xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 3932b9ca)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 
30 /* magic values for the inode_only field in btrfs_log_inode:
31  *
32  * LOG_INODE_ALL means to log everything
33  * LOG_INODE_EXISTS means to log just enough to recreate the inode
34  * during log replay
35  */
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
38 
39 /*
40  * directory trouble cases
41  *
42  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43  * log, we must force a full commit before doing an fsync of the directory
44  * where the unlink was done.
45  * ---> record transid of last unlink/rename per directory
46  *
47  * mkdir foo/some_dir
48  * normal commit
49  * rename foo/some_dir foo2/some_dir
50  * mkdir foo/some_dir
51  * fsync foo/some_dir/some_file
52  *
53  * The fsync above will unlink the original some_dir without recording
54  * it in its new location (foo2).  After a crash, some_dir will be gone
55  * unless the fsync of some_file forces a full commit
56  *
57  * 2) we must log any new names for any file or dir that is in the fsync
58  * log. ---> check inode while renaming/linking.
59  *
60  * 2a) we must log any new names for any file or dir during rename
61  * when the directory they are being removed from was logged.
62  * ---> check inode and old parent dir during rename
63  *
64  *  2a is actually the more important variant.  With the extra logging
65  *  a crash might unlink the old name without recreating the new one
66  *
67  * 3) after a crash, we must go through any directories with a link count
68  * of zero and redo the rm -rf
69  *
70  * mkdir f1/foo
71  * normal commit
72  * rm -rf f1/foo
73  * fsync(f1)
74  *
75  * The directory f1 was fully removed from the FS, but fsync was never
76  * called on f1, only its parent dir.  After a crash the rm -rf must
77  * be replayed.  This must be able to recurse down the entire
78  * directory tree.  The inode link count fixup code takes care of the
79  * ugly details.
80  */
81 
82 /*
83  * stages for the tree walking.  The first
84  * stage (0) is to only pin down the blocks we find
85  * the second stage (1) is to make sure that all the inodes
86  * we find in the log are created in the subvolume.
87  *
88  * The last stage is to deal with directories and links and extents
89  * and all the other fun semantics
90  */
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct inode *inode,
98 			   int inode_only,
99 			   const loff_t start,
100 			   const loff_t end);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 			     struct btrfs_root *root,
103 			     struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 				       struct btrfs_root *root,
106 				       struct btrfs_root *log,
107 				       struct btrfs_path *path,
108 				       u64 dirid, int del_all);
109 
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132 
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 			   struct btrfs_root *root,
140 			   struct btrfs_log_ctx *ctx)
141 {
142 	int index;
143 	int ret;
144 
145 	mutex_lock(&root->log_mutex);
146 	if (root->log_root) {
147 		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
148 			ret = -EAGAIN;
149 			goto out;
150 		}
151 		if (!root->log_start_pid) {
152 			root->log_start_pid = current->pid;
153 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 		} else if (root->log_start_pid != current->pid) {
155 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 		}
157 
158 		atomic_inc(&root->log_batch);
159 		atomic_inc(&root->log_writers);
160 		if (ctx) {
161 			index = root->log_transid % 2;
162 			list_add_tail(&ctx->list, &root->log_ctxs[index]);
163 			ctx->log_transid = root->log_transid;
164 		}
165 		mutex_unlock(&root->log_mutex);
166 		return 0;
167 	}
168 
169 	ret = 0;
170 	mutex_lock(&root->fs_info->tree_log_mutex);
171 	if (!root->fs_info->log_root_tree)
172 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
173 	mutex_unlock(&root->fs_info->tree_log_mutex);
174 	if (ret)
175 		goto out;
176 
177 	if (!root->log_root) {
178 		ret = btrfs_add_log_tree(trans, root);
179 		if (ret)
180 			goto out;
181 	}
182 	clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
183 	root->log_start_pid = current->pid;
184 	atomic_inc(&root->log_batch);
185 	atomic_inc(&root->log_writers);
186 	if (ctx) {
187 		index = root->log_transid % 2;
188 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
189 		ctx->log_transid = root->log_transid;
190 	}
191 out:
192 	mutex_unlock(&root->log_mutex);
193 	return ret;
194 }
195 
196 /*
197  * returns 0 if there was a log transaction running and we were able
198  * to join, or returns -ENOENT if there were not transactions
199  * in progress
200  */
201 static int join_running_log_trans(struct btrfs_root *root)
202 {
203 	int ret = -ENOENT;
204 
205 	smp_mb();
206 	if (!root->log_root)
207 		return -ENOENT;
208 
209 	mutex_lock(&root->log_mutex);
210 	if (root->log_root) {
211 		ret = 0;
212 		atomic_inc(&root->log_writers);
213 	}
214 	mutex_unlock(&root->log_mutex);
215 	return ret;
216 }
217 
218 /*
219  * This either makes the current running log transaction wait
220  * until you call btrfs_end_log_trans() or it makes any future
221  * log transactions wait until you call btrfs_end_log_trans()
222  */
223 int btrfs_pin_log_trans(struct btrfs_root *root)
224 {
225 	int ret = -ENOENT;
226 
227 	mutex_lock(&root->log_mutex);
228 	atomic_inc(&root->log_writers);
229 	mutex_unlock(&root->log_mutex);
230 	return ret;
231 }
232 
233 /*
234  * indicate we're done making changes to the log tree
235  * and wake up anyone waiting to do a sync
236  */
237 void btrfs_end_log_trans(struct btrfs_root *root)
238 {
239 	if (atomic_dec_and_test(&root->log_writers)) {
240 		smp_mb();
241 		if (waitqueue_active(&root->log_writer_wait))
242 			wake_up(&root->log_writer_wait);
243 	}
244 }
245 
246 
247 /*
248  * the walk control struct is used to pass state down the chain when
249  * processing the log tree.  The stage field tells us which part
250  * of the log tree processing we are currently doing.  The others
251  * are state fields used for that specific part
252  */
253 struct walk_control {
254 	/* should we free the extent on disk when done?  This is used
255 	 * at transaction commit time while freeing a log tree
256 	 */
257 	int free;
258 
259 	/* should we write out the extent buffer?  This is used
260 	 * while flushing the log tree to disk during a sync
261 	 */
262 	int write;
263 
264 	/* should we wait for the extent buffer io to finish?  Also used
265 	 * while flushing the log tree to disk for a sync
266 	 */
267 	int wait;
268 
269 	/* pin only walk, we record which extents on disk belong to the
270 	 * log trees
271 	 */
272 	int pin;
273 
274 	/* what stage of the replay code we're currently in */
275 	int stage;
276 
277 	/* the root we are currently replaying */
278 	struct btrfs_root *replay_dest;
279 
280 	/* the trans handle for the current replay */
281 	struct btrfs_trans_handle *trans;
282 
283 	/* the function that gets used to process blocks we find in the
284 	 * tree.  Note the extent_buffer might not be up to date when it is
285 	 * passed in, and it must be checked or read if you need the data
286 	 * inside it
287 	 */
288 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
289 			    struct walk_control *wc, u64 gen);
290 };
291 
292 /*
293  * process_func used to pin down extents, write them or wait on them
294  */
295 static int process_one_buffer(struct btrfs_root *log,
296 			      struct extent_buffer *eb,
297 			      struct walk_control *wc, u64 gen)
298 {
299 	int ret = 0;
300 
301 	/*
302 	 * If this fs is mixed then we need to be able to process the leaves to
303 	 * pin down any logged extents, so we have to read the block.
304 	 */
305 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
306 		ret = btrfs_read_buffer(eb, gen);
307 		if (ret)
308 			return ret;
309 	}
310 
311 	if (wc->pin)
312 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
313 						      eb->start, eb->len);
314 
315 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
316 		if (wc->pin && btrfs_header_level(eb) == 0)
317 			ret = btrfs_exclude_logged_extents(log, eb);
318 		if (wc->write)
319 			btrfs_write_tree_block(eb);
320 		if (wc->wait)
321 			btrfs_wait_tree_block_writeback(eb);
322 	}
323 	return ret;
324 }
325 
326 /*
327  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
328  * to the src data we are copying out.
329  *
330  * root is the tree we are copying into, and path is a scratch
331  * path for use in this function (it should be released on entry and
332  * will be released on exit).
333  *
334  * If the key is already in the destination tree the existing item is
335  * overwritten.  If the existing item isn't big enough, it is extended.
336  * If it is too large, it is truncated.
337  *
338  * If the key isn't in the destination yet, a new item is inserted.
339  */
340 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
341 				   struct btrfs_root *root,
342 				   struct btrfs_path *path,
343 				   struct extent_buffer *eb, int slot,
344 				   struct btrfs_key *key)
345 {
346 	int ret;
347 	u32 item_size;
348 	u64 saved_i_size = 0;
349 	int save_old_i_size = 0;
350 	unsigned long src_ptr;
351 	unsigned long dst_ptr;
352 	int overwrite_root = 0;
353 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
354 
355 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356 		overwrite_root = 1;
357 
358 	item_size = btrfs_item_size_nr(eb, slot);
359 	src_ptr = btrfs_item_ptr_offset(eb, slot);
360 
361 	/* look for the key in the destination tree */
362 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
363 	if (ret < 0)
364 		return ret;
365 
366 	if (ret == 0) {
367 		char *src_copy;
368 		char *dst_copy;
369 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 						  path->slots[0]);
371 		if (dst_size != item_size)
372 			goto insert;
373 
374 		if (item_size == 0) {
375 			btrfs_release_path(path);
376 			return 0;
377 		}
378 		dst_copy = kmalloc(item_size, GFP_NOFS);
379 		src_copy = kmalloc(item_size, GFP_NOFS);
380 		if (!dst_copy || !src_copy) {
381 			btrfs_release_path(path);
382 			kfree(dst_copy);
383 			kfree(src_copy);
384 			return -ENOMEM;
385 		}
386 
387 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
388 
389 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 				   item_size);
392 		ret = memcmp(dst_copy, src_copy, item_size);
393 
394 		kfree(dst_copy);
395 		kfree(src_copy);
396 		/*
397 		 * they have the same contents, just return, this saves
398 		 * us from cowing blocks in the destination tree and doing
399 		 * extra writes that may not have been done by a previous
400 		 * sync
401 		 */
402 		if (ret == 0) {
403 			btrfs_release_path(path);
404 			return 0;
405 		}
406 
407 		/*
408 		 * We need to load the old nbytes into the inode so when we
409 		 * replay the extents we've logged we get the right nbytes.
410 		 */
411 		if (inode_item) {
412 			struct btrfs_inode_item *item;
413 			u64 nbytes;
414 			u32 mode;
415 
416 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 					      struct btrfs_inode_item);
418 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 			item = btrfs_item_ptr(eb, slot,
420 					      struct btrfs_inode_item);
421 			btrfs_set_inode_nbytes(eb, item, nbytes);
422 
423 			/*
424 			 * If this is a directory we need to reset the i_size to
425 			 * 0 so that we can set it up properly when replaying
426 			 * the rest of the items in this log.
427 			 */
428 			mode = btrfs_inode_mode(eb, item);
429 			if (S_ISDIR(mode))
430 				btrfs_set_inode_size(eb, item, 0);
431 		}
432 	} else if (inode_item) {
433 		struct btrfs_inode_item *item;
434 		u32 mode;
435 
436 		/*
437 		 * New inode, set nbytes to 0 so that the nbytes comes out
438 		 * properly when we replay the extents.
439 		 */
440 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 		btrfs_set_inode_nbytes(eb, item, 0);
442 
443 		/*
444 		 * If this is a directory we need to reset the i_size to 0 so
445 		 * that we can set it up properly when replaying the rest of
446 		 * the items in this log.
447 		 */
448 		mode = btrfs_inode_mode(eb, item);
449 		if (S_ISDIR(mode))
450 			btrfs_set_inode_size(eb, item, 0);
451 	}
452 insert:
453 	btrfs_release_path(path);
454 	/* try to insert the key into the destination tree */
455 	ret = btrfs_insert_empty_item(trans, root, path,
456 				      key, item_size);
457 
458 	/* make sure any existing item is the correct size */
459 	if (ret == -EEXIST) {
460 		u32 found_size;
461 		found_size = btrfs_item_size_nr(path->nodes[0],
462 						path->slots[0]);
463 		if (found_size > item_size)
464 			btrfs_truncate_item(root, path, item_size, 1);
465 		else if (found_size < item_size)
466 			btrfs_extend_item(root, path,
467 					  item_size - found_size);
468 	} else if (ret) {
469 		return ret;
470 	}
471 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
472 					path->slots[0]);
473 
474 	/* don't overwrite an existing inode if the generation number
475 	 * was logged as zero.  This is done when the tree logging code
476 	 * is just logging an inode to make sure it exists after recovery.
477 	 *
478 	 * Also, don't overwrite i_size on directories during replay.
479 	 * log replay inserts and removes directory items based on the
480 	 * state of the tree found in the subvolume, and i_size is modified
481 	 * as it goes
482 	 */
483 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
484 		struct btrfs_inode_item *src_item;
485 		struct btrfs_inode_item *dst_item;
486 
487 		src_item = (struct btrfs_inode_item *)src_ptr;
488 		dst_item = (struct btrfs_inode_item *)dst_ptr;
489 
490 		if (btrfs_inode_generation(eb, src_item) == 0)
491 			goto no_copy;
492 
493 		if (overwrite_root &&
494 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
495 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
496 			save_old_i_size = 1;
497 			saved_i_size = btrfs_inode_size(path->nodes[0],
498 							dst_item);
499 		}
500 	}
501 
502 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
503 			   src_ptr, item_size);
504 
505 	if (save_old_i_size) {
506 		struct btrfs_inode_item *dst_item;
507 		dst_item = (struct btrfs_inode_item *)dst_ptr;
508 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
509 	}
510 
511 	/* make sure the generation is filled in */
512 	if (key->type == BTRFS_INODE_ITEM_KEY) {
513 		struct btrfs_inode_item *dst_item;
514 		dst_item = (struct btrfs_inode_item *)dst_ptr;
515 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
516 			btrfs_set_inode_generation(path->nodes[0], dst_item,
517 						   trans->transid);
518 		}
519 	}
520 no_copy:
521 	btrfs_mark_buffer_dirty(path->nodes[0]);
522 	btrfs_release_path(path);
523 	return 0;
524 }
525 
526 /*
527  * simple helper to read an inode off the disk from a given root
528  * This can only be called for subvolume roots and not for the log
529  */
530 static noinline struct inode *read_one_inode(struct btrfs_root *root,
531 					     u64 objectid)
532 {
533 	struct btrfs_key key;
534 	struct inode *inode;
535 
536 	key.objectid = objectid;
537 	key.type = BTRFS_INODE_ITEM_KEY;
538 	key.offset = 0;
539 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
540 	if (IS_ERR(inode)) {
541 		inode = NULL;
542 	} else if (is_bad_inode(inode)) {
543 		iput(inode);
544 		inode = NULL;
545 	}
546 	return inode;
547 }
548 
549 /* replays a single extent in 'eb' at 'slot' with 'key' into the
550  * subvolume 'root'.  path is released on entry and should be released
551  * on exit.
552  *
553  * extents in the log tree have not been allocated out of the extent
554  * tree yet.  So, this completes the allocation, taking a reference
555  * as required if the extent already exists or creating a new extent
556  * if it isn't in the extent allocation tree yet.
557  *
558  * The extent is inserted into the file, dropping any existing extents
559  * from the file that overlap the new one.
560  */
561 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
562 				      struct btrfs_root *root,
563 				      struct btrfs_path *path,
564 				      struct extent_buffer *eb, int slot,
565 				      struct btrfs_key *key)
566 {
567 	int found_type;
568 	u64 extent_end;
569 	u64 start = key->offset;
570 	u64 nbytes = 0;
571 	struct btrfs_file_extent_item *item;
572 	struct inode *inode = NULL;
573 	unsigned long size;
574 	int ret = 0;
575 
576 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
577 	found_type = btrfs_file_extent_type(eb, item);
578 
579 	if (found_type == BTRFS_FILE_EXTENT_REG ||
580 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
581 		nbytes = btrfs_file_extent_num_bytes(eb, item);
582 		extent_end = start + nbytes;
583 
584 		/*
585 		 * We don't add to the inodes nbytes if we are prealloc or a
586 		 * hole.
587 		 */
588 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
589 			nbytes = 0;
590 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
591 		size = btrfs_file_extent_inline_len(eb, slot, item);
592 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
593 		extent_end = ALIGN(start + size, root->sectorsize);
594 	} else {
595 		ret = 0;
596 		goto out;
597 	}
598 
599 	inode = read_one_inode(root, key->objectid);
600 	if (!inode) {
601 		ret = -EIO;
602 		goto out;
603 	}
604 
605 	/*
606 	 * first check to see if we already have this extent in the
607 	 * file.  This must be done before the btrfs_drop_extents run
608 	 * so we don't try to drop this extent.
