xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 4800cd83)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28 
29 /* magic values for the inode_only field in btrfs_log_inode:
30  *
31  * LOG_INODE_ALL means to log everything
32  * LOG_INODE_EXISTS means to log just enough to recreate the inode
33  * during log replay
34  */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root, struct inode *inode,
96 			     int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 			     struct btrfs_root *root,
99 			     struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 				       struct btrfs_root *root,
102 				       struct btrfs_root *log,
103 				       struct btrfs_path *path,
104 				       u64 dirid, int del_all);
105 
106 /*
107  * tree logging is a special write ahead log used to make sure that
108  * fsyncs and O_SYNCs can happen without doing full tree commits.
109  *
110  * Full tree commits are expensive because they require commonly
111  * modified blocks to be recowed, creating many dirty pages in the
112  * extent tree an 4x-6x higher write load than ext3.
113  *
114  * Instead of doing a tree commit on every fsync, we use the
115  * key ranges and transaction ids to find items for a given file or directory
116  * that have changed in this transaction.  Those items are copied into
117  * a special tree (one per subvolume root), that tree is written to disk
118  * and then the fsync is considered complete.
119  *
120  * After a crash, items are copied out of the log-tree back into the
121  * subvolume tree.  Any file data extents found are recorded in the extent
122  * allocation tree, and the log-tree freed.
123  *
124  * The log tree is read three times, once to pin down all the extents it is
125  * using in ram and once, once to create all the inodes logged in the tree
126  * and once to do all the other items.
127  */
128 
129 /*
130  * start a sub transaction and setup the log tree
131  * this increments the log tree writer count to make the people
132  * syncing the tree wait for us to finish
133  */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 			   struct btrfs_root *root)
136 {
137 	int ret;
138 	int err = 0;
139 
140 	mutex_lock(&root->log_mutex);
141 	if (root->log_root) {
142 		if (!root->log_start_pid) {
143 			root->log_start_pid = current->pid;
144 			root->log_multiple_pids = false;
145 		} else if (root->log_start_pid != current->pid) {
146 			root->log_multiple_pids = true;
147 		}
148 
149 		root->log_batch++;
150 		atomic_inc(&root->log_writers);
151 		mutex_unlock(&root->log_mutex);
152 		return 0;
153 	}
154 	root->log_multiple_pids = false;
155 	root->log_start_pid = current->pid;
156 	mutex_lock(&root->fs_info->tree_log_mutex);
157 	if (!root->fs_info->log_root_tree) {
158 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 		if (ret)
160 			err = ret;
161 	}
162 	if (err == 0 && !root->log_root) {
163 		ret = btrfs_add_log_tree(trans, root);
164 		if (ret)
165 			err = ret;
166 	}
167 	mutex_unlock(&root->fs_info->tree_log_mutex);
168 	root->log_batch++;
169 	atomic_inc(&root->log_writers);
170 	mutex_unlock(&root->log_mutex);
171 	return err;
172 }
173 
174 /*
175  * returns 0 if there was a log transaction running and we were able
176  * to join, or returns -ENOENT if there were not transactions
177  * in progress
178  */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 	int ret = -ENOENT;
182 
183 	smp_mb();
184 	if (!root->log_root)
185 		return -ENOENT;
186 
187 	mutex_lock(&root->log_mutex);
188 	if (root->log_root) {
189 		ret = 0;
190 		atomic_inc(&root->log_writers);
191 	}
192 	mutex_unlock(&root->log_mutex);
193 	return ret;
194 }
195 
196 /*
197  * This either makes the current running log transaction wait
198  * until you call btrfs_end_log_trans() or it makes any future
199  * log transactions wait until you call btrfs_end_log_trans()
200  */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 	int ret = -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	atomic_inc(&root->log_writers);
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * indicate we're done making changes to the log tree
213  * and wake up anyone waiting to do a sync
214  */
215 int btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 	if (atomic_dec_and_test(&root->log_writers)) {
218 		smp_mb();
219 		if (waitqueue_active(&root->log_writer_wait))
220 			wake_up(&root->log_writer_wait);
221 	}
222 	return 0;
223 }
224 
225 
226 /*
227  * the walk control struct is used to pass state down the chain when
228  * processing the log tree.  The stage field tells us which part
229  * of the log tree processing we are currently doing.  The others
230  * are state fields used for that specific part
231  */
232 struct walk_control {
233 	/* should we free the extent on disk when done?  This is used
234 	 * at transaction commit time while freeing a log tree
235 	 */
236 	int free;
237 
238 	/* should we write out the extent buffer?  This is used
239 	 * while flushing the log tree to disk during a sync
240 	 */
241 	int write;
242 
243 	/* should we wait for the extent buffer io to finish?  Also used
244 	 * while flushing the log tree to disk for a sync
245 	 */
246 	int wait;
247 
248 	/* pin only walk, we record which extents on disk belong to the
249 	 * log trees
250 	 */
251 	int pin;
252 
253 	/* what stage of the replay code we're currently in */
254 	int stage;
255 
256 	/* the root we are currently replaying */
257 	struct btrfs_root *replay_dest;
258 
259 	/* the trans handle for the current replay */
260 	struct btrfs_trans_handle *trans;
261 
262 	/* the function that gets used to process blocks we find in the
263 	 * tree.  Note the extent_buffer might not be up to date when it is
264 	 * passed in, and it must be checked or read if you need the data
265 	 * inside it
266 	 */
267 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 			    struct walk_control *wc, u64 gen);
269 };
270 
271 /*
272  * process_func used to pin down extents, write them or wait on them
273  */
274 static int process_one_buffer(struct btrfs_root *log,
275 			      struct extent_buffer *eb,
276 			      struct walk_control *wc, u64 gen)
277 {
278 	if (wc->pin)
279 		btrfs_pin_extent(log->fs_info->extent_root,
280 				 eb->start, eb->len, 0);
281 
282 	if (btrfs_buffer_uptodate(eb, gen)) {
283 		if (wc->write)
284 			btrfs_write_tree_block(eb);
285 		if (wc->wait)
286 			btrfs_wait_tree_block_writeback(eb);
287 	}
288 	return 0;
289 }
290 
291 /*
292  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
293  * to the src data we are copying out.
294  *
295  * root is the tree we are copying into, and path is a scratch
296  * path for use in this function (it should be released on entry and
297  * will be released on exit).
298  *
299  * If the key is already in the destination tree the existing item is
300  * overwritten.  If the existing item isn't big enough, it is extended.
301  * If it is too large, it is truncated.
302  *
303  * If the key isn't in the destination yet, a new item is inserted.
304  */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 				   struct btrfs_root *root,
307 				   struct btrfs_path *path,
308 				   struct extent_buffer *eb, int slot,
309 				   struct btrfs_key *key)
310 {
311 	int ret;
312 	u32 item_size;
313 	u64 saved_i_size = 0;
314 	int save_old_i_size = 0;
315 	unsigned long src_ptr;
316 	unsigned long dst_ptr;
317 	int overwrite_root = 0;
318 
319 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 		overwrite_root = 1;
321 
322 	item_size = btrfs_item_size_nr(eb, slot);
323 	src_ptr = btrfs_item_ptr_offset(eb, slot);
324 
325 	/* look for the key in the destination tree */
326 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 	if (ret == 0) {
328 		char *src_copy;
329 		char *dst_copy;
330 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 						  path->slots[0]);
332 		if (dst_size != item_size)
333 			goto insert;
334 
335 		if (item_size == 0) {
336 			btrfs_release_path(root, path);
337 			return 0;
338 		}
339 		dst_copy = kmalloc(item_size, GFP_NOFS);
340 		src_copy = kmalloc(item_size, GFP_NOFS);
341 		if (!dst_copy || !src_copy) {
342 			btrfs_release_path(root, path);
343 			kfree(dst_copy);
344 			kfree(src_copy);
345 			return -ENOMEM;
346 		}
347 
348 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
349 
350 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 				   item_size);
353 		ret = memcmp(dst_copy, src_copy, item_size);
354 
355 		kfree(dst_copy);
356 		kfree(src_copy);
357 		/*
358 		 * they have the same contents, just return, this saves
359 		 * us from cowing blocks in the destination tree and doing
360 		 * extra writes that may not have been done by a previous
361 		 * sync
362 		 */
363 		if (ret == 0) {
364 			btrfs_release_path(root, path);
365 			return 0;
366 		}
367 
368 	}
369 insert:
370 	btrfs_release_path(root, path);
371 	/* try to insert the key into the destination tree */
372 	ret = btrfs_insert_empty_item(trans, root, path,
373 				      key, item_size);
374 
375 	/* make sure any existing item is the correct size */
376 	if (ret == -EEXIST) {
377 		u32 found_size;
378 		found_size = btrfs_item_size_nr(path->nodes[0],
379 						path->slots[0]);
380 		if (found_size > item_size) {
381 			btrfs_truncate_item(trans, root, path, item_size, 1);
382 		} else if (found_size < item_size) {
383 			ret = btrfs_extend_item(trans, root, path,
384 						item_size - found_size);
385 			BUG_ON(ret);
386 		}
387 	} else if (ret) {
388 		return ret;
389 	}
390 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
391 					path->slots[0]);
392 
393 	/* don't overwrite an existing inode if the generation number
394 	 * was logged as zero.  This is done when the tree logging code
395 	 * is just logging an inode to make sure it exists after recovery.
396 	 *
397 	 * Also, don't overwrite i_size on directories during replay.
398 	 * log replay inserts and removes directory items based on the
399 	 * state of the tree found in the subvolume, and i_size is modified
400 	 * as it goes
401 	 */
402 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
403 		struct btrfs_inode_item *src_item;
404 		struct btrfs_inode_item *dst_item;
405 
406 		src_item = (struct btrfs_inode_item *)src_ptr;
407 		dst_item = (struct btrfs_inode_item *)dst_ptr;
408 
409 		if (btrfs_inode_generation(eb, src_item) == 0)
410 			goto no_copy;
411 
412 		if (overwrite_root &&
413 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
414 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
415 			save_old_i_size = 1;
416 			saved_i_size = btrfs_inode_size(path->nodes[0],
417 							dst_item);
418 		}
419 	}
420 
421 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
422 			   src_ptr, item_size);
423 
424 	if (save_old_i_size) {
425 		struct btrfs_inode_item *dst_item;
426 		dst_item = (struct btrfs_inode_item *)dst_ptr;
427 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
428 	}
429 
430 	/* make sure the generation is filled in */
431 	if (key->type == BTRFS_INODE_ITEM_KEY) {
432 		struct btrfs_inode_item *dst_item;
433 		dst_item = (struct btrfs_inode_item *)dst_ptr;
434 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
435 			btrfs_set_inode_generation(path->nodes[0], dst_item,
436 						   trans->transid);
437 		}
438 	}
439 no_copy:
440 	btrfs_mark_buffer_dirty(path->nodes[0]);
441 	btrfs_release_path(root, path);
442 	return 0;
443 }
444 
445 /*
446  * simple helper to read an inode off the disk from a given root
447  * This can only be called for subvolume roots and not for the log
448  */
449 static noinline struct inode *read_one_inode(struct btrfs_root *root,
450 					     u64 objectid)
451 {
452 	struct btrfs_key key;
453 	struct inode *inode;
454 
455 	key.objectid = objectid;
456 	key.type = BTRFS_INODE_ITEM_KEY;
457 	key.offset = 0;
458 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
459 	if (IS_ERR(inode)) {
460 		inode = NULL;
461 	} else if (is_bad_inode(inode)) {
462 		iput(inode);
463 		inode = NULL;
464 	}
465 	return inode;
466 }
467 
468 /* replays a single extent in 'eb' at 'slot' with 'key' into the
469  * subvolume 'root'.  path is released on entry and should be released
470  * on exit.
471  *
472  * extents in the log tree have not been allocated out of the extent
473  * tree yet.  So, this completes the allocation, taking a reference
474  * as required if the extent already exists or creating a new extent
475  * if it isn't in the extent allocation tree yet.
476  *
477  * The extent is inserted into the file, dropping any existing extents
478  * from the file that overlap the new one.
