1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "block-group.h" 21 #include "space-info.h" 22 #include "zoned.h" 23 #include "inode-item.h" 24 #include "fs.h" 25 #include "accessors.h" 26 #include "extent-tree.h" 27 #include "root-tree.h" 28 #include "dir-item.h" 29 #include "file-item.h" 30 #include "file.h" 31 #include "orphan.h" 32 #include "tree-checker.h" 33 34 #define MAX_CONFLICT_INODES 10 35 36 /* magic values for the inode_only field in btrfs_log_inode: 37 * 38 * LOG_INODE_ALL means to log everything 39 * LOG_INODE_EXISTS means to log just enough to recreate the inode 40 * during log replay 41 */ 42 enum { 43 LOG_INODE_ALL, 44 LOG_INODE_EXISTS, 45 }; 46 47 /* 48 * directory trouble cases 49 * 50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 51 * log, we must force a full commit before doing an fsync of the directory 52 * where the unlink was done. 53 * ---> record transid of last unlink/rename per directory 54 * 55 * mkdir foo/some_dir 56 * normal commit 57 * rename foo/some_dir foo2/some_dir 58 * mkdir foo/some_dir 59 * fsync foo/some_dir/some_file 60 * 61 * The fsync above will unlink the original some_dir without recording 62 * it in its new location (foo2). After a crash, some_dir will be gone 63 * unless the fsync of some_file forces a full commit 64 * 65 * 2) we must log any new names for any file or dir that is in the fsync 66 * log. ---> check inode while renaming/linking. 67 * 68 * 2a) we must log any new names for any file or dir during rename 69 * when the directory they are being removed from was logged. 70 * ---> check inode and old parent dir during rename 71 * 72 * 2a is actually the more important variant. With the extra logging 73 * a crash might unlink the old name without recreating the new one 74 * 75 * 3) after a crash, we must go through any directories with a link count 76 * of zero and redo the rm -rf 77 * 78 * mkdir f1/foo 79 * normal commit 80 * rm -rf f1/foo 81 * fsync(f1) 82 * 83 * The directory f1 was fully removed from the FS, but fsync was never 84 * called on f1, only its parent dir. After a crash the rm -rf must 85 * be replayed. This must be able to recurse down the entire 86 * directory tree. The inode link count fixup code takes care of the 87 * ugly details. 88 */ 89 90 /* 91 * stages for the tree walking. The first 92 * stage (0) is to only pin down the blocks we find 93 * the second stage (1) is to make sure that all the inodes 94 * we find in the log are created in the subvolume. 95 * 96 * The last stage is to deal with directories and links and extents 97 * and all the other fun semantics 98 */ 99 enum { 100 LOG_WALK_PIN_ONLY, 101 LOG_WALK_REPLAY_INODES, 102 LOG_WALK_REPLAY_DIR_INDEX, 103 LOG_WALK_REPLAY_ALL, 104 }; 105 106 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 107 struct btrfs_inode *inode, 108 int inode_only, 109 struct btrfs_log_ctx *ctx); 110 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 111 struct btrfs_root *root, 112 struct btrfs_path *path, u64 objectid); 113 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 114 struct btrfs_root *root, 115 struct btrfs_root *log, 116 struct btrfs_path *path, 117 u64 dirid, int del_all); 118 static void wait_log_commit(struct btrfs_root *root, int transid); 119 120 /* 121 * tree logging is a special write ahead log used to make sure that 122 * fsyncs and O_SYNCs can happen without doing full tree commits. 123 * 124 * Full tree commits are expensive because they require commonly 125 * modified blocks to be recowed, creating many dirty pages in the 126 * extent tree an 4x-6x higher write load than ext3. 127 * 128 * Instead of doing a tree commit on every fsync, we use the 129 * key ranges and transaction ids to find items for a given file or directory 130 * that have changed in this transaction. Those items are copied into 131 * a special tree (one per subvolume root), that tree is written to disk 132 * and then the fsync is considered complete. 133 * 134 * After a crash, items are copied out of the log-tree back into the 135 * subvolume tree. Any file data extents found are recorded in the extent 136 * allocation tree, and the log-tree freed. 137 * 138 * The log tree is read three times, once to pin down all the extents it is 139 * using in ram and once, once to create all the inodes logged in the tree 140 * and once to do all the other items. 141 */ 142 143 static struct inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root) 144 { 145 unsigned int nofs_flag; 146 struct inode *inode; 147 148 /* 149 * We're holding a transaction handle whether we are logging or 150 * replaying a log tree, so we must make sure NOFS semantics apply 151 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL 152 * to allocate an inode, which can recurse back into the filesystem and 153 * attempt a transaction commit, resulting in a deadlock. 154 */ 155 nofs_flag = memalloc_nofs_save(); 156 inode = btrfs_iget(root->fs_info->sb, objectid, root); 157 memalloc_nofs_restore(nofs_flag); 158 159 return inode; 160 } 161 162 /* 163 * start a sub transaction and setup the log tree 164 * this increments the log tree writer count to make the people 165 * syncing the tree wait for us to finish 166 */ 167 static int start_log_trans(struct btrfs_trans_handle *trans, 168 struct btrfs_root *root, 169 struct btrfs_log_ctx *ctx) 170 { 171 struct btrfs_fs_info *fs_info = root->fs_info; 172 struct btrfs_root *tree_root = fs_info->tree_root; 173 const bool zoned = btrfs_is_zoned(fs_info); 174 int ret = 0; 175 bool created = false; 176 177 /* 178 * First check if the log root tree was already created. If not, create 179 * it before locking the root's log_mutex, just to keep lockdep happy. 180 */ 181 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { 182 mutex_lock(&tree_root->log_mutex); 183 if (!fs_info->log_root_tree) { 184 ret = btrfs_init_log_root_tree(trans, fs_info); 185 if (!ret) { 186 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); 187 created = true; 188 } 189 } 190 mutex_unlock(&tree_root->log_mutex); 191 if (ret) 192 return ret; 193 } 194 195 mutex_lock(&root->log_mutex); 196 197 again: 198 if (root->log_root) { 199 int index = (root->log_transid + 1) % 2; 200 201 if (btrfs_need_log_full_commit(trans)) { 202 ret = BTRFS_LOG_FORCE_COMMIT; 203 goto out; 204 } 205 206 if (zoned && atomic_read(&root->log_commit[index])) { 207 wait_log_commit(root, root->log_transid - 1); 208 goto again; 209 } 210 211 if (!root->log_start_pid) { 212 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 213 root->log_start_pid = current->pid; 214 } else if (root->log_start_pid != current->pid) { 215 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 216 } 217 } else { 218 /* 219 * This means fs_info->log_root_tree was already created 220 * for some other FS trees. Do the full commit not to mix 221 * nodes from multiple log transactions to do sequential 222 * writing. 223 */ 224 if (zoned && !created) { 225 ret = BTRFS_LOG_FORCE_COMMIT; 226 goto out; 227 } 228 229 ret = btrfs_add_log_tree(trans, root); 230 if (ret) 231 goto out; 232 233 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 234 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 235 root->log_start_pid = current->pid; 236 } 237 238 atomic_inc(&root->log_writers); 239 if (!ctx->logging_new_name) { 240 int index = root->log_transid % 2; 241 list_add_tail(&ctx->list, &root->log_ctxs[index]); 242 ctx->log_transid = root->log_transid; 243 } 244 245 out: 246 mutex_unlock(&root->log_mutex); 247 return ret; 248 } 249 250 /* 251 * returns 0 if there was a log transaction running and we were able 252 * to join, or returns -ENOENT if there were not transactions 253 * in progress 254 */ 255 static int join_running_log_trans(struct btrfs_root *root) 256 { 257 const bool zoned = btrfs_is_zoned(root->fs_info); 258 int ret = -ENOENT; 259 260 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 261 return ret; 262 263 mutex_lock(&root->log_mutex); 264 again: 265 if (root->log_root) { 266 int index = (root->log_transid + 1) % 2; 267 268 ret = 0; 269 if (zoned && atomic_read(&root->log_commit[index])) { 270 wait_log_commit(root, root->log_transid - 1); 271 goto again; 272 } 273 atomic_inc(&root->log_writers); 274 } 275 mutex_unlock(&root->log_mutex); 276 return ret; 277 } 278 279 /* 280 * This either makes the current running log transaction wait 281 * until you call btrfs_end_log_trans() or it makes any future 282 * log transactions wait until you call btrfs_end_log_trans() 283 */ 284 void btrfs_pin_log_trans(struct btrfs_root *root) 285 { 286 atomic_inc(&root->log_writers); 287 } 288 289 /* 290 * indicate we're done making changes to the log tree 291 * and wake up anyone waiting to do a sync 292 */ 293 void btrfs_end_log_trans(struct btrfs_root *root) 294 { 295 if (atomic_dec_and_test(&root->log_writers)) { 296 /* atomic_dec_and_test implies a barrier */ 297 cond_wake_up_nomb(&root->log_writer_wait); 298 } 299 } 300 301 /* 302 * the walk control struct is used to pass state down the chain when 303 * processing the log tree. The stage field tells us which part 304 * of the log tree processing we are currently doing. The others 305 * are state fields used for that specific part 306 */ 307 struct walk_control { 308 /* should we free the extent on disk when done? This is used 309 * at transaction commit time while freeing a log tree 310 */ 311 int free; 312 313 /* pin only walk, we record which extents on disk belong to the 314 * log trees 315 */ 316 int pin; 317 318 /* what stage of the replay code we're currently in */ 319 int stage; 320 321 /* 322 * Ignore any items from the inode currently being processed. Needs 323 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 324 * the LOG_WALK_REPLAY_INODES stage. 325 */ 326 bool ignore_cur_inode; 327 328 /* the root we are currently replaying */ 329 struct btrfs_root *replay_dest; 330 331 /* the trans handle for the current replay */ 332 struct btrfs_trans_handle *trans; 333 334 /* the function that gets used to process blocks we find in the 335 * tree. Note the extent_buffer might not be up to date when it is 336 * passed in, and it must be checked or read if you need the data 337 * inside it 338 */ 339 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 340 struct walk_control *wc, u64 gen, int level); 341 }; 342 343 /* 344 * process_func used to pin down extents, write them or wait on them 345 */ 346 static int process_one_buffer(struct btrfs_root *log, 347 struct extent_buffer *eb, 348 struct walk_control *wc, u64 gen, int level) 349 { 350 struct btrfs_fs_info *fs_info = log->fs_info; 351 int ret = 0; 352 353 /* 354 * If this fs is mixed then we need to be able to process the leaves to 355 * pin down any logged extents, so we have to read the block. 356 */ 357 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 358 struct btrfs_tree_parent_check check = { 359 .level = level, 360 .transid = gen 361 }; 362 363 ret = btrfs_read_extent_buffer(eb, &check); 364 if (ret) 365 return ret; 366 } 367 368 if (wc->pin) { 369 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start, 370 eb->len); 371 if (ret) 372 return ret; 373 374 if (btrfs_buffer_uptodate(eb, gen, 0) && 375 btrfs_header_level(eb) == 0) 376 ret = btrfs_exclude_logged_extents(eb); 377 } 378 return ret; 379 } 380 381 /* 382 * Item overwrite used by replay and tree logging. eb, slot and key all refer 383 * to the src data we are copying out. 384 * 385 * root is the tree we are copying into, and path is a scratch 386 * path for use in this function (it should be released on entry and 387 * will be released on exit). 388 * 389 * If the key is already in the destination tree the existing item is 390 * overwritten. If the existing item isn't big enough, it is extended. 391 * If it is too large, it is truncated. 392 * 393 * If the key isn't in the destination yet, a new item is inserted. 394 */ 395 static int overwrite_item(struct btrfs_trans_handle *trans, 396 struct btrfs_root *root, 397 struct btrfs_path *path, 398 struct extent_buffer *eb, int slot, 399 struct btrfs_key *key) 400 { 401 int ret; 402 u32 item_size; 403 u64 saved_i_size = 0; 404 int save_old_i_size = 0; 405 unsigned long src_ptr; 406 unsigned long dst_ptr; 407 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 408 409 /* 410 * This is only used during log replay, so the root is always from a 411 * fs/subvolume tree. In case we ever need to support a log root, then 412 * we'll have to clone the leaf in the path, release the path and use 413 * the leaf before writing into the log tree. See the comments at 414 * copy_items() for more details. 415 */ 416 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 417 418 item_size = btrfs_item_size(eb, slot); 419 src_ptr = btrfs_item_ptr_offset(eb, slot); 420 421 /* Look for the key in the destination tree. */ 422 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 423 if (ret < 0) 424 return ret; 425 426 if (ret == 0) { 427 char *src_copy; 428 char *dst_copy; 429 u32 dst_size = btrfs_item_size(path->nodes[0], 430 path->slots[0]); 431 if (dst_size != item_size) 432 goto insert; 433 434 if (item_size == 0) { 435 btrfs_release_path(path); 436 return 0; 437 } 438 dst_copy = kmalloc(item_size, GFP_NOFS); 439 src_copy = kmalloc(item_size, GFP_NOFS); 440 if (!dst_copy || !src_copy) { 441 btrfs_release_path(path); 442 kfree(dst_copy); 443 kfree(src_copy); 444 return -ENOMEM; 445 } 446 447 read_extent_buffer(eb, src_copy, src_ptr, item_size); 448 449 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 450 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 451 item_size); 452 ret = memcmp(dst_copy, src_copy, item_size); 453 454 kfree(dst_copy); 455 kfree(src_copy); 456 /* 457 * they have the same contents, just return, this saves 458 * us from cowing blocks in the destination tree and doing 459 * extra writes that may not have been done by a previous 460 * sync 461 */ 462 if (ret == 0) { 463 btrfs_release_path(path); 464 return 0; 465 } 466 467 /* 468 * We need to load the old nbytes into the inode so when we 469 * replay the extents we've logged we get the right nbytes. 470 */ 471 if (inode_item) { 472 struct btrfs_inode_item *item; 473 u64 nbytes; 474 u32 mode; 475 476 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 477 struct btrfs_inode_item); 478 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 479 item = btrfs_item_ptr(eb, slot, 480 struct btrfs_inode_item); 481 btrfs_set_inode_nbytes(eb, item, nbytes); 482 483 /* 484 * If this is a directory we need to reset the i_size to 485 * 0 so that we can set it up properly when replaying 486 * the rest of the items in this log. 487 */ 488 mode = btrfs_inode_mode(eb, item); 489 if (S_ISDIR(mode)) 490 btrfs_set_inode_size(eb, item, 0); 491 } 492 } else if (inode_item) { 493 struct btrfs_inode_item *item; 494 u32 mode; 495 496 /* 497 * New inode, set nbytes to 0 so that the nbytes comes out 498 * properly when we replay the extents. 499 */ 500 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 501 btrfs_set_inode_nbytes(eb, item, 0); 502 503 /* 504 * If this is a directory we need to reset the i_size to 0 so 505 * that we can set it up properly when replaying the rest of 506 * the items in this log. 507 */ 508 mode = btrfs_inode_mode(eb, item); 509 if (S_ISDIR(mode)) 510 btrfs_set_inode_size(eb, item, 0); 511 } 512 insert: 513 btrfs_release_path(path); 514 /* try to insert the key into the destination tree */ 515 path->skip_release_on_error = 1; 516 ret = btrfs_insert_empty_item(trans, root, path, 517 key, item_size); 518 path->skip_release_on_error = 0; 519 520 /* make sure any existing item is the correct size */ 521 if (ret == -EEXIST || ret == -EOVERFLOW) { 522 u32 found_size; 523 found_size = btrfs_item_size(path->nodes[0], 524 path->slots[0]); 525 if (found_size > item_size) 526 btrfs_truncate_item(trans, path, item_size, 1); 527 else if (found_size < item_size) 528 btrfs_extend_item(trans, path, item_size - found_size); 529 } else if (ret) { 530 return ret; 531 } 532 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 533 path->slots[0]); 534 535 /* don't overwrite an existing inode if the generation number 536 * was logged as zero. This is done when the tree logging code 537 * is just logging an inode to make sure it exists after recovery. 538 * 539 * Also, don't overwrite i_size on directories during replay. 540 * log replay inserts and removes directory items based on the 541 * state of the tree found in the subvolume, and i_size is modified 542 * as it goes 543 */ 544 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 545 struct btrfs_inode_item *src_item; 546 struct btrfs_inode_item *dst_item; 547 548 src_item = (struct btrfs_inode_item *)src_ptr; 549 dst_item = (struct btrfs_inode_item *)dst_ptr; 550 551 if (btrfs_inode_generation(eb, src_item) == 0) { 552 struct extent_buffer *dst_eb = path->nodes[0]; 553 const u64 ino_size = btrfs_inode_size(eb, src_item); 554 555 /* 556 * For regular files an ino_size == 0 is used only when 557 * logging that an inode exists, as part of a directory 558 * fsync, and the inode wasn't fsynced before. In this 559 * case don't set the size of the inode in the fs/subvol 560 * tree, otherwise we would be throwing valid data away. 561 */ 562 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 563 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 564 ino_size != 0) 565 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 566 goto no_copy; 567 } 568 569 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) && 570 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 571 save_old_i_size = 1; 572 saved_i_size = btrfs_inode_size(path->nodes[0], 573 dst_item); 574 } 575 } 576 577 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 578 src_ptr, item_size); 579 580 if (save_old_i_size) { 581 struct btrfs_inode_item *dst_item; 582 dst_item = (struct btrfs_inode_item *)dst_ptr; 583 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 584 } 585 586 /* make sure the generation is filled in */ 587 if (key->type == BTRFS_INODE_ITEM_KEY) { 588 struct btrfs_inode_item *dst_item; 589 dst_item = (struct btrfs_inode_item *)dst_ptr; 590 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 591 btrfs_set_inode_generation(path->nodes[0], dst_item, 592 trans->transid); 593 } 594 } 595 no_copy: 596 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 597 btrfs_release_path(path); 598 return 0; 599 } 600 601 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len, 602 struct fscrypt_str *name) 603 { 604 char *buf; 605 606 buf = kmalloc(len, GFP_NOFS); 607 if (!buf) 608 return -ENOMEM; 609 610 read_extent_buffer(eb, buf, (unsigned long)start, len); 611 name->name = buf; 612 name->len = len; 613 return 0; 614 } 615 616 /* 617 * simple helper to read an inode off the disk from a given root 618 * This can only be called for subvolume roots and not for the log 619 */ 620 static noinline struct inode *read_one_inode(struct btrfs_root *root, 621 u64 objectid) 622 { 623 struct inode *inode; 624 625 inode = btrfs_iget_logging(objectid, root); 626 if (IS_ERR(inode)) 627 inode = NULL; 628 return inode; 629 } 630 631 /* replays a single extent in 'eb' at 'slot' with 'key' into the 632 * subvolume 'root'. path is released on entry and should be released 633 * on exit. 634 * 635 * extents in the log tree have not been allocated out of the extent 636 * tree yet. So, this completes the allocation, taking a reference 637 * as required if the extent already exists or creating a new extent 638 * if it isn't in the extent allocation tree yet. 639 * 640 * The extent is inserted into the file, dropping any existing extents 641 * from the file that overlap the new one. 642 */ 643 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 644 struct btrfs_root *root, 645 struct btrfs_path *path, 646 struct extent_buffer *eb, int slot, 647 struct btrfs_key *key) 648 { 649 struct btrfs_drop_extents_args drop_args = { 0 }; 650 struct btrfs_fs_info *fs_info = root->fs_info; 651 int found_type; 652 u64 extent_end; 653 u64 start = key->offset; 654 u64 nbytes = 0; 655 struct btrfs_file_extent_item *item; 656 struct inode *inode = NULL; 657 unsigned long size; 658 int ret = 0; 659 660 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 661 found_type = btrfs_file_extent_type(eb, item); 662 663 if (found_type == BTRFS_FILE_EXTENT_REG || 664 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 665 nbytes = btrfs_file_extent_num_bytes(eb, item); 666 extent_end = start + nbytes; 667 668 /* 669 * We don't add to the inodes nbytes if we are prealloc or a 670 * hole. 671 */ 672 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 673 nbytes = 0; 674 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 675 size = btrfs_file_extent_ram_bytes(eb, item); 676 nbytes = btrfs_file_extent_ram_bytes(eb, item); 677 extent_end = ALIGN(start + size, 678 fs_info->sectorsize); 679 } else { 680 ret = 0; 681 goto out; 682 } 683 684 inode = read_one_inode(root, key->objectid); 685 if (!inode) { 686 ret = -EIO; 687 goto out; 688 } 689 690 /* 691 * first check to see if we already have this extent in the 692 * file. This must be done before the btrfs_drop_extents run 693 * so we don't try to drop this extent. 694 */ 695 ret = btrfs_lookup_file_extent(trans, root, path, 696 btrfs_ino(BTRFS_I(inode)), start, 0); 697 698 if (ret == 0 && 699 (found_type == BTRFS_FILE_EXTENT_REG || 700 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 701 struct btrfs_file_extent_item cmp1; 702 struct btrfs_file_extent_item cmp2; 703 struct btrfs_file_extent_item *existing; 704 struct extent_buffer *leaf; 705 706 leaf = path->nodes[0]; 707 existing = btrfs_item_ptr(leaf, path->slots[0], 708 struct btrfs_file_extent_item); 709 710 read_extent_buffer(eb, &cmp1, (unsigned long)item, 711 sizeof(cmp1)); 712 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 713 sizeof(cmp2)); 714 715 /* 716 * we already have a pointer to this exact extent, 717 * we don't have to do anything 718 */ 719 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 720 btrfs_release_path(path); 721 goto out; 722 } 723 } 724 btrfs_release_path(path); 725 726 /* drop any overlapping extents */ 727 drop_args.start = start; 728 drop_args.end = extent_end; 729 drop_args.drop_cache = true; 730 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args); 731 if (ret) 732 goto out; 733 734 if (found_type == BTRFS_FILE_EXTENT_REG || 735 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 736 u64 offset; 737 unsigned long dest_offset; 738 struct btrfs_key ins; 739 740 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 741 btrfs_fs_incompat(fs_info, NO_HOLES)) 742 goto update_inode; 743 744 ret = btrfs_insert_empty_item(trans, root, path, key, 745 sizeof(*item)); 746 if (ret) 747 goto out; 748 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 749 path->slots[0]); 750 copy_extent_buffer(path->nodes[0], eb, dest_offset, 751 (unsigned long)item, sizeof(*item)); 752 753 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 754 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 755 ins.type = BTRFS_EXTENT_ITEM_KEY; 756 offset = key->offset - btrfs_file_extent_offset(eb, item); 757 758 /* 759 * Manually record dirty extent, as here we did a shallow 760 * file extent item copy and skip normal backref update, 761 * but modifying extent tree all by ourselves. 762 * So need to manually record dirty extent for qgroup, 763 * as the owner of the file extent changed from log tree 764 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 765 */ 766 ret = btrfs_qgroup_trace_extent(trans, 767 btrfs_file_extent_disk_bytenr(eb, item), 768 btrfs_file_extent_disk_num_bytes(eb, item)); 769 if (ret < 0) 770 goto out; 771 772 if (ins.objectid > 0) { 773 struct btrfs_ref ref = { 0 }; 774 u64 csum_start; 775 u64 csum_end; 776 LIST_HEAD(ordered_sums); 777 778 /* 779 * is this extent already allocated in the extent 780 * allocation tree? If so, just add a reference 781 */ 782 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 783 ins.offset); 784 if (ret < 0) { 785 goto out; 786 } else if (ret == 0) { 787 btrfs_init_generic_ref(&ref, 788 BTRFS_ADD_DELAYED_REF, 789 ins.objectid, ins.offset, 0); 790 btrfs_init_data_ref(&ref, 791 root->root_key.objectid, 792 key->objectid, offset, 0, false); 793 ret = btrfs_inc_extent_ref(trans, &ref); 794 if (ret) 795 goto out; 796 } else { 797 /* 798 * insert the extent pointer in the extent 799 * allocation tree 800 */ 801 ret = btrfs_alloc_logged_file_extent(trans, 802 root->root_key.objectid, 803 key->objectid, offset, &ins); 804 if (ret) 805 goto out; 806 } 807 btrfs_release_path(path); 808 809 if (btrfs_file_extent_compression(eb, item)) { 810 csum_start = ins.objectid; 811 csum_end = csum_start + ins.offset; 812 } else { 813 csum_start = ins.objectid + 814 btrfs_file_extent_offset(eb, item); 815 csum_end = csum_start + 816 btrfs_file_extent_num_bytes(eb, item); 817 } 818 819 ret = btrfs_lookup_csums_list(root->log_root, 820 csum_start, csum_end - 1, 821 &ordered_sums, 0, false); 822 if (ret) 823 goto out; 824 /* 825 * Now delete all existing cums in the csum root that 826 * cover our range. We do this because we can have an 827 * extent that is completely referenced by one file 828 * extent item and partially referenced by another 829 * file extent item (like after using the clone or 830 * extent_same ioctls). In this case if we end up doing 831 * the replay of the one that partially references the 832 * extent first, and we do not do the csum deletion 833 * below, we can get 2 csum items in the csum tree that 834 * overlap each other. For example, imagine our log has 835 * the two following file extent items: 836 * 837 * key (257 EXTENT_DATA 409600) 838 * extent data disk byte 12845056 nr 102400 839 * extent data offset 20480 nr 20480 ram 102400 840 * 841 * key (257 EXTENT_DATA 819200) 842 * extent data disk byte 12845056 nr 102400 843 * extent data offset 0 nr 102400 ram 102400 844 * 845 * Where the second one fully references the 100K extent 846 * that starts at disk byte 12845056, and the log tree 847 * has a single csum item that covers the entire range 848 * of the extent: 849 * 850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 851 * 852 * After the first file extent item is replayed, the 853 * csum tree gets the following csum item: 854 * 855 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 856 * 857 * Which covers the 20K sub-range starting at offset 20K 858 * of our extent. Now when we replay the second file 859 * extent item, if we do not delete existing csum items 860 * that cover any of its blocks, we end up getting two 861 * csum items in our csum tree that overlap each other: 862 * 863 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 864 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 865 * 866 * Which is a problem, because after this anyone trying 867 * to lookup up for the checksum of any block of our 868 * extent starting at an offset of 40K or higher, will 869 * end up looking at the second csum item only, which 870 * does not contain the checksum for any block starting 871 * at offset 40K or higher of our extent. 872 */ 873 while (!list_empty(&ordered_sums)) { 874 struct btrfs_ordered_sum *sums; 875 struct btrfs_root *csum_root; 876 877 sums = list_entry(ordered_sums.next, 878 struct btrfs_ordered_sum, 879 list); 880 csum_root = btrfs_csum_root(fs_info, 881 sums->logical); 882 if (!ret) 883 ret = btrfs_del_csums(trans, csum_root, 884 sums->logical, 885 sums->len); 886 if (!ret) 887 ret = btrfs_csum_file_blocks(trans, 888 csum_root, 889 sums); 890 list_del(&sums->list); 891 kfree(sums); 892 } 893 if (ret) 894 goto out; 895 } else { 896 btrfs_release_path(path); 897 } 898 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 899 /* inline extents are easy, we just overwrite them */ 900 ret = overwrite_item(trans, root, path, eb, slot, key); 901 if (ret) 902 goto out; 903 } 904 905 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, 906 extent_end - start); 907 if (ret) 908 goto out; 909 910 update_inode: 911 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found); 912 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 913 out: 914 iput(inode); 915 return ret; 916 } 917 918 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans, 919 struct btrfs_inode *dir, 920 struct btrfs_inode *inode, 921 const struct fscrypt_str *name) 922 { 923 int ret; 924 925 ret = btrfs_unlink_inode(trans, dir, inode, name); 926 if (ret) 927 return ret; 928 /* 929 * Whenever we need to check if a name exists or not, we check the 930 * fs/subvolume tree. So after an unlink we must run delayed items, so 931 * that future checks for a name during log replay see that the name 932 * does not exists anymore. 933 */ 934 return btrfs_run_delayed_items(trans); 935 } 936 937 /* 938 * when cleaning up conflicts between the directory names in the 939 * subvolume, directory names in the log and directory names in the 940 * inode back references, we may have to unlink inodes from directories. 