1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "inode-map.h" 21 22 /* magic values for the inode_only field in btrfs_log_inode: 23 * 24 * LOG_INODE_ALL means to log everything 25 * LOG_INODE_EXISTS means to log just enough to recreate the inode 26 * during log replay 27 */ 28 enum { 29 LOG_INODE_ALL, 30 LOG_INODE_EXISTS, 31 LOG_OTHER_INODE, 32 LOG_OTHER_INODE_ALL, 33 }; 34 35 /* 36 * directory trouble cases 37 * 38 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 39 * log, we must force a full commit before doing an fsync of the directory 40 * where the unlink was done. 41 * ---> record transid of last unlink/rename per directory 42 * 43 * mkdir foo/some_dir 44 * normal commit 45 * rename foo/some_dir foo2/some_dir 46 * mkdir foo/some_dir 47 * fsync foo/some_dir/some_file 48 * 49 * The fsync above will unlink the original some_dir without recording 50 * it in its new location (foo2). After a crash, some_dir will be gone 51 * unless the fsync of some_file forces a full commit 52 * 53 * 2) we must log any new names for any file or dir that is in the fsync 54 * log. ---> check inode while renaming/linking. 55 * 56 * 2a) we must log any new names for any file or dir during rename 57 * when the directory they are being removed from was logged. 58 * ---> check inode and old parent dir during rename 59 * 60 * 2a is actually the more important variant. With the extra logging 61 * a crash might unlink the old name without recreating the new one 62 * 63 * 3) after a crash, we must go through any directories with a link count 64 * of zero and redo the rm -rf 65 * 66 * mkdir f1/foo 67 * normal commit 68 * rm -rf f1/foo 69 * fsync(f1) 70 * 71 * The directory f1 was fully removed from the FS, but fsync was never 72 * called on f1, only its parent dir. After a crash the rm -rf must 73 * be replayed. This must be able to recurse down the entire 74 * directory tree. The inode link count fixup code takes care of the 75 * ugly details. 76 */ 77 78 /* 79 * stages for the tree walking. The first 80 * stage (0) is to only pin down the blocks we find 81 * the second stage (1) is to make sure that all the inodes 82 * we find in the log are created in the subvolume. 83 * 84 * The last stage is to deal with directories and links and extents 85 * and all the other fun semantics 86 */ 87 enum { 88 LOG_WALK_PIN_ONLY, 89 LOG_WALK_REPLAY_INODES, 90 LOG_WALK_REPLAY_DIR_INDEX, 91 LOG_WALK_REPLAY_ALL, 92 }; 93 94 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, struct btrfs_inode *inode, 96 int inode_only, 97 const loff_t start, 98 const loff_t end, 99 struct btrfs_log_ctx *ctx); 100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 101 struct btrfs_root *root, 102 struct btrfs_path *path, u64 objectid); 103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 104 struct btrfs_root *root, 105 struct btrfs_root *log, 106 struct btrfs_path *path, 107 u64 dirid, int del_all); 108 109 /* 110 * tree logging is a special write ahead log used to make sure that 111 * fsyncs and O_SYNCs can happen without doing full tree commits. 112 * 113 * Full tree commits are expensive because they require commonly 114 * modified blocks to be recowed, creating many dirty pages in the 115 * extent tree an 4x-6x higher write load than ext3. 116 * 117 * Instead of doing a tree commit on every fsync, we use the 118 * key ranges and transaction ids to find items for a given file or directory 119 * that have changed in this transaction. Those items are copied into 120 * a special tree (one per subvolume root), that tree is written to disk 121 * and then the fsync is considered complete. 122 * 123 * After a crash, items are copied out of the log-tree back into the 124 * subvolume tree. Any file data extents found are recorded in the extent 125 * allocation tree, and the log-tree freed. 126 * 127 * The log tree is read three times, once to pin down all the extents it is 128 * using in ram and once, once to create all the inodes logged in the tree 129 * and once to do all the other items. 130 */ 131 132 /* 133 * start a sub transaction and setup the log tree 134 * this increments the log tree writer count to make the people 135 * syncing the tree wait for us to finish 136 */ 137 static int start_log_trans(struct btrfs_trans_handle *trans, 138 struct btrfs_root *root, 139 struct btrfs_log_ctx *ctx) 140 { 141 struct btrfs_fs_info *fs_info = root->fs_info; 142 int ret = 0; 143 144 mutex_lock(&root->log_mutex); 145 146 if (root->log_root) { 147 if (btrfs_need_log_full_commit(trans)) { 148 ret = -EAGAIN; 149 goto out; 150 } 151 152 if (!root->log_start_pid) { 153 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 154 root->log_start_pid = current->pid; 155 } else if (root->log_start_pid != current->pid) { 156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 157 } 158 } else { 159 mutex_lock(&fs_info->tree_log_mutex); 160 if (!fs_info->log_root_tree) 161 ret = btrfs_init_log_root_tree(trans, fs_info); 162 mutex_unlock(&fs_info->tree_log_mutex); 163 if (ret) 164 goto out; 165 166 ret = btrfs_add_log_tree(trans, root); 167 if (ret) 168 goto out; 169 170 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 171 root->log_start_pid = current->pid; 172 } 173 174 atomic_inc(&root->log_batch); 175 atomic_inc(&root->log_writers); 176 if (ctx) { 177 int index = root->log_transid % 2; 178 list_add_tail(&ctx->list, &root->log_ctxs[index]); 179 ctx->log_transid = root->log_transid; 180 } 181 182 out: 183 mutex_unlock(&root->log_mutex); 184 return ret; 185 } 186 187 /* 188 * returns 0 if there was a log transaction running and we were able 189 * to join, or returns -ENOENT if there were not transactions 190 * in progress 191 */ 192 static int join_running_log_trans(struct btrfs_root *root) 193 { 194 int ret = -ENOENT; 195 196 mutex_lock(&root->log_mutex); 197 if (root->log_root) { 198 ret = 0; 199 atomic_inc(&root->log_writers); 200 } 201 mutex_unlock(&root->log_mutex); 202 return ret; 203 } 204 205 /* 206 * This either makes the current running log transaction wait 207 * until you call btrfs_end_log_trans() or it makes any future 208 * log transactions wait until you call btrfs_end_log_trans() 209 */ 210 void btrfs_pin_log_trans(struct btrfs_root *root) 211 { 212 mutex_lock(&root->log_mutex); 213 atomic_inc(&root->log_writers); 214 mutex_unlock(&root->log_mutex); 215 } 216 217 /* 218 * indicate we're done making changes to the log tree 219 * and wake up anyone waiting to do a sync 220 */ 221 void btrfs_end_log_trans(struct btrfs_root *root) 222 { 223 if (atomic_dec_and_test(&root->log_writers)) { 224 /* atomic_dec_and_test implies a barrier */ 225 cond_wake_up_nomb(&root->log_writer_wait); 226 } 227 } 228 229 static int btrfs_write_tree_block(struct extent_buffer *buf) 230 { 231 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 232 buf->start + buf->len - 1); 233 } 234 235 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 236 { 237 filemap_fdatawait_range(buf->pages[0]->mapping, 238 buf->start, buf->start + buf->len - 1); 239 } 240 241 /* 242 * the walk control struct is used to pass state down the chain when 243 * processing the log tree. The stage field tells us which part 244 * of the log tree processing we are currently doing. The others 245 * are state fields used for that specific part 246 */ 247 struct walk_control { 248 /* should we free the extent on disk when done? This is used 249 * at transaction commit time while freeing a log tree 250 */ 251 int free; 252 253 /* should we write out the extent buffer? This is used 254 * while flushing the log tree to disk during a sync 255 */ 256 int write; 257 258 /* should we wait for the extent buffer io to finish? Also used 259 * while flushing the log tree to disk for a sync 260 */ 261 int wait; 262 263 /* pin only walk, we record which extents on disk belong to the 264 * log trees 265 */ 266 int pin; 267 268 /* what stage of the replay code we're currently in */ 269 int stage; 270 271 /* 272 * Ignore any items from the inode currently being processed. Needs 273 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 274 * the LOG_WALK_REPLAY_INODES stage. 275 */ 276 bool ignore_cur_inode; 277 278 /* the root we are currently replaying */ 279 struct btrfs_root *replay_dest; 280 281 /* the trans handle for the current replay */ 282 struct btrfs_trans_handle *trans; 283 284 /* the function that gets used to process blocks we find in the 285 * tree. Note the extent_buffer might not be up to date when it is 286 * passed in, and it must be checked or read if you need the data 287 * inside it 288 */ 289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 290 struct walk_control *wc, u64 gen, int level); 291 }; 292 293 /* 294 * process_func used to pin down extents, write them or wait on them 295 */ 296 static int process_one_buffer(struct btrfs_root *log, 297 struct extent_buffer *eb, 298 struct walk_control *wc, u64 gen, int level) 299 { 300 struct btrfs_fs_info *fs_info = log->fs_info; 301 int ret = 0; 302 303 /* 304 * If this fs is mixed then we need to be able to process the leaves to 305 * pin down any logged extents, so we have to read the block. 306 */ 307 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 308 ret = btrfs_read_buffer(eb, gen, level, NULL); 309 if (ret) 310 return ret; 311 } 312 313 if (wc->pin) 314 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start, 315 eb->len); 316 317 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 318 if (wc->pin && btrfs_header_level(eb) == 0) 319 ret = btrfs_exclude_logged_extents(eb); 320 if (wc->write) 321 btrfs_write_tree_block(eb); 322 if (wc->wait) 323 btrfs_wait_tree_block_writeback(eb); 324 } 325 return ret; 326 } 327 328 /* 329 * Item overwrite used by replay and tree logging. eb, slot and key all refer 330 * to the src data we are copying out. 331 * 332 * root is the tree we are copying into, and path is a scratch 333 * path for use in this function (it should be released on entry and 334 * will be released on exit). 335 * 336 * If the key is already in the destination tree the existing item is 337 * overwritten. If the existing item isn't big enough, it is extended. 338 * If it is too large, it is truncated. 339 * 340 * If the key isn't in the destination yet, a new item is inserted. 341 */ 342 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 343 struct btrfs_root *root, 344 struct btrfs_path *path, 345 struct extent_buffer *eb, int slot, 346 struct btrfs_key *key) 347 { 348 int ret; 349 u32 item_size; 350 u64 saved_i_size = 0; 351 int save_old_i_size = 0; 352 unsigned long src_ptr; 353 unsigned long dst_ptr; 354 int overwrite_root = 0; 355 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 356 357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 358 overwrite_root = 1; 359 360 item_size = btrfs_item_size_nr(eb, slot); 361 src_ptr = btrfs_item_ptr_offset(eb, slot); 362 363 /* look for the key in the destination tree */ 364 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 365 if (ret < 0) 366 return ret; 367 368 if (ret == 0) { 369 char *src_copy; 370 char *dst_copy; 371 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 372 path->slots[0]); 373 if (dst_size != item_size) 374 goto insert; 375 376 if (item_size == 0) { 377 btrfs_release_path(path); 378 return 0; 379 } 380 dst_copy = kmalloc(item_size, GFP_NOFS); 381 src_copy = kmalloc(item_size, GFP_NOFS); 382 if (!dst_copy || !src_copy) { 383 btrfs_release_path(path); 384 kfree(dst_copy); 385 kfree(src_copy); 386 return -ENOMEM; 387 } 388 389 read_extent_buffer(eb, src_copy, src_ptr, item_size); 390 391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 392 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 393 item_size); 394 ret = memcmp(dst_copy, src_copy, item_size); 395 396 kfree(dst_copy); 397 kfree(src_copy); 398 /* 399 * they have the same contents, just return, this saves 400 * us from cowing blocks in the destination tree and doing 401 * extra writes that may not have been done by a previous 402 * sync 403 */ 404 if (ret == 0) { 405 btrfs_release_path(path); 406 return 0; 407 } 408 409 /* 410 * We need to load the old nbytes into the inode so when we 411 * replay the extents we've logged we get the right nbytes. 412 */ 413 if (inode_item) { 414 struct btrfs_inode_item *item; 415 u64 nbytes; 416 u32 mode; 417 418 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 419 struct btrfs_inode_item); 420 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 421 item = btrfs_item_ptr(eb, slot, 422 struct btrfs_inode_item); 423 btrfs_set_inode_nbytes(eb, item, nbytes); 424 425 /* 426 * If this is a directory we need to reset the i_size to 427 * 0 so that we can set it up properly when replaying 428 * the rest of the items in this log. 429 */ 430 mode = btrfs_inode_mode(eb, item); 431 if (S_ISDIR(mode)) 432 btrfs_set_inode_size(eb, item, 0); 433 } 434 } else if (inode_item) { 435 struct btrfs_inode_item *item; 436 u32 mode; 437 438 /* 439 * New inode, set nbytes to 0 so that the nbytes comes out 440 * properly when we replay the extents. 441 */ 442 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 443 btrfs_set_inode_nbytes(eb, item, 0); 444 445 /* 446 * If this is a directory we need to reset the i_size to 0 so 447 * that we can set it up properly when replaying the rest of 448 * the items in this log. 449 */ 450 mode = btrfs_inode_mode(eb, item); 451 if (S_ISDIR(mode)) 452 btrfs_set_inode_size(eb, item, 0); 453 } 454 insert: 455 btrfs_release_path(path); 456 /* try to insert the key into the destination tree */ 457 path->skip_release_on_error = 1; 458 ret = btrfs_insert_empty_item(trans, root, path, 459 key, item_size); 460 path->skip_release_on_error = 0; 461 462 /* make sure any existing item is the correct size */ 463 if (ret == -EEXIST || ret == -EOVERFLOW) { 464 u32 found_size; 465 found_size = btrfs_item_size_nr(path->nodes[0], 466 path->slots[0]); 467 if (found_size > item_size) 468 btrfs_truncate_item(path, item_size, 1); 469 else if (found_size < item_size) 470 btrfs_extend_item(path, item_size - found_size); 471 } else if (ret) { 472 return ret; 473 } 474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 475 path->slots[0]); 476 477 /* don't overwrite an existing inode if the generation number 478 * was logged as zero. This is done when the tree logging code 479 * is just logging an inode to make sure it exists after recovery. 480 * 481 * Also, don't overwrite i_size on directories during replay. 482 * log replay inserts and removes directory items based on the 483 * state of the tree found in the subvolume, and i_size is modified 484 * as it goes 485 */ 486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 487 struct btrfs_inode_item *src_item; 488 struct btrfs_inode_item *dst_item; 489 490 src_item = (struct btrfs_inode_item *)src_ptr; 491 dst_item = (struct btrfs_inode_item *)dst_ptr; 492 493 if (btrfs_inode_generation(eb, src_item) == 0) { 494 struct extent_buffer *dst_eb = path->nodes[0]; 495 const u64 ino_size = btrfs_inode_size(eb, src_item); 496 497 /* 498 * For regular files an ino_size == 0 is used only when 499 * logging that an inode exists, as part of a directory 500 * fsync, and the inode wasn't fsynced before. In this 501 * case don't set the size of the inode in the fs/subvol 502 * tree, otherwise we would be throwing valid data away. 503 */ 504 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 505 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 506 ino_size != 0) { 507 struct btrfs_map_token token; 508 509 btrfs_init_map_token(&token, dst_eb); 510 btrfs_set_token_inode_size(dst_eb, dst_item, 511 ino_size, &token); 512 } 513 goto no_copy; 514 } 515 516 if (overwrite_root && 517 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 518 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 519 save_old_i_size = 1; 520 saved_i_size = btrfs_inode_size(path->nodes[0], 521 dst_item); 522 } 523 } 524 525 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 526 src_ptr, item_size); 527 528 if (save_old_i_size) { 529 struct btrfs_inode_item *dst_item; 530 dst_item = (struct btrfs_inode_item *)dst_ptr; 531 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 532 } 533 534 /* make sure the generation is filled in */ 535 if (key->type == BTRFS_INODE_ITEM_KEY) { 536 struct btrfs_inode_item *dst_item; 537 dst_item = (struct btrfs_inode_item *)dst_ptr; 538 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 539 btrfs_set_inode_generation(path->nodes[0], dst_item, 540 trans->transid); 541 } 542 } 543 no_copy: 544 btrfs_mark_buffer_dirty(path->nodes[0]); 545 btrfs_release_path(path); 546 return 0; 547 } 548 549 /* 550 * simple helper to read an inode off the disk from a given root 551 * This can only be called for subvolume roots and not for the log 552 */ 553 static noinline struct inode *read_one_inode(struct btrfs_root *root, 554 u64 objectid) 555 { 556 struct btrfs_key key; 557 struct inode *inode; 558 559 key.objectid = objectid; 560 key.type = BTRFS_INODE_ITEM_KEY; 561 key.offset = 0; 562 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 563 if (IS_ERR(inode)) 564 inode = NULL; 565 return inode; 566 } 567 568 /* replays a single extent in 'eb' at 'slot' with 'key' into the 569 * subvolume 'root'. path is released on entry and should be released 570 * on exit. 571 * 572 * extents in the log tree have not been allocated out of the extent 573 * tree yet. So, this completes the allocation, taking a reference 574 * as required if the extent already exists or creating a new extent 575 * if it isn't in the extent allocation tree yet. 576 * 577 * The extent is inserted into the file, dropping any existing extents 578 * from the file that overlap the new one. 579 */ 580 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 581 struct btrfs_root *root, 582 struct btrfs_path *path, 583 struct extent_buffer *eb, int slot, 584 struct btrfs_key *key) 585 { 586 struct btrfs_fs_info *fs_info = root->fs_info; 587 int found_type; 588 u64 extent_end; 589 u64 start = key->offset; 590 u64 nbytes = 0; 591 struct btrfs_file_extent_item *item; 592 struct inode *inode = NULL; 593 unsigned long size; 594 int ret = 0; 595 596 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 597 found_type = btrfs_file_extent_type(eb, item); 598 599 if (found_type == BTRFS_FILE_EXTENT_REG || 600 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 601 nbytes = btrfs_file_extent_num_bytes(eb, item); 602 extent_end = start + nbytes; 603 604 /* 605 * We don't add to the inodes nbytes if we are prealloc or a 606 * hole. 607 */ 608 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 609 nbytes = 0; 610 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 611 size = btrfs_file_extent_ram_bytes(eb, item); 612 nbytes = btrfs_file_extent_ram_bytes(eb, item); 613 extent_end = ALIGN(start + size, 614 fs_info->sectorsize); 615 } else { 616 ret = 0; 617 goto out; 618 } 619 620 inode = read_one_inode(root, key->objectid); 621 if (!inode) { 622 ret = -EIO; 623 goto out; 624 } 625 626 /* 627 * first check to see if we already have this extent in the 628 * file. This must be done before the btrfs_drop_extents run 629 * so we don't try to drop this extent. 630 */ 631 ret = btrfs_lookup_file_extent(trans, root, path, 632 btrfs_ino(BTRFS_I(inode)), start, 0); 633 634 if (ret == 0 && 635 (found_type == BTRFS_FILE_EXTENT_REG || 636 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 637 struct btrfs_file_extent_item cmp1; 638 struct btrfs_file_extent_item cmp2; 639 struct btrfs_file_extent_item *existing; 640 struct extent_buffer *leaf; 641 642 leaf = path->nodes[0]; 643 existing = btrfs_item_ptr(leaf, path->slots[0], 644 struct btrfs_file_extent_item); 645 646 read_extent_buffer(eb, &cmp1, (unsigned long)item, 647 sizeof(cmp1)); 648 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 649 sizeof(cmp2)); 650 651 /* 652 * we already have a pointer to this exact extent, 653 * we don't have to do anything 654 */ 655 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 656 btrfs_release_path(path); 657 goto out; 658 } 659 } 660 btrfs_release_path(path); 661 662 /* drop any overlapping extents */ 663 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 664 if (ret) 665 goto out; 666 667 if (found_type == BTRFS_FILE_EXTENT_REG || 668 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 669 u64 offset; 670 unsigned long dest_offset; 671 struct btrfs_key ins; 672 673 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 674 btrfs_fs_incompat(fs_info, NO_HOLES)) 675 goto update_inode; 676 677 ret = btrfs_insert_empty_item(trans, root, path, key, 678 sizeof(*item)); 679 if (ret) 680 goto out; 681 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 682 path->slots[0]); 683 copy_extent_buffer(path->nodes[0], eb, dest_offset, 684 (unsigned long)item, sizeof(*item)); 685 686 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 687 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 688 ins.type = BTRFS_EXTENT_ITEM_KEY; 689 offset = key->offset - btrfs_file_extent_offset(eb, item); 690 691 /* 692 * Manually record dirty extent, as here we did a shallow 693 * file extent item copy and skip normal backref update, 694 * but modifying extent tree all by ourselves. 695 * So need to manually record dirty extent for qgroup, 696 * as the owner of the file extent changed from log tree 697 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 698 */ 699 ret = btrfs_qgroup_trace_extent(trans, 700 btrfs_file_extent_disk_bytenr(eb, item), 701 btrfs_file_extent_disk_num_bytes(eb, item), 702 GFP_NOFS); 703 if (ret < 0) 704 goto out; 705 706 if (ins.objectid > 0) { 707 struct btrfs_ref ref = { 0 }; 708 u64 csum_start; 709 u64 csum_end; 710 LIST_HEAD(ordered_sums); 711 712 /* 713 * is this extent already allocated in the extent 714 * allocation tree? If so, just add a reference 715 */ 716 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 717 ins.offset); 718 if (ret == 0) { 719 btrfs_init_generic_ref(&ref, 720 BTRFS_ADD_DELAYED_REF, 721 ins.objectid, ins.offset, 0); 722 btrfs_init_data_ref(&ref, 723 root->root_key.objectid, 724 key->objectid, offset); 725 ret = btrfs_inc_extent_ref(trans, &ref); 726 if (ret) 727 goto out; 728 } else { 729 /* 730 * insert the extent pointer in the extent 731 * allocation tree 732 */ 733 ret = btrfs_alloc_logged_file_extent(trans, 734 root->root_key.objectid, 735 key->objectid, offset, &ins); 736 if (ret) 737 goto out; 738 } 739 btrfs_release_path(path); 740 741 if (btrfs_file_extent_compression(eb, item)) { 742 csum_start = ins.objectid; 743 csum_end = csum_start + ins.offset; 744 } else { 745 csum_start = ins.objectid + 746 btrfs_file_extent_offset(eb, item); 747 csum_end = csum_start + 748 btrfs_file_extent_num_bytes(eb, item); 749 } 750 751 ret = btrfs_lookup_csums_range(root->log_root, 752 csum_start, csum_end - 1, 753 &ordered_sums, 0); 754 if (ret) 755 goto out; 756 /* 757 * Now delete all existing cums in the csum root that 758 * cover our range. We do this because we can have an 759 * extent that is completely referenced by one file 760 * extent item and partially referenced by another 761 * file extent item (like after using the clone or 762 * extent_same ioctls). In this case if we end up doing 763 * the replay of the one that partially references the 764 * extent first, and we do not do the csum deletion 765 * below, we can get 2 csum items in the csum tree that 766 * overlap each other. For example, imagine our log has 767 * the two following file extent items: 768 * 769 * key (257 EXTENT_DATA 409600) 770 * extent data disk byte 12845056 nr 102400 771 * extent data offset 20480 nr 20480 ram 102400 772 * 773 * key (257 EXTENT_DATA 819200) 774 * extent data disk byte 12845056 nr 102400 775 * extent data offset 0 nr 102400 ram 102400 776 * 777 * Where the second one fully references the 100K extent 778 * that starts at disk byte 12845056, and the log tree 779 * has a single csum item that covers the entire range 780 * of the extent: 781 * 782 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 783 * 784 * After the first file extent item is replayed, the 785 * csum tree gets the following csum item: 786 * 787 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 788 * 789 * Which covers the 20K sub-range starting at offset 20K 790 * of our extent. Now when we replay the second file 791 * extent item, if we do not delete existing csum items 792 * that cover any of its blocks, we end up getting two 793 * csum items in our csum tree that overlap each other: 794 * 795 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 796 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 797 * 798 * Which is a problem, because after this anyone trying 799 * to lookup up for the checksum of any block of our 800 * extent starting at an offset of 40K or higher, will 801 * end up looking at the second csum item only, which 802 * does not contain the checksum for any block starting 803 * at offset 40K or higher of our extent. 