609 	 */
610 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
611 				       start, 0);
612 
613 	if (ret == 0 &&
614 	    (found_type == BTRFS_FILE_EXTENT_REG ||
615 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
616 		struct btrfs_file_extent_item cmp1;
617 		struct btrfs_file_extent_item cmp2;
618 		struct btrfs_file_extent_item *existing;
619 		struct extent_buffer *leaf;
620 
621 		leaf = path->nodes[0];
622 		existing = btrfs_item_ptr(leaf, path->slots[0],
623 					  struct btrfs_file_extent_item);
624 
625 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
626 				   sizeof(cmp1));
627 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
628 				   sizeof(cmp2));
629 
630 		/*
631 		 * we already have a pointer to this exact extent,
632 		 * we don't have to do anything
633 		 */
634 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
635 			btrfs_release_path(path);
636 			goto out;
637 		}
638 	}
639 	btrfs_release_path(path);
640 
641 	/* drop any overlapping extents */
642 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
643 	if (ret)
644 		goto out;
645 
646 	if (found_type == BTRFS_FILE_EXTENT_REG ||
647 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
648 		u64 offset;
649 		unsigned long dest_offset;
650 		struct btrfs_key ins;
651 
652 		ret = btrfs_insert_empty_item(trans, root, path, key,
653 					      sizeof(*item));
654 		if (ret)
655 			goto out;
656 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
657 						    path->slots[0]);
658 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
659 				(unsigned long)item,  sizeof(*item));
660 
661 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
662 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
663 		ins.type = BTRFS_EXTENT_ITEM_KEY;
664 		offset = key->offset - btrfs_file_extent_offset(eb, item);
665 
666 		if (ins.objectid > 0) {
667 			u64 csum_start;
668 			u64 csum_end;
669 			LIST_HEAD(ordered_sums);
670 			/*
671 			 * is this extent already allocated in the extent
672 			 * allocation tree?  If so, just add a reference
673 			 */
674 			ret = btrfs_lookup_extent(root, ins.objectid,
675 						ins.offset);
676 			if (ret == 0) {
677 				ret = btrfs_inc_extent_ref(trans, root,
678 						ins.objectid, ins.offset,
679 						0, root->root_key.objectid,
680 						key->objectid, offset, 0);
681 				if (ret)
682 					goto out;
683 			} else {
684 				/*
685 				 * insert the extent pointer in the extent
686 				 * allocation tree
687 				 */
688 				ret = btrfs_alloc_logged_file_extent(trans,
689 						root, root->root_key.objectid,
690 						key->objectid, offset, &ins);
691 				if (ret)
692 					goto out;
693 			}
694 			btrfs_release_path(path);
695 
696 			if (btrfs_file_extent_compression(eb, item)) {
697 				csum_start = ins.objectid;
698 				csum_end = csum_start + ins.offset;
699 			} else {
700 				csum_start = ins.objectid +
701 					btrfs_file_extent_offset(eb, item);
702 				csum_end = csum_start +
703 					btrfs_file_extent_num_bytes(eb, item);
704 			}
705 
706 			ret = btrfs_lookup_csums_range(root->log_root,
707 						csum_start, csum_end - 1,
708 						&ordered_sums, 0);
709 			if (ret)
710 				goto out;
711 			while (!list_empty(&ordered_sums)) {
712 				struct btrfs_ordered_sum *sums;
713 				sums = list_entry(ordered_sums.next,
714 						struct btrfs_ordered_sum,
715 						list);
716 				if (!ret)
717 					ret = btrfs_csum_file_blocks(trans,
718 						root->fs_info->csum_root,
719 						sums);
720 				list_del(&sums->list);
721 				kfree(sums);
722 			}
723 			if (ret)
724 				goto out;
725 		} else {
726 			btrfs_release_path(path);
727 		}
728 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
729 		/* inline extents are easy, we just overwrite them */
730 		ret = overwrite_item(trans, root, path, eb, slot, key);
731 		if (ret)
732 			goto out;
733 	}
734 
735 	inode_add_bytes(inode, nbytes);
736 	ret = btrfs_update_inode(trans, root, inode);
737 out:
738 	if (inode)
739 		iput(inode);
740 	return ret;
741 }
742 
743 /*
744  * when cleaning up conflicts between the directory names in the
745  * subvolume, directory names in the log and directory names in the
746  * inode back references, we may have to unlink inodes from directories.
747  *
748  * This is a helper function to do the unlink of a specific directory
749  * item
750  */
751 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
752 				      struct btrfs_root *root,
753 				      struct btrfs_path *path,
754 				      struct inode *dir,
755 				      struct btrfs_dir_item *di)
756 {
757 	struct inode *inode;
758 	char *name;
759 	int name_len;
760 	struct extent_buffer *leaf;
761 	struct btrfs_key location;
762 	int ret;
763 
764 	leaf = path->nodes[0];
765 
766 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
767 	name_len = btrfs_dir_name_len(leaf, di);
768 	name = kmalloc(name_len, GFP_NOFS);
769 	if (!name)
770 		return -ENOMEM;
771 
772 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
773 	btrfs_release_path(path);
774 
775 	inode = read_one_inode(root, location.objectid);
776 	if (!inode) {
777 		ret = -EIO;
778 		goto out;
779 	}
780 
781 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
782 	if (ret)
783 		goto out;
784 
785 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
786 	if (ret)
787 		goto out;
788 	else
789 		ret = btrfs_run_delayed_items(trans, root);
790 out:
791 	kfree(name);
792 	iput(inode);
793 	return ret;
794 }
795 
796 /*
797  * helper function to see if a given name and sequence number found
798  * in an inode back reference are already in a directory and correctly
799  * point to this inode
800  */
801 static noinline int inode_in_dir(struct btrfs_root *root,
802 				 struct btrfs_path *path,
803 				 u64 dirid, u64 objectid, u64 index,
804 				 const char *name, int name_len)
805 {
806 	struct btrfs_dir_item *di;
807 	struct btrfs_key location;
808 	int match = 0;
809 
810 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
811 					 index, name, name_len, 0);
812 	if (di && !IS_ERR(di)) {
813 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
814 		if (location.objectid != objectid)
815 			goto out;
816 	} else
817 		goto out;
818 	btrfs_release_path(path);
819 
820 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
821 	if (di && !IS_ERR(di)) {
822 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
823 		if (location.objectid != objectid)
824 			goto out;
825 	} else
826 		goto out;
827 	match = 1;
828 out:
829 	btrfs_release_path(path);
830 	return match;
831 }
832 
833 /*
834  * helper function to check a log tree for a named back reference in
835  * an inode.  This is used to decide if a back reference that is
836  * found in the subvolume conflicts with what we find in the log.
837  *
838  * inode backreferences may have multiple refs in a single item,
839  * during replay we process one reference at a time, and we don't
840  * want to delete valid links to a file from the subvolume if that
841  * link is also in the log.
842  */
843 static noinline int backref_in_log(struct btrfs_root *log,
844 				   struct btrfs_key *key,
845 				   u64 ref_objectid,
846 				   char *name, int namelen)
847 {
848 	struct btrfs_path *path;
849 	struct btrfs_inode_ref *ref;
850 	unsigned long ptr;
851 	unsigned long ptr_end;
852 	unsigned long name_ptr;
853 	int found_name_len;
854 	int item_size;
855 	int ret;
856 	int match = 0;
857 
858 	path = btrfs_alloc_path();
859 	if (!path)
860 		return -ENOMEM;
861 
862 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
863 	if (ret != 0)
864 		goto out;
865 
866 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
867 
868 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
869 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
870 						   name, namelen, NULL))
871 			match = 1;
872 
873 		goto out;
874 	}
875 
876 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
877 	ptr_end = ptr + item_size;
878 	while (ptr < ptr_end) {
879 		ref = (struct btrfs_inode_ref *)ptr;
880 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
881 		if (found_name_len == namelen) {
882 			name_ptr = (unsigned long)(ref + 1);
883 			ret = memcmp_extent_buffer(path->nodes[0], name,
884 						   name_ptr, namelen);
885 			if (ret == 0) {
886 				match = 1;
887 				goto out;
888 			}
889 		}
890 		ptr = (unsigned long)(ref + 1) + found_name_len;
891 	}
892 out:
893 	btrfs_free_path(path);
894 	return match;
895 }
896 
897 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
898 				  struct btrfs_root *root,
899 				  struct btrfs_path *path,
900 				  struct btrfs_root *log_root,
901 				  struct inode *dir, struct inode *inode,
902 				  struct extent_buffer *eb,
903 				  u64 inode_objectid, u64 parent_objectid,
904 				  u64 ref_index, char *name, int namelen,
905 				  int *search_done)
906 {
907 	int ret;
908 	char *victim_name;
909 	int victim_name_len;
910 	struct extent_buffer *leaf;
911 	struct btrfs_dir_item *di;
912 	struct btrfs_key search_key;
913 	struct btrfs_inode_extref *extref;
914 
915 again:
916 	/* Search old style refs */
917 	search_key.objectid = inode_objectid;
918 	search_key.type = BTRFS_INODE_REF_KEY;
919 	search_key.offset = parent_objectid;
920 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
921 	if (ret == 0) {
922 		struct btrfs_inode_ref *victim_ref;
923 		unsigned long ptr;
924 		unsigned long ptr_end;
925 
926 		leaf = path->nodes[0];
927 
928 		/* are we trying to overwrite a back ref for the root directory
929 		 * if so, just jump out, we're done
930 		 */
931 		if (search_key.objectid == search_key.offset)
932 			return 1;
933 
934 		/* check all the names in this back reference to see
935 		 * if they are in the log.  if so, we allow them to stay
936 		 * otherwise they must be unlinked as a conflict
937 		 */
938 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
939 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
940 		while (ptr < ptr_end) {
941 			victim_ref = (struct btrfs_inode_ref *)ptr;
942 			victim_name_len = btrfs_inode_ref_name_len(leaf,
943 								   victim_ref);
944 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
945 			if (!victim_name)
946 				return -ENOMEM;
947 
948 			read_extent_buffer(leaf, victim_name,
949 					   (unsigned long)(victim_ref + 1),
950 					   victim_name_len);
951 
952 			if (!backref_in_log(log_root, &search_key,
953 					    parent_objectid,
954 					    victim_name,
955 					    victim_name_len)) {
956 				inc_nlink(inode);
957 				btrfs_release_path(path);
958 
959 				ret = btrfs_unlink_inode(trans, root, dir,
960 							 inode, victim_name,
961 							 victim_name_len);
962 				kfree(victim_name);
963 				if (ret)
964 					return ret;
965 				ret = btrfs_run_delayed_items(trans, root);
966 				if (ret)
967 					return ret;
968 				*search_done = 1;
969 				goto again;
970 			}
971 			kfree(victim_name);
972 
973 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
974 		}
975 
976 		/*
977 		 * NOTE: we have searched root tree and checked the
978 		 * coresponding ref, it does not need to check again.
979 		 */
980 		*search_done = 1;
981 	}
982 	btrfs_release_path(path);
983 
984 	/* Same search but for extended refs */
985 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
986 					   inode_objectid, parent_objectid, 0,
987 					   0);
988 	if (!IS_ERR_OR_NULL(extref)) {
989 		u32 item_size;
990 		u32 cur_offset = 0;
991 		unsigned long base;
992 		struct inode *victim_parent;
993 
994 		leaf = path->nodes[0];
995 
996 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
997 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
998 
999 		while (cur_offset < item_size) {
1000 			extref = (struct btrfs_inode_extref *)base + cur_offset;
1001 
1002 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1003 
1004 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1005 				goto next;
1006 
1007 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1008 			if (!victim_name)
1009 				return -ENOMEM;
1010 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1011 					   victim_name_len);
1012 
1013 			search_key.objectid = inode_objectid;
1014 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1015 			search_key.offset = btrfs_extref_hash(parent_objectid,
1016 							      victim_name,
1017 							      victim_name_len);
1018 			ret = 0;
1019 			if (!backref_in_log(log_root, &search_key,
1020 					    parent_objectid, victim_name,
1021 					    victim_name_len)) {
1022 				ret = -ENOENT;
1023 				victim_parent = read_one_inode(root,
1024 							       parent_objectid);
1025 				if (victim_parent) {
1026 					inc_nlink(inode);
1027 					btrfs_release_path(path);
1028 
1029 					ret = btrfs_unlink_inode(trans, root,
1030 								 victim_parent,
1031 								 inode,
1032 								 victim_name,
1033 								 victim_name_len);
1034 					if (!ret)
1035 						ret = btrfs_run_delayed_items(
1036 								  trans, root);
1037 				}
1038 				iput(victim_parent);
1039 				kfree(victim_name);
1040 				if (ret)
1041 					return ret;
1042 				*search_done = 1;
1043 				goto again;
1044 			}
1045 			kfree(victim_name);
1046 			if (ret)
1047 				return ret;
1048 next:
1049 			cur_offset += victim_name_len + sizeof(*extref);
1050 		}
1051 		*search_done = 1;
1052 	}
1053 	btrfs_release_path(path);
1054 
1055 	/* look for a conflicting sequence number */
1056 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1057 					 ref_index, name, namelen, 0);
1058 	if (di && !IS_ERR(di)) {
1059 		ret = drop_one_dir_item(trans, root, path, dir, di);
1060 		if (ret)
1061 			return ret;
1062 	}
1063 	btrfs_release_path(path);
1064 
1065 	/* look for a conflicing name */
1066 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1067 				   name, namelen, 0);
1068 	if (di && !IS_ERR(di)) {
1069 		ret = drop_one_dir_item(trans, root, path, dir, di);
1070 		if (ret)
1071 			return ret;
1072 	}
1073 	btrfs_release_path(path);
1074 
1075 	return 0;
1076 }
1077 
1078 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1079 			     u32 *namelen, char **name, u64 *index,
1080 			     u64 *parent_objectid)
1081 {
1082 	struct btrfs_inode_extref *extref;
1083 
1084 	extref = (struct btrfs_inode_extref *)ref_ptr;
1085 
1086 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1087 	*name = kmalloc(*namelen, GFP_NOFS);
1088 	if (*name == NULL)
1089 		return -ENOMEM;
1090 
1091 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1092 			   *namelen);
1093 
1094 	*index = btrfs_inode_extref_index(eb, extref);
1095 	if (parent_objectid)
1096 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1097 
1098 	return 0;
1099 }
1100 
1101 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1102 			  u32 *namelen, char **name, u64 *index)
1103 {
1104 	struct btrfs_inode_ref *ref;
1105 
1106 	ref = (struct btrfs_inode_ref *)ref_ptr;
1107 
1108 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1109 	*name = kmalloc(*namelen, GFP_NOFS);
1110 	if (*name == NULL)
1111 		return -ENOMEM;
1112 
1113 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1114 
1115 	*index = btrfs_inode_ref_index(eb, ref);
1116 
1117 	return 0;
1118 }
1119 
1120 /*
1121  * replay one inode back reference item found in the log tree.
1122  * eb, slot and key refer to the buffer and key found in the log tree.
1123  * root is the destination we are replaying into, and path is for temp
1124  * use by this function.  (it should be released on return).
1125  */
1126 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1127 				  struct btrfs_root *root,
1128 				  struct btrfs_root *log,
1129 				  struct btrfs_path *path,
1130 				  struct extent_buffer *eb, int slot,
1131 				  struct btrfs_key *key)
1132 {
1133 	struct inode *dir = NULL;
1134 	struct inode *inode = NULL;
1135 	unsigned long ref_ptr;
1136 	unsigned long ref_end;
1137 	char *name = NULL;
1138 	int namelen;
1139 	int ret;
1140 	int search_done = 0;
1141 	int log_ref_ver = 0;
1142 	u64 parent_objectid;
1143 	u64 inode_objectid;
1144 	u64 ref_index = 0;
1145 	int ref_struct_size;
1146 
1147 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1148 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1149 
1150 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1151 		struct btrfs_inode_extref *r;
1152 
1153 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1154 		log_ref_ver = 1;
1155 		r = (struct btrfs_inode_extref *)ref_ptr;
1156 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1157 	} else {
1158 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1159 		parent_objectid = key->offset;
1160 	}
1161 	inode_objectid = key->objectid;
1162 
1163 	/*
1164 	 * it is possible that we didn't log all the parent directories
1165 	 * for a given inode.  If we don't find the dir, just don't
1166 	 * copy the back ref in.  The link count fixup code will take
1167 	 * care of the rest
1168 	 */
1169 	dir = read_one_inode(root, parent_objectid);
1170 	if (!dir) {
1171 		ret = -ENOENT;
1172 		goto out;
1173 	}
1174 
1175 	inode = read_one_inode(root, inode_objectid);
1176 	if (!inode) {
1177 		ret = -EIO;
1178 		goto out;
1179 	}
1180 
1181 	while (ref_ptr < ref_end) {
1182 		if (log_ref_ver) {
1183 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1184 						&ref_index, &parent_objectid);
1185 			/*
1186 			 * parent object can change from one array
1187 			 * item to another.
1188 			 */
1189 			if (!dir)
1190 				dir = read_one_inode(root, parent_objectid);
1191 			if (!dir) {
1192 				ret = -ENOENT;
1193 				goto out;
1194 			}
1195 		} else {
1196 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1197 					     &ref_index);
1198 		}
1199 		if (ret)
1200 			goto out;
1201 
1202 		/* if we already have a perfect match, we're done */
1203 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1204 				  ref_index, name, namelen)) {
1205 			/*
1206 			 * look for a conflicting back reference in the
1207 			 * metadata. if we find one we have to unlink that name
1208 			 * of the file before we add our new link.  Later on, we
1209 			 * overwrite any existing back reference, and we don't
1210 			 * want to create dangling pointers in the directory.