941 * 942 * This is a helper function to do the unlink of a specific directory 943 * item 944 */ 945 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 946 struct btrfs_path *path, 947 struct btrfs_inode *dir, 948 struct btrfs_dir_item *di) 949 { 950 struct btrfs_root *root = dir->root; 951 struct inode *inode; 952 struct fscrypt_str name; 953 struct extent_buffer *leaf; 954 struct btrfs_key location; 955 int ret; 956 957 leaf = path->nodes[0]; 958 959 btrfs_dir_item_key_to_cpu(leaf, di, &location); 960 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name); 961 if (ret) 962 return -ENOMEM; 963 964 btrfs_release_path(path); 965 966 inode = read_one_inode(root, location.objectid); 967 if (!inode) { 968 ret = -EIO; 969 goto out; 970 } 971 972 ret = link_to_fixup_dir(trans, root, path, location.objectid); 973 if (ret) 974 goto out; 975 976 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name); 977 out: 978 kfree(name.name); 979 iput(inode); 980 return ret; 981 } 982 983 /* 984 * See if a given name and sequence number found in an inode back reference are 985 * already in a directory and correctly point to this inode. 986 * 987 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it 988 * exists. 989 */ 990 static noinline int inode_in_dir(struct btrfs_root *root, 991 struct btrfs_path *path, 992 u64 dirid, u64 objectid, u64 index, 993 struct fscrypt_str *name) 994 { 995 struct btrfs_dir_item *di; 996 struct btrfs_key location; 997 int ret = 0; 998 999 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 1000 index, name, 0); 1001 if (IS_ERR(di)) { 1002 ret = PTR_ERR(di); 1003 goto out; 1004 } else if (di) { 1005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1006 if (location.objectid != objectid) 1007 goto out; 1008 } else { 1009 goto out; 1010 } 1011 1012 btrfs_release_path(path); 1013 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0); 1014 if (IS_ERR(di)) { 1015 ret = PTR_ERR(di); 1016 goto out; 1017 } else if (di) { 1018 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1019 if (location.objectid == objectid) 1020 ret = 1; 1021 } 1022 out: 1023 btrfs_release_path(path); 1024 return ret; 1025 } 1026 1027 /* 1028 * helper function to check a log tree for a named back reference in 1029 * an inode. This is used to decide if a back reference that is 1030 * found in the subvolume conflicts with what we find in the log. 1031 * 1032 * inode backreferences may have multiple refs in a single item, 1033 * during replay we process one reference at a time, and we don't 1034 * want to delete valid links to a file from the subvolume if that 1035 * link is also in the log. 1036 */ 1037 static noinline int backref_in_log(struct btrfs_root *log, 1038 struct btrfs_key *key, 1039 u64 ref_objectid, 1040 const struct fscrypt_str *name) 1041 { 1042 struct btrfs_path *path; 1043 int ret; 1044 1045 path = btrfs_alloc_path(); 1046 if (!path) 1047 return -ENOMEM; 1048 1049 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 1050 if (ret < 0) { 1051 goto out; 1052 } else if (ret == 1) { 1053 ret = 0; 1054 goto out; 1055 } 1056 1057 if (key->type == BTRFS_INODE_EXTREF_KEY) 1058 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1059 path->slots[0], 1060 ref_objectid, name); 1061 else 1062 ret = !!btrfs_find_name_in_backref(path->nodes[0], 1063 path->slots[0], name); 1064 out: 1065 btrfs_free_path(path); 1066 return ret; 1067 } 1068 1069 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 1070 struct btrfs_root *root, 1071 struct btrfs_path *path, 1072 struct btrfs_root *log_root, 1073 struct btrfs_inode *dir, 1074 struct btrfs_inode *inode, 1075 u64 inode_objectid, u64 parent_objectid, 1076 u64 ref_index, struct fscrypt_str *name) 1077 { 1078 int ret; 1079 struct extent_buffer *leaf; 1080 struct btrfs_dir_item *di; 1081 struct btrfs_key search_key; 1082 struct btrfs_inode_extref *extref; 1083 1084 again: 1085 /* Search old style refs */ 1086 search_key.objectid = inode_objectid; 1087 search_key.type = BTRFS_INODE_REF_KEY; 1088 search_key.offset = parent_objectid; 1089 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1090 if (ret == 0) { 1091 struct btrfs_inode_ref *victim_ref; 1092 unsigned long ptr; 1093 unsigned long ptr_end; 1094 1095 leaf = path->nodes[0]; 1096 1097 /* are we trying to overwrite a back ref for the root directory 1098 * if so, just jump out, we're done 1099 */ 1100 if (search_key.objectid == search_key.offset) 1101 return 1; 1102 1103 /* check all the names in this back reference to see 1104 * if they are in the log. if so, we allow them to stay 1105 * otherwise they must be unlinked as a conflict 1106 */ 1107 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1108 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]); 1109 while (ptr < ptr_end) { 1110 struct fscrypt_str victim_name; 1111 1112 victim_ref = (struct btrfs_inode_ref *)ptr; 1113 ret = read_alloc_one_name(leaf, (victim_ref + 1), 1114 btrfs_inode_ref_name_len(leaf, victim_ref), 1115 &victim_name); 1116 if (ret) 1117 return ret; 1118 1119 ret = backref_in_log(log_root, &search_key, 1120 parent_objectid, &victim_name); 1121 if (ret < 0) { 1122 kfree(victim_name.name); 1123 return ret; 1124 } else if (!ret) { 1125 inc_nlink(&inode->vfs_inode); 1126 btrfs_release_path(path); 1127 1128 ret = unlink_inode_for_log_replay(trans, dir, inode, 1129 &victim_name); 1130 kfree(victim_name.name); 1131 if (ret) 1132 return ret; 1133 goto again; 1134 } 1135 kfree(victim_name.name); 1136 1137 ptr = (unsigned long)(victim_ref + 1) + victim_name.len; 1138 } 1139 } 1140 btrfs_release_path(path); 1141 1142 /* Same search but for extended refs */ 1143 extref = btrfs_lookup_inode_extref(NULL, root, path, name, 1144 inode_objectid, parent_objectid, 0, 1145 0); 1146 if (IS_ERR(extref)) { 1147 return PTR_ERR(extref); 1148 } else if (extref) { 1149 u32 item_size; 1150 u32 cur_offset = 0; 1151 unsigned long base; 1152 struct inode *victim_parent; 1153 1154 leaf = path->nodes[0]; 1155 1156 item_size = btrfs_item_size(leaf, path->slots[0]); 1157 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1158 1159 while (cur_offset < item_size) { 1160 struct fscrypt_str victim_name; 1161 1162 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1163 1164 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1165 goto next; 1166 1167 ret = read_alloc_one_name(leaf, &extref->name, 1168 btrfs_inode_extref_name_len(leaf, extref), 1169 &victim_name); 1170 if (ret) 1171 return ret; 1172 1173 search_key.objectid = inode_objectid; 1174 search_key.type = BTRFS_INODE_EXTREF_KEY; 1175 search_key.offset = btrfs_extref_hash(parent_objectid, 1176 victim_name.name, 1177 victim_name.len); 1178 ret = backref_in_log(log_root, &search_key, 1179 parent_objectid, &victim_name); 1180 if (ret < 0) { 1181 kfree(victim_name.name); 1182 return ret; 1183 } else if (!ret) { 1184 ret = -ENOENT; 1185 victim_parent = read_one_inode(root, 1186 parent_objectid); 1187 if (victim_parent) { 1188 inc_nlink(&inode->vfs_inode); 1189 btrfs_release_path(path); 1190 1191 ret = unlink_inode_for_log_replay(trans, 1192 BTRFS_I(victim_parent), 1193 inode, &victim_name); 1194 } 1195 iput(victim_parent); 1196 kfree(victim_name.name); 1197 if (ret) 1198 return ret; 1199 goto again; 1200 } 1201 kfree(victim_name.name); 1202 next: 1203 cur_offset += victim_name.len + sizeof(*extref); 1204 } 1205 } 1206 btrfs_release_path(path); 1207 1208 /* look for a conflicting sequence number */ 1209 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1210 ref_index, name, 0); 1211 if (IS_ERR(di)) { 1212 return PTR_ERR(di); 1213 } else if (di) { 1214 ret = drop_one_dir_item(trans, path, dir, di); 1215 if (ret) 1216 return ret; 1217 } 1218 btrfs_release_path(path); 1219 1220 /* look for a conflicting name */ 1221 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0); 1222 if (IS_ERR(di)) { 1223 return PTR_ERR(di); 1224 } else if (di) { 1225 ret = drop_one_dir_item(trans, path, dir, di); 1226 if (ret) 1227 return ret; 1228 } 1229 btrfs_release_path(path); 1230 1231 return 0; 1232 } 1233 1234 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1235 struct fscrypt_str *name, u64 *index, 1236 u64 *parent_objectid) 1237 { 1238 struct btrfs_inode_extref *extref; 1239 int ret; 1240 1241 extref = (struct btrfs_inode_extref *)ref_ptr; 1242 1243 ret = read_alloc_one_name(eb, &extref->name, 1244 btrfs_inode_extref_name_len(eb, extref), name); 1245 if (ret) 1246 return ret; 1247 1248 if (index) 1249 *index = btrfs_inode_extref_index(eb, extref); 1250 if (parent_objectid) 1251 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1252 1253 return 0; 1254 } 1255 1256 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1257 struct fscrypt_str *name, u64 *index) 1258 { 1259 struct btrfs_inode_ref *ref; 1260 int ret; 1261 1262 ref = (struct btrfs_inode_ref *)ref_ptr; 1263 1264 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref), 1265 name); 1266 if (ret) 1267 return ret; 1268 1269 if (index) 1270 *index = btrfs_inode_ref_index(eb, ref); 1271 1272 return 0; 1273 } 1274 1275 /* 1276 * Take an inode reference item from the log tree and iterate all names from the 1277 * inode reference item in the subvolume tree with the same key (if it exists). 1278 * For any name that is not in the inode reference item from the log tree, do a 1279 * proper unlink of that name (that is, remove its entry from the inode 1280 * reference item and both dir index keys). 1281 */ 1282 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1283 struct btrfs_root *root, 1284 struct btrfs_path *path, 1285 struct btrfs_inode *inode, 1286 struct extent_buffer *log_eb, 1287 int log_slot, 1288 struct btrfs_key *key) 1289 { 1290 int ret; 1291 unsigned long ref_ptr; 1292 unsigned long ref_end; 1293 struct extent_buffer *eb; 1294 1295 again: 1296 btrfs_release_path(path); 1297 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1298 if (ret > 0) { 1299 ret = 0; 1300 goto out; 1301 } 1302 if (ret < 0) 1303 goto out; 1304 1305 eb = path->nodes[0]; 1306 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1307 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]); 1308 while (ref_ptr < ref_end) { 1309 struct fscrypt_str name; 1310 u64 parent_id; 1311 1312 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1313 ret = extref_get_fields(eb, ref_ptr, &name, 1314 NULL, &parent_id); 1315 } else { 1316 parent_id = key->offset; 1317 ret = ref_get_fields(eb, ref_ptr, &name, NULL); 1318 } 1319 if (ret) 1320 goto out; 1321 1322 if (key->type == BTRFS_INODE_EXTREF_KEY) 1323 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1324 parent_id, &name); 1325 else 1326 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name); 1327 1328 if (!ret) { 1329 struct inode *dir; 1330 1331 btrfs_release_path(path); 1332 dir = read_one_inode(root, parent_id); 1333 if (!dir) { 1334 ret = -ENOENT; 1335 kfree(name.name); 1336 goto out; 1337 } 1338 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), 1339 inode, &name); 1340 kfree(name.name); 1341 iput(dir); 1342 if (ret) 1343 goto out; 1344 goto again; 1345 } 1346 1347 kfree(name.name); 1348 ref_ptr += name.len; 1349 if (key->type == BTRFS_INODE_EXTREF_KEY) 1350 ref_ptr += sizeof(struct btrfs_inode_extref); 1351 else 1352 ref_ptr += sizeof(struct btrfs_inode_ref); 1353 } 1354 ret = 0; 1355 out: 1356 btrfs_release_path(path); 1357 return ret; 1358 } 1359 1360 /* 1361 * replay one inode back reference item found in the log tree. 1362 * eb, slot and key refer to the buffer and key found in the log tree. 1363 * root is the destination we are replaying into, and path is for temp 1364 * use by this function. (it should be released on return). 1365 */ 1366 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1367 struct btrfs_root *root, 1368 struct btrfs_root *log, 1369 struct btrfs_path *path, 1370 struct extent_buffer *eb, int slot, 1371 struct btrfs_key *key) 1372 { 1373 struct inode *dir = NULL; 1374 struct inode *inode = NULL; 1375 unsigned long ref_ptr; 1376 unsigned long ref_end; 1377 struct fscrypt_str name = { 0 }; 1378 int ret; 1379 int log_ref_ver = 0; 1380 u64 parent_objectid; 1381 u64 inode_objectid; 1382 u64 ref_index = 0; 1383 int ref_struct_size; 1384 1385 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1386 ref_end = ref_ptr + btrfs_item_size(eb, slot); 1387 1388 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1389 struct btrfs_inode_extref *r; 1390 1391 ref_struct_size = sizeof(struct btrfs_inode_extref); 1392 log_ref_ver = 1; 1393 r = (struct btrfs_inode_extref *)ref_ptr; 1394 parent_objectid = btrfs_inode_extref_parent(eb, r); 1395 } else { 1396 ref_struct_size = sizeof(struct btrfs_inode_ref); 1397 parent_objectid = key->offset; 1398 } 1399 inode_objectid = key->objectid; 1400 1401 /* 1402 * it is possible that we didn't log all the parent directories 1403 * for a given inode. If we don't find the dir, just don't 1404 * copy the back ref in. The link count fixup code will take 1405 * care of the rest 1406 */ 1407 dir = read_one_inode(root, parent_objectid); 1408 if (!dir) { 1409 ret = -ENOENT; 1410 goto out; 1411 } 1412 1413 inode = read_one_inode(root, inode_objectid); 1414 if (!inode) { 1415 ret = -EIO; 1416 goto out; 1417 } 1418 1419 while (ref_ptr < ref_end) { 1420 if (log_ref_ver) { 1421 ret = extref_get_fields(eb, ref_ptr, &name, 1422 &ref_index, &parent_objectid); 1423 /* 1424 * parent object can change from one array 1425 * item to another. 1426 */ 1427 if (!dir) 1428 dir = read_one_inode(root, parent_objectid); 1429 if (!dir) { 1430 ret = -ENOENT; 1431 goto out; 1432 } 1433 } else { 1434 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index); 1435 } 1436 if (ret) 1437 goto out; 1438 1439 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1440 btrfs_ino(BTRFS_I(inode)), ref_index, &name); 1441 if (ret < 0) { 1442 goto out; 1443 } else if (ret == 0) { 1444 /* 1445 * look for a conflicting back reference in the 1446 * metadata. if we find one we have to unlink that name 1447 * of the file before we add our new link. Later on, we 1448 * overwrite any existing back reference, and we don't 1449 * want to create dangling pointers in the directory. 1450 */ 1451 ret = __add_inode_ref(trans, root, path, log, 1452 BTRFS_I(dir), BTRFS_I(inode), 1453 inode_objectid, parent_objectid, 1454 ref_index, &name); 1455 if (ret) { 1456 if (ret == 1) 1457 ret = 0; 1458 goto out; 1459 } 1460 1461 /* insert our name */ 1462 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1463 &name, 0, ref_index); 1464 if (ret) 1465 goto out; 1466 1467 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1468 if (ret) 1469 goto out; 1470 } 1471 /* Else, ret == 1, we already have a perfect match, we're done. */ 1472 1473 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len; 1474 kfree(name.name); 1475 name.name = NULL; 1476 if (log_ref_ver) { 1477 iput(dir); 1478 dir = NULL; 1479 } 1480 } 1481 1482 /* 1483 * Before we overwrite the inode reference item in the subvolume tree 1484 * with the item from the log tree, we must unlink all names from the 1485 * parent directory that are in the subvolume's tree inode reference 1486 * item, otherwise we end up with an inconsistent subvolume tree where 1487 * dir index entries exist for a name but there is no inode reference 1488 * item with the same name. 1489 */ 1490 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1491 key); 1492 if (ret) 1493 goto out; 1494 1495 /* finally write the back reference in the inode */ 1496 ret = overwrite_item(trans, root, path, eb, slot, key); 1497 out: 1498 btrfs_release_path(path); 1499 kfree(name.name); 1500 iput(dir); 1501 iput(inode); 1502 return ret; 1503 } 1504 1505 static int count_inode_extrefs(struct btrfs_root *root, 1506 struct btrfs_inode *inode, struct btrfs_path *path) 1507 { 1508 int ret = 0; 1509 int name_len; 1510 unsigned int nlink = 0; 1511 u32 item_size; 1512 u32 cur_offset = 0; 1513 u64 inode_objectid = btrfs_ino(inode); 1514 u64 offset = 0; 1515 unsigned long ptr; 1516 struct btrfs_inode_extref *extref; 1517 struct extent_buffer *leaf; 1518 1519 while (1) { 1520 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1521 &extref, &offset); 1522 if (ret) 1523 break; 1524 1525 leaf = path->nodes[0]; 1526 item_size = btrfs_item_size(leaf, path->slots[0]); 1527 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1528 cur_offset = 0; 1529 1530 while (cur_offset < item_size) { 1531 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1532 name_len = btrfs_inode_extref_name_len(leaf, extref); 1533 1534 nlink++; 1535 1536 cur_offset += name_len + sizeof(*extref); 1537 } 1538 1539 offset++; 1540 btrfs_release_path(path); 1541 } 1542 btrfs_release_path(path); 1543 1544 if (ret < 0 && ret != -ENOENT) 1545 return ret; 1546 return nlink; 1547 } 1548 1549 static int count_inode_refs(struct btrfs_root *root, 1550 struct btrfs_inode *inode, struct btrfs_path *path) 1551 { 1552 int ret; 1553 struct btrfs_key key; 1554 unsigned int nlink = 0; 1555 unsigned long ptr; 1556 unsigned long ptr_end; 1557 int name_len; 1558 u64 ino = btrfs_ino(inode); 1559 1560 key.objectid = ino; 1561 key.type = BTRFS_INODE_REF_KEY; 1562 key.offset = (u64)-1; 1563 1564 while (1) { 1565 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1566 if (ret < 0) 1567 break; 1568 if (ret > 0) { 1569 if (path->slots[0] == 0) 1570 break; 1571 path->slots[0]--; 1572 } 1573 process_slot: 1574 btrfs_item_key_to_cpu(path->nodes[0], &key, 1575 path->slots[0]); 1576 if (key.objectid != ino || 1577 key.type != BTRFS_INODE_REF_KEY) 1578 break; 1579 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1580 ptr_end = ptr + btrfs_item_size(path->nodes[0], 1581 path->slots[0]); 1582 while (ptr < ptr_end) { 1583 struct btrfs_inode_ref *ref; 1584 1585 ref = (struct btrfs_inode_ref *)ptr; 1586 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1587 ref); 1588 ptr = (unsigned long)(ref + 1) + name_len; 1589 nlink++; 1590 } 1591 1592 if (key.offset == 0) 1593 break; 1594 if (path->slots[0] > 0) { 1595 path->slots[0]--; 1596 goto process_slot; 1597 } 1598 key.offset--; 1599 btrfs_release_path(path); 1600 } 1601 btrfs_release_path(path); 1602 1603 return nlink; 1604 } 1605 1606 /* 1607 * There are a few corners where the link count of the file can't 1608 * be properly maintained during replay. So, instead of adding 1609 * lots of complexity to the log code, we just scan the backrefs 1610 * for any file that has been through replay. 1611 * 1612 * The scan will update the link count on the inode to reflect the 1613 * number of back refs found. If it goes down to zero, the iput 1614 * will free the inode. 1615 */ 1616 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1617 struct btrfs_root *root, 1618 struct inode *inode) 1619 { 1620 struct btrfs_path *path; 1621 int ret; 1622 u64 nlink = 0; 1623 u64 ino = btrfs_ino(BTRFS_I(inode)); 1624 1625 path = btrfs_alloc_path(); 1626 if (!path) 1627 return -ENOMEM; 1628 1629 ret = count_inode_refs(root, BTRFS_I(inode), path); 1630 if (ret < 0) 1631 goto out; 1632 1633 nlink = ret; 1634 1635 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1636 if (ret < 0) 1637 goto out; 1638 1639 nlink += ret; 1640 1641 ret = 0; 1642 1643 if (nlink != inode->i_nlink) { 1644 set_nlink(inode, nlink); 1645 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1646 if (ret) 1647 goto out; 1648 } 1649 BTRFS_I(inode)->index_cnt = (u64)-1; 1650 1651 if (inode->i_nlink == 0) { 1652 if (S_ISDIR(inode->i_mode)) { 1653 ret = replay_dir_deletes(trans, root, NULL, path, 1654 ino, 1); 1655 if (ret) 1656 goto out; 1657 } 1658 ret = btrfs_insert_orphan_item(trans, root, ino); 1659 if (ret == -EEXIST) 1660 ret = 0; 1661 } 1662 1663 out: 1664 btrfs_free_path(path); 1665 return ret; 1666 } 1667 1668 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1669 struct btrfs_root *root, 1670 struct btrfs_path *path) 1671 { 1672 int ret; 1673 struct btrfs_key key; 1674 struct inode *inode; 1675 1676 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1677 key.type = BTRFS_ORPHAN_ITEM_KEY; 1678 key.offset = (u64)-1; 1679 while (1) { 1680 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1681 if (ret < 0) 1682 break; 1683 1684 if (ret == 1) { 1685 ret = 0; 1686 if (path->slots[0] == 0) 1687 break; 1688 path->slots[0]--; 1689 } 1690 1691 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1692 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1693 key.type != BTRFS_ORPHAN_ITEM_KEY) 1694 break; 1695 1696 ret = btrfs_del_item(trans, root, path); 1697 if (ret) 1698 break; 1699 1700 btrfs_release_path(path); 1701 inode = read_one_inode(root, key.offset); 1702 if (!inode) { 1703 ret = -EIO; 1704 break; 1705 } 1706 1707 ret = fixup_inode_link_count(trans, root, inode); 1708 iput(inode); 1709 if (ret) 1710 break; 1711 1712 /* 1713 * fixup on a directory may create new entries, 1714 * make sure we always look for the highset possible 1715 * offset 1716 */ 1717 key.offset = (u64)-1; 1718 } 1719 btrfs_release_path(path); 1720 return ret; 1721 } 1722 1723 1724 /* 1725 * record a given inode in the fixup dir so we can check its link 1726 * count when replay is done. The link count is incremented here 1727 * so the inode won't go away until we check it 1728 */ 1729 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1730 struct btrfs_root *root, 1731 struct btrfs_path *path, 1732 u64 objectid) 1733 { 1734 struct btrfs_key key; 1735 int ret = 0; 1736 struct inode *inode; 1737 1738 inode = read_one_inode(root, objectid); 1739 if (!inode) 1740 return -EIO; 1741 1742 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1743 key.type = BTRFS_ORPHAN_ITEM_KEY; 1744 key.offset = objectid; 1745 1746 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1747 1748 btrfs_release_path(path); 1749 if (ret == 0) { 1750 if (!inode->i_nlink) 1751 set_nlink(inode, 1); 1752 else 1753 inc_nlink(inode); 1754 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1755 } else if (ret == -EEXIST) { 1756 ret = 0; 1757 } 1758 iput(inode); 1759 1760 return ret; 1761 } 1762 1763 /* 1764 * when replaying the log for a directory, we only insert names 1765 * for inodes that actually exist. This means an fsync on a directory 1766 * does not implicitly fsync all the new files in it 1767 */ 1768 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1769 struct btrfs_root *root, 1770 u64 dirid, u64 index, 1771 const struct fscrypt_str *name, 1772 struct btrfs_key *location) 1773 { 1774 struct inode *inode; 1775 struct inode *dir; 1776 int ret; 1777 1778 inode = read_one_inode(root, location->objectid); 1779 if (!inode) 1780 return -ENOENT; 1781 1782 dir = read_one_inode(root, dirid); 1783 if (!dir) { 1784 iput(inode); 1785 return -EIO; 1786 } 1787 1788 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1789 1, index); 1790 1791 /* FIXME, put inode into FIXUP list */ 1792 1793 iput(inode); 1794 iput(dir); 1795 return ret; 1796 } 1797 1798 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans, 1799 struct btrfs_inode *dir, 1800 struct btrfs_path *path, 1801 struct btrfs_dir_item *dst_di, 1802 const struct btrfs_key *log_key, 1803 u8 log_flags, 1804 bool exists) 1805 { 1806 struct btrfs_key found_key; 1807 1808 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1809 /* The existing dentry points to the same inode, don't delete it. */ 1810 if (found_key.objectid == log_key->objectid && 1811 found_key.type == log_key->type && 1812 found_key.offset == log_key->offset && 1813 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags) 1814 return 1; 1815 1816 /* 1817 * Don't drop the conflicting directory entry if the inode for the new 1818 * entry doesn't exist. 1819 */ 1820 if (!exists) 1821 return 0; 1822 1823 return drop_one_dir_item(trans, path, dir, dst_di); 1824 } 1825 1826 /* 1827 * take a single entry in a log directory item and replay it into 1828 * the subvolume. 1829 * 1830 * if a conflicting item exists in the subdirectory already, 1831 * the inode it points to is unlinked and put into the link count 1832 * fix up tree. 1833 * 1834 * If a name from the log points to a file or directory that does 1835 * not exist in the FS, it is skipped. fsyncs on directories 1836 * do not force down inodes inside that directory, just changes to the 1837 * names or unlinks in a directory. 1838 * 1839 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1840 * non-existing inode) and 1 if the name was replayed. 1841 */ 1842 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1843 struct btrfs_root *root, 1844 struct btrfs_path *path, 1845 struct extent_buffer *eb, 1846 struct btrfs_dir_item *di, 1847 struct btrfs_key *key) 1848 { 1849 struct fscrypt_str name = { 0 }; 1850 struct btrfs_dir_item *dir_dst_di; 1851 struct btrfs_dir_item *index_dst_di; 1852 bool dir_dst_matches = false; 1853 bool index_dst_matches = false; 1854 struct btrfs_key log_key; 1855 struct btrfs_key search_key; 1856 struct inode *dir; 1857 u8 log_flags; 1858 bool exists; 1859 int ret; 1860 bool update_size = true; 1861 bool name_added = false; 1862 1863 dir = read_one_inode(root, key->objectid); 1864 if (!dir) 1865 return -EIO; 1866 1867 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 1868 if (ret) 1869 goto out; 1870 1871 log_flags = btrfs_dir_flags(eb, di); 1872 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1873 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1874 btrfs_release_path(path); 1875 if (ret < 0) 1876 goto out; 1877 exists = (ret == 0); 1878 ret = 0; 1879 1880 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1881 &name, 1); 1882 if (IS_ERR(dir_dst_di)) { 1883 ret = PTR_ERR(dir_dst_di); 1884 goto out; 1885 } else if (dir_dst_di) { 1886 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, 1887 dir_dst_di, &log_key, 1888 log_flags, exists); 1889 if (ret < 0) 1890 goto out; 1891 dir_dst_matches = (ret == 1); 1892 } 1893 1894 btrfs_release_path(path); 1895 1896 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1897 key->objectid, key->offset, 1898 &name, 1); 1899 if (IS_ERR(index_dst_di)) { 1900 ret = PTR_ERR(index_dst_di); 1901 goto out; 1902 } else if (index_dst_di) { 1903 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, 1904 index_dst_di, &log_key, 1905 log_flags, exists); 1906 if (ret < 0) 1907 goto out; 1908 index_dst_matches = (ret == 1); 1909 } 1910 1911 btrfs_release_path(path); 1912 1913 if (dir_dst_matches && index_dst_matches) { 1914 ret = 0; 1915 update_size = false; 1916 goto out; 1917 } 1918 1919 /* 1920 * Check if the inode reference exists in the log for the given name, 1921 * inode and parent inode 1922 */ 1923 search_key.objectid = log_key.objectid; 1924 search_key.type = BTRFS_INODE_REF_KEY; 1925 search_key.offset = key->objectid; 1926 ret = backref_in_log(root->log_root, &search_key, 0, &name); 1927 if (ret < 0) { 1928 goto out; 1929 } else if (ret) { 1930 /* The dentry will be added later. */ 1931 ret = 0; 1932 update_size = false; 1933 goto out; 1934 } 1935 1936 search_key.objectid = log_key.objectid; 1937 search_key.type = BTRFS_INODE_EXTREF_KEY; 1938 search_key.offset = key->objectid; 1939 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name); 1940 if (ret < 0) { 1941 goto out; 1942 } else if (ret) { 1943 /* The dentry will be added later. */ 1944 ret = 0; 1945 update_size = false; 1946 goto out; 1947 } 1948 btrfs_release_path(path); 1949 ret = insert_one_name(trans, root, key->objectid, key->offset, 1950 &name, &log_key); 1951 if (ret && ret != -ENOENT && ret != -EEXIST) 1952 goto out; 1953 if (!ret) 1954 name_added = true; 1955 update_size = false; 1956 ret = 0; 1957 1958 out: 1959 if (!ret && update_size) { 1960 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2); 1961 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 1962 } 1963 kfree(name.name); 1964 iput(dir); 1965 if (!ret && name_added) 1966 ret = 1; 1967 return ret; 1968 } 1969 1970 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ 1971 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1972 struct btrfs_root *root, 1973 struct btrfs_path *path, 1974 struct extent_buffer *eb, int slot, 1975 struct btrfs_key *key) 1976 { 1977 int ret; 1978 struct btrfs_dir_item *di; 1979 1980 /* We only log dir index keys, which only contain a single dir item. */ 1981 ASSERT(key->type == BTRFS_DIR_INDEX_KEY); 1982 1983 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1984 ret = replay_one_name(trans, root, path, eb, di, key); 1985 if (ret < 0) 1986 return ret; 1987 1988 /* 1989 * If this entry refers to a non-directory (directories can not have a 1990 * link count > 1) and it was added in the transaction that was not 1991 * committed, make sure we fixup the link count of the inode the entry 1992 * points to. Otherwise something like the following would result in a 1993 * directory pointing to an inode with a wrong link that does not account 1994 * for this dir entry: 1995 * 1996 * mkdir testdir 1997 * touch testdir/foo 1998 * touch testdir/bar 1999 * sync 2000 * 2001 * ln testdir/bar testdir/bar_link 2002 * ln testdir/foo testdir/foo_link 2003 * xfs_io -c "fsync" testdir/bar 2004 * 2005 * <power failure> 2006 * 2007 * mount fs, log replay happens 2008 * 2009 * File foo would remain with a link count of 1 when it has two entries 2010 * pointing to it in the directory testdir. This would make it impossible 2011 * to ever delete the parent directory has it would result in stale 2012 * dentries that can never be deleted. 