 897 struct btrfs_dir_item *di) 898 { 899 struct inode *inode; 900 char *name; 901 int name_len; 902 struct extent_buffer *leaf; 903 struct btrfs_key location; 904 int ret; 905 906 leaf = path->nodes[0]; 907 908 btrfs_dir_item_key_to_cpu(leaf, di, &location); 909 name_len = btrfs_dir_name_len(leaf, di); 910 name = kmalloc(name_len, GFP_NOFS); 911 if (!name) 912 return -ENOMEM; 913 914 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 915 btrfs_release_path(path); 916 917 inode = read_one_inode(root, location.objectid); 918 if (!inode) { 919 ret = -EIO; 920 goto out; 921 } 922 923 ret = link_to_fixup_dir(trans, root, path, location.objectid); 924 if (ret) 925 goto out; 926 927 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, 928 name_len); 929 if (ret) 930 goto out; 931 else 932 ret = btrfs_run_delayed_items(trans); 933 out: 934 kfree(name); 935 iput(inode); 936 return ret; 937 } 938 939 /* 940 * helper function to see if a given name and sequence number found 941 * in an inode back reference are already in a directory and correctly 942 * point to this inode 943 */ 944 static noinline int inode_in_dir(struct btrfs_root *root, 945 struct btrfs_path *path, 946 u64 dirid, u64 objectid, u64 index, 947 const char *name, int name_len) 948 { 949 struct btrfs_dir_item *di; 950 struct btrfs_key location; 951 int match = 0; 952 953 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 954 index, name, name_len, 0); 955 if (di && !IS_ERR(di)) { 956 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 957 if (location.objectid != objectid) 958 goto out; 959 } else 960 goto out; 961 btrfs_release_path(path); 962 963 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 964 if (di && !IS_ERR(di)) { 965 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 966 if (location.objectid != objectid) 967 goto out; 968 } else 969 goto out; 970 match = 1; 971 out: 972 btrfs_release_path(path); 973 return match; 974 } 975 976 /* 977 * helper function to check a log tree for a named back reference in 978 * an inode. This is used to decide if a back reference that is 979 * found in the subvolume conflicts with what we find in the log. 980 * 981 * inode backreferences may have multiple refs in a single item, 982 * during replay we process one reference at a time, and we don't 983 * want to delete valid links to a file from the subvolume if that 984 * link is also in the log. 985 */ 986 static noinline int backref_in_log(struct btrfs_root *log, 987 struct btrfs_key *key, 988 u64 ref_objectid, 989 const char *name, int namelen) 990 { 991 struct btrfs_path *path; 992 int ret; 993 994 path = btrfs_alloc_path(); 995 if (!path) 996 return -ENOMEM; 997 998 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 999 if (ret < 0) { 1000 goto out; 1001 } else if (ret == 1) { 1002 ret = 0; 1003 goto out; 1004 } 1005 1006 if (key->type == BTRFS_INODE_EXTREF_KEY) 1007 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1008 path->slots[0], 1009 ref_objectid, 1010 name, namelen); 1011 else 1012 ret = !!btrfs_find_name_in_backref(path->nodes[0], 1013 path->slots[0], 1014 name, namelen); 1015 out: 1016 btrfs_free_path(path); 1017 return ret; 1018 } 1019 1020 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 1021 struct btrfs_root *root, 1022 struct btrfs_path *path, 1023 struct btrfs_root *log_root, 1024 struct btrfs_inode *dir, 1025 struct btrfs_inode *inode, 1026 u64 inode_objectid, u64 parent_objectid, 1027 u64 ref_index, char *name, int namelen, 1028 int *search_done) 1029 { 1030 int ret; 1031 char *victim_name; 1032 int victim_name_len; 1033 struct extent_buffer *leaf; 1034 struct btrfs_dir_item *di; 1035 struct btrfs_key search_key; 1036 struct btrfs_inode_extref *extref; 1037 1038 again: 1039 /* Search old style refs */ 1040 search_key.objectid = inode_objectid; 1041 search_key.type = BTRFS_INODE_REF_KEY; 1042 search_key.offset = parent_objectid; 1043 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1044 if (ret == 0) { 1045 struct btrfs_inode_ref *victim_ref; 1046 unsigned long ptr; 1047 unsigned long ptr_end; 1048 1049 leaf = path->nodes[0]; 1050 1051 /* are we trying to overwrite a back ref for the root directory 1052 * if so, just jump out, we're done 1053 */ 1054 if (search_key.objectid == search_key.offset) 1055 return 1; 1056 1057 /* check all the names in this back reference to see 1058 * if they are in the log. if so, we allow them to stay 1059 * otherwise they must be unlinked as a conflict 1060 */ 1061 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1062 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1063 while (ptr < ptr_end) { 1064 victim_ref = (struct btrfs_inode_ref *)ptr; 1065 victim_name_len = btrfs_inode_ref_name_len(leaf, 1066 victim_ref); 1067 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1068 if (!victim_name) 1069 return -ENOMEM; 1070 1071 read_extent_buffer(leaf, victim_name, 1072 (unsigned long)(victim_ref + 1), 1073 victim_name_len); 1074 1075 ret = backref_in_log(log_root, &search_key, 1076 parent_objectid, victim_name, 1077 victim_name_len); 1078 if (ret < 0) { 1079 kfree(victim_name); 1080 return ret; 1081 } else if (!ret) { 1082 inc_nlink(&inode->vfs_inode); 1083 btrfs_release_path(path); 1084 1085 ret = btrfs_unlink_inode(trans, root, dir, inode, 1086 victim_name, victim_name_len); 1087 kfree(victim_name); 1088 if (ret) 1089 return ret; 1090 ret = btrfs_run_delayed_items(trans); 1091 if (ret) 1092 return ret; 1093 *search_done = 1; 1094 goto again; 1095 } 1096 kfree(victim_name); 1097 1098 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1099 } 1100 1101 /* 1102 * NOTE: we have searched root tree and checked the 1103 * corresponding ref, it does not need to check again. 1104 */ 1105 *search_done = 1; 1106 } 1107 btrfs_release_path(path); 1108 1109 /* Same search but for extended refs */ 1110 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1111 inode_objectid, parent_objectid, 0, 1112 0); 1113 if (!IS_ERR_OR_NULL(extref)) { 1114 u32 item_size; 1115 u32 cur_offset = 0; 1116 unsigned long base; 1117 struct inode *victim_parent; 1118 1119 leaf = path->nodes[0]; 1120 1121 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1122 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1123 1124 while (cur_offset < item_size) { 1125 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1126 1127 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1128 1129 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1130 goto next; 1131 1132 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1133 if (!victim_name) 1134 return -ENOMEM; 1135 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1136 victim_name_len); 1137 1138 search_key.objectid = inode_objectid; 1139 search_key.type = BTRFS_INODE_EXTREF_KEY; 1140 search_key.offset = btrfs_extref_hash(parent_objectid, 1141 victim_name, 1142 victim_name_len); 1143 ret = backref_in_log(log_root, &search_key, 1144 parent_objectid, victim_name, 1145 victim_name_len); 1146 if (ret < 0) { 1147 return ret; 1148 } else if (!ret) { 1149 ret = -ENOENT; 1150 victim_parent = read_one_inode(root, 1151 parent_objectid); 1152 if (victim_parent) { 1153 inc_nlink(&inode->vfs_inode); 1154 btrfs_release_path(path); 1155 1156 ret = btrfs_unlink_inode(trans, root, 1157 BTRFS_I(victim_parent), 1158 inode, 1159 victim_name, 1160 victim_name_len); 1161 if (!ret) 1162 ret = btrfs_run_delayed_items( 1163 trans); 1164 } 1165 iput(victim_parent); 1166 kfree(victim_name); 1167 if (ret) 1168 return ret; 1169 *search_done = 1; 1170 goto again; 1171 } 1172 kfree(victim_name); 1173 next: 1174 cur_offset += victim_name_len + sizeof(*extref); 1175 } 1176 *search_done = 1; 1177 } 1178 btrfs_release_path(path); 1179 1180 /* look for a conflicting sequence number */ 1181 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1182 ref_index, name, namelen, 0); 1183 if (di && !IS_ERR(di)) { 1184 ret = drop_one_dir_item(trans, root, path, dir, di); 1185 if (ret) 1186 return ret; 1187 } 1188 btrfs_release_path(path); 1189 1190 /* look for a conflicting name */ 1191 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1192 name, namelen, 0); 1193 if (di && !IS_ERR(di)) { 1194 ret = drop_one_dir_item(trans, root, path, dir, di); 1195 if (ret) 1196 return ret; 1197 } 1198 btrfs_release_path(path); 1199 1200 return 0; 1201 } 1202 1203 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1204 u32 *namelen, char **name, u64 *index, 1205 u64 *parent_objectid) 1206 { 1207 struct btrfs_inode_extref *extref; 1208 1209 extref = (struct btrfs_inode_extref *)ref_ptr; 1210 1211 *namelen = btrfs_inode_extref_name_len(eb, extref); 1212 *name = kmalloc(*namelen, GFP_NOFS); 1213 if (*name == NULL) 1214 return -ENOMEM; 1215 1216 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1217 *namelen); 1218 1219 if (index) 1220 *index = btrfs_inode_extref_index(eb, extref); 1221 if (parent_objectid) 1222 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1223 1224 return 0; 1225 } 1226 1227 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1228 u32 *namelen, char **name, u64 *index) 1229 { 1230 struct btrfs_inode_ref *ref; 1231 1232 ref = (struct btrfs_inode_ref *)ref_ptr; 1233 1234 *namelen = btrfs_inode_ref_name_len(eb, ref); 1235 *name = kmalloc(*namelen, GFP_NOFS); 1236 if (*name == NULL) 1237 return -ENOMEM; 1238 1239 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1240 1241 if (index) 1242 *index = btrfs_inode_ref_index(eb, ref); 1243 1244 return 0; 1245 } 1246 1247 /* 1248 * Take an inode reference item from the log tree and iterate all names from the 1249 * inode reference item in the subvolume tree with the same key (if it exists). 1250 * For any name that is not in the inode reference item from the log tree, do a 1251 * proper unlink of that name (that is, remove its entry from the inode 1252 * reference item and both dir index keys). 1253 */ 1254 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1255 struct btrfs_root *root, 1256 struct btrfs_path *path, 1257 struct btrfs_inode *inode, 1258 struct extent_buffer *log_eb, 1259 int log_slot, 1260 struct btrfs_key *key) 1261 { 1262 int ret; 1263 unsigned long ref_ptr; 1264 unsigned long ref_end; 1265 struct extent_buffer *eb; 1266 1267 again: 1268 btrfs_release_path(path); 1269 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1270 if (ret > 0) { 1271 ret = 0; 1272 goto out; 1273 } 1274 if (ret < 0) 1275 goto out; 1276 1277 eb = path->nodes[0]; 1278 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1279 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); 1280 while (ref_ptr < ref_end) { 1281 char *name = NULL; 1282 int namelen; 1283 u64 parent_id; 1284 1285 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1286 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1287 NULL, &parent_id); 1288 } else { 1289 parent_id = key->offset; 1290 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1291 NULL); 1292 } 1293 if (ret) 1294 goto out; 1295 1296 if (key->type == BTRFS_INODE_EXTREF_KEY) 1297 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1298 parent_id, name, 1299 namelen); 1300 else 1301 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, 1302 name, namelen); 1303 1304 if (!ret) { 1305 struct inode *dir; 1306 1307 btrfs_release_path(path); 1308 dir = read_one_inode(root, parent_id); 1309 if (!dir) { 1310 ret = -ENOENT; 1311 kfree(name); 1312 goto out; 1313 } 1314 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 1315 inode, name, namelen); 1316 kfree(name); 1317 iput(dir); 1318 if (ret) 1319 goto out; 1320 goto again; 1321 } 1322 1323 kfree(name); 1324 ref_ptr += namelen; 1325 if (key->type == BTRFS_INODE_EXTREF_KEY) 1326 ref_ptr += sizeof(struct btrfs_inode_extref); 1327 else 1328 ref_ptr += sizeof(struct btrfs_inode_ref); 1329 } 1330 ret = 0; 1331 out: 1332 btrfs_release_path(path); 1333 return ret; 1334 } 1335 1336 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1337 const u8 ref_type, const char *name, 1338 const int namelen) 1339 { 1340 struct btrfs_key key; 1341 struct btrfs_path *path; 1342 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1343 int ret; 1344 1345 path = btrfs_alloc_path(); 1346 if (!path) 1347 return -ENOMEM; 1348 1349 key.objectid = btrfs_ino(BTRFS_I(inode)); 1350 key.type = ref_type; 1351 if (key.type == BTRFS_INODE_REF_KEY) 1352 key.offset = parent_id; 1353 else 1354 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1355 1356 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1357 if (ret < 0) 1358 goto out; 1359 if (ret > 0) { 1360 ret = 0; 1361 goto out; 1362 } 1363 if (key.type == BTRFS_INODE_EXTREF_KEY) 1364 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1365 path->slots[0], parent_id, name, namelen); 1366 else 1367 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1368 name, namelen); 1369 1370 out: 1371 btrfs_free_path(path); 1372 return ret; 1373 } 1374 1375 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1376 struct inode *dir, struct inode *inode, const char *name, 1377 int namelen, u64 ref_index) 1378 { 1379 struct btrfs_dir_item *dir_item; 1380 struct btrfs_key key; 1381 struct btrfs_path *path; 1382 struct inode *other_inode = NULL; 1383 int ret; 1384 1385 path = btrfs_alloc_path(); 1386 if (!path) 1387 return -ENOMEM; 1388 1389 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1390 btrfs_ino(BTRFS_I(dir)), 1391 name, namelen, 0); 1392 if (!dir_item) { 1393 btrfs_release_path(path); 1394 goto add_link; 1395 } else if (IS_ERR(dir_item)) { 1396 ret = PTR_ERR(dir_item); 1397 goto out; 1398 } 1399 1400 /* 1401 * Our inode's dentry collides with the dentry of another inode which is 1402 * in the log but not yet processed since it has a higher inode number. 1403 * So delete that other dentry. 1404 */ 1405 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1406 btrfs_release_path(path); 1407 other_inode = read_one_inode(root, key.objectid); 1408 if (!other_inode) { 1409 ret = -ENOENT; 1410 goto out; 1411 } 1412 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode), 1413 name, namelen); 1414 if (ret) 1415 goto out; 1416 /* 1417 * If we dropped the link count to 0, bump it so that later the iput() 1418 * on the inode will not free it. We will fixup the link count later. 1419 */ 1420 if (other_inode->i_nlink == 0) 1421 inc_nlink(other_inode); 1422 1423 ret = btrfs_run_delayed_items(trans); 1424 if (ret) 1425 goto out; 1426 add_link: 1427 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1428 name, namelen, 0, ref_index); 1429 out: 1430 iput(other_inode); 1431 btrfs_free_path(path); 1432 1433 return ret; 1434 } 1435 1436 /* 1437 * replay one inode back reference item found in the log tree. 1438 * eb, slot and key refer to the buffer and key found in the log tree. 1439 * root is the destination we are replaying into, and path is for temp 1440 * use by this function. (it should be released on return). 1441 */ 1442 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1443 struct btrfs_root *root, 1444 struct btrfs_root *log, 1445 struct btrfs_path *path, 1446 struct extent_buffer *eb, int slot, 1447 struct btrfs_key *key) 1448 { 1449 struct inode *dir = NULL; 1450 struct inode *inode = NULL; 1451 unsigned long ref_ptr; 1452 unsigned long ref_end; 1453 char *name = NULL; 1454 int namelen; 1455 int ret; 1456 int search_done = 0; 1457 int log_ref_ver = 0; 1458 u64 parent_objectid; 1459 u64 inode_objectid; 1460 u64 ref_index = 0; 1461 int ref_struct_size; 1462 1463 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1464 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1465 1466 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1467 struct btrfs_inode_extref *r; 1468 1469 ref_struct_size = sizeof(struct btrfs_inode_extref); 1470 log_ref_ver = 1; 1471 r = (struct btrfs_inode_extref *)ref_ptr; 1472 parent_objectid = btrfs_inode_extref_parent(eb, r); 1473 } else { 1474 ref_struct_size = sizeof(struct btrfs_inode_ref); 1475 parent_objectid = key->offset; 1476 } 1477 inode_objectid = key->objectid; 1478 1479 /* 1480 * it is possible that we didn't log all the parent directories 1481 * for a given inode. If we don't find the dir, just don't 1482 * copy the back ref in. The link count fixup code will take 1483 * care of the rest 1484 */ 1485 dir = read_one_inode(root, parent_objectid); 1486 if (!dir) { 1487 ret = -ENOENT; 1488 goto out; 1489 } 1490 1491 inode = read_one_inode(root, inode_objectid); 1492 if (!inode) { 1493 ret = -EIO; 1494 goto out; 1495 } 1496 1497 while (ref_ptr < ref_end) { 1498 if (log_ref_ver) { 1499 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1500 &ref_index, &parent_objectid); 1501 /* 1502 * parent object can change from one array 1503 * item to another. 1504 */ 1505 if (!dir) 1506 dir = read_one_inode(root, parent_objectid); 1507 if (!dir) { 1508 ret = -ENOENT; 1509 goto out; 1510 } 1511 } else { 1512 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1513 &ref_index); 1514 } 1515 if (ret) 1516 goto out; 1517 1518 /* if we already have a perfect match, we're done */ 1519 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1520 btrfs_ino(BTRFS_I(inode)), ref_index, 1521 name, namelen)) { 1522 /* 1523 * look for a conflicting back reference in the 1524 * metadata. if we find one we have to unlink that name 1525 * of the file before we add our new link. Later on, we 1526 * overwrite any existing back reference, and we don't 1527 * want to create dangling pointers in the directory. 1528 */ 1529 1530 if (!search_done) { 1531 ret = __add_inode_ref(trans, root, path, log, 1532 BTRFS_I(dir), 1533 BTRFS_I(inode), 1534 inode_objectid, 1535 parent_objectid, 1536 ref_index, name, namelen, 1537 &search_done); 1538 if (ret) { 1539 if (ret == 1) 1540 ret = 0; 1541 goto out; 1542 } 1543 } 1544 1545 /* 1546 * If a reference item already exists for this inode 1547 * with the same parent and name, but different index, 1548 * drop it and the corresponding directory index entries 1549 * from the parent before adding the new reference item 1550 * and dir index entries, otherwise we would fail with 1551 * -EEXIST returned from btrfs_add_link() below. 1552 */ 1553 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1554 name, namelen); 1555 if (ret > 0) { 1556 ret = btrfs_unlink_inode(trans, root, 1557 BTRFS_I(dir), 1558 BTRFS_I(inode), 1559 name, namelen); 1560 /* 1561 * If we dropped the link count to 0, bump it so 1562 * that later the iput() on the inode will not 1563 * free it. We will fixup the link count later. 1564 */ 1565 if (!ret && inode->i_nlink == 0) 1566 inc_nlink(inode); 1567 } 1568 if (ret < 0) 1569 goto out; 1570 1571 /* insert our name */ 1572 ret = add_link(trans, root, dir, inode, name, namelen, 1573 ref_index); 1574 if (ret) 1575 goto out; 1576 1577 btrfs_update_inode(trans, root, BTRFS_I(inode)); 1578 } 1579 1580 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1581 kfree(name); 1582 name = NULL; 1583 if (log_ref_ver) { 1584 iput(dir); 1585 dir = NULL; 1586 } 1587 } 1588 1589 /* 1590 * Before we overwrite the inode reference item in the subvolume tree 1591 * with the item from the log tree, we must unlink all names from the 1592 * parent directory that are in the subvolume's tree inode reference 1593 * item, otherwise we end up with an inconsistent subvolume tree where 1594 * dir index entries exist for a name but there is no inode reference 1595 * item with the same name. 1596 */ 1597 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1598 key); 1599 if (ret) 1600 goto out; 1601 1602 /* finally write the back reference in the inode */ 1603 ret = overwrite_item(trans, root, path, eb, slot, key); 1604 out: 1605 btrfs_release_path(path); 1606 kfree(name); 1607 iput(dir); 1608 iput(inode); 1609 return ret; 1610 } 1611 1612 static int count_inode_extrefs(struct btrfs_root *root, 1613 struct btrfs_inode *inode, struct btrfs_path *path) 1614 { 1615 int ret = 0; 1616 int name_len; 1617 unsigned int nlink = 0; 1618 u32 item_size; 1619 u32 cur_offset = 0; 1620 u64 inode_objectid = btrfs_ino(inode); 1621 u64 offset = 0; 1622 unsigned long ptr; 1623 struct btrfs_inode_extref *extref; 1624 struct extent_buffer *leaf; 1625 1626 while (1) { 1627 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1628 &extref, &offset); 1629 if (ret) 1630 break; 1631 1632 leaf = path->nodes[0]; 1633 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1634 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1635 cur_offset = 0; 1636 1637 while (cur_offset < item_size) { 1638 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1639 name_len = btrfs_inode_extref_name_len(leaf, extref); 1640 1641 nlink++; 1642 1643 cur_offset += name_len + sizeof(*extref); 1644 } 1645 1646 offset++; 1647 btrfs_release_path(path); 1648 } 1649 btrfs_release_path(path); 1650 1651 if (ret < 0 && ret != -ENOENT) 1652 return ret; 1653 return nlink; 1654 } 1655 1656 static int count_inode_refs(struct btrfs_root *root, 1657 struct btrfs_inode *inode, struct btrfs_path *path) 1658 { 1659 int ret; 1660 struct btrfs_key key; 1661 unsigned int nlink = 0; 1662 unsigned long ptr; 1663 unsigned long ptr_end; 1664 int name_len; 1665 u64 ino = btrfs_ino(inode); 1666 1667 key.objectid = ino; 1668 key.type = BTRFS_INODE_REF_KEY; 1669 key.offset = (u64)-1; 1670 1671 while (1) { 1672 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1673 if (ret < 0) 1674 break; 1675 if (ret > 0) { 1676 if (path->slots[0] == 0) 1677 break; 1678 path->slots[0]--; 1679 } 1680 process_slot: 1681 btrfs_item_key_to_cpu(path->nodes[0], &key, 1682 path->slots[0]); 1683 if (key.objectid != ino || 1684 key.type != BTRFS_INODE_REF_KEY) 1685 break; 1686 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1687 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1688 path->slots[0]); 1689 while (ptr < ptr_end) { 1690 struct btrfs_inode_ref *ref; 1691 1692 ref = (struct btrfs_inode_ref *)ptr; 1693 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1694 ref); 1695 ptr = (unsigned long)(ref + 1) + name_len; 1696 nlink++; 1697 } 1698 1699 if (key.offset == 0) 1700 break; 1701 if (path->slots[0] > 0) { 1702 path->slots[0]--; 1703 goto process_slot; 1704 } 1705 key.offset--; 1706 btrfs_release_path(path); 1707 } 1708 btrfs_release_path(path); 1709 1710 return nlink; 1711 } 1712 1713 /* 1714 * There are a few corners where the link count of the file can't 1715 * be properly maintained during replay. So, instead of adding 1716 * lots of complexity to the log code, we just scan the backrefs 1717 * for any file that has been through replay. 