804 */ 805 while (!list_empty(&ordered_sums)) { 806 struct btrfs_ordered_sum *sums; 807 sums = list_entry(ordered_sums.next, 808 struct btrfs_ordered_sum, 809 list); 810 if (!ret) 811 ret = btrfs_del_csums(trans, fs_info, 812 sums->bytenr, 813 sums->len); 814 if (!ret) 815 ret = btrfs_csum_file_blocks(trans, 816 fs_info->csum_root, sums); 817 list_del(&sums->list); 818 kfree(sums); 819 } 820 if (ret) 821 goto out; 822 } else { 823 btrfs_release_path(path); 824 } 825 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 826 /* inline extents are easy, we just overwrite them */ 827 ret = overwrite_item(trans, root, path, eb, slot, key); 828 if (ret) 829 goto out; 830 } 831 832 inode_add_bytes(inode, nbytes); 833 update_inode: 834 ret = btrfs_update_inode(trans, root, inode); 835 out: 836 if (inode) 837 iput(inode); 838 return ret; 839 } 840 841 /* 842 * when cleaning up conflicts between the directory names in the 843 * subvolume, directory names in the log and directory names in the 844 * inode back references, we may have to unlink inodes from directories. 845 * 846 * This is a helper function to do the unlink of a specific directory 847 * item 848 */ 849 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 850 struct btrfs_root *root, 851 struct btrfs_path *path, 852 struct btrfs_inode *dir, 853 struct btrfs_dir_item *di) 854 { 855 struct inode *inode; 856 char *name; 857 int name_len; 858 struct extent_buffer *leaf; 859 struct btrfs_key location; 860 int ret; 861 862 leaf = path->nodes[0]; 863 864 btrfs_dir_item_key_to_cpu(leaf, di, &location); 865 name_len = btrfs_dir_name_len(leaf, di); 866 name = kmalloc(name_len, GFP_NOFS); 867 if (!name) 868 return -ENOMEM; 869 870 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 871 btrfs_release_path(path); 872 873 inode = read_one_inode(root, location.objectid); 874 if (!inode) { 875 ret = -EIO; 876 goto out; 877 } 878 879 ret = link_to_fixup_dir(trans, root, path, location.objectid); 880 if (ret) 881 goto out; 882 883 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, 884 name_len); 885 if (ret) 886 goto out; 887 else 888 ret = btrfs_run_delayed_items(trans); 889 out: 890 kfree(name); 891 iput(inode); 892 return ret; 893 } 894 895 /* 896 * helper function to see if a given name and sequence number found 897 * in an inode back reference are already in a directory and correctly 898 * point to this inode 899 */ 900 static noinline int inode_in_dir(struct btrfs_root *root, 901 struct btrfs_path *path, 902 u64 dirid, u64 objectid, u64 index, 903 const char *name, int name_len) 904 { 905 struct btrfs_dir_item *di; 906 struct btrfs_key location; 907 int match = 0; 908 909 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 910 index, name, name_len, 0); 911 if (di && !IS_ERR(di)) { 912 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 913 if (location.objectid != objectid) 914 goto out; 915 } else 916 goto out; 917 btrfs_release_path(path); 918 919 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 920 if (di && !IS_ERR(di)) { 921 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 922 if (location.objectid != objectid) 923 goto out; 924 } else 925 goto out; 926 match = 1; 927 out: 928 btrfs_release_path(path); 929 return match; 930 } 931 932 /* 933 * helper function to check a log tree for a named back reference in 934 * an inode. This is used to decide if a back reference that is 935 * found in the subvolume conflicts with what we find in the log. 936 * 937 * inode backreferences may have multiple refs in a single item, 938 * during replay we process one reference at a time, and we don't 939 * want to delete valid links to a file from the subvolume if that 940 * link is also in the log. 941 */ 942 static noinline int backref_in_log(struct btrfs_root *log, 943 struct btrfs_key *key, 944 u64 ref_objectid, 945 const char *name, int namelen) 946 { 947 struct btrfs_path *path; 948 struct btrfs_inode_ref *ref; 949 unsigned long ptr; 950 unsigned long ptr_end; 951 unsigned long name_ptr; 952 int found_name_len; 953 int item_size; 954 int ret; 955 int match = 0; 956 957 path = btrfs_alloc_path(); 958 if (!path) 959 return -ENOMEM; 960 961 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 962 if (ret != 0) 963 goto out; 964 965 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 966 967 if (key->type == BTRFS_INODE_EXTREF_KEY) { 968 if (btrfs_find_name_in_ext_backref(path->nodes[0], 969 path->slots[0], 970 ref_objectid, 971 name, namelen)) 972 match = 1; 973 974 goto out; 975 } 976 977 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 978 ptr_end = ptr + item_size; 979 while (ptr < ptr_end) { 980 ref = (struct btrfs_inode_ref *)ptr; 981 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 982 if (found_name_len == namelen) { 983 name_ptr = (unsigned long)(ref + 1); 984 ret = memcmp_extent_buffer(path->nodes[0], name, 985 name_ptr, namelen); 986 if (ret == 0) { 987 match = 1; 988 goto out; 989 } 990 } 991 ptr = (unsigned long)(ref + 1) + found_name_len; 992 } 993 out: 994 btrfs_free_path(path); 995 return match; 996 } 997 998 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 999 struct btrfs_root *root, 1000 struct btrfs_path *path, 1001 struct btrfs_root *log_root, 1002 struct btrfs_inode *dir, 1003 struct btrfs_inode *inode, 1004 u64 inode_objectid, u64 parent_objectid, 1005 u64 ref_index, char *name, int namelen, 1006 int *search_done) 1007 { 1008 int ret; 1009 char *victim_name; 1010 int victim_name_len; 1011 struct extent_buffer *leaf; 1012 struct btrfs_dir_item *di; 1013 struct btrfs_key search_key; 1014 struct btrfs_inode_extref *extref; 1015 1016 again: 1017 /* Search old style refs */ 1018 search_key.objectid = inode_objectid; 1019 search_key.type = BTRFS_INODE_REF_KEY; 1020 search_key.offset = parent_objectid; 1021 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1022 if (ret == 0) { 1023 struct btrfs_inode_ref *victim_ref; 1024 unsigned long ptr; 1025 unsigned long ptr_end; 1026 1027 leaf = path->nodes[0]; 1028 1029 /* are we trying to overwrite a back ref for the root directory 1030 * if so, just jump out, we're done 1031 */ 1032 if (search_key.objectid == search_key.offset) 1033 return 1; 1034 1035 /* check all the names in this back reference to see 1036 * if they are in the log. if so, we allow them to stay 1037 * otherwise they must be unlinked as a conflict 1038 */ 1039 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1040 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1041 while (ptr < ptr_end) { 1042 victim_ref = (struct btrfs_inode_ref *)ptr; 1043 victim_name_len = btrfs_inode_ref_name_len(leaf, 1044 victim_ref); 1045 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1046 if (!victim_name) 1047 return -ENOMEM; 1048 1049 read_extent_buffer(leaf, victim_name, 1050 (unsigned long)(victim_ref + 1), 1051 victim_name_len); 1052 1053 if (!backref_in_log(log_root, &search_key, 1054 parent_objectid, 1055 victim_name, 1056 victim_name_len)) { 1057 inc_nlink(&inode->vfs_inode); 1058 btrfs_release_path(path); 1059 1060 ret = btrfs_unlink_inode(trans, root, dir, inode, 1061 victim_name, victim_name_len); 1062 kfree(victim_name); 1063 if (ret) 1064 return ret; 1065 ret = btrfs_run_delayed_items(trans); 1066 if (ret) 1067 return ret; 1068 *search_done = 1; 1069 goto again; 1070 } 1071 kfree(victim_name); 1072 1073 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1074 } 1075 1076 /* 1077 * NOTE: we have searched root tree and checked the 1078 * corresponding ref, it does not need to check again. 1079 */ 1080 *search_done = 1; 1081 } 1082 btrfs_release_path(path); 1083 1084 /* Same search but for extended refs */ 1085 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1086 inode_objectid, parent_objectid, 0, 1087 0); 1088 if (!IS_ERR_OR_NULL(extref)) { 1089 u32 item_size; 1090 u32 cur_offset = 0; 1091 unsigned long base; 1092 struct inode *victim_parent; 1093 1094 leaf = path->nodes[0]; 1095 1096 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1097 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1098 1099 while (cur_offset < item_size) { 1100 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1101 1102 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1103 1104 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1105 goto next; 1106 1107 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1108 if (!victim_name) 1109 return -ENOMEM; 1110 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1111 victim_name_len); 1112 1113 search_key.objectid = inode_objectid; 1114 search_key.type = BTRFS_INODE_EXTREF_KEY; 1115 search_key.offset = btrfs_extref_hash(parent_objectid, 1116 victim_name, 1117 victim_name_len); 1118 ret = 0; 1119 if (!backref_in_log(log_root, &search_key, 1120 parent_objectid, victim_name, 1121 victim_name_len)) { 1122 ret = -ENOENT; 1123 victim_parent = read_one_inode(root, 1124 parent_objectid); 1125 if (victim_parent) { 1126 inc_nlink(&inode->vfs_inode); 1127 btrfs_release_path(path); 1128 1129 ret = btrfs_unlink_inode(trans, root, 1130 BTRFS_I(victim_parent), 1131 inode, 1132 victim_name, 1133 victim_name_len); 1134 if (!ret) 1135 ret = btrfs_run_delayed_items( 1136 trans); 1137 } 1138 iput(victim_parent); 1139 kfree(victim_name); 1140 if (ret) 1141 return ret; 1142 *search_done = 1; 1143 goto again; 1144 } 1145 kfree(victim_name); 1146 next: 1147 cur_offset += victim_name_len + sizeof(*extref); 1148 } 1149 *search_done = 1; 1150 } 1151 btrfs_release_path(path); 1152 1153 /* look for a conflicting sequence number */ 1154 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1155 ref_index, name, namelen, 0); 1156 if (di && !IS_ERR(di)) { 1157 ret = drop_one_dir_item(trans, root, path, dir, di); 1158 if (ret) 1159 return ret; 1160 } 1161 btrfs_release_path(path); 1162 1163 /* look for a conflicting name */ 1164 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1165 name, namelen, 0); 1166 if (di && !IS_ERR(di)) { 1167 ret = drop_one_dir_item(trans, root, path, dir, di); 1168 if (ret) 1169 return ret; 1170 } 1171 btrfs_release_path(path); 1172 1173 return 0; 1174 } 1175 1176 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1177 u32 *namelen, char **name, u64 *index, 1178 u64 *parent_objectid) 1179 { 1180 struct btrfs_inode_extref *extref; 1181 1182 extref = (struct btrfs_inode_extref *)ref_ptr; 1183 1184 *namelen = btrfs_inode_extref_name_len(eb, extref); 1185 *name = kmalloc(*namelen, GFP_NOFS); 1186 if (*name == NULL) 1187 return -ENOMEM; 1188 1189 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1190 *namelen); 1191 1192 if (index) 1193 *index = btrfs_inode_extref_index(eb, extref); 1194 if (parent_objectid) 1195 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1196 1197 return 0; 1198 } 1199 1200 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1201 u32 *namelen, char **name, u64 *index) 1202 { 1203 struct btrfs_inode_ref *ref; 1204 1205 ref = (struct btrfs_inode_ref *)ref_ptr; 1206 1207 *namelen = btrfs_inode_ref_name_len(eb, ref); 1208 *name = kmalloc(*namelen, GFP_NOFS); 1209 if (*name == NULL) 1210 return -ENOMEM; 1211 1212 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1213 1214 if (index) 1215 *index = btrfs_inode_ref_index(eb, ref); 1216 1217 return 0; 1218 } 1219 1220 /* 1221 * Take an inode reference item from the log tree and iterate all names from the 1222 * inode reference item in the subvolume tree with the same key (if it exists). 1223 * For any name that is not in the inode reference item from the log tree, do a 1224 * proper unlink of that name (that is, remove its entry from the inode 1225 * reference item and both dir index keys). 1226 */ 1227 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1228 struct btrfs_root *root, 1229 struct btrfs_path *path, 1230 struct btrfs_inode *inode, 1231 struct extent_buffer *log_eb, 1232 int log_slot, 1233 struct btrfs_key *key) 1234 { 1235 int ret; 1236 unsigned long ref_ptr; 1237 unsigned long ref_end; 1238 struct extent_buffer *eb; 1239 1240 again: 1241 btrfs_release_path(path); 1242 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1243 if (ret > 0) { 1244 ret = 0; 1245 goto out; 1246 } 1247 if (ret < 0) 1248 goto out; 1249 1250 eb = path->nodes[0]; 1251 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1252 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); 1253 while (ref_ptr < ref_end) { 1254 char *name = NULL; 1255 int namelen; 1256 u64 parent_id; 1257 1258 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1259 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1260 NULL, &parent_id); 1261 } else { 1262 parent_id = key->offset; 1263 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1264 NULL); 1265 } 1266 if (ret) 1267 goto out; 1268 1269 if (key->type == BTRFS_INODE_EXTREF_KEY) 1270 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1271 parent_id, name, 1272 namelen); 1273 else 1274 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, 1275 name, namelen); 1276 1277 if (!ret) { 1278 struct inode *dir; 1279 1280 btrfs_release_path(path); 1281 dir = read_one_inode(root, parent_id); 1282 if (!dir) { 1283 ret = -ENOENT; 1284 kfree(name); 1285 goto out; 1286 } 1287 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 1288 inode, name, namelen); 1289 kfree(name); 1290 iput(dir); 1291 if (ret) 1292 goto out; 1293 goto again; 1294 } 1295 1296 kfree(name); 1297 ref_ptr += namelen; 1298 if (key->type == BTRFS_INODE_EXTREF_KEY) 1299 ref_ptr += sizeof(struct btrfs_inode_extref); 1300 else 1301 ref_ptr += sizeof(struct btrfs_inode_ref); 1302 } 1303 ret = 0; 1304 out: 1305 btrfs_release_path(path); 1306 return ret; 1307 } 1308 1309 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1310 const u8 ref_type, const char *name, 1311 const int namelen) 1312 { 1313 struct btrfs_key key; 1314 struct btrfs_path *path; 1315 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1316 int ret; 1317 1318 path = btrfs_alloc_path(); 1319 if (!path) 1320 return -ENOMEM; 1321 1322 key.objectid = btrfs_ino(BTRFS_I(inode)); 1323 key.type = ref_type; 1324 if (key.type == BTRFS_INODE_REF_KEY) 1325 key.offset = parent_id; 1326 else 1327 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1328 1329 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1330 if (ret < 0) 1331 goto out; 1332 if (ret > 0) { 1333 ret = 0; 1334 goto out; 1335 } 1336 if (key.type == BTRFS_INODE_EXTREF_KEY) 1337 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1338 path->slots[0], parent_id, name, namelen); 1339 else 1340 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1341 name, namelen); 1342 1343 out: 1344 btrfs_free_path(path); 1345 return ret; 1346 } 1347 1348 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1349 struct inode *dir, struct inode *inode, const char *name, 1350 int namelen, u64 ref_index) 1351 { 1352 struct btrfs_dir_item *dir_item; 1353 struct btrfs_key key; 1354 struct btrfs_path *path; 1355 struct inode *other_inode = NULL; 1356 int ret; 1357 1358 path = btrfs_alloc_path(); 1359 if (!path) 1360 return -ENOMEM; 1361 1362 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1363 btrfs_ino(BTRFS_I(dir)), 1364 name, namelen, 0); 1365 if (!dir_item) { 1366 btrfs_release_path(path); 1367 goto add_link; 1368 } else if (IS_ERR(dir_item)) { 1369 ret = PTR_ERR(dir_item); 1370 goto out; 1371 } 1372 1373 /* 1374 * Our inode's dentry collides with the dentry of another inode which is 1375 * in the log but not yet processed since it has a higher inode number. 1376 * So delete that other dentry. 1377 */ 1378 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1379 btrfs_release_path(path); 1380 other_inode = read_one_inode(root, key.objectid); 1381 if (!other_inode) { 1382 ret = -ENOENT; 1383 goto out; 1384 } 1385 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode), 1386 name, namelen); 1387 if (ret) 1388 goto out; 1389 /* 1390 * If we dropped the link count to 0, bump it so that later the iput() 1391 * on the inode will not free it. We will fixup the link count later. 1392 */ 1393 if (other_inode->i_nlink == 0) 1394 inc_nlink(other_inode); 1395 1396 ret = btrfs_run_delayed_items(trans); 1397 if (ret) 1398 goto out; 1399 add_link: 1400 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1401 name, namelen, 0, ref_index); 1402 out: 1403 iput(other_inode); 1404 btrfs_free_path(path); 1405 1406 return ret; 1407 } 1408 1409 /* 1410 * replay one inode back reference item found in the log tree. 1411 * eb, slot and key refer to the buffer and key found in the log tree. 1412 * root is the destination we are replaying into, and path is for temp 1413 * use by this function. (it should be released on return). 1414 */ 1415 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1416 struct btrfs_root *root, 1417 struct btrfs_root *log, 1418 struct btrfs_path *path, 1419 struct extent_buffer *eb, int slot, 1420 struct btrfs_key *key) 1421 { 1422 struct inode *dir = NULL; 1423 struct inode *inode = NULL; 1424 unsigned long ref_ptr; 1425 unsigned long ref_end; 1426 char *name = NULL; 1427 int namelen; 1428 int ret; 1429 int search_done = 0; 1430 int log_ref_ver = 0; 1431 u64 parent_objectid; 1432 u64 inode_objectid; 1433 u64 ref_index = 0; 1434 int ref_struct_size; 1435 1436 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1437 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1438 1439 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1440 struct btrfs_inode_extref *r; 1441 1442 ref_struct_size = sizeof(struct btrfs_inode_extref); 1443 log_ref_ver = 1; 1444 r = (struct btrfs_inode_extref *)ref_ptr; 1445 parent_objectid = btrfs_inode_extref_parent(eb, r); 1446 } else { 1447 ref_struct_size = sizeof(struct btrfs_inode_ref); 1448 parent_objectid = key->offset; 1449 } 1450 inode_objectid = key->objectid; 1451 1452 /* 1453 * it is possible that we didn't log all the parent directories 1454 * for a given inode. If we don't find the dir, just don't 1455 * copy the back ref in. The link count fixup code will take 1456 * care of the rest 1457 */ 1458 dir = read_one_inode(root, parent_objectid); 1459 if (!dir) { 1460 ret = -ENOENT; 1461 goto out; 1462 } 1463 1464 inode = read_one_inode(root, inode_objectid); 1465 if (!inode) { 1466 ret = -EIO; 1467 goto out; 1468 } 1469 1470 while (ref_ptr < ref_end) { 1471 if (log_ref_ver) { 1472 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1473 &ref_index, &parent_objectid); 1474 /* 1475 * parent object can change from one array 1476 * item to another. 1477 */ 1478 if (!dir) 1479 dir = read_one_inode(root, parent_objectid); 1480 if (!dir) { 1481 ret = -ENOENT; 1482 goto out; 1483 } 1484 } else { 1485 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1486 &ref_index); 1487 } 1488 if (ret) 1489 goto out; 1490 1491 /* if we already have a perfect match, we're done */ 1492 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1493 btrfs_ino(BTRFS_I(inode)), ref_index, 1494 name, namelen)) { 1495 /* 1496 * look for a conflicting back reference in the 1497 * metadata. if we find one we have to unlink that name 1498 * of the file before we add our new link. Later on, we 1499 * overwrite any existing back reference, and we don't 1500 * want to create dangling pointers in the directory. 1501 */ 1502 1503 if (!search_done) { 1504 ret = __add_inode_ref(trans, root, path, log, 1505 BTRFS_I(dir), 1506 BTRFS_I(inode), 1507 inode_objectid, 1508 parent_objectid, 1509 ref_index, name, namelen, 1510 &search_done); 1511 if (ret) { 1512 if (ret == 1) 1513 ret = 0; 1514 goto out; 1515 } 1516 } 1517 1518 /* 1519 * If a reference item already exists for this inode 1520 * with the same parent and name, but different index, 1521 * drop it and the corresponding directory index entries 1522 * from the parent before adding the new reference item 1523 * and dir index entries, otherwise we would fail with 1524 * -EEXIST returned from btrfs_add_link() below. 1525 */ 1526 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1527 name, namelen); 1528 if (ret > 0) { 1529 ret = btrfs_unlink_inode(trans, root, 1530 BTRFS_I(dir), 1531 BTRFS_I(inode), 1532 name, namelen); 1533 /* 1534 * If we dropped the link count to 0, bump it so 1535 * that later the iput() on the inode will not 1536 * free it. We will fixup the link count later. 1537 */ 1538 if (!ret && inode->i_nlink == 0) 1539 inc_nlink(inode); 1540 } 1541 if (ret < 0) 1542 goto out; 1543 1544 /* insert our name */ 1545 ret = add_link(trans, root, dir, inode, name, namelen, 1546 ref_index); 1547 if (ret) 1548 goto out; 1549 1550 btrfs_update_inode(trans, root, inode); 1551 } 1552 1553 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1554 kfree(name); 1555 name = NULL; 1556 if (log_ref_ver) { 1557 iput(dir); 1558 dir = NULL; 1559 } 1560 } 1561 1562 /* 1563 * Before we overwrite the inode reference item in the subvolume tree 1564 * with the item from the log tree, we must unlink all names from the 1565 * parent directory that are in the subvolume's tree inode reference 1566 * item, otherwise we end up with an inconsistent subvolume tree where 1567 * dir index entries exist for a name but there is no inode reference 1568 * item with the same name. 1569 */ 1570 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1571 key); 1572 if (ret) 1573 goto out; 1574 1575 /* finally write the back reference in the inode */ 1576 ret = overwrite_item(trans, root, path, eb, slot, key); 1577 out: 1578 btrfs_release_path(path); 1579 kfree(name); 1580 iput(dir); 1581 iput(inode); 1582 return ret; 1583 } 1584 1585 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1586 struct btrfs_root *root, u64 ino) 1587 { 1588 int ret; 1589 1590 ret = btrfs_insert_orphan_item(trans, root, ino); 1591 if (ret == -EEXIST) 1592 ret = 0; 1593 1594 return ret; 1595 } 1596 1597 static int count_inode_extrefs(struct btrfs_root *root, 1598 struct btrfs_inode *inode, struct btrfs_path *path) 1599 { 1600 int ret = 0; 1601 int name_len; 1602 unsigned int nlink = 0; 1603 u32 item_size; 1604 u32 cur_offset = 0; 1605 u64 inode_objectid = btrfs_ino(inode); 1606 u64 offset = 0; 1607 unsigned long ptr; 1608 struct btrfs_inode_extref *extref; 1609 struct extent_buffer *leaf; 1610 1611 while (1) { 1612 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1613 &extref, &offset); 1614 if (ret) 1615 break; 1616 1617 leaf = path->nodes[0]; 1618 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1619 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1620 cur_offset = 0; 1621 1622 while (cur_offset < item_size) { 1623 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1624 name_len = btrfs_inode_extref_name_len(leaf, extref); 1625 1626 nlink++; 1627 1628 cur_offset += name_len + sizeof(*extref); 1629 } 1630 1631 offset++; 1632 btrfs_release_path(path); 1633 } 1634 btrfs_release_path(path); 1635 1636 if (ret < 0 && ret != -ENOENT) 1637 return ret; 1638 return nlink; 1639 } 1640 1641 static int count_inode_refs(struct btrfs_root *root, 1642 struct btrfs_inode *inode, struct btrfs_path *path) 1643 { 1644 int ret; 1645 struct btrfs_key key; 1646 unsigned int nlink = 0; 1647 unsigned long ptr; 1648 unsigned long ptr_end; 1649 int name_len; 1650 u64 ino = btrfs_ino(inode); 1651 1652 key.objectid = ino; 1653 key.type = BTRFS_INODE_REF_KEY; 1654 key.offset = (u64)-1; 1655 1656 while (1) { 1657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1658 if (ret < 0) 1659 break; 1660 if (ret > 0) { 1661 if (path->slots[0] == 0) 1662 break; 1663 path->slots[0]--; 1664 } 1665 process_slot: 1666 btrfs_item_key_to_cpu(path->nodes[0], &key, 1667 path->slots[0]); 1668 if (key.objectid != ino || 1669 key.type != BTRFS_INODE_REF_KEY) 1670 break; 1671 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1672 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1673 path->slots[0]); 1674 while (ptr < ptr_end) { 1675 struct btrfs_inode_ref *ref; 1676 1677 ref = (struct btrfs_inode_ref *)ptr; 1678 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1679 ref); 1680 ptr = (unsigned long)(ref + 1) + name_len; 1681 nlink++; 1682 } 1683 1684 if (key.offset == 0) 1685 break; 1686 if (path->slots[0] > 0) { 1687 path->slots[0]--; 1688 goto process_slot; 1689 } 1690 key.offset--; 1691 btrfs_release_path(path); 1692 } 1693 btrfs_release_path(path); 1694 1695 return nlink; 1696 } 1697 1698 /* 1699 * There are a few corners where the link count of the file can't 1700 * be properly maintained during replay. So, instead of adding 1701 * lots of complexity to the log code, we just scan the backrefs 1702 * for any file that has been through replay. 