xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 
22 /* magic values for the inode_only field in btrfs_log_inode:
23  *
24  * LOG_INODE_ALL means to log everything
25  * LOG_INODE_EXISTS means to log just enough to recreate the inode
26  * during log replay
27  */
28 enum {
29 	LOG_INODE_ALL,
30 	LOG_INODE_EXISTS,
31 	LOG_OTHER_INODE,
32 	LOG_OTHER_INODE_ALL,
33 };
34 
35 /*
36  * directory trouble cases
37  *
38  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
39  * log, we must force a full commit before doing an fsync of the directory
40  * where the unlink was done.
41  * ---> record transid of last unlink/rename per directory
42  *
43  * mkdir foo/some_dir
44  * normal commit
45  * rename foo/some_dir foo2/some_dir
46  * mkdir foo/some_dir
47  * fsync foo/some_dir/some_file
48  *
49  * The fsync above will unlink the original some_dir without recording
50  * it in its new location (foo2).  After a crash, some_dir will be gone
51  * unless the fsync of some_file forces a full commit
52  *
53  * 2) we must log any new names for any file or dir that is in the fsync
54  * log. ---> check inode while renaming/linking.
55  *
56  * 2a) we must log any new names for any file or dir during rename
57  * when the directory they are being removed from was logged.
58  * ---> check inode and old parent dir during rename
59  *
60  *  2a is actually the more important variant.  With the extra logging
61  *  a crash might unlink the old name without recreating the new one
62  *
63  * 3) after a crash, we must go through any directories with a link count
64  * of zero and redo the rm -rf
65  *
66  * mkdir f1/foo
67  * normal commit
68  * rm -rf f1/foo
69  * fsync(f1)
70  *
71  * The directory f1 was fully removed from the FS, but fsync was never
72  * called on f1, only its parent dir.  After a crash the rm -rf must
73  * be replayed.  This must be able to recurse down the entire
74  * directory tree.  The inode link count fixup code takes care of the
75  * ugly details.
76  */
77 
78 /*
79  * stages for the tree walking.  The first
80  * stage (0) is to only pin down the blocks we find
81  * the second stage (1) is to make sure that all the inodes
82  * we find in the log are created in the subvolume.
83  *
84  * The last stage is to deal with directories and links and extents
85  * and all the other fun semantics
86  */
87 enum {
88 	LOG_WALK_PIN_ONLY,
89 	LOG_WALK_REPLAY_INODES,
90 	LOG_WALK_REPLAY_DIR_INDEX,
91 	LOG_WALK_REPLAY_ALL,
92 };
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			   struct btrfs_root *root, struct btrfs_inode *inode,
96 			   int inode_only,
97 			   const loff_t start,
98 			   const loff_t end,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 
109 /*
110  * tree logging is a special write ahead log used to make sure that
111  * fsyncs and O_SYNCs can happen without doing full tree commits.
112  *
113  * Full tree commits are expensive because they require commonly
114  * modified blocks to be recowed, creating many dirty pages in the
115  * extent tree an 4x-6x higher write load than ext3.
116  *
117  * Instead of doing a tree commit on every fsync, we use the
118  * key ranges and transaction ids to find items for a given file or directory
119  * that have changed in this transaction.  Those items are copied into
120  * a special tree (one per subvolume root), that tree is written to disk
121  * and then the fsync is considered complete.
122  *
123  * After a crash, items are copied out of the log-tree back into the
124  * subvolume tree.  Any file data extents found are recorded in the extent
125  * allocation tree, and the log-tree freed.
126  *
127  * The log tree is read three times, once to pin down all the extents it is
128  * using in ram and once, once to create all the inodes logged in the tree
129  * and once to do all the other items.
130  */
131 
132 /*
133  * start a sub transaction and setup the log tree
134  * this increments the log tree writer count to make the people
135  * syncing the tree wait for us to finish
136  */
137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 			   struct btrfs_root *root,
139 			   struct btrfs_log_ctx *ctx)
140 {
141 	struct btrfs_fs_info *fs_info = root->fs_info;
142 	int ret = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 
146 	if (root->log_root) {
147 		if (btrfs_need_log_full_commit(trans)) {
148 			ret = -EAGAIN;
149 			goto out;
150 		}
151 
152 		if (!root->log_start_pid) {
153 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 			root->log_start_pid = current->pid;
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 	} else {
159 		mutex_lock(&fs_info->tree_log_mutex);
160 		if (!fs_info->log_root_tree)
161 			ret = btrfs_init_log_root_tree(trans, fs_info);
162 		mutex_unlock(&fs_info->tree_log_mutex);
163 		if (ret)
164 			goto out;
165 
166 		ret = btrfs_add_log_tree(trans, root);
167 		if (ret)
168 			goto out;
169 
170 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
171 		root->log_start_pid = current->pid;
172 	}
173 
174 	atomic_inc(&root->log_batch);
175 	atomic_inc(&root->log_writers);
176 	if (ctx) {
177 		int index = root->log_transid % 2;
178 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
179 		ctx->log_transid = root->log_transid;
180 	}
181 
182 out:
183 	mutex_unlock(&root->log_mutex);
184 	return ret;
185 }
186 
187 /*
188  * returns 0 if there was a log transaction running and we were able
189  * to join, or returns -ENOENT if there were not transactions
190  * in progress
191  */
192 static int join_running_log_trans(struct btrfs_root *root)
193 {
194 	int ret = -ENOENT;
195 
196 	mutex_lock(&root->log_mutex);
197 	if (root->log_root) {
198 		ret = 0;
199 		atomic_inc(&root->log_writers);
200 	}
201 	mutex_unlock(&root->log_mutex);
202 	return ret;
203 }
204 
205 /*
206  * This either makes the current running log transaction wait
207  * until you call btrfs_end_log_trans() or it makes any future
208  * log transactions wait until you call btrfs_end_log_trans()
209  */
210 void btrfs_pin_log_trans(struct btrfs_root *root)
211 {
212 	mutex_lock(&root->log_mutex);
213 	atomic_inc(&root->log_writers);
214 	mutex_unlock(&root->log_mutex);
215 }
216 
217 /*
218  * indicate we're done making changes to the log tree
219  * and wake up anyone waiting to do a sync
220  */
221 void btrfs_end_log_trans(struct btrfs_root *root)
222 {
223 	if (atomic_dec_and_test(&root->log_writers)) {
224 		/* atomic_dec_and_test implies a barrier */
225 		cond_wake_up_nomb(&root->log_writer_wait);
226 	}
227 }
228 
229 static int btrfs_write_tree_block(struct extent_buffer *buf)
230 {
231 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
232 					buf->start + buf->len - 1);
233 }
234 
235 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
236 {
237 	filemap_fdatawait_range(buf->pages[0]->mapping,
238 			        buf->start, buf->start + buf->len - 1);
239 }
240 
241 /*
242  * the walk control struct is used to pass state down the chain when
243  * processing the log tree.  The stage field tells us which part
244  * of the log tree processing we are currently doing.  The others
245  * are state fields used for that specific part
246  */
247 struct walk_control {
248 	/* should we free the extent on disk when done?  This is used
249 	 * at transaction commit time while freeing a log tree
250 	 */
251 	int free;
252 
253 	/* should we write out the extent buffer?  This is used
254 	 * while flushing the log tree to disk during a sync
255 	 */
256 	int write;
257 
258 	/* should we wait for the extent buffer io to finish?  Also used
259 	 * while flushing the log tree to disk for a sync
260 	 */
261 	int wait;
262 
263 	/* pin only walk, we record which extents on disk belong to the
264 	 * log trees
265 	 */
266 	int pin;
267 
268 	/* what stage of the replay code we're currently in */
269 	int stage;
270 
271 	/*
272 	 * Ignore any items from the inode currently being processed. Needs
273 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
274 	 * the LOG_WALK_REPLAY_INODES stage.
275 	 */
276 	bool ignore_cur_inode;
277 
278 	/* the root we are currently replaying */
279 	struct btrfs_root *replay_dest;
280 
281 	/* the trans handle for the current replay */
282 	struct btrfs_trans_handle *trans;
283 
284 	/* the function that gets used to process blocks we find in the
285 	 * tree.  Note the extent_buffer might not be up to date when it is
286 	 * passed in, and it must be checked or read if you need the data
287 	 * inside it
288 	 */
289 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 			    struct walk_control *wc, u64 gen, int level);
291 };
292 
293 /*
294  * process_func used to pin down extents, write them or wait on them
295  */
296 static int process_one_buffer(struct btrfs_root *log,
297 			      struct extent_buffer *eb,
298 			      struct walk_control *wc, u64 gen, int level)
299 {
300 	struct btrfs_fs_info *fs_info = log->fs_info;
301 	int ret = 0;
302 
303 	/*
304 	 * If this fs is mixed then we need to be able to process the leaves to
305 	 * pin down any logged extents, so we have to read the block.
306 	 */
307 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
308 		ret = btrfs_read_buffer(eb, gen, level, NULL);
309 		if (ret)
310 			return ret;
311 	}
312 
313 	if (wc->pin)
314 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
315 						      eb->len);
316 
317 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
318 		if (wc->pin && btrfs_header_level(eb) == 0)
319 			ret = btrfs_exclude_logged_extents(eb);
320 		if (wc->write)
321 			btrfs_write_tree_block(eb);
322 		if (wc->wait)
323 			btrfs_wait_tree_block_writeback(eb);
324 	}
325 	return ret;
326 }
327 
328 /*
329  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
330  * to the src data we are copying out.
331  *
332  * root is the tree we are copying into, and path is a scratch
333  * path for use in this function (it should be released on entry and
334  * will be released on exit).
335  *
336  * If the key is already in the destination tree the existing item is
337  * overwritten.  If the existing item isn't big enough, it is extended.
338  * If it is too large, it is truncated.
339  *
340  * If the key isn't in the destination yet, a new item is inserted.
341  */
342 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
343 				   struct btrfs_root *root,
344 				   struct btrfs_path *path,
345 				   struct extent_buffer *eb, int slot,
346 				   struct btrfs_key *key)
347 {
348 	int ret;
349 	u32 item_size;
350 	u64 saved_i_size = 0;
351 	int save_old_i_size = 0;
352 	unsigned long src_ptr;
353 	unsigned long dst_ptr;
354 	int overwrite_root = 0;
355 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356 
357 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 		overwrite_root = 1;
359 
360 	item_size = btrfs_item_size_nr(eb, slot);
361 	src_ptr = btrfs_item_ptr_offset(eb, slot);
362 
363 	/* look for the key in the destination tree */
364 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365 	if (ret < 0)
366 		return ret;
367 
368 	if (ret == 0) {
369 		char *src_copy;
370 		char *dst_copy;
371 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 						  path->slots[0]);
373 		if (dst_size != item_size)
374 			goto insert;
375 
376 		if (item_size == 0) {
377 			btrfs_release_path(path);
378 			return 0;
379 		}
380 		dst_copy = kmalloc(item_size, GFP_NOFS);
381 		src_copy = kmalloc(item_size, GFP_NOFS);
382 		if (!dst_copy || !src_copy) {
383 			btrfs_release_path(path);
384 			kfree(dst_copy);
385 			kfree(src_copy);
386 			return -ENOMEM;
387 		}
388 
389 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
390 
391 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 				   item_size);
394 		ret = memcmp(dst_copy, src_copy, item_size);
395 
396 		kfree(dst_copy);
397 		kfree(src_copy);
398 		/*
399 		 * they have the same contents, just return, this saves
400 		 * us from cowing blocks in the destination tree and doing
401 		 * extra writes that may not have been done by a previous
402 		 * sync
403 		 */
404 		if (ret == 0) {
405 			btrfs_release_path(path);
406 			return 0;
407 		}
408 
409 		/*
410 		 * We need to load the old nbytes into the inode so when we
411 		 * replay the extents we've logged we get the right nbytes.
412 		 */
413 		if (inode_item) {
414 			struct btrfs_inode_item *item;
415 			u64 nbytes;
416 			u32 mode;
417 
418 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 					      struct btrfs_inode_item);
420 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 			item = btrfs_item_ptr(eb, slot,
422 					      struct btrfs_inode_item);
423 			btrfs_set_inode_nbytes(eb, item, nbytes);
424 
425 			/*
426 			 * If this is a directory we need to reset the i_size to
427 			 * 0 so that we can set it up properly when replaying
428 			 * the rest of the items in this log.
429 			 */
430 			mode = btrfs_inode_mode(eb, item);
431 			if (S_ISDIR(mode))
432 				btrfs_set_inode_size(eb, item, 0);
433 		}
434 	} else if (inode_item) {
435 		struct btrfs_inode_item *item;
436 		u32 mode;
437 
438 		/*
439 		 * New inode, set nbytes to 0 so that the nbytes comes out
440 		 * properly when we replay the extents.
441 		 */
442 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 		btrfs_set_inode_nbytes(eb, item, 0);
444 
445 		/*
446 		 * If this is a directory we need to reset the i_size to 0 so
447 		 * that we can set it up properly when replaying the rest of
448 		 * the items in this log.
449 		 */
450 		mode = btrfs_inode_mode(eb, item);
451 		if (S_ISDIR(mode))
452 			btrfs_set_inode_size(eb, item, 0);
453 	}
454 insert:
455 	btrfs_release_path(path);
456 	/* try to insert the key into the destination tree */
457 	path->skip_release_on_error = 1;
458 	ret = btrfs_insert_empty_item(trans, root, path,
459 				      key, item_size);
460 	path->skip_release_on_error = 0;
461 
462 	/* make sure any existing item is the correct size */
463 	if (ret == -EEXIST || ret == -EOVERFLOW) {
464 		u32 found_size;
465 		found_size = btrfs_item_size_nr(path->nodes[0],
466 						path->slots[0]);
467 		if (found_size > item_size)
468 			btrfs_truncate_item(path, item_size, 1);
469 		else if (found_size < item_size)
470 			btrfs_extend_item(path, item_size - found_size);
471 	} else if (ret) {
472 		return ret;
473 	}
474 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 					path->slots[0]);
476 
477 	/* don't overwrite an existing inode if the generation number
478 	 * was logged as zero.  This is done when the tree logging code
479 	 * is just logging an inode to make sure it exists after recovery.
480 	 *
481 	 * Also, don't overwrite i_size on directories during replay.
482 	 * log replay inserts and removes directory items based on the
483 	 * state of the tree found in the subvolume, and i_size is modified
484 	 * as it goes
485 	 */
486 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 		struct btrfs_inode_item *src_item;
488 		struct btrfs_inode_item *dst_item;
489 
490 		src_item = (struct btrfs_inode_item *)src_ptr;
491 		dst_item = (struct btrfs_inode_item *)dst_ptr;
492 
493 		if (btrfs_inode_generation(eb, src_item) == 0) {
494 			struct extent_buffer *dst_eb = path->nodes[0];
495 			const u64 ino_size = btrfs_inode_size(eb, src_item);
496 
497 			/*
498 			 * For regular files an ino_size == 0 is used only when
499 			 * logging that an inode exists, as part of a directory
500 			 * fsync, and the inode wasn't fsynced before. In this
501 			 * case don't set the size of the inode in the fs/subvol
502 			 * tree, otherwise we would be throwing valid data away.
503 			 */
504 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
505 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 			    ino_size != 0) {
507 				struct btrfs_map_token token;
508 
509 				btrfs_init_map_token(&token, dst_eb);
510 				btrfs_set_token_inode_size(dst_eb, dst_item,
511 							   ino_size, &token);
512 			}
513 			goto no_copy;
514 		}
515 
516 		if (overwrite_root &&
517 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 			save_old_i_size = 1;
520 			saved_i_size = btrfs_inode_size(path->nodes[0],
521 							dst_item);
522 		}
523 	}
524 
525 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 			   src_ptr, item_size);
527 
528 	if (save_old_i_size) {
529 		struct btrfs_inode_item *dst_item;
530 		dst_item = (struct btrfs_inode_item *)dst_ptr;
531 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
532 	}
533 
534 	/* make sure the generation is filled in */
535 	if (key->type == BTRFS_INODE_ITEM_KEY) {
536 		struct btrfs_inode_item *dst_item;
537 		dst_item = (struct btrfs_inode_item *)dst_ptr;
538 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 			btrfs_set_inode_generation(path->nodes[0], dst_item,
540 						   trans->transid);
541 		}
542 	}
543 no_copy:
544 	btrfs_mark_buffer_dirty(path->nodes[0]);
545 	btrfs_release_path(path);
546 	return 0;
547 }
548 
549 /*
550  * simple helper to read an inode off the disk from a given root
551  * This can only be called for subvolume roots and not for the log
552  */
553 static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 					     u64 objectid)
555 {
556 	struct btrfs_key key;
557 	struct inode *inode;
558 
559 	key.objectid = objectid;
560 	key.type = BTRFS_INODE_ITEM_KEY;
561 	key.offset = 0;
562 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
563 	if (IS_ERR(inode))
564 		inode = NULL;
565 	return inode;
566 }
567 
568 /* replays a single extent in 'eb' at 'slot' with 'key' into the
569  * subvolume 'root'.  path is released on entry and should be released
570  * on exit.
571  *
572  * extents in the log tree have not been allocated out of the extent
573  * tree yet.  So, this completes the allocation, taking a reference
574  * as required if the extent already exists or creating a new extent
575  * if it isn't in the extent allocation tree yet.
576  *
577  * The extent is inserted into the file, dropping any existing extents
578  * from the file that overlap the new one.
579  */
580 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
581 				      struct btrfs_root *root,
582 				      struct btrfs_path *path,
583 				      struct extent_buffer *eb, int slot,
584 				      struct btrfs_key *key)
585 {
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 	int found_type;
588 	u64 extent_end;
589 	u64 start = key->offset;
590 	u64 nbytes = 0;
591 	struct btrfs_file_extent_item *item;
592 	struct inode *inode = NULL;
593 	unsigned long size;
594 	int ret = 0;
595 
596 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
597 	found_type = btrfs_file_extent_type(eb, item);
598 
599 	if (found_type == BTRFS_FILE_EXTENT_REG ||
600 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
601 		nbytes = btrfs_file_extent_num_bytes(eb, item);
602 		extent_end = start + nbytes;
603 
604 		/*
605 		 * We don't add to the inodes nbytes if we are prealloc or a
606 		 * hole.
607 		 */
608 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
609 			nbytes = 0;
610 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
611 		size = btrfs_file_extent_ram_bytes(eb, item);
612 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
613 		extent_end = ALIGN(start + size,
614 				   fs_info->sectorsize);
615 	} else {
616 		ret = 0;
617 		goto out;
618 	}
619 
620 	inode = read_one_inode(root, key->objectid);
621 	if (!inode) {
622 		ret = -EIO;
623 		goto out;
624 	}
625 
626 	/*
627 	 * first check to see if we already have this extent in the
628 	 * file.  This must be done before the btrfs_drop_extents run
629 	 * so we don't try to drop this extent.
630 	 */
631 	ret = btrfs_lookup_file_extent(trans, root, path,
632 			btrfs_ino(BTRFS_I(inode)), start, 0);
633 
634 	if (ret == 0 &&
635 	    (found_type == BTRFS_FILE_EXTENT_REG ||
636 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
637 		struct btrfs_file_extent_item cmp1;
638 		struct btrfs_file_extent_item cmp2;
639 		struct btrfs_file_extent_item *existing;
640 		struct extent_buffer *leaf;
641 
642 		leaf = path->nodes[0];
643 		existing = btrfs_item_ptr(leaf, path->slots[0],
644 					  struct btrfs_file_extent_item);
645 
646 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
647 				   sizeof(cmp1));
648 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
649 				   sizeof(cmp2));
650 
651 		/*
652 		 * we already have a pointer to this exact extent,
653 		 * we don't have to do anything
654 		 */
655 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
656 			btrfs_release_path(path);
657 			goto out;
658 		}
659 	}
660 	btrfs_release_path(path);
661 
662 	/* drop any overlapping extents */
663 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
664 	if (ret)
665 		goto out;
666 
667 	if (found_type == BTRFS_FILE_EXTENT_REG ||
668 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
669 		u64 offset;
670 		unsigned long dest_offset;
671 		struct btrfs_key ins;
672 
673 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
674 		    btrfs_fs_incompat(fs_info, NO_HOLES))
675 			goto update_inode;
676 
677 		ret = btrfs_insert_empty_item(trans, root, path, key,
678 					      sizeof(*item));
679 		if (ret)
680 			goto out;
681 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
682 						    path->slots[0]);
683 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
684 				(unsigned long)item,  sizeof(*item));
685 
686 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
687 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
688 		ins.type = BTRFS_EXTENT_ITEM_KEY;
689 		offset = key->offset - btrfs_file_extent_offset(eb, item);
690 
691 		/*
692 		 * Manually record dirty extent, as here we did a shallow
693 		 * file extent item copy and skip normal backref update,
694 		 * but modifying extent tree all by ourselves.
695 		 * So need to manually record dirty extent for qgroup,
696 		 * as the owner of the file extent changed from log tree
697 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
698 		 */
699 		ret = btrfs_qgroup_trace_extent(trans,
700 				btrfs_file_extent_disk_bytenr(eb, item),
701 				btrfs_file_extent_disk_num_bytes(eb, item),
702 				GFP_NOFS);
703 		if (ret < 0)
704 			goto out;
705 
706 		if (ins.objectid > 0) {
707 			struct btrfs_ref ref = { 0 };
708 			u64 csum_start;
709 			u64 csum_end;
710 			LIST_HEAD(ordered_sums);
711 
712 			/*
713 			 * is this extent already allocated in the extent
714 			 * allocation tree?  If so, just add a reference
715 			 */
716 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
717 						ins.offset);
718 			if (ret == 0) {
719 				btrfs_init_generic_ref(&ref,
720 						BTRFS_ADD_DELAYED_REF,
721 						ins.objectid, ins.offset, 0);
722 				btrfs_init_data_ref(&ref,
723 						root->root_key.objectid,
724 						key->objectid, offset);
725 				ret = btrfs_inc_extent_ref(trans, &ref);
726 				if (ret)
727 					goto out;
728 			} else {
729 				/*
730 				 * insert the extent pointer in the extent
731 				 * allocation tree
732 				 */
733 				ret = btrfs_alloc_logged_file_extent(trans,
734 						root->root_key.objectid,
735 						key->objectid, offset, &ins);
736 				if (ret)
737 					goto out;
738 			}
739 			btrfs_release_path(path);
740 
741 			if (btrfs_file_extent_compression(eb, item)) {
742 				csum_start = ins.objectid;
743 				csum_end = csum_start + ins.offset;
744 			} else {
745 				csum_start = ins.objectid +
746 					btrfs_file_extent_offset(eb, item);
747 				csum_end = csum_start +
748 					btrfs_file_extent_num_bytes(eb, item);
749 			}
750 
751 			ret = btrfs_lookup_csums_range(root->log_root,
752 						csum_start, csum_end - 1,
753 						&ordered_sums, 0);
754 			if (ret)
755 				goto out;
756 			/*
757 			 * Now delete all existing cums in the csum root that
758 			 * cover our range. We do this because we can have an
759 			 * extent that is completely referenced by one file
760 			 * extent item and partially referenced by another
761 			 * file extent item (like after using the clone or
762 			 * extent_same ioctls). In this case if we end up doing
763 			 * the replay of the one that partially references the
764 			 * extent first, and we do not do the csum deletion
765 			 * below, we can get 2 csum items in the csum tree that
766 			 * overlap each other. For example, imagine our log has
767 			 * the two following file extent items:
768 			 *
769 			 * key (257 EXTENT_DATA 409600)
770 			 *     extent data disk byte 12845056 nr 102400
771 			 *     extent data offset 20480 nr 20480 ram 102400
772 			 *
773 			 * key (257 EXTENT_DATA 819200)
774 			 *     extent data disk byte 12845056 nr 102400
775 			 *     extent data offset 0 nr 102400 ram 102400
776 			 *
777 			 * Where the second one fully references the 100K extent
778 			 * that starts at disk byte 12845056, and the log tree
779 			 * has a single csum item that covers the entire range
780 			 * of the extent:
781 			 *
782 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
783 			 *
784 			 * After the first file extent item is replayed, the
785 			 * csum tree gets the following csum item:
786 			 *
787 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
788 			 *
789 			 * Which covers the 20K sub-range starting at offset 20K
790 			 * of our extent. Now when we replay the second file
791 			 * extent item, if we do not delete existing csum items
792 			 * that cover any of its blocks, we end up getting two
793 			 * csum items in our csum tree that overlap each other:
794 			 *
795 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
797 			 *
798 			 * Which is a problem, because after this anyone trying
799 			 * to lookup up for the checksum of any block of our
800 			 * extent starting at an offset of 40K or higher, will
801 			 * end up looking at the second csum item only, which
802 			 * does not contain the checksum for any block starting
803 			 * at offset 40K or higher of our extent.
804 			 */
805 			while (!list_empty(&ordered_sums)) {
806 				struct btrfs_ordered_sum *sums;
807 				sums = list_entry(ordered_sums.next,
808 						struct btrfs_ordered_sum,
809 						list);
810 				if (!ret)
811 					ret = btrfs_del_csums(trans, fs_info,
812 							      sums->bytenr,
813 							      sums->len);
814 				if (!ret)
815 					ret = btrfs_csum_file_blocks(trans,
816 						fs_info->csum_root, sums);
817 				list_del(&sums->list);
818 				kfree(sums);
819 			}
820 			if (ret)
821 				goto out;
822 		} else {
823 			btrfs_release_path(path);
824 		}
825 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
826 		/* inline extents are easy, we just overwrite them */
827 		ret = overwrite_item(trans, root, path, eb, slot, key);
828 		if (ret)
829 			goto out;
830 	}
831 
832 	inode_add_bytes(inode, nbytes);
833 update_inode:
834 	ret = btrfs_update_inode(trans, root, inode);
835 out:
836 	if (inode)
837 		iput(inode);
838 	return ret;
839 }
840 
841 /*
842  * when cleaning up conflicts between the directory names in the
843  * subvolume, directory names in the log and directory names in the
844  * inode back references, we may have to unlink inodes from directories.
