1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/blkdev.h> 22 #include <linux/list_sort.h> 23 #include "tree-log.h" 24 #include "disk-io.h" 25 #include "locking.h" 26 #include "print-tree.h" 27 #include "backref.h" 28 #include "hash.h" 29 #include "compression.h" 30 #include "qgroup.h" 31 32 /* magic values for the inode_only field in btrfs_log_inode: 33 * 34 * LOG_INODE_ALL means to log everything 35 * LOG_INODE_EXISTS means to log just enough to recreate the inode 36 * during log replay 37 */ 38 #define LOG_INODE_ALL 0 39 #define LOG_INODE_EXISTS 1 40 #define LOG_OTHER_INODE 2 41 42 /* 43 * directory trouble cases 44 * 45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 46 * log, we must force a full commit before doing an fsync of the directory 47 * where the unlink was done. 48 * ---> record transid of last unlink/rename per directory 49 * 50 * mkdir foo/some_dir 51 * normal commit 52 * rename foo/some_dir foo2/some_dir 53 * mkdir foo/some_dir 54 * fsync foo/some_dir/some_file 55 * 56 * The fsync above will unlink the original some_dir without recording 57 * it in its new location (foo2). After a crash, some_dir will be gone 58 * unless the fsync of some_file forces a full commit 59 * 60 * 2) we must log any new names for any file or dir that is in the fsync 61 * log. ---> check inode while renaming/linking. 62 * 63 * 2a) we must log any new names for any file or dir during rename 64 * when the directory they are being removed from was logged. 65 * ---> check inode and old parent dir during rename 66 * 67 * 2a is actually the more important variant. With the extra logging 68 * a crash might unlink the old name without recreating the new one 69 * 70 * 3) after a crash, we must go through any directories with a link count 71 * of zero and redo the rm -rf 72 * 73 * mkdir f1/foo 74 * normal commit 75 * rm -rf f1/foo 76 * fsync(f1) 77 * 78 * The directory f1 was fully removed from the FS, but fsync was never 79 * called on f1, only its parent dir. After a crash the rm -rf must 80 * be replayed. This must be able to recurse down the entire 81 * directory tree. The inode link count fixup code takes care of the 82 * ugly details. 83 */ 84 85 /* 86 * stages for the tree walking. The first 87 * stage (0) is to only pin down the blocks we find 88 * the second stage (1) is to make sure that all the inodes 89 * we find in the log are created in the subvolume. 90 * 91 * The last stage is to deal with directories and links and extents 92 * and all the other fun semantics 93 */ 94 #define LOG_WALK_PIN_ONLY 0 95 #define LOG_WALK_REPLAY_INODES 1 96 #define LOG_WALK_REPLAY_DIR_INDEX 2 97 #define LOG_WALK_REPLAY_ALL 3 98 99 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 100 struct btrfs_root *root, struct btrfs_inode *inode, 101 int inode_only, 102 const loff_t start, 103 const loff_t end, 104 struct btrfs_log_ctx *ctx); 105 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 106 struct btrfs_root *root, 107 struct btrfs_path *path, u64 objectid); 108 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 109 struct btrfs_root *root, 110 struct btrfs_root *log, 111 struct btrfs_path *path, 112 u64 dirid, int del_all); 113 114 /* 115 * tree logging is a special write ahead log used to make sure that 116 * fsyncs and O_SYNCs can happen without doing full tree commits. 117 * 118 * Full tree commits are expensive because they require commonly 119 * modified blocks to be recowed, creating many dirty pages in the 120 * extent tree an 4x-6x higher write load than ext3. 121 * 122 * Instead of doing a tree commit on every fsync, we use the 123 * key ranges and transaction ids to find items for a given file or directory 124 * that have changed in this transaction. Those items are copied into 125 * a special tree (one per subvolume root), that tree is written to disk 126 * and then the fsync is considered complete. 127 * 128 * After a crash, items are copied out of the log-tree back into the 129 * subvolume tree. Any file data extents found are recorded in the extent 130 * allocation tree, and the log-tree freed. 131 * 132 * The log tree is read three times, once to pin down all the extents it is 133 * using in ram and once, once to create all the inodes logged in the tree 134 * and once to do all the other items. 135 */ 136 137 /* 138 * start a sub transaction and setup the log tree 139 * this increments the log tree writer count to make the people 140 * syncing the tree wait for us to finish 141 */ 142 static int start_log_trans(struct btrfs_trans_handle *trans, 143 struct btrfs_root *root, 144 struct btrfs_log_ctx *ctx) 145 { 146 struct btrfs_fs_info *fs_info = root->fs_info; 147 int ret = 0; 148 149 mutex_lock(&root->log_mutex); 150 151 if (root->log_root) { 152 if (btrfs_need_log_full_commit(fs_info, trans)) { 153 ret = -EAGAIN; 154 goto out; 155 } 156 157 if (!root->log_start_pid) { 158 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 159 root->log_start_pid = current->pid; 160 } else if (root->log_start_pid != current->pid) { 161 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 162 } 163 } else { 164 mutex_lock(&fs_info->tree_log_mutex); 165 if (!fs_info->log_root_tree) 166 ret = btrfs_init_log_root_tree(trans, fs_info); 167 mutex_unlock(&fs_info->tree_log_mutex); 168 if (ret) 169 goto out; 170 171 ret = btrfs_add_log_tree(trans, root); 172 if (ret) 173 goto out; 174 175 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 176 root->log_start_pid = current->pid; 177 } 178 179 atomic_inc(&root->log_batch); 180 atomic_inc(&root->log_writers); 181 if (ctx) { 182 int index = root->log_transid % 2; 183 list_add_tail(&ctx->list, &root->log_ctxs[index]); 184 ctx->log_transid = root->log_transid; 185 } 186 187 out: 188 mutex_unlock(&root->log_mutex); 189 return ret; 190 } 191 192 /* 193 * returns 0 if there was a log transaction running and we were able 194 * to join, or returns -ENOENT if there were not transactions 195 * in progress 196 */ 197 static int join_running_log_trans(struct btrfs_root *root) 198 { 199 int ret = -ENOENT; 200 201 smp_mb(); 202 if (!root->log_root) 203 return -ENOENT; 204 205 mutex_lock(&root->log_mutex); 206 if (root->log_root) { 207 ret = 0; 208 atomic_inc(&root->log_writers); 209 } 210 mutex_unlock(&root->log_mutex); 211 return ret; 212 } 213 214 /* 215 * This either makes the current running log transaction wait 216 * until you call btrfs_end_log_trans() or it makes any future 217 * log transactions wait until you call btrfs_end_log_trans() 218 */ 219 int btrfs_pin_log_trans(struct btrfs_root *root) 220 { 221 int ret = -ENOENT; 222 223 mutex_lock(&root->log_mutex); 224 atomic_inc(&root->log_writers); 225 mutex_unlock(&root->log_mutex); 226 return ret; 227 } 228 229 /* 230 * indicate we're done making changes to the log tree 231 * and wake up anyone waiting to do a sync 232 */ 233 void btrfs_end_log_trans(struct btrfs_root *root) 234 { 235 if (atomic_dec_and_test(&root->log_writers)) { 236 /* 237 * Implicit memory barrier after atomic_dec_and_test 238 */ 239 if (waitqueue_active(&root->log_writer_wait)) 240 wake_up(&root->log_writer_wait); 241 } 242 } 243 244 245 /* 246 * the walk control struct is used to pass state down the chain when 247 * processing the log tree. The stage field tells us which part 248 * of the log tree processing we are currently doing. The others 249 * are state fields used for that specific part 250 */ 251 struct walk_control { 252 /* should we free the extent on disk when done? This is used 253 * at transaction commit time while freeing a log tree 254 */ 255 int free; 256 257 /* should we write out the extent buffer? This is used 258 * while flushing the log tree to disk during a sync 259 */ 260 int write; 261 262 /* should we wait for the extent buffer io to finish? Also used 263 * while flushing the log tree to disk for a sync 264 */ 265 int wait; 266 267 /* pin only walk, we record which extents on disk belong to the 268 * log trees 269 */ 270 int pin; 271 272 /* what stage of the replay code we're currently in */ 273 int stage; 274 275 /* the root we are currently replaying */ 276 struct btrfs_root *replay_dest; 277 278 /* the trans handle for the current replay */ 279 struct btrfs_trans_handle *trans; 280 281 /* the function that gets used to process blocks we find in the 282 * tree. Note the extent_buffer might not be up to date when it is 283 * passed in, and it must be checked or read if you need the data 284 * inside it 285 */ 286 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 287 struct walk_control *wc, u64 gen); 288 }; 289 290 /* 291 * process_func used to pin down extents, write them or wait on them 292 */ 293 static int process_one_buffer(struct btrfs_root *log, 294 struct extent_buffer *eb, 295 struct walk_control *wc, u64 gen) 296 { 297 struct btrfs_fs_info *fs_info = log->fs_info; 298 int ret = 0; 299 300 /* 301 * If this fs is mixed then we need to be able to process the leaves to 302 * pin down any logged extents, so we have to read the block. 303 */ 304 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 305 ret = btrfs_read_buffer(eb, gen); 306 if (ret) 307 return ret; 308 } 309 310 if (wc->pin) 311 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start, 312 eb->len); 313 314 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 315 if (wc->pin && btrfs_header_level(eb) == 0) 316 ret = btrfs_exclude_logged_extents(fs_info, eb); 317 if (wc->write) 318 btrfs_write_tree_block(eb); 319 if (wc->wait) 320 btrfs_wait_tree_block_writeback(eb); 321 } 322 return ret; 323 } 324 325 /* 326 * Item overwrite used by replay and tree logging. eb, slot and key all refer 327 * to the src data we are copying out. 328 * 329 * root is the tree we are copying into, and path is a scratch 330 * path for use in this function (it should be released on entry and 331 * will be released on exit). 332 * 333 * If the key is already in the destination tree the existing item is 334 * overwritten. If the existing item isn't big enough, it is extended. 335 * If it is too large, it is truncated. 336 * 337 * If the key isn't in the destination yet, a new item is inserted. 338 */ 339 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 340 struct btrfs_root *root, 341 struct btrfs_path *path, 342 struct extent_buffer *eb, int slot, 343 struct btrfs_key *key) 344 { 345 struct btrfs_fs_info *fs_info = root->fs_info; 346 int ret; 347 u32 item_size; 348 u64 saved_i_size = 0; 349 int save_old_i_size = 0; 350 unsigned long src_ptr; 351 unsigned long dst_ptr; 352 int overwrite_root = 0; 353 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 354 355 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 356 overwrite_root = 1; 357 358 item_size = btrfs_item_size_nr(eb, slot); 359 src_ptr = btrfs_item_ptr_offset(eb, slot); 360 361 /* look for the key in the destination tree */ 362 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 363 if (ret < 0) 364 return ret; 365 366 if (ret == 0) { 367 char *src_copy; 368 char *dst_copy; 369 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 370 path->slots[0]); 371 if (dst_size != item_size) 372 goto insert; 373 374 if (item_size == 0) { 375 btrfs_release_path(path); 376 return 0; 377 } 378 dst_copy = kmalloc(item_size, GFP_NOFS); 379 src_copy = kmalloc(item_size, GFP_NOFS); 380 if (!dst_copy || !src_copy) { 381 btrfs_release_path(path); 382 kfree(dst_copy); 383 kfree(src_copy); 384 return -ENOMEM; 385 } 386 387 read_extent_buffer(eb, src_copy, src_ptr, item_size); 388 389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 390 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 391 item_size); 392 ret = memcmp(dst_copy, src_copy, item_size); 393 394 kfree(dst_copy); 395 kfree(src_copy); 396 /* 397 * they have the same contents, just return, this saves 398 * us from cowing blocks in the destination tree and doing 399 * extra writes that may not have been done by a previous 400 * sync 401 */ 402 if (ret == 0) { 403 btrfs_release_path(path); 404 return 0; 405 } 406 407 /* 408 * We need to load the old nbytes into the inode so when we 409 * replay the extents we've logged we get the right nbytes. 410 */ 411 if (inode_item) { 412 struct btrfs_inode_item *item; 413 u64 nbytes; 414 u32 mode; 415 416 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 417 struct btrfs_inode_item); 418 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 419 item = btrfs_item_ptr(eb, slot, 420 struct btrfs_inode_item); 421 btrfs_set_inode_nbytes(eb, item, nbytes); 422 423 /* 424 * If this is a directory we need to reset the i_size to 425 * 0 so that we can set it up properly when replaying 426 * the rest of the items in this log. 427 */ 428 mode = btrfs_inode_mode(eb, item); 429 if (S_ISDIR(mode)) 430 btrfs_set_inode_size(eb, item, 0); 431 } 432 } else if (inode_item) { 433 struct btrfs_inode_item *item; 434 u32 mode; 435 436 /* 437 * New inode, set nbytes to 0 so that the nbytes comes out 438 * properly when we replay the extents. 439 */ 440 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 441 btrfs_set_inode_nbytes(eb, item, 0); 442 443 /* 444 * If this is a directory we need to reset the i_size to 0 so 445 * that we can set it up properly when replaying the rest of 446 * the items in this log. 447 */ 448 mode = btrfs_inode_mode(eb, item); 449 if (S_ISDIR(mode)) 450 btrfs_set_inode_size(eb, item, 0); 451 } 452 insert: 453 btrfs_release_path(path); 454 /* try to insert the key into the destination tree */ 455 path->skip_release_on_error = 1; 456 ret = btrfs_insert_empty_item(trans, root, path, 457 key, item_size); 458 path->skip_release_on_error = 0; 459 460 /* make sure any existing item is the correct size */ 461 if (ret == -EEXIST || ret == -EOVERFLOW) { 462 u32 found_size; 463 found_size = btrfs_item_size_nr(path->nodes[0], 464 path->slots[0]); 465 if (found_size > item_size) 466 btrfs_truncate_item(fs_info, path, item_size, 1); 467 else if (found_size < item_size) 468 btrfs_extend_item(fs_info, path, 469 item_size - found_size); 470 } else if (ret) { 471 return ret; 472 } 473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 474 path->slots[0]); 475 476 /* don't overwrite an existing inode if the generation number 477 * was logged as zero. This is done when the tree logging code 478 * is just logging an inode to make sure it exists after recovery. 479 * 480 * Also, don't overwrite i_size on directories during replay. 481 * log replay inserts and removes directory items based on the 482 * state of the tree found in the subvolume, and i_size is modified 483 * as it goes 484 */ 485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 486 struct btrfs_inode_item *src_item; 487 struct btrfs_inode_item *dst_item; 488 489 src_item = (struct btrfs_inode_item *)src_ptr; 490 dst_item = (struct btrfs_inode_item *)dst_ptr; 491 492 if (btrfs_inode_generation(eb, src_item) == 0) { 493 struct extent_buffer *dst_eb = path->nodes[0]; 494 const u64 ino_size = btrfs_inode_size(eb, src_item); 495 496 /* 497 * For regular files an ino_size == 0 is used only when 498 * logging that an inode exists, as part of a directory 499 * fsync, and the inode wasn't fsynced before. In this 500 * case don't set the size of the inode in the fs/subvol 501 * tree, otherwise we would be throwing valid data away. 502 */ 503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 505 ino_size != 0) { 506 struct btrfs_map_token token; 507 508 btrfs_init_map_token(&token); 509 btrfs_set_token_inode_size(dst_eb, dst_item, 510 ino_size, &token); 511 } 512 goto no_copy; 513 } 514 515 if (overwrite_root && 516 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 518 save_old_i_size = 1; 519 saved_i_size = btrfs_inode_size(path->nodes[0], 520 dst_item); 521 } 522 } 523 524 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 525 src_ptr, item_size); 526 527 if (save_old_i_size) { 528 struct btrfs_inode_item *dst_item; 529 dst_item = (struct btrfs_inode_item *)dst_ptr; 530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 531 } 532 533 /* make sure the generation is filled in */ 534 if (key->type == BTRFS_INODE_ITEM_KEY) { 535 struct btrfs_inode_item *dst_item; 536 dst_item = (struct btrfs_inode_item *)dst_ptr; 537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 538 btrfs_set_inode_generation(path->nodes[0], dst_item, 539 trans->transid); 540 } 541 } 542 no_copy: 543 btrfs_mark_buffer_dirty(path->nodes[0]); 544 btrfs_release_path(path); 545 return 0; 546 } 547 548 /* 549 * simple helper to read an inode off the disk from a given root 550 * This can only be called for subvolume roots and not for the log 551 */ 552 static noinline struct inode *read_one_inode(struct btrfs_root *root, 553 u64 objectid) 554 { 555 struct btrfs_key key; 556 struct inode *inode; 557 558 key.objectid = objectid; 559 key.type = BTRFS_INODE_ITEM_KEY; 560 key.offset = 0; 561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 562 if (IS_ERR(inode)) { 563 inode = NULL; 564 } else if (is_bad_inode(inode)) { 565 iput(inode); 566 inode = NULL; 567 } 568 return inode; 569 } 570 571 /* replays a single extent in 'eb' at 'slot' with 'key' into the 572 * subvolume 'root'. path is released on entry and should be released 573 * on exit. 574 * 575 * extents in the log tree have not been allocated out of the extent 576 * tree yet. So, this completes the allocation, taking a reference 577 * as required if the extent already exists or creating a new extent 578 * if it isn't in the extent allocation tree yet. 579 * 580 * The extent is inserted into the file, dropping any existing extents 581 * from the file that overlap the new one. 582 */ 583 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 584 struct btrfs_root *root, 585 struct btrfs_path *path, 586 struct extent_buffer *eb, int slot, 587 struct btrfs_key *key) 588 { 589 struct btrfs_fs_info *fs_info = root->fs_info; 590 int found_type; 591 u64 extent_end; 592 u64 start = key->offset; 593 u64 nbytes = 0; 594 struct btrfs_file_extent_item *item; 595 struct inode *inode = NULL; 596 unsigned long size; 597 int ret = 0; 598 599 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 600 found_type = btrfs_file_extent_type(eb, item); 601 602 if (found_type == BTRFS_FILE_EXTENT_REG || 603 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 604 nbytes = btrfs_file_extent_num_bytes(eb, item); 605 extent_end = start + nbytes; 606 607 /* 608 * We don't add to the inodes nbytes if we are prealloc or a 609 * hole. 610 */ 611 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 612 nbytes = 0; 613 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 614 size = btrfs_file_extent_inline_len(eb, slot, item); 615 nbytes = btrfs_file_extent_ram_bytes(eb, item); 616 extent_end = ALIGN(start + size, 617 fs_info->sectorsize); 618 } else { 619 ret = 0; 620 goto out; 621 } 622 623 inode = read_one_inode(root, key->objectid); 624 if (!inode) { 625 ret = -EIO; 626 goto out; 627 } 628 629 /* 630 * first check to see if we already have this extent in the 631 * file. This must be done before the btrfs_drop_extents run 632 * so we don't try to drop this extent. 633 */ 634 ret = btrfs_lookup_file_extent(trans, root, path, 635 btrfs_ino(BTRFS_I(inode)), start, 0); 636 637 if (ret == 0 && 638 (found_type == BTRFS_FILE_EXTENT_REG || 639 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 640 struct btrfs_file_extent_item cmp1; 641 struct btrfs_file_extent_item cmp2; 642 struct btrfs_file_extent_item *existing; 643 struct extent_buffer *leaf; 644 645 leaf = path->nodes[0]; 646 existing = btrfs_item_ptr(leaf, path->slots[0], 647 struct btrfs_file_extent_item); 648 649 read_extent_buffer(eb, &cmp1, (unsigned long)item, 650 sizeof(cmp1)); 651 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 652 sizeof(cmp2)); 653 654 /* 655 * we already have a pointer to this exact extent, 656 * we don't have to do anything 657 */ 658 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 659 btrfs_release_path(path); 660 goto out; 661 } 662 } 663 btrfs_release_path(path); 664 665 /* drop any overlapping extents */ 666 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 667 if (ret) 668 goto out; 669 670 if (found_type == BTRFS_FILE_EXTENT_REG || 671 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 672 u64 offset; 673 unsigned long dest_offset; 674 struct btrfs_key ins; 675 676 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 677 btrfs_fs_incompat(fs_info, NO_HOLES)) 678 goto update_inode; 679 680 ret = btrfs_insert_empty_item(trans, root, path, key, 681 sizeof(*item)); 682 if (ret) 683 goto out; 684 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 685 path->slots[0]); 686 copy_extent_buffer(path->nodes[0], eb, dest_offset, 687 (unsigned long)item, sizeof(*item)); 688 689 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 690 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 691 ins.type = BTRFS_EXTENT_ITEM_KEY; 692 offset = key->offset - btrfs_file_extent_offset(eb, item); 693 694 /* 695 * Manually record dirty extent, as here we did a shallow 696 * file extent item copy and skip normal backref update, 697 * but modifying extent tree all by ourselves. 