479  */
480 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
481 				      struct btrfs_root *root,
482 				      struct btrfs_path *path,
483 				      struct extent_buffer *eb, int slot,
484 				      struct btrfs_key *key)
485 {
486 	int found_type;
487 	u64 mask = root->sectorsize - 1;
488 	u64 extent_end;
489 	u64 alloc_hint;
490 	u64 start = key->offset;
491 	u64 saved_nbytes;
492 	struct btrfs_file_extent_item *item;
493 	struct inode *inode = NULL;
494 	unsigned long size;
495 	int ret = 0;
496 
497 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
498 	found_type = btrfs_file_extent_type(eb, item);
499 
500 	if (found_type == BTRFS_FILE_EXTENT_REG ||
501 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
502 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
503 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
504 		size = btrfs_file_extent_inline_len(eb, item);
505 		extent_end = (start + size + mask) & ~mask;
506 	} else {
507 		ret = 0;
508 		goto out;
509 	}
510 
511 	inode = read_one_inode(root, key->objectid);
512 	if (!inode) {
513 		ret = -EIO;
514 		goto out;
515 	}
516 
517 	/*
518 	 * first check to see if we already have this extent in the
519 	 * file.  This must be done before the btrfs_drop_extents run
520 	 * so we don't try to drop this extent.
521 	 */
522 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
523 				       start, 0);
524 
525 	if (ret == 0 &&
526 	    (found_type == BTRFS_FILE_EXTENT_REG ||
527 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
528 		struct btrfs_file_extent_item cmp1;
529 		struct btrfs_file_extent_item cmp2;
530 		struct btrfs_file_extent_item *existing;
531 		struct extent_buffer *leaf;
532 
533 		leaf = path->nodes[0];
534 		existing = btrfs_item_ptr(leaf, path->slots[0],
535 					  struct btrfs_file_extent_item);
536 
537 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
538 				   sizeof(cmp1));
539 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
540 				   sizeof(cmp2));
541 
542 		/*
543 		 * we already have a pointer to this exact extent,
544 		 * we don't have to do anything
545 		 */
546 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
547 			btrfs_release_path(root, path);
548 			goto out;
549 		}
550 	}
551 	btrfs_release_path(root, path);
552 
553 	saved_nbytes = inode_get_bytes(inode);
554 	/* drop any overlapping extents */
555 	ret = btrfs_drop_extents(trans, inode, start, extent_end,
556 				 &alloc_hint, 1);
557 	BUG_ON(ret);
558 
559 	if (found_type == BTRFS_FILE_EXTENT_REG ||
560 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
561 		u64 offset;
562 		unsigned long dest_offset;
563 		struct btrfs_key ins;
564 
565 		ret = btrfs_insert_empty_item(trans, root, path, key,
566 					      sizeof(*item));
567 		BUG_ON(ret);
568 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
569 						    path->slots[0]);
570 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
571 				(unsigned long)item,  sizeof(*item));
572 
573 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
574 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
575 		ins.type = BTRFS_EXTENT_ITEM_KEY;
576 		offset = key->offset - btrfs_file_extent_offset(eb, item);
577 
578 		if (ins.objectid > 0) {
579 			u64 csum_start;
580 			u64 csum_end;
581 			LIST_HEAD(ordered_sums);
582 			/*
583 			 * is this extent already allocated in the extent
584 			 * allocation tree?  If so, just add a reference
585 			 */
586 			ret = btrfs_lookup_extent(root, ins.objectid,
587 						ins.offset);
588 			if (ret == 0) {
589 				ret = btrfs_inc_extent_ref(trans, root,
590 						ins.objectid, ins.offset,
591 						0, root->root_key.objectid,
592 						key->objectid, offset);
593 			} else {
594 				/*
595 				 * insert the extent pointer in the extent
596 				 * allocation tree
597 				 */
598 				ret = btrfs_alloc_logged_file_extent(trans,
599 						root, root->root_key.objectid,
600 						key->objectid, offset, &ins);
601 				BUG_ON(ret);
602 			}
603 			btrfs_release_path(root, path);
604 
605 			if (btrfs_file_extent_compression(eb, item)) {
606 				csum_start = ins.objectid;
607 				csum_end = csum_start + ins.offset;
608 			} else {
609 				csum_start = ins.objectid +
610 					btrfs_file_extent_offset(eb, item);
611 				csum_end = csum_start +
612 					btrfs_file_extent_num_bytes(eb, item);
613 			}
614 
615 			ret = btrfs_lookup_csums_range(root->log_root,
616 						csum_start, csum_end - 1,
617 						&ordered_sums);
618 			BUG_ON(ret);
619 			while (!list_empty(&ordered_sums)) {
620 				struct btrfs_ordered_sum *sums;
621 				sums = list_entry(ordered_sums.next,
622 						struct btrfs_ordered_sum,
623 						list);
624 				ret = btrfs_csum_file_blocks(trans,
625 						root->fs_info->csum_root,
626 						sums);
627 				BUG_ON(ret);
628 				list_del(&sums->list);
629 				kfree(sums);
630 			}
631 		} else {
632 			btrfs_release_path(root, path);
633 		}
634 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 		/* inline extents are easy, we just overwrite them */
636 		ret = overwrite_item(trans, root, path, eb, slot, key);
637 		BUG_ON(ret);
638 	}
639 
640 	inode_set_bytes(inode, saved_nbytes);
641 	btrfs_update_inode(trans, root, inode);
642 out:
643 	if (inode)
644 		iput(inode);
645 	return ret;
646 }
647 
648 /*
649  * when cleaning up conflicts between the directory names in the
650  * subvolume, directory names in the log and directory names in the
651  * inode back references, we may have to unlink inodes from directories.
652  *
653  * This is a helper function to do the unlink of a specific directory
654  * item
655  */
656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 				      struct btrfs_root *root,
658 				      struct btrfs_path *path,
659 				      struct inode *dir,
660 				      struct btrfs_dir_item *di)
661 {
662 	struct inode *inode;
663 	char *name;
664 	int name_len;
665 	struct extent_buffer *leaf;
666 	struct btrfs_key location;
667 	int ret;
668 
669 	leaf = path->nodes[0];
670 
671 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 	name_len = btrfs_dir_name_len(leaf, di);
673 	name = kmalloc(name_len, GFP_NOFS);
674 	if (!name)
675 		return -ENOMEM;
676 
677 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 	btrfs_release_path(root, path);
679 
680 	inode = read_one_inode(root, location.objectid);
681 	BUG_ON(!inode);
682 
683 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
684 	BUG_ON(ret);
685 
686 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
687 	BUG_ON(ret);
688 	kfree(name);
689 
690 	iput(inode);
691 	return ret;
692 }
693 
694 /*
695  * helper function to see if a given name and sequence number found
696  * in an inode back reference are already in a directory and correctly
697  * point to this inode
698  */
699 static noinline int inode_in_dir(struct btrfs_root *root,
700 				 struct btrfs_path *path,
701 				 u64 dirid, u64 objectid, u64 index,
702 				 const char *name, int name_len)
703 {
704 	struct btrfs_dir_item *di;
705 	struct btrfs_key location;
706 	int match = 0;
707 
708 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
709 					 index, name, name_len, 0);
710 	if (di && !IS_ERR(di)) {
711 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
712 		if (location.objectid != objectid)
713 			goto out;
714 	} else
715 		goto out;
716 	btrfs_release_path(root, path);
717 
718 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
719 	if (di && !IS_ERR(di)) {
720 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
721 		if (location.objectid != objectid)
722 			goto out;
723 	} else
724 		goto out;
725 	match = 1;
726 out:
727 	btrfs_release_path(root, path);
728 	return match;
729 }
730 
731 /*
732  * helper function to check a log tree for a named back reference in
733  * an inode.  This is used to decide if a back reference that is
734  * found in the subvolume conflicts with what we find in the log.
735  *
736  * inode backreferences may have multiple refs in a single item,
737  * during replay we process one reference at a time, and we don't
738  * want to delete valid links to a file from the subvolume if that
739  * link is also in the log.
740  */
741 static noinline int backref_in_log(struct btrfs_root *log,
742 				   struct btrfs_key *key,
743 				   char *name, int namelen)
744 {
745 	struct btrfs_path *path;
746 	struct btrfs_inode_ref *ref;
747 	unsigned long ptr;
748 	unsigned long ptr_end;
749 	unsigned long name_ptr;
750 	int found_name_len;
751 	int item_size;
752 	int ret;
753 	int match = 0;
754 
755 	path = btrfs_alloc_path();
756 	if (!path)
757 		return -ENOMEM;
758 
759 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
760 	if (ret != 0)
761 		goto out;
762 
763 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
764 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
765 	ptr_end = ptr + item_size;
766 	while (ptr < ptr_end) {
767 		ref = (struct btrfs_inode_ref *)ptr;
768 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
769 		if (found_name_len == namelen) {
770 			name_ptr = (unsigned long)(ref + 1);
771 			ret = memcmp_extent_buffer(path->nodes[0], name,
772 						   name_ptr, namelen);
773 			if (ret == 0) {
774 				match = 1;
775 				goto out;
776 			}
777 		}
778 		ptr = (unsigned long)(ref + 1) + found_name_len;
779 	}
780 out:
781 	btrfs_free_path(path);
782 	return match;
783 }
784 
785 
786 /*
787  * replay one inode back reference item found in the log tree.
788  * eb, slot and key refer to the buffer and key found in the log tree.
789  * root is the destination we are replaying into, and path is for temp
790  * use by this function.  (it should be released on return).
791  */
792 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
793 				  struct btrfs_root *root,
794 				  struct btrfs_root *log,
795 				  struct btrfs_path *path,
796 				  struct extent_buffer *eb, int slot,
797 				  struct btrfs_key *key)
798 {
799 	struct inode *dir;
800 	int ret;
801 	struct btrfs_inode_ref *ref;
802 	struct btrfs_dir_item *di;
803 	struct inode *inode;
804 	char *name;
805 	int namelen;
806 	unsigned long ref_ptr;
807 	unsigned long ref_end;
808 
809 	/*
810 	 * it is possible that we didn't log all the parent directories
811 	 * for a given inode.  If we don't find the dir, just don't
812 	 * copy the back ref in.  The link count fixup code will take
813 	 * care of the rest
814 	 */
815 	dir = read_one_inode(root, key->offset);
816 	if (!dir)
817 		return -ENOENT;
818 
819 	inode = read_one_inode(root, key->objectid);
820 	BUG_ON(!inode);
821 
822 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
823 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
824 
825 again:
826 	ref = (struct btrfs_inode_ref *)ref_ptr;
827 
828 	namelen = btrfs_inode_ref_name_len(eb, ref);
829 	name = kmalloc(namelen, GFP_NOFS);
830 	BUG_ON(!name);
831 
832 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
833 
834 	/* if we already have a perfect match, we're done */
835 	if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
836 			 btrfs_inode_ref_index(eb, ref),
837 			 name, namelen)) {
838 		goto out;
839 	}
840 
841 	/*
842 	 * look for a conflicting back reference in the metadata.
843 	 * if we find one we have to unlink that name of the file
844 	 * before we add our new link.  Later on, we overwrite any
845 	 * existing back reference, and we don't want to create
846 	 * dangling pointers in the directory.