1718 * 1719 * The scan will update the link count on the inode to reflect the 1720 * number of back refs found. If it goes down to zero, the iput 1721 * will free the inode. 1722 */ 1723 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1724 struct btrfs_root *root, 1725 struct inode *inode) 1726 { 1727 struct btrfs_path *path; 1728 int ret; 1729 u64 nlink = 0; 1730 u64 ino = btrfs_ino(BTRFS_I(inode)); 1731 1732 path = btrfs_alloc_path(); 1733 if (!path) 1734 return -ENOMEM; 1735 1736 ret = count_inode_refs(root, BTRFS_I(inode), path); 1737 if (ret < 0) 1738 goto out; 1739 1740 nlink = ret; 1741 1742 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1743 if (ret < 0) 1744 goto out; 1745 1746 nlink += ret; 1747 1748 ret = 0; 1749 1750 if (nlink != inode->i_nlink) { 1751 set_nlink(inode, nlink); 1752 btrfs_update_inode(trans, root, BTRFS_I(inode)); 1753 } 1754 BTRFS_I(inode)->index_cnt = (u64)-1; 1755 1756 if (inode->i_nlink == 0) { 1757 if (S_ISDIR(inode->i_mode)) { 1758 ret = replay_dir_deletes(trans, root, NULL, path, 1759 ino, 1); 1760 if (ret) 1761 goto out; 1762 } 1763 ret = btrfs_insert_orphan_item(trans, root, ino); 1764 if (ret == -EEXIST) 1765 ret = 0; 1766 } 1767 1768 out: 1769 btrfs_free_path(path); 1770 return ret; 1771 } 1772 1773 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1774 struct btrfs_root *root, 1775 struct btrfs_path *path) 1776 { 1777 int ret; 1778 struct btrfs_key key; 1779 struct inode *inode; 1780 1781 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1782 key.type = BTRFS_ORPHAN_ITEM_KEY; 1783 key.offset = (u64)-1; 1784 while (1) { 1785 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1786 if (ret < 0) 1787 break; 1788 1789 if (ret == 1) { 1790 if (path->slots[0] == 0) 1791 break; 1792 path->slots[0]--; 1793 } 1794 1795 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1796 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1797 key.type != BTRFS_ORPHAN_ITEM_KEY) 1798 break; 1799 1800 ret = btrfs_del_item(trans, root, path); 1801 if (ret) 1802 goto out; 1803 1804 btrfs_release_path(path); 1805 inode = read_one_inode(root, key.offset); 1806 if (!inode) 1807 return -EIO; 1808 1809 ret = fixup_inode_link_count(trans, root, inode); 1810 iput(inode); 1811 if (ret) 1812 goto out; 1813 1814 /* 1815 * fixup on a directory may create new entries, 1816 * make sure we always look for the highset possible 1817 * offset 1818 */ 1819 key.offset = (u64)-1; 1820 } 1821 ret = 0; 1822 out: 1823 btrfs_release_path(path); 1824 return ret; 1825 } 1826 1827 1828 /* 1829 * record a given inode in the fixup dir so we can check its link 1830 * count when replay is done. The link count is incremented here 1831 * so the inode won't go away until we check it 1832 */ 1833 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1834 struct btrfs_root *root, 1835 struct btrfs_path *path, 1836 u64 objectid) 1837 { 1838 struct btrfs_key key; 1839 int ret = 0; 1840 struct inode *inode; 1841 1842 inode = read_one_inode(root, objectid); 1843 if (!inode) 1844 return -EIO; 1845 1846 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1847 key.type = BTRFS_ORPHAN_ITEM_KEY; 1848 key.offset = objectid; 1849 1850 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1851 1852 btrfs_release_path(path); 1853 if (ret == 0) { 1854 if (!inode->i_nlink) 1855 set_nlink(inode, 1); 1856 else 1857 inc_nlink(inode); 1858 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1859 } else if (ret == -EEXIST) { 1860 ret = 0; 1861 } else { 1862 BUG(); /* Logic Error */ 1863 } 1864 iput(inode); 1865 1866 return ret; 1867 } 1868 1869 /* 1870 * when replaying the log for a directory, we only insert names 1871 * for inodes that actually exist. This means an fsync on a directory 1872 * does not implicitly fsync all the new files in it 1873 */ 1874 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1875 struct btrfs_root *root, 1876 u64 dirid, u64 index, 1877 char *name, int name_len, 1878 struct btrfs_key *location) 1879 { 1880 struct inode *inode; 1881 struct inode *dir; 1882 int ret; 1883 1884 inode = read_one_inode(root, location->objectid); 1885 if (!inode) 1886 return -ENOENT; 1887 1888 dir = read_one_inode(root, dirid); 1889 if (!dir) { 1890 iput(inode); 1891 return -EIO; 1892 } 1893 1894 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1895 name_len, 1, index); 1896 1897 /* FIXME, put inode into FIXUP list */ 1898 1899 iput(inode); 1900 iput(dir); 1901 return ret; 1902 } 1903 1904 /* 1905 * take a single entry in a log directory item and replay it into 1906 * the subvolume. 1907 * 1908 * if a conflicting item exists in the subdirectory already, 1909 * the inode it points to is unlinked and put into the link count 1910 * fix up tree. 1911 * 1912 * If a name from the log points to a file or directory that does 1913 * not exist in the FS, it is skipped. fsyncs on directories 1914 * do not force down inodes inside that directory, just changes to the 1915 * names or unlinks in a directory. 1916 * 1917 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1918 * non-existing inode) and 1 if the name was replayed. 1919 */ 1920 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1921 struct btrfs_root *root, 1922 struct btrfs_path *path, 1923 struct extent_buffer *eb, 1924 struct btrfs_dir_item *di, 1925 struct btrfs_key *key) 1926 { 1927 char *name; 1928 int name_len; 1929 struct btrfs_dir_item *dst_di; 1930 struct btrfs_key found_key; 1931 struct btrfs_key log_key; 1932 struct inode *dir; 1933 u8 log_type; 1934 int exists; 1935 int ret = 0; 1936 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1937 bool name_added = false; 1938 1939 dir = read_one_inode(root, key->objectid); 1940 if (!dir) 1941 return -EIO; 1942 1943 name_len = btrfs_dir_name_len(eb, di); 1944 name = kmalloc(name_len, GFP_NOFS); 1945 if (!name) { 1946 ret = -ENOMEM; 1947 goto out; 1948 } 1949 1950 log_type = btrfs_dir_type(eb, di); 1951 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1952 name_len); 1953 1954 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1955 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1956 if (exists == 0) 1957 exists = 1; 1958 else 1959 exists = 0; 1960 btrfs_release_path(path); 1961 1962 if (key->type == BTRFS_DIR_ITEM_KEY) { 1963 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1964 name, name_len, 1); 1965 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1966 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1967 key->objectid, 1968 key->offset, name, 1969 name_len, 1); 1970 } else { 1971 /* Corruption */ 1972 ret = -EINVAL; 1973 goto out; 1974 } 1975 if (IS_ERR_OR_NULL(dst_di)) { 1976 /* we need a sequence number to insert, so we only 1977 * do inserts for the BTRFS_DIR_INDEX_KEY types 1978 */ 1979 if (key->type != BTRFS_DIR_INDEX_KEY) 1980 goto out; 1981 goto insert; 1982 } 1983 1984 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1985 /* the existing item matches the logged item */ 1986 if (found_key.objectid == log_key.objectid && 1987 found_key.type == log_key.type && 1988 found_key.offset == log_key.offset && 1989 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1990 update_size = false; 1991 goto out; 1992 } 1993 1994 /* 1995 * don't drop the conflicting directory entry if the inode 1996 * for the new entry doesn't exist 1997 */ 1998 if (!exists) 1999 goto out; 2000 2001 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); 2002 if (ret) 2003 goto out; 2004 2005 if (key->type == BTRFS_DIR_INDEX_KEY) 2006 goto insert; 2007 out: 2008 btrfs_release_path(path); 2009 if (!ret && update_size) { 2010 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 2011 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 2012 } 2013 kfree(name); 2014 iput(dir); 2015 if (!ret && name_added) 2016 ret = 1; 2017 return ret; 2018 2019 insert: 2020 /* 2021 * Check if the inode reference exists in the log for the given name, 2022 * inode and parent inode 2023 */ 2024 found_key.objectid = log_key.objectid; 2025 found_key.type = BTRFS_INODE_REF_KEY; 2026 found_key.offset = key->objectid; 2027 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len); 2028 if (ret < 0) { 2029 goto out; 2030 } else if (ret) { 2031 /* The dentry will be added later. */ 2032 ret = 0; 2033 update_size = false; 2034 goto out; 2035 } 2036 2037 found_key.objectid = log_key.objectid; 2038 found_key.type = BTRFS_INODE_EXTREF_KEY; 2039 found_key.offset = key->objectid; 2040 ret = backref_in_log(root->log_root, &found_key, key->objectid, name, 2041 name_len); 2042 if (ret < 0) { 2043 goto out; 2044 } else if (ret) { 2045 /* The dentry will be added later. */ 2046 ret = 0; 2047 update_size = false; 2048 goto out; 2049 } 2050 btrfs_release_path(path); 2051 ret = insert_one_name(trans, root, key->objectid, key->offset, 2052 name, name_len, &log_key); 2053 if (ret && ret != -ENOENT && ret != -EEXIST) 2054 goto out; 2055 if (!ret) 2056 name_added = true; 2057 update_size = false; 2058 ret = 0; 2059 goto out; 2060 } 2061 2062 /* 2063 * find all the names in a directory item and reconcile them into 2064 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 2065 * one name in a directory item, but the same code gets used for 2066 * both directory index types 2067 */ 2068 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2069 struct btrfs_root *root, 2070 struct btrfs_path *path, 2071 struct extent_buffer *eb, int slot, 2072 struct btrfs_key *key) 2073 { 2074 int ret = 0; 2075 u32 item_size = btrfs_item_size_nr(eb, slot); 2076 struct btrfs_dir_item *di; 2077 int name_len; 2078 unsigned long ptr; 2079 unsigned long ptr_end; 2080 struct btrfs_path *fixup_path = NULL; 2081 2082 ptr = btrfs_item_ptr_offset(eb, slot); 2083 ptr_end = ptr + item_size; 2084 while (ptr < ptr_end) { 2085 di = (struct btrfs_dir_item *)ptr; 2086 name_len = btrfs_dir_name_len(eb, di); 2087 ret = replay_one_name(trans, root, path, eb, di, key); 2088 if (ret < 0) 2089 break; 2090 ptr = (unsigned long)(di + 1); 2091 ptr += name_len; 2092 2093 /* 2094 * If this entry refers to a non-directory (directories can not 2095 * have a link count > 1) and it was added in the transaction 2096 * that was not committed, make sure we fixup the link count of 2097 * the inode it the entry points to. Otherwise something like 2098 * the following would result in a directory pointing to an 2099 * inode with a wrong link that does not account for this dir 2100 * entry: 2101 * 2102 * mkdir testdir 2103 * touch testdir/foo 2104 * touch testdir/bar 2105 * sync 2106 * 2107 * ln testdir/bar testdir/bar_link 2108 * ln testdir/foo testdir/foo_link 2109 * xfs_io -c "fsync" testdir/bar 2110 * 2111 * <power failure> 2112 * 2113 * mount fs, log replay happens 2114 * 2115 * File foo would remain with a link count of 1 when it has two 2116 * entries pointing to it in the directory testdir. This would 2117 * make it impossible to ever delete the parent directory has 2118 * it would result in stale dentries that can never be deleted. 2119 */ 2120 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2121 struct btrfs_key di_key; 2122 2123 if (!fixup_path) { 2124 fixup_path = btrfs_alloc_path(); 2125 if (!fixup_path) { 2126 ret = -ENOMEM; 2127 break; 2128 } 2129 } 2130 2131 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2132 ret = link_to_fixup_dir(trans, root, fixup_path, 2133 di_key.objectid); 2134 if (ret) 2135 break; 2136 } 2137 ret = 0; 2138 } 2139 btrfs_free_path(fixup_path); 2140 return ret; 2141 } 2142 2143 /* 2144 * directory replay has two parts. There are the standard directory 2145 * items in the log copied from the subvolume, and range items 2146 * created in the log while the subvolume was logged. 2147 * 2148 * The range items tell us which parts of the key space the log 2149 * is authoritative for. During replay, if a key in the subvolume 2150 * directory is in a logged range item, but not actually in the log 2151 * that means it was deleted from the directory before the fsync 2152 * and should be removed. 2153 */ 2154 static noinline int find_dir_range(struct btrfs_root *root, 2155 struct btrfs_path *path, 2156 u64 dirid, int key_type, 2157 u64 *start_ret, u64 *end_ret) 2158 { 2159 struct btrfs_key key; 2160 u64 found_end; 2161 struct btrfs_dir_log_item *item; 2162 int ret; 2163 int nritems; 2164 2165 if (*start_ret == (u64)-1) 2166 return 1; 2167 2168 key.objectid = dirid; 2169 key.type = key_type; 2170 key.offset = *start_ret; 2171 2172 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2173 if (ret < 0) 2174 goto out; 2175 if (ret > 0) { 2176 if (path->slots[0] == 0) 2177 goto out; 2178 path->slots[0]--; 2179 } 2180 if (ret != 0) 2181 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2182 2183 if (key.type != key_type || key.objectid != dirid) { 2184 ret = 1; 2185 goto next; 2186 } 2187 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2188 struct btrfs_dir_log_item); 2189 found_end = btrfs_dir_log_end(path->nodes[0], item); 2190 2191 if (*start_ret >= key.offset && *start_ret <= found_end) { 2192 ret = 0; 2193 *start_ret = key.offset; 2194 *end_ret = found_end; 2195 goto out; 2196 } 2197 ret = 1; 2198 next: 2199 /* check the next slot in the tree to see if it is a valid item */ 2200 nritems = btrfs_header_nritems(path->nodes[0]); 2201 path->slots[0]++; 2202 if (path->slots[0] >= nritems) { 2203 ret = btrfs_next_leaf(root, path); 2204 if (ret) 2205 goto out; 2206 } 2207 2208 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2209 2210 if (key.type != key_type || key.objectid != dirid) { 2211 ret = 1; 2212 goto out; 2213 } 2214 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2215 struct btrfs_dir_log_item); 2216 found_end = btrfs_dir_log_end(path->nodes[0], item); 2217 *start_ret = key.offset; 2218 *end_ret = found_end; 2219 ret = 0; 2220 out: 2221 btrfs_release_path(path); 2222 return ret; 2223 } 2224 2225 /* 2226 * this looks for a given directory item in the log. If the directory 2227 * item is not in the log, the item is removed and the inode it points 2228 * to is unlinked 2229 */ 2230 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2231 struct btrfs_root *root, 2232 struct btrfs_root *log, 2233 struct btrfs_path *path, 2234 struct btrfs_path *log_path, 2235 struct inode *dir, 2236 struct btrfs_key *dir_key) 2237 { 2238 int ret; 2239 struct extent_buffer *eb; 2240 int slot; 2241 u32 item_size; 2242 struct btrfs_dir_item *di; 2243 struct btrfs_dir_item *log_di; 2244 int name_len; 2245 unsigned long ptr; 2246 unsigned long ptr_end; 2247 char *name; 2248 struct inode *inode; 2249 struct btrfs_key location; 2250 2251 again: 2252 eb = path->nodes[0]; 2253 slot = path->slots[0]; 2254 item_size = btrfs_item_size_nr(eb, slot); 2255 ptr = btrfs_item_ptr_offset(eb, slot); 2256 ptr_end = ptr + item_size; 2257 while (ptr < ptr_end) { 2258 di = (struct btrfs_dir_item *)ptr; 2259 name_len = btrfs_dir_name_len(eb, di); 2260 name = kmalloc(name_len, GFP_NOFS); 2261 if (!name) { 2262 ret = -ENOMEM; 2263 goto out; 2264 } 2265 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2266 name_len); 2267 log_di = NULL; 2268 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2269 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2270 dir_key->objectid, 2271 name, name_len, 0); 2272 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2273 log_di = btrfs_lookup_dir_index_item(trans, log, 2274 log_path, 2275 dir_key->objectid, 2276 dir_key->offset, 2277 name, name_len, 0); 2278 } 2279 if (!log_di || log_di == ERR_PTR(-ENOENT)) { 2280 btrfs_dir_item_key_to_cpu(eb, di, &location); 2281 btrfs_release_path(path); 2282 btrfs_release_path(log_path); 2283 inode = read_one_inode(root, location.objectid); 2284 if (!inode) { 2285 kfree(name); 2286 return -EIO; 2287 } 2288 2289 ret = link_to_fixup_dir(trans, root, 2290 path, location.objectid); 2291 if (ret) { 2292 kfree(name); 2293 iput(inode); 2294 goto out; 2295 } 2296 2297 inc_nlink(inode); 2298 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 2299 BTRFS_I(inode), name, name_len); 2300 if (!ret) 2301 ret = btrfs_run_delayed_items(trans); 2302 kfree(name); 2303 iput(inode); 2304 if (ret) 2305 goto out; 2306 2307 /* there might still be more names under this key 2308 * check and repeat if required 2309 */ 2310 ret = btrfs_search_slot(NULL, root, dir_key, path, 2311 0, 0); 2312 if (ret == 0) 2313 goto again; 2314 ret = 0; 2315 goto out; 2316 } else if (IS_ERR(log_di)) { 2317 kfree(name); 2318 return PTR_ERR(log_di); 2319 } 2320 btrfs_release_path(log_path); 2321 kfree(name); 2322 2323 ptr = (unsigned long)(di + 1); 2324 ptr += name_len; 2325 } 2326 ret = 0; 2327 out: 2328 btrfs_release_path(path); 2329 btrfs_release_path(log_path); 2330 return ret; 2331 } 2332 2333 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2334 struct btrfs_root *root, 2335 struct btrfs_root *log, 2336 struct btrfs_path *path, 2337 const u64 ino) 2338 { 2339 struct btrfs_key search_key; 2340 struct btrfs_path *log_path; 2341 int i; 2342 int nritems; 2343 int ret; 2344 2345 log_path = btrfs_alloc_path(); 2346 if (!log_path) 2347 return -ENOMEM; 2348 2349 search_key.objectid = ino; 2350 search_key.type = BTRFS_XATTR_ITEM_KEY; 2351 search_key.offset = 0; 2352 again: 2353 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2354 if (ret < 0) 2355 goto out; 2356 process_leaf: 2357 nritems = btrfs_header_nritems(path->nodes[0]); 2358 for (i = path->slots[0]; i < nritems; i++) { 2359 struct btrfs_key key; 2360 struct btrfs_dir_item *di; 2361 struct btrfs_dir_item *log_di; 2362 u32 total_size; 2363 u32 cur; 2364 2365 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2366 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2367 ret = 0; 2368 goto out; 2369 } 2370 2371 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2372 total_size = btrfs_item_size_nr(path->nodes[0], i); 2373 cur = 0; 2374 while (cur < total_size) { 2375 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2376 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2377 u32 this_len = sizeof(*di) + name_len + data_len; 2378 char *name; 2379 2380 name = kmalloc(name_len, GFP_NOFS); 2381 if (!name) { 2382 ret = -ENOMEM; 2383 goto out; 2384 } 2385 read_extent_buffer(path->nodes[0], name, 2386 (unsigned long)(di + 1), name_len); 2387 2388 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2389 name, name_len, 0); 2390 btrfs_release_path(log_path); 2391 if (!log_di) { 2392 /* Doesn't exist in log tree, so delete it. */ 2393 btrfs_release_path(path); 2394 di = btrfs_lookup_xattr(trans, root, path, ino, 2395 name, name_len, -1); 2396 kfree(name); 2397 if (IS_ERR(di)) { 2398 ret = PTR_ERR(di); 2399 goto out; 2400 } 2401 ASSERT(di); 2402 ret = btrfs_delete_one_dir_name(trans, root, 2403 path, di); 2404 if (ret) 2405 goto out; 2406 btrfs_release_path(path); 2407 search_key = key; 2408 goto again; 2409 } 2410 kfree(name); 2411 if (IS_ERR(log_di)) { 2412 ret = PTR_ERR(log_di); 2413 goto out; 2414 } 2415 cur += this_len; 2416 di = (struct btrfs_dir_item *)((char *)di + this_len); 2417 } 2418 } 2419 ret = btrfs_next_leaf(root, path); 2420 if (ret > 0) 2421 ret = 0; 2422 else if (ret == 0) 2423 goto process_leaf; 2424 out: 2425 btrfs_free_path(log_path); 2426 btrfs_release_path(path); 2427 return ret; 2428 } 2429 2430 2431 /* 2432 * deletion replay happens before we copy any new directory items 2433 * out of the log or out of backreferences from inodes. It 2434 * scans the log to find ranges of keys that log is authoritative for, 2435 * and then scans the directory to find items in those ranges that are 2436 * not present in the log. 2437 * 2438 * Anything we don't find in the log is unlinked and removed from the 2439 * directory. 