xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 5f32c314)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "tree-log.h"
30 #include "hash.h"
31 
32 /* magic values for the inode_only field in btrfs_log_inode:
33  *
34  * LOG_INODE_ALL means to log everything
35  * LOG_INODE_EXISTS means to log just enough to recreate the inode
36  * during log replay
37  */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40 
41 /*
42  * directory trouble cases
43  *
44  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45  * log, we must force a full commit before doing an fsync of the directory
46  * where the unlink was done.
47  * ---> record transid of last unlink/rename per directory
48  *
49  * mkdir foo/some_dir
50  * normal commit
51  * rename foo/some_dir foo2/some_dir
52  * mkdir foo/some_dir
53  * fsync foo/some_dir/some_file
54  *
55  * The fsync above will unlink the original some_dir without recording
56  * it in its new location (foo2).  After a crash, some_dir will be gone
57  * unless the fsync of some_file forces a full commit
58  *
59  * 2) we must log any new names for any file or dir that is in the fsync
60  * log. ---> check inode while renaming/linking.
61  *
62  * 2a) we must log any new names for any file or dir during rename
63  * when the directory they are being removed from was logged.
64  * ---> check inode and old parent dir during rename
65  *
66  *  2a is actually the more important variant.  With the extra logging
67  *  a crash might unlink the old name without recreating the new one
68  *
69  * 3) after a crash, we must go through any directories with a link count
70  * of zero and redo the rm -rf
71  *
72  * mkdir f1/foo
73  * normal commit
74  * rm -rf f1/foo
75  * fsync(f1)
76  *
77  * The directory f1 was fully removed from the FS, but fsync was never
78  * called on f1, only its parent dir.  After a crash the rm -rf must
79  * be replayed.  This must be able to recurse down the entire
80  * directory tree.  The inode link count fixup code takes care of the
81  * ugly details.
82  */
83 
84 /*
85  * stages for the tree walking.  The first
86  * stage (0) is to only pin down the blocks we find
87  * the second stage (1) is to make sure that all the inodes
88  * we find in the log are created in the subvolume.
89  *
90  * The last stage is to deal with directories and links and extents
91  * and all the other fun semantics
92  */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
97 
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 			     struct btrfs_root *root, struct inode *inode,
100 			     int inode_only);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 			     struct btrfs_root *root,
103 			     struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 				       struct btrfs_root *root,
106 				       struct btrfs_root *log,
107 				       struct btrfs_path *path,
108 				       u64 dirid, int del_all);
109 
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132 
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 			   struct btrfs_root *root)
140 {
141 	int ret;
142 	int err = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 	if (root->log_root) {
146 		if (!root->log_start_pid) {
147 			root->log_start_pid = current->pid;
148 			root->log_multiple_pids = false;
149 		} else if (root->log_start_pid != current->pid) {
150 			root->log_multiple_pids = true;
151 		}
152 
153 		atomic_inc(&root->log_batch);
154 		atomic_inc(&root->log_writers);
155 		mutex_unlock(&root->log_mutex);
156 		return 0;
157 	}
158 	root->log_multiple_pids = false;
159 	root->log_start_pid = current->pid;
160 	mutex_lock(&root->fs_info->tree_log_mutex);
161 	if (!root->fs_info->log_root_tree) {
162 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
163 		if (ret)
164 			err = ret;
165 	}
166 	if (err == 0 && !root->log_root) {
167 		ret = btrfs_add_log_tree(trans, root);
168 		if (ret)
169 			err = ret;
170 	}
171 	mutex_unlock(&root->fs_info->tree_log_mutex);
172 	atomic_inc(&root->log_batch);
173 	atomic_inc(&root->log_writers);
174 	mutex_unlock(&root->log_mutex);
175 	return err;
176 }
177 
178 /*
179  * returns 0 if there was a log transaction running and we were able
180  * to join, or returns -ENOENT if there were not transactions
181  * in progress
182  */
183 static int join_running_log_trans(struct btrfs_root *root)
184 {
185 	int ret = -ENOENT;
186 
187 	smp_mb();
188 	if (!root->log_root)
189 		return -ENOENT;
190 
191 	mutex_lock(&root->log_mutex);
192 	if (root->log_root) {
193 		ret = 0;
194 		atomic_inc(&root->log_writers);
195 	}
196 	mutex_unlock(&root->log_mutex);
197 	return ret;
198 }
199 
200 /*
201  * This either makes the current running log transaction wait
202  * until you call btrfs_end_log_trans() or it makes any future
203  * log transactions wait until you call btrfs_end_log_trans()
204  */
205 int btrfs_pin_log_trans(struct btrfs_root *root)
206 {
207 	int ret = -ENOENT;
208 
209 	mutex_lock(&root->log_mutex);
210 	atomic_inc(&root->log_writers);
211 	mutex_unlock(&root->log_mutex);
212 	return ret;
213 }
214 
215 /*
216  * indicate we're done making changes to the log tree
217  * and wake up anyone waiting to do a sync
218  */
219 void btrfs_end_log_trans(struct btrfs_root *root)
220 {
221 	if (atomic_dec_and_test(&root->log_writers)) {
222 		smp_mb();
223 		if (waitqueue_active(&root->log_writer_wait))
224 			wake_up(&root->log_writer_wait);
225 	}
226 }
227 
228 
229 /*
230  * the walk control struct is used to pass state down the chain when
231  * processing the log tree.  The stage field tells us which part
232  * of the log tree processing we are currently doing.  The others
233  * are state fields used for that specific part
234  */
235 struct walk_control {
236 	/* should we free the extent on disk when done?  This is used
237 	 * at transaction commit time while freeing a log tree
238 	 */
239 	int free;
240 
241 	/* should we write out the extent buffer?  This is used
242 	 * while flushing the log tree to disk during a sync
243 	 */
244 	int write;
245 
246 	/* should we wait for the extent buffer io to finish?  Also used
247 	 * while flushing the log tree to disk for a sync
248 	 */
249 	int wait;
250 
251 	/* pin only walk, we record which extents on disk belong to the
252 	 * log trees
253 	 */
254 	int pin;
255 
256 	/* what stage of the replay code we're currently in */
257 	int stage;
258 
259 	/* the root we are currently replaying */
260 	struct btrfs_root *replay_dest;
261 
262 	/* the trans handle for the current replay */
263 	struct btrfs_trans_handle *trans;
264 
265 	/* the function that gets used to process blocks we find in the
266 	 * tree.  Note the extent_buffer might not be up to date when it is
267 	 * passed in, and it must be checked or read if you need the data
268 	 * inside it
269 	 */
270 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
271 			    struct walk_control *wc, u64 gen);
272 };
273 
274 /*
275  * process_func used to pin down extents, write them or wait on them
276  */
277 static int process_one_buffer(struct btrfs_root *log,
278 			      struct extent_buffer *eb,
279 			      struct walk_control *wc, u64 gen)
280 {
281 	int ret = 0;
282 
283 	/*
284 	 * If this fs is mixed then we need to be able to process the leaves to
285 	 * pin down any logged extents, so we have to read the block.
286 	 */
287 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
288 		ret = btrfs_read_buffer(eb, gen);
289 		if (ret)
290 			return ret;
291 	}
292 
293 	if (wc->pin)
294 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
295 						      eb->start, eb->len);
296 
297 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
298 		if (wc->pin && btrfs_header_level(eb) == 0)
299 			ret = btrfs_exclude_logged_extents(log, eb);
300 		if (wc->write)
301 			btrfs_write_tree_block(eb);
302 		if (wc->wait)
303 			btrfs_wait_tree_block_writeback(eb);
304 	}
305 	return ret;
306 }
307 
308 /*
309  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
310  * to the src data we are copying out.
311  *
312  * root is the tree we are copying into, and path is a scratch
313  * path for use in this function (it should be released on entry and
314  * will be released on exit).
315  *
316  * If the key is already in the destination tree the existing item is
317  * overwritten.  If the existing item isn't big enough, it is extended.
318  * If it is too large, it is truncated.
319  *
320  * If the key isn't in the destination yet, a new item is inserted.
321  */
322 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
323 				   struct btrfs_root *root,
324 				   struct btrfs_path *path,
325 				   struct extent_buffer *eb, int slot,
326 				   struct btrfs_key *key)
327 {
328 	int ret;
329 	u32 item_size;
330 	u64 saved_i_size = 0;
331 	int save_old_i_size = 0;
332 	unsigned long src_ptr;
333 	unsigned long dst_ptr;
334 	int overwrite_root = 0;
335 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
336 
337 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
338 		overwrite_root = 1;
339 
340 	item_size = btrfs_item_size_nr(eb, slot);
341 	src_ptr = btrfs_item_ptr_offset(eb, slot);
342 
343 	/* look for the key in the destination tree */
344 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
345 	if (ret < 0)
346 		return ret;
347 
348 	if (ret == 0) {
349 		char *src_copy;
350 		char *dst_copy;
351 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
352 						  path->slots[0]);
353 		if (dst_size != item_size)
354 			goto insert;
355 
356 		if (item_size == 0) {
357 			btrfs_release_path(path);
358 			return 0;
359 		}
360 		dst_copy = kmalloc(item_size, GFP_NOFS);
361 		src_copy = kmalloc(item_size, GFP_NOFS);
362 		if (!dst_copy || !src_copy) {
363 			btrfs_release_path(path);
364 			kfree(dst_copy);
365 			kfree(src_copy);
366 			return -ENOMEM;
367 		}
368 
369 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
370 
371 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
372 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
373 				   item_size);
374 		ret = memcmp(dst_copy, src_copy, item_size);
375 
376 		kfree(dst_copy);
377 		kfree(src_copy);
378 		/*
379 		 * they have the same contents, just return, this saves
380 		 * us from cowing blocks in the destination tree and doing
381 		 * extra writes that may not have been done by a previous
382 		 * sync
383 		 */
384 		if (ret == 0) {
385 			btrfs_release_path(path);
386 			return 0;
387 		}
388 
389 		/*
390 		 * We need to load the old nbytes into the inode so when we
391 		 * replay the extents we've logged we get the right nbytes.
392 		 */
393 		if (inode_item) {
394 			struct btrfs_inode_item *item;
395 			u64 nbytes;
396 			u32 mode;
397 
398 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
399 					      struct btrfs_inode_item);
400 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
401 			item = btrfs_item_ptr(eb, slot,
402 					      struct btrfs_inode_item);
403 			btrfs_set_inode_nbytes(eb, item, nbytes);
404 
405 			/*
406 			 * If this is a directory we need to reset the i_size to
407 			 * 0 so that we can set it up properly when replaying
408 			 * the rest of the items in this log.
409 			 */
410 			mode = btrfs_inode_mode(eb, item);
411 			if (S_ISDIR(mode))
412 				btrfs_set_inode_size(eb, item, 0);
413 		}
414 	} else if (inode_item) {
415 		struct btrfs_inode_item *item;
416 		u32 mode;
417 
418 		/*
419 		 * New inode, set nbytes to 0 so that the nbytes comes out
420 		 * properly when we replay the extents.
421 		 */
422 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
423 		btrfs_set_inode_nbytes(eb, item, 0);
424 
425 		/*
426 		 * If this is a directory we need to reset the i_size to 0 so
427 		 * that we can set it up properly when replaying the rest of
428 		 * the items in this log.
429 		 */
430 		mode = btrfs_inode_mode(eb, item);
431 		if (S_ISDIR(mode))
432 			btrfs_set_inode_size(eb, item, 0);
433 	}
434 insert:
435 	btrfs_release_path(path);
436 	/* try to insert the key into the destination tree */
437 	ret = btrfs_insert_empty_item(trans, root, path,
438 				      key, item_size);
439 
440 	/* make sure any existing item is the correct size */
441 	if (ret == -EEXIST) {
442 		u32 found_size;
443 		found_size = btrfs_item_size_nr(path->nodes[0],
444 						path->slots[0]);
445 		if (found_size > item_size)
446 			btrfs_truncate_item(root, path, item_size, 1);
447 		else if (found_size < item_size)
448 			btrfs_extend_item(root, path,
449 					  item_size - found_size);
450 	} else if (ret) {
451 		return ret;
452 	}
453 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
454 					path->slots[0]);
455 
456 	/* don't overwrite an existing inode if the generation number
457 	 * was logged as zero.  This is done when the tree logging code
458 	 * is just logging an inode to make sure it exists after recovery.
459 	 *
460 	 * Also, don't overwrite i_size on directories during replay.
461 	 * log replay inserts and removes directory items based on the
462 	 * state of the tree found in the subvolume, and i_size is modified
463 	 * as it goes
464 	 */
465 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
466 		struct btrfs_inode_item *src_item;
467 		struct btrfs_inode_item *dst_item;
468 
469 		src_item = (struct btrfs_inode_item *)src_ptr;
470 		dst_item = (struct btrfs_inode_item *)dst_ptr;
471 
472 		if (btrfs_inode_generation(eb, src_item) == 0)
473 			goto no_copy;
474 
475 		if (overwrite_root &&
476 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
477 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
478 			save_old_i_size = 1;
479 			saved_i_size = btrfs_inode_size(path->nodes[0],
480 							dst_item);
481 		}
482 	}
483 
484 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
485 			   src_ptr, item_size);
486 
487 	if (save_old_i_size) {
488 		struct btrfs_inode_item *dst_item;
489 		dst_item = (struct btrfs_inode_item *)dst_ptr;
490 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
491 	}
492 
493 	/* make sure the generation is filled in */
494 	if (key->type == BTRFS_INODE_ITEM_KEY) {
495 		struct btrfs_inode_item *dst_item;
496 		dst_item = (struct btrfs_inode_item *)dst_ptr;
497 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
498 			btrfs_set_inode_generation(path->nodes[0], dst_item,
499 						   trans->transid);
500 		}
501 	}
502 no_copy:
503 	btrfs_mark_buffer_dirty(path->nodes[0]);
504 	btrfs_release_path(path);
505 	return 0;
506 }
507 
508 /*
509  * simple helper to read an inode off the disk from a given root
510  * This can only be called for subvolume roots and not for the log
511  */
512 static noinline struct inode *read_one_inode(struct btrfs_root *root,
513 					     u64 objectid)
514 {
515 	struct btrfs_key key;
516 	struct inode *inode;
517 
518 	key.objectid = objectid;
519 	key.type = BTRFS_INODE_ITEM_KEY;
520 	key.offset = 0;
521 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
522 	if (IS_ERR(inode)) {
523 		inode = NULL;
524 	} else if (is_bad_inode(inode)) {
525 		iput(inode);
526 		inode = NULL;
527 	}
528 	return inode;
529 }
530 
531 /* replays a single extent in 'eb' at 'slot' with 'key' into the
532  * subvolume 'root'.  path is released on entry and should be released
533  * on exit.
534  *
535  * extents in the log tree have not been allocated out of the extent
536  * tree yet.  So, this completes the allocation, taking a reference
537  * as required if the extent already exists or creating a new extent
538  * if it isn't in the extent allocation tree yet.
539  *
540  * The extent is inserted into the file, dropping any existing extents
541  * from the file that overlap the new one.
542  */
543 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
544 				      struct btrfs_root *root,
545 				      struct btrfs_path *path,
546 				      struct extent_buffer *eb, int slot,
547 				      struct btrfs_key *key)
548 {
549 	int found_type;
550 	u64 extent_end;
551 	u64 start = key->offset;
552 	u64 nbytes = 0;
553 	struct btrfs_file_extent_item *item;
554 	struct inode *inode = NULL;
555 	unsigned long size;
556 	int ret = 0;
557 
558 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
559 	found_type = btrfs_file_extent_type(eb, item);
560 
561 	if (found_type == BTRFS_FILE_EXTENT_REG ||
562 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
563 		nbytes = btrfs_file_extent_num_bytes(eb, item);
564 		extent_end = start + nbytes;
565 
566 		/*
567 		 * We don't add to the inodes nbytes if we are prealloc or a
568 		 * hole.
569 		 */
570 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
571 			nbytes = 0;
572 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
573 		size = btrfs_file_extent_inline_len(eb, slot, item);
574 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
575 		extent_end = ALIGN(start + size, root->sectorsize);
576 	} else {
577 		ret = 0;
578 		goto out;
579 	}
580 
581 	inode = read_one_inode(root, key->objectid);
582 	if (!inode) {
583 		ret = -EIO;
584 		goto out;
585 	}
586 
587 	/*
588 	 * first check to see if we already have this extent in the
589 	 * file.  This must be done before the btrfs_drop_extents run
590 	 * so we don't try to drop this extent.
