xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 31cb1fb4)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 #include "compression.h"
30 #include "qgroup.h"
31 
32 /* magic values for the inode_only field in btrfs_log_inode:
33  *
34  * LOG_INODE_ALL means to log everything
35  * LOG_INODE_EXISTS means to log just enough to recreate the inode
36  * during log replay
37  */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40 #define LOG_OTHER_INODE 2
41 
42 /*
43  * directory trouble cases
44  *
45  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46  * log, we must force a full commit before doing an fsync of the directory
47  * where the unlink was done.
48  * ---> record transid of last unlink/rename per directory
49  *
50  * mkdir foo/some_dir
51  * normal commit
52  * rename foo/some_dir foo2/some_dir
53  * mkdir foo/some_dir
54  * fsync foo/some_dir/some_file
55  *
56  * The fsync above will unlink the original some_dir without recording
57  * it in its new location (foo2).  After a crash, some_dir will be gone
58  * unless the fsync of some_file forces a full commit
59  *
60  * 2) we must log any new names for any file or dir that is in the fsync
61  * log. ---> check inode while renaming/linking.
62  *
63  * 2a) we must log any new names for any file or dir during rename
64  * when the directory they are being removed from was logged.
65  * ---> check inode and old parent dir during rename
66  *
67  *  2a is actually the more important variant.  With the extra logging
68  *  a crash might unlink the old name without recreating the new one
69  *
70  * 3) after a crash, we must go through any directories with a link count
71  * of zero and redo the rm -rf
72  *
73  * mkdir f1/foo
74  * normal commit
75  * rm -rf f1/foo
76  * fsync(f1)
77  *
78  * The directory f1 was fully removed from the FS, but fsync was never
79  * called on f1, only its parent dir.  After a crash the rm -rf must
80  * be replayed.  This must be able to recurse down the entire
81  * directory tree.  The inode link count fixup code takes care of the
82  * ugly details.
83  */
84 
85 /*
86  * stages for the tree walking.  The first
87  * stage (0) is to only pin down the blocks we find
88  * the second stage (1) is to make sure that all the inodes
89  * we find in the log are created in the subvolume.
90  *
91  * The last stage is to deal with directories and links and extents
92  * and all the other fun semantics
93  */
94 #define LOG_WALK_PIN_ONLY 0
95 #define LOG_WALK_REPLAY_INODES 1
96 #define LOG_WALK_REPLAY_DIR_INDEX 2
97 #define LOG_WALK_REPLAY_ALL 3
98 
99 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
100 			   struct btrfs_root *root, struct btrfs_inode *inode,
101 			   int inode_only,
102 			   const loff_t start,
103 			   const loff_t end,
104 			   struct btrfs_log_ctx *ctx);
105 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
106 			     struct btrfs_root *root,
107 			     struct btrfs_path *path, u64 objectid);
108 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
109 				       struct btrfs_root *root,
110 				       struct btrfs_root *log,
111 				       struct btrfs_path *path,
112 				       u64 dirid, int del_all);
113 
114 /*
115  * tree logging is a special write ahead log used to make sure that
116  * fsyncs and O_SYNCs can happen without doing full tree commits.
117  *
118  * Full tree commits are expensive because they require commonly
119  * modified blocks to be recowed, creating many dirty pages in the
120  * extent tree an 4x-6x higher write load than ext3.
121  *
122  * Instead of doing a tree commit on every fsync, we use the
123  * key ranges and transaction ids to find items for a given file or directory
124  * that have changed in this transaction.  Those items are copied into
125  * a special tree (one per subvolume root), that tree is written to disk
126  * and then the fsync is considered complete.
127  *
128  * After a crash, items are copied out of the log-tree back into the
129  * subvolume tree.  Any file data extents found are recorded in the extent
130  * allocation tree, and the log-tree freed.
131  *
132  * The log tree is read three times, once to pin down all the extents it is
133  * using in ram and once, once to create all the inodes logged in the tree
134  * and once to do all the other items.
135  */
136 
137 /*
138  * start a sub transaction and setup the log tree
139  * this increments the log tree writer count to make the people
140  * syncing the tree wait for us to finish
141  */
142 static int start_log_trans(struct btrfs_trans_handle *trans,
143 			   struct btrfs_root *root,
144 			   struct btrfs_log_ctx *ctx)
145 {
146 	struct btrfs_fs_info *fs_info = root->fs_info;
147 	int ret = 0;
148 
149 	mutex_lock(&root->log_mutex);
150 
151 	if (root->log_root) {
152 		if (btrfs_need_log_full_commit(fs_info, trans)) {
153 			ret = -EAGAIN;
154 			goto out;
155 		}
156 
157 		if (!root->log_start_pid) {
158 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 			root->log_start_pid = current->pid;
160 		} else if (root->log_start_pid != current->pid) {
161 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
162 		}
163 	} else {
164 		mutex_lock(&fs_info->tree_log_mutex);
165 		if (!fs_info->log_root_tree)
166 			ret = btrfs_init_log_root_tree(trans, fs_info);
167 		mutex_unlock(&fs_info->tree_log_mutex);
168 		if (ret)
169 			goto out;
170 
171 		ret = btrfs_add_log_tree(trans, root);
172 		if (ret)
173 			goto out;
174 
175 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
176 		root->log_start_pid = current->pid;
177 	}
178 
179 	atomic_inc(&root->log_batch);
180 	atomic_inc(&root->log_writers);
181 	if (ctx) {
182 		int index = root->log_transid % 2;
183 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
184 		ctx->log_transid = root->log_transid;
185 	}
186 
187 out:
188 	mutex_unlock(&root->log_mutex);
189 	return ret;
190 }
191 
192 /*
193  * returns 0 if there was a log transaction running and we were able
194  * to join, or returns -ENOENT if there were not transactions
195  * in progress
196  */
197 static int join_running_log_trans(struct btrfs_root *root)
198 {
199 	int ret = -ENOENT;
200 
201 	smp_mb();
202 	if (!root->log_root)
