1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "ctree.h" 12 #include "tree-log.h" 13 #include "disk-io.h" 14 #include "locking.h" 15 #include "print-tree.h" 16 #include "backref.h" 17 #include "compression.h" 18 #include "qgroup.h" 19 #include "inode-map.h" 20 21 /* magic values for the inode_only field in btrfs_log_inode: 22 * 23 * LOG_INODE_ALL means to log everything 24 * LOG_INODE_EXISTS means to log just enough to recreate the inode 25 * during log replay 26 */ 27 #define LOG_INODE_ALL 0 28 #define LOG_INODE_EXISTS 1 29 #define LOG_OTHER_INODE 2 30 #define LOG_OTHER_INODE_ALL 3 31 32 /* 33 * directory trouble cases 34 * 35 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 36 * log, we must force a full commit before doing an fsync of the directory 37 * where the unlink was done. 38 * ---> record transid of last unlink/rename per directory 39 * 40 * mkdir foo/some_dir 41 * normal commit 42 * rename foo/some_dir foo2/some_dir 43 * mkdir foo/some_dir 44 * fsync foo/some_dir/some_file 45 * 46 * The fsync above will unlink the original some_dir without recording 47 * it in its new location (foo2). After a crash, some_dir will be gone 48 * unless the fsync of some_file forces a full commit 49 * 50 * 2) we must log any new names for any file or dir that is in the fsync 51 * log. ---> check inode while renaming/linking. 52 * 53 * 2a) we must log any new names for any file or dir during rename 54 * when the directory they are being removed from was logged. 55 * ---> check inode and old parent dir during rename 56 * 57 * 2a is actually the more important variant. With the extra logging 58 * a crash might unlink the old name without recreating the new one 59 * 60 * 3) after a crash, we must go through any directories with a link count 61 * of zero and redo the rm -rf 62 * 63 * mkdir f1/foo 64 * normal commit 65 * rm -rf f1/foo 66 * fsync(f1) 67 * 68 * The directory f1 was fully removed from the FS, but fsync was never 69 * called on f1, only its parent dir. After a crash the rm -rf must 70 * be replayed. This must be able to recurse down the entire 71 * directory tree. The inode link count fixup code takes care of the 72 * ugly details. 73 */ 74 75 /* 76 * stages for the tree walking. The first 77 * stage (0) is to only pin down the blocks we find 78 * the second stage (1) is to make sure that all the inodes 79 * we find in the log are created in the subvolume. 80 * 81 * The last stage is to deal with directories and links and extents 82 * and all the other fun semantics 83 */ 84 #define LOG_WALK_PIN_ONLY 0 85 #define LOG_WALK_REPLAY_INODES 1 86 #define LOG_WALK_REPLAY_DIR_INDEX 2 87 #define LOG_WALK_REPLAY_ALL 3 88 89 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, struct btrfs_inode *inode, 91 int inode_only, 92 const loff_t start, 93 const loff_t end, 94 struct btrfs_log_ctx *ctx); 95 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 96 struct btrfs_root *root, 97 struct btrfs_path *path, u64 objectid); 98 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 99 struct btrfs_root *root, 100 struct btrfs_root *log, 101 struct btrfs_path *path, 102 u64 dirid, int del_all); 103 104 /* 105 * tree logging is a special write ahead log used to make sure that 106 * fsyncs and O_SYNCs can happen without doing full tree commits. 107 * 108 * Full tree commits are expensive because they require commonly 109 * modified blocks to be recowed, creating many dirty pages in the 110 * extent tree an 4x-6x higher write load than ext3. 111 * 112 * Instead of doing a tree commit on every fsync, we use the 113 * key ranges and transaction ids to find items for a given file or directory 114 * that have changed in this transaction. Those items are copied into 115 * a special tree (one per subvolume root), that tree is written to disk 116 * and then the fsync is considered complete. 117 * 118 * After a crash, items are copied out of the log-tree back into the 119 * subvolume tree. Any file data extents found are recorded in the extent 120 * allocation tree, and the log-tree freed. 121 * 122 * The log tree is read three times, once to pin down all the extents it is 123 * using in ram and once, once to create all the inodes logged in the tree 124 * and once to do all the other items. 125 */ 126 127 /* 128 * start a sub transaction and setup the log tree 129 * this increments the log tree writer count to make the people 130 * syncing the tree wait for us to finish 131 */ 132 static int start_log_trans(struct btrfs_trans_handle *trans, 133 struct btrfs_root *root, 134 struct btrfs_log_ctx *ctx) 135 { 136 struct btrfs_fs_info *fs_info = root->fs_info; 137 int ret = 0; 138 139 mutex_lock(&root->log_mutex); 140 141 if (root->log_root) { 142 if (btrfs_need_log_full_commit(fs_info, trans)) { 143 ret = -EAGAIN; 144 goto out; 145 } 146 147 if (!root->log_start_pid) { 148 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 149 root->log_start_pid = current->pid; 150 } else if (root->log_start_pid != current->pid) { 151 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 152 } 153 } else { 154 mutex_lock(&fs_info->tree_log_mutex); 155 if (!fs_info->log_root_tree) 156 ret = btrfs_init_log_root_tree(trans, fs_info); 157 mutex_unlock(&fs_info->tree_log_mutex); 158 if (ret) 159 goto out; 160 161 ret = btrfs_add_log_tree(trans, root); 162 if (ret) 163 goto out; 164 165 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 166 root->log_start_pid = current->pid; 167 } 168 169 atomic_inc(&root->log_batch); 170 atomic_inc(&root->log_writers); 171 if (ctx) { 172 int index = root->log_transid % 2; 173 list_add_tail(&ctx->list, &root->log_ctxs[index]); 174 ctx->log_transid = root->log_transid; 175 } 176 177 out: 178 mutex_unlock(&root->log_mutex); 179 return ret; 180 } 181 182 /* 183 * returns 0 if there was a log transaction running and we were able 184 * to join, or returns -ENOENT if there were not transactions 185 * in progress 186 */ 187 static int join_running_log_trans(struct btrfs_root *root) 188 { 189 int ret = -ENOENT; 190 191 smp_mb(); 192 if (!root->log_root) 193 return -ENOENT; 194 195 mutex_lock(&root->log_mutex); 196 if (root->log_root) { 197 ret = 0; 198 atomic_inc(&root->log_writers); 199 } 200 mutex_unlock(&root->log_mutex); 201 return ret; 202 } 203 204 /* 205 * This either makes the current running log transaction wait 206 * until you call btrfs_end_log_trans() or it makes any future 207 * log transactions wait until you call btrfs_end_log_trans() 208 */ 209 void btrfs_pin_log_trans(struct btrfs_root *root) 210 { 211 mutex_lock(&root->log_mutex); 212 atomic_inc(&root->log_writers); 213 mutex_unlock(&root->log_mutex); 214 } 215 216 /* 217 * indicate we're done making changes to the log tree 218 * and wake up anyone waiting to do a sync 219 */ 220 void btrfs_end_log_trans(struct btrfs_root *root) 221 { 222 if (atomic_dec_and_test(&root->log_writers)) { 223 /* atomic_dec_and_test implies a barrier */ 224 cond_wake_up_nomb(&root->log_writer_wait); 225 } 226 } 227 228 229 /* 230 * the walk control struct is used to pass state down the chain when 231 * processing the log tree. The stage field tells us which part 232 * of the log tree processing we are currently doing. The others 233 * are state fields used for that specific part 234 */ 235 struct walk_control { 236 /* should we free the extent on disk when done? This is used 237 * at transaction commit time while freeing a log tree 238 */ 239 int free; 240 241 /* should we write out the extent buffer? This is used 242 * while flushing the log tree to disk during a sync 243 */ 244 int write; 245 246 /* should we wait for the extent buffer io to finish? Also used 247 * while flushing the log tree to disk for a sync 248 */ 249 int wait; 250 251 /* pin only walk, we record which extents on disk belong to the 252 * log trees 253 */ 254 int pin; 255 256 /* what stage of the replay code we're currently in */ 257 int stage; 258 259 /* 260 * Ignore any items from the inode currently being processed. Needs 261 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 262 * the LOG_WALK_REPLAY_INODES stage. 263 */ 264 bool ignore_cur_inode; 265 266 /* the root we are currently replaying */ 267 struct btrfs_root *replay_dest; 268 269 /* the trans handle for the current replay */ 270 struct btrfs_trans_handle *trans; 271 272 /* the function that gets used to process blocks we find in the 273 * tree. Note the extent_buffer might not be up to date when it is 274 * passed in, and it must be checked or read if you need the data 275 * inside it 276 */ 277 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 278 struct walk_control *wc, u64 gen, int level); 279 }; 280 281 /* 282 * process_func used to pin down extents, write them or wait on them 283 */ 284 static int process_one_buffer(struct btrfs_root *log, 285 struct extent_buffer *eb, 286 struct walk_control *wc, u64 gen, int level) 287 { 288 struct btrfs_fs_info *fs_info = log->fs_info; 289 int ret = 0; 290 291 /* 292 * If this fs is mixed then we need to be able to process the leaves to 293 * pin down any logged extents, so we have to read the block. 294 */ 295 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 296 ret = btrfs_read_buffer(eb, gen, level, NULL); 297 if (ret) 298 return ret; 299 } 300 301 if (wc->pin) 302 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start, 303 eb->len); 304 305 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 306 if (wc->pin && btrfs_header_level(eb) == 0) 307 ret = btrfs_exclude_logged_extents(fs_info, eb); 308 if (wc->write) 309 btrfs_write_tree_block(eb); 310 if (wc->wait) 311 btrfs_wait_tree_block_writeback(eb); 312 } 313 return ret; 314 } 315 316 /* 317 * Item overwrite used by replay and tree logging. eb, slot and key all refer 318 * to the src data we are copying out. 319 * 320 * root is the tree we are copying into, and path is a scratch 321 * path for use in this function (it should be released on entry and 322 * will be released on exit). 323 * 324 * If the key is already in the destination tree the existing item is 325 * overwritten. If the existing item isn't big enough, it is extended. 326 * If it is too large, it is truncated. 327 * 328 * If the key isn't in the destination yet, a new item is inserted. 329 */ 330 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 331 struct btrfs_root *root, 332 struct btrfs_path *path, 333 struct extent_buffer *eb, int slot, 334 struct btrfs_key *key) 335 { 336 struct btrfs_fs_info *fs_info = root->fs_info; 337 int ret; 338 u32 item_size; 339 u64 saved_i_size = 0; 340 int save_old_i_size = 0; 341 unsigned long src_ptr; 342 unsigned long dst_ptr; 343 int overwrite_root = 0; 344 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 345 346 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 347 overwrite_root = 1; 348 349 item_size = btrfs_item_size_nr(eb, slot); 350 src_ptr = btrfs_item_ptr_offset(eb, slot); 351 352 /* look for the key in the destination tree */ 353 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 354 if (ret < 0) 355 return ret; 356 357 if (ret == 0) { 358 char *src_copy; 359 char *dst_copy; 360 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 361 path->slots[0]); 362 if (dst_size != item_size) 363 goto insert; 364 365 if (item_size == 0) { 366 btrfs_release_path(path); 367 return 0; 368 } 369 dst_copy = kmalloc(item_size, GFP_NOFS); 370 src_copy = kmalloc(item_size, GFP_NOFS); 371 if (!dst_copy || !src_copy) { 372 btrfs_release_path(path); 373 kfree(dst_copy); 374 kfree(src_copy); 375 return -ENOMEM; 376 } 377 378 read_extent_buffer(eb, src_copy, src_ptr, item_size); 379 380 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 381 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 382 item_size); 383 ret = memcmp(dst_copy, src_copy, item_size); 384 385 kfree(dst_copy); 386 kfree(src_copy); 387 /* 388 * they have the same contents, just return, this saves 389 * us from cowing blocks in the destination tree and doing 390 * extra writes that may not have been done by a previous 391 * sync 392 */ 393 if (ret == 0) { 394 btrfs_release_path(path); 395 return 0; 396 } 397 398 /* 399 * We need to load the old nbytes into the inode so when we 400 * replay the extents we've logged we get the right nbytes. 401 */ 402 if (inode_item) { 403 struct btrfs_inode_item *item; 404 u64 nbytes; 405 u32 mode; 406 407 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 408 struct btrfs_inode_item); 409 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 410 item = btrfs_item_ptr(eb, slot, 411 struct btrfs_inode_item); 412 btrfs_set_inode_nbytes(eb, item, nbytes); 413 414 /* 415 * If this is a directory we need to reset the i_size to 416 * 0 so that we can set it up properly when replaying 417 * the rest of the items in this log. 418 */ 419 mode = btrfs_inode_mode(eb, item); 420 if (S_ISDIR(mode)) 421 btrfs_set_inode_size(eb, item, 0); 422 } 423 } else if (inode_item) { 424 struct btrfs_inode_item *item; 425 u32 mode; 426 427 /* 428 * New inode, set nbytes to 0 so that the nbytes comes out 429 * properly when we replay the extents. 430 */ 431 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 432 btrfs_set_inode_nbytes(eb, item, 0); 433 434 /* 435 * If this is a directory we need to reset the i_size to 0 so 436 * that we can set it up properly when replaying the rest of 437 * the items in this log. 438 */ 439 mode = btrfs_inode_mode(eb, item); 440 if (S_ISDIR(mode)) 441 btrfs_set_inode_size(eb, item, 0); 442 } 443 insert: 444 btrfs_release_path(path); 445 /* try to insert the key into the destination tree */ 446 path->skip_release_on_error = 1; 447 ret = btrfs_insert_empty_item(trans, root, path, 448 key, item_size); 449 path->skip_release_on_error = 0; 450 451 /* make sure any existing item is the correct size */ 452 if (ret == -EEXIST || ret == -EOVERFLOW) { 453 u32 found_size; 454 found_size = btrfs_item_size_nr(path->nodes[0], 455 path->slots[0]); 456 if (found_size > item_size) 457 btrfs_truncate_item(fs_info, path, item_size, 1); 458 else if (found_size < item_size) 459 btrfs_extend_item(fs_info, path, 460 item_size - found_size); 461 } else if (ret) { 462 return ret; 463 } 464 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 465 path->slots[0]); 466 467 /* don't overwrite an existing inode if the generation number 468 * was logged as zero. This is done when the tree logging code 469 * is just logging an inode to make sure it exists after recovery. 470 * 471 * Also, don't overwrite i_size on directories during replay. 472 * log replay inserts and removes directory items based on the 473 * state of the tree found in the subvolume, and i_size is modified 474 * as it goes 475 */ 476 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 477 struct btrfs_inode_item *src_item; 478 struct btrfs_inode_item *dst_item; 479 480 src_item = (struct btrfs_inode_item *)src_ptr; 481 dst_item = (struct btrfs_inode_item *)dst_ptr; 482 483 if (btrfs_inode_generation(eb, src_item) == 0) { 484 struct extent_buffer *dst_eb = path->nodes[0]; 485 const u64 ino_size = btrfs_inode_size(eb, src_item); 486 487 /* 488 * For regular files an ino_size == 0 is used only when 489 * logging that an inode exists, as part of a directory 490 * fsync, and the inode wasn't fsynced before. In this 491 * case don't set the size of the inode in the fs/subvol 492 * tree, otherwise we would be throwing valid data away. 493 */ 494 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 495 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 496 ino_size != 0) { 497 struct btrfs_map_token token; 498 499 btrfs_init_map_token(&token); 500 btrfs_set_token_inode_size(dst_eb, dst_item, 501 ino_size, &token); 502 } 503 goto no_copy; 504 } 505 506 if (overwrite_root && 507 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 508 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 509 save_old_i_size = 1; 510 saved_i_size = btrfs_inode_size(path->nodes[0], 511 dst_item); 512 } 513 } 514 515 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 516 src_ptr, item_size); 517 518 if (save_old_i_size) { 519 struct btrfs_inode_item *dst_item; 520 dst_item = (struct btrfs_inode_item *)dst_ptr; 521 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 522 } 523 524 /* make sure the generation is filled in */ 525 if (key->type == BTRFS_INODE_ITEM_KEY) { 526 struct btrfs_inode_item *dst_item; 527 dst_item = (struct btrfs_inode_item *)dst_ptr; 528 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 529 btrfs_set_inode_generation(path->nodes[0], dst_item, 530 trans->transid); 531 } 532 } 533 no_copy: 534 btrfs_mark_buffer_dirty(path->nodes[0]); 535 btrfs_release_path(path); 536 return 0; 537 } 538 539 /* 540 * simple helper to read an inode off the disk from a given root 541 * This can only be called for subvolume roots and not for the log 542 */ 543 static noinline struct inode *read_one_inode(struct btrfs_root *root, 544 u64 objectid) 545 { 546 struct btrfs_key key; 547 struct inode *inode; 548 549 key.objectid = objectid; 550 key.type = BTRFS_INODE_ITEM_KEY; 551 key.offset = 0; 552 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 553 if (IS_ERR(inode)) 554 inode = NULL; 555 return inode; 556 } 557 558 /* replays a single extent in 'eb' at 'slot' with 'key' into the 559 * subvolume 'root'. path is released on entry and should be released 560 * on exit. 561 * 562 * extents in the log tree have not been allocated out of the extent 563 * tree yet. So, this completes the allocation, taking a reference 564 * as required if the extent already exists or creating a new extent 565 * if it isn't in the extent allocation tree yet. 566 * 567 * The extent is inserted into the file, dropping any existing extents 568 * from the file that overlap the new one. 569 */ 570 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 571 struct btrfs_root *root, 572 struct btrfs_path *path, 573 struct extent_buffer *eb, int slot, 574 struct btrfs_key *key) 575 { 576 struct btrfs_fs_info *fs_info = root->fs_info; 577 int found_type; 578 u64 extent_end; 579 u64 start = key->offset; 580 u64 nbytes = 0; 581 struct btrfs_file_extent_item *item; 582 struct inode *inode = NULL; 583 unsigned long size; 584 int ret = 0; 585 586 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 587 found_type = btrfs_file_extent_type(eb, item); 588 589 if (found_type == BTRFS_FILE_EXTENT_REG || 590 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 591 nbytes = btrfs_file_extent_num_bytes(eb, item); 592 extent_end = start + nbytes; 593 594 /* 595 * We don't add to the inodes nbytes if we are prealloc or a 596 * hole. 597 */ 598 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 599 nbytes = 0; 600 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 601 size = btrfs_file_extent_ram_bytes(eb, item); 602 nbytes = btrfs_file_extent_ram_bytes(eb, item); 603 extent_end = ALIGN(start + size, 604 fs_info->sectorsize); 605 } else { 606 ret = 0; 607 goto out; 608 } 609 610 inode = read_one_inode(root, key->objectid); 611 if (!inode) { 612 ret = -EIO; 613 goto out; 614 } 615 616 /* 617 * first check to see if we already have this extent in the 618 * file. This must be done before the btrfs_drop_extents run 619 * so we don't try to drop this extent. 620 */ 621 ret = btrfs_lookup_file_extent(trans, root, path, 622 btrfs_ino(BTRFS_I(inode)), start, 0); 623 624 if (ret == 0 && 625 (found_type == BTRFS_FILE_EXTENT_REG || 626 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 627 struct btrfs_file_extent_item cmp1; 628 struct btrfs_file_extent_item cmp2; 629 struct btrfs_file_extent_item *existing; 630 struct extent_buffer *leaf; 631 632 leaf = path->nodes[0]; 633 existing = btrfs_item_ptr(leaf, path->slots[0], 634 struct btrfs_file_extent_item); 635 636 read_extent_buffer(eb, &cmp1, (unsigned long)item, 637 sizeof(cmp1)); 638 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 639 sizeof(cmp2)); 640 641 /* 642 * we already have a pointer to this exact extent, 643 * we don't have to do anything 644 */ 645 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 646 btrfs_release_path(path); 647 goto out; 648 } 649 } 650 btrfs_release_path(path); 651 652 /* drop any overlapping extents */ 653 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 654 if (ret) 655 goto out; 656 657 if (found_type == BTRFS_FILE_EXTENT_REG || 658 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 659 u64 offset; 660 unsigned long dest_offset; 661 struct btrfs_key ins; 662 663 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 664 btrfs_fs_incompat(fs_info, NO_HOLES)) 665 goto update_inode; 666 667 ret = btrfs_insert_empty_item(trans, root, path, key, 668 sizeof(*item)); 669 if (ret) 670 goto out; 671 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 672 path->slots[0]); 673 copy_extent_buffer(path->nodes[0], eb, dest_offset, 674 (unsigned long)item, sizeof(*item)); 675 676 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 677 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 678 ins.type = BTRFS_EXTENT_ITEM_KEY; 679 offset = key->offset - btrfs_file_extent_offset(eb, item); 680 681 /* 682 * Manually record dirty extent, as here we did a shallow 683 * file extent item copy and skip normal backref update, 684 * but modifying extent tree all by ourselves. 685 * So need to manually record dirty extent for qgroup, 686 * as the owner of the file extent changed from log tree 687 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 688 */ 689 ret = btrfs_qgroup_trace_extent(trans, 690 btrfs_file_extent_disk_bytenr(eb, item), 691 btrfs_file_extent_disk_num_bytes(eb, item), 692 GFP_NOFS); 693 if (ret < 0) 694 goto out; 695 696 if (ins.objectid > 0) { 697 u64 csum_start; 698 u64 csum_end; 699 LIST_HEAD(ordered_sums); 700 /* 701 * is this extent already allocated in the extent 702 * allocation tree? If so, just add a reference 703 */ 704 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 705 ins.offset); 706 if (ret == 0) { 707 ret = btrfs_inc_extent_ref(trans, root, 708 ins.objectid, ins.offset, 709 0, root->root_key.objectid, 710 key->objectid, offset); 711 if (ret) 712 goto out; 713 } else { 714 /* 715 * insert the extent pointer in the extent 716 * allocation tree 717 */ 718 ret = btrfs_alloc_logged_file_extent(trans, 719 root->root_key.objectid, 720 key->objectid, offset, &ins); 721 if (ret) 722 goto out; 723 } 724 btrfs_release_path(path); 725 726 if (btrfs_file_extent_compression(eb, item)) { 727 csum_start = ins.objectid; 728 csum_end = csum_start + ins.offset; 729 } else { 730 csum_start = ins.objectid + 731 btrfs_file_extent_offset(eb, item); 732 csum_end = csum_start + 733 btrfs_file_extent_num_bytes(eb, item); 734 } 735 736 ret = btrfs_lookup_csums_range(root->log_root, 737 csum_start, csum_end - 1, 738 &ordered_sums, 0); 739 if (ret) 740 goto out; 741 /* 742 * Now delete all existing cums in the csum root that 743 * cover our range. We do this because we can have an 744 * extent that is completely referenced by one file 745 * extent item and partially referenced by another 746 * file extent item (like after using the clone or 747 * extent_same ioctls). In this case if we end up doing 748 * the replay of the one that partially references the 749 * extent first, and we do not do the csum deletion 750 * below, we can get 2 csum items in the csum tree that 751 * overlap each other. For example, imagine our log has 752 * the two following file extent items: 753 * 754 * key (257 EXTENT_DATA 409600) 755 * extent data disk byte 12845056 nr 102400 756 * extent data offset 20480 nr 20480 ram 102400 757 * 758 * key (257 EXTENT_DATA 819200) 759 * extent data disk byte 12845056 nr 102400 760 * extent data offset 0 nr 102400 ram 102400 761 * 762 * Where the second one fully references the 100K extent 763 * that starts at disk byte 12845056, and the log tree 764 * has a single csum item that covers the entire range 765 * of the extent: 766 * 767 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 768 * 769 * After the first file extent item is replayed, the 770 * csum tree gets the following csum item: 771 * 772 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 773 * 774 * Which covers the 20K sub-range starting at offset 20K 775 * of our extent. Now when we replay the second file 776 * extent item, if we do not delete existing csum items 777 * that cover any of its blocks, we end up getting two 778 * csum items in our csum tree that overlap each other: 779 * 780 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 781 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 782 * 783 * Which is a problem, because after this anyone trying 784 * to lookup up for the checksum of any block of our 785 * extent starting at an offset of 40K or higher, will 786 * end up looking at the second csum item only, which 787 * does not contain the checksum for any block starting 788 * at offset 40K or higher of our extent. 