2013 */ 2014 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) { 2015 struct btrfs_path *fixup_path; 2016 struct btrfs_key di_key; 2017 2018 fixup_path = btrfs_alloc_path(); 2019 if (!fixup_path) 2020 return -ENOMEM; 2021 2022 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2023 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid); 2024 btrfs_free_path(fixup_path); 2025 } 2026 2027 return ret; 2028 } 2029 2030 /* 2031 * directory replay has two parts. There are the standard directory 2032 * items in the log copied from the subvolume, and range items 2033 * created in the log while the subvolume was logged. 2034 * 2035 * The range items tell us which parts of the key space the log 2036 * is authoritative for. During replay, if a key in the subvolume 2037 * directory is in a logged range item, but not actually in the log 2038 * that means it was deleted from the directory before the fsync 2039 * and should be removed. 2040 */ 2041 static noinline int find_dir_range(struct btrfs_root *root, 2042 struct btrfs_path *path, 2043 u64 dirid, 2044 u64 *start_ret, u64 *end_ret) 2045 { 2046 struct btrfs_key key; 2047 u64 found_end; 2048 struct btrfs_dir_log_item *item; 2049 int ret; 2050 int nritems; 2051 2052 if (*start_ret == (u64)-1) 2053 return 1; 2054 2055 key.objectid = dirid; 2056 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2057 key.offset = *start_ret; 2058 2059 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2060 if (ret < 0) 2061 goto out; 2062 if (ret > 0) { 2063 if (path->slots[0] == 0) 2064 goto out; 2065 path->slots[0]--; 2066 } 2067 if (ret != 0) 2068 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2069 2070 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2071 ret = 1; 2072 goto next; 2073 } 2074 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2075 struct btrfs_dir_log_item); 2076 found_end = btrfs_dir_log_end(path->nodes[0], item); 2077 2078 if (*start_ret >= key.offset && *start_ret <= found_end) { 2079 ret = 0; 2080 *start_ret = key.offset; 2081 *end_ret = found_end; 2082 goto out; 2083 } 2084 ret = 1; 2085 next: 2086 /* check the next slot in the tree to see if it is a valid item */ 2087 nritems = btrfs_header_nritems(path->nodes[0]); 2088 path->slots[0]++; 2089 if (path->slots[0] >= nritems) { 2090 ret = btrfs_next_leaf(root, path); 2091 if (ret) 2092 goto out; 2093 } 2094 2095 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2096 2097 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2098 ret = 1; 2099 goto out; 2100 } 2101 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2102 struct btrfs_dir_log_item); 2103 found_end = btrfs_dir_log_end(path->nodes[0], item); 2104 *start_ret = key.offset; 2105 *end_ret = found_end; 2106 ret = 0; 2107 out: 2108 btrfs_release_path(path); 2109 return ret; 2110 } 2111 2112 /* 2113 * this looks for a given directory item in the log. If the directory 2114 * item is not in the log, the item is removed and the inode it points 2115 * to is unlinked 2116 */ 2117 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2118 struct btrfs_root *log, 2119 struct btrfs_path *path, 2120 struct btrfs_path *log_path, 2121 struct inode *dir, 2122 struct btrfs_key *dir_key) 2123 { 2124 struct btrfs_root *root = BTRFS_I(dir)->root; 2125 int ret; 2126 struct extent_buffer *eb; 2127 int slot; 2128 struct btrfs_dir_item *di; 2129 struct fscrypt_str name = { 0 }; 2130 struct inode *inode = NULL; 2131 struct btrfs_key location; 2132 2133 /* 2134 * Currently we only log dir index keys. Even if we replay a log created 2135 * by an older kernel that logged both dir index and dir item keys, all 2136 * we need to do is process the dir index keys, we (and our caller) can 2137 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). 2138 */ 2139 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); 2140 2141 eb = path->nodes[0]; 2142 slot = path->slots[0]; 2143 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2144 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 2145 if (ret) 2146 goto out; 2147 2148 if (log) { 2149 struct btrfs_dir_item *log_di; 2150 2151 log_di = btrfs_lookup_dir_index_item(trans, log, log_path, 2152 dir_key->objectid, 2153 dir_key->offset, &name, 0); 2154 if (IS_ERR(log_di)) { 2155 ret = PTR_ERR(log_di); 2156 goto out; 2157 } else if (log_di) { 2158 /* The dentry exists in the log, we have nothing to do. */ 2159 ret = 0; 2160 goto out; 2161 } 2162 } 2163 2164 btrfs_dir_item_key_to_cpu(eb, di, &location); 2165 btrfs_release_path(path); 2166 btrfs_release_path(log_path); 2167 inode = read_one_inode(root, location.objectid); 2168 if (!inode) { 2169 ret = -EIO; 2170 goto out; 2171 } 2172 2173 ret = link_to_fixup_dir(trans, root, path, location.objectid); 2174 if (ret) 2175 goto out; 2176 2177 inc_nlink(inode); 2178 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode), 2179 &name); 2180 /* 2181 * Unlike dir item keys, dir index keys can only have one name (entry) in 2182 * them, as there are no key collisions since each key has a unique offset 2183 * (an index number), so we're done. 2184 */ 2185 out: 2186 btrfs_release_path(path); 2187 btrfs_release_path(log_path); 2188 kfree(name.name); 2189 iput(inode); 2190 return ret; 2191 } 2192 2193 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2194 struct btrfs_root *root, 2195 struct btrfs_root *log, 2196 struct btrfs_path *path, 2197 const u64 ino) 2198 { 2199 struct btrfs_key search_key; 2200 struct btrfs_path *log_path; 2201 int i; 2202 int nritems; 2203 int ret; 2204 2205 log_path = btrfs_alloc_path(); 2206 if (!log_path) 2207 return -ENOMEM; 2208 2209 search_key.objectid = ino; 2210 search_key.type = BTRFS_XATTR_ITEM_KEY; 2211 search_key.offset = 0; 2212 again: 2213 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2214 if (ret < 0) 2215 goto out; 2216 process_leaf: 2217 nritems = btrfs_header_nritems(path->nodes[0]); 2218 for (i = path->slots[0]; i < nritems; i++) { 2219 struct btrfs_key key; 2220 struct btrfs_dir_item *di; 2221 struct btrfs_dir_item *log_di; 2222 u32 total_size; 2223 u32 cur; 2224 2225 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2226 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2227 ret = 0; 2228 goto out; 2229 } 2230 2231 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2232 total_size = btrfs_item_size(path->nodes[0], i); 2233 cur = 0; 2234 while (cur < total_size) { 2235 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2236 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2237 u32 this_len = sizeof(*di) + name_len + data_len; 2238 char *name; 2239 2240 name = kmalloc(name_len, GFP_NOFS); 2241 if (!name) { 2242 ret = -ENOMEM; 2243 goto out; 2244 } 2245 read_extent_buffer(path->nodes[0], name, 2246 (unsigned long)(di + 1), name_len); 2247 2248 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2249 name, name_len, 0); 2250 btrfs_release_path(log_path); 2251 if (!log_di) { 2252 /* Doesn't exist in log tree, so delete it. */ 2253 btrfs_release_path(path); 2254 di = btrfs_lookup_xattr(trans, root, path, ino, 2255 name, name_len, -1); 2256 kfree(name); 2257 if (IS_ERR(di)) { 2258 ret = PTR_ERR(di); 2259 goto out; 2260 } 2261 ASSERT(di); 2262 ret = btrfs_delete_one_dir_name(trans, root, 2263 path, di); 2264 if (ret) 2265 goto out; 2266 btrfs_release_path(path); 2267 search_key = key; 2268 goto again; 2269 } 2270 kfree(name); 2271 if (IS_ERR(log_di)) { 2272 ret = PTR_ERR(log_di); 2273 goto out; 2274 } 2275 cur += this_len; 2276 di = (struct btrfs_dir_item *)((char *)di + this_len); 2277 } 2278 } 2279 ret = btrfs_next_leaf(root, path); 2280 if (ret > 0) 2281 ret = 0; 2282 else if (ret == 0) 2283 goto process_leaf; 2284 out: 2285 btrfs_free_path(log_path); 2286 btrfs_release_path(path); 2287 return ret; 2288 } 2289 2290 2291 /* 2292 * deletion replay happens before we copy any new directory items 2293 * out of the log or out of backreferences from inodes. It 2294 * scans the log to find ranges of keys that log is authoritative for, 2295 * and then scans the directory to find items in those ranges that are 2296 * not present in the log. 2297 * 2298 * Anything we don't find in the log is unlinked and removed from the 2299 * directory. 2300 */ 2301 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2302 struct btrfs_root *root, 2303 struct btrfs_root *log, 2304 struct btrfs_path *path, 2305 u64 dirid, int del_all) 2306 { 2307 u64 range_start; 2308 u64 range_end; 2309 int ret = 0; 2310 struct btrfs_key dir_key; 2311 struct btrfs_key found_key; 2312 struct btrfs_path *log_path; 2313 struct inode *dir; 2314 2315 dir_key.objectid = dirid; 2316 dir_key.type = BTRFS_DIR_INDEX_KEY; 2317 log_path = btrfs_alloc_path(); 2318 if (!log_path) 2319 return -ENOMEM; 2320 2321 dir = read_one_inode(root, dirid); 2322 /* it isn't an error if the inode isn't there, that can happen 2323 * because we replay the deletes before we copy in the inode item 2324 * from the log 2325 */ 2326 if (!dir) { 2327 btrfs_free_path(log_path); 2328 return 0; 2329 } 2330 2331 range_start = 0; 2332 range_end = 0; 2333 while (1) { 2334 if (del_all) 2335 range_end = (u64)-1; 2336 else { 2337 ret = find_dir_range(log, path, dirid, 2338 &range_start, &range_end); 2339 if (ret < 0) 2340 goto out; 2341 else if (ret > 0) 2342 break; 2343 } 2344 2345 dir_key.offset = range_start; 2346 while (1) { 2347 int nritems; 2348 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2349 0, 0); 2350 if (ret < 0) 2351 goto out; 2352 2353 nritems = btrfs_header_nritems(path->nodes[0]); 2354 if (path->slots[0] >= nritems) { 2355 ret = btrfs_next_leaf(root, path); 2356 if (ret == 1) 2357 break; 2358 else if (ret < 0) 2359 goto out; 2360 } 2361 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2362 path->slots[0]); 2363 if (found_key.objectid != dirid || 2364 found_key.type != dir_key.type) { 2365 ret = 0; 2366 goto out; 2367 } 2368 2369 if (found_key.offset > range_end) 2370 break; 2371 2372 ret = check_item_in_log(trans, log, path, 2373 log_path, dir, 2374 &found_key); 2375 if (ret) 2376 goto out; 2377 if (found_key.offset == (u64)-1) 2378 break; 2379 dir_key.offset = found_key.offset + 1; 2380 } 2381 btrfs_release_path(path); 2382 if (range_end == (u64)-1) 2383 break; 2384 range_start = range_end + 1; 2385 } 2386 ret = 0; 2387 out: 2388 btrfs_release_path(path); 2389 btrfs_free_path(log_path); 2390 iput(dir); 2391 return ret; 2392 } 2393 2394 /* 2395 * the process_func used to replay items from the log tree. This 2396 * gets called in two different stages. The first stage just looks 2397 * for inodes and makes sure they are all copied into the subvolume. 2398 * 2399 * The second stage copies all the other item types from the log into 2400 * the subvolume. The two stage approach is slower, but gets rid of 2401 * lots of complexity around inodes referencing other inodes that exist 2402 * only in the log (references come from either directory items or inode 2403 * back refs). 2404 */ 2405 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2406 struct walk_control *wc, u64 gen, int level) 2407 { 2408 int nritems; 2409 struct btrfs_tree_parent_check check = { 2410 .transid = gen, 2411 .level = level 2412 }; 2413 struct btrfs_path *path; 2414 struct btrfs_root *root = wc->replay_dest; 2415 struct btrfs_key key; 2416 int i; 2417 int ret; 2418 2419 ret = btrfs_read_extent_buffer(eb, &check); 2420 if (ret) 2421 return ret; 2422 2423 level = btrfs_header_level(eb); 2424 2425 if (level != 0) 2426 return 0; 2427 2428 path = btrfs_alloc_path(); 2429 if (!path) 2430 return -ENOMEM; 2431 2432 nritems = btrfs_header_nritems(eb); 2433 for (i = 0; i < nritems; i++) { 2434 btrfs_item_key_to_cpu(eb, &key, i); 2435 2436 /* inode keys are done during the first stage */ 2437 if (key.type == BTRFS_INODE_ITEM_KEY && 2438 wc->stage == LOG_WALK_REPLAY_INODES) { 2439 struct btrfs_inode_item *inode_item; 2440 u32 mode; 2441 2442 inode_item = btrfs_item_ptr(eb, i, 2443 struct btrfs_inode_item); 2444 /* 2445 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2446 * and never got linked before the fsync, skip it, as 2447 * replaying it is pointless since it would be deleted 2448 * later. We skip logging tmpfiles, but it's always 2449 * possible we are replaying a log created with a kernel 2450 * that used to log tmpfiles. 2451 */ 2452 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2453 wc->ignore_cur_inode = true; 2454 continue; 2455 } else { 2456 wc->ignore_cur_inode = false; 2457 } 2458 ret = replay_xattr_deletes(wc->trans, root, log, 2459 path, key.objectid); 2460 if (ret) 2461 break; 2462 mode = btrfs_inode_mode(eb, inode_item); 2463 if (S_ISDIR(mode)) { 2464 ret = replay_dir_deletes(wc->trans, 2465 root, log, path, key.objectid, 0); 2466 if (ret) 2467 break; 2468 } 2469 ret = overwrite_item(wc->trans, root, path, 2470 eb, i, &key); 2471 if (ret) 2472 break; 2473 2474 /* 2475 * Before replaying extents, truncate the inode to its 2476 * size. We need to do it now and not after log replay 2477 * because before an fsync we can have prealloc extents 2478 * added beyond the inode's i_size. If we did it after, 2479 * through orphan cleanup for example, we would drop 2480 * those prealloc extents just after replaying them. 2481 */ 2482 if (S_ISREG(mode)) { 2483 struct btrfs_drop_extents_args drop_args = { 0 }; 2484 struct inode *inode; 2485 u64 from; 2486 2487 inode = read_one_inode(root, key.objectid); 2488 if (!inode) { 2489 ret = -EIO; 2490 break; 2491 } 2492 from = ALIGN(i_size_read(inode), 2493 root->fs_info->sectorsize); 2494 drop_args.start = from; 2495 drop_args.end = (u64)-1; 2496 drop_args.drop_cache = true; 2497 ret = btrfs_drop_extents(wc->trans, root, 2498 BTRFS_I(inode), 2499 &drop_args); 2500 if (!ret) { 2501 inode_sub_bytes(inode, 2502 drop_args.bytes_found); 2503 /* Update the inode's nbytes. */ 2504 ret = btrfs_update_inode(wc->trans, 2505 root, BTRFS_I(inode)); 2506 } 2507 iput(inode); 2508 if (ret) 2509 break; 2510 } 2511 2512 ret = link_to_fixup_dir(wc->trans, root, 2513 path, key.objectid); 2514 if (ret) 2515 break; 2516 } 2517 2518 if (wc->ignore_cur_inode) 2519 continue; 2520 2521 if (key.type == BTRFS_DIR_INDEX_KEY && 2522 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2523 ret = replay_one_dir_item(wc->trans, root, path, 2524 eb, i, &key); 2525 if (ret) 2526 break; 2527 } 2528 2529 if (wc->stage < LOG_WALK_REPLAY_ALL) 2530 continue; 2531 2532 /* these keys are simply copied */ 2533 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2534 ret = overwrite_item(wc->trans, root, path, 2535 eb, i, &key); 2536 if (ret) 2537 break; 2538 } else if (key.type == BTRFS_INODE_REF_KEY || 2539 key.type == BTRFS_INODE_EXTREF_KEY) { 2540 ret = add_inode_ref(wc->trans, root, log, path, 2541 eb, i, &key); 2542 if (ret && ret != -ENOENT) 2543 break; 2544 ret = 0; 2545 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2546 ret = replay_one_extent(wc->trans, root, path, 2547 eb, i, &key); 2548 if (ret) 2549 break; 2550 } 2551 /* 2552 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the 2553 * BTRFS_DIR_INDEX_KEY items which we use to derive the 2554 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an 2555 * older kernel with such keys, ignore them. 2556 */ 2557 } 2558 btrfs_free_path(path); 2559 return ret; 2560 } 2561 2562 /* 2563 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2564 */ 2565 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2566 { 2567 struct btrfs_block_group *cache; 2568 2569 cache = btrfs_lookup_block_group(fs_info, start); 2570 if (!cache) { 2571 btrfs_err(fs_info, "unable to find block group for %llu", start); 2572 return; 2573 } 2574 2575 spin_lock(&cache->space_info->lock); 2576 spin_lock(&cache->lock); 2577 cache->reserved -= fs_info->nodesize; 2578 cache->space_info->bytes_reserved -= fs_info->nodesize; 2579 spin_unlock(&cache->lock); 2580 spin_unlock(&cache->space_info->lock); 2581 2582 btrfs_put_block_group(cache); 2583 } 2584 2585 static int clean_log_buffer(struct btrfs_trans_handle *trans, 2586 struct extent_buffer *eb) 2587 { 2588 int ret; 2589 2590 btrfs_tree_lock(eb); 2591 btrfs_clear_buffer_dirty(trans, eb); 2592 wait_on_extent_buffer_writeback(eb); 2593 btrfs_tree_unlock(eb); 2594 2595 if (trans) { 2596 ret = btrfs_pin_reserved_extent(trans, eb->start, eb->len); 2597 if (ret) 2598 return ret; 2599 btrfs_redirty_list_add(trans->transaction, eb); 2600 } else { 2601 unaccount_log_buffer(eb->fs_info, eb->start); 2602 } 2603 2604 return 0; 2605 } 2606 2607 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2608 struct btrfs_root *root, 2609 struct btrfs_path *path, int *level, 2610 struct walk_control *wc) 2611 { 2612 struct btrfs_fs_info *fs_info = root->fs_info; 2613 u64 bytenr; 2614 u64 ptr_gen; 2615 struct extent_buffer *next; 2616 struct extent_buffer *cur; 2617 int ret = 0; 2618 2619 while (*level > 0) { 2620 struct btrfs_tree_parent_check check = { 0 }; 2621 2622 cur = path->nodes[*level]; 2623 2624 WARN_ON(btrfs_header_level(cur) != *level); 2625 2626 if (path->slots[*level] >= 2627 btrfs_header_nritems(cur)) 2628 break; 2629 2630 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2631 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2632 check.transid = ptr_gen; 2633 check.level = *level - 1; 2634 check.has_first_key = true; 2635 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]); 2636 2637 next = btrfs_find_create_tree_block(fs_info, bytenr, 2638 btrfs_header_owner(cur), 2639 *level - 1); 2640 if (IS_ERR(next)) 2641 return PTR_ERR(next); 2642 2643 if (*level == 1) { 2644 ret = wc->process_func(root, next, wc, ptr_gen, 2645 *level - 1); 2646 if (ret) { 2647 free_extent_buffer(next); 2648 return ret; 2649 } 2650 2651 path->slots[*level]++; 2652 if (wc->free) { 2653 ret = btrfs_read_extent_buffer(next, &check); 2654 if (ret) { 2655 free_extent_buffer(next); 2656 return ret; 2657 } 2658 2659 ret = clean_log_buffer(trans, next); 2660 if (ret) { 2661 free_extent_buffer(next); 2662 return ret; 2663 } 2664 } 2665 free_extent_buffer(next); 2666 continue; 2667 } 2668 ret = btrfs_read_extent_buffer(next, &check); 2669 if (ret) { 2670 free_extent_buffer(next); 2671 return ret; 2672 } 2673 2674 if (path->nodes[*level-1]) 2675 free_extent_buffer(path->nodes[*level-1]); 2676 path->nodes[*level-1] = next; 2677 *level = btrfs_header_level(next); 2678 path->slots[*level] = 0; 2679 cond_resched(); 2680 } 2681 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2682 2683 cond_resched(); 2684 return 0; 2685 } 2686 2687 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2688 struct btrfs_root *root, 2689 struct btrfs_path *path, int *level, 2690 struct walk_control *wc) 2691 { 2692 int i; 2693 int slot; 2694 int ret; 2695 2696 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2697 slot = path->slots[i]; 2698 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2699 path->slots[i]++; 2700 *level = i; 2701 WARN_ON(*level == 0); 2702 return 0; 2703 } else { 2704 ret = wc->process_func(root, path->nodes[*level], wc, 2705 btrfs_header_generation(path->nodes[*level]), 2706 *level); 2707 if (ret) 2708 return ret; 2709 2710 if (wc->free) { 2711 ret = clean_log_buffer(trans, path->nodes[*level]); 2712 if (ret) 2713 return ret; 2714 } 2715 free_extent_buffer(path->nodes[*level]); 2716 path->nodes[*level] = NULL; 2717 *level = i + 1; 2718 } 2719 } 2720 return 1; 2721 } 2722 2723 /* 2724 * drop the reference count on the tree rooted at 'snap'. This traverses 2725 * the tree freeing any blocks that have a ref count of zero after being 2726 * decremented. 2727 */ 2728 static int walk_log_tree(struct btrfs_trans_handle *trans, 2729 struct btrfs_root *log, struct walk_control *wc) 2730 { 2731 int ret = 0; 2732 int wret; 2733 int level; 2734 struct btrfs_path *path; 2735 int orig_level; 2736 2737 path = btrfs_alloc_path(); 2738 if (!path) 2739 return -ENOMEM; 2740 2741 level = btrfs_header_level(log->node); 2742 orig_level = level; 2743 path->nodes[level] = log->node; 2744 atomic_inc(&log->node->refs); 2745 path->slots[level] = 0; 2746 2747 while (1) { 2748 wret = walk_down_log_tree(trans, log, path, &level, wc); 2749 if (wret > 0) 2750 break; 2751 if (wret < 0) { 2752 ret = wret; 2753 goto out; 2754 } 2755 2756 wret = walk_up_log_tree(trans, log, path, &level, wc); 2757 if (wret > 0) 2758 break; 2759 if (wret < 0) { 2760 ret = wret; 2761 goto out; 2762 } 2763 } 2764 2765 /* was the root node processed? if not, catch it here */ 2766 if (path->nodes[orig_level]) { 2767 ret = wc->process_func(log, path->nodes[orig_level], wc, 2768 btrfs_header_generation(path->nodes[orig_level]), 2769 orig_level); 2770 if (ret) 2771 goto out; 2772 if (wc->free) 2773 ret = clean_log_buffer(trans, path->nodes[orig_level]); 2774 } 2775 2776 out: 2777 btrfs_free_path(path); 2778 return ret; 2779 } 2780 2781 /* 2782 * helper function to update the item for a given subvolumes log root 2783 * in the tree of log roots 2784 */ 2785 static int update_log_root(struct btrfs_trans_handle *trans, 2786 struct btrfs_root *log, 2787 struct btrfs_root_item *root_item) 2788 { 2789 struct btrfs_fs_info *fs_info = log->fs_info; 2790 int ret; 2791 2792 if (log->log_transid == 1) { 2793 /* insert root item on the first sync */ 2794 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2795 &log->root_key, root_item); 2796 } else { 2797 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2798 &log->root_key, root_item); 2799 } 2800 return ret; 2801 } 2802 2803 static void wait_log_commit(struct btrfs_root *root, int transid) 2804 { 2805 DEFINE_WAIT(wait); 2806 int index = transid % 2; 2807 2808 /* 2809 * we only allow two pending log transactions at a time, 2810 * so we know that if ours is more than 2 older than the 2811 * current transaction, we're done 2812 */ 2813 for (;;) { 2814 prepare_to_wait(&root->log_commit_wait[index], 2815 &wait, TASK_UNINTERRUPTIBLE); 2816 2817 if (!(root->log_transid_committed < transid && 2818 atomic_read(&root->log_commit[index]))) 2819 break; 2820 2821 mutex_unlock(&root->log_mutex); 2822 schedule(); 2823 mutex_lock(&root->log_mutex); 2824 } 2825 finish_wait(&root->log_commit_wait[index], &wait); 2826 } 2827 2828 static void wait_for_writer(struct btrfs_root *root) 2829 { 2830 DEFINE_WAIT(wait); 2831 2832 for (;;) { 2833 prepare_to_wait(&root->log_writer_wait, &wait, 2834 TASK_UNINTERRUPTIBLE); 2835 if (!atomic_read(&root->log_writers)) 2836 break; 2837 2838 mutex_unlock(&root->log_mutex); 2839 schedule(); 2840 mutex_lock(&root->log_mutex); 2841 } 2842 finish_wait(&root->log_writer_wait, &wait); 2843 } 2844 2845 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2846 struct btrfs_log_ctx *ctx) 2847 { 2848 mutex_lock(&root->log_mutex); 2849 list_del_init(&ctx->list); 2850 mutex_unlock(&root->log_mutex); 2851 } 2852 2853 /* 2854 * Invoked in log mutex context, or be sure there is no other task which 2855 * can access the list. 2856 */ 2857 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2858 int index, int error) 2859 { 2860 struct btrfs_log_ctx *ctx; 2861 struct btrfs_log_ctx *safe; 2862 2863 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 2864 list_del_init(&ctx->list); 2865 ctx->log_ret = error; 2866 } 2867 } 2868 2869 /* 2870 * btrfs_sync_log does sends a given tree log down to the disk and 2871 * updates the super blocks to record it. When this call is done, 2872 * you know that any inodes previously logged are safely on disk only 2873 * if it returns 0. 2874 * 2875 * Any other return value means you need to call btrfs_commit_transaction. 2876 * Some of the edge cases for fsyncing directories that have had unlinks 2877 * or renames done in the past mean that sometimes the only safe 2878 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2879 * that has happened. 2880 */ 2881 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2882 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 2883 { 2884 int index1; 2885 int index2; 2886 int mark; 2887 int ret; 2888 struct btrfs_fs_info *fs_info = root->fs_info; 2889 struct btrfs_root *log = root->log_root; 2890 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 2891 struct btrfs_root_item new_root_item; 2892 int log_transid = 0; 2893 struct btrfs_log_ctx root_log_ctx; 2894 struct blk_plug plug; 2895 u64 log_root_start; 2896 u64 log_root_level; 2897 2898 mutex_lock(&root->log_mutex); 2899 log_transid = ctx->log_transid; 2900 if (root->log_transid_committed >= log_transid) { 2901 mutex_unlock(&root->log_mutex); 2902 return ctx->log_ret; 2903 } 2904 2905 index1 = log_transid % 2; 2906 if (atomic_read(&root->log_commit[index1])) { 2907 wait_log_commit(root, log_transid); 2908 mutex_unlock(&root->log_mutex); 2909 return ctx->log_ret; 2910 } 2911 ASSERT(log_transid == root->log_transid); 2912 atomic_set(&root->log_commit[index1], 1); 2913 2914 /* wait for previous tree log sync to complete */ 2915 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2916 wait_log_commit(root, log_transid - 1); 2917 2918 while (1) { 2919 int batch = atomic_read(&root->log_batch); 2920 /* when we're on an ssd, just kick the log commit out */ 2921 if (!btrfs_test_opt(fs_info, SSD) && 2922 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 2923 mutex_unlock(&root->log_mutex); 2924 schedule_timeout_uninterruptible(1); 2925 mutex_lock(&root->log_mutex); 2926 } 2927 wait_for_writer(root); 2928 if (batch == atomic_read(&root->log_batch)) 2929 break; 2930 } 2931 2932 /* bail out if we need to do a full commit */ 2933 if (btrfs_need_log_full_commit(trans)) { 2934 ret = BTRFS_LOG_FORCE_COMMIT; 2935 mutex_unlock(&root->log_mutex); 2936 goto out; 2937 } 2938 2939 if (log_transid % 2 == 0) 2940 mark = EXTENT_DIRTY; 2941 else 2942 mark = EXTENT_NEW; 2943 2944 /* we start IO on all the marked extents here, but we don't actually 2945 * wait for them until later. 2946 */ 2947 blk_start_plug(&plug); 2948 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 2949 /* 2950 * -EAGAIN happens when someone, e.g., a concurrent transaction 2951 * commit, writes a dirty extent in this tree-log commit. This 2952 * concurrent write will create a hole writing out the extents, 2953 * and we cannot proceed on a zoned filesystem, requiring 2954 * sequential writing. While we can bail out to a full commit 2955 * here, but we can continue hoping the concurrent writing fills 2956 * the hole. 2957 */ 2958 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) 2959 ret = 0; 2960 if (ret) { 2961 blk_finish_plug(&plug); 2962 btrfs_set_log_full_commit(trans); 2963 mutex_unlock(&root->log_mutex); 2964 goto out; 2965 } 2966 2967 /* 2968 * We _must_ update under the root->log_mutex in order to make sure we 2969 * have a consistent view of the log root we are trying to commit at 2970 * this moment. 2971 * 2972 * We _must_ copy this into a local copy, because we are not holding the 2973 * log_root_tree->log_mutex yet. This is important because when we 2974 * commit the log_root_tree we must have a consistent view of the 2975 * log_root_tree when we update the super block to point at the 2976 * log_root_tree bytenr. If we update the log_root_tree here we'll race 2977 * with the commit and possibly point at the new block which we may not 2978 * have written out. 2979 */ 2980 btrfs_set_root_node(&log->root_item, log->node); 2981 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 2982 2983 root->log_transid++; 2984 log->log_transid = root->log_transid; 2985 root->log_start_pid = 0; 2986 /* 2987 * IO has been started, blocks of the log tree have WRITTEN flag set 2988 * in their headers. new modifications of the log will be written to 2989 * new positions. so it's safe to allow log writers to go in. 2990 */ 2991 mutex_unlock(&root->log_mutex); 2992 2993 if (btrfs_is_zoned(fs_info)) { 2994 mutex_lock(&fs_info->tree_root->log_mutex); 2995 if (!log_root_tree->node) { 2996 ret = btrfs_alloc_log_tree_node(trans, log_root_tree); 2997 if (ret) { 2998 mutex_unlock(&fs_info->tree_root->log_mutex); 2999 blk_finish_plug(&plug); 3000 goto out; 3001 } 3002 } 3003 mutex_unlock(&fs_info->tree_root->log_mutex); 3004 } 3005 3006 btrfs_init_log_ctx(&root_log_ctx, NULL); 3007 3008 mutex_lock(&log_root_tree->log_mutex); 3009 3010 index2 = log_root_tree->log_transid % 2; 3011 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3012 root_log_ctx.log_transid = log_root_tree->log_transid; 3013 3014 /* 3015 * Now we are safe to update the log_root_tree because we're under the 3016 * log_mutex, and we're a current writer so we're holding the commit 3017 * open until we drop the log_mutex. 