591 	 */
592 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
593 				       start, 0);
594 
595 	if (ret == 0 &&
596 	    (found_type == BTRFS_FILE_EXTENT_REG ||
597 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
598 		struct btrfs_file_extent_item cmp1;
599 		struct btrfs_file_extent_item cmp2;
600 		struct btrfs_file_extent_item *existing;
601 		struct extent_buffer *leaf;
602 
603 		leaf = path->nodes[0];
604 		existing = btrfs_item_ptr(leaf, path->slots[0],
605 					  struct btrfs_file_extent_item);
606 
607 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
608 				   sizeof(cmp1));
609 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
610 				   sizeof(cmp2));
611 
612 		/*
613 		 * we already have a pointer to this exact extent,
614 		 * we don't have to do anything
615 		 */
616 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
617 			btrfs_release_path(path);
618 			goto out;
619 		}
620 	}
621 	btrfs_release_path(path);
622 
623 	/* drop any overlapping extents */
624 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
625 	if (ret)
626 		goto out;
627 
628 	if (found_type == BTRFS_FILE_EXTENT_REG ||
629 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
630 		u64 offset;
631 		unsigned long dest_offset;
632 		struct btrfs_key ins;
633 
634 		ret = btrfs_insert_empty_item(trans, root, path, key,
635 					      sizeof(*item));
636 		if (ret)
637 			goto out;
638 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
639 						    path->slots[0]);
640 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
641 				(unsigned long)item,  sizeof(*item));
642 
643 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
644 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
645 		ins.type = BTRFS_EXTENT_ITEM_KEY;
646 		offset = key->offset - btrfs_file_extent_offset(eb, item);
647 
648 		if (ins.objectid > 0) {
649 			u64 csum_start;
650 			u64 csum_end;
651 			LIST_HEAD(ordered_sums);
652 			/*
653 			 * is this extent already allocated in the extent
654 			 * allocation tree?  If so, just add a reference
655 			 */
656 			ret = btrfs_lookup_extent(root, ins.objectid,
657 						ins.offset);
658 			if (ret == 0) {
659 				ret = btrfs_inc_extent_ref(trans, root,
660 						ins.objectid, ins.offset,
661 						0, root->root_key.objectid,
662 						key->objectid, offset, 0);
663 				if (ret)
664 					goto out;
665 			} else {
666 				/*
667 				 * insert the extent pointer in the extent
668 				 * allocation tree
669 				 */
670 				ret = btrfs_alloc_logged_file_extent(trans,
671 						root, root->root_key.objectid,
672 						key->objectid, offset, &ins);
673 				if (ret)
674 					goto out;
675 			}
676 			btrfs_release_path(path);
677 
678 			if (btrfs_file_extent_compression(eb, item)) {
679 				csum_start = ins.objectid;
680 				csum_end = csum_start + ins.offset;
681 			} else {
682 				csum_start = ins.objectid +
683 					btrfs_file_extent_offset(eb, item);
684 				csum_end = csum_start +
685 					btrfs_file_extent_num_bytes(eb, item);
686 			}
687 
688 			ret = btrfs_lookup_csums_range(root->log_root,
689 						csum_start, csum_end - 1,
690 						&ordered_sums, 0);
691 			if (ret)
692 				goto out;
693 			while (!list_empty(&ordered_sums)) {
694 				struct btrfs_ordered_sum *sums;
695 				sums = list_entry(ordered_sums.next,
696 						struct btrfs_ordered_sum,
697 						list);
698 				if (!ret)
699 					ret = btrfs_csum_file_blocks(trans,
700 						root->fs_info->csum_root,
701 						sums);
702 				list_del(&sums->list);
703 				kfree(sums);
704 			}
705 			if (ret)
706 				goto out;
707 		} else {
708 			btrfs_release_path(path);
709 		}
710 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
711 		/* inline extents are easy, we just overwrite them */
712 		ret = overwrite_item(trans, root, path, eb, slot, key);
713 		if (ret)
714 			goto out;
715 	}
716 
717 	inode_add_bytes(inode, nbytes);
718 	ret = btrfs_update_inode(trans, root, inode);
719 out:
720 	if (inode)
721 		iput(inode);
722 	return ret;
723 }
724 
725 /*
726  * when cleaning up conflicts between the directory names in the
727  * subvolume, directory names in the log and directory names in the
728  * inode back references, we may have to unlink inodes from directories.
729  *
730  * This is a helper function to do the unlink of a specific directory
731  * item
732  */
733 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
734 				      struct btrfs_root *root,
735 				      struct btrfs_path *path,
736 				      struct inode *dir,
737 				      struct btrfs_dir_item *di)
738 {
739 	struct inode *inode;
740 	char *name;
741 	int name_len;
742 	struct extent_buffer *leaf;
743 	struct btrfs_key location;
744 	int ret;
745 
746 	leaf = path->nodes[0];
747 
748 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
749 	name_len = btrfs_dir_name_len(leaf, di);
750 	name = kmalloc(name_len, GFP_NOFS);
751 	if (!name)
752 		return -ENOMEM;
753 
754 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
755 	btrfs_release_path(path);
756 
757 	inode = read_one_inode(root, location.objectid);
758 	if (!inode) {
759 		ret = -EIO;
760 		goto out;
761 	}
762 
763 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
764 	if (ret)
765 		goto out;
766 
767 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
768 	if (ret)
769 		goto out;
770 	else
771 		ret = btrfs_run_delayed_items(trans, root);
772 out:
773 	kfree(name);
774 	iput(inode);
775 	return ret;
776 }
777 
778 /*
779  * helper function to see if a given name and sequence number found
780  * in an inode back reference are already in a directory and correctly
781  * point to this inode
782  */
783 static noinline int inode_in_dir(struct btrfs_root *root,
784 				 struct btrfs_path *path,
785 				 u64 dirid, u64 objectid, u64 index,
786 				 const char *name, int name_len)
787 {
788 	struct btrfs_dir_item *di;
789 	struct btrfs_key location;
790 	int match = 0;
791 
792 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
793 					 index, name, name_len, 0);
794 	if (di && !IS_ERR(di)) {
795 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
796 		if (location.objectid != objectid)
797 			goto out;
798 	} else
799 		goto out;
800 	btrfs_release_path(path);
801 
802 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
803 	if (di && !IS_ERR(di)) {
804 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
805 		if (location.objectid != objectid)
806 			goto out;
807 	} else
808 		goto out;
809 	match = 1;
810 out:
811 	btrfs_release_path(path);
812 	return match;
813 }
814 
815 /*
816  * helper function to check a log tree for a named back reference in
817  * an inode.  This is used to decide if a back reference that is
818  * found in the subvolume conflicts with what we find in the log.
819  *
820  * inode backreferences may have multiple refs in a single item,
821  * during replay we process one reference at a time, and we don't
822  * want to delete valid links to a file from the subvolume if that
823  * link is also in the log.
824  */
825 static noinline int backref_in_log(struct btrfs_root *log,
826 				   struct btrfs_key *key,
827 				   u64 ref_objectid,
828 				   char *name, int namelen)
829 {
830 	struct btrfs_path *path;
831 	struct btrfs_inode_ref *ref;
832 	unsigned long ptr;
833 	unsigned long ptr_end;
834 	unsigned long name_ptr;
835 	int found_name_len;
836 	int item_size;
837 	int ret;
838 	int match = 0;
839 
840 	path = btrfs_alloc_path();
841 	if (!path)
842 		return -ENOMEM;
843 
844 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
845 	if (ret != 0)
846 		goto out;
847 
848 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
849 
850 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
851 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
852 						   name, namelen, NULL))
853 			match = 1;
854 
855 		goto out;
856 	}
857 
858 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
859 	ptr_end = ptr + item_size;
860 	while (ptr < ptr_end) {
861 		ref = (struct btrfs_inode_ref *)ptr;
862 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
863 		if (found_name_len == namelen) {
864 			name_ptr = (unsigned long)(ref + 1);
865 			ret = memcmp_extent_buffer(path->nodes[0], name,
866 						   name_ptr, namelen);
867 			if (ret == 0) {
868 				match = 1;
869 				goto out;
870 			}
871 		}
872 		ptr = (unsigned long)(ref + 1) + found_name_len;
873 	}
874 out:
875 	btrfs_free_path(path);
876 	return match;
877 }
878 
879 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
880 				  struct btrfs_root *root,
881 				  struct btrfs_path *path,
882 				  struct btrfs_root *log_root,
883 				  struct inode *dir, struct inode *inode,
884 				  struct extent_buffer *eb,
885 				  u64 inode_objectid, u64 parent_objectid,
886 				  u64 ref_index, char *name, int namelen,
887 				  int *search_done)
888 {
889 	int ret;
890 	char *victim_name;
891 	int victim_name_len;
892 	struct extent_buffer *leaf;
893 	struct btrfs_dir_item *di;
894 	struct btrfs_key search_key;
895 	struct btrfs_inode_extref *extref;
896 
897 again:
898 	/* Search old style refs */
899 	search_key.objectid = inode_objectid;
900 	search_key.type = BTRFS_INODE_REF_KEY;
901 	search_key.offset = parent_objectid;
902 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
903 	if (ret == 0) {
904 		struct btrfs_inode_ref *victim_ref;
905 		unsigned long ptr;
906 		unsigned long ptr_end;
907 
908 		leaf = path->nodes[0];
909 
910 		/* are we trying to overwrite a back ref for the root directory
911 		 * if so, just jump out, we're done
912 		 */
913 		if (search_key.objectid == search_key.offset)
914 			return 1;
915 
916 		/* check all the names in this back reference to see
917 		 * if they are in the log.  if so, we allow them to stay
918 		 * otherwise they must be unlinked as a conflict
919 		 */
920 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
921 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
922 		while (ptr < ptr_end) {
923 			victim_ref = (struct btrfs_inode_ref *)ptr;
924 			victim_name_len = btrfs_inode_ref_name_len(leaf,
925 								   victim_ref);
926 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
927 			if (!victim_name)
928 				return -ENOMEM;
929 
930 			read_extent_buffer(leaf, victim_name,
931 					   (unsigned long)(victim_ref + 1),
932 					   victim_name_len);
933 
934 			if (!backref_in_log(log_root, &search_key,
935 					    parent_objectid,
936 					    victim_name,
937 					    victim_name_len)) {
938 				inc_nlink(inode);
939 				btrfs_release_path(path);
940 
941 				ret = btrfs_unlink_inode(trans, root, dir,
942 							 inode, victim_name,
943 							 victim_name_len);
944 				kfree(victim_name);
945 				if (ret)
946 					return ret;
947 				ret = btrfs_run_delayed_items(trans, root);
948 				if (ret)
949 					return ret;
950 				*search_done = 1;
951 				goto again;
952 			}
953 			kfree(victim_name);
954 
955 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
956 		}
957 
958 		/*
959 		 * NOTE: we have searched root tree and checked the
960 		 * coresponding ref, it does not need to check again.
961 		 */
962 		*search_done = 1;
963 	}
964 	btrfs_release_path(path);
965 
966 	/* Same search but for extended refs */
967 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
968 					   inode_objectid, parent_objectid, 0,
969 					   0);
970 	if (!IS_ERR_OR_NULL(extref)) {
971 		u32 item_size;
972 		u32 cur_offset = 0;
973 		unsigned long base;
974 		struct inode *victim_parent;
975 
976 		leaf = path->nodes[0];
977 
978 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
979 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
980 
981 		while (cur_offset < item_size) {
982 			extref = (struct btrfs_inode_extref *)base + cur_offset;
983 
984 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
985 
986 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
987 				goto next;
988 
989 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
990 			if (!victim_name)
991 				return -ENOMEM;
992 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
993 					   victim_name_len);
994 
995 			search_key.objectid = inode_objectid;
996 			search_key.type = BTRFS_INODE_EXTREF_KEY;
997 			search_key.offset = btrfs_extref_hash(parent_objectid,
998 							      victim_name,
999 							      victim_name_len);
1000 			ret = 0;
1001 			if (!backref_in_log(log_root, &search_key,
1002 					    parent_objectid, victim_name,
1003 					    victim_name_len)) {
1004 				ret = -ENOENT;
1005 				victim_parent = read_one_inode(root,
1006 							       parent_objectid);
1007 				if (victim_parent) {
1008 					inc_nlink(inode);
1009 					btrfs_release_path(path);
1010 
1011 					ret = btrfs_unlink_inode(trans, root,
1012 								 victim_parent,
1013 								 inode,
1014 								 victim_name,
1015 								 victim_name_len);
1016 					if (!ret)
1017 						ret = btrfs_run_delayed_items(
1018 								  trans, root);
1019 				}
1020 				iput(victim_parent);
1021 				kfree(victim_name);
1022 				if (ret)
1023 					return ret;
1024 				*search_done = 1;
1025 				goto again;
1026 			}
1027 			kfree(victim_name);
1028 			if (ret)
1029 				return ret;
1030 next:
1031 			cur_offset += victim_name_len + sizeof(*extref);
1032 		}
1033 		*search_done = 1;
1034 	}
1035 	btrfs_release_path(path);
1036 
1037 	/* look for a conflicting sequence number */
1038 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1039 					 ref_index, name, namelen, 0);
1040 	if (di && !IS_ERR(di)) {
1041 		ret = drop_one_dir_item(trans, root, path, dir, di);
1042 		if (ret)
1043 			return ret;
1044 	}
1045 	btrfs_release_path(path);
1046 
1047 	/* look for a conflicing name */
1048 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1049 				   name, namelen, 0);
1050 	if (di && !IS_ERR(di)) {
1051 		ret = drop_one_dir_item(trans, root, path, dir, di);
1052 		if (ret)
1053 			return ret;
1054 	}
1055 	btrfs_release_path(path);
1056 
1057 	return 0;
1058 }
1059 
1060 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1061 			     u32 *namelen, char **name, u64 *index,
1062 			     u64 *parent_objectid)
1063 {
1064 	struct btrfs_inode_extref *extref;
1065 
1066 	extref = (struct btrfs_inode_extref *)ref_ptr;
1067 
1068 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1069 	*name = kmalloc(*namelen, GFP_NOFS);
1070 	if (*name == NULL)
1071 		return -ENOMEM;
1072 
1073 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1074 			   *namelen);
1075 
1076 	*index = btrfs_inode_extref_index(eb, extref);
1077 	if (parent_objectid)
1078 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1079 
1080 	return 0;
1081 }
1082 
1083 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1084 			  u32 *namelen, char **name, u64 *index)
1085 {
1086 	struct btrfs_inode_ref *ref;
1087 
1088 	ref = (struct btrfs_inode_ref *)ref_ptr;
1089 
1090 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1091 	*name = kmalloc(*namelen, GFP_NOFS);
1092 	if (*name == NULL)
1093 		return -ENOMEM;
1094 
1095 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1096 
1097 	*index = btrfs_inode_ref_index(eb, ref);
1098 
1099 	return 0;
1100 }
1101 
1102 /*
1103  * replay one inode back reference item found in the log tree.
1104  * eb, slot and key refer to the buffer and key found in the log tree.
1105  * root is the destination we are replaying into, and path is for temp
1106  * use by this function.  (it should be released on return).
1107  */
1108 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1109 				  struct btrfs_root *root,
1110 				  struct btrfs_root *log,
1111 				  struct btrfs_path *path,
1112 				  struct extent_buffer *eb, int slot,
1113 				  struct btrfs_key *key)
1114 {
1115 	struct inode *dir = NULL;
1116 	struct inode *inode = NULL;
1117 	unsigned long ref_ptr;
1118 	unsigned long ref_end;
1119 	char *name = NULL;
1120 	int namelen;
1121 	int ret;
1122 	int search_done = 0;
1123 	int log_ref_ver = 0;
1124 	u64 parent_objectid;
1125 	u64 inode_objectid;
1126 	u64 ref_index = 0;
1127 	int ref_struct_size;
1128 
1129 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1130 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1131 
1132 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1133 		struct btrfs_inode_extref *r;
1134 
1135 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1136 		log_ref_ver = 1;
1137 		r = (struct btrfs_inode_extref *)ref_ptr;
1138 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1139 	} else {
1140 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1141 		parent_objectid = key->offset;
1142 	}
1143 	inode_objectid = key->objectid;
1144 
1145 	/*
1146 	 * it is possible that we didn't log all the parent directories
1147 	 * for a given inode.  If we don't find the dir, just don't
1148 	 * copy the back ref in.  The link count fixup code will take
1149 	 * care of the rest
1150 	 */
1151 	dir = read_one_inode(root, parent_objectid);
1152 	if (!dir) {
1153 		ret = -ENOENT;
1154 		goto out;
1155 	}
1156 
1157 	inode = read_one_inode(root, inode_objectid);
1158 	if (!inode) {
1159 		ret = -EIO;
1160 		goto out;
1161 	}
1162 
1163 	while (ref_ptr < ref_end) {
1164 		if (log_ref_ver) {
1165 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1166 						&ref_index, &parent_objectid);
1167 			/*
1168 			 * parent object can change from one array
1169 			 * item to another.