789 */ 790 while (!list_empty(&ordered_sums)) { 791 struct btrfs_ordered_sum *sums; 792 sums = list_entry(ordered_sums.next, 793 struct btrfs_ordered_sum, 794 list); 795 if (!ret) 796 ret = btrfs_del_csums(trans, fs_info, 797 sums->bytenr, 798 sums->len); 799 if (!ret) 800 ret = btrfs_csum_file_blocks(trans, 801 fs_info->csum_root, sums); 802 list_del(&sums->list); 803 kfree(sums); 804 } 805 if (ret) 806 goto out; 807 } else { 808 btrfs_release_path(path); 809 } 810 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 811 /* inline extents are easy, we just overwrite them */ 812 ret = overwrite_item(trans, root, path, eb, slot, key); 813 if (ret) 814 goto out; 815 } 816 817 inode_add_bytes(inode, nbytes); 818 update_inode: 819 ret = btrfs_update_inode(trans, root, inode); 820 out: 821 if (inode) 822 iput(inode); 823 return ret; 824 } 825 826 /* 827 * when cleaning up conflicts between the directory names in the 828 * subvolume, directory names in the log and directory names in the 829 * inode back references, we may have to unlink inodes from directories. 830 * 831 * This is a helper function to do the unlink of a specific directory 832 * item 833 */ 834 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 835 struct btrfs_root *root, 836 struct btrfs_path *path, 837 struct btrfs_inode *dir, 838 struct btrfs_dir_item *di) 839 { 840 struct inode *inode; 841 char *name; 842 int name_len; 843 struct extent_buffer *leaf; 844 struct btrfs_key location; 845 int ret; 846 847 leaf = path->nodes[0]; 848 849 btrfs_dir_item_key_to_cpu(leaf, di, &location); 850 name_len = btrfs_dir_name_len(leaf, di); 851 name = kmalloc(name_len, GFP_NOFS); 852 if (!name) 853 return -ENOMEM; 854 855 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 856 btrfs_release_path(path); 857 858 inode = read_one_inode(root, location.objectid); 859 if (!inode) { 860 ret = -EIO; 861 goto out; 862 } 863 864 ret = link_to_fixup_dir(trans, root, path, location.objectid); 865 if (ret) 866 goto out; 867 868 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, 869 name_len); 870 if (ret) 871 goto out; 872 else 873 ret = btrfs_run_delayed_items(trans); 874 out: 875 kfree(name); 876 iput(inode); 877 return ret; 878 } 879 880 /* 881 * helper function to see if a given name and sequence number found 882 * in an inode back reference are already in a directory and correctly 883 * point to this inode 884 */ 885 static noinline int inode_in_dir(struct btrfs_root *root, 886 struct btrfs_path *path, 887 u64 dirid, u64 objectid, u64 index, 888 const char *name, int name_len) 889 { 890 struct btrfs_dir_item *di; 891 struct btrfs_key location; 892 int match = 0; 893 894 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 895 index, name, name_len, 0); 896 if (di && !IS_ERR(di)) { 897 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 898 if (location.objectid != objectid) 899 goto out; 900 } else 901 goto out; 902 btrfs_release_path(path); 903 904 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 905 if (di && !IS_ERR(di)) { 906 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 907 if (location.objectid != objectid) 908 goto out; 909 } else 910 goto out; 911 match = 1; 912 out: 913 btrfs_release_path(path); 914 return match; 915 } 916 917 /* 918 * helper function to check a log tree for a named back reference in 919 * an inode. This is used to decide if a back reference that is 920 * found in the subvolume conflicts with what we find in the log. 921 * 922 * inode backreferences may have multiple refs in a single item, 923 * during replay we process one reference at a time, and we don't 924 * want to delete valid links to a file from the subvolume if that 925 * link is also in the log. 926 */ 927 static noinline int backref_in_log(struct btrfs_root *log, 928 struct btrfs_key *key, 929 u64 ref_objectid, 930 const char *name, int namelen) 931 { 932 struct btrfs_path *path; 933 struct btrfs_inode_ref *ref; 934 unsigned long ptr; 935 unsigned long ptr_end; 936 unsigned long name_ptr; 937 int found_name_len; 938 int item_size; 939 int ret; 940 int match = 0; 941 942 path = btrfs_alloc_path(); 943 if (!path) 944 return -ENOMEM; 945 946 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 947 if (ret != 0) 948 goto out; 949 950 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 951 952 if (key->type == BTRFS_INODE_EXTREF_KEY) { 953 if (btrfs_find_name_in_ext_backref(path->nodes[0], 954 path->slots[0], 955 ref_objectid, 956 name, namelen, NULL)) 957 match = 1; 958 959 goto out; 960 } 961 962 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 963 ptr_end = ptr + item_size; 964 while (ptr < ptr_end) { 965 ref = (struct btrfs_inode_ref *)ptr; 966 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 967 if (found_name_len == namelen) { 968 name_ptr = (unsigned long)(ref + 1); 969 ret = memcmp_extent_buffer(path->nodes[0], name, 970 name_ptr, namelen); 971 if (ret == 0) { 972 match = 1; 973 goto out; 974 } 975 } 976 ptr = (unsigned long)(ref + 1) + found_name_len; 977 } 978 out: 979 btrfs_free_path(path); 980 return match; 981 } 982 983 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 984 struct btrfs_root *root, 985 struct btrfs_path *path, 986 struct btrfs_root *log_root, 987 struct btrfs_inode *dir, 988 struct btrfs_inode *inode, 989 u64 inode_objectid, u64 parent_objectid, 990 u64 ref_index, char *name, int namelen, 991 int *search_done) 992 { 993 int ret; 994 char *victim_name; 995 int victim_name_len; 996 struct extent_buffer *leaf; 997 struct btrfs_dir_item *di; 998 struct btrfs_key search_key; 999 struct btrfs_inode_extref *extref; 1000 1001 again: 1002 /* Search old style refs */ 1003 search_key.objectid = inode_objectid; 1004 search_key.type = BTRFS_INODE_REF_KEY; 1005 search_key.offset = parent_objectid; 1006 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1007 if (ret == 0) { 1008 struct btrfs_inode_ref *victim_ref; 1009 unsigned long ptr; 1010 unsigned long ptr_end; 1011 1012 leaf = path->nodes[0]; 1013 1014 /* are we trying to overwrite a back ref for the root directory 1015 * if so, just jump out, we're done 1016 */ 1017 if (search_key.objectid == search_key.offset) 1018 return 1; 1019 1020 /* check all the names in this back reference to see 1021 * if they are in the log. if so, we allow them to stay 1022 * otherwise they must be unlinked as a conflict 1023 */ 1024 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1025 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1026 while (ptr < ptr_end) { 1027 victim_ref = (struct btrfs_inode_ref *)ptr; 1028 victim_name_len = btrfs_inode_ref_name_len(leaf, 1029 victim_ref); 1030 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1031 if (!victim_name) 1032 return -ENOMEM; 1033 1034 read_extent_buffer(leaf, victim_name, 1035 (unsigned long)(victim_ref + 1), 1036 victim_name_len); 1037 1038 if (!backref_in_log(log_root, &search_key, 1039 parent_objectid, 1040 victim_name, 1041 victim_name_len)) { 1042 inc_nlink(&inode->vfs_inode); 1043 btrfs_release_path(path); 1044 1045 ret = btrfs_unlink_inode(trans, root, dir, inode, 1046 victim_name, victim_name_len); 1047 kfree(victim_name); 1048 if (ret) 1049 return ret; 1050 ret = btrfs_run_delayed_items(trans); 1051 if (ret) 1052 return ret; 1053 *search_done = 1; 1054 goto again; 1055 } 1056 kfree(victim_name); 1057 1058 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1059 } 1060 1061 /* 1062 * NOTE: we have searched root tree and checked the 1063 * corresponding ref, it does not need to check again. 1064 */ 1065 *search_done = 1; 1066 } 1067 btrfs_release_path(path); 1068 1069 /* Same search but for extended refs */ 1070 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1071 inode_objectid, parent_objectid, 0, 1072 0); 1073 if (!IS_ERR_OR_NULL(extref)) { 1074 u32 item_size; 1075 u32 cur_offset = 0; 1076 unsigned long base; 1077 struct inode *victim_parent; 1078 1079 leaf = path->nodes[0]; 1080 1081 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1082 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1083 1084 while (cur_offset < item_size) { 1085 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1086 1087 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1088 1089 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1090 goto next; 1091 1092 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1093 if (!victim_name) 1094 return -ENOMEM; 1095 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1096 victim_name_len); 1097 1098 search_key.objectid = inode_objectid; 1099 search_key.type = BTRFS_INODE_EXTREF_KEY; 1100 search_key.offset = btrfs_extref_hash(parent_objectid, 1101 victim_name, 1102 victim_name_len); 1103 ret = 0; 1104 if (!backref_in_log(log_root, &search_key, 1105 parent_objectid, victim_name, 1106 victim_name_len)) { 1107 ret = -ENOENT; 1108 victim_parent = read_one_inode(root, 1109 parent_objectid); 1110 if (victim_parent) { 1111 inc_nlink(&inode->vfs_inode); 1112 btrfs_release_path(path); 1113 1114 ret = btrfs_unlink_inode(trans, root, 1115 BTRFS_I(victim_parent), 1116 inode, 1117 victim_name, 1118 victim_name_len); 1119 if (!ret) 1120 ret = btrfs_run_delayed_items( 1121 trans); 1122 } 1123 iput(victim_parent); 1124 kfree(victim_name); 1125 if (ret) 1126 return ret; 1127 *search_done = 1; 1128 goto again; 1129 } 1130 kfree(victim_name); 1131 next: 1132 cur_offset += victim_name_len + sizeof(*extref); 1133 } 1134 *search_done = 1; 1135 } 1136 btrfs_release_path(path); 1137 1138 /* look for a conflicting sequence number */ 1139 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1140 ref_index, name, namelen, 0); 1141 if (di && !IS_ERR(di)) { 1142 ret = drop_one_dir_item(trans, root, path, dir, di); 1143 if (ret) 1144 return ret; 1145 } 1146 btrfs_release_path(path); 1147 1148 /* look for a conflicting name */ 1149 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1150 name, namelen, 0); 1151 if (di && !IS_ERR(di)) { 1152 ret = drop_one_dir_item(trans, root, path, dir, di); 1153 if (ret) 1154 return ret; 1155 } 1156 btrfs_release_path(path); 1157 1158 return 0; 1159 } 1160 1161 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1162 u32 *namelen, char **name, u64 *index, 1163 u64 *parent_objectid) 1164 { 1165 struct btrfs_inode_extref *extref; 1166 1167 extref = (struct btrfs_inode_extref *)ref_ptr; 1168 1169 *namelen = btrfs_inode_extref_name_len(eb, extref); 1170 *name = kmalloc(*namelen, GFP_NOFS); 1171 if (*name == NULL) 1172 return -ENOMEM; 1173 1174 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1175 *namelen); 1176 1177 if (index) 1178 *index = btrfs_inode_extref_index(eb, extref); 1179 if (parent_objectid) 1180 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1181 1182 return 0; 1183 } 1184 1185 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1186 u32 *namelen, char **name, u64 *index) 1187 { 1188 struct btrfs_inode_ref *ref; 1189 1190 ref = (struct btrfs_inode_ref *)ref_ptr; 1191 1192 *namelen = btrfs_inode_ref_name_len(eb, ref); 1193 *name = kmalloc(*namelen, GFP_NOFS); 1194 if (*name == NULL) 1195 return -ENOMEM; 1196 1197 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1198 1199 if (index) 1200 *index = btrfs_inode_ref_index(eb, ref); 1201 1202 return 0; 1203 } 1204 1205 /* 1206 * Take an inode reference item from the log tree and iterate all names from the 1207 * inode reference item in the subvolume tree with the same key (if it exists). 1208 * For any name that is not in the inode reference item from the log tree, do a 1209 * proper unlink of that name (that is, remove its entry from the inode 1210 * reference item and both dir index keys). 1211 */ 1212 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1213 struct btrfs_root *root, 1214 struct btrfs_path *path, 1215 struct btrfs_inode *inode, 1216 struct extent_buffer *log_eb, 1217 int log_slot, 1218 struct btrfs_key *key) 1219 { 1220 int ret; 1221 unsigned long ref_ptr; 1222 unsigned long ref_end; 1223 struct extent_buffer *eb; 1224 1225 again: 1226 btrfs_release_path(path); 1227 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1228 if (ret > 0) { 1229 ret = 0; 1230 goto out; 1231 } 1232 if (ret < 0) 1233 goto out; 1234 1235 eb = path->nodes[0]; 1236 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1237 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); 1238 while (ref_ptr < ref_end) { 1239 char *name = NULL; 1240 int namelen; 1241 u64 parent_id; 1242 1243 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1244 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1245 NULL, &parent_id); 1246 } else { 1247 parent_id = key->offset; 1248 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1249 NULL); 1250 } 1251 if (ret) 1252 goto out; 1253 1254 if (key->type == BTRFS_INODE_EXTREF_KEY) 1255 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot, 1256 parent_id, name, 1257 namelen, NULL); 1258 else 1259 ret = btrfs_find_name_in_backref(log_eb, log_slot, name, 1260 namelen, NULL); 1261 1262 if (!ret) { 1263 struct inode *dir; 1264 1265 btrfs_release_path(path); 1266 dir = read_one_inode(root, parent_id); 1267 if (!dir) { 1268 ret = -ENOENT; 1269 kfree(name); 1270 goto out; 1271 } 1272 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 1273 inode, name, namelen); 1274 kfree(name); 1275 iput(dir); 1276 if (ret) 1277 goto out; 1278 goto again; 1279 } 1280 1281 kfree(name); 1282 ref_ptr += namelen; 1283 if (key->type == BTRFS_INODE_EXTREF_KEY) 1284 ref_ptr += sizeof(struct btrfs_inode_extref); 1285 else 1286 ref_ptr += sizeof(struct btrfs_inode_ref); 1287 } 1288 ret = 0; 1289 out: 1290 btrfs_release_path(path); 1291 return ret; 1292 } 1293 1294 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1295 const u8 ref_type, const char *name, 1296 const int namelen) 1297 { 1298 struct btrfs_key key; 1299 struct btrfs_path *path; 1300 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1301 int ret; 1302 1303 path = btrfs_alloc_path(); 1304 if (!path) 1305 return -ENOMEM; 1306 1307 key.objectid = btrfs_ino(BTRFS_I(inode)); 1308 key.type = ref_type; 1309 if (key.type == BTRFS_INODE_REF_KEY) 1310 key.offset = parent_id; 1311 else 1312 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1313 1314 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1315 if (ret < 0) 1316 goto out; 1317 if (ret > 0) { 1318 ret = 0; 1319 goto out; 1320 } 1321 if (key.type == BTRFS_INODE_EXTREF_KEY) 1322 ret = btrfs_find_name_in_ext_backref(path->nodes[0], 1323 path->slots[0], parent_id, 1324 name, namelen, NULL); 1325 else 1326 ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1327 name, namelen, NULL); 1328 1329 out: 1330 btrfs_free_path(path); 1331 return ret; 1332 } 1333 1334 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1335 struct inode *dir, struct inode *inode, const char *name, 1336 int namelen, u64 ref_index) 1337 { 1338 struct btrfs_dir_item *dir_item; 1339 struct btrfs_key key; 1340 struct btrfs_path *path; 1341 struct inode *other_inode = NULL; 1342 int ret; 1343 1344 path = btrfs_alloc_path(); 1345 if (!path) 1346 return -ENOMEM; 1347 1348 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1349 btrfs_ino(BTRFS_I(dir)), 1350 name, namelen, 0); 1351 if (!dir_item) { 1352 btrfs_release_path(path); 1353 goto add_link; 1354 } else if (IS_ERR(dir_item)) { 1355 ret = PTR_ERR(dir_item); 1356 goto out; 1357 } 1358 1359 /* 1360 * Our inode's dentry collides with the dentry of another inode which is 1361 * in the log but not yet processed since it has a higher inode number. 1362 * So delete that other dentry. 1363 */ 1364 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1365 btrfs_release_path(path); 1366 other_inode = read_one_inode(root, key.objectid); 1367 if (!other_inode) { 1368 ret = -ENOENT; 1369 goto out; 1370 } 1371 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode), 1372 name, namelen); 1373 if (ret) 1374 goto out; 1375 /* 1376 * If we dropped the link count to 0, bump it so that later the iput() 1377 * on the inode will not free it. We will fixup the link count later. 1378 */ 1379 if (other_inode->i_nlink == 0) 1380 inc_nlink(other_inode); 1381 1382 ret = btrfs_run_delayed_items(trans); 1383 if (ret) 1384 goto out; 1385 add_link: 1386 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1387 name, namelen, 0, ref_index); 1388 out: 1389 iput(other_inode); 1390 btrfs_free_path(path); 1391 1392 return ret; 1393 } 1394 1395 /* 1396 * replay one inode back reference item found in the log tree. 1397 * eb, slot and key refer to the buffer and key found in the log tree. 1398 * root is the destination we are replaying into, and path is for temp 1399 * use by this function. (it should be released on return). 1400 */ 1401 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1402 struct btrfs_root *root, 1403 struct btrfs_root *log, 1404 struct btrfs_path *path, 1405 struct extent_buffer *eb, int slot, 1406 struct btrfs_key *key) 1407 { 1408 struct inode *dir = NULL; 1409 struct inode *inode = NULL; 1410 unsigned long ref_ptr; 1411 unsigned long ref_end; 1412 char *name = NULL; 1413 int namelen; 1414 int ret; 1415 int search_done = 0; 1416 int log_ref_ver = 0; 1417 u64 parent_objectid; 1418 u64 inode_objectid; 1419 u64 ref_index = 0; 1420 int ref_struct_size; 1421 1422 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1423 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1424 1425 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1426 struct btrfs_inode_extref *r; 1427 1428 ref_struct_size = sizeof(struct btrfs_inode_extref); 1429 log_ref_ver = 1; 1430 r = (struct btrfs_inode_extref *)ref_ptr; 1431 parent_objectid = btrfs_inode_extref_parent(eb, r); 1432 } else { 1433 ref_struct_size = sizeof(struct btrfs_inode_ref); 1434 parent_objectid = key->offset; 1435 } 1436 inode_objectid = key->objectid; 1437 1438 /* 1439 * it is possible that we didn't log all the parent directories 1440 * for a given inode. If we don't find the dir, just don't 1441 * copy the back ref in. The link count fixup code will take 1442 * care of the rest 1443 */ 1444 dir = read_one_inode(root, parent_objectid); 1445 if (!dir) { 1446 ret = -ENOENT; 1447 goto out; 1448 } 1449 1450 inode = read_one_inode(root, inode_objectid); 1451 if (!inode) { 1452 ret = -EIO; 1453 goto out; 1454 } 1455 1456 while (ref_ptr < ref_end) { 1457 if (log_ref_ver) { 1458 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1459 &ref_index, &parent_objectid); 1460 /* 1461 * parent object can change from one array 1462 * item to another. 1463 */ 1464 if (!dir) 1465 dir = read_one_inode(root, parent_objectid); 1466 if (!dir) { 1467 ret = -ENOENT; 1468 goto out; 1469 } 1470 } else { 1471 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1472 &ref_index); 1473 } 1474 if (ret) 1475 goto out; 1476 1477 /* if we already have a perfect match, we're done */ 1478 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1479 btrfs_ino(BTRFS_I(inode)), ref_index, 1480 name, namelen)) { 1481 /* 1482 * look for a conflicting back reference in the 1483 * metadata. if we find one we have to unlink that name 1484 * of the file before we add our new link. Later on, we 1485 * overwrite any existing back reference, and we don't 1486 * want to create dangling pointers in the directory. 1487 */ 1488 1489 if (!search_done) { 1490 ret = __add_inode_ref(trans, root, path, log, 1491 BTRFS_I(dir), 1492 BTRFS_I(inode), 1493 inode_objectid, 1494 parent_objectid, 1495 ref_index, name, namelen, 1496 &search_done); 1497 if (ret) { 1498 if (ret == 1) 1499 ret = 0; 1500 goto out; 1501 } 1502 } 1503 1504 /* 1505 * If a reference item already exists for this inode 1506 * with the same parent and name, but different index, 1507 * drop it and the corresponding directory index entries 1508 * from the parent before adding the new reference item 1509 * and dir index entries, otherwise we would fail with 1510 * -EEXIST returned from btrfs_add_link() below. 1511 */ 1512 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1513 name, namelen); 1514 if (ret > 0) { 1515 ret = btrfs_unlink_inode(trans, root, 1516 BTRFS_I(dir), 1517 BTRFS_I(inode), 1518 name, namelen); 1519 /* 1520 * If we dropped the link count to 0, bump it so 1521 * that later the iput() on the inode will not 1522 * free it. We will fixup the link count later. 