xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 3a83e4e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 #include "block-group.h"
22 #include "space-info.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   const loff_t start,
100 			   const loff_t end,
101 			   struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 			     struct btrfs_root *root,
104 			     struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 				       struct btrfs_root *root,
107 				       struct btrfs_root *log,
108 				       struct btrfs_path *path,
109 				       u64 dirid, int del_all);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	int ret = 0;
145 
146 	mutex_lock(&root->log_mutex);
147 
148 	if (root->log_root) {
149 		if (btrfs_need_log_full_commit(trans)) {
150 			ret = -EAGAIN;
151 			goto out;
152 		}
153 
154 		if (!root->log_start_pid) {
155 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 			root->log_start_pid = current->pid;
157 		} else if (root->log_start_pid != current->pid) {
158 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 		}
160 	} else {
161 		mutex_lock(&fs_info->tree_log_mutex);
162 		if (!fs_info->log_root_tree)
163 			ret = btrfs_init_log_root_tree(trans, fs_info);
164 		mutex_unlock(&fs_info->tree_log_mutex);
165 		if (ret)
166 			goto out;
167 
168 		ret = btrfs_add_log_tree(trans, root);
169 		if (ret)
170 			goto out;
171 
172 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
173 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
174 		root->log_start_pid = current->pid;
175 	}
176 
177 	atomic_inc(&root->log_batch);
178 	atomic_inc(&root->log_writers);
179 	if (ctx) {
180 		int index = root->log_transid % 2;
181 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
182 		ctx->log_transid = root->log_transid;
183 	}
184 
185 out:
186 	mutex_unlock(&root->log_mutex);
187 	return ret;
188 }
189 
190 /*
191  * returns 0 if there was a log transaction running and we were able
192  * to join, or returns -ENOENT if there were not transactions
193  * in progress
194  */
195 static int join_running_log_trans(struct btrfs_root *root)
196 {
197 	int ret = -ENOENT;
198 
199 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
200 		return ret;
201 
202 	mutex_lock(&root->log_mutex);
203 	if (root->log_root) {
204 		ret = 0;
205 		atomic_inc(&root->log_writers);
206 	}
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * This either makes the current running log transaction wait
213  * until you call btrfs_end_log_trans() or it makes any future
214  * log transactions wait until you call btrfs_end_log_trans()
215  */
216 void btrfs_pin_log_trans(struct btrfs_root *root)
217 {
218 	mutex_lock(&root->log_mutex);
219 	atomic_inc(&root->log_writers);
220 	mutex_unlock(&root->log_mutex);
221 }
222 
223 /*
224  * indicate we're done making changes to the log tree
225  * and wake up anyone waiting to do a sync
226  */
227 void btrfs_end_log_trans(struct btrfs_root *root)
228 {
229 	if (atomic_dec_and_test(&root->log_writers)) {
230 		/* atomic_dec_and_test implies a barrier */
231 		cond_wake_up_nomb(&root->log_writer_wait);
232 	}
233 }
234 
235 static int btrfs_write_tree_block(struct extent_buffer *buf)
236 {
237 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
238 					buf->start + buf->len - 1);
239 }
240 
241 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
242 {
243 	filemap_fdatawait_range(buf->pages[0]->mapping,
244 			        buf->start, buf->start + buf->len - 1);
245 }
246 
247 /*
248  * the walk control struct is used to pass state down the chain when
249  * processing the log tree.  The stage field tells us which part
250  * of the log tree processing we are currently doing.  The others
251  * are state fields used for that specific part
252  */
253 struct walk_control {
254 	/* should we free the extent on disk when done?  This is used
255 	 * at transaction commit time while freeing a log tree
256 	 */
257 	int free;
258 
259 	/* should we write out the extent buffer?  This is used
260 	 * while flushing the log tree to disk during a sync
261 	 */
262 	int write;
263 
264 	/* should we wait for the extent buffer io to finish?  Also used
265 	 * while flushing the log tree to disk for a sync
266 	 */
267 	int wait;
268 
269 	/* pin only walk, we record which extents on disk belong to the
270 	 * log trees
271 	 */
272 	int pin;
273 
274 	/* what stage of the replay code we're currently in */
275 	int stage;
276 
277 	/*
278 	 * Ignore any items from the inode currently being processed. Needs
279 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
280 	 * the LOG_WALK_REPLAY_INODES stage.
281 	 */
282 	bool ignore_cur_inode;
283 
284 	/* the root we are currently replaying */
285 	struct btrfs_root *replay_dest;
286 
287 	/* the trans handle for the current replay */
288 	struct btrfs_trans_handle *trans;
289 
290 	/* the function that gets used to process blocks we find in the
291 	 * tree.  Note the extent_buffer might not be up to date when it is
292 	 * passed in, and it must be checked or read if you need the data
293 	 * inside it
294 	 */
295 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
296 			    struct walk_control *wc, u64 gen, int level);
297 };
298 
299 /*
300  * process_func used to pin down extents, write them or wait on them
301  */
302 static int process_one_buffer(struct btrfs_root *log,
303 			      struct extent_buffer *eb,
304 			      struct walk_control *wc, u64 gen, int level)
305 {
306 	struct btrfs_fs_info *fs_info = log->fs_info;
307 	int ret = 0;
308 
309 	/*
310 	 * If this fs is mixed then we need to be able to process the leaves to
311 	 * pin down any logged extents, so we have to read the block.
312 	 */
313 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
314 		ret = btrfs_read_buffer(eb, gen, level, NULL);
315 		if (ret)
316 			return ret;
317 	}
318 
319 	if (wc->pin)
320 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
321 						      eb->len);
322 
323 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
324 		if (wc->pin && btrfs_header_level(eb) == 0)
325 			ret = btrfs_exclude_logged_extents(eb);
326 		if (wc->write)
327 			btrfs_write_tree_block(eb);
328 		if (wc->wait)
329 			btrfs_wait_tree_block_writeback(eb);
330 	}
331 	return ret;
332 }
333 
334 /*
335  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
336  * to the src data we are copying out.
337  *
338  * root is the tree we are copying into, and path is a scratch
339  * path for use in this function (it should be released on entry and
340  * will be released on exit).
341  *
342  * If the key is already in the destination tree the existing item is
343  * overwritten.  If the existing item isn't big enough, it is extended.
344  * If it is too large, it is truncated.
345  *
346  * If the key isn't in the destination yet, a new item is inserted.
347  */
348 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
349 				   struct btrfs_root *root,
350 				   struct btrfs_path *path,
351 				   struct extent_buffer *eb, int slot,
352 				   struct btrfs_key *key)
353 {
354 	int ret;
355 	u32 item_size;
356 	u64 saved_i_size = 0;
357 	int save_old_i_size = 0;
358 	unsigned long src_ptr;
359 	unsigned long dst_ptr;
360 	int overwrite_root = 0;
361 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
362 
363 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
364 		overwrite_root = 1;
365 
366 	item_size = btrfs_item_size_nr(eb, slot);
367 	src_ptr = btrfs_item_ptr_offset(eb, slot);
368 
369 	/* look for the key in the destination tree */
370 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
371 	if (ret < 0)
372 		return ret;
373 
374 	if (ret == 0) {
375 		char *src_copy;
376 		char *dst_copy;
377 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
378 						  path->slots[0]);
379 		if (dst_size != item_size)
380 			goto insert;
381 
382 		if (item_size == 0) {
383 			btrfs_release_path(path);
384 			return 0;
385 		}
386 		dst_copy = kmalloc(item_size, GFP_NOFS);
387 		src_copy = kmalloc(item_size, GFP_NOFS);
388 		if (!dst_copy || !src_copy) {
389 			btrfs_release_path(path);
390 			kfree(dst_copy);
391 			kfree(src_copy);
392 			return -ENOMEM;
393 		}
394 
395 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
396 
397 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
398 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
399 				   item_size);
400 		ret = memcmp(dst_copy, src_copy, item_size);
401 
402 		kfree(dst_copy);
403 		kfree(src_copy);
404 		/*
405 		 * they have the same contents, just return, this saves
406 		 * us from cowing blocks in the destination tree and doing
407 		 * extra writes that may not have been done by a previous
408 		 * sync
409 		 */
410 		if (ret == 0) {
411 			btrfs_release_path(path);
412 			return 0;
413 		}
414 
415 		/*
416 		 * We need to load the old nbytes into the inode so when we
417 		 * replay the extents we've logged we get the right nbytes.
418 		 */
419 		if (inode_item) {
420 			struct btrfs_inode_item *item;
421 			u64 nbytes;
422 			u32 mode;
423 
424 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
425 					      struct btrfs_inode_item);
426 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
427 			item = btrfs_item_ptr(eb, slot,
428 					      struct btrfs_inode_item);
429 			btrfs_set_inode_nbytes(eb, item, nbytes);
430 
431 			/*
432 			 * If this is a directory we need to reset the i_size to
433 			 * 0 so that we can set it up properly when replaying
434 			 * the rest of the items in this log.
435 			 */
436 			mode = btrfs_inode_mode(eb, item);
437 			if (S_ISDIR(mode))
438 				btrfs_set_inode_size(eb, item, 0);
439 		}
440 	} else if (inode_item) {
441 		struct btrfs_inode_item *item;
442 		u32 mode;
443 
444 		/*
445 		 * New inode, set nbytes to 0 so that the nbytes comes out
446 		 * properly when we replay the extents.
447 		 */
448 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
449 		btrfs_set_inode_nbytes(eb, item, 0);
450 
451 		/*
452 		 * If this is a directory we need to reset the i_size to 0 so
453 		 * that we can set it up properly when replaying the rest of
454 		 * the items in this log.
455 		 */
456 		mode = btrfs_inode_mode(eb, item);
457 		if (S_ISDIR(mode))
458 			btrfs_set_inode_size(eb, item, 0);
459 	}
460 insert:
461 	btrfs_release_path(path);
462 	/* try to insert the key into the destination tree */
463 	path->skip_release_on_error = 1;
464 	ret = btrfs_insert_empty_item(trans, root, path,
465 				      key, item_size);
466 	path->skip_release_on_error = 0;
467 
468 	/* make sure any existing item is the correct size */
469 	if (ret == -EEXIST || ret == -EOVERFLOW) {
470 		u32 found_size;
471 		found_size = btrfs_item_size_nr(path->nodes[0],
472 						path->slots[0]);
473 		if (found_size > item_size)
474 			btrfs_truncate_item(path, item_size, 1);
475 		else if (found_size < item_size)
476 			btrfs_extend_item(path, item_size - found_size);
477 	} else if (ret) {
478 		return ret;
479 	}
480 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
481 					path->slots[0]);
482 
483 	/* don't overwrite an existing inode if the generation number
484 	 * was logged as zero.  This is done when the tree logging code
485 	 * is just logging an inode to make sure it exists after recovery.
486 	 *
487 	 * Also, don't overwrite i_size on directories during replay.
488 	 * log replay inserts and removes directory items based on the
489 	 * state of the tree found in the subvolume, and i_size is modified
490 	 * as it goes
491 	 */
492 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
493 		struct btrfs_inode_item *src_item;
494 		struct btrfs_inode_item *dst_item;
495 
496 		src_item = (struct btrfs_inode_item *)src_ptr;
497 		dst_item = (struct btrfs_inode_item *)dst_ptr;
498 
499 		if (btrfs_inode_generation(eb, src_item) == 0) {
500 			struct extent_buffer *dst_eb = path->nodes[0];
501 			const u64 ino_size = btrfs_inode_size(eb, src_item);
502 
503 			/*
504 			 * For regular files an ino_size == 0 is used only when
505 			 * logging that an inode exists, as part of a directory
506 			 * fsync, and the inode wasn't fsynced before. In this
507 			 * case don't set the size of the inode in the fs/subvol
508 			 * tree, otherwise we would be throwing valid data away.
509 			 */
510 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
511 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
512 			    ino_size != 0)
513 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
514 			goto no_copy;
515 		}
516 
517 		if (overwrite_root &&
518 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 			save_old_i_size = 1;
521 			saved_i_size = btrfs_inode_size(path->nodes[0],
522 							dst_item);
523 		}
524 	}
525 
526 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 			   src_ptr, item_size);
528 
529 	if (save_old_i_size) {
530 		struct btrfs_inode_item *dst_item;
531 		dst_item = (struct btrfs_inode_item *)dst_ptr;
532 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
533 	}
534 
535 	/* make sure the generation is filled in */
536 	if (key->type == BTRFS_INODE_ITEM_KEY) {
537 		struct btrfs_inode_item *dst_item;
538 		dst_item = (struct btrfs_inode_item *)dst_ptr;
539 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 			btrfs_set_inode_generation(path->nodes[0], dst_item,
541 						   trans->transid);
542 		}
543 	}
544 no_copy:
545 	btrfs_mark_buffer_dirty(path->nodes[0]);
546 	btrfs_release_path(path);
547 	return 0;
548 }
549 
550 /*
551  * simple helper to read an inode off the disk from a given root
552  * This can only be called for subvolume roots and not for the log
553  */
554 static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 					     u64 objectid)
556 {
557 	struct inode *inode;
558 
559 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
560 	if (IS_ERR(inode))
561 		inode = NULL;
562 	return inode;
563 }
564 
565 /* replays a single extent in 'eb' at 'slot' with 'key' into the
566  * subvolume 'root'.  path is released on entry and should be released
567  * on exit.
568  *
569  * extents in the log tree have not been allocated out of the extent
570  * tree yet.  So, this completes the allocation, taking a reference
571  * as required if the extent already exists or creating a new extent
572  * if it isn't in the extent allocation tree yet.
573  *
574  * The extent is inserted into the file, dropping any existing extents
575  * from the file that overlap the new one.
576  */
577 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
578 				      struct btrfs_root *root,
579 				      struct btrfs_path *path,
580 				      struct extent_buffer *eb, int slot,
581 				      struct btrfs_key *key)
582 {
583 	struct btrfs_fs_info *fs_info = root->fs_info;
584 	int found_type;
585 	u64 extent_end;
586 	u64 start = key->offset;
587 	u64 nbytes = 0;
588 	struct btrfs_file_extent_item *item;
589 	struct inode *inode = NULL;
590 	unsigned long size;
591 	int ret = 0;
592 
593 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
594 	found_type = btrfs_file_extent_type(eb, item);
595 
596 	if (found_type == BTRFS_FILE_EXTENT_REG ||
597 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
598 		nbytes = btrfs_file_extent_num_bytes(eb, item);
599 		extent_end = start + nbytes;
600 
601 		/*
602 		 * We don't add to the inodes nbytes if we are prealloc or a
603 		 * hole.
604 		 */
605 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
606 			nbytes = 0;
607 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
608 		size = btrfs_file_extent_ram_bytes(eb, item);
609 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
610 		extent_end = ALIGN(start + size,
611 				   fs_info->sectorsize);
612 	} else {
613 		ret = 0;
614 		goto out;
615 	}
616 
617 	inode = read_one_inode(root, key->objectid);
618 	if (!inode) {
619 		ret = -EIO;
620 		goto out;
621 	}
622 
623 	/*
624 	 * first check to see if we already have this extent in the
625 	 * file.  This must be done before the btrfs_drop_extents run
626 	 * so we don't try to drop this extent.
627 	 */
628 	ret = btrfs_lookup_file_extent(trans, root, path,
629 			btrfs_ino(BTRFS_I(inode)), start, 0);
630 
631 	if (ret == 0 &&
632 	    (found_type == BTRFS_FILE_EXTENT_REG ||
633 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
634 		struct btrfs_file_extent_item cmp1;
635 		struct btrfs_file_extent_item cmp2;
636 		struct btrfs_file_extent_item *existing;
637 		struct extent_buffer *leaf;
638 
639 		leaf = path->nodes[0];
640 		existing = btrfs_item_ptr(leaf, path->slots[0],
641 					  struct btrfs_file_extent_item);
642 
643 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
644 				   sizeof(cmp1));
645 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
646 				   sizeof(cmp2));
647 
648 		/*
649 		 * we already have a pointer to this exact extent,
650 		 * we don't have to do anything
651 		 */
652 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
653 			btrfs_release_path(path);
654 			goto out;
655 		}
656 	}
657 	btrfs_release_path(path);
658 
659 	/* drop any overlapping extents */
660 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
661 	if (ret)
662 		goto out;
663 
664 	if (found_type == BTRFS_FILE_EXTENT_REG ||
665 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
666 		u64 offset;
667 		unsigned long dest_offset;
668 		struct btrfs_key ins;
669 
670 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
671 		    btrfs_fs_incompat(fs_info, NO_HOLES))
672 			goto update_inode;
673 
674 		ret = btrfs_insert_empty_item(trans, root, path, key,
675 					      sizeof(*item));
676 		if (ret)
677 			goto out;
678 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
679 						    path->slots[0]);
680 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
681 				(unsigned long)item,  sizeof(*item));
682 
683 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
684 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
685 		ins.type = BTRFS_EXTENT_ITEM_KEY;
686 		offset = key->offset - btrfs_file_extent_offset(eb, item);
687 
688 		/*
689 		 * Manually record dirty extent, as here we did a shallow
690 		 * file extent item copy and skip normal backref update,
691 		 * but modifying extent tree all by ourselves.
692 		 * So need to manually record dirty extent for qgroup,
693 		 * as the owner of the file extent changed from log tree
694 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
695 		 */
696 		ret = btrfs_qgroup_trace_extent(trans,
697 				btrfs_file_extent_disk_bytenr(eb, item),
698 				btrfs_file_extent_disk_num_bytes(eb, item),
699 				GFP_NOFS);
700 		if (ret < 0)
701 			goto out;
702 
703 		if (ins.objectid > 0) {
704 			struct btrfs_ref ref = { 0 };
705 			u64 csum_start;
706 			u64 csum_end;
707 			LIST_HEAD(ordered_sums);
708 
709 			/*
710 			 * is this extent already allocated in the extent
711 			 * allocation tree?  If so, just add a reference
712 			 */
713 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
714 						ins.offset);
715 			if (ret == 0) {
716 				btrfs_init_generic_ref(&ref,
717 						BTRFS_ADD_DELAYED_REF,
718 						ins.objectid, ins.offset, 0);
719 				btrfs_init_data_ref(&ref,
720 						root->root_key.objectid,
721 						key->objectid, offset);
722 				ret = btrfs_inc_extent_ref(trans, &ref);
723 				if (ret)
724 					goto out;
725 			} else {
726 				/*
727 				 * insert the extent pointer in the extent
728 				 * allocation tree
729 				 */
730 				ret = btrfs_alloc_logged_file_extent(trans,
731 						root->root_key.objectid,
732 						key->objectid, offset, &ins);
733 				if (ret)
734 					goto out;
735 			}
736 			btrfs_release_path(path);
737 
738 			if (btrfs_file_extent_compression(eb, item)) {
739 				csum_start = ins.objectid;
740 				csum_end = csum_start + ins.offset;
741 			} else {
742 				csum_start = ins.objectid +
743 					btrfs_file_extent_offset(eb, item);
744 				csum_end = csum_start +
745 					btrfs_file_extent_num_bytes(eb, item);
746 			}
747 
748 			ret = btrfs_lookup_csums_range(root->log_root,
749 						csum_start, csum_end - 1,
750 						&ordered_sums, 0);
751 			if (ret)
752 				goto out;
753 			/*
754 			 * Now delete all existing cums in the csum root that
755 			 * cover our range. We do this because we can have an
756 			 * extent that is completely referenced by one file
757 			 * extent item and partially referenced by another
758 			 * file extent item (like after using the clone or
759 			 * extent_same ioctls). In this case if we end up doing
760 			 * the replay of the one that partially references the
761 			 * extent first, and we do not do the csum deletion
762 			 * below, we can get 2 csum items in the csum tree that
763 			 * overlap each other. For example, imagine our log has
764 			 * the two following file extent items:
765 			 *
766 			 * key (257 EXTENT_DATA 409600)
767 			 *     extent data disk byte 12845056 nr 102400
768 			 *     extent data offset 20480 nr 20480 ram 102400
769 			 *
770 			 * key (257 EXTENT_DATA 819200)
771 			 *     extent data disk byte 12845056 nr 102400
772 			 *     extent data offset 0 nr 102400 ram 102400
773 			 *
774 			 * Where the second one fully references the 100K extent
775 			 * that starts at disk byte 12845056, and the log tree
776 			 * has a single csum item that covers the entire range
777 			 * of the extent:
778 			 *
779 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
780 			 *
781 			 * After the first file extent item is replayed, the
782 			 * csum tree gets the following csum item:
783 			 *
784 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 			 *
786 			 * Which covers the 20K sub-range starting at offset 20K
787 			 * of our extent. Now when we replay the second file
788 			 * extent item, if we do not delete existing csum items
789 			 * that cover any of its blocks, we end up getting two
790 			 * csum items in our csum tree that overlap each other:
791 			 *
792 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
793 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
794 			 *
795 			 * Which is a problem, because after this anyone trying
796 			 * to lookup up for the checksum of any block of our
797 			 * extent starting at an offset of 40K or higher, will
798 			 * end up looking at the second csum item only, which
799 			 * does not contain the checksum for any block starting
800 			 * at offset 40K or higher of our extent.
801 			 */
802 			while (!list_empty(&ordered_sums)) {
803 				struct btrfs_ordered_sum *sums;
804 				sums = list_entry(ordered_sums.next,
805 						struct btrfs_ordered_sum,
806 						list);
807 				if (!ret)
808 					ret = btrfs_del_csums(trans,
809 							      fs_info->csum_root,
810 							      sums->bytenr,
811 							      sums->len);
812 				if (!ret)
813 					ret = btrfs_csum_file_blocks(trans,
814 						fs_info->csum_root, sums);
815 				list_del(&sums->list);
816 				kfree(sums);
817 			}
818 			if (ret)
819 				goto out;
820 		} else {
821 			btrfs_release_path(path);
822 		}
823 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
824 		/* inline extents are easy, we just overwrite them */
825 		ret = overwrite_item(trans, root, path, eb, slot, key);
826 		if (ret)
827 			goto out;
828 	}
829 
830 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
831 						extent_end - start);
832 	if (ret)
833 		goto out;
834 
835 	inode_add_bytes(inode, nbytes);
836 update_inode:
837 	ret = btrfs_update_inode(trans, root, inode);
838 out:
839 	if (inode)
840 		iput(inode);
841 	return ret;
842 }
843 
844 /*
845  * when cleaning up conflicts between the directory names in the
846  * subvolume, directory names in the log and directory names in the
847  * inode back references, we may have to unlink inodes from directories.
848  *
849  * This is a helper function to do the unlink of a specific directory
850  * item
851  */
852 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
853 				      struct btrfs_root *root,
854 				      struct btrfs_path *path,
855 				      struct btrfs_inode *dir,
856 				      struct btrfs_dir_item *di)
857 {
858 	struct inode *inode;
859 	char *name;
860 	int name_len;
861 	struct extent_buffer *leaf;
862 	struct btrfs_key location;
863 	int ret;
864 
865 	leaf = path->nodes[0];
866 
867 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
868 	name_len = btrfs_dir_name_len(leaf, di);
869 	name = kmalloc(name_len, GFP_NOFS);
870 	if (!name)
871 		return -ENOMEM;
872 
873 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
874 	btrfs_release_path(path);
875 
876 	inode = read_one_inode(root, location.objectid);
877 	if (!inode) {
878 		ret = -EIO;
879 		goto out;
880 	}
881 
882 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
883 	if (ret)
884 		goto out;
885 
886 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
887 			name_len);
888 	if (ret)
889 		goto out;
890 	else
891 		ret = btrfs_run_delayed_items(trans);
892 out:
893 	kfree(name);
894 	iput(inode);
895 	return ret;
896 }
897 
898 /*
899  * helper function to see if a given name and sequence number found
900  * in an inode back reference are already in a directory and correctly
901  * point to this inode
902  */
903 static noinline int inode_in_dir(struct btrfs_root *root,
904 				 struct btrfs_path *path,
905 				 u64 dirid, u64 objectid, u64 index,
906 				 const char *name, int name_len)
907 {
908 	struct btrfs_dir_item *di;
909 	struct btrfs_key location;
910 	int match = 0;
911 
912 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
913 					 index, name, name_len, 0);
914 	if (di && !IS_ERR(di)) {
915 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
916 		if (location.objectid != objectid)
917 			goto out;
918 	} else
919 		goto out;
920 	btrfs_release_path(path);
921 
922 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
923 	if (di && !IS_ERR(di)) {
924 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
925 		if (location.objectid != objectid)
926 			goto out;
927 	} else
928 		goto out;
929 	match = 1;
930 out:
931 	btrfs_release_path(path);
932 	return match;
933 }
934 
935 /*
936  * helper function to check a log tree for a named back reference in
937  * an inode.  This is used to decide if a back reference that is
938  * found in the subvolume conflicts with what we find in the log.