1170 			 */
1171 			if (!dir)
1172 				dir = read_one_inode(root, parent_objectid);
1173 			if (!dir) {
1174 				ret = -ENOENT;
1175 				goto out;
1176 			}
1177 		} else {
1178 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1179 					     &ref_index);
1180 		}
1181 		if (ret)
1182 			goto out;
1183 
1184 		/* if we already have a perfect match, we're done */
1185 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1186 				  ref_index, name, namelen)) {
1187 			/*
1188 			 * look for a conflicting back reference in the
1189 			 * metadata. if we find one we have to unlink that name
1190 			 * of the file before we add our new link.  Later on, we
1191 			 * overwrite any existing back reference, and we don't
1192 			 * want to create dangling pointers in the directory.
1193 			 */
1194 
1195 			if (!search_done) {
1196 				ret = __add_inode_ref(trans, root, path, log,
1197 						      dir, inode, eb,
1198 						      inode_objectid,
1199 						      parent_objectid,
1200 						      ref_index, name, namelen,
1201 						      &search_done);
1202 				if (ret) {
1203 					if (ret == 1)
1204 						ret = 0;
1205 					goto out;
1206 				}
1207 			}
1208 
1209 			/* insert our name */
1210 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1211 					     0, ref_index);
1212 			if (ret)
1213 				goto out;
1214 
1215 			btrfs_update_inode(trans, root, inode);
1216 		}
1217 
1218 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1219 		kfree(name);
1220 		name = NULL;
1221 		if (log_ref_ver) {
1222 			iput(dir);
1223 			dir = NULL;
1224 		}
1225 	}
1226 
1227 	/* finally write the back reference in the inode */
1228 	ret = overwrite_item(trans, root, path, eb, slot, key);
1229 out:
1230 	btrfs_release_path(path);
1231 	kfree(name);
1232 	iput(dir);
1233 	iput(inode);
1234 	return ret;
1235 }
1236 
1237 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1238 			      struct btrfs_root *root, u64 offset)
1239 {
1240 	int ret;
1241 	ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1242 			offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1243 	if (ret > 0)
1244 		ret = btrfs_insert_orphan_item(trans, root, offset);
1245 	return ret;
1246 }
1247 
1248 static int count_inode_extrefs(struct btrfs_root *root,
1249 			       struct inode *inode, struct btrfs_path *path)
1250 {
1251 	int ret = 0;
1252 	int name_len;
1253 	unsigned int nlink = 0;
1254 	u32 item_size;
1255 	u32 cur_offset = 0;
1256 	u64 inode_objectid = btrfs_ino(inode);
1257 	u64 offset = 0;
1258 	unsigned long ptr;
1259 	struct btrfs_inode_extref *extref;
1260 	struct extent_buffer *leaf;
1261 
1262 	while (1) {
1263 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1264 					    &extref, &offset);
1265 		if (ret)
1266 			break;
1267 
1268 		leaf = path->nodes[0];
1269 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1270 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1271 
1272 		while (cur_offset < item_size) {
1273 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1274 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1275 
1276 			nlink++;
1277 
1278 			cur_offset += name_len + sizeof(*extref);
1279 		}
1280 
1281 		offset++;
1282 		btrfs_release_path(path);
1283 	}
1284 	btrfs_release_path(path);
1285 
1286 	if (ret < 0)
1287 		return ret;
1288 	return nlink;
1289 }
1290 
1291 static int count_inode_refs(struct btrfs_root *root,
1292 			       struct inode *inode, struct btrfs_path *path)
1293 {
1294 	int ret;
1295 	struct btrfs_key key;
1296 	unsigned int nlink = 0;
1297 	unsigned long ptr;
1298 	unsigned long ptr_end;
1299 	int name_len;
1300 	u64 ino = btrfs_ino(inode);
1301 
1302 	key.objectid = ino;
1303 	key.type = BTRFS_INODE_REF_KEY;
1304 	key.offset = (u64)-1;
1305 
1306 	while (1) {
1307 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1308 		if (ret < 0)
1309 			break;
1310 		if (ret > 0) {
1311 			if (path->slots[0] == 0)
1312 				break;
1313 			path->slots[0]--;
1314 		}
1315 process_slot:
1316 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1317 				      path->slots[0]);
1318 		if (key.objectid != ino ||
1319 		    key.type != BTRFS_INODE_REF_KEY)
1320 			break;
1321 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1322 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1323 						   path->slots[0]);
1324 		while (ptr < ptr_end) {
1325 			struct btrfs_inode_ref *ref;
1326 
1327 			ref = (struct btrfs_inode_ref *)ptr;
1328 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1329 							    ref);
1330 			ptr = (unsigned long)(ref + 1) + name_len;
1331 			nlink++;
1332 		}
1333 
1334 		if (key.offset == 0)
1335 			break;
1336 		if (path->slots[0] > 0) {
1337 			path->slots[0]--;
1338 			goto process_slot;
1339 		}
1340 		key.offset--;
1341 		btrfs_release_path(path);
1342 	}
1343 	btrfs_release_path(path);
1344 
1345 	return nlink;
1346 }
1347 
1348 /*
1349  * There are a few corners where the link count of the file can't
1350  * be properly maintained during replay.  So, instead of adding
1351  * lots of complexity to the log code, we just scan the backrefs
1352  * for any file that has been through replay.
1353  *
1354  * The scan will update the link count on the inode to reflect the
1355  * number of back refs found.  If it goes down to zero, the iput
1356  * will free the inode.
1357  */
1358 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1359 					   struct btrfs_root *root,
1360 					   struct inode *inode)
1361 {
1362 	struct btrfs_path *path;
1363 	int ret;
1364 	u64 nlink = 0;
1365 	u64 ino = btrfs_ino(inode);
1366 
1367 	path = btrfs_alloc_path();
1368 	if (!path)
1369 		return -ENOMEM;
1370 
1371 	ret = count_inode_refs(root, inode, path);
1372 	if (ret < 0)
1373 		goto out;
1374 
1375 	nlink = ret;
1376 
1377 	ret = count_inode_extrefs(root, inode, path);
1378 	if (ret == -ENOENT)
1379 		ret = 0;
1380 
1381 	if (ret < 0)
1382 		goto out;
1383 
1384 	nlink += ret;
1385 
1386 	ret = 0;
1387 
1388 	if (nlink != inode->i_nlink) {
1389 		set_nlink(inode, nlink);
1390 		btrfs_update_inode(trans, root, inode);
1391 	}
1392 	BTRFS_I(inode)->index_cnt = (u64)-1;
1393 
1394 	if (inode->i_nlink == 0) {
1395 		if (S_ISDIR(inode->i_mode)) {
1396 			ret = replay_dir_deletes(trans, root, NULL, path,
1397 						 ino, 1);
1398 			if (ret)
1399 				goto out;
1400 		}
1401 		ret = insert_orphan_item(trans, root, ino);
1402 	}
1403 
1404 out:
1405 	btrfs_free_path(path);
1406 	return ret;
1407 }
1408 
1409 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1410 					    struct btrfs_root *root,
1411 					    struct btrfs_path *path)
1412 {
1413 	int ret;
1414 	struct btrfs_key key;
1415 	struct inode *inode;
1416 
1417 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1418 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1419 	key.offset = (u64)-1;
1420 	while (1) {
1421 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1422 		if (ret < 0)
1423 			break;
1424 
1425 		if (ret == 1) {
1426 			if (path->slots[0] == 0)
1427 				break;
1428 			path->slots[0]--;
1429 		}
1430 
1431 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1432 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1433 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1434 			break;
1435 
1436 		ret = btrfs_del_item(trans, root, path);
1437 		if (ret)
1438 			goto out;
1439 
1440 		btrfs_release_path(path);
1441 		inode = read_one_inode(root, key.offset);
1442 		if (!inode)
1443 			return -EIO;
1444 
1445 		ret = fixup_inode_link_count(trans, root, inode);
1446 		iput(inode);
1447 		if (ret)
1448 			goto out;
1449 
1450 		/*
1451 		 * fixup on a directory may create new entries,
1452 		 * make sure we always look for the highset possible
1453 		 * offset
1454 		 */
1455 		key.offset = (u64)-1;
1456 	}
1457 	ret = 0;
1458 out:
1459 	btrfs_release_path(path);
1460 	return ret;
1461 }
1462 
1463 
1464 /*
1465  * record a given inode in the fixup dir so we can check its link
1466  * count when replay is done.  The link count is incremented here
1467  * so the inode won't go away until we check it
1468  */
1469 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1470 				      struct btrfs_root *root,
1471 				      struct btrfs_path *path,
1472 				      u64 objectid)
1473 {
1474 	struct btrfs_key key;
1475 	int ret = 0;
1476 	struct inode *inode;
1477 
1478 	inode = read_one_inode(root, objectid);
1479 	if (!inode)
1480 		return -EIO;
1481 
1482 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1483 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1484 	key.offset = objectid;
1485 
1486 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1487 
1488 	btrfs_release_path(path);
1489 	if (ret == 0) {
1490 		if (!inode->i_nlink)
1491 			set_nlink(inode, 1);
1492 		else
1493 			inc_nlink(inode);
1494 		ret = btrfs_update_inode(trans, root, inode);
1495 	} else if (ret == -EEXIST) {
1496 		ret = 0;
1497 	} else {
1498 		BUG(); /* Logic Error */
1499 	}
1500 	iput(inode);
1501 
1502 	return ret;
1503 }
1504 
1505 /*
1506  * when replaying the log for a directory, we only insert names
1507  * for inodes that actually exist.  This means an fsync on a directory
1508  * does not implicitly fsync all the new files in it
1509  */
1510 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1511 				    struct btrfs_root *root,
1512 				    struct btrfs_path *path,
1513 				    u64 dirid, u64 index,
1514 				    char *name, int name_len, u8 type,
1515 				    struct btrfs_key *location)
1516 {
1517 	struct inode *inode;
1518 	struct inode *dir;
1519 	int ret;
1520 
1521 	inode = read_one_inode(root, location->objectid);
1522 	if (!inode)
1523 		return -ENOENT;
1524 
1525 	dir = read_one_inode(root, dirid);
1526 	if (!dir) {
1527 		iput(inode);
1528 		return -EIO;
1529 	}
1530 
1531 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1532 
1533 	/* FIXME, put inode into FIXUP list */
1534 
1535 	iput(inode);
1536 	iput(dir);
1537 	return ret;
1538 }
1539 
1540 /*
1541  * take a single entry in a log directory item and replay it into
1542  * the subvolume.
1543  *
1544  * if a conflicting item exists in the subdirectory already,
1545  * the inode it points to is unlinked and put into the link count
1546  * fix up tree.
1547  *
1548  * If a name from the log points to a file or directory that does
1549  * not exist in the FS, it is skipped.  fsyncs on directories
1550  * do not force down inodes inside that directory, just changes to the
1551  * names or unlinks in a directory.
1552  */
1553 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1554 				    struct btrfs_root *root,
1555 				    struct btrfs_path *path,
1556 				    struct extent_buffer *eb,
1557 				    struct btrfs_dir_item *di,
1558 				    struct btrfs_key *key)
1559 {
1560 	char *name;
1561 	int name_len;
1562 	struct btrfs_dir_item *dst_di;
1563 	struct btrfs_key found_key;
1564 	struct btrfs_key log_key;
1565 	struct inode *dir;
1566 	u8 log_type;
1567 	int exists;
1568 	int ret = 0;
1569 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1570 
1571 	dir = read_one_inode(root, key->objectid);
1572 	if (!dir)
1573 		return -EIO;
1574 
1575 	name_len = btrfs_dir_name_len(eb, di);
1576 	name = kmalloc(name_len, GFP_NOFS);
1577 	if (!name) {
1578 		ret = -ENOMEM;
1579 		goto out;
1580 	}
1581 
1582 	log_type = btrfs_dir_type(eb, di);
1583 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1584 		   name_len);
1585 
1586 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1587 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1588 	if (exists == 0)
1589 		exists = 1;
1590 	else
1591 		exists = 0;
1592 	btrfs_release_path(path);
1593 
1594 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1595 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1596 				       name, name_len, 1);
1597 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1598 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1599 						     key->objectid,
1600 						     key->offset, name,
1601 						     name_len, 1);
1602 	} else {
1603 		/* Corruption */
1604 		ret = -EINVAL;
1605 		goto out;
1606 	}
1607 	if (IS_ERR_OR_NULL(dst_di)) {
1608 		/* we need a sequence number to insert, so we only
1609 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1610 		 */
1611 		if (key->type != BTRFS_DIR_INDEX_KEY)
1612 			goto out;
1613 		goto insert;
1614 	}
1615 
1616 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1617 	/* the existing item matches the logged item */
1618 	if (found_key.objectid == log_key.objectid &&
1619 	    found_key.type == log_key.type &&
1620 	    found_key.offset == log_key.offset &&
1621 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1622 		goto out;
1623 	}
1624 
1625 	/*
1626 	 * don't drop the conflicting directory entry if the inode
1627 	 * for the new entry doesn't exist
1628 	 */
1629 	if (!exists)
1630 		goto out;
1631 
1632 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1633 	if (ret)
1634 		goto out;
1635 
1636 	if (key->type == BTRFS_DIR_INDEX_KEY)
1637 		goto insert;
1638 out:
1639 	btrfs_release_path(path);
1640 	if (!ret && update_size) {
1641 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1642 		ret = btrfs_update_inode(trans, root, dir);
1643 	}
1644 	kfree(name);
1645 	iput(dir);
1646 	return ret;
1647 
1648 insert:
1649 	btrfs_release_path(path);
1650 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1651 			      name, name_len, log_type, &log_key);
1652 	if (ret && ret != -ENOENT)
1653 		goto out;
1654 	update_size = false;
1655 	ret = 0;
1656 	goto out;
1657 }
1658 
1659 /*
1660  * find all the names in a directory item and reconcile them into
1661  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1662  * one name in a directory item, but the same code gets used for
1663  * both directory index types
1664  */
1665 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1666 					struct btrfs_root *root,
1667 					struct btrfs_path *path,
1668 					struct extent_buffer *eb, int slot,
1669 					struct btrfs_key *key)
1670 {
1671 	int ret;
1672 	u32 item_size = btrfs_item_size_nr(eb, slot);
1673 	struct btrfs_dir_item *di;
1674 	int name_len;
1675 	unsigned long ptr;
1676 	unsigned long ptr_end;
1677 
1678 	ptr = btrfs_item_ptr_offset(eb, slot);
1679 	ptr_end = ptr + item_size;
1680 	while (ptr < ptr_end) {
1681 		di = (struct btrfs_dir_item *)ptr;
1682 		if (verify_dir_item(root, eb, di))
1683 			return -EIO;
1684 		name_len = btrfs_dir_name_len(eb, di);
1685 		ret = replay_one_name(trans, root, path, eb, di, key);
1686 		if (ret)
1687 			return ret;
1688 		ptr = (unsigned long)(di + 1);
1689 		ptr += name_len;
1690 	}
1691 	return 0;
1692 }
1693 
1694 /*
1695  * directory replay has two parts.  There are the standard directory
1696  * items in the log copied from the subvolume, and range items
1697  * created in the log while the subvolume was logged.
1698  *
1699  * The range items tell us which parts of the key space the log
1700  * is authoritative for.  During replay, if a key in the subvolume
1701  * directory is in a logged range item, but not actually in the log
1702  * that means it was deleted from the directory before the fsync
1703  * and should be removed.