845  *
846  * This is a helper function to do the unlink of a specific directory
847  * item
848  */
849 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
850 				      struct btrfs_root *root,
851 				      struct btrfs_path *path,
852 				      struct btrfs_inode *dir,
853 				      struct btrfs_dir_item *di)
854 {
855 	struct inode *inode;
856 	char *name;
857 	int name_len;
858 	struct extent_buffer *leaf;
859 	struct btrfs_key location;
860 	int ret;
861 
862 	leaf = path->nodes[0];
863 
864 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
865 	name_len = btrfs_dir_name_len(leaf, di);
866 	name = kmalloc(name_len, GFP_NOFS);
867 	if (!name)
868 		return -ENOMEM;
869 
870 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
871 	btrfs_release_path(path);
872 
873 	inode = read_one_inode(root, location.objectid);
874 	if (!inode) {
875 		ret = -EIO;
876 		goto out;
877 	}
878 
879 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
880 	if (ret)
881 		goto out;
882 
883 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
884 			name_len);
885 	if (ret)
886 		goto out;
887 	else
888 		ret = btrfs_run_delayed_items(trans);
889 out:
890 	kfree(name);
891 	iput(inode);
892 	return ret;
893 }
894 
895 /*
896  * helper function to see if a given name and sequence number found
897  * in an inode back reference are already in a directory and correctly
898  * point to this inode
899  */
900 static noinline int inode_in_dir(struct btrfs_root *root,
901 				 struct btrfs_path *path,
902 				 u64 dirid, u64 objectid, u64 index,
903 				 const char *name, int name_len)
904 {
905 	struct btrfs_dir_item *di;
906 	struct btrfs_key location;
907 	int match = 0;
908 
909 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
910 					 index, name, name_len, 0);
911 	if (di && !IS_ERR(di)) {
912 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
913 		if (location.objectid != objectid)
914 			goto out;
915 	} else
916 		goto out;
917 	btrfs_release_path(path);
918 
919 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
920 	if (di && !IS_ERR(di)) {
921 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
922 		if (location.objectid != objectid)
923 			goto out;
924 	} else
925 		goto out;
926 	match = 1;
927 out:
928 	btrfs_release_path(path);
929 	return match;
930 }
931 
932 /*
933  * helper function to check a log tree for a named back reference in
934  * an inode.  This is used to decide if a back reference that is
935  * found in the subvolume conflicts with what we find in the log.
936  *
937  * inode backreferences may have multiple refs in a single item,
938  * during replay we process one reference at a time, and we don't
939  * want to delete valid links to a file from the subvolume if that
940  * link is also in the log.
941  */
942 static noinline int backref_in_log(struct btrfs_root *log,
943 				   struct btrfs_key *key,
944 				   u64 ref_objectid,
945 				   const char *name, int namelen)
946 {
947 	struct btrfs_path *path;
948 	struct btrfs_inode_ref *ref;
949 	unsigned long ptr;
950 	unsigned long ptr_end;
951 	unsigned long name_ptr;
952 	int found_name_len;
953 	int item_size;
954 	int ret;
955 	int match = 0;
956 
957 	path = btrfs_alloc_path();
958 	if (!path)
959 		return -ENOMEM;
960 
961 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
962 	if (ret != 0)
963 		goto out;
964 
965 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
966 
967 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
968 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
969 						   path->slots[0],
970 						   ref_objectid,
971 						   name, namelen))
972 			match = 1;
973 
974 		goto out;
975 	}
976 
977 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
978 	ptr_end = ptr + item_size;
979 	while (ptr < ptr_end) {
980 		ref = (struct btrfs_inode_ref *)ptr;
981 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
982 		if (found_name_len == namelen) {
983 			name_ptr = (unsigned long)(ref + 1);
984 			ret = memcmp_extent_buffer(path->nodes[0], name,
985 						   name_ptr, namelen);
986 			if (ret == 0) {
987 				match = 1;
988 				goto out;
989 			}
990 		}
991 		ptr = (unsigned long)(ref + 1) + found_name_len;
992 	}
993 out:
994 	btrfs_free_path(path);
995 	return match;
996 }
997 
998 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
999 				  struct btrfs_root *root,
1000 				  struct btrfs_path *path,
1001 				  struct btrfs_root *log_root,
1002 				  struct btrfs_inode *dir,
1003 				  struct btrfs_inode *inode,
1004 				  u64 inode_objectid, u64 parent_objectid,
1005 				  u64 ref_index, char *name, int namelen,
1006 				  int *search_done)
1007 {
1008 	int ret;
1009 	char *victim_name;
1010 	int victim_name_len;
1011 	struct extent_buffer *leaf;
1012 	struct btrfs_dir_item *di;
1013 	struct btrfs_key search_key;
1014 	struct btrfs_inode_extref *extref;
1015 
1016 again:
1017 	/* Search old style refs */
1018 	search_key.objectid = inode_objectid;
1019 	search_key.type = BTRFS_INODE_REF_KEY;
1020 	search_key.offset = parent_objectid;
1021 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1022 	if (ret == 0) {
1023 		struct btrfs_inode_ref *victim_ref;
1024 		unsigned long ptr;
1025 		unsigned long ptr_end;
1026 
1027 		leaf = path->nodes[0];
1028 
1029 		/* are we trying to overwrite a back ref for the root directory
1030 		 * if so, just jump out, we're done
1031 		 */
1032 		if (search_key.objectid == search_key.offset)
1033 			return 1;
1034 
1035 		/* check all the names in this back reference to see
1036 		 * if they are in the log.  if so, we allow them to stay
1037 		 * otherwise they must be unlinked as a conflict
1038 		 */
1039 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1040 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1041 		while (ptr < ptr_end) {
1042 			victim_ref = (struct btrfs_inode_ref *)ptr;
1043 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1044 								   victim_ref);
1045 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1046 			if (!victim_name)
1047 				return -ENOMEM;
1048 
1049 			read_extent_buffer(leaf, victim_name,
1050 					   (unsigned long)(victim_ref + 1),
1051 					   victim_name_len);
1052 
1053 			if (!backref_in_log(log_root, &search_key,
1054 					    parent_objectid,
1055 					    victim_name,
1056 					    victim_name_len)) {
1057 				inc_nlink(&inode->vfs_inode);
1058 				btrfs_release_path(path);
1059 
1060 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1061 						victim_name, victim_name_len);
1062 				kfree(victim_name);
1063 				if (ret)
1064 					return ret;
1065 				ret = btrfs_run_delayed_items(trans);
1066 				if (ret)
1067 					return ret;
1068 				*search_done = 1;
1069 				goto again;
1070 			}
1071 			kfree(victim_name);
1072 
1073 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1074 		}
1075 
1076 		/*
1077 		 * NOTE: we have searched root tree and checked the
1078 		 * corresponding ref, it does not need to check again.
1079 		 */
1080 		*search_done = 1;
1081 	}
1082 	btrfs_release_path(path);
1083 
1084 	/* Same search but for extended refs */
1085 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1086 					   inode_objectid, parent_objectid, 0,
1087 					   0);
1088 	if (!IS_ERR_OR_NULL(extref)) {
1089 		u32 item_size;
1090 		u32 cur_offset = 0;
1091 		unsigned long base;
1092 		struct inode *victim_parent;
1093 
1094 		leaf = path->nodes[0];
1095 
1096 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1097 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1098 
1099 		while (cur_offset < item_size) {
1100 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1101 
1102 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1103 
1104 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1105 				goto next;
1106 
1107 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1108 			if (!victim_name)
1109 				return -ENOMEM;
1110 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1111 					   victim_name_len);
1112 
1113 			search_key.objectid = inode_objectid;
1114 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1115 			search_key.offset = btrfs_extref_hash(parent_objectid,
1116 							      victim_name,
1117 							      victim_name_len);
1118 			ret = 0;
1119 			if (!backref_in_log(log_root, &search_key,
1120 					    parent_objectid, victim_name,
1121 					    victim_name_len)) {
1122 				ret = -ENOENT;
1123 				victim_parent = read_one_inode(root,
1124 						parent_objectid);
1125 				if (victim_parent) {
1126 					inc_nlink(&inode->vfs_inode);
1127 					btrfs_release_path(path);
1128 
1129 					ret = btrfs_unlink_inode(trans, root,
1130 							BTRFS_I(victim_parent),
1131 							inode,
1132 							victim_name,
1133 							victim_name_len);
1134 					if (!ret)
1135 						ret = btrfs_run_delayed_items(
1136 								  trans);
1137 				}
1138 				iput(victim_parent);
1139 				kfree(victim_name);
1140 				if (ret)
1141 					return ret;
1142 				*search_done = 1;
1143 				goto again;
1144 			}
1145 			kfree(victim_name);
1146 next:
1147 			cur_offset += victim_name_len + sizeof(*extref);
1148 		}
1149 		*search_done = 1;
1150 	}
1151 	btrfs_release_path(path);
1152 
1153 	/* look for a conflicting sequence number */
1154 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1155 					 ref_index, name, namelen, 0);
1156 	if (di && !IS_ERR(di)) {
1157 		ret = drop_one_dir_item(trans, root, path, dir, di);
1158 		if (ret)
1159 			return ret;
1160 	}
1161 	btrfs_release_path(path);
1162 
1163 	/* look for a conflicting name */
1164 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1165 				   name, namelen, 0);
1166 	if (di && !IS_ERR(di)) {
1167 		ret = drop_one_dir_item(trans, root, path, dir, di);
1168 		if (ret)
1169 			return ret;
1170 	}
1171 	btrfs_release_path(path);
1172 
1173 	return 0;
1174 }
1175 
1176 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1177 			     u32 *namelen, char **name, u64 *index,
1178 			     u64 *parent_objectid)
1179 {
1180 	struct btrfs_inode_extref *extref;
1181 
1182 	extref = (struct btrfs_inode_extref *)ref_ptr;
1183 
1184 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1185 	*name = kmalloc(*namelen, GFP_NOFS);
1186 	if (*name == NULL)
1187 		return -ENOMEM;
1188 
1189 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1190 			   *namelen);
1191 
1192 	if (index)
1193 		*index = btrfs_inode_extref_index(eb, extref);
1194 	if (parent_objectid)
1195 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1196 
1197 	return 0;
1198 }
1199 
1200 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1201 			  u32 *namelen, char **name, u64 *index)
1202 {
1203 	struct btrfs_inode_ref *ref;
1204 
1205 	ref = (struct btrfs_inode_ref *)ref_ptr;
1206 
1207 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1208 	*name = kmalloc(*namelen, GFP_NOFS);
1209 	if (*name == NULL)
1210 		return -ENOMEM;
1211 
1212 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1213 
1214 	if (index)
1215 		*index = btrfs_inode_ref_index(eb, ref);
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Take an inode reference item from the log tree and iterate all names from the
1222  * inode reference item in the subvolume tree with the same key (if it exists).
1223  * For any name that is not in the inode reference item from the log tree, do a
1224  * proper unlink of that name (that is, remove its entry from the inode
1225  * reference item and both dir index keys).
1226  */
1227 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1228 				 struct btrfs_root *root,
1229 				 struct btrfs_path *path,
1230 				 struct btrfs_inode *inode,
1231 				 struct extent_buffer *log_eb,
1232 				 int log_slot,
1233 				 struct btrfs_key *key)
1234 {
1235 	int ret;
1236 	unsigned long ref_ptr;
1237 	unsigned long ref_end;
1238 	struct extent_buffer *eb;
1239 
1240 again:
1241 	btrfs_release_path(path);
1242 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1243 	if (ret > 0) {
1244 		ret = 0;
1245 		goto out;
1246 	}
1247 	if (ret < 0)
1248 		goto out;
1249 
1250 	eb = path->nodes[0];
1251 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1252 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1253 	while (ref_ptr < ref_end) {
1254 		char *name = NULL;
1255 		int namelen;
1256 		u64 parent_id;
1257 
1258 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1259 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1260 						NULL, &parent_id);
1261 		} else {
1262 			parent_id = key->offset;
1263 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1264 					     NULL);
1265 		}
1266 		if (ret)
1267 			goto out;
1268 
1269 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1270 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1271 							       parent_id, name,
1272 							       namelen);
1273 		else
1274 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1275 							   name, namelen);
1276 
1277 		if (!ret) {
1278 			struct inode *dir;
1279 
1280 			btrfs_release_path(path);
1281 			dir = read_one_inode(root, parent_id);
1282 			if (!dir) {
1283 				ret = -ENOENT;
1284 				kfree(name);
1285 				goto out;
1286 			}
1287 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1288 						 inode, name, namelen);
1289 			kfree(name);
1290 			iput(dir);
1291 			if (ret)
1292 				goto out;
1293 			goto again;
1294 		}
1295 
1296 		kfree(name);
1297 		ref_ptr += namelen;
1298 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1299 			ref_ptr += sizeof(struct btrfs_inode_extref);
1300 		else
1301 			ref_ptr += sizeof(struct btrfs_inode_ref);
1302 	}
1303 	ret = 0;
1304  out:
1305 	btrfs_release_path(path);
1306 	return ret;
1307 }
1308 
1309 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1310 				  const u8 ref_type, const char *name,
1311 				  const int namelen)
1312 {
1313 	struct btrfs_key key;
1314 	struct btrfs_path *path;
1315 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1316 	int ret;
1317 
1318 	path = btrfs_alloc_path();
1319 	if (!path)
1320 		return -ENOMEM;
1321 
1322 	key.objectid = btrfs_ino(BTRFS_I(inode));
1323 	key.type = ref_type;
1324 	if (key.type == BTRFS_INODE_REF_KEY)
1325 		key.offset = parent_id;
1326 	else
1327 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1328 
1329 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1330 	if (ret < 0)
1331 		goto out;
1332 	if (ret > 0) {
1333 		ret = 0;
1334 		goto out;
1335 	}
1336 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1337 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1338 				path->slots[0], parent_id, name, namelen);
1339 	else
1340 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1341 						   name, namelen);
1342 
1343 out:
1344 	btrfs_free_path(path);
1345 	return ret;
1346 }
1347 
1348 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1349 		    struct inode *dir, struct inode *inode, const char *name,
1350 		    int namelen, u64 ref_index)
1351 {
1352 	struct btrfs_dir_item *dir_item;
1353 	struct btrfs_key key;
1354 	struct btrfs_path *path;
1355 	struct inode *other_inode = NULL;
1356 	int ret;
1357 
1358 	path = btrfs_alloc_path();
1359 	if (!path)
1360 		return -ENOMEM;
1361 
1362 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1363 					 btrfs_ino(BTRFS_I(dir)),
1364 					 name, namelen, 0);
1365 	if (!dir_item) {
1366 		btrfs_release_path(path);
1367 		goto add_link;
1368 	} else if (IS_ERR(dir_item)) {
1369 		ret = PTR_ERR(dir_item);
1370 		goto out;
1371 	}
1372 
1373 	/*
1374 	 * Our inode's dentry collides with the dentry of another inode which is
1375 	 * in the log but not yet processed since it has a higher inode number.
1376 	 * So delete that other dentry.
1377 	 */
1378 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1379 	btrfs_release_path(path);
1380 	other_inode = read_one_inode(root, key.objectid);
1381 	if (!other_inode) {
1382 		ret = -ENOENT;
1383 		goto out;
1384 	}
1385 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1386 				 name, namelen);
1387 	if (ret)
1388 		goto out;
1389 	/*
1390 	 * If we dropped the link count to 0, bump it so that later the iput()
1391 	 * on the inode will not free it. We will fixup the link count later.
1392 	 */
1393 	if (other_inode->i_nlink == 0)
1394 		inc_nlink(other_inode);
1395 
1396 	ret = btrfs_run_delayed_items(trans);
1397 	if (ret)
1398 		goto out;
1399 add_link:
1400 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1401 			     name, namelen, 0, ref_index);
1402 out:
1403 	iput(other_inode);
1404 	btrfs_free_path(path);
1405 
1406 	return ret;
1407 }
1408 
1409 /*
1410  * replay one inode back reference item found in the log tree.
1411  * eb, slot and key refer to the buffer and key found in the log tree.
1412  * root is the destination we are replaying into, and path is for temp
1413  * use by this function.  (it should be released on return).
1414  */
1415 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1416 				  struct btrfs_root *root,
1417 				  struct btrfs_root *log,
1418 				  struct btrfs_path *path,
1419 				  struct extent_buffer *eb, int slot,
1420 				  struct btrfs_key *key)
1421 {
1422 	struct inode *dir = NULL;
1423 	struct inode *inode = NULL;
1424 	unsigned long ref_ptr;
1425 	unsigned long ref_end;
1426 	char *name = NULL;
1427 	int namelen;
1428 	int ret;
1429 	int search_done = 0;
1430 	int log_ref_ver = 0;
1431 	u64 parent_objectid;
1432 	u64 inode_objectid;
1433 	u64 ref_index = 0;
1434 	int ref_struct_size;
1435 
1436 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1437 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1438 
1439 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1440 		struct btrfs_inode_extref *r;
1441 
1442 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1443 		log_ref_ver = 1;
1444 		r = (struct btrfs_inode_extref *)ref_ptr;
1445 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1446 	} else {
1447 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1448 		parent_objectid = key->offset;
1449 	}
1450 	inode_objectid = key->objectid;
1451 
1452 	/*
1453 	 * it is possible that we didn't log all the parent directories
1454 	 * for a given inode.  If we don't find the dir, just don't
1455 	 * copy the back ref in.  The link count fixup code will take
1456 	 * care of the rest
1457 	 */
1458 	dir = read_one_inode(root, parent_objectid);
1459 	if (!dir) {
1460 		ret = -ENOENT;
1461 		goto out;
1462 	}
1463 
1464 	inode = read_one_inode(root, inode_objectid);
1465 	if (!inode) {
1466 		ret = -EIO;
1467 		goto out;
1468 	}
1469 
1470 	while (ref_ptr < ref_end) {
1471 		if (log_ref_ver) {
1472 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1473 						&ref_index, &parent_objectid);
1474 			/*
1475 			 * parent object can change from one array
1476 			 * item to another.
1477 			 */
1478 			if (!dir)
1479 				dir = read_one_inode(root, parent_objectid);
1480 			if (!dir) {
1481 				ret = -ENOENT;
1482 				goto out;
1483 			}
1484 		} else {
1485 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1486 					     &ref_index);
1487 		}
1488 		if (ret)
1489 			goto out;
1490 
1491 		/* if we already have a perfect match, we're done */
1492 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1493 					btrfs_ino(BTRFS_I(inode)), ref_index,
1494 					name, namelen)) {
1495 			/*
1496 			 * look for a conflicting back reference in the
1497 			 * metadata. if we find one we have to unlink that name
1498 			 * of the file before we add our new link.  Later on, we
1499 			 * overwrite any existing back reference, and we don't
1500 			 * want to create dangling pointers in the directory.
1501 			 */
1502 
1503 			if (!search_done) {
1504 				ret = __add_inode_ref(trans, root, path, log,
1505 						      BTRFS_I(dir),
1506 						      BTRFS_I(inode),
1507 						      inode_objectid,
1508 						      parent_objectid,
1509 						      ref_index, name, namelen,
1510 						      &search_done);
1511 				if (ret) {
1512 					if (ret == 1)
1513 						ret = 0;
1514 					goto out;
1515 				}
1516 			}
1517 
1518 			/*
1519 			 * If a reference item already exists for this inode
1520 			 * with the same parent and name, but different index,
1521 			 * drop it and the corresponding directory index entries
1522 			 * from the parent before adding the new reference item
1523 			 * and dir index entries, otherwise we would fail with
1524 			 * -EEXIST returned from btrfs_add_link() below.
1525 			 */
1526 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1527 						     name, namelen);
1528 			if (ret > 0) {
1529 				ret = btrfs_unlink_inode(trans, root,
1530 							 BTRFS_I(dir),
1531 							 BTRFS_I(inode),
1532 							 name, namelen);
1533 				/*
1534 				 * If we dropped the link count to 0, bump it so
1535 				 * that later the iput() on the inode will not
1536 				 * free it. We will fixup the link count later.
1537 				 */
1538 				if (!ret && inode->i_nlink == 0)
1539 					inc_nlink(inode);
1540 			}
1541 			if (ret < 0)
1542 				goto out;
1543 
1544 			/* insert our name */
1545 			ret = add_link(trans, root, dir, inode, name, namelen,
1546 				       ref_index);
1547 			if (ret)
1548 				goto out;
1549 
1550 			btrfs_update_inode(trans, root, inode);
1551 		}
1552 
1553 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1554 		kfree(name);
1555 		name = NULL;
1556 		if (log_ref_ver) {
1557 			iput(dir);
1558 			dir = NULL;
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * Before we overwrite the inode reference item in the subvolume tree
1564 	 * with the item from the log tree, we must unlink all names from the
1565 	 * parent directory that are in the subvolume's tree inode reference
1566 	 * item, otherwise we end up with an inconsistent subvolume tree where
1567 	 * dir index entries exist for a name but there is no inode reference
1568 	 * item with the same name.
1569 	 */
1570 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1571 				    key);
1572 	if (ret)
1573 		goto out;
1574 
1575 	/* finally write the back reference in the inode */
1576 	ret = overwrite_item(trans, root, path, eb, slot, key);
1577 out:
1578 	btrfs_release_path(path);
1579 	kfree(name);
1580 	iput(dir);
1581 	iput(inode);
1582 	return ret;
1583 }
1584 
1585 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1586 			      struct btrfs_root *root, u64 ino)
1587 {
1588 	int ret;
1589 
1590 	ret = btrfs_insert_orphan_item(trans, root, ino);
1591 	if (ret == -EEXIST)
1592 		ret = 0;
1593 
1594 	return ret;
1595 }
1596 
1597 static int count_inode_extrefs(struct btrfs_root *root,
1598 		struct btrfs_inode *inode, struct btrfs_path *path)
1599 {
1600 	int ret = 0;
1601 	int name_len;
1602 	unsigned int nlink = 0;
1603 	u32 item_size;
1604 	u32 cur_offset = 0;
1605 	u64 inode_objectid = btrfs_ino(inode);
1606 	u64 offset = 0;
1607 	unsigned long ptr;
1608 	struct btrfs_inode_extref *extref;
1609 	struct extent_buffer *leaf;
1610 
1611 	while (1) {
1612 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1613 					    &extref, &offset);
1614 		if (ret)
1615 			break;
1616 
1617 		leaf = path->nodes[0];
1618 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1619 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1620 		cur_offset = 0;
1621 
1622 		while (cur_offset < item_size) {
1623 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1624 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1625 
1626 			nlink++;
1627 
1628 			cur_offset += name_len + sizeof(*extref);
1629 		}
1630 
1631 		offset++;
1632 		btrfs_release_path(path);
1633 	}
1634 	btrfs_release_path(path);
1635 
1636 	if (ret < 0 && ret != -ENOENT)
1637 		return ret;
1638 	return nlink;
1639 }
1640 
1641 static int count_inode_refs(struct btrfs_root *root,
1642 			struct btrfs_inode *inode, struct btrfs_path *path)
1643 {
1644 	int ret;
1645 	struct btrfs_key key;
1646 	unsigned int nlink = 0;
1647 	unsigned long ptr;
1648 	unsigned long ptr_end;
1649 	int name_len;
1650 	u64 ino = btrfs_ino(inode);
1651 
1652 	key.objectid = ino;
1653 	key.type = BTRFS_INODE_REF_KEY;
1654 	key.offset = (u64)-1;
1655 
1656 	while (1) {
1657 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658 		if (ret < 0)
1659 			break;
1660 		if (ret > 0) {
1661 			if (path->slots[0] == 0)
1662 				break;
1663 			path->slots[0]--;
1664 		}
1665 process_slot:
1666 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1667 				      path->slots[0]);
1668 		if (key.objectid != ino ||
1669 		    key.type != BTRFS_INODE_REF_KEY)
1670 			break;
1671 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1672 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1673 						   path->slots[0]);
1674 		while (ptr < ptr_end) {
1675 			struct btrfs_inode_ref *ref;
1676 
1677 			ref = (struct btrfs_inode_ref *)ptr;
1678 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1679 							    ref);
1680 			ptr = (unsigned long)(ref + 1) + name_len;
1681 			nlink++;
1682 		}
1683 
1684 		if (key.offset == 0)
1685 			break;
1686 		if (path->slots[0] > 0) {
1687 			path->slots[0]--;
1688 			goto process_slot;
1689 		}
1690 		key.offset--;
1691 		btrfs_release_path(path);
1692 	}
1693 	btrfs_release_path(path);
1694 
1695 	return nlink;
1696 }
1697 
1698 /*
1699  * There are a few corners where the link count of the file can't
1700  * be properly maintained during replay.  So, instead of adding
1701  * lots of complexity to the log code, we just scan the backrefs
1702  * for any file that has been through replay.
1703  *
1704  * The scan will update the link count on the inode to reflect the
1705  * number of back refs found.  If it goes down to zero, the iput
1706  * will free the inode.