1523 */ 1524 if (!ret && inode->i_nlink == 0) 1525 inc_nlink(inode); 1526 } 1527 if (ret < 0) 1528 goto out; 1529 1530 /* insert our name */ 1531 ret = add_link(trans, root, dir, inode, name, namelen, 1532 ref_index); 1533 if (ret) 1534 goto out; 1535 1536 btrfs_update_inode(trans, root, inode); 1537 } 1538 1539 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1540 kfree(name); 1541 name = NULL; 1542 if (log_ref_ver) { 1543 iput(dir); 1544 dir = NULL; 1545 } 1546 } 1547 1548 /* 1549 * Before we overwrite the inode reference item in the subvolume tree 1550 * with the item from the log tree, we must unlink all names from the 1551 * parent directory that are in the subvolume's tree inode reference 1552 * item, otherwise we end up with an inconsistent subvolume tree where 1553 * dir index entries exist for a name but there is no inode reference 1554 * item with the same name. 1555 */ 1556 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1557 key); 1558 if (ret) 1559 goto out; 1560 1561 /* finally write the back reference in the inode */ 1562 ret = overwrite_item(trans, root, path, eb, slot, key); 1563 out: 1564 btrfs_release_path(path); 1565 kfree(name); 1566 iput(dir); 1567 iput(inode); 1568 return ret; 1569 } 1570 1571 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1572 struct btrfs_root *root, u64 ino) 1573 { 1574 int ret; 1575 1576 ret = btrfs_insert_orphan_item(trans, root, ino); 1577 if (ret == -EEXIST) 1578 ret = 0; 1579 1580 return ret; 1581 } 1582 1583 static int count_inode_extrefs(struct btrfs_root *root, 1584 struct btrfs_inode *inode, struct btrfs_path *path) 1585 { 1586 int ret = 0; 1587 int name_len; 1588 unsigned int nlink = 0; 1589 u32 item_size; 1590 u32 cur_offset = 0; 1591 u64 inode_objectid = btrfs_ino(inode); 1592 u64 offset = 0; 1593 unsigned long ptr; 1594 struct btrfs_inode_extref *extref; 1595 struct extent_buffer *leaf; 1596 1597 while (1) { 1598 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1599 &extref, &offset); 1600 if (ret) 1601 break; 1602 1603 leaf = path->nodes[0]; 1604 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1605 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1606 cur_offset = 0; 1607 1608 while (cur_offset < item_size) { 1609 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1610 name_len = btrfs_inode_extref_name_len(leaf, extref); 1611 1612 nlink++; 1613 1614 cur_offset += name_len + sizeof(*extref); 1615 } 1616 1617 offset++; 1618 btrfs_release_path(path); 1619 } 1620 btrfs_release_path(path); 1621 1622 if (ret < 0 && ret != -ENOENT) 1623 return ret; 1624 return nlink; 1625 } 1626 1627 static int count_inode_refs(struct btrfs_root *root, 1628 struct btrfs_inode *inode, struct btrfs_path *path) 1629 { 1630 int ret; 1631 struct btrfs_key key; 1632 unsigned int nlink = 0; 1633 unsigned long ptr; 1634 unsigned long ptr_end; 1635 int name_len; 1636 u64 ino = btrfs_ino(inode); 1637 1638 key.objectid = ino; 1639 key.type = BTRFS_INODE_REF_KEY; 1640 key.offset = (u64)-1; 1641 1642 while (1) { 1643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1644 if (ret < 0) 1645 break; 1646 if (ret > 0) { 1647 if (path->slots[0] == 0) 1648 break; 1649 path->slots[0]--; 1650 } 1651 process_slot: 1652 btrfs_item_key_to_cpu(path->nodes[0], &key, 1653 path->slots[0]); 1654 if (key.objectid != ino || 1655 key.type != BTRFS_INODE_REF_KEY) 1656 break; 1657 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1658 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1659 path->slots[0]); 1660 while (ptr < ptr_end) { 1661 struct btrfs_inode_ref *ref; 1662 1663 ref = (struct btrfs_inode_ref *)ptr; 1664 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1665 ref); 1666 ptr = (unsigned long)(ref + 1) + name_len; 1667 nlink++; 1668 } 1669 1670 if (key.offset == 0) 1671 break; 1672 if (path->slots[0] > 0) { 1673 path->slots[0]--; 1674 goto process_slot; 1675 } 1676 key.offset--; 1677 btrfs_release_path(path); 1678 } 1679 btrfs_release_path(path); 1680 1681 return nlink; 1682 } 1683 1684 /* 1685 * There are a few corners where the link count of the file can't 1686 * be properly maintained during replay. So, instead of adding 1687 * lots of complexity to the log code, we just scan the backrefs 1688 * for any file that has been through replay. 1689 * 1690 * The scan will update the link count on the inode to reflect the 1691 * number of back refs found. If it goes down to zero, the iput 1692 * will free the inode. 1693 */ 1694 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1695 struct btrfs_root *root, 1696 struct inode *inode) 1697 { 1698 struct btrfs_path *path; 1699 int ret; 1700 u64 nlink = 0; 1701 u64 ino = btrfs_ino(BTRFS_I(inode)); 1702 1703 path = btrfs_alloc_path(); 1704 if (!path) 1705 return -ENOMEM; 1706 1707 ret = count_inode_refs(root, BTRFS_I(inode), path); 1708 if (ret < 0) 1709 goto out; 1710 1711 nlink = ret; 1712 1713 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1714 if (ret < 0) 1715 goto out; 1716 1717 nlink += ret; 1718 1719 ret = 0; 1720 1721 if (nlink != inode->i_nlink) { 1722 set_nlink(inode, nlink); 1723 btrfs_update_inode(trans, root, inode); 1724 } 1725 BTRFS_I(inode)->index_cnt = (u64)-1; 1726 1727 if (inode->i_nlink == 0) { 1728 if (S_ISDIR(inode->i_mode)) { 1729 ret = replay_dir_deletes(trans, root, NULL, path, 1730 ino, 1); 1731 if (ret) 1732 goto out; 1733 } 1734 ret = insert_orphan_item(trans, root, ino); 1735 } 1736 1737 out: 1738 btrfs_free_path(path); 1739 return ret; 1740 } 1741 1742 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1743 struct btrfs_root *root, 1744 struct btrfs_path *path) 1745 { 1746 int ret; 1747 struct btrfs_key key; 1748 struct inode *inode; 1749 1750 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1751 key.type = BTRFS_ORPHAN_ITEM_KEY; 1752 key.offset = (u64)-1; 1753 while (1) { 1754 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1755 if (ret < 0) 1756 break; 1757 1758 if (ret == 1) { 1759 if (path->slots[0] == 0) 1760 break; 1761 path->slots[0]--; 1762 } 1763 1764 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1765 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1766 key.type != BTRFS_ORPHAN_ITEM_KEY) 1767 break; 1768 1769 ret = btrfs_del_item(trans, root, path); 1770 if (ret) 1771 goto out; 1772 1773 btrfs_release_path(path); 1774 inode = read_one_inode(root, key.offset); 1775 if (!inode) 1776 return -EIO; 1777 1778 ret = fixup_inode_link_count(trans, root, inode); 1779 iput(inode); 1780 if (ret) 1781 goto out; 1782 1783 /* 1784 * fixup on a directory may create new entries, 1785 * make sure we always look for the highset possible 1786 * offset 1787 */ 1788 key.offset = (u64)-1; 1789 } 1790 ret = 0; 1791 out: 1792 btrfs_release_path(path); 1793 return ret; 1794 } 1795 1796 1797 /* 1798 * record a given inode in the fixup dir so we can check its link 1799 * count when replay is done. The link count is incremented here 1800 * so the inode won't go away until we check it 1801 */ 1802 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1803 struct btrfs_root *root, 1804 struct btrfs_path *path, 1805 u64 objectid) 1806 { 1807 struct btrfs_key key; 1808 int ret = 0; 1809 struct inode *inode; 1810 1811 inode = read_one_inode(root, objectid); 1812 if (!inode) 1813 return -EIO; 1814 1815 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1816 key.type = BTRFS_ORPHAN_ITEM_KEY; 1817 key.offset = objectid; 1818 1819 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1820 1821 btrfs_release_path(path); 1822 if (ret == 0) { 1823 if (!inode->i_nlink) 1824 set_nlink(inode, 1); 1825 else 1826 inc_nlink(inode); 1827 ret = btrfs_update_inode(trans, root, inode); 1828 } else if (ret == -EEXIST) { 1829 ret = 0; 1830 } else { 1831 BUG(); /* Logic Error */ 1832 } 1833 iput(inode); 1834 1835 return ret; 1836 } 1837 1838 /* 1839 * when replaying the log for a directory, we only insert names 1840 * for inodes that actually exist. This means an fsync on a directory 1841 * does not implicitly fsync all the new files in it 1842 */ 1843 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1844 struct btrfs_root *root, 1845 u64 dirid, u64 index, 1846 char *name, int name_len, 1847 struct btrfs_key *location) 1848 { 1849 struct inode *inode; 1850 struct inode *dir; 1851 int ret; 1852 1853 inode = read_one_inode(root, location->objectid); 1854 if (!inode) 1855 return -ENOENT; 1856 1857 dir = read_one_inode(root, dirid); 1858 if (!dir) { 1859 iput(inode); 1860 return -EIO; 1861 } 1862 1863 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1864 name_len, 1, index); 1865 1866 /* FIXME, put inode into FIXUP list */ 1867 1868 iput(inode); 1869 iput(dir); 1870 return ret; 1871 } 1872 1873 /* 1874 * Return true if an inode reference exists in the log for the given name, 1875 * inode and parent inode. 1876 */ 1877 static bool name_in_log_ref(struct btrfs_root *log_root, 1878 const char *name, const int name_len, 1879 const u64 dirid, const u64 ino) 1880 { 1881 struct btrfs_key search_key; 1882 1883 search_key.objectid = ino; 1884 search_key.type = BTRFS_INODE_REF_KEY; 1885 search_key.offset = dirid; 1886 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1887 return true; 1888 1889 search_key.type = BTRFS_INODE_EXTREF_KEY; 1890 search_key.offset = btrfs_extref_hash(dirid, name, name_len); 1891 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1892 return true; 1893 1894 return false; 1895 } 1896 1897 /* 1898 * take a single entry in a log directory item and replay it into 1899 * the subvolume. 1900 * 1901 * if a conflicting item exists in the subdirectory already, 1902 * the inode it points to is unlinked and put into the link count 1903 * fix up tree. 1904 * 1905 * If a name from the log points to a file or directory that does 1906 * not exist in the FS, it is skipped. fsyncs on directories 1907 * do not force down inodes inside that directory, just changes to the 1908 * names or unlinks in a directory. 1909 * 1910 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1911 * non-existing inode) and 1 if the name was replayed. 1912 */ 1913 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1914 struct btrfs_root *root, 1915 struct btrfs_path *path, 1916 struct extent_buffer *eb, 1917 struct btrfs_dir_item *di, 1918 struct btrfs_key *key) 1919 { 1920 char *name; 1921 int name_len; 1922 struct btrfs_dir_item *dst_di; 1923 struct btrfs_key found_key; 1924 struct btrfs_key log_key; 1925 struct inode *dir; 1926 u8 log_type; 1927 int exists; 1928 int ret = 0; 1929 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1930 bool name_added = false; 1931 1932 dir = read_one_inode(root, key->objectid); 1933 if (!dir) 1934 return -EIO; 1935 1936 name_len = btrfs_dir_name_len(eb, di); 1937 name = kmalloc(name_len, GFP_NOFS); 1938 if (!name) { 1939 ret = -ENOMEM; 1940 goto out; 1941 } 1942 1943 log_type = btrfs_dir_type(eb, di); 1944 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1945 name_len); 1946 1947 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1948 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1949 if (exists == 0) 1950 exists = 1; 1951 else 1952 exists = 0; 1953 btrfs_release_path(path); 1954 1955 if (key->type == BTRFS_DIR_ITEM_KEY) { 1956 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1957 name, name_len, 1); 1958 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1959 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1960 key->objectid, 1961 key->offset, name, 1962 name_len, 1); 1963 } else { 1964 /* Corruption */ 1965 ret = -EINVAL; 1966 goto out; 1967 } 1968 if (IS_ERR_OR_NULL(dst_di)) { 1969 /* we need a sequence number to insert, so we only 1970 * do inserts for the BTRFS_DIR_INDEX_KEY types 1971 */ 1972 if (key->type != BTRFS_DIR_INDEX_KEY) 1973 goto out; 1974 goto insert; 1975 } 1976 1977 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1978 /* the existing item matches the logged item */ 1979 if (found_key.objectid == log_key.objectid && 1980 found_key.type == log_key.type && 1981 found_key.offset == log_key.offset && 1982 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1983 update_size = false; 1984 goto out; 1985 } 1986 1987 /* 1988 * don't drop the conflicting directory entry if the inode 1989 * for the new entry doesn't exist 1990 */ 1991 if (!exists) 1992 goto out; 1993 1994 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); 1995 if (ret) 1996 goto out; 1997 1998 if (key->type == BTRFS_DIR_INDEX_KEY) 1999 goto insert; 2000 out: 2001 btrfs_release_path(path); 2002 if (!ret && update_size) { 2003 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 2004 ret = btrfs_update_inode(trans, root, dir); 2005 } 2006 kfree(name); 2007 iput(dir); 2008 if (!ret && name_added) 2009 ret = 1; 2010 return ret; 2011 2012 insert: 2013 if (name_in_log_ref(root->log_root, name, name_len, 2014 key->objectid, log_key.objectid)) { 2015 /* The dentry will be added later. */ 2016 ret = 0; 2017 update_size = false; 2018 goto out; 2019 } 2020 btrfs_release_path(path); 2021 ret = insert_one_name(trans, root, key->objectid, key->offset, 2022 name, name_len, &log_key); 2023 if (ret && ret != -ENOENT && ret != -EEXIST) 2024 goto out; 2025 if (!ret) 2026 name_added = true; 2027 update_size = false; 2028 ret = 0; 2029 goto out; 2030 } 2031 2032 /* 2033 * find all the names in a directory item and reconcile them into 2034 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 2035 * one name in a directory item, but the same code gets used for 2036 * both directory index types 2037 */ 2038 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2039 struct btrfs_root *root, 2040 struct btrfs_path *path, 2041 struct extent_buffer *eb, int slot, 2042 struct btrfs_key *key) 2043 { 2044 int ret = 0; 2045 u32 item_size = btrfs_item_size_nr(eb, slot); 2046 struct btrfs_dir_item *di; 2047 int name_len; 2048 unsigned long ptr; 2049 unsigned long ptr_end; 2050 struct btrfs_path *fixup_path = NULL; 2051 2052 ptr = btrfs_item_ptr_offset(eb, slot); 2053 ptr_end = ptr + item_size; 2054 while (ptr < ptr_end) { 2055 di = (struct btrfs_dir_item *)ptr; 2056 name_len = btrfs_dir_name_len(eb, di); 2057 ret = replay_one_name(trans, root, path, eb, di, key); 2058 if (ret < 0) 2059 break; 2060 ptr = (unsigned long)(di + 1); 2061 ptr += name_len; 2062 2063 /* 2064 * If this entry refers to a non-directory (directories can not 2065 * have a link count > 1) and it was added in the transaction 2066 * that was not committed, make sure we fixup the link count of 2067 * the inode it the entry points to. Otherwise something like 2068 * the following would result in a directory pointing to an 2069 * inode with a wrong link that does not account for this dir 2070 * entry: 2071 * 2072 * mkdir testdir 2073 * touch testdir/foo 2074 * touch testdir/bar 2075 * sync 2076 * 2077 * ln testdir/bar testdir/bar_link 2078 * ln testdir/foo testdir/foo_link 2079 * xfs_io -c "fsync" testdir/bar 2080 * 2081 * <power failure> 2082 * 2083 * mount fs, log replay happens 2084 * 2085 * File foo would remain with a link count of 1 when it has two 2086 * entries pointing to it in the directory testdir. This would 2087 * make it impossible to ever delete the parent directory has 2088 * it would result in stale dentries that can never be deleted. 2089 */ 2090 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2091 struct btrfs_key di_key; 2092 2093 if (!fixup_path) { 2094 fixup_path = btrfs_alloc_path(); 2095 if (!fixup_path) { 2096 ret = -ENOMEM; 2097 break; 2098 } 2099 } 2100 2101 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2102 ret = link_to_fixup_dir(trans, root, fixup_path, 2103 di_key.objectid); 2104 if (ret) 2105 break; 2106 } 2107 ret = 0; 2108 } 2109 btrfs_free_path(fixup_path); 2110 return ret; 2111 } 2112 2113 /* 2114 * directory replay has two parts. There are the standard directory 2115 * items in the log copied from the subvolume, and range items 2116 * created in the log while the subvolume was logged. 2117 * 2118 * The range items tell us which parts of the key space the log 2119 * is authoritative for. During replay, if a key in the subvolume 2120 * directory is in a logged range item, but not actually in the log 2121 * that means it was deleted from the directory before the fsync 2122 * and should be removed. 2123 */ 2124 static noinline int find_dir_range(struct btrfs_root *root, 2125 struct btrfs_path *path, 2126 u64 dirid, int key_type, 2127 u64 *start_ret, u64 *end_ret) 2128 { 2129 struct btrfs_key key; 2130 u64 found_end; 2131 struct btrfs_dir_log_item *item; 2132 int ret; 2133 int nritems; 2134 2135 if (*start_ret == (u64)-1) 2136 return 1; 2137 2138 key.objectid = dirid; 2139 key.type = key_type; 2140 key.offset = *start_ret; 2141 2142 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2143 if (ret < 0) 2144 goto out; 2145 if (ret > 0) { 2146 if (path->slots[0] == 0) 2147 goto out; 2148 path->slots[0]--; 2149 } 2150 if (ret != 0) 2151 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2152 2153 if (key.type != key_type || key.objectid != dirid) { 2154 ret = 1; 2155 goto next; 2156 } 2157 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2158 struct btrfs_dir_log_item); 2159 found_end = btrfs_dir_log_end(path->nodes[0], item); 2160 2161 if (*start_ret >= key.offset && *start_ret <= found_end) { 2162 ret = 0; 2163 *start_ret = key.offset; 2164 *end_ret = found_end; 2165 goto out; 2166 } 2167 ret = 1; 2168 next: 2169 /* check the next slot in the tree to see if it is a valid item */ 2170 nritems = btrfs_header_nritems(path->nodes[0]); 2171 path->slots[0]++; 2172 if (path->slots[0] >= nritems) { 2173 ret = btrfs_next_leaf(root, path); 2174 if (ret) 2175 goto out; 2176 } 2177 2178 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2179 2180 if (key.type != key_type || key.objectid != dirid) { 2181 ret = 1; 2182 goto out; 2183 } 2184 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2185 struct btrfs_dir_log_item); 2186 found_end = btrfs_dir_log_end(path->nodes[0], item); 2187 *start_ret = key.offset; 2188 *end_ret = found_end; 2189 ret = 0; 2190 out: 2191 btrfs_release_path(path); 2192 return ret; 2193 } 2194 2195 /* 2196 * this looks for a given directory item in the log. If the directory 2197 * item is not in the log, the item is removed and the inode it points 2198 * to is unlinked 2199 */ 2200 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2201 struct btrfs_root *root, 2202 struct btrfs_root *log, 2203 struct btrfs_path *path, 2204 struct btrfs_path *log_path, 2205 struct inode *dir, 2206 struct btrfs_key *dir_key) 2207 { 2208 int ret; 2209 struct extent_buffer *eb; 2210 int slot; 2211 u32 item_size; 2212 struct btrfs_dir_item *di; 2213 struct btrfs_dir_item *log_di; 2214 int name_len; 2215 unsigned long ptr; 2216 unsigned long ptr_end; 2217 char *name; 2218 struct inode *inode; 2219 struct btrfs_key location; 2220 2221 again: 2222 eb = path->nodes[0]; 2223 slot = path->slots[0]; 2224 item_size = btrfs_item_size_nr(eb, slot); 2225 ptr = btrfs_item_ptr_offset(eb, slot); 2226 ptr_end = ptr + item_size; 2227 while (ptr < ptr_end) { 2228 di = (struct btrfs_dir_item *)ptr; 2229 name_len = btrfs_dir_name_len(eb, di); 2230 name = kmalloc(name_len, GFP_NOFS); 2231 if (!name) { 2232 ret = -ENOMEM; 2233 goto out; 2234 } 2235 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2236 name_len); 2237 log_di = NULL; 2238 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2239 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2240 dir_key->objectid, 2241 name, name_len, 0); 2242 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2243 log_di = btrfs_lookup_dir_index_item(trans, log, 2244 log_path, 2245 dir_key->objectid, 2246 dir_key->offset, 2247 name, name_len, 0); 2248 } 2249 if (!log_di || log_di == ERR_PTR(-ENOENT)) { 2250 btrfs_dir_item_key_to_cpu(eb, di, &location); 2251 btrfs_release_path(path); 2252 btrfs_release_path(log_path); 2253 inode = read_one_inode(root, location.objectid); 2254 if (!inode) { 2255 kfree(name); 2256 return -EIO; 2257 } 2258 2259 ret = link_to_fixup_dir(trans, root, 2260 path, location.objectid); 2261 if (ret) { 2262 kfree(name); 2263 iput(inode); 2264 goto out; 2265 } 2266 2267 inc_nlink(inode); 2268 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 2269 BTRFS_I(inode), name, name_len); 2270 if (!ret) 2271 ret = btrfs_run_delayed_items(trans); 2272 kfree(name); 2273 iput(inode); 2274 if (ret) 2275 goto out; 2276 2277 /* there might still be more names under this key 2278 * check and repeat if required 2279 */ 2280 ret = btrfs_search_slot(NULL, root, dir_key, path, 2281 0, 0); 2282 if (ret == 0) 2283 goto again; 2284 ret = 0; 2285 goto out; 2286 } else if (IS_ERR(log_di)) { 2287 kfree(name); 2288 return PTR_ERR(log_di); 2289 } 2290 btrfs_release_path(log_path); 2291 kfree(name); 2292 2293 ptr = (unsigned long)(di + 1); 2294 ptr += name_len; 2295 } 2296 ret = 0; 2297 out: 2298 btrfs_release_path(path); 2299 btrfs_release_path(log_path); 2300 return ret; 2301 } 2302 2303 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2304 struct btrfs_root *root, 2305 struct btrfs_root *log, 2306 struct btrfs_path *path, 2307 const u64 ino) 2308 { 2309 struct btrfs_key search_key; 2310 struct btrfs_path *log_path; 2311 int i; 2312 int nritems; 2313 int ret; 2314 2315 log_path = btrfs_alloc_path(); 2316 if (!log_path) 2317 return -ENOMEM; 2318 2319 search_key.objectid = ino; 2320 search_key.type = BTRFS_XATTR_ITEM_KEY; 2321 search_key.offset = 0; 2322 again: 2323 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2324 if (ret < 0) 2325 goto out; 2326 process_leaf: 2327 nritems = btrfs_header_nritems(path->nodes[0]); 2328 for (i = path->slots[0]; i < nritems; i++) { 2329 struct btrfs_key key; 2330 struct btrfs_dir_item *di; 2331 struct btrfs_dir_item *log_di; 2332 u32 total_size; 2333 u32 cur; 2334 2335 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2336 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2337 ret = 0; 2338 goto out; 2339 } 2340 2341 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2342 total_size = btrfs_item_size_nr(path->nodes[0], i); 2343 cur = 0; 2344 while (cur < total_size) { 2345 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2346 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2347 u32 this_len = sizeof(*di) + name_len + data_len; 2348 char *name; 2349 2350 name = kmalloc(name_len, GFP_NOFS); 2351 if (!name) { 2352 ret = -ENOMEM; 2353 goto out; 2354 } 2355 read_extent_buffer(path->nodes[0], name, 2356 (unsigned long)(di + 1), name_len); 2357 2358 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2359 name, name_len, 0); 2360 btrfs_release_path(log_path); 2361 if (!log_di) { 2362 /* Doesn't exist in log tree, so delete it. */ 2363 btrfs_release_path(path); 2364 di = btrfs_lookup_xattr(trans, root, path, ino, 2365 name, name_len, -1); 2366 kfree(name); 2367 if (IS_ERR(di)) { 2368 ret = PTR_ERR(di); 2369 goto out; 2370 } 2371 ASSERT(di); 2372 ret = btrfs_delete_one_dir_name(trans, root, 2373 path, di); 2374 if (ret) 2375 goto out; 2376 btrfs_release_path(path); 2377 search_key = key; 2378 goto again; 2379 } 2380 kfree(name); 2381 if (IS_ERR(log_di)) { 2382 ret = PTR_ERR(log_di); 2383 goto out; 2384 } 2385 cur += this_len; 2386 di = (struct btrfs_dir_item *)((char *)di + this_len); 2387 } 2388 } 2389 ret = btrfs_next_leaf(root, path); 2390 if (ret > 0) 2391 ret = 0; 2392 else if (ret == 0) 2393 goto process_leaf; 2394 out: 2395 btrfs_free_path(log_path); 2396 btrfs_release_path(path); 2397 return ret; 2398 } 2399 2400 2401 /* 2402 * deletion replay happens before we copy any new directory items 2403 * out of the log or out of backreferences from inodes. It 2404 * scans the log to find ranges of keys that log is authoritative for, 2405 * and then scans the directory to find items in those ranges that are 2406 * not present in the log. 2407 * 2408 * Anything we don't find in the log is unlinked and removed from the 2409 * directory. 