698 * So need to manually record dirty extent for qgroup, 699 * as the owner of the file extent changed from log tree 700 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 701 */ 702 ret = btrfs_qgroup_trace_extent(trans, fs_info, 703 btrfs_file_extent_disk_bytenr(eb, item), 704 btrfs_file_extent_disk_num_bytes(eb, item), 705 GFP_NOFS); 706 if (ret < 0) 707 goto out; 708 709 if (ins.objectid > 0) { 710 u64 csum_start; 711 u64 csum_end; 712 LIST_HEAD(ordered_sums); 713 /* 714 * is this extent already allocated in the extent 715 * allocation tree? If so, just add a reference 716 */ 717 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 718 ins.offset); 719 if (ret == 0) { 720 ret = btrfs_inc_extent_ref(trans, fs_info, 721 ins.objectid, ins.offset, 722 0, root->root_key.objectid, 723 key->objectid, offset); 724 if (ret) 725 goto out; 726 } else { 727 /* 728 * insert the extent pointer in the extent 729 * allocation tree 730 */ 731 ret = btrfs_alloc_logged_file_extent(trans, 732 fs_info, 733 root->root_key.objectid, 734 key->objectid, offset, &ins); 735 if (ret) 736 goto out; 737 } 738 btrfs_release_path(path); 739 740 if (btrfs_file_extent_compression(eb, item)) { 741 csum_start = ins.objectid; 742 csum_end = csum_start + ins.offset; 743 } else { 744 csum_start = ins.objectid + 745 btrfs_file_extent_offset(eb, item); 746 csum_end = csum_start + 747 btrfs_file_extent_num_bytes(eb, item); 748 } 749 750 ret = btrfs_lookup_csums_range(root->log_root, 751 csum_start, csum_end - 1, 752 &ordered_sums, 0); 753 if (ret) 754 goto out; 755 /* 756 * Now delete all existing cums in the csum root that 757 * cover our range. We do this because we can have an 758 * extent that is completely referenced by one file 759 * extent item and partially referenced by another 760 * file extent item (like after using the clone or 761 * extent_same ioctls). In this case if we end up doing 762 * the replay of the one that partially references the 763 * extent first, and we do not do the csum deletion 764 * below, we can get 2 csum items in the csum tree that 765 * overlap each other. For example, imagine our log has 766 * the two following file extent items: 767 * 768 * key (257 EXTENT_DATA 409600) 769 * extent data disk byte 12845056 nr 102400 770 * extent data offset 20480 nr 20480 ram 102400 771 * 772 * key (257 EXTENT_DATA 819200) 773 * extent data disk byte 12845056 nr 102400 774 * extent data offset 0 nr 102400 ram 102400 775 * 776 * Where the second one fully references the 100K extent 777 * that starts at disk byte 12845056, and the log tree 778 * has a single csum item that covers the entire range 779 * of the extent: 780 * 781 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 782 * 783 * After the first file extent item is replayed, the 784 * csum tree gets the following csum item: 785 * 786 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 787 * 788 * Which covers the 20K sub-range starting at offset 20K 789 * of our extent. Now when we replay the second file 790 * extent item, if we do not delete existing csum items 791 * that cover any of its blocks, we end up getting two 792 * csum items in our csum tree that overlap each other: 793 * 794 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 795 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 796 * 797 * Which is a problem, because after this anyone trying 798 * to lookup up for the checksum of any block of our 799 * extent starting at an offset of 40K or higher, will 800 * end up looking at the second csum item only, which 801 * does not contain the checksum for any block starting 802 * at offset 40K or higher of our extent. 803 */ 804 while (!list_empty(&ordered_sums)) { 805 struct btrfs_ordered_sum *sums; 806 sums = list_entry(ordered_sums.next, 807 struct btrfs_ordered_sum, 808 list); 809 if (!ret) 810 ret = btrfs_del_csums(trans, fs_info, 811 sums->bytenr, 812 sums->len); 813 if (!ret) 814 ret = btrfs_csum_file_blocks(trans, 815 fs_info->csum_root, sums); 816 list_del(&sums->list); 817 kfree(sums); 818 } 819 if (ret) 820 goto out; 821 } else { 822 btrfs_release_path(path); 823 } 824 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 825 /* inline extents are easy, we just overwrite them */ 826 ret = overwrite_item(trans, root, path, eb, slot, key); 827 if (ret) 828 goto out; 829 } 830 831 inode_add_bytes(inode, nbytes); 832 update_inode: 833 ret = btrfs_update_inode(trans, root, inode); 834 out: 835 if (inode) 836 iput(inode); 837 return ret; 838 } 839 840 /* 841 * when cleaning up conflicts between the directory names in the 842 * subvolume, directory names in the log and directory names in the 843 * inode back references, we may have to unlink inodes from directories. 844 * 845 * This is a helper function to do the unlink of a specific directory 846 * item 847 */ 848 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 849 struct btrfs_root *root, 850 struct btrfs_path *path, 851 struct btrfs_inode *dir, 852 struct btrfs_dir_item *di) 853 { 854 struct btrfs_fs_info *fs_info = root->fs_info; 855 struct inode *inode; 856 char *name; 857 int name_len; 858 struct extent_buffer *leaf; 859 struct btrfs_key location; 860 int ret; 861 862 leaf = path->nodes[0]; 863 864 btrfs_dir_item_key_to_cpu(leaf, di, &location); 865 name_len = btrfs_dir_name_len(leaf, di); 866 name = kmalloc(name_len, GFP_NOFS); 867 if (!name) 868 return -ENOMEM; 869 870 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 871 btrfs_release_path(path); 872 873 inode = read_one_inode(root, location.objectid); 874 if (!inode) { 875 ret = -EIO; 876 goto out; 877 } 878 879 ret = link_to_fixup_dir(trans, root, path, location.objectid); 880 if (ret) 881 goto out; 882 883 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, 884 name_len); 885 if (ret) 886 goto out; 887 else 888 ret = btrfs_run_delayed_items(trans, fs_info); 889 out: 890 kfree(name); 891 iput(inode); 892 return ret; 893 } 894 895 /* 896 * helper function to see if a given name and sequence number found 897 * in an inode back reference are already in a directory and correctly 898 * point to this inode 899 */ 900 static noinline int inode_in_dir(struct btrfs_root *root, 901 struct btrfs_path *path, 902 u64 dirid, u64 objectid, u64 index, 903 const char *name, int name_len) 904 { 905 struct btrfs_dir_item *di; 906 struct btrfs_key location; 907 int match = 0; 908 909 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 910 index, name, name_len, 0); 911 if (di && !IS_ERR(di)) { 912 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 913 if (location.objectid != objectid) 914 goto out; 915 } else 916 goto out; 917 btrfs_release_path(path); 918 919 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 920 if (di && !IS_ERR(di)) { 921 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 922 if (location.objectid != objectid) 923 goto out; 924 } else 925 goto out; 926 match = 1; 927 out: 928 btrfs_release_path(path); 929 return match; 930 } 931 932 /* 933 * helper function to check a log tree for a named back reference in 934 * an inode. This is used to decide if a back reference that is 935 * found in the subvolume conflicts with what we find in the log. 936 * 937 * inode backreferences may have multiple refs in a single item, 938 * during replay we process one reference at a time, and we don't 939 * want to delete valid links to a file from the subvolume if that 940 * link is also in the log. 941 */ 942 static noinline int backref_in_log(struct btrfs_root *log, 943 struct btrfs_key *key, 944 u64 ref_objectid, 945 const char *name, int namelen) 946 { 947 struct btrfs_path *path; 948 struct btrfs_inode_ref *ref; 949 unsigned long ptr; 950 unsigned long ptr_end; 951 unsigned long name_ptr; 952 int found_name_len; 953 int item_size; 954 int ret; 955 int match = 0; 956 957 path = btrfs_alloc_path(); 958 if (!path) 959 return -ENOMEM; 960 961 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 962 if (ret != 0) 963 goto out; 964 965 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 966 967 if (key->type == BTRFS_INODE_EXTREF_KEY) { 968 if (btrfs_find_name_in_ext_backref(path, ref_objectid, 969 name, namelen, NULL)) 970 match = 1; 971 972 goto out; 973 } 974 975 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 976 ptr_end = ptr + item_size; 977 while (ptr < ptr_end) { 978 ref = (struct btrfs_inode_ref *)ptr; 979 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 980 if (found_name_len == namelen) { 981 name_ptr = (unsigned long)(ref + 1); 982 ret = memcmp_extent_buffer(path->nodes[0], name, 983 name_ptr, namelen); 984 if (ret == 0) { 985 match = 1; 986 goto out; 987 } 988 } 989 ptr = (unsigned long)(ref + 1) + found_name_len; 990 } 991 out: 992 btrfs_free_path(path); 993 return match; 994 } 995 996 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 997 struct btrfs_root *root, 998 struct btrfs_path *path, 999 struct btrfs_root *log_root, 1000 struct btrfs_inode *dir, 1001 struct btrfs_inode *inode, 1002 u64 inode_objectid, u64 parent_objectid, 1003 u64 ref_index, char *name, int namelen, 1004 int *search_done) 1005 { 1006 struct btrfs_fs_info *fs_info = root->fs_info; 1007 int ret; 1008 char *victim_name; 1009 int victim_name_len; 1010 struct extent_buffer *leaf; 1011 struct btrfs_dir_item *di; 1012 struct btrfs_key search_key; 1013 struct btrfs_inode_extref *extref; 1014 1015 again: 1016 /* Search old style refs */ 1017 search_key.objectid = inode_objectid; 1018 search_key.type = BTRFS_INODE_REF_KEY; 1019 search_key.offset = parent_objectid; 1020 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1021 if (ret == 0) { 1022 struct btrfs_inode_ref *victim_ref; 1023 unsigned long ptr; 1024 unsigned long ptr_end; 1025 1026 leaf = path->nodes[0]; 1027 1028 /* are we trying to overwrite a back ref for the root directory 1029 * if so, just jump out, we're done 1030 */ 1031 if (search_key.objectid == search_key.offset) 1032 return 1; 1033 1034 /* check all the names in this back reference to see 1035 * if they are in the log. if so, we allow them to stay 1036 * otherwise they must be unlinked as a conflict 1037 */ 1038 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1039 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1040 while (ptr < ptr_end) { 1041 victim_ref = (struct btrfs_inode_ref *)ptr; 1042 victim_name_len = btrfs_inode_ref_name_len(leaf, 1043 victim_ref); 1044 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1045 if (!victim_name) 1046 return -ENOMEM; 1047 1048 read_extent_buffer(leaf, victim_name, 1049 (unsigned long)(victim_ref + 1), 1050 victim_name_len); 1051 1052 if (!backref_in_log(log_root, &search_key, 1053 parent_objectid, 1054 victim_name, 1055 victim_name_len)) { 1056 inc_nlink(&inode->vfs_inode); 1057 btrfs_release_path(path); 1058 1059 ret = btrfs_unlink_inode(trans, root, dir, inode, 1060 victim_name, victim_name_len); 1061 kfree(victim_name); 1062 if (ret) 1063 return ret; 1064 ret = btrfs_run_delayed_items(trans, fs_info); 1065 if (ret) 1066 return ret; 1067 *search_done = 1; 1068 goto again; 1069 } 1070 kfree(victim_name); 1071 1072 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1073 } 1074 1075 /* 1076 * NOTE: we have searched root tree and checked the 1077 * corresponding ref, it does not need to check again. 1078 */ 1079 *search_done = 1; 1080 } 1081 btrfs_release_path(path); 1082 1083 /* Same search but for extended refs */ 1084 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1085 inode_objectid, parent_objectid, 0, 1086 0); 1087 if (!IS_ERR_OR_NULL(extref)) { 1088 u32 item_size; 1089 u32 cur_offset = 0; 1090 unsigned long base; 1091 struct inode *victim_parent; 1092 1093 leaf = path->nodes[0]; 1094 1095 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1096 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1097 1098 while (cur_offset < item_size) { 1099 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1100 1101 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1102 1103 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1104 goto next; 1105 1106 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1107 if (!victim_name) 1108 return -ENOMEM; 1109 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1110 victim_name_len); 1111 1112 search_key.objectid = inode_objectid; 1113 search_key.type = BTRFS_INODE_EXTREF_KEY; 1114 search_key.offset = btrfs_extref_hash(parent_objectid, 1115 victim_name, 1116 victim_name_len); 1117 ret = 0; 1118 if (!backref_in_log(log_root, &search_key, 1119 parent_objectid, victim_name, 1120 victim_name_len)) { 1121 ret = -ENOENT; 1122 victim_parent = read_one_inode(root, 1123 parent_objectid); 1124 if (victim_parent) { 1125 inc_nlink(&inode->vfs_inode); 1126 btrfs_release_path(path); 1127 1128 ret = btrfs_unlink_inode(trans, root, 1129 BTRFS_I(victim_parent), 1130 inode, 1131 victim_name, 1132 victim_name_len); 1133 if (!ret) 1134 ret = btrfs_run_delayed_items( 1135 trans, 1136 fs_info); 1137 } 1138 iput(victim_parent); 1139 kfree(victim_name); 1140 if (ret) 1141 return ret; 1142 *search_done = 1; 1143 goto again; 1144 } 1145 kfree(victim_name); 1146 if (ret) 1147 return ret; 1148 next: 1149 cur_offset += victim_name_len + sizeof(*extref); 1150 } 1151 *search_done = 1; 1152 } 1153 btrfs_release_path(path); 1154 1155 /* look for a conflicting sequence number */ 1156 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1157 ref_index, name, namelen, 0); 1158 if (di && !IS_ERR(di)) { 1159 ret = drop_one_dir_item(trans, root, path, dir, di); 1160 if (ret) 1161 return ret; 1162 } 1163 btrfs_release_path(path); 1164 1165 /* look for a conflicing name */ 1166 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1167 name, namelen, 0); 1168 if (di && !IS_ERR(di)) { 1169 ret = drop_one_dir_item(trans, root, path, dir, di); 1170 if (ret) 1171 return ret; 1172 } 1173 btrfs_release_path(path); 1174 1175 return 0; 1176 } 1177 1178 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1179 u32 *namelen, char **name, u64 *index, 1180 u64 *parent_objectid) 1181 { 1182 struct btrfs_inode_extref *extref; 1183 1184 extref = (struct btrfs_inode_extref *)ref_ptr; 1185 1186 *namelen = btrfs_inode_extref_name_len(eb, extref); 1187 *name = kmalloc(*namelen, GFP_NOFS); 1188 if (*name == NULL) 1189 return -ENOMEM; 1190 1191 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1192 *namelen); 1193 1194 *index = btrfs_inode_extref_index(eb, extref); 1195 if (parent_objectid) 1196 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1197 1198 return 0; 1199 } 1200 1201 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1202 u32 *namelen, char **name, u64 *index) 1203 { 1204 struct btrfs_inode_ref *ref; 1205 1206 ref = (struct btrfs_inode_ref *)ref_ptr; 1207 1208 *namelen = btrfs_inode_ref_name_len(eb, ref); 1209 *name = kmalloc(*namelen, GFP_NOFS); 1210 if (*name == NULL) 1211 return -ENOMEM; 1212 1213 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1214 1215 *index = btrfs_inode_ref_index(eb, ref); 1216 1217 return 0; 1218 } 1219 1220 /* 1221 * replay one inode back reference item found in the log tree. 1222 * eb, slot and key refer to the buffer and key found in the log tree. 1223 * root is the destination we are replaying into, and path is for temp 1224 * use by this function. (it should be released on return). 1225 */ 1226 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1227 struct btrfs_root *root, 1228 struct btrfs_root *log, 1229 struct btrfs_path *path, 1230 struct extent_buffer *eb, int slot, 1231 struct btrfs_key *key) 1232 { 1233 struct inode *dir = NULL; 1234 struct inode *inode = NULL; 1235 unsigned long ref_ptr; 1236 unsigned long ref_end; 1237 char *name = NULL; 1238 int namelen; 1239 int ret; 1240 int search_done = 0; 1241 int log_ref_ver = 0; 1242 u64 parent_objectid; 1243 u64 inode_objectid; 1244 u64 ref_index = 0; 1245 int ref_struct_size; 1246 1247 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1248 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1249 1250 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1251 struct btrfs_inode_extref *r; 1252 1253 ref_struct_size = sizeof(struct btrfs_inode_extref); 1254 log_ref_ver = 1; 1255 r = (struct btrfs_inode_extref *)ref_ptr; 1256 parent_objectid = btrfs_inode_extref_parent(eb, r); 1257 } else { 1258 ref_struct_size = sizeof(struct btrfs_inode_ref); 1259 parent_objectid = key->offset; 1260 } 1261 inode_objectid = key->objectid; 1262 1263 /* 1264 * it is possible that we didn't log all the parent directories 1265 * for a given inode. If we don't find the dir, just don't 1266 * copy the back ref in. The link count fixup code will take 1267 * care of the rest 1268 */ 1269 dir = read_one_inode(root, parent_objectid); 1270 if (!dir) { 1271 ret = -ENOENT; 1272 goto out; 1273 } 1274 1275 inode = read_one_inode(root, inode_objectid); 1276 if (!inode) { 1277 ret = -EIO; 1278 goto out; 1279 } 1280 1281 while (ref_ptr < ref_end) { 1282 if (log_ref_ver) { 1283 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1284 &ref_index, &parent_objectid); 1285 /* 1286 * parent object can change from one array 1287 * item to another. 1288 */ 1289 if (!dir) 1290 dir = read_one_inode(root, parent_objectid); 1291 if (!dir) { 1292 ret = -ENOENT; 1293 goto out; 1294 } 1295 } else { 1296 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1297 &ref_index); 1298 } 1299 if (ret) 1300 goto out; 1301 1302 /* if we already have a perfect match, we're done */ 1303 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1304 btrfs_ino(BTRFS_I(inode)), ref_index, 1305 name, namelen)) { 1306 /* 1307 * look for a conflicting back reference in the 1308 * metadata. if we find one we have to unlink that name 1309 * of the file before we add our new link. Later on, we 1310 * overwrite any existing back reference, and we don't 1311 * want to create dangling pointers in the directory. 1312 */ 1313 1314 if (!search_done) { 1315 ret = __add_inode_ref(trans, root, path, log, 1316 BTRFS_I(dir), 1317 BTRFS_I(inode), 1318 inode_objectid, 1319 parent_objectid, 1320 ref_index, name, namelen, 1321 &search_done); 1322 if (ret) { 1323 if (ret == 1) 1324 ret = 0; 1325 goto out; 1326 } 1327 } 1328 1329 /* insert our name */ 1330 ret = btrfs_add_link(trans, BTRFS_I(dir), 1331 BTRFS_I(inode), 1332 name, namelen, 0, ref_index); 1333 if (ret) 1334 goto out; 1335 1336 btrfs_update_inode(trans, root, inode); 1337 } 1338 1339 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1340 kfree(name); 1341 name = NULL; 1342 if (log_ref_ver) { 1343 iput(dir); 1344 dir = NULL; 1345 } 1346 } 1347 1348 /* finally write the back reference in the inode */ 1349 ret = overwrite_item(trans, root, path, eb, slot, key); 1350 out: 1351 btrfs_release_path(path); 1352 kfree(name); 1353 iput(dir); 1354 iput(inode); 1355 return ret; 1356 } 1357 1358 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1359 struct btrfs_root *root, u64 ino) 1360 { 1361 int ret; 1362 1363 ret = btrfs_insert_orphan_item(trans, root, ino); 1364 if (ret == -EEXIST) 1365 ret = 0; 1366 1367 return ret; 1368 } 1369 1370 static int count_inode_extrefs(struct btrfs_root *root, 1371 struct btrfs_inode *inode, struct btrfs_path *path) 1372 { 1373 int ret = 0; 1374 int name_len; 1375 unsigned int nlink = 0; 1376 u32 item_size; 1377 u32 cur_offset = 0; 1378 u64 inode_objectid = btrfs_ino(inode); 1379 u64 offset = 0; 1380 unsigned long ptr; 1381 struct btrfs_inode_extref *extref; 1382 struct extent_buffer *leaf; 1383 1384 while (1) { 1385 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1386 &extref, &offset); 1387 if (ret) 1388 break; 1389 1390 leaf = path->nodes[0]; 1391 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1392 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1393 cur_offset = 0; 1394 1395 while (cur_offset < item_size) { 1396 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1397 name_len = btrfs_inode_extref_name_len(leaf, extref); 1398 1399 nlink++; 1400 1401 cur_offset += name_len + sizeof(*extref); 1402 } 1403 1404 offset++; 1405 btrfs_release_path(path); 1406 } 1407 btrfs_release_path(path); 1408 1409 if (ret < 0 && ret != -ENOENT) 1410 return ret; 1411 return nlink; 1412 } 1413 1414 static int count_inode_refs(struct btrfs_root *root, 1415 struct btrfs_inode *inode, struct btrfs_path *path) 1416 { 1417 int ret; 1418 struct btrfs_key key; 1419 unsigned int nlink = 0; 1420 unsigned long ptr; 1421 unsigned long ptr_end; 1422 int name_len; 1423 u64 ino = btrfs_ino(inode); 1424 1425 key.objectid = ino; 1426 key.type = BTRFS_INODE_REF_KEY; 1427 key.offset = (u64)-1; 1428 1429 while (1) { 1430 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1431 if (ret < 0) 1432 break; 1433 if (ret > 0) { 1434 if (path->slots[0] == 0) 1435 break; 1436 path->slots[0]--; 1437 } 1438 process_slot: 1439 btrfs_item_key_to_cpu(path->nodes[0], &key, 1440 path->slots[0]); 1441 if (key.objectid != ino || 1442 key.type != BTRFS_INODE_REF_KEY) 1443 break; 1444 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1445 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1446 path->slots[0]); 1447 while (ptr < ptr_end) { 1448 struct btrfs_inode_ref *ref; 1449 1450 ref = (struct btrfs_inode_ref *)ptr; 1451 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1452 ref); 1453 ptr = (unsigned long)(ref + 1) + name_len; 1454 nlink++; 1455 } 1456 1457 if (key.offset == 0) 1458 break; 1459 if (path->slots[0] > 0) { 1460 path->slots[0]--; 1461 goto process_slot; 1462 } 1463 key.offset--; 1464 btrfs_release_path(path); 1465 } 1466 btrfs_release_path(path); 1467 1468 return nlink; 1469 } 1470 1471 /* 1472 * There are a few corners where the link count of the file can't 1473 * be properly maintained during replay. So, instead of adding 1474 * lots of complexity to the log code, we just scan the backrefs 1475 * for any file that has been through replay. 