203 		return -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	if (root->log_root) {
207 		ret = 0;
208 		atomic_inc(&root->log_writers);
209 	}
210 	mutex_unlock(&root->log_mutex);
211 	return ret;
212 }
213 
214 /*
215  * This either makes the current running log transaction wait
216  * until you call btrfs_end_log_trans() or it makes any future
217  * log transactions wait until you call btrfs_end_log_trans()
218  */
219 int btrfs_pin_log_trans(struct btrfs_root *root)
220 {
221 	int ret = -ENOENT;
222 
223 	mutex_lock(&root->log_mutex);
224 	atomic_inc(&root->log_writers);
225 	mutex_unlock(&root->log_mutex);
226 	return ret;
227 }
228 
229 /*
230  * indicate we're done making changes to the log tree
231  * and wake up anyone waiting to do a sync
232  */
233 void btrfs_end_log_trans(struct btrfs_root *root)
234 {
235 	if (atomic_dec_and_test(&root->log_writers)) {
236 		/*
237 		 * Implicit memory barrier after atomic_dec_and_test
238 		 */
239 		if (waitqueue_active(&root->log_writer_wait))
240 			wake_up(&root->log_writer_wait);
241 	}
242 }
243 
244 
245 /*
246  * the walk control struct is used to pass state down the chain when
247  * processing the log tree.  The stage field tells us which part
248  * of the log tree processing we are currently doing.  The others
249  * are state fields used for that specific part
250  */
251 struct walk_control {
252 	/* should we free the extent on disk when done?  This is used
253 	 * at transaction commit time while freeing a log tree
254 	 */
255 	int free;
256 
257 	/* should we write out the extent buffer?  This is used
258 	 * while flushing the log tree to disk during a sync
259 	 */
260 	int write;
261 
262 	/* should we wait for the extent buffer io to finish?  Also used
263 	 * while flushing the log tree to disk for a sync
264 	 */
265 	int wait;
266 
267 	/* pin only walk, we record which extents on disk belong to the
268 	 * log trees
269 	 */
270 	int pin;
271 
272 	/* what stage of the replay code we're currently in */
273 	int stage;
274 
275 	/* the root we are currently replaying */
276 	struct btrfs_root *replay_dest;
277 
278 	/* the trans handle for the current replay */
279 	struct btrfs_trans_handle *trans;
280 
281 	/* the function that gets used to process blocks we find in the
282 	 * tree.  Note the extent_buffer might not be up to date when it is
283 	 * passed in, and it must be checked or read if you need the data
284 	 * inside it
285 	 */
286 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
287 			    struct walk_control *wc, u64 gen);
288 };
289 
290 /*
291  * process_func used to pin down extents, write them or wait on them
292  */
293 static int process_one_buffer(struct btrfs_root *log,
294 			      struct extent_buffer *eb,
295 			      struct walk_control *wc, u64 gen)
296 {
297 	struct btrfs_fs_info *fs_info = log->fs_info;
298 	int ret = 0;
299 
300 	/*
301 	 * If this fs is mixed then we need to be able to process the leaves to
302 	 * pin down any logged extents, so we have to read the block.
303 	 */
304 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
305 		ret = btrfs_read_buffer(eb, gen);
306 		if (ret)
307 			return ret;
308 	}
309 
310 	if (wc->pin)
311 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
312 						      eb->len);
313 
314 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
315 		if (wc->pin && btrfs_header_level(eb) == 0)
316 			ret = btrfs_exclude_logged_extents(fs_info, eb);
317 		if (wc->write)
318 			btrfs_write_tree_block(eb);
319 		if (wc->wait)
320 			btrfs_wait_tree_block_writeback(eb);
321 	}
322 	return ret;
323 }
324 
325 /*
326  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
327  * to the src data we are copying out.
328  *
329  * root is the tree we are copying into, and path is a scratch
330  * path for use in this function (it should be released on entry and
331  * will be released on exit).
332  *
333  * If the key is already in the destination tree the existing item is
334  * overwritten.  If the existing item isn't big enough, it is extended.
335  * If it is too large, it is truncated.
336  *
337  * If the key isn't in the destination yet, a new item is inserted.
338  */
339 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
340 				   struct btrfs_root *root,
341 				   struct btrfs_path *path,
342 				   struct extent_buffer *eb, int slot,
343 				   struct btrfs_key *key)
344 {
345 	struct btrfs_fs_info *fs_info = root->fs_info;
346 	int ret;
347 	u32 item_size;
348 	u64 saved_i_size = 0;
349 	int save_old_i_size = 0;
350 	unsigned long src_ptr;
351 	unsigned long dst_ptr;
352 	int overwrite_root = 0;
353 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
354 
355 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356 		overwrite_root = 1;
357 
358 	item_size = btrfs_item_size_nr(eb, slot);
359 	src_ptr = btrfs_item_ptr_offset(eb, slot);
360 
361 	/* look for the key in the destination tree */
362 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
363 	if (ret < 0)
364 		return ret;
365 
366 	if (ret == 0) {
367 		char *src_copy;
368 		char *dst_copy;
369 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 						  path->slots[0]);
371 		if (dst_size != item_size)
372 			goto insert;
373 
374 		if (item_size == 0) {
375 			btrfs_release_path(path);
376 			return 0;
377 		}
378 		dst_copy = kmalloc(item_size, GFP_NOFS);
379 		src_copy = kmalloc(item_size, GFP_NOFS);
380 		if (!dst_copy || !src_copy) {
381 			btrfs_release_path(path);
382 			kfree(dst_copy);
383 			kfree(src_copy);
384 			return -ENOMEM;
385 		}
386 
387 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
388 
389 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 				   item_size);
392 		ret = memcmp(dst_copy, src_copy, item_size);
393 
394 		kfree(dst_copy);
395 		kfree(src_copy);
396 		/*
397 		 * they have the same contents, just return, this saves
398 		 * us from cowing blocks in the destination tree and doing
399 		 * extra writes that may not have been done by a previous
400 		 * sync
401 		 */
402 		if (ret == 0) {
403 			btrfs_release_path(path);
404 			return 0;
405 		}
406 
407 		/*
408 		 * We need to load the old nbytes into the inode so when we
409 		 * replay the extents we've logged we get the right nbytes.