2410 */ 2411 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2412 struct btrfs_root *root, 2413 struct btrfs_root *log, 2414 struct btrfs_path *path, 2415 u64 dirid, int del_all) 2416 { 2417 u64 range_start; 2418 u64 range_end; 2419 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2420 int ret = 0; 2421 struct btrfs_key dir_key; 2422 struct btrfs_key found_key; 2423 struct btrfs_path *log_path; 2424 struct inode *dir; 2425 2426 dir_key.objectid = dirid; 2427 dir_key.type = BTRFS_DIR_ITEM_KEY; 2428 log_path = btrfs_alloc_path(); 2429 if (!log_path) 2430 return -ENOMEM; 2431 2432 dir = read_one_inode(root, dirid); 2433 /* it isn't an error if the inode isn't there, that can happen 2434 * because we replay the deletes before we copy in the inode item 2435 * from the log 2436 */ 2437 if (!dir) { 2438 btrfs_free_path(log_path); 2439 return 0; 2440 } 2441 again: 2442 range_start = 0; 2443 range_end = 0; 2444 while (1) { 2445 if (del_all) 2446 range_end = (u64)-1; 2447 else { 2448 ret = find_dir_range(log, path, dirid, key_type, 2449 &range_start, &range_end); 2450 if (ret != 0) 2451 break; 2452 } 2453 2454 dir_key.offset = range_start; 2455 while (1) { 2456 int nritems; 2457 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2458 0, 0); 2459 if (ret < 0) 2460 goto out; 2461 2462 nritems = btrfs_header_nritems(path->nodes[0]); 2463 if (path->slots[0] >= nritems) { 2464 ret = btrfs_next_leaf(root, path); 2465 if (ret == 1) 2466 break; 2467 else if (ret < 0) 2468 goto out; 2469 } 2470 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2471 path->slots[0]); 2472 if (found_key.objectid != dirid || 2473 found_key.type != dir_key.type) 2474 goto next_type; 2475 2476 if (found_key.offset > range_end) 2477 break; 2478 2479 ret = check_item_in_log(trans, root, log, path, 2480 log_path, dir, 2481 &found_key); 2482 if (ret) 2483 goto out; 2484 if (found_key.offset == (u64)-1) 2485 break; 2486 dir_key.offset = found_key.offset + 1; 2487 } 2488 btrfs_release_path(path); 2489 if (range_end == (u64)-1) 2490 break; 2491 range_start = range_end + 1; 2492 } 2493 2494 next_type: 2495 ret = 0; 2496 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2497 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2498 dir_key.type = BTRFS_DIR_INDEX_KEY; 2499 btrfs_release_path(path); 2500 goto again; 2501 } 2502 out: 2503 btrfs_release_path(path); 2504 btrfs_free_path(log_path); 2505 iput(dir); 2506 return ret; 2507 } 2508 2509 /* 2510 * the process_func used to replay items from the log tree. This 2511 * gets called in two different stages. The first stage just looks 2512 * for inodes and makes sure they are all copied into the subvolume. 2513 * 2514 * The second stage copies all the other item types from the log into 2515 * the subvolume. The two stage approach is slower, but gets rid of 2516 * lots of complexity around inodes referencing other inodes that exist 2517 * only in the log (references come from either directory items or inode 2518 * back refs). 2519 */ 2520 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2521 struct walk_control *wc, u64 gen, int level) 2522 { 2523 int nritems; 2524 struct btrfs_path *path; 2525 struct btrfs_root *root = wc->replay_dest; 2526 struct btrfs_key key; 2527 int i; 2528 int ret; 2529 2530 ret = btrfs_read_buffer(eb, gen, level, NULL); 2531 if (ret) 2532 return ret; 2533 2534 level = btrfs_header_level(eb); 2535 2536 if (level != 0) 2537 return 0; 2538 2539 path = btrfs_alloc_path(); 2540 if (!path) 2541 return -ENOMEM; 2542 2543 nritems = btrfs_header_nritems(eb); 2544 for (i = 0; i < nritems; i++) { 2545 btrfs_item_key_to_cpu(eb, &key, i); 2546 2547 /* inode keys are done during the first stage */ 2548 if (key.type == BTRFS_INODE_ITEM_KEY && 2549 wc->stage == LOG_WALK_REPLAY_INODES) { 2550 struct btrfs_inode_item *inode_item; 2551 u32 mode; 2552 2553 inode_item = btrfs_item_ptr(eb, i, 2554 struct btrfs_inode_item); 2555 /* 2556 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2557 * and never got linked before the fsync, skip it, as 2558 * replaying it is pointless since it would be deleted 2559 * later. We skip logging tmpfiles, but it's always 2560 * possible we are replaying a log created with a kernel 2561 * that used to log tmpfiles. 2562 */ 2563 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2564 wc->ignore_cur_inode = true; 2565 continue; 2566 } else { 2567 wc->ignore_cur_inode = false; 2568 } 2569 ret = replay_xattr_deletes(wc->trans, root, log, 2570 path, key.objectid); 2571 if (ret) 2572 break; 2573 mode = btrfs_inode_mode(eb, inode_item); 2574 if (S_ISDIR(mode)) { 2575 ret = replay_dir_deletes(wc->trans, 2576 root, log, path, key.objectid, 0); 2577 if (ret) 2578 break; 2579 } 2580 ret = overwrite_item(wc->trans, root, path, 2581 eb, i, &key); 2582 if (ret) 2583 break; 2584 2585 /* 2586 * Before replaying extents, truncate the inode to its 2587 * size. We need to do it now and not after log replay 2588 * because before an fsync we can have prealloc extents 2589 * added beyond the inode's i_size. If we did it after, 2590 * through orphan cleanup for example, we would drop 2591 * those prealloc extents just after replaying them. 2592 */ 2593 if (S_ISREG(mode)) { 2594 struct inode *inode; 2595 u64 from; 2596 2597 inode = read_one_inode(root, key.objectid); 2598 if (!inode) { 2599 ret = -EIO; 2600 break; 2601 } 2602 from = ALIGN(i_size_read(inode), 2603 root->fs_info->sectorsize); 2604 ret = btrfs_drop_extents(wc->trans, root, inode, 2605 from, (u64)-1, 1); 2606 if (!ret) { 2607 /* Update the inode's nbytes. */ 2608 ret = btrfs_update_inode(wc->trans, 2609 root, inode); 2610 } 2611 iput(inode); 2612 if (ret) 2613 break; 2614 } 2615 2616 ret = link_to_fixup_dir(wc->trans, root, 2617 path, key.objectid); 2618 if (ret) 2619 break; 2620 } 2621 2622 if (wc->ignore_cur_inode) 2623 continue; 2624 2625 if (key.type == BTRFS_DIR_INDEX_KEY && 2626 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2627 ret = replay_one_dir_item(wc->trans, root, path, 2628 eb, i, &key); 2629 if (ret) 2630 break; 2631 } 2632 2633 if (wc->stage < LOG_WALK_REPLAY_ALL) 2634 continue; 2635 2636 /* these keys are simply copied */ 2637 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2638 ret = overwrite_item(wc->trans, root, path, 2639 eb, i, &key); 2640 if (ret) 2641 break; 2642 } else if (key.type == BTRFS_INODE_REF_KEY || 2643 key.type == BTRFS_INODE_EXTREF_KEY) { 2644 ret = add_inode_ref(wc->trans, root, log, path, 2645 eb, i, &key); 2646 if (ret && ret != -ENOENT) 2647 break; 2648 ret = 0; 2649 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2650 ret = replay_one_extent(wc->trans, root, path, 2651 eb, i, &key); 2652 if (ret) 2653 break; 2654 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2655 ret = replay_one_dir_item(wc->trans, root, path, 2656 eb, i, &key); 2657 if (ret) 2658 break; 2659 } 2660 } 2661 btrfs_free_path(path); 2662 return ret; 2663 } 2664 2665 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2666 struct btrfs_root *root, 2667 struct btrfs_path *path, int *level, 2668 struct walk_control *wc) 2669 { 2670 struct btrfs_fs_info *fs_info = root->fs_info; 2671 u64 root_owner; 2672 u64 bytenr; 2673 u64 ptr_gen; 2674 struct extent_buffer *next; 2675 struct extent_buffer *cur; 2676 struct extent_buffer *parent; 2677 u32 blocksize; 2678 int ret = 0; 2679 2680 WARN_ON(*level < 0); 2681 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2682 2683 while (*level > 0) { 2684 struct btrfs_key first_key; 2685 2686 WARN_ON(*level < 0); 2687 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2688 cur = path->nodes[*level]; 2689 2690 WARN_ON(btrfs_header_level(cur) != *level); 2691 2692 if (path->slots[*level] >= 2693 btrfs_header_nritems(cur)) 2694 break; 2695 2696 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2697 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2698 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2699 blocksize = fs_info->nodesize; 2700 2701 parent = path->nodes[*level]; 2702 root_owner = btrfs_header_owner(parent); 2703 2704 next = btrfs_find_create_tree_block(fs_info, bytenr); 2705 if (IS_ERR(next)) 2706 return PTR_ERR(next); 2707 2708 if (*level == 1) { 2709 ret = wc->process_func(root, next, wc, ptr_gen, 2710 *level - 1); 2711 if (ret) { 2712 free_extent_buffer(next); 2713 return ret; 2714 } 2715 2716 path->slots[*level]++; 2717 if (wc->free) { 2718 ret = btrfs_read_buffer(next, ptr_gen, 2719 *level - 1, &first_key); 2720 if (ret) { 2721 free_extent_buffer(next); 2722 return ret; 2723 } 2724 2725 if (trans) { 2726 btrfs_tree_lock(next); 2727 btrfs_set_lock_blocking_write(next); 2728 clean_tree_block(fs_info, next); 2729 btrfs_wait_tree_block_writeback(next); 2730 btrfs_tree_unlock(next); 2731 } else { 2732 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2733 clear_extent_buffer_dirty(next); 2734 } 2735 2736 WARN_ON(root_owner != 2737 BTRFS_TREE_LOG_OBJECTID); 2738 ret = btrfs_free_and_pin_reserved_extent( 2739 fs_info, bytenr, 2740 blocksize); 2741 if (ret) { 2742 free_extent_buffer(next); 2743 return ret; 2744 } 2745 } 2746 free_extent_buffer(next); 2747 continue; 2748 } 2749 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2750 if (ret) { 2751 free_extent_buffer(next); 2752 return ret; 2753 } 2754 2755 WARN_ON(*level <= 0); 2756 if (path->nodes[*level-1]) 2757 free_extent_buffer(path->nodes[*level-1]); 2758 path->nodes[*level-1] = next; 2759 *level = btrfs_header_level(next); 2760 path->slots[*level] = 0; 2761 cond_resched(); 2762 } 2763 WARN_ON(*level < 0); 2764 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2765 2766 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2767 2768 cond_resched(); 2769 return 0; 2770 } 2771 2772 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2773 struct btrfs_root *root, 2774 struct btrfs_path *path, int *level, 2775 struct walk_control *wc) 2776 { 2777 struct btrfs_fs_info *fs_info = root->fs_info; 2778 u64 root_owner; 2779 int i; 2780 int slot; 2781 int ret; 2782 2783 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2784 slot = path->slots[i]; 2785 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2786 path->slots[i]++; 2787 *level = i; 2788 WARN_ON(*level == 0); 2789 return 0; 2790 } else { 2791 struct extent_buffer *parent; 2792 if (path->nodes[*level] == root->node) 2793 parent = path->nodes[*level]; 2794 else 2795 parent = path->nodes[*level + 1]; 2796 2797 root_owner = btrfs_header_owner(parent); 2798 ret = wc->process_func(root, path->nodes[*level], wc, 2799 btrfs_header_generation(path->nodes[*level]), 2800 *level); 2801 if (ret) 2802 return ret; 2803 2804 if (wc->free) { 2805 struct extent_buffer *next; 2806 2807 next = path->nodes[*level]; 2808 2809 if (trans) { 2810 btrfs_tree_lock(next); 2811 btrfs_set_lock_blocking_write(next); 2812 clean_tree_block(fs_info, next); 2813 btrfs_wait_tree_block_writeback(next); 2814 btrfs_tree_unlock(next); 2815 } else { 2816 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2817 clear_extent_buffer_dirty(next); 2818 } 2819 2820 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 2821 ret = btrfs_free_and_pin_reserved_extent( 2822 fs_info, 2823 path->nodes[*level]->start, 2824 path->nodes[*level]->len); 2825 if (ret) 2826 return ret; 2827 } 2828 free_extent_buffer(path->nodes[*level]); 2829 path->nodes[*level] = NULL; 2830 *level = i + 1; 2831 } 2832 } 2833 return 1; 2834 } 2835 2836 /* 2837 * drop the reference count on the tree rooted at 'snap'. This traverses 2838 * the tree freeing any blocks that have a ref count of zero after being 2839 * decremented. 2840 */ 2841 static int walk_log_tree(struct btrfs_trans_handle *trans, 2842 struct btrfs_root *log, struct walk_control *wc) 2843 { 2844 struct btrfs_fs_info *fs_info = log->fs_info; 2845 int ret = 0; 2846 int wret; 2847 int level; 2848 struct btrfs_path *path; 2849 int orig_level; 2850 2851 path = btrfs_alloc_path(); 2852 if (!path) 2853 return -ENOMEM; 2854 2855 level = btrfs_header_level(log->node); 2856 orig_level = level; 2857 path->nodes[level] = log->node; 2858 extent_buffer_get(log->node); 2859 path->slots[level] = 0; 2860 2861 while (1) { 2862 wret = walk_down_log_tree(trans, log, path, &level, wc); 2863 if (wret > 0) 2864 break; 2865 if (wret < 0) { 2866 ret = wret; 2867 goto out; 2868 } 2869 2870 wret = walk_up_log_tree(trans, log, path, &level, wc); 2871 if (wret > 0) 2872 break; 2873 if (wret < 0) { 2874 ret = wret; 2875 goto out; 2876 } 2877 } 2878 2879 /* was the root node processed? if not, catch it here */ 2880 if (path->nodes[orig_level]) { 2881 ret = wc->process_func(log, path->nodes[orig_level], wc, 2882 btrfs_header_generation(path->nodes[orig_level]), 2883 orig_level); 2884 if (ret) 2885 goto out; 2886 if (wc->free) { 2887 struct extent_buffer *next; 2888 2889 next = path->nodes[orig_level]; 2890 2891 if (trans) { 2892 btrfs_tree_lock(next); 2893 btrfs_set_lock_blocking_write(next); 2894 clean_tree_block(fs_info, next); 2895 btrfs_wait_tree_block_writeback(next); 2896 btrfs_tree_unlock(next); 2897 } else { 2898 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2899 clear_extent_buffer_dirty(next); 2900 } 2901 2902 WARN_ON(log->root_key.objectid != 2903 BTRFS_TREE_LOG_OBJECTID); 2904 ret = btrfs_free_and_pin_reserved_extent(fs_info, 2905 next->start, next->len); 2906 if (ret) 2907 goto out; 2908 } 2909 } 2910 2911 out: 2912 btrfs_free_path(path); 2913 return ret; 2914 } 2915 2916 /* 2917 * helper function to update the item for a given subvolumes log root 2918 * in the tree of log roots 2919 */ 2920 static int update_log_root(struct btrfs_trans_handle *trans, 2921 struct btrfs_root *log) 2922 { 2923 struct btrfs_fs_info *fs_info = log->fs_info; 2924 int ret; 2925 2926 if (log->log_transid == 1) { 2927 /* insert root item on the first sync */ 2928 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2929 &log->root_key, &log->root_item); 2930 } else { 2931 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2932 &log->root_key, &log->root_item); 2933 } 2934 return ret; 2935 } 2936 2937 static void wait_log_commit(struct btrfs_root *root, int transid) 2938 { 2939 DEFINE_WAIT(wait); 2940 int index = transid % 2; 2941 2942 /* 2943 * we only allow two pending log transactions at a time, 2944 * so we know that if ours is more than 2 older than the 2945 * current transaction, we're done 2946 */ 2947 for (;;) { 2948 prepare_to_wait(&root->log_commit_wait[index], 2949 &wait, TASK_UNINTERRUPTIBLE); 2950 2951 if (!(root->log_transid_committed < transid && 2952 atomic_read(&root->log_commit[index]))) 2953 break; 2954 2955 mutex_unlock(&root->log_mutex); 2956 schedule(); 2957 mutex_lock(&root->log_mutex); 2958 } 2959 finish_wait(&root->log_commit_wait[index], &wait); 2960 } 2961 2962 static void wait_for_writer(struct btrfs_root *root) 2963 { 2964 DEFINE_WAIT(wait); 2965 2966 for (;;) { 2967 prepare_to_wait(&root->log_writer_wait, &wait, 2968 TASK_UNINTERRUPTIBLE); 2969 if (!atomic_read(&root->log_writers)) 2970 break; 2971 2972 mutex_unlock(&root->log_mutex); 2973 schedule(); 2974 mutex_lock(&root->log_mutex); 2975 } 2976 finish_wait(&root->log_writer_wait, &wait); 2977 } 2978 2979 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2980 struct btrfs_log_ctx *ctx) 2981 { 2982 if (!ctx) 2983 return; 2984 2985 mutex_lock(&root->log_mutex); 2986 list_del_init(&ctx->list); 2987 mutex_unlock(&root->log_mutex); 2988 } 2989 2990 /* 2991 * Invoked in log mutex context, or be sure there is no other task which 2992 * can access the list. 2993 */ 2994 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2995 int index, int error) 2996 { 2997 struct btrfs_log_ctx *ctx; 2998 struct btrfs_log_ctx *safe; 2999 3000 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 3001 list_del_init(&ctx->list); 3002 ctx->log_ret = error; 3003 } 3004 3005 INIT_LIST_HEAD(&root->log_ctxs[index]); 3006 } 3007 3008 /* 3009 * btrfs_sync_log does sends a given tree log down to the disk and 3010 * updates the super blocks to record it. When this call is done, 3011 * you know that any inodes previously logged are safely on disk only 3012 * if it returns 0. 3013 * 3014 * Any other return value means you need to call btrfs_commit_transaction. 3015 * Some of the edge cases for fsyncing directories that have had unlinks 3016 * or renames done in the past mean that sometimes the only safe 3017 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3018 * that has happened. 3019 */ 3020 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3021 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3022 { 3023 int index1; 3024 int index2; 3025 int mark; 3026 int ret; 3027 struct btrfs_fs_info *fs_info = root->fs_info; 3028 struct btrfs_root *log = root->log_root; 3029 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3030 int log_transid = 0; 3031 struct btrfs_log_ctx root_log_ctx; 3032 struct blk_plug plug; 3033 3034 mutex_lock(&root->log_mutex); 3035 log_transid = ctx->log_transid; 3036 if (root->log_transid_committed >= log_transid) { 3037 mutex_unlock(&root->log_mutex); 3038 return ctx->log_ret; 3039 } 3040 3041 index1 = log_transid % 2; 3042 if (atomic_read(&root->log_commit[index1])) { 3043 wait_log_commit(root, log_transid); 3044 mutex_unlock(&root->log_mutex); 3045 return ctx->log_ret; 3046 } 3047 ASSERT(log_transid == root->log_transid); 3048 atomic_set(&root->log_commit[index1], 1); 3049 3050 /* wait for previous tree log sync to complete */ 3051 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3052 wait_log_commit(root, log_transid - 1); 3053 3054 while (1) { 3055 int batch = atomic_read(&root->log_batch); 3056 /* when we're on an ssd, just kick the log commit out */ 3057 if (!btrfs_test_opt(fs_info, SSD) && 3058 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3059 mutex_unlock(&root->log_mutex); 3060 schedule_timeout_uninterruptible(1); 3061 mutex_lock(&root->log_mutex); 3062 } 3063 wait_for_writer(root); 3064 if (batch == atomic_read(&root->log_batch)) 3065 break; 3066 } 3067 3068 /* bail out if we need to do a full commit */ 3069 if (btrfs_need_log_full_commit(fs_info, trans)) { 3070 ret = -EAGAIN; 3071 mutex_unlock(&root->log_mutex); 3072 goto out; 3073 } 3074 3075 if (log_transid % 2 == 0) 3076 mark = EXTENT_DIRTY; 3077 else 3078 mark = EXTENT_NEW; 3079 3080 /* we start IO on all the marked extents here, but we don't actually 3081 * wait for them until later. 3082 */ 3083 blk_start_plug(&plug); 3084 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3085 if (ret) { 3086 blk_finish_plug(&plug); 3087 btrfs_abort_transaction(trans, ret); 3088 btrfs_set_log_full_commit(fs_info, trans); 3089 mutex_unlock(&root->log_mutex); 3090 goto out; 3091 } 3092 3093 btrfs_set_root_node(&log->root_item, log->node); 3094 3095 root->log_transid++; 3096 log->log_transid = root->log_transid; 3097 root->log_start_pid = 0; 3098 /* 3099 * IO has been started, blocks of the log tree have WRITTEN flag set 3100 * in their headers. new modifications of the log will be written to 3101 * new positions. so it's safe to allow log writers to go in. 3102 */ 3103 mutex_unlock(&root->log_mutex); 3104 3105 btrfs_init_log_ctx(&root_log_ctx, NULL); 3106 3107 mutex_lock(&log_root_tree->log_mutex); 3108 atomic_inc(&log_root_tree->log_batch); 3109 atomic_inc(&log_root_tree->log_writers); 3110 3111 index2 = log_root_tree->log_transid % 2; 3112 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3113 root_log_ctx.log_transid = log_root_tree->log_transid; 3114 3115 mutex_unlock(&log_root_tree->log_mutex); 3116 3117 ret = update_log_root(trans, log); 3118 3119 mutex_lock(&log_root_tree->log_mutex); 3120 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 3121 /* atomic_dec_and_test implies a barrier */ 3122 cond_wake_up_nomb(&log_root_tree->log_writer_wait); 3123 } 3124 3125 if (ret) { 3126 if (!list_empty(&root_log_ctx.list)) 3127 list_del_init(&root_log_ctx.list); 3128 3129 blk_finish_plug(&plug); 3130 btrfs_set_log_full_commit(fs_info, trans); 3131 3132 if (ret != -ENOSPC) { 3133 btrfs_abort_transaction(trans, ret); 3134 mutex_unlock(&log_root_tree->log_mutex); 3135 goto out; 3136 } 3137 btrfs_wait_tree_log_extents(log, mark); 3138 mutex_unlock(&log_root_tree->log_mutex); 3139 ret = -EAGAIN; 3140 goto out; 3141 } 3142 3143 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3144 blk_finish_plug(&plug); 3145 list_del_init(&root_log_ctx.list); 3146 mutex_unlock(&log_root_tree->log_mutex); 3147 ret = root_log_ctx.log_ret; 3148 goto out; 3149 } 3150 3151 index2 = root_log_ctx.log_transid % 2; 3152 if (atomic_read(&log_root_tree->log_commit[index2])) { 3153 blk_finish_plug(&plug); 3154 ret = btrfs_wait_tree_log_extents(log, mark); 3155 wait_log_commit(log_root_tree, 3156 root_log_ctx.log_transid); 3157 mutex_unlock(&log_root_tree->log_mutex); 3158 if (!ret) 3159 ret = root_log_ctx.log_ret; 3160 goto out; 3161 } 3162 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3163 atomic_set(&log_root_tree->log_commit[index2], 1); 3164 3165 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3166 wait_log_commit(log_root_tree, 3167 root_log_ctx.log_transid - 1); 3168 } 3169 3170 wait_for_writer(log_root_tree); 3171 3172 /* 3173 * now that we've moved on to the tree of log tree roots, 3174 * check the full commit flag again 3175 */ 3176 if (btrfs_need_log_full_commit(fs_info, trans)) { 3177 blk_finish_plug(&plug); 3178 btrfs_wait_tree_log_extents(log, mark); 3179 mutex_unlock(&log_root_tree->log_mutex); 3180 ret = -EAGAIN; 3181 goto out_wake_log_root; 3182 } 3183 3184 ret = btrfs_write_marked_extents(fs_info, 3185 &log_root_tree->dirty_log_pages, 3186 EXTENT_DIRTY | EXTENT_NEW); 3187 blk_finish_plug(&plug); 3188 if (ret) { 3189 btrfs_set_log_full_commit(fs_info, trans); 3190 btrfs_abort_transaction(trans, ret); 3191 mutex_unlock(&log_root_tree->log_mutex); 3192 goto out_wake_log_root; 3193 } 3194 ret = btrfs_wait_tree_log_extents(log, mark); 3195 if (!ret) 3196 ret = btrfs_wait_tree_log_extents(log_root_tree, 3197 EXTENT_NEW | EXTENT_DIRTY); 3198 if (ret) { 3199 btrfs_set_log_full_commit(fs_info, trans); 3200 mutex_unlock(&log_root_tree->log_mutex); 3201 goto out_wake_log_root; 3202 } 3203 3204 btrfs_set_super_log_root(fs_info->super_for_commit, 3205 log_root_tree->node->start); 3206 btrfs_set_super_log_root_level(fs_info->super_for_commit, 3207 btrfs_header_level(log_root_tree->node)); 3208 3209 log_root_tree->log_transid++; 3210 mutex_unlock(&log_root_tree->log_mutex); 3211 3212 /* 3213 * Nobody else is going to jump in and write the ctree 3214 * super here because the log_commit atomic below is protecting 3215 * us. We must be called with a transaction handle pinning 3216 * the running transaction open, so a full commit can't hop 3217 * in and cause problems either. 