3018 */ 3019 ret = update_log_root(trans, log, &new_root_item); 3020 if (ret) { 3021 if (!list_empty(&root_log_ctx.list)) 3022 list_del_init(&root_log_ctx.list); 3023 3024 blk_finish_plug(&plug); 3025 btrfs_set_log_full_commit(trans); 3026 if (ret != -ENOSPC) 3027 btrfs_err(fs_info, 3028 "failed to update log for root %llu ret %d", 3029 root->root_key.objectid, ret); 3030 btrfs_wait_tree_log_extents(log, mark); 3031 mutex_unlock(&log_root_tree->log_mutex); 3032 goto out; 3033 } 3034 3035 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3036 blk_finish_plug(&plug); 3037 list_del_init(&root_log_ctx.list); 3038 mutex_unlock(&log_root_tree->log_mutex); 3039 ret = root_log_ctx.log_ret; 3040 goto out; 3041 } 3042 3043 index2 = root_log_ctx.log_transid % 2; 3044 if (atomic_read(&log_root_tree->log_commit[index2])) { 3045 blk_finish_plug(&plug); 3046 ret = btrfs_wait_tree_log_extents(log, mark); 3047 wait_log_commit(log_root_tree, 3048 root_log_ctx.log_transid); 3049 mutex_unlock(&log_root_tree->log_mutex); 3050 if (!ret) 3051 ret = root_log_ctx.log_ret; 3052 goto out; 3053 } 3054 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3055 atomic_set(&log_root_tree->log_commit[index2], 1); 3056 3057 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3058 wait_log_commit(log_root_tree, 3059 root_log_ctx.log_transid - 1); 3060 } 3061 3062 /* 3063 * now that we've moved on to the tree of log tree roots, 3064 * check the full commit flag again 3065 */ 3066 if (btrfs_need_log_full_commit(trans)) { 3067 blk_finish_plug(&plug); 3068 btrfs_wait_tree_log_extents(log, mark); 3069 mutex_unlock(&log_root_tree->log_mutex); 3070 ret = BTRFS_LOG_FORCE_COMMIT; 3071 goto out_wake_log_root; 3072 } 3073 3074 ret = btrfs_write_marked_extents(fs_info, 3075 &log_root_tree->dirty_log_pages, 3076 EXTENT_DIRTY | EXTENT_NEW); 3077 blk_finish_plug(&plug); 3078 /* 3079 * As described above, -EAGAIN indicates a hole in the extents. We 3080 * cannot wait for these write outs since the waiting cause a 3081 * deadlock. Bail out to the full commit instead. 3082 */ 3083 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { 3084 btrfs_set_log_full_commit(trans); 3085 btrfs_wait_tree_log_extents(log, mark); 3086 mutex_unlock(&log_root_tree->log_mutex); 3087 goto out_wake_log_root; 3088 } else if (ret) { 3089 btrfs_set_log_full_commit(trans); 3090 mutex_unlock(&log_root_tree->log_mutex); 3091 goto out_wake_log_root; 3092 } 3093 ret = btrfs_wait_tree_log_extents(log, mark); 3094 if (!ret) 3095 ret = btrfs_wait_tree_log_extents(log_root_tree, 3096 EXTENT_NEW | EXTENT_DIRTY); 3097 if (ret) { 3098 btrfs_set_log_full_commit(trans); 3099 mutex_unlock(&log_root_tree->log_mutex); 3100 goto out_wake_log_root; 3101 } 3102 3103 log_root_start = log_root_tree->node->start; 3104 log_root_level = btrfs_header_level(log_root_tree->node); 3105 log_root_tree->log_transid++; 3106 mutex_unlock(&log_root_tree->log_mutex); 3107 3108 /* 3109 * Here we are guaranteed that nobody is going to write the superblock 3110 * for the current transaction before us and that neither we do write 3111 * our superblock before the previous transaction finishes its commit 3112 * and writes its superblock, because: 3113 * 3114 * 1) We are holding a handle on the current transaction, so no body 3115 * can commit it until we release the handle; 3116 * 3117 * 2) Before writing our superblock we acquire the tree_log_mutex, so 3118 * if the previous transaction is still committing, and hasn't yet 3119 * written its superblock, we wait for it to do it, because a 3120 * transaction commit acquires the tree_log_mutex when the commit 3121 * begins and releases it only after writing its superblock. 3122 */ 3123 mutex_lock(&fs_info->tree_log_mutex); 3124 3125 /* 3126 * The previous transaction writeout phase could have failed, and thus 3127 * marked the fs in an error state. We must not commit here, as we 3128 * could have updated our generation in the super_for_commit and 3129 * writing the super here would result in transid mismatches. If there 3130 * is an error here just bail. 3131 */ 3132 if (BTRFS_FS_ERROR(fs_info)) { 3133 ret = -EIO; 3134 btrfs_set_log_full_commit(trans); 3135 btrfs_abort_transaction(trans, ret); 3136 mutex_unlock(&fs_info->tree_log_mutex); 3137 goto out_wake_log_root; 3138 } 3139 3140 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); 3141 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); 3142 ret = write_all_supers(fs_info, 1); 3143 mutex_unlock(&fs_info->tree_log_mutex); 3144 if (ret) { 3145 btrfs_set_log_full_commit(trans); 3146 btrfs_abort_transaction(trans, ret); 3147 goto out_wake_log_root; 3148 } 3149 3150 /* 3151 * We know there can only be one task here, since we have not yet set 3152 * root->log_commit[index1] to 0 and any task attempting to sync the 3153 * log must wait for the previous log transaction to commit if it's 3154 * still in progress or wait for the current log transaction commit if 3155 * someone else already started it. We use <= and not < because the 3156 * first log transaction has an ID of 0. 3157 */ 3158 ASSERT(root->last_log_commit <= log_transid); 3159 root->last_log_commit = log_transid; 3160 3161 out_wake_log_root: 3162 mutex_lock(&log_root_tree->log_mutex); 3163 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3164 3165 log_root_tree->log_transid_committed++; 3166 atomic_set(&log_root_tree->log_commit[index2], 0); 3167 mutex_unlock(&log_root_tree->log_mutex); 3168 3169 /* 3170 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3171 * all the updates above are seen by the woken threads. It might not be 3172 * necessary, but proving that seems to be hard. 3173 */ 3174 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3175 out: 3176 mutex_lock(&root->log_mutex); 3177 btrfs_remove_all_log_ctxs(root, index1, ret); 3178 root->log_transid_committed++; 3179 atomic_set(&root->log_commit[index1], 0); 3180 mutex_unlock(&root->log_mutex); 3181 3182 /* 3183 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3184 * all the updates above are seen by the woken threads. It might not be 3185 * necessary, but proving that seems to be hard. 3186 */ 3187 cond_wake_up(&root->log_commit_wait[index1]); 3188 return ret; 3189 } 3190 3191 static void free_log_tree(struct btrfs_trans_handle *trans, 3192 struct btrfs_root *log) 3193 { 3194 int ret; 3195 struct walk_control wc = { 3196 .free = 1, 3197 .process_func = process_one_buffer 3198 }; 3199 3200 if (log->node) { 3201 ret = walk_log_tree(trans, log, &wc); 3202 if (ret) { 3203 /* 3204 * We weren't able to traverse the entire log tree, the 3205 * typical scenario is getting an -EIO when reading an 3206 * extent buffer of the tree, due to a previous writeback 3207 * failure of it. 3208 */ 3209 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 3210 &log->fs_info->fs_state); 3211 3212 /* 3213 * Some extent buffers of the log tree may still be dirty 3214 * and not yet written back to storage, because we may 3215 * have updates to a log tree without syncing a log tree, 3216 * such as during rename and link operations. So flush 3217 * them out and wait for their writeback to complete, so 3218 * that we properly cleanup their state and pages. 3219 */ 3220 btrfs_write_marked_extents(log->fs_info, 3221 &log->dirty_log_pages, 3222 EXTENT_DIRTY | EXTENT_NEW); 3223 btrfs_wait_tree_log_extents(log, 3224 EXTENT_DIRTY | EXTENT_NEW); 3225 3226 if (trans) 3227 btrfs_abort_transaction(trans, ret); 3228 else 3229 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3230 } 3231 } 3232 3233 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3234 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3235 extent_io_tree_release(&log->log_csum_range); 3236 3237 btrfs_put_root(log); 3238 } 3239 3240 /* 3241 * free all the extents used by the tree log. This should be called 3242 * at commit time of the full transaction 3243 */ 3244 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3245 { 3246 if (root->log_root) { 3247 free_log_tree(trans, root->log_root); 3248 root->log_root = NULL; 3249 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3250 } 3251 return 0; 3252 } 3253 3254 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3255 struct btrfs_fs_info *fs_info) 3256 { 3257 if (fs_info->log_root_tree) { 3258 free_log_tree(trans, fs_info->log_root_tree); 3259 fs_info->log_root_tree = NULL; 3260 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); 3261 } 3262 return 0; 3263 } 3264 3265 /* 3266 * Check if an inode was logged in the current transaction. This correctly deals 3267 * with the case where the inode was logged but has a logged_trans of 0, which 3268 * happens if the inode is evicted and loaded again, as logged_trans is an in 3269 * memory only field (not persisted). 3270 * 3271 * Returns 1 if the inode was logged before in the transaction, 0 if it was not, 3272 * and < 0 on error. 3273 */ 3274 static int inode_logged(const struct btrfs_trans_handle *trans, 3275 struct btrfs_inode *inode, 3276 struct btrfs_path *path_in) 3277 { 3278 struct btrfs_path *path = path_in; 3279 struct btrfs_key key; 3280 int ret; 3281 3282 if (inode->logged_trans == trans->transid) 3283 return 1; 3284 3285 /* 3286 * If logged_trans is not 0, then we know the inode logged was not logged 3287 * in this transaction, so we can return false right away. 3288 */ 3289 if (inode->logged_trans > 0) 3290 return 0; 3291 3292 /* 3293 * If no log tree was created for this root in this transaction, then 3294 * the inode can not have been logged in this transaction. In that case 3295 * set logged_trans to anything greater than 0 and less than the current 3296 * transaction's ID, to avoid the search below in a future call in case 3297 * a log tree gets created after this. 3298 */ 3299 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) { 3300 inode->logged_trans = trans->transid - 1; 3301 return 0; 3302 } 3303 3304 /* 3305 * We have a log tree and the inode's logged_trans is 0. We can't tell 3306 * for sure if the inode was logged before in this transaction by looking 3307 * only at logged_trans. We could be pessimistic and assume it was, but 3308 * that can lead to unnecessarily logging an inode during rename and link 3309 * operations, and then further updating the log in followup rename and 3310 * link operations, specially if it's a directory, which adds latency 3311 * visible to applications doing a series of rename or link operations. 3312 * 3313 * A logged_trans of 0 here can mean several things: 3314 * 3315 * 1) The inode was never logged since the filesystem was mounted, and may 3316 * or may have not been evicted and loaded again; 3317 * 3318 * 2) The inode was logged in a previous transaction, then evicted and 3319 * then loaded again; 3320 * 3321 * 3) The inode was logged in the current transaction, then evicted and 3322 * then loaded again. 3323 * 3324 * For cases 1) and 2) we don't want to return true, but we need to detect 3325 * case 3) and return true. So we do a search in the log root for the inode 3326 * item. 3327 */ 3328 key.objectid = btrfs_ino(inode); 3329 key.type = BTRFS_INODE_ITEM_KEY; 3330 key.offset = 0; 3331 3332 if (!path) { 3333 path = btrfs_alloc_path(); 3334 if (!path) 3335 return -ENOMEM; 3336 } 3337 3338 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 3339 3340 if (path_in) 3341 btrfs_release_path(path); 3342 else 3343 btrfs_free_path(path); 3344 3345 /* 3346 * Logging an inode always results in logging its inode item. So if we 3347 * did not find the item we know the inode was not logged for sure. 3348 */ 3349 if (ret < 0) { 3350 return ret; 3351 } else if (ret > 0) { 3352 /* 3353 * Set logged_trans to a value greater than 0 and less then the 3354 * current transaction to avoid doing the search in future calls. 3355 */ 3356 inode->logged_trans = trans->transid - 1; 3357 return 0; 3358 } 3359 3360 /* 3361 * The inode was previously logged and then evicted, set logged_trans to 3362 * the current transacion's ID, to avoid future tree searches as long as 3363 * the inode is not evicted again. 3364 */ 3365 inode->logged_trans = trans->transid; 3366 3367 /* 3368 * If it's a directory, then we must set last_dir_index_offset to the 3369 * maximum possible value, so that the next attempt to log the inode does 3370 * not skip checking if dir index keys found in modified subvolume tree 3371 * leaves have been logged before, otherwise it would result in attempts 3372 * to insert duplicate dir index keys in the log tree. This must be done 3373 * because last_dir_index_offset is an in-memory only field, not persisted 3374 * in the inode item or any other on-disk structure, so its value is lost 3375 * once the inode is evicted. 3376 */ 3377 if (S_ISDIR(inode->vfs_inode.i_mode)) 3378 inode->last_dir_index_offset = (u64)-1; 3379 3380 return 1; 3381 } 3382 3383 /* 3384 * Delete a directory entry from the log if it exists. 3385 * 3386 * Returns < 0 on error 3387 * 1 if the entry does not exists 3388 * 0 if the entry existed and was successfully deleted 3389 */ 3390 static int del_logged_dentry(struct btrfs_trans_handle *trans, 3391 struct btrfs_root *log, 3392 struct btrfs_path *path, 3393 u64 dir_ino, 3394 const struct fscrypt_str *name, 3395 u64 index) 3396 { 3397 struct btrfs_dir_item *di; 3398 3399 /* 3400 * We only log dir index items of a directory, so we don't need to look 3401 * for dir item keys. 3402 */ 3403 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3404 index, name, -1); 3405 if (IS_ERR(di)) 3406 return PTR_ERR(di); 3407 else if (!di) 3408 return 1; 3409 3410 /* 3411 * We do not need to update the size field of the directory's 3412 * inode item because on log replay we update the field to reflect 3413 * all existing entries in the directory (see overwrite_item()). 3414 */ 3415 return btrfs_delete_one_dir_name(trans, log, path, di); 3416 } 3417 3418 /* 3419 * If both a file and directory are logged, and unlinks or renames are 3420 * mixed in, we have a few interesting corners: 3421 * 3422 * create file X in dir Y 3423 * link file X to X.link in dir Y 3424 * fsync file X 3425 * unlink file X but leave X.link 3426 * fsync dir Y 3427 * 3428 * After a crash we would expect only X.link to exist. But file X 3429 * didn't get fsync'd again so the log has back refs for X and X.link. 3430 * 3431 * We solve this by removing directory entries and inode backrefs from the 3432 * log when a file that was logged in the current transaction is 3433 * unlinked. Any later fsync will include the updated log entries, and 3434 * we'll be able to reconstruct the proper directory items from backrefs. 3435 * 3436 * This optimizations allows us to avoid relogging the entire inode 3437 * or the entire directory. 3438 */ 3439 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3440 struct btrfs_root *root, 3441 const struct fscrypt_str *name, 3442 struct btrfs_inode *dir, u64 index) 3443 { 3444 struct btrfs_path *path; 3445 int ret; 3446 3447 ret = inode_logged(trans, dir, NULL); 3448 if (ret == 0) 3449 return; 3450 else if (ret < 0) { 3451 btrfs_set_log_full_commit(trans); 3452 return; 3453 } 3454 3455 ret = join_running_log_trans(root); 3456 if (ret) 3457 return; 3458 3459 mutex_lock(&dir->log_mutex); 3460 3461 path = btrfs_alloc_path(); 3462 if (!path) { 3463 ret = -ENOMEM; 3464 goto out_unlock; 3465 } 3466 3467 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir), 3468 name, index); 3469 btrfs_free_path(path); 3470 out_unlock: 3471 mutex_unlock(&dir->log_mutex); 3472 if (ret < 0) 3473 btrfs_set_log_full_commit(trans); 3474 btrfs_end_log_trans(root); 3475 } 3476 3477 /* see comments for btrfs_del_dir_entries_in_log */ 3478 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3479 struct btrfs_root *root, 3480 const struct fscrypt_str *name, 3481 struct btrfs_inode *inode, u64 dirid) 3482 { 3483 struct btrfs_root *log; 3484 u64 index; 3485 int ret; 3486 3487 ret = inode_logged(trans, inode, NULL); 3488 if (ret == 0) 3489 return; 3490 else if (ret < 0) { 3491 btrfs_set_log_full_commit(trans); 3492 return; 3493 } 3494 3495 ret = join_running_log_trans(root); 3496 if (ret) 3497 return; 3498 log = root->log_root; 3499 mutex_lock(&inode->log_mutex); 3500 3501 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), 3502 dirid, &index); 3503 mutex_unlock(&inode->log_mutex); 3504 if (ret < 0 && ret != -ENOENT) 3505 btrfs_set_log_full_commit(trans); 3506 btrfs_end_log_trans(root); 3507 } 3508 3509 /* 3510 * creates a range item in the log for 'dirid'. first_offset and 3511 * last_offset tell us which parts of the key space the log should 3512 * be considered authoritative for. 3513 */ 3514 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3515 struct btrfs_root *log, 3516 struct btrfs_path *path, 3517 u64 dirid, 3518 u64 first_offset, u64 last_offset) 3519 { 3520 int ret; 3521 struct btrfs_key key; 3522 struct btrfs_dir_log_item *item; 3523 3524 key.objectid = dirid; 3525 key.offset = first_offset; 3526 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3527 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3528 /* 3529 * -EEXIST is fine and can happen sporadically when we are logging a 3530 * directory and have concurrent insertions in the subvolume's tree for 3531 * items from other inodes and that result in pushing off some dir items 3532 * from one leaf to another in order to accommodate for the new items. 3533 * This results in logging the same dir index range key. 3534 */ 3535 if (ret && ret != -EEXIST) 3536 return ret; 3537 3538 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3539 struct btrfs_dir_log_item); 3540 if (ret == -EEXIST) { 3541 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item); 3542 3543 /* 3544 * btrfs_del_dir_entries_in_log() might have been called during 3545 * an unlink between the initial insertion of this key and the 3546 * current update, or we might be logging a single entry deletion 3547 * during a rename, so set the new last_offset to the max value. 3548 */ 3549 last_offset = max(last_offset, curr_end); 3550 } 3551 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3552 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 3553 btrfs_release_path(path); 3554 return 0; 3555 } 3556 3557 static int flush_dir_items_batch(struct btrfs_trans_handle *trans, 3558 struct btrfs_inode *inode, 3559 struct extent_buffer *src, 3560 struct btrfs_path *dst_path, 3561 int start_slot, 3562 int count) 3563 { 3564 struct btrfs_root *log = inode->root->log_root; 3565 char *ins_data = NULL; 3566 struct btrfs_item_batch batch; 3567 struct extent_buffer *dst; 3568 unsigned long src_offset; 3569 unsigned long dst_offset; 3570 u64 last_index; 3571 struct btrfs_key key; 3572 u32 item_size; 3573 int ret; 3574 int i; 3575 3576 ASSERT(count > 0); 3577 batch.nr = count; 3578 3579 if (count == 1) { 3580 btrfs_item_key_to_cpu(src, &key, start_slot); 3581 item_size = btrfs_item_size(src, start_slot); 3582 batch.keys = &key; 3583 batch.data_sizes = &item_size; 3584 batch.total_data_size = item_size; 3585 } else { 3586 struct btrfs_key *ins_keys; 3587 u32 *ins_sizes; 3588 3589 ins_data = kmalloc(count * sizeof(u32) + 3590 count * sizeof(struct btrfs_key), GFP_NOFS); 3591 if (!ins_data) 3592 return -ENOMEM; 3593 3594 ins_sizes = (u32 *)ins_data; 3595 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); 3596 batch.keys = ins_keys; 3597 batch.data_sizes = ins_sizes; 3598 batch.total_data_size = 0; 3599 3600 for (i = 0; i < count; i++) { 3601 const int slot = start_slot + i; 3602 3603 btrfs_item_key_to_cpu(src, &ins_keys[i], slot); 3604 ins_sizes[i] = btrfs_item_size(src, slot); 3605 batch.total_data_size += ins_sizes[i]; 3606 } 3607 } 3608 3609 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 3610 if (ret) 3611 goto out; 3612 3613 dst = dst_path->nodes[0]; 3614 /* 3615 * Copy all the items in bulk, in a single copy operation. Item data is 3616 * organized such that it's placed at the end of a leaf and from right 3617 * to left. For example, the data for the second item ends at an offset 3618 * that matches the offset where the data for the first item starts, the 3619 * data for the third item ends at an offset that matches the offset 3620 * where the data of the second items starts, and so on. 3621 * Therefore our source and destination start offsets for copy match the 3622 * offsets of the last items (highest slots). 3623 */ 3624 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); 3625 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); 3626 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); 3627 btrfs_release_path(dst_path); 3628 3629 last_index = batch.keys[count - 1].offset; 3630 ASSERT(last_index > inode->last_dir_index_offset); 3631 3632 /* 3633 * If for some unexpected reason the last item's index is not greater 3634 * than the last index we logged, warn and force a transaction commit. 3635 */ 3636 if (WARN_ON(last_index <= inode->last_dir_index_offset)) 3637 ret = BTRFS_LOG_FORCE_COMMIT; 3638 else 3639 inode->last_dir_index_offset = last_index; 3640 3641 if (btrfs_get_first_dir_index_to_log(inode) == 0) 3642 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset); 3643 out: 3644 kfree(ins_data); 3645 3646 return ret; 3647 } 3648 3649 static int process_dir_items_leaf(struct btrfs_trans_handle *trans, 3650 struct btrfs_inode *inode, 3651 struct btrfs_path *path, 3652 struct btrfs_path *dst_path, 3653 struct btrfs_log_ctx *ctx, 3654 u64 *last_old_dentry_offset) 3655 { 3656 struct btrfs_root *log = inode->root->log_root; 3657 struct extent_buffer *src; 3658 const int nritems = btrfs_header_nritems(path->nodes[0]); 3659 const u64 ino = btrfs_ino(inode); 3660 bool last_found = false; 3661 int batch_start = 0; 3662 int batch_size = 0; 3663 int i; 3664 3665 /* 3666 * We need to clone the leaf, release the read lock on it, and use the 3667 * clone before modifying the log tree. See the comment at copy_items() 3668 * about why we need to do this. 3669 */ 3670 src = btrfs_clone_extent_buffer(path->nodes[0]); 3671 if (!src) 3672 return -ENOMEM; 3673 3674 i = path->slots[0]; 3675 btrfs_release_path(path); 3676 path->nodes[0] = src; 3677 path->slots[0] = i; 3678 3679 for (; i < nritems; i++) { 3680 struct btrfs_dir_item *di; 3681 struct btrfs_key key; 3682 int ret; 3683 3684 btrfs_item_key_to_cpu(src, &key, i); 3685 3686 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { 3687 last_found = true; 3688 break; 3689 } 3690 3691 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3692 3693 /* 3694 * Skip ranges of items that consist only of dir item keys created 3695 * in past transactions. However if we find a gap, we must log a 3696 * dir index range item for that gap, so that index keys in that 3697 * gap are deleted during log replay. 3698 */ 3699 if (btrfs_dir_transid(src, di) < trans->transid) { 3700 if (key.offset > *last_old_dentry_offset + 1) { 3701 ret = insert_dir_log_key(trans, log, dst_path, 3702 ino, *last_old_dentry_offset + 1, 3703 key.offset - 1); 3704 if (ret < 0) 3705 return ret; 3706 } 3707 3708 *last_old_dentry_offset = key.offset; 3709 continue; 3710 } 3711 3712 /* If we logged this dir index item before, we can skip it. */ 3713 if (key.offset <= inode->last_dir_index_offset) 3714 continue; 3715 3716 /* 3717 * We must make sure that when we log a directory entry, the 3718 * corresponding inode, after log replay, has a matching link 3719 * count. For example: 3720 * 3721 * touch foo 3722 * mkdir mydir 3723 * sync 3724 * ln foo mydir/bar 3725 * xfs_io -c "fsync" mydir 3726 * <crash> 3727 * <mount fs and log replay> 3728 * 3729 * Would result in a fsync log that when replayed, our file inode 3730 * would have a link count of 1, but we get two directory entries 3731 * pointing to the same inode. After removing one of the names, 3732 * it would not be possible to remove the other name, which 3733 * resulted always in stale file handle errors, and would not be 3734 * possible to rmdir the parent directory, since its i_size could 3735 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, 3736 * resulting in -ENOTEMPTY errors. 3737 */ 3738 if (!ctx->log_new_dentries) { 3739 struct btrfs_key di_key; 3740 3741 btrfs_dir_item_key_to_cpu(src, di, &di_key); 3742 if (di_key.type != BTRFS_ROOT_ITEM_KEY) 3743 ctx->log_new_dentries = true; 3744 } 3745 3746 if (batch_size == 0) 3747 batch_start = i; 3748 batch_size++; 3749 } 3750 3751 if (batch_size > 0) { 3752 int ret; 3753 3754 ret = flush_dir_items_batch(trans, inode, src, dst_path, 3755 batch_start, batch_size); 3756 if (ret < 0) 3757 return ret; 3758 } 3759 3760 return last_found ? 1 : 0; 3761 } 3762 3763 /* 3764 * log all the items included in the current transaction for a given 3765 * directory. This also creates the range items in the log tree required 3766 * to replay anything deleted before the fsync 3767 */ 3768 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3769 struct btrfs_inode *inode, 3770 struct btrfs_path *path, 3771 struct btrfs_path *dst_path, 3772 struct btrfs_log_ctx *ctx, 3773 u64 min_offset, u64 *last_offset_ret) 3774 { 3775 struct btrfs_key min_key; 3776 struct btrfs_root *root = inode->root; 3777 struct btrfs_root *log = root->log_root; 3778 int ret; 3779 u64 last_old_dentry_offset = min_offset - 1; 3780 u64 last_offset = (u64)-1; 3781 u64 ino = btrfs_ino(inode); 3782 3783 min_key.objectid = ino; 3784 min_key.type = BTRFS_DIR_INDEX_KEY; 3785 min_key.offset = min_offset; 3786 3787 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3788 3789 /* 3790 * we didn't find anything from this transaction, see if there 3791 * is anything at all 3792 */ 3793 if (ret != 0 || min_key.objectid != ino || 3794 min_key.type != BTRFS_DIR_INDEX_KEY) { 3795 min_key.objectid = ino; 3796 min_key.type = BTRFS_DIR_INDEX_KEY; 3797 min_key.offset = (u64)-1; 3798 btrfs_release_path(path); 3799 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3800 if (ret < 0) { 3801 btrfs_release_path(path); 3802 return ret; 3803 } 3804 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3805 3806 /* if ret == 0 there are items for this type, 3807 * create a range to tell us the last key of this type. 3808 * otherwise, there are no items in this directory after 3809 * *min_offset, and we create a range to indicate that. 3810 */ 3811 if (ret == 0) { 3812 struct btrfs_key tmp; 3813 3814 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3815 path->slots[0]); 3816 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3817 last_old_dentry_offset = tmp.offset; 3818 } else if (ret > 0) { 3819 ret = 0; 3820 } 3821 3822 goto done; 3823 } 3824 3825 /* go backward to find any previous key */ 3826 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3827 if (ret == 0) { 3828 struct btrfs_key tmp; 3829 3830 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3831 /* 3832 * The dir index key before the first one we found that needs to 3833 * be logged might be in a previous leaf, and there might be a 3834 * gap between these keys, meaning that we had deletions that 3835 * happened. So the key range item we log (key type 3836 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the 3837 * previous key's offset plus 1, so that those deletes are replayed. 3838 */ 3839 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3840 last_old_dentry_offset = tmp.offset; 3841 } else if (ret < 0) { 3842 goto done; 3843 } 3844 3845 btrfs_release_path(path); 3846 3847 /* 3848 * Find the first key from this transaction again or the one we were at 3849 * in the loop below in case we had to reschedule. We may be logging the 3850 * directory without holding its VFS lock, which happen when logging new 3851 * dentries (through log_new_dir_dentries()) or in some cases when we 3852 * need to log the parent directory of an inode. This means a dir index 3853 * key might be deleted from the inode's root, and therefore we may not 3854 * find it anymore. If we can't find it, just move to the next key. We 3855 * can not bail out and ignore, because if we do that we will simply 3856 * not log dir index keys that come after the one that was just deleted 3857 * and we can end up logging a dir index range that ends at (u64)-1 3858 * (@last_offset is initialized to that), resulting in removing dir 3859 * entries we should not remove at log replay time. 3860 */ 3861 search: 3862 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3863 if (ret > 0) { 3864 ret = btrfs_next_item(root, path); 3865 if (ret > 0) { 3866 /* There are no more keys in the inode's root. */ 3867 ret = 0; 3868 goto done; 3869 } 3870 } 3871 if (ret < 0) 3872 goto done; 3873 3874 /* 3875 * we have a block from this transaction, log every item in it 3876 * from our directory 3877 */ 3878 while (1) { 3879 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx, 3880 &last_old_dentry_offset); 3881 if (ret != 0) { 3882 if (ret > 0) 3883 ret = 0; 3884 goto done; 3885 } 3886 path->slots[0] = btrfs_header_nritems(path->nodes[0]); 3887 3888 /* 3889 * look ahead to the next item and see if it is also 3890 * from this directory and from this transaction 3891 */ 3892 ret = btrfs_next_leaf(root, path); 3893 if (ret) { 3894 if (ret == 1) { 3895 last_offset = (u64)-1; 3896 ret = 0; 3897 } 3898 goto done; 3899 } 3900 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); 3901 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { 3902 last_offset = (u64)-1; 3903 goto done; 3904 } 3905 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3906 /* 3907 * The next leaf was not changed in the current transaction 3908 * and has at least one dir index key. 3909 * We check for the next key because there might have been 3910 * one or more deletions between the last key we logged and 3911 * that next key. So the key range item we log (key type 3912 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's 3913 * offset minus 1, so that those deletes are replayed. 