2440 */ 2441 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2442 struct btrfs_root *root, 2443 struct btrfs_root *log, 2444 struct btrfs_path *path, 2445 u64 dirid, int del_all) 2446 { 2447 u64 range_start; 2448 u64 range_end; 2449 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2450 int ret = 0; 2451 struct btrfs_key dir_key; 2452 struct btrfs_key found_key; 2453 struct btrfs_path *log_path; 2454 struct inode *dir; 2455 2456 dir_key.objectid = dirid; 2457 dir_key.type = BTRFS_DIR_ITEM_KEY; 2458 log_path = btrfs_alloc_path(); 2459 if (!log_path) 2460 return -ENOMEM; 2461 2462 dir = read_one_inode(root, dirid); 2463 /* it isn't an error if the inode isn't there, that can happen 2464 * because we replay the deletes before we copy in the inode item 2465 * from the log 2466 */ 2467 if (!dir) { 2468 btrfs_free_path(log_path); 2469 return 0; 2470 } 2471 again: 2472 range_start = 0; 2473 range_end = 0; 2474 while (1) { 2475 if (del_all) 2476 range_end = (u64)-1; 2477 else { 2478 ret = find_dir_range(log, path, dirid, key_type, 2479 &range_start, &range_end); 2480 if (ret != 0) 2481 break; 2482 } 2483 2484 dir_key.offset = range_start; 2485 while (1) { 2486 int nritems; 2487 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2488 0, 0); 2489 if (ret < 0) 2490 goto out; 2491 2492 nritems = btrfs_header_nritems(path->nodes[0]); 2493 if (path->slots[0] >= nritems) { 2494 ret = btrfs_next_leaf(root, path); 2495 if (ret == 1) 2496 break; 2497 else if (ret < 0) 2498 goto out; 2499 } 2500 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2501 path->slots[0]); 2502 if (found_key.objectid != dirid || 2503 found_key.type != dir_key.type) 2504 goto next_type; 2505 2506 if (found_key.offset > range_end) 2507 break; 2508 2509 ret = check_item_in_log(trans, root, log, path, 2510 log_path, dir, 2511 &found_key); 2512 if (ret) 2513 goto out; 2514 if (found_key.offset == (u64)-1) 2515 break; 2516 dir_key.offset = found_key.offset + 1; 2517 } 2518 btrfs_release_path(path); 2519 if (range_end == (u64)-1) 2520 break; 2521 range_start = range_end + 1; 2522 } 2523 2524 next_type: 2525 ret = 0; 2526 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2527 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2528 dir_key.type = BTRFS_DIR_INDEX_KEY; 2529 btrfs_release_path(path); 2530 goto again; 2531 } 2532 out: 2533 btrfs_release_path(path); 2534 btrfs_free_path(log_path); 2535 iput(dir); 2536 return ret; 2537 } 2538 2539 /* 2540 * the process_func used to replay items from the log tree. This 2541 * gets called in two different stages. The first stage just looks 2542 * for inodes and makes sure they are all copied into the subvolume. 2543 * 2544 * The second stage copies all the other item types from the log into 2545 * the subvolume. The two stage approach is slower, but gets rid of 2546 * lots of complexity around inodes referencing other inodes that exist 2547 * only in the log (references come from either directory items or inode 2548 * back refs). 2549 */ 2550 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2551 struct walk_control *wc, u64 gen, int level) 2552 { 2553 int nritems; 2554 struct btrfs_path *path; 2555 struct btrfs_root *root = wc->replay_dest; 2556 struct btrfs_key key; 2557 int i; 2558 int ret; 2559 2560 ret = btrfs_read_buffer(eb, gen, level, NULL); 2561 if (ret) 2562 return ret; 2563 2564 level = btrfs_header_level(eb); 2565 2566 if (level != 0) 2567 return 0; 2568 2569 path = btrfs_alloc_path(); 2570 if (!path) 2571 return -ENOMEM; 2572 2573 nritems = btrfs_header_nritems(eb); 2574 for (i = 0; i < nritems; i++) { 2575 btrfs_item_key_to_cpu(eb, &key, i); 2576 2577 /* inode keys are done during the first stage */ 2578 if (key.type == BTRFS_INODE_ITEM_KEY && 2579 wc->stage == LOG_WALK_REPLAY_INODES) { 2580 struct btrfs_inode_item *inode_item; 2581 u32 mode; 2582 2583 inode_item = btrfs_item_ptr(eb, i, 2584 struct btrfs_inode_item); 2585 /* 2586 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2587 * and never got linked before the fsync, skip it, as 2588 * replaying it is pointless since it would be deleted 2589 * later. We skip logging tmpfiles, but it's always 2590 * possible we are replaying a log created with a kernel 2591 * that used to log tmpfiles. 2592 */ 2593 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2594 wc->ignore_cur_inode = true; 2595 continue; 2596 } else { 2597 wc->ignore_cur_inode = false; 2598 } 2599 ret = replay_xattr_deletes(wc->trans, root, log, 2600 path, key.objectid); 2601 if (ret) 2602 break; 2603 mode = btrfs_inode_mode(eb, inode_item); 2604 if (S_ISDIR(mode)) { 2605 ret = replay_dir_deletes(wc->trans, 2606 root, log, path, key.objectid, 0); 2607 if (ret) 2608 break; 2609 } 2610 ret = overwrite_item(wc->trans, root, path, 2611 eb, i, &key); 2612 if (ret) 2613 break; 2614 2615 /* 2616 * Before replaying extents, truncate the inode to its 2617 * size. We need to do it now and not after log replay 2618 * because before an fsync we can have prealloc extents 2619 * added beyond the inode's i_size. If we did it after, 2620 * through orphan cleanup for example, we would drop 2621 * those prealloc extents just after replaying them. 2622 */ 2623 if (S_ISREG(mode)) { 2624 struct btrfs_drop_extents_args drop_args = { 0 }; 2625 struct inode *inode; 2626 u64 from; 2627 2628 inode = read_one_inode(root, key.objectid); 2629 if (!inode) { 2630 ret = -EIO; 2631 break; 2632 } 2633 from = ALIGN(i_size_read(inode), 2634 root->fs_info->sectorsize); 2635 drop_args.start = from; 2636 drop_args.end = (u64)-1; 2637 drop_args.drop_cache = true; 2638 ret = btrfs_drop_extents(wc->trans, root, 2639 BTRFS_I(inode), 2640 &drop_args); 2641 if (!ret) { 2642 inode_sub_bytes(inode, 2643 drop_args.bytes_found); 2644 /* Update the inode's nbytes. */ 2645 ret = btrfs_update_inode(wc->trans, 2646 root, BTRFS_I(inode)); 2647 } 2648 iput(inode); 2649 if (ret) 2650 break; 2651 } 2652 2653 ret = link_to_fixup_dir(wc->trans, root, 2654 path, key.objectid); 2655 if (ret) 2656 break; 2657 } 2658 2659 if (wc->ignore_cur_inode) 2660 continue; 2661 2662 if (key.type == BTRFS_DIR_INDEX_KEY && 2663 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2664 ret = replay_one_dir_item(wc->trans, root, path, 2665 eb, i, &key); 2666 if (ret) 2667 break; 2668 } 2669 2670 if (wc->stage < LOG_WALK_REPLAY_ALL) 2671 continue; 2672 2673 /* these keys are simply copied */ 2674 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2675 ret = overwrite_item(wc->trans, root, path, 2676 eb, i, &key); 2677 if (ret) 2678 break; 2679 } else if (key.type == BTRFS_INODE_REF_KEY || 2680 key.type == BTRFS_INODE_EXTREF_KEY) { 2681 ret = add_inode_ref(wc->trans, root, log, path, 2682 eb, i, &key); 2683 if (ret && ret != -ENOENT) 2684 break; 2685 ret = 0; 2686 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2687 ret = replay_one_extent(wc->trans, root, path, 2688 eb, i, &key); 2689 if (ret) 2690 break; 2691 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2692 ret = replay_one_dir_item(wc->trans, root, path, 2693 eb, i, &key); 2694 if (ret) 2695 break; 2696 } 2697 } 2698 btrfs_free_path(path); 2699 return ret; 2700 } 2701 2702 /* 2703 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2704 */ 2705 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2706 { 2707 struct btrfs_block_group *cache; 2708 2709 cache = btrfs_lookup_block_group(fs_info, start); 2710 if (!cache) { 2711 btrfs_err(fs_info, "unable to find block group for %llu", start); 2712 return; 2713 } 2714 2715 spin_lock(&cache->space_info->lock); 2716 spin_lock(&cache->lock); 2717 cache->reserved -= fs_info->nodesize; 2718 cache->space_info->bytes_reserved -= fs_info->nodesize; 2719 spin_unlock(&cache->lock); 2720 spin_unlock(&cache->space_info->lock); 2721 2722 btrfs_put_block_group(cache); 2723 } 2724 2725 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2726 struct btrfs_root *root, 2727 struct btrfs_path *path, int *level, 2728 struct walk_control *wc) 2729 { 2730 struct btrfs_fs_info *fs_info = root->fs_info; 2731 u64 bytenr; 2732 u64 ptr_gen; 2733 struct extent_buffer *next; 2734 struct extent_buffer *cur; 2735 u32 blocksize; 2736 int ret = 0; 2737 2738 while (*level > 0) { 2739 struct btrfs_key first_key; 2740 2741 cur = path->nodes[*level]; 2742 2743 WARN_ON(btrfs_header_level(cur) != *level); 2744 2745 if (path->slots[*level] >= 2746 btrfs_header_nritems(cur)) 2747 break; 2748 2749 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2750 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2751 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2752 blocksize = fs_info->nodesize; 2753 2754 next = btrfs_find_create_tree_block(fs_info, bytenr, 2755 btrfs_header_owner(cur), 2756 *level - 1); 2757 if (IS_ERR(next)) 2758 return PTR_ERR(next); 2759 2760 if (*level == 1) { 2761 ret = wc->process_func(root, next, wc, ptr_gen, 2762 *level - 1); 2763 if (ret) { 2764 free_extent_buffer(next); 2765 return ret; 2766 } 2767 2768 path->slots[*level]++; 2769 if (wc->free) { 2770 ret = btrfs_read_buffer(next, ptr_gen, 2771 *level - 1, &first_key); 2772 if (ret) { 2773 free_extent_buffer(next); 2774 return ret; 2775 } 2776 2777 if (trans) { 2778 btrfs_tree_lock(next); 2779 btrfs_clean_tree_block(next); 2780 btrfs_wait_tree_block_writeback(next); 2781 btrfs_tree_unlock(next); 2782 ret = btrfs_pin_reserved_extent(trans, 2783 bytenr, blocksize); 2784 if (ret) { 2785 free_extent_buffer(next); 2786 return ret; 2787 } 2788 btrfs_redirty_list_add( 2789 trans->transaction, next); 2790 } else { 2791 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2792 clear_extent_buffer_dirty(next); 2793 unaccount_log_buffer(fs_info, bytenr); 2794 } 2795 } 2796 free_extent_buffer(next); 2797 continue; 2798 } 2799 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2800 if (ret) { 2801 free_extent_buffer(next); 2802 return ret; 2803 } 2804 2805 if (path->nodes[*level-1]) 2806 free_extent_buffer(path->nodes[*level-1]); 2807 path->nodes[*level-1] = next; 2808 *level = btrfs_header_level(next); 2809 path->slots[*level] = 0; 2810 cond_resched(); 2811 } 2812 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2813 2814 cond_resched(); 2815 return 0; 2816 } 2817 2818 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2819 struct btrfs_root *root, 2820 struct btrfs_path *path, int *level, 2821 struct walk_control *wc) 2822 { 2823 struct btrfs_fs_info *fs_info = root->fs_info; 2824 int i; 2825 int slot; 2826 int ret; 2827 2828 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2829 slot = path->slots[i]; 2830 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2831 path->slots[i]++; 2832 *level = i; 2833 WARN_ON(*level == 0); 2834 return 0; 2835 } else { 2836 ret = wc->process_func(root, path->nodes[*level], wc, 2837 btrfs_header_generation(path->nodes[*level]), 2838 *level); 2839 if (ret) 2840 return ret; 2841 2842 if (wc->free) { 2843 struct extent_buffer *next; 2844 2845 next = path->nodes[*level]; 2846 2847 if (trans) { 2848 btrfs_tree_lock(next); 2849 btrfs_clean_tree_block(next); 2850 btrfs_wait_tree_block_writeback(next); 2851 btrfs_tree_unlock(next); 2852 ret = btrfs_pin_reserved_extent(trans, 2853 path->nodes[*level]->start, 2854 path->nodes[*level]->len); 2855 if (ret) 2856 return ret; 2857 } else { 2858 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2859 clear_extent_buffer_dirty(next); 2860 2861 unaccount_log_buffer(fs_info, 2862 path->nodes[*level]->start); 2863 } 2864 } 2865 free_extent_buffer(path->nodes[*level]); 2866 path->nodes[*level] = NULL; 2867 *level = i + 1; 2868 } 2869 } 2870 return 1; 2871 } 2872 2873 /* 2874 * drop the reference count on the tree rooted at 'snap'. This traverses 2875 * the tree freeing any blocks that have a ref count of zero after being 2876 * decremented. 2877 */ 2878 static int walk_log_tree(struct btrfs_trans_handle *trans, 2879 struct btrfs_root *log, struct walk_control *wc) 2880 { 2881 struct btrfs_fs_info *fs_info = log->fs_info; 2882 int ret = 0; 2883 int wret; 2884 int level; 2885 struct btrfs_path *path; 2886 int orig_level; 2887 2888 path = btrfs_alloc_path(); 2889 if (!path) 2890 return -ENOMEM; 2891 2892 level = btrfs_header_level(log->node); 2893 orig_level = level; 2894 path->nodes[level] = log->node; 2895 atomic_inc(&log->node->refs); 2896 path->slots[level] = 0; 2897 2898 while (1) { 2899 wret = walk_down_log_tree(trans, log, path, &level, wc); 2900 if (wret > 0) 2901 break; 2902 if (wret < 0) { 2903 ret = wret; 2904 goto out; 2905 } 2906 2907 wret = walk_up_log_tree(trans, log, path, &level, wc); 2908 if (wret > 0) 2909 break; 2910 if (wret < 0) { 2911 ret = wret; 2912 goto out; 2913 } 2914 } 2915 2916 /* was the root node processed? if not, catch it here */ 2917 if (path->nodes[orig_level]) { 2918 ret = wc->process_func(log, path->nodes[orig_level], wc, 2919 btrfs_header_generation(path->nodes[orig_level]), 2920 orig_level); 2921 if (ret) 2922 goto out; 2923 if (wc->free) { 2924 struct extent_buffer *next; 2925 2926 next = path->nodes[orig_level]; 2927 2928 if (trans) { 2929 btrfs_tree_lock(next); 2930 btrfs_clean_tree_block(next); 2931 btrfs_wait_tree_block_writeback(next); 2932 btrfs_tree_unlock(next); 2933 ret = btrfs_pin_reserved_extent(trans, 2934 next->start, next->len); 2935 if (ret) 2936 goto out; 2937 } else { 2938 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2939 clear_extent_buffer_dirty(next); 2940 unaccount_log_buffer(fs_info, next->start); 2941 } 2942 } 2943 } 2944 2945 out: 2946 btrfs_free_path(path); 2947 return ret; 2948 } 2949 2950 /* 2951 * helper function to update the item for a given subvolumes log root 2952 * in the tree of log roots 2953 */ 2954 static int update_log_root(struct btrfs_trans_handle *trans, 2955 struct btrfs_root *log, 2956 struct btrfs_root_item *root_item) 2957 { 2958 struct btrfs_fs_info *fs_info = log->fs_info; 2959 int ret; 2960 2961 if (log->log_transid == 1) { 2962 /* insert root item on the first sync */ 2963 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2964 &log->root_key, root_item); 2965 } else { 2966 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2967 &log->root_key, root_item); 2968 } 2969 return ret; 2970 } 2971 2972 static void wait_log_commit(struct btrfs_root *root, int transid) 2973 { 2974 DEFINE_WAIT(wait); 2975 int index = transid % 2; 2976 2977 /* 2978 * we only allow two pending log transactions at a time, 2979 * so we know that if ours is more than 2 older than the 2980 * current transaction, we're done 2981 */ 2982 for (;;) { 2983 prepare_to_wait(&root->log_commit_wait[index], 2984 &wait, TASK_UNINTERRUPTIBLE); 2985 2986 if (!(root->log_transid_committed < transid && 2987 atomic_read(&root->log_commit[index]))) 2988 break; 2989 2990 mutex_unlock(&root->log_mutex); 2991 schedule(); 2992 mutex_lock(&root->log_mutex); 2993 } 2994 finish_wait(&root->log_commit_wait[index], &wait); 2995 } 2996 2997 static void wait_for_writer(struct btrfs_root *root) 2998 { 2999 DEFINE_WAIT(wait); 3000 3001 for (;;) { 3002 prepare_to_wait(&root->log_writer_wait, &wait, 3003 TASK_UNINTERRUPTIBLE); 3004 if (!atomic_read(&root->log_writers)) 3005 break; 3006 3007 mutex_unlock(&root->log_mutex); 3008 schedule(); 3009 mutex_lock(&root->log_mutex); 3010 } 3011 finish_wait(&root->log_writer_wait, &wait); 3012 } 3013 3014 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 3015 struct btrfs_log_ctx *ctx) 3016 { 3017 if (!ctx) 3018 return; 3019 3020 mutex_lock(&root->log_mutex); 3021 list_del_init(&ctx->list); 3022 mutex_unlock(&root->log_mutex); 3023 } 3024 3025 /* 3026 * Invoked in log mutex context, or be sure there is no other task which 3027 * can access the list. 3028 */ 3029 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 3030 int index, int error) 3031 { 3032 struct btrfs_log_ctx *ctx; 3033 struct btrfs_log_ctx *safe; 3034 3035 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 3036 list_del_init(&ctx->list); 3037 ctx->log_ret = error; 3038 } 3039 3040 INIT_LIST_HEAD(&root->log_ctxs[index]); 3041 } 3042 3043 /* 3044 * btrfs_sync_log does sends a given tree log down to the disk and 3045 * updates the super blocks to record it. When this call is done, 3046 * you know that any inodes previously logged are safely on disk only 3047 * if it returns 0. 3048 * 3049 * Any other return value means you need to call btrfs_commit_transaction. 3050 * Some of the edge cases for fsyncing directories that have had unlinks 3051 * or renames done in the past mean that sometimes the only safe 3052 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3053 * that has happened. 3054 */ 3055 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3056 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3057 { 3058 int index1; 3059 int index2; 3060 int mark; 3061 int ret; 3062 struct btrfs_fs_info *fs_info = root->fs_info; 3063 struct btrfs_root *log = root->log_root; 3064 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3065 struct btrfs_root_item new_root_item; 3066 int log_transid = 0; 3067 struct btrfs_log_ctx root_log_ctx; 3068 struct blk_plug plug; 3069 u64 log_root_start; 3070 u64 log_root_level; 3071 3072 mutex_lock(&root->log_mutex); 3073 log_transid = ctx->log_transid; 3074 if (root->log_transid_committed >= log_transid) { 3075 mutex_unlock(&root->log_mutex); 3076 return ctx->log_ret; 3077 } 3078 3079 index1 = log_transid % 2; 3080 if (atomic_read(&root->log_commit[index1])) { 3081 wait_log_commit(root, log_transid); 3082 mutex_unlock(&root->log_mutex); 3083 return ctx->log_ret; 3084 } 3085 ASSERT(log_transid == root->log_transid); 3086 atomic_set(&root->log_commit[index1], 1); 3087 3088 /* wait for previous tree log sync to complete */ 3089 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3090 wait_log_commit(root, log_transid - 1); 3091 3092 while (1) { 3093 int batch = atomic_read(&root->log_batch); 3094 /* when we're on an ssd, just kick the log commit out */ 3095 if (!btrfs_test_opt(fs_info, SSD) && 3096 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3097 mutex_unlock(&root->log_mutex); 3098 schedule_timeout_uninterruptible(1); 3099 mutex_lock(&root->log_mutex); 3100 } 3101 wait_for_writer(root); 3102 if (batch == atomic_read(&root->log_batch)) 3103 break; 3104 } 3105 3106 /* bail out if we need to do a full commit */ 3107 if (btrfs_need_log_full_commit(trans)) { 3108 ret = -EAGAIN; 3109 mutex_unlock(&root->log_mutex); 3110 goto out; 3111 } 3112 3113 if (log_transid % 2 == 0) 3114 mark = EXTENT_DIRTY; 3115 else 3116 mark = EXTENT_NEW; 3117 3118 /* we start IO on all the marked extents here, but we don't actually 3119 * wait for them until later. 3120 */ 3121 blk_start_plug(&plug); 3122 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3123 /* 3124 * -EAGAIN happens when someone, e.g., a concurrent transaction 3125 * commit, writes a dirty extent in this tree-log commit. This 3126 * concurrent write will create a hole writing out the extents, 3127 * and we cannot proceed on a zoned filesystem, requiring 3128 * sequential writing. While we can bail out to a full commit 3129 * here, but we can continue hoping the concurrent writing fills 3130 * the hole. 3131 */ 3132 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) 3133 ret = 0; 3134 if (ret) { 3135 blk_finish_plug(&plug); 3136 btrfs_abort_transaction(trans, ret); 3137 btrfs_set_log_full_commit(trans); 3138 mutex_unlock(&root->log_mutex); 3139 goto out; 3140 } 3141 3142 /* 3143 * We _must_ update under the root->log_mutex in order to make sure we 3144 * have a consistent view of the log root we are trying to commit at 3145 * this moment. 