1211 			 */
1212 
1213 			if (!search_done) {
1214 				ret = __add_inode_ref(trans, root, path, log,
1215 						      dir, inode, eb,
1216 						      inode_objectid,
1217 						      parent_objectid,
1218 						      ref_index, name, namelen,
1219 						      &search_done);
1220 				if (ret) {
1221 					if (ret == 1)
1222 						ret = 0;
1223 					goto out;
1224 				}
1225 			}
1226 
1227 			/* insert our name */
1228 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1229 					     0, ref_index);
1230 			if (ret)
1231 				goto out;
1232 
1233 			btrfs_update_inode(trans, root, inode);
1234 		}
1235 
1236 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1237 		kfree(name);
1238 		name = NULL;
1239 		if (log_ref_ver) {
1240 			iput(dir);
1241 			dir = NULL;
1242 		}
1243 	}
1244 
1245 	/* finally write the back reference in the inode */
1246 	ret = overwrite_item(trans, root, path, eb, slot, key);
1247 out:
1248 	btrfs_release_path(path);
1249 	kfree(name);
1250 	iput(dir);
1251 	iput(inode);
1252 	return ret;
1253 }
1254 
1255 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1256 			      struct btrfs_root *root, u64 offset)
1257 {
1258 	int ret;
1259 	ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1260 			offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1261 	if (ret > 0)
1262 		ret = btrfs_insert_orphan_item(trans, root, offset);
1263 	return ret;
1264 }
1265 
1266 static int count_inode_extrefs(struct btrfs_root *root,
1267 			       struct inode *inode, struct btrfs_path *path)
1268 {
1269 	int ret = 0;
1270 	int name_len;
1271 	unsigned int nlink = 0;
1272 	u32 item_size;
1273 	u32 cur_offset = 0;
1274 	u64 inode_objectid = btrfs_ino(inode);
1275 	u64 offset = 0;
1276 	unsigned long ptr;
1277 	struct btrfs_inode_extref *extref;
1278 	struct extent_buffer *leaf;
1279 
1280 	while (1) {
1281 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1282 					    &extref, &offset);
1283 		if (ret)
1284 			break;
1285 
1286 		leaf = path->nodes[0];
1287 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1288 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1289 
1290 		while (cur_offset < item_size) {
1291 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1292 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1293 
1294 			nlink++;
1295 
1296 			cur_offset += name_len + sizeof(*extref);
1297 		}
1298 
1299 		offset++;
1300 		btrfs_release_path(path);
1301 	}
1302 	btrfs_release_path(path);
1303 
1304 	if (ret < 0)
1305 		return ret;
1306 	return nlink;
1307 }
1308 
1309 static int count_inode_refs(struct btrfs_root *root,
1310 			       struct inode *inode, struct btrfs_path *path)
1311 {
1312 	int ret;
1313 	struct btrfs_key key;
1314 	unsigned int nlink = 0;
1315 	unsigned long ptr;
1316 	unsigned long ptr_end;
1317 	int name_len;
1318 	u64 ino = btrfs_ino(inode);
1319 
1320 	key.objectid = ino;
1321 	key.type = BTRFS_INODE_REF_KEY;
1322 	key.offset = (u64)-1;
1323 
1324 	while (1) {
1325 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1326 		if (ret < 0)
1327 			break;
1328 		if (ret > 0) {
1329 			if (path->slots[0] == 0)
1330 				break;
1331 			path->slots[0]--;
1332 		}
1333 process_slot:
1334 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1335 				      path->slots[0]);
1336 		if (key.objectid != ino ||
1337 		    key.type != BTRFS_INODE_REF_KEY)
1338 			break;
1339 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1340 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1341 						   path->slots[0]);
1342 		while (ptr < ptr_end) {
1343 			struct btrfs_inode_ref *ref;
1344 
1345 			ref = (struct btrfs_inode_ref *)ptr;
1346 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1347 							    ref);
1348 			ptr = (unsigned long)(ref + 1) + name_len;
1349 			nlink++;
1350 		}
1351 
1352 		if (key.offset == 0)
1353 			break;
1354 		if (path->slots[0] > 0) {
1355 			path->slots[0]--;
1356 			goto process_slot;
1357 		}
1358 		key.offset--;
1359 		btrfs_release_path(path);
1360 	}
1361 	btrfs_release_path(path);
1362 
1363 	return nlink;
1364 }
1365 
1366 /*
1367  * There are a few corners where the link count of the file can't
1368  * be properly maintained during replay.  So, instead of adding
1369  * lots of complexity to the log code, we just scan the backrefs
1370  * for any file that has been through replay.
1371  *
1372  * The scan will update the link count on the inode to reflect the
1373  * number of back refs found.  If it goes down to zero, the iput
1374  * will free the inode.
1375  */
1376 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1377 					   struct btrfs_root *root,
1378 					   struct inode *inode)
1379 {
1380 	struct btrfs_path *path;
1381 	int ret;
1382 	u64 nlink = 0;
1383 	u64 ino = btrfs_ino(inode);
1384 
1385 	path = btrfs_alloc_path();
1386 	if (!path)
1387 		return -ENOMEM;
1388 
1389 	ret = count_inode_refs(root, inode, path);
1390 	if (ret < 0)
1391 		goto out;
1392 
1393 	nlink = ret;
1394 
1395 	ret = count_inode_extrefs(root, inode, path);
1396 	if (ret == -ENOENT)
1397 		ret = 0;
1398 
1399 	if (ret < 0)
1400 		goto out;
1401 
1402 	nlink += ret;
1403 
1404 	ret = 0;
1405 
1406 	if (nlink != inode->i_nlink) {
1407 		set_nlink(inode, nlink);
1408 		btrfs_update_inode(trans, root, inode);
1409 	}
1410 	BTRFS_I(inode)->index_cnt = (u64)-1;
1411 
1412 	if (inode->i_nlink == 0) {
1413 		if (S_ISDIR(inode->i_mode)) {
1414 			ret = replay_dir_deletes(trans, root, NULL, path,
1415 						 ino, 1);
1416 			if (ret)
1417 				goto out;
1418 		}
1419 		ret = insert_orphan_item(trans, root, ino);
1420 	}
1421 
1422 out:
1423 	btrfs_free_path(path);
1424 	return ret;
1425 }
1426 
1427 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1428 					    struct btrfs_root *root,
1429 					    struct btrfs_path *path)
1430 {
1431 	int ret;
1432 	struct btrfs_key key;
1433 	struct inode *inode;
1434 
1435 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1436 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1437 	key.offset = (u64)-1;
1438 	while (1) {
1439 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1440 		if (ret < 0)
1441 			break;
1442 
1443 		if (ret == 1) {
1444 			if (path->slots[0] == 0)
1445 				break;
1446 			path->slots[0]--;
1447 		}
1448 
1449 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1450 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1451 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1452 			break;
1453 
1454 		ret = btrfs_del_item(trans, root, path);
1455 		if (ret)
1456 			goto out;
1457 
1458 		btrfs_release_path(path);
1459 		inode = read_one_inode(root, key.offset);
1460 		if (!inode)
1461 			return -EIO;
1462 
1463 		ret = fixup_inode_link_count(trans, root, inode);
1464 		iput(inode);
1465 		if (ret)
1466 			goto out;
1467 
1468 		/*
1469 		 * fixup on a directory may create new entries,
1470 		 * make sure we always look for the highset possible
1471 		 * offset
1472 		 */
1473 		key.offset = (u64)-1;
1474 	}
1475 	ret = 0;
1476 out:
1477 	btrfs_release_path(path);
1478 	return ret;
1479 }
1480 
1481 
1482 /*
1483  * record a given inode in the fixup dir so we can check its link
1484  * count when replay is done.  The link count is incremented here
1485  * so the inode won't go away until we check it
1486  */
1487 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1488 				      struct btrfs_root *root,
1489 				      struct btrfs_path *path,
1490 				      u64 objectid)
1491 {
1492 	struct btrfs_key key;
1493 	int ret = 0;
1494 	struct inode *inode;
1495 
1496 	inode = read_one_inode(root, objectid);
1497 	if (!inode)
1498 		return -EIO;
1499 
1500 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1501 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1502 	key.offset = objectid;
1503 
1504 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1505 
1506 	btrfs_release_path(path);
1507 	if (ret == 0) {
1508 		if (!inode->i_nlink)
1509 			set_nlink(inode, 1);
1510 		else
1511 			inc_nlink(inode);
1512 		ret = btrfs_update_inode(trans, root, inode);
1513 	} else if (ret == -EEXIST) {
1514 		ret = 0;
1515 	} else {
1516 		BUG(); /* Logic Error */
1517 	}
1518 	iput(inode);
1519 
1520 	return ret;
1521 }
1522 
1523 /*
1524  * when replaying the log for a directory, we only insert names
1525  * for inodes that actually exist.  This means an fsync on a directory
1526  * does not implicitly fsync all the new files in it
1527  */
1528 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1529 				    struct btrfs_root *root,
1530 				    struct btrfs_path *path,
1531 				    u64 dirid, u64 index,
1532 				    char *name, int name_len, u8 type,
1533 				    struct btrfs_key *location)
1534 {
1535 	struct inode *inode;
1536 	struct inode *dir;
1537 	int ret;
1538 
1539 	inode = read_one_inode(root, location->objectid);
1540 	if (!inode)
1541 		return -ENOENT;
1542 
1543 	dir = read_one_inode(root, dirid);
1544 	if (!dir) {
1545 		iput(inode);
1546 		return -EIO;
1547 	}
1548 
1549 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1550 
1551 	/* FIXME, put inode into FIXUP list */
1552 
1553 	iput(inode);
1554 	iput(dir);
1555 	return ret;
1556 }
1557 
1558 /*
1559  * take a single entry in a log directory item and replay it into
1560  * the subvolume.
1561  *
1562  * if a conflicting item exists in the subdirectory already,
1563  * the inode it points to is unlinked and put into the link count
1564  * fix up tree.
1565  *
1566  * If a name from the log points to a file or directory that does
1567  * not exist in the FS, it is skipped.  fsyncs on directories
1568  * do not force down inodes inside that directory, just changes to the
1569  * names or unlinks in a directory.
1570  */
1571 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1572 				    struct btrfs_root *root,
1573 				    struct btrfs_path *path,
1574 				    struct extent_buffer *eb,
1575 				    struct btrfs_dir_item *di,
1576 				    struct btrfs_key *key)
1577 {
1578 	char *name;
1579 	int name_len;
1580 	struct btrfs_dir_item *dst_di;
1581 	struct btrfs_key found_key;
1582 	struct btrfs_key log_key;
1583 	struct inode *dir;
1584 	u8 log_type;
1585 	int exists;
1586 	int ret = 0;
1587 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1588 
1589 	dir = read_one_inode(root, key->objectid);
1590 	if (!dir)
1591 		return -EIO;
1592 
1593 	name_len = btrfs_dir_name_len(eb, di);
1594 	name = kmalloc(name_len, GFP_NOFS);
1595 	if (!name) {
1596 		ret = -ENOMEM;
1597 		goto out;
1598 	}
1599 
1600 	log_type = btrfs_dir_type(eb, di);
1601 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1602 		   name_len);
1603 
1604 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1605 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1606 	if (exists == 0)
1607 		exists = 1;
1608 	else
1609 		exists = 0;
1610 	btrfs_release_path(path);
1611 
1612 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1613 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1614 				       name, name_len, 1);
1615 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1616 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1617 						     key->objectid,
1618 						     key->offset, name,
1619 						     name_len, 1);
1620 	} else {
1621 		/* Corruption */
1622 		ret = -EINVAL;
1623 		goto out;
1624 	}
1625 	if (IS_ERR_OR_NULL(dst_di)) {
1626 		/* we need a sequence number to insert, so we only
1627 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1628 		 */
1629 		if (key->type != BTRFS_DIR_INDEX_KEY)
1630 			goto out;
1631 		goto insert;
1632 	}
1633 
1634 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1635 	/* the existing item matches the logged item */
1636 	if (found_key.objectid == log_key.objectid &&
1637 	    found_key.type == log_key.type &&
1638 	    found_key.offset == log_key.offset &&
1639 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1640 		goto out;
1641 	}
1642 
1643 	/*
1644 	 * don't drop the conflicting directory entry if the inode
1645 	 * for the new entry doesn't exist
1646 	 */
1647 	if (!exists)
1648 		goto out;
1649 
1650 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1651 	if (ret)
1652 		goto out;
1653 
1654 	if (key->type == BTRFS_DIR_INDEX_KEY)
1655 		goto insert;
1656 out:
1657 	btrfs_release_path(path);
1658 	if (!ret && update_size) {
1659 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1660 		ret = btrfs_update_inode(trans, root, dir);
1661 	}
1662 	kfree(name);
1663 	iput(dir);
1664 	return ret;
1665 
1666 insert:
1667 	btrfs_release_path(path);
1668 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1669 			      name, name_len, log_type, &log_key);
1670 	if (ret && ret != -ENOENT)
1671 		goto out;
1672 	update_size = false;
1673 	ret = 0;
1674 	goto out;
1675 }
1676 
1677 /*
1678  * find all the names in a directory item and reconcile them into
1679  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1680  * one name in a directory item, but the same code gets used for
1681  * both directory index types
1682  */
1683 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1684 					struct btrfs_root *root,
1685 					struct btrfs_path *path,
1686 					struct extent_buffer *eb, int slot,
1687 					struct btrfs_key *key)
1688 {
1689 	int ret;
1690 	u32 item_size = btrfs_item_size_nr(eb, slot);
1691 	struct btrfs_dir_item *di;
1692 	int name_len;
1693 	unsigned long ptr;
1694 	unsigned long ptr_end;
1695 
1696 	ptr = btrfs_item_ptr_offset(eb, slot);
1697 	ptr_end = ptr + item_size;
1698 	while (ptr < ptr_end) {
1699 		di = (struct btrfs_dir_item *)ptr;
1700 		if (verify_dir_item(root, eb, di))
1701 			return -EIO;
1702 		name_len = btrfs_dir_name_len(eb, di);
1703 		ret = replay_one_name(trans, root, path, eb, di, key);
1704 		if (ret)
1705 			return ret;
1706 		ptr = (unsigned long)(di + 1);
1707 		ptr += name_len;
1708 	}
1709 	return 0;
1710 }
1711 
1712 /*
1713  * directory replay has two parts.  There are the standard directory
1714  * items in the log copied from the subvolume, and range items
1715  * created in the log while the subvolume was logged.
1716  *
1717  * The range items tell us which parts of the key space the log
1718  * is authoritative for.  During replay, if a key in the subvolume
1719  * directory is in a logged range item, but not actually in the log
1720  * that means it was deleted from the directory before the fsync
1721  * and should be removed.