847 	 */
848 conflict_again:
849 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
850 	if (ret == 0) {
851 		char *victim_name;
852 		int victim_name_len;
853 		struct btrfs_inode_ref *victim_ref;
854 		unsigned long ptr;
855 		unsigned long ptr_end;
856 		struct extent_buffer *leaf = path->nodes[0];
857 
858 		/* are we trying to overwrite a back ref for the root directory
859 		 * if so, just jump out, we're done
860 		 */
861 		if (key->objectid == key->offset)
862 			goto out_nowrite;
863 
864 		/* check all the names in this back reference to see
865 		 * if they are in the log.  if so, we allow them to stay
866 		 * otherwise they must be unlinked as a conflict
867 		 */
868 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
869 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
870 		while (ptr < ptr_end) {
871 			victim_ref = (struct btrfs_inode_ref *)ptr;
872 			victim_name_len = btrfs_inode_ref_name_len(leaf,
873 								   victim_ref);
874 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
875 			BUG_ON(!victim_name);
876 
877 			read_extent_buffer(leaf, victim_name,
878 					   (unsigned long)(victim_ref + 1),
879 					   victim_name_len);
880 
881 			if (!backref_in_log(log, key, victim_name,
882 					    victim_name_len)) {
883 				btrfs_inc_nlink(inode);
884 				btrfs_release_path(root, path);
885 
886 				ret = btrfs_unlink_inode(trans, root, dir,
887 							 inode, victim_name,
888 							 victim_name_len);
889 				kfree(victim_name);
890 				btrfs_release_path(root, path);
891 				goto conflict_again;
892 			}
893 			kfree(victim_name);
894 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
895 		}
896 		BUG_ON(ret);
897 	}
898 	btrfs_release_path(root, path);
899 
900 	/* look for a conflicting sequence number */
901 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
902 					 btrfs_inode_ref_index(eb, ref),
903 					 name, namelen, 0);
904 	if (di && !IS_ERR(di)) {
905 		ret = drop_one_dir_item(trans, root, path, dir, di);
906 		BUG_ON(ret);
907 	}
908 	btrfs_release_path(root, path);
909 
910 
911 	/* look for a conflicting name */
912 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
913 				   name, namelen, 0);
914 	if (di && !IS_ERR(di)) {
915 		ret = drop_one_dir_item(trans, root, path, dir, di);
916 		BUG_ON(ret);
917 	}
918 	btrfs_release_path(root, path);
919 
920 	/* insert our name */
921 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
922 			     btrfs_inode_ref_index(eb, ref));
923 	BUG_ON(ret);
924 
925 	btrfs_update_inode(trans, root, inode);
926 
927 out:
928 	ref_ptr = (unsigned long)(ref + 1) + namelen;
929 	kfree(name);
930 	if (ref_ptr < ref_end)
931 		goto again;
932 
933 	/* finally write the back reference in the inode */
934 	ret = overwrite_item(trans, root, path, eb, slot, key);
935 	BUG_ON(ret);
936 
937 out_nowrite:
938 	btrfs_release_path(root, path);
939 	iput(dir);
940 	iput(inode);
941 	return 0;
942 }
943 
944 static int insert_orphan_item(struct btrfs_trans_handle *trans,
945 			      struct btrfs_root *root, u64 offset)
946 {
947 	int ret;
948 	ret = btrfs_find_orphan_item(root, offset);
949 	if (ret > 0)
950 		ret = btrfs_insert_orphan_item(trans, root, offset);
951 	return ret;
952 }
953 
954 
955 /*
956  * There are a few corners where the link count of the file can't
957  * be properly maintained during replay.  So, instead of adding
958  * lots of complexity to the log code, we just scan the backrefs
959  * for any file that has been through replay.
960  *
961  * The scan will update the link count on the inode to reflect the
962  * number of back refs found.  If it goes down to zero, the iput
963  * will free the inode.
964  */
965 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
966 					   struct btrfs_root *root,
967 					   struct inode *inode)
968 {
969 	struct btrfs_path *path;
970 	int ret;
971 	struct btrfs_key key;
972 	u64 nlink = 0;
973 	unsigned long ptr;
974 	unsigned long ptr_end;
975 	int name_len;
976 
977 	key.objectid = inode->i_ino;
978 	key.type = BTRFS_INODE_REF_KEY;
979 	key.offset = (u64)-1;
980 
981 	path = btrfs_alloc_path();
982 	if (!path)
983 		return -ENOMEM;
984 
985 	while (1) {
986 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
987 		if (ret < 0)
988 			break;
989 		if (ret > 0) {
990 			if (path->slots[0] == 0)
991 				break;
992 			path->slots[0]--;
993 		}
994 		btrfs_item_key_to_cpu(path->nodes[0], &key,
995 				      path->slots[0]);
996 		if (key.objectid != inode->i_ino ||
997 		    key.type != BTRFS_INODE_REF_KEY)
998 			break;
999 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1000 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1001 						   path->slots[0]);
1002 		while (ptr < ptr_end) {
1003 			struct btrfs_inode_ref *ref;
1004 
1005 			ref = (struct btrfs_inode_ref *)ptr;
1006 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1007 							    ref);
1008 			ptr = (unsigned long)(ref + 1) + name_len;
1009 			nlink++;
1010 		}
1011 
1012 		if (key.offset == 0)
1013 			break;
1014 		key.offset--;
1015 		btrfs_release_path(root, path);
1016 	}
1017 	btrfs_release_path(root, path);
1018 	if (nlink != inode->i_nlink) {
1019 		inode->i_nlink = nlink;
1020 		btrfs_update_inode(trans, root, inode);
1021 	}
1022 	BTRFS_I(inode)->index_cnt = (u64)-1;
1023 
1024 	if (inode->i_nlink == 0) {
1025 		if (S_ISDIR(inode->i_mode)) {
1026 			ret = replay_dir_deletes(trans, root, NULL, path,
1027 						 inode->i_ino, 1);
1028 			BUG_ON(ret);
1029 		}
1030 		ret = insert_orphan_item(trans, root, inode->i_ino);
1031 		BUG_ON(ret);
1032 	}
1033 	btrfs_free_path(path);
1034 
1035 	return 0;
1036 }
1037 
1038 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1039 					    struct btrfs_root *root,
1040 					    struct btrfs_path *path)
1041 {
1042 	int ret;
1043 	struct btrfs_key key;
1044 	struct inode *inode;
1045 
1046 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1047 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1048 	key.offset = (u64)-1;
1049 	while (1) {
1050 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1051 		if (ret < 0)
1052 			break;
1053 
1054 		if (ret == 1) {
1055 			if (path->slots[0] == 0)
1056 				break;
1057 			path->slots[0]--;
1058 		}
1059 
1060 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1061 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1062 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1063 			break;
1064 
1065 		ret = btrfs_del_item(trans, root, path);
1066 		BUG_ON(ret);
1067 
1068 		btrfs_release_path(root, path);
1069 		inode = read_one_inode(root, key.offset);
1070 		BUG_ON(!inode);
1071 
1072 		ret = fixup_inode_link_count(trans, root, inode);
1073 		BUG_ON(ret);
1074 
1075 		iput(inode);
1076 
1077 		/*
1078 		 * fixup on a directory may create new entries,
1079 		 * make sure we always look for the highset possible
1080 		 * offset
1081 		 */
1082 		key.offset = (u64)-1;
1083 	}
1084 	btrfs_release_path(root, path);
1085 	return 0;
1086 }
1087 
1088 
1089 /*
1090  * record a given inode in the fixup dir so we can check its link
1091  * count when replay is done.  The link count is incremented here
1092  * so the inode won't go away until we check it
1093  */
1094 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1095 				      struct btrfs_root *root,
1096 				      struct btrfs_path *path,
1097 				      u64 objectid)
1098 {
1099 	struct btrfs_key key;
1100 	int ret = 0;
1101 	struct inode *inode;
1102 
1103 	inode = read_one_inode(root, objectid);
1104 	BUG_ON(!inode);
1105 
1106 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1107 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1108 	key.offset = objectid;
1109 
1110 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1111 
1112 	btrfs_release_path(root, path);
1113 	if (ret == 0) {
1114 		btrfs_inc_nlink(inode);
1115 		btrfs_update_inode(trans, root, inode);
1116 	} else if (ret == -EEXIST) {
1117 		ret = 0;
1118 	} else {
1119 		BUG();
1120 	}
1121 	iput(inode);
1122 
1123 	return ret;
1124 }
1125 
1126 /*
1127  * when replaying the log for a directory, we only insert names
1128  * for inodes that actually exist.  This means an fsync on a directory
1129  * does not implicitly fsync all the new files in it
1130  */
1131 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1132 				    struct btrfs_root *root,
1133 				    struct btrfs_path *path,
1134 				    u64 dirid, u64 index,
1135 				    char *name, int name_len, u8 type,
1136 				    struct btrfs_key *location)
1137 {
1138 	struct inode *inode;
1139 	struct inode *dir;
1140 	int ret;
1141 
1142 	inode = read_one_inode(root, location->objectid);
1143 	if (!inode)
1144 		return -ENOENT;
1145 
1146 	dir = read_one_inode(root, dirid);
1147 	if (!dir) {
1148 		iput(inode);
1149 		return -EIO;
1150 	}
1151 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1152 
1153 	/* FIXME, put inode into FIXUP list */
1154 
1155 	iput(inode);
1156 	iput(dir);
1157 	return ret;
1158 }
1159 
1160 /*
1161  * take a single entry in a log directory item and replay it into
1162  * the subvolume.
1163  *
1164  * if a conflicting item exists in the subdirectory already,
1165  * the inode it points to is unlinked and put into the link count
1166  * fix up tree.
1167  *
1168  * If a name from the log points to a file or directory that does
1169  * not exist in the FS, it is skipped.  fsyncs on directories
1170  * do not force down inodes inside that directory, just changes to the
1171  * names or unlinks in a directory.
1172  */
1173 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1174 				    struct btrfs_root *root,
1175 				    struct btrfs_path *path,
1176 				    struct extent_buffer *eb,
1177 				    struct btrfs_dir_item *di,
1178 				    struct btrfs_key *key)
1179 {
1180 	char *name;
1181 	int name_len;
1182 	struct btrfs_dir_item *dst_di;
1183 	struct btrfs_key found_key;
1184 	struct btrfs_key log_key;
1185 	struct inode *dir;
1186 	u8 log_type;
1187 	int exists;
1188 	int ret;
1189 
1190 	dir = read_one_inode(root, key->objectid);
1191 	BUG_ON(!dir);
1192 
1193 	name_len = btrfs_dir_name_len(eb, di);
1194 	name = kmalloc(name_len, GFP_NOFS);
1195 	if (!name)
1196 		return -ENOMEM;
1197 
1198 	log_type = btrfs_dir_type(eb, di);
1199 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1200 		   name_len);
1201 
1202 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1203 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1204 	if (exists == 0)
1205 		exists = 1;
1206 	else
1207 		exists = 0;
1208 	btrfs_release_path(root, path);
1209 
1210 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1211 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1212 				       name, name_len, 1);
1213 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1214 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1215 						     key->objectid,
1216 						     key->offset, name,
1217 						     name_len, 1);
1218 	} else {
1219 		BUG();
1220 	}
1221 	if (!dst_di || IS_ERR(dst_di)) {
1222 		/* we need a sequence number to insert, so we only
1223 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1224 		 */
1225 		if (key->type != BTRFS_DIR_INDEX_KEY)
1226 			goto out;
1227 		goto insert;
1228 	}
1229 
1230 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1231 	/* the existing item matches the logged item */
1232 	if (found_key.objectid == log_key.objectid &&
1233 	    found_key.type == log_key.type &&
1234 	    found_key.offset == log_key.offset &&
1235 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1236 		goto out;
1237 	}
1238 
1239 	/*
1240 	 * don't drop the conflicting directory entry if the inode
1241 	 * for the new entry doesn't exist
1242 	 */
1243 	if (!exists)
1244 		goto out;
1245 
1246 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1247 	BUG_ON(ret);
1248 
1249 	if (key->type == BTRFS_DIR_INDEX_KEY)
1250 		goto insert;
1251 out:
1252 	btrfs_release_path(root, path);
1253 	kfree(name);
1254 	iput(dir);
1255 	return 0;
1256 
1257 insert:
1258 	btrfs_release_path(root, path);
1259 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1260 			      name, name_len, log_type, &log_key);
1261 
1262 	BUG_ON(ret && ret != -ENOENT);
1263 	goto out;
1264 }
1265 
1266 /*
1267  * find all the names in a directory item and reconcile them into
1268  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1269  * one name in a directory item, but the same code gets used for
1270  * both directory index types
1271  */
1272 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1273 					struct btrfs_root *root,
1274 					struct btrfs_path *path,
1275 					struct extent_buffer *eb, int slot,
1276 					struct btrfs_key *key)
1277 {
1278 	int ret;
1279 	u32 item_size = btrfs_item_size_nr(eb, slot);
1280 	struct btrfs_dir_item *di;
1281 	int name_len;
1282 	unsigned long ptr;
1283 	unsigned long ptr_end;
1284 
1285 	ptr = btrfs_item_ptr_offset(eb, slot);
1286 	ptr_end = ptr + item_size;
1287 	while (ptr < ptr_end) {
1288 		di = (struct btrfs_dir_item *)ptr;
1289 		name_len = btrfs_dir_name_len(eb, di);
1290 		ret = replay_one_name(trans, root, path, eb, di, key);
1291 		BUG_ON(ret);
1292 		ptr = (unsigned long)(di + 1);
1293 		ptr += name_len;
1294 	}
1295 	return 0;
1296 }
1297 
1298 /*
1299  * directory replay has two parts.  There are the standard directory
1300  * items in the log copied from the subvolume, and range items
1301  * created in the log while the subvolume was logged.
1302  *
1303  * The range items tell us which parts of the key space the log
1304  * is authoritative for.  During replay, if a key in the subvolume
1305  * directory is in a logged range item, but not actually in the log
1306  * that means it was deleted from the directory before the fsync
1307  * and should be removed.