410 		 */
411 		if (inode_item) {
412 			struct btrfs_inode_item *item;
413 			u64 nbytes;
414 			u32 mode;
415 
416 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 					      struct btrfs_inode_item);
418 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 			item = btrfs_item_ptr(eb, slot,
420 					      struct btrfs_inode_item);
421 			btrfs_set_inode_nbytes(eb, item, nbytes);
422 
423 			/*
424 			 * If this is a directory we need to reset the i_size to
425 			 * 0 so that we can set it up properly when replaying
426 			 * the rest of the items in this log.
427 			 */
428 			mode = btrfs_inode_mode(eb, item);
429 			if (S_ISDIR(mode))
430 				btrfs_set_inode_size(eb, item, 0);
431 		}
432 	} else if (inode_item) {
433 		struct btrfs_inode_item *item;
434 		u32 mode;
435 
436 		/*
437 		 * New inode, set nbytes to 0 so that the nbytes comes out
438 		 * properly when we replay the extents.
439 		 */
440 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 		btrfs_set_inode_nbytes(eb, item, 0);
442 
443 		/*
444 		 * If this is a directory we need to reset the i_size to 0 so
445 		 * that we can set it up properly when replaying the rest of
446 		 * the items in this log.
447 		 */
448 		mode = btrfs_inode_mode(eb, item);
449 		if (S_ISDIR(mode))
450 			btrfs_set_inode_size(eb, item, 0);
451 	}
452 insert:
453 	btrfs_release_path(path);
454 	/* try to insert the key into the destination tree */
455 	path->skip_release_on_error = 1;
456 	ret = btrfs_insert_empty_item(trans, root, path,
457 				      key, item_size);
458 	path->skip_release_on_error = 0;
459 
460 	/* make sure any existing item is the correct size */
461 	if (ret == -EEXIST || ret == -EOVERFLOW) {
462 		u32 found_size;
463 		found_size = btrfs_item_size_nr(path->nodes[0],
464 						path->slots[0]);
465 		if (found_size > item_size)
466 			btrfs_truncate_item(fs_info, path, item_size, 1);
467 		else if (found_size < item_size)
468 			btrfs_extend_item(fs_info, path,
469 					  item_size - found_size);
470 	} else if (ret) {
471 		return ret;
472 	}
473 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 					path->slots[0]);
475 
476 	/* don't overwrite an existing inode if the generation number
477 	 * was logged as zero.  This is done when the tree logging code
478 	 * is just logging an inode to make sure it exists after recovery.
479 	 *
480 	 * Also, don't overwrite i_size on directories during replay.
481 	 * log replay inserts and removes directory items based on the
482 	 * state of the tree found in the subvolume, and i_size is modified
483 	 * as it goes
484 	 */
485 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 		struct btrfs_inode_item *src_item;
487 		struct btrfs_inode_item *dst_item;
488 
489 		src_item = (struct btrfs_inode_item *)src_ptr;
490 		dst_item = (struct btrfs_inode_item *)dst_ptr;
491 
492 		if (btrfs_inode_generation(eb, src_item) == 0) {
493 			struct extent_buffer *dst_eb = path->nodes[0];
494 			const u64 ino_size = btrfs_inode_size(eb, src_item);
495 
496 			/*
497 			 * For regular files an ino_size == 0 is used only when
498 			 * logging that an inode exists, as part of a directory
499 			 * fsync, and the inode wasn't fsynced before. In this
500 			 * case don't set the size of the inode in the fs/subvol
501 			 * tree, otherwise we would be throwing valid data away.
502 			 */
503 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
504 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 			    ino_size != 0) {
506 				struct btrfs_map_token token;
507 
508 				btrfs_init_map_token(&token);
509 				btrfs_set_token_inode_size(dst_eb, dst_item,
510 							   ino_size, &token);
511 			}
512 			goto no_copy;
513 		}
514 
515 		if (overwrite_root &&
516 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 			save_old_i_size = 1;
519 			saved_i_size = btrfs_inode_size(path->nodes[0],
520 							dst_item);
521 		}
522 	}
523 
524 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 			   src_ptr, item_size);
526 
527 	if (save_old_i_size) {
528 		struct btrfs_inode_item *dst_item;
529 		dst_item = (struct btrfs_inode_item *)dst_ptr;
530 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 	}
532 
533 	/* make sure the generation is filled in */
534 	if (key->type == BTRFS_INODE_ITEM_KEY) {
535 		struct btrfs_inode_item *dst_item;
536 		dst_item = (struct btrfs_inode_item *)dst_ptr;
537 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 			btrfs_set_inode_generation(path->nodes[0], dst_item,
539 						   trans->transid);
540 		}
541 	}
542 no_copy:
543 	btrfs_mark_buffer_dirty(path->nodes[0]);
544 	btrfs_release_path(path);
545 	return 0;
546 }
547 
548 /*
549  * simple helper to read an inode off the disk from a given root
550  * This can only be called for subvolume roots and not for the log
551  */
552 static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 					     u64 objectid)
554 {
555 	struct btrfs_key key;
556 	struct inode *inode;
557 
558 	key.objectid = objectid;
559 	key.type = BTRFS_INODE_ITEM_KEY;
560 	key.offset = 0;
561 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
562 	if (IS_ERR(inode)) {
563 		inode = NULL;
564 	} else if (is_bad_inode(inode)) {
565 		iput(inode);
566 		inode = NULL;
567 	}
568 	return inode;
569 }
570 
571 /* replays a single extent in 'eb' at 'slot' with 'key' into the
572  * subvolume 'root'.  path is released on entry and should be released
573  * on exit.
574  *
575  * extents in the log tree have not been allocated out of the extent
576  * tree yet.  So, this completes the allocation, taking a reference
577  * as required if the extent already exists or creating a new extent
578  * if it isn't in the extent allocation tree yet.
579  *
580  * The extent is inserted into the file, dropping any existing extents
581  * from the file that overlap the new one.