1722  */
1723 static noinline int find_dir_range(struct btrfs_root *root,
1724 				   struct btrfs_path *path,
1725 				   u64 dirid, int key_type,
1726 				   u64 *start_ret, u64 *end_ret)
1727 {
1728 	struct btrfs_key key;
1729 	u64 found_end;
1730 	struct btrfs_dir_log_item *item;
1731 	int ret;
1732 	int nritems;
1733 
1734 	if (*start_ret == (u64)-1)
1735 		return 1;
1736 
1737 	key.objectid = dirid;
1738 	key.type = key_type;
1739 	key.offset = *start_ret;
1740 
1741 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1742 	if (ret < 0)
1743 		goto out;
1744 	if (ret > 0) {
1745 		if (path->slots[0] == 0)
1746 			goto out;
1747 		path->slots[0]--;
1748 	}
1749 	if (ret != 0)
1750 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1751 
1752 	if (key.type != key_type || key.objectid != dirid) {
1753 		ret = 1;
1754 		goto next;
1755 	}
1756 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1757 			      struct btrfs_dir_log_item);
1758 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1759 
1760 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1761 		ret = 0;
1762 		*start_ret = key.offset;
1763 		*end_ret = found_end;
1764 		goto out;
1765 	}
1766 	ret = 1;
1767 next:
1768 	/* check the next slot in the tree to see if it is a valid item */
1769 	nritems = btrfs_header_nritems(path->nodes[0]);
1770 	if (path->slots[0] >= nritems) {
1771 		ret = btrfs_next_leaf(root, path);
1772 		if (ret)
1773 			goto out;
1774 	} else {
1775 		path->slots[0]++;
1776 	}
1777 
1778 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779 
1780 	if (key.type != key_type || key.objectid != dirid) {
1781 		ret = 1;
1782 		goto out;
1783 	}
1784 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1785 			      struct btrfs_dir_log_item);
1786 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1787 	*start_ret = key.offset;
1788 	*end_ret = found_end;
1789 	ret = 0;
1790 out:
1791 	btrfs_release_path(path);
1792 	return ret;
1793 }
1794 
1795 /*
1796  * this looks for a given directory item in the log.  If the directory
1797  * item is not in the log, the item is removed and the inode it points
1798  * to is unlinked
1799  */
1800 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1801 				      struct btrfs_root *root,
1802 				      struct btrfs_root *log,
1803 				      struct btrfs_path *path,
1804 				      struct btrfs_path *log_path,
1805 				      struct inode *dir,
1806 				      struct btrfs_key *dir_key)
1807 {
1808 	int ret;
1809 	struct extent_buffer *eb;
1810 	int slot;
1811 	u32 item_size;
1812 	struct btrfs_dir_item *di;
1813 	struct btrfs_dir_item *log_di;
1814 	int name_len;
1815 	unsigned long ptr;
1816 	unsigned long ptr_end;
1817 	char *name;
1818 	struct inode *inode;
1819 	struct btrfs_key location;
1820 
1821 again:
1822 	eb = path->nodes[0];
1823 	slot = path->slots[0];
1824 	item_size = btrfs_item_size_nr(eb, slot);
1825 	ptr = btrfs_item_ptr_offset(eb, slot);
1826 	ptr_end = ptr + item_size;
1827 	while (ptr < ptr_end) {
1828 		di = (struct btrfs_dir_item *)ptr;
1829 		if (verify_dir_item(root, eb, di)) {
1830 			ret = -EIO;
1831 			goto out;
1832 		}
1833 
1834 		name_len = btrfs_dir_name_len(eb, di);
1835 		name = kmalloc(name_len, GFP_NOFS);
1836 		if (!name) {
1837 			ret = -ENOMEM;
1838 			goto out;
1839 		}
1840 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1841 				  name_len);
1842 		log_di = NULL;
1843 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1844 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1845 						       dir_key->objectid,
1846 						       name, name_len, 0);
1847 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1848 			log_di = btrfs_lookup_dir_index_item(trans, log,
1849 						     log_path,
1850 						     dir_key->objectid,
1851 						     dir_key->offset,
1852 						     name, name_len, 0);
1853 		}
1854 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1855 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1856 			btrfs_release_path(path);
1857 			btrfs_release_path(log_path);
1858 			inode = read_one_inode(root, location.objectid);
1859 			if (!inode) {
1860 				kfree(name);
1861 				return -EIO;
1862 			}
1863 
1864 			ret = link_to_fixup_dir(trans, root,
1865 						path, location.objectid);
1866 			if (ret) {
1867 				kfree(name);
1868 				iput(inode);
1869 				goto out;
1870 			}
1871 
1872 			inc_nlink(inode);
1873 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1874 						 name, name_len);
1875 			if (!ret)
1876 				ret = btrfs_run_delayed_items(trans, root);
1877 			kfree(name);
1878 			iput(inode);
1879 			if (ret)
1880 				goto out;
1881 
1882 			/* there might still be more names under this key
1883 			 * check and repeat if required
1884 			 */
1885 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1886 						0, 0);
1887 			if (ret == 0)
1888 				goto again;
1889 			ret = 0;
1890 			goto out;
1891 		} else if (IS_ERR(log_di)) {
1892 			kfree(name);
1893 			return PTR_ERR(log_di);
1894 		}
1895 		btrfs_release_path(log_path);
1896 		kfree(name);
1897 
1898 		ptr = (unsigned long)(di + 1);
1899 		ptr += name_len;
1900 	}
1901 	ret = 0;
1902 out:
1903 	btrfs_release_path(path);
1904 	btrfs_release_path(log_path);
1905 	return ret;
1906 }
1907 
1908 /*
1909  * deletion replay happens before we copy any new directory items
1910  * out of the log or out of backreferences from inodes.  It
1911  * scans the log to find ranges of keys that log is authoritative for,
1912  * and then scans the directory to find items in those ranges that are
1913  * not present in the log.
1914  *
1915  * Anything we don't find in the log is unlinked and removed from the
1916  * directory.
1917  */
1918 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1919 				       struct btrfs_root *root,
1920 				       struct btrfs_root *log,
1921 				       struct btrfs_path *path,
1922 				       u64 dirid, int del_all)
1923 {
1924 	u64 range_start;
1925 	u64 range_end;
1926 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1927 	int ret = 0;
1928 	struct btrfs_key dir_key;
1929 	struct btrfs_key found_key;
1930 	struct btrfs_path *log_path;
1931 	struct inode *dir;
1932 
1933 	dir_key.objectid = dirid;
1934 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1935 	log_path = btrfs_alloc_path();
1936 	if (!log_path)
1937 		return -ENOMEM;
1938 
1939 	dir = read_one_inode(root, dirid);
1940 	/* it isn't an error if the inode isn't there, that can happen
1941 	 * because we replay the deletes before we copy in the inode item
1942 	 * from the log
1943 	 */
1944 	if (!dir) {
1945 		btrfs_free_path(log_path);
1946 		return 0;
1947 	}
1948 again:
1949 	range_start = 0;
1950 	range_end = 0;
1951 	while (1) {
1952 		if (del_all)
1953 			range_end = (u64)-1;
1954 		else {
1955 			ret = find_dir_range(log, path, dirid, key_type,
1956 					     &range_start, &range_end);
1957 			if (ret != 0)
1958 				break;
1959 		}
1960 
1961 		dir_key.offset = range_start;
1962 		while (1) {
1963 			int nritems;
1964 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1965 						0, 0);
1966 			if (ret < 0)
1967 				goto out;
1968 
1969 			nritems = btrfs_header_nritems(path->nodes[0]);
1970 			if (path->slots[0] >= nritems) {
1971 				ret = btrfs_next_leaf(root, path);
1972 				if (ret)
1973 					break;
1974 			}
1975 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1976 					      path->slots[0]);
1977 			if (found_key.objectid != dirid ||
1978 			    found_key.type != dir_key.type)
1979 				goto next_type;
1980 
1981 			if (found_key.offset > range_end)
1982 				break;
1983 
1984 			ret = check_item_in_log(trans, root, log, path,
1985 						log_path, dir,
1986 						&found_key);
1987 			if (ret)
1988 				goto out;
1989 			if (found_key.offset == (u64)-1)
1990 				break;
1991 			dir_key.offset = found_key.offset + 1;
1992 		}
1993 		btrfs_release_path(path);
1994 		if (range_end == (u64)-1)
1995 			break;
1996 		range_start = range_end + 1;
1997 	}
1998 
1999 next_type:
2000 	ret = 0;
2001 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2002 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2003 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2004 		btrfs_release_path(path);
2005 		goto again;
2006 	}
2007 out:
2008 	btrfs_release_path(path);
2009 	btrfs_free_path(log_path);
2010 	iput(dir);
2011 	return ret;
2012 }
2013 
2014 /*
2015  * the process_func used to replay items from the log tree.  This
2016  * gets called in two different stages.  The first stage just looks
2017  * for inodes and makes sure they are all copied into the subvolume.
2018  *
2019  * The second stage copies all the other item types from the log into
2020  * the subvolume.  The two stage approach is slower, but gets rid of
2021  * lots of complexity around inodes referencing other inodes that exist
2022  * only in the log (references come from either directory items or inode
2023  * back refs).
2024  */
2025 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2026 			     struct walk_control *wc, u64 gen)
2027 {
2028 	int nritems;
2029 	struct btrfs_path *path;
2030 	struct btrfs_root *root = wc->replay_dest;
2031 	struct btrfs_key key;
2032 	int level;
2033 	int i;
2034 	int ret;
2035 
2036 	ret = btrfs_read_buffer(eb, gen);
2037 	if (ret)
2038 		return ret;
2039 
2040 	level = btrfs_header_level(eb);
2041 
2042 	if (level != 0)
2043 		return 0;
2044 
2045 	path = btrfs_alloc_path();
2046 	if (!path)
2047 		return -ENOMEM;
2048 
2049 	nritems = btrfs_header_nritems(eb);
2050 	for (i = 0; i < nritems; i++) {
2051 		btrfs_item_key_to_cpu(eb, &key, i);
2052 
2053 		/* inode keys are done during the first stage */
2054 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2055 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2056 			struct btrfs_inode_item *inode_item;
2057 			u32 mode;
2058 
2059 			inode_item = btrfs_item_ptr(eb, i,
2060 					    struct btrfs_inode_item);
2061 			mode = btrfs_inode_mode(eb, inode_item);
2062 			if (S_ISDIR(mode)) {
2063 				ret = replay_dir_deletes(wc->trans,
2064 					 root, log, path, key.objectid, 0);
2065 				if (ret)
2066 					break;
2067 			}
2068 			ret = overwrite_item(wc->trans, root, path,
2069 					     eb, i, &key);
2070 			if (ret)
2071 				break;
2072 
2073 			/* for regular files, make sure corresponding
2074 			 * orhpan item exist. extents past the new EOF
2075 			 * will be truncated later by orphan cleanup.
2076 			 */
2077 			if (S_ISREG(mode)) {
2078 				ret = insert_orphan_item(wc->trans, root,
2079 							 key.objectid);
2080 				if (ret)
2081 					break;
2082 			}
2083 
2084 			ret = link_to_fixup_dir(wc->trans, root,
2085 						path, key.objectid);
2086 			if (ret)
2087 				break;
2088 		}
2089 
2090 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2091 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2092 			ret = replay_one_dir_item(wc->trans, root, path,
2093 						  eb, i, &key);
2094 			if (ret)
2095 				break;
2096 		}
2097 
2098 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2099 			continue;
2100 
2101 		/* these keys are simply copied */
2102 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2103 			ret = overwrite_item(wc->trans, root, path,
2104 					     eb, i, &key);
2105 			if (ret)
2106 				break;
2107 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2108 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2109 			ret = add_inode_ref(wc->trans, root, log, path,
2110 					    eb, i, &key);
2111 			if (ret && ret != -ENOENT)
2112 				break;
2113 			ret = 0;
2114 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2115 			ret = replay_one_extent(wc->trans, root, path,
2116 						eb, i, &key);
2117 			if (ret)
2118 				break;
2119 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2120 			ret = replay_one_dir_item(wc->trans, root, path,
2121 						  eb, i, &key);
2122 			if (ret)
2123 				break;
2124 		}
2125 	}
2126 	btrfs_free_path(path);
2127 	return ret;
2128 }
2129 
2130 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2131 				   struct btrfs_root *root,
2132 				   struct btrfs_path *path, int *level,
2133 				   struct walk_control *wc)
2134 {
2135 	u64 root_owner;
2136 	u64 bytenr;
2137 	u64 ptr_gen;
2138 	struct extent_buffer *next;
2139 	struct extent_buffer *cur;
2140 	struct extent_buffer *parent;
2141 	u32 blocksize;
2142 	int ret = 0;
2143 
2144 	WARN_ON(*level < 0);
2145 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2146 
2147 	while (*level > 0) {
2148 		WARN_ON(*level < 0);
2149 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2150 		cur = path->nodes[*level];
2151 
2152 		WARN_ON(btrfs_header_level(cur) != *level);
2153 
2154 		if (path->slots[*level] >=
2155 		    btrfs_header_nritems(cur))
2156 			break;
2157 
2158 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2159 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2160 		blocksize = btrfs_level_size(root, *level - 1);
2161 
2162 		parent = path->nodes[*level];
2163 		root_owner = btrfs_header_owner(parent);
2164 
2165 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2166 		if (!next)
2167 			return -ENOMEM;
2168 
2169 		if (*level == 1) {
2170 			ret = wc->process_func(root, next, wc, ptr_gen);
2171 			if (ret) {
2172 				free_extent_buffer(next);
2173 				return ret;
2174 			}
2175 
2176 			path->slots[*level]++;
2177 			if (wc->free) {
2178 				ret = btrfs_read_buffer(next, ptr_gen);
2179 				if (ret) {
2180 					free_extent_buffer(next);
2181 					return ret;
2182 				}
2183 
2184 				if (trans) {
2185 					btrfs_tree_lock(next);
2186 					btrfs_set_lock_blocking(next);
2187 					clean_tree_block(trans, root, next);
2188 					btrfs_wait_tree_block_writeback(next);
2189 					btrfs_tree_unlock(next);
2190 				}
2191 
2192 				WARN_ON(root_owner !=
2193 					BTRFS_TREE_LOG_OBJECTID);
2194 				ret = btrfs_free_and_pin_reserved_extent(root,
2195 							 bytenr, blocksize);
2196 				if (ret) {
2197 					free_extent_buffer(next);
2198 					return ret;
2199 				}
2200 			}
2201 			free_extent_buffer(next);
2202 			continue;
2203 		}
2204 		ret = btrfs_read_buffer(next, ptr_gen);
2205 		if (ret) {
2206 			free_extent_buffer(next);
2207 			return ret;
2208 		}
2209 
2210 		WARN_ON(*level <= 0);
2211 		if (path->nodes[*level-1])
2212 			free_extent_buffer(path->nodes[*level-1]);
2213 		path->nodes[*level-1] = next;
2214 		*level = btrfs_header_level(next);
2215 		path->slots[*level] = 0;
2216 		cond_resched();
2217 	}
2218 	WARN_ON(*level < 0);
2219 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2220 
2221 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2222 
2223 	cond_resched();
2224 	return 0;
2225 }
2226 
2227 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2228 				 struct btrfs_root *root,
2229 				 struct btrfs_path *path, int *level,
2230 				 struct walk_control *wc)
2231 {
2232 	u64 root_owner;
2233 	int i;
2234 	int slot;
2235 	int ret;
2236 
2237 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2238 		slot = path->slots[i];
2239 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2240 			path->slots[i]++;
2241 			*level = i;
2242 			WARN_ON(*level == 0);
2243 			return 0;
2244 		} else {
2245 			struct extent_buffer *parent;
2246 			if (path->nodes[*level] == root->node)
2247 				parent = path->nodes[*level];
2248 			else
2249 				parent = path->nodes[*level + 1];
2250 
2251 			root_owner = btrfs_header_owner(parent);
2252 			ret = wc->process_func(root, path->nodes[*level], wc,
2253 				 btrfs_header_generation(path->nodes[*level]));
2254 			if (ret)
2255 				return ret;
2256 
2257 			if (wc->free) {
2258 				struct extent_buffer *next;
2259 
2260 				next = path->nodes[*level];
2261 
2262 				if (trans) {
2263 					btrfs_tree_lock(next);
2264 					btrfs_set_lock_blocking(next);
2265 					clean_tree_block(trans, root, next);
2266 					btrfs_wait_tree_block_writeback(next);
2267 					btrfs_tree_unlock(next);
2268 				}
2269 
2270 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2271 				ret = btrfs_free_and_pin_reserved_extent(root,
2272 						path->nodes[*level]->start,
2273 						path->nodes[*level]->len);
2274 				if (ret)
2275 					return ret;
2276 			}
2277 			free_extent_buffer(path->nodes[*level]);
2278 			path->nodes[*level] = NULL;
2279 			*level = i + 1;
2280 		}
2281 	}
2282 	return 1;
2283 }
2284 
2285 /*
2286  * drop the reference count on the tree rooted at 'snap'.  This traverses
2287  * the tree freeing any blocks that have a ref count of zero after being
2288  * decremented.
2289  */
2290 static int walk_log_tree(struct btrfs_trans_handle *trans,
2291 			 struct btrfs_root *log, struct walk_control *wc)
2292 {
2293 	int ret = 0;
2294 	int wret;
2295 	int level;
2296 	struct btrfs_path *path;
2297 	int orig_level;
2298 
2299 	path = btrfs_alloc_path();
2300 	if (!path)
2301 		return -ENOMEM;
2302 
2303 	level = btrfs_header_level(log->node);
2304 	orig_level = level;
2305 	path->nodes[level] = log->node;
2306 	extent_buffer_get(log->node);
2307 	path->slots[level] = 0;
2308 
2309 	while (1) {
2310 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2311 		if (wret > 0)
2312 			break;
2313 		if (wret < 0) {
2314 			ret = wret;
2315 			goto out;
2316 		}
2317 
2318 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2319 		if (wret > 0)
2320 			break;
2321 		if (wret < 0) {
2322 			ret = wret;
2323 			goto out;
2324 		}
2325 	}
2326 
2327 	/* was the root node processed? if not, catch it here */
2328 	if (path->nodes[orig_level]) {
2329 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2330 			 btrfs_header_generation(path->nodes[orig_level]));
2331 		if (ret)
2332 			goto out;
2333 		if (wc->free) {
2334 			struct extent_buffer *next;
2335 
2336 			next = path->nodes[orig_level];
2337 
2338 			if (trans) {
2339 				btrfs_tree_lock(next);
2340 				btrfs_set_lock_blocking(next);
2341 				clean_tree_block(trans, log, next);
2342 				btrfs_wait_tree_block_writeback(next);
2343 				btrfs_tree_unlock(next);
2344 			}
2345 
2346 			WARN_ON(log->root_key.objectid !=
2347 				BTRFS_TREE_LOG_OBJECTID);
2348 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2349 							 next->len);
2350 			if (ret)
2351 				goto out;
2352 		}
2353 	}
2354 
2355 out:
2356 	btrfs_free_path(path);
2357 	return ret;
2358 }
2359 
2360 /*
2361  * helper function to update the item for a given subvolumes log root
2362  * in the tree of log roots
2363  */
2364 static int update_log_root(struct btrfs_trans_handle *trans,
2365 			   struct btrfs_root *log)
2366 {
2367 	int ret;
2368 
2369 	if (log->log_transid == 1) {
2370 		/* insert root item on the first sync */
2371 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2372 				&log->root_key, &log->root_item);
2373 	} else {
2374 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2375 				&log->root_key, &log->root_item);
2376 	}
2377 	return ret;
2378 }
2379 
2380 static void wait_log_commit(struct btrfs_trans_handle *trans,
2381 			    struct btrfs_root *root, int transid)
2382 {
2383 	DEFINE_WAIT(wait);
2384 	int index = transid % 2;
2385 
2386 	/*
2387 	 * we only allow two pending log transactions at a time,
2388 	 * so we know that if ours is more than 2 older than the
2389 	 * current transaction, we're done
2390 	 */
2391 	do {
2392 		prepare_to_wait(&root->log_commit_wait[index],
2393 				&wait, TASK_UNINTERRUPTIBLE);
2394 		mutex_unlock(&root->log_mutex);
2395 
2396 		if (root->log_transid_committed < transid &&
2397 		    atomic_read(&root->log_commit[index]))
2398 			schedule();
2399 
2400 		finish_wait(&root->log_commit_wait[index], &wait);
2401 		mutex_lock(&root->log_mutex);
2402 	} while (root->log_transid_committed < transid &&
2403 		 atomic_read(&root->log_commit[index]));
2404 }
2405 
2406 static void wait_for_writer(struct btrfs_trans_handle *trans,
2407 			    struct btrfs_root *root)
2408 {
2409 	DEFINE_WAIT(wait);
2410 
2411 	while (atomic_read(&root->log_writers)) {
2412 		prepare_to_wait(&root->log_writer_wait,
2413 				&wait, TASK_UNINTERRUPTIBLE);
2414 		mutex_unlock(&root->log_mutex);
2415 		if (atomic_read(&root->log_writers))
2416 			schedule();
2417 		mutex_lock(&root->log_mutex);
2418 		finish_wait(&root->log_writer_wait, &wait);
2419 	}
2420 }
2421 
2422 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2423 					struct btrfs_log_ctx *ctx)
2424 {
2425 	if (!ctx)
2426 		return;
2427 
2428 	mutex_lock(&root->log_mutex);
2429 	list_del_init(&ctx->list);
2430 	mutex_unlock(&root->log_mutex);
2431 }
2432 
2433 /*
2434  * Invoked in log mutex context, or be sure there is no other task which
2435  * can access the list.
