xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 3381df09)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 #include "block-group.h"
22 #include "space-info.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   u64 start,
100 			   u64 end,
101 			   struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 			     struct btrfs_root *root,
104 			     struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 				       struct btrfs_root *root,
107 				       struct btrfs_root *log,
108 				       struct btrfs_path *path,
109 				       u64 dirid, int del_all);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	int ret = 0;
145 
146 	mutex_lock(&root->log_mutex);
147 
148 	if (root->log_root) {
149 		if (btrfs_need_log_full_commit(trans)) {
150 			ret = -EAGAIN;
151 			goto out;
152 		}
153 
154 		if (!root->log_start_pid) {
155 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 			root->log_start_pid = current->pid;
157 		} else if (root->log_start_pid != current->pid) {
158 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 		}
160 	} else {
161 		mutex_lock(&fs_info->tree_log_mutex);
162 		if (!fs_info->log_root_tree)
163 			ret = btrfs_init_log_root_tree(trans, fs_info);
164 		mutex_unlock(&fs_info->tree_log_mutex);
165 		if (ret)
166 			goto out;
167 
168 		ret = btrfs_add_log_tree(trans, root);
169 		if (ret)
170 			goto out;
171 
172 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
173 		root->log_start_pid = current->pid;
174 	}
175 
176 	atomic_inc(&root->log_batch);
177 	atomic_inc(&root->log_writers);
178 	if (ctx) {
179 		int index = root->log_transid % 2;
180 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
181 		ctx->log_transid = root->log_transid;
182 	}
183 
184 out:
185 	mutex_unlock(&root->log_mutex);
186 	return ret;
187 }
188 
189 /*
190  * returns 0 if there was a log transaction running and we were able
191  * to join, or returns -ENOENT if there were not transactions
192  * in progress
193  */
194 static int join_running_log_trans(struct btrfs_root *root)
195 {
196 	int ret = -ENOENT;
197 
198 	mutex_lock(&root->log_mutex);
199 	if (root->log_root) {
200 		ret = 0;
201 		atomic_inc(&root->log_writers);
202 	}
203 	mutex_unlock(&root->log_mutex);
204 	return ret;
205 }
206 
207 /*
208  * This either makes the current running log transaction wait
209  * until you call btrfs_end_log_trans() or it makes any future
210  * log transactions wait until you call btrfs_end_log_trans()
211  */
212 void btrfs_pin_log_trans(struct btrfs_root *root)
213 {
214 	mutex_lock(&root->log_mutex);
215 	atomic_inc(&root->log_writers);
216 	mutex_unlock(&root->log_mutex);
217 }
218 
219 /*
220  * indicate we're done making changes to the log tree
221  * and wake up anyone waiting to do a sync
222  */
223 void btrfs_end_log_trans(struct btrfs_root *root)
224 {
225 	if (atomic_dec_and_test(&root->log_writers)) {
226 		/* atomic_dec_and_test implies a barrier */
227 		cond_wake_up_nomb(&root->log_writer_wait);
228 	}
229 }
230 
231 static int btrfs_write_tree_block(struct extent_buffer *buf)
232 {
233 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
234 					buf->start + buf->len - 1);
235 }
236 
237 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
238 {
239 	filemap_fdatawait_range(buf->pages[0]->mapping,
240 			        buf->start, buf->start + buf->len - 1);
241 }
242 
243 /*
244  * the walk control struct is used to pass state down the chain when
245  * processing the log tree.  The stage field tells us which part
246  * of the log tree processing we are currently doing.  The others
247  * are state fields used for that specific part
248  */
249 struct walk_control {
250 	/* should we free the extent on disk when done?  This is used
251 	 * at transaction commit time while freeing a log tree
252 	 */
253 	int free;
254 
255 	/* should we write out the extent buffer?  This is used
256 	 * while flushing the log tree to disk during a sync
257 	 */
258 	int write;
259 
260 	/* should we wait for the extent buffer io to finish?  Also used
261 	 * while flushing the log tree to disk for a sync
262 	 */
263 	int wait;
264 
265 	/* pin only walk, we record which extents on disk belong to the
266 	 * log trees
267 	 */
268 	int pin;
269 
270 	/* what stage of the replay code we're currently in */
271 	int stage;
272 
273 	/*
274 	 * Ignore any items from the inode currently being processed. Needs
275 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
276 	 * the LOG_WALK_REPLAY_INODES stage.
277 	 */
278 	bool ignore_cur_inode;
279 
280 	/* the root we are currently replaying */
281 	struct btrfs_root *replay_dest;
282 
283 	/* the trans handle for the current replay */
284 	struct btrfs_trans_handle *trans;
285 
286 	/* the function that gets used to process blocks we find in the
287 	 * tree.  Note the extent_buffer might not be up to date when it is
288 	 * passed in, and it must be checked or read if you need the data
289 	 * inside it
290 	 */
291 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
292 			    struct walk_control *wc, u64 gen, int level);
293 };
294 
295 /*
296  * process_func used to pin down extents, write them or wait on them
297  */
298 static int process_one_buffer(struct btrfs_root *log,
299 			      struct extent_buffer *eb,
300 			      struct walk_control *wc, u64 gen, int level)
301 {
302 	struct btrfs_fs_info *fs_info = log->fs_info;
303 	int ret = 0;
304 
305 	/*
306 	 * If this fs is mixed then we need to be able to process the leaves to
307 	 * pin down any logged extents, so we have to read the block.
308 	 */
309 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
310 		ret = btrfs_read_buffer(eb, gen, level, NULL);
311 		if (ret)
312 			return ret;
313 	}
314 
315 	if (wc->pin)
316 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
317 						      eb->len);
318 
319 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
320 		if (wc->pin && btrfs_header_level(eb) == 0)
321 			ret = btrfs_exclude_logged_extents(eb);
322 		if (wc->write)
323 			btrfs_write_tree_block(eb);
324 		if (wc->wait)
325 			btrfs_wait_tree_block_writeback(eb);
326 	}
327 	return ret;
328 }
329 
330 /*
331  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
332  * to the src data we are copying out.
333  *
334  * root is the tree we are copying into, and path is a scratch
335  * path for use in this function (it should be released on entry and
336  * will be released on exit).
337  *
338  * If the key is already in the destination tree the existing item is
339  * overwritten.  If the existing item isn't big enough, it is extended.
340  * If it is too large, it is truncated.
341  *
342  * If the key isn't in the destination yet, a new item is inserted.
343  */
344 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
345 				   struct btrfs_root *root,
346 				   struct btrfs_path *path,
347 				   struct extent_buffer *eb, int slot,
348 				   struct btrfs_key *key)
349 {
350 	int ret;
351 	u32 item_size;
352 	u64 saved_i_size = 0;
353 	int save_old_i_size = 0;
354 	unsigned long src_ptr;
355 	unsigned long dst_ptr;
356 	int overwrite_root = 0;
357 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
358 
359 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
360 		overwrite_root = 1;
361 
362 	item_size = btrfs_item_size_nr(eb, slot);
363 	src_ptr = btrfs_item_ptr_offset(eb, slot);
364 
365 	/* look for the key in the destination tree */
366 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
367 	if (ret < 0)
368 		return ret;
369 
370 	if (ret == 0) {
371 		char *src_copy;
372 		char *dst_copy;
373 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
374 						  path->slots[0]);
375 		if (dst_size != item_size)
376 			goto insert;
377 
378 		if (item_size == 0) {
379 			btrfs_release_path(path);
380 			return 0;
381 		}
382 		dst_copy = kmalloc(item_size, GFP_NOFS);
383 		src_copy = kmalloc(item_size, GFP_NOFS);
384 		if (!dst_copy || !src_copy) {
385 			btrfs_release_path(path);
386 			kfree(dst_copy);
387 			kfree(src_copy);
388 			return -ENOMEM;
389 		}
390 
391 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
392 
393 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
394 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
395 				   item_size);
396 		ret = memcmp(dst_copy, src_copy, item_size);
397 
398 		kfree(dst_copy);
399 		kfree(src_copy);
400 		/*
401 		 * they have the same contents, just return, this saves
402 		 * us from cowing blocks in the destination tree and doing
403 		 * extra writes that may not have been done by a previous
404 		 * sync
405 		 */
406 		if (ret == 0) {
407 			btrfs_release_path(path);
408 			return 0;
409 		}
410 
411 		/*
412 		 * We need to load the old nbytes into the inode so when we
413 		 * replay the extents we've logged we get the right nbytes.
414 		 */
415 		if (inode_item) {
416 			struct btrfs_inode_item *item;
417 			u64 nbytes;
418 			u32 mode;
419 
420 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
421 					      struct btrfs_inode_item);
422 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
423 			item = btrfs_item_ptr(eb, slot,
424 					      struct btrfs_inode_item);
425 			btrfs_set_inode_nbytes(eb, item, nbytes);
426 
427 			/*
428 			 * If this is a directory we need to reset the i_size to
429 			 * 0 so that we can set it up properly when replaying
430 			 * the rest of the items in this log.
431 			 */
432 			mode = btrfs_inode_mode(eb, item);
433 			if (S_ISDIR(mode))
434 				btrfs_set_inode_size(eb, item, 0);
435 		}
436 	} else if (inode_item) {
437 		struct btrfs_inode_item *item;
438 		u32 mode;
439 
440 		/*
441 		 * New inode, set nbytes to 0 so that the nbytes comes out
442 		 * properly when we replay the extents.
443 		 */
444 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
445 		btrfs_set_inode_nbytes(eb, item, 0);
446 
447 		/*
448 		 * If this is a directory we need to reset the i_size to 0 so
449 		 * that we can set it up properly when replaying the rest of
450 		 * the items in this log.
451 		 */
452 		mode = btrfs_inode_mode(eb, item);
453 		if (S_ISDIR(mode))
454 			btrfs_set_inode_size(eb, item, 0);
455 	}
456 insert:
457 	btrfs_release_path(path);
458 	/* try to insert the key into the destination tree */
459 	path->skip_release_on_error = 1;
460 	ret = btrfs_insert_empty_item(trans, root, path,
461 				      key, item_size);
462 	path->skip_release_on_error = 0;
463 
464 	/* make sure any existing item is the correct size */
465 	if (ret == -EEXIST || ret == -EOVERFLOW) {
466 		u32 found_size;
467 		found_size = btrfs_item_size_nr(path->nodes[0],
468 						path->slots[0]);
469 		if (found_size > item_size)
470 			btrfs_truncate_item(path, item_size, 1);
471 		else if (found_size < item_size)
472 			btrfs_extend_item(path, item_size - found_size);
473 	} else if (ret) {
474 		return ret;
475 	}
476 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
477 					path->slots[0]);
478 
479 	/* don't overwrite an existing inode if the generation number
480 	 * was logged as zero.  This is done when the tree logging code
481 	 * is just logging an inode to make sure it exists after recovery.
482 	 *
483 	 * Also, don't overwrite i_size on directories during replay.
484 	 * log replay inserts and removes directory items based on the
485 	 * state of the tree found in the subvolume, and i_size is modified
486 	 * as it goes
487 	 */
488 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
489 		struct btrfs_inode_item *src_item;
490 		struct btrfs_inode_item *dst_item;
491 
492 		src_item = (struct btrfs_inode_item *)src_ptr;
493 		dst_item = (struct btrfs_inode_item *)dst_ptr;
494 
495 		if (btrfs_inode_generation(eb, src_item) == 0) {
496 			struct extent_buffer *dst_eb = path->nodes[0];
497 			const u64 ino_size = btrfs_inode_size(eb, src_item);
498 
499 			/*
500 			 * For regular files an ino_size == 0 is used only when
501 			 * logging that an inode exists, as part of a directory
502 			 * fsync, and the inode wasn't fsynced before. In this
503 			 * case don't set the size of the inode in the fs/subvol
504 			 * tree, otherwise we would be throwing valid data away.
505 			 */
506 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
507 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
508 			    ino_size != 0) {
509 				struct btrfs_map_token token;
510 
511 				btrfs_init_map_token(&token, dst_eb);
512 				btrfs_set_token_inode_size(dst_eb, dst_item,
513 							   ino_size, &token);
514 			}
515 			goto no_copy;
516 		}
517 
518 		if (overwrite_root &&
519 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
520 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
521 			save_old_i_size = 1;
522 			saved_i_size = btrfs_inode_size(path->nodes[0],
523 							dst_item);
524 		}
525 	}
526 
527 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
528 			   src_ptr, item_size);
529 
530 	if (save_old_i_size) {
531 		struct btrfs_inode_item *dst_item;
532 		dst_item = (struct btrfs_inode_item *)dst_ptr;
533 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
534 	}
535 
536 	/* make sure the generation is filled in */
537 	if (key->type == BTRFS_INODE_ITEM_KEY) {
538 		struct btrfs_inode_item *dst_item;
539 		dst_item = (struct btrfs_inode_item *)dst_ptr;
540 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
541 			btrfs_set_inode_generation(path->nodes[0], dst_item,
542 						   trans->transid);
543 		}
544 	}
545 no_copy:
546 	btrfs_mark_buffer_dirty(path->nodes[0]);
547 	btrfs_release_path(path);
548 	return 0;
549 }
550 
551 /*
552  * simple helper to read an inode off the disk from a given root
553  * This can only be called for subvolume roots and not for the log
554  */
555 static noinline struct inode *read_one_inode(struct btrfs_root *root,
556 					     u64 objectid)
557 {
558 	struct btrfs_key key;
559 	struct inode *inode;
560 
561 	key.objectid = objectid;
562 	key.type = BTRFS_INODE_ITEM_KEY;
563 	key.offset = 0;
564 	inode = btrfs_iget(root->fs_info->sb, &key, root);
565 	if (IS_ERR(inode))
566 		inode = NULL;
567 	return inode;
568 }
569 
570 /* replays a single extent in 'eb' at 'slot' with 'key' into the
571  * subvolume 'root'.  path is released on entry and should be released
572  * on exit.
573  *
574  * extents in the log tree have not been allocated out of the extent
575  * tree yet.  So, this completes the allocation, taking a reference
576  * as required if the extent already exists or creating a new extent
577  * if it isn't in the extent allocation tree yet.
578  *
579  * The extent is inserted into the file, dropping any existing extents
580  * from the file that overlap the new one.
581  */
582 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
583 				      struct btrfs_root *root,
584 				      struct btrfs_path *path,
585 				      struct extent_buffer *eb, int slot,
586 				      struct btrfs_key *key)
587 {
588 	struct btrfs_fs_info *fs_info = root->fs_info;
589 	int found_type;
590 	u64 extent_end;
591 	u64 start = key->offset;
592 	u64 nbytes = 0;
593 	struct btrfs_file_extent_item *item;
594 	struct inode *inode = NULL;
595 	unsigned long size;
596 	int ret = 0;
597 
598 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
599 	found_type = btrfs_file_extent_type(eb, item);
600 
601 	if (found_type == BTRFS_FILE_EXTENT_REG ||
602 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
603 		nbytes = btrfs_file_extent_num_bytes(eb, item);
604 		extent_end = start + nbytes;
605 
606 		/*
607 		 * We don't add to the inodes nbytes if we are prealloc or a
608 		 * hole.
609 		 */
610 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
611 			nbytes = 0;
612 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
613 		size = btrfs_file_extent_ram_bytes(eb, item);
614 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
615 		extent_end = ALIGN(start + size,
616 				   fs_info->sectorsize);
617 	} else {
618 		ret = 0;
619 		goto out;
620 	}
621 
622 	inode = read_one_inode(root, key->objectid);
623 	if (!inode) {
624 		ret = -EIO;
625 		goto out;
626 	}
627 
628 	/*
629 	 * first check to see if we already have this extent in the
630 	 * file.  This must be done before the btrfs_drop_extents run
631 	 * so we don't try to drop this extent.
632 	 */
633 	ret = btrfs_lookup_file_extent(trans, root, path,
634 			btrfs_ino(BTRFS_I(inode)), start, 0);
635 
636 	if (ret == 0 &&
637 	    (found_type == BTRFS_FILE_EXTENT_REG ||
638 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
639 		struct btrfs_file_extent_item cmp1;
640 		struct btrfs_file_extent_item cmp2;
641 		struct btrfs_file_extent_item *existing;
642 		struct extent_buffer *leaf;
643 
644 		leaf = path->nodes[0];
645 		existing = btrfs_item_ptr(leaf, path->slots[0],
646 					  struct btrfs_file_extent_item);
647 
648 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
649 				   sizeof(cmp1));
650 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
651 				   sizeof(cmp2));
652 
653 		/*
654 		 * we already have a pointer to this exact extent,
655 		 * we don't have to do anything
656 		 */
657 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
658 			btrfs_release_path(path);
659 			goto out;
660 		}
661 	}
662 	btrfs_release_path(path);
663 
664 	/* drop any overlapping extents */
665 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
666 	if (ret)
667 		goto out;
668 
669 	if (found_type == BTRFS_FILE_EXTENT_REG ||
670 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
671 		u64 offset;
672 		unsigned long dest_offset;
673 		struct btrfs_key ins;
674 
675 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
676 		    btrfs_fs_incompat(fs_info, NO_HOLES))
677 			goto update_inode;
678 
679 		ret = btrfs_insert_empty_item(trans, root, path, key,
680 					      sizeof(*item));
681 		if (ret)
682 			goto out;
683 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
684 						    path->slots[0]);
685 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
686 				(unsigned long)item,  sizeof(*item));
687 
688 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
689 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
690 		ins.type = BTRFS_EXTENT_ITEM_KEY;
691 		offset = key->offset - btrfs_file_extent_offset(eb, item);
692 
693 		/*
694 		 * Manually record dirty extent, as here we did a shallow
695 		 * file extent item copy and skip normal backref update,
696 		 * but modifying extent tree all by ourselves.
697 		 * So need to manually record dirty extent for qgroup,
698 		 * as the owner of the file extent changed from log tree
699 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
700 		 */
701 		ret = btrfs_qgroup_trace_extent(trans,
702 				btrfs_file_extent_disk_bytenr(eb, item),
703 				btrfs_file_extent_disk_num_bytes(eb, item),
704 				GFP_NOFS);
705 		if (ret < 0)
706 			goto out;
707 
708 		if (ins.objectid > 0) {
709 			struct btrfs_ref ref = { 0 };
710 			u64 csum_start;
711 			u64 csum_end;
712 			LIST_HEAD(ordered_sums);
713 
714 			/*
715 			 * is this extent already allocated in the extent
716 			 * allocation tree?  If so, just add a reference
717 			 */
718 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
719 						ins.offset);
720 			if (ret == 0) {
721 				btrfs_init_generic_ref(&ref,
722 						BTRFS_ADD_DELAYED_REF,
723 						ins.objectid, ins.offset, 0);
724 				btrfs_init_data_ref(&ref,
725 						root->root_key.objectid,
726 						key->objectid, offset);
727 				ret = btrfs_inc_extent_ref(trans, &ref);
728 				if (ret)
729 					goto out;
730 			} else {
731 				/*
732 				 * insert the extent pointer in the extent
733 				 * allocation tree
734 				 */
735 				ret = btrfs_alloc_logged_file_extent(trans,
736 						root->root_key.objectid,
737 						key->objectid, offset, &ins);
738 				if (ret)
739 					goto out;
740 			}
741 			btrfs_release_path(path);
742 
743 			if (btrfs_file_extent_compression(eb, item)) {
744 				csum_start = ins.objectid;
745 				csum_end = csum_start + ins.offset;
746 			} else {
747 				csum_start = ins.objectid +
748 					btrfs_file_extent_offset(eb, item);
749 				csum_end = csum_start +
750 					btrfs_file_extent_num_bytes(eb, item);
751 			}
752 
753 			ret = btrfs_lookup_csums_range(root->log_root,
754 						csum_start, csum_end - 1,
755 						&ordered_sums, 0);
756 			if (ret)
757 				goto out;
758 			/*
759 			 * Now delete all existing cums in the csum root that
760 			 * cover our range. We do this because we can have an
761 			 * extent that is completely referenced by one file
762 			 * extent item and partially referenced by another
763 			 * file extent item (like after using the clone or
764 			 * extent_same ioctls). In this case if we end up doing
765 			 * the replay of the one that partially references the
766 			 * extent first, and we do not do the csum deletion
767 			 * below, we can get 2 csum items in the csum tree that
768 			 * overlap each other. For example, imagine our log has
769 			 * the two following file extent items:
770 			 *
771 			 * key (257 EXTENT_DATA 409600)
772 			 *     extent data disk byte 12845056 nr 102400
773 			 *     extent data offset 20480 nr 20480 ram 102400
774 			 *
775 			 * key (257 EXTENT_DATA 819200)
776 			 *     extent data disk byte 12845056 nr 102400
777 			 *     extent data offset 0 nr 102400 ram 102400
778 			 *
779 			 * Where the second one fully references the 100K extent
780 			 * that starts at disk byte 12845056, and the log tree
781 			 * has a single csum item that covers the entire range
782 			 * of the extent:
783 			 *
784 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
785 			 *
786 			 * After the first file extent item is replayed, the
787 			 * csum tree gets the following csum item:
788 			 *
789 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
790 			 *
791 			 * Which covers the 20K sub-range starting at offset 20K
792 			 * of our extent. Now when we replay the second file
793 			 * extent item, if we do not delete existing csum items
794 			 * that cover any of its blocks, we end up getting two
795 			 * csum items in our csum tree that overlap each other:
796 			 *
797 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
798 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
799 			 *
800 			 * Which is a problem, because after this anyone trying
801 			 * to lookup up for the checksum of any block of our
802 			 * extent starting at an offset of 40K or higher, will
803 			 * end up looking at the second csum item only, which
804 			 * does not contain the checksum for any block starting
805 			 * at offset 40K or higher of our extent.
806 			 */
807 			while (!list_empty(&ordered_sums)) {
808 				struct btrfs_ordered_sum *sums;
809 				sums = list_entry(ordered_sums.next,
810 						struct btrfs_ordered_sum,
811 						list);
812 				if (!ret)
813 					ret = btrfs_del_csums(trans,
814 							      fs_info->csum_root,
815 							      sums->bytenr,
816 							      sums->len);
817 				if (!ret)
818 					ret = btrfs_csum_file_blocks(trans,
819 						fs_info->csum_root, sums);
820 				list_del(&sums->list);
821 				kfree(sums);
822 			}
823 			if (ret)
824 				goto out;
825 		} else {
826 			btrfs_release_path(path);
827 		}
828 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
829 		/* inline extents are easy, we just overwrite them */
830 		ret = overwrite_item(trans, root, path, eb, slot, key);
831 		if (ret)
832 			goto out;
833 	}
834 
835 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
836 						extent_end - start);
837 	if (ret)
838 		goto out;
839 
840 	inode_add_bytes(inode, nbytes);
841 update_inode:
842 	ret = btrfs_update_inode(trans, root, inode);
843 out:
844 	if (inode)
845 		iput(inode);
846 	return ret;
847 }
848 
849 /*
850  * when cleaning up conflicts between the directory names in the
851  * subvolume, directory names in the log and directory names in the
852  * inode back references, we may have to unlink inodes from directories.
853  *
854  * This is a helper function to do the unlink of a specific directory
855  * item
856  */
857 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
858 				      struct btrfs_root *root,
859 				      struct btrfs_path *path,
860 				      struct btrfs_inode *dir,
861 				      struct btrfs_dir_item *di)
862 {
863 	struct inode *inode;
864 	char *name;
865 	int name_len;
866 	struct extent_buffer *leaf;
867 	struct btrfs_key location;
868 	int ret;
869 
870 	leaf = path->nodes[0];
871 
872 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
873 	name_len = btrfs_dir_name_len(leaf, di);
874 	name = kmalloc(name_len, GFP_NOFS);
875 	if (!name)
876 		return -ENOMEM;
877 
878 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
879 	btrfs_release_path(path);
880 
881 	inode = read_one_inode(root, location.objectid);
882 	if (!inode) {
883 		ret = -EIO;
884 		goto out;
885 	}
886 
887 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
888 	if (ret)
889 		goto out;
890 
891 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
892 			name_len);
893 	if (ret)
894 		goto out;
895 	else
896 		ret = btrfs_run_delayed_items(trans);
897 out:
898 	kfree(name);
899 	iput(inode);
900 	return ret;
901 }
902 
903 /*
904  * helper function to see if a given name and sequence number found
905  * in an inode back reference are already in a directory and correctly
906  * point to this inode
907  */
908 static noinline int inode_in_dir(struct btrfs_root *root,
909 				 struct btrfs_path *path,
910 				 u64 dirid, u64 objectid, u64 index,
911 				 const char *name, int name_len)
912 {
913 	struct btrfs_dir_item *di;
914 	struct btrfs_key location;
915 	int match = 0;
916 
917 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
918 					 index, name, name_len, 0);
919 	if (di && !IS_ERR(di)) {
920 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
921 		if (location.objectid != objectid)
922 			goto out;
923 	} else
924 		goto out;
925 	btrfs_release_path(path);
926 
927 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
928 	if (di && !IS_ERR(di)) {
929 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
930 		if (location.objectid != objectid)
931 			goto out;
932 	} else
933 		goto out;
934 	match = 1;
935 out:
936 	btrfs_release_path(path);
937 	return match;
938 }
939 
940 /*
941  * helper function to check a log tree for a named back reference in
942  * an inode.  This is used to decide if a back reference that is
943  * found in the subvolume conflicts with what we find in the log.