939  *
940  * inode backreferences may have multiple refs in a single item,
941  * during replay we process one reference at a time, and we don't
942  * want to delete valid links to a file from the subvolume if that
943  * link is also in the log.
944  */
945 static noinline int backref_in_log(struct btrfs_root *log,
946 				   struct btrfs_key *key,
947 				   u64 ref_objectid,
948 				   const char *name, int namelen)
949 {
950 	struct btrfs_path *path;
951 	int ret;
952 
953 	path = btrfs_alloc_path();
954 	if (!path)
955 		return -ENOMEM;
956 
957 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
958 	if (ret < 0) {
959 		goto out;
960 	} else if (ret == 1) {
961 		ret = 0;
962 		goto out;
963 	}
964 
965 	if (key->type == BTRFS_INODE_EXTREF_KEY)
966 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
967 						       path->slots[0],
968 						       ref_objectid,
969 						       name, namelen);
970 	else
971 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
972 						   path->slots[0],
973 						   name, namelen);
974 out:
975 	btrfs_free_path(path);
976 	return ret;
977 }
978 
979 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
980 				  struct btrfs_root *root,
981 				  struct btrfs_path *path,
982 				  struct btrfs_root *log_root,
983 				  struct btrfs_inode *dir,
984 				  struct btrfs_inode *inode,
985 				  u64 inode_objectid, u64 parent_objectid,
986 				  u64 ref_index, char *name, int namelen,
987 				  int *search_done)
988 {
989 	int ret;
990 	char *victim_name;
991 	int victim_name_len;
992 	struct extent_buffer *leaf;
993 	struct btrfs_dir_item *di;
994 	struct btrfs_key search_key;
995 	struct btrfs_inode_extref *extref;
996 
997 again:
998 	/* Search old style refs */
999 	search_key.objectid = inode_objectid;
1000 	search_key.type = BTRFS_INODE_REF_KEY;
1001 	search_key.offset = parent_objectid;
1002 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1003 	if (ret == 0) {
1004 		struct btrfs_inode_ref *victim_ref;
1005 		unsigned long ptr;
1006 		unsigned long ptr_end;
1007 
1008 		leaf = path->nodes[0];
1009 
1010 		/* are we trying to overwrite a back ref for the root directory
1011 		 * if so, just jump out, we're done
1012 		 */
1013 		if (search_key.objectid == search_key.offset)
1014 			return 1;
1015 
1016 		/* check all the names in this back reference to see
1017 		 * if they are in the log.  if so, we allow them to stay
1018 		 * otherwise they must be unlinked as a conflict
1019 		 */
1020 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1021 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1022 		while (ptr < ptr_end) {
1023 			victim_ref = (struct btrfs_inode_ref *)ptr;
1024 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1025 								   victim_ref);
1026 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1027 			if (!victim_name)
1028 				return -ENOMEM;
1029 
1030 			read_extent_buffer(leaf, victim_name,
1031 					   (unsigned long)(victim_ref + 1),
1032 					   victim_name_len);
1033 
1034 			ret = backref_in_log(log_root, &search_key,
1035 					     parent_objectid, victim_name,
1036 					     victim_name_len);
1037 			if (ret < 0) {
1038 				kfree(victim_name);
1039 				return ret;
1040 			} else if (!ret) {
1041 				inc_nlink(&inode->vfs_inode);
1042 				btrfs_release_path(path);
1043 
1044 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1045 						victim_name, victim_name_len);
1046 				kfree(victim_name);
1047 				if (ret)
1048 					return ret;
1049 				ret = btrfs_run_delayed_items(trans);
1050 				if (ret)
1051 					return ret;
1052 				*search_done = 1;
1053 				goto again;
1054 			}
1055 			kfree(victim_name);
1056 
1057 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1058 		}
1059 
1060 		/*
1061 		 * NOTE: we have searched root tree and checked the
1062 		 * corresponding ref, it does not need to check again.
1063 		 */
1064 		*search_done = 1;
1065 	}
1066 	btrfs_release_path(path);
1067 
1068 	/* Same search but for extended refs */
1069 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070 					   inode_objectid, parent_objectid, 0,
1071 					   0);
1072 	if (!IS_ERR_OR_NULL(extref)) {
1073 		u32 item_size;
1074 		u32 cur_offset = 0;
1075 		unsigned long base;
1076 		struct inode *victim_parent;
1077 
1078 		leaf = path->nodes[0];
1079 
1080 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1082 
1083 		while (cur_offset < item_size) {
1084 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1085 
1086 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1087 
1088 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1089 				goto next;
1090 
1091 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1092 			if (!victim_name)
1093 				return -ENOMEM;
1094 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1095 					   victim_name_len);
1096 
1097 			search_key.objectid = inode_objectid;
1098 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1099 			search_key.offset = btrfs_extref_hash(parent_objectid,
1100 							      victim_name,
1101 							      victim_name_len);
1102 			ret = backref_in_log(log_root, &search_key,
1103 					     parent_objectid, victim_name,
1104 					     victim_name_len);
1105 			if (ret < 0) {
1106 				return ret;
1107 			} else if (!ret) {
1108 				ret = -ENOENT;
1109 				victim_parent = read_one_inode(root,
1110 						parent_objectid);
1111 				if (victim_parent) {
1112 					inc_nlink(&inode->vfs_inode);
1113 					btrfs_release_path(path);
1114 
1115 					ret = btrfs_unlink_inode(trans, root,
1116 							BTRFS_I(victim_parent),
1117 							inode,
1118 							victim_name,
1119 							victim_name_len);
1120 					if (!ret)
1121 						ret = btrfs_run_delayed_items(
1122 								  trans);
1123 				}
1124 				iput(victim_parent);
1125 				kfree(victim_name);
1126 				if (ret)
1127 					return ret;
1128 				*search_done = 1;
1129 				goto again;
1130 			}
1131 			kfree(victim_name);
1132 next:
1133 			cur_offset += victim_name_len + sizeof(*extref);
1134 		}
1135 		*search_done = 1;
1136 	}
1137 	btrfs_release_path(path);
1138 
1139 	/* look for a conflicting sequence number */
1140 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1141 					 ref_index, name, namelen, 0);
1142 	if (di && !IS_ERR(di)) {
1143 		ret = drop_one_dir_item(trans, root, path, dir, di);
1144 		if (ret)
1145 			return ret;
1146 	}
1147 	btrfs_release_path(path);
1148 
1149 	/* look for a conflicting name */
1150 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1151 				   name, namelen, 0);
1152 	if (di && !IS_ERR(di)) {
1153 		ret = drop_one_dir_item(trans, root, path, dir, di);
1154 		if (ret)
1155 			return ret;
1156 	}
1157 	btrfs_release_path(path);
1158 
1159 	return 0;
1160 }
1161 
1162 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1163 			     u32 *namelen, char **name, u64 *index,
1164 			     u64 *parent_objectid)
1165 {
1166 	struct btrfs_inode_extref *extref;
1167 
1168 	extref = (struct btrfs_inode_extref *)ref_ptr;
1169 
1170 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1171 	*name = kmalloc(*namelen, GFP_NOFS);
1172 	if (*name == NULL)
1173 		return -ENOMEM;
1174 
1175 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1176 			   *namelen);
1177 
1178 	if (index)
1179 		*index = btrfs_inode_extref_index(eb, extref);
1180 	if (parent_objectid)
1181 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1182 
1183 	return 0;
1184 }
1185 
1186 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1187 			  u32 *namelen, char **name, u64 *index)
1188 {
1189 	struct btrfs_inode_ref *ref;
1190 
1191 	ref = (struct btrfs_inode_ref *)ref_ptr;
1192 
1193 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1194 	*name = kmalloc(*namelen, GFP_NOFS);
1195 	if (*name == NULL)
1196 		return -ENOMEM;
1197 
1198 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1199 
1200 	if (index)
1201 		*index = btrfs_inode_ref_index(eb, ref);
1202 
1203 	return 0;
1204 }
1205 
1206 /*
1207  * Take an inode reference item from the log tree and iterate all names from the
1208  * inode reference item in the subvolume tree with the same key (if it exists).
1209  * For any name that is not in the inode reference item from the log tree, do a
1210  * proper unlink of that name (that is, remove its entry from the inode
1211  * reference item and both dir index keys).
1212  */
1213 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1214 				 struct btrfs_root *root,
1215 				 struct btrfs_path *path,
1216 				 struct btrfs_inode *inode,
1217 				 struct extent_buffer *log_eb,
1218 				 int log_slot,
1219 				 struct btrfs_key *key)
1220 {
1221 	int ret;
1222 	unsigned long ref_ptr;
1223 	unsigned long ref_end;
1224 	struct extent_buffer *eb;
1225 
1226 again:
1227 	btrfs_release_path(path);
1228 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1229 	if (ret > 0) {
1230 		ret = 0;
1231 		goto out;
1232 	}
1233 	if (ret < 0)
1234 		goto out;
1235 
1236 	eb = path->nodes[0];
1237 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1238 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1239 	while (ref_ptr < ref_end) {
1240 		char *name = NULL;
1241 		int namelen;
1242 		u64 parent_id;
1243 
1244 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1245 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1246 						NULL, &parent_id);
1247 		} else {
1248 			parent_id = key->offset;
1249 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1250 					     NULL);
1251 		}
1252 		if (ret)
1253 			goto out;
1254 
1255 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1256 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1257 							       parent_id, name,
1258 							       namelen);
1259 		else
1260 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1261 							   name, namelen);
1262 
1263 		if (!ret) {
1264 			struct inode *dir;
1265 
1266 			btrfs_release_path(path);
1267 			dir = read_one_inode(root, parent_id);
1268 			if (!dir) {
1269 				ret = -ENOENT;
1270 				kfree(name);
1271 				goto out;
1272 			}
1273 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1274 						 inode, name, namelen);
1275 			kfree(name);
1276 			iput(dir);
1277 			if (ret)
1278 				goto out;
1279 			goto again;
1280 		}
1281 
1282 		kfree(name);
1283 		ref_ptr += namelen;
1284 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1285 			ref_ptr += sizeof(struct btrfs_inode_extref);
1286 		else
1287 			ref_ptr += sizeof(struct btrfs_inode_ref);
1288 	}
1289 	ret = 0;
1290  out:
1291 	btrfs_release_path(path);
1292 	return ret;
1293 }
1294 
1295 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1296 				  const u8 ref_type, const char *name,
1297 				  const int namelen)
1298 {
1299 	struct btrfs_key key;
1300 	struct btrfs_path *path;
1301 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1302 	int ret;
1303 
1304 	path = btrfs_alloc_path();
1305 	if (!path)
1306 		return -ENOMEM;
1307 
1308 	key.objectid = btrfs_ino(BTRFS_I(inode));
1309 	key.type = ref_type;
1310 	if (key.type == BTRFS_INODE_REF_KEY)
1311 		key.offset = parent_id;
1312 	else
1313 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1314 
1315 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1316 	if (ret < 0)
1317 		goto out;
1318 	if (ret > 0) {
1319 		ret = 0;
1320 		goto out;
1321 	}
1322 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1323 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1324 				path->slots[0], parent_id, name, namelen);
1325 	else
1326 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1327 						   name, namelen);
1328 
1329 out:
1330 	btrfs_free_path(path);
1331 	return ret;
1332 }
1333 
1334 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1335 		    struct inode *dir, struct inode *inode, const char *name,
1336 		    int namelen, u64 ref_index)
1337 {
1338 	struct btrfs_dir_item *dir_item;
1339 	struct btrfs_key key;
1340 	struct btrfs_path *path;
1341 	struct inode *other_inode = NULL;
1342 	int ret;
1343 
1344 	path = btrfs_alloc_path();
1345 	if (!path)
1346 		return -ENOMEM;
1347 
1348 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1349 					 btrfs_ino(BTRFS_I(dir)),
1350 					 name, namelen, 0);
1351 	if (!dir_item) {
1352 		btrfs_release_path(path);
1353 		goto add_link;
1354 	} else if (IS_ERR(dir_item)) {
1355 		ret = PTR_ERR(dir_item);
1356 		goto out;
1357 	}
1358 
1359 	/*
1360 	 * Our inode's dentry collides with the dentry of another inode which is
1361 	 * in the log but not yet processed since it has a higher inode number.
1362 	 * So delete that other dentry.
1363 	 */
1364 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1365 	btrfs_release_path(path);
1366 	other_inode = read_one_inode(root, key.objectid);
1367 	if (!other_inode) {
1368 		ret = -ENOENT;
1369 		goto out;
1370 	}
1371 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1372 				 name, namelen);
1373 	if (ret)
1374 		goto out;
1375 	/*
1376 	 * If we dropped the link count to 0, bump it so that later the iput()
1377 	 * on the inode will not free it. We will fixup the link count later.
1378 	 */
1379 	if (other_inode->i_nlink == 0)
1380 		inc_nlink(other_inode);
1381 
1382 	ret = btrfs_run_delayed_items(trans);
1383 	if (ret)
1384 		goto out;
1385 add_link:
1386 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1387 			     name, namelen, 0, ref_index);
1388 out:
1389 	iput(other_inode);
1390 	btrfs_free_path(path);
1391 
1392 	return ret;
1393 }
1394 
1395 /*
1396  * replay one inode back reference item found in the log tree.
1397  * eb, slot and key refer to the buffer and key found in the log tree.
1398  * root is the destination we are replaying into, and path is for temp
1399  * use by this function.  (it should be released on return).
1400  */
1401 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1402 				  struct btrfs_root *root,
1403 				  struct btrfs_root *log,
1404 				  struct btrfs_path *path,
1405 				  struct extent_buffer *eb, int slot,
1406 				  struct btrfs_key *key)
1407 {
1408 	struct inode *dir = NULL;
1409 	struct inode *inode = NULL;
1410 	unsigned long ref_ptr;
1411 	unsigned long ref_end;
1412 	char *name = NULL;
1413 	int namelen;
1414 	int ret;
1415 	int search_done = 0;
1416 	int log_ref_ver = 0;
1417 	u64 parent_objectid;
1418 	u64 inode_objectid;
1419 	u64 ref_index = 0;
1420 	int ref_struct_size;
1421 
1422 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1423 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1424 
1425 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1426 		struct btrfs_inode_extref *r;
1427 
1428 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1429 		log_ref_ver = 1;
1430 		r = (struct btrfs_inode_extref *)ref_ptr;
1431 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1432 	} else {
1433 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1434 		parent_objectid = key->offset;
1435 	}
1436 	inode_objectid = key->objectid;
1437 
1438 	/*
1439 	 * it is possible that we didn't log all the parent directories
1440 	 * for a given inode.  If we don't find the dir, just don't
1441 	 * copy the back ref in.  The link count fixup code will take
1442 	 * care of the rest
1443 	 */
1444 	dir = read_one_inode(root, parent_objectid);
1445 	if (!dir) {
1446 		ret = -ENOENT;
1447 		goto out;
1448 	}
1449 
1450 	inode = read_one_inode(root, inode_objectid);
1451 	if (!inode) {
1452 		ret = -EIO;
1453 		goto out;
1454 	}
1455 
1456 	while (ref_ptr < ref_end) {
1457 		if (log_ref_ver) {
1458 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1459 						&ref_index, &parent_objectid);
1460 			/*
1461 			 * parent object can change from one array
1462 			 * item to another.
1463 			 */
1464 			if (!dir)
1465 				dir = read_one_inode(root, parent_objectid);
1466 			if (!dir) {
1467 				ret = -ENOENT;
1468 				goto out;
1469 			}
1470 		} else {
1471 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1472 					     &ref_index);
1473 		}
1474 		if (ret)
1475 			goto out;
1476 
1477 		/* if we already have a perfect match, we're done */
1478 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1479 					btrfs_ino(BTRFS_I(inode)), ref_index,
1480 					name, namelen)) {
1481 			/*
1482 			 * look for a conflicting back reference in the
1483 			 * metadata. if we find one we have to unlink that name
1484 			 * of the file before we add our new link.  Later on, we
1485 			 * overwrite any existing back reference, and we don't
1486 			 * want to create dangling pointers in the directory.
1487 			 */
1488 
1489 			if (!search_done) {
1490 				ret = __add_inode_ref(trans, root, path, log,
1491 						      BTRFS_I(dir),
1492 						      BTRFS_I(inode),
1493 						      inode_objectid,
1494 						      parent_objectid,
1495 						      ref_index, name, namelen,
1496 						      &search_done);
1497 				if (ret) {
1498 					if (ret == 1)
1499 						ret = 0;
1500 					goto out;
1501 				}
1502 			}
1503 
1504 			/*
1505 			 * If a reference item already exists for this inode
1506 			 * with the same parent and name, but different index,
1507 			 * drop it and the corresponding directory index entries
1508 			 * from the parent before adding the new reference item
1509 			 * and dir index entries, otherwise we would fail with
1510 			 * -EEXIST returned from btrfs_add_link() below.
1511 			 */
1512 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1513 						     name, namelen);
1514 			if (ret > 0) {
1515 				ret = btrfs_unlink_inode(trans, root,
1516 							 BTRFS_I(dir),
1517 							 BTRFS_I(inode),
1518 							 name, namelen);
1519 				/*
1520 				 * If we dropped the link count to 0, bump it so
1521 				 * that later the iput() on the inode will not
1522 				 * free it. We will fixup the link count later.
1523 				 */
1524 				if (!ret && inode->i_nlink == 0)
1525 					inc_nlink(inode);
1526 			}
1527 			if (ret < 0)
1528 				goto out;
1529 
1530 			/* insert our name */
1531 			ret = add_link(trans, root, dir, inode, name, namelen,
1532 				       ref_index);
1533 			if (ret)
1534 				goto out;
1535 
1536 			btrfs_update_inode(trans, root, inode);
1537 		}
1538 
1539 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1540 		kfree(name);
1541 		name = NULL;
1542 		if (log_ref_ver) {
1543 			iput(dir);
1544 			dir = NULL;
1545 		}
1546 	}
1547 
1548 	/*
1549 	 * Before we overwrite the inode reference item in the subvolume tree
1550 	 * with the item from the log tree, we must unlink all names from the
1551 	 * parent directory that are in the subvolume's tree inode reference
1552 	 * item, otherwise we end up with an inconsistent subvolume tree where
1553 	 * dir index entries exist for a name but there is no inode reference
1554 	 * item with the same name.
1555 	 */
1556 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1557 				    key);
1558 	if (ret)
1559 		goto out;
1560 
1561 	/* finally write the back reference in the inode */
1562 	ret = overwrite_item(trans, root, path, eb, slot, key);
1563 out:
1564 	btrfs_release_path(path);
1565 	kfree(name);
1566 	iput(dir);
1567 	iput(inode);
1568 	return ret;
1569 }
1570 
1571 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1572 			      struct btrfs_root *root, u64 ino)
1573 {
1574 	int ret;
1575 
1576 	ret = btrfs_insert_orphan_item(trans, root, ino);
1577 	if (ret == -EEXIST)
1578 		ret = 0;
1579 
1580 	return ret;
1581 }
1582 
1583 static int count_inode_extrefs(struct btrfs_root *root,
1584 		struct btrfs_inode *inode, struct btrfs_path *path)
1585 {
1586 	int ret = 0;
1587 	int name_len;
1588 	unsigned int nlink = 0;
1589 	u32 item_size;
1590 	u32 cur_offset = 0;
1591 	u64 inode_objectid = btrfs_ino(inode);
1592 	u64 offset = 0;
1593 	unsigned long ptr;
1594 	struct btrfs_inode_extref *extref;
1595 	struct extent_buffer *leaf;
1596 
1597 	while (1) {
1598 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1599 					    &extref, &offset);
1600 		if (ret)
1601 			break;
1602 
1603 		leaf = path->nodes[0];
1604 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1605 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1606 		cur_offset = 0;
1607 
1608 		while (cur_offset < item_size) {
1609 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1610 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1611 
1612 			nlink++;
1613 
1614 			cur_offset += name_len + sizeof(*extref);
1615 		}
1616 
1617 		offset++;
1618 		btrfs_release_path(path);
1619 	}
1620 	btrfs_release_path(path);
1621 
1622 	if (ret < 0 && ret != -ENOENT)
1623 		return ret;
1624 	return nlink;
1625 }
1626 
1627 static int count_inode_refs(struct btrfs_root *root,
1628 			struct btrfs_inode *inode, struct btrfs_path *path)
1629 {
1630 	int ret;
1631 	struct btrfs_key key;
1632 	unsigned int nlink = 0;
1633 	unsigned long ptr;
1634 	unsigned long ptr_end;
1635 	int name_len;
1636 	u64 ino = btrfs_ino(inode);
1637 
1638 	key.objectid = ino;
1639 	key.type = BTRFS_INODE_REF_KEY;
1640 	key.offset = (u64)-1;
1641 
1642 	while (1) {
1643 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1644 		if (ret < 0)
1645 			break;
1646 		if (ret > 0) {
1647 			if (path->slots[0] == 0)
1648 				break;
1649 			path->slots[0]--;
1650 		}
1651 process_slot:
1652 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1653 				      path->slots[0]);
1654 		if (key.objectid != ino ||
1655 		    key.type != BTRFS_INODE_REF_KEY)
1656 			break;
1657 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1658 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1659 						   path->slots[0]);
1660 		while (ptr < ptr_end) {
1661 			struct btrfs_inode_ref *ref;
1662 
1663 			ref = (struct btrfs_inode_ref *)ptr;
1664 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1665 							    ref);
1666 			ptr = (unsigned long)(ref + 1) + name_len;
1667 			nlink++;
1668 		}
1669 
1670 		if (key.offset == 0)
1671 			break;
1672 		if (path->slots[0] > 0) {
1673 			path->slots[0]--;
1674 			goto process_slot;
1675 		}
1676 		key.offset--;
1677 		btrfs_release_path(path);
1678 	}
1679 	btrfs_release_path(path);
1680 
1681 	return nlink;
1682 }
1683 
1684 /*
1685  * There are a few corners where the link count of the file can't
1686  * be properly maintained during replay.  So, instead of adding
1687  * lots of complexity to the log code, we just scan the backrefs
1688  * for any file that has been through replay.
1689  *
1690  * The scan will update the link count on the inode to reflect the
1691  * number of back refs found.  If it goes down to zero, the iput
1692  * will free the inode.
1693  */
1694 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1695 					   struct btrfs_root *root,
1696 					   struct inode *inode)
1697 {
1698 	struct btrfs_path *path;
1699 	int ret;
1700 	u64 nlink = 0;
1701 	u64 ino = btrfs_ino(BTRFS_I(inode));
1702 
1703 	path = btrfs_alloc_path();
1704 	if (!path)
1705 		return -ENOMEM;
1706 
1707 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1708 	if (ret < 0)
1709 		goto out;
1710 
1711 	nlink = ret;
1712 
1713 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1714 	if (ret < 0)
1715 		goto out;
1716 
1717 	nlink += ret;
1718 
1719 	ret = 0;
1720 
1721 	if (nlink != inode->i_nlink) {
1722 		set_nlink(inode, nlink);
1723 		btrfs_update_inode(trans, root, inode);
1724 	}
1725 	BTRFS_I(inode)->index_cnt = (u64)-1;
1726 
1727 	if (inode->i_nlink == 0) {
1728 		if (S_ISDIR(inode->i_mode)) {
1729 			ret = replay_dir_deletes(trans, root, NULL, path,
1730 						 ino, 1);
1731 			if (ret)
1732 				goto out;
1733 		}
1734 		ret = insert_orphan_item(trans, root, ino);
1735 	}
1736 
1737 out:
1738 	btrfs_free_path(path);
1739 	return ret;
1740 }
1741 
1742 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1743 					    struct btrfs_root *root,
1744 					    struct btrfs_path *path)
1745 {
1746 	int ret;
1747 	struct btrfs_key key;
1748 	struct inode *inode;
1749 
1750 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1751 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1752 	key.offset = (u64)-1;
1753 	while (1) {
1754 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1755 		if (ret < 0)
1756 			break;
1757 
1758 		if (ret == 1) {
1759 			if (path->slots[0] == 0)
1760 				break;
1761 			path->slots[0]--;
1762 		}
1763 
1764 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1765 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1766 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1767 			break;
1768 
1769 		ret = btrfs_del_item(trans, root, path);
1770 		if (ret)
1771 			goto out;
1772 
1773 		btrfs_release_path(path);
1774 		inode = read_one_inode(root, key.offset);
1775 		if (!inode)
1776 			return -EIO;
1777 
1778 		ret = fixup_inode_link_count(trans, root, inode);
1779 		iput(inode);
1780 		if (ret)
1781 			goto out;
1782 
1783 		/*
1784 		 * fixup on a directory may create new entries,
1785 		 * make sure we always look for the highset possible
1786 		 * offset
1787 		 */
1788 		key.offset = (u64)-1;
1789 	}
1790 	ret = 0;
1791 out:
1792 	btrfs_release_path(path);
1793 	return ret;
1794 }
1795 
1796 
1797 /*
1798  * record a given inode in the fixup dir so we can check its link
1799  * count when replay is done.  The link count is incremented here
1800  * so the inode won't go away until we check it
1801  */
1802 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1803 				      struct btrfs_root *root,
1804 				      struct btrfs_path *path,
1805 				      u64 objectid)
1806 {
1807 	struct btrfs_key key;
1808 	int ret = 0;
1809 	struct inode *inode;
1810 
1811 	inode = read_one_inode(root, objectid);
1812 	if (!inode)
1813 		return -EIO;
1814 
1815 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1816 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1817 	key.offset = objectid;
1818 
1819 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1820 
1821 	btrfs_release_path(path);
1822 	if (ret == 0) {
1823 		if (!inode->i_nlink)
1824 			set_nlink(inode, 1);
1825 		else
1826 			inc_nlink(inode);
1827 		ret = btrfs_update_inode(trans, root, inode);
1828 	} else if (ret == -EEXIST) {
1829 		ret = 0;
1830 	} else {
1831 		BUG(); /* Logic Error */
1832 	}
1833 	iput(inode);
1834 
1835 	return ret;
1836 }
1837 
1838 /*
1839  * when replaying the log for a directory, we only insert names
1840  * for inodes that actually exist.  This means an fsync on a directory
1841  * does not implicitly fsync all the new files in it
1842  */
1843 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1844 				    struct btrfs_root *root,
1845 				    u64 dirid, u64 index,
1846 				    char *name, int name_len,
1847 				    struct btrfs_key *location)
1848 {
1849 	struct inode *inode;
1850 	struct inode *dir;
1851 	int ret;
1852 
1853 	inode = read_one_inode(root, location->objectid);
1854 	if (!inode)
1855 		return -ENOENT;
1856 
1857 	dir = read_one_inode(root, dirid);
1858 	if (!dir) {
1859 		iput(inode);
1860 		return -EIO;
1861 	}
1862 
1863 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1864 			name_len, 1, index);
1865 
1866 	/* FIXME, put inode into FIXUP list */
1867 
1868 	iput(inode);
1869 	iput(dir);
1870 	return ret;
1871 }
1872 
1873 /*
1874  * take a single entry in a log directory item and replay it into
1875  * the subvolume.