3146 * 3147 * We _must_ copy this into a local copy, because we are not holding the 3148 * log_root_tree->log_mutex yet. This is important because when we 3149 * commit the log_root_tree we must have a consistent view of the 3150 * log_root_tree when we update the super block to point at the 3151 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3152 * with the commit and possibly point at the new block which we may not 3153 * have written out. 3154 */ 3155 btrfs_set_root_node(&log->root_item, log->node); 3156 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3157 3158 root->log_transid++; 3159 log->log_transid = root->log_transid; 3160 root->log_start_pid = 0; 3161 /* 3162 * IO has been started, blocks of the log tree have WRITTEN flag set 3163 * in their headers. new modifications of the log will be written to 3164 * new positions. so it's safe to allow log writers to go in. 3165 */ 3166 mutex_unlock(&root->log_mutex); 3167 3168 btrfs_init_log_ctx(&root_log_ctx, NULL); 3169 3170 mutex_lock(&log_root_tree->log_mutex); 3171 3172 index2 = log_root_tree->log_transid % 2; 3173 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3174 root_log_ctx.log_transid = log_root_tree->log_transid; 3175 3176 if (btrfs_is_zoned(fs_info)) { 3177 mutex_lock(&fs_info->tree_root->log_mutex); 3178 if (!log_root_tree->node) { 3179 ret = btrfs_alloc_log_tree_node(trans, log_root_tree); 3180 if (ret) { 3181 mutex_unlock(&fs_info->tree_log_mutex); 3182 mutex_unlock(&log_root_tree->log_mutex); 3183 goto out; 3184 } 3185 } 3186 mutex_unlock(&fs_info->tree_root->log_mutex); 3187 } 3188 3189 /* 3190 * Now we are safe to update the log_root_tree because we're under the 3191 * log_mutex, and we're a current writer so we're holding the commit 3192 * open until we drop the log_mutex. 3193 */ 3194 ret = update_log_root(trans, log, &new_root_item); 3195 if (ret) { 3196 if (!list_empty(&root_log_ctx.list)) 3197 list_del_init(&root_log_ctx.list); 3198 3199 blk_finish_plug(&plug); 3200 btrfs_set_log_full_commit(trans); 3201 3202 if (ret != -ENOSPC) { 3203 btrfs_abort_transaction(trans, ret); 3204 mutex_unlock(&log_root_tree->log_mutex); 3205 goto out; 3206 } 3207 btrfs_wait_tree_log_extents(log, mark); 3208 mutex_unlock(&log_root_tree->log_mutex); 3209 ret = -EAGAIN; 3210 goto out; 3211 } 3212 3213 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3214 blk_finish_plug(&plug); 3215 list_del_init(&root_log_ctx.list); 3216 mutex_unlock(&log_root_tree->log_mutex); 3217 ret = root_log_ctx.log_ret; 3218 goto out; 3219 } 3220 3221 index2 = root_log_ctx.log_transid % 2; 3222 if (atomic_read(&log_root_tree->log_commit[index2])) { 3223 blk_finish_plug(&plug); 3224 ret = btrfs_wait_tree_log_extents(log, mark); 3225 wait_log_commit(log_root_tree, 3226 root_log_ctx.log_transid); 3227 mutex_unlock(&log_root_tree->log_mutex); 3228 if (!ret) 3229 ret = root_log_ctx.log_ret; 3230 goto out; 3231 } 3232 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3233 atomic_set(&log_root_tree->log_commit[index2], 1); 3234 3235 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3236 wait_log_commit(log_root_tree, 3237 root_log_ctx.log_transid - 1); 3238 } 3239 3240 /* 3241 * now that we've moved on to the tree of log tree roots, 3242 * check the full commit flag again 3243 */ 3244 if (btrfs_need_log_full_commit(trans)) { 3245 blk_finish_plug(&plug); 3246 btrfs_wait_tree_log_extents(log, mark); 3247 mutex_unlock(&log_root_tree->log_mutex); 3248 ret = -EAGAIN; 3249 goto out_wake_log_root; 3250 } 3251 3252 ret = btrfs_write_marked_extents(fs_info, 3253 &log_root_tree->dirty_log_pages, 3254 EXTENT_DIRTY | EXTENT_NEW); 3255 blk_finish_plug(&plug); 3256 /* 3257 * As described above, -EAGAIN indicates a hole in the extents. We 3258 * cannot wait for these write outs since the waiting cause a 3259 * deadlock. Bail out to the full commit instead. 3260 */ 3261 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { 3262 btrfs_set_log_full_commit(trans); 3263 btrfs_wait_tree_log_extents(log, mark); 3264 mutex_unlock(&log_root_tree->log_mutex); 3265 goto out_wake_log_root; 3266 } else if (ret) { 3267 btrfs_set_log_full_commit(trans); 3268 btrfs_abort_transaction(trans, ret); 3269 mutex_unlock(&log_root_tree->log_mutex); 3270 goto out_wake_log_root; 3271 } 3272 ret = btrfs_wait_tree_log_extents(log, mark); 3273 if (!ret) 3274 ret = btrfs_wait_tree_log_extents(log_root_tree, 3275 EXTENT_NEW | EXTENT_DIRTY); 3276 if (ret) { 3277 btrfs_set_log_full_commit(trans); 3278 mutex_unlock(&log_root_tree->log_mutex); 3279 goto out_wake_log_root; 3280 } 3281 3282 log_root_start = log_root_tree->node->start; 3283 log_root_level = btrfs_header_level(log_root_tree->node); 3284 log_root_tree->log_transid++; 3285 mutex_unlock(&log_root_tree->log_mutex); 3286 3287 /* 3288 * Here we are guaranteed that nobody is going to write the superblock 3289 * for the current transaction before us and that neither we do write 3290 * our superblock before the previous transaction finishes its commit 3291 * and writes its superblock, because: 3292 * 3293 * 1) We are holding a handle on the current transaction, so no body 3294 * can commit it until we release the handle; 3295 * 3296 * 2) Before writing our superblock we acquire the tree_log_mutex, so 3297 * if the previous transaction is still committing, and hasn't yet 3298 * written its superblock, we wait for it to do it, because a 3299 * transaction commit acquires the tree_log_mutex when the commit 3300 * begins and releases it only after writing its superblock. 3301 */ 3302 mutex_lock(&fs_info->tree_log_mutex); 3303 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); 3304 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); 3305 ret = write_all_supers(fs_info, 1); 3306 mutex_unlock(&fs_info->tree_log_mutex); 3307 if (ret) { 3308 btrfs_set_log_full_commit(trans); 3309 btrfs_abort_transaction(trans, ret); 3310 goto out_wake_log_root; 3311 } 3312 3313 mutex_lock(&root->log_mutex); 3314 if (root->last_log_commit < log_transid) 3315 root->last_log_commit = log_transid; 3316 mutex_unlock(&root->log_mutex); 3317 3318 out_wake_log_root: 3319 mutex_lock(&log_root_tree->log_mutex); 3320 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3321 3322 log_root_tree->log_transid_committed++; 3323 atomic_set(&log_root_tree->log_commit[index2], 0); 3324 mutex_unlock(&log_root_tree->log_mutex); 3325 3326 /* 3327 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3328 * all the updates above are seen by the woken threads. It might not be 3329 * necessary, but proving that seems to be hard. 3330 */ 3331 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3332 out: 3333 mutex_lock(&root->log_mutex); 3334 btrfs_remove_all_log_ctxs(root, index1, ret); 3335 root->log_transid_committed++; 3336 atomic_set(&root->log_commit[index1], 0); 3337 mutex_unlock(&root->log_mutex); 3338 3339 /* 3340 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3341 * all the updates above are seen by the woken threads. It might not be 3342 * necessary, but proving that seems to be hard. 3343 */ 3344 cond_wake_up(&root->log_commit_wait[index1]); 3345 return ret; 3346 } 3347 3348 static void free_log_tree(struct btrfs_trans_handle *trans, 3349 struct btrfs_root *log) 3350 { 3351 int ret; 3352 struct walk_control wc = { 3353 .free = 1, 3354 .process_func = process_one_buffer 3355 }; 3356 3357 if (log->node) { 3358 ret = walk_log_tree(trans, log, &wc); 3359 if (ret) { 3360 if (trans) 3361 btrfs_abort_transaction(trans, ret); 3362 else 3363 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3364 } 3365 } 3366 3367 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3368 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3369 extent_io_tree_release(&log->log_csum_range); 3370 3371 if (trans && log->node) 3372 btrfs_redirty_list_add(trans->transaction, log->node); 3373 btrfs_put_root(log); 3374 } 3375 3376 /* 3377 * free all the extents used by the tree log. This should be called 3378 * at commit time of the full transaction 3379 */ 3380 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3381 { 3382 if (root->log_root) { 3383 free_log_tree(trans, root->log_root); 3384 root->log_root = NULL; 3385 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3386 } 3387 return 0; 3388 } 3389 3390 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3391 struct btrfs_fs_info *fs_info) 3392 { 3393 if (fs_info->log_root_tree) { 3394 free_log_tree(trans, fs_info->log_root_tree); 3395 fs_info->log_root_tree = NULL; 3396 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); 3397 } 3398 return 0; 3399 } 3400 3401 /* 3402 * Check if an inode was logged in the current transaction. We can't always rely 3403 * on an inode's logged_trans value, because it's an in-memory only field and 3404 * therefore not persisted. This means that its value is lost if the inode gets 3405 * evicted and loaded again from disk (in which case it has a value of 0, and 3406 * certainly it is smaller then any possible transaction ID), when that happens 3407 * the full_sync flag is set in the inode's runtime flags, so on that case we 3408 * assume eviction happened and ignore the logged_trans value, assuming the 3409 * worst case, that the inode was logged before in the current transaction. 3410 */ 3411 static bool inode_logged(struct btrfs_trans_handle *trans, 3412 struct btrfs_inode *inode) 3413 { 3414 if (inode->logged_trans == trans->transid) 3415 return true; 3416 3417 if (inode->last_trans == trans->transid && 3418 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && 3419 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags)) 3420 return true; 3421 3422 return false; 3423 } 3424 3425 /* 3426 * If both a file and directory are logged, and unlinks or renames are 3427 * mixed in, we have a few interesting corners: 3428 * 3429 * create file X in dir Y 3430 * link file X to X.link in dir Y 3431 * fsync file X 3432 * unlink file X but leave X.link 3433 * fsync dir Y 3434 * 3435 * After a crash we would expect only X.link to exist. But file X 3436 * didn't get fsync'd again so the log has back refs for X and X.link. 3437 * 3438 * We solve this by removing directory entries and inode backrefs from the 3439 * log when a file that was logged in the current transaction is 3440 * unlinked. Any later fsync will include the updated log entries, and 3441 * we'll be able to reconstruct the proper directory items from backrefs. 3442 * 3443 * This optimizations allows us to avoid relogging the entire inode 3444 * or the entire directory. 3445 */ 3446 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3447 struct btrfs_root *root, 3448 const char *name, int name_len, 3449 struct btrfs_inode *dir, u64 index) 3450 { 3451 struct btrfs_root *log; 3452 struct btrfs_dir_item *di; 3453 struct btrfs_path *path; 3454 int ret; 3455 int err = 0; 3456 u64 dir_ino = btrfs_ino(dir); 3457 3458 if (!inode_logged(trans, dir)) 3459 return 0; 3460 3461 ret = join_running_log_trans(root); 3462 if (ret) 3463 return 0; 3464 3465 mutex_lock(&dir->log_mutex); 3466 3467 log = root->log_root; 3468 path = btrfs_alloc_path(); 3469 if (!path) { 3470 err = -ENOMEM; 3471 goto out_unlock; 3472 } 3473 3474 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3475 name, name_len, -1); 3476 if (IS_ERR(di)) { 3477 err = PTR_ERR(di); 3478 goto fail; 3479 } 3480 if (di) { 3481 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3482 if (ret) { 3483 err = ret; 3484 goto fail; 3485 } 3486 } 3487 btrfs_release_path(path); 3488 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3489 index, name, name_len, -1); 3490 if (IS_ERR(di)) { 3491 err = PTR_ERR(di); 3492 goto fail; 3493 } 3494 if (di) { 3495 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3496 if (ret) { 3497 err = ret; 3498 goto fail; 3499 } 3500 } 3501 3502 /* 3503 * We do not need to update the size field of the directory's inode item 3504 * because on log replay we update the field to reflect all existing 3505 * entries in the directory (see overwrite_item()). 3506 */ 3507 fail: 3508 btrfs_free_path(path); 3509 out_unlock: 3510 mutex_unlock(&dir->log_mutex); 3511 if (err == -ENOSPC) { 3512 btrfs_set_log_full_commit(trans); 3513 err = 0; 3514 } else if (err < 0 && err != -ENOENT) { 3515 /* ENOENT can be returned if the entry hasn't been fsynced yet */ 3516 btrfs_abort_transaction(trans, err); 3517 } 3518 3519 btrfs_end_log_trans(root); 3520 3521 return err; 3522 } 3523 3524 /* see comments for btrfs_del_dir_entries_in_log */ 3525 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3526 struct btrfs_root *root, 3527 const char *name, int name_len, 3528 struct btrfs_inode *inode, u64 dirid) 3529 { 3530 struct btrfs_root *log; 3531 u64 index; 3532 int ret; 3533 3534 if (!inode_logged(trans, inode)) 3535 return 0; 3536 3537 ret = join_running_log_trans(root); 3538 if (ret) 3539 return 0; 3540 log = root->log_root; 3541 mutex_lock(&inode->log_mutex); 3542 3543 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3544 dirid, &index); 3545 mutex_unlock(&inode->log_mutex); 3546 if (ret == -ENOSPC) { 3547 btrfs_set_log_full_commit(trans); 3548 ret = 0; 3549 } else if (ret < 0 && ret != -ENOENT) 3550 btrfs_abort_transaction(trans, ret); 3551 btrfs_end_log_trans(root); 3552 3553 return ret; 3554 } 3555 3556 /* 3557 * creates a range item in the log for 'dirid'. first_offset and 3558 * last_offset tell us which parts of the key space the log should 3559 * be considered authoritative for. 3560 */ 3561 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3562 struct btrfs_root *log, 3563 struct btrfs_path *path, 3564 int key_type, u64 dirid, 3565 u64 first_offset, u64 last_offset) 3566 { 3567 int ret; 3568 struct btrfs_key key; 3569 struct btrfs_dir_log_item *item; 3570 3571 key.objectid = dirid; 3572 key.offset = first_offset; 3573 if (key_type == BTRFS_DIR_ITEM_KEY) 3574 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3575 else 3576 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3577 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3578 if (ret) 3579 return ret; 3580 3581 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3582 struct btrfs_dir_log_item); 3583 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3584 btrfs_mark_buffer_dirty(path->nodes[0]); 3585 btrfs_release_path(path); 3586 return 0; 3587 } 3588 3589 /* 3590 * log all the items included in the current transaction for a given 3591 * directory. This also creates the range items in the log tree required 3592 * to replay anything deleted before the fsync 3593 */ 3594 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3595 struct btrfs_root *root, struct btrfs_inode *inode, 3596 struct btrfs_path *path, 3597 struct btrfs_path *dst_path, int key_type, 3598 struct btrfs_log_ctx *ctx, 3599 u64 min_offset, u64 *last_offset_ret) 3600 { 3601 struct btrfs_key min_key; 3602 struct btrfs_root *log = root->log_root; 3603 struct extent_buffer *src; 3604 int err = 0; 3605 int ret; 3606 int i; 3607 int nritems; 3608 u64 first_offset = min_offset; 3609 u64 last_offset = (u64)-1; 3610 u64 ino = btrfs_ino(inode); 3611 3612 log = root->log_root; 3613 3614 min_key.objectid = ino; 3615 min_key.type = key_type; 3616 min_key.offset = min_offset; 3617 3618 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3619 3620 /* 3621 * we didn't find anything from this transaction, see if there 3622 * is anything at all 3623 */ 3624 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3625 min_key.objectid = ino; 3626 min_key.type = key_type; 3627 min_key.offset = (u64)-1; 3628 btrfs_release_path(path); 3629 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3630 if (ret < 0) { 3631 btrfs_release_path(path); 3632 return ret; 3633 } 3634 ret = btrfs_previous_item(root, path, ino, key_type); 3635 3636 /* if ret == 0 there are items for this type, 3637 * create a range to tell us the last key of this type. 3638 * otherwise, there are no items in this directory after 3639 * *min_offset, and we create a range to indicate that. 3640 */ 3641 if (ret == 0) { 3642 struct btrfs_key tmp; 3643 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3644 path->slots[0]); 3645 if (key_type == tmp.type) 3646 first_offset = max(min_offset, tmp.offset) + 1; 3647 } 3648 goto done; 3649 } 3650 3651 /* go backward to find any previous key */ 3652 ret = btrfs_previous_item(root, path, ino, key_type); 3653 if (ret == 0) { 3654 struct btrfs_key tmp; 3655 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3656 if (key_type == tmp.type) { 3657 first_offset = tmp.offset; 3658 ret = overwrite_item(trans, log, dst_path, 3659 path->nodes[0], path->slots[0], 3660 &tmp); 3661 if (ret) { 3662 err = ret; 3663 goto done; 3664 } 3665 } 3666 } 3667 btrfs_release_path(path); 3668 3669 /* 3670 * Find the first key from this transaction again. See the note for 3671 * log_new_dir_dentries, if we're logging a directory recursively we 3672 * won't be holding its i_mutex, which means we can modify the directory 3673 * while we're logging it. If we remove an entry between our first 3674 * search and this search we'll not find the key again and can just 3675 * bail. 3676 */ 3677 search: 3678 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3679 if (ret != 0) 3680 goto done; 3681 3682 /* 3683 * we have a block from this transaction, log every item in it 3684 * from our directory 3685 */ 3686 while (1) { 3687 struct btrfs_key tmp; 3688 src = path->nodes[0]; 3689 nritems = btrfs_header_nritems(src); 3690 for (i = path->slots[0]; i < nritems; i++) { 3691 struct btrfs_dir_item *di; 3692 3693 btrfs_item_key_to_cpu(src, &min_key, i); 3694 3695 if (min_key.objectid != ino || min_key.type != key_type) 3696 goto done; 3697 3698 if (need_resched()) { 3699 btrfs_release_path(path); 3700 cond_resched(); 3701 goto search; 3702 } 3703 3704 ret = overwrite_item(trans, log, dst_path, src, i, 3705 &min_key); 3706 if (ret) { 3707 err = ret; 3708 goto done; 3709 } 3710 3711 /* 3712 * We must make sure that when we log a directory entry, 3713 * the corresponding inode, after log replay, has a 3714 * matching link count. For example: 3715 * 3716 * touch foo 3717 * mkdir mydir 3718 * sync 3719 * ln foo mydir/bar 3720 * xfs_io -c "fsync" mydir 3721 * <crash> 3722 * <mount fs and log replay> 3723 * 3724 * Would result in a fsync log that when replayed, our 3725 * file inode would have a link count of 1, but we get 3726 * two directory entries pointing to the same inode. 3727 * After removing one of the names, it would not be 3728 * possible to remove the other name, which resulted 3729 * always in stale file handle errors, and would not 3730 * be possible to rmdir the parent directory, since 3731 * its i_size could never decrement to the value 3732 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3733 */ 3734 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3735 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3736 if (ctx && 3737 (btrfs_dir_transid(src, di) == trans->transid || 3738 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3739 tmp.type != BTRFS_ROOT_ITEM_KEY) 3740 ctx->log_new_dentries = true; 3741 } 3742 path->slots[0] = nritems; 3743 3744 /* 3745 * look ahead to the next item and see if it is also 3746 * from this directory and from this transaction 3747 */ 3748 ret = btrfs_next_leaf(root, path); 3749 if (ret) { 3750 if (ret == 1) 3751 last_offset = (u64)-1; 3752 else 3753 err = ret; 3754 goto done; 3755 } 3756 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3757 if (tmp.objectid != ino || tmp.type != key_type) { 3758 last_offset = (u64)-1; 3759 goto done; 3760 } 3761 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3762 ret = overwrite_item(trans, log, dst_path, 3763 path->nodes[0], path->slots[0], 3764 &tmp); 3765 if (ret) 3766 err = ret; 3767 else 3768 last_offset = tmp.offset; 3769 goto done; 3770 } 3771 } 3772 done: 3773 btrfs_release_path(path); 3774 btrfs_release_path(dst_path); 3775 3776 if (err == 0) { 3777 *last_offset_ret = last_offset; 3778 /* 3779 * insert the log range keys to indicate where the log 3780 * is valid 3781 */ 3782 ret = insert_dir_log_key(trans, log, path, key_type, 3783 ino, first_offset, last_offset); 3784 if (ret) 3785 err = ret; 3786 } 3787 return err; 3788 } 3789 3790 /* 3791 * logging directories is very similar to logging inodes, We find all the items 3792 * from the current transaction and write them to the log. 3793 * 3794 * The recovery code scans the directory in the subvolume, and if it finds a 3795 * key in the range logged that is not present in the log tree, then it means 3796 * that dir entry was unlinked during the transaction. 