944  *
945  * inode backreferences may have multiple refs in a single item,
946  * during replay we process one reference at a time, and we don't
947  * want to delete valid links to a file from the subvolume if that
948  * link is also in the log.
949  */
950 static noinline int backref_in_log(struct btrfs_root *log,
951 				   struct btrfs_key *key,
952 				   u64 ref_objectid,
953 				   const char *name, int namelen)
954 {
955 	struct btrfs_path *path;
956 	int ret;
957 
958 	path = btrfs_alloc_path();
959 	if (!path)
960 		return -ENOMEM;
961 
962 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
963 	if (ret < 0) {
964 		goto out;
965 	} else if (ret == 1) {
966 		ret = 0;
967 		goto out;
968 	}
969 
970 	if (key->type == BTRFS_INODE_EXTREF_KEY)
971 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
972 						       path->slots[0],
973 						       ref_objectid,
974 						       name, namelen);
975 	else
976 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
977 						   path->slots[0],
978 						   name, namelen);
979 out:
980 	btrfs_free_path(path);
981 	return ret;
982 }
983 
984 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
985 				  struct btrfs_root *root,
986 				  struct btrfs_path *path,
987 				  struct btrfs_root *log_root,
988 				  struct btrfs_inode *dir,
989 				  struct btrfs_inode *inode,
990 				  u64 inode_objectid, u64 parent_objectid,
991 				  u64 ref_index, char *name, int namelen,
992 				  int *search_done)
993 {
994 	int ret;
995 	char *victim_name;
996 	int victim_name_len;
997 	struct extent_buffer *leaf;
998 	struct btrfs_dir_item *di;
999 	struct btrfs_key search_key;
1000 	struct btrfs_inode_extref *extref;
1001 
1002 again:
1003 	/* Search old style refs */
1004 	search_key.objectid = inode_objectid;
1005 	search_key.type = BTRFS_INODE_REF_KEY;
1006 	search_key.offset = parent_objectid;
1007 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1008 	if (ret == 0) {
1009 		struct btrfs_inode_ref *victim_ref;
1010 		unsigned long ptr;
1011 		unsigned long ptr_end;
1012 
1013 		leaf = path->nodes[0];
1014 
1015 		/* are we trying to overwrite a back ref for the root directory
1016 		 * if so, just jump out, we're done
1017 		 */
1018 		if (search_key.objectid == search_key.offset)
1019 			return 1;
1020 
1021 		/* check all the names in this back reference to see
1022 		 * if they are in the log.  if so, we allow them to stay
1023 		 * otherwise they must be unlinked as a conflict
1024 		 */
1025 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1026 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1027 		while (ptr < ptr_end) {
1028 			victim_ref = (struct btrfs_inode_ref *)ptr;
1029 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1030 								   victim_ref);
1031 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1032 			if (!victim_name)
1033 				return -ENOMEM;
1034 
1035 			read_extent_buffer(leaf, victim_name,
1036 					   (unsigned long)(victim_ref + 1),
1037 					   victim_name_len);
1038 
1039 			ret = backref_in_log(log_root, &search_key,
1040 					     parent_objectid, victim_name,
1041 					     victim_name_len);
1042 			if (ret < 0) {
1043 				kfree(victim_name);
1044 				return ret;
1045 			} else if (!ret) {
1046 				inc_nlink(&inode->vfs_inode);
1047 				btrfs_release_path(path);
1048 
1049 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1050 						victim_name, victim_name_len);
1051 				kfree(victim_name);
1052 				if (ret)
1053 					return ret;
1054 				ret = btrfs_run_delayed_items(trans);
1055 				if (ret)
1056 					return ret;
1057 				*search_done = 1;
1058 				goto again;
1059 			}
1060 			kfree(victim_name);
1061 
1062 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1063 		}
1064 
1065 		/*
1066 		 * NOTE: we have searched root tree and checked the
1067 		 * corresponding ref, it does not need to check again.
1068 		 */
1069 		*search_done = 1;
1070 	}
1071 	btrfs_release_path(path);
1072 
1073 	/* Same search but for extended refs */
1074 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1075 					   inode_objectid, parent_objectid, 0,
1076 					   0);
1077 	if (!IS_ERR_OR_NULL(extref)) {
1078 		u32 item_size;
1079 		u32 cur_offset = 0;
1080 		unsigned long base;
1081 		struct inode *victim_parent;
1082 
1083 		leaf = path->nodes[0];
1084 
1085 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1086 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1087 
1088 		while (cur_offset < item_size) {
1089 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1090 
1091 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1092 
1093 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1094 				goto next;
1095 
1096 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1097 			if (!victim_name)
1098 				return -ENOMEM;
1099 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1100 					   victim_name_len);
1101 
1102 			search_key.objectid = inode_objectid;
1103 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1104 			search_key.offset = btrfs_extref_hash(parent_objectid,
1105 							      victim_name,
1106 							      victim_name_len);
1107 			ret = backref_in_log(log_root, &search_key,
1108 					     parent_objectid, victim_name,
1109 					     victim_name_len);
1110 			if (ret < 0) {
1111 				return ret;
1112 			} else if (!ret) {
1113 				ret = -ENOENT;
1114 				victim_parent = read_one_inode(root,
1115 						parent_objectid);
1116 				if (victim_parent) {
1117 					inc_nlink(&inode->vfs_inode);
1118 					btrfs_release_path(path);
1119 
1120 					ret = btrfs_unlink_inode(trans, root,
1121 							BTRFS_I(victim_parent),
1122 							inode,
1123 							victim_name,
1124 							victim_name_len);
1125 					if (!ret)
1126 						ret = btrfs_run_delayed_items(
1127 								  trans);
1128 				}
1129 				iput(victim_parent);
1130 				kfree(victim_name);
1131 				if (ret)
1132 					return ret;
1133 				*search_done = 1;
1134 				goto again;
1135 			}
1136 			kfree(victim_name);
1137 next:
1138 			cur_offset += victim_name_len + sizeof(*extref);
1139 		}
1140 		*search_done = 1;
1141 	}
1142 	btrfs_release_path(path);
1143 
1144 	/* look for a conflicting sequence number */
1145 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1146 					 ref_index, name, namelen, 0);
1147 	if (di && !IS_ERR(di)) {
1148 		ret = drop_one_dir_item(trans, root, path, dir, di);
1149 		if (ret)
1150 			return ret;
1151 	}
1152 	btrfs_release_path(path);
1153 
1154 	/* look for a conflicting name */
1155 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1156 				   name, namelen, 0);
1157 	if (di && !IS_ERR(di)) {
1158 		ret = drop_one_dir_item(trans, root, path, dir, di);
1159 		if (ret)
1160 			return ret;
1161 	}
1162 	btrfs_release_path(path);
1163 
1164 	return 0;
1165 }
1166 
1167 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1168 			     u32 *namelen, char **name, u64 *index,
1169 			     u64 *parent_objectid)
1170 {
1171 	struct btrfs_inode_extref *extref;
1172 
1173 	extref = (struct btrfs_inode_extref *)ref_ptr;
1174 
1175 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1176 	*name = kmalloc(*namelen, GFP_NOFS);
1177 	if (*name == NULL)
1178 		return -ENOMEM;
1179 
1180 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1181 			   *namelen);
1182 
1183 	if (index)
1184 		*index = btrfs_inode_extref_index(eb, extref);
1185 	if (parent_objectid)
1186 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1187 
1188 	return 0;
1189 }
1190 
1191 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1192 			  u32 *namelen, char **name, u64 *index)
1193 {
1194 	struct btrfs_inode_ref *ref;
1195 
1196 	ref = (struct btrfs_inode_ref *)ref_ptr;
1197 
1198 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1199 	*name = kmalloc(*namelen, GFP_NOFS);
1200 	if (*name == NULL)
1201 		return -ENOMEM;
1202 
1203 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1204 
1205 	if (index)
1206 		*index = btrfs_inode_ref_index(eb, ref);
1207 
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Take an inode reference item from the log tree and iterate all names from the
1213  * inode reference item in the subvolume tree with the same key (if it exists).
1214  * For any name that is not in the inode reference item from the log tree, do a
1215  * proper unlink of that name (that is, remove its entry from the inode
1216  * reference item and both dir index keys).
1217  */
1218 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1219 				 struct btrfs_root *root,
1220 				 struct btrfs_path *path,
1221 				 struct btrfs_inode *inode,
1222 				 struct extent_buffer *log_eb,
1223 				 int log_slot,
1224 				 struct btrfs_key *key)
1225 {
1226 	int ret;
1227 	unsigned long ref_ptr;
1228 	unsigned long ref_end;
1229 	struct extent_buffer *eb;
1230 
1231 again:
1232 	btrfs_release_path(path);
1233 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1234 	if (ret > 0) {
1235 		ret = 0;
1236 		goto out;
1237 	}
1238 	if (ret < 0)
1239 		goto out;
1240 
1241 	eb = path->nodes[0];
1242 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1243 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1244 	while (ref_ptr < ref_end) {
1245 		char *name = NULL;
1246 		int namelen;
1247 		u64 parent_id;
1248 
1249 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1250 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1251 						NULL, &parent_id);
1252 		} else {
1253 			parent_id = key->offset;
1254 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1255 					     NULL);
1256 		}
1257 		if (ret)
1258 			goto out;
1259 
1260 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1261 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1262 							       parent_id, name,
1263 							       namelen);
1264 		else
1265 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1266 							   name, namelen);
1267 
1268 		if (!ret) {
1269 			struct inode *dir;
1270 
1271 			btrfs_release_path(path);
1272 			dir = read_one_inode(root, parent_id);
1273 			if (!dir) {
1274 				ret = -ENOENT;
1275 				kfree(name);
1276 				goto out;
1277 			}
1278 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1279 						 inode, name, namelen);
1280 			kfree(name);
1281 			iput(dir);
1282 			if (ret)
1283 				goto out;
1284 			goto again;
1285 		}
1286 
1287 		kfree(name);
1288 		ref_ptr += namelen;
1289 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1290 			ref_ptr += sizeof(struct btrfs_inode_extref);
1291 		else
1292 			ref_ptr += sizeof(struct btrfs_inode_ref);
1293 	}
1294 	ret = 0;
1295  out:
1296 	btrfs_release_path(path);
1297 	return ret;
1298 }
1299 
1300 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1301 				  const u8 ref_type, const char *name,
1302 				  const int namelen)
1303 {
1304 	struct btrfs_key key;
1305 	struct btrfs_path *path;
1306 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1307 	int ret;
1308 
1309 	path = btrfs_alloc_path();
1310 	if (!path)
1311 		return -ENOMEM;
1312 
1313 	key.objectid = btrfs_ino(BTRFS_I(inode));
1314 	key.type = ref_type;
1315 	if (key.type == BTRFS_INODE_REF_KEY)
1316 		key.offset = parent_id;
1317 	else
1318 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1319 
1320 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1321 	if (ret < 0)
1322 		goto out;
1323 	if (ret > 0) {
1324 		ret = 0;
1325 		goto out;
1326 	}
1327 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1328 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1329 				path->slots[0], parent_id, name, namelen);
1330 	else
1331 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1332 						   name, namelen);
1333 
1334 out:
1335 	btrfs_free_path(path);
1336 	return ret;
1337 }
1338 
1339 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1340 		    struct inode *dir, struct inode *inode, const char *name,
1341 		    int namelen, u64 ref_index)
1342 {
1343 	struct btrfs_dir_item *dir_item;
1344 	struct btrfs_key key;
1345 	struct btrfs_path *path;
1346 	struct inode *other_inode = NULL;
1347 	int ret;
1348 
1349 	path = btrfs_alloc_path();
1350 	if (!path)
1351 		return -ENOMEM;
1352 
1353 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1354 					 btrfs_ino(BTRFS_I(dir)),
1355 					 name, namelen, 0);
1356 	if (!dir_item) {
1357 		btrfs_release_path(path);
1358 		goto add_link;
1359 	} else if (IS_ERR(dir_item)) {
1360 		ret = PTR_ERR(dir_item);
1361 		goto out;
1362 	}
1363 
1364 	/*
1365 	 * Our inode's dentry collides with the dentry of another inode which is
1366 	 * in the log but not yet processed since it has a higher inode number.
1367 	 * So delete that other dentry.
1368 	 */
1369 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1370 	btrfs_release_path(path);
1371 	other_inode = read_one_inode(root, key.objectid);
1372 	if (!other_inode) {
1373 		ret = -ENOENT;
1374 		goto out;
1375 	}
1376 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1377 				 name, namelen);
1378 	if (ret)
1379 		goto out;
1380 	/*
1381 	 * If we dropped the link count to 0, bump it so that later the iput()
1382 	 * on the inode will not free it. We will fixup the link count later.
1383 	 */
1384 	if (other_inode->i_nlink == 0)
1385 		inc_nlink(other_inode);
1386 
1387 	ret = btrfs_run_delayed_items(trans);
1388 	if (ret)
1389 		goto out;
1390 add_link:
1391 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1392 			     name, namelen, 0, ref_index);
1393 out:
1394 	iput(other_inode);
1395 	btrfs_free_path(path);
1396 
1397 	return ret;
1398 }
1399 
1400 /*
1401  * replay one inode back reference item found in the log tree.
1402  * eb, slot and key refer to the buffer and key found in the log tree.
1403  * root is the destination we are replaying into, and path is for temp
1404  * use by this function.  (it should be released on return).
1405  */
1406 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1407 				  struct btrfs_root *root,
1408 				  struct btrfs_root *log,
1409 				  struct btrfs_path *path,
1410 				  struct extent_buffer *eb, int slot,
1411 				  struct btrfs_key *key)
1412 {
1413 	struct inode *dir = NULL;
1414 	struct inode *inode = NULL;
1415 	unsigned long ref_ptr;
1416 	unsigned long ref_end;
1417 	char *name = NULL;
1418 	int namelen;
1419 	int ret;
1420 	int search_done = 0;
1421 	int log_ref_ver = 0;
1422 	u64 parent_objectid;
1423 	u64 inode_objectid;
1424 	u64 ref_index = 0;
1425 	int ref_struct_size;
1426 
1427 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1428 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1429 
1430 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1431 		struct btrfs_inode_extref *r;
1432 
1433 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1434 		log_ref_ver = 1;
1435 		r = (struct btrfs_inode_extref *)ref_ptr;
1436 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1437 	} else {
1438 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1439 		parent_objectid = key->offset;
1440 	}
1441 	inode_objectid = key->objectid;
1442 
1443 	/*
1444 	 * it is possible that we didn't log all the parent directories
1445 	 * for a given inode.  If we don't find the dir, just don't
1446 	 * copy the back ref in.  The link count fixup code will take
1447 	 * care of the rest
1448 	 */
1449 	dir = read_one_inode(root, parent_objectid);
1450 	if (!dir) {
1451 		ret = -ENOENT;
1452 		goto out;
1453 	}
1454 
1455 	inode = read_one_inode(root, inode_objectid);
1456 	if (!inode) {
1457 		ret = -EIO;
1458 		goto out;
1459 	}
1460 
1461 	while (ref_ptr < ref_end) {
1462 		if (log_ref_ver) {
1463 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1464 						&ref_index, &parent_objectid);
1465 			/*
1466 			 * parent object can change from one array
1467 			 * item to another.
1468 			 */
1469 			if (!dir)
1470 				dir = read_one_inode(root, parent_objectid);
1471 			if (!dir) {
1472 				ret = -ENOENT;
1473 				goto out;
1474 			}
1475 		} else {
1476 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1477 					     &ref_index);
1478 		}
1479 		if (ret)
1480 			goto out;
1481 
1482 		/* if we already have a perfect match, we're done */
1483 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1484 					btrfs_ino(BTRFS_I(inode)), ref_index,
1485 					name, namelen)) {
1486 			/*
1487 			 * look for a conflicting back reference in the
1488 			 * metadata. if we find one we have to unlink that name
1489 			 * of the file before we add our new link.  Later on, we
1490 			 * overwrite any existing back reference, and we don't
1491 			 * want to create dangling pointers in the directory.
1492 			 */
1493 
1494 			if (!search_done) {
1495 				ret = __add_inode_ref(trans, root, path, log,
1496 						      BTRFS_I(dir),
1497 						      BTRFS_I(inode),
1498 						      inode_objectid,
1499 						      parent_objectid,
1500 						      ref_index, name, namelen,
1501 						      &search_done);
1502 				if (ret) {
1503 					if (ret == 1)
1504 						ret = 0;
1505 					goto out;
1506 				}
1507 			}
1508 
1509 			/*
1510 			 * If a reference item already exists for this inode
1511 			 * with the same parent and name, but different index,
1512 			 * drop it and the corresponding directory index entries
1513 			 * from the parent before adding the new reference item
1514 			 * and dir index entries, otherwise we would fail with
1515 			 * -EEXIST returned from btrfs_add_link() below.
1516 			 */
1517 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1518 						     name, namelen);
1519 			if (ret > 0) {
1520 				ret = btrfs_unlink_inode(trans, root,
1521 							 BTRFS_I(dir),
1522 							 BTRFS_I(inode),
1523 							 name, namelen);
1524 				/*
1525 				 * If we dropped the link count to 0, bump it so
1526 				 * that later the iput() on the inode will not
1527 				 * free it. We will fixup the link count later.
1528 				 */
1529 				if (!ret && inode->i_nlink == 0)
1530 					inc_nlink(inode);
1531 			}
1532 			if (ret < 0)
1533 				goto out;
1534 
1535 			/* insert our name */
1536 			ret = add_link(trans, root, dir, inode, name, namelen,
1537 				       ref_index);
1538 			if (ret)
1539 				goto out;
1540 
1541 			btrfs_update_inode(trans, root, inode);
1542 		}
1543 
1544 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1545 		kfree(name);
1546 		name = NULL;
1547 		if (log_ref_ver) {
1548 			iput(dir);
1549 			dir = NULL;
1550 		}
1551 	}
1552 
1553 	/*
1554 	 * Before we overwrite the inode reference item in the subvolume tree
1555 	 * with the item from the log tree, we must unlink all names from the
1556 	 * parent directory that are in the subvolume's tree inode reference
1557 	 * item, otherwise we end up with an inconsistent subvolume tree where
1558 	 * dir index entries exist for a name but there is no inode reference
1559 	 * item with the same name.
1560 	 */
1561 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1562 				    key);
1563 	if (ret)
1564 		goto out;
1565 
1566 	/* finally write the back reference in the inode */
1567 	ret = overwrite_item(trans, root, path, eb, slot, key);
1568 out:
1569 	btrfs_release_path(path);
1570 	kfree(name);
1571 	iput(dir);
1572 	iput(inode);
1573 	return ret;
1574 }
1575 
1576 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1577 			      struct btrfs_root *root, u64 ino)
1578 {
1579 	int ret;
1580 
1581 	ret = btrfs_insert_orphan_item(trans, root, ino);
1582 	if (ret == -EEXIST)
1583 		ret = 0;
1584 
1585 	return ret;
1586 }
1587 
1588 static int count_inode_extrefs(struct btrfs_root *root,
1589 		struct btrfs_inode *inode, struct btrfs_path *path)
1590 {
1591 	int ret = 0;
1592 	int name_len;
1593 	unsigned int nlink = 0;
1594 	u32 item_size;
1595 	u32 cur_offset = 0;
1596 	u64 inode_objectid = btrfs_ino(inode);
1597 	u64 offset = 0;
1598 	unsigned long ptr;
1599 	struct btrfs_inode_extref *extref;
1600 	struct extent_buffer *leaf;
1601 
1602 	while (1) {
1603 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1604 					    &extref, &offset);
1605 		if (ret)
1606 			break;
1607 
1608 		leaf = path->nodes[0];
1609 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1610 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1611 		cur_offset = 0;
1612 
1613 		while (cur_offset < item_size) {
1614 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1615 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1616 
1617 			nlink++;
1618 
1619 			cur_offset += name_len + sizeof(*extref);
1620 		}
1621 
1622 		offset++;
1623 		btrfs_release_path(path);
1624 	}
1625 	btrfs_release_path(path);
1626 
1627 	if (ret < 0 && ret != -ENOENT)
1628 		return ret;
1629 	return nlink;
1630 }
1631 
1632 static int count_inode_refs(struct btrfs_root *root,
1633 			struct btrfs_inode *inode, struct btrfs_path *path)
1634 {
1635 	int ret;
1636 	struct btrfs_key key;
1637 	unsigned int nlink = 0;
1638 	unsigned long ptr;
1639 	unsigned long ptr_end;
1640 	int name_len;
1641 	u64 ino = btrfs_ino(inode);
1642 
1643 	key.objectid = ino;
1644 	key.type = BTRFS_INODE_REF_KEY;
1645 	key.offset = (u64)-1;
1646 
1647 	while (1) {
1648 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1649 		if (ret < 0)
1650 			break;
1651 		if (ret > 0) {
1652 			if (path->slots[0] == 0)
1653 				break;
1654 			path->slots[0]--;
1655 		}
1656 process_slot:
1657 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1658 				      path->slots[0]);
1659 		if (key.objectid != ino ||
1660 		    key.type != BTRFS_INODE_REF_KEY)
1661 			break;
1662 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1663 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1664 						   path->slots[0]);
1665 		while (ptr < ptr_end) {
1666 			struct btrfs_inode_ref *ref;
1667 
1668 			ref = (struct btrfs_inode_ref *)ptr;
1669 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1670 							    ref);
1671 			ptr = (unsigned long)(ref + 1) + name_len;
1672 			nlink++;
1673 		}
1674 
1675 		if (key.offset == 0)
1676 			break;
1677 		if (path->slots[0] > 0) {
1678 			path->slots[0]--;
1679 			goto process_slot;
1680 		}
1681 		key.offset--;
1682 		btrfs_release_path(path);
1683 	}
1684 	btrfs_release_path(path);
1685 
1686 	return nlink;
1687 }
1688 
1689 /*
1690  * There are a few corners where the link count of the file can't
1691  * be properly maintained during replay.  So, instead of adding
1692  * lots of complexity to the log code, we just scan the backrefs
1693  * for any file that has been through replay.
1694  *
1695  * The scan will update the link count on the inode to reflect the
1696  * number of back refs found.  If it goes down to zero, the iput
1697  * will free the inode.
1698  */
1699 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1700 					   struct btrfs_root *root,
1701 					   struct inode *inode)
1702 {
1703 	struct btrfs_path *path;
1704 	int ret;
1705 	u64 nlink = 0;
1706 	u64 ino = btrfs_ino(BTRFS_I(inode));
1707 
1708 	path = btrfs_alloc_path();
1709 	if (!path)
1710 		return -ENOMEM;
1711 
1712 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1713 	if (ret < 0)
1714 		goto out;
1715 
1716 	nlink = ret;
1717 
1718 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1719 	if (ret < 0)
1720 		goto out;
1721 
1722 	nlink += ret;
1723 
1724 	ret = 0;
1725 
1726 	if (nlink != inode->i_nlink) {
1727 		set_nlink(inode, nlink);
1728 		btrfs_update_inode(trans, root, inode);
1729 	}
1730 	BTRFS_I(inode)->index_cnt = (u64)-1;
1731 
1732 	if (inode->i_nlink == 0) {
1733 		if (S_ISDIR(inode->i_mode)) {
1734 			ret = replay_dir_deletes(trans, root, NULL, path,
1735 						 ino, 1);
1736 			if (ret)
1737 				goto out;
1738 		}
1739 		ret = insert_orphan_item(trans, root, ino);
1740 	}
1741 
1742 out:
1743 	btrfs_free_path(path);
1744 	return ret;
1745 }
1746 
1747 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1748 					    struct btrfs_root *root,
1749 					    struct btrfs_path *path)
1750 {
1751 	int ret;
1752 	struct btrfs_key key;
1753 	struct inode *inode;
1754 
1755 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1756 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1757 	key.offset = (u64)-1;
1758 	while (1) {
1759 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1760 		if (ret < 0)
1761 			break;
1762 
1763 		if (ret == 1) {
1764 			if (path->slots[0] == 0)
1765 				break;
1766 			path->slots[0]--;
1767 		}
1768 
1769 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1770 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1771 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1772 			break;
1773 
1774 		ret = btrfs_del_item(trans, root, path);
1775 		if (ret)
1776 			goto out;
1777 
1778 		btrfs_release_path(path);
1779 		inode = read_one_inode(root, key.offset);
1780 		if (!inode)
1781 			return -EIO;
1782 
1783 		ret = fixup_inode_link_count(trans, root, inode);
1784 		iput(inode);
1785 		if (ret)
1786 			goto out;
1787 
1788 		/*
1789 		 * fixup on a directory may create new entries,
1790 		 * make sure we always look for the highset possible
1791 		 * offset
1792 		 */
1793 		key.offset = (u64)-1;
1794 	}
1795 	ret = 0;
1796 out:
1797 	btrfs_release_path(path);
1798 	return ret;
1799 }
1800 
1801 
1802 /*
1803  * record a given inode in the fixup dir so we can check its link
1804  * count when replay is done.  The link count is incremented here
1805  * so the inode won't go away until we check it
1806  */
1807 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1808 				      struct btrfs_root *root,
1809 				      struct btrfs_path *path,
1810 				      u64 objectid)
1811 {
1812 	struct btrfs_key key;
1813 	int ret = 0;
1814 	struct inode *inode;
1815 
1816 	inode = read_one_inode(root, objectid);
1817 	if (!inode)
1818 		return -EIO;
1819 
1820 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1821 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1822 	key.offset = objectid;
1823 
1824 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1825 
1826 	btrfs_release_path(path);
1827 	if (ret == 0) {
1828 		if (!inode->i_nlink)
1829 			set_nlink(inode, 1);
1830 		else
1831 			inc_nlink(inode);
1832 		ret = btrfs_update_inode(trans, root, inode);
1833 	} else if (ret == -EEXIST) {
1834 		ret = 0;
1835 	} else {
1836 		BUG(); /* Logic Error */
1837 	}
1838 	iput(inode);
1839 
1840 	return ret;
1841 }
1842 
1843 /*
1844  * when replaying the log for a directory, we only insert names
1845  * for inodes that actually exist.  This means an fsync on a directory
1846  * does not implicitly fsync all the new files in it
1847  */
1848 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1849 				    struct btrfs_root *root,
1850 				    u64 dirid, u64 index,
1851 				    char *name, int name_len,
1852 				    struct btrfs_key *location)
1853 {
1854 	struct inode *inode;
1855 	struct inode *dir;
1856 	int ret;
1857 
1858 	inode = read_one_inode(root, location->objectid);
1859 	if (!inode)
1860 		return -ENOENT;
1861 
1862 	dir = read_one_inode(root, dirid);
1863 	if (!dir) {
1864 		iput(inode);
1865 		return -EIO;
1866 	}
1867 
1868 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1869 			name_len, 1, index);
1870 
1871 	/* FIXME, put inode into FIXUP list */
1872 
1873 	iput(inode);
1874 	iput(dir);
1875 	return ret;
1876 }
1877 
1878 /*
1879  * take a single entry in a log directory item and replay it into
1880  * the subvolume.