1703 * 1704 * The scan will update the link count on the inode to reflect the 1705 * number of back refs found. If it goes down to zero, the iput 1706 * will free the inode. 1707 */ 1708 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1709 struct btrfs_root *root, 1710 struct inode *inode) 1711 { 1712 struct btrfs_path *path; 1713 int ret; 1714 u64 nlink = 0; 1715 u64 ino = btrfs_ino(BTRFS_I(inode)); 1716 1717 path = btrfs_alloc_path(); 1718 if (!path) 1719 return -ENOMEM; 1720 1721 ret = count_inode_refs(root, BTRFS_I(inode), path); 1722 if (ret < 0) 1723 goto out; 1724 1725 nlink = ret; 1726 1727 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1728 if (ret < 0) 1729 goto out; 1730 1731 nlink += ret; 1732 1733 ret = 0; 1734 1735 if (nlink != inode->i_nlink) { 1736 set_nlink(inode, nlink); 1737 btrfs_update_inode(trans, root, inode); 1738 } 1739 BTRFS_I(inode)->index_cnt = (u64)-1; 1740 1741 if (inode->i_nlink == 0) { 1742 if (S_ISDIR(inode->i_mode)) { 1743 ret = replay_dir_deletes(trans, root, NULL, path, 1744 ino, 1); 1745 if (ret) 1746 goto out; 1747 } 1748 ret = insert_orphan_item(trans, root, ino); 1749 } 1750 1751 out: 1752 btrfs_free_path(path); 1753 return ret; 1754 } 1755 1756 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1757 struct btrfs_root *root, 1758 struct btrfs_path *path) 1759 { 1760 int ret; 1761 struct btrfs_key key; 1762 struct inode *inode; 1763 1764 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1765 key.type = BTRFS_ORPHAN_ITEM_KEY; 1766 key.offset = (u64)-1; 1767 while (1) { 1768 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1769 if (ret < 0) 1770 break; 1771 1772 if (ret == 1) { 1773 if (path->slots[0] == 0) 1774 break; 1775 path->slots[0]--; 1776 } 1777 1778 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1779 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1780 key.type != BTRFS_ORPHAN_ITEM_KEY) 1781 break; 1782 1783 ret = btrfs_del_item(trans, root, path); 1784 if (ret) 1785 goto out; 1786 1787 btrfs_release_path(path); 1788 inode = read_one_inode(root, key.offset); 1789 if (!inode) 1790 return -EIO; 1791 1792 ret = fixup_inode_link_count(trans, root, inode); 1793 iput(inode); 1794 if (ret) 1795 goto out; 1796 1797 /* 1798 * fixup on a directory may create new entries, 1799 * make sure we always look for the highset possible 1800 * offset 1801 */ 1802 key.offset = (u64)-1; 1803 } 1804 ret = 0; 1805 out: 1806 btrfs_release_path(path); 1807 return ret; 1808 } 1809 1810 1811 /* 1812 * record a given inode in the fixup dir so we can check its link 1813 * count when replay is done. The link count is incremented here 1814 * so the inode won't go away until we check it 1815 */ 1816 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1817 struct btrfs_root *root, 1818 struct btrfs_path *path, 1819 u64 objectid) 1820 { 1821 struct btrfs_key key; 1822 int ret = 0; 1823 struct inode *inode; 1824 1825 inode = read_one_inode(root, objectid); 1826 if (!inode) 1827 return -EIO; 1828 1829 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1830 key.type = BTRFS_ORPHAN_ITEM_KEY; 1831 key.offset = objectid; 1832 1833 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1834 1835 btrfs_release_path(path); 1836 if (ret == 0) { 1837 if (!inode->i_nlink) 1838 set_nlink(inode, 1); 1839 else 1840 inc_nlink(inode); 1841 ret = btrfs_update_inode(trans, root, inode); 1842 } else if (ret == -EEXIST) { 1843 ret = 0; 1844 } else { 1845 BUG(); /* Logic Error */ 1846 } 1847 iput(inode); 1848 1849 return ret; 1850 } 1851 1852 /* 1853 * when replaying the log for a directory, we only insert names 1854 * for inodes that actually exist. This means an fsync on a directory 1855 * does not implicitly fsync all the new files in it 1856 */ 1857 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1858 struct btrfs_root *root, 1859 u64 dirid, u64 index, 1860 char *name, int name_len, 1861 struct btrfs_key *location) 1862 { 1863 struct inode *inode; 1864 struct inode *dir; 1865 int ret; 1866 1867 inode = read_one_inode(root, location->objectid); 1868 if (!inode) 1869 return -ENOENT; 1870 1871 dir = read_one_inode(root, dirid); 1872 if (!dir) { 1873 iput(inode); 1874 return -EIO; 1875 } 1876 1877 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1878 name_len, 1, index); 1879 1880 /* FIXME, put inode into FIXUP list */ 1881 1882 iput(inode); 1883 iput(dir); 1884 return ret; 1885 } 1886 1887 /* 1888 * Return true if an inode reference exists in the log for the given name, 1889 * inode and parent inode. 1890 */ 1891 static bool name_in_log_ref(struct btrfs_root *log_root, 1892 const char *name, const int name_len, 1893 const u64 dirid, const u64 ino) 1894 { 1895 struct btrfs_key search_key; 1896 1897 search_key.objectid = ino; 1898 search_key.type = BTRFS_INODE_REF_KEY; 1899 search_key.offset = dirid; 1900 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1901 return true; 1902 1903 search_key.type = BTRFS_INODE_EXTREF_KEY; 1904 search_key.offset = btrfs_extref_hash(dirid, name, name_len); 1905 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1906 return true; 1907 1908 return false; 1909 } 1910 1911 /* 1912 * take a single entry in a log directory item and replay it into 1913 * the subvolume. 1914 * 1915 * if a conflicting item exists in the subdirectory already, 1916 * the inode it points to is unlinked and put into the link count 1917 * fix up tree. 1918 * 1919 * If a name from the log points to a file or directory that does 1920 * not exist in the FS, it is skipped. fsyncs on directories 1921 * do not force down inodes inside that directory, just changes to the 1922 * names or unlinks in a directory. 1923 * 1924 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1925 * non-existing inode) and 1 if the name was replayed. 1926 */ 1927 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1928 struct btrfs_root *root, 1929 struct btrfs_path *path, 1930 struct extent_buffer *eb, 1931 struct btrfs_dir_item *di, 1932 struct btrfs_key *key) 1933 { 1934 char *name; 1935 int name_len; 1936 struct btrfs_dir_item *dst_di; 1937 struct btrfs_key found_key; 1938 struct btrfs_key log_key; 1939 struct inode *dir; 1940 u8 log_type; 1941 int exists; 1942 int ret = 0; 1943 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1944 bool name_added = false; 1945 1946 dir = read_one_inode(root, key->objectid); 1947 if (!dir) 1948 return -EIO; 1949 1950 name_len = btrfs_dir_name_len(eb, di); 1951 name = kmalloc(name_len, GFP_NOFS); 1952 if (!name) { 1953 ret = -ENOMEM; 1954 goto out; 1955 } 1956 1957 log_type = btrfs_dir_type(eb, di); 1958 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1959 name_len); 1960 1961 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1962 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1963 if (exists == 0) 1964 exists = 1; 1965 else 1966 exists = 0; 1967 btrfs_release_path(path); 1968 1969 if (key->type == BTRFS_DIR_ITEM_KEY) { 1970 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1971 name, name_len, 1); 1972 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1973 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1974 key->objectid, 1975 key->offset, name, 1976 name_len, 1); 1977 } else { 1978 /* Corruption */ 1979 ret = -EINVAL; 1980 goto out; 1981 } 1982 if (IS_ERR_OR_NULL(dst_di)) { 1983 /* we need a sequence number to insert, so we only 1984 * do inserts for the BTRFS_DIR_INDEX_KEY types 1985 */ 1986 if (key->type != BTRFS_DIR_INDEX_KEY) 1987 goto out; 1988 goto insert; 1989 } 1990 1991 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1992 /* the existing item matches the logged item */ 1993 if (found_key.objectid == log_key.objectid && 1994 found_key.type == log_key.type && 1995 found_key.offset == log_key.offset && 1996 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1997 update_size = false; 1998 goto out; 1999 } 2000 2001 /* 2002 * don't drop the conflicting directory entry if the inode 2003 * for the new entry doesn't exist 2004 */ 2005 if (!exists) 2006 goto out; 2007 2008 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); 2009 if (ret) 2010 goto out; 2011 2012 if (key->type == BTRFS_DIR_INDEX_KEY) 2013 goto insert; 2014 out: 2015 btrfs_release_path(path); 2016 if (!ret && update_size) { 2017 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 2018 ret = btrfs_update_inode(trans, root, dir); 2019 } 2020 kfree(name); 2021 iput(dir); 2022 if (!ret && name_added) 2023 ret = 1; 2024 return ret; 2025 2026 insert: 2027 if (name_in_log_ref(root->log_root, name, name_len, 2028 key->objectid, log_key.objectid)) { 2029 /* The dentry will be added later. */ 2030 ret = 0; 2031 update_size = false; 2032 goto out; 2033 } 2034 btrfs_release_path(path); 2035 ret = insert_one_name(trans, root, key->objectid, key->offset, 2036 name, name_len, &log_key); 2037 if (ret && ret != -ENOENT && ret != -EEXIST) 2038 goto out; 2039 if (!ret) 2040 name_added = true; 2041 update_size = false; 2042 ret = 0; 2043 goto out; 2044 } 2045 2046 /* 2047 * find all the names in a directory item and reconcile them into 2048 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 2049 * one name in a directory item, but the same code gets used for 2050 * both directory index types 2051 */ 2052 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2053 struct btrfs_root *root, 2054 struct btrfs_path *path, 2055 struct extent_buffer *eb, int slot, 2056 struct btrfs_key *key) 2057 { 2058 int ret = 0; 2059 u32 item_size = btrfs_item_size_nr(eb, slot); 2060 struct btrfs_dir_item *di; 2061 int name_len; 2062 unsigned long ptr; 2063 unsigned long ptr_end; 2064 struct btrfs_path *fixup_path = NULL; 2065 2066 ptr = btrfs_item_ptr_offset(eb, slot); 2067 ptr_end = ptr + item_size; 2068 while (ptr < ptr_end) { 2069 di = (struct btrfs_dir_item *)ptr; 2070 name_len = btrfs_dir_name_len(eb, di); 2071 ret = replay_one_name(trans, root, path, eb, di, key); 2072 if (ret < 0) 2073 break; 2074 ptr = (unsigned long)(di + 1); 2075 ptr += name_len; 2076 2077 /* 2078 * If this entry refers to a non-directory (directories can not 2079 * have a link count > 1) and it was added in the transaction 2080 * that was not committed, make sure we fixup the link count of 2081 * the inode it the entry points to. Otherwise something like 2082 * the following would result in a directory pointing to an 2083 * inode with a wrong link that does not account for this dir 2084 * entry: 2085 * 2086 * mkdir testdir 2087 * touch testdir/foo 2088 * touch testdir/bar 2089 * sync 2090 * 2091 * ln testdir/bar testdir/bar_link 2092 * ln testdir/foo testdir/foo_link 2093 * xfs_io -c "fsync" testdir/bar 2094 * 2095 * <power failure> 2096 * 2097 * mount fs, log replay happens 2098 * 2099 * File foo would remain with a link count of 1 when it has two 2100 * entries pointing to it in the directory testdir. This would 2101 * make it impossible to ever delete the parent directory has 2102 * it would result in stale dentries that can never be deleted. 2103 */ 2104 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2105 struct btrfs_key di_key; 2106 2107 if (!fixup_path) { 2108 fixup_path = btrfs_alloc_path(); 2109 if (!fixup_path) { 2110 ret = -ENOMEM; 2111 break; 2112 } 2113 } 2114 2115 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2116 ret = link_to_fixup_dir(trans, root, fixup_path, 2117 di_key.objectid); 2118 if (ret) 2119 break; 2120 } 2121 ret = 0; 2122 } 2123 btrfs_free_path(fixup_path); 2124 return ret; 2125 } 2126 2127 /* 2128 * directory replay has two parts. There are the standard directory 2129 * items in the log copied from the subvolume, and range items 2130 * created in the log while the subvolume was logged. 2131 * 2132 * The range items tell us which parts of the key space the log 2133 * is authoritative for. During replay, if a key in the subvolume 2134 * directory is in a logged range item, but not actually in the log 2135 * that means it was deleted from the directory before the fsync 2136 * and should be removed. 2137 */ 2138 static noinline int find_dir_range(struct btrfs_root *root, 2139 struct btrfs_path *path, 2140 u64 dirid, int key_type, 2141 u64 *start_ret, u64 *end_ret) 2142 { 2143 struct btrfs_key key; 2144 u64 found_end; 2145 struct btrfs_dir_log_item *item; 2146 int ret; 2147 int nritems; 2148 2149 if (*start_ret == (u64)-1) 2150 return 1; 2151 2152 key.objectid = dirid; 2153 key.type = key_type; 2154 key.offset = *start_ret; 2155 2156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2157 if (ret < 0) 2158 goto out; 2159 if (ret > 0) { 2160 if (path->slots[0] == 0) 2161 goto out; 2162 path->slots[0]--; 2163 } 2164 if (ret != 0) 2165 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2166 2167 if (key.type != key_type || key.objectid != dirid) { 2168 ret = 1; 2169 goto next; 2170 } 2171 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2172 struct btrfs_dir_log_item); 2173 found_end = btrfs_dir_log_end(path->nodes[0], item); 2174 2175 if (*start_ret >= key.offset && *start_ret <= found_end) { 2176 ret = 0; 2177 *start_ret = key.offset; 2178 *end_ret = found_end; 2179 goto out; 2180 } 2181 ret = 1; 2182 next: 2183 /* check the next slot in the tree to see if it is a valid item */ 2184 nritems = btrfs_header_nritems(path->nodes[0]); 2185 path->slots[0]++; 2186 if (path->slots[0] >= nritems) { 2187 ret = btrfs_next_leaf(root, path); 2188 if (ret) 2189 goto out; 2190 } 2191 2192 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2193 2194 if (key.type != key_type || key.objectid != dirid) { 2195 ret = 1; 2196 goto out; 2197 } 2198 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2199 struct btrfs_dir_log_item); 2200 found_end = btrfs_dir_log_end(path->nodes[0], item); 2201 *start_ret = key.offset; 2202 *end_ret = found_end; 2203 ret = 0; 2204 out: 2205 btrfs_release_path(path); 2206 return ret; 2207 } 2208 2209 /* 2210 * this looks for a given directory item in the log. If the directory 2211 * item is not in the log, the item is removed and the inode it points 2212 * to is unlinked 2213 */ 2214 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2215 struct btrfs_root *root, 2216 struct btrfs_root *log, 2217 struct btrfs_path *path, 2218 struct btrfs_path *log_path, 2219 struct inode *dir, 2220 struct btrfs_key *dir_key) 2221 { 2222 int ret; 2223 struct extent_buffer *eb; 2224 int slot; 2225 u32 item_size; 2226 struct btrfs_dir_item *di; 2227 struct btrfs_dir_item *log_di; 2228 int name_len; 2229 unsigned long ptr; 2230 unsigned long ptr_end; 2231 char *name; 2232 struct inode *inode; 2233 struct btrfs_key location; 2234 2235 again: 2236 eb = path->nodes[0]; 2237 slot = path->slots[0]; 2238 item_size = btrfs_item_size_nr(eb, slot); 2239 ptr = btrfs_item_ptr_offset(eb, slot); 2240 ptr_end = ptr + item_size; 2241 while (ptr < ptr_end) { 2242 di = (struct btrfs_dir_item *)ptr; 2243 name_len = btrfs_dir_name_len(eb, di); 2244 name = kmalloc(name_len, GFP_NOFS); 2245 if (!name) { 2246 ret = -ENOMEM; 2247 goto out; 2248 } 2249 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2250 name_len); 2251 log_di = NULL; 2252 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2253 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2254 dir_key->objectid, 2255 name, name_len, 0); 2256 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2257 log_di = btrfs_lookup_dir_index_item(trans, log, 2258 log_path, 2259 dir_key->objectid, 2260 dir_key->offset, 2261 name, name_len, 0); 2262 } 2263 if (!log_di || log_di == ERR_PTR(-ENOENT)) { 2264 btrfs_dir_item_key_to_cpu(eb, di, &location); 2265 btrfs_release_path(path); 2266 btrfs_release_path(log_path); 2267 inode = read_one_inode(root, location.objectid); 2268 if (!inode) { 2269 kfree(name); 2270 return -EIO; 2271 } 2272 2273 ret = link_to_fixup_dir(trans, root, 2274 path, location.objectid); 2275 if (ret) { 2276 kfree(name); 2277 iput(inode); 2278 goto out; 2279 } 2280 2281 inc_nlink(inode); 2282 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 2283 BTRFS_I(inode), name, name_len); 2284 if (!ret) 2285 ret = btrfs_run_delayed_items(trans); 2286 kfree(name); 2287 iput(inode); 2288 if (ret) 2289 goto out; 2290 2291 /* there might still be more names under this key 2292 * check and repeat if required 2293 */ 2294 ret = btrfs_search_slot(NULL, root, dir_key, path, 2295 0, 0); 2296 if (ret == 0) 2297 goto again; 2298 ret = 0; 2299 goto out; 2300 } else if (IS_ERR(log_di)) { 2301 kfree(name); 2302 return PTR_ERR(log_di); 2303 } 2304 btrfs_release_path(log_path); 2305 kfree(name); 2306 2307 ptr = (unsigned long)(di + 1); 2308 ptr += name_len; 2309 } 2310 ret = 0; 2311 out: 2312 btrfs_release_path(path); 2313 btrfs_release_path(log_path); 2314 return ret; 2315 } 2316 2317 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2318 struct btrfs_root *root, 2319 struct btrfs_root *log, 2320 struct btrfs_path *path, 2321 const u64 ino) 2322 { 2323 struct btrfs_key search_key; 2324 struct btrfs_path *log_path; 2325 int i; 2326 int nritems; 2327 int ret; 2328 2329 log_path = btrfs_alloc_path(); 2330 if (!log_path) 2331 return -ENOMEM; 2332 2333 search_key.objectid = ino; 2334 search_key.type = BTRFS_XATTR_ITEM_KEY; 2335 search_key.offset = 0; 2336 again: 2337 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2338 if (ret < 0) 2339 goto out; 2340 process_leaf: 2341 nritems = btrfs_header_nritems(path->nodes[0]); 2342 for (i = path->slots[0]; i < nritems; i++) { 2343 struct btrfs_key key; 2344 struct btrfs_dir_item *di; 2345 struct btrfs_dir_item *log_di; 2346 u32 total_size; 2347 u32 cur; 2348 2349 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2350 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2351 ret = 0; 2352 goto out; 2353 } 2354 2355 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2356 total_size = btrfs_item_size_nr(path->nodes[0], i); 2357 cur = 0; 2358 while (cur < total_size) { 2359 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2360 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2361 u32 this_len = sizeof(*di) + name_len + data_len; 2362 char *name; 2363 2364 name = kmalloc(name_len, GFP_NOFS); 2365 if (!name) { 2366 ret = -ENOMEM; 2367 goto out; 2368 } 2369 read_extent_buffer(path->nodes[0], name, 2370 (unsigned long)(di + 1), name_len); 2371 2372 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2373 name, name_len, 0); 2374 btrfs_release_path(log_path); 2375 if (!log_di) { 2376 /* Doesn't exist in log tree, so delete it. */ 2377 btrfs_release_path(path); 2378 di = btrfs_lookup_xattr(trans, root, path, ino, 2379 name, name_len, -1); 2380 kfree(name); 2381 if (IS_ERR(di)) { 2382 ret = PTR_ERR(di); 2383 goto out; 2384 } 2385 ASSERT(di); 2386 ret = btrfs_delete_one_dir_name(trans, root, 2387 path, di); 2388 if (ret) 2389 goto out; 2390 btrfs_release_path(path); 2391 search_key = key; 2392 goto again; 2393 } 2394 kfree(name); 2395 if (IS_ERR(log_di)) { 2396 ret = PTR_ERR(log_di); 2397 goto out; 2398 } 2399 cur += this_len; 2400 di = (struct btrfs_dir_item *)((char *)di + this_len); 2401 } 2402 } 2403 ret = btrfs_next_leaf(root, path); 2404 if (ret > 0) 2405 ret = 0; 2406 else if (ret == 0) 2407 goto process_leaf; 2408 out: 2409 btrfs_free_path(log_path); 2410 btrfs_release_path(path); 2411 return ret; 2412 } 2413 2414 2415 /* 2416 * deletion replay happens before we copy any new directory items 2417 * out of the log or out of backreferences from inodes. It 2418 * scans the log to find ranges of keys that log is authoritative for, 2419 * and then scans the directory to find items in those ranges that are 2420 * not present in the log. 2421 * 2422 * Anything we don't find in the log is unlinked and removed from the 2423 * directory. 2424 */ 2425 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2426 struct btrfs_root *root, 2427 struct btrfs_root *log, 2428 struct btrfs_path *path, 2429 u64 dirid, int del_all) 2430 { 2431 u64 range_start; 2432 u64 range_end; 2433 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2434 int ret = 0; 2435 struct btrfs_key dir_key; 2436 struct btrfs_key found_key; 2437 struct btrfs_path *log_path; 2438 struct inode *dir; 2439 2440 dir_key.objectid = dirid; 2441 dir_key.type = BTRFS_DIR_ITEM_KEY; 2442 log_path = btrfs_alloc_path(); 2443 if (!log_path) 2444 return -ENOMEM; 2445 2446 dir = read_one_inode(root, dirid); 2447 /* it isn't an error if the inode isn't there, that can happen 2448 * because we replay the deletes before we copy in the inode item 2449 * from the log 2450 */ 2451 if (!dir) { 2452 btrfs_free_path(log_path); 2453 return 0; 2454 } 2455 again: 2456 range_start = 0; 2457 range_end = 0; 2458 while (1) { 2459 if (del_all) 2460 range_end = (u64)-1; 2461 else { 2462 ret = find_dir_range(log, path, dirid, key_type, 2463 &range_start, &range_end); 2464 if (ret != 0) 2465 break; 2466 } 2467 2468 dir_key.offset = range_start; 2469 while (1) { 2470 int nritems; 2471 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2472 0, 0); 2473 if (ret < 0) 2474 goto out; 2475 2476 nritems = btrfs_header_nritems(path->nodes[0]); 2477 if (path->slots[0] >= nritems) { 2478 ret = btrfs_next_leaf(root, path); 2479 if (ret == 1) 2480 break; 2481 else if (ret < 0) 2482 goto out; 2483 } 2484 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2485 path->slots[0]); 2486 if (found_key.objectid != dirid || 2487 found_key.type != dir_key.type) 2488 goto next_type; 2489 2490 if (found_key.offset > range_end) 2491 break; 2492 2493 ret = check_item_in_log(trans, root, log, path, 2494 log_path, dir, 2495 &found_key); 2496 if (ret) 2497 goto out; 2498 if (found_key.offset == (u64)-1) 2499 break; 2500 dir_key.offset = found_key.offset + 1; 2501 } 2502 btrfs_release_path(path); 2503 if (range_end == (u64)-1) 2504 break; 2505 range_start = range_end + 1; 2506 } 2507 2508 next_type: 2509 ret = 0; 2510 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2511 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2512 dir_key.type = BTRFS_DIR_INDEX_KEY; 2513 btrfs_release_path(path); 2514 goto again; 2515 } 2516 out: 2517 btrfs_release_path(path); 2518 btrfs_free_path(log_path); 2519 iput(dir); 2520 return ret; 2521 } 2522 2523 /* 2524 * the process_func used to replay items from the log tree. This 2525 * gets called in two different stages. The first stage just looks 2526 * for inodes and makes sure they are all copied into the subvolume. 