1308  */
1309 static noinline int find_dir_range(struct btrfs_root *root,
1310 				   struct btrfs_path *path,
1311 				   u64 dirid, int key_type,
1312 				   u64 *start_ret, u64 *end_ret)
1313 {
1314 	struct btrfs_key key;
1315 	u64 found_end;
1316 	struct btrfs_dir_log_item *item;
1317 	int ret;
1318 	int nritems;
1319 
1320 	if (*start_ret == (u64)-1)
1321 		return 1;
1322 
1323 	key.objectid = dirid;
1324 	key.type = key_type;
1325 	key.offset = *start_ret;
1326 
1327 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1328 	if (ret < 0)
1329 		goto out;
1330 	if (ret > 0) {
1331 		if (path->slots[0] == 0)
1332 			goto out;
1333 		path->slots[0]--;
1334 	}
1335 	if (ret != 0)
1336 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1337 
1338 	if (key.type != key_type || key.objectid != dirid) {
1339 		ret = 1;
1340 		goto next;
1341 	}
1342 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1343 			      struct btrfs_dir_log_item);
1344 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1345 
1346 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1347 		ret = 0;
1348 		*start_ret = key.offset;
1349 		*end_ret = found_end;
1350 		goto out;
1351 	}
1352 	ret = 1;
1353 next:
1354 	/* check the next slot in the tree to see if it is a valid item */
1355 	nritems = btrfs_header_nritems(path->nodes[0]);
1356 	if (path->slots[0] >= nritems) {
1357 		ret = btrfs_next_leaf(root, path);
1358 		if (ret)
1359 			goto out;
1360 	} else {
1361 		path->slots[0]++;
1362 	}
1363 
1364 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1365 
1366 	if (key.type != key_type || key.objectid != dirid) {
1367 		ret = 1;
1368 		goto out;
1369 	}
1370 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1371 			      struct btrfs_dir_log_item);
1372 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1373 	*start_ret = key.offset;
1374 	*end_ret = found_end;
1375 	ret = 0;
1376 out:
1377 	btrfs_release_path(root, path);
1378 	return ret;
1379 }
1380 
1381 /*
1382  * this looks for a given directory item in the log.  If the directory
1383  * item is not in the log, the item is removed and the inode it points
1384  * to is unlinked
1385  */
1386 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1387 				      struct btrfs_root *root,
1388 				      struct btrfs_root *log,
1389 				      struct btrfs_path *path,
1390 				      struct btrfs_path *log_path,
1391 				      struct inode *dir,
1392 				      struct btrfs_key *dir_key)
1393 {
1394 	int ret;
1395 	struct extent_buffer *eb;
1396 	int slot;
1397 	u32 item_size;
1398 	struct btrfs_dir_item *di;
1399 	struct btrfs_dir_item *log_di;
1400 	int name_len;
1401 	unsigned long ptr;
1402 	unsigned long ptr_end;
1403 	char *name;
1404 	struct inode *inode;
1405 	struct btrfs_key location;
1406 
1407 again:
1408 	eb = path->nodes[0];
1409 	slot = path->slots[0];
1410 	item_size = btrfs_item_size_nr(eb, slot);
1411 	ptr = btrfs_item_ptr_offset(eb, slot);
1412 	ptr_end = ptr + item_size;
1413 	while (ptr < ptr_end) {
1414 		di = (struct btrfs_dir_item *)ptr;
1415 		name_len = btrfs_dir_name_len(eb, di);
1416 		name = kmalloc(name_len, GFP_NOFS);
1417 		if (!name) {
1418 			ret = -ENOMEM;
1419 			goto out;
1420 		}
1421 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1422 				  name_len);
1423 		log_di = NULL;
1424 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1425 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1426 						       dir_key->objectid,
1427 						       name, name_len, 0);
1428 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1429 			log_di = btrfs_lookup_dir_index_item(trans, log,
1430 						     log_path,
1431 						     dir_key->objectid,
1432 						     dir_key->offset,
1433 						     name, name_len, 0);
1434 		}
1435 		if (!log_di || IS_ERR(log_di)) {
1436 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1437 			btrfs_release_path(root, path);
1438 			btrfs_release_path(log, log_path);
1439 			inode = read_one_inode(root, location.objectid);
1440 			BUG_ON(!inode);
1441 
1442 			ret = link_to_fixup_dir(trans, root,
1443 						path, location.objectid);
1444 			BUG_ON(ret);
1445 			btrfs_inc_nlink(inode);
1446 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1447 						 name, name_len);
1448 			BUG_ON(ret);
1449 			kfree(name);
1450 			iput(inode);
1451 
1452 			/* there might still be more names under this key
1453 			 * check and repeat if required
1454 			 */
1455 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1456 						0, 0);
1457 			if (ret == 0)
1458 				goto again;
1459 			ret = 0;
1460 			goto out;
1461 		}
1462 		btrfs_release_path(log, log_path);
1463 		kfree(name);
1464 
1465 		ptr = (unsigned long)(di + 1);
1466 		ptr += name_len;
1467 	}
1468 	ret = 0;
1469 out:
1470 	btrfs_release_path(root, path);
1471 	btrfs_release_path(log, log_path);
1472 	return ret;
1473 }
1474 
1475 /*
1476  * deletion replay happens before we copy any new directory items
1477  * out of the log or out of backreferences from inodes.  It
1478  * scans the log to find ranges of keys that log is authoritative for,
1479  * and then scans the directory to find items in those ranges that are
1480  * not present in the log.
1481  *
1482  * Anything we don't find in the log is unlinked and removed from the
1483  * directory.
1484  */
1485 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1486 				       struct btrfs_root *root,
1487 				       struct btrfs_root *log,
1488 				       struct btrfs_path *path,
1489 				       u64 dirid, int del_all)
1490 {
1491 	u64 range_start;
1492 	u64 range_end;
1493 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1494 	int ret = 0;
1495 	struct btrfs_key dir_key;
1496 	struct btrfs_key found_key;
1497 	struct btrfs_path *log_path;
1498 	struct inode *dir;
1499 
1500 	dir_key.objectid = dirid;
1501 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1502 	log_path = btrfs_alloc_path();
1503 	if (!log_path)
1504 		return -ENOMEM;
1505 
1506 	dir = read_one_inode(root, dirid);
1507 	/* it isn't an error if the inode isn't there, that can happen
1508 	 * because we replay the deletes before we copy in the inode item
1509 	 * from the log
1510 	 */
1511 	if (!dir) {
1512 		btrfs_free_path(log_path);
1513 		return 0;
1514 	}
1515 again:
1516 	range_start = 0;
1517 	range_end = 0;
1518 	while (1) {
1519 		if (del_all)
1520 			range_end = (u64)-1;
1521 		else {
1522 			ret = find_dir_range(log, path, dirid, key_type,
1523 					     &range_start, &range_end);
1524 			if (ret != 0)
1525 				break;
1526 		}
1527 
1528 		dir_key.offset = range_start;
1529 		while (1) {
1530 			int nritems;
1531 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1532 						0, 0);
1533 			if (ret < 0)
1534 				goto out;
1535 
1536 			nritems = btrfs_header_nritems(path->nodes[0]);
1537 			if (path->slots[0] >= nritems) {
1538 				ret = btrfs_next_leaf(root, path);
1539 				if (ret)
1540 					break;
1541 			}
1542 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1543 					      path->slots[0]);
1544 			if (found_key.objectid != dirid ||
1545 			    found_key.type != dir_key.type)
1546 				goto next_type;
1547 
1548 			if (found_key.offset > range_end)
1549 				break;
1550 
1551 			ret = check_item_in_log(trans, root, log, path,
1552 						log_path, dir,
1553 						&found_key);
1554 			BUG_ON(ret);
1555 			if (found_key.offset == (u64)-1)
1556 				break;
1557 			dir_key.offset = found_key.offset + 1;
1558 		}
1559 		btrfs_release_path(root, path);
1560 		if (range_end == (u64)-1)
1561 			break;
1562 		range_start = range_end + 1;
1563 	}
1564 
1565 next_type:
1566 	ret = 0;
1567 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1568 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1569 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1570 		btrfs_release_path(root, path);
1571 		goto again;
1572 	}
1573 out:
1574 	btrfs_release_path(root, path);
1575 	btrfs_free_path(log_path);
1576 	iput(dir);
1577 	return ret;
1578 }
1579 
1580 /*
1581  * the process_func used to replay items from the log tree.  This
1582  * gets called in two different stages.  The first stage just looks
1583  * for inodes and makes sure they are all copied into the subvolume.
1584  *
1585  * The second stage copies all the other item types from the log into
1586  * the subvolume.  The two stage approach is slower, but gets rid of
1587  * lots of complexity around inodes referencing other inodes that exist
1588  * only in the log (references come from either directory items or inode
1589  * back refs).
1590  */
1591 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1592 			     struct walk_control *wc, u64 gen)
1593 {
1594 	int nritems;
1595 	struct btrfs_path *path;
1596 	struct btrfs_root *root = wc->replay_dest;
1597 	struct btrfs_key key;
1598 	int level;
1599 	int i;
1600 	int ret;
1601 
1602 	btrfs_read_buffer(eb, gen);
1603 
1604 	level = btrfs_header_level(eb);
1605 
1606 	if (level != 0)
1607 		return 0;
1608 
1609 	path = btrfs_alloc_path();
1610 	BUG_ON(!path);
1611 
1612 	nritems = btrfs_header_nritems(eb);
1613 	for (i = 0; i < nritems; i++) {
1614 		btrfs_item_key_to_cpu(eb, &key, i);
1615 
1616 		/* inode keys are done during the first stage */
1617 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1618 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1619 			struct btrfs_inode_item *inode_item;
1620 			u32 mode;
1621 
1622 			inode_item = btrfs_item_ptr(eb, i,
1623 					    struct btrfs_inode_item);
1624 			mode = btrfs_inode_mode(eb, inode_item);
1625 			if (S_ISDIR(mode)) {
1626 				ret = replay_dir_deletes(wc->trans,
1627 					 root, log, path, key.objectid, 0);
1628 				BUG_ON(ret);
1629 			}
1630 			ret = overwrite_item(wc->trans, root, path,
1631 					     eb, i, &key);
1632 			BUG_ON(ret);
1633 
1634 			/* for regular files, make sure corresponding
1635 			 * orhpan item exist. extents past the new EOF
1636 			 * will be truncated later by orphan cleanup.
