xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "ctree.h"
12 #include "tree-log.h"
13 #include "disk-io.h"
14 #include "locking.h"
15 #include "print-tree.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "inode-map.h"
20 
21 /* magic values for the inode_only field in btrfs_log_inode:
22  *
23  * LOG_INODE_ALL means to log everything
24  * LOG_INODE_EXISTS means to log just enough to recreate the inode
25  * during log replay
26  */
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
30 #define LOG_OTHER_INODE_ALL 3
31 
32 /*
33  * directory trouble cases
34  *
35  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
36  * log, we must force a full commit before doing an fsync of the directory
37  * where the unlink was done.
38  * ---> record transid of last unlink/rename per directory
39  *
40  * mkdir foo/some_dir
41  * normal commit
42  * rename foo/some_dir foo2/some_dir
43  * mkdir foo/some_dir
44  * fsync foo/some_dir/some_file
45  *
46  * The fsync above will unlink the original some_dir without recording
47  * it in its new location (foo2).  After a crash, some_dir will be gone
48  * unless the fsync of some_file forces a full commit
49  *
50  * 2) we must log any new names for any file or dir that is in the fsync
51  * log. ---> check inode while renaming/linking.
52  *
53  * 2a) we must log any new names for any file or dir during rename
54  * when the directory they are being removed from was logged.
55  * ---> check inode and old parent dir during rename
56  *
57  *  2a is actually the more important variant.  With the extra logging
58  *  a crash might unlink the old name without recreating the new one
59  *
60  * 3) after a crash, we must go through any directories with a link count
61  * of zero and redo the rm -rf
62  *
63  * mkdir f1/foo
64  * normal commit
65  * rm -rf f1/foo
66  * fsync(f1)
67  *
68  * The directory f1 was fully removed from the FS, but fsync was never
69  * called on f1, only its parent dir.  After a crash the rm -rf must
70  * be replayed.  This must be able to recurse down the entire
71  * directory tree.  The inode link count fixup code takes care of the
72  * ugly details.
73  */
74 
75 /*
76  * stages for the tree walking.  The first
77  * stage (0) is to only pin down the blocks we find
78  * the second stage (1) is to make sure that all the inodes
79  * we find in the log are created in the subvolume.
80  *
81  * The last stage is to deal with directories and links and extents
82  * and all the other fun semantics
83  */
84 #define LOG_WALK_PIN_ONLY 0
85 #define LOG_WALK_REPLAY_INODES 1
86 #define LOG_WALK_REPLAY_DIR_INDEX 2
87 #define LOG_WALK_REPLAY_ALL 3
88 
89 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90 			   struct btrfs_root *root, struct btrfs_inode *inode,
91 			   int inode_only,
92 			   const loff_t start,
93 			   const loff_t end,
94 			   struct btrfs_log_ctx *ctx);
95 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
96 			     struct btrfs_root *root,
97 			     struct btrfs_path *path, u64 objectid);
98 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
99 				       struct btrfs_root *root,
100 				       struct btrfs_root *log,
101 				       struct btrfs_path *path,
102 				       u64 dirid, int del_all);
103 
104 /*
105  * tree logging is a special write ahead log used to make sure that
106  * fsyncs and O_SYNCs can happen without doing full tree commits.
107  *
108  * Full tree commits are expensive because they require commonly
109  * modified blocks to be recowed, creating many dirty pages in the
110  * extent tree an 4x-6x higher write load than ext3.
111  *
112  * Instead of doing a tree commit on every fsync, we use the
113  * key ranges and transaction ids to find items for a given file or directory
114  * that have changed in this transaction.  Those items are copied into
115  * a special tree (one per subvolume root), that tree is written to disk
116  * and then the fsync is considered complete.
117  *
118  * After a crash, items are copied out of the log-tree back into the
119  * subvolume tree.  Any file data extents found are recorded in the extent
120  * allocation tree, and the log-tree freed.
121  *
122  * The log tree is read three times, once to pin down all the extents it is
123  * using in ram and once, once to create all the inodes logged in the tree
124  * and once to do all the other items.
125  */
126 
127 /*
128  * start a sub transaction and setup the log tree
129  * this increments the log tree writer count to make the people
130  * syncing the tree wait for us to finish
131  */
132 static int start_log_trans(struct btrfs_trans_handle *trans,
133 			   struct btrfs_root *root,
134 			   struct btrfs_log_ctx *ctx)
135 {
136 	struct btrfs_fs_info *fs_info = root->fs_info;
137 	int ret = 0;
138 
139 	mutex_lock(&root->log_mutex);
140 
141 	if (root->log_root) {
142 		if (btrfs_need_log_full_commit(trans)) {
143 			ret = -EAGAIN;
144 			goto out;
145 		}
146 
147 		if (!root->log_start_pid) {
148 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
149 			root->log_start_pid = current->pid;
150 		} else if (root->log_start_pid != current->pid) {
151 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
152 		}
153 	} else {
154 		mutex_lock(&fs_info->tree_log_mutex);
155 		if (!fs_info->log_root_tree)
156 			ret = btrfs_init_log_root_tree(trans, fs_info);
157 		mutex_unlock(&fs_info->tree_log_mutex);
158 		if (ret)
159 			goto out;
160 
161 		ret = btrfs_add_log_tree(trans, root);
162 		if (ret)
163 			goto out;
164 
165 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
166 		root->log_start_pid = current->pid;
167 	}
168 
169 	atomic_inc(&root->log_batch);
170 	atomic_inc(&root->log_writers);
171 	if (ctx) {
172 		int index = root->log_transid % 2;
173 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
174 		ctx->log_transid = root->log_transid;
175 	}
176 
177 out:
178 	mutex_unlock(&root->log_mutex);
179 	return ret;
180 }
181 
182 /*
183  * returns 0 if there was a log transaction running and we were able
184  * to join, or returns -ENOENT if there were not transactions
185  * in progress
186  */
187 static int join_running_log_trans(struct btrfs_root *root)
188 {
189 	int ret = -ENOENT;
190 
191 	smp_mb();
192 	if (!root->log_root)
193 		return -ENOENT;
194 
195 	mutex_lock(&root->log_mutex);
196 	if (root->log_root) {
197 		ret = 0;
198 		atomic_inc(&root->log_writers);
199 	}
200 	mutex_unlock(&root->log_mutex);
201 	return ret;
202 }
203 
204 /*
205  * This either makes the current running log transaction wait
206  * until you call btrfs_end_log_trans() or it makes any future
207  * log transactions wait until you call btrfs_end_log_trans()
208  */
209 void btrfs_pin_log_trans(struct btrfs_root *root)
210 {
211 	mutex_lock(&root->log_mutex);
212 	atomic_inc(&root->log_writers);
213 	mutex_unlock(&root->log_mutex);
214 }
215 
216 /*
217  * indicate we're done making changes to the log tree
218  * and wake up anyone waiting to do a sync
219  */
220 void btrfs_end_log_trans(struct btrfs_root *root)
221 {
222 	if (atomic_dec_and_test(&root->log_writers)) {
223 		/* atomic_dec_and_test implies a barrier */
224 		cond_wake_up_nomb(&root->log_writer_wait);
225 	}
226 }
227 
228 static int btrfs_write_tree_block(struct extent_buffer *buf)
229 {
230 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
231 					buf->start + buf->len - 1);
232 }
233 
234 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
235 {
236 	filemap_fdatawait_range(buf->pages[0]->mapping,
237 			        buf->start, buf->start + buf->len - 1);
238 }
239 
240 /*
241  * the walk control struct is used to pass state down the chain when
242  * processing the log tree.  The stage field tells us which part
243  * of the log tree processing we are currently doing.  The others
244  * are state fields used for that specific part
245  */
246 struct walk_control {
247 	/* should we free the extent on disk when done?  This is used
248 	 * at transaction commit time while freeing a log tree
249 	 */
250 	int free;
251 
252 	/* should we write out the extent buffer?  This is used
253 	 * while flushing the log tree to disk during a sync
254 	 */
255 	int write;
256 
257 	/* should we wait for the extent buffer io to finish?  Also used
258 	 * while flushing the log tree to disk for a sync
259 	 */
260 	int wait;
261 
262 	/* pin only walk, we record which extents on disk belong to the
263 	 * log trees
264 	 */
265 	int pin;
266 
267 	/* what stage of the replay code we're currently in */
268 	int stage;
269 
270 	/*
271 	 * Ignore any items from the inode currently being processed. Needs
272 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
273 	 * the LOG_WALK_REPLAY_INODES stage.
274 	 */
275 	bool ignore_cur_inode;
276 
277 	/* the root we are currently replaying */
278 	struct btrfs_root *replay_dest;
279 
280 	/* the trans handle for the current replay */
281 	struct btrfs_trans_handle *trans;
282 
283 	/* the function that gets used to process blocks we find in the
284 	 * tree.  Note the extent_buffer might not be up to date when it is
285 	 * passed in, and it must be checked or read if you need the data
286 	 * inside it
287 	 */
288 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
289 			    struct walk_control *wc, u64 gen, int level);
290 };
291 
292 /*
293  * process_func used to pin down extents, write them or wait on them
294  */
295 static int process_one_buffer(struct btrfs_root *log,
296 			      struct extent_buffer *eb,
297 			      struct walk_control *wc, u64 gen, int level)
298 {
299 	struct btrfs_fs_info *fs_info = log->fs_info;
300 	int ret = 0;
301 
302 	/*
303 	 * If this fs is mixed then we need to be able to process the leaves to
304 	 * pin down any logged extents, so we have to read the block.
305 	 */
306 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
307 		ret = btrfs_read_buffer(eb, gen, level, NULL);
308 		if (ret)
309 			return ret;
310 	}
311 
312 	if (wc->pin)
313 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
314 						      eb->len);
315 
316 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 		if (wc->pin && btrfs_header_level(eb) == 0)
318 			ret = btrfs_exclude_logged_extents(eb);
319 		if (wc->write)
320 			btrfs_write_tree_block(eb);
321 		if (wc->wait)
322 			btrfs_wait_tree_block_writeback(eb);
323 	}
324 	return ret;
325 }
326 
327 /*
328  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
329  * to the src data we are copying out.
330  *
331  * root is the tree we are copying into, and path is a scratch
332  * path for use in this function (it should be released on entry and
333  * will be released on exit).
334  *
335  * If the key is already in the destination tree the existing item is
336  * overwritten.  If the existing item isn't big enough, it is extended.
337  * If it is too large, it is truncated.
338  *
339  * If the key isn't in the destination yet, a new item is inserted.
340  */
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 				   struct btrfs_root *root,
343 				   struct btrfs_path *path,
344 				   struct extent_buffer *eb, int slot,
345 				   struct btrfs_key *key)
346 {
347 	int ret;
348 	u32 item_size;
349 	u64 saved_i_size = 0;
350 	int save_old_i_size = 0;
351 	unsigned long src_ptr;
352 	unsigned long dst_ptr;
353 	int overwrite_root = 0;
354 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
355 
356 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 		overwrite_root = 1;
358 
359 	item_size = btrfs_item_size_nr(eb, slot);
360 	src_ptr = btrfs_item_ptr_offset(eb, slot);
361 
362 	/* look for the key in the destination tree */
363 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
364 	if (ret < 0)
365 		return ret;
366 
367 	if (ret == 0) {
368 		char *src_copy;
369 		char *dst_copy;
370 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 						  path->slots[0]);
372 		if (dst_size != item_size)
373 			goto insert;
374 
375 		if (item_size == 0) {
376 			btrfs_release_path(path);
377 			return 0;
378 		}
379 		dst_copy = kmalloc(item_size, GFP_NOFS);
380 		src_copy = kmalloc(item_size, GFP_NOFS);
381 		if (!dst_copy || !src_copy) {
382 			btrfs_release_path(path);
383 			kfree(dst_copy);
384 			kfree(src_copy);
385 			return -ENOMEM;
386 		}
387 
388 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
389 
390 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 				   item_size);
393 		ret = memcmp(dst_copy, src_copy, item_size);
394 
395 		kfree(dst_copy);
396 		kfree(src_copy);
397 		/*
398 		 * they have the same contents, just return, this saves
399 		 * us from cowing blocks in the destination tree and doing
400 		 * extra writes that may not have been done by a previous
401 		 * sync
402 		 */
403 		if (ret == 0) {
404 			btrfs_release_path(path);
405 			return 0;
406 		}
407 
408 		/*
409 		 * We need to load the old nbytes into the inode so when we
410 		 * replay the extents we've logged we get the right nbytes.
411 		 */
412 		if (inode_item) {
413 			struct btrfs_inode_item *item;
414 			u64 nbytes;
415 			u32 mode;
416 
417 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 					      struct btrfs_inode_item);
419 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 			item = btrfs_item_ptr(eb, slot,
421 					      struct btrfs_inode_item);
422 			btrfs_set_inode_nbytes(eb, item, nbytes);
423 
424 			/*
425 			 * If this is a directory we need to reset the i_size to
426 			 * 0 so that we can set it up properly when replaying
427 			 * the rest of the items in this log.
428 			 */
429 			mode = btrfs_inode_mode(eb, item);
430 			if (S_ISDIR(mode))
431 				btrfs_set_inode_size(eb, item, 0);
432 		}
433 	} else if (inode_item) {
434 		struct btrfs_inode_item *item;
435 		u32 mode;
436 
437 		/*
438 		 * New inode, set nbytes to 0 so that the nbytes comes out
439 		 * properly when we replay the extents.
440 		 */
441 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 		btrfs_set_inode_nbytes(eb, item, 0);
443 
444 		/*
445 		 * If this is a directory we need to reset the i_size to 0 so
446 		 * that we can set it up properly when replaying the rest of
447 		 * the items in this log.
448 		 */
449 		mode = btrfs_inode_mode(eb, item);
450 		if (S_ISDIR(mode))
451 			btrfs_set_inode_size(eb, item, 0);
452 	}
453 insert:
454 	btrfs_release_path(path);
455 	/* try to insert the key into the destination tree */
456 	path->skip_release_on_error = 1;
457 	ret = btrfs_insert_empty_item(trans, root, path,
458 				      key, item_size);
459 	path->skip_release_on_error = 0;
460 
461 	/* make sure any existing item is the correct size */
462 	if (ret == -EEXIST || ret == -EOVERFLOW) {
463 		u32 found_size;
464 		found_size = btrfs_item_size_nr(path->nodes[0],
465 						path->slots[0]);
466 		if (found_size > item_size)
467 			btrfs_truncate_item(path, item_size, 1);
468 		else if (found_size < item_size)
469 			btrfs_extend_item(path, item_size - found_size);
470 	} else if (ret) {
471 		return ret;
472 	}
473 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 					path->slots[0]);
475 
476 	/* don't overwrite an existing inode if the generation number
477 	 * was logged as zero.  This is done when the tree logging code
478 	 * is just logging an inode to make sure it exists after recovery.
479 	 *
480 	 * Also, don't overwrite i_size on directories during replay.
481 	 * log replay inserts and removes directory items based on the
482 	 * state of the tree found in the subvolume, and i_size is modified
483 	 * as it goes
484 	 */
485 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 		struct btrfs_inode_item *src_item;
487 		struct btrfs_inode_item *dst_item;
488 
489 		src_item = (struct btrfs_inode_item *)src_ptr;
490 		dst_item = (struct btrfs_inode_item *)dst_ptr;
491 
492 		if (btrfs_inode_generation(eb, src_item) == 0) {
493 			struct extent_buffer *dst_eb = path->nodes[0];
494 			const u64 ino_size = btrfs_inode_size(eb, src_item);
495 
496 			/*
497 			 * For regular files an ino_size == 0 is used only when
498 			 * logging that an inode exists, as part of a directory
499 			 * fsync, and the inode wasn't fsynced before. In this
500 			 * case don't set the size of the inode in the fs/subvol
501 			 * tree, otherwise we would be throwing valid data away.
502 			 */
503 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
504 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 			    ino_size != 0) {
506 				struct btrfs_map_token token;
507 
508 				btrfs_init_map_token(&token);
509 				btrfs_set_token_inode_size(dst_eb, dst_item,
510 							   ino_size, &token);
511 			}
512 			goto no_copy;
513 		}
514 
515 		if (overwrite_root &&
516 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 			save_old_i_size = 1;
519 			saved_i_size = btrfs_inode_size(path->nodes[0],
520 							dst_item);
521 		}
522 	}
523 
524 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 			   src_ptr, item_size);
526 
527 	if (save_old_i_size) {
528 		struct btrfs_inode_item *dst_item;
529 		dst_item = (struct btrfs_inode_item *)dst_ptr;
530 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 	}
532 
533 	/* make sure the generation is filled in */
534 	if (key->type == BTRFS_INODE_ITEM_KEY) {
535 		struct btrfs_inode_item *dst_item;
536 		dst_item = (struct btrfs_inode_item *)dst_ptr;
537 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 			btrfs_set_inode_generation(path->nodes[0], dst_item,
539 						   trans->transid);
540 		}
541 	}
542 no_copy:
543 	btrfs_mark_buffer_dirty(path->nodes[0]);
544 	btrfs_release_path(path);
545 	return 0;
546 }
547 
548 /*
549  * simple helper to read an inode off the disk from a given root
550  * This can only be called for subvolume roots and not for the log
551  */
552 static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 					     u64 objectid)
554 {
555 	struct btrfs_key key;
556 	struct inode *inode;
557 
558 	key.objectid = objectid;
559 	key.type = BTRFS_INODE_ITEM_KEY;
560 	key.offset = 0;
561 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
562 	if (IS_ERR(inode))
563 		inode = NULL;
564 	return inode;
565 }
566 
567 /* replays a single extent in 'eb' at 'slot' with 'key' into the
568  * subvolume 'root'.  path is released on entry and should be released
569  * on exit.
570  *
571  * extents in the log tree have not been allocated out of the extent
572  * tree yet.  So, this completes the allocation, taking a reference
573  * as required if the extent already exists or creating a new extent
574  * if it isn't in the extent allocation tree yet.
575  *
576  * The extent is inserted into the file, dropping any existing extents
577  * from the file that overlap the new one.
578  */
579 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
580 				      struct btrfs_root *root,
581 				      struct btrfs_path *path,
582 				      struct extent_buffer *eb, int slot,
583 				      struct btrfs_key *key)
584 {
585 	struct btrfs_fs_info *fs_info = root->fs_info;
586 	int found_type;
587 	u64 extent_end;
588 	u64 start = key->offset;
589 	u64 nbytes = 0;
590 	struct btrfs_file_extent_item *item;
591 	struct inode *inode = NULL;
592 	unsigned long size;
593 	int ret = 0;
594 
595 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
596 	found_type = btrfs_file_extent_type(eb, item);
597 
598 	if (found_type == BTRFS_FILE_EXTENT_REG ||
599 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
600 		nbytes = btrfs_file_extent_num_bytes(eb, item);
601 		extent_end = start + nbytes;
602 
603 		/*
604 		 * We don't add to the inodes nbytes if we are prealloc or a
605 		 * hole.
606 		 */
607 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
608 			nbytes = 0;
609 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
610 		size = btrfs_file_extent_ram_bytes(eb, item);
611 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
612 		extent_end = ALIGN(start + size,
613 				   fs_info->sectorsize);
614 	} else {
615 		ret = 0;
616 		goto out;
617 	}
618 
619 	inode = read_one_inode(root, key->objectid);
620 	if (!inode) {
621 		ret = -EIO;
622 		goto out;
623 	}
624 
625 	/*
626 	 * first check to see if we already have this extent in the
627 	 * file.  This must be done before the btrfs_drop_extents run
628 	 * so we don't try to drop this extent.
629 	 */
630 	ret = btrfs_lookup_file_extent(trans, root, path,
631 			btrfs_ino(BTRFS_I(inode)), start, 0);
632 
633 	if (ret == 0 &&
634 	    (found_type == BTRFS_FILE_EXTENT_REG ||
635 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
636 		struct btrfs_file_extent_item cmp1;
637 		struct btrfs_file_extent_item cmp2;
638 		struct btrfs_file_extent_item *existing;
639 		struct extent_buffer *leaf;
640 
641 		leaf = path->nodes[0];
642 		existing = btrfs_item_ptr(leaf, path->slots[0],
643 					  struct btrfs_file_extent_item);
644 
645 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
646 				   sizeof(cmp1));
647 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
648 				   sizeof(cmp2));
649 
650 		/*
651 		 * we already have a pointer to this exact extent,
652 		 * we don't have to do anything
653 		 */
654 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
655 			btrfs_release_path(path);
656 			goto out;
657 		}
658 	}
659 	btrfs_release_path(path);
660 
661 	/* drop any overlapping extents */
662 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
663 	if (ret)
664 		goto out;
665 
666 	if (found_type == BTRFS_FILE_EXTENT_REG ||
667 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
668 		u64 offset;
669 		unsigned long dest_offset;
670 		struct btrfs_key ins;
671 
672 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
673 		    btrfs_fs_incompat(fs_info, NO_HOLES))
674 			goto update_inode;
675 
676 		ret = btrfs_insert_empty_item(trans, root, path, key,
677 					      sizeof(*item));
678 		if (ret)
679 			goto out;
680 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
681 						    path->slots[0]);
682 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
683 				(unsigned long)item,  sizeof(*item));
684 
685 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
686 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
687 		ins.type = BTRFS_EXTENT_ITEM_KEY;
688 		offset = key->offset - btrfs_file_extent_offset(eb, item);
689 
690 		/*
691 		 * Manually record dirty extent, as here we did a shallow
692 		 * file extent item copy and skip normal backref update,
693 		 * but modifying extent tree all by ourselves.
694 		 * So need to manually record dirty extent for qgroup,
695 		 * as the owner of the file extent changed from log tree
696 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
697 		 */
698 		ret = btrfs_qgroup_trace_extent(trans,
699 				btrfs_file_extent_disk_bytenr(eb, item),
700 				btrfs_file_extent_disk_num_bytes(eb, item),
701 				GFP_NOFS);
702 		if (ret < 0)
703 			goto out;
704 
705 		if (ins.objectid > 0) {
706 			struct btrfs_ref ref = { 0 };
707 			u64 csum_start;
708 			u64 csum_end;
709 			LIST_HEAD(ordered_sums);
710 
711 			/*
712 			 * is this extent already allocated in the extent
713 			 * allocation tree?  If so, just add a reference
714 			 */
715 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
716 						ins.offset);
717 			if (ret == 0) {
718 				btrfs_init_generic_ref(&ref,
719 						BTRFS_ADD_DELAYED_REF,
720 						ins.objectid, ins.offset, 0);
721 				btrfs_init_data_ref(&ref,
722 						root->root_key.objectid,
723 						key->objectid, offset);
724 				ret = btrfs_inc_extent_ref(trans, &ref);
725 				if (ret)
726 					goto out;
727 			} else {
728 				/*
729 				 * insert the extent pointer in the extent
730 				 * allocation tree
731 				 */
732 				ret = btrfs_alloc_logged_file_extent(trans,
733 						root->root_key.objectid,
734 						key->objectid, offset, &ins);
735 				if (ret)
736 					goto out;
737 			}
738 			btrfs_release_path(path);
739 
740 			if (btrfs_file_extent_compression(eb, item)) {
741 				csum_start = ins.objectid;
742 				csum_end = csum_start + ins.offset;
743 			} else {
744 				csum_start = ins.objectid +
745 					btrfs_file_extent_offset(eb, item);
746 				csum_end = csum_start +
747 					btrfs_file_extent_num_bytes(eb, item);
748 			}
749 
750 			ret = btrfs_lookup_csums_range(root->log_root,
751 						csum_start, csum_end - 1,
752 						&ordered_sums, 0);
753 			if (ret)
754 				goto out;
755 			/*
756 			 * Now delete all existing cums in the csum root that
757 			 * cover our range. We do this because we can have an
758 			 * extent that is completely referenced by one file
759 			 * extent item and partially referenced by another
760 			 * file extent item (like after using the clone or
761 			 * extent_same ioctls). In this case if we end up doing
762 			 * the replay of the one that partially references the
763 			 * extent first, and we do not do the csum deletion
764 			 * below, we can get 2 csum items in the csum tree that
765 			 * overlap each other. For example, imagine our log has
766 			 * the two following file extent items:
767 			 *
768 			 * key (257 EXTENT_DATA 409600)
769 			 *     extent data disk byte 12845056 nr 102400
770 			 *     extent data offset 20480 nr 20480 ram 102400
771 			 *
772 			 * key (257 EXTENT_DATA 819200)
773 			 *     extent data disk byte 12845056 nr 102400
774 			 *     extent data offset 0 nr 102400 ram 102400
775 			 *
776 			 * Where the second one fully references the 100K extent
777 			 * that starts at disk byte 12845056, and the log tree
778 			 * has a single csum item that covers the entire range
779 			 * of the extent:
780 			 *
781 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
782 			 *
783 			 * After the first file extent item is replayed, the
784 			 * csum tree gets the following csum item:
785 			 *
786 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
787 			 *
788 			 * Which covers the 20K sub-range starting at offset 20K
789 			 * of our extent. Now when we replay the second file
790 			 * extent item, if we do not delete existing csum items
791 			 * that cover any of its blocks, we end up getting two
792 			 * csum items in our csum tree that overlap each other:
793 			 *
794 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
795 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
796 			 *
797 			 * Which is a problem, because after this anyone trying
798 			 * to lookup up for the checksum of any block of our
799 			 * extent starting at an offset of 40K or higher, will
800 			 * end up looking at the second csum item only, which
801 			 * does not contain the checksum for any block starting
802 			 * at offset 40K or higher of our extent.