3914 */ 3915 last_offset = min_key.offset - 1; 3916 goto done; 3917 } 3918 if (need_resched()) { 3919 btrfs_release_path(path); 3920 cond_resched(); 3921 goto search; 3922 } 3923 } 3924 done: 3925 btrfs_release_path(path); 3926 btrfs_release_path(dst_path); 3927 3928 if (ret == 0) { 3929 *last_offset_ret = last_offset; 3930 /* 3931 * In case the leaf was changed in the current transaction but 3932 * all its dir items are from a past transaction, the last item 3933 * in the leaf is a dir item and there's no gap between that last 3934 * dir item and the first one on the next leaf (which did not 3935 * change in the current transaction), then we don't need to log 3936 * a range, last_old_dentry_offset is == to last_offset. 3937 */ 3938 ASSERT(last_old_dentry_offset <= last_offset); 3939 if (last_old_dentry_offset < last_offset) 3940 ret = insert_dir_log_key(trans, log, path, ino, 3941 last_old_dentry_offset + 1, 3942 last_offset); 3943 } 3944 3945 return ret; 3946 } 3947 3948 /* 3949 * If the inode was logged before and it was evicted, then its 3950 * last_dir_index_offset is (u64)-1, so we don't the value of the last index 3951 * key offset. If that's the case, search for it and update the inode. This 3952 * is to avoid lookups in the log tree every time we try to insert a dir index 3953 * key from a leaf changed in the current transaction, and to allow us to always 3954 * do batch insertions of dir index keys. 3955 */ 3956 static int update_last_dir_index_offset(struct btrfs_inode *inode, 3957 struct btrfs_path *path, 3958 const struct btrfs_log_ctx *ctx) 3959 { 3960 const u64 ino = btrfs_ino(inode); 3961 struct btrfs_key key; 3962 int ret; 3963 3964 lockdep_assert_held(&inode->log_mutex); 3965 3966 if (inode->last_dir_index_offset != (u64)-1) 3967 return 0; 3968 3969 if (!ctx->logged_before) { 3970 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 3971 return 0; 3972 } 3973 3974 key.objectid = ino; 3975 key.type = BTRFS_DIR_INDEX_KEY; 3976 key.offset = (u64)-1; 3977 3978 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 3979 /* 3980 * An error happened or we actually have an index key with an offset 3981 * value of (u64)-1. Bail out, we're done. 3982 */ 3983 if (ret <= 0) 3984 goto out; 3985 3986 ret = 0; 3987 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 3988 3989 /* 3990 * No dir index items, bail out and leave last_dir_index_offset with 3991 * the value right before the first valid index value. 3992 */ 3993 if (path->slots[0] == 0) 3994 goto out; 3995 3996 /* 3997 * btrfs_search_slot() left us at one slot beyond the slot with the last 3998 * index key, or beyond the last key of the directory that is not an 3999 * index key. If we have an index key before, set last_dir_index_offset 4000 * to its offset value, otherwise leave it with a value right before the 4001 * first valid index value, as it means we have an empty directory. 4002 */ 4003 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 4004 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY) 4005 inode->last_dir_index_offset = key.offset; 4006 4007 out: 4008 btrfs_release_path(path); 4009 4010 return ret; 4011 } 4012 4013 /* 4014 * logging directories is very similar to logging inodes, We find all the items 4015 * from the current transaction and write them to the log. 4016 * 4017 * The recovery code scans the directory in the subvolume, and if it finds a 4018 * key in the range logged that is not present in the log tree, then it means 4019 * that dir entry was unlinked during the transaction. 4020 * 4021 * In order for that scan to work, we must include one key smaller than 4022 * the smallest logged by this transaction and one key larger than the largest 4023 * key logged by this transaction. 4024 */ 4025 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 4026 struct btrfs_inode *inode, 4027 struct btrfs_path *path, 4028 struct btrfs_path *dst_path, 4029 struct btrfs_log_ctx *ctx) 4030 { 4031 u64 min_key; 4032 u64 max_key; 4033 int ret; 4034 4035 ret = update_last_dir_index_offset(inode, path, ctx); 4036 if (ret) 4037 return ret; 4038 4039 min_key = BTRFS_DIR_START_INDEX; 4040 max_key = 0; 4041 4042 while (1) { 4043 ret = log_dir_items(trans, inode, path, dst_path, 4044 ctx, min_key, &max_key); 4045 if (ret) 4046 return ret; 4047 if (max_key == (u64)-1) 4048 break; 4049 min_key = max_key + 1; 4050 } 4051 4052 return 0; 4053 } 4054 4055 /* 4056 * a helper function to drop items from the log before we relog an 4057 * inode. max_key_type indicates the highest item type to remove. 4058 * This cannot be run for file data extents because it does not 4059 * free the extents they point to. 4060 */ 4061 static int drop_inode_items(struct btrfs_trans_handle *trans, 4062 struct btrfs_root *log, 4063 struct btrfs_path *path, 4064 struct btrfs_inode *inode, 4065 int max_key_type) 4066 { 4067 int ret; 4068 struct btrfs_key key; 4069 struct btrfs_key found_key; 4070 int start_slot; 4071 4072 key.objectid = btrfs_ino(inode); 4073 key.type = max_key_type; 4074 key.offset = (u64)-1; 4075 4076 while (1) { 4077 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 4078 if (ret < 0) { 4079 break; 4080 } else if (ret > 0) { 4081 if (path->slots[0] == 0) 4082 break; 4083 path->slots[0]--; 4084 } 4085 4086 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4087 path->slots[0]); 4088 4089 if (found_key.objectid != key.objectid) 4090 break; 4091 4092 found_key.offset = 0; 4093 found_key.type = 0; 4094 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot); 4095 if (ret < 0) 4096 break; 4097 4098 ret = btrfs_del_items(trans, log, path, start_slot, 4099 path->slots[0] - start_slot + 1); 4100 /* 4101 * If start slot isn't 0 then we don't need to re-search, we've 4102 * found the last guy with the objectid in this tree. 4103 */ 4104 if (ret || start_slot != 0) 4105 break; 4106 btrfs_release_path(path); 4107 } 4108 btrfs_release_path(path); 4109 if (ret > 0) 4110 ret = 0; 4111 return ret; 4112 } 4113 4114 static int truncate_inode_items(struct btrfs_trans_handle *trans, 4115 struct btrfs_root *log_root, 4116 struct btrfs_inode *inode, 4117 u64 new_size, u32 min_type) 4118 { 4119 struct btrfs_truncate_control control = { 4120 .new_size = new_size, 4121 .ino = btrfs_ino(inode), 4122 .min_type = min_type, 4123 .skip_ref_updates = true, 4124 }; 4125 4126 return btrfs_truncate_inode_items(trans, log_root, &control); 4127 } 4128 4129 static void fill_inode_item(struct btrfs_trans_handle *trans, 4130 struct extent_buffer *leaf, 4131 struct btrfs_inode_item *item, 4132 struct inode *inode, int log_inode_only, 4133 u64 logged_isize) 4134 { 4135 struct btrfs_map_token token; 4136 u64 flags; 4137 4138 btrfs_init_map_token(&token, leaf); 4139 4140 if (log_inode_only) { 4141 /* set the generation to zero so the recover code 4142 * can tell the difference between an logging 4143 * just to say 'this inode exists' and a logging 4144 * to say 'update this inode with these values' 4145 */ 4146 btrfs_set_token_inode_generation(&token, item, 0); 4147 btrfs_set_token_inode_size(&token, item, logged_isize); 4148 } else { 4149 btrfs_set_token_inode_generation(&token, item, 4150 BTRFS_I(inode)->generation); 4151 btrfs_set_token_inode_size(&token, item, inode->i_size); 4152 } 4153 4154 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4155 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4156 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4157 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4158 4159 btrfs_set_token_timespec_sec(&token, &item->atime, 4160 inode->i_atime.tv_sec); 4161 btrfs_set_token_timespec_nsec(&token, &item->atime, 4162 inode->i_atime.tv_nsec); 4163 4164 btrfs_set_token_timespec_sec(&token, &item->mtime, 4165 inode->i_mtime.tv_sec); 4166 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4167 inode->i_mtime.tv_nsec); 4168 4169 btrfs_set_token_timespec_sec(&token, &item->ctime, 4170 inode_get_ctime(inode).tv_sec); 4171 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4172 inode_get_ctime(inode).tv_nsec); 4173 4174 /* 4175 * We do not need to set the nbytes field, in fact during a fast fsync 4176 * its value may not even be correct, since a fast fsync does not wait 4177 * for ordered extent completion, which is where we update nbytes, it 4178 * only waits for writeback to complete. During log replay as we find 4179 * file extent items and replay them, we adjust the nbytes field of the 4180 * inode item in subvolume tree as needed (see overwrite_item()). 4181 */ 4182 4183 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4184 btrfs_set_token_inode_transid(&token, item, trans->transid); 4185 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4186 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4187 BTRFS_I(inode)->ro_flags); 4188 btrfs_set_token_inode_flags(&token, item, flags); 4189 btrfs_set_token_inode_block_group(&token, item, 0); 4190 } 4191 4192 static int log_inode_item(struct btrfs_trans_handle *trans, 4193 struct btrfs_root *log, struct btrfs_path *path, 4194 struct btrfs_inode *inode, bool inode_item_dropped) 4195 { 4196 struct btrfs_inode_item *inode_item; 4197 int ret; 4198 4199 /* 4200 * If we are doing a fast fsync and the inode was logged before in the 4201 * current transaction, then we know the inode was previously logged and 4202 * it exists in the log tree. For performance reasons, in this case use 4203 * btrfs_search_slot() directly with ins_len set to 0 so that we never 4204 * attempt a write lock on the leaf's parent, which adds unnecessary lock 4205 * contention in case there are concurrent fsyncs for other inodes of the 4206 * same subvolume. Using btrfs_insert_empty_item() when the inode item 4207 * already exists can also result in unnecessarily splitting a leaf. 4208 */ 4209 if (!inode_item_dropped && inode->logged_trans == trans->transid) { 4210 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1); 4211 ASSERT(ret <= 0); 4212 if (ret > 0) 4213 ret = -ENOENT; 4214 } else { 4215 /* 4216 * This means it is the first fsync in the current transaction, 4217 * so the inode item is not in the log and we need to insert it. 4218 * We can never get -EEXIST because we are only called for a fast 4219 * fsync and in case an inode eviction happens after the inode was 4220 * logged before in the current transaction, when we load again 4221 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime 4222 * flags and set ->logged_trans to 0. 4223 */ 4224 ret = btrfs_insert_empty_item(trans, log, path, &inode->location, 4225 sizeof(*inode_item)); 4226 ASSERT(ret != -EEXIST); 4227 } 4228 if (ret) 4229 return ret; 4230 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4231 struct btrfs_inode_item); 4232 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 4233 0, 0); 4234 btrfs_release_path(path); 4235 return 0; 4236 } 4237 4238 static int log_csums(struct btrfs_trans_handle *trans, 4239 struct btrfs_inode *inode, 4240 struct btrfs_root *log_root, 4241 struct btrfs_ordered_sum *sums) 4242 { 4243 const u64 lock_end = sums->logical + sums->len - 1; 4244 struct extent_state *cached_state = NULL; 4245 int ret; 4246 4247 /* 4248 * If this inode was not used for reflink operations in the current 4249 * transaction with new extents, then do the fast path, no need to 4250 * worry about logging checksum items with overlapping ranges. 4251 */ 4252 if (inode->last_reflink_trans < trans->transid) 4253 return btrfs_csum_file_blocks(trans, log_root, sums); 4254 4255 /* 4256 * Serialize logging for checksums. This is to avoid racing with the 4257 * same checksum being logged by another task that is logging another 4258 * file which happens to refer to the same extent as well. Such races 4259 * can leave checksum items in the log with overlapping ranges. 4260 */ 4261 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end, 4262 &cached_state); 4263 if (ret) 4264 return ret; 4265 /* 4266 * Due to extent cloning, we might have logged a csum item that covers a 4267 * subrange of a cloned extent, and later we can end up logging a csum 4268 * item for a larger subrange of the same extent or the entire range. 4269 * This would leave csum items in the log tree that cover the same range 4270 * and break the searches for checksums in the log tree, resulting in 4271 * some checksums missing in the fs/subvolume tree. So just delete (or 4272 * trim and adjust) any existing csum items in the log for this range. 4273 */ 4274 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len); 4275 if (!ret) 4276 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4277 4278 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end, 4279 &cached_state); 4280 4281 return ret; 4282 } 4283 4284 static noinline int copy_items(struct btrfs_trans_handle *trans, 4285 struct btrfs_inode *inode, 4286 struct btrfs_path *dst_path, 4287 struct btrfs_path *src_path, 4288 int start_slot, int nr, int inode_only, 4289 u64 logged_isize) 4290 { 4291 struct btrfs_root *log = inode->root->log_root; 4292 struct btrfs_file_extent_item *extent; 4293 struct extent_buffer *src; 4294 int ret = 0; 4295 struct btrfs_key *ins_keys; 4296 u32 *ins_sizes; 4297 struct btrfs_item_batch batch; 4298 char *ins_data; 4299 int i; 4300 int dst_index; 4301 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM); 4302 const u64 i_size = i_size_read(&inode->vfs_inode); 4303 4304 /* 4305 * To keep lockdep happy and avoid deadlocks, clone the source leaf and 4306 * use the clone. This is because otherwise we would be changing the log 4307 * tree, to insert items from the subvolume tree or insert csum items, 4308 * while holding a read lock on a leaf from the subvolume tree, which 4309 * creates a nasty lock dependency when COWing log tree nodes/leaves: 4310 * 4311 * 1) Modifying the log tree triggers an extent buffer allocation while 4312 * holding a write lock on a parent extent buffer from the log tree. 4313 * Allocating the pages for an extent buffer, or the extent buffer 4314 * struct, can trigger inode eviction and finally the inode eviction 4315 * will trigger a release/remove of a delayed node, which requires 4316 * taking the delayed node's mutex; 4317 * 4318 * 2) Allocating a metadata extent for a log tree can trigger the async 4319 * reclaim thread and make us wait for it to release enough space and 4320 * unblock our reservation ticket. The reclaim thread can start 4321 * flushing delayed items, and that in turn results in the need to 4322 * lock delayed node mutexes and in the need to write lock extent 4323 * buffers of a subvolume tree - all this while holding a write lock 4324 * on the parent extent buffer in the log tree. 4325 * 4326 * So one task in scenario 1) running in parallel with another task in 4327 * scenario 2) could lead to a deadlock, one wanting to lock a delayed 4328 * node mutex while having a read lock on a leaf from the subvolume, 4329 * while the other is holding the delayed node's mutex and wants to 4330 * write lock the same subvolume leaf for flushing delayed items. 4331 */ 4332 src = btrfs_clone_extent_buffer(src_path->nodes[0]); 4333 if (!src) 4334 return -ENOMEM; 4335 4336 i = src_path->slots[0]; 4337 btrfs_release_path(src_path); 4338 src_path->nodes[0] = src; 4339 src_path->slots[0] = i; 4340 4341 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 4342 nr * sizeof(u32), GFP_NOFS); 4343 if (!ins_data) 4344 return -ENOMEM; 4345 4346 ins_sizes = (u32 *)ins_data; 4347 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 4348 batch.keys = ins_keys; 4349 batch.data_sizes = ins_sizes; 4350 batch.total_data_size = 0; 4351 batch.nr = 0; 4352 4353 dst_index = 0; 4354 for (i = 0; i < nr; i++) { 4355 const int src_slot = start_slot + i; 4356 struct btrfs_root *csum_root; 4357 struct btrfs_ordered_sum *sums; 4358 struct btrfs_ordered_sum *sums_next; 4359 LIST_HEAD(ordered_sums); 4360 u64 disk_bytenr; 4361 u64 disk_num_bytes; 4362 u64 extent_offset; 4363 u64 extent_num_bytes; 4364 bool is_old_extent; 4365 4366 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot); 4367 4368 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY) 4369 goto add_to_batch; 4370 4371 extent = btrfs_item_ptr(src, src_slot, 4372 struct btrfs_file_extent_item); 4373 4374 is_old_extent = (btrfs_file_extent_generation(src, extent) < 4375 trans->transid); 4376 4377 /* 4378 * Don't copy extents from past generations. That would make us 4379 * log a lot more metadata for common cases like doing only a 4380 * few random writes into a file and then fsync it for the first 4381 * time or after the full sync flag is set on the inode. We can 4382 * get leaves full of extent items, most of which are from past 4383 * generations, so we can skip them - as long as the inode has 4384 * not been the target of a reflink operation in this transaction, 4385 * as in that case it might have had file extent items with old 4386 * generations copied into it. We also must always log prealloc 4387 * extents that start at or beyond eof, otherwise we would lose 4388 * them on log replay. 4389 */ 4390 if (is_old_extent && 4391 ins_keys[dst_index].offset < i_size && 4392 inode->last_reflink_trans < trans->transid) 4393 continue; 4394 4395 if (skip_csum) 4396 goto add_to_batch; 4397 4398 /* Only regular extents have checksums. */ 4399 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG) 4400 goto add_to_batch; 4401 4402 /* 4403 * If it's an extent created in a past transaction, then its 4404 * checksums are already accessible from the committed csum tree, 4405 * no need to log them. 4406 */ 4407 if (is_old_extent) 4408 goto add_to_batch; 4409 4410 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent); 4411 /* If it's an explicit hole, there are no checksums. */ 4412 if (disk_bytenr == 0) 4413 goto add_to_batch; 4414 4415 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent); 4416 4417 if (btrfs_file_extent_compression(src, extent)) { 4418 extent_offset = 0; 4419 extent_num_bytes = disk_num_bytes; 4420 } else { 4421 extent_offset = btrfs_file_extent_offset(src, extent); 4422 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent); 4423 } 4424 4425 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr); 4426 disk_bytenr += extent_offset; 4427 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4428 disk_bytenr + extent_num_bytes - 1, 4429 &ordered_sums, 0, false); 4430 if (ret) 4431 goto out; 4432 4433 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) { 4434 if (!ret) 4435 ret = log_csums(trans, inode, log, sums); 4436 list_del(&sums->list); 4437 kfree(sums); 4438 } 4439 if (ret) 4440 goto out; 4441 4442 add_to_batch: 4443 ins_sizes[dst_index] = btrfs_item_size(src, src_slot); 4444 batch.total_data_size += ins_sizes[dst_index]; 4445 batch.nr++; 4446 dst_index++; 4447 } 4448 4449 /* 4450 * We have a leaf full of old extent items that don't need to be logged, 4451 * so we don't need to do anything. 4452 */ 4453 if (batch.nr == 0) 4454 goto out; 4455 4456 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 4457 if (ret) 4458 goto out; 4459 4460 dst_index = 0; 4461 for (i = 0; i < nr; i++) { 4462 const int src_slot = start_slot + i; 4463 const int dst_slot = dst_path->slots[0] + dst_index; 4464 struct btrfs_key key; 4465 unsigned long src_offset; 4466 unsigned long dst_offset; 4467 4468 /* 4469 * We're done, all the remaining items in the source leaf 4470 * correspond to old file extent items. 4471 */ 4472 if (dst_index >= batch.nr) 4473 break; 4474 4475 btrfs_item_key_to_cpu(src, &key, src_slot); 4476 4477 if (key.type != BTRFS_EXTENT_DATA_KEY) 4478 goto copy_item; 4479 4480 extent = btrfs_item_ptr(src, src_slot, 4481 struct btrfs_file_extent_item); 4482 4483 /* See the comment in the previous loop, same logic. */ 4484 if (btrfs_file_extent_generation(src, extent) < trans->transid && 4485 key.offset < i_size && 4486 inode->last_reflink_trans < trans->transid) 4487 continue; 4488 4489 copy_item: 4490 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot); 4491 src_offset = btrfs_item_ptr_offset(src, src_slot); 4492 4493 if (key.type == BTRFS_INODE_ITEM_KEY) { 4494 struct btrfs_inode_item *inode_item; 4495 4496 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot, 4497 struct btrfs_inode_item); 4498 fill_inode_item(trans, dst_path->nodes[0], inode_item, 4499 &inode->vfs_inode, 4500 inode_only == LOG_INODE_EXISTS, 4501 logged_isize); 4502 } else { 4503 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4504 src_offset, ins_sizes[dst_index]); 4505 } 4506 4507 dst_index++; 4508 } 4509 4510 btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]); 4511 btrfs_release_path(dst_path); 4512 out: 4513 kfree(ins_data); 4514 4515 return ret; 4516 } 4517 4518 static int extent_cmp(void *priv, const struct list_head *a, 4519 const struct list_head *b) 4520 { 4521 const struct extent_map *em1, *em2; 4522 4523 em1 = list_entry(a, struct extent_map, list); 4524 em2 = list_entry(b, struct extent_map, list); 4525 4526 if (em1->start < em2->start) 4527 return -1; 4528 else if (em1->start > em2->start) 4529 return 1; 4530 return 0; 4531 } 4532 4533 static int log_extent_csums(struct btrfs_trans_handle *trans, 4534 struct btrfs_inode *inode, 4535 struct btrfs_root *log_root, 4536 const struct extent_map *em, 4537 struct btrfs_log_ctx *ctx) 4538 { 4539 struct btrfs_ordered_extent *ordered; 4540 struct btrfs_root *csum_root; 4541 u64 csum_offset; 4542 u64 csum_len; 4543 u64 mod_start = em->mod_start; 4544 u64 mod_len = em->mod_len; 4545 LIST_HEAD(ordered_sums); 4546 int ret = 0; 4547 4548 if (inode->flags & BTRFS_INODE_NODATASUM || 4549 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4550 em->block_start == EXTENT_MAP_HOLE) 4551 return 0; 4552 4553 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { 4554 const u64 ordered_end = ordered->file_offset + ordered->num_bytes; 4555 const u64 mod_end = mod_start + mod_len; 4556 struct btrfs_ordered_sum *sums; 4557 4558 if (mod_len == 0) 4559 break; 4560 4561 if (ordered_end <= mod_start) 4562 continue; 4563 if (mod_end <= ordered->file_offset) 4564 break; 4565 4566 /* 4567 * We are going to copy all the csums on this ordered extent, so 4568 * go ahead and adjust mod_start and mod_len in case this ordered 4569 * extent has already been logged. 4570 */ 4571 if (ordered->file_offset > mod_start) { 4572 if (ordered_end >= mod_end) 4573 mod_len = ordered->file_offset - mod_start; 4574 /* 4575 * If we have this case 4576 * 4577 * |--------- logged extent ---------| 4578 * |----- ordered extent ----| 4579 * 4580 * Just don't mess with mod_start and mod_len, we'll 4581 * just end up logging more csums than we need and it 4582 * will be ok. 4583 */ 4584 } else { 4585 if (ordered_end < mod_end) { 4586 mod_len = mod_end - ordered_end; 4587 mod_start = ordered_end; 4588 } else { 4589 mod_len = 0; 4590 } 4591 } 4592 4593 /* 4594 * To keep us from looping for the above case of an ordered 4595 * extent that falls inside of the logged extent. 4596 */ 4597 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) 4598 continue; 4599 4600 list_for_each_entry(sums, &ordered->list, list) { 4601 ret = log_csums(trans, inode, log_root, sums); 4602 if (ret) 4603 return ret; 4604 } 4605 } 4606 4607 /* We're done, found all csums in the ordered extents. */ 4608 if (mod_len == 0) 4609 return 0; 4610 4611 /* If we're compressed we have to save the entire range of csums. */ 4612 if (em->compress_type) { 4613 csum_offset = 0; 4614 csum_len = max(em->block_len, em->orig_block_len); 4615 } else { 4616 csum_offset = mod_start - em->start; 4617 csum_len = mod_len; 4618 } 4619 4620 /* block start is already adjusted for the file extent offset. */ 4621 csum_root = btrfs_csum_root(trans->fs_info, em->block_start); 4622 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset, 4623 em->block_start + csum_offset + 4624 csum_len - 1, &ordered_sums, 0, false); 4625 if (ret) 4626 return ret; 4627 4628 while (!list_empty(&ordered_sums)) { 4629 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4630 struct btrfs_ordered_sum, 4631 list); 4632 if (!ret) 4633 ret = log_csums(trans, inode, log_root, sums); 4634 list_del(&sums->list); 4635 kfree(sums); 4636 } 4637 4638 return ret; 4639 } 4640 4641 static int log_one_extent(struct btrfs_trans_handle *trans, 4642 struct btrfs_inode *inode, 4643 const struct extent_map *em, 4644 struct btrfs_path *path, 4645 struct btrfs_log_ctx *ctx) 4646 { 4647 struct btrfs_drop_extents_args drop_args = { 0 }; 4648 struct btrfs_root *log = inode->root->log_root; 4649 struct btrfs_file_extent_item fi = { 0 }; 4650 struct extent_buffer *leaf; 4651 struct btrfs_key key; 4652 u64 extent_offset = em->start - em->orig_start; 4653 u64 block_len; 4654 int ret; 4655 4656 btrfs_set_stack_file_extent_generation(&fi, trans->transid); 4657 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4658 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC); 4659 else 4660 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG); 4661 4662 block_len = max(em->block_len, em->orig_block_len); 4663 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4664 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start); 4665 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 4666 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4667 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start - 4668 extent_offset); 4669 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 4670 } 4671 4672 btrfs_set_stack_file_extent_offset(&fi, extent_offset); 4673 btrfs_set_stack_file_extent_num_bytes(&fi, em->len); 4674 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes); 4675 btrfs_set_stack_file_extent_compression(&fi, em->compress_type); 4676 4677 ret = log_extent_csums(trans, inode, log, em, ctx); 4678 if (ret) 4679 return ret; 4680 4681 /* 4682 * If this is the first time we are logging the inode in the current 4683 * transaction, we can avoid btrfs_drop_extents(), which is expensive 4684 * because it does a deletion search, which always acquires write locks 4685 * for extent buffers at levels 2, 1 and 0. This not only wastes time 4686 * but also adds significant contention in a log tree, since log trees 4687 * are small, with a root at level 2 or 3 at most, due to their short 4688 * life span. 4689 */ 4690 if (ctx->logged_before) { 4691 drop_args.path = path; 4692 drop_args.start = em->start; 4693 drop_args.end = em->start + em->len; 4694 drop_args.replace_extent = true; 4695 drop_args.extent_item_size = sizeof(fi); 4696 ret = btrfs_drop_extents(trans, log, inode, &drop_args); 4697 if (ret) 4698 return ret; 4699 } 4700 4701 if (!drop_args.extent_inserted) { 4702 key.objectid = btrfs_ino(inode); 4703 key.type = BTRFS_EXTENT_DATA_KEY; 4704 key.offset = em->start; 4705 4706 ret = btrfs_insert_empty_item(trans, log, path, &key, 4707 sizeof(fi)); 4708 if (ret) 4709 return ret; 4710 } 4711 leaf = path->nodes[0]; 4712 write_extent_buffer(leaf, &fi, 4713 btrfs_item_ptr_offset(leaf, path->slots[0]), 4714 sizeof(fi)); 4715 btrfs_mark_buffer_dirty(trans, leaf); 4716 4717 btrfs_release_path(path); 4718 4719 return ret; 4720 } 4721 4722 /* 4723 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4724 * lose them after doing a full/fast fsync and replaying the log. We scan the 4725 * subvolume's root instead of iterating the inode's extent map tree because 4726 * otherwise we can log incorrect extent items based on extent map conversion. 4727 * That can happen due to the fact that extent maps are merged when they 4728 * are not in the extent map tree's list of modified extents. 