xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 5104d265)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "compat.h"
30 #include "tree-log.h"
31 #include "hash.h"
32 
33 /* magic values for the inode_only field in btrfs_log_inode:
34  *
35  * LOG_INODE_ALL means to log everything
36  * LOG_INODE_EXISTS means to log just enough to recreate the inode
37  * during log replay
38  */
39 #define LOG_INODE_ALL 0
40 #define LOG_INODE_EXISTS 1
41 
42 /*
43  * directory trouble cases
44  *
45  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46  * log, we must force a full commit before doing an fsync of the directory
47  * where the unlink was done.
48  * ---> record transid of last unlink/rename per directory
49  *
50  * mkdir foo/some_dir
51  * normal commit
52  * rename foo/some_dir foo2/some_dir
53  * mkdir foo/some_dir
54  * fsync foo/some_dir/some_file
55  *
56  * The fsync above will unlink the original some_dir without recording
57  * it in its new location (foo2).  After a crash, some_dir will be gone
58  * unless the fsync of some_file forces a full commit
59  *
60  * 2) we must log any new names for any file or dir that is in the fsync
61  * log. ---> check inode while renaming/linking.
62  *
63  * 2a) we must log any new names for any file or dir during rename
64  * when the directory they are being removed from was logged.
65  * ---> check inode and old parent dir during rename
66  *
67  *  2a is actually the more important variant.  With the extra logging
68  *  a crash might unlink the old name without recreating the new one
69  *
70  * 3) after a crash, we must go through any directories with a link count
71  * of zero and redo the rm -rf
72  *
73  * mkdir f1/foo
74  * normal commit
75  * rm -rf f1/foo
76  * fsync(f1)
77  *
78  * The directory f1 was fully removed from the FS, but fsync was never
79  * called on f1, only its parent dir.  After a crash the rm -rf must
80  * be replayed.  This must be able to recurse down the entire
81  * directory tree.  The inode link count fixup code takes care of the
82  * ugly details.
83  */
84 
85 /*
86  * stages for the tree walking.  The first
87  * stage (0) is to only pin down the blocks we find
88  * the second stage (1) is to make sure that all the inodes
89  * we find in the log are created in the subvolume.
90  *
91  * The last stage is to deal with directories and links and extents
92  * and all the other fun semantics
93  */
94 #define LOG_WALK_PIN_ONLY 0
95 #define LOG_WALK_REPLAY_INODES 1
96 #define LOG_WALK_REPLAY_ALL 2
97 
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 			     struct btrfs_root *root, struct inode *inode,
100 			     int inode_only);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 			     struct btrfs_root *root,
103 			     struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 				       struct btrfs_root *root,
106 				       struct btrfs_root *log,
107 				       struct btrfs_path *path,
108 				       u64 dirid, int del_all);
109 
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132 
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 			   struct btrfs_root *root)
140 {
141 	int ret;
142 	int err = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 	if (root->log_root) {
146 		if (!root->log_start_pid) {
147 			root->log_start_pid = current->pid;
148 			root->log_multiple_pids = false;
149 		} else if (root->log_start_pid != current->pid) {
150 			root->log_multiple_pids = true;
151 		}
152 
153 		atomic_inc(&root->log_batch);
154 		atomic_inc(&root->log_writers);
155 		mutex_unlock(&root->log_mutex);
156 		return 0;
157 	}
158 	root->log_multiple_pids = false;
159 	root->log_start_pid = current->pid;
160 	mutex_lock(&root->fs_info->tree_log_mutex);
161 	if (!root->fs_info->log_root_tree) {
162 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
163 		if (ret)
164 			err = ret;
165 	}
166 	if (err == 0 && !root->log_root) {
167 		ret = btrfs_add_log_tree(trans, root);
168 		if (ret)
169 			err = ret;
170 	}
171 	mutex_unlock(&root->fs_info->tree_log_mutex);
172 	atomic_inc(&root->log_batch);
173 	atomic_inc(&root->log_writers);
174 	mutex_unlock(&root->log_mutex);
175 	return err;
176 }
177 
178 /*
179  * returns 0 if there was a log transaction running and we were able
180  * to join, or returns -ENOENT if there were not transactions
181  * in progress
182  */
183 static int join_running_log_trans(struct btrfs_root *root)
184 {
185 	int ret = -ENOENT;
186 
187 	smp_mb();
188 	if (!root->log_root)
189 		return -ENOENT;
190 
191 	mutex_lock(&root->log_mutex);
192 	if (root->log_root) {
193 		ret = 0;
194 		atomic_inc(&root->log_writers);
195 	}
196 	mutex_unlock(&root->log_mutex);
197 	return ret;
198 }
199 
200 /*
201  * This either makes the current running log transaction wait
202  * until you call btrfs_end_log_trans() or it makes any future
203  * log transactions wait until you call btrfs_end_log_trans()
204  */
205 int btrfs_pin_log_trans(struct btrfs_root *root)
206 {
207 	int ret = -ENOENT;
208 
209 	mutex_lock(&root->log_mutex);
210 	atomic_inc(&root->log_writers);
211 	mutex_unlock(&root->log_mutex);
212 	return ret;
213 }
214 
215 /*
216  * indicate we're done making changes to the log tree
217  * and wake up anyone waiting to do a sync
218  */
219 void btrfs_end_log_trans(struct btrfs_root *root)
220 {
221 	if (atomic_dec_and_test(&root->log_writers)) {
222 		smp_mb();
223 		if (waitqueue_active(&root->log_writer_wait))
224 			wake_up(&root->log_writer_wait);
225 	}
226 }
227 
228 
229 /*
230  * the walk control struct is used to pass state down the chain when
231  * processing the log tree.  The stage field tells us which part
232  * of the log tree processing we are currently doing.  The others
233  * are state fields used for that specific part
234  */
235 struct walk_control {
236 	/* should we free the extent on disk when done?  This is used
237 	 * at transaction commit time while freeing a log tree
238 	 */
239 	int free;
240 
241 	/* should we write out the extent buffer?  This is used
242 	 * while flushing the log tree to disk during a sync
243 	 */
244 	int write;
245 
246 	/* should we wait for the extent buffer io to finish?  Also used
247 	 * while flushing the log tree to disk for a sync
248 	 */
249 	int wait;
250 
251 	/* pin only walk, we record which extents on disk belong to the
252 	 * log trees
253 	 */
254 	int pin;
255 
256 	/* what stage of the replay code we're currently in */
257 	int stage;
258 
259 	/* the root we are currently replaying */
260 	struct btrfs_root *replay_dest;
261 
262 	/* the trans handle for the current replay */
263 	struct btrfs_trans_handle *trans;
264 
265 	/* the function that gets used to process blocks we find in the
266 	 * tree.  Note the extent_buffer might not be up to date when it is
267 	 * passed in, and it must be checked or read if you need the data
268 	 * inside it
269 	 */
270 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
271 			    struct walk_control *wc, u64 gen);
272 };
273 
274 /*
275  * process_func used to pin down extents, write them or wait on them
276  */
277 static int process_one_buffer(struct btrfs_root *log,
278 			      struct extent_buffer *eb,
279 			      struct walk_control *wc, u64 gen)
280 {
281 	int ret = 0;
282 
283 	/*
284 	 * If this fs is mixed then we need to be able to process the leaves to
285 	 * pin down any logged extents, so we have to read the block.
286 	 */
287 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
288 		ret = btrfs_read_buffer(eb, gen);
289 		if (ret)
290 			return ret;
291 	}
292 
293 	if (wc->pin)
294 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
295 						      eb->start, eb->len);
296 
297 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
298 		if (wc->pin && btrfs_header_level(eb) == 0)
299 			ret = btrfs_exclude_logged_extents(log, eb);
300 		if (wc->write)
301 			btrfs_write_tree_block(eb);
302 		if (wc->wait)
303 			btrfs_wait_tree_block_writeback(eb);
304 	}
305 	return ret;
306 }
307 
308 /*
309  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
310  * to the src data we are copying out.
311  *
312  * root is the tree we are copying into, and path is a scratch
313  * path for use in this function (it should be released on entry and
314  * will be released on exit).
315  *
316  * If the key is already in the destination tree the existing item is
317  * overwritten.  If the existing item isn't big enough, it is extended.
318  * If it is too large, it is truncated.
319  *
320  * If the key isn't in the destination yet, a new item is inserted.
321  */
322 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
323 				   struct btrfs_root *root,
324 				   struct btrfs_path *path,
325 				   struct extent_buffer *eb, int slot,
326 				   struct btrfs_key *key)
327 {
328 	int ret;
329 	u32 item_size;
330 	u64 saved_i_size = 0;
331 	int save_old_i_size = 0;
332 	unsigned long src_ptr;
333 	unsigned long dst_ptr;
334 	int overwrite_root = 0;
335 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
336 
337 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
338 		overwrite_root = 1;
339 
340 	item_size = btrfs_item_size_nr(eb, slot);
341 	src_ptr = btrfs_item_ptr_offset(eb, slot);
342 
343 	/* look for the key in the destination tree */
344 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
345 	if (ret < 0)
346 		return ret;
347 
348 	if (ret == 0) {
349 		char *src_copy;
350 		char *dst_copy;
351 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
352 						  path->slots[0]);
353 		if (dst_size != item_size)
354 			goto insert;
355 
356 		if (item_size == 0) {
357 			btrfs_release_path(path);
358 			return 0;
359 		}
360 		dst_copy = kmalloc(item_size, GFP_NOFS);
361 		src_copy = kmalloc(item_size, GFP_NOFS);
362 		if (!dst_copy || !src_copy) {
363 			btrfs_release_path(path);
364 			kfree(dst_copy);
365 			kfree(src_copy);
366 			return -ENOMEM;
367 		}
368 
369 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
370 
371 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
372 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
373 				   item_size);
374 		ret = memcmp(dst_copy, src_copy, item_size);
375 
376 		kfree(dst_copy);
377 		kfree(src_copy);
378 		/*
379 		 * they have the same contents, just return, this saves
380 		 * us from cowing blocks in the destination tree and doing
381 		 * extra writes that may not have been done by a previous
382 		 * sync
383 		 */
384 		if (ret == 0) {
385 			btrfs_release_path(path);
386 			return 0;
387 		}
388 
389 		/*
390 		 * We need to load the old nbytes into the inode so when we
391 		 * replay the extents we've logged we get the right nbytes.
392 		 */
393 		if (inode_item) {
394 			struct btrfs_inode_item *item;
395 			u64 nbytes;
396 
397 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
398 					      struct btrfs_inode_item);
399 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
400 			item = btrfs_item_ptr(eb, slot,
401 					      struct btrfs_inode_item);
402 			btrfs_set_inode_nbytes(eb, item, nbytes);
403 		}
404 	} else if (inode_item) {
405 		struct btrfs_inode_item *item;
406 
407 		/*
408 		 * New inode, set nbytes to 0 so that the nbytes comes out
409 		 * properly when we replay the extents.
410 		 */
411 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
412 		btrfs_set_inode_nbytes(eb, item, 0);
413 	}
414 insert:
415 	btrfs_release_path(path);
416 	/* try to insert the key into the destination tree */
417 	ret = btrfs_insert_empty_item(trans, root, path,
418 				      key, item_size);
419 
420 	/* make sure any existing item is the correct size */
421 	if (ret == -EEXIST) {
422 		u32 found_size;
423 		found_size = btrfs_item_size_nr(path->nodes[0],
424 						path->slots[0]);
425 		if (found_size > item_size)
426 			btrfs_truncate_item(root, path, item_size, 1);
427 		else if (found_size < item_size)
428 			btrfs_extend_item(root, path,
429 					  item_size - found_size);
430 	} else if (ret) {
431 		return ret;
432 	}
433 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
434 					path->slots[0]);
435 
436 	/* don't overwrite an existing inode if the generation number
437 	 * was logged as zero.  This is done when the tree logging code
438 	 * is just logging an inode to make sure it exists after recovery.
439 	 *
440 	 * Also, don't overwrite i_size on directories during replay.
441 	 * log replay inserts and removes directory items based on the
442 	 * state of the tree found in the subvolume, and i_size is modified
443 	 * as it goes
444 	 */
445 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
446 		struct btrfs_inode_item *src_item;
447 		struct btrfs_inode_item *dst_item;
448 
449 		src_item = (struct btrfs_inode_item *)src_ptr;
450 		dst_item = (struct btrfs_inode_item *)dst_ptr;
451 
452 		if (btrfs_inode_generation(eb, src_item) == 0)
453 			goto no_copy;
454 
455 		if (overwrite_root &&
456 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
457 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
458 			save_old_i_size = 1;
459 			saved_i_size = btrfs_inode_size(path->nodes[0],
460 							dst_item);
461 		}
462 	}
463 
464 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
465 			   src_ptr, item_size);
466 
467 	if (save_old_i_size) {
468 		struct btrfs_inode_item *dst_item;
469 		dst_item = (struct btrfs_inode_item *)dst_ptr;
470 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
471 	}
472 
473 	/* make sure the generation is filled in */
474 	if (key->type == BTRFS_INODE_ITEM_KEY) {
475 		struct btrfs_inode_item *dst_item;
476 		dst_item = (struct btrfs_inode_item *)dst_ptr;
477 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
478 			btrfs_set_inode_generation(path->nodes[0], dst_item,
479 						   trans->transid);
480 		}
481 	}
482 no_copy:
483 	btrfs_mark_buffer_dirty(path->nodes[0]);
484 	btrfs_release_path(path);
485 	return 0;
486 }
487 
488 /*
489  * simple helper to read an inode off the disk from a given root
490  * This can only be called for subvolume roots and not for the log
491  */
492 static noinline struct inode *read_one_inode(struct btrfs_root *root,
493 					     u64 objectid)
494 {
495 	struct btrfs_key key;
496 	struct inode *inode;
497 
498 	key.objectid = objectid;
499 	key.type = BTRFS_INODE_ITEM_KEY;
500 	key.offset = 0;
501 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
502 	if (IS_ERR(inode)) {
503 		inode = NULL;
504 	} else if (is_bad_inode(inode)) {
505 		iput(inode);
506 		inode = NULL;
507 	}
508 	return inode;
509 }
510 
511 /* replays a single extent in 'eb' at 'slot' with 'key' into the
512  * subvolume 'root'.  path is released on entry and should be released
513  * on exit.
514  *
515  * extents in the log tree have not been allocated out of the extent
516  * tree yet.  So, this completes the allocation, taking a reference
517  * as required if the extent already exists or creating a new extent
518  * if it isn't in the extent allocation tree yet.
519  *
520  * The extent is inserted into the file, dropping any existing extents
521  * from the file that overlap the new one.
522  */
523 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
524 				      struct btrfs_root *root,
525 				      struct btrfs_path *path,
526 				      struct extent_buffer *eb, int slot,
527 				      struct btrfs_key *key)
528 {
529 	int found_type;
530 	u64 extent_end;
531 	u64 start = key->offset;
532 	u64 nbytes = 0;
533 	struct btrfs_file_extent_item *item;
534 	struct inode *inode = NULL;
535 	unsigned long size;
536 	int ret = 0;
537 
538 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
539 	found_type = btrfs_file_extent_type(eb, item);
540 
541 	if (found_type == BTRFS_FILE_EXTENT_REG ||
542 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
543 		nbytes = btrfs_file_extent_num_bytes(eb, item);
544 		extent_end = start + nbytes;
545 
546 		/*
547 		 * We don't add to the inodes nbytes if we are prealloc or a
548 		 * hole.
549 		 */
550 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
551 			nbytes = 0;
552 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
553 		size = btrfs_file_extent_inline_len(eb, item);
554 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
555 		extent_end = ALIGN(start + size, root->sectorsize);
556 	} else {
557 		ret = 0;
558 		goto out;
559 	}
560 
561 	inode = read_one_inode(root, key->objectid);
562 	if (!inode) {
563 		ret = -EIO;
564 		goto out;
565 	}
566 
567 	/*
568 	 * first check to see if we already have this extent in the
569 	 * file.  This must be done before the btrfs_drop_extents run
570 	 * so we don't try to drop this extent.