3797 * 3798 * In order for that scan to work, we must include one key smaller than 3799 * the smallest logged by this transaction and one key larger than the largest 3800 * key logged by this transaction. 3801 */ 3802 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3803 struct btrfs_root *root, struct btrfs_inode *inode, 3804 struct btrfs_path *path, 3805 struct btrfs_path *dst_path, 3806 struct btrfs_log_ctx *ctx) 3807 { 3808 u64 min_key; 3809 u64 max_key; 3810 int ret; 3811 int key_type = BTRFS_DIR_ITEM_KEY; 3812 3813 again: 3814 min_key = 0; 3815 max_key = 0; 3816 while (1) { 3817 ret = log_dir_items(trans, root, inode, path, dst_path, key_type, 3818 ctx, min_key, &max_key); 3819 if (ret) 3820 return ret; 3821 if (max_key == (u64)-1) 3822 break; 3823 min_key = max_key + 1; 3824 } 3825 3826 if (key_type == BTRFS_DIR_ITEM_KEY) { 3827 key_type = BTRFS_DIR_INDEX_KEY; 3828 goto again; 3829 } 3830 return 0; 3831 } 3832 3833 /* 3834 * a helper function to drop items from the log before we relog an 3835 * inode. max_key_type indicates the highest item type to remove. 3836 * This cannot be run for file data extents because it does not 3837 * free the extents they point to. 3838 */ 3839 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3840 struct btrfs_root *log, 3841 struct btrfs_path *path, 3842 u64 objectid, int max_key_type) 3843 { 3844 int ret; 3845 struct btrfs_key key; 3846 struct btrfs_key found_key; 3847 int start_slot; 3848 3849 key.objectid = objectid; 3850 key.type = max_key_type; 3851 key.offset = (u64)-1; 3852 3853 while (1) { 3854 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3855 BUG_ON(ret == 0); /* Logic error */ 3856 if (ret < 0) 3857 break; 3858 3859 if (path->slots[0] == 0) 3860 break; 3861 3862 path->slots[0]--; 3863 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3864 path->slots[0]); 3865 3866 if (found_key.objectid != objectid) 3867 break; 3868 3869 found_key.offset = 0; 3870 found_key.type = 0; 3871 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot); 3872 if (ret < 0) 3873 break; 3874 3875 ret = btrfs_del_items(trans, log, path, start_slot, 3876 path->slots[0] - start_slot + 1); 3877 /* 3878 * If start slot isn't 0 then we don't need to re-search, we've 3879 * found the last guy with the objectid in this tree. 3880 */ 3881 if (ret || start_slot != 0) 3882 break; 3883 btrfs_release_path(path); 3884 } 3885 btrfs_release_path(path); 3886 if (ret > 0) 3887 ret = 0; 3888 return ret; 3889 } 3890 3891 static void fill_inode_item(struct btrfs_trans_handle *trans, 3892 struct extent_buffer *leaf, 3893 struct btrfs_inode_item *item, 3894 struct inode *inode, int log_inode_only, 3895 u64 logged_isize) 3896 { 3897 struct btrfs_map_token token; 3898 3899 btrfs_init_map_token(&token, leaf); 3900 3901 if (log_inode_only) { 3902 /* set the generation to zero so the recover code 3903 * can tell the difference between an logging 3904 * just to say 'this inode exists' and a logging 3905 * to say 'update this inode with these values' 3906 */ 3907 btrfs_set_token_inode_generation(&token, item, 0); 3908 btrfs_set_token_inode_size(&token, item, logged_isize); 3909 } else { 3910 btrfs_set_token_inode_generation(&token, item, 3911 BTRFS_I(inode)->generation); 3912 btrfs_set_token_inode_size(&token, item, inode->i_size); 3913 } 3914 3915 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3916 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3917 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3918 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3919 3920 btrfs_set_token_timespec_sec(&token, &item->atime, 3921 inode->i_atime.tv_sec); 3922 btrfs_set_token_timespec_nsec(&token, &item->atime, 3923 inode->i_atime.tv_nsec); 3924 3925 btrfs_set_token_timespec_sec(&token, &item->mtime, 3926 inode->i_mtime.tv_sec); 3927 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3928 inode->i_mtime.tv_nsec); 3929 3930 btrfs_set_token_timespec_sec(&token, &item->ctime, 3931 inode->i_ctime.tv_sec); 3932 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3933 inode->i_ctime.tv_nsec); 3934 3935 /* 3936 * We do not need to set the nbytes field, in fact during a fast fsync 3937 * its value may not even be correct, since a fast fsync does not wait 3938 * for ordered extent completion, which is where we update nbytes, it 3939 * only waits for writeback to complete. During log replay as we find 3940 * file extent items and replay them, we adjust the nbytes field of the 3941 * inode item in subvolume tree as needed (see overwrite_item()). 3942 */ 3943 3944 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3945 btrfs_set_token_inode_transid(&token, item, trans->transid); 3946 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3947 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3948 btrfs_set_token_inode_block_group(&token, item, 0); 3949 } 3950 3951 static int log_inode_item(struct btrfs_trans_handle *trans, 3952 struct btrfs_root *log, struct btrfs_path *path, 3953 struct btrfs_inode *inode) 3954 { 3955 struct btrfs_inode_item *inode_item; 3956 int ret; 3957 3958 ret = btrfs_insert_empty_item(trans, log, path, 3959 &inode->location, sizeof(*inode_item)); 3960 if (ret && ret != -EEXIST) 3961 return ret; 3962 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3963 struct btrfs_inode_item); 3964 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 3965 0, 0); 3966 btrfs_release_path(path); 3967 return 0; 3968 } 3969 3970 static int log_csums(struct btrfs_trans_handle *trans, 3971 struct btrfs_inode *inode, 3972 struct btrfs_root *log_root, 3973 struct btrfs_ordered_sum *sums) 3974 { 3975 const u64 lock_end = sums->bytenr + sums->len - 1; 3976 struct extent_state *cached_state = NULL; 3977 int ret; 3978 3979 /* 3980 * If this inode was not used for reflink operations in the current 3981 * transaction with new extents, then do the fast path, no need to 3982 * worry about logging checksum items with overlapping ranges. 3983 */ 3984 if (inode->last_reflink_trans < trans->transid) 3985 return btrfs_csum_file_blocks(trans, log_root, sums); 3986 3987 /* 3988 * Serialize logging for checksums. This is to avoid racing with the 3989 * same checksum being logged by another task that is logging another 3990 * file which happens to refer to the same extent as well. Such races 3991 * can leave checksum items in the log with overlapping ranges. 3992 */ 3993 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr, 3994 lock_end, &cached_state); 3995 if (ret) 3996 return ret; 3997 /* 3998 * Due to extent cloning, we might have logged a csum item that covers a 3999 * subrange of a cloned extent, and later we can end up logging a csum 4000 * item for a larger subrange of the same extent or the entire range. 4001 * This would leave csum items in the log tree that cover the same range 4002 * and break the searches for checksums in the log tree, resulting in 4003 * some checksums missing in the fs/subvolume tree. So just delete (or 4004 * trim and adjust) any existing csum items in the log for this range. 4005 */ 4006 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len); 4007 if (!ret) 4008 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4009 4010 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end, 4011 &cached_state); 4012 4013 return ret; 4014 } 4015 4016 static noinline int copy_items(struct btrfs_trans_handle *trans, 4017 struct btrfs_inode *inode, 4018 struct btrfs_path *dst_path, 4019 struct btrfs_path *src_path, 4020 int start_slot, int nr, int inode_only, 4021 u64 logged_isize) 4022 { 4023 struct btrfs_fs_info *fs_info = trans->fs_info; 4024 unsigned long src_offset; 4025 unsigned long dst_offset; 4026 struct btrfs_root *log = inode->root->log_root; 4027 struct btrfs_file_extent_item *extent; 4028 struct btrfs_inode_item *inode_item; 4029 struct extent_buffer *src = src_path->nodes[0]; 4030 int ret; 4031 struct btrfs_key *ins_keys; 4032 u32 *ins_sizes; 4033 char *ins_data; 4034 int i; 4035 struct list_head ordered_sums; 4036 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 4037 4038 INIT_LIST_HEAD(&ordered_sums); 4039 4040 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 4041 nr * sizeof(u32), GFP_NOFS); 4042 if (!ins_data) 4043 return -ENOMEM; 4044 4045 ins_sizes = (u32 *)ins_data; 4046 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 4047 4048 for (i = 0; i < nr; i++) { 4049 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 4050 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 4051 } 4052 ret = btrfs_insert_empty_items(trans, log, dst_path, 4053 ins_keys, ins_sizes, nr); 4054 if (ret) { 4055 kfree(ins_data); 4056 return ret; 4057 } 4058 4059 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 4060 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 4061 dst_path->slots[0]); 4062 4063 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 4064 4065 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 4066 inode_item = btrfs_item_ptr(dst_path->nodes[0], 4067 dst_path->slots[0], 4068 struct btrfs_inode_item); 4069 fill_inode_item(trans, dst_path->nodes[0], inode_item, 4070 &inode->vfs_inode, 4071 inode_only == LOG_INODE_EXISTS, 4072 logged_isize); 4073 } else { 4074 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4075 src_offset, ins_sizes[i]); 4076 } 4077 4078 /* take a reference on file data extents so that truncates 4079 * or deletes of this inode don't have to relog the inode 4080 * again 4081 */ 4082 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 4083 !skip_csum) { 4084 int found_type; 4085 extent = btrfs_item_ptr(src, start_slot + i, 4086 struct btrfs_file_extent_item); 4087 4088 if (btrfs_file_extent_generation(src, extent) < trans->transid) 4089 continue; 4090 4091 found_type = btrfs_file_extent_type(src, extent); 4092 if (found_type == BTRFS_FILE_EXTENT_REG) { 4093 u64 ds, dl, cs, cl; 4094 ds = btrfs_file_extent_disk_bytenr(src, 4095 extent); 4096 /* ds == 0 is a hole */ 4097 if (ds == 0) 4098 continue; 4099 4100 dl = btrfs_file_extent_disk_num_bytes(src, 4101 extent); 4102 cs = btrfs_file_extent_offset(src, extent); 4103 cl = btrfs_file_extent_num_bytes(src, 4104 extent); 4105 if (btrfs_file_extent_compression(src, 4106 extent)) { 4107 cs = 0; 4108 cl = dl; 4109 } 4110 4111 ret = btrfs_lookup_csums_range( 4112 fs_info->csum_root, 4113 ds + cs, ds + cs + cl - 1, 4114 &ordered_sums, 0); 4115 if (ret) 4116 break; 4117 } 4118 } 4119 } 4120 4121 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4122 btrfs_release_path(dst_path); 4123 kfree(ins_data); 4124 4125 /* 4126 * we have to do this after the loop above to avoid changing the 4127 * log tree while trying to change the log tree. 4128 */ 4129 while (!list_empty(&ordered_sums)) { 4130 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4131 struct btrfs_ordered_sum, 4132 list); 4133 if (!ret) 4134 ret = log_csums(trans, inode, log, sums); 4135 list_del(&sums->list); 4136 kfree(sums); 4137 } 4138 4139 return ret; 4140 } 4141 4142 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 4143 { 4144 struct extent_map *em1, *em2; 4145 4146 em1 = list_entry(a, struct extent_map, list); 4147 em2 = list_entry(b, struct extent_map, list); 4148 4149 if (em1->start < em2->start) 4150 return -1; 4151 else if (em1->start > em2->start) 4152 return 1; 4153 return 0; 4154 } 4155 4156 static int log_extent_csums(struct btrfs_trans_handle *trans, 4157 struct btrfs_inode *inode, 4158 struct btrfs_root *log_root, 4159 const struct extent_map *em, 4160 struct btrfs_log_ctx *ctx) 4161 { 4162 struct btrfs_ordered_extent *ordered; 4163 u64 csum_offset; 4164 u64 csum_len; 4165 u64 mod_start = em->mod_start; 4166 u64 mod_len = em->mod_len; 4167 LIST_HEAD(ordered_sums); 4168 int ret = 0; 4169 4170 if (inode->flags & BTRFS_INODE_NODATASUM || 4171 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4172 em->block_start == EXTENT_MAP_HOLE) 4173 return 0; 4174 4175 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { 4176 const u64 ordered_end = ordered->file_offset + ordered->num_bytes; 4177 const u64 mod_end = mod_start + mod_len; 4178 struct btrfs_ordered_sum *sums; 4179 4180 if (mod_len == 0) 4181 break; 4182 4183 if (ordered_end <= mod_start) 4184 continue; 4185 if (mod_end <= ordered->file_offset) 4186 break; 4187 4188 /* 4189 * We are going to copy all the csums on this ordered extent, so 4190 * go ahead and adjust mod_start and mod_len in case this ordered 4191 * extent has already been logged. 4192 */ 4193 if (ordered->file_offset > mod_start) { 4194 if (ordered_end >= mod_end) 4195 mod_len = ordered->file_offset - mod_start; 4196 /* 4197 * If we have this case 4198 * 4199 * |--------- logged extent ---------| 4200 * |----- ordered extent ----| 4201 * 4202 * Just don't mess with mod_start and mod_len, we'll 4203 * just end up logging more csums than we need and it 4204 * will be ok. 4205 */ 4206 } else { 4207 if (ordered_end < mod_end) { 4208 mod_len = mod_end - ordered_end; 4209 mod_start = ordered_end; 4210 } else { 4211 mod_len = 0; 4212 } 4213 } 4214 4215 /* 4216 * To keep us from looping for the above case of an ordered 4217 * extent that falls inside of the logged extent. 4218 */ 4219 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) 4220 continue; 4221 4222 list_for_each_entry(sums, &ordered->list, list) { 4223 ret = log_csums(trans, inode, log_root, sums); 4224 if (ret) 4225 return ret; 4226 } 4227 } 4228 4229 /* We're done, found all csums in the ordered extents. */ 4230 if (mod_len == 0) 4231 return 0; 4232 4233 /* If we're compressed we have to save the entire range of csums. */ 4234 if (em->compress_type) { 4235 csum_offset = 0; 4236 csum_len = max(em->block_len, em->orig_block_len); 4237 } else { 4238 csum_offset = mod_start - em->start; 4239 csum_len = mod_len; 4240 } 4241 4242 /* block start is already adjusted for the file extent offset. */ 4243 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, 4244 em->block_start + csum_offset, 4245 em->block_start + csum_offset + 4246 csum_len - 1, &ordered_sums, 0); 4247 if (ret) 4248 return ret; 4249 4250 while (!list_empty(&ordered_sums)) { 4251 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4252 struct btrfs_ordered_sum, 4253 list); 4254 if (!ret) 4255 ret = log_csums(trans, inode, log_root, sums); 4256 list_del(&sums->list); 4257 kfree(sums); 4258 } 4259 4260 return ret; 4261 } 4262 4263 static int log_one_extent(struct btrfs_trans_handle *trans, 4264 struct btrfs_inode *inode, struct btrfs_root *root, 4265 const struct extent_map *em, 4266 struct btrfs_path *path, 4267 struct btrfs_log_ctx *ctx) 4268 { 4269 struct btrfs_drop_extents_args drop_args = { 0 }; 4270 struct btrfs_root *log = root->log_root; 4271 struct btrfs_file_extent_item *fi; 4272 struct extent_buffer *leaf; 4273 struct btrfs_map_token token; 4274 struct btrfs_key key; 4275 u64 extent_offset = em->start - em->orig_start; 4276 u64 block_len; 4277 int ret; 4278 4279 ret = log_extent_csums(trans, inode, log, em, ctx); 4280 if (ret) 4281 return ret; 4282 4283 drop_args.path = path; 4284 drop_args.start = em->start; 4285 drop_args.end = em->start + em->len; 4286 drop_args.replace_extent = true; 4287 drop_args.extent_item_size = sizeof(*fi); 4288 ret = btrfs_drop_extents(trans, log, inode, &drop_args); 4289 if (ret) 4290 return ret; 4291 4292 if (!drop_args.extent_inserted) { 4293 key.objectid = btrfs_ino(inode); 4294 key.type = BTRFS_EXTENT_DATA_KEY; 4295 key.offset = em->start; 4296 4297 ret = btrfs_insert_empty_item(trans, log, path, &key, 4298 sizeof(*fi)); 4299 if (ret) 4300 return ret; 4301 } 4302 leaf = path->nodes[0]; 4303 btrfs_init_map_token(&token, leaf); 4304 fi = btrfs_item_ptr(leaf, path->slots[0], 4305 struct btrfs_file_extent_item); 4306 4307 btrfs_set_token_file_extent_generation(&token, fi, trans->transid); 4308 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4309 btrfs_set_token_file_extent_type(&token, fi, 4310 BTRFS_FILE_EXTENT_PREALLOC); 4311 else 4312 btrfs_set_token_file_extent_type(&token, fi, 4313 BTRFS_FILE_EXTENT_REG); 4314 4315 block_len = max(em->block_len, em->orig_block_len); 4316 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4317 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4318 em->block_start); 4319 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4320 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4321 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4322 em->block_start - 4323 extent_offset); 4324 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4325 } else { 4326 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0); 4327 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0); 4328 } 4329 4330 btrfs_set_token_file_extent_offset(&token, fi, extent_offset); 4331 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len); 4332 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes); 4333 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type); 4334 btrfs_set_token_file_extent_encryption(&token, fi, 0); 4335 btrfs_set_token_file_extent_other_encoding(&token, fi, 0); 4336 btrfs_mark_buffer_dirty(leaf); 4337 4338 btrfs_release_path(path); 4339 4340 return ret; 4341 } 4342 4343 /* 4344 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4345 * lose them after doing a fast fsync and replaying the log. We scan the 4346 * subvolume's root instead of iterating the inode's extent map tree because 4347 * otherwise we can log incorrect extent items based on extent map conversion. 4348 * That can happen due to the fact that extent maps are merged when they 4349 * are not in the extent map tree's list of modified extents. 4350 */ 4351 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4352 struct btrfs_inode *inode, 4353 struct btrfs_path *path) 4354 { 4355 struct btrfs_root *root = inode->root; 4356 struct btrfs_key key; 4357 const u64 i_size = i_size_read(&inode->vfs_inode); 4358 const u64 ino = btrfs_ino(inode); 4359 struct btrfs_path *dst_path = NULL; 4360 bool dropped_extents = false; 4361 u64 truncate_offset = i_size; 4362 struct extent_buffer *leaf; 4363 int slot; 4364 int ins_nr = 0; 4365 int start_slot; 4366 int ret; 4367 4368 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4369 return 0; 4370 4371 key.objectid = ino; 4372 key.type = BTRFS_EXTENT_DATA_KEY; 4373 key.offset = i_size; 4374 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4375 if (ret < 0) 4376 goto out; 4377 4378 /* 4379 * We must check if there is a prealloc extent that starts before the 4380 * i_size and crosses the i_size boundary. This is to ensure later we 4381 * truncate down to the end of that extent and not to the i_size, as 4382 * otherwise we end up losing part of the prealloc extent after a log 4383 * replay and with an implicit hole if there is another prealloc extent 4384 * that starts at an offset beyond i_size. 4385 */ 4386 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4387 if (ret < 0) 4388 goto out; 4389 4390 if (ret == 0) { 4391 struct btrfs_file_extent_item *ei; 4392 4393 leaf = path->nodes[0]; 4394 slot = path->slots[0]; 4395 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4396 4397 if (btrfs_file_extent_type(leaf, ei) == 4398 BTRFS_FILE_EXTENT_PREALLOC) { 4399 u64 extent_end; 4400 4401 btrfs_item_key_to_cpu(leaf, &key, slot); 4402 extent_end = key.offset + 4403 btrfs_file_extent_num_bytes(leaf, ei); 4404 4405 if (extent_end > i_size) 4406 truncate_offset = extent_end; 4407 } 4408 } else { 4409 ret = 0; 4410 } 4411 4412 while (true) { 4413 leaf = path->nodes[0]; 4414 slot = path->slots[0]; 4415 4416 if (slot >= btrfs_header_nritems(leaf)) { 4417 if (ins_nr > 0) { 4418 ret = copy_items(trans, inode, dst_path, path, 4419 start_slot, ins_nr, 1, 0); 4420 if (ret < 0) 4421 goto out; 4422 ins_nr = 0; 4423 } 4424 ret = btrfs_next_leaf(root, path); 4425 if (ret < 0) 4426 goto out; 4427 if (ret > 0) { 4428 ret = 0; 4429 break; 4430 } 4431 continue; 4432 } 4433 4434 btrfs_item_key_to_cpu(leaf, &key, slot); 4435 if (key.objectid > ino) 4436 break; 4437 if (WARN_ON_ONCE(key.objectid < ino) || 4438 key.type < BTRFS_EXTENT_DATA_KEY || 4439 key.offset < i_size) { 4440 path->slots[0]++; 4441 continue; 4442 } 4443 if (!dropped_extents) { 4444 /* 4445 * Avoid logging extent items logged in past fsync calls 4446 * and leading to duplicate keys in the log tree. 4447 */ 4448 do { 4449 ret = btrfs_truncate_inode_items(trans, 4450 root->log_root, 4451 inode, truncate_offset, 4452 BTRFS_EXTENT_DATA_KEY); 4453 } while (ret == -EAGAIN); 4454 if (ret) 4455 goto out; 4456 dropped_extents = true; 4457 } 4458 if (ins_nr == 0) 4459 start_slot = slot; 4460 ins_nr++; 4461 path->slots[0]++; 4462 if (!dst_path) { 4463 dst_path = btrfs_alloc_path(); 4464 if (!dst_path) { 4465 ret = -ENOMEM; 4466 goto out; 4467 } 4468 } 4469 } 4470 if (ins_nr > 0) 4471 ret = copy_items(trans, inode, dst_path, path, 4472 start_slot, ins_nr, 1, 0); 4473 out: 4474 btrfs_release_path(path); 4475 btrfs_free_path(dst_path); 4476 return ret; 4477 } 4478 4479 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4480 struct btrfs_root *root, 4481 struct btrfs_inode *inode, 4482 struct btrfs_path *path, 4483 struct btrfs_log_ctx *ctx) 4484 { 4485 struct btrfs_ordered_extent *ordered; 4486 struct btrfs_ordered_extent *tmp; 4487 struct extent_map *em, *n; 4488 struct list_head extents; 4489 struct extent_map_tree *tree = &inode->extent_tree; 4490 int ret = 0; 4491 int num = 0; 4492 4493 INIT_LIST_HEAD(&extents); 4494 4495 write_lock(&tree->lock); 4496 4497 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4498 list_del_init(&em->list); 4499 /* 4500 * Just an arbitrary number, this can be really CPU intensive 4501 * once we start getting a lot of extents, and really once we 4502 * have a bunch of extents we just want to commit since it will 4503 * be faster. 