2527 * 2528 * The second stage copies all the other item types from the log into 2529 * the subvolume. The two stage approach is slower, but gets rid of 2530 * lots of complexity around inodes referencing other inodes that exist 2531 * only in the log (references come from either directory items or inode 2532 * back refs). 2533 */ 2534 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2535 struct walk_control *wc, u64 gen, int level) 2536 { 2537 int nritems; 2538 struct btrfs_path *path; 2539 struct btrfs_root *root = wc->replay_dest; 2540 struct btrfs_key key; 2541 int i; 2542 int ret; 2543 2544 ret = btrfs_read_buffer(eb, gen, level, NULL); 2545 if (ret) 2546 return ret; 2547 2548 level = btrfs_header_level(eb); 2549 2550 if (level != 0) 2551 return 0; 2552 2553 path = btrfs_alloc_path(); 2554 if (!path) 2555 return -ENOMEM; 2556 2557 nritems = btrfs_header_nritems(eb); 2558 for (i = 0; i < nritems; i++) { 2559 btrfs_item_key_to_cpu(eb, &key, i); 2560 2561 /* inode keys are done during the first stage */ 2562 if (key.type == BTRFS_INODE_ITEM_KEY && 2563 wc->stage == LOG_WALK_REPLAY_INODES) { 2564 struct btrfs_inode_item *inode_item; 2565 u32 mode; 2566 2567 inode_item = btrfs_item_ptr(eb, i, 2568 struct btrfs_inode_item); 2569 /* 2570 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2571 * and never got linked before the fsync, skip it, as 2572 * replaying it is pointless since it would be deleted 2573 * later. We skip logging tmpfiles, but it's always 2574 * possible we are replaying a log created with a kernel 2575 * that used to log tmpfiles. 2576 */ 2577 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2578 wc->ignore_cur_inode = true; 2579 continue; 2580 } else { 2581 wc->ignore_cur_inode = false; 2582 } 2583 ret = replay_xattr_deletes(wc->trans, root, log, 2584 path, key.objectid); 2585 if (ret) 2586 break; 2587 mode = btrfs_inode_mode(eb, inode_item); 2588 if (S_ISDIR(mode)) { 2589 ret = replay_dir_deletes(wc->trans, 2590 root, log, path, key.objectid, 0); 2591 if (ret) 2592 break; 2593 } 2594 ret = overwrite_item(wc->trans, root, path, 2595 eb, i, &key); 2596 if (ret) 2597 break; 2598 2599 /* 2600 * Before replaying extents, truncate the inode to its 2601 * size. We need to do it now and not after log replay 2602 * because before an fsync we can have prealloc extents 2603 * added beyond the inode's i_size. If we did it after, 2604 * through orphan cleanup for example, we would drop 2605 * those prealloc extents just after replaying them. 2606 */ 2607 if (S_ISREG(mode)) { 2608 struct inode *inode; 2609 u64 from; 2610 2611 inode = read_one_inode(root, key.objectid); 2612 if (!inode) { 2613 ret = -EIO; 2614 break; 2615 } 2616 from = ALIGN(i_size_read(inode), 2617 root->fs_info->sectorsize); 2618 ret = btrfs_drop_extents(wc->trans, root, inode, 2619 from, (u64)-1, 1); 2620 if (!ret) { 2621 /* Update the inode's nbytes. */ 2622 ret = btrfs_update_inode(wc->trans, 2623 root, inode); 2624 } 2625 iput(inode); 2626 if (ret) 2627 break; 2628 } 2629 2630 ret = link_to_fixup_dir(wc->trans, root, 2631 path, key.objectid); 2632 if (ret) 2633 break; 2634 } 2635 2636 if (wc->ignore_cur_inode) 2637 continue; 2638 2639 if (key.type == BTRFS_DIR_INDEX_KEY && 2640 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2641 ret = replay_one_dir_item(wc->trans, root, path, 2642 eb, i, &key); 2643 if (ret) 2644 break; 2645 } 2646 2647 if (wc->stage < LOG_WALK_REPLAY_ALL) 2648 continue; 2649 2650 /* these keys are simply copied */ 2651 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2652 ret = overwrite_item(wc->trans, root, path, 2653 eb, i, &key); 2654 if (ret) 2655 break; 2656 } else if (key.type == BTRFS_INODE_REF_KEY || 2657 key.type == BTRFS_INODE_EXTREF_KEY) { 2658 ret = add_inode_ref(wc->trans, root, log, path, 2659 eb, i, &key); 2660 if (ret && ret != -ENOENT) 2661 break; 2662 ret = 0; 2663 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2664 ret = replay_one_extent(wc->trans, root, path, 2665 eb, i, &key); 2666 if (ret) 2667 break; 2668 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2669 ret = replay_one_dir_item(wc->trans, root, path, 2670 eb, i, &key); 2671 if (ret) 2672 break; 2673 } 2674 } 2675 btrfs_free_path(path); 2676 return ret; 2677 } 2678 2679 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2680 struct btrfs_root *root, 2681 struct btrfs_path *path, int *level, 2682 struct walk_control *wc) 2683 { 2684 struct btrfs_fs_info *fs_info = root->fs_info; 2685 u64 root_owner; 2686 u64 bytenr; 2687 u64 ptr_gen; 2688 struct extent_buffer *next; 2689 struct extent_buffer *cur; 2690 struct extent_buffer *parent; 2691 u32 blocksize; 2692 int ret = 0; 2693 2694 WARN_ON(*level < 0); 2695 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2696 2697 while (*level > 0) { 2698 struct btrfs_key first_key; 2699 2700 WARN_ON(*level < 0); 2701 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2702 cur = path->nodes[*level]; 2703 2704 WARN_ON(btrfs_header_level(cur) != *level); 2705 2706 if (path->slots[*level] >= 2707 btrfs_header_nritems(cur)) 2708 break; 2709 2710 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2711 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2712 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2713 blocksize = fs_info->nodesize; 2714 2715 parent = path->nodes[*level]; 2716 root_owner = btrfs_header_owner(parent); 2717 2718 next = btrfs_find_create_tree_block(fs_info, bytenr); 2719 if (IS_ERR(next)) 2720 return PTR_ERR(next); 2721 2722 if (*level == 1) { 2723 ret = wc->process_func(root, next, wc, ptr_gen, 2724 *level - 1); 2725 if (ret) { 2726 free_extent_buffer(next); 2727 return ret; 2728 } 2729 2730 path->slots[*level]++; 2731 if (wc->free) { 2732 ret = btrfs_read_buffer(next, ptr_gen, 2733 *level - 1, &first_key); 2734 if (ret) { 2735 free_extent_buffer(next); 2736 return ret; 2737 } 2738 2739 if (trans) { 2740 btrfs_tree_lock(next); 2741 btrfs_set_lock_blocking_write(next); 2742 btrfs_clean_tree_block(next); 2743 btrfs_wait_tree_block_writeback(next); 2744 btrfs_tree_unlock(next); 2745 } else { 2746 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2747 clear_extent_buffer_dirty(next); 2748 } 2749 2750 WARN_ON(root_owner != 2751 BTRFS_TREE_LOG_OBJECTID); 2752 ret = btrfs_free_and_pin_reserved_extent( 2753 fs_info, bytenr, 2754 blocksize); 2755 if (ret) { 2756 free_extent_buffer(next); 2757 return ret; 2758 } 2759 } 2760 free_extent_buffer(next); 2761 continue; 2762 } 2763 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2764 if (ret) { 2765 free_extent_buffer(next); 2766 return ret; 2767 } 2768 2769 WARN_ON(*level <= 0); 2770 if (path->nodes[*level-1]) 2771 free_extent_buffer(path->nodes[*level-1]); 2772 path->nodes[*level-1] = next; 2773 *level = btrfs_header_level(next); 2774 path->slots[*level] = 0; 2775 cond_resched(); 2776 } 2777 WARN_ON(*level < 0); 2778 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2779 2780 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2781 2782 cond_resched(); 2783 return 0; 2784 } 2785 2786 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2787 struct btrfs_root *root, 2788 struct btrfs_path *path, int *level, 2789 struct walk_control *wc) 2790 { 2791 struct btrfs_fs_info *fs_info = root->fs_info; 2792 u64 root_owner; 2793 int i; 2794 int slot; 2795 int ret; 2796 2797 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2798 slot = path->slots[i]; 2799 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2800 path->slots[i]++; 2801 *level = i; 2802 WARN_ON(*level == 0); 2803 return 0; 2804 } else { 2805 struct extent_buffer *parent; 2806 if (path->nodes[*level] == root->node) 2807 parent = path->nodes[*level]; 2808 else 2809 parent = path->nodes[*level + 1]; 2810 2811 root_owner = btrfs_header_owner(parent); 2812 ret = wc->process_func(root, path->nodes[*level], wc, 2813 btrfs_header_generation(path->nodes[*level]), 2814 *level); 2815 if (ret) 2816 return ret; 2817 2818 if (wc->free) { 2819 struct extent_buffer *next; 2820 2821 next = path->nodes[*level]; 2822 2823 if (trans) { 2824 btrfs_tree_lock(next); 2825 btrfs_set_lock_blocking_write(next); 2826 btrfs_clean_tree_block(next); 2827 btrfs_wait_tree_block_writeback(next); 2828 btrfs_tree_unlock(next); 2829 } else { 2830 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2831 clear_extent_buffer_dirty(next); 2832 } 2833 2834 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 2835 ret = btrfs_free_and_pin_reserved_extent( 2836 fs_info, 2837 path->nodes[*level]->start, 2838 path->nodes[*level]->len); 2839 if (ret) 2840 return ret; 2841 } 2842 free_extent_buffer(path->nodes[*level]); 2843 path->nodes[*level] = NULL; 2844 *level = i + 1; 2845 } 2846 } 2847 return 1; 2848 } 2849 2850 /* 2851 * drop the reference count on the tree rooted at 'snap'. This traverses 2852 * the tree freeing any blocks that have a ref count of zero after being 2853 * decremented. 2854 */ 2855 static int walk_log_tree(struct btrfs_trans_handle *trans, 2856 struct btrfs_root *log, struct walk_control *wc) 2857 { 2858 struct btrfs_fs_info *fs_info = log->fs_info; 2859 int ret = 0; 2860 int wret; 2861 int level; 2862 struct btrfs_path *path; 2863 int orig_level; 2864 2865 path = btrfs_alloc_path(); 2866 if (!path) 2867 return -ENOMEM; 2868 2869 level = btrfs_header_level(log->node); 2870 orig_level = level; 2871 path->nodes[level] = log->node; 2872 extent_buffer_get(log->node); 2873 path->slots[level] = 0; 2874 2875 while (1) { 2876 wret = walk_down_log_tree(trans, log, path, &level, wc); 2877 if (wret > 0) 2878 break; 2879 if (wret < 0) { 2880 ret = wret; 2881 goto out; 2882 } 2883 2884 wret = walk_up_log_tree(trans, log, path, &level, wc); 2885 if (wret > 0) 2886 break; 2887 if (wret < 0) { 2888 ret = wret; 2889 goto out; 2890 } 2891 } 2892 2893 /* was the root node processed? if not, catch it here */ 2894 if (path->nodes[orig_level]) { 2895 ret = wc->process_func(log, path->nodes[orig_level], wc, 2896 btrfs_header_generation(path->nodes[orig_level]), 2897 orig_level); 2898 if (ret) 2899 goto out; 2900 if (wc->free) { 2901 struct extent_buffer *next; 2902 2903 next = path->nodes[orig_level]; 2904 2905 if (trans) { 2906 btrfs_tree_lock(next); 2907 btrfs_set_lock_blocking_write(next); 2908 btrfs_clean_tree_block(next); 2909 btrfs_wait_tree_block_writeback(next); 2910 btrfs_tree_unlock(next); 2911 } else { 2912 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2913 clear_extent_buffer_dirty(next); 2914 } 2915 2916 WARN_ON(log->root_key.objectid != 2917 BTRFS_TREE_LOG_OBJECTID); 2918 ret = btrfs_free_and_pin_reserved_extent(fs_info, 2919 next->start, next->len); 2920 if (ret) 2921 goto out; 2922 } 2923 } 2924 2925 out: 2926 btrfs_free_path(path); 2927 return ret; 2928 } 2929 2930 /* 2931 * helper function to update the item for a given subvolumes log root 2932 * in the tree of log roots 2933 */ 2934 static int update_log_root(struct btrfs_trans_handle *trans, 2935 struct btrfs_root *log) 2936 { 2937 struct btrfs_fs_info *fs_info = log->fs_info; 2938 int ret; 2939 2940 if (log->log_transid == 1) { 2941 /* insert root item on the first sync */ 2942 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2943 &log->root_key, &log->root_item); 2944 } else { 2945 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2946 &log->root_key, &log->root_item); 2947 } 2948 return ret; 2949 } 2950 2951 static void wait_log_commit(struct btrfs_root *root, int transid) 2952 { 2953 DEFINE_WAIT(wait); 2954 int index = transid % 2; 2955 2956 /* 2957 * we only allow two pending log transactions at a time, 2958 * so we know that if ours is more than 2 older than the 2959 * current transaction, we're done 2960 */ 2961 for (;;) { 2962 prepare_to_wait(&root->log_commit_wait[index], 2963 &wait, TASK_UNINTERRUPTIBLE); 2964 2965 if (!(root->log_transid_committed < transid && 2966 atomic_read(&root->log_commit[index]))) 2967 break; 2968 2969 mutex_unlock(&root->log_mutex); 2970 schedule(); 2971 mutex_lock(&root->log_mutex); 2972 } 2973 finish_wait(&root->log_commit_wait[index], &wait); 2974 } 2975 2976 static void wait_for_writer(struct btrfs_root *root) 2977 { 2978 DEFINE_WAIT(wait); 2979 2980 for (;;) { 2981 prepare_to_wait(&root->log_writer_wait, &wait, 2982 TASK_UNINTERRUPTIBLE); 2983 if (!atomic_read(&root->log_writers)) 2984 break; 2985 2986 mutex_unlock(&root->log_mutex); 2987 schedule(); 2988 mutex_lock(&root->log_mutex); 2989 } 2990 finish_wait(&root->log_writer_wait, &wait); 2991 } 2992 2993 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2994 struct btrfs_log_ctx *ctx) 2995 { 2996 if (!ctx) 2997 return; 2998 2999 mutex_lock(&root->log_mutex); 3000 list_del_init(&ctx->list); 3001 mutex_unlock(&root->log_mutex); 3002 } 3003 3004 /* 3005 * Invoked in log mutex context, or be sure there is no other task which 3006 * can access the list. 3007 */ 3008 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 3009 int index, int error) 3010 { 3011 struct btrfs_log_ctx *ctx; 3012 struct btrfs_log_ctx *safe; 3013 3014 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 3015 list_del_init(&ctx->list); 3016 ctx->log_ret = error; 3017 } 3018 3019 INIT_LIST_HEAD(&root->log_ctxs[index]); 3020 } 3021 3022 /* 3023 * btrfs_sync_log does sends a given tree log down to the disk and 3024 * updates the super blocks to record it. When this call is done, 3025 * you know that any inodes previously logged are safely on disk only 3026 * if it returns 0. 3027 * 3028 * Any other return value means you need to call btrfs_commit_transaction. 3029 * Some of the edge cases for fsyncing directories that have had unlinks 3030 * or renames done in the past mean that sometimes the only safe 3031 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3032 * that has happened. 3033 */ 3034 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3035 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3036 { 3037 int index1; 3038 int index2; 3039 int mark; 3040 int ret; 3041 struct btrfs_fs_info *fs_info = root->fs_info; 3042 struct btrfs_root *log = root->log_root; 3043 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3044 int log_transid = 0; 3045 struct btrfs_log_ctx root_log_ctx; 3046 struct blk_plug plug; 3047 3048 mutex_lock(&root->log_mutex); 3049 log_transid = ctx->log_transid; 3050 if (root->log_transid_committed >= log_transid) { 3051 mutex_unlock(&root->log_mutex); 3052 return ctx->log_ret; 3053 } 3054 3055 index1 = log_transid % 2; 3056 if (atomic_read(&root->log_commit[index1])) { 3057 wait_log_commit(root, log_transid); 3058 mutex_unlock(&root->log_mutex); 3059 return ctx->log_ret; 3060 } 3061 ASSERT(log_transid == root->log_transid); 3062 atomic_set(&root->log_commit[index1], 1); 3063 3064 /* wait for previous tree log sync to complete */ 3065 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3066 wait_log_commit(root, log_transid - 1); 3067 3068 while (1) { 3069 int batch = atomic_read(&root->log_batch); 3070 /* when we're on an ssd, just kick the log commit out */ 3071 if (!btrfs_test_opt(fs_info, SSD) && 3072 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3073 mutex_unlock(&root->log_mutex); 3074 schedule_timeout_uninterruptible(1); 3075 mutex_lock(&root->log_mutex); 3076 } 3077 wait_for_writer(root); 3078 if (batch == atomic_read(&root->log_batch)) 3079 break; 3080 } 3081 3082 /* bail out if we need to do a full commit */ 3083 if (btrfs_need_log_full_commit(trans)) { 3084 ret = -EAGAIN; 3085 mutex_unlock(&root->log_mutex); 3086 goto out; 3087 } 3088 3089 if (log_transid % 2 == 0) 3090 mark = EXTENT_DIRTY; 3091 else 3092 mark = EXTENT_NEW; 3093 3094 /* we start IO on all the marked extents here, but we don't actually 3095 * wait for them until later. 3096 */ 3097 blk_start_plug(&plug); 3098 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3099 if (ret) { 3100 blk_finish_plug(&plug); 3101 btrfs_abort_transaction(trans, ret); 3102 btrfs_set_log_full_commit(trans); 3103 mutex_unlock(&root->log_mutex); 3104 goto out; 3105 } 3106 3107 btrfs_set_root_node(&log->root_item, log->node); 3108 3109 root->log_transid++; 3110 log->log_transid = root->log_transid; 3111 root->log_start_pid = 0; 3112 /* 3113 * Update or create log root item under the root's log_mutex to prevent 3114 * races with concurrent log syncs that can lead to failure to update 3115 * log root item because it was not created yet. 3116 */ 3117 ret = update_log_root(trans, log); 3118 /* 3119 * IO has been started, blocks of the log tree have WRITTEN flag set 3120 * in their headers. new modifications of the log will be written to 3121 * new positions. so it's safe to allow log writers to go in. 3122 */ 3123 mutex_unlock(&root->log_mutex); 3124 3125 btrfs_init_log_ctx(&root_log_ctx, NULL); 3126 3127 mutex_lock(&log_root_tree->log_mutex); 3128 atomic_inc(&log_root_tree->log_batch); 3129 atomic_inc(&log_root_tree->log_writers); 3130 3131 index2 = log_root_tree->log_transid % 2; 3132 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3133 root_log_ctx.log_transid = log_root_tree->log_transid; 3134 3135 mutex_unlock(&log_root_tree->log_mutex); 3136 3137 mutex_lock(&log_root_tree->log_mutex); 3138 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 3139 /* atomic_dec_and_test implies a barrier */ 3140 cond_wake_up_nomb(&log_root_tree->log_writer_wait); 3141 } 3142 3143 if (ret) { 3144 if (!list_empty(&root_log_ctx.list)) 3145 list_del_init(&root_log_ctx.list); 3146 3147 blk_finish_plug(&plug); 3148 btrfs_set_log_full_commit(trans); 3149 3150 if (ret != -ENOSPC) { 3151 btrfs_abort_transaction(trans, ret); 3152 mutex_unlock(&log_root_tree->log_mutex); 3153 goto out; 3154 } 3155 btrfs_wait_tree_log_extents(log, mark); 3156 mutex_unlock(&log_root_tree->log_mutex); 3157 ret = -EAGAIN; 3158 goto out; 3159 } 3160 3161 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3162 blk_finish_plug(&plug); 3163 list_del_init(&root_log_ctx.list); 3164 mutex_unlock(&log_root_tree->log_mutex); 3165 ret = root_log_ctx.log_ret; 3166 goto out; 3167 } 3168 3169 index2 = root_log_ctx.log_transid % 2; 3170 if (atomic_read(&log_root_tree->log_commit[index2])) { 3171 blk_finish_plug(&plug); 3172 ret = btrfs_wait_tree_log_extents(log, mark); 3173 wait_log_commit(log_root_tree, 3174 root_log_ctx.log_transid); 3175 mutex_unlock(&log_root_tree->log_mutex); 3176 if (!ret) 3177 ret = root_log_ctx.log_ret; 3178 goto out; 3179 } 3180 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3181 atomic_set(&log_root_tree->log_commit[index2], 1); 3182 3183 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3184 wait_log_commit(log_root_tree, 3185 root_log_ctx.log_transid - 1); 3186 } 3187 3188 wait_for_writer(log_root_tree); 3189 3190 /* 3191 * now that we've moved on to the tree of log tree roots, 3192 * check the full commit flag again 3193 */ 3194 if (btrfs_need_log_full_commit(trans)) { 3195 blk_finish_plug(&plug); 3196 btrfs_wait_tree_log_extents(log, mark); 3197 mutex_unlock(&log_root_tree->log_mutex); 3198 ret = -EAGAIN; 3199 goto out_wake_log_root; 3200 } 3201 3202 ret = btrfs_write_marked_extents(fs_info, 3203 &log_root_tree->dirty_log_pages, 3204 EXTENT_DIRTY | EXTENT_NEW); 3205 blk_finish_plug(&plug); 3206 if (ret) { 3207 btrfs_set_log_full_commit(trans); 3208 btrfs_abort_transaction(trans, ret); 3209 mutex_unlock(&log_root_tree->log_mutex); 3210 goto out_wake_log_root; 3211 } 3212 ret = btrfs_wait_tree_log_extents(log, mark); 3213 if (!ret) 3214 ret = btrfs_wait_tree_log_extents(log_root_tree, 3215 EXTENT_NEW | EXTENT_DIRTY); 3216 if (ret) { 3217 btrfs_set_log_full_commit(trans); 3218 mutex_unlock(&log_root_tree->log_mutex); 3219 goto out_wake_log_root; 3220 } 3221 3222 btrfs_set_super_log_root(fs_info->super_for_commit, 3223 log_root_tree->node->start); 3224 btrfs_set_super_log_root_level(fs_info->super_for_commit, 3225 btrfs_header_level(log_root_tree->node)); 3226 3227 log_root_tree->log_transid++; 3228 mutex_unlock(&log_root_tree->log_mutex); 3229 3230 /* 3231 * Nobody else is going to jump in and write the ctree 3232 * super here because the log_commit atomic below is protecting 3233 * us. We must be called with a transaction handle pinning 3234 * the running transaction open, so a full commit can't hop 3235 * in and cause problems either. 3236 */ 3237 ret = write_all_supers(fs_info, 1); 3238 if (ret) { 3239 btrfs_set_log_full_commit(trans); 3240 btrfs_abort_transaction(trans, ret); 3241 goto out_wake_log_root; 3242 } 3243 3244 mutex_lock(&root->log_mutex); 3245 if (root->last_log_commit < log_transid) 3246 root->last_log_commit = log_transid; 3247 mutex_unlock(&root->log_mutex); 3248 3249 out_wake_log_root: 3250 mutex_lock(&log_root_tree->log_mutex); 3251 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3252 3253 log_root_tree->log_transid_committed++; 3254 atomic_set(&log_root_tree->log_commit[index2], 0); 3255 mutex_unlock(&log_root_tree->log_mutex); 3256 3257 /* 3258 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3259 * all the updates above are seen by the woken threads. It might not be 3260 * necessary, but proving that seems to be hard. 3261 */ 3262 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3263 out: 3264 mutex_lock(&root->log_mutex); 3265 btrfs_remove_all_log_ctxs(root, index1, ret); 3266 root->log_transid_committed++; 3267 atomic_set(&root->log_commit[index1], 0); 3268 mutex_unlock(&root->log_mutex); 3269 3270 /* 3271 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3272 * all the updates above are seen by the woken threads. It might not be 3273 * necessary, but proving that seems to be hard. 3274 */ 3275 cond_wake_up(&root->log_commit_wait[index1]); 3276 return ret; 3277 } 3278 3279 static void free_log_tree(struct btrfs_trans_handle *trans, 3280 struct btrfs_root *log) 3281 { 3282 int ret; 3283 struct walk_control wc = { 3284 .free = 1, 3285 .process_func = process_one_buffer 3286 }; 3287 3288 ret = walk_log_tree(trans, log, &wc); 3289 if (ret) { 3290 if (trans) 3291 btrfs_abort_transaction(trans, ret); 3292 else 3293 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3294 } 3295 3296 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3297 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3298 free_extent_buffer(log->node); 3299 kfree(log); 3300 } 3301 3302 /* 3303 * free all the extents used by the tree log. This should be called 3304 * at commit time of the full transaction 3305 */ 3306 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3307 { 3308 if (root->log_root) { 3309 free_log_tree(trans, root->log_root); 3310 root->log_root = NULL; 3311 } 3312 return 0; 3313 } 3314 3315 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3316 struct btrfs_fs_info *fs_info) 3317 { 3318 if (fs_info->log_root_tree) { 3319 free_log_tree(trans, fs_info->log_root_tree); 3320 fs_info->log_root_tree = NULL; 3321 } 3322 return 0; 3323 } 3324 3325 /* 3326 * Check if an inode was logged in the current transaction. We can't always rely 3327 * on an inode's logged_trans value, because it's an in-memory only field and 3328 * therefore not persisted. This means that its value is lost if the inode gets 3329 * evicted and loaded again from disk (in which case it has a value of 0, and 3330 * certainly it is smaller then any possible transaction ID), when that happens 3331 * the full_sync flag is set in the inode's runtime flags, so on that case we 3332 * assume eviction happened and ignore the logged_trans value, assuming the 3333 * worst case, that the inode was logged before in the current transaction. 