803 			 */
804 			while (!list_empty(&ordered_sums)) {
805 				struct btrfs_ordered_sum *sums;
806 				sums = list_entry(ordered_sums.next,
807 						struct btrfs_ordered_sum,
808 						list);
809 				if (!ret)
810 					ret = btrfs_del_csums(trans, fs_info,
811 							      sums->bytenr,
812 							      sums->len);
813 				if (!ret)
814 					ret = btrfs_csum_file_blocks(trans,
815 						fs_info->csum_root, sums);
816 				list_del(&sums->list);
817 				kfree(sums);
818 			}
819 			if (ret)
820 				goto out;
821 		} else {
822 			btrfs_release_path(path);
823 		}
824 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
825 		/* inline extents are easy, we just overwrite them */
826 		ret = overwrite_item(trans, root, path, eb, slot, key);
827 		if (ret)
828 			goto out;
829 	}
830 
831 	inode_add_bytes(inode, nbytes);
832 update_inode:
833 	ret = btrfs_update_inode(trans, root, inode);
834 out:
835 	if (inode)
836 		iput(inode);
837 	return ret;
838 }
839 
840 /*
841  * when cleaning up conflicts between the directory names in the
842  * subvolume, directory names in the log and directory names in the
843  * inode back references, we may have to unlink inodes from directories.
844  *
845  * This is a helper function to do the unlink of a specific directory
846  * item
847  */
848 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
849 				      struct btrfs_root *root,
850 				      struct btrfs_path *path,
851 				      struct btrfs_inode *dir,
852 				      struct btrfs_dir_item *di)
853 {
854 	struct inode *inode;
855 	char *name;
856 	int name_len;
857 	struct extent_buffer *leaf;
858 	struct btrfs_key location;
859 	int ret;
860 
861 	leaf = path->nodes[0];
862 
863 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
864 	name_len = btrfs_dir_name_len(leaf, di);
865 	name = kmalloc(name_len, GFP_NOFS);
866 	if (!name)
867 		return -ENOMEM;
868 
869 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
870 	btrfs_release_path(path);
871 
872 	inode = read_one_inode(root, location.objectid);
873 	if (!inode) {
874 		ret = -EIO;
875 		goto out;
876 	}
877 
878 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
879 	if (ret)
880 		goto out;
881 
882 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
883 			name_len);
884 	if (ret)
885 		goto out;
886 	else
887 		ret = btrfs_run_delayed_items(trans);
888 out:
889 	kfree(name);
890 	iput(inode);
891 	return ret;
892 }
893 
894 /*
895  * helper function to see if a given name and sequence number found
896  * in an inode back reference are already in a directory and correctly
897  * point to this inode
898  */
899 static noinline int inode_in_dir(struct btrfs_root *root,
900 				 struct btrfs_path *path,
901 				 u64 dirid, u64 objectid, u64 index,
902 				 const char *name, int name_len)
903 {
904 	struct btrfs_dir_item *di;
905 	struct btrfs_key location;
906 	int match = 0;
907 
908 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
909 					 index, name, name_len, 0);
910 	if (di && !IS_ERR(di)) {
911 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
912 		if (location.objectid != objectid)
913 			goto out;
914 	} else
915 		goto out;
916 	btrfs_release_path(path);
917 
918 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
919 	if (di && !IS_ERR(di)) {
920 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
921 		if (location.objectid != objectid)
922 			goto out;
923 	} else
924 		goto out;
925 	match = 1;
926 out:
927 	btrfs_release_path(path);
928 	return match;
929 }
930 
931 /*
932  * helper function to check a log tree for a named back reference in
933  * an inode.  This is used to decide if a back reference that is
934  * found in the subvolume conflicts with what we find in the log.
935  *
936  * inode backreferences may have multiple refs in a single item,
937  * during replay we process one reference at a time, and we don't
938  * want to delete valid links to a file from the subvolume if that
939  * link is also in the log.
940  */
941 static noinline int backref_in_log(struct btrfs_root *log,
942 				   struct btrfs_key *key,
943 				   u64 ref_objectid,
944 				   const char *name, int namelen)
945 {
946 	struct btrfs_path *path;
947 	struct btrfs_inode_ref *ref;
948 	unsigned long ptr;
949 	unsigned long ptr_end;
950 	unsigned long name_ptr;
951 	int found_name_len;
952 	int item_size;
953 	int ret;
954 	int match = 0;
955 
956 	path = btrfs_alloc_path();
957 	if (!path)
958 		return -ENOMEM;
959 
960 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
961 	if (ret != 0)
962 		goto out;
963 
964 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
965 
966 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
967 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
968 						   path->slots[0],
969 						   ref_objectid,
970 						   name, namelen, NULL))
971 			match = 1;
972 
973 		goto out;
974 	}
975 
976 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
977 	ptr_end = ptr + item_size;
978 	while (ptr < ptr_end) {
979 		ref = (struct btrfs_inode_ref *)ptr;
980 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
981 		if (found_name_len == namelen) {
982 			name_ptr = (unsigned long)(ref + 1);
983 			ret = memcmp_extent_buffer(path->nodes[0], name,
984 						   name_ptr, namelen);
985 			if (ret == 0) {
986 				match = 1;
987 				goto out;
988 			}
989 		}
990 		ptr = (unsigned long)(ref + 1) + found_name_len;
991 	}
992 out:
993 	btrfs_free_path(path);
994 	return match;
995 }
996 
997 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
998 				  struct btrfs_root *root,
999 				  struct btrfs_path *path,
1000 				  struct btrfs_root *log_root,
1001 				  struct btrfs_inode *dir,
1002 				  struct btrfs_inode *inode,
1003 				  u64 inode_objectid, u64 parent_objectid,
1004 				  u64 ref_index, char *name, int namelen,
1005 				  int *search_done)
1006 {
1007 	int ret;
1008 	char *victim_name;
1009 	int victim_name_len;
1010 	struct extent_buffer *leaf;
1011 	struct btrfs_dir_item *di;
1012 	struct btrfs_key search_key;
1013 	struct btrfs_inode_extref *extref;
1014 
1015 again:
1016 	/* Search old style refs */
1017 	search_key.objectid = inode_objectid;
1018 	search_key.type = BTRFS_INODE_REF_KEY;
1019 	search_key.offset = parent_objectid;
1020 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1021 	if (ret == 0) {
1022 		struct btrfs_inode_ref *victim_ref;
1023 		unsigned long ptr;
1024 		unsigned long ptr_end;
1025 
1026 		leaf = path->nodes[0];
1027 
1028 		/* are we trying to overwrite a back ref for the root directory
1029 		 * if so, just jump out, we're done
1030 		 */
1031 		if (search_key.objectid == search_key.offset)
1032 			return 1;
1033 
1034 		/* check all the names in this back reference to see
1035 		 * if they are in the log.  if so, we allow them to stay
1036 		 * otherwise they must be unlinked as a conflict
1037 		 */
1038 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1039 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1040 		while (ptr < ptr_end) {
1041 			victim_ref = (struct btrfs_inode_ref *)ptr;
1042 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1043 								   victim_ref);
1044 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1045 			if (!victim_name)
1046 				return -ENOMEM;
1047 
1048 			read_extent_buffer(leaf, victim_name,
1049 					   (unsigned long)(victim_ref + 1),
1050 					   victim_name_len);
1051 
1052 			if (!backref_in_log(log_root, &search_key,
1053 					    parent_objectid,
1054 					    victim_name,
1055 					    victim_name_len)) {
1056 				inc_nlink(&inode->vfs_inode);
1057 				btrfs_release_path(path);
1058 
1059 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1060 						victim_name, victim_name_len);
1061 				kfree(victim_name);
1062 				if (ret)
1063 					return ret;
1064 				ret = btrfs_run_delayed_items(trans);
1065 				if (ret)
1066 					return ret;
1067 				*search_done = 1;
1068 				goto again;
1069 			}
1070 			kfree(victim_name);
1071 
1072 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1073 		}
1074 
1075 		/*
1076 		 * NOTE: we have searched root tree and checked the
1077 		 * corresponding ref, it does not need to check again.
1078 		 */
1079 		*search_done = 1;
1080 	}
1081 	btrfs_release_path(path);
1082 
1083 	/* Same search but for extended refs */
1084 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1085 					   inode_objectid, parent_objectid, 0,
1086 					   0);
1087 	if (!IS_ERR_OR_NULL(extref)) {
1088 		u32 item_size;
1089 		u32 cur_offset = 0;
1090 		unsigned long base;
1091 		struct inode *victim_parent;
1092 
1093 		leaf = path->nodes[0];
1094 
1095 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1096 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1097 
1098 		while (cur_offset < item_size) {
1099 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1100 
1101 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1102 
1103 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1104 				goto next;
1105 
1106 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1107 			if (!victim_name)
1108 				return -ENOMEM;
1109 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1110 					   victim_name_len);
1111 
1112 			search_key.objectid = inode_objectid;
1113 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1114 			search_key.offset = btrfs_extref_hash(parent_objectid,
1115 							      victim_name,
1116 							      victim_name_len);
1117 			ret = 0;
1118 			if (!backref_in_log(log_root, &search_key,
1119 					    parent_objectid, victim_name,
1120 					    victim_name_len)) {
1121 				ret = -ENOENT;
1122 				victim_parent = read_one_inode(root,
1123 						parent_objectid);
1124 				if (victim_parent) {
1125 					inc_nlink(&inode->vfs_inode);
1126 					btrfs_release_path(path);
1127 
1128 					ret = btrfs_unlink_inode(trans, root,
1129 							BTRFS_I(victim_parent),
1130 							inode,
1131 							victim_name,
1132 							victim_name_len);
1133 					if (!ret)
1134 						ret = btrfs_run_delayed_items(
1135 								  trans);
1136 				}
1137 				iput(victim_parent);
1138 				kfree(victim_name);
1139 				if (ret)
1140 					return ret;
1141 				*search_done = 1;
1142 				goto again;
1143 			}
1144 			kfree(victim_name);
1145 next:
1146 			cur_offset += victim_name_len + sizeof(*extref);
1147 		}
1148 		*search_done = 1;
1149 	}
1150 	btrfs_release_path(path);
1151 
1152 	/* look for a conflicting sequence number */
1153 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1154 					 ref_index, name, namelen, 0);
1155 	if (di && !IS_ERR(di)) {
1156 		ret = drop_one_dir_item(trans, root, path, dir, di);
1157 		if (ret)
1158 			return ret;
1159 	}
1160 	btrfs_release_path(path);
1161 
1162 	/* look for a conflicting name */
1163 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1164 				   name, namelen, 0);
1165 	if (di && !IS_ERR(di)) {
1166 		ret = drop_one_dir_item(trans, root, path, dir, di);
1167 		if (ret)
1168 			return ret;
1169 	}
1170 	btrfs_release_path(path);
1171 
1172 	return 0;
1173 }
1174 
1175 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1176 			     u32 *namelen, char **name, u64 *index,
1177 			     u64 *parent_objectid)
1178 {
1179 	struct btrfs_inode_extref *extref;
1180 
1181 	extref = (struct btrfs_inode_extref *)ref_ptr;
1182 
1183 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1184 	*name = kmalloc(*namelen, GFP_NOFS);
1185 	if (*name == NULL)
1186 		return -ENOMEM;
1187 
1188 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1189 			   *namelen);
1190 
1191 	if (index)
1192 		*index = btrfs_inode_extref_index(eb, extref);
1193 	if (parent_objectid)
1194 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1195 
1196 	return 0;
1197 }
1198 
1199 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1200 			  u32 *namelen, char **name, u64 *index)
1201 {
1202 	struct btrfs_inode_ref *ref;
1203 
1204 	ref = (struct btrfs_inode_ref *)ref_ptr;
1205 
1206 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1207 	*name = kmalloc(*namelen, GFP_NOFS);
1208 	if (*name == NULL)
1209 		return -ENOMEM;
1210 
1211 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1212 
1213 	if (index)
1214 		*index = btrfs_inode_ref_index(eb, ref);
1215 
1216 	return 0;
1217 }
1218 
1219 /*
1220  * Take an inode reference item from the log tree and iterate all names from the
1221  * inode reference item in the subvolume tree with the same key (if it exists).
1222  * For any name that is not in the inode reference item from the log tree, do a
1223  * proper unlink of that name (that is, remove its entry from the inode
1224  * reference item and both dir index keys).
1225  */
1226 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1227 				 struct btrfs_root *root,
1228 				 struct btrfs_path *path,
1229 				 struct btrfs_inode *inode,
1230 				 struct extent_buffer *log_eb,
1231 				 int log_slot,
1232 				 struct btrfs_key *key)
1233 {
1234 	int ret;
1235 	unsigned long ref_ptr;
1236 	unsigned long ref_end;
1237 	struct extent_buffer *eb;
1238 
1239 again:
1240 	btrfs_release_path(path);
1241 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1242 	if (ret > 0) {
1243 		ret = 0;
1244 		goto out;
1245 	}
1246 	if (ret < 0)
1247 		goto out;
1248 
1249 	eb = path->nodes[0];
1250 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1251 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1252 	while (ref_ptr < ref_end) {
1253 		char *name = NULL;
1254 		int namelen;
1255 		u64 parent_id;
1256 
1257 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1258 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1259 						NULL, &parent_id);
1260 		} else {
1261 			parent_id = key->offset;
1262 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1263 					     NULL);
1264 		}
1265 		if (ret)
1266 			goto out;
1267 
1268 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1269 			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1270 							     parent_id, name,
1271 							     namelen, NULL);
1272 		else
1273 			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1274 							 namelen, NULL);
1275 
1276 		if (!ret) {
1277 			struct inode *dir;
1278 
1279 			btrfs_release_path(path);
1280 			dir = read_one_inode(root, parent_id);
1281 			if (!dir) {
1282 				ret = -ENOENT;
1283 				kfree(name);
1284 				goto out;
1285 			}
1286 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1287 						 inode, name, namelen);
1288 			kfree(name);
1289 			iput(dir);
1290 			if (ret)
1291 				goto out;
1292 			goto again;
1293 		}
1294 
1295 		kfree(name);
1296 		ref_ptr += namelen;
1297 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1298 			ref_ptr += sizeof(struct btrfs_inode_extref);
1299 		else
1300 			ref_ptr += sizeof(struct btrfs_inode_ref);
1301 	}
1302 	ret = 0;
1303  out:
1304 	btrfs_release_path(path);
1305 	return ret;
1306 }
1307 
1308 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1309 				  const u8 ref_type, const char *name,
1310 				  const int namelen)
1311 {
1312 	struct btrfs_key key;
1313 	struct btrfs_path *path;
1314 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1315 	int ret;
1316 
1317 	path = btrfs_alloc_path();
1318 	if (!path)
1319 		return -ENOMEM;
1320 
1321 	key.objectid = btrfs_ino(BTRFS_I(inode));
1322 	key.type = ref_type;
1323 	if (key.type == BTRFS_INODE_REF_KEY)
1324 		key.offset = parent_id;
1325 	else
1326 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1327 
1328 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1329 	if (ret < 0)
1330 		goto out;
1331 	if (ret > 0) {
1332 		ret = 0;
1333 		goto out;
1334 	}
1335 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1336 		ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1337 						     path->slots[0], parent_id,
1338 						     name, namelen, NULL);
1339 	else
1340 		ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1341 						 name, namelen, NULL);
1342 
1343 out:
1344 	btrfs_free_path(path);
1345 	return ret;
1346 }
1347 
1348 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1349 		    struct inode *dir, struct inode *inode, const char *name,
1350 		    int namelen, u64 ref_index)
1351 {
1352 	struct btrfs_dir_item *dir_item;
1353 	struct btrfs_key key;
1354 	struct btrfs_path *path;
1355 	struct inode *other_inode = NULL;
1356 	int ret;
1357 
1358 	path = btrfs_alloc_path();
1359 	if (!path)
1360 		return -ENOMEM;
1361 
1362 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1363 					 btrfs_ino(BTRFS_I(dir)),
1364 					 name, namelen, 0);
1365 	if (!dir_item) {
1366 		btrfs_release_path(path);
1367 		goto add_link;
1368 	} else if (IS_ERR(dir_item)) {
1369 		ret = PTR_ERR(dir_item);
1370 		goto out;
1371 	}
1372 
1373 	/*
1374 	 * Our inode's dentry collides with the dentry of another inode which is
1375 	 * in the log but not yet processed since it has a higher inode number.
1376 	 * So delete that other dentry.
1377 	 */
1378 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1379 	btrfs_release_path(path);
1380 	other_inode = read_one_inode(root, key.objectid);
1381 	if (!other_inode) {
1382 		ret = -ENOENT;
1383 		goto out;
1384 	}
1385 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1386 				 name, namelen);
1387 	if (ret)
1388 		goto out;
1389 	/*
1390 	 * If we dropped the link count to 0, bump it so that later the iput()
1391 	 * on the inode will not free it. We will fixup the link count later.
1392 	 */
1393 	if (other_inode->i_nlink == 0)
1394 		inc_nlink(other_inode);
1395 
1396 	ret = btrfs_run_delayed_items(trans);
1397 	if (ret)
1398 		goto out;
1399 add_link:
1400 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1401 			     name, namelen, 0, ref_index);
1402 out:
1403 	iput(other_inode);
1404 	btrfs_free_path(path);
1405 
1406 	return ret;
1407 }
1408 
1409 /*
1410  * replay one inode back reference item found in the log tree.
1411  * eb, slot and key refer to the buffer and key found in the log tree.
1412  * root is the destination we are replaying into, and path is for temp
1413  * use by this function.  (it should be released on return).
1414  */
1415 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1416 				  struct btrfs_root *root,
1417 				  struct btrfs_root *log,
1418 				  struct btrfs_path *path,
1419 				  struct extent_buffer *eb, int slot,
1420 				  struct btrfs_key *key)
1421 {
1422 	struct inode *dir = NULL;
1423 	struct inode *inode = NULL;
1424 	unsigned long ref_ptr;
1425 	unsigned long ref_end;
1426 	char *name = NULL;
1427 	int namelen;
1428 	int ret;
1429 	int search_done = 0;
1430 	int log_ref_ver = 0;
1431 	u64 parent_objectid;
1432 	u64 inode_objectid;
1433 	u64 ref_index = 0;
1434 	int ref_struct_size;
1435 
1436 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1437 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1438 
1439 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1440 		struct btrfs_inode_extref *r;
1441 
1442 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1443 		log_ref_ver = 1;
1444 		r = (struct btrfs_inode_extref *)ref_ptr;
1445 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1446 	} else {
1447 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1448 		parent_objectid = key->offset;
1449 	}
1450 	inode_objectid = key->objectid;
1451 
1452 	/*
1453 	 * it is possible that we didn't log all the parent directories
1454 	 * for a given inode.  If we don't find the dir, just don't
1455 	 * copy the back ref in.  The link count fixup code will take
1456 	 * care of the rest
1457 	 */
1458 	dir = read_one_inode(root, parent_objectid);
1459 	if (!dir) {
1460 		ret = -ENOENT;
1461 		goto out;
1462 	}
1463 
1464 	inode = read_one_inode(root, inode_objectid);
1465 	if (!inode) {
1466 		ret = -EIO;
1467 		goto out;
1468 	}
1469 
1470 	while (ref_ptr < ref_end) {
1471 		if (log_ref_ver) {
1472 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1473 						&ref_index, &parent_objectid);
1474 			/*
1475 			 * parent object can change from one array
1476 			 * item to another.
1477 			 */
1478 			if (!dir)
1479 				dir = read_one_inode(root, parent_objectid);
1480 			if (!dir) {
1481 				ret = -ENOENT;
1482 				goto out;
1483 			}
1484 		} else {
1485 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1486 					     &ref_index);
1487 		}
1488 		if (ret)
1489 			goto out;
1490 
1491 		/* if we already have a perfect match, we're done */
1492 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1493 					btrfs_ino(BTRFS_I(inode)), ref_index,
1494 					name, namelen)) {
1495 			/*
1496 			 * look for a conflicting back reference in the
1497 			 * metadata. if we find one we have to unlink that name
1498 			 * of the file before we add our new link.  Later on, we
1499 			 * overwrite any existing back reference, and we don't
1500 			 * want to create dangling pointers in the directory.
1501 			 */
1502 
1503 			if (!search_done) {
1504 				ret = __add_inode_ref(trans, root, path, log,
1505 						      BTRFS_I(dir),
1506 						      BTRFS_I(inode),
1507 						      inode_objectid,
1508 						      parent_objectid,
1509 						      ref_index, name, namelen,
1510 						      &search_done);
1511 				if (ret) {
1512 					if (ret == 1)
1513 						ret = 0;
1514 					goto out;
1515 				}
1516 			}
1517 
1518 			/*
1519 			 * If a reference item already exists for this inode
1520 			 * with the same parent and name, but different index,
1521 			 * drop it and the corresponding directory index entries
1522 			 * from the parent before adding the new reference item
1523 			 * and dir index entries, otherwise we would fail with
1524 			 * -EEXIST returned from btrfs_add_link() below.
1525 			 */
1526 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1527 						     name, namelen);
1528 			if (ret > 0) {
1529 				ret = btrfs_unlink_inode(trans, root,
1530 							 BTRFS_I(dir),
1531 							 BTRFS_I(inode),
1532 							 name, namelen);
1533 				/*
1534 				 * If we dropped the link count to 0, bump it so
1535 				 * that later the iput() on the inode will not
1536 				 * free it. We will fixup the link count later.
1537 				 */
1538 				if (!ret && inode->i_nlink == 0)
1539 					inc_nlink(inode);
1540 			}
1541 			if (ret < 0)
1542 				goto out;
1543 
1544 			/* insert our name */
1545 			ret = add_link(trans, root, dir, inode, name, namelen,
1546 				       ref_index);
1547 			if (ret)
1548 				goto out;
1549 
1550 			btrfs_update_inode(trans, root, inode);
1551 		}
1552 
1553 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1554 		kfree(name);
1555 		name = NULL;
1556 		if (log_ref_ver) {
1557 			iput(dir);
1558 			dir = NULL;
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * Before we overwrite the inode reference item in the subvolume tree
1564 	 * with the item from the log tree, we must unlink all names from the
1565 	 * parent directory that are in the subvolume's tree inode reference
1566 	 * item, otherwise we end up with an inconsistent subvolume tree where
1567 	 * dir index entries exist for a name but there is no inode reference
1568 	 * item with the same name.
1569 	 */
1570 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1571 				    key);
1572 	if (ret)
1573 		goto out;
1574 
1575 	/* finally write the back reference in the inode */
1576 	ret = overwrite_item(trans, root, path, eb, slot, key);
1577 out:
1578 	btrfs_release_path(path);
1579 	kfree(name);
1580 	iput(dir);
1581 	iput(inode);
1582 	return ret;
1583 }
1584 
1585 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1586 			      struct btrfs_root *root, u64 ino)
1587 {
1588 	int ret;
1589 
1590 	ret = btrfs_insert_orphan_item(trans, root, ino);
1591 	if (ret == -EEXIST)
1592 		ret = 0;
1593 
1594 	return ret;
1595 }
1596 
1597 static int count_inode_extrefs(struct btrfs_root *root,
1598 		struct btrfs_inode *inode, struct btrfs_path *path)
1599 {
1600 	int ret = 0;
1601 	int name_len;
1602 	unsigned int nlink = 0;
1603 	u32 item_size;
1604 	u32 cur_offset = 0;
1605 	u64 inode_objectid = btrfs_ino(inode);
1606 	u64 offset = 0;
1607 	unsigned long ptr;
1608 	struct btrfs_inode_extref *extref;
1609 	struct extent_buffer *leaf;
1610 
1611 	while (1) {
1612 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1613 					    &extref, &offset);
1614 		if (ret)
1615 			break;
1616 
1617 		leaf = path->nodes[0];
1618 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1619 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1620 		cur_offset = 0;
1621 
1622 		while (cur_offset < item_size) {
1623 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1624 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1625 
1626 			nlink++;
1627 
1628 			cur_offset += name_len + sizeof(*extref);
1629 		}
1630 
1631 		offset++;
1632 		btrfs_release_path(path);
1633 	}
1634 	btrfs_release_path(path);
1635 
1636 	if (ret < 0 && ret != -ENOENT)
1637 		return ret;
1638 	return nlink;
1639 }
1640 
1641 static int count_inode_refs(struct btrfs_root *root,
1642 			struct btrfs_inode *inode, struct btrfs_path *path)
1643 {
1644 	int ret;
1645 	struct btrfs_key key;
1646 	unsigned int nlink = 0;
1647 	unsigned long ptr;
1648 	unsigned long ptr_end;
1649 	int name_len;
1650 	u64 ino = btrfs_ino(inode);
1651 
1652 	key.objectid = ino;
1653 	key.type = BTRFS_INODE_REF_KEY;
1654 	key.offset = (u64)-1;
1655 
1656 	while (1) {
1657 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658 		if (ret < 0)
1659 			break;
1660 		if (ret > 0) {
1661 			if (path->slots[0] == 0)
1662 				break;
1663 			path->slots[0]--;
1664 		}
1665 process_slot:
1666 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1667 				      path->slots[0]);
1668 		if (key.objectid != ino ||
1669 		    key.type != BTRFS_INODE_REF_KEY)
1670 			break;
1671 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1672 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1673 						   path->slots[0]);
1674 		while (ptr < ptr_end) {
1675 			struct btrfs_inode_ref *ref;
1676 
1677 			ref = (struct btrfs_inode_ref *)ptr;
1678 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1679 							    ref);
1680 			ptr = (unsigned long)(ref + 1) + name_len;
1681 			nlink++;
1682 		}
1683 
1684 		if (key.offset == 0)
1685 			break;
1686 		if (path->slots[0] > 0) {
1687 			path->slots[0]--;
1688 			goto process_slot;
1689 		}
1690 		key.offset--;
1691 		btrfs_release_path(path);
1692 	}
1693 	btrfs_release_path(path);
1694 
1695 	return nlink;
1696 }
1697 
1698 /*
1699  * There are a few corners where the link count of the file can't
1700  * be properly maintained during replay.  So, instead of adding
1701  * lots of complexity to the log code, we just scan the backrefs
1702  * for any file that has been through replay.