4504 */ 4505 if (++num > 32768) { 4506 list_del_init(&tree->modified_extents); 4507 ret = -EFBIG; 4508 goto process; 4509 } 4510 4511 if (em->generation < trans->transid) 4512 continue; 4513 4514 /* We log prealloc extents beyond eof later. */ 4515 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4516 em->start >= i_size_read(&inode->vfs_inode)) 4517 continue; 4518 4519 /* Need a ref to keep it from getting evicted from cache */ 4520 refcount_inc(&em->refs); 4521 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4522 list_add_tail(&em->list, &extents); 4523 num++; 4524 } 4525 4526 list_sort(NULL, &extents, extent_cmp); 4527 process: 4528 while (!list_empty(&extents)) { 4529 em = list_entry(extents.next, struct extent_map, list); 4530 4531 list_del_init(&em->list); 4532 4533 /* 4534 * If we had an error we just need to delete everybody from our 4535 * private list. 4536 */ 4537 if (ret) { 4538 clear_em_logging(tree, em); 4539 free_extent_map(em); 4540 continue; 4541 } 4542 4543 write_unlock(&tree->lock); 4544 4545 ret = log_one_extent(trans, inode, root, em, path, ctx); 4546 write_lock(&tree->lock); 4547 clear_em_logging(tree, em); 4548 free_extent_map(em); 4549 } 4550 WARN_ON(!list_empty(&extents)); 4551 write_unlock(&tree->lock); 4552 4553 btrfs_release_path(path); 4554 if (!ret) 4555 ret = btrfs_log_prealloc_extents(trans, inode, path); 4556 if (ret) 4557 return ret; 4558 4559 /* 4560 * We have logged all extents successfully, now make sure the commit of 4561 * the current transaction waits for the ordered extents to complete 4562 * before it commits and wipes out the log trees, otherwise we would 4563 * lose data if an ordered extents completes after the transaction 4564 * commits and a power failure happens after the transaction commit. 4565 */ 4566 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 4567 list_del_init(&ordered->log_list); 4568 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); 4569 4570 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4571 spin_lock_irq(&inode->ordered_tree.lock); 4572 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4573 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 4574 atomic_inc(&trans->transaction->pending_ordered); 4575 } 4576 spin_unlock_irq(&inode->ordered_tree.lock); 4577 } 4578 btrfs_put_ordered_extent(ordered); 4579 } 4580 4581 return 0; 4582 } 4583 4584 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4585 struct btrfs_path *path, u64 *size_ret) 4586 { 4587 struct btrfs_key key; 4588 int ret; 4589 4590 key.objectid = btrfs_ino(inode); 4591 key.type = BTRFS_INODE_ITEM_KEY; 4592 key.offset = 0; 4593 4594 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4595 if (ret < 0) { 4596 return ret; 4597 } else if (ret > 0) { 4598 *size_ret = 0; 4599 } else { 4600 struct btrfs_inode_item *item; 4601 4602 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4603 struct btrfs_inode_item); 4604 *size_ret = btrfs_inode_size(path->nodes[0], item); 4605 /* 4606 * If the in-memory inode's i_size is smaller then the inode 4607 * size stored in the btree, return the inode's i_size, so 4608 * that we get a correct inode size after replaying the log 4609 * when before a power failure we had a shrinking truncate 4610 * followed by addition of a new name (rename / new hard link). 4611 * Otherwise return the inode size from the btree, to avoid 4612 * data loss when replaying a log due to previously doing a 4613 * write that expands the inode's size and logging a new name 4614 * immediately after. 4615 */ 4616 if (*size_ret > inode->vfs_inode.i_size) 4617 *size_ret = inode->vfs_inode.i_size; 4618 } 4619 4620 btrfs_release_path(path); 4621 return 0; 4622 } 4623 4624 /* 4625 * At the moment we always log all xattrs. This is to figure out at log replay 4626 * time which xattrs must have their deletion replayed. If a xattr is missing 4627 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4628 * because if a xattr is deleted, the inode is fsynced and a power failure 4629 * happens, causing the log to be replayed the next time the fs is mounted, 4630 * we want the xattr to not exist anymore (same behaviour as other filesystems 4631 * with a journal, ext3/4, xfs, f2fs, etc). 4632 */ 4633 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4634 struct btrfs_root *root, 4635 struct btrfs_inode *inode, 4636 struct btrfs_path *path, 4637 struct btrfs_path *dst_path) 4638 { 4639 int ret; 4640 struct btrfs_key key; 4641 const u64 ino = btrfs_ino(inode); 4642 int ins_nr = 0; 4643 int start_slot = 0; 4644 bool found_xattrs = false; 4645 4646 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) 4647 return 0; 4648 4649 key.objectid = ino; 4650 key.type = BTRFS_XATTR_ITEM_KEY; 4651 key.offset = 0; 4652 4653 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4654 if (ret < 0) 4655 return ret; 4656 4657 while (true) { 4658 int slot = path->slots[0]; 4659 struct extent_buffer *leaf = path->nodes[0]; 4660 int nritems = btrfs_header_nritems(leaf); 4661 4662 if (slot >= nritems) { 4663 if (ins_nr > 0) { 4664 ret = copy_items(trans, inode, dst_path, path, 4665 start_slot, ins_nr, 1, 0); 4666 if (ret < 0) 4667 return ret; 4668 ins_nr = 0; 4669 } 4670 ret = btrfs_next_leaf(root, path); 4671 if (ret < 0) 4672 return ret; 4673 else if (ret > 0) 4674 break; 4675 continue; 4676 } 4677 4678 btrfs_item_key_to_cpu(leaf, &key, slot); 4679 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4680 break; 4681 4682 if (ins_nr == 0) 4683 start_slot = slot; 4684 ins_nr++; 4685 path->slots[0]++; 4686 found_xattrs = true; 4687 cond_resched(); 4688 } 4689 if (ins_nr > 0) { 4690 ret = copy_items(trans, inode, dst_path, path, 4691 start_slot, ins_nr, 1, 0); 4692 if (ret < 0) 4693 return ret; 4694 } 4695 4696 if (!found_xattrs) 4697 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); 4698 4699 return 0; 4700 } 4701 4702 /* 4703 * When using the NO_HOLES feature if we punched a hole that causes the 4704 * deletion of entire leafs or all the extent items of the first leaf (the one 4705 * that contains the inode item and references) we may end up not processing 4706 * any extents, because there are no leafs with a generation matching the 4707 * current transaction that have extent items for our inode. So we need to find 4708 * if any holes exist and then log them. We also need to log holes after any 4709 * truncate operation that changes the inode's size. 4710 */ 4711 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 4712 struct btrfs_root *root, 4713 struct btrfs_inode *inode, 4714 struct btrfs_path *path) 4715 { 4716 struct btrfs_fs_info *fs_info = root->fs_info; 4717 struct btrfs_key key; 4718 const u64 ino = btrfs_ino(inode); 4719 const u64 i_size = i_size_read(&inode->vfs_inode); 4720 u64 prev_extent_end = 0; 4721 int ret; 4722 4723 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 4724 return 0; 4725 4726 key.objectid = ino; 4727 key.type = BTRFS_EXTENT_DATA_KEY; 4728 key.offset = 0; 4729 4730 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4731 if (ret < 0) 4732 return ret; 4733 4734 while (true) { 4735 struct extent_buffer *leaf = path->nodes[0]; 4736 4737 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 4738 ret = btrfs_next_leaf(root, path); 4739 if (ret < 0) 4740 return ret; 4741 if (ret > 0) { 4742 ret = 0; 4743 break; 4744 } 4745 leaf = path->nodes[0]; 4746 } 4747 4748 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4749 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 4750 break; 4751 4752 /* We have a hole, log it. */ 4753 if (prev_extent_end < key.offset) { 4754 const u64 hole_len = key.offset - prev_extent_end; 4755 4756 /* 4757 * Release the path to avoid deadlocks with other code 4758 * paths that search the root while holding locks on 4759 * leafs from the log root. 4760 */ 4761 btrfs_release_path(path); 4762 ret = btrfs_insert_file_extent(trans, root->log_root, 4763 ino, prev_extent_end, 0, 4764 0, hole_len, 0, hole_len, 4765 0, 0, 0); 4766 if (ret < 0) 4767 return ret; 4768 4769 /* 4770 * Search for the same key again in the root. Since it's 4771 * an extent item and we are holding the inode lock, the 4772 * key must still exist. If it doesn't just emit warning 4773 * and return an error to fall back to a transaction 4774 * commit. 4775 */ 4776 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4777 if (ret < 0) 4778 return ret; 4779 if (WARN_ON(ret > 0)) 4780 return -ENOENT; 4781 leaf = path->nodes[0]; 4782 } 4783 4784 prev_extent_end = btrfs_file_extent_end(path); 4785 path->slots[0]++; 4786 cond_resched(); 4787 } 4788 4789 if (prev_extent_end < i_size) { 4790 u64 hole_len; 4791 4792 btrfs_release_path(path); 4793 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 4794 ret = btrfs_insert_file_extent(trans, root->log_root, 4795 ino, prev_extent_end, 0, 0, 4796 hole_len, 0, hole_len, 4797 0, 0, 0); 4798 if (ret < 0) 4799 return ret; 4800 } 4801 4802 return 0; 4803 } 4804 4805 /* 4806 * When we are logging a new inode X, check if it doesn't have a reference that 4807 * matches the reference from some other inode Y created in a past transaction 4808 * and that was renamed in the current transaction. If we don't do this, then at 4809 * log replay time we can lose inode Y (and all its files if it's a directory): 4810 * 4811 * mkdir /mnt/x 4812 * echo "hello world" > /mnt/x/foobar 4813 * sync 4814 * mv /mnt/x /mnt/y 4815 * mkdir /mnt/x # or touch /mnt/x 4816 * xfs_io -c fsync /mnt/x 4817 * <power fail> 4818 * mount fs, trigger log replay 4819 * 4820 * After the log replay procedure, we would lose the first directory and all its 4821 * files (file foobar). 4822 * For the case where inode Y is not a directory we simply end up losing it: 4823 * 4824 * echo "123" > /mnt/foo 4825 * sync 4826 * mv /mnt/foo /mnt/bar 4827 * echo "abc" > /mnt/foo 4828 * xfs_io -c fsync /mnt/foo 4829 * <power fail> 4830 * 4831 * We also need this for cases where a snapshot entry is replaced by some other 4832 * entry (file or directory) otherwise we end up with an unreplayable log due to 4833 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4834 * if it were a regular entry: 4835 * 4836 * mkdir /mnt/x 4837 * btrfs subvolume snapshot /mnt /mnt/x/snap 4838 * btrfs subvolume delete /mnt/x/snap 4839 * rmdir /mnt/x 4840 * mkdir /mnt/x 4841 * fsync /mnt/x or fsync some new file inside it 4842 * <power fail> 4843 * 4844 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4845 * the same transaction. 4846 */ 4847 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4848 const int slot, 4849 const struct btrfs_key *key, 4850 struct btrfs_inode *inode, 4851 u64 *other_ino, u64 *other_parent) 4852 { 4853 int ret; 4854 struct btrfs_path *search_path; 4855 char *name = NULL; 4856 u32 name_len = 0; 4857 u32 item_size = btrfs_item_size_nr(eb, slot); 4858 u32 cur_offset = 0; 4859 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4860 4861 search_path = btrfs_alloc_path(); 4862 if (!search_path) 4863 return -ENOMEM; 4864 search_path->search_commit_root = 1; 4865 search_path->skip_locking = 1; 4866 4867 while (cur_offset < item_size) { 4868 u64 parent; 4869 u32 this_name_len; 4870 u32 this_len; 4871 unsigned long name_ptr; 4872 struct btrfs_dir_item *di; 4873 4874 if (key->type == BTRFS_INODE_REF_KEY) { 4875 struct btrfs_inode_ref *iref; 4876 4877 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4878 parent = key->offset; 4879 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4880 name_ptr = (unsigned long)(iref + 1); 4881 this_len = sizeof(*iref) + this_name_len; 4882 } else { 4883 struct btrfs_inode_extref *extref; 4884 4885 extref = (struct btrfs_inode_extref *)(ptr + 4886 cur_offset); 4887 parent = btrfs_inode_extref_parent(eb, extref); 4888 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4889 name_ptr = (unsigned long)&extref->name; 4890 this_len = sizeof(*extref) + this_name_len; 4891 } 4892 4893 if (this_name_len > name_len) { 4894 char *new_name; 4895 4896 new_name = krealloc(name, this_name_len, GFP_NOFS); 4897 if (!new_name) { 4898 ret = -ENOMEM; 4899 goto out; 4900 } 4901 name_len = this_name_len; 4902 name = new_name; 4903 } 4904 4905 read_extent_buffer(eb, name, name_ptr, this_name_len); 4906 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 4907 parent, name, this_name_len, 0); 4908 if (di && !IS_ERR(di)) { 4909 struct btrfs_key di_key; 4910 4911 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4912 di, &di_key); 4913 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4914 if (di_key.objectid != key->objectid) { 4915 ret = 1; 4916 *other_ino = di_key.objectid; 4917 *other_parent = parent; 4918 } else { 4919 ret = 0; 4920 } 4921 } else { 4922 ret = -EAGAIN; 4923 } 4924 goto out; 4925 } else if (IS_ERR(di)) { 4926 ret = PTR_ERR(di); 4927 goto out; 4928 } 4929 btrfs_release_path(search_path); 4930 4931 cur_offset += this_len; 4932 } 4933 ret = 0; 4934 out: 4935 btrfs_free_path(search_path); 4936 kfree(name); 4937 return ret; 4938 } 4939 4940 struct btrfs_ino_list { 4941 u64 ino; 4942 u64 parent; 4943 struct list_head list; 4944 }; 4945 4946 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 4947 struct btrfs_root *root, 4948 struct btrfs_path *path, 4949 struct btrfs_log_ctx *ctx, 4950 u64 ino, u64 parent) 4951 { 4952 struct btrfs_ino_list *ino_elem; 4953 LIST_HEAD(inode_list); 4954 int ret = 0; 4955 4956 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4957 if (!ino_elem) 4958 return -ENOMEM; 4959 ino_elem->ino = ino; 4960 ino_elem->parent = parent; 4961 list_add_tail(&ino_elem->list, &inode_list); 4962 4963 while (!list_empty(&inode_list)) { 4964 struct btrfs_fs_info *fs_info = root->fs_info; 4965 struct btrfs_key key; 4966 struct inode *inode; 4967 4968 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 4969 list); 4970 ino = ino_elem->ino; 4971 parent = ino_elem->parent; 4972 list_del(&ino_elem->list); 4973 kfree(ino_elem); 4974 if (ret) 4975 continue; 4976 4977 btrfs_release_path(path); 4978 4979 inode = btrfs_iget(fs_info->sb, ino, root); 4980 /* 4981 * If the other inode that had a conflicting dir entry was 4982 * deleted in the current transaction, we need to log its parent 4983 * directory. 4984 */ 4985 if (IS_ERR(inode)) { 4986 ret = PTR_ERR(inode); 4987 if (ret == -ENOENT) { 4988 inode = btrfs_iget(fs_info->sb, parent, root); 4989 if (IS_ERR(inode)) { 4990 ret = PTR_ERR(inode); 4991 } else { 4992 ret = btrfs_log_inode(trans, root, 4993 BTRFS_I(inode), 4994 LOG_OTHER_INODE_ALL, 4995 ctx); 4996 btrfs_add_delayed_iput(inode); 4997 } 4998 } 4999 continue; 5000 } 5001 /* 5002 * If the inode was already logged skip it - otherwise we can 5003 * hit an infinite loop. Example: 5004 * 5005 * From the commit root (previous transaction) we have the 5006 * following inodes: 5007 * 5008 * inode 257 a directory 5009 * inode 258 with references "zz" and "zz_link" on inode 257 5010 * inode 259 with reference "a" on inode 257 5011 * 5012 * And in the current (uncommitted) transaction we have: 5013 * 5014 * inode 257 a directory, unchanged 5015 * inode 258 with references "a" and "a2" on inode 257 5016 * inode 259 with reference "zz_link" on inode 257 5017 * inode 261 with reference "zz" on inode 257 5018 * 5019 * When logging inode 261 the following infinite loop could 5020 * happen if we don't skip already logged inodes: 5021 * 5022 * - we detect inode 258 as a conflicting inode, with inode 261 5023 * on reference "zz", and log it; 5024 * 5025 * - we detect inode 259 as a conflicting inode, with inode 258 5026 * on reference "a", and log it; 5027 * 5028 * - we detect inode 258 as a conflicting inode, with inode 259 5029 * on reference "zz_link", and log it - again! After this we 5030 * repeat the above steps forever. 5031 */ 5032 spin_lock(&BTRFS_I(inode)->lock); 5033 /* 5034 * Check the inode's logged_trans only instead of 5035 * btrfs_inode_in_log(). This is because the last_log_commit of 5036 * the inode is not updated when we only log that it exists and 5037 * it has the full sync bit set (see btrfs_log_inode()). 5038 */ 5039 if (BTRFS_I(inode)->logged_trans == trans->transid) { 5040 spin_unlock(&BTRFS_I(inode)->lock); 5041 btrfs_add_delayed_iput(inode); 5042 continue; 5043 } 5044 spin_unlock(&BTRFS_I(inode)->lock); 5045 /* 5046 * We are safe logging the other inode without acquiring its 5047 * lock as long as we log with the LOG_INODE_EXISTS mode. We 5048 * are safe against concurrent renames of the other inode as 5049 * well because during a rename we pin the log and update the 5050 * log with the new name before we unpin it. 5051 */ 5052 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5053 LOG_OTHER_INODE, ctx); 5054 if (ret) { 5055 btrfs_add_delayed_iput(inode); 5056 continue; 5057 } 5058 5059 key.objectid = ino; 5060 key.type = BTRFS_INODE_REF_KEY; 5061 key.offset = 0; 5062 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5063 if (ret < 0) { 5064 btrfs_add_delayed_iput(inode); 5065 continue; 5066 } 5067 5068 while (true) { 5069 struct extent_buffer *leaf = path->nodes[0]; 5070 int slot = path->slots[0]; 5071 u64 other_ino = 0; 5072 u64 other_parent = 0; 5073 5074 if (slot >= btrfs_header_nritems(leaf)) { 5075 ret = btrfs_next_leaf(root, path); 5076 if (ret < 0) { 5077 break; 5078 } else if (ret > 0) { 5079 ret = 0; 5080 break; 5081 } 5082 continue; 5083 } 5084 5085 btrfs_item_key_to_cpu(leaf, &key, slot); 5086 if (key.objectid != ino || 5087 (key.type != BTRFS_INODE_REF_KEY && 5088 key.type != BTRFS_INODE_EXTREF_KEY)) { 5089 ret = 0; 5090 break; 5091 } 5092 5093 ret = btrfs_check_ref_name_override(leaf, slot, &key, 5094 BTRFS_I(inode), &other_ino, 5095 &other_parent); 5096 if (ret < 0) 5097 break; 5098 if (ret > 0) { 5099 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5100 if (!ino_elem) { 5101 ret = -ENOMEM; 5102 break; 5103 } 5104 ino_elem->ino = other_ino; 5105 ino_elem->parent = other_parent; 5106 list_add_tail(&ino_elem->list, &inode_list); 5107 ret = 0; 5108 } 5109 path->slots[0]++; 5110 } 5111 btrfs_add_delayed_iput(inode); 5112 } 5113 5114 return ret; 5115 } 5116 5117 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 5118 struct btrfs_inode *inode, 5119 struct btrfs_key *min_key, 5120 const struct btrfs_key *max_key, 5121 struct btrfs_path *path, 5122 struct btrfs_path *dst_path, 5123 const u64 logged_isize, 5124 const bool recursive_logging, 5125 const int inode_only, 5126 struct btrfs_log_ctx *ctx, 5127 bool *need_log_inode_item) 5128 { 5129 struct btrfs_root *root = inode->root; 5130 int ins_start_slot = 0; 5131 int ins_nr = 0; 5132 int ret; 5133 5134 while (1) { 5135 ret = btrfs_search_forward(root, min_key, path, trans->transid); 5136 if (ret < 0) 5137 return ret; 5138 if (ret > 0) { 5139 ret = 0; 5140 break; 5141 } 5142 again: 5143 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 5144 if (min_key->objectid != max_key->objectid) 5145 break; 5146 if (min_key->type > max_key->type) 5147 break; 5148 5149 if (min_key->type == BTRFS_INODE_ITEM_KEY) 5150 *need_log_inode_item = false; 5151 5152 if ((min_key->type == BTRFS_INODE_REF_KEY || 5153 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5154 inode->generation == trans->transid && 5155 !recursive_logging) { 5156 u64 other_ino = 0; 5157 u64 other_parent = 0; 5158 5159 ret = btrfs_check_ref_name_override(path->nodes[0], 5160 path->slots[0], min_key, inode, 5161 &other_ino, &other_parent); 5162 if (ret < 0) { 5163 return ret; 5164 } else if (ret > 0 && ctx && 5165 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5166 if (ins_nr > 0) { 5167 ins_nr++; 5168 } else { 5169 ins_nr = 1; 5170 ins_start_slot = path->slots[0]; 5171 } 5172 ret = copy_items(trans, inode, dst_path, path, 5173 ins_start_slot, ins_nr, 5174 inode_only, logged_isize); 5175 if (ret < 0) 5176 return ret; 5177 ins_nr = 0; 5178 5179 ret = log_conflicting_inodes(trans, root, path, 5180 ctx, other_ino, other_parent); 5181 if (ret) 5182 return ret; 5183 btrfs_release_path(path); 5184 goto next_key; 5185 } 5186 } 5187 5188 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5189 if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5190 if (ins_nr == 0) 5191 goto next_slot; 5192 ret = copy_items(trans, inode, dst_path, path, 5193 ins_start_slot, 5194 ins_nr, inode_only, logged_isize); 5195 if (ret < 0) 5196 return ret; 5197 ins_nr = 0; 5198 goto next_slot; 5199 } 5200 5201 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5202 ins_nr++; 5203 goto next_slot; 5204 } else if (!ins_nr) { 5205 ins_start_slot = path->slots[0]; 5206 ins_nr = 1; 5207 goto next_slot; 5208 } 5209 5210 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5211 ins_nr, inode_only, logged_isize); 5212 if (ret < 0) 5213 return ret; 5214 ins_nr = 1; 5215 ins_start_slot = path->slots[0]; 5216 next_slot: 5217 path->slots[0]++; 5218 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 5219 btrfs_item_key_to_cpu(path->nodes[0], min_key, 5220 path->slots[0]); 5221 goto again; 5222 } 5223 if (ins_nr) { 5224 ret = copy_items(trans, inode, dst_path, path, 5225 ins_start_slot, ins_nr, inode_only, 5226 logged_isize); 5227 if (ret < 0) 5228 return ret; 5229 ins_nr = 0; 5230 } 5231 btrfs_release_path(path); 5232 next_key: 5233 if (min_key->offset < (u64)-1) { 5234 min_key->offset++; 5235 } else if (min_key->type < max_key->type) { 5236 min_key->type++; 5237 min_key->offset = 0; 5238 } else { 5239 break; 5240 } 5241 } 5242 if (ins_nr) 5243 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5244 ins_nr, inode_only, logged_isize); 5245 5246 return ret; 5247 } 5248 5249 /* log a single inode in the tree log. 5250 * At least one parent directory for this inode must exist in the tree 5251 * or be logged already. 