1637 			 */
1638 			if (S_ISREG(mode)) {
1639 				ret = insert_orphan_item(wc->trans, root,
1640 							 key.objectid);
1641 				BUG_ON(ret);
1642 			}
1643 
1644 			ret = link_to_fixup_dir(wc->trans, root,
1645 						path, key.objectid);
1646 			BUG_ON(ret);
1647 		}
1648 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1649 			continue;
1650 
1651 		/* these keys are simply copied */
1652 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1653 			ret = overwrite_item(wc->trans, root, path,
1654 					     eb, i, &key);
1655 			BUG_ON(ret);
1656 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1657 			ret = add_inode_ref(wc->trans, root, log, path,
1658 					    eb, i, &key);
1659 			BUG_ON(ret && ret != -ENOENT);
1660 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1661 			ret = replay_one_extent(wc->trans, root, path,
1662 						eb, i, &key);
1663 			BUG_ON(ret);
1664 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1665 			   key.type == BTRFS_DIR_INDEX_KEY) {
1666 			ret = replay_one_dir_item(wc->trans, root, path,
1667 						  eb, i, &key);
1668 			BUG_ON(ret);
1669 		}
1670 	}
1671 	btrfs_free_path(path);
1672 	return 0;
1673 }
1674 
1675 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1676 				   struct btrfs_root *root,
1677 				   struct btrfs_path *path, int *level,
1678 				   struct walk_control *wc)
1679 {
1680 	u64 root_owner;
1681 	u64 bytenr;
1682 	u64 ptr_gen;
1683 	struct extent_buffer *next;
1684 	struct extent_buffer *cur;
1685 	struct extent_buffer *parent;
1686 	u32 blocksize;
1687 	int ret = 0;
1688 
1689 	WARN_ON(*level < 0);
1690 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1691 
1692 	while (*level > 0) {
1693 		WARN_ON(*level < 0);
1694 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1695 		cur = path->nodes[*level];
1696 
1697 		if (btrfs_header_level(cur) != *level)
1698 			WARN_ON(1);
1699 
1700 		if (path->slots[*level] >=
1701 		    btrfs_header_nritems(cur))
1702 			break;
1703 
1704 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1705 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1706 		blocksize = btrfs_level_size(root, *level - 1);
1707 
1708 		parent = path->nodes[*level];
1709 		root_owner = btrfs_header_owner(parent);
1710 
1711 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1712 		if (!next)
1713 			return -ENOMEM;
1714 
1715 		if (*level == 1) {
1716 			wc->process_func(root, next, wc, ptr_gen);
1717 
1718 			path->slots[*level]++;
1719 			if (wc->free) {
1720 				btrfs_read_buffer(next, ptr_gen);
1721 
1722 				btrfs_tree_lock(next);
1723 				clean_tree_block(trans, root, next);
1724 				btrfs_set_lock_blocking(next);
1725 				btrfs_wait_tree_block_writeback(next);
1726 				btrfs_tree_unlock(next);
1727 
1728 				WARN_ON(root_owner !=
1729 					BTRFS_TREE_LOG_OBJECTID);
1730 				ret = btrfs_free_reserved_extent(root,
1731 							 bytenr, blocksize);
1732 				BUG_ON(ret);
1733 			}
1734 			free_extent_buffer(next);
1735 			continue;
1736 		}
1737 		btrfs_read_buffer(next, ptr_gen);
1738 
1739 		WARN_ON(*level <= 0);
1740 		if (path->nodes[*level-1])
1741 			free_extent_buffer(path->nodes[*level-1]);
1742 		path->nodes[*level-1] = next;
1743 		*level = btrfs_header_level(next);
1744 		path->slots[*level] = 0;
1745 		cond_resched();
1746 	}
1747 	WARN_ON(*level < 0);
1748 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1749 
1750 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1751 
1752 	cond_resched();
1753 	return 0;
1754 }
1755 
1756 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1757 				 struct btrfs_root *root,
1758 				 struct btrfs_path *path, int *level,
1759 				 struct walk_control *wc)
1760 {
1761 	u64 root_owner;
1762 	int i;
1763 	int slot;
1764 	int ret;
1765 
1766 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1767 		slot = path->slots[i];
1768 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1769 			path->slots[i]++;
1770 			*level = i;
1771 			WARN_ON(*level == 0);
1772 			return 0;
1773 		} else {
1774 			struct extent_buffer *parent;
1775 			if (path->nodes[*level] == root->node)
1776 				parent = path->nodes[*level];
1777 			else
1778 				parent = path->nodes[*level + 1];
1779 
1780 			root_owner = btrfs_header_owner(parent);
1781 			wc->process_func(root, path->nodes[*level], wc,
1782 				 btrfs_header_generation(path->nodes[*level]));
1783 			if (wc->free) {
1784 				struct extent_buffer *next;
1785 
1786 				next = path->nodes[*level];
1787 
1788 				btrfs_tree_lock(next);
1789 				clean_tree_block(trans, root, next);
1790 				btrfs_set_lock_blocking(next);
1791 				btrfs_wait_tree_block_writeback(next);
1792 				btrfs_tree_unlock(next);
1793 
1794 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1795 				ret = btrfs_free_reserved_extent(root,
1796 						path->nodes[*level]->start,
1797 						path->nodes[*level]->len);
1798 				BUG_ON(ret);
1799 			}
1800 			free_extent_buffer(path->nodes[*level]);
1801 			path->nodes[*level] = NULL;
1802 			*level = i + 1;
1803 		}
1804 	}
1805 	return 1;
1806 }
1807 
1808 /*
1809  * drop the reference count on the tree rooted at 'snap'.  This traverses
1810  * the tree freeing any blocks that have a ref count of zero after being
1811  * decremented.
1812  */
1813 static int walk_log_tree(struct btrfs_trans_handle *trans,
1814 			 struct btrfs_root *log, struct walk_control *wc)
1815 {
1816 	int ret = 0;
1817 	int wret;
1818 	int level;
1819 	struct btrfs_path *path;
1820 	int i;
1821 	int orig_level;
1822 
1823 	path = btrfs_alloc_path();
1824 	BUG_ON(!path);
1825 
1826 	level = btrfs_header_level(log->node);
1827 	orig_level = level;
1828 	path->nodes[level] = log->node;
1829 	extent_buffer_get(log->node);
1830 	path->slots[level] = 0;
1831 
1832 	while (1) {
1833 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1834 		if (wret > 0)
1835 			break;
1836 		if (wret < 0)
1837 			ret = wret;
1838 
1839 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1840 		if (wret > 0)
1841 			break;
1842 		if (wret < 0)
1843 			ret = wret;
1844 	}
1845 
1846 	/* was the root node processed? if not, catch it here */
1847 	if (path->nodes[orig_level]) {
1848 		wc->process_func(log, path->nodes[orig_level], wc,
1849 			 btrfs_header_generation(path->nodes[orig_level]));
1850 		if (wc->free) {
1851 			struct extent_buffer *next;
1852 
1853 			next = path->nodes[orig_level];
1854 
1855 			btrfs_tree_lock(next);
1856 			clean_tree_block(trans, log, next);
1857 			btrfs_set_lock_blocking(next);
1858 			btrfs_wait_tree_block_writeback(next);
1859 			btrfs_tree_unlock(next);
1860 
1861 			WARN_ON(log->root_key.objectid !=
1862 				BTRFS_TREE_LOG_OBJECTID);
1863 			ret = btrfs_free_reserved_extent(log, next->start,
1864 							 next->len);
1865 			BUG_ON(ret);
1866 		}
1867 	}
1868 
1869 	for (i = 0; i <= orig_level; i++) {
1870 		if (path->nodes[i]) {
1871 			free_extent_buffer(path->nodes[i]);
1872 			path->nodes[i] = NULL;
1873 		}
1874 	}
1875 	btrfs_free_path(path);
1876 	return ret;
1877 }
1878 
1879 /*
1880  * helper function to update the item for a given subvolumes log root
1881  * in the tree of log roots
1882  */
1883 static int update_log_root(struct btrfs_trans_handle *trans,
1884 			   struct btrfs_root *log)
1885 {
1886 	int ret;
1887 
1888 	if (log->log_transid == 1) {
1889 		/* insert root item on the first sync */
1890 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1891 				&log->root_key, &log->root_item);
1892 	} else {
1893 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1894 				&log->root_key, &log->root_item);
1895 	}
1896 	return ret;
1897 }
1898 
1899 static int wait_log_commit(struct btrfs_trans_handle *trans,
1900 			   struct btrfs_root *root, unsigned long transid)
1901 {
1902 	DEFINE_WAIT(wait);
1903 	int index = transid % 2;
1904 
1905 	/*
1906 	 * we only allow two pending log transactions at a time,
1907 	 * so we know that if ours is more than 2 older than the
1908 	 * current transaction, we're done
1909 	 */
1910 	do {
1911 		prepare_to_wait(&root->log_commit_wait[index],
1912 				&wait, TASK_UNINTERRUPTIBLE);
1913 		mutex_unlock(&root->log_mutex);
1914 
1915 		if (root->fs_info->last_trans_log_full_commit !=
1916 		    trans->transid && root->log_transid < transid + 2 &&
1917 		    atomic_read(&root->log_commit[index]))
1918 			schedule();
1919 
1920 		finish_wait(&root->log_commit_wait[index], &wait);
1921 		mutex_lock(&root->log_mutex);
1922 	} while (root->log_transid < transid + 2 &&
1923 		 atomic_read(&root->log_commit[index]));
1924 	return 0;
1925 }
1926 
1927 static int wait_for_writer(struct btrfs_trans_handle *trans,
1928 			   struct btrfs_root *root)
1929 {
1930 	DEFINE_WAIT(wait);
1931 	while (atomic_read(&root->log_writers)) {
1932 		prepare_to_wait(&root->log_writer_wait,
1933 				&wait, TASK_UNINTERRUPTIBLE);
1934 		mutex_unlock(&root->log_mutex);
1935 		if (root->fs_info->last_trans_log_full_commit !=
1936 		    trans->transid && atomic_read(&root->log_writers))
1937 			schedule();
1938 		mutex_lock(&root->log_mutex);
1939 		finish_wait(&root->log_writer_wait, &wait);
1940 	}
1941 	return 0;
1942 }
1943 
1944 /*
1945  * btrfs_sync_log does sends a given tree log down to the disk and
1946  * updates the super blocks to record it.  When this call is done,
1947  * you know that any inodes previously logged are safely on disk only
1948  * if it returns 0.
1949  *
1950  * Any other return value means you need to call btrfs_commit_transaction.
1951  * Some of the edge cases for fsyncing directories that have had unlinks
1952  * or renames done in the past mean that sometimes the only safe
1953  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1954  * that has happened.
1955  */
1956 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1957 		   struct btrfs_root *root)
1958 {
1959 	int index1;
1960 	int index2;
1961 	int mark;
1962 	int ret;
1963 	struct btrfs_root *log = root->log_root;
1964 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1965 	unsigned long log_transid = 0;
1966 
1967 	mutex_lock(&root->log_mutex);
1968 	index1 = root->log_transid % 2;
1969 	if (atomic_read(&root->log_commit[index1])) {
1970 		wait_log_commit(trans, root, root->log_transid);
1971 		mutex_unlock(&root->log_mutex);
1972 		return 0;
1973 	}
1974 	atomic_set(&root->log_commit[index1], 1);
1975 
1976 	/* wait for previous tree log sync to complete */
1977 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1978 		wait_log_commit(trans, root, root->log_transid - 1);
1979 
1980 	while (1) {
1981 		unsigned long batch = root->log_batch;
1982 		if (root->log_multiple_pids) {
1983 			mutex_unlock(&root->log_mutex);
1984 			schedule_timeout_uninterruptible(1);
1985 			mutex_lock(&root->log_mutex);
1986 		}
1987 		wait_for_writer(trans, root);
1988 		if (batch == root->log_batch)
1989 			break;
1990 	}
1991 
1992 	/* bail out if we need to do a full commit */
1993 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
1994 		ret = -EAGAIN;
1995 		mutex_unlock(&root->log_mutex);
1996 		goto out;
1997 	}
1998 
1999 	log_transid = root->log_transid;
2000 	if (log_transid % 2 == 0)
2001 		mark = EXTENT_DIRTY;
2002 	else
2003 		mark = EXTENT_NEW;
2004 
2005 	/* we start IO on  all the marked extents here, but we don't actually
2006 	 * wait for them until later.
2007 	 */
2008 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2009 	BUG_ON(ret);
2010 
2011 	btrfs_set_root_node(&log->root_item, log->node);
2012 
2013 	root->log_batch = 0;
2014 	root->log_transid++;
2015 	log->log_transid = root->log_transid;
2016 	root->log_start_pid = 0;
2017 	smp_mb();
2018 	/*
2019 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2020 	 * in their headers. new modifications of the log will be written to
2021 	 * new positions. so it's safe to allow log writers to go in.
2022 	 */
2023 	mutex_unlock(&root->log_mutex);
2024 
2025 	mutex_lock(&log_root_tree->log_mutex);
2026 	log_root_tree->log_batch++;
2027 	atomic_inc(&log_root_tree->log_writers);
2028 	mutex_unlock(&log_root_tree->log_mutex);
2029 
2030 	ret = update_log_root(trans, log);
2031 
2032 	mutex_lock(&log_root_tree->log_mutex);
2033 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2034 		smp_mb();
2035 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2036 			wake_up(&log_root_tree->log_writer_wait);
2037 	}
2038 
2039 	if (ret) {
2040 		BUG_ON(ret != -ENOSPC);
2041 		root->fs_info->last_trans_log_full_commit = trans->transid;
2042 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2043 		mutex_unlock(&log_root_tree->log_mutex);
2044 		ret = -EAGAIN;
2045 		goto out;
2046 	}
2047 
2048 	index2 = log_root_tree->log_transid % 2;
2049 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2050 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2051 		wait_log_commit(trans, log_root_tree,
2052 				log_root_tree->log_transid);
2053 		mutex_unlock(&log_root_tree->log_mutex);
2054 		ret = 0;
2055 		goto out;
2056 	}
2057 	atomic_set(&log_root_tree->log_commit[index2], 1);
2058 
2059 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2060 		wait_log_commit(trans, log_root_tree,
2061 				log_root_tree->log_transid - 1);
2062 	}
2063 
2064 	wait_for_writer(trans, log_root_tree);
2065 
2066 	/*
2067 	 * now that we've moved on to the tree of log tree roots,
2068 	 * check the full commit flag again
2069 	 */
2070 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2071 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2072 		mutex_unlock(&log_root_tree->log_mutex);
2073 		ret = -EAGAIN;
2074 		goto out_wake_log_root;
2075 	}
2076 
2077 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2078 				&log_root_tree->dirty_log_pages,
2079 				EXTENT_DIRTY | EXTENT_NEW);
2080 	BUG_ON(ret);
2081 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2082 
2083 	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2084 				log_root_tree->node->start);
2085 	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2086 				btrfs_header_level(log_root_tree->node));
2087 
2088 	log_root_tree->log_batch = 0;
2089 	log_root_tree->log_transid++;
2090 	smp_mb();
2091 
2092 	mutex_unlock(&log_root_tree->log_mutex);
2093 
2094 	/*
2095 	 * nobody else is going to jump in and write the the ctree
2096 	 * super here because the log_commit atomic below is protecting
2097 	 * us.  We must be called with a transaction handle pinning
2098 	 * the running transaction open, so a full commit can't hop
2099 	 * in and cause problems either.