1476 * 1477 * The scan will update the link count on the inode to reflect the 1478 * number of back refs found. If it goes down to zero, the iput 1479 * will free the inode. 1480 */ 1481 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1482 struct btrfs_root *root, 1483 struct inode *inode) 1484 { 1485 struct btrfs_path *path; 1486 int ret; 1487 u64 nlink = 0; 1488 u64 ino = btrfs_ino(BTRFS_I(inode)); 1489 1490 path = btrfs_alloc_path(); 1491 if (!path) 1492 return -ENOMEM; 1493 1494 ret = count_inode_refs(root, BTRFS_I(inode), path); 1495 if (ret < 0) 1496 goto out; 1497 1498 nlink = ret; 1499 1500 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1501 if (ret < 0) 1502 goto out; 1503 1504 nlink += ret; 1505 1506 ret = 0; 1507 1508 if (nlink != inode->i_nlink) { 1509 set_nlink(inode, nlink); 1510 btrfs_update_inode(trans, root, inode); 1511 } 1512 BTRFS_I(inode)->index_cnt = (u64)-1; 1513 1514 if (inode->i_nlink == 0) { 1515 if (S_ISDIR(inode->i_mode)) { 1516 ret = replay_dir_deletes(trans, root, NULL, path, 1517 ino, 1); 1518 if (ret) 1519 goto out; 1520 } 1521 ret = insert_orphan_item(trans, root, ino); 1522 } 1523 1524 out: 1525 btrfs_free_path(path); 1526 return ret; 1527 } 1528 1529 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1530 struct btrfs_root *root, 1531 struct btrfs_path *path) 1532 { 1533 int ret; 1534 struct btrfs_key key; 1535 struct inode *inode; 1536 1537 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1538 key.type = BTRFS_ORPHAN_ITEM_KEY; 1539 key.offset = (u64)-1; 1540 while (1) { 1541 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1542 if (ret < 0) 1543 break; 1544 1545 if (ret == 1) { 1546 if (path->slots[0] == 0) 1547 break; 1548 path->slots[0]--; 1549 } 1550 1551 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1552 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1553 key.type != BTRFS_ORPHAN_ITEM_KEY) 1554 break; 1555 1556 ret = btrfs_del_item(trans, root, path); 1557 if (ret) 1558 goto out; 1559 1560 btrfs_release_path(path); 1561 inode = read_one_inode(root, key.offset); 1562 if (!inode) 1563 return -EIO; 1564 1565 ret = fixup_inode_link_count(trans, root, inode); 1566 iput(inode); 1567 if (ret) 1568 goto out; 1569 1570 /* 1571 * fixup on a directory may create new entries, 1572 * make sure we always look for the highset possible 1573 * offset 1574 */ 1575 key.offset = (u64)-1; 1576 } 1577 ret = 0; 1578 out: 1579 btrfs_release_path(path); 1580 return ret; 1581 } 1582 1583 1584 /* 1585 * record a given inode in the fixup dir so we can check its link 1586 * count when replay is done. The link count is incremented here 1587 * so the inode won't go away until we check it 1588 */ 1589 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1590 struct btrfs_root *root, 1591 struct btrfs_path *path, 1592 u64 objectid) 1593 { 1594 struct btrfs_key key; 1595 int ret = 0; 1596 struct inode *inode; 1597 1598 inode = read_one_inode(root, objectid); 1599 if (!inode) 1600 return -EIO; 1601 1602 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1603 key.type = BTRFS_ORPHAN_ITEM_KEY; 1604 key.offset = objectid; 1605 1606 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1607 1608 btrfs_release_path(path); 1609 if (ret == 0) { 1610 if (!inode->i_nlink) 1611 set_nlink(inode, 1); 1612 else 1613 inc_nlink(inode); 1614 ret = btrfs_update_inode(trans, root, inode); 1615 } else if (ret == -EEXIST) { 1616 ret = 0; 1617 } else { 1618 BUG(); /* Logic Error */ 1619 } 1620 iput(inode); 1621 1622 return ret; 1623 } 1624 1625 /* 1626 * when replaying the log for a directory, we only insert names 1627 * for inodes that actually exist. This means an fsync on a directory 1628 * does not implicitly fsync all the new files in it 1629 */ 1630 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1631 struct btrfs_root *root, 1632 u64 dirid, u64 index, 1633 char *name, int name_len, 1634 struct btrfs_key *location) 1635 { 1636 struct inode *inode; 1637 struct inode *dir; 1638 int ret; 1639 1640 inode = read_one_inode(root, location->objectid); 1641 if (!inode) 1642 return -ENOENT; 1643 1644 dir = read_one_inode(root, dirid); 1645 if (!dir) { 1646 iput(inode); 1647 return -EIO; 1648 } 1649 1650 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1651 name_len, 1, index); 1652 1653 /* FIXME, put inode into FIXUP list */ 1654 1655 iput(inode); 1656 iput(dir); 1657 return ret; 1658 } 1659 1660 /* 1661 * Return true if an inode reference exists in the log for the given name, 1662 * inode and parent inode. 1663 */ 1664 static bool name_in_log_ref(struct btrfs_root *log_root, 1665 const char *name, const int name_len, 1666 const u64 dirid, const u64 ino) 1667 { 1668 struct btrfs_key search_key; 1669 1670 search_key.objectid = ino; 1671 search_key.type = BTRFS_INODE_REF_KEY; 1672 search_key.offset = dirid; 1673 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1674 return true; 1675 1676 search_key.type = BTRFS_INODE_EXTREF_KEY; 1677 search_key.offset = btrfs_extref_hash(dirid, name, name_len); 1678 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1679 return true; 1680 1681 return false; 1682 } 1683 1684 /* 1685 * take a single entry in a log directory item and replay it into 1686 * the subvolume. 1687 * 1688 * if a conflicting item exists in the subdirectory already, 1689 * the inode it points to is unlinked and put into the link count 1690 * fix up tree. 1691 * 1692 * If a name from the log points to a file or directory that does 1693 * not exist in the FS, it is skipped. fsyncs on directories 1694 * do not force down inodes inside that directory, just changes to the 1695 * names or unlinks in a directory. 1696 * 1697 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1698 * non-existing inode) and 1 if the name was replayed. 1699 */ 1700 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1701 struct btrfs_root *root, 1702 struct btrfs_path *path, 1703 struct extent_buffer *eb, 1704 struct btrfs_dir_item *di, 1705 struct btrfs_key *key) 1706 { 1707 char *name; 1708 int name_len; 1709 struct btrfs_dir_item *dst_di; 1710 struct btrfs_key found_key; 1711 struct btrfs_key log_key; 1712 struct inode *dir; 1713 u8 log_type; 1714 int exists; 1715 int ret = 0; 1716 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1717 bool name_added = false; 1718 1719 dir = read_one_inode(root, key->objectid); 1720 if (!dir) 1721 return -EIO; 1722 1723 name_len = btrfs_dir_name_len(eb, di); 1724 name = kmalloc(name_len, GFP_NOFS); 1725 if (!name) { 1726 ret = -ENOMEM; 1727 goto out; 1728 } 1729 1730 log_type = btrfs_dir_type(eb, di); 1731 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1732 name_len); 1733 1734 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1735 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1736 if (exists == 0) 1737 exists = 1; 1738 else 1739 exists = 0; 1740 btrfs_release_path(path); 1741 1742 if (key->type == BTRFS_DIR_ITEM_KEY) { 1743 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1744 name, name_len, 1); 1745 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1746 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1747 key->objectid, 1748 key->offset, name, 1749 name_len, 1); 1750 } else { 1751 /* Corruption */ 1752 ret = -EINVAL; 1753 goto out; 1754 } 1755 if (IS_ERR_OR_NULL(dst_di)) { 1756 /* we need a sequence number to insert, so we only 1757 * do inserts for the BTRFS_DIR_INDEX_KEY types 1758 */ 1759 if (key->type != BTRFS_DIR_INDEX_KEY) 1760 goto out; 1761 goto insert; 1762 } 1763 1764 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1765 /* the existing item matches the logged item */ 1766 if (found_key.objectid == log_key.objectid && 1767 found_key.type == log_key.type && 1768 found_key.offset == log_key.offset && 1769 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1770 update_size = false; 1771 goto out; 1772 } 1773 1774 /* 1775 * don't drop the conflicting directory entry if the inode 1776 * for the new entry doesn't exist 1777 */ 1778 if (!exists) 1779 goto out; 1780 1781 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); 1782 if (ret) 1783 goto out; 1784 1785 if (key->type == BTRFS_DIR_INDEX_KEY) 1786 goto insert; 1787 out: 1788 btrfs_release_path(path); 1789 if (!ret && update_size) { 1790 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 1791 ret = btrfs_update_inode(trans, root, dir); 1792 } 1793 kfree(name); 1794 iput(dir); 1795 if (!ret && name_added) 1796 ret = 1; 1797 return ret; 1798 1799 insert: 1800 if (name_in_log_ref(root->log_root, name, name_len, 1801 key->objectid, log_key.objectid)) { 1802 /* The dentry will be added later. */ 1803 ret = 0; 1804 update_size = false; 1805 goto out; 1806 } 1807 btrfs_release_path(path); 1808 ret = insert_one_name(trans, root, key->objectid, key->offset, 1809 name, name_len, &log_key); 1810 if (ret && ret != -ENOENT && ret != -EEXIST) 1811 goto out; 1812 if (!ret) 1813 name_added = true; 1814 update_size = false; 1815 ret = 0; 1816 goto out; 1817 } 1818 1819 /* 1820 * find all the names in a directory item and reconcile them into 1821 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 1822 * one name in a directory item, but the same code gets used for 1823 * both directory index types 1824 */ 1825 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1826 struct btrfs_root *root, 1827 struct btrfs_path *path, 1828 struct extent_buffer *eb, int slot, 1829 struct btrfs_key *key) 1830 { 1831 struct btrfs_fs_info *fs_info = root->fs_info; 1832 int ret = 0; 1833 u32 item_size = btrfs_item_size_nr(eb, slot); 1834 struct btrfs_dir_item *di; 1835 int name_len; 1836 unsigned long ptr; 1837 unsigned long ptr_end; 1838 struct btrfs_path *fixup_path = NULL; 1839 1840 ptr = btrfs_item_ptr_offset(eb, slot); 1841 ptr_end = ptr + item_size; 1842 while (ptr < ptr_end) { 1843 di = (struct btrfs_dir_item *)ptr; 1844 if (verify_dir_item(fs_info, eb, di)) 1845 return -EIO; 1846 name_len = btrfs_dir_name_len(eb, di); 1847 ret = replay_one_name(trans, root, path, eb, di, key); 1848 if (ret < 0) 1849 break; 1850 ptr = (unsigned long)(di + 1); 1851 ptr += name_len; 1852 1853 /* 1854 * If this entry refers to a non-directory (directories can not 1855 * have a link count > 1) and it was added in the transaction 1856 * that was not committed, make sure we fixup the link count of 1857 * the inode it the entry points to. Otherwise something like 1858 * the following would result in a directory pointing to an 1859 * inode with a wrong link that does not account for this dir 1860 * entry: 1861 * 1862 * mkdir testdir 1863 * touch testdir/foo 1864 * touch testdir/bar 1865 * sync 1866 * 1867 * ln testdir/bar testdir/bar_link 1868 * ln testdir/foo testdir/foo_link 1869 * xfs_io -c "fsync" testdir/bar 1870 * 1871 * <power failure> 1872 * 1873 * mount fs, log replay happens 1874 * 1875 * File foo would remain with a link count of 1 when it has two 1876 * entries pointing to it in the directory testdir. This would 1877 * make it impossible to ever delete the parent directory has 1878 * it would result in stale dentries that can never be deleted. 1879 */ 1880 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 1881 struct btrfs_key di_key; 1882 1883 if (!fixup_path) { 1884 fixup_path = btrfs_alloc_path(); 1885 if (!fixup_path) { 1886 ret = -ENOMEM; 1887 break; 1888 } 1889 } 1890 1891 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1892 ret = link_to_fixup_dir(trans, root, fixup_path, 1893 di_key.objectid); 1894 if (ret) 1895 break; 1896 } 1897 ret = 0; 1898 } 1899 btrfs_free_path(fixup_path); 1900 return ret; 1901 } 1902 1903 /* 1904 * directory replay has two parts. There are the standard directory 1905 * items in the log copied from the subvolume, and range items 1906 * created in the log while the subvolume was logged. 1907 * 1908 * The range items tell us which parts of the key space the log 1909 * is authoritative for. During replay, if a key in the subvolume 1910 * directory is in a logged range item, but not actually in the log 1911 * that means it was deleted from the directory before the fsync 1912 * and should be removed. 1913 */ 1914 static noinline int find_dir_range(struct btrfs_root *root, 1915 struct btrfs_path *path, 1916 u64 dirid, int key_type, 1917 u64 *start_ret, u64 *end_ret) 1918 { 1919 struct btrfs_key key; 1920 u64 found_end; 1921 struct btrfs_dir_log_item *item; 1922 int ret; 1923 int nritems; 1924 1925 if (*start_ret == (u64)-1) 1926 return 1; 1927 1928 key.objectid = dirid; 1929 key.type = key_type; 1930 key.offset = *start_ret; 1931 1932 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1933 if (ret < 0) 1934 goto out; 1935 if (ret > 0) { 1936 if (path->slots[0] == 0) 1937 goto out; 1938 path->slots[0]--; 1939 } 1940 if (ret != 0) 1941 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1942 1943 if (key.type != key_type || key.objectid != dirid) { 1944 ret = 1; 1945 goto next; 1946 } 1947 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1948 struct btrfs_dir_log_item); 1949 found_end = btrfs_dir_log_end(path->nodes[0], item); 1950 1951 if (*start_ret >= key.offset && *start_ret <= found_end) { 1952 ret = 0; 1953 *start_ret = key.offset; 1954 *end_ret = found_end; 1955 goto out; 1956 } 1957 ret = 1; 1958 next: 1959 /* check the next slot in the tree to see if it is a valid item */ 1960 nritems = btrfs_header_nritems(path->nodes[0]); 1961 path->slots[0]++; 1962 if (path->slots[0] >= nritems) { 1963 ret = btrfs_next_leaf(root, path); 1964 if (ret) 1965 goto out; 1966 } 1967 1968 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1969 1970 if (key.type != key_type || key.objectid != dirid) { 1971 ret = 1; 1972 goto out; 1973 } 1974 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1975 struct btrfs_dir_log_item); 1976 found_end = btrfs_dir_log_end(path->nodes[0], item); 1977 *start_ret = key.offset; 1978 *end_ret = found_end; 1979 ret = 0; 1980 out: 1981 btrfs_release_path(path); 1982 return ret; 1983 } 1984 1985 /* 1986 * this looks for a given directory item in the log. If the directory 1987 * item is not in the log, the item is removed and the inode it points 1988 * to is unlinked 1989 */ 1990 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 1991 struct btrfs_root *root, 1992 struct btrfs_root *log, 1993 struct btrfs_path *path, 1994 struct btrfs_path *log_path, 1995 struct inode *dir, 1996 struct btrfs_key *dir_key) 1997 { 1998 struct btrfs_fs_info *fs_info = root->fs_info; 1999 int ret; 2000 struct extent_buffer *eb; 2001 int slot; 2002 u32 item_size; 2003 struct btrfs_dir_item *di; 2004 struct btrfs_dir_item *log_di; 2005 int name_len; 2006 unsigned long ptr; 2007 unsigned long ptr_end; 2008 char *name; 2009 struct inode *inode; 2010 struct btrfs_key location; 2011 2012 again: 2013 eb = path->nodes[0]; 2014 slot = path->slots[0]; 2015 item_size = btrfs_item_size_nr(eb, slot); 2016 ptr = btrfs_item_ptr_offset(eb, slot); 2017 ptr_end = ptr + item_size; 2018 while (ptr < ptr_end) { 2019 di = (struct btrfs_dir_item *)ptr; 2020 if (verify_dir_item(fs_info, eb, di)) { 2021 ret = -EIO; 2022 goto out; 2023 } 2024 2025 name_len = btrfs_dir_name_len(eb, di); 2026 name = kmalloc(name_len, GFP_NOFS); 2027 if (!name) { 2028 ret = -ENOMEM; 2029 goto out; 2030 } 2031 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2032 name_len); 2033 log_di = NULL; 2034 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2035 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2036 dir_key->objectid, 2037 name, name_len, 0); 2038 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2039 log_di = btrfs_lookup_dir_index_item(trans, log, 2040 log_path, 2041 dir_key->objectid, 2042 dir_key->offset, 2043 name, name_len, 0); 2044 } 2045 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) { 2046 btrfs_dir_item_key_to_cpu(eb, di, &location); 2047 btrfs_release_path(path); 2048 btrfs_release_path(log_path); 2049 inode = read_one_inode(root, location.objectid); 2050 if (!inode) { 2051 kfree(name); 2052 return -EIO; 2053 } 2054 2055 ret = link_to_fixup_dir(trans, root, 2056 path, location.objectid); 2057 if (ret) { 2058 kfree(name); 2059 iput(inode); 2060 goto out; 2061 } 2062 2063 inc_nlink(inode); 2064 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 2065 BTRFS_I(inode), name, name_len); 2066 if (!ret) 2067 ret = btrfs_run_delayed_items(trans, fs_info); 2068 kfree(name); 2069 iput(inode); 2070 if (ret) 2071 goto out; 2072 2073 /* there might still be more names under this key 2074 * check and repeat if required 2075 */ 2076 ret = btrfs_search_slot(NULL, root, dir_key, path, 2077 0, 0); 2078 if (ret == 0) 2079 goto again; 2080 ret = 0; 2081 goto out; 2082 } else if (IS_ERR(log_di)) { 2083 kfree(name); 2084 return PTR_ERR(log_di); 2085 } 2086 btrfs_release_path(log_path); 2087 kfree(name); 2088 2089 ptr = (unsigned long)(di + 1); 2090 ptr += name_len; 2091 } 2092 ret = 0; 2093 out: 2094 btrfs_release_path(path); 2095 btrfs_release_path(log_path); 2096 return ret; 2097 } 2098 2099 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2100 struct btrfs_root *root, 2101 struct btrfs_root *log, 2102 struct btrfs_path *path, 2103 const u64 ino) 2104 { 2105 struct btrfs_key search_key; 2106 struct btrfs_path *log_path; 2107 int i; 2108 int nritems; 2109 int ret; 2110 2111 log_path = btrfs_alloc_path(); 2112 if (!log_path) 2113 return -ENOMEM; 2114 2115 search_key.objectid = ino; 2116 search_key.type = BTRFS_XATTR_ITEM_KEY; 2117 search_key.offset = 0; 2118 again: 2119 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2120 if (ret < 0) 2121 goto out; 2122 process_leaf: 2123 nritems = btrfs_header_nritems(path->nodes[0]); 2124 for (i = path->slots[0]; i < nritems; i++) { 2125 struct btrfs_key key; 2126 struct btrfs_dir_item *di; 2127 struct btrfs_dir_item *log_di; 2128 u32 total_size; 2129 u32 cur; 2130 2131 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2132 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2133 ret = 0; 2134 goto out; 2135 } 2136 2137 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2138 total_size = btrfs_item_size_nr(path->nodes[0], i); 2139 cur = 0; 2140 while (cur < total_size) { 2141 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2142 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2143 u32 this_len = sizeof(*di) + name_len + data_len; 2144 char *name; 2145 2146 name = kmalloc(name_len, GFP_NOFS); 2147 if (!name) { 2148 ret = -ENOMEM; 2149 goto out; 2150 } 2151 read_extent_buffer(path->nodes[0], name, 2152 (unsigned long)(di + 1), name_len); 2153 2154 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2155 name, name_len, 0); 2156 btrfs_release_path(log_path); 2157 if (!log_di) { 2158 /* Doesn't exist in log tree, so delete it. */ 2159 btrfs_release_path(path); 2160 di = btrfs_lookup_xattr(trans, root, path, ino, 2161 name, name_len, -1); 2162 kfree(name); 2163 if (IS_ERR(di)) { 2164 ret = PTR_ERR(di); 2165 goto out; 2166 } 2167 ASSERT(di); 2168 ret = btrfs_delete_one_dir_name(trans, root, 2169 path, di); 2170 if (ret) 2171 goto out; 2172 btrfs_release_path(path); 2173 search_key = key; 2174 goto again; 2175 } 2176 kfree(name); 2177 if (IS_ERR(log_di)) { 2178 ret = PTR_ERR(log_di); 2179 goto out; 2180 } 2181 cur += this_len; 2182 di = (struct btrfs_dir_item *)((char *)di + this_len); 2183 } 2184 } 2185 ret = btrfs_next_leaf(root, path); 2186 if (ret > 0) 2187 ret = 0; 2188 else if (ret == 0) 2189 goto process_leaf; 2190 out: 2191 btrfs_free_path(log_path); 2192 btrfs_release_path(path); 2193 return ret; 2194 } 2195 2196 2197 /* 2198 * deletion replay happens before we copy any new directory items 2199 * out of the log or out of backreferences from inodes. It 2200 * scans the log to find ranges of keys that log is authoritative for, 2201 * and then scans the directory to find items in those ranges that are 2202 * not present in the log. 2203 * 2204 * Anything we don't find in the log is unlinked and removed from the 2205 * directory. 