1876  *
1877  * if a conflicting item exists in the subdirectory already,
1878  * the inode it points to is unlinked and put into the link count
1879  * fix up tree.
1880  *
1881  * If a name from the log points to a file or directory that does
1882  * not exist in the FS, it is skipped.  fsyncs on directories
1883  * do not force down inodes inside that directory, just changes to the
1884  * names or unlinks in a directory.
1885  *
1886  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1887  * non-existing inode) and 1 if the name was replayed.
1888  */
1889 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1890 				    struct btrfs_root *root,
1891 				    struct btrfs_path *path,
1892 				    struct extent_buffer *eb,
1893 				    struct btrfs_dir_item *di,
1894 				    struct btrfs_key *key)
1895 {
1896 	char *name;
1897 	int name_len;
1898 	struct btrfs_dir_item *dst_di;
1899 	struct btrfs_key found_key;
1900 	struct btrfs_key log_key;
1901 	struct inode *dir;
1902 	u8 log_type;
1903 	int exists;
1904 	int ret = 0;
1905 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1906 	bool name_added = false;
1907 
1908 	dir = read_one_inode(root, key->objectid);
1909 	if (!dir)
1910 		return -EIO;
1911 
1912 	name_len = btrfs_dir_name_len(eb, di);
1913 	name = kmalloc(name_len, GFP_NOFS);
1914 	if (!name) {
1915 		ret = -ENOMEM;
1916 		goto out;
1917 	}
1918 
1919 	log_type = btrfs_dir_type(eb, di);
1920 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1921 		   name_len);
1922 
1923 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1924 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1925 	if (exists == 0)
1926 		exists = 1;
1927 	else
1928 		exists = 0;
1929 	btrfs_release_path(path);
1930 
1931 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1932 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1933 				       name, name_len, 1);
1934 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1935 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1936 						     key->objectid,
1937 						     key->offset, name,
1938 						     name_len, 1);
1939 	} else {
1940 		/* Corruption */
1941 		ret = -EINVAL;
1942 		goto out;
1943 	}
1944 	if (IS_ERR_OR_NULL(dst_di)) {
1945 		/* we need a sequence number to insert, so we only
1946 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1947 		 */
1948 		if (key->type != BTRFS_DIR_INDEX_KEY)
1949 			goto out;
1950 		goto insert;
1951 	}
1952 
1953 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1954 	/* the existing item matches the logged item */
1955 	if (found_key.objectid == log_key.objectid &&
1956 	    found_key.type == log_key.type &&
1957 	    found_key.offset == log_key.offset &&
1958 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1959 		update_size = false;
1960 		goto out;
1961 	}
1962 
1963 	/*
1964 	 * don't drop the conflicting directory entry if the inode
1965 	 * for the new entry doesn't exist
1966 	 */
1967 	if (!exists)
1968 		goto out;
1969 
1970 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1971 	if (ret)
1972 		goto out;
1973 
1974 	if (key->type == BTRFS_DIR_INDEX_KEY)
1975 		goto insert;
1976 out:
1977 	btrfs_release_path(path);
1978 	if (!ret && update_size) {
1979 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1980 		ret = btrfs_update_inode(trans, root, dir);
1981 	}
1982 	kfree(name);
1983 	iput(dir);
1984 	if (!ret && name_added)
1985 		ret = 1;
1986 	return ret;
1987 
1988 insert:
1989 	/*
1990 	 * Check if the inode reference exists in the log for the given name,
1991 	 * inode and parent inode
1992 	 */
1993 	found_key.objectid = log_key.objectid;
1994 	found_key.type = BTRFS_INODE_REF_KEY;
1995 	found_key.offset = key->objectid;
1996 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1997 	if (ret < 0) {
1998 	        goto out;
1999 	} else if (ret) {
2000 	        /* The dentry will be added later. */
2001 	        ret = 0;
2002 	        update_size = false;
2003 	        goto out;
2004 	}
2005 
2006 	found_key.objectid = log_key.objectid;
2007 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2008 	found_key.offset = key->objectid;
2009 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2010 			     name_len);
2011 	if (ret < 0) {
2012 		goto out;
2013 	} else if (ret) {
2014 		/* The dentry will be added later. */
2015 		ret = 0;
2016 		update_size = false;
2017 		goto out;
2018 	}
2019 	btrfs_release_path(path);
2020 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2021 			      name, name_len, &log_key);
2022 	if (ret && ret != -ENOENT && ret != -EEXIST)
2023 		goto out;
2024 	if (!ret)
2025 		name_added = true;
2026 	update_size = false;
2027 	ret = 0;
2028 	goto out;
2029 }
2030 
2031 /*
2032  * find all the names in a directory item and reconcile them into
2033  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2034  * one name in a directory item, but the same code gets used for
2035  * both directory index types
2036  */
2037 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2038 					struct btrfs_root *root,
2039 					struct btrfs_path *path,
2040 					struct extent_buffer *eb, int slot,
2041 					struct btrfs_key *key)
2042 {
2043 	int ret = 0;
2044 	u32 item_size = btrfs_item_size_nr(eb, slot);
2045 	struct btrfs_dir_item *di;
2046 	int name_len;
2047 	unsigned long ptr;
2048 	unsigned long ptr_end;
2049 	struct btrfs_path *fixup_path = NULL;
2050 
2051 	ptr = btrfs_item_ptr_offset(eb, slot);
2052 	ptr_end = ptr + item_size;
2053 	while (ptr < ptr_end) {
2054 		di = (struct btrfs_dir_item *)ptr;
2055 		name_len = btrfs_dir_name_len(eb, di);
2056 		ret = replay_one_name(trans, root, path, eb, di, key);
2057 		if (ret < 0)
2058 			break;
2059 		ptr = (unsigned long)(di + 1);
2060 		ptr += name_len;
2061 
2062 		/*
2063 		 * If this entry refers to a non-directory (directories can not
2064 		 * have a link count > 1) and it was added in the transaction
2065 		 * that was not committed, make sure we fixup the link count of
2066 		 * the inode it the entry points to. Otherwise something like
2067 		 * the following would result in a directory pointing to an
2068 		 * inode with a wrong link that does not account for this dir
2069 		 * entry:
2070 		 *
2071 		 * mkdir testdir
2072 		 * touch testdir/foo
2073 		 * touch testdir/bar
2074 		 * sync
2075 		 *
2076 		 * ln testdir/bar testdir/bar_link
2077 		 * ln testdir/foo testdir/foo_link
2078 		 * xfs_io -c "fsync" testdir/bar
2079 		 *
2080 		 * <power failure>
2081 		 *
2082 		 * mount fs, log replay happens
2083 		 *
2084 		 * File foo would remain with a link count of 1 when it has two
2085 		 * entries pointing to it in the directory testdir. This would
2086 		 * make it impossible to ever delete the parent directory has
2087 		 * it would result in stale dentries that can never be deleted.
2088 		 */
2089 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2090 			struct btrfs_key di_key;
2091 
2092 			if (!fixup_path) {
2093 				fixup_path = btrfs_alloc_path();
2094 				if (!fixup_path) {
2095 					ret = -ENOMEM;
2096 					break;
2097 				}
2098 			}
2099 
2100 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2101 			ret = link_to_fixup_dir(trans, root, fixup_path,
2102 						di_key.objectid);
2103 			if (ret)
2104 				break;
2105 		}
2106 		ret = 0;
2107 	}
2108 	btrfs_free_path(fixup_path);
2109 	return ret;
2110 }
2111 
2112 /*
2113  * directory replay has two parts.  There are the standard directory
2114  * items in the log copied from the subvolume, and range items
2115  * created in the log while the subvolume was logged.
2116  *
2117  * The range items tell us which parts of the key space the log
2118  * is authoritative for.  During replay, if a key in the subvolume
2119  * directory is in a logged range item, but not actually in the log
2120  * that means it was deleted from the directory before the fsync
2121  * and should be removed.
2122  */
2123 static noinline int find_dir_range(struct btrfs_root *root,
2124 				   struct btrfs_path *path,
2125 				   u64 dirid, int key_type,
2126 				   u64 *start_ret, u64 *end_ret)
2127 {
2128 	struct btrfs_key key;
2129 	u64 found_end;
2130 	struct btrfs_dir_log_item *item;
2131 	int ret;
2132 	int nritems;
2133 
2134 	if (*start_ret == (u64)-1)
2135 		return 1;
2136 
2137 	key.objectid = dirid;
2138 	key.type = key_type;
2139 	key.offset = *start_ret;
2140 
2141 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2142 	if (ret < 0)
2143 		goto out;
2144 	if (ret > 0) {
2145 		if (path->slots[0] == 0)
2146 			goto out;
2147 		path->slots[0]--;
2148 	}
2149 	if (ret != 0)
2150 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2151 
2152 	if (key.type != key_type || key.objectid != dirid) {
2153 		ret = 1;
2154 		goto next;
2155 	}
2156 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2157 			      struct btrfs_dir_log_item);
2158 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2159 
2160 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2161 		ret = 0;
2162 		*start_ret = key.offset;
2163 		*end_ret = found_end;
2164 		goto out;
2165 	}
2166 	ret = 1;
2167 next:
2168 	/* check the next slot in the tree to see if it is a valid item */
2169 	nritems = btrfs_header_nritems(path->nodes[0]);
2170 	path->slots[0]++;
2171 	if (path->slots[0] >= nritems) {
2172 		ret = btrfs_next_leaf(root, path);
2173 		if (ret)
2174 			goto out;
2175 	}
2176 
2177 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2178 
2179 	if (key.type != key_type || key.objectid != dirid) {
2180 		ret = 1;
2181 		goto out;
2182 	}
2183 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2184 			      struct btrfs_dir_log_item);
2185 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2186 	*start_ret = key.offset;
2187 	*end_ret = found_end;
2188 	ret = 0;
2189 out:
2190 	btrfs_release_path(path);
2191 	return ret;
2192 }
2193 
2194 /*
2195  * this looks for a given directory item in the log.  If the directory
2196  * item is not in the log, the item is removed and the inode it points
2197  * to is unlinked
2198  */
2199 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2200 				      struct btrfs_root *root,
2201 				      struct btrfs_root *log,
2202 				      struct btrfs_path *path,
2203 				      struct btrfs_path *log_path,
2204 				      struct inode *dir,
2205 				      struct btrfs_key *dir_key)
2206 {
2207 	int ret;
2208 	struct extent_buffer *eb;
2209 	int slot;
2210 	u32 item_size;
2211 	struct btrfs_dir_item *di;
2212 	struct btrfs_dir_item *log_di;
2213 	int name_len;
2214 	unsigned long ptr;
2215 	unsigned long ptr_end;
2216 	char *name;
2217 	struct inode *inode;
2218 	struct btrfs_key location;
2219 
2220 again:
2221 	eb = path->nodes[0];
2222 	slot = path->slots[0];
2223 	item_size = btrfs_item_size_nr(eb, slot);
2224 	ptr = btrfs_item_ptr_offset(eb, slot);
2225 	ptr_end = ptr + item_size;
2226 	while (ptr < ptr_end) {
2227 		di = (struct btrfs_dir_item *)ptr;
2228 		name_len = btrfs_dir_name_len(eb, di);
2229 		name = kmalloc(name_len, GFP_NOFS);
2230 		if (!name) {
2231 			ret = -ENOMEM;
2232 			goto out;
2233 		}
2234 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2235 				  name_len);
2236 		log_di = NULL;
2237 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2238 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2239 						       dir_key->objectid,
2240 						       name, name_len, 0);
2241 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2242 			log_di = btrfs_lookup_dir_index_item(trans, log,
2243 						     log_path,
2244 						     dir_key->objectid,
2245 						     dir_key->offset,
2246 						     name, name_len, 0);
2247 		}
2248 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2249 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2250 			btrfs_release_path(path);
2251 			btrfs_release_path(log_path);
2252 			inode = read_one_inode(root, location.objectid);
2253 			if (!inode) {
2254 				kfree(name);
2255 				return -EIO;
2256 			}
2257 
2258 			ret = link_to_fixup_dir(trans, root,
2259 						path, location.objectid);
2260 			if (ret) {
2261 				kfree(name);
2262 				iput(inode);
2263 				goto out;
2264 			}
2265 
2266 			inc_nlink(inode);
2267 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2268 					BTRFS_I(inode), name, name_len);
2269 			if (!ret)
2270 				ret = btrfs_run_delayed_items(trans);
2271 			kfree(name);
2272 			iput(inode);
2273 			if (ret)
2274 				goto out;
2275 
2276 			/* there might still be more names under this key
2277 			 * check and repeat if required
2278 			 */
2279 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2280 						0, 0);
2281 			if (ret == 0)
2282 				goto again;
2283 			ret = 0;
2284 			goto out;
2285 		} else if (IS_ERR(log_di)) {
2286 			kfree(name);
2287 			return PTR_ERR(log_di);
2288 		}
2289 		btrfs_release_path(log_path);
2290 		kfree(name);
2291 
2292 		ptr = (unsigned long)(di + 1);
2293 		ptr += name_len;
2294 	}
2295 	ret = 0;
2296 out:
2297 	btrfs_release_path(path);
2298 	btrfs_release_path(log_path);
2299 	return ret;
2300 }
2301 
2302 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2303 			      struct btrfs_root *root,
2304 			      struct btrfs_root *log,
2305 			      struct btrfs_path *path,
2306 			      const u64 ino)
2307 {
2308 	struct btrfs_key search_key;
2309 	struct btrfs_path *log_path;
2310 	int i;
2311 	int nritems;
2312 	int ret;
2313 
2314 	log_path = btrfs_alloc_path();
2315 	if (!log_path)
2316 		return -ENOMEM;
2317 
2318 	search_key.objectid = ino;
2319 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2320 	search_key.offset = 0;
2321 again:
2322 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2323 	if (ret < 0)
2324 		goto out;
2325 process_leaf:
2326 	nritems = btrfs_header_nritems(path->nodes[0]);
2327 	for (i = path->slots[0]; i < nritems; i++) {
2328 		struct btrfs_key key;
2329 		struct btrfs_dir_item *di;
2330 		struct btrfs_dir_item *log_di;
2331 		u32 total_size;
2332 		u32 cur;
2333 
2334 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2335 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2336 			ret = 0;
2337 			goto out;
2338 		}
2339 
2340 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2341 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2342 		cur = 0;
2343 		while (cur < total_size) {
2344 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2345 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2346 			u32 this_len = sizeof(*di) + name_len + data_len;
2347 			char *name;
2348 
2349 			name = kmalloc(name_len, GFP_NOFS);
2350 			if (!name) {
2351 				ret = -ENOMEM;
2352 				goto out;
2353 			}
2354 			read_extent_buffer(path->nodes[0], name,
2355 					   (unsigned long)(di + 1), name_len);
2356 
2357 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2358 						    name, name_len, 0);
2359 			btrfs_release_path(log_path);
2360 			if (!log_di) {
2361 				/* Doesn't exist in log tree, so delete it. */
2362 				btrfs_release_path(path);
2363 				di = btrfs_lookup_xattr(trans, root, path, ino,
2364 							name, name_len, -1);
2365 				kfree(name);
2366 				if (IS_ERR(di)) {
2367 					ret = PTR_ERR(di);
2368 					goto out;
2369 				}
2370 				ASSERT(di);
2371 				ret = btrfs_delete_one_dir_name(trans, root,
2372 								path, di);
2373 				if (ret)
2374 					goto out;
2375 				btrfs_release_path(path);
2376 				search_key = key;
2377 				goto again;
2378 			}
2379 			kfree(name);
2380 			if (IS_ERR(log_di)) {
2381 				ret = PTR_ERR(log_di);
2382 				goto out;
2383 			}
2384 			cur += this_len;
2385 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2386 		}
2387 	}
2388 	ret = btrfs_next_leaf(root, path);
2389 	if (ret > 0)
2390 		ret = 0;
2391 	else if (ret == 0)
2392 		goto process_leaf;
2393 out:
2394 	btrfs_free_path(log_path);
2395 	btrfs_release_path(path);
2396 	return ret;
2397 }
2398 
2399 
2400 /*
2401  * deletion replay happens before we copy any new directory items
2402  * out of the log or out of backreferences from inodes.  It
2403  * scans the log to find ranges of keys that log is authoritative for,
2404  * and then scans the directory to find items in those ranges that are
2405  * not present in the log.
2406  *
2407  * Anything we don't find in the log is unlinked and removed from the
2408  * directory.
2409  */
2410 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2411 				       struct btrfs_root *root,
2412 				       struct btrfs_root *log,
2413 				       struct btrfs_path *path,
2414 				       u64 dirid, int del_all)
2415 {
2416 	u64 range_start;
2417 	u64 range_end;
2418 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2419 	int ret = 0;
2420 	struct btrfs_key dir_key;
2421 	struct btrfs_key found_key;
2422 	struct btrfs_path *log_path;
2423 	struct inode *dir;
2424 
2425 	dir_key.objectid = dirid;
2426 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2427 	log_path = btrfs_alloc_path();
2428 	if (!log_path)
2429 		return -ENOMEM;
2430 
2431 	dir = read_one_inode(root, dirid);
2432 	/* it isn't an error if the inode isn't there, that can happen
2433 	 * because we replay the deletes before we copy in the inode item
2434 	 * from the log
2435 	 */
2436 	if (!dir) {
2437 		btrfs_free_path(log_path);
2438 		return 0;
2439 	}
2440 again:
2441 	range_start = 0;
2442 	range_end = 0;
2443 	while (1) {
2444 		if (del_all)
2445 			range_end = (u64)-1;
2446 		else {
2447 			ret = find_dir_range(log, path, dirid, key_type,
2448 					     &range_start, &range_end);
2449 			if (ret != 0)
2450 				break;
2451 		}
2452 
2453 		dir_key.offset = range_start;
2454 		while (1) {
2455 			int nritems;
2456 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2457 						0, 0);
2458 			if (ret < 0)
2459 				goto out;
2460 
2461 			nritems = btrfs_header_nritems(path->nodes[0]);
2462 			if (path->slots[0] >= nritems) {
2463 				ret = btrfs_next_leaf(root, path);
2464 				if (ret == 1)
2465 					break;
2466 				else if (ret < 0)
2467 					goto out;
2468 			}
2469 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2470 					      path->slots[0]);
2471 			if (found_key.objectid != dirid ||
2472 			    found_key.type != dir_key.type)
2473 				goto next_type;
2474 
2475 			if (found_key.offset > range_end)
2476 				break;
2477 
2478 			ret = check_item_in_log(trans, root, log, path,
2479 						log_path, dir,
2480 						&found_key);
2481 			if (ret)
2482 				goto out;
2483 			if (found_key.offset == (u64)-1)
2484 				break;
2485 			dir_key.offset = found_key.offset + 1;
2486 		}
2487 		btrfs_release_path(path);
2488 		if (range_end == (u64)-1)
2489 			break;
2490 		range_start = range_end + 1;
2491 	}
2492 
2493 next_type:
2494 	ret = 0;
2495 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2496 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2497 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2498 		btrfs_release_path(path);
2499 		goto again;
2500 	}
2501 out:
2502 	btrfs_release_path(path);
2503 	btrfs_free_path(log_path);
2504 	iput(dir);
2505 	return ret;
2506 }
2507 
2508 /*
2509  * the process_func used to replay items from the log tree.  This
2510  * gets called in two different stages.  The first stage just looks
2511  * for inodes and makes sure they are all copied into the subvolume.
2512  *
2513  * The second stage copies all the other item types from the log into
2514  * the subvolume.  The two stage approach is slower, but gets rid of
2515  * lots of complexity around inodes referencing other inodes that exist
2516  * only in the log (references come from either directory items or inode
2517  * back refs).
2518  */
2519 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2520 			     struct walk_control *wc, u64 gen, int level)
2521 {
2522 	int nritems;
2523 	struct btrfs_path *path;
2524 	struct btrfs_root *root = wc->replay_dest;
2525 	struct btrfs_key key;
2526 	int i;
2527 	int ret;
2528 
2529 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2530 	if (ret)
2531 		return ret;
2532 
2533 	level = btrfs_header_level(eb);
2534 
2535 	if (level != 0)
2536 		return 0;
2537 
2538 	path = btrfs_alloc_path();
2539 	if (!path)
2540 		return -ENOMEM;
2541 
2542 	nritems = btrfs_header_nritems(eb);
2543 	for (i = 0; i < nritems; i++) {
2544 		btrfs_item_key_to_cpu(eb, &key, i);
2545 
2546 		/* inode keys are done during the first stage */
2547 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2548 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2549 			struct btrfs_inode_item *inode_item;
2550 			u32 mode;
2551 
2552 			inode_item = btrfs_item_ptr(eb, i,
2553 					    struct btrfs_inode_item);
2554 			/*
2555 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2556 			 * and never got linked before the fsync, skip it, as
2557 			 * replaying it is pointless since it would be deleted
2558 			 * later. We skip logging tmpfiles, but it's always
2559 			 * possible we are replaying a log created with a kernel
2560 			 * that used to log tmpfiles.
2561 			 */
2562 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2563 				wc->ignore_cur_inode = true;
2564 				continue;
2565 			} else {
2566 				wc->ignore_cur_inode = false;
2567 			}
2568 			ret = replay_xattr_deletes(wc->trans, root, log,
2569 						   path, key.objectid);
2570 			if (ret)
2571 				break;
2572 			mode = btrfs_inode_mode(eb, inode_item);
2573 			if (S_ISDIR(mode)) {
2574 				ret = replay_dir_deletes(wc->trans,
2575 					 root, log, path, key.objectid, 0);
2576 				if (ret)
2577 					break;
2578 			}
2579 			ret = overwrite_item(wc->trans, root, path,
2580 					     eb, i, &key);
2581 			if (ret)
2582 				break;
2583 
2584 			/*
2585 			 * Before replaying extents, truncate the inode to its
2586 			 * size. We need to do it now and not after log replay
2587 			 * because before an fsync we can have prealloc extents
2588 			 * added beyond the inode's i_size. If we did it after,
2589 			 * through orphan cleanup for example, we would drop
2590 			 * those prealloc extents just after replaying them.