582  */
583 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
584 				      struct btrfs_root *root,
585 				      struct btrfs_path *path,
586 				      struct extent_buffer *eb, int slot,
587 				      struct btrfs_key *key)
588 {
589 	struct btrfs_fs_info *fs_info = root->fs_info;
590 	int found_type;
591 	u64 extent_end;
592 	u64 start = key->offset;
593 	u64 nbytes = 0;
594 	struct btrfs_file_extent_item *item;
595 	struct inode *inode = NULL;
596 	unsigned long size;
597 	int ret = 0;
598 
599 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 	found_type = btrfs_file_extent_type(eb, item);
601 
602 	if (found_type == BTRFS_FILE_EXTENT_REG ||
603 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 		nbytes = btrfs_file_extent_num_bytes(eb, item);
605 		extent_end = start + nbytes;
606 
607 		/*
608 		 * We don't add to the inodes nbytes if we are prealloc or a
609 		 * hole.
610 		 */
611 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
612 			nbytes = 0;
613 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
614 		size = btrfs_file_extent_inline_len(eb, slot, item);
615 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
616 		extent_end = ALIGN(start + size,
617 				   fs_info->sectorsize);
618 	} else {
619 		ret = 0;
620 		goto out;
621 	}
622 
623 	inode = read_one_inode(root, key->objectid);
624 	if (!inode) {
625 		ret = -EIO;
626 		goto out;
627 	}
628 
629 	/*
630 	 * first check to see if we already have this extent in the
631 	 * file.  This must be done before the btrfs_drop_extents run
632 	 * so we don't try to drop this extent.
633 	 */
634 	ret = btrfs_lookup_file_extent(trans, root, path,
635 			btrfs_ino(BTRFS_I(inode)), start, 0);
636 
637 	if (ret == 0 &&
638 	    (found_type == BTRFS_FILE_EXTENT_REG ||
639 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
640 		struct btrfs_file_extent_item cmp1;
641 		struct btrfs_file_extent_item cmp2;
642 		struct btrfs_file_extent_item *existing;
643 		struct extent_buffer *leaf;
644 
645 		leaf = path->nodes[0];
646 		existing = btrfs_item_ptr(leaf, path->slots[0],
647 					  struct btrfs_file_extent_item);
648 
649 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
650 				   sizeof(cmp1));
651 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
652 				   sizeof(cmp2));
653 
654 		/*
655 		 * we already have a pointer to this exact extent,
656 		 * we don't have to do anything
657 		 */
658 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
659 			btrfs_release_path(path);
660 			goto out;
661 		}
662 	}
663 	btrfs_release_path(path);
664 
665 	/* drop any overlapping extents */
666 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
667 	if (ret)
668 		goto out;
669 
670 	if (found_type == BTRFS_FILE_EXTENT_REG ||
671 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
672 		u64 offset;
673 		unsigned long dest_offset;
674 		struct btrfs_key ins;
675 
676 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
677 		    btrfs_fs_incompat(fs_info, NO_HOLES))
678 			goto update_inode;
679 
680 		ret = btrfs_insert_empty_item(trans, root, path, key,
681 					      sizeof(*item));
682 		if (ret)
683 			goto out;
684 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
685 						    path->slots[0]);
686 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
687 				(unsigned long)item,  sizeof(*item));
688 
689 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
690 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
691 		ins.type = BTRFS_EXTENT_ITEM_KEY;
692 		offset = key->offset - btrfs_file_extent_offset(eb, item);
693 
694 		/*
695 		 * Manually record dirty extent, as here we did a shallow
696 		 * file extent item copy and skip normal backref update,
697 		 * but modifying extent tree all by ourselves.
698 		 * So need to manually record dirty extent for qgroup,
699 		 * as the owner of the file extent changed from log tree
700 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
701 		 */
702 		ret = btrfs_qgroup_trace_extent(trans, fs_info,
703 				btrfs_file_extent_disk_bytenr(eb, item),
704 				btrfs_file_extent_disk_num_bytes(eb, item),
705 				GFP_NOFS);
706 		if (ret < 0)
707 			goto out;
708 
709 		if (ins.objectid > 0) {
710 			u64 csum_start;
711 			u64 csum_end;
712 			LIST_HEAD(ordered_sums);
713 			/*
714 			 * is this extent already allocated in the extent
715 			 * allocation tree?  If so, just add a reference
716 			 */
717 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
718 						ins.offset);
719 			if (ret == 0) {
720 				ret = btrfs_inc_extent_ref(trans, fs_info,
721 						ins.objectid, ins.offset,
722 						0, root->root_key.objectid,
723 						key->objectid, offset);
724 				if (ret)
725 					goto out;
726 			} else {
727 				/*
728 				 * insert the extent pointer in the extent
729 				 * allocation tree
730 				 */
731 				ret = btrfs_alloc_logged_file_extent(trans,
732 						fs_info,
733 						root->root_key.objectid,
734 						key->objectid, offset, &ins);
735 				if (ret)
736 					goto out;
737 			}
738 			btrfs_release_path(path);
739 
740 			if (btrfs_file_extent_compression(eb, item)) {
741 				csum_start = ins.objectid;
742 				csum_end = csum_start + ins.offset;
743 			} else {
744 				csum_start = ins.objectid +
745 					btrfs_file_extent_offset(eb, item);
746 				csum_end = csum_start +
747 					btrfs_file_extent_num_bytes(eb, item);
748 			}
749 
750 			ret = btrfs_lookup_csums_range(root->log_root,
751 						csum_start, csum_end - 1,
752 						&ordered_sums, 0);
753 			if (ret)
754 				goto out;
755 			/*
756 			 * Now delete all existing cums in the csum root that
757 			 * cover our range. We do this because we can have an
758 			 * extent that is completely referenced by one file
759 			 * extent item and partially referenced by another
760 			 * file extent item (like after using the clone or
761 			 * extent_same ioctls). In this case if we end up doing
762 			 * the replay of the one that partially references the
763 			 * extent first, and we do not do the csum deletion
764 			 * below, we can get 2 csum items in the csum tree that
765 			 * overlap each other. For example, imagine our log has
766 			 * the two following file extent items:
767 			 *
768 			 * key (257 EXTENT_DATA 409600)
769 			 *     extent data disk byte 12845056 nr 102400
770 			 *     extent data offset 20480 nr 20480 ram 102400
771 			 *
772 			 * key (257 EXTENT_DATA 819200)
773 			 *     extent data disk byte 12845056 nr 102400
774 			 *     extent data offset 0 nr 102400 ram 102400
775 			 *
776 			 * Where the second one fully references the 100K extent
777 			 * that starts at disk byte 12845056, and the log tree
778 			 * has a single csum item that covers the entire range
779 			 * of the extent:
780 			 *
781 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
782 			 *
783 			 * After the first file extent item is replayed, the
784 			 * csum tree gets the following csum item:
785 			 *
786 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
787 			 *
788 			 * Which covers the 20K sub-range starting at offset 20K
789 			 * of our extent. Now when we replay the second file
790 			 * extent item, if we do not delete existing csum items
791 			 * that cover any of its blocks, we end up getting two
792 			 * csum items in our csum tree that overlap each other:
793 			 *
794 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
795 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
796 			 *
797 			 * Which is a problem, because after this anyone trying
798 			 * to lookup up for the checksum of any block of our
799 			 * extent starting at an offset of 40K or higher, will
800 			 * end up looking at the second csum item only, which
801 			 * does not contain the checksum for any block starting
802 			 * at offset 40K or higher of our extent.