2206 */ 2207 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2208 struct btrfs_root *root, 2209 struct btrfs_root *log, 2210 struct btrfs_path *path, 2211 u64 dirid, int del_all) 2212 { 2213 u64 range_start; 2214 u64 range_end; 2215 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2216 int ret = 0; 2217 struct btrfs_key dir_key; 2218 struct btrfs_key found_key; 2219 struct btrfs_path *log_path; 2220 struct inode *dir; 2221 2222 dir_key.objectid = dirid; 2223 dir_key.type = BTRFS_DIR_ITEM_KEY; 2224 log_path = btrfs_alloc_path(); 2225 if (!log_path) 2226 return -ENOMEM; 2227 2228 dir = read_one_inode(root, dirid); 2229 /* it isn't an error if the inode isn't there, that can happen 2230 * because we replay the deletes before we copy in the inode item 2231 * from the log 2232 */ 2233 if (!dir) { 2234 btrfs_free_path(log_path); 2235 return 0; 2236 } 2237 again: 2238 range_start = 0; 2239 range_end = 0; 2240 while (1) { 2241 if (del_all) 2242 range_end = (u64)-1; 2243 else { 2244 ret = find_dir_range(log, path, dirid, key_type, 2245 &range_start, &range_end); 2246 if (ret != 0) 2247 break; 2248 } 2249 2250 dir_key.offset = range_start; 2251 while (1) { 2252 int nritems; 2253 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2254 0, 0); 2255 if (ret < 0) 2256 goto out; 2257 2258 nritems = btrfs_header_nritems(path->nodes[0]); 2259 if (path->slots[0] >= nritems) { 2260 ret = btrfs_next_leaf(root, path); 2261 if (ret) 2262 break; 2263 } 2264 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2265 path->slots[0]); 2266 if (found_key.objectid != dirid || 2267 found_key.type != dir_key.type) 2268 goto next_type; 2269 2270 if (found_key.offset > range_end) 2271 break; 2272 2273 ret = check_item_in_log(trans, root, log, path, 2274 log_path, dir, 2275 &found_key); 2276 if (ret) 2277 goto out; 2278 if (found_key.offset == (u64)-1) 2279 break; 2280 dir_key.offset = found_key.offset + 1; 2281 } 2282 btrfs_release_path(path); 2283 if (range_end == (u64)-1) 2284 break; 2285 range_start = range_end + 1; 2286 } 2287 2288 next_type: 2289 ret = 0; 2290 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2291 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2292 dir_key.type = BTRFS_DIR_INDEX_KEY; 2293 btrfs_release_path(path); 2294 goto again; 2295 } 2296 out: 2297 btrfs_release_path(path); 2298 btrfs_free_path(log_path); 2299 iput(dir); 2300 return ret; 2301 } 2302 2303 /* 2304 * the process_func used to replay items from the log tree. This 2305 * gets called in two different stages. The first stage just looks 2306 * for inodes and makes sure they are all copied into the subvolume. 2307 * 2308 * The second stage copies all the other item types from the log into 2309 * the subvolume. The two stage approach is slower, but gets rid of 2310 * lots of complexity around inodes referencing other inodes that exist 2311 * only in the log (references come from either directory items or inode 2312 * back refs). 2313 */ 2314 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2315 struct walk_control *wc, u64 gen) 2316 { 2317 int nritems; 2318 struct btrfs_path *path; 2319 struct btrfs_root *root = wc->replay_dest; 2320 struct btrfs_key key; 2321 int level; 2322 int i; 2323 int ret; 2324 2325 ret = btrfs_read_buffer(eb, gen); 2326 if (ret) 2327 return ret; 2328 2329 level = btrfs_header_level(eb); 2330 2331 if (level != 0) 2332 return 0; 2333 2334 path = btrfs_alloc_path(); 2335 if (!path) 2336 return -ENOMEM; 2337 2338 nritems = btrfs_header_nritems(eb); 2339 for (i = 0; i < nritems; i++) { 2340 btrfs_item_key_to_cpu(eb, &key, i); 2341 2342 /* inode keys are done during the first stage */ 2343 if (key.type == BTRFS_INODE_ITEM_KEY && 2344 wc->stage == LOG_WALK_REPLAY_INODES) { 2345 struct btrfs_inode_item *inode_item; 2346 u32 mode; 2347 2348 inode_item = btrfs_item_ptr(eb, i, 2349 struct btrfs_inode_item); 2350 ret = replay_xattr_deletes(wc->trans, root, log, 2351 path, key.objectid); 2352 if (ret) 2353 break; 2354 mode = btrfs_inode_mode(eb, inode_item); 2355 if (S_ISDIR(mode)) { 2356 ret = replay_dir_deletes(wc->trans, 2357 root, log, path, key.objectid, 0); 2358 if (ret) 2359 break; 2360 } 2361 ret = overwrite_item(wc->trans, root, path, 2362 eb, i, &key); 2363 if (ret) 2364 break; 2365 2366 /* for regular files, make sure corresponding 2367 * orphan item exist. extents past the new EOF 2368 * will be truncated later by orphan cleanup. 2369 */ 2370 if (S_ISREG(mode)) { 2371 ret = insert_orphan_item(wc->trans, root, 2372 key.objectid); 2373 if (ret) 2374 break; 2375 } 2376 2377 ret = link_to_fixup_dir(wc->trans, root, 2378 path, key.objectid); 2379 if (ret) 2380 break; 2381 } 2382 2383 if (key.type == BTRFS_DIR_INDEX_KEY && 2384 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2385 ret = replay_one_dir_item(wc->trans, root, path, 2386 eb, i, &key); 2387 if (ret) 2388 break; 2389 } 2390 2391 if (wc->stage < LOG_WALK_REPLAY_ALL) 2392 continue; 2393 2394 /* these keys are simply copied */ 2395 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2396 ret = overwrite_item(wc->trans, root, path, 2397 eb, i, &key); 2398 if (ret) 2399 break; 2400 } else if (key.type == BTRFS_INODE_REF_KEY || 2401 key.type == BTRFS_INODE_EXTREF_KEY) { 2402 ret = add_inode_ref(wc->trans, root, log, path, 2403 eb, i, &key); 2404 if (ret && ret != -ENOENT) 2405 break; 2406 ret = 0; 2407 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2408 ret = replay_one_extent(wc->trans, root, path, 2409 eb, i, &key); 2410 if (ret) 2411 break; 2412 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2413 ret = replay_one_dir_item(wc->trans, root, path, 2414 eb, i, &key); 2415 if (ret) 2416 break; 2417 } 2418 } 2419 btrfs_free_path(path); 2420 return ret; 2421 } 2422 2423 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2424 struct btrfs_root *root, 2425 struct btrfs_path *path, int *level, 2426 struct walk_control *wc) 2427 { 2428 struct btrfs_fs_info *fs_info = root->fs_info; 2429 u64 root_owner; 2430 u64 bytenr; 2431 u64 ptr_gen; 2432 struct extent_buffer *next; 2433 struct extent_buffer *cur; 2434 struct extent_buffer *parent; 2435 u32 blocksize; 2436 int ret = 0; 2437 2438 WARN_ON(*level < 0); 2439 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2440 2441 while (*level > 0) { 2442 WARN_ON(*level < 0); 2443 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2444 cur = path->nodes[*level]; 2445 2446 WARN_ON(btrfs_header_level(cur) != *level); 2447 2448 if (path->slots[*level] >= 2449 btrfs_header_nritems(cur)) 2450 break; 2451 2452 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2453 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2454 blocksize = fs_info->nodesize; 2455 2456 parent = path->nodes[*level]; 2457 root_owner = btrfs_header_owner(parent); 2458 2459 next = btrfs_find_create_tree_block(fs_info, bytenr); 2460 if (IS_ERR(next)) 2461 return PTR_ERR(next); 2462 2463 if (*level == 1) { 2464 ret = wc->process_func(root, next, wc, ptr_gen); 2465 if (ret) { 2466 free_extent_buffer(next); 2467 return ret; 2468 } 2469 2470 path->slots[*level]++; 2471 if (wc->free) { 2472 ret = btrfs_read_buffer(next, ptr_gen); 2473 if (ret) { 2474 free_extent_buffer(next); 2475 return ret; 2476 } 2477 2478 if (trans) { 2479 btrfs_tree_lock(next); 2480 btrfs_set_lock_blocking(next); 2481 clean_tree_block(fs_info, next); 2482 btrfs_wait_tree_block_writeback(next); 2483 btrfs_tree_unlock(next); 2484 } 2485 2486 WARN_ON(root_owner != 2487 BTRFS_TREE_LOG_OBJECTID); 2488 ret = btrfs_free_and_pin_reserved_extent( 2489 fs_info, bytenr, 2490 blocksize); 2491 if (ret) { 2492 free_extent_buffer(next); 2493 return ret; 2494 } 2495 } 2496 free_extent_buffer(next); 2497 continue; 2498 } 2499 ret = btrfs_read_buffer(next, ptr_gen); 2500 if (ret) { 2501 free_extent_buffer(next); 2502 return ret; 2503 } 2504 2505 WARN_ON(*level <= 0); 2506 if (path->nodes[*level-1]) 2507 free_extent_buffer(path->nodes[*level-1]); 2508 path->nodes[*level-1] = next; 2509 *level = btrfs_header_level(next); 2510 path->slots[*level] = 0; 2511 cond_resched(); 2512 } 2513 WARN_ON(*level < 0); 2514 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2515 2516 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2517 2518 cond_resched(); 2519 return 0; 2520 } 2521 2522 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2523 struct btrfs_root *root, 2524 struct btrfs_path *path, int *level, 2525 struct walk_control *wc) 2526 { 2527 struct btrfs_fs_info *fs_info = root->fs_info; 2528 u64 root_owner; 2529 int i; 2530 int slot; 2531 int ret; 2532 2533 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2534 slot = path->slots[i]; 2535 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2536 path->slots[i]++; 2537 *level = i; 2538 WARN_ON(*level == 0); 2539 return 0; 2540 } else { 2541 struct extent_buffer *parent; 2542 if (path->nodes[*level] == root->node) 2543 parent = path->nodes[*level]; 2544 else 2545 parent = path->nodes[*level + 1]; 2546 2547 root_owner = btrfs_header_owner(parent); 2548 ret = wc->process_func(root, path->nodes[*level], wc, 2549 btrfs_header_generation(path->nodes[*level])); 2550 if (ret) 2551 return ret; 2552 2553 if (wc->free) { 2554 struct extent_buffer *next; 2555 2556 next = path->nodes[*level]; 2557 2558 if (trans) { 2559 btrfs_tree_lock(next); 2560 btrfs_set_lock_blocking(next); 2561 clean_tree_block(fs_info, next); 2562 btrfs_wait_tree_block_writeback(next); 2563 btrfs_tree_unlock(next); 2564 } 2565 2566 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 2567 ret = btrfs_free_and_pin_reserved_extent( 2568 fs_info, 2569 path->nodes[*level]->start, 2570 path->nodes[*level]->len); 2571 if (ret) 2572 return ret; 2573 } 2574 free_extent_buffer(path->nodes[*level]); 2575 path->nodes[*level] = NULL; 2576 *level = i + 1; 2577 } 2578 } 2579 return 1; 2580 } 2581 2582 /* 2583 * drop the reference count on the tree rooted at 'snap'. This traverses 2584 * the tree freeing any blocks that have a ref count of zero after being 2585 * decremented. 2586 */ 2587 static int walk_log_tree(struct btrfs_trans_handle *trans, 2588 struct btrfs_root *log, struct walk_control *wc) 2589 { 2590 struct btrfs_fs_info *fs_info = log->fs_info; 2591 int ret = 0; 2592 int wret; 2593 int level; 2594 struct btrfs_path *path; 2595 int orig_level; 2596 2597 path = btrfs_alloc_path(); 2598 if (!path) 2599 return -ENOMEM; 2600 2601 level = btrfs_header_level(log->node); 2602 orig_level = level; 2603 path->nodes[level] = log->node; 2604 extent_buffer_get(log->node); 2605 path->slots[level] = 0; 2606 2607 while (1) { 2608 wret = walk_down_log_tree(trans, log, path, &level, wc); 2609 if (wret > 0) 2610 break; 2611 if (wret < 0) { 2612 ret = wret; 2613 goto out; 2614 } 2615 2616 wret = walk_up_log_tree(trans, log, path, &level, wc); 2617 if (wret > 0) 2618 break; 2619 if (wret < 0) { 2620 ret = wret; 2621 goto out; 2622 } 2623 } 2624 2625 /* was the root node processed? if not, catch it here */ 2626 if (path->nodes[orig_level]) { 2627 ret = wc->process_func(log, path->nodes[orig_level], wc, 2628 btrfs_header_generation(path->nodes[orig_level])); 2629 if (ret) 2630 goto out; 2631 if (wc->free) { 2632 struct extent_buffer *next; 2633 2634 next = path->nodes[orig_level]; 2635 2636 if (trans) { 2637 btrfs_tree_lock(next); 2638 btrfs_set_lock_blocking(next); 2639 clean_tree_block(fs_info, next); 2640 btrfs_wait_tree_block_writeback(next); 2641 btrfs_tree_unlock(next); 2642 } 2643 2644 WARN_ON(log->root_key.objectid != 2645 BTRFS_TREE_LOG_OBJECTID); 2646 ret = btrfs_free_and_pin_reserved_extent(fs_info, 2647 next->start, next->len); 2648 if (ret) 2649 goto out; 2650 } 2651 } 2652 2653 out: 2654 btrfs_free_path(path); 2655 return ret; 2656 } 2657 2658 /* 2659 * helper function to update the item for a given subvolumes log root 2660 * in the tree of log roots 2661 */ 2662 static int update_log_root(struct btrfs_trans_handle *trans, 2663 struct btrfs_root *log) 2664 { 2665 struct btrfs_fs_info *fs_info = log->fs_info; 2666 int ret; 2667 2668 if (log->log_transid == 1) { 2669 /* insert root item on the first sync */ 2670 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2671 &log->root_key, &log->root_item); 2672 } else { 2673 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2674 &log->root_key, &log->root_item); 2675 } 2676 return ret; 2677 } 2678 2679 static void wait_log_commit(struct btrfs_root *root, int transid) 2680 { 2681 DEFINE_WAIT(wait); 2682 int index = transid % 2; 2683 2684 /* 2685 * we only allow two pending log transactions at a time, 2686 * so we know that if ours is more than 2 older than the 2687 * current transaction, we're done 2688 */ 2689 do { 2690 prepare_to_wait(&root->log_commit_wait[index], 2691 &wait, TASK_UNINTERRUPTIBLE); 2692 mutex_unlock(&root->log_mutex); 2693 2694 if (root->log_transid_committed < transid && 2695 atomic_read(&root->log_commit[index])) 2696 schedule(); 2697 2698 finish_wait(&root->log_commit_wait[index], &wait); 2699 mutex_lock(&root->log_mutex); 2700 } while (root->log_transid_committed < transid && 2701 atomic_read(&root->log_commit[index])); 2702 } 2703 2704 static void wait_for_writer(struct btrfs_root *root) 2705 { 2706 DEFINE_WAIT(wait); 2707 2708 while (atomic_read(&root->log_writers)) { 2709 prepare_to_wait(&root->log_writer_wait, 2710 &wait, TASK_UNINTERRUPTIBLE); 2711 mutex_unlock(&root->log_mutex); 2712 if (atomic_read(&root->log_writers)) 2713 schedule(); 2714 finish_wait(&root->log_writer_wait, &wait); 2715 mutex_lock(&root->log_mutex); 2716 } 2717 } 2718 2719 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2720 struct btrfs_log_ctx *ctx) 2721 { 2722 if (!ctx) 2723 return; 2724 2725 mutex_lock(&root->log_mutex); 2726 list_del_init(&ctx->list); 2727 mutex_unlock(&root->log_mutex); 2728 } 2729 2730 /* 2731 * Invoked in log mutex context, or be sure there is no other task which 2732 * can access the list. 2733 */ 2734 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2735 int index, int error) 2736 { 2737 struct btrfs_log_ctx *ctx; 2738 struct btrfs_log_ctx *safe; 2739 2740 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 2741 list_del_init(&ctx->list); 2742 ctx->log_ret = error; 2743 } 2744 2745 INIT_LIST_HEAD(&root->log_ctxs[index]); 2746 } 2747 2748 /* 2749 * btrfs_sync_log does sends a given tree log down to the disk and 2750 * updates the super blocks to record it. When this call is done, 2751 * you know that any inodes previously logged are safely on disk only 2752 * if it returns 0. 2753 * 2754 * Any other return value means you need to call btrfs_commit_transaction. 2755 * Some of the edge cases for fsyncing directories that have had unlinks 2756 * or renames done in the past mean that sometimes the only safe 2757 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2758 * that has happened. 2759 */ 2760 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2761 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 2762 { 2763 int index1; 2764 int index2; 2765 int mark; 2766 int ret; 2767 struct btrfs_fs_info *fs_info = root->fs_info; 2768 struct btrfs_root *log = root->log_root; 2769 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 2770 int log_transid = 0; 2771 struct btrfs_log_ctx root_log_ctx; 2772 struct blk_plug plug; 2773 2774 mutex_lock(&root->log_mutex); 2775 log_transid = ctx->log_transid; 2776 if (root->log_transid_committed >= log_transid) { 2777 mutex_unlock(&root->log_mutex); 2778 return ctx->log_ret; 2779 } 2780 2781 index1 = log_transid % 2; 2782 if (atomic_read(&root->log_commit[index1])) { 2783 wait_log_commit(root, log_transid); 2784 mutex_unlock(&root->log_mutex); 2785 return ctx->log_ret; 2786 } 2787 ASSERT(log_transid == root->log_transid); 2788 atomic_set(&root->log_commit[index1], 1); 2789 2790 /* wait for previous tree log sync to complete */ 2791 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2792 wait_log_commit(root, log_transid - 1); 2793 2794 while (1) { 2795 int batch = atomic_read(&root->log_batch); 2796 /* when we're on an ssd, just kick the log commit out */ 2797 if (!btrfs_test_opt(fs_info, SSD) && 2798 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 2799 mutex_unlock(&root->log_mutex); 2800 schedule_timeout_uninterruptible(1); 2801 mutex_lock(&root->log_mutex); 2802 } 2803 wait_for_writer(root); 2804 if (batch == atomic_read(&root->log_batch)) 2805 break; 2806 } 2807 2808 /* bail out if we need to do a full commit */ 2809 if (btrfs_need_log_full_commit(fs_info, trans)) { 2810 ret = -EAGAIN; 2811 btrfs_free_logged_extents(log, log_transid); 2812 mutex_unlock(&root->log_mutex); 2813 goto out; 2814 } 2815 2816 if (log_transid % 2 == 0) 2817 mark = EXTENT_DIRTY; 2818 else 2819 mark = EXTENT_NEW; 2820 2821 /* we start IO on all the marked extents here, but we don't actually 2822 * wait for them until later. 2823 */ 2824 blk_start_plug(&plug); 2825 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 2826 if (ret) { 2827 blk_finish_plug(&plug); 2828 btrfs_abort_transaction(trans, ret); 2829 btrfs_free_logged_extents(log, log_transid); 2830 btrfs_set_log_full_commit(fs_info, trans); 2831 mutex_unlock(&root->log_mutex); 2832 goto out; 2833 } 2834 2835 btrfs_set_root_node(&log->root_item, log->node); 2836 2837 root->log_transid++; 2838 log->log_transid = root->log_transid; 2839 root->log_start_pid = 0; 2840 /* 2841 * IO has been started, blocks of the log tree have WRITTEN flag set 2842 * in their headers. new modifications of the log will be written to 2843 * new positions. so it's safe to allow log writers to go in. 2844 */ 2845 mutex_unlock(&root->log_mutex); 2846 2847 btrfs_init_log_ctx(&root_log_ctx, NULL); 2848 2849 mutex_lock(&log_root_tree->log_mutex); 2850 atomic_inc(&log_root_tree->log_batch); 2851 atomic_inc(&log_root_tree->log_writers); 2852 2853 index2 = log_root_tree->log_transid % 2; 2854 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 2855 root_log_ctx.log_transid = log_root_tree->log_transid; 2856 2857 mutex_unlock(&log_root_tree->log_mutex); 2858 2859 ret = update_log_root(trans, log); 2860 2861 mutex_lock(&log_root_tree->log_mutex); 2862 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 2863 /* 2864 * Implicit memory barrier after atomic_dec_and_test 2865 */ 2866 if (waitqueue_active(&log_root_tree->log_writer_wait)) 2867 wake_up(&log_root_tree->log_writer_wait); 2868 } 2869 2870 if (ret) { 2871 if (!list_empty(&root_log_ctx.list)) 2872 list_del_init(&root_log_ctx.list); 2873 2874 blk_finish_plug(&plug); 2875 btrfs_set_log_full_commit(fs_info, trans); 2876 2877 if (ret != -ENOSPC) { 2878 btrfs_abort_transaction(trans, ret); 2879 mutex_unlock(&log_root_tree->log_mutex); 2880 goto out; 2881 } 2882 btrfs_wait_tree_log_extents(log, mark); 2883 btrfs_free_logged_extents(log, log_transid); 2884 mutex_unlock(&log_root_tree->log_mutex); 2885 ret = -EAGAIN; 2886 goto out; 2887 } 2888 2889 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 2890 blk_finish_plug(&plug); 2891 list_del_init(&root_log_ctx.list); 2892 mutex_unlock(&log_root_tree->log_mutex); 2893 ret = root_log_ctx.log_ret; 2894 goto out; 2895 } 2896 2897 index2 = root_log_ctx.log_transid % 2; 2898 if (atomic_read(&log_root_tree->log_commit[index2])) { 2899 blk_finish_plug(&plug); 2900 ret = btrfs_wait_tree_log_extents(log, mark); 2901 btrfs_wait_logged_extents(trans, log, log_transid); 2902 wait_log_commit(log_root_tree, 2903 root_log_ctx.log_transid); 2904 mutex_unlock(&log_root_tree->log_mutex); 2905 if (!ret) 2906 ret = root_log_ctx.log_ret; 2907 goto out; 2908 } 2909 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 2910 atomic_set(&log_root_tree->log_commit[index2], 1); 2911 2912 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 2913 wait_log_commit(log_root_tree, 2914 root_log_ctx.log_transid - 1); 2915 } 2916 2917 wait_for_writer(log_root_tree); 2918 2919 /* 2920 * now that we've moved on to the tree of log tree roots, 2921 * check the full commit flag again 2922 */ 2923 if (btrfs_need_log_full_commit(fs_info, trans)) { 2924 blk_finish_plug(&plug); 2925 btrfs_wait_tree_log_extents(log, mark); 2926 btrfs_free_logged_extents(log, log_transid); 2927 mutex_unlock(&log_root_tree->log_mutex); 2928 ret = -EAGAIN; 2929 goto out_wake_log_root; 2930 } 2931 2932 ret = btrfs_write_marked_extents(fs_info, 2933 &log_root_tree->dirty_log_pages, 2934 EXTENT_DIRTY | EXTENT_NEW); 2935 blk_finish_plug(&plug); 2936 if (ret) { 2937 btrfs_set_log_full_commit(fs_info, trans); 2938 btrfs_abort_transaction(trans, ret); 2939 btrfs_free_logged_extents(log, log_transid); 2940 mutex_unlock(&log_root_tree->log_mutex); 2941 goto out_wake_log_root; 2942 } 2943 ret = btrfs_wait_tree_log_extents(log, mark); 2944 if (!ret) 2945 ret = btrfs_wait_tree_log_extents(log_root_tree, 2946 EXTENT_NEW | EXTENT_DIRTY); 2947 if (ret) { 2948 btrfs_set_log_full_commit(fs_info, trans); 2949 btrfs_free_logged_extents(log, log_transid); 2950 mutex_unlock(&log_root_tree->log_mutex); 2951 goto out_wake_log_root; 2952 } 2953 btrfs_wait_logged_extents(trans, log, log_transid); 2954 2955 btrfs_set_super_log_root(fs_info->super_for_commit, 2956 log_root_tree->node->start); 2957 btrfs_set_super_log_root_level(fs_info->super_for_commit, 2958 btrfs_header_level(log_root_tree->node)); 2959 2960 log_root_tree->log_transid++; 2961 mutex_unlock(&log_root_tree->log_mutex); 2962 2963 /* 2964 * nobody else is going to jump in and write the the ctree 2965 * super here because the log_commit atomic below is protecting 2966 * us. We must be called with a transaction handle pinning 2967 * the running transaction open, so a full commit can't hop 2968 * in and cause problems either. 