3218 */ 3219 ret = write_all_supers(fs_info, 1); 3220 if (ret) { 3221 btrfs_set_log_full_commit(fs_info, trans); 3222 btrfs_abort_transaction(trans, ret); 3223 goto out_wake_log_root; 3224 } 3225 3226 mutex_lock(&root->log_mutex); 3227 if (root->last_log_commit < log_transid) 3228 root->last_log_commit = log_transid; 3229 mutex_unlock(&root->log_mutex); 3230 3231 out_wake_log_root: 3232 mutex_lock(&log_root_tree->log_mutex); 3233 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3234 3235 log_root_tree->log_transid_committed++; 3236 atomic_set(&log_root_tree->log_commit[index2], 0); 3237 mutex_unlock(&log_root_tree->log_mutex); 3238 3239 /* 3240 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3241 * all the updates above are seen by the woken threads. It might not be 3242 * necessary, but proving that seems to be hard. 3243 */ 3244 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3245 out: 3246 mutex_lock(&root->log_mutex); 3247 btrfs_remove_all_log_ctxs(root, index1, ret); 3248 root->log_transid_committed++; 3249 atomic_set(&root->log_commit[index1], 0); 3250 mutex_unlock(&root->log_mutex); 3251 3252 /* 3253 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3254 * all the updates above are seen by the woken threads. It might not be 3255 * necessary, but proving that seems to be hard. 3256 */ 3257 cond_wake_up(&root->log_commit_wait[index1]); 3258 return ret; 3259 } 3260 3261 static void free_log_tree(struct btrfs_trans_handle *trans, 3262 struct btrfs_root *log) 3263 { 3264 int ret; 3265 struct walk_control wc = { 3266 .free = 1, 3267 .process_func = process_one_buffer 3268 }; 3269 3270 ret = walk_log_tree(trans, log, &wc); 3271 if (ret) { 3272 if (trans) 3273 btrfs_abort_transaction(trans, ret); 3274 else 3275 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3276 } 3277 3278 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3279 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3280 free_extent_buffer(log->node); 3281 kfree(log); 3282 } 3283 3284 /* 3285 * free all the extents used by the tree log. This should be called 3286 * at commit time of the full transaction 3287 */ 3288 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3289 { 3290 if (root->log_root) { 3291 free_log_tree(trans, root->log_root); 3292 root->log_root = NULL; 3293 } 3294 return 0; 3295 } 3296 3297 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3298 struct btrfs_fs_info *fs_info) 3299 { 3300 if (fs_info->log_root_tree) { 3301 free_log_tree(trans, fs_info->log_root_tree); 3302 fs_info->log_root_tree = NULL; 3303 } 3304 return 0; 3305 } 3306 3307 /* 3308 * If both a file and directory are logged, and unlinks or renames are 3309 * mixed in, we have a few interesting corners: 3310 * 3311 * create file X in dir Y 3312 * link file X to X.link in dir Y 3313 * fsync file X 3314 * unlink file X but leave X.link 3315 * fsync dir Y 3316 * 3317 * After a crash we would expect only X.link to exist. But file X 3318 * didn't get fsync'd again so the log has back refs for X and X.link. 3319 * 3320 * We solve this by removing directory entries and inode backrefs from the 3321 * log when a file that was logged in the current transaction is 3322 * unlinked. Any later fsync will include the updated log entries, and 3323 * we'll be able to reconstruct the proper directory items from backrefs. 3324 * 3325 * This optimizations allows us to avoid relogging the entire inode 3326 * or the entire directory. 3327 */ 3328 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3329 struct btrfs_root *root, 3330 const char *name, int name_len, 3331 struct btrfs_inode *dir, u64 index) 3332 { 3333 struct btrfs_root *log; 3334 struct btrfs_dir_item *di; 3335 struct btrfs_path *path; 3336 int ret; 3337 int err = 0; 3338 int bytes_del = 0; 3339 u64 dir_ino = btrfs_ino(dir); 3340 3341 if (dir->logged_trans < trans->transid) 3342 return 0; 3343 3344 ret = join_running_log_trans(root); 3345 if (ret) 3346 return 0; 3347 3348 mutex_lock(&dir->log_mutex); 3349 3350 log = root->log_root; 3351 path = btrfs_alloc_path(); 3352 if (!path) { 3353 err = -ENOMEM; 3354 goto out_unlock; 3355 } 3356 3357 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3358 name, name_len, -1); 3359 if (IS_ERR(di)) { 3360 err = PTR_ERR(di); 3361 goto fail; 3362 } 3363 if (di) { 3364 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3365 bytes_del += name_len; 3366 if (ret) { 3367 err = ret; 3368 goto fail; 3369 } 3370 } 3371 btrfs_release_path(path); 3372 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3373 index, name, name_len, -1); 3374 if (IS_ERR(di)) { 3375 err = PTR_ERR(di); 3376 goto fail; 3377 } 3378 if (di) { 3379 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3380 bytes_del += name_len; 3381 if (ret) { 3382 err = ret; 3383 goto fail; 3384 } 3385 } 3386 3387 /* update the directory size in the log to reflect the names 3388 * we have removed 3389 */ 3390 if (bytes_del) { 3391 struct btrfs_key key; 3392 3393 key.objectid = dir_ino; 3394 key.offset = 0; 3395 key.type = BTRFS_INODE_ITEM_KEY; 3396 btrfs_release_path(path); 3397 3398 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 3399 if (ret < 0) { 3400 err = ret; 3401 goto fail; 3402 } 3403 if (ret == 0) { 3404 struct btrfs_inode_item *item; 3405 u64 i_size; 3406 3407 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3408 struct btrfs_inode_item); 3409 i_size = btrfs_inode_size(path->nodes[0], item); 3410 if (i_size > bytes_del) 3411 i_size -= bytes_del; 3412 else 3413 i_size = 0; 3414 btrfs_set_inode_size(path->nodes[0], item, i_size); 3415 btrfs_mark_buffer_dirty(path->nodes[0]); 3416 } else 3417 ret = 0; 3418 btrfs_release_path(path); 3419 } 3420 fail: 3421 btrfs_free_path(path); 3422 out_unlock: 3423 mutex_unlock(&dir->log_mutex); 3424 if (ret == -ENOSPC) { 3425 btrfs_set_log_full_commit(root->fs_info, trans); 3426 ret = 0; 3427 } else if (ret < 0) 3428 btrfs_abort_transaction(trans, ret); 3429 3430 btrfs_end_log_trans(root); 3431 3432 return err; 3433 } 3434 3435 /* see comments for btrfs_del_dir_entries_in_log */ 3436 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3437 struct btrfs_root *root, 3438 const char *name, int name_len, 3439 struct btrfs_inode *inode, u64 dirid) 3440 { 3441 struct btrfs_fs_info *fs_info = root->fs_info; 3442 struct btrfs_root *log; 3443 u64 index; 3444 int ret; 3445 3446 if (inode->logged_trans < trans->transid) 3447 return 0; 3448 3449 ret = join_running_log_trans(root); 3450 if (ret) 3451 return 0; 3452 log = root->log_root; 3453 mutex_lock(&inode->log_mutex); 3454 3455 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3456 dirid, &index); 3457 mutex_unlock(&inode->log_mutex); 3458 if (ret == -ENOSPC) { 3459 btrfs_set_log_full_commit(fs_info, trans); 3460 ret = 0; 3461 } else if (ret < 0 && ret != -ENOENT) 3462 btrfs_abort_transaction(trans, ret); 3463 btrfs_end_log_trans(root); 3464 3465 return ret; 3466 } 3467 3468 /* 3469 * creates a range item in the log for 'dirid'. first_offset and 3470 * last_offset tell us which parts of the key space the log should 3471 * be considered authoritative for. 3472 */ 3473 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3474 struct btrfs_root *log, 3475 struct btrfs_path *path, 3476 int key_type, u64 dirid, 3477 u64 first_offset, u64 last_offset) 3478 { 3479 int ret; 3480 struct btrfs_key key; 3481 struct btrfs_dir_log_item *item; 3482 3483 key.objectid = dirid; 3484 key.offset = first_offset; 3485 if (key_type == BTRFS_DIR_ITEM_KEY) 3486 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3487 else 3488 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3489 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3490 if (ret) 3491 return ret; 3492 3493 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3494 struct btrfs_dir_log_item); 3495 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3496 btrfs_mark_buffer_dirty(path->nodes[0]); 3497 btrfs_release_path(path); 3498 return 0; 3499 } 3500 3501 /* 3502 * log all the items included in the current transaction for a given 3503 * directory. This also creates the range items in the log tree required 3504 * to replay anything deleted before the fsync 3505 */ 3506 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3507 struct btrfs_root *root, struct btrfs_inode *inode, 3508 struct btrfs_path *path, 3509 struct btrfs_path *dst_path, int key_type, 3510 struct btrfs_log_ctx *ctx, 3511 u64 min_offset, u64 *last_offset_ret) 3512 { 3513 struct btrfs_key min_key; 3514 struct btrfs_root *log = root->log_root; 3515 struct extent_buffer *src; 3516 int err = 0; 3517 int ret; 3518 int i; 3519 int nritems; 3520 u64 first_offset = min_offset; 3521 u64 last_offset = (u64)-1; 3522 u64 ino = btrfs_ino(inode); 3523 3524 log = root->log_root; 3525 3526 min_key.objectid = ino; 3527 min_key.type = key_type; 3528 min_key.offset = min_offset; 3529 3530 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3531 3532 /* 3533 * we didn't find anything from this transaction, see if there 3534 * is anything at all 3535 */ 3536 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3537 min_key.objectid = ino; 3538 min_key.type = key_type; 3539 min_key.offset = (u64)-1; 3540 btrfs_release_path(path); 3541 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3542 if (ret < 0) { 3543 btrfs_release_path(path); 3544 return ret; 3545 } 3546 ret = btrfs_previous_item(root, path, ino, key_type); 3547 3548 /* if ret == 0 there are items for this type, 3549 * create a range to tell us the last key of this type. 3550 * otherwise, there are no items in this directory after 3551 * *min_offset, and we create a range to indicate that. 3552 */ 3553 if (ret == 0) { 3554 struct btrfs_key tmp; 3555 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3556 path->slots[0]); 3557 if (key_type == tmp.type) 3558 first_offset = max(min_offset, tmp.offset) + 1; 3559 } 3560 goto done; 3561 } 3562 3563 /* go backward to find any previous key */ 3564 ret = btrfs_previous_item(root, path, ino, key_type); 3565 if (ret == 0) { 3566 struct btrfs_key tmp; 3567 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3568 if (key_type == tmp.type) { 3569 first_offset = tmp.offset; 3570 ret = overwrite_item(trans, log, dst_path, 3571 path->nodes[0], path->slots[0], 3572 &tmp); 3573 if (ret) { 3574 err = ret; 3575 goto done; 3576 } 3577 } 3578 } 3579 btrfs_release_path(path); 3580 3581 /* find the first key from this transaction again */ 3582 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3583 if (WARN_ON(ret != 0)) 3584 goto done; 3585 3586 /* 3587 * we have a block from this transaction, log every item in it 3588 * from our directory 3589 */ 3590 while (1) { 3591 struct btrfs_key tmp; 3592 src = path->nodes[0]; 3593 nritems = btrfs_header_nritems(src); 3594 for (i = path->slots[0]; i < nritems; i++) { 3595 struct btrfs_dir_item *di; 3596 3597 btrfs_item_key_to_cpu(src, &min_key, i); 3598 3599 if (min_key.objectid != ino || min_key.type != key_type) 3600 goto done; 3601 ret = overwrite_item(trans, log, dst_path, src, i, 3602 &min_key); 3603 if (ret) { 3604 err = ret; 3605 goto done; 3606 } 3607 3608 /* 3609 * We must make sure that when we log a directory entry, 3610 * the corresponding inode, after log replay, has a 3611 * matching link count. For example: 3612 * 3613 * touch foo 3614 * mkdir mydir 3615 * sync 3616 * ln foo mydir/bar 3617 * xfs_io -c "fsync" mydir 3618 * <crash> 3619 * <mount fs and log replay> 3620 * 3621 * Would result in a fsync log that when replayed, our 3622 * file inode would have a link count of 1, but we get 3623 * two directory entries pointing to the same inode. 3624 * After removing one of the names, it would not be 3625 * possible to remove the other name, which resulted 3626 * always in stale file handle errors, and would not 3627 * be possible to rmdir the parent directory, since 3628 * its i_size could never decrement to the value 3629 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3630 */ 3631 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3632 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3633 if (ctx && 3634 (btrfs_dir_transid(src, di) == trans->transid || 3635 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3636 tmp.type != BTRFS_ROOT_ITEM_KEY) 3637 ctx->log_new_dentries = true; 3638 } 3639 path->slots[0] = nritems; 3640 3641 /* 3642 * look ahead to the next item and see if it is also 3643 * from this directory and from this transaction 3644 */ 3645 ret = btrfs_next_leaf(root, path); 3646 if (ret) { 3647 if (ret == 1) 3648 last_offset = (u64)-1; 3649 else 3650 err = ret; 3651 goto done; 3652 } 3653 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3654 if (tmp.objectid != ino || tmp.type != key_type) { 3655 last_offset = (u64)-1; 3656 goto done; 3657 } 3658 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3659 ret = overwrite_item(trans, log, dst_path, 3660 path->nodes[0], path->slots[0], 3661 &tmp); 3662 if (ret) 3663 err = ret; 3664 else 3665 last_offset = tmp.offset; 3666 goto done; 3667 } 3668 } 3669 done: 3670 btrfs_release_path(path); 3671 btrfs_release_path(dst_path); 3672 3673 if (err == 0) { 3674 *last_offset_ret = last_offset; 3675 /* 3676 * insert the log range keys to indicate where the log 3677 * is valid 3678 */ 3679 ret = insert_dir_log_key(trans, log, path, key_type, 3680 ino, first_offset, last_offset); 3681 if (ret) 3682 err = ret; 3683 } 3684 return err; 3685 } 3686 3687 /* 3688 * logging directories is very similar to logging inodes, We find all the items 3689 * from the current transaction and write them to the log. 3690 * 3691 * The recovery code scans the directory in the subvolume, and if it finds a 3692 * key in the range logged that is not present in the log tree, then it means 3693 * that dir entry was unlinked during the transaction. 3694 * 3695 * In order for that scan to work, we must include one key smaller than 3696 * the smallest logged by this transaction and one key larger than the largest 3697 * key logged by this transaction. 3698 */ 3699 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3700 struct btrfs_root *root, struct btrfs_inode *inode, 3701 struct btrfs_path *path, 3702 struct btrfs_path *dst_path, 3703 struct btrfs_log_ctx *ctx) 3704 { 3705 u64 min_key; 3706 u64 max_key; 3707 int ret; 3708 int key_type = BTRFS_DIR_ITEM_KEY; 3709 3710 again: 3711 min_key = 0; 3712 max_key = 0; 3713 while (1) { 3714 ret = log_dir_items(trans, root, inode, path, dst_path, key_type, 3715 ctx, min_key, &max_key); 3716 if (ret) 3717 return ret; 3718 if (max_key == (u64)-1) 3719 break; 3720 min_key = max_key + 1; 3721 } 3722 3723 if (key_type == BTRFS_DIR_ITEM_KEY) { 3724 key_type = BTRFS_DIR_INDEX_KEY; 3725 goto again; 3726 } 3727 return 0; 3728 } 3729 3730 /* 3731 * a helper function to drop items from the log before we relog an 3732 * inode. max_key_type indicates the highest item type to remove. 3733 * This cannot be run for file data extents because it does not 3734 * free the extents they point to. 3735 */ 3736 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3737 struct btrfs_root *log, 3738 struct btrfs_path *path, 3739 u64 objectid, int max_key_type) 3740 { 3741 int ret; 3742 struct btrfs_key key; 3743 struct btrfs_key found_key; 3744 int start_slot; 3745 3746 key.objectid = objectid; 3747 key.type = max_key_type; 3748 key.offset = (u64)-1; 3749 3750 while (1) { 3751 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3752 BUG_ON(ret == 0); /* Logic error */ 3753 if (ret < 0) 3754 break; 3755 3756 if (path->slots[0] == 0) 3757 break; 3758 3759 path->slots[0]--; 3760 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3761 path->slots[0]); 3762 3763 if (found_key.objectid != objectid) 3764 break; 3765 3766 found_key.offset = 0; 3767 found_key.type = 0; 3768 ret = btrfs_bin_search(path->nodes[0], &found_key, 0, 3769 &start_slot); 3770 if (ret < 0) 3771 break; 3772 3773 ret = btrfs_del_items(trans, log, path, start_slot, 3774 path->slots[0] - start_slot + 1); 3775 /* 3776 * If start slot isn't 0 then we don't need to re-search, we've 3777 * found the last guy with the objectid in this tree. 3778 */ 3779 if (ret || start_slot != 0) 3780 break; 3781 btrfs_release_path(path); 3782 } 3783 btrfs_release_path(path); 3784 if (ret > 0) 3785 ret = 0; 3786 return ret; 3787 } 3788 3789 static void fill_inode_item(struct btrfs_trans_handle *trans, 3790 struct extent_buffer *leaf, 3791 struct btrfs_inode_item *item, 3792 struct inode *inode, int log_inode_only, 3793 u64 logged_isize) 3794 { 3795 struct btrfs_map_token token; 3796 3797 btrfs_init_map_token(&token); 3798 3799 if (log_inode_only) { 3800 /* set the generation to zero so the recover code 3801 * can tell the difference between an logging 3802 * just to say 'this inode exists' and a logging 3803 * to say 'update this inode with these values' 3804 */ 3805 btrfs_set_token_inode_generation(leaf, item, 0, &token); 3806 btrfs_set_token_inode_size(leaf, item, logged_isize, &token); 3807 } else { 3808 btrfs_set_token_inode_generation(leaf, item, 3809 BTRFS_I(inode)->generation, 3810 &token); 3811 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); 3812 } 3813 3814 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3815 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3816 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3817 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3818 3819 btrfs_set_token_timespec_sec(leaf, &item->atime, 3820 inode->i_atime.tv_sec, &token); 3821 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3822 inode->i_atime.tv_nsec, &token); 3823 3824 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3825 inode->i_mtime.tv_sec, &token); 3826 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3827 inode->i_mtime.tv_nsec, &token); 3828 3829 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3830 inode->i_ctime.tv_sec, &token); 3831 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3832 inode->i_ctime.tv_nsec, &token); 3833 3834 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3835 &token); 3836 3837 btrfs_set_token_inode_sequence(leaf, item, 3838 inode_peek_iversion(inode), &token); 3839 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3840 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3841 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3842 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3843 } 3844 3845 static int log_inode_item(struct btrfs_trans_handle *trans, 3846 struct btrfs_root *log, struct btrfs_path *path, 3847 struct btrfs_inode *inode) 3848 { 3849 struct btrfs_inode_item *inode_item; 3850 int ret; 3851 3852 ret = btrfs_insert_empty_item(trans, log, path, 3853 &inode->location, sizeof(*inode_item)); 3854 if (ret && ret != -EEXIST) 3855 return ret; 3856 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3857 struct btrfs_inode_item); 3858 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 3859 0, 0); 3860 btrfs_release_path(path); 3861 return 0; 3862 } 3863 3864 static noinline int copy_items(struct btrfs_trans_handle *trans, 3865 struct btrfs_inode *inode, 3866 struct btrfs_path *dst_path, 3867 struct btrfs_path *src_path, u64 *last_extent, 3868 int start_slot, int nr, int inode_only, 3869 u64 logged_isize) 3870 { 3871 struct btrfs_fs_info *fs_info = trans->fs_info; 3872 unsigned long src_offset; 3873 unsigned long dst_offset; 3874 struct btrfs_root *log = inode->root->log_root; 3875 struct btrfs_file_extent_item *extent; 3876 struct btrfs_inode_item *inode_item; 3877 struct extent_buffer *src = src_path->nodes[0]; 3878 struct btrfs_key first_key, last_key, key; 3879 int ret; 3880 struct btrfs_key *ins_keys; 3881 u32 *ins_sizes; 3882 char *ins_data; 3883 int i; 3884 struct list_head ordered_sums; 3885 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 3886 bool has_extents = false; 3887 bool need_find_last_extent = true; 3888 bool done = false; 3889 3890 INIT_LIST_HEAD(&ordered_sums); 3891 3892 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3893 nr * sizeof(u32), GFP_NOFS); 3894 if (!ins_data) 3895 return -ENOMEM; 3896 3897 first_key.objectid = (u64)-1; 3898 3899 ins_sizes = (u32 *)ins_data; 3900 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3901 3902 for (i = 0; i < nr; i++) { 3903 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3904 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3905 } 3906 ret = btrfs_insert_empty_items(trans, log, dst_path, 3907 ins_keys, ins_sizes, nr); 3908 if (ret) { 3909 kfree(ins_data); 3910 return ret; 3911 } 3912 3913 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3914 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3915 dst_path->slots[0]); 3916 3917 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3918 3919 if (i == nr - 1) 3920 last_key = ins_keys[i]; 3921 3922 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3923 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3924 dst_path->slots[0], 3925 struct btrfs_inode_item); 3926 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3927 &inode->vfs_inode, 3928 inode_only == LOG_INODE_EXISTS, 3929 logged_isize); 3930 } else { 3931 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3932 src_offset, ins_sizes[i]); 3933 } 3934 3935 /* 3936 * We set need_find_last_extent here in case we know we were 3937 * processing other items and then walk into the first extent in 3938 * the inode. If we don't hit an extent then nothing changes, 3939 * we'll do the last search the next time around. 3940 */ 3941 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) { 3942 has_extents = true; 3943 if (first_key.objectid == (u64)-1) 3944 first_key = ins_keys[i]; 3945 } else { 3946 need_find_last_extent = false; 3947 } 3948 3949 /* take a reference on file data extents so that truncates 3950 * or deletes of this inode don't have to relog the inode 3951 * again 3952 */ 3953 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 3954 !skip_csum) { 3955 int found_type; 3956 extent = btrfs_item_ptr(src, start_slot + i, 3957 struct btrfs_file_extent_item); 3958 3959 if (btrfs_file_extent_generation(src, extent) < trans->transid) 3960 continue; 3961 3962 found_type = btrfs_file_extent_type(src, extent); 3963 if (found_type == BTRFS_FILE_EXTENT_REG) { 3964 u64 ds, dl, cs, cl; 3965 ds = btrfs_file_extent_disk_bytenr(src, 3966 extent); 3967 /* ds == 0 is a hole */ 3968 if (ds == 0) 3969 continue; 3970 3971 dl = btrfs_file_extent_disk_num_bytes(src, 3972 extent); 3973 cs = btrfs_file_extent_offset(src, extent); 3974 cl = btrfs_file_extent_num_bytes(src, 3975 extent); 3976 if (btrfs_file_extent_compression(src, 3977 extent)) { 3978 cs = 0; 3979 cl = dl; 3980 } 3981 3982 ret = btrfs_lookup_csums_range( 3983 fs_info->csum_root, 3984 ds + cs, ds + cs + cl - 1, 3985 &ordered_sums, 0); 3986 if (ret) { 3987 btrfs_release_path(dst_path); 3988 kfree(ins_data); 3989 return ret; 3990 } 3991 } 3992 } 3993 } 3994 3995 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 3996 btrfs_release_path(dst_path); 3997 kfree(ins_data); 3998 3999 /* 4000 * we have to do this after the loop above to avoid changing the 4001 * log tree while trying to change the log tree. 4002 */ 4003 ret = 0; 4004 while (!list_empty(&ordered_sums)) { 4005 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4006 struct btrfs_ordered_sum, 4007 list); 4008 if (!ret) 4009 ret = btrfs_csum_file_blocks(trans, log, sums); 4010 list_del(&sums->list); 4011 kfree(sums); 4012 } 4013 4014 if (!has_extents) 4015 return ret; 4016 4017 if (need_find_last_extent && *last_extent == first_key.offset) { 4018 /* 4019 * We don't have any leafs between our current one and the one 4020 * we processed before that can have file extent items for our 4021 * inode (and have a generation number smaller than our current 4022 * transaction id). 