803 			 */
804 			while (!list_empty(&ordered_sums)) {
805 				struct btrfs_ordered_sum *sums;
806 				sums = list_entry(ordered_sums.next,
807 						struct btrfs_ordered_sum,
808 						list);
809 				if (!ret)
810 					ret = btrfs_del_csums(trans, fs_info,
811 							      sums->bytenr,
812 							      sums->len);
813 				if (!ret)
814 					ret = btrfs_csum_file_blocks(trans,
815 						fs_info->csum_root, sums);
816 				list_del(&sums->list);
817 				kfree(sums);
818 			}
819 			if (ret)
820 				goto out;
821 		} else {
822 			btrfs_release_path(path);
823 		}
824 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
825 		/* inline extents are easy, we just overwrite them */
826 		ret = overwrite_item(trans, root, path, eb, slot, key);
827 		if (ret)
828 			goto out;
829 	}
830 
831 	inode_add_bytes(inode, nbytes);
832 update_inode:
833 	ret = btrfs_update_inode(trans, root, inode);
834 out:
835 	if (inode)
836 		iput(inode);
837 	return ret;
838 }
839 
840 /*
841  * when cleaning up conflicts between the directory names in the
842  * subvolume, directory names in the log and directory names in the
843  * inode back references, we may have to unlink inodes from directories.
844  *
845  * This is a helper function to do the unlink of a specific directory
846  * item
847  */
848 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
849 				      struct btrfs_root *root,
850 				      struct btrfs_path *path,
851 				      struct btrfs_inode *dir,
852 				      struct btrfs_dir_item *di)
853 {
854 	struct btrfs_fs_info *fs_info = root->fs_info;
855 	struct inode *inode;
856 	char *name;
857 	int name_len;
858 	struct extent_buffer *leaf;
859 	struct btrfs_key location;
860 	int ret;
861 
862 	leaf = path->nodes[0];
863 
864 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
865 	name_len = btrfs_dir_name_len(leaf, di);
866 	name = kmalloc(name_len, GFP_NOFS);
867 	if (!name)
868 		return -ENOMEM;
869 
870 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
871 	btrfs_release_path(path);
872 
873 	inode = read_one_inode(root, location.objectid);
874 	if (!inode) {
875 		ret = -EIO;
876 		goto out;
877 	}
878 
879 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
880 	if (ret)
881 		goto out;
882 
883 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
884 			name_len);
885 	if (ret)
886 		goto out;
887 	else
888 		ret = btrfs_run_delayed_items(trans, fs_info);
889 out:
890 	kfree(name);
891 	iput(inode);
892 	return ret;
893 }
894 
895 /*
896  * helper function to see if a given name and sequence number found
897  * in an inode back reference are already in a directory and correctly
898  * point to this inode
899  */
900 static noinline int inode_in_dir(struct btrfs_root *root,
901 				 struct btrfs_path *path,
902 				 u64 dirid, u64 objectid, u64 index,
903 				 const char *name, int name_len)
904 {
905 	struct btrfs_dir_item *di;
906 	struct btrfs_key location;
907 	int match = 0;
908 
909 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
910 					 index, name, name_len, 0);
911 	if (di && !IS_ERR(di)) {
912 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
913 		if (location.objectid != objectid)
914 			goto out;
915 	} else
916 		goto out;
917 	btrfs_release_path(path);
918 
919 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
920 	if (di && !IS_ERR(di)) {
921 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
922 		if (location.objectid != objectid)
923 			goto out;
924 	} else
925 		goto out;
926 	match = 1;
927 out:
928 	btrfs_release_path(path);
929 	return match;
930 }
931 
932 /*
933  * helper function to check a log tree for a named back reference in
934  * an inode.  This is used to decide if a back reference that is
935  * found in the subvolume conflicts with what we find in the log.
936  *
937  * inode backreferences may have multiple refs in a single item,
938  * during replay we process one reference at a time, and we don't
939  * want to delete valid links to a file from the subvolume if that
940  * link is also in the log.