2969 */ 2970 ret = write_all_supers(fs_info, 1); 2971 if (ret) { 2972 btrfs_set_log_full_commit(fs_info, trans); 2973 btrfs_abort_transaction(trans, ret); 2974 goto out_wake_log_root; 2975 } 2976 2977 mutex_lock(&root->log_mutex); 2978 if (root->last_log_commit < log_transid) 2979 root->last_log_commit = log_transid; 2980 mutex_unlock(&root->log_mutex); 2981 2982 out_wake_log_root: 2983 mutex_lock(&log_root_tree->log_mutex); 2984 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 2985 2986 log_root_tree->log_transid_committed++; 2987 atomic_set(&log_root_tree->log_commit[index2], 0); 2988 mutex_unlock(&log_root_tree->log_mutex); 2989 2990 /* 2991 * The barrier before waitqueue_active is implied by mutex_unlock 2992 */ 2993 if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) 2994 wake_up(&log_root_tree->log_commit_wait[index2]); 2995 out: 2996 mutex_lock(&root->log_mutex); 2997 btrfs_remove_all_log_ctxs(root, index1, ret); 2998 root->log_transid_committed++; 2999 atomic_set(&root->log_commit[index1], 0); 3000 mutex_unlock(&root->log_mutex); 3001 3002 /* 3003 * The barrier before waitqueue_active is implied by mutex_unlock 3004 */ 3005 if (waitqueue_active(&root->log_commit_wait[index1])) 3006 wake_up(&root->log_commit_wait[index1]); 3007 return ret; 3008 } 3009 3010 static void free_log_tree(struct btrfs_trans_handle *trans, 3011 struct btrfs_root *log) 3012 { 3013 int ret; 3014 u64 start; 3015 u64 end; 3016 struct walk_control wc = { 3017 .free = 1, 3018 .process_func = process_one_buffer 3019 }; 3020 3021 ret = walk_log_tree(trans, log, &wc); 3022 /* I don't think this can happen but just in case */ 3023 if (ret) 3024 btrfs_abort_transaction(trans, ret); 3025 3026 while (1) { 3027 ret = find_first_extent_bit(&log->dirty_log_pages, 3028 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW, 3029 NULL); 3030 if (ret) 3031 break; 3032 3033 clear_extent_bits(&log->dirty_log_pages, start, end, 3034 EXTENT_DIRTY | EXTENT_NEW); 3035 } 3036 3037 /* 3038 * We may have short-circuited the log tree with the full commit logic 3039 * and left ordered extents on our list, so clear these out to keep us 3040 * from leaking inodes and memory. 3041 */ 3042 btrfs_free_logged_extents(log, 0); 3043 btrfs_free_logged_extents(log, 1); 3044 3045 free_extent_buffer(log->node); 3046 kfree(log); 3047 } 3048 3049 /* 3050 * free all the extents used by the tree log. This should be called 3051 * at commit time of the full transaction 3052 */ 3053 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3054 { 3055 if (root->log_root) { 3056 free_log_tree(trans, root->log_root); 3057 root->log_root = NULL; 3058 } 3059 return 0; 3060 } 3061 3062 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3063 struct btrfs_fs_info *fs_info) 3064 { 3065 if (fs_info->log_root_tree) { 3066 free_log_tree(trans, fs_info->log_root_tree); 3067 fs_info->log_root_tree = NULL; 3068 } 3069 return 0; 3070 } 3071 3072 /* 3073 * If both a file and directory are logged, and unlinks or renames are 3074 * mixed in, we have a few interesting corners: 3075 * 3076 * create file X in dir Y 3077 * link file X to X.link in dir Y 3078 * fsync file X 3079 * unlink file X but leave X.link 3080 * fsync dir Y 3081 * 3082 * After a crash we would expect only X.link to exist. But file X 3083 * didn't get fsync'd again so the log has back refs for X and X.link. 3084 * 3085 * We solve this by removing directory entries and inode backrefs from the 3086 * log when a file that was logged in the current transaction is 3087 * unlinked. Any later fsync will include the updated log entries, and 3088 * we'll be able to reconstruct the proper directory items from backrefs. 3089 * 3090 * This optimizations allows us to avoid relogging the entire inode 3091 * or the entire directory. 3092 */ 3093 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3094 struct btrfs_root *root, 3095 const char *name, int name_len, 3096 struct btrfs_inode *dir, u64 index) 3097 { 3098 struct btrfs_root *log; 3099 struct btrfs_dir_item *di; 3100 struct btrfs_path *path; 3101 int ret; 3102 int err = 0; 3103 int bytes_del = 0; 3104 u64 dir_ino = btrfs_ino(dir); 3105 3106 if (dir->logged_trans < trans->transid) 3107 return 0; 3108 3109 ret = join_running_log_trans(root); 3110 if (ret) 3111 return 0; 3112 3113 mutex_lock(&dir->log_mutex); 3114 3115 log = root->log_root; 3116 path = btrfs_alloc_path(); 3117 if (!path) { 3118 err = -ENOMEM; 3119 goto out_unlock; 3120 } 3121 3122 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3123 name, name_len, -1); 3124 if (IS_ERR(di)) { 3125 err = PTR_ERR(di); 3126 goto fail; 3127 } 3128 if (di) { 3129 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3130 bytes_del += name_len; 3131 if (ret) { 3132 err = ret; 3133 goto fail; 3134 } 3135 } 3136 btrfs_release_path(path); 3137 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3138 index, name, name_len, -1); 3139 if (IS_ERR(di)) { 3140 err = PTR_ERR(di); 3141 goto fail; 3142 } 3143 if (di) { 3144 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3145 bytes_del += name_len; 3146 if (ret) { 3147 err = ret; 3148 goto fail; 3149 } 3150 } 3151 3152 /* update the directory size in the log to reflect the names 3153 * we have removed 3154 */ 3155 if (bytes_del) { 3156 struct btrfs_key key; 3157 3158 key.objectid = dir_ino; 3159 key.offset = 0; 3160 key.type = BTRFS_INODE_ITEM_KEY; 3161 btrfs_release_path(path); 3162 3163 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 3164 if (ret < 0) { 3165 err = ret; 3166 goto fail; 3167 } 3168 if (ret == 0) { 3169 struct btrfs_inode_item *item; 3170 u64 i_size; 3171 3172 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3173 struct btrfs_inode_item); 3174 i_size = btrfs_inode_size(path->nodes[0], item); 3175 if (i_size > bytes_del) 3176 i_size -= bytes_del; 3177 else 3178 i_size = 0; 3179 btrfs_set_inode_size(path->nodes[0], item, i_size); 3180 btrfs_mark_buffer_dirty(path->nodes[0]); 3181 } else 3182 ret = 0; 3183 btrfs_release_path(path); 3184 } 3185 fail: 3186 btrfs_free_path(path); 3187 out_unlock: 3188 mutex_unlock(&dir->log_mutex); 3189 if (ret == -ENOSPC) { 3190 btrfs_set_log_full_commit(root->fs_info, trans); 3191 ret = 0; 3192 } else if (ret < 0) 3193 btrfs_abort_transaction(trans, ret); 3194 3195 btrfs_end_log_trans(root); 3196 3197 return err; 3198 } 3199 3200 /* see comments for btrfs_del_dir_entries_in_log */ 3201 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3202 struct btrfs_root *root, 3203 const char *name, int name_len, 3204 struct btrfs_inode *inode, u64 dirid) 3205 { 3206 struct btrfs_fs_info *fs_info = root->fs_info; 3207 struct btrfs_root *log; 3208 u64 index; 3209 int ret; 3210 3211 if (inode->logged_trans < trans->transid) 3212 return 0; 3213 3214 ret = join_running_log_trans(root); 3215 if (ret) 3216 return 0; 3217 log = root->log_root; 3218 mutex_lock(&inode->log_mutex); 3219 3220 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3221 dirid, &index); 3222 mutex_unlock(&inode->log_mutex); 3223 if (ret == -ENOSPC) { 3224 btrfs_set_log_full_commit(fs_info, trans); 3225 ret = 0; 3226 } else if (ret < 0 && ret != -ENOENT) 3227 btrfs_abort_transaction(trans, ret); 3228 btrfs_end_log_trans(root); 3229 3230 return ret; 3231 } 3232 3233 /* 3234 * creates a range item in the log for 'dirid'. first_offset and 3235 * last_offset tell us which parts of the key space the log should 3236 * be considered authoritative for. 3237 */ 3238 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3239 struct btrfs_root *log, 3240 struct btrfs_path *path, 3241 int key_type, u64 dirid, 3242 u64 first_offset, u64 last_offset) 3243 { 3244 int ret; 3245 struct btrfs_key key; 3246 struct btrfs_dir_log_item *item; 3247 3248 key.objectid = dirid; 3249 key.offset = first_offset; 3250 if (key_type == BTRFS_DIR_ITEM_KEY) 3251 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3252 else 3253 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3254 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3255 if (ret) 3256 return ret; 3257 3258 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3259 struct btrfs_dir_log_item); 3260 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3261 btrfs_mark_buffer_dirty(path->nodes[0]); 3262 btrfs_release_path(path); 3263 return 0; 3264 } 3265 3266 /* 3267 * log all the items included in the current transaction for a given 3268 * directory. This also creates the range items in the log tree required 3269 * to replay anything deleted before the fsync 3270 */ 3271 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3272 struct btrfs_root *root, struct btrfs_inode *inode, 3273 struct btrfs_path *path, 3274 struct btrfs_path *dst_path, int key_type, 3275 struct btrfs_log_ctx *ctx, 3276 u64 min_offset, u64 *last_offset_ret) 3277 { 3278 struct btrfs_key min_key; 3279 struct btrfs_root *log = root->log_root; 3280 struct extent_buffer *src; 3281 int err = 0; 3282 int ret; 3283 int i; 3284 int nritems; 3285 u64 first_offset = min_offset; 3286 u64 last_offset = (u64)-1; 3287 u64 ino = btrfs_ino(inode); 3288 3289 log = root->log_root; 3290 3291 min_key.objectid = ino; 3292 min_key.type = key_type; 3293 min_key.offset = min_offset; 3294 3295 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3296 3297 /* 3298 * we didn't find anything from this transaction, see if there 3299 * is anything at all 3300 */ 3301 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3302 min_key.objectid = ino; 3303 min_key.type = key_type; 3304 min_key.offset = (u64)-1; 3305 btrfs_release_path(path); 3306 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3307 if (ret < 0) { 3308 btrfs_release_path(path); 3309 return ret; 3310 } 3311 ret = btrfs_previous_item(root, path, ino, key_type); 3312 3313 /* if ret == 0 there are items for this type, 3314 * create a range to tell us the last key of this type. 3315 * otherwise, there are no items in this directory after 3316 * *min_offset, and we create a range to indicate that. 3317 */ 3318 if (ret == 0) { 3319 struct btrfs_key tmp; 3320 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3321 path->slots[0]); 3322 if (key_type == tmp.type) 3323 first_offset = max(min_offset, tmp.offset) + 1; 3324 } 3325 goto done; 3326 } 3327 3328 /* go backward to find any previous key */ 3329 ret = btrfs_previous_item(root, path, ino, key_type); 3330 if (ret == 0) { 3331 struct btrfs_key tmp; 3332 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3333 if (key_type == tmp.type) { 3334 first_offset = tmp.offset; 3335 ret = overwrite_item(trans, log, dst_path, 3336 path->nodes[0], path->slots[0], 3337 &tmp); 3338 if (ret) { 3339 err = ret; 3340 goto done; 3341 } 3342 } 3343 } 3344 btrfs_release_path(path); 3345 3346 /* find the first key from this transaction again */ 3347 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3348 if (WARN_ON(ret != 0)) 3349 goto done; 3350 3351 /* 3352 * we have a block from this transaction, log every item in it 3353 * from our directory 3354 */ 3355 while (1) { 3356 struct btrfs_key tmp; 3357 src = path->nodes[0]; 3358 nritems = btrfs_header_nritems(src); 3359 for (i = path->slots[0]; i < nritems; i++) { 3360 struct btrfs_dir_item *di; 3361 3362 btrfs_item_key_to_cpu(src, &min_key, i); 3363 3364 if (min_key.objectid != ino || min_key.type != key_type) 3365 goto done; 3366 ret = overwrite_item(trans, log, dst_path, src, i, 3367 &min_key); 3368 if (ret) { 3369 err = ret; 3370 goto done; 3371 } 3372 3373 /* 3374 * We must make sure that when we log a directory entry, 3375 * the corresponding inode, after log replay, has a 3376 * matching link count. For example: 3377 * 3378 * touch foo 3379 * mkdir mydir 3380 * sync 3381 * ln foo mydir/bar 3382 * xfs_io -c "fsync" mydir 3383 * <crash> 3384 * <mount fs and log replay> 3385 * 3386 * Would result in a fsync log that when replayed, our 3387 * file inode would have a link count of 1, but we get 3388 * two directory entries pointing to the same inode. 3389 * After removing one of the names, it would not be 3390 * possible to remove the other name, which resulted 3391 * always in stale file handle errors, and would not 3392 * be possible to rmdir the parent directory, since 3393 * its i_size could never decrement to the value 3394 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3395 */ 3396 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3397 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3398 if (ctx && 3399 (btrfs_dir_transid(src, di) == trans->transid || 3400 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3401 tmp.type != BTRFS_ROOT_ITEM_KEY) 3402 ctx->log_new_dentries = true; 3403 } 3404 path->slots[0] = nritems; 3405 3406 /* 3407 * look ahead to the next item and see if it is also 3408 * from this directory and from this transaction 3409 */ 3410 ret = btrfs_next_leaf(root, path); 3411 if (ret == 1) { 3412 last_offset = (u64)-1; 3413 goto done; 3414 } 3415 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3416 if (tmp.objectid != ino || tmp.type != key_type) { 3417 last_offset = (u64)-1; 3418 goto done; 3419 } 3420 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3421 ret = overwrite_item(trans, log, dst_path, 3422 path->nodes[0], path->slots[0], 3423 &tmp); 3424 if (ret) 3425 err = ret; 3426 else 3427 last_offset = tmp.offset; 3428 goto done; 3429 } 3430 } 3431 done: 3432 btrfs_release_path(path); 3433 btrfs_release_path(dst_path); 3434 3435 if (err == 0) { 3436 *last_offset_ret = last_offset; 3437 /* 3438 * insert the log range keys to indicate where the log 3439 * is valid 3440 */ 3441 ret = insert_dir_log_key(trans, log, path, key_type, 3442 ino, first_offset, last_offset); 3443 if (ret) 3444 err = ret; 3445 } 3446 return err; 3447 } 3448 3449 /* 3450 * logging directories is very similar to logging inodes, We find all the items 3451 * from the current transaction and write them to the log. 3452 * 3453 * The recovery code scans the directory in the subvolume, and if it finds a 3454 * key in the range logged that is not present in the log tree, then it means 3455 * that dir entry was unlinked during the transaction. 3456 * 3457 * In order for that scan to work, we must include one key smaller than 3458 * the smallest logged by this transaction and one key larger than the largest 3459 * key logged by this transaction. 3460 */ 3461 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3462 struct btrfs_root *root, struct btrfs_inode *inode, 3463 struct btrfs_path *path, 3464 struct btrfs_path *dst_path, 3465 struct btrfs_log_ctx *ctx) 3466 { 3467 u64 min_key; 3468 u64 max_key; 3469 int ret; 3470 int key_type = BTRFS_DIR_ITEM_KEY; 3471 3472 again: 3473 min_key = 0; 3474 max_key = 0; 3475 while (1) { 3476 ret = log_dir_items(trans, root, inode, path, dst_path, key_type, 3477 ctx, min_key, &max_key); 3478 if (ret) 3479 return ret; 3480 if (max_key == (u64)-1) 3481 break; 3482 min_key = max_key + 1; 3483 } 3484 3485 if (key_type == BTRFS_DIR_ITEM_KEY) { 3486 key_type = BTRFS_DIR_INDEX_KEY; 3487 goto again; 3488 } 3489 return 0; 3490 } 3491 3492 /* 3493 * a helper function to drop items from the log before we relog an 3494 * inode. max_key_type indicates the highest item type to remove. 3495 * This cannot be run for file data extents because it does not 3496 * free the extents they point to. 3497 */ 3498 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3499 struct btrfs_root *log, 3500 struct btrfs_path *path, 3501 u64 objectid, int max_key_type) 3502 { 3503 int ret; 3504 struct btrfs_key key; 3505 struct btrfs_key found_key; 3506 int start_slot; 3507 3508 key.objectid = objectid; 3509 key.type = max_key_type; 3510 key.offset = (u64)-1; 3511 3512 while (1) { 3513 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3514 BUG_ON(ret == 0); /* Logic error */ 3515 if (ret < 0) 3516 break; 3517 3518 if (path->slots[0] == 0) 3519 break; 3520 3521 path->slots[0]--; 3522 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3523 path->slots[0]); 3524 3525 if (found_key.objectid != objectid) 3526 break; 3527 3528 found_key.offset = 0; 3529 found_key.type = 0; 3530 ret = btrfs_bin_search(path->nodes[0], &found_key, 0, 3531 &start_slot); 3532 3533 ret = btrfs_del_items(trans, log, path, start_slot, 3534 path->slots[0] - start_slot + 1); 3535 /* 3536 * If start slot isn't 0 then we don't need to re-search, we've 3537 * found the last guy with the objectid in this tree. 3538 */ 3539 if (ret || start_slot != 0) 3540 break; 3541 btrfs_release_path(path); 3542 } 3543 btrfs_release_path(path); 3544 if (ret > 0) 3545 ret = 0; 3546 return ret; 3547 } 3548 3549 static void fill_inode_item(struct btrfs_trans_handle *trans, 3550 struct extent_buffer *leaf, 3551 struct btrfs_inode_item *item, 3552 struct inode *inode, int log_inode_only, 3553 u64 logged_isize) 3554 { 3555 struct btrfs_map_token token; 3556 3557 btrfs_init_map_token(&token); 3558 3559 if (log_inode_only) { 3560 /* set the generation to zero so the recover code 3561 * can tell the difference between an logging 3562 * just to say 'this inode exists' and a logging 3563 * to say 'update this inode with these values' 3564 */ 3565 btrfs_set_token_inode_generation(leaf, item, 0, &token); 3566 btrfs_set_token_inode_size(leaf, item, logged_isize, &token); 3567 } else { 3568 btrfs_set_token_inode_generation(leaf, item, 3569 BTRFS_I(inode)->generation, 3570 &token); 3571 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); 3572 } 3573 3574 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3575 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3576 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3577 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3578 3579 btrfs_set_token_timespec_sec(leaf, &item->atime, 3580 inode->i_atime.tv_sec, &token); 3581 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3582 inode->i_atime.tv_nsec, &token); 3583 3584 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3585 inode->i_mtime.tv_sec, &token); 3586 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3587 inode->i_mtime.tv_nsec, &token); 3588 3589 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3590 inode->i_ctime.tv_sec, &token); 3591 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3592 inode->i_ctime.tv_nsec, &token); 3593 3594 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3595 &token); 3596 3597 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3598 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3599 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3600 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3601 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3602 } 3603 3604 static int log_inode_item(struct btrfs_trans_handle *trans, 3605 struct btrfs_root *log, struct btrfs_path *path, 3606 struct btrfs_inode *inode) 3607 { 3608 struct btrfs_inode_item *inode_item; 3609 int ret; 3610 3611 ret = btrfs_insert_empty_item(trans, log, path, 3612 &inode->location, sizeof(*inode_item)); 3613 if (ret && ret != -EEXIST) 3614 return ret; 3615 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3616 struct btrfs_inode_item); 3617 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 3618 0, 0); 3619 btrfs_release_path(path); 3620 return 0; 3621 } 3622 3623 static noinline int copy_items(struct btrfs_trans_handle *trans, 3624 struct btrfs_inode *inode, 3625 struct btrfs_path *dst_path, 3626 struct btrfs_path *src_path, u64 *last_extent, 3627 int start_slot, int nr, int inode_only, 3628 u64 logged_isize) 3629 { 3630 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 3631 unsigned long src_offset; 3632 unsigned long dst_offset; 3633 struct btrfs_root *log = inode->root->log_root; 3634 struct btrfs_file_extent_item *extent; 3635 struct btrfs_inode_item *inode_item; 3636 struct extent_buffer *src = src_path->nodes[0]; 3637 struct btrfs_key first_key, last_key, key; 3638 int ret; 3639 struct btrfs_key *ins_keys; 3640 u32 *ins_sizes; 3641 char *ins_data; 3642 int i; 3643 struct list_head ordered_sums; 3644 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 3645 bool has_extents = false; 3646 bool need_find_last_extent = true; 3647 bool done = false; 3648 3649 INIT_LIST_HEAD(&ordered_sums); 3650 3651 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3652 nr * sizeof(u32), GFP_NOFS); 3653 if (!ins_data) 3654 return -ENOMEM; 3655 3656 first_key.objectid = (u64)-1; 3657 3658 ins_sizes = (u32 *)ins_data; 3659 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3660 3661 for (i = 0; i < nr; i++) { 3662 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3663 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3664 } 3665 ret = btrfs_insert_empty_items(trans, log, dst_path, 3666 ins_keys, ins_sizes, nr); 3667 if (ret) { 3668 kfree(ins_data); 3669 return ret; 3670 } 3671 3672 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3673 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3674 dst_path->slots[0]); 3675 3676 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3677 3678 if ((i == (nr - 1))) 3679 last_key = ins_keys[i]; 3680 3681 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3682 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3683 dst_path->slots[0], 3684 struct btrfs_inode_item); 3685 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3686 &inode->vfs_inode, 3687 inode_only == LOG_INODE_EXISTS, 3688 logged_isize); 3689 } else { 3690 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3691 src_offset, ins_sizes[i]); 3692 } 3693 3694 /* 3695 * We set need_find_last_extent here in case we know we were 3696 * processing other items and then walk into the first extent in 3697 * the inode. If we don't hit an extent then nothing changes, 3698 * we'll do the last search the next time around. 