1704  */
1705 static noinline int find_dir_range(struct btrfs_root *root,
1706 				   struct btrfs_path *path,
1707 				   u64 dirid, int key_type,
1708 				   u64 *start_ret, u64 *end_ret)
1709 {
1710 	struct btrfs_key key;
1711 	u64 found_end;
1712 	struct btrfs_dir_log_item *item;
1713 	int ret;
1714 	int nritems;
1715 
1716 	if (*start_ret == (u64)-1)
1717 		return 1;
1718 
1719 	key.objectid = dirid;
1720 	key.type = key_type;
1721 	key.offset = *start_ret;
1722 
1723 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1724 	if (ret < 0)
1725 		goto out;
1726 	if (ret > 0) {
1727 		if (path->slots[0] == 0)
1728 			goto out;
1729 		path->slots[0]--;
1730 	}
1731 	if (ret != 0)
1732 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1733 
1734 	if (key.type != key_type || key.objectid != dirid) {
1735 		ret = 1;
1736 		goto next;
1737 	}
1738 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1739 			      struct btrfs_dir_log_item);
1740 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1741 
1742 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1743 		ret = 0;
1744 		*start_ret = key.offset;
1745 		*end_ret = found_end;
1746 		goto out;
1747 	}
1748 	ret = 1;
1749 next:
1750 	/* check the next slot in the tree to see if it is a valid item */
1751 	nritems = btrfs_header_nritems(path->nodes[0]);
1752 	if (path->slots[0] >= nritems) {
1753 		ret = btrfs_next_leaf(root, path);
1754 		if (ret)
1755 			goto out;
1756 	} else {
1757 		path->slots[0]++;
1758 	}
1759 
1760 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1761 
1762 	if (key.type != key_type || key.objectid != dirid) {
1763 		ret = 1;
1764 		goto out;
1765 	}
1766 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1767 			      struct btrfs_dir_log_item);
1768 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1769 	*start_ret = key.offset;
1770 	*end_ret = found_end;
1771 	ret = 0;
1772 out:
1773 	btrfs_release_path(path);
1774 	return ret;
1775 }
1776 
1777 /*
1778  * this looks for a given directory item in the log.  If the directory
1779  * item is not in the log, the item is removed and the inode it points
1780  * to is unlinked
1781  */
1782 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1783 				      struct btrfs_root *root,
1784 				      struct btrfs_root *log,
1785 				      struct btrfs_path *path,
1786 				      struct btrfs_path *log_path,
1787 				      struct inode *dir,
1788 				      struct btrfs_key *dir_key)
1789 {
1790 	int ret;
1791 	struct extent_buffer *eb;
1792 	int slot;
1793 	u32 item_size;
1794 	struct btrfs_dir_item *di;
1795 	struct btrfs_dir_item *log_di;
1796 	int name_len;
1797 	unsigned long ptr;
1798 	unsigned long ptr_end;
1799 	char *name;
1800 	struct inode *inode;
1801 	struct btrfs_key location;
1802 
1803 again:
1804 	eb = path->nodes[0];
1805 	slot = path->slots[0];
1806 	item_size = btrfs_item_size_nr(eb, slot);
1807 	ptr = btrfs_item_ptr_offset(eb, slot);
1808 	ptr_end = ptr + item_size;
1809 	while (ptr < ptr_end) {
1810 		di = (struct btrfs_dir_item *)ptr;
1811 		if (verify_dir_item(root, eb, di)) {
1812 			ret = -EIO;
1813 			goto out;
1814 		}
1815 
1816 		name_len = btrfs_dir_name_len(eb, di);
1817 		name = kmalloc(name_len, GFP_NOFS);
1818 		if (!name) {
1819 			ret = -ENOMEM;
1820 			goto out;
1821 		}
1822 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1823 				  name_len);
1824 		log_di = NULL;
1825 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1826 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1827 						       dir_key->objectid,
1828 						       name, name_len, 0);
1829 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1830 			log_di = btrfs_lookup_dir_index_item(trans, log,
1831 						     log_path,
1832 						     dir_key->objectid,
1833 						     dir_key->offset,
1834 						     name, name_len, 0);
1835 		}
1836 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1837 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1838 			btrfs_release_path(path);
1839 			btrfs_release_path(log_path);
1840 			inode = read_one_inode(root, location.objectid);
1841 			if (!inode) {
1842 				kfree(name);
1843 				return -EIO;
1844 			}
1845 
1846 			ret = link_to_fixup_dir(trans, root,
1847 						path, location.objectid);
1848 			if (ret) {
1849 				kfree(name);
1850 				iput(inode);
1851 				goto out;
1852 			}
1853 
1854 			inc_nlink(inode);
1855 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1856 						 name, name_len);
1857 			if (!ret)
1858 				ret = btrfs_run_delayed_items(trans, root);
1859 			kfree(name);
1860 			iput(inode);
1861 			if (ret)
1862 				goto out;
1863 
1864 			/* there might still be more names under this key
1865 			 * check and repeat if required
1866 			 */
1867 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1868 						0, 0);
1869 			if (ret == 0)
1870 				goto again;
1871 			ret = 0;
1872 			goto out;
1873 		} else if (IS_ERR(log_di)) {
1874 			kfree(name);
1875 			return PTR_ERR(log_di);
1876 		}
1877 		btrfs_release_path(log_path);
1878 		kfree(name);
1879 
1880 		ptr = (unsigned long)(di + 1);
1881 		ptr += name_len;
1882 	}
1883 	ret = 0;
1884 out:
1885 	btrfs_release_path(path);
1886 	btrfs_release_path(log_path);
1887 	return ret;
1888 }
1889 
1890 /*
1891  * deletion replay happens before we copy any new directory items
1892  * out of the log or out of backreferences from inodes.  It
1893  * scans the log to find ranges of keys that log is authoritative for,
1894  * and then scans the directory to find items in those ranges that are
1895  * not present in the log.
1896  *
1897  * Anything we don't find in the log is unlinked and removed from the
1898  * directory.
1899  */
1900 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1901 				       struct btrfs_root *root,
1902 				       struct btrfs_root *log,
1903 				       struct btrfs_path *path,
1904 				       u64 dirid, int del_all)
1905 {
1906 	u64 range_start;
1907 	u64 range_end;
1908 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1909 	int ret = 0;
1910 	struct btrfs_key dir_key;
1911 	struct btrfs_key found_key;
1912 	struct btrfs_path *log_path;
1913 	struct inode *dir;
1914 
1915 	dir_key.objectid = dirid;
1916 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1917 	log_path = btrfs_alloc_path();
1918 	if (!log_path)
1919 		return -ENOMEM;
1920 
1921 	dir = read_one_inode(root, dirid);
1922 	/* it isn't an error if the inode isn't there, that can happen
1923 	 * because we replay the deletes before we copy in the inode item
1924 	 * from the log
1925 	 */
1926 	if (!dir) {
1927 		btrfs_free_path(log_path);
1928 		return 0;
1929 	}
1930 again:
1931 	range_start = 0;
1932 	range_end = 0;
1933 	while (1) {
1934 		if (del_all)
1935 			range_end = (u64)-1;
1936 		else {
1937 			ret = find_dir_range(log, path, dirid, key_type,
1938 					     &range_start, &range_end);
1939 			if (ret != 0)
1940 				break;
1941 		}
1942 
1943 		dir_key.offset = range_start;
1944 		while (1) {
1945 			int nritems;
1946 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1947 						0, 0);
1948 			if (ret < 0)
1949 				goto out;
1950 
1951 			nritems = btrfs_header_nritems(path->nodes[0]);
1952 			if (path->slots[0] >= nritems) {
1953 				ret = btrfs_next_leaf(root, path);
1954 				if (ret)
1955 					break;
1956 			}
1957 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1958 					      path->slots[0]);
1959 			if (found_key.objectid != dirid ||
1960 			    found_key.type != dir_key.type)
1961 				goto next_type;
1962 
1963 			if (found_key.offset > range_end)
1964 				break;
1965 
1966 			ret = check_item_in_log(trans, root, log, path,
1967 						log_path, dir,
1968 						&found_key);
1969 			if (ret)
1970 				goto out;
1971 			if (found_key.offset == (u64)-1)
1972 				break;
1973 			dir_key.offset = found_key.offset + 1;
1974 		}
1975 		btrfs_release_path(path);
1976 		if (range_end == (u64)-1)
1977 			break;
1978 		range_start = range_end + 1;
1979 	}
1980 
1981 next_type:
1982 	ret = 0;
1983 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1984 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1985 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1986 		btrfs_release_path(path);
1987 		goto again;
1988 	}
1989 out:
1990 	btrfs_release_path(path);
1991 	btrfs_free_path(log_path);
1992 	iput(dir);
1993 	return ret;
1994 }
1995 
1996 /*
1997  * the process_func used to replay items from the log tree.  This
1998  * gets called in two different stages.  The first stage just looks
1999  * for inodes and makes sure they are all copied into the subvolume.
2000  *
2001  * The second stage copies all the other item types from the log into
2002  * the subvolume.  The two stage approach is slower, but gets rid of
2003  * lots of complexity around inodes referencing other inodes that exist
2004  * only in the log (references come from either directory items or inode
2005  * back refs).
2006  */
2007 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2008 			     struct walk_control *wc, u64 gen)
2009 {
2010 	int nritems;
2011 	struct btrfs_path *path;
2012 	struct btrfs_root *root = wc->replay_dest;
2013 	struct btrfs_key key;
2014 	int level;
2015 	int i;
2016 	int ret;
2017 
2018 	ret = btrfs_read_buffer(eb, gen);
2019 	if (ret)
2020 		return ret;
2021 
2022 	level = btrfs_header_level(eb);
2023 
2024 	if (level != 0)
2025 		return 0;
2026 
2027 	path = btrfs_alloc_path();
2028 	if (!path)
2029 		return -ENOMEM;
2030 
2031 	nritems = btrfs_header_nritems(eb);
2032 	for (i = 0; i < nritems; i++) {
2033 		btrfs_item_key_to_cpu(eb, &key, i);
2034 
2035 		/* inode keys are done during the first stage */
2036 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2037 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2038 			struct btrfs_inode_item *inode_item;
2039 			u32 mode;
2040 
2041 			inode_item = btrfs_item_ptr(eb, i,
2042 					    struct btrfs_inode_item);
2043 			mode = btrfs_inode_mode(eb, inode_item);
2044 			if (S_ISDIR(mode)) {
2045 				ret = replay_dir_deletes(wc->trans,
2046 					 root, log, path, key.objectid, 0);
2047 				if (ret)
2048 					break;
2049 			}
2050 			ret = overwrite_item(wc->trans, root, path,
2051 					     eb, i, &key);
2052 			if (ret)
2053 				break;
2054 
2055 			/* for regular files, make sure corresponding
2056 			 * orhpan item exist. extents past the new EOF
2057 			 * will be truncated later by orphan cleanup.
2058 			 */
2059 			if (S_ISREG(mode)) {
2060 				ret = insert_orphan_item(wc->trans, root,
2061 							 key.objectid);
2062 				if (ret)
2063 					break;
2064 			}
2065 
2066 			ret = link_to_fixup_dir(wc->trans, root,
2067 						path, key.objectid);
2068 			if (ret)
2069 				break;
2070 		}
2071 
2072 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2073 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2074 			ret = replay_one_dir_item(wc->trans, root, path,
2075 						  eb, i, &key);
2076 			if (ret)
2077 				break;
2078 		}
2079 
2080 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2081 			continue;
2082 
2083 		/* these keys are simply copied */
2084 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2085 			ret = overwrite_item(wc->trans, root, path,
2086 					     eb, i, &key);
2087 			if (ret)
2088 				break;
2089 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2090 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2091 			ret = add_inode_ref(wc->trans, root, log, path,
2092 					    eb, i, &key);
2093 			if (ret && ret != -ENOENT)
2094 				break;
2095 			ret = 0;
2096 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2097 			ret = replay_one_extent(wc->trans, root, path,
2098 						eb, i, &key);
2099 			if (ret)
2100 				break;
2101 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2102 			ret = replay_one_dir_item(wc->trans, root, path,
2103 						  eb, i, &key);
2104 			if (ret)
2105 				break;
2106 		}
2107 	}
2108 	btrfs_free_path(path);
2109 	return ret;
2110 }
2111 
2112 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2113 				   struct btrfs_root *root,
2114 				   struct btrfs_path *path, int *level,
2115 				   struct walk_control *wc)
2116 {
2117 	u64 root_owner;
2118 	u64 bytenr;
2119 	u64 ptr_gen;
2120 	struct extent_buffer *next;
2121 	struct extent_buffer *cur;
2122 	struct extent_buffer *parent;
2123 	u32 blocksize;
2124 	int ret = 0;
2125 
2126 	WARN_ON(*level < 0);
2127 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2128 
2129 	while (*level > 0) {
2130 		WARN_ON(*level < 0);
2131 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2132 		cur = path->nodes[*level];
2133 
2134 		WARN_ON(btrfs_header_level(cur) != *level);
2135 
2136 		if (path->slots[*level] >=
2137 		    btrfs_header_nritems(cur))
2138 			break;
2139 
2140 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2141 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2142 		blocksize = btrfs_level_size(root, *level - 1);
2143 
2144 		parent = path->nodes[*level];
2145 		root_owner = btrfs_header_owner(parent);
2146 
2147 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2148 		if (!next)
2149 			return -ENOMEM;
2150 
2151 		if (*level == 1) {
2152 			ret = wc->process_func(root, next, wc, ptr_gen);
2153 			if (ret) {
2154 				free_extent_buffer(next);
2155 				return ret;
2156 			}
2157 
2158 			path->slots[*level]++;
2159 			if (wc->free) {
2160 				ret = btrfs_read_buffer(next, ptr_gen);
2161 				if (ret) {
2162 					free_extent_buffer(next);
2163 					return ret;
2164 				}
2165 
2166 				if (trans) {
2167 					btrfs_tree_lock(next);
2168 					btrfs_set_lock_blocking(next);
2169 					clean_tree_block(trans, root, next);
2170 					btrfs_wait_tree_block_writeback(next);
2171 					btrfs_tree_unlock(next);
2172 				}
2173 
2174 				WARN_ON(root_owner !=
2175 					BTRFS_TREE_LOG_OBJECTID);
2176 				ret = btrfs_free_and_pin_reserved_extent(root,
2177 							 bytenr, blocksize);
2178 				if (ret) {
2179 					free_extent_buffer(next);
2180 					return ret;
2181 				}
2182 			}
2183 			free_extent_buffer(next);
2184 			continue;
2185 		}
2186 		ret = btrfs_read_buffer(next, ptr_gen);
2187 		if (ret) {
2188 			free_extent_buffer(next);
2189 			return ret;
2190 		}
2191 
2192 		WARN_ON(*level <= 0);
2193 		if (path->nodes[*level-1])
2194 			free_extent_buffer(path->nodes[*level-1]);
2195 		path->nodes[*level-1] = next;
2196 		*level = btrfs_header_level(next);
2197 		path->slots[*level] = 0;
2198 		cond_resched();
2199 	}
2200 	WARN_ON(*level < 0);
2201 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2202 
2203 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2204 
2205 	cond_resched();
2206 	return 0;
2207 }
2208 
2209 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2210 				 struct btrfs_root *root,
2211 				 struct btrfs_path *path, int *level,
2212 				 struct walk_control *wc)
2213 {
2214 	u64 root_owner;
2215 	int i;
2216 	int slot;
2217 	int ret;
2218 
2219 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2220 		slot = path->slots[i];
2221 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2222 			path->slots[i]++;
2223 			*level = i;
2224 			WARN_ON(*level == 0);
2225 			return 0;
2226 		} else {
2227 			struct extent_buffer *parent;
2228 			if (path->nodes[*level] == root->node)
2229 				parent = path->nodes[*level];
2230 			else
2231 				parent = path->nodes[*level + 1];
2232 
2233 			root_owner = btrfs_header_owner(parent);
2234 			ret = wc->process_func(root, path->nodes[*level], wc,
2235 				 btrfs_header_generation(path->nodes[*level]));
2236 			if (ret)
2237 				return ret;
2238 
2239 			if (wc->free) {
2240 				struct extent_buffer *next;
2241 
2242 				next = path->nodes[*level];
2243 
2244 				if (trans) {
2245 					btrfs_tree_lock(next);
2246 					btrfs_set_lock_blocking(next);
2247 					clean_tree_block(trans, root, next);
2248 					btrfs_wait_tree_block_writeback(next);
2249 					btrfs_tree_unlock(next);
2250 				}
2251 
2252 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2253 				ret = btrfs_free_and_pin_reserved_extent(root,
2254 						path->nodes[*level]->start,
2255 						path->nodes[*level]->len);
2256 				if (ret)
2257 					return ret;
2258 			}
2259 			free_extent_buffer(path->nodes[*level]);
2260 			path->nodes[*level] = NULL;
2261 			*level = i + 1;
2262 		}
2263 	}
2264 	return 1;
2265 }
2266 
2267 /*
2268  * drop the reference count on the tree rooted at 'snap'.  This traverses
2269  * the tree freeing any blocks that have a ref count of zero after being
2270  * decremented.
