xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 402613f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 
22 /* magic values for the inode_only field in btrfs_log_inode:
23  *
24  * LOG_INODE_ALL means to log everything
25  * LOG_INODE_EXISTS means to log just enough to recreate the inode
26  * during log replay
27  */
28 enum {
29 	LOG_INODE_ALL,
30 	LOG_INODE_EXISTS,
31 	LOG_OTHER_INODE,
32 	LOG_OTHER_INODE_ALL,
33 };
34 
35 /*
36  * directory trouble cases
37  *
38  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
39  * log, we must force a full commit before doing an fsync of the directory
40  * where the unlink was done.
41  * ---> record transid of last unlink/rename per directory
42  *
43  * mkdir foo/some_dir
44  * normal commit
45  * rename foo/some_dir foo2/some_dir
46  * mkdir foo/some_dir
47  * fsync foo/some_dir/some_file
48  *
49  * The fsync above will unlink the original some_dir without recording
50  * it in its new location (foo2).  After a crash, some_dir will be gone
51  * unless the fsync of some_file forces a full commit
52  *
53  * 2) we must log any new names for any file or dir that is in the fsync
54  * log. ---> check inode while renaming/linking.
55  *
56  * 2a) we must log any new names for any file or dir during rename
57  * when the directory they are being removed from was logged.
58  * ---> check inode and old parent dir during rename
59  *
60  *  2a is actually the more important variant.  With the extra logging
61  *  a crash might unlink the old name without recreating the new one
62  *
63  * 3) after a crash, we must go through any directories with a link count
64  * of zero and redo the rm -rf
65  *
66  * mkdir f1/foo
67  * normal commit
68  * rm -rf f1/foo
69  * fsync(f1)
70  *
71  * The directory f1 was fully removed from the FS, but fsync was never
72  * called on f1, only its parent dir.  After a crash the rm -rf must
73  * be replayed.  This must be able to recurse down the entire
74  * directory tree.  The inode link count fixup code takes care of the
75  * ugly details.
76  */
77 
78 /*
79  * stages for the tree walking.  The first
80  * stage (0) is to only pin down the blocks we find
81  * the second stage (1) is to make sure that all the inodes
82  * we find in the log are created in the subvolume.
83  *
84  * The last stage is to deal with directories and links and extents
85  * and all the other fun semantics
86  */
87 enum {
88 	LOG_WALK_PIN_ONLY,
89 	LOG_WALK_REPLAY_INODES,
90 	LOG_WALK_REPLAY_DIR_INDEX,
91 	LOG_WALK_REPLAY_ALL,
92 };
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			   struct btrfs_root *root, struct btrfs_inode *inode,
96 			   int inode_only,
97 			   const loff_t start,
98 			   const loff_t end,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 
109 /*
110  * tree logging is a special write ahead log used to make sure that
111  * fsyncs and O_SYNCs can happen without doing full tree commits.
112  *
113  * Full tree commits are expensive because they require commonly
114  * modified blocks to be recowed, creating many dirty pages in the
115  * extent tree an 4x-6x higher write load than ext3.
116  *
117  * Instead of doing a tree commit on every fsync, we use the
118  * key ranges and transaction ids to find items for a given file or directory
119  * that have changed in this transaction.  Those items are copied into
120  * a special tree (one per subvolume root), that tree is written to disk
121  * and then the fsync is considered complete.
122  *
123  * After a crash, items are copied out of the log-tree back into the
124  * subvolume tree.  Any file data extents found are recorded in the extent
125  * allocation tree, and the log-tree freed.
126  *
127  * The log tree is read three times, once to pin down all the extents it is
128  * using in ram and once, once to create all the inodes logged in the tree
129  * and once to do all the other items.
130  */
131 
132 /*
133  * start a sub transaction and setup the log tree
134  * this increments the log tree writer count to make the people
135  * syncing the tree wait for us to finish
136  */
137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 			   struct btrfs_root *root,
139 			   struct btrfs_log_ctx *ctx)
140 {
141 	struct btrfs_fs_info *fs_info = root->fs_info;
142 	int ret = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 
146 	if (root->log_root) {
147 		if (btrfs_need_log_full_commit(trans)) {
148 			ret = -EAGAIN;
149 			goto out;
150 		}
151 
152 		if (!root->log_start_pid) {
153 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 			root->log_start_pid = current->pid;
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 	} else {
159 		mutex_lock(&fs_info->tree_log_mutex);
160 		if (!fs_info->log_root_tree)
161 			ret = btrfs_init_log_root_tree(trans, fs_info);
162 		mutex_unlock(&fs_info->tree_log_mutex);
163 		if (ret)
164 			goto out;
165 
166 		ret = btrfs_add_log_tree(trans, root);
167 		if (ret)
168 			goto out;
169 
170 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
171 		root->log_start_pid = current->pid;
172 	}
173 
174 	atomic_inc(&root->log_batch);
175 	atomic_inc(&root->log_writers);
176 	if (ctx) {
177 		int index = root->log_transid % 2;
178 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
179 		ctx->log_transid = root->log_transid;
180 	}
181 
182 out:
183 	mutex_unlock(&root->log_mutex);
184 	return ret;
185 }
186 
187 /*
188  * returns 0 if there was a log transaction running and we were able
189  * to join, or returns -ENOENT if there were not transactions
190  * in progress
191  */
192 static int join_running_log_trans(struct btrfs_root *root)
193 {
194 	int ret = -ENOENT;
195 
196 	mutex_lock(&root->log_mutex);
197 	if (root->log_root) {
198 		ret = 0;
199 		atomic_inc(&root->log_writers);
200 	}
201 	mutex_unlock(&root->log_mutex);
202 	return ret;
203 }
204 
205 /*
206  * This either makes the current running log transaction wait
207  * until you call btrfs_end_log_trans() or it makes any future
208  * log transactions wait until you call btrfs_end_log_trans()
209  */
210 void btrfs_pin_log_trans(struct btrfs_root *root)
211 {
212 	mutex_lock(&root->log_mutex);
213 	atomic_inc(&root->log_writers);
214 	mutex_unlock(&root->log_mutex);
215 }
216 
217 /*
218  * indicate we're done making changes to the log tree
219  * and wake up anyone waiting to do a sync
220  */
221 void btrfs_end_log_trans(struct btrfs_root *root)
222 {
223 	if (atomic_dec_and_test(&root->log_writers)) {
224 		/* atomic_dec_and_test implies a barrier */
225 		cond_wake_up_nomb(&root->log_writer_wait);
226 	}
227 }
228 
229 static int btrfs_write_tree_block(struct extent_buffer *buf)
230 {
231 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
232 					buf->start + buf->len - 1);
233 }
234 
235 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
236 {
237 	filemap_fdatawait_range(buf->pages[0]->mapping,
238 			        buf->start, buf->start + buf->len - 1);
239 }
240 
241 /*
242  * the walk control struct is used to pass state down the chain when
243  * processing the log tree.  The stage field tells us which part
244  * of the log tree processing we are currently doing.  The others
245  * are state fields used for that specific part
246  */
247 struct walk_control {
248 	/* should we free the extent on disk when done?  This is used
249 	 * at transaction commit time while freeing a log tree
250 	 */
251 	int free;
252 
253 	/* should we write out the extent buffer?  This is used
254 	 * while flushing the log tree to disk during a sync
255 	 */
256 	int write;
257 
258 	/* should we wait for the extent buffer io to finish?  Also used
259 	 * while flushing the log tree to disk for a sync
260 	 */
261 	int wait;
262 
263 	/* pin only walk, we record which extents on disk belong to the
264 	 * log trees
265 	 */
266 	int pin;
267 
268 	/* what stage of the replay code we're currently in */
269 	int stage;
270 
271 	/*
272 	 * Ignore any items from the inode currently being processed. Needs
273 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
274 	 * the LOG_WALK_REPLAY_INODES stage.
275 	 */
276 	bool ignore_cur_inode;
277 
278 	/* the root we are currently replaying */
279 	struct btrfs_root *replay_dest;
280 
281 	/* the trans handle for the current replay */
282 	struct btrfs_trans_handle *trans;
283 
284 	/* the function that gets used to process blocks we find in the
285 	 * tree.  Note the extent_buffer might not be up to date when it is
286 	 * passed in, and it must be checked or read if you need the data
287 	 * inside it
288 	 */
289 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 			    struct walk_control *wc, u64 gen, int level);
291 };
292 
293 /*
294  * process_func used to pin down extents, write them or wait on them
295  */
296 static int process_one_buffer(struct btrfs_root *log,
297 			      struct extent_buffer *eb,
298 			      struct walk_control *wc, u64 gen, int level)
299 {
300 	struct btrfs_fs_info *fs_info = log->fs_info;
301 	int ret = 0;
302 
303 	/*
304 	 * If this fs is mixed then we need to be able to process the leaves to
305 	 * pin down any logged extents, so we have to read the block.
306 	 */
307 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
308 		ret = btrfs_read_buffer(eb, gen, level, NULL);
309 		if (ret)
310 			return ret;
311 	}
312 
313 	if (wc->pin)
314 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
315 						      eb->len);
316 
317 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
318 		if (wc->pin && btrfs_header_level(eb) == 0)
319 			ret = btrfs_exclude_logged_extents(eb);
320 		if (wc->write)
321 			btrfs_write_tree_block(eb);
322 		if (wc->wait)
323 			btrfs_wait_tree_block_writeback(eb);
324 	}
325 	return ret;
326 }
327 
328 /*
329  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
330  * to the src data we are copying out.
331  *
332  * root is the tree we are copying into, and path is a scratch
333  * path for use in this function (it should be released on entry and
334  * will be released on exit).
335  *
336  * If the key is already in the destination tree the existing item is
337  * overwritten.  If the existing item isn't big enough, it is extended.
338  * If it is too large, it is truncated.
339  *
340  * If the key isn't in the destination yet, a new item is inserted.
341  */
342 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
343 				   struct btrfs_root *root,
344 				   struct btrfs_path *path,
345 				   struct extent_buffer *eb, int slot,
346 				   struct btrfs_key *key)
347 {
348 	int ret;
349 	u32 item_size;
350 	u64 saved_i_size = 0;
351 	int save_old_i_size = 0;
352 	unsigned long src_ptr;
353 	unsigned long dst_ptr;
354 	int overwrite_root = 0;
355 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356 
357 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 		overwrite_root = 1;
359 
360 	item_size = btrfs_item_size_nr(eb, slot);
361 	src_ptr = btrfs_item_ptr_offset(eb, slot);
362 
363 	/* look for the key in the destination tree */
364 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365 	if (ret < 0)
366 		return ret;
367 
368 	if (ret == 0) {
369 		char *src_copy;
370 		char *dst_copy;
371 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 						  path->slots[0]);
373 		if (dst_size != item_size)
374 			goto insert;
375 
376 		if (item_size == 0) {
377 			btrfs_release_path(path);
378 			return 0;
379 		}
380 		dst_copy = kmalloc(item_size, GFP_NOFS);
381 		src_copy = kmalloc(item_size, GFP_NOFS);
382 		if (!dst_copy || !src_copy) {
383 			btrfs_release_path(path);
384 			kfree(dst_copy);
385 			kfree(src_copy);
386 			return -ENOMEM;
387 		}
388 
389 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
390 
391 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 				   item_size);
394 		ret = memcmp(dst_copy, src_copy, item_size);
395 
396 		kfree(dst_copy);
397 		kfree(src_copy);
398 		/*
399 		 * they have the same contents, just return, this saves
400 		 * us from cowing blocks in the destination tree and doing
401 		 * extra writes that may not have been done by a previous
402 		 * sync
403 		 */
404 		if (ret == 0) {
405 			btrfs_release_path(path);
406 			return 0;
407 		}
408 
409 		/*
410 		 * We need to load the old nbytes into the inode so when we
411 		 * replay the extents we've logged we get the right nbytes.
412 		 */
413 		if (inode_item) {
414 			struct btrfs_inode_item *item;
415 			u64 nbytes;
416 			u32 mode;
417 
418 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 					      struct btrfs_inode_item);
420 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 			item = btrfs_item_ptr(eb, slot,
422 					      struct btrfs_inode_item);
423 			btrfs_set_inode_nbytes(eb, item, nbytes);
424 
425 			/*
426 			 * If this is a directory we need to reset the i_size to
427 			 * 0 so that we can set it up properly when replaying
428 			 * the rest of the items in this log.
429 			 */
430 			mode = btrfs_inode_mode(eb, item);
431 			if (S_ISDIR(mode))
432 				btrfs_set_inode_size(eb, item, 0);
433 		}
434 	} else if (inode_item) {
435 		struct btrfs_inode_item *item;
436 		u32 mode;
437 
438 		/*
439 		 * New inode, set nbytes to 0 so that the nbytes comes out
440 		 * properly when we replay the extents.
441 		 */
442 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 		btrfs_set_inode_nbytes(eb, item, 0);
444 
445 		/*
446 		 * If this is a directory we need to reset the i_size to 0 so
447 		 * that we can set it up properly when replaying the rest of
448 		 * the items in this log.
449 		 */
450 		mode = btrfs_inode_mode(eb, item);
451 		if (S_ISDIR(mode))
452 			btrfs_set_inode_size(eb, item, 0);
453 	}
454 insert:
455 	btrfs_release_path(path);
456 	/* try to insert the key into the destination tree */
457 	path->skip_release_on_error = 1;
458 	ret = btrfs_insert_empty_item(trans, root, path,
459 				      key, item_size);
460 	path->skip_release_on_error = 0;
461 
462 	/* make sure any existing item is the correct size */
463 	if (ret == -EEXIST || ret == -EOVERFLOW) {
464 		u32 found_size;
465 		found_size = btrfs_item_size_nr(path->nodes[0],
466 						path->slots[0]);
467 		if (found_size > item_size)
468 			btrfs_truncate_item(path, item_size, 1);
469 		else if (found_size < item_size)
470 			btrfs_extend_item(path, item_size - found_size);
471 	} else if (ret) {
472 		return ret;
473 	}
474 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 					path->slots[0]);
476 
477 	/* don't overwrite an existing inode if the generation number
478 	 * was logged as zero.  This is done when the tree logging code
479 	 * is just logging an inode to make sure it exists after recovery.
480 	 *
481 	 * Also, don't overwrite i_size on directories during replay.
482 	 * log replay inserts and removes directory items based on the
483 	 * state of the tree found in the subvolume, and i_size is modified
484 	 * as it goes
485 	 */
486 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 		struct btrfs_inode_item *src_item;
488 		struct btrfs_inode_item *dst_item;
489 
490 		src_item = (struct btrfs_inode_item *)src_ptr;
491 		dst_item = (struct btrfs_inode_item *)dst_ptr;
492 
493 		if (btrfs_inode_generation(eb, src_item) == 0) {
494 			struct extent_buffer *dst_eb = path->nodes[0];
495 			const u64 ino_size = btrfs_inode_size(eb, src_item);
496 
497 			/*
498 			 * For regular files an ino_size == 0 is used only when
499 			 * logging that an inode exists, as part of a directory
500 			 * fsync, and the inode wasn't fsynced before. In this
501 			 * case don't set the size of the inode in the fs/subvol
502 			 * tree, otherwise we would be throwing valid data away.
503 			 */
504 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
505 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 			    ino_size != 0) {
507 				struct btrfs_map_token token;
508 
509 				btrfs_init_map_token(&token, dst_eb);
510 				btrfs_set_token_inode_size(dst_eb, dst_item,
511 							   ino_size, &token);
512 			}
513 			goto no_copy;
514 		}
515 
516 		if (overwrite_root &&
517 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 			save_old_i_size = 1;
520 			saved_i_size = btrfs_inode_size(path->nodes[0],
521 							dst_item);
522 		}
523 	}
524 
525 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 			   src_ptr, item_size);
527 
528 	if (save_old_i_size) {
529 		struct btrfs_inode_item *dst_item;
530 		dst_item = (struct btrfs_inode_item *)dst_ptr;
531 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
532 	}
533 
534 	/* make sure the generation is filled in */
535 	if (key->type == BTRFS_INODE_ITEM_KEY) {
536 		struct btrfs_inode_item *dst_item;
537 		dst_item = (struct btrfs_inode_item *)dst_ptr;
538 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 			btrfs_set_inode_generation(path->nodes[0], dst_item,
540 						   trans->transid);
541 		}
542 	}
543 no_copy:
544 	btrfs_mark_buffer_dirty(path->nodes[0]);
545 	btrfs_release_path(path);
546 	return 0;
547 }
548 
549 /*
550  * simple helper to read an inode off the disk from a given root
551  * This can only be called for subvolume roots and not for the log
552  */
553 static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 					     u64 objectid)
555 {
556 	struct btrfs_key key;
557 	struct inode *inode;
558 
559 	key.objectid = objectid;
560 	key.type = BTRFS_INODE_ITEM_KEY;
561 	key.offset = 0;
562 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
563 	if (IS_ERR(inode))
564 		inode = NULL;
565 	return inode;
566 }
567 
568 /* replays a single extent in 'eb' at 'slot' with 'key' into the
569  * subvolume 'root'.  path is released on entry and should be released
570  * on exit.
571  *
572  * extents in the log tree have not been allocated out of the extent
573  * tree yet.  So, this completes the allocation, taking a reference
574  * as required if the extent already exists or creating a new extent
575  * if it isn't in the extent allocation tree yet.
576  *
577  * The extent is inserted into the file, dropping any existing extents
578  * from the file that overlap the new one.
579  */
580 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
581 				      struct btrfs_root *root,
582 				      struct btrfs_path *path,
583 				      struct extent_buffer *eb, int slot,
584 				      struct btrfs_key *key)
585 {
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 	int found_type;
588 	u64 extent_end;
589 	u64 start = key->offset;
590 	u64 nbytes = 0;
591 	struct btrfs_file_extent_item *item;
592 	struct inode *inode = NULL;
593 	unsigned long size;
594 	int ret = 0;
595 
596 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
597 	found_type = btrfs_file_extent_type(eb, item);
598 
599 	if (found_type == BTRFS_FILE_EXTENT_REG ||
600 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
601 		nbytes = btrfs_file_extent_num_bytes(eb, item);
602 		extent_end = start + nbytes;
603 
604 		/*
605 		 * We don't add to the inodes nbytes if we are prealloc or a
606 		 * hole.
607 		 */
608 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
609 			nbytes = 0;
610 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
611 		size = btrfs_file_extent_ram_bytes(eb, item);
612 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
613 		extent_end = ALIGN(start + size,
614 				   fs_info->sectorsize);
615 	} else {
616 		ret = 0;
617 		goto out;
618 	}
619 
620 	inode = read_one_inode(root, key->objectid);
621 	if (!inode) {
622 		ret = -EIO;
623 		goto out;
624 	}
625 
626 	/*
627 	 * first check to see if we already have this extent in the
628 	 * file.  This must be done before the btrfs_drop_extents run
629 	 * so we don't try to drop this extent.
630 	 */
631 	ret = btrfs_lookup_file_extent(trans, root, path,
632 			btrfs_ino(BTRFS_I(inode)), start, 0);
633 
634 	if (ret == 0 &&
635 	    (found_type == BTRFS_FILE_EXTENT_REG ||
636 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
637 		struct btrfs_file_extent_item cmp1;
638 		struct btrfs_file_extent_item cmp2;
639 		struct btrfs_file_extent_item *existing;
640 		struct extent_buffer *leaf;
641 
642 		leaf = path->nodes[0];
643 		existing = btrfs_item_ptr(leaf, path->slots[0],
644 					  struct btrfs_file_extent_item);
645 
646 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
647 				   sizeof(cmp1));
648 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
649 				   sizeof(cmp2));
650 
651 		/*
652 		 * we already have a pointer to this exact extent,
653 		 * we don't have to do anything
654 		 */
655 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
656 			btrfs_release_path(path);
657 			goto out;
658 		}
659 	}
660 	btrfs_release_path(path);
661 
662 	/* drop any overlapping extents */
663 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
664 	if (ret)
665 		goto out;
666 
667 	if (found_type == BTRFS_FILE_EXTENT_REG ||
668 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
669 		u64 offset;
670 		unsigned long dest_offset;
671 		struct btrfs_key ins;
672 
673 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
674 		    btrfs_fs_incompat(fs_info, NO_HOLES))
675 			goto update_inode;
676 
677 		ret = btrfs_insert_empty_item(trans, root, path, key,
678 					      sizeof(*item));
679 		if (ret)
680 			goto out;
681 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
682 						    path->slots[0]);
683 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
684 				(unsigned long)item,  sizeof(*item));
685 
686 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
687 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
688 		ins.type = BTRFS_EXTENT_ITEM_KEY;
689 		offset = key->offset - btrfs_file_extent_offset(eb, item);
690 
691 		/*
692 		 * Manually record dirty extent, as here we did a shallow
693 		 * file extent item copy and skip normal backref update,
694 		 * but modifying extent tree all by ourselves.
695 		 * So need to manually record dirty extent for qgroup,
696 		 * as the owner of the file extent changed from log tree
697 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
698 		 */
699 		ret = btrfs_qgroup_trace_extent(trans,
700 				btrfs_file_extent_disk_bytenr(eb, item),
701 				btrfs_file_extent_disk_num_bytes(eb, item),
702 				GFP_NOFS);
703 		if (ret < 0)
704 			goto out;
705 
706 		if (ins.objectid > 0) {
707 			struct btrfs_ref ref = { 0 };
708 			u64 csum_start;
709 			u64 csum_end;
710 			LIST_HEAD(ordered_sums);
711 
712 			/*
713 			 * is this extent already allocated in the extent
714 			 * allocation tree?  If so, just add a reference
715 			 */
716 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
717 						ins.offset);
718 			if (ret == 0) {
719 				btrfs_init_generic_ref(&ref,
720 						BTRFS_ADD_DELAYED_REF,
721 						ins.objectid, ins.offset, 0);
722 				btrfs_init_data_ref(&ref,
723 						root->root_key.objectid,
724 						key->objectid, offset);
725 				ret = btrfs_inc_extent_ref(trans, &ref);
726 				if (ret)
727 					goto out;
728 			} else {
729 				/*
730 				 * insert the extent pointer in the extent
731 				 * allocation tree
732 				 */
733 				ret = btrfs_alloc_logged_file_extent(trans,
734 						root->root_key.objectid,
735 						key->objectid, offset, &ins);
736 				if (ret)
737 					goto out;
738 			}
739 			btrfs_release_path(path);
740 
741 			if (btrfs_file_extent_compression(eb, item)) {
742 				csum_start = ins.objectid;
743 				csum_end = csum_start + ins.offset;
744 			} else {
745 				csum_start = ins.objectid +
746 					btrfs_file_extent_offset(eb, item);
747 				csum_end = csum_start +
748 					btrfs_file_extent_num_bytes(eb, item);
749 			}
750 
751 			ret = btrfs_lookup_csums_range(root->log_root,
752 						csum_start, csum_end - 1,
753 						&ordered_sums, 0);
754 			if (ret)
755 				goto out;
756 			/*
757 			 * Now delete all existing cums in the csum root that
758 			 * cover our range. We do this because we can have an
759 			 * extent that is completely referenced by one file
760 			 * extent item and partially referenced by another
761 			 * file extent item (like after using the clone or
762 			 * extent_same ioctls). In this case if we end up doing
763 			 * the replay of the one that partially references the
764 			 * extent first, and we do not do the csum deletion
765 			 * below, we can get 2 csum items in the csum tree that
766 			 * overlap each other. For example, imagine our log has
767 			 * the two following file extent items:
768 			 *
769 			 * key (257 EXTENT_DATA 409600)
770 			 *     extent data disk byte 12845056 nr 102400
771 			 *     extent data offset 20480 nr 20480 ram 102400
772 			 *
773 			 * key (257 EXTENT_DATA 819200)
774 			 *     extent data disk byte 12845056 nr 102400
775 			 *     extent data offset 0 nr 102400 ram 102400
776 			 *
777 			 * Where the second one fully references the 100K extent
778 			 * that starts at disk byte 12845056, and the log tree
779 			 * has a single csum item that covers the entire range
780 			 * of the extent:
781 			 *
782 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
783 			 *
784 			 * After the first file extent item is replayed, the
785 			 * csum tree gets the following csum item:
786 			 *
787 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
788 			 *
789 			 * Which covers the 20K sub-range starting at offset 20K
790 			 * of our extent. Now when we replay the second file
791 			 * extent item, if we do not delete existing csum items
792 			 * that cover any of its blocks, we end up getting two
793 			 * csum items in our csum tree that overlap each other:
794 			 *
795 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
797 			 *
798 			 * Which is a problem, because after this anyone trying
799 			 * to lookup up for the checksum of any block of our
800 			 * extent starting at an offset of 40K or higher, will
801 			 * end up looking at the second csum item only, which
802 			 * does not contain the checksum for any block starting
803 			 * at offset 40K or higher of our extent.
804 			 */
805 			while (!list_empty(&ordered_sums)) {
806 				struct btrfs_ordered_sum *sums;
807 				sums = list_entry(ordered_sums.next,
808 						struct btrfs_ordered_sum,
809 						list);
810 				if (!ret)
811 					ret = btrfs_del_csums(trans, fs_info,
812 							      sums->bytenr,
813 							      sums->len);
814 				if (!ret)
815 					ret = btrfs_csum_file_blocks(trans,
816 						fs_info->csum_root, sums);
817 				list_del(&sums->list);
818 				kfree(sums);
819 			}
820 			if (ret)
821 				goto out;
822 		} else {
823 			btrfs_release_path(path);
824 		}
825 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
826 		/* inline extents are easy, we just overwrite them */
827 		ret = overwrite_item(trans, root, path, eb, slot, key);
828 		if (ret)
829 			goto out;
830 	}
831 
832 	inode_add_bytes(inode, nbytes);
833 update_inode:
834 	ret = btrfs_update_inode(trans, root, inode);
835 out:
836 	if (inode)
837 		iput(inode);
838 	return ret;
839 }
840 
841 /*
842  * when cleaning up conflicts between the directory names in the
843  * subvolume, directory names in the log and directory names in the
844  * inode back references, we may have to unlink inodes from directories.