571 	 */
572 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
573 				       start, 0);
574 
575 	if (ret == 0 &&
576 	    (found_type == BTRFS_FILE_EXTENT_REG ||
577 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
578 		struct btrfs_file_extent_item cmp1;
579 		struct btrfs_file_extent_item cmp2;
580 		struct btrfs_file_extent_item *existing;
581 		struct extent_buffer *leaf;
582 
583 		leaf = path->nodes[0];
584 		existing = btrfs_item_ptr(leaf, path->slots[0],
585 					  struct btrfs_file_extent_item);
586 
587 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
588 				   sizeof(cmp1));
589 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
590 				   sizeof(cmp2));
591 
592 		/*
593 		 * we already have a pointer to this exact extent,
594 		 * we don't have to do anything
595 		 */
596 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
597 			btrfs_release_path(path);
598 			goto out;
599 		}
600 	}
601 	btrfs_release_path(path);
602 
603 	/* drop any overlapping extents */
604 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
605 	if (ret)
606 		goto out;
607 
608 	if (found_type == BTRFS_FILE_EXTENT_REG ||
609 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
610 		u64 offset;
611 		unsigned long dest_offset;
612 		struct btrfs_key ins;
613 
614 		ret = btrfs_insert_empty_item(trans, root, path, key,
615 					      sizeof(*item));
616 		if (ret)
617 			goto out;
618 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
619 						    path->slots[0]);
620 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
621 				(unsigned long)item,  sizeof(*item));
622 
623 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
624 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
625 		ins.type = BTRFS_EXTENT_ITEM_KEY;
626 		offset = key->offset - btrfs_file_extent_offset(eb, item);
627 
628 		if (ins.objectid > 0) {
629 			u64 csum_start;
630 			u64 csum_end;
631 			LIST_HEAD(ordered_sums);
632 			/*
633 			 * is this extent already allocated in the extent
634 			 * allocation tree?  If so, just add a reference
635 			 */
636 			ret = btrfs_lookup_extent(root, ins.objectid,
637 						ins.offset);
638 			if (ret == 0) {
639 				ret = btrfs_inc_extent_ref(trans, root,
640 						ins.objectid, ins.offset,
641 						0, root->root_key.objectid,
642 						key->objectid, offset, 0);
643 				if (ret)
644 					goto out;
645 			} else {
646 				/*
647 				 * insert the extent pointer in the extent
648 				 * allocation tree
649 				 */
650 				ret = btrfs_alloc_logged_file_extent(trans,
651 						root, root->root_key.objectid,
652 						key->objectid, offset, &ins);
653 				if (ret)
654 					goto out;
655 			}
656 			btrfs_release_path(path);
657 
658 			if (btrfs_file_extent_compression(eb, item)) {
659 				csum_start = ins.objectid;
660 				csum_end = csum_start + ins.offset;
661 			} else {
662 				csum_start = ins.objectid +
663 					btrfs_file_extent_offset(eb, item);
664 				csum_end = csum_start +
665 					btrfs_file_extent_num_bytes(eb, item);
666 			}
667 
668 			ret = btrfs_lookup_csums_range(root->log_root,
669 						csum_start, csum_end - 1,
670 						&ordered_sums, 0);
671 			if (ret)
672 				goto out;
673 			while (!list_empty(&ordered_sums)) {
674 				struct btrfs_ordered_sum *sums;
675 				sums = list_entry(ordered_sums.next,
676 						struct btrfs_ordered_sum,
677 						list);
678 				if (!ret)
679 					ret = btrfs_csum_file_blocks(trans,
680 						root->fs_info->csum_root,
681 						sums);
682 				list_del(&sums->list);
683 				kfree(sums);
684 			}
685 			if (ret)
686 				goto out;
687 		} else {
688 			btrfs_release_path(path);
689 		}
690 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
691 		/* inline extents are easy, we just overwrite them */
692 		ret = overwrite_item(trans, root, path, eb, slot, key);
693 		if (ret)
694 			goto out;
695 	}
696 
697 	inode_add_bytes(inode, nbytes);
698 	ret = btrfs_update_inode(trans, root, inode);
699 out:
700 	if (inode)
701 		iput(inode);
702 	return ret;
703 }
704 
705 /*
706  * when cleaning up conflicts between the directory names in the
707  * subvolume, directory names in the log and directory names in the
708  * inode back references, we may have to unlink inodes from directories.
709  *
710  * This is a helper function to do the unlink of a specific directory
711  * item
712  */
713 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
714 				      struct btrfs_root *root,
715 				      struct btrfs_path *path,
716 				      struct inode *dir,
717 				      struct btrfs_dir_item *di)
718 {
719 	struct inode *inode;
720 	char *name;
721 	int name_len;
722 	struct extent_buffer *leaf;
723 	struct btrfs_key location;
724 	int ret;
725 
726 	leaf = path->nodes[0];
727 
728 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
729 	name_len = btrfs_dir_name_len(leaf, di);
730 	name = kmalloc(name_len, GFP_NOFS);
731 	if (!name)
732 		return -ENOMEM;
733 
734 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
735 	btrfs_release_path(path);
736 
737 	inode = read_one_inode(root, location.objectid);
738 	if (!inode) {
739 		ret = -EIO;
740 		goto out;
741 	}
742 
743 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
744 	if (ret)
745 		goto out;
746 
747 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
748 	if (ret)
749 		goto out;
750 	btrfs_run_delayed_items(trans, root);
751 out:
752 	kfree(name);
753 	iput(inode);
754 	return ret;
755 }
756 
757 /*
758  * helper function to see if a given name and sequence number found
759  * in an inode back reference are already in a directory and correctly
760  * point to this inode
761  */
762 static noinline int inode_in_dir(struct btrfs_root *root,
763 				 struct btrfs_path *path,
764 				 u64 dirid, u64 objectid, u64 index,
765 				 const char *name, int name_len)
766 {
767 	struct btrfs_dir_item *di;
768 	struct btrfs_key location;
769 	int match = 0;
770 
771 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
772 					 index, name, name_len, 0);
773 	if (di && !IS_ERR(di)) {
774 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
775 		if (location.objectid != objectid)
776 			goto out;
777 	} else
778 		goto out;
779 	btrfs_release_path(path);
780 
781 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
782 	if (di && !IS_ERR(di)) {
783 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
784 		if (location.objectid != objectid)
785 			goto out;
786 	} else
787 		goto out;
788 	match = 1;
789 out:
790 	btrfs_release_path(path);
791 	return match;
792 }
793 
794 /*
795  * helper function to check a log tree for a named back reference in
796  * an inode.  This is used to decide if a back reference that is
797  * found in the subvolume conflicts with what we find in the log.
798  *
799  * inode backreferences may have multiple refs in a single item,
800  * during replay we process one reference at a time, and we don't
801  * want to delete valid links to a file from the subvolume if that
802  * link is also in the log.
803  */
804 static noinline int backref_in_log(struct btrfs_root *log,
805 				   struct btrfs_key *key,
806 				   u64 ref_objectid,
807 				   char *name, int namelen)
808 {
809 	struct btrfs_path *path;
810 	struct btrfs_inode_ref *ref;
811 	unsigned long ptr;
812 	unsigned long ptr_end;
813 	unsigned long name_ptr;
814 	int found_name_len;
815 	int item_size;
816 	int ret;
817 	int match = 0;
818 
819 	path = btrfs_alloc_path();
820 	if (!path)
821 		return -ENOMEM;
822 
823 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
824 	if (ret != 0)
825 		goto out;
826 
827 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
828 
829 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
830 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
831 						   name, namelen, NULL))
832 			match = 1;
833 
834 		goto out;
835 	}
836 
837 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
838 	ptr_end = ptr + item_size;
839 	while (ptr < ptr_end) {
840 		ref = (struct btrfs_inode_ref *)ptr;
841 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
842 		if (found_name_len == namelen) {
843 			name_ptr = (unsigned long)(ref + 1);
844 			ret = memcmp_extent_buffer(path->nodes[0], name,
845 						   name_ptr, namelen);
846 			if (ret == 0) {
847 				match = 1;
848 				goto out;
849 			}
850 		}
851 		ptr = (unsigned long)(ref + 1) + found_name_len;
852 	}
853 out:
854 	btrfs_free_path(path);
855 	return match;
856 }
857 
858 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
859 				  struct btrfs_root *root,
860 				  struct btrfs_path *path,
861 				  struct btrfs_root *log_root,
862 				  struct inode *dir, struct inode *inode,
863 				  struct extent_buffer *eb,
864 				  u64 inode_objectid, u64 parent_objectid,
865 				  u64 ref_index, char *name, int namelen,
866 				  int *search_done)
867 {
868 	int ret;
869 	char *victim_name;
870 	int victim_name_len;
871 	struct extent_buffer *leaf;
872 	struct btrfs_dir_item *di;
873 	struct btrfs_key search_key;
874 	struct btrfs_inode_extref *extref;
875 
876 again:
877 	/* Search old style refs */
878 	search_key.objectid = inode_objectid;
879 	search_key.type = BTRFS_INODE_REF_KEY;
880 	search_key.offset = parent_objectid;
881 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
882 	if (ret == 0) {
883 		struct btrfs_inode_ref *victim_ref;
884 		unsigned long ptr;
885 		unsigned long ptr_end;
886 
887 		leaf = path->nodes[0];
888 
889 		/* are we trying to overwrite a back ref for the root directory
890 		 * if so, just jump out, we're done
891 		 */
892 		if (search_key.objectid == search_key.offset)
893 			return 1;
894 
895 		/* check all the names in this back reference to see
896 		 * if they are in the log.  if so, we allow them to stay
897 		 * otherwise they must be unlinked as a conflict
898 		 */
899 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
900 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
901 		while (ptr < ptr_end) {
902 			victim_ref = (struct btrfs_inode_ref *)ptr;
903 			victim_name_len = btrfs_inode_ref_name_len(leaf,
904 								   victim_ref);
905 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
906 			if (!victim_name)
907 				return -ENOMEM;
908 
909 			read_extent_buffer(leaf, victim_name,
910 					   (unsigned long)(victim_ref + 1),
911 					   victim_name_len);
912 
913 			if (!backref_in_log(log_root, &search_key,
914 					    parent_objectid,
915 					    victim_name,
916 					    victim_name_len)) {
917 				btrfs_inc_nlink(inode);
918 				btrfs_release_path(path);
919 
920 				ret = btrfs_unlink_inode(trans, root, dir,
921 							 inode, victim_name,
922 							 victim_name_len);
923 				kfree(victim_name);
924 				if (ret)
925 					return ret;
926 				btrfs_run_delayed_items(trans, root);
927 				*search_done = 1;
928 				goto again;
929 			}
930 			kfree(victim_name);
931 
932 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
933 		}
934 
935 		/*
936 		 * NOTE: we have searched root tree and checked the
937 		 * coresponding ref, it does not need to check again.
938 		 */
939 		*search_done = 1;
940 	}
941 	btrfs_release_path(path);
942 
943 	/* Same search but for extended refs */
944 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
945 					   inode_objectid, parent_objectid, 0,
946 					   0);
947 	if (!IS_ERR_OR_NULL(extref)) {
948 		u32 item_size;
949 		u32 cur_offset = 0;
950 		unsigned long base;
951 		struct inode *victim_parent;
952 
953 		leaf = path->nodes[0];
954 
955 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
956 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
957 
958 		while (cur_offset < item_size) {
959 			extref = (struct btrfs_inode_extref *)base + cur_offset;
960 
961 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
962 
963 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
964 				goto next;
965 
966 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
967 			if (!victim_name)
968 				return -ENOMEM;
969 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
970 					   victim_name_len);
971 
972 			search_key.objectid = inode_objectid;
973 			search_key.type = BTRFS_INODE_EXTREF_KEY;
974 			search_key.offset = btrfs_extref_hash(parent_objectid,
975 							      victim_name,
976 							      victim_name_len);
977 			ret = 0;
978 			if (!backref_in_log(log_root, &search_key,
979 					    parent_objectid, victim_name,
980 					    victim_name_len)) {
981 				ret = -ENOENT;
982 				victim_parent = read_one_inode(root,
983 							       parent_objectid);
984 				if (victim_parent) {
985 					btrfs_inc_nlink(inode);
986 					btrfs_release_path(path);
987 
988 					ret = btrfs_unlink_inode(trans, root,
989 								 victim_parent,
990 								 inode,
991 								 victim_name,
992 								 victim_name_len);
993 					btrfs_run_delayed_items(trans, root);
994 				}
995 				iput(victim_parent);
996 				kfree(victim_name);
997 				if (ret)
998 					return ret;
999 				*search_done = 1;
1000 				goto again;
1001 			}
1002 			kfree(victim_name);
1003 			if (ret)
1004 				return ret;
1005 next:
1006 			cur_offset += victim_name_len + sizeof(*extref);
1007 		}
1008 		*search_done = 1;
1009 	}
1010 	btrfs_release_path(path);
1011 
1012 	/* look for a conflicting sequence number */
1013 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1014 					 ref_index, name, namelen, 0);
1015 	if (di && !IS_ERR(di)) {
1016 		ret = drop_one_dir_item(trans, root, path, dir, di);
1017 		if (ret)
1018 			return ret;
1019 	}
1020 	btrfs_release_path(path);
1021 
1022 	/* look for a conflicing name */
1023 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1024 				   name, namelen, 0);
1025 	if (di && !IS_ERR(di)) {
1026 		ret = drop_one_dir_item(trans, root, path, dir, di);
1027 		if (ret)
1028 			return ret;
1029 	}
1030 	btrfs_release_path(path);
1031 
1032 	return 0;
1033 }
1034 
1035 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1036 			     u32 *namelen, char **name, u64 *index,
1037 			     u64 *parent_objectid)
1038 {
1039 	struct btrfs_inode_extref *extref;
1040 
1041 	extref = (struct btrfs_inode_extref *)ref_ptr;
1042 
1043 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1044 	*name = kmalloc(*namelen, GFP_NOFS);
1045 	if (*name == NULL)
1046 		return -ENOMEM;
1047 
1048 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1049 			   *namelen);
1050 
1051 	*index = btrfs_inode_extref_index(eb, extref);
1052 	if (parent_objectid)
1053 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1054 
1055 	return 0;
1056 }
1057 
1058 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1059 			  u32 *namelen, char **name, u64 *index)
1060 {
1061 	struct btrfs_inode_ref *ref;
1062 
1063 	ref = (struct btrfs_inode_ref *)ref_ptr;
1064 
1065 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1066 	*name = kmalloc(*namelen, GFP_NOFS);
1067 	if (*name == NULL)
1068 		return -ENOMEM;
1069 
1070 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1071 
1072 	*index = btrfs_inode_ref_index(eb, ref);
1073 
1074 	return 0;
1075 }
1076 
1077 /*
1078  * replay one inode back reference item found in the log tree.
1079  * eb, slot and key refer to the buffer and key found in the log tree.
1080  * root is the destination we are replaying into, and path is for temp
1081  * use by this function.  (it should be released on return).