4023 */ 4024 need_find_last_extent = false; 4025 } 4026 4027 /* 4028 * Because we use btrfs_search_forward we could skip leaves that were 4029 * not modified and then assume *last_extent is valid when it really 4030 * isn't. So back up to the previous leaf and read the end of the last 4031 * extent before we go and fill in holes. 4032 */ 4033 if (need_find_last_extent) { 4034 u64 len; 4035 4036 ret = btrfs_prev_leaf(inode->root, src_path); 4037 if (ret < 0) 4038 return ret; 4039 if (ret) 4040 goto fill_holes; 4041 if (src_path->slots[0]) 4042 src_path->slots[0]--; 4043 src = src_path->nodes[0]; 4044 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]); 4045 if (key.objectid != btrfs_ino(inode) || 4046 key.type != BTRFS_EXTENT_DATA_KEY) 4047 goto fill_holes; 4048 extent = btrfs_item_ptr(src, src_path->slots[0], 4049 struct btrfs_file_extent_item); 4050 if (btrfs_file_extent_type(src, extent) == 4051 BTRFS_FILE_EXTENT_INLINE) { 4052 len = btrfs_file_extent_ram_bytes(src, extent); 4053 *last_extent = ALIGN(key.offset + len, 4054 fs_info->sectorsize); 4055 } else { 4056 len = btrfs_file_extent_num_bytes(src, extent); 4057 *last_extent = key.offset + len; 4058 } 4059 } 4060 fill_holes: 4061 /* So we did prev_leaf, now we need to move to the next leaf, but a few 4062 * things could have happened 4063 * 4064 * 1) A merge could have happened, so we could currently be on a leaf 4065 * that holds what we were copying in the first place. 4066 * 2) A split could have happened, and now not all of the items we want 4067 * are on the same leaf. 4068 * 4069 * So we need to adjust how we search for holes, we need to drop the 4070 * path and re-search for the first extent key we found, and then walk 4071 * forward until we hit the last one we copied. 4072 */ 4073 if (need_find_last_extent) { 4074 /* btrfs_prev_leaf could return 1 without releasing the path */ 4075 btrfs_release_path(src_path); 4076 ret = btrfs_search_slot(NULL, inode->root, &first_key, 4077 src_path, 0, 0); 4078 if (ret < 0) 4079 return ret; 4080 ASSERT(ret == 0); 4081 src = src_path->nodes[0]; 4082 i = src_path->slots[0]; 4083 } else { 4084 i = start_slot; 4085 } 4086 4087 /* 4088 * Ok so here we need to go through and fill in any holes we may have 4089 * to make sure that holes are punched for those areas in case they had 4090 * extents previously. 4091 */ 4092 while (!done) { 4093 u64 offset, len; 4094 u64 extent_end; 4095 4096 if (i >= btrfs_header_nritems(src_path->nodes[0])) { 4097 ret = btrfs_next_leaf(inode->root, src_path); 4098 if (ret < 0) 4099 return ret; 4100 ASSERT(ret == 0); 4101 src = src_path->nodes[0]; 4102 i = 0; 4103 need_find_last_extent = true; 4104 } 4105 4106 btrfs_item_key_to_cpu(src, &key, i); 4107 if (!btrfs_comp_cpu_keys(&key, &last_key)) 4108 done = true; 4109 if (key.objectid != btrfs_ino(inode) || 4110 key.type != BTRFS_EXTENT_DATA_KEY) { 4111 i++; 4112 continue; 4113 } 4114 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); 4115 if (btrfs_file_extent_type(src, extent) == 4116 BTRFS_FILE_EXTENT_INLINE) { 4117 len = btrfs_file_extent_ram_bytes(src, extent); 4118 extent_end = ALIGN(key.offset + len, 4119 fs_info->sectorsize); 4120 } else { 4121 len = btrfs_file_extent_num_bytes(src, extent); 4122 extent_end = key.offset + len; 4123 } 4124 i++; 4125 4126 if (*last_extent == key.offset) { 4127 *last_extent = extent_end; 4128 continue; 4129 } 4130 offset = *last_extent; 4131 len = key.offset - *last_extent; 4132 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode), 4133 offset, 0, 0, len, 0, len, 0, 0, 0); 4134 if (ret) 4135 break; 4136 *last_extent = extent_end; 4137 } 4138 4139 /* 4140 * Check if there is a hole between the last extent found in our leaf 4141 * and the first extent in the next leaf. If there is one, we need to 4142 * log an explicit hole so that at replay time we can punch the hole. 4143 */ 4144 if (ret == 0 && 4145 key.objectid == btrfs_ino(inode) && 4146 key.type == BTRFS_EXTENT_DATA_KEY && 4147 i == btrfs_header_nritems(src_path->nodes[0])) { 4148 ret = btrfs_next_leaf(inode->root, src_path); 4149 need_find_last_extent = true; 4150 if (ret > 0) { 4151 ret = 0; 4152 } else if (ret == 0) { 4153 btrfs_item_key_to_cpu(src_path->nodes[0], &key, 4154 src_path->slots[0]); 4155 if (key.objectid == btrfs_ino(inode) && 4156 key.type == BTRFS_EXTENT_DATA_KEY && 4157 *last_extent < key.offset) { 4158 const u64 len = key.offset - *last_extent; 4159 4160 ret = btrfs_insert_file_extent(trans, log, 4161 btrfs_ino(inode), 4162 *last_extent, 0, 4163 0, len, 0, len, 4164 0, 0, 0); 4165 } 4166 } 4167 } 4168 /* 4169 * Need to let the callers know we dropped the path so they should 4170 * re-search. 4171 */ 4172 if (!ret && need_find_last_extent) 4173 ret = 1; 4174 return ret; 4175 } 4176 4177 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 4178 { 4179 struct extent_map *em1, *em2; 4180 4181 em1 = list_entry(a, struct extent_map, list); 4182 em2 = list_entry(b, struct extent_map, list); 4183 4184 if (em1->start < em2->start) 4185 return -1; 4186 else if (em1->start > em2->start) 4187 return 1; 4188 return 0; 4189 } 4190 4191 static int log_extent_csums(struct btrfs_trans_handle *trans, 4192 struct btrfs_inode *inode, 4193 struct btrfs_root *log_root, 4194 const struct extent_map *em) 4195 { 4196 u64 csum_offset; 4197 u64 csum_len; 4198 LIST_HEAD(ordered_sums); 4199 int ret = 0; 4200 4201 if (inode->flags & BTRFS_INODE_NODATASUM || 4202 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4203 em->block_start == EXTENT_MAP_HOLE) 4204 return 0; 4205 4206 /* If we're compressed we have to save the entire range of csums. */ 4207 if (em->compress_type) { 4208 csum_offset = 0; 4209 csum_len = max(em->block_len, em->orig_block_len); 4210 } else { 4211 csum_offset = em->mod_start - em->start; 4212 csum_len = em->mod_len; 4213 } 4214 4215 /* block start is already adjusted for the file extent offset. */ 4216 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, 4217 em->block_start + csum_offset, 4218 em->block_start + csum_offset + 4219 csum_len - 1, &ordered_sums, 0); 4220 if (ret) 4221 return ret; 4222 4223 while (!list_empty(&ordered_sums)) { 4224 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4225 struct btrfs_ordered_sum, 4226 list); 4227 if (!ret) 4228 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4229 list_del(&sums->list); 4230 kfree(sums); 4231 } 4232 4233 return ret; 4234 } 4235 4236 static int log_one_extent(struct btrfs_trans_handle *trans, 4237 struct btrfs_inode *inode, struct btrfs_root *root, 4238 const struct extent_map *em, 4239 struct btrfs_path *path, 4240 struct btrfs_log_ctx *ctx) 4241 { 4242 struct btrfs_root *log = root->log_root; 4243 struct btrfs_file_extent_item *fi; 4244 struct extent_buffer *leaf; 4245 struct btrfs_map_token token; 4246 struct btrfs_key key; 4247 u64 extent_offset = em->start - em->orig_start; 4248 u64 block_len; 4249 int ret; 4250 int extent_inserted = 0; 4251 4252 ret = log_extent_csums(trans, inode, log, em); 4253 if (ret) 4254 return ret; 4255 4256 btrfs_init_map_token(&token); 4257 4258 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start, 4259 em->start + em->len, NULL, 0, 1, 4260 sizeof(*fi), &extent_inserted); 4261 if (ret) 4262 return ret; 4263 4264 if (!extent_inserted) { 4265 key.objectid = btrfs_ino(inode); 4266 key.type = BTRFS_EXTENT_DATA_KEY; 4267 key.offset = em->start; 4268 4269 ret = btrfs_insert_empty_item(trans, log, path, &key, 4270 sizeof(*fi)); 4271 if (ret) 4272 return ret; 4273 } 4274 leaf = path->nodes[0]; 4275 fi = btrfs_item_ptr(leaf, path->slots[0], 4276 struct btrfs_file_extent_item); 4277 4278 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, 4279 &token); 4280 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4281 btrfs_set_token_file_extent_type(leaf, fi, 4282 BTRFS_FILE_EXTENT_PREALLOC, 4283 &token); 4284 else 4285 btrfs_set_token_file_extent_type(leaf, fi, 4286 BTRFS_FILE_EXTENT_REG, 4287 &token); 4288 4289 block_len = max(em->block_len, em->orig_block_len); 4290 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4291 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4292 em->block_start, 4293 &token); 4294 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4295 &token); 4296 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4297 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4298 em->block_start - 4299 extent_offset, &token); 4300 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4301 &token); 4302 } else { 4303 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); 4304 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, 4305 &token); 4306 } 4307 4308 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); 4309 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); 4310 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); 4311 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, 4312 &token); 4313 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); 4314 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); 4315 btrfs_mark_buffer_dirty(leaf); 4316 4317 btrfs_release_path(path); 4318 4319 return ret; 4320 } 4321 4322 /* 4323 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4324 * lose them after doing a fast fsync and replaying the log. We scan the 4325 * subvolume's root instead of iterating the inode's extent map tree because 4326 * otherwise we can log incorrect extent items based on extent map conversion. 4327 * That can happen due to the fact that extent maps are merged when they 4328 * are not in the extent map tree's list of modified extents. 4329 */ 4330 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4331 struct btrfs_inode *inode, 4332 struct btrfs_path *path) 4333 { 4334 struct btrfs_root *root = inode->root; 4335 struct btrfs_key key; 4336 const u64 i_size = i_size_read(&inode->vfs_inode); 4337 const u64 ino = btrfs_ino(inode); 4338 struct btrfs_path *dst_path = NULL; 4339 u64 last_extent = (u64)-1; 4340 int ins_nr = 0; 4341 int start_slot; 4342 int ret; 4343 4344 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4345 return 0; 4346 4347 key.objectid = ino; 4348 key.type = BTRFS_EXTENT_DATA_KEY; 4349 key.offset = i_size; 4350 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4351 if (ret < 0) 4352 goto out; 4353 4354 while (true) { 4355 struct extent_buffer *leaf = path->nodes[0]; 4356 int slot = path->slots[0]; 4357 4358 if (slot >= btrfs_header_nritems(leaf)) { 4359 if (ins_nr > 0) { 4360 ret = copy_items(trans, inode, dst_path, path, 4361 &last_extent, start_slot, 4362 ins_nr, 1, 0); 4363 if (ret < 0) 4364 goto out; 4365 ins_nr = 0; 4366 } 4367 ret = btrfs_next_leaf(root, path); 4368 if (ret < 0) 4369 goto out; 4370 if (ret > 0) { 4371 ret = 0; 4372 break; 4373 } 4374 continue; 4375 } 4376 4377 btrfs_item_key_to_cpu(leaf, &key, slot); 4378 if (key.objectid > ino) 4379 break; 4380 if (WARN_ON_ONCE(key.objectid < ino) || 4381 key.type < BTRFS_EXTENT_DATA_KEY || 4382 key.offset < i_size) { 4383 path->slots[0]++; 4384 continue; 4385 } 4386 if (last_extent == (u64)-1) { 4387 last_extent = key.offset; 4388 /* 4389 * Avoid logging extent items logged in past fsync calls 4390 * and leading to duplicate keys in the log tree. 4391 */ 4392 do { 4393 ret = btrfs_truncate_inode_items(trans, 4394 root->log_root, 4395 &inode->vfs_inode, 4396 i_size, 4397 BTRFS_EXTENT_DATA_KEY); 4398 } while (ret == -EAGAIN); 4399 if (ret) 4400 goto out; 4401 } 4402 if (ins_nr == 0) 4403 start_slot = slot; 4404 ins_nr++; 4405 path->slots[0]++; 4406 if (!dst_path) { 4407 dst_path = btrfs_alloc_path(); 4408 if (!dst_path) { 4409 ret = -ENOMEM; 4410 goto out; 4411 } 4412 } 4413 } 4414 if (ins_nr > 0) { 4415 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4416 start_slot, ins_nr, 1, 0); 4417 if (ret > 0) 4418 ret = 0; 4419 } 4420 out: 4421 btrfs_release_path(path); 4422 btrfs_free_path(dst_path); 4423 return ret; 4424 } 4425 4426 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4427 struct btrfs_root *root, 4428 struct btrfs_inode *inode, 4429 struct btrfs_path *path, 4430 struct btrfs_log_ctx *ctx, 4431 const u64 start, 4432 const u64 end) 4433 { 4434 struct extent_map *em, *n; 4435 struct list_head extents; 4436 struct extent_map_tree *tree = &inode->extent_tree; 4437 u64 test_gen; 4438 int ret = 0; 4439 int num = 0; 4440 4441 INIT_LIST_HEAD(&extents); 4442 4443 write_lock(&tree->lock); 4444 test_gen = root->fs_info->last_trans_committed; 4445 4446 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4447 /* 4448 * Skip extents outside our logging range. It's important to do 4449 * it for correctness because if we don't ignore them, we may 4450 * log them before their ordered extent completes, and therefore 4451 * we could log them without logging their respective checksums 4452 * (the checksum items are added to the csum tree at the very 4453 * end of btrfs_finish_ordered_io()). Also leave such extents 4454 * outside of our range in the list, since we may have another 4455 * ranged fsync in the near future that needs them. If an extent 4456 * outside our range corresponds to a hole, log it to avoid 4457 * leaving gaps between extents (fsck will complain when we are 4458 * not using the NO_HOLES feature). 4459 */ 4460 if ((em->start > end || em->start + em->len <= start) && 4461 em->block_start != EXTENT_MAP_HOLE) 4462 continue; 4463 4464 list_del_init(&em->list); 4465 /* 4466 * Just an arbitrary number, this can be really CPU intensive 4467 * once we start getting a lot of extents, and really once we 4468 * have a bunch of extents we just want to commit since it will 4469 * be faster. 4470 */ 4471 if (++num > 32768) { 4472 list_del_init(&tree->modified_extents); 4473 ret = -EFBIG; 4474 goto process; 4475 } 4476 4477 if (em->generation <= test_gen) 4478 continue; 4479 4480 /* We log prealloc extents beyond eof later. */ 4481 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4482 em->start >= i_size_read(&inode->vfs_inode)) 4483 continue; 4484 4485 /* Need a ref to keep it from getting evicted from cache */ 4486 refcount_inc(&em->refs); 4487 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4488 list_add_tail(&em->list, &extents); 4489 num++; 4490 } 4491 4492 list_sort(NULL, &extents, extent_cmp); 4493 process: 4494 while (!list_empty(&extents)) { 4495 em = list_entry(extents.next, struct extent_map, list); 4496 4497 list_del_init(&em->list); 4498 4499 /* 4500 * If we had an error we just need to delete everybody from our 4501 * private list. 4502 */ 4503 if (ret) { 4504 clear_em_logging(tree, em); 4505 free_extent_map(em); 4506 continue; 4507 } 4508 4509 write_unlock(&tree->lock); 4510 4511 ret = log_one_extent(trans, inode, root, em, path, ctx); 4512 write_lock(&tree->lock); 4513 clear_em_logging(tree, em); 4514 free_extent_map(em); 4515 } 4516 WARN_ON(!list_empty(&extents)); 4517 write_unlock(&tree->lock); 4518 4519 btrfs_release_path(path); 4520 if (!ret) 4521 ret = btrfs_log_prealloc_extents(trans, inode, path); 4522 4523 return ret; 4524 } 4525 4526 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4527 struct btrfs_path *path, u64 *size_ret) 4528 { 4529 struct btrfs_key key; 4530 int ret; 4531 4532 key.objectid = btrfs_ino(inode); 4533 key.type = BTRFS_INODE_ITEM_KEY; 4534 key.offset = 0; 4535 4536 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4537 if (ret < 0) { 4538 return ret; 4539 } else if (ret > 0) { 4540 *size_ret = 0; 4541 } else { 4542 struct btrfs_inode_item *item; 4543 4544 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4545 struct btrfs_inode_item); 4546 *size_ret = btrfs_inode_size(path->nodes[0], item); 4547 } 4548 4549 btrfs_release_path(path); 4550 return 0; 4551 } 4552 4553 /* 4554 * At the moment we always log all xattrs. This is to figure out at log replay 4555 * time which xattrs must have their deletion replayed. If a xattr is missing 4556 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4557 * because if a xattr is deleted, the inode is fsynced and a power failure 4558 * happens, causing the log to be replayed the next time the fs is mounted, 4559 * we want the xattr to not exist anymore (same behaviour as other filesystems 4560 * with a journal, ext3/4, xfs, f2fs, etc). 4561 */ 4562 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4563 struct btrfs_root *root, 4564 struct btrfs_inode *inode, 4565 struct btrfs_path *path, 4566 struct btrfs_path *dst_path) 4567 { 4568 int ret; 4569 struct btrfs_key key; 4570 const u64 ino = btrfs_ino(inode); 4571 int ins_nr = 0; 4572 int start_slot = 0; 4573 4574 key.objectid = ino; 4575 key.type = BTRFS_XATTR_ITEM_KEY; 4576 key.offset = 0; 4577 4578 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4579 if (ret < 0) 4580 return ret; 4581 4582 while (true) { 4583 int slot = path->slots[0]; 4584 struct extent_buffer *leaf = path->nodes[0]; 4585 int nritems = btrfs_header_nritems(leaf); 4586 4587 if (slot >= nritems) { 4588 if (ins_nr > 0) { 4589 u64 last_extent = 0; 4590 4591 ret = copy_items(trans, inode, dst_path, path, 4592 &last_extent, start_slot, 4593 ins_nr, 1, 0); 4594 /* can't be 1, extent items aren't processed */ 4595 ASSERT(ret <= 0); 4596 if (ret < 0) 4597 return ret; 4598 ins_nr = 0; 4599 } 4600 ret = btrfs_next_leaf(root, path); 4601 if (ret < 0) 4602 return ret; 4603 else if (ret > 0) 4604 break; 4605 continue; 4606 } 4607 4608 btrfs_item_key_to_cpu(leaf, &key, slot); 4609 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4610 break; 4611 4612 if (ins_nr == 0) 4613 start_slot = slot; 4614 ins_nr++; 4615 path->slots[0]++; 4616 cond_resched(); 4617 } 4618 if (ins_nr > 0) { 4619 u64 last_extent = 0; 4620 4621 ret = copy_items(trans, inode, dst_path, path, 4622 &last_extent, start_slot, 4623 ins_nr, 1, 0); 4624 /* can't be 1, extent items aren't processed */ 4625 ASSERT(ret <= 0); 4626 if (ret < 0) 4627 return ret; 4628 } 4629 4630 return 0; 4631 } 4632 4633 /* 4634 * If the no holes feature is enabled we need to make sure any hole between the 4635 * last extent and the i_size of our inode is explicitly marked in the log. This 4636 * is to make sure that doing something like: 4637 * 4638 * 1) create file with 128Kb of data 4639 * 2) truncate file to 64Kb 4640 * 3) truncate file to 256Kb 4641 * 4) fsync file 4642 * 5) <crash/power failure> 4643 * 6) mount fs and trigger log replay 4644 * 4645 * Will give us a file with a size of 256Kb, the first 64Kb of data match what 4646 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the 4647 * file correspond to a hole. The presence of explicit holes in a log tree is 4648 * what guarantees that log replay will remove/adjust file extent items in the 4649 * fs/subvol tree. 4650 * 4651 * Here we do not need to care about holes between extents, that is already done 4652 * by copy_items(). We also only need to do this in the full sync path, where we 4653 * lookup for extents from the fs/subvol tree only. In the fast path case, we 4654 * lookup the list of modified extent maps and if any represents a hole, we 4655 * insert a corresponding extent representing a hole in the log tree. 4656 */ 4657 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans, 4658 struct btrfs_root *root, 4659 struct btrfs_inode *inode, 4660 struct btrfs_path *path) 4661 { 4662 struct btrfs_fs_info *fs_info = root->fs_info; 4663 int ret; 4664 struct btrfs_key key; 4665 u64 hole_start; 4666 u64 hole_size; 4667 struct extent_buffer *leaf; 4668 struct btrfs_root *log = root->log_root; 4669 const u64 ino = btrfs_ino(inode); 4670 const u64 i_size = i_size_read(&inode->vfs_inode); 4671 4672 if (!btrfs_fs_incompat(fs_info, NO_HOLES)) 4673 return 0; 4674 4675 key.objectid = ino; 4676 key.type = BTRFS_EXTENT_DATA_KEY; 4677 key.offset = (u64)-1; 4678 4679 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4680 ASSERT(ret != 0); 4681 if (ret < 0) 4682 return ret; 4683 4684 ASSERT(path->slots[0] > 0); 4685 path->slots[0]--; 4686 leaf = path->nodes[0]; 4687 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4688 4689 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 4690 /* inode does not have any extents */ 4691 hole_start = 0; 4692 hole_size = i_size; 4693 } else { 4694 struct btrfs_file_extent_item *extent; 4695 u64 len; 4696 4697 /* 4698 * If there's an extent beyond i_size, an explicit hole was 4699 * already inserted by copy_items(). 4700 */ 4701 if (key.offset >= i_size) 4702 return 0; 4703 4704 extent = btrfs_item_ptr(leaf, path->slots[0], 4705 struct btrfs_file_extent_item); 4706 4707 if (btrfs_file_extent_type(leaf, extent) == 4708 BTRFS_FILE_EXTENT_INLINE) { 4709 len = btrfs_file_extent_ram_bytes(leaf, extent); 4710 ASSERT(len == i_size || 4711 (len == fs_info->sectorsize && 4712 btrfs_file_extent_compression(leaf, extent) != 4713 BTRFS_COMPRESS_NONE) || 4714 (len < i_size && i_size < fs_info->sectorsize)); 4715 return 0; 4716 } 4717 4718 len = btrfs_file_extent_num_bytes(leaf, extent); 4719 /* Last extent goes beyond i_size, no need to log a hole. */ 4720 if (key.offset + len > i_size) 4721 return 0; 4722 hole_start = key.offset + len; 4723 hole_size = i_size - hole_start; 4724 } 4725 btrfs_release_path(path); 4726 4727 /* Last extent ends at i_size. */ 4728 if (hole_size == 0) 4729 return 0; 4730 4731 hole_size = ALIGN(hole_size, fs_info->sectorsize); 4732 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0, 4733 hole_size, 0, hole_size, 0, 0, 0); 4734 return ret; 4735 } 4736 4737 /* 4738 * When we are logging a new inode X, check if it doesn't have a reference that 4739 * matches the reference from some other inode Y created in a past transaction 4740 * and that was renamed in the current transaction. If we don't do this, then at 4741 * log replay time we can lose inode Y (and all its files if it's a directory): 4742 * 4743 * mkdir /mnt/x 4744 * echo "hello world" > /mnt/x/foobar 4745 * sync 4746 * mv /mnt/x /mnt/y 4747 * mkdir /mnt/x # or touch /mnt/x 4748 * xfs_io -c fsync /mnt/x 4749 * <power fail> 4750 * mount fs, trigger log replay 4751 * 4752 * After the log replay procedure, we would lose the first directory and all its 4753 * files (file foobar). 4754 * For the case where inode Y is not a directory we simply end up losing it: 4755 * 4756 * echo "123" > /mnt/foo 4757 * sync 4758 * mv /mnt/foo /mnt/bar 4759 * echo "abc" > /mnt/foo 4760 * xfs_io -c fsync /mnt/foo 4761 * <power fail> 4762 * 4763 * We also need this for cases where a snapshot entry is replaced by some other 4764 * entry (file or directory) otherwise we end up with an unreplayable log due to 4765 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4766 * if it were a regular entry: 4767 * 4768 * mkdir /mnt/x 4769 * btrfs subvolume snapshot /mnt /mnt/x/snap 4770 * btrfs subvolume delete /mnt/x/snap 4771 * rmdir /mnt/x 4772 * mkdir /mnt/x 4773 * fsync /mnt/x or fsync some new file inside it 4774 * <power fail> 4775 * 4776 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4777 * the same transaction. 