1881  *
1882  * if a conflicting item exists in the subdirectory already,
1883  * the inode it points to is unlinked and put into the link count
1884  * fix up tree.
1885  *
1886  * If a name from the log points to a file or directory that does
1887  * not exist in the FS, it is skipped.  fsyncs on directories
1888  * do not force down inodes inside that directory, just changes to the
1889  * names or unlinks in a directory.
1890  *
1891  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1892  * non-existing inode) and 1 if the name was replayed.
1893  */
1894 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1895 				    struct btrfs_root *root,
1896 				    struct btrfs_path *path,
1897 				    struct extent_buffer *eb,
1898 				    struct btrfs_dir_item *di,
1899 				    struct btrfs_key *key)
1900 {
1901 	char *name;
1902 	int name_len;
1903 	struct btrfs_dir_item *dst_di;
1904 	struct btrfs_key found_key;
1905 	struct btrfs_key log_key;
1906 	struct inode *dir;
1907 	u8 log_type;
1908 	int exists;
1909 	int ret = 0;
1910 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1911 	bool name_added = false;
1912 
1913 	dir = read_one_inode(root, key->objectid);
1914 	if (!dir)
1915 		return -EIO;
1916 
1917 	name_len = btrfs_dir_name_len(eb, di);
1918 	name = kmalloc(name_len, GFP_NOFS);
1919 	if (!name) {
1920 		ret = -ENOMEM;
1921 		goto out;
1922 	}
1923 
1924 	log_type = btrfs_dir_type(eb, di);
1925 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1926 		   name_len);
1927 
1928 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1929 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1930 	if (exists == 0)
1931 		exists = 1;
1932 	else
1933 		exists = 0;
1934 	btrfs_release_path(path);
1935 
1936 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1937 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1938 				       name, name_len, 1);
1939 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1940 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1941 						     key->objectid,
1942 						     key->offset, name,
1943 						     name_len, 1);
1944 	} else {
1945 		/* Corruption */
1946 		ret = -EINVAL;
1947 		goto out;
1948 	}
1949 	if (IS_ERR_OR_NULL(dst_di)) {
1950 		/* we need a sequence number to insert, so we only
1951 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1952 		 */
1953 		if (key->type != BTRFS_DIR_INDEX_KEY)
1954 			goto out;
1955 		goto insert;
1956 	}
1957 
1958 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1959 	/* the existing item matches the logged item */
1960 	if (found_key.objectid == log_key.objectid &&
1961 	    found_key.type == log_key.type &&
1962 	    found_key.offset == log_key.offset &&
1963 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1964 		update_size = false;
1965 		goto out;
1966 	}
1967 
1968 	/*
1969 	 * don't drop the conflicting directory entry if the inode
1970 	 * for the new entry doesn't exist
1971 	 */
1972 	if (!exists)
1973 		goto out;
1974 
1975 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1976 	if (ret)
1977 		goto out;
1978 
1979 	if (key->type == BTRFS_DIR_INDEX_KEY)
1980 		goto insert;
1981 out:
1982 	btrfs_release_path(path);
1983 	if (!ret && update_size) {
1984 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1985 		ret = btrfs_update_inode(trans, root, dir);
1986 	}
1987 	kfree(name);
1988 	iput(dir);
1989 	if (!ret && name_added)
1990 		ret = 1;
1991 	return ret;
1992 
1993 insert:
1994 	/*
1995 	 * Check if the inode reference exists in the log for the given name,
1996 	 * inode and parent inode
1997 	 */
1998 	found_key.objectid = log_key.objectid;
1999 	found_key.type = BTRFS_INODE_REF_KEY;
2000 	found_key.offset = key->objectid;
2001 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2002 	if (ret < 0) {
2003 	        goto out;
2004 	} else if (ret) {
2005 	        /* The dentry will be added later. */
2006 	        ret = 0;
2007 	        update_size = false;
2008 	        goto out;
2009 	}
2010 
2011 	found_key.objectid = log_key.objectid;
2012 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2013 	found_key.offset = key->objectid;
2014 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2015 			     name_len);
2016 	if (ret < 0) {
2017 		goto out;
2018 	} else if (ret) {
2019 		/* The dentry will be added later. */
2020 		ret = 0;
2021 		update_size = false;
2022 		goto out;
2023 	}
2024 	btrfs_release_path(path);
2025 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2026 			      name, name_len, &log_key);
2027 	if (ret && ret != -ENOENT && ret != -EEXIST)
2028 		goto out;
2029 	if (!ret)
2030 		name_added = true;
2031 	update_size = false;
2032 	ret = 0;
2033 	goto out;
2034 }
2035 
2036 /*
2037  * find all the names in a directory item and reconcile them into
2038  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2039  * one name in a directory item, but the same code gets used for
2040  * both directory index types
2041  */
2042 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2043 					struct btrfs_root *root,
2044 					struct btrfs_path *path,
2045 					struct extent_buffer *eb, int slot,
2046 					struct btrfs_key *key)
2047 {
2048 	int ret = 0;
2049 	u32 item_size = btrfs_item_size_nr(eb, slot);
2050 	struct btrfs_dir_item *di;
2051 	int name_len;
2052 	unsigned long ptr;
2053 	unsigned long ptr_end;
2054 	struct btrfs_path *fixup_path = NULL;
2055 
2056 	ptr = btrfs_item_ptr_offset(eb, slot);
2057 	ptr_end = ptr + item_size;
2058 	while (ptr < ptr_end) {
2059 		di = (struct btrfs_dir_item *)ptr;
2060 		name_len = btrfs_dir_name_len(eb, di);
2061 		ret = replay_one_name(trans, root, path, eb, di, key);
2062 		if (ret < 0)
2063 			break;
2064 		ptr = (unsigned long)(di + 1);
2065 		ptr += name_len;
2066 
2067 		/*
2068 		 * If this entry refers to a non-directory (directories can not
2069 		 * have a link count > 1) and it was added in the transaction
2070 		 * that was not committed, make sure we fixup the link count of
2071 		 * the inode it the entry points to. Otherwise something like
2072 		 * the following would result in a directory pointing to an
2073 		 * inode with a wrong link that does not account for this dir
2074 		 * entry:
2075 		 *
2076 		 * mkdir testdir
2077 		 * touch testdir/foo
2078 		 * touch testdir/bar
2079 		 * sync
2080 		 *
2081 		 * ln testdir/bar testdir/bar_link
2082 		 * ln testdir/foo testdir/foo_link
2083 		 * xfs_io -c "fsync" testdir/bar
2084 		 *
2085 		 * <power failure>
2086 		 *
2087 		 * mount fs, log replay happens
2088 		 *
2089 		 * File foo would remain with a link count of 1 when it has two
2090 		 * entries pointing to it in the directory testdir. This would
2091 		 * make it impossible to ever delete the parent directory has
2092 		 * it would result in stale dentries that can never be deleted.
2093 		 */
2094 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2095 			struct btrfs_key di_key;
2096 
2097 			if (!fixup_path) {
2098 				fixup_path = btrfs_alloc_path();
2099 				if (!fixup_path) {
2100 					ret = -ENOMEM;
2101 					break;
2102 				}
2103 			}
2104 
2105 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2106 			ret = link_to_fixup_dir(trans, root, fixup_path,
2107 						di_key.objectid);
2108 			if (ret)
2109 				break;
2110 		}
2111 		ret = 0;
2112 	}
2113 	btrfs_free_path(fixup_path);
2114 	return ret;
2115 }
2116 
2117 /*
2118  * directory replay has two parts.  There are the standard directory
2119  * items in the log copied from the subvolume, and range items
2120  * created in the log while the subvolume was logged.
2121  *
2122  * The range items tell us which parts of the key space the log
2123  * is authoritative for.  During replay, if a key in the subvolume
2124  * directory is in a logged range item, but not actually in the log
2125  * that means it was deleted from the directory before the fsync
2126  * and should be removed.
2127  */
2128 static noinline int find_dir_range(struct btrfs_root *root,
2129 				   struct btrfs_path *path,
2130 				   u64 dirid, int key_type,
2131 				   u64 *start_ret, u64 *end_ret)
2132 {
2133 	struct btrfs_key key;
2134 	u64 found_end;
2135 	struct btrfs_dir_log_item *item;
2136 	int ret;
2137 	int nritems;
2138 
2139 	if (*start_ret == (u64)-1)
2140 		return 1;
2141 
2142 	key.objectid = dirid;
2143 	key.type = key_type;
2144 	key.offset = *start_ret;
2145 
2146 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2147 	if (ret < 0)
2148 		goto out;
2149 	if (ret > 0) {
2150 		if (path->slots[0] == 0)
2151 			goto out;
2152 		path->slots[0]--;
2153 	}
2154 	if (ret != 0)
2155 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2156 
2157 	if (key.type != key_type || key.objectid != dirid) {
2158 		ret = 1;
2159 		goto next;
2160 	}
2161 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2162 			      struct btrfs_dir_log_item);
2163 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2164 
2165 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2166 		ret = 0;
2167 		*start_ret = key.offset;
2168 		*end_ret = found_end;
2169 		goto out;
2170 	}
2171 	ret = 1;
2172 next:
2173 	/* check the next slot in the tree to see if it is a valid item */
2174 	nritems = btrfs_header_nritems(path->nodes[0]);
2175 	path->slots[0]++;
2176 	if (path->slots[0] >= nritems) {
2177 		ret = btrfs_next_leaf(root, path);
2178 		if (ret)
2179 			goto out;
2180 	}
2181 
2182 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2183 
2184 	if (key.type != key_type || key.objectid != dirid) {
2185 		ret = 1;
2186 		goto out;
2187 	}
2188 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2189 			      struct btrfs_dir_log_item);
2190 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2191 	*start_ret = key.offset;
2192 	*end_ret = found_end;
2193 	ret = 0;
2194 out:
2195 	btrfs_release_path(path);
2196 	return ret;
2197 }
2198 
2199 /*
2200  * this looks for a given directory item in the log.  If the directory
2201  * item is not in the log, the item is removed and the inode it points
2202  * to is unlinked
2203  */
2204 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2205 				      struct btrfs_root *root,
2206 				      struct btrfs_root *log,
2207 				      struct btrfs_path *path,
2208 				      struct btrfs_path *log_path,
2209 				      struct inode *dir,
2210 				      struct btrfs_key *dir_key)
2211 {
2212 	int ret;
2213 	struct extent_buffer *eb;
2214 	int slot;
2215 	u32 item_size;
2216 	struct btrfs_dir_item *di;
2217 	struct btrfs_dir_item *log_di;
2218 	int name_len;
2219 	unsigned long ptr;
2220 	unsigned long ptr_end;
2221 	char *name;
2222 	struct inode *inode;
2223 	struct btrfs_key location;
2224 
2225 again:
2226 	eb = path->nodes[0];
2227 	slot = path->slots[0];
2228 	item_size = btrfs_item_size_nr(eb, slot);
2229 	ptr = btrfs_item_ptr_offset(eb, slot);
2230 	ptr_end = ptr + item_size;
2231 	while (ptr < ptr_end) {
2232 		di = (struct btrfs_dir_item *)ptr;
2233 		name_len = btrfs_dir_name_len(eb, di);
2234 		name = kmalloc(name_len, GFP_NOFS);
2235 		if (!name) {
2236 			ret = -ENOMEM;
2237 			goto out;
2238 		}
2239 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2240 				  name_len);
2241 		log_di = NULL;
2242 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2243 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2244 						       dir_key->objectid,
2245 						       name, name_len, 0);
2246 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2247 			log_di = btrfs_lookup_dir_index_item(trans, log,
2248 						     log_path,
2249 						     dir_key->objectid,
2250 						     dir_key->offset,
2251 						     name, name_len, 0);
2252 		}
2253 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2254 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2255 			btrfs_release_path(path);
2256 			btrfs_release_path(log_path);
2257 			inode = read_one_inode(root, location.objectid);
2258 			if (!inode) {
2259 				kfree(name);
2260 				return -EIO;
2261 			}
2262 
2263 			ret = link_to_fixup_dir(trans, root,
2264 						path, location.objectid);
2265 			if (ret) {
2266 				kfree(name);
2267 				iput(inode);
2268 				goto out;
2269 			}
2270 
2271 			inc_nlink(inode);
2272 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2273 					BTRFS_I(inode), name, name_len);
2274 			if (!ret)
2275 				ret = btrfs_run_delayed_items(trans);
2276 			kfree(name);
2277 			iput(inode);
2278 			if (ret)
2279 				goto out;
2280 
2281 			/* there might still be more names under this key
2282 			 * check and repeat if required
2283 			 */
2284 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2285 						0, 0);
2286 			if (ret == 0)
2287 				goto again;
2288 			ret = 0;
2289 			goto out;
2290 		} else if (IS_ERR(log_di)) {
2291 			kfree(name);
2292 			return PTR_ERR(log_di);
2293 		}
2294 		btrfs_release_path(log_path);
2295 		kfree(name);
2296 
2297 		ptr = (unsigned long)(di + 1);
2298 		ptr += name_len;
2299 	}
2300 	ret = 0;
2301 out:
2302 	btrfs_release_path(path);
2303 	btrfs_release_path(log_path);
2304 	return ret;
2305 }
2306 
2307 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2308 			      struct btrfs_root *root,
2309 			      struct btrfs_root *log,
2310 			      struct btrfs_path *path,
2311 			      const u64 ino)
2312 {
2313 	struct btrfs_key search_key;
2314 	struct btrfs_path *log_path;
2315 	int i;
2316 	int nritems;
2317 	int ret;
2318 
2319 	log_path = btrfs_alloc_path();
2320 	if (!log_path)
2321 		return -ENOMEM;
2322 
2323 	search_key.objectid = ino;
2324 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2325 	search_key.offset = 0;
2326 again:
2327 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2328 	if (ret < 0)
2329 		goto out;
2330 process_leaf:
2331 	nritems = btrfs_header_nritems(path->nodes[0]);
2332 	for (i = path->slots[0]; i < nritems; i++) {
2333 		struct btrfs_key key;
2334 		struct btrfs_dir_item *di;
2335 		struct btrfs_dir_item *log_di;
2336 		u32 total_size;
2337 		u32 cur;
2338 
2339 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2340 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2341 			ret = 0;
2342 			goto out;
2343 		}
2344 
2345 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2346 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2347 		cur = 0;
2348 		while (cur < total_size) {
2349 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2350 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2351 			u32 this_len = sizeof(*di) + name_len + data_len;
2352 			char *name;
2353 
2354 			name = kmalloc(name_len, GFP_NOFS);
2355 			if (!name) {
2356 				ret = -ENOMEM;
2357 				goto out;
2358 			}
2359 			read_extent_buffer(path->nodes[0], name,
2360 					   (unsigned long)(di + 1), name_len);
2361 
2362 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2363 						    name, name_len, 0);
2364 			btrfs_release_path(log_path);
2365 			if (!log_di) {
2366 				/* Doesn't exist in log tree, so delete it. */
2367 				btrfs_release_path(path);
2368 				di = btrfs_lookup_xattr(trans, root, path, ino,
2369 							name, name_len, -1);
2370 				kfree(name);
2371 				if (IS_ERR(di)) {
2372 					ret = PTR_ERR(di);
2373 					goto out;
2374 				}
2375 				ASSERT(di);
2376 				ret = btrfs_delete_one_dir_name(trans, root,
2377 								path, di);
2378 				if (ret)
2379 					goto out;
2380 				btrfs_release_path(path);
2381 				search_key = key;
2382 				goto again;
2383 			}
2384 			kfree(name);
2385 			if (IS_ERR(log_di)) {
2386 				ret = PTR_ERR(log_di);
2387 				goto out;
2388 			}
2389 			cur += this_len;
2390 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2391 		}
2392 	}
2393 	ret = btrfs_next_leaf(root, path);
2394 	if (ret > 0)
2395 		ret = 0;
2396 	else if (ret == 0)
2397 		goto process_leaf;
2398 out:
2399 	btrfs_free_path(log_path);
2400 	btrfs_release_path(path);
2401 	return ret;
2402 }
2403 
2404 
2405 /*
2406  * deletion replay happens before we copy any new directory items
2407  * out of the log or out of backreferences from inodes.  It
2408  * scans the log to find ranges of keys that log is authoritative for,
2409  * and then scans the directory to find items in those ranges that are
2410  * not present in the log.
2411  *
2412  * Anything we don't find in the log is unlinked and removed from the
2413  * directory.
2414  */
2415 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2416 				       struct btrfs_root *root,
2417 				       struct btrfs_root *log,
2418 				       struct btrfs_path *path,
2419 				       u64 dirid, int del_all)
2420 {
2421 	u64 range_start;
2422 	u64 range_end;
2423 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2424 	int ret = 0;
2425 	struct btrfs_key dir_key;
2426 	struct btrfs_key found_key;
2427 	struct btrfs_path *log_path;
2428 	struct inode *dir;
2429 
2430 	dir_key.objectid = dirid;
2431 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2432 	log_path = btrfs_alloc_path();
2433 	if (!log_path)
2434 		return -ENOMEM;
2435 
2436 	dir = read_one_inode(root, dirid);
2437 	/* it isn't an error if the inode isn't there, that can happen
2438 	 * because we replay the deletes before we copy in the inode item
2439 	 * from the log
2440 	 */
2441 	if (!dir) {
2442 		btrfs_free_path(log_path);
2443 		return 0;
2444 	}
2445 again:
2446 	range_start = 0;
2447 	range_end = 0;
2448 	while (1) {
2449 		if (del_all)
2450 			range_end = (u64)-1;
2451 		else {
2452 			ret = find_dir_range(log, path, dirid, key_type,
2453 					     &range_start, &range_end);
2454 			if (ret != 0)
2455 				break;
2456 		}
2457 
2458 		dir_key.offset = range_start;
2459 		while (1) {
2460 			int nritems;
2461 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2462 						0, 0);
2463 			if (ret < 0)
2464 				goto out;
2465 
2466 			nritems = btrfs_header_nritems(path->nodes[0]);
2467 			if (path->slots[0] >= nritems) {
2468 				ret = btrfs_next_leaf(root, path);
2469 				if (ret == 1)
2470 					break;
2471 				else if (ret < 0)
2472 					goto out;
2473 			}
2474 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2475 					      path->slots[0]);
2476 			if (found_key.objectid != dirid ||
2477 			    found_key.type != dir_key.type)
2478 				goto next_type;
2479 
2480 			if (found_key.offset > range_end)
2481 				break;
2482 
2483 			ret = check_item_in_log(trans, root, log, path,
2484 						log_path, dir,
2485 						&found_key);
2486 			if (ret)
2487 				goto out;
2488 			if (found_key.offset == (u64)-1)
2489 				break;
2490 			dir_key.offset = found_key.offset + 1;
2491 		}
2492 		btrfs_release_path(path);
2493 		if (range_end == (u64)-1)
2494 			break;
2495 		range_start = range_end + 1;
2496 	}
2497 
2498 next_type:
2499 	ret = 0;
2500 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2501 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2502 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2503 		btrfs_release_path(path);
2504 		goto again;
2505 	}
2506 out:
2507 	btrfs_release_path(path);
2508 	btrfs_free_path(log_path);
2509 	iput(dir);
2510 	return ret;
2511 }
2512 
2513 /*
2514  * the process_func used to replay items from the log tree.  This
2515  * gets called in two different stages.  The first stage just looks
2516  * for inodes and makes sure they are all copied into the subvolume.
2517  *
2518  * The second stage copies all the other item types from the log into
2519  * the subvolume.  The two stage approach is slower, but gets rid of
2520  * lots of complexity around inodes referencing other inodes that exist
2521  * only in the log (references come from either directory items or inode
2522  * back refs).
2523  */
2524 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2525 			     struct walk_control *wc, u64 gen, int level)
2526 {
2527 	int nritems;
2528 	struct btrfs_path *path;
2529 	struct btrfs_root *root = wc->replay_dest;
2530 	struct btrfs_key key;
2531 	int i;
2532 	int ret;
2533 
2534 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2535 	if (ret)
2536 		return ret;
2537 
2538 	level = btrfs_header_level(eb);
2539 
2540 	if (level != 0)
2541 		return 0;
2542 
2543 	path = btrfs_alloc_path();
2544 	if (!path)
2545 		return -ENOMEM;
2546 
2547 	nritems = btrfs_header_nritems(eb);
2548 	for (i = 0; i < nritems; i++) {
2549 		btrfs_item_key_to_cpu(eb, &key, i);
2550 
2551 		/* inode keys are done during the first stage */
2552 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2553 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2554 			struct btrfs_inode_item *inode_item;
2555 			u32 mode;
2556 
2557 			inode_item = btrfs_item_ptr(eb, i,
2558 					    struct btrfs_inode_item);
2559 			/*
2560 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2561 			 * and never got linked before the fsync, skip it, as
2562 			 * replaying it is pointless since it would be deleted
2563 			 * later. We skip logging tmpfiles, but it's always
2564 			 * possible we are replaying a log created with a kernel
2565 			 * that used to log tmpfiles.
2566 			 */
2567 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2568 				wc->ignore_cur_inode = true;
2569 				continue;
2570 			} else {
2571 				wc->ignore_cur_inode = false;
2572 			}
2573 			ret = replay_xattr_deletes(wc->trans, root, log,
2574 						   path, key.objectid);
2575 			if (ret)
2576 				break;
2577 			mode = btrfs_inode_mode(eb, inode_item);
2578 			if (S_ISDIR(mode)) {
2579 				ret = replay_dir_deletes(wc->trans,
2580 					 root, log, path, key.objectid, 0);
2581 				if (ret)
2582 					break;
2583 			}
2584 			ret = overwrite_item(wc->trans, root, path,
2585 					     eb, i, &key);
2586 			if (ret)
2587 				break;
2588 
2589 			/*
2590 			 * Before replaying extents, truncate the inode to its
2591 			 * size. We need to do it now and not after log replay
2592 			 * because before an fsync we can have prealloc extents
2593 			 * added beyond the inode's i_size. If we did it after,
2594 			 * through orphan cleanup for example, we would drop
2595 			 * those prealloc extents just after replaying them.