5252 * 5253 * Any items from this inode changed by the current transaction are copied 5254 * to the log tree. An extra reference is taken on any extents in this 5255 * file, allowing us to avoid a whole pile of corner cases around logging 5256 * blocks that have been removed from the tree. 5257 * 5258 * See LOG_INODE_ALL and related defines for a description of what inode_only 5259 * does. 5260 * 5261 * This handles both files and directories. 5262 */ 5263 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5264 struct btrfs_root *root, struct btrfs_inode *inode, 5265 int inode_only, 5266 struct btrfs_log_ctx *ctx) 5267 { 5268 struct btrfs_path *path; 5269 struct btrfs_path *dst_path; 5270 struct btrfs_key min_key; 5271 struct btrfs_key max_key; 5272 struct btrfs_root *log = root->log_root; 5273 int err = 0; 5274 int ret = 0; 5275 bool fast_search = false; 5276 u64 ino = btrfs_ino(inode); 5277 struct extent_map_tree *em_tree = &inode->extent_tree; 5278 u64 logged_isize = 0; 5279 bool need_log_inode_item = true; 5280 bool xattrs_logged = false; 5281 bool recursive_logging = false; 5282 5283 path = btrfs_alloc_path(); 5284 if (!path) 5285 return -ENOMEM; 5286 dst_path = btrfs_alloc_path(); 5287 if (!dst_path) { 5288 btrfs_free_path(path); 5289 return -ENOMEM; 5290 } 5291 5292 min_key.objectid = ino; 5293 min_key.type = BTRFS_INODE_ITEM_KEY; 5294 min_key.offset = 0; 5295 5296 max_key.objectid = ino; 5297 5298 5299 /* today the code can only do partial logging of directories */ 5300 if (S_ISDIR(inode->vfs_inode.i_mode) || 5301 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5302 &inode->runtime_flags) && 5303 inode_only >= LOG_INODE_EXISTS)) 5304 max_key.type = BTRFS_XATTR_ITEM_KEY; 5305 else 5306 max_key.type = (u8)-1; 5307 max_key.offset = (u64)-1; 5308 5309 /* 5310 * Only run delayed items if we are a directory. We want to make sure 5311 * all directory indexes hit the fs/subvolume tree so we can find them 5312 * and figure out which index ranges have to be logged. 5313 * 5314 * Otherwise commit the delayed inode only if the full sync flag is set, 5315 * as we want to make sure an up to date version is in the subvolume 5316 * tree so copy_inode_items_to_log() / copy_items() can find it and copy 5317 * it to the log tree. For a non full sync, we always log the inode item 5318 * based on the in-memory struct btrfs_inode which is always up to date. 5319 */ 5320 if (S_ISDIR(inode->vfs_inode.i_mode)) 5321 ret = btrfs_commit_inode_delayed_items(trans, inode); 5322 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) 5323 ret = btrfs_commit_inode_delayed_inode(inode); 5324 5325 if (ret) { 5326 btrfs_free_path(path); 5327 btrfs_free_path(dst_path); 5328 return ret; 5329 } 5330 5331 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5332 recursive_logging = true; 5333 if (inode_only == LOG_OTHER_INODE) 5334 inode_only = LOG_INODE_EXISTS; 5335 else 5336 inode_only = LOG_INODE_ALL; 5337 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5338 } else { 5339 mutex_lock(&inode->log_mutex); 5340 } 5341 5342 /* 5343 * This is for cases where logging a directory could result in losing a 5344 * a file after replaying the log. For example, if we move a file from a 5345 * directory A to a directory B, then fsync directory A, we have no way 5346 * to known the file was moved from A to B, so logging just A would 5347 * result in losing the file after a log replay. 5348 */ 5349 if (S_ISDIR(inode->vfs_inode.i_mode) && 5350 inode_only == LOG_INODE_ALL && 5351 inode->last_unlink_trans >= trans->transid) { 5352 btrfs_set_log_full_commit(trans); 5353 err = 1; 5354 goto out_unlock; 5355 } 5356 5357 /* 5358 * a brute force approach to making sure we get the most uptodate 5359 * copies of everything. 5360 */ 5361 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5362 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5363 5364 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); 5365 if (inode_only == LOG_INODE_EXISTS) 5366 max_key_type = BTRFS_XATTR_ITEM_KEY; 5367 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 5368 } else { 5369 if (inode_only == LOG_INODE_EXISTS) { 5370 /* 5371 * Make sure the new inode item we write to the log has 5372 * the same isize as the current one (if it exists). 5373 * This is necessary to prevent data loss after log 5374 * replay, and also to prevent doing a wrong expanding 5375 * truncate - for e.g. create file, write 4K into offset 5376 * 0, fsync, write 4K into offset 4096, add hard link, 5377 * fsync some other file (to sync log), power fail - if 5378 * we use the inode's current i_size, after log replay 5379 * we get a 8Kb file, with the last 4Kb extent as a hole 5380 * (zeroes), as if an expanding truncate happened, 5381 * instead of getting a file of 4Kb only. 5382 */ 5383 err = logged_inode_size(log, inode, path, &logged_isize); 5384 if (err) 5385 goto out_unlock; 5386 } 5387 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5388 &inode->runtime_flags)) { 5389 if (inode_only == LOG_INODE_EXISTS) { 5390 max_key.type = BTRFS_XATTR_ITEM_KEY; 5391 ret = drop_objectid_items(trans, log, path, ino, 5392 max_key.type); 5393 } else { 5394 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5395 &inode->runtime_flags); 5396 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5397 &inode->runtime_flags); 5398 while(1) { 5399 ret = btrfs_truncate_inode_items(trans, 5400 log, inode, 0, 0); 5401 if (ret != -EAGAIN) 5402 break; 5403 } 5404 } 5405 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5406 &inode->runtime_flags) || 5407 inode_only == LOG_INODE_EXISTS) { 5408 if (inode_only == LOG_INODE_ALL) 5409 fast_search = true; 5410 max_key.type = BTRFS_XATTR_ITEM_KEY; 5411 ret = drop_objectid_items(trans, log, path, ino, 5412 max_key.type); 5413 } else { 5414 if (inode_only == LOG_INODE_ALL) 5415 fast_search = true; 5416 goto log_extents; 5417 } 5418 5419 } 5420 if (ret) { 5421 err = ret; 5422 goto out_unlock; 5423 } 5424 5425 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 5426 path, dst_path, logged_isize, 5427 recursive_logging, inode_only, ctx, 5428 &need_log_inode_item); 5429 if (err) 5430 goto out_unlock; 5431 5432 btrfs_release_path(path); 5433 btrfs_release_path(dst_path); 5434 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 5435 if (err) 5436 goto out_unlock; 5437 xattrs_logged = true; 5438 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5439 btrfs_release_path(path); 5440 btrfs_release_path(dst_path); 5441 err = btrfs_log_holes(trans, root, inode, path); 5442 if (err) 5443 goto out_unlock; 5444 } 5445 log_extents: 5446 btrfs_release_path(path); 5447 btrfs_release_path(dst_path); 5448 if (need_log_inode_item) { 5449 err = log_inode_item(trans, log, dst_path, inode); 5450 if (!err && !xattrs_logged) { 5451 err = btrfs_log_all_xattrs(trans, root, inode, path, 5452 dst_path); 5453 btrfs_release_path(path); 5454 } 5455 if (err) 5456 goto out_unlock; 5457 } 5458 if (fast_search) { 5459 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 5460 ctx); 5461 if (ret) { 5462 err = ret; 5463 goto out_unlock; 5464 } 5465 } else if (inode_only == LOG_INODE_ALL) { 5466 struct extent_map *em, *n; 5467 5468 write_lock(&em_tree->lock); 5469 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) 5470 list_del_init(&em->list); 5471 write_unlock(&em_tree->lock); 5472 } 5473 5474 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5475 ret = log_directory_changes(trans, root, inode, path, dst_path, 5476 ctx); 5477 if (ret) { 5478 err = ret; 5479 goto out_unlock; 5480 } 5481 } 5482 5483 /* 5484 * If we are logging that an ancestor inode exists as part of logging a 5485 * new name from a link or rename operation, don't mark the inode as 5486 * logged - otherwise if an explicit fsync is made against an ancestor, 5487 * the fsync considers the inode in the log and doesn't sync the log, 5488 * resulting in the ancestor missing after a power failure unless the 5489 * log was synced as part of an fsync against any other unrelated inode. 5490 * So keep it simple for this case and just don't flag the ancestors as 5491 * logged. 5492 */ 5493 if (!ctx || 5494 !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name && 5495 &inode->vfs_inode != ctx->inode)) { 5496 spin_lock(&inode->lock); 5497 inode->logged_trans = trans->transid; 5498 /* 5499 * Don't update last_log_commit if we logged that an inode exists 5500 * after it was loaded to memory (full_sync bit set). 5501 * This is to prevent data loss when we do a write to the inode, 5502 * then the inode gets evicted after all delalloc was flushed, 5503 * then we log it exists (due to a rename for example) and then 5504 * fsync it. This last fsync would do nothing (not logging the 5505 * extents previously written). 5506 */ 5507 if (inode_only != LOG_INODE_EXISTS || 5508 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) 5509 inode->last_log_commit = inode->last_sub_trans; 5510 spin_unlock(&inode->lock); 5511 } 5512 out_unlock: 5513 mutex_unlock(&inode->log_mutex); 5514 5515 btrfs_free_path(path); 5516 btrfs_free_path(dst_path); 5517 return err; 5518 } 5519 5520 /* 5521 * Check if we need to log an inode. This is used in contexts where while 5522 * logging an inode we need to log another inode (either that it exists or in 5523 * full mode). This is used instead of btrfs_inode_in_log() because the later 5524 * requires the inode to be in the log and have the log transaction committed, 5525 * while here we do not care if the log transaction was already committed - our 5526 * caller will commit the log later - and we want to avoid logging an inode 5527 * multiple times when multiple tasks have joined the same log transaction. 5528 */ 5529 static bool need_log_inode(struct btrfs_trans_handle *trans, 5530 struct btrfs_inode *inode) 5531 { 5532 /* 5533 * If this inode does not have new/updated/deleted xattrs since the last 5534 * time it was logged and is flagged as logged in the current transaction, 5535 * we can skip logging it. As for new/deleted names, those are updated in 5536 * the log by link/unlink/rename operations. 5537 * In case the inode was logged and then evicted and reloaded, its 5538 * logged_trans will be 0, in which case we have to fully log it since 5539 * logged_trans is a transient field, not persisted. 5540 */ 5541 if (inode->logged_trans == trans->transid && 5542 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 5543 return false; 5544 5545 return true; 5546 } 5547 5548 struct btrfs_dir_list { 5549 u64 ino; 5550 struct list_head list; 5551 }; 5552 5553 /* 5554 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5555 * details about the why it is needed. 5556 * This is a recursive operation - if an existing dentry corresponds to a 5557 * directory, that directory's new entries are logged too (same behaviour as 5558 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5559 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5560 * complains about the following circular lock dependency / possible deadlock: 5561 * 5562 * CPU0 CPU1 5563 * ---- ---- 5564 * lock(&type->i_mutex_dir_key#3/2); 5565 * lock(sb_internal#2); 5566 * lock(&type->i_mutex_dir_key#3/2); 5567 * lock(&sb->s_type->i_mutex_key#14); 5568 * 5569 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5570 * sb_start_intwrite() in btrfs_start_transaction(). 5571 * Not locking i_mutex of the inodes is still safe because: 5572 * 5573 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5574 * that while logging the inode new references (names) are added or removed 5575 * from the inode, leaving the logged inode item with a link count that does 5576 * not match the number of logged inode reference items. This is fine because 5577 * at log replay time we compute the real number of links and correct the 5578 * link count in the inode item (see replay_one_buffer() and 5579 * link_to_fixup_dir()); 5580 * 5581 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5582 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5583 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5584 * has a size that doesn't match the sum of the lengths of all the logged 5585 * names. This does not result in a problem because if a dir_item key is 5586 * logged but its matching dir_index key is not logged, at log replay time we 5587 * don't use it to replay the respective name (see replay_one_name()). On the 5588 * other hand if only the dir_index key ends up being logged, the respective 5589 * name is added to the fs/subvol tree with both the dir_item and dir_index 5590 * keys created (see replay_one_name()). 5591 * The directory's inode item with a wrong i_size is not a problem as well, 5592 * since we don't use it at log replay time to set the i_size in the inode 5593 * item of the fs/subvol tree (see overwrite_item()). 5594 */ 5595 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5596 struct btrfs_root *root, 5597 struct btrfs_inode *start_inode, 5598 struct btrfs_log_ctx *ctx) 5599 { 5600 struct btrfs_fs_info *fs_info = root->fs_info; 5601 struct btrfs_root *log = root->log_root; 5602 struct btrfs_path *path; 5603 LIST_HEAD(dir_list); 5604 struct btrfs_dir_list *dir_elem; 5605 int ret = 0; 5606 5607 path = btrfs_alloc_path(); 5608 if (!path) 5609 return -ENOMEM; 5610 5611 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5612 if (!dir_elem) { 5613 btrfs_free_path(path); 5614 return -ENOMEM; 5615 } 5616 dir_elem->ino = btrfs_ino(start_inode); 5617 list_add_tail(&dir_elem->list, &dir_list); 5618 5619 while (!list_empty(&dir_list)) { 5620 struct extent_buffer *leaf; 5621 struct btrfs_key min_key; 5622 int nritems; 5623 int i; 5624 5625 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5626 list); 5627 if (ret) 5628 goto next_dir_inode; 5629 5630 min_key.objectid = dir_elem->ino; 5631 min_key.type = BTRFS_DIR_ITEM_KEY; 5632 min_key.offset = 0; 5633 again: 5634 btrfs_release_path(path); 5635 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5636 if (ret < 0) { 5637 goto next_dir_inode; 5638 } else if (ret > 0) { 5639 ret = 0; 5640 goto next_dir_inode; 5641 } 5642 5643 process_leaf: 5644 leaf = path->nodes[0]; 5645 nritems = btrfs_header_nritems(leaf); 5646 for (i = path->slots[0]; i < nritems; i++) { 5647 struct btrfs_dir_item *di; 5648 struct btrfs_key di_key; 5649 struct inode *di_inode; 5650 struct btrfs_dir_list *new_dir_elem; 5651 int log_mode = LOG_INODE_EXISTS; 5652 int type; 5653 5654 btrfs_item_key_to_cpu(leaf, &min_key, i); 5655 if (min_key.objectid != dir_elem->ino || 5656 min_key.type != BTRFS_DIR_ITEM_KEY) 5657 goto next_dir_inode; 5658 5659 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5660 type = btrfs_dir_type(leaf, di); 5661 if (btrfs_dir_transid(leaf, di) < trans->transid && 5662 type != BTRFS_FT_DIR) 5663 continue; 5664 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5665 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5666 continue; 5667 5668 btrfs_release_path(path); 5669 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root); 5670 if (IS_ERR(di_inode)) { 5671 ret = PTR_ERR(di_inode); 5672 goto next_dir_inode; 5673 } 5674 5675 if (!need_log_inode(trans, BTRFS_I(di_inode))) { 5676 btrfs_add_delayed_iput(di_inode); 5677 break; 5678 } 5679 5680 ctx->log_new_dentries = false; 5681 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5682 log_mode = LOG_INODE_ALL; 5683 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), 5684 log_mode, ctx); 5685 btrfs_add_delayed_iput(di_inode); 5686 if (ret) 5687 goto next_dir_inode; 5688 if (ctx->log_new_dentries) { 5689 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5690 GFP_NOFS); 5691 if (!new_dir_elem) { 5692 ret = -ENOMEM; 5693 goto next_dir_inode; 5694 } 5695 new_dir_elem->ino = di_key.objectid; 5696 list_add_tail(&new_dir_elem->list, &dir_list); 5697 } 5698 break; 5699 } 5700 if (i == nritems) { 5701 ret = btrfs_next_leaf(log, path); 5702 if (ret < 0) { 5703 goto next_dir_inode; 5704 } else if (ret > 0) { 5705 ret = 0; 5706 goto next_dir_inode; 5707 } 5708 goto process_leaf; 5709 } 5710 if (min_key.offset < (u64)-1) { 5711 min_key.offset++; 5712 goto again; 5713 } 5714 next_dir_inode: 5715 list_del(&dir_elem->list); 5716 kfree(dir_elem); 5717 } 5718 5719 btrfs_free_path(path); 5720 return ret; 5721 } 5722 5723 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5724 struct btrfs_inode *inode, 5725 struct btrfs_log_ctx *ctx) 5726 { 5727 struct btrfs_fs_info *fs_info = trans->fs_info; 5728 int ret; 5729 struct btrfs_path *path; 5730 struct btrfs_key key; 5731 struct btrfs_root *root = inode->root; 5732 const u64 ino = btrfs_ino(inode); 5733 5734 path = btrfs_alloc_path(); 5735 if (!path) 5736 return -ENOMEM; 5737 path->skip_locking = 1; 5738 path->search_commit_root = 1; 5739 5740 key.objectid = ino; 5741 key.type = BTRFS_INODE_REF_KEY; 5742 key.offset = 0; 5743 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5744 if (ret < 0) 5745 goto out; 5746 5747 while (true) { 5748 struct extent_buffer *leaf = path->nodes[0]; 5749 int slot = path->slots[0]; 5750 u32 cur_offset = 0; 5751 u32 item_size; 5752 unsigned long ptr; 5753 5754 if (slot >= btrfs_header_nritems(leaf)) { 5755 ret = btrfs_next_leaf(root, path); 5756 if (ret < 0) 5757 goto out; 5758 else if (ret > 0) 5759 break; 5760 continue; 5761 } 5762 5763 btrfs_item_key_to_cpu(leaf, &key, slot); 5764 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5765 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5766 break; 5767 5768 item_size = btrfs_item_size_nr(leaf, slot); 5769 ptr = btrfs_item_ptr_offset(leaf, slot); 5770 while (cur_offset < item_size) { 5771 struct btrfs_key inode_key; 5772 struct inode *dir_inode; 5773 5774 inode_key.type = BTRFS_INODE_ITEM_KEY; 5775 inode_key.offset = 0; 5776 5777 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5778 struct btrfs_inode_extref *extref; 5779 5780 extref = (struct btrfs_inode_extref *) 5781 (ptr + cur_offset); 5782 inode_key.objectid = btrfs_inode_extref_parent( 5783 leaf, extref); 5784 cur_offset += sizeof(*extref); 5785 cur_offset += btrfs_inode_extref_name_len(leaf, 5786 extref); 5787 } else { 5788 inode_key.objectid = key.offset; 5789 cur_offset = item_size; 5790 } 5791 5792 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid, 5793 root); 5794 /* 5795 * If the parent inode was deleted, return an error to 5796 * fallback to a transaction commit. This is to prevent 5797 * getting an inode that was moved from one parent A to 5798 * a parent B, got its former parent A deleted and then 5799 * it got fsync'ed, from existing at both parents after 5800 * a log replay (and the old parent still existing). 