1703  *
1704  * The scan will update the link count on the inode to reflect the
1705  * number of back refs found.  If it goes down to zero, the iput
1706  * will free the inode.
1707  */
1708 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1709 					   struct btrfs_root *root,
1710 					   struct inode *inode)
1711 {
1712 	struct btrfs_path *path;
1713 	int ret;
1714 	u64 nlink = 0;
1715 	u64 ino = btrfs_ino(BTRFS_I(inode));
1716 
1717 	path = btrfs_alloc_path();
1718 	if (!path)
1719 		return -ENOMEM;
1720 
1721 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1722 	if (ret < 0)
1723 		goto out;
1724 
1725 	nlink = ret;
1726 
1727 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1728 	if (ret < 0)
1729 		goto out;
1730 
1731 	nlink += ret;
1732 
1733 	ret = 0;
1734 
1735 	if (nlink != inode->i_nlink) {
1736 		set_nlink(inode, nlink);
1737 		btrfs_update_inode(trans, root, inode);
1738 	}
1739 	BTRFS_I(inode)->index_cnt = (u64)-1;
1740 
1741 	if (inode->i_nlink == 0) {
1742 		if (S_ISDIR(inode->i_mode)) {
1743 			ret = replay_dir_deletes(trans, root, NULL, path,
1744 						 ino, 1);
1745 			if (ret)
1746 				goto out;
1747 		}
1748 		ret = insert_orphan_item(trans, root, ino);
1749 	}
1750 
1751 out:
1752 	btrfs_free_path(path);
1753 	return ret;
1754 }
1755 
1756 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1757 					    struct btrfs_root *root,
1758 					    struct btrfs_path *path)
1759 {
1760 	int ret;
1761 	struct btrfs_key key;
1762 	struct inode *inode;
1763 
1764 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1765 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1766 	key.offset = (u64)-1;
1767 	while (1) {
1768 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769 		if (ret < 0)
1770 			break;
1771 
1772 		if (ret == 1) {
1773 			if (path->slots[0] == 0)
1774 				break;
1775 			path->slots[0]--;
1776 		}
1777 
1778 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1780 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1781 			break;
1782 
1783 		ret = btrfs_del_item(trans, root, path);
1784 		if (ret)
1785 			goto out;
1786 
1787 		btrfs_release_path(path);
1788 		inode = read_one_inode(root, key.offset);
1789 		if (!inode)
1790 			return -EIO;
1791 
1792 		ret = fixup_inode_link_count(trans, root, inode);
1793 		iput(inode);
1794 		if (ret)
1795 			goto out;
1796 
1797 		/*
1798 		 * fixup on a directory may create new entries,
1799 		 * make sure we always look for the highset possible
1800 		 * offset
1801 		 */
1802 		key.offset = (u64)-1;
1803 	}
1804 	ret = 0;
1805 out:
1806 	btrfs_release_path(path);
1807 	return ret;
1808 }
1809 
1810 
1811 /*
1812  * record a given inode in the fixup dir so we can check its link
1813  * count when replay is done.  The link count is incremented here
1814  * so the inode won't go away until we check it
1815  */
1816 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1817 				      struct btrfs_root *root,
1818 				      struct btrfs_path *path,
1819 				      u64 objectid)
1820 {
1821 	struct btrfs_key key;
1822 	int ret = 0;
1823 	struct inode *inode;
1824 
1825 	inode = read_one_inode(root, objectid);
1826 	if (!inode)
1827 		return -EIO;
1828 
1829 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1830 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1831 	key.offset = objectid;
1832 
1833 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1834 
1835 	btrfs_release_path(path);
1836 	if (ret == 0) {
1837 		if (!inode->i_nlink)
1838 			set_nlink(inode, 1);
1839 		else
1840 			inc_nlink(inode);
1841 		ret = btrfs_update_inode(trans, root, inode);
1842 	} else if (ret == -EEXIST) {
1843 		ret = 0;
1844 	} else {
1845 		BUG(); /* Logic Error */
1846 	}
1847 	iput(inode);
1848 
1849 	return ret;
1850 }
1851 
1852 /*
1853  * when replaying the log for a directory, we only insert names
1854  * for inodes that actually exist.  This means an fsync on a directory
1855  * does not implicitly fsync all the new files in it
1856  */
1857 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1858 				    struct btrfs_root *root,
1859 				    u64 dirid, u64 index,
1860 				    char *name, int name_len,
1861 				    struct btrfs_key *location)
1862 {
1863 	struct inode *inode;
1864 	struct inode *dir;
1865 	int ret;
1866 
1867 	inode = read_one_inode(root, location->objectid);
1868 	if (!inode)
1869 		return -ENOENT;
1870 
1871 	dir = read_one_inode(root, dirid);
1872 	if (!dir) {
1873 		iput(inode);
1874 		return -EIO;
1875 	}
1876 
1877 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1878 			name_len, 1, index);
1879 
1880 	/* FIXME, put inode into FIXUP list */
1881 
1882 	iput(inode);
1883 	iput(dir);
1884 	return ret;
1885 }
1886 
1887 /*
1888  * Return true if an inode reference exists in the log for the given name,
1889  * inode and parent inode.
1890  */
1891 static bool name_in_log_ref(struct btrfs_root *log_root,
1892 			    const char *name, const int name_len,
1893 			    const u64 dirid, const u64 ino)
1894 {
1895 	struct btrfs_key search_key;
1896 
1897 	search_key.objectid = ino;
1898 	search_key.type = BTRFS_INODE_REF_KEY;
1899 	search_key.offset = dirid;
1900 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1901 		return true;
1902 
1903 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1904 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1905 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1906 		return true;
1907 
1908 	return false;
1909 }
1910 
1911 /*
1912  * take a single entry in a log directory item and replay it into
1913  * the subvolume.
1914  *
1915  * if a conflicting item exists in the subdirectory already,
1916  * the inode it points to is unlinked and put into the link count
1917  * fix up tree.
1918  *
1919  * If a name from the log points to a file or directory that does
1920  * not exist in the FS, it is skipped.  fsyncs on directories
1921  * do not force down inodes inside that directory, just changes to the
1922  * names or unlinks in a directory.
1923  *
1924  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1925  * non-existing inode) and 1 if the name was replayed.
1926  */
1927 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1928 				    struct btrfs_root *root,
1929 				    struct btrfs_path *path,
1930 				    struct extent_buffer *eb,
1931 				    struct btrfs_dir_item *di,
1932 				    struct btrfs_key *key)
1933 {
1934 	char *name;
1935 	int name_len;
1936 	struct btrfs_dir_item *dst_di;
1937 	struct btrfs_key found_key;
1938 	struct btrfs_key log_key;
1939 	struct inode *dir;
1940 	u8 log_type;
1941 	int exists;
1942 	int ret = 0;
1943 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1944 	bool name_added = false;
1945 
1946 	dir = read_one_inode(root, key->objectid);
1947 	if (!dir)
1948 		return -EIO;
1949 
1950 	name_len = btrfs_dir_name_len(eb, di);
1951 	name = kmalloc(name_len, GFP_NOFS);
1952 	if (!name) {
1953 		ret = -ENOMEM;
1954 		goto out;
1955 	}
1956 
1957 	log_type = btrfs_dir_type(eb, di);
1958 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1959 		   name_len);
1960 
1961 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1962 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1963 	if (exists == 0)
1964 		exists = 1;
1965 	else
1966 		exists = 0;
1967 	btrfs_release_path(path);
1968 
1969 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1970 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1971 				       name, name_len, 1);
1972 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1973 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1974 						     key->objectid,
1975 						     key->offset, name,
1976 						     name_len, 1);
1977 	} else {
1978 		/* Corruption */
1979 		ret = -EINVAL;
1980 		goto out;
1981 	}
1982 	if (IS_ERR_OR_NULL(dst_di)) {
1983 		/* we need a sequence number to insert, so we only
1984 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1985 		 */
1986 		if (key->type != BTRFS_DIR_INDEX_KEY)
1987 			goto out;
1988 		goto insert;
1989 	}
1990 
1991 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1992 	/* the existing item matches the logged item */
1993 	if (found_key.objectid == log_key.objectid &&
1994 	    found_key.type == log_key.type &&
1995 	    found_key.offset == log_key.offset &&
1996 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1997 		update_size = false;
1998 		goto out;
1999 	}
2000 
2001 	/*
2002 	 * don't drop the conflicting directory entry if the inode
2003 	 * for the new entry doesn't exist
2004 	 */
2005 	if (!exists)
2006 		goto out;
2007 
2008 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2009 	if (ret)
2010 		goto out;
2011 
2012 	if (key->type == BTRFS_DIR_INDEX_KEY)
2013 		goto insert;
2014 out:
2015 	btrfs_release_path(path);
2016 	if (!ret && update_size) {
2017 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2018 		ret = btrfs_update_inode(trans, root, dir);
2019 	}
2020 	kfree(name);
2021 	iput(dir);
2022 	if (!ret && name_added)
2023 		ret = 1;
2024 	return ret;
2025 
2026 insert:
2027 	if (name_in_log_ref(root->log_root, name, name_len,
2028 			    key->objectid, log_key.objectid)) {
2029 		/* The dentry will be added later. */
2030 		ret = 0;
2031 		update_size = false;
2032 		goto out;
2033 	}
2034 	btrfs_release_path(path);
2035 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2036 			      name, name_len, &log_key);
2037 	if (ret && ret != -ENOENT && ret != -EEXIST)
2038 		goto out;
2039 	if (!ret)
2040 		name_added = true;
2041 	update_size = false;
2042 	ret = 0;
2043 	goto out;
2044 }
2045 
2046 /*
2047  * find all the names in a directory item and reconcile them into
2048  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2049  * one name in a directory item, but the same code gets used for
2050  * both directory index types
2051  */
2052 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2053 					struct btrfs_root *root,
2054 					struct btrfs_path *path,
2055 					struct extent_buffer *eb, int slot,
2056 					struct btrfs_key *key)
2057 {
2058 	int ret = 0;
2059 	u32 item_size = btrfs_item_size_nr(eb, slot);
2060 	struct btrfs_dir_item *di;
2061 	int name_len;
2062 	unsigned long ptr;
2063 	unsigned long ptr_end;
2064 	struct btrfs_path *fixup_path = NULL;
2065 
2066 	ptr = btrfs_item_ptr_offset(eb, slot);
2067 	ptr_end = ptr + item_size;
2068 	while (ptr < ptr_end) {
2069 		di = (struct btrfs_dir_item *)ptr;
2070 		name_len = btrfs_dir_name_len(eb, di);
2071 		ret = replay_one_name(trans, root, path, eb, di, key);
2072 		if (ret < 0)
2073 			break;
2074 		ptr = (unsigned long)(di + 1);
2075 		ptr += name_len;
2076 
2077 		/*
2078 		 * If this entry refers to a non-directory (directories can not
2079 		 * have a link count > 1) and it was added in the transaction
2080 		 * that was not committed, make sure we fixup the link count of
2081 		 * the inode it the entry points to. Otherwise something like
2082 		 * the following would result in a directory pointing to an
2083 		 * inode with a wrong link that does not account for this dir
2084 		 * entry:
2085 		 *
2086 		 * mkdir testdir
2087 		 * touch testdir/foo
2088 		 * touch testdir/bar
2089 		 * sync
2090 		 *
2091 		 * ln testdir/bar testdir/bar_link
2092 		 * ln testdir/foo testdir/foo_link
2093 		 * xfs_io -c "fsync" testdir/bar
2094 		 *
2095 		 * <power failure>
2096 		 *
2097 		 * mount fs, log replay happens
2098 		 *
2099 		 * File foo would remain with a link count of 1 when it has two
2100 		 * entries pointing to it in the directory testdir. This would
2101 		 * make it impossible to ever delete the parent directory has
2102 		 * it would result in stale dentries that can never be deleted.
2103 		 */
2104 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2105 			struct btrfs_key di_key;
2106 
2107 			if (!fixup_path) {
2108 				fixup_path = btrfs_alloc_path();
2109 				if (!fixup_path) {
2110 					ret = -ENOMEM;
2111 					break;
2112 				}
2113 			}
2114 
2115 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2116 			ret = link_to_fixup_dir(trans, root, fixup_path,
2117 						di_key.objectid);
2118 			if (ret)
2119 				break;
2120 		}
2121 		ret = 0;
2122 	}
2123 	btrfs_free_path(fixup_path);
2124 	return ret;
2125 }
2126 
2127 /*
2128  * directory replay has two parts.  There are the standard directory
2129  * items in the log copied from the subvolume, and range items
2130  * created in the log while the subvolume was logged.
2131  *
2132  * The range items tell us which parts of the key space the log
2133  * is authoritative for.  During replay, if a key in the subvolume
2134  * directory is in a logged range item, but not actually in the log
2135  * that means it was deleted from the directory before the fsync
2136  * and should be removed.
2137  */
2138 static noinline int find_dir_range(struct btrfs_root *root,
2139 				   struct btrfs_path *path,
2140 				   u64 dirid, int key_type,
2141 				   u64 *start_ret, u64 *end_ret)
2142 {
2143 	struct btrfs_key key;
2144 	u64 found_end;
2145 	struct btrfs_dir_log_item *item;
2146 	int ret;
2147 	int nritems;
2148 
2149 	if (*start_ret == (u64)-1)
2150 		return 1;
2151 
2152 	key.objectid = dirid;
2153 	key.type = key_type;
2154 	key.offset = *start_ret;
2155 
2156 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157 	if (ret < 0)
2158 		goto out;
2159 	if (ret > 0) {
2160 		if (path->slots[0] == 0)
2161 			goto out;
2162 		path->slots[0]--;
2163 	}
2164 	if (ret != 0)
2165 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2166 
2167 	if (key.type != key_type || key.objectid != dirid) {
2168 		ret = 1;
2169 		goto next;
2170 	}
2171 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2172 			      struct btrfs_dir_log_item);
2173 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2174 
2175 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2176 		ret = 0;
2177 		*start_ret = key.offset;
2178 		*end_ret = found_end;
2179 		goto out;
2180 	}
2181 	ret = 1;
2182 next:
2183 	/* check the next slot in the tree to see if it is a valid item */
2184 	nritems = btrfs_header_nritems(path->nodes[0]);
2185 	path->slots[0]++;
2186 	if (path->slots[0] >= nritems) {
2187 		ret = btrfs_next_leaf(root, path);
2188 		if (ret)
2189 			goto out;
2190 	}
2191 
2192 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2193 
2194 	if (key.type != key_type || key.objectid != dirid) {
2195 		ret = 1;
2196 		goto out;
2197 	}
2198 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2199 			      struct btrfs_dir_log_item);
2200 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2201 	*start_ret = key.offset;
2202 	*end_ret = found_end;
2203 	ret = 0;
2204 out:
2205 	btrfs_release_path(path);
2206 	return ret;
2207 }
2208 
2209 /*
2210  * this looks for a given directory item in the log.  If the directory
2211  * item is not in the log, the item is removed and the inode it points
2212  * to is unlinked
2213  */
2214 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2215 				      struct btrfs_root *root,
2216 				      struct btrfs_root *log,
2217 				      struct btrfs_path *path,
2218 				      struct btrfs_path *log_path,
2219 				      struct inode *dir,
2220 				      struct btrfs_key *dir_key)
2221 {
2222 	int ret;
2223 	struct extent_buffer *eb;
2224 	int slot;
2225 	u32 item_size;
2226 	struct btrfs_dir_item *di;
2227 	struct btrfs_dir_item *log_di;
2228 	int name_len;
2229 	unsigned long ptr;
2230 	unsigned long ptr_end;
2231 	char *name;
2232 	struct inode *inode;
2233 	struct btrfs_key location;
2234 
2235 again:
2236 	eb = path->nodes[0];
2237 	slot = path->slots[0];
2238 	item_size = btrfs_item_size_nr(eb, slot);
2239 	ptr = btrfs_item_ptr_offset(eb, slot);
2240 	ptr_end = ptr + item_size;
2241 	while (ptr < ptr_end) {
2242 		di = (struct btrfs_dir_item *)ptr;
2243 		name_len = btrfs_dir_name_len(eb, di);
2244 		name = kmalloc(name_len, GFP_NOFS);
2245 		if (!name) {
2246 			ret = -ENOMEM;
2247 			goto out;
2248 		}
2249 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2250 				  name_len);
2251 		log_di = NULL;
2252 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2253 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2254 						       dir_key->objectid,
2255 						       name, name_len, 0);
2256 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2257 			log_di = btrfs_lookup_dir_index_item(trans, log,
2258 						     log_path,
2259 						     dir_key->objectid,
2260 						     dir_key->offset,
2261 						     name, name_len, 0);
2262 		}
2263 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2264 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2265 			btrfs_release_path(path);
2266 			btrfs_release_path(log_path);
2267 			inode = read_one_inode(root, location.objectid);
2268 			if (!inode) {
2269 				kfree(name);
2270 				return -EIO;
2271 			}
2272 
2273 			ret = link_to_fixup_dir(trans, root,
2274 						path, location.objectid);
2275 			if (ret) {
2276 				kfree(name);
2277 				iput(inode);
2278 				goto out;
2279 			}
2280 
2281 			inc_nlink(inode);
2282 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2283 					BTRFS_I(inode), name, name_len);
2284 			if (!ret)
2285 				ret = btrfs_run_delayed_items(trans);
2286 			kfree(name);
2287 			iput(inode);
2288 			if (ret)
2289 				goto out;
2290 
2291 			/* there might still be more names under this key
2292 			 * check and repeat if required
2293 			 */
2294 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2295 						0, 0);
2296 			if (ret == 0)
2297 				goto again;
2298 			ret = 0;
2299 			goto out;
2300 		} else if (IS_ERR(log_di)) {
2301 			kfree(name);
2302 			return PTR_ERR(log_di);
2303 		}
2304 		btrfs_release_path(log_path);
2305 		kfree(name);
2306 
2307 		ptr = (unsigned long)(di + 1);
2308 		ptr += name_len;
2309 	}
2310 	ret = 0;
2311 out:
2312 	btrfs_release_path(path);
2313 	btrfs_release_path(log_path);
2314 	return ret;
2315 }
2316 
2317 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2318 			      struct btrfs_root *root,
2319 			      struct btrfs_root *log,
2320 			      struct btrfs_path *path,
2321 			      const u64 ino)
2322 {
2323 	struct btrfs_key search_key;
2324 	struct btrfs_path *log_path;
2325 	int i;
2326 	int nritems;
2327 	int ret;
2328 
2329 	log_path = btrfs_alloc_path();
2330 	if (!log_path)
2331 		return -ENOMEM;
2332 
2333 	search_key.objectid = ino;
2334 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2335 	search_key.offset = 0;
2336 again:
2337 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2338 	if (ret < 0)
2339 		goto out;
2340 process_leaf:
2341 	nritems = btrfs_header_nritems(path->nodes[0]);
2342 	for (i = path->slots[0]; i < nritems; i++) {
2343 		struct btrfs_key key;
2344 		struct btrfs_dir_item *di;
2345 		struct btrfs_dir_item *log_di;
2346 		u32 total_size;
2347 		u32 cur;
2348 
2349 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2350 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2351 			ret = 0;
2352 			goto out;
2353 		}
2354 
2355 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2356 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2357 		cur = 0;
2358 		while (cur < total_size) {
2359 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2360 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2361 			u32 this_len = sizeof(*di) + name_len + data_len;
2362 			char *name;
2363 
2364 			name = kmalloc(name_len, GFP_NOFS);
2365 			if (!name) {
2366 				ret = -ENOMEM;
2367 				goto out;
2368 			}
2369 			read_extent_buffer(path->nodes[0], name,
2370 					   (unsigned long)(di + 1), name_len);
2371 
2372 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2373 						    name, name_len, 0);
2374 			btrfs_release_path(log_path);
2375 			if (!log_di) {
2376 				/* Doesn't exist in log tree, so delete it. */
2377 				btrfs_release_path(path);
2378 				di = btrfs_lookup_xattr(trans, root, path, ino,
2379 							name, name_len, -1);
2380 				kfree(name);
2381 				if (IS_ERR(di)) {
2382 					ret = PTR_ERR(di);
2383 					goto out;
2384 				}
2385 				ASSERT(di);
2386 				ret = btrfs_delete_one_dir_name(trans, root,
2387 								path, di);
2388 				if (ret)
2389 					goto out;
2390 				btrfs_release_path(path);
2391 				search_key = key;
2392 				goto again;
2393 			}
2394 			kfree(name);
2395 			if (IS_ERR(log_di)) {
2396 				ret = PTR_ERR(log_di);
2397 				goto out;
2398 			}
2399 			cur += this_len;
2400 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2401 		}
2402 	}
2403 	ret = btrfs_next_leaf(root, path);
2404 	if (ret > 0)
2405 		ret = 0;
2406 	else if (ret == 0)
2407 		goto process_leaf;
2408 out:
2409 	btrfs_free_path(log_path);
2410 	btrfs_release_path(path);
2411 	return ret;
2412 }
2413 
2414 
2415 /*
2416  * deletion replay happens before we copy any new directory items
2417  * out of the log or out of backreferences from inodes.  It
2418  * scans the log to find ranges of keys that log is authoritative for,
2419  * and then scans the directory to find items in those ranges that are
2420  * not present in the log.
2421  *
2422  * Anything we don't find in the log is unlinked and removed from the
2423  * directory.
2424  */
2425 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2426 				       struct btrfs_root *root,
2427 				       struct btrfs_root *log,
2428 				       struct btrfs_path *path,
2429 				       u64 dirid, int del_all)
2430 {
2431 	u64 range_start;
2432 	u64 range_end;
2433 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2434 	int ret = 0;
2435 	struct btrfs_key dir_key;
2436 	struct btrfs_key found_key;
2437 	struct btrfs_path *log_path;
2438 	struct inode *dir;
2439 
2440 	dir_key.objectid = dirid;
2441 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2442 	log_path = btrfs_alloc_path();
2443 	if (!log_path)
2444 		return -ENOMEM;
2445 
2446 	dir = read_one_inode(root, dirid);
2447 	/* it isn't an error if the inode isn't there, that can happen
2448 	 * because we replay the deletes before we copy in the inode item
2449 	 * from the log
2450 	 */
2451 	if (!dir) {
2452 		btrfs_free_path(log_path);
2453 		return 0;
2454 	}
2455 again:
2456 	range_start = 0;
2457 	range_end = 0;
2458 	while (1) {
2459 		if (del_all)
2460 			range_end = (u64)-1;
2461 		else {
2462 			ret = find_dir_range(log, path, dirid, key_type,
2463 					     &range_start, &range_end);
2464 			if (ret != 0)
2465 				break;
2466 		}
2467 
2468 		dir_key.offset = range_start;
2469 		while (1) {
2470 			int nritems;
2471 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2472 						0, 0);
2473 			if (ret < 0)
2474 				goto out;
2475 
2476 			nritems = btrfs_header_nritems(path->nodes[0]);
2477 			if (path->slots[0] >= nritems) {
2478 				ret = btrfs_next_leaf(root, path);
2479 				if (ret == 1)
2480 					break;
2481 				else if (ret < 0)
2482 					goto out;
2483 			}
2484 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2485 					      path->slots[0]);
2486 			if (found_key.objectid != dirid ||
2487 			    found_key.type != dir_key.type)
2488 				goto next_type;
2489 
2490 			if (found_key.offset > range_end)
2491 				break;
2492 
2493 			ret = check_item_in_log(trans, root, log, path,
2494 						log_path, dir,
2495 						&found_key);
2496 			if (ret)
2497 				goto out;
2498 			if (found_key.offset == (u64)-1)
2499 				break;
2500 			dir_key.offset = found_key.offset + 1;
2501 		}
2502 		btrfs_release_path(path);
2503 		if (range_end == (u64)-1)
2504 			break;
2505 		range_start = range_end + 1;
2506 	}
2507 
2508 next_type:
2509 	ret = 0;
2510 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2511 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2512 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2513 		btrfs_release_path(path);
2514 		goto again;
2515 	}
2516 out:
2517 	btrfs_release_path(path);
2518 	btrfs_free_path(log_path);
2519 	iput(dir);
2520 	return ret;
2521 }
2522 
2523 /*
2524  * the process_func used to replay items from the log tree.  This
2525  * gets called in two different stages.  The first stage just looks
2526  * for inodes and makes sure they are all copied into the subvolume.
2527  *
2528  * The second stage copies all the other item types from the log into
2529  * the subvolume.  The two stage approach is slower, but gets rid of
2530  * lots of complexity around inodes referencing other inodes that exist
2531  * only in the log (references come from either directory items or inode
2532  * back refs).