845  *
846  * This is a helper function to do the unlink of a specific directory
847  * item
848  */
849 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
850 				      struct btrfs_root *root,
851 				      struct btrfs_path *path,
852 				      struct btrfs_inode *dir,
853 				      struct btrfs_dir_item *di)
854 {
855 	struct inode *inode;
856 	char *name;
857 	int name_len;
858 	struct extent_buffer *leaf;
859 	struct btrfs_key location;
860 	int ret;
861 
862 	leaf = path->nodes[0];
863 
864 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
865 	name_len = btrfs_dir_name_len(leaf, di);
866 	name = kmalloc(name_len, GFP_NOFS);
867 	if (!name)
868 		return -ENOMEM;
869 
870 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
871 	btrfs_release_path(path);
872 
873 	inode = read_one_inode(root, location.objectid);
874 	if (!inode) {
875 		ret = -EIO;
876 		goto out;
877 	}
878 
879 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
880 	if (ret)
881 		goto out;
882 
883 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
884 			name_len);
885 	if (ret)
886 		goto out;
887 	else
888 		ret = btrfs_run_delayed_items(trans);
889 out:
890 	kfree(name);
891 	iput(inode);
892 	return ret;
893 }
894 
895 /*
896  * helper function to see if a given name and sequence number found
897  * in an inode back reference are already in a directory and correctly
898  * point to this inode
899  */
900 static noinline int inode_in_dir(struct btrfs_root *root,
901 				 struct btrfs_path *path,
902 				 u64 dirid, u64 objectid, u64 index,
903 				 const char *name, int name_len)
904 {
905 	struct btrfs_dir_item *di;
906 	struct btrfs_key location;
907 	int match = 0;
908 
909 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
910 					 index, name, name_len, 0);
911 	if (di && !IS_ERR(di)) {
912 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
913 		if (location.objectid != objectid)
914 			goto out;
915 	} else
916 		goto out;
917 	btrfs_release_path(path);
918 
919 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
920 	if (di && !IS_ERR(di)) {
921 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
922 		if (location.objectid != objectid)
923 			goto out;
924 	} else
925 		goto out;
926 	match = 1;
927 out:
928 	btrfs_release_path(path);
929 	return match;
930 }
931 
932 /*
933  * helper function to check a log tree for a named back reference in
934  * an inode.  This is used to decide if a back reference that is
935  * found in the subvolume conflicts with what we find in the log.
936  *
937  * inode backreferences may have multiple refs in a single item,
938  * during replay we process one reference at a time, and we don't
939  * want to delete valid links to a file from the subvolume if that
940  * link is also in the log.
941  */
942 static noinline int backref_in_log(struct btrfs_root *log,
943 				   struct btrfs_key *key,
944 				   u64 ref_objectid,
945 				   const char *name, int namelen)
946 {
947 	struct btrfs_path *path;
948 	struct btrfs_inode_ref *ref;
949 	unsigned long ptr;
950 	unsigned long ptr_end;
951 	unsigned long name_ptr;
952 	int found_name_len;
953 	int item_size;
954 	int ret;
955 	int match = 0;
956 
957 	path = btrfs_alloc_path();
958 	if (!path)
959 		return -ENOMEM;
960 
961 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
962 	if (ret != 0)
963 		goto out;
964 
965 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
966 
967 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
968 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
969 						   path->slots[0],
970 						   ref_objectid,
971 						   name, namelen))
972 			match = 1;
973 
974 		goto out;
975 	}
976 
977 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
978 	ptr_end = ptr + item_size;
979 	while (ptr < ptr_end) {
980 		ref = (struct btrfs_inode_ref *)ptr;
981 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
982 		if (found_name_len == namelen) {
983 			name_ptr = (unsigned long)(ref + 1);
984 			ret = memcmp_extent_buffer(path->nodes[0], name,
985 						   name_ptr, namelen);
986 			if (ret == 0) {
987 				match = 1;
988 				goto out;
989 			}
990 		}
991 		ptr = (unsigned long)(ref + 1) + found_name_len;
992 	}
993 out:
994 	btrfs_free_path(path);
995 	return match;
996 }
997 
998 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
999 				  struct btrfs_root *root,
1000 				  struct btrfs_path *path,
1001 				  struct btrfs_root *log_root,
1002 				  struct btrfs_inode *dir,
1003 				  struct btrfs_inode *inode,
1004 				  u64 inode_objectid, u64 parent_objectid,
1005 				  u64 ref_index, char *name, int namelen,
1006 				  int *search_done)
1007 {
1008 	int ret;
1009 	char *victim_name;
1010 	int victim_name_len;
1011 	struct extent_buffer *leaf;
1012 	struct btrfs_dir_item *di;
1013 	struct btrfs_key search_key;
1014 	struct btrfs_inode_extref *extref;
1015 
1016 again:
1017 	/* Search old style refs */
1018 	search_key.objectid = inode_objectid;
1019 	search_key.type = BTRFS_INODE_REF_KEY;
1020 	search_key.offset = parent_objectid;
1021 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1022 	if (ret == 0) {
1023 		struct btrfs_inode_ref *victim_ref;
1024 		unsigned long ptr;
1025 		unsigned long ptr_end;
1026 
1027 		leaf = path->nodes[0];
1028 
1029 		/* are we trying to overwrite a back ref for the root directory
1030 		 * if so, just jump out, we're done
1031 		 */
1032 		if (search_key.objectid == search_key.offset)
1033 			return 1;
1034 
1035 		/* check all the names in this back reference to see
1036 		 * if they are in the log.  if so, we allow them to stay
1037 		 * otherwise they must be unlinked as a conflict
1038 		 */
1039 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1040 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1041 		while (ptr < ptr_end) {
1042 			victim_ref = (struct btrfs_inode_ref *)ptr;
1043 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1044 								   victim_ref);
1045 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1046 			if (!victim_name)
1047 				return -ENOMEM;
1048 
1049 			read_extent_buffer(leaf, victim_name,
1050 					   (unsigned long)(victim_ref + 1),
1051 					   victim_name_len);
1052 
1053 			if (!backref_in_log(log_root, &search_key,
1054 					    parent_objectid,
1055 					    victim_name,
1056 					    victim_name_len)) {
1057 				inc_nlink(&inode->vfs_inode);
1058 				btrfs_release_path(path);
1059 
1060 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1061 						victim_name, victim_name_len);
1062 				kfree(victim_name);
1063 				if (ret)
1064 					return ret;
1065 				ret = btrfs_run_delayed_items(trans);
1066 				if (ret)
1067 					return ret;
1068 				*search_done = 1;
1069 				goto again;
1070 			}
1071 			kfree(victim_name);
1072 
1073 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1074 		}
1075 
1076 		/*
1077 		 * NOTE: we have searched root tree and checked the
1078 		 * corresponding ref, it does not need to check again.
1079 		 */
1080 		*search_done = 1;
1081 	}
1082 	btrfs_release_path(path);
1083 
1084 	/* Same search but for extended refs */
1085 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1086 					   inode_objectid, parent_objectid, 0,
1087 					   0);
1088 	if (!IS_ERR_OR_NULL(extref)) {
1089 		u32 item_size;
1090 		u32 cur_offset = 0;
1091 		unsigned long base;
1092 		struct inode *victim_parent;
1093 
1094 		leaf = path->nodes[0];
1095 
1096 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1097 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1098 
1099 		while (cur_offset < item_size) {
1100 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1101 
1102 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1103 
1104 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1105 				goto next;
1106 
1107 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1108 			if (!victim_name)
1109 				return -ENOMEM;
1110 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1111 					   victim_name_len);
1112 
1113 			search_key.objectid = inode_objectid;
1114 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1115 			search_key.offset = btrfs_extref_hash(parent_objectid,
1116 							      victim_name,
1117 							      victim_name_len);
1118 			ret = 0;
1119 			if (!backref_in_log(log_root, &search_key,
1120 					    parent_objectid, victim_name,
1121 					    victim_name_len)) {
1122 				ret = -ENOENT;
1123 				victim_parent = read_one_inode(root,
1124 						parent_objectid);
1125 				if (victim_parent) {
1126 					inc_nlink(&inode->vfs_inode);
1127 					btrfs_release_path(path);
1128 
1129 					ret = btrfs_unlink_inode(trans, root,
1130 							BTRFS_I(victim_parent),
1131 							inode,
1132 							victim_name,
1133 							victim_name_len);
1134 					if (!ret)
1135 						ret = btrfs_run_delayed_items(
1136 								  trans);
1137 				}
1138 				iput(victim_parent);
1139 				kfree(victim_name);
1140 				if (ret)
1141 					return ret;
1142 				*search_done = 1;
1143 				goto again;
1144 			}
1145 			kfree(victim_name);
1146 next:
1147 			cur_offset += victim_name_len + sizeof(*extref);
1148 		}
1149 		*search_done = 1;
1150 	}
1151 	btrfs_release_path(path);
1152 
1153 	/* look for a conflicting sequence number */
1154 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1155 					 ref_index, name, namelen, 0);
1156 	if (di && !IS_ERR(di)) {
1157 		ret = drop_one_dir_item(trans, root, path, dir, di);
1158 		if (ret)
1159 			return ret;
1160 	}
1161 	btrfs_release_path(path);
1162 
1163 	/* look for a conflicting name */
1164 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1165 				   name, namelen, 0);
1166 	if (di && !IS_ERR(di)) {
1167 		ret = drop_one_dir_item(trans, root, path, dir, di);
1168 		if (ret)
1169 			return ret;
1170 	}
1171 	btrfs_release_path(path);
1172 
1173 	return 0;
1174 }
1175 
1176 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1177 			     u32 *namelen, char **name, u64 *index,
1178 			     u64 *parent_objectid)
1179 {
1180 	struct btrfs_inode_extref *extref;
1181 
1182 	extref = (struct btrfs_inode_extref *)ref_ptr;
1183 
1184 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1185 	*name = kmalloc(*namelen, GFP_NOFS);
1186 	if (*name == NULL)
1187 		return -ENOMEM;
1188 
1189 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1190 			   *namelen);
1191 
1192 	if (index)
1193 		*index = btrfs_inode_extref_index(eb, extref);
1194 	if (parent_objectid)
1195 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1196 
1197 	return 0;
1198 }
1199 
1200 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1201 			  u32 *namelen, char **name, u64 *index)
1202 {
1203 	struct btrfs_inode_ref *ref;
1204 
1205 	ref = (struct btrfs_inode_ref *)ref_ptr;
1206 
1207 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1208 	*name = kmalloc(*namelen, GFP_NOFS);
1209 	if (*name == NULL)
1210 		return -ENOMEM;
1211 
1212 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1213 
1214 	if (index)
1215 		*index = btrfs_inode_ref_index(eb, ref);
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Take an inode reference item from the log tree and iterate all names from the
1222  * inode reference item in the subvolume tree with the same key (if it exists).
1223  * For any name that is not in the inode reference item from the log tree, do a
1224  * proper unlink of that name (that is, remove its entry from the inode
1225  * reference item and both dir index keys).
1226  */
1227 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1228 				 struct btrfs_root *root,
1229 				 struct btrfs_path *path,
1230 				 struct btrfs_inode *inode,
1231 				 struct extent_buffer *log_eb,
1232 				 int log_slot,
1233 				 struct btrfs_key *key)
1234 {
1235 	int ret;
1236 	unsigned long ref_ptr;
1237 	unsigned long ref_end;
1238 	struct extent_buffer *eb;
1239 
1240 again:
1241 	btrfs_release_path(path);
1242 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1243 	if (ret > 0) {
1244 		ret = 0;
1245 		goto out;
1246 	}
1247 	if (ret < 0)
1248 		goto out;
1249 
1250 	eb = path->nodes[0];
1251 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1252 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1253 	while (ref_ptr < ref_end) {
1254 		char *name = NULL;
1255 		int namelen;
1256 		u64 parent_id;
1257 
1258 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1259 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1260 						NULL, &parent_id);
1261 		} else {
1262 			parent_id = key->offset;
1263 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1264 					     NULL);
1265 		}
1266 		if (ret)
1267 			goto out;
1268 
1269 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1270 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1271 							       parent_id, name,
1272 							       namelen);
1273 		else
1274 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1275 							   name, namelen);
1276 
1277 		if (!ret) {
1278 			struct inode *dir;
1279 
1280 			btrfs_release_path(path);
1281 			dir = read_one_inode(root, parent_id);
1282 			if (!dir) {
1283 				ret = -ENOENT;
1284 				kfree(name);
1285 				goto out;
1286 			}
1287 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1288 						 inode, name, namelen);
1289 			kfree(name);
1290 			iput(dir);
1291 			if (ret)
1292 				goto out;
1293 			goto again;
1294 		}
1295 
1296 		kfree(name);
1297 		ref_ptr += namelen;
1298 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1299 			ref_ptr += sizeof(struct btrfs_inode_extref);
1300 		else
1301 			ref_ptr += sizeof(struct btrfs_inode_ref);
1302 	}
1303 	ret = 0;
1304  out:
1305 	btrfs_release_path(path);
1306 	return ret;
1307 }
1308 
1309 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1310 				  const u8 ref_type, const char *name,
1311 				  const int namelen)
1312 {
1313 	struct btrfs_key key;
1314 	struct btrfs_path *path;
1315 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1316 	int ret;
1317 
1318 	path = btrfs_alloc_path();
1319 	if (!path)
1320 		return -ENOMEM;
1321 
1322 	key.objectid = btrfs_ino(BTRFS_I(inode));
1323 	key.type = ref_type;
1324 	if (key.type == BTRFS_INODE_REF_KEY)
1325 		key.offset = parent_id;
1326 	else
1327 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1328 
1329 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1330 	if (ret < 0)
1331 		goto out;
1332 	if (ret > 0) {
1333 		ret = 0;
1334 		goto out;
1335 	}
1336 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1337 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1338 				path->slots[0], parent_id, name, namelen);
1339 	else
1340 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1341 						   name, namelen);
1342 
1343 out:
1344 	btrfs_free_path(path);
1345 	return ret;
1346 }
1347 
1348 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1349 		    struct inode *dir, struct inode *inode, const char *name,
1350 		    int namelen, u64 ref_index)
1351 {
1352 	struct btrfs_dir_item *dir_item;
1353 	struct btrfs_key key;
1354 	struct btrfs_path *path;
1355 	struct inode *other_inode = NULL;
1356 	int ret;
1357 
1358 	path = btrfs_alloc_path();
1359 	if (!path)
1360 		return -ENOMEM;
1361 
1362 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1363 					 btrfs_ino(BTRFS_I(dir)),
1364 					 name, namelen, 0);
1365 	if (!dir_item) {
1366 		btrfs_release_path(path);
1367 		goto add_link;
1368 	} else if (IS_ERR(dir_item)) {
1369 		ret = PTR_ERR(dir_item);
1370 		goto out;
1371 	}
1372 
1373 	/*
1374 	 * Our inode's dentry collides with the dentry of another inode which is
1375 	 * in the log but not yet processed since it has a higher inode number.
1376 	 * So delete that other dentry.
1377 	 */
1378 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1379 	btrfs_release_path(path);
1380 	other_inode = read_one_inode(root, key.objectid);
1381 	if (!other_inode) {
1382 		ret = -ENOENT;
1383 		goto out;
1384 	}
1385 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1386 				 name, namelen);
1387 	if (ret)
1388 		goto out;
1389 	/*
1390 	 * If we dropped the link count to 0, bump it so that later the iput()
1391 	 * on the inode will not free it. We will fixup the link count later.
1392 	 */
1393 	if (other_inode->i_nlink == 0)
1394 		inc_nlink(other_inode);
1395 
1396 	ret = btrfs_run_delayed_items(trans);
1397 	if (ret)
1398 		goto out;
1399 add_link:
1400 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1401 			     name, namelen, 0, ref_index);
1402 out:
1403 	iput(other_inode);
1404 	btrfs_free_path(path);
1405 
1406 	return ret;
1407 }
1408 
1409 /*
1410  * replay one inode back reference item found in the log tree.
1411  * eb, slot and key refer to the buffer and key found in the log tree.
1412  * root is the destination we are replaying into, and path is for temp
1413  * use by this function.  (it should be released on return).
1414  */
1415 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1416 				  struct btrfs_root *root,
1417 				  struct btrfs_root *log,
1418 				  struct btrfs_path *path,
1419 				  struct extent_buffer *eb, int slot,
1420 				  struct btrfs_key *key)
1421 {
1422 	struct inode *dir = NULL;
1423 	struct inode *inode = NULL;
1424 	unsigned long ref_ptr;
1425 	unsigned long ref_end;
1426 	char *name = NULL;
1427 	int namelen;
1428 	int ret;
1429 	int search_done = 0;
1430 	int log_ref_ver = 0;
1431 	u64 parent_objectid;
1432 	u64 inode_objectid;
1433 	u64 ref_index = 0;
1434 	int ref_struct_size;
1435 
1436 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1437 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1438 
1439 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1440 		struct btrfs_inode_extref *r;
1441 
1442 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1443 		log_ref_ver = 1;
1444 		r = (struct btrfs_inode_extref *)ref_ptr;
1445 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1446 	} else {
1447 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1448 		parent_objectid = key->offset;
1449 	}
1450 	inode_objectid = key->objectid;
1451 
1452 	/*
1453 	 * it is possible that we didn't log all the parent directories
1454 	 * for a given inode.  If we don't find the dir, just don't
1455 	 * copy the back ref in.  The link count fixup code will take
1456 	 * care of the rest
1457 	 */
1458 	dir = read_one_inode(root, parent_objectid);
1459 	if (!dir) {
1460 		ret = -ENOENT;
1461 		goto out;
1462 	}
1463 
1464 	inode = read_one_inode(root, inode_objectid);
1465 	if (!inode) {
1466 		ret = -EIO;
1467 		goto out;
1468 	}
1469 
1470 	while (ref_ptr < ref_end) {
1471 		if (log_ref_ver) {
1472 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1473 						&ref_index, &parent_objectid);
1474 			/*
1475 			 * parent object can change from one array
1476 			 * item to another.
1477 			 */
1478 			if (!dir)
1479 				dir = read_one_inode(root, parent_objectid);
1480 			if (!dir) {
1481 				ret = -ENOENT;
1482 				goto out;
1483 			}
1484 		} else {
1485 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1486 					     &ref_index);
1487 		}
1488 		if (ret)
1489 			goto out;
1490 
1491 		/* if we already have a perfect match, we're done */
1492 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1493 					btrfs_ino(BTRFS_I(inode)), ref_index,
1494 					name, namelen)) {
1495 			/*
1496 			 * look for a conflicting back reference in the
1497 			 * metadata. if we find one we have to unlink that name
1498 			 * of the file before we add our new link.  Later on, we
1499 			 * overwrite any existing back reference, and we don't
1500 			 * want to create dangling pointers in the directory.
1501 			 */
1502 
1503 			if (!search_done) {
1504 				ret = __add_inode_ref(trans, root, path, log,
1505 						      BTRFS_I(dir),
1506 						      BTRFS_I(inode),
1507 						      inode_objectid,
1508 						      parent_objectid,
1509 						      ref_index, name, namelen,
1510 						      &search_done);
1511 				if (ret) {
1512 					if (ret == 1)
1513 						ret = 0;
1514 					goto out;
1515 				}
1516 			}
1517 
1518 			/*
1519 			 * If a reference item already exists for this inode
1520 			 * with the same parent and name, but different index,
1521 			 * drop it and the corresponding directory index entries
1522 			 * from the parent before adding the new reference item
1523 			 * and dir index entries, otherwise we would fail with
1524 			 * -EEXIST returned from btrfs_add_link() below.
1525 			 */
1526 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1527 						     name, namelen);
1528 			if (ret > 0) {
1529 				ret = btrfs_unlink_inode(trans, root,
1530 							 BTRFS_I(dir),
1531 							 BTRFS_I(inode),
1532 							 name, namelen);
1533 				/*
1534 				 * If we dropped the link count to 0, bump it so
1535 				 * that later the iput() on the inode will not
1536 				 * free it. We will fixup the link count later.
1537 				 */
1538 				if (!ret && inode->i_nlink == 0)
1539 					inc_nlink(inode);
1540 			}
1541 			if (ret < 0)
1542 				goto out;
1543 
1544 			/* insert our name */
1545 			ret = add_link(trans, root, dir, inode, name, namelen,
1546 				       ref_index);
1547 			if (ret)
1548 				goto out;
1549 
1550 			btrfs_update_inode(trans, root, inode);
1551 		}
1552 
1553 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1554 		kfree(name);
1555 		name = NULL;
1556 		if (log_ref_ver) {
1557 			iput(dir);
1558 			dir = NULL;
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * Before we overwrite the inode reference item in the subvolume tree
1564 	 * with the item from the log tree, we must unlink all names from the
1565 	 * parent directory that are in the subvolume's tree inode reference
1566 	 * item, otherwise we end up with an inconsistent subvolume tree where
1567 	 * dir index entries exist for a name but there is no inode reference
1568 	 * item with the same name.
1569 	 */
1570 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1571 				    key);
1572 	if (ret)
1573 		goto out;
1574 
1575 	/* finally write the back reference in the inode */
1576 	ret = overwrite_item(trans, root, path, eb, slot, key);
1577 out:
1578 	btrfs_release_path(path);
1579 	kfree(name);
1580 	iput(dir);
1581 	iput(inode);
1582 	return ret;
1583 }
1584 
1585 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1586 			      struct btrfs_root *root, u64 ino)
1587 {
1588 	int ret;
1589 
1590 	ret = btrfs_insert_orphan_item(trans, root, ino);
1591 	if (ret == -EEXIST)
1592 		ret = 0;
1593 
1594 	return ret;
1595 }
1596 
1597 static int count_inode_extrefs(struct btrfs_root *root,
1598 		struct btrfs_inode *inode, struct btrfs_path *path)
1599 {
1600 	int ret = 0;
1601 	int name_len;
1602 	unsigned int nlink = 0;
1603 	u32 item_size;
1604 	u32 cur_offset = 0;
1605 	u64 inode_objectid = btrfs_ino(inode);
1606 	u64 offset = 0;
1607 	unsigned long ptr;
1608 	struct btrfs_inode_extref *extref;
1609 	struct extent_buffer *leaf;
1610 
1611 	while (1) {
1612 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1613 					    &extref, &offset);
1614 		if (ret)
1615 			break;
1616 
1617 		leaf = path->nodes[0];
1618 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1619 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1620 		cur_offset = 0;
1621 
1622 		while (cur_offset < item_size) {
1623 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1624 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1625 
1626 			nlink++;
1627 
1628 			cur_offset += name_len + sizeof(*extref);
1629 		}
1630 
1631 		offset++;
1632 		btrfs_release_path(path);
1633 	}
1634 	btrfs_release_path(path);
1635 
1636 	if (ret < 0 && ret != -ENOENT)
1637 		return ret;
1638 	return nlink;
1639 }
1640 
1641 static int count_inode_refs(struct btrfs_root *root,
1642 			struct btrfs_inode *inode, struct btrfs_path *path)
1643 {
1644 	int ret;
1645 	struct btrfs_key key;
1646 	unsigned int nlink = 0;
1647 	unsigned long ptr;
1648 	unsigned long ptr_end;
1649 	int name_len;
1650 	u64 ino = btrfs_ino(inode);
1651 
1652 	key.objectid = ino;
1653 	key.type = BTRFS_INODE_REF_KEY;
1654 	key.offset = (u64)-1;
1655 
1656 	while (1) {
1657 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658 		if (ret < 0)
1659 			break;
1660 		if (ret > 0) {
1661 			if (path->slots[0] == 0)
1662 				break;
1663 			path->slots[0]--;
1664 		}
1665 process_slot:
1666 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1667 				      path->slots[0]);
1668 		if (key.objectid != ino ||
1669 		    key.type != BTRFS_INODE_REF_KEY)
1670 			break;
1671 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1672 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1673 						   path->slots[0]);
1674 		while (ptr < ptr_end) {
1675 			struct btrfs_inode_ref *ref;
1676 
1677 			ref = (struct btrfs_inode_ref *)ptr;
1678 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1679 							    ref);
1680 			ptr = (unsigned long)(ref + 1) + name_len;
1681 			nlink++;
1682 		}
1683 
1684 		if (key.offset == 0)
1685 			break;
1686 		if (path->slots[0] > 0) {
1687 			path->slots[0]--;
1688 			goto process_slot;
1689 		}
1690 		key.offset--;
1691 		btrfs_release_path(path);
1692 	}
1693 	btrfs_release_path(path);
1694 
1695 	return nlink;
1696 }
1697 
1698 /*
1699  * There are a few corners where the link count of the file can't
1700  * be properly maintained during replay.  So, instead of adding
1701  * lots of complexity to the log code, we just scan the backrefs
1702  * for any file that has been through replay.
1703  *
1704  * The scan will update the link count on the inode to reflect the
1705  * number of back refs found.  If it goes down to zero, the iput
1706  * will free the inode.