2591 			 */
2592 			if (S_ISREG(mode)) {
2593 				struct inode *inode;
2594 				u64 from;
2595 
2596 				inode = read_one_inode(root, key.objectid);
2597 				if (!inode) {
2598 					ret = -EIO;
2599 					break;
2600 				}
2601 				from = ALIGN(i_size_read(inode),
2602 					     root->fs_info->sectorsize);
2603 				ret = btrfs_drop_extents(wc->trans, root, inode,
2604 							 from, (u64)-1, 1);
2605 				if (!ret) {
2606 					/* Update the inode's nbytes. */
2607 					ret = btrfs_update_inode(wc->trans,
2608 								 root, inode);
2609 				}
2610 				iput(inode);
2611 				if (ret)
2612 					break;
2613 			}
2614 
2615 			ret = link_to_fixup_dir(wc->trans, root,
2616 						path, key.objectid);
2617 			if (ret)
2618 				break;
2619 		}
2620 
2621 		if (wc->ignore_cur_inode)
2622 			continue;
2623 
2624 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2625 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2626 			ret = replay_one_dir_item(wc->trans, root, path,
2627 						  eb, i, &key);
2628 			if (ret)
2629 				break;
2630 		}
2631 
2632 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2633 			continue;
2634 
2635 		/* these keys are simply copied */
2636 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2637 			ret = overwrite_item(wc->trans, root, path,
2638 					     eb, i, &key);
2639 			if (ret)
2640 				break;
2641 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2642 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2643 			ret = add_inode_ref(wc->trans, root, log, path,
2644 					    eb, i, &key);
2645 			if (ret && ret != -ENOENT)
2646 				break;
2647 			ret = 0;
2648 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2649 			ret = replay_one_extent(wc->trans, root, path,
2650 						eb, i, &key);
2651 			if (ret)
2652 				break;
2653 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2654 			ret = replay_one_dir_item(wc->trans, root, path,
2655 						  eb, i, &key);
2656 			if (ret)
2657 				break;
2658 		}
2659 	}
2660 	btrfs_free_path(path);
2661 	return ret;
2662 }
2663 
2664 /*
2665  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2666  */
2667 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2668 {
2669 	struct btrfs_block_group *cache;
2670 
2671 	cache = btrfs_lookup_block_group(fs_info, start);
2672 	if (!cache) {
2673 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2674 		return;
2675 	}
2676 
2677 	spin_lock(&cache->space_info->lock);
2678 	spin_lock(&cache->lock);
2679 	cache->reserved -= fs_info->nodesize;
2680 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2681 	spin_unlock(&cache->lock);
2682 	spin_unlock(&cache->space_info->lock);
2683 
2684 	btrfs_put_block_group(cache);
2685 }
2686 
2687 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2688 				   struct btrfs_root *root,
2689 				   struct btrfs_path *path, int *level,
2690 				   struct walk_control *wc)
2691 {
2692 	struct btrfs_fs_info *fs_info = root->fs_info;
2693 	u64 bytenr;
2694 	u64 ptr_gen;
2695 	struct extent_buffer *next;
2696 	struct extent_buffer *cur;
2697 	u32 blocksize;
2698 	int ret = 0;
2699 
2700 	while (*level > 0) {
2701 		struct btrfs_key first_key;
2702 
2703 		cur = path->nodes[*level];
2704 
2705 		WARN_ON(btrfs_header_level(cur) != *level);
2706 
2707 		if (path->slots[*level] >=
2708 		    btrfs_header_nritems(cur))
2709 			break;
2710 
2711 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2712 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2713 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2714 		blocksize = fs_info->nodesize;
2715 
2716 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2717 		if (IS_ERR(next))
2718 			return PTR_ERR(next);
2719 
2720 		if (*level == 1) {
2721 			ret = wc->process_func(root, next, wc, ptr_gen,
2722 					       *level - 1);
2723 			if (ret) {
2724 				free_extent_buffer(next);
2725 				return ret;
2726 			}
2727 
2728 			path->slots[*level]++;
2729 			if (wc->free) {
2730 				ret = btrfs_read_buffer(next, ptr_gen,
2731 							*level - 1, &first_key);
2732 				if (ret) {
2733 					free_extent_buffer(next);
2734 					return ret;
2735 				}
2736 
2737 				if (trans) {
2738 					btrfs_tree_lock(next);
2739 					btrfs_set_lock_blocking_write(next);
2740 					btrfs_clean_tree_block(next);
2741 					btrfs_wait_tree_block_writeback(next);
2742 					btrfs_tree_unlock(next);
2743 					ret = btrfs_pin_reserved_extent(trans,
2744 							bytenr, blocksize);
2745 					if (ret) {
2746 						free_extent_buffer(next);
2747 						return ret;
2748 					}
2749 				} else {
2750 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2751 						clear_extent_buffer_dirty(next);
2752 					unaccount_log_buffer(fs_info, bytenr);
2753 				}
2754 			}
2755 			free_extent_buffer(next);
2756 			continue;
2757 		}
2758 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2759 		if (ret) {
2760 			free_extent_buffer(next);
2761 			return ret;
2762 		}
2763 
2764 		if (path->nodes[*level-1])
2765 			free_extent_buffer(path->nodes[*level-1]);
2766 		path->nodes[*level-1] = next;
2767 		*level = btrfs_header_level(next);
2768 		path->slots[*level] = 0;
2769 		cond_resched();
2770 	}
2771 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2772 
2773 	cond_resched();
2774 	return 0;
2775 }
2776 
2777 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2778 				 struct btrfs_root *root,
2779 				 struct btrfs_path *path, int *level,
2780 				 struct walk_control *wc)
2781 {
2782 	struct btrfs_fs_info *fs_info = root->fs_info;
2783 	int i;
2784 	int slot;
2785 	int ret;
2786 
2787 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2788 		slot = path->slots[i];
2789 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2790 			path->slots[i]++;
2791 			*level = i;
2792 			WARN_ON(*level == 0);
2793 			return 0;
2794 		} else {
2795 			ret = wc->process_func(root, path->nodes[*level], wc,
2796 				 btrfs_header_generation(path->nodes[*level]),
2797 				 *level);
2798 			if (ret)
2799 				return ret;
2800 
2801 			if (wc->free) {
2802 				struct extent_buffer *next;
2803 
2804 				next = path->nodes[*level];
2805 
2806 				if (trans) {
2807 					btrfs_tree_lock(next);
2808 					btrfs_set_lock_blocking_write(next);
2809 					btrfs_clean_tree_block(next);
2810 					btrfs_wait_tree_block_writeback(next);
2811 					btrfs_tree_unlock(next);
2812 					ret = btrfs_pin_reserved_extent(trans,
2813 						     path->nodes[*level]->start,
2814 						     path->nodes[*level]->len);
2815 					if (ret)
2816 						return ret;
2817 				} else {
2818 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2819 						clear_extent_buffer_dirty(next);
2820 
2821 					unaccount_log_buffer(fs_info,
2822 						path->nodes[*level]->start);
2823 				}
2824 			}
2825 			free_extent_buffer(path->nodes[*level]);
2826 			path->nodes[*level] = NULL;
2827 			*level = i + 1;
2828 		}
2829 	}
2830 	return 1;
2831 }
2832 
2833 /*
2834  * drop the reference count on the tree rooted at 'snap'.  This traverses
2835  * the tree freeing any blocks that have a ref count of zero after being
2836  * decremented.
2837  */
2838 static int walk_log_tree(struct btrfs_trans_handle *trans,
2839 			 struct btrfs_root *log, struct walk_control *wc)
2840 {
2841 	struct btrfs_fs_info *fs_info = log->fs_info;
2842 	int ret = 0;
2843 	int wret;
2844 	int level;
2845 	struct btrfs_path *path;
2846 	int orig_level;
2847 
2848 	path = btrfs_alloc_path();
2849 	if (!path)
2850 		return -ENOMEM;
2851 
2852 	level = btrfs_header_level(log->node);
2853 	orig_level = level;
2854 	path->nodes[level] = log->node;
2855 	atomic_inc(&log->node->refs);
2856 	path->slots[level] = 0;
2857 
2858 	while (1) {
2859 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2860 		if (wret > 0)
2861 			break;
2862 		if (wret < 0) {
2863 			ret = wret;
2864 			goto out;
2865 		}
2866 
2867 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2868 		if (wret > 0)
2869 			break;
2870 		if (wret < 0) {
2871 			ret = wret;
2872 			goto out;
2873 		}
2874 	}
2875 
2876 	/* was the root node processed? if not, catch it here */
2877 	if (path->nodes[orig_level]) {
2878 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2879 			 btrfs_header_generation(path->nodes[orig_level]),
2880 			 orig_level);
2881 		if (ret)
2882 			goto out;
2883 		if (wc->free) {
2884 			struct extent_buffer *next;
2885 
2886 			next = path->nodes[orig_level];
2887 
2888 			if (trans) {
2889 				btrfs_tree_lock(next);
2890 				btrfs_set_lock_blocking_write(next);
2891 				btrfs_clean_tree_block(next);
2892 				btrfs_wait_tree_block_writeback(next);
2893 				btrfs_tree_unlock(next);
2894 				ret = btrfs_pin_reserved_extent(trans,
2895 						next->start, next->len);
2896 				if (ret)
2897 					goto out;
2898 			} else {
2899 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2900 					clear_extent_buffer_dirty(next);
2901 				unaccount_log_buffer(fs_info, next->start);
2902 			}
2903 		}
2904 	}
2905 
2906 out:
2907 	btrfs_free_path(path);
2908 	return ret;
2909 }
2910 
2911 /*
2912  * helper function to update the item for a given subvolumes log root
2913  * in the tree of log roots
2914  */
2915 static int update_log_root(struct btrfs_trans_handle *trans,
2916 			   struct btrfs_root *log,
2917 			   struct btrfs_root_item *root_item)
2918 {
2919 	struct btrfs_fs_info *fs_info = log->fs_info;
2920 	int ret;
2921 
2922 	if (log->log_transid == 1) {
2923 		/* insert root item on the first sync */
2924 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2925 				&log->root_key, root_item);
2926 	} else {
2927 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2928 				&log->root_key, root_item);
2929 	}
2930 	return ret;
2931 }
2932 
2933 static void wait_log_commit(struct btrfs_root *root, int transid)
2934 {
2935 	DEFINE_WAIT(wait);
2936 	int index = transid % 2;
2937 
2938 	/*
2939 	 * we only allow two pending log transactions at a time,
2940 	 * so we know that if ours is more than 2 older than the
2941 	 * current transaction, we're done
2942 	 */
2943 	for (;;) {
2944 		prepare_to_wait(&root->log_commit_wait[index],
2945 				&wait, TASK_UNINTERRUPTIBLE);
2946 
2947 		if (!(root->log_transid_committed < transid &&
2948 		      atomic_read(&root->log_commit[index])))
2949 			break;
2950 
2951 		mutex_unlock(&root->log_mutex);
2952 		schedule();
2953 		mutex_lock(&root->log_mutex);
2954 	}
2955 	finish_wait(&root->log_commit_wait[index], &wait);
2956 }
2957 
2958 static void wait_for_writer(struct btrfs_root *root)
2959 {
2960 	DEFINE_WAIT(wait);
2961 
2962 	for (;;) {
2963 		prepare_to_wait(&root->log_writer_wait, &wait,
2964 				TASK_UNINTERRUPTIBLE);
2965 		if (!atomic_read(&root->log_writers))
2966 			break;
2967 
2968 		mutex_unlock(&root->log_mutex);
2969 		schedule();
2970 		mutex_lock(&root->log_mutex);
2971 	}
2972 	finish_wait(&root->log_writer_wait, &wait);
2973 }
2974 
2975 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2976 					struct btrfs_log_ctx *ctx)
2977 {
2978 	if (!ctx)
2979 		return;
2980 
2981 	mutex_lock(&root->log_mutex);
2982 	list_del_init(&ctx->list);
2983 	mutex_unlock(&root->log_mutex);
2984 }
2985 
2986 /*
2987  * Invoked in log mutex context, or be sure there is no other task which
2988  * can access the list.
2989  */
2990 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2991 					     int index, int error)
2992 {
2993 	struct btrfs_log_ctx *ctx;
2994 	struct btrfs_log_ctx *safe;
2995 
2996 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2997 		list_del_init(&ctx->list);
2998 		ctx->log_ret = error;
2999 	}
3000 
3001 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3002 }
3003 
3004 /*
3005  * btrfs_sync_log does sends a given tree log down to the disk and
3006  * updates the super blocks to record it.  When this call is done,
3007  * you know that any inodes previously logged are safely on disk only
3008  * if it returns 0.
3009  *
3010  * Any other return value means you need to call btrfs_commit_transaction.
3011  * Some of the edge cases for fsyncing directories that have had unlinks
3012  * or renames done in the past mean that sometimes the only safe
3013  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3014  * that has happened.
3015  */
3016 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3017 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3018 {
3019 	int index1;
3020 	int index2;
3021 	int mark;
3022 	int ret;
3023 	struct btrfs_fs_info *fs_info = root->fs_info;
3024 	struct btrfs_root *log = root->log_root;
3025 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3026 	struct btrfs_root_item new_root_item;
3027 	int log_transid = 0;
3028 	struct btrfs_log_ctx root_log_ctx;
3029 	struct blk_plug plug;
3030 
3031 	mutex_lock(&root->log_mutex);
3032 	log_transid = ctx->log_transid;
3033 	if (root->log_transid_committed >= log_transid) {
3034 		mutex_unlock(&root->log_mutex);
3035 		return ctx->log_ret;
3036 	}
3037 
3038 	index1 = log_transid % 2;
3039 	if (atomic_read(&root->log_commit[index1])) {
3040 		wait_log_commit(root, log_transid);
3041 		mutex_unlock(&root->log_mutex);
3042 		return ctx->log_ret;
3043 	}
3044 	ASSERT(log_transid == root->log_transid);
3045 	atomic_set(&root->log_commit[index1], 1);
3046 
3047 	/* wait for previous tree log sync to complete */
3048 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3049 		wait_log_commit(root, log_transid - 1);
3050 
3051 	while (1) {
3052 		int batch = atomic_read(&root->log_batch);
3053 		/* when we're on an ssd, just kick the log commit out */
3054 		if (!btrfs_test_opt(fs_info, SSD) &&
3055 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3056 			mutex_unlock(&root->log_mutex);
3057 			schedule_timeout_uninterruptible(1);
3058 			mutex_lock(&root->log_mutex);
3059 		}
3060 		wait_for_writer(root);
3061 		if (batch == atomic_read(&root->log_batch))
3062 			break;
3063 	}
3064 
3065 	/* bail out if we need to do a full commit */
3066 	if (btrfs_need_log_full_commit(trans)) {
3067 		ret = -EAGAIN;
3068 		mutex_unlock(&root->log_mutex);
3069 		goto out;
3070 	}
3071 
3072 	if (log_transid % 2 == 0)
3073 		mark = EXTENT_DIRTY;
3074 	else
3075 		mark = EXTENT_NEW;
3076 
3077 	/* we start IO on  all the marked extents here, but we don't actually
3078 	 * wait for them until later.
3079 	 */
3080 	blk_start_plug(&plug);
3081 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3082 	if (ret) {
3083 		blk_finish_plug(&plug);
3084 		btrfs_abort_transaction(trans, ret);
3085 		btrfs_set_log_full_commit(trans);
3086 		mutex_unlock(&root->log_mutex);
3087 		goto out;
3088 	}
3089 
3090 	/*
3091 	 * We _must_ update under the root->log_mutex in order to make sure we
3092 	 * have a consistent view of the log root we are trying to commit at
3093 	 * this moment.
3094 	 *
3095 	 * We _must_ copy this into a local copy, because we are not holding the
3096 	 * log_root_tree->log_mutex yet.  This is important because when we
3097 	 * commit the log_root_tree we must have a consistent view of the
3098 	 * log_root_tree when we update the super block to point at the
3099 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3100 	 * with the commit and possibly point at the new block which we may not
3101 	 * have written out.
3102 	 */
3103 	btrfs_set_root_node(&log->root_item, log->node);
3104 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3105 
3106 	root->log_transid++;
3107 	log->log_transid = root->log_transid;
3108 	root->log_start_pid = 0;
3109 	/*
3110 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3111 	 * in their headers. new modifications of the log will be written to
3112 	 * new positions. so it's safe to allow log writers to go in.
3113 	 */
3114 	mutex_unlock(&root->log_mutex);
3115 
3116 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3117 
3118 	mutex_lock(&log_root_tree->log_mutex);
3119 
3120 	index2 = log_root_tree->log_transid % 2;
3121 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3122 	root_log_ctx.log_transid = log_root_tree->log_transid;
3123 
3124 	/*
3125 	 * Now we are safe to update the log_root_tree because we're under the
3126 	 * log_mutex, and we're a current writer so we're holding the commit
3127 	 * open until we drop the log_mutex.
3128 	 */
3129 	ret = update_log_root(trans, log, &new_root_item);
3130 	if (ret) {
3131 		if (!list_empty(&root_log_ctx.list))
3132 			list_del_init(&root_log_ctx.list);
3133 
3134 		blk_finish_plug(&plug);
3135 		btrfs_set_log_full_commit(trans);
3136 
3137 		if (ret != -ENOSPC) {
3138 			btrfs_abort_transaction(trans, ret);
3139 			mutex_unlock(&log_root_tree->log_mutex);
3140 			goto out;
3141 		}
3142 		btrfs_wait_tree_log_extents(log, mark);
3143 		mutex_unlock(&log_root_tree->log_mutex);
3144 		ret = -EAGAIN;
3145 		goto out;
3146 	}
3147 
3148 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3149 		blk_finish_plug(&plug);
3150 		list_del_init(&root_log_ctx.list);
3151 		mutex_unlock(&log_root_tree->log_mutex);
3152 		ret = root_log_ctx.log_ret;
3153 		goto out;
3154 	}
3155 
3156 	index2 = root_log_ctx.log_transid % 2;
3157 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3158 		blk_finish_plug(&plug);
3159 		ret = btrfs_wait_tree_log_extents(log, mark);
3160 		wait_log_commit(log_root_tree,
3161 				root_log_ctx.log_transid);
3162 		mutex_unlock(&log_root_tree->log_mutex);
3163 		if (!ret)
3164 			ret = root_log_ctx.log_ret;
3165 		goto out;
3166 	}
3167 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3168 	atomic_set(&log_root_tree->log_commit[index2], 1);
3169 
3170 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3171 		wait_log_commit(log_root_tree,
3172 				root_log_ctx.log_transid - 1);
3173 	}
3174 
3175 	/*
3176 	 * now that we've moved on to the tree of log tree roots,
3177 	 * check the full commit flag again
3178 	 */
3179 	if (btrfs_need_log_full_commit(trans)) {
3180 		blk_finish_plug(&plug);
3181 		btrfs_wait_tree_log_extents(log, mark);
3182 		mutex_unlock(&log_root_tree->log_mutex);
3183 		ret = -EAGAIN;
3184 		goto out_wake_log_root;
3185 	}
3186 
3187 	ret = btrfs_write_marked_extents(fs_info,
3188 					 &log_root_tree->dirty_log_pages,
3189 					 EXTENT_DIRTY | EXTENT_NEW);
3190 	blk_finish_plug(&plug);
3191 	if (ret) {
3192 		btrfs_set_log_full_commit(trans);
3193 		btrfs_abort_transaction(trans, ret);
3194 		mutex_unlock(&log_root_tree->log_mutex);
3195 		goto out_wake_log_root;
3196 	}
3197 	ret = btrfs_wait_tree_log_extents(log, mark);
3198 	if (!ret)
3199 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3200 						  EXTENT_NEW | EXTENT_DIRTY);
3201 	if (ret) {
3202 		btrfs_set_log_full_commit(trans);
3203 		mutex_unlock(&log_root_tree->log_mutex);
3204 		goto out_wake_log_root;
3205 	}
3206 
3207 	btrfs_set_super_log_root(fs_info->super_for_commit,
3208 				 log_root_tree->node->start);
3209 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3210 				       btrfs_header_level(log_root_tree->node));
3211 
3212 	log_root_tree->log_transid++;
3213 	mutex_unlock(&log_root_tree->log_mutex);
3214 
3215 	/*
3216 	 * Nobody else is going to jump in and write the ctree
3217 	 * super here because the log_commit atomic below is protecting
3218 	 * us.  We must be called with a transaction handle pinning
3219 	 * the running transaction open, so a full commit can't hop
3220 	 * in and cause problems either.
3221 	 */
3222 	ret = write_all_supers(fs_info, 1);
3223 	if (ret) {
3224 		btrfs_set_log_full_commit(trans);
3225 		btrfs_abort_transaction(trans, ret);
3226 		goto out_wake_log_root;
3227 	}
3228 
3229 	mutex_lock(&root->log_mutex);
3230 	if (root->last_log_commit < log_transid)
3231 		root->last_log_commit = log_transid;
3232 	mutex_unlock(&root->log_mutex);
3233 
3234 out_wake_log_root:
3235 	mutex_lock(&log_root_tree->log_mutex);
3236 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3237 
3238 	log_root_tree->log_transid_committed++;
3239 	atomic_set(&log_root_tree->log_commit[index2], 0);
3240 	mutex_unlock(&log_root_tree->log_mutex);
3241 
3242 	/*
3243 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3244 	 * all the updates above are seen by the woken threads. It might not be
3245 	 * necessary, but proving that seems to be hard.
3246 	 */
3247 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3248 out:
3249 	mutex_lock(&root->log_mutex);
3250 	btrfs_remove_all_log_ctxs(root, index1, ret);
3251 	root->log_transid_committed++;
3252 	atomic_set(&root->log_commit[index1], 0);
3253 	mutex_unlock(&root->log_mutex);
3254 
3255 	/*
3256 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3257 	 * all the updates above are seen by the woken threads. It might not be
3258 	 * necessary, but proving that seems to be hard.
3259 	 */
3260 	cond_wake_up(&root->log_commit_wait[index1]);
3261 	return ret;
3262 }
3263 
3264 static void free_log_tree(struct btrfs_trans_handle *trans,
3265 			  struct btrfs_root *log)
3266 {
3267 	int ret;
3268 	struct walk_control wc = {
3269 		.free = 1,
3270 		.process_func = process_one_buffer
3271 	};
3272 
3273 	ret = walk_log_tree(trans, log, &wc);
3274 	if (ret) {
3275 		if (trans)
3276 			btrfs_abort_transaction(trans, ret);
3277 		else
3278 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3279 	}
3280 
3281 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3282 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3283 	extent_io_tree_release(&log->log_csum_range);
3284 	btrfs_put_root(log);
3285 }
3286 
3287 /*
3288  * free all the extents used by the tree log.  This should be called
3289  * at commit time of the full transaction
3290  */
3291 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3292 {
3293 	if (root->log_root) {
3294 		free_log_tree(trans, root->log_root);
3295 		root->log_root = NULL;
3296 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3297 	}
3298 	return 0;
3299 }
3300 
3301 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3302 			     struct btrfs_fs_info *fs_info)
3303 {
3304 	if (fs_info->log_root_tree) {
3305 		free_log_tree(trans, fs_info->log_root_tree);
3306 		fs_info->log_root_tree = NULL;
3307 	}
3308 	return 0;
3309 }
3310 
3311 /*
3312  * Check if an inode was logged in the current transaction. We can't always rely
3313  * on an inode's logged_trans value, because it's an in-memory only field and
3314  * therefore not persisted. This means that its value is lost if the inode gets
3315  * evicted and loaded again from disk (in which case it has a value of 0, and
3316  * certainly it is smaller then any possible transaction ID), when that happens
3317  * the full_sync flag is set in the inode's runtime flags, so on that case we
3318  * assume eviction happened and ignore the logged_trans value, assuming the
3319  * worst case, that the inode was logged before in the current transaction.
3320  */
3321 static bool inode_logged(struct btrfs_trans_handle *trans,
3322 			 struct btrfs_inode *inode)
3323 {
3324 	if (inode->logged_trans == trans->transid)
3325 		return true;
3326 
3327 	if (inode->last_trans == trans->transid &&
3328 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3329 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3330 		return true;
3331 
3332 	return false;
3333 }
3334 
3335 /*
3336  * If both a file and directory are logged, and unlinks or renames are
3337  * mixed in, we have a few interesting corners:
3338  *
3339  * create file X in dir Y
3340  * link file X to X.link in dir Y
3341  * fsync file X
3342  * unlink file X but leave X.link
3343  * fsync dir Y
3344  *
3345  * After a crash we would expect only X.link to exist.  But file X
3346  * didn't get fsync'd again so the log has back refs for X and X.link.
3347  *
3348  * We solve this by removing directory entries and inode backrefs from the
3349  * log when a file that was logged in the current transaction is
3350  * unlinked.  Any later fsync will include the updated log entries, and
3351  * we'll be able to reconstruct the proper directory items from backrefs.
3352  *
3353  * This optimizations allows us to avoid relogging the entire inode
3354  * or the entire directory.