2271  */
2272 static int walk_log_tree(struct btrfs_trans_handle *trans,
2273 			 struct btrfs_root *log, struct walk_control *wc)
2274 {
2275 	int ret = 0;
2276 	int wret;
2277 	int level;
2278 	struct btrfs_path *path;
2279 	int orig_level;
2280 
2281 	path = btrfs_alloc_path();
2282 	if (!path)
2283 		return -ENOMEM;
2284 
2285 	level = btrfs_header_level(log->node);
2286 	orig_level = level;
2287 	path->nodes[level] = log->node;
2288 	extent_buffer_get(log->node);
2289 	path->slots[level] = 0;
2290 
2291 	while (1) {
2292 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2293 		if (wret > 0)
2294 			break;
2295 		if (wret < 0) {
2296 			ret = wret;
2297 			goto out;
2298 		}
2299 
2300 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2301 		if (wret > 0)
2302 			break;
2303 		if (wret < 0) {
2304 			ret = wret;
2305 			goto out;
2306 		}
2307 	}
2308 
2309 	/* was the root node processed? if not, catch it here */
2310 	if (path->nodes[orig_level]) {
2311 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2312 			 btrfs_header_generation(path->nodes[orig_level]));
2313 		if (ret)
2314 			goto out;
2315 		if (wc->free) {
2316 			struct extent_buffer *next;
2317 
2318 			next = path->nodes[orig_level];
2319 
2320 			if (trans) {
2321 				btrfs_tree_lock(next);
2322 				btrfs_set_lock_blocking(next);
2323 				clean_tree_block(trans, log, next);
2324 				btrfs_wait_tree_block_writeback(next);
2325 				btrfs_tree_unlock(next);
2326 			}
2327 
2328 			WARN_ON(log->root_key.objectid !=
2329 				BTRFS_TREE_LOG_OBJECTID);
2330 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2331 							 next->len);
2332 			if (ret)
2333 				goto out;
2334 		}
2335 	}
2336 
2337 out:
2338 	btrfs_free_path(path);
2339 	return ret;
2340 }
2341 
2342 /*
2343  * helper function to update the item for a given subvolumes log root
2344  * in the tree of log roots
2345  */
2346 static int update_log_root(struct btrfs_trans_handle *trans,
2347 			   struct btrfs_root *log)
2348 {
2349 	int ret;
2350 
2351 	if (log->log_transid == 1) {
2352 		/* insert root item on the first sync */
2353 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2354 				&log->root_key, &log->root_item);
2355 	} else {
2356 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2357 				&log->root_key, &log->root_item);
2358 	}
2359 	return ret;
2360 }
2361 
2362 static int wait_log_commit(struct btrfs_trans_handle *trans,
2363 			   struct btrfs_root *root, unsigned long transid)
2364 {
2365 	DEFINE_WAIT(wait);
2366 	int index = transid % 2;
2367 
2368 	/*
2369 	 * we only allow two pending log transactions at a time,
2370 	 * so we know that if ours is more than 2 older than the
2371 	 * current transaction, we're done
2372 	 */
2373 	do {
2374 		prepare_to_wait(&root->log_commit_wait[index],
2375 				&wait, TASK_UNINTERRUPTIBLE);
2376 		mutex_unlock(&root->log_mutex);
2377 
2378 		if (root->fs_info->last_trans_log_full_commit !=
2379 		    trans->transid && root->log_transid < transid + 2 &&
2380 		    atomic_read(&root->log_commit[index]))
2381 			schedule();
2382 
2383 		finish_wait(&root->log_commit_wait[index], &wait);
2384 		mutex_lock(&root->log_mutex);
2385 	} while (root->fs_info->last_trans_log_full_commit !=
2386 		 trans->transid && root->log_transid < transid + 2 &&
2387 		 atomic_read(&root->log_commit[index]));
2388 	return 0;
2389 }
2390 
2391 static void wait_for_writer(struct btrfs_trans_handle *trans,
2392 			    struct btrfs_root *root)
2393 {
2394 	DEFINE_WAIT(wait);
2395 	while (root->fs_info->last_trans_log_full_commit !=
2396 	       trans->transid && atomic_read(&root->log_writers)) {
2397 		prepare_to_wait(&root->log_writer_wait,
2398 				&wait, TASK_UNINTERRUPTIBLE);
2399 		mutex_unlock(&root->log_mutex);
2400 		if (root->fs_info->last_trans_log_full_commit !=
2401 		    trans->transid && atomic_read(&root->log_writers))
2402 			schedule();
2403 		mutex_lock(&root->log_mutex);
2404 		finish_wait(&root->log_writer_wait, &wait);
2405 	}
2406 }
2407 
2408 /*
2409  * btrfs_sync_log does sends a given tree log down to the disk and
2410  * updates the super blocks to record it.  When this call is done,
2411  * you know that any inodes previously logged are safely on disk only
2412  * if it returns 0.
2413  *
2414  * Any other return value means you need to call btrfs_commit_transaction.
2415  * Some of the edge cases for fsyncing directories that have had unlinks
2416  * or renames done in the past mean that sometimes the only safe
2417  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2418  * that has happened.
2419  */
2420 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2421 		   struct btrfs_root *root)
2422 {
2423 	int index1;
2424 	int index2;
2425 	int mark;
2426 	int ret;
2427 	struct btrfs_root *log = root->log_root;
2428 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2429 	unsigned long log_transid = 0;
2430 	struct blk_plug plug;
2431 
2432 	mutex_lock(&root->log_mutex);
2433 	log_transid = root->log_transid;
2434 	index1 = root->log_transid % 2;
2435 	if (atomic_read(&root->log_commit[index1])) {
2436 		wait_log_commit(trans, root, root->log_transid);
2437 		mutex_unlock(&root->log_mutex);
2438 		return 0;
2439 	}
2440 	atomic_set(&root->log_commit[index1], 1);
2441 
2442 	/* wait for previous tree log sync to complete */
2443 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2444 		wait_log_commit(trans, root, root->log_transid - 1);
2445 	while (1) {
2446 		int batch = atomic_read(&root->log_batch);
2447 		/* when we're on an ssd, just kick the log commit out */
2448 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2449 			mutex_unlock(&root->log_mutex);
2450 			schedule_timeout_uninterruptible(1);
2451 			mutex_lock(&root->log_mutex);
2452 		}
2453 		wait_for_writer(trans, root);
2454 		if (batch == atomic_read(&root->log_batch))
2455 			break;
2456 	}
2457 
2458 	/* bail out if we need to do a full commit */
2459 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2460 		ret = -EAGAIN;
2461 		btrfs_free_logged_extents(log, log_transid);
2462 		mutex_unlock(&root->log_mutex);
2463 		goto out;
2464 	}
2465 
2466 	if (log_transid % 2 == 0)
2467 		mark = EXTENT_DIRTY;
2468 	else
2469 		mark = EXTENT_NEW;
2470 
2471 	/* we start IO on  all the marked extents here, but we don't actually
2472 	 * wait for them until later.
2473 	 */
2474 	blk_start_plug(&plug);
2475 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2476 	if (ret) {
2477 		blk_finish_plug(&plug);
2478 		btrfs_abort_transaction(trans, root, ret);
2479 		btrfs_free_logged_extents(log, log_transid);
2480 		mutex_unlock(&root->log_mutex);
2481 		goto out;
2482 	}
2483 
2484 	btrfs_set_root_node(&log->root_item, log->node);
2485 
2486 	root->log_transid++;
2487 	log->log_transid = root->log_transid;
2488 	root->log_start_pid = 0;
2489 	smp_mb();
2490 	/*
2491 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2492 	 * in their headers. new modifications of the log will be written to
2493 	 * new positions. so it's safe to allow log writers to go in.
2494 	 */
2495 	mutex_unlock(&root->log_mutex);
2496 
2497 	mutex_lock(&log_root_tree->log_mutex);
2498 	atomic_inc(&log_root_tree->log_batch);
2499 	atomic_inc(&log_root_tree->log_writers);
2500 	mutex_unlock(&log_root_tree->log_mutex);
2501 
2502 	ret = update_log_root(trans, log);
2503 
2504 	mutex_lock(&log_root_tree->log_mutex);
2505 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2506 		smp_mb();
2507 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2508 			wake_up(&log_root_tree->log_writer_wait);
2509 	}
2510 
2511 	if (ret) {
2512 		blk_finish_plug(&plug);
2513 		if (ret != -ENOSPC) {
2514 			btrfs_abort_transaction(trans, root, ret);
2515 			mutex_unlock(&log_root_tree->log_mutex);
2516 			goto out;
2517 		}
2518 		root->fs_info->last_trans_log_full_commit = trans->transid;
2519 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2520 		btrfs_free_logged_extents(log, log_transid);
2521 		mutex_unlock(&log_root_tree->log_mutex);
2522 		ret = -EAGAIN;
2523 		goto out;
2524 	}
2525 
2526 	index2 = log_root_tree->log_transid % 2;
2527 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2528 		blk_finish_plug(&plug);
2529 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2530 		wait_log_commit(trans, log_root_tree,
2531 				log_root_tree->log_transid);
2532 		btrfs_free_logged_extents(log, log_transid);
2533 		mutex_unlock(&log_root_tree->log_mutex);
2534 		ret = 0;
2535 		goto out;
2536 	}
2537 	atomic_set(&log_root_tree->log_commit[index2], 1);
2538 
2539 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2540 		wait_log_commit(trans, log_root_tree,
2541 				log_root_tree->log_transid - 1);
2542 	}
2543 
2544 	wait_for_writer(trans, log_root_tree);
2545 
2546 	/*
2547 	 * now that we've moved on to the tree of log tree roots,
2548 	 * check the full commit flag again
2549 	 */
2550 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2551 		blk_finish_plug(&plug);
2552 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2553 		btrfs_free_logged_extents(log, log_transid);
2554 		mutex_unlock(&log_root_tree->log_mutex);
2555 		ret = -EAGAIN;
2556 		goto out_wake_log_root;
2557 	}
2558 
2559 	ret = btrfs_write_marked_extents(log_root_tree,
2560 					 &log_root_tree->dirty_log_pages,
2561 					 EXTENT_DIRTY | EXTENT_NEW);
2562 	blk_finish_plug(&plug);
2563 	if (ret) {
2564 		btrfs_abort_transaction(trans, root, ret);
2565 		btrfs_free_logged_extents(log, log_transid);
2566 		mutex_unlock(&log_root_tree->log_mutex);
2567 		goto out_wake_log_root;
2568 	}
2569 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2570 	btrfs_wait_marked_extents(log_root_tree,
2571 				  &log_root_tree->dirty_log_pages,
2572 				  EXTENT_NEW | EXTENT_DIRTY);
2573 	btrfs_wait_logged_extents(log, log_transid);
2574 
2575 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2576 				log_root_tree->node->start);
2577 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2578 				btrfs_header_level(log_root_tree->node));
2579 
2580 	log_root_tree->log_transid++;
2581 	smp_mb();
2582 
2583 	mutex_unlock(&log_root_tree->log_mutex);
2584 
2585 	/*
2586 	 * nobody else is going to jump in and write the the ctree
2587 	 * super here because the log_commit atomic below is protecting
2588 	 * us.  We must be called with a transaction handle pinning
2589 	 * the running transaction open, so a full commit can't hop
2590 	 * in and cause problems either.
2591 	 */
2592 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2593 	if (ret) {
2594 		btrfs_abort_transaction(trans, root, ret);
2595 		goto out_wake_log_root;
2596 	}
2597 
2598 	mutex_lock(&root->log_mutex);
2599 	if (root->last_log_commit < log_transid)
2600 		root->last_log_commit = log_transid;
2601 	mutex_unlock(&root->log_mutex);
2602 
2603 out_wake_log_root:
2604 	atomic_set(&log_root_tree->log_commit[index2], 0);
2605 	smp_mb();
2606 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2607 		wake_up(&log_root_tree->log_commit_wait[index2]);
2608 out:
2609 	atomic_set(&root->log_commit[index1], 0);
2610 	smp_mb();
2611 	if (waitqueue_active(&root->log_commit_wait[index1]))
2612 		wake_up(&root->log_commit_wait[index1]);
2613 	return ret;
2614 }
2615 
2616 static void free_log_tree(struct btrfs_trans_handle *trans,
2617 			  struct btrfs_root *log)
2618 {
2619 	int ret;
2620 	u64 start;
2621 	u64 end;
2622 	struct walk_control wc = {
2623 		.free = 1,
2624 		.process_func = process_one_buffer
2625 	};
2626 
2627 	ret = walk_log_tree(trans, log, &wc);
2628 	/* I don't think this can happen but just in case */
2629 	if (ret)
2630 		btrfs_abort_transaction(trans, log, ret);
2631 
2632 	while (1) {
2633 		ret = find_first_extent_bit(&log->dirty_log_pages,
2634 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2635 				NULL);
2636 		if (ret)
2637 			break;
2638 
2639 		clear_extent_bits(&log->dirty_log_pages, start, end,
2640 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2641 	}
2642 
2643 	/*
2644 	 * We may have short-circuited the log tree with the full commit logic
2645 	 * and left ordered extents on our list, so clear these out to keep us
2646 	 * from leaking inodes and memory.
2647 	 */
2648 	btrfs_free_logged_extents(log, 0);
2649 	btrfs_free_logged_extents(log, 1);
2650 
2651 	free_extent_buffer(log->node);
2652 	kfree(log);
2653 }
2654 
2655 /*
2656  * free all the extents used by the tree log.  This should be called
2657  * at commit time of the full transaction
2658  */
2659 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2660 {
2661 	if (root->log_root) {
2662 		free_log_tree(trans, root->log_root);
2663 		root->log_root = NULL;
2664 	}
2665 	return 0;
2666 }
2667 
2668 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2669 			     struct btrfs_fs_info *fs_info)
2670 {
2671 	if (fs_info->log_root_tree) {
2672 		free_log_tree(trans, fs_info->log_root_tree);
2673 		fs_info->log_root_tree = NULL;
2674 	}
2675 	return 0;
2676 }
2677 
2678 /*
2679  * If both a file and directory are logged, and unlinks or renames are
2680  * mixed in, we have a few interesting corners:
2681  *
2682  * create file X in dir Y
2683  * link file X to X.link in dir Y
2684  * fsync file X
2685  * unlink file X but leave X.link
2686  * fsync dir Y
2687  *
2688  * After a crash we would expect only X.link to exist.  But file X
2689  * didn't get fsync'd again so the log has back refs for X and X.link.
2690  *
2691  * We solve this by removing directory entries and inode backrefs from the
2692  * log when a file that was logged in the current transaction is
2693  * unlinked.  Any later fsync will include the updated log entries, and
2694  * we'll be able to reconstruct the proper directory items from backrefs.
2695  *
2696  * This optimizations allows us to avoid relogging the entire inode
2697  * or the entire directory.
2698  */
2699 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2700 				 struct btrfs_root *root,
2701 				 const char *name, int name_len,
2702 				 struct inode *dir, u64 index)
2703 {
2704 	struct btrfs_root *log;
2705 	struct btrfs_dir_item *di;
2706 	struct btrfs_path *path;
2707 	int ret;
2708 	int err = 0;
2709 	int bytes_del = 0;
2710 	u64 dir_ino = btrfs_ino(dir);
2711 
2712 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2713 		return 0;
2714 
2715 	ret = join_running_log_trans(root);
2716 	if (ret)
2717 		return 0;
2718 
2719 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2720 
2721 	log = root->log_root;
2722 	path = btrfs_alloc_path();
2723 	if (!path) {
2724 		err = -ENOMEM;
2725 		goto out_unlock;
2726 	}
2727 
2728 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2729 				   name, name_len, -1);
2730 	if (IS_ERR(di)) {
2731 		err = PTR_ERR(di);
2732 		goto fail;
2733 	}
2734 	if (di) {
2735 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2736 		bytes_del += name_len;
2737 		if (ret) {
2738 			err = ret;
2739 			goto fail;
2740 		}
2741 	}
2742 	btrfs_release_path(path);
2743 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2744 					 index, name, name_len, -1);
2745 	if (IS_ERR(di)) {
2746 		err = PTR_ERR(di);
2747 		goto fail;
2748 	}
2749 	if (di) {
2750 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2751 		bytes_del += name_len;
2752 		if (ret) {
2753 			err = ret;
2754 			goto fail;
2755 		}
2756 	}
2757 
2758 	/* update the directory size in the log to reflect the names
2759 	 * we have removed
2760 	 */
2761 	if (bytes_del) {
2762 		struct btrfs_key key;
2763 
2764 		key.objectid = dir_ino;
2765 		key.offset = 0;
2766 		key.type = BTRFS_INODE_ITEM_KEY;
2767 		btrfs_release_path(path);
2768 
2769 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2770 		if (ret < 0) {
2771 			err = ret;
2772 			goto fail;
2773 		}
2774 		if (ret == 0) {
2775 			struct btrfs_inode_item *item;
2776 			u64 i_size;
2777 
2778 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2779 					      struct btrfs_inode_item);
2780 			i_size = btrfs_inode_size(path->nodes[0], item);
2781 			if (i_size > bytes_del)
2782 				i_size -= bytes_del;
2783 			else
2784 				i_size = 0;
2785 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2786 			btrfs_mark_buffer_dirty(path->nodes[0]);
2787 		} else
2788 			ret = 0;
2789 		btrfs_release_path(path);
2790 	}
2791 fail:
2792 	btrfs_free_path(path);
2793 out_unlock:
2794 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2795 	if (ret == -ENOSPC) {
2796 		root->fs_info->last_trans_log_full_commit = trans->transid;
2797 		ret = 0;
2798 	} else if (ret < 0)
2799 		btrfs_abort_transaction(trans, root, ret);
2800 
2801 	btrfs_end_log_trans(root);
2802 
2803 	return err;
2804 }
2805 
2806 /* see comments for btrfs_del_dir_entries_in_log */
2807 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2808 			       struct btrfs_root *root,
2809 			       const char *name, int name_len,
2810 			       struct inode *inode, u64 dirid)
2811 {
2812 	struct btrfs_root *log;
2813 	u64 index;
2814 	int ret;
2815 
2816 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2817 		return 0;
2818 
2819 	ret = join_running_log_trans(root);
2820 	if (ret)
2821 		return 0;
2822 	log = root->log_root;
2823 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2824 
2825 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2826 				  dirid, &index);
2827 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2828 	if (ret == -ENOSPC) {
2829 		root->fs_info->last_trans_log_full_commit = trans->transid;
2830 		ret = 0;
2831 	} else if (ret < 0 && ret != -ENOENT)
2832 		btrfs_abort_transaction(trans, root, ret);
2833 	btrfs_end_log_trans(root);
2834 
2835 	return ret;
2836 }
2837 
2838 /*
2839  * creates a range item in the log for 'dirid'.  first_offset and
2840  * last_offset tell us which parts of the key space the log should
2841  * be considered authoritative for.