3334 */ 3335 static bool inode_logged(struct btrfs_trans_handle *trans, 3336 struct btrfs_inode *inode) 3337 { 3338 if (inode->logged_trans == trans->transid) 3339 return true; 3340 3341 if (inode->last_trans == trans->transid && 3342 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && 3343 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags)) 3344 return true; 3345 3346 return false; 3347 } 3348 3349 /* 3350 * If both a file and directory are logged, and unlinks or renames are 3351 * mixed in, we have a few interesting corners: 3352 * 3353 * create file X in dir Y 3354 * link file X to X.link in dir Y 3355 * fsync file X 3356 * unlink file X but leave X.link 3357 * fsync dir Y 3358 * 3359 * After a crash we would expect only X.link to exist. But file X 3360 * didn't get fsync'd again so the log has back refs for X and X.link. 3361 * 3362 * We solve this by removing directory entries and inode backrefs from the 3363 * log when a file that was logged in the current transaction is 3364 * unlinked. Any later fsync will include the updated log entries, and 3365 * we'll be able to reconstruct the proper directory items from backrefs. 3366 * 3367 * This optimizations allows us to avoid relogging the entire inode 3368 * or the entire directory. 3369 */ 3370 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3371 struct btrfs_root *root, 3372 const char *name, int name_len, 3373 struct btrfs_inode *dir, u64 index) 3374 { 3375 struct btrfs_root *log; 3376 struct btrfs_dir_item *di; 3377 struct btrfs_path *path; 3378 int ret; 3379 int err = 0; 3380 int bytes_del = 0; 3381 u64 dir_ino = btrfs_ino(dir); 3382 3383 if (!inode_logged(trans, dir)) 3384 return 0; 3385 3386 ret = join_running_log_trans(root); 3387 if (ret) 3388 return 0; 3389 3390 mutex_lock(&dir->log_mutex); 3391 3392 log = root->log_root; 3393 path = btrfs_alloc_path(); 3394 if (!path) { 3395 err = -ENOMEM; 3396 goto out_unlock; 3397 } 3398 3399 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3400 name, name_len, -1); 3401 if (IS_ERR(di)) { 3402 err = PTR_ERR(di); 3403 goto fail; 3404 } 3405 if (di) { 3406 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3407 bytes_del += name_len; 3408 if (ret) { 3409 err = ret; 3410 goto fail; 3411 } 3412 } 3413 btrfs_release_path(path); 3414 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3415 index, name, name_len, -1); 3416 if (IS_ERR(di)) { 3417 err = PTR_ERR(di); 3418 goto fail; 3419 } 3420 if (di) { 3421 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3422 bytes_del += name_len; 3423 if (ret) { 3424 err = ret; 3425 goto fail; 3426 } 3427 } 3428 3429 /* update the directory size in the log to reflect the names 3430 * we have removed 3431 */ 3432 if (bytes_del) { 3433 struct btrfs_key key; 3434 3435 key.objectid = dir_ino; 3436 key.offset = 0; 3437 key.type = BTRFS_INODE_ITEM_KEY; 3438 btrfs_release_path(path); 3439 3440 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 3441 if (ret < 0) { 3442 err = ret; 3443 goto fail; 3444 } 3445 if (ret == 0) { 3446 struct btrfs_inode_item *item; 3447 u64 i_size; 3448 3449 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3450 struct btrfs_inode_item); 3451 i_size = btrfs_inode_size(path->nodes[0], item); 3452 if (i_size > bytes_del) 3453 i_size -= bytes_del; 3454 else 3455 i_size = 0; 3456 btrfs_set_inode_size(path->nodes[0], item, i_size); 3457 btrfs_mark_buffer_dirty(path->nodes[0]); 3458 } else 3459 ret = 0; 3460 btrfs_release_path(path); 3461 } 3462 fail: 3463 btrfs_free_path(path); 3464 out_unlock: 3465 mutex_unlock(&dir->log_mutex); 3466 if (ret == -ENOSPC) { 3467 btrfs_set_log_full_commit(trans); 3468 ret = 0; 3469 } else if (ret < 0) 3470 btrfs_abort_transaction(trans, ret); 3471 3472 btrfs_end_log_trans(root); 3473 3474 return err; 3475 } 3476 3477 /* see comments for btrfs_del_dir_entries_in_log */ 3478 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3479 struct btrfs_root *root, 3480 const char *name, int name_len, 3481 struct btrfs_inode *inode, u64 dirid) 3482 { 3483 struct btrfs_root *log; 3484 u64 index; 3485 int ret; 3486 3487 if (!inode_logged(trans, inode)) 3488 return 0; 3489 3490 ret = join_running_log_trans(root); 3491 if (ret) 3492 return 0; 3493 log = root->log_root; 3494 mutex_lock(&inode->log_mutex); 3495 3496 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3497 dirid, &index); 3498 mutex_unlock(&inode->log_mutex); 3499 if (ret == -ENOSPC) { 3500 btrfs_set_log_full_commit(trans); 3501 ret = 0; 3502 } else if (ret < 0 && ret != -ENOENT) 3503 btrfs_abort_transaction(trans, ret); 3504 btrfs_end_log_trans(root); 3505 3506 return ret; 3507 } 3508 3509 /* 3510 * creates a range item in the log for 'dirid'. first_offset and 3511 * last_offset tell us which parts of the key space the log should 3512 * be considered authoritative for. 3513 */ 3514 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3515 struct btrfs_root *log, 3516 struct btrfs_path *path, 3517 int key_type, u64 dirid, 3518 u64 first_offset, u64 last_offset) 3519 { 3520 int ret; 3521 struct btrfs_key key; 3522 struct btrfs_dir_log_item *item; 3523 3524 key.objectid = dirid; 3525 key.offset = first_offset; 3526 if (key_type == BTRFS_DIR_ITEM_KEY) 3527 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3528 else 3529 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3530 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3531 if (ret) 3532 return ret; 3533 3534 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3535 struct btrfs_dir_log_item); 3536 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3537 btrfs_mark_buffer_dirty(path->nodes[0]); 3538 btrfs_release_path(path); 3539 return 0; 3540 } 3541 3542 /* 3543 * log all the items included in the current transaction for a given 3544 * directory. This also creates the range items in the log tree required 3545 * to replay anything deleted before the fsync 3546 */ 3547 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3548 struct btrfs_root *root, struct btrfs_inode *inode, 3549 struct btrfs_path *path, 3550 struct btrfs_path *dst_path, int key_type, 3551 struct btrfs_log_ctx *ctx, 3552 u64 min_offset, u64 *last_offset_ret) 3553 { 3554 struct btrfs_key min_key; 3555 struct btrfs_root *log = root->log_root; 3556 struct extent_buffer *src; 3557 int err = 0; 3558 int ret; 3559 int i; 3560 int nritems; 3561 u64 first_offset = min_offset; 3562 u64 last_offset = (u64)-1; 3563 u64 ino = btrfs_ino(inode); 3564 3565 log = root->log_root; 3566 3567 min_key.objectid = ino; 3568 min_key.type = key_type; 3569 min_key.offset = min_offset; 3570 3571 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3572 3573 /* 3574 * we didn't find anything from this transaction, see if there 3575 * is anything at all 3576 */ 3577 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3578 min_key.objectid = ino; 3579 min_key.type = key_type; 3580 min_key.offset = (u64)-1; 3581 btrfs_release_path(path); 3582 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3583 if (ret < 0) { 3584 btrfs_release_path(path); 3585 return ret; 3586 } 3587 ret = btrfs_previous_item(root, path, ino, key_type); 3588 3589 /* if ret == 0 there are items for this type, 3590 * create a range to tell us the last key of this type. 3591 * otherwise, there are no items in this directory after 3592 * *min_offset, and we create a range to indicate that. 3593 */ 3594 if (ret == 0) { 3595 struct btrfs_key tmp; 3596 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3597 path->slots[0]); 3598 if (key_type == tmp.type) 3599 first_offset = max(min_offset, tmp.offset) + 1; 3600 } 3601 goto done; 3602 } 3603 3604 /* go backward to find any previous key */ 3605 ret = btrfs_previous_item(root, path, ino, key_type); 3606 if (ret == 0) { 3607 struct btrfs_key tmp; 3608 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3609 if (key_type == tmp.type) { 3610 first_offset = tmp.offset; 3611 ret = overwrite_item(trans, log, dst_path, 3612 path->nodes[0], path->slots[0], 3613 &tmp); 3614 if (ret) { 3615 err = ret; 3616 goto done; 3617 } 3618 } 3619 } 3620 btrfs_release_path(path); 3621 3622 /* 3623 * Find the first key from this transaction again. See the note for 3624 * log_new_dir_dentries, if we're logging a directory recursively we 3625 * won't be holding its i_mutex, which means we can modify the directory 3626 * while we're logging it. If we remove an entry between our first 3627 * search and this search we'll not find the key again and can just 3628 * bail. 3629 */ 3630 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3631 if (ret != 0) 3632 goto done; 3633 3634 /* 3635 * we have a block from this transaction, log every item in it 3636 * from our directory 3637 */ 3638 while (1) { 3639 struct btrfs_key tmp; 3640 src = path->nodes[0]; 3641 nritems = btrfs_header_nritems(src); 3642 for (i = path->slots[0]; i < nritems; i++) { 3643 struct btrfs_dir_item *di; 3644 3645 btrfs_item_key_to_cpu(src, &min_key, i); 3646 3647 if (min_key.objectid != ino || min_key.type != key_type) 3648 goto done; 3649 ret = overwrite_item(trans, log, dst_path, src, i, 3650 &min_key); 3651 if (ret) { 3652 err = ret; 3653 goto done; 3654 } 3655 3656 /* 3657 * We must make sure that when we log a directory entry, 3658 * the corresponding inode, after log replay, has a 3659 * matching link count. For example: 3660 * 3661 * touch foo 3662 * mkdir mydir 3663 * sync 3664 * ln foo mydir/bar 3665 * xfs_io -c "fsync" mydir 3666 * <crash> 3667 * <mount fs and log replay> 3668 * 3669 * Would result in a fsync log that when replayed, our 3670 * file inode would have a link count of 1, but we get 3671 * two directory entries pointing to the same inode. 3672 * After removing one of the names, it would not be 3673 * possible to remove the other name, which resulted 3674 * always in stale file handle errors, and would not 3675 * be possible to rmdir the parent directory, since 3676 * its i_size could never decrement to the value 3677 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3678 */ 3679 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3680 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3681 if (ctx && 3682 (btrfs_dir_transid(src, di) == trans->transid || 3683 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3684 tmp.type != BTRFS_ROOT_ITEM_KEY) 3685 ctx->log_new_dentries = true; 3686 } 3687 path->slots[0] = nritems; 3688 3689 /* 3690 * look ahead to the next item and see if it is also 3691 * from this directory and from this transaction 3692 */ 3693 ret = btrfs_next_leaf(root, path); 3694 if (ret) { 3695 if (ret == 1) 3696 last_offset = (u64)-1; 3697 else 3698 err = ret; 3699 goto done; 3700 } 3701 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3702 if (tmp.objectid != ino || tmp.type != key_type) { 3703 last_offset = (u64)-1; 3704 goto done; 3705 } 3706 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3707 ret = overwrite_item(trans, log, dst_path, 3708 path->nodes[0], path->slots[0], 3709 &tmp); 3710 if (ret) 3711 err = ret; 3712 else 3713 last_offset = tmp.offset; 3714 goto done; 3715 } 3716 } 3717 done: 3718 btrfs_release_path(path); 3719 btrfs_release_path(dst_path); 3720 3721 if (err == 0) { 3722 *last_offset_ret = last_offset; 3723 /* 3724 * insert the log range keys to indicate where the log 3725 * is valid 3726 */ 3727 ret = insert_dir_log_key(trans, log, path, key_type, 3728 ino, first_offset, last_offset); 3729 if (ret) 3730 err = ret; 3731 } 3732 return err; 3733 } 3734 3735 /* 3736 * logging directories is very similar to logging inodes, We find all the items 3737 * from the current transaction and write them to the log. 3738 * 3739 * The recovery code scans the directory in the subvolume, and if it finds a 3740 * key in the range logged that is not present in the log tree, then it means 3741 * that dir entry was unlinked during the transaction. 3742 * 3743 * In order for that scan to work, we must include one key smaller than 3744 * the smallest logged by this transaction and one key larger than the largest 3745 * key logged by this transaction. 3746 */ 3747 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3748 struct btrfs_root *root, struct btrfs_inode *inode, 3749 struct btrfs_path *path, 3750 struct btrfs_path *dst_path, 3751 struct btrfs_log_ctx *ctx) 3752 { 3753 u64 min_key; 3754 u64 max_key; 3755 int ret; 3756 int key_type = BTRFS_DIR_ITEM_KEY; 3757 3758 again: 3759 min_key = 0; 3760 max_key = 0; 3761 while (1) { 3762 ret = log_dir_items(trans, root, inode, path, dst_path, key_type, 3763 ctx, min_key, &max_key); 3764 if (ret) 3765 return ret; 3766 if (max_key == (u64)-1) 3767 break; 3768 min_key = max_key + 1; 3769 } 3770 3771 if (key_type == BTRFS_DIR_ITEM_KEY) { 3772 key_type = BTRFS_DIR_INDEX_KEY; 3773 goto again; 3774 } 3775 return 0; 3776 } 3777 3778 /* 3779 * a helper function to drop items from the log before we relog an 3780 * inode. max_key_type indicates the highest item type to remove. 3781 * This cannot be run for file data extents because it does not 3782 * free the extents they point to. 3783 */ 3784 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3785 struct btrfs_root *log, 3786 struct btrfs_path *path, 3787 u64 objectid, int max_key_type) 3788 { 3789 int ret; 3790 struct btrfs_key key; 3791 struct btrfs_key found_key; 3792 int start_slot; 3793 3794 key.objectid = objectid; 3795 key.type = max_key_type; 3796 key.offset = (u64)-1; 3797 3798 while (1) { 3799 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3800 BUG_ON(ret == 0); /* Logic error */ 3801 if (ret < 0) 3802 break; 3803 3804 if (path->slots[0] == 0) 3805 break; 3806 3807 path->slots[0]--; 3808 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3809 path->slots[0]); 3810 3811 if (found_key.objectid != objectid) 3812 break; 3813 3814 found_key.offset = 0; 3815 found_key.type = 0; 3816 ret = btrfs_bin_search(path->nodes[0], &found_key, 0, 3817 &start_slot); 3818 if (ret < 0) 3819 break; 3820 3821 ret = btrfs_del_items(trans, log, path, start_slot, 3822 path->slots[0] - start_slot + 1); 3823 /* 3824 * If start slot isn't 0 then we don't need to re-search, we've 3825 * found the last guy with the objectid in this tree. 3826 */ 3827 if (ret || start_slot != 0) 3828 break; 3829 btrfs_release_path(path); 3830 } 3831 btrfs_release_path(path); 3832 if (ret > 0) 3833 ret = 0; 3834 return ret; 3835 } 3836 3837 static void fill_inode_item(struct btrfs_trans_handle *trans, 3838 struct extent_buffer *leaf, 3839 struct btrfs_inode_item *item, 3840 struct inode *inode, int log_inode_only, 3841 u64 logged_isize) 3842 { 3843 struct btrfs_map_token token; 3844 3845 btrfs_init_map_token(&token, leaf); 3846 3847 if (log_inode_only) { 3848 /* set the generation to zero so the recover code 3849 * can tell the difference between an logging 3850 * just to say 'this inode exists' and a logging 3851 * to say 'update this inode with these values' 3852 */ 3853 btrfs_set_token_inode_generation(leaf, item, 0, &token); 3854 btrfs_set_token_inode_size(leaf, item, logged_isize, &token); 3855 } else { 3856 btrfs_set_token_inode_generation(leaf, item, 3857 BTRFS_I(inode)->generation, 3858 &token); 3859 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); 3860 } 3861 3862 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3863 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3864 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3865 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3866 3867 btrfs_set_token_timespec_sec(leaf, &item->atime, 3868 inode->i_atime.tv_sec, &token); 3869 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3870 inode->i_atime.tv_nsec, &token); 3871 3872 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3873 inode->i_mtime.tv_sec, &token); 3874 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3875 inode->i_mtime.tv_nsec, &token); 3876 3877 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3878 inode->i_ctime.tv_sec, &token); 3879 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3880 inode->i_ctime.tv_nsec, &token); 3881 3882 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3883 &token); 3884 3885 btrfs_set_token_inode_sequence(leaf, item, 3886 inode_peek_iversion(inode), &token); 3887 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3888 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3889 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3890 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3891 } 3892 3893 static int log_inode_item(struct btrfs_trans_handle *trans, 3894 struct btrfs_root *log, struct btrfs_path *path, 3895 struct btrfs_inode *inode) 3896 { 3897 struct btrfs_inode_item *inode_item; 3898 int ret; 3899 3900 ret = btrfs_insert_empty_item(trans, log, path, 3901 &inode->location, sizeof(*inode_item)); 3902 if (ret && ret != -EEXIST) 3903 return ret; 3904 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3905 struct btrfs_inode_item); 3906 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 3907 0, 0); 3908 btrfs_release_path(path); 3909 return 0; 3910 } 3911 3912 static noinline int copy_items(struct btrfs_trans_handle *trans, 3913 struct btrfs_inode *inode, 3914 struct btrfs_path *dst_path, 3915 struct btrfs_path *src_path, u64 *last_extent, 3916 int start_slot, int nr, int inode_only, 3917 u64 logged_isize) 3918 { 3919 struct btrfs_fs_info *fs_info = trans->fs_info; 3920 unsigned long src_offset; 3921 unsigned long dst_offset; 3922 struct btrfs_root *log = inode->root->log_root; 3923 struct btrfs_file_extent_item *extent; 3924 struct btrfs_inode_item *inode_item; 3925 struct extent_buffer *src = src_path->nodes[0]; 3926 struct btrfs_key first_key, last_key, key; 3927 int ret; 3928 struct btrfs_key *ins_keys; 3929 u32 *ins_sizes; 3930 char *ins_data; 3931 int i; 3932 struct list_head ordered_sums; 3933 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 3934 bool has_extents = false; 3935 bool need_find_last_extent = true; 3936 bool done = false; 3937 3938 INIT_LIST_HEAD(&ordered_sums); 3939 3940 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3941 nr * sizeof(u32), GFP_NOFS); 3942 if (!ins_data) 3943 return -ENOMEM; 3944 3945 first_key.objectid = (u64)-1; 3946 3947 ins_sizes = (u32 *)ins_data; 3948 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3949 3950 for (i = 0; i < nr; i++) { 3951 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3952 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3953 } 3954 ret = btrfs_insert_empty_items(trans, log, dst_path, 3955 ins_keys, ins_sizes, nr); 3956 if (ret) { 3957 kfree(ins_data); 3958 return ret; 3959 } 3960 3961 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3962 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3963 dst_path->slots[0]); 3964 3965 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3966 3967 if (i == nr - 1) 3968 last_key = ins_keys[i]; 3969 3970 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3971 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3972 dst_path->slots[0], 3973 struct btrfs_inode_item); 3974 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3975 &inode->vfs_inode, 3976 inode_only == LOG_INODE_EXISTS, 3977 logged_isize); 3978 } else { 3979 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3980 src_offset, ins_sizes[i]); 3981 } 3982 3983 /* 3984 * We set need_find_last_extent here in case we know we were 3985 * processing other items and then walk into the first extent in 3986 * the inode. If we don't hit an extent then nothing changes, 3987 * we'll do the last search the next time around. 3988 */ 3989 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) { 3990 has_extents = true; 3991 if (first_key.objectid == (u64)-1) 3992 first_key = ins_keys[i]; 3993 } else { 3994 need_find_last_extent = false; 3995 } 3996 3997 /* take a reference on file data extents so that truncates 3998 * or deletes of this inode don't have to relog the inode 3999 * again 4000 */ 4001 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 4002 !skip_csum) { 4003 int found_type; 4004 extent = btrfs_item_ptr(src, start_slot + i, 4005 struct btrfs_file_extent_item); 4006 4007 if (btrfs_file_extent_generation(src, extent) < trans->transid) 4008 continue; 4009 4010 found_type = btrfs_file_extent_type(src, extent); 4011 if (found_type == BTRFS_FILE_EXTENT_REG) { 4012 u64 ds, dl, cs, cl; 4013 ds = btrfs_file_extent_disk_bytenr(src, 4014 extent); 4015 /* ds == 0 is a hole */ 4016 if (ds == 0) 4017 continue; 4018 4019 dl = btrfs_file_extent_disk_num_bytes(src, 4020 extent); 4021 cs = btrfs_file_extent_offset(src, extent); 4022 cl = btrfs_file_extent_num_bytes(src, 4023 extent); 4024 if (btrfs_file_extent_compression(src, 4025 extent)) { 4026 cs = 0; 4027 cl = dl; 4028 } 4029 4030 ret = btrfs_lookup_csums_range( 4031 fs_info->csum_root, 4032 ds + cs, ds + cs + cl - 1, 4033 &ordered_sums, 0); 4034 if (ret) { 4035 btrfs_release_path(dst_path); 4036 kfree(ins_data); 4037 return ret; 4038 } 4039 } 4040 } 4041 } 4042 4043 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4044 btrfs_release_path(dst_path); 4045 kfree(ins_data); 4046 4047 /* 4048 * we have to do this after the loop above to avoid changing the 4049 * log tree while trying to change the log tree. 4050 */ 4051 ret = 0; 4052 while (!list_empty(&ordered_sums)) { 4053 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4054 struct btrfs_ordered_sum, 4055 list); 4056 if (!ret) 4057 ret = btrfs_csum_file_blocks(trans, log, sums); 4058 list_del(&sums->list); 4059 kfree(sums); 4060 } 4061 4062 if (!has_extents) 4063 return ret; 4064 4065 if (need_find_last_extent && *last_extent == first_key.offset) { 4066 /* 4067 * We don't have any leafs between our current one and the one 4068 * we processed before that can have file extent items for our 4069 * inode (and have a generation number smaller than our current 4070 * transaction id). 4071 */ 4072 need_find_last_extent = false; 4073 } 4074 4075 /* 4076 * Because we use btrfs_search_forward we could skip leaves that were 4077 * not modified and then assume *last_extent is valid when it really 4078 * isn't. So back up to the previous leaf and read the end of the last 4079 * extent before we go and fill in holes. 4080 */ 4081 if (need_find_last_extent) { 4082 u64 len; 4083 4084 ret = btrfs_prev_leaf(inode->root, src_path); 4085 if (ret < 0) 4086 return ret; 4087 if (ret) 4088 goto fill_holes; 4089 if (src_path->slots[0]) 4090 src_path->slots[0]--; 4091 src = src_path->nodes[0]; 4092 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]); 4093 if (key.objectid != btrfs_ino(inode) || 4094 key.type != BTRFS_EXTENT_DATA_KEY) 4095 goto fill_holes; 4096 extent = btrfs_item_ptr(src, src_path->slots[0], 4097 struct btrfs_file_extent_item); 4098 if (btrfs_file_extent_type(src, extent) == 4099 BTRFS_FILE_EXTENT_INLINE) { 4100 len = btrfs_file_extent_ram_bytes(src, extent); 4101 *last_extent = ALIGN(key.offset + len, 4102 fs_info->sectorsize); 4103 } else { 4104 len = btrfs_file_extent_num_bytes(src, extent); 4105 *last_extent = key.offset + len; 4106 } 4107 } 4108 fill_holes: 4109 /* So we did prev_leaf, now we need to move to the next leaf, but a few 4110 * things could have happened 4111 * 4112 * 1) A merge could have happened, so we could currently be on a leaf 4113 * that holds what we were copying in the first place. 4114 * 2) A split could have happened, and now not all of the items we want 4115 * are on the same leaf. 4116 * 4117 * So we need to adjust how we search for holes, we need to drop the 4118 * path and re-search for the first extent key we found, and then walk 4119 * forward until we hit the last one we copied. 4120 */ 4121 if (need_find_last_extent) { 4122 /* btrfs_prev_leaf could return 1 without releasing the path */ 4123 btrfs_release_path(src_path); 4124 ret = btrfs_search_slot(NULL, inode->root, &first_key, 4125 src_path, 0, 0); 4126 if (ret < 0) 4127 return ret; 4128 ASSERT(ret == 0); 4129 src = src_path->nodes[0]; 4130 i = src_path->slots[0]; 4131 } else { 4132 i = start_slot; 4133 } 4134 4135 /* 4136 * Ok so here we need to go through and fill in any holes we may have 4137 * to make sure that holes are punched for those areas in case they had 4138 * extents previously. 