1082  */
1083 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1084 				  struct btrfs_root *root,
1085 				  struct btrfs_root *log,
1086 				  struct btrfs_path *path,
1087 				  struct extent_buffer *eb, int slot,
1088 				  struct btrfs_key *key)
1089 {
1090 	struct inode *dir;
1091 	struct inode *inode;
1092 	unsigned long ref_ptr;
1093 	unsigned long ref_end;
1094 	char *name;
1095 	int namelen;
1096 	int ret;
1097 	int search_done = 0;
1098 	int log_ref_ver = 0;
1099 	u64 parent_objectid;
1100 	u64 inode_objectid;
1101 	u64 ref_index = 0;
1102 	int ref_struct_size;
1103 
1104 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1105 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1106 
1107 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1108 		struct btrfs_inode_extref *r;
1109 
1110 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1111 		log_ref_ver = 1;
1112 		r = (struct btrfs_inode_extref *)ref_ptr;
1113 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1114 	} else {
1115 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1116 		parent_objectid = key->offset;
1117 	}
1118 	inode_objectid = key->objectid;
1119 
1120 	/*
1121 	 * it is possible that we didn't log all the parent directories
1122 	 * for a given inode.  If we don't find the dir, just don't
1123 	 * copy the back ref in.  The link count fixup code will take
1124 	 * care of the rest
1125 	 */
1126 	dir = read_one_inode(root, parent_objectid);
1127 	if (!dir)
1128 		return -ENOENT;
1129 
1130 	inode = read_one_inode(root, inode_objectid);
1131 	if (!inode) {
1132 		iput(dir);
1133 		return -EIO;
1134 	}
1135 
1136 	while (ref_ptr < ref_end) {
1137 		if (log_ref_ver) {
1138 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1139 						&ref_index, &parent_objectid);
1140 			/*
1141 			 * parent object can change from one array
1142 			 * item to another.
1143 			 */
1144 			if (!dir)
1145 				dir = read_one_inode(root, parent_objectid);
1146 			if (!dir)
1147 				return -ENOENT;
1148 		} else {
1149 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1150 					     &ref_index);
1151 		}
1152 		if (ret)
1153 			return ret;
1154 
1155 		/* if we already have a perfect match, we're done */
1156 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1157 				  ref_index, name, namelen)) {
1158 			/*
1159 			 * look for a conflicting back reference in the
1160 			 * metadata. if we find one we have to unlink that name
1161 			 * of the file before we add our new link.  Later on, we
1162 			 * overwrite any existing back reference, and we don't
1163 			 * want to create dangling pointers in the directory.
1164 			 */
1165 
1166 			if (!search_done) {
1167 				ret = __add_inode_ref(trans, root, path, log,
1168 						      dir, inode, eb,
1169 						      inode_objectid,
1170 						      parent_objectid,
1171 						      ref_index, name, namelen,
1172 						      &search_done);
1173 				if (ret == 1) {
1174 					ret = 0;
1175 					goto out;
1176 				}
1177 				if (ret)
1178 					goto out;
1179 			}
1180 
1181 			/* insert our name */
1182 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1183 					     0, ref_index);
1184 			if (ret)
1185 				goto out;
1186 
1187 			btrfs_update_inode(trans, root, inode);
1188 		}
1189 
1190 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1191 		kfree(name);
1192 		if (log_ref_ver) {
1193 			iput(dir);
1194 			dir = NULL;
1195 		}
1196 	}
1197 
1198 	/* finally write the back reference in the inode */
1199 	ret = overwrite_item(trans, root, path, eb, slot, key);
1200 out:
1201 	btrfs_release_path(path);
1202 	iput(dir);
1203 	iput(inode);
1204 	return ret;
1205 }
1206 
1207 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1208 			      struct btrfs_root *root, u64 offset)
1209 {
1210 	int ret;
1211 	ret = btrfs_find_orphan_item(root, offset);
1212 	if (ret > 0)
1213 		ret = btrfs_insert_orphan_item(trans, root, offset);
1214 	return ret;
1215 }
1216 
1217 static int count_inode_extrefs(struct btrfs_root *root,
1218 			       struct inode *inode, struct btrfs_path *path)
1219 {
1220 	int ret = 0;
1221 	int name_len;
1222 	unsigned int nlink = 0;
1223 	u32 item_size;
1224 	u32 cur_offset = 0;
1225 	u64 inode_objectid = btrfs_ino(inode);
1226 	u64 offset = 0;
1227 	unsigned long ptr;
1228 	struct btrfs_inode_extref *extref;
1229 	struct extent_buffer *leaf;
1230 
1231 	while (1) {
1232 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1233 					    &extref, &offset);
1234 		if (ret)
1235 			break;
1236 
1237 		leaf = path->nodes[0];
1238 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1239 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1240 
1241 		while (cur_offset < item_size) {
1242 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1243 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1244 
1245 			nlink++;
1246 
1247 			cur_offset += name_len + sizeof(*extref);
1248 		}
1249 
1250 		offset++;
1251 		btrfs_release_path(path);
1252 	}
1253 	btrfs_release_path(path);
1254 
1255 	if (ret < 0)
1256 		return ret;
1257 	return nlink;
1258 }
1259 
1260 static int count_inode_refs(struct btrfs_root *root,
1261 			       struct inode *inode, struct btrfs_path *path)
1262 {
1263 	int ret;
1264 	struct btrfs_key key;
1265 	unsigned int nlink = 0;
1266 	unsigned long ptr;
1267 	unsigned long ptr_end;
1268 	int name_len;
1269 	u64 ino = btrfs_ino(inode);
1270 
1271 	key.objectid = ino;
1272 	key.type = BTRFS_INODE_REF_KEY;
1273 	key.offset = (u64)-1;
1274 
1275 	while (1) {
1276 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1277 		if (ret < 0)
1278 			break;
1279 		if (ret > 0) {
1280 			if (path->slots[0] == 0)
1281 				break;
1282 			path->slots[0]--;
1283 		}
1284 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1285 				      path->slots[0]);
1286 		if (key.objectid != ino ||
1287 		    key.type != BTRFS_INODE_REF_KEY)
1288 			break;
1289 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1290 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1291 						   path->slots[0]);
1292 		while (ptr < ptr_end) {
1293 			struct btrfs_inode_ref *ref;
1294 
1295 			ref = (struct btrfs_inode_ref *)ptr;
1296 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1297 							    ref);
1298 			ptr = (unsigned long)(ref + 1) + name_len;
1299 			nlink++;
1300 		}
1301 
1302 		if (key.offset == 0)
1303 			break;
1304 		key.offset--;
1305 		btrfs_release_path(path);
1306 	}
1307 	btrfs_release_path(path);
1308 
1309 	return nlink;
1310 }
1311 
1312 /*
1313  * There are a few corners where the link count of the file can't
1314  * be properly maintained during replay.  So, instead of adding
1315  * lots of complexity to the log code, we just scan the backrefs
1316  * for any file that has been through replay.
1317  *
1318  * The scan will update the link count on the inode to reflect the
1319  * number of back refs found.  If it goes down to zero, the iput
1320  * will free the inode.
1321  */
1322 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1323 					   struct btrfs_root *root,
1324 					   struct inode *inode)
1325 {
1326 	struct btrfs_path *path;
1327 	int ret;
1328 	u64 nlink = 0;
1329 	u64 ino = btrfs_ino(inode);
1330 
1331 	path = btrfs_alloc_path();
1332 	if (!path)
1333 		return -ENOMEM;
1334 
1335 	ret = count_inode_refs(root, inode, path);
1336 	if (ret < 0)
1337 		goto out;
1338 
1339 	nlink = ret;
1340 
1341 	ret = count_inode_extrefs(root, inode, path);
1342 	if (ret == -ENOENT)
1343 		ret = 0;
1344 
1345 	if (ret < 0)
1346 		goto out;
1347 
1348 	nlink += ret;
1349 
1350 	ret = 0;
1351 
1352 	if (nlink != inode->i_nlink) {
1353 		set_nlink(inode, nlink);
1354 		btrfs_update_inode(trans, root, inode);
1355 	}
1356 	BTRFS_I(inode)->index_cnt = (u64)-1;
1357 
1358 	if (inode->i_nlink == 0) {
1359 		if (S_ISDIR(inode->i_mode)) {
1360 			ret = replay_dir_deletes(trans, root, NULL, path,
1361 						 ino, 1);
1362 			if (ret)
1363 				goto out;
1364 		}
1365 		ret = insert_orphan_item(trans, root, ino);
1366 	}
1367 
1368 out:
1369 	btrfs_free_path(path);
1370 	return ret;
1371 }
1372 
1373 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1374 					    struct btrfs_root *root,
1375 					    struct btrfs_path *path)
1376 {
1377 	int ret;
1378 	struct btrfs_key key;
1379 	struct inode *inode;
1380 
1381 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1382 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1383 	key.offset = (u64)-1;
1384 	while (1) {
1385 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 		if (ret < 0)
1387 			break;
1388 
1389 		if (ret == 1) {
1390 			if (path->slots[0] == 0)
1391 				break;
1392 			path->slots[0]--;
1393 		}
1394 
1395 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1396 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1397 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1398 			break;
1399 
1400 		ret = btrfs_del_item(trans, root, path);
1401 		if (ret)
1402 			goto out;
1403 
1404 		btrfs_release_path(path);
1405 		inode = read_one_inode(root, key.offset);
1406 		if (!inode)
1407 			return -EIO;
1408 
1409 		ret = fixup_inode_link_count(trans, root, inode);
1410 		iput(inode);
1411 		if (ret)
1412 			goto out;
1413 
1414 		/*
1415 		 * fixup on a directory may create new entries,
1416 		 * make sure we always look for the highset possible
1417 		 * offset
1418 		 */
1419 		key.offset = (u64)-1;
1420 	}
1421 	ret = 0;
1422 out:
1423 	btrfs_release_path(path);
1424 	return ret;
1425 }
1426 
1427 
1428 /*
1429  * record a given inode in the fixup dir so we can check its link
1430  * count when replay is done.  The link count is incremented here
1431  * so the inode won't go away until we check it
1432  */
1433 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1434 				      struct btrfs_root *root,
1435 				      struct btrfs_path *path,
1436 				      u64 objectid)
1437 {
1438 	struct btrfs_key key;
1439 	int ret = 0;
1440 	struct inode *inode;
1441 
1442 	inode = read_one_inode(root, objectid);
1443 	if (!inode)
1444 		return -EIO;
1445 
1446 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1447 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1448 	key.offset = objectid;
1449 
1450 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1451 
1452 	btrfs_release_path(path);
1453 	if (ret == 0) {
1454 		if (!inode->i_nlink)
1455 			set_nlink(inode, 1);
1456 		else
1457 			btrfs_inc_nlink(inode);
1458 		ret = btrfs_update_inode(trans, root, inode);
1459 	} else if (ret == -EEXIST) {
1460 		ret = 0;
1461 	} else {
1462 		BUG(); /* Logic Error */
1463 	}
1464 	iput(inode);
1465 
1466 	return ret;
1467 }
1468 
1469 /*
1470  * when replaying the log for a directory, we only insert names
1471  * for inodes that actually exist.  This means an fsync on a directory
1472  * does not implicitly fsync all the new files in it
1473  */
1474 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1475 				    struct btrfs_root *root,
1476 				    struct btrfs_path *path,
1477 				    u64 dirid, u64 index,
1478 				    char *name, int name_len, u8 type,
1479 				    struct btrfs_key *location)
1480 {
1481 	struct inode *inode;
1482 	struct inode *dir;
1483 	int ret;
1484 
1485 	inode = read_one_inode(root, location->objectid);
1486 	if (!inode)
1487 		return -ENOENT;
1488 
1489 	dir = read_one_inode(root, dirid);
1490 	if (!dir) {
1491 		iput(inode);
1492 		return -EIO;
1493 	}
1494 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1495 
1496 	/* FIXME, put inode into FIXUP list */
1497 
1498 	iput(inode);
1499 	iput(dir);
1500 	return ret;
1501 }
1502 
1503 /*
1504  * take a single entry in a log directory item and replay it into
1505  * the subvolume.
1506  *
1507  * if a conflicting item exists in the subdirectory already,
1508  * the inode it points to is unlinked and put into the link count
1509  * fix up tree.
1510  *
1511  * If a name from the log points to a file or directory that does
1512  * not exist in the FS, it is skipped.  fsyncs on directories
1513  * do not force down inodes inside that directory, just changes to the
1514  * names or unlinks in a directory.
1515  */
1516 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1517 				    struct btrfs_root *root,
1518 				    struct btrfs_path *path,
1519 				    struct extent_buffer *eb,
1520 				    struct btrfs_dir_item *di,
1521 				    struct btrfs_key *key)
1522 {
1523 	char *name;
1524 	int name_len;
1525 	struct btrfs_dir_item *dst_di;
1526 	struct btrfs_key found_key;
1527 	struct btrfs_key log_key;
1528 	struct inode *dir;
1529 	u8 log_type;
1530 	int exists;
1531 	int ret = 0;
1532 
1533 	dir = read_one_inode(root, key->objectid);
1534 	if (!dir)
1535 		return -EIO;
1536 
1537 	name_len = btrfs_dir_name_len(eb, di);
1538 	name = kmalloc(name_len, GFP_NOFS);
1539 	if (!name)
1540 		return -ENOMEM;
1541 
1542 	log_type = btrfs_dir_type(eb, di);
1543 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1544 		   name_len);
1545 
1546 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1547 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1548 	if (exists == 0)
1549 		exists = 1;
1550 	else
1551 		exists = 0;
1552 	btrfs_release_path(path);
1553 
1554 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1555 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1556 				       name, name_len, 1);
1557 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1558 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1559 						     key->objectid,
1560 						     key->offset, name,
1561 						     name_len, 1);
1562 	} else {
1563 		/* Corruption */
1564 		ret = -EINVAL;
1565 		goto out;
1566 	}
1567 	if (IS_ERR_OR_NULL(dst_di)) {
1568 		/* we need a sequence number to insert, so we only
1569 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1570 		 */
1571 		if (key->type != BTRFS_DIR_INDEX_KEY)
1572 			goto out;
1573 		goto insert;
1574 	}
1575 
1576 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1577 	/* the existing item matches the logged item */
1578 	if (found_key.objectid == log_key.objectid &&
1579 	    found_key.type == log_key.type &&
1580 	    found_key.offset == log_key.offset &&
1581 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1582 		goto out;
1583 	}
1584 
1585 	/*
1586 	 * don't drop the conflicting directory entry if the inode
1587 	 * for the new entry doesn't exist
1588 	 */
1589 	if (!exists)
1590 		goto out;
1591 
1592 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1593 	if (ret)
1594 		goto out;
1595 
1596 	if (key->type == BTRFS_DIR_INDEX_KEY)
1597 		goto insert;
1598 out:
1599 	btrfs_release_path(path);
1600 	kfree(name);
1601 	iput(dir);
1602 	return ret;
1603 
1604 insert:
1605 	btrfs_release_path(path);
1606 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1607 			      name, name_len, log_type, &log_key);
1608 	if (ret && ret != -ENOENT)
1609 		goto out;
1610 	ret = 0;
1611 	goto out;
1612 }
1613 
1614 /*
1615  * find all the names in a directory item and reconcile them into
1616  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1617  * one name in a directory item, but the same code gets used for
1618  * both directory index types
1619  */
1620 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1621 					struct btrfs_root *root,
1622 					struct btrfs_path *path,
1623 					struct extent_buffer *eb, int slot,
1624 					struct btrfs_key *key)
1625 {
1626 	int ret;
1627 	u32 item_size = btrfs_item_size_nr(eb, slot);
1628 	struct btrfs_dir_item *di;
1629 	int name_len;
1630 	unsigned long ptr;
1631 	unsigned long ptr_end;
1632 
1633 	ptr = btrfs_item_ptr_offset(eb, slot);
1634 	ptr_end = ptr + item_size;
1635 	while (ptr < ptr_end) {
1636 		di = (struct btrfs_dir_item *)ptr;
1637 		if (verify_dir_item(root, eb, di))
1638 			return -EIO;
1639 		name_len = btrfs_dir_name_len(eb, di);
1640 		ret = replay_one_name(trans, root, path, eb, di, key);
1641 		if (ret)
1642 			return ret;
1643 		ptr = (unsigned long)(di + 1);
1644 		ptr += name_len;
1645 	}
1646 	return 0;
1647 }
1648 
1649 /*
1650  * directory replay has two parts.  There are the standard directory
1651  * items in the log copied from the subvolume, and range items
1652  * created in the log while the subvolume was logged.
1653  *
1654  * The range items tell us which parts of the key space the log
1655  * is authoritative for.  During replay, if a key in the subvolume
1656  * directory is in a logged range item, but not actually in the log
1657  * that means it was deleted from the directory before the fsync
1658  * and should be removed.