2842  */
2843 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2844 				       struct btrfs_root *log,
2845 				       struct btrfs_path *path,
2846 				       int key_type, u64 dirid,
2847 				       u64 first_offset, u64 last_offset)
2848 {
2849 	int ret;
2850 	struct btrfs_key key;
2851 	struct btrfs_dir_log_item *item;
2852 
2853 	key.objectid = dirid;
2854 	key.offset = first_offset;
2855 	if (key_type == BTRFS_DIR_ITEM_KEY)
2856 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2857 	else
2858 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2859 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2860 	if (ret)
2861 		return ret;
2862 
2863 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2864 			      struct btrfs_dir_log_item);
2865 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2866 	btrfs_mark_buffer_dirty(path->nodes[0]);
2867 	btrfs_release_path(path);
2868 	return 0;
2869 }
2870 
2871 /*
2872  * log all the items included in the current transaction for a given
2873  * directory.  This also creates the range items in the log tree required
2874  * to replay anything deleted before the fsync
2875  */
2876 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2877 			  struct btrfs_root *root, struct inode *inode,
2878 			  struct btrfs_path *path,
2879 			  struct btrfs_path *dst_path, int key_type,
2880 			  u64 min_offset, u64 *last_offset_ret)
2881 {
2882 	struct btrfs_key min_key;
2883 	struct btrfs_root *log = root->log_root;
2884 	struct extent_buffer *src;
2885 	int err = 0;
2886 	int ret;
2887 	int i;
2888 	int nritems;
2889 	u64 first_offset = min_offset;
2890 	u64 last_offset = (u64)-1;
2891 	u64 ino = btrfs_ino(inode);
2892 
2893 	log = root->log_root;
2894 
2895 	min_key.objectid = ino;
2896 	min_key.type = key_type;
2897 	min_key.offset = min_offset;
2898 
2899 	path->keep_locks = 1;
2900 
2901 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2902 
2903 	/*
2904 	 * we didn't find anything from this transaction, see if there
2905 	 * is anything at all
2906 	 */
2907 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2908 		min_key.objectid = ino;
2909 		min_key.type = key_type;
2910 		min_key.offset = (u64)-1;
2911 		btrfs_release_path(path);
2912 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2913 		if (ret < 0) {
2914 			btrfs_release_path(path);
2915 			return ret;
2916 		}
2917 		ret = btrfs_previous_item(root, path, ino, key_type);
2918 
2919 		/* if ret == 0 there are items for this type,
2920 		 * create a range to tell us the last key of this type.
2921 		 * otherwise, there are no items in this directory after
2922 		 * *min_offset, and we create a range to indicate that.
2923 		 */
2924 		if (ret == 0) {
2925 			struct btrfs_key tmp;
2926 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2927 					      path->slots[0]);
2928 			if (key_type == tmp.type)
2929 				first_offset = max(min_offset, tmp.offset) + 1;
2930 		}
2931 		goto done;
2932 	}
2933 
2934 	/* go backward to find any previous key */
2935 	ret = btrfs_previous_item(root, path, ino, key_type);
2936 	if (ret == 0) {
2937 		struct btrfs_key tmp;
2938 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2939 		if (key_type == tmp.type) {
2940 			first_offset = tmp.offset;
2941 			ret = overwrite_item(trans, log, dst_path,
2942 					     path->nodes[0], path->slots[0],
2943 					     &tmp);
2944 			if (ret) {
2945 				err = ret;
2946 				goto done;
2947 			}
2948 		}
2949 	}
2950 	btrfs_release_path(path);
2951 
2952 	/* find the first key from this transaction again */
2953 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2954 	if (WARN_ON(ret != 0))
2955 		goto done;
2956 
2957 	/*
2958 	 * we have a block from this transaction, log every item in it
2959 	 * from our directory
2960 	 */
2961 	while (1) {
2962 		struct btrfs_key tmp;
2963 		src = path->nodes[0];
2964 		nritems = btrfs_header_nritems(src);
2965 		for (i = path->slots[0]; i < nritems; i++) {
2966 			btrfs_item_key_to_cpu(src, &min_key, i);
2967 
2968 			if (min_key.objectid != ino || min_key.type != key_type)
2969 				goto done;
2970 			ret = overwrite_item(trans, log, dst_path, src, i,
2971 					     &min_key);
2972 			if (ret) {
2973 				err = ret;
2974 				goto done;
2975 			}
2976 		}
2977 		path->slots[0] = nritems;
2978 
2979 		/*
2980 		 * look ahead to the next item and see if it is also
2981 		 * from this directory and from this transaction
2982 		 */
2983 		ret = btrfs_next_leaf(root, path);
2984 		if (ret == 1) {
2985 			last_offset = (u64)-1;
2986 			goto done;
2987 		}
2988 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2989 		if (tmp.objectid != ino || tmp.type != key_type) {
2990 			last_offset = (u64)-1;
2991 			goto done;
2992 		}
2993 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2994 			ret = overwrite_item(trans, log, dst_path,
2995 					     path->nodes[0], path->slots[0],
2996 					     &tmp);
2997 			if (ret)
2998 				err = ret;
2999 			else
3000 				last_offset = tmp.offset;
3001 			goto done;
3002 		}
3003 	}
3004 done:
3005 	btrfs_release_path(path);
3006 	btrfs_release_path(dst_path);
3007 
3008 	if (err == 0) {
3009 		*last_offset_ret = last_offset;
3010 		/*
3011 		 * insert the log range keys to indicate where the log
3012 		 * is valid
3013 		 */
3014 		ret = insert_dir_log_key(trans, log, path, key_type,
3015 					 ino, first_offset, last_offset);
3016 		if (ret)
3017 			err = ret;
3018 	}
3019 	return err;
3020 }
3021 
3022 /*
3023  * logging directories is very similar to logging inodes, We find all the items
3024  * from the current transaction and write them to the log.
3025  *
3026  * The recovery code scans the directory in the subvolume, and if it finds a
3027  * key in the range logged that is not present in the log tree, then it means
3028  * that dir entry was unlinked during the transaction.
3029  *
3030  * In order for that scan to work, we must include one key smaller than
3031  * the smallest logged by this transaction and one key larger than the largest
3032  * key logged by this transaction.
3033  */
3034 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3035 			  struct btrfs_root *root, struct inode *inode,
3036 			  struct btrfs_path *path,
3037 			  struct btrfs_path *dst_path)
3038 {
3039 	u64 min_key;
3040 	u64 max_key;
3041 	int ret;
3042 	int key_type = BTRFS_DIR_ITEM_KEY;
3043 
3044 again:
3045 	min_key = 0;
3046 	max_key = 0;
3047 	while (1) {
3048 		ret = log_dir_items(trans, root, inode, path,
3049 				    dst_path, key_type, min_key,
3050 				    &max_key);
3051 		if (ret)
3052 			return ret;
3053 		if (max_key == (u64)-1)
3054 			break;
3055 		min_key = max_key + 1;
3056 	}
3057 
3058 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3059 		key_type = BTRFS_DIR_INDEX_KEY;
3060 		goto again;
3061 	}
3062 	return 0;
3063 }
3064 
3065 /*
3066  * a helper function to drop items from the log before we relog an
3067  * inode.  max_key_type indicates the highest item type to remove.
3068  * This cannot be run for file data extents because it does not
3069  * free the extents they point to.
3070  */
3071 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3072 				  struct btrfs_root *log,
3073 				  struct btrfs_path *path,
3074 				  u64 objectid, int max_key_type)
3075 {
3076 	int ret;
3077 	struct btrfs_key key;
3078 	struct btrfs_key found_key;
3079 	int start_slot;
3080 
3081 	key.objectid = objectid;
3082 	key.type = max_key_type;
3083 	key.offset = (u64)-1;
3084 
3085 	while (1) {
3086 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3087 		BUG_ON(ret == 0); /* Logic error */
3088 		if (ret < 0)
3089 			break;
3090 
3091 		if (path->slots[0] == 0)
3092 			break;
3093 
3094 		path->slots[0]--;
3095 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3096 				      path->slots[0]);
3097 
3098 		if (found_key.objectid != objectid)
3099 			break;
3100 
3101 		found_key.offset = 0;
3102 		found_key.type = 0;
3103 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3104 				       &start_slot);
3105 
3106 		ret = btrfs_del_items(trans, log, path, start_slot,
3107 				      path->slots[0] - start_slot + 1);
3108 		/*
3109 		 * If start slot isn't 0 then we don't need to re-search, we've
3110 		 * found the last guy with the objectid in this tree.
3111 		 */
3112 		if (ret || start_slot != 0)
3113 			break;
3114 		btrfs_release_path(path);
3115 	}
3116 	btrfs_release_path(path);
3117 	if (ret > 0)
3118 		ret = 0;
3119 	return ret;
3120 }
3121 
3122 static void fill_inode_item(struct btrfs_trans_handle *trans,
3123 			    struct extent_buffer *leaf,
3124 			    struct btrfs_inode_item *item,
3125 			    struct inode *inode, int log_inode_only)
3126 {
3127 	struct btrfs_map_token token;
3128 
3129 	btrfs_init_map_token(&token);
3130 
3131 	if (log_inode_only) {
3132 		/* set the generation to zero so the recover code
3133 		 * can tell the difference between an logging
3134 		 * just to say 'this inode exists' and a logging
3135 		 * to say 'update this inode with these values'
3136 		 */
3137 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3138 		btrfs_set_token_inode_size(leaf, item, 0, &token);
3139 	} else {
3140 		btrfs_set_token_inode_generation(leaf, item,
3141 						 BTRFS_I(inode)->generation,
3142 						 &token);
3143 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3144 	}
3145 
3146 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3147 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3148 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3149 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3150 
3151 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3152 				     inode->i_atime.tv_sec, &token);
3153 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3154 				      inode->i_atime.tv_nsec, &token);
3155 
3156 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3157 				     inode->i_mtime.tv_sec, &token);
3158 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3159 				      inode->i_mtime.tv_nsec, &token);
3160 
3161 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3162 				     inode->i_ctime.tv_sec, &token);
3163 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3164 				      inode->i_ctime.tv_nsec, &token);
3165 
3166 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3167 				     &token);
3168 
3169 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3170 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3171 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3172 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3173 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3174 }
3175 
3176 static int log_inode_item(struct btrfs_trans_handle *trans,
3177 			  struct btrfs_root *log, struct btrfs_path *path,
3178 			  struct inode *inode)
3179 {
3180 	struct btrfs_inode_item *inode_item;
3181 	int ret;
3182 
3183 	ret = btrfs_insert_empty_item(trans, log, path,
3184 				      &BTRFS_I(inode)->location,
3185 				      sizeof(*inode_item));
3186 	if (ret && ret != -EEXIST)
3187 		return ret;
3188 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3189 				    struct btrfs_inode_item);
3190 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3191 	btrfs_release_path(path);
3192 	return 0;
3193 }
3194 
3195 static noinline int copy_items(struct btrfs_trans_handle *trans,
3196 			       struct inode *inode,
3197 			       struct btrfs_path *dst_path,
3198 			       struct btrfs_path *src_path, u64 *last_extent,
3199 			       int start_slot, int nr, int inode_only)
3200 {
3201 	unsigned long src_offset;
3202 	unsigned long dst_offset;
3203 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3204 	struct btrfs_file_extent_item *extent;
3205 	struct btrfs_inode_item *inode_item;
3206 	struct extent_buffer *src = src_path->nodes[0];
3207 	struct btrfs_key first_key, last_key, key;
3208 	int ret;
3209 	struct btrfs_key *ins_keys;
3210 	u32 *ins_sizes;
3211 	char *ins_data;
3212 	int i;
3213 	struct list_head ordered_sums;
3214 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3215 	bool has_extents = false;
3216 	bool need_find_last_extent = (*last_extent == 0);
3217 	bool done = false;
3218 
3219 	INIT_LIST_HEAD(&ordered_sums);
3220 
3221 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3222 			   nr * sizeof(u32), GFP_NOFS);
3223 	if (!ins_data)
3224 		return -ENOMEM;
3225 
3226 	first_key.objectid = (u64)-1;
3227 
3228 	ins_sizes = (u32 *)ins_data;
3229 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3230 
3231 	for (i = 0; i < nr; i++) {
3232 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3233 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3234 	}
3235 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3236 				       ins_keys, ins_sizes, nr);
3237 	if (ret) {
3238 		kfree(ins_data);
3239 		return ret;
3240 	}
3241 
3242 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3243 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3244 						   dst_path->slots[0]);
3245 
3246 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3247 
3248 		if ((i == (nr - 1)))
3249 			last_key = ins_keys[i];
3250 
3251 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3252 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3253 						    dst_path->slots[0],
3254 						    struct btrfs_inode_item);
3255 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3256 					inode, inode_only == LOG_INODE_EXISTS);
3257 		} else {
3258 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3259 					   src_offset, ins_sizes[i]);
3260 		}
3261 
3262 		/*
3263 		 * We set need_find_last_extent here in case we know we were
3264 		 * processing other items and then walk into the first extent in
3265 		 * the inode.  If we don't hit an extent then nothing changes,
3266 		 * we'll do the last search the next time around.
3267 		 */
3268 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3269 			has_extents = true;
3270 			if (need_find_last_extent &&
3271 			    first_key.objectid == (u64)-1)
3272 				first_key = ins_keys[i];
3273 		} else {
3274 			need_find_last_extent = false;
3275 		}
3276 
3277 		/* take a reference on file data extents so that truncates
3278 		 * or deletes of this inode don't have to relog the inode
3279 		 * again
3280 		 */
3281 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3282 		    !skip_csum) {
3283 			int found_type;
3284 			extent = btrfs_item_ptr(src, start_slot + i,
3285 						struct btrfs_file_extent_item);
3286 
3287 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3288 				continue;
3289 
3290 			found_type = btrfs_file_extent_type(src, extent);
3291 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3292 				u64 ds, dl, cs, cl;
3293 				ds = btrfs_file_extent_disk_bytenr(src,
3294 								extent);
3295 				/* ds == 0 is a hole */
3296 				if (ds == 0)
3297 					continue;
3298 
3299 				dl = btrfs_file_extent_disk_num_bytes(src,
3300 								extent);
3301 				cs = btrfs_file_extent_offset(src, extent);
3302 				cl = btrfs_file_extent_num_bytes(src,
3303 								extent);
3304 				if (btrfs_file_extent_compression(src,
3305 								  extent)) {
3306 					cs = 0;
3307 					cl = dl;
3308 				}
3309 
3310 				ret = btrfs_lookup_csums_range(
3311 						log->fs_info->csum_root,
3312 						ds + cs, ds + cs + cl - 1,
3313 						&ordered_sums, 0);
3314 				if (ret) {
3315 					btrfs_release_path(dst_path);
3316 					kfree(ins_data);
3317 					return ret;
3318 				}
3319 			}
3320 		}
3321 	}
3322 
3323 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3324 	btrfs_release_path(dst_path);
3325 	kfree(ins_data);
3326 
3327 	/*
3328 	 * we have to do this after the loop above to avoid changing the
3329 	 * log tree while trying to change the log tree.
3330 	 */
3331 	ret = 0;
3332 	while (!list_empty(&ordered_sums)) {
3333 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3334 						   struct btrfs_ordered_sum,
3335 						   list);
3336 		if (!ret)
3337 			ret = btrfs_csum_file_blocks(trans, log, sums);
3338 		list_del(&sums->list);
3339 		kfree(sums);
3340 	}
3341 
3342 	if (!has_extents)
3343 		return ret;
3344 
3345 	/*
3346 	 * Because we use btrfs_search_forward we could skip leaves that were
3347 	 * not modified and then assume *last_extent is valid when it really
3348 	 * isn't.  So back up to the previous leaf and read the end of the last
3349 	 * extent before we go and fill in holes.