1707  */
1708 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1709 					   struct btrfs_root *root,
1710 					   struct inode *inode)
1711 {
1712 	struct btrfs_path *path;
1713 	int ret;
1714 	u64 nlink = 0;
1715 	u64 ino = btrfs_ino(BTRFS_I(inode));
1716 
1717 	path = btrfs_alloc_path();
1718 	if (!path)
1719 		return -ENOMEM;
1720 
1721 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1722 	if (ret < 0)
1723 		goto out;
1724 
1725 	nlink = ret;
1726 
1727 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1728 	if (ret < 0)
1729 		goto out;
1730 
1731 	nlink += ret;
1732 
1733 	ret = 0;
1734 
1735 	if (nlink != inode->i_nlink) {
1736 		set_nlink(inode, nlink);
1737 		btrfs_update_inode(trans, root, inode);
1738 	}
1739 	BTRFS_I(inode)->index_cnt = (u64)-1;
1740 
1741 	if (inode->i_nlink == 0) {
1742 		if (S_ISDIR(inode->i_mode)) {
1743 			ret = replay_dir_deletes(trans, root, NULL, path,
1744 						 ino, 1);
1745 			if (ret)
1746 				goto out;
1747 		}
1748 		ret = insert_orphan_item(trans, root, ino);
1749 	}
1750 
1751 out:
1752 	btrfs_free_path(path);
1753 	return ret;
1754 }
1755 
1756 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1757 					    struct btrfs_root *root,
1758 					    struct btrfs_path *path)
1759 {
1760 	int ret;
1761 	struct btrfs_key key;
1762 	struct inode *inode;
1763 
1764 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1765 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1766 	key.offset = (u64)-1;
1767 	while (1) {
1768 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769 		if (ret < 0)
1770 			break;
1771 
1772 		if (ret == 1) {
1773 			if (path->slots[0] == 0)
1774 				break;
1775 			path->slots[0]--;
1776 		}
1777 
1778 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1780 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1781 			break;
1782 
1783 		ret = btrfs_del_item(trans, root, path);
1784 		if (ret)
1785 			goto out;
1786 
1787 		btrfs_release_path(path);
1788 		inode = read_one_inode(root, key.offset);
1789 		if (!inode)
1790 			return -EIO;
1791 
1792 		ret = fixup_inode_link_count(trans, root, inode);
1793 		iput(inode);
1794 		if (ret)
1795 			goto out;
1796 
1797 		/*
1798 		 * fixup on a directory may create new entries,
1799 		 * make sure we always look for the highset possible
1800 		 * offset
1801 		 */
1802 		key.offset = (u64)-1;
1803 	}
1804 	ret = 0;
1805 out:
1806 	btrfs_release_path(path);
1807 	return ret;
1808 }
1809 
1810 
1811 /*
1812  * record a given inode in the fixup dir so we can check its link
1813  * count when replay is done.  The link count is incremented here
1814  * so the inode won't go away until we check it
1815  */
1816 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1817 				      struct btrfs_root *root,
1818 				      struct btrfs_path *path,
1819 				      u64 objectid)
1820 {
1821 	struct btrfs_key key;
1822 	int ret = 0;
1823 	struct inode *inode;
1824 
1825 	inode = read_one_inode(root, objectid);
1826 	if (!inode)
1827 		return -EIO;
1828 
1829 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1830 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1831 	key.offset = objectid;
1832 
1833 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1834 
1835 	btrfs_release_path(path);
1836 	if (ret == 0) {
1837 		if (!inode->i_nlink)
1838 			set_nlink(inode, 1);
1839 		else
1840 			inc_nlink(inode);
1841 		ret = btrfs_update_inode(trans, root, inode);
1842 	} else if (ret == -EEXIST) {
1843 		ret = 0;
1844 	} else {
1845 		BUG(); /* Logic Error */
1846 	}
1847 	iput(inode);
1848 
1849 	return ret;
1850 }
1851 
1852 /*
1853  * when replaying the log for a directory, we only insert names
1854  * for inodes that actually exist.  This means an fsync on a directory
1855  * does not implicitly fsync all the new files in it
1856  */
1857 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1858 				    struct btrfs_root *root,
1859 				    u64 dirid, u64 index,
1860 				    char *name, int name_len,
1861 				    struct btrfs_key *location)
1862 {
1863 	struct inode *inode;
1864 	struct inode *dir;
1865 	int ret;
1866 
1867 	inode = read_one_inode(root, location->objectid);
1868 	if (!inode)
1869 		return -ENOENT;
1870 
1871 	dir = read_one_inode(root, dirid);
1872 	if (!dir) {
1873 		iput(inode);
1874 		return -EIO;
1875 	}
1876 
1877 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1878 			name_len, 1, index);
1879 
1880 	/* FIXME, put inode into FIXUP list */
1881 
1882 	iput(inode);
1883 	iput(dir);
1884 	return ret;
1885 }
1886 
1887 /*
1888  * Return true if an inode reference exists in the log for the given name,
1889  * inode and parent inode.
1890  */
1891 static bool name_in_log_ref(struct btrfs_root *log_root,
1892 			    const char *name, const int name_len,
1893 			    const u64 dirid, const u64 ino)
1894 {
1895 	struct btrfs_key search_key;
1896 
1897 	search_key.objectid = ino;
1898 	search_key.type = BTRFS_INODE_REF_KEY;
1899 	search_key.offset = dirid;
1900 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1901 		return true;
1902 
1903 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1904 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1905 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1906 		return true;
1907 
1908 	return false;
1909 }
1910 
1911 /*
1912  * take a single entry in a log directory item and replay it into
1913  * the subvolume.
1914  *
1915  * if a conflicting item exists in the subdirectory already,
1916  * the inode it points to is unlinked and put into the link count
1917  * fix up tree.
1918  *
1919  * If a name from the log points to a file or directory that does
1920  * not exist in the FS, it is skipped.  fsyncs on directories
1921  * do not force down inodes inside that directory, just changes to the
1922  * names or unlinks in a directory.
1923  *
1924  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1925  * non-existing inode) and 1 if the name was replayed.
1926  */
1927 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1928 				    struct btrfs_root *root,
1929 				    struct btrfs_path *path,
1930 				    struct extent_buffer *eb,
1931 				    struct btrfs_dir_item *di,
1932 				    struct btrfs_key *key)
1933 {
1934 	char *name;
1935 	int name_len;
1936 	struct btrfs_dir_item *dst_di;
1937 	struct btrfs_key found_key;
1938 	struct btrfs_key log_key;
1939 	struct inode *dir;
1940 	u8 log_type;
1941 	int exists;
1942 	int ret = 0;
1943 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1944 	bool name_added = false;
1945 
1946 	dir = read_one_inode(root, key->objectid);
1947 	if (!dir)
1948 		return -EIO;
1949 
1950 	name_len = btrfs_dir_name_len(eb, di);
1951 	name = kmalloc(name_len, GFP_NOFS);
1952 	if (!name) {
1953 		ret = -ENOMEM;
1954 		goto out;
1955 	}
1956 
1957 	log_type = btrfs_dir_type(eb, di);
1958 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1959 		   name_len);
1960 
1961 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1962 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1963 	if (exists == 0)
1964 		exists = 1;
1965 	else
1966 		exists = 0;
1967 	btrfs_release_path(path);
1968 
1969 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1970 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1971 				       name, name_len, 1);
1972 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1973 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1974 						     key->objectid,
1975 						     key->offset, name,
1976 						     name_len, 1);
1977 	} else {
1978 		/* Corruption */
1979 		ret = -EINVAL;
1980 		goto out;
1981 	}
1982 	if (IS_ERR_OR_NULL(dst_di)) {
1983 		/* we need a sequence number to insert, so we only
1984 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1985 		 */
1986 		if (key->type != BTRFS_DIR_INDEX_KEY)
1987 			goto out;
1988 		goto insert;
1989 	}
1990 
1991 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1992 	/* the existing item matches the logged item */
1993 	if (found_key.objectid == log_key.objectid &&
1994 	    found_key.type == log_key.type &&
1995 	    found_key.offset == log_key.offset &&
1996 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1997 		update_size = false;
1998 		goto out;
1999 	}
2000 
2001 	/*
2002 	 * don't drop the conflicting directory entry if the inode
2003 	 * for the new entry doesn't exist
2004 	 */
2005 	if (!exists)
2006 		goto out;
2007 
2008 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2009 	if (ret)
2010 		goto out;
2011 
2012 	if (key->type == BTRFS_DIR_INDEX_KEY)
2013 		goto insert;
2014 out:
2015 	btrfs_release_path(path);
2016 	if (!ret && update_size) {
2017 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2018 		ret = btrfs_update_inode(trans, root, dir);
2019 	}
2020 	kfree(name);
2021 	iput(dir);
2022 	if (!ret && name_added)
2023 		ret = 1;
2024 	return ret;
2025 
2026 insert:
2027 	if (name_in_log_ref(root->log_root, name, name_len,
2028 			    key->objectid, log_key.objectid)) {
2029 		/* The dentry will be added later. */
2030 		ret = 0;
2031 		update_size = false;
2032 		goto out;
2033 	}
2034 	btrfs_release_path(path);
2035 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2036 			      name, name_len, &log_key);
2037 	if (ret && ret != -ENOENT && ret != -EEXIST)
2038 		goto out;
2039 	if (!ret)
2040 		name_added = true;
2041 	update_size = false;
2042 	ret = 0;
2043 	goto out;
2044 }
2045 
2046 /*
2047  * find all the names in a directory item and reconcile them into
2048  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2049  * one name in a directory item, but the same code gets used for
2050  * both directory index types
2051  */
2052 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2053 					struct btrfs_root *root,
2054 					struct btrfs_path *path,
2055 					struct extent_buffer *eb, int slot,
2056 					struct btrfs_key *key)
2057 {
2058 	int ret = 0;
2059 	u32 item_size = btrfs_item_size_nr(eb, slot);
2060 	struct btrfs_dir_item *di;
2061 	int name_len;
2062 	unsigned long ptr;
2063 	unsigned long ptr_end;
2064 	struct btrfs_path *fixup_path = NULL;
2065 
2066 	ptr = btrfs_item_ptr_offset(eb, slot);
2067 	ptr_end = ptr + item_size;
2068 	while (ptr < ptr_end) {
2069 		di = (struct btrfs_dir_item *)ptr;
2070 		name_len = btrfs_dir_name_len(eb, di);
2071 		ret = replay_one_name(trans, root, path, eb, di, key);
2072 		if (ret < 0)
2073 			break;
2074 		ptr = (unsigned long)(di + 1);
2075 		ptr += name_len;
2076 
2077 		/*
2078 		 * If this entry refers to a non-directory (directories can not
2079 		 * have a link count > 1) and it was added in the transaction
2080 		 * that was not committed, make sure we fixup the link count of
2081 		 * the inode it the entry points to. Otherwise something like
2082 		 * the following would result in a directory pointing to an
2083 		 * inode with a wrong link that does not account for this dir
2084 		 * entry:
2085 		 *
2086 		 * mkdir testdir
2087 		 * touch testdir/foo
2088 		 * touch testdir/bar
2089 		 * sync
2090 		 *
2091 		 * ln testdir/bar testdir/bar_link
2092 		 * ln testdir/foo testdir/foo_link
2093 		 * xfs_io -c "fsync" testdir/bar
2094 		 *
2095 		 * <power failure>
2096 		 *
2097 		 * mount fs, log replay happens
2098 		 *
2099 		 * File foo would remain with a link count of 1 when it has two
2100 		 * entries pointing to it in the directory testdir. This would
2101 		 * make it impossible to ever delete the parent directory has
2102 		 * it would result in stale dentries that can never be deleted.
2103 		 */
2104 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2105 			struct btrfs_key di_key;
2106 
2107 			if (!fixup_path) {
2108 				fixup_path = btrfs_alloc_path();
2109 				if (!fixup_path) {
2110 					ret = -ENOMEM;
2111 					break;
2112 				}
2113 			}
2114 
2115 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2116 			ret = link_to_fixup_dir(trans, root, fixup_path,
2117 						di_key.objectid);
2118 			if (ret)
2119 				break;
2120 		}
2121 		ret = 0;
2122 	}
2123 	btrfs_free_path(fixup_path);
2124 	return ret;
2125 }
2126 
2127 /*
2128  * directory replay has two parts.  There are the standard directory
2129  * items in the log copied from the subvolume, and range items
2130  * created in the log while the subvolume was logged.
2131  *
2132  * The range items tell us which parts of the key space the log
2133  * is authoritative for.  During replay, if a key in the subvolume
2134  * directory is in a logged range item, but not actually in the log
2135  * that means it was deleted from the directory before the fsync
2136  * and should be removed.
2137  */
2138 static noinline int find_dir_range(struct btrfs_root *root,
2139 				   struct btrfs_path *path,
2140 				   u64 dirid, int key_type,
2141 				   u64 *start_ret, u64 *end_ret)
2142 {
2143 	struct btrfs_key key;
2144 	u64 found_end;
2145 	struct btrfs_dir_log_item *item;
2146 	int ret;
2147 	int nritems;
2148 
2149 	if (*start_ret == (u64)-1)
2150 		return 1;
2151 
2152 	key.objectid = dirid;
2153 	key.type = key_type;
2154 	key.offset = *start_ret;
2155 
2156 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157 	if (ret < 0)
2158 		goto out;
2159 	if (ret > 0) {
2160 		if (path->slots[0] == 0)
2161 			goto out;
2162 		path->slots[0]--;
2163 	}
2164 	if (ret != 0)
2165 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2166 
2167 	if (key.type != key_type || key.objectid != dirid) {
2168 		ret = 1;
2169 		goto next;
2170 	}
2171 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2172 			      struct btrfs_dir_log_item);
2173 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2174 
2175 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2176 		ret = 0;
2177 		*start_ret = key.offset;
2178 		*end_ret = found_end;
2179 		goto out;
2180 	}
2181 	ret = 1;
2182 next:
2183 	/* check the next slot in the tree to see if it is a valid item */
2184 	nritems = btrfs_header_nritems(path->nodes[0]);
2185 	path->slots[0]++;
2186 	if (path->slots[0] >= nritems) {
2187 		ret = btrfs_next_leaf(root, path);
2188 		if (ret)
2189 			goto out;
2190 	}
2191 
2192 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2193 
2194 	if (key.type != key_type || key.objectid != dirid) {
2195 		ret = 1;
2196 		goto out;
2197 	}
2198 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2199 			      struct btrfs_dir_log_item);
2200 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2201 	*start_ret = key.offset;
2202 	*end_ret = found_end;
2203 	ret = 0;
2204 out:
2205 	btrfs_release_path(path);
2206 	return ret;
2207 }
2208 
2209 /*
2210  * this looks for a given directory item in the log.  If the directory
2211  * item is not in the log, the item is removed and the inode it points
2212  * to is unlinked
2213  */
2214 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2215 				      struct btrfs_root *root,
2216 				      struct btrfs_root *log,
2217 				      struct btrfs_path *path,
2218 				      struct btrfs_path *log_path,
2219 				      struct inode *dir,
2220 				      struct btrfs_key *dir_key)
2221 {
2222 	int ret;
2223 	struct extent_buffer *eb;
2224 	int slot;
2225 	u32 item_size;
2226 	struct btrfs_dir_item *di;
2227 	struct btrfs_dir_item *log_di;
2228 	int name_len;
2229 	unsigned long ptr;
2230 	unsigned long ptr_end;
2231 	char *name;
2232 	struct inode *inode;
2233 	struct btrfs_key location;
2234 
2235 again:
2236 	eb = path->nodes[0];
2237 	slot = path->slots[0];
2238 	item_size = btrfs_item_size_nr(eb, slot);
2239 	ptr = btrfs_item_ptr_offset(eb, slot);
2240 	ptr_end = ptr + item_size;
2241 	while (ptr < ptr_end) {
2242 		di = (struct btrfs_dir_item *)ptr;
2243 		name_len = btrfs_dir_name_len(eb, di);
2244 		name = kmalloc(name_len, GFP_NOFS);
2245 		if (!name) {
2246 			ret = -ENOMEM;
2247 			goto out;
2248 		}
2249 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2250 				  name_len);
2251 		log_di = NULL;
2252 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2253 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2254 						       dir_key->objectid,
2255 						       name, name_len, 0);
2256 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2257 			log_di = btrfs_lookup_dir_index_item(trans, log,
2258 						     log_path,
2259 						     dir_key->objectid,
2260 						     dir_key->offset,
2261 						     name, name_len, 0);
2262 		}
2263 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2264 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2265 			btrfs_release_path(path);
2266 			btrfs_release_path(log_path);
2267 			inode = read_one_inode(root, location.objectid);
2268 			if (!inode) {
2269 				kfree(name);
2270 				return -EIO;
2271 			}
2272 
2273 			ret = link_to_fixup_dir(trans, root,
2274 						path, location.objectid);
2275 			if (ret) {
2276 				kfree(name);
2277 				iput(inode);
2278 				goto out;
2279 			}
2280 
2281 			inc_nlink(inode);
2282 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2283 					BTRFS_I(inode), name, name_len);
2284 			if (!ret)
2285 				ret = btrfs_run_delayed_items(trans);
2286 			kfree(name);
2287 			iput(inode);
2288 			if (ret)
2289 				goto out;
2290 
2291 			/* there might still be more names under this key
2292 			 * check and repeat if required
2293 			 */
2294 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2295 						0, 0);
2296 			if (ret == 0)
2297 				goto again;
2298 			ret = 0;
2299 			goto out;
2300 		} else if (IS_ERR(log_di)) {
2301 			kfree(name);
2302 			return PTR_ERR(log_di);
2303 		}
2304 		btrfs_release_path(log_path);
2305 		kfree(name);
2306 
2307 		ptr = (unsigned long)(di + 1);
2308 		ptr += name_len;
2309 	}
2310 	ret = 0;
2311 out:
2312 	btrfs_release_path(path);
2313 	btrfs_release_path(log_path);
2314 	return ret;
2315 }
2316 
2317 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2318 			      struct btrfs_root *root,
2319 			      struct btrfs_root *log,
2320 			      struct btrfs_path *path,
2321 			      const u64 ino)
2322 {
2323 	struct btrfs_key search_key;
2324 	struct btrfs_path *log_path;
2325 	int i;
2326 	int nritems;
2327 	int ret;
2328 
2329 	log_path = btrfs_alloc_path();
2330 	if (!log_path)
2331 		return -ENOMEM;
2332 
2333 	search_key.objectid = ino;
2334 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2335 	search_key.offset = 0;
2336 again:
2337 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2338 	if (ret < 0)
2339 		goto out;
2340 process_leaf:
2341 	nritems = btrfs_header_nritems(path->nodes[0]);
2342 	for (i = path->slots[0]; i < nritems; i++) {
2343 		struct btrfs_key key;
2344 		struct btrfs_dir_item *di;
2345 		struct btrfs_dir_item *log_di;
2346 		u32 total_size;
2347 		u32 cur;
2348 
2349 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2350 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2351 			ret = 0;
2352 			goto out;
2353 		}
2354 
2355 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2356 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2357 		cur = 0;
2358 		while (cur < total_size) {
2359 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2360 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2361 			u32 this_len = sizeof(*di) + name_len + data_len;
2362 			char *name;
2363 
2364 			name = kmalloc(name_len, GFP_NOFS);
2365 			if (!name) {
2366 				ret = -ENOMEM;
2367 				goto out;
2368 			}
2369 			read_extent_buffer(path->nodes[0], name,
2370 					   (unsigned long)(di + 1), name_len);
2371 
2372 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2373 						    name, name_len, 0);
2374 			btrfs_release_path(log_path);
2375 			if (!log_di) {
2376 				/* Doesn't exist in log tree, so delete it. */
2377 				btrfs_release_path(path);
2378 				di = btrfs_lookup_xattr(trans, root, path, ino,
2379 							name, name_len, -1);
2380 				kfree(name);
2381 				if (IS_ERR(di)) {
2382 					ret = PTR_ERR(di);
2383 					goto out;
2384 				}
2385 				ASSERT(di);
2386 				ret = btrfs_delete_one_dir_name(trans, root,
2387 								path, di);
2388 				if (ret)
2389 					goto out;
2390 				btrfs_release_path(path);
2391 				search_key = key;
2392 				goto again;
2393 			}
2394 			kfree(name);
2395 			if (IS_ERR(log_di)) {
2396 				ret = PTR_ERR(log_di);
2397 				goto out;
2398 			}
2399 			cur += this_len;
2400 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2401 		}
2402 	}
2403 	ret = btrfs_next_leaf(root, path);
2404 	if (ret > 0)
2405 		ret = 0;
2406 	else if (ret == 0)
2407 		goto process_leaf;
2408 out:
2409 	btrfs_free_path(log_path);
2410 	btrfs_release_path(path);
2411 	return ret;
2412 }
2413 
2414 
2415 /*
2416  * deletion replay happens before we copy any new directory items
2417  * out of the log or out of backreferences from inodes.  It
2418  * scans the log to find ranges of keys that log is authoritative for,
2419  * and then scans the directory to find items in those ranges that are
2420  * not present in the log.
2421  *
2422  * Anything we don't find in the log is unlinked and removed from the
2423  * directory.
2424  */
2425 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2426 				       struct btrfs_root *root,
2427 				       struct btrfs_root *log,
2428 				       struct btrfs_path *path,
2429 				       u64 dirid, int del_all)
2430 {
2431 	u64 range_start;
2432 	u64 range_end;
2433 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2434 	int ret = 0;
2435 	struct btrfs_key dir_key;
2436 	struct btrfs_key found_key;
2437 	struct btrfs_path *log_path;
2438 	struct inode *dir;
2439 
2440 	dir_key.objectid = dirid;
2441 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2442 	log_path = btrfs_alloc_path();
2443 	if (!log_path)
2444 		return -ENOMEM;
2445 
2446 	dir = read_one_inode(root, dirid);
2447 	/* it isn't an error if the inode isn't there, that can happen
2448 	 * because we replay the deletes before we copy in the inode item
2449 	 * from the log
2450 	 */
2451 	if (!dir) {
2452 		btrfs_free_path(log_path);
2453 		return 0;
2454 	}
2455 again:
2456 	range_start = 0;
2457 	range_end = 0;
2458 	while (1) {
2459 		if (del_all)
2460 			range_end = (u64)-1;
2461 		else {
2462 			ret = find_dir_range(log, path, dirid, key_type,
2463 					     &range_start, &range_end);
2464 			if (ret != 0)
2465 				break;
2466 		}
2467 
2468 		dir_key.offset = range_start;
2469 		while (1) {
2470 			int nritems;
2471 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2472 						0, 0);
2473 			if (ret < 0)
2474 				goto out;
2475 
2476 			nritems = btrfs_header_nritems(path->nodes[0]);
2477 			if (path->slots[0] >= nritems) {
2478 				ret = btrfs_next_leaf(root, path);
2479 				if (ret == 1)
2480 					break;
2481 				else if (ret < 0)
2482 					goto out;
2483 			}
2484 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2485 					      path->slots[0]);
2486 			if (found_key.objectid != dirid ||
2487 			    found_key.type != dir_key.type)
2488 				goto next_type;
2489 
2490 			if (found_key.offset > range_end)
2491 				break;
2492 
2493 			ret = check_item_in_log(trans, root, log, path,
2494 						log_path, dir,
2495 						&found_key);
2496 			if (ret)
2497 				goto out;
2498 			if (found_key.offset == (u64)-1)
2499 				break;
2500 			dir_key.offset = found_key.offset + 1;
2501 		}
2502 		btrfs_release_path(path);
2503 		if (range_end == (u64)-1)
2504 			break;
2505 		range_start = range_end + 1;
2506 	}
2507 
2508 next_type:
2509 	ret = 0;
2510 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2511 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2512 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2513 		btrfs_release_path(path);
2514 		goto again;
2515 	}
2516 out:
2517 	btrfs_release_path(path);
2518 	btrfs_free_path(log_path);
2519 	iput(dir);
2520 	return ret;
2521 }
2522 
2523 /*
2524  * the process_func used to replay items from the log tree.  This
2525  * gets called in two different stages.  The first stage just looks
2526  * for inodes and makes sure they are all copied into the subvolume.
2527  *
2528  * The second stage copies all the other item types from the log into
2529  * the subvolume.  The two stage approach is slower, but gets rid of
2530  * lots of complexity around inodes referencing other inodes that exist
2531  * only in the log (references come from either directory items or inode
2532  * back refs).
2533  */
2534 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2535 			     struct walk_control *wc, u64 gen, int level)
2536 {
2537 	int nritems;
2538 	struct btrfs_path *path;
2539 	struct btrfs_root *root = wc->replay_dest;
2540 	struct btrfs_key key;
2541 	int i;
2542 	int ret;
2543 
2544 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2545 	if (ret)
2546 		return ret;
2547 
2548 	level = btrfs_header_level(eb);
2549 
2550 	if (level != 0)
2551 		return 0;
2552 
2553 	path = btrfs_alloc_path();
2554 	if (!path)
2555 		return -ENOMEM;
2556 
2557 	nritems = btrfs_header_nritems(eb);
2558 	for (i = 0; i < nritems; i++) {
2559 		btrfs_item_key_to_cpu(eb, &key, i);
2560 
2561 		/* inode keys are done during the first stage */
2562 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2563 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2564 			struct btrfs_inode_item *inode_item;
2565 			u32 mode;
2566 
2567 			inode_item = btrfs_item_ptr(eb, i,
2568 					    struct btrfs_inode_item);
2569 			/*
2570 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2571 			 * and never got linked before the fsync, skip it, as
2572 			 * replaying it is pointless since it would be deleted
2573 			 * later. We skip logging tmpfiles, but it's always
2574 			 * possible we are replaying a log created with a kernel
2575 			 * that used to log tmpfiles.