1707  */
1708 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1709 					   struct btrfs_root *root,
1710 					   struct inode *inode)
1711 {
1712 	struct btrfs_path *path;
1713 	int ret;
1714 	u64 nlink = 0;
1715 	u64 ino = btrfs_ino(BTRFS_I(inode));
1716 
1717 	path = btrfs_alloc_path();
1718 	if (!path)
1719 		return -ENOMEM;
1720 
1721 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1722 	if (ret < 0)
1723 		goto out;
1724 
1725 	nlink = ret;
1726 
1727 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1728 	if (ret < 0)
1729 		goto out;
1730 
1731 	nlink += ret;
1732 
1733 	ret = 0;
1734 
1735 	if (nlink != inode->i_nlink) {
1736 		set_nlink(inode, nlink);
1737 		btrfs_update_inode(trans, root, inode);
1738 	}
1739 	BTRFS_I(inode)->index_cnt = (u64)-1;
1740 
1741 	if (inode->i_nlink == 0) {
1742 		if (S_ISDIR(inode->i_mode)) {
1743 			ret = replay_dir_deletes(trans, root, NULL, path,
1744 						 ino, 1);
1745 			if (ret)
1746 				goto out;
1747 		}
1748 		ret = insert_orphan_item(trans, root, ino);
1749 	}
1750 
1751 out:
1752 	btrfs_free_path(path);
1753 	return ret;
1754 }
1755 
1756 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1757 					    struct btrfs_root *root,
1758 					    struct btrfs_path *path)
1759 {
1760 	int ret;
1761 	struct btrfs_key key;
1762 	struct inode *inode;
1763 
1764 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1765 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1766 	key.offset = (u64)-1;
1767 	while (1) {
1768 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769 		if (ret < 0)
1770 			break;
1771 
1772 		if (ret == 1) {
1773 			if (path->slots[0] == 0)
1774 				break;
1775 			path->slots[0]--;
1776 		}
1777 
1778 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1780 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1781 			break;
1782 
1783 		ret = btrfs_del_item(trans, root, path);
1784 		if (ret)
1785 			goto out;
1786 
1787 		btrfs_release_path(path);
1788 		inode = read_one_inode(root, key.offset);
1789 		if (!inode)
1790 			return -EIO;
1791 
1792 		ret = fixup_inode_link_count(trans, root, inode);
1793 		iput(inode);
1794 		if (ret)
1795 			goto out;
1796 
1797 		/*
1798 		 * fixup on a directory may create new entries,
1799 		 * make sure we always look for the highset possible
1800 		 * offset
1801 		 */
1802 		key.offset = (u64)-1;
1803 	}
1804 	ret = 0;
1805 out:
1806 	btrfs_release_path(path);
1807 	return ret;
1808 }
1809 
1810 
1811 /*
1812  * record a given inode in the fixup dir so we can check its link
1813  * count when replay is done.  The link count is incremented here
1814  * so the inode won't go away until we check it
1815  */
1816 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1817 				      struct btrfs_root *root,
1818 				      struct btrfs_path *path,
1819 				      u64 objectid)
1820 {
1821 	struct btrfs_key key;
1822 	int ret = 0;
1823 	struct inode *inode;
1824 
1825 	inode = read_one_inode(root, objectid);
1826 	if (!inode)
1827 		return -EIO;
1828 
1829 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1830 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1831 	key.offset = objectid;
1832 
1833 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1834 
1835 	btrfs_release_path(path);
1836 	if (ret == 0) {
1837 		if (!inode->i_nlink)
1838 			set_nlink(inode, 1);
1839 		else
1840 			inc_nlink(inode);
1841 		ret = btrfs_update_inode(trans, root, inode);
1842 	} else if (ret == -EEXIST) {
1843 		ret = 0;
1844 	} else {
1845 		BUG(); /* Logic Error */
1846 	}
1847 	iput(inode);
1848 
1849 	return ret;
1850 }
1851 
1852 /*
1853  * when replaying the log for a directory, we only insert names
1854  * for inodes that actually exist.  This means an fsync on a directory
1855  * does not implicitly fsync all the new files in it
1856  */
1857 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1858 				    struct btrfs_root *root,
1859 				    u64 dirid, u64 index,
1860 				    char *name, int name_len,
1861 				    struct btrfs_key *location)
1862 {
1863 	struct inode *inode;
1864 	struct inode *dir;
1865 	int ret;
1866 
1867 	inode = read_one_inode(root, location->objectid);
1868 	if (!inode)
1869 		return -ENOENT;
1870 
1871 	dir = read_one_inode(root, dirid);
1872 	if (!dir) {
1873 		iput(inode);
1874 		return -EIO;
1875 	}
1876 
1877 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1878 			name_len, 1, index);
1879 
1880 	/* FIXME, put inode into FIXUP list */
1881 
1882 	iput(inode);
1883 	iput(dir);
1884 	return ret;
1885 }
1886 
1887 /*
1888  * Return true if an inode reference exists in the log for the given name,
1889  * inode and parent inode.
1890  */
1891 static bool name_in_log_ref(struct btrfs_root *log_root,
1892 			    const char *name, const int name_len,
1893 			    const u64 dirid, const u64 ino)
1894 {
1895 	struct btrfs_key search_key;
1896 
1897 	search_key.objectid = ino;
1898 	search_key.type = BTRFS_INODE_REF_KEY;
1899 	search_key.offset = dirid;
1900 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1901 		return true;
1902 
1903 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1904 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1905 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1906 		return true;
1907 
1908 	return false;
1909 }
1910 
1911 /*
1912  * take a single entry in a log directory item and replay it into
1913  * the subvolume.
1914  *
1915  * if a conflicting item exists in the subdirectory already,
1916  * the inode it points to is unlinked and put into the link count
1917  * fix up tree.
1918  *
1919  * If a name from the log points to a file or directory that does
1920  * not exist in the FS, it is skipped.  fsyncs on directories
1921  * do not force down inodes inside that directory, just changes to the
1922  * names or unlinks in a directory.
1923  *
1924  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1925  * non-existing inode) and 1 if the name was replayed.
1926  */
1927 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1928 				    struct btrfs_root *root,
1929 				    struct btrfs_path *path,
1930 				    struct extent_buffer *eb,
1931 				    struct btrfs_dir_item *di,
1932 				    struct btrfs_key *key)
1933 {
1934 	char *name;
1935 	int name_len;
1936 	struct btrfs_dir_item *dst_di;
1937 	struct btrfs_key found_key;
1938 	struct btrfs_key log_key;
1939 	struct inode *dir;
1940 	u8 log_type;
1941 	int exists;
1942 	int ret = 0;
1943 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1944 	bool name_added = false;
1945 
1946 	dir = read_one_inode(root, key->objectid);
1947 	if (!dir)
1948 		return -EIO;
1949 
1950 	name_len = btrfs_dir_name_len(eb, di);
1951 	name = kmalloc(name_len, GFP_NOFS);
1952 	if (!name) {
1953 		ret = -ENOMEM;
1954 		goto out;
1955 	}
1956 
1957 	log_type = btrfs_dir_type(eb, di);
1958 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1959 		   name_len);
1960 
1961 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1962 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1963 	if (exists == 0)
1964 		exists = 1;
1965 	else
1966 		exists = 0;
1967 	btrfs_release_path(path);
1968 
1969 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1970 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1971 				       name, name_len, 1);
1972 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1973 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1974 						     key->objectid,
1975 						     key->offset, name,
1976 						     name_len, 1);
1977 	} else {
1978 		/* Corruption */
1979 		ret = -EINVAL;
1980 		goto out;
1981 	}
1982 	if (IS_ERR_OR_NULL(dst_di)) {
1983 		/* we need a sequence number to insert, so we only
1984 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1985 		 */
1986 		if (key->type != BTRFS_DIR_INDEX_KEY)
1987 			goto out;
1988 		goto insert;
1989 	}
1990 
1991 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1992 	/* the existing item matches the logged item */
1993 	if (found_key.objectid == log_key.objectid &&
1994 	    found_key.type == log_key.type &&
1995 	    found_key.offset == log_key.offset &&
1996 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1997 		update_size = false;
1998 		goto out;
1999 	}
2000 
2001 	/*
2002 	 * don't drop the conflicting directory entry if the inode
2003 	 * for the new entry doesn't exist
2004 	 */
2005 	if (!exists)
2006 		goto out;
2007 
2008 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2009 	if (ret)
2010 		goto out;
2011 
2012 	if (key->type == BTRFS_DIR_INDEX_KEY)
2013 		goto insert;
2014 out:
2015 	btrfs_release_path(path);
2016 	if (!ret && update_size) {
2017 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2018 		ret = btrfs_update_inode(trans, root, dir);
2019 	}
2020 	kfree(name);
2021 	iput(dir);
2022 	if (!ret && name_added)
2023 		ret = 1;
2024 	return ret;
2025 
2026 insert:
2027 	if (name_in_log_ref(root->log_root, name, name_len,
2028 			    key->objectid, log_key.objectid)) {
2029 		/* The dentry will be added later. */
2030 		ret = 0;
2031 		update_size = false;
2032 		goto out;
2033 	}
2034 	btrfs_release_path(path);
2035 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2036 			      name, name_len, &log_key);
2037 	if (ret && ret != -ENOENT && ret != -EEXIST)
2038 		goto out;
2039 	if (!ret)
2040 		name_added = true;
2041 	update_size = false;
2042 	ret = 0;
2043 	goto out;
2044 }
2045 
2046 /*
2047  * find all the names in a directory item and reconcile them into
2048  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2049  * one name in a directory item, but the same code gets used for
2050  * both directory index types
2051  */
2052 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2053 					struct btrfs_root *root,
2054 					struct btrfs_path *path,
2055 					struct extent_buffer *eb, int slot,
2056 					struct btrfs_key *key)
2057 {
2058 	int ret = 0;
2059 	u32 item_size = btrfs_item_size_nr(eb, slot);
2060 	struct btrfs_dir_item *di;
2061 	int name_len;
2062 	unsigned long ptr;
2063 	unsigned long ptr_end;
2064 	struct btrfs_path *fixup_path = NULL;
2065 
2066 	ptr = btrfs_item_ptr_offset(eb, slot);
2067 	ptr_end = ptr + item_size;
2068 	while (ptr < ptr_end) {
2069 		di = (struct btrfs_dir_item *)ptr;
2070 		name_len = btrfs_dir_name_len(eb, di);
2071 		ret = replay_one_name(trans, root, path, eb, di, key);
2072 		if (ret < 0)
2073 			break;
2074 		ptr = (unsigned long)(di + 1);
2075 		ptr += name_len;
2076 
2077 		/*
2078 		 * If this entry refers to a non-directory (directories can not
2079 		 * have a link count > 1) and it was added in the transaction
2080 		 * that was not committed, make sure we fixup the link count of
2081 		 * the inode it the entry points to. Otherwise something like
2082 		 * the following would result in a directory pointing to an
2083 		 * inode with a wrong link that does not account for this dir
2084 		 * entry:
2085 		 *
2086 		 * mkdir testdir
2087 		 * touch testdir/foo
2088 		 * touch testdir/bar
2089 		 * sync
2090 		 *
2091 		 * ln testdir/bar testdir/bar_link
2092 		 * ln testdir/foo testdir/foo_link
2093 		 * xfs_io -c "fsync" testdir/bar
2094 		 *
2095 		 * <power failure>
2096 		 *
2097 		 * mount fs, log replay happens
2098 		 *
2099 		 * File foo would remain with a link count of 1 when it has two
2100 		 * entries pointing to it in the directory testdir. This would
2101 		 * make it impossible to ever delete the parent directory has
2102 		 * it would result in stale dentries that can never be deleted.
2103 		 */
2104 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2105 			struct btrfs_key di_key;
2106 
2107 			if (!fixup_path) {
2108 				fixup_path = btrfs_alloc_path();
2109 				if (!fixup_path) {
2110 					ret = -ENOMEM;
2111 					break;
2112 				}
2113 			}
2114 
2115 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2116 			ret = link_to_fixup_dir(trans, root, fixup_path,
2117 						di_key.objectid);
2118 			if (ret)
2119 				break;
2120 		}
2121 		ret = 0;
2122 	}
2123 	btrfs_free_path(fixup_path);
2124 	return ret;
2125 }
2126 
2127 /*
2128  * directory replay has two parts.  There are the standard directory
2129  * items in the log copied from the subvolume, and range items
2130  * created in the log while the subvolume was logged.
2131  *
2132  * The range items tell us which parts of the key space the log
2133  * is authoritative for.  During replay, if a key in the subvolume
2134  * directory is in a logged range item, but not actually in the log
2135  * that means it was deleted from the directory before the fsync
2136  * and should be removed.
2137  */
2138 static noinline int find_dir_range(struct btrfs_root *root,
2139 				   struct btrfs_path *path,
2140 				   u64 dirid, int key_type,
2141 				   u64 *start_ret, u64 *end_ret)
2142 {
2143 	struct btrfs_key key;
2144 	u64 found_end;
2145 	struct btrfs_dir_log_item *item;
2146 	int ret;
2147 	int nritems;
2148 
2149 	if (*start_ret == (u64)-1)
2150 		return 1;
2151 
2152 	key.objectid = dirid;
2153 	key.type = key_type;
2154 	key.offset = *start_ret;
2155 
2156 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157 	if (ret < 0)
2158 		goto out;
2159 	if (ret > 0) {
2160 		if (path->slots[0] == 0)
2161 			goto out;
2162 		path->slots[0]--;
2163 	}
2164 	if (ret != 0)
2165 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2166 
2167 	if (key.type != key_type || key.objectid != dirid) {
2168 		ret = 1;
2169 		goto next;
2170 	}
2171 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2172 			      struct btrfs_dir_log_item);
2173 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2174 
2175 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2176 		ret = 0;
2177 		*start_ret = key.offset;
2178 		*end_ret = found_end;
2179 		goto out;
2180 	}
2181 	ret = 1;
2182 next:
2183 	/* check the next slot in the tree to see if it is a valid item */
2184 	nritems = btrfs_header_nritems(path->nodes[0]);
2185 	path->slots[0]++;
2186 	if (path->slots[0] >= nritems) {
2187 		ret = btrfs_next_leaf(root, path);
2188 		if (ret)
2189 			goto out;
2190 	}
2191 
2192 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2193 
2194 	if (key.type != key_type || key.objectid != dirid) {
2195 		ret = 1;
2196 		goto out;
2197 	}
2198 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2199 			      struct btrfs_dir_log_item);
2200 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2201 	*start_ret = key.offset;
2202 	*end_ret = found_end;
2203 	ret = 0;
2204 out:
2205 	btrfs_release_path(path);
2206 	return ret;
2207 }
2208 
2209 /*
2210  * this looks for a given directory item in the log.  If the directory
2211  * item is not in the log, the item is removed and the inode it points
2212  * to is unlinked
2213  */
2214 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2215 				      struct btrfs_root *root,
2216 				      struct btrfs_root *log,
2217 				      struct btrfs_path *path,
2218 				      struct btrfs_path *log_path,
2219 				      struct inode *dir,
2220 				      struct btrfs_key *dir_key)
2221 {
2222 	int ret;
2223 	struct extent_buffer *eb;
2224 	int slot;
2225 	u32 item_size;
2226 	struct btrfs_dir_item *di;
2227 	struct btrfs_dir_item *log_di;
2228 	int name_len;
2229 	unsigned long ptr;
2230 	unsigned long ptr_end;
2231 	char *name;
2232 	struct inode *inode;
2233 	struct btrfs_key location;
2234 
2235 again:
2236 	eb = path->nodes[0];
2237 	slot = path->slots[0];
2238 	item_size = btrfs_item_size_nr(eb, slot);
2239 	ptr = btrfs_item_ptr_offset(eb, slot);
2240 	ptr_end = ptr + item_size;
2241 	while (ptr < ptr_end) {
2242 		di = (struct btrfs_dir_item *)ptr;
2243 		name_len = btrfs_dir_name_len(eb, di);
2244 		name = kmalloc(name_len, GFP_NOFS);
2245 		if (!name) {
2246 			ret = -ENOMEM;
2247 			goto out;
2248 		}
2249 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2250 				  name_len);
2251 		log_di = NULL;
2252 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2253 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2254 						       dir_key->objectid,
2255 						       name, name_len, 0);
2256 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2257 			log_di = btrfs_lookup_dir_index_item(trans, log,
2258 						     log_path,
2259 						     dir_key->objectid,
2260 						     dir_key->offset,
2261 						     name, name_len, 0);
2262 		}
2263 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2264 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2265 			btrfs_release_path(path);
2266 			btrfs_release_path(log_path);
2267 			inode = read_one_inode(root, location.objectid);
2268 			if (!inode) {
2269 				kfree(name);
2270 				return -EIO;
2271 			}
2272 
2273 			ret = link_to_fixup_dir(trans, root,
2274 						path, location.objectid);
2275 			if (ret) {
2276 				kfree(name);
2277 				iput(inode);
2278 				goto out;
2279 			}
2280 
2281 			inc_nlink(inode);
2282 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2283 					BTRFS_I(inode), name, name_len);
2284 			if (!ret)
2285 				ret = btrfs_run_delayed_items(trans);
2286 			kfree(name);
2287 			iput(inode);
2288 			if (ret)
2289 				goto out;
2290 
2291 			/* there might still be more names under this key
2292 			 * check and repeat if required
2293 			 */
2294 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2295 						0, 0);
2296 			if (ret == 0)
2297 				goto again;
2298 			ret = 0;
2299 			goto out;
2300 		} else if (IS_ERR(log_di)) {
2301 			kfree(name);
2302 			return PTR_ERR(log_di);
2303 		}
2304 		btrfs_release_path(log_path);
2305 		kfree(name);
2306 
2307 		ptr = (unsigned long)(di + 1);
2308 		ptr += name_len;
2309 	}
2310 	ret = 0;
2311 out:
2312 	btrfs_release_path(path);
2313 	btrfs_release_path(log_path);
2314 	return ret;
2315 }
2316 
2317 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2318 			      struct btrfs_root *root,
2319 			      struct btrfs_root *log,
2320 			      struct btrfs_path *path,
2321 			      const u64 ino)
2322 {
2323 	struct btrfs_key search_key;
2324 	struct btrfs_path *log_path;
2325 	int i;
2326 	int nritems;
2327 	int ret;
2328 
2329 	log_path = btrfs_alloc_path();
2330 	if (!log_path)
2331 		return -ENOMEM;
2332 
2333 	search_key.objectid = ino;
2334 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2335 	search_key.offset = 0;
2336 again:
2337 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2338 	if (ret < 0)
2339 		goto out;
2340 process_leaf:
2341 	nritems = btrfs_header_nritems(path->nodes[0]);
2342 	for (i = path->slots[0]; i < nritems; i++) {
2343 		struct btrfs_key key;
2344 		struct btrfs_dir_item *di;
2345 		struct btrfs_dir_item *log_di;
2346 		u32 total_size;
2347 		u32 cur;
2348 
2349 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2350 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2351 			ret = 0;
2352 			goto out;
2353 		}
2354 
2355 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2356 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2357 		cur = 0;
2358 		while (cur < total_size) {
2359 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2360 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2361 			u32 this_len = sizeof(*di) + name_len + data_len;
2362 			char *name;
2363 
2364 			name = kmalloc(name_len, GFP_NOFS);
2365 			if (!name) {
2366 				ret = -ENOMEM;
2367 				goto out;
2368 			}
2369 			read_extent_buffer(path->nodes[0], name,
2370 					   (unsigned long)(di + 1), name_len);
2371 
2372 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2373 						    name, name_len, 0);
2374 			btrfs_release_path(log_path);
2375 			if (!log_di) {
2376 				/* Doesn't exist in log tree, so delete it. */
2377 				btrfs_release_path(path);
2378 				di = btrfs_lookup_xattr(trans, root, path, ino,
2379 							name, name_len, -1);
2380 				kfree(name);
2381 				if (IS_ERR(di)) {
2382 					ret = PTR_ERR(di);
2383 					goto out;
2384 				}
2385 				ASSERT(di);
2386 				ret = btrfs_delete_one_dir_name(trans, root,
2387 								path, di);
2388 				if (ret)
2389 					goto out;
2390 				btrfs_release_path(path);
2391 				search_key = key;
2392 				goto again;
2393 			}
2394 			kfree(name);
2395 			if (IS_ERR(log_di)) {
2396 				ret = PTR_ERR(log_di);
2397 				goto out;
2398 			}
2399 			cur += this_len;
2400 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2401 		}
2402 	}
2403 	ret = btrfs_next_leaf(root, path);
2404 	if (ret > 0)
2405 		ret = 0;
2406 	else if (ret == 0)
2407 		goto process_leaf;
2408 out:
2409 	btrfs_free_path(log_path);
2410 	btrfs_release_path(path);
2411 	return ret;
2412 }
2413 
2414 
2415 /*
2416  * deletion replay happens before we copy any new directory items
2417  * out of the log or out of backreferences from inodes.  It
2418  * scans the log to find ranges of keys that log is authoritative for,
2419  * and then scans the directory to find items in those ranges that are
2420  * not present in the log.
2421  *
2422  * Anything we don't find in the log is unlinked and removed from the
2423  * directory.
2424  */
2425 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2426 				       struct btrfs_root *root,
2427 				       struct btrfs_root *log,
2428 				       struct btrfs_path *path,
2429 				       u64 dirid, int del_all)
2430 {
2431 	u64 range_start;
2432 	u64 range_end;
2433 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2434 	int ret = 0;
2435 	struct btrfs_key dir_key;
2436 	struct btrfs_key found_key;
2437 	struct btrfs_path *log_path;
2438 	struct inode *dir;
2439 
2440 	dir_key.objectid = dirid;
2441 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2442 	log_path = btrfs_alloc_path();
2443 	if (!log_path)
2444 		return -ENOMEM;
2445 
2446 	dir = read_one_inode(root, dirid);
2447 	/* it isn't an error if the inode isn't there, that can happen
2448 	 * because we replay the deletes before we copy in the inode item
2449 	 * from the log
2450 	 */
2451 	if (!dir) {
2452 		btrfs_free_path(log_path);
2453 		return 0;
2454 	}
2455 again:
2456 	range_start = 0;
2457 	range_end = 0;
2458 	while (1) {
2459 		if (del_all)
2460 			range_end = (u64)-1;
2461 		else {
2462 			ret = find_dir_range(log, path, dirid, key_type,
2463 					     &range_start, &range_end);
2464 			if (ret != 0)
2465 				break;
2466 		}
2467 
2468 		dir_key.offset = range_start;
2469 		while (1) {
2470 			int nritems;
2471 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2472 						0, 0);
2473 			if (ret < 0)
2474 				goto out;
2475 
2476 			nritems = btrfs_header_nritems(path->nodes[0]);
2477 			if (path->slots[0] >= nritems) {
2478 				ret = btrfs_next_leaf(root, path);
2479 				if (ret == 1)
2480 					break;
2481 				else if (ret < 0)
2482 					goto out;
2483 			}
2484 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2485 					      path->slots[0]);
2486 			if (found_key.objectid != dirid ||
2487 			    found_key.type != dir_key.type)
2488 				goto next_type;
2489 
2490 			if (found_key.offset > range_end)
2491 				break;
2492 
2493 			ret = check_item_in_log(trans, root, log, path,
2494 						log_path, dir,
2495 						&found_key);
2496 			if (ret)
2497 				goto out;
2498 			if (found_key.offset == (u64)-1)
2499 				break;
2500 			dir_key.offset = found_key.offset + 1;
2501 		}
2502 		btrfs_release_path(path);
2503 		if (range_end == (u64)-1)
2504 			break;
2505 		range_start = range_end + 1;
2506 	}
2507 
2508 next_type:
2509 	ret = 0;
2510 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2511 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2512 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2513 		btrfs_release_path(path);
2514 		goto again;
2515 	}
2516 out:
2517 	btrfs_release_path(path);
2518 	btrfs_free_path(log_path);
2519 	iput(dir);
2520 	return ret;
2521 }
2522 
2523 /*
2524  * the process_func used to replay items from the log tree.  This
2525  * gets called in two different stages.  The first stage just looks
2526  * for inodes and makes sure they are all copied into the subvolume.
2527  *
2528  * The second stage copies all the other item types from the log into
2529  * the subvolume.  The two stage approach is slower, but gets rid of
2530  * lots of complexity around inodes referencing other inodes that exist
2531  * only in the log (references come from either directory items or inode
2532  * back refs).
2533  */
2534 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2535 			     struct walk_control *wc, u64 gen, int level)
2536 {
2537 	int nritems;
2538 	struct btrfs_path *path;
2539 	struct btrfs_root *root = wc->replay_dest;
2540 	struct btrfs_key key;
2541 	int i;
2542 	int ret;
2543 
2544 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2545 	if (ret)
2546 		return ret;
2547 
2548 	level = btrfs_header_level(eb);
2549 
2550 	if (level != 0)
2551 		return 0;
2552 
2553 	path = btrfs_alloc_path();
2554 	if (!path)
2555 		return -ENOMEM;
2556 
2557 	nritems = btrfs_header_nritems(eb);
2558 	for (i = 0; i < nritems; i++) {
2559 		btrfs_item_key_to_cpu(eb, &key, i);
2560 
2561 		/* inode keys are done during the first stage */
2562 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2563 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2564 			struct btrfs_inode_item *inode_item;
2565 			u32 mode;
2566 
2567 			inode_item = btrfs_item_ptr(eb, i,
2568 					    struct btrfs_inode_item);
2569 			/*
2570 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2571 			 * and never got linked before the fsync, skip it, as
2572 			 * replaying it is pointless since it would be deleted
2573 			 * later. We skip logging tmpfiles, but it's always
2574 			 * possible we are replaying a log created with a kernel
2575 			 * that used to log tmpfiles.