3355  */
3356 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3357 				 struct btrfs_root *root,
3358 				 const char *name, int name_len,
3359 				 struct btrfs_inode *dir, u64 index)
3360 {
3361 	struct btrfs_root *log;
3362 	struct btrfs_dir_item *di;
3363 	struct btrfs_path *path;
3364 	int ret;
3365 	int err = 0;
3366 	int bytes_del = 0;
3367 	u64 dir_ino = btrfs_ino(dir);
3368 
3369 	if (!inode_logged(trans, dir))
3370 		return 0;
3371 
3372 	ret = join_running_log_trans(root);
3373 	if (ret)
3374 		return 0;
3375 
3376 	mutex_lock(&dir->log_mutex);
3377 
3378 	log = root->log_root;
3379 	path = btrfs_alloc_path();
3380 	if (!path) {
3381 		err = -ENOMEM;
3382 		goto out_unlock;
3383 	}
3384 
3385 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3386 				   name, name_len, -1);
3387 	if (IS_ERR(di)) {
3388 		err = PTR_ERR(di);
3389 		goto fail;
3390 	}
3391 	if (di) {
3392 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3393 		bytes_del += name_len;
3394 		if (ret) {
3395 			err = ret;
3396 			goto fail;
3397 		}
3398 	}
3399 	btrfs_release_path(path);
3400 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3401 					 index, name, name_len, -1);
3402 	if (IS_ERR(di)) {
3403 		err = PTR_ERR(di);
3404 		goto fail;
3405 	}
3406 	if (di) {
3407 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3408 		bytes_del += name_len;
3409 		if (ret) {
3410 			err = ret;
3411 			goto fail;
3412 		}
3413 	}
3414 
3415 	/* update the directory size in the log to reflect the names
3416 	 * we have removed
3417 	 */
3418 	if (bytes_del) {
3419 		struct btrfs_key key;
3420 
3421 		key.objectid = dir_ino;
3422 		key.offset = 0;
3423 		key.type = BTRFS_INODE_ITEM_KEY;
3424 		btrfs_release_path(path);
3425 
3426 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3427 		if (ret < 0) {
3428 			err = ret;
3429 			goto fail;
3430 		}
3431 		if (ret == 0) {
3432 			struct btrfs_inode_item *item;
3433 			u64 i_size;
3434 
3435 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3436 					      struct btrfs_inode_item);
3437 			i_size = btrfs_inode_size(path->nodes[0], item);
3438 			if (i_size > bytes_del)
3439 				i_size -= bytes_del;
3440 			else
3441 				i_size = 0;
3442 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3443 			btrfs_mark_buffer_dirty(path->nodes[0]);
3444 		} else
3445 			ret = 0;
3446 		btrfs_release_path(path);
3447 	}
3448 fail:
3449 	btrfs_free_path(path);
3450 out_unlock:
3451 	mutex_unlock(&dir->log_mutex);
3452 	if (err == -ENOSPC) {
3453 		btrfs_set_log_full_commit(trans);
3454 		err = 0;
3455 	} else if (err < 0 && err != -ENOENT) {
3456 		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3457 		btrfs_abort_transaction(trans, err);
3458 	}
3459 
3460 	btrfs_end_log_trans(root);
3461 
3462 	return err;
3463 }
3464 
3465 /* see comments for btrfs_del_dir_entries_in_log */
3466 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3467 			       struct btrfs_root *root,
3468 			       const char *name, int name_len,
3469 			       struct btrfs_inode *inode, u64 dirid)
3470 {
3471 	struct btrfs_root *log;
3472 	u64 index;
3473 	int ret;
3474 
3475 	if (!inode_logged(trans, inode))
3476 		return 0;
3477 
3478 	ret = join_running_log_trans(root);
3479 	if (ret)
3480 		return 0;
3481 	log = root->log_root;
3482 	mutex_lock(&inode->log_mutex);
3483 
3484 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3485 				  dirid, &index);
3486 	mutex_unlock(&inode->log_mutex);
3487 	if (ret == -ENOSPC) {
3488 		btrfs_set_log_full_commit(trans);
3489 		ret = 0;
3490 	} else if (ret < 0 && ret != -ENOENT)
3491 		btrfs_abort_transaction(trans, ret);
3492 	btrfs_end_log_trans(root);
3493 
3494 	return ret;
3495 }
3496 
3497 /*
3498  * creates a range item in the log for 'dirid'.  first_offset and
3499  * last_offset tell us which parts of the key space the log should
3500  * be considered authoritative for.
3501  */
3502 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3503 				       struct btrfs_root *log,
3504 				       struct btrfs_path *path,
3505 				       int key_type, u64 dirid,
3506 				       u64 first_offset, u64 last_offset)
3507 {
3508 	int ret;
3509 	struct btrfs_key key;
3510 	struct btrfs_dir_log_item *item;
3511 
3512 	key.objectid = dirid;
3513 	key.offset = first_offset;
3514 	if (key_type == BTRFS_DIR_ITEM_KEY)
3515 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3516 	else
3517 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3518 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3519 	if (ret)
3520 		return ret;
3521 
3522 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3523 			      struct btrfs_dir_log_item);
3524 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3525 	btrfs_mark_buffer_dirty(path->nodes[0]);
3526 	btrfs_release_path(path);
3527 	return 0;
3528 }
3529 
3530 /*
3531  * log all the items included in the current transaction for a given
3532  * directory.  This also creates the range items in the log tree required
3533  * to replay anything deleted before the fsync
3534  */
3535 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3536 			  struct btrfs_root *root, struct btrfs_inode *inode,
3537 			  struct btrfs_path *path,
3538 			  struct btrfs_path *dst_path, int key_type,
3539 			  struct btrfs_log_ctx *ctx,
3540 			  u64 min_offset, u64 *last_offset_ret)
3541 {
3542 	struct btrfs_key min_key;
3543 	struct btrfs_root *log = root->log_root;
3544 	struct extent_buffer *src;
3545 	int err = 0;
3546 	int ret;
3547 	int i;
3548 	int nritems;
3549 	u64 first_offset = min_offset;
3550 	u64 last_offset = (u64)-1;
3551 	u64 ino = btrfs_ino(inode);
3552 
3553 	log = root->log_root;
3554 
3555 	min_key.objectid = ino;
3556 	min_key.type = key_type;
3557 	min_key.offset = min_offset;
3558 
3559 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3560 
3561 	/*
3562 	 * we didn't find anything from this transaction, see if there
3563 	 * is anything at all
3564 	 */
3565 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3566 		min_key.objectid = ino;
3567 		min_key.type = key_type;
3568 		min_key.offset = (u64)-1;
3569 		btrfs_release_path(path);
3570 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3571 		if (ret < 0) {
3572 			btrfs_release_path(path);
3573 			return ret;
3574 		}
3575 		ret = btrfs_previous_item(root, path, ino, key_type);
3576 
3577 		/* if ret == 0 there are items for this type,
3578 		 * create a range to tell us the last key of this type.
3579 		 * otherwise, there are no items in this directory after
3580 		 * *min_offset, and we create a range to indicate that.
3581 		 */
3582 		if (ret == 0) {
3583 			struct btrfs_key tmp;
3584 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3585 					      path->slots[0]);
3586 			if (key_type == tmp.type)
3587 				first_offset = max(min_offset, tmp.offset) + 1;
3588 		}
3589 		goto done;
3590 	}
3591 
3592 	/* go backward to find any previous key */
3593 	ret = btrfs_previous_item(root, path, ino, key_type);
3594 	if (ret == 0) {
3595 		struct btrfs_key tmp;
3596 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3597 		if (key_type == tmp.type) {
3598 			first_offset = tmp.offset;
3599 			ret = overwrite_item(trans, log, dst_path,
3600 					     path->nodes[0], path->slots[0],
3601 					     &tmp);
3602 			if (ret) {
3603 				err = ret;
3604 				goto done;
3605 			}
3606 		}
3607 	}
3608 	btrfs_release_path(path);
3609 
3610 	/*
3611 	 * Find the first key from this transaction again.  See the note for
3612 	 * log_new_dir_dentries, if we're logging a directory recursively we
3613 	 * won't be holding its i_mutex, which means we can modify the directory
3614 	 * while we're logging it.  If we remove an entry between our first
3615 	 * search and this search we'll not find the key again and can just
3616 	 * bail.
3617 	 */
3618 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3619 	if (ret != 0)
3620 		goto done;
3621 
3622 	/*
3623 	 * we have a block from this transaction, log every item in it
3624 	 * from our directory
3625 	 */
3626 	while (1) {
3627 		struct btrfs_key tmp;
3628 		src = path->nodes[0];
3629 		nritems = btrfs_header_nritems(src);
3630 		for (i = path->slots[0]; i < nritems; i++) {
3631 			struct btrfs_dir_item *di;
3632 
3633 			btrfs_item_key_to_cpu(src, &min_key, i);
3634 
3635 			if (min_key.objectid != ino || min_key.type != key_type)
3636 				goto done;
3637 			ret = overwrite_item(trans, log, dst_path, src, i,
3638 					     &min_key);
3639 			if (ret) {
3640 				err = ret;
3641 				goto done;
3642 			}
3643 
3644 			/*
3645 			 * We must make sure that when we log a directory entry,
3646 			 * the corresponding inode, after log replay, has a
3647 			 * matching link count. For example:
3648 			 *
3649 			 * touch foo
3650 			 * mkdir mydir
3651 			 * sync
3652 			 * ln foo mydir/bar
3653 			 * xfs_io -c "fsync" mydir
3654 			 * <crash>
3655 			 * <mount fs and log replay>
3656 			 *
3657 			 * Would result in a fsync log that when replayed, our
3658 			 * file inode would have a link count of 1, but we get
3659 			 * two directory entries pointing to the same inode.
3660 			 * After removing one of the names, it would not be
3661 			 * possible to remove the other name, which resulted
3662 			 * always in stale file handle errors, and would not
3663 			 * be possible to rmdir the parent directory, since
3664 			 * its i_size could never decrement to the value
3665 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3666 			 */
3667 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3668 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3669 			if (ctx &&
3670 			    (btrfs_dir_transid(src, di) == trans->transid ||
3671 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3672 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3673 				ctx->log_new_dentries = true;
3674 		}
3675 		path->slots[0] = nritems;
3676 
3677 		/*
3678 		 * look ahead to the next item and see if it is also
3679 		 * from this directory and from this transaction
3680 		 */
3681 		ret = btrfs_next_leaf(root, path);
3682 		if (ret) {
3683 			if (ret == 1)
3684 				last_offset = (u64)-1;
3685 			else
3686 				err = ret;
3687 			goto done;
3688 		}
3689 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3690 		if (tmp.objectid != ino || tmp.type != key_type) {
3691 			last_offset = (u64)-1;
3692 			goto done;
3693 		}
3694 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3695 			ret = overwrite_item(trans, log, dst_path,
3696 					     path->nodes[0], path->slots[0],
3697 					     &tmp);
3698 			if (ret)
3699 				err = ret;
3700 			else
3701 				last_offset = tmp.offset;
3702 			goto done;
3703 		}
3704 	}
3705 done:
3706 	btrfs_release_path(path);
3707 	btrfs_release_path(dst_path);
3708 
3709 	if (err == 0) {
3710 		*last_offset_ret = last_offset;
3711 		/*
3712 		 * insert the log range keys to indicate where the log
3713 		 * is valid
3714 		 */
3715 		ret = insert_dir_log_key(trans, log, path, key_type,
3716 					 ino, first_offset, last_offset);
3717 		if (ret)
3718 			err = ret;
3719 	}
3720 	return err;
3721 }
3722 
3723 /*
3724  * logging directories is very similar to logging inodes, We find all the items
3725  * from the current transaction and write them to the log.
3726  *
3727  * The recovery code scans the directory in the subvolume, and if it finds a
3728  * key in the range logged that is not present in the log tree, then it means
3729  * that dir entry was unlinked during the transaction.
3730  *
3731  * In order for that scan to work, we must include one key smaller than
3732  * the smallest logged by this transaction and one key larger than the largest
3733  * key logged by this transaction.
3734  */
3735 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3736 			  struct btrfs_root *root, struct btrfs_inode *inode,
3737 			  struct btrfs_path *path,
3738 			  struct btrfs_path *dst_path,
3739 			  struct btrfs_log_ctx *ctx)
3740 {
3741 	u64 min_key;
3742 	u64 max_key;
3743 	int ret;
3744 	int key_type = BTRFS_DIR_ITEM_KEY;
3745 
3746 again:
3747 	min_key = 0;
3748 	max_key = 0;
3749 	while (1) {
3750 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3751 				ctx, min_key, &max_key);
3752 		if (ret)
3753 			return ret;
3754 		if (max_key == (u64)-1)
3755 			break;
3756 		min_key = max_key + 1;
3757 	}
3758 
3759 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3760 		key_type = BTRFS_DIR_INDEX_KEY;
3761 		goto again;
3762 	}
3763 	return 0;
3764 }
3765 
3766 /*
3767  * a helper function to drop items from the log before we relog an
3768  * inode.  max_key_type indicates the highest item type to remove.
3769  * This cannot be run for file data extents because it does not
3770  * free the extents they point to.
3771  */
3772 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3773 				  struct btrfs_root *log,
3774 				  struct btrfs_path *path,
3775 				  u64 objectid, int max_key_type)
3776 {
3777 	int ret;
3778 	struct btrfs_key key;
3779 	struct btrfs_key found_key;
3780 	int start_slot;
3781 
3782 	key.objectid = objectid;
3783 	key.type = max_key_type;
3784 	key.offset = (u64)-1;
3785 
3786 	while (1) {
3787 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3788 		BUG_ON(ret == 0); /* Logic error */
3789 		if (ret < 0)
3790 			break;
3791 
3792 		if (path->slots[0] == 0)
3793 			break;
3794 
3795 		path->slots[0]--;
3796 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3797 				      path->slots[0]);
3798 
3799 		if (found_key.objectid != objectid)
3800 			break;
3801 
3802 		found_key.offset = 0;
3803 		found_key.type = 0;
3804 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3805 		if (ret < 0)
3806 			break;
3807 
3808 		ret = btrfs_del_items(trans, log, path, start_slot,
3809 				      path->slots[0] - start_slot + 1);
3810 		/*
3811 		 * If start slot isn't 0 then we don't need to re-search, we've
3812 		 * found the last guy with the objectid in this tree.
3813 		 */
3814 		if (ret || start_slot != 0)
3815 			break;
3816 		btrfs_release_path(path);
3817 	}
3818 	btrfs_release_path(path);
3819 	if (ret > 0)
3820 		ret = 0;
3821 	return ret;
3822 }
3823 
3824 static void fill_inode_item(struct btrfs_trans_handle *trans,
3825 			    struct extent_buffer *leaf,
3826 			    struct btrfs_inode_item *item,
3827 			    struct inode *inode, int log_inode_only,
3828 			    u64 logged_isize)
3829 {
3830 	struct btrfs_map_token token;
3831 
3832 	btrfs_init_map_token(&token, leaf);
3833 
3834 	if (log_inode_only) {
3835 		/* set the generation to zero so the recover code
3836 		 * can tell the difference between an logging
3837 		 * just to say 'this inode exists' and a logging
3838 		 * to say 'update this inode with these values'
3839 		 */
3840 		btrfs_set_token_inode_generation(&token, item, 0);
3841 		btrfs_set_token_inode_size(&token, item, logged_isize);
3842 	} else {
3843 		btrfs_set_token_inode_generation(&token, item,
3844 						 BTRFS_I(inode)->generation);
3845 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3846 	}
3847 
3848 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3849 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3850 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3851 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3852 
3853 	btrfs_set_token_timespec_sec(&token, &item->atime,
3854 				     inode->i_atime.tv_sec);
3855 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3856 				      inode->i_atime.tv_nsec);
3857 
3858 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3859 				     inode->i_mtime.tv_sec);
3860 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3861 				      inode->i_mtime.tv_nsec);
3862 
3863 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3864 				     inode->i_ctime.tv_sec);
3865 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3866 				      inode->i_ctime.tv_nsec);
3867 
3868 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3869 
3870 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3871 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3872 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3873 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3874 	btrfs_set_token_inode_block_group(&token, item, 0);
3875 }
3876 
3877 static int log_inode_item(struct btrfs_trans_handle *trans,
3878 			  struct btrfs_root *log, struct btrfs_path *path,
3879 			  struct btrfs_inode *inode)
3880 {
3881 	struct btrfs_inode_item *inode_item;
3882 	int ret;
3883 
3884 	ret = btrfs_insert_empty_item(trans, log, path,
3885 				      &inode->location, sizeof(*inode_item));
3886 	if (ret && ret != -EEXIST)
3887 		return ret;
3888 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3889 				    struct btrfs_inode_item);
3890 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3891 			0, 0);
3892 	btrfs_release_path(path);
3893 	return 0;
3894 }
3895 
3896 static int log_csums(struct btrfs_trans_handle *trans,
3897 		     struct btrfs_inode *inode,
3898 		     struct btrfs_root *log_root,
3899 		     struct btrfs_ordered_sum *sums)
3900 {
3901 	const u64 lock_end = sums->bytenr + sums->len - 1;
3902 	struct extent_state *cached_state = NULL;
3903 	int ret;
3904 
3905 	/*
3906 	 * If this inode was not used for reflink operations in the current
3907 	 * transaction with new extents, then do the fast path, no need to
3908 	 * worry about logging checksum items with overlapping ranges.
3909 	 */
3910 	if (inode->last_reflink_trans < trans->transid)
3911 		return btrfs_csum_file_blocks(trans, log_root, sums);
3912 
3913 	/*
3914 	 * Serialize logging for checksums. This is to avoid racing with the
3915 	 * same checksum being logged by another task that is logging another
3916 	 * file which happens to refer to the same extent as well. Such races
3917 	 * can leave checksum items in the log with overlapping ranges.
3918 	 */
3919 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3920 			       lock_end, &cached_state);
3921 	if (ret)
3922 		return ret;
3923 	/*
3924 	 * Due to extent cloning, we might have logged a csum item that covers a
3925 	 * subrange of a cloned extent, and later we can end up logging a csum
3926 	 * item for a larger subrange of the same extent or the entire range.
3927 	 * This would leave csum items in the log tree that cover the same range
3928 	 * and break the searches for checksums in the log tree, resulting in
3929 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3930 	 * trim and adjust) any existing csum items in the log for this range.
3931 	 */
3932 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3933 	if (!ret)
3934 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
3935 
3936 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3937 			     &cached_state);
3938 
3939 	return ret;
3940 }
3941 
3942 static noinline int copy_items(struct btrfs_trans_handle *trans,
3943 			       struct btrfs_inode *inode,
3944 			       struct btrfs_path *dst_path,
3945 			       struct btrfs_path *src_path,
3946 			       int start_slot, int nr, int inode_only,
3947 			       u64 logged_isize)
3948 {
3949 	struct btrfs_fs_info *fs_info = trans->fs_info;
3950 	unsigned long src_offset;
3951 	unsigned long dst_offset;
3952 	struct btrfs_root *log = inode->root->log_root;
3953 	struct btrfs_file_extent_item *extent;
3954 	struct btrfs_inode_item *inode_item;
3955 	struct extent_buffer *src = src_path->nodes[0];
3956 	int ret;
3957 	struct btrfs_key *ins_keys;
3958 	u32 *ins_sizes;
3959 	char *ins_data;
3960 	int i;
3961 	struct list_head ordered_sums;
3962 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3963 
3964 	INIT_LIST_HEAD(&ordered_sums);
3965 
3966 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3967 			   nr * sizeof(u32), GFP_NOFS);
3968 	if (!ins_data)
3969 		return -ENOMEM;
3970 
3971 	ins_sizes = (u32 *)ins_data;
3972 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3973 
3974 	for (i = 0; i < nr; i++) {
3975 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3976 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3977 	}
3978 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3979 				       ins_keys, ins_sizes, nr);
3980 	if (ret) {
3981 		kfree(ins_data);
3982 		return ret;
3983 	}
3984 
3985 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3986 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3987 						   dst_path->slots[0]);
3988 
3989 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3990 
3991 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3992 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3993 						    dst_path->slots[0],
3994 						    struct btrfs_inode_item);
3995 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3996 					&inode->vfs_inode,
3997 					inode_only == LOG_INODE_EXISTS,
3998 					logged_isize);
3999 		} else {
4000 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4001 					   src_offset, ins_sizes[i]);
4002 		}
4003 
4004 		/* take a reference on file data extents so that truncates
4005 		 * or deletes of this inode don't have to relog the inode
4006 		 * again
4007 		 */
4008 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4009 		    !skip_csum) {
4010 			int found_type;
4011 			extent = btrfs_item_ptr(src, start_slot + i,
4012 						struct btrfs_file_extent_item);
4013 
4014 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4015 				continue;
4016 
4017 			found_type = btrfs_file_extent_type(src, extent);
4018 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4019 				u64 ds, dl, cs, cl;
4020 				ds = btrfs_file_extent_disk_bytenr(src,
4021 								extent);
4022 				/* ds == 0 is a hole */
4023 				if (ds == 0)
4024 					continue;
4025 
4026 				dl = btrfs_file_extent_disk_num_bytes(src,
4027 								extent);
4028 				cs = btrfs_file_extent_offset(src, extent);
4029 				cl = btrfs_file_extent_num_bytes(src,
4030 								extent);
4031 				if (btrfs_file_extent_compression(src,
4032 								  extent)) {
4033 					cs = 0;
4034 					cl = dl;
4035 				}
4036 
4037 				ret = btrfs_lookup_csums_range(
4038 						fs_info->csum_root,
4039 						ds + cs, ds + cs + cl - 1,
4040 						&ordered_sums, 0);
4041 				if (ret)
4042 					break;
4043 			}
4044 		}
4045 	}
4046 
4047 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4048 	btrfs_release_path(dst_path);
4049 	kfree(ins_data);
4050 
4051 	/*
4052 	 * we have to do this after the loop above to avoid changing the
4053 	 * log tree while trying to change the log tree.
4054 	 */
4055 	while (!list_empty(&ordered_sums)) {
4056 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4057 						   struct btrfs_ordered_sum,
4058 						   list);
4059 		if (!ret)
4060 			ret = log_csums(trans, inode, log, sums);
4061 		list_del(&sums->list);
4062 		kfree(sums);
4063 	}
4064 
4065 	return ret;
4066 }
4067 
4068 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4069 {
4070 	struct extent_map *em1, *em2;
4071 
4072 	em1 = list_entry(a, struct extent_map, list);
4073 	em2 = list_entry(b, struct extent_map, list);
4074 
4075 	if (em1->start < em2->start)
4076 		return -1;
4077 	else if (em1->start > em2->start)
4078 		return 1;
4079 	return 0;
4080 }
4081 
4082 static int log_extent_csums(struct btrfs_trans_handle *trans,
4083 			    struct btrfs_inode *inode,
4084 			    struct btrfs_root *log_root,
4085 			    const struct extent_map *em)
4086 {
4087 	u64 csum_offset;
4088 	u64 csum_len;
4089 	LIST_HEAD(ordered_sums);
4090 	int ret = 0;
4091 
4092 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4093 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4094 	    em->block_start == EXTENT_MAP_HOLE)
4095 		return 0;
4096 
4097 	/* If we're compressed we have to save the entire range of csums. */
4098 	if (em->compress_type) {
4099 		csum_offset = 0;
4100 		csum_len = max(em->block_len, em->orig_block_len);
4101 	} else {
4102 		csum_offset = em->mod_start - em->start;
4103 		csum_len = em->mod_len;
4104 	}
4105 
4106 	/* block start is already adjusted for the file extent offset. */
4107 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4108 				       em->block_start + csum_offset,
4109 				       em->block_start + csum_offset +
4110 				       csum_len - 1, &ordered_sums, 0);
4111 	if (ret)
4112 		return ret;
4113 
4114 	while (!list_empty(&ordered_sums)) {
4115 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4116 						   struct btrfs_ordered_sum,
4117 						   list);
4118 		if (!ret)
4119 			ret = log_csums(trans, inode, log_root, sums);
4120 		list_del(&sums->list);
4121 		kfree(sums);
4122 	}
4123 
4124 	return ret;
4125 }
4126 
4127 static int log_one_extent(struct btrfs_trans_handle *trans,
4128 			  struct btrfs_inode *inode, struct btrfs_root *root,
4129 			  const struct extent_map *em,
4130 			  struct btrfs_path *path,
4131 			  struct btrfs_log_ctx *ctx)
4132 {
4133 	struct btrfs_root *log = root->log_root;
4134 	struct btrfs_file_extent_item *fi;
4135 	struct extent_buffer *leaf;
4136 	struct btrfs_map_token token;
4137 	struct btrfs_key key;
4138 	u64 extent_offset = em->start - em->orig_start;
4139 	u64 block_len;
4140 	int ret;
4141 	int extent_inserted = 0;
4142 
4143 	ret = log_extent_csums(trans, inode, log, em);
4144 	if (ret)
4145 		return ret;
4146 
4147 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4148 				   em->start + em->len, NULL, 0, 1,
4149 				   sizeof(*fi), &extent_inserted);
4150 	if (ret)
4151 		return ret;
4152 
4153 	if (!extent_inserted) {
4154 		key.objectid = btrfs_ino(inode);
4155 		key.type = BTRFS_EXTENT_DATA_KEY;
4156 		key.offset = em->start;
4157 
4158 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4159 					      sizeof(*fi));
4160 		if (ret)
4161 			return ret;
4162 	}
4163 	leaf = path->nodes[0];
4164 	btrfs_init_map_token(&token, leaf);
4165 	fi = btrfs_item_ptr(leaf, path->slots[0],
4166 			    struct btrfs_file_extent_item);
4167 
4168 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4169 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4170 		btrfs_set_token_file_extent_type(&token, fi,
4171 						 BTRFS_FILE_EXTENT_PREALLOC);
4172 	else
4173 		btrfs_set_token_file_extent_type(&token, fi,
4174 						 BTRFS_FILE_EXTENT_REG);
4175 
4176 	block_len = max(em->block_len, em->orig_block_len);
4177 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4178 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4179 							em->block_start);
4180 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4181 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4182 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4183 							em->block_start -
4184 							extent_offset);
4185 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4186 	} else {
4187 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4188 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4189 	}
4190 
4191 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4192 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4193 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4194 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4195 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4196 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4197 	btrfs_mark_buffer_dirty(leaf);
4198 
4199 	btrfs_release_path(path);
4200 
4201 	return ret;
4202 }
4203 
4204 /*
4205  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4206  * lose them after doing a fast fsync and replaying the log. We scan the
4207  * subvolume's root instead of iterating the inode's extent map tree because
4208  * otherwise we can log incorrect extent items based on extent map conversion.