1659  */
1660 static noinline int find_dir_range(struct btrfs_root *root,
1661 				   struct btrfs_path *path,
1662 				   u64 dirid, int key_type,
1663 				   u64 *start_ret, u64 *end_ret)
1664 {
1665 	struct btrfs_key key;
1666 	u64 found_end;
1667 	struct btrfs_dir_log_item *item;
1668 	int ret;
1669 	int nritems;
1670 
1671 	if (*start_ret == (u64)-1)
1672 		return 1;
1673 
1674 	key.objectid = dirid;
1675 	key.type = key_type;
1676 	key.offset = *start_ret;
1677 
1678 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1679 	if (ret < 0)
1680 		goto out;
1681 	if (ret > 0) {
1682 		if (path->slots[0] == 0)
1683 			goto out;
1684 		path->slots[0]--;
1685 	}
1686 	if (ret != 0)
1687 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1688 
1689 	if (key.type != key_type || key.objectid != dirid) {
1690 		ret = 1;
1691 		goto next;
1692 	}
1693 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1694 			      struct btrfs_dir_log_item);
1695 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1696 
1697 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1698 		ret = 0;
1699 		*start_ret = key.offset;
1700 		*end_ret = found_end;
1701 		goto out;
1702 	}
1703 	ret = 1;
1704 next:
1705 	/* check the next slot in the tree to see if it is a valid item */
1706 	nritems = btrfs_header_nritems(path->nodes[0]);
1707 	if (path->slots[0] >= nritems) {
1708 		ret = btrfs_next_leaf(root, path);
1709 		if (ret)
1710 			goto out;
1711 	} else {
1712 		path->slots[0]++;
1713 	}
1714 
1715 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1716 
1717 	if (key.type != key_type || key.objectid != dirid) {
1718 		ret = 1;
1719 		goto out;
1720 	}
1721 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1722 			      struct btrfs_dir_log_item);
1723 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1724 	*start_ret = key.offset;
1725 	*end_ret = found_end;
1726 	ret = 0;
1727 out:
1728 	btrfs_release_path(path);
1729 	return ret;
1730 }
1731 
1732 /*
1733  * this looks for a given directory item in the log.  If the directory
1734  * item is not in the log, the item is removed and the inode it points
1735  * to is unlinked
1736  */
1737 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1738 				      struct btrfs_root *root,
1739 				      struct btrfs_root *log,
1740 				      struct btrfs_path *path,
1741 				      struct btrfs_path *log_path,
1742 				      struct inode *dir,
1743 				      struct btrfs_key *dir_key)
1744 {
1745 	int ret;
1746 	struct extent_buffer *eb;
1747 	int slot;
1748 	u32 item_size;
1749 	struct btrfs_dir_item *di;
1750 	struct btrfs_dir_item *log_di;
1751 	int name_len;
1752 	unsigned long ptr;
1753 	unsigned long ptr_end;
1754 	char *name;
1755 	struct inode *inode;
1756 	struct btrfs_key location;
1757 
1758 again:
1759 	eb = path->nodes[0];
1760 	slot = path->slots[0];
1761 	item_size = btrfs_item_size_nr(eb, slot);
1762 	ptr = btrfs_item_ptr_offset(eb, slot);
1763 	ptr_end = ptr + item_size;
1764 	while (ptr < ptr_end) {
1765 		di = (struct btrfs_dir_item *)ptr;
1766 		if (verify_dir_item(root, eb, di)) {
1767 			ret = -EIO;
1768 			goto out;
1769 		}
1770 
1771 		name_len = btrfs_dir_name_len(eb, di);
1772 		name = kmalloc(name_len, GFP_NOFS);
1773 		if (!name) {
1774 			ret = -ENOMEM;
1775 			goto out;
1776 		}
1777 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1778 				  name_len);
1779 		log_di = NULL;
1780 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1781 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1782 						       dir_key->objectid,
1783 						       name, name_len, 0);
1784 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1785 			log_di = btrfs_lookup_dir_index_item(trans, log,
1786 						     log_path,
1787 						     dir_key->objectid,
1788 						     dir_key->offset,
1789 						     name, name_len, 0);
1790 		}
1791 		if (IS_ERR_OR_NULL(log_di)) {
1792 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1793 			btrfs_release_path(path);
1794 			btrfs_release_path(log_path);
1795 			inode = read_one_inode(root, location.objectid);
1796 			if (!inode) {
1797 				kfree(name);
1798 				return -EIO;
1799 			}
1800 
1801 			ret = link_to_fixup_dir(trans, root,
1802 						path, location.objectid);
1803 			if (ret) {
1804 				kfree(name);
1805 				iput(inode);
1806 				goto out;
1807 			}
1808 
1809 			btrfs_inc_nlink(inode);
1810 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1811 						 name, name_len);
1812 			if (!ret)
1813 				btrfs_run_delayed_items(trans, root);
1814 			kfree(name);
1815 			iput(inode);
1816 			if (ret)
1817 				goto out;
1818 
1819 			/* there might still be more names under this key
1820 			 * check and repeat if required
1821 			 */
1822 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1823 						0, 0);
1824 			if (ret == 0)
1825 				goto again;
1826 			ret = 0;
1827 			goto out;
1828 		}
1829 		btrfs_release_path(log_path);
1830 		kfree(name);
1831 
1832 		ptr = (unsigned long)(di + 1);
1833 		ptr += name_len;
1834 	}
1835 	ret = 0;
1836 out:
1837 	btrfs_release_path(path);
1838 	btrfs_release_path(log_path);
1839 	return ret;
1840 }
1841 
1842 /*
1843  * deletion replay happens before we copy any new directory items
1844  * out of the log or out of backreferences from inodes.  It
1845  * scans the log to find ranges of keys that log is authoritative for,
1846  * and then scans the directory to find items in those ranges that are
1847  * not present in the log.
1848  *
1849  * Anything we don't find in the log is unlinked and removed from the
1850  * directory.
1851  */
1852 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1853 				       struct btrfs_root *root,
1854 				       struct btrfs_root *log,
1855 				       struct btrfs_path *path,
1856 				       u64 dirid, int del_all)
1857 {
1858 	u64 range_start;
1859 	u64 range_end;
1860 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1861 	int ret = 0;
1862 	struct btrfs_key dir_key;
1863 	struct btrfs_key found_key;
1864 	struct btrfs_path *log_path;
1865 	struct inode *dir;
1866 
1867 	dir_key.objectid = dirid;
1868 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1869 	log_path = btrfs_alloc_path();
1870 	if (!log_path)
1871 		return -ENOMEM;
1872 
1873 	dir = read_one_inode(root, dirid);
1874 	/* it isn't an error if the inode isn't there, that can happen
1875 	 * because we replay the deletes before we copy in the inode item
1876 	 * from the log
1877 	 */
1878 	if (!dir) {
1879 		btrfs_free_path(log_path);
1880 		return 0;
1881 	}
1882 again:
1883 	range_start = 0;
1884 	range_end = 0;
1885 	while (1) {
1886 		if (del_all)
1887 			range_end = (u64)-1;
1888 		else {
1889 			ret = find_dir_range(log, path, dirid, key_type,
1890 					     &range_start, &range_end);
1891 			if (ret != 0)
1892 				break;
1893 		}
1894 
1895 		dir_key.offset = range_start;
1896 		while (1) {
1897 			int nritems;
1898 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1899 						0, 0);
1900 			if (ret < 0)
1901 				goto out;
1902 
1903 			nritems = btrfs_header_nritems(path->nodes[0]);
1904 			if (path->slots[0] >= nritems) {
1905 				ret = btrfs_next_leaf(root, path);
1906 				if (ret)
1907 					break;
1908 			}
1909 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1910 					      path->slots[0]);
1911 			if (found_key.objectid != dirid ||
1912 			    found_key.type != dir_key.type)
1913 				goto next_type;
1914 
1915 			if (found_key.offset > range_end)
1916 				break;
1917 
1918 			ret = check_item_in_log(trans, root, log, path,
1919 						log_path, dir,
1920 						&found_key);
1921 			if (ret)
1922 				goto out;
1923 			if (found_key.offset == (u64)-1)
1924 				break;
1925 			dir_key.offset = found_key.offset + 1;
1926 		}
1927 		btrfs_release_path(path);
1928 		if (range_end == (u64)-1)
1929 			break;
1930 		range_start = range_end + 1;
1931 	}
1932 
1933 next_type:
1934 	ret = 0;
1935 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1936 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1937 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1938 		btrfs_release_path(path);
1939 		goto again;
1940 	}
1941 out:
1942 	btrfs_release_path(path);
1943 	btrfs_free_path(log_path);
1944 	iput(dir);
1945 	return ret;
1946 }
1947 
1948 /*
1949  * the process_func used to replay items from the log tree.  This
1950  * gets called in two different stages.  The first stage just looks
1951  * for inodes and makes sure they are all copied into the subvolume.
1952  *
1953  * The second stage copies all the other item types from the log into
1954  * the subvolume.  The two stage approach is slower, but gets rid of
1955  * lots of complexity around inodes referencing other inodes that exist
1956  * only in the log (references come from either directory items or inode
1957  * back refs).
1958  */
1959 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1960 			     struct walk_control *wc, u64 gen)
1961 {
1962 	int nritems;
1963 	struct btrfs_path *path;
1964 	struct btrfs_root *root = wc->replay_dest;
1965 	struct btrfs_key key;
1966 	int level;
1967 	int i;
1968 	int ret;
1969 
1970 	ret = btrfs_read_buffer(eb, gen);
1971 	if (ret)
1972 		return ret;
1973 
1974 	level = btrfs_header_level(eb);
1975 
1976 	if (level != 0)
1977 		return 0;
1978 
1979 	path = btrfs_alloc_path();
1980 	if (!path)
1981 		return -ENOMEM;
1982 
1983 	nritems = btrfs_header_nritems(eb);
1984 	for (i = 0; i < nritems; i++) {
1985 		btrfs_item_key_to_cpu(eb, &key, i);
1986 
1987 		/* inode keys are done during the first stage */
1988 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1989 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1990 			struct btrfs_inode_item *inode_item;
1991 			u32 mode;
1992 
1993 			inode_item = btrfs_item_ptr(eb, i,
1994 					    struct btrfs_inode_item);
1995 			mode = btrfs_inode_mode(eb, inode_item);
1996 			if (S_ISDIR(mode)) {
1997 				ret = replay_dir_deletes(wc->trans,
1998 					 root, log, path, key.objectid, 0);
1999 				if (ret)
2000 					break;
2001 			}
2002 			ret = overwrite_item(wc->trans, root, path,
2003 					     eb, i, &key);
2004 			if (ret)
2005 				break;
2006 
2007 			/* for regular files, make sure corresponding
2008 			 * orhpan item exist. extents past the new EOF
2009 			 * will be truncated later by orphan cleanup.
2010 			 */
2011 			if (S_ISREG(mode)) {
2012 				ret = insert_orphan_item(wc->trans, root,
2013 							 key.objectid);
2014 				if (ret)
2015 					break;
2016 			}
2017 
2018 			ret = link_to_fixup_dir(wc->trans, root,
2019 						path, key.objectid);
2020 			if (ret)
2021 				break;
2022 		}
2023 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2024 			continue;
2025 
2026 		/* these keys are simply copied */
2027 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2028 			ret = overwrite_item(wc->trans, root, path,
2029 					     eb, i, &key);
2030 			if (ret)
2031 				break;
2032 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2033 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2034 			ret = add_inode_ref(wc->trans, root, log, path,
2035 					    eb, i, &key);
2036 			if (ret && ret != -ENOENT)
2037 				break;
2038 			ret = 0;
2039 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2040 			ret = replay_one_extent(wc->trans, root, path,
2041 						eb, i, &key);
2042 			if (ret)
2043 				break;
2044 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
2045 			   key.type == BTRFS_DIR_INDEX_KEY) {
2046 			ret = replay_one_dir_item(wc->trans, root, path,
2047 						  eb, i, &key);
2048 			if (ret)
2049 				break;
2050 		}
2051 	}
2052 	btrfs_free_path(path);
2053 	return ret;
2054 }
2055 
2056 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2057 				   struct btrfs_root *root,
2058 				   struct btrfs_path *path, int *level,
2059 				   struct walk_control *wc)
2060 {
2061 	u64 root_owner;
2062 	u64 bytenr;
2063 	u64 ptr_gen;
2064 	struct extent_buffer *next;
2065 	struct extent_buffer *cur;
2066 	struct extent_buffer *parent;
2067 	u32 blocksize;
2068 	int ret = 0;
2069 
2070 	WARN_ON(*level < 0);
2071 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2072 
2073 	while (*level > 0) {
2074 		WARN_ON(*level < 0);
2075 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2076 		cur = path->nodes[*level];
2077 
2078 		if (btrfs_header_level(cur) != *level)
2079 			WARN_ON(1);
2080 
2081 		if (path->slots[*level] >=
2082 		    btrfs_header_nritems(cur))
2083 			break;
2084 
2085 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2086 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2087 		blocksize = btrfs_level_size(root, *level - 1);
2088 
2089 		parent = path->nodes[*level];
2090 		root_owner = btrfs_header_owner(parent);
2091 
2092 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2093 		if (!next)
2094 			return -ENOMEM;
2095 
2096 		if (*level == 1) {
2097 			ret = wc->process_func(root, next, wc, ptr_gen);
2098 			if (ret) {
2099 				free_extent_buffer(next);
2100 				return ret;
2101 			}
2102 
2103 			path->slots[*level]++;
2104 			if (wc->free) {
2105 				ret = btrfs_read_buffer(next, ptr_gen);
2106 				if (ret) {
2107 					free_extent_buffer(next);
2108 					return ret;
2109 				}
2110 
2111 				btrfs_tree_lock(next);
2112 				btrfs_set_lock_blocking(next);
2113 				clean_tree_block(trans, root, next);
2114 				btrfs_wait_tree_block_writeback(next);
2115 				btrfs_tree_unlock(next);
2116 
2117 				WARN_ON(root_owner !=
2118 					BTRFS_TREE_LOG_OBJECTID);
2119 				ret = btrfs_free_and_pin_reserved_extent(root,
2120 							 bytenr, blocksize);
2121 				if (ret) {
2122 					free_extent_buffer(next);
2123 					return ret;
2124 				}
2125 			}
2126 			free_extent_buffer(next);
2127 			continue;
2128 		}
2129 		ret = btrfs_read_buffer(next, ptr_gen);
2130 		if (ret) {
2131 			free_extent_buffer(next);
2132 			return ret;
2133 		}
2134 
2135 		WARN_ON(*level <= 0);
2136 		if (path->nodes[*level-1])
2137 			free_extent_buffer(path->nodes[*level-1]);
2138 		path->nodes[*level-1] = next;
2139 		*level = btrfs_header_level(next);
2140 		path->slots[*level] = 0;
2141 		cond_resched();
2142 	}
2143 	WARN_ON(*level < 0);
2144 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2145 
2146 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2147 
2148 	cond_resched();
2149 	return 0;
2150 }
2151 
2152 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2153 				 struct btrfs_root *root,
2154 				 struct btrfs_path *path, int *level,
2155 				 struct walk_control *wc)
2156 {
2157 	u64 root_owner;
2158 	int i;
2159 	int slot;
2160 	int ret;
2161 
2162 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2163 		slot = path->slots[i];
2164 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2165 			path->slots[i]++;
2166 			*level = i;
2167 			WARN_ON(*level == 0);
2168 			return 0;
2169 		} else {
2170 			struct extent_buffer *parent;
2171 			if (path->nodes[*level] == root->node)
2172 				parent = path->nodes[*level];
2173 			else
2174 				parent = path->nodes[*level + 1];
2175 
2176 			root_owner = btrfs_header_owner(parent);
2177 			ret = wc->process_func(root, path->nodes[*level], wc,
2178 				 btrfs_header_generation(path->nodes[*level]));
2179 			if (ret)
2180 				return ret;
2181 
2182 			if (wc->free) {
2183 				struct extent_buffer *next;
2184 
2185 				next = path->nodes[*level];
2186 
2187 				btrfs_tree_lock(next);
2188 				btrfs_set_lock_blocking(next);
2189 				clean_tree_block(trans, root, next);
2190 				btrfs_wait_tree_block_writeback(next);
2191 				btrfs_tree_unlock(next);
2192 
2193 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2194 				ret = btrfs_free_and_pin_reserved_extent(root,
2195 						path->nodes[*level]->start,
2196 						path->nodes[*level]->len);
2197 				if (ret)
2198 					return ret;
2199 			}
2200 			free_extent_buffer(path->nodes[*level]);
2201 			path->nodes[*level] = NULL;
2202 			*level = i + 1;
2203 		}
2204 	}
2205 	return 1;
2206 }
2207 
2208 /*
2209  * drop the reference count on the tree rooted at 'snap'.  This traverses
2210  * the tree freeing any blocks that have a ref count of zero after being
2211  * decremented.