2533  */
2534 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2535 			     struct walk_control *wc, u64 gen, int level)
2536 {
2537 	int nritems;
2538 	struct btrfs_path *path;
2539 	struct btrfs_root *root = wc->replay_dest;
2540 	struct btrfs_key key;
2541 	int i;
2542 	int ret;
2543 
2544 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2545 	if (ret)
2546 		return ret;
2547 
2548 	level = btrfs_header_level(eb);
2549 
2550 	if (level != 0)
2551 		return 0;
2552 
2553 	path = btrfs_alloc_path();
2554 	if (!path)
2555 		return -ENOMEM;
2556 
2557 	nritems = btrfs_header_nritems(eb);
2558 	for (i = 0; i < nritems; i++) {
2559 		btrfs_item_key_to_cpu(eb, &key, i);
2560 
2561 		/* inode keys are done during the first stage */
2562 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2563 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2564 			struct btrfs_inode_item *inode_item;
2565 			u32 mode;
2566 
2567 			inode_item = btrfs_item_ptr(eb, i,
2568 					    struct btrfs_inode_item);
2569 			/*
2570 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2571 			 * and never got linked before the fsync, skip it, as
2572 			 * replaying it is pointless since it would be deleted
2573 			 * later. We skip logging tmpfiles, but it's always
2574 			 * possible we are replaying a log created with a kernel
2575 			 * that used to log tmpfiles.
2576 			 */
2577 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2578 				wc->ignore_cur_inode = true;
2579 				continue;
2580 			} else {
2581 				wc->ignore_cur_inode = false;
2582 			}
2583 			ret = replay_xattr_deletes(wc->trans, root, log,
2584 						   path, key.objectid);
2585 			if (ret)
2586 				break;
2587 			mode = btrfs_inode_mode(eb, inode_item);
2588 			if (S_ISDIR(mode)) {
2589 				ret = replay_dir_deletes(wc->trans,
2590 					 root, log, path, key.objectid, 0);
2591 				if (ret)
2592 					break;
2593 			}
2594 			ret = overwrite_item(wc->trans, root, path,
2595 					     eb, i, &key);
2596 			if (ret)
2597 				break;
2598 
2599 			/*
2600 			 * Before replaying extents, truncate the inode to its
2601 			 * size. We need to do it now and not after log replay
2602 			 * because before an fsync we can have prealloc extents
2603 			 * added beyond the inode's i_size. If we did it after,
2604 			 * through orphan cleanup for example, we would drop
2605 			 * those prealloc extents just after replaying them.
2606 			 */
2607 			if (S_ISREG(mode)) {
2608 				struct inode *inode;
2609 				u64 from;
2610 
2611 				inode = read_one_inode(root, key.objectid);
2612 				if (!inode) {
2613 					ret = -EIO;
2614 					break;
2615 				}
2616 				from = ALIGN(i_size_read(inode),
2617 					     root->fs_info->sectorsize);
2618 				ret = btrfs_drop_extents(wc->trans, root, inode,
2619 							 from, (u64)-1, 1);
2620 				if (!ret) {
2621 					/* Update the inode's nbytes. */
2622 					ret = btrfs_update_inode(wc->trans,
2623 								 root, inode);
2624 				}
2625 				iput(inode);
2626 				if (ret)
2627 					break;
2628 			}
2629 
2630 			ret = link_to_fixup_dir(wc->trans, root,
2631 						path, key.objectid);
2632 			if (ret)
2633 				break;
2634 		}
2635 
2636 		if (wc->ignore_cur_inode)
2637 			continue;
2638 
2639 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2640 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2641 			ret = replay_one_dir_item(wc->trans, root, path,
2642 						  eb, i, &key);
2643 			if (ret)
2644 				break;
2645 		}
2646 
2647 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2648 			continue;
2649 
2650 		/* these keys are simply copied */
2651 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2652 			ret = overwrite_item(wc->trans, root, path,
2653 					     eb, i, &key);
2654 			if (ret)
2655 				break;
2656 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2657 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2658 			ret = add_inode_ref(wc->trans, root, log, path,
2659 					    eb, i, &key);
2660 			if (ret && ret != -ENOENT)
2661 				break;
2662 			ret = 0;
2663 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2664 			ret = replay_one_extent(wc->trans, root, path,
2665 						eb, i, &key);
2666 			if (ret)
2667 				break;
2668 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2669 			ret = replay_one_dir_item(wc->trans, root, path,
2670 						  eb, i, &key);
2671 			if (ret)
2672 				break;
2673 		}
2674 	}
2675 	btrfs_free_path(path);
2676 	return ret;
2677 }
2678 
2679 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2680 				   struct btrfs_root *root,
2681 				   struct btrfs_path *path, int *level,
2682 				   struct walk_control *wc)
2683 {
2684 	struct btrfs_fs_info *fs_info = root->fs_info;
2685 	u64 root_owner;
2686 	u64 bytenr;
2687 	u64 ptr_gen;
2688 	struct extent_buffer *next;
2689 	struct extent_buffer *cur;
2690 	struct extent_buffer *parent;
2691 	u32 blocksize;
2692 	int ret = 0;
2693 
2694 	WARN_ON(*level < 0);
2695 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2696 
2697 	while (*level > 0) {
2698 		struct btrfs_key first_key;
2699 
2700 		WARN_ON(*level < 0);
2701 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2702 		cur = path->nodes[*level];
2703 
2704 		WARN_ON(btrfs_header_level(cur) != *level);
2705 
2706 		if (path->slots[*level] >=
2707 		    btrfs_header_nritems(cur))
2708 			break;
2709 
2710 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2711 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2712 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2713 		blocksize = fs_info->nodesize;
2714 
2715 		parent = path->nodes[*level];
2716 		root_owner = btrfs_header_owner(parent);
2717 
2718 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2719 		if (IS_ERR(next))
2720 			return PTR_ERR(next);
2721 
2722 		if (*level == 1) {
2723 			ret = wc->process_func(root, next, wc, ptr_gen,
2724 					       *level - 1);
2725 			if (ret) {
2726 				free_extent_buffer(next);
2727 				return ret;
2728 			}
2729 
2730 			path->slots[*level]++;
2731 			if (wc->free) {
2732 				ret = btrfs_read_buffer(next, ptr_gen,
2733 							*level - 1, &first_key);
2734 				if (ret) {
2735 					free_extent_buffer(next);
2736 					return ret;
2737 				}
2738 
2739 				if (trans) {
2740 					btrfs_tree_lock(next);
2741 					btrfs_set_lock_blocking_write(next);
2742 					btrfs_clean_tree_block(next);
2743 					btrfs_wait_tree_block_writeback(next);
2744 					btrfs_tree_unlock(next);
2745 				} else {
2746 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747 						clear_extent_buffer_dirty(next);
2748 				}
2749 
2750 				WARN_ON(root_owner !=
2751 					BTRFS_TREE_LOG_OBJECTID);
2752 				ret = btrfs_free_and_pin_reserved_extent(
2753 							fs_info, bytenr,
2754 							blocksize);
2755 				if (ret) {
2756 					free_extent_buffer(next);
2757 					return ret;
2758 				}
2759 			}
2760 			free_extent_buffer(next);
2761 			continue;
2762 		}
2763 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2764 		if (ret) {
2765 			free_extent_buffer(next);
2766 			return ret;
2767 		}
2768 
2769 		WARN_ON(*level <= 0);
2770 		if (path->nodes[*level-1])
2771 			free_extent_buffer(path->nodes[*level-1]);
2772 		path->nodes[*level-1] = next;
2773 		*level = btrfs_header_level(next);
2774 		path->slots[*level] = 0;
2775 		cond_resched();
2776 	}
2777 	WARN_ON(*level < 0);
2778 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2779 
2780 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2781 
2782 	cond_resched();
2783 	return 0;
2784 }
2785 
2786 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2787 				 struct btrfs_root *root,
2788 				 struct btrfs_path *path, int *level,
2789 				 struct walk_control *wc)
2790 {
2791 	struct btrfs_fs_info *fs_info = root->fs_info;
2792 	u64 root_owner;
2793 	int i;
2794 	int slot;
2795 	int ret;
2796 
2797 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2798 		slot = path->slots[i];
2799 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2800 			path->slots[i]++;
2801 			*level = i;
2802 			WARN_ON(*level == 0);
2803 			return 0;
2804 		} else {
2805 			struct extent_buffer *parent;
2806 			if (path->nodes[*level] == root->node)
2807 				parent = path->nodes[*level];
2808 			else
2809 				parent = path->nodes[*level + 1];
2810 
2811 			root_owner = btrfs_header_owner(parent);
2812 			ret = wc->process_func(root, path->nodes[*level], wc,
2813 				 btrfs_header_generation(path->nodes[*level]),
2814 				 *level);
2815 			if (ret)
2816 				return ret;
2817 
2818 			if (wc->free) {
2819 				struct extent_buffer *next;
2820 
2821 				next = path->nodes[*level];
2822 
2823 				if (trans) {
2824 					btrfs_tree_lock(next);
2825 					btrfs_set_lock_blocking_write(next);
2826 					btrfs_clean_tree_block(next);
2827 					btrfs_wait_tree_block_writeback(next);
2828 					btrfs_tree_unlock(next);
2829 				} else {
2830 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2831 						clear_extent_buffer_dirty(next);
2832 				}
2833 
2834 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2835 				ret = btrfs_free_and_pin_reserved_extent(
2836 						fs_info,
2837 						path->nodes[*level]->start,
2838 						path->nodes[*level]->len);
2839 				if (ret)
2840 					return ret;
2841 			}
2842 			free_extent_buffer(path->nodes[*level]);
2843 			path->nodes[*level] = NULL;
2844 			*level = i + 1;
2845 		}
2846 	}
2847 	return 1;
2848 }
2849 
2850 /*
2851  * drop the reference count on the tree rooted at 'snap'.  This traverses
2852  * the tree freeing any blocks that have a ref count of zero after being
2853  * decremented.
2854  */
2855 static int walk_log_tree(struct btrfs_trans_handle *trans,
2856 			 struct btrfs_root *log, struct walk_control *wc)
2857 {
2858 	struct btrfs_fs_info *fs_info = log->fs_info;
2859 	int ret = 0;
2860 	int wret;
2861 	int level;
2862 	struct btrfs_path *path;
2863 	int orig_level;
2864 
2865 	path = btrfs_alloc_path();
2866 	if (!path)
2867 		return -ENOMEM;
2868 
2869 	level = btrfs_header_level(log->node);
2870 	orig_level = level;
2871 	path->nodes[level] = log->node;
2872 	extent_buffer_get(log->node);
2873 	path->slots[level] = 0;
2874 
2875 	while (1) {
2876 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2877 		if (wret > 0)
2878 			break;
2879 		if (wret < 0) {
2880 			ret = wret;
2881 			goto out;
2882 		}
2883 
2884 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2885 		if (wret > 0)
2886 			break;
2887 		if (wret < 0) {
2888 			ret = wret;
2889 			goto out;
2890 		}
2891 	}
2892 
2893 	/* was the root node processed? if not, catch it here */
2894 	if (path->nodes[orig_level]) {
2895 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2896 			 btrfs_header_generation(path->nodes[orig_level]),
2897 			 orig_level);
2898 		if (ret)
2899 			goto out;
2900 		if (wc->free) {
2901 			struct extent_buffer *next;
2902 
2903 			next = path->nodes[orig_level];
2904 
2905 			if (trans) {
2906 				btrfs_tree_lock(next);
2907 				btrfs_set_lock_blocking_write(next);
2908 				btrfs_clean_tree_block(next);
2909 				btrfs_wait_tree_block_writeback(next);
2910 				btrfs_tree_unlock(next);
2911 			} else {
2912 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2913 					clear_extent_buffer_dirty(next);
2914 			}
2915 
2916 			WARN_ON(log->root_key.objectid !=
2917 				BTRFS_TREE_LOG_OBJECTID);
2918 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2919 							next->start, next->len);
2920 			if (ret)
2921 				goto out;
2922 		}
2923 	}
2924 
2925 out:
2926 	btrfs_free_path(path);
2927 	return ret;
2928 }
2929 
2930 /*
2931  * helper function to update the item for a given subvolumes log root
2932  * in the tree of log roots
2933  */
2934 static int update_log_root(struct btrfs_trans_handle *trans,
2935 			   struct btrfs_root *log)
2936 {
2937 	struct btrfs_fs_info *fs_info = log->fs_info;
2938 	int ret;
2939 
2940 	if (log->log_transid == 1) {
2941 		/* insert root item on the first sync */
2942 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2943 				&log->root_key, &log->root_item);
2944 	} else {
2945 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2946 				&log->root_key, &log->root_item);
2947 	}
2948 	return ret;
2949 }
2950 
2951 static void wait_log_commit(struct btrfs_root *root, int transid)
2952 {
2953 	DEFINE_WAIT(wait);
2954 	int index = transid % 2;
2955 
2956 	/*
2957 	 * we only allow two pending log transactions at a time,
2958 	 * so we know that if ours is more than 2 older than the
2959 	 * current transaction, we're done
2960 	 */
2961 	for (;;) {
2962 		prepare_to_wait(&root->log_commit_wait[index],
2963 				&wait, TASK_UNINTERRUPTIBLE);
2964 
2965 		if (!(root->log_transid_committed < transid &&
2966 		      atomic_read(&root->log_commit[index])))
2967 			break;
2968 
2969 		mutex_unlock(&root->log_mutex);
2970 		schedule();
2971 		mutex_lock(&root->log_mutex);
2972 	}
2973 	finish_wait(&root->log_commit_wait[index], &wait);
2974 }
2975 
2976 static void wait_for_writer(struct btrfs_root *root)
2977 {
2978 	DEFINE_WAIT(wait);
2979 
2980 	for (;;) {
2981 		prepare_to_wait(&root->log_writer_wait, &wait,
2982 				TASK_UNINTERRUPTIBLE);
2983 		if (!atomic_read(&root->log_writers))
2984 			break;
2985 
2986 		mutex_unlock(&root->log_mutex);
2987 		schedule();
2988 		mutex_lock(&root->log_mutex);
2989 	}
2990 	finish_wait(&root->log_writer_wait, &wait);
2991 }
2992 
2993 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2994 					struct btrfs_log_ctx *ctx)
2995 {
2996 	if (!ctx)
2997 		return;
2998 
2999 	mutex_lock(&root->log_mutex);
3000 	list_del_init(&ctx->list);
3001 	mutex_unlock(&root->log_mutex);
3002 }
3003 
3004 /*
3005  * Invoked in log mutex context, or be sure there is no other task which
3006  * can access the list.
3007  */
3008 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3009 					     int index, int error)
3010 {
3011 	struct btrfs_log_ctx *ctx;
3012 	struct btrfs_log_ctx *safe;
3013 
3014 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3015 		list_del_init(&ctx->list);
3016 		ctx->log_ret = error;
3017 	}
3018 
3019 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3020 }
3021 
3022 /*
3023  * btrfs_sync_log does sends a given tree log down to the disk and
3024  * updates the super blocks to record it.  When this call is done,
3025  * you know that any inodes previously logged are safely on disk only
3026  * if it returns 0.
3027  *
3028  * Any other return value means you need to call btrfs_commit_transaction.
3029  * Some of the edge cases for fsyncing directories that have had unlinks
3030  * or renames done in the past mean that sometimes the only safe
3031  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3032  * that has happened.
3033  */
3034 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3035 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3036 {
3037 	int index1;
3038 	int index2;
3039 	int mark;
3040 	int ret;
3041 	struct btrfs_fs_info *fs_info = root->fs_info;
3042 	struct btrfs_root *log = root->log_root;
3043 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3044 	int log_transid = 0;
3045 	struct btrfs_log_ctx root_log_ctx;
3046 	struct blk_plug plug;
3047 
3048 	mutex_lock(&root->log_mutex);
3049 	log_transid = ctx->log_transid;
3050 	if (root->log_transid_committed >= log_transid) {
3051 		mutex_unlock(&root->log_mutex);
3052 		return ctx->log_ret;
3053 	}
3054 
3055 	index1 = log_transid % 2;
3056 	if (atomic_read(&root->log_commit[index1])) {
3057 		wait_log_commit(root, log_transid);
3058 		mutex_unlock(&root->log_mutex);
3059 		return ctx->log_ret;
3060 	}
3061 	ASSERT(log_transid == root->log_transid);
3062 	atomic_set(&root->log_commit[index1], 1);
3063 
3064 	/* wait for previous tree log sync to complete */
3065 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3066 		wait_log_commit(root, log_transid - 1);
3067 
3068 	while (1) {
3069 		int batch = atomic_read(&root->log_batch);
3070 		/* when we're on an ssd, just kick the log commit out */
3071 		if (!btrfs_test_opt(fs_info, SSD) &&
3072 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3073 			mutex_unlock(&root->log_mutex);
3074 			schedule_timeout_uninterruptible(1);
3075 			mutex_lock(&root->log_mutex);
3076 		}
3077 		wait_for_writer(root);
3078 		if (batch == atomic_read(&root->log_batch))
3079 			break;
3080 	}
3081 
3082 	/* bail out if we need to do a full commit */
3083 	if (btrfs_need_log_full_commit(trans)) {
3084 		ret = -EAGAIN;
3085 		mutex_unlock(&root->log_mutex);
3086 		goto out;
3087 	}
3088 
3089 	if (log_transid % 2 == 0)
3090 		mark = EXTENT_DIRTY;
3091 	else
3092 		mark = EXTENT_NEW;
3093 
3094 	/* we start IO on  all the marked extents here, but we don't actually
3095 	 * wait for them until later.
3096 	 */
3097 	blk_start_plug(&plug);
3098 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3099 	if (ret) {
3100 		blk_finish_plug(&plug);
3101 		btrfs_abort_transaction(trans, ret);
3102 		btrfs_set_log_full_commit(trans);
3103 		mutex_unlock(&root->log_mutex);
3104 		goto out;
3105 	}
3106 
3107 	btrfs_set_root_node(&log->root_item, log->node);
3108 
3109 	root->log_transid++;
3110 	log->log_transid = root->log_transid;
3111 	root->log_start_pid = 0;
3112 	/*
3113 	 * Update or create log root item under the root's log_mutex to prevent
3114 	 * races with concurrent log syncs that can lead to failure to update
3115 	 * log root item because it was not created yet.
3116 	 */
3117 	ret = update_log_root(trans, log);
3118 	/*
3119 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3120 	 * in their headers. new modifications of the log will be written to
3121 	 * new positions. so it's safe to allow log writers to go in.
3122 	 */
3123 	mutex_unlock(&root->log_mutex);
3124 
3125 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3126 
3127 	mutex_lock(&log_root_tree->log_mutex);
3128 	atomic_inc(&log_root_tree->log_batch);
3129 	atomic_inc(&log_root_tree->log_writers);
3130 
3131 	index2 = log_root_tree->log_transid % 2;
3132 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3133 	root_log_ctx.log_transid = log_root_tree->log_transid;
3134 
3135 	mutex_unlock(&log_root_tree->log_mutex);
3136 
3137 	mutex_lock(&log_root_tree->log_mutex);
3138 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3139 		/* atomic_dec_and_test implies a barrier */
3140 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3141 	}
3142 
3143 	if (ret) {
3144 		if (!list_empty(&root_log_ctx.list))
3145 			list_del_init(&root_log_ctx.list);
3146 
3147 		blk_finish_plug(&plug);
3148 		btrfs_set_log_full_commit(trans);
3149 
3150 		if (ret != -ENOSPC) {
3151 			btrfs_abort_transaction(trans, ret);
3152 			mutex_unlock(&log_root_tree->log_mutex);
3153 			goto out;
3154 		}
3155 		btrfs_wait_tree_log_extents(log, mark);
3156 		mutex_unlock(&log_root_tree->log_mutex);
3157 		ret = -EAGAIN;
3158 		goto out;
3159 	}
3160 
3161 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3162 		blk_finish_plug(&plug);
3163 		list_del_init(&root_log_ctx.list);
3164 		mutex_unlock(&log_root_tree->log_mutex);
3165 		ret = root_log_ctx.log_ret;
3166 		goto out;
3167 	}
3168 
3169 	index2 = root_log_ctx.log_transid % 2;
3170 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3171 		blk_finish_plug(&plug);
3172 		ret = btrfs_wait_tree_log_extents(log, mark);
3173 		wait_log_commit(log_root_tree,
3174 				root_log_ctx.log_transid);
3175 		mutex_unlock(&log_root_tree->log_mutex);
3176 		if (!ret)
3177 			ret = root_log_ctx.log_ret;
3178 		goto out;
3179 	}
3180 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3181 	atomic_set(&log_root_tree->log_commit[index2], 1);
3182 
3183 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3184 		wait_log_commit(log_root_tree,
3185 				root_log_ctx.log_transid - 1);
3186 	}
3187 
3188 	wait_for_writer(log_root_tree);
3189 
3190 	/*
3191 	 * now that we've moved on to the tree of log tree roots,
3192 	 * check the full commit flag again
3193 	 */
3194 	if (btrfs_need_log_full_commit(trans)) {
3195 		blk_finish_plug(&plug);
3196 		btrfs_wait_tree_log_extents(log, mark);
3197 		mutex_unlock(&log_root_tree->log_mutex);
3198 		ret = -EAGAIN;
3199 		goto out_wake_log_root;
3200 	}
3201 
3202 	ret = btrfs_write_marked_extents(fs_info,
3203 					 &log_root_tree->dirty_log_pages,
3204 					 EXTENT_DIRTY | EXTENT_NEW);
3205 	blk_finish_plug(&plug);
3206 	if (ret) {
3207 		btrfs_set_log_full_commit(trans);
3208 		btrfs_abort_transaction(trans, ret);
3209 		mutex_unlock(&log_root_tree->log_mutex);
3210 		goto out_wake_log_root;
3211 	}
3212 	ret = btrfs_wait_tree_log_extents(log, mark);
3213 	if (!ret)
3214 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3215 						  EXTENT_NEW | EXTENT_DIRTY);
3216 	if (ret) {
3217 		btrfs_set_log_full_commit(trans);
3218 		mutex_unlock(&log_root_tree->log_mutex);
3219 		goto out_wake_log_root;
3220 	}
3221 
3222 	btrfs_set_super_log_root(fs_info->super_for_commit,
3223 				 log_root_tree->node->start);
3224 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3225 				       btrfs_header_level(log_root_tree->node));
3226 
3227 	log_root_tree->log_transid++;
3228 	mutex_unlock(&log_root_tree->log_mutex);
3229 
3230 	/*
3231 	 * Nobody else is going to jump in and write the ctree
3232 	 * super here because the log_commit atomic below is protecting
3233 	 * us.  We must be called with a transaction handle pinning
3234 	 * the running transaction open, so a full commit can't hop
3235 	 * in and cause problems either.
3236 	 */
3237 	ret = write_all_supers(fs_info, 1);
3238 	if (ret) {
3239 		btrfs_set_log_full_commit(trans);
3240 		btrfs_abort_transaction(trans, ret);
3241 		goto out_wake_log_root;
3242 	}
3243 
3244 	mutex_lock(&root->log_mutex);
3245 	if (root->last_log_commit < log_transid)
3246 		root->last_log_commit = log_transid;
3247 	mutex_unlock(&root->log_mutex);
3248 
3249 out_wake_log_root:
3250 	mutex_lock(&log_root_tree->log_mutex);
3251 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3252 
3253 	log_root_tree->log_transid_committed++;
3254 	atomic_set(&log_root_tree->log_commit[index2], 0);
3255 	mutex_unlock(&log_root_tree->log_mutex);
3256 
3257 	/*
3258 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3259 	 * all the updates above are seen by the woken threads. It might not be
3260 	 * necessary, but proving that seems to be hard.
3261 	 */
3262 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3263 out:
3264 	mutex_lock(&root->log_mutex);
3265 	btrfs_remove_all_log_ctxs(root, index1, ret);
3266 	root->log_transid_committed++;
3267 	atomic_set(&root->log_commit[index1], 0);
3268 	mutex_unlock(&root->log_mutex);
3269 
3270 	/*
3271 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3272 	 * all the updates above are seen by the woken threads. It might not be
3273 	 * necessary, but proving that seems to be hard.
3274 	 */
3275 	cond_wake_up(&root->log_commit_wait[index1]);
3276 	return ret;
3277 }
3278 
3279 static void free_log_tree(struct btrfs_trans_handle *trans,
3280 			  struct btrfs_root *log)
3281 {
3282 	int ret;
3283 	struct walk_control wc = {
3284 		.free = 1,
3285 		.process_func = process_one_buffer
3286 	};
3287 
3288 	ret = walk_log_tree(trans, log, &wc);
3289 	if (ret) {
3290 		if (trans)
3291 			btrfs_abort_transaction(trans, ret);
3292 		else
3293 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3294 	}
3295 
3296 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3297 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3298 	free_extent_buffer(log->node);
3299 	kfree(log);
3300 }
3301 
3302 /*
3303  * free all the extents used by the tree log.  This should be called
3304  * at commit time of the full transaction
3305  */
3306 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3307 {
3308 	if (root->log_root) {
3309 		free_log_tree(trans, root->log_root);
3310 		root->log_root = NULL;
3311 	}
3312 	return 0;
3313 }
3314 
3315 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3316 			     struct btrfs_fs_info *fs_info)
3317 {
3318 	if (fs_info->log_root_tree) {
3319 		free_log_tree(trans, fs_info->log_root_tree);
3320 		fs_info->log_root_tree = NULL;
3321 	}
3322 	return 0;
3323 }
3324 
3325 /*
3326  * If both a file and directory are logged, and unlinks or renames are
3327  * mixed in, we have a few interesting corners:
3328  *
3329  * create file X in dir Y
3330  * link file X to X.link in dir Y
3331  * fsync file X
3332  * unlink file X but leave X.link
3333  * fsync dir Y
3334  *
3335  * After a crash we would expect only X.link to exist.  But file X
3336  * didn't get fsync'd again so the log has back refs for X and X.link.