2436  */
2437 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2438 					     int index, int error)
2439 {
2440 	struct btrfs_log_ctx *ctx;
2441 
2442 	if (!error) {
2443 		INIT_LIST_HEAD(&root->log_ctxs[index]);
2444 		return;
2445 	}
2446 
2447 	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2448 		ctx->log_ret = error;
2449 
2450 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2451 }
2452 
2453 /*
2454  * btrfs_sync_log does sends a given tree log down to the disk and
2455  * updates the super blocks to record it.  When this call is done,
2456  * you know that any inodes previously logged are safely on disk only
2457  * if it returns 0.
2458  *
2459  * Any other return value means you need to call btrfs_commit_transaction.
2460  * Some of the edge cases for fsyncing directories that have had unlinks
2461  * or renames done in the past mean that sometimes the only safe
2462  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2463  * that has happened.
2464  */
2465 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2466 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2467 {
2468 	int index1;
2469 	int index2;
2470 	int mark;
2471 	int ret;
2472 	struct btrfs_root *log = root->log_root;
2473 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2474 	int log_transid = 0;
2475 	struct btrfs_log_ctx root_log_ctx;
2476 	struct blk_plug plug;
2477 
2478 	mutex_lock(&root->log_mutex);
2479 	log_transid = ctx->log_transid;
2480 	if (root->log_transid_committed >= log_transid) {
2481 		mutex_unlock(&root->log_mutex);
2482 		return ctx->log_ret;
2483 	}
2484 
2485 	index1 = log_transid % 2;
2486 	if (atomic_read(&root->log_commit[index1])) {
2487 		wait_log_commit(trans, root, log_transid);
2488 		mutex_unlock(&root->log_mutex);
2489 		return ctx->log_ret;
2490 	}
2491 	ASSERT(log_transid == root->log_transid);
2492 	atomic_set(&root->log_commit[index1], 1);
2493 
2494 	/* wait for previous tree log sync to complete */
2495 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2496 		wait_log_commit(trans, root, log_transid - 1);
2497 
2498 	while (1) {
2499 		int batch = atomic_read(&root->log_batch);
2500 		/* when we're on an ssd, just kick the log commit out */
2501 		if (!btrfs_test_opt(root, SSD) &&
2502 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2503 			mutex_unlock(&root->log_mutex);
2504 			schedule_timeout_uninterruptible(1);
2505 			mutex_lock(&root->log_mutex);
2506 		}
2507 		wait_for_writer(trans, root);
2508 		if (batch == atomic_read(&root->log_batch))
2509 			break;
2510 	}
2511 
2512 	/* bail out if we need to do a full commit */
2513 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2514 		ret = -EAGAIN;
2515 		btrfs_free_logged_extents(log, log_transid);
2516 		mutex_unlock(&root->log_mutex);
2517 		goto out;
2518 	}
2519 
2520 	if (log_transid % 2 == 0)
2521 		mark = EXTENT_DIRTY;
2522 	else
2523 		mark = EXTENT_NEW;
2524 
2525 	/* we start IO on  all the marked extents here, but we don't actually
2526 	 * wait for them until later.
2527 	 */
2528 	blk_start_plug(&plug);
2529 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2530 	if (ret) {
2531 		blk_finish_plug(&plug);
2532 		btrfs_abort_transaction(trans, root, ret);
2533 		btrfs_free_logged_extents(log, log_transid);
2534 		btrfs_set_log_full_commit(root->fs_info, trans);
2535 		mutex_unlock(&root->log_mutex);
2536 		goto out;
2537 	}
2538 
2539 	btrfs_set_root_node(&log->root_item, log->node);
2540 
2541 	root->log_transid++;
2542 	log->log_transid = root->log_transid;
2543 	root->log_start_pid = 0;
2544 	/*
2545 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2546 	 * in their headers. new modifications of the log will be written to
2547 	 * new positions. so it's safe to allow log writers to go in.
2548 	 */
2549 	mutex_unlock(&root->log_mutex);
2550 
2551 	btrfs_init_log_ctx(&root_log_ctx);
2552 
2553 	mutex_lock(&log_root_tree->log_mutex);
2554 	atomic_inc(&log_root_tree->log_batch);
2555 	atomic_inc(&log_root_tree->log_writers);
2556 
2557 	index2 = log_root_tree->log_transid % 2;
2558 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2559 	root_log_ctx.log_transid = log_root_tree->log_transid;
2560 
2561 	mutex_unlock(&log_root_tree->log_mutex);
2562 
2563 	ret = update_log_root(trans, log);
2564 
2565 	mutex_lock(&log_root_tree->log_mutex);
2566 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2567 		smp_mb();
2568 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2569 			wake_up(&log_root_tree->log_writer_wait);
2570 	}
2571 
2572 	if (ret) {
2573 		if (!list_empty(&root_log_ctx.list))
2574 			list_del_init(&root_log_ctx.list);
2575 
2576 		blk_finish_plug(&plug);
2577 		btrfs_set_log_full_commit(root->fs_info, trans);
2578 
2579 		if (ret != -ENOSPC) {
2580 			btrfs_abort_transaction(trans, root, ret);
2581 			mutex_unlock(&log_root_tree->log_mutex);
2582 			goto out;
2583 		}
2584 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2585 		btrfs_free_logged_extents(log, log_transid);
2586 		mutex_unlock(&log_root_tree->log_mutex);
2587 		ret = -EAGAIN;
2588 		goto out;
2589 	}
2590 
2591 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2592 		mutex_unlock(&log_root_tree->log_mutex);
2593 		ret = root_log_ctx.log_ret;
2594 		goto out;
2595 	}
2596 
2597 	index2 = root_log_ctx.log_transid % 2;
2598 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2599 		blk_finish_plug(&plug);
2600 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2601 		wait_log_commit(trans, log_root_tree,
2602 				root_log_ctx.log_transid);
2603 		btrfs_free_logged_extents(log, log_transid);
2604 		mutex_unlock(&log_root_tree->log_mutex);
2605 		ret = root_log_ctx.log_ret;
2606 		goto out;
2607 	}
2608 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2609 	atomic_set(&log_root_tree->log_commit[index2], 1);
2610 
2611 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2612 		wait_log_commit(trans, log_root_tree,
2613 				root_log_ctx.log_transid - 1);
2614 	}
2615 
2616 	wait_for_writer(trans, log_root_tree);
2617 
2618 	/*
2619 	 * now that we've moved on to the tree of log tree roots,
2620 	 * check the full commit flag again
2621 	 */
2622 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2623 		blk_finish_plug(&plug);
2624 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2625 		btrfs_free_logged_extents(log, log_transid);
2626 		mutex_unlock(&log_root_tree->log_mutex);
2627 		ret = -EAGAIN;
2628 		goto out_wake_log_root;
2629 	}
2630 
2631 	ret = btrfs_write_marked_extents(log_root_tree,
2632 					 &log_root_tree->dirty_log_pages,
2633 					 EXTENT_DIRTY | EXTENT_NEW);
2634 	blk_finish_plug(&plug);
2635 	if (ret) {
2636 		btrfs_set_log_full_commit(root->fs_info, trans);
2637 		btrfs_abort_transaction(trans, root, ret);
2638 		btrfs_free_logged_extents(log, log_transid);
2639 		mutex_unlock(&log_root_tree->log_mutex);
2640 		goto out_wake_log_root;
2641 	}
2642 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2643 	btrfs_wait_marked_extents(log_root_tree,
2644 				  &log_root_tree->dirty_log_pages,
2645 				  EXTENT_NEW | EXTENT_DIRTY);
2646 	btrfs_wait_logged_extents(log, log_transid);
2647 
2648 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2649 				log_root_tree->node->start);
2650 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2651 				btrfs_header_level(log_root_tree->node));
2652 
2653 	log_root_tree->log_transid++;
2654 	mutex_unlock(&log_root_tree->log_mutex);
2655 
2656 	/*
2657 	 * nobody else is going to jump in and write the the ctree
2658 	 * super here because the log_commit atomic below is protecting
2659 	 * us.  We must be called with a transaction handle pinning
2660 	 * the running transaction open, so a full commit can't hop
2661 	 * in and cause problems either.
2662 	 */
2663 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2664 	if (ret) {
2665 		btrfs_set_log_full_commit(root->fs_info, trans);
2666 		btrfs_abort_transaction(trans, root, ret);
2667 		goto out_wake_log_root;
2668 	}
2669 
2670 	mutex_lock(&root->log_mutex);
2671 	if (root->last_log_commit < log_transid)
2672 		root->last_log_commit = log_transid;
2673 	mutex_unlock(&root->log_mutex);
2674 
2675 out_wake_log_root:
2676 	/*
2677 	 * We needn't get log_mutex here because we are sure all
2678 	 * the other tasks are blocked.
2679 	 */
2680 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2681 
2682 	mutex_lock(&log_root_tree->log_mutex);
2683 	log_root_tree->log_transid_committed++;
2684 	atomic_set(&log_root_tree->log_commit[index2], 0);
2685 	mutex_unlock(&log_root_tree->log_mutex);
2686 
2687 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2688 		wake_up(&log_root_tree->log_commit_wait[index2]);
2689 out:
2690 	/* See above. */
2691 	btrfs_remove_all_log_ctxs(root, index1, ret);
2692 
2693 	mutex_lock(&root->log_mutex);
2694 	root->log_transid_committed++;
2695 	atomic_set(&root->log_commit[index1], 0);
2696 	mutex_unlock(&root->log_mutex);
2697 
2698 	if (waitqueue_active(&root->log_commit_wait[index1]))
2699 		wake_up(&root->log_commit_wait[index1]);
2700 	return ret;
2701 }
2702 
2703 static void free_log_tree(struct btrfs_trans_handle *trans,
2704 			  struct btrfs_root *log)
2705 {
2706 	int ret;
2707 	u64 start;
2708 	u64 end;
2709 	struct walk_control wc = {
2710 		.free = 1,
2711 		.process_func = process_one_buffer
2712 	};
2713 
2714 	ret = walk_log_tree(trans, log, &wc);
2715 	/* I don't think this can happen but just in case */
2716 	if (ret)
2717 		btrfs_abort_transaction(trans, log, ret);
2718 
2719 	while (1) {
2720 		ret = find_first_extent_bit(&log->dirty_log_pages,
2721 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2722 				NULL);
2723 		if (ret)
2724 			break;
2725 
2726 		clear_extent_bits(&log->dirty_log_pages, start, end,
2727 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2728 	}
2729 
2730 	/*
2731 	 * We may have short-circuited the log tree with the full commit logic
2732 	 * and left ordered extents on our list, so clear these out to keep us
2733 	 * from leaking inodes and memory.
2734 	 */
2735 	btrfs_free_logged_extents(log, 0);
2736 	btrfs_free_logged_extents(log, 1);
2737 
2738 	free_extent_buffer(log->node);
2739 	kfree(log);
2740 }
2741 
2742 /*
2743  * free all the extents used by the tree log.  This should be called
2744  * at commit time of the full transaction
2745  */
2746 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2747 {
2748 	if (root->log_root) {
2749 		free_log_tree(trans, root->log_root);
2750 		root->log_root = NULL;
2751 	}
2752 	return 0;
2753 }
2754 
2755 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2756 			     struct btrfs_fs_info *fs_info)
2757 {
2758 	if (fs_info->log_root_tree) {
2759 		free_log_tree(trans, fs_info->log_root_tree);
2760 		fs_info->log_root_tree = NULL;
2761 	}
2762 	return 0;
2763 }
2764 
2765 /*
2766  * If both a file and directory are logged, and unlinks or renames are
2767  * mixed in, we have a few interesting corners:
2768  *
2769  * create file X in dir Y
2770  * link file X to X.link in dir Y
2771  * fsync file X
2772  * unlink file X but leave X.link
2773  * fsync dir Y
2774  *
2775  * After a crash we would expect only X.link to exist.  But file X
2776  * didn't get fsync'd again so the log has back refs for X and X.link.
2777  *
2778  * We solve this by removing directory entries and inode backrefs from the
2779  * log when a file that was logged in the current transaction is
2780  * unlinked.  Any later fsync will include the updated log entries, and
2781  * we'll be able to reconstruct the proper directory items from backrefs.
2782  *
2783  * This optimizations allows us to avoid relogging the entire inode
2784  * or the entire directory.
2785  */
2786 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2787 				 struct btrfs_root *root,
2788 				 const char *name, int name_len,
2789 				 struct inode *dir, u64 index)
2790 {
2791 	struct btrfs_root *log;
2792 	struct btrfs_dir_item *di;
2793 	struct btrfs_path *path;
2794 	int ret;
2795 	int err = 0;
2796 	int bytes_del = 0;
2797 	u64 dir_ino = btrfs_ino(dir);
2798 
2799 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2800 		return 0;
2801 
2802 	ret = join_running_log_trans(root);
2803 	if (ret)
2804 		return 0;
2805 
2806 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2807 
2808 	log = root->log_root;
2809 	path = btrfs_alloc_path();
2810 	if (!path) {
2811 		err = -ENOMEM;
2812 		goto out_unlock;
2813 	}
2814 
2815 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2816 				   name, name_len, -1);
2817 	if (IS_ERR(di)) {
2818 		err = PTR_ERR(di);
2819 		goto fail;
2820 	}
2821 	if (di) {
2822 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2823 		bytes_del += name_len;
2824 		if (ret) {
2825 			err = ret;
2826 			goto fail;
2827 		}
2828 	}
2829 	btrfs_release_path(path);
2830 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2831 					 index, name, name_len, -1);
2832 	if (IS_ERR(di)) {
2833 		err = PTR_ERR(di);
2834 		goto fail;
2835 	}
2836 	if (di) {
2837 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2838 		bytes_del += name_len;
2839 		if (ret) {
2840 			err = ret;
2841 			goto fail;
2842 		}
2843 	}
2844 
2845 	/* update the directory size in the log to reflect the names
2846 	 * we have removed
2847 	 */
2848 	if (bytes_del) {
2849 		struct btrfs_key key;
2850 
2851 		key.objectid = dir_ino;
2852 		key.offset = 0;
2853 		key.type = BTRFS_INODE_ITEM_KEY;
2854 		btrfs_release_path(path);
2855 
2856 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2857 		if (ret < 0) {
2858 			err = ret;
2859 			goto fail;
2860 		}
2861 		if (ret == 0) {
2862 			struct btrfs_inode_item *item;
2863 			u64 i_size;
2864 
2865 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2866 					      struct btrfs_inode_item);
2867 			i_size = btrfs_inode_size(path->nodes[0], item);
2868 			if (i_size > bytes_del)
2869 				i_size -= bytes_del;
2870 			else
2871 				i_size = 0;
2872 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2873 			btrfs_mark_buffer_dirty(path->nodes[0]);
2874 		} else
2875 			ret = 0;
2876 		btrfs_release_path(path);
2877 	}
2878 fail:
2879 	btrfs_free_path(path);
2880 out_unlock:
2881 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2882 	if (ret == -ENOSPC) {
2883 		btrfs_set_log_full_commit(root->fs_info, trans);
2884 		ret = 0;
2885 	} else if (ret < 0)
2886 		btrfs_abort_transaction(trans, root, ret);
2887 
2888 	btrfs_end_log_trans(root);
2889 
2890 	return err;
2891 }
2892 
2893 /* see comments for btrfs_del_dir_entries_in_log */
2894 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2895 			       struct btrfs_root *root,
2896 			       const char *name, int name_len,
2897 			       struct inode *inode, u64 dirid)
2898 {
2899 	struct btrfs_root *log;
2900 	u64 index;
2901 	int ret;
2902 
2903 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2904 		return 0;
2905 
2906 	ret = join_running_log_trans(root);
2907 	if (ret)
2908 		return 0;
2909 	log = root->log_root;
2910 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2911 
2912 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2913 				  dirid, &index);
2914 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2915 	if (ret == -ENOSPC) {
2916 		btrfs_set_log_full_commit(root->fs_info, trans);
2917 		ret = 0;
2918 	} else if (ret < 0 && ret != -ENOENT)
2919 		btrfs_abort_transaction(trans, root, ret);
2920 	btrfs_end_log_trans(root);
2921 
2922 	return ret;
2923 }
2924 
2925 /*
2926  * creates a range item in the log for 'dirid'.  first_offset and
2927  * last_offset tell us which parts of the key space the log should
2928  * be considered authoritative for.