2576 			 */
2577 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2578 				wc->ignore_cur_inode = true;
2579 				continue;
2580 			} else {
2581 				wc->ignore_cur_inode = false;
2582 			}
2583 			ret = replay_xattr_deletes(wc->trans, root, log,
2584 						   path, key.objectid);
2585 			if (ret)
2586 				break;
2587 			mode = btrfs_inode_mode(eb, inode_item);
2588 			if (S_ISDIR(mode)) {
2589 				ret = replay_dir_deletes(wc->trans,
2590 					 root, log, path, key.objectid, 0);
2591 				if (ret)
2592 					break;
2593 			}
2594 			ret = overwrite_item(wc->trans, root, path,
2595 					     eb, i, &key);
2596 			if (ret)
2597 				break;
2598 
2599 			/*
2600 			 * Before replaying extents, truncate the inode to its
2601 			 * size. We need to do it now and not after log replay
2602 			 * because before an fsync we can have prealloc extents
2603 			 * added beyond the inode's i_size. If we did it after,
2604 			 * through orphan cleanup for example, we would drop
2605 			 * those prealloc extents just after replaying them.
2606 			 */
2607 			if (S_ISREG(mode)) {
2608 				struct inode *inode;
2609 				u64 from;
2610 
2611 				inode = read_one_inode(root, key.objectid);
2612 				if (!inode) {
2613 					ret = -EIO;
2614 					break;
2615 				}
2616 				from = ALIGN(i_size_read(inode),
2617 					     root->fs_info->sectorsize);
2618 				ret = btrfs_drop_extents(wc->trans, root, inode,
2619 							 from, (u64)-1, 1);
2620 				if (!ret) {
2621 					/* Update the inode's nbytes. */
2622 					ret = btrfs_update_inode(wc->trans,
2623 								 root, inode);
2624 				}
2625 				iput(inode);
2626 				if (ret)
2627 					break;
2628 			}
2629 
2630 			ret = link_to_fixup_dir(wc->trans, root,
2631 						path, key.objectid);
2632 			if (ret)
2633 				break;
2634 		}
2635 
2636 		if (wc->ignore_cur_inode)
2637 			continue;
2638 
2639 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2640 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2641 			ret = replay_one_dir_item(wc->trans, root, path,
2642 						  eb, i, &key);
2643 			if (ret)
2644 				break;
2645 		}
2646 
2647 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2648 			continue;
2649 
2650 		/* these keys are simply copied */
2651 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2652 			ret = overwrite_item(wc->trans, root, path,
2653 					     eb, i, &key);
2654 			if (ret)
2655 				break;
2656 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2657 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2658 			ret = add_inode_ref(wc->trans, root, log, path,
2659 					    eb, i, &key);
2660 			if (ret && ret != -ENOENT)
2661 				break;
2662 			ret = 0;
2663 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2664 			ret = replay_one_extent(wc->trans, root, path,
2665 						eb, i, &key);
2666 			if (ret)
2667 				break;
2668 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2669 			ret = replay_one_dir_item(wc->trans, root, path,
2670 						  eb, i, &key);
2671 			if (ret)
2672 				break;
2673 		}
2674 	}
2675 	btrfs_free_path(path);
2676 	return ret;
2677 }
2678 
2679 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2680 				   struct btrfs_root *root,
2681 				   struct btrfs_path *path, int *level,
2682 				   struct walk_control *wc)
2683 {
2684 	struct btrfs_fs_info *fs_info = root->fs_info;
2685 	u64 root_owner;
2686 	u64 bytenr;
2687 	u64 ptr_gen;
2688 	struct extent_buffer *next;
2689 	struct extent_buffer *cur;
2690 	struct extent_buffer *parent;
2691 	u32 blocksize;
2692 	int ret = 0;
2693 
2694 	WARN_ON(*level < 0);
2695 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2696 
2697 	while (*level > 0) {
2698 		struct btrfs_key first_key;
2699 
2700 		WARN_ON(*level < 0);
2701 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2702 		cur = path->nodes[*level];
2703 
2704 		WARN_ON(btrfs_header_level(cur) != *level);
2705 
2706 		if (path->slots[*level] >=
2707 		    btrfs_header_nritems(cur))
2708 			break;
2709 
2710 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2711 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2712 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2713 		blocksize = fs_info->nodesize;
2714 
2715 		parent = path->nodes[*level];
2716 		root_owner = btrfs_header_owner(parent);
2717 
2718 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2719 		if (IS_ERR(next))
2720 			return PTR_ERR(next);
2721 
2722 		if (*level == 1) {
2723 			ret = wc->process_func(root, next, wc, ptr_gen,
2724 					       *level - 1);
2725 			if (ret) {
2726 				free_extent_buffer(next);
2727 				return ret;
2728 			}
2729 
2730 			path->slots[*level]++;
2731 			if (wc->free) {
2732 				ret = btrfs_read_buffer(next, ptr_gen,
2733 							*level - 1, &first_key);
2734 				if (ret) {
2735 					free_extent_buffer(next);
2736 					return ret;
2737 				}
2738 
2739 				if (trans) {
2740 					btrfs_tree_lock(next);
2741 					btrfs_set_lock_blocking_write(next);
2742 					btrfs_clean_tree_block(next);
2743 					btrfs_wait_tree_block_writeback(next);
2744 					btrfs_tree_unlock(next);
2745 				} else {
2746 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747 						clear_extent_buffer_dirty(next);
2748 				}
2749 
2750 				WARN_ON(root_owner !=
2751 					BTRFS_TREE_LOG_OBJECTID);
2752 				ret = btrfs_free_and_pin_reserved_extent(
2753 							fs_info, bytenr,
2754 							blocksize);
2755 				if (ret) {
2756 					free_extent_buffer(next);
2757 					return ret;
2758 				}
2759 			}
2760 			free_extent_buffer(next);
2761 			continue;
2762 		}
2763 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2764 		if (ret) {
2765 			free_extent_buffer(next);
2766 			return ret;
2767 		}
2768 
2769 		WARN_ON(*level <= 0);
2770 		if (path->nodes[*level-1])
2771 			free_extent_buffer(path->nodes[*level-1]);
2772 		path->nodes[*level-1] = next;
2773 		*level = btrfs_header_level(next);
2774 		path->slots[*level] = 0;
2775 		cond_resched();
2776 	}
2777 	WARN_ON(*level < 0);
2778 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2779 
2780 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2781 
2782 	cond_resched();
2783 	return 0;
2784 }
2785 
2786 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2787 				 struct btrfs_root *root,
2788 				 struct btrfs_path *path, int *level,
2789 				 struct walk_control *wc)
2790 {
2791 	struct btrfs_fs_info *fs_info = root->fs_info;
2792 	u64 root_owner;
2793 	int i;
2794 	int slot;
2795 	int ret;
2796 
2797 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2798 		slot = path->slots[i];
2799 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2800 			path->slots[i]++;
2801 			*level = i;
2802 			WARN_ON(*level == 0);
2803 			return 0;
2804 		} else {
2805 			struct extent_buffer *parent;
2806 			if (path->nodes[*level] == root->node)
2807 				parent = path->nodes[*level];
2808 			else
2809 				parent = path->nodes[*level + 1];
2810 
2811 			root_owner = btrfs_header_owner(parent);
2812 			ret = wc->process_func(root, path->nodes[*level], wc,
2813 				 btrfs_header_generation(path->nodes[*level]),
2814 				 *level);
2815 			if (ret)
2816 				return ret;
2817 
2818 			if (wc->free) {
2819 				struct extent_buffer *next;
2820 
2821 				next = path->nodes[*level];
2822 
2823 				if (trans) {
2824 					btrfs_tree_lock(next);
2825 					btrfs_set_lock_blocking_write(next);
2826 					btrfs_clean_tree_block(next);
2827 					btrfs_wait_tree_block_writeback(next);
2828 					btrfs_tree_unlock(next);
2829 				} else {
2830 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2831 						clear_extent_buffer_dirty(next);
2832 				}
2833 
2834 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2835 				ret = btrfs_free_and_pin_reserved_extent(
2836 						fs_info,
2837 						path->nodes[*level]->start,
2838 						path->nodes[*level]->len);
2839 				if (ret)
2840 					return ret;
2841 			}
2842 			free_extent_buffer(path->nodes[*level]);
2843 			path->nodes[*level] = NULL;
2844 			*level = i + 1;
2845 		}
2846 	}
2847 	return 1;
2848 }
2849 
2850 /*
2851  * drop the reference count on the tree rooted at 'snap'.  This traverses
2852  * the tree freeing any blocks that have a ref count of zero after being
2853  * decremented.
2854  */
2855 static int walk_log_tree(struct btrfs_trans_handle *trans,
2856 			 struct btrfs_root *log, struct walk_control *wc)
2857 {
2858 	struct btrfs_fs_info *fs_info = log->fs_info;
2859 	int ret = 0;
2860 	int wret;
2861 	int level;
2862 	struct btrfs_path *path;
2863 	int orig_level;
2864 
2865 	path = btrfs_alloc_path();
2866 	if (!path)
2867 		return -ENOMEM;
2868 
2869 	level = btrfs_header_level(log->node);
2870 	orig_level = level;
2871 	path->nodes[level] = log->node;
2872 	extent_buffer_get(log->node);
2873 	path->slots[level] = 0;
2874 
2875 	while (1) {
2876 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2877 		if (wret > 0)
2878 			break;
2879 		if (wret < 0) {
2880 			ret = wret;
2881 			goto out;
2882 		}
2883 
2884 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2885 		if (wret > 0)
2886 			break;
2887 		if (wret < 0) {
2888 			ret = wret;
2889 			goto out;
2890 		}
2891 	}
2892 
2893 	/* was the root node processed? if not, catch it here */
2894 	if (path->nodes[orig_level]) {
2895 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2896 			 btrfs_header_generation(path->nodes[orig_level]),
2897 			 orig_level);
2898 		if (ret)
2899 			goto out;
2900 		if (wc->free) {
2901 			struct extent_buffer *next;
2902 
2903 			next = path->nodes[orig_level];
2904 
2905 			if (trans) {
2906 				btrfs_tree_lock(next);
2907 				btrfs_set_lock_blocking_write(next);
2908 				btrfs_clean_tree_block(next);
2909 				btrfs_wait_tree_block_writeback(next);
2910 				btrfs_tree_unlock(next);
2911 			} else {
2912 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2913 					clear_extent_buffer_dirty(next);
2914 			}
2915 
2916 			WARN_ON(log->root_key.objectid !=
2917 				BTRFS_TREE_LOG_OBJECTID);
2918 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2919 							next->start, next->len);
2920 			if (ret)
2921 				goto out;
2922 		}
2923 	}
2924 
2925 out:
2926 	btrfs_free_path(path);
2927 	return ret;
2928 }
2929 
2930 /*
2931  * helper function to update the item for a given subvolumes log root
2932  * in the tree of log roots
2933  */
2934 static int update_log_root(struct btrfs_trans_handle *trans,
2935 			   struct btrfs_root *log,
2936 			   struct btrfs_root_item *root_item)
2937 {
2938 	struct btrfs_fs_info *fs_info = log->fs_info;
2939 	int ret;
2940 
2941 	if (log->log_transid == 1) {
2942 		/* insert root item on the first sync */
2943 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2944 				&log->root_key, root_item);
2945 	} else {
2946 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2947 				&log->root_key, root_item);
2948 	}
2949 	return ret;
2950 }
2951 
2952 static void wait_log_commit(struct btrfs_root *root, int transid)
2953 {
2954 	DEFINE_WAIT(wait);
2955 	int index = transid % 2;
2956 
2957 	/*
2958 	 * we only allow two pending log transactions at a time,
2959 	 * so we know that if ours is more than 2 older than the
2960 	 * current transaction, we're done
2961 	 */
2962 	for (;;) {
2963 		prepare_to_wait(&root->log_commit_wait[index],
2964 				&wait, TASK_UNINTERRUPTIBLE);
2965 
2966 		if (!(root->log_transid_committed < transid &&
2967 		      atomic_read(&root->log_commit[index])))
2968 			break;
2969 
2970 		mutex_unlock(&root->log_mutex);
2971 		schedule();
2972 		mutex_lock(&root->log_mutex);
2973 	}
2974 	finish_wait(&root->log_commit_wait[index], &wait);
2975 }
2976 
2977 static void wait_for_writer(struct btrfs_root *root)
2978 {
2979 	DEFINE_WAIT(wait);
2980 
2981 	for (;;) {
2982 		prepare_to_wait(&root->log_writer_wait, &wait,
2983 				TASK_UNINTERRUPTIBLE);
2984 		if (!atomic_read(&root->log_writers))
2985 			break;
2986 
2987 		mutex_unlock(&root->log_mutex);
2988 		schedule();
2989 		mutex_lock(&root->log_mutex);
2990 	}
2991 	finish_wait(&root->log_writer_wait, &wait);
2992 }
2993 
2994 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2995 					struct btrfs_log_ctx *ctx)
2996 {
2997 	if (!ctx)
2998 		return;
2999 
3000 	mutex_lock(&root->log_mutex);
3001 	list_del_init(&ctx->list);
3002 	mutex_unlock(&root->log_mutex);
3003 }
3004 
3005 /*
3006  * Invoked in log mutex context, or be sure there is no other task which
3007  * can access the list.
3008  */
3009 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3010 					     int index, int error)
3011 {
3012 	struct btrfs_log_ctx *ctx;
3013 	struct btrfs_log_ctx *safe;
3014 
3015 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3016 		list_del_init(&ctx->list);
3017 		ctx->log_ret = error;
3018 	}
3019 
3020 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3021 }
3022 
3023 /*
3024  * btrfs_sync_log does sends a given tree log down to the disk and
3025  * updates the super blocks to record it.  When this call is done,
3026  * you know that any inodes previously logged are safely on disk only
3027  * if it returns 0.
3028  *
3029  * Any other return value means you need to call btrfs_commit_transaction.
3030  * Some of the edge cases for fsyncing directories that have had unlinks
3031  * or renames done in the past mean that sometimes the only safe
3032  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3033  * that has happened.
3034  */
3035 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3036 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3037 {
3038 	int index1;
3039 	int index2;
3040 	int mark;
3041 	int ret;
3042 	struct btrfs_fs_info *fs_info = root->fs_info;
3043 	struct btrfs_root *log = root->log_root;
3044 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3045 	struct btrfs_root_item new_root_item;
3046 	int log_transid = 0;
3047 	struct btrfs_log_ctx root_log_ctx;
3048 	struct blk_plug plug;
3049 
3050 	mutex_lock(&root->log_mutex);
3051 	log_transid = ctx->log_transid;
3052 	if (root->log_transid_committed >= log_transid) {
3053 		mutex_unlock(&root->log_mutex);
3054 		return ctx->log_ret;
3055 	}
3056 
3057 	index1 = log_transid % 2;
3058 	if (atomic_read(&root->log_commit[index1])) {
3059 		wait_log_commit(root, log_transid);
3060 		mutex_unlock(&root->log_mutex);
3061 		return ctx->log_ret;
3062 	}
3063 	ASSERT(log_transid == root->log_transid);
3064 	atomic_set(&root->log_commit[index1], 1);
3065 
3066 	/* wait for previous tree log sync to complete */
3067 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3068 		wait_log_commit(root, log_transid - 1);
3069 
3070 	while (1) {
3071 		int batch = atomic_read(&root->log_batch);
3072 		/* when we're on an ssd, just kick the log commit out */
3073 		if (!btrfs_test_opt(fs_info, SSD) &&
3074 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3075 			mutex_unlock(&root->log_mutex);
3076 			schedule_timeout_uninterruptible(1);
3077 			mutex_lock(&root->log_mutex);
3078 		}
3079 		wait_for_writer(root);
3080 		if (batch == atomic_read(&root->log_batch))
3081 			break;
3082 	}
3083 
3084 	/* bail out if we need to do a full commit */
3085 	if (btrfs_need_log_full_commit(trans)) {
3086 		ret = -EAGAIN;
3087 		mutex_unlock(&root->log_mutex);
3088 		goto out;
3089 	}
3090 
3091 	if (log_transid % 2 == 0)
3092 		mark = EXTENT_DIRTY;
3093 	else
3094 		mark = EXTENT_NEW;
3095 
3096 	/* we start IO on  all the marked extents here, but we don't actually
3097 	 * wait for them until later.
3098 	 */
3099 	blk_start_plug(&plug);
3100 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3101 	if (ret) {
3102 		blk_finish_plug(&plug);
3103 		btrfs_abort_transaction(trans, ret);
3104 		btrfs_set_log_full_commit(trans);
3105 		mutex_unlock(&root->log_mutex);
3106 		goto out;
3107 	}
3108 
3109 	/*
3110 	 * We _must_ update under the root->log_mutex in order to make sure we
3111 	 * have a consistent view of the log root we are trying to commit at
3112 	 * this moment.
3113 	 *
3114 	 * We _must_ copy this into a local copy, because we are not holding the
3115 	 * log_root_tree->log_mutex yet.  This is important because when we
3116 	 * commit the log_root_tree we must have a consistent view of the
3117 	 * log_root_tree when we update the super block to point at the
3118 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3119 	 * with the commit and possibly point at the new block which we may not
3120 	 * have written out.
3121 	 */
3122 	btrfs_set_root_node(&log->root_item, log->node);
3123 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3124 
3125 	root->log_transid++;
3126 	log->log_transid = root->log_transid;
3127 	root->log_start_pid = 0;
3128 	/*
3129 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3130 	 * in their headers. new modifications of the log will be written to
3131 	 * new positions. so it's safe to allow log writers to go in.
3132 	 */
3133 	mutex_unlock(&root->log_mutex);
3134 
3135 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3136 
3137 	mutex_lock(&log_root_tree->log_mutex);
3138 	atomic_inc(&log_root_tree->log_batch);
3139 	atomic_inc(&log_root_tree->log_writers);
3140 
3141 	index2 = log_root_tree->log_transid % 2;
3142 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3143 	root_log_ctx.log_transid = log_root_tree->log_transid;
3144 
3145 	mutex_unlock(&log_root_tree->log_mutex);
3146 
3147 	mutex_lock(&log_root_tree->log_mutex);
3148 
3149 	/*
3150 	 * Now we are safe to update the log_root_tree because we're under the
3151 	 * log_mutex, and we're a current writer so we're holding the commit
3152 	 * open until we drop the log_mutex.
3153 	 */
3154 	ret = update_log_root(trans, log, &new_root_item);
3155 
3156 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3157 		/* atomic_dec_and_test implies a barrier */
3158 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3159 	}
3160 
3161 	if (ret) {
3162 		if (!list_empty(&root_log_ctx.list))
3163 			list_del_init(&root_log_ctx.list);
3164 
3165 		blk_finish_plug(&plug);
3166 		btrfs_set_log_full_commit(trans);
3167 
3168 		if (ret != -ENOSPC) {
3169 			btrfs_abort_transaction(trans, ret);
3170 			mutex_unlock(&log_root_tree->log_mutex);
3171 			goto out;
3172 		}
3173 		btrfs_wait_tree_log_extents(log, mark);
3174 		mutex_unlock(&log_root_tree->log_mutex);
3175 		ret = -EAGAIN;
3176 		goto out;
3177 	}
3178 
3179 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3180 		blk_finish_plug(&plug);
3181 		list_del_init(&root_log_ctx.list);
3182 		mutex_unlock(&log_root_tree->log_mutex);
3183 		ret = root_log_ctx.log_ret;
3184 		goto out;
3185 	}
3186 
3187 	index2 = root_log_ctx.log_transid % 2;
3188 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3189 		blk_finish_plug(&plug);
3190 		ret = btrfs_wait_tree_log_extents(log, mark);
3191 		wait_log_commit(log_root_tree,
3192 				root_log_ctx.log_transid);
3193 		mutex_unlock(&log_root_tree->log_mutex);
3194 		if (!ret)
3195 			ret = root_log_ctx.log_ret;
3196 		goto out;
3197 	}
3198 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3199 	atomic_set(&log_root_tree->log_commit[index2], 1);
3200 
3201 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3202 		wait_log_commit(log_root_tree,
3203 				root_log_ctx.log_transid - 1);
3204 	}
3205 
3206 	wait_for_writer(log_root_tree);
3207 
3208 	/*
3209 	 * now that we've moved on to the tree of log tree roots,
3210 	 * check the full commit flag again
3211 	 */
3212 	if (btrfs_need_log_full_commit(trans)) {
3213 		blk_finish_plug(&plug);
3214 		btrfs_wait_tree_log_extents(log, mark);
3215 		mutex_unlock(&log_root_tree->log_mutex);
3216 		ret = -EAGAIN;
3217 		goto out_wake_log_root;
3218 	}
3219 
3220 	ret = btrfs_write_marked_extents(fs_info,
3221 					 &log_root_tree->dirty_log_pages,
3222 					 EXTENT_DIRTY | EXTENT_NEW);
3223 	blk_finish_plug(&plug);
3224 	if (ret) {
3225 		btrfs_set_log_full_commit(trans);
3226 		btrfs_abort_transaction(trans, ret);
3227 		mutex_unlock(&log_root_tree->log_mutex);
3228 		goto out_wake_log_root;
3229 	}
3230 	ret = btrfs_wait_tree_log_extents(log, mark);
3231 	if (!ret)
3232 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3233 						  EXTENT_NEW | EXTENT_DIRTY);
3234 	if (ret) {
3235 		btrfs_set_log_full_commit(trans);
3236 		mutex_unlock(&log_root_tree->log_mutex);
3237 		goto out_wake_log_root;
3238 	}
3239 
3240 	btrfs_set_super_log_root(fs_info->super_for_commit,
3241 				 log_root_tree->node->start);
3242 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3243 				       btrfs_header_level(log_root_tree->node));
3244 
3245 	log_root_tree->log_transid++;
3246 	mutex_unlock(&log_root_tree->log_mutex);
3247 
3248 	/*
3249 	 * Nobody else is going to jump in and write the ctree
3250 	 * super here because the log_commit atomic below is protecting
3251 	 * us.  We must be called with a transaction handle pinning
3252 	 * the running transaction open, so a full commit can't hop
3253 	 * in and cause problems either.
3254 	 */
3255 	ret = write_all_supers(fs_info, 1);
3256 	if (ret) {
3257 		btrfs_set_log_full_commit(trans);
3258 		btrfs_abort_transaction(trans, ret);
3259 		goto out_wake_log_root;
3260 	}
3261 
3262 	mutex_lock(&root->log_mutex);
3263 	if (root->last_log_commit < log_transid)
3264 		root->last_log_commit = log_transid;
3265 	mutex_unlock(&root->log_mutex);
3266 
3267 out_wake_log_root:
3268 	mutex_lock(&log_root_tree->log_mutex);
3269 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3270 
3271 	log_root_tree->log_transid_committed++;
3272 	atomic_set(&log_root_tree->log_commit[index2], 0);
3273 	mutex_unlock(&log_root_tree->log_mutex);
3274 
3275 	/*
3276 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3277 	 * all the updates above are seen by the woken threads. It might not be
3278 	 * necessary, but proving that seems to be hard.
3279 	 */
3280 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3281 out:
3282 	mutex_lock(&root->log_mutex);
3283 	btrfs_remove_all_log_ctxs(root, index1, ret);
3284 	root->log_transid_committed++;
3285 	atomic_set(&root->log_commit[index1], 0);
3286 	mutex_unlock(&root->log_mutex);
3287 
3288 	/*
3289 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3290 	 * all the updates above are seen by the woken threads. It might not be
3291 	 * necessary, but proving that seems to be hard.
3292 	 */
3293 	cond_wake_up(&root->log_commit_wait[index1]);
3294 	return ret;
3295 }
3296 
3297 static void free_log_tree(struct btrfs_trans_handle *trans,
3298 			  struct btrfs_root *log)
3299 {
3300 	int ret;
3301 	struct walk_control wc = {
3302 		.free = 1,
3303 		.process_func = process_one_buffer
3304 	};
3305 
3306 	ret = walk_log_tree(trans, log, &wc);
3307 	if (ret) {
3308 		if (trans)
3309 			btrfs_abort_transaction(trans, ret);
3310 		else
3311 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3312 	}
3313 
3314 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3315 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3316 	free_extent_buffer(log->node);
3317 	kfree(log);
3318 }
3319 
3320 /*
3321  * free all the extents used by the tree log.  This should be called
3322  * at commit time of the full transaction
3323  */
3324 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3325 {
3326 	if (root->log_root) {
3327 		free_log_tree(trans, root->log_root);
3328 		root->log_root = NULL;
3329 	}
3330 	return 0;
3331 }
3332 
3333 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3334 			     struct btrfs_fs_info *fs_info)
3335 {
3336 	if (fs_info->log_root_tree) {
3337 		free_log_tree(trans, fs_info->log_root_tree);
3338 		fs_info->log_root_tree = NULL;
3339 	}
3340 	return 0;
3341 }
3342 
3343 /*
3344  * Check if an inode was logged in the current transaction. We can't always rely
3345  * on an inode's logged_trans value, because it's an in-memory only field and
3346  * therefore not persisted. This means that its value is lost if the inode gets
3347  * evicted and loaded again from disk (in which case it has a value of 0, and
3348  * certainly it is smaller then any possible transaction ID), when that happens
3349  * the full_sync flag is set in the inode's runtime flags, so on that case we
3350  * assume eviction happened and ignore the logged_trans value, assuming the
3351  * worst case, that the inode was logged before in the current transaction.
3352  */
3353 static bool inode_logged(struct btrfs_trans_handle *trans,
3354 			 struct btrfs_inode *inode)
3355 {
3356 	if (inode->logged_trans == trans->transid)
3357 		return true;
3358 
3359 	if (inode->last_trans == trans->transid &&
3360 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3361 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3362 		return true;
3363 
3364 	return false;
3365 }
3366 
3367 /*
3368  * If both a file and directory are logged, and unlinks or renames are
3369  * mixed in, we have a few interesting corners:
3370  *
3371  * create file X in dir Y
3372  * link file X to X.link in dir Y
3373  * fsync file X
3374  * unlink file X but leave X.link
3375  * fsync dir Y
3376  *
3377  * After a crash we would expect only X.link to exist.  But file X
3378  * didn't get fsync'd again so the log has back refs for X and X.link.