2596 			 */
2597 			if (S_ISREG(mode)) {
2598 				struct inode *inode;
2599 				u64 from;
2600 
2601 				inode = read_one_inode(root, key.objectid);
2602 				if (!inode) {
2603 					ret = -EIO;
2604 					break;
2605 				}
2606 				from = ALIGN(i_size_read(inode),
2607 					     root->fs_info->sectorsize);
2608 				ret = btrfs_drop_extents(wc->trans, root, inode,
2609 							 from, (u64)-1, 1);
2610 				if (!ret) {
2611 					/* Update the inode's nbytes. */
2612 					ret = btrfs_update_inode(wc->trans,
2613 								 root, inode);
2614 				}
2615 				iput(inode);
2616 				if (ret)
2617 					break;
2618 			}
2619 
2620 			ret = link_to_fixup_dir(wc->trans, root,
2621 						path, key.objectid);
2622 			if (ret)
2623 				break;
2624 		}
2625 
2626 		if (wc->ignore_cur_inode)
2627 			continue;
2628 
2629 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2630 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2631 			ret = replay_one_dir_item(wc->trans, root, path,
2632 						  eb, i, &key);
2633 			if (ret)
2634 				break;
2635 		}
2636 
2637 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2638 			continue;
2639 
2640 		/* these keys are simply copied */
2641 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2642 			ret = overwrite_item(wc->trans, root, path,
2643 					     eb, i, &key);
2644 			if (ret)
2645 				break;
2646 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2647 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2648 			ret = add_inode_ref(wc->trans, root, log, path,
2649 					    eb, i, &key);
2650 			if (ret && ret != -ENOENT)
2651 				break;
2652 			ret = 0;
2653 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2654 			ret = replay_one_extent(wc->trans, root, path,
2655 						eb, i, &key);
2656 			if (ret)
2657 				break;
2658 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2659 			ret = replay_one_dir_item(wc->trans, root, path,
2660 						  eb, i, &key);
2661 			if (ret)
2662 				break;
2663 		}
2664 	}
2665 	btrfs_free_path(path);
2666 	return ret;
2667 }
2668 
2669 /*
2670  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2671  */
2672 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2673 {
2674 	struct btrfs_block_group *cache;
2675 
2676 	cache = btrfs_lookup_block_group(fs_info, start);
2677 	if (!cache) {
2678 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2679 		return;
2680 	}
2681 
2682 	spin_lock(&cache->space_info->lock);
2683 	spin_lock(&cache->lock);
2684 	cache->reserved -= fs_info->nodesize;
2685 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2686 	spin_unlock(&cache->lock);
2687 	spin_unlock(&cache->space_info->lock);
2688 
2689 	btrfs_put_block_group(cache);
2690 }
2691 
2692 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2693 				   struct btrfs_root *root,
2694 				   struct btrfs_path *path, int *level,
2695 				   struct walk_control *wc)
2696 {
2697 	struct btrfs_fs_info *fs_info = root->fs_info;
2698 	u64 bytenr;
2699 	u64 ptr_gen;
2700 	struct extent_buffer *next;
2701 	struct extent_buffer *cur;
2702 	u32 blocksize;
2703 	int ret = 0;
2704 
2705 	while (*level > 0) {
2706 		struct btrfs_key first_key;
2707 
2708 		cur = path->nodes[*level];
2709 
2710 		WARN_ON(btrfs_header_level(cur) != *level);
2711 
2712 		if (path->slots[*level] >=
2713 		    btrfs_header_nritems(cur))
2714 			break;
2715 
2716 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2717 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2718 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2719 		blocksize = fs_info->nodesize;
2720 
2721 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2722 		if (IS_ERR(next))
2723 			return PTR_ERR(next);
2724 
2725 		if (*level == 1) {
2726 			ret = wc->process_func(root, next, wc, ptr_gen,
2727 					       *level - 1);
2728 			if (ret) {
2729 				free_extent_buffer(next);
2730 				return ret;
2731 			}
2732 
2733 			path->slots[*level]++;
2734 			if (wc->free) {
2735 				ret = btrfs_read_buffer(next, ptr_gen,
2736 							*level - 1, &first_key);
2737 				if (ret) {
2738 					free_extent_buffer(next);
2739 					return ret;
2740 				}
2741 
2742 				if (trans) {
2743 					btrfs_tree_lock(next);
2744 					btrfs_set_lock_blocking_write(next);
2745 					btrfs_clean_tree_block(next);
2746 					btrfs_wait_tree_block_writeback(next);
2747 					btrfs_tree_unlock(next);
2748 					ret = btrfs_pin_reserved_extent(trans,
2749 							bytenr, blocksize);
2750 					if (ret) {
2751 						free_extent_buffer(next);
2752 						return ret;
2753 					}
2754 				} else {
2755 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2756 						clear_extent_buffer_dirty(next);
2757 					unaccount_log_buffer(fs_info, bytenr);
2758 				}
2759 			}
2760 			free_extent_buffer(next);
2761 			continue;
2762 		}
2763 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2764 		if (ret) {
2765 			free_extent_buffer(next);
2766 			return ret;
2767 		}
2768 
2769 		if (path->nodes[*level-1])
2770 			free_extent_buffer(path->nodes[*level-1]);
2771 		path->nodes[*level-1] = next;
2772 		*level = btrfs_header_level(next);
2773 		path->slots[*level] = 0;
2774 		cond_resched();
2775 	}
2776 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2777 
2778 	cond_resched();
2779 	return 0;
2780 }
2781 
2782 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2783 				 struct btrfs_root *root,
2784 				 struct btrfs_path *path, int *level,
2785 				 struct walk_control *wc)
2786 {
2787 	struct btrfs_fs_info *fs_info = root->fs_info;
2788 	int i;
2789 	int slot;
2790 	int ret;
2791 
2792 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2793 		slot = path->slots[i];
2794 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2795 			path->slots[i]++;
2796 			*level = i;
2797 			WARN_ON(*level == 0);
2798 			return 0;
2799 		} else {
2800 			ret = wc->process_func(root, path->nodes[*level], wc,
2801 				 btrfs_header_generation(path->nodes[*level]),
2802 				 *level);
2803 			if (ret)
2804 				return ret;
2805 
2806 			if (wc->free) {
2807 				struct extent_buffer *next;
2808 
2809 				next = path->nodes[*level];
2810 
2811 				if (trans) {
2812 					btrfs_tree_lock(next);
2813 					btrfs_set_lock_blocking_write(next);
2814 					btrfs_clean_tree_block(next);
2815 					btrfs_wait_tree_block_writeback(next);
2816 					btrfs_tree_unlock(next);
2817 					ret = btrfs_pin_reserved_extent(trans,
2818 						     path->nodes[*level]->start,
2819 						     path->nodes[*level]->len);
2820 					if (ret)
2821 						return ret;
2822 				} else {
2823 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2824 						clear_extent_buffer_dirty(next);
2825 
2826 					unaccount_log_buffer(fs_info,
2827 						path->nodes[*level]->start);
2828 				}
2829 			}
2830 			free_extent_buffer(path->nodes[*level]);
2831 			path->nodes[*level] = NULL;
2832 			*level = i + 1;
2833 		}
2834 	}
2835 	return 1;
2836 }
2837 
2838 /*
2839  * drop the reference count on the tree rooted at 'snap'.  This traverses
2840  * the tree freeing any blocks that have a ref count of zero after being
2841  * decremented.
2842  */
2843 static int walk_log_tree(struct btrfs_trans_handle *trans,
2844 			 struct btrfs_root *log, struct walk_control *wc)
2845 {
2846 	struct btrfs_fs_info *fs_info = log->fs_info;
2847 	int ret = 0;
2848 	int wret;
2849 	int level;
2850 	struct btrfs_path *path;
2851 	int orig_level;
2852 
2853 	path = btrfs_alloc_path();
2854 	if (!path)
2855 		return -ENOMEM;
2856 
2857 	level = btrfs_header_level(log->node);
2858 	orig_level = level;
2859 	path->nodes[level] = log->node;
2860 	atomic_inc(&log->node->refs);
2861 	path->slots[level] = 0;
2862 
2863 	while (1) {
2864 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2865 		if (wret > 0)
2866 			break;
2867 		if (wret < 0) {
2868 			ret = wret;
2869 			goto out;
2870 		}
2871 
2872 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2873 		if (wret > 0)
2874 			break;
2875 		if (wret < 0) {
2876 			ret = wret;
2877 			goto out;
2878 		}
2879 	}
2880 
2881 	/* was the root node processed? if not, catch it here */
2882 	if (path->nodes[orig_level]) {
2883 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2884 			 btrfs_header_generation(path->nodes[orig_level]),
2885 			 orig_level);
2886 		if (ret)
2887 			goto out;
2888 		if (wc->free) {
2889 			struct extent_buffer *next;
2890 
2891 			next = path->nodes[orig_level];
2892 
2893 			if (trans) {
2894 				btrfs_tree_lock(next);
2895 				btrfs_set_lock_blocking_write(next);
2896 				btrfs_clean_tree_block(next);
2897 				btrfs_wait_tree_block_writeback(next);
2898 				btrfs_tree_unlock(next);
2899 				ret = btrfs_pin_reserved_extent(trans,
2900 						next->start, next->len);
2901 				if (ret)
2902 					goto out;
2903 			} else {
2904 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2905 					clear_extent_buffer_dirty(next);
2906 				unaccount_log_buffer(fs_info, next->start);
2907 			}
2908 		}
2909 	}
2910 
2911 out:
2912 	btrfs_free_path(path);
2913 	return ret;
2914 }
2915 
2916 /*
2917  * helper function to update the item for a given subvolumes log root
2918  * in the tree of log roots
2919  */
2920 static int update_log_root(struct btrfs_trans_handle *trans,
2921 			   struct btrfs_root *log,
2922 			   struct btrfs_root_item *root_item)
2923 {
2924 	struct btrfs_fs_info *fs_info = log->fs_info;
2925 	int ret;
2926 
2927 	if (log->log_transid == 1) {
2928 		/* insert root item on the first sync */
2929 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2930 				&log->root_key, root_item);
2931 	} else {
2932 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2933 				&log->root_key, root_item);
2934 	}
2935 	return ret;
2936 }
2937 
2938 static void wait_log_commit(struct btrfs_root *root, int transid)
2939 {
2940 	DEFINE_WAIT(wait);
2941 	int index = transid % 2;
2942 
2943 	/*
2944 	 * we only allow two pending log transactions at a time,
2945 	 * so we know that if ours is more than 2 older than the
2946 	 * current transaction, we're done
2947 	 */
2948 	for (;;) {
2949 		prepare_to_wait(&root->log_commit_wait[index],
2950 				&wait, TASK_UNINTERRUPTIBLE);
2951 
2952 		if (!(root->log_transid_committed < transid &&
2953 		      atomic_read(&root->log_commit[index])))
2954 			break;
2955 
2956 		mutex_unlock(&root->log_mutex);
2957 		schedule();
2958 		mutex_lock(&root->log_mutex);
2959 	}
2960 	finish_wait(&root->log_commit_wait[index], &wait);
2961 }
2962 
2963 static void wait_for_writer(struct btrfs_root *root)
2964 {
2965 	DEFINE_WAIT(wait);
2966 
2967 	for (;;) {
2968 		prepare_to_wait(&root->log_writer_wait, &wait,
2969 				TASK_UNINTERRUPTIBLE);
2970 		if (!atomic_read(&root->log_writers))
2971 			break;
2972 
2973 		mutex_unlock(&root->log_mutex);
2974 		schedule();
2975 		mutex_lock(&root->log_mutex);
2976 	}
2977 	finish_wait(&root->log_writer_wait, &wait);
2978 }
2979 
2980 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2981 					struct btrfs_log_ctx *ctx)
2982 {
2983 	if (!ctx)
2984 		return;
2985 
2986 	mutex_lock(&root->log_mutex);
2987 	list_del_init(&ctx->list);
2988 	mutex_unlock(&root->log_mutex);
2989 }
2990 
2991 /*
2992  * Invoked in log mutex context, or be sure there is no other task which
2993  * can access the list.
2994  */
2995 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2996 					     int index, int error)
2997 {
2998 	struct btrfs_log_ctx *ctx;
2999 	struct btrfs_log_ctx *safe;
3000 
3001 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3002 		list_del_init(&ctx->list);
3003 		ctx->log_ret = error;
3004 	}
3005 
3006 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3007 }
3008 
3009 /*
3010  * btrfs_sync_log does sends a given tree log down to the disk and
3011  * updates the super blocks to record it.  When this call is done,
3012  * you know that any inodes previously logged are safely on disk only
3013  * if it returns 0.
3014  *
3015  * Any other return value means you need to call btrfs_commit_transaction.
3016  * Some of the edge cases for fsyncing directories that have had unlinks
3017  * or renames done in the past mean that sometimes the only safe
3018  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3019  * that has happened.
3020  */
3021 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3022 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3023 {
3024 	int index1;
3025 	int index2;
3026 	int mark;
3027 	int ret;
3028 	struct btrfs_fs_info *fs_info = root->fs_info;
3029 	struct btrfs_root *log = root->log_root;
3030 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3031 	struct btrfs_root_item new_root_item;
3032 	int log_transid = 0;
3033 	struct btrfs_log_ctx root_log_ctx;
3034 	struct blk_plug plug;
3035 
3036 	mutex_lock(&root->log_mutex);
3037 	log_transid = ctx->log_transid;
3038 	if (root->log_transid_committed >= log_transid) {
3039 		mutex_unlock(&root->log_mutex);
3040 		return ctx->log_ret;
3041 	}
3042 
3043 	index1 = log_transid % 2;
3044 	if (atomic_read(&root->log_commit[index1])) {
3045 		wait_log_commit(root, log_transid);
3046 		mutex_unlock(&root->log_mutex);
3047 		return ctx->log_ret;
3048 	}
3049 	ASSERT(log_transid == root->log_transid);
3050 	atomic_set(&root->log_commit[index1], 1);
3051 
3052 	/* wait for previous tree log sync to complete */
3053 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3054 		wait_log_commit(root, log_transid - 1);
3055 
3056 	while (1) {
3057 		int batch = atomic_read(&root->log_batch);
3058 		/* when we're on an ssd, just kick the log commit out */
3059 		if (!btrfs_test_opt(fs_info, SSD) &&
3060 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3061 			mutex_unlock(&root->log_mutex);
3062 			schedule_timeout_uninterruptible(1);
3063 			mutex_lock(&root->log_mutex);
3064 		}
3065 		wait_for_writer(root);
3066 		if (batch == atomic_read(&root->log_batch))
3067 			break;
3068 	}
3069 
3070 	/* bail out if we need to do a full commit */
3071 	if (btrfs_need_log_full_commit(trans)) {
3072 		ret = -EAGAIN;
3073 		mutex_unlock(&root->log_mutex);
3074 		goto out;
3075 	}
3076 
3077 	if (log_transid % 2 == 0)
3078 		mark = EXTENT_DIRTY;
3079 	else
3080 		mark = EXTENT_NEW;
3081 
3082 	/* we start IO on  all the marked extents here, but we don't actually
3083 	 * wait for them until later.
3084 	 */
3085 	blk_start_plug(&plug);
3086 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3087 	if (ret) {
3088 		blk_finish_plug(&plug);
3089 		btrfs_abort_transaction(trans, ret);
3090 		btrfs_set_log_full_commit(trans);
3091 		mutex_unlock(&root->log_mutex);
3092 		goto out;
3093 	}
3094 
3095 	/*
3096 	 * We _must_ update under the root->log_mutex in order to make sure we
3097 	 * have a consistent view of the log root we are trying to commit at
3098 	 * this moment.
3099 	 *
3100 	 * We _must_ copy this into a local copy, because we are not holding the
3101 	 * log_root_tree->log_mutex yet.  This is important because when we
3102 	 * commit the log_root_tree we must have a consistent view of the
3103 	 * log_root_tree when we update the super block to point at the
3104 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3105 	 * with the commit and possibly point at the new block which we may not
3106 	 * have written out.
3107 	 */
3108 	btrfs_set_root_node(&log->root_item, log->node);
3109 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3110 
3111 	root->log_transid++;
3112 	log->log_transid = root->log_transid;
3113 	root->log_start_pid = 0;
3114 	/*
3115 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3116 	 * in their headers. new modifications of the log will be written to
3117 	 * new positions. so it's safe to allow log writers to go in.
3118 	 */
3119 	mutex_unlock(&root->log_mutex);
3120 
3121 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3122 
3123 	mutex_lock(&log_root_tree->log_mutex);
3124 	atomic_inc(&log_root_tree->log_batch);
3125 	atomic_inc(&log_root_tree->log_writers);
3126 
3127 	index2 = log_root_tree->log_transid % 2;
3128 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3129 	root_log_ctx.log_transid = log_root_tree->log_transid;
3130 
3131 	mutex_unlock(&log_root_tree->log_mutex);
3132 
3133 	mutex_lock(&log_root_tree->log_mutex);
3134 
3135 	/*
3136 	 * Now we are safe to update the log_root_tree because we're under the
3137 	 * log_mutex, and we're a current writer so we're holding the commit
3138 	 * open until we drop the log_mutex.
3139 	 */
3140 	ret = update_log_root(trans, log, &new_root_item);
3141 
3142 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3143 		/* atomic_dec_and_test implies a barrier */
3144 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3145 	}
3146 
3147 	if (ret) {
3148 		if (!list_empty(&root_log_ctx.list))
3149 			list_del_init(&root_log_ctx.list);
3150 
3151 		blk_finish_plug(&plug);
3152 		btrfs_set_log_full_commit(trans);
3153 
3154 		if (ret != -ENOSPC) {
3155 			btrfs_abort_transaction(trans, ret);
3156 			mutex_unlock(&log_root_tree->log_mutex);
3157 			goto out;
3158 		}
3159 		btrfs_wait_tree_log_extents(log, mark);
3160 		mutex_unlock(&log_root_tree->log_mutex);
3161 		ret = -EAGAIN;
3162 		goto out;
3163 	}
3164 
3165 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3166 		blk_finish_plug(&plug);
3167 		list_del_init(&root_log_ctx.list);
3168 		mutex_unlock(&log_root_tree->log_mutex);
3169 		ret = root_log_ctx.log_ret;
3170 		goto out;
3171 	}
3172 
3173 	index2 = root_log_ctx.log_transid % 2;
3174 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3175 		blk_finish_plug(&plug);
3176 		ret = btrfs_wait_tree_log_extents(log, mark);
3177 		wait_log_commit(log_root_tree,
3178 				root_log_ctx.log_transid);
3179 		mutex_unlock(&log_root_tree->log_mutex);
3180 		if (!ret)
3181 			ret = root_log_ctx.log_ret;
3182 		goto out;
3183 	}
3184 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3185 	atomic_set(&log_root_tree->log_commit[index2], 1);
3186 
3187 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3188 		wait_log_commit(log_root_tree,
3189 				root_log_ctx.log_transid - 1);
3190 	}
3191 
3192 	wait_for_writer(log_root_tree);
3193 
3194 	/*
3195 	 * now that we've moved on to the tree of log tree roots,
3196 	 * check the full commit flag again
3197 	 */
3198 	if (btrfs_need_log_full_commit(trans)) {
3199 		blk_finish_plug(&plug);
3200 		btrfs_wait_tree_log_extents(log, mark);
3201 		mutex_unlock(&log_root_tree->log_mutex);
3202 		ret = -EAGAIN;
3203 		goto out_wake_log_root;
3204 	}
3205 
3206 	ret = btrfs_write_marked_extents(fs_info,
3207 					 &log_root_tree->dirty_log_pages,
3208 					 EXTENT_DIRTY | EXTENT_NEW);
3209 	blk_finish_plug(&plug);
3210 	if (ret) {
3211 		btrfs_set_log_full_commit(trans);
3212 		btrfs_abort_transaction(trans, ret);
3213 		mutex_unlock(&log_root_tree->log_mutex);
3214 		goto out_wake_log_root;
3215 	}
3216 	ret = btrfs_wait_tree_log_extents(log, mark);
3217 	if (!ret)
3218 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3219 						  EXTENT_NEW | EXTENT_DIRTY);
3220 	if (ret) {
3221 		btrfs_set_log_full_commit(trans);
3222 		mutex_unlock(&log_root_tree->log_mutex);
3223 		goto out_wake_log_root;
3224 	}
3225 
3226 	btrfs_set_super_log_root(fs_info->super_for_commit,
3227 				 log_root_tree->node->start);
3228 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3229 				       btrfs_header_level(log_root_tree->node));
3230 
3231 	log_root_tree->log_transid++;
3232 	mutex_unlock(&log_root_tree->log_mutex);
3233 
3234 	/*
3235 	 * Nobody else is going to jump in and write the ctree
3236 	 * super here because the log_commit atomic below is protecting
3237 	 * us.  We must be called with a transaction handle pinning
3238 	 * the running transaction open, so a full commit can't hop
3239 	 * in and cause problems either.
3240 	 */
3241 	ret = write_all_supers(fs_info, 1);
3242 	if (ret) {
3243 		btrfs_set_log_full_commit(trans);
3244 		btrfs_abort_transaction(trans, ret);
3245 		goto out_wake_log_root;
3246 	}
3247 
3248 	mutex_lock(&root->log_mutex);
3249 	if (root->last_log_commit < log_transid)
3250 		root->last_log_commit = log_transid;
3251 	mutex_unlock(&root->log_mutex);
3252 
3253 out_wake_log_root:
3254 	mutex_lock(&log_root_tree->log_mutex);
3255 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3256 
3257 	log_root_tree->log_transid_committed++;
3258 	atomic_set(&log_root_tree->log_commit[index2], 0);
3259 	mutex_unlock(&log_root_tree->log_mutex);
3260 
3261 	/*
3262 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3263 	 * all the updates above are seen by the woken threads. It might not be
3264 	 * necessary, but proving that seems to be hard.
3265 	 */
3266 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3267 out:
3268 	mutex_lock(&root->log_mutex);
3269 	btrfs_remove_all_log_ctxs(root, index1, ret);
3270 	root->log_transid_committed++;
3271 	atomic_set(&root->log_commit[index1], 0);
3272 	mutex_unlock(&root->log_mutex);
3273 
3274 	/*
3275 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3276 	 * all the updates above are seen by the woken threads. It might not be
3277 	 * necessary, but proving that seems to be hard.
3278 	 */
3279 	cond_wake_up(&root->log_commit_wait[index1]);
3280 	return ret;
3281 }
3282 
3283 static void free_log_tree(struct btrfs_trans_handle *trans,
3284 			  struct btrfs_root *log)
3285 {
3286 	int ret;
3287 	struct walk_control wc = {
3288 		.free = 1,
3289 		.process_func = process_one_buffer
3290 	};
3291 
3292 	ret = walk_log_tree(trans, log, &wc);
3293 	if (ret) {
3294 		if (trans)
3295 			btrfs_abort_transaction(trans, ret);
3296 		else
3297 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3298 	}
3299 
3300 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3301 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3302 	btrfs_put_root(log);
3303 }
3304 
3305 /*
3306  * free all the extents used by the tree log.  This should be called
3307  * at commit time of the full transaction
3308  */
3309 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3310 {
3311 	if (root->log_root) {
3312 		free_log_tree(trans, root->log_root);
3313 		root->log_root = NULL;
3314 	}
3315 	return 0;
3316 }
3317 
3318 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3319 			     struct btrfs_fs_info *fs_info)
3320 {
3321 	if (fs_info->log_root_tree) {
3322 		free_log_tree(trans, fs_info->log_root_tree);
3323 		fs_info->log_root_tree = NULL;
3324 	}
3325 	return 0;
3326 }
3327 
3328 /*
3329  * Check if an inode was logged in the current transaction. We can't always rely
3330  * on an inode's logged_trans value, because it's an in-memory only field and
3331  * therefore not persisted. This means that its value is lost if the inode gets
3332  * evicted and loaded again from disk (in which case it has a value of 0, and
3333  * certainly it is smaller then any possible transaction ID), when that happens
3334  * the full_sync flag is set in the inode's runtime flags, so on that case we
3335  * assume eviction happened and ignore the logged_trans value, assuming the
3336  * worst case, that the inode was logged before in the current transaction.
3337  */
3338 static bool inode_logged(struct btrfs_trans_handle *trans,
3339 			 struct btrfs_inode *inode)
3340 {
3341 	if (inode->logged_trans == trans->transid)
3342 		return true;
3343 
3344 	if (inode->last_trans == trans->transid &&
3345 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3346 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3347 		return true;
3348 
3349 	return false;
3350 }
3351 
3352 /*
3353  * If both a file and directory are logged, and unlinks or renames are
3354  * mixed in, we have a few interesting corners:
3355  *
3356  * create file X in dir Y
3357  * link file X to X.link in dir Y
3358  * fsync file X
3359  * unlink file X but leave X.link
3360  * fsync dir Y
3361  *
3362  * After a crash we would expect only X.link to exist.  But file X
3363  * didn't get fsync'd again so the log has back refs for X and X.link.
3364  *
3365  * We solve this by removing directory entries and inode backrefs from the
3366  * log when a file that was logged in the current transaction is
3367  * unlinked.  Any later fsync will include the updated log entries, and
3368  * we'll be able to reconstruct the proper directory items from backrefs.
3369  *
3370  * This optimizations allows us to avoid relogging the entire inode
3371  * or the entire directory.