2929  */
2930 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2931 				       struct btrfs_root *log,
2932 				       struct btrfs_path *path,
2933 				       int key_type, u64 dirid,
2934 				       u64 first_offset, u64 last_offset)
2935 {
2936 	int ret;
2937 	struct btrfs_key key;
2938 	struct btrfs_dir_log_item *item;
2939 
2940 	key.objectid = dirid;
2941 	key.offset = first_offset;
2942 	if (key_type == BTRFS_DIR_ITEM_KEY)
2943 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2944 	else
2945 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2946 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2947 	if (ret)
2948 		return ret;
2949 
2950 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2951 			      struct btrfs_dir_log_item);
2952 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2953 	btrfs_mark_buffer_dirty(path->nodes[0]);
2954 	btrfs_release_path(path);
2955 	return 0;
2956 }
2957 
2958 /*
2959  * log all the items included in the current transaction for a given
2960  * directory.  This also creates the range items in the log tree required
2961  * to replay anything deleted before the fsync
2962  */
2963 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2964 			  struct btrfs_root *root, struct inode *inode,
2965 			  struct btrfs_path *path,
2966 			  struct btrfs_path *dst_path, int key_type,
2967 			  u64 min_offset, u64 *last_offset_ret)
2968 {
2969 	struct btrfs_key min_key;
2970 	struct btrfs_root *log = root->log_root;
2971 	struct extent_buffer *src;
2972 	int err = 0;
2973 	int ret;
2974 	int i;
2975 	int nritems;
2976 	u64 first_offset = min_offset;
2977 	u64 last_offset = (u64)-1;
2978 	u64 ino = btrfs_ino(inode);
2979 
2980 	log = root->log_root;
2981 
2982 	min_key.objectid = ino;
2983 	min_key.type = key_type;
2984 	min_key.offset = min_offset;
2985 
2986 	path->keep_locks = 1;
2987 
2988 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2989 
2990 	/*
2991 	 * we didn't find anything from this transaction, see if there
2992 	 * is anything at all
2993 	 */
2994 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2995 		min_key.objectid = ino;
2996 		min_key.type = key_type;
2997 		min_key.offset = (u64)-1;
2998 		btrfs_release_path(path);
2999 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3000 		if (ret < 0) {
3001 			btrfs_release_path(path);
3002 			return ret;
3003 		}
3004 		ret = btrfs_previous_item(root, path, ino, key_type);
3005 
3006 		/* if ret == 0 there are items for this type,
3007 		 * create a range to tell us the last key of this type.
3008 		 * otherwise, there are no items in this directory after
3009 		 * *min_offset, and we create a range to indicate that.
3010 		 */
3011 		if (ret == 0) {
3012 			struct btrfs_key tmp;
3013 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3014 					      path->slots[0]);
3015 			if (key_type == tmp.type)
3016 				first_offset = max(min_offset, tmp.offset) + 1;
3017 		}
3018 		goto done;
3019 	}
3020 
3021 	/* go backward to find any previous key */
3022 	ret = btrfs_previous_item(root, path, ino, key_type);
3023 	if (ret == 0) {
3024 		struct btrfs_key tmp;
3025 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3026 		if (key_type == tmp.type) {
3027 			first_offset = tmp.offset;
3028 			ret = overwrite_item(trans, log, dst_path,
3029 					     path->nodes[0], path->slots[0],
3030 					     &tmp);
3031 			if (ret) {
3032 				err = ret;
3033 				goto done;
3034 			}
3035 		}
3036 	}
3037 	btrfs_release_path(path);
3038 
3039 	/* find the first key from this transaction again */
3040 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3041 	if (WARN_ON(ret != 0))
3042 		goto done;
3043 
3044 	/*
3045 	 * we have a block from this transaction, log every item in it
3046 	 * from our directory
3047 	 */
3048 	while (1) {
3049 		struct btrfs_key tmp;
3050 		src = path->nodes[0];
3051 		nritems = btrfs_header_nritems(src);
3052 		for (i = path->slots[0]; i < nritems; i++) {
3053 			btrfs_item_key_to_cpu(src, &min_key, i);
3054 
3055 			if (min_key.objectid != ino || min_key.type != key_type)
3056 				goto done;
3057 			ret = overwrite_item(trans, log, dst_path, src, i,
3058 					     &min_key);
3059 			if (ret) {
3060 				err = ret;
3061 				goto done;
3062 			}
3063 		}
3064 		path->slots[0] = nritems;
3065 
3066 		/*
3067 		 * look ahead to the next item and see if it is also
3068 		 * from this directory and from this transaction
3069 		 */
3070 		ret = btrfs_next_leaf(root, path);
3071 		if (ret == 1) {
3072 			last_offset = (u64)-1;
3073 			goto done;
3074 		}
3075 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3076 		if (tmp.objectid != ino || tmp.type != key_type) {
3077 			last_offset = (u64)-1;
3078 			goto done;
3079 		}
3080 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3081 			ret = overwrite_item(trans, log, dst_path,
3082 					     path->nodes[0], path->slots[0],
3083 					     &tmp);
3084 			if (ret)
3085 				err = ret;
3086 			else
3087 				last_offset = tmp.offset;
3088 			goto done;
3089 		}
3090 	}
3091 done:
3092 	btrfs_release_path(path);
3093 	btrfs_release_path(dst_path);
3094 
3095 	if (err == 0) {
3096 		*last_offset_ret = last_offset;
3097 		/*
3098 		 * insert the log range keys to indicate where the log
3099 		 * is valid
3100 		 */
3101 		ret = insert_dir_log_key(trans, log, path, key_type,
3102 					 ino, first_offset, last_offset);
3103 		if (ret)
3104 			err = ret;
3105 	}
3106 	return err;
3107 }
3108 
3109 /*
3110  * logging directories is very similar to logging inodes, We find all the items
3111  * from the current transaction and write them to the log.
3112  *
3113  * The recovery code scans the directory in the subvolume, and if it finds a
3114  * key in the range logged that is not present in the log tree, then it means
3115  * that dir entry was unlinked during the transaction.
3116  *
3117  * In order for that scan to work, we must include one key smaller than
3118  * the smallest logged by this transaction and one key larger than the largest
3119  * key logged by this transaction.
3120  */
3121 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3122 			  struct btrfs_root *root, struct inode *inode,
3123 			  struct btrfs_path *path,
3124 			  struct btrfs_path *dst_path)
3125 {
3126 	u64 min_key;
3127 	u64 max_key;
3128 	int ret;
3129 	int key_type = BTRFS_DIR_ITEM_KEY;
3130 
3131 again:
3132 	min_key = 0;
3133 	max_key = 0;
3134 	while (1) {
3135 		ret = log_dir_items(trans, root, inode, path,
3136 				    dst_path, key_type, min_key,
3137 				    &max_key);
3138 		if (ret)
3139 			return ret;
3140 		if (max_key == (u64)-1)
3141 			break;
3142 		min_key = max_key + 1;
3143 	}
3144 
3145 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3146 		key_type = BTRFS_DIR_INDEX_KEY;
3147 		goto again;
3148 	}
3149 	return 0;
3150 }
3151 
3152 /*
3153  * a helper function to drop items from the log before we relog an
3154  * inode.  max_key_type indicates the highest item type to remove.
3155  * This cannot be run for file data extents because it does not
3156  * free the extents they point to.
3157  */
3158 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3159 				  struct btrfs_root *log,
3160 				  struct btrfs_path *path,
3161 				  u64 objectid, int max_key_type)
3162 {
3163 	int ret;
3164 	struct btrfs_key key;
3165 	struct btrfs_key found_key;
3166 	int start_slot;
3167 
3168 	key.objectid = objectid;
3169 	key.type = max_key_type;
3170 	key.offset = (u64)-1;
3171 
3172 	while (1) {
3173 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3174 		BUG_ON(ret == 0); /* Logic error */
3175 		if (ret < 0)
3176 			break;
3177 
3178 		if (path->slots[0] == 0)
3179 			break;
3180 
3181 		path->slots[0]--;
3182 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3183 				      path->slots[0]);
3184 
3185 		if (found_key.objectid != objectid)
3186 			break;
3187 
3188 		found_key.offset = 0;
3189 		found_key.type = 0;
3190 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3191 				       &start_slot);
3192 
3193 		ret = btrfs_del_items(trans, log, path, start_slot,
3194 				      path->slots[0] - start_slot + 1);
3195 		/*
3196 		 * If start slot isn't 0 then we don't need to re-search, we've
3197 		 * found the last guy with the objectid in this tree.
3198 		 */
3199 		if (ret || start_slot != 0)
3200 			break;
3201 		btrfs_release_path(path);
3202 	}
3203 	btrfs_release_path(path);
3204 	if (ret > 0)
3205 		ret = 0;
3206 	return ret;
3207 }
3208 
3209 static void fill_inode_item(struct btrfs_trans_handle *trans,
3210 			    struct extent_buffer *leaf,
3211 			    struct btrfs_inode_item *item,
3212 			    struct inode *inode, int log_inode_only)
3213 {
3214 	struct btrfs_map_token token;
3215 
3216 	btrfs_init_map_token(&token);
3217 
3218 	if (log_inode_only) {
3219 		/* set the generation to zero so the recover code
3220 		 * can tell the difference between an logging
3221 		 * just to say 'this inode exists' and a logging
3222 		 * to say 'update this inode with these values'
3223 		 */
3224 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3225 		btrfs_set_token_inode_size(leaf, item, 0, &token);
3226 	} else {
3227 		btrfs_set_token_inode_generation(leaf, item,
3228 						 BTRFS_I(inode)->generation,
3229 						 &token);
3230 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3231 	}
3232 
3233 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3234 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3235 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3236 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3237 
3238 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3239 				     inode->i_atime.tv_sec, &token);
3240 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3241 				      inode->i_atime.tv_nsec, &token);
3242 
3243 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3244 				     inode->i_mtime.tv_sec, &token);
3245 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3246 				      inode->i_mtime.tv_nsec, &token);
3247 
3248 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3249 				     inode->i_ctime.tv_sec, &token);
3250 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3251 				      inode->i_ctime.tv_nsec, &token);
3252 
3253 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3254 				     &token);
3255 
3256 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3257 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3258 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3259 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3260 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3261 }
3262 
3263 static int log_inode_item(struct btrfs_trans_handle *trans,
3264 			  struct btrfs_root *log, struct btrfs_path *path,
3265 			  struct inode *inode)
3266 {
3267 	struct btrfs_inode_item *inode_item;
3268 	int ret;
3269 
3270 	ret = btrfs_insert_empty_item(trans, log, path,
3271 				      &BTRFS_I(inode)->location,
3272 				      sizeof(*inode_item));
3273 	if (ret && ret != -EEXIST)
3274 		return ret;
3275 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3276 				    struct btrfs_inode_item);
3277 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3278 	btrfs_release_path(path);
3279 	return 0;
3280 }
3281 
3282 static noinline int copy_items(struct btrfs_trans_handle *trans,
3283 			       struct inode *inode,
3284 			       struct btrfs_path *dst_path,
3285 			       struct btrfs_path *src_path, u64 *last_extent,
3286 			       int start_slot, int nr, int inode_only)
3287 {
3288 	unsigned long src_offset;
3289 	unsigned long dst_offset;
3290 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3291 	struct btrfs_file_extent_item *extent;
3292 	struct btrfs_inode_item *inode_item;
3293 	struct extent_buffer *src = src_path->nodes[0];
3294 	struct btrfs_key first_key, last_key, key;
3295 	int ret;
3296 	struct btrfs_key *ins_keys;
3297 	u32 *ins_sizes;
3298 	char *ins_data;
3299 	int i;
3300 	struct list_head ordered_sums;
3301 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3302 	bool has_extents = false;
3303 	bool need_find_last_extent = true;
3304 	bool done = false;
3305 
3306 	INIT_LIST_HEAD(&ordered_sums);
3307 
3308 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3309 			   nr * sizeof(u32), GFP_NOFS);
3310 	if (!ins_data)
3311 		return -ENOMEM;
3312 
3313 	first_key.objectid = (u64)-1;
3314 
3315 	ins_sizes = (u32 *)ins_data;
3316 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3317 
3318 	for (i = 0; i < nr; i++) {
3319 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3320 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3321 	}
3322 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3323 				       ins_keys, ins_sizes, nr);
3324 	if (ret) {
3325 		kfree(ins_data);
3326 		return ret;
3327 	}
3328 
3329 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3330 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3331 						   dst_path->slots[0]);
3332 
3333 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3334 
3335 		if ((i == (nr - 1)))
3336 			last_key = ins_keys[i];
3337 
3338 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3339 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3340 						    dst_path->slots[0],
3341 						    struct btrfs_inode_item);
3342 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3343 					inode, inode_only == LOG_INODE_EXISTS);
3344 		} else {
3345 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3346 					   src_offset, ins_sizes[i]);
3347 		}
3348 
3349 		/*
3350 		 * We set need_find_last_extent here in case we know we were
3351 		 * processing other items and then walk into the first extent in
3352 		 * the inode.  If we don't hit an extent then nothing changes,
3353 		 * we'll do the last search the next time around.
3354 		 */
3355 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3356 			has_extents = true;
3357 			if (first_key.objectid == (u64)-1)
3358 				first_key = ins_keys[i];
3359 		} else {
3360 			need_find_last_extent = false;
3361 		}
3362 
3363 		/* take a reference on file data extents so that truncates
3364 		 * or deletes of this inode don't have to relog the inode
3365 		 * again
3366 		 */
3367 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3368 		    !skip_csum) {
3369 			int found_type;
3370 			extent = btrfs_item_ptr(src, start_slot + i,
3371 						struct btrfs_file_extent_item);
3372 
3373 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3374 				continue;
3375 
3376 			found_type = btrfs_file_extent_type(src, extent);
3377 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3378 				u64 ds, dl, cs, cl;
3379 				ds = btrfs_file_extent_disk_bytenr(src,
3380 								extent);
3381 				/* ds == 0 is a hole */
3382 				if (ds == 0)
3383 					continue;
3384 
3385 				dl = btrfs_file_extent_disk_num_bytes(src,
3386 								extent);
3387 				cs = btrfs_file_extent_offset(src, extent);
3388 				cl = btrfs_file_extent_num_bytes(src,
3389 								extent);
3390 				if (btrfs_file_extent_compression(src,
3391 								  extent)) {
3392 					cs = 0;
3393 					cl = dl;
3394 				}
3395 
3396 				ret = btrfs_lookup_csums_range(
3397 						log->fs_info->csum_root,
3398 						ds + cs, ds + cs + cl - 1,
3399 						&ordered_sums, 0);
3400 				if (ret) {
3401 					btrfs_release_path(dst_path);
3402 					kfree(ins_data);
3403 					return ret;
3404 				}
3405 			}
3406 		}
3407 	}
3408 
3409 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3410 	btrfs_release_path(dst_path);
3411 	kfree(ins_data);
3412 
3413 	/*
3414 	 * we have to do this after the loop above to avoid changing the
3415 	 * log tree while trying to change the log tree.
3416 	 */
3417 	ret = 0;
3418 	while (!list_empty(&ordered_sums)) {
3419 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3420 						   struct btrfs_ordered_sum,
3421 						   list);
3422 		if (!ret)
3423 			ret = btrfs_csum_file_blocks(trans, log, sums);
3424 		list_del(&sums->list);
3425 		kfree(sums);
3426 	}
3427 
3428 	if (!has_extents)
3429 		return ret;
3430 
3431 	if (need_find_last_extent && *last_extent == first_key.offset) {
3432 		/*
3433 		 * We don't have any leafs between our current one and the one
3434 		 * we processed before that can have file extent items for our
3435 		 * inode (and have a generation number smaller than our current
3436 		 * transaction id).
3437 		 */
3438 		need_find_last_extent = false;
3439 	}
3440 
3441 	/*
3442 	 * Because we use btrfs_search_forward we could skip leaves that were
3443 	 * not modified and then assume *last_extent is valid when it really
3444 	 * isn't.  So back up to the previous leaf and read the end of the last
3445 	 * extent before we go and fill in holes.
3446 	 */
3447 	if (need_find_last_extent) {
3448 		u64 len;
3449 
3450 		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3451 		if (ret < 0)
3452 			return ret;
3453 		if (ret)
3454 			goto fill_holes;
3455 		if (src_path->slots[0])
3456 			src_path->slots[0]--;
3457 		src = src_path->nodes[0];
3458 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3459 		if (key.objectid != btrfs_ino(inode) ||
3460 		    key.type != BTRFS_EXTENT_DATA_KEY)
3461 			goto fill_holes;
3462 		extent = btrfs_item_ptr(src, src_path->slots[0],
3463 					struct btrfs_file_extent_item);
3464 		if (btrfs_file_extent_type(src, extent) ==
3465 		    BTRFS_FILE_EXTENT_INLINE) {
3466 			len = btrfs_file_extent_inline_len(src,
3467 							   src_path->slots[0],
3468 							   extent);
3469 			*last_extent = ALIGN(key.offset + len,
3470 					     log->sectorsize);
3471 		} else {
3472 			len = btrfs_file_extent_num_bytes(src, extent);
3473 			*last_extent = key.offset + len;
3474 		}
3475 	}
3476 fill_holes:
3477 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3478 	 * things could have happened
3479 	 *
3480 	 * 1) A merge could have happened, so we could currently be on a leaf
3481 	 * that holds what we were copying in the first place.