2212  */
2213 static int walk_log_tree(struct btrfs_trans_handle *trans,
2214 			 struct btrfs_root *log, struct walk_control *wc)
2215 {
2216 	int ret = 0;
2217 	int wret;
2218 	int level;
2219 	struct btrfs_path *path;
2220 	int orig_level;
2221 
2222 	path = btrfs_alloc_path();
2223 	if (!path)
2224 		return -ENOMEM;
2225 
2226 	level = btrfs_header_level(log->node);
2227 	orig_level = level;
2228 	path->nodes[level] = log->node;
2229 	extent_buffer_get(log->node);
2230 	path->slots[level] = 0;
2231 
2232 	while (1) {
2233 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2234 		if (wret > 0)
2235 			break;
2236 		if (wret < 0) {
2237 			ret = wret;
2238 			goto out;
2239 		}
2240 
2241 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2242 		if (wret > 0)
2243 			break;
2244 		if (wret < 0) {
2245 			ret = wret;
2246 			goto out;
2247 		}
2248 	}
2249 
2250 	/* was the root node processed? if not, catch it here */
2251 	if (path->nodes[orig_level]) {
2252 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2253 			 btrfs_header_generation(path->nodes[orig_level]));
2254 		if (ret)
2255 			goto out;
2256 		if (wc->free) {
2257 			struct extent_buffer *next;
2258 
2259 			next = path->nodes[orig_level];
2260 
2261 			btrfs_tree_lock(next);
2262 			btrfs_set_lock_blocking(next);
2263 			clean_tree_block(trans, log, next);
2264 			btrfs_wait_tree_block_writeback(next);
2265 			btrfs_tree_unlock(next);
2266 
2267 			WARN_ON(log->root_key.objectid !=
2268 				BTRFS_TREE_LOG_OBJECTID);
2269 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2270 							 next->len);
2271 			if (ret)
2272 				goto out;
2273 		}
2274 	}
2275 
2276 out:
2277 	btrfs_free_path(path);
2278 	return ret;
2279 }
2280 
2281 /*
2282  * helper function to update the item for a given subvolumes log root
2283  * in the tree of log roots
2284  */
2285 static int update_log_root(struct btrfs_trans_handle *trans,
2286 			   struct btrfs_root *log)
2287 {
2288 	int ret;
2289 
2290 	if (log->log_transid == 1) {
2291 		/* insert root item on the first sync */
2292 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2293 				&log->root_key, &log->root_item);
2294 	} else {
2295 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2296 				&log->root_key, &log->root_item);
2297 	}
2298 	return ret;
2299 }
2300 
2301 static int wait_log_commit(struct btrfs_trans_handle *trans,
2302 			   struct btrfs_root *root, unsigned long transid)
2303 {
2304 	DEFINE_WAIT(wait);
2305 	int index = transid % 2;
2306 
2307 	/*
2308 	 * we only allow two pending log transactions at a time,
2309 	 * so we know that if ours is more than 2 older than the
2310 	 * current transaction, we're done
2311 	 */
2312 	do {
2313 		prepare_to_wait(&root->log_commit_wait[index],
2314 				&wait, TASK_UNINTERRUPTIBLE);
2315 		mutex_unlock(&root->log_mutex);
2316 
2317 		if (root->fs_info->last_trans_log_full_commit !=
2318 		    trans->transid && root->log_transid < transid + 2 &&
2319 		    atomic_read(&root->log_commit[index]))
2320 			schedule();
2321 
2322 		finish_wait(&root->log_commit_wait[index], &wait);
2323 		mutex_lock(&root->log_mutex);
2324 	} while (root->fs_info->last_trans_log_full_commit !=
2325 		 trans->transid && root->log_transid < transid + 2 &&
2326 		 atomic_read(&root->log_commit[index]));
2327 	return 0;
2328 }
2329 
2330 static void wait_for_writer(struct btrfs_trans_handle *trans,
2331 			    struct btrfs_root *root)
2332 {
2333 	DEFINE_WAIT(wait);
2334 	while (root->fs_info->last_trans_log_full_commit !=
2335 	       trans->transid && atomic_read(&root->log_writers)) {
2336 		prepare_to_wait(&root->log_writer_wait,
2337 				&wait, TASK_UNINTERRUPTIBLE);
2338 		mutex_unlock(&root->log_mutex);
2339 		if (root->fs_info->last_trans_log_full_commit !=
2340 		    trans->transid && atomic_read(&root->log_writers))
2341 			schedule();
2342 		mutex_lock(&root->log_mutex);
2343 		finish_wait(&root->log_writer_wait, &wait);
2344 	}
2345 }
2346 
2347 /*
2348  * btrfs_sync_log does sends a given tree log down to the disk and
2349  * updates the super blocks to record it.  When this call is done,
2350  * you know that any inodes previously logged are safely on disk only
2351  * if it returns 0.
2352  *
2353  * Any other return value means you need to call btrfs_commit_transaction.
2354  * Some of the edge cases for fsyncing directories that have had unlinks
2355  * or renames done in the past mean that sometimes the only safe
2356  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2357  * that has happened.
2358  */
2359 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2360 		   struct btrfs_root *root)
2361 {
2362 	int index1;
2363 	int index2;
2364 	int mark;
2365 	int ret;
2366 	struct btrfs_root *log = root->log_root;
2367 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2368 	unsigned long log_transid = 0;
2369 	struct blk_plug plug;
2370 
2371 	mutex_lock(&root->log_mutex);
2372 	log_transid = root->log_transid;
2373 	index1 = root->log_transid % 2;
2374 	if (atomic_read(&root->log_commit[index1])) {
2375 		wait_log_commit(trans, root, root->log_transid);
2376 		mutex_unlock(&root->log_mutex);
2377 		return 0;
2378 	}
2379 	atomic_set(&root->log_commit[index1], 1);
2380 
2381 	/* wait for previous tree log sync to complete */
2382 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2383 		wait_log_commit(trans, root, root->log_transid - 1);
2384 	while (1) {
2385 		int batch = atomic_read(&root->log_batch);
2386 		/* when we're on an ssd, just kick the log commit out */
2387 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2388 			mutex_unlock(&root->log_mutex);
2389 			schedule_timeout_uninterruptible(1);
2390 			mutex_lock(&root->log_mutex);
2391 		}
2392 		wait_for_writer(trans, root);
2393 		if (batch == atomic_read(&root->log_batch))
2394 			break;
2395 	}
2396 
2397 	/* bail out if we need to do a full commit */
2398 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2399 		ret = -EAGAIN;
2400 		btrfs_free_logged_extents(log, log_transid);
2401 		mutex_unlock(&root->log_mutex);
2402 		goto out;
2403 	}
2404 
2405 	if (log_transid % 2 == 0)
2406 		mark = EXTENT_DIRTY;
2407 	else
2408 		mark = EXTENT_NEW;
2409 
2410 	/* we start IO on  all the marked extents here, but we don't actually
2411 	 * wait for them until later.
2412 	 */
2413 	blk_start_plug(&plug);
2414 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2415 	if (ret) {
2416 		blk_finish_plug(&plug);
2417 		btrfs_abort_transaction(trans, root, ret);
2418 		btrfs_free_logged_extents(log, log_transid);
2419 		mutex_unlock(&root->log_mutex);
2420 		goto out;
2421 	}
2422 
2423 	btrfs_set_root_node(&log->root_item, log->node);
2424 
2425 	root->log_transid++;
2426 	log->log_transid = root->log_transid;
2427 	root->log_start_pid = 0;
2428 	smp_mb();
2429 	/*
2430 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2431 	 * in their headers. new modifications of the log will be written to
2432 	 * new positions. so it's safe to allow log writers to go in.
2433 	 */
2434 	mutex_unlock(&root->log_mutex);
2435 
2436 	mutex_lock(&log_root_tree->log_mutex);
2437 	atomic_inc(&log_root_tree->log_batch);
2438 	atomic_inc(&log_root_tree->log_writers);
2439 	mutex_unlock(&log_root_tree->log_mutex);
2440 
2441 	ret = update_log_root(trans, log);
2442 
2443 	mutex_lock(&log_root_tree->log_mutex);
2444 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2445 		smp_mb();
2446 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2447 			wake_up(&log_root_tree->log_writer_wait);
2448 	}
2449 
2450 	if (ret) {
2451 		blk_finish_plug(&plug);
2452 		if (ret != -ENOSPC) {
2453 			btrfs_abort_transaction(trans, root, ret);
2454 			mutex_unlock(&log_root_tree->log_mutex);
2455 			goto out;
2456 		}
2457 		root->fs_info->last_trans_log_full_commit = trans->transid;
2458 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2459 		btrfs_free_logged_extents(log, log_transid);
2460 		mutex_unlock(&log_root_tree->log_mutex);
2461 		ret = -EAGAIN;
2462 		goto out;
2463 	}
2464 
2465 	index2 = log_root_tree->log_transid % 2;
2466 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2467 		blk_finish_plug(&plug);
2468 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2469 		wait_log_commit(trans, log_root_tree,
2470 				log_root_tree->log_transid);
2471 		btrfs_free_logged_extents(log, log_transid);
2472 		mutex_unlock(&log_root_tree->log_mutex);
2473 		ret = 0;
2474 		goto out;
2475 	}
2476 	atomic_set(&log_root_tree->log_commit[index2], 1);
2477 
2478 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2479 		wait_log_commit(trans, log_root_tree,
2480 				log_root_tree->log_transid - 1);
2481 	}
2482 
2483 	wait_for_writer(trans, log_root_tree);
2484 
2485 	/*
2486 	 * now that we've moved on to the tree of log tree roots,
2487 	 * check the full commit flag again
2488 	 */
2489 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2490 		blk_finish_plug(&plug);
2491 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2492 		btrfs_free_logged_extents(log, log_transid);
2493 		mutex_unlock(&log_root_tree->log_mutex);
2494 		ret = -EAGAIN;
2495 		goto out_wake_log_root;
2496 	}
2497 
2498 	ret = btrfs_write_marked_extents(log_root_tree,
2499 					 &log_root_tree->dirty_log_pages,
2500 					 EXTENT_DIRTY | EXTENT_NEW);
2501 	blk_finish_plug(&plug);
2502 	if (ret) {
2503 		btrfs_abort_transaction(trans, root, ret);
2504 		btrfs_free_logged_extents(log, log_transid);
2505 		mutex_unlock(&log_root_tree->log_mutex);
2506 		goto out_wake_log_root;
2507 	}
2508 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2509 	btrfs_wait_marked_extents(log_root_tree,
2510 				  &log_root_tree->dirty_log_pages,
2511 				  EXTENT_NEW | EXTENT_DIRTY);
2512 	btrfs_wait_logged_extents(log, log_transid);
2513 
2514 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2515 				log_root_tree->node->start);
2516 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2517 				btrfs_header_level(log_root_tree->node));
2518 
2519 	log_root_tree->log_transid++;
2520 	smp_mb();
2521 
2522 	mutex_unlock(&log_root_tree->log_mutex);
2523 
2524 	/*
2525 	 * nobody else is going to jump in and write the the ctree
2526 	 * super here because the log_commit atomic below is protecting
2527 	 * us.  We must be called with a transaction handle pinning
2528 	 * the running transaction open, so a full commit can't hop
2529 	 * in and cause problems either.
2530 	 */
2531 	btrfs_scrub_pause_super(root);
2532 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2533 	btrfs_scrub_continue_super(root);
2534 	if (ret) {
2535 		btrfs_abort_transaction(trans, root, ret);
2536 		goto out_wake_log_root;
2537 	}
2538 
2539 	mutex_lock(&root->log_mutex);
2540 	if (root->last_log_commit < log_transid)
2541 		root->last_log_commit = log_transid;
2542 	mutex_unlock(&root->log_mutex);
2543 
2544 out_wake_log_root:
2545 	atomic_set(&log_root_tree->log_commit[index2], 0);
2546 	smp_mb();
2547 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2548 		wake_up(&log_root_tree->log_commit_wait[index2]);
2549 out:
2550 	atomic_set(&root->log_commit[index1], 0);
2551 	smp_mb();
2552 	if (waitqueue_active(&root->log_commit_wait[index1]))
2553 		wake_up(&root->log_commit_wait[index1]);
2554 	return ret;
2555 }
2556 
2557 static void free_log_tree(struct btrfs_trans_handle *trans,
2558 			  struct btrfs_root *log)
2559 {
2560 	int ret;
2561 	u64 start;
2562 	u64 end;
2563 	struct walk_control wc = {
2564 		.free = 1,
2565 		.process_func = process_one_buffer
2566 	};
2567 
2568 	if (trans) {
2569 		ret = walk_log_tree(trans, log, &wc);
2570 
2571 		/* I don't think this can happen but just in case */
2572 		if (ret)
2573 			btrfs_abort_transaction(trans, log, ret);
2574 	}
2575 
2576 	while (1) {
2577 		ret = find_first_extent_bit(&log->dirty_log_pages,
2578 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2579 				NULL);
2580 		if (ret)
2581 			break;
2582 
2583 		clear_extent_bits(&log->dirty_log_pages, start, end,
2584 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2585 	}
2586 
2587 	/*
2588 	 * We may have short-circuited the log tree with the full commit logic
2589 	 * and left ordered extents on our list, so clear these out to keep us
2590 	 * from leaking inodes and memory.
2591 	 */
2592 	btrfs_free_logged_extents(log, 0);
2593 	btrfs_free_logged_extents(log, 1);
2594 
2595 	free_extent_buffer(log->node);
2596 	kfree(log);
2597 }
2598 
2599 /*
2600  * free all the extents used by the tree log.  This should be called
2601  * at commit time of the full transaction
2602  */
2603 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2604 {
2605 	if (root->log_root) {
2606 		free_log_tree(trans, root->log_root);
2607 		root->log_root = NULL;
2608 	}
2609 	return 0;
2610 }
2611 
2612 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2613 			     struct btrfs_fs_info *fs_info)
2614 {
2615 	if (fs_info->log_root_tree) {
2616 		free_log_tree(trans, fs_info->log_root_tree);
2617 		fs_info->log_root_tree = NULL;
2618 	}
2619 	return 0;
2620 }
2621 
2622 /*
2623  * If both a file and directory are logged, and unlinks or renames are
2624  * mixed in, we have a few interesting corners:
2625  *
2626  * create file X in dir Y
2627  * link file X to X.link in dir Y
2628  * fsync file X
2629  * unlink file X but leave X.link
2630  * fsync dir Y
2631  *
2632  * After a crash we would expect only X.link to exist.  But file X
2633  * didn't get fsync'd again so the log has back refs for X and X.link.
2634  *
2635  * We solve this by removing directory entries and inode backrefs from the
2636  * log when a file that was logged in the current transaction is
2637  * unlinked.  Any later fsync will include the updated log entries, and
2638  * we'll be able to reconstruct the proper directory items from backrefs.
2639  *
2640  * This optimizations allows us to avoid relogging the entire inode
2641  * or the entire directory.