3337  *
3338  * We solve this by removing directory entries and inode backrefs from the
3339  * log when a file that was logged in the current transaction is
3340  * unlinked.  Any later fsync will include the updated log entries, and
3341  * we'll be able to reconstruct the proper directory items from backrefs.
3342  *
3343  * This optimizations allows us to avoid relogging the entire inode
3344  * or the entire directory.
3345  */
3346 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3347 				 struct btrfs_root *root,
3348 				 const char *name, int name_len,
3349 				 struct btrfs_inode *dir, u64 index)
3350 {
3351 	struct btrfs_root *log;
3352 	struct btrfs_dir_item *di;
3353 	struct btrfs_path *path;
3354 	int ret;
3355 	int err = 0;
3356 	int bytes_del = 0;
3357 	u64 dir_ino = btrfs_ino(dir);
3358 
3359 	if (dir->logged_trans < trans->transid)
3360 		return 0;
3361 
3362 	ret = join_running_log_trans(root);
3363 	if (ret)
3364 		return 0;
3365 
3366 	mutex_lock(&dir->log_mutex);
3367 
3368 	log = root->log_root;
3369 	path = btrfs_alloc_path();
3370 	if (!path) {
3371 		err = -ENOMEM;
3372 		goto out_unlock;
3373 	}
3374 
3375 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3376 				   name, name_len, -1);
3377 	if (IS_ERR(di)) {
3378 		err = PTR_ERR(di);
3379 		goto fail;
3380 	}
3381 	if (di) {
3382 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3383 		bytes_del += name_len;
3384 		if (ret) {
3385 			err = ret;
3386 			goto fail;
3387 		}
3388 	}
3389 	btrfs_release_path(path);
3390 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3391 					 index, name, name_len, -1);
3392 	if (IS_ERR(di)) {
3393 		err = PTR_ERR(di);
3394 		goto fail;
3395 	}
3396 	if (di) {
3397 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3398 		bytes_del += name_len;
3399 		if (ret) {
3400 			err = ret;
3401 			goto fail;
3402 		}
3403 	}
3404 
3405 	/* update the directory size in the log to reflect the names
3406 	 * we have removed
3407 	 */
3408 	if (bytes_del) {
3409 		struct btrfs_key key;
3410 
3411 		key.objectid = dir_ino;
3412 		key.offset = 0;
3413 		key.type = BTRFS_INODE_ITEM_KEY;
3414 		btrfs_release_path(path);
3415 
3416 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3417 		if (ret < 0) {
3418 			err = ret;
3419 			goto fail;
3420 		}
3421 		if (ret == 0) {
3422 			struct btrfs_inode_item *item;
3423 			u64 i_size;
3424 
3425 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3426 					      struct btrfs_inode_item);
3427 			i_size = btrfs_inode_size(path->nodes[0], item);
3428 			if (i_size > bytes_del)
3429 				i_size -= bytes_del;
3430 			else
3431 				i_size = 0;
3432 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3433 			btrfs_mark_buffer_dirty(path->nodes[0]);
3434 		} else
3435 			ret = 0;
3436 		btrfs_release_path(path);
3437 	}
3438 fail:
3439 	btrfs_free_path(path);
3440 out_unlock:
3441 	mutex_unlock(&dir->log_mutex);
3442 	if (ret == -ENOSPC) {
3443 		btrfs_set_log_full_commit(trans);
3444 		ret = 0;
3445 	} else if (ret < 0)
3446 		btrfs_abort_transaction(trans, ret);
3447 
3448 	btrfs_end_log_trans(root);
3449 
3450 	return err;
3451 }
3452 
3453 /* see comments for btrfs_del_dir_entries_in_log */
3454 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3455 			       struct btrfs_root *root,
3456 			       const char *name, int name_len,
3457 			       struct btrfs_inode *inode, u64 dirid)
3458 {
3459 	struct btrfs_root *log;
3460 	u64 index;
3461 	int ret;
3462 
3463 	if (inode->logged_trans < trans->transid)
3464 		return 0;
3465 
3466 	ret = join_running_log_trans(root);
3467 	if (ret)
3468 		return 0;
3469 	log = root->log_root;
3470 	mutex_lock(&inode->log_mutex);
3471 
3472 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3473 				  dirid, &index);
3474 	mutex_unlock(&inode->log_mutex);
3475 	if (ret == -ENOSPC) {
3476 		btrfs_set_log_full_commit(trans);
3477 		ret = 0;
3478 	} else if (ret < 0 && ret != -ENOENT)
3479 		btrfs_abort_transaction(trans, ret);
3480 	btrfs_end_log_trans(root);
3481 
3482 	return ret;
3483 }
3484 
3485 /*
3486  * creates a range item in the log for 'dirid'.  first_offset and
3487  * last_offset tell us which parts of the key space the log should
3488  * be considered authoritative for.
3489  */
3490 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3491 				       struct btrfs_root *log,
3492 				       struct btrfs_path *path,
3493 				       int key_type, u64 dirid,
3494 				       u64 first_offset, u64 last_offset)
3495 {
3496 	int ret;
3497 	struct btrfs_key key;
3498 	struct btrfs_dir_log_item *item;
3499 
3500 	key.objectid = dirid;
3501 	key.offset = first_offset;
3502 	if (key_type == BTRFS_DIR_ITEM_KEY)
3503 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3504 	else
3505 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3506 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3507 	if (ret)
3508 		return ret;
3509 
3510 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3511 			      struct btrfs_dir_log_item);
3512 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3513 	btrfs_mark_buffer_dirty(path->nodes[0]);
3514 	btrfs_release_path(path);
3515 	return 0;
3516 }
3517 
3518 /*
3519  * log all the items included in the current transaction for a given
3520  * directory.  This also creates the range items in the log tree required
3521  * to replay anything deleted before the fsync
3522  */
3523 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3524 			  struct btrfs_root *root, struct btrfs_inode *inode,
3525 			  struct btrfs_path *path,
3526 			  struct btrfs_path *dst_path, int key_type,
3527 			  struct btrfs_log_ctx *ctx,
3528 			  u64 min_offset, u64 *last_offset_ret)
3529 {
3530 	struct btrfs_key min_key;
3531 	struct btrfs_root *log = root->log_root;
3532 	struct extent_buffer *src;
3533 	int err = 0;
3534 	int ret;
3535 	int i;
3536 	int nritems;
3537 	u64 first_offset = min_offset;
3538 	u64 last_offset = (u64)-1;
3539 	u64 ino = btrfs_ino(inode);
3540 
3541 	log = root->log_root;
3542 
3543 	min_key.objectid = ino;
3544 	min_key.type = key_type;
3545 	min_key.offset = min_offset;
3546 
3547 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3548 
3549 	/*
3550 	 * we didn't find anything from this transaction, see if there
3551 	 * is anything at all
3552 	 */
3553 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3554 		min_key.objectid = ino;
3555 		min_key.type = key_type;
3556 		min_key.offset = (u64)-1;
3557 		btrfs_release_path(path);
3558 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3559 		if (ret < 0) {
3560 			btrfs_release_path(path);
3561 			return ret;
3562 		}
3563 		ret = btrfs_previous_item(root, path, ino, key_type);
3564 
3565 		/* if ret == 0 there are items for this type,
3566 		 * create a range to tell us the last key of this type.
3567 		 * otherwise, there are no items in this directory after
3568 		 * *min_offset, and we create a range to indicate that.
3569 		 */
3570 		if (ret == 0) {
3571 			struct btrfs_key tmp;
3572 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3573 					      path->slots[0]);
3574 			if (key_type == tmp.type)
3575 				first_offset = max(min_offset, tmp.offset) + 1;
3576 		}
3577 		goto done;
3578 	}
3579 
3580 	/* go backward to find any previous key */
3581 	ret = btrfs_previous_item(root, path, ino, key_type);
3582 	if (ret == 0) {
3583 		struct btrfs_key tmp;
3584 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3585 		if (key_type == tmp.type) {
3586 			first_offset = tmp.offset;
3587 			ret = overwrite_item(trans, log, dst_path,
3588 					     path->nodes[0], path->slots[0],
3589 					     &tmp);
3590 			if (ret) {
3591 				err = ret;
3592 				goto done;
3593 			}
3594 		}
3595 	}
3596 	btrfs_release_path(path);
3597 
3598 	/*
3599 	 * Find the first key from this transaction again.  See the note for
3600 	 * log_new_dir_dentries, if we're logging a directory recursively we
3601 	 * won't be holding its i_mutex, which means we can modify the directory
3602 	 * while we're logging it.  If we remove an entry between our first
3603 	 * search and this search we'll not find the key again and can just
3604 	 * bail.
3605 	 */
3606 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3607 	if (ret != 0)
3608 		goto done;
3609 
3610 	/*
3611 	 * we have a block from this transaction, log every item in it
3612 	 * from our directory
3613 	 */
3614 	while (1) {
3615 		struct btrfs_key tmp;
3616 		src = path->nodes[0];
3617 		nritems = btrfs_header_nritems(src);
3618 		for (i = path->slots[0]; i < nritems; i++) {
3619 			struct btrfs_dir_item *di;
3620 
3621 			btrfs_item_key_to_cpu(src, &min_key, i);
3622 
3623 			if (min_key.objectid != ino || min_key.type != key_type)
3624 				goto done;
3625 			ret = overwrite_item(trans, log, dst_path, src, i,
3626 					     &min_key);
3627 			if (ret) {
3628 				err = ret;
3629 				goto done;
3630 			}
3631 
3632 			/*
3633 			 * We must make sure that when we log a directory entry,
3634 			 * the corresponding inode, after log replay, has a
3635 			 * matching link count. For example:
3636 			 *
3637 			 * touch foo
3638 			 * mkdir mydir
3639 			 * sync
3640 			 * ln foo mydir/bar
3641 			 * xfs_io -c "fsync" mydir
3642 			 * <crash>
3643 			 * <mount fs and log replay>
3644 			 *
3645 			 * Would result in a fsync log that when replayed, our
3646 			 * file inode would have a link count of 1, but we get
3647 			 * two directory entries pointing to the same inode.
3648 			 * After removing one of the names, it would not be
3649 			 * possible to remove the other name, which resulted
3650 			 * always in stale file handle errors, and would not
3651 			 * be possible to rmdir the parent directory, since
3652 			 * its i_size could never decrement to the value
3653 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3654 			 */
3655 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3656 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3657 			if (ctx &&
3658 			    (btrfs_dir_transid(src, di) == trans->transid ||
3659 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3660 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3661 				ctx->log_new_dentries = true;
3662 		}
3663 		path->slots[0] = nritems;
3664 
3665 		/*
3666 		 * look ahead to the next item and see if it is also
3667 		 * from this directory and from this transaction
3668 		 */
3669 		ret = btrfs_next_leaf(root, path);
3670 		if (ret) {
3671 			if (ret == 1)
3672 				last_offset = (u64)-1;
3673 			else
3674 				err = ret;
3675 			goto done;
3676 		}
3677 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3678 		if (tmp.objectid != ino || tmp.type != key_type) {
3679 			last_offset = (u64)-1;
3680 			goto done;
3681 		}
3682 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3683 			ret = overwrite_item(trans, log, dst_path,
3684 					     path->nodes[0], path->slots[0],
3685 					     &tmp);
3686 			if (ret)
3687 				err = ret;
3688 			else
3689 				last_offset = tmp.offset;
3690 			goto done;
3691 		}
3692 	}
3693 done:
3694 	btrfs_release_path(path);
3695 	btrfs_release_path(dst_path);
3696 
3697 	if (err == 0) {
3698 		*last_offset_ret = last_offset;
3699 		/*
3700 		 * insert the log range keys to indicate where the log
3701 		 * is valid
3702 		 */
3703 		ret = insert_dir_log_key(trans, log, path, key_type,
3704 					 ino, first_offset, last_offset);
3705 		if (ret)
3706 			err = ret;
3707 	}
3708 	return err;
3709 }
3710 
3711 /*
3712  * logging directories is very similar to logging inodes, We find all the items
3713  * from the current transaction and write them to the log.
3714  *
3715  * The recovery code scans the directory in the subvolume, and if it finds a
3716  * key in the range logged that is not present in the log tree, then it means
3717  * that dir entry was unlinked during the transaction.
3718  *
3719  * In order for that scan to work, we must include one key smaller than
3720  * the smallest logged by this transaction and one key larger than the largest
3721  * key logged by this transaction.
3722  */
3723 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3724 			  struct btrfs_root *root, struct btrfs_inode *inode,
3725 			  struct btrfs_path *path,
3726 			  struct btrfs_path *dst_path,
3727 			  struct btrfs_log_ctx *ctx)
3728 {
3729 	u64 min_key;
3730 	u64 max_key;
3731 	int ret;
3732 	int key_type = BTRFS_DIR_ITEM_KEY;
3733 
3734 again:
3735 	min_key = 0;
3736 	max_key = 0;
3737 	while (1) {
3738 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3739 				ctx, min_key, &max_key);
3740 		if (ret)
3741 			return ret;
3742 		if (max_key == (u64)-1)
3743 			break;
3744 		min_key = max_key + 1;
3745 	}
3746 
3747 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3748 		key_type = BTRFS_DIR_INDEX_KEY;
3749 		goto again;
3750 	}
3751 	return 0;
3752 }
3753 
3754 /*
3755  * a helper function to drop items from the log before we relog an
3756  * inode.  max_key_type indicates the highest item type to remove.
3757  * This cannot be run for file data extents because it does not
3758  * free the extents they point to.
3759  */
3760 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3761 				  struct btrfs_root *log,
3762 				  struct btrfs_path *path,
3763 				  u64 objectid, int max_key_type)
3764 {
3765 	int ret;
3766 	struct btrfs_key key;
3767 	struct btrfs_key found_key;
3768 	int start_slot;
3769 
3770 	key.objectid = objectid;
3771 	key.type = max_key_type;
3772 	key.offset = (u64)-1;
3773 
3774 	while (1) {
3775 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3776 		BUG_ON(ret == 0); /* Logic error */
3777 		if (ret < 0)
3778 			break;
3779 
3780 		if (path->slots[0] == 0)
3781 			break;
3782 
3783 		path->slots[0]--;
3784 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3785 				      path->slots[0]);
3786 
3787 		if (found_key.objectid != objectid)
3788 			break;
3789 
3790 		found_key.offset = 0;
3791 		found_key.type = 0;
3792 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3793 				       &start_slot);
3794 		if (ret < 0)
3795 			break;
3796 
3797 		ret = btrfs_del_items(trans, log, path, start_slot,
3798 				      path->slots[0] - start_slot + 1);
3799 		/*
3800 		 * If start slot isn't 0 then we don't need to re-search, we've
3801 		 * found the last guy with the objectid in this tree.
3802 		 */
3803 		if (ret || start_slot != 0)
3804 			break;
3805 		btrfs_release_path(path);
3806 	}
3807 	btrfs_release_path(path);
3808 	if (ret > 0)
3809 		ret = 0;
3810 	return ret;
3811 }
3812 
3813 static void fill_inode_item(struct btrfs_trans_handle *trans,
3814 			    struct extent_buffer *leaf,
3815 			    struct btrfs_inode_item *item,
3816 			    struct inode *inode, int log_inode_only,
3817 			    u64 logged_isize)
3818 {
3819 	struct btrfs_map_token token;
3820 
3821 	btrfs_init_map_token(&token);
3822 
3823 	if (log_inode_only) {
3824 		/* set the generation to zero so the recover code
3825 		 * can tell the difference between an logging
3826 		 * just to say 'this inode exists' and a logging
3827 		 * to say 'update this inode with these values'
3828 		 */
3829 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3830 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3831 	} else {
3832 		btrfs_set_token_inode_generation(leaf, item,
3833 						 BTRFS_I(inode)->generation,
3834 						 &token);
3835 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3836 	}
3837 
3838 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3839 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3840 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3841 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3842 
3843 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3844 				     inode->i_atime.tv_sec, &token);
3845 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3846 				      inode->i_atime.tv_nsec, &token);
3847 
3848 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3849 				     inode->i_mtime.tv_sec, &token);
3850 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3851 				      inode->i_mtime.tv_nsec, &token);
3852 
3853 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3854 				     inode->i_ctime.tv_sec, &token);
3855 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3856 				      inode->i_ctime.tv_nsec, &token);
3857 
3858 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3859 				     &token);
3860 
3861 	btrfs_set_token_inode_sequence(leaf, item,
3862 				       inode_peek_iversion(inode), &token);
3863 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3864 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3865 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3866 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3867 }
3868 
3869 static int log_inode_item(struct btrfs_trans_handle *trans,
3870 			  struct btrfs_root *log, struct btrfs_path *path,
3871 			  struct btrfs_inode *inode)
3872 {
3873 	struct btrfs_inode_item *inode_item;
3874 	int ret;
3875 
3876 	ret = btrfs_insert_empty_item(trans, log, path,
3877 				      &inode->location, sizeof(*inode_item));
3878 	if (ret && ret != -EEXIST)
3879 		return ret;
3880 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3881 				    struct btrfs_inode_item);
3882 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3883 			0, 0);
3884 	btrfs_release_path(path);
3885 	return 0;
3886 }
3887 
3888 static noinline int copy_items(struct btrfs_trans_handle *trans,
3889 			       struct btrfs_inode *inode,
3890 			       struct btrfs_path *dst_path,
3891 			       struct btrfs_path *src_path, u64 *last_extent,
3892 			       int start_slot, int nr, int inode_only,
3893 			       u64 logged_isize)
3894 {
3895 	struct btrfs_fs_info *fs_info = trans->fs_info;
3896 	unsigned long src_offset;
3897 	unsigned long dst_offset;
3898 	struct btrfs_root *log = inode->root->log_root;
3899 	struct btrfs_file_extent_item *extent;
3900 	struct btrfs_inode_item *inode_item;
3901 	struct extent_buffer *src = src_path->nodes[0];
3902 	struct btrfs_key first_key, last_key, key;
3903 	int ret;
3904 	struct btrfs_key *ins_keys;
3905 	u32 *ins_sizes;
3906 	char *ins_data;
3907 	int i;
3908 	struct list_head ordered_sums;
3909 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3910 	bool has_extents = false;
3911 	bool need_find_last_extent = true;
3912 	bool done = false;
3913 
3914 	INIT_LIST_HEAD(&ordered_sums);
3915 
3916 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3917 			   nr * sizeof(u32), GFP_NOFS);
3918 	if (!ins_data)
3919 		return -ENOMEM;
3920 
3921 	first_key.objectid = (u64)-1;
3922 
3923 	ins_sizes = (u32 *)ins_data;
3924 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3925 
3926 	for (i = 0; i < nr; i++) {
3927 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3928 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3929 	}
3930 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3931 				       ins_keys, ins_sizes, nr);
3932 	if (ret) {
3933 		kfree(ins_data);
3934 		return ret;
3935 	}
3936 
3937 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3938 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3939 						   dst_path->slots[0]);
3940 
3941 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3942 
3943 		if (i == nr - 1)
3944 			last_key = ins_keys[i];
3945 
3946 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3947 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3948 						    dst_path->slots[0],
3949 						    struct btrfs_inode_item);
3950 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3951 					&inode->vfs_inode,
3952 					inode_only == LOG_INODE_EXISTS,
3953 					logged_isize);
3954 		} else {
3955 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3956 					   src_offset, ins_sizes[i]);
3957 		}
3958 
3959 		/*
3960 		 * We set need_find_last_extent here in case we know we were
3961 		 * processing other items and then walk into the first extent in
3962 		 * the inode.  If we don't hit an extent then nothing changes,
3963 		 * we'll do the last search the next time around.
3964 		 */
3965 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3966 			has_extents = true;
3967 			if (first_key.objectid == (u64)-1)
3968 				first_key = ins_keys[i];
3969 		} else {
3970 			need_find_last_extent = false;
3971 		}
3972 
3973 		/* take a reference on file data extents so that truncates
3974 		 * or deletes of this inode don't have to relog the inode
3975 		 * again
3976 		 */
3977 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3978 		    !skip_csum) {
3979 			int found_type;
3980 			extent = btrfs_item_ptr(src, start_slot + i,
3981 						struct btrfs_file_extent_item);
3982 
3983 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3984 				continue;
3985 
3986 			found_type = btrfs_file_extent_type(src, extent);
3987 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3988 				u64 ds, dl, cs, cl;
3989 				ds = btrfs_file_extent_disk_bytenr(src,
3990 								extent);
3991 				/* ds == 0 is a hole */
3992 				if (ds == 0)
3993 					continue;
3994 
3995 				dl = btrfs_file_extent_disk_num_bytes(src,
3996 								extent);
3997 				cs = btrfs_file_extent_offset(src, extent);
3998 				cl = btrfs_file_extent_num_bytes(src,
3999 								extent);
4000 				if (btrfs_file_extent_compression(src,
4001 								  extent)) {
4002 					cs = 0;
4003 					cl = dl;
4004 				}
4005 
4006 				ret = btrfs_lookup_csums_range(
4007 						fs_info->csum_root,
4008 						ds + cs, ds + cs + cl - 1,
4009 						&ordered_sums, 0);
4010 				if (ret) {
4011 					btrfs_release_path(dst_path);
4012 					kfree(ins_data);
4013 					return ret;
4014 				}
4015 			}
4016 		}
4017 	}
4018 
4019 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4020 	btrfs_release_path(dst_path);
4021 	kfree(ins_data);
4022 
4023 	/*
4024 	 * we have to do this after the loop above to avoid changing the
4025 	 * log tree while trying to change the log tree.
4026 	 */
4027 	ret = 0;
4028 	while (!list_empty(&ordered_sums)) {
4029 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4030 						   struct btrfs_ordered_sum,
4031 						   list);
4032 		if (!ret)
4033 			ret = btrfs_csum_file_blocks(trans, log, sums);
4034 		list_del(&sums->list);
4035 		kfree(sums);
4036 	}
4037 
4038 	if (!has_extents)
4039 		return ret;
4040 
4041 	if (need_find_last_extent && *last_extent == first_key.offset) {
4042 		/*
4043 		 * We don't have any leafs between our current one and the one
4044 		 * we processed before that can have file extent items for our
4045 		 * inode (and have a generation number smaller than our current
4046 		 * transaction id).
4047 		 */
4048 		need_find_last_extent = false;
4049 	}
4050 
4051 	/*
4052 	 * Because we use btrfs_search_forward we could skip leaves that were
4053 	 * not modified and then assume *last_extent is valid when it really
4054 	 * isn't.  So back up to the previous leaf and read the end of the last
4055 	 * extent before we go and fill in holes.
4056 	 */
4057 	if (need_find_last_extent) {
4058 		u64 len;
4059 
4060 		ret = btrfs_prev_leaf(inode->root, src_path);
4061 		if (ret < 0)
4062 			return ret;
4063 		if (ret)
4064 			goto fill_holes;
4065 		if (src_path->slots[0])
4066 			src_path->slots[0]--;
4067 		src = src_path->nodes[0];
4068 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4069 		if (key.objectid != btrfs_ino(inode) ||
4070 		    key.type != BTRFS_EXTENT_DATA_KEY)
4071 			goto fill_holes;
4072 		extent = btrfs_item_ptr(src, src_path->slots[0],
4073 					struct btrfs_file_extent_item);
4074 		if (btrfs_file_extent_type(src, extent) ==
4075 		    BTRFS_FILE_EXTENT_INLINE) {
4076 			len = btrfs_file_extent_ram_bytes(src, extent);
4077 			*last_extent = ALIGN(key.offset + len,
4078 					     fs_info->sectorsize);
4079 		} else {
4080 			len = btrfs_file_extent_num_bytes(src, extent);
4081 			*last_extent = key.offset + len;
4082 		}
4083 	}
4084 fill_holes:
4085 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
4086 	 * things could have happened
4087 	 *
4088 	 * 1) A merge could have happened, so we could currently be on a leaf
4089 	 * that holds what we were copying in the first place.
4090 	 * 2) A split could have happened, and now not all of the items we want
4091 	 * are on the same leaf.
4092 	 *
4093 	 * So we need to adjust how we search for holes, we need to drop the
4094 	 * path and re-search for the first extent key we found, and then walk
4095 	 * forward until we hit the last one we copied.
4096 	 */
4097 	if (need_find_last_extent) {
4098 		/* btrfs_prev_leaf could return 1 without releasing the path */
4099 		btrfs_release_path(src_path);
4100 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
4101 				src_path, 0, 0);
4102 		if (ret < 0)
4103 			return ret;
4104 		ASSERT(ret == 0);
4105 		src = src_path->nodes[0];
4106 		i = src_path->slots[0];
4107 	} else {
4108 		i = start_slot;
4109 	}
4110 
4111 	/*
4112 	 * Ok so here we need to go through and fill in any holes we may have
4113 	 * to make sure that holes are punched for those areas in case they had
4114 	 * extents previously.