4778 */ 4779 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4780 const int slot, 4781 const struct btrfs_key *key, 4782 struct btrfs_inode *inode, 4783 u64 *other_ino, u64 *other_parent) 4784 { 4785 int ret; 4786 struct btrfs_path *search_path; 4787 char *name = NULL; 4788 u32 name_len = 0; 4789 u32 item_size = btrfs_item_size_nr(eb, slot); 4790 u32 cur_offset = 0; 4791 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4792 4793 search_path = btrfs_alloc_path(); 4794 if (!search_path) 4795 return -ENOMEM; 4796 search_path->search_commit_root = 1; 4797 search_path->skip_locking = 1; 4798 4799 while (cur_offset < item_size) { 4800 u64 parent; 4801 u32 this_name_len; 4802 u32 this_len; 4803 unsigned long name_ptr; 4804 struct btrfs_dir_item *di; 4805 4806 if (key->type == BTRFS_INODE_REF_KEY) { 4807 struct btrfs_inode_ref *iref; 4808 4809 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4810 parent = key->offset; 4811 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4812 name_ptr = (unsigned long)(iref + 1); 4813 this_len = sizeof(*iref) + this_name_len; 4814 } else { 4815 struct btrfs_inode_extref *extref; 4816 4817 extref = (struct btrfs_inode_extref *)(ptr + 4818 cur_offset); 4819 parent = btrfs_inode_extref_parent(eb, extref); 4820 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4821 name_ptr = (unsigned long)&extref->name; 4822 this_len = sizeof(*extref) + this_name_len; 4823 } 4824 4825 if (this_name_len > name_len) { 4826 char *new_name; 4827 4828 new_name = krealloc(name, this_name_len, GFP_NOFS); 4829 if (!new_name) { 4830 ret = -ENOMEM; 4831 goto out; 4832 } 4833 name_len = this_name_len; 4834 name = new_name; 4835 } 4836 4837 read_extent_buffer(eb, name, name_ptr, this_name_len); 4838 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 4839 parent, name, this_name_len, 0); 4840 if (di && !IS_ERR(di)) { 4841 struct btrfs_key di_key; 4842 4843 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4844 di, &di_key); 4845 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4846 if (di_key.objectid != key->objectid) { 4847 ret = 1; 4848 *other_ino = di_key.objectid; 4849 *other_parent = parent; 4850 } else { 4851 ret = 0; 4852 } 4853 } else { 4854 ret = -EAGAIN; 4855 } 4856 goto out; 4857 } else if (IS_ERR(di)) { 4858 ret = PTR_ERR(di); 4859 goto out; 4860 } 4861 btrfs_release_path(search_path); 4862 4863 cur_offset += this_len; 4864 } 4865 ret = 0; 4866 out: 4867 btrfs_free_path(search_path); 4868 kfree(name); 4869 return ret; 4870 } 4871 4872 struct btrfs_ino_list { 4873 u64 ino; 4874 u64 parent; 4875 struct list_head list; 4876 }; 4877 4878 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 4879 struct btrfs_root *root, 4880 struct btrfs_path *path, 4881 struct btrfs_log_ctx *ctx, 4882 u64 ino, u64 parent) 4883 { 4884 struct btrfs_ino_list *ino_elem; 4885 LIST_HEAD(inode_list); 4886 int ret = 0; 4887 4888 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4889 if (!ino_elem) 4890 return -ENOMEM; 4891 ino_elem->ino = ino; 4892 ino_elem->parent = parent; 4893 list_add_tail(&ino_elem->list, &inode_list); 4894 4895 while (!list_empty(&inode_list)) { 4896 struct btrfs_fs_info *fs_info = root->fs_info; 4897 struct btrfs_key key; 4898 struct inode *inode; 4899 4900 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 4901 list); 4902 ino = ino_elem->ino; 4903 parent = ino_elem->parent; 4904 list_del(&ino_elem->list); 4905 kfree(ino_elem); 4906 if (ret) 4907 continue; 4908 4909 btrfs_release_path(path); 4910 4911 key.objectid = ino; 4912 key.type = BTRFS_INODE_ITEM_KEY; 4913 key.offset = 0; 4914 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4915 /* 4916 * If the other inode that had a conflicting dir entry was 4917 * deleted in the current transaction, we need to log its parent 4918 * directory. 4919 */ 4920 if (IS_ERR(inode)) { 4921 ret = PTR_ERR(inode); 4922 if (ret == -ENOENT) { 4923 key.objectid = parent; 4924 inode = btrfs_iget(fs_info->sb, &key, root, 4925 NULL); 4926 if (IS_ERR(inode)) { 4927 ret = PTR_ERR(inode); 4928 } else { 4929 ret = btrfs_log_inode(trans, root, 4930 BTRFS_I(inode), 4931 LOG_OTHER_INODE_ALL, 4932 0, LLONG_MAX, ctx); 4933 iput(inode); 4934 } 4935 } 4936 continue; 4937 } 4938 /* 4939 * We are safe logging the other inode without acquiring its 4940 * lock as long as we log with the LOG_INODE_EXISTS mode. We 4941 * are safe against concurrent renames of the other inode as 4942 * well because during a rename we pin the log and update the 4943 * log with the new name before we unpin it. 4944 */ 4945 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 4946 LOG_OTHER_INODE, 0, LLONG_MAX, ctx); 4947 if (ret) { 4948 iput(inode); 4949 continue; 4950 } 4951 4952 key.objectid = ino; 4953 key.type = BTRFS_INODE_REF_KEY; 4954 key.offset = 0; 4955 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4956 if (ret < 0) { 4957 iput(inode); 4958 continue; 4959 } 4960 4961 while (true) { 4962 struct extent_buffer *leaf = path->nodes[0]; 4963 int slot = path->slots[0]; 4964 u64 other_ino = 0; 4965 u64 other_parent = 0; 4966 4967 if (slot >= btrfs_header_nritems(leaf)) { 4968 ret = btrfs_next_leaf(root, path); 4969 if (ret < 0) { 4970 break; 4971 } else if (ret > 0) { 4972 ret = 0; 4973 break; 4974 } 4975 continue; 4976 } 4977 4978 btrfs_item_key_to_cpu(leaf, &key, slot); 4979 if (key.objectid != ino || 4980 (key.type != BTRFS_INODE_REF_KEY && 4981 key.type != BTRFS_INODE_EXTREF_KEY)) { 4982 ret = 0; 4983 break; 4984 } 4985 4986 ret = btrfs_check_ref_name_override(leaf, slot, &key, 4987 BTRFS_I(inode), &other_ino, 4988 &other_parent); 4989 if (ret < 0) 4990 break; 4991 if (ret > 0) { 4992 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4993 if (!ino_elem) { 4994 ret = -ENOMEM; 4995 break; 4996 } 4997 ino_elem->ino = other_ino; 4998 ino_elem->parent = other_parent; 4999 list_add_tail(&ino_elem->list, &inode_list); 5000 ret = 0; 5001 } 5002 path->slots[0]++; 5003 } 5004 iput(inode); 5005 } 5006 5007 return ret; 5008 } 5009 5010 /* log a single inode in the tree log. 5011 * At least one parent directory for this inode must exist in the tree 5012 * or be logged already. 5013 * 5014 * Any items from this inode changed by the current transaction are copied 5015 * to the log tree. An extra reference is taken on any extents in this 5016 * file, allowing us to avoid a whole pile of corner cases around logging 5017 * blocks that have been removed from the tree. 5018 * 5019 * See LOG_INODE_ALL and related defines for a description of what inode_only 5020 * does. 5021 * 5022 * This handles both files and directories. 5023 */ 5024 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5025 struct btrfs_root *root, struct btrfs_inode *inode, 5026 int inode_only, 5027 const loff_t start, 5028 const loff_t end, 5029 struct btrfs_log_ctx *ctx) 5030 { 5031 struct btrfs_fs_info *fs_info = root->fs_info; 5032 struct btrfs_path *path; 5033 struct btrfs_path *dst_path; 5034 struct btrfs_key min_key; 5035 struct btrfs_key max_key; 5036 struct btrfs_root *log = root->log_root; 5037 u64 last_extent = 0; 5038 int err = 0; 5039 int ret; 5040 int nritems; 5041 int ins_start_slot = 0; 5042 int ins_nr; 5043 bool fast_search = false; 5044 u64 ino = btrfs_ino(inode); 5045 struct extent_map_tree *em_tree = &inode->extent_tree; 5046 u64 logged_isize = 0; 5047 bool need_log_inode_item = true; 5048 bool xattrs_logged = false; 5049 bool recursive_logging = false; 5050 5051 path = btrfs_alloc_path(); 5052 if (!path) 5053 return -ENOMEM; 5054 dst_path = btrfs_alloc_path(); 5055 if (!dst_path) { 5056 btrfs_free_path(path); 5057 return -ENOMEM; 5058 } 5059 5060 min_key.objectid = ino; 5061 min_key.type = BTRFS_INODE_ITEM_KEY; 5062 min_key.offset = 0; 5063 5064 max_key.objectid = ino; 5065 5066 5067 /* today the code can only do partial logging of directories */ 5068 if (S_ISDIR(inode->vfs_inode.i_mode) || 5069 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5070 &inode->runtime_flags) && 5071 inode_only >= LOG_INODE_EXISTS)) 5072 max_key.type = BTRFS_XATTR_ITEM_KEY; 5073 else 5074 max_key.type = (u8)-1; 5075 max_key.offset = (u64)-1; 5076 5077 /* 5078 * Only run delayed items if we are a dir or a new file. 5079 * Otherwise commit the delayed inode only, which is needed in 5080 * order for the log replay code to mark inodes for link count 5081 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items). 5082 */ 5083 if (S_ISDIR(inode->vfs_inode.i_mode) || 5084 inode->generation > fs_info->last_trans_committed) 5085 ret = btrfs_commit_inode_delayed_items(trans, inode); 5086 else 5087 ret = btrfs_commit_inode_delayed_inode(inode); 5088 5089 if (ret) { 5090 btrfs_free_path(path); 5091 btrfs_free_path(dst_path); 5092 return ret; 5093 } 5094 5095 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5096 recursive_logging = true; 5097 if (inode_only == LOG_OTHER_INODE) 5098 inode_only = LOG_INODE_EXISTS; 5099 else 5100 inode_only = LOG_INODE_ALL; 5101 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5102 } else { 5103 mutex_lock(&inode->log_mutex); 5104 } 5105 5106 /* 5107 * a brute force approach to making sure we get the most uptodate 5108 * copies of everything. 5109 */ 5110 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5111 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5112 5113 if (inode_only == LOG_INODE_EXISTS) 5114 max_key_type = BTRFS_XATTR_ITEM_KEY; 5115 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 5116 } else { 5117 if (inode_only == LOG_INODE_EXISTS) { 5118 /* 5119 * Make sure the new inode item we write to the log has 5120 * the same isize as the current one (if it exists). 5121 * This is necessary to prevent data loss after log 5122 * replay, and also to prevent doing a wrong expanding 5123 * truncate - for e.g. create file, write 4K into offset 5124 * 0, fsync, write 4K into offset 4096, add hard link, 5125 * fsync some other file (to sync log), power fail - if 5126 * we use the inode's current i_size, after log replay 5127 * we get a 8Kb file, with the last 4Kb extent as a hole 5128 * (zeroes), as if an expanding truncate happened, 5129 * instead of getting a file of 4Kb only. 5130 */ 5131 err = logged_inode_size(log, inode, path, &logged_isize); 5132 if (err) 5133 goto out_unlock; 5134 } 5135 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5136 &inode->runtime_flags)) { 5137 if (inode_only == LOG_INODE_EXISTS) { 5138 max_key.type = BTRFS_XATTR_ITEM_KEY; 5139 ret = drop_objectid_items(trans, log, path, ino, 5140 max_key.type); 5141 } else { 5142 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5143 &inode->runtime_flags); 5144 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5145 &inode->runtime_flags); 5146 while(1) { 5147 ret = btrfs_truncate_inode_items(trans, 5148 log, &inode->vfs_inode, 0, 0); 5149 if (ret != -EAGAIN) 5150 break; 5151 } 5152 } 5153 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5154 &inode->runtime_flags) || 5155 inode_only == LOG_INODE_EXISTS) { 5156 if (inode_only == LOG_INODE_ALL) 5157 fast_search = true; 5158 max_key.type = BTRFS_XATTR_ITEM_KEY; 5159 ret = drop_objectid_items(trans, log, path, ino, 5160 max_key.type); 5161 } else { 5162 if (inode_only == LOG_INODE_ALL) 5163 fast_search = true; 5164 goto log_extents; 5165 } 5166 5167 } 5168 if (ret) { 5169 err = ret; 5170 goto out_unlock; 5171 } 5172 5173 while (1) { 5174 ins_nr = 0; 5175 ret = btrfs_search_forward(root, &min_key, 5176 path, trans->transid); 5177 if (ret < 0) { 5178 err = ret; 5179 goto out_unlock; 5180 } 5181 if (ret != 0) 5182 break; 5183 again: 5184 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 5185 if (min_key.objectid != ino) 5186 break; 5187 if (min_key.type > max_key.type) 5188 break; 5189 5190 if (min_key.type == BTRFS_INODE_ITEM_KEY) 5191 need_log_inode_item = false; 5192 5193 if ((min_key.type == BTRFS_INODE_REF_KEY || 5194 min_key.type == BTRFS_INODE_EXTREF_KEY) && 5195 inode->generation == trans->transid && 5196 !recursive_logging) { 5197 u64 other_ino = 0; 5198 u64 other_parent = 0; 5199 5200 ret = btrfs_check_ref_name_override(path->nodes[0], 5201 path->slots[0], &min_key, inode, 5202 &other_ino, &other_parent); 5203 if (ret < 0) { 5204 err = ret; 5205 goto out_unlock; 5206 } else if (ret > 0 && ctx && 5207 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5208 if (ins_nr > 0) { 5209 ins_nr++; 5210 } else { 5211 ins_nr = 1; 5212 ins_start_slot = path->slots[0]; 5213 } 5214 ret = copy_items(trans, inode, dst_path, path, 5215 &last_extent, ins_start_slot, 5216 ins_nr, inode_only, 5217 logged_isize); 5218 if (ret < 0) { 5219 err = ret; 5220 goto out_unlock; 5221 } 5222 ins_nr = 0; 5223 5224 err = log_conflicting_inodes(trans, root, path, 5225 ctx, other_ino, other_parent); 5226 if (err) 5227 goto out_unlock; 5228 btrfs_release_path(path); 5229 goto next_key; 5230 } 5231 } 5232 5233 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5234 if (min_key.type == BTRFS_XATTR_ITEM_KEY) { 5235 if (ins_nr == 0) 5236 goto next_slot; 5237 ret = copy_items(trans, inode, dst_path, path, 5238 &last_extent, ins_start_slot, 5239 ins_nr, inode_only, logged_isize); 5240 if (ret < 0) { 5241 err = ret; 5242 goto out_unlock; 5243 } 5244 ins_nr = 0; 5245 if (ret) { 5246 btrfs_release_path(path); 5247 continue; 5248 } 5249 goto next_slot; 5250 } 5251 5252 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5253 ins_nr++; 5254 goto next_slot; 5255 } else if (!ins_nr) { 5256 ins_start_slot = path->slots[0]; 5257 ins_nr = 1; 5258 goto next_slot; 5259 } 5260 5261 ret = copy_items(trans, inode, dst_path, path, &last_extent, 5262 ins_start_slot, ins_nr, inode_only, 5263 logged_isize); 5264 if (ret < 0) { 5265 err = ret; 5266 goto out_unlock; 5267 } 5268 if (ret) { 5269 ins_nr = 0; 5270 btrfs_release_path(path); 5271 continue; 5272 } 5273 ins_nr = 1; 5274 ins_start_slot = path->slots[0]; 5275 next_slot: 5276 5277 nritems = btrfs_header_nritems(path->nodes[0]); 5278 path->slots[0]++; 5279 if (path->slots[0] < nritems) { 5280 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 5281 path->slots[0]); 5282 goto again; 5283 } 5284 if (ins_nr) { 5285 ret = copy_items(trans, inode, dst_path, path, 5286 &last_extent, ins_start_slot, 5287 ins_nr, inode_only, logged_isize); 5288 if (ret < 0) { 5289 err = ret; 5290 goto out_unlock; 5291 } 5292 ret = 0; 5293 ins_nr = 0; 5294 } 5295 btrfs_release_path(path); 5296 next_key: 5297 if (min_key.offset < (u64)-1) { 5298 min_key.offset++; 5299 } else if (min_key.type < max_key.type) { 5300 min_key.type++; 5301 min_key.offset = 0; 5302 } else { 5303 break; 5304 } 5305 } 5306 if (ins_nr) { 5307 ret = copy_items(trans, inode, dst_path, path, &last_extent, 5308 ins_start_slot, ins_nr, inode_only, 5309 logged_isize); 5310 if (ret < 0) { 5311 err = ret; 5312 goto out_unlock; 5313 } 5314 ret = 0; 5315 ins_nr = 0; 5316 } 5317 5318 btrfs_release_path(path); 5319 btrfs_release_path(dst_path); 5320 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 5321 if (err) 5322 goto out_unlock; 5323 xattrs_logged = true; 5324 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5325 btrfs_release_path(path); 5326 btrfs_release_path(dst_path); 5327 err = btrfs_log_trailing_hole(trans, root, inode, path); 5328 if (err) 5329 goto out_unlock; 5330 } 5331 log_extents: 5332 btrfs_release_path(path); 5333 btrfs_release_path(dst_path); 5334 if (need_log_inode_item) { 5335 err = log_inode_item(trans, log, dst_path, inode); 5336 if (!err && !xattrs_logged) { 5337 err = btrfs_log_all_xattrs(trans, root, inode, path, 5338 dst_path); 5339 btrfs_release_path(path); 5340 } 5341 if (err) 5342 goto out_unlock; 5343 } 5344 if (fast_search) { 5345 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 5346 ctx, start, end); 5347 if (ret) { 5348 err = ret; 5349 goto out_unlock; 5350 } 5351 } else if (inode_only == LOG_INODE_ALL) { 5352 struct extent_map *em, *n; 5353 5354 write_lock(&em_tree->lock); 5355 /* 5356 * We can't just remove every em if we're called for a ranged 5357 * fsync - that is, one that doesn't cover the whole possible 5358 * file range (0 to LLONG_MAX). This is because we can have 5359 * em's that fall outside the range we're logging and therefore 5360 * their ordered operations haven't completed yet 5361 * (btrfs_finish_ordered_io() not invoked yet). This means we 5362 * didn't get their respective file extent item in the fs/subvol 5363 * tree yet, and need to let the next fast fsync (one which 5364 * consults the list of modified extent maps) find the em so 5365 * that it logs a matching file extent item and waits for the 5366 * respective ordered operation to complete (if it's still 5367 * running). 5368 * 5369 * Removing every em outside the range we're logging would make 5370 * the next fast fsync not log their matching file extent items, 5371 * therefore making us lose data after a log replay. 5372 */ 5373 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 5374 list) { 5375 const u64 mod_end = em->mod_start + em->mod_len - 1; 5376 5377 if (em->mod_start >= start && mod_end <= end) 5378 list_del_init(&em->list); 5379 } 5380 write_unlock(&em_tree->lock); 5381 } 5382 5383 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5384 ret = log_directory_changes(trans, root, inode, path, dst_path, 5385 ctx); 5386 if (ret) { 5387 err = ret; 5388 goto out_unlock; 5389 } 5390 } 5391 5392 spin_lock(&inode->lock); 5393 inode->logged_trans = trans->transid; 5394 inode->last_log_commit = inode->last_sub_trans; 5395 spin_unlock(&inode->lock); 5396 out_unlock: 5397 mutex_unlock(&inode->log_mutex); 5398 5399 btrfs_free_path(path); 5400 btrfs_free_path(dst_path); 5401 return err; 5402 } 5403 5404 /* 5405 * Check if we must fallback to a transaction commit when logging an inode. 5406 * This must be called after logging the inode and is used only in the context 5407 * when fsyncing an inode requires the need to log some other inode - in which 5408 * case we can't lock the i_mutex of each other inode we need to log as that 5409 * can lead to deadlocks with concurrent fsync against other inodes (as we can 5410 * log inodes up or down in the hierarchy) or rename operations for example. So 5411 * we take the log_mutex of the inode after we have logged it and then check for 5412 * its last_unlink_trans value - this is safe because any task setting 5413 * last_unlink_trans must take the log_mutex and it must do this before it does 5414 * the actual unlink operation, so if we do this check before a concurrent task 5415 * sets last_unlink_trans it means we've logged a consistent version/state of 5416 * all the inode items, otherwise we are not sure and must do a transaction 5417 * commit (the concurrent task might have only updated last_unlink_trans before 5418 * we logged the inode or it might have also done the unlink). 5419 */ 5420 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, 5421 struct btrfs_inode *inode) 5422 { 5423 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5424 bool ret = false; 5425 5426 mutex_lock(&inode->log_mutex); 5427 if (inode->last_unlink_trans > fs_info->last_trans_committed) { 5428 /* 5429 * Make sure any commits to the log are forced to be full 5430 * commits. 5431 */ 5432 btrfs_set_log_full_commit(fs_info, trans); 5433 ret = true; 5434 } 5435 mutex_unlock(&inode->log_mutex); 5436 5437 return ret; 5438 } 5439 5440 /* 5441 * follow the dentry parent pointers up the chain and see if any 5442 * of the directories in it require a full commit before they can 5443 * be logged. Returns zero if nothing special needs to be done or 1 if 5444 * a full commit is required. 5445 */ 5446 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 5447 struct btrfs_inode *inode, 5448 struct dentry *parent, 5449 struct super_block *sb, 5450 u64 last_committed) 5451 { 5452 int ret = 0; 5453 struct dentry *old_parent = NULL; 5454 struct btrfs_inode *orig_inode = inode; 5455 5456 /* 5457 * for regular files, if its inode is already on disk, we don't 5458 * have to worry about the parents at all. This is because 5459 * we can use the last_unlink_trans field to record renames 5460 * and other fun in this file. 5461 */ 5462 if (S_ISREG(inode->vfs_inode.i_mode) && 5463 inode->generation <= last_committed && 5464 inode->last_unlink_trans <= last_committed) 5465 goto out; 5466 5467 if (!S_ISDIR(inode->vfs_inode.i_mode)) { 5468 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5469 goto out; 5470 inode = BTRFS_I(d_inode(parent)); 5471 } 5472 5473 while (1) { 5474 /* 5475 * If we are logging a directory then we start with our inode, 5476 * not our parent's inode, so we need to skip setting the 5477 * logged_trans so that further down in the log code we don't 5478 * think this inode has already been logged. 5479 */ 5480 if (inode != orig_inode) 5481 inode->logged_trans = trans->transid; 5482 smp_mb(); 5483 5484 if (btrfs_must_commit_transaction(trans, inode)) { 5485 ret = 1; 5486 break; 5487 } 5488 5489 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5490 break; 5491 5492 if (IS_ROOT(parent)) { 5493 inode = BTRFS_I(d_inode(parent)); 5494 if (btrfs_must_commit_transaction(trans, inode)) 5495 ret = 1; 5496 break; 5497 } 5498 5499 parent = dget_parent(parent); 5500 dput(old_parent); 5501 old_parent = parent; 5502 inode = BTRFS_I(d_inode(parent)); 5503 5504 } 5505 dput(old_parent); 5506 out: 5507 return ret; 5508 } 5509 5510 struct btrfs_dir_list { 5511 u64 ino; 5512 struct list_head list; 5513 }; 5514 5515 /* 5516 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5517 * details about the why it is needed. 5518 * This is a recursive operation - if an existing dentry corresponds to a 5519 * directory, that directory's new entries are logged too (same behaviour as 5520 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5521 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5522 * complains about the following circular lock dependency / possible deadlock: 5523 * 5524 * CPU0 CPU1 5525 * ---- ---- 5526 * lock(&type->i_mutex_dir_key#3/2); 5527 * lock(sb_internal#2); 5528 * lock(&type->i_mutex_dir_key#3/2); 5529 * lock(&sb->s_type->i_mutex_key#14); 5530 * 5531 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5532 * sb_start_intwrite() in btrfs_start_transaction(). 5533 * Not locking i_mutex of the inodes is still safe because: 5534 * 5535 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5536 * that while logging the inode new references (names) are added or removed 5537 * from the inode, leaving the logged inode item with a link count that does 5538 * not match the number of logged inode reference items. This is fine because 5539 * at log replay time we compute the real number of links and correct the 5540 * link count in the inode item (see replay_one_buffer() and 5541 * link_to_fixup_dir()); 5542 * 5543 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5544 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5545 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5546 * has a size that doesn't match the sum of the lengths of all the logged 5547 * names. This does not result in a problem because if a dir_item key is 5548 * logged but its matching dir_index key is not logged, at log replay time we 5549 * don't use it to replay the respective name (see replay_one_name()). On the 5550 * other hand if only the dir_index key ends up being logged, the respective 5551 * name is added to the fs/subvol tree with both the dir_item and dir_index 5552 * keys created (see replay_one_name()). 