3699 */ 3700 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) { 3701 has_extents = true; 3702 if (first_key.objectid == (u64)-1) 3703 first_key = ins_keys[i]; 3704 } else { 3705 need_find_last_extent = false; 3706 } 3707 3708 /* take a reference on file data extents so that truncates 3709 * or deletes of this inode don't have to relog the inode 3710 * again 3711 */ 3712 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 3713 !skip_csum) { 3714 int found_type; 3715 extent = btrfs_item_ptr(src, start_slot + i, 3716 struct btrfs_file_extent_item); 3717 3718 if (btrfs_file_extent_generation(src, extent) < trans->transid) 3719 continue; 3720 3721 found_type = btrfs_file_extent_type(src, extent); 3722 if (found_type == BTRFS_FILE_EXTENT_REG) { 3723 u64 ds, dl, cs, cl; 3724 ds = btrfs_file_extent_disk_bytenr(src, 3725 extent); 3726 /* ds == 0 is a hole */ 3727 if (ds == 0) 3728 continue; 3729 3730 dl = btrfs_file_extent_disk_num_bytes(src, 3731 extent); 3732 cs = btrfs_file_extent_offset(src, extent); 3733 cl = btrfs_file_extent_num_bytes(src, 3734 extent); 3735 if (btrfs_file_extent_compression(src, 3736 extent)) { 3737 cs = 0; 3738 cl = dl; 3739 } 3740 3741 ret = btrfs_lookup_csums_range( 3742 fs_info->csum_root, 3743 ds + cs, ds + cs + cl - 1, 3744 &ordered_sums, 0); 3745 if (ret) { 3746 btrfs_release_path(dst_path); 3747 kfree(ins_data); 3748 return ret; 3749 } 3750 } 3751 } 3752 } 3753 3754 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 3755 btrfs_release_path(dst_path); 3756 kfree(ins_data); 3757 3758 /* 3759 * we have to do this after the loop above to avoid changing the 3760 * log tree while trying to change the log tree. 3761 */ 3762 ret = 0; 3763 while (!list_empty(&ordered_sums)) { 3764 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 3765 struct btrfs_ordered_sum, 3766 list); 3767 if (!ret) 3768 ret = btrfs_csum_file_blocks(trans, log, sums); 3769 list_del(&sums->list); 3770 kfree(sums); 3771 } 3772 3773 if (!has_extents) 3774 return ret; 3775 3776 if (need_find_last_extent && *last_extent == first_key.offset) { 3777 /* 3778 * We don't have any leafs between our current one and the one 3779 * we processed before that can have file extent items for our 3780 * inode (and have a generation number smaller than our current 3781 * transaction id). 3782 */ 3783 need_find_last_extent = false; 3784 } 3785 3786 /* 3787 * Because we use btrfs_search_forward we could skip leaves that were 3788 * not modified and then assume *last_extent is valid when it really 3789 * isn't. So back up to the previous leaf and read the end of the last 3790 * extent before we go and fill in holes. 3791 */ 3792 if (need_find_last_extent) { 3793 u64 len; 3794 3795 ret = btrfs_prev_leaf(inode->root, src_path); 3796 if (ret < 0) 3797 return ret; 3798 if (ret) 3799 goto fill_holes; 3800 if (src_path->slots[0]) 3801 src_path->slots[0]--; 3802 src = src_path->nodes[0]; 3803 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]); 3804 if (key.objectid != btrfs_ino(inode) || 3805 key.type != BTRFS_EXTENT_DATA_KEY) 3806 goto fill_holes; 3807 extent = btrfs_item_ptr(src, src_path->slots[0], 3808 struct btrfs_file_extent_item); 3809 if (btrfs_file_extent_type(src, extent) == 3810 BTRFS_FILE_EXTENT_INLINE) { 3811 len = btrfs_file_extent_inline_len(src, 3812 src_path->slots[0], 3813 extent); 3814 *last_extent = ALIGN(key.offset + len, 3815 fs_info->sectorsize); 3816 } else { 3817 len = btrfs_file_extent_num_bytes(src, extent); 3818 *last_extent = key.offset + len; 3819 } 3820 } 3821 fill_holes: 3822 /* So we did prev_leaf, now we need to move to the next leaf, but a few 3823 * things could have happened 3824 * 3825 * 1) A merge could have happened, so we could currently be on a leaf 3826 * that holds what we were copying in the first place. 3827 * 2) A split could have happened, and now not all of the items we want 3828 * are on the same leaf. 3829 * 3830 * So we need to adjust how we search for holes, we need to drop the 3831 * path and re-search for the first extent key we found, and then walk 3832 * forward until we hit the last one we copied. 3833 */ 3834 if (need_find_last_extent) { 3835 /* btrfs_prev_leaf could return 1 without releasing the path */ 3836 btrfs_release_path(src_path); 3837 ret = btrfs_search_slot(NULL, inode->root, &first_key, 3838 src_path, 0, 0); 3839 if (ret < 0) 3840 return ret; 3841 ASSERT(ret == 0); 3842 src = src_path->nodes[0]; 3843 i = src_path->slots[0]; 3844 } else { 3845 i = start_slot; 3846 } 3847 3848 /* 3849 * Ok so here we need to go through and fill in any holes we may have 3850 * to make sure that holes are punched for those areas in case they had 3851 * extents previously. 3852 */ 3853 while (!done) { 3854 u64 offset, len; 3855 u64 extent_end; 3856 3857 if (i >= btrfs_header_nritems(src_path->nodes[0])) { 3858 ret = btrfs_next_leaf(inode->root, src_path); 3859 if (ret < 0) 3860 return ret; 3861 ASSERT(ret == 0); 3862 src = src_path->nodes[0]; 3863 i = 0; 3864 } 3865 3866 btrfs_item_key_to_cpu(src, &key, i); 3867 if (!btrfs_comp_cpu_keys(&key, &last_key)) 3868 done = true; 3869 if (key.objectid != btrfs_ino(inode) || 3870 key.type != BTRFS_EXTENT_DATA_KEY) { 3871 i++; 3872 continue; 3873 } 3874 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); 3875 if (btrfs_file_extent_type(src, extent) == 3876 BTRFS_FILE_EXTENT_INLINE) { 3877 len = btrfs_file_extent_inline_len(src, i, extent); 3878 extent_end = ALIGN(key.offset + len, 3879 fs_info->sectorsize); 3880 } else { 3881 len = btrfs_file_extent_num_bytes(src, extent); 3882 extent_end = key.offset + len; 3883 } 3884 i++; 3885 3886 if (*last_extent == key.offset) { 3887 *last_extent = extent_end; 3888 continue; 3889 } 3890 offset = *last_extent; 3891 len = key.offset - *last_extent; 3892 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode), 3893 offset, 0, 0, len, 0, len, 0, 0, 0); 3894 if (ret) 3895 break; 3896 *last_extent = extent_end; 3897 } 3898 /* 3899 * Need to let the callers know we dropped the path so they should 3900 * re-search. 3901 */ 3902 if (!ret && need_find_last_extent) 3903 ret = 1; 3904 return ret; 3905 } 3906 3907 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 3908 { 3909 struct extent_map *em1, *em2; 3910 3911 em1 = list_entry(a, struct extent_map, list); 3912 em2 = list_entry(b, struct extent_map, list); 3913 3914 if (em1->start < em2->start) 3915 return -1; 3916 else if (em1->start > em2->start) 3917 return 1; 3918 return 0; 3919 } 3920 3921 static int wait_ordered_extents(struct btrfs_trans_handle *trans, 3922 struct inode *inode, 3923 struct btrfs_root *root, 3924 const struct extent_map *em, 3925 const struct list_head *logged_list, 3926 bool *ordered_io_error) 3927 { 3928 struct btrfs_fs_info *fs_info = root->fs_info; 3929 struct btrfs_ordered_extent *ordered; 3930 struct btrfs_root *log = root->log_root; 3931 u64 mod_start = em->mod_start; 3932 u64 mod_len = em->mod_len; 3933 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 3934 u64 csum_offset; 3935 u64 csum_len; 3936 LIST_HEAD(ordered_sums); 3937 int ret = 0; 3938 3939 *ordered_io_error = false; 3940 3941 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 3942 em->block_start == EXTENT_MAP_HOLE) 3943 return 0; 3944 3945 /* 3946 * Wait far any ordered extent that covers our extent map. If it 3947 * finishes without an error, first check and see if our csums are on 3948 * our outstanding ordered extents. 3949 */ 3950 list_for_each_entry(ordered, logged_list, log_list) { 3951 struct btrfs_ordered_sum *sum; 3952 3953 if (!mod_len) 3954 break; 3955 3956 if (ordered->file_offset + ordered->len <= mod_start || 3957 mod_start + mod_len <= ordered->file_offset) 3958 continue; 3959 3960 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && 3961 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3962 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 3963 const u64 start = ordered->file_offset; 3964 const u64 end = ordered->file_offset + ordered->len - 1; 3965 3966 WARN_ON(ordered->inode != inode); 3967 filemap_fdatawrite_range(inode->i_mapping, start, end); 3968 } 3969 3970 wait_event(ordered->wait, 3971 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) || 3972 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))); 3973 3974 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) { 3975 /* 3976 * Clear the AS_EIO/AS_ENOSPC flags from the inode's 3977 * i_mapping flags, so that the next fsync won't get 3978 * an outdated io error too. 3979 */ 3980 filemap_check_errors(inode->i_mapping); 3981 *ordered_io_error = true; 3982 break; 3983 } 3984 /* 3985 * We are going to copy all the csums on this ordered extent, so 3986 * go ahead and adjust mod_start and mod_len in case this 3987 * ordered extent has already been logged. 3988 */ 3989 if (ordered->file_offset > mod_start) { 3990 if (ordered->file_offset + ordered->len >= 3991 mod_start + mod_len) 3992 mod_len = ordered->file_offset - mod_start; 3993 /* 3994 * If we have this case 3995 * 3996 * |--------- logged extent ---------| 3997 * |----- ordered extent ----| 3998 * 3999 * Just don't mess with mod_start and mod_len, we'll 4000 * just end up logging more csums than we need and it 4001 * will be ok. 4002 */ 4003 } else { 4004 if (ordered->file_offset + ordered->len < 4005 mod_start + mod_len) { 4006 mod_len = (mod_start + mod_len) - 4007 (ordered->file_offset + ordered->len); 4008 mod_start = ordered->file_offset + 4009 ordered->len; 4010 } else { 4011 mod_len = 0; 4012 } 4013 } 4014 4015 if (skip_csum) 4016 continue; 4017 4018 /* 4019 * To keep us from looping for the above case of an ordered 4020 * extent that falls inside of the logged extent. 4021 */ 4022 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, 4023 &ordered->flags)) 4024 continue; 4025 4026 list_for_each_entry(sum, &ordered->list, list) { 4027 ret = btrfs_csum_file_blocks(trans, log, sum); 4028 if (ret) 4029 break; 4030 } 4031 } 4032 4033 if (*ordered_io_error || !mod_len || ret || skip_csum) 4034 return ret; 4035 4036 if (em->compress_type) { 4037 csum_offset = 0; 4038 csum_len = max(em->block_len, em->orig_block_len); 4039 } else { 4040 csum_offset = mod_start - em->start; 4041 csum_len = mod_len; 4042 } 4043 4044 /* block start is already adjusted for the file extent offset. */ 4045 ret = btrfs_lookup_csums_range(fs_info->csum_root, 4046 em->block_start + csum_offset, 4047 em->block_start + csum_offset + 4048 csum_len - 1, &ordered_sums, 0); 4049 if (ret) 4050 return ret; 4051 4052 while (!list_empty(&ordered_sums)) { 4053 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4054 struct btrfs_ordered_sum, 4055 list); 4056 if (!ret) 4057 ret = btrfs_csum_file_blocks(trans, log, sums); 4058 list_del(&sums->list); 4059 kfree(sums); 4060 } 4061 4062 return ret; 4063 } 4064 4065 static int log_one_extent(struct btrfs_trans_handle *trans, 4066 struct btrfs_inode *inode, struct btrfs_root *root, 4067 const struct extent_map *em, 4068 struct btrfs_path *path, 4069 const struct list_head *logged_list, 4070 struct btrfs_log_ctx *ctx) 4071 { 4072 struct btrfs_root *log = root->log_root; 4073 struct btrfs_file_extent_item *fi; 4074 struct extent_buffer *leaf; 4075 struct btrfs_map_token token; 4076 struct btrfs_key key; 4077 u64 extent_offset = em->start - em->orig_start; 4078 u64 block_len; 4079 int ret; 4080 int extent_inserted = 0; 4081 bool ordered_io_err = false; 4082 4083 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em, 4084 logged_list, &ordered_io_err); 4085 if (ret) 4086 return ret; 4087 4088 if (ordered_io_err) { 4089 ctx->io_err = -EIO; 4090 return 0; 4091 } 4092 4093 btrfs_init_map_token(&token); 4094 4095 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start, 4096 em->start + em->len, NULL, 0, 1, 4097 sizeof(*fi), &extent_inserted); 4098 if (ret) 4099 return ret; 4100 4101 if (!extent_inserted) { 4102 key.objectid = btrfs_ino(inode); 4103 key.type = BTRFS_EXTENT_DATA_KEY; 4104 key.offset = em->start; 4105 4106 ret = btrfs_insert_empty_item(trans, log, path, &key, 4107 sizeof(*fi)); 4108 if (ret) 4109 return ret; 4110 } 4111 leaf = path->nodes[0]; 4112 fi = btrfs_item_ptr(leaf, path->slots[0], 4113 struct btrfs_file_extent_item); 4114 4115 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, 4116 &token); 4117 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4118 btrfs_set_token_file_extent_type(leaf, fi, 4119 BTRFS_FILE_EXTENT_PREALLOC, 4120 &token); 4121 else 4122 btrfs_set_token_file_extent_type(leaf, fi, 4123 BTRFS_FILE_EXTENT_REG, 4124 &token); 4125 4126 block_len = max(em->block_len, em->orig_block_len); 4127 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4128 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4129 em->block_start, 4130 &token); 4131 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4132 &token); 4133 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4134 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4135 em->block_start - 4136 extent_offset, &token); 4137 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4138 &token); 4139 } else { 4140 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); 4141 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, 4142 &token); 4143 } 4144 4145 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); 4146 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); 4147 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); 4148 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, 4149 &token); 4150 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); 4151 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); 4152 btrfs_mark_buffer_dirty(leaf); 4153 4154 btrfs_release_path(path); 4155 4156 return ret; 4157 } 4158 4159 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4160 struct btrfs_root *root, 4161 struct btrfs_inode *inode, 4162 struct btrfs_path *path, 4163 struct list_head *logged_list, 4164 struct btrfs_log_ctx *ctx, 4165 const u64 start, 4166 const u64 end) 4167 { 4168 struct extent_map *em, *n; 4169 struct list_head extents; 4170 struct extent_map_tree *tree = &inode->extent_tree; 4171 u64 test_gen; 4172 int ret = 0; 4173 int num = 0; 4174 4175 INIT_LIST_HEAD(&extents); 4176 4177 down_write(&inode->dio_sem); 4178 write_lock(&tree->lock); 4179 test_gen = root->fs_info->last_trans_committed; 4180 4181 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4182 list_del_init(&em->list); 4183 4184 /* 4185 * Just an arbitrary number, this can be really CPU intensive 4186 * once we start getting a lot of extents, and really once we 4187 * have a bunch of extents we just want to commit since it will 4188 * be faster. 4189 */ 4190 if (++num > 32768) { 4191 list_del_init(&tree->modified_extents); 4192 ret = -EFBIG; 4193 goto process; 4194 } 4195 4196 if (em->generation <= test_gen) 4197 continue; 4198 /* Need a ref to keep it from getting evicted from cache */ 4199 atomic_inc(&em->refs); 4200 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4201 list_add_tail(&em->list, &extents); 4202 num++; 4203 } 4204 4205 list_sort(NULL, &extents, extent_cmp); 4206 btrfs_get_logged_extents(inode, logged_list, start, end); 4207 /* 4208 * Some ordered extents started by fsync might have completed 4209 * before we could collect them into the list logged_list, which 4210 * means they're gone, not in our logged_list nor in the inode's 4211 * ordered tree. We want the application/user space to know an 4212 * error happened while attempting to persist file data so that 4213 * it can take proper action. If such error happened, we leave 4214 * without writing to the log tree and the fsync must report the 4215 * file data write error and not commit the current transaction. 4216 */ 4217 ret = filemap_check_errors(inode->vfs_inode.i_mapping); 4218 if (ret) 4219 ctx->io_err = ret; 4220 process: 4221 while (!list_empty(&extents)) { 4222 em = list_entry(extents.next, struct extent_map, list); 4223 4224 list_del_init(&em->list); 4225 4226 /* 4227 * If we had an error we just need to delete everybody from our 4228 * private list. 4229 */ 4230 if (ret) { 4231 clear_em_logging(tree, em); 4232 free_extent_map(em); 4233 continue; 4234 } 4235 4236 write_unlock(&tree->lock); 4237 4238 ret = log_one_extent(trans, inode, root, em, path, logged_list, 4239 ctx); 4240 write_lock(&tree->lock); 4241 clear_em_logging(tree, em); 4242 free_extent_map(em); 4243 } 4244 WARN_ON(!list_empty(&extents)); 4245 write_unlock(&tree->lock); 4246 up_write(&inode->dio_sem); 4247 4248 btrfs_release_path(path); 4249 return ret; 4250 } 4251 4252 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4253 struct btrfs_path *path, u64 *size_ret) 4254 { 4255 struct btrfs_key key; 4256 int ret; 4257 4258 key.objectid = btrfs_ino(inode); 4259 key.type = BTRFS_INODE_ITEM_KEY; 4260 key.offset = 0; 4261 4262 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4263 if (ret < 0) { 4264 return ret; 4265 } else if (ret > 0) { 4266 *size_ret = 0; 4267 } else { 4268 struct btrfs_inode_item *item; 4269 4270 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4271 struct btrfs_inode_item); 4272 *size_ret = btrfs_inode_size(path->nodes[0], item); 4273 } 4274 4275 btrfs_release_path(path); 4276 return 0; 4277 } 4278 4279 /* 4280 * At the moment we always log all xattrs. This is to figure out at log replay 4281 * time which xattrs must have their deletion replayed. If a xattr is missing 4282 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4283 * because if a xattr is deleted, the inode is fsynced and a power failure 4284 * happens, causing the log to be replayed the next time the fs is mounted, 4285 * we want the xattr to not exist anymore (same behaviour as other filesystems 4286 * with a journal, ext3/4, xfs, f2fs, etc). 4287 */ 4288 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4289 struct btrfs_root *root, 4290 struct btrfs_inode *inode, 4291 struct btrfs_path *path, 4292 struct btrfs_path *dst_path) 4293 { 4294 int ret; 4295 struct btrfs_key key; 4296 const u64 ino = btrfs_ino(inode); 4297 int ins_nr = 0; 4298 int start_slot = 0; 4299 4300 key.objectid = ino; 4301 key.type = BTRFS_XATTR_ITEM_KEY; 4302 key.offset = 0; 4303 4304 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4305 if (ret < 0) 4306 return ret; 4307 4308 while (true) { 4309 int slot = path->slots[0]; 4310 struct extent_buffer *leaf = path->nodes[0]; 4311 int nritems = btrfs_header_nritems(leaf); 4312 4313 if (slot >= nritems) { 4314 if (ins_nr > 0) { 4315 u64 last_extent = 0; 4316 4317 ret = copy_items(trans, inode, dst_path, path, 4318 &last_extent, start_slot, 4319 ins_nr, 1, 0); 4320 /* can't be 1, extent items aren't processed */ 4321 ASSERT(ret <= 0); 4322 if (ret < 0) 4323 return ret; 4324 ins_nr = 0; 4325 } 4326 ret = btrfs_next_leaf(root, path); 4327 if (ret < 0) 4328 return ret; 4329 else if (ret > 0) 4330 break; 4331 continue; 4332 } 4333 4334 btrfs_item_key_to_cpu(leaf, &key, slot); 4335 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4336 break; 4337 4338 if (ins_nr == 0) 4339 start_slot = slot; 4340 ins_nr++; 4341 path->slots[0]++; 4342 cond_resched(); 4343 } 4344 if (ins_nr > 0) { 4345 u64 last_extent = 0; 4346 4347 ret = copy_items(trans, inode, dst_path, path, 4348 &last_extent, start_slot, 4349 ins_nr, 1, 0); 4350 /* can't be 1, extent items aren't processed */ 4351 ASSERT(ret <= 0); 4352 if (ret < 0) 4353 return ret; 4354 } 4355 4356 return 0; 4357 } 4358 4359 /* 4360 * If the no holes feature is enabled we need to make sure any hole between the 4361 * last extent and the i_size of our inode is explicitly marked in the log. This 4362 * is to make sure that doing something like: 4363 * 4364 * 1) create file with 128Kb of data 4365 * 2) truncate file to 64Kb 4366 * 3) truncate file to 256Kb 4367 * 4) fsync file 4368 * 5) <crash/power failure> 4369 * 6) mount fs and trigger log replay 4370 * 4371 * Will give us a file with a size of 256Kb, the first 64Kb of data match what 4372 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the 4373 * file correspond to a hole. The presence of explicit holes in a log tree is 4374 * what guarantees that log replay will remove/adjust file extent items in the 4375 * fs/subvol tree. 4376 * 4377 * Here we do not need to care about holes between extents, that is already done 4378 * by copy_items(). We also only need to do this in the full sync path, where we 4379 * lookup for extents from the fs/subvol tree only. In the fast path case, we 4380 * lookup the list of modified extent maps and if any represents a hole, we 4381 * insert a corresponding extent representing a hole in the log tree. 4382 */ 4383 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans, 4384 struct btrfs_root *root, 4385 struct btrfs_inode *inode, 4386 struct btrfs_path *path) 4387 { 4388 struct btrfs_fs_info *fs_info = root->fs_info; 4389 int ret; 4390 struct btrfs_key key; 4391 u64 hole_start; 4392 u64 hole_size; 4393 struct extent_buffer *leaf; 4394 struct btrfs_root *log = root->log_root; 4395 const u64 ino = btrfs_ino(inode); 4396 const u64 i_size = i_size_read(&inode->vfs_inode); 4397 4398 if (!btrfs_fs_incompat(fs_info, NO_HOLES)) 4399 return 0; 4400 4401 key.objectid = ino; 4402 key.type = BTRFS_EXTENT_DATA_KEY; 4403 key.offset = (u64)-1; 4404 4405 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4406 ASSERT(ret != 0); 4407 if (ret < 0) 4408 return ret; 4409 4410 ASSERT(path->slots[0] > 0); 4411 path->slots[0]--; 4412 leaf = path->nodes[0]; 4413 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4414 4415 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 4416 /* inode does not have any extents */ 4417 hole_start = 0; 4418 hole_size = i_size; 4419 } else { 4420 struct btrfs_file_extent_item *extent; 4421 u64 len; 4422 4423 /* 4424 * If there's an extent beyond i_size, an explicit hole was 4425 * already inserted by copy_items(). 