2642  */
2643 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2644 				 struct btrfs_root *root,
2645 				 const char *name, int name_len,
2646 				 struct inode *dir, u64 index)
2647 {
2648 	struct btrfs_root *log;
2649 	struct btrfs_dir_item *di;
2650 	struct btrfs_path *path;
2651 	int ret;
2652 	int err = 0;
2653 	int bytes_del = 0;
2654 	u64 dir_ino = btrfs_ino(dir);
2655 
2656 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2657 		return 0;
2658 
2659 	ret = join_running_log_trans(root);
2660 	if (ret)
2661 		return 0;
2662 
2663 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2664 
2665 	log = root->log_root;
2666 	path = btrfs_alloc_path();
2667 	if (!path) {
2668 		err = -ENOMEM;
2669 		goto out_unlock;
2670 	}
2671 
2672 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2673 				   name, name_len, -1);
2674 	if (IS_ERR(di)) {
2675 		err = PTR_ERR(di);
2676 		goto fail;
2677 	}
2678 	if (di) {
2679 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2680 		bytes_del += name_len;
2681 		if (ret) {
2682 			err = ret;
2683 			goto fail;
2684 		}
2685 	}
2686 	btrfs_release_path(path);
2687 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2688 					 index, name, name_len, -1);
2689 	if (IS_ERR(di)) {
2690 		err = PTR_ERR(di);
2691 		goto fail;
2692 	}
2693 	if (di) {
2694 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2695 		bytes_del += name_len;
2696 		if (ret) {
2697 			err = ret;
2698 			goto fail;
2699 		}
2700 	}
2701 
2702 	/* update the directory size in the log to reflect the names
2703 	 * we have removed
2704 	 */
2705 	if (bytes_del) {
2706 		struct btrfs_key key;
2707 
2708 		key.objectid = dir_ino;
2709 		key.offset = 0;
2710 		key.type = BTRFS_INODE_ITEM_KEY;
2711 		btrfs_release_path(path);
2712 
2713 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2714 		if (ret < 0) {
2715 			err = ret;
2716 			goto fail;
2717 		}
2718 		if (ret == 0) {
2719 			struct btrfs_inode_item *item;
2720 			u64 i_size;
2721 
2722 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2723 					      struct btrfs_inode_item);
2724 			i_size = btrfs_inode_size(path->nodes[0], item);
2725 			if (i_size > bytes_del)
2726 				i_size -= bytes_del;
2727 			else
2728 				i_size = 0;
2729 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2730 			btrfs_mark_buffer_dirty(path->nodes[0]);
2731 		} else
2732 			ret = 0;
2733 		btrfs_release_path(path);
2734 	}
2735 fail:
2736 	btrfs_free_path(path);
2737 out_unlock:
2738 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2739 	if (ret == -ENOSPC) {
2740 		root->fs_info->last_trans_log_full_commit = trans->transid;
2741 		ret = 0;
2742 	} else if (ret < 0)
2743 		btrfs_abort_transaction(trans, root, ret);
2744 
2745 	btrfs_end_log_trans(root);
2746 
2747 	return err;
2748 }
2749 
2750 /* see comments for btrfs_del_dir_entries_in_log */
2751 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2752 			       struct btrfs_root *root,
2753 			       const char *name, int name_len,
2754 			       struct inode *inode, u64 dirid)
2755 {
2756 	struct btrfs_root *log;
2757 	u64 index;
2758 	int ret;
2759 
2760 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2761 		return 0;
2762 
2763 	ret = join_running_log_trans(root);
2764 	if (ret)
2765 		return 0;
2766 	log = root->log_root;
2767 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2768 
2769 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2770 				  dirid, &index);
2771 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2772 	if (ret == -ENOSPC) {
2773 		root->fs_info->last_trans_log_full_commit = trans->transid;
2774 		ret = 0;
2775 	} else if (ret < 0 && ret != -ENOENT)
2776 		btrfs_abort_transaction(trans, root, ret);
2777 	btrfs_end_log_trans(root);
2778 
2779 	return ret;
2780 }
2781 
2782 /*
2783  * creates a range item in the log for 'dirid'.  first_offset and
2784  * last_offset tell us which parts of the key space the log should
2785  * be considered authoritative for.
2786  */
2787 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2788 				       struct btrfs_root *log,
2789 				       struct btrfs_path *path,
2790 				       int key_type, u64 dirid,
2791 				       u64 first_offset, u64 last_offset)
2792 {
2793 	int ret;
2794 	struct btrfs_key key;
2795 	struct btrfs_dir_log_item *item;
2796 
2797 	key.objectid = dirid;
2798 	key.offset = first_offset;
2799 	if (key_type == BTRFS_DIR_ITEM_KEY)
2800 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2801 	else
2802 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2803 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2804 	if (ret)
2805 		return ret;
2806 
2807 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2808 			      struct btrfs_dir_log_item);
2809 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2810 	btrfs_mark_buffer_dirty(path->nodes[0]);
2811 	btrfs_release_path(path);
2812 	return 0;
2813 }
2814 
2815 /*
2816  * log all the items included in the current transaction for a given
2817  * directory.  This also creates the range items in the log tree required
2818  * to replay anything deleted before the fsync
2819  */
2820 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2821 			  struct btrfs_root *root, struct inode *inode,
2822 			  struct btrfs_path *path,
2823 			  struct btrfs_path *dst_path, int key_type,
2824 			  u64 min_offset, u64 *last_offset_ret)
2825 {
2826 	struct btrfs_key min_key;
2827 	struct btrfs_key max_key;
2828 	struct btrfs_root *log = root->log_root;
2829 	struct extent_buffer *src;
2830 	int err = 0;
2831 	int ret;
2832 	int i;
2833 	int nritems;
2834 	u64 first_offset = min_offset;
2835 	u64 last_offset = (u64)-1;
2836 	u64 ino = btrfs_ino(inode);
2837 
2838 	log = root->log_root;
2839 	max_key.objectid = ino;
2840 	max_key.offset = (u64)-1;
2841 	max_key.type = key_type;
2842 
2843 	min_key.objectid = ino;
2844 	min_key.type = key_type;
2845 	min_key.offset = min_offset;
2846 
2847 	path->keep_locks = 1;
2848 
2849 	ret = btrfs_search_forward(root, &min_key, &max_key,
2850 				   path, trans->transid);
2851 
2852 	/*
2853 	 * we didn't find anything from this transaction, see if there
2854 	 * is anything at all
2855 	 */
2856 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2857 		min_key.objectid = ino;
2858 		min_key.type = key_type;
2859 		min_key.offset = (u64)-1;
2860 		btrfs_release_path(path);
2861 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2862 		if (ret < 0) {
2863 			btrfs_release_path(path);
2864 			return ret;
2865 		}
2866 		ret = btrfs_previous_item(root, path, ino, key_type);
2867 
2868 		/* if ret == 0 there are items for this type,
2869 		 * create a range to tell us the last key of this type.
2870 		 * otherwise, there are no items in this directory after
2871 		 * *min_offset, and we create a range to indicate that.
2872 		 */
2873 		if (ret == 0) {
2874 			struct btrfs_key tmp;
2875 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2876 					      path->slots[0]);
2877 			if (key_type == tmp.type)
2878 				first_offset = max(min_offset, tmp.offset) + 1;
2879 		}
2880 		goto done;
2881 	}
2882 
2883 	/* go backward to find any previous key */
2884 	ret = btrfs_previous_item(root, path, ino, key_type);
2885 	if (ret == 0) {
2886 		struct btrfs_key tmp;
2887 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2888 		if (key_type == tmp.type) {
2889 			first_offset = tmp.offset;
2890 			ret = overwrite_item(trans, log, dst_path,
2891 					     path->nodes[0], path->slots[0],
2892 					     &tmp);
2893 			if (ret) {
2894 				err = ret;
2895 				goto done;
2896 			}
2897 		}
2898 	}
2899 	btrfs_release_path(path);
2900 
2901 	/* find the first key from this transaction again */
2902 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2903 	if (ret != 0) {
2904 		WARN_ON(1);
2905 		goto done;
2906 	}
2907 
2908 	/*
2909 	 * we have a block from this transaction, log every item in it
2910 	 * from our directory
2911 	 */
2912 	while (1) {
2913 		struct btrfs_key tmp;
2914 		src = path->nodes[0];
2915 		nritems = btrfs_header_nritems(src);
2916 		for (i = path->slots[0]; i < nritems; i++) {
2917 			btrfs_item_key_to_cpu(src, &min_key, i);
2918 
2919 			if (min_key.objectid != ino || min_key.type != key_type)
2920 				goto done;
2921 			ret = overwrite_item(trans, log, dst_path, src, i,
2922 					     &min_key);
2923 			if (ret) {
2924 				err = ret;
2925 				goto done;
2926 			}
2927 		}
2928 		path->slots[0] = nritems;
2929 
2930 		/*
2931 		 * look ahead to the next item and see if it is also
2932 		 * from this directory and from this transaction
2933 		 */
2934 		ret = btrfs_next_leaf(root, path);
2935 		if (ret == 1) {
2936 			last_offset = (u64)-1;
2937 			goto done;
2938 		}
2939 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2940 		if (tmp.objectid != ino || tmp.type != key_type) {
2941 			last_offset = (u64)-1;
2942 			goto done;
2943 		}
2944 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2945 			ret = overwrite_item(trans, log, dst_path,
2946 					     path->nodes[0], path->slots[0],
2947 					     &tmp);
2948 			if (ret)
2949 				err = ret;
2950 			else
2951 				last_offset = tmp.offset;
2952 			goto done;
2953 		}
2954 	}
2955 done:
2956 	btrfs_release_path(path);
2957 	btrfs_release_path(dst_path);
2958 
2959 	if (err == 0) {
2960 		*last_offset_ret = last_offset;
2961 		/*
2962 		 * insert the log range keys to indicate where the log
2963 		 * is valid
2964 		 */
2965 		ret = insert_dir_log_key(trans, log, path, key_type,
2966 					 ino, first_offset, last_offset);
2967 		if (ret)
2968 			err = ret;
2969 	}
2970 	return err;
2971 }
2972 
2973 /*
2974  * logging directories is very similar to logging inodes, We find all the items
2975  * from the current transaction and write them to the log.
2976  *
2977  * The recovery code scans the directory in the subvolume, and if it finds a
2978  * key in the range logged that is not present in the log tree, then it means
2979  * that dir entry was unlinked during the transaction.
2980  *
2981  * In order for that scan to work, we must include one key smaller than
2982  * the smallest logged by this transaction and one key larger than the largest
2983  * key logged by this transaction.
2984  */
2985 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2986 			  struct btrfs_root *root, struct inode *inode,
2987 			  struct btrfs_path *path,
2988 			  struct btrfs_path *dst_path)
2989 {
2990 	u64 min_key;
2991 	u64 max_key;
2992 	int ret;
2993 	int key_type = BTRFS_DIR_ITEM_KEY;
2994 
2995 again:
2996 	min_key = 0;
2997 	max_key = 0;
2998 	while (1) {
2999 		ret = log_dir_items(trans, root, inode, path,
3000 				    dst_path, key_type, min_key,
3001 				    &max_key);
3002 		if (ret)
3003 			return ret;
3004 		if (max_key == (u64)-1)
3005 			break;
3006 		min_key = max_key + 1;
3007 	}
3008 
3009 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3010 		key_type = BTRFS_DIR_INDEX_KEY;
3011 		goto again;
3012 	}
3013 	return 0;
3014 }
3015 
3016 /*
3017  * a helper function to drop items from the log before we relog an
3018  * inode.  max_key_type indicates the highest item type to remove.
3019  * This cannot be run for file data extents because it does not
3020  * free the extents they point to.
3021  */
3022 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3023 				  struct btrfs_root *log,
3024 				  struct btrfs_path *path,
3025 				  u64 objectid, int max_key_type)
3026 {
3027 	int ret;
3028 	struct btrfs_key key;
3029 	struct btrfs_key found_key;
3030 	int start_slot;
3031 
3032 	key.objectid = objectid;
3033 	key.type = max_key_type;
3034 	key.offset = (u64)-1;
3035 
3036 	while (1) {
3037 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3038 		BUG_ON(ret == 0); /* Logic error */
3039 		if (ret < 0)
3040 			break;
3041 
3042 		if (path->slots[0] == 0)
3043 			break;
3044 
3045 		path->slots[0]--;
3046 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3047 				      path->slots[0]);
3048 
3049 		if (found_key.objectid != objectid)
3050 			break;
3051 
3052 		found_key.offset = 0;
3053 		found_key.type = 0;
3054 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3055 				       &start_slot);
3056 
3057 		ret = btrfs_del_items(trans, log, path, start_slot,
3058 				      path->slots[0] - start_slot + 1);
3059 		/*
3060 		 * If start slot isn't 0 then we don't need to re-search, we've
3061 		 * found the last guy with the objectid in this tree.
3062 		 */
3063 		if (ret || start_slot != 0)
3064 			break;
3065 		btrfs_release_path(path);
3066 	}
3067 	btrfs_release_path(path);
3068 	if (ret > 0)
3069 		ret = 0;
3070 	return ret;
3071 }
3072 
3073 static void fill_inode_item(struct btrfs_trans_handle *trans,
3074 			    struct extent_buffer *leaf,
3075 			    struct btrfs_inode_item *item,
3076 			    struct inode *inode, int log_inode_only)
3077 {
3078 	struct btrfs_map_token token;
3079 
3080 	btrfs_init_map_token(&token);
3081 
3082 	if (log_inode_only) {
3083 		/* set the generation to zero so the recover code
3084 		 * can tell the difference between an logging
3085 		 * just to say 'this inode exists' and a logging
3086 		 * to say 'update this inode with these values'
3087 		 */
3088 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3089 		btrfs_set_token_inode_size(leaf, item, 0, &token);
3090 	} else {
3091 		btrfs_set_token_inode_generation(leaf, item,
3092 						 BTRFS_I(inode)->generation,
3093 						 &token);
3094 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3095 	}
3096 
3097 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3098 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3099 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3100 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3101 
3102 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3103 				     inode->i_atime.tv_sec, &token);
3104 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3105 				      inode->i_atime.tv_nsec, &token);
3106 
3107 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3108 				     inode->i_mtime.tv_sec, &token);
3109 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3110 				      inode->i_mtime.tv_nsec, &token);
3111 
3112 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3113 				     inode->i_ctime.tv_sec, &token);
3114 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3115 				      inode->i_ctime.tv_nsec, &token);
3116 
3117 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3118 				     &token);
3119 
3120 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3121 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3122 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3123 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3124 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3125 }
3126 
3127 static int log_inode_item(struct btrfs_trans_handle *trans,
3128 			  struct btrfs_root *log, struct btrfs_path *path,
3129 			  struct inode *inode)
3130 {
3131 	struct btrfs_inode_item *inode_item;
3132 	struct btrfs_key key;
3133 	int ret;
3134 
3135 	memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3136 	ret = btrfs_insert_empty_item(trans, log, path, &key,
3137 				      sizeof(*inode_item));
3138 	if (ret && ret != -EEXIST)
3139 		return ret;
3140 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3141 				    struct btrfs_inode_item);
3142 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3143 	btrfs_release_path(path);
3144 	return 0;
3145 }
3146 
3147 static noinline int copy_items(struct btrfs_trans_handle *trans,
3148 			       struct inode *inode,
3149 			       struct btrfs_path *dst_path,
3150 			       struct extent_buffer *src,
3151 			       int start_slot, int nr, int inode_only)
3152 {
3153 	unsigned long src_offset;
3154 	unsigned long dst_offset;
3155 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3156 	struct btrfs_file_extent_item *extent;
3157 	struct btrfs_inode_item *inode_item;
3158 	int ret;
3159 	struct btrfs_key *ins_keys;
3160 	u32 *ins_sizes;
3161 	char *ins_data;
3162 	int i;
3163 	struct list_head ordered_sums;
3164 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3165 
3166 	INIT_LIST_HEAD(&ordered_sums);
3167 
3168 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3169 			   nr * sizeof(u32), GFP_NOFS);
3170 	if (!ins_data)
3171 		return -ENOMEM;
3172 
3173 	ins_sizes = (u32 *)ins_data;
3174 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3175 
3176 	for (i = 0; i < nr; i++) {
3177 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3178 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3179 	}
3180 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3181 				       ins_keys, ins_sizes, nr);
3182 	if (ret) {
3183 		kfree(ins_data);
3184 		return ret;
3185 	}
3186 
3187 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3188 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3189 						   dst_path->slots[0]);
3190 
3191 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3192 
3193 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3194 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3195 						    dst_path->slots[0],
3196 						    struct btrfs_inode_item);
3197 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3198 					inode, inode_only == LOG_INODE_EXISTS);
3199 		} else {
3200 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3201 					   src_offset, ins_sizes[i]);
3202 		}
3203 
3204 		/* take a reference on file data extents so that truncates
3205 		 * or deletes of this inode don't have to relog the inode
3206 		 * again
3207 		 */
3208 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3209 		    !skip_csum) {
3210 			int found_type;
3211 			extent = btrfs_item_ptr(src, start_slot + i,
3212 						struct btrfs_file_extent_item);
3213 
3214 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3215 				continue;
3216 
3217 			found_type = btrfs_file_extent_type(src, extent);
3218 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3219 				u64 ds, dl, cs, cl;
3220 				ds = btrfs_file_extent_disk_bytenr(src,
3221 								extent);
3222 				/* ds == 0 is a hole */
3223 				if (ds == 0)
3224 					continue;
3225 
3226 				dl = btrfs_file_extent_disk_num_bytes(src,
3227 								extent);
3228 				cs = btrfs_file_extent_offset(src, extent);
3229 				cl = btrfs_file_extent_num_bytes(src,
3230 								extent);
3231 				if (btrfs_file_extent_compression(src,
3232 								  extent)) {
3233 					cs = 0;
3234 					cl = dl;
3235 				}
3236 
3237 				ret = btrfs_lookup_csums_range(
3238 						log->fs_info->csum_root,
3239 						ds + cs, ds + cs + cl - 1,
3240 						&ordered_sums, 0);
3241 				if (ret) {
3242 					btrfs_release_path(dst_path);
3243 					kfree(ins_data);
3244 					return ret;
3245 				}
3246 			}
3247 		}
3248 	}
3249 
3250 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3251 	btrfs_release_path(dst_path);
3252 	kfree(ins_data);
3253 
3254 	/*
3255 	 * we have to do this after the loop above to avoid changing the
3256 	 * log tree while trying to change the log tree.