2100 	 */
2101 	write_ctree_super(trans, root->fs_info->tree_root, 1);
2102 	ret = 0;
2103 
2104 	mutex_lock(&root->log_mutex);
2105 	if (root->last_log_commit < log_transid)
2106 		root->last_log_commit = log_transid;
2107 	mutex_unlock(&root->log_mutex);
2108 
2109 out_wake_log_root:
2110 	atomic_set(&log_root_tree->log_commit[index2], 0);
2111 	smp_mb();
2112 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2113 		wake_up(&log_root_tree->log_commit_wait[index2]);
2114 out:
2115 	atomic_set(&root->log_commit[index1], 0);
2116 	smp_mb();
2117 	if (waitqueue_active(&root->log_commit_wait[index1]))
2118 		wake_up(&root->log_commit_wait[index1]);
2119 	return ret;
2120 }
2121 
2122 static void free_log_tree(struct btrfs_trans_handle *trans,
2123 			  struct btrfs_root *log)
2124 {
2125 	int ret;
2126 	u64 start;
2127 	u64 end;
2128 	struct walk_control wc = {
2129 		.free = 1,
2130 		.process_func = process_one_buffer
2131 	};
2132 
2133 	ret = walk_log_tree(trans, log, &wc);
2134 	BUG_ON(ret);
2135 
2136 	while (1) {
2137 		ret = find_first_extent_bit(&log->dirty_log_pages,
2138 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2139 		if (ret)
2140 			break;
2141 
2142 		clear_extent_bits(&log->dirty_log_pages, start, end,
2143 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2144 	}
2145 
2146 	free_extent_buffer(log->node);
2147 	kfree(log);
2148 }
2149 
2150 /*
2151  * free all the extents used by the tree log.  This should be called
2152  * at commit time of the full transaction
2153  */
2154 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2155 {
2156 	if (root->log_root) {
2157 		free_log_tree(trans, root->log_root);
2158 		root->log_root = NULL;
2159 	}
2160 	return 0;
2161 }
2162 
2163 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2164 			     struct btrfs_fs_info *fs_info)
2165 {
2166 	if (fs_info->log_root_tree) {
2167 		free_log_tree(trans, fs_info->log_root_tree);
2168 		fs_info->log_root_tree = NULL;
2169 	}
2170 	return 0;
2171 }
2172 
2173 /*
2174  * If both a file and directory are logged, and unlinks or renames are
2175  * mixed in, we have a few interesting corners:
2176  *
2177  * create file X in dir Y
2178  * link file X to X.link in dir Y
2179  * fsync file X
2180  * unlink file X but leave X.link
2181  * fsync dir Y
2182  *
2183  * After a crash we would expect only X.link to exist.  But file X
2184  * didn't get fsync'd again so the log has back refs for X and X.link.
2185  *
2186  * We solve this by removing directory entries and inode backrefs from the
2187  * log when a file that was logged in the current transaction is
2188  * unlinked.  Any later fsync will include the updated log entries, and
2189  * we'll be able to reconstruct the proper directory items from backrefs.
2190  *
2191  * This optimizations allows us to avoid relogging the entire inode
2192  * or the entire directory.
2193  */
2194 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2195 				 struct btrfs_root *root,
2196 				 const char *name, int name_len,
2197 				 struct inode *dir, u64 index)
2198 {
2199 	struct btrfs_root *log;
2200 	struct btrfs_dir_item *di;
2201 	struct btrfs_path *path;
2202 	int ret;
2203 	int err = 0;
2204 	int bytes_del = 0;
2205 
2206 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2207 		return 0;
2208 
2209 	ret = join_running_log_trans(root);
2210 	if (ret)
2211 		return 0;
2212 
2213 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2214 
2215 	log = root->log_root;
2216 	path = btrfs_alloc_path();
2217 	if (!path)
2218 		return -ENOMEM;
2219 
2220 	di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2221 				   name, name_len, -1);
2222 	if (IS_ERR(di)) {
2223 		err = PTR_ERR(di);
2224 		goto fail;
2225 	}
2226 	if (di) {
2227 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2228 		bytes_del += name_len;
2229 		BUG_ON(ret);
2230 	}
2231 	btrfs_release_path(log, path);
2232 	di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2233 					 index, name, name_len, -1);
2234 	if (IS_ERR(di)) {
2235 		err = PTR_ERR(di);
2236 		goto fail;
2237 	}
2238 	if (di) {
2239 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2240 		bytes_del += name_len;
2241 		BUG_ON(ret);
2242 	}
2243 
2244 	/* update the directory size in the log to reflect the names
2245 	 * we have removed
2246 	 */
2247 	if (bytes_del) {
2248 		struct btrfs_key key;
2249 
2250 		key.objectid = dir->i_ino;
2251 		key.offset = 0;
2252 		key.type = BTRFS_INODE_ITEM_KEY;
2253 		btrfs_release_path(log, path);
2254 
2255 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2256 		if (ret < 0) {
2257 			err = ret;
2258 			goto fail;
2259 		}
2260 		if (ret == 0) {
2261 			struct btrfs_inode_item *item;
2262 			u64 i_size;
2263 
2264 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2265 					      struct btrfs_inode_item);
2266 			i_size = btrfs_inode_size(path->nodes[0], item);
2267 			if (i_size > bytes_del)
2268 				i_size -= bytes_del;
2269 			else
2270 				i_size = 0;
2271 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2272 			btrfs_mark_buffer_dirty(path->nodes[0]);
2273 		} else
2274 			ret = 0;
2275 		btrfs_release_path(log, path);
2276 	}
2277 fail:
2278 	btrfs_free_path(path);
2279 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2280 	if (ret == -ENOSPC) {
2281 		root->fs_info->last_trans_log_full_commit = trans->transid;
2282 		ret = 0;
2283 	}
2284 	btrfs_end_log_trans(root);
2285 
2286 	return err;
2287 }
2288 
2289 /* see comments for btrfs_del_dir_entries_in_log */
2290 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2291 			       struct btrfs_root *root,
2292 			       const char *name, int name_len,
2293 			       struct inode *inode, u64 dirid)
2294 {
2295 	struct btrfs_root *log;
2296 	u64 index;
2297 	int ret;
2298 
2299 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2300 		return 0;
2301 
2302 	ret = join_running_log_trans(root);
2303 	if (ret)
2304 		return 0;
2305 	log = root->log_root;
2306 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2307 
2308 	ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2309 				  dirid, &index);
2310 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2311 	if (ret == -ENOSPC) {
2312 		root->fs_info->last_trans_log_full_commit = trans->transid;
2313 		ret = 0;
2314 	}
2315 	btrfs_end_log_trans(root);
2316 
2317 	return ret;
2318 }
2319 
2320 /*
2321  * creates a range item in the log for 'dirid'.  first_offset and
2322  * last_offset tell us which parts of the key space the log should
2323  * be considered authoritative for.
2324  */
2325 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2326 				       struct btrfs_root *log,
2327 				       struct btrfs_path *path,
2328 				       int key_type, u64 dirid,
2329 				       u64 first_offset, u64 last_offset)
2330 {
2331 	int ret;
2332 	struct btrfs_key key;
2333 	struct btrfs_dir_log_item *item;
2334 
2335 	key.objectid = dirid;
2336 	key.offset = first_offset;
2337 	if (key_type == BTRFS_DIR_ITEM_KEY)
2338 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2339 	else
2340 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2341 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2342 	if (ret)
2343 		return ret;
2344 
2345 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2346 			      struct btrfs_dir_log_item);
2347 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2348 	btrfs_mark_buffer_dirty(path->nodes[0]);
2349 	btrfs_release_path(log, path);
2350 	return 0;
2351 }
2352 
2353 /*
2354  * log all the items included in the current transaction for a given
2355  * directory.  This also creates the range items in the log tree required
2356  * to replay anything deleted before the fsync
2357  */
2358 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2359 			  struct btrfs_root *root, struct inode *inode,
2360 			  struct btrfs_path *path,
2361 			  struct btrfs_path *dst_path, int key_type,
2362 			  u64 min_offset, u64 *last_offset_ret)
2363 {
2364 	struct btrfs_key min_key;
2365 	struct btrfs_key max_key;
2366 	struct btrfs_root *log = root->log_root;
2367 	struct extent_buffer *src;
2368 	int err = 0;
2369 	int ret;
2370 	int i;
2371 	int nritems;
2372 	u64 first_offset = min_offset;
2373 	u64 last_offset = (u64)-1;
2374 
2375 	log = root->log_root;
2376 	max_key.objectid = inode->i_ino;
2377 	max_key.offset = (u64)-1;
2378 	max_key.type = key_type;
2379 
2380 	min_key.objectid = inode->i_ino;
2381 	min_key.type = key_type;
2382 	min_key.offset = min_offset;
2383 
2384 	path->keep_locks = 1;
2385 
2386 	ret = btrfs_search_forward(root, &min_key, &max_key,
2387 				   path, 0, trans->transid);
2388 
2389 	/*
2390 	 * we didn't find anything from this transaction, see if there
2391 	 * is anything at all
2392 	 */
2393 	if (ret != 0 || min_key.objectid != inode->i_ino ||
2394 	    min_key.type != key_type) {
2395 		min_key.objectid = inode->i_ino;
2396 		min_key.type = key_type;
2397 		min_key.offset = (u64)-1;
2398 		btrfs_release_path(root, path);
2399 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2400 		if (ret < 0) {
2401 			btrfs_release_path(root, path);
2402 			return ret;
2403 		}
2404 		ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2405 
2406 		/* if ret == 0 there are items for this type,
2407 		 * create a range to tell us the last key of this type.
2408 		 * otherwise, there are no items in this directory after
2409 		 * *min_offset, and we create a range to indicate that.
2410 		 */
2411 		if (ret == 0) {
2412 			struct btrfs_key tmp;
2413 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2414 					      path->slots[0]);
2415 			if (key_type == tmp.type)
2416 				first_offset = max(min_offset, tmp.offset) + 1;
2417 		}
2418 		goto done;
2419 	}
2420 
2421 	/* go backward to find any previous key */
2422 	ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2423 	if (ret == 0) {
2424 		struct btrfs_key tmp;
2425 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2426 		if (key_type == tmp.type) {
2427 			first_offset = tmp.offset;
2428 			ret = overwrite_item(trans, log, dst_path,
2429 					     path->nodes[0], path->slots[0],
2430 					     &tmp);
2431 			if (ret) {
2432 				err = ret;
2433 				goto done;
2434 			}
2435 		}
2436 	}
2437 	btrfs_release_path(root, path);
2438 
2439 	/* find the first key from this transaction again */
2440 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2441 	if (ret != 0) {
2442 		WARN_ON(1);
2443 		goto done;
2444 	}
2445 
2446 	/*
2447 	 * we have a block from this transaction, log every item in it
2448 	 * from our directory
2449 	 */
2450 	while (1) {
2451 		struct btrfs_key tmp;
2452 		src = path->nodes[0];
2453 		nritems = btrfs_header_nritems(src);
2454 		for (i = path->slots[0]; i < nritems; i++) {
2455 			btrfs_item_key_to_cpu(src, &min_key, i);
2456 
2457 			if (min_key.objectid != inode->i_ino ||
2458 			    min_key.type != key_type)
2459 				goto done;
2460 			ret = overwrite_item(trans, log, dst_path, src, i,
2461 					     &min_key);
2462 			if (ret) {
2463 				err = ret;
2464 				goto done;
2465 			}
2466 		}
2467 		path->slots[0] = nritems;
2468 
2469 		/*
2470 		 * look ahead to the next item and see if it is also
2471 		 * from this directory and from this transaction
2472 		 */
2473 		ret = btrfs_next_leaf(root, path);
2474 		if (ret == 1) {
2475 			last_offset = (u64)-1;
2476 			goto done;
2477 		}
2478 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2479 		if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2480 			last_offset = (u64)-1;
2481 			goto done;
2482 		}
2483 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2484 			ret = overwrite_item(trans, log, dst_path,
2485 					     path->nodes[0], path->slots[0],
2486 					     &tmp);
2487 			if (ret)
2488 				err = ret;
2489 			else
2490 				last_offset = tmp.offset;
2491 			goto done;
2492 		}
2493 	}
2494 done:
2495 	btrfs_release_path(root, path);
2496 	btrfs_release_path(log, dst_path);
2497 
2498 	if (err == 0) {
2499 		*last_offset_ret = last_offset;
2500 		/*
2501 		 * insert the log range keys to indicate where the log
2502 		 * is valid
2503 		 */
2504 		ret = insert_dir_log_key(trans, log, path, key_type,
2505 					 inode->i_ino, first_offset,
2506 					 last_offset);
2507 		if (ret)
2508 			err = ret;
2509 	}
2510 	return err;
2511 }
2512 
2513 /*
2514  * logging directories is very similar to logging inodes, We find all the items
2515  * from the current transaction and write them to the log.