4426 */ 4427 if (key.offset >= i_size) 4428 return 0; 4429 4430 extent = btrfs_item_ptr(leaf, path->slots[0], 4431 struct btrfs_file_extent_item); 4432 4433 if (btrfs_file_extent_type(leaf, extent) == 4434 BTRFS_FILE_EXTENT_INLINE) { 4435 len = btrfs_file_extent_inline_len(leaf, 4436 path->slots[0], 4437 extent); 4438 ASSERT(len == i_size); 4439 return 0; 4440 } 4441 4442 len = btrfs_file_extent_num_bytes(leaf, extent); 4443 /* Last extent goes beyond i_size, no need to log a hole. */ 4444 if (key.offset + len > i_size) 4445 return 0; 4446 hole_start = key.offset + len; 4447 hole_size = i_size - hole_start; 4448 } 4449 btrfs_release_path(path); 4450 4451 /* Last extent ends at i_size. */ 4452 if (hole_size == 0) 4453 return 0; 4454 4455 hole_size = ALIGN(hole_size, fs_info->sectorsize); 4456 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0, 4457 hole_size, 0, hole_size, 0, 0, 0); 4458 return ret; 4459 } 4460 4461 /* 4462 * When we are logging a new inode X, check if it doesn't have a reference that 4463 * matches the reference from some other inode Y created in a past transaction 4464 * and that was renamed in the current transaction. If we don't do this, then at 4465 * log replay time we can lose inode Y (and all its files if it's a directory): 4466 * 4467 * mkdir /mnt/x 4468 * echo "hello world" > /mnt/x/foobar 4469 * sync 4470 * mv /mnt/x /mnt/y 4471 * mkdir /mnt/x # or touch /mnt/x 4472 * xfs_io -c fsync /mnt/x 4473 * <power fail> 4474 * mount fs, trigger log replay 4475 * 4476 * After the log replay procedure, we would lose the first directory and all its 4477 * files (file foobar). 4478 * For the case where inode Y is not a directory we simply end up losing it: 4479 * 4480 * echo "123" > /mnt/foo 4481 * sync 4482 * mv /mnt/foo /mnt/bar 4483 * echo "abc" > /mnt/foo 4484 * xfs_io -c fsync /mnt/foo 4485 * <power fail> 4486 * 4487 * We also need this for cases where a snapshot entry is replaced by some other 4488 * entry (file or directory) otherwise we end up with an unreplayable log due to 4489 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4490 * if it were a regular entry: 4491 * 4492 * mkdir /mnt/x 4493 * btrfs subvolume snapshot /mnt /mnt/x/snap 4494 * btrfs subvolume delete /mnt/x/snap 4495 * rmdir /mnt/x 4496 * mkdir /mnt/x 4497 * fsync /mnt/x or fsync some new file inside it 4498 * <power fail> 4499 * 4500 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4501 * the same transaction. 4502 */ 4503 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4504 const int slot, 4505 const struct btrfs_key *key, 4506 struct btrfs_inode *inode, 4507 u64 *other_ino) 4508 { 4509 int ret; 4510 struct btrfs_path *search_path; 4511 char *name = NULL; 4512 u32 name_len = 0; 4513 u32 item_size = btrfs_item_size_nr(eb, slot); 4514 u32 cur_offset = 0; 4515 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4516 4517 search_path = btrfs_alloc_path(); 4518 if (!search_path) 4519 return -ENOMEM; 4520 search_path->search_commit_root = 1; 4521 search_path->skip_locking = 1; 4522 4523 while (cur_offset < item_size) { 4524 u64 parent; 4525 u32 this_name_len; 4526 u32 this_len; 4527 unsigned long name_ptr; 4528 struct btrfs_dir_item *di; 4529 4530 if (key->type == BTRFS_INODE_REF_KEY) { 4531 struct btrfs_inode_ref *iref; 4532 4533 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4534 parent = key->offset; 4535 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4536 name_ptr = (unsigned long)(iref + 1); 4537 this_len = sizeof(*iref) + this_name_len; 4538 } else { 4539 struct btrfs_inode_extref *extref; 4540 4541 extref = (struct btrfs_inode_extref *)(ptr + 4542 cur_offset); 4543 parent = btrfs_inode_extref_parent(eb, extref); 4544 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4545 name_ptr = (unsigned long)&extref->name; 4546 this_len = sizeof(*extref) + this_name_len; 4547 } 4548 4549 if (this_name_len > name_len) { 4550 char *new_name; 4551 4552 new_name = krealloc(name, this_name_len, GFP_NOFS); 4553 if (!new_name) { 4554 ret = -ENOMEM; 4555 goto out; 4556 } 4557 name_len = this_name_len; 4558 name = new_name; 4559 } 4560 4561 read_extent_buffer(eb, name, name_ptr, this_name_len); 4562 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 4563 parent, name, this_name_len, 0); 4564 if (di && !IS_ERR(di)) { 4565 struct btrfs_key di_key; 4566 4567 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4568 di, &di_key); 4569 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4570 ret = 1; 4571 *other_ino = di_key.objectid; 4572 } else { 4573 ret = -EAGAIN; 4574 } 4575 goto out; 4576 } else if (IS_ERR(di)) { 4577 ret = PTR_ERR(di); 4578 goto out; 4579 } 4580 btrfs_release_path(search_path); 4581 4582 cur_offset += this_len; 4583 } 4584 ret = 0; 4585 out: 4586 btrfs_free_path(search_path); 4587 kfree(name); 4588 return ret; 4589 } 4590 4591 /* log a single inode in the tree log. 4592 * At least one parent directory for this inode must exist in the tree 4593 * or be logged already. 4594 * 4595 * Any items from this inode changed by the current transaction are copied 4596 * to the log tree. An extra reference is taken on any extents in this 4597 * file, allowing us to avoid a whole pile of corner cases around logging 4598 * blocks that have been removed from the tree. 4599 * 4600 * See LOG_INODE_ALL and related defines for a description of what inode_only 4601 * does. 4602 * 4603 * This handles both files and directories. 4604 */ 4605 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 4606 struct btrfs_root *root, struct btrfs_inode *inode, 4607 int inode_only, 4608 const loff_t start, 4609 const loff_t end, 4610 struct btrfs_log_ctx *ctx) 4611 { 4612 struct btrfs_fs_info *fs_info = root->fs_info; 4613 struct btrfs_path *path; 4614 struct btrfs_path *dst_path; 4615 struct btrfs_key min_key; 4616 struct btrfs_key max_key; 4617 struct btrfs_root *log = root->log_root; 4618 struct extent_buffer *src = NULL; 4619 LIST_HEAD(logged_list); 4620 u64 last_extent = 0; 4621 int err = 0; 4622 int ret; 4623 int nritems; 4624 int ins_start_slot = 0; 4625 int ins_nr; 4626 bool fast_search = false; 4627 u64 ino = btrfs_ino(inode); 4628 struct extent_map_tree *em_tree = &inode->extent_tree; 4629 u64 logged_isize = 0; 4630 bool need_log_inode_item = true; 4631 4632 path = btrfs_alloc_path(); 4633 if (!path) 4634 return -ENOMEM; 4635 dst_path = btrfs_alloc_path(); 4636 if (!dst_path) { 4637 btrfs_free_path(path); 4638 return -ENOMEM; 4639 } 4640 4641 min_key.objectid = ino; 4642 min_key.type = BTRFS_INODE_ITEM_KEY; 4643 min_key.offset = 0; 4644 4645 max_key.objectid = ino; 4646 4647 4648 /* today the code can only do partial logging of directories */ 4649 if (S_ISDIR(inode->vfs_inode.i_mode) || 4650 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4651 &inode->runtime_flags) && 4652 inode_only >= LOG_INODE_EXISTS)) 4653 max_key.type = BTRFS_XATTR_ITEM_KEY; 4654 else 4655 max_key.type = (u8)-1; 4656 max_key.offset = (u64)-1; 4657 4658 /* 4659 * Only run delayed items if we are a dir or a new file. 4660 * Otherwise commit the delayed inode only, which is needed in 4661 * order for the log replay code to mark inodes for link count 4662 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items). 4663 */ 4664 if (S_ISDIR(inode->vfs_inode.i_mode) || 4665 inode->generation > fs_info->last_trans_committed) 4666 ret = btrfs_commit_inode_delayed_items(trans, inode); 4667 else 4668 ret = btrfs_commit_inode_delayed_inode(inode); 4669 4670 if (ret) { 4671 btrfs_free_path(path); 4672 btrfs_free_path(dst_path); 4673 return ret; 4674 } 4675 4676 if (inode_only == LOG_OTHER_INODE) { 4677 inode_only = LOG_INODE_EXISTS; 4678 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 4679 } else { 4680 mutex_lock(&inode->log_mutex); 4681 } 4682 4683 /* 4684 * a brute force approach to making sure we get the most uptodate 4685 * copies of everything. 4686 */ 4687 if (S_ISDIR(inode->vfs_inode.i_mode)) { 4688 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 4689 4690 if (inode_only == LOG_INODE_EXISTS) 4691 max_key_type = BTRFS_XATTR_ITEM_KEY; 4692 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 4693 } else { 4694 if (inode_only == LOG_INODE_EXISTS) { 4695 /* 4696 * Make sure the new inode item we write to the log has 4697 * the same isize as the current one (if it exists). 4698 * This is necessary to prevent data loss after log 4699 * replay, and also to prevent doing a wrong expanding 4700 * truncate - for e.g. create file, write 4K into offset 4701 * 0, fsync, write 4K into offset 4096, add hard link, 4702 * fsync some other file (to sync log), power fail - if 4703 * we use the inode's current i_size, after log replay 4704 * we get a 8Kb file, with the last 4Kb extent as a hole 4705 * (zeroes), as if an expanding truncate happened, 4706 * instead of getting a file of 4Kb only. 4707 */ 4708 err = logged_inode_size(log, inode, path, &logged_isize); 4709 if (err) 4710 goto out_unlock; 4711 } 4712 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4713 &inode->runtime_flags)) { 4714 if (inode_only == LOG_INODE_EXISTS) { 4715 max_key.type = BTRFS_XATTR_ITEM_KEY; 4716 ret = drop_objectid_items(trans, log, path, ino, 4717 max_key.type); 4718 } else { 4719 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4720 &inode->runtime_flags); 4721 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 4722 &inode->runtime_flags); 4723 while(1) { 4724 ret = btrfs_truncate_inode_items(trans, 4725 log, &inode->vfs_inode, 0, 0); 4726 if (ret != -EAGAIN) 4727 break; 4728 } 4729 } 4730 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 4731 &inode->runtime_flags) || 4732 inode_only == LOG_INODE_EXISTS) { 4733 if (inode_only == LOG_INODE_ALL) 4734 fast_search = true; 4735 max_key.type = BTRFS_XATTR_ITEM_KEY; 4736 ret = drop_objectid_items(trans, log, path, ino, 4737 max_key.type); 4738 } else { 4739 if (inode_only == LOG_INODE_ALL) 4740 fast_search = true; 4741 goto log_extents; 4742 } 4743 4744 } 4745 if (ret) { 4746 err = ret; 4747 goto out_unlock; 4748 } 4749 4750 while (1) { 4751 ins_nr = 0; 4752 ret = btrfs_search_forward(root, &min_key, 4753 path, trans->transid); 4754 if (ret < 0) { 4755 err = ret; 4756 goto out_unlock; 4757 } 4758 if (ret != 0) 4759 break; 4760 again: 4761 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 4762 if (min_key.objectid != ino) 4763 break; 4764 if (min_key.type > max_key.type) 4765 break; 4766 4767 if (min_key.type == BTRFS_INODE_ITEM_KEY) 4768 need_log_inode_item = false; 4769 4770 if ((min_key.type == BTRFS_INODE_REF_KEY || 4771 min_key.type == BTRFS_INODE_EXTREF_KEY) && 4772 inode->generation == trans->transid) { 4773 u64 other_ino = 0; 4774 4775 ret = btrfs_check_ref_name_override(path->nodes[0], 4776 path->slots[0], &min_key, inode, 4777 &other_ino); 4778 if (ret < 0) { 4779 err = ret; 4780 goto out_unlock; 4781 } else if (ret > 0 && ctx && 4782 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 4783 struct btrfs_key inode_key; 4784 struct inode *other_inode; 4785 4786 if (ins_nr > 0) { 4787 ins_nr++; 4788 } else { 4789 ins_nr = 1; 4790 ins_start_slot = path->slots[0]; 4791 } 4792 ret = copy_items(trans, inode, dst_path, path, 4793 &last_extent, ins_start_slot, 4794 ins_nr, inode_only, 4795 logged_isize); 4796 if (ret < 0) { 4797 err = ret; 4798 goto out_unlock; 4799 } 4800 ins_nr = 0; 4801 btrfs_release_path(path); 4802 inode_key.objectid = other_ino; 4803 inode_key.type = BTRFS_INODE_ITEM_KEY; 4804 inode_key.offset = 0; 4805 other_inode = btrfs_iget(fs_info->sb, 4806 &inode_key, root, 4807 NULL); 4808 /* 4809 * If the other inode that had a conflicting dir 4810 * entry was deleted in the current transaction, 4811 * we don't need to do more work nor fallback to 4812 * a transaction commit. 4813 */ 4814 if (IS_ERR(other_inode) && 4815 PTR_ERR(other_inode) == -ENOENT) { 4816 goto next_key; 4817 } else if (IS_ERR(other_inode)) { 4818 err = PTR_ERR(other_inode); 4819 goto out_unlock; 4820 } 4821 /* 4822 * We are safe logging the other inode without 4823 * acquiring its i_mutex as long as we log with 4824 * the LOG_INODE_EXISTS mode. We're safe against 4825 * concurrent renames of the other inode as well 4826 * because during a rename we pin the log and 4827 * update the log with the new name before we 4828 * unpin it. 4829 */ 4830 err = btrfs_log_inode(trans, root, 4831 BTRFS_I(other_inode), 4832 LOG_OTHER_INODE, 0, LLONG_MAX, 4833 ctx); 4834 iput(other_inode); 4835 if (err) 4836 goto out_unlock; 4837 else 4838 goto next_key; 4839 } 4840 } 4841 4842 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 4843 if (min_key.type == BTRFS_XATTR_ITEM_KEY) { 4844 if (ins_nr == 0) 4845 goto next_slot; 4846 ret = copy_items(trans, inode, dst_path, path, 4847 &last_extent, ins_start_slot, 4848 ins_nr, inode_only, logged_isize); 4849 if (ret < 0) { 4850 err = ret; 4851 goto out_unlock; 4852 } 4853 ins_nr = 0; 4854 if (ret) { 4855 btrfs_release_path(path); 4856 continue; 4857 } 4858 goto next_slot; 4859 } 4860 4861 src = path->nodes[0]; 4862 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 4863 ins_nr++; 4864 goto next_slot; 4865 } else if (!ins_nr) { 4866 ins_start_slot = path->slots[0]; 4867 ins_nr = 1; 4868 goto next_slot; 4869 } 4870 4871 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4872 ins_start_slot, ins_nr, inode_only, 4873 logged_isize); 4874 if (ret < 0) { 4875 err = ret; 4876 goto out_unlock; 4877 } 4878 if (ret) { 4879 ins_nr = 0; 4880 btrfs_release_path(path); 4881 continue; 4882 } 4883 ins_nr = 1; 4884 ins_start_slot = path->slots[0]; 4885 next_slot: 4886 4887 nritems = btrfs_header_nritems(path->nodes[0]); 4888 path->slots[0]++; 4889 if (path->slots[0] < nritems) { 4890 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 4891 path->slots[0]); 4892 goto again; 4893 } 4894 if (ins_nr) { 4895 ret = copy_items(trans, inode, dst_path, path, 4896 &last_extent, ins_start_slot, 4897 ins_nr, inode_only, logged_isize); 4898 if (ret < 0) { 4899 err = ret; 4900 goto out_unlock; 4901 } 4902 ret = 0; 4903 ins_nr = 0; 4904 } 4905 btrfs_release_path(path); 4906 next_key: 4907 if (min_key.offset < (u64)-1) { 4908 min_key.offset++; 4909 } else if (min_key.type < max_key.type) { 4910 min_key.type++; 4911 min_key.offset = 0; 4912 } else { 4913 break; 4914 } 4915 } 4916 if (ins_nr) { 4917 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4918 ins_start_slot, ins_nr, inode_only, 4919 logged_isize); 4920 if (ret < 0) { 4921 err = ret; 4922 goto out_unlock; 4923 } 4924 ret = 0; 4925 ins_nr = 0; 4926 } 4927 4928 btrfs_release_path(path); 4929 btrfs_release_path(dst_path); 4930 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 4931 if (err) 4932 goto out_unlock; 4933 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 4934 btrfs_release_path(path); 4935 btrfs_release_path(dst_path); 4936 err = btrfs_log_trailing_hole(trans, root, inode, path); 4937 if (err) 4938 goto out_unlock; 4939 } 4940 log_extents: 4941 btrfs_release_path(path); 4942 btrfs_release_path(dst_path); 4943 if (need_log_inode_item) { 4944 err = log_inode_item(trans, log, dst_path, inode); 4945 if (err) 4946 goto out_unlock; 4947 } 4948 if (fast_search) { 4949 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 4950 &logged_list, ctx, start, end); 4951 if (ret) { 4952 err = ret; 4953 goto out_unlock; 4954 } 4955 } else if (inode_only == LOG_INODE_ALL) { 4956 struct extent_map *em, *n; 4957 4958 write_lock(&em_tree->lock); 4959 /* 4960 * We can't just remove every em if we're called for a ranged 4961 * fsync - that is, one that doesn't cover the whole possible 4962 * file range (0 to LLONG_MAX). This is because we can have 4963 * em's that fall outside the range we're logging and therefore 4964 * their ordered operations haven't completed yet 4965 * (btrfs_finish_ordered_io() not invoked yet). This means we 4966 * didn't get their respective file extent item in the fs/subvol 4967 * tree yet, and need to let the next fast fsync (one which 4968 * consults the list of modified extent maps) find the em so 4969 * that it logs a matching file extent item and waits for the 4970 * respective ordered operation to complete (if it's still 4971 * running). 4972 * 4973 * Removing every em outside the range we're logging would make 4974 * the next fast fsync not log their matching file extent items, 4975 * therefore making us lose data after a log replay. 4976 */ 4977 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 4978 list) { 4979 const u64 mod_end = em->mod_start + em->mod_len - 1; 4980 4981 if (em->mod_start >= start && mod_end <= end) 4982 list_del_init(&em->list); 4983 } 4984 write_unlock(&em_tree->lock); 4985 } 4986 4987 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 4988 ret = log_directory_changes(trans, root, inode, path, dst_path, 4989 ctx); 4990 if (ret) { 4991 err = ret; 4992 goto out_unlock; 4993 } 4994 } 4995 4996 spin_lock(&inode->lock); 4997 inode->logged_trans = trans->transid; 4998 inode->last_log_commit = inode->last_sub_trans; 4999 spin_unlock(&inode->lock); 5000 out_unlock: 5001 if (unlikely(err)) 5002 btrfs_put_logged_extents(&logged_list); 5003 else 5004 btrfs_submit_logged_extents(&logged_list, log); 5005 mutex_unlock(&inode->log_mutex); 5006 5007 btrfs_free_path(path); 5008 btrfs_free_path(dst_path); 5009 return err; 5010 } 5011 5012 /* 5013 * Check if we must fallback to a transaction commit when logging an inode. 5014 * This must be called after logging the inode and is used only in the context 5015 * when fsyncing an inode requires the need to log some other inode - in which 5016 * case we can't lock the i_mutex of each other inode we need to log as that 5017 * can lead to deadlocks with concurrent fsync against other inodes (as we can 5018 * log inodes up or down in the hierarchy) or rename operations for example. So 5019 * we take the log_mutex of the inode after we have logged it and then check for 5020 * its last_unlink_trans value - this is safe because any task setting 5021 * last_unlink_trans must take the log_mutex and it must do this before it does 5022 * the actual unlink operation, so if we do this check before a concurrent task 5023 * sets last_unlink_trans it means we've logged a consistent version/state of 5024 * all the inode items, otherwise we are not sure and must do a transaction 5025 * commit (the concurrent task might have only updated last_unlink_trans before 5026 * we logged the inode or it might have also done the unlink). 5027 */ 5028 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, 5029 struct btrfs_inode *inode) 5030 { 5031 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5032 bool ret = false; 5033 5034 mutex_lock(&inode->log_mutex); 5035 if (inode->last_unlink_trans > fs_info->last_trans_committed) { 5036 /* 5037 * Make sure any commits to the log are forced to be full 5038 * commits. 5039 */ 5040 btrfs_set_log_full_commit(fs_info, trans); 5041 ret = true; 5042 } 5043 mutex_unlock(&inode->log_mutex); 5044 5045 return ret; 5046 } 5047 5048 /* 5049 * follow the dentry parent pointers up the chain and see if any 5050 * of the directories in it require a full commit before they can 5051 * be logged. Returns zero if nothing special needs to be done or 1 if 5052 * a full commit is required. 5053 */ 5054 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 5055 struct btrfs_inode *inode, 5056 struct dentry *parent, 5057 struct super_block *sb, 5058 u64 last_committed) 5059 { 5060 int ret = 0; 5061 struct dentry *old_parent = NULL; 5062 struct btrfs_inode *orig_inode = inode; 5063 5064 /* 5065 * for regular files, if its inode is already on disk, we don't 5066 * have to worry about the parents at all. This is because 5067 * we can use the last_unlink_trans field to record renames 5068 * and other fun in this file. 5069 */ 5070 if (S_ISREG(inode->vfs_inode.i_mode) && 5071 inode->generation <= last_committed && 5072 inode->last_unlink_trans <= last_committed) 5073 goto out; 5074 5075 if (!S_ISDIR(inode->vfs_inode.i_mode)) { 5076 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5077 goto out; 5078 inode = BTRFS_I(d_inode(parent)); 5079 } 5080 5081 while (1) { 5082 /* 5083 * If we are logging a directory then we start with our inode, 5084 * not our parent's inode, so we need to skip setting the 5085 * logged_trans so that further down in the log code we don't 5086 * think this inode has already been logged. 5087 */ 5088 if (inode != orig_inode) 5089 inode->logged_trans = trans->transid; 5090 smp_mb(); 5091 5092 if (btrfs_must_commit_transaction(trans, inode)) { 5093 ret = 1; 5094 break; 5095 } 5096 5097 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5098 break; 5099 5100 if (IS_ROOT(parent)) { 5101 inode = BTRFS_I(d_inode(parent)); 5102 if (btrfs_must_commit_transaction(trans, inode)) 5103 ret = 1; 5104 break; 5105 } 5106 5107 parent = dget_parent(parent); 5108 dput(old_parent); 5109 old_parent = parent; 5110 inode = BTRFS_I(d_inode(parent)); 5111 5112 } 5113 dput(old_parent); 5114 out: 5115 return ret; 5116 } 5117 5118 struct btrfs_dir_list { 5119 u64 ino; 5120 struct list_head list; 5121 }; 5122 5123 /* 5124 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5125 * details about the why it is needed. 5126 * This is a recursive operation - if an existing dentry corresponds to a 5127 * directory, that directory's new entries are logged too (same behaviour as 5128 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5129 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5130 * complains about the following circular lock dependency / possible deadlock: 5131 * 5132 * CPU0 CPU1 5133 * ---- ---- 5134 * lock(&type->i_mutex_dir_key#3/2); 5135 * lock(sb_internal#2); 5136 * lock(&type->i_mutex_dir_key#3/2); 5137 * lock(&sb->s_type->i_mutex_key#14); 5138 * 5139 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5140 * sb_start_intwrite() in btrfs_start_transaction(). 