4139 */ 4140 while (!done) { 4141 u64 offset, len; 4142 u64 extent_end; 4143 4144 if (i >= btrfs_header_nritems(src_path->nodes[0])) { 4145 ret = btrfs_next_leaf(inode->root, src_path); 4146 if (ret < 0) 4147 return ret; 4148 ASSERT(ret == 0); 4149 src = src_path->nodes[0]; 4150 i = 0; 4151 need_find_last_extent = true; 4152 } 4153 4154 btrfs_item_key_to_cpu(src, &key, i); 4155 if (!btrfs_comp_cpu_keys(&key, &last_key)) 4156 done = true; 4157 if (key.objectid != btrfs_ino(inode) || 4158 key.type != BTRFS_EXTENT_DATA_KEY) { 4159 i++; 4160 continue; 4161 } 4162 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); 4163 if (btrfs_file_extent_type(src, extent) == 4164 BTRFS_FILE_EXTENT_INLINE) { 4165 len = btrfs_file_extent_ram_bytes(src, extent); 4166 extent_end = ALIGN(key.offset + len, 4167 fs_info->sectorsize); 4168 } else { 4169 len = btrfs_file_extent_num_bytes(src, extent); 4170 extent_end = key.offset + len; 4171 } 4172 i++; 4173 4174 if (*last_extent == key.offset) { 4175 *last_extent = extent_end; 4176 continue; 4177 } 4178 offset = *last_extent; 4179 len = key.offset - *last_extent; 4180 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode), 4181 offset, 0, 0, len, 0, len, 0, 0, 0); 4182 if (ret) 4183 break; 4184 *last_extent = extent_end; 4185 } 4186 4187 /* 4188 * Check if there is a hole between the last extent found in our leaf 4189 * and the first extent in the next leaf. If there is one, we need to 4190 * log an explicit hole so that at replay time we can punch the hole. 4191 */ 4192 if (ret == 0 && 4193 key.objectid == btrfs_ino(inode) && 4194 key.type == BTRFS_EXTENT_DATA_KEY && 4195 i == btrfs_header_nritems(src_path->nodes[0])) { 4196 ret = btrfs_next_leaf(inode->root, src_path); 4197 need_find_last_extent = true; 4198 if (ret > 0) { 4199 ret = 0; 4200 } else if (ret == 0) { 4201 btrfs_item_key_to_cpu(src_path->nodes[0], &key, 4202 src_path->slots[0]); 4203 if (key.objectid == btrfs_ino(inode) && 4204 key.type == BTRFS_EXTENT_DATA_KEY && 4205 *last_extent < key.offset) { 4206 const u64 len = key.offset - *last_extent; 4207 4208 ret = btrfs_insert_file_extent(trans, log, 4209 btrfs_ino(inode), 4210 *last_extent, 0, 4211 0, len, 0, len, 4212 0, 0, 0); 4213 *last_extent += len; 4214 } 4215 } 4216 } 4217 /* 4218 * Need to let the callers know we dropped the path so they should 4219 * re-search. 4220 */ 4221 if (!ret && need_find_last_extent) 4222 ret = 1; 4223 return ret; 4224 } 4225 4226 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 4227 { 4228 struct extent_map *em1, *em2; 4229 4230 em1 = list_entry(a, struct extent_map, list); 4231 em2 = list_entry(b, struct extent_map, list); 4232 4233 if (em1->start < em2->start) 4234 return -1; 4235 else if (em1->start > em2->start) 4236 return 1; 4237 return 0; 4238 } 4239 4240 static int log_extent_csums(struct btrfs_trans_handle *trans, 4241 struct btrfs_inode *inode, 4242 struct btrfs_root *log_root, 4243 const struct extent_map *em) 4244 { 4245 u64 csum_offset; 4246 u64 csum_len; 4247 LIST_HEAD(ordered_sums); 4248 int ret = 0; 4249 4250 if (inode->flags & BTRFS_INODE_NODATASUM || 4251 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4252 em->block_start == EXTENT_MAP_HOLE) 4253 return 0; 4254 4255 /* If we're compressed we have to save the entire range of csums. */ 4256 if (em->compress_type) { 4257 csum_offset = 0; 4258 csum_len = max(em->block_len, em->orig_block_len); 4259 } else { 4260 csum_offset = em->mod_start - em->start; 4261 csum_len = em->mod_len; 4262 } 4263 4264 /* block start is already adjusted for the file extent offset. */ 4265 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, 4266 em->block_start + csum_offset, 4267 em->block_start + csum_offset + 4268 csum_len - 1, &ordered_sums, 0); 4269 if (ret) 4270 return ret; 4271 4272 while (!list_empty(&ordered_sums)) { 4273 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4274 struct btrfs_ordered_sum, 4275 list); 4276 if (!ret) 4277 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4278 list_del(&sums->list); 4279 kfree(sums); 4280 } 4281 4282 return ret; 4283 } 4284 4285 static int log_one_extent(struct btrfs_trans_handle *trans, 4286 struct btrfs_inode *inode, struct btrfs_root *root, 4287 const struct extent_map *em, 4288 struct btrfs_path *path, 4289 struct btrfs_log_ctx *ctx) 4290 { 4291 struct btrfs_root *log = root->log_root; 4292 struct btrfs_file_extent_item *fi; 4293 struct extent_buffer *leaf; 4294 struct btrfs_map_token token; 4295 struct btrfs_key key; 4296 u64 extent_offset = em->start - em->orig_start; 4297 u64 block_len; 4298 int ret; 4299 int extent_inserted = 0; 4300 4301 ret = log_extent_csums(trans, inode, log, em); 4302 if (ret) 4303 return ret; 4304 4305 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start, 4306 em->start + em->len, NULL, 0, 1, 4307 sizeof(*fi), &extent_inserted); 4308 if (ret) 4309 return ret; 4310 4311 if (!extent_inserted) { 4312 key.objectid = btrfs_ino(inode); 4313 key.type = BTRFS_EXTENT_DATA_KEY; 4314 key.offset = em->start; 4315 4316 ret = btrfs_insert_empty_item(trans, log, path, &key, 4317 sizeof(*fi)); 4318 if (ret) 4319 return ret; 4320 } 4321 leaf = path->nodes[0]; 4322 btrfs_init_map_token(&token, leaf); 4323 fi = btrfs_item_ptr(leaf, path->slots[0], 4324 struct btrfs_file_extent_item); 4325 4326 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, 4327 &token); 4328 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4329 btrfs_set_token_file_extent_type(leaf, fi, 4330 BTRFS_FILE_EXTENT_PREALLOC, 4331 &token); 4332 else 4333 btrfs_set_token_file_extent_type(leaf, fi, 4334 BTRFS_FILE_EXTENT_REG, 4335 &token); 4336 4337 block_len = max(em->block_len, em->orig_block_len); 4338 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4339 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4340 em->block_start, 4341 &token); 4342 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4343 &token); 4344 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4345 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4346 em->block_start - 4347 extent_offset, &token); 4348 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4349 &token); 4350 } else { 4351 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); 4352 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, 4353 &token); 4354 } 4355 4356 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); 4357 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); 4358 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); 4359 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, 4360 &token); 4361 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); 4362 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); 4363 btrfs_mark_buffer_dirty(leaf); 4364 4365 btrfs_release_path(path); 4366 4367 return ret; 4368 } 4369 4370 /* 4371 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4372 * lose them after doing a fast fsync and replaying the log. We scan the 4373 * subvolume's root instead of iterating the inode's extent map tree because 4374 * otherwise we can log incorrect extent items based on extent map conversion. 4375 * That can happen due to the fact that extent maps are merged when they 4376 * are not in the extent map tree's list of modified extents. 4377 */ 4378 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4379 struct btrfs_inode *inode, 4380 struct btrfs_path *path) 4381 { 4382 struct btrfs_root *root = inode->root; 4383 struct btrfs_key key; 4384 const u64 i_size = i_size_read(&inode->vfs_inode); 4385 const u64 ino = btrfs_ino(inode); 4386 struct btrfs_path *dst_path = NULL; 4387 u64 last_extent = (u64)-1; 4388 int ins_nr = 0; 4389 int start_slot; 4390 int ret; 4391 4392 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4393 return 0; 4394 4395 key.objectid = ino; 4396 key.type = BTRFS_EXTENT_DATA_KEY; 4397 key.offset = i_size; 4398 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4399 if (ret < 0) 4400 goto out; 4401 4402 while (true) { 4403 struct extent_buffer *leaf = path->nodes[0]; 4404 int slot = path->slots[0]; 4405 4406 if (slot >= btrfs_header_nritems(leaf)) { 4407 if (ins_nr > 0) { 4408 ret = copy_items(trans, inode, dst_path, path, 4409 &last_extent, start_slot, 4410 ins_nr, 1, 0); 4411 if (ret < 0) 4412 goto out; 4413 ins_nr = 0; 4414 } 4415 ret = btrfs_next_leaf(root, path); 4416 if (ret < 0) 4417 goto out; 4418 if (ret > 0) { 4419 ret = 0; 4420 break; 4421 } 4422 continue; 4423 } 4424 4425 btrfs_item_key_to_cpu(leaf, &key, slot); 4426 if (key.objectid > ino) 4427 break; 4428 if (WARN_ON_ONCE(key.objectid < ino) || 4429 key.type < BTRFS_EXTENT_DATA_KEY || 4430 key.offset < i_size) { 4431 path->slots[0]++; 4432 continue; 4433 } 4434 if (last_extent == (u64)-1) { 4435 last_extent = key.offset; 4436 /* 4437 * Avoid logging extent items logged in past fsync calls 4438 * and leading to duplicate keys in the log tree. 4439 */ 4440 do { 4441 ret = btrfs_truncate_inode_items(trans, 4442 root->log_root, 4443 &inode->vfs_inode, 4444 i_size, 4445 BTRFS_EXTENT_DATA_KEY); 4446 } while (ret == -EAGAIN); 4447 if (ret) 4448 goto out; 4449 } 4450 if (ins_nr == 0) 4451 start_slot = slot; 4452 ins_nr++; 4453 path->slots[0]++; 4454 if (!dst_path) { 4455 dst_path = btrfs_alloc_path(); 4456 if (!dst_path) { 4457 ret = -ENOMEM; 4458 goto out; 4459 } 4460 } 4461 } 4462 if (ins_nr > 0) { 4463 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4464 start_slot, ins_nr, 1, 0); 4465 if (ret > 0) 4466 ret = 0; 4467 } 4468 out: 4469 btrfs_release_path(path); 4470 btrfs_free_path(dst_path); 4471 return ret; 4472 } 4473 4474 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4475 struct btrfs_root *root, 4476 struct btrfs_inode *inode, 4477 struct btrfs_path *path, 4478 struct btrfs_log_ctx *ctx, 4479 const u64 start, 4480 const u64 end) 4481 { 4482 struct extent_map *em, *n; 4483 struct list_head extents; 4484 struct extent_map_tree *tree = &inode->extent_tree; 4485 u64 test_gen; 4486 int ret = 0; 4487 int num = 0; 4488 4489 INIT_LIST_HEAD(&extents); 4490 4491 write_lock(&tree->lock); 4492 test_gen = root->fs_info->last_trans_committed; 4493 4494 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4495 /* 4496 * Skip extents outside our logging range. It's important to do 4497 * it for correctness because if we don't ignore them, we may 4498 * log them before their ordered extent completes, and therefore 4499 * we could log them without logging their respective checksums 4500 * (the checksum items are added to the csum tree at the very 4501 * end of btrfs_finish_ordered_io()). Also leave such extents 4502 * outside of our range in the list, since we may have another 4503 * ranged fsync in the near future that needs them. If an extent 4504 * outside our range corresponds to a hole, log it to avoid 4505 * leaving gaps between extents (fsck will complain when we are 4506 * not using the NO_HOLES feature). 4507 */ 4508 if ((em->start > end || em->start + em->len <= start) && 4509 em->block_start != EXTENT_MAP_HOLE) 4510 continue; 4511 4512 list_del_init(&em->list); 4513 /* 4514 * Just an arbitrary number, this can be really CPU intensive 4515 * once we start getting a lot of extents, and really once we 4516 * have a bunch of extents we just want to commit since it will 4517 * be faster. 4518 */ 4519 if (++num > 32768) { 4520 list_del_init(&tree->modified_extents); 4521 ret = -EFBIG; 4522 goto process; 4523 } 4524 4525 if (em->generation <= test_gen) 4526 continue; 4527 4528 /* We log prealloc extents beyond eof later. */ 4529 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4530 em->start >= i_size_read(&inode->vfs_inode)) 4531 continue; 4532 4533 /* Need a ref to keep it from getting evicted from cache */ 4534 refcount_inc(&em->refs); 4535 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4536 list_add_tail(&em->list, &extents); 4537 num++; 4538 } 4539 4540 list_sort(NULL, &extents, extent_cmp); 4541 process: 4542 while (!list_empty(&extents)) { 4543 em = list_entry(extents.next, struct extent_map, list); 4544 4545 list_del_init(&em->list); 4546 4547 /* 4548 * If we had an error we just need to delete everybody from our 4549 * private list. 4550 */ 4551 if (ret) { 4552 clear_em_logging(tree, em); 4553 free_extent_map(em); 4554 continue; 4555 } 4556 4557 write_unlock(&tree->lock); 4558 4559 ret = log_one_extent(trans, inode, root, em, path, ctx); 4560 write_lock(&tree->lock); 4561 clear_em_logging(tree, em); 4562 free_extent_map(em); 4563 } 4564 WARN_ON(!list_empty(&extents)); 4565 write_unlock(&tree->lock); 4566 4567 btrfs_release_path(path); 4568 if (!ret) 4569 ret = btrfs_log_prealloc_extents(trans, inode, path); 4570 4571 return ret; 4572 } 4573 4574 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4575 struct btrfs_path *path, u64 *size_ret) 4576 { 4577 struct btrfs_key key; 4578 int ret; 4579 4580 key.objectid = btrfs_ino(inode); 4581 key.type = BTRFS_INODE_ITEM_KEY; 4582 key.offset = 0; 4583 4584 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4585 if (ret < 0) { 4586 return ret; 4587 } else if (ret > 0) { 4588 *size_ret = 0; 4589 } else { 4590 struct btrfs_inode_item *item; 4591 4592 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4593 struct btrfs_inode_item); 4594 *size_ret = btrfs_inode_size(path->nodes[0], item); 4595 /* 4596 * If the in-memory inode's i_size is smaller then the inode 4597 * size stored in the btree, return the inode's i_size, so 4598 * that we get a correct inode size after replaying the log 4599 * when before a power failure we had a shrinking truncate 4600 * followed by addition of a new name (rename / new hard link). 4601 * Otherwise return the inode size from the btree, to avoid 4602 * data loss when replaying a log due to previously doing a 4603 * write that expands the inode's size and logging a new name 4604 * immediately after. 4605 */ 4606 if (*size_ret > inode->vfs_inode.i_size) 4607 *size_ret = inode->vfs_inode.i_size; 4608 } 4609 4610 btrfs_release_path(path); 4611 return 0; 4612 } 4613 4614 /* 4615 * At the moment we always log all xattrs. This is to figure out at log replay 4616 * time which xattrs must have their deletion replayed. If a xattr is missing 4617 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4618 * because if a xattr is deleted, the inode is fsynced and a power failure 4619 * happens, causing the log to be replayed the next time the fs is mounted, 4620 * we want the xattr to not exist anymore (same behaviour as other filesystems 4621 * with a journal, ext3/4, xfs, f2fs, etc). 4622 */ 4623 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4624 struct btrfs_root *root, 4625 struct btrfs_inode *inode, 4626 struct btrfs_path *path, 4627 struct btrfs_path *dst_path) 4628 { 4629 int ret; 4630 struct btrfs_key key; 4631 const u64 ino = btrfs_ino(inode); 4632 int ins_nr = 0; 4633 int start_slot = 0; 4634 4635 key.objectid = ino; 4636 key.type = BTRFS_XATTR_ITEM_KEY; 4637 key.offset = 0; 4638 4639 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4640 if (ret < 0) 4641 return ret; 4642 4643 while (true) { 4644 int slot = path->slots[0]; 4645 struct extent_buffer *leaf = path->nodes[0]; 4646 int nritems = btrfs_header_nritems(leaf); 4647 4648 if (slot >= nritems) { 4649 if (ins_nr > 0) { 4650 u64 last_extent = 0; 4651 4652 ret = copy_items(trans, inode, dst_path, path, 4653 &last_extent, start_slot, 4654 ins_nr, 1, 0); 4655 /* can't be 1, extent items aren't processed */ 4656 ASSERT(ret <= 0); 4657 if (ret < 0) 4658 return ret; 4659 ins_nr = 0; 4660 } 4661 ret = btrfs_next_leaf(root, path); 4662 if (ret < 0) 4663 return ret; 4664 else if (ret > 0) 4665 break; 4666 continue; 4667 } 4668 4669 btrfs_item_key_to_cpu(leaf, &key, slot); 4670 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4671 break; 4672 4673 if (ins_nr == 0) 4674 start_slot = slot; 4675 ins_nr++; 4676 path->slots[0]++; 4677 cond_resched(); 4678 } 4679 if (ins_nr > 0) { 4680 u64 last_extent = 0; 4681 4682 ret = copy_items(trans, inode, dst_path, path, 4683 &last_extent, start_slot, 4684 ins_nr, 1, 0); 4685 /* can't be 1, extent items aren't processed */ 4686 ASSERT(ret <= 0); 4687 if (ret < 0) 4688 return ret; 4689 } 4690 4691 return 0; 4692 } 4693 4694 /* 4695 * If the no holes feature is enabled we need to make sure any hole between the 4696 * last extent and the i_size of our inode is explicitly marked in the log. This 4697 * is to make sure that doing something like: 4698 * 4699 * 1) create file with 128Kb of data 4700 * 2) truncate file to 64Kb 4701 * 3) truncate file to 256Kb 4702 * 4) fsync file 4703 * 5) <crash/power failure> 4704 * 6) mount fs and trigger log replay 4705 * 4706 * Will give us a file with a size of 256Kb, the first 64Kb of data match what 4707 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the 4708 * file correspond to a hole. The presence of explicit holes in a log tree is 4709 * what guarantees that log replay will remove/adjust file extent items in the 4710 * fs/subvol tree. 4711 * 4712 * Here we do not need to care about holes between extents, that is already done 4713 * by copy_items(). We also only need to do this in the full sync path, where we 4714 * lookup for extents from the fs/subvol tree only. In the fast path case, we 4715 * lookup the list of modified extent maps and if any represents a hole, we 4716 * insert a corresponding extent representing a hole in the log tree. 4717 */ 4718 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans, 4719 struct btrfs_root *root, 4720 struct btrfs_inode *inode, 4721 struct btrfs_path *path) 4722 { 4723 struct btrfs_fs_info *fs_info = root->fs_info; 4724 int ret; 4725 struct btrfs_key key; 4726 u64 hole_start; 4727 u64 hole_size; 4728 struct extent_buffer *leaf; 4729 struct btrfs_root *log = root->log_root; 4730 const u64 ino = btrfs_ino(inode); 4731 const u64 i_size = i_size_read(&inode->vfs_inode); 4732 4733 if (!btrfs_fs_incompat(fs_info, NO_HOLES)) 4734 return 0; 4735 4736 key.objectid = ino; 4737 key.type = BTRFS_EXTENT_DATA_KEY; 4738 key.offset = (u64)-1; 4739 4740 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4741 ASSERT(ret != 0); 4742 if (ret < 0) 4743 return ret; 4744 4745 ASSERT(path->slots[0] > 0); 4746 path->slots[0]--; 4747 leaf = path->nodes[0]; 4748 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4749 4750 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 4751 /* inode does not have any extents */ 4752 hole_start = 0; 4753 hole_size = i_size; 4754 } else { 4755 struct btrfs_file_extent_item *extent; 4756 u64 len; 4757 4758 /* 4759 * If there's an extent beyond i_size, an explicit hole was 4760 * already inserted by copy_items(). 4761 */ 4762 if (key.offset >= i_size) 4763 return 0; 4764 4765 extent = btrfs_item_ptr(leaf, path->slots[0], 4766 struct btrfs_file_extent_item); 4767 4768 if (btrfs_file_extent_type(leaf, extent) == 4769 BTRFS_FILE_EXTENT_INLINE) 4770 return 0; 4771 4772 len = btrfs_file_extent_num_bytes(leaf, extent); 4773 /* Last extent goes beyond i_size, no need to log a hole. */ 4774 if (key.offset + len > i_size) 4775 return 0; 4776 hole_start = key.offset + len; 4777 hole_size = i_size - hole_start; 4778 } 4779 btrfs_release_path(path); 4780 4781 /* Last extent ends at i_size. */ 4782 if (hole_size == 0) 4783 return 0; 4784 4785 hole_size = ALIGN(hole_size, fs_info->sectorsize); 4786 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0, 4787 hole_size, 0, hole_size, 0, 0, 0); 4788 return ret; 4789 } 4790 4791 /* 4792 * When we are logging a new inode X, check if it doesn't have a reference that 4793 * matches the reference from some other inode Y created in a past transaction 4794 * and that was renamed in the current transaction. If we don't do this, then at 4795 * log replay time we can lose inode Y (and all its files if it's a directory): 4796 * 4797 * mkdir /mnt/x 4798 * echo "hello world" > /mnt/x/foobar 4799 * sync 4800 * mv /mnt/x /mnt/y 4801 * mkdir /mnt/x # or touch /mnt/x 4802 * xfs_io -c fsync /mnt/x 4803 * <power fail> 4804 * mount fs, trigger log replay 4805 * 4806 * After the log replay procedure, we would lose the first directory and all its 4807 * files (file foobar). 4808 * For the case where inode Y is not a directory we simply end up losing it: 4809 * 4810 * echo "123" > /mnt/foo 4811 * sync 4812 * mv /mnt/foo /mnt/bar 4813 * echo "abc" > /mnt/foo 4814 * xfs_io -c fsync /mnt/foo 4815 * <power fail> 4816 * 4817 * We also need this for cases where a snapshot entry is replaced by some other 4818 * entry (file or directory) otherwise we end up with an unreplayable log due to 4819 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4820 * if it were a regular entry: 4821 * 4822 * mkdir /mnt/x 4823 * btrfs subvolume snapshot /mnt /mnt/x/snap 4824 * btrfs subvolume delete /mnt/x/snap 4825 * rmdir /mnt/x 4826 * mkdir /mnt/x 4827 * fsync /mnt/x or fsync some new file inside it 4828 * <power fail> 4829 * 4830 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4831 * the same transaction. 4832 */ 4833 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4834 const int slot, 4835 const struct btrfs_key *key, 4836 struct btrfs_inode *inode, 4837 u64 *other_ino, u64 *other_parent) 4838 { 4839 int ret; 4840 struct btrfs_path *search_path; 4841 char *name = NULL; 4842 u32 name_len = 0; 4843 u32 item_size = btrfs_item_size_nr(eb, slot); 4844 u32 cur_offset = 0; 4845 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4846 4847 search_path = btrfs_alloc_path(); 4848 if (!search_path) 4849 return -ENOMEM; 4850 search_path->search_commit_root = 1; 4851 search_path->skip_locking = 1; 4852 4853 while (cur_offset < item_size) { 4854 u64 parent; 4855 u32 this_name_len; 4856 u32 this_len; 4857 unsigned long name_ptr; 4858 struct btrfs_dir_item *di; 4859 4860 if (key->type == BTRFS_INODE_REF_KEY) { 4861 struct btrfs_inode_ref *iref; 4862 4863 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4864 parent = key->offset; 4865 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4866 name_ptr = (unsigned long)(iref + 1); 4867 this_len = sizeof(*iref) + this_name_len; 4868 } else { 4869 struct btrfs_inode_extref *extref; 4870 4871 extref = (struct btrfs_inode_extref *)(ptr + 4872 cur_offset); 4873 parent = btrfs_inode_extref_parent(eb, extref); 4874 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4875 name_ptr = (unsigned long)&extref->name; 4876 this_len = sizeof(*extref) + this_name_len; 4877 } 4878 4879 if (this_name_len > name_len) { 4880 char *new_name; 4881 4882 new_name = krealloc(name, this_name_len, GFP_NOFS); 4883 if (!new_name) { 4884 ret = -ENOMEM; 4885 goto out; 4886 } 4887 name_len = this_name_len; 4888 name = new_name; 4889 } 4890 4891 read_extent_buffer(eb, name, name_ptr, this_name_len); 4892 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 4893 parent, name, this_name_len, 0); 4894 if (di && !IS_ERR(di)) { 4895 struct btrfs_key di_key; 4896 4897 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4898 di, &di_key); 4899 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4900 if (di_key.objectid != key->objectid) { 4901 ret = 1; 4902 *other_ino = di_key.objectid; 4903 *other_parent = parent; 4904 } else { 4905 ret = 0; 4906 } 4907 } else { 4908 ret = -EAGAIN; 4909 } 4910 goto out; 4911 } else if (IS_ERR(di)) { 4912 ret = PTR_ERR(di); 4913 goto out; 4914 } 4915 btrfs_release_path(search_path); 4916 4917 cur_offset += this_len; 4918 } 4919 ret = 0; 4920 out: 4921 btrfs_free_path(search_path); 4922 kfree(name); 4923 return ret; 4924 } 4925 4926 struct btrfs_ino_list { 4927 u64 ino; 4928 u64 parent; 4929 struct list_head list; 4930 }; 4931 4932 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 4933 struct btrfs_root *root, 4934 struct btrfs_path *path, 4935 struct btrfs_log_ctx *ctx, 4936 u64 ino, u64 parent) 4937 { 4938 struct btrfs_ino_list *ino_elem; 4939 LIST_HEAD(inode_list); 4940 int ret = 0; 4941 4942 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4943 if (!ino_elem) 4944 return -ENOMEM; 4945 ino_elem->ino = ino; 4946 ino_elem->parent = parent; 4947 list_add_tail(&ino_elem->list, &inode_list); 4948 4949 while (!list_empty(&inode_list)) { 4950 struct btrfs_fs_info *fs_info = root->fs_info; 4951 struct btrfs_key key; 4952 struct inode *inode; 4953 4954 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 4955 list); 4956 ino = ino_elem->ino; 4957 parent = ino_elem->parent; 4958 list_del(&ino_elem->list); 4959 kfree(ino_elem); 4960 if (ret) 4961 continue; 4962 4963 btrfs_release_path(path); 4964 4965 key.objectid = ino; 4966 key.type = BTRFS_INODE_ITEM_KEY; 4967 key.offset = 0; 4968 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4969 /* 4970 * If the other inode that had a conflicting dir entry was 4971 * deleted in the current transaction, we need to log its parent 4972 * directory. 