941  */
942 static noinline int backref_in_log(struct btrfs_root *log,
943 				   struct btrfs_key *key,
944 				   u64 ref_objectid,
945 				   const char *name, int namelen)
946 {
947 	struct btrfs_path *path;
948 	struct btrfs_inode_ref *ref;
949 	unsigned long ptr;
950 	unsigned long ptr_end;
951 	unsigned long name_ptr;
952 	int found_name_len;
953 	int item_size;
954 	int ret;
955 	int match = 0;
956 
957 	path = btrfs_alloc_path();
958 	if (!path)
959 		return -ENOMEM;
960 
961 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
962 	if (ret != 0)
963 		goto out;
964 
965 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
966 
967 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
968 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
969 						   name, namelen, NULL))
970 			match = 1;
971 
972 		goto out;
973 	}
974 
975 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
976 	ptr_end = ptr + item_size;
977 	while (ptr < ptr_end) {
978 		ref = (struct btrfs_inode_ref *)ptr;
979 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
980 		if (found_name_len == namelen) {
981 			name_ptr = (unsigned long)(ref + 1);
982 			ret = memcmp_extent_buffer(path->nodes[0], name,
983 						   name_ptr, namelen);
984 			if (ret == 0) {
985 				match = 1;
986 				goto out;
987 			}
988 		}
989 		ptr = (unsigned long)(ref + 1) + found_name_len;
990 	}
991 out:
992 	btrfs_free_path(path);
993 	return match;
994 }
995 
996 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
997 				  struct btrfs_root *root,
998 				  struct btrfs_path *path,
999 				  struct btrfs_root *log_root,
1000 				  struct btrfs_inode *dir,
1001 				  struct btrfs_inode *inode,
1002 				  u64 inode_objectid, u64 parent_objectid,
1003 				  u64 ref_index, char *name, int namelen,
1004 				  int *search_done)
1005 {
1006 	struct btrfs_fs_info *fs_info = root->fs_info;
1007 	int ret;
1008 	char *victim_name;
1009 	int victim_name_len;
1010 	struct extent_buffer *leaf;
1011 	struct btrfs_dir_item *di;
1012 	struct btrfs_key search_key;
1013 	struct btrfs_inode_extref *extref;
1014 
1015 again:
1016 	/* Search old style refs */
1017 	search_key.objectid = inode_objectid;
1018 	search_key.type = BTRFS_INODE_REF_KEY;
1019 	search_key.offset = parent_objectid;
1020 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1021 	if (ret == 0) {
1022 		struct btrfs_inode_ref *victim_ref;
1023 		unsigned long ptr;
1024 		unsigned long ptr_end;
1025 
1026 		leaf = path->nodes[0];
1027 
1028 		/* are we trying to overwrite a back ref for the root directory
1029 		 * if so, just jump out, we're done
1030 		 */
1031 		if (search_key.objectid == search_key.offset)
1032 			return 1;
1033 
1034 		/* check all the names in this back reference to see
1035 		 * if they are in the log.  if so, we allow them to stay
1036 		 * otherwise they must be unlinked as a conflict
1037 		 */
1038 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1039 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1040 		while (ptr < ptr_end) {
1041 			victim_ref = (struct btrfs_inode_ref *)ptr;
1042 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1043 								   victim_ref);
1044 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1045 			if (!victim_name)
1046 				return -ENOMEM;
1047 
1048 			read_extent_buffer(leaf, victim_name,
1049 					   (unsigned long)(victim_ref + 1),
1050 					   victim_name_len);
1051 
1052 			if (!backref_in_log(log_root, &search_key,
1053 					    parent_objectid,
1054 					    victim_name,
1055 					    victim_name_len)) {
1056 				inc_nlink(&inode->vfs_inode);
1057 				btrfs_release_path(path);
1058 
1059 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1060 						victim_name, victim_name_len);
1061 				kfree(victim_name);
1062 				if (ret)
1063 					return ret;
1064 				ret = btrfs_run_delayed_items(trans, fs_info);
1065 				if (ret)
1066 					return ret;
1067 				*search_done = 1;
1068 				goto again;
1069 			}
1070 			kfree(victim_name);
1071 
1072 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1073 		}
1074 
1075 		/*
1076 		 * NOTE: we have searched root tree and checked the
1077 		 * corresponding ref, it does not need to check again.
1078 		 */
1079 		*search_done = 1;
1080 	}
1081 	btrfs_release_path(path);
1082 
1083 	/* Same search but for extended refs */
1084 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1085 					   inode_objectid, parent_objectid, 0,
1086 					   0);
1087 	if (!IS_ERR_OR_NULL(extref)) {
1088 		u32 item_size;
1089 		u32 cur_offset = 0;
1090 		unsigned long base;
1091 		struct inode *victim_parent;
1092 
1093 		leaf = path->nodes[0];
1094 
1095 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1096 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1097 
1098 		while (cur_offset < item_size) {
1099 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1100 
1101 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1102 
1103 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1104 				goto next;
1105 
1106 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1107 			if (!victim_name)
1108 				return -ENOMEM;
1109 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1110 					   victim_name_len);
1111 
1112 			search_key.objectid = inode_objectid;
1113 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1114 			search_key.offset = btrfs_extref_hash(parent_objectid,
1115 							      victim_name,
1116 							      victim_name_len);
1117 			ret = 0;
1118 			if (!backref_in_log(log_root, &search_key,
1119 					    parent_objectid, victim_name,
1120 					    victim_name_len)) {
1121 				ret = -ENOENT;
1122 				victim_parent = read_one_inode(root,
1123 						parent_objectid);
1124 				if (victim_parent) {
1125 					inc_nlink(&inode->vfs_inode);
1126 					btrfs_release_path(path);
1127 
1128 					ret = btrfs_unlink_inode(trans, root,
1129 							BTRFS_I(victim_parent),
1130 							inode,
1131 							victim_name,
1132 							victim_name_len);
1133 					if (!ret)
1134 						ret = btrfs_run_delayed_items(
1135 								  trans,
1136 								  fs_info);
1137 				}
1138 				iput(victim_parent);
1139 				kfree(victim_name);
1140 				if (ret)
1141 					return ret;
1142 				*search_done = 1;
1143 				goto again;
1144 			}
1145 			kfree(victim_name);
1146 			if (ret)
1147 				return ret;
1148 next:
1149 			cur_offset += victim_name_len + sizeof(*extref);
1150 		}
1151 		*search_done = 1;
1152 	}
1153 	btrfs_release_path(path);
1154 
1155 	/* look for a conflicting sequence number */
1156 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1157 					 ref_index, name, namelen, 0);
1158 	if (di && !IS_ERR(di)) {
1159 		ret = drop_one_dir_item(trans, root, path, dir, di);
1160 		if (ret)
1161 			return ret;
1162 	}
1163 	btrfs_release_path(path);
1164 
1165 	/* look for a conflicing name */
1166 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1167 				   name, namelen, 0);
1168 	if (di && !IS_ERR(di)) {
1169 		ret = drop_one_dir_item(trans, root, path, dir, di);
1170 		if (ret)
1171 			return ret;
1172 	}
1173 	btrfs_release_path(path);
1174 
1175 	return 0;
1176 }
1177 
1178 static int extref_get_fields(struct extent_buffer *eb, int slot,
1179 			     unsigned long ref_ptr, u32 *namelen, char **name,
1180 			     u64 *index, u64 *parent_objectid)
1181 {
1182 	struct btrfs_inode_extref *extref;
1183 
1184 	extref = (struct btrfs_inode_extref *)ref_ptr;
1185 
1186 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1187 	if (!btrfs_is_name_len_valid(eb, slot, (unsigned long)&extref->name,
1188 				     *namelen))
1189 		return -EIO;
1190 
1191 	*name = kmalloc(*namelen, GFP_NOFS);
1192 	if (*name == NULL)
1193 		return -ENOMEM;
1194 
1195 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1196 			   *namelen);
1197 
1198 	*index = btrfs_inode_extref_index(eb, extref);
1199 	if (parent_objectid)
1200 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1201 
1202 	return 0;
1203 }
1204 
1205 static int ref_get_fields(struct extent_buffer *eb, int slot,
1206 			  unsigned long ref_ptr, u32 *namelen, char **name,
1207 			  u64 *index)
1208 {
1209 	struct btrfs_inode_ref *ref;
1210 
1211 	ref = (struct btrfs_inode_ref *)ref_ptr;
1212 
1213 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1214 	if (!btrfs_is_name_len_valid(eb, slot, (unsigned long)(ref + 1),
1215 				     *namelen))
1216 		return -EIO;
1217 
1218 	*name = kmalloc(*namelen, GFP_NOFS);
1219 	if (*name == NULL)
1220 		return -ENOMEM;
1221 
1222 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1223 
1224 	*index = btrfs_inode_ref_index(eb, ref);
1225 
1226 	return 0;
1227 }
1228 
1229 /*
1230  * replay one inode back reference item found in the log tree.