3372  */
3373 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3374 				 struct btrfs_root *root,
3375 				 const char *name, int name_len,
3376 				 struct btrfs_inode *dir, u64 index)
3377 {
3378 	struct btrfs_root *log;
3379 	struct btrfs_dir_item *di;
3380 	struct btrfs_path *path;
3381 	int ret;
3382 	int err = 0;
3383 	int bytes_del = 0;
3384 	u64 dir_ino = btrfs_ino(dir);
3385 
3386 	if (!inode_logged(trans, dir))
3387 		return 0;
3388 
3389 	ret = join_running_log_trans(root);
3390 	if (ret)
3391 		return 0;
3392 
3393 	mutex_lock(&dir->log_mutex);
3394 
3395 	log = root->log_root;
3396 	path = btrfs_alloc_path();
3397 	if (!path) {
3398 		err = -ENOMEM;
3399 		goto out_unlock;
3400 	}
3401 
3402 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3403 				   name, name_len, -1);
3404 	if (IS_ERR(di)) {
3405 		err = PTR_ERR(di);
3406 		goto fail;
3407 	}
3408 	if (di) {
3409 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3410 		bytes_del += name_len;
3411 		if (ret) {
3412 			err = ret;
3413 			goto fail;
3414 		}
3415 	}
3416 	btrfs_release_path(path);
3417 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3418 					 index, name, name_len, -1);
3419 	if (IS_ERR(di)) {
3420 		err = PTR_ERR(di);
3421 		goto fail;
3422 	}
3423 	if (di) {
3424 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3425 		bytes_del += name_len;
3426 		if (ret) {
3427 			err = ret;
3428 			goto fail;
3429 		}
3430 	}
3431 
3432 	/* update the directory size in the log to reflect the names
3433 	 * we have removed
3434 	 */
3435 	if (bytes_del) {
3436 		struct btrfs_key key;
3437 
3438 		key.objectid = dir_ino;
3439 		key.offset = 0;
3440 		key.type = BTRFS_INODE_ITEM_KEY;
3441 		btrfs_release_path(path);
3442 
3443 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3444 		if (ret < 0) {
3445 			err = ret;
3446 			goto fail;
3447 		}
3448 		if (ret == 0) {
3449 			struct btrfs_inode_item *item;
3450 			u64 i_size;
3451 
3452 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3453 					      struct btrfs_inode_item);
3454 			i_size = btrfs_inode_size(path->nodes[0], item);
3455 			if (i_size > bytes_del)
3456 				i_size -= bytes_del;
3457 			else
3458 				i_size = 0;
3459 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3460 			btrfs_mark_buffer_dirty(path->nodes[0]);
3461 		} else
3462 			ret = 0;
3463 		btrfs_release_path(path);
3464 	}
3465 fail:
3466 	btrfs_free_path(path);
3467 out_unlock:
3468 	mutex_unlock(&dir->log_mutex);
3469 	if (ret == -ENOSPC) {
3470 		btrfs_set_log_full_commit(trans);
3471 		ret = 0;
3472 	} else if (ret < 0)
3473 		btrfs_abort_transaction(trans, ret);
3474 
3475 	btrfs_end_log_trans(root);
3476 
3477 	return err;
3478 }
3479 
3480 /* see comments for btrfs_del_dir_entries_in_log */
3481 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3482 			       struct btrfs_root *root,
3483 			       const char *name, int name_len,
3484 			       struct btrfs_inode *inode, u64 dirid)
3485 {
3486 	struct btrfs_root *log;
3487 	u64 index;
3488 	int ret;
3489 
3490 	if (!inode_logged(trans, inode))
3491 		return 0;
3492 
3493 	ret = join_running_log_trans(root);
3494 	if (ret)
3495 		return 0;
3496 	log = root->log_root;
3497 	mutex_lock(&inode->log_mutex);
3498 
3499 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3500 				  dirid, &index);
3501 	mutex_unlock(&inode->log_mutex);
3502 	if (ret == -ENOSPC) {
3503 		btrfs_set_log_full_commit(trans);
3504 		ret = 0;
3505 	} else if (ret < 0 && ret != -ENOENT)
3506 		btrfs_abort_transaction(trans, ret);
3507 	btrfs_end_log_trans(root);
3508 
3509 	return ret;
3510 }
3511 
3512 /*
3513  * creates a range item in the log for 'dirid'.  first_offset and
3514  * last_offset tell us which parts of the key space the log should
3515  * be considered authoritative for.
3516  */
3517 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3518 				       struct btrfs_root *log,
3519 				       struct btrfs_path *path,
3520 				       int key_type, u64 dirid,
3521 				       u64 first_offset, u64 last_offset)
3522 {
3523 	int ret;
3524 	struct btrfs_key key;
3525 	struct btrfs_dir_log_item *item;
3526 
3527 	key.objectid = dirid;
3528 	key.offset = first_offset;
3529 	if (key_type == BTRFS_DIR_ITEM_KEY)
3530 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3531 	else
3532 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3533 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3534 	if (ret)
3535 		return ret;
3536 
3537 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3538 			      struct btrfs_dir_log_item);
3539 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3540 	btrfs_mark_buffer_dirty(path->nodes[0]);
3541 	btrfs_release_path(path);
3542 	return 0;
3543 }
3544 
3545 /*
3546  * log all the items included in the current transaction for a given
3547  * directory.  This also creates the range items in the log tree required
3548  * to replay anything deleted before the fsync
3549  */
3550 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3551 			  struct btrfs_root *root, struct btrfs_inode *inode,
3552 			  struct btrfs_path *path,
3553 			  struct btrfs_path *dst_path, int key_type,
3554 			  struct btrfs_log_ctx *ctx,
3555 			  u64 min_offset, u64 *last_offset_ret)
3556 {
3557 	struct btrfs_key min_key;
3558 	struct btrfs_root *log = root->log_root;
3559 	struct extent_buffer *src;
3560 	int err = 0;
3561 	int ret;
3562 	int i;
3563 	int nritems;
3564 	u64 first_offset = min_offset;
3565 	u64 last_offset = (u64)-1;
3566 	u64 ino = btrfs_ino(inode);
3567 
3568 	log = root->log_root;
3569 
3570 	min_key.objectid = ino;
3571 	min_key.type = key_type;
3572 	min_key.offset = min_offset;
3573 
3574 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3575 
3576 	/*
3577 	 * we didn't find anything from this transaction, see if there
3578 	 * is anything at all
3579 	 */
3580 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3581 		min_key.objectid = ino;
3582 		min_key.type = key_type;
3583 		min_key.offset = (u64)-1;
3584 		btrfs_release_path(path);
3585 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3586 		if (ret < 0) {
3587 			btrfs_release_path(path);
3588 			return ret;
3589 		}
3590 		ret = btrfs_previous_item(root, path, ino, key_type);
3591 
3592 		/* if ret == 0 there are items for this type,
3593 		 * create a range to tell us the last key of this type.
3594 		 * otherwise, there are no items in this directory after
3595 		 * *min_offset, and we create a range to indicate that.
3596 		 */
3597 		if (ret == 0) {
3598 			struct btrfs_key tmp;
3599 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3600 					      path->slots[0]);
3601 			if (key_type == tmp.type)
3602 				first_offset = max(min_offset, tmp.offset) + 1;
3603 		}
3604 		goto done;
3605 	}
3606 
3607 	/* go backward to find any previous key */
3608 	ret = btrfs_previous_item(root, path, ino, key_type);
3609 	if (ret == 0) {
3610 		struct btrfs_key tmp;
3611 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3612 		if (key_type == tmp.type) {
3613 			first_offset = tmp.offset;
3614 			ret = overwrite_item(trans, log, dst_path,
3615 					     path->nodes[0], path->slots[0],
3616 					     &tmp);
3617 			if (ret) {
3618 				err = ret;
3619 				goto done;
3620 			}
3621 		}
3622 	}
3623 	btrfs_release_path(path);
3624 
3625 	/*
3626 	 * Find the first key from this transaction again.  See the note for
3627 	 * log_new_dir_dentries, if we're logging a directory recursively we
3628 	 * won't be holding its i_mutex, which means we can modify the directory
3629 	 * while we're logging it.  If we remove an entry between our first
3630 	 * search and this search we'll not find the key again and can just
3631 	 * bail.
3632 	 */
3633 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3634 	if (ret != 0)
3635 		goto done;
3636 
3637 	/*
3638 	 * we have a block from this transaction, log every item in it
3639 	 * from our directory
3640 	 */
3641 	while (1) {
3642 		struct btrfs_key tmp;
3643 		src = path->nodes[0];
3644 		nritems = btrfs_header_nritems(src);
3645 		for (i = path->slots[0]; i < nritems; i++) {
3646 			struct btrfs_dir_item *di;
3647 
3648 			btrfs_item_key_to_cpu(src, &min_key, i);
3649 
3650 			if (min_key.objectid != ino || min_key.type != key_type)
3651 				goto done;
3652 			ret = overwrite_item(trans, log, dst_path, src, i,
3653 					     &min_key);
3654 			if (ret) {
3655 				err = ret;
3656 				goto done;
3657 			}
3658 
3659 			/*
3660 			 * We must make sure that when we log a directory entry,
3661 			 * the corresponding inode, after log replay, has a
3662 			 * matching link count. For example:
3663 			 *
3664 			 * touch foo
3665 			 * mkdir mydir
3666 			 * sync
3667 			 * ln foo mydir/bar
3668 			 * xfs_io -c "fsync" mydir
3669 			 * <crash>
3670 			 * <mount fs and log replay>
3671 			 *
3672 			 * Would result in a fsync log that when replayed, our
3673 			 * file inode would have a link count of 1, but we get
3674 			 * two directory entries pointing to the same inode.
3675 			 * After removing one of the names, it would not be
3676 			 * possible to remove the other name, which resulted
3677 			 * always in stale file handle errors, and would not
3678 			 * be possible to rmdir the parent directory, since
3679 			 * its i_size could never decrement to the value
3680 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3681 			 */
3682 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3683 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3684 			if (ctx &&
3685 			    (btrfs_dir_transid(src, di) == trans->transid ||
3686 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3687 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3688 				ctx->log_new_dentries = true;
3689 		}
3690 		path->slots[0] = nritems;
3691 
3692 		/*
3693 		 * look ahead to the next item and see if it is also
3694 		 * from this directory and from this transaction
3695 		 */
3696 		ret = btrfs_next_leaf(root, path);
3697 		if (ret) {
3698 			if (ret == 1)
3699 				last_offset = (u64)-1;
3700 			else
3701 				err = ret;
3702 			goto done;
3703 		}
3704 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3705 		if (tmp.objectid != ino || tmp.type != key_type) {
3706 			last_offset = (u64)-1;
3707 			goto done;
3708 		}
3709 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3710 			ret = overwrite_item(trans, log, dst_path,
3711 					     path->nodes[0], path->slots[0],
3712 					     &tmp);
3713 			if (ret)
3714 				err = ret;
3715 			else
3716 				last_offset = tmp.offset;
3717 			goto done;
3718 		}
3719 	}
3720 done:
3721 	btrfs_release_path(path);
3722 	btrfs_release_path(dst_path);
3723 
3724 	if (err == 0) {
3725 		*last_offset_ret = last_offset;
3726 		/*
3727 		 * insert the log range keys to indicate where the log
3728 		 * is valid
3729 		 */
3730 		ret = insert_dir_log_key(trans, log, path, key_type,
3731 					 ino, first_offset, last_offset);
3732 		if (ret)
3733 			err = ret;
3734 	}
3735 	return err;
3736 }
3737 
3738 /*
3739  * logging directories is very similar to logging inodes, We find all the items
3740  * from the current transaction and write them to the log.
3741  *
3742  * The recovery code scans the directory in the subvolume, and if it finds a
3743  * key in the range logged that is not present in the log tree, then it means
3744  * that dir entry was unlinked during the transaction.
3745  *
3746  * In order for that scan to work, we must include one key smaller than
3747  * the smallest logged by this transaction and one key larger than the largest
3748  * key logged by this transaction.
3749  */
3750 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3751 			  struct btrfs_root *root, struct btrfs_inode *inode,
3752 			  struct btrfs_path *path,
3753 			  struct btrfs_path *dst_path,
3754 			  struct btrfs_log_ctx *ctx)
3755 {
3756 	u64 min_key;
3757 	u64 max_key;
3758 	int ret;
3759 	int key_type = BTRFS_DIR_ITEM_KEY;
3760 
3761 again:
3762 	min_key = 0;
3763 	max_key = 0;
3764 	while (1) {
3765 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3766 				ctx, min_key, &max_key);
3767 		if (ret)
3768 			return ret;
3769 		if (max_key == (u64)-1)
3770 			break;
3771 		min_key = max_key + 1;
3772 	}
3773 
3774 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3775 		key_type = BTRFS_DIR_INDEX_KEY;
3776 		goto again;
3777 	}
3778 	return 0;
3779 }
3780 
3781 /*
3782  * a helper function to drop items from the log before we relog an
3783  * inode.  max_key_type indicates the highest item type to remove.
3784  * This cannot be run for file data extents because it does not
3785  * free the extents they point to.
3786  */
3787 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3788 				  struct btrfs_root *log,
3789 				  struct btrfs_path *path,
3790 				  u64 objectid, int max_key_type)
3791 {
3792 	int ret;
3793 	struct btrfs_key key;
3794 	struct btrfs_key found_key;
3795 	int start_slot;
3796 
3797 	key.objectid = objectid;
3798 	key.type = max_key_type;
3799 	key.offset = (u64)-1;
3800 
3801 	while (1) {
3802 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3803 		BUG_ON(ret == 0); /* Logic error */
3804 		if (ret < 0)
3805 			break;
3806 
3807 		if (path->slots[0] == 0)
3808 			break;
3809 
3810 		path->slots[0]--;
3811 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3812 				      path->slots[0]);
3813 
3814 		if (found_key.objectid != objectid)
3815 			break;
3816 
3817 		found_key.offset = 0;
3818 		found_key.type = 0;
3819 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3820 				       &start_slot);
3821 		if (ret < 0)
3822 			break;
3823 
3824 		ret = btrfs_del_items(trans, log, path, start_slot,
3825 				      path->slots[0] - start_slot + 1);
3826 		/*
3827 		 * If start slot isn't 0 then we don't need to re-search, we've
3828 		 * found the last guy with the objectid in this tree.
3829 		 */
3830 		if (ret || start_slot != 0)
3831 			break;
3832 		btrfs_release_path(path);
3833 	}
3834 	btrfs_release_path(path);
3835 	if (ret > 0)
3836 		ret = 0;
3837 	return ret;
3838 }
3839 
3840 static void fill_inode_item(struct btrfs_trans_handle *trans,
3841 			    struct extent_buffer *leaf,
3842 			    struct btrfs_inode_item *item,
3843 			    struct inode *inode, int log_inode_only,
3844 			    u64 logged_isize)
3845 {
3846 	struct btrfs_map_token token;
3847 
3848 	btrfs_init_map_token(&token, leaf);
3849 
3850 	if (log_inode_only) {
3851 		/* set the generation to zero so the recover code
3852 		 * can tell the difference between an logging
3853 		 * just to say 'this inode exists' and a logging
3854 		 * to say 'update this inode with these values'
3855 		 */
3856 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3857 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3858 	} else {
3859 		btrfs_set_token_inode_generation(leaf, item,
3860 						 BTRFS_I(inode)->generation,
3861 						 &token);
3862 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3863 	}
3864 
3865 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3866 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3867 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3868 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3869 
3870 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3871 				     inode->i_atime.tv_sec, &token);
3872 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3873 				      inode->i_atime.tv_nsec, &token);
3874 
3875 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3876 				     inode->i_mtime.tv_sec, &token);
3877 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3878 				      inode->i_mtime.tv_nsec, &token);
3879 
3880 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3881 				     inode->i_ctime.tv_sec, &token);
3882 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3883 				      inode->i_ctime.tv_nsec, &token);
3884 
3885 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3886 				     &token);
3887 
3888 	btrfs_set_token_inode_sequence(leaf, item,
3889 				       inode_peek_iversion(inode), &token);
3890 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3891 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3892 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3893 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3894 }
3895 
3896 static int log_inode_item(struct btrfs_trans_handle *trans,
3897 			  struct btrfs_root *log, struct btrfs_path *path,
3898 			  struct btrfs_inode *inode)
3899 {
3900 	struct btrfs_inode_item *inode_item;
3901 	int ret;
3902 
3903 	ret = btrfs_insert_empty_item(trans, log, path,
3904 				      &inode->location, sizeof(*inode_item));
3905 	if (ret && ret != -EEXIST)
3906 		return ret;
3907 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3908 				    struct btrfs_inode_item);
3909 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3910 			0, 0);
3911 	btrfs_release_path(path);
3912 	return 0;
3913 }
3914 
3915 static int log_csums(struct btrfs_trans_handle *trans,
3916 		     struct btrfs_root *log_root,
3917 		     struct btrfs_ordered_sum *sums)
3918 {
3919 	int ret;
3920 
3921 	/*
3922 	 * Due to extent cloning, we might have logged a csum item that covers a
3923 	 * subrange of a cloned extent, and later we can end up logging a csum
3924 	 * item for a larger subrange of the same extent or the entire range.
3925 	 * This would leave csum items in the log tree that cover the same range
3926 	 * and break the searches for checksums in the log tree, resulting in
3927 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3928 	 * trim and adjust) any existing csum items in the log for this range.
3929 	 */
3930 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3931 	if (ret)
3932 		return ret;
3933 
3934 	return btrfs_csum_file_blocks(trans, log_root, sums);
3935 }
3936 
3937 static noinline int copy_items(struct btrfs_trans_handle *trans,
3938 			       struct btrfs_inode *inode,
3939 			       struct btrfs_path *dst_path,
3940 			       struct btrfs_path *src_path,
3941 			       int start_slot, int nr, int inode_only,
3942 			       u64 logged_isize)
3943 {
3944 	struct btrfs_fs_info *fs_info = trans->fs_info;
3945 	unsigned long src_offset;
3946 	unsigned long dst_offset;
3947 	struct btrfs_root *log = inode->root->log_root;
3948 	struct btrfs_file_extent_item *extent;
3949 	struct btrfs_inode_item *inode_item;
3950 	struct extent_buffer *src = src_path->nodes[0];
3951 	int ret;
3952 	struct btrfs_key *ins_keys;
3953 	u32 *ins_sizes;
3954 	char *ins_data;
3955 	int i;
3956 	struct list_head ordered_sums;
3957 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3958 
3959 	INIT_LIST_HEAD(&ordered_sums);
3960 
3961 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3962 			   nr * sizeof(u32), GFP_NOFS);
3963 	if (!ins_data)
3964 		return -ENOMEM;
3965 
3966 	ins_sizes = (u32 *)ins_data;
3967 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3968 
3969 	for (i = 0; i < nr; i++) {
3970 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3971 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3972 	}
3973 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3974 				       ins_keys, ins_sizes, nr);
3975 	if (ret) {
3976 		kfree(ins_data);
3977 		return ret;
3978 	}
3979 
3980 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3981 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3982 						   dst_path->slots[0]);
3983 
3984 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3985 
3986 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3987 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3988 						    dst_path->slots[0],
3989 						    struct btrfs_inode_item);
3990 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3991 					&inode->vfs_inode,
3992 					inode_only == LOG_INODE_EXISTS,
3993 					logged_isize);
3994 		} else {
3995 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3996 					   src_offset, ins_sizes[i]);
3997 		}
3998 
3999 		/* take a reference on file data extents so that truncates
4000 		 * or deletes of this inode don't have to relog the inode
4001 		 * again
4002 		 */
4003 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4004 		    !skip_csum) {
4005 			int found_type;
4006 			extent = btrfs_item_ptr(src, start_slot + i,
4007 						struct btrfs_file_extent_item);
4008 
4009 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4010 				continue;
4011 
4012 			found_type = btrfs_file_extent_type(src, extent);
4013 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4014 				u64 ds, dl, cs, cl;
4015 				ds = btrfs_file_extent_disk_bytenr(src,
4016 								extent);
4017 				/* ds == 0 is a hole */
4018 				if (ds == 0)
4019 					continue;
4020 
4021 				dl = btrfs_file_extent_disk_num_bytes(src,
4022 								extent);
4023 				cs = btrfs_file_extent_offset(src, extent);
4024 				cl = btrfs_file_extent_num_bytes(src,
4025 								extent);
4026 				if (btrfs_file_extent_compression(src,
4027 								  extent)) {
4028 					cs = 0;
4029 					cl = dl;
4030 				}
4031 
4032 				ret = btrfs_lookup_csums_range(
4033 						fs_info->csum_root,
4034 						ds + cs, ds + cs + cl - 1,
4035 						&ordered_sums, 0);
4036 				if (ret) {
4037 					btrfs_release_path(dst_path);
4038 					kfree(ins_data);
4039 					return ret;
4040 				}
4041 			}
4042 		}
4043 	}
4044 
4045 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4046 	btrfs_release_path(dst_path);
4047 	kfree(ins_data);
4048 
4049 	/*
4050 	 * we have to do this after the loop above to avoid changing the
4051 	 * log tree while trying to change the log tree.
4052 	 */
4053 	ret = 0;
4054 	while (!list_empty(&ordered_sums)) {
4055 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4056 						   struct btrfs_ordered_sum,
4057 						   list);
4058 		if (!ret)
4059 			ret = log_csums(trans, log, sums);
4060 		list_del(&sums->list);
4061 		kfree(sums);
4062 	}
4063 
4064 	return ret;
4065 }
4066 
4067 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4068 {
4069 	struct extent_map *em1, *em2;
4070 
4071 	em1 = list_entry(a, struct extent_map, list);
4072 	em2 = list_entry(b, struct extent_map, list);
4073 
4074 	if (em1->start < em2->start)
4075 		return -1;
4076 	else if (em1->start > em2->start)
4077 		return 1;
4078 	return 0;
4079 }
4080 
4081 static int log_extent_csums(struct btrfs_trans_handle *trans,
4082 			    struct btrfs_inode *inode,
4083 			    struct btrfs_root *log_root,
4084 			    const struct extent_map *em)
4085 {
4086 	u64 csum_offset;
4087 	u64 csum_len;
4088 	LIST_HEAD(ordered_sums);
4089 	int ret = 0;
4090 
4091 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4092 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4093 	    em->block_start == EXTENT_MAP_HOLE)
4094 		return 0;
4095 
4096 	/* If we're compressed we have to save the entire range of csums. */
4097 	if (em->compress_type) {
4098 		csum_offset = 0;
4099 		csum_len = max(em->block_len, em->orig_block_len);
4100 	} else {
4101 		csum_offset = em->mod_start - em->start;
4102 		csum_len = em->mod_len;
4103 	}
4104 
4105 	/* block start is already adjusted for the file extent offset. */
4106 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4107 				       em->block_start + csum_offset,
4108 				       em->block_start + csum_offset +
4109 				       csum_len - 1, &ordered_sums, 0);
4110 	if (ret)
4111 		return ret;
4112 
4113 	while (!list_empty(&ordered_sums)) {
4114 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4115 						   struct btrfs_ordered_sum,
4116 						   list);
4117 		if (!ret)
4118 			ret = log_csums(trans, log_root, sums);
4119 		list_del(&sums->list);
4120 		kfree(sums);
4121 	}
4122 
4123 	return ret;
4124 }
4125 
4126 static int log_one_extent(struct btrfs_trans_handle *trans,
4127 			  struct btrfs_inode *inode, struct btrfs_root *root,
4128 			  const struct extent_map *em,
4129 			  struct btrfs_path *path,
4130 			  struct btrfs_log_ctx *ctx)
4131 {
4132 	struct btrfs_root *log = root->log_root;
4133 	struct btrfs_file_extent_item *fi;
4134 	struct extent_buffer *leaf;
4135 	struct btrfs_map_token token;
4136 	struct btrfs_key key;
4137 	u64 extent_offset = em->start - em->orig_start;
4138 	u64 block_len;
4139 	int ret;
4140 	int extent_inserted = 0;
4141 
4142 	ret = log_extent_csums(trans, inode, log, em);
4143 	if (ret)
4144 		return ret;
4145 
4146 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4147 				   em->start + em->len, NULL, 0, 1,
4148 				   sizeof(*fi), &extent_inserted);
4149 	if (ret)
4150 		return ret;
4151 
4152 	if (!extent_inserted) {
4153 		key.objectid = btrfs_ino(inode);
4154 		key.type = BTRFS_EXTENT_DATA_KEY;
4155 		key.offset = em->start;
4156 
4157 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4158 					      sizeof(*fi));
4159 		if (ret)
4160 			return ret;
4161 	}
4162 	leaf = path->nodes[0];
4163 	btrfs_init_map_token(&token, leaf);
4164 	fi = btrfs_item_ptr(leaf, path->slots[0],
4165 			    struct btrfs_file_extent_item);
4166 
4167 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4168 					       &token);
4169 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4170 		btrfs_set_token_file_extent_type(leaf, fi,
4171 						 BTRFS_FILE_EXTENT_PREALLOC,
4172 						 &token);
4173 	else
4174 		btrfs_set_token_file_extent_type(leaf, fi,
4175 						 BTRFS_FILE_EXTENT_REG,
4176 						 &token);
4177 
4178 	block_len = max(em->block_len, em->orig_block_len);
4179 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4180 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4181 							em->block_start,
4182 							&token);
4183 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4184 							   &token);
4185 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4186 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4187 							em->block_start -
4188 							extent_offset, &token);
4189 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4190 							   &token);
4191 	} else {
4192 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4193 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4194 							   &token);
4195 	}
4196 
4197 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4198 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4199 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4200 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4201 						&token);
4202 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4203 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4204 	btrfs_mark_buffer_dirty(leaf);
4205 
4206 	btrfs_release_path(path);
4207 
4208 	return ret;
4209 }
4210 
4211 /*
4212  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4213  * lose them after doing a fast fsync and replaying the log. We scan the
4214  * subvolume's root instead of iterating the inode's extent map tree because
4215  * otherwise we can log incorrect extent items based on extent map conversion.