4209  * That can happen due to the fact that extent maps are merged when they
4210  * are not in the extent map tree's list of modified extents.
4211  */
4212 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4213 				      struct btrfs_inode *inode,
4214 				      struct btrfs_path *path)
4215 {
4216 	struct btrfs_root *root = inode->root;
4217 	struct btrfs_key key;
4218 	const u64 i_size = i_size_read(&inode->vfs_inode);
4219 	const u64 ino = btrfs_ino(inode);
4220 	struct btrfs_path *dst_path = NULL;
4221 	bool dropped_extents = false;
4222 	u64 truncate_offset = i_size;
4223 	struct extent_buffer *leaf;
4224 	int slot;
4225 	int ins_nr = 0;
4226 	int start_slot;
4227 	int ret;
4228 
4229 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4230 		return 0;
4231 
4232 	key.objectid = ino;
4233 	key.type = BTRFS_EXTENT_DATA_KEY;
4234 	key.offset = i_size;
4235 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4236 	if (ret < 0)
4237 		goto out;
4238 
4239 	/*
4240 	 * We must check if there is a prealloc extent that starts before the
4241 	 * i_size and crosses the i_size boundary. This is to ensure later we
4242 	 * truncate down to the end of that extent and not to the i_size, as
4243 	 * otherwise we end up losing part of the prealloc extent after a log
4244 	 * replay and with an implicit hole if there is another prealloc extent
4245 	 * that starts at an offset beyond i_size.
4246 	 */
4247 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4248 	if (ret < 0)
4249 		goto out;
4250 
4251 	if (ret == 0) {
4252 		struct btrfs_file_extent_item *ei;
4253 
4254 		leaf = path->nodes[0];
4255 		slot = path->slots[0];
4256 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4257 
4258 		if (btrfs_file_extent_type(leaf, ei) ==
4259 		    BTRFS_FILE_EXTENT_PREALLOC) {
4260 			u64 extent_end;
4261 
4262 			btrfs_item_key_to_cpu(leaf, &key, slot);
4263 			extent_end = key.offset +
4264 				btrfs_file_extent_num_bytes(leaf, ei);
4265 
4266 			if (extent_end > i_size)
4267 				truncate_offset = extent_end;
4268 		}
4269 	} else {
4270 		ret = 0;
4271 	}
4272 
4273 	while (true) {
4274 		leaf = path->nodes[0];
4275 		slot = path->slots[0];
4276 
4277 		if (slot >= btrfs_header_nritems(leaf)) {
4278 			if (ins_nr > 0) {
4279 				ret = copy_items(trans, inode, dst_path, path,
4280 						 start_slot, ins_nr, 1, 0);
4281 				if (ret < 0)
4282 					goto out;
4283 				ins_nr = 0;
4284 			}
4285 			ret = btrfs_next_leaf(root, path);
4286 			if (ret < 0)
4287 				goto out;
4288 			if (ret > 0) {
4289 				ret = 0;
4290 				break;
4291 			}
4292 			continue;
4293 		}
4294 
4295 		btrfs_item_key_to_cpu(leaf, &key, slot);
4296 		if (key.objectid > ino)
4297 			break;
4298 		if (WARN_ON_ONCE(key.objectid < ino) ||
4299 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4300 		    key.offset < i_size) {
4301 			path->slots[0]++;
4302 			continue;
4303 		}
4304 		if (!dropped_extents) {
4305 			/*
4306 			 * Avoid logging extent items logged in past fsync calls
4307 			 * and leading to duplicate keys in the log tree.
4308 			 */
4309 			do {
4310 				ret = btrfs_truncate_inode_items(trans,
4311 							 root->log_root,
4312 							 &inode->vfs_inode,
4313 							 truncate_offset,
4314 							 BTRFS_EXTENT_DATA_KEY);
4315 			} while (ret == -EAGAIN);
4316 			if (ret)
4317 				goto out;
4318 			dropped_extents = true;
4319 		}
4320 		if (ins_nr == 0)
4321 			start_slot = slot;
4322 		ins_nr++;
4323 		path->slots[0]++;
4324 		if (!dst_path) {
4325 			dst_path = btrfs_alloc_path();
4326 			if (!dst_path) {
4327 				ret = -ENOMEM;
4328 				goto out;
4329 			}
4330 		}
4331 	}
4332 	if (ins_nr > 0)
4333 		ret = copy_items(trans, inode, dst_path, path,
4334 				 start_slot, ins_nr, 1, 0);
4335 out:
4336 	btrfs_release_path(path);
4337 	btrfs_free_path(dst_path);
4338 	return ret;
4339 }
4340 
4341 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4342 				     struct btrfs_root *root,
4343 				     struct btrfs_inode *inode,
4344 				     struct btrfs_path *path,
4345 				     struct btrfs_log_ctx *ctx,
4346 				     const u64 start,
4347 				     const u64 end)
4348 {
4349 	struct extent_map *em, *n;
4350 	struct list_head extents;
4351 	struct extent_map_tree *tree = &inode->extent_tree;
4352 	u64 test_gen;
4353 	int ret = 0;
4354 	int num = 0;
4355 
4356 	INIT_LIST_HEAD(&extents);
4357 
4358 	write_lock(&tree->lock);
4359 	test_gen = root->fs_info->last_trans_committed;
4360 
4361 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4362 		/*
4363 		 * Skip extents outside our logging range. It's important to do
4364 		 * it for correctness because if we don't ignore them, we may
4365 		 * log them before their ordered extent completes, and therefore
4366 		 * we could log them without logging their respective checksums
4367 		 * (the checksum items are added to the csum tree at the very
4368 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4369 		 * outside of our range in the list, since we may have another
4370 		 * ranged fsync in the near future that needs them. If an extent
4371 		 * outside our range corresponds to a hole, log it to avoid
4372 		 * leaving gaps between extents (fsck will complain when we are
4373 		 * not using the NO_HOLES feature).
4374 		 */
4375 		if ((em->start > end || em->start + em->len <= start) &&
4376 		    em->block_start != EXTENT_MAP_HOLE)
4377 			continue;
4378 
4379 		list_del_init(&em->list);
4380 		/*
4381 		 * Just an arbitrary number, this can be really CPU intensive
4382 		 * once we start getting a lot of extents, and really once we
4383 		 * have a bunch of extents we just want to commit since it will
4384 		 * be faster.
4385 		 */
4386 		if (++num > 32768) {
4387 			list_del_init(&tree->modified_extents);
4388 			ret = -EFBIG;
4389 			goto process;
4390 		}
4391 
4392 		if (em->generation <= test_gen)
4393 			continue;
4394 
4395 		/* We log prealloc extents beyond eof later. */
4396 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4397 		    em->start >= i_size_read(&inode->vfs_inode))
4398 			continue;
4399 
4400 		/* Need a ref to keep it from getting evicted from cache */
4401 		refcount_inc(&em->refs);
4402 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4403 		list_add_tail(&em->list, &extents);
4404 		num++;
4405 	}
4406 
4407 	list_sort(NULL, &extents, extent_cmp);
4408 process:
4409 	while (!list_empty(&extents)) {
4410 		em = list_entry(extents.next, struct extent_map, list);
4411 
4412 		list_del_init(&em->list);
4413 
4414 		/*
4415 		 * If we had an error we just need to delete everybody from our
4416 		 * private list.
4417 		 */
4418 		if (ret) {
4419 			clear_em_logging(tree, em);
4420 			free_extent_map(em);
4421 			continue;
4422 		}
4423 
4424 		write_unlock(&tree->lock);
4425 
4426 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4427 		write_lock(&tree->lock);
4428 		clear_em_logging(tree, em);
4429 		free_extent_map(em);
4430 	}
4431 	WARN_ON(!list_empty(&extents));
4432 	write_unlock(&tree->lock);
4433 
4434 	btrfs_release_path(path);
4435 	if (!ret)
4436 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4437 
4438 	return ret;
4439 }
4440 
4441 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4442 			     struct btrfs_path *path, u64 *size_ret)
4443 {
4444 	struct btrfs_key key;
4445 	int ret;
4446 
4447 	key.objectid = btrfs_ino(inode);
4448 	key.type = BTRFS_INODE_ITEM_KEY;
4449 	key.offset = 0;
4450 
4451 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4452 	if (ret < 0) {
4453 		return ret;
4454 	} else if (ret > 0) {
4455 		*size_ret = 0;
4456 	} else {
4457 		struct btrfs_inode_item *item;
4458 
4459 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4460 				      struct btrfs_inode_item);
4461 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4462 		/*
4463 		 * If the in-memory inode's i_size is smaller then the inode
4464 		 * size stored in the btree, return the inode's i_size, so
4465 		 * that we get a correct inode size after replaying the log
4466 		 * when before a power failure we had a shrinking truncate
4467 		 * followed by addition of a new name (rename / new hard link).
4468 		 * Otherwise return the inode size from the btree, to avoid
4469 		 * data loss when replaying a log due to previously doing a
4470 		 * write that expands the inode's size and logging a new name
4471 		 * immediately after.
4472 		 */
4473 		if (*size_ret > inode->vfs_inode.i_size)
4474 			*size_ret = inode->vfs_inode.i_size;
4475 	}
4476 
4477 	btrfs_release_path(path);
4478 	return 0;
4479 }
4480 
4481 /*
4482  * At the moment we always log all xattrs. This is to figure out at log replay
4483  * time which xattrs must have their deletion replayed. If a xattr is missing
4484  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4485  * because if a xattr is deleted, the inode is fsynced and a power failure
4486  * happens, causing the log to be replayed the next time the fs is mounted,
4487  * we want the xattr to not exist anymore (same behaviour as other filesystems
4488  * with a journal, ext3/4, xfs, f2fs, etc).
4489  */
4490 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4491 				struct btrfs_root *root,
4492 				struct btrfs_inode *inode,
4493 				struct btrfs_path *path,
4494 				struct btrfs_path *dst_path)
4495 {
4496 	int ret;
4497 	struct btrfs_key key;
4498 	const u64 ino = btrfs_ino(inode);
4499 	int ins_nr = 0;
4500 	int start_slot = 0;
4501 
4502 	key.objectid = ino;
4503 	key.type = BTRFS_XATTR_ITEM_KEY;
4504 	key.offset = 0;
4505 
4506 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4507 	if (ret < 0)
4508 		return ret;
4509 
4510 	while (true) {
4511 		int slot = path->slots[0];
4512 		struct extent_buffer *leaf = path->nodes[0];
4513 		int nritems = btrfs_header_nritems(leaf);
4514 
4515 		if (slot >= nritems) {
4516 			if (ins_nr > 0) {
4517 				ret = copy_items(trans, inode, dst_path, path,
4518 						 start_slot, ins_nr, 1, 0);
4519 				if (ret < 0)
4520 					return ret;
4521 				ins_nr = 0;
4522 			}
4523 			ret = btrfs_next_leaf(root, path);
4524 			if (ret < 0)
4525 				return ret;
4526 			else if (ret > 0)
4527 				break;
4528 			continue;
4529 		}
4530 
4531 		btrfs_item_key_to_cpu(leaf, &key, slot);
4532 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4533 			break;
4534 
4535 		if (ins_nr == 0)
4536 			start_slot = slot;
4537 		ins_nr++;
4538 		path->slots[0]++;
4539 		cond_resched();
4540 	}
4541 	if (ins_nr > 0) {
4542 		ret = copy_items(trans, inode, dst_path, path,
4543 				 start_slot, ins_nr, 1, 0);
4544 		if (ret < 0)
4545 			return ret;
4546 	}
4547 
4548 	return 0;
4549 }
4550 
4551 /*
4552  * When using the NO_HOLES feature if we punched a hole that causes the
4553  * deletion of entire leafs or all the extent items of the first leaf (the one
4554  * that contains the inode item and references) we may end up not processing
4555  * any extents, because there are no leafs with a generation matching the
4556  * current transaction that have extent items for our inode. So we need to find
4557  * if any holes exist and then log them. We also need to log holes after any
4558  * truncate operation that changes the inode's size.
4559  */
4560 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4561 			   struct btrfs_root *root,
4562 			   struct btrfs_inode *inode,
4563 			   struct btrfs_path *path)
4564 {
4565 	struct btrfs_fs_info *fs_info = root->fs_info;
4566 	struct btrfs_key key;
4567 	const u64 ino = btrfs_ino(inode);
4568 	const u64 i_size = i_size_read(&inode->vfs_inode);
4569 	u64 prev_extent_end = 0;
4570 	int ret;
4571 
4572 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4573 		return 0;
4574 
4575 	key.objectid = ino;
4576 	key.type = BTRFS_EXTENT_DATA_KEY;
4577 	key.offset = 0;
4578 
4579 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4580 	if (ret < 0)
4581 		return ret;
4582 
4583 	while (true) {
4584 		struct extent_buffer *leaf = path->nodes[0];
4585 
4586 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4587 			ret = btrfs_next_leaf(root, path);
4588 			if (ret < 0)
4589 				return ret;
4590 			if (ret > 0) {
4591 				ret = 0;
4592 				break;
4593 			}
4594 			leaf = path->nodes[0];
4595 		}
4596 
4597 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4598 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4599 			break;
4600 
4601 		/* We have a hole, log it. */
4602 		if (prev_extent_end < key.offset) {
4603 			const u64 hole_len = key.offset - prev_extent_end;
4604 
4605 			/*
4606 			 * Release the path to avoid deadlocks with other code
4607 			 * paths that search the root while holding locks on
4608 			 * leafs from the log root.
4609 			 */
4610 			btrfs_release_path(path);
4611 			ret = btrfs_insert_file_extent(trans, root->log_root,
4612 						       ino, prev_extent_end, 0,
4613 						       0, hole_len, 0, hole_len,
4614 						       0, 0, 0);
4615 			if (ret < 0)
4616 				return ret;
4617 
4618 			/*
4619 			 * Search for the same key again in the root. Since it's
4620 			 * an extent item and we are holding the inode lock, the
4621 			 * key must still exist. If it doesn't just emit warning
4622 			 * and return an error to fall back to a transaction
4623 			 * commit.
4624 			 */
4625 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4626 			if (ret < 0)
4627 				return ret;
4628 			if (WARN_ON(ret > 0))
4629 				return -ENOENT;
4630 			leaf = path->nodes[0];
4631 		}
4632 
4633 		prev_extent_end = btrfs_file_extent_end(path);
4634 		path->slots[0]++;
4635 		cond_resched();
4636 	}
4637 
4638 	if (prev_extent_end < i_size) {
4639 		u64 hole_len;
4640 
4641 		btrfs_release_path(path);
4642 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4643 		ret = btrfs_insert_file_extent(trans, root->log_root,
4644 					       ino, prev_extent_end, 0, 0,
4645 					       hole_len, 0, hole_len,
4646 					       0, 0, 0);
4647 		if (ret < 0)
4648 			return ret;
4649 	}
4650 
4651 	return 0;
4652 }
4653 
4654 /*
4655  * When we are logging a new inode X, check if it doesn't have a reference that
4656  * matches the reference from some other inode Y created in a past transaction
4657  * and that was renamed in the current transaction. If we don't do this, then at
4658  * log replay time we can lose inode Y (and all its files if it's a directory):
4659  *
4660  * mkdir /mnt/x
4661  * echo "hello world" > /mnt/x/foobar
4662  * sync
4663  * mv /mnt/x /mnt/y
4664  * mkdir /mnt/x                 # or touch /mnt/x
4665  * xfs_io -c fsync /mnt/x
4666  * <power fail>
4667  * mount fs, trigger log replay
4668  *
4669  * After the log replay procedure, we would lose the first directory and all its
4670  * files (file foobar).
4671  * For the case where inode Y is not a directory we simply end up losing it:
4672  *
4673  * echo "123" > /mnt/foo
4674  * sync
4675  * mv /mnt/foo /mnt/bar
4676  * echo "abc" > /mnt/foo
4677  * xfs_io -c fsync /mnt/foo
4678  * <power fail>
4679  *
4680  * We also need this for cases where a snapshot entry is replaced by some other
4681  * entry (file or directory) otherwise we end up with an unreplayable log due to
4682  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4683  * if it were a regular entry:
4684  *
4685  * mkdir /mnt/x
4686  * btrfs subvolume snapshot /mnt /mnt/x/snap
4687  * btrfs subvolume delete /mnt/x/snap
4688  * rmdir /mnt/x
4689  * mkdir /mnt/x
4690  * fsync /mnt/x or fsync some new file inside it
4691  * <power fail>
4692  *
4693  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4694  * the same transaction.
4695  */
4696 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4697 					 const int slot,
4698 					 const struct btrfs_key *key,
4699 					 struct btrfs_inode *inode,
4700 					 u64 *other_ino, u64 *other_parent)
4701 {
4702 	int ret;
4703 	struct btrfs_path *search_path;
4704 	char *name = NULL;
4705 	u32 name_len = 0;
4706 	u32 item_size = btrfs_item_size_nr(eb, slot);
4707 	u32 cur_offset = 0;
4708 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4709 
4710 	search_path = btrfs_alloc_path();
4711 	if (!search_path)
4712 		return -ENOMEM;
4713 	search_path->search_commit_root = 1;
4714 	search_path->skip_locking = 1;
4715 
4716 	while (cur_offset < item_size) {
4717 		u64 parent;
4718 		u32 this_name_len;
4719 		u32 this_len;
4720 		unsigned long name_ptr;
4721 		struct btrfs_dir_item *di;
4722 
4723 		if (key->type == BTRFS_INODE_REF_KEY) {
4724 			struct btrfs_inode_ref *iref;
4725 
4726 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4727 			parent = key->offset;
4728 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4729 			name_ptr = (unsigned long)(iref + 1);
4730 			this_len = sizeof(*iref) + this_name_len;
4731 		} else {
4732 			struct btrfs_inode_extref *extref;
4733 
4734 			extref = (struct btrfs_inode_extref *)(ptr +
4735 							       cur_offset);
4736 			parent = btrfs_inode_extref_parent(eb, extref);
4737 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4738 			name_ptr = (unsigned long)&extref->name;
4739 			this_len = sizeof(*extref) + this_name_len;
4740 		}
4741 
4742 		if (this_name_len > name_len) {
4743 			char *new_name;
4744 
4745 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4746 			if (!new_name) {
4747 				ret = -ENOMEM;
4748 				goto out;
4749 			}
4750 			name_len = this_name_len;
4751 			name = new_name;
4752 		}
4753 
4754 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4755 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4756 				parent, name, this_name_len, 0);
4757 		if (di && !IS_ERR(di)) {
4758 			struct btrfs_key di_key;
4759 
4760 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4761 						  di, &di_key);
4762 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4763 				if (di_key.objectid != key->objectid) {
4764 					ret = 1;
4765 					*other_ino = di_key.objectid;
4766 					*other_parent = parent;
4767 				} else {
4768 					ret = 0;
4769 				}
4770 			} else {
4771 				ret = -EAGAIN;
4772 			}
4773 			goto out;
4774 		} else if (IS_ERR(di)) {
4775 			ret = PTR_ERR(di);
4776 			goto out;
4777 		}
4778 		btrfs_release_path(search_path);
4779 
4780 		cur_offset += this_len;
4781 	}
4782 	ret = 0;
4783 out:
4784 	btrfs_free_path(search_path);
4785 	kfree(name);
4786 	return ret;
4787 }
4788 
4789 struct btrfs_ino_list {
4790 	u64 ino;
4791 	u64 parent;
4792 	struct list_head list;
4793 };
4794 
4795 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4796 				  struct btrfs_root *root,
4797 				  struct btrfs_path *path,
4798 				  struct btrfs_log_ctx *ctx,
4799 				  u64 ino, u64 parent)
4800 {
4801 	struct btrfs_ino_list *ino_elem;
4802 	LIST_HEAD(inode_list);
4803 	int ret = 0;
4804 
4805 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4806 	if (!ino_elem)
4807 		return -ENOMEM;
4808 	ino_elem->ino = ino;
4809 	ino_elem->parent = parent;
4810 	list_add_tail(&ino_elem->list, &inode_list);
4811 
4812 	while (!list_empty(&inode_list)) {
4813 		struct btrfs_fs_info *fs_info = root->fs_info;
4814 		struct btrfs_key key;
4815 		struct inode *inode;
4816 
4817 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4818 					    list);
4819 		ino = ino_elem->ino;
4820 		parent = ino_elem->parent;
4821 		list_del(&ino_elem->list);
4822 		kfree(ino_elem);
4823 		if (ret)
4824 			continue;
4825 
4826 		btrfs_release_path(path);
4827 
4828 		inode = btrfs_iget(fs_info->sb, ino, root);
4829 		/*
4830 		 * If the other inode that had a conflicting dir entry was
4831 		 * deleted in the current transaction, we need to log its parent
4832 		 * directory.
4833 		 */
4834 		if (IS_ERR(inode)) {
4835 			ret = PTR_ERR(inode);
4836 			if (ret == -ENOENT) {
4837 				inode = btrfs_iget(fs_info->sb, parent, root);
4838 				if (IS_ERR(inode)) {
4839 					ret = PTR_ERR(inode);
4840 				} else {
4841 					ret = btrfs_log_inode(trans, root,
4842 						      BTRFS_I(inode),
4843 						      LOG_OTHER_INODE_ALL,
4844 						      0, LLONG_MAX, ctx);
4845 					btrfs_add_delayed_iput(inode);
4846 				}
4847 			}
4848 			continue;
4849 		}
4850 		/*
4851 		 * If the inode was already logged skip it - otherwise we can
4852 		 * hit an infinite loop. Example:
4853 		 *
4854 		 * From the commit root (previous transaction) we have the
4855 		 * following inodes:
4856 		 *
4857 		 * inode 257 a directory
4858 		 * inode 258 with references "zz" and "zz_link" on inode 257
4859 		 * inode 259 with reference "a" on inode 257
4860 		 *
4861 		 * And in the current (uncommitted) transaction we have:
4862 		 *
4863 		 * inode 257 a directory, unchanged
4864 		 * inode 258 with references "a" and "a2" on inode 257
4865 		 * inode 259 with reference "zz_link" on inode 257
4866 		 * inode 261 with reference "zz" on inode 257
4867 		 *
4868 		 * When logging inode 261 the following infinite loop could
4869 		 * happen if we don't skip already logged inodes:
4870 		 *
4871 		 * - we detect inode 258 as a conflicting inode, with inode 261
4872 		 *   on reference "zz", and log it;
4873 		 *
4874 		 * - we detect inode 259 as a conflicting inode, with inode 258
4875 		 *   on reference "a", and log it;
4876 		 *
4877 		 * - we detect inode 258 as a conflicting inode, with inode 259
4878 		 *   on reference "zz_link", and log it - again! After this we
4879 		 *   repeat the above steps forever.
4880 		 */
4881 		spin_lock(&BTRFS_I(inode)->lock);
4882 		/*
4883 		 * Check the inode's logged_trans only instead of
4884 		 * btrfs_inode_in_log(). This is because the last_log_commit of
4885 		 * the inode is not updated when we only log that it exists and
4886 		 * and it has the full sync bit set (see btrfs_log_inode()).
4887 		 */
4888 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
4889 			spin_unlock(&BTRFS_I(inode)->lock);
4890 			btrfs_add_delayed_iput(inode);
4891 			continue;
4892 		}
4893 		spin_unlock(&BTRFS_I(inode)->lock);
4894 		/*
4895 		 * We are safe logging the other inode without acquiring its
4896 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4897 		 * are safe against concurrent renames of the other inode as
4898 		 * well because during a rename we pin the log and update the
4899 		 * log with the new name before we unpin it.