4115 	 */
4116 	while (!done) {
4117 		u64 offset, len;
4118 		u64 extent_end;
4119 
4120 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4121 			ret = btrfs_next_leaf(inode->root, src_path);
4122 			if (ret < 0)
4123 				return ret;
4124 			ASSERT(ret == 0);
4125 			src = src_path->nodes[0];
4126 			i = 0;
4127 			need_find_last_extent = true;
4128 		}
4129 
4130 		btrfs_item_key_to_cpu(src, &key, i);
4131 		if (!btrfs_comp_cpu_keys(&key, &last_key))
4132 			done = true;
4133 		if (key.objectid != btrfs_ino(inode) ||
4134 		    key.type != BTRFS_EXTENT_DATA_KEY) {
4135 			i++;
4136 			continue;
4137 		}
4138 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4139 		if (btrfs_file_extent_type(src, extent) ==
4140 		    BTRFS_FILE_EXTENT_INLINE) {
4141 			len = btrfs_file_extent_ram_bytes(src, extent);
4142 			extent_end = ALIGN(key.offset + len,
4143 					   fs_info->sectorsize);
4144 		} else {
4145 			len = btrfs_file_extent_num_bytes(src, extent);
4146 			extent_end = key.offset + len;
4147 		}
4148 		i++;
4149 
4150 		if (*last_extent == key.offset) {
4151 			*last_extent = extent_end;
4152 			continue;
4153 		}
4154 		offset = *last_extent;
4155 		len = key.offset - *last_extent;
4156 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4157 				offset, 0, 0, len, 0, len, 0, 0, 0);
4158 		if (ret)
4159 			break;
4160 		*last_extent = extent_end;
4161 	}
4162 
4163 	/*
4164 	 * Check if there is a hole between the last extent found in our leaf
4165 	 * and the first extent in the next leaf. If there is one, we need to
4166 	 * log an explicit hole so that at replay time we can punch the hole.
4167 	 */
4168 	if (ret == 0 &&
4169 	    key.objectid == btrfs_ino(inode) &&
4170 	    key.type == BTRFS_EXTENT_DATA_KEY &&
4171 	    i == btrfs_header_nritems(src_path->nodes[0])) {
4172 		ret = btrfs_next_leaf(inode->root, src_path);
4173 		need_find_last_extent = true;
4174 		if (ret > 0) {
4175 			ret = 0;
4176 		} else if (ret == 0) {
4177 			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4178 					      src_path->slots[0]);
4179 			if (key.objectid == btrfs_ino(inode) &&
4180 			    key.type == BTRFS_EXTENT_DATA_KEY &&
4181 			    *last_extent < key.offset) {
4182 				const u64 len = key.offset - *last_extent;
4183 
4184 				ret = btrfs_insert_file_extent(trans, log,
4185 							       btrfs_ino(inode),
4186 							       *last_extent, 0,
4187 							       0, len, 0, len,
4188 							       0, 0, 0);
4189 				*last_extent += len;
4190 			}
4191 		}
4192 	}
4193 	/*
4194 	 * Need to let the callers know we dropped the path so they should
4195 	 * re-search.
4196 	 */
4197 	if (!ret && need_find_last_extent)
4198 		ret = 1;
4199 	return ret;
4200 }
4201 
4202 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4203 {
4204 	struct extent_map *em1, *em2;
4205 
4206 	em1 = list_entry(a, struct extent_map, list);
4207 	em2 = list_entry(b, struct extent_map, list);
4208 
4209 	if (em1->start < em2->start)
4210 		return -1;
4211 	else if (em1->start > em2->start)
4212 		return 1;
4213 	return 0;
4214 }
4215 
4216 static int log_extent_csums(struct btrfs_trans_handle *trans,
4217 			    struct btrfs_inode *inode,
4218 			    struct btrfs_root *log_root,
4219 			    const struct extent_map *em)
4220 {
4221 	u64 csum_offset;
4222 	u64 csum_len;
4223 	LIST_HEAD(ordered_sums);
4224 	int ret = 0;
4225 
4226 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4227 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4228 	    em->block_start == EXTENT_MAP_HOLE)
4229 		return 0;
4230 
4231 	/* If we're compressed we have to save the entire range of csums. */
4232 	if (em->compress_type) {
4233 		csum_offset = 0;
4234 		csum_len = max(em->block_len, em->orig_block_len);
4235 	} else {
4236 		csum_offset = em->mod_start - em->start;
4237 		csum_len = em->mod_len;
4238 	}
4239 
4240 	/* block start is already adjusted for the file extent offset. */
4241 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4242 				       em->block_start + csum_offset,
4243 				       em->block_start + csum_offset +
4244 				       csum_len - 1, &ordered_sums, 0);
4245 	if (ret)
4246 		return ret;
4247 
4248 	while (!list_empty(&ordered_sums)) {
4249 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4250 						   struct btrfs_ordered_sum,
4251 						   list);
4252 		if (!ret)
4253 			ret = btrfs_csum_file_blocks(trans, log_root, sums);
4254 		list_del(&sums->list);
4255 		kfree(sums);
4256 	}
4257 
4258 	return ret;
4259 }
4260 
4261 static int log_one_extent(struct btrfs_trans_handle *trans,
4262 			  struct btrfs_inode *inode, struct btrfs_root *root,
4263 			  const struct extent_map *em,
4264 			  struct btrfs_path *path,
4265 			  struct btrfs_log_ctx *ctx)
4266 {
4267 	struct btrfs_root *log = root->log_root;
4268 	struct btrfs_file_extent_item *fi;
4269 	struct extent_buffer *leaf;
4270 	struct btrfs_map_token token;
4271 	struct btrfs_key key;
4272 	u64 extent_offset = em->start - em->orig_start;
4273 	u64 block_len;
4274 	int ret;
4275 	int extent_inserted = 0;
4276 
4277 	ret = log_extent_csums(trans, inode, log, em);
4278 	if (ret)
4279 		return ret;
4280 
4281 	btrfs_init_map_token(&token);
4282 
4283 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4284 				   em->start + em->len, NULL, 0, 1,
4285 				   sizeof(*fi), &extent_inserted);
4286 	if (ret)
4287 		return ret;
4288 
4289 	if (!extent_inserted) {
4290 		key.objectid = btrfs_ino(inode);
4291 		key.type = BTRFS_EXTENT_DATA_KEY;
4292 		key.offset = em->start;
4293 
4294 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4295 					      sizeof(*fi));
4296 		if (ret)
4297 			return ret;
4298 	}
4299 	leaf = path->nodes[0];
4300 	fi = btrfs_item_ptr(leaf, path->slots[0],
4301 			    struct btrfs_file_extent_item);
4302 
4303 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4304 					       &token);
4305 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4306 		btrfs_set_token_file_extent_type(leaf, fi,
4307 						 BTRFS_FILE_EXTENT_PREALLOC,
4308 						 &token);
4309 	else
4310 		btrfs_set_token_file_extent_type(leaf, fi,
4311 						 BTRFS_FILE_EXTENT_REG,
4312 						 &token);
4313 
4314 	block_len = max(em->block_len, em->orig_block_len);
4315 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4316 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4317 							em->block_start,
4318 							&token);
4319 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4320 							   &token);
4321 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4322 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4323 							em->block_start -
4324 							extent_offset, &token);
4325 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4326 							   &token);
4327 	} else {
4328 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4329 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4330 							   &token);
4331 	}
4332 
4333 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4334 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4335 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4336 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4337 						&token);
4338 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4339 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4340 	btrfs_mark_buffer_dirty(leaf);
4341 
4342 	btrfs_release_path(path);
4343 
4344 	return ret;
4345 }
4346 
4347 /*
4348  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4349  * lose them after doing a fast fsync and replaying the log. We scan the
4350  * subvolume's root instead of iterating the inode's extent map tree because
4351  * otherwise we can log incorrect extent items based on extent map conversion.
4352  * That can happen due to the fact that extent maps are merged when they
4353  * are not in the extent map tree's list of modified extents.
4354  */
4355 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4356 				      struct btrfs_inode *inode,
4357 				      struct btrfs_path *path)
4358 {
4359 	struct btrfs_root *root = inode->root;
4360 	struct btrfs_key key;
4361 	const u64 i_size = i_size_read(&inode->vfs_inode);
4362 	const u64 ino = btrfs_ino(inode);
4363 	struct btrfs_path *dst_path = NULL;
4364 	u64 last_extent = (u64)-1;
4365 	int ins_nr = 0;
4366 	int start_slot;
4367 	int ret;
4368 
4369 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4370 		return 0;
4371 
4372 	key.objectid = ino;
4373 	key.type = BTRFS_EXTENT_DATA_KEY;
4374 	key.offset = i_size;
4375 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4376 	if (ret < 0)
4377 		goto out;
4378 
4379 	while (true) {
4380 		struct extent_buffer *leaf = path->nodes[0];
4381 		int slot = path->slots[0];
4382 
4383 		if (slot >= btrfs_header_nritems(leaf)) {
4384 			if (ins_nr > 0) {
4385 				ret = copy_items(trans, inode, dst_path, path,
4386 						 &last_extent, start_slot,
4387 						 ins_nr, 1, 0);
4388 				if (ret < 0)
4389 					goto out;
4390 				ins_nr = 0;
4391 			}
4392 			ret = btrfs_next_leaf(root, path);
4393 			if (ret < 0)
4394 				goto out;
4395 			if (ret > 0) {
4396 				ret = 0;
4397 				break;
4398 			}
4399 			continue;
4400 		}
4401 
4402 		btrfs_item_key_to_cpu(leaf, &key, slot);
4403 		if (key.objectid > ino)
4404 			break;
4405 		if (WARN_ON_ONCE(key.objectid < ino) ||
4406 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4407 		    key.offset < i_size) {
4408 			path->slots[0]++;
4409 			continue;
4410 		}
4411 		if (last_extent == (u64)-1) {
4412 			last_extent = key.offset;
4413 			/*
4414 			 * Avoid logging extent items logged in past fsync calls
4415 			 * and leading to duplicate keys in the log tree.
4416 			 */
4417 			do {
4418 				ret = btrfs_truncate_inode_items(trans,
4419 							 root->log_root,
4420 							 &inode->vfs_inode,
4421 							 i_size,
4422 							 BTRFS_EXTENT_DATA_KEY);
4423 			} while (ret == -EAGAIN);
4424 			if (ret)
4425 				goto out;
4426 		}
4427 		if (ins_nr == 0)
4428 			start_slot = slot;
4429 		ins_nr++;
4430 		path->slots[0]++;
4431 		if (!dst_path) {
4432 			dst_path = btrfs_alloc_path();
4433 			if (!dst_path) {
4434 				ret = -ENOMEM;
4435 				goto out;
4436 			}
4437 		}
4438 	}
4439 	if (ins_nr > 0) {
4440 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4441 				 start_slot, ins_nr, 1, 0);
4442 		if (ret > 0)
4443 			ret = 0;
4444 	}
4445 out:
4446 	btrfs_release_path(path);
4447 	btrfs_free_path(dst_path);
4448 	return ret;
4449 }
4450 
4451 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4452 				     struct btrfs_root *root,
4453 				     struct btrfs_inode *inode,
4454 				     struct btrfs_path *path,
4455 				     struct btrfs_log_ctx *ctx,
4456 				     const u64 start,
4457 				     const u64 end)
4458 {
4459 	struct extent_map *em, *n;
4460 	struct list_head extents;
4461 	struct extent_map_tree *tree = &inode->extent_tree;
4462 	u64 test_gen;
4463 	int ret = 0;
4464 	int num = 0;
4465 
4466 	INIT_LIST_HEAD(&extents);
4467 
4468 	write_lock(&tree->lock);
4469 	test_gen = root->fs_info->last_trans_committed;
4470 
4471 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4472 		/*
4473 		 * Skip extents outside our logging range. It's important to do
4474 		 * it for correctness because if we don't ignore them, we may
4475 		 * log them before their ordered extent completes, and therefore
4476 		 * we could log them without logging their respective checksums
4477 		 * (the checksum items are added to the csum tree at the very
4478 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4479 		 * outside of our range in the list, since we may have another
4480 		 * ranged fsync in the near future that needs them. If an extent
4481 		 * outside our range corresponds to a hole, log it to avoid
4482 		 * leaving gaps between extents (fsck will complain when we are
4483 		 * not using the NO_HOLES feature).
4484 		 */
4485 		if ((em->start > end || em->start + em->len <= start) &&
4486 		    em->block_start != EXTENT_MAP_HOLE)
4487 			continue;
4488 
4489 		list_del_init(&em->list);
4490 		/*
4491 		 * Just an arbitrary number, this can be really CPU intensive
4492 		 * once we start getting a lot of extents, and really once we
4493 		 * have a bunch of extents we just want to commit since it will
4494 		 * be faster.
4495 		 */
4496 		if (++num > 32768) {
4497 			list_del_init(&tree->modified_extents);
4498 			ret = -EFBIG;
4499 			goto process;
4500 		}
4501 
4502 		if (em->generation <= test_gen)
4503 			continue;
4504 
4505 		/* We log prealloc extents beyond eof later. */
4506 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4507 		    em->start >= i_size_read(&inode->vfs_inode))
4508 			continue;
4509 
4510 		/* Need a ref to keep it from getting evicted from cache */
4511 		refcount_inc(&em->refs);
4512 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4513 		list_add_tail(&em->list, &extents);
4514 		num++;
4515 	}
4516 
4517 	list_sort(NULL, &extents, extent_cmp);
4518 process:
4519 	while (!list_empty(&extents)) {
4520 		em = list_entry(extents.next, struct extent_map, list);
4521 
4522 		list_del_init(&em->list);
4523 
4524 		/*
4525 		 * If we had an error we just need to delete everybody from our
4526 		 * private list.
4527 		 */
4528 		if (ret) {
4529 			clear_em_logging(tree, em);
4530 			free_extent_map(em);
4531 			continue;
4532 		}
4533 
4534 		write_unlock(&tree->lock);
4535 
4536 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4537 		write_lock(&tree->lock);
4538 		clear_em_logging(tree, em);
4539 		free_extent_map(em);
4540 	}
4541 	WARN_ON(!list_empty(&extents));
4542 	write_unlock(&tree->lock);
4543 
4544 	btrfs_release_path(path);
4545 	if (!ret)
4546 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4547 
4548 	return ret;
4549 }
4550 
4551 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4552 			     struct btrfs_path *path, u64 *size_ret)
4553 {
4554 	struct btrfs_key key;
4555 	int ret;
4556 
4557 	key.objectid = btrfs_ino(inode);
4558 	key.type = BTRFS_INODE_ITEM_KEY;
4559 	key.offset = 0;
4560 
4561 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4562 	if (ret < 0) {
4563 		return ret;
4564 	} else if (ret > 0) {
4565 		*size_ret = 0;
4566 	} else {
4567 		struct btrfs_inode_item *item;
4568 
4569 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4570 				      struct btrfs_inode_item);
4571 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4572 		/*
4573 		 * If the in-memory inode's i_size is smaller then the inode
4574 		 * size stored in the btree, return the inode's i_size, so
4575 		 * that we get a correct inode size after replaying the log
4576 		 * when before a power failure we had a shrinking truncate
4577 		 * followed by addition of a new name (rename / new hard link).
4578 		 * Otherwise return the inode size from the btree, to avoid
4579 		 * data loss when replaying a log due to previously doing a
4580 		 * write that expands the inode's size and logging a new name
4581 		 * immediately after.
4582 		 */
4583 		if (*size_ret > inode->vfs_inode.i_size)
4584 			*size_ret = inode->vfs_inode.i_size;
4585 	}
4586 
4587 	btrfs_release_path(path);
4588 	return 0;
4589 }
4590 
4591 /*
4592  * At the moment we always log all xattrs. This is to figure out at log replay
4593  * time which xattrs must have their deletion replayed. If a xattr is missing
4594  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4595  * because if a xattr is deleted, the inode is fsynced and a power failure
4596  * happens, causing the log to be replayed the next time the fs is mounted,
4597  * we want the xattr to not exist anymore (same behaviour as other filesystems
4598  * with a journal, ext3/4, xfs, f2fs, etc).
4599  */
4600 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4601 				struct btrfs_root *root,
4602 				struct btrfs_inode *inode,
4603 				struct btrfs_path *path,
4604 				struct btrfs_path *dst_path)
4605 {
4606 	int ret;
4607 	struct btrfs_key key;
4608 	const u64 ino = btrfs_ino(inode);
4609 	int ins_nr = 0;
4610 	int start_slot = 0;
4611 
4612 	key.objectid = ino;
4613 	key.type = BTRFS_XATTR_ITEM_KEY;
4614 	key.offset = 0;
4615 
4616 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4617 	if (ret < 0)
4618 		return ret;
4619 
4620 	while (true) {
4621 		int slot = path->slots[0];
4622 		struct extent_buffer *leaf = path->nodes[0];
4623 		int nritems = btrfs_header_nritems(leaf);
4624 
4625 		if (slot >= nritems) {
4626 			if (ins_nr > 0) {
4627 				u64 last_extent = 0;
4628 
4629 				ret = copy_items(trans, inode, dst_path, path,
4630 						 &last_extent, start_slot,
4631 						 ins_nr, 1, 0);
4632 				/* can't be 1, extent items aren't processed */
4633 				ASSERT(ret <= 0);
4634 				if (ret < 0)
4635 					return ret;
4636 				ins_nr = 0;
4637 			}
4638 			ret = btrfs_next_leaf(root, path);
4639 			if (ret < 0)
4640 				return ret;
4641 			else if (ret > 0)
4642 				break;
4643 			continue;
4644 		}
4645 
4646 		btrfs_item_key_to_cpu(leaf, &key, slot);
4647 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4648 			break;
4649 
4650 		if (ins_nr == 0)
4651 			start_slot = slot;
4652 		ins_nr++;
4653 		path->slots[0]++;
4654 		cond_resched();
4655 	}
4656 	if (ins_nr > 0) {
4657 		u64 last_extent = 0;
4658 
4659 		ret = copy_items(trans, inode, dst_path, path,
4660 				 &last_extent, start_slot,
4661 				 ins_nr, 1, 0);
4662 		/* can't be 1, extent items aren't processed */
4663 		ASSERT(ret <= 0);
4664 		if (ret < 0)
4665 			return ret;
4666 	}
4667 
4668 	return 0;
4669 }
4670 
4671 /*
4672  * If the no holes feature is enabled we need to make sure any hole between the
4673  * last extent and the i_size of our inode is explicitly marked in the log. This
4674  * is to make sure that doing something like:
4675  *
4676  *      1) create file with 128Kb of data
4677  *      2) truncate file to 64Kb
4678  *      3) truncate file to 256Kb
4679  *      4) fsync file
4680  *      5) <crash/power failure>
4681  *      6) mount fs and trigger log replay
4682  *
4683  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4684  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4685  * file correspond to a hole. The presence of explicit holes in a log tree is
4686  * what guarantees that log replay will remove/adjust file extent items in the
4687  * fs/subvol tree.
4688  *
4689  * Here we do not need to care about holes between extents, that is already done
4690  * by copy_items(). We also only need to do this in the full sync path, where we
4691  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4692  * lookup the list of modified extent maps and if any represents a hole, we
4693  * insert a corresponding extent representing a hole in the log tree.
4694  */
4695 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4696 				   struct btrfs_root *root,
4697 				   struct btrfs_inode *inode,
4698 				   struct btrfs_path *path)
4699 {
4700 	struct btrfs_fs_info *fs_info = root->fs_info;
4701 	int ret;
4702 	struct btrfs_key key;
4703 	u64 hole_start;
4704 	u64 hole_size;
4705 	struct extent_buffer *leaf;
4706 	struct btrfs_root *log = root->log_root;
4707 	const u64 ino = btrfs_ino(inode);
4708 	const u64 i_size = i_size_read(&inode->vfs_inode);
4709 
4710 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4711 		return 0;
4712 
4713 	key.objectid = ino;
4714 	key.type = BTRFS_EXTENT_DATA_KEY;
4715 	key.offset = (u64)-1;
4716 
4717 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4718 	ASSERT(ret != 0);
4719 	if (ret < 0)
4720 		return ret;
4721 
4722 	ASSERT(path->slots[0] > 0);
4723 	path->slots[0]--;
4724 	leaf = path->nodes[0];
4725 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4726 
4727 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4728 		/* inode does not have any extents */
4729 		hole_start = 0;
4730 		hole_size = i_size;
4731 	} else {
4732 		struct btrfs_file_extent_item *extent;
4733 		u64 len;
4734 
4735 		/*
4736 		 * If there's an extent beyond i_size, an explicit hole was
4737 		 * already inserted by copy_items().
4738 		 */
4739 		if (key.offset >= i_size)
4740 			return 0;
4741 
4742 		extent = btrfs_item_ptr(leaf, path->slots[0],
4743 					struct btrfs_file_extent_item);
4744 
4745 		if (btrfs_file_extent_type(leaf, extent) ==
4746 		    BTRFS_FILE_EXTENT_INLINE)
4747 			return 0;
4748 
4749 		len = btrfs_file_extent_num_bytes(leaf, extent);
4750 		/* Last extent goes beyond i_size, no need to log a hole. */
4751 		if (key.offset + len > i_size)
4752 			return 0;
4753 		hole_start = key.offset + len;
4754 		hole_size = i_size - hole_start;
4755 	}
4756 	btrfs_release_path(path);
4757 
4758 	/* Last extent ends at i_size. */
4759 	if (hole_size == 0)
4760 		return 0;
4761 
4762 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4763 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4764 				       hole_size, 0, hole_size, 0, 0, 0);
4765 	return ret;
4766 }
4767 
4768 /*
4769  * When we are logging a new inode X, check if it doesn't have a reference that
4770  * matches the reference from some other inode Y created in a past transaction
4771  * and that was renamed in the current transaction. If we don't do this, then at
4772  * log replay time we can lose inode Y (and all its files if it's a directory):
4773  *
4774  * mkdir /mnt/x
4775  * echo "hello world" > /mnt/x/foobar
4776  * sync
4777  * mv /mnt/x /mnt/y
4778  * mkdir /mnt/x                 # or touch /mnt/x
4779  * xfs_io -c fsync /mnt/x
4780  * <power fail>
4781  * mount fs, trigger log replay
4782  *
4783  * After the log replay procedure, we would lose the first directory and all its
4784  * files (file foobar).
4785  * For the case where inode Y is not a directory we simply end up losing it:
4786  *
4787  * echo "123" > /mnt/foo
4788  * sync
4789  * mv /mnt/foo /mnt/bar
4790  * echo "abc" > /mnt/foo
4791  * xfs_io -c fsync /mnt/foo
4792  * <power fail>
4793  *
4794  * We also need this for cases where a snapshot entry is replaced by some other
4795  * entry (file or directory) otherwise we end up with an unreplayable log due to
4796  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4797  * if it were a regular entry:
4798  *
4799  * mkdir /mnt/x
4800  * btrfs subvolume snapshot /mnt /mnt/x/snap
4801  * btrfs subvolume delete /mnt/x/snap
4802  * rmdir /mnt/x
4803  * mkdir /mnt/x
4804  * fsync /mnt/x or fsync some new file inside it
4805  * <power fail>
4806  *
4807  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4808  * the same transaction.
4809  */
4810 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4811 					 const int slot,
4812 					 const struct btrfs_key *key,
4813 					 struct btrfs_inode *inode,
4814 					 u64 *other_ino, u64 *other_parent)
4815 {
4816 	int ret;
4817 	struct btrfs_path *search_path;
4818 	char *name = NULL;
4819 	u32 name_len = 0;
4820 	u32 item_size = btrfs_item_size_nr(eb, slot);
4821 	u32 cur_offset = 0;
4822 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4823 
4824 	search_path = btrfs_alloc_path();
4825 	if (!search_path)
4826 		return -ENOMEM;
4827 	search_path->search_commit_root = 1;
4828 	search_path->skip_locking = 1;
4829 
4830 	while (cur_offset < item_size) {
4831 		u64 parent;
4832 		u32 this_name_len;
4833 		u32 this_len;
4834 		unsigned long name_ptr;
4835 		struct btrfs_dir_item *di;
4836 
4837 		if (key->type == BTRFS_INODE_REF_KEY) {
4838 			struct btrfs_inode_ref *iref;
4839 
4840 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4841 			parent = key->offset;
4842 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4843 			name_ptr = (unsigned long)(iref + 1);
4844 			this_len = sizeof(*iref) + this_name_len;
4845 		} else {
4846 			struct btrfs_inode_extref *extref;
4847 
4848 			extref = (struct btrfs_inode_extref *)(ptr +
4849 							       cur_offset);
4850 			parent = btrfs_inode_extref_parent(eb, extref);
4851 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4852 			name_ptr = (unsigned long)&extref->name;
4853 			this_len = sizeof(*extref) + this_name_len;
4854 		}
4855 
4856 		if (this_name_len > name_len) {
4857 			char *new_name;
4858 
4859 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4860 			if (!new_name) {
4861 				ret = -ENOMEM;
4862 				goto out;
4863 			}
4864 			name_len = this_name_len;
4865 			name = new_name;
4866 		}
4867 
4868 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4869 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4870 				parent, name, this_name_len, 0);
4871 		if (di && !IS_ERR(di)) {
4872 			struct btrfs_key di_key;
4873 
4874 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4875 						  di, &di_key);
4876 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4877 				if (di_key.objectid != key->objectid) {
4878 					ret = 1;
4879 					*other_ino = di_key.objectid;
4880 					*other_parent = parent;
4881 				} else {
4882 					ret = 0;
4883 				}
4884 			} else {
4885 				ret = -EAGAIN;
4886 			}
4887 			goto out;
4888 		} else if (IS_ERR(di)) {
4889 			ret = PTR_ERR(di);
4890 			goto out;
4891 		}
4892 		btrfs_release_path(search_path);
4893 
4894 		cur_offset += this_len;
4895 	}
4896 	ret = 0;
4897 out:
4898 	btrfs_free_path(search_path);
4899 	kfree(name);
4900 	return ret;
4901 }
4902 
4903 struct btrfs_ino_list {
4904 	u64 ino;
4905 	u64 parent;
4906 	struct list_head list;
4907 };
4908 
4909 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4910 				  struct btrfs_root *root,
4911 				  struct btrfs_path *path,
4912 				  struct btrfs_log_ctx *ctx,
4913 				  u64 ino, u64 parent)
4914 {
4915 	struct btrfs_ino_list *ino_elem;
4916 	LIST_HEAD(inode_list);
4917 	int ret = 0;
4918 
4919 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4920 	if (!ino_elem)
4921 		return -ENOMEM;
4922 	ino_elem->ino = ino;
4923 	ino_elem->parent = parent;
4924 	list_add_tail(&ino_elem->list, &inode_list);
4925 
4926 	while (!list_empty(&inode_list)) {
4927 		struct btrfs_fs_info *fs_info = root->fs_info;
4928 		struct btrfs_key key;
4929 		struct inode *inode;
4930 
4931 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4932 					    list);
4933 		ino = ino_elem->ino;
4934 		parent = ino_elem->parent;
4935 		list_del(&ino_elem->list);
4936 		kfree(ino_elem);
4937 		if (ret)
4938 			continue;
4939 
4940 		btrfs_release_path(path);
4941 
4942 		key.objectid = ino;
4943 		key.type = BTRFS_INODE_ITEM_KEY;
4944 		key.offset = 0;
4945 		inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4946 		/*
4947 		 * If the other inode that had a conflicting dir entry was
4948 		 * deleted in the current transaction, we need to log its parent
4949 		 * directory.