3257 	 */
3258 	ret = 0;
3259 	while (!list_empty(&ordered_sums)) {
3260 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3261 						   struct btrfs_ordered_sum,
3262 						   list);
3263 		if (!ret)
3264 			ret = btrfs_csum_file_blocks(trans, log, sums);
3265 		list_del(&sums->list);
3266 		kfree(sums);
3267 	}
3268 	return ret;
3269 }
3270 
3271 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3272 {
3273 	struct extent_map *em1, *em2;
3274 
3275 	em1 = list_entry(a, struct extent_map, list);
3276 	em2 = list_entry(b, struct extent_map, list);
3277 
3278 	if (em1->start < em2->start)
3279 		return -1;
3280 	else if (em1->start > em2->start)
3281 		return 1;
3282 	return 0;
3283 }
3284 
3285 static int log_one_extent(struct btrfs_trans_handle *trans,
3286 			  struct inode *inode, struct btrfs_root *root,
3287 			  struct extent_map *em, struct btrfs_path *path)
3288 {
3289 	struct btrfs_root *log = root->log_root;
3290 	struct btrfs_file_extent_item *fi;
3291 	struct extent_buffer *leaf;
3292 	struct btrfs_ordered_extent *ordered;
3293 	struct list_head ordered_sums;
3294 	struct btrfs_map_token token;
3295 	struct btrfs_key key;
3296 	u64 mod_start = em->mod_start;
3297 	u64 mod_len = em->mod_len;
3298 	u64 csum_offset;
3299 	u64 csum_len;
3300 	u64 extent_offset = em->start - em->orig_start;
3301 	u64 block_len;
3302 	int ret;
3303 	int index = log->log_transid % 2;
3304 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3305 
3306 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3307 				   em->start + em->len, NULL, 0);
3308 	if (ret)
3309 		return ret;
3310 
3311 	INIT_LIST_HEAD(&ordered_sums);
3312 	btrfs_init_map_token(&token);
3313 	key.objectid = btrfs_ino(inode);
3314 	key.type = BTRFS_EXTENT_DATA_KEY;
3315 	key.offset = em->start;
3316 
3317 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3318 	if (ret)
3319 		return ret;
3320 	leaf = path->nodes[0];
3321 	fi = btrfs_item_ptr(leaf, path->slots[0],
3322 			    struct btrfs_file_extent_item);
3323 
3324 	btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3325 					       &token);
3326 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3327 		skip_csum = true;
3328 		btrfs_set_token_file_extent_type(leaf, fi,
3329 						 BTRFS_FILE_EXTENT_PREALLOC,
3330 						 &token);
3331 	} else {
3332 		btrfs_set_token_file_extent_type(leaf, fi,
3333 						 BTRFS_FILE_EXTENT_REG,
3334 						 &token);
3335 		if (em->block_start == 0)
3336 			skip_csum = true;
3337 	}
3338 
3339 	block_len = max(em->block_len, em->orig_block_len);
3340 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3341 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3342 							em->block_start,
3343 							&token);
3344 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3345 							   &token);
3346 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3347 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3348 							em->block_start -
3349 							extent_offset, &token);
3350 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3351 							   &token);
3352 	} else {
3353 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3354 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3355 							   &token);
3356 	}
3357 
3358 	btrfs_set_token_file_extent_offset(leaf, fi,
3359 					   em->start - em->orig_start,
3360 					   &token);
3361 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3362 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3363 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3364 						&token);
3365 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3366 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3367 	btrfs_mark_buffer_dirty(leaf);
3368 
3369 	btrfs_release_path(path);
3370 	if (ret) {
3371 		return ret;
3372 	}
3373 
3374 	if (skip_csum)
3375 		return 0;
3376 
3377 	if (em->compress_type) {
3378 		csum_offset = 0;
3379 		csum_len = block_len;
3380 	}
3381 
3382 	/*
3383 	 * First check and see if our csums are on our outstanding ordered
3384 	 * extents.
3385 	 */
3386 again:
3387 	spin_lock_irq(&log->log_extents_lock[index]);
3388 	list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3389 		struct btrfs_ordered_sum *sum;
3390 
3391 		if (!mod_len)
3392 			break;
3393 
3394 		if (ordered->inode != inode)
3395 			continue;
3396 
3397 		if (ordered->file_offset + ordered->len <= mod_start ||
3398 		    mod_start + mod_len <= ordered->file_offset)
3399 			continue;
3400 
3401 		/*
3402 		 * We are going to copy all the csums on this ordered extent, so
3403 		 * go ahead and adjust mod_start and mod_len in case this
3404 		 * ordered extent has already been logged.
3405 		 */
3406 		if (ordered->file_offset > mod_start) {
3407 			if (ordered->file_offset + ordered->len >=
3408 			    mod_start + mod_len)
3409 				mod_len = ordered->file_offset - mod_start;
3410 			/*
3411 			 * If we have this case
3412 			 *
3413 			 * |--------- logged extent ---------|
3414 			 *       |----- ordered extent ----|
3415 			 *
3416 			 * Just don't mess with mod_start and mod_len, we'll
3417 			 * just end up logging more csums than we need and it
3418 			 * will be ok.
3419 			 */
3420 		} else {
3421 			if (ordered->file_offset + ordered->len <
3422 			    mod_start + mod_len) {
3423 				mod_len = (mod_start + mod_len) -
3424 					(ordered->file_offset + ordered->len);
3425 				mod_start = ordered->file_offset +
3426 					ordered->len;
3427 			} else {
3428 				mod_len = 0;
3429 			}
3430 		}
3431 
3432 		/*
3433 		 * To keep us from looping for the above case of an ordered
3434 		 * extent that falls inside of the logged extent.
3435 		 */
3436 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3437 				     &ordered->flags))
3438 			continue;
3439 		atomic_inc(&ordered->refs);
3440 		spin_unlock_irq(&log->log_extents_lock[index]);
3441 		/*
3442 		 * we've dropped the lock, we must either break or
3443 		 * start over after this.
3444 		 */
3445 
3446 		wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3447 
3448 		list_for_each_entry(sum, &ordered->list, list) {
3449 			ret = btrfs_csum_file_blocks(trans, log, sum);
3450 			if (ret) {
3451 				btrfs_put_ordered_extent(ordered);
3452 				goto unlocked;
3453 			}
3454 		}
3455 		btrfs_put_ordered_extent(ordered);
3456 		goto again;
3457 
3458 	}
3459 	spin_unlock_irq(&log->log_extents_lock[index]);
3460 unlocked:
3461 
3462 	if (!mod_len || ret)
3463 		return ret;
3464 
3465 	csum_offset = mod_start - em->start;
3466 	csum_len = mod_len;
3467 
3468 	/* block start is already adjusted for the file extent offset. */
3469 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3470 				       em->block_start + csum_offset,
3471 				       em->block_start + csum_offset +
3472 				       csum_len - 1, &ordered_sums, 0);
3473 	if (ret)
3474 		return ret;
3475 
3476 	while (!list_empty(&ordered_sums)) {
3477 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3478 						   struct btrfs_ordered_sum,
3479 						   list);
3480 		if (!ret)
3481 			ret = btrfs_csum_file_blocks(trans, log, sums);
3482 		list_del(&sums->list);
3483 		kfree(sums);
3484 	}
3485 
3486 	return ret;
3487 }
3488 
3489 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3490 				     struct btrfs_root *root,
3491 				     struct inode *inode,
3492 				     struct btrfs_path *path)
3493 {
3494 	struct extent_map *em, *n;
3495 	struct list_head extents;
3496 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3497 	u64 test_gen;
3498 	int ret = 0;
3499 	int num = 0;
3500 
3501 	INIT_LIST_HEAD(&extents);
3502 
3503 	write_lock(&tree->lock);
3504 	test_gen = root->fs_info->last_trans_committed;
3505 
3506 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3507 		list_del_init(&em->list);
3508 
3509 		/*
3510 		 * Just an arbitrary number, this can be really CPU intensive
3511 		 * once we start getting a lot of extents, and really once we
3512 		 * have a bunch of extents we just want to commit since it will
3513 		 * be faster.
3514 		 */
3515 		if (++num > 32768) {
3516 			list_del_init(&tree->modified_extents);
3517 			ret = -EFBIG;
3518 			goto process;
3519 		}
3520 
3521 		if (em->generation <= test_gen)
3522 			continue;
3523 		/* Need a ref to keep it from getting evicted from cache */
3524 		atomic_inc(&em->refs);
3525 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3526 		list_add_tail(&em->list, &extents);
3527 		num++;
3528 	}
3529 
3530 	list_sort(NULL, &extents, extent_cmp);
3531 
3532 process:
3533 	while (!list_empty(&extents)) {
3534 		em = list_entry(extents.next, struct extent_map, list);
3535 
3536 		list_del_init(&em->list);
3537 
3538 		/*
3539 		 * If we had an error we just need to delete everybody from our
3540 		 * private list.
3541 		 */
3542 		if (ret) {
3543 			clear_em_logging(tree, em);
3544 			free_extent_map(em);
3545 			continue;
3546 		}
3547 
3548 		write_unlock(&tree->lock);
3549 
3550 		ret = log_one_extent(trans, inode, root, em, path);
3551 		write_lock(&tree->lock);
3552 		clear_em_logging(tree, em);
3553 		free_extent_map(em);
3554 	}
3555 	WARN_ON(!list_empty(&extents));
3556 	write_unlock(&tree->lock);
3557 
3558 	btrfs_release_path(path);
3559 	return ret;
3560 }
3561 
3562 /* log a single inode in the tree log.
3563  * At least one parent directory for this inode must exist in the tree
3564  * or be logged already.
3565  *
3566  * Any items from this inode changed by the current transaction are copied
3567  * to the log tree.  An extra reference is taken on any extents in this
3568  * file, allowing us to avoid a whole pile of corner cases around logging
3569  * blocks that have been removed from the tree.
3570  *
3571  * See LOG_INODE_ALL and related defines for a description of what inode_only
3572  * does.
3573  *
3574  * This handles both files and directories.
3575  */
3576 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3577 			     struct btrfs_root *root, struct inode *inode,
3578 			     int inode_only)
3579 {
3580 	struct btrfs_path *path;
3581 	struct btrfs_path *dst_path;
3582 	struct btrfs_key min_key;
3583 	struct btrfs_key max_key;
3584 	struct btrfs_root *log = root->log_root;
3585 	struct extent_buffer *src = NULL;
3586 	int err = 0;
3587 	int ret;
3588 	int nritems;
3589 	int ins_start_slot = 0;
3590 	int ins_nr;
3591 	bool fast_search = false;
3592 	u64 ino = btrfs_ino(inode);
3593 
3594 	path = btrfs_alloc_path();
3595 	if (!path)
3596 		return -ENOMEM;
3597 	dst_path = btrfs_alloc_path();
3598 	if (!dst_path) {
3599 		btrfs_free_path(path);
3600 		return -ENOMEM;
3601 	}
3602 
3603 	min_key.objectid = ino;
3604 	min_key.type = BTRFS_INODE_ITEM_KEY;
3605 	min_key.offset = 0;
3606 
3607 	max_key.objectid = ino;
3608 
3609 
3610 	/* today the code can only do partial logging of directories */
3611 	if (S_ISDIR(inode->i_mode) ||
3612 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3613 		       &BTRFS_I(inode)->runtime_flags) &&
3614 	     inode_only == LOG_INODE_EXISTS))
3615 		max_key.type = BTRFS_XATTR_ITEM_KEY;
3616 	else
3617 		max_key.type = (u8)-1;
3618 	max_key.offset = (u64)-1;
3619 
3620 	/* Only run delayed items if we are a dir or a new file */
3621 	if (S_ISDIR(inode->i_mode) ||
3622 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3623 		ret = btrfs_commit_inode_delayed_items(trans, inode);
3624 		if (ret) {
3625 			btrfs_free_path(path);
3626 			btrfs_free_path(dst_path);
3627 			return ret;
3628 		}
3629 	}
3630 
3631 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3632 
3633 	btrfs_get_logged_extents(log, inode);
3634 
3635 	/*
3636 	 * a brute force approach to making sure we get the most uptodate
3637 	 * copies of everything.