5553 * The directory's inode item with a wrong i_size is not a problem as well, 5554 * since we don't use it at log replay time to set the i_size in the inode 5555 * item of the fs/subvol tree (see overwrite_item()). 5556 */ 5557 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5558 struct btrfs_root *root, 5559 struct btrfs_inode *start_inode, 5560 struct btrfs_log_ctx *ctx) 5561 { 5562 struct btrfs_fs_info *fs_info = root->fs_info; 5563 struct btrfs_root *log = root->log_root; 5564 struct btrfs_path *path; 5565 LIST_HEAD(dir_list); 5566 struct btrfs_dir_list *dir_elem; 5567 int ret = 0; 5568 5569 path = btrfs_alloc_path(); 5570 if (!path) 5571 return -ENOMEM; 5572 5573 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5574 if (!dir_elem) { 5575 btrfs_free_path(path); 5576 return -ENOMEM; 5577 } 5578 dir_elem->ino = btrfs_ino(start_inode); 5579 list_add_tail(&dir_elem->list, &dir_list); 5580 5581 while (!list_empty(&dir_list)) { 5582 struct extent_buffer *leaf; 5583 struct btrfs_key min_key; 5584 int nritems; 5585 int i; 5586 5587 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5588 list); 5589 if (ret) 5590 goto next_dir_inode; 5591 5592 min_key.objectid = dir_elem->ino; 5593 min_key.type = BTRFS_DIR_ITEM_KEY; 5594 min_key.offset = 0; 5595 again: 5596 btrfs_release_path(path); 5597 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5598 if (ret < 0) { 5599 goto next_dir_inode; 5600 } else if (ret > 0) { 5601 ret = 0; 5602 goto next_dir_inode; 5603 } 5604 5605 process_leaf: 5606 leaf = path->nodes[0]; 5607 nritems = btrfs_header_nritems(leaf); 5608 for (i = path->slots[0]; i < nritems; i++) { 5609 struct btrfs_dir_item *di; 5610 struct btrfs_key di_key; 5611 struct inode *di_inode; 5612 struct btrfs_dir_list *new_dir_elem; 5613 int log_mode = LOG_INODE_EXISTS; 5614 int type; 5615 5616 btrfs_item_key_to_cpu(leaf, &min_key, i); 5617 if (min_key.objectid != dir_elem->ino || 5618 min_key.type != BTRFS_DIR_ITEM_KEY) 5619 goto next_dir_inode; 5620 5621 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5622 type = btrfs_dir_type(leaf, di); 5623 if (btrfs_dir_transid(leaf, di) < trans->transid && 5624 type != BTRFS_FT_DIR) 5625 continue; 5626 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5627 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5628 continue; 5629 5630 btrfs_release_path(path); 5631 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL); 5632 if (IS_ERR(di_inode)) { 5633 ret = PTR_ERR(di_inode); 5634 goto next_dir_inode; 5635 } 5636 5637 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) { 5638 iput(di_inode); 5639 break; 5640 } 5641 5642 ctx->log_new_dentries = false; 5643 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5644 log_mode = LOG_INODE_ALL; 5645 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), 5646 log_mode, 0, LLONG_MAX, ctx); 5647 if (!ret && 5648 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode))) 5649 ret = 1; 5650 iput(di_inode); 5651 if (ret) 5652 goto next_dir_inode; 5653 if (ctx->log_new_dentries) { 5654 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5655 GFP_NOFS); 5656 if (!new_dir_elem) { 5657 ret = -ENOMEM; 5658 goto next_dir_inode; 5659 } 5660 new_dir_elem->ino = di_key.objectid; 5661 list_add_tail(&new_dir_elem->list, &dir_list); 5662 } 5663 break; 5664 } 5665 if (i == nritems) { 5666 ret = btrfs_next_leaf(log, path); 5667 if (ret < 0) { 5668 goto next_dir_inode; 5669 } else if (ret > 0) { 5670 ret = 0; 5671 goto next_dir_inode; 5672 } 5673 goto process_leaf; 5674 } 5675 if (min_key.offset < (u64)-1) { 5676 min_key.offset++; 5677 goto again; 5678 } 5679 next_dir_inode: 5680 list_del(&dir_elem->list); 5681 kfree(dir_elem); 5682 } 5683 5684 btrfs_free_path(path); 5685 return ret; 5686 } 5687 5688 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5689 struct btrfs_inode *inode, 5690 struct btrfs_log_ctx *ctx) 5691 { 5692 struct btrfs_fs_info *fs_info = trans->fs_info; 5693 int ret; 5694 struct btrfs_path *path; 5695 struct btrfs_key key; 5696 struct btrfs_root *root = inode->root; 5697 const u64 ino = btrfs_ino(inode); 5698 5699 path = btrfs_alloc_path(); 5700 if (!path) 5701 return -ENOMEM; 5702 path->skip_locking = 1; 5703 path->search_commit_root = 1; 5704 5705 key.objectid = ino; 5706 key.type = BTRFS_INODE_REF_KEY; 5707 key.offset = 0; 5708 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5709 if (ret < 0) 5710 goto out; 5711 5712 while (true) { 5713 struct extent_buffer *leaf = path->nodes[0]; 5714 int slot = path->slots[0]; 5715 u32 cur_offset = 0; 5716 u32 item_size; 5717 unsigned long ptr; 5718 5719 if (slot >= btrfs_header_nritems(leaf)) { 5720 ret = btrfs_next_leaf(root, path); 5721 if (ret < 0) 5722 goto out; 5723 else if (ret > 0) 5724 break; 5725 continue; 5726 } 5727 5728 btrfs_item_key_to_cpu(leaf, &key, slot); 5729 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5730 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5731 break; 5732 5733 item_size = btrfs_item_size_nr(leaf, slot); 5734 ptr = btrfs_item_ptr_offset(leaf, slot); 5735 while (cur_offset < item_size) { 5736 struct btrfs_key inode_key; 5737 struct inode *dir_inode; 5738 5739 inode_key.type = BTRFS_INODE_ITEM_KEY; 5740 inode_key.offset = 0; 5741 5742 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5743 struct btrfs_inode_extref *extref; 5744 5745 extref = (struct btrfs_inode_extref *) 5746 (ptr + cur_offset); 5747 inode_key.objectid = btrfs_inode_extref_parent( 5748 leaf, extref); 5749 cur_offset += sizeof(*extref); 5750 cur_offset += btrfs_inode_extref_name_len(leaf, 5751 extref); 5752 } else { 5753 inode_key.objectid = key.offset; 5754 cur_offset = item_size; 5755 } 5756 5757 dir_inode = btrfs_iget(fs_info->sb, &inode_key, 5758 root, NULL); 5759 /* 5760 * If the parent inode was deleted, return an error to 5761 * fallback to a transaction commit. This is to prevent 5762 * getting an inode that was moved from one parent A to 5763 * a parent B, got its former parent A deleted and then 5764 * it got fsync'ed, from existing at both parents after 5765 * a log replay (and the old parent still existing). 5766 * Example: 5767 * 5768 * mkdir /mnt/A 5769 * mkdir /mnt/B 5770 * touch /mnt/B/bar 5771 * sync 5772 * mv /mnt/B/bar /mnt/A/bar 5773 * mv -T /mnt/A /mnt/B 5774 * fsync /mnt/B/bar 5775 * <power fail> 5776 * 5777 * If we ignore the old parent B which got deleted, 5778 * after a log replay we would have file bar linked 5779 * at both parents and the old parent B would still 5780 * exist. 5781 */ 5782 if (IS_ERR(dir_inode)) { 5783 ret = PTR_ERR(dir_inode); 5784 goto out; 5785 } 5786 5787 if (ctx) 5788 ctx->log_new_dentries = false; 5789 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), 5790 LOG_INODE_ALL, 0, LLONG_MAX, ctx); 5791 if (!ret && 5792 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode))) 5793 ret = 1; 5794 if (!ret && ctx && ctx->log_new_dentries) 5795 ret = log_new_dir_dentries(trans, root, 5796 BTRFS_I(dir_inode), ctx); 5797 iput(dir_inode); 5798 if (ret) 5799 goto out; 5800 } 5801 path->slots[0]++; 5802 } 5803 ret = 0; 5804 out: 5805 btrfs_free_path(path); 5806 return ret; 5807 } 5808 5809 /* 5810 * helper function around btrfs_log_inode to make sure newly created 5811 * parent directories also end up in the log. A minimal inode and backref 5812 * only logging is done of any parent directories that are older than 5813 * the last committed transaction 5814 */ 5815 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 5816 struct btrfs_inode *inode, 5817 struct dentry *parent, 5818 const loff_t start, 5819 const loff_t end, 5820 int inode_only, 5821 struct btrfs_log_ctx *ctx) 5822 { 5823 struct btrfs_root *root = inode->root; 5824 struct btrfs_fs_info *fs_info = root->fs_info; 5825 struct super_block *sb; 5826 struct dentry *old_parent = NULL; 5827 int ret = 0; 5828 u64 last_committed = fs_info->last_trans_committed; 5829 bool log_dentries = false; 5830 struct btrfs_inode *orig_inode = inode; 5831 5832 sb = inode->vfs_inode.i_sb; 5833 5834 if (btrfs_test_opt(fs_info, NOTREELOG)) { 5835 ret = 1; 5836 goto end_no_trans; 5837 } 5838 5839 /* 5840 * The prev transaction commit doesn't complete, we need do 5841 * full commit by ourselves. 5842 */ 5843 if (fs_info->last_trans_log_full_commit > 5844 fs_info->last_trans_committed) { 5845 ret = 1; 5846 goto end_no_trans; 5847 } 5848 5849 if (btrfs_root_refs(&root->root_item) == 0) { 5850 ret = 1; 5851 goto end_no_trans; 5852 } 5853 5854 ret = check_parent_dirs_for_sync(trans, inode, parent, sb, 5855 last_committed); 5856 if (ret) 5857 goto end_no_trans; 5858 5859 /* 5860 * Skip already logged inodes or inodes corresponding to tmpfiles 5861 * (since logging them is pointless, a link count of 0 means they 5862 * will never be accessible). 5863 */ 5864 if (btrfs_inode_in_log(inode, trans->transid) || 5865 inode->vfs_inode.i_nlink == 0) { 5866 ret = BTRFS_NO_LOG_SYNC; 5867 goto end_no_trans; 5868 } 5869 5870 ret = start_log_trans(trans, root, ctx); 5871 if (ret) 5872 goto end_no_trans; 5873 5874 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 5875 if (ret) 5876 goto end_trans; 5877 5878 /* 5879 * for regular files, if its inode is already on disk, we don't 5880 * have to worry about the parents at all. This is because 5881 * we can use the last_unlink_trans field to record renames 5882 * and other fun in this file. 5883 */ 5884 if (S_ISREG(inode->vfs_inode.i_mode) && 5885 inode->generation <= last_committed && 5886 inode->last_unlink_trans <= last_committed) { 5887 ret = 0; 5888 goto end_trans; 5889 } 5890 5891 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) 5892 log_dentries = true; 5893 5894 /* 5895 * On unlink we must make sure all our current and old parent directory 5896 * inodes are fully logged. This is to prevent leaving dangling 5897 * directory index entries in directories that were our parents but are 5898 * not anymore. Not doing this results in old parent directory being 5899 * impossible to delete after log replay (rmdir will always fail with 5900 * error -ENOTEMPTY). 5901 * 5902 * Example 1: 5903 * 5904 * mkdir testdir 5905 * touch testdir/foo 5906 * ln testdir/foo testdir/bar 5907 * sync 5908 * unlink testdir/bar 5909 * xfs_io -c fsync testdir/foo 5910 * <power failure> 5911 * mount fs, triggers log replay 5912 * 5913 * If we don't log the parent directory (testdir), after log replay the 5914 * directory still has an entry pointing to the file inode using the bar 5915 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 5916 * the file inode has a link count of 1. 5917 * 5918 * Example 2: 5919 * 5920 * mkdir testdir 5921 * touch foo 5922 * ln foo testdir/foo2 5923 * ln foo testdir/foo3 5924 * sync 5925 * unlink testdir/foo3 5926 * xfs_io -c fsync foo 5927 * <power failure> 5928 * mount fs, triggers log replay 5929 * 5930 * Similar as the first example, after log replay the parent directory 5931 * testdir still has an entry pointing to the inode file with name foo3 5932 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 5933 * and has a link count of 2. 5934 */ 5935 if (inode->last_unlink_trans > last_committed) { 5936 ret = btrfs_log_all_parents(trans, orig_inode, ctx); 5937 if (ret) 5938 goto end_trans; 5939 } 5940 5941 /* 5942 * If a new hard link was added to the inode in the current transaction 5943 * and its link count is now greater than 1, we need to fallback to a 5944 * transaction commit, otherwise we can end up not logging all its new 5945 * parents for all the hard links. Here just from the dentry used to 5946 * fsync, we can not visit the ancestor inodes for all the other hard 5947 * links to figure out if any is new, so we fallback to a transaction 5948 * commit (instead of adding a lot of complexity of scanning a btree, 5949 * since this scenario is not a common use case). 5950 */ 5951 if (inode->vfs_inode.i_nlink > 1 && 5952 inode->last_link_trans > last_committed) { 5953 ret = -EMLINK; 5954 goto end_trans; 5955 } 5956 5957 while (1) { 5958 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5959 break; 5960 5961 inode = BTRFS_I(d_inode(parent)); 5962 if (root != inode->root) 5963 break; 5964 5965 if (inode->generation > last_committed) { 5966 ret = btrfs_log_inode(trans, root, inode, 5967 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx); 5968 if (ret) 5969 goto end_trans; 5970 } 5971 if (IS_ROOT(parent)) 5972 break; 5973 5974 parent = dget_parent(parent); 5975 dput(old_parent); 5976 old_parent = parent; 5977 } 5978 if (log_dentries) 5979 ret = log_new_dir_dentries(trans, root, orig_inode, ctx); 5980 else 5981 ret = 0; 5982 end_trans: 5983 dput(old_parent); 5984 if (ret < 0) { 5985 btrfs_set_log_full_commit(fs_info, trans); 5986 ret = 1; 5987 } 5988 5989 if (ret) 5990 btrfs_remove_log_ctx(root, ctx); 5991 btrfs_end_log_trans(root); 5992 end_no_trans: 5993 return ret; 5994 } 5995 5996 /* 5997 * it is not safe to log dentry if the chunk root has added new 5998 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 5999 * If this returns 1, you must commit the transaction to safely get your 6000 * data on disk. 6001 */ 6002 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6003 struct dentry *dentry, 6004 const loff_t start, 6005 const loff_t end, 6006 struct btrfs_log_ctx *ctx) 6007 { 6008 struct dentry *parent = dget_parent(dentry); 6009 int ret; 6010 6011 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6012 start, end, LOG_INODE_ALL, ctx); 6013 dput(parent); 6014 6015 return ret; 6016 } 6017 6018 /* 6019 * should be called during mount to recover any replay any log trees 6020 * from the FS 6021 */ 6022 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6023 { 6024 int ret; 6025 struct btrfs_path *path; 6026 struct btrfs_trans_handle *trans; 6027 struct btrfs_key key; 6028 struct btrfs_key found_key; 6029 struct btrfs_key tmp_key; 6030 struct btrfs_root *log; 6031 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6032 struct walk_control wc = { 6033 .process_func = process_one_buffer, 6034 .stage = 0, 6035 }; 6036 6037 path = btrfs_alloc_path(); 6038 if (!path) 6039 return -ENOMEM; 6040 6041 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6042 6043 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6044 if (IS_ERR(trans)) { 6045 ret = PTR_ERR(trans); 6046 goto error; 6047 } 6048 6049 wc.trans = trans; 6050 wc.pin = 1; 6051 6052 ret = walk_log_tree(trans, log_root_tree, &wc); 6053 if (ret) { 6054 btrfs_handle_fs_error(fs_info, ret, 6055 "Failed to pin buffers while recovering log root tree."); 6056 goto error; 6057 } 6058 6059 again: 6060 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6061 key.offset = (u64)-1; 6062 key.type = BTRFS_ROOT_ITEM_KEY; 6063 6064 while (1) { 6065 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6066 6067 if (ret < 0) { 6068 btrfs_handle_fs_error(fs_info, ret, 6069 "Couldn't find tree log root."); 6070 goto error; 6071 } 6072 if (ret > 0) { 6073 if (path->slots[0] == 0) 6074 break; 6075 path->slots[0]--; 6076 } 6077 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6078 path->slots[0]); 6079 btrfs_release_path(path); 6080 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6081 break; 6082 6083 log = btrfs_read_fs_root(log_root_tree, &found_key); 6084 if (IS_ERR(log)) { 6085 ret = PTR_ERR(log); 6086 btrfs_handle_fs_error(fs_info, ret, 6087 "Couldn't read tree log root."); 6088 goto error; 6089 } 6090 6091 tmp_key.objectid = found_key.offset; 6092 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 6093 tmp_key.offset = (u64)-1; 6094 6095 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 6096 if (IS_ERR(wc.replay_dest)) { 6097 ret = PTR_ERR(wc.replay_dest); 6098 free_extent_buffer(log->node); 6099 free_extent_buffer(log->commit_root); 6100 kfree(log); 6101 btrfs_handle_fs_error(fs_info, ret, 6102 "Couldn't read target root for tree log recovery."); 6103 goto error; 6104 } 6105 6106 wc.replay_dest->log_root = log; 6107 btrfs_record_root_in_trans(trans, wc.replay_dest); 6108 ret = walk_log_tree(trans, log, &wc); 6109 6110 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6111 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6112 path); 6113 } 6114 6115 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6116 struct btrfs_root *root = wc.replay_dest; 6117 6118 btrfs_release_path(path); 6119 6120 /* 6121 * We have just replayed everything, and the highest 6122 * objectid of fs roots probably has changed in case 6123 * some inode_item's got replayed. 6124 * 6125 * root->objectid_mutex is not acquired as log replay 6126 * could only happen during mount. 6127 */ 6128 ret = btrfs_find_highest_objectid(root, 6129 &root->highest_objectid); 6130 } 6131 6132 key.offset = found_key.offset - 1; 6133 wc.replay_dest->log_root = NULL; 6134 free_extent_buffer(log->node); 6135 free_extent_buffer(log->commit_root); 6136 kfree(log); 6137 6138 if (ret) 6139 goto error; 6140 6141 if (found_key.offset == 0) 6142 break; 6143 } 6144 btrfs_release_path(path); 6145 6146 /* step one is to pin it all, step two is to replay just inodes */ 6147 if (wc.pin) { 6148 wc.pin = 0; 6149 wc.process_func = replay_one_buffer; 6150 wc.stage = LOG_WALK_REPLAY_INODES; 6151 goto again; 6152 } 6153 /* step three is to replay everything */ 6154 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6155 wc.stage++; 6156 goto again; 6157 } 6158 6159 btrfs_free_path(path); 6160 6161 /* step 4: commit the transaction, which also unpins the blocks */ 6162 ret = btrfs_commit_transaction(trans); 6163 if (ret) 6164 return ret; 6165 6166 free_extent_buffer(log_root_tree->node); 6167 log_root_tree->log_root = NULL; 6168 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6169 kfree(log_root_tree); 6170 6171 return 0; 6172 error: 6173 if (wc.trans) 6174 btrfs_end_transaction(wc.trans); 6175 btrfs_free_path(path); 6176 return ret; 6177 } 6178 6179 /* 6180 * there are some corner cases where we want to force a full 6181 * commit instead of allowing a directory to be logged. 6182 * 6183 * They revolve around files there were unlinked from the directory, and 6184 * this function updates the parent directory so that a full commit is 6185 * properly done if it is fsync'd later after the unlinks are done. 6186 * 6187 * Must be called before the unlink operations (updates to the subvolume tree, 6188 * inodes, etc) are done. 6189 */ 6190 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6191 struct btrfs_inode *dir, struct btrfs_inode *inode, 6192 int for_rename) 6193 { 6194 /* 6195 * when we're logging a file, if it hasn't been renamed 6196 * or unlinked, and its inode is fully committed on disk, 6197 * we don't have to worry about walking up the directory chain 6198 * to log its parents. 6199 * 6200 * So, we use the last_unlink_trans field to put this transid 6201 * into the file. When the file is logged we check it and 6202 * don't log the parents if the file is fully on disk. 6203 */ 6204 mutex_lock(&inode->log_mutex); 6205 inode->last_unlink_trans = trans->transid; 6206 mutex_unlock(&inode->log_mutex); 6207 6208 /* 6209 * if this directory was already logged any new 6210 * names for this file/dir will get recorded 6211 */ 6212 smp_mb(); 6213 if (dir->logged_trans == trans->transid) 6214 return; 6215 6216 /* 6217 * if the inode we're about to unlink was logged, 6218 * the log will be properly updated for any new names 6219 */ 6220 if (inode->logged_trans == trans->transid) 6221 return; 6222 6223 /* 6224 * when renaming files across directories, if the directory 6225 * there we're unlinking from gets fsync'd later on, there's 6226 * no way to find the destination directory later and fsync it 6227 * properly. So, we have to be conservative and force commits 6228 * so the new name gets discovered. 6229 */ 6230 if (for_rename) 6231 goto record; 6232 6233 /* we can safely do the unlink without any special recording */ 6234 return; 6235 6236 record: 6237 mutex_lock(&dir->log_mutex); 6238 dir->last_unlink_trans = trans->transid; 6239 mutex_unlock(&dir->log_mutex); 6240 } 6241 6242 /* 6243 * Make sure that if someone attempts to fsync the parent directory of a deleted 6244 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6245 * that after replaying the log tree of the parent directory's root we will not 6246 * see the snapshot anymore and at log replay time we will not see any log tree 6247 * corresponding to the deleted snapshot's root, which could lead to replaying 6248 * it after replaying the log tree of the parent directory (which would replay 6249 * the snapshot delete operation). 6250 * 6251 * Must be called before the actual snapshot destroy operation (updates to the 6252 * parent root and tree of tree roots trees, etc) are done. 6253 */ 6254 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6255 struct btrfs_inode *dir) 6256 { 6257 mutex_lock(&dir->log_mutex); 6258 dir->last_unlink_trans = trans->transid; 6259 mutex_unlock(&dir->log_mutex); 6260 } 6261 6262 /* 6263 * Call this after adding a new name for a file and it will properly 6264 * update the log to reflect the new name. 6265 * 6266 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's 6267 * true (because it's not used). 6268 * 6269 * Return value depends on whether @sync_log is true or false. 6270 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6271 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT 6272 * otherwise. 6273 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to 6274 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log, 6275 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6276 * committed (without attempting to sync the log). 6277 */ 6278 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 6279 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6280 struct dentry *parent, 6281 bool sync_log, struct btrfs_log_ctx *ctx) 6282 { 6283 struct btrfs_fs_info *fs_info = trans->fs_info; 6284 int ret; 6285 6286 /* 6287 * this will force the logging code to walk the dentry chain 6288 * up for the file 6289 */ 6290 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6291 inode->last_unlink_trans = trans->transid; 6292 6293 /* 6294 * if this inode hasn't been logged and directory we're renaming it 6295 * from hasn't been logged, we don't need to log it 6296 */ 6297 if (inode->logged_trans <= fs_info->last_trans_committed && 6298 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed)) 6299 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT : 6300 BTRFS_DONT_NEED_LOG_SYNC; 6301 6302 if (sync_log) { 6303 struct btrfs_log_ctx ctx2; 6304 6305 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode); 6306 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6307 LOG_INODE_EXISTS, &ctx2); 6308 if (ret == BTRFS_NO_LOG_SYNC) 6309 return BTRFS_DONT_NEED_TRANS_COMMIT; 6310 else if (ret) 6311 return BTRFS_NEED_TRANS_COMMIT; 6312 6313 ret = btrfs_sync_log(trans, inode->root, &ctx2); 6314 if (ret) 6315 return BTRFS_NEED_TRANS_COMMIT; 6316 return BTRFS_DONT_NEED_TRANS_COMMIT; 6317 } 6318 6319 ASSERT(ctx); 6320 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6321 LOG_INODE_EXISTS, ctx); 6322 if (ret == BTRFS_NO_LOG_SYNC) 6323 return BTRFS_DONT_NEED_LOG_SYNC; 6324 else if (ret) 6325 return BTRFS_NEED_TRANS_COMMIT; 6326 6327 return BTRFS_NEED_LOG_SYNC; 6328 } 6329 6330