3379  *
3380  * We solve this by removing directory entries and inode backrefs from the
3381  * log when a file that was logged in the current transaction is
3382  * unlinked.  Any later fsync will include the updated log entries, and
3383  * we'll be able to reconstruct the proper directory items from backrefs.
3384  *
3385  * This optimizations allows us to avoid relogging the entire inode
3386  * or the entire directory.
3387  */
3388 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3389 				 struct btrfs_root *root,
3390 				 const char *name, int name_len,
3391 				 struct btrfs_inode *dir, u64 index)
3392 {
3393 	struct btrfs_root *log;
3394 	struct btrfs_dir_item *di;
3395 	struct btrfs_path *path;
3396 	int ret;
3397 	int err = 0;
3398 	int bytes_del = 0;
3399 	u64 dir_ino = btrfs_ino(dir);
3400 
3401 	if (!inode_logged(trans, dir))
3402 		return 0;
3403 
3404 	ret = join_running_log_trans(root);
3405 	if (ret)
3406 		return 0;
3407 
3408 	mutex_lock(&dir->log_mutex);
3409 
3410 	log = root->log_root;
3411 	path = btrfs_alloc_path();
3412 	if (!path) {
3413 		err = -ENOMEM;
3414 		goto out_unlock;
3415 	}
3416 
3417 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3418 				   name, name_len, -1);
3419 	if (IS_ERR(di)) {
3420 		err = PTR_ERR(di);
3421 		goto fail;
3422 	}
3423 	if (di) {
3424 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3425 		bytes_del += name_len;
3426 		if (ret) {
3427 			err = ret;
3428 			goto fail;
3429 		}
3430 	}
3431 	btrfs_release_path(path);
3432 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3433 					 index, name, name_len, -1);
3434 	if (IS_ERR(di)) {
3435 		err = PTR_ERR(di);
3436 		goto fail;
3437 	}
3438 	if (di) {
3439 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3440 		bytes_del += name_len;
3441 		if (ret) {
3442 			err = ret;
3443 			goto fail;
3444 		}
3445 	}
3446 
3447 	/* update the directory size in the log to reflect the names
3448 	 * we have removed
3449 	 */
3450 	if (bytes_del) {
3451 		struct btrfs_key key;
3452 
3453 		key.objectid = dir_ino;
3454 		key.offset = 0;
3455 		key.type = BTRFS_INODE_ITEM_KEY;
3456 		btrfs_release_path(path);
3457 
3458 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3459 		if (ret < 0) {
3460 			err = ret;
3461 			goto fail;
3462 		}
3463 		if (ret == 0) {
3464 			struct btrfs_inode_item *item;
3465 			u64 i_size;
3466 
3467 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3468 					      struct btrfs_inode_item);
3469 			i_size = btrfs_inode_size(path->nodes[0], item);
3470 			if (i_size > bytes_del)
3471 				i_size -= bytes_del;
3472 			else
3473 				i_size = 0;
3474 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3475 			btrfs_mark_buffer_dirty(path->nodes[0]);
3476 		} else
3477 			ret = 0;
3478 		btrfs_release_path(path);
3479 	}
3480 fail:
3481 	btrfs_free_path(path);
3482 out_unlock:
3483 	mutex_unlock(&dir->log_mutex);
3484 	if (ret == -ENOSPC) {
3485 		btrfs_set_log_full_commit(trans);
3486 		ret = 0;
3487 	} else if (ret < 0)
3488 		btrfs_abort_transaction(trans, ret);
3489 
3490 	btrfs_end_log_trans(root);
3491 
3492 	return err;
3493 }
3494 
3495 /* see comments for btrfs_del_dir_entries_in_log */
3496 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3497 			       struct btrfs_root *root,
3498 			       const char *name, int name_len,
3499 			       struct btrfs_inode *inode, u64 dirid)
3500 {
3501 	struct btrfs_root *log;
3502 	u64 index;
3503 	int ret;
3504 
3505 	if (!inode_logged(trans, inode))
3506 		return 0;
3507 
3508 	ret = join_running_log_trans(root);
3509 	if (ret)
3510 		return 0;
3511 	log = root->log_root;
3512 	mutex_lock(&inode->log_mutex);
3513 
3514 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3515 				  dirid, &index);
3516 	mutex_unlock(&inode->log_mutex);
3517 	if (ret == -ENOSPC) {
3518 		btrfs_set_log_full_commit(trans);
3519 		ret = 0;
3520 	} else if (ret < 0 && ret != -ENOENT)
3521 		btrfs_abort_transaction(trans, ret);
3522 	btrfs_end_log_trans(root);
3523 
3524 	return ret;
3525 }
3526 
3527 /*
3528  * creates a range item in the log for 'dirid'.  first_offset and
3529  * last_offset tell us which parts of the key space the log should
3530  * be considered authoritative for.
3531  */
3532 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3533 				       struct btrfs_root *log,
3534 				       struct btrfs_path *path,
3535 				       int key_type, u64 dirid,
3536 				       u64 first_offset, u64 last_offset)
3537 {
3538 	int ret;
3539 	struct btrfs_key key;
3540 	struct btrfs_dir_log_item *item;
3541 
3542 	key.objectid = dirid;
3543 	key.offset = first_offset;
3544 	if (key_type == BTRFS_DIR_ITEM_KEY)
3545 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3546 	else
3547 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3548 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3549 	if (ret)
3550 		return ret;
3551 
3552 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3553 			      struct btrfs_dir_log_item);
3554 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3555 	btrfs_mark_buffer_dirty(path->nodes[0]);
3556 	btrfs_release_path(path);
3557 	return 0;
3558 }
3559 
3560 /*
3561  * log all the items included in the current transaction for a given
3562  * directory.  This also creates the range items in the log tree required
3563  * to replay anything deleted before the fsync
3564  */
3565 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3566 			  struct btrfs_root *root, struct btrfs_inode *inode,
3567 			  struct btrfs_path *path,
3568 			  struct btrfs_path *dst_path, int key_type,
3569 			  struct btrfs_log_ctx *ctx,
3570 			  u64 min_offset, u64 *last_offset_ret)
3571 {
3572 	struct btrfs_key min_key;
3573 	struct btrfs_root *log = root->log_root;
3574 	struct extent_buffer *src;
3575 	int err = 0;
3576 	int ret;
3577 	int i;
3578 	int nritems;
3579 	u64 first_offset = min_offset;
3580 	u64 last_offset = (u64)-1;
3581 	u64 ino = btrfs_ino(inode);
3582 
3583 	log = root->log_root;
3584 
3585 	min_key.objectid = ino;
3586 	min_key.type = key_type;
3587 	min_key.offset = min_offset;
3588 
3589 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3590 
3591 	/*
3592 	 * we didn't find anything from this transaction, see if there
3593 	 * is anything at all
3594 	 */
3595 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3596 		min_key.objectid = ino;
3597 		min_key.type = key_type;
3598 		min_key.offset = (u64)-1;
3599 		btrfs_release_path(path);
3600 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3601 		if (ret < 0) {
3602 			btrfs_release_path(path);
3603 			return ret;
3604 		}
3605 		ret = btrfs_previous_item(root, path, ino, key_type);
3606 
3607 		/* if ret == 0 there are items for this type,
3608 		 * create a range to tell us the last key of this type.
3609 		 * otherwise, there are no items in this directory after
3610 		 * *min_offset, and we create a range to indicate that.
3611 		 */
3612 		if (ret == 0) {
3613 			struct btrfs_key tmp;
3614 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3615 					      path->slots[0]);
3616 			if (key_type == tmp.type)
3617 				first_offset = max(min_offset, tmp.offset) + 1;
3618 		}
3619 		goto done;
3620 	}
3621 
3622 	/* go backward to find any previous key */
3623 	ret = btrfs_previous_item(root, path, ino, key_type);
3624 	if (ret == 0) {
3625 		struct btrfs_key tmp;
3626 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3627 		if (key_type == tmp.type) {
3628 			first_offset = tmp.offset;
3629 			ret = overwrite_item(trans, log, dst_path,
3630 					     path->nodes[0], path->slots[0],
3631 					     &tmp);
3632 			if (ret) {
3633 				err = ret;
3634 				goto done;
3635 			}
3636 		}
3637 	}
3638 	btrfs_release_path(path);
3639 
3640 	/*
3641 	 * Find the first key from this transaction again.  See the note for
3642 	 * log_new_dir_dentries, if we're logging a directory recursively we
3643 	 * won't be holding its i_mutex, which means we can modify the directory
3644 	 * while we're logging it.  If we remove an entry between our first
3645 	 * search and this search we'll not find the key again and can just
3646 	 * bail.
3647 	 */
3648 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3649 	if (ret != 0)
3650 		goto done;
3651 
3652 	/*
3653 	 * we have a block from this transaction, log every item in it
3654 	 * from our directory
3655 	 */
3656 	while (1) {
3657 		struct btrfs_key tmp;
3658 		src = path->nodes[0];
3659 		nritems = btrfs_header_nritems(src);
3660 		for (i = path->slots[0]; i < nritems; i++) {
3661 			struct btrfs_dir_item *di;
3662 
3663 			btrfs_item_key_to_cpu(src, &min_key, i);
3664 
3665 			if (min_key.objectid != ino || min_key.type != key_type)
3666 				goto done;
3667 			ret = overwrite_item(trans, log, dst_path, src, i,
3668 					     &min_key);
3669 			if (ret) {
3670 				err = ret;
3671 				goto done;
3672 			}
3673 
3674 			/*
3675 			 * We must make sure that when we log a directory entry,
3676 			 * the corresponding inode, after log replay, has a
3677 			 * matching link count. For example:
3678 			 *
3679 			 * touch foo
3680 			 * mkdir mydir
3681 			 * sync
3682 			 * ln foo mydir/bar
3683 			 * xfs_io -c "fsync" mydir
3684 			 * <crash>
3685 			 * <mount fs and log replay>
3686 			 *
3687 			 * Would result in a fsync log that when replayed, our
3688 			 * file inode would have a link count of 1, but we get
3689 			 * two directory entries pointing to the same inode.
3690 			 * After removing one of the names, it would not be
3691 			 * possible to remove the other name, which resulted
3692 			 * always in stale file handle errors, and would not
3693 			 * be possible to rmdir the parent directory, since
3694 			 * its i_size could never decrement to the value
3695 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3696 			 */
3697 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3698 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3699 			if (ctx &&
3700 			    (btrfs_dir_transid(src, di) == trans->transid ||
3701 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3702 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3703 				ctx->log_new_dentries = true;
3704 		}
3705 		path->slots[0] = nritems;
3706 
3707 		/*
3708 		 * look ahead to the next item and see if it is also
3709 		 * from this directory and from this transaction
3710 		 */
3711 		ret = btrfs_next_leaf(root, path);
3712 		if (ret) {
3713 			if (ret == 1)
3714 				last_offset = (u64)-1;
3715 			else
3716 				err = ret;
3717 			goto done;
3718 		}
3719 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3720 		if (tmp.objectid != ino || tmp.type != key_type) {
3721 			last_offset = (u64)-1;
3722 			goto done;
3723 		}
3724 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3725 			ret = overwrite_item(trans, log, dst_path,
3726 					     path->nodes[0], path->slots[0],
3727 					     &tmp);
3728 			if (ret)
3729 				err = ret;
3730 			else
3731 				last_offset = tmp.offset;
3732 			goto done;
3733 		}
3734 	}
3735 done:
3736 	btrfs_release_path(path);
3737 	btrfs_release_path(dst_path);
3738 
3739 	if (err == 0) {
3740 		*last_offset_ret = last_offset;
3741 		/*
3742 		 * insert the log range keys to indicate where the log
3743 		 * is valid
3744 		 */
3745 		ret = insert_dir_log_key(trans, log, path, key_type,
3746 					 ino, first_offset, last_offset);
3747 		if (ret)
3748 			err = ret;
3749 	}
3750 	return err;
3751 }
3752 
3753 /*
3754  * logging directories is very similar to logging inodes, We find all the items
3755  * from the current transaction and write them to the log.
3756  *
3757  * The recovery code scans the directory in the subvolume, and if it finds a
3758  * key in the range logged that is not present in the log tree, then it means
3759  * that dir entry was unlinked during the transaction.
3760  *
3761  * In order for that scan to work, we must include one key smaller than
3762  * the smallest logged by this transaction and one key larger than the largest
3763  * key logged by this transaction.
3764  */
3765 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3766 			  struct btrfs_root *root, struct btrfs_inode *inode,
3767 			  struct btrfs_path *path,
3768 			  struct btrfs_path *dst_path,
3769 			  struct btrfs_log_ctx *ctx)
3770 {
3771 	u64 min_key;
3772 	u64 max_key;
3773 	int ret;
3774 	int key_type = BTRFS_DIR_ITEM_KEY;
3775 
3776 again:
3777 	min_key = 0;
3778 	max_key = 0;
3779 	while (1) {
3780 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3781 				ctx, min_key, &max_key);
3782 		if (ret)
3783 			return ret;
3784 		if (max_key == (u64)-1)
3785 			break;
3786 		min_key = max_key + 1;
3787 	}
3788 
3789 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3790 		key_type = BTRFS_DIR_INDEX_KEY;
3791 		goto again;
3792 	}
3793 	return 0;
3794 }
3795 
3796 /*
3797  * a helper function to drop items from the log before we relog an
3798  * inode.  max_key_type indicates the highest item type to remove.
3799  * This cannot be run for file data extents because it does not
3800  * free the extents they point to.
3801  */
3802 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3803 				  struct btrfs_root *log,
3804 				  struct btrfs_path *path,
3805 				  u64 objectid, int max_key_type)
3806 {
3807 	int ret;
3808 	struct btrfs_key key;
3809 	struct btrfs_key found_key;
3810 	int start_slot;
3811 
3812 	key.objectid = objectid;
3813 	key.type = max_key_type;
3814 	key.offset = (u64)-1;
3815 
3816 	while (1) {
3817 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3818 		BUG_ON(ret == 0); /* Logic error */
3819 		if (ret < 0)
3820 			break;
3821 
3822 		if (path->slots[0] == 0)
3823 			break;
3824 
3825 		path->slots[0]--;
3826 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3827 				      path->slots[0]);
3828 
3829 		if (found_key.objectid != objectid)
3830 			break;
3831 
3832 		found_key.offset = 0;
3833 		found_key.type = 0;
3834 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3835 				       &start_slot);
3836 		if (ret < 0)
3837 			break;
3838 
3839 		ret = btrfs_del_items(trans, log, path, start_slot,
3840 				      path->slots[0] - start_slot + 1);
3841 		/*
3842 		 * If start slot isn't 0 then we don't need to re-search, we've
3843 		 * found the last guy with the objectid in this tree.
3844 		 */
3845 		if (ret || start_slot != 0)
3846 			break;
3847 		btrfs_release_path(path);
3848 	}
3849 	btrfs_release_path(path);
3850 	if (ret > 0)
3851 		ret = 0;
3852 	return ret;
3853 }
3854 
3855 static void fill_inode_item(struct btrfs_trans_handle *trans,
3856 			    struct extent_buffer *leaf,
3857 			    struct btrfs_inode_item *item,
3858 			    struct inode *inode, int log_inode_only,
3859 			    u64 logged_isize)
3860 {
3861 	struct btrfs_map_token token;
3862 
3863 	btrfs_init_map_token(&token, leaf);
3864 
3865 	if (log_inode_only) {
3866 		/* set the generation to zero so the recover code
3867 		 * can tell the difference between an logging
3868 		 * just to say 'this inode exists' and a logging
3869 		 * to say 'update this inode with these values'
3870 		 */
3871 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3872 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3873 	} else {
3874 		btrfs_set_token_inode_generation(leaf, item,
3875 						 BTRFS_I(inode)->generation,
3876 						 &token);
3877 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3878 	}
3879 
3880 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3881 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3882 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3883 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3884 
3885 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3886 				     inode->i_atime.tv_sec, &token);
3887 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3888 				      inode->i_atime.tv_nsec, &token);
3889 
3890 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3891 				     inode->i_mtime.tv_sec, &token);
3892 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3893 				      inode->i_mtime.tv_nsec, &token);
3894 
3895 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3896 				     inode->i_ctime.tv_sec, &token);
3897 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3898 				      inode->i_ctime.tv_nsec, &token);
3899 
3900 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3901 				     &token);
3902 
3903 	btrfs_set_token_inode_sequence(leaf, item,
3904 				       inode_peek_iversion(inode), &token);
3905 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3906 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3907 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3908 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3909 }
3910 
3911 static int log_inode_item(struct btrfs_trans_handle *trans,
3912 			  struct btrfs_root *log, struct btrfs_path *path,
3913 			  struct btrfs_inode *inode)
3914 {
3915 	struct btrfs_inode_item *inode_item;
3916 	int ret;
3917 
3918 	ret = btrfs_insert_empty_item(trans, log, path,
3919 				      &inode->location, sizeof(*inode_item));
3920 	if (ret && ret != -EEXIST)
3921 		return ret;
3922 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3923 				    struct btrfs_inode_item);
3924 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3925 			0, 0);
3926 	btrfs_release_path(path);
3927 	return 0;
3928 }
3929 
3930 static noinline int copy_items(struct btrfs_trans_handle *trans,
3931 			       struct btrfs_inode *inode,
3932 			       struct btrfs_path *dst_path,
3933 			       struct btrfs_path *src_path, u64 *last_extent,
3934 			       int start_slot, int nr, int inode_only,
3935 			       u64 logged_isize)
3936 {
3937 	struct btrfs_fs_info *fs_info = trans->fs_info;
3938 	unsigned long src_offset;
3939 	unsigned long dst_offset;
3940 	struct btrfs_root *log = inode->root->log_root;
3941 	struct btrfs_file_extent_item *extent;
3942 	struct btrfs_inode_item *inode_item;
3943 	struct extent_buffer *src = src_path->nodes[0];
3944 	struct btrfs_key first_key, last_key, key;
3945 	int ret;
3946 	struct btrfs_key *ins_keys;
3947 	u32 *ins_sizes;
3948 	char *ins_data;
3949 	int i;
3950 	struct list_head ordered_sums;
3951 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3952 	bool has_extents = false;
3953 	bool need_find_last_extent = true;
3954 	bool done = false;
3955 
3956 	INIT_LIST_HEAD(&ordered_sums);
3957 
3958 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3959 			   nr * sizeof(u32), GFP_NOFS);
3960 	if (!ins_data)
3961 		return -ENOMEM;
3962 
3963 	first_key.objectid = (u64)-1;
3964 
3965 	ins_sizes = (u32 *)ins_data;
3966 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3967 
3968 	for (i = 0; i < nr; i++) {
3969 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3970 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3971 	}
3972 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3973 				       ins_keys, ins_sizes, nr);
3974 	if (ret) {
3975 		kfree(ins_data);
3976 		return ret;
3977 	}
3978 
3979 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3980 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3981 						   dst_path->slots[0]);
3982 
3983 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3984 
3985 		if (i == nr - 1)
3986 			last_key = ins_keys[i];
3987 
3988 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3989 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3990 						    dst_path->slots[0],
3991 						    struct btrfs_inode_item);
3992 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3993 					&inode->vfs_inode,
3994 					inode_only == LOG_INODE_EXISTS,
3995 					logged_isize);
3996 		} else {
3997 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3998 					   src_offset, ins_sizes[i]);
3999 		}
4000 
4001 		/*
4002 		 * We set need_find_last_extent here in case we know we were
4003 		 * processing other items and then walk into the first extent in
4004 		 * the inode.  If we don't hit an extent then nothing changes,
4005 		 * we'll do the last search the next time around.
4006 		 */
4007 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
4008 			has_extents = true;
4009 			if (first_key.objectid == (u64)-1)
4010 				first_key = ins_keys[i];
4011 		} else {
4012 			need_find_last_extent = false;
4013 		}
4014 
4015 		/* take a reference on file data extents so that truncates
4016 		 * or deletes of this inode don't have to relog the inode
4017 		 * again
4018 		 */
4019 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4020 		    !skip_csum) {
4021 			int found_type;
4022 			extent = btrfs_item_ptr(src, start_slot + i,
4023 						struct btrfs_file_extent_item);
4024 
4025 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4026 				continue;
4027 
4028 			found_type = btrfs_file_extent_type(src, extent);
4029 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4030 				u64 ds, dl, cs, cl;
4031 				ds = btrfs_file_extent_disk_bytenr(src,
4032 								extent);
4033 				/* ds == 0 is a hole */
4034 				if (ds == 0)
4035 					continue;
4036 
4037 				dl = btrfs_file_extent_disk_num_bytes(src,
4038 								extent);
4039 				cs = btrfs_file_extent_offset(src, extent);
4040 				cl = btrfs_file_extent_num_bytes(src,
4041 								extent);
4042 				if (btrfs_file_extent_compression(src,
4043 								  extent)) {
4044 					cs = 0;
4045 					cl = dl;
4046 				}
4047 
4048 				ret = btrfs_lookup_csums_range(
4049 						fs_info->csum_root,
4050 						ds + cs, ds + cs + cl - 1,
4051 						&ordered_sums, 0);
4052 				if (ret) {
4053 					btrfs_release_path(dst_path);
4054 					kfree(ins_data);
4055 					return ret;
4056 				}
4057 			}
4058 		}
4059 	}
4060 
4061 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4062 	btrfs_release_path(dst_path);
4063 	kfree(ins_data);
4064 
4065 	/*
4066 	 * we have to do this after the loop above to avoid changing the
4067 	 * log tree while trying to change the log tree.
4068 	 */
4069 	ret = 0;
4070 	while (!list_empty(&ordered_sums)) {
4071 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4072 						   struct btrfs_ordered_sum,
4073 						   list);
4074 		if (!ret)
4075 			ret = btrfs_csum_file_blocks(trans, log, sums);
4076 		list_del(&sums->list);
4077 		kfree(sums);
4078 	}
4079 
4080 	if (!has_extents)
4081 		return ret;
4082 
4083 	if (need_find_last_extent && *last_extent == first_key.offset) {
4084 		/*
4085 		 * We don't have any leafs between our current one and the one
4086 		 * we processed before that can have file extent items for our
4087 		 * inode (and have a generation number smaller than our current
4088 		 * transaction id).
4089 		 */
4090 		need_find_last_extent = false;
4091 	}
4092 
4093 	/*
4094 	 * Because we use btrfs_search_forward we could skip leaves that were
4095 	 * not modified and then assume *last_extent is valid when it really
4096 	 * isn't.  So back up to the previous leaf and read the end of the last
4097 	 * extent before we go and fill in holes.
4098 	 */
4099 	if (need_find_last_extent) {
4100 		u64 len;
4101 
4102 		ret = btrfs_prev_leaf(inode->root, src_path);
4103 		if (ret < 0)
4104 			return ret;
4105 		if (ret)
4106 			goto fill_holes;
4107 		if (src_path->slots[0])
4108 			src_path->slots[0]--;
4109 		src = src_path->nodes[0];
4110 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4111 		if (key.objectid != btrfs_ino(inode) ||
4112 		    key.type != BTRFS_EXTENT_DATA_KEY)
4113 			goto fill_holes;
4114 		extent = btrfs_item_ptr(src, src_path->slots[0],
4115 					struct btrfs_file_extent_item);
4116 		if (btrfs_file_extent_type(src, extent) ==
4117 		    BTRFS_FILE_EXTENT_INLINE) {
4118 			len = btrfs_file_extent_ram_bytes(src, extent);
4119 			*last_extent = ALIGN(key.offset + len,
4120 					     fs_info->sectorsize);
4121 		} else {
4122 			len = btrfs_file_extent_num_bytes(src, extent);
4123 			*last_extent = key.offset + len;
4124 		}
4125 	}
4126 fill_holes:
4127 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
4128 	 * things could have happened
4129 	 *
4130 	 * 1) A merge could have happened, so we could currently be on a leaf
4131 	 * that holds what we were copying in the first place.
4132 	 * 2) A split could have happened, and now not all of the items we want
4133 	 * are on the same leaf.
4134 	 *
4135 	 * So we need to adjust how we search for holes, we need to drop the
4136 	 * path and re-search for the first extent key we found, and then walk
4137 	 * forward until we hit the last one we copied.
4138 	 */
4139 	if (need_find_last_extent) {
4140 		/* btrfs_prev_leaf could return 1 without releasing the path */
4141 		btrfs_release_path(src_path);
4142 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
4143 				src_path, 0, 0);
4144 		if (ret < 0)
4145 			return ret;
4146 		ASSERT(ret == 0);
4147 		src = src_path->nodes[0];
4148 		i = src_path->slots[0];
4149 	} else {
4150 		i = start_slot;
4151 	}
4152 
4153 	/*
4154 	 * Ok so here we need to go through and fill in any holes we may have
4155 	 * to make sure that holes are punched for those areas in case they had
4156 	 * extents previously.