4973 */ 4974 if (IS_ERR(inode)) { 4975 ret = PTR_ERR(inode); 4976 if (ret == -ENOENT) { 4977 key.objectid = parent; 4978 inode = btrfs_iget(fs_info->sb, &key, root, 4979 NULL); 4980 if (IS_ERR(inode)) { 4981 ret = PTR_ERR(inode); 4982 } else { 4983 ret = btrfs_log_inode(trans, root, 4984 BTRFS_I(inode), 4985 LOG_OTHER_INODE_ALL, 4986 0, LLONG_MAX, ctx); 4987 btrfs_add_delayed_iput(inode); 4988 } 4989 } 4990 continue; 4991 } 4992 /* 4993 * We are safe logging the other inode without acquiring its 4994 * lock as long as we log with the LOG_INODE_EXISTS mode. We 4995 * are safe against concurrent renames of the other inode as 4996 * well because during a rename we pin the log and update the 4997 * log with the new name before we unpin it. 4998 */ 4999 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5000 LOG_OTHER_INODE, 0, LLONG_MAX, ctx); 5001 if (ret) { 5002 btrfs_add_delayed_iput(inode); 5003 continue; 5004 } 5005 5006 key.objectid = ino; 5007 key.type = BTRFS_INODE_REF_KEY; 5008 key.offset = 0; 5009 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5010 if (ret < 0) { 5011 btrfs_add_delayed_iput(inode); 5012 continue; 5013 } 5014 5015 while (true) { 5016 struct extent_buffer *leaf = path->nodes[0]; 5017 int slot = path->slots[0]; 5018 u64 other_ino = 0; 5019 u64 other_parent = 0; 5020 5021 if (slot >= btrfs_header_nritems(leaf)) { 5022 ret = btrfs_next_leaf(root, path); 5023 if (ret < 0) { 5024 break; 5025 } else if (ret > 0) { 5026 ret = 0; 5027 break; 5028 } 5029 continue; 5030 } 5031 5032 btrfs_item_key_to_cpu(leaf, &key, slot); 5033 if (key.objectid != ino || 5034 (key.type != BTRFS_INODE_REF_KEY && 5035 key.type != BTRFS_INODE_EXTREF_KEY)) { 5036 ret = 0; 5037 break; 5038 } 5039 5040 ret = btrfs_check_ref_name_override(leaf, slot, &key, 5041 BTRFS_I(inode), &other_ino, 5042 &other_parent); 5043 if (ret < 0) 5044 break; 5045 if (ret > 0) { 5046 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5047 if (!ino_elem) { 5048 ret = -ENOMEM; 5049 break; 5050 } 5051 ino_elem->ino = other_ino; 5052 ino_elem->parent = other_parent; 5053 list_add_tail(&ino_elem->list, &inode_list); 5054 ret = 0; 5055 } 5056 path->slots[0]++; 5057 } 5058 btrfs_add_delayed_iput(inode); 5059 } 5060 5061 return ret; 5062 } 5063 5064 /* log a single inode in the tree log. 5065 * At least one parent directory for this inode must exist in the tree 5066 * or be logged already. 5067 * 5068 * Any items from this inode changed by the current transaction are copied 5069 * to the log tree. An extra reference is taken on any extents in this 5070 * file, allowing us to avoid a whole pile of corner cases around logging 5071 * blocks that have been removed from the tree. 5072 * 5073 * See LOG_INODE_ALL and related defines for a description of what inode_only 5074 * does. 5075 * 5076 * This handles both files and directories. 5077 */ 5078 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5079 struct btrfs_root *root, struct btrfs_inode *inode, 5080 int inode_only, 5081 const loff_t start, 5082 const loff_t end, 5083 struct btrfs_log_ctx *ctx) 5084 { 5085 struct btrfs_fs_info *fs_info = root->fs_info; 5086 struct btrfs_path *path; 5087 struct btrfs_path *dst_path; 5088 struct btrfs_key min_key; 5089 struct btrfs_key max_key; 5090 struct btrfs_root *log = root->log_root; 5091 u64 last_extent = 0; 5092 int err = 0; 5093 int ret; 5094 int nritems; 5095 int ins_start_slot = 0; 5096 int ins_nr; 5097 bool fast_search = false; 5098 u64 ino = btrfs_ino(inode); 5099 struct extent_map_tree *em_tree = &inode->extent_tree; 5100 u64 logged_isize = 0; 5101 bool need_log_inode_item = true; 5102 bool xattrs_logged = false; 5103 bool recursive_logging = false; 5104 5105 path = btrfs_alloc_path(); 5106 if (!path) 5107 return -ENOMEM; 5108 dst_path = btrfs_alloc_path(); 5109 if (!dst_path) { 5110 btrfs_free_path(path); 5111 return -ENOMEM; 5112 } 5113 5114 min_key.objectid = ino; 5115 min_key.type = BTRFS_INODE_ITEM_KEY; 5116 min_key.offset = 0; 5117 5118 max_key.objectid = ino; 5119 5120 5121 /* today the code can only do partial logging of directories */ 5122 if (S_ISDIR(inode->vfs_inode.i_mode) || 5123 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5124 &inode->runtime_flags) && 5125 inode_only >= LOG_INODE_EXISTS)) 5126 max_key.type = BTRFS_XATTR_ITEM_KEY; 5127 else 5128 max_key.type = (u8)-1; 5129 max_key.offset = (u64)-1; 5130 5131 /* 5132 * Only run delayed items if we are a dir or a new file. 5133 * Otherwise commit the delayed inode only, which is needed in 5134 * order for the log replay code to mark inodes for link count 5135 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items). 5136 */ 5137 if (S_ISDIR(inode->vfs_inode.i_mode) || 5138 inode->generation > fs_info->last_trans_committed) 5139 ret = btrfs_commit_inode_delayed_items(trans, inode); 5140 else 5141 ret = btrfs_commit_inode_delayed_inode(inode); 5142 5143 if (ret) { 5144 btrfs_free_path(path); 5145 btrfs_free_path(dst_path); 5146 return ret; 5147 } 5148 5149 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5150 recursive_logging = true; 5151 if (inode_only == LOG_OTHER_INODE) 5152 inode_only = LOG_INODE_EXISTS; 5153 else 5154 inode_only = LOG_INODE_ALL; 5155 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5156 } else { 5157 mutex_lock(&inode->log_mutex); 5158 } 5159 5160 /* 5161 * a brute force approach to making sure we get the most uptodate 5162 * copies of everything. 5163 */ 5164 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5165 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5166 5167 if (inode_only == LOG_INODE_EXISTS) 5168 max_key_type = BTRFS_XATTR_ITEM_KEY; 5169 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 5170 } else { 5171 if (inode_only == LOG_INODE_EXISTS) { 5172 /* 5173 * Make sure the new inode item we write to the log has 5174 * the same isize as the current one (if it exists). 5175 * This is necessary to prevent data loss after log 5176 * replay, and also to prevent doing a wrong expanding 5177 * truncate - for e.g. create file, write 4K into offset 5178 * 0, fsync, write 4K into offset 4096, add hard link, 5179 * fsync some other file (to sync log), power fail - if 5180 * we use the inode's current i_size, after log replay 5181 * we get a 8Kb file, with the last 4Kb extent as a hole 5182 * (zeroes), as if an expanding truncate happened, 5183 * instead of getting a file of 4Kb only. 5184 */ 5185 err = logged_inode_size(log, inode, path, &logged_isize); 5186 if (err) 5187 goto out_unlock; 5188 } 5189 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5190 &inode->runtime_flags)) { 5191 if (inode_only == LOG_INODE_EXISTS) { 5192 max_key.type = BTRFS_XATTR_ITEM_KEY; 5193 ret = drop_objectid_items(trans, log, path, ino, 5194 max_key.type); 5195 } else { 5196 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5197 &inode->runtime_flags); 5198 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5199 &inode->runtime_flags); 5200 while(1) { 5201 ret = btrfs_truncate_inode_items(trans, 5202 log, &inode->vfs_inode, 0, 0); 5203 if (ret != -EAGAIN) 5204 break; 5205 } 5206 } 5207 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5208 &inode->runtime_flags) || 5209 inode_only == LOG_INODE_EXISTS) { 5210 if (inode_only == LOG_INODE_ALL) 5211 fast_search = true; 5212 max_key.type = BTRFS_XATTR_ITEM_KEY; 5213 ret = drop_objectid_items(trans, log, path, ino, 5214 max_key.type); 5215 } else { 5216 if (inode_only == LOG_INODE_ALL) 5217 fast_search = true; 5218 goto log_extents; 5219 } 5220 5221 } 5222 if (ret) { 5223 err = ret; 5224 goto out_unlock; 5225 } 5226 5227 while (1) { 5228 ins_nr = 0; 5229 ret = btrfs_search_forward(root, &min_key, 5230 path, trans->transid); 5231 if (ret < 0) { 5232 err = ret; 5233 goto out_unlock; 5234 } 5235 if (ret != 0) 5236 break; 5237 again: 5238 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 5239 if (min_key.objectid != ino) 5240 break; 5241 if (min_key.type > max_key.type) 5242 break; 5243 5244 if (min_key.type == BTRFS_INODE_ITEM_KEY) 5245 need_log_inode_item = false; 5246 5247 if ((min_key.type == BTRFS_INODE_REF_KEY || 5248 min_key.type == BTRFS_INODE_EXTREF_KEY) && 5249 inode->generation == trans->transid && 5250 !recursive_logging) { 5251 u64 other_ino = 0; 5252 u64 other_parent = 0; 5253 5254 ret = btrfs_check_ref_name_override(path->nodes[0], 5255 path->slots[0], &min_key, inode, 5256 &other_ino, &other_parent); 5257 if (ret < 0) { 5258 err = ret; 5259 goto out_unlock; 5260 } else if (ret > 0 && ctx && 5261 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5262 if (ins_nr > 0) { 5263 ins_nr++; 5264 } else { 5265 ins_nr = 1; 5266 ins_start_slot = path->slots[0]; 5267 } 5268 ret = copy_items(trans, inode, dst_path, path, 5269 &last_extent, ins_start_slot, 5270 ins_nr, inode_only, 5271 logged_isize); 5272 if (ret < 0) { 5273 err = ret; 5274 goto out_unlock; 5275 } 5276 ins_nr = 0; 5277 5278 err = log_conflicting_inodes(trans, root, path, 5279 ctx, other_ino, other_parent); 5280 if (err) 5281 goto out_unlock; 5282 btrfs_release_path(path); 5283 goto next_key; 5284 } 5285 } 5286 5287 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5288 if (min_key.type == BTRFS_XATTR_ITEM_KEY) { 5289 if (ins_nr == 0) 5290 goto next_slot; 5291 ret = copy_items(trans, inode, dst_path, path, 5292 &last_extent, ins_start_slot, 5293 ins_nr, inode_only, logged_isize); 5294 if (ret < 0) { 5295 err = ret; 5296 goto out_unlock; 5297 } 5298 ins_nr = 0; 5299 if (ret) { 5300 btrfs_release_path(path); 5301 continue; 5302 } 5303 goto next_slot; 5304 } 5305 5306 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5307 ins_nr++; 5308 goto next_slot; 5309 } else if (!ins_nr) { 5310 ins_start_slot = path->slots[0]; 5311 ins_nr = 1; 5312 goto next_slot; 5313 } 5314 5315 ret = copy_items(trans, inode, dst_path, path, &last_extent, 5316 ins_start_slot, ins_nr, inode_only, 5317 logged_isize); 5318 if (ret < 0) { 5319 err = ret; 5320 goto out_unlock; 5321 } 5322 if (ret) { 5323 ins_nr = 0; 5324 btrfs_release_path(path); 5325 continue; 5326 } 5327 ins_nr = 1; 5328 ins_start_slot = path->slots[0]; 5329 next_slot: 5330 5331 nritems = btrfs_header_nritems(path->nodes[0]); 5332 path->slots[0]++; 5333 if (path->slots[0] < nritems) { 5334 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 5335 path->slots[0]); 5336 goto again; 5337 } 5338 if (ins_nr) { 5339 ret = copy_items(trans, inode, dst_path, path, 5340 &last_extent, ins_start_slot, 5341 ins_nr, inode_only, logged_isize); 5342 if (ret < 0) { 5343 err = ret; 5344 goto out_unlock; 5345 } 5346 ret = 0; 5347 ins_nr = 0; 5348 } 5349 btrfs_release_path(path); 5350 next_key: 5351 if (min_key.offset < (u64)-1) { 5352 min_key.offset++; 5353 } else if (min_key.type < max_key.type) { 5354 min_key.type++; 5355 min_key.offset = 0; 5356 } else { 5357 break; 5358 } 5359 } 5360 if (ins_nr) { 5361 ret = copy_items(trans, inode, dst_path, path, &last_extent, 5362 ins_start_slot, ins_nr, inode_only, 5363 logged_isize); 5364 if (ret < 0) { 5365 err = ret; 5366 goto out_unlock; 5367 } 5368 ret = 0; 5369 ins_nr = 0; 5370 } 5371 5372 btrfs_release_path(path); 5373 btrfs_release_path(dst_path); 5374 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 5375 if (err) 5376 goto out_unlock; 5377 xattrs_logged = true; 5378 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5379 btrfs_release_path(path); 5380 btrfs_release_path(dst_path); 5381 err = btrfs_log_trailing_hole(trans, root, inode, path); 5382 if (err) 5383 goto out_unlock; 5384 } 5385 log_extents: 5386 btrfs_release_path(path); 5387 btrfs_release_path(dst_path); 5388 if (need_log_inode_item) { 5389 err = log_inode_item(trans, log, dst_path, inode); 5390 if (!err && !xattrs_logged) { 5391 err = btrfs_log_all_xattrs(trans, root, inode, path, 5392 dst_path); 5393 btrfs_release_path(path); 5394 } 5395 if (err) 5396 goto out_unlock; 5397 } 5398 if (fast_search) { 5399 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 5400 ctx, start, end); 5401 if (ret) { 5402 err = ret; 5403 goto out_unlock; 5404 } 5405 } else if (inode_only == LOG_INODE_ALL) { 5406 struct extent_map *em, *n; 5407 5408 write_lock(&em_tree->lock); 5409 /* 5410 * We can't just remove every em if we're called for a ranged 5411 * fsync - that is, one that doesn't cover the whole possible 5412 * file range (0 to LLONG_MAX). This is because we can have 5413 * em's that fall outside the range we're logging and therefore 5414 * their ordered operations haven't completed yet 5415 * (btrfs_finish_ordered_io() not invoked yet). This means we 5416 * didn't get their respective file extent item in the fs/subvol 5417 * tree yet, and need to let the next fast fsync (one which 5418 * consults the list of modified extent maps) find the em so 5419 * that it logs a matching file extent item and waits for the 5420 * respective ordered operation to complete (if it's still 5421 * running). 5422 * 5423 * Removing every em outside the range we're logging would make 5424 * the next fast fsync not log their matching file extent items, 5425 * therefore making us lose data after a log replay. 5426 */ 5427 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 5428 list) { 5429 const u64 mod_end = em->mod_start + em->mod_len - 1; 5430 5431 if (em->mod_start >= start && mod_end <= end) 5432 list_del_init(&em->list); 5433 } 5434 write_unlock(&em_tree->lock); 5435 } 5436 5437 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5438 ret = log_directory_changes(trans, root, inode, path, dst_path, 5439 ctx); 5440 if (ret) { 5441 err = ret; 5442 goto out_unlock; 5443 } 5444 } 5445 5446 /* 5447 * Don't update last_log_commit if we logged that an inode exists after 5448 * it was loaded to memory (full_sync bit set). 5449 * This is to prevent data loss when we do a write to the inode, then 5450 * the inode gets evicted after all delalloc was flushed, then we log 5451 * it exists (due to a rename for example) and then fsync it. This last 5452 * fsync would do nothing (not logging the extents previously written). 5453 */ 5454 spin_lock(&inode->lock); 5455 inode->logged_trans = trans->transid; 5456 if (inode_only != LOG_INODE_EXISTS || 5457 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) 5458 inode->last_log_commit = inode->last_sub_trans; 5459 spin_unlock(&inode->lock); 5460 out_unlock: 5461 mutex_unlock(&inode->log_mutex); 5462 5463 btrfs_free_path(path); 5464 btrfs_free_path(dst_path); 5465 return err; 5466 } 5467 5468 /* 5469 * Check if we must fallback to a transaction commit when logging an inode. 5470 * This must be called after logging the inode and is used only in the context 5471 * when fsyncing an inode requires the need to log some other inode - in which 5472 * case we can't lock the i_mutex of each other inode we need to log as that 5473 * can lead to deadlocks with concurrent fsync against other inodes (as we can 5474 * log inodes up or down in the hierarchy) or rename operations for example. So 5475 * we take the log_mutex of the inode after we have logged it and then check for 5476 * its last_unlink_trans value - this is safe because any task setting 5477 * last_unlink_trans must take the log_mutex and it must do this before it does 5478 * the actual unlink operation, so if we do this check before a concurrent task 5479 * sets last_unlink_trans it means we've logged a consistent version/state of 5480 * all the inode items, otherwise we are not sure and must do a transaction 5481 * commit (the concurrent task might have only updated last_unlink_trans before 5482 * we logged the inode or it might have also done the unlink). 5483 */ 5484 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, 5485 struct btrfs_inode *inode) 5486 { 5487 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5488 bool ret = false; 5489 5490 mutex_lock(&inode->log_mutex); 5491 if (inode->last_unlink_trans > fs_info->last_trans_committed) { 5492 /* 5493 * Make sure any commits to the log are forced to be full 5494 * commits. 5495 */ 5496 btrfs_set_log_full_commit(trans); 5497 ret = true; 5498 } 5499 mutex_unlock(&inode->log_mutex); 5500 5501 return ret; 5502 } 5503 5504 /* 5505 * follow the dentry parent pointers up the chain and see if any 5506 * of the directories in it require a full commit before they can 5507 * be logged. Returns zero if nothing special needs to be done or 1 if 5508 * a full commit is required. 5509 */ 5510 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 5511 struct btrfs_inode *inode, 5512 struct dentry *parent, 5513 struct super_block *sb, 5514 u64 last_committed) 5515 { 5516 int ret = 0; 5517 struct dentry *old_parent = NULL; 5518 5519 /* 5520 * for regular files, if its inode is already on disk, we don't 5521 * have to worry about the parents at all. This is because 5522 * we can use the last_unlink_trans field to record renames 5523 * and other fun in this file. 5524 */ 5525 if (S_ISREG(inode->vfs_inode.i_mode) && 5526 inode->generation <= last_committed && 5527 inode->last_unlink_trans <= last_committed) 5528 goto out; 5529 5530 if (!S_ISDIR(inode->vfs_inode.i_mode)) { 5531 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5532 goto out; 5533 inode = BTRFS_I(d_inode(parent)); 5534 } 5535 5536 while (1) { 5537 if (btrfs_must_commit_transaction(trans, inode)) { 5538 ret = 1; 5539 break; 5540 } 5541 5542 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5543 break; 5544 5545 if (IS_ROOT(parent)) { 5546 inode = BTRFS_I(d_inode(parent)); 5547 if (btrfs_must_commit_transaction(trans, inode)) 5548 ret = 1; 5549 break; 5550 } 5551 5552 parent = dget_parent(parent); 5553 dput(old_parent); 5554 old_parent = parent; 5555 inode = BTRFS_I(d_inode(parent)); 5556 5557 } 5558 dput(old_parent); 5559 out: 5560 return ret; 5561 } 5562 5563 struct btrfs_dir_list { 5564 u64 ino; 5565 struct list_head list; 5566 }; 5567 5568 /* 5569 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5570 * details about the why it is needed. 5571 * This is a recursive operation - if an existing dentry corresponds to a 5572 * directory, that directory's new entries are logged too (same behaviour as 5573 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5574 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5575 * complains about the following circular lock dependency / possible deadlock: 5576 * 5577 * CPU0 CPU1 5578 * ---- ---- 5579 * lock(&type->i_mutex_dir_key#3/2); 5580 * lock(sb_internal#2); 5581 * lock(&type->i_mutex_dir_key#3/2); 5582 * lock(&sb->s_type->i_mutex_key#14); 5583 * 5584 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5585 * sb_start_intwrite() in btrfs_start_transaction(). 5586 * Not locking i_mutex of the inodes is still safe because: 5587 * 5588 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5589 * that while logging the inode new references (names) are added or removed 5590 * from the inode, leaving the logged inode item with a link count that does 5591 * not match the number of logged inode reference items. This is fine because 5592 * at log replay time we compute the real number of links and correct the 5593 * link count in the inode item (see replay_one_buffer() and 5594 * link_to_fixup_dir()); 5595 * 5596 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5597 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5598 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5599 * has a size that doesn't match the sum of the lengths of all the logged 5600 * names. This does not result in a problem because if a dir_item key is 5601 * logged but its matching dir_index key is not logged, at log replay time we 5602 * don't use it to replay the respective name (see replay_one_name()). On the 5603 * other hand if only the dir_index key ends up being logged, the respective 5604 * name is added to the fs/subvol tree with both the dir_item and dir_index 5605 * keys created (see replay_one_name()). 5606 * The directory's inode item with a wrong i_size is not a problem as well, 5607 * since we don't use it at log replay time to set the i_size in the inode 5608 * item of the fs/subvol tree (see overwrite_item()). 5609 */ 5610 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5611 struct btrfs_root *root, 5612 struct btrfs_inode *start_inode, 5613 struct btrfs_log_ctx *ctx) 5614 { 5615 struct btrfs_fs_info *fs_info = root->fs_info; 5616 struct btrfs_root *log = root->log_root; 5617 struct btrfs_path *path; 5618 LIST_HEAD(dir_list); 5619 struct btrfs_dir_list *dir_elem; 5620 int ret = 0; 5621 5622 path = btrfs_alloc_path(); 5623 if (!path) 5624 return -ENOMEM; 5625 5626 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5627 if (!dir_elem) { 5628 btrfs_free_path(path); 5629 return -ENOMEM; 5630 } 5631 dir_elem->ino = btrfs_ino(start_inode); 5632 list_add_tail(&dir_elem->list, &dir_list); 5633 5634 while (!list_empty(&dir_list)) { 5635 struct extent_buffer *leaf; 5636 struct btrfs_key min_key; 5637 int nritems; 5638 int i; 5639 5640 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5641 list); 5642 if (ret) 5643 goto next_dir_inode; 5644 5645 min_key.objectid = dir_elem->ino; 5646 min_key.type = BTRFS_DIR_ITEM_KEY; 5647 min_key.offset = 0; 5648 again: 5649 btrfs_release_path(path); 5650 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5651 if (ret < 0) { 5652 goto next_dir_inode; 5653 } else if (ret > 0) { 5654 ret = 0; 5655 goto next_dir_inode; 5656 } 5657 5658 process_leaf: 5659 leaf = path->nodes[0]; 5660 nritems = btrfs_header_nritems(leaf); 5661 for (i = path->slots[0]; i < nritems; i++) { 5662 struct btrfs_dir_item *di; 5663 struct btrfs_key di_key; 5664 struct inode *di_inode; 5665 struct btrfs_dir_list *new_dir_elem; 5666 int log_mode = LOG_INODE_EXISTS; 5667 int type; 5668 5669 btrfs_item_key_to_cpu(leaf, &min_key, i); 5670 if (min_key.objectid != dir_elem->ino || 5671 min_key.type != BTRFS_DIR_ITEM_KEY) 5672 goto next_dir_inode; 5673 5674 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5675 type = btrfs_dir_type(leaf, di); 5676 if (btrfs_dir_transid(leaf, di) < trans->transid && 5677 type != BTRFS_FT_DIR) 5678 continue; 5679 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5680 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5681 continue; 5682 5683 btrfs_release_path(path); 5684 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL); 5685 if (IS_ERR(di_inode)) { 5686 ret = PTR_ERR(di_inode); 5687 goto next_dir_inode; 5688 } 5689 5690 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) { 5691 btrfs_add_delayed_iput(di_inode); 5692 break; 5693 } 5694 5695 ctx->log_new_dentries = false; 5696 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5697 log_mode = LOG_INODE_ALL; 5698 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), 5699 log_mode, 0, LLONG_MAX, ctx); 5700 if (!ret && 5701 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode))) 5702 ret = 1; 5703 btrfs_add_delayed_iput(di_inode); 5704 if (ret) 5705 goto next_dir_inode; 5706 if (ctx->log_new_dentries) { 5707 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5708 GFP_NOFS); 5709 if (!new_dir_elem) { 5710 ret = -ENOMEM; 5711 goto next_dir_inode; 5712 } 5713 new_dir_elem->ino = di_key.objectid; 5714 list_add_tail(&new_dir_elem->list, &dir_list); 5715 } 5716 break; 5717 } 5718 if (i == nritems) { 5719 ret = btrfs_next_leaf(log, path); 5720 if (ret < 0) { 5721 goto next_dir_inode; 5722 } else if (ret > 0) { 5723 ret = 0; 5724 goto next_dir_inode; 5725 } 5726 goto process_leaf; 5727 } 5728 if (min_key.offset < (u64)-1) { 5729 min_key.offset++; 5730 goto again; 5731 } 5732 next_dir_inode: 5733 list_del(&dir_elem->list); 5734 kfree(dir_elem); 5735 } 5736 5737 btrfs_free_path(path); 5738 return ret; 5739 } 5740 5741 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5742 struct btrfs_inode *inode, 5743 struct btrfs_log_ctx *ctx) 5744 { 5745 struct btrfs_fs_info *fs_info = trans->fs_info; 5746 int ret; 5747 struct btrfs_path *path; 5748 struct btrfs_key key; 5749 struct btrfs_root *root = inode->root; 5750 const u64 ino = btrfs_ino(inode); 5751 5752 path = btrfs_alloc_path(); 5753 if (!path) 5754 return -ENOMEM; 5755 path->skip_locking = 1; 5756 path->search_commit_root = 1; 5757 5758 key.objectid = ino; 5759 key.type = BTRFS_INODE_REF_KEY; 5760 key.offset = 0; 5761 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5762 if (ret < 0) 5763 goto out; 5764 5765 while (true) { 5766 struct extent_buffer *leaf = path->nodes[0]; 5767 int slot = path->slots[0]; 5768 u32 cur_offset = 0; 5769 u32 item_size; 5770 unsigned long ptr; 5771 5772 if (slot >= btrfs_header_nritems(leaf)) { 5773 ret = btrfs_next_leaf(root, path); 5774 if (ret < 0) 5775 goto out; 5776 else if (ret > 0) 5777 break; 5778 continue; 5779 } 5780 5781 btrfs_item_key_to_cpu(leaf, &key, slot); 5782 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5783 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5784 break; 5785 5786 item_size = btrfs_item_size_nr(leaf, slot); 5787 ptr = btrfs_item_ptr_offset(leaf, slot); 5788 while (cur_offset < item_size) { 5789 struct btrfs_key inode_key; 5790 struct inode *dir_inode; 5791 5792 inode_key.type = BTRFS_INODE_ITEM_KEY; 5793 inode_key.offset = 0; 5794 5795 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5796 struct btrfs_inode_extref *extref; 5797 5798 extref = (struct btrfs_inode_extref *) 5799 (ptr + cur_offset); 5800 inode_key.objectid = btrfs_inode_extref_parent( 5801 leaf, extref); 5802 cur_offset += sizeof(*extref); 5803 cur_offset += btrfs_inode_extref_name_len(leaf, 5804 extref); 5805 } else { 5806 inode_key.objectid = key.offset; 5807 cur_offset = item_size; 5808 } 5809 5810 dir_inode = btrfs_iget(fs_info->sb, &inode_key, 5811 root, NULL); 5812 /* 5813 * If the parent inode was deleted, return an error to 5814 * fallback to a transaction commit. This is to prevent 5815 * getting an inode that was moved from one parent A to 5816 * a parent B, got its former parent A deleted and then 5817 * it got fsync'ed, from existing at both parents after 5818 * a log replay (and the old parent still existing). 