4729 */ 4730 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4731 struct btrfs_inode *inode, 4732 struct btrfs_path *path) 4733 { 4734 struct btrfs_root *root = inode->root; 4735 struct btrfs_key key; 4736 const u64 i_size = i_size_read(&inode->vfs_inode); 4737 const u64 ino = btrfs_ino(inode); 4738 struct btrfs_path *dst_path = NULL; 4739 bool dropped_extents = false; 4740 u64 truncate_offset = i_size; 4741 struct extent_buffer *leaf; 4742 int slot; 4743 int ins_nr = 0; 4744 int start_slot = 0; 4745 int ret; 4746 4747 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4748 return 0; 4749 4750 key.objectid = ino; 4751 key.type = BTRFS_EXTENT_DATA_KEY; 4752 key.offset = i_size; 4753 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4754 if (ret < 0) 4755 goto out; 4756 4757 /* 4758 * We must check if there is a prealloc extent that starts before the 4759 * i_size and crosses the i_size boundary. This is to ensure later we 4760 * truncate down to the end of that extent and not to the i_size, as 4761 * otherwise we end up losing part of the prealloc extent after a log 4762 * replay and with an implicit hole if there is another prealloc extent 4763 * that starts at an offset beyond i_size. 4764 */ 4765 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4766 if (ret < 0) 4767 goto out; 4768 4769 if (ret == 0) { 4770 struct btrfs_file_extent_item *ei; 4771 4772 leaf = path->nodes[0]; 4773 slot = path->slots[0]; 4774 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4775 4776 if (btrfs_file_extent_type(leaf, ei) == 4777 BTRFS_FILE_EXTENT_PREALLOC) { 4778 u64 extent_end; 4779 4780 btrfs_item_key_to_cpu(leaf, &key, slot); 4781 extent_end = key.offset + 4782 btrfs_file_extent_num_bytes(leaf, ei); 4783 4784 if (extent_end > i_size) 4785 truncate_offset = extent_end; 4786 } 4787 } else { 4788 ret = 0; 4789 } 4790 4791 while (true) { 4792 leaf = path->nodes[0]; 4793 slot = path->slots[0]; 4794 4795 if (slot >= btrfs_header_nritems(leaf)) { 4796 if (ins_nr > 0) { 4797 ret = copy_items(trans, inode, dst_path, path, 4798 start_slot, ins_nr, 1, 0); 4799 if (ret < 0) 4800 goto out; 4801 ins_nr = 0; 4802 } 4803 ret = btrfs_next_leaf(root, path); 4804 if (ret < 0) 4805 goto out; 4806 if (ret > 0) { 4807 ret = 0; 4808 break; 4809 } 4810 continue; 4811 } 4812 4813 btrfs_item_key_to_cpu(leaf, &key, slot); 4814 if (key.objectid > ino) 4815 break; 4816 if (WARN_ON_ONCE(key.objectid < ino) || 4817 key.type < BTRFS_EXTENT_DATA_KEY || 4818 key.offset < i_size) { 4819 path->slots[0]++; 4820 continue; 4821 } 4822 /* 4823 * Avoid overlapping items in the log tree. The first time we 4824 * get here, get rid of everything from a past fsync. After 4825 * that, if the current extent starts before the end of the last 4826 * extent we copied, truncate the last one. This can happen if 4827 * an ordered extent completion modifies the subvolume tree 4828 * while btrfs_next_leaf() has the tree unlocked. 4829 */ 4830 if (!dropped_extents || key.offset < truncate_offset) { 4831 ret = truncate_inode_items(trans, root->log_root, inode, 4832 min(key.offset, truncate_offset), 4833 BTRFS_EXTENT_DATA_KEY); 4834 if (ret) 4835 goto out; 4836 dropped_extents = true; 4837 } 4838 truncate_offset = btrfs_file_extent_end(path); 4839 if (ins_nr == 0) 4840 start_slot = slot; 4841 ins_nr++; 4842 path->slots[0]++; 4843 if (!dst_path) { 4844 dst_path = btrfs_alloc_path(); 4845 if (!dst_path) { 4846 ret = -ENOMEM; 4847 goto out; 4848 } 4849 } 4850 } 4851 if (ins_nr > 0) 4852 ret = copy_items(trans, inode, dst_path, path, 4853 start_slot, ins_nr, 1, 0); 4854 out: 4855 btrfs_release_path(path); 4856 btrfs_free_path(dst_path); 4857 return ret; 4858 } 4859 4860 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4861 struct btrfs_inode *inode, 4862 struct btrfs_path *path, 4863 struct btrfs_log_ctx *ctx) 4864 { 4865 struct btrfs_ordered_extent *ordered; 4866 struct btrfs_ordered_extent *tmp; 4867 struct extent_map *em, *n; 4868 LIST_HEAD(extents); 4869 struct extent_map_tree *tree = &inode->extent_tree; 4870 int ret = 0; 4871 int num = 0; 4872 4873 write_lock(&tree->lock); 4874 4875 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4876 list_del_init(&em->list); 4877 /* 4878 * Just an arbitrary number, this can be really CPU intensive 4879 * once we start getting a lot of extents, and really once we 4880 * have a bunch of extents we just want to commit since it will 4881 * be faster. 4882 */ 4883 if (++num > 32768) { 4884 list_del_init(&tree->modified_extents); 4885 ret = -EFBIG; 4886 goto process; 4887 } 4888 4889 if (em->generation < trans->transid) 4890 continue; 4891 4892 /* We log prealloc extents beyond eof later. */ 4893 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4894 em->start >= i_size_read(&inode->vfs_inode)) 4895 continue; 4896 4897 /* Need a ref to keep it from getting evicted from cache */ 4898 refcount_inc(&em->refs); 4899 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4900 list_add_tail(&em->list, &extents); 4901 num++; 4902 } 4903 4904 list_sort(NULL, &extents, extent_cmp); 4905 process: 4906 while (!list_empty(&extents)) { 4907 em = list_entry(extents.next, struct extent_map, list); 4908 4909 list_del_init(&em->list); 4910 4911 /* 4912 * If we had an error we just need to delete everybody from our 4913 * private list. 4914 */ 4915 if (ret) { 4916 clear_em_logging(tree, em); 4917 free_extent_map(em); 4918 continue; 4919 } 4920 4921 write_unlock(&tree->lock); 4922 4923 ret = log_one_extent(trans, inode, em, path, ctx); 4924 write_lock(&tree->lock); 4925 clear_em_logging(tree, em); 4926 free_extent_map(em); 4927 } 4928 WARN_ON(!list_empty(&extents)); 4929 write_unlock(&tree->lock); 4930 4931 if (!ret) 4932 ret = btrfs_log_prealloc_extents(trans, inode, path); 4933 if (ret) 4934 return ret; 4935 4936 /* 4937 * We have logged all extents successfully, now make sure the commit of 4938 * the current transaction waits for the ordered extents to complete 4939 * before it commits and wipes out the log trees, otherwise we would 4940 * lose data if an ordered extents completes after the transaction 4941 * commits and a power failure happens after the transaction commit. 4942 */ 4943 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 4944 list_del_init(&ordered->log_list); 4945 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); 4946 4947 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4948 spin_lock_irq(&inode->ordered_tree.lock); 4949 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4950 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 4951 atomic_inc(&trans->transaction->pending_ordered); 4952 } 4953 spin_unlock_irq(&inode->ordered_tree.lock); 4954 } 4955 btrfs_put_ordered_extent(ordered); 4956 } 4957 4958 return 0; 4959 } 4960 4961 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4962 struct btrfs_path *path, u64 *size_ret) 4963 { 4964 struct btrfs_key key; 4965 int ret; 4966 4967 key.objectid = btrfs_ino(inode); 4968 key.type = BTRFS_INODE_ITEM_KEY; 4969 key.offset = 0; 4970 4971 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4972 if (ret < 0) { 4973 return ret; 4974 } else if (ret > 0) { 4975 *size_ret = 0; 4976 } else { 4977 struct btrfs_inode_item *item; 4978 4979 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4980 struct btrfs_inode_item); 4981 *size_ret = btrfs_inode_size(path->nodes[0], item); 4982 /* 4983 * If the in-memory inode's i_size is smaller then the inode 4984 * size stored in the btree, return the inode's i_size, so 4985 * that we get a correct inode size after replaying the log 4986 * when before a power failure we had a shrinking truncate 4987 * followed by addition of a new name (rename / new hard link). 4988 * Otherwise return the inode size from the btree, to avoid 4989 * data loss when replaying a log due to previously doing a 4990 * write that expands the inode's size and logging a new name 4991 * immediately after. 4992 */ 4993 if (*size_ret > inode->vfs_inode.i_size) 4994 *size_ret = inode->vfs_inode.i_size; 4995 } 4996 4997 btrfs_release_path(path); 4998 return 0; 4999 } 5000 5001 /* 5002 * At the moment we always log all xattrs. This is to figure out at log replay 5003 * time which xattrs must have their deletion replayed. If a xattr is missing 5004 * in the log tree and exists in the fs/subvol tree, we delete it. This is 5005 * because if a xattr is deleted, the inode is fsynced and a power failure 5006 * happens, causing the log to be replayed the next time the fs is mounted, 5007 * we want the xattr to not exist anymore (same behaviour as other filesystems 5008 * with a journal, ext3/4, xfs, f2fs, etc). 5009 */ 5010 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 5011 struct btrfs_inode *inode, 5012 struct btrfs_path *path, 5013 struct btrfs_path *dst_path) 5014 { 5015 struct btrfs_root *root = inode->root; 5016 int ret; 5017 struct btrfs_key key; 5018 const u64 ino = btrfs_ino(inode); 5019 int ins_nr = 0; 5020 int start_slot = 0; 5021 bool found_xattrs = false; 5022 5023 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) 5024 return 0; 5025 5026 key.objectid = ino; 5027 key.type = BTRFS_XATTR_ITEM_KEY; 5028 key.offset = 0; 5029 5030 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5031 if (ret < 0) 5032 return ret; 5033 5034 while (true) { 5035 int slot = path->slots[0]; 5036 struct extent_buffer *leaf = path->nodes[0]; 5037 int nritems = btrfs_header_nritems(leaf); 5038 5039 if (slot >= nritems) { 5040 if (ins_nr > 0) { 5041 ret = copy_items(trans, inode, dst_path, path, 5042 start_slot, ins_nr, 1, 0); 5043 if (ret < 0) 5044 return ret; 5045 ins_nr = 0; 5046 } 5047 ret = btrfs_next_leaf(root, path); 5048 if (ret < 0) 5049 return ret; 5050 else if (ret > 0) 5051 break; 5052 continue; 5053 } 5054 5055 btrfs_item_key_to_cpu(leaf, &key, slot); 5056 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 5057 break; 5058 5059 if (ins_nr == 0) 5060 start_slot = slot; 5061 ins_nr++; 5062 path->slots[0]++; 5063 found_xattrs = true; 5064 cond_resched(); 5065 } 5066 if (ins_nr > 0) { 5067 ret = copy_items(trans, inode, dst_path, path, 5068 start_slot, ins_nr, 1, 0); 5069 if (ret < 0) 5070 return ret; 5071 } 5072 5073 if (!found_xattrs) 5074 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); 5075 5076 return 0; 5077 } 5078 5079 /* 5080 * When using the NO_HOLES feature if we punched a hole that causes the 5081 * deletion of entire leafs or all the extent items of the first leaf (the one 5082 * that contains the inode item and references) we may end up not processing 5083 * any extents, because there are no leafs with a generation matching the 5084 * current transaction that have extent items for our inode. So we need to find 5085 * if any holes exist and then log them. We also need to log holes after any 5086 * truncate operation that changes the inode's size. 5087 */ 5088 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 5089 struct btrfs_inode *inode, 5090 struct btrfs_path *path) 5091 { 5092 struct btrfs_root *root = inode->root; 5093 struct btrfs_fs_info *fs_info = root->fs_info; 5094 struct btrfs_key key; 5095 const u64 ino = btrfs_ino(inode); 5096 const u64 i_size = i_size_read(&inode->vfs_inode); 5097 u64 prev_extent_end = 0; 5098 int ret; 5099 5100 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 5101 return 0; 5102 5103 key.objectid = ino; 5104 key.type = BTRFS_EXTENT_DATA_KEY; 5105 key.offset = 0; 5106 5107 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5108 if (ret < 0) 5109 return ret; 5110 5111 while (true) { 5112 struct extent_buffer *leaf = path->nodes[0]; 5113 5114 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 5115 ret = btrfs_next_leaf(root, path); 5116 if (ret < 0) 5117 return ret; 5118 if (ret > 0) { 5119 ret = 0; 5120 break; 5121 } 5122 leaf = path->nodes[0]; 5123 } 5124 5125 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5126 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 5127 break; 5128 5129 /* We have a hole, log it. */ 5130 if (prev_extent_end < key.offset) { 5131 const u64 hole_len = key.offset - prev_extent_end; 5132 5133 /* 5134 * Release the path to avoid deadlocks with other code 5135 * paths that search the root while holding locks on 5136 * leafs from the log root. 5137 */ 5138 btrfs_release_path(path); 5139 ret = btrfs_insert_hole_extent(trans, root->log_root, 5140 ino, prev_extent_end, 5141 hole_len); 5142 if (ret < 0) 5143 return ret; 5144 5145 /* 5146 * Search for the same key again in the root. Since it's 5147 * an extent item and we are holding the inode lock, the 5148 * key must still exist. If it doesn't just emit warning 5149 * and return an error to fall back to a transaction 5150 * commit. 5151 */ 5152 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5153 if (ret < 0) 5154 return ret; 5155 if (WARN_ON(ret > 0)) 5156 return -ENOENT; 5157 leaf = path->nodes[0]; 5158 } 5159 5160 prev_extent_end = btrfs_file_extent_end(path); 5161 path->slots[0]++; 5162 cond_resched(); 5163 } 5164 5165 if (prev_extent_end < i_size) { 5166 u64 hole_len; 5167 5168 btrfs_release_path(path); 5169 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 5170 ret = btrfs_insert_hole_extent(trans, root->log_root, ino, 5171 prev_extent_end, hole_len); 5172 if (ret < 0) 5173 return ret; 5174 } 5175 5176 return 0; 5177 } 5178 5179 /* 5180 * When we are logging a new inode X, check if it doesn't have a reference that 5181 * matches the reference from some other inode Y created in a past transaction 5182 * and that was renamed in the current transaction. If we don't do this, then at 5183 * log replay time we can lose inode Y (and all its files if it's a directory): 5184 * 5185 * mkdir /mnt/x 5186 * echo "hello world" > /mnt/x/foobar 5187 * sync 5188 * mv /mnt/x /mnt/y 5189 * mkdir /mnt/x # or touch /mnt/x 5190 * xfs_io -c fsync /mnt/x 5191 * <power fail> 5192 * mount fs, trigger log replay 5193 * 5194 * After the log replay procedure, we would lose the first directory and all its 5195 * files (file foobar). 5196 * For the case where inode Y is not a directory we simply end up losing it: 5197 * 5198 * echo "123" > /mnt/foo 5199 * sync 5200 * mv /mnt/foo /mnt/bar 5201 * echo "abc" > /mnt/foo 5202 * xfs_io -c fsync /mnt/foo 5203 * <power fail> 5204 * 5205 * We also need this for cases where a snapshot entry is replaced by some other 5206 * entry (file or directory) otherwise we end up with an unreplayable log due to 5207 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 5208 * if it were a regular entry: 5209 * 5210 * mkdir /mnt/x 5211 * btrfs subvolume snapshot /mnt /mnt/x/snap 5212 * btrfs subvolume delete /mnt/x/snap 5213 * rmdir /mnt/x 5214 * mkdir /mnt/x 5215 * fsync /mnt/x or fsync some new file inside it 5216 * <power fail> 5217 * 5218 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 5219 * the same transaction. 5220 */ 5221 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 5222 const int slot, 5223 const struct btrfs_key *key, 5224 struct btrfs_inode *inode, 5225 u64 *other_ino, u64 *other_parent) 5226 { 5227 int ret; 5228 struct btrfs_path *search_path; 5229 char *name = NULL; 5230 u32 name_len = 0; 5231 u32 item_size = btrfs_item_size(eb, slot); 5232 u32 cur_offset = 0; 5233 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 5234 5235 search_path = btrfs_alloc_path(); 5236 if (!search_path) 5237 return -ENOMEM; 5238 search_path->search_commit_root = 1; 5239 search_path->skip_locking = 1; 5240 5241 while (cur_offset < item_size) { 5242 u64 parent; 5243 u32 this_name_len; 5244 u32 this_len; 5245 unsigned long name_ptr; 5246 struct btrfs_dir_item *di; 5247 struct fscrypt_str name_str; 5248 5249 if (key->type == BTRFS_INODE_REF_KEY) { 5250 struct btrfs_inode_ref *iref; 5251 5252 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 5253 parent = key->offset; 5254 this_name_len = btrfs_inode_ref_name_len(eb, iref); 5255 name_ptr = (unsigned long)(iref + 1); 5256 this_len = sizeof(*iref) + this_name_len; 5257 } else { 5258 struct btrfs_inode_extref *extref; 5259 5260 extref = (struct btrfs_inode_extref *)(ptr + 5261 cur_offset); 5262 parent = btrfs_inode_extref_parent(eb, extref); 5263 this_name_len = btrfs_inode_extref_name_len(eb, extref); 5264 name_ptr = (unsigned long)&extref->name; 5265 this_len = sizeof(*extref) + this_name_len; 5266 } 5267 5268 if (this_name_len > name_len) { 5269 char *new_name; 5270 5271 new_name = krealloc(name, this_name_len, GFP_NOFS); 5272 if (!new_name) { 5273 ret = -ENOMEM; 5274 goto out; 5275 } 5276 name_len = this_name_len; 5277 name = new_name; 5278 } 5279 5280 read_extent_buffer(eb, name, name_ptr, this_name_len); 5281 5282 name_str.name = name; 5283 name_str.len = this_name_len; 5284 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 5285 parent, &name_str, 0); 5286 if (di && !IS_ERR(di)) { 5287 struct btrfs_key di_key; 5288 5289 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 5290 di, &di_key); 5291 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 5292 if (di_key.objectid != key->objectid) { 5293 ret = 1; 5294 *other_ino = di_key.objectid; 5295 *other_parent = parent; 5296 } else { 5297 ret = 0; 5298 } 5299 } else { 5300 ret = -EAGAIN; 5301 } 5302 goto out; 5303 } else if (IS_ERR(di)) { 5304 ret = PTR_ERR(di); 5305 goto out; 5306 } 5307 btrfs_release_path(search_path); 5308 5309 cur_offset += this_len; 5310 } 5311 ret = 0; 5312 out: 5313 btrfs_free_path(search_path); 5314 kfree(name); 5315 return ret; 5316 } 5317 5318 /* 5319 * Check if we need to log an inode. This is used in contexts where while 5320 * logging an inode we need to log another inode (either that it exists or in 5321 * full mode). This is used instead of btrfs_inode_in_log() because the later 5322 * requires the inode to be in the log and have the log transaction committed, 5323 * while here we do not care if the log transaction was already committed - our 5324 * caller will commit the log later - and we want to avoid logging an inode 5325 * multiple times when multiple tasks have joined the same log transaction. 5326 */ 5327 static bool need_log_inode(const struct btrfs_trans_handle *trans, 5328 struct btrfs_inode *inode) 5329 { 5330 /* 5331 * If a directory was not modified, no dentries added or removed, we can 5332 * and should avoid logging it. 5333 */ 5334 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) 5335 return false; 5336 5337 /* 5338 * If this inode does not have new/updated/deleted xattrs since the last 5339 * time it was logged and is flagged as logged in the current transaction, 5340 * we can skip logging it. As for new/deleted names, those are updated in 5341 * the log by link/unlink/rename operations. 5342 * In case the inode was logged and then evicted and reloaded, its 5343 * logged_trans will be 0, in which case we have to fully log it since 5344 * logged_trans is a transient field, not persisted. 5345 */ 5346 if (inode_logged(trans, inode, NULL) == 1 && 5347 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 5348 return false; 5349 5350 return true; 5351 } 5352 5353 struct btrfs_dir_list { 5354 u64 ino; 5355 struct list_head list; 5356 }; 5357 5358 /* 5359 * Log the inodes of the new dentries of a directory. 5360 * See process_dir_items_leaf() for details about why it is needed. 5361 * This is a recursive operation - if an existing dentry corresponds to a 5362 * directory, that directory's new entries are logged too (same behaviour as 5363 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5364 * the dentries point to we do not acquire their VFS lock, otherwise lockdep 5365 * complains about the following circular lock dependency / possible deadlock: 5366 * 5367 * CPU0 CPU1 5368 * ---- ---- 5369 * lock(&type->i_mutex_dir_key#3/2); 5370 * lock(sb_internal#2); 5371 * lock(&type->i_mutex_dir_key#3/2); 5372 * lock(&sb->s_type->i_mutex_key#14); 5373 * 5374 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5375 * sb_start_intwrite() in btrfs_start_transaction(). 5376 * Not acquiring the VFS lock of the inodes is still safe because: 5377 * 5378 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5379 * that while logging the inode new references (names) are added or removed 5380 * from the inode, leaving the logged inode item with a link count that does 5381 * not match the number of logged inode reference items. This is fine because 5382 * at log replay time we compute the real number of links and correct the 5383 * link count in the inode item (see replay_one_buffer() and 5384 * link_to_fixup_dir()); 5385 * 5386 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5387 * while logging the inode's items new index items (key type 5388 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item 5389 * has a size that doesn't match the sum of the lengths of all the logged 5390 * names - this is ok, not a problem, because at log replay time we set the 5391 * directory's i_size to the correct value (see replay_one_name() and 5392 * overwrite_item()). 5393 */ 5394 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5395 struct btrfs_inode *start_inode, 5396 struct btrfs_log_ctx *ctx) 5397 { 5398 struct btrfs_root *root = start_inode->root; 5399 struct btrfs_path *path; 5400 LIST_HEAD(dir_list); 5401 struct btrfs_dir_list *dir_elem; 5402 u64 ino = btrfs_ino(start_inode); 5403 struct btrfs_inode *curr_inode = start_inode; 5404 int ret = 0; 5405 5406 /* 5407 * If we are logging a new name, as part of a link or rename operation, 5408 * don't bother logging new dentries, as we just want to log the names 5409 * of an inode and that any new parents exist. 5410 */ 5411 if (ctx->logging_new_name) 5412 return 0; 5413 5414 path = btrfs_alloc_path(); 5415 if (!path) 5416 return -ENOMEM; 5417 5418 /* Pairs with btrfs_add_delayed_iput below. */ 5419 ihold(&curr_inode->vfs_inode); 5420 5421 while (true) { 5422 struct inode *vfs_inode; 5423 struct btrfs_key key; 5424 struct btrfs_key found_key; 5425 u64 next_index; 5426 bool continue_curr_inode = true; 5427 int iter_ret; 5428 5429 key.objectid = ino; 5430 key.type = BTRFS_DIR_INDEX_KEY; 5431 key.offset = btrfs_get_first_dir_index_to_log(curr_inode); 5432 next_index = key.offset; 5433 again: 5434 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) { 5435 struct extent_buffer *leaf = path->nodes[0]; 5436 struct btrfs_dir_item *di; 5437 struct btrfs_key di_key; 5438 struct inode *di_inode; 5439 int log_mode = LOG_INODE_EXISTS; 5440 int type; 5441 5442 if (found_key.objectid != ino || 5443 found_key.type != BTRFS_DIR_INDEX_KEY) { 5444 continue_curr_inode = false; 5445 break; 5446 } 5447 5448 next_index = found_key.offset + 1; 5449 5450 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5451 type = btrfs_dir_ftype(leaf, di); 5452 if (btrfs_dir_transid(leaf, di) < trans->transid) 5453 continue; 5454 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5455 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5456 continue; 5457 5458 btrfs_release_path(path); 5459 di_inode = btrfs_iget_logging(di_key.objectid, root); 5460 if (IS_ERR(di_inode)) { 5461 ret = PTR_ERR(di_inode); 5462 goto out; 5463 } 5464 5465 if (!need_log_inode(trans, BTRFS_I(di_inode))) { 5466 btrfs_add_delayed_iput(BTRFS_I(di_inode)); 5467 break; 5468 } 5469 5470 ctx->log_new_dentries = false; 5471 if (type == BTRFS_FT_DIR) 5472 log_mode = LOG_INODE_ALL; 5473 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), 5474 log_mode, ctx); 5475 btrfs_add_delayed_iput(BTRFS_I(di_inode)); 5476 if (ret) 5477 goto out; 5478 if (ctx->log_new_dentries) { 5479 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5480 if (!dir_elem) { 5481 ret = -ENOMEM; 5482 goto out; 5483 } 5484 dir_elem->ino = di_key.objectid; 5485 list_add_tail(&dir_elem->list, &dir_list); 5486 } 5487 break; 5488 } 5489 5490 btrfs_release_path(path); 5491 5492 if (iter_ret < 0) { 5493 ret = iter_ret; 5494 goto out; 5495 } else if (iter_ret > 0) { 5496 continue_curr_inode = false; 5497 } else { 5498 key = found_key; 5499 } 5500 5501 if (continue_curr_inode && key.offset < (u64)-1) { 5502 key.offset++; 5503 goto again; 5504 } 5505 5506 btrfs_set_first_dir_index_to_log(curr_inode, next_index); 5507 5508 if (list_empty(&dir_list)) 5509 break; 5510 5511 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list); 5512 ino = dir_elem->ino; 5513 list_del(&dir_elem->list); 5514 kfree(dir_elem); 5515 5516 btrfs_add_delayed_iput(curr_inode); 5517 curr_inode = NULL; 5518 5519 vfs_inode = btrfs_iget_logging(ino, root); 5520 if (IS_ERR(vfs_inode)) { 5521 ret = PTR_ERR(vfs_inode); 5522 break; 5523 } 5524 curr_inode = BTRFS_I(vfs_inode); 5525 } 5526 out: 5527 btrfs_free_path(path); 5528 if (curr_inode) 5529 btrfs_add_delayed_iput(curr_inode); 5530 5531 if (ret) { 5532 struct btrfs_dir_list *next; 5533 5534 list_for_each_entry_safe(dir_elem, next, &dir_list, list) 5535 kfree(dir_elem); 5536 } 5537 5538 return ret; 5539 } 5540 5541 struct btrfs_ino_list { 5542 u64 ino; 5543 u64 parent; 5544 struct list_head list; 5545 }; 5546 5547 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx) 5548 { 5549 struct btrfs_ino_list *curr; 5550 struct btrfs_ino_list *next; 5551 5552 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) { 5553 list_del(&curr->list); 5554 kfree(curr); 5555 } 5556 } 5557 5558 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino, 5559 struct btrfs_path *path) 5560 { 5561 struct btrfs_key key; 5562 int ret; 5563 5564 key.objectid = ino; 5565 key.type = BTRFS_INODE_ITEM_KEY; 5566 key.offset = 0; 5567 5568 path->search_commit_root = 1; 5569 path->skip_locking = 1; 5570 5571 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5572 if (WARN_ON_ONCE(ret > 0)) { 5573 /* 5574 * We have previously found the inode through the commit root 5575 * so this should not happen. If it does, just error out and 5576 * fallback to a transaction commit. 5577 */ 5578 ret = -ENOENT; 5579 } else if (ret == 0) { 5580 struct btrfs_inode_item *item; 5581 5582 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5583 struct btrfs_inode_item); 5584 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item))) 5585 ret = 1; 5586 } 5587 5588 btrfs_release_path(path); 5589 path->search_commit_root = 0; 5590 path->skip_locking = 0; 5591 5592 return ret; 5593 } 5594 5595 static int add_conflicting_inode(struct btrfs_trans_handle *trans, 5596 struct btrfs_root *root, 5597 struct btrfs_path *path, 5598 u64 ino, u64 parent, 5599 struct btrfs_log_ctx *ctx) 5600 { 5601 struct btrfs_ino_list *ino_elem; 5602 struct inode *inode; 5603 5604 /* 5605 * It's rare to have a lot of conflicting inodes, in practice it is not 5606 * common to have more than 1 or 2. We don't want to collect too many, 5607 * as we could end up logging too many inodes (even if only in 5608 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction 5609 * commits. 5610 */ 5611 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) 5612 return BTRFS_LOG_FORCE_COMMIT; 5613 5614 inode = btrfs_iget_logging(ino, root); 5615 /* 5616 * If the other inode that had a conflicting dir entry was deleted in 5617 * the current transaction then we either: 5618 * 5619 * 1) Log the parent directory (later after adding it to the list) if 5620 * the inode is a directory. This is because it may be a deleted 5621 * subvolume/snapshot or it may be a regular directory that had 5622 * deleted subvolumes/snapshots (or subdirectories that had them), 5623 * and at the moment we can't deal with dropping subvolumes/snapshots 5624 * during log replay. So we just log the parent, which will result in 5625 * a fallback to a transaction commit if we are dealing with those 5626 * cases (last_unlink_trans will match the current transaction); 5627 * 5628 * 2) Do nothing if it's not a directory. During log replay we simply 5629 * unlink the conflicting dentry from the parent directory and then 5630 * add the dentry for our inode. Like this we can avoid logging the 5631 * parent directory (and maybe fallback to a transaction commit in 5632 * case it has a last_unlink_trans == trans->transid, due to moving 5633 * some inode from it to some other directory). 5634 */ 5635 if (IS_ERR(inode)) { 5636 int ret = PTR_ERR(inode); 5637 5638 if (ret != -ENOENT) 5639 return ret; 5640 5641 ret = conflicting_inode_is_dir(root, ino, path); 5642 /* Not a directory or we got an error. */ 5643 if (ret <= 0) 5644 return ret; 5645 5646 /* Conflicting inode is a directory, so we'll log its parent. */ 5647 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5648 if (!ino_elem) 5649 return -ENOMEM; 5650 ino_elem->ino = ino; 5651 ino_elem->parent = parent; 5652 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 5653 ctx->num_conflict_inodes++; 5654 5655 return 0; 5656 } 5657 5658 /* 5659 * If the inode was already logged skip it - otherwise we can hit an 5660 * infinite loop. Example: 5661 * 5662 * From the commit root (previous transaction) we have the following 5663 * inodes: 5664 * 5665 * inode 257 a directory 5666 * inode 258 with references "zz" and "zz_link" on inode 257 5667 * inode 259 with reference "a" on inode 257 5668 * 5669 * And in the current (uncommitted) transaction we have: 5670 * 5671 * inode 257 a directory, unchanged 5672 * inode 258 with references "a" and "a2" on inode 257 5673 * inode 259 with reference "zz_link" on inode 257 5674 * inode 261 with reference "zz" on inode 257 5675 * 5676 * When logging inode 261 the following infinite loop could 5677 * happen if we don't skip already logged inodes: 5678 * 5679 * - we detect inode 258 as a conflicting inode, with inode 261 5680 * on reference "zz", and log it; 5681 * 5682 * - we detect inode 259 as a conflicting inode, with inode 258 5683 * on reference "a", and log it; 5684 * 5685 * - we detect inode 258 as a conflicting inode, with inode 259 5686 * on reference "zz_link", and log it - again! After this we 5687 * repeat the above steps forever. 