2576 			 */
2577 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2578 				wc->ignore_cur_inode = true;
2579 				continue;
2580 			} else {
2581 				wc->ignore_cur_inode = false;
2582 			}
2583 			ret = replay_xattr_deletes(wc->trans, root, log,
2584 						   path, key.objectid);
2585 			if (ret)
2586 				break;
2587 			mode = btrfs_inode_mode(eb, inode_item);
2588 			if (S_ISDIR(mode)) {
2589 				ret = replay_dir_deletes(wc->trans,
2590 					 root, log, path, key.objectid, 0);
2591 				if (ret)
2592 					break;
2593 			}
2594 			ret = overwrite_item(wc->trans, root, path,
2595 					     eb, i, &key);
2596 			if (ret)
2597 				break;
2598 
2599 			/*
2600 			 * Before replaying extents, truncate the inode to its
2601 			 * size. We need to do it now and not after log replay
2602 			 * because before an fsync we can have prealloc extents
2603 			 * added beyond the inode's i_size. If we did it after,
2604 			 * through orphan cleanup for example, we would drop
2605 			 * those prealloc extents just after replaying them.
2606 			 */
2607 			if (S_ISREG(mode)) {
2608 				struct inode *inode;
2609 				u64 from;
2610 
2611 				inode = read_one_inode(root, key.objectid);
2612 				if (!inode) {
2613 					ret = -EIO;
2614 					break;
2615 				}
2616 				from = ALIGN(i_size_read(inode),
2617 					     root->fs_info->sectorsize);
2618 				ret = btrfs_drop_extents(wc->trans, root, inode,
2619 							 from, (u64)-1, 1);
2620 				if (!ret) {
2621 					/* Update the inode's nbytes. */
2622 					ret = btrfs_update_inode(wc->trans,
2623 								 root, inode);
2624 				}
2625 				iput(inode);
2626 				if (ret)
2627 					break;
2628 			}
2629 
2630 			ret = link_to_fixup_dir(wc->trans, root,
2631 						path, key.objectid);
2632 			if (ret)
2633 				break;
2634 		}
2635 
2636 		if (wc->ignore_cur_inode)
2637 			continue;
2638 
2639 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2640 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2641 			ret = replay_one_dir_item(wc->trans, root, path,
2642 						  eb, i, &key);
2643 			if (ret)
2644 				break;
2645 		}
2646 
2647 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2648 			continue;
2649 
2650 		/* these keys are simply copied */
2651 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2652 			ret = overwrite_item(wc->trans, root, path,
2653 					     eb, i, &key);
2654 			if (ret)
2655 				break;
2656 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2657 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2658 			ret = add_inode_ref(wc->trans, root, log, path,
2659 					    eb, i, &key);
2660 			if (ret && ret != -ENOENT)
2661 				break;
2662 			ret = 0;
2663 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2664 			ret = replay_one_extent(wc->trans, root, path,
2665 						eb, i, &key);
2666 			if (ret)
2667 				break;
2668 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2669 			ret = replay_one_dir_item(wc->trans, root, path,
2670 						  eb, i, &key);
2671 			if (ret)
2672 				break;
2673 		}
2674 	}
2675 	btrfs_free_path(path);
2676 	return ret;
2677 }
2678 
2679 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2680 				   struct btrfs_root *root,
2681 				   struct btrfs_path *path, int *level,
2682 				   struct walk_control *wc)
2683 {
2684 	struct btrfs_fs_info *fs_info = root->fs_info;
2685 	u64 root_owner;
2686 	u64 bytenr;
2687 	u64 ptr_gen;
2688 	struct extent_buffer *next;
2689 	struct extent_buffer *cur;
2690 	struct extent_buffer *parent;
2691 	u32 blocksize;
2692 	int ret = 0;
2693 
2694 	WARN_ON(*level < 0);
2695 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2696 
2697 	while (*level > 0) {
2698 		struct btrfs_key first_key;
2699 
2700 		WARN_ON(*level < 0);
2701 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2702 		cur = path->nodes[*level];
2703 
2704 		WARN_ON(btrfs_header_level(cur) != *level);
2705 
2706 		if (path->slots[*level] >=
2707 		    btrfs_header_nritems(cur))
2708 			break;
2709 
2710 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2711 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2712 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2713 		blocksize = fs_info->nodesize;
2714 
2715 		parent = path->nodes[*level];
2716 		root_owner = btrfs_header_owner(parent);
2717 
2718 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2719 		if (IS_ERR(next))
2720 			return PTR_ERR(next);
2721 
2722 		if (*level == 1) {
2723 			ret = wc->process_func(root, next, wc, ptr_gen,
2724 					       *level - 1);
2725 			if (ret) {
2726 				free_extent_buffer(next);
2727 				return ret;
2728 			}
2729 
2730 			path->slots[*level]++;
2731 			if (wc->free) {
2732 				ret = btrfs_read_buffer(next, ptr_gen,
2733 							*level - 1, &first_key);
2734 				if (ret) {
2735 					free_extent_buffer(next);
2736 					return ret;
2737 				}
2738 
2739 				if (trans) {
2740 					btrfs_tree_lock(next);
2741 					btrfs_set_lock_blocking_write(next);
2742 					btrfs_clean_tree_block(next);
2743 					btrfs_wait_tree_block_writeback(next);
2744 					btrfs_tree_unlock(next);
2745 				} else {
2746 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747 						clear_extent_buffer_dirty(next);
2748 				}
2749 
2750 				WARN_ON(root_owner !=
2751 					BTRFS_TREE_LOG_OBJECTID);
2752 				ret = btrfs_free_and_pin_reserved_extent(
2753 							fs_info, bytenr,
2754 							blocksize);
2755 				if (ret) {
2756 					free_extent_buffer(next);
2757 					return ret;
2758 				}
2759 			}
2760 			free_extent_buffer(next);
2761 			continue;
2762 		}
2763 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2764 		if (ret) {
2765 			free_extent_buffer(next);
2766 			return ret;
2767 		}
2768 
2769 		WARN_ON(*level <= 0);
2770 		if (path->nodes[*level-1])
2771 			free_extent_buffer(path->nodes[*level-1]);
2772 		path->nodes[*level-1] = next;
2773 		*level = btrfs_header_level(next);
2774 		path->slots[*level] = 0;
2775 		cond_resched();
2776 	}
2777 	WARN_ON(*level < 0);
2778 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2779 
2780 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2781 
2782 	cond_resched();
2783 	return 0;
2784 }
2785 
2786 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2787 				 struct btrfs_root *root,
2788 				 struct btrfs_path *path, int *level,
2789 				 struct walk_control *wc)
2790 {
2791 	struct btrfs_fs_info *fs_info = root->fs_info;
2792 	u64 root_owner;
2793 	int i;
2794 	int slot;
2795 	int ret;
2796 
2797 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2798 		slot = path->slots[i];
2799 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2800 			path->slots[i]++;
2801 			*level = i;
2802 			WARN_ON(*level == 0);
2803 			return 0;
2804 		} else {
2805 			struct extent_buffer *parent;
2806 			if (path->nodes[*level] == root->node)
2807 				parent = path->nodes[*level];
2808 			else
2809 				parent = path->nodes[*level + 1];
2810 
2811 			root_owner = btrfs_header_owner(parent);
2812 			ret = wc->process_func(root, path->nodes[*level], wc,
2813 				 btrfs_header_generation(path->nodes[*level]),
2814 				 *level);
2815 			if (ret)
2816 				return ret;
2817 
2818 			if (wc->free) {
2819 				struct extent_buffer *next;
2820 
2821 				next = path->nodes[*level];
2822 
2823 				if (trans) {
2824 					btrfs_tree_lock(next);
2825 					btrfs_set_lock_blocking_write(next);
2826 					btrfs_clean_tree_block(next);
2827 					btrfs_wait_tree_block_writeback(next);
2828 					btrfs_tree_unlock(next);
2829 				} else {
2830 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2831 						clear_extent_buffer_dirty(next);
2832 				}
2833 
2834 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2835 				ret = btrfs_free_and_pin_reserved_extent(
2836 						fs_info,
2837 						path->nodes[*level]->start,
2838 						path->nodes[*level]->len);
2839 				if (ret)
2840 					return ret;
2841 			}
2842 			free_extent_buffer(path->nodes[*level]);
2843 			path->nodes[*level] = NULL;
2844 			*level = i + 1;
2845 		}
2846 	}
2847 	return 1;
2848 }
2849 
2850 /*
2851  * drop the reference count on the tree rooted at 'snap'.  This traverses
2852  * the tree freeing any blocks that have a ref count of zero after being
2853  * decremented.
2854  */
2855 static int walk_log_tree(struct btrfs_trans_handle *trans,
2856 			 struct btrfs_root *log, struct walk_control *wc)
2857 {
2858 	struct btrfs_fs_info *fs_info = log->fs_info;
2859 	int ret = 0;
2860 	int wret;
2861 	int level;
2862 	struct btrfs_path *path;
2863 	int orig_level;
2864 
2865 	path = btrfs_alloc_path();
2866 	if (!path)
2867 		return -ENOMEM;
2868 
2869 	level = btrfs_header_level(log->node);
2870 	orig_level = level;
2871 	path->nodes[level] = log->node;
2872 	extent_buffer_get(log->node);
2873 	path->slots[level] = 0;
2874 
2875 	while (1) {
2876 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2877 		if (wret > 0)
2878 			break;
2879 		if (wret < 0) {
2880 			ret = wret;
2881 			goto out;
2882 		}
2883 
2884 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2885 		if (wret > 0)
2886 			break;
2887 		if (wret < 0) {
2888 			ret = wret;
2889 			goto out;
2890 		}
2891 	}
2892 
2893 	/* was the root node processed? if not, catch it here */
2894 	if (path->nodes[orig_level]) {
2895 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2896 			 btrfs_header_generation(path->nodes[orig_level]),
2897 			 orig_level);
2898 		if (ret)
2899 			goto out;
2900 		if (wc->free) {
2901 			struct extent_buffer *next;
2902 
2903 			next = path->nodes[orig_level];
2904 
2905 			if (trans) {
2906 				btrfs_tree_lock(next);
2907 				btrfs_set_lock_blocking_write(next);
2908 				btrfs_clean_tree_block(next);
2909 				btrfs_wait_tree_block_writeback(next);
2910 				btrfs_tree_unlock(next);
2911 			} else {
2912 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2913 					clear_extent_buffer_dirty(next);
2914 			}
2915 
2916 			WARN_ON(log->root_key.objectid !=
2917 				BTRFS_TREE_LOG_OBJECTID);
2918 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2919 							next->start, next->len);
2920 			if (ret)
2921 				goto out;
2922 		}
2923 	}
2924 
2925 out:
2926 	btrfs_free_path(path);
2927 	return ret;
2928 }
2929 
2930 /*
2931  * helper function to update the item for a given subvolumes log root
2932  * in the tree of log roots
2933  */
2934 static int update_log_root(struct btrfs_trans_handle *trans,
2935 			   struct btrfs_root *log)
2936 {
2937 	struct btrfs_fs_info *fs_info = log->fs_info;
2938 	int ret;
2939 
2940 	if (log->log_transid == 1) {
2941 		/* insert root item on the first sync */
2942 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2943 				&log->root_key, &log->root_item);
2944 	} else {
2945 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2946 				&log->root_key, &log->root_item);
2947 	}
2948 	return ret;
2949 }
2950 
2951 static void wait_log_commit(struct btrfs_root *root, int transid)
2952 {
2953 	DEFINE_WAIT(wait);
2954 	int index = transid % 2;
2955 
2956 	/*
2957 	 * we only allow two pending log transactions at a time,
2958 	 * so we know that if ours is more than 2 older than the
2959 	 * current transaction, we're done
2960 	 */
2961 	for (;;) {
2962 		prepare_to_wait(&root->log_commit_wait[index],
2963 				&wait, TASK_UNINTERRUPTIBLE);
2964 
2965 		if (!(root->log_transid_committed < transid &&
2966 		      atomic_read(&root->log_commit[index])))
2967 			break;
2968 
2969 		mutex_unlock(&root->log_mutex);
2970 		schedule();
2971 		mutex_lock(&root->log_mutex);
2972 	}
2973 	finish_wait(&root->log_commit_wait[index], &wait);
2974 }
2975 
2976 static void wait_for_writer(struct btrfs_root *root)
2977 {
2978 	DEFINE_WAIT(wait);
2979 
2980 	for (;;) {
2981 		prepare_to_wait(&root->log_writer_wait, &wait,
2982 				TASK_UNINTERRUPTIBLE);
2983 		if (!atomic_read(&root->log_writers))
2984 			break;
2985 
2986 		mutex_unlock(&root->log_mutex);
2987 		schedule();
2988 		mutex_lock(&root->log_mutex);
2989 	}
2990 	finish_wait(&root->log_writer_wait, &wait);
2991 }
2992 
2993 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2994 					struct btrfs_log_ctx *ctx)
2995 {
2996 	if (!ctx)
2997 		return;
2998 
2999 	mutex_lock(&root->log_mutex);
3000 	list_del_init(&ctx->list);
3001 	mutex_unlock(&root->log_mutex);
3002 }
3003 
3004 /*
3005  * Invoked in log mutex context, or be sure there is no other task which
3006  * can access the list.
3007  */
3008 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3009 					     int index, int error)
3010 {
3011 	struct btrfs_log_ctx *ctx;
3012 	struct btrfs_log_ctx *safe;
3013 
3014 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3015 		list_del_init(&ctx->list);
3016 		ctx->log_ret = error;
3017 	}
3018 
3019 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3020 }
3021 
3022 /*
3023  * btrfs_sync_log does sends a given tree log down to the disk and
3024  * updates the super blocks to record it.  When this call is done,
3025  * you know that any inodes previously logged are safely on disk only
3026  * if it returns 0.
3027  *
3028  * Any other return value means you need to call btrfs_commit_transaction.
3029  * Some of the edge cases for fsyncing directories that have had unlinks
3030  * or renames done in the past mean that sometimes the only safe
3031  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3032  * that has happened.
3033  */
3034 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3035 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3036 {
3037 	int index1;
3038 	int index2;
3039 	int mark;
3040 	int ret;
3041 	struct btrfs_fs_info *fs_info = root->fs_info;
3042 	struct btrfs_root *log = root->log_root;
3043 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3044 	int log_transid = 0;
3045 	struct btrfs_log_ctx root_log_ctx;
3046 	struct blk_plug plug;
3047 
3048 	mutex_lock(&root->log_mutex);
3049 	log_transid = ctx->log_transid;
3050 	if (root->log_transid_committed >= log_transid) {
3051 		mutex_unlock(&root->log_mutex);
3052 		return ctx->log_ret;
3053 	}
3054 
3055 	index1 = log_transid % 2;
3056 	if (atomic_read(&root->log_commit[index1])) {
3057 		wait_log_commit(root, log_transid);
3058 		mutex_unlock(&root->log_mutex);
3059 		return ctx->log_ret;
3060 	}
3061 	ASSERT(log_transid == root->log_transid);
3062 	atomic_set(&root->log_commit[index1], 1);
3063 
3064 	/* wait for previous tree log sync to complete */
3065 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3066 		wait_log_commit(root, log_transid - 1);
3067 
3068 	while (1) {
3069 		int batch = atomic_read(&root->log_batch);
3070 		/* when we're on an ssd, just kick the log commit out */
3071 		if (!btrfs_test_opt(fs_info, SSD) &&
3072 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3073 			mutex_unlock(&root->log_mutex);
3074 			schedule_timeout_uninterruptible(1);
3075 			mutex_lock(&root->log_mutex);
3076 		}
3077 		wait_for_writer(root);
3078 		if (batch == atomic_read(&root->log_batch))
3079 			break;
3080 	}
3081 
3082 	/* bail out if we need to do a full commit */
3083 	if (btrfs_need_log_full_commit(trans)) {
3084 		ret = -EAGAIN;
3085 		mutex_unlock(&root->log_mutex);
3086 		goto out;
3087 	}
3088 
3089 	if (log_transid % 2 == 0)
3090 		mark = EXTENT_DIRTY;
3091 	else
3092 		mark = EXTENT_NEW;
3093 
3094 	/* we start IO on  all the marked extents here, but we don't actually
3095 	 * wait for them until later.
3096 	 */
3097 	blk_start_plug(&plug);
3098 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3099 	if (ret) {
3100 		blk_finish_plug(&plug);
3101 		btrfs_abort_transaction(trans, ret);
3102 		btrfs_set_log_full_commit(trans);
3103 		mutex_unlock(&root->log_mutex);
3104 		goto out;
3105 	}
3106 
3107 	btrfs_set_root_node(&log->root_item, log->node);
3108 
3109 	root->log_transid++;
3110 	log->log_transid = root->log_transid;
3111 	root->log_start_pid = 0;
3112 	/*
3113 	 * Update or create log root item under the root's log_mutex to prevent
3114 	 * races with concurrent log syncs that can lead to failure to update
3115 	 * log root item because it was not created yet.
3116 	 */
3117 	ret = update_log_root(trans, log);
3118 	/*
3119 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3120 	 * in their headers. new modifications of the log will be written to
3121 	 * new positions. so it's safe to allow log writers to go in.
3122 	 */
3123 	mutex_unlock(&root->log_mutex);
3124 
3125 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3126 
3127 	mutex_lock(&log_root_tree->log_mutex);
3128 	atomic_inc(&log_root_tree->log_batch);
3129 	atomic_inc(&log_root_tree->log_writers);
3130 
3131 	index2 = log_root_tree->log_transid % 2;
3132 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3133 	root_log_ctx.log_transid = log_root_tree->log_transid;
3134 
3135 	mutex_unlock(&log_root_tree->log_mutex);
3136 
3137 	mutex_lock(&log_root_tree->log_mutex);
3138 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3139 		/* atomic_dec_and_test implies a barrier */
3140 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3141 	}
3142 
3143 	if (ret) {
3144 		if (!list_empty(&root_log_ctx.list))
3145 			list_del_init(&root_log_ctx.list);
3146 
3147 		blk_finish_plug(&plug);
3148 		btrfs_set_log_full_commit(trans);
3149 
3150 		if (ret != -ENOSPC) {
3151 			btrfs_abort_transaction(trans, ret);
3152 			mutex_unlock(&log_root_tree->log_mutex);
3153 			goto out;
3154 		}
3155 		btrfs_wait_tree_log_extents(log, mark);
3156 		mutex_unlock(&log_root_tree->log_mutex);
3157 		ret = -EAGAIN;
3158 		goto out;
3159 	}
3160 
3161 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3162 		blk_finish_plug(&plug);
3163 		list_del_init(&root_log_ctx.list);
3164 		mutex_unlock(&log_root_tree->log_mutex);
3165 		ret = root_log_ctx.log_ret;
3166 		goto out;
3167 	}
3168 
3169 	index2 = root_log_ctx.log_transid % 2;
3170 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3171 		blk_finish_plug(&plug);
3172 		ret = btrfs_wait_tree_log_extents(log, mark);
3173 		wait_log_commit(log_root_tree,
3174 				root_log_ctx.log_transid);
3175 		mutex_unlock(&log_root_tree->log_mutex);
3176 		if (!ret)
3177 			ret = root_log_ctx.log_ret;
3178 		goto out;
3179 	}
3180 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3181 	atomic_set(&log_root_tree->log_commit[index2], 1);
3182 
3183 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3184 		wait_log_commit(log_root_tree,
3185 				root_log_ctx.log_transid - 1);
3186 	}
3187 
3188 	wait_for_writer(log_root_tree);
3189 
3190 	/*
3191 	 * now that we've moved on to the tree of log tree roots,
3192 	 * check the full commit flag again
3193 	 */
3194 	if (btrfs_need_log_full_commit(trans)) {
3195 		blk_finish_plug(&plug);
3196 		btrfs_wait_tree_log_extents(log, mark);
3197 		mutex_unlock(&log_root_tree->log_mutex);
3198 		ret = -EAGAIN;
3199 		goto out_wake_log_root;
3200 	}
3201 
3202 	ret = btrfs_write_marked_extents(fs_info,
3203 					 &log_root_tree->dirty_log_pages,
3204 					 EXTENT_DIRTY | EXTENT_NEW);
3205 	blk_finish_plug(&plug);
3206 	if (ret) {
3207 		btrfs_set_log_full_commit(trans);
3208 		btrfs_abort_transaction(trans, ret);
3209 		mutex_unlock(&log_root_tree->log_mutex);
3210 		goto out_wake_log_root;
3211 	}
3212 	ret = btrfs_wait_tree_log_extents(log, mark);
3213 	if (!ret)
3214 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3215 						  EXTENT_NEW | EXTENT_DIRTY);
3216 	if (ret) {
3217 		btrfs_set_log_full_commit(trans);
3218 		mutex_unlock(&log_root_tree->log_mutex);
3219 		goto out_wake_log_root;
3220 	}
3221 
3222 	btrfs_set_super_log_root(fs_info->super_for_commit,
3223 				 log_root_tree->node->start);
3224 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3225 				       btrfs_header_level(log_root_tree->node));
3226 
3227 	log_root_tree->log_transid++;
3228 	mutex_unlock(&log_root_tree->log_mutex);
3229 
3230 	/*
3231 	 * Nobody else is going to jump in and write the ctree
3232 	 * super here because the log_commit atomic below is protecting
3233 	 * us.  We must be called with a transaction handle pinning
3234 	 * the running transaction open, so a full commit can't hop
3235 	 * in and cause problems either.
3236 	 */
3237 	ret = write_all_supers(fs_info, 1);
3238 	if (ret) {
3239 		btrfs_set_log_full_commit(trans);
3240 		btrfs_abort_transaction(trans, ret);
3241 		goto out_wake_log_root;
3242 	}
3243 
3244 	mutex_lock(&root->log_mutex);
3245 	if (root->last_log_commit < log_transid)
3246 		root->last_log_commit = log_transid;
3247 	mutex_unlock(&root->log_mutex);
3248 
3249 out_wake_log_root:
3250 	mutex_lock(&log_root_tree->log_mutex);
3251 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3252 
3253 	log_root_tree->log_transid_committed++;
3254 	atomic_set(&log_root_tree->log_commit[index2], 0);
3255 	mutex_unlock(&log_root_tree->log_mutex);
3256 
3257 	/*
3258 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3259 	 * all the updates above are seen by the woken threads. It might not be
3260 	 * necessary, but proving that seems to be hard.
3261 	 */
3262 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3263 out:
3264 	mutex_lock(&root->log_mutex);
3265 	btrfs_remove_all_log_ctxs(root, index1, ret);
3266 	root->log_transid_committed++;
3267 	atomic_set(&root->log_commit[index1], 0);
3268 	mutex_unlock(&root->log_mutex);
3269 
3270 	/*
3271 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3272 	 * all the updates above are seen by the woken threads. It might not be
3273 	 * necessary, but proving that seems to be hard.
3274 	 */
3275 	cond_wake_up(&root->log_commit_wait[index1]);
3276 	return ret;
3277 }
3278 
3279 static void free_log_tree(struct btrfs_trans_handle *trans,
3280 			  struct btrfs_root *log)
3281 {
3282 	int ret;
3283 	struct walk_control wc = {
3284 		.free = 1,
3285 		.process_func = process_one_buffer
3286 	};
3287 
3288 	ret = walk_log_tree(trans, log, &wc);
3289 	if (ret) {
3290 		if (trans)
3291 			btrfs_abort_transaction(trans, ret);
3292 		else
3293 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3294 	}
3295 
3296 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3297 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3298 	free_extent_buffer(log->node);
3299 	kfree(log);
3300 }
3301 
3302 /*
3303  * free all the extents used by the tree log.  This should be called
3304  * at commit time of the full transaction
3305  */
3306 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3307 {
3308 	if (root->log_root) {
3309 		free_log_tree(trans, root->log_root);
3310 		root->log_root = NULL;
3311 	}
3312 	return 0;
3313 }
3314 
3315 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3316 			     struct btrfs_fs_info *fs_info)
3317 {
3318 	if (fs_info->log_root_tree) {
3319 		free_log_tree(trans, fs_info->log_root_tree);
3320 		fs_info->log_root_tree = NULL;
3321 	}
3322 	return 0;
3323 }
3324 
3325 /*
3326  * Check if an inode was logged in the current transaction. We can't always rely
3327  * on an inode's logged_trans value, because it's an in-memory only field and
3328  * therefore not persisted. This means that its value is lost if the inode gets
3329  * evicted and loaded again from disk (in which case it has a value of 0, and
3330  * certainly it is smaller then any possible transaction ID), when that happens
3331  * the full_sync flag is set in the inode's runtime flags, so on that case we
3332  * assume eviction happened and ignore the logged_trans value, assuming the
3333  * worst case, that the inode was logged before in the current transaction.
3334  */
3335 static bool inode_logged(struct btrfs_trans_handle *trans,
3336 			 struct btrfs_inode *inode)
3337 {
3338 	if (inode->logged_trans == trans->transid)
3339 		return true;
3340 
3341 	if (inode->last_trans == trans->transid &&
3342 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3343 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3344 		return true;
3345 
3346 	return false;
3347 }
3348 
3349 /*
3350  * If both a file and directory are logged, and unlinks or renames are
3351  * mixed in, we have a few interesting corners:
3352  *
3353  * create file X in dir Y
3354  * link file X to X.link in dir Y
3355  * fsync file X
3356  * unlink file X but leave X.link
3357  * fsync dir Y
3358  *
3359  * After a crash we would expect only X.link to exist.  But file X
3360  * didn't get fsync'd again so the log has back refs for X and X.link.
3361  *
3362  * We solve this by removing directory entries and inode backrefs from the
3363  * log when a file that was logged in the current transaction is
3364  * unlinked.  Any later fsync will include the updated log entries, and
3365  * we'll be able to reconstruct the proper directory items from backrefs.