1231  * eb, slot and key refer to the buffer and key found in the log tree.
1232  * root is the destination we are replaying into, and path is for temp
1233  * use by this function.  (it should be released on return).
1234  */
1235 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1236 				  struct btrfs_root *root,
1237 				  struct btrfs_root *log,
1238 				  struct btrfs_path *path,
1239 				  struct extent_buffer *eb, int slot,
1240 				  struct btrfs_key *key)
1241 {
1242 	struct inode *dir = NULL;
1243 	struct inode *inode = NULL;
1244 	unsigned long ref_ptr;
1245 	unsigned long ref_end;
1246 	char *name = NULL;
1247 	int namelen;
1248 	int ret;
1249 	int search_done = 0;
1250 	int log_ref_ver = 0;
1251 	u64 parent_objectid;
1252 	u64 inode_objectid;
1253 	u64 ref_index = 0;
1254 	int ref_struct_size;
1255 
1256 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1257 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1258 
1259 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1260 		struct btrfs_inode_extref *r;
1261 
1262 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1263 		log_ref_ver = 1;
1264 		r = (struct btrfs_inode_extref *)ref_ptr;
1265 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1266 	} else {
1267 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1268 		parent_objectid = key->offset;
1269 	}
1270 	inode_objectid = key->objectid;
1271 
1272 	/*
1273 	 * it is possible that we didn't log all the parent directories
1274 	 * for a given inode.  If we don't find the dir, just don't
1275 	 * copy the back ref in.  The link count fixup code will take
1276 	 * care of the rest
1277 	 */
1278 	dir = read_one_inode(root, parent_objectid);
1279 	if (!dir) {
1280 		ret = -ENOENT;
1281 		goto out;
1282 	}
1283 
1284 	inode = read_one_inode(root, inode_objectid);
1285 	if (!inode) {
1286 		ret = -EIO;
1287 		goto out;
1288 	}
1289 
1290 	while (ref_ptr < ref_end) {
1291 		if (log_ref_ver) {
1292 			ret = extref_get_fields(eb, slot, ref_ptr, &namelen,
1293 					  &name, &ref_index, &parent_objectid);
1294 			/*
1295 			 * parent object can change from one array
1296 			 * item to another.
1297 			 */
1298 			if (!dir)
1299 				dir = read_one_inode(root, parent_objectid);
1300 			if (!dir) {
1301 				ret = -ENOENT;
1302 				goto out;
1303 			}
1304 		} else {
1305 			ret = ref_get_fields(eb, slot, ref_ptr, &namelen,
1306 					     &name, &ref_index);
1307 		}
1308 		if (ret)
1309 			goto out;
1310 
1311 		/* if we already have a perfect match, we're done */
1312 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1313 					btrfs_ino(BTRFS_I(inode)), ref_index,
1314 					name, namelen)) {
1315 			/*
1316 			 * look for a conflicting back reference in the
1317 			 * metadata. if we find one we have to unlink that name
1318 			 * of the file before we add our new link.  Later on, we
1319 			 * overwrite any existing back reference, and we don't
1320 			 * want to create dangling pointers in the directory.