4157 	 */
4158 	while (!done) {
4159 		u64 offset, len;
4160 		u64 extent_end;
4161 
4162 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4163 			ret = btrfs_next_leaf(inode->root, src_path);
4164 			if (ret < 0)
4165 				return ret;
4166 			ASSERT(ret == 0);
4167 			src = src_path->nodes[0];
4168 			i = 0;
4169 			need_find_last_extent = true;
4170 		}
4171 
4172 		btrfs_item_key_to_cpu(src, &key, i);
4173 		if (!btrfs_comp_cpu_keys(&key, &last_key))
4174 			done = true;
4175 		if (key.objectid != btrfs_ino(inode) ||
4176 		    key.type != BTRFS_EXTENT_DATA_KEY) {
4177 			i++;
4178 			continue;
4179 		}
4180 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4181 		if (btrfs_file_extent_type(src, extent) ==
4182 		    BTRFS_FILE_EXTENT_INLINE) {
4183 			len = btrfs_file_extent_ram_bytes(src, extent);
4184 			extent_end = ALIGN(key.offset + len,
4185 					   fs_info->sectorsize);
4186 		} else {
4187 			len = btrfs_file_extent_num_bytes(src, extent);
4188 			extent_end = key.offset + len;
4189 		}
4190 		i++;
4191 
4192 		if (*last_extent == key.offset) {
4193 			*last_extent = extent_end;
4194 			continue;
4195 		}
4196 		offset = *last_extent;
4197 		len = key.offset - *last_extent;
4198 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4199 				offset, 0, 0, len, 0, len, 0, 0, 0);
4200 		if (ret)
4201 			break;
4202 		*last_extent = extent_end;
4203 	}
4204 
4205 	/*
4206 	 * Check if there is a hole between the last extent found in our leaf
4207 	 * and the first extent in the next leaf. If there is one, we need to
4208 	 * log an explicit hole so that at replay time we can punch the hole.
4209 	 */
4210 	if (ret == 0 &&
4211 	    key.objectid == btrfs_ino(inode) &&
4212 	    key.type == BTRFS_EXTENT_DATA_KEY &&
4213 	    i == btrfs_header_nritems(src_path->nodes[0])) {
4214 		ret = btrfs_next_leaf(inode->root, src_path);
4215 		need_find_last_extent = true;
4216 		if (ret > 0) {
4217 			ret = 0;
4218 		} else if (ret == 0) {
4219 			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4220 					      src_path->slots[0]);
4221 			if (key.objectid == btrfs_ino(inode) &&
4222 			    key.type == BTRFS_EXTENT_DATA_KEY &&
4223 			    *last_extent < key.offset) {
4224 				const u64 len = key.offset - *last_extent;
4225 
4226 				ret = btrfs_insert_file_extent(trans, log,
4227 							       btrfs_ino(inode),
4228 							       *last_extent, 0,
4229 							       0, len, 0, len,
4230 							       0, 0, 0);
4231 				*last_extent += len;
4232 			}
4233 		}
4234 	}
4235 	/*
4236 	 * Need to let the callers know we dropped the path so they should
4237 	 * re-search.
4238 	 */
4239 	if (!ret && need_find_last_extent)
4240 		ret = 1;
4241 	return ret;
4242 }
4243 
4244 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4245 {
4246 	struct extent_map *em1, *em2;
4247 
4248 	em1 = list_entry(a, struct extent_map, list);
4249 	em2 = list_entry(b, struct extent_map, list);
4250 
4251 	if (em1->start < em2->start)
4252 		return -1;
4253 	else if (em1->start > em2->start)
4254 		return 1;
4255 	return 0;
4256 }
4257 
4258 static int log_extent_csums(struct btrfs_trans_handle *trans,
4259 			    struct btrfs_inode *inode,
4260 			    struct btrfs_root *log_root,
4261 			    const struct extent_map *em)
4262 {
4263 	u64 csum_offset;
4264 	u64 csum_len;
4265 	LIST_HEAD(ordered_sums);
4266 	int ret = 0;
4267 
4268 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4269 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4270 	    em->block_start == EXTENT_MAP_HOLE)
4271 		return 0;
4272 
4273 	/* If we're compressed we have to save the entire range of csums. */
4274 	if (em->compress_type) {
4275 		csum_offset = 0;
4276 		csum_len = max(em->block_len, em->orig_block_len);
4277 	} else {
4278 		csum_offset = em->mod_start - em->start;
4279 		csum_len = em->mod_len;
4280 	}
4281 
4282 	/* block start is already adjusted for the file extent offset. */
4283 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4284 				       em->block_start + csum_offset,
4285 				       em->block_start + csum_offset +
4286 				       csum_len - 1, &ordered_sums, 0);
4287 	if (ret)
4288 		return ret;
4289 
4290 	while (!list_empty(&ordered_sums)) {
4291 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4292 						   struct btrfs_ordered_sum,
4293 						   list);
4294 		if (!ret)
4295 			ret = btrfs_csum_file_blocks(trans, log_root, sums);
4296 		list_del(&sums->list);
4297 		kfree(sums);
4298 	}
4299 
4300 	return ret;
4301 }
4302 
4303 static int log_one_extent(struct btrfs_trans_handle *trans,
4304 			  struct btrfs_inode *inode, struct btrfs_root *root,
4305 			  const struct extent_map *em,
4306 			  struct btrfs_path *path,
4307 			  struct btrfs_log_ctx *ctx)
4308 {
4309 	struct btrfs_root *log = root->log_root;
4310 	struct btrfs_file_extent_item *fi;
4311 	struct extent_buffer *leaf;
4312 	struct btrfs_map_token token;
4313 	struct btrfs_key key;
4314 	u64 extent_offset = em->start - em->orig_start;
4315 	u64 block_len;
4316 	int ret;
4317 	int extent_inserted = 0;
4318 
4319 	ret = log_extent_csums(trans, inode, log, em);
4320 	if (ret)
4321 		return ret;
4322 
4323 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4324 				   em->start + em->len, NULL, 0, 1,
4325 				   sizeof(*fi), &extent_inserted);
4326 	if (ret)
4327 		return ret;
4328 
4329 	if (!extent_inserted) {
4330 		key.objectid = btrfs_ino(inode);
4331 		key.type = BTRFS_EXTENT_DATA_KEY;
4332 		key.offset = em->start;
4333 
4334 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4335 					      sizeof(*fi));
4336 		if (ret)
4337 			return ret;
4338 	}
4339 	leaf = path->nodes[0];
4340 	btrfs_init_map_token(&token, leaf);
4341 	fi = btrfs_item_ptr(leaf, path->slots[0],
4342 			    struct btrfs_file_extent_item);
4343 
4344 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4345 					       &token);
4346 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4347 		btrfs_set_token_file_extent_type(leaf, fi,
4348 						 BTRFS_FILE_EXTENT_PREALLOC,
4349 						 &token);
4350 	else
4351 		btrfs_set_token_file_extent_type(leaf, fi,
4352 						 BTRFS_FILE_EXTENT_REG,
4353 						 &token);
4354 
4355 	block_len = max(em->block_len, em->orig_block_len);
4356 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4357 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4358 							em->block_start,
4359 							&token);
4360 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4361 							   &token);
4362 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4363 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4364 							em->block_start -
4365 							extent_offset, &token);
4366 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4367 							   &token);
4368 	} else {
4369 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4370 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4371 							   &token);
4372 	}
4373 
4374 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4375 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4376 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4377 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4378 						&token);
4379 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4380 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4381 	btrfs_mark_buffer_dirty(leaf);
4382 
4383 	btrfs_release_path(path);
4384 
4385 	return ret;
4386 }
4387 
4388 /*
4389  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4390  * lose them after doing a fast fsync and replaying the log. We scan the
4391  * subvolume's root instead of iterating the inode's extent map tree because
4392  * otherwise we can log incorrect extent items based on extent map conversion.
4393  * That can happen due to the fact that extent maps are merged when they
4394  * are not in the extent map tree's list of modified extents.
4395  */
4396 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4397 				      struct btrfs_inode *inode,
4398 				      struct btrfs_path *path)
4399 {
4400 	struct btrfs_root *root = inode->root;
4401 	struct btrfs_key key;
4402 	const u64 i_size = i_size_read(&inode->vfs_inode);
4403 	const u64 ino = btrfs_ino(inode);
4404 	struct btrfs_path *dst_path = NULL;
4405 	u64 last_extent = (u64)-1;
4406 	int ins_nr = 0;
4407 	int start_slot;
4408 	int ret;
4409 
4410 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4411 		return 0;
4412 
4413 	key.objectid = ino;
4414 	key.type = BTRFS_EXTENT_DATA_KEY;
4415 	key.offset = i_size;
4416 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4417 	if (ret < 0)
4418 		goto out;
4419 
4420 	while (true) {
4421 		struct extent_buffer *leaf = path->nodes[0];
4422 		int slot = path->slots[0];
4423 
4424 		if (slot >= btrfs_header_nritems(leaf)) {
4425 			if (ins_nr > 0) {
4426 				ret = copy_items(trans, inode, dst_path, path,
4427 						 &last_extent, start_slot,
4428 						 ins_nr, 1, 0);
4429 				if (ret < 0)
4430 					goto out;
4431 				ins_nr = 0;
4432 			}
4433 			ret = btrfs_next_leaf(root, path);
4434 			if (ret < 0)
4435 				goto out;
4436 			if (ret > 0) {
4437 				ret = 0;
4438 				break;
4439 			}
4440 			continue;
4441 		}
4442 
4443 		btrfs_item_key_to_cpu(leaf, &key, slot);
4444 		if (key.objectid > ino)
4445 			break;
4446 		if (WARN_ON_ONCE(key.objectid < ino) ||
4447 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4448 		    key.offset < i_size) {
4449 			path->slots[0]++;
4450 			continue;
4451 		}
4452 		if (last_extent == (u64)-1) {
4453 			last_extent = key.offset;
4454 			/*
4455 			 * Avoid logging extent items logged in past fsync calls
4456 			 * and leading to duplicate keys in the log tree.
4457 			 */
4458 			do {
4459 				ret = btrfs_truncate_inode_items(trans,
4460 							 root->log_root,
4461 							 &inode->vfs_inode,
4462 							 i_size,
4463 							 BTRFS_EXTENT_DATA_KEY);
4464 			} while (ret == -EAGAIN);
4465 			if (ret)
4466 				goto out;
4467 		}
4468 		if (ins_nr == 0)
4469 			start_slot = slot;
4470 		ins_nr++;
4471 		path->slots[0]++;
4472 		if (!dst_path) {
4473 			dst_path = btrfs_alloc_path();
4474 			if (!dst_path) {
4475 				ret = -ENOMEM;
4476 				goto out;
4477 			}
4478 		}
4479 	}
4480 	if (ins_nr > 0) {
4481 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4482 				 start_slot, ins_nr, 1, 0);
4483 		if (ret > 0)
4484 			ret = 0;
4485 	}
4486 out:
4487 	btrfs_release_path(path);
4488 	btrfs_free_path(dst_path);
4489 	return ret;
4490 }
4491 
4492 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4493 				     struct btrfs_root *root,
4494 				     struct btrfs_inode *inode,
4495 				     struct btrfs_path *path,
4496 				     struct btrfs_log_ctx *ctx,
4497 				     const u64 start,
4498 				     const u64 end)
4499 {
4500 	struct extent_map *em, *n;
4501 	struct list_head extents;
4502 	struct extent_map_tree *tree = &inode->extent_tree;
4503 	u64 test_gen;
4504 	int ret = 0;
4505 	int num = 0;
4506 
4507 	INIT_LIST_HEAD(&extents);
4508 
4509 	write_lock(&tree->lock);
4510 	test_gen = root->fs_info->last_trans_committed;
4511 
4512 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4513 		/*
4514 		 * Skip extents outside our logging range. It's important to do
4515 		 * it for correctness because if we don't ignore them, we may
4516 		 * log them before their ordered extent completes, and therefore
4517 		 * we could log them without logging their respective checksums
4518 		 * (the checksum items are added to the csum tree at the very
4519 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4520 		 * outside of our range in the list, since we may have another
4521 		 * ranged fsync in the near future that needs them. If an extent
4522 		 * outside our range corresponds to a hole, log it to avoid
4523 		 * leaving gaps between extents (fsck will complain when we are
4524 		 * not using the NO_HOLES feature).
4525 		 */
4526 		if ((em->start > end || em->start + em->len <= start) &&
4527 		    em->block_start != EXTENT_MAP_HOLE)
4528 			continue;
4529 
4530 		list_del_init(&em->list);
4531 		/*
4532 		 * Just an arbitrary number, this can be really CPU intensive
4533 		 * once we start getting a lot of extents, and really once we
4534 		 * have a bunch of extents we just want to commit since it will
4535 		 * be faster.
4536 		 */
4537 		if (++num > 32768) {
4538 			list_del_init(&tree->modified_extents);
4539 			ret = -EFBIG;
4540 			goto process;
4541 		}
4542 
4543 		if (em->generation <= test_gen)
4544 			continue;
4545 
4546 		/* We log prealloc extents beyond eof later. */
4547 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4548 		    em->start >= i_size_read(&inode->vfs_inode))
4549 			continue;
4550 
4551 		/* Need a ref to keep it from getting evicted from cache */
4552 		refcount_inc(&em->refs);
4553 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4554 		list_add_tail(&em->list, &extents);
4555 		num++;
4556 	}
4557 
4558 	list_sort(NULL, &extents, extent_cmp);
4559 process:
4560 	while (!list_empty(&extents)) {
4561 		em = list_entry(extents.next, struct extent_map, list);
4562 
4563 		list_del_init(&em->list);
4564 
4565 		/*
4566 		 * If we had an error we just need to delete everybody from our
4567 		 * private list.
4568 		 */
4569 		if (ret) {
4570 			clear_em_logging(tree, em);
4571 			free_extent_map(em);
4572 			continue;
4573 		}
4574 
4575 		write_unlock(&tree->lock);
4576 
4577 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4578 		write_lock(&tree->lock);
4579 		clear_em_logging(tree, em);
4580 		free_extent_map(em);
4581 	}
4582 	WARN_ON(!list_empty(&extents));
4583 	write_unlock(&tree->lock);
4584 
4585 	btrfs_release_path(path);
4586 	if (!ret)
4587 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4588 
4589 	return ret;
4590 }
4591 
4592 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4593 			     struct btrfs_path *path, u64 *size_ret)
4594 {
4595 	struct btrfs_key key;
4596 	int ret;
4597 
4598 	key.objectid = btrfs_ino(inode);
4599 	key.type = BTRFS_INODE_ITEM_KEY;
4600 	key.offset = 0;
4601 
4602 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4603 	if (ret < 0) {
4604 		return ret;
4605 	} else if (ret > 0) {
4606 		*size_ret = 0;
4607 	} else {
4608 		struct btrfs_inode_item *item;
4609 
4610 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4611 				      struct btrfs_inode_item);
4612 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4613 		/*
4614 		 * If the in-memory inode's i_size is smaller then the inode
4615 		 * size stored in the btree, return the inode's i_size, so
4616 		 * that we get a correct inode size after replaying the log
4617 		 * when before a power failure we had a shrinking truncate
4618 		 * followed by addition of a new name (rename / new hard link).
4619 		 * Otherwise return the inode size from the btree, to avoid
4620 		 * data loss when replaying a log due to previously doing a
4621 		 * write that expands the inode's size and logging a new name
4622 		 * immediately after.
4623 		 */
4624 		if (*size_ret > inode->vfs_inode.i_size)
4625 			*size_ret = inode->vfs_inode.i_size;
4626 	}
4627 
4628 	btrfs_release_path(path);
4629 	return 0;
4630 }
4631 
4632 /*
4633  * At the moment we always log all xattrs. This is to figure out at log replay
4634  * time which xattrs must have their deletion replayed. If a xattr is missing
4635  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4636  * because if a xattr is deleted, the inode is fsynced and a power failure
4637  * happens, causing the log to be replayed the next time the fs is mounted,
4638  * we want the xattr to not exist anymore (same behaviour as other filesystems
4639  * with a journal, ext3/4, xfs, f2fs, etc).
4640  */
4641 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4642 				struct btrfs_root *root,
4643 				struct btrfs_inode *inode,
4644 				struct btrfs_path *path,
4645 				struct btrfs_path *dst_path)
4646 {
4647 	int ret;
4648 	struct btrfs_key key;
4649 	const u64 ino = btrfs_ino(inode);
4650 	int ins_nr = 0;
4651 	int start_slot = 0;
4652 
4653 	key.objectid = ino;
4654 	key.type = BTRFS_XATTR_ITEM_KEY;
4655 	key.offset = 0;
4656 
4657 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4658 	if (ret < 0)
4659 		return ret;
4660 
4661 	while (true) {
4662 		int slot = path->slots[0];
4663 		struct extent_buffer *leaf = path->nodes[0];
4664 		int nritems = btrfs_header_nritems(leaf);
4665 
4666 		if (slot >= nritems) {
4667 			if (ins_nr > 0) {
4668 				u64 last_extent = 0;
4669 
4670 				ret = copy_items(trans, inode, dst_path, path,
4671 						 &last_extent, start_slot,
4672 						 ins_nr, 1, 0);
4673 				/* can't be 1, extent items aren't processed */
4674 				ASSERT(ret <= 0);
4675 				if (ret < 0)
4676 					return ret;
4677 				ins_nr = 0;
4678 			}
4679 			ret = btrfs_next_leaf(root, path);
4680 			if (ret < 0)
4681 				return ret;
4682 			else if (ret > 0)
4683 				break;
4684 			continue;
4685 		}
4686 
4687 		btrfs_item_key_to_cpu(leaf, &key, slot);
4688 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4689 			break;
4690 
4691 		if (ins_nr == 0)
4692 			start_slot = slot;
4693 		ins_nr++;
4694 		path->slots[0]++;
4695 		cond_resched();
4696 	}
4697 	if (ins_nr > 0) {
4698 		u64 last_extent = 0;
4699 
4700 		ret = copy_items(trans, inode, dst_path, path,
4701 				 &last_extent, start_slot,
4702 				 ins_nr, 1, 0);
4703 		/* can't be 1, extent items aren't processed */
4704 		ASSERT(ret <= 0);
4705 		if (ret < 0)
4706 			return ret;
4707 	}
4708 
4709 	return 0;
4710 }
4711 
4712 /*
4713  * If the no holes feature is enabled we need to make sure any hole between the
4714  * last extent and the i_size of our inode is explicitly marked in the log. This
4715  * is to make sure that doing something like:
4716  *
4717  *      1) create file with 128Kb of data
4718  *      2) truncate file to 64Kb
4719  *      3) truncate file to 256Kb
4720  *      4) fsync file
4721  *      5) <crash/power failure>
4722  *      6) mount fs and trigger log replay
4723  *
4724  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4725  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4726  * file correspond to a hole. The presence of explicit holes in a log tree is
4727  * what guarantees that log replay will remove/adjust file extent items in the
4728  * fs/subvol tree.
4729  *
4730  * Here we do not need to care about holes between extents, that is already done
4731  * by copy_items(). We also only need to do this in the full sync path, where we
4732  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4733  * lookup the list of modified extent maps and if any represents a hole, we
4734  * insert a corresponding extent representing a hole in the log tree.
4735  */
4736 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4737 				   struct btrfs_root *root,
4738 				   struct btrfs_inode *inode,
4739 				   struct btrfs_path *path)
4740 {
4741 	struct btrfs_fs_info *fs_info = root->fs_info;
4742 	int ret;
4743 	struct btrfs_key key;
4744 	u64 hole_start;
4745 	u64 hole_size;
4746 	struct extent_buffer *leaf;
4747 	struct btrfs_root *log = root->log_root;
4748 	const u64 ino = btrfs_ino(inode);
4749 	const u64 i_size = i_size_read(&inode->vfs_inode);
4750 
4751 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4752 		return 0;
4753 
4754 	key.objectid = ino;
4755 	key.type = BTRFS_EXTENT_DATA_KEY;
4756 	key.offset = (u64)-1;
4757 
4758 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4759 	ASSERT(ret != 0);
4760 	if (ret < 0)
4761 		return ret;
4762 
4763 	ASSERT(path->slots[0] > 0);
4764 	path->slots[0]--;
4765 	leaf = path->nodes[0];
4766 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4767 
4768 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4769 		/* inode does not have any extents */
4770 		hole_start = 0;
4771 		hole_size = i_size;
4772 	} else {
4773 		struct btrfs_file_extent_item *extent;
4774 		u64 len;
4775 
4776 		/*
4777 		 * If there's an extent beyond i_size, an explicit hole was
4778 		 * already inserted by copy_items().
4779 		 */
4780 		if (key.offset >= i_size)
4781 			return 0;
4782 
4783 		extent = btrfs_item_ptr(leaf, path->slots[0],
4784 					struct btrfs_file_extent_item);
4785 
4786 		if (btrfs_file_extent_type(leaf, extent) ==
4787 		    BTRFS_FILE_EXTENT_INLINE)
4788 			return 0;
4789 
4790 		len = btrfs_file_extent_num_bytes(leaf, extent);
4791 		/* Last extent goes beyond i_size, no need to log a hole. */
4792 		if (key.offset + len > i_size)
4793 			return 0;
4794 		hole_start = key.offset + len;
4795 		hole_size = i_size - hole_start;
4796 	}
4797 	btrfs_release_path(path);
4798 
4799 	/* Last extent ends at i_size. */
4800 	if (hole_size == 0)
4801 		return 0;
4802 
4803 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4804 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4805 				       hole_size, 0, hole_size, 0, 0, 0);
4806 	return ret;
4807 }
4808 
4809 /*
4810  * When we are logging a new inode X, check if it doesn't have a reference that
4811  * matches the reference from some other inode Y created in a past transaction
4812  * and that was renamed in the current transaction. If we don't do this, then at
4813  * log replay time we can lose inode Y (and all its files if it's a directory):
4814  *
4815  * mkdir /mnt/x
4816  * echo "hello world" > /mnt/x/foobar
4817  * sync
4818  * mv /mnt/x /mnt/y
4819  * mkdir /mnt/x                 # or touch /mnt/x
4820  * xfs_io -c fsync /mnt/x
4821  * <power fail>
4822  * mount fs, trigger log replay
4823  *
4824  * After the log replay procedure, we would lose the first directory and all its
4825  * files (file foobar).
4826  * For the case where inode Y is not a directory we simply end up losing it:
4827  *
4828  * echo "123" > /mnt/foo
4829  * sync
4830  * mv /mnt/foo /mnt/bar
4831  * echo "abc" > /mnt/foo
4832  * xfs_io -c fsync /mnt/foo
4833  * <power fail>
4834  *
4835  * We also need this for cases where a snapshot entry is replaced by some other
4836  * entry (file or directory) otherwise we end up with an unreplayable log due to
4837  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4838  * if it were a regular entry:
4839  *
4840  * mkdir /mnt/x
4841  * btrfs subvolume snapshot /mnt /mnt/x/snap
4842  * btrfs subvolume delete /mnt/x/snap
4843  * rmdir /mnt/x
4844  * mkdir /mnt/x
4845  * fsync /mnt/x or fsync some new file inside it
4846  * <power fail>
4847  *
4848  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4849  * the same transaction.
4850  */
4851 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4852 					 const int slot,
4853 					 const struct btrfs_key *key,
4854 					 struct btrfs_inode *inode,
4855 					 u64 *other_ino, u64 *other_parent)
4856 {
4857 	int ret;
4858 	struct btrfs_path *search_path;
4859 	char *name = NULL;
4860 	u32 name_len = 0;
4861 	u32 item_size = btrfs_item_size_nr(eb, slot);
4862 	u32 cur_offset = 0;
4863 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4864 
4865 	search_path = btrfs_alloc_path();
4866 	if (!search_path)
4867 		return -ENOMEM;
4868 	search_path->search_commit_root = 1;
4869 	search_path->skip_locking = 1;
4870 
4871 	while (cur_offset < item_size) {
4872 		u64 parent;
4873 		u32 this_name_len;
4874 		u32 this_len;
4875 		unsigned long name_ptr;
4876 		struct btrfs_dir_item *di;
4877 
4878 		if (key->type == BTRFS_INODE_REF_KEY) {
4879 			struct btrfs_inode_ref *iref;
4880 
4881 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4882 			parent = key->offset;
4883 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4884 			name_ptr = (unsigned long)(iref + 1);
4885 			this_len = sizeof(*iref) + this_name_len;
4886 		} else {
4887 			struct btrfs_inode_extref *extref;
4888 
4889 			extref = (struct btrfs_inode_extref *)(ptr +
4890 							       cur_offset);
4891 			parent = btrfs_inode_extref_parent(eb, extref);
4892 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4893 			name_ptr = (unsigned long)&extref->name;
4894 			this_len = sizeof(*extref) + this_name_len;
4895 		}
4896 
4897 		if (this_name_len > name_len) {
4898 			char *new_name;
4899 
4900 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4901 			if (!new_name) {
4902 				ret = -ENOMEM;
4903 				goto out;
4904 			}
4905 			name_len = this_name_len;
4906 			name = new_name;
4907 		}
4908 
4909 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4910 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4911 				parent, name, this_name_len, 0);
4912 		if (di && !IS_ERR(di)) {
4913 			struct btrfs_key di_key;
4914 
4915 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4916 						  di, &di_key);
4917 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4918 				if (di_key.objectid != key->objectid) {
4919 					ret = 1;
4920 					*other_ino = di_key.objectid;
4921 					*other_parent = parent;
4922 				} else {
4923 					ret = 0;
4924 				}
4925 			} else {
4926 				ret = -EAGAIN;
4927 			}
4928 			goto out;
4929 		} else if (IS_ERR(di)) {
4930 			ret = PTR_ERR(di);
4931 			goto out;
4932 		}
4933 		btrfs_release_path(search_path);
4934 
4935 		cur_offset += this_len;
4936 	}
4937 	ret = 0;
4938 out:
4939 	btrfs_free_path(search_path);
4940 	kfree(name);
4941 	return ret;
4942 }
4943 
4944 struct btrfs_ino_list {
4945 	u64 ino;
4946 	u64 parent;
4947 	struct list_head list;
4948 };
4949 
4950 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4951 				  struct btrfs_root *root,
4952 				  struct btrfs_path *path,
4953 				  struct btrfs_log_ctx *ctx,
4954 				  u64 ino, u64 parent)
4955 {
4956 	struct btrfs_ino_list *ino_elem;
4957 	LIST_HEAD(inode_list);
4958 	int ret = 0;
4959 
4960 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4961 	if (!ino_elem)
4962 		return -ENOMEM;
4963 	ino_elem->ino = ino;
4964 	ino_elem->parent = parent;
4965 	list_add_tail(&ino_elem->list, &inode_list);
4966 
4967 	while (!list_empty(&inode_list)) {
4968 		struct btrfs_fs_info *fs_info = root->fs_info;
4969 		struct btrfs_key key;
4970 		struct inode *inode;
4971 
4972 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4973 					    list);
4974 		ino = ino_elem->ino;
4975 		parent = ino_elem->parent;
4976 		list_del(&ino_elem->list);
4977 		kfree(ino_elem);
4978 		if (ret)
4979 			continue;
4980 
4981 		btrfs_release_path(path);
4982 
4983 		key.objectid = ino;
4984 		key.type = BTRFS_INODE_ITEM_KEY;
4985 		key.offset = 0;
4986 		inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4987 		/*
4988 		 * If the other inode that had a conflicting dir entry was
4989 		 * deleted in the current transaction, we need to log its parent
4990 		 * directory.