3366  *
3367  * This optimizations allows us to avoid relogging the entire inode
3368  * or the entire directory.
3369  */
3370 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3371 				 struct btrfs_root *root,
3372 				 const char *name, int name_len,
3373 				 struct btrfs_inode *dir, u64 index)
3374 {
3375 	struct btrfs_root *log;
3376 	struct btrfs_dir_item *di;
3377 	struct btrfs_path *path;
3378 	int ret;
3379 	int err = 0;
3380 	int bytes_del = 0;
3381 	u64 dir_ino = btrfs_ino(dir);
3382 
3383 	if (!inode_logged(trans, dir))
3384 		return 0;
3385 
3386 	ret = join_running_log_trans(root);
3387 	if (ret)
3388 		return 0;
3389 
3390 	mutex_lock(&dir->log_mutex);
3391 
3392 	log = root->log_root;
3393 	path = btrfs_alloc_path();
3394 	if (!path) {
3395 		err = -ENOMEM;
3396 		goto out_unlock;
3397 	}
3398 
3399 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3400 				   name, name_len, -1);
3401 	if (IS_ERR(di)) {
3402 		err = PTR_ERR(di);
3403 		goto fail;
3404 	}
3405 	if (di) {
3406 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3407 		bytes_del += name_len;
3408 		if (ret) {
3409 			err = ret;
3410 			goto fail;
3411 		}
3412 	}
3413 	btrfs_release_path(path);
3414 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3415 					 index, name, name_len, -1);
3416 	if (IS_ERR(di)) {
3417 		err = PTR_ERR(di);
3418 		goto fail;
3419 	}
3420 	if (di) {
3421 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3422 		bytes_del += name_len;
3423 		if (ret) {
3424 			err = ret;
3425 			goto fail;
3426 		}
3427 	}
3428 
3429 	/* update the directory size in the log to reflect the names
3430 	 * we have removed
3431 	 */
3432 	if (bytes_del) {
3433 		struct btrfs_key key;
3434 
3435 		key.objectid = dir_ino;
3436 		key.offset = 0;
3437 		key.type = BTRFS_INODE_ITEM_KEY;
3438 		btrfs_release_path(path);
3439 
3440 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3441 		if (ret < 0) {
3442 			err = ret;
3443 			goto fail;
3444 		}
3445 		if (ret == 0) {
3446 			struct btrfs_inode_item *item;
3447 			u64 i_size;
3448 
3449 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3450 					      struct btrfs_inode_item);
3451 			i_size = btrfs_inode_size(path->nodes[0], item);
3452 			if (i_size > bytes_del)
3453 				i_size -= bytes_del;
3454 			else
3455 				i_size = 0;
3456 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3457 			btrfs_mark_buffer_dirty(path->nodes[0]);
3458 		} else
3459 			ret = 0;
3460 		btrfs_release_path(path);
3461 	}
3462 fail:
3463 	btrfs_free_path(path);
3464 out_unlock:
3465 	mutex_unlock(&dir->log_mutex);
3466 	if (ret == -ENOSPC) {
3467 		btrfs_set_log_full_commit(trans);
3468 		ret = 0;
3469 	} else if (ret < 0)
3470 		btrfs_abort_transaction(trans, ret);
3471 
3472 	btrfs_end_log_trans(root);
3473 
3474 	return err;
3475 }
3476 
3477 /* see comments for btrfs_del_dir_entries_in_log */
3478 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3479 			       struct btrfs_root *root,
3480 			       const char *name, int name_len,
3481 			       struct btrfs_inode *inode, u64 dirid)
3482 {
3483 	struct btrfs_root *log;
3484 	u64 index;
3485 	int ret;
3486 
3487 	if (!inode_logged(trans, inode))
3488 		return 0;
3489 
3490 	ret = join_running_log_trans(root);
3491 	if (ret)
3492 		return 0;
3493 	log = root->log_root;
3494 	mutex_lock(&inode->log_mutex);
3495 
3496 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3497 				  dirid, &index);
3498 	mutex_unlock(&inode->log_mutex);
3499 	if (ret == -ENOSPC) {
3500 		btrfs_set_log_full_commit(trans);
3501 		ret = 0;
3502 	} else if (ret < 0 && ret != -ENOENT)
3503 		btrfs_abort_transaction(trans, ret);
3504 	btrfs_end_log_trans(root);
3505 
3506 	return ret;
3507 }
3508 
3509 /*
3510  * creates a range item in the log for 'dirid'.  first_offset and
3511  * last_offset tell us which parts of the key space the log should
3512  * be considered authoritative for.
3513  */
3514 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3515 				       struct btrfs_root *log,
3516 				       struct btrfs_path *path,
3517 				       int key_type, u64 dirid,
3518 				       u64 first_offset, u64 last_offset)
3519 {
3520 	int ret;
3521 	struct btrfs_key key;
3522 	struct btrfs_dir_log_item *item;
3523 
3524 	key.objectid = dirid;
3525 	key.offset = first_offset;
3526 	if (key_type == BTRFS_DIR_ITEM_KEY)
3527 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3528 	else
3529 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3530 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3531 	if (ret)
3532 		return ret;
3533 
3534 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3535 			      struct btrfs_dir_log_item);
3536 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3537 	btrfs_mark_buffer_dirty(path->nodes[0]);
3538 	btrfs_release_path(path);
3539 	return 0;
3540 }
3541 
3542 /*
3543  * log all the items included in the current transaction for a given
3544  * directory.  This also creates the range items in the log tree required
3545  * to replay anything deleted before the fsync
3546  */
3547 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3548 			  struct btrfs_root *root, struct btrfs_inode *inode,
3549 			  struct btrfs_path *path,
3550 			  struct btrfs_path *dst_path, int key_type,
3551 			  struct btrfs_log_ctx *ctx,
3552 			  u64 min_offset, u64 *last_offset_ret)
3553 {
3554 	struct btrfs_key min_key;
3555 	struct btrfs_root *log = root->log_root;
3556 	struct extent_buffer *src;
3557 	int err = 0;
3558 	int ret;
3559 	int i;
3560 	int nritems;
3561 	u64 first_offset = min_offset;
3562 	u64 last_offset = (u64)-1;
3563 	u64 ino = btrfs_ino(inode);
3564 
3565 	log = root->log_root;
3566 
3567 	min_key.objectid = ino;
3568 	min_key.type = key_type;
3569 	min_key.offset = min_offset;
3570 
3571 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3572 
3573 	/*
3574 	 * we didn't find anything from this transaction, see if there
3575 	 * is anything at all
3576 	 */
3577 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3578 		min_key.objectid = ino;
3579 		min_key.type = key_type;
3580 		min_key.offset = (u64)-1;
3581 		btrfs_release_path(path);
3582 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3583 		if (ret < 0) {
3584 			btrfs_release_path(path);
3585 			return ret;
3586 		}
3587 		ret = btrfs_previous_item(root, path, ino, key_type);
3588 
3589 		/* if ret == 0 there are items for this type,
3590 		 * create a range to tell us the last key of this type.
3591 		 * otherwise, there are no items in this directory after
3592 		 * *min_offset, and we create a range to indicate that.
3593 		 */
3594 		if (ret == 0) {
3595 			struct btrfs_key tmp;
3596 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3597 					      path->slots[0]);
3598 			if (key_type == tmp.type)
3599 				first_offset = max(min_offset, tmp.offset) + 1;
3600 		}
3601 		goto done;
3602 	}
3603 
3604 	/* go backward to find any previous key */
3605 	ret = btrfs_previous_item(root, path, ino, key_type);
3606 	if (ret == 0) {
3607 		struct btrfs_key tmp;
3608 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3609 		if (key_type == tmp.type) {
3610 			first_offset = tmp.offset;
3611 			ret = overwrite_item(trans, log, dst_path,
3612 					     path->nodes[0], path->slots[0],
3613 					     &tmp);
3614 			if (ret) {
3615 				err = ret;
3616 				goto done;
3617 			}
3618 		}
3619 	}
3620 	btrfs_release_path(path);
3621 
3622 	/*
3623 	 * Find the first key from this transaction again.  See the note for
3624 	 * log_new_dir_dentries, if we're logging a directory recursively we
3625 	 * won't be holding its i_mutex, which means we can modify the directory
3626 	 * while we're logging it.  If we remove an entry between our first
3627 	 * search and this search we'll not find the key again and can just
3628 	 * bail.
3629 	 */
3630 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3631 	if (ret != 0)
3632 		goto done;
3633 
3634 	/*
3635 	 * we have a block from this transaction, log every item in it
3636 	 * from our directory
3637 	 */
3638 	while (1) {
3639 		struct btrfs_key tmp;
3640 		src = path->nodes[0];
3641 		nritems = btrfs_header_nritems(src);
3642 		for (i = path->slots[0]; i < nritems; i++) {
3643 			struct btrfs_dir_item *di;
3644 
3645 			btrfs_item_key_to_cpu(src, &min_key, i);
3646 
3647 			if (min_key.objectid != ino || min_key.type != key_type)
3648 				goto done;
3649 			ret = overwrite_item(trans, log, dst_path, src, i,
3650 					     &min_key);
3651 			if (ret) {
3652 				err = ret;
3653 				goto done;
3654 			}
3655 
3656 			/*
3657 			 * We must make sure that when we log a directory entry,
3658 			 * the corresponding inode, after log replay, has a
3659 			 * matching link count. For example:
3660 			 *
3661 			 * touch foo
3662 			 * mkdir mydir
3663 			 * sync
3664 			 * ln foo mydir/bar
3665 			 * xfs_io -c "fsync" mydir
3666 			 * <crash>
3667 			 * <mount fs and log replay>
3668 			 *
3669 			 * Would result in a fsync log that when replayed, our
3670 			 * file inode would have a link count of 1, but we get
3671 			 * two directory entries pointing to the same inode.
3672 			 * After removing one of the names, it would not be
3673 			 * possible to remove the other name, which resulted
3674 			 * always in stale file handle errors, and would not
3675 			 * be possible to rmdir the parent directory, since
3676 			 * its i_size could never decrement to the value
3677 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3678 			 */
3679 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3680 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3681 			if (ctx &&
3682 			    (btrfs_dir_transid(src, di) == trans->transid ||
3683 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3684 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3685 				ctx->log_new_dentries = true;
3686 		}
3687 		path->slots[0] = nritems;
3688 
3689 		/*
3690 		 * look ahead to the next item and see if it is also
3691 		 * from this directory and from this transaction
3692 		 */
3693 		ret = btrfs_next_leaf(root, path);
3694 		if (ret) {
3695 			if (ret == 1)
3696 				last_offset = (u64)-1;
3697 			else
3698 				err = ret;
3699 			goto done;
3700 		}
3701 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3702 		if (tmp.objectid != ino || tmp.type != key_type) {
3703 			last_offset = (u64)-1;
3704 			goto done;
3705 		}
3706 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3707 			ret = overwrite_item(trans, log, dst_path,
3708 					     path->nodes[0], path->slots[0],
3709 					     &tmp);
3710 			if (ret)
3711 				err = ret;
3712 			else
3713 				last_offset = tmp.offset;
3714 			goto done;
3715 		}
3716 	}
3717 done:
3718 	btrfs_release_path(path);
3719 	btrfs_release_path(dst_path);
3720 
3721 	if (err == 0) {
3722 		*last_offset_ret = last_offset;
3723 		/*
3724 		 * insert the log range keys to indicate where the log
3725 		 * is valid
3726 		 */
3727 		ret = insert_dir_log_key(trans, log, path, key_type,
3728 					 ino, first_offset, last_offset);
3729 		if (ret)
3730 			err = ret;
3731 	}
3732 	return err;
3733 }
3734 
3735 /*
3736  * logging directories is very similar to logging inodes, We find all the items
3737  * from the current transaction and write them to the log.
3738  *
3739  * The recovery code scans the directory in the subvolume, and if it finds a
3740  * key in the range logged that is not present in the log tree, then it means
3741  * that dir entry was unlinked during the transaction.
3742  *
3743  * In order for that scan to work, we must include one key smaller than
3744  * the smallest logged by this transaction and one key larger than the largest
3745  * key logged by this transaction.
3746  */
3747 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3748 			  struct btrfs_root *root, struct btrfs_inode *inode,
3749 			  struct btrfs_path *path,
3750 			  struct btrfs_path *dst_path,
3751 			  struct btrfs_log_ctx *ctx)
3752 {
3753 	u64 min_key;
3754 	u64 max_key;
3755 	int ret;
3756 	int key_type = BTRFS_DIR_ITEM_KEY;
3757 
3758 again:
3759 	min_key = 0;
3760 	max_key = 0;
3761 	while (1) {
3762 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3763 				ctx, min_key, &max_key);
3764 		if (ret)
3765 			return ret;
3766 		if (max_key == (u64)-1)
3767 			break;
3768 		min_key = max_key + 1;
3769 	}
3770 
3771 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3772 		key_type = BTRFS_DIR_INDEX_KEY;
3773 		goto again;
3774 	}
3775 	return 0;
3776 }
3777 
3778 /*
3779  * a helper function to drop items from the log before we relog an
3780  * inode.  max_key_type indicates the highest item type to remove.
3781  * This cannot be run for file data extents because it does not
3782  * free the extents they point to.
3783  */
3784 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3785 				  struct btrfs_root *log,
3786 				  struct btrfs_path *path,
3787 				  u64 objectid, int max_key_type)
3788 {
3789 	int ret;
3790 	struct btrfs_key key;
3791 	struct btrfs_key found_key;
3792 	int start_slot;
3793 
3794 	key.objectid = objectid;
3795 	key.type = max_key_type;
3796 	key.offset = (u64)-1;
3797 
3798 	while (1) {
3799 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3800 		BUG_ON(ret == 0); /* Logic error */
3801 		if (ret < 0)
3802 			break;
3803 
3804 		if (path->slots[0] == 0)
3805 			break;
3806 
3807 		path->slots[0]--;
3808 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3809 				      path->slots[0]);
3810 
3811 		if (found_key.objectid != objectid)
3812 			break;
3813 
3814 		found_key.offset = 0;
3815 		found_key.type = 0;
3816 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3817 				       &start_slot);
3818 		if (ret < 0)
3819 			break;
3820 
3821 		ret = btrfs_del_items(trans, log, path, start_slot,
3822 				      path->slots[0] - start_slot + 1);
3823 		/*
3824 		 * If start slot isn't 0 then we don't need to re-search, we've
3825 		 * found the last guy with the objectid in this tree.
3826 		 */
3827 		if (ret || start_slot != 0)
3828 			break;
3829 		btrfs_release_path(path);
3830 	}
3831 	btrfs_release_path(path);
3832 	if (ret > 0)
3833 		ret = 0;
3834 	return ret;
3835 }
3836 
3837 static void fill_inode_item(struct btrfs_trans_handle *trans,
3838 			    struct extent_buffer *leaf,
3839 			    struct btrfs_inode_item *item,
3840 			    struct inode *inode, int log_inode_only,
3841 			    u64 logged_isize)
3842 {
3843 	struct btrfs_map_token token;
3844 
3845 	btrfs_init_map_token(&token, leaf);
3846 
3847 	if (log_inode_only) {
3848 		/* set the generation to zero so the recover code
3849 		 * can tell the difference between an logging
3850 		 * just to say 'this inode exists' and a logging
3851 		 * to say 'update this inode with these values'
3852 		 */
3853 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3854 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3855 	} else {
3856 		btrfs_set_token_inode_generation(leaf, item,
3857 						 BTRFS_I(inode)->generation,
3858 						 &token);
3859 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3860 	}
3861 
3862 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3863 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3864 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3865 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3866 
3867 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3868 				     inode->i_atime.tv_sec, &token);
3869 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3870 				      inode->i_atime.tv_nsec, &token);
3871 
3872 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3873 				     inode->i_mtime.tv_sec, &token);
3874 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3875 				      inode->i_mtime.tv_nsec, &token);
3876 
3877 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3878 				     inode->i_ctime.tv_sec, &token);
3879 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3880 				      inode->i_ctime.tv_nsec, &token);
3881 
3882 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3883 				     &token);
3884 
3885 	btrfs_set_token_inode_sequence(leaf, item,
3886 				       inode_peek_iversion(inode), &token);
3887 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3888 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3889 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3890 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3891 }
3892 
3893 static int log_inode_item(struct btrfs_trans_handle *trans,
3894 			  struct btrfs_root *log, struct btrfs_path *path,
3895 			  struct btrfs_inode *inode)
3896 {
3897 	struct btrfs_inode_item *inode_item;
3898 	int ret;
3899 
3900 	ret = btrfs_insert_empty_item(trans, log, path,
3901 				      &inode->location, sizeof(*inode_item));
3902 	if (ret && ret != -EEXIST)
3903 		return ret;
3904 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3905 				    struct btrfs_inode_item);
3906 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3907 			0, 0);
3908 	btrfs_release_path(path);
3909 	return 0;
3910 }
3911 
3912 static noinline int copy_items(struct btrfs_trans_handle *trans,
3913 			       struct btrfs_inode *inode,
3914 			       struct btrfs_path *dst_path,
3915 			       struct btrfs_path *src_path, u64 *last_extent,
3916 			       int start_slot, int nr, int inode_only,
3917 			       u64 logged_isize)
3918 {
3919 	struct btrfs_fs_info *fs_info = trans->fs_info;
3920 	unsigned long src_offset;
3921 	unsigned long dst_offset;
3922 	struct btrfs_root *log = inode->root->log_root;
3923 	struct btrfs_file_extent_item *extent;
3924 	struct btrfs_inode_item *inode_item;
3925 	struct extent_buffer *src = src_path->nodes[0];
3926 	struct btrfs_key first_key, last_key, key;
3927 	int ret;
3928 	struct btrfs_key *ins_keys;
3929 	u32 *ins_sizes;
3930 	char *ins_data;
3931 	int i;
3932 	struct list_head ordered_sums;
3933 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3934 	bool has_extents = false;
3935 	bool need_find_last_extent = true;
3936 	bool done = false;
3937 
3938 	INIT_LIST_HEAD(&ordered_sums);
3939 
3940 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3941 			   nr * sizeof(u32), GFP_NOFS);
3942 	if (!ins_data)
3943 		return -ENOMEM;
3944 
3945 	first_key.objectid = (u64)-1;
3946 
3947 	ins_sizes = (u32 *)ins_data;
3948 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3949 
3950 	for (i = 0; i < nr; i++) {
3951 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3952 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3953 	}
3954 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3955 				       ins_keys, ins_sizes, nr);
3956 	if (ret) {
3957 		kfree(ins_data);
3958 		return ret;
3959 	}
3960 
3961 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3962 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3963 						   dst_path->slots[0]);
3964 
3965 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3966 
3967 		if (i == nr - 1)
3968 			last_key = ins_keys[i];
3969 
3970 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3971 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3972 						    dst_path->slots[0],
3973 						    struct btrfs_inode_item);
3974 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3975 					&inode->vfs_inode,
3976 					inode_only == LOG_INODE_EXISTS,
3977 					logged_isize);
3978 		} else {
3979 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3980 					   src_offset, ins_sizes[i]);
3981 		}
3982 
3983 		/*
3984 		 * We set need_find_last_extent here in case we know we were
3985 		 * processing other items and then walk into the first extent in
3986 		 * the inode.  If we don't hit an extent then nothing changes,
3987 		 * we'll do the last search the next time around.
3988 		 */
3989 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3990 			has_extents = true;
3991 			if (first_key.objectid == (u64)-1)
3992 				first_key = ins_keys[i];
3993 		} else {
3994 			need_find_last_extent = false;
3995 		}
3996 
3997 		/* take a reference on file data extents so that truncates
3998 		 * or deletes of this inode don't have to relog the inode
3999 		 * again
4000 		 */
4001 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4002 		    !skip_csum) {
4003 			int found_type;
4004 			extent = btrfs_item_ptr(src, start_slot + i,
4005 						struct btrfs_file_extent_item);
4006 
4007 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4008 				continue;
4009 
4010 			found_type = btrfs_file_extent_type(src, extent);
4011 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4012 				u64 ds, dl, cs, cl;
4013 				ds = btrfs_file_extent_disk_bytenr(src,
4014 								extent);
4015 				/* ds == 0 is a hole */
4016 				if (ds == 0)
4017 					continue;
4018 
4019 				dl = btrfs_file_extent_disk_num_bytes(src,
4020 								extent);
4021 				cs = btrfs_file_extent_offset(src, extent);
4022 				cl = btrfs_file_extent_num_bytes(src,
4023 								extent);
4024 				if (btrfs_file_extent_compression(src,
4025 								  extent)) {
4026 					cs = 0;
4027 					cl = dl;
4028 				}
4029 
4030 				ret = btrfs_lookup_csums_range(
4031 						fs_info->csum_root,
4032 						ds + cs, ds + cs + cl - 1,
4033 						&ordered_sums, 0);
4034 				if (ret) {
4035 					btrfs_release_path(dst_path);
4036 					kfree(ins_data);
4037 					return ret;
4038 				}
4039 			}
4040 		}
4041 	}
4042 
4043 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4044 	btrfs_release_path(dst_path);
4045 	kfree(ins_data);
4046 
4047 	/*
4048 	 * we have to do this after the loop above to avoid changing the
4049 	 * log tree while trying to change the log tree.
4050 	 */
4051 	ret = 0;
4052 	while (!list_empty(&ordered_sums)) {
4053 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4054 						   struct btrfs_ordered_sum,
4055 						   list);
4056 		if (!ret)
4057 			ret = btrfs_csum_file_blocks(trans, log, sums);
4058 		list_del(&sums->list);
4059 		kfree(sums);
4060 	}
4061 
4062 	if (!has_extents)
4063 		return ret;
4064 
4065 	if (need_find_last_extent && *last_extent == first_key.offset) {
4066 		/*
4067 		 * We don't have any leafs between our current one and the one
4068 		 * we processed before that can have file extent items for our
4069 		 * inode (and have a generation number smaller than our current
4070 		 * transaction id).
4071 		 */
4072 		need_find_last_extent = false;
4073 	}
4074 
4075 	/*
4076 	 * Because we use btrfs_search_forward we could skip leaves that were
4077 	 * not modified and then assume *last_extent is valid when it really
4078 	 * isn't.  So back up to the previous leaf and read the end of the last
4079 	 * extent before we go and fill in holes.
4080 	 */
4081 	if (need_find_last_extent) {
4082 		u64 len;
4083 
4084 		ret = btrfs_prev_leaf(inode->root, src_path);
4085 		if (ret < 0)
4086 			return ret;
4087 		if (ret)
4088 			goto fill_holes;
4089 		if (src_path->slots[0])
4090 			src_path->slots[0]--;
4091 		src = src_path->nodes[0];
4092 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4093 		if (key.objectid != btrfs_ino(inode) ||
4094 		    key.type != BTRFS_EXTENT_DATA_KEY)
4095 			goto fill_holes;
4096 		extent = btrfs_item_ptr(src, src_path->slots[0],
4097 					struct btrfs_file_extent_item);
4098 		if (btrfs_file_extent_type(src, extent) ==
4099 		    BTRFS_FILE_EXTENT_INLINE) {
4100 			len = btrfs_file_extent_ram_bytes(src, extent);
4101 			*last_extent = ALIGN(key.offset + len,
4102 					     fs_info->sectorsize);
4103 		} else {
4104 			len = btrfs_file_extent_num_bytes(src, extent);
4105 			*last_extent = key.offset + len;
4106 		}
4107 	}
4108 fill_holes:
4109 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
4110 	 * things could have happened
4111 	 *
4112 	 * 1) A merge could have happened, so we could currently be on a leaf
4113 	 * that holds what we were copying in the first place.
4114 	 * 2) A split could have happened, and now not all of the items we want
4115 	 * are on the same leaf.
4116 	 *
4117 	 * So we need to adjust how we search for holes, we need to drop the
4118 	 * path and re-search for the first extent key we found, and then walk
4119 	 * forward until we hit the last one we copied.
4120 	 */
4121 	if (need_find_last_extent) {
4122 		/* btrfs_prev_leaf could return 1 without releasing the path */
4123 		btrfs_release_path(src_path);
4124 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
4125 				src_path, 0, 0);
4126 		if (ret < 0)
4127 			return ret;
4128 		ASSERT(ret == 0);
4129 		src = src_path->nodes[0];
4130 		i = src_path->slots[0];
4131 	} else {
4132 		i = start_slot;
4133 	}
4134 
4135 	/*
4136 	 * Ok so here we need to go through and fill in any holes we may have
4137 	 * to make sure that holes are punched for those areas in case they had
4138 	 * extents previously.
4139 	 */
4140 	while (!done) {
4141 		u64 offset, len;
4142 		u64 extent_end;
4143 
4144 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4145 			ret = btrfs_next_leaf(inode->root, src_path);
4146 			if (ret < 0)
4147 				return ret;
4148 			ASSERT(ret == 0);
4149 			src = src_path->nodes[0];
4150 			i = 0;
4151 			need_find_last_extent = true;
4152 		}
4153 
4154 		btrfs_item_key_to_cpu(src, &key, i);
4155 		if (!btrfs_comp_cpu_keys(&key, &last_key))
4156 			done = true;
4157 		if (key.objectid != btrfs_ino(inode) ||
4158 		    key.type != BTRFS_EXTENT_DATA_KEY) {
4159 			i++;
4160 			continue;
4161 		}
4162 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4163 		if (btrfs_file_extent_type(src, extent) ==
4164 		    BTRFS_FILE_EXTENT_INLINE) {
4165 			len = btrfs_file_extent_ram_bytes(src, extent);
4166 			extent_end = ALIGN(key.offset + len,
4167 					   fs_info->sectorsize);
4168 		} else {
4169 			len = btrfs_file_extent_num_bytes(src, extent);
4170 			extent_end = key.offset + len;
4171 		}
4172 		i++;
4173 
4174 		if (*last_extent == key.offset) {
4175 			*last_extent = extent_end;
4176 			continue;
4177 		}
4178 		offset = *last_extent;
4179 		len = key.offset - *last_extent;
4180 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4181 				offset, 0, 0, len, 0, len, 0, 0, 0);
4182 		if (ret)
4183 			break;
4184 		*last_extent = extent_end;
4185 	}
4186 
4187 	/*
4188 	 * Check if there is a hole between the last extent found in our leaf
4189 	 * and the first extent in the next leaf. If there is one, we need to
4190 	 * log an explicit hole so that at replay time we can punch the hole.