2516  *
2517  * The recovery code scans the directory in the subvolume, and if it finds a
2518  * key in the range logged that is not present in the log tree, then it means
2519  * that dir entry was unlinked during the transaction.
2520  *
2521  * In order for that scan to work, we must include one key smaller than
2522  * the smallest logged by this transaction and one key larger than the largest
2523  * key logged by this transaction.
2524  */
2525 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2526 			  struct btrfs_root *root, struct inode *inode,
2527 			  struct btrfs_path *path,
2528 			  struct btrfs_path *dst_path)
2529 {
2530 	u64 min_key;
2531 	u64 max_key;
2532 	int ret;
2533 	int key_type = BTRFS_DIR_ITEM_KEY;
2534 
2535 again:
2536 	min_key = 0;
2537 	max_key = 0;
2538 	while (1) {
2539 		ret = log_dir_items(trans, root, inode, path,
2540 				    dst_path, key_type, min_key,
2541 				    &max_key);
2542 		if (ret)
2543 			return ret;
2544 		if (max_key == (u64)-1)
2545 			break;
2546 		min_key = max_key + 1;
2547 	}
2548 
2549 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2550 		key_type = BTRFS_DIR_INDEX_KEY;
2551 		goto again;
2552 	}
2553 	return 0;
2554 }
2555 
2556 /*
2557  * a helper function to drop items from the log before we relog an
2558  * inode.  max_key_type indicates the highest item type to remove.
2559  * This cannot be run for file data extents because it does not
2560  * free the extents they point to.
2561  */
2562 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2563 				  struct btrfs_root *log,
2564 				  struct btrfs_path *path,
2565 				  u64 objectid, int max_key_type)
2566 {
2567 	int ret;
2568 	struct btrfs_key key;
2569 	struct btrfs_key found_key;
2570 
2571 	key.objectid = objectid;
2572 	key.type = max_key_type;
2573 	key.offset = (u64)-1;
2574 
2575 	while (1) {
2576 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2577 		BUG_ON(ret == 0);
2578 		if (ret < 0)
2579 			break;
2580 
2581 		if (path->slots[0] == 0)
2582 			break;
2583 
2584 		path->slots[0]--;
2585 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2586 				      path->slots[0]);
2587 
2588 		if (found_key.objectid != objectid)
2589 			break;
2590 
2591 		ret = btrfs_del_item(trans, log, path);
2592 		BUG_ON(ret);
2593 		btrfs_release_path(log, path);
2594 	}
2595 	btrfs_release_path(log, path);
2596 	return ret;
2597 }
2598 
2599 static noinline int copy_items(struct btrfs_trans_handle *trans,
2600 			       struct btrfs_root *log,
2601 			       struct btrfs_path *dst_path,
2602 			       struct extent_buffer *src,
2603 			       int start_slot, int nr, int inode_only)
2604 {
2605 	unsigned long src_offset;
2606 	unsigned long dst_offset;
2607 	struct btrfs_file_extent_item *extent;
2608 	struct btrfs_inode_item *inode_item;
2609 	int ret;
2610 	struct btrfs_key *ins_keys;
2611 	u32 *ins_sizes;
2612 	char *ins_data;
2613 	int i;
2614 	struct list_head ordered_sums;
2615 
2616 	INIT_LIST_HEAD(&ordered_sums);
2617 
2618 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2619 			   nr * sizeof(u32), GFP_NOFS);
2620 	if (!ins_data)
2621 		return -ENOMEM;
2622 
2623 	ins_sizes = (u32 *)ins_data;
2624 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2625 
2626 	for (i = 0; i < nr; i++) {
2627 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2628 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2629 	}
2630 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2631 				       ins_keys, ins_sizes, nr);
2632 	if (ret) {
2633 		kfree(ins_data);
2634 		return ret;
2635 	}
2636 
2637 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2638 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2639 						   dst_path->slots[0]);
2640 
2641 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2642 
2643 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2644 				   src_offset, ins_sizes[i]);
2645 
2646 		if (inode_only == LOG_INODE_EXISTS &&
2647 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2648 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2649 						    dst_path->slots[0],
2650 						    struct btrfs_inode_item);
2651 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2652 
2653 			/* set the generation to zero so the recover code
2654 			 * can tell the difference between an logging
2655 			 * just to say 'this inode exists' and a logging
2656 			 * to say 'update this inode with these values'
2657 			 */
2658 			btrfs_set_inode_generation(dst_path->nodes[0],
2659 						   inode_item, 0);
2660 		}
2661 		/* take a reference on file data extents so that truncates
2662 		 * or deletes of this inode don't have to relog the inode
2663 		 * again
2664 		 */
2665 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2666 			int found_type;
2667 			extent = btrfs_item_ptr(src, start_slot + i,
2668 						struct btrfs_file_extent_item);
2669 
2670 			found_type = btrfs_file_extent_type(src, extent);
2671 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2672 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2673 				u64 ds, dl, cs, cl;
2674 				ds = btrfs_file_extent_disk_bytenr(src,
2675 								extent);
2676 				/* ds == 0 is a hole */
2677 				if (ds == 0)
2678 					continue;
2679 
2680 				dl = btrfs_file_extent_disk_num_bytes(src,
2681 								extent);
2682 				cs = btrfs_file_extent_offset(src, extent);
2683 				cl = btrfs_file_extent_num_bytes(src,
2684 								extent);
2685 				if (btrfs_file_extent_compression(src,
2686 								  extent)) {
2687 					cs = 0;
2688 					cl = dl;
2689 				}
2690 
2691 				ret = btrfs_lookup_csums_range(
2692 						log->fs_info->csum_root,
2693 						ds + cs, ds + cs + cl - 1,
2694 						&ordered_sums);
2695 				BUG_ON(ret);
2696 			}
2697 		}
2698 	}
2699 
2700 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2701 	btrfs_release_path(log, dst_path);
2702 	kfree(ins_data);
2703 
2704 	/*
2705 	 * we have to do this after the loop above to avoid changing the
2706 	 * log tree while trying to change the log tree.
2707 	 */
2708 	ret = 0;
2709 	while (!list_empty(&ordered_sums)) {
2710 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2711 						   struct btrfs_ordered_sum,
2712 						   list);
2713 		if (!ret)
2714 			ret = btrfs_csum_file_blocks(trans, log, sums);
2715 		list_del(&sums->list);
2716 		kfree(sums);
2717 	}
2718 	return ret;
2719 }
2720 
2721 /* log a single inode in the tree log.
2722  * At least one parent directory for this inode must exist in the tree
2723  * or be logged already.
2724  *
2725  * Any items from this inode changed by the current transaction are copied
2726  * to the log tree.  An extra reference is taken on any extents in this
2727  * file, allowing us to avoid a whole pile of corner cases around logging
2728  * blocks that have been removed from the tree.
2729  *
2730  * See LOG_INODE_ALL and related defines for a description of what inode_only
2731  * does.
2732  *
2733  * This handles both files and directories.
2734  */
2735 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2736 			     struct btrfs_root *root, struct inode *inode,
2737 			     int inode_only)
2738 {
2739 	struct btrfs_path *path;
2740 	struct btrfs_path *dst_path;
2741 	struct btrfs_key min_key;
2742 	struct btrfs_key max_key;
2743 	struct btrfs_root *log = root->log_root;
2744 	struct extent_buffer *src = NULL;
2745 	int err = 0;
2746 	int ret;
2747 	int nritems;
2748 	int ins_start_slot = 0;
2749 	int ins_nr;
2750 
2751 	log = root->log_root;
2752 
2753 	path = btrfs_alloc_path();
2754 	if (!path)
2755 		return -ENOMEM;
2756 	dst_path = btrfs_alloc_path();
2757 	if (!dst_path) {
2758 		btrfs_free_path(path);
2759 		return -ENOMEM;
2760 	}
2761 
2762 	min_key.objectid = inode->i_ino;
2763 	min_key.type = BTRFS_INODE_ITEM_KEY;
2764 	min_key.offset = 0;
2765 
2766 	max_key.objectid = inode->i_ino;
2767 
2768 	/* today the code can only do partial logging of directories */
2769 	if (!S_ISDIR(inode->i_mode))
2770 	    inode_only = LOG_INODE_ALL;
2771 
2772 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2773 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2774 	else
2775 		max_key.type = (u8)-1;
2776 	max_key.offset = (u64)-1;
2777 
2778 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2779 
2780 	/*
2781 	 * a brute force approach to making sure we get the most uptodate
2782 	 * copies of everything.
2783 	 */
2784 	if (S_ISDIR(inode->i_mode)) {
2785 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2786 
2787 		if (inode_only == LOG_INODE_EXISTS)
2788 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2789 		ret = drop_objectid_items(trans, log, path,
2790 					  inode->i_ino, max_key_type);
2791 	} else {
2792 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2793 	}
2794 	if (ret) {
2795 		err = ret;
2796 		goto out_unlock;
2797 	}
2798 	path->keep_locks = 1;
2799 
2800 	while (1) {
2801 		ins_nr = 0;
2802 		ret = btrfs_search_forward(root, &min_key, &max_key,
2803 					   path, 0, trans->transid);
2804 		if (ret != 0)
2805 			break;
2806 again:
2807 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2808 		if (min_key.objectid != inode->i_ino)
2809 			break;
2810 		if (min_key.type > max_key.type)
2811 			break;
2812 
2813 		src = path->nodes[0];
2814 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2815 			ins_nr++;
2816 			goto next_slot;
2817 		} else if (!ins_nr) {
2818 			ins_start_slot = path->slots[0];
2819 			ins_nr = 1;
2820 			goto next_slot;
2821 		}
2822 
2823 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2824 				 ins_nr, inode_only);
2825 		if (ret) {
2826 			err = ret;
2827 			goto out_unlock;
2828 		}
2829 		ins_nr = 1;
2830 		ins_start_slot = path->slots[0];
2831 next_slot:
2832 
2833 		nritems = btrfs_header_nritems(path->nodes[0]);
2834 		path->slots[0]++;
2835 		if (path->slots[0] < nritems) {
2836 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2837 					      path->slots[0]);
2838 			goto again;
2839 		}
2840 		if (ins_nr) {
2841 			ret = copy_items(trans, log, dst_path, src,
2842 					 ins_start_slot,
2843 					 ins_nr, inode_only);
2844 			if (ret) {
2845 				err = ret;
2846 				goto out_unlock;
2847 			}
2848 			ins_nr = 0;
2849 		}
2850 		btrfs_release_path(root, path);
2851 
2852 		if (min_key.offset < (u64)-1)
2853 			min_key.offset++;
2854 		else if (min_key.type < (u8)-1)
2855 			min_key.type++;
2856 		else if (min_key.objectid < (u64)-1)
2857 			min_key.objectid++;
2858 		else
2859 			break;
2860 	}
2861 	if (ins_nr) {
2862 		ret = copy_items(trans, log, dst_path, src,
2863 				 ins_start_slot,
2864 				 ins_nr, inode_only);
2865 		if (ret) {
2866 			err = ret;
2867 			goto out_unlock;
2868 		}
2869 		ins_nr = 0;
2870 	}
2871 	WARN_ON(ins_nr);
2872 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2873 		btrfs_release_path(root, path);
2874 		btrfs_release_path(log, dst_path);
2875 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2876 		if (ret) {
2877 			err = ret;
2878 			goto out_unlock;
2879 		}
2880 	}
2881 	BTRFS_I(inode)->logged_trans = trans->transid;
2882 out_unlock:
2883 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2884 
2885 	btrfs_free_path(path);
2886 	btrfs_free_path(dst_path);
2887 	return err;
2888 }
2889 
2890 /*
2891  * follow the dentry parent pointers up the chain and see if any
2892  * of the directories in it require a full commit before they can
2893  * be logged.  Returns zero if nothing special needs to be done or 1 if
2894  * a full commit is required.