3350 	 */
3351 	if (need_find_last_extent) {
3352 		u64 len;
3353 
3354 		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3355 		if (ret < 0)
3356 			return ret;
3357 		if (ret)
3358 			goto fill_holes;
3359 		if (src_path->slots[0])
3360 			src_path->slots[0]--;
3361 		src = src_path->nodes[0];
3362 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3363 		if (key.objectid != btrfs_ino(inode) ||
3364 		    key.type != BTRFS_EXTENT_DATA_KEY)
3365 			goto fill_holes;
3366 		extent = btrfs_item_ptr(src, src_path->slots[0],
3367 					struct btrfs_file_extent_item);
3368 		if (btrfs_file_extent_type(src, extent) ==
3369 		    BTRFS_FILE_EXTENT_INLINE) {
3370 			len = btrfs_file_extent_inline_len(src,
3371 							   src_path->slots[0],
3372 							   extent);
3373 			*last_extent = ALIGN(key.offset + len,
3374 					     log->sectorsize);
3375 		} else {
3376 			len = btrfs_file_extent_num_bytes(src, extent);
3377 			*last_extent = key.offset + len;
3378 		}
3379 	}
3380 fill_holes:
3381 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3382 	 * things could have happened
3383 	 *
3384 	 * 1) A merge could have happened, so we could currently be on a leaf
3385 	 * that holds what we were copying in the first place.
3386 	 * 2) A split could have happened, and now not all of the items we want
3387 	 * are on the same leaf.
3388 	 *
3389 	 * So we need to adjust how we search for holes, we need to drop the
3390 	 * path and re-search for the first extent key we found, and then walk
3391 	 * forward until we hit the last one we copied.
3392 	 */
3393 	if (need_find_last_extent) {
3394 		/* btrfs_prev_leaf could return 1 without releasing the path */
3395 		btrfs_release_path(src_path);
3396 		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3397 					src_path, 0, 0);
3398 		if (ret < 0)
3399 			return ret;
3400 		ASSERT(ret == 0);
3401 		src = src_path->nodes[0];
3402 		i = src_path->slots[0];
3403 	} else {
3404 		i = start_slot;
3405 	}
3406 
3407 	/*
3408 	 * Ok so here we need to go through and fill in any holes we may have
3409 	 * to make sure that holes are punched for those areas in case they had
3410 	 * extents previously.
3411 	 */
3412 	while (!done) {
3413 		u64 offset, len;
3414 		u64 extent_end;
3415 
3416 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3417 			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3418 			if (ret < 0)
3419 				return ret;
3420 			ASSERT(ret == 0);
3421 			src = src_path->nodes[0];
3422 			i = 0;
3423 		}
3424 
3425 		btrfs_item_key_to_cpu(src, &key, i);
3426 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3427 			done = true;
3428 		if (key.objectid != btrfs_ino(inode) ||
3429 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3430 			i++;
3431 			continue;
3432 		}
3433 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3434 		if (btrfs_file_extent_type(src, extent) ==
3435 		    BTRFS_FILE_EXTENT_INLINE) {
3436 			len = btrfs_file_extent_inline_len(src, i, extent);
3437 			extent_end = ALIGN(key.offset + len, log->sectorsize);
3438 		} else {
3439 			len = btrfs_file_extent_num_bytes(src, extent);
3440 			extent_end = key.offset + len;
3441 		}
3442 		i++;
3443 
3444 		if (*last_extent == key.offset) {
3445 			*last_extent = extent_end;
3446 			continue;
3447 		}
3448 		offset = *last_extent;
3449 		len = key.offset - *last_extent;
3450 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3451 					       offset, 0, 0, len, 0, len, 0,
3452 					       0, 0);
3453 		if (ret)
3454 			break;
3455 		*last_extent = offset + len;
3456 	}
3457 	/*
3458 	 * Need to let the callers know we dropped the path so they should
3459 	 * re-search.
3460 	 */
3461 	if (!ret && need_find_last_extent)
3462 		ret = 1;
3463 	return ret;
3464 }
3465 
3466 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3467 {
3468 	struct extent_map *em1, *em2;
3469 
3470 	em1 = list_entry(a, struct extent_map, list);
3471 	em2 = list_entry(b, struct extent_map, list);
3472 
3473 	if (em1->start < em2->start)
3474 		return -1;
3475 	else if (em1->start > em2->start)
3476 		return 1;
3477 	return 0;
3478 }
3479 
3480 static int log_one_extent(struct btrfs_trans_handle *trans,
3481 			  struct inode *inode, struct btrfs_root *root,
3482 			  struct extent_map *em, struct btrfs_path *path)
3483 {
3484 	struct btrfs_root *log = root->log_root;
3485 	struct btrfs_file_extent_item *fi;
3486 	struct extent_buffer *leaf;
3487 	struct btrfs_ordered_extent *ordered;
3488 	struct list_head ordered_sums;
3489 	struct btrfs_map_token token;
3490 	struct btrfs_key key;
3491 	u64 mod_start = em->mod_start;
3492 	u64 mod_len = em->mod_len;
3493 	u64 csum_offset;
3494 	u64 csum_len;
3495 	u64 extent_offset = em->start - em->orig_start;
3496 	u64 block_len;
3497 	int ret;
3498 	int index = log->log_transid % 2;
3499 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3500 	int extent_inserted = 0;
3501 
3502 	INIT_LIST_HEAD(&ordered_sums);
3503 	btrfs_init_map_token(&token);
3504 
3505 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3506 				   em->start + em->len, NULL, 0, 1,
3507 				   sizeof(*fi), &extent_inserted);
3508 	if (ret)
3509 		return ret;
3510 
3511 	if (!extent_inserted) {
3512 		key.objectid = btrfs_ino(inode);
3513 		key.type = BTRFS_EXTENT_DATA_KEY;
3514 		key.offset = em->start;
3515 
3516 		ret = btrfs_insert_empty_item(trans, log, path, &key,
3517 					      sizeof(*fi));
3518 		if (ret)
3519 			return ret;
3520 	}
3521 	leaf = path->nodes[0];
3522 	fi = btrfs_item_ptr(leaf, path->slots[0],
3523 			    struct btrfs_file_extent_item);
3524 
3525 	btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3526 					       &token);
3527 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3528 		skip_csum = true;
3529 		btrfs_set_token_file_extent_type(leaf, fi,
3530 						 BTRFS_FILE_EXTENT_PREALLOC,
3531 						 &token);
3532 	} else {
3533 		btrfs_set_token_file_extent_type(leaf, fi,
3534 						 BTRFS_FILE_EXTENT_REG,
3535 						 &token);
3536 		if (em->block_start == EXTENT_MAP_HOLE)
3537 			skip_csum = true;
3538 	}
3539 
3540 	block_len = max(em->block_len, em->orig_block_len);
3541 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3542 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3543 							em->block_start,
3544 							&token);
3545 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3546 							   &token);
3547 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3548 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3549 							em->block_start -
3550 							extent_offset, &token);
3551 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3552 							   &token);
3553 	} else {
3554 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3555 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3556 							   &token);
3557 	}
3558 
3559 	btrfs_set_token_file_extent_offset(leaf, fi,
3560 					   em->start - em->orig_start,
3561 					   &token);
3562 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3563 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3564 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3565 						&token);
3566 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3567 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3568 	btrfs_mark_buffer_dirty(leaf);
3569 
3570 	btrfs_release_path(path);
3571 	if (ret) {
3572 		return ret;
3573 	}
3574 
3575 	if (skip_csum)
3576 		return 0;
3577 
3578 	/*
3579 	 * First check and see if our csums are on our outstanding ordered
3580 	 * extents.
3581 	 */
3582 again:
3583 	spin_lock_irq(&log->log_extents_lock[index]);
3584 	list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3585 		struct btrfs_ordered_sum *sum;
3586 
3587 		if (!mod_len)
3588 			break;
3589 
3590 		if (ordered->inode != inode)
3591 			continue;
3592 
3593 		if (ordered->file_offset + ordered->len <= mod_start ||
3594 		    mod_start + mod_len <= ordered->file_offset)
3595 			continue;
3596 
3597 		/*
3598 		 * We are going to copy all the csums on this ordered extent, so
3599 		 * go ahead and adjust mod_start and mod_len in case this
3600 		 * ordered extent has already been logged.
3601 		 */
3602 		if (ordered->file_offset > mod_start) {
3603 			if (ordered->file_offset + ordered->len >=
3604 			    mod_start + mod_len)
3605 				mod_len = ordered->file_offset - mod_start;
3606 			/*
3607 			 * If we have this case
3608 			 *
3609 			 * |--------- logged extent ---------|
3610 			 *       |----- ordered extent ----|
3611 			 *
3612 			 * Just don't mess with mod_start and mod_len, we'll
3613 			 * just end up logging more csums than we need and it
3614 			 * will be ok.
3615 			 */
3616 		} else {
3617 			if (ordered->file_offset + ordered->len <
3618 			    mod_start + mod_len) {
3619 				mod_len = (mod_start + mod_len) -
3620 					(ordered->file_offset + ordered->len);
3621 				mod_start = ordered->file_offset +
3622 					ordered->len;
3623 			} else {
3624 				mod_len = 0;
3625 			}
3626 		}
3627 
3628 		/*
3629 		 * To keep us from looping for the above case of an ordered
3630 		 * extent that falls inside of the logged extent.
3631 		 */
3632 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3633 				     &ordered->flags))
3634 			continue;
3635 		atomic_inc(&ordered->refs);
3636 		spin_unlock_irq(&log->log_extents_lock[index]);
3637 		/*
3638 		 * we've dropped the lock, we must either break or
3639 		 * start over after this.
3640 		 */
3641 
3642 		if (ordered->csum_bytes_left) {
3643 			btrfs_start_ordered_extent(inode, ordered, 0);
3644 			wait_event(ordered->wait,
3645 				   ordered->csum_bytes_left == 0);
3646 		}
3647 
3648 		list_for_each_entry(sum, &ordered->list, list) {
3649 			ret = btrfs_csum_file_blocks(trans, log, sum);
3650 			if (ret) {
3651 				btrfs_put_ordered_extent(ordered);
3652 				goto unlocked;
3653 			}
3654 		}
3655 		btrfs_put_ordered_extent(ordered);
3656 		goto again;
3657 
3658 	}
3659 	spin_unlock_irq(&log->log_extents_lock[index]);
3660 unlocked:
3661 
3662 	if (!mod_len || ret)
3663 		return ret;
3664 
3665 	if (em->compress_type) {
3666 		csum_offset = 0;
3667 		csum_len = block_len;
3668 	} else {
3669 		csum_offset = mod_start - em->start;
3670 		csum_len = mod_len;
3671 	}
3672 
3673 	/* block start is already adjusted for the file extent offset. */
3674 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3675 				       em->block_start + csum_offset,
3676 				       em->block_start + csum_offset +
3677 				       csum_len - 1, &ordered_sums, 0);
3678 	if (ret)
3679 		return ret;
3680 
3681 	while (!list_empty(&ordered_sums)) {
3682 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3683 						   struct btrfs_ordered_sum,
3684 						   list);
3685 		if (!ret)
3686 			ret = btrfs_csum_file_blocks(trans, log, sums);
3687 		list_del(&sums->list);
3688 		kfree(sums);
3689 	}
3690 
3691 	return ret;
3692 }
3693 
3694 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3695 				     struct btrfs_root *root,
3696 				     struct inode *inode,
3697 				     struct btrfs_path *path)
3698 {
3699 	struct extent_map *em, *n;
3700 	struct list_head extents;
3701 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3702 	u64 test_gen;
3703 	int ret = 0;
3704 	int num = 0;
3705 
3706 	INIT_LIST_HEAD(&extents);
3707 
3708 	write_lock(&tree->lock);
3709 	test_gen = root->fs_info->last_trans_committed;
3710 
3711 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3712 		list_del_init(&em->list);
3713 
3714 		/*
3715 		 * Just an arbitrary number, this can be really CPU intensive
3716 		 * once we start getting a lot of extents, and really once we
3717 		 * have a bunch of extents we just want to commit since it will
3718 		 * be faster.
3719 		 */
3720 		if (++num > 32768) {
3721 			list_del_init(&tree->modified_extents);
3722 			ret = -EFBIG;
3723 			goto process;
3724 		}
3725 
3726 		if (em->generation <= test_gen)
3727 			continue;
3728 		/* Need a ref to keep it from getting evicted from cache */
3729 		atomic_inc(&em->refs);
3730 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3731 		list_add_tail(&em->list, &extents);
3732 		num++;
3733 	}
3734 
3735 	list_sort(NULL, &extents, extent_cmp);
3736 
3737 process:
3738 	while (!list_empty(&extents)) {
3739 		em = list_entry(extents.next, struct extent_map, list);
3740 
3741 		list_del_init(&em->list);
3742 
3743 		/*
3744 		 * If we had an error we just need to delete everybody from our
3745 		 * private list.
3746 		 */
3747 		if (ret) {
3748 			clear_em_logging(tree, em);
3749 			free_extent_map(em);
3750 			continue;
3751 		}
3752 
3753 		write_unlock(&tree->lock);
3754 
3755 		ret = log_one_extent(trans, inode, root, em, path);
3756 		write_lock(&tree->lock);
3757 		clear_em_logging(tree, em);
3758 		free_extent_map(em);
3759 	}
3760 	WARN_ON(!list_empty(&extents));
3761 	write_unlock(&tree->lock);
3762 
3763 	btrfs_release_path(path);
3764 	return ret;
3765 }
3766 
3767 /* log a single inode in the tree log.
3768  * At least one parent directory for this inode must exist in the tree
3769  * or be logged already.
3770  *
3771  * Any items from this inode changed by the current transaction are copied
3772  * to the log tree.  An extra reference is taken on any extents in this
3773  * file, allowing us to avoid a whole pile of corner cases around logging
3774  * blocks that have been removed from the tree.
3775  *
3776  * See LOG_INODE_ALL and related defines for a description of what inode_only
3777  * does.
3778  *
3779  * This handles both files and directories.
3780  */
3781 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3782 			     struct btrfs_root *root, struct inode *inode,
3783 			     int inode_only)
3784 {
3785 	struct btrfs_path *path;
3786 	struct btrfs_path *dst_path;
3787 	struct btrfs_key min_key;
3788 	struct btrfs_key max_key;
3789 	struct btrfs_root *log = root->log_root;
3790 	struct extent_buffer *src = NULL;
3791 	u64 last_extent = 0;
3792 	int err = 0;
3793 	int ret;
3794 	int nritems;
3795 	int ins_start_slot = 0;
3796 	int ins_nr;
3797 	bool fast_search = false;
3798 	u64 ino = btrfs_ino(inode);
3799 
3800 	path = btrfs_alloc_path();
3801 	if (!path)
3802 		return -ENOMEM;
3803 	dst_path = btrfs_alloc_path();
3804 	if (!dst_path) {
3805 		btrfs_free_path(path);
3806 		return -ENOMEM;
3807 	}
3808 
3809 	min_key.objectid = ino;
3810 	min_key.type = BTRFS_INODE_ITEM_KEY;
3811 	min_key.offset = 0;
3812 
3813 	max_key.objectid = ino;
3814 
3815 
3816 	/* today the code can only do partial logging of directories */
3817 	if (S_ISDIR(inode->i_mode) ||
3818 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3819 		       &BTRFS_I(inode)->runtime_flags) &&
3820 	     inode_only == LOG_INODE_EXISTS))
3821 		max_key.type = BTRFS_XATTR_ITEM_KEY;
3822 	else
3823 		max_key.type = (u8)-1;
3824 	max_key.offset = (u64)-1;
3825 
3826 	/* Only run delayed items if we are a dir or a new file */
3827 	if (S_ISDIR(inode->i_mode) ||
3828 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3829 		ret = btrfs_commit_inode_delayed_items(trans, inode);
3830 		if (ret) {
3831 			btrfs_free_path(path);
3832 			btrfs_free_path(dst_path);
3833 			return ret;
3834 		}
3835 	}
3836 
3837 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3838 
3839 	btrfs_get_logged_extents(log, inode);
3840 
3841 	/*
3842 	 * a brute force approach to making sure we get the most uptodate
3843 	 * copies of everything.