4191 	 */
4192 	if (ret == 0 &&
4193 	    key.objectid == btrfs_ino(inode) &&
4194 	    key.type == BTRFS_EXTENT_DATA_KEY &&
4195 	    i == btrfs_header_nritems(src_path->nodes[0])) {
4196 		ret = btrfs_next_leaf(inode->root, src_path);
4197 		need_find_last_extent = true;
4198 		if (ret > 0) {
4199 			ret = 0;
4200 		} else if (ret == 0) {
4201 			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4202 					      src_path->slots[0]);
4203 			if (key.objectid == btrfs_ino(inode) &&
4204 			    key.type == BTRFS_EXTENT_DATA_KEY &&
4205 			    *last_extent < key.offset) {
4206 				const u64 len = key.offset - *last_extent;
4207 
4208 				ret = btrfs_insert_file_extent(trans, log,
4209 							       btrfs_ino(inode),
4210 							       *last_extent, 0,
4211 							       0, len, 0, len,
4212 							       0, 0, 0);
4213 				*last_extent += len;
4214 			}
4215 		}
4216 	}
4217 	/*
4218 	 * Need to let the callers know we dropped the path so they should
4219 	 * re-search.
4220 	 */
4221 	if (!ret && need_find_last_extent)
4222 		ret = 1;
4223 	return ret;
4224 }
4225 
4226 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4227 {
4228 	struct extent_map *em1, *em2;
4229 
4230 	em1 = list_entry(a, struct extent_map, list);
4231 	em2 = list_entry(b, struct extent_map, list);
4232 
4233 	if (em1->start < em2->start)
4234 		return -1;
4235 	else if (em1->start > em2->start)
4236 		return 1;
4237 	return 0;
4238 }
4239 
4240 static int log_extent_csums(struct btrfs_trans_handle *trans,
4241 			    struct btrfs_inode *inode,
4242 			    struct btrfs_root *log_root,
4243 			    const struct extent_map *em)
4244 {
4245 	u64 csum_offset;
4246 	u64 csum_len;
4247 	LIST_HEAD(ordered_sums);
4248 	int ret = 0;
4249 
4250 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4251 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4252 	    em->block_start == EXTENT_MAP_HOLE)
4253 		return 0;
4254 
4255 	/* If we're compressed we have to save the entire range of csums. */
4256 	if (em->compress_type) {
4257 		csum_offset = 0;
4258 		csum_len = max(em->block_len, em->orig_block_len);
4259 	} else {
4260 		csum_offset = em->mod_start - em->start;
4261 		csum_len = em->mod_len;
4262 	}
4263 
4264 	/* block start is already adjusted for the file extent offset. */
4265 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4266 				       em->block_start + csum_offset,
4267 				       em->block_start + csum_offset +
4268 				       csum_len - 1, &ordered_sums, 0);
4269 	if (ret)
4270 		return ret;
4271 
4272 	while (!list_empty(&ordered_sums)) {
4273 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4274 						   struct btrfs_ordered_sum,
4275 						   list);
4276 		if (!ret)
4277 			ret = btrfs_csum_file_blocks(trans, log_root, sums);
4278 		list_del(&sums->list);
4279 		kfree(sums);
4280 	}
4281 
4282 	return ret;
4283 }
4284 
4285 static int log_one_extent(struct btrfs_trans_handle *trans,
4286 			  struct btrfs_inode *inode, struct btrfs_root *root,
4287 			  const struct extent_map *em,
4288 			  struct btrfs_path *path,
4289 			  struct btrfs_log_ctx *ctx)
4290 {
4291 	struct btrfs_root *log = root->log_root;
4292 	struct btrfs_file_extent_item *fi;
4293 	struct extent_buffer *leaf;
4294 	struct btrfs_map_token token;
4295 	struct btrfs_key key;
4296 	u64 extent_offset = em->start - em->orig_start;
4297 	u64 block_len;
4298 	int ret;
4299 	int extent_inserted = 0;
4300 
4301 	ret = log_extent_csums(trans, inode, log, em);
4302 	if (ret)
4303 		return ret;
4304 
4305 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4306 				   em->start + em->len, NULL, 0, 1,
4307 				   sizeof(*fi), &extent_inserted);
4308 	if (ret)
4309 		return ret;
4310 
4311 	if (!extent_inserted) {
4312 		key.objectid = btrfs_ino(inode);
4313 		key.type = BTRFS_EXTENT_DATA_KEY;
4314 		key.offset = em->start;
4315 
4316 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4317 					      sizeof(*fi));
4318 		if (ret)
4319 			return ret;
4320 	}
4321 	leaf = path->nodes[0];
4322 	btrfs_init_map_token(&token, leaf);
4323 	fi = btrfs_item_ptr(leaf, path->slots[0],
4324 			    struct btrfs_file_extent_item);
4325 
4326 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4327 					       &token);
4328 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4329 		btrfs_set_token_file_extent_type(leaf, fi,
4330 						 BTRFS_FILE_EXTENT_PREALLOC,
4331 						 &token);
4332 	else
4333 		btrfs_set_token_file_extent_type(leaf, fi,
4334 						 BTRFS_FILE_EXTENT_REG,
4335 						 &token);
4336 
4337 	block_len = max(em->block_len, em->orig_block_len);
4338 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4339 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4340 							em->block_start,
4341 							&token);
4342 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4343 							   &token);
4344 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4345 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4346 							em->block_start -
4347 							extent_offset, &token);
4348 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4349 							   &token);
4350 	} else {
4351 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4352 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4353 							   &token);
4354 	}
4355 
4356 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4357 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4358 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4359 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4360 						&token);
4361 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4362 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4363 	btrfs_mark_buffer_dirty(leaf);
4364 
4365 	btrfs_release_path(path);
4366 
4367 	return ret;
4368 }
4369 
4370 /*
4371  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4372  * lose them after doing a fast fsync and replaying the log. We scan the
4373  * subvolume's root instead of iterating the inode's extent map tree because
4374  * otherwise we can log incorrect extent items based on extent map conversion.
4375  * That can happen due to the fact that extent maps are merged when they
4376  * are not in the extent map tree's list of modified extents.
4377  */
4378 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4379 				      struct btrfs_inode *inode,
4380 				      struct btrfs_path *path)
4381 {
4382 	struct btrfs_root *root = inode->root;
4383 	struct btrfs_key key;
4384 	const u64 i_size = i_size_read(&inode->vfs_inode);
4385 	const u64 ino = btrfs_ino(inode);
4386 	struct btrfs_path *dst_path = NULL;
4387 	u64 last_extent = (u64)-1;
4388 	int ins_nr = 0;
4389 	int start_slot;
4390 	int ret;
4391 
4392 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4393 		return 0;
4394 
4395 	key.objectid = ino;
4396 	key.type = BTRFS_EXTENT_DATA_KEY;
4397 	key.offset = i_size;
4398 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4399 	if (ret < 0)
4400 		goto out;
4401 
4402 	while (true) {
4403 		struct extent_buffer *leaf = path->nodes[0];
4404 		int slot = path->slots[0];
4405 
4406 		if (slot >= btrfs_header_nritems(leaf)) {
4407 			if (ins_nr > 0) {
4408 				ret = copy_items(trans, inode, dst_path, path,
4409 						 &last_extent, start_slot,
4410 						 ins_nr, 1, 0);
4411 				if (ret < 0)
4412 					goto out;
4413 				ins_nr = 0;
4414 			}
4415 			ret = btrfs_next_leaf(root, path);
4416 			if (ret < 0)
4417 				goto out;
4418 			if (ret > 0) {
4419 				ret = 0;
4420 				break;
4421 			}
4422 			continue;
4423 		}
4424 
4425 		btrfs_item_key_to_cpu(leaf, &key, slot);
4426 		if (key.objectid > ino)
4427 			break;
4428 		if (WARN_ON_ONCE(key.objectid < ino) ||
4429 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4430 		    key.offset < i_size) {
4431 			path->slots[0]++;
4432 			continue;
4433 		}
4434 		if (last_extent == (u64)-1) {
4435 			last_extent = key.offset;
4436 			/*
4437 			 * Avoid logging extent items logged in past fsync calls
4438 			 * and leading to duplicate keys in the log tree.
4439 			 */
4440 			do {
4441 				ret = btrfs_truncate_inode_items(trans,
4442 							 root->log_root,
4443 							 &inode->vfs_inode,
4444 							 i_size,
4445 							 BTRFS_EXTENT_DATA_KEY);
4446 			} while (ret == -EAGAIN);
4447 			if (ret)
4448 				goto out;
4449 		}
4450 		if (ins_nr == 0)
4451 			start_slot = slot;
4452 		ins_nr++;
4453 		path->slots[0]++;
4454 		if (!dst_path) {
4455 			dst_path = btrfs_alloc_path();
4456 			if (!dst_path) {
4457 				ret = -ENOMEM;
4458 				goto out;
4459 			}
4460 		}
4461 	}
4462 	if (ins_nr > 0) {
4463 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4464 				 start_slot, ins_nr, 1, 0);
4465 		if (ret > 0)
4466 			ret = 0;
4467 	}
4468 out:
4469 	btrfs_release_path(path);
4470 	btrfs_free_path(dst_path);
4471 	return ret;
4472 }
4473 
4474 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4475 				     struct btrfs_root *root,
4476 				     struct btrfs_inode *inode,
4477 				     struct btrfs_path *path,
4478 				     struct btrfs_log_ctx *ctx,
4479 				     const u64 start,
4480 				     const u64 end)
4481 {
4482 	struct extent_map *em, *n;
4483 	struct list_head extents;
4484 	struct extent_map_tree *tree = &inode->extent_tree;
4485 	u64 test_gen;
4486 	int ret = 0;
4487 	int num = 0;
4488 
4489 	INIT_LIST_HEAD(&extents);
4490 
4491 	write_lock(&tree->lock);
4492 	test_gen = root->fs_info->last_trans_committed;
4493 
4494 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4495 		/*
4496 		 * Skip extents outside our logging range. It's important to do
4497 		 * it for correctness because if we don't ignore them, we may
4498 		 * log them before their ordered extent completes, and therefore
4499 		 * we could log them without logging their respective checksums
4500 		 * (the checksum items are added to the csum tree at the very
4501 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4502 		 * outside of our range in the list, since we may have another
4503 		 * ranged fsync in the near future that needs them. If an extent
4504 		 * outside our range corresponds to a hole, log it to avoid
4505 		 * leaving gaps between extents (fsck will complain when we are
4506 		 * not using the NO_HOLES feature).
4507 		 */
4508 		if ((em->start > end || em->start + em->len <= start) &&
4509 		    em->block_start != EXTENT_MAP_HOLE)
4510 			continue;
4511 
4512 		list_del_init(&em->list);
4513 		/*
4514 		 * Just an arbitrary number, this can be really CPU intensive
4515 		 * once we start getting a lot of extents, and really once we
4516 		 * have a bunch of extents we just want to commit since it will
4517 		 * be faster.
4518 		 */
4519 		if (++num > 32768) {
4520 			list_del_init(&tree->modified_extents);
4521 			ret = -EFBIG;
4522 			goto process;
4523 		}
4524 
4525 		if (em->generation <= test_gen)
4526 			continue;
4527 
4528 		/* We log prealloc extents beyond eof later. */
4529 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4530 		    em->start >= i_size_read(&inode->vfs_inode))
4531 			continue;
4532 
4533 		/* Need a ref to keep it from getting evicted from cache */
4534 		refcount_inc(&em->refs);
4535 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4536 		list_add_tail(&em->list, &extents);
4537 		num++;
4538 	}
4539 
4540 	list_sort(NULL, &extents, extent_cmp);
4541 process:
4542 	while (!list_empty(&extents)) {
4543 		em = list_entry(extents.next, struct extent_map, list);
4544 
4545 		list_del_init(&em->list);
4546 
4547 		/*
4548 		 * If we had an error we just need to delete everybody from our
4549 		 * private list.
4550 		 */
4551 		if (ret) {
4552 			clear_em_logging(tree, em);
4553 			free_extent_map(em);
4554 			continue;
4555 		}
4556 
4557 		write_unlock(&tree->lock);
4558 
4559 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4560 		write_lock(&tree->lock);
4561 		clear_em_logging(tree, em);
4562 		free_extent_map(em);
4563 	}
4564 	WARN_ON(!list_empty(&extents));
4565 	write_unlock(&tree->lock);
4566 
4567 	btrfs_release_path(path);
4568 	if (!ret)
4569 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4570 
4571 	return ret;
4572 }
4573 
4574 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4575 			     struct btrfs_path *path, u64 *size_ret)
4576 {
4577 	struct btrfs_key key;
4578 	int ret;
4579 
4580 	key.objectid = btrfs_ino(inode);
4581 	key.type = BTRFS_INODE_ITEM_KEY;
4582 	key.offset = 0;
4583 
4584 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4585 	if (ret < 0) {
4586 		return ret;
4587 	} else if (ret > 0) {
4588 		*size_ret = 0;
4589 	} else {
4590 		struct btrfs_inode_item *item;
4591 
4592 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4593 				      struct btrfs_inode_item);
4594 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4595 		/*
4596 		 * If the in-memory inode's i_size is smaller then the inode
4597 		 * size stored in the btree, return the inode's i_size, so
4598 		 * that we get a correct inode size after replaying the log
4599 		 * when before a power failure we had a shrinking truncate
4600 		 * followed by addition of a new name (rename / new hard link).
4601 		 * Otherwise return the inode size from the btree, to avoid
4602 		 * data loss when replaying a log due to previously doing a
4603 		 * write that expands the inode's size and logging a new name
4604 		 * immediately after.
4605 		 */
4606 		if (*size_ret > inode->vfs_inode.i_size)
4607 			*size_ret = inode->vfs_inode.i_size;
4608 	}
4609 
4610 	btrfs_release_path(path);
4611 	return 0;
4612 }
4613 
4614 /*
4615  * At the moment we always log all xattrs. This is to figure out at log replay
4616  * time which xattrs must have their deletion replayed. If a xattr is missing
4617  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4618  * because if a xattr is deleted, the inode is fsynced and a power failure
4619  * happens, causing the log to be replayed the next time the fs is mounted,
4620  * we want the xattr to not exist anymore (same behaviour as other filesystems
4621  * with a journal, ext3/4, xfs, f2fs, etc).
4622  */
4623 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4624 				struct btrfs_root *root,
4625 				struct btrfs_inode *inode,
4626 				struct btrfs_path *path,
4627 				struct btrfs_path *dst_path)
4628 {
4629 	int ret;
4630 	struct btrfs_key key;
4631 	const u64 ino = btrfs_ino(inode);
4632 	int ins_nr = 0;
4633 	int start_slot = 0;
4634 
4635 	key.objectid = ino;
4636 	key.type = BTRFS_XATTR_ITEM_KEY;
4637 	key.offset = 0;
4638 
4639 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4640 	if (ret < 0)
4641 		return ret;
4642 
4643 	while (true) {
4644 		int slot = path->slots[0];
4645 		struct extent_buffer *leaf = path->nodes[0];
4646 		int nritems = btrfs_header_nritems(leaf);
4647 
4648 		if (slot >= nritems) {
4649 			if (ins_nr > 0) {
4650 				u64 last_extent = 0;
4651 
4652 				ret = copy_items(trans, inode, dst_path, path,
4653 						 &last_extent, start_slot,
4654 						 ins_nr, 1, 0);
4655 				/* can't be 1, extent items aren't processed */
4656 				ASSERT(ret <= 0);
4657 				if (ret < 0)
4658 					return ret;
4659 				ins_nr = 0;
4660 			}
4661 			ret = btrfs_next_leaf(root, path);
4662 			if (ret < 0)
4663 				return ret;
4664 			else if (ret > 0)
4665 				break;
4666 			continue;
4667 		}
4668 
4669 		btrfs_item_key_to_cpu(leaf, &key, slot);
4670 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4671 			break;
4672 
4673 		if (ins_nr == 0)
4674 			start_slot = slot;
4675 		ins_nr++;
4676 		path->slots[0]++;
4677 		cond_resched();
4678 	}
4679 	if (ins_nr > 0) {
4680 		u64 last_extent = 0;
4681 
4682 		ret = copy_items(trans, inode, dst_path, path,
4683 				 &last_extent, start_slot,
4684 				 ins_nr, 1, 0);
4685 		/* can't be 1, extent items aren't processed */
4686 		ASSERT(ret <= 0);
4687 		if (ret < 0)
4688 			return ret;
4689 	}
4690 
4691 	return 0;
4692 }
4693 
4694 /*
4695  * If the no holes feature is enabled we need to make sure any hole between the
4696  * last extent and the i_size of our inode is explicitly marked in the log. This
4697  * is to make sure that doing something like:
4698  *
4699  *      1) create file with 128Kb of data
4700  *      2) truncate file to 64Kb
4701  *      3) truncate file to 256Kb
4702  *      4) fsync file
4703  *      5) <crash/power failure>
4704  *      6) mount fs and trigger log replay
4705  *
4706  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4707  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4708  * file correspond to a hole. The presence of explicit holes in a log tree is
4709  * what guarantees that log replay will remove/adjust file extent items in the
4710  * fs/subvol tree.
4711  *
4712  * Here we do not need to care about holes between extents, that is already done
4713  * by copy_items(). We also only need to do this in the full sync path, where we
4714  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4715  * lookup the list of modified extent maps and if any represents a hole, we
4716  * insert a corresponding extent representing a hole in the log tree.
4717  */
4718 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4719 				   struct btrfs_root *root,
4720 				   struct btrfs_inode *inode,
4721 				   struct btrfs_path *path)
4722 {
4723 	struct btrfs_fs_info *fs_info = root->fs_info;
4724 	int ret;
4725 	struct btrfs_key key;
4726 	u64 hole_start;
4727 	u64 hole_size;
4728 	struct extent_buffer *leaf;
4729 	struct btrfs_root *log = root->log_root;
4730 	const u64 ino = btrfs_ino(inode);
4731 	const u64 i_size = i_size_read(&inode->vfs_inode);
4732 
4733 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4734 		return 0;
4735 
4736 	key.objectid = ino;
4737 	key.type = BTRFS_EXTENT_DATA_KEY;
4738 	key.offset = (u64)-1;
4739 
4740 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4741 	ASSERT(ret != 0);
4742 	if (ret < 0)
4743 		return ret;
4744 
4745 	ASSERT(path->slots[0] > 0);
4746 	path->slots[0]--;
4747 	leaf = path->nodes[0];
4748 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4749 
4750 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4751 		/* inode does not have any extents */
4752 		hole_start = 0;
4753 		hole_size = i_size;
4754 	} else {
4755 		struct btrfs_file_extent_item *extent;
4756 		u64 len;
4757 
4758 		/*
4759 		 * If there's an extent beyond i_size, an explicit hole was
4760 		 * already inserted by copy_items().
4761 		 */
4762 		if (key.offset >= i_size)
4763 			return 0;
4764 
4765 		extent = btrfs_item_ptr(leaf, path->slots[0],
4766 					struct btrfs_file_extent_item);
4767 
4768 		if (btrfs_file_extent_type(leaf, extent) ==
4769 		    BTRFS_FILE_EXTENT_INLINE)
4770 			return 0;
4771 
4772 		len = btrfs_file_extent_num_bytes(leaf, extent);
4773 		/* Last extent goes beyond i_size, no need to log a hole. */
4774 		if (key.offset + len > i_size)
4775 			return 0;
4776 		hole_start = key.offset + len;
4777 		hole_size = i_size - hole_start;
4778 	}
4779 	btrfs_release_path(path);
4780 
4781 	/* Last extent ends at i_size. */
4782 	if (hole_size == 0)
4783 		return 0;
4784 
4785 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4786 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4787 				       hole_size, 0, hole_size, 0, 0, 0);
4788 	return ret;
4789 }
4790 
4791 /*
4792  * When we are logging a new inode X, check if it doesn't have a reference that
4793  * matches the reference from some other inode Y created in a past transaction
4794  * and that was renamed in the current transaction. If we don't do this, then at
4795  * log replay time we can lose inode Y (and all its files if it's a directory):
4796  *
4797  * mkdir /mnt/x
4798  * echo "hello world" > /mnt/x/foobar
4799  * sync
4800  * mv /mnt/x /mnt/y
4801  * mkdir /mnt/x                 # or touch /mnt/x
4802  * xfs_io -c fsync /mnt/x
4803  * <power fail>
4804  * mount fs, trigger log replay
4805  *
4806  * After the log replay procedure, we would lose the first directory and all its
4807  * files (file foobar).
4808  * For the case where inode Y is not a directory we simply end up losing it:
4809  *
4810  * echo "123" > /mnt/foo
4811  * sync
4812  * mv /mnt/foo /mnt/bar
4813  * echo "abc" > /mnt/foo
4814  * xfs_io -c fsync /mnt/foo
4815  * <power fail>
4816  *
4817  * We also need this for cases where a snapshot entry is replaced by some other
4818  * entry (file or directory) otherwise we end up with an unreplayable log due to
4819  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4820  * if it were a regular entry:
4821  *
4822  * mkdir /mnt/x
4823  * btrfs subvolume snapshot /mnt /mnt/x/snap
4824  * btrfs subvolume delete /mnt/x/snap
4825  * rmdir /mnt/x
4826  * mkdir /mnt/x
4827  * fsync /mnt/x or fsync some new file inside it
4828  * <power fail>
4829  *
4830  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4831  * the same transaction.
4832  */
4833 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4834 					 const int slot,
4835 					 const struct btrfs_key *key,
4836 					 struct btrfs_inode *inode,
4837 					 u64 *other_ino, u64 *other_parent)
4838 {
4839 	int ret;
4840 	struct btrfs_path *search_path;
4841 	char *name = NULL;
4842 	u32 name_len = 0;
4843 	u32 item_size = btrfs_item_size_nr(eb, slot);
4844 	u32 cur_offset = 0;
4845 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4846 
4847 	search_path = btrfs_alloc_path();
4848 	if (!search_path)
4849 		return -ENOMEM;
4850 	search_path->search_commit_root = 1;
4851 	search_path->skip_locking = 1;
4852 
4853 	while (cur_offset < item_size) {
4854 		u64 parent;
4855 		u32 this_name_len;
4856 		u32 this_len;
4857 		unsigned long name_ptr;
4858 		struct btrfs_dir_item *di;
4859 
4860 		if (key->type == BTRFS_INODE_REF_KEY) {
4861 			struct btrfs_inode_ref *iref;
4862 
4863 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4864 			parent = key->offset;
4865 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4866 			name_ptr = (unsigned long)(iref + 1);
4867 			this_len = sizeof(*iref) + this_name_len;
4868 		} else {
4869 			struct btrfs_inode_extref *extref;
4870 
4871 			extref = (struct btrfs_inode_extref *)(ptr +
4872 							       cur_offset);
4873 			parent = btrfs_inode_extref_parent(eb, extref);
4874 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4875 			name_ptr = (unsigned long)&extref->name;
4876 			this_len = sizeof(*extref) + this_name_len;
4877 		}
4878 
4879 		if (this_name_len > name_len) {
4880 			char *new_name;
4881 
4882 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4883 			if (!new_name) {
4884 				ret = -ENOMEM;
4885 				goto out;
4886 			}
4887 			name_len = this_name_len;
4888 			name = new_name;
4889 		}
4890 
4891 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4892 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4893 				parent, name, this_name_len, 0);
4894 		if (di && !IS_ERR(di)) {
4895 			struct btrfs_key di_key;
4896 
4897 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4898 						  di, &di_key);
4899 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4900 				if (di_key.objectid != key->objectid) {
4901 					ret = 1;
4902 					*other_ino = di_key.objectid;
4903 					*other_parent = parent;
4904 				} else {
4905 					ret = 0;
4906 				}
4907 			} else {
4908 				ret = -EAGAIN;
4909 			}
4910 			goto out;
4911 		} else if (IS_ERR(di)) {
4912 			ret = PTR_ERR(di);
4913 			goto out;
4914 		}
4915 		btrfs_release_path(search_path);
4916 
4917 		cur_offset += this_len;
4918 	}
4919 	ret = 0;
4920 out:
4921 	btrfs_free_path(search_path);
4922 	kfree(name);
4923 	return ret;
4924 }
4925 
4926 struct btrfs_ino_list {
4927 	u64 ino;
4928 	u64 parent;
4929 	struct list_head list;
4930 };
4931 
4932 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4933 				  struct btrfs_root *root,
4934 				  struct btrfs_path *path,
4935 				  struct btrfs_log_ctx *ctx,
4936 				  u64 ino, u64 parent)
4937 {
4938 	struct btrfs_ino_list *ino_elem;
4939 	LIST_HEAD(inode_list);
4940 	int ret = 0;
4941 
4942 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4943 	if (!ino_elem)
4944 		return -ENOMEM;
4945 	ino_elem->ino = ino;
4946 	ino_elem->parent = parent;
4947 	list_add_tail(&ino_elem->list, &inode_list);
4948 
4949 	while (!list_empty(&inode_list)) {
4950 		struct btrfs_fs_info *fs_info = root->fs_info;
4951 		struct btrfs_key key;
4952 		struct inode *inode;
4953 
4954 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4955 					    list);
4956 		ino = ino_elem->ino;
4957 		parent = ino_elem->parent;
4958 		list_del(&ino_elem->list);
4959 		kfree(ino_elem);
4960 		if (ret)
4961 			continue;
4962 
4963 		btrfs_release_path(path);
4964 
4965 		key.objectid = ino;
4966 		key.type = BTRFS_INODE_ITEM_KEY;
4967 		key.offset = 0;
4968 		inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4969 		/*
4970 		 * If the other inode that had a conflicting dir entry was
4971 		 * deleted in the current transaction, we need to log its parent
4972 		 * directory.