3482 	 * 2) A split could have happened, and now not all of the items we want
3483 	 * are on the same leaf.
3484 	 *
3485 	 * So we need to adjust how we search for holes, we need to drop the
3486 	 * path and re-search for the first extent key we found, and then walk
3487 	 * forward until we hit the last one we copied.
3488 	 */
3489 	if (need_find_last_extent) {
3490 		/* btrfs_prev_leaf could return 1 without releasing the path */
3491 		btrfs_release_path(src_path);
3492 		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3493 					src_path, 0, 0);
3494 		if (ret < 0)
3495 			return ret;
3496 		ASSERT(ret == 0);
3497 		src = src_path->nodes[0];
3498 		i = src_path->slots[0];
3499 	} else {
3500 		i = start_slot;
3501 	}
3502 
3503 	/*
3504 	 * Ok so here we need to go through and fill in any holes we may have
3505 	 * to make sure that holes are punched for those areas in case they had
3506 	 * extents previously.
3507 	 */
3508 	while (!done) {
3509 		u64 offset, len;
3510 		u64 extent_end;
3511 
3512 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3513 			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3514 			if (ret < 0)
3515 				return ret;
3516 			ASSERT(ret == 0);
3517 			src = src_path->nodes[0];
3518 			i = 0;
3519 		}
3520 
3521 		btrfs_item_key_to_cpu(src, &key, i);
3522 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3523 			done = true;
3524 		if (key.objectid != btrfs_ino(inode) ||
3525 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3526 			i++;
3527 			continue;
3528 		}
3529 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3530 		if (btrfs_file_extent_type(src, extent) ==
3531 		    BTRFS_FILE_EXTENT_INLINE) {
3532 			len = btrfs_file_extent_inline_len(src, i, extent);
3533 			extent_end = ALIGN(key.offset + len, log->sectorsize);
3534 		} else {
3535 			len = btrfs_file_extent_num_bytes(src, extent);
3536 			extent_end = key.offset + len;
3537 		}
3538 		i++;
3539 
3540 		if (*last_extent == key.offset) {
3541 			*last_extent = extent_end;
3542 			continue;
3543 		}
3544 		offset = *last_extent;
3545 		len = key.offset - *last_extent;
3546 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3547 					       offset, 0, 0, len, 0, len, 0,
3548 					       0, 0);
3549 		if (ret)
3550 			break;
3551 		*last_extent = extent_end;
3552 	}
3553 	/*
3554 	 * Need to let the callers know we dropped the path so they should
3555 	 * re-search.
3556 	 */
3557 	if (!ret && need_find_last_extent)
3558 		ret = 1;
3559 	return ret;
3560 }
3561 
3562 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3563 {
3564 	struct extent_map *em1, *em2;
3565 
3566 	em1 = list_entry(a, struct extent_map, list);
3567 	em2 = list_entry(b, struct extent_map, list);
3568 
3569 	if (em1->start < em2->start)
3570 		return -1;
3571 	else if (em1->start > em2->start)
3572 		return 1;
3573 	return 0;
3574 }
3575 
3576 static int log_one_extent(struct btrfs_trans_handle *trans,
3577 			  struct inode *inode, struct btrfs_root *root,
3578 			  struct extent_map *em, struct btrfs_path *path,
3579 			  struct list_head *logged_list)
3580 {
3581 	struct btrfs_root *log = root->log_root;
3582 	struct btrfs_file_extent_item *fi;
3583 	struct extent_buffer *leaf;
3584 	struct btrfs_ordered_extent *ordered;
3585 	struct list_head ordered_sums;
3586 	struct btrfs_map_token token;
3587 	struct btrfs_key key;
3588 	u64 mod_start = em->mod_start;
3589 	u64 mod_len = em->mod_len;
3590 	u64 csum_offset;
3591 	u64 csum_len;
3592 	u64 extent_offset = em->start - em->orig_start;
3593 	u64 block_len;
3594 	int ret;
3595 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3596 	int extent_inserted = 0;
3597 
3598 	INIT_LIST_HEAD(&ordered_sums);
3599 	btrfs_init_map_token(&token);
3600 
3601 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3602 				   em->start + em->len, NULL, 0, 1,
3603 				   sizeof(*fi), &extent_inserted);
3604 	if (ret)
3605 		return ret;
3606 
3607 	if (!extent_inserted) {
3608 		key.objectid = btrfs_ino(inode);
3609 		key.type = BTRFS_EXTENT_DATA_KEY;
3610 		key.offset = em->start;
3611 
3612 		ret = btrfs_insert_empty_item(trans, log, path, &key,
3613 					      sizeof(*fi));
3614 		if (ret)
3615 			return ret;
3616 	}
3617 	leaf = path->nodes[0];
3618 	fi = btrfs_item_ptr(leaf, path->slots[0],
3619 			    struct btrfs_file_extent_item);
3620 
3621 	btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3622 					       &token);
3623 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3624 		skip_csum = true;
3625 		btrfs_set_token_file_extent_type(leaf, fi,
3626 						 BTRFS_FILE_EXTENT_PREALLOC,
3627 						 &token);
3628 	} else {
3629 		btrfs_set_token_file_extent_type(leaf, fi,
3630 						 BTRFS_FILE_EXTENT_REG,
3631 						 &token);
3632 		if (em->block_start == EXTENT_MAP_HOLE)
3633 			skip_csum = true;
3634 	}
3635 
3636 	block_len = max(em->block_len, em->orig_block_len);
3637 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3638 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3639 							em->block_start,
3640 							&token);
3641 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3642 							   &token);
3643 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3644 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3645 							em->block_start -
3646 							extent_offset, &token);
3647 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3648 							   &token);
3649 	} else {
3650 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3651 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3652 							   &token);
3653 	}
3654 
3655 	btrfs_set_token_file_extent_offset(leaf, fi,
3656 					   em->start - em->orig_start,
3657 					   &token);
3658 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3659 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3660 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3661 						&token);
3662 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3663 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3664 	btrfs_mark_buffer_dirty(leaf);
3665 
3666 	btrfs_release_path(path);
3667 	if (ret) {
3668 		return ret;
3669 	}
3670 
3671 	if (skip_csum)
3672 		return 0;
3673 
3674 	/*
3675 	 * First check and see if our csums are on our outstanding ordered
3676 	 * extents.
3677 	 */
3678 	list_for_each_entry(ordered, logged_list, log_list) {
3679 		struct btrfs_ordered_sum *sum;
3680 
3681 		if (!mod_len)
3682 			break;
3683 
3684 		if (ordered->file_offset + ordered->len <= mod_start ||
3685 		    mod_start + mod_len <= ordered->file_offset)
3686 			continue;
3687 
3688 		/*
3689 		 * We are going to copy all the csums on this ordered extent, so
3690 		 * go ahead and adjust mod_start and mod_len in case this
3691 		 * ordered extent has already been logged.
3692 		 */
3693 		if (ordered->file_offset > mod_start) {
3694 			if (ordered->file_offset + ordered->len >=
3695 			    mod_start + mod_len)
3696 				mod_len = ordered->file_offset - mod_start;
3697 			/*
3698 			 * If we have this case
3699 			 *
3700 			 * |--------- logged extent ---------|
3701 			 *       |----- ordered extent ----|
3702 			 *
3703 			 * Just don't mess with mod_start and mod_len, we'll
3704 			 * just end up logging more csums than we need and it
3705 			 * will be ok.
3706 			 */
3707 		} else {
3708 			if (ordered->file_offset + ordered->len <
3709 			    mod_start + mod_len) {
3710 				mod_len = (mod_start + mod_len) -
3711 					(ordered->file_offset + ordered->len);
3712 				mod_start = ordered->file_offset +
3713 					ordered->len;
3714 			} else {
3715 				mod_len = 0;
3716 			}
3717 		}
3718 
3719 		/*
3720 		 * To keep us from looping for the above case of an ordered
3721 		 * extent that falls inside of the logged extent.
3722 		 */
3723 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3724 				     &ordered->flags))
3725 			continue;
3726 
3727 		if (ordered->csum_bytes_left) {
3728 			btrfs_start_ordered_extent(inode, ordered, 0);
3729 			wait_event(ordered->wait,
3730 				   ordered->csum_bytes_left == 0);
3731 		}
3732 
3733 		list_for_each_entry(sum, &ordered->list, list) {
3734 			ret = btrfs_csum_file_blocks(trans, log, sum);
3735 			if (ret)
3736 				goto unlocked;
3737 		}
3738 
3739 	}
3740 unlocked:
3741 
3742 	if (!mod_len || ret)
3743 		return ret;
3744 
3745 	if (em->compress_type) {
3746 		csum_offset = 0;
3747 		csum_len = block_len;
3748 	} else {
3749 		csum_offset = mod_start - em->start;
3750 		csum_len = mod_len;
3751 	}
3752 
3753 	/* block start is already adjusted for the file extent offset. */
3754 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3755 				       em->block_start + csum_offset,
3756 				       em->block_start + csum_offset +
3757 				       csum_len - 1, &ordered_sums, 0);
3758 	if (ret)
3759 		return ret;
3760 
3761 	while (!list_empty(&ordered_sums)) {
3762 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3763 						   struct btrfs_ordered_sum,
3764 						   list);
3765 		if (!ret)
3766 			ret = btrfs_csum_file_blocks(trans, log, sums);
3767 		list_del(&sums->list);
3768 		kfree(sums);
3769 	}
3770 
3771 	return ret;
3772 }
3773 
3774 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3775 				     struct btrfs_root *root,
3776 				     struct inode *inode,
3777 				     struct btrfs_path *path,
3778 				     struct list_head *logged_list)
3779 {
3780 	struct extent_map *em, *n;
3781 	struct list_head extents;
3782 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3783 	u64 test_gen;
3784 	int ret = 0;
3785 	int num = 0;
3786 
3787 	INIT_LIST_HEAD(&extents);
3788 
3789 	write_lock(&tree->lock);
3790 	test_gen = root->fs_info->last_trans_committed;
3791 
3792 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3793 		list_del_init(&em->list);
3794 
3795 		/*
3796 		 * Just an arbitrary number, this can be really CPU intensive
3797 		 * once we start getting a lot of extents, and really once we
3798 		 * have a bunch of extents we just want to commit since it will
3799 		 * be faster.
3800 		 */
3801 		if (++num > 32768) {
3802 			list_del_init(&tree->modified_extents);
3803 			ret = -EFBIG;
3804 			goto process;
3805 		}
3806 
3807 		if (em->generation <= test_gen)
3808 			continue;
3809 		/* Need a ref to keep it from getting evicted from cache */
3810 		atomic_inc(&em->refs);
3811 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3812 		list_add_tail(&em->list, &extents);
3813 		num++;
3814 	}
3815 
3816 	list_sort(NULL, &extents, extent_cmp);
3817 
3818 process:
3819 	while (!list_empty(&extents)) {
3820 		em = list_entry(extents.next, struct extent_map, list);
3821 
3822 		list_del_init(&em->list);
3823 
3824 		/*
3825 		 * If we had an error we just need to delete everybody from our
3826 		 * private list.
3827 		 */
3828 		if (ret) {
3829 			clear_em_logging(tree, em);
3830 			free_extent_map(em);
3831 			continue;
3832 		}
3833 
3834 		write_unlock(&tree->lock);
3835 
3836 		ret = log_one_extent(trans, inode, root, em, path, logged_list);
3837 		write_lock(&tree->lock);
3838 		clear_em_logging(tree, em);
3839 		free_extent_map(em);
3840 	}
3841 	WARN_ON(!list_empty(&extents));
3842 	write_unlock(&tree->lock);
3843 
3844 	btrfs_release_path(path);
3845 	return ret;
3846 }
3847 
3848 /* log a single inode in the tree log.
3849  * At least one parent directory for this inode must exist in the tree
3850  * or be logged already.
3851  *
3852  * Any items from this inode changed by the current transaction are copied
3853  * to the log tree.  An extra reference is taken on any extents in this
3854  * file, allowing us to avoid a whole pile of corner cases around logging
3855  * blocks that have been removed from the tree.
3856  *
3857  * See LOG_INODE_ALL and related defines for a description of what inode_only
3858  * does.
3859  *
3860  * This handles both files and directories.
3861  */
3862 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3863 			   struct btrfs_root *root, struct inode *inode,
3864 			   int inode_only,
3865 			   const loff_t start,
3866 			   const loff_t end)
3867 {
3868 	struct btrfs_path *path;
3869 	struct btrfs_path *dst_path;
3870 	struct btrfs_key min_key;
3871 	struct btrfs_key max_key;
3872 	struct btrfs_root *log = root->log_root;
3873 	struct extent_buffer *src = NULL;
3874 	LIST_HEAD(logged_list);
3875 	u64 last_extent = 0;
3876 	int err = 0;
3877 	int ret;
3878 	int nritems;
3879 	int ins_start_slot = 0;
3880 	int ins_nr;
3881 	bool fast_search = false;
3882 	u64 ino = btrfs_ino(inode);
3883 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3884 
3885 	path = btrfs_alloc_path();
3886 	if (!path)
3887 		return -ENOMEM;
3888 	dst_path = btrfs_alloc_path();
3889 	if (!dst_path) {
3890 		btrfs_free_path(path);
3891 		return -ENOMEM;
3892 	}
3893 
3894 	min_key.objectid = ino;
3895 	min_key.type = BTRFS_INODE_ITEM_KEY;
3896 	min_key.offset = 0;
3897 
3898 	max_key.objectid = ino;
3899 
3900 
3901 	/* today the code can only do partial logging of directories */
3902 	if (S_ISDIR(inode->i_mode) ||
3903 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3904 		       &BTRFS_I(inode)->runtime_flags) &&
3905 	     inode_only == LOG_INODE_EXISTS))
3906 		max_key.type = BTRFS_XATTR_ITEM_KEY;
3907 	else
3908 		max_key.type = (u8)-1;
3909 	max_key.offset = (u64)-1;
3910 
3911 	/* Only run delayed items if we are a dir or a new file */
3912 	if (S_ISDIR(inode->i_mode) ||
3913 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3914 		ret = btrfs_commit_inode_delayed_items(trans, inode);
3915 		if (ret) {
3916 			btrfs_free_path(path);
3917 			btrfs_free_path(dst_path);
3918 			return ret;
3919 		}
3920 	}
3921 
3922 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3923 
3924 	btrfs_get_logged_extents(inode, &logged_list);
3925 
3926 	/*
3927 	 * a brute force approach to making sure we get the most uptodate
3928 	 * copies of everything.