4216  * That can happen due to the fact that extent maps are merged when they
4217  * are not in the extent map tree's list of modified extents.
4218  */
4219 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4220 				      struct btrfs_inode *inode,
4221 				      struct btrfs_path *path)
4222 {
4223 	struct btrfs_root *root = inode->root;
4224 	struct btrfs_key key;
4225 	const u64 i_size = i_size_read(&inode->vfs_inode);
4226 	const u64 ino = btrfs_ino(inode);
4227 	struct btrfs_path *dst_path = NULL;
4228 	bool dropped_extents = false;
4229 	int ins_nr = 0;
4230 	int start_slot;
4231 	int ret;
4232 
4233 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4234 		return 0;
4235 
4236 	key.objectid = ino;
4237 	key.type = BTRFS_EXTENT_DATA_KEY;
4238 	key.offset = i_size;
4239 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4240 	if (ret < 0)
4241 		goto out;
4242 
4243 	while (true) {
4244 		struct extent_buffer *leaf = path->nodes[0];
4245 		int slot = path->slots[0];
4246 
4247 		if (slot >= btrfs_header_nritems(leaf)) {
4248 			if (ins_nr > 0) {
4249 				ret = copy_items(trans, inode, dst_path, path,
4250 						 start_slot, ins_nr, 1, 0);
4251 				if (ret < 0)
4252 					goto out;
4253 				ins_nr = 0;
4254 			}
4255 			ret = btrfs_next_leaf(root, path);
4256 			if (ret < 0)
4257 				goto out;
4258 			if (ret > 0) {
4259 				ret = 0;
4260 				break;
4261 			}
4262 			continue;
4263 		}
4264 
4265 		btrfs_item_key_to_cpu(leaf, &key, slot);
4266 		if (key.objectid > ino)
4267 			break;
4268 		if (WARN_ON_ONCE(key.objectid < ino) ||
4269 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4270 		    key.offset < i_size) {
4271 			path->slots[0]++;
4272 			continue;
4273 		}
4274 		if (!dropped_extents) {
4275 			/*
4276 			 * Avoid logging extent items logged in past fsync calls
4277 			 * and leading to duplicate keys in the log tree.
4278 			 */
4279 			do {
4280 				ret = btrfs_truncate_inode_items(trans,
4281 							 root->log_root,
4282 							 &inode->vfs_inode,
4283 							 i_size,
4284 							 BTRFS_EXTENT_DATA_KEY);
4285 			} while (ret == -EAGAIN);
4286 			if (ret)
4287 				goto out;
4288 			dropped_extents = true;
4289 		}
4290 		if (ins_nr == 0)
4291 			start_slot = slot;
4292 		ins_nr++;
4293 		path->slots[0]++;
4294 		if (!dst_path) {
4295 			dst_path = btrfs_alloc_path();
4296 			if (!dst_path) {
4297 				ret = -ENOMEM;
4298 				goto out;
4299 			}
4300 		}
4301 	}
4302 	if (ins_nr > 0) {
4303 		ret = copy_items(trans, inode, dst_path, path,
4304 				 start_slot, ins_nr, 1, 0);
4305 		if (ret > 0)
4306 			ret = 0;
4307 	}
4308 out:
4309 	btrfs_release_path(path);
4310 	btrfs_free_path(dst_path);
4311 	return ret;
4312 }
4313 
4314 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4315 				     struct btrfs_root *root,
4316 				     struct btrfs_inode *inode,
4317 				     struct btrfs_path *path,
4318 				     struct btrfs_log_ctx *ctx,
4319 				     const u64 start,
4320 				     const u64 end)
4321 {
4322 	struct extent_map *em, *n;
4323 	struct list_head extents;
4324 	struct extent_map_tree *tree = &inode->extent_tree;
4325 	u64 test_gen;
4326 	int ret = 0;
4327 	int num = 0;
4328 
4329 	INIT_LIST_HEAD(&extents);
4330 
4331 	write_lock(&tree->lock);
4332 	test_gen = root->fs_info->last_trans_committed;
4333 
4334 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4335 		/*
4336 		 * Skip extents outside our logging range. It's important to do
4337 		 * it for correctness because if we don't ignore them, we may
4338 		 * log them before their ordered extent completes, and therefore
4339 		 * we could log them without logging their respective checksums
4340 		 * (the checksum items are added to the csum tree at the very
4341 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4342 		 * outside of our range in the list, since we may have another
4343 		 * ranged fsync in the near future that needs them. If an extent
4344 		 * outside our range corresponds to a hole, log it to avoid
4345 		 * leaving gaps between extents (fsck will complain when we are
4346 		 * not using the NO_HOLES feature).
4347 		 */
4348 		if ((em->start > end || em->start + em->len <= start) &&
4349 		    em->block_start != EXTENT_MAP_HOLE)
4350 			continue;
4351 
4352 		list_del_init(&em->list);
4353 		/*
4354 		 * Just an arbitrary number, this can be really CPU intensive
4355 		 * once we start getting a lot of extents, and really once we
4356 		 * have a bunch of extents we just want to commit since it will
4357 		 * be faster.
4358 		 */
4359 		if (++num > 32768) {
4360 			list_del_init(&tree->modified_extents);
4361 			ret = -EFBIG;
4362 			goto process;
4363 		}
4364 
4365 		if (em->generation <= test_gen)
4366 			continue;
4367 
4368 		/* We log prealloc extents beyond eof later. */
4369 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4370 		    em->start >= i_size_read(&inode->vfs_inode))
4371 			continue;
4372 
4373 		/* Need a ref to keep it from getting evicted from cache */
4374 		refcount_inc(&em->refs);
4375 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4376 		list_add_tail(&em->list, &extents);
4377 		num++;
4378 	}
4379 
4380 	list_sort(NULL, &extents, extent_cmp);
4381 process:
4382 	while (!list_empty(&extents)) {
4383 		em = list_entry(extents.next, struct extent_map, list);
4384 
4385 		list_del_init(&em->list);
4386 
4387 		/*
4388 		 * If we had an error we just need to delete everybody from our
4389 		 * private list.
4390 		 */
4391 		if (ret) {
4392 			clear_em_logging(tree, em);
4393 			free_extent_map(em);
4394 			continue;
4395 		}
4396 
4397 		write_unlock(&tree->lock);
4398 
4399 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4400 		write_lock(&tree->lock);
4401 		clear_em_logging(tree, em);
4402 		free_extent_map(em);
4403 	}
4404 	WARN_ON(!list_empty(&extents));
4405 	write_unlock(&tree->lock);
4406 
4407 	btrfs_release_path(path);
4408 	if (!ret)
4409 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4410 
4411 	return ret;
4412 }
4413 
4414 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4415 			     struct btrfs_path *path, u64 *size_ret)
4416 {
4417 	struct btrfs_key key;
4418 	int ret;
4419 
4420 	key.objectid = btrfs_ino(inode);
4421 	key.type = BTRFS_INODE_ITEM_KEY;
4422 	key.offset = 0;
4423 
4424 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4425 	if (ret < 0) {
4426 		return ret;
4427 	} else if (ret > 0) {
4428 		*size_ret = 0;
4429 	} else {
4430 		struct btrfs_inode_item *item;
4431 
4432 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4433 				      struct btrfs_inode_item);
4434 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4435 		/*
4436 		 * If the in-memory inode's i_size is smaller then the inode
4437 		 * size stored in the btree, return the inode's i_size, so
4438 		 * that we get a correct inode size after replaying the log
4439 		 * when before a power failure we had a shrinking truncate
4440 		 * followed by addition of a new name (rename / new hard link).
4441 		 * Otherwise return the inode size from the btree, to avoid
4442 		 * data loss when replaying a log due to previously doing a
4443 		 * write that expands the inode's size and logging a new name
4444 		 * immediately after.
4445 		 */
4446 		if (*size_ret > inode->vfs_inode.i_size)
4447 			*size_ret = inode->vfs_inode.i_size;
4448 	}
4449 
4450 	btrfs_release_path(path);
4451 	return 0;
4452 }
4453 
4454 /*
4455  * At the moment we always log all xattrs. This is to figure out at log replay
4456  * time which xattrs must have their deletion replayed. If a xattr is missing
4457  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4458  * because if a xattr is deleted, the inode is fsynced and a power failure
4459  * happens, causing the log to be replayed the next time the fs is mounted,
4460  * we want the xattr to not exist anymore (same behaviour as other filesystems
4461  * with a journal, ext3/4, xfs, f2fs, etc).
4462  */
4463 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4464 				struct btrfs_root *root,
4465 				struct btrfs_inode *inode,
4466 				struct btrfs_path *path,
4467 				struct btrfs_path *dst_path)
4468 {
4469 	int ret;
4470 	struct btrfs_key key;
4471 	const u64 ino = btrfs_ino(inode);
4472 	int ins_nr = 0;
4473 	int start_slot = 0;
4474 
4475 	key.objectid = ino;
4476 	key.type = BTRFS_XATTR_ITEM_KEY;
4477 	key.offset = 0;
4478 
4479 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4480 	if (ret < 0)
4481 		return ret;
4482 
4483 	while (true) {
4484 		int slot = path->slots[0];
4485 		struct extent_buffer *leaf = path->nodes[0];
4486 		int nritems = btrfs_header_nritems(leaf);
4487 
4488 		if (slot >= nritems) {
4489 			if (ins_nr > 0) {
4490 				ret = copy_items(trans, inode, dst_path, path,
4491 						 start_slot, ins_nr, 1, 0);
4492 				if (ret < 0)
4493 					return ret;
4494 				ins_nr = 0;
4495 			}
4496 			ret = btrfs_next_leaf(root, path);
4497 			if (ret < 0)
4498 				return ret;
4499 			else if (ret > 0)
4500 				break;
4501 			continue;
4502 		}
4503 
4504 		btrfs_item_key_to_cpu(leaf, &key, slot);
4505 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4506 			break;
4507 
4508 		if (ins_nr == 0)
4509 			start_slot = slot;
4510 		ins_nr++;
4511 		path->slots[0]++;
4512 		cond_resched();
4513 	}
4514 	if (ins_nr > 0) {
4515 		ret = copy_items(trans, inode, dst_path, path,
4516 				 start_slot, ins_nr, 1, 0);
4517 		if (ret < 0)
4518 			return ret;
4519 	}
4520 
4521 	return 0;
4522 }
4523 
4524 /*
4525  * When using the NO_HOLES feature if we punched a hole that causes the
4526  * deletion of entire leafs or all the extent items of the first leaf (the one
4527  * that contains the inode item and references) we may end up not processing
4528  * any extents, because there are no leafs with a generation matching the
4529  * current transaction that have extent items for our inode. So we need to find
4530  * if any holes exist and then log them. We also need to log holes after any
4531  * truncate operation that changes the inode's size.
4532  */
4533 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4534 			   struct btrfs_root *root,
4535 			   struct btrfs_inode *inode,
4536 			   struct btrfs_path *path,
4537 			   const u64 start,
4538 			   const u64 end)
4539 {
4540 	struct btrfs_fs_info *fs_info = root->fs_info;
4541 	struct btrfs_key key;
4542 	const u64 ino = btrfs_ino(inode);
4543 	const u64 i_size = i_size_read(&inode->vfs_inode);
4544 	u64 prev_extent_end = start;
4545 	int ret;
4546 
4547 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4548 		return 0;
4549 
4550 	key.objectid = ino;
4551 	key.type = BTRFS_EXTENT_DATA_KEY;
4552 	key.offset = start;
4553 
4554 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4555 	if (ret < 0)
4556 		return ret;
4557 
4558 	if (ret > 0 && path->slots[0] > 0) {
4559 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4560 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
4561 			path->slots[0]--;
4562 	}
4563 
4564 	while (true) {
4565 		struct extent_buffer *leaf = path->nodes[0];
4566 		u64 extent_end;
4567 
4568 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4569 			ret = btrfs_next_leaf(root, path);
4570 			if (ret < 0)
4571 				return ret;
4572 			if (ret > 0) {
4573 				ret = 0;
4574 				break;
4575 			}
4576 			leaf = path->nodes[0];
4577 		}
4578 
4579 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4580 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4581 			break;
4582 
4583 		extent_end = btrfs_file_extent_end(path);
4584 		if (extent_end <= start)
4585 			goto next_slot;
4586 
4587 		/* We have a hole, log it. */
4588 		if (prev_extent_end < key.offset) {
4589 			u64 hole_len;
4590 
4591 			if (key.offset >= end)
4592 				hole_len = end - prev_extent_end;
4593 			else
4594 				hole_len = key.offset - prev_extent_end;
4595 
4596 			/*
4597 			 * Release the path to avoid deadlocks with other code
4598 			 * paths that search the root while holding locks on
4599 			 * leafs from the log root.
4600 			 */
4601 			btrfs_release_path(path);
4602 			ret = btrfs_insert_file_extent(trans, root->log_root,
4603 						       ino, prev_extent_end, 0,
4604 						       0, hole_len, 0, hole_len,
4605 						       0, 0, 0);
4606 			if (ret < 0)
4607 				return ret;
4608 
4609 			/*
4610 			 * Search for the same key again in the root. Since it's
4611 			 * an extent item and we are holding the inode lock, the
4612 			 * key must still exist. If it doesn't just emit warning
4613 			 * and return an error to fall back to a transaction
4614 			 * commit.
4615 			 */
4616 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4617 			if (ret < 0)
4618 				return ret;
4619 			if (WARN_ON(ret > 0))
4620 				return -ENOENT;
4621 			leaf = path->nodes[0];
4622 		}
4623 
4624 		prev_extent_end = min(extent_end, end);
4625 		if (extent_end >= end)
4626 			break;
4627 next_slot:
4628 		path->slots[0]++;
4629 		cond_resched();
4630 	}
4631 
4632 	if (prev_extent_end < end && prev_extent_end < i_size) {
4633 		u64 hole_len;
4634 
4635 		btrfs_release_path(path);
4636 		hole_len = min(ALIGN(i_size, fs_info->sectorsize), end);
4637 		hole_len -= prev_extent_end;
4638 		ret = btrfs_insert_file_extent(trans, root->log_root,
4639 					       ino, prev_extent_end, 0, 0,
4640 					       hole_len, 0, hole_len,
4641 					       0, 0, 0);
4642 		if (ret < 0)
4643 			return ret;
4644 	}
4645 
4646 	return 0;
4647 }
4648 
4649 /*
4650  * When we are logging a new inode X, check if it doesn't have a reference that
4651  * matches the reference from some other inode Y created in a past transaction
4652  * and that was renamed in the current transaction. If we don't do this, then at
4653  * log replay time we can lose inode Y (and all its files if it's a directory):
4654  *
4655  * mkdir /mnt/x
4656  * echo "hello world" > /mnt/x/foobar
4657  * sync
4658  * mv /mnt/x /mnt/y
4659  * mkdir /mnt/x                 # or touch /mnt/x
4660  * xfs_io -c fsync /mnt/x
4661  * <power fail>
4662  * mount fs, trigger log replay
4663  *
4664  * After the log replay procedure, we would lose the first directory and all its
4665  * files (file foobar).
4666  * For the case where inode Y is not a directory we simply end up losing it:
4667  *
4668  * echo "123" > /mnt/foo
4669  * sync
4670  * mv /mnt/foo /mnt/bar
4671  * echo "abc" > /mnt/foo
4672  * xfs_io -c fsync /mnt/foo
4673  * <power fail>
4674  *
4675  * We also need this for cases where a snapshot entry is replaced by some other
4676  * entry (file or directory) otherwise we end up with an unreplayable log due to
4677  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4678  * if it were a regular entry:
4679  *
4680  * mkdir /mnt/x
4681  * btrfs subvolume snapshot /mnt /mnt/x/snap
4682  * btrfs subvolume delete /mnt/x/snap
4683  * rmdir /mnt/x
4684  * mkdir /mnt/x
4685  * fsync /mnt/x or fsync some new file inside it
4686  * <power fail>
4687  *
4688  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4689  * the same transaction.
4690  */
4691 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4692 					 const int slot,
4693 					 const struct btrfs_key *key,
4694 					 struct btrfs_inode *inode,
4695 					 u64 *other_ino, u64 *other_parent)
4696 {
4697 	int ret;
4698 	struct btrfs_path *search_path;
4699 	char *name = NULL;
4700 	u32 name_len = 0;
4701 	u32 item_size = btrfs_item_size_nr(eb, slot);
4702 	u32 cur_offset = 0;
4703 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4704 
4705 	search_path = btrfs_alloc_path();
4706 	if (!search_path)
4707 		return -ENOMEM;
4708 	search_path->search_commit_root = 1;
4709 	search_path->skip_locking = 1;
4710 
4711 	while (cur_offset < item_size) {
4712 		u64 parent;
4713 		u32 this_name_len;
4714 		u32 this_len;
4715 		unsigned long name_ptr;
4716 		struct btrfs_dir_item *di;
4717 
4718 		if (key->type == BTRFS_INODE_REF_KEY) {
4719 			struct btrfs_inode_ref *iref;
4720 
4721 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4722 			parent = key->offset;
4723 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4724 			name_ptr = (unsigned long)(iref + 1);
4725 			this_len = sizeof(*iref) + this_name_len;
4726 		} else {
4727 			struct btrfs_inode_extref *extref;
4728 
4729 			extref = (struct btrfs_inode_extref *)(ptr +
4730 							       cur_offset);
4731 			parent = btrfs_inode_extref_parent(eb, extref);
4732 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4733 			name_ptr = (unsigned long)&extref->name;
4734 			this_len = sizeof(*extref) + this_name_len;
4735 		}
4736 
4737 		if (this_name_len > name_len) {
4738 			char *new_name;
4739 
4740 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4741 			if (!new_name) {
4742 				ret = -ENOMEM;
4743 				goto out;
4744 			}
4745 			name_len = this_name_len;
4746 			name = new_name;
4747 		}
4748 
4749 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4750 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4751 				parent, name, this_name_len, 0);
4752 		if (di && !IS_ERR(di)) {
4753 			struct btrfs_key di_key;
4754 
4755 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4756 						  di, &di_key);
4757 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4758 				if (di_key.objectid != key->objectid) {
4759 					ret = 1;
4760 					*other_ino = di_key.objectid;
4761 					*other_parent = parent;
4762 				} else {
4763 					ret = 0;
4764 				}
4765 			} else {
4766 				ret = -EAGAIN;
4767 			}
4768 			goto out;
4769 		} else if (IS_ERR(di)) {
4770 			ret = PTR_ERR(di);
4771 			goto out;
4772 		}
4773 		btrfs_release_path(search_path);
4774 
4775 		cur_offset += this_len;
4776 	}
4777 	ret = 0;
4778 out:
4779 	btrfs_free_path(search_path);
4780 	kfree(name);
4781 	return ret;
4782 }
4783 
4784 struct btrfs_ino_list {
4785 	u64 ino;
4786 	u64 parent;
4787 	struct list_head list;
4788 };
4789 
4790 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4791 				  struct btrfs_root *root,
4792 				  struct btrfs_path *path,
4793 				  struct btrfs_log_ctx *ctx,
4794 				  u64 ino, u64 parent)
4795 {
4796 	struct btrfs_ino_list *ino_elem;
4797 	LIST_HEAD(inode_list);
4798 	int ret = 0;
4799 
4800 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4801 	if (!ino_elem)
4802 		return -ENOMEM;
4803 	ino_elem->ino = ino;
4804 	ino_elem->parent = parent;
4805 	list_add_tail(&ino_elem->list, &inode_list);
4806 
4807 	while (!list_empty(&inode_list)) {
4808 		struct btrfs_fs_info *fs_info = root->fs_info;
4809 		struct btrfs_key key;
4810 		struct inode *inode;
4811 
4812 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4813 					    list);
4814 		ino = ino_elem->ino;
4815 		parent = ino_elem->parent;
4816 		list_del(&ino_elem->list);
4817 		kfree(ino_elem);
4818 		if (ret)
4819 			continue;
4820 
4821 		btrfs_release_path(path);
4822 
4823 		key.objectid = ino;
4824 		key.type = BTRFS_INODE_ITEM_KEY;
4825 		key.offset = 0;
4826 		inode = btrfs_iget(fs_info->sb, &key, root);
4827 		/*
4828 		 * If the other inode that had a conflicting dir entry was
4829 		 * deleted in the current transaction, we need to log its parent
4830 		 * directory.
4831 		 */
4832 		if (IS_ERR(inode)) {
4833 			ret = PTR_ERR(inode);
4834 			if (ret == -ENOENT) {
4835 				key.objectid = parent;
4836 				inode = btrfs_iget(fs_info->sb, &key, root);
4837 				if (IS_ERR(inode)) {
4838 					ret = PTR_ERR(inode);
4839 				} else {
4840 					ret = btrfs_log_inode(trans, root,
4841 						      BTRFS_I(inode),
4842 						      LOG_OTHER_INODE_ALL,
4843 						      0, LLONG_MAX, ctx);
4844 					btrfs_add_delayed_iput(inode);
4845 				}
4846 			}
4847 			continue;
4848 		}
4849 		/*
4850 		 * If the inode was already logged skip it - otherwise we can
4851 		 * hit an infinite loop. Example:
4852 		 *
4853 		 * From the commit root (previous transaction) we have the
4854 		 * following inodes:
4855 		 *
4856 		 * inode 257 a directory
4857 		 * inode 258 with references "zz" and "zz_link" on inode 257
4858 		 * inode 259 with reference "a" on inode 257
4859 		 *
4860 		 * And in the current (uncommitted) transaction we have:
4861 		 *
4862 		 * inode 257 a directory, unchanged
4863 		 * inode 258 with references "a" and "a2" on inode 257
4864 		 * inode 259 with reference "zz_link" on inode 257
4865 		 * inode 261 with reference "zz" on inode 257
4866 		 *
4867 		 * When logging inode 261 the following infinite loop could
4868 		 * happen if we don't skip already logged inodes:
4869 		 *
4870 		 * - we detect inode 258 as a conflicting inode, with inode 261
4871 		 *   on reference "zz", and log it;
4872 		 *
4873 		 * - we detect inode 259 as a conflicting inode, with inode 258
4874 		 *   on reference "a", and log it;
4875 		 *
4876 		 * - we detect inode 258 as a conflicting inode, with inode 259
4877 		 *   on reference "zz_link", and log it - again! After this we
4878 		 *   repeat the above steps forever.
4879 		 */
4880 		spin_lock(&BTRFS_I(inode)->lock);
4881 		/*
4882 		 * Check the inode's logged_trans only instead of
4883 		 * btrfs_inode_in_log(). This is because the last_log_commit of
4884 		 * the inode is not updated when we only log that it exists and
4885 		 * and it has the full sync bit set (see btrfs_log_inode()).
4886 		 */
4887 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
4888 			spin_unlock(&BTRFS_I(inode)->lock);
4889 			btrfs_add_delayed_iput(inode);
4890 			continue;
4891 		}
4892 		spin_unlock(&BTRFS_I(inode)->lock);
4893 		/*
4894 		 * We are safe logging the other inode without acquiring its
4895 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4896 		 * are safe against concurrent renames of the other inode as
4897 		 * well because during a rename we pin the log and update the
4898 		 * log with the new name before we unpin it.