4973 		 */
4974 		if (IS_ERR(inode)) {
4975 			ret = PTR_ERR(inode);
4976 			if (ret == -ENOENT) {
4977 				key.objectid = parent;
4978 				inode = btrfs_iget(fs_info->sb, &key, root,
4979 						   NULL);
4980 				if (IS_ERR(inode)) {
4981 					ret = PTR_ERR(inode);
4982 				} else {
4983 					ret = btrfs_log_inode(trans, root,
4984 						      BTRFS_I(inode),
4985 						      LOG_OTHER_INODE_ALL,
4986 						      0, LLONG_MAX, ctx);
4987 					btrfs_add_delayed_iput(inode);
4988 				}
4989 			}
4990 			continue;
4991 		}
4992 		/*
4993 		 * We are safe logging the other inode without acquiring its
4994 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4995 		 * are safe against concurrent renames of the other inode as
4996 		 * well because during a rename we pin the log and update the
4997 		 * log with the new name before we unpin it.
4998 		 */
4999 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5000 				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
5001 		if (ret) {
5002 			btrfs_add_delayed_iput(inode);
5003 			continue;
5004 		}
5005 
5006 		key.objectid = ino;
5007 		key.type = BTRFS_INODE_REF_KEY;
5008 		key.offset = 0;
5009 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5010 		if (ret < 0) {
5011 			btrfs_add_delayed_iput(inode);
5012 			continue;
5013 		}
5014 
5015 		while (true) {
5016 			struct extent_buffer *leaf = path->nodes[0];
5017 			int slot = path->slots[0];
5018 			u64 other_ino = 0;
5019 			u64 other_parent = 0;
5020 
5021 			if (slot >= btrfs_header_nritems(leaf)) {
5022 				ret = btrfs_next_leaf(root, path);
5023 				if (ret < 0) {
5024 					break;
5025 				} else if (ret > 0) {
5026 					ret = 0;
5027 					break;
5028 				}
5029 				continue;
5030 			}
5031 
5032 			btrfs_item_key_to_cpu(leaf, &key, slot);
5033 			if (key.objectid != ino ||
5034 			    (key.type != BTRFS_INODE_REF_KEY &&
5035 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5036 				ret = 0;
5037 				break;
5038 			}
5039 
5040 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5041 					BTRFS_I(inode), &other_ino,
5042 					&other_parent);
5043 			if (ret < 0)
5044 				break;
5045 			if (ret > 0) {
5046 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5047 				if (!ino_elem) {
5048 					ret = -ENOMEM;
5049 					break;
5050 				}
5051 				ino_elem->ino = other_ino;
5052 				ino_elem->parent = other_parent;
5053 				list_add_tail(&ino_elem->list, &inode_list);
5054 				ret = 0;
5055 			}
5056 			path->slots[0]++;
5057 		}
5058 		btrfs_add_delayed_iput(inode);
5059 	}
5060 
5061 	return ret;
5062 }
5063 
5064 /* log a single inode in the tree log.
5065  * At least one parent directory for this inode must exist in the tree
5066  * or be logged already.
5067  *
5068  * Any items from this inode changed by the current transaction are copied
5069  * to the log tree.  An extra reference is taken on any extents in this
5070  * file, allowing us to avoid a whole pile of corner cases around logging
5071  * blocks that have been removed from the tree.
5072  *
5073  * See LOG_INODE_ALL and related defines for a description of what inode_only
5074  * does.
5075  *
5076  * This handles both files and directories.
5077  */
5078 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5079 			   struct btrfs_root *root, struct btrfs_inode *inode,
5080 			   int inode_only,
5081 			   const loff_t start,
5082 			   const loff_t end,
5083 			   struct btrfs_log_ctx *ctx)
5084 {
5085 	struct btrfs_fs_info *fs_info = root->fs_info;
5086 	struct btrfs_path *path;
5087 	struct btrfs_path *dst_path;
5088 	struct btrfs_key min_key;
5089 	struct btrfs_key max_key;
5090 	struct btrfs_root *log = root->log_root;
5091 	u64 last_extent = 0;
5092 	int err = 0;
5093 	int ret;
5094 	int nritems;
5095 	int ins_start_slot = 0;
5096 	int ins_nr;
5097 	bool fast_search = false;
5098 	u64 ino = btrfs_ino(inode);
5099 	struct extent_map_tree *em_tree = &inode->extent_tree;
5100 	u64 logged_isize = 0;
5101 	bool need_log_inode_item = true;
5102 	bool xattrs_logged = false;
5103 	bool recursive_logging = false;
5104 
5105 	path = btrfs_alloc_path();
5106 	if (!path)
5107 		return -ENOMEM;
5108 	dst_path = btrfs_alloc_path();
5109 	if (!dst_path) {
5110 		btrfs_free_path(path);
5111 		return -ENOMEM;
5112 	}
5113 
5114 	min_key.objectid = ino;
5115 	min_key.type = BTRFS_INODE_ITEM_KEY;
5116 	min_key.offset = 0;
5117 
5118 	max_key.objectid = ino;
5119 
5120 
5121 	/* today the code can only do partial logging of directories */
5122 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5123 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5124 		       &inode->runtime_flags) &&
5125 	     inode_only >= LOG_INODE_EXISTS))
5126 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5127 	else
5128 		max_key.type = (u8)-1;
5129 	max_key.offset = (u64)-1;
5130 
5131 	/*
5132 	 * Only run delayed items if we are a dir or a new file.
5133 	 * Otherwise commit the delayed inode only, which is needed in
5134 	 * order for the log replay code to mark inodes for link count
5135 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5136 	 */
5137 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5138 	    inode->generation > fs_info->last_trans_committed)
5139 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5140 	else
5141 		ret = btrfs_commit_inode_delayed_inode(inode);
5142 
5143 	if (ret) {
5144 		btrfs_free_path(path);
5145 		btrfs_free_path(dst_path);
5146 		return ret;
5147 	}
5148 
5149 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5150 		recursive_logging = true;
5151 		if (inode_only == LOG_OTHER_INODE)
5152 			inode_only = LOG_INODE_EXISTS;
5153 		else
5154 			inode_only = LOG_INODE_ALL;
5155 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5156 	} else {
5157 		mutex_lock(&inode->log_mutex);
5158 	}
5159 
5160 	/*
5161 	 * a brute force approach to making sure we get the most uptodate
5162 	 * copies of everything.
5163 	 */
5164 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5165 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5166 
5167 		if (inode_only == LOG_INODE_EXISTS)
5168 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5169 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5170 	} else {
5171 		if (inode_only == LOG_INODE_EXISTS) {
5172 			/*
5173 			 * Make sure the new inode item we write to the log has
5174 			 * the same isize as the current one (if it exists).
5175 			 * This is necessary to prevent data loss after log
5176 			 * replay, and also to prevent doing a wrong expanding
5177 			 * truncate - for e.g. create file, write 4K into offset
5178 			 * 0, fsync, write 4K into offset 4096, add hard link,
5179 			 * fsync some other file (to sync log), power fail - if
5180 			 * we use the inode's current i_size, after log replay
5181 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5182 			 * (zeroes), as if an expanding truncate happened,
5183 			 * instead of getting a file of 4Kb only.
5184 			 */
5185 			err = logged_inode_size(log, inode, path, &logged_isize);
5186 			if (err)
5187 				goto out_unlock;
5188 		}
5189 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5190 			     &inode->runtime_flags)) {
5191 			if (inode_only == LOG_INODE_EXISTS) {
5192 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5193 				ret = drop_objectid_items(trans, log, path, ino,
5194 							  max_key.type);
5195 			} else {
5196 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5197 					  &inode->runtime_flags);
5198 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5199 					  &inode->runtime_flags);
5200 				while(1) {
5201 					ret = btrfs_truncate_inode_items(trans,
5202 						log, &inode->vfs_inode, 0, 0);
5203 					if (ret != -EAGAIN)
5204 						break;
5205 				}
5206 			}
5207 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5208 					      &inode->runtime_flags) ||
5209 			   inode_only == LOG_INODE_EXISTS) {
5210 			if (inode_only == LOG_INODE_ALL)
5211 				fast_search = true;
5212 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5213 			ret = drop_objectid_items(trans, log, path, ino,
5214 						  max_key.type);
5215 		} else {
5216 			if (inode_only == LOG_INODE_ALL)
5217 				fast_search = true;
5218 			goto log_extents;
5219 		}
5220 
5221 	}
5222 	if (ret) {
5223 		err = ret;
5224 		goto out_unlock;
5225 	}
5226 
5227 	while (1) {
5228 		ins_nr = 0;
5229 		ret = btrfs_search_forward(root, &min_key,
5230 					   path, trans->transid);
5231 		if (ret < 0) {
5232 			err = ret;
5233 			goto out_unlock;
5234 		}
5235 		if (ret != 0)
5236 			break;
5237 again:
5238 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
5239 		if (min_key.objectid != ino)
5240 			break;
5241 		if (min_key.type > max_key.type)
5242 			break;
5243 
5244 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
5245 			need_log_inode_item = false;
5246 
5247 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
5248 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5249 		    inode->generation == trans->transid &&
5250 		    !recursive_logging) {
5251 			u64 other_ino = 0;
5252 			u64 other_parent = 0;
5253 
5254 			ret = btrfs_check_ref_name_override(path->nodes[0],
5255 					path->slots[0], &min_key, inode,
5256 					&other_ino, &other_parent);
5257 			if (ret < 0) {
5258 				err = ret;
5259 				goto out_unlock;
5260 			} else if (ret > 0 && ctx &&
5261 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5262 				if (ins_nr > 0) {
5263 					ins_nr++;
5264 				} else {
5265 					ins_nr = 1;
5266 					ins_start_slot = path->slots[0];
5267 				}
5268 				ret = copy_items(trans, inode, dst_path, path,
5269 						 &last_extent, ins_start_slot,
5270 						 ins_nr, inode_only,
5271 						 logged_isize);
5272 				if (ret < 0) {
5273 					err = ret;
5274 					goto out_unlock;
5275 				}
5276 				ins_nr = 0;
5277 
5278 				err = log_conflicting_inodes(trans, root, path,
5279 						ctx, other_ino, other_parent);
5280 				if (err)
5281 					goto out_unlock;
5282 				btrfs_release_path(path);
5283 				goto next_key;
5284 			}
5285 		}
5286 
5287 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5288 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5289 			if (ins_nr == 0)
5290 				goto next_slot;
5291 			ret = copy_items(trans, inode, dst_path, path,
5292 					 &last_extent, ins_start_slot,
5293 					 ins_nr, inode_only, logged_isize);
5294 			if (ret < 0) {
5295 				err = ret;
5296 				goto out_unlock;
5297 			}
5298 			ins_nr = 0;
5299 			if (ret) {
5300 				btrfs_release_path(path);
5301 				continue;
5302 			}
5303 			goto next_slot;
5304 		}
5305 
5306 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5307 			ins_nr++;
5308 			goto next_slot;
5309 		} else if (!ins_nr) {
5310 			ins_start_slot = path->slots[0];
5311 			ins_nr = 1;
5312 			goto next_slot;
5313 		}
5314 
5315 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5316 				 ins_start_slot, ins_nr, inode_only,
5317 				 logged_isize);
5318 		if (ret < 0) {
5319 			err = ret;
5320 			goto out_unlock;
5321 		}
5322 		if (ret) {
5323 			ins_nr = 0;
5324 			btrfs_release_path(path);
5325 			continue;
5326 		}
5327 		ins_nr = 1;
5328 		ins_start_slot = path->slots[0];
5329 next_slot:
5330 
5331 		nritems = btrfs_header_nritems(path->nodes[0]);
5332 		path->slots[0]++;
5333 		if (path->slots[0] < nritems) {
5334 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5335 					      path->slots[0]);
5336 			goto again;
5337 		}
5338 		if (ins_nr) {
5339 			ret = copy_items(trans, inode, dst_path, path,
5340 					 &last_extent, ins_start_slot,
5341 					 ins_nr, inode_only, logged_isize);
5342 			if (ret < 0) {
5343 				err = ret;
5344 				goto out_unlock;
5345 			}
5346 			ret = 0;
5347 			ins_nr = 0;
5348 		}
5349 		btrfs_release_path(path);
5350 next_key:
5351 		if (min_key.offset < (u64)-1) {
5352 			min_key.offset++;
5353 		} else if (min_key.type < max_key.type) {
5354 			min_key.type++;
5355 			min_key.offset = 0;
5356 		} else {
5357 			break;
5358 		}
5359 	}
5360 	if (ins_nr) {
5361 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5362 				 ins_start_slot, ins_nr, inode_only,
5363 				 logged_isize);
5364 		if (ret < 0) {
5365 			err = ret;
5366 			goto out_unlock;
5367 		}
5368 		ret = 0;
5369 		ins_nr = 0;
5370 	}
5371 
5372 	btrfs_release_path(path);
5373 	btrfs_release_path(dst_path);
5374 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5375 	if (err)
5376 		goto out_unlock;
5377 	xattrs_logged = true;
5378 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5379 		btrfs_release_path(path);
5380 		btrfs_release_path(dst_path);
5381 		err = btrfs_log_trailing_hole(trans, root, inode, path);
5382 		if (err)
5383 			goto out_unlock;
5384 	}
5385 log_extents:
5386 	btrfs_release_path(path);
5387 	btrfs_release_path(dst_path);
5388 	if (need_log_inode_item) {
5389 		err = log_inode_item(trans, log, dst_path, inode);
5390 		if (!err && !xattrs_logged) {
5391 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5392 						   dst_path);
5393 			btrfs_release_path(path);
5394 		}
5395 		if (err)
5396 			goto out_unlock;
5397 	}
5398 	if (fast_search) {
5399 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5400 						ctx, start, end);
5401 		if (ret) {
5402 			err = ret;
5403 			goto out_unlock;
5404 		}
5405 	} else if (inode_only == LOG_INODE_ALL) {
5406 		struct extent_map *em, *n;
5407 
5408 		write_lock(&em_tree->lock);
5409 		/*
5410 		 * We can't just remove every em if we're called for a ranged
5411 		 * fsync - that is, one that doesn't cover the whole possible
5412 		 * file range (0 to LLONG_MAX). This is because we can have
5413 		 * em's that fall outside the range we're logging and therefore
5414 		 * their ordered operations haven't completed yet
5415 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5416 		 * didn't get their respective file extent item in the fs/subvol
5417 		 * tree yet, and need to let the next fast fsync (one which
5418 		 * consults the list of modified extent maps) find the em so
5419 		 * that it logs a matching file extent item and waits for the
5420 		 * respective ordered operation to complete (if it's still
5421 		 * running).
5422 		 *
5423 		 * Removing every em outside the range we're logging would make
5424 		 * the next fast fsync not log their matching file extent items,
5425 		 * therefore making us lose data after a log replay.
5426 		 */
5427 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5428 					 list) {
5429 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5430 
5431 			if (em->mod_start >= start && mod_end <= end)
5432 				list_del_init(&em->list);
5433 		}
5434 		write_unlock(&em_tree->lock);
5435 	}
5436 
5437 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5438 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5439 					ctx);
5440 		if (ret) {
5441 			err = ret;
5442 			goto out_unlock;
5443 		}
5444 	}
5445 
5446 	/*
5447 	 * Don't update last_log_commit if we logged that an inode exists after
5448 	 * it was loaded to memory (full_sync bit set).
5449 	 * This is to prevent data loss when we do a write to the inode, then
5450 	 * the inode gets evicted after all delalloc was flushed, then we log
5451 	 * it exists (due to a rename for example) and then fsync it. This last
5452 	 * fsync would do nothing (not logging the extents previously written).
5453 	 */
5454 	spin_lock(&inode->lock);
5455 	inode->logged_trans = trans->transid;
5456 	if (inode_only != LOG_INODE_EXISTS ||
5457 	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5458 		inode->last_log_commit = inode->last_sub_trans;
5459 	spin_unlock(&inode->lock);
5460 out_unlock:
5461 	mutex_unlock(&inode->log_mutex);
5462 
5463 	btrfs_free_path(path);
5464 	btrfs_free_path(dst_path);
5465 	return err;
5466 }
5467 
5468 /*
5469  * Check if we must fallback to a transaction commit when logging an inode.
5470  * This must be called after logging the inode and is used only in the context
5471  * when fsyncing an inode requires the need to log some other inode - in which
5472  * case we can't lock the i_mutex of each other inode we need to log as that
5473  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5474  * log inodes up or down in the hierarchy) or rename operations for example. So
5475  * we take the log_mutex of the inode after we have logged it and then check for
5476  * its last_unlink_trans value - this is safe because any task setting
5477  * last_unlink_trans must take the log_mutex and it must do this before it does
5478  * the actual unlink operation, so if we do this check before a concurrent task
5479  * sets last_unlink_trans it means we've logged a consistent version/state of
5480  * all the inode items, otherwise we are not sure and must do a transaction
5481  * commit (the concurrent task might have only updated last_unlink_trans before
5482  * we logged the inode or it might have also done the unlink).
5483  */
5484 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5485 					  struct btrfs_inode *inode)
5486 {
5487 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5488 	bool ret = false;
5489 
5490 	mutex_lock(&inode->log_mutex);
5491 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5492 		/*
5493 		 * Make sure any commits to the log are forced to be full
5494 		 * commits.
5495 		 */
5496 		btrfs_set_log_full_commit(trans);
5497 		ret = true;
5498 	}
5499 	mutex_unlock(&inode->log_mutex);
5500 
5501 	return ret;
5502 }
5503 
5504 /*
5505  * follow the dentry parent pointers up the chain and see if any
5506  * of the directories in it require a full commit before they can
5507  * be logged.  Returns zero if nothing special needs to be done or 1 if
5508  * a full commit is required.
5509  */
5510 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5511 					       struct btrfs_inode *inode,
5512 					       struct dentry *parent,
5513 					       struct super_block *sb,
5514 					       u64 last_committed)
5515 {
5516 	int ret = 0;
5517 	struct dentry *old_parent = NULL;
5518 
5519 	/*
5520 	 * for regular files, if its inode is already on disk, we don't
5521 	 * have to worry about the parents at all.  This is because
5522 	 * we can use the last_unlink_trans field to record renames
5523 	 * and other fun in this file.
5524 	 */
5525 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5526 	    inode->generation <= last_committed &&
5527 	    inode->last_unlink_trans <= last_committed)
5528 		goto out;
5529 
5530 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5531 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5532 			goto out;
5533 		inode = BTRFS_I(d_inode(parent));
5534 	}
5535 
5536 	while (1) {
5537 		if (btrfs_must_commit_transaction(trans, inode)) {
5538 			ret = 1;
5539 			break;
5540 		}
5541 
5542 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5543 			break;
5544 
5545 		if (IS_ROOT(parent)) {
5546 			inode = BTRFS_I(d_inode(parent));
5547 			if (btrfs_must_commit_transaction(trans, inode))
5548 				ret = 1;
5549 			break;
5550 		}
5551 
5552 		parent = dget_parent(parent);
5553 		dput(old_parent);
5554 		old_parent = parent;
5555 		inode = BTRFS_I(d_inode(parent));
5556 
5557 	}
5558 	dput(old_parent);
5559 out:
5560 	return ret;
5561 }
5562 
5563 struct btrfs_dir_list {
5564 	u64 ino;
5565 	struct list_head list;
5566 };
5567 
5568 /*
5569  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5570  * details about the why it is needed.
5571  * This is a recursive operation - if an existing dentry corresponds to a
5572  * directory, that directory's new entries are logged too (same behaviour as
5573  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5574  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5575  * complains about the following circular lock dependency / possible deadlock:
5576  *
5577  *        CPU0                                        CPU1
5578  *        ----                                        ----
5579  * lock(&type->i_mutex_dir_key#3/2);
5580  *                                            lock(sb_internal#2);
5581  *                                            lock(&type->i_mutex_dir_key#3/2);
5582  * lock(&sb->s_type->i_mutex_key#14);
5583  *
5584  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5585  * sb_start_intwrite() in btrfs_start_transaction().
5586  * Not locking i_mutex of the inodes is still safe because:
5587  *
5588  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5589  *    that while logging the inode new references (names) are added or removed
5590  *    from the inode, leaving the logged inode item with a link count that does
5591  *    not match the number of logged inode reference items. This is fine because
5592  *    at log replay time we compute the real number of links and correct the
5593  *    link count in the inode item (see replay_one_buffer() and
5594  *    link_to_fixup_dir());
5595  *
5596  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5597  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5598  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5599  *    has a size that doesn't match the sum of the lengths of all the logged
5600  *    names. This does not result in a problem because if a dir_item key is
5601  *    logged but its matching dir_index key is not logged, at log replay time we
5602  *    don't use it to replay the respective name (see replay_one_name()). On the
5603  *    other hand if only the dir_index key ends up being logged, the respective
5604  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5605  *    keys created (see replay_one_name()).
5606  *    The directory's inode item with a wrong i_size is not a problem as well,
5607  *    since we don't use it at log replay time to set the i_size in the inode
5608  *    item of the fs/subvol tree (see overwrite_item()).
5609  */
5610 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5611 				struct btrfs_root *root,
5612 				struct btrfs_inode *start_inode,
5613 				struct btrfs_log_ctx *ctx)
5614 {
5615 	struct btrfs_fs_info *fs_info = root->fs_info;
5616 	struct btrfs_root *log = root->log_root;
5617 	struct btrfs_path *path;
5618 	LIST_HEAD(dir_list);
5619 	struct btrfs_dir_list *dir_elem;
5620 	int ret = 0;
5621 
5622 	path = btrfs_alloc_path();
5623 	if (!path)
5624 		return -ENOMEM;
5625 
5626 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5627 	if (!dir_elem) {
5628 		btrfs_free_path(path);
5629 		return -ENOMEM;
5630 	}
5631 	dir_elem->ino = btrfs_ino(start_inode);
5632 	list_add_tail(&dir_elem->list, &dir_list);
5633 
5634 	while (!list_empty(&dir_list)) {
5635 		struct extent_buffer *leaf;
5636 		struct btrfs_key min_key;
5637 		int nritems;
5638 		int i;
5639 
5640 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5641 					    list);
5642 		if (ret)
5643 			goto next_dir_inode;
5644 
5645 		min_key.objectid = dir_elem->ino;
5646 		min_key.type = BTRFS_DIR_ITEM_KEY;
5647 		min_key.offset = 0;
5648 again:
5649 		btrfs_release_path(path);
5650 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5651 		if (ret < 0) {
5652 			goto next_dir_inode;
5653 		} else if (ret > 0) {
5654 			ret = 0;
5655 			goto next_dir_inode;
5656 		}
5657 
5658 process_leaf:
5659 		leaf = path->nodes[0];
5660 		nritems = btrfs_header_nritems(leaf);
5661 		for (i = path->slots[0]; i < nritems; i++) {
5662 			struct btrfs_dir_item *di;
5663 			struct btrfs_key di_key;
5664 			struct inode *di_inode;
5665 			struct btrfs_dir_list *new_dir_elem;
5666 			int log_mode = LOG_INODE_EXISTS;
5667 			int type;
5668 
5669 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5670 			if (min_key.objectid != dir_elem->ino ||
5671 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5672 				goto next_dir_inode;
5673 
5674 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5675 			type = btrfs_dir_type(leaf, di);
5676 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5677 			    type != BTRFS_FT_DIR)
5678 				continue;
5679 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5680 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5681 				continue;
5682 
5683 			btrfs_release_path(path);
5684 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5685 			if (IS_ERR(di_inode)) {
5686 				ret = PTR_ERR(di_inode);
5687 				goto next_dir_inode;
5688 			}
5689 
5690 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5691 				btrfs_add_delayed_iput(di_inode);
5692 				break;
5693 			}
5694 
5695 			ctx->log_new_dentries = false;
5696 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5697 				log_mode = LOG_INODE_ALL;
5698 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5699 					      log_mode, 0, LLONG_MAX, ctx);
5700 			if (!ret &&
5701 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5702 				ret = 1;
5703 			btrfs_add_delayed_iput(di_inode);
5704 			if (ret)
5705 				goto next_dir_inode;
5706 			if (ctx->log_new_dentries) {
5707 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5708 						       GFP_NOFS);
5709 				if (!new_dir_elem) {
5710 					ret = -ENOMEM;
5711 					goto next_dir_inode;
5712 				}
5713 				new_dir_elem->ino = di_key.objectid;
5714 				list_add_tail(&new_dir_elem->list, &dir_list);
5715 			}
5716 			break;
5717 		}
5718 		if (i == nritems) {
5719 			ret = btrfs_next_leaf(log, path);
5720 			if (ret < 0) {
5721 				goto next_dir_inode;
5722 			} else if (ret > 0) {
5723 				ret = 0;
5724 				goto next_dir_inode;
5725 			}
5726 			goto process_leaf;
5727 		}
5728 		if (min_key.offset < (u64)-1) {
5729 			min_key.offset++;
5730 			goto again;
5731 		}
5732 next_dir_inode:
5733 		list_del(&dir_elem->list);
5734 		kfree(dir_elem);
5735 	}
5736 
5737 	btrfs_free_path(path);
5738 	return ret;
5739 }
5740 
5741 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5742 				 struct btrfs_inode *inode,
5743 				 struct btrfs_log_ctx *ctx)
5744 {
5745 	struct btrfs_fs_info *fs_info = trans->fs_info;
5746 	int ret;
5747 	struct btrfs_path *path;
5748 	struct btrfs_key key;
5749 	struct btrfs_root *root = inode->root;
5750 	const u64 ino = btrfs_ino(inode);
5751 
5752 	path = btrfs_alloc_path();
5753 	if (!path)
5754 		return -ENOMEM;
5755 	path->skip_locking = 1;
5756 	path->search_commit_root = 1;
5757 
5758 	key.objectid = ino;
5759 	key.type = BTRFS_INODE_REF_KEY;
5760 	key.offset = 0;
5761 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5762 	if (ret < 0)
5763 		goto out;
5764 
5765 	while (true) {
5766 		struct extent_buffer *leaf = path->nodes[0];
5767 		int slot = path->slots[0];
5768 		u32 cur_offset = 0;
5769 		u32 item_size;
5770 		unsigned long ptr;
5771 
5772 		if (slot >= btrfs_header_nritems(leaf)) {
5773 			ret = btrfs_next_leaf(root, path);
5774 			if (ret < 0)
5775 				goto out;
5776 			else if (ret > 0)
5777 				break;
5778 			continue;
5779 		}
5780 
5781 		btrfs_item_key_to_cpu(leaf, &key, slot);
5782 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5783 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5784 			break;
5785 
5786 		item_size = btrfs_item_size_nr(leaf, slot);
5787 		ptr = btrfs_item_ptr_offset(leaf, slot);
5788 		while (cur_offset < item_size) {
5789 			struct btrfs_key inode_key;
5790 			struct inode *dir_inode;
5791 
5792 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5793 			inode_key.offset = 0;
5794 
5795 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5796 				struct btrfs_inode_extref *extref;
5797 
5798 				extref = (struct btrfs_inode_extref *)
5799 					(ptr + cur_offset);
5800 				inode_key.objectid = btrfs_inode_extref_parent(
5801 					leaf, extref);
5802 				cur_offset += sizeof(*extref);
5803 				cur_offset += btrfs_inode_extref_name_len(leaf,
5804 					extref);
5805 			} else {
5806 				inode_key.objectid = key.offset;
5807 				cur_offset = item_size;
5808 			}
5809 
5810 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5811 					       root, NULL);
5812 			/*
5813 			 * If the parent inode was deleted, return an error to
5814 			 * fallback to a transaction commit. This is to prevent
5815 			 * getting an inode that was moved from one parent A to
5816 			 * a parent B, got its former parent A deleted and then
5817 			 * it got fsync'ed, from existing at both parents after
5818 			 * a log replay (and the old parent still existing).