4900 		 */
4901 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4902 				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4903 		if (ret) {
4904 			btrfs_add_delayed_iput(inode);
4905 			continue;
4906 		}
4907 
4908 		key.objectid = ino;
4909 		key.type = BTRFS_INODE_REF_KEY;
4910 		key.offset = 0;
4911 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4912 		if (ret < 0) {
4913 			btrfs_add_delayed_iput(inode);
4914 			continue;
4915 		}
4916 
4917 		while (true) {
4918 			struct extent_buffer *leaf = path->nodes[0];
4919 			int slot = path->slots[0];
4920 			u64 other_ino = 0;
4921 			u64 other_parent = 0;
4922 
4923 			if (slot >= btrfs_header_nritems(leaf)) {
4924 				ret = btrfs_next_leaf(root, path);
4925 				if (ret < 0) {
4926 					break;
4927 				} else if (ret > 0) {
4928 					ret = 0;
4929 					break;
4930 				}
4931 				continue;
4932 			}
4933 
4934 			btrfs_item_key_to_cpu(leaf, &key, slot);
4935 			if (key.objectid != ino ||
4936 			    (key.type != BTRFS_INODE_REF_KEY &&
4937 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
4938 				ret = 0;
4939 				break;
4940 			}
4941 
4942 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
4943 					BTRFS_I(inode), &other_ino,
4944 					&other_parent);
4945 			if (ret < 0)
4946 				break;
4947 			if (ret > 0) {
4948 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4949 				if (!ino_elem) {
4950 					ret = -ENOMEM;
4951 					break;
4952 				}
4953 				ino_elem->ino = other_ino;
4954 				ino_elem->parent = other_parent;
4955 				list_add_tail(&ino_elem->list, &inode_list);
4956 				ret = 0;
4957 			}
4958 			path->slots[0]++;
4959 		}
4960 		btrfs_add_delayed_iput(inode);
4961 	}
4962 
4963 	return ret;
4964 }
4965 
4966 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
4967 				   struct btrfs_inode *inode,
4968 				   struct btrfs_key *min_key,
4969 				   const struct btrfs_key *max_key,
4970 				   struct btrfs_path *path,
4971 				   struct btrfs_path *dst_path,
4972 				   const u64 logged_isize,
4973 				   const bool recursive_logging,
4974 				   const int inode_only,
4975 				   struct btrfs_log_ctx *ctx,
4976 				   bool *need_log_inode_item)
4977 {
4978 	struct btrfs_root *root = inode->root;
4979 	int ins_start_slot = 0;
4980 	int ins_nr = 0;
4981 	int ret;
4982 
4983 	while (1) {
4984 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
4985 		if (ret < 0)
4986 			return ret;
4987 		if (ret > 0) {
4988 			ret = 0;
4989 			break;
4990 		}
4991 again:
4992 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
4993 		if (min_key->objectid != max_key->objectid)
4994 			break;
4995 		if (min_key->type > max_key->type)
4996 			break;
4997 
4998 		if (min_key->type == BTRFS_INODE_ITEM_KEY)
4999 			*need_log_inode_item = false;
5000 
5001 		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5002 		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5003 		    inode->generation == trans->transid &&
5004 		    !recursive_logging) {
5005 			u64 other_ino = 0;
5006 			u64 other_parent = 0;
5007 
5008 			ret = btrfs_check_ref_name_override(path->nodes[0],
5009 					path->slots[0], min_key, inode,
5010 					&other_ino, &other_parent);
5011 			if (ret < 0) {
5012 				return ret;
5013 			} else if (ret > 0 && ctx &&
5014 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5015 				if (ins_nr > 0) {
5016 					ins_nr++;
5017 				} else {
5018 					ins_nr = 1;
5019 					ins_start_slot = path->slots[0];
5020 				}
5021 				ret = copy_items(trans, inode, dst_path, path,
5022 						 ins_start_slot, ins_nr,
5023 						 inode_only, logged_isize);
5024 				if (ret < 0)
5025 					return ret;
5026 				ins_nr = 0;
5027 
5028 				ret = log_conflicting_inodes(trans, root, path,
5029 						ctx, other_ino, other_parent);
5030 				if (ret)
5031 					return ret;
5032 				btrfs_release_path(path);
5033 				goto next_key;
5034 			}
5035 		}
5036 
5037 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5038 		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5039 			if (ins_nr == 0)
5040 				goto next_slot;
5041 			ret = copy_items(trans, inode, dst_path, path,
5042 					 ins_start_slot,
5043 					 ins_nr, inode_only, logged_isize);
5044 			if (ret < 0)
5045 				return ret;
5046 			ins_nr = 0;
5047 			goto next_slot;
5048 		}
5049 
5050 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5051 			ins_nr++;
5052 			goto next_slot;
5053 		} else if (!ins_nr) {
5054 			ins_start_slot = path->slots[0];
5055 			ins_nr = 1;
5056 			goto next_slot;
5057 		}
5058 
5059 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5060 				 ins_nr, inode_only, logged_isize);
5061 		if (ret < 0)
5062 			return ret;
5063 		ins_nr = 1;
5064 		ins_start_slot = path->slots[0];
5065 next_slot:
5066 		path->slots[0]++;
5067 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5068 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5069 					      path->slots[0]);
5070 			goto again;
5071 		}
5072 		if (ins_nr) {
5073 			ret = copy_items(trans, inode, dst_path, path,
5074 					 ins_start_slot, ins_nr, inode_only,
5075 					 logged_isize);
5076 			if (ret < 0)
5077 				return ret;
5078 			ins_nr = 0;
5079 		}
5080 		btrfs_release_path(path);
5081 next_key:
5082 		if (min_key->offset < (u64)-1) {
5083 			min_key->offset++;
5084 		} else if (min_key->type < max_key->type) {
5085 			min_key->type++;
5086 			min_key->offset = 0;
5087 		} else {
5088 			break;
5089 		}
5090 	}
5091 	if (ins_nr)
5092 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5093 				 ins_nr, inode_only, logged_isize);
5094 
5095 	return ret;
5096 }
5097 
5098 /* log a single inode in the tree log.
5099  * At least one parent directory for this inode must exist in the tree
5100  * or be logged already.
5101  *
5102  * Any items from this inode changed by the current transaction are copied
5103  * to the log tree.  An extra reference is taken on any extents in this
5104  * file, allowing us to avoid a whole pile of corner cases around logging
5105  * blocks that have been removed from the tree.
5106  *
5107  * See LOG_INODE_ALL and related defines for a description of what inode_only
5108  * does.
5109  *
5110  * This handles both files and directories.
5111  */
5112 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5113 			   struct btrfs_root *root, struct btrfs_inode *inode,
5114 			   int inode_only,
5115 			   const loff_t start,
5116 			   const loff_t end,
5117 			   struct btrfs_log_ctx *ctx)
5118 {
5119 	struct btrfs_path *path;
5120 	struct btrfs_path *dst_path;
5121 	struct btrfs_key min_key;
5122 	struct btrfs_key max_key;
5123 	struct btrfs_root *log = root->log_root;
5124 	int err = 0;
5125 	int ret = 0;
5126 	bool fast_search = false;
5127 	u64 ino = btrfs_ino(inode);
5128 	struct extent_map_tree *em_tree = &inode->extent_tree;
5129 	u64 logged_isize = 0;
5130 	bool need_log_inode_item = true;
5131 	bool xattrs_logged = false;
5132 	bool recursive_logging = false;
5133 
5134 	path = btrfs_alloc_path();
5135 	if (!path)
5136 		return -ENOMEM;
5137 	dst_path = btrfs_alloc_path();
5138 	if (!dst_path) {
5139 		btrfs_free_path(path);
5140 		return -ENOMEM;
5141 	}
5142 
5143 	min_key.objectid = ino;
5144 	min_key.type = BTRFS_INODE_ITEM_KEY;
5145 	min_key.offset = 0;
5146 
5147 	max_key.objectid = ino;
5148 
5149 
5150 	/* today the code can only do partial logging of directories */
5151 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5152 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5153 		       &inode->runtime_flags) &&
5154 	     inode_only >= LOG_INODE_EXISTS))
5155 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5156 	else
5157 		max_key.type = (u8)-1;
5158 	max_key.offset = (u64)-1;
5159 
5160 	/*
5161 	 * Only run delayed items if we are a directory. We want to make sure
5162 	 * all directory indexes hit the fs/subvolume tree so we can find them
5163 	 * and figure out which index ranges have to be logged.
5164 	 *
5165 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5166 	 * as we want to make sure an up to date version is in the subvolume
5167 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5168 	 * it to the log tree. For a non full sync, we always log the inode item
5169 	 * based on the in-memory struct btrfs_inode which is always up to date.
5170 	 */
5171 	if (S_ISDIR(inode->vfs_inode.i_mode))
5172 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5173 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5174 		ret = btrfs_commit_inode_delayed_inode(inode);
5175 
5176 	if (ret) {
5177 		btrfs_free_path(path);
5178 		btrfs_free_path(dst_path);
5179 		return ret;
5180 	}
5181 
5182 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5183 		recursive_logging = true;
5184 		if (inode_only == LOG_OTHER_INODE)
5185 			inode_only = LOG_INODE_EXISTS;
5186 		else
5187 			inode_only = LOG_INODE_ALL;
5188 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5189 	} else {
5190 		mutex_lock(&inode->log_mutex);
5191 	}
5192 
5193 	/*
5194 	 * a brute force approach to making sure we get the most uptodate
5195 	 * copies of everything.
5196 	 */
5197 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5198 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5199 
5200 		if (inode_only == LOG_INODE_EXISTS)
5201 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5202 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5203 	} else {
5204 		if (inode_only == LOG_INODE_EXISTS) {
5205 			/*
5206 			 * Make sure the new inode item we write to the log has
5207 			 * the same isize as the current one (if it exists).
5208 			 * This is necessary to prevent data loss after log
5209 			 * replay, and also to prevent doing a wrong expanding
5210 			 * truncate - for e.g. create file, write 4K into offset
5211 			 * 0, fsync, write 4K into offset 4096, add hard link,
5212 			 * fsync some other file (to sync log), power fail - if
5213 			 * we use the inode's current i_size, after log replay
5214 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5215 			 * (zeroes), as if an expanding truncate happened,
5216 			 * instead of getting a file of 4Kb only.
5217 			 */
5218 			err = logged_inode_size(log, inode, path, &logged_isize);
5219 			if (err)
5220 				goto out_unlock;
5221 		}
5222 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5223 			     &inode->runtime_flags)) {
5224 			if (inode_only == LOG_INODE_EXISTS) {
5225 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5226 				ret = drop_objectid_items(trans, log, path, ino,
5227 							  max_key.type);
5228 			} else {
5229 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5230 					  &inode->runtime_flags);
5231 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5232 					  &inode->runtime_flags);
5233 				while(1) {
5234 					ret = btrfs_truncate_inode_items(trans,
5235 						log, &inode->vfs_inode, 0, 0);
5236 					if (ret != -EAGAIN)
5237 						break;
5238 				}
5239 			}
5240 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5241 					      &inode->runtime_flags) ||
5242 			   inode_only == LOG_INODE_EXISTS) {
5243 			if (inode_only == LOG_INODE_ALL)
5244 				fast_search = true;
5245 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5246 			ret = drop_objectid_items(trans, log, path, ino,
5247 						  max_key.type);
5248 		} else {
5249 			if (inode_only == LOG_INODE_ALL)
5250 				fast_search = true;
5251 			goto log_extents;
5252 		}
5253 
5254 	}
5255 	if (ret) {
5256 		err = ret;
5257 		goto out_unlock;
5258 	}
5259 
5260 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5261 				      path, dst_path, logged_isize,
5262 				      recursive_logging, inode_only, ctx,
5263 				      &need_log_inode_item);
5264 	if (err)
5265 		goto out_unlock;
5266 
5267 	btrfs_release_path(path);
5268 	btrfs_release_path(dst_path);
5269 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5270 	if (err)
5271 		goto out_unlock;
5272 	xattrs_logged = true;
5273 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5274 		btrfs_release_path(path);
5275 		btrfs_release_path(dst_path);
5276 		err = btrfs_log_holes(trans, root, inode, path);
5277 		if (err)
5278 			goto out_unlock;
5279 	}
5280 log_extents:
5281 	btrfs_release_path(path);
5282 	btrfs_release_path(dst_path);
5283 	if (need_log_inode_item) {
5284 		err = log_inode_item(trans, log, dst_path, inode);
5285 		if (!err && !xattrs_logged) {
5286 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5287 						   dst_path);
5288 			btrfs_release_path(path);
5289 		}
5290 		if (err)
5291 			goto out_unlock;
5292 	}
5293 	if (fast_search) {
5294 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5295 						ctx, start, end);
5296 		if (ret) {
5297 			err = ret;
5298 			goto out_unlock;
5299 		}
5300 	} else if (inode_only == LOG_INODE_ALL) {
5301 		struct extent_map *em, *n;
5302 
5303 		write_lock(&em_tree->lock);
5304 		/*
5305 		 * We can't just remove every em if we're called for a ranged
5306 		 * fsync - that is, one that doesn't cover the whole possible
5307 		 * file range (0 to LLONG_MAX). This is because we can have
5308 		 * em's that fall outside the range we're logging and therefore
5309 		 * their ordered operations haven't completed yet
5310 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5311 		 * didn't get their respective file extent item in the fs/subvol
5312 		 * tree yet, and need to let the next fast fsync (one which
5313 		 * consults the list of modified extent maps) find the em so
5314 		 * that it logs a matching file extent item and waits for the
5315 		 * respective ordered operation to complete (if it's still
5316 		 * running).
5317 		 *
5318 		 * Removing every em outside the range we're logging would make
5319 		 * the next fast fsync not log their matching file extent items,
5320 		 * therefore making us lose data after a log replay.
5321 		 */
5322 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5323 					 list) {
5324 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5325 
5326 			if (em->mod_start >= start && mod_end <= end)
5327 				list_del_init(&em->list);
5328 		}
5329 		write_unlock(&em_tree->lock);
5330 	}
5331 
5332 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5333 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5334 					ctx);
5335 		if (ret) {
5336 			err = ret;
5337 			goto out_unlock;
5338 		}
5339 	}
5340 
5341 	/*
5342 	 * Don't update last_log_commit if we logged that an inode exists after
5343 	 * it was loaded to memory (full_sync bit set).
5344 	 * This is to prevent data loss when we do a write to the inode, then
5345 	 * the inode gets evicted after all delalloc was flushed, then we log
5346 	 * it exists (due to a rename for example) and then fsync it. This last
5347 	 * fsync would do nothing (not logging the extents previously written).
5348 	 */
5349 	spin_lock(&inode->lock);
5350 	inode->logged_trans = trans->transid;
5351 	if (inode_only != LOG_INODE_EXISTS ||
5352 	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5353 		inode->last_log_commit = inode->last_sub_trans;
5354 	spin_unlock(&inode->lock);
5355 out_unlock:
5356 	mutex_unlock(&inode->log_mutex);
5357 
5358 	btrfs_free_path(path);
5359 	btrfs_free_path(dst_path);
5360 	return err;
5361 }
5362 
5363 /*
5364  * Check if we must fallback to a transaction commit when logging an inode.
5365  * This must be called after logging the inode and is used only in the context
5366  * when fsyncing an inode requires the need to log some other inode - in which
5367  * case we can't lock the i_mutex of each other inode we need to log as that
5368  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5369  * log inodes up or down in the hierarchy) or rename operations for example. So
5370  * we take the log_mutex of the inode after we have logged it and then check for
5371  * its last_unlink_trans value - this is safe because any task setting
5372  * last_unlink_trans must take the log_mutex and it must do this before it does
5373  * the actual unlink operation, so if we do this check before a concurrent task
5374  * sets last_unlink_trans it means we've logged a consistent version/state of
5375  * all the inode items, otherwise we are not sure and must do a transaction
5376  * commit (the concurrent task might have only updated last_unlink_trans before
5377  * we logged the inode or it might have also done the unlink).
5378  */
5379 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5380 					  struct btrfs_inode *inode)
5381 {
5382 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5383 	bool ret = false;
5384 
5385 	mutex_lock(&inode->log_mutex);
5386 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5387 		/*
5388 		 * Make sure any commits to the log are forced to be full
5389 		 * commits.
5390 		 */
5391 		btrfs_set_log_full_commit(trans);
5392 		ret = true;
5393 	}
5394 	mutex_unlock(&inode->log_mutex);
5395 
5396 	return ret;
5397 }
5398 
5399 /*
5400  * follow the dentry parent pointers up the chain and see if any
5401  * of the directories in it require a full commit before they can
5402  * be logged.  Returns zero if nothing special needs to be done or 1 if
5403  * a full commit is required.
5404  */
5405 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5406 					       struct btrfs_inode *inode,
5407 					       struct dentry *parent,
5408 					       struct super_block *sb,
5409 					       u64 last_committed)
5410 {
5411 	int ret = 0;
5412 	struct dentry *old_parent = NULL;
5413 
5414 	/*
5415 	 * for regular files, if its inode is already on disk, we don't
5416 	 * have to worry about the parents at all.  This is because
5417 	 * we can use the last_unlink_trans field to record renames
5418 	 * and other fun in this file.
5419 	 */
5420 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5421 	    inode->generation <= last_committed &&
5422 	    inode->last_unlink_trans <= last_committed)
5423 		goto out;
5424 
5425 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5426 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5427 			goto out;
5428 		inode = BTRFS_I(d_inode(parent));
5429 	}
5430 
5431 	while (1) {
5432 		if (btrfs_must_commit_transaction(trans, inode)) {
5433 			ret = 1;
5434 			break;
5435 		}
5436 
5437 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5438 			break;
5439 
5440 		if (IS_ROOT(parent)) {
5441 			inode = BTRFS_I(d_inode(parent));
5442 			if (btrfs_must_commit_transaction(trans, inode))
5443 				ret = 1;
5444 			break;
5445 		}
5446 
5447 		parent = dget_parent(parent);
5448 		dput(old_parent);
5449 		old_parent = parent;
5450 		inode = BTRFS_I(d_inode(parent));
5451 
5452 	}
5453 	dput(old_parent);
5454 out:
5455 	return ret;
5456 }
5457 
5458 struct btrfs_dir_list {
5459 	u64 ino;
5460 	struct list_head list;
5461 };
5462 
5463 /*
5464  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5465  * details about the why it is needed.
5466  * This is a recursive operation - if an existing dentry corresponds to a
5467  * directory, that directory's new entries are logged too (same behaviour as
5468  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5469  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5470  * complains about the following circular lock dependency / possible deadlock:
5471  *
5472  *        CPU0                                        CPU1
5473  *        ----                                        ----
5474  * lock(&type->i_mutex_dir_key#3/2);
5475  *                                            lock(sb_internal#2);
5476  *                                            lock(&type->i_mutex_dir_key#3/2);
5477  * lock(&sb->s_type->i_mutex_key#14);
5478  *
5479  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5480  * sb_start_intwrite() in btrfs_start_transaction().
5481  * Not locking i_mutex of the inodes is still safe because:
5482  *
5483  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5484  *    that while logging the inode new references (names) are added or removed
5485  *    from the inode, leaving the logged inode item with a link count that does
5486  *    not match the number of logged inode reference items. This is fine because
5487  *    at log replay time we compute the real number of links and correct the
5488  *    link count in the inode item (see replay_one_buffer() and
5489  *    link_to_fixup_dir());
5490  *
5491  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5492  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5493  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5494  *    has a size that doesn't match the sum of the lengths of all the logged
5495  *    names. This does not result in a problem because if a dir_item key is
5496  *    logged but its matching dir_index key is not logged, at log replay time we
5497  *    don't use it to replay the respective name (see replay_one_name()). On the
5498  *    other hand if only the dir_index key ends up being logged, the respective
5499  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5500  *    keys created (see replay_one_name()).
5501  *    The directory's inode item with a wrong i_size is not a problem as well,
5502  *    since we don't use it at log replay time to set the i_size in the inode
5503  *    item of the fs/subvol tree (see overwrite_item()).
5504  */
5505 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5506 				struct btrfs_root *root,
5507 				struct btrfs_inode *start_inode,
5508 				struct btrfs_log_ctx *ctx)
5509 {
5510 	struct btrfs_fs_info *fs_info = root->fs_info;
5511 	struct btrfs_root *log = root->log_root;
5512 	struct btrfs_path *path;
5513 	LIST_HEAD(dir_list);
5514 	struct btrfs_dir_list *dir_elem;
5515 	int ret = 0;
5516 
5517 	path = btrfs_alloc_path();
5518 	if (!path)
5519 		return -ENOMEM;
5520 
5521 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5522 	if (!dir_elem) {
5523 		btrfs_free_path(path);
5524 		return -ENOMEM;
5525 	}
5526 	dir_elem->ino = btrfs_ino(start_inode);
5527 	list_add_tail(&dir_elem->list, &dir_list);
5528 
5529 	while (!list_empty(&dir_list)) {
5530 		struct extent_buffer *leaf;
5531 		struct btrfs_key min_key;
5532 		int nritems;
5533 		int i;
5534 
5535 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5536 					    list);
5537 		if (ret)
5538 			goto next_dir_inode;
5539 
5540 		min_key.objectid = dir_elem->ino;
5541 		min_key.type = BTRFS_DIR_ITEM_KEY;
5542 		min_key.offset = 0;
5543 again:
5544 		btrfs_release_path(path);
5545 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5546 		if (ret < 0) {
5547 			goto next_dir_inode;
5548 		} else if (ret > 0) {
5549 			ret = 0;
5550 			goto next_dir_inode;
5551 		}
5552 
5553 process_leaf:
5554 		leaf = path->nodes[0];
5555 		nritems = btrfs_header_nritems(leaf);
5556 		for (i = path->slots[0]; i < nritems; i++) {
5557 			struct btrfs_dir_item *di;
5558 			struct btrfs_key di_key;
5559 			struct inode *di_inode;
5560 			struct btrfs_dir_list *new_dir_elem;
5561 			int log_mode = LOG_INODE_EXISTS;
5562 			int type;
5563 
5564 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5565 			if (min_key.objectid != dir_elem->ino ||
5566 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5567 				goto next_dir_inode;
5568 
5569 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5570 			type = btrfs_dir_type(leaf, di);
5571 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5572 			    type != BTRFS_FT_DIR)
5573 				continue;
5574 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5575 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5576 				continue;
5577 
5578 			btrfs_release_path(path);
5579 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5580 			if (IS_ERR(di_inode)) {
5581 				ret = PTR_ERR(di_inode);
5582 				goto next_dir_inode;
5583 			}
5584 
5585 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5586 				btrfs_add_delayed_iput(di_inode);
5587 				break;
5588 			}
5589 
5590 			ctx->log_new_dentries = false;
5591 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5592 				log_mode = LOG_INODE_ALL;
5593 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5594 					      log_mode, 0, LLONG_MAX, ctx);
5595 			if (!ret &&
5596 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5597 				ret = 1;
5598 			btrfs_add_delayed_iput(di_inode);
5599 			if (ret)
5600 				goto next_dir_inode;
5601 			if (ctx->log_new_dentries) {
5602 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5603 						       GFP_NOFS);
5604 				if (!new_dir_elem) {
5605 					ret = -ENOMEM;
5606 					goto next_dir_inode;
5607 				}
5608 				new_dir_elem->ino = di_key.objectid;
5609 				list_add_tail(&new_dir_elem->list, &dir_list);
5610 			}
5611 			break;
5612 		}
5613 		if (i == nritems) {
5614 			ret = btrfs_next_leaf(log, path);
5615 			if (ret < 0) {
5616 				goto next_dir_inode;
5617 			} else if (ret > 0) {
5618 				ret = 0;
5619 				goto next_dir_inode;
5620 			}
5621 			goto process_leaf;
5622 		}
5623 		if (min_key.offset < (u64)-1) {
5624 			min_key.offset++;
5625 			goto again;
5626 		}
5627 next_dir_inode:
5628 		list_del(&dir_elem->list);
5629 		kfree(dir_elem);
5630 	}
5631 
5632 	btrfs_free_path(path);
5633 	return ret;
5634 }
5635 
5636 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5637 				 struct btrfs_inode *inode,
5638 				 struct btrfs_log_ctx *ctx)
5639 {
5640 	struct btrfs_fs_info *fs_info = trans->fs_info;
5641 	int ret;
5642 	struct btrfs_path *path;
5643 	struct btrfs_key key;
5644 	struct btrfs_root *root = inode->root;
5645 	const u64 ino = btrfs_ino(inode);
5646 
5647 	path = btrfs_alloc_path();
5648 	if (!path)
5649 		return -ENOMEM;
5650 	path->skip_locking = 1;
5651 	path->search_commit_root = 1;
5652 
5653 	key.objectid = ino;
5654 	key.type = BTRFS_INODE_REF_KEY;
5655 	key.offset = 0;
5656 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5657 	if (ret < 0)
5658 		goto out;
5659 
5660 	while (true) {
5661 		struct extent_buffer *leaf = path->nodes[0];
5662 		int slot = path->slots[0];
5663 		u32 cur_offset = 0;
5664 		u32 item_size;
5665 		unsigned long ptr;
5666 
5667 		if (slot >= btrfs_header_nritems(leaf)) {
5668 			ret = btrfs_next_leaf(root, path);
5669 			if (ret < 0)
5670 				goto out;
5671 			else if (ret > 0)
5672 				break;
5673 			continue;
5674 		}
5675 
5676 		btrfs_item_key_to_cpu(leaf, &key, slot);
5677 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5678 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5679 			break;
5680 
5681 		item_size = btrfs_item_size_nr(leaf, slot);
5682 		ptr = btrfs_item_ptr_offset(leaf, slot);
5683 		while (cur_offset < item_size) {
5684 			struct btrfs_key inode_key;
5685 			struct inode *dir_inode;
5686 
5687 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5688 			inode_key.offset = 0;
5689 
5690 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5691 				struct btrfs_inode_extref *extref;
5692 
5693 				extref = (struct btrfs_inode_extref *)
5694 					(ptr + cur_offset);
5695 				inode_key.objectid = btrfs_inode_extref_parent(
5696 					leaf, extref);
5697 				cur_offset += sizeof(*extref);
5698 				cur_offset += btrfs_inode_extref_name_len(leaf,
5699 					extref);
5700 			} else {
5701 				inode_key.objectid = key.offset;
5702 				cur_offset = item_size;
5703 			}
5704 
5705 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5706 					       root);
5707 			/*
5708 			 * If the parent inode was deleted, return an error to
5709 			 * fallback to a transaction commit. This is to prevent
5710 			 * getting an inode that was moved from one parent A to
5711 			 * a parent B, got its former parent A deleted and then
5712 			 * it got fsync'ed, from existing at both parents after
5713 			 * a log replay (and the old parent still existing).