3844 	 */
3845 	if (S_ISDIR(inode->i_mode)) {
3846 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3847 
3848 		if (inode_only == LOG_INODE_EXISTS)
3849 			max_key_type = BTRFS_XATTR_ITEM_KEY;
3850 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3851 	} else {
3852 		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3853 				       &BTRFS_I(inode)->runtime_flags)) {
3854 			clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3855 				  &BTRFS_I(inode)->runtime_flags);
3856 			ret = btrfs_truncate_inode_items(trans, log,
3857 							 inode, 0, 0);
3858 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3859 					      &BTRFS_I(inode)->runtime_flags) ||
3860 			   inode_only == LOG_INODE_EXISTS) {
3861 			if (inode_only == LOG_INODE_ALL)
3862 				fast_search = true;
3863 			max_key.type = BTRFS_XATTR_ITEM_KEY;
3864 			ret = drop_objectid_items(trans, log, path, ino,
3865 						  max_key.type);
3866 		} else {
3867 			if (inode_only == LOG_INODE_ALL)
3868 				fast_search = true;
3869 			ret = log_inode_item(trans, log, dst_path, inode);
3870 			if (ret) {
3871 				err = ret;
3872 				goto out_unlock;
3873 			}
3874 			goto log_extents;
3875 		}
3876 
3877 	}
3878 	if (ret) {
3879 		err = ret;
3880 		goto out_unlock;
3881 	}
3882 	path->keep_locks = 1;
3883 
3884 	while (1) {
3885 		ins_nr = 0;
3886 		ret = btrfs_search_forward(root, &min_key,
3887 					   path, trans->transid);
3888 		if (ret != 0)
3889 			break;
3890 again:
3891 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
3892 		if (min_key.objectid != ino)
3893 			break;
3894 		if (min_key.type > max_key.type)
3895 			break;
3896 
3897 		src = path->nodes[0];
3898 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3899 			ins_nr++;
3900 			goto next_slot;
3901 		} else if (!ins_nr) {
3902 			ins_start_slot = path->slots[0];
3903 			ins_nr = 1;
3904 			goto next_slot;
3905 		}
3906 
3907 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
3908 				 ins_start_slot, ins_nr, inode_only);
3909 		if (ret < 0) {
3910 			err = ret;
3911 			goto out_unlock;
3912 		} if (ret) {
3913 			ins_nr = 0;
3914 			btrfs_release_path(path);
3915 			continue;
3916 		}
3917 		ins_nr = 1;
3918 		ins_start_slot = path->slots[0];
3919 next_slot:
3920 
3921 		nritems = btrfs_header_nritems(path->nodes[0]);
3922 		path->slots[0]++;
3923 		if (path->slots[0] < nritems) {
3924 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3925 					      path->slots[0]);
3926 			goto again;
3927 		}
3928 		if (ins_nr) {
3929 			ret = copy_items(trans, inode, dst_path, path,
3930 					 &last_extent, ins_start_slot,
3931 					 ins_nr, inode_only);
3932 			if (ret < 0) {
3933 				err = ret;
3934 				goto out_unlock;
3935 			}
3936 			ret = 0;
3937 			ins_nr = 0;
3938 		}
3939 		btrfs_release_path(path);
3940 
3941 		if (min_key.offset < (u64)-1) {
3942 			min_key.offset++;
3943 		} else if (min_key.type < max_key.type) {
3944 			min_key.type++;
3945 			min_key.offset = 0;
3946 		} else {
3947 			break;
3948 		}
3949 	}
3950 	if (ins_nr) {
3951 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
3952 				 ins_start_slot, ins_nr, inode_only);
3953 		if (ret < 0) {
3954 			err = ret;
3955 			goto out_unlock;
3956 		}
3957 		ret = 0;
3958 		ins_nr = 0;
3959 	}
3960 
3961 log_extents:
3962 	btrfs_release_path(path);
3963 	btrfs_release_path(dst_path);
3964 	if (fast_search) {
3965 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3966 		if (ret) {
3967 			err = ret;
3968 			goto out_unlock;
3969 		}
3970 	} else if (inode_only == LOG_INODE_ALL) {
3971 		struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3972 		struct extent_map *em, *n;
3973 
3974 		write_lock(&tree->lock);
3975 		list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3976 			list_del_init(&em->list);
3977 		write_unlock(&tree->lock);
3978 	}
3979 
3980 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3981 		ret = log_directory_changes(trans, root, inode, path, dst_path);
3982 		if (ret) {
3983 			err = ret;
3984 			goto out_unlock;
3985 		}
3986 	}
3987 	BTRFS_I(inode)->logged_trans = trans->transid;
3988 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3989 out_unlock:
3990 	if (err)
3991 		btrfs_free_logged_extents(log, log->log_transid);
3992 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3993 
3994 	btrfs_free_path(path);
3995 	btrfs_free_path(dst_path);
3996 	return err;
3997 }
3998 
3999 /*
4000  * follow the dentry parent pointers up the chain and see if any
4001  * of the directories in it require a full commit before they can
4002  * be logged.  Returns zero if nothing special needs to be done or 1 if
4003  * a full commit is required.
4004  */
4005 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4006 					       struct inode *inode,
4007 					       struct dentry *parent,
4008 					       struct super_block *sb,
4009 					       u64 last_committed)
4010 {
4011 	int ret = 0;
4012 	struct btrfs_root *root;
4013 	struct dentry *old_parent = NULL;
4014 	struct inode *orig_inode = inode;
4015 
4016 	/*
4017 	 * for regular files, if its inode is already on disk, we don't
4018 	 * have to worry about the parents at all.  This is because
4019 	 * we can use the last_unlink_trans field to record renames
4020 	 * and other fun in this file.
4021 	 */
4022 	if (S_ISREG(inode->i_mode) &&
4023 	    BTRFS_I(inode)->generation <= last_committed &&
4024 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4025 			goto out;
4026 
4027 	if (!S_ISDIR(inode->i_mode)) {
4028 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4029 			goto out;
4030 		inode = parent->d_inode;
4031 	}
4032 
4033 	while (1) {
4034 		/*
4035 		 * If we are logging a directory then we start with our inode,
4036 		 * not our parents inode, so we need to skipp setting the
4037 		 * logged_trans so that further down in the log code we don't
4038 		 * think this inode has already been logged.
4039 		 */
4040 		if (inode != orig_inode)
4041 			BTRFS_I(inode)->logged_trans = trans->transid;
4042 		smp_mb();
4043 
4044 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4045 			root = BTRFS_I(inode)->root;
4046 
4047 			/*
4048 			 * make sure any commits to the log are forced
4049 			 * to be full commits
4050 			 */
4051 			root->fs_info->last_trans_log_full_commit =
4052 				trans->transid;
4053 			ret = 1;
4054 			break;
4055 		}
4056 
4057 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4058 			break;
4059 
4060 		if (IS_ROOT(parent))
4061 			break;
4062 
4063 		parent = dget_parent(parent);
4064 		dput(old_parent);
4065 		old_parent = parent;
4066 		inode = parent->d_inode;
4067 
4068 	}
4069 	dput(old_parent);
4070 out:
4071 	return ret;
4072 }
4073 
4074 /*
4075  * helper function around btrfs_log_inode to make sure newly created
4076  * parent directories also end up in the log.  A minimal inode and backref
4077  * only logging is done of any parent directories that are older than
4078  * the last committed transaction
4079  */
4080 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4081 			    	  struct btrfs_root *root, struct inode *inode,
4082 			    	  struct dentry *parent, int exists_only)
4083 {
4084 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4085 	struct super_block *sb;
4086 	struct dentry *old_parent = NULL;
4087 	int ret = 0;
4088 	u64 last_committed = root->fs_info->last_trans_committed;
4089 
4090 	sb = inode->i_sb;
4091 
4092 	if (btrfs_test_opt(root, NOTREELOG)) {
4093 		ret = 1;
4094 		goto end_no_trans;
4095 	}
4096 
4097 	if (root->fs_info->last_trans_log_full_commit >
4098 	    root->fs_info->last_trans_committed) {
4099 		ret = 1;
4100 		goto end_no_trans;
4101 	}
4102 
4103 	if (root != BTRFS_I(inode)->root ||
4104 	    btrfs_root_refs(&root->root_item) == 0) {
4105 		ret = 1;
4106 		goto end_no_trans;
4107 	}
4108 
4109 	ret = check_parent_dirs_for_sync(trans, inode, parent,
4110 					 sb, last_committed);
4111 	if (ret)
4112 		goto end_no_trans;
4113 
4114 	if (btrfs_inode_in_log(inode, trans->transid)) {
4115 		ret = BTRFS_NO_LOG_SYNC;
4116 		goto end_no_trans;
4117 	}
4118 
4119 	ret = start_log_trans(trans, root);
4120 	if (ret)
4121 		goto end_trans;
4122 
4123 	ret = btrfs_log_inode(trans, root, inode, inode_only);
4124 	if (ret)
4125 		goto end_trans;
4126 
4127 	/*
4128 	 * for regular files, if its inode is already on disk, we don't
4129 	 * have to worry about the parents at all.  This is because
4130 	 * we can use the last_unlink_trans field to record renames
4131 	 * and other fun in this file.
4132 	 */
4133 	if (S_ISREG(inode->i_mode) &&
4134 	    BTRFS_I(inode)->generation <= last_committed &&
4135 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4136 		ret = 0;
4137 		goto end_trans;
4138 	}
4139 
4140 	inode_only = LOG_INODE_EXISTS;
4141 	while (1) {
4142 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4143 			break;
4144 
4145 		inode = parent->d_inode;
4146 		if (root != BTRFS_I(inode)->root)
4147 			break;
4148 
4149 		if (BTRFS_I(inode)->generation >
4150 		    root->fs_info->last_trans_committed) {
4151 			ret = btrfs_log_inode(trans, root, inode, inode_only);
4152 			if (ret)
4153 				goto end_trans;
4154 		}
4155 		if (IS_ROOT(parent))
4156 			break;
4157 
4158 		parent = dget_parent(parent);
4159 		dput(old_parent);
4160 		old_parent = parent;
4161 	}
4162 	ret = 0;
4163 end_trans:
4164 	dput(old_parent);
4165 	if (ret < 0) {
4166 		root->fs_info->last_trans_log_full_commit = trans->transid;
4167 		ret = 1;
4168 	}
4169 	btrfs_end_log_trans(root);
4170 end_no_trans:
4171 	return ret;
4172 }
4173 
4174 /*
4175  * it is not safe to log dentry if the chunk root has added new
4176  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4177  * If this returns 1, you must commit the transaction to safely get your
4178  * data on disk.
4179  */
4180 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4181 			  struct btrfs_root *root, struct dentry *dentry)
4182 {
4183 	struct dentry *parent = dget_parent(dentry);
4184 	int ret;
4185 
4186 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
4187 	dput(parent);
4188 
4189 	return ret;
4190 }
4191 
4192 /*
4193  * should be called during mount to recover any replay any log trees
4194  * from the FS
4195  */
4196 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4197 {
4198 	int ret;
4199 	struct btrfs_path *path;
4200 	struct btrfs_trans_handle *trans;
4201 	struct btrfs_key key;
4202 	struct btrfs_key found_key;
4203 	struct btrfs_key tmp_key;
4204 	struct btrfs_root *log;
4205 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4206 	struct walk_control wc = {
4207 		.process_func = process_one_buffer,
4208 		.stage = 0,
4209 	};
4210 
4211 	path = btrfs_alloc_path();
4212 	if (!path)
4213 		return -ENOMEM;
4214 
4215 	fs_info->log_root_recovering = 1;
4216 
4217 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4218 	if (IS_ERR(trans)) {
4219 		ret = PTR_ERR(trans);
4220 		goto error;
4221 	}
4222 
4223 	wc.trans = trans;
4224 	wc.pin = 1;
4225 
4226 	ret = walk_log_tree(trans, log_root_tree, &wc);
4227 	if (ret) {
4228 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
4229 			    "recovering log root tree.");
4230 		goto error;
4231 	}
4232 
4233 again:
4234 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
4235 	key.offset = (u64)-1;
4236 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4237 
4238 	while (1) {
4239 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4240 
4241 		if (ret < 0) {
4242 			btrfs_error(fs_info, ret,
4243 				    "Couldn't find tree log root.");
4244 			goto error;
4245 		}
4246 		if (ret > 0) {
4247 			if (path->slots[0] == 0)
4248 				break;
4249 			path->slots[0]--;
4250 		}
4251 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4252 				      path->slots[0]);
4253 		btrfs_release_path(path);
4254 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4255 			break;
4256 
4257 		log = btrfs_read_fs_root(log_root_tree, &found_key);
4258 		if (IS_ERR(log)) {
4259 			ret = PTR_ERR(log);
4260 			btrfs_error(fs_info, ret,
4261 				    "Couldn't read tree log root.");
4262 			goto error;
4263 		}
4264 
4265 		tmp_key.objectid = found_key.offset;
4266 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4267 		tmp_key.offset = (u64)-1;
4268 
4269 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4270 		if (IS_ERR(wc.replay_dest)) {
4271 			ret = PTR_ERR(wc.replay_dest);
4272 			free_extent_buffer(log->node);
4273 			free_extent_buffer(log->commit_root);
4274 			kfree(log);
4275 			btrfs_error(fs_info, ret, "Couldn't read target root "
4276 				    "for tree log recovery.");
4277 			goto error;
4278 		}
4279 
4280 		wc.replay_dest->log_root = log;
4281 		btrfs_record_root_in_trans(trans, wc.replay_dest);
4282 		ret = walk_log_tree(trans, log, &wc);
4283 
4284 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4285 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4286 						      path);
4287 		}
4288 
4289 		key.offset = found_key.offset - 1;
4290 		wc.replay_dest->log_root = NULL;
4291 		free_extent_buffer(log->node);
4292 		free_extent_buffer(log->commit_root);
4293 		kfree(log);
4294 
4295 		if (ret)
4296 			goto error;
4297 
4298 		if (found_key.offset == 0)
4299 			break;
4300 	}
4301 	btrfs_release_path(path);
4302 
4303 	/* step one is to pin it all, step two is to replay just inodes */
4304 	if (wc.pin) {
4305 		wc.pin = 0;
4306 		wc.process_func = replay_one_buffer;
4307 		wc.stage = LOG_WALK_REPLAY_INODES;
4308 		goto again;
4309 	}
4310 	/* step three is to replay everything */
4311 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4312 		wc.stage++;
4313 		goto again;
4314 	}
4315 
4316 	btrfs_free_path(path);
4317 
4318 	/* step 4: commit the transaction, which also unpins the blocks */
4319 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4320 	if (ret)
4321 		return ret;
4322 
4323 	free_extent_buffer(log_root_tree->node);
4324 	log_root_tree->log_root = NULL;
4325 	fs_info->log_root_recovering = 0;
4326 	kfree(log_root_tree);
4327 
4328 	return 0;
4329 error:
4330 	if (wc.trans)
4331 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4332 	btrfs_free_path(path);
4333 	return ret;
4334 }
4335 
4336 /*
4337  * there are some corner cases where we want to force a full
4338  * commit instead of allowing a directory to be logged.
4339  *
4340  * They revolve around files there were unlinked from the directory, and
4341  * this function updates the parent directory so that a full commit is
4342  * properly done if it is fsync'd later after the unlinks are done.
4343  */
4344 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4345 			     struct inode *dir, struct inode *inode,
4346 			     int for_rename)
4347 {
4348 	/*
4349 	 * when we're logging a file, if it hasn't been renamed
4350 	 * or unlinked, and its inode is fully committed on disk,
4351 	 * we don't have to worry about walking up the directory chain
4352 	 * to log its parents.
4353 	 *
4354 	 * So, we use the last_unlink_trans field to put this transid
4355 	 * into the file.  When the file is logged we check it and
4356 	 * don't log the parents if the file is fully on disk.
4357 	 */
4358 	if (S_ISREG(inode->i_mode))
4359 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4360 
4361 	/*
4362 	 * if this directory was already logged any new
4363 	 * names for this file/dir will get recorded
4364 	 */
4365 	smp_mb();
4366 	if (BTRFS_I(dir)->logged_trans == trans->transid)
4367 		return;
4368 
4369 	/*
4370 	 * if the inode we're about to unlink was logged,
4371 	 * the log will be properly updated for any new names
4372 	 */
4373 	if (BTRFS_I(inode)->logged_trans == trans->transid)
4374 		return;
4375 
4376 	/*
4377 	 * when renaming files across directories, if the directory
4378 	 * there we're unlinking from gets fsync'd later on, there's
4379 	 * no way to find the destination directory later and fsync it
4380 	 * properly.  So, we have to be conservative and force commits
4381 	 * so the new name gets discovered.
4382 	 */
4383 	if (for_rename)
4384 		goto record;
4385 
4386 	/* we can safely do the unlink without any special recording */
4387 	return;
4388 
4389 record:
4390 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
4391 }
4392 
4393 /*
4394  * Call this after adding a new name for a file and it will properly
4395  * update the log to reflect the new name.
4396  *
4397  * It will return zero if all goes well, and it will return 1 if a
4398  * full transaction commit is required.
4399  */
4400 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4401 			struct inode *inode, struct inode *old_dir,
4402 			struct dentry *parent)
4403 {
4404 	struct btrfs_root * root = BTRFS_I(inode)->root;
4405 
4406 	/*
4407 	 * this will force the logging code to walk the dentry chain
4408 	 * up for the file
4409 	 */
4410 	if (S_ISREG(inode->i_mode))
4411 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4412 
4413 	/*
4414 	 * if this inode hasn't been logged and directory we're renaming it
4415 	 * from hasn't been logged, we don't need to log it
4416 	 */
4417 	if (BTRFS_I(inode)->logged_trans <=
4418 	    root->fs_info->last_trans_committed &&
4419 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4420 		    root->fs_info->last_trans_committed))
4421 		return 0;
4422 
4423 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4424 }
4425 
4426