5819 * Example: 5820 * 5821 * mkdir /mnt/A 5822 * mkdir /mnt/B 5823 * touch /mnt/B/bar 5824 * sync 5825 * mv /mnt/B/bar /mnt/A/bar 5826 * mv -T /mnt/A /mnt/B 5827 * fsync /mnt/B/bar 5828 * <power fail> 5829 * 5830 * If we ignore the old parent B which got deleted, 5831 * after a log replay we would have file bar linked 5832 * at both parents and the old parent B would still 5833 * exist. 5834 */ 5835 if (IS_ERR(dir_inode)) { 5836 ret = PTR_ERR(dir_inode); 5837 goto out; 5838 } 5839 5840 if (ctx) 5841 ctx->log_new_dentries = false; 5842 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), 5843 LOG_INODE_ALL, 0, LLONG_MAX, ctx); 5844 if (!ret && 5845 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode))) 5846 ret = 1; 5847 if (!ret && ctx && ctx->log_new_dentries) 5848 ret = log_new_dir_dentries(trans, root, 5849 BTRFS_I(dir_inode), ctx); 5850 btrfs_add_delayed_iput(dir_inode); 5851 if (ret) 5852 goto out; 5853 } 5854 path->slots[0]++; 5855 } 5856 ret = 0; 5857 out: 5858 btrfs_free_path(path); 5859 return ret; 5860 } 5861 5862 static int log_new_ancestors(struct btrfs_trans_handle *trans, 5863 struct btrfs_root *root, 5864 struct btrfs_path *path, 5865 struct btrfs_log_ctx *ctx) 5866 { 5867 struct btrfs_key found_key; 5868 5869 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5870 5871 while (true) { 5872 struct btrfs_fs_info *fs_info = root->fs_info; 5873 const u64 last_committed = fs_info->last_trans_committed; 5874 struct extent_buffer *leaf = path->nodes[0]; 5875 int slot = path->slots[0]; 5876 struct btrfs_key search_key; 5877 struct inode *inode; 5878 int ret = 0; 5879 5880 btrfs_release_path(path); 5881 5882 search_key.objectid = found_key.offset; 5883 search_key.type = BTRFS_INODE_ITEM_KEY; 5884 search_key.offset = 0; 5885 inode = btrfs_iget(fs_info->sb, &search_key, root, NULL); 5886 if (IS_ERR(inode)) 5887 return PTR_ERR(inode); 5888 5889 if (BTRFS_I(inode)->generation > last_committed) 5890 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5891 LOG_INODE_EXISTS, 5892 0, LLONG_MAX, ctx); 5893 btrfs_add_delayed_iput(inode); 5894 if (ret) 5895 return ret; 5896 5897 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 5898 break; 5899 5900 search_key.type = BTRFS_INODE_REF_KEY; 5901 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5902 if (ret < 0) 5903 return ret; 5904 5905 leaf = path->nodes[0]; 5906 slot = path->slots[0]; 5907 if (slot >= btrfs_header_nritems(leaf)) { 5908 ret = btrfs_next_leaf(root, path); 5909 if (ret < 0) 5910 return ret; 5911 else if (ret > 0) 5912 return -ENOENT; 5913 leaf = path->nodes[0]; 5914 slot = path->slots[0]; 5915 } 5916 5917 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5918 if (found_key.objectid != search_key.objectid || 5919 found_key.type != BTRFS_INODE_REF_KEY) 5920 return -ENOENT; 5921 } 5922 return 0; 5923 } 5924 5925 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 5926 struct btrfs_inode *inode, 5927 struct dentry *parent, 5928 struct btrfs_log_ctx *ctx) 5929 { 5930 struct btrfs_root *root = inode->root; 5931 struct btrfs_fs_info *fs_info = root->fs_info; 5932 struct dentry *old_parent = NULL; 5933 struct super_block *sb = inode->vfs_inode.i_sb; 5934 int ret = 0; 5935 5936 while (true) { 5937 if (!parent || d_really_is_negative(parent) || 5938 sb != parent->d_sb) 5939 break; 5940 5941 inode = BTRFS_I(d_inode(parent)); 5942 if (root != inode->root) 5943 break; 5944 5945 if (inode->generation > fs_info->last_trans_committed) { 5946 ret = btrfs_log_inode(trans, root, inode, 5947 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx); 5948 if (ret) 5949 break; 5950 } 5951 if (IS_ROOT(parent)) 5952 break; 5953 5954 parent = dget_parent(parent); 5955 dput(old_parent); 5956 old_parent = parent; 5957 } 5958 dput(old_parent); 5959 5960 return ret; 5961 } 5962 5963 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 5964 struct btrfs_inode *inode, 5965 struct dentry *parent, 5966 struct btrfs_log_ctx *ctx) 5967 { 5968 struct btrfs_root *root = inode->root; 5969 const u64 ino = btrfs_ino(inode); 5970 struct btrfs_path *path; 5971 struct btrfs_key search_key; 5972 int ret; 5973 5974 /* 5975 * For a single hard link case, go through a fast path that does not 5976 * need to iterate the fs/subvolume tree. 5977 */ 5978 if (inode->vfs_inode.i_nlink < 2) 5979 return log_new_ancestors_fast(trans, inode, parent, ctx); 5980 5981 path = btrfs_alloc_path(); 5982 if (!path) 5983 return -ENOMEM; 5984 5985 search_key.objectid = ino; 5986 search_key.type = BTRFS_INODE_REF_KEY; 5987 search_key.offset = 0; 5988 again: 5989 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5990 if (ret < 0) 5991 goto out; 5992 if (ret == 0) 5993 path->slots[0]++; 5994 5995 while (true) { 5996 struct extent_buffer *leaf = path->nodes[0]; 5997 int slot = path->slots[0]; 5998 struct btrfs_key found_key; 5999 6000 if (slot >= btrfs_header_nritems(leaf)) { 6001 ret = btrfs_next_leaf(root, path); 6002 if (ret < 0) 6003 goto out; 6004 else if (ret > 0) 6005 break; 6006 continue; 6007 } 6008 6009 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6010 if (found_key.objectid != ino || 6011 found_key.type > BTRFS_INODE_EXTREF_KEY) 6012 break; 6013 6014 /* 6015 * Don't deal with extended references because they are rare 6016 * cases and too complex to deal with (we would need to keep 6017 * track of which subitem we are processing for each item in 6018 * this loop, etc). So just return some error to fallback to 6019 * a transaction commit. 6020 */ 6021 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 6022 ret = -EMLINK; 6023 goto out; 6024 } 6025 6026 /* 6027 * Logging ancestors needs to do more searches on the fs/subvol 6028 * tree, so it releases the path as needed to avoid deadlocks. 6029 * Keep track of the last inode ref key and resume from that key 6030 * after logging all new ancestors for the current hard link. 6031 */ 6032 memcpy(&search_key, &found_key, sizeof(search_key)); 6033 6034 ret = log_new_ancestors(trans, root, path, ctx); 6035 if (ret) 6036 goto out; 6037 btrfs_release_path(path); 6038 goto again; 6039 } 6040 ret = 0; 6041 out: 6042 btrfs_free_path(path); 6043 return ret; 6044 } 6045 6046 /* 6047 * helper function around btrfs_log_inode to make sure newly created 6048 * parent directories also end up in the log. A minimal inode and backref 6049 * only logging is done of any parent directories that are older than 6050 * the last committed transaction 6051 */ 6052 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 6053 struct btrfs_inode *inode, 6054 struct dentry *parent, 6055 const loff_t start, 6056 const loff_t end, 6057 int inode_only, 6058 struct btrfs_log_ctx *ctx) 6059 { 6060 struct btrfs_root *root = inode->root; 6061 struct btrfs_fs_info *fs_info = root->fs_info; 6062 struct super_block *sb; 6063 int ret = 0; 6064 u64 last_committed = fs_info->last_trans_committed; 6065 bool log_dentries = false; 6066 6067 sb = inode->vfs_inode.i_sb; 6068 6069 if (btrfs_test_opt(fs_info, NOTREELOG)) { 6070 ret = 1; 6071 goto end_no_trans; 6072 } 6073 6074 /* 6075 * The prev transaction commit doesn't complete, we need do 6076 * full commit by ourselves. 6077 */ 6078 if (fs_info->last_trans_log_full_commit > 6079 fs_info->last_trans_committed) { 6080 ret = 1; 6081 goto end_no_trans; 6082 } 6083 6084 if (btrfs_root_refs(&root->root_item) == 0) { 6085 ret = 1; 6086 goto end_no_trans; 6087 } 6088 6089 ret = check_parent_dirs_for_sync(trans, inode, parent, sb, 6090 last_committed); 6091 if (ret) 6092 goto end_no_trans; 6093 6094 /* 6095 * Skip already logged inodes or inodes corresponding to tmpfiles 6096 * (since logging them is pointless, a link count of 0 means they 6097 * will never be accessible). 6098 */ 6099 if (btrfs_inode_in_log(inode, trans->transid) || 6100 inode->vfs_inode.i_nlink == 0) { 6101 ret = BTRFS_NO_LOG_SYNC; 6102 goto end_no_trans; 6103 } 6104 6105 ret = start_log_trans(trans, root, ctx); 6106 if (ret) 6107 goto end_no_trans; 6108 6109 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 6110 if (ret) 6111 goto end_trans; 6112 6113 /* 6114 * for regular files, if its inode is already on disk, we don't 6115 * have to worry about the parents at all. This is because 6116 * we can use the last_unlink_trans field to record renames 6117 * and other fun in this file. 6118 */ 6119 if (S_ISREG(inode->vfs_inode.i_mode) && 6120 inode->generation <= last_committed && 6121 inode->last_unlink_trans <= last_committed) { 6122 ret = 0; 6123 goto end_trans; 6124 } 6125 6126 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) 6127 log_dentries = true; 6128 6129 /* 6130 * On unlink we must make sure all our current and old parent directory 6131 * inodes are fully logged. This is to prevent leaving dangling 6132 * directory index entries in directories that were our parents but are 6133 * not anymore. Not doing this results in old parent directory being 6134 * impossible to delete after log replay (rmdir will always fail with 6135 * error -ENOTEMPTY). 6136 * 6137 * Example 1: 6138 * 6139 * mkdir testdir 6140 * touch testdir/foo 6141 * ln testdir/foo testdir/bar 6142 * sync 6143 * unlink testdir/bar 6144 * xfs_io -c fsync testdir/foo 6145 * <power failure> 6146 * mount fs, triggers log replay 6147 * 6148 * If we don't log the parent directory (testdir), after log replay the 6149 * directory still has an entry pointing to the file inode using the bar 6150 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6151 * the file inode has a link count of 1. 6152 * 6153 * Example 2: 6154 * 6155 * mkdir testdir 6156 * touch foo 6157 * ln foo testdir/foo2 6158 * ln foo testdir/foo3 6159 * sync 6160 * unlink testdir/foo3 6161 * xfs_io -c fsync foo 6162 * <power failure> 6163 * mount fs, triggers log replay 6164 * 6165 * Similar as the first example, after log replay the parent directory 6166 * testdir still has an entry pointing to the inode file with name foo3 6167 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6168 * and has a link count of 2. 6169 */ 6170 if (inode->last_unlink_trans > last_committed) { 6171 ret = btrfs_log_all_parents(trans, inode, ctx); 6172 if (ret) 6173 goto end_trans; 6174 } 6175 6176 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6177 if (ret) 6178 goto end_trans; 6179 6180 if (log_dentries) 6181 ret = log_new_dir_dentries(trans, root, inode, ctx); 6182 else 6183 ret = 0; 6184 end_trans: 6185 if (ret < 0) { 6186 btrfs_set_log_full_commit(trans); 6187 ret = 1; 6188 } 6189 6190 if (ret) 6191 btrfs_remove_log_ctx(root, ctx); 6192 btrfs_end_log_trans(root); 6193 end_no_trans: 6194 return ret; 6195 } 6196 6197 /* 6198 * it is not safe to log dentry if the chunk root has added new 6199 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6200 * If this returns 1, you must commit the transaction to safely get your 6201 * data on disk. 6202 */ 6203 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6204 struct dentry *dentry, 6205 const loff_t start, 6206 const loff_t end, 6207 struct btrfs_log_ctx *ctx) 6208 { 6209 struct dentry *parent = dget_parent(dentry); 6210 int ret; 6211 6212 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6213 start, end, LOG_INODE_ALL, ctx); 6214 dput(parent); 6215 6216 return ret; 6217 } 6218 6219 /* 6220 * should be called during mount to recover any replay any log trees 6221 * from the FS 6222 */ 6223 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6224 { 6225 int ret; 6226 struct btrfs_path *path; 6227 struct btrfs_trans_handle *trans; 6228 struct btrfs_key key; 6229 struct btrfs_key found_key; 6230 struct btrfs_key tmp_key; 6231 struct btrfs_root *log; 6232 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6233 struct walk_control wc = { 6234 .process_func = process_one_buffer, 6235 .stage = LOG_WALK_PIN_ONLY, 6236 }; 6237 6238 path = btrfs_alloc_path(); 6239 if (!path) 6240 return -ENOMEM; 6241 6242 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6243 6244 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6245 if (IS_ERR(trans)) { 6246 ret = PTR_ERR(trans); 6247 goto error; 6248 } 6249 6250 wc.trans = trans; 6251 wc.pin = 1; 6252 6253 ret = walk_log_tree(trans, log_root_tree, &wc); 6254 if (ret) { 6255 btrfs_handle_fs_error(fs_info, ret, 6256 "Failed to pin buffers while recovering log root tree."); 6257 goto error; 6258 } 6259 6260 again: 6261 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6262 key.offset = (u64)-1; 6263 key.type = BTRFS_ROOT_ITEM_KEY; 6264 6265 while (1) { 6266 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6267 6268 if (ret < 0) { 6269 btrfs_handle_fs_error(fs_info, ret, 6270 "Couldn't find tree log root."); 6271 goto error; 6272 } 6273 if (ret > 0) { 6274 if (path->slots[0] == 0) 6275 break; 6276 path->slots[0]--; 6277 } 6278 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6279 path->slots[0]); 6280 btrfs_release_path(path); 6281 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6282 break; 6283 6284 log = btrfs_read_fs_root(log_root_tree, &found_key); 6285 if (IS_ERR(log)) { 6286 ret = PTR_ERR(log); 6287 btrfs_handle_fs_error(fs_info, ret, 6288 "Couldn't read tree log root."); 6289 goto error; 6290 } 6291 6292 tmp_key.objectid = found_key.offset; 6293 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 6294 tmp_key.offset = (u64)-1; 6295 6296 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 6297 if (IS_ERR(wc.replay_dest)) { 6298 ret = PTR_ERR(wc.replay_dest); 6299 free_extent_buffer(log->node); 6300 free_extent_buffer(log->commit_root); 6301 kfree(log); 6302 btrfs_handle_fs_error(fs_info, ret, 6303 "Couldn't read target root for tree log recovery."); 6304 goto error; 6305 } 6306 6307 wc.replay_dest->log_root = log; 6308 btrfs_record_root_in_trans(trans, wc.replay_dest); 6309 ret = walk_log_tree(trans, log, &wc); 6310 6311 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6312 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6313 path); 6314 } 6315 6316 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6317 struct btrfs_root *root = wc.replay_dest; 6318 6319 btrfs_release_path(path); 6320 6321 /* 6322 * We have just replayed everything, and the highest 6323 * objectid of fs roots probably has changed in case 6324 * some inode_item's got replayed. 6325 * 6326 * root->objectid_mutex is not acquired as log replay 6327 * could only happen during mount. 6328 */ 6329 ret = btrfs_find_highest_objectid(root, 6330 &root->highest_objectid); 6331 } 6332 6333 key.offset = found_key.offset - 1; 6334 wc.replay_dest->log_root = NULL; 6335 free_extent_buffer(log->node); 6336 free_extent_buffer(log->commit_root); 6337 kfree(log); 6338 6339 if (ret) 6340 goto error; 6341 6342 if (found_key.offset == 0) 6343 break; 6344 } 6345 btrfs_release_path(path); 6346 6347 /* step one is to pin it all, step two is to replay just inodes */ 6348 if (wc.pin) { 6349 wc.pin = 0; 6350 wc.process_func = replay_one_buffer; 6351 wc.stage = LOG_WALK_REPLAY_INODES; 6352 goto again; 6353 } 6354 /* step three is to replay everything */ 6355 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6356 wc.stage++; 6357 goto again; 6358 } 6359 6360 btrfs_free_path(path); 6361 6362 /* step 4: commit the transaction, which also unpins the blocks */ 6363 ret = btrfs_commit_transaction(trans); 6364 if (ret) 6365 return ret; 6366 6367 free_extent_buffer(log_root_tree->node); 6368 log_root_tree->log_root = NULL; 6369 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6370 kfree(log_root_tree); 6371 6372 return 0; 6373 error: 6374 if (wc.trans) 6375 btrfs_end_transaction(wc.trans); 6376 btrfs_free_path(path); 6377 return ret; 6378 } 6379 6380 /* 6381 * there are some corner cases where we want to force a full 6382 * commit instead of allowing a directory to be logged. 6383 * 6384 * They revolve around files there were unlinked from the directory, and 6385 * this function updates the parent directory so that a full commit is 6386 * properly done if it is fsync'd later after the unlinks are done. 6387 * 6388 * Must be called before the unlink operations (updates to the subvolume tree, 6389 * inodes, etc) are done. 6390 */ 6391 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6392 struct btrfs_inode *dir, struct btrfs_inode *inode, 6393 int for_rename) 6394 { 6395 /* 6396 * when we're logging a file, if it hasn't been renamed 6397 * or unlinked, and its inode is fully committed on disk, 6398 * we don't have to worry about walking up the directory chain 6399 * to log its parents. 6400 * 6401 * So, we use the last_unlink_trans field to put this transid 6402 * into the file. When the file is logged we check it and 6403 * don't log the parents if the file is fully on disk. 6404 */ 6405 mutex_lock(&inode->log_mutex); 6406 inode->last_unlink_trans = trans->transid; 6407 mutex_unlock(&inode->log_mutex); 6408 6409 /* 6410 * if this directory was already logged any new 6411 * names for this file/dir will get recorded 6412 */ 6413 if (dir->logged_trans == trans->transid) 6414 return; 6415 6416 /* 6417 * if the inode we're about to unlink was logged, 6418 * the log will be properly updated for any new names 6419 */ 6420 if (inode->logged_trans == trans->transid) 6421 return; 6422 6423 /* 6424 * when renaming files across directories, if the directory 6425 * there we're unlinking from gets fsync'd later on, there's 6426 * no way to find the destination directory later and fsync it 6427 * properly. So, we have to be conservative and force commits 6428 * so the new name gets discovered. 6429 */ 6430 if (for_rename) 6431 goto record; 6432 6433 /* we can safely do the unlink without any special recording */ 6434 return; 6435 6436 record: 6437 mutex_lock(&dir->log_mutex); 6438 dir->last_unlink_trans = trans->transid; 6439 mutex_unlock(&dir->log_mutex); 6440 } 6441 6442 /* 6443 * Make sure that if someone attempts to fsync the parent directory of a deleted 6444 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6445 * that after replaying the log tree of the parent directory's root we will not 6446 * see the snapshot anymore and at log replay time we will not see any log tree 6447 * corresponding to the deleted snapshot's root, which could lead to replaying 6448 * it after replaying the log tree of the parent directory (which would replay 6449 * the snapshot delete operation). 6450 * 6451 * Must be called before the actual snapshot destroy operation (updates to the 6452 * parent root and tree of tree roots trees, etc) are done. 6453 */ 6454 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6455 struct btrfs_inode *dir) 6456 { 6457 mutex_lock(&dir->log_mutex); 6458 dir->last_unlink_trans = trans->transid; 6459 mutex_unlock(&dir->log_mutex); 6460 } 6461 6462 /* 6463 * Call this after adding a new name for a file and it will properly 6464 * update the log to reflect the new name. 6465 * 6466 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's 6467 * true (because it's not used). 6468 * 6469 * Return value depends on whether @sync_log is true or false. 6470 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6471 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT 6472 * otherwise. 6473 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to 6474 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log, 6475 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6476 * committed (without attempting to sync the log). 6477 */ 6478 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 6479 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6480 struct dentry *parent, 6481 bool sync_log, struct btrfs_log_ctx *ctx) 6482 { 6483 struct btrfs_fs_info *fs_info = trans->fs_info; 6484 int ret; 6485 6486 /* 6487 * this will force the logging code to walk the dentry chain 6488 * up for the file 6489 */ 6490 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6491 inode->last_unlink_trans = trans->transid; 6492 6493 /* 6494 * if this inode hasn't been logged and directory we're renaming it 6495 * from hasn't been logged, we don't need to log it 6496 */ 6497 if (inode->logged_trans <= fs_info->last_trans_committed && 6498 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed)) 6499 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT : 6500 BTRFS_DONT_NEED_LOG_SYNC; 6501 6502 if (sync_log) { 6503 struct btrfs_log_ctx ctx2; 6504 6505 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode); 6506 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6507 LOG_INODE_EXISTS, &ctx2); 6508 if (ret == BTRFS_NO_LOG_SYNC) 6509 return BTRFS_DONT_NEED_TRANS_COMMIT; 6510 else if (ret) 6511 return BTRFS_NEED_TRANS_COMMIT; 6512 6513 ret = btrfs_sync_log(trans, inode->root, &ctx2); 6514 if (ret) 6515 return BTRFS_NEED_TRANS_COMMIT; 6516 return BTRFS_DONT_NEED_TRANS_COMMIT; 6517 } 6518 6519 ASSERT(ctx); 6520 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6521 LOG_INODE_EXISTS, ctx); 6522 if (ret == BTRFS_NO_LOG_SYNC) 6523 return BTRFS_DONT_NEED_LOG_SYNC; 6524 else if (ret) 6525 return BTRFS_NEED_TRANS_COMMIT; 6526 6527 return BTRFS_NEED_LOG_SYNC; 6528 } 6529 6530