5688 * 5689 * Here we can use need_log_inode() because we only need to log the 5690 * inode in LOG_INODE_EXISTS mode and rename operations update the log, 5691 * so that the log ends up with the new name and without the old name. 5692 */ 5693 if (!need_log_inode(trans, BTRFS_I(inode))) { 5694 btrfs_add_delayed_iput(BTRFS_I(inode)); 5695 return 0; 5696 } 5697 5698 btrfs_add_delayed_iput(BTRFS_I(inode)); 5699 5700 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5701 if (!ino_elem) 5702 return -ENOMEM; 5703 ino_elem->ino = ino; 5704 ino_elem->parent = parent; 5705 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 5706 ctx->num_conflict_inodes++; 5707 5708 return 0; 5709 } 5710 5711 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 5712 struct btrfs_root *root, 5713 struct btrfs_log_ctx *ctx) 5714 { 5715 int ret = 0; 5716 5717 /* 5718 * Conflicting inodes are logged by the first call to btrfs_log_inode(), 5719 * otherwise we could have unbounded recursion of btrfs_log_inode() 5720 * calls. This check guarantees we can have only 1 level of recursion. 5721 */ 5722 if (ctx->logging_conflict_inodes) 5723 return 0; 5724 5725 ctx->logging_conflict_inodes = true; 5726 5727 /* 5728 * New conflicting inodes may be found and added to the list while we 5729 * are logging a conflicting inode, so keep iterating while the list is 5730 * not empty. 5731 */ 5732 while (!list_empty(&ctx->conflict_inodes)) { 5733 struct btrfs_ino_list *curr; 5734 struct inode *inode; 5735 u64 ino; 5736 u64 parent; 5737 5738 curr = list_first_entry(&ctx->conflict_inodes, 5739 struct btrfs_ino_list, list); 5740 ino = curr->ino; 5741 parent = curr->parent; 5742 list_del(&curr->list); 5743 kfree(curr); 5744 5745 inode = btrfs_iget_logging(ino, root); 5746 /* 5747 * If the other inode that had a conflicting dir entry was 5748 * deleted in the current transaction, we need to log its parent 5749 * directory. See the comment at add_conflicting_inode(). 5750 */ 5751 if (IS_ERR(inode)) { 5752 ret = PTR_ERR(inode); 5753 if (ret != -ENOENT) 5754 break; 5755 5756 inode = btrfs_iget_logging(parent, root); 5757 if (IS_ERR(inode)) { 5758 ret = PTR_ERR(inode); 5759 break; 5760 } 5761 5762 /* 5763 * Always log the directory, we cannot make this 5764 * conditional on need_log_inode() because the directory 5765 * might have been logged in LOG_INODE_EXISTS mode or 5766 * the dir index of the conflicting inode is not in a 5767 * dir index key range logged for the directory. So we 5768 * must make sure the deletion is recorded. 5769 */ 5770 ret = btrfs_log_inode(trans, BTRFS_I(inode), 5771 LOG_INODE_ALL, ctx); 5772 btrfs_add_delayed_iput(BTRFS_I(inode)); 5773 if (ret) 5774 break; 5775 continue; 5776 } 5777 5778 /* 5779 * Here we can use need_log_inode() because we only need to log 5780 * the inode in LOG_INODE_EXISTS mode and rename operations 5781 * update the log, so that the log ends up with the new name and 5782 * without the old name. 5783 * 5784 * We did this check at add_conflicting_inode(), but here we do 5785 * it again because if some other task logged the inode after 5786 * that, we can avoid doing it again. 5787 */ 5788 if (!need_log_inode(trans, BTRFS_I(inode))) { 5789 btrfs_add_delayed_iput(BTRFS_I(inode)); 5790 continue; 5791 } 5792 5793 /* 5794 * We are safe logging the other inode without acquiring its 5795 * lock as long as we log with the LOG_INODE_EXISTS mode. We 5796 * are safe against concurrent renames of the other inode as 5797 * well because during a rename we pin the log and update the 5798 * log with the new name before we unpin it. 5799 */ 5800 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx); 5801 btrfs_add_delayed_iput(BTRFS_I(inode)); 5802 if (ret) 5803 break; 5804 } 5805 5806 ctx->logging_conflict_inodes = false; 5807 if (ret) 5808 free_conflicting_inodes(ctx); 5809 5810 return ret; 5811 } 5812 5813 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 5814 struct btrfs_inode *inode, 5815 struct btrfs_key *min_key, 5816 const struct btrfs_key *max_key, 5817 struct btrfs_path *path, 5818 struct btrfs_path *dst_path, 5819 const u64 logged_isize, 5820 const int inode_only, 5821 struct btrfs_log_ctx *ctx, 5822 bool *need_log_inode_item) 5823 { 5824 const u64 i_size = i_size_read(&inode->vfs_inode); 5825 struct btrfs_root *root = inode->root; 5826 int ins_start_slot = 0; 5827 int ins_nr = 0; 5828 int ret; 5829 5830 while (1) { 5831 ret = btrfs_search_forward(root, min_key, path, trans->transid); 5832 if (ret < 0) 5833 return ret; 5834 if (ret > 0) { 5835 ret = 0; 5836 break; 5837 } 5838 again: 5839 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 5840 if (min_key->objectid != max_key->objectid) 5841 break; 5842 if (min_key->type > max_key->type) 5843 break; 5844 5845 if (min_key->type == BTRFS_INODE_ITEM_KEY) { 5846 *need_log_inode_item = false; 5847 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY && 5848 min_key->offset >= i_size) { 5849 /* 5850 * Extents at and beyond eof are logged with 5851 * btrfs_log_prealloc_extents(). 5852 * Only regular files have BTRFS_EXTENT_DATA_KEY keys, 5853 * and no keys greater than that, so bail out. 5854 */ 5855 break; 5856 } else if ((min_key->type == BTRFS_INODE_REF_KEY || 5857 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5858 (inode->generation == trans->transid || 5859 ctx->logging_conflict_inodes)) { 5860 u64 other_ino = 0; 5861 u64 other_parent = 0; 5862 5863 ret = btrfs_check_ref_name_override(path->nodes[0], 5864 path->slots[0], min_key, inode, 5865 &other_ino, &other_parent); 5866 if (ret < 0) { 5867 return ret; 5868 } else if (ret > 0 && 5869 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5870 if (ins_nr > 0) { 5871 ins_nr++; 5872 } else { 5873 ins_nr = 1; 5874 ins_start_slot = path->slots[0]; 5875 } 5876 ret = copy_items(trans, inode, dst_path, path, 5877 ins_start_slot, ins_nr, 5878 inode_only, logged_isize); 5879 if (ret < 0) 5880 return ret; 5881 ins_nr = 0; 5882 5883 btrfs_release_path(path); 5884 ret = add_conflicting_inode(trans, root, path, 5885 other_ino, 5886 other_parent, ctx); 5887 if (ret) 5888 return ret; 5889 goto next_key; 5890 } 5891 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5892 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */ 5893 if (ins_nr == 0) 5894 goto next_slot; 5895 ret = copy_items(trans, inode, dst_path, path, 5896 ins_start_slot, 5897 ins_nr, inode_only, logged_isize); 5898 if (ret < 0) 5899 return ret; 5900 ins_nr = 0; 5901 goto next_slot; 5902 } 5903 5904 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5905 ins_nr++; 5906 goto next_slot; 5907 } else if (!ins_nr) { 5908 ins_start_slot = path->slots[0]; 5909 ins_nr = 1; 5910 goto next_slot; 5911 } 5912 5913 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5914 ins_nr, inode_only, logged_isize); 5915 if (ret < 0) 5916 return ret; 5917 ins_nr = 1; 5918 ins_start_slot = path->slots[0]; 5919 next_slot: 5920 path->slots[0]++; 5921 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 5922 btrfs_item_key_to_cpu(path->nodes[0], min_key, 5923 path->slots[0]); 5924 goto again; 5925 } 5926 if (ins_nr) { 5927 ret = copy_items(trans, inode, dst_path, path, 5928 ins_start_slot, ins_nr, inode_only, 5929 logged_isize); 5930 if (ret < 0) 5931 return ret; 5932 ins_nr = 0; 5933 } 5934 btrfs_release_path(path); 5935 next_key: 5936 if (min_key->offset < (u64)-1) { 5937 min_key->offset++; 5938 } else if (min_key->type < max_key->type) { 5939 min_key->type++; 5940 min_key->offset = 0; 5941 } else { 5942 break; 5943 } 5944 5945 /* 5946 * We may process many leaves full of items for our inode, so 5947 * avoid monopolizing a cpu for too long by rescheduling while 5948 * not holding locks on any tree. 5949 */ 5950 cond_resched(); 5951 } 5952 if (ins_nr) { 5953 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5954 ins_nr, inode_only, logged_isize); 5955 if (ret) 5956 return ret; 5957 } 5958 5959 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) { 5960 /* 5961 * Release the path because otherwise we might attempt to double 5962 * lock the same leaf with btrfs_log_prealloc_extents() below. 5963 */ 5964 btrfs_release_path(path); 5965 ret = btrfs_log_prealloc_extents(trans, inode, dst_path); 5966 } 5967 5968 return ret; 5969 } 5970 5971 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans, 5972 struct btrfs_root *log, 5973 struct btrfs_path *path, 5974 const struct btrfs_item_batch *batch, 5975 const struct btrfs_delayed_item *first_item) 5976 { 5977 const struct btrfs_delayed_item *curr = first_item; 5978 int ret; 5979 5980 ret = btrfs_insert_empty_items(trans, log, path, batch); 5981 if (ret) 5982 return ret; 5983 5984 for (int i = 0; i < batch->nr; i++) { 5985 char *data_ptr; 5986 5987 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 5988 write_extent_buffer(path->nodes[0], &curr->data, 5989 (unsigned long)data_ptr, curr->data_len); 5990 curr = list_next_entry(curr, log_list); 5991 path->slots[0]++; 5992 } 5993 5994 btrfs_release_path(path); 5995 5996 return 0; 5997 } 5998 5999 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans, 6000 struct btrfs_inode *inode, 6001 struct btrfs_path *path, 6002 const struct list_head *delayed_ins_list, 6003 struct btrfs_log_ctx *ctx) 6004 { 6005 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */ 6006 const int max_batch_size = 195; 6007 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info); 6008 const u64 ino = btrfs_ino(inode); 6009 struct btrfs_root *log = inode->root->log_root; 6010 struct btrfs_item_batch batch = { 6011 .nr = 0, 6012 .total_data_size = 0, 6013 }; 6014 const struct btrfs_delayed_item *first = NULL; 6015 const struct btrfs_delayed_item *curr; 6016 char *ins_data; 6017 struct btrfs_key *ins_keys; 6018 u32 *ins_sizes; 6019 u64 curr_batch_size = 0; 6020 int batch_idx = 0; 6021 int ret; 6022 6023 /* We are adding dir index items to the log tree. */ 6024 lockdep_assert_held(&inode->log_mutex); 6025 6026 /* 6027 * We collect delayed items before copying index keys from the subvolume 6028 * to the log tree. However just after we collected them, they may have 6029 * been flushed (all of them or just some of them), and therefore we 6030 * could have copied them from the subvolume tree to the log tree. 6031 * So find the first delayed item that was not yet logged (they are 6032 * sorted by index number). 6033 */ 6034 list_for_each_entry(curr, delayed_ins_list, log_list) { 6035 if (curr->index > inode->last_dir_index_offset) { 6036 first = curr; 6037 break; 6038 } 6039 } 6040 6041 /* Empty list or all delayed items were already logged. */ 6042 if (!first) 6043 return 0; 6044 6045 ins_data = kmalloc(max_batch_size * sizeof(u32) + 6046 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS); 6047 if (!ins_data) 6048 return -ENOMEM; 6049 ins_sizes = (u32 *)ins_data; 6050 batch.data_sizes = ins_sizes; 6051 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32)); 6052 batch.keys = ins_keys; 6053 6054 curr = first; 6055 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) { 6056 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item); 6057 6058 if (curr_batch_size + curr_size > leaf_data_size || 6059 batch.nr == max_batch_size) { 6060 ret = insert_delayed_items_batch(trans, log, path, 6061 &batch, first); 6062 if (ret) 6063 goto out; 6064 batch_idx = 0; 6065 batch.nr = 0; 6066 batch.total_data_size = 0; 6067 curr_batch_size = 0; 6068 first = curr; 6069 } 6070 6071 ins_sizes[batch_idx] = curr->data_len; 6072 ins_keys[batch_idx].objectid = ino; 6073 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY; 6074 ins_keys[batch_idx].offset = curr->index; 6075 curr_batch_size += curr_size; 6076 batch.total_data_size += curr->data_len; 6077 batch.nr++; 6078 batch_idx++; 6079 curr = list_next_entry(curr, log_list); 6080 } 6081 6082 ASSERT(batch.nr >= 1); 6083 ret = insert_delayed_items_batch(trans, log, path, &batch, first); 6084 6085 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item, 6086 log_list); 6087 inode->last_dir_index_offset = curr->index; 6088 out: 6089 kfree(ins_data); 6090 6091 return ret; 6092 } 6093 6094 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans, 6095 struct btrfs_inode *inode, 6096 struct btrfs_path *path, 6097 const struct list_head *delayed_del_list, 6098 struct btrfs_log_ctx *ctx) 6099 { 6100 const u64 ino = btrfs_ino(inode); 6101 const struct btrfs_delayed_item *curr; 6102 6103 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6104 log_list); 6105 6106 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6107 u64 first_dir_index = curr->index; 6108 u64 last_dir_index; 6109 const struct btrfs_delayed_item *next; 6110 int ret; 6111 6112 /* 6113 * Find a range of consecutive dir index items to delete. Like 6114 * this we log a single dir range item spanning several contiguous 6115 * dir items instead of logging one range item per dir index item. 6116 */ 6117 next = list_next_entry(curr, log_list); 6118 while (!list_entry_is_head(next, delayed_del_list, log_list)) { 6119 if (next->index != curr->index + 1) 6120 break; 6121 curr = next; 6122 next = list_next_entry(next, log_list); 6123 } 6124 6125 last_dir_index = curr->index; 6126 ASSERT(last_dir_index >= first_dir_index); 6127 6128 ret = insert_dir_log_key(trans, inode->root->log_root, path, 6129 ino, first_dir_index, last_dir_index); 6130 if (ret) 6131 return ret; 6132 curr = list_next_entry(curr, log_list); 6133 } 6134 6135 return 0; 6136 } 6137 6138 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans, 6139 struct btrfs_inode *inode, 6140 struct btrfs_path *path, 6141 struct btrfs_log_ctx *ctx, 6142 const struct list_head *delayed_del_list, 6143 const struct btrfs_delayed_item *first, 6144 const struct btrfs_delayed_item **last_ret) 6145 { 6146 const struct btrfs_delayed_item *next; 6147 struct extent_buffer *leaf = path->nodes[0]; 6148 const int last_slot = btrfs_header_nritems(leaf) - 1; 6149 int slot = path->slots[0] + 1; 6150 const u64 ino = btrfs_ino(inode); 6151 6152 next = list_next_entry(first, log_list); 6153 6154 while (slot < last_slot && 6155 !list_entry_is_head(next, delayed_del_list, log_list)) { 6156 struct btrfs_key key; 6157 6158 btrfs_item_key_to_cpu(leaf, &key, slot); 6159 if (key.objectid != ino || 6160 key.type != BTRFS_DIR_INDEX_KEY || 6161 key.offset != next->index) 6162 break; 6163 6164 slot++; 6165 *last_ret = next; 6166 next = list_next_entry(next, log_list); 6167 } 6168 6169 return btrfs_del_items(trans, inode->root->log_root, path, 6170 path->slots[0], slot - path->slots[0]); 6171 } 6172 6173 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans, 6174 struct btrfs_inode *inode, 6175 struct btrfs_path *path, 6176 const struct list_head *delayed_del_list, 6177 struct btrfs_log_ctx *ctx) 6178 { 6179 struct btrfs_root *log = inode->root->log_root; 6180 const struct btrfs_delayed_item *curr; 6181 u64 last_range_start = 0; 6182 u64 last_range_end = 0; 6183 struct btrfs_key key; 6184 6185 key.objectid = btrfs_ino(inode); 6186 key.type = BTRFS_DIR_INDEX_KEY; 6187 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6188 log_list); 6189 6190 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6191 const struct btrfs_delayed_item *last = curr; 6192 u64 first_dir_index = curr->index; 6193 u64 last_dir_index; 6194 bool deleted_items = false; 6195 int ret; 6196 6197 key.offset = curr->index; 6198 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 6199 if (ret < 0) { 6200 return ret; 6201 } else if (ret == 0) { 6202 ret = batch_delete_dir_index_items(trans, inode, path, ctx, 6203 delayed_del_list, curr, 6204 &last); 6205 if (ret) 6206 return ret; 6207 deleted_items = true; 6208 } 6209 6210 btrfs_release_path(path); 6211 6212 /* 6213 * If we deleted items from the leaf, it means we have a range 6214 * item logging their range, so no need to add one or update an 6215 * existing one. Otherwise we have to log a dir range item. 6216 */ 6217 if (deleted_items) 6218 goto next_batch; 6219 6220 last_dir_index = last->index; 6221 ASSERT(last_dir_index >= first_dir_index); 6222 /* 6223 * If this range starts right after where the previous one ends, 6224 * then we want to reuse the previous range item and change its 6225 * end offset to the end of this range. This is just to minimize 6226 * leaf space usage, by avoiding adding a new range item. 6227 */ 6228 if (last_range_end != 0 && first_dir_index == last_range_end + 1) 6229 first_dir_index = last_range_start; 6230 6231 ret = insert_dir_log_key(trans, log, path, key.objectid, 6232 first_dir_index, last_dir_index); 6233 if (ret) 6234 return ret; 6235 6236 last_range_start = first_dir_index; 6237 last_range_end = last_dir_index; 6238 next_batch: 6239 curr = list_next_entry(last, log_list); 6240 } 6241 6242 return 0; 6243 } 6244 6245 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans, 6246 struct btrfs_inode *inode, 6247 struct btrfs_path *path, 6248 const struct list_head *delayed_del_list, 6249 struct btrfs_log_ctx *ctx) 6250 { 6251 /* 6252 * We are deleting dir index items from the log tree or adding range 6253 * items to it. 6254 */ 6255 lockdep_assert_held(&inode->log_mutex); 6256 6257 if (list_empty(delayed_del_list)) 6258 return 0; 6259 6260 if (ctx->logged_before) 6261 return log_delayed_deletions_incremental(trans, inode, path, 6262 delayed_del_list, ctx); 6263 6264 return log_delayed_deletions_full(trans, inode, path, delayed_del_list, 6265 ctx); 6266 } 6267 6268 /* 6269 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed 6270 * items instead of the subvolume tree. 6271 */ 6272 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans, 6273 struct btrfs_inode *inode, 6274 const struct list_head *delayed_ins_list, 6275 struct btrfs_log_ctx *ctx) 6276 { 6277 const bool orig_log_new_dentries = ctx->log_new_dentries; 6278 struct btrfs_delayed_item *item; 6279 int ret = 0; 6280 6281 /* 6282 * No need for the log mutex, plus to avoid potential deadlocks or 6283 * lockdep annotations due to nesting of delayed inode mutexes and log 6284 * mutexes. 6285 */ 6286 lockdep_assert_not_held(&inode->log_mutex); 6287 6288 ASSERT(!ctx->logging_new_delayed_dentries); 6289 ctx->logging_new_delayed_dentries = true; 6290 6291 list_for_each_entry(item, delayed_ins_list, log_list) { 6292 struct btrfs_dir_item *dir_item; 6293 struct inode *di_inode; 6294 struct btrfs_key key; 6295 int log_mode = LOG_INODE_EXISTS; 6296 6297 dir_item = (struct btrfs_dir_item *)item->data; 6298 btrfs_disk_key_to_cpu(&key, &dir_item->location); 6299 6300 if (key.type == BTRFS_ROOT_ITEM_KEY) 6301 continue; 6302 6303 di_inode = btrfs_iget_logging(key.objectid, inode->root); 6304 if (IS_ERR(di_inode)) { 6305 ret = PTR_ERR(di_inode); 6306 break; 6307 } 6308 6309 if (!need_log_inode(trans, BTRFS_I(di_inode))) { 6310 btrfs_add_delayed_iput(BTRFS_I(di_inode)); 6311 continue; 6312 } 6313 6314 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR) 6315 log_mode = LOG_INODE_ALL; 6316 6317 ctx->log_new_dentries = false; 6318 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx); 6319 6320 if (!ret && ctx->log_new_dentries) 6321 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx); 6322 6323 btrfs_add_delayed_iput(BTRFS_I(di_inode)); 6324 6325 if (ret) 6326 break; 6327 } 6328 6329 ctx->log_new_dentries = orig_log_new_dentries; 6330 ctx->logging_new_delayed_dentries = false; 6331 6332 return ret; 6333 } 6334 6335 /* log a single inode in the tree log. 6336 * At least one parent directory for this inode must exist in the tree 6337 * or be logged already. 6338 * 6339 * Any items from this inode changed by the current transaction are copied 6340 * to the log tree. An extra reference is taken on any extents in this 6341 * file, allowing us to avoid a whole pile of corner cases around logging 6342 * blocks that have been removed from the tree. 6343 * 6344 * See LOG_INODE_ALL and related defines for a description of what inode_only 6345 * does. 6346 * 6347 * This handles both files and directories. 6348 */ 6349 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 6350 struct btrfs_inode *inode, 6351 int inode_only, 6352 struct btrfs_log_ctx *ctx) 6353 { 6354 struct btrfs_path *path; 6355 struct btrfs_path *dst_path; 6356 struct btrfs_key min_key; 6357 struct btrfs_key max_key; 6358 struct btrfs_root *log = inode->root->log_root; 6359 int ret; 6360 bool fast_search = false; 6361 u64 ino = btrfs_ino(inode); 6362 struct extent_map_tree *em_tree = &inode->extent_tree; 6363 u64 logged_isize = 0; 6364 bool need_log_inode_item = true; 6365 bool xattrs_logged = false; 6366 bool inode_item_dropped = true; 6367 bool full_dir_logging = false; 6368 LIST_HEAD(delayed_ins_list); 6369 LIST_HEAD(delayed_del_list); 6370 6371 path = btrfs_alloc_path(); 6372 if (!path) 6373 return -ENOMEM; 6374 dst_path = btrfs_alloc_path(); 6375 if (!dst_path) { 6376 btrfs_free_path(path); 6377 return -ENOMEM; 6378 } 6379 6380 min_key.objectid = ino; 6381 min_key.type = BTRFS_INODE_ITEM_KEY; 6382 min_key.offset = 0; 6383 6384 max_key.objectid = ino; 6385 6386 6387 /* today the code can only do partial logging of directories */ 6388 if (S_ISDIR(inode->vfs_inode.i_mode) || 6389 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6390 &inode->runtime_flags) && 6391 inode_only >= LOG_INODE_EXISTS)) 6392 max_key.type = BTRFS_XATTR_ITEM_KEY; 6393 else 6394 max_key.type = (u8)-1; 6395 max_key.offset = (u64)-1; 6396 6397 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL) 6398 full_dir_logging = true; 6399 6400 /* 6401 * If we are logging a directory while we are logging dentries of the 6402 * delayed items of some other inode, then we need to flush the delayed 6403 * items of this directory and not log the delayed items directly. This 6404 * is to prevent more than one level of recursion into btrfs_log_inode() 6405 * by having something like this: 6406 * 6407 * $ mkdir -p a/b/c/d/e/f/g/h/... 6408 * $ xfs_io -c "fsync" a 6409 * 6410 * Where all directories in the path did not exist before and are 6411 * created in the current transaction. 6412 * So in such a case we directly log the delayed items of the main 6413 * directory ("a") without flushing them first, while for each of its 6414 * subdirectories we flush their delayed items before logging them. 6415 * This prevents a potential unbounded recursion like this: 6416 * 6417 * btrfs_log_inode() 6418 * log_new_delayed_dentries() 6419 * btrfs_log_inode() 6420 * log_new_delayed_dentries() 6421 * btrfs_log_inode() 6422 * log_new_delayed_dentries() 6423 * (...) 6424 * 6425 * We have thresholds for the maximum number of delayed items to have in 6426 * memory, and once they are hit, the items are flushed asynchronously. 6427 * However the limit is quite high, so lets prevent deep levels of 6428 * recursion to happen by limiting the maximum depth to be 1. 6429 */ 6430 if (full_dir_logging && ctx->logging_new_delayed_dentries) { 6431 ret = btrfs_commit_inode_delayed_items(trans, inode); 6432 if (ret) 6433 goto out; 6434 } 6435 6436 mutex_lock(&inode->log_mutex); 6437 6438 /* 6439 * For symlinks, we must always log their content, which is stored in an 6440 * inline extent, otherwise we could end up with an empty symlink after 6441 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if 6442 * one attempts to create an empty symlink). 6443 * We don't need to worry about flushing delalloc, because when we create 6444 * the inline extent when the symlink is created (we never have delalloc 6445 * for symlinks). 6446 */ 6447 if (S_ISLNK(inode->vfs_inode.i_mode)) 6448 inode_only = LOG_INODE_ALL; 6449 6450 /* 6451 * Before logging the inode item, cache the value returned by 6452 * inode_logged(), because after that we have the need to figure out if 6453 * the inode was previously logged in this transaction. 6454 */ 6455 ret = inode_logged(trans, inode, path); 6456 if (ret < 0) 6457 goto out_unlock; 6458 ctx->logged_before = (ret == 1); 6459 ret = 0; 6460 6461 /* 6462 * This is for cases where logging a directory could result in losing a 6463 * a file after replaying the log. For example, if we move a file from a 6464 * directory A to a directory B, then fsync directory A, we have no way 6465 * to known the file was moved from A to B, so logging just A would 6466 * result in losing the file after a log replay. 6467 */ 6468 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) { 6469 ret = BTRFS_LOG_FORCE_COMMIT; 6470 goto out_unlock; 6471 } 6472 6473 /* 6474 * a brute force approach to making sure we get the most uptodate 6475 * copies of everything. 6476 */ 6477 if (S_ISDIR(inode->vfs_inode.i_mode)) { 6478 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); 6479 if (ctx->logged_before) 6480 ret = drop_inode_items(trans, log, path, inode, 6481 BTRFS_XATTR_ITEM_KEY); 6482 } else { 6483 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) { 6484 /* 6485 * Make sure the new inode item we write to the log has 6486 * the same isize as the current one (if it exists). 6487 * This is necessary to prevent data loss after log 6488 * replay, and also to prevent doing a wrong expanding 6489 * truncate - for e.g. create file, write 4K into offset 6490 * 0, fsync, write 4K into offset 4096, add hard link, 6491 * fsync some other file (to sync log), power fail - if 6492 * we use the inode's current i_size, after log replay 6493 * we get a 8Kb file, with the last 4Kb extent as a hole 6494 * (zeroes), as if an expanding truncate happened, 6495 * instead of getting a file of 4Kb only. 6496 */ 6497 ret = logged_inode_size(log, inode, path, &logged_isize); 6498 if (ret) 6499 goto out_unlock; 6500 } 6501 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6502 &inode->runtime_flags)) { 6503 if (inode_only == LOG_INODE_EXISTS) { 6504 max_key.type = BTRFS_XATTR_ITEM_KEY; 6505 if (ctx->logged_before) 6506 ret = drop_inode_items(trans, log, path, 6507 inode, max_key.type); 6508 } else { 6509 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6510 &inode->runtime_flags); 6511 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6512 &inode->runtime_flags); 6513 if (ctx->logged_before) 6514 ret = truncate_inode_items(trans, log, 6515 inode, 0, 0); 6516 } 6517 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6518 &inode->runtime_flags) || 6519 inode_only == LOG_INODE_EXISTS) { 6520 if (inode_only == LOG_INODE_ALL) 6521 fast_search = true; 6522 max_key.type = BTRFS_XATTR_ITEM_KEY; 6523 if (ctx->logged_before) 6524 ret = drop_inode_items(trans, log, path, inode, 6525 max_key.type); 6526 } else { 6527 if (inode_only == LOG_INODE_ALL) 6528 fast_search = true; 6529 inode_item_dropped = false; 6530 goto log_extents; 6531 } 6532 6533 } 6534 if (ret) 6535 goto out_unlock; 6536 6537 /* 6538 * If we are logging a directory in full mode, collect the delayed items 6539 * before iterating the subvolume tree, so that we don't miss any new 6540 * dir index items in case they get flushed while or right after we are 6541 * iterating the subvolume tree. 6542 */ 6543 if (full_dir_logging && !ctx->logging_new_delayed_dentries) 6544 btrfs_log_get_delayed_items(inode, &delayed_ins_list, 6545 &delayed_del_list); 6546 6547 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 6548 path, dst_path, logged_isize, 6549 inode_only, ctx, 6550 &need_log_inode_item); 6551 if (ret) 6552 goto out_unlock; 6553 6554 btrfs_release_path(path); 6555 btrfs_release_path(dst_path); 6556 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path); 6557 if (ret) 6558 goto out_unlock; 6559 xattrs_logged = true; 6560 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 6561 btrfs_release_path(path); 6562 btrfs_release_path(dst_path); 6563 ret = btrfs_log_holes(trans, inode, path); 6564 if (ret) 6565 goto out_unlock; 6566 } 6567 log_extents: 6568 btrfs_release_path(path); 6569 btrfs_release_path(dst_path); 6570 if (need_log_inode_item) { 6571 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); 6572 if (ret) 6573 goto out_unlock; 6574 /* 6575 * If we are doing a fast fsync and the inode was logged before 6576 * in this transaction, we don't need to log the xattrs because 6577 * they were logged before. If xattrs were added, changed or 6578 * deleted since the last time we logged the inode, then we have 6579 * already logged them because the inode had the runtime flag 6580 * BTRFS_INODE_COPY_EVERYTHING set. 6581 */ 6582 if (!xattrs_logged && inode->logged_trans < trans->transid) { 6583 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path); 6584 if (ret) 6585 goto out_unlock; 6586 btrfs_release_path(path); 6587 } 6588 } 6589 if (fast_search) { 6590 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); 6591 if (ret) 6592 goto out_unlock; 6593 } else if (inode_only == LOG_INODE_ALL) { 6594 struct extent_map *em, *n; 6595 6596 write_lock(&em_tree->lock); 6597 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) 6598 list_del_init(&em->list); 6599 write_unlock(&em_tree->lock); 6600 } 6601 6602 if (full_dir_logging) { 6603 ret = log_directory_changes(trans, inode, path, dst_path, ctx); 6604 if (ret) 6605 goto out_unlock; 6606 ret = log_delayed_insertion_items(trans, inode, path, 6607 &delayed_ins_list, ctx); 6608 if (ret) 6609 goto out_unlock; 6610 ret = log_delayed_deletion_items(trans, inode, path, 6611 &delayed_del_list, ctx); 6612 if (ret) 6613 goto out_unlock; 6614 } 6615 6616 spin_lock(&inode->lock); 6617 inode->logged_trans = trans->transid; 6618 /* 6619 * Don't update last_log_commit if we logged that an inode exists. 