5714 			 * Example:
5715 			 *
5716 			 * mkdir /mnt/A
5717 			 * mkdir /mnt/B
5718 			 * touch /mnt/B/bar
5719 			 * sync
5720 			 * mv /mnt/B/bar /mnt/A/bar
5721 			 * mv -T /mnt/A /mnt/B
5722 			 * fsync /mnt/B/bar
5723 			 * <power fail>
5724 			 *
5725 			 * If we ignore the old parent B which got deleted,
5726 			 * after a log replay we would have file bar linked
5727 			 * at both parents and the old parent B would still
5728 			 * exist.
5729 			 */
5730 			if (IS_ERR(dir_inode)) {
5731 				ret = PTR_ERR(dir_inode);
5732 				goto out;
5733 			}
5734 
5735 			if (ctx)
5736 				ctx->log_new_dentries = false;
5737 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5738 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5739 			if (!ret &&
5740 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5741 				ret = 1;
5742 			if (!ret && ctx && ctx->log_new_dentries)
5743 				ret = log_new_dir_dentries(trans, root,
5744 						   BTRFS_I(dir_inode), ctx);
5745 			btrfs_add_delayed_iput(dir_inode);
5746 			if (ret)
5747 				goto out;
5748 		}
5749 		path->slots[0]++;
5750 	}
5751 	ret = 0;
5752 out:
5753 	btrfs_free_path(path);
5754 	return ret;
5755 }
5756 
5757 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5758 			     struct btrfs_root *root,
5759 			     struct btrfs_path *path,
5760 			     struct btrfs_log_ctx *ctx)
5761 {
5762 	struct btrfs_key found_key;
5763 
5764 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5765 
5766 	while (true) {
5767 		struct btrfs_fs_info *fs_info = root->fs_info;
5768 		const u64 last_committed = fs_info->last_trans_committed;
5769 		struct extent_buffer *leaf = path->nodes[0];
5770 		int slot = path->slots[0];
5771 		struct btrfs_key search_key;
5772 		struct inode *inode;
5773 		u64 ino;
5774 		int ret = 0;
5775 
5776 		btrfs_release_path(path);
5777 
5778 		ino = found_key.offset;
5779 
5780 		search_key.objectid = found_key.offset;
5781 		search_key.type = BTRFS_INODE_ITEM_KEY;
5782 		search_key.offset = 0;
5783 		inode = btrfs_iget(fs_info->sb, ino, root);
5784 		if (IS_ERR(inode))
5785 			return PTR_ERR(inode);
5786 
5787 		if (BTRFS_I(inode)->generation > last_committed)
5788 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5789 					      LOG_INODE_EXISTS,
5790 					      0, LLONG_MAX, ctx);
5791 		btrfs_add_delayed_iput(inode);
5792 		if (ret)
5793 			return ret;
5794 
5795 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5796 			break;
5797 
5798 		search_key.type = BTRFS_INODE_REF_KEY;
5799 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5800 		if (ret < 0)
5801 			return ret;
5802 
5803 		leaf = path->nodes[0];
5804 		slot = path->slots[0];
5805 		if (slot >= btrfs_header_nritems(leaf)) {
5806 			ret = btrfs_next_leaf(root, path);
5807 			if (ret < 0)
5808 				return ret;
5809 			else if (ret > 0)
5810 				return -ENOENT;
5811 			leaf = path->nodes[0];
5812 			slot = path->slots[0];
5813 		}
5814 
5815 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5816 		if (found_key.objectid != search_key.objectid ||
5817 		    found_key.type != BTRFS_INODE_REF_KEY)
5818 			return -ENOENT;
5819 	}
5820 	return 0;
5821 }
5822 
5823 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5824 				  struct btrfs_inode *inode,
5825 				  struct dentry *parent,
5826 				  struct btrfs_log_ctx *ctx)
5827 {
5828 	struct btrfs_root *root = inode->root;
5829 	struct btrfs_fs_info *fs_info = root->fs_info;
5830 	struct dentry *old_parent = NULL;
5831 	struct super_block *sb = inode->vfs_inode.i_sb;
5832 	int ret = 0;
5833 
5834 	while (true) {
5835 		if (!parent || d_really_is_negative(parent) ||
5836 		    sb != parent->d_sb)
5837 			break;
5838 
5839 		inode = BTRFS_I(d_inode(parent));
5840 		if (root != inode->root)
5841 			break;
5842 
5843 		if (inode->generation > fs_info->last_trans_committed) {
5844 			ret = btrfs_log_inode(trans, root, inode,
5845 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5846 			if (ret)
5847 				break;
5848 		}
5849 		if (IS_ROOT(parent))
5850 			break;
5851 
5852 		parent = dget_parent(parent);
5853 		dput(old_parent);
5854 		old_parent = parent;
5855 	}
5856 	dput(old_parent);
5857 
5858 	return ret;
5859 }
5860 
5861 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5862 				 struct btrfs_inode *inode,
5863 				 struct dentry *parent,
5864 				 struct btrfs_log_ctx *ctx)
5865 {
5866 	struct btrfs_root *root = inode->root;
5867 	const u64 ino = btrfs_ino(inode);
5868 	struct btrfs_path *path;
5869 	struct btrfs_key search_key;
5870 	int ret;
5871 
5872 	/*
5873 	 * For a single hard link case, go through a fast path that does not
5874 	 * need to iterate the fs/subvolume tree.
5875 	 */
5876 	if (inode->vfs_inode.i_nlink < 2)
5877 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5878 
5879 	path = btrfs_alloc_path();
5880 	if (!path)
5881 		return -ENOMEM;
5882 
5883 	search_key.objectid = ino;
5884 	search_key.type = BTRFS_INODE_REF_KEY;
5885 	search_key.offset = 0;
5886 again:
5887 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5888 	if (ret < 0)
5889 		goto out;
5890 	if (ret == 0)
5891 		path->slots[0]++;
5892 
5893 	while (true) {
5894 		struct extent_buffer *leaf = path->nodes[0];
5895 		int slot = path->slots[0];
5896 		struct btrfs_key found_key;
5897 
5898 		if (slot >= btrfs_header_nritems(leaf)) {
5899 			ret = btrfs_next_leaf(root, path);
5900 			if (ret < 0)
5901 				goto out;
5902 			else if (ret > 0)
5903 				break;
5904 			continue;
5905 		}
5906 
5907 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5908 		if (found_key.objectid != ino ||
5909 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
5910 			break;
5911 
5912 		/*
5913 		 * Don't deal with extended references because they are rare
5914 		 * cases and too complex to deal with (we would need to keep
5915 		 * track of which subitem we are processing for each item in
5916 		 * this loop, etc). So just return some error to fallback to
5917 		 * a transaction commit.
5918 		 */
5919 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5920 			ret = -EMLINK;
5921 			goto out;
5922 		}
5923 
5924 		/*
5925 		 * Logging ancestors needs to do more searches on the fs/subvol
5926 		 * tree, so it releases the path as needed to avoid deadlocks.
5927 		 * Keep track of the last inode ref key and resume from that key
5928 		 * after logging all new ancestors for the current hard link.
5929 		 */
5930 		memcpy(&search_key, &found_key, sizeof(search_key));
5931 
5932 		ret = log_new_ancestors(trans, root, path, ctx);
5933 		if (ret)
5934 			goto out;
5935 		btrfs_release_path(path);
5936 		goto again;
5937 	}
5938 	ret = 0;
5939 out:
5940 	btrfs_free_path(path);
5941 	return ret;
5942 }
5943 
5944 /*
5945  * helper function around btrfs_log_inode to make sure newly created
5946  * parent directories also end up in the log.  A minimal inode and backref
5947  * only logging is done of any parent directories that are older than
5948  * the last committed transaction
5949  */
5950 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5951 				  struct btrfs_inode *inode,
5952 				  struct dentry *parent,
5953 				  const loff_t start,
5954 				  const loff_t end,
5955 				  int inode_only,
5956 				  struct btrfs_log_ctx *ctx)
5957 {
5958 	struct btrfs_root *root = inode->root;
5959 	struct btrfs_fs_info *fs_info = root->fs_info;
5960 	struct super_block *sb;
5961 	int ret = 0;
5962 	u64 last_committed = fs_info->last_trans_committed;
5963 	bool log_dentries = false;
5964 
5965 	sb = inode->vfs_inode.i_sb;
5966 
5967 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5968 		ret = 1;
5969 		goto end_no_trans;
5970 	}
5971 
5972 	/*
5973 	 * The prev transaction commit doesn't complete, we need do
5974 	 * full commit by ourselves.
5975 	 */
5976 	if (fs_info->last_trans_log_full_commit >
5977 	    fs_info->last_trans_committed) {
5978 		ret = 1;
5979 		goto end_no_trans;
5980 	}
5981 
5982 	if (btrfs_root_refs(&root->root_item) == 0) {
5983 		ret = 1;
5984 		goto end_no_trans;
5985 	}
5986 
5987 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5988 			last_committed);
5989 	if (ret)
5990 		goto end_no_trans;
5991 
5992 	/*
5993 	 * Skip already logged inodes or inodes corresponding to tmpfiles
5994 	 * (since logging them is pointless, a link count of 0 means they
5995 	 * will never be accessible).
5996 	 */
5997 	if (btrfs_inode_in_log(inode, trans->transid) ||
5998 	    inode->vfs_inode.i_nlink == 0) {
5999 		ret = BTRFS_NO_LOG_SYNC;
6000 		goto end_no_trans;
6001 	}
6002 
6003 	ret = start_log_trans(trans, root, ctx);
6004 	if (ret)
6005 		goto end_no_trans;
6006 
6007 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6008 	if (ret)
6009 		goto end_trans;
6010 
6011 	/*
6012 	 * for regular files, if its inode is already on disk, we don't
6013 	 * have to worry about the parents at all.  This is because
6014 	 * we can use the last_unlink_trans field to record renames
6015 	 * and other fun in this file.
6016 	 */
6017 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6018 	    inode->generation <= last_committed &&
6019 	    inode->last_unlink_trans <= last_committed) {
6020 		ret = 0;
6021 		goto end_trans;
6022 	}
6023 
6024 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6025 		log_dentries = true;
6026 
6027 	/*
6028 	 * On unlink we must make sure all our current and old parent directory
6029 	 * inodes are fully logged. This is to prevent leaving dangling
6030 	 * directory index entries in directories that were our parents but are
6031 	 * not anymore. Not doing this results in old parent directory being
6032 	 * impossible to delete after log replay (rmdir will always fail with
6033 	 * error -ENOTEMPTY).
6034 	 *
6035 	 * Example 1:
6036 	 *
6037 	 * mkdir testdir
6038 	 * touch testdir/foo
6039 	 * ln testdir/foo testdir/bar
6040 	 * sync
6041 	 * unlink testdir/bar
6042 	 * xfs_io -c fsync testdir/foo
6043 	 * <power failure>
6044 	 * mount fs, triggers log replay
6045 	 *
6046 	 * If we don't log the parent directory (testdir), after log replay the
6047 	 * directory still has an entry pointing to the file inode using the bar
6048 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6049 	 * the file inode has a link count of 1.
6050 	 *
6051 	 * Example 2:
6052 	 *
6053 	 * mkdir testdir
6054 	 * touch foo
6055 	 * ln foo testdir/foo2
6056 	 * ln foo testdir/foo3
6057 	 * sync
6058 	 * unlink testdir/foo3
6059 	 * xfs_io -c fsync foo
6060 	 * <power failure>
6061 	 * mount fs, triggers log replay
6062 	 *
6063 	 * Similar as the first example, after log replay the parent directory
6064 	 * testdir still has an entry pointing to the inode file with name foo3
6065 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6066 	 * and has a link count of 2.
6067 	 */
6068 	if (inode->last_unlink_trans > last_committed) {
6069 		ret = btrfs_log_all_parents(trans, inode, ctx);
6070 		if (ret)
6071 			goto end_trans;
6072 	}
6073 
6074 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6075 	if (ret)
6076 		goto end_trans;
6077 
6078 	if (log_dentries)
6079 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6080 	else
6081 		ret = 0;
6082 end_trans:
6083 	if (ret < 0) {
6084 		btrfs_set_log_full_commit(trans);
6085 		ret = 1;
6086 	}
6087 
6088 	if (ret)
6089 		btrfs_remove_log_ctx(root, ctx);
6090 	btrfs_end_log_trans(root);
6091 end_no_trans:
6092 	return ret;
6093 }
6094 
6095 /*
6096  * it is not safe to log dentry if the chunk root has added new
6097  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6098  * If this returns 1, you must commit the transaction to safely get your
6099  * data on disk.
6100  */
6101 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6102 			  struct dentry *dentry,
6103 			  const loff_t start,
6104 			  const loff_t end,
6105 			  struct btrfs_log_ctx *ctx)
6106 {
6107 	struct dentry *parent = dget_parent(dentry);
6108 	int ret;
6109 
6110 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6111 				     start, end, LOG_INODE_ALL, ctx);
6112 	dput(parent);
6113 
6114 	return ret;
6115 }
6116 
6117 /*
6118  * should be called during mount to recover any replay any log trees
6119  * from the FS
6120  */
6121 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6122 {
6123 	int ret;
6124 	struct btrfs_path *path;
6125 	struct btrfs_trans_handle *trans;
6126 	struct btrfs_key key;
6127 	struct btrfs_key found_key;
6128 	struct btrfs_root *log;
6129 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6130 	struct walk_control wc = {
6131 		.process_func = process_one_buffer,
6132 		.stage = LOG_WALK_PIN_ONLY,
6133 	};
6134 
6135 	path = btrfs_alloc_path();
6136 	if (!path)
6137 		return -ENOMEM;
6138 
6139 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6140 
6141 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6142 	if (IS_ERR(trans)) {
6143 		ret = PTR_ERR(trans);
6144 		goto error;
6145 	}
6146 
6147 	wc.trans = trans;
6148 	wc.pin = 1;
6149 
6150 	ret = walk_log_tree(trans, log_root_tree, &wc);
6151 	if (ret) {
6152 		btrfs_handle_fs_error(fs_info, ret,
6153 			"Failed to pin buffers while recovering log root tree.");
6154 		goto error;
6155 	}
6156 
6157 again:
6158 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6159 	key.offset = (u64)-1;
6160 	key.type = BTRFS_ROOT_ITEM_KEY;
6161 
6162 	while (1) {
6163 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6164 
6165 		if (ret < 0) {
6166 			btrfs_handle_fs_error(fs_info, ret,
6167 				    "Couldn't find tree log root.");
6168 			goto error;
6169 		}
6170 		if (ret > 0) {
6171 			if (path->slots[0] == 0)
6172 				break;
6173 			path->slots[0]--;
6174 		}
6175 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6176 				      path->slots[0]);
6177 		btrfs_release_path(path);
6178 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6179 			break;
6180 
6181 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6182 		if (IS_ERR(log)) {
6183 			ret = PTR_ERR(log);
6184 			btrfs_handle_fs_error(fs_info, ret,
6185 				    "Couldn't read tree log root.");
6186 			goto error;
6187 		}
6188 
6189 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6190 						   true);
6191 		if (IS_ERR(wc.replay_dest)) {
6192 			ret = PTR_ERR(wc.replay_dest);
6193 
6194 			/*
6195 			 * We didn't find the subvol, likely because it was
6196 			 * deleted.  This is ok, simply skip this log and go to
6197 			 * the next one.
6198 			 *
6199 			 * We need to exclude the root because we can't have
6200 			 * other log replays overwriting this log as we'll read
6201 			 * it back in a few more times.  This will keep our
6202 			 * block from being modified, and we'll just bail for
6203 			 * each subsequent pass.
6204 			 */
6205 			if (ret == -ENOENT)
6206 				ret = btrfs_pin_extent_for_log_replay(trans,
6207 							log->node->start,
6208 							log->node->len);
6209 			btrfs_put_root(log);
6210 
6211 			if (!ret)
6212 				goto next;
6213 			btrfs_handle_fs_error(fs_info, ret,
6214 				"Couldn't read target root for tree log recovery.");
6215 			goto error;
6216 		}
6217 
6218 		wc.replay_dest->log_root = log;
6219 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6220 		ret = walk_log_tree(trans, log, &wc);
6221 
6222 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6223 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6224 						      path);
6225 		}
6226 
6227 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6228 			struct btrfs_root *root = wc.replay_dest;
6229 
6230 			btrfs_release_path(path);
6231 
6232 			/*
6233 			 * We have just replayed everything, and the highest
6234 			 * objectid of fs roots probably has changed in case
6235 			 * some inode_item's got replayed.
6236 			 *
6237 			 * root->objectid_mutex is not acquired as log replay
6238 			 * could only happen during mount.
6239 			 */
6240 			ret = btrfs_find_highest_objectid(root,
6241 						  &root->highest_objectid);
6242 		}
6243 
6244 		wc.replay_dest->log_root = NULL;
6245 		btrfs_put_root(wc.replay_dest);
6246 		btrfs_put_root(log);
6247 
6248 		if (ret)
6249 			goto error;
6250 next:
6251 		if (found_key.offset == 0)
6252 			break;
6253 		key.offset = found_key.offset - 1;
6254 	}
6255 	btrfs_release_path(path);
6256 
6257 	/* step one is to pin it all, step two is to replay just inodes */
6258 	if (wc.pin) {
6259 		wc.pin = 0;
6260 		wc.process_func = replay_one_buffer;
6261 		wc.stage = LOG_WALK_REPLAY_INODES;
6262 		goto again;
6263 	}
6264 	/* step three is to replay everything */
6265 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6266 		wc.stage++;
6267 		goto again;
6268 	}
6269 
6270 	btrfs_free_path(path);
6271 
6272 	/* step 4: commit the transaction, which also unpins the blocks */
6273 	ret = btrfs_commit_transaction(trans);
6274 	if (ret)
6275 		return ret;
6276 
6277 	log_root_tree->log_root = NULL;
6278 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6279 	btrfs_put_root(log_root_tree);
6280 
6281 	return 0;
6282 error:
6283 	if (wc.trans)
6284 		btrfs_end_transaction(wc.trans);
6285 	btrfs_free_path(path);
6286 	return ret;
6287 }
6288 
6289 /*
6290  * there are some corner cases where we want to force a full
6291  * commit instead of allowing a directory to be logged.
6292  *
6293  * They revolve around files there were unlinked from the directory, and
6294  * this function updates the parent directory so that a full commit is
6295  * properly done if it is fsync'd later after the unlinks are done.
6296  *
6297  * Must be called before the unlink operations (updates to the subvolume tree,
6298  * inodes, etc) are done.
6299  */
6300 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6301 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6302 			     int for_rename)
6303 {
6304 	/*
6305 	 * when we're logging a file, if it hasn't been renamed
6306 	 * or unlinked, and its inode is fully committed on disk,
6307 	 * we don't have to worry about walking up the directory chain
6308 	 * to log its parents.
6309 	 *
6310 	 * So, we use the last_unlink_trans field to put this transid
6311 	 * into the file.  When the file is logged we check it and
6312 	 * don't log the parents if the file is fully on disk.
6313 	 */
6314 	mutex_lock(&inode->log_mutex);
6315 	inode->last_unlink_trans = trans->transid;
6316 	mutex_unlock(&inode->log_mutex);
6317 
6318 	/*
6319 	 * if this directory was already logged any new
6320 	 * names for this file/dir will get recorded
6321 	 */
6322 	if (dir->logged_trans == trans->transid)
6323 		return;
6324 
6325 	/*
6326 	 * if the inode we're about to unlink was logged,
6327 	 * the log will be properly updated for any new names
6328 	 */
6329 	if (inode->logged_trans == trans->transid)
6330 		return;
6331 
6332 	/*
6333 	 * when renaming files across directories, if the directory
6334 	 * there we're unlinking from gets fsync'd later on, there's
6335 	 * no way to find the destination directory later and fsync it
6336 	 * properly.  So, we have to be conservative and force commits
6337 	 * so the new name gets discovered.
6338 	 */
6339 	if (for_rename)
6340 		goto record;
6341 
6342 	/* we can safely do the unlink without any special recording */
6343 	return;
6344 
6345 record:
6346 	mutex_lock(&dir->log_mutex);
6347 	dir->last_unlink_trans = trans->transid;
6348 	mutex_unlock(&dir->log_mutex);
6349 }
6350 
6351 /*
6352  * Make sure that if someone attempts to fsync the parent directory of a deleted
6353  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6354  * that after replaying the log tree of the parent directory's root we will not
6355  * see the snapshot anymore and at log replay time we will not see any log tree
6356  * corresponding to the deleted snapshot's root, which could lead to replaying
6357  * it after replaying the log tree of the parent directory (which would replay
6358  * the snapshot delete operation).
6359  *
6360  * Must be called before the actual snapshot destroy operation (updates to the
6361  * parent root and tree of tree roots trees, etc) are done.
6362  */
6363 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6364 				   struct btrfs_inode *dir)
6365 {
6366 	mutex_lock(&dir->log_mutex);
6367 	dir->last_unlink_trans = trans->transid;
6368 	mutex_unlock(&dir->log_mutex);
6369 }
6370 
6371 /*
6372  * Call this after adding a new name for a file and it will properly
6373  * update the log to reflect the new name.
6374  *
6375  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6376  * true (because it's not used).
6377  *
6378  * Return value depends on whether @sync_log is true or false.
6379  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6380  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6381  *            otherwise.
6382  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6383  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6384  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6385  *             committed (without attempting to sync the log).
6386  */
6387 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6388 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6389 			struct dentry *parent,
6390 			bool sync_log, struct btrfs_log_ctx *ctx)
6391 {
6392 	struct btrfs_fs_info *fs_info = trans->fs_info;
6393 	int ret;
6394 
6395 	/*
6396 	 * this will force the logging code to walk the dentry chain
6397 	 * up for the file
6398 	 */
6399 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6400 		inode->last_unlink_trans = trans->transid;
6401 
6402 	/*
6403 	 * if this inode hasn't been logged and directory we're renaming it
6404 	 * from hasn't been logged, we don't need to log it
6405 	 */
6406 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6407 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6408 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6409 			BTRFS_DONT_NEED_LOG_SYNC;
6410 
6411 	if (sync_log) {
6412 		struct btrfs_log_ctx ctx2;
6413 
6414 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6415 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6416 					     LOG_INODE_EXISTS, &ctx2);
6417 		if (ret == BTRFS_NO_LOG_SYNC)
6418 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6419 		else if (ret)
6420 			return BTRFS_NEED_TRANS_COMMIT;
6421 
6422 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6423 		if (ret)
6424 			return BTRFS_NEED_TRANS_COMMIT;
6425 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6426 	}
6427 
6428 	ASSERT(ctx);
6429 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6430 				     LOG_INODE_EXISTS, ctx);
6431 	if (ret == BTRFS_NO_LOG_SYNC)
6432 		return BTRFS_DONT_NEED_LOG_SYNC;
6433 	else if (ret)
6434 		return BTRFS_NEED_TRANS_COMMIT;
6435 
6436 	return BTRFS_NEED_LOG_SYNC;
6437 }
6438 
6439