4950 		 */
4951 		if (IS_ERR(inode)) {
4952 			ret = PTR_ERR(inode);
4953 			if (ret == -ENOENT) {
4954 				key.objectid = parent;
4955 				inode = btrfs_iget(fs_info->sb, &key, root,
4956 						   NULL);
4957 				if (IS_ERR(inode)) {
4958 					ret = PTR_ERR(inode);
4959 				} else {
4960 					ret = btrfs_log_inode(trans, root,
4961 						      BTRFS_I(inode),
4962 						      LOG_OTHER_INODE_ALL,
4963 						      0, LLONG_MAX, ctx);
4964 					iput(inode);
4965 				}
4966 			}
4967 			continue;
4968 		}
4969 		/*
4970 		 * We are safe logging the other inode without acquiring its
4971 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4972 		 * are safe against concurrent renames of the other inode as
4973 		 * well because during a rename we pin the log and update the
4974 		 * log with the new name before we unpin it.
4975 		 */
4976 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4977 				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4978 		if (ret) {
4979 			iput(inode);
4980 			continue;
4981 		}
4982 
4983 		key.objectid = ino;
4984 		key.type = BTRFS_INODE_REF_KEY;
4985 		key.offset = 0;
4986 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4987 		if (ret < 0) {
4988 			iput(inode);
4989 			continue;
4990 		}
4991 
4992 		while (true) {
4993 			struct extent_buffer *leaf = path->nodes[0];
4994 			int slot = path->slots[0];
4995 			u64 other_ino = 0;
4996 			u64 other_parent = 0;
4997 
4998 			if (slot >= btrfs_header_nritems(leaf)) {
4999 				ret = btrfs_next_leaf(root, path);
5000 				if (ret < 0) {
5001 					break;
5002 				} else if (ret > 0) {
5003 					ret = 0;
5004 					break;
5005 				}
5006 				continue;
5007 			}
5008 
5009 			btrfs_item_key_to_cpu(leaf, &key, slot);
5010 			if (key.objectid != ino ||
5011 			    (key.type != BTRFS_INODE_REF_KEY &&
5012 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5013 				ret = 0;
5014 				break;
5015 			}
5016 
5017 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5018 					BTRFS_I(inode), &other_ino,
5019 					&other_parent);
5020 			if (ret < 0)
5021 				break;
5022 			if (ret > 0) {
5023 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5024 				if (!ino_elem) {
5025 					ret = -ENOMEM;
5026 					break;
5027 				}
5028 				ino_elem->ino = other_ino;
5029 				ino_elem->parent = other_parent;
5030 				list_add_tail(&ino_elem->list, &inode_list);
5031 				ret = 0;
5032 			}
5033 			path->slots[0]++;
5034 		}
5035 		iput(inode);
5036 	}
5037 
5038 	return ret;
5039 }
5040 
5041 /* log a single inode in the tree log.
5042  * At least one parent directory for this inode must exist in the tree
5043  * or be logged already.
5044  *
5045  * Any items from this inode changed by the current transaction are copied
5046  * to the log tree.  An extra reference is taken on any extents in this
5047  * file, allowing us to avoid a whole pile of corner cases around logging
5048  * blocks that have been removed from the tree.
5049  *
5050  * See LOG_INODE_ALL and related defines for a description of what inode_only
5051  * does.
5052  *
5053  * This handles both files and directories.
5054  */
5055 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5056 			   struct btrfs_root *root, struct btrfs_inode *inode,
5057 			   int inode_only,
5058 			   const loff_t start,
5059 			   const loff_t end,
5060 			   struct btrfs_log_ctx *ctx)
5061 {
5062 	struct btrfs_fs_info *fs_info = root->fs_info;
5063 	struct btrfs_path *path;
5064 	struct btrfs_path *dst_path;
5065 	struct btrfs_key min_key;
5066 	struct btrfs_key max_key;
5067 	struct btrfs_root *log = root->log_root;
5068 	u64 last_extent = 0;
5069 	int err = 0;
5070 	int ret;
5071 	int nritems;
5072 	int ins_start_slot = 0;
5073 	int ins_nr;
5074 	bool fast_search = false;
5075 	u64 ino = btrfs_ino(inode);
5076 	struct extent_map_tree *em_tree = &inode->extent_tree;
5077 	u64 logged_isize = 0;
5078 	bool need_log_inode_item = true;
5079 	bool xattrs_logged = false;
5080 	bool recursive_logging = false;
5081 
5082 	path = btrfs_alloc_path();
5083 	if (!path)
5084 		return -ENOMEM;
5085 	dst_path = btrfs_alloc_path();
5086 	if (!dst_path) {
5087 		btrfs_free_path(path);
5088 		return -ENOMEM;
5089 	}
5090 
5091 	min_key.objectid = ino;
5092 	min_key.type = BTRFS_INODE_ITEM_KEY;
5093 	min_key.offset = 0;
5094 
5095 	max_key.objectid = ino;
5096 
5097 
5098 	/* today the code can only do partial logging of directories */
5099 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5100 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5101 		       &inode->runtime_flags) &&
5102 	     inode_only >= LOG_INODE_EXISTS))
5103 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5104 	else
5105 		max_key.type = (u8)-1;
5106 	max_key.offset = (u64)-1;
5107 
5108 	/*
5109 	 * Only run delayed items if we are a dir or a new file.
5110 	 * Otherwise commit the delayed inode only, which is needed in
5111 	 * order for the log replay code to mark inodes for link count
5112 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5113 	 */
5114 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5115 	    inode->generation > fs_info->last_trans_committed)
5116 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5117 	else
5118 		ret = btrfs_commit_inode_delayed_inode(inode);
5119 
5120 	if (ret) {
5121 		btrfs_free_path(path);
5122 		btrfs_free_path(dst_path);
5123 		return ret;
5124 	}
5125 
5126 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5127 		recursive_logging = true;
5128 		if (inode_only == LOG_OTHER_INODE)
5129 			inode_only = LOG_INODE_EXISTS;
5130 		else
5131 			inode_only = LOG_INODE_ALL;
5132 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5133 	} else {
5134 		mutex_lock(&inode->log_mutex);
5135 	}
5136 
5137 	/*
5138 	 * a brute force approach to making sure we get the most uptodate
5139 	 * copies of everything.
5140 	 */
5141 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5142 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5143 
5144 		if (inode_only == LOG_INODE_EXISTS)
5145 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5146 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5147 	} else {
5148 		if (inode_only == LOG_INODE_EXISTS) {
5149 			/*
5150 			 * Make sure the new inode item we write to the log has
5151 			 * the same isize as the current one (if it exists).
5152 			 * This is necessary to prevent data loss after log
5153 			 * replay, and also to prevent doing a wrong expanding
5154 			 * truncate - for e.g. create file, write 4K into offset
5155 			 * 0, fsync, write 4K into offset 4096, add hard link,
5156 			 * fsync some other file (to sync log), power fail - if
5157 			 * we use the inode's current i_size, after log replay
5158 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5159 			 * (zeroes), as if an expanding truncate happened,
5160 			 * instead of getting a file of 4Kb only.
5161 			 */
5162 			err = logged_inode_size(log, inode, path, &logged_isize);
5163 			if (err)
5164 				goto out_unlock;
5165 		}
5166 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5167 			     &inode->runtime_flags)) {
5168 			if (inode_only == LOG_INODE_EXISTS) {
5169 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5170 				ret = drop_objectid_items(trans, log, path, ino,
5171 							  max_key.type);
5172 			} else {
5173 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5174 					  &inode->runtime_flags);
5175 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5176 					  &inode->runtime_flags);
5177 				while(1) {
5178 					ret = btrfs_truncate_inode_items(trans,
5179 						log, &inode->vfs_inode, 0, 0);
5180 					if (ret != -EAGAIN)
5181 						break;
5182 				}
5183 			}
5184 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5185 					      &inode->runtime_flags) ||
5186 			   inode_only == LOG_INODE_EXISTS) {
5187 			if (inode_only == LOG_INODE_ALL)
5188 				fast_search = true;
5189 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5190 			ret = drop_objectid_items(trans, log, path, ino,
5191 						  max_key.type);
5192 		} else {
5193 			if (inode_only == LOG_INODE_ALL)
5194 				fast_search = true;
5195 			goto log_extents;
5196 		}
5197 
5198 	}
5199 	if (ret) {
5200 		err = ret;
5201 		goto out_unlock;
5202 	}
5203 
5204 	while (1) {
5205 		ins_nr = 0;
5206 		ret = btrfs_search_forward(root, &min_key,
5207 					   path, trans->transid);
5208 		if (ret < 0) {
5209 			err = ret;
5210 			goto out_unlock;
5211 		}
5212 		if (ret != 0)
5213 			break;
5214 again:
5215 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
5216 		if (min_key.objectid != ino)
5217 			break;
5218 		if (min_key.type > max_key.type)
5219 			break;
5220 
5221 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
5222 			need_log_inode_item = false;
5223 
5224 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
5225 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5226 		    inode->generation == trans->transid &&
5227 		    !recursive_logging) {
5228 			u64 other_ino = 0;
5229 			u64 other_parent = 0;
5230 
5231 			ret = btrfs_check_ref_name_override(path->nodes[0],
5232 					path->slots[0], &min_key, inode,
5233 					&other_ino, &other_parent);
5234 			if (ret < 0) {
5235 				err = ret;
5236 				goto out_unlock;
5237 			} else if (ret > 0 && ctx &&
5238 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5239 				if (ins_nr > 0) {
5240 					ins_nr++;
5241 				} else {
5242 					ins_nr = 1;
5243 					ins_start_slot = path->slots[0];
5244 				}
5245 				ret = copy_items(trans, inode, dst_path, path,
5246 						 &last_extent, ins_start_slot,
5247 						 ins_nr, inode_only,
5248 						 logged_isize);
5249 				if (ret < 0) {
5250 					err = ret;
5251 					goto out_unlock;
5252 				}
5253 				ins_nr = 0;
5254 
5255 				err = log_conflicting_inodes(trans, root, path,
5256 						ctx, other_ino, other_parent);
5257 				if (err)
5258 					goto out_unlock;
5259 				btrfs_release_path(path);
5260 				goto next_key;
5261 			}
5262 		}
5263 
5264 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5265 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5266 			if (ins_nr == 0)
5267 				goto next_slot;
5268 			ret = copy_items(trans, inode, dst_path, path,
5269 					 &last_extent, ins_start_slot,
5270 					 ins_nr, inode_only, logged_isize);
5271 			if (ret < 0) {
5272 				err = ret;
5273 				goto out_unlock;
5274 			}
5275 			ins_nr = 0;
5276 			if (ret) {
5277 				btrfs_release_path(path);
5278 				continue;
5279 			}
5280 			goto next_slot;
5281 		}
5282 
5283 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5284 			ins_nr++;
5285 			goto next_slot;
5286 		} else if (!ins_nr) {
5287 			ins_start_slot = path->slots[0];
5288 			ins_nr = 1;
5289 			goto next_slot;
5290 		}
5291 
5292 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5293 				 ins_start_slot, ins_nr, inode_only,
5294 				 logged_isize);
5295 		if (ret < 0) {
5296 			err = ret;
5297 			goto out_unlock;
5298 		}
5299 		if (ret) {
5300 			ins_nr = 0;
5301 			btrfs_release_path(path);
5302 			continue;
5303 		}
5304 		ins_nr = 1;
5305 		ins_start_slot = path->slots[0];
5306 next_slot:
5307 
5308 		nritems = btrfs_header_nritems(path->nodes[0]);
5309 		path->slots[0]++;
5310 		if (path->slots[0] < nritems) {
5311 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5312 					      path->slots[0]);
5313 			goto again;
5314 		}
5315 		if (ins_nr) {
5316 			ret = copy_items(trans, inode, dst_path, path,
5317 					 &last_extent, ins_start_slot,
5318 					 ins_nr, inode_only, logged_isize);
5319 			if (ret < 0) {
5320 				err = ret;
5321 				goto out_unlock;
5322 			}
5323 			ret = 0;
5324 			ins_nr = 0;
5325 		}
5326 		btrfs_release_path(path);
5327 next_key:
5328 		if (min_key.offset < (u64)-1) {
5329 			min_key.offset++;
5330 		} else if (min_key.type < max_key.type) {
5331 			min_key.type++;
5332 			min_key.offset = 0;
5333 		} else {
5334 			break;
5335 		}
5336 	}
5337 	if (ins_nr) {
5338 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5339 				 ins_start_slot, ins_nr, inode_only,
5340 				 logged_isize);
5341 		if (ret < 0) {
5342 			err = ret;
5343 			goto out_unlock;
5344 		}
5345 		ret = 0;
5346 		ins_nr = 0;
5347 	}
5348 
5349 	btrfs_release_path(path);
5350 	btrfs_release_path(dst_path);
5351 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5352 	if (err)
5353 		goto out_unlock;
5354 	xattrs_logged = true;
5355 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5356 		btrfs_release_path(path);
5357 		btrfs_release_path(dst_path);
5358 		err = btrfs_log_trailing_hole(trans, root, inode, path);
5359 		if (err)
5360 			goto out_unlock;
5361 	}
5362 log_extents:
5363 	btrfs_release_path(path);
5364 	btrfs_release_path(dst_path);
5365 	if (need_log_inode_item) {
5366 		err = log_inode_item(trans, log, dst_path, inode);
5367 		if (!err && !xattrs_logged) {
5368 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5369 						   dst_path);
5370 			btrfs_release_path(path);
5371 		}
5372 		if (err)
5373 			goto out_unlock;
5374 	}
5375 	if (fast_search) {
5376 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5377 						ctx, start, end);
5378 		if (ret) {
5379 			err = ret;
5380 			goto out_unlock;
5381 		}
5382 	} else if (inode_only == LOG_INODE_ALL) {
5383 		struct extent_map *em, *n;
5384 
5385 		write_lock(&em_tree->lock);
5386 		/*
5387 		 * We can't just remove every em if we're called for a ranged
5388 		 * fsync - that is, one that doesn't cover the whole possible
5389 		 * file range (0 to LLONG_MAX). This is because we can have
5390 		 * em's that fall outside the range we're logging and therefore
5391 		 * their ordered operations haven't completed yet
5392 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5393 		 * didn't get their respective file extent item in the fs/subvol
5394 		 * tree yet, and need to let the next fast fsync (one which
5395 		 * consults the list of modified extent maps) find the em so
5396 		 * that it logs a matching file extent item and waits for the
5397 		 * respective ordered operation to complete (if it's still
5398 		 * running).
5399 		 *
5400 		 * Removing every em outside the range we're logging would make
5401 		 * the next fast fsync not log their matching file extent items,
5402 		 * therefore making us lose data after a log replay.
5403 		 */
5404 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5405 					 list) {
5406 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5407 
5408 			if (em->mod_start >= start && mod_end <= end)
5409 				list_del_init(&em->list);
5410 		}
5411 		write_unlock(&em_tree->lock);
5412 	}
5413 
5414 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5415 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5416 					ctx);
5417 		if (ret) {
5418 			err = ret;
5419 			goto out_unlock;
5420 		}
5421 	}
5422 
5423 	spin_lock(&inode->lock);
5424 	inode->logged_trans = trans->transid;
5425 	inode->last_log_commit = inode->last_sub_trans;
5426 	spin_unlock(&inode->lock);
5427 out_unlock:
5428 	mutex_unlock(&inode->log_mutex);
5429 
5430 	btrfs_free_path(path);
5431 	btrfs_free_path(dst_path);
5432 	return err;
5433 }
5434 
5435 /*
5436  * Check if we must fallback to a transaction commit when logging an inode.
5437  * This must be called after logging the inode and is used only in the context
5438  * when fsyncing an inode requires the need to log some other inode - in which
5439  * case we can't lock the i_mutex of each other inode we need to log as that
5440  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5441  * log inodes up or down in the hierarchy) or rename operations for example. So
5442  * we take the log_mutex of the inode after we have logged it and then check for
5443  * its last_unlink_trans value - this is safe because any task setting
5444  * last_unlink_trans must take the log_mutex and it must do this before it does
5445  * the actual unlink operation, so if we do this check before a concurrent task
5446  * sets last_unlink_trans it means we've logged a consistent version/state of
5447  * all the inode items, otherwise we are not sure and must do a transaction
5448  * commit (the concurrent task might have only updated last_unlink_trans before
5449  * we logged the inode or it might have also done the unlink).
5450  */
5451 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5452 					  struct btrfs_inode *inode)
5453 {
5454 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5455 	bool ret = false;
5456 
5457 	mutex_lock(&inode->log_mutex);
5458 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5459 		/*
5460 		 * Make sure any commits to the log are forced to be full
5461 		 * commits.
5462 		 */
5463 		btrfs_set_log_full_commit(trans);
5464 		ret = true;
5465 	}
5466 	mutex_unlock(&inode->log_mutex);
5467 
5468 	return ret;
5469 }
5470 
5471 /*
5472  * follow the dentry parent pointers up the chain and see if any
5473  * of the directories in it require a full commit before they can
5474  * be logged.  Returns zero if nothing special needs to be done or 1 if
5475  * a full commit is required.
5476  */
5477 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5478 					       struct btrfs_inode *inode,
5479 					       struct dentry *parent,
5480 					       struct super_block *sb,
5481 					       u64 last_committed)
5482 {
5483 	int ret = 0;
5484 	struct dentry *old_parent = NULL;
5485 
5486 	/*
5487 	 * for regular files, if its inode is already on disk, we don't
5488 	 * have to worry about the parents at all.  This is because
5489 	 * we can use the last_unlink_trans field to record renames
5490 	 * and other fun in this file.
5491 	 */
5492 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5493 	    inode->generation <= last_committed &&
5494 	    inode->last_unlink_trans <= last_committed)
5495 		goto out;
5496 
5497 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5498 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5499 			goto out;
5500 		inode = BTRFS_I(d_inode(parent));
5501 	}
5502 
5503 	while (1) {
5504 		if (btrfs_must_commit_transaction(trans, inode)) {
5505 			ret = 1;
5506 			break;
5507 		}
5508 
5509 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5510 			break;
5511 
5512 		if (IS_ROOT(parent)) {
5513 			inode = BTRFS_I(d_inode(parent));
5514 			if (btrfs_must_commit_transaction(trans, inode))
5515 				ret = 1;
5516 			break;
5517 		}
5518 
5519 		parent = dget_parent(parent);
5520 		dput(old_parent);
5521 		old_parent = parent;
5522 		inode = BTRFS_I(d_inode(parent));
5523 
5524 	}
5525 	dput(old_parent);
5526 out:
5527 	return ret;
5528 }
5529 
5530 struct btrfs_dir_list {
5531 	u64 ino;
5532 	struct list_head list;
5533 };
5534 
5535 /*
5536  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5537  * details about the why it is needed.
5538  * This is a recursive operation - if an existing dentry corresponds to a
5539  * directory, that directory's new entries are logged too (same behaviour as
5540  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5541  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5542  * complains about the following circular lock dependency / possible deadlock:
5543  *
5544  *        CPU0                                        CPU1
5545  *        ----                                        ----
5546  * lock(&type->i_mutex_dir_key#3/2);
5547  *                                            lock(sb_internal#2);
5548  *                                            lock(&type->i_mutex_dir_key#3/2);
5549  * lock(&sb->s_type->i_mutex_key#14);
5550  *
5551  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5552  * sb_start_intwrite() in btrfs_start_transaction().
5553  * Not locking i_mutex of the inodes is still safe because:
5554  *
5555  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5556  *    that while logging the inode new references (names) are added or removed
5557  *    from the inode, leaving the logged inode item with a link count that does
5558  *    not match the number of logged inode reference items. This is fine because
5559  *    at log replay time we compute the real number of links and correct the
5560  *    link count in the inode item (see replay_one_buffer() and
5561  *    link_to_fixup_dir());
5562  *
5563  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5564  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5565  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5566  *    has a size that doesn't match the sum of the lengths of all the logged
5567  *    names. This does not result in a problem because if a dir_item key is
5568  *    logged but its matching dir_index key is not logged, at log replay time we
5569  *    don't use it to replay the respective name (see replay_one_name()). On the
5570  *    other hand if only the dir_index key ends up being logged, the respective
5571  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5572  *    keys created (see replay_one_name()).
5573  *    The directory's inode item with a wrong i_size is not a problem as well,
5574  *    since we don't use it at log replay time to set the i_size in the inode
5575  *    item of the fs/subvol tree (see overwrite_item()).
5576  */
5577 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5578 				struct btrfs_root *root,
5579 				struct btrfs_inode *start_inode,
5580 				struct btrfs_log_ctx *ctx)
5581 {
5582 	struct btrfs_fs_info *fs_info = root->fs_info;
5583 	struct btrfs_root *log = root->log_root;
5584 	struct btrfs_path *path;
5585 	LIST_HEAD(dir_list);
5586 	struct btrfs_dir_list *dir_elem;
5587 	int ret = 0;
5588 
5589 	path = btrfs_alloc_path();
5590 	if (!path)
5591 		return -ENOMEM;
5592 
5593 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5594 	if (!dir_elem) {
5595 		btrfs_free_path(path);
5596 		return -ENOMEM;
5597 	}
5598 	dir_elem->ino = btrfs_ino(start_inode);
5599 	list_add_tail(&dir_elem->list, &dir_list);
5600 
5601 	while (!list_empty(&dir_list)) {
5602 		struct extent_buffer *leaf;
5603 		struct btrfs_key min_key;
5604 		int nritems;
5605 		int i;
5606 
5607 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5608 					    list);
5609 		if (ret)
5610 			goto next_dir_inode;
5611 
5612 		min_key.objectid = dir_elem->ino;
5613 		min_key.type = BTRFS_DIR_ITEM_KEY;
5614 		min_key.offset = 0;
5615 again:
5616 		btrfs_release_path(path);
5617 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5618 		if (ret < 0) {
5619 			goto next_dir_inode;
5620 		} else if (ret > 0) {
5621 			ret = 0;
5622 			goto next_dir_inode;
5623 		}
5624 
5625 process_leaf:
5626 		leaf = path->nodes[0];
5627 		nritems = btrfs_header_nritems(leaf);
5628 		for (i = path->slots[0]; i < nritems; i++) {
5629 			struct btrfs_dir_item *di;
5630 			struct btrfs_key di_key;
5631 			struct inode *di_inode;
5632 			struct btrfs_dir_list *new_dir_elem;
5633 			int log_mode = LOG_INODE_EXISTS;
5634 			int type;
5635 
5636 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5637 			if (min_key.objectid != dir_elem->ino ||
5638 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5639 				goto next_dir_inode;
5640 
5641 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5642 			type = btrfs_dir_type(leaf, di);
5643 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5644 			    type != BTRFS_FT_DIR)
5645 				continue;
5646 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5647 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5648 				continue;
5649 
5650 			btrfs_release_path(path);
5651 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5652 			if (IS_ERR(di_inode)) {
5653 				ret = PTR_ERR(di_inode);
5654 				goto next_dir_inode;
5655 			}
5656 
5657 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5658 				iput(di_inode);
5659 				break;
5660 			}
5661 
5662 			ctx->log_new_dentries = false;
5663 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5664 				log_mode = LOG_INODE_ALL;
5665 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5666 					      log_mode, 0, LLONG_MAX, ctx);
5667 			if (!ret &&
5668 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5669 				ret = 1;
5670 			iput(di_inode);
5671 			if (ret)
5672 				goto next_dir_inode;
5673 			if (ctx->log_new_dentries) {
5674 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5675 						       GFP_NOFS);
5676 				if (!new_dir_elem) {
5677 					ret = -ENOMEM;
5678 					goto next_dir_inode;
5679 				}
5680 				new_dir_elem->ino = di_key.objectid;
5681 				list_add_tail(&new_dir_elem->list, &dir_list);
5682 			}
5683 			break;
5684 		}
5685 		if (i == nritems) {
5686 			ret = btrfs_next_leaf(log, path);
5687 			if (ret < 0) {
5688 				goto next_dir_inode;
5689 			} else if (ret > 0) {
5690 				ret = 0;
5691 				goto next_dir_inode;
5692 			}
5693 			goto process_leaf;
5694 		}
5695 		if (min_key.offset < (u64)-1) {
5696 			min_key.offset++;
5697 			goto again;
5698 		}
5699 next_dir_inode:
5700 		list_del(&dir_elem->list);
5701 		kfree(dir_elem);
5702 	}
5703 
5704 	btrfs_free_path(path);
5705 	return ret;
5706 }
5707 
5708 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5709 				 struct btrfs_inode *inode,
5710 				 struct btrfs_log_ctx *ctx)
5711 {
5712 	struct btrfs_fs_info *fs_info = trans->fs_info;
5713 	int ret;
5714 	struct btrfs_path *path;
5715 	struct btrfs_key key;
5716 	struct btrfs_root *root = inode->root;
5717 	const u64 ino = btrfs_ino(inode);
5718 
5719 	path = btrfs_alloc_path();
5720 	if (!path)
5721 		return -ENOMEM;
5722 	path->skip_locking = 1;
5723 	path->search_commit_root = 1;
5724 
5725 	key.objectid = ino;
5726 	key.type = BTRFS_INODE_REF_KEY;
5727 	key.offset = 0;
5728 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5729 	if (ret < 0)
5730 		goto out;
5731 
5732 	while (true) {
5733 		struct extent_buffer *leaf = path->nodes[0];
5734 		int slot = path->slots[0];
5735 		u32 cur_offset = 0;
5736 		u32 item_size;
5737 		unsigned long ptr;
5738 
5739 		if (slot >= btrfs_header_nritems(leaf)) {
5740 			ret = btrfs_next_leaf(root, path);
5741 			if (ret < 0)
5742 				goto out;
5743 			else if (ret > 0)
5744 				break;
5745 			continue;
5746 		}
5747 
5748 		btrfs_item_key_to_cpu(leaf, &key, slot);
5749 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5750 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5751 			break;
5752 
5753 		item_size = btrfs_item_size_nr(leaf, slot);
5754 		ptr = btrfs_item_ptr_offset(leaf, slot);
5755 		while (cur_offset < item_size) {
5756 			struct btrfs_key inode_key;
5757 			struct inode *dir_inode;
5758 
5759 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5760 			inode_key.offset = 0;
5761 
5762 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5763 				struct btrfs_inode_extref *extref;
5764 
5765 				extref = (struct btrfs_inode_extref *)
5766 					(ptr + cur_offset);
5767 				inode_key.objectid = btrfs_inode_extref_parent(
5768 					leaf, extref);
5769 				cur_offset += sizeof(*extref);
5770 				cur_offset += btrfs_inode_extref_name_len(leaf,
5771 					extref);
5772 			} else {
5773 				inode_key.objectid = key.offset;
5774 				cur_offset = item_size;
5775 			}
5776 
5777 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5778 					       root, NULL);
5779 			/*
5780 			 * If the parent inode was deleted, return an error to
5781 			 * fallback to a transaction commit. This is to prevent
5782 			 * getting an inode that was moved from one parent A to
5783 			 * a parent B, got its former parent A deleted and then
5784 			 * it got fsync'ed, from existing at both parents after
5785 			 * a log replay (and the old parent still existing).