3929 	 */
3930 	if (S_ISDIR(inode->i_mode)) {
3931 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3932 
3933 		if (inode_only == LOG_INODE_EXISTS)
3934 			max_key_type = BTRFS_XATTR_ITEM_KEY;
3935 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3936 	} else {
3937 		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3938 				       &BTRFS_I(inode)->runtime_flags)) {
3939 			clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3940 				  &BTRFS_I(inode)->runtime_flags);
3941 			ret = btrfs_truncate_inode_items(trans, log,
3942 							 inode, 0, 0);
3943 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3944 					      &BTRFS_I(inode)->runtime_flags) ||
3945 			   inode_only == LOG_INODE_EXISTS) {
3946 			if (inode_only == LOG_INODE_ALL)
3947 				fast_search = true;
3948 			max_key.type = BTRFS_XATTR_ITEM_KEY;
3949 			ret = drop_objectid_items(trans, log, path, ino,
3950 						  max_key.type);
3951 		} else {
3952 			if (inode_only == LOG_INODE_ALL)
3953 				fast_search = true;
3954 			ret = log_inode_item(trans, log, dst_path, inode);
3955 			if (ret) {
3956 				err = ret;
3957 				goto out_unlock;
3958 			}
3959 			goto log_extents;
3960 		}
3961 
3962 	}
3963 	if (ret) {
3964 		err = ret;
3965 		goto out_unlock;
3966 	}
3967 	path->keep_locks = 1;
3968 
3969 	while (1) {
3970 		ins_nr = 0;
3971 		ret = btrfs_search_forward(root, &min_key,
3972 					   path, trans->transid);
3973 		if (ret != 0)
3974 			break;
3975 again:
3976 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
3977 		if (min_key.objectid != ino)
3978 			break;
3979 		if (min_key.type > max_key.type)
3980 			break;
3981 
3982 		src = path->nodes[0];
3983 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3984 			ins_nr++;
3985 			goto next_slot;
3986 		} else if (!ins_nr) {
3987 			ins_start_slot = path->slots[0];
3988 			ins_nr = 1;
3989 			goto next_slot;
3990 		}
3991 
3992 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
3993 				 ins_start_slot, ins_nr, inode_only);
3994 		if (ret < 0) {
3995 			err = ret;
3996 			goto out_unlock;
3997 		} if (ret) {
3998 			ins_nr = 0;
3999 			btrfs_release_path(path);
4000 			continue;
4001 		}
4002 		ins_nr = 1;
4003 		ins_start_slot = path->slots[0];
4004 next_slot:
4005 
4006 		nritems = btrfs_header_nritems(path->nodes[0]);
4007 		path->slots[0]++;
4008 		if (path->slots[0] < nritems) {
4009 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4010 					      path->slots[0]);
4011 			goto again;
4012 		}
4013 		if (ins_nr) {
4014 			ret = copy_items(trans, inode, dst_path, path,
4015 					 &last_extent, ins_start_slot,
4016 					 ins_nr, inode_only);
4017 			if (ret < 0) {
4018 				err = ret;
4019 				goto out_unlock;
4020 			}
4021 			ret = 0;
4022 			ins_nr = 0;
4023 		}
4024 		btrfs_release_path(path);
4025 
4026 		if (min_key.offset < (u64)-1) {
4027 			min_key.offset++;
4028 		} else if (min_key.type < max_key.type) {
4029 			min_key.type++;
4030 			min_key.offset = 0;
4031 		} else {
4032 			break;
4033 		}
4034 	}
4035 	if (ins_nr) {
4036 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4037 				 ins_start_slot, ins_nr, inode_only);
4038 		if (ret < 0) {
4039 			err = ret;
4040 			goto out_unlock;
4041 		}
4042 		ret = 0;
4043 		ins_nr = 0;
4044 	}
4045 
4046 log_extents:
4047 	btrfs_release_path(path);
4048 	btrfs_release_path(dst_path);
4049 	if (fast_search) {
4050 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4051 						&logged_list);
4052 		if (ret) {
4053 			err = ret;
4054 			goto out_unlock;
4055 		}
4056 	} else if (inode_only == LOG_INODE_ALL) {
4057 		struct extent_map *em, *n;
4058 
4059 		write_lock(&em_tree->lock);
4060 		/*
4061 		 * We can't just remove every em if we're called for a ranged
4062 		 * fsync - that is, one that doesn't cover the whole possible
4063 		 * file range (0 to LLONG_MAX). This is because we can have
4064 		 * em's that fall outside the range we're logging and therefore
4065 		 * their ordered operations haven't completed yet
4066 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4067 		 * didn't get their respective file extent item in the fs/subvol
4068 		 * tree yet, and need to let the next fast fsync (one which
4069 		 * consults the list of modified extent maps) find the em so
4070 		 * that it logs a matching file extent item and waits for the
4071 		 * respective ordered operation to complete (if it's still
4072 		 * running).
4073 		 *
4074 		 * Removing every em outside the range we're logging would make
4075 		 * the next fast fsync not log their matching file extent items,
4076 		 * therefore making us lose data after a log replay.
4077 		 */
4078 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4079 					 list) {
4080 			const u64 mod_end = em->mod_start + em->mod_len - 1;
4081 
4082 			if (em->mod_start >= start && mod_end <= end)
4083 				list_del_init(&em->list);
4084 		}
4085 		write_unlock(&em_tree->lock);
4086 	}
4087 
4088 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4089 		ret = log_directory_changes(trans, root, inode, path, dst_path);
4090 		if (ret) {
4091 			err = ret;
4092 			goto out_unlock;
4093 		}
4094 	}
4095 
4096 	BTRFS_I(inode)->logged_trans = trans->transid;
4097 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4098 out_unlock:
4099 	if (unlikely(err))
4100 		btrfs_put_logged_extents(&logged_list);
4101 	else
4102 		btrfs_submit_logged_extents(&logged_list, log);
4103 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4104 
4105 	btrfs_free_path(path);
4106 	btrfs_free_path(dst_path);
4107 	return err;
4108 }
4109 
4110 /*
4111  * follow the dentry parent pointers up the chain and see if any
4112  * of the directories in it require a full commit before they can
4113  * be logged.  Returns zero if nothing special needs to be done or 1 if
4114  * a full commit is required.
4115  */
4116 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4117 					       struct inode *inode,
4118 					       struct dentry *parent,
4119 					       struct super_block *sb,
4120 					       u64 last_committed)
4121 {
4122 	int ret = 0;
4123 	struct btrfs_root *root;
4124 	struct dentry *old_parent = NULL;
4125 	struct inode *orig_inode = inode;
4126 
4127 	/*
4128 	 * for regular files, if its inode is already on disk, we don't
4129 	 * have to worry about the parents at all.  This is because
4130 	 * we can use the last_unlink_trans field to record renames
4131 	 * and other fun in this file.
4132 	 */
4133 	if (S_ISREG(inode->i_mode) &&
4134 	    BTRFS_I(inode)->generation <= last_committed &&
4135 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4136 			goto out;
4137 
4138 	if (!S_ISDIR(inode->i_mode)) {
4139 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4140 			goto out;
4141 		inode = parent->d_inode;
4142 	}
4143 
4144 	while (1) {
4145 		/*
4146 		 * If we are logging a directory then we start with our inode,
4147 		 * not our parents inode, so we need to skipp setting the
4148 		 * logged_trans so that further down in the log code we don't
4149 		 * think this inode has already been logged.
4150 		 */
4151 		if (inode != orig_inode)
4152 			BTRFS_I(inode)->logged_trans = trans->transid;
4153 		smp_mb();
4154 
4155 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4156 			root = BTRFS_I(inode)->root;
4157 
4158 			/*
4159 			 * make sure any commits to the log are forced
4160 			 * to be full commits
4161 			 */
4162 			btrfs_set_log_full_commit(root->fs_info, trans);
4163 			ret = 1;
4164 			break;
4165 		}
4166 
4167 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4168 			break;
4169 
4170 		if (IS_ROOT(parent))
4171 			break;
4172 
4173 		parent = dget_parent(parent);
4174 		dput(old_parent);
4175 		old_parent = parent;
4176 		inode = parent->d_inode;
4177 
4178 	}
4179 	dput(old_parent);
4180 out:
4181 	return ret;
4182 }
4183 
4184 /*
4185  * helper function around btrfs_log_inode to make sure newly created
4186  * parent directories also end up in the log.  A minimal inode and backref
4187  * only logging is done of any parent directories that are older than
4188  * the last committed transaction
4189  */
4190 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4191 			    	  struct btrfs_root *root, struct inode *inode,
4192 				  struct dentry *parent,
4193 				  const loff_t start,
4194 				  const loff_t end,
4195 				  int exists_only,
4196 				  struct btrfs_log_ctx *ctx)
4197 {
4198 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4199 	struct super_block *sb;
4200 	struct dentry *old_parent = NULL;
4201 	int ret = 0;
4202 	u64 last_committed = root->fs_info->last_trans_committed;
4203 
4204 	sb = inode->i_sb;
4205 
4206 	if (btrfs_test_opt(root, NOTREELOG)) {
4207 		ret = 1;
4208 		goto end_no_trans;
4209 	}
4210 
4211 	/*
4212 	 * The prev transaction commit doesn't complete, we need do
4213 	 * full commit by ourselves.
4214 	 */
4215 	if (root->fs_info->last_trans_log_full_commit >
4216 	    root->fs_info->last_trans_committed) {
4217 		ret = 1;
4218 		goto end_no_trans;
4219 	}
4220 
4221 	if (root != BTRFS_I(inode)->root ||
4222 	    btrfs_root_refs(&root->root_item) == 0) {
4223 		ret = 1;
4224 		goto end_no_trans;
4225 	}
4226 
4227 	ret = check_parent_dirs_for_sync(trans, inode, parent,
4228 					 sb, last_committed);
4229 	if (ret)
4230 		goto end_no_trans;
4231 
4232 	if (btrfs_inode_in_log(inode, trans->transid)) {
4233 		ret = BTRFS_NO_LOG_SYNC;
4234 		goto end_no_trans;
4235 	}
4236 
4237 	ret = start_log_trans(trans, root, ctx);
4238 	if (ret)
4239 		goto end_no_trans;
4240 
4241 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end);
4242 	if (ret)
4243 		goto end_trans;
4244 
4245 	/*
4246 	 * for regular files, if its inode is already on disk, we don't
4247 	 * have to worry about the parents at all.  This is because
4248 	 * we can use the last_unlink_trans field to record renames
4249 	 * and other fun in this file.
4250 	 */
4251 	if (S_ISREG(inode->i_mode) &&
4252 	    BTRFS_I(inode)->generation <= last_committed &&
4253 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4254 		ret = 0;
4255 		goto end_trans;
4256 	}
4257 
4258 	inode_only = LOG_INODE_EXISTS;
4259 	while (1) {
4260 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4261 			break;
4262 
4263 		inode = parent->d_inode;
4264 		if (root != BTRFS_I(inode)->root)
4265 			break;
4266 
4267 		if (BTRFS_I(inode)->generation >
4268 		    root->fs_info->last_trans_committed) {
4269 			ret = btrfs_log_inode(trans, root, inode, inode_only,
4270 					      0, LLONG_MAX);
4271 			if (ret)
4272 				goto end_trans;
4273 		}
4274 		if (IS_ROOT(parent))
4275 			break;
4276 
4277 		parent = dget_parent(parent);
4278 		dput(old_parent);
4279 		old_parent = parent;
4280 	}
4281 	ret = 0;
4282 end_trans:
4283 	dput(old_parent);
4284 	if (ret < 0) {
4285 		btrfs_set_log_full_commit(root->fs_info, trans);
4286 		ret = 1;
4287 	}
4288 
4289 	if (ret)
4290 		btrfs_remove_log_ctx(root, ctx);
4291 	btrfs_end_log_trans(root);
4292 end_no_trans:
4293 	return ret;
4294 }
4295 
4296 /*
4297  * it is not safe to log dentry if the chunk root has added new
4298  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4299  * If this returns 1, you must commit the transaction to safely get your
4300  * data on disk.
4301  */
4302 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4303 			  struct btrfs_root *root, struct dentry *dentry,
4304 			  const loff_t start,
4305 			  const loff_t end,
4306 			  struct btrfs_log_ctx *ctx)
4307 {
4308 	struct dentry *parent = dget_parent(dentry);
4309 	int ret;
4310 
4311 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4312 				     start, end, 0, ctx);
4313 	dput(parent);
4314 
4315 	return ret;
4316 }
4317 
4318 /*
4319  * should be called during mount to recover any replay any log trees
4320  * from the FS
4321  */
4322 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4323 {
4324 	int ret;
4325 	struct btrfs_path *path;
4326 	struct btrfs_trans_handle *trans;
4327 	struct btrfs_key key;
4328 	struct btrfs_key found_key;
4329 	struct btrfs_key tmp_key;
4330 	struct btrfs_root *log;
4331 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4332 	struct walk_control wc = {
4333 		.process_func = process_one_buffer,
4334 		.stage = 0,
4335 	};
4336 
4337 	path = btrfs_alloc_path();
4338 	if (!path)
4339 		return -ENOMEM;
4340 
4341 	fs_info->log_root_recovering = 1;
4342 
4343 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4344 	if (IS_ERR(trans)) {
4345 		ret = PTR_ERR(trans);
4346 		goto error;
4347 	}
4348 
4349 	wc.trans = trans;
4350 	wc.pin = 1;
4351 
4352 	ret = walk_log_tree(trans, log_root_tree, &wc);
4353 	if (ret) {
4354 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
4355 			    "recovering log root tree.");
4356 		goto error;
4357 	}
4358 
4359 again:
4360 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
4361 	key.offset = (u64)-1;
4362 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4363 
4364 	while (1) {
4365 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4366 
4367 		if (ret < 0) {
4368 			btrfs_error(fs_info, ret,
4369 				    "Couldn't find tree log root.");
4370 			goto error;
4371 		}
4372 		if (ret > 0) {
4373 			if (path->slots[0] == 0)
4374 				break;
4375 			path->slots[0]--;
4376 		}
4377 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4378 				      path->slots[0]);
4379 		btrfs_release_path(path);
4380 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4381 			break;
4382 
4383 		log = btrfs_read_fs_root(log_root_tree, &found_key);
4384 		if (IS_ERR(log)) {
4385 			ret = PTR_ERR(log);
4386 			btrfs_error(fs_info, ret,
4387 				    "Couldn't read tree log root.");
4388 			goto error;
4389 		}
4390 
4391 		tmp_key.objectid = found_key.offset;
4392 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4393 		tmp_key.offset = (u64)-1;
4394 
4395 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4396 		if (IS_ERR(wc.replay_dest)) {
4397 			ret = PTR_ERR(wc.replay_dest);
4398 			free_extent_buffer(log->node);
4399 			free_extent_buffer(log->commit_root);
4400 			kfree(log);
4401 			btrfs_error(fs_info, ret, "Couldn't read target root "
4402 				    "for tree log recovery.");
4403 			goto error;
4404 		}
4405 
4406 		wc.replay_dest->log_root = log;
4407 		btrfs_record_root_in_trans(trans, wc.replay_dest);
4408 		ret = walk_log_tree(trans, log, &wc);
4409 
4410 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4411 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4412 						      path);
4413 		}
4414 
4415 		key.offset = found_key.offset - 1;
4416 		wc.replay_dest->log_root = NULL;
4417 		free_extent_buffer(log->node);
4418 		free_extent_buffer(log->commit_root);
4419 		kfree(log);
4420 
4421 		if (ret)
4422 			goto error;
4423 
4424 		if (found_key.offset == 0)
4425 			break;
4426 	}
4427 	btrfs_release_path(path);
4428 
4429 	/* step one is to pin it all, step two is to replay just inodes */
4430 	if (wc.pin) {
4431 		wc.pin = 0;
4432 		wc.process_func = replay_one_buffer;
4433 		wc.stage = LOG_WALK_REPLAY_INODES;
4434 		goto again;
4435 	}
4436 	/* step three is to replay everything */
4437 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4438 		wc.stage++;
4439 		goto again;
4440 	}
4441 
4442 	btrfs_free_path(path);
4443 
4444 	/* step 4: commit the transaction, which also unpins the blocks */
4445 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4446 	if (ret)
4447 		return ret;
4448 
4449 	free_extent_buffer(log_root_tree->node);
4450 	log_root_tree->log_root = NULL;
4451 	fs_info->log_root_recovering = 0;
4452 	kfree(log_root_tree);
4453 
4454 	return 0;
4455 error:
4456 	if (wc.trans)
4457 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4458 	btrfs_free_path(path);
4459 	return ret;
4460 }
4461 
4462 /*
4463  * there are some corner cases where we want to force a full
4464  * commit instead of allowing a directory to be logged.
4465  *
4466  * They revolve around files there were unlinked from the directory, and
4467  * this function updates the parent directory so that a full commit is
4468  * properly done if it is fsync'd later after the unlinks are done.
4469  */
4470 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4471 			     struct inode *dir, struct inode *inode,
4472 			     int for_rename)
4473 {
4474 	/*
4475 	 * when we're logging a file, if it hasn't been renamed
4476 	 * or unlinked, and its inode is fully committed on disk,
4477 	 * we don't have to worry about walking up the directory chain
4478 	 * to log its parents.
4479 	 *
4480 	 * So, we use the last_unlink_trans field to put this transid
4481 	 * into the file.  When the file is logged we check it and
4482 	 * don't log the parents if the file is fully on disk.
4483 	 */
4484 	if (S_ISREG(inode->i_mode))
4485 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4486 
4487 	/*
4488 	 * if this directory was already logged any new
4489 	 * names for this file/dir will get recorded
4490 	 */
4491 	smp_mb();
4492 	if (BTRFS_I(dir)->logged_trans == trans->transid)
4493 		return;
4494 
4495 	/*
4496 	 * if the inode we're about to unlink was logged,
4497 	 * the log will be properly updated for any new names
4498 	 */
4499 	if (BTRFS_I(inode)->logged_trans == trans->transid)
4500 		return;
4501 
4502 	/*
4503 	 * when renaming files across directories, if the directory
4504 	 * there we're unlinking from gets fsync'd later on, there's
4505 	 * no way to find the destination directory later and fsync it
4506 	 * properly.  So, we have to be conservative and force commits
4507 	 * so the new name gets discovered.
4508 	 */
4509 	if (for_rename)
4510 		goto record;
4511 
4512 	/* we can safely do the unlink without any special recording */
4513 	return;
4514 
4515 record:
4516 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
4517 }
4518 
4519 /*
4520  * Call this after adding a new name for a file and it will properly
4521  * update the log to reflect the new name.
4522  *
4523  * It will return zero if all goes well, and it will return 1 if a
4524  * full transaction commit is required.
4525  */
4526 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4527 			struct inode *inode, struct inode *old_dir,
4528 			struct dentry *parent)
4529 {
4530 	struct btrfs_root * root = BTRFS_I(inode)->root;
4531 
4532 	/*
4533 	 * this will force the logging code to walk the dentry chain
4534 	 * up for the file
4535 	 */
4536 	if (S_ISREG(inode->i_mode))
4537 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4538 
4539 	/*
4540 	 * if this inode hasn't been logged and directory we're renaming it
4541 	 * from hasn't been logged, we don't need to log it
4542 	 */
4543 	if (BTRFS_I(inode)->logged_trans <=
4544 	    root->fs_info->last_trans_committed &&
4545 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4546 		    root->fs_info->last_trans_committed))
4547 		return 0;
4548 
4549 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4550 				      LLONG_MAX, 1, NULL);
4551 }
4552 
4553