4991 		 */
4992 		if (IS_ERR(inode)) {
4993 			ret = PTR_ERR(inode);
4994 			if (ret == -ENOENT) {
4995 				key.objectid = parent;
4996 				inode = btrfs_iget(fs_info->sb, &key, root,
4997 						   NULL);
4998 				if (IS_ERR(inode)) {
4999 					ret = PTR_ERR(inode);
5000 				} else {
5001 					ret = btrfs_log_inode(trans, root,
5002 						      BTRFS_I(inode),
5003 						      LOG_OTHER_INODE_ALL,
5004 						      0, LLONG_MAX, ctx);
5005 					btrfs_add_delayed_iput(inode);
5006 				}
5007 			}
5008 			continue;
5009 		}
5010 		/*
5011 		 * We are safe logging the other inode without acquiring its
5012 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5013 		 * are safe against concurrent renames of the other inode as
5014 		 * well because during a rename we pin the log and update the
5015 		 * log with the new name before we unpin it.
5016 		 */
5017 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5018 				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
5019 		if (ret) {
5020 			btrfs_add_delayed_iput(inode);
5021 			continue;
5022 		}
5023 
5024 		key.objectid = ino;
5025 		key.type = BTRFS_INODE_REF_KEY;
5026 		key.offset = 0;
5027 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5028 		if (ret < 0) {
5029 			btrfs_add_delayed_iput(inode);
5030 			continue;
5031 		}
5032 
5033 		while (true) {
5034 			struct extent_buffer *leaf = path->nodes[0];
5035 			int slot = path->slots[0];
5036 			u64 other_ino = 0;
5037 			u64 other_parent = 0;
5038 
5039 			if (slot >= btrfs_header_nritems(leaf)) {
5040 				ret = btrfs_next_leaf(root, path);
5041 				if (ret < 0) {
5042 					break;
5043 				} else if (ret > 0) {
5044 					ret = 0;
5045 					break;
5046 				}
5047 				continue;
5048 			}
5049 
5050 			btrfs_item_key_to_cpu(leaf, &key, slot);
5051 			if (key.objectid != ino ||
5052 			    (key.type != BTRFS_INODE_REF_KEY &&
5053 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5054 				ret = 0;
5055 				break;
5056 			}
5057 
5058 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5059 					BTRFS_I(inode), &other_ino,
5060 					&other_parent);
5061 			if (ret < 0)
5062 				break;
5063 			if (ret > 0) {
5064 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5065 				if (!ino_elem) {
5066 					ret = -ENOMEM;
5067 					break;
5068 				}
5069 				ino_elem->ino = other_ino;
5070 				ino_elem->parent = other_parent;
5071 				list_add_tail(&ino_elem->list, &inode_list);
5072 				ret = 0;
5073 			}
5074 			path->slots[0]++;
5075 		}
5076 		btrfs_add_delayed_iput(inode);
5077 	}
5078 
5079 	return ret;
5080 }
5081 
5082 /* log a single inode in the tree log.
5083  * At least one parent directory for this inode must exist in the tree
5084  * or be logged already.
5085  *
5086  * Any items from this inode changed by the current transaction are copied
5087  * to the log tree.  An extra reference is taken on any extents in this
5088  * file, allowing us to avoid a whole pile of corner cases around logging
5089  * blocks that have been removed from the tree.
5090  *
5091  * See LOG_INODE_ALL and related defines for a description of what inode_only
5092  * does.
5093  *
5094  * This handles both files and directories.
5095  */
5096 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5097 			   struct btrfs_root *root, struct btrfs_inode *inode,
5098 			   int inode_only,
5099 			   const loff_t start,
5100 			   const loff_t end,
5101 			   struct btrfs_log_ctx *ctx)
5102 {
5103 	struct btrfs_fs_info *fs_info = root->fs_info;
5104 	struct btrfs_path *path;
5105 	struct btrfs_path *dst_path;
5106 	struct btrfs_key min_key;
5107 	struct btrfs_key max_key;
5108 	struct btrfs_root *log = root->log_root;
5109 	u64 last_extent = 0;
5110 	int err = 0;
5111 	int ret;
5112 	int nritems;
5113 	int ins_start_slot = 0;
5114 	int ins_nr;
5115 	bool fast_search = false;
5116 	u64 ino = btrfs_ino(inode);
5117 	struct extent_map_tree *em_tree = &inode->extent_tree;
5118 	u64 logged_isize = 0;
5119 	bool need_log_inode_item = true;
5120 	bool xattrs_logged = false;
5121 	bool recursive_logging = false;
5122 
5123 	path = btrfs_alloc_path();
5124 	if (!path)
5125 		return -ENOMEM;
5126 	dst_path = btrfs_alloc_path();
5127 	if (!dst_path) {
5128 		btrfs_free_path(path);
5129 		return -ENOMEM;
5130 	}
5131 
5132 	min_key.objectid = ino;
5133 	min_key.type = BTRFS_INODE_ITEM_KEY;
5134 	min_key.offset = 0;
5135 
5136 	max_key.objectid = ino;
5137 
5138 
5139 	/* today the code can only do partial logging of directories */
5140 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5141 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5142 		       &inode->runtime_flags) &&
5143 	     inode_only >= LOG_INODE_EXISTS))
5144 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5145 	else
5146 		max_key.type = (u8)-1;
5147 	max_key.offset = (u64)-1;
5148 
5149 	/*
5150 	 * Only run delayed items if we are a dir or a new file.
5151 	 * Otherwise commit the delayed inode only, which is needed in
5152 	 * order for the log replay code to mark inodes for link count
5153 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5154 	 */
5155 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5156 	    inode->generation > fs_info->last_trans_committed)
5157 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5158 	else
5159 		ret = btrfs_commit_inode_delayed_inode(inode);
5160 
5161 	if (ret) {
5162 		btrfs_free_path(path);
5163 		btrfs_free_path(dst_path);
5164 		return ret;
5165 	}
5166 
5167 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5168 		recursive_logging = true;
5169 		if (inode_only == LOG_OTHER_INODE)
5170 			inode_only = LOG_INODE_EXISTS;
5171 		else
5172 			inode_only = LOG_INODE_ALL;
5173 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5174 	} else {
5175 		mutex_lock(&inode->log_mutex);
5176 	}
5177 
5178 	/*
5179 	 * a brute force approach to making sure we get the most uptodate
5180 	 * copies of everything.
5181 	 */
5182 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5183 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5184 
5185 		if (inode_only == LOG_INODE_EXISTS)
5186 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5187 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5188 	} else {
5189 		if (inode_only == LOG_INODE_EXISTS) {
5190 			/*
5191 			 * Make sure the new inode item we write to the log has
5192 			 * the same isize as the current one (if it exists).
5193 			 * This is necessary to prevent data loss after log
5194 			 * replay, and also to prevent doing a wrong expanding
5195 			 * truncate - for e.g. create file, write 4K into offset
5196 			 * 0, fsync, write 4K into offset 4096, add hard link,
5197 			 * fsync some other file (to sync log), power fail - if
5198 			 * we use the inode's current i_size, after log replay
5199 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5200 			 * (zeroes), as if an expanding truncate happened,
5201 			 * instead of getting a file of 4Kb only.
5202 			 */
5203 			err = logged_inode_size(log, inode, path, &logged_isize);
5204 			if (err)
5205 				goto out_unlock;
5206 		}
5207 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5208 			     &inode->runtime_flags)) {
5209 			if (inode_only == LOG_INODE_EXISTS) {
5210 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5211 				ret = drop_objectid_items(trans, log, path, ino,
5212 							  max_key.type);
5213 			} else {
5214 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5215 					  &inode->runtime_flags);
5216 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5217 					  &inode->runtime_flags);
5218 				while(1) {
5219 					ret = btrfs_truncate_inode_items(trans,
5220 						log, &inode->vfs_inode, 0, 0);
5221 					if (ret != -EAGAIN)
5222 						break;
5223 				}
5224 			}
5225 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5226 					      &inode->runtime_flags) ||
5227 			   inode_only == LOG_INODE_EXISTS) {
5228 			if (inode_only == LOG_INODE_ALL)
5229 				fast_search = true;
5230 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5231 			ret = drop_objectid_items(trans, log, path, ino,
5232 						  max_key.type);
5233 		} else {
5234 			if (inode_only == LOG_INODE_ALL)
5235 				fast_search = true;
5236 			goto log_extents;
5237 		}
5238 
5239 	}
5240 	if (ret) {
5241 		err = ret;
5242 		goto out_unlock;
5243 	}
5244 
5245 	while (1) {
5246 		ins_nr = 0;
5247 		ret = btrfs_search_forward(root, &min_key,
5248 					   path, trans->transid);
5249 		if (ret < 0) {
5250 			err = ret;
5251 			goto out_unlock;
5252 		}
5253 		if (ret != 0)
5254 			break;
5255 again:
5256 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
5257 		if (min_key.objectid != ino)
5258 			break;
5259 		if (min_key.type > max_key.type)
5260 			break;
5261 
5262 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
5263 			need_log_inode_item = false;
5264 
5265 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
5266 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5267 		    inode->generation == trans->transid &&
5268 		    !recursive_logging) {
5269 			u64 other_ino = 0;
5270 			u64 other_parent = 0;
5271 
5272 			ret = btrfs_check_ref_name_override(path->nodes[0],
5273 					path->slots[0], &min_key, inode,
5274 					&other_ino, &other_parent);
5275 			if (ret < 0) {
5276 				err = ret;
5277 				goto out_unlock;
5278 			} else if (ret > 0 && ctx &&
5279 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5280 				if (ins_nr > 0) {
5281 					ins_nr++;
5282 				} else {
5283 					ins_nr = 1;
5284 					ins_start_slot = path->slots[0];
5285 				}
5286 				ret = copy_items(trans, inode, dst_path, path,
5287 						 &last_extent, ins_start_slot,
5288 						 ins_nr, inode_only,
5289 						 logged_isize);
5290 				if (ret < 0) {
5291 					err = ret;
5292 					goto out_unlock;
5293 				}
5294 				ins_nr = 0;
5295 
5296 				err = log_conflicting_inodes(trans, root, path,
5297 						ctx, other_ino, other_parent);
5298 				if (err)
5299 					goto out_unlock;
5300 				btrfs_release_path(path);
5301 				goto next_key;
5302 			}
5303 		}
5304 
5305 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5306 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5307 			if (ins_nr == 0)
5308 				goto next_slot;
5309 			ret = copy_items(trans, inode, dst_path, path,
5310 					 &last_extent, ins_start_slot,
5311 					 ins_nr, inode_only, logged_isize);
5312 			if (ret < 0) {
5313 				err = ret;
5314 				goto out_unlock;
5315 			}
5316 			ins_nr = 0;
5317 			if (ret) {
5318 				btrfs_release_path(path);
5319 				continue;
5320 			}
5321 			goto next_slot;
5322 		}
5323 
5324 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5325 			ins_nr++;
5326 			goto next_slot;
5327 		} else if (!ins_nr) {
5328 			ins_start_slot = path->slots[0];
5329 			ins_nr = 1;
5330 			goto next_slot;
5331 		}
5332 
5333 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5334 				 ins_start_slot, ins_nr, inode_only,
5335 				 logged_isize);
5336 		if (ret < 0) {
5337 			err = ret;
5338 			goto out_unlock;
5339 		}
5340 		if (ret) {
5341 			ins_nr = 0;
5342 			btrfs_release_path(path);
5343 			continue;
5344 		}
5345 		ins_nr = 1;
5346 		ins_start_slot = path->slots[0];
5347 next_slot:
5348 
5349 		nritems = btrfs_header_nritems(path->nodes[0]);
5350 		path->slots[0]++;
5351 		if (path->slots[0] < nritems) {
5352 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5353 					      path->slots[0]);
5354 			goto again;
5355 		}
5356 		if (ins_nr) {
5357 			ret = copy_items(trans, inode, dst_path, path,
5358 					 &last_extent, ins_start_slot,
5359 					 ins_nr, inode_only, logged_isize);
5360 			if (ret < 0) {
5361 				err = ret;
5362 				goto out_unlock;
5363 			}
5364 			ret = 0;
5365 			ins_nr = 0;
5366 		}
5367 		btrfs_release_path(path);
5368 next_key:
5369 		if (min_key.offset < (u64)-1) {
5370 			min_key.offset++;
5371 		} else if (min_key.type < max_key.type) {
5372 			min_key.type++;
5373 			min_key.offset = 0;
5374 		} else {
5375 			break;
5376 		}
5377 	}
5378 	if (ins_nr) {
5379 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5380 				 ins_start_slot, ins_nr, inode_only,
5381 				 logged_isize);
5382 		if (ret < 0) {
5383 			err = ret;
5384 			goto out_unlock;
5385 		}
5386 		ret = 0;
5387 		ins_nr = 0;
5388 	}
5389 
5390 	btrfs_release_path(path);
5391 	btrfs_release_path(dst_path);
5392 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5393 	if (err)
5394 		goto out_unlock;
5395 	xattrs_logged = true;
5396 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5397 		btrfs_release_path(path);
5398 		btrfs_release_path(dst_path);
5399 		err = btrfs_log_trailing_hole(trans, root, inode, path);
5400 		if (err)
5401 			goto out_unlock;
5402 	}
5403 log_extents:
5404 	btrfs_release_path(path);
5405 	btrfs_release_path(dst_path);
5406 	if (need_log_inode_item) {
5407 		err = log_inode_item(trans, log, dst_path, inode);
5408 		if (!err && !xattrs_logged) {
5409 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5410 						   dst_path);
5411 			btrfs_release_path(path);
5412 		}
5413 		if (err)
5414 			goto out_unlock;
5415 	}
5416 	if (fast_search) {
5417 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5418 						ctx, start, end);
5419 		if (ret) {
5420 			err = ret;
5421 			goto out_unlock;
5422 		}
5423 	} else if (inode_only == LOG_INODE_ALL) {
5424 		struct extent_map *em, *n;
5425 
5426 		write_lock(&em_tree->lock);
5427 		/*
5428 		 * We can't just remove every em if we're called for a ranged
5429 		 * fsync - that is, one that doesn't cover the whole possible
5430 		 * file range (0 to LLONG_MAX). This is because we can have
5431 		 * em's that fall outside the range we're logging and therefore
5432 		 * their ordered operations haven't completed yet
5433 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5434 		 * didn't get their respective file extent item in the fs/subvol
5435 		 * tree yet, and need to let the next fast fsync (one which
5436 		 * consults the list of modified extent maps) find the em so
5437 		 * that it logs a matching file extent item and waits for the
5438 		 * respective ordered operation to complete (if it's still
5439 		 * running).
5440 		 *
5441 		 * Removing every em outside the range we're logging would make
5442 		 * the next fast fsync not log their matching file extent items,
5443 		 * therefore making us lose data after a log replay.
5444 		 */
5445 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5446 					 list) {
5447 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5448 
5449 			if (em->mod_start >= start && mod_end <= end)
5450 				list_del_init(&em->list);
5451 		}
5452 		write_unlock(&em_tree->lock);
5453 	}
5454 
5455 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5456 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5457 					ctx);
5458 		if (ret) {
5459 			err = ret;
5460 			goto out_unlock;
5461 		}
5462 	}
5463 
5464 	/*
5465 	 * Don't update last_log_commit if we logged that an inode exists after
5466 	 * it was loaded to memory (full_sync bit set).
5467 	 * This is to prevent data loss when we do a write to the inode, then
5468 	 * the inode gets evicted after all delalloc was flushed, then we log
5469 	 * it exists (due to a rename for example) and then fsync it. This last
5470 	 * fsync would do nothing (not logging the extents previously written).
5471 	 */
5472 	spin_lock(&inode->lock);
5473 	inode->logged_trans = trans->transid;
5474 	if (inode_only != LOG_INODE_EXISTS ||
5475 	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5476 		inode->last_log_commit = inode->last_sub_trans;
5477 	spin_unlock(&inode->lock);
5478 out_unlock:
5479 	mutex_unlock(&inode->log_mutex);
5480 
5481 	btrfs_free_path(path);
5482 	btrfs_free_path(dst_path);
5483 	return err;
5484 }
5485 
5486 /*
5487  * Check if we must fallback to a transaction commit when logging an inode.
5488  * This must be called after logging the inode and is used only in the context
5489  * when fsyncing an inode requires the need to log some other inode - in which
5490  * case we can't lock the i_mutex of each other inode we need to log as that
5491  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5492  * log inodes up or down in the hierarchy) or rename operations for example. So
5493  * we take the log_mutex of the inode after we have logged it and then check for
5494  * its last_unlink_trans value - this is safe because any task setting
5495  * last_unlink_trans must take the log_mutex and it must do this before it does
5496  * the actual unlink operation, so if we do this check before a concurrent task
5497  * sets last_unlink_trans it means we've logged a consistent version/state of
5498  * all the inode items, otherwise we are not sure and must do a transaction
5499  * commit (the concurrent task might have only updated last_unlink_trans before
5500  * we logged the inode or it might have also done the unlink).
5501  */
5502 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5503 					  struct btrfs_inode *inode)
5504 {
5505 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5506 	bool ret = false;
5507 
5508 	mutex_lock(&inode->log_mutex);
5509 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5510 		/*
5511 		 * Make sure any commits to the log are forced to be full
5512 		 * commits.
5513 		 */
5514 		btrfs_set_log_full_commit(trans);
5515 		ret = true;
5516 	}
5517 	mutex_unlock(&inode->log_mutex);
5518 
5519 	return ret;
5520 }
5521 
5522 /*
5523  * follow the dentry parent pointers up the chain and see if any
5524  * of the directories in it require a full commit before they can
5525  * be logged.  Returns zero if nothing special needs to be done or 1 if
5526  * a full commit is required.
5527  */
5528 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5529 					       struct btrfs_inode *inode,
5530 					       struct dentry *parent,
5531 					       struct super_block *sb,
5532 					       u64 last_committed)
5533 {
5534 	int ret = 0;
5535 	struct dentry *old_parent = NULL;
5536 
5537 	/*
5538 	 * for regular files, if its inode is already on disk, we don't
5539 	 * have to worry about the parents at all.  This is because
5540 	 * we can use the last_unlink_trans field to record renames
5541 	 * and other fun in this file.
5542 	 */
5543 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5544 	    inode->generation <= last_committed &&
5545 	    inode->last_unlink_trans <= last_committed)
5546 		goto out;
5547 
5548 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5549 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5550 			goto out;
5551 		inode = BTRFS_I(d_inode(parent));
5552 	}
5553 
5554 	while (1) {
5555 		if (btrfs_must_commit_transaction(trans, inode)) {
5556 			ret = 1;
5557 			break;
5558 		}
5559 
5560 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5561 			break;
5562 
5563 		if (IS_ROOT(parent)) {
5564 			inode = BTRFS_I(d_inode(parent));
5565 			if (btrfs_must_commit_transaction(trans, inode))
5566 				ret = 1;
5567 			break;
5568 		}
5569 
5570 		parent = dget_parent(parent);
5571 		dput(old_parent);
5572 		old_parent = parent;
5573 		inode = BTRFS_I(d_inode(parent));
5574 
5575 	}
5576 	dput(old_parent);
5577 out:
5578 	return ret;
5579 }
5580 
5581 struct btrfs_dir_list {
5582 	u64 ino;
5583 	struct list_head list;
5584 };
5585 
5586 /*
5587  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5588  * details about the why it is needed.
5589  * This is a recursive operation - if an existing dentry corresponds to a
5590  * directory, that directory's new entries are logged too (same behaviour as
5591  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5592  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5593  * complains about the following circular lock dependency / possible deadlock:
5594  *
5595  *        CPU0                                        CPU1
5596  *        ----                                        ----
5597  * lock(&type->i_mutex_dir_key#3/2);
5598  *                                            lock(sb_internal#2);
5599  *                                            lock(&type->i_mutex_dir_key#3/2);
5600  * lock(&sb->s_type->i_mutex_key#14);
5601  *
5602  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5603  * sb_start_intwrite() in btrfs_start_transaction().
5604  * Not locking i_mutex of the inodes is still safe because:
5605  *
5606  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5607  *    that while logging the inode new references (names) are added or removed
5608  *    from the inode, leaving the logged inode item with a link count that does
5609  *    not match the number of logged inode reference items. This is fine because
5610  *    at log replay time we compute the real number of links and correct the
5611  *    link count in the inode item (see replay_one_buffer() and
5612  *    link_to_fixup_dir());
5613  *
5614  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5615  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5616  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5617  *    has a size that doesn't match the sum of the lengths of all the logged
5618  *    names. This does not result in a problem because if a dir_item key is
5619  *    logged but its matching dir_index key is not logged, at log replay time we
5620  *    don't use it to replay the respective name (see replay_one_name()). On the
5621  *    other hand if only the dir_index key ends up being logged, the respective
5622  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5623  *    keys created (see replay_one_name()).
5624  *    The directory's inode item with a wrong i_size is not a problem as well,
5625  *    since we don't use it at log replay time to set the i_size in the inode
5626  *    item of the fs/subvol tree (see overwrite_item()).
5627  */
5628 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5629 				struct btrfs_root *root,
5630 				struct btrfs_inode *start_inode,
5631 				struct btrfs_log_ctx *ctx)
5632 {
5633 	struct btrfs_fs_info *fs_info = root->fs_info;
5634 	struct btrfs_root *log = root->log_root;
5635 	struct btrfs_path *path;
5636 	LIST_HEAD(dir_list);
5637 	struct btrfs_dir_list *dir_elem;
5638 	int ret = 0;
5639 
5640 	path = btrfs_alloc_path();
5641 	if (!path)
5642 		return -ENOMEM;
5643 
5644 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5645 	if (!dir_elem) {
5646 		btrfs_free_path(path);
5647 		return -ENOMEM;
5648 	}
5649 	dir_elem->ino = btrfs_ino(start_inode);
5650 	list_add_tail(&dir_elem->list, &dir_list);
5651 
5652 	while (!list_empty(&dir_list)) {
5653 		struct extent_buffer *leaf;
5654 		struct btrfs_key min_key;
5655 		int nritems;
5656 		int i;
5657 
5658 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5659 					    list);
5660 		if (ret)
5661 			goto next_dir_inode;
5662 
5663 		min_key.objectid = dir_elem->ino;
5664 		min_key.type = BTRFS_DIR_ITEM_KEY;
5665 		min_key.offset = 0;
5666 again:
5667 		btrfs_release_path(path);
5668 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5669 		if (ret < 0) {
5670 			goto next_dir_inode;
5671 		} else if (ret > 0) {
5672 			ret = 0;
5673 			goto next_dir_inode;
5674 		}
5675 
5676 process_leaf:
5677 		leaf = path->nodes[0];
5678 		nritems = btrfs_header_nritems(leaf);
5679 		for (i = path->slots[0]; i < nritems; i++) {
5680 			struct btrfs_dir_item *di;
5681 			struct btrfs_key di_key;
5682 			struct inode *di_inode;
5683 			struct btrfs_dir_list *new_dir_elem;
5684 			int log_mode = LOG_INODE_EXISTS;
5685 			int type;
5686 
5687 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5688 			if (min_key.objectid != dir_elem->ino ||
5689 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5690 				goto next_dir_inode;
5691 
5692 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5693 			type = btrfs_dir_type(leaf, di);
5694 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5695 			    type != BTRFS_FT_DIR)
5696 				continue;
5697 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5698 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5699 				continue;
5700 
5701 			btrfs_release_path(path);
5702 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5703 			if (IS_ERR(di_inode)) {
5704 				ret = PTR_ERR(di_inode);
5705 				goto next_dir_inode;
5706 			}
5707 
5708 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5709 				btrfs_add_delayed_iput(di_inode);
5710 				break;
5711 			}
5712 
5713 			ctx->log_new_dentries = false;
5714 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5715 				log_mode = LOG_INODE_ALL;
5716 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5717 					      log_mode, 0, LLONG_MAX, ctx);
5718 			if (!ret &&
5719 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5720 				ret = 1;
5721 			btrfs_add_delayed_iput(di_inode);
5722 			if (ret)
5723 				goto next_dir_inode;
5724 			if (ctx->log_new_dentries) {
5725 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5726 						       GFP_NOFS);
5727 				if (!new_dir_elem) {
5728 					ret = -ENOMEM;
5729 					goto next_dir_inode;
5730 				}
5731 				new_dir_elem->ino = di_key.objectid;
5732 				list_add_tail(&new_dir_elem->list, &dir_list);
5733 			}
5734 			break;
5735 		}
5736 		if (i == nritems) {
5737 			ret = btrfs_next_leaf(log, path);
5738 			if (ret < 0) {
5739 				goto next_dir_inode;
5740 			} else if (ret > 0) {
5741 				ret = 0;
5742 				goto next_dir_inode;
5743 			}
5744 			goto process_leaf;
5745 		}
5746 		if (min_key.offset < (u64)-1) {
5747 			min_key.offset++;
5748 			goto again;
5749 		}
5750 next_dir_inode:
5751 		list_del(&dir_elem->list);
5752 		kfree(dir_elem);
5753 	}
5754 
5755 	btrfs_free_path(path);
5756 	return ret;
5757 }
5758 
5759 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5760 				 struct btrfs_inode *inode,
5761 				 struct btrfs_log_ctx *ctx)
5762 {
5763 	struct btrfs_fs_info *fs_info = trans->fs_info;
5764 	int ret;
5765 	struct btrfs_path *path;
5766 	struct btrfs_key key;
5767 	struct btrfs_root *root = inode->root;
5768 	const u64 ino = btrfs_ino(inode);
5769 
5770 	path = btrfs_alloc_path();
5771 	if (!path)
5772 		return -ENOMEM;
5773 	path->skip_locking = 1;
5774 	path->search_commit_root = 1;
5775 
5776 	key.objectid = ino;
5777 	key.type = BTRFS_INODE_REF_KEY;
5778 	key.offset = 0;
5779 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5780 	if (ret < 0)
5781 		goto out;
5782 
5783 	while (true) {
5784 		struct extent_buffer *leaf = path->nodes[0];
5785 		int slot = path->slots[0];
5786 		u32 cur_offset = 0;
5787 		u32 item_size;
5788 		unsigned long ptr;
5789 
5790 		if (slot >= btrfs_header_nritems(leaf)) {
5791 			ret = btrfs_next_leaf(root, path);
5792 			if (ret < 0)
5793 				goto out;
5794 			else if (ret > 0)
5795 				break;
5796 			continue;
5797 		}
5798 
5799 		btrfs_item_key_to_cpu(leaf, &key, slot);
5800 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5801 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5802 			break;
5803 
5804 		item_size = btrfs_item_size_nr(leaf, slot);
5805 		ptr = btrfs_item_ptr_offset(leaf, slot);
5806 		while (cur_offset < item_size) {
5807 			struct btrfs_key inode_key;
5808 			struct inode *dir_inode;
5809 
5810 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5811 			inode_key.offset = 0;
5812 
5813 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5814 				struct btrfs_inode_extref *extref;
5815 
5816 				extref = (struct btrfs_inode_extref *)
5817 					(ptr + cur_offset);
5818 				inode_key.objectid = btrfs_inode_extref_parent(
5819 					leaf, extref);
5820 				cur_offset += sizeof(*extref);
5821 				cur_offset += btrfs_inode_extref_name_len(leaf,
5822 					extref);
5823 			} else {
5824 				inode_key.objectid = key.offset;
5825 				cur_offset = item_size;
5826 			}
5827 
5828 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5829 					       root, NULL);
5830 			/*
5831 			 * If the parent inode was deleted, return an error to
5832 			 * fallback to a transaction commit. This is to prevent
5833 			 * getting an inode that was moved from one parent A to
5834 			 * a parent B, got its former parent A deleted and then
5835 			 * it got fsync'ed, from existing at both parents after
5836 			 * a log replay (and the old parent still existing).