5141 * Not locking i_mutex of the inodes is still safe because: 5142 * 5143 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5144 * that while logging the inode new references (names) are added or removed 5145 * from the inode, leaving the logged inode item with a link count that does 5146 * not match the number of logged inode reference items. This is fine because 5147 * at log replay time we compute the real number of links and correct the 5148 * link count in the inode item (see replay_one_buffer() and 5149 * link_to_fixup_dir()); 5150 * 5151 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5152 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5153 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5154 * has a size that doesn't match the sum of the lengths of all the logged 5155 * names. This does not result in a problem because if a dir_item key is 5156 * logged but its matching dir_index key is not logged, at log replay time we 5157 * don't use it to replay the respective name (see replay_one_name()). On the 5158 * other hand if only the dir_index key ends up being logged, the respective 5159 * name is added to the fs/subvol tree with both the dir_item and dir_index 5160 * keys created (see replay_one_name()). 5161 * The directory's inode item with a wrong i_size is not a problem as well, 5162 * since we don't use it at log replay time to set the i_size in the inode 5163 * item of the fs/subvol tree (see overwrite_item()). 5164 */ 5165 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5166 struct btrfs_root *root, 5167 struct btrfs_inode *start_inode, 5168 struct btrfs_log_ctx *ctx) 5169 { 5170 struct btrfs_fs_info *fs_info = root->fs_info; 5171 struct btrfs_root *log = root->log_root; 5172 struct btrfs_path *path; 5173 LIST_HEAD(dir_list); 5174 struct btrfs_dir_list *dir_elem; 5175 int ret = 0; 5176 5177 path = btrfs_alloc_path(); 5178 if (!path) 5179 return -ENOMEM; 5180 5181 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5182 if (!dir_elem) { 5183 btrfs_free_path(path); 5184 return -ENOMEM; 5185 } 5186 dir_elem->ino = btrfs_ino(start_inode); 5187 list_add_tail(&dir_elem->list, &dir_list); 5188 5189 while (!list_empty(&dir_list)) { 5190 struct extent_buffer *leaf; 5191 struct btrfs_key min_key; 5192 int nritems; 5193 int i; 5194 5195 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5196 list); 5197 if (ret) 5198 goto next_dir_inode; 5199 5200 min_key.objectid = dir_elem->ino; 5201 min_key.type = BTRFS_DIR_ITEM_KEY; 5202 min_key.offset = 0; 5203 again: 5204 btrfs_release_path(path); 5205 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5206 if (ret < 0) { 5207 goto next_dir_inode; 5208 } else if (ret > 0) { 5209 ret = 0; 5210 goto next_dir_inode; 5211 } 5212 5213 process_leaf: 5214 leaf = path->nodes[0]; 5215 nritems = btrfs_header_nritems(leaf); 5216 for (i = path->slots[0]; i < nritems; i++) { 5217 struct btrfs_dir_item *di; 5218 struct btrfs_key di_key; 5219 struct inode *di_inode; 5220 struct btrfs_dir_list *new_dir_elem; 5221 int log_mode = LOG_INODE_EXISTS; 5222 int type; 5223 5224 btrfs_item_key_to_cpu(leaf, &min_key, i); 5225 if (min_key.objectid != dir_elem->ino || 5226 min_key.type != BTRFS_DIR_ITEM_KEY) 5227 goto next_dir_inode; 5228 5229 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5230 type = btrfs_dir_type(leaf, di); 5231 if (btrfs_dir_transid(leaf, di) < trans->transid && 5232 type != BTRFS_FT_DIR) 5233 continue; 5234 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5235 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5236 continue; 5237 5238 btrfs_release_path(path); 5239 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL); 5240 if (IS_ERR(di_inode)) { 5241 ret = PTR_ERR(di_inode); 5242 goto next_dir_inode; 5243 } 5244 5245 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) { 5246 iput(di_inode); 5247 break; 5248 } 5249 5250 ctx->log_new_dentries = false; 5251 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5252 log_mode = LOG_INODE_ALL; 5253 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), 5254 log_mode, 0, LLONG_MAX, ctx); 5255 if (!ret && 5256 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode))) 5257 ret = 1; 5258 iput(di_inode); 5259 if (ret) 5260 goto next_dir_inode; 5261 if (ctx->log_new_dentries) { 5262 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5263 GFP_NOFS); 5264 if (!new_dir_elem) { 5265 ret = -ENOMEM; 5266 goto next_dir_inode; 5267 } 5268 new_dir_elem->ino = di_key.objectid; 5269 list_add_tail(&new_dir_elem->list, &dir_list); 5270 } 5271 break; 5272 } 5273 if (i == nritems) { 5274 ret = btrfs_next_leaf(log, path); 5275 if (ret < 0) { 5276 goto next_dir_inode; 5277 } else if (ret > 0) { 5278 ret = 0; 5279 goto next_dir_inode; 5280 } 5281 goto process_leaf; 5282 } 5283 if (min_key.offset < (u64)-1) { 5284 min_key.offset++; 5285 goto again; 5286 } 5287 next_dir_inode: 5288 list_del(&dir_elem->list); 5289 kfree(dir_elem); 5290 } 5291 5292 btrfs_free_path(path); 5293 return ret; 5294 } 5295 5296 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5297 struct btrfs_inode *inode, 5298 struct btrfs_log_ctx *ctx) 5299 { 5300 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5301 int ret; 5302 struct btrfs_path *path; 5303 struct btrfs_key key; 5304 struct btrfs_root *root = inode->root; 5305 const u64 ino = btrfs_ino(inode); 5306 5307 path = btrfs_alloc_path(); 5308 if (!path) 5309 return -ENOMEM; 5310 path->skip_locking = 1; 5311 path->search_commit_root = 1; 5312 5313 key.objectid = ino; 5314 key.type = BTRFS_INODE_REF_KEY; 5315 key.offset = 0; 5316 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5317 if (ret < 0) 5318 goto out; 5319 5320 while (true) { 5321 struct extent_buffer *leaf = path->nodes[0]; 5322 int slot = path->slots[0]; 5323 u32 cur_offset = 0; 5324 u32 item_size; 5325 unsigned long ptr; 5326 5327 if (slot >= btrfs_header_nritems(leaf)) { 5328 ret = btrfs_next_leaf(root, path); 5329 if (ret < 0) 5330 goto out; 5331 else if (ret > 0) 5332 break; 5333 continue; 5334 } 5335 5336 btrfs_item_key_to_cpu(leaf, &key, slot); 5337 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5338 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5339 break; 5340 5341 item_size = btrfs_item_size_nr(leaf, slot); 5342 ptr = btrfs_item_ptr_offset(leaf, slot); 5343 while (cur_offset < item_size) { 5344 struct btrfs_key inode_key; 5345 struct inode *dir_inode; 5346 5347 inode_key.type = BTRFS_INODE_ITEM_KEY; 5348 inode_key.offset = 0; 5349 5350 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5351 struct btrfs_inode_extref *extref; 5352 5353 extref = (struct btrfs_inode_extref *) 5354 (ptr + cur_offset); 5355 inode_key.objectid = btrfs_inode_extref_parent( 5356 leaf, extref); 5357 cur_offset += sizeof(*extref); 5358 cur_offset += btrfs_inode_extref_name_len(leaf, 5359 extref); 5360 } else { 5361 inode_key.objectid = key.offset; 5362 cur_offset = item_size; 5363 } 5364 5365 dir_inode = btrfs_iget(fs_info->sb, &inode_key, 5366 root, NULL); 5367 /* If parent inode was deleted, skip it. */ 5368 if (IS_ERR(dir_inode)) 5369 continue; 5370 5371 if (ctx) 5372 ctx->log_new_dentries = false; 5373 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), 5374 LOG_INODE_ALL, 0, LLONG_MAX, ctx); 5375 if (!ret && 5376 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode))) 5377 ret = 1; 5378 if (!ret && ctx && ctx->log_new_dentries) 5379 ret = log_new_dir_dentries(trans, root, 5380 BTRFS_I(dir_inode), ctx); 5381 iput(dir_inode); 5382 if (ret) 5383 goto out; 5384 } 5385 path->slots[0]++; 5386 } 5387 ret = 0; 5388 out: 5389 btrfs_free_path(path); 5390 return ret; 5391 } 5392 5393 /* 5394 * helper function around btrfs_log_inode to make sure newly created 5395 * parent directories also end up in the log. A minimal inode and backref 5396 * only logging is done of any parent directories that are older than 5397 * the last committed transaction 5398 */ 5399 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 5400 struct btrfs_root *root, 5401 struct btrfs_inode *inode, 5402 struct dentry *parent, 5403 const loff_t start, 5404 const loff_t end, 5405 int exists_only, 5406 struct btrfs_log_ctx *ctx) 5407 { 5408 struct btrfs_fs_info *fs_info = root->fs_info; 5409 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; 5410 struct super_block *sb; 5411 struct dentry *old_parent = NULL; 5412 int ret = 0; 5413 u64 last_committed = fs_info->last_trans_committed; 5414 bool log_dentries = false; 5415 struct btrfs_inode *orig_inode = inode; 5416 5417 sb = inode->vfs_inode.i_sb; 5418 5419 if (btrfs_test_opt(fs_info, NOTREELOG)) { 5420 ret = 1; 5421 goto end_no_trans; 5422 } 5423 5424 /* 5425 * The prev transaction commit doesn't complete, we need do 5426 * full commit by ourselves. 5427 */ 5428 if (fs_info->last_trans_log_full_commit > 5429 fs_info->last_trans_committed) { 5430 ret = 1; 5431 goto end_no_trans; 5432 } 5433 5434 if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) { 5435 ret = 1; 5436 goto end_no_trans; 5437 } 5438 5439 ret = check_parent_dirs_for_sync(trans, inode, parent, sb, 5440 last_committed); 5441 if (ret) 5442 goto end_no_trans; 5443 5444 if (btrfs_inode_in_log(inode, trans->transid)) { 5445 ret = BTRFS_NO_LOG_SYNC; 5446 goto end_no_trans; 5447 } 5448 5449 ret = start_log_trans(trans, root, ctx); 5450 if (ret) 5451 goto end_no_trans; 5452 5453 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 5454 if (ret) 5455 goto end_trans; 5456 5457 /* 5458 * for regular files, if its inode is already on disk, we don't 5459 * have to worry about the parents at all. This is because 5460 * we can use the last_unlink_trans field to record renames 5461 * and other fun in this file. 5462 */ 5463 if (S_ISREG(inode->vfs_inode.i_mode) && 5464 inode->generation <= last_committed && 5465 inode->last_unlink_trans <= last_committed) { 5466 ret = 0; 5467 goto end_trans; 5468 } 5469 5470 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) 5471 log_dentries = true; 5472 5473 /* 5474 * On unlink we must make sure all our current and old parent directory 5475 * inodes are fully logged. This is to prevent leaving dangling 5476 * directory index entries in directories that were our parents but are 5477 * not anymore. Not doing this results in old parent directory being 5478 * impossible to delete after log replay (rmdir will always fail with 5479 * error -ENOTEMPTY). 5480 * 5481 * Example 1: 5482 * 5483 * mkdir testdir 5484 * touch testdir/foo 5485 * ln testdir/foo testdir/bar 5486 * sync 5487 * unlink testdir/bar 5488 * xfs_io -c fsync testdir/foo 5489 * <power failure> 5490 * mount fs, triggers log replay 5491 * 5492 * If we don't log the parent directory (testdir), after log replay the 5493 * directory still has an entry pointing to the file inode using the bar 5494 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 5495 * the file inode has a link count of 1. 5496 * 5497 * Example 2: 5498 * 5499 * mkdir testdir 5500 * touch foo 5501 * ln foo testdir/foo2 5502 * ln foo testdir/foo3 5503 * sync 5504 * unlink testdir/foo3 5505 * xfs_io -c fsync foo 5506 * <power failure> 5507 * mount fs, triggers log replay 5508 * 5509 * Similar as the first example, after log replay the parent directory 5510 * testdir still has an entry pointing to the inode file with name foo3 5511 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 5512 * and has a link count of 2. 5513 */ 5514 if (inode->last_unlink_trans > last_committed) { 5515 ret = btrfs_log_all_parents(trans, orig_inode, ctx); 5516 if (ret) 5517 goto end_trans; 5518 } 5519 5520 while (1) { 5521 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5522 break; 5523 5524 inode = BTRFS_I(d_inode(parent)); 5525 if (root != inode->root) 5526 break; 5527 5528 if (inode->generation > last_committed) { 5529 ret = btrfs_log_inode(trans, root, inode, 5530 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx); 5531 if (ret) 5532 goto end_trans; 5533 } 5534 if (IS_ROOT(parent)) 5535 break; 5536 5537 parent = dget_parent(parent); 5538 dput(old_parent); 5539 old_parent = parent; 5540 } 5541 if (log_dentries) 5542 ret = log_new_dir_dentries(trans, root, orig_inode, ctx); 5543 else 5544 ret = 0; 5545 end_trans: 5546 dput(old_parent); 5547 if (ret < 0) { 5548 btrfs_set_log_full_commit(fs_info, trans); 5549 ret = 1; 5550 } 5551 5552 if (ret) 5553 btrfs_remove_log_ctx(root, ctx); 5554 btrfs_end_log_trans(root); 5555 end_no_trans: 5556 return ret; 5557 } 5558 5559 /* 5560 * it is not safe to log dentry if the chunk root has added new 5561 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 5562 * If this returns 1, you must commit the transaction to safely get your 5563 * data on disk. 5564 */ 5565 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 5566 struct btrfs_root *root, struct dentry *dentry, 5567 const loff_t start, 5568 const loff_t end, 5569 struct btrfs_log_ctx *ctx) 5570 { 5571 struct dentry *parent = dget_parent(dentry); 5572 int ret; 5573 5574 ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)), 5575 parent, start, end, 0, ctx); 5576 dput(parent); 5577 5578 return ret; 5579 } 5580 5581 /* 5582 * should be called during mount to recover any replay any log trees 5583 * from the FS 5584 */ 5585 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 5586 { 5587 int ret; 5588 struct btrfs_path *path; 5589 struct btrfs_trans_handle *trans; 5590 struct btrfs_key key; 5591 struct btrfs_key found_key; 5592 struct btrfs_key tmp_key; 5593 struct btrfs_root *log; 5594 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 5595 struct walk_control wc = { 5596 .process_func = process_one_buffer, 5597 .stage = 0, 5598 }; 5599 5600 path = btrfs_alloc_path(); 5601 if (!path) 5602 return -ENOMEM; 5603 5604 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 5605 5606 trans = btrfs_start_transaction(fs_info->tree_root, 0); 5607 if (IS_ERR(trans)) { 5608 ret = PTR_ERR(trans); 5609 goto error; 5610 } 5611 5612 wc.trans = trans; 5613 wc.pin = 1; 5614 5615 ret = walk_log_tree(trans, log_root_tree, &wc); 5616 if (ret) { 5617 btrfs_handle_fs_error(fs_info, ret, 5618 "Failed to pin buffers while recovering log root tree."); 5619 goto error; 5620 } 5621 5622 again: 5623 key.objectid = BTRFS_TREE_LOG_OBJECTID; 5624 key.offset = (u64)-1; 5625 key.type = BTRFS_ROOT_ITEM_KEY; 5626 5627 while (1) { 5628 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 5629 5630 if (ret < 0) { 5631 btrfs_handle_fs_error(fs_info, ret, 5632 "Couldn't find tree log root."); 5633 goto error; 5634 } 5635 if (ret > 0) { 5636 if (path->slots[0] == 0) 5637 break; 5638 path->slots[0]--; 5639 } 5640 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 5641 path->slots[0]); 5642 btrfs_release_path(path); 5643 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 5644 break; 5645 5646 log = btrfs_read_fs_root(log_root_tree, &found_key); 5647 if (IS_ERR(log)) { 5648 ret = PTR_ERR(log); 5649 btrfs_handle_fs_error(fs_info, ret, 5650 "Couldn't read tree log root."); 5651 goto error; 5652 } 5653 5654 tmp_key.objectid = found_key.offset; 5655 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 5656 tmp_key.offset = (u64)-1; 5657 5658 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 5659 if (IS_ERR(wc.replay_dest)) { 5660 ret = PTR_ERR(wc.replay_dest); 5661 free_extent_buffer(log->node); 5662 free_extent_buffer(log->commit_root); 5663 kfree(log); 5664 btrfs_handle_fs_error(fs_info, ret, 5665 "Couldn't read target root for tree log recovery."); 5666 goto error; 5667 } 5668 5669 wc.replay_dest->log_root = log; 5670 btrfs_record_root_in_trans(trans, wc.replay_dest); 5671 ret = walk_log_tree(trans, log, &wc); 5672 5673 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 5674 ret = fixup_inode_link_counts(trans, wc.replay_dest, 5675 path); 5676 } 5677 5678 key.offset = found_key.offset - 1; 5679 wc.replay_dest->log_root = NULL; 5680 free_extent_buffer(log->node); 5681 free_extent_buffer(log->commit_root); 5682 kfree(log); 5683 5684 if (ret) 5685 goto error; 5686 5687 if (found_key.offset == 0) 5688 break; 5689 } 5690 btrfs_release_path(path); 5691 5692 /* step one is to pin it all, step two is to replay just inodes */ 5693 if (wc.pin) { 5694 wc.pin = 0; 5695 wc.process_func = replay_one_buffer; 5696 wc.stage = LOG_WALK_REPLAY_INODES; 5697 goto again; 5698 } 5699 /* step three is to replay everything */ 5700 if (wc.stage < LOG_WALK_REPLAY_ALL) { 5701 wc.stage++; 5702 goto again; 5703 } 5704 5705 btrfs_free_path(path); 5706 5707 /* step 4: commit the transaction, which also unpins the blocks */ 5708 ret = btrfs_commit_transaction(trans); 5709 if (ret) 5710 return ret; 5711 5712 free_extent_buffer(log_root_tree->node); 5713 log_root_tree->log_root = NULL; 5714 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 5715 kfree(log_root_tree); 5716 5717 return 0; 5718 error: 5719 if (wc.trans) 5720 btrfs_end_transaction(wc.trans); 5721 btrfs_free_path(path); 5722 return ret; 5723 } 5724 5725 /* 5726 * there are some corner cases where we want to force a full 5727 * commit instead of allowing a directory to be logged. 5728 * 5729 * They revolve around files there were unlinked from the directory, and 5730 * this function updates the parent directory so that a full commit is 5731 * properly done if it is fsync'd later after the unlinks are done. 5732 * 5733 * Must be called before the unlink operations (updates to the subvolume tree, 5734 * inodes, etc) are done. 5735 */ 5736 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 5737 struct btrfs_inode *dir, struct btrfs_inode *inode, 5738 int for_rename) 5739 { 5740 /* 5741 * when we're logging a file, if it hasn't been renamed 5742 * or unlinked, and its inode is fully committed on disk, 5743 * we don't have to worry about walking up the directory chain 5744 * to log its parents. 5745 * 5746 * So, we use the last_unlink_trans field to put this transid 5747 * into the file. When the file is logged we check it and 5748 * don't log the parents if the file is fully on disk. 5749 */ 5750 mutex_lock(&inode->log_mutex); 5751 inode->last_unlink_trans = trans->transid; 5752 mutex_unlock(&inode->log_mutex); 5753 5754 /* 5755 * if this directory was already logged any new 5756 * names for this file/dir will get recorded 5757 */ 5758 smp_mb(); 5759 if (dir->logged_trans == trans->transid) 5760 return; 5761 5762 /* 5763 * if the inode we're about to unlink was logged, 5764 * the log will be properly updated for any new names 5765 */ 5766 if (inode->logged_trans == trans->transid) 5767 return; 5768 5769 /* 5770 * when renaming files across directories, if the directory 5771 * there we're unlinking from gets fsync'd later on, there's 5772 * no way to find the destination directory later and fsync it 5773 * properly. So, we have to be conservative and force commits 5774 * so the new name gets discovered. 5775 */ 5776 if (for_rename) 5777 goto record; 5778 5779 /* we can safely do the unlink without any special recording */ 5780 return; 5781 5782 record: 5783 mutex_lock(&dir->log_mutex); 5784 dir->last_unlink_trans = trans->transid; 5785 mutex_unlock(&dir->log_mutex); 5786 } 5787 5788 /* 5789 * Make sure that if someone attempts to fsync the parent directory of a deleted 5790 * snapshot, it ends up triggering a transaction commit. This is to guarantee 5791 * that after replaying the log tree of the parent directory's root we will not 5792 * see the snapshot anymore and at log replay time we will not see any log tree 5793 * corresponding to the deleted snapshot's root, which could lead to replaying 5794 * it after replaying the log tree of the parent directory (which would replay 5795 * the snapshot delete operation). 5796 * 5797 * Must be called before the actual snapshot destroy operation (updates to the 5798 * parent root and tree of tree roots trees, etc) are done. 5799 */ 5800 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 5801 struct btrfs_inode *dir) 5802 { 5803 mutex_lock(&dir->log_mutex); 5804 dir->last_unlink_trans = trans->transid; 5805 mutex_unlock(&dir->log_mutex); 5806 } 5807 5808 /* 5809 * Call this after adding a new name for a file and it will properly 5810 * update the log to reflect the new name. 5811 * 5812 * It will return zero if all goes well, and it will return 1 if a 5813 * full transaction commit is required. 5814 */ 5815 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 5816 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 5817 struct dentry *parent) 5818 { 5819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5820 struct btrfs_root *root = inode->root; 5821 5822 /* 5823 * this will force the logging code to walk the dentry chain 5824 * up for the file 5825 */ 5826 if (S_ISREG(inode->vfs_inode.i_mode)) 5827 inode->last_unlink_trans = trans->transid; 5828 5829 /* 5830 * if this inode hasn't been logged and directory we're renaming it 5831 * from hasn't been logged, we don't need to log it 5832 */ 5833 if (inode->logged_trans <= fs_info->last_trans_committed && 5834 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed)) 5835 return 0; 5836 5837 return btrfs_log_inode_parent(trans, root, inode, parent, 0, 5838 LLONG_MAX, 1, NULL); 5839 } 5840 5841