5819 			 * Example:
5820 			 *
5821 			 * mkdir /mnt/A
5822 			 * mkdir /mnt/B
5823 			 * touch /mnt/B/bar
5824 			 * sync
5825 			 * mv /mnt/B/bar /mnt/A/bar
5826 			 * mv -T /mnt/A /mnt/B
5827 			 * fsync /mnt/B/bar
5828 			 * <power fail>
5829 			 *
5830 			 * If we ignore the old parent B which got deleted,
5831 			 * after a log replay we would have file bar linked
5832 			 * at both parents and the old parent B would still
5833 			 * exist.
5834 			 */
5835 			if (IS_ERR(dir_inode)) {
5836 				ret = PTR_ERR(dir_inode);
5837 				goto out;
5838 			}
5839 
5840 			if (ctx)
5841 				ctx->log_new_dentries = false;
5842 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5843 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5844 			if (!ret &&
5845 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5846 				ret = 1;
5847 			if (!ret && ctx && ctx->log_new_dentries)
5848 				ret = log_new_dir_dentries(trans, root,
5849 						   BTRFS_I(dir_inode), ctx);
5850 			btrfs_add_delayed_iput(dir_inode);
5851 			if (ret)
5852 				goto out;
5853 		}
5854 		path->slots[0]++;
5855 	}
5856 	ret = 0;
5857 out:
5858 	btrfs_free_path(path);
5859 	return ret;
5860 }
5861 
5862 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5863 			     struct btrfs_root *root,
5864 			     struct btrfs_path *path,
5865 			     struct btrfs_log_ctx *ctx)
5866 {
5867 	struct btrfs_key found_key;
5868 
5869 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5870 
5871 	while (true) {
5872 		struct btrfs_fs_info *fs_info = root->fs_info;
5873 		const u64 last_committed = fs_info->last_trans_committed;
5874 		struct extent_buffer *leaf = path->nodes[0];
5875 		int slot = path->slots[0];
5876 		struct btrfs_key search_key;
5877 		struct inode *inode;
5878 		int ret = 0;
5879 
5880 		btrfs_release_path(path);
5881 
5882 		search_key.objectid = found_key.offset;
5883 		search_key.type = BTRFS_INODE_ITEM_KEY;
5884 		search_key.offset = 0;
5885 		inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5886 		if (IS_ERR(inode))
5887 			return PTR_ERR(inode);
5888 
5889 		if (BTRFS_I(inode)->generation > last_committed)
5890 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5891 					      LOG_INODE_EXISTS,
5892 					      0, LLONG_MAX, ctx);
5893 		btrfs_add_delayed_iput(inode);
5894 		if (ret)
5895 			return ret;
5896 
5897 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5898 			break;
5899 
5900 		search_key.type = BTRFS_INODE_REF_KEY;
5901 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5902 		if (ret < 0)
5903 			return ret;
5904 
5905 		leaf = path->nodes[0];
5906 		slot = path->slots[0];
5907 		if (slot >= btrfs_header_nritems(leaf)) {
5908 			ret = btrfs_next_leaf(root, path);
5909 			if (ret < 0)
5910 				return ret;
5911 			else if (ret > 0)
5912 				return -ENOENT;
5913 			leaf = path->nodes[0];
5914 			slot = path->slots[0];
5915 		}
5916 
5917 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5918 		if (found_key.objectid != search_key.objectid ||
5919 		    found_key.type != BTRFS_INODE_REF_KEY)
5920 			return -ENOENT;
5921 	}
5922 	return 0;
5923 }
5924 
5925 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5926 				  struct btrfs_inode *inode,
5927 				  struct dentry *parent,
5928 				  struct btrfs_log_ctx *ctx)
5929 {
5930 	struct btrfs_root *root = inode->root;
5931 	struct btrfs_fs_info *fs_info = root->fs_info;
5932 	struct dentry *old_parent = NULL;
5933 	struct super_block *sb = inode->vfs_inode.i_sb;
5934 	int ret = 0;
5935 
5936 	while (true) {
5937 		if (!parent || d_really_is_negative(parent) ||
5938 		    sb != parent->d_sb)
5939 			break;
5940 
5941 		inode = BTRFS_I(d_inode(parent));
5942 		if (root != inode->root)
5943 			break;
5944 
5945 		if (inode->generation > fs_info->last_trans_committed) {
5946 			ret = btrfs_log_inode(trans, root, inode,
5947 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5948 			if (ret)
5949 				break;
5950 		}
5951 		if (IS_ROOT(parent))
5952 			break;
5953 
5954 		parent = dget_parent(parent);
5955 		dput(old_parent);
5956 		old_parent = parent;
5957 	}
5958 	dput(old_parent);
5959 
5960 	return ret;
5961 }
5962 
5963 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5964 				 struct btrfs_inode *inode,
5965 				 struct dentry *parent,
5966 				 struct btrfs_log_ctx *ctx)
5967 {
5968 	struct btrfs_root *root = inode->root;
5969 	const u64 ino = btrfs_ino(inode);
5970 	struct btrfs_path *path;
5971 	struct btrfs_key search_key;
5972 	int ret;
5973 
5974 	/*
5975 	 * For a single hard link case, go through a fast path that does not
5976 	 * need to iterate the fs/subvolume tree.
5977 	 */
5978 	if (inode->vfs_inode.i_nlink < 2)
5979 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5980 
5981 	path = btrfs_alloc_path();
5982 	if (!path)
5983 		return -ENOMEM;
5984 
5985 	search_key.objectid = ino;
5986 	search_key.type = BTRFS_INODE_REF_KEY;
5987 	search_key.offset = 0;
5988 again:
5989 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5990 	if (ret < 0)
5991 		goto out;
5992 	if (ret == 0)
5993 		path->slots[0]++;
5994 
5995 	while (true) {
5996 		struct extent_buffer *leaf = path->nodes[0];
5997 		int slot = path->slots[0];
5998 		struct btrfs_key found_key;
5999 
6000 		if (slot >= btrfs_header_nritems(leaf)) {
6001 			ret = btrfs_next_leaf(root, path);
6002 			if (ret < 0)
6003 				goto out;
6004 			else if (ret > 0)
6005 				break;
6006 			continue;
6007 		}
6008 
6009 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6010 		if (found_key.objectid != ino ||
6011 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6012 			break;
6013 
6014 		/*
6015 		 * Don't deal with extended references because they are rare
6016 		 * cases and too complex to deal with (we would need to keep
6017 		 * track of which subitem we are processing for each item in
6018 		 * this loop, etc). So just return some error to fallback to
6019 		 * a transaction commit.
6020 		 */
6021 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6022 			ret = -EMLINK;
6023 			goto out;
6024 		}
6025 
6026 		/*
6027 		 * Logging ancestors needs to do more searches on the fs/subvol
6028 		 * tree, so it releases the path as needed to avoid deadlocks.
6029 		 * Keep track of the last inode ref key and resume from that key
6030 		 * after logging all new ancestors for the current hard link.
6031 		 */
6032 		memcpy(&search_key, &found_key, sizeof(search_key));
6033 
6034 		ret = log_new_ancestors(trans, root, path, ctx);
6035 		if (ret)
6036 			goto out;
6037 		btrfs_release_path(path);
6038 		goto again;
6039 	}
6040 	ret = 0;
6041 out:
6042 	btrfs_free_path(path);
6043 	return ret;
6044 }
6045 
6046 /*
6047  * helper function around btrfs_log_inode to make sure newly created
6048  * parent directories also end up in the log.  A minimal inode and backref
6049  * only logging is done of any parent directories that are older than
6050  * the last committed transaction
6051  */
6052 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6053 				  struct btrfs_inode *inode,
6054 				  struct dentry *parent,
6055 				  const loff_t start,
6056 				  const loff_t end,
6057 				  int inode_only,
6058 				  struct btrfs_log_ctx *ctx)
6059 {
6060 	struct btrfs_root *root = inode->root;
6061 	struct btrfs_fs_info *fs_info = root->fs_info;
6062 	struct super_block *sb;
6063 	int ret = 0;
6064 	u64 last_committed = fs_info->last_trans_committed;
6065 	bool log_dentries = false;
6066 
6067 	sb = inode->vfs_inode.i_sb;
6068 
6069 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6070 		ret = 1;
6071 		goto end_no_trans;
6072 	}
6073 
6074 	/*
6075 	 * The prev transaction commit doesn't complete, we need do
6076 	 * full commit by ourselves.
6077 	 */
6078 	if (fs_info->last_trans_log_full_commit >
6079 	    fs_info->last_trans_committed) {
6080 		ret = 1;
6081 		goto end_no_trans;
6082 	}
6083 
6084 	if (btrfs_root_refs(&root->root_item) == 0) {
6085 		ret = 1;
6086 		goto end_no_trans;
6087 	}
6088 
6089 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6090 			last_committed);
6091 	if (ret)
6092 		goto end_no_trans;
6093 
6094 	/*
6095 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6096 	 * (since logging them is pointless, a link count of 0 means they
6097 	 * will never be accessible).
6098 	 */
6099 	if (btrfs_inode_in_log(inode, trans->transid) ||
6100 	    inode->vfs_inode.i_nlink == 0) {
6101 		ret = BTRFS_NO_LOG_SYNC;
6102 		goto end_no_trans;
6103 	}
6104 
6105 	ret = start_log_trans(trans, root, ctx);
6106 	if (ret)
6107 		goto end_no_trans;
6108 
6109 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6110 	if (ret)
6111 		goto end_trans;
6112 
6113 	/*
6114 	 * for regular files, if its inode is already on disk, we don't
6115 	 * have to worry about the parents at all.  This is because
6116 	 * we can use the last_unlink_trans field to record renames
6117 	 * and other fun in this file.
6118 	 */
6119 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6120 	    inode->generation <= last_committed &&
6121 	    inode->last_unlink_trans <= last_committed) {
6122 		ret = 0;
6123 		goto end_trans;
6124 	}
6125 
6126 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6127 		log_dentries = true;
6128 
6129 	/*
6130 	 * On unlink we must make sure all our current and old parent directory
6131 	 * inodes are fully logged. This is to prevent leaving dangling
6132 	 * directory index entries in directories that were our parents but are
6133 	 * not anymore. Not doing this results in old parent directory being
6134 	 * impossible to delete after log replay (rmdir will always fail with
6135 	 * error -ENOTEMPTY).
6136 	 *
6137 	 * Example 1:
6138 	 *
6139 	 * mkdir testdir
6140 	 * touch testdir/foo
6141 	 * ln testdir/foo testdir/bar
6142 	 * sync
6143 	 * unlink testdir/bar
6144 	 * xfs_io -c fsync testdir/foo
6145 	 * <power failure>
6146 	 * mount fs, triggers log replay
6147 	 *
6148 	 * If we don't log the parent directory (testdir), after log replay the
6149 	 * directory still has an entry pointing to the file inode using the bar
6150 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6151 	 * the file inode has a link count of 1.
6152 	 *
6153 	 * Example 2:
6154 	 *
6155 	 * mkdir testdir
6156 	 * touch foo
6157 	 * ln foo testdir/foo2
6158 	 * ln foo testdir/foo3
6159 	 * sync
6160 	 * unlink testdir/foo3
6161 	 * xfs_io -c fsync foo
6162 	 * <power failure>
6163 	 * mount fs, triggers log replay
6164 	 *
6165 	 * Similar as the first example, after log replay the parent directory
6166 	 * testdir still has an entry pointing to the inode file with name foo3
6167 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6168 	 * and has a link count of 2.
6169 	 */
6170 	if (inode->last_unlink_trans > last_committed) {
6171 		ret = btrfs_log_all_parents(trans, inode, ctx);
6172 		if (ret)
6173 			goto end_trans;
6174 	}
6175 
6176 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6177 	if (ret)
6178 		goto end_trans;
6179 
6180 	if (log_dentries)
6181 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6182 	else
6183 		ret = 0;
6184 end_trans:
6185 	if (ret < 0) {
6186 		btrfs_set_log_full_commit(trans);
6187 		ret = 1;
6188 	}
6189 
6190 	if (ret)
6191 		btrfs_remove_log_ctx(root, ctx);
6192 	btrfs_end_log_trans(root);
6193 end_no_trans:
6194 	return ret;
6195 }
6196 
6197 /*
6198  * it is not safe to log dentry if the chunk root has added new
6199  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6200  * If this returns 1, you must commit the transaction to safely get your
6201  * data on disk.
6202  */
6203 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6204 			  struct dentry *dentry,
6205 			  const loff_t start,
6206 			  const loff_t end,
6207 			  struct btrfs_log_ctx *ctx)
6208 {
6209 	struct dentry *parent = dget_parent(dentry);
6210 	int ret;
6211 
6212 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6213 				     start, end, LOG_INODE_ALL, ctx);
6214 	dput(parent);
6215 
6216 	return ret;
6217 }
6218 
6219 /*
6220  * should be called during mount to recover any replay any log trees
6221  * from the FS
6222  */
6223 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6224 {
6225 	int ret;
6226 	struct btrfs_path *path;
6227 	struct btrfs_trans_handle *trans;
6228 	struct btrfs_key key;
6229 	struct btrfs_key found_key;
6230 	struct btrfs_key tmp_key;
6231 	struct btrfs_root *log;
6232 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6233 	struct walk_control wc = {
6234 		.process_func = process_one_buffer,
6235 		.stage = LOG_WALK_PIN_ONLY,
6236 	};
6237 
6238 	path = btrfs_alloc_path();
6239 	if (!path)
6240 		return -ENOMEM;
6241 
6242 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6243 
6244 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6245 	if (IS_ERR(trans)) {
6246 		ret = PTR_ERR(trans);
6247 		goto error;
6248 	}
6249 
6250 	wc.trans = trans;
6251 	wc.pin = 1;
6252 
6253 	ret = walk_log_tree(trans, log_root_tree, &wc);
6254 	if (ret) {
6255 		btrfs_handle_fs_error(fs_info, ret,
6256 			"Failed to pin buffers while recovering log root tree.");
6257 		goto error;
6258 	}
6259 
6260 again:
6261 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6262 	key.offset = (u64)-1;
6263 	key.type = BTRFS_ROOT_ITEM_KEY;
6264 
6265 	while (1) {
6266 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6267 
6268 		if (ret < 0) {
6269 			btrfs_handle_fs_error(fs_info, ret,
6270 				    "Couldn't find tree log root.");
6271 			goto error;
6272 		}
6273 		if (ret > 0) {
6274 			if (path->slots[0] == 0)
6275 				break;
6276 			path->slots[0]--;
6277 		}
6278 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6279 				      path->slots[0]);
6280 		btrfs_release_path(path);
6281 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6282 			break;
6283 
6284 		log = btrfs_read_fs_root(log_root_tree, &found_key);
6285 		if (IS_ERR(log)) {
6286 			ret = PTR_ERR(log);
6287 			btrfs_handle_fs_error(fs_info, ret,
6288 				    "Couldn't read tree log root.");
6289 			goto error;
6290 		}
6291 
6292 		tmp_key.objectid = found_key.offset;
6293 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6294 		tmp_key.offset = (u64)-1;
6295 
6296 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6297 		if (IS_ERR(wc.replay_dest)) {
6298 			ret = PTR_ERR(wc.replay_dest);
6299 			free_extent_buffer(log->node);
6300 			free_extent_buffer(log->commit_root);
6301 			kfree(log);
6302 			btrfs_handle_fs_error(fs_info, ret,
6303 				"Couldn't read target root for tree log recovery.");
6304 			goto error;
6305 		}
6306 
6307 		wc.replay_dest->log_root = log;
6308 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6309 		ret = walk_log_tree(trans, log, &wc);
6310 
6311 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6312 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6313 						      path);
6314 		}
6315 
6316 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6317 			struct btrfs_root *root = wc.replay_dest;
6318 
6319 			btrfs_release_path(path);
6320 
6321 			/*
6322 			 * We have just replayed everything, and the highest
6323 			 * objectid of fs roots probably has changed in case
6324 			 * some inode_item's got replayed.
6325 			 *
6326 			 * root->objectid_mutex is not acquired as log replay
6327 			 * could only happen during mount.
6328 			 */
6329 			ret = btrfs_find_highest_objectid(root,
6330 						  &root->highest_objectid);
6331 		}
6332 
6333 		key.offset = found_key.offset - 1;
6334 		wc.replay_dest->log_root = NULL;
6335 		free_extent_buffer(log->node);
6336 		free_extent_buffer(log->commit_root);
6337 		kfree(log);
6338 
6339 		if (ret)
6340 			goto error;
6341 
6342 		if (found_key.offset == 0)
6343 			break;
6344 	}
6345 	btrfs_release_path(path);
6346 
6347 	/* step one is to pin it all, step two is to replay just inodes */
6348 	if (wc.pin) {
6349 		wc.pin = 0;
6350 		wc.process_func = replay_one_buffer;
6351 		wc.stage = LOG_WALK_REPLAY_INODES;
6352 		goto again;
6353 	}
6354 	/* step three is to replay everything */
6355 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6356 		wc.stage++;
6357 		goto again;
6358 	}
6359 
6360 	btrfs_free_path(path);
6361 
6362 	/* step 4: commit the transaction, which also unpins the blocks */
6363 	ret = btrfs_commit_transaction(trans);
6364 	if (ret)
6365 		return ret;
6366 
6367 	free_extent_buffer(log_root_tree->node);
6368 	log_root_tree->log_root = NULL;
6369 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6370 	kfree(log_root_tree);
6371 
6372 	return 0;
6373 error:
6374 	if (wc.trans)
6375 		btrfs_end_transaction(wc.trans);
6376 	btrfs_free_path(path);
6377 	return ret;
6378 }
6379 
6380 /*
6381  * there are some corner cases where we want to force a full
6382  * commit instead of allowing a directory to be logged.
6383  *
6384  * They revolve around files there were unlinked from the directory, and
6385  * this function updates the parent directory so that a full commit is
6386  * properly done if it is fsync'd later after the unlinks are done.
6387  *
6388  * Must be called before the unlink operations (updates to the subvolume tree,
6389  * inodes, etc) are done.
6390  */
6391 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6392 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6393 			     int for_rename)
6394 {
6395 	/*
6396 	 * when we're logging a file, if it hasn't been renamed
6397 	 * or unlinked, and its inode is fully committed on disk,
6398 	 * we don't have to worry about walking up the directory chain
6399 	 * to log its parents.
6400 	 *
6401 	 * So, we use the last_unlink_trans field to put this transid
6402 	 * into the file.  When the file is logged we check it and
6403 	 * don't log the parents if the file is fully on disk.
6404 	 */
6405 	mutex_lock(&inode->log_mutex);
6406 	inode->last_unlink_trans = trans->transid;
6407 	mutex_unlock(&inode->log_mutex);
6408 
6409 	/*
6410 	 * if this directory was already logged any new
6411 	 * names for this file/dir will get recorded
6412 	 */
6413 	if (dir->logged_trans == trans->transid)
6414 		return;
6415 
6416 	/*
6417 	 * if the inode we're about to unlink was logged,
6418 	 * the log will be properly updated for any new names
6419 	 */
6420 	if (inode->logged_trans == trans->transid)
6421 		return;
6422 
6423 	/*
6424 	 * when renaming files across directories, if the directory
6425 	 * there we're unlinking from gets fsync'd later on, there's
6426 	 * no way to find the destination directory later and fsync it
6427 	 * properly.  So, we have to be conservative and force commits
6428 	 * so the new name gets discovered.
6429 	 */
6430 	if (for_rename)
6431 		goto record;
6432 
6433 	/* we can safely do the unlink without any special recording */
6434 	return;
6435 
6436 record:
6437 	mutex_lock(&dir->log_mutex);
6438 	dir->last_unlink_trans = trans->transid;
6439 	mutex_unlock(&dir->log_mutex);
6440 }
6441 
6442 /*
6443  * Make sure that if someone attempts to fsync the parent directory of a deleted
6444  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6445  * that after replaying the log tree of the parent directory's root we will not
6446  * see the snapshot anymore and at log replay time we will not see any log tree
6447  * corresponding to the deleted snapshot's root, which could lead to replaying
6448  * it after replaying the log tree of the parent directory (which would replay
6449  * the snapshot delete operation).
6450  *
6451  * Must be called before the actual snapshot destroy operation (updates to the
6452  * parent root and tree of tree roots trees, etc) are done.
6453  */
6454 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6455 				   struct btrfs_inode *dir)
6456 {
6457 	mutex_lock(&dir->log_mutex);
6458 	dir->last_unlink_trans = trans->transid;
6459 	mutex_unlock(&dir->log_mutex);
6460 }
6461 
6462 /*
6463  * Call this after adding a new name for a file and it will properly
6464  * update the log to reflect the new name.
6465  *
6466  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6467  * true (because it's not used).
6468  *
6469  * Return value depends on whether @sync_log is true or false.
6470  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6471  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6472  *            otherwise.
6473  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6474  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6475  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6476  *             committed (without attempting to sync the log).
6477  */
6478 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6479 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6480 			struct dentry *parent,
6481 			bool sync_log, struct btrfs_log_ctx *ctx)
6482 {
6483 	struct btrfs_fs_info *fs_info = trans->fs_info;
6484 	int ret;
6485 
6486 	/*
6487 	 * this will force the logging code to walk the dentry chain
6488 	 * up for the file
6489 	 */
6490 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6491 		inode->last_unlink_trans = trans->transid;
6492 
6493 	/*
6494 	 * if this inode hasn't been logged and directory we're renaming it
6495 	 * from hasn't been logged, we don't need to log it
6496 	 */
6497 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6498 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6499 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6500 			BTRFS_DONT_NEED_LOG_SYNC;
6501 
6502 	if (sync_log) {
6503 		struct btrfs_log_ctx ctx2;
6504 
6505 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6506 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6507 					     LOG_INODE_EXISTS, &ctx2);
6508 		if (ret == BTRFS_NO_LOG_SYNC)
6509 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6510 		else if (ret)
6511 			return BTRFS_NEED_TRANS_COMMIT;
6512 
6513 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6514 		if (ret)
6515 			return BTRFS_NEED_TRANS_COMMIT;
6516 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6517 	}
6518 
6519 	ASSERT(ctx);
6520 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6521 				     LOG_INODE_EXISTS, ctx);
6522 	if (ret == BTRFS_NO_LOG_SYNC)
6523 		return BTRFS_DONT_NEED_LOG_SYNC;
6524 	else if (ret)
6525 		return BTRFS_NEED_TRANS_COMMIT;
6526 
6527 	return BTRFS_NEED_LOG_SYNC;
6528 }
6529 
6530