2895  */
2896 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2897 					       struct inode *inode,
2898 					       struct dentry *parent,
2899 					       struct super_block *sb,
2900 					       u64 last_committed)
2901 {
2902 	int ret = 0;
2903 	struct btrfs_root *root;
2904 	struct dentry *old_parent = NULL;
2905 
2906 	/*
2907 	 * for regular files, if its inode is already on disk, we don't
2908 	 * have to worry about the parents at all.  This is because
2909 	 * we can use the last_unlink_trans field to record renames
2910 	 * and other fun in this file.
2911 	 */
2912 	if (S_ISREG(inode->i_mode) &&
2913 	    BTRFS_I(inode)->generation <= last_committed &&
2914 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2915 			goto out;
2916 
2917 	if (!S_ISDIR(inode->i_mode)) {
2918 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2919 			goto out;
2920 		inode = parent->d_inode;
2921 	}
2922 
2923 	while (1) {
2924 		BTRFS_I(inode)->logged_trans = trans->transid;
2925 		smp_mb();
2926 
2927 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2928 			root = BTRFS_I(inode)->root;
2929 
2930 			/*
2931 			 * make sure any commits to the log are forced
2932 			 * to be full commits
2933 			 */
2934 			root->fs_info->last_trans_log_full_commit =
2935 				trans->transid;
2936 			ret = 1;
2937 			break;
2938 		}
2939 
2940 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2941 			break;
2942 
2943 		if (IS_ROOT(parent))
2944 			break;
2945 
2946 		parent = dget_parent(parent);
2947 		dput(old_parent);
2948 		old_parent = parent;
2949 		inode = parent->d_inode;
2950 
2951 	}
2952 	dput(old_parent);
2953 out:
2954 	return ret;
2955 }
2956 
2957 static int inode_in_log(struct btrfs_trans_handle *trans,
2958 		 struct inode *inode)
2959 {
2960 	struct btrfs_root *root = BTRFS_I(inode)->root;
2961 	int ret = 0;
2962 
2963 	mutex_lock(&root->log_mutex);
2964 	if (BTRFS_I(inode)->logged_trans == trans->transid &&
2965 	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2966 		ret = 1;
2967 	mutex_unlock(&root->log_mutex);
2968 	return ret;
2969 }
2970 
2971 
2972 /*
2973  * helper function around btrfs_log_inode to make sure newly created
2974  * parent directories also end up in the log.  A minimal inode and backref
2975  * only logging is done of any parent directories that are older than
2976  * the last committed transaction
2977  */
2978 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2979 		    struct btrfs_root *root, struct inode *inode,
2980 		    struct dentry *parent, int exists_only)
2981 {
2982 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2983 	struct super_block *sb;
2984 	struct dentry *old_parent = NULL;
2985 	int ret = 0;
2986 	u64 last_committed = root->fs_info->last_trans_committed;
2987 
2988 	sb = inode->i_sb;
2989 
2990 	if (btrfs_test_opt(root, NOTREELOG)) {
2991 		ret = 1;
2992 		goto end_no_trans;
2993 	}
2994 
2995 	if (root->fs_info->last_trans_log_full_commit >
2996 	    root->fs_info->last_trans_committed) {
2997 		ret = 1;
2998 		goto end_no_trans;
2999 	}
3000 
3001 	if (root != BTRFS_I(inode)->root ||
3002 	    btrfs_root_refs(&root->root_item) == 0) {
3003 		ret = 1;
3004 		goto end_no_trans;
3005 	}
3006 
3007 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3008 					 sb, last_committed);
3009 	if (ret)
3010 		goto end_no_trans;
3011 
3012 	if (inode_in_log(trans, inode)) {
3013 		ret = BTRFS_NO_LOG_SYNC;
3014 		goto end_no_trans;
3015 	}
3016 
3017 	ret = start_log_trans(trans, root);
3018 	if (ret)
3019 		goto end_trans;
3020 
3021 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3022 	if (ret)
3023 		goto end_trans;
3024 
3025 	/*
3026 	 * for regular files, if its inode is already on disk, we don't
3027 	 * have to worry about the parents at all.  This is because
3028 	 * we can use the last_unlink_trans field to record renames
3029 	 * and other fun in this file.
3030 	 */
3031 	if (S_ISREG(inode->i_mode) &&
3032 	    BTRFS_I(inode)->generation <= last_committed &&
3033 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3034 		ret = 0;
3035 		goto end_trans;
3036 	}
3037 
3038 	inode_only = LOG_INODE_EXISTS;
3039 	while (1) {
3040 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3041 			break;
3042 
3043 		inode = parent->d_inode;
3044 		if (root != BTRFS_I(inode)->root)
3045 			break;
3046 
3047 		if (BTRFS_I(inode)->generation >
3048 		    root->fs_info->last_trans_committed) {
3049 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3050 			if (ret)
3051 				goto end_trans;
3052 		}
3053 		if (IS_ROOT(parent))
3054 			break;
3055 
3056 		parent = dget_parent(parent);
3057 		dput(old_parent);
3058 		old_parent = parent;
3059 	}
3060 	ret = 0;
3061 end_trans:
3062 	dput(old_parent);
3063 	if (ret < 0) {
3064 		BUG_ON(ret != -ENOSPC);
3065 		root->fs_info->last_trans_log_full_commit = trans->transid;
3066 		ret = 1;
3067 	}
3068 	btrfs_end_log_trans(root);
3069 end_no_trans:
3070 	return ret;
3071 }
3072 
3073 /*
3074  * it is not safe to log dentry if the chunk root has added new
3075  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3076  * If this returns 1, you must commit the transaction to safely get your
3077  * data on disk.
3078  */
3079 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3080 			  struct btrfs_root *root, struct dentry *dentry)
3081 {
3082 	struct dentry *parent = dget_parent(dentry);
3083 	int ret;
3084 
3085 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3086 	dput(parent);
3087 
3088 	return ret;
3089 }
3090 
3091 /*
3092  * should be called during mount to recover any replay any log trees
3093  * from the FS
3094  */
3095 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3096 {
3097 	int ret;
3098 	struct btrfs_path *path;
3099 	struct btrfs_trans_handle *trans;
3100 	struct btrfs_key key;
3101 	struct btrfs_key found_key;
3102 	struct btrfs_key tmp_key;
3103 	struct btrfs_root *log;
3104 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3105 	struct walk_control wc = {
3106 		.process_func = process_one_buffer,
3107 		.stage = 0,
3108 	};
3109 
3110 	fs_info->log_root_recovering = 1;
3111 	path = btrfs_alloc_path();
3112 	BUG_ON(!path);
3113 
3114 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3115 	BUG_ON(IS_ERR(trans));
3116 
3117 	wc.trans = trans;
3118 	wc.pin = 1;
3119 
3120 	walk_log_tree(trans, log_root_tree, &wc);
3121 
3122 again:
3123 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3124 	key.offset = (u64)-1;
3125 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3126 
3127 	while (1) {
3128 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3129 		if (ret < 0)
3130 			break;
3131 		if (ret > 0) {
3132 			if (path->slots[0] == 0)
3133 				break;
3134 			path->slots[0]--;
3135 		}
3136 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3137 				      path->slots[0]);
3138 		btrfs_release_path(log_root_tree, path);
3139 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3140 			break;
3141 
3142 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3143 						  &found_key);
3144 		BUG_ON(!log);
3145 
3146 
3147 		tmp_key.objectid = found_key.offset;
3148 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3149 		tmp_key.offset = (u64)-1;
3150 
3151 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3152 		BUG_ON(!wc.replay_dest);
3153 
3154 		wc.replay_dest->log_root = log;
3155 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3156 		ret = walk_log_tree(trans, log, &wc);
3157 		BUG_ON(ret);
3158 
3159 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3160 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3161 						      path);
3162 			BUG_ON(ret);
3163 		}
3164 
3165 		key.offset = found_key.offset - 1;
3166 		wc.replay_dest->log_root = NULL;
3167 		free_extent_buffer(log->node);
3168 		free_extent_buffer(log->commit_root);
3169 		kfree(log);
3170 
3171 		if (found_key.offset == 0)
3172 			break;
3173 	}
3174 	btrfs_release_path(log_root_tree, path);
3175 
3176 	/* step one is to pin it all, step two is to replay just inodes */
3177 	if (wc.pin) {
3178 		wc.pin = 0;
3179 		wc.process_func = replay_one_buffer;
3180 		wc.stage = LOG_WALK_REPLAY_INODES;
3181 		goto again;
3182 	}
3183 	/* step three is to replay everything */
3184 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3185 		wc.stage++;
3186 		goto again;
3187 	}
3188 
3189 	btrfs_free_path(path);
3190 
3191 	free_extent_buffer(log_root_tree->node);
3192 	log_root_tree->log_root = NULL;
3193 	fs_info->log_root_recovering = 0;
3194 
3195 	/* step 4: commit the transaction, which also unpins the blocks */
3196 	btrfs_commit_transaction(trans, fs_info->tree_root);
3197 
3198 	kfree(log_root_tree);
3199 	return 0;
3200 }
3201 
3202 /*
3203  * there are some corner cases where we want to force a full
3204  * commit instead of allowing a directory to be logged.
3205  *
3206  * They revolve around files there were unlinked from the directory, and
3207  * this function updates the parent directory so that a full commit is
3208  * properly done if it is fsync'd later after the unlinks are done.
3209  */
3210 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3211 			     struct inode *dir, struct inode *inode,
3212 			     int for_rename)
3213 {
3214 	/*
3215 	 * when we're logging a file, if it hasn't been renamed
3216 	 * or unlinked, and its inode is fully committed on disk,
3217 	 * we don't have to worry about walking up the directory chain
3218 	 * to log its parents.
3219 	 *
3220 	 * So, we use the last_unlink_trans field to put this transid
3221 	 * into the file.  When the file is logged we check it and
3222 	 * don't log the parents if the file is fully on disk.
3223 	 */
3224 	if (S_ISREG(inode->i_mode))
3225 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3226 
3227 	/*
3228 	 * if this directory was already logged any new
3229 	 * names for this file/dir will get recorded
3230 	 */
3231 	smp_mb();
3232 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3233 		return;
3234 
3235 	/*
3236 	 * if the inode we're about to unlink was logged,
3237 	 * the log will be properly updated for any new names
3238 	 */
3239 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3240 		return;
3241 
3242 	/*
3243 	 * when renaming files across directories, if the directory
3244 	 * there we're unlinking from gets fsync'd later on, there's
3245 	 * no way to find the destination directory later and fsync it
3246 	 * properly.  So, we have to be conservative and force commits
3247 	 * so the new name gets discovered.
3248 	 */
3249 	if (for_rename)
3250 		goto record;
3251 
3252 	/* we can safely do the unlink without any special recording */
3253 	return;
3254 
3255 record:
3256 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3257 }
3258 
3259 /*
3260  * Call this after adding a new name for a file and it will properly
3261  * update the log to reflect the new name.
3262  *
3263  * It will return zero if all goes well, and it will return 1 if a
3264  * full transaction commit is required.
3265  */
3266 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3267 			struct inode *inode, struct inode *old_dir,
3268 			struct dentry *parent)
3269 {
3270 	struct btrfs_root * root = BTRFS_I(inode)->root;
3271 
3272 	/*
3273 	 * this will force the logging code to walk the dentry chain
3274 	 * up for the file
3275 	 */
3276 	if (S_ISREG(inode->i_mode))
3277 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3278 
3279 	/*
3280 	 * if this inode hasn't been logged and directory we're renaming it
3281 	 * from hasn't been logged, we don't need to log it
3282 	 */
3283 	if (BTRFS_I(inode)->logged_trans <=
3284 	    root->fs_info->last_trans_committed &&
3285 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3286 		    root->fs_info->last_trans_committed))
3287 		return 0;
3288 
3289 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3290 }
3291 
3292