3638 	 */
3639 	if (S_ISDIR(inode->i_mode)) {
3640 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3641 
3642 		if (inode_only == LOG_INODE_EXISTS)
3643 			max_key_type = BTRFS_XATTR_ITEM_KEY;
3644 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3645 	} else {
3646 		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3647 				       &BTRFS_I(inode)->runtime_flags)) {
3648 			clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3649 				  &BTRFS_I(inode)->runtime_flags);
3650 			ret = btrfs_truncate_inode_items(trans, log,
3651 							 inode, 0, 0);
3652 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3653 					      &BTRFS_I(inode)->runtime_flags)) {
3654 			if (inode_only == LOG_INODE_ALL)
3655 				fast_search = true;
3656 			max_key.type = BTRFS_XATTR_ITEM_KEY;
3657 			ret = drop_objectid_items(trans, log, path, ino,
3658 						  max_key.type);
3659 		} else {
3660 			if (inode_only == LOG_INODE_ALL)
3661 				fast_search = true;
3662 			ret = log_inode_item(trans, log, dst_path, inode);
3663 			if (ret) {
3664 				err = ret;
3665 				goto out_unlock;
3666 			}
3667 			goto log_extents;
3668 		}
3669 
3670 	}
3671 	if (ret) {
3672 		err = ret;
3673 		goto out_unlock;
3674 	}
3675 	path->keep_locks = 1;
3676 
3677 	while (1) {
3678 		ins_nr = 0;
3679 		ret = btrfs_search_forward(root, &min_key, &max_key,
3680 					   path, trans->transid);
3681 		if (ret != 0)
3682 			break;
3683 again:
3684 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
3685 		if (min_key.objectid != ino)
3686 			break;
3687 		if (min_key.type > max_key.type)
3688 			break;
3689 
3690 		src = path->nodes[0];
3691 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3692 			ins_nr++;
3693 			goto next_slot;
3694 		} else if (!ins_nr) {
3695 			ins_start_slot = path->slots[0];
3696 			ins_nr = 1;
3697 			goto next_slot;
3698 		}
3699 
3700 		ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3701 				 ins_nr, inode_only);
3702 		if (ret) {
3703 			err = ret;
3704 			goto out_unlock;
3705 		}
3706 		ins_nr = 1;
3707 		ins_start_slot = path->slots[0];
3708 next_slot:
3709 
3710 		nritems = btrfs_header_nritems(path->nodes[0]);
3711 		path->slots[0]++;
3712 		if (path->slots[0] < nritems) {
3713 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3714 					      path->slots[0]);
3715 			goto again;
3716 		}
3717 		if (ins_nr) {
3718 			ret = copy_items(trans, inode, dst_path, src,
3719 					 ins_start_slot,
3720 					 ins_nr, inode_only);
3721 			if (ret) {
3722 				err = ret;
3723 				goto out_unlock;
3724 			}
3725 			ins_nr = 0;
3726 		}
3727 		btrfs_release_path(path);
3728 
3729 		if (min_key.offset < (u64)-1)
3730 			min_key.offset++;
3731 		else if (min_key.type < (u8)-1)
3732 			min_key.type++;
3733 		else if (min_key.objectid < (u64)-1)
3734 			min_key.objectid++;
3735 		else
3736 			break;
3737 	}
3738 	if (ins_nr) {
3739 		ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3740 				 ins_nr, inode_only);
3741 		if (ret) {
3742 			err = ret;
3743 			goto out_unlock;
3744 		}
3745 		ins_nr = 0;
3746 	}
3747 
3748 log_extents:
3749 	if (fast_search) {
3750 		btrfs_release_path(dst_path);
3751 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3752 		if (ret) {
3753 			err = ret;
3754 			goto out_unlock;
3755 		}
3756 	} else {
3757 		struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3758 		struct extent_map *em, *n;
3759 
3760 		write_lock(&tree->lock);
3761 		list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3762 			list_del_init(&em->list);
3763 		write_unlock(&tree->lock);
3764 	}
3765 
3766 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3767 		btrfs_release_path(path);
3768 		btrfs_release_path(dst_path);
3769 		ret = log_directory_changes(trans, root, inode, path, dst_path);
3770 		if (ret) {
3771 			err = ret;
3772 			goto out_unlock;
3773 		}
3774 	}
3775 	BTRFS_I(inode)->logged_trans = trans->transid;
3776 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3777 out_unlock:
3778 	if (err)
3779 		btrfs_free_logged_extents(log, log->log_transid);
3780 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3781 
3782 	btrfs_free_path(path);
3783 	btrfs_free_path(dst_path);
3784 	return err;
3785 }
3786 
3787 /*
3788  * follow the dentry parent pointers up the chain and see if any
3789  * of the directories in it require a full commit before they can
3790  * be logged.  Returns zero if nothing special needs to be done or 1 if
3791  * a full commit is required.
3792  */
3793 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3794 					       struct inode *inode,
3795 					       struct dentry *parent,
3796 					       struct super_block *sb,
3797 					       u64 last_committed)
3798 {
3799 	int ret = 0;
3800 	struct btrfs_root *root;
3801 	struct dentry *old_parent = NULL;
3802 
3803 	/*
3804 	 * for regular files, if its inode is already on disk, we don't
3805 	 * have to worry about the parents at all.  This is because
3806 	 * we can use the last_unlink_trans field to record renames
3807 	 * and other fun in this file.
3808 	 */
3809 	if (S_ISREG(inode->i_mode) &&
3810 	    BTRFS_I(inode)->generation <= last_committed &&
3811 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
3812 			goto out;
3813 
3814 	if (!S_ISDIR(inode->i_mode)) {
3815 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3816 			goto out;
3817 		inode = parent->d_inode;
3818 	}
3819 
3820 	while (1) {
3821 		BTRFS_I(inode)->logged_trans = trans->transid;
3822 		smp_mb();
3823 
3824 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3825 			root = BTRFS_I(inode)->root;
3826 
3827 			/*
3828 			 * make sure any commits to the log are forced
3829 			 * to be full commits
3830 			 */
3831 			root->fs_info->last_trans_log_full_commit =
3832 				trans->transid;
3833 			ret = 1;
3834 			break;
3835 		}
3836 
3837 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3838 			break;
3839 
3840 		if (IS_ROOT(parent))
3841 			break;
3842 
3843 		parent = dget_parent(parent);
3844 		dput(old_parent);
3845 		old_parent = parent;
3846 		inode = parent->d_inode;
3847 
3848 	}
3849 	dput(old_parent);
3850 out:
3851 	return ret;
3852 }
3853 
3854 /*
3855  * helper function around btrfs_log_inode to make sure newly created
3856  * parent directories also end up in the log.  A minimal inode and backref
3857  * only logging is done of any parent directories that are older than
3858  * the last committed transaction
3859  */
3860 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3861 			    	  struct btrfs_root *root, struct inode *inode,
3862 			    	  struct dentry *parent, int exists_only)
3863 {
3864 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3865 	struct super_block *sb;
3866 	struct dentry *old_parent = NULL;
3867 	int ret = 0;
3868 	u64 last_committed = root->fs_info->last_trans_committed;
3869 
3870 	sb = inode->i_sb;
3871 
3872 	if (btrfs_test_opt(root, NOTREELOG)) {
3873 		ret = 1;
3874 		goto end_no_trans;
3875 	}
3876 
3877 	if (root->fs_info->last_trans_log_full_commit >
3878 	    root->fs_info->last_trans_committed) {
3879 		ret = 1;
3880 		goto end_no_trans;
3881 	}
3882 
3883 	if (root != BTRFS_I(inode)->root ||
3884 	    btrfs_root_refs(&root->root_item) == 0) {
3885 		ret = 1;
3886 		goto end_no_trans;
3887 	}
3888 
3889 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3890 					 sb, last_committed);
3891 	if (ret)
3892 		goto end_no_trans;
3893 
3894 	if (btrfs_inode_in_log(inode, trans->transid)) {
3895 		ret = BTRFS_NO_LOG_SYNC;
3896 		goto end_no_trans;
3897 	}
3898 
3899 	ret = start_log_trans(trans, root);
3900 	if (ret)
3901 		goto end_trans;
3902 
3903 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3904 	if (ret)
3905 		goto end_trans;
3906 
3907 	/*
3908 	 * for regular files, if its inode is already on disk, we don't
3909 	 * have to worry about the parents at all.  This is because
3910 	 * we can use the last_unlink_trans field to record renames
3911 	 * and other fun in this file.
3912 	 */
3913 	if (S_ISREG(inode->i_mode) &&
3914 	    BTRFS_I(inode)->generation <= last_committed &&
3915 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3916 		ret = 0;
3917 		goto end_trans;
3918 	}
3919 
3920 	inode_only = LOG_INODE_EXISTS;
3921 	while (1) {
3922 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3923 			break;
3924 
3925 		inode = parent->d_inode;
3926 		if (root != BTRFS_I(inode)->root)
3927 			break;
3928 
3929 		if (BTRFS_I(inode)->generation >
3930 		    root->fs_info->last_trans_committed) {
3931 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3932 			if (ret)
3933 				goto end_trans;
3934 		}
3935 		if (IS_ROOT(parent))
3936 			break;
3937 
3938 		parent = dget_parent(parent);
3939 		dput(old_parent);
3940 		old_parent = parent;
3941 	}
3942 	ret = 0;
3943 end_trans:
3944 	dput(old_parent);
3945 	if (ret < 0) {
3946 		root->fs_info->last_trans_log_full_commit = trans->transid;
3947 		ret = 1;
3948 	}
3949 	btrfs_end_log_trans(root);
3950 end_no_trans:
3951 	return ret;
3952 }
3953 
3954 /*
3955  * it is not safe to log dentry if the chunk root has added new
3956  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3957  * If this returns 1, you must commit the transaction to safely get your
3958  * data on disk.
3959  */
3960 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3961 			  struct btrfs_root *root, struct dentry *dentry)
3962 {
3963 	struct dentry *parent = dget_parent(dentry);
3964 	int ret;
3965 
3966 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3967 	dput(parent);
3968 
3969 	return ret;
3970 }
3971 
3972 /*
3973  * should be called during mount to recover any replay any log trees
3974  * from the FS
3975  */
3976 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3977 {
3978 	int ret;
3979 	struct btrfs_path *path;
3980 	struct btrfs_trans_handle *trans;
3981 	struct btrfs_key key;
3982 	struct btrfs_key found_key;
3983 	struct btrfs_key tmp_key;
3984 	struct btrfs_root *log;
3985 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3986 	struct walk_control wc = {
3987 		.process_func = process_one_buffer,
3988 		.stage = 0,
3989 	};
3990 
3991 	path = btrfs_alloc_path();
3992 	if (!path)
3993 		return -ENOMEM;
3994 
3995 	fs_info->log_root_recovering = 1;
3996 
3997 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3998 	if (IS_ERR(trans)) {
3999 		ret = PTR_ERR(trans);
4000 		goto error;
4001 	}
4002 
4003 	wc.trans = trans;
4004 	wc.pin = 1;
4005 
4006 	ret = walk_log_tree(trans, log_root_tree, &wc);
4007 	if (ret) {
4008 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
4009 			    "recovering log root tree.");
4010 		goto error;
4011 	}
4012 
4013 again:
4014 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
4015 	key.offset = (u64)-1;
4016 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4017 
4018 	while (1) {
4019 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4020 
4021 		if (ret < 0) {
4022 			btrfs_error(fs_info, ret,
4023 				    "Couldn't find tree log root.");
4024 			goto error;
4025 		}
4026 		if (ret > 0) {
4027 			if (path->slots[0] == 0)
4028 				break;
4029 			path->slots[0]--;
4030 		}
4031 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4032 				      path->slots[0]);
4033 		btrfs_release_path(path);
4034 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4035 			break;
4036 
4037 		log = btrfs_read_fs_root(log_root_tree, &found_key);
4038 		if (IS_ERR(log)) {
4039 			ret = PTR_ERR(log);
4040 			btrfs_error(fs_info, ret,
4041 				    "Couldn't read tree log root.");
4042 			goto error;
4043 		}
4044 
4045 		tmp_key.objectid = found_key.offset;
4046 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4047 		tmp_key.offset = (u64)-1;
4048 
4049 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4050 		if (IS_ERR(wc.replay_dest)) {
4051 			ret = PTR_ERR(wc.replay_dest);
4052 			free_extent_buffer(log->node);
4053 			free_extent_buffer(log->commit_root);
4054 			kfree(log);
4055 			btrfs_error(fs_info, ret, "Couldn't read target root "
4056 				    "for tree log recovery.");
4057 			goto error;
4058 		}
4059 
4060 		wc.replay_dest->log_root = log;
4061 		btrfs_record_root_in_trans(trans, wc.replay_dest);
4062 		ret = walk_log_tree(trans, log, &wc);
4063 
4064 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4065 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4066 						      path);
4067 		}
4068 
4069 		key.offset = found_key.offset - 1;
4070 		wc.replay_dest->log_root = NULL;
4071 		free_extent_buffer(log->node);
4072 		free_extent_buffer(log->commit_root);
4073 		kfree(log);
4074 
4075 		if (ret)
4076 			goto error;
4077 
4078 		if (found_key.offset == 0)
4079 			break;
4080 	}
4081 	btrfs_release_path(path);
4082 
4083 	/* step one is to pin it all, step two is to replay just inodes */
4084 	if (wc.pin) {
4085 		wc.pin = 0;
4086 		wc.process_func = replay_one_buffer;
4087 		wc.stage = LOG_WALK_REPLAY_INODES;
4088 		goto again;
4089 	}
4090 	/* step three is to replay everything */
4091 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4092 		wc.stage++;
4093 		goto again;
4094 	}
4095 
4096 	btrfs_free_path(path);
4097 
4098 	/* step 4: commit the transaction, which also unpins the blocks */
4099 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4100 	if (ret)
4101 		return ret;
4102 
4103 	free_extent_buffer(log_root_tree->node);
4104 	log_root_tree->log_root = NULL;
4105 	fs_info->log_root_recovering = 0;
4106 	kfree(log_root_tree);
4107 
4108 	return 0;
4109 error:
4110 	if (wc.trans)
4111 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4112 	btrfs_free_path(path);
4113 	return ret;
4114 }
4115 
4116 /*
4117  * there are some corner cases where we want to force a full
4118  * commit instead of allowing a directory to be logged.
4119  *
4120  * They revolve around files there were unlinked from the directory, and
4121  * this function updates the parent directory so that a full commit is
4122  * properly done if it is fsync'd later after the unlinks are done.
4123  */
4124 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4125 			     struct inode *dir, struct inode *inode,
4126 			     int for_rename)
4127 {
4128 	/*
4129 	 * when we're logging a file, if it hasn't been renamed
4130 	 * or unlinked, and its inode is fully committed on disk,
4131 	 * we don't have to worry about walking up the directory chain
4132 	 * to log its parents.
4133 	 *
4134 	 * So, we use the last_unlink_trans field to put this transid
4135 	 * into the file.  When the file is logged we check it and
4136 	 * don't log the parents if the file is fully on disk.
4137 	 */
4138 	if (S_ISREG(inode->i_mode))
4139 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4140 
4141 	/*
4142 	 * if this directory was already logged any new
4143 	 * names for this file/dir will get recorded
4144 	 */
4145 	smp_mb();
4146 	if (BTRFS_I(dir)->logged_trans == trans->transid)
4147 		return;
4148 
4149 	/*
4150 	 * if the inode we're about to unlink was logged,
4151 	 * the log will be properly updated for any new names
4152 	 */
4153 	if (BTRFS_I(inode)->logged_trans == trans->transid)
4154 		return;
4155 
4156 	/*
4157 	 * when renaming files across directories, if the directory
4158 	 * there we're unlinking from gets fsync'd later on, there's
4159 	 * no way to find the destination directory later and fsync it
4160 	 * properly.  So, we have to be conservative and force commits
4161 	 * so the new name gets discovered.
4162 	 */
4163 	if (for_rename)
4164 		goto record;
4165 
4166 	/* we can safely do the unlink without any special recording */
4167 	return;
4168 
4169 record:
4170 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
4171 }
4172 
4173 /*
4174  * Call this after adding a new name for a file and it will properly
4175  * update the log to reflect the new name.
4176  *
4177  * It will return zero if all goes well, and it will return 1 if a
4178  * full transaction commit is required.
4179  */
4180 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4181 			struct inode *inode, struct inode *old_dir,
4182 			struct dentry *parent)
4183 {
4184 	struct btrfs_root * root = BTRFS_I(inode)->root;
4185 
4186 	/*
4187 	 * this will force the logging code to walk the dentry chain
4188 	 * up for the file
4189 	 */
4190 	if (S_ISREG(inode->i_mode))
4191 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4192 
4193 	/*
4194 	 * if this inode hasn't been logged and directory we're renaming it
4195 	 * from hasn't been logged, we don't need to log it
4196 	 */
4197 	if (BTRFS_I(inode)->logged_trans <=
4198 	    root->fs_info->last_trans_committed &&
4199 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4200 		    root->fs_info->last_trans_committed))
4201 		return 0;
4202 
4203 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4204 }
4205 
4206