5837 			 * Example:
5838 			 *
5839 			 * mkdir /mnt/A
5840 			 * mkdir /mnt/B
5841 			 * touch /mnt/B/bar
5842 			 * sync
5843 			 * mv /mnt/B/bar /mnt/A/bar
5844 			 * mv -T /mnt/A /mnt/B
5845 			 * fsync /mnt/B/bar
5846 			 * <power fail>
5847 			 *
5848 			 * If we ignore the old parent B which got deleted,
5849 			 * after a log replay we would have file bar linked
5850 			 * at both parents and the old parent B would still
5851 			 * exist.
5852 			 */
5853 			if (IS_ERR(dir_inode)) {
5854 				ret = PTR_ERR(dir_inode);
5855 				goto out;
5856 			}
5857 
5858 			if (ctx)
5859 				ctx->log_new_dentries = false;
5860 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5861 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5862 			if (!ret &&
5863 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5864 				ret = 1;
5865 			if (!ret && ctx && ctx->log_new_dentries)
5866 				ret = log_new_dir_dentries(trans, root,
5867 						   BTRFS_I(dir_inode), ctx);
5868 			btrfs_add_delayed_iput(dir_inode);
5869 			if (ret)
5870 				goto out;
5871 		}
5872 		path->slots[0]++;
5873 	}
5874 	ret = 0;
5875 out:
5876 	btrfs_free_path(path);
5877 	return ret;
5878 }
5879 
5880 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5881 			     struct btrfs_root *root,
5882 			     struct btrfs_path *path,
5883 			     struct btrfs_log_ctx *ctx)
5884 {
5885 	struct btrfs_key found_key;
5886 
5887 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5888 
5889 	while (true) {
5890 		struct btrfs_fs_info *fs_info = root->fs_info;
5891 		const u64 last_committed = fs_info->last_trans_committed;
5892 		struct extent_buffer *leaf = path->nodes[0];
5893 		int slot = path->slots[0];
5894 		struct btrfs_key search_key;
5895 		struct inode *inode;
5896 		int ret = 0;
5897 
5898 		btrfs_release_path(path);
5899 
5900 		search_key.objectid = found_key.offset;
5901 		search_key.type = BTRFS_INODE_ITEM_KEY;
5902 		search_key.offset = 0;
5903 		inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5904 		if (IS_ERR(inode))
5905 			return PTR_ERR(inode);
5906 
5907 		if (BTRFS_I(inode)->generation > last_committed)
5908 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5909 					      LOG_INODE_EXISTS,
5910 					      0, LLONG_MAX, ctx);
5911 		btrfs_add_delayed_iput(inode);
5912 		if (ret)
5913 			return ret;
5914 
5915 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5916 			break;
5917 
5918 		search_key.type = BTRFS_INODE_REF_KEY;
5919 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5920 		if (ret < 0)
5921 			return ret;
5922 
5923 		leaf = path->nodes[0];
5924 		slot = path->slots[0];
5925 		if (slot >= btrfs_header_nritems(leaf)) {
5926 			ret = btrfs_next_leaf(root, path);
5927 			if (ret < 0)
5928 				return ret;
5929 			else if (ret > 0)
5930 				return -ENOENT;
5931 			leaf = path->nodes[0];
5932 			slot = path->slots[0];
5933 		}
5934 
5935 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5936 		if (found_key.objectid != search_key.objectid ||
5937 		    found_key.type != BTRFS_INODE_REF_KEY)
5938 			return -ENOENT;
5939 	}
5940 	return 0;
5941 }
5942 
5943 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5944 				  struct btrfs_inode *inode,
5945 				  struct dentry *parent,
5946 				  struct btrfs_log_ctx *ctx)
5947 {
5948 	struct btrfs_root *root = inode->root;
5949 	struct btrfs_fs_info *fs_info = root->fs_info;
5950 	struct dentry *old_parent = NULL;
5951 	struct super_block *sb = inode->vfs_inode.i_sb;
5952 	int ret = 0;
5953 
5954 	while (true) {
5955 		if (!parent || d_really_is_negative(parent) ||
5956 		    sb != parent->d_sb)
5957 			break;
5958 
5959 		inode = BTRFS_I(d_inode(parent));
5960 		if (root != inode->root)
5961 			break;
5962 
5963 		if (inode->generation > fs_info->last_trans_committed) {
5964 			ret = btrfs_log_inode(trans, root, inode,
5965 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5966 			if (ret)
5967 				break;
5968 		}
5969 		if (IS_ROOT(parent))
5970 			break;
5971 
5972 		parent = dget_parent(parent);
5973 		dput(old_parent);
5974 		old_parent = parent;
5975 	}
5976 	dput(old_parent);
5977 
5978 	return ret;
5979 }
5980 
5981 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5982 				 struct btrfs_inode *inode,
5983 				 struct dentry *parent,
5984 				 struct btrfs_log_ctx *ctx)
5985 {
5986 	struct btrfs_root *root = inode->root;
5987 	const u64 ino = btrfs_ino(inode);
5988 	struct btrfs_path *path;
5989 	struct btrfs_key search_key;
5990 	int ret;
5991 
5992 	/*
5993 	 * For a single hard link case, go through a fast path that does not
5994 	 * need to iterate the fs/subvolume tree.
5995 	 */
5996 	if (inode->vfs_inode.i_nlink < 2)
5997 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5998 
5999 	path = btrfs_alloc_path();
6000 	if (!path)
6001 		return -ENOMEM;
6002 
6003 	search_key.objectid = ino;
6004 	search_key.type = BTRFS_INODE_REF_KEY;
6005 	search_key.offset = 0;
6006 again:
6007 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6008 	if (ret < 0)
6009 		goto out;
6010 	if (ret == 0)
6011 		path->slots[0]++;
6012 
6013 	while (true) {
6014 		struct extent_buffer *leaf = path->nodes[0];
6015 		int slot = path->slots[0];
6016 		struct btrfs_key found_key;
6017 
6018 		if (slot >= btrfs_header_nritems(leaf)) {
6019 			ret = btrfs_next_leaf(root, path);
6020 			if (ret < 0)
6021 				goto out;
6022 			else if (ret > 0)
6023 				break;
6024 			continue;
6025 		}
6026 
6027 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6028 		if (found_key.objectid != ino ||
6029 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6030 			break;
6031 
6032 		/*
6033 		 * Don't deal with extended references because they are rare
6034 		 * cases and too complex to deal with (we would need to keep
6035 		 * track of which subitem we are processing for each item in
6036 		 * this loop, etc). So just return some error to fallback to
6037 		 * a transaction commit.
6038 		 */
6039 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6040 			ret = -EMLINK;
6041 			goto out;
6042 		}
6043 
6044 		/*
6045 		 * Logging ancestors needs to do more searches on the fs/subvol
6046 		 * tree, so it releases the path as needed to avoid deadlocks.
6047 		 * Keep track of the last inode ref key and resume from that key
6048 		 * after logging all new ancestors for the current hard link.
6049 		 */
6050 		memcpy(&search_key, &found_key, sizeof(search_key));
6051 
6052 		ret = log_new_ancestors(trans, root, path, ctx);
6053 		if (ret)
6054 			goto out;
6055 		btrfs_release_path(path);
6056 		goto again;
6057 	}
6058 	ret = 0;
6059 out:
6060 	btrfs_free_path(path);
6061 	return ret;
6062 }
6063 
6064 /*
6065  * helper function around btrfs_log_inode to make sure newly created
6066  * parent directories also end up in the log.  A minimal inode and backref
6067  * only logging is done of any parent directories that are older than
6068  * the last committed transaction
6069  */
6070 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6071 				  struct btrfs_inode *inode,
6072 				  struct dentry *parent,
6073 				  const loff_t start,
6074 				  const loff_t end,
6075 				  int inode_only,
6076 				  struct btrfs_log_ctx *ctx)
6077 {
6078 	struct btrfs_root *root = inode->root;
6079 	struct btrfs_fs_info *fs_info = root->fs_info;
6080 	struct super_block *sb;
6081 	int ret = 0;
6082 	u64 last_committed = fs_info->last_trans_committed;
6083 	bool log_dentries = false;
6084 
6085 	sb = inode->vfs_inode.i_sb;
6086 
6087 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6088 		ret = 1;
6089 		goto end_no_trans;
6090 	}
6091 
6092 	/*
6093 	 * The prev transaction commit doesn't complete, we need do
6094 	 * full commit by ourselves.
6095 	 */
6096 	if (fs_info->last_trans_log_full_commit >
6097 	    fs_info->last_trans_committed) {
6098 		ret = 1;
6099 		goto end_no_trans;
6100 	}
6101 
6102 	if (btrfs_root_refs(&root->root_item) == 0) {
6103 		ret = 1;
6104 		goto end_no_trans;
6105 	}
6106 
6107 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6108 			last_committed);
6109 	if (ret)
6110 		goto end_no_trans;
6111 
6112 	/*
6113 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6114 	 * (since logging them is pointless, a link count of 0 means they
6115 	 * will never be accessible).
6116 	 */
6117 	if (btrfs_inode_in_log(inode, trans->transid) ||
6118 	    inode->vfs_inode.i_nlink == 0) {
6119 		ret = BTRFS_NO_LOG_SYNC;
6120 		goto end_no_trans;
6121 	}
6122 
6123 	ret = start_log_trans(trans, root, ctx);
6124 	if (ret)
6125 		goto end_no_trans;
6126 
6127 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6128 	if (ret)
6129 		goto end_trans;
6130 
6131 	/*
6132 	 * for regular files, if its inode is already on disk, we don't
6133 	 * have to worry about the parents at all.  This is because
6134 	 * we can use the last_unlink_trans field to record renames
6135 	 * and other fun in this file.
6136 	 */
6137 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6138 	    inode->generation <= last_committed &&
6139 	    inode->last_unlink_trans <= last_committed) {
6140 		ret = 0;
6141 		goto end_trans;
6142 	}
6143 
6144 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6145 		log_dentries = true;
6146 
6147 	/*
6148 	 * On unlink we must make sure all our current and old parent directory
6149 	 * inodes are fully logged. This is to prevent leaving dangling
6150 	 * directory index entries in directories that were our parents but are
6151 	 * not anymore. Not doing this results in old parent directory being
6152 	 * impossible to delete after log replay (rmdir will always fail with
6153 	 * error -ENOTEMPTY).
6154 	 *
6155 	 * Example 1:
6156 	 *
6157 	 * mkdir testdir
6158 	 * touch testdir/foo
6159 	 * ln testdir/foo testdir/bar
6160 	 * sync
6161 	 * unlink testdir/bar
6162 	 * xfs_io -c fsync testdir/foo
6163 	 * <power failure>
6164 	 * mount fs, triggers log replay
6165 	 *
6166 	 * If we don't log the parent directory (testdir), after log replay the
6167 	 * directory still has an entry pointing to the file inode using the bar
6168 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6169 	 * the file inode has a link count of 1.
6170 	 *
6171 	 * Example 2:
6172 	 *
6173 	 * mkdir testdir
6174 	 * touch foo
6175 	 * ln foo testdir/foo2
6176 	 * ln foo testdir/foo3
6177 	 * sync
6178 	 * unlink testdir/foo3
6179 	 * xfs_io -c fsync foo
6180 	 * <power failure>
6181 	 * mount fs, triggers log replay
6182 	 *
6183 	 * Similar as the first example, after log replay the parent directory
6184 	 * testdir still has an entry pointing to the inode file with name foo3
6185 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6186 	 * and has a link count of 2.
6187 	 */
6188 	if (inode->last_unlink_trans > last_committed) {
6189 		ret = btrfs_log_all_parents(trans, inode, ctx);
6190 		if (ret)
6191 			goto end_trans;
6192 	}
6193 
6194 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6195 	if (ret)
6196 		goto end_trans;
6197 
6198 	if (log_dentries)
6199 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6200 	else
6201 		ret = 0;
6202 end_trans:
6203 	if (ret < 0) {
6204 		btrfs_set_log_full_commit(trans);
6205 		ret = 1;
6206 	}
6207 
6208 	if (ret)
6209 		btrfs_remove_log_ctx(root, ctx);
6210 	btrfs_end_log_trans(root);
6211 end_no_trans:
6212 	return ret;
6213 }
6214 
6215 /*
6216  * it is not safe to log dentry if the chunk root has added new
6217  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6218  * If this returns 1, you must commit the transaction to safely get your
6219  * data on disk.
6220  */
6221 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6222 			  struct dentry *dentry,
6223 			  const loff_t start,
6224 			  const loff_t end,
6225 			  struct btrfs_log_ctx *ctx)
6226 {
6227 	struct dentry *parent = dget_parent(dentry);
6228 	int ret;
6229 
6230 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6231 				     start, end, LOG_INODE_ALL, ctx);
6232 	dput(parent);
6233 
6234 	return ret;
6235 }
6236 
6237 /*
6238  * should be called during mount to recover any replay any log trees
6239  * from the FS
6240  */
6241 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6242 {
6243 	int ret;
6244 	struct btrfs_path *path;
6245 	struct btrfs_trans_handle *trans;
6246 	struct btrfs_key key;
6247 	struct btrfs_key found_key;
6248 	struct btrfs_key tmp_key;
6249 	struct btrfs_root *log;
6250 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6251 	struct walk_control wc = {
6252 		.process_func = process_one_buffer,
6253 		.stage = LOG_WALK_PIN_ONLY,
6254 	};
6255 
6256 	path = btrfs_alloc_path();
6257 	if (!path)
6258 		return -ENOMEM;
6259 
6260 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6261 
6262 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6263 	if (IS_ERR(trans)) {
6264 		ret = PTR_ERR(trans);
6265 		goto error;
6266 	}
6267 
6268 	wc.trans = trans;
6269 	wc.pin = 1;
6270 
6271 	ret = walk_log_tree(trans, log_root_tree, &wc);
6272 	if (ret) {
6273 		btrfs_handle_fs_error(fs_info, ret,
6274 			"Failed to pin buffers while recovering log root tree.");
6275 		goto error;
6276 	}
6277 
6278 again:
6279 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6280 	key.offset = (u64)-1;
6281 	key.type = BTRFS_ROOT_ITEM_KEY;
6282 
6283 	while (1) {
6284 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6285 
6286 		if (ret < 0) {
6287 			btrfs_handle_fs_error(fs_info, ret,
6288 				    "Couldn't find tree log root.");
6289 			goto error;
6290 		}
6291 		if (ret > 0) {
6292 			if (path->slots[0] == 0)
6293 				break;
6294 			path->slots[0]--;
6295 		}
6296 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6297 				      path->slots[0]);
6298 		btrfs_release_path(path);
6299 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6300 			break;
6301 
6302 		log = btrfs_read_fs_root(log_root_tree, &found_key);
6303 		if (IS_ERR(log)) {
6304 			ret = PTR_ERR(log);
6305 			btrfs_handle_fs_error(fs_info, ret,
6306 				    "Couldn't read tree log root.");
6307 			goto error;
6308 		}
6309 
6310 		tmp_key.objectid = found_key.offset;
6311 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6312 		tmp_key.offset = (u64)-1;
6313 
6314 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6315 		if (IS_ERR(wc.replay_dest)) {
6316 			ret = PTR_ERR(wc.replay_dest);
6317 			free_extent_buffer(log->node);
6318 			free_extent_buffer(log->commit_root);
6319 			kfree(log);
6320 			btrfs_handle_fs_error(fs_info, ret,
6321 				"Couldn't read target root for tree log recovery.");
6322 			goto error;
6323 		}
6324 
6325 		wc.replay_dest->log_root = log;
6326 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6327 		ret = walk_log_tree(trans, log, &wc);
6328 
6329 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6330 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6331 						      path);
6332 		}
6333 
6334 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6335 			struct btrfs_root *root = wc.replay_dest;
6336 
6337 			btrfs_release_path(path);
6338 
6339 			/*
6340 			 * We have just replayed everything, and the highest
6341 			 * objectid of fs roots probably has changed in case
6342 			 * some inode_item's got replayed.
6343 			 *
6344 			 * root->objectid_mutex is not acquired as log replay
6345 			 * could only happen during mount.
6346 			 */
6347 			ret = btrfs_find_highest_objectid(root,
6348 						  &root->highest_objectid);
6349 		}
6350 
6351 		key.offset = found_key.offset - 1;
6352 		wc.replay_dest->log_root = NULL;
6353 		free_extent_buffer(log->node);
6354 		free_extent_buffer(log->commit_root);
6355 		kfree(log);
6356 
6357 		if (ret)
6358 			goto error;
6359 
6360 		if (found_key.offset == 0)
6361 			break;
6362 	}
6363 	btrfs_release_path(path);
6364 
6365 	/* step one is to pin it all, step two is to replay just inodes */
6366 	if (wc.pin) {
6367 		wc.pin = 0;
6368 		wc.process_func = replay_one_buffer;
6369 		wc.stage = LOG_WALK_REPLAY_INODES;
6370 		goto again;
6371 	}
6372 	/* step three is to replay everything */
6373 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6374 		wc.stage++;
6375 		goto again;
6376 	}
6377 
6378 	btrfs_free_path(path);
6379 
6380 	/* step 4: commit the transaction, which also unpins the blocks */
6381 	ret = btrfs_commit_transaction(trans);
6382 	if (ret)
6383 		return ret;
6384 
6385 	free_extent_buffer(log_root_tree->node);
6386 	log_root_tree->log_root = NULL;
6387 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6388 	kfree(log_root_tree);
6389 
6390 	return 0;
6391 error:
6392 	if (wc.trans)
6393 		btrfs_end_transaction(wc.trans);
6394 	btrfs_free_path(path);
6395 	return ret;
6396 }
6397 
6398 /*
6399  * there are some corner cases where we want to force a full
6400  * commit instead of allowing a directory to be logged.
6401  *
6402  * They revolve around files there were unlinked from the directory, and
6403  * this function updates the parent directory so that a full commit is
6404  * properly done if it is fsync'd later after the unlinks are done.
6405  *
6406  * Must be called before the unlink operations (updates to the subvolume tree,
6407  * inodes, etc) are done.
6408  */
6409 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6410 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6411 			     int for_rename)
6412 {
6413 	/*
6414 	 * when we're logging a file, if it hasn't been renamed
6415 	 * or unlinked, and its inode is fully committed on disk,
6416 	 * we don't have to worry about walking up the directory chain
6417 	 * to log its parents.
6418 	 *
6419 	 * So, we use the last_unlink_trans field to put this transid
6420 	 * into the file.  When the file is logged we check it and
6421 	 * don't log the parents if the file is fully on disk.
6422 	 */
6423 	mutex_lock(&inode->log_mutex);
6424 	inode->last_unlink_trans = trans->transid;
6425 	mutex_unlock(&inode->log_mutex);
6426 
6427 	/*
6428 	 * if this directory was already logged any new
6429 	 * names for this file/dir will get recorded
6430 	 */
6431 	if (dir->logged_trans == trans->transid)
6432 		return;
6433 
6434 	/*
6435 	 * if the inode we're about to unlink was logged,
6436 	 * the log will be properly updated for any new names
6437 	 */
6438 	if (inode->logged_trans == trans->transid)
6439 		return;
6440 
6441 	/*
6442 	 * when renaming files across directories, if the directory
6443 	 * there we're unlinking from gets fsync'd later on, there's
6444 	 * no way to find the destination directory later and fsync it
6445 	 * properly.  So, we have to be conservative and force commits
6446 	 * so the new name gets discovered.
6447 	 */
6448 	if (for_rename)
6449 		goto record;
6450 
6451 	/* we can safely do the unlink without any special recording */
6452 	return;
6453 
6454 record:
6455 	mutex_lock(&dir->log_mutex);
6456 	dir->last_unlink_trans = trans->transid;
6457 	mutex_unlock(&dir->log_mutex);
6458 }
6459 
6460 /*
6461  * Make sure that if someone attempts to fsync the parent directory of a deleted
6462  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6463  * that after replaying the log tree of the parent directory's root we will not
6464  * see the snapshot anymore and at log replay time we will not see any log tree
6465  * corresponding to the deleted snapshot's root, which could lead to replaying
6466  * it after replaying the log tree of the parent directory (which would replay
6467  * the snapshot delete operation).
6468  *
6469  * Must be called before the actual snapshot destroy operation (updates to the
6470  * parent root and tree of tree roots trees, etc) are done.
6471  */
6472 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6473 				   struct btrfs_inode *dir)
6474 {
6475 	mutex_lock(&dir->log_mutex);
6476 	dir->last_unlink_trans = trans->transid;
6477 	mutex_unlock(&dir->log_mutex);
6478 }
6479 
6480 /*
6481  * Call this after adding a new name for a file and it will properly
6482  * update the log to reflect the new name.
6483  *
6484  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6485  * true (because it's not used).
6486  *
6487  * Return value depends on whether @sync_log is true or false.
6488  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6489  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6490  *            otherwise.
6491  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6492  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6493  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6494  *             committed (without attempting to sync the log).
6495  */
6496 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6497 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6498 			struct dentry *parent,
6499 			bool sync_log, struct btrfs_log_ctx *ctx)
6500 {
6501 	struct btrfs_fs_info *fs_info = trans->fs_info;
6502 	int ret;
6503 
6504 	/*
6505 	 * this will force the logging code to walk the dentry chain
6506 	 * up for the file
6507 	 */
6508 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6509 		inode->last_unlink_trans = trans->transid;
6510 
6511 	/*
6512 	 * if this inode hasn't been logged and directory we're renaming it
6513 	 * from hasn't been logged, we don't need to log it
6514 	 */
6515 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6516 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6517 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6518 			BTRFS_DONT_NEED_LOG_SYNC;
6519 
6520 	if (sync_log) {
6521 		struct btrfs_log_ctx ctx2;
6522 
6523 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6524 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6525 					     LOG_INODE_EXISTS, &ctx2);
6526 		if (ret == BTRFS_NO_LOG_SYNC)
6527 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6528 		else if (ret)
6529 			return BTRFS_NEED_TRANS_COMMIT;
6530 
6531 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6532 		if (ret)
6533 			return BTRFS_NEED_TRANS_COMMIT;
6534 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6535 	}
6536 
6537 	ASSERT(ctx);
6538 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6539 				     LOG_INODE_EXISTS, ctx);
6540 	if (ret == BTRFS_NO_LOG_SYNC)
6541 		return BTRFS_DONT_NEED_LOG_SYNC;
6542 	else if (ret)
6543 		return BTRFS_NEED_TRANS_COMMIT;
6544 
6545 	return BTRFS_NEED_LOG_SYNC;
6546 }
6547 
6548