4899 		 */
4900 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4901 				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4902 		if (ret) {
4903 			btrfs_add_delayed_iput(inode);
4904 			continue;
4905 		}
4906 
4907 		key.objectid = ino;
4908 		key.type = BTRFS_INODE_REF_KEY;
4909 		key.offset = 0;
4910 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4911 		if (ret < 0) {
4912 			btrfs_add_delayed_iput(inode);
4913 			continue;
4914 		}
4915 
4916 		while (true) {
4917 			struct extent_buffer *leaf = path->nodes[0];
4918 			int slot = path->slots[0];
4919 			u64 other_ino = 0;
4920 			u64 other_parent = 0;
4921 
4922 			if (slot >= btrfs_header_nritems(leaf)) {
4923 				ret = btrfs_next_leaf(root, path);
4924 				if (ret < 0) {
4925 					break;
4926 				} else if (ret > 0) {
4927 					ret = 0;
4928 					break;
4929 				}
4930 				continue;
4931 			}
4932 
4933 			btrfs_item_key_to_cpu(leaf, &key, slot);
4934 			if (key.objectid != ino ||
4935 			    (key.type != BTRFS_INODE_REF_KEY &&
4936 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
4937 				ret = 0;
4938 				break;
4939 			}
4940 
4941 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
4942 					BTRFS_I(inode), &other_ino,
4943 					&other_parent);
4944 			if (ret < 0)
4945 				break;
4946 			if (ret > 0) {
4947 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4948 				if (!ino_elem) {
4949 					ret = -ENOMEM;
4950 					break;
4951 				}
4952 				ino_elem->ino = other_ino;
4953 				ino_elem->parent = other_parent;
4954 				list_add_tail(&ino_elem->list, &inode_list);
4955 				ret = 0;
4956 			}
4957 			path->slots[0]++;
4958 		}
4959 		btrfs_add_delayed_iput(inode);
4960 	}
4961 
4962 	return ret;
4963 }
4964 
4965 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
4966 				   struct btrfs_inode *inode,
4967 				   struct btrfs_key *min_key,
4968 				   const struct btrfs_key *max_key,
4969 				   struct btrfs_path *path,
4970 				   struct btrfs_path *dst_path,
4971 				   const u64 logged_isize,
4972 				   const bool recursive_logging,
4973 				   const int inode_only,
4974 				   const u64 start,
4975 				   const u64 end,
4976 				   struct btrfs_log_ctx *ctx,
4977 				   bool *need_log_inode_item)
4978 {
4979 	struct btrfs_root *root = inode->root;
4980 	int ins_start_slot = 0;
4981 	int ins_nr = 0;
4982 	int ret;
4983 
4984 	/*
4985 	 * We must make sure we don't copy extent items that are entirely out of
4986 	 * the range [start, end - 1]. This is not just an optimization to avoid
4987 	 * copying but also needed to avoid a corruption where we end up with
4988 	 * file extent items in the log tree that have overlapping ranges - this
4989 	 * can happen if we race with ordered extent completion for ranges that
4990 	 * are outside our target range. For example we copy an extent item and
4991 	 * when we move to the next leaf, that extent was trimmed and a new one
4992 	 * covering a subrange of it, but with a higher key, was inserted - we
4993 	 * would then copy this other extent too, resulting in a log tree with
4994 	 * 2 extent items that represent overlapping ranges.
4995 	 *
4996 	 * We can copy the entire extents at the range bondaries however, even
4997 	 * if they cover an area outside the target range. That's ok.
4998 	 */
4999 	while (1) {
5000 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5001 		if (ret < 0)
5002 			return ret;
5003 		if (ret > 0) {
5004 			ret = 0;
5005 			break;
5006 		}
5007 again:
5008 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5009 		if (min_key->objectid != max_key->objectid)
5010 			break;
5011 		if (min_key->type > max_key->type)
5012 			break;
5013 
5014 		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5015 			*need_log_inode_item = false;
5016 
5017 		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5018 		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5019 		    inode->generation == trans->transid &&
5020 		    !recursive_logging) {
5021 			u64 other_ino = 0;
5022 			u64 other_parent = 0;
5023 
5024 			ret = btrfs_check_ref_name_override(path->nodes[0],
5025 					path->slots[0], min_key, inode,
5026 					&other_ino, &other_parent);
5027 			if (ret < 0) {
5028 				return ret;
5029 			} else if (ret > 0 && ctx &&
5030 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5031 				if (ins_nr > 0) {
5032 					ins_nr++;
5033 				} else {
5034 					ins_nr = 1;
5035 					ins_start_slot = path->slots[0];
5036 				}
5037 				ret = copy_items(trans, inode, dst_path, path,
5038 						 ins_start_slot, ins_nr,
5039 						 inode_only, logged_isize);
5040 				if (ret < 0)
5041 					return ret;
5042 				ins_nr = 0;
5043 
5044 				ret = log_conflicting_inodes(trans, root, path,
5045 						ctx, other_ino, other_parent);
5046 				if (ret)
5047 					return ret;
5048 				btrfs_release_path(path);
5049 				goto next_key;
5050 			}
5051 		}
5052 
5053 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5054 		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5055 			if (ins_nr == 0)
5056 				goto next_slot;
5057 			ret = copy_items(trans, inode, dst_path, path,
5058 					 ins_start_slot,
5059 					 ins_nr, inode_only, logged_isize);
5060 			if (ret < 0)
5061 				return ret;
5062 			ins_nr = 0;
5063 			goto next_slot;
5064 		}
5065 
5066 		if (min_key->type == BTRFS_EXTENT_DATA_KEY) {
5067 			const u64 extent_end = btrfs_file_extent_end(path);
5068 
5069 			if (extent_end <= start) {
5070 				if (ins_nr > 0) {
5071 					ret = copy_items(trans, inode, dst_path,
5072 							 path, ins_start_slot,
5073 							 ins_nr, inode_only,
5074 							 logged_isize);
5075 					if (ret < 0)
5076 						return ret;
5077 					ins_nr = 0;
5078 				}
5079 				goto next_slot;
5080 			}
5081 			if (extent_end >= end) {
5082 				ins_nr++;
5083 				if (ins_nr == 1)
5084 					ins_start_slot = path->slots[0];
5085 				break;
5086 			}
5087 		}
5088 
5089 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5090 			ins_nr++;
5091 			goto next_slot;
5092 		} else if (!ins_nr) {
5093 			ins_start_slot = path->slots[0];
5094 			ins_nr = 1;
5095 			goto next_slot;
5096 		}
5097 
5098 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5099 				 ins_nr, inode_only, logged_isize);
5100 		if (ret < 0)
5101 			return ret;
5102 		ins_nr = 1;
5103 		ins_start_slot = path->slots[0];
5104 next_slot:
5105 		path->slots[0]++;
5106 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5107 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5108 					      path->slots[0]);
5109 			goto again;
5110 		}
5111 		if (ins_nr) {
5112 			ret = copy_items(trans, inode, dst_path, path,
5113 					 ins_start_slot, ins_nr, inode_only,
5114 					 logged_isize);
5115 			if (ret < 0)
5116 				return ret;
5117 			ins_nr = 0;
5118 		}
5119 		btrfs_release_path(path);
5120 next_key:
5121 		if (min_key->offset < (u64)-1) {
5122 			min_key->offset++;
5123 		} else if (min_key->type < max_key->type) {
5124 			min_key->type++;
5125 			min_key->offset = 0;
5126 		} else {
5127 			break;
5128 		}
5129 	}
5130 	if (ins_nr)
5131 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5132 				 ins_nr, inode_only, logged_isize);
5133 
5134 	return ret;
5135 }
5136 
5137 /* log a single inode in the tree log.
5138  * At least one parent directory for this inode must exist in the tree
5139  * or be logged already.
5140  *
5141  * Any items from this inode changed by the current transaction are copied
5142  * to the log tree.  An extra reference is taken on any extents in this
5143  * file, allowing us to avoid a whole pile of corner cases around logging
5144  * blocks that have been removed from the tree.
5145  *
5146  * See LOG_INODE_ALL and related defines for a description of what inode_only
5147  * does.
5148  *
5149  * This handles both files and directories.
5150  */
5151 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5152 			   struct btrfs_root *root, struct btrfs_inode *inode,
5153 			   int inode_only,
5154 			   u64 start,
5155 			   u64 end,
5156 			   struct btrfs_log_ctx *ctx)
5157 {
5158 	struct btrfs_fs_info *fs_info = root->fs_info;
5159 	struct btrfs_path *path;
5160 	struct btrfs_path *dst_path;
5161 	struct btrfs_key min_key;
5162 	struct btrfs_key max_key;
5163 	struct btrfs_root *log = root->log_root;
5164 	int err = 0;
5165 	int ret;
5166 	bool fast_search = false;
5167 	u64 ino = btrfs_ino(inode);
5168 	struct extent_map_tree *em_tree = &inode->extent_tree;
5169 	u64 logged_isize = 0;
5170 	bool need_log_inode_item = true;
5171 	bool xattrs_logged = false;
5172 	bool recursive_logging = false;
5173 
5174 	path = btrfs_alloc_path();
5175 	if (!path)
5176 		return -ENOMEM;
5177 	dst_path = btrfs_alloc_path();
5178 	if (!dst_path) {
5179 		btrfs_free_path(path);
5180 		return -ENOMEM;
5181 	}
5182 
5183 	start = ALIGN_DOWN(start, fs_info->sectorsize);
5184 	end = ALIGN(end, fs_info->sectorsize);
5185 
5186 	min_key.objectid = ino;
5187 	min_key.type = BTRFS_INODE_ITEM_KEY;
5188 	min_key.offset = 0;
5189 
5190 	max_key.objectid = ino;
5191 
5192 
5193 	/* today the code can only do partial logging of directories */
5194 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5195 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5196 		       &inode->runtime_flags) &&
5197 	     inode_only >= LOG_INODE_EXISTS))
5198 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5199 	else
5200 		max_key.type = (u8)-1;
5201 	max_key.offset = (u64)-1;
5202 
5203 	/*
5204 	 * Only run delayed items if we are a dir or a new file.
5205 	 * Otherwise commit the delayed inode only, which is needed in
5206 	 * order for the log replay code to mark inodes for link count
5207 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5208 	 */
5209 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5210 	    inode->generation > fs_info->last_trans_committed)
5211 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5212 	else
5213 		ret = btrfs_commit_inode_delayed_inode(inode);
5214 
5215 	if (ret) {
5216 		btrfs_free_path(path);
5217 		btrfs_free_path(dst_path);
5218 		return ret;
5219 	}
5220 
5221 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5222 		recursive_logging = true;
5223 		if (inode_only == LOG_OTHER_INODE)
5224 			inode_only = LOG_INODE_EXISTS;
5225 		else
5226 			inode_only = LOG_INODE_ALL;
5227 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5228 	} else {
5229 		mutex_lock(&inode->log_mutex);
5230 	}
5231 
5232 	/*
5233 	 * a brute force approach to making sure we get the most uptodate
5234 	 * copies of everything.
5235 	 */
5236 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5237 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5238 
5239 		if (inode_only == LOG_INODE_EXISTS)
5240 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5241 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5242 	} else {
5243 		if (inode_only == LOG_INODE_EXISTS) {
5244 			/*
5245 			 * Make sure the new inode item we write to the log has
5246 			 * the same isize as the current one (if it exists).
5247 			 * This is necessary to prevent data loss after log
5248 			 * replay, and also to prevent doing a wrong expanding
5249 			 * truncate - for e.g. create file, write 4K into offset
5250 			 * 0, fsync, write 4K into offset 4096, add hard link,
5251 			 * fsync some other file (to sync log), power fail - if
5252 			 * we use the inode's current i_size, after log replay
5253 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5254 			 * (zeroes), as if an expanding truncate happened,
5255 			 * instead of getting a file of 4Kb only.
5256 			 */
5257 			err = logged_inode_size(log, inode, path, &logged_isize);
5258 			if (err)
5259 				goto out_unlock;
5260 		}
5261 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5262 			     &inode->runtime_flags)) {
5263 			if (inode_only == LOG_INODE_EXISTS) {
5264 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5265 				ret = drop_objectid_items(trans, log, path, ino,
5266 							  max_key.type);
5267 			} else {
5268 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5269 					  &inode->runtime_flags);
5270 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5271 					  &inode->runtime_flags);
5272 				while(1) {
5273 					ret = btrfs_truncate_inode_items(trans,
5274 						log, &inode->vfs_inode, 0, 0);
5275 					if (ret != -EAGAIN)
5276 						break;
5277 				}
5278 			}
5279 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5280 					      &inode->runtime_flags) ||
5281 			   inode_only == LOG_INODE_EXISTS) {
5282 			if (inode_only == LOG_INODE_ALL)
5283 				fast_search = true;
5284 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5285 			ret = drop_objectid_items(trans, log, path, ino,
5286 						  max_key.type);
5287 		} else {
5288 			if (inode_only == LOG_INODE_ALL)
5289 				fast_search = true;
5290 			goto log_extents;
5291 		}
5292 
5293 	}
5294 	if (ret) {
5295 		err = ret;
5296 		goto out_unlock;
5297 	}
5298 
5299 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5300 				      path, dst_path, logged_isize,
5301 				      recursive_logging, inode_only,
5302 				      start, end, ctx, &need_log_inode_item);
5303 	if (err)
5304 		goto out_unlock;
5305 
5306 	btrfs_release_path(path);
5307 	btrfs_release_path(dst_path);
5308 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5309 	if (err)
5310 		goto out_unlock;
5311 	xattrs_logged = true;
5312 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5313 		btrfs_release_path(path);
5314 		btrfs_release_path(dst_path);
5315 		err = btrfs_log_holes(trans, root, inode, path, start, end);
5316 		if (err)
5317 			goto out_unlock;
5318 	}
5319 log_extents:
5320 	btrfs_release_path(path);
5321 	btrfs_release_path(dst_path);
5322 	if (need_log_inode_item) {
5323 		err = log_inode_item(trans, log, dst_path, inode);
5324 		if (!err && !xattrs_logged) {
5325 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5326 						   dst_path);
5327 			btrfs_release_path(path);
5328 		}
5329 		if (err)
5330 			goto out_unlock;
5331 	}
5332 	if (fast_search) {
5333 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5334 						ctx, start, end);
5335 		if (ret) {
5336 			err = ret;
5337 			goto out_unlock;
5338 		}
5339 	} else if (inode_only == LOG_INODE_ALL) {
5340 		struct extent_map *em, *n;
5341 
5342 		write_lock(&em_tree->lock);
5343 		/*
5344 		 * We can't just remove every em if we're called for a ranged
5345 		 * fsync - that is, one that doesn't cover the whole possible
5346 		 * file range (0 to LLONG_MAX). This is because we can have
5347 		 * em's that fall outside the range we're logging and therefore
5348 		 * their ordered operations haven't completed yet
5349 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5350 		 * didn't get their respective file extent item in the fs/subvol
5351 		 * tree yet, and need to let the next fast fsync (one which
5352 		 * consults the list of modified extent maps) find the em so
5353 		 * that it logs a matching file extent item and waits for the
5354 		 * respective ordered operation to complete (if it's still
5355 		 * running).
5356 		 *
5357 		 * Removing every em outside the range we're logging would make
5358 		 * the next fast fsync not log their matching file extent items,
5359 		 * therefore making us lose data after a log replay.
5360 		 */
5361 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5362 					 list) {
5363 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5364 
5365 			if (em->mod_start >= start && mod_end <= end)
5366 				list_del_init(&em->list);
5367 		}
5368 		write_unlock(&em_tree->lock);
5369 	}
5370 
5371 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5372 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5373 					ctx);
5374 		if (ret) {
5375 			err = ret;
5376 			goto out_unlock;
5377 		}
5378 	}
5379 
5380 	/*
5381 	 * Don't update last_log_commit if we logged that an inode exists after
5382 	 * it was loaded to memory (full_sync bit set).
5383 	 * This is to prevent data loss when we do a write to the inode, then
5384 	 * the inode gets evicted after all delalloc was flushed, then we log
5385 	 * it exists (due to a rename for example) and then fsync it. This last
5386 	 * fsync would do nothing (not logging the extents previously written).
5387 	 */
5388 	spin_lock(&inode->lock);
5389 	inode->logged_trans = trans->transid;
5390 	if (inode_only != LOG_INODE_EXISTS ||
5391 	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5392 		inode->last_log_commit = inode->last_sub_trans;
5393 	spin_unlock(&inode->lock);
5394 out_unlock:
5395 	mutex_unlock(&inode->log_mutex);
5396 
5397 	btrfs_free_path(path);
5398 	btrfs_free_path(dst_path);
5399 	return err;
5400 }
5401 
5402 /*
5403  * Check if we must fallback to a transaction commit when logging an inode.
5404  * This must be called after logging the inode and is used only in the context
5405  * when fsyncing an inode requires the need to log some other inode - in which
5406  * case we can't lock the i_mutex of each other inode we need to log as that
5407  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5408  * log inodes up or down in the hierarchy) or rename operations for example. So
5409  * we take the log_mutex of the inode after we have logged it and then check for
5410  * its last_unlink_trans value - this is safe because any task setting
5411  * last_unlink_trans must take the log_mutex and it must do this before it does
5412  * the actual unlink operation, so if we do this check before a concurrent task
5413  * sets last_unlink_trans it means we've logged a consistent version/state of
5414  * all the inode items, otherwise we are not sure and must do a transaction
5415  * commit (the concurrent task might have only updated last_unlink_trans before
5416  * we logged the inode or it might have also done the unlink).
5417  */
5418 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5419 					  struct btrfs_inode *inode)
5420 {
5421 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5422 	bool ret = false;
5423 
5424 	mutex_lock(&inode->log_mutex);
5425 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5426 		/*
5427 		 * Make sure any commits to the log are forced to be full
5428 		 * commits.
5429 		 */
5430 		btrfs_set_log_full_commit(trans);
5431 		ret = true;
5432 	}
5433 	mutex_unlock(&inode->log_mutex);
5434 
5435 	return ret;
5436 }
5437 
5438 /*
5439  * follow the dentry parent pointers up the chain and see if any
5440  * of the directories in it require a full commit before they can
5441  * be logged.  Returns zero if nothing special needs to be done or 1 if
5442  * a full commit is required.
5443  */
5444 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5445 					       struct btrfs_inode *inode,
5446 					       struct dentry *parent,
5447 					       struct super_block *sb,
5448 					       u64 last_committed)
5449 {
5450 	int ret = 0;
5451 	struct dentry *old_parent = NULL;
5452 
5453 	/*
5454 	 * for regular files, if its inode is already on disk, we don't
5455 	 * have to worry about the parents at all.  This is because
5456 	 * we can use the last_unlink_trans field to record renames
5457 	 * and other fun in this file.
5458 	 */
5459 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5460 	    inode->generation <= last_committed &&
5461 	    inode->last_unlink_trans <= last_committed)
5462 		goto out;
5463 
5464 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5465 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5466 			goto out;
5467 		inode = BTRFS_I(d_inode(parent));
5468 	}
5469 
5470 	while (1) {
5471 		if (btrfs_must_commit_transaction(trans, inode)) {
5472 			ret = 1;
5473 			break;
5474 		}
5475 
5476 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5477 			break;
5478 
5479 		if (IS_ROOT(parent)) {
5480 			inode = BTRFS_I(d_inode(parent));
5481 			if (btrfs_must_commit_transaction(trans, inode))
5482 				ret = 1;
5483 			break;
5484 		}
5485 
5486 		parent = dget_parent(parent);
5487 		dput(old_parent);
5488 		old_parent = parent;
5489 		inode = BTRFS_I(d_inode(parent));
5490 
5491 	}
5492 	dput(old_parent);
5493 out:
5494 	return ret;
5495 }
5496 
5497 struct btrfs_dir_list {
5498 	u64 ino;
5499 	struct list_head list;
5500 };
5501 
5502 /*
5503  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5504  * details about the why it is needed.
5505  * This is a recursive operation - if an existing dentry corresponds to a
5506  * directory, that directory's new entries are logged too (same behaviour as
5507  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5508  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5509  * complains about the following circular lock dependency / possible deadlock:
5510  *
5511  *        CPU0                                        CPU1
5512  *        ----                                        ----
5513  * lock(&type->i_mutex_dir_key#3/2);
5514  *                                            lock(sb_internal#2);
5515  *                                            lock(&type->i_mutex_dir_key#3/2);
5516  * lock(&sb->s_type->i_mutex_key#14);
5517  *
5518  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5519  * sb_start_intwrite() in btrfs_start_transaction().
5520  * Not locking i_mutex of the inodes is still safe because:
5521  *
5522  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5523  *    that while logging the inode new references (names) are added or removed
5524  *    from the inode, leaving the logged inode item with a link count that does
5525  *    not match the number of logged inode reference items. This is fine because
5526  *    at log replay time we compute the real number of links and correct the
5527  *    link count in the inode item (see replay_one_buffer() and
5528  *    link_to_fixup_dir());
5529  *
5530  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5531  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5532  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5533  *    has a size that doesn't match the sum of the lengths of all the logged
5534  *    names. This does not result in a problem because if a dir_item key is
5535  *    logged but its matching dir_index key is not logged, at log replay time we
5536  *    don't use it to replay the respective name (see replay_one_name()). On the
5537  *    other hand if only the dir_index key ends up being logged, the respective
5538  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5539  *    keys created (see replay_one_name()).
5540  *    The directory's inode item with a wrong i_size is not a problem as well,
5541  *    since we don't use it at log replay time to set the i_size in the inode
5542  *    item of the fs/subvol tree (see overwrite_item()).
5543  */
5544 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5545 				struct btrfs_root *root,
5546 				struct btrfs_inode *start_inode,
5547 				struct btrfs_log_ctx *ctx)
5548 {
5549 	struct btrfs_fs_info *fs_info = root->fs_info;
5550 	struct btrfs_root *log = root->log_root;
5551 	struct btrfs_path *path;
5552 	LIST_HEAD(dir_list);
5553 	struct btrfs_dir_list *dir_elem;
5554 	int ret = 0;
5555 
5556 	path = btrfs_alloc_path();
5557 	if (!path)
5558 		return -ENOMEM;
5559 
5560 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5561 	if (!dir_elem) {
5562 		btrfs_free_path(path);
5563 		return -ENOMEM;
5564 	}
5565 	dir_elem->ino = btrfs_ino(start_inode);
5566 	list_add_tail(&dir_elem->list, &dir_list);
5567 
5568 	while (!list_empty(&dir_list)) {
5569 		struct extent_buffer *leaf;
5570 		struct btrfs_key min_key;
5571 		int nritems;
5572 		int i;
5573 
5574 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5575 					    list);
5576 		if (ret)
5577 			goto next_dir_inode;
5578 
5579 		min_key.objectid = dir_elem->ino;
5580 		min_key.type = BTRFS_DIR_ITEM_KEY;
5581 		min_key.offset = 0;
5582 again:
5583 		btrfs_release_path(path);
5584 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5585 		if (ret < 0) {
5586 			goto next_dir_inode;
5587 		} else if (ret > 0) {
5588 			ret = 0;
5589 			goto next_dir_inode;
5590 		}
5591 
5592 process_leaf:
5593 		leaf = path->nodes[0];
5594 		nritems = btrfs_header_nritems(leaf);
5595 		for (i = path->slots[0]; i < nritems; i++) {
5596 			struct btrfs_dir_item *di;
5597 			struct btrfs_key di_key;
5598 			struct inode *di_inode;
5599 			struct btrfs_dir_list *new_dir_elem;
5600 			int log_mode = LOG_INODE_EXISTS;
5601 			int type;
5602 
5603 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5604 			if (min_key.objectid != dir_elem->ino ||
5605 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5606 				goto next_dir_inode;
5607 
5608 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5609 			type = btrfs_dir_type(leaf, di);
5610 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5611 			    type != BTRFS_FT_DIR)
5612 				continue;
5613 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5614 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5615 				continue;
5616 
5617 			btrfs_release_path(path);
5618 			di_inode = btrfs_iget(fs_info->sb, &di_key, root);
5619 			if (IS_ERR(di_inode)) {
5620 				ret = PTR_ERR(di_inode);
5621 				goto next_dir_inode;
5622 			}
5623 
5624 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5625 				btrfs_add_delayed_iput(di_inode);
5626 				break;
5627 			}
5628 
5629 			ctx->log_new_dentries = false;
5630 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5631 				log_mode = LOG_INODE_ALL;
5632 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5633 					      log_mode, 0, LLONG_MAX, ctx);
5634 			if (!ret &&
5635 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5636 				ret = 1;
5637 			btrfs_add_delayed_iput(di_inode);
5638 			if (ret)
5639 				goto next_dir_inode;
5640 			if (ctx->log_new_dentries) {
5641 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5642 						       GFP_NOFS);
5643 				if (!new_dir_elem) {
5644 					ret = -ENOMEM;
5645 					goto next_dir_inode;
5646 				}
5647 				new_dir_elem->ino = di_key.objectid;
5648 				list_add_tail(&new_dir_elem->list, &dir_list);
5649 			}
5650 			break;
5651 		}
5652 		if (i == nritems) {
5653 			ret = btrfs_next_leaf(log, path);
5654 			if (ret < 0) {
5655 				goto next_dir_inode;
5656 			} else if (ret > 0) {
5657 				ret = 0;
5658 				goto next_dir_inode;
5659 			}
5660 			goto process_leaf;
5661 		}
5662 		if (min_key.offset < (u64)-1) {
5663 			min_key.offset++;
5664 			goto again;
5665 		}
5666 next_dir_inode:
5667 		list_del(&dir_elem->list);
5668 		kfree(dir_elem);
5669 	}
5670 
5671 	btrfs_free_path(path);
5672 	return ret;
5673 }
5674 
5675 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5676 				 struct btrfs_inode *inode,
5677 				 struct btrfs_log_ctx *ctx)
5678 {
5679 	struct btrfs_fs_info *fs_info = trans->fs_info;
5680 	int ret;
5681 	struct btrfs_path *path;
5682 	struct btrfs_key key;
5683 	struct btrfs_root *root = inode->root;
5684 	const u64 ino = btrfs_ino(inode);
5685 
5686 	path = btrfs_alloc_path();
5687 	if (!path)
5688 		return -ENOMEM;
5689 	path->skip_locking = 1;
5690 	path->search_commit_root = 1;
5691 
5692 	key.objectid = ino;
5693 	key.type = BTRFS_INODE_REF_KEY;
5694 	key.offset = 0;
5695 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5696 	if (ret < 0)
5697 		goto out;
5698 
5699 	while (true) {
5700 		struct extent_buffer *leaf = path->nodes[0];
5701 		int slot = path->slots[0];
5702 		u32 cur_offset = 0;
5703 		u32 item_size;
5704 		unsigned long ptr;
5705 
5706 		if (slot >= btrfs_header_nritems(leaf)) {
5707 			ret = btrfs_next_leaf(root, path);
5708 			if (ret < 0)
5709 				goto out;
5710 			else if (ret > 0)
5711 				break;
5712 			continue;
5713 		}
5714 
5715 		btrfs_item_key_to_cpu(leaf, &key, slot);
5716 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5717 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5718 			break;
5719 
5720 		item_size = btrfs_item_size_nr(leaf, slot);
5721 		ptr = btrfs_item_ptr_offset(leaf, slot);
5722 		while (cur_offset < item_size) {
5723 			struct btrfs_key inode_key;
5724 			struct inode *dir_inode;
5725 
5726 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5727 			inode_key.offset = 0;
5728 
5729 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5730 				struct btrfs_inode_extref *extref;
5731 
5732 				extref = (struct btrfs_inode_extref *)
5733 					(ptr + cur_offset);
5734 				inode_key.objectid = btrfs_inode_extref_parent(
5735 					leaf, extref);
5736 				cur_offset += sizeof(*extref);
5737 				cur_offset += btrfs_inode_extref_name_len(leaf,
5738 					extref);
5739 			} else {
5740 				inode_key.objectid = key.offset;
5741 				cur_offset = item_size;
5742 			}
5743 
5744 			dir_inode = btrfs_iget(fs_info->sb, &inode_key, root);
5745 			/*
5746 			 * If the parent inode was deleted, return an error to
5747 			 * fallback to a transaction commit. This is to prevent
5748 			 * getting an inode that was moved from one parent A to
5749 			 * a parent B, got its former parent A deleted and then
5750 			 * it got fsync'ed, from existing at both parents after
5751 			 * a log replay (and the old parent still existing).