6620 * We do this for three reasons: 6621 * 6622 * 1) We might have had buffered writes to this inode that were 6623 * flushed and had their ordered extents completed in this 6624 * transaction, but we did not previously log the inode with 6625 * LOG_INODE_ALL. Later the inode was evicted and after that 6626 * it was loaded again and this LOG_INODE_EXISTS log operation 6627 * happened. We must make sure that if an explicit fsync against 6628 * the inode is performed later, it logs the new extents, an 6629 * updated inode item, etc, and syncs the log. The same logic 6630 * applies to direct IO writes instead of buffered writes. 6631 * 6632 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item 6633 * is logged with an i_size of 0 or whatever value was logged 6634 * before. If later the i_size of the inode is increased by a 6635 * truncate operation, the log is synced through an fsync of 6636 * some other inode and then finally an explicit fsync against 6637 * this inode is made, we must make sure this fsync logs the 6638 * inode with the new i_size, the hole between old i_size and 6639 * the new i_size, and syncs the log. 6640 * 6641 * 3) If we are logging that an ancestor inode exists as part of 6642 * logging a new name from a link or rename operation, don't update 6643 * its last_log_commit - otherwise if an explicit fsync is made 6644 * against an ancestor, the fsync considers the inode in the log 6645 * and doesn't sync the log, resulting in the ancestor missing after 6646 * a power failure unless the log was synced as part of an fsync 6647 * against any other unrelated inode. 6648 */ 6649 if (inode_only != LOG_INODE_EXISTS) 6650 inode->last_log_commit = inode->last_sub_trans; 6651 spin_unlock(&inode->lock); 6652 6653 /* 6654 * Reset the last_reflink_trans so that the next fsync does not need to 6655 * go through the slower path when logging extents and their checksums. 6656 */ 6657 if (inode_only == LOG_INODE_ALL) 6658 inode->last_reflink_trans = 0; 6659 6660 out_unlock: 6661 mutex_unlock(&inode->log_mutex); 6662 out: 6663 btrfs_free_path(path); 6664 btrfs_free_path(dst_path); 6665 6666 if (ret) 6667 free_conflicting_inodes(ctx); 6668 else 6669 ret = log_conflicting_inodes(trans, inode->root, ctx); 6670 6671 if (full_dir_logging && !ctx->logging_new_delayed_dentries) { 6672 if (!ret) 6673 ret = log_new_delayed_dentries(trans, inode, 6674 &delayed_ins_list, ctx); 6675 6676 btrfs_log_put_delayed_items(inode, &delayed_ins_list, 6677 &delayed_del_list); 6678 } 6679 6680 return ret; 6681 } 6682 6683 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 6684 struct btrfs_inode *inode, 6685 struct btrfs_log_ctx *ctx) 6686 { 6687 int ret; 6688 struct btrfs_path *path; 6689 struct btrfs_key key; 6690 struct btrfs_root *root = inode->root; 6691 const u64 ino = btrfs_ino(inode); 6692 6693 path = btrfs_alloc_path(); 6694 if (!path) 6695 return -ENOMEM; 6696 path->skip_locking = 1; 6697 path->search_commit_root = 1; 6698 6699 key.objectid = ino; 6700 key.type = BTRFS_INODE_REF_KEY; 6701 key.offset = 0; 6702 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6703 if (ret < 0) 6704 goto out; 6705 6706 while (true) { 6707 struct extent_buffer *leaf = path->nodes[0]; 6708 int slot = path->slots[0]; 6709 u32 cur_offset = 0; 6710 u32 item_size; 6711 unsigned long ptr; 6712 6713 if (slot >= btrfs_header_nritems(leaf)) { 6714 ret = btrfs_next_leaf(root, path); 6715 if (ret < 0) 6716 goto out; 6717 else if (ret > 0) 6718 break; 6719 continue; 6720 } 6721 6722 btrfs_item_key_to_cpu(leaf, &key, slot); 6723 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 6724 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 6725 break; 6726 6727 item_size = btrfs_item_size(leaf, slot); 6728 ptr = btrfs_item_ptr_offset(leaf, slot); 6729 while (cur_offset < item_size) { 6730 struct btrfs_key inode_key; 6731 struct inode *dir_inode; 6732 6733 inode_key.type = BTRFS_INODE_ITEM_KEY; 6734 inode_key.offset = 0; 6735 6736 if (key.type == BTRFS_INODE_EXTREF_KEY) { 6737 struct btrfs_inode_extref *extref; 6738 6739 extref = (struct btrfs_inode_extref *) 6740 (ptr + cur_offset); 6741 inode_key.objectid = btrfs_inode_extref_parent( 6742 leaf, extref); 6743 cur_offset += sizeof(*extref); 6744 cur_offset += btrfs_inode_extref_name_len(leaf, 6745 extref); 6746 } else { 6747 inode_key.objectid = key.offset; 6748 cur_offset = item_size; 6749 } 6750 6751 dir_inode = btrfs_iget_logging(inode_key.objectid, root); 6752 /* 6753 * If the parent inode was deleted, return an error to 6754 * fallback to a transaction commit. This is to prevent 6755 * getting an inode that was moved from one parent A to 6756 * a parent B, got its former parent A deleted and then 6757 * it got fsync'ed, from existing at both parents after 6758 * a log replay (and the old parent still existing). 6759 * Example: 6760 * 6761 * mkdir /mnt/A 6762 * mkdir /mnt/B 6763 * touch /mnt/B/bar 6764 * sync 6765 * mv /mnt/B/bar /mnt/A/bar 6766 * mv -T /mnt/A /mnt/B 6767 * fsync /mnt/B/bar 6768 * <power fail> 6769 * 6770 * If we ignore the old parent B which got deleted, 6771 * after a log replay we would have file bar linked 6772 * at both parents and the old parent B would still 6773 * exist. 6774 */ 6775 if (IS_ERR(dir_inode)) { 6776 ret = PTR_ERR(dir_inode); 6777 goto out; 6778 } 6779 6780 if (!need_log_inode(trans, BTRFS_I(dir_inode))) { 6781 btrfs_add_delayed_iput(BTRFS_I(dir_inode)); 6782 continue; 6783 } 6784 6785 ctx->log_new_dentries = false; 6786 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode), 6787 LOG_INODE_ALL, ctx); 6788 if (!ret && ctx->log_new_dentries) 6789 ret = log_new_dir_dentries(trans, 6790 BTRFS_I(dir_inode), ctx); 6791 btrfs_add_delayed_iput(BTRFS_I(dir_inode)); 6792 if (ret) 6793 goto out; 6794 } 6795 path->slots[0]++; 6796 } 6797 ret = 0; 6798 out: 6799 btrfs_free_path(path); 6800 return ret; 6801 } 6802 6803 static int log_new_ancestors(struct btrfs_trans_handle *trans, 6804 struct btrfs_root *root, 6805 struct btrfs_path *path, 6806 struct btrfs_log_ctx *ctx) 6807 { 6808 struct btrfs_key found_key; 6809 6810 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 6811 6812 while (true) { 6813 struct extent_buffer *leaf; 6814 int slot; 6815 struct btrfs_key search_key; 6816 struct inode *inode; 6817 u64 ino; 6818 int ret = 0; 6819 6820 btrfs_release_path(path); 6821 6822 ino = found_key.offset; 6823 6824 search_key.objectid = found_key.offset; 6825 search_key.type = BTRFS_INODE_ITEM_KEY; 6826 search_key.offset = 0; 6827 inode = btrfs_iget_logging(ino, root); 6828 if (IS_ERR(inode)) 6829 return PTR_ERR(inode); 6830 6831 if (BTRFS_I(inode)->generation >= trans->transid && 6832 need_log_inode(trans, BTRFS_I(inode))) 6833 ret = btrfs_log_inode(trans, BTRFS_I(inode), 6834 LOG_INODE_EXISTS, ctx); 6835 btrfs_add_delayed_iput(BTRFS_I(inode)); 6836 if (ret) 6837 return ret; 6838 6839 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 6840 break; 6841 6842 search_key.type = BTRFS_INODE_REF_KEY; 6843 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6844 if (ret < 0) 6845 return ret; 6846 6847 leaf = path->nodes[0]; 6848 slot = path->slots[0]; 6849 if (slot >= btrfs_header_nritems(leaf)) { 6850 ret = btrfs_next_leaf(root, path); 6851 if (ret < 0) 6852 return ret; 6853 else if (ret > 0) 6854 return -ENOENT; 6855 leaf = path->nodes[0]; 6856 slot = path->slots[0]; 6857 } 6858 6859 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6860 if (found_key.objectid != search_key.objectid || 6861 found_key.type != BTRFS_INODE_REF_KEY) 6862 return -ENOENT; 6863 } 6864 return 0; 6865 } 6866 6867 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 6868 struct btrfs_inode *inode, 6869 struct dentry *parent, 6870 struct btrfs_log_ctx *ctx) 6871 { 6872 struct btrfs_root *root = inode->root; 6873 struct dentry *old_parent = NULL; 6874 struct super_block *sb = inode->vfs_inode.i_sb; 6875 int ret = 0; 6876 6877 while (true) { 6878 if (!parent || d_really_is_negative(parent) || 6879 sb != parent->d_sb) 6880 break; 6881 6882 inode = BTRFS_I(d_inode(parent)); 6883 if (root != inode->root) 6884 break; 6885 6886 if (inode->generation >= trans->transid && 6887 need_log_inode(trans, inode)) { 6888 ret = btrfs_log_inode(trans, inode, 6889 LOG_INODE_EXISTS, ctx); 6890 if (ret) 6891 break; 6892 } 6893 if (IS_ROOT(parent)) 6894 break; 6895 6896 parent = dget_parent(parent); 6897 dput(old_parent); 6898 old_parent = parent; 6899 } 6900 dput(old_parent); 6901 6902 return ret; 6903 } 6904 6905 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 6906 struct btrfs_inode *inode, 6907 struct dentry *parent, 6908 struct btrfs_log_ctx *ctx) 6909 { 6910 struct btrfs_root *root = inode->root; 6911 const u64 ino = btrfs_ino(inode); 6912 struct btrfs_path *path; 6913 struct btrfs_key search_key; 6914 int ret; 6915 6916 /* 6917 * For a single hard link case, go through a fast path that does not 6918 * need to iterate the fs/subvolume tree. 6919 */ 6920 if (inode->vfs_inode.i_nlink < 2) 6921 return log_new_ancestors_fast(trans, inode, parent, ctx); 6922 6923 path = btrfs_alloc_path(); 6924 if (!path) 6925 return -ENOMEM; 6926 6927 search_key.objectid = ino; 6928 search_key.type = BTRFS_INODE_REF_KEY; 6929 search_key.offset = 0; 6930 again: 6931 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6932 if (ret < 0) 6933 goto out; 6934 if (ret == 0) 6935 path->slots[0]++; 6936 6937 while (true) { 6938 struct extent_buffer *leaf = path->nodes[0]; 6939 int slot = path->slots[0]; 6940 struct btrfs_key found_key; 6941 6942 if (slot >= btrfs_header_nritems(leaf)) { 6943 ret = btrfs_next_leaf(root, path); 6944 if (ret < 0) 6945 goto out; 6946 else if (ret > 0) 6947 break; 6948 continue; 6949 } 6950 6951 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6952 if (found_key.objectid != ino || 6953 found_key.type > BTRFS_INODE_EXTREF_KEY) 6954 break; 6955 6956 /* 6957 * Don't deal with extended references because they are rare 6958 * cases and too complex to deal with (we would need to keep 6959 * track of which subitem we are processing for each item in 6960 * this loop, etc). So just return some error to fallback to 6961 * a transaction commit. 6962 */ 6963 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 6964 ret = -EMLINK; 6965 goto out; 6966 } 6967 6968 /* 6969 * Logging ancestors needs to do more searches on the fs/subvol 6970 * tree, so it releases the path as needed to avoid deadlocks. 6971 * Keep track of the last inode ref key and resume from that key 6972 * after logging all new ancestors for the current hard link. 6973 */ 6974 memcpy(&search_key, &found_key, sizeof(search_key)); 6975 6976 ret = log_new_ancestors(trans, root, path, ctx); 6977 if (ret) 6978 goto out; 6979 btrfs_release_path(path); 6980 goto again; 6981 } 6982 ret = 0; 6983 out: 6984 btrfs_free_path(path); 6985 return ret; 6986 } 6987 6988 /* 6989 * helper function around btrfs_log_inode to make sure newly created 6990 * parent directories also end up in the log. A minimal inode and backref 6991 * only logging is done of any parent directories that are older than 6992 * the last committed transaction 6993 */ 6994 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 6995 struct btrfs_inode *inode, 6996 struct dentry *parent, 6997 int inode_only, 6998 struct btrfs_log_ctx *ctx) 6999 { 7000 struct btrfs_root *root = inode->root; 7001 struct btrfs_fs_info *fs_info = root->fs_info; 7002 int ret = 0; 7003 bool log_dentries = false; 7004 7005 if (btrfs_test_opt(fs_info, NOTREELOG)) { 7006 ret = BTRFS_LOG_FORCE_COMMIT; 7007 goto end_no_trans; 7008 } 7009 7010 if (btrfs_root_refs(&root->root_item) == 0) { 7011 ret = BTRFS_LOG_FORCE_COMMIT; 7012 goto end_no_trans; 7013 } 7014 7015 /* 7016 * Skip already logged inodes or inodes corresponding to tmpfiles 7017 * (since logging them is pointless, a link count of 0 means they 7018 * will never be accessible). 7019 */ 7020 if ((btrfs_inode_in_log(inode, trans->transid) && 7021 list_empty(&ctx->ordered_extents)) || 7022 inode->vfs_inode.i_nlink == 0) { 7023 ret = BTRFS_NO_LOG_SYNC; 7024 goto end_no_trans; 7025 } 7026 7027 ret = start_log_trans(trans, root, ctx); 7028 if (ret) 7029 goto end_no_trans; 7030 7031 ret = btrfs_log_inode(trans, inode, inode_only, ctx); 7032 if (ret) 7033 goto end_trans; 7034 7035 /* 7036 * for regular files, if its inode is already on disk, we don't 7037 * have to worry about the parents at all. This is because 7038 * we can use the last_unlink_trans field to record renames 7039 * and other fun in this file. 7040 */ 7041 if (S_ISREG(inode->vfs_inode.i_mode) && 7042 inode->generation < trans->transid && 7043 inode->last_unlink_trans < trans->transid) { 7044 ret = 0; 7045 goto end_trans; 7046 } 7047 7048 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries) 7049 log_dentries = true; 7050 7051 /* 7052 * On unlink we must make sure all our current and old parent directory 7053 * inodes are fully logged. This is to prevent leaving dangling 7054 * directory index entries in directories that were our parents but are 7055 * not anymore. Not doing this results in old parent directory being 7056 * impossible to delete after log replay (rmdir will always fail with 7057 * error -ENOTEMPTY). 7058 * 7059 * Example 1: 7060 * 7061 * mkdir testdir 7062 * touch testdir/foo 7063 * ln testdir/foo testdir/bar 7064 * sync 7065 * unlink testdir/bar 7066 * xfs_io -c fsync testdir/foo 7067 * <power failure> 7068 * mount fs, triggers log replay 7069 * 7070 * If we don't log the parent directory (testdir), after log replay the 7071 * directory still has an entry pointing to the file inode using the bar 7072 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 7073 * the file inode has a link count of 1. 7074 * 7075 * Example 2: 7076 * 7077 * mkdir testdir 7078 * touch foo 7079 * ln foo testdir/foo2 7080 * ln foo testdir/foo3 7081 * sync 7082 * unlink testdir/foo3 7083 * xfs_io -c fsync foo 7084 * <power failure> 7085 * mount fs, triggers log replay 7086 * 7087 * Similar as the first example, after log replay the parent directory 7088 * testdir still has an entry pointing to the inode file with name foo3 7089 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 7090 * and has a link count of 2. 7091 */ 7092 if (inode->last_unlink_trans >= trans->transid) { 7093 ret = btrfs_log_all_parents(trans, inode, ctx); 7094 if (ret) 7095 goto end_trans; 7096 } 7097 7098 ret = log_all_new_ancestors(trans, inode, parent, ctx); 7099 if (ret) 7100 goto end_trans; 7101 7102 if (log_dentries) 7103 ret = log_new_dir_dentries(trans, inode, ctx); 7104 else 7105 ret = 0; 7106 end_trans: 7107 if (ret < 0) { 7108 btrfs_set_log_full_commit(trans); 7109 ret = BTRFS_LOG_FORCE_COMMIT; 7110 } 7111 7112 if (ret) 7113 btrfs_remove_log_ctx(root, ctx); 7114 btrfs_end_log_trans(root); 7115 end_no_trans: 7116 return ret; 7117 } 7118 7119 /* 7120 * it is not safe to log dentry if the chunk root has added new 7121 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 7122 * If this returns 1, you must commit the transaction to safely get your 7123 * data on disk. 7124 */ 7125 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 7126 struct dentry *dentry, 7127 struct btrfs_log_ctx *ctx) 7128 { 7129 struct dentry *parent = dget_parent(dentry); 7130 int ret; 7131 7132 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 7133 LOG_INODE_ALL, ctx); 7134 dput(parent); 7135 7136 return ret; 7137 } 7138 7139 /* 7140 * should be called during mount to recover any replay any log trees 7141 * from the FS 7142 */ 7143 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 7144 { 7145 int ret; 7146 struct btrfs_path *path; 7147 struct btrfs_trans_handle *trans; 7148 struct btrfs_key key; 7149 struct btrfs_key found_key; 7150 struct btrfs_root *log; 7151 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 7152 struct walk_control wc = { 7153 .process_func = process_one_buffer, 7154 .stage = LOG_WALK_PIN_ONLY, 7155 }; 7156 7157 path = btrfs_alloc_path(); 7158 if (!path) 7159 return -ENOMEM; 7160 7161 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7162 7163 trans = btrfs_start_transaction(fs_info->tree_root, 0); 7164 if (IS_ERR(trans)) { 7165 ret = PTR_ERR(trans); 7166 goto error; 7167 } 7168 7169 wc.trans = trans; 7170 wc.pin = 1; 7171 7172 ret = walk_log_tree(trans, log_root_tree, &wc); 7173 if (ret) { 7174 btrfs_abort_transaction(trans, ret); 7175 goto error; 7176 } 7177 7178 again: 7179 key.objectid = BTRFS_TREE_LOG_OBJECTID; 7180 key.offset = (u64)-1; 7181 key.type = BTRFS_ROOT_ITEM_KEY; 7182 7183 while (1) { 7184 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 7185 7186 if (ret < 0) { 7187 btrfs_abort_transaction(trans, ret); 7188 goto error; 7189 } 7190 if (ret > 0) { 7191 if (path->slots[0] == 0) 7192 break; 7193 path->slots[0]--; 7194 } 7195 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 7196 path->slots[0]); 7197 btrfs_release_path(path); 7198 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 7199 break; 7200 7201 log = btrfs_read_tree_root(log_root_tree, &found_key); 7202 if (IS_ERR(log)) { 7203 ret = PTR_ERR(log); 7204 btrfs_abort_transaction(trans, ret); 7205 goto error; 7206 } 7207 7208 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 7209 true); 7210 if (IS_ERR(wc.replay_dest)) { 7211 ret = PTR_ERR(wc.replay_dest); 7212 7213 /* 7214 * We didn't find the subvol, likely because it was 7215 * deleted. This is ok, simply skip this log and go to 7216 * the next one. 7217 * 7218 * We need to exclude the root because we can't have 7219 * other log replays overwriting this log as we'll read 7220 * it back in a few more times. This will keep our 7221 * block from being modified, and we'll just bail for 7222 * each subsequent pass. 7223 */ 7224 if (ret == -ENOENT) 7225 ret = btrfs_pin_extent_for_log_replay(trans, 7226 log->node->start, 7227 log->node->len); 7228 btrfs_put_root(log); 7229 7230 if (!ret) 7231 goto next; 7232 btrfs_abort_transaction(trans, ret); 7233 goto error; 7234 } 7235 7236 wc.replay_dest->log_root = log; 7237 ret = btrfs_record_root_in_trans(trans, wc.replay_dest); 7238 if (ret) 7239 /* The loop needs to continue due to the root refs */ 7240 btrfs_abort_transaction(trans, ret); 7241 else 7242 ret = walk_log_tree(trans, log, &wc); 7243 7244 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 7245 ret = fixup_inode_link_counts(trans, wc.replay_dest, 7246 path); 7247 if (ret) 7248 btrfs_abort_transaction(trans, ret); 7249 } 7250 7251 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 7252 struct btrfs_root *root = wc.replay_dest; 7253 7254 btrfs_release_path(path); 7255 7256 /* 7257 * We have just replayed everything, and the highest 7258 * objectid of fs roots probably has changed in case 7259 * some inode_item's got replayed. 7260 * 7261 * root->objectid_mutex is not acquired as log replay 7262 * could only happen during mount. 7263 */ 7264 ret = btrfs_init_root_free_objectid(root); 7265 if (ret) 7266 btrfs_abort_transaction(trans, ret); 7267 } 7268 7269 wc.replay_dest->log_root = NULL; 7270 btrfs_put_root(wc.replay_dest); 7271 btrfs_put_root(log); 7272 7273 if (ret) 7274 goto error; 7275 next: 7276 if (found_key.offset == 0) 7277 break; 7278 key.offset = found_key.offset - 1; 7279 } 7280 btrfs_release_path(path); 7281 7282 /* step one is to pin it all, step two is to replay just inodes */ 7283 if (wc.pin) { 7284 wc.pin = 0; 7285 wc.process_func = replay_one_buffer; 7286 wc.stage = LOG_WALK_REPLAY_INODES; 7287 goto again; 7288 } 7289 /* step three is to replay everything */ 7290 if (wc.stage < LOG_WALK_REPLAY_ALL) { 7291 wc.stage++; 7292 goto again; 7293 } 7294 7295 btrfs_free_path(path); 7296 7297 /* step 4: commit the transaction, which also unpins the blocks */ 7298 ret = btrfs_commit_transaction(trans); 7299 if (ret) 7300 return ret; 7301 7302 log_root_tree->log_root = NULL; 7303 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7304 btrfs_put_root(log_root_tree); 7305 7306 return 0; 7307 error: 7308 if (wc.trans) 7309 btrfs_end_transaction(wc.trans); 7310 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7311 btrfs_free_path(path); 7312 return ret; 7313 } 7314 7315 /* 7316 * there are some corner cases where we want to force a full 7317 * commit instead of allowing a directory to be logged. 7318 * 7319 * They revolve around files there were unlinked from the directory, and 7320 * this function updates the parent directory so that a full commit is 7321 * properly done if it is fsync'd later after the unlinks are done. 7322 * 7323 * Must be called before the unlink operations (updates to the subvolume tree, 7324 * inodes, etc) are done. 7325 */ 7326 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 7327 struct btrfs_inode *dir, struct btrfs_inode *inode, 7328 bool for_rename) 7329 { 7330 /* 7331 * when we're logging a file, if it hasn't been renamed 7332 * or unlinked, and its inode is fully committed on disk, 7333 * we don't have to worry about walking up the directory chain 7334 * to log its parents. 7335 * 7336 * So, we use the last_unlink_trans field to put this transid 7337 * into the file. When the file is logged we check it and 7338 * don't log the parents if the file is fully on disk. 7339 */ 7340 mutex_lock(&inode->log_mutex); 7341 inode->last_unlink_trans = trans->transid; 7342 mutex_unlock(&inode->log_mutex); 7343 7344 if (!for_rename) 7345 return; 7346 7347 /* 7348 * If this directory was already logged, any new names will be logged 7349 * with btrfs_log_new_name() and old names will be deleted from the log 7350 * tree with btrfs_del_dir_entries_in_log() or with 7351 * btrfs_del_inode_ref_in_log(). 7352 */ 7353 if (inode_logged(trans, dir, NULL) == 1) 7354 return; 7355 7356 /* 7357 * If the inode we're about to unlink was logged before, the log will be 7358 * properly updated with the new name with btrfs_log_new_name() and the 7359 * old name removed with btrfs_del_dir_entries_in_log() or with 7360 * btrfs_del_inode_ref_in_log(). 7361 */ 7362 if (inode_logged(trans, inode, NULL) == 1) 7363 return; 7364 7365 /* 7366 * when renaming files across directories, if the directory 7367 * there we're unlinking from gets fsync'd later on, there's 7368 * no way to find the destination directory later and fsync it 7369 * properly. So, we have to be conservative and force commits 7370 * so the new name gets discovered. 7371 */ 7372 mutex_lock(&dir->log_mutex); 7373 dir->last_unlink_trans = trans->transid; 7374 mutex_unlock(&dir->log_mutex); 7375 } 7376 7377 /* 7378 * Make sure that if someone attempts to fsync the parent directory of a deleted 7379 * snapshot, it ends up triggering a transaction commit. This is to guarantee 7380 * that after replaying the log tree of the parent directory's root we will not 7381 * see the snapshot anymore and at log replay time we will not see any log tree 7382 * corresponding to the deleted snapshot's root, which could lead to replaying 7383 * it after replaying the log tree of the parent directory (which would replay 7384 * the snapshot delete operation). 7385 * 7386 * Must be called before the actual snapshot destroy operation (updates to the 7387 * parent root and tree of tree roots trees, etc) are done. 7388 */ 7389 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 7390 struct btrfs_inode *dir) 7391 { 7392 mutex_lock(&dir->log_mutex); 7393 dir->last_unlink_trans = trans->transid; 7394 mutex_unlock(&dir->log_mutex); 7395 } 7396 7397 /* 7398 * Update the log after adding a new name for an inode. 7399 * 7400 * @trans: Transaction handle. 7401 * @old_dentry: The dentry associated with the old name and the old 7402 * parent directory. 7403 * @old_dir: The inode of the previous parent directory for the case 7404 * of a rename. For a link operation, it must be NULL. 7405 * @old_dir_index: The index number associated with the old name, meaningful 7406 * only for rename operations (when @old_dir is not NULL). 7407 * Ignored for link operations. 7408 * @parent: The dentry associated with the directory under which the 7409 * new name is located. 7410 * 7411 * Call this after adding a new name for an inode, as a result of a link or 7412 * rename operation, and it will properly update the log to reflect the new name. 7413 */ 7414 void btrfs_log_new_name(struct btrfs_trans_handle *trans, 7415 struct dentry *old_dentry, struct btrfs_inode *old_dir, 7416 u64 old_dir_index, struct dentry *parent) 7417 { 7418 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry)); 7419 struct btrfs_root *root = inode->root; 7420 struct btrfs_log_ctx ctx; 7421 bool log_pinned = false; 7422 int ret; 7423 7424 /* 7425 * this will force the logging code to walk the dentry chain 7426 * up for the file 7427 */ 7428 if (!S_ISDIR(inode->vfs_inode.i_mode)) 7429 inode->last_unlink_trans = trans->transid; 7430 7431 /* 7432 * if this inode hasn't been logged and directory we're renaming it 7433 * from hasn't been logged, we don't need to log it 7434 */ 7435 ret = inode_logged(trans, inode, NULL); 7436 if (ret < 0) { 7437 goto out; 7438 } else if (ret == 0) { 7439 if (!old_dir) 7440 return; 7441 /* 7442 * If the inode was not logged and we are doing a rename (old_dir is not 7443 * NULL), check if old_dir was logged - if it was not we can return and 7444 * do nothing. 7445 */ 7446 ret = inode_logged(trans, old_dir, NULL); 7447 if (ret < 0) 7448 goto out; 7449 else if (ret == 0) 7450 return; 7451 } 7452 ret = 0; 7453 7454 /* 7455 * If we are doing a rename (old_dir is not NULL) from a directory that 7456 * was previously logged, make sure that on log replay we get the old 7457 * dir entry deleted. This is needed because we will also log the new 7458 * name of the renamed inode, so we need to make sure that after log 7459 * replay we don't end up with both the new and old dir entries existing. 7460 */ 7461 if (old_dir && old_dir->logged_trans == trans->transid) { 7462 struct btrfs_root *log = old_dir->root->log_root; 7463 struct btrfs_path *path; 7464 struct fscrypt_name fname; 7465 7466 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX); 7467 7468 ret = fscrypt_setup_filename(&old_dir->vfs_inode, 7469 &old_dentry->d_name, 0, &fname); 7470 if (ret) 7471 goto out; 7472 /* 7473 * We have two inodes to update in the log, the old directory and 7474 * the inode that got renamed, so we must pin the log to prevent 7475 * anyone from syncing the log until we have updated both inodes 7476 * in the log. 7477 */ 7478 ret = join_running_log_trans(root); 7479 /* 7480 * At least one of the inodes was logged before, so this should 7481 * not fail, but if it does, it's not serious, just bail out and 7482 * mark the log for a full commit. 7483 */ 7484 if (WARN_ON_ONCE(ret < 0)) { 7485 fscrypt_free_filename(&fname); 7486 goto out; 7487 } 7488 7489 log_pinned = true; 7490 7491 path = btrfs_alloc_path(); 7492 if (!path) { 7493 ret = -ENOMEM; 7494 fscrypt_free_filename(&fname); 7495 goto out; 7496 } 7497 7498 /* 7499 * Other concurrent task might be logging the old directory, 7500 * as it can be triggered when logging other inode that had or 7501 * still has a dentry in the old directory. We lock the old 7502 * directory's log_mutex to ensure the deletion of the old 7503 * name is persisted, because during directory logging we 7504 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of 7505 * the old name's dir index item is in the delayed items, so 7506 * it could be missed by an in progress directory logging. 7507 */ 7508 mutex_lock(&old_dir->log_mutex); 7509 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir), 7510 &fname.disk_name, old_dir_index); 7511 if (ret > 0) { 7512 /* 7513 * The dentry does not exist in the log, so record its 7514 * deletion. 7515 */ 7516 btrfs_release_path(path); 7517 ret = insert_dir_log_key(trans, log, path, 7518 btrfs_ino(old_dir), 7519 old_dir_index, old_dir_index); 7520 } 7521 mutex_unlock(&old_dir->log_mutex); 7522 7523 btrfs_free_path(path); 7524 fscrypt_free_filename(&fname); 7525 if (ret < 0) 7526 goto out; 7527 } 7528 7529 btrfs_init_log_ctx(&ctx, &inode->vfs_inode); 7530 ctx.logging_new_name = true; 7531 /* 7532 * We don't care about the return value. If we fail to log the new name 7533 * then we know the next attempt to sync the log will fallback to a full 7534 * transaction commit (due to a call to btrfs_set_log_full_commit()), so 7535 * we don't need to worry about getting a log committed that has an 7536 * inconsistent state after a rename operation. 7537 */ 7538 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); 7539 ASSERT(list_empty(&ctx.conflict_inodes)); 7540 out: 7541 /* 7542 * If an error happened mark the log for a full commit because it's not 7543 * consistent and up to date or we couldn't find out if one of the 7544 * inodes was logged before in this transaction. Do it before unpinning 7545 * the log, to avoid any races with someone else trying to commit it. 7546 */ 7547 if (ret < 0) 7548 btrfs_set_log_full_commit(trans); 7549 if (log_pinned) 7550 btrfs_end_log_trans(root); 7551 } 7552 7553