5786 			 * Example:
5787 			 *
5788 			 * mkdir /mnt/A
5789 			 * mkdir /mnt/B
5790 			 * touch /mnt/B/bar
5791 			 * sync
5792 			 * mv /mnt/B/bar /mnt/A/bar
5793 			 * mv -T /mnt/A /mnt/B
5794 			 * fsync /mnt/B/bar
5795 			 * <power fail>
5796 			 *
5797 			 * If we ignore the old parent B which got deleted,
5798 			 * after a log replay we would have file bar linked
5799 			 * at both parents and the old parent B would still
5800 			 * exist.
5801 			 */
5802 			if (IS_ERR(dir_inode)) {
5803 				ret = PTR_ERR(dir_inode);
5804 				goto out;
5805 			}
5806 
5807 			if (ctx)
5808 				ctx->log_new_dentries = false;
5809 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5810 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5811 			if (!ret &&
5812 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5813 				ret = 1;
5814 			if (!ret && ctx && ctx->log_new_dentries)
5815 				ret = log_new_dir_dentries(trans, root,
5816 						   BTRFS_I(dir_inode), ctx);
5817 			iput(dir_inode);
5818 			if (ret)
5819 				goto out;
5820 		}
5821 		path->slots[0]++;
5822 	}
5823 	ret = 0;
5824 out:
5825 	btrfs_free_path(path);
5826 	return ret;
5827 }
5828 
5829 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5830 			     struct btrfs_root *root,
5831 			     struct btrfs_path *path,
5832 			     struct btrfs_log_ctx *ctx)
5833 {
5834 	struct btrfs_key found_key;
5835 
5836 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5837 
5838 	while (true) {
5839 		struct btrfs_fs_info *fs_info = root->fs_info;
5840 		const u64 last_committed = fs_info->last_trans_committed;
5841 		struct extent_buffer *leaf = path->nodes[0];
5842 		int slot = path->slots[0];
5843 		struct btrfs_key search_key;
5844 		struct inode *inode;
5845 		int ret = 0;
5846 
5847 		btrfs_release_path(path);
5848 
5849 		search_key.objectid = found_key.offset;
5850 		search_key.type = BTRFS_INODE_ITEM_KEY;
5851 		search_key.offset = 0;
5852 		inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5853 		if (IS_ERR(inode))
5854 			return PTR_ERR(inode);
5855 
5856 		if (BTRFS_I(inode)->generation > last_committed)
5857 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5858 					      LOG_INODE_EXISTS,
5859 					      0, LLONG_MAX, ctx);
5860 		iput(inode);
5861 		if (ret)
5862 			return ret;
5863 
5864 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5865 			break;
5866 
5867 		search_key.type = BTRFS_INODE_REF_KEY;
5868 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5869 		if (ret < 0)
5870 			return ret;
5871 
5872 		leaf = path->nodes[0];
5873 		slot = path->slots[0];
5874 		if (slot >= btrfs_header_nritems(leaf)) {
5875 			ret = btrfs_next_leaf(root, path);
5876 			if (ret < 0)
5877 				return ret;
5878 			else if (ret > 0)
5879 				return -ENOENT;
5880 			leaf = path->nodes[0];
5881 			slot = path->slots[0];
5882 		}
5883 
5884 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5885 		if (found_key.objectid != search_key.objectid ||
5886 		    found_key.type != BTRFS_INODE_REF_KEY)
5887 			return -ENOENT;
5888 	}
5889 	return 0;
5890 }
5891 
5892 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5893 				  struct btrfs_inode *inode,
5894 				  struct dentry *parent,
5895 				  struct btrfs_log_ctx *ctx)
5896 {
5897 	struct btrfs_root *root = inode->root;
5898 	struct btrfs_fs_info *fs_info = root->fs_info;
5899 	struct dentry *old_parent = NULL;
5900 	struct super_block *sb = inode->vfs_inode.i_sb;
5901 	int ret = 0;
5902 
5903 	while (true) {
5904 		if (!parent || d_really_is_negative(parent) ||
5905 		    sb != parent->d_sb)
5906 			break;
5907 
5908 		inode = BTRFS_I(d_inode(parent));
5909 		if (root != inode->root)
5910 			break;
5911 
5912 		if (inode->generation > fs_info->last_trans_committed) {
5913 			ret = btrfs_log_inode(trans, root, inode,
5914 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5915 			if (ret)
5916 				break;
5917 		}
5918 		if (IS_ROOT(parent))
5919 			break;
5920 
5921 		parent = dget_parent(parent);
5922 		dput(old_parent);
5923 		old_parent = parent;
5924 	}
5925 	dput(old_parent);
5926 
5927 	return ret;
5928 }
5929 
5930 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5931 				 struct btrfs_inode *inode,
5932 				 struct dentry *parent,
5933 				 struct btrfs_log_ctx *ctx)
5934 {
5935 	struct btrfs_root *root = inode->root;
5936 	const u64 ino = btrfs_ino(inode);
5937 	struct btrfs_path *path;
5938 	struct btrfs_key search_key;
5939 	int ret;
5940 
5941 	/*
5942 	 * For a single hard link case, go through a fast path that does not
5943 	 * need to iterate the fs/subvolume tree.
5944 	 */
5945 	if (inode->vfs_inode.i_nlink < 2)
5946 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5947 
5948 	path = btrfs_alloc_path();
5949 	if (!path)
5950 		return -ENOMEM;
5951 
5952 	search_key.objectid = ino;
5953 	search_key.type = BTRFS_INODE_REF_KEY;
5954 	search_key.offset = 0;
5955 again:
5956 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5957 	if (ret < 0)
5958 		goto out;
5959 	if (ret == 0)
5960 		path->slots[0]++;
5961 
5962 	while (true) {
5963 		struct extent_buffer *leaf = path->nodes[0];
5964 		int slot = path->slots[0];
5965 		struct btrfs_key found_key;
5966 
5967 		if (slot >= btrfs_header_nritems(leaf)) {
5968 			ret = btrfs_next_leaf(root, path);
5969 			if (ret < 0)
5970 				goto out;
5971 			else if (ret > 0)
5972 				break;
5973 			continue;
5974 		}
5975 
5976 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5977 		if (found_key.objectid != ino ||
5978 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
5979 			break;
5980 
5981 		/*
5982 		 * Don't deal with extended references because they are rare
5983 		 * cases and too complex to deal with (we would need to keep
5984 		 * track of which subitem we are processing for each item in
5985 		 * this loop, etc). So just return some error to fallback to
5986 		 * a transaction commit.
5987 		 */
5988 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5989 			ret = -EMLINK;
5990 			goto out;
5991 		}
5992 
5993 		/*
5994 		 * Logging ancestors needs to do more searches on the fs/subvol
5995 		 * tree, so it releases the path as needed to avoid deadlocks.
5996 		 * Keep track of the last inode ref key and resume from that key
5997 		 * after logging all new ancestors for the current hard link.
5998 		 */
5999 		memcpy(&search_key, &found_key, sizeof(search_key));
6000 
6001 		ret = log_new_ancestors(trans, root, path, ctx);
6002 		if (ret)
6003 			goto out;
6004 		btrfs_release_path(path);
6005 		goto again;
6006 	}
6007 	ret = 0;
6008 out:
6009 	btrfs_free_path(path);
6010 	return ret;
6011 }
6012 
6013 /*
6014  * helper function around btrfs_log_inode to make sure newly created
6015  * parent directories also end up in the log.  A minimal inode and backref
6016  * only logging is done of any parent directories that are older than
6017  * the last committed transaction
6018  */
6019 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6020 				  struct btrfs_inode *inode,
6021 				  struct dentry *parent,
6022 				  const loff_t start,
6023 				  const loff_t end,
6024 				  int inode_only,
6025 				  struct btrfs_log_ctx *ctx)
6026 {
6027 	struct btrfs_root *root = inode->root;
6028 	struct btrfs_fs_info *fs_info = root->fs_info;
6029 	struct super_block *sb;
6030 	int ret = 0;
6031 	u64 last_committed = fs_info->last_trans_committed;
6032 	bool log_dentries = false;
6033 
6034 	sb = inode->vfs_inode.i_sb;
6035 
6036 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6037 		ret = 1;
6038 		goto end_no_trans;
6039 	}
6040 
6041 	/*
6042 	 * The prev transaction commit doesn't complete, we need do
6043 	 * full commit by ourselves.
6044 	 */
6045 	if (fs_info->last_trans_log_full_commit >
6046 	    fs_info->last_trans_committed) {
6047 		ret = 1;
6048 		goto end_no_trans;
6049 	}
6050 
6051 	if (btrfs_root_refs(&root->root_item) == 0) {
6052 		ret = 1;
6053 		goto end_no_trans;
6054 	}
6055 
6056 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6057 			last_committed);
6058 	if (ret)
6059 		goto end_no_trans;
6060 
6061 	/*
6062 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6063 	 * (since logging them is pointless, a link count of 0 means they
6064 	 * will never be accessible).
6065 	 */
6066 	if (btrfs_inode_in_log(inode, trans->transid) ||
6067 	    inode->vfs_inode.i_nlink == 0) {
6068 		ret = BTRFS_NO_LOG_SYNC;
6069 		goto end_no_trans;
6070 	}
6071 
6072 	ret = start_log_trans(trans, root, ctx);
6073 	if (ret)
6074 		goto end_no_trans;
6075 
6076 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6077 	if (ret)
6078 		goto end_trans;
6079 
6080 	/*
6081 	 * for regular files, if its inode is already on disk, we don't
6082 	 * have to worry about the parents at all.  This is because
6083 	 * we can use the last_unlink_trans field to record renames
6084 	 * and other fun in this file.
6085 	 */
6086 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6087 	    inode->generation <= last_committed &&
6088 	    inode->last_unlink_trans <= last_committed) {
6089 		ret = 0;
6090 		goto end_trans;
6091 	}
6092 
6093 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6094 		log_dentries = true;
6095 
6096 	/*
6097 	 * On unlink we must make sure all our current and old parent directory
6098 	 * inodes are fully logged. This is to prevent leaving dangling
6099 	 * directory index entries in directories that were our parents but are
6100 	 * not anymore. Not doing this results in old parent directory being
6101 	 * impossible to delete after log replay (rmdir will always fail with
6102 	 * error -ENOTEMPTY).
6103 	 *
6104 	 * Example 1:
6105 	 *
6106 	 * mkdir testdir
6107 	 * touch testdir/foo
6108 	 * ln testdir/foo testdir/bar
6109 	 * sync
6110 	 * unlink testdir/bar
6111 	 * xfs_io -c fsync testdir/foo
6112 	 * <power failure>
6113 	 * mount fs, triggers log replay
6114 	 *
6115 	 * If we don't log the parent directory (testdir), after log replay the
6116 	 * directory still has an entry pointing to the file inode using the bar
6117 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6118 	 * the file inode has a link count of 1.
6119 	 *
6120 	 * Example 2:
6121 	 *
6122 	 * mkdir testdir
6123 	 * touch foo
6124 	 * ln foo testdir/foo2
6125 	 * ln foo testdir/foo3
6126 	 * sync
6127 	 * unlink testdir/foo3
6128 	 * xfs_io -c fsync foo
6129 	 * <power failure>
6130 	 * mount fs, triggers log replay
6131 	 *
6132 	 * Similar as the first example, after log replay the parent directory
6133 	 * testdir still has an entry pointing to the inode file with name foo3
6134 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6135 	 * and has a link count of 2.
6136 	 */
6137 	if (inode->last_unlink_trans > last_committed) {
6138 		ret = btrfs_log_all_parents(trans, inode, ctx);
6139 		if (ret)
6140 			goto end_trans;
6141 	}
6142 
6143 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6144 	if (ret)
6145 		goto end_trans;
6146 
6147 	if (log_dentries)
6148 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6149 	else
6150 		ret = 0;
6151 end_trans:
6152 	if (ret < 0) {
6153 		btrfs_set_log_full_commit(trans);
6154 		ret = 1;
6155 	}
6156 
6157 	if (ret)
6158 		btrfs_remove_log_ctx(root, ctx);
6159 	btrfs_end_log_trans(root);
6160 end_no_trans:
6161 	return ret;
6162 }
6163 
6164 /*
6165  * it is not safe to log dentry if the chunk root has added new
6166  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6167  * If this returns 1, you must commit the transaction to safely get your
6168  * data on disk.
6169  */
6170 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6171 			  struct dentry *dentry,
6172 			  const loff_t start,
6173 			  const loff_t end,
6174 			  struct btrfs_log_ctx *ctx)
6175 {
6176 	struct dentry *parent = dget_parent(dentry);
6177 	int ret;
6178 
6179 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6180 				     start, end, LOG_INODE_ALL, ctx);
6181 	dput(parent);
6182 
6183 	return ret;
6184 }
6185 
6186 /*
6187  * should be called during mount to recover any replay any log trees
6188  * from the FS
6189  */
6190 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6191 {
6192 	int ret;
6193 	struct btrfs_path *path;
6194 	struct btrfs_trans_handle *trans;
6195 	struct btrfs_key key;
6196 	struct btrfs_key found_key;
6197 	struct btrfs_key tmp_key;
6198 	struct btrfs_root *log;
6199 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6200 	struct walk_control wc = {
6201 		.process_func = process_one_buffer,
6202 		.stage = 0,
6203 	};
6204 
6205 	path = btrfs_alloc_path();
6206 	if (!path)
6207 		return -ENOMEM;
6208 
6209 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6210 
6211 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6212 	if (IS_ERR(trans)) {
6213 		ret = PTR_ERR(trans);
6214 		goto error;
6215 	}
6216 
6217 	wc.trans = trans;
6218 	wc.pin = 1;
6219 
6220 	ret = walk_log_tree(trans, log_root_tree, &wc);
6221 	if (ret) {
6222 		btrfs_handle_fs_error(fs_info, ret,
6223 			"Failed to pin buffers while recovering log root tree.");
6224 		goto error;
6225 	}
6226 
6227 again:
6228 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6229 	key.offset = (u64)-1;
6230 	key.type = BTRFS_ROOT_ITEM_KEY;
6231 
6232 	while (1) {
6233 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6234 
6235 		if (ret < 0) {
6236 			btrfs_handle_fs_error(fs_info, ret,
6237 				    "Couldn't find tree log root.");
6238 			goto error;
6239 		}
6240 		if (ret > 0) {
6241 			if (path->slots[0] == 0)
6242 				break;
6243 			path->slots[0]--;
6244 		}
6245 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6246 				      path->slots[0]);
6247 		btrfs_release_path(path);
6248 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6249 			break;
6250 
6251 		log = btrfs_read_fs_root(log_root_tree, &found_key);
6252 		if (IS_ERR(log)) {
6253 			ret = PTR_ERR(log);
6254 			btrfs_handle_fs_error(fs_info, ret,
6255 				    "Couldn't read tree log root.");
6256 			goto error;
6257 		}
6258 
6259 		tmp_key.objectid = found_key.offset;
6260 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6261 		tmp_key.offset = (u64)-1;
6262 
6263 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6264 		if (IS_ERR(wc.replay_dest)) {
6265 			ret = PTR_ERR(wc.replay_dest);
6266 			free_extent_buffer(log->node);
6267 			free_extent_buffer(log->commit_root);
6268 			kfree(log);
6269 			btrfs_handle_fs_error(fs_info, ret,
6270 				"Couldn't read target root for tree log recovery.");
6271 			goto error;
6272 		}
6273 
6274 		wc.replay_dest->log_root = log;
6275 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6276 		ret = walk_log_tree(trans, log, &wc);
6277 
6278 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6279 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6280 						      path);
6281 		}
6282 
6283 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6284 			struct btrfs_root *root = wc.replay_dest;
6285 
6286 			btrfs_release_path(path);
6287 
6288 			/*
6289 			 * We have just replayed everything, and the highest
6290 			 * objectid of fs roots probably has changed in case
6291 			 * some inode_item's got replayed.
6292 			 *
6293 			 * root->objectid_mutex is not acquired as log replay
6294 			 * could only happen during mount.
6295 			 */
6296 			ret = btrfs_find_highest_objectid(root,
6297 						  &root->highest_objectid);
6298 		}
6299 
6300 		key.offset = found_key.offset - 1;
6301 		wc.replay_dest->log_root = NULL;
6302 		free_extent_buffer(log->node);
6303 		free_extent_buffer(log->commit_root);
6304 		kfree(log);
6305 
6306 		if (ret)
6307 			goto error;
6308 
6309 		if (found_key.offset == 0)
6310 			break;
6311 	}
6312 	btrfs_release_path(path);
6313 
6314 	/* step one is to pin it all, step two is to replay just inodes */
6315 	if (wc.pin) {
6316 		wc.pin = 0;
6317 		wc.process_func = replay_one_buffer;
6318 		wc.stage = LOG_WALK_REPLAY_INODES;
6319 		goto again;
6320 	}
6321 	/* step three is to replay everything */
6322 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6323 		wc.stage++;
6324 		goto again;
6325 	}
6326 
6327 	btrfs_free_path(path);
6328 
6329 	/* step 4: commit the transaction, which also unpins the blocks */
6330 	ret = btrfs_commit_transaction(trans);
6331 	if (ret)
6332 		return ret;
6333 
6334 	free_extent_buffer(log_root_tree->node);
6335 	log_root_tree->log_root = NULL;
6336 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6337 	kfree(log_root_tree);
6338 
6339 	return 0;
6340 error:
6341 	if (wc.trans)
6342 		btrfs_end_transaction(wc.trans);
6343 	btrfs_free_path(path);
6344 	return ret;
6345 }
6346 
6347 /*
6348  * there are some corner cases where we want to force a full
6349  * commit instead of allowing a directory to be logged.
6350  *
6351  * They revolve around files there were unlinked from the directory, and
6352  * this function updates the parent directory so that a full commit is
6353  * properly done if it is fsync'd later after the unlinks are done.
6354  *
6355  * Must be called before the unlink operations (updates to the subvolume tree,
6356  * inodes, etc) are done.
6357  */
6358 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6359 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6360 			     int for_rename)
6361 {
6362 	/*
6363 	 * when we're logging a file, if it hasn't been renamed
6364 	 * or unlinked, and its inode is fully committed on disk,
6365 	 * we don't have to worry about walking up the directory chain
6366 	 * to log its parents.
6367 	 *
6368 	 * So, we use the last_unlink_trans field to put this transid
6369 	 * into the file.  When the file is logged we check it and
6370 	 * don't log the parents if the file is fully on disk.
6371 	 */
6372 	mutex_lock(&inode->log_mutex);
6373 	inode->last_unlink_trans = trans->transid;
6374 	mutex_unlock(&inode->log_mutex);
6375 
6376 	/*
6377 	 * if this directory was already logged any new
6378 	 * names for this file/dir will get recorded
6379 	 */
6380 	if (dir->logged_trans == trans->transid)
6381 		return;
6382 
6383 	/*
6384 	 * if the inode we're about to unlink was logged,
6385 	 * the log will be properly updated for any new names
6386 	 */
6387 	if (inode->logged_trans == trans->transid)
6388 		return;
6389 
6390 	/*
6391 	 * when renaming files across directories, if the directory
6392 	 * there we're unlinking from gets fsync'd later on, there's
6393 	 * no way to find the destination directory later and fsync it
6394 	 * properly.  So, we have to be conservative and force commits
6395 	 * so the new name gets discovered.
6396 	 */
6397 	if (for_rename)
6398 		goto record;
6399 
6400 	/* we can safely do the unlink without any special recording */
6401 	return;
6402 
6403 record:
6404 	mutex_lock(&dir->log_mutex);
6405 	dir->last_unlink_trans = trans->transid;
6406 	mutex_unlock(&dir->log_mutex);
6407 }
6408 
6409 /*
6410  * Make sure that if someone attempts to fsync the parent directory of a deleted
6411  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6412  * that after replaying the log tree of the parent directory's root we will not
6413  * see the snapshot anymore and at log replay time we will not see any log tree
6414  * corresponding to the deleted snapshot's root, which could lead to replaying
6415  * it after replaying the log tree of the parent directory (which would replay
6416  * the snapshot delete operation).
6417  *
6418  * Must be called before the actual snapshot destroy operation (updates to the
6419  * parent root and tree of tree roots trees, etc) are done.
6420  */
6421 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6422 				   struct btrfs_inode *dir)
6423 {
6424 	mutex_lock(&dir->log_mutex);
6425 	dir->last_unlink_trans = trans->transid;
6426 	mutex_unlock(&dir->log_mutex);
6427 }
6428 
6429 /*
6430  * Call this after adding a new name for a file and it will properly
6431  * update the log to reflect the new name.
6432  *
6433  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6434  * true (because it's not used).
6435  *
6436  * Return value depends on whether @sync_log is true or false.
6437  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6438  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6439  *            otherwise.
6440  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6441  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6442  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6443  *             committed (without attempting to sync the log).
6444  */
6445 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6446 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6447 			struct dentry *parent,
6448 			bool sync_log, struct btrfs_log_ctx *ctx)
6449 {
6450 	struct btrfs_fs_info *fs_info = trans->fs_info;
6451 	int ret;
6452 
6453 	/*
6454 	 * this will force the logging code to walk the dentry chain
6455 	 * up for the file
6456 	 */
6457 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6458 		inode->last_unlink_trans = trans->transid;
6459 
6460 	/*
6461 	 * if this inode hasn't been logged and directory we're renaming it
6462 	 * from hasn't been logged, we don't need to log it
6463 	 */
6464 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6465 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6466 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6467 			BTRFS_DONT_NEED_LOG_SYNC;
6468 
6469 	if (sync_log) {
6470 		struct btrfs_log_ctx ctx2;
6471 
6472 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6473 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6474 					     LOG_INODE_EXISTS, &ctx2);
6475 		if (ret == BTRFS_NO_LOG_SYNC)
6476 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6477 		else if (ret)
6478 			return BTRFS_NEED_TRANS_COMMIT;
6479 
6480 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6481 		if (ret)
6482 			return BTRFS_NEED_TRANS_COMMIT;
6483 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6484 	}
6485 
6486 	ASSERT(ctx);
6487 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6488 				     LOG_INODE_EXISTS, ctx);
6489 	if (ret == BTRFS_NO_LOG_SYNC)
6490 		return BTRFS_DONT_NEED_LOG_SYNC;
6491 	else if (ret)
6492 		return BTRFS_NEED_TRANS_COMMIT;
6493 
6494 	return BTRFS_NEED_LOG_SYNC;
6495 }
6496 
6497