5801 * Example: 5802 * 5803 * mkdir /mnt/A 5804 * mkdir /mnt/B 5805 * touch /mnt/B/bar 5806 * sync 5807 * mv /mnt/B/bar /mnt/A/bar 5808 * mv -T /mnt/A /mnt/B 5809 * fsync /mnt/B/bar 5810 * <power fail> 5811 * 5812 * If we ignore the old parent B which got deleted, 5813 * after a log replay we would have file bar linked 5814 * at both parents and the old parent B would still 5815 * exist. 5816 */ 5817 if (IS_ERR(dir_inode)) { 5818 ret = PTR_ERR(dir_inode); 5819 goto out; 5820 } 5821 5822 if (!need_log_inode(trans, BTRFS_I(dir_inode))) { 5823 btrfs_add_delayed_iput(dir_inode); 5824 continue; 5825 } 5826 5827 if (ctx) 5828 ctx->log_new_dentries = false; 5829 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), 5830 LOG_INODE_ALL, ctx); 5831 if (!ret && ctx && ctx->log_new_dentries) 5832 ret = log_new_dir_dentries(trans, root, 5833 BTRFS_I(dir_inode), ctx); 5834 btrfs_add_delayed_iput(dir_inode); 5835 if (ret) 5836 goto out; 5837 } 5838 path->slots[0]++; 5839 } 5840 ret = 0; 5841 out: 5842 btrfs_free_path(path); 5843 return ret; 5844 } 5845 5846 static int log_new_ancestors(struct btrfs_trans_handle *trans, 5847 struct btrfs_root *root, 5848 struct btrfs_path *path, 5849 struct btrfs_log_ctx *ctx) 5850 { 5851 struct btrfs_key found_key; 5852 5853 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5854 5855 while (true) { 5856 struct btrfs_fs_info *fs_info = root->fs_info; 5857 struct extent_buffer *leaf = path->nodes[0]; 5858 int slot = path->slots[0]; 5859 struct btrfs_key search_key; 5860 struct inode *inode; 5861 u64 ino; 5862 int ret = 0; 5863 5864 btrfs_release_path(path); 5865 5866 ino = found_key.offset; 5867 5868 search_key.objectid = found_key.offset; 5869 search_key.type = BTRFS_INODE_ITEM_KEY; 5870 search_key.offset = 0; 5871 inode = btrfs_iget(fs_info->sb, ino, root); 5872 if (IS_ERR(inode)) 5873 return PTR_ERR(inode); 5874 5875 if (BTRFS_I(inode)->generation >= trans->transid && 5876 need_log_inode(trans, BTRFS_I(inode))) 5877 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5878 LOG_INODE_EXISTS, ctx); 5879 btrfs_add_delayed_iput(inode); 5880 if (ret) 5881 return ret; 5882 5883 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 5884 break; 5885 5886 search_key.type = BTRFS_INODE_REF_KEY; 5887 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5888 if (ret < 0) 5889 return ret; 5890 5891 leaf = path->nodes[0]; 5892 slot = path->slots[0]; 5893 if (slot >= btrfs_header_nritems(leaf)) { 5894 ret = btrfs_next_leaf(root, path); 5895 if (ret < 0) 5896 return ret; 5897 else if (ret > 0) 5898 return -ENOENT; 5899 leaf = path->nodes[0]; 5900 slot = path->slots[0]; 5901 } 5902 5903 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5904 if (found_key.objectid != search_key.objectid || 5905 found_key.type != BTRFS_INODE_REF_KEY) 5906 return -ENOENT; 5907 } 5908 return 0; 5909 } 5910 5911 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 5912 struct btrfs_inode *inode, 5913 struct dentry *parent, 5914 struct btrfs_log_ctx *ctx) 5915 { 5916 struct btrfs_root *root = inode->root; 5917 struct dentry *old_parent = NULL; 5918 struct super_block *sb = inode->vfs_inode.i_sb; 5919 int ret = 0; 5920 5921 while (true) { 5922 if (!parent || d_really_is_negative(parent) || 5923 sb != parent->d_sb) 5924 break; 5925 5926 inode = BTRFS_I(d_inode(parent)); 5927 if (root != inode->root) 5928 break; 5929 5930 if (inode->generation >= trans->transid && 5931 need_log_inode(trans, inode)) { 5932 ret = btrfs_log_inode(trans, root, inode, 5933 LOG_INODE_EXISTS, ctx); 5934 if (ret) 5935 break; 5936 } 5937 if (IS_ROOT(parent)) 5938 break; 5939 5940 parent = dget_parent(parent); 5941 dput(old_parent); 5942 old_parent = parent; 5943 } 5944 dput(old_parent); 5945 5946 return ret; 5947 } 5948 5949 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 5950 struct btrfs_inode *inode, 5951 struct dentry *parent, 5952 struct btrfs_log_ctx *ctx) 5953 { 5954 struct btrfs_root *root = inode->root; 5955 const u64 ino = btrfs_ino(inode); 5956 struct btrfs_path *path; 5957 struct btrfs_key search_key; 5958 int ret; 5959 5960 /* 5961 * For a single hard link case, go through a fast path that does not 5962 * need to iterate the fs/subvolume tree. 5963 */ 5964 if (inode->vfs_inode.i_nlink < 2) 5965 return log_new_ancestors_fast(trans, inode, parent, ctx); 5966 5967 path = btrfs_alloc_path(); 5968 if (!path) 5969 return -ENOMEM; 5970 5971 search_key.objectid = ino; 5972 search_key.type = BTRFS_INODE_REF_KEY; 5973 search_key.offset = 0; 5974 again: 5975 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5976 if (ret < 0) 5977 goto out; 5978 if (ret == 0) 5979 path->slots[0]++; 5980 5981 while (true) { 5982 struct extent_buffer *leaf = path->nodes[0]; 5983 int slot = path->slots[0]; 5984 struct btrfs_key found_key; 5985 5986 if (slot >= btrfs_header_nritems(leaf)) { 5987 ret = btrfs_next_leaf(root, path); 5988 if (ret < 0) 5989 goto out; 5990 else if (ret > 0) 5991 break; 5992 continue; 5993 } 5994 5995 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5996 if (found_key.objectid != ino || 5997 found_key.type > BTRFS_INODE_EXTREF_KEY) 5998 break; 5999 6000 /* 6001 * Don't deal with extended references because they are rare 6002 * cases and too complex to deal with (we would need to keep 6003 * track of which subitem we are processing for each item in 6004 * this loop, etc). So just return some error to fallback to 6005 * a transaction commit. 6006 */ 6007 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 6008 ret = -EMLINK; 6009 goto out; 6010 } 6011 6012 /* 6013 * Logging ancestors needs to do more searches on the fs/subvol 6014 * tree, so it releases the path as needed to avoid deadlocks. 6015 * Keep track of the last inode ref key and resume from that key 6016 * after logging all new ancestors for the current hard link. 6017 */ 6018 memcpy(&search_key, &found_key, sizeof(search_key)); 6019 6020 ret = log_new_ancestors(trans, root, path, ctx); 6021 if (ret) 6022 goto out; 6023 btrfs_release_path(path); 6024 goto again; 6025 } 6026 ret = 0; 6027 out: 6028 btrfs_free_path(path); 6029 return ret; 6030 } 6031 6032 /* 6033 * helper function around btrfs_log_inode to make sure newly created 6034 * parent directories also end up in the log. A minimal inode and backref 6035 * only logging is done of any parent directories that are older than 6036 * the last committed transaction 6037 */ 6038 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 6039 struct btrfs_inode *inode, 6040 struct dentry *parent, 6041 int inode_only, 6042 struct btrfs_log_ctx *ctx) 6043 { 6044 struct btrfs_root *root = inode->root; 6045 struct btrfs_fs_info *fs_info = root->fs_info; 6046 int ret = 0; 6047 bool log_dentries = false; 6048 6049 if (btrfs_test_opt(fs_info, NOTREELOG)) { 6050 ret = 1; 6051 goto end_no_trans; 6052 } 6053 6054 if (btrfs_root_refs(&root->root_item) == 0) { 6055 ret = 1; 6056 goto end_no_trans; 6057 } 6058 6059 /* 6060 * Skip already logged inodes or inodes corresponding to tmpfiles 6061 * (since logging them is pointless, a link count of 0 means they 6062 * will never be accessible). 6063 */ 6064 if (btrfs_inode_in_log(inode, trans->transid) || 6065 inode->vfs_inode.i_nlink == 0) { 6066 ret = BTRFS_NO_LOG_SYNC; 6067 goto end_no_trans; 6068 } 6069 6070 ret = start_log_trans(trans, root, ctx); 6071 if (ret) 6072 goto end_no_trans; 6073 6074 ret = btrfs_log_inode(trans, root, inode, inode_only, ctx); 6075 if (ret) 6076 goto end_trans; 6077 6078 /* 6079 * for regular files, if its inode is already on disk, we don't 6080 * have to worry about the parents at all. This is because 6081 * we can use the last_unlink_trans field to record renames 6082 * and other fun in this file. 6083 */ 6084 if (S_ISREG(inode->vfs_inode.i_mode) && 6085 inode->generation < trans->transid && 6086 inode->last_unlink_trans < trans->transid) { 6087 ret = 0; 6088 goto end_trans; 6089 } 6090 6091 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) 6092 log_dentries = true; 6093 6094 /* 6095 * On unlink we must make sure all our current and old parent directory 6096 * inodes are fully logged. This is to prevent leaving dangling 6097 * directory index entries in directories that were our parents but are 6098 * not anymore. Not doing this results in old parent directory being 6099 * impossible to delete after log replay (rmdir will always fail with 6100 * error -ENOTEMPTY). 6101 * 6102 * Example 1: 6103 * 6104 * mkdir testdir 6105 * touch testdir/foo 6106 * ln testdir/foo testdir/bar 6107 * sync 6108 * unlink testdir/bar 6109 * xfs_io -c fsync testdir/foo 6110 * <power failure> 6111 * mount fs, triggers log replay 6112 * 6113 * If we don't log the parent directory (testdir), after log replay the 6114 * directory still has an entry pointing to the file inode using the bar 6115 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6116 * the file inode has a link count of 1. 6117 * 6118 * Example 2: 6119 * 6120 * mkdir testdir 6121 * touch foo 6122 * ln foo testdir/foo2 6123 * ln foo testdir/foo3 6124 * sync 6125 * unlink testdir/foo3 6126 * xfs_io -c fsync foo 6127 * <power failure> 6128 * mount fs, triggers log replay 6129 * 6130 * Similar as the first example, after log replay the parent directory 6131 * testdir still has an entry pointing to the inode file with name foo3 6132 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6133 * and has a link count of 2. 6134 */ 6135 if (inode->last_unlink_trans >= trans->transid) { 6136 ret = btrfs_log_all_parents(trans, inode, ctx); 6137 if (ret) 6138 goto end_trans; 6139 } 6140 6141 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6142 if (ret) 6143 goto end_trans; 6144 6145 if (log_dentries) 6146 ret = log_new_dir_dentries(trans, root, inode, ctx); 6147 else 6148 ret = 0; 6149 end_trans: 6150 if (ret < 0) { 6151 btrfs_set_log_full_commit(trans); 6152 ret = 1; 6153 } 6154 6155 if (ret) 6156 btrfs_remove_log_ctx(root, ctx); 6157 btrfs_end_log_trans(root); 6158 end_no_trans: 6159 return ret; 6160 } 6161 6162 /* 6163 * it is not safe to log dentry if the chunk root has added new 6164 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6165 * If this returns 1, you must commit the transaction to safely get your 6166 * data on disk. 6167 */ 6168 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6169 struct dentry *dentry, 6170 struct btrfs_log_ctx *ctx) 6171 { 6172 struct dentry *parent = dget_parent(dentry); 6173 int ret; 6174 6175 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6176 LOG_INODE_ALL, ctx); 6177 dput(parent); 6178 6179 return ret; 6180 } 6181 6182 /* 6183 * should be called during mount to recover any replay any log trees 6184 * from the FS 6185 */ 6186 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6187 { 6188 int ret; 6189 struct btrfs_path *path; 6190 struct btrfs_trans_handle *trans; 6191 struct btrfs_key key; 6192 struct btrfs_key found_key; 6193 struct btrfs_root *log; 6194 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6195 struct walk_control wc = { 6196 .process_func = process_one_buffer, 6197 .stage = LOG_WALK_PIN_ONLY, 6198 }; 6199 6200 path = btrfs_alloc_path(); 6201 if (!path) 6202 return -ENOMEM; 6203 6204 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6205 6206 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6207 if (IS_ERR(trans)) { 6208 ret = PTR_ERR(trans); 6209 goto error; 6210 } 6211 6212 wc.trans = trans; 6213 wc.pin = 1; 6214 6215 ret = walk_log_tree(trans, log_root_tree, &wc); 6216 if (ret) { 6217 btrfs_handle_fs_error(fs_info, ret, 6218 "Failed to pin buffers while recovering log root tree."); 6219 goto error; 6220 } 6221 6222 again: 6223 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6224 key.offset = (u64)-1; 6225 key.type = BTRFS_ROOT_ITEM_KEY; 6226 6227 while (1) { 6228 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6229 6230 if (ret < 0) { 6231 btrfs_handle_fs_error(fs_info, ret, 6232 "Couldn't find tree log root."); 6233 goto error; 6234 } 6235 if (ret > 0) { 6236 if (path->slots[0] == 0) 6237 break; 6238 path->slots[0]--; 6239 } 6240 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6241 path->slots[0]); 6242 btrfs_release_path(path); 6243 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6244 break; 6245 6246 log = btrfs_read_tree_root(log_root_tree, &found_key); 6247 if (IS_ERR(log)) { 6248 ret = PTR_ERR(log); 6249 btrfs_handle_fs_error(fs_info, ret, 6250 "Couldn't read tree log root."); 6251 goto error; 6252 } 6253 6254 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 6255 true); 6256 if (IS_ERR(wc.replay_dest)) { 6257 ret = PTR_ERR(wc.replay_dest); 6258 6259 /* 6260 * We didn't find the subvol, likely because it was 6261 * deleted. This is ok, simply skip this log and go to 6262 * the next one. 6263 * 6264 * We need to exclude the root because we can't have 6265 * other log replays overwriting this log as we'll read 6266 * it back in a few more times. This will keep our 6267 * block from being modified, and we'll just bail for 6268 * each subsequent pass. 6269 */ 6270 if (ret == -ENOENT) 6271 ret = btrfs_pin_extent_for_log_replay(trans, 6272 log->node->start, 6273 log->node->len); 6274 btrfs_put_root(log); 6275 6276 if (!ret) 6277 goto next; 6278 btrfs_handle_fs_error(fs_info, ret, 6279 "Couldn't read target root for tree log recovery."); 6280 goto error; 6281 } 6282 6283 wc.replay_dest->log_root = log; 6284 btrfs_record_root_in_trans(trans, wc.replay_dest); 6285 ret = walk_log_tree(trans, log, &wc); 6286 6287 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6288 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6289 path); 6290 } 6291 6292 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6293 struct btrfs_root *root = wc.replay_dest; 6294 6295 btrfs_release_path(path); 6296 6297 /* 6298 * We have just replayed everything, and the highest 6299 * objectid of fs roots probably has changed in case 6300 * some inode_item's got replayed. 6301 * 6302 * root->objectid_mutex is not acquired as log replay 6303 * could only happen during mount. 6304 */ 6305 ret = btrfs_init_root_free_objectid(root); 6306 } 6307 6308 wc.replay_dest->log_root = NULL; 6309 btrfs_put_root(wc.replay_dest); 6310 btrfs_put_root(log); 6311 6312 if (ret) 6313 goto error; 6314 next: 6315 if (found_key.offset == 0) 6316 break; 6317 key.offset = found_key.offset - 1; 6318 } 6319 btrfs_release_path(path); 6320 6321 /* step one is to pin it all, step two is to replay just inodes */ 6322 if (wc.pin) { 6323 wc.pin = 0; 6324 wc.process_func = replay_one_buffer; 6325 wc.stage = LOG_WALK_REPLAY_INODES; 6326 goto again; 6327 } 6328 /* step three is to replay everything */ 6329 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6330 wc.stage++; 6331 goto again; 6332 } 6333 6334 btrfs_free_path(path); 6335 6336 /* step 4: commit the transaction, which also unpins the blocks */ 6337 ret = btrfs_commit_transaction(trans); 6338 if (ret) 6339 return ret; 6340 6341 log_root_tree->log_root = NULL; 6342 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6343 btrfs_put_root(log_root_tree); 6344 6345 return 0; 6346 error: 6347 if (wc.trans) 6348 btrfs_end_transaction(wc.trans); 6349 btrfs_free_path(path); 6350 return ret; 6351 } 6352 6353 /* 6354 * there are some corner cases where we want to force a full 6355 * commit instead of allowing a directory to be logged. 6356 * 6357 * They revolve around files there were unlinked from the directory, and 6358 * this function updates the parent directory so that a full commit is 6359 * properly done if it is fsync'd later after the unlinks are done. 6360 * 6361 * Must be called before the unlink operations (updates to the subvolume tree, 6362 * inodes, etc) are done. 6363 */ 6364 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6365 struct btrfs_inode *dir, struct btrfs_inode *inode, 6366 int for_rename) 6367 { 6368 /* 6369 * when we're logging a file, if it hasn't been renamed 6370 * or unlinked, and its inode is fully committed on disk, 6371 * we don't have to worry about walking up the directory chain 6372 * to log its parents. 6373 * 6374 * So, we use the last_unlink_trans field to put this transid 6375 * into the file. When the file is logged we check it and 6376 * don't log the parents if the file is fully on disk. 6377 */ 6378 mutex_lock(&inode->log_mutex); 6379 inode->last_unlink_trans = trans->transid; 6380 mutex_unlock(&inode->log_mutex); 6381 6382 /* 6383 * if this directory was already logged any new 6384 * names for this file/dir will get recorded 6385 */ 6386 if (dir->logged_trans == trans->transid) 6387 return; 6388 6389 /* 6390 * if the inode we're about to unlink was logged, 6391 * the log will be properly updated for any new names 6392 */ 6393 if (inode->logged_trans == trans->transid) 6394 return; 6395 6396 /* 6397 * when renaming files across directories, if the directory 6398 * there we're unlinking from gets fsync'd later on, there's 6399 * no way to find the destination directory later and fsync it 6400 * properly. So, we have to be conservative and force commits 6401 * so the new name gets discovered. 6402 */ 6403 if (for_rename) 6404 goto record; 6405 6406 /* we can safely do the unlink without any special recording */ 6407 return; 6408 6409 record: 6410 mutex_lock(&dir->log_mutex); 6411 dir->last_unlink_trans = trans->transid; 6412 mutex_unlock(&dir->log_mutex); 6413 } 6414 6415 /* 6416 * Make sure that if someone attempts to fsync the parent directory of a deleted 6417 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6418 * that after replaying the log tree of the parent directory's root we will not 6419 * see the snapshot anymore and at log replay time we will not see any log tree 6420 * corresponding to the deleted snapshot's root, which could lead to replaying 6421 * it after replaying the log tree of the parent directory (which would replay 6422 * the snapshot delete operation). 6423 * 6424 * Must be called before the actual snapshot destroy operation (updates to the 6425 * parent root and tree of tree roots trees, etc) are done. 6426 */ 6427 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6428 struct btrfs_inode *dir) 6429 { 6430 mutex_lock(&dir->log_mutex); 6431 dir->last_unlink_trans = trans->transid; 6432 mutex_unlock(&dir->log_mutex); 6433 } 6434 6435 /* 6436 * Call this after adding a new name for a file and it will properly 6437 * update the log to reflect the new name. 6438 */ 6439 void btrfs_log_new_name(struct btrfs_trans_handle *trans, 6440 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6441 struct dentry *parent) 6442 { 6443 struct btrfs_log_ctx ctx; 6444 6445 /* 6446 * this will force the logging code to walk the dentry chain 6447 * up for the file 6448 */ 6449 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6450 inode->last_unlink_trans = trans->transid; 6451 6452 /* 6453 * if this inode hasn't been logged and directory we're renaming it 6454 * from hasn't been logged, we don't need to log it 6455 */ 6456 if (inode->logged_trans < trans->transid && 6457 (!old_dir || old_dir->logged_trans < trans->transid)) 6458 return; 6459 6460 btrfs_init_log_ctx(&ctx, &inode->vfs_inode); 6461 ctx.logging_new_name = true; 6462 /* 6463 * We don't care about the return value. If we fail to log the new name 6464 * then we know the next attempt to sync the log will fallback to a full 6465 * transaction commit (due to a call to btrfs_set_log_full_commit()), so 6466 * we don't need to worry about getting a log committed that has an 6467 * inconsistent state after a rename operation. 6468 */ 6469 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); 6470 } 6471 6472