5752 			 * Example:
5753 			 *
5754 			 * mkdir /mnt/A
5755 			 * mkdir /mnt/B
5756 			 * touch /mnt/B/bar
5757 			 * sync
5758 			 * mv /mnt/B/bar /mnt/A/bar
5759 			 * mv -T /mnt/A /mnt/B
5760 			 * fsync /mnt/B/bar
5761 			 * <power fail>
5762 			 *
5763 			 * If we ignore the old parent B which got deleted,
5764 			 * after a log replay we would have file bar linked
5765 			 * at both parents and the old parent B would still
5766 			 * exist.
5767 			 */
5768 			if (IS_ERR(dir_inode)) {
5769 				ret = PTR_ERR(dir_inode);
5770 				goto out;
5771 			}
5772 
5773 			if (ctx)
5774 				ctx->log_new_dentries = false;
5775 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5776 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5777 			if (!ret &&
5778 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5779 				ret = 1;
5780 			if (!ret && ctx && ctx->log_new_dentries)
5781 				ret = log_new_dir_dentries(trans, root,
5782 						   BTRFS_I(dir_inode), ctx);
5783 			btrfs_add_delayed_iput(dir_inode);
5784 			if (ret)
5785 				goto out;
5786 		}
5787 		path->slots[0]++;
5788 	}
5789 	ret = 0;
5790 out:
5791 	btrfs_free_path(path);
5792 	return ret;
5793 }
5794 
5795 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5796 			     struct btrfs_root *root,
5797 			     struct btrfs_path *path,
5798 			     struct btrfs_log_ctx *ctx)
5799 {
5800 	struct btrfs_key found_key;
5801 
5802 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5803 
5804 	while (true) {
5805 		struct btrfs_fs_info *fs_info = root->fs_info;
5806 		const u64 last_committed = fs_info->last_trans_committed;
5807 		struct extent_buffer *leaf = path->nodes[0];
5808 		int slot = path->slots[0];
5809 		struct btrfs_key search_key;
5810 		struct inode *inode;
5811 		int ret = 0;
5812 
5813 		btrfs_release_path(path);
5814 
5815 		search_key.objectid = found_key.offset;
5816 		search_key.type = BTRFS_INODE_ITEM_KEY;
5817 		search_key.offset = 0;
5818 		inode = btrfs_iget(fs_info->sb, &search_key, root);
5819 		if (IS_ERR(inode))
5820 			return PTR_ERR(inode);
5821 
5822 		if (BTRFS_I(inode)->generation > last_committed)
5823 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5824 					      LOG_INODE_EXISTS,
5825 					      0, LLONG_MAX, ctx);
5826 		btrfs_add_delayed_iput(inode);
5827 		if (ret)
5828 			return ret;
5829 
5830 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5831 			break;
5832 
5833 		search_key.type = BTRFS_INODE_REF_KEY;
5834 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5835 		if (ret < 0)
5836 			return ret;
5837 
5838 		leaf = path->nodes[0];
5839 		slot = path->slots[0];
5840 		if (slot >= btrfs_header_nritems(leaf)) {
5841 			ret = btrfs_next_leaf(root, path);
5842 			if (ret < 0)
5843 				return ret;
5844 			else if (ret > 0)
5845 				return -ENOENT;
5846 			leaf = path->nodes[0];
5847 			slot = path->slots[0];
5848 		}
5849 
5850 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5851 		if (found_key.objectid != search_key.objectid ||
5852 		    found_key.type != BTRFS_INODE_REF_KEY)
5853 			return -ENOENT;
5854 	}
5855 	return 0;
5856 }
5857 
5858 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5859 				  struct btrfs_inode *inode,
5860 				  struct dentry *parent,
5861 				  struct btrfs_log_ctx *ctx)
5862 {
5863 	struct btrfs_root *root = inode->root;
5864 	struct btrfs_fs_info *fs_info = root->fs_info;
5865 	struct dentry *old_parent = NULL;
5866 	struct super_block *sb = inode->vfs_inode.i_sb;
5867 	int ret = 0;
5868 
5869 	while (true) {
5870 		if (!parent || d_really_is_negative(parent) ||
5871 		    sb != parent->d_sb)
5872 			break;
5873 
5874 		inode = BTRFS_I(d_inode(parent));
5875 		if (root != inode->root)
5876 			break;
5877 
5878 		if (inode->generation > fs_info->last_trans_committed) {
5879 			ret = btrfs_log_inode(trans, root, inode,
5880 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5881 			if (ret)
5882 				break;
5883 		}
5884 		if (IS_ROOT(parent))
5885 			break;
5886 
5887 		parent = dget_parent(parent);
5888 		dput(old_parent);
5889 		old_parent = parent;
5890 	}
5891 	dput(old_parent);
5892 
5893 	return ret;
5894 }
5895 
5896 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5897 				 struct btrfs_inode *inode,
5898 				 struct dentry *parent,
5899 				 struct btrfs_log_ctx *ctx)
5900 {
5901 	struct btrfs_root *root = inode->root;
5902 	const u64 ino = btrfs_ino(inode);
5903 	struct btrfs_path *path;
5904 	struct btrfs_key search_key;
5905 	int ret;
5906 
5907 	/*
5908 	 * For a single hard link case, go through a fast path that does not
5909 	 * need to iterate the fs/subvolume tree.
5910 	 */
5911 	if (inode->vfs_inode.i_nlink < 2)
5912 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5913 
5914 	path = btrfs_alloc_path();
5915 	if (!path)
5916 		return -ENOMEM;
5917 
5918 	search_key.objectid = ino;
5919 	search_key.type = BTRFS_INODE_REF_KEY;
5920 	search_key.offset = 0;
5921 again:
5922 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5923 	if (ret < 0)
5924 		goto out;
5925 	if (ret == 0)
5926 		path->slots[0]++;
5927 
5928 	while (true) {
5929 		struct extent_buffer *leaf = path->nodes[0];
5930 		int slot = path->slots[0];
5931 		struct btrfs_key found_key;
5932 
5933 		if (slot >= btrfs_header_nritems(leaf)) {
5934 			ret = btrfs_next_leaf(root, path);
5935 			if (ret < 0)
5936 				goto out;
5937 			else if (ret > 0)
5938 				break;
5939 			continue;
5940 		}
5941 
5942 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5943 		if (found_key.objectid != ino ||
5944 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
5945 			break;
5946 
5947 		/*
5948 		 * Don't deal with extended references because they are rare
5949 		 * cases and too complex to deal with (we would need to keep
5950 		 * track of which subitem we are processing for each item in
5951 		 * this loop, etc). So just return some error to fallback to
5952 		 * a transaction commit.
5953 		 */
5954 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5955 			ret = -EMLINK;
5956 			goto out;
5957 		}
5958 
5959 		/*
5960 		 * Logging ancestors needs to do more searches on the fs/subvol
5961 		 * tree, so it releases the path as needed to avoid deadlocks.
5962 		 * Keep track of the last inode ref key and resume from that key
5963 		 * after logging all new ancestors for the current hard link.
5964 		 */
5965 		memcpy(&search_key, &found_key, sizeof(search_key));
5966 
5967 		ret = log_new_ancestors(trans, root, path, ctx);
5968 		if (ret)
5969 			goto out;
5970 		btrfs_release_path(path);
5971 		goto again;
5972 	}
5973 	ret = 0;
5974 out:
5975 	btrfs_free_path(path);
5976 	return ret;
5977 }
5978 
5979 /*
5980  * helper function around btrfs_log_inode to make sure newly created
5981  * parent directories also end up in the log.  A minimal inode and backref
5982  * only logging is done of any parent directories that are older than
5983  * the last committed transaction
5984  */
5985 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5986 				  struct btrfs_inode *inode,
5987 				  struct dentry *parent,
5988 				  const loff_t start,
5989 				  const loff_t end,
5990 				  int inode_only,
5991 				  struct btrfs_log_ctx *ctx)
5992 {
5993 	struct btrfs_root *root = inode->root;
5994 	struct btrfs_fs_info *fs_info = root->fs_info;
5995 	struct super_block *sb;
5996 	int ret = 0;
5997 	u64 last_committed = fs_info->last_trans_committed;
5998 	bool log_dentries = false;
5999 
6000 	sb = inode->vfs_inode.i_sb;
6001 
6002 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6003 		ret = 1;
6004 		goto end_no_trans;
6005 	}
6006 
6007 	/*
6008 	 * The prev transaction commit doesn't complete, we need do
6009 	 * full commit by ourselves.
6010 	 */
6011 	if (fs_info->last_trans_log_full_commit >
6012 	    fs_info->last_trans_committed) {
6013 		ret = 1;
6014 		goto end_no_trans;
6015 	}
6016 
6017 	if (btrfs_root_refs(&root->root_item) == 0) {
6018 		ret = 1;
6019 		goto end_no_trans;
6020 	}
6021 
6022 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6023 			last_committed);
6024 	if (ret)
6025 		goto end_no_trans;
6026 
6027 	/*
6028 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6029 	 * (since logging them is pointless, a link count of 0 means they
6030 	 * will never be accessible).
6031 	 */
6032 	if (btrfs_inode_in_log(inode, trans->transid) ||
6033 	    inode->vfs_inode.i_nlink == 0) {
6034 		ret = BTRFS_NO_LOG_SYNC;
6035 		goto end_no_trans;
6036 	}
6037 
6038 	ret = start_log_trans(trans, root, ctx);
6039 	if (ret)
6040 		goto end_no_trans;
6041 
6042 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6043 	if (ret)
6044 		goto end_trans;
6045 
6046 	/*
6047 	 * for regular files, if its inode is already on disk, we don't
6048 	 * have to worry about the parents at all.  This is because
6049 	 * we can use the last_unlink_trans field to record renames
6050 	 * and other fun in this file.
6051 	 */
6052 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6053 	    inode->generation <= last_committed &&
6054 	    inode->last_unlink_trans <= last_committed) {
6055 		ret = 0;
6056 		goto end_trans;
6057 	}
6058 
6059 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6060 		log_dentries = true;
6061 
6062 	/*
6063 	 * On unlink we must make sure all our current and old parent directory
6064 	 * inodes are fully logged. This is to prevent leaving dangling
6065 	 * directory index entries in directories that were our parents but are
6066 	 * not anymore. Not doing this results in old parent directory being
6067 	 * impossible to delete after log replay (rmdir will always fail with
6068 	 * error -ENOTEMPTY).
6069 	 *
6070 	 * Example 1:
6071 	 *
6072 	 * mkdir testdir
6073 	 * touch testdir/foo
6074 	 * ln testdir/foo testdir/bar
6075 	 * sync
6076 	 * unlink testdir/bar
6077 	 * xfs_io -c fsync testdir/foo
6078 	 * <power failure>
6079 	 * mount fs, triggers log replay
6080 	 *
6081 	 * If we don't log the parent directory (testdir), after log replay the
6082 	 * directory still has an entry pointing to the file inode using the bar
6083 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6084 	 * the file inode has a link count of 1.
6085 	 *
6086 	 * Example 2:
6087 	 *
6088 	 * mkdir testdir
6089 	 * touch foo
6090 	 * ln foo testdir/foo2
6091 	 * ln foo testdir/foo3
6092 	 * sync
6093 	 * unlink testdir/foo3
6094 	 * xfs_io -c fsync foo
6095 	 * <power failure>
6096 	 * mount fs, triggers log replay
6097 	 *
6098 	 * Similar as the first example, after log replay the parent directory
6099 	 * testdir still has an entry pointing to the inode file with name foo3
6100 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6101 	 * and has a link count of 2.
6102 	 */
6103 	if (inode->last_unlink_trans > last_committed) {
6104 		ret = btrfs_log_all_parents(trans, inode, ctx);
6105 		if (ret)
6106 			goto end_trans;
6107 	}
6108 
6109 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6110 	if (ret)
6111 		goto end_trans;
6112 
6113 	if (log_dentries)
6114 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6115 	else
6116 		ret = 0;
6117 end_trans:
6118 	if (ret < 0) {
6119 		btrfs_set_log_full_commit(trans);
6120 		ret = 1;
6121 	}
6122 
6123 	if (ret)
6124 		btrfs_remove_log_ctx(root, ctx);
6125 	btrfs_end_log_trans(root);
6126 end_no_trans:
6127 	return ret;
6128 }
6129 
6130 /*
6131  * it is not safe to log dentry if the chunk root has added new
6132  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6133  * If this returns 1, you must commit the transaction to safely get your
6134  * data on disk.
6135  */
6136 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6137 			  struct dentry *dentry,
6138 			  const loff_t start,
6139 			  const loff_t end,
6140 			  struct btrfs_log_ctx *ctx)
6141 {
6142 	struct dentry *parent = dget_parent(dentry);
6143 	int ret;
6144 
6145 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6146 				     start, end, LOG_INODE_ALL, ctx);
6147 	dput(parent);
6148 
6149 	return ret;
6150 }
6151 
6152 /*
6153  * should be called during mount to recover any replay any log trees
6154  * from the FS
6155  */
6156 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6157 {
6158 	int ret;
6159 	struct btrfs_path *path;
6160 	struct btrfs_trans_handle *trans;
6161 	struct btrfs_key key;
6162 	struct btrfs_key found_key;
6163 	struct btrfs_key tmp_key;
6164 	struct btrfs_root *log;
6165 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6166 	struct walk_control wc = {
6167 		.process_func = process_one_buffer,
6168 		.stage = LOG_WALK_PIN_ONLY,
6169 	};
6170 
6171 	path = btrfs_alloc_path();
6172 	if (!path)
6173 		return -ENOMEM;
6174 
6175 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6176 
6177 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6178 	if (IS_ERR(trans)) {
6179 		ret = PTR_ERR(trans);
6180 		goto error;
6181 	}
6182 
6183 	wc.trans = trans;
6184 	wc.pin = 1;
6185 
6186 	ret = walk_log_tree(trans, log_root_tree, &wc);
6187 	if (ret) {
6188 		btrfs_handle_fs_error(fs_info, ret,
6189 			"Failed to pin buffers while recovering log root tree.");
6190 		goto error;
6191 	}
6192 
6193 again:
6194 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6195 	key.offset = (u64)-1;
6196 	key.type = BTRFS_ROOT_ITEM_KEY;
6197 
6198 	while (1) {
6199 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6200 
6201 		if (ret < 0) {
6202 			btrfs_handle_fs_error(fs_info, ret,
6203 				    "Couldn't find tree log root.");
6204 			goto error;
6205 		}
6206 		if (ret > 0) {
6207 			if (path->slots[0] == 0)
6208 				break;
6209 			path->slots[0]--;
6210 		}
6211 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6212 				      path->slots[0]);
6213 		btrfs_release_path(path);
6214 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6215 			break;
6216 
6217 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6218 		if (IS_ERR(log)) {
6219 			ret = PTR_ERR(log);
6220 			btrfs_handle_fs_error(fs_info, ret,
6221 				    "Couldn't read tree log root.");
6222 			goto error;
6223 		}
6224 
6225 		tmp_key.objectid = found_key.offset;
6226 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6227 		tmp_key.offset = (u64)-1;
6228 
6229 		wc.replay_dest = btrfs_get_fs_root(fs_info, &tmp_key, true);
6230 		if (IS_ERR(wc.replay_dest)) {
6231 			ret = PTR_ERR(wc.replay_dest);
6232 
6233 			/*
6234 			 * We didn't find the subvol, likely because it was
6235 			 * deleted.  This is ok, simply skip this log and go to
6236 			 * the next one.
6237 			 *
6238 			 * We need to exclude the root because we can't have
6239 			 * other log replays overwriting this log as we'll read
6240 			 * it back in a few more times.  This will keep our
6241 			 * block from being modified, and we'll just bail for
6242 			 * each subsequent pass.
6243 			 */
6244 			if (ret == -ENOENT)
6245 				ret = btrfs_pin_extent_for_log_replay(trans,
6246 							log->node->start,
6247 							log->node->len);
6248 			btrfs_put_root(log);
6249 
6250 			if (!ret)
6251 				goto next;
6252 			btrfs_handle_fs_error(fs_info, ret,
6253 				"Couldn't read target root for tree log recovery.");
6254 			goto error;
6255 		}
6256 
6257 		wc.replay_dest->log_root = log;
6258 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6259 		ret = walk_log_tree(trans, log, &wc);
6260 
6261 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6262 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6263 						      path);
6264 		}
6265 
6266 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6267 			struct btrfs_root *root = wc.replay_dest;
6268 
6269 			btrfs_release_path(path);
6270 
6271 			/*
6272 			 * We have just replayed everything, and the highest
6273 			 * objectid of fs roots probably has changed in case
6274 			 * some inode_item's got replayed.
6275 			 *
6276 			 * root->objectid_mutex is not acquired as log replay
6277 			 * could only happen during mount.
6278 			 */
6279 			ret = btrfs_find_highest_objectid(root,
6280 						  &root->highest_objectid);
6281 		}
6282 
6283 		wc.replay_dest->log_root = NULL;
6284 		btrfs_put_root(wc.replay_dest);
6285 		btrfs_put_root(log);
6286 
6287 		if (ret)
6288 			goto error;
6289 next:
6290 		if (found_key.offset == 0)
6291 			break;
6292 		key.offset = found_key.offset - 1;
6293 	}
6294 	btrfs_release_path(path);
6295 
6296 	/* step one is to pin it all, step two is to replay just inodes */
6297 	if (wc.pin) {
6298 		wc.pin = 0;
6299 		wc.process_func = replay_one_buffer;
6300 		wc.stage = LOG_WALK_REPLAY_INODES;
6301 		goto again;
6302 	}
6303 	/* step three is to replay everything */
6304 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6305 		wc.stage++;
6306 		goto again;
6307 	}
6308 
6309 	btrfs_free_path(path);
6310 
6311 	/* step 4: commit the transaction, which also unpins the blocks */
6312 	ret = btrfs_commit_transaction(trans);
6313 	if (ret)
6314 		return ret;
6315 
6316 	log_root_tree->log_root = NULL;
6317 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6318 	btrfs_put_root(log_root_tree);
6319 
6320 	return 0;
6321 error:
6322 	if (wc.trans)
6323 		btrfs_end_transaction(wc.trans);
6324 	btrfs_free_path(path);
6325 	return ret;
6326 }
6327 
6328 /*
6329  * there are some corner cases where we want to force a full
6330  * commit instead of allowing a directory to be logged.
6331  *
6332  * They revolve around files there were unlinked from the directory, and
6333  * this function updates the parent directory so that a full commit is
6334  * properly done if it is fsync'd later after the unlinks are done.
6335  *
6336  * Must be called before the unlink operations (updates to the subvolume tree,
6337  * inodes, etc) are done.
6338  */
6339 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6340 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6341 			     int for_rename)
6342 {
6343 	/*
6344 	 * when we're logging a file, if it hasn't been renamed
6345 	 * or unlinked, and its inode is fully committed on disk,
6346 	 * we don't have to worry about walking up the directory chain
6347 	 * to log its parents.
6348 	 *
6349 	 * So, we use the last_unlink_trans field to put this transid
6350 	 * into the file.  When the file is logged we check it and
6351 	 * don't log the parents if the file is fully on disk.
6352 	 */
6353 	mutex_lock(&inode->log_mutex);
6354 	inode->last_unlink_trans = trans->transid;
6355 	mutex_unlock(&inode->log_mutex);
6356 
6357 	/*
6358 	 * if this directory was already logged any new
6359 	 * names for this file/dir will get recorded
6360 	 */
6361 	if (dir->logged_trans == trans->transid)
6362 		return;
6363 
6364 	/*
6365 	 * if the inode we're about to unlink was logged,
6366 	 * the log will be properly updated for any new names
6367 	 */
6368 	if (inode->logged_trans == trans->transid)
6369 		return;
6370 
6371 	/*
6372 	 * when renaming files across directories, if the directory
6373 	 * there we're unlinking from gets fsync'd later on, there's
6374 	 * no way to find the destination directory later and fsync it
6375 	 * properly.  So, we have to be conservative and force commits
6376 	 * so the new name gets discovered.
6377 	 */
6378 	if (for_rename)
6379 		goto record;
6380 
6381 	/* we can safely do the unlink without any special recording */
6382 	return;
6383 
6384 record:
6385 	mutex_lock(&dir->log_mutex);
6386 	dir->last_unlink_trans = trans->transid;
6387 	mutex_unlock(&dir->log_mutex);
6388 }
6389 
6390 /*
6391  * Make sure that if someone attempts to fsync the parent directory of a deleted
6392  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6393  * that after replaying the log tree of the parent directory's root we will not
6394  * see the snapshot anymore and at log replay time we will not see any log tree
6395  * corresponding to the deleted snapshot's root, which could lead to replaying
6396  * it after replaying the log tree of the parent directory (which would replay
6397  * the snapshot delete operation).
6398  *
6399  * Must be called before the actual snapshot destroy operation (updates to the
6400  * parent root and tree of tree roots trees, etc) are done.
6401  */
6402 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6403 				   struct btrfs_inode *dir)
6404 {
6405 	mutex_lock(&dir->log_mutex);
6406 	dir->last_unlink_trans = trans->transid;
6407 	mutex_unlock(&dir->log_mutex);
6408 }
6409 
6410 /*
6411  * Call this after adding a new name for a file and it will properly
6412  * update the log to reflect the new name.
6413  *
6414  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6415  * true (because it's not used).
6416  *
6417  * Return value depends on whether @sync_log is true or false.
6418  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6419  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6420  *            otherwise.
6421  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6422  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6423  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6424  *             committed (without attempting to sync the log).
6425  */
6426 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6427 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6428 			struct dentry *parent,
6429 			bool sync_log, struct btrfs_log_ctx *ctx)
6430 {
6431 	struct btrfs_fs_info *fs_info = trans->fs_info;
6432 	int ret;
6433 
6434 	/*
6435 	 * this will force the logging code to walk the dentry chain
6436 	 * up for the file
6437 	 */
6438 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6439 		inode->last_unlink_trans = trans->transid;
6440 
6441 	/*
6442 	 * if this inode hasn't been logged and directory we're renaming it
6443 	 * from hasn't been logged, we don't need to log it
6444 	 */
6445 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6446 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6447 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6448 			BTRFS_DONT_NEED_LOG_SYNC;
6449 
6450 	if (sync_log) {
6451 		struct btrfs_log_ctx ctx2;
6452 
6453 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6454 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6455 					     LOG_INODE_EXISTS, &ctx2);
6456 		if (ret == BTRFS_NO_LOG_SYNC)
6457 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6458 		else if (ret)
6459 			return BTRFS_NEED_TRANS_COMMIT;
6460 
6461 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6462 		if (ret)
6463 			return BTRFS_NEED_TRANS_COMMIT;
6464 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6465 	}
6466 
6467 	ASSERT(ctx);
6468 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6469 				     LOG_INODE_EXISTS, ctx);
6470 	if (ret == BTRFS_NO_LOG_SYNC)
6471 		return BTRFS_DONT_NEED_LOG_SYNC;
6472 	else if (ret)
6473 		return BTRFS_NEED_TRANS_COMMIT;
6474 
6475 	return BTRFS_NEED_LOG_SYNC;
6476 }
6477 
6478