1321 			 */
1322 
1323 			if (!search_done) {
1324 				ret = __add_inode_ref(trans, root, path, log,
1325 						      BTRFS_I(dir),
1326 						      BTRFS_I(inode),
1327 						      inode_objectid,
1328 						      parent_objectid,
1329 						      ref_index, name, namelen,
1330 						      &search_done);
1331 				if (ret) {
1332 					if (ret == 1)
1333 						ret = 0;
1334 					goto out;
1335 				}
1336 			}
1337 
1338 			/* insert our name */
1339 			ret = btrfs_add_link(trans, BTRFS_I(dir),
1340 					BTRFS_I(inode),
1341 					name, namelen, 0, ref_index);
1342 			if (ret)
1343 				goto out;
1344 
1345 			btrfs_update_inode(trans, root, inode);
1346 		}
1347 
1348 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1349 		kfree(name);
1350 		name = NULL;
1351 		if (log_ref_ver) {
1352 			iput(dir);
1353 			dir = NULL;
1354 		}
1355 	}
1356 
1357 	/* finally write the back reference in the inode */
1358 	ret = overwrite_item(trans, root, path, eb, slot, key);
1359 out:
1360 	btrfs_release_path(path);
1361 	kfree(name);
1362 	iput(dir);
1363 	iput(inode);
1364 	return ret;
1365 }
1366 
1367 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1368 			      struct btrfs_root *root, u64 ino)
1369 {
1370 	int ret;
1371 
1372 	ret = btrfs_insert_orphan_item(trans, root, ino);
1373 	if (ret == -EEXIST)
1374 		ret = 0;
1375 
1376 	return ret;
1377 }
1378 
1379 static int count_inode_extrefs(struct btrfs_root *root,
1380 		struct btrfs_inode *inode, struct btrfs_path *path)
1381 {
1382 	int ret = 0;
1383 	int name_len;
1384 	unsigned int nlink = 0;
1385 	u32 item_size;
1386 	u32 cur_offset = 0;
1387 	u64 inode_objectid = btrfs_ino(inode);
1388 	u64 offset = 0;
1389 	unsigned long ptr;
1390 	struct btrfs_inode_extref *extref;
1391 	struct extent_buffer *leaf;
1392 
1393 	while (1) {
1394 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1395 					    &extref, &offset);
1396 		if (ret)
1397 			break;
1398 
1399 		leaf = path->nodes[0];
1400 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1401 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1402 		cur_offset = 0;
1403 
1404 		while (cur_offset < item_size) {
1405 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1406 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1407 
1408 			nlink++;
1409 
1410 			cur_offset += name_len + sizeof(*extref);
1411 		}
1412 
1413 		offset++;
1414 		btrfs_release_path(path);
1415 	}
1416 	btrfs_release_path(path);
1417 
1418 	if (ret < 0 && ret != -ENOENT)
1419 		return ret;
1420 	return nlink;
1421 }
1422 
1423 static int count_inode_refs(struct btrfs_root *root,
1424 			struct btrfs_inode *inode, struct btrfs_path *path)
1425 {
1426 	int ret;
1427 	struct btrfs_key key;
1428 	unsigned int nlink = 0;
1429 	unsigned long ptr;
1430 	unsigned long ptr_end;
1431 	int name_len;
1432 	u64 ino = btrfs_ino(inode);
1433 
1434 	key.objectid = ino;
1435 	key.type = BTRFS_INODE_REF_KEY;
1436 	key.offset = (u64)-1;
1437 
1438 	while (1) {
1439 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1440 		if (ret < 0)
1441 			break;
1442 		if (ret > 0) {
1443 			if (path->slots[0] == 0)
1444 				break;
1445 			path->slots[0]--;
1446 		}
1447 process_slot:
1448 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1449 				      path->slots[0]);
1450 		if (key.objectid != ino ||
1451 		    key.type != BTRFS_INODE_REF_KEY)
1452 			break;
1453 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1454 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1455 						   path->slots[0]);
1456 		while (ptr < ptr_end) {
1457 			struct btrfs_inode_ref *ref;
1458 
1459 			ref = (struct btrfs_inode_ref *)ptr;
1460 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1461 							    ref);
1462 			ptr = (unsigned long)(ref + 1) + name_len;
1463 			nlink++;
1464 		}
1465 
1466 		if (key.offset == 0)
1467 			break;
1468 		if (path->slots[0] > 0) {
1469 			path->slots[0]--;
1470 			goto process_slot;
1471 		}
1472 		key.offset--;
1473 		btrfs_release_path(path);
1474 	}
1475 	btrfs_release_path(path);
1476 
1477 	return nlink;
1478 }
1479 
1480 /*
1481  * There are a few corners where the link count of the file can't
1482  * be properly maintained during replay.  So, instead of adding
1483  * lots of complexity to the log code, we just scan the backrefs
1484  * for any file that has been through replay.
1485  *
1486  * The scan will update the link count on the inode to reflect the
1487  * number of back refs found.  If it goes down to zero, the iput
1488  * will free the inode.
1489  */
1490 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1491 					   struct btrfs_root *root,
1492 					   struct inode *inode)
1493 {
1494 	struct btrfs_path *path;
1495 	int ret;
1496 	u64 nlink = 0;
1497 	u64 ino = btrfs_ino(BTRFS_I(inode));
1498 
1499 	path = btrfs_alloc_path();
1500 	if (!path)
1501 		return -ENOMEM;
1502 
1503 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1504 	if (ret < 0)
1505 		goto out;
1506 
1507 	nlink = ret;
1508 
1509 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1510 	if (ret < 0)
1511 		goto out;
1512 
1513 	nlink += ret;
1514 
1515 	ret = 0;
1516 
1517 	if (nlink != inode->i_nlink) {
1518 		set_nlink(inode, nlink);
1519 		btrfs_update_inode(trans, root, inode);
1520 	}
1521 	BTRFS_I(inode)->index_cnt = (u64)-1;
1522 
1523 	if (inode->i_nlink == 0) {
1524 		if (S_ISDIR(inode->i_mode)) {
1525 			ret = replay_dir_deletes(trans, root, NULL, path,
1526 						 ino, 1);
1527 			if (ret)
1528 				goto out;
1529 		}
1530 		ret = insert_orphan_item(trans, root, ino);
1531 	}
1532 
1533 out:
1534 	btrfs_free_path(path);
1535 	return ret;
1536 }
1537 
1538 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1539 					    struct btrfs_root *root,
1540 					    struct btrfs_path *path)
1541 {
1542 	int ret;
1543 	struct btrfs_key key;
1544 	struct inode *inode;
1545 
1546 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1547 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1548 	key.offset = (u64)-1;
1549 	while (1) {
1550 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1551 		if (ret < 0)
1552 			break;
1553 
1554 		if (ret == 1) {
1555 			if (path->slots[0] == 0)
1556 				break;
1557 			path->slots[0]--;
1558 		}
1559 
1560 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1561 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1562 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1563 			break;
1564 
1565 		ret = btrfs_del_item(trans, root, path);
1566 		if (ret)
1567 			goto out;
1568 
1569 		btrfs_release_path(path);
1570 		inode = read_one_inode(root, key.offset);
1571 		if (!inode)
1572 			return -EIO;
1573 
1574 		ret = fixup_inode_link_count(trans, root, inode);
1575 		iput(inode);
1576 		if (ret)
1577 			goto out;
1578 
1579 		/*
1580 		 * fixup on a directory may create new entries,
1581 		 * make sure we always look for the highset possible
1582 		 * offset
1583 		 */
1584 		key.offset = (u64)-1;
1585 	}
1586 	ret = 0;
1587 out:
1588 	btrfs_release_path(path);
1589 	return ret;
1590 }
1591 
1592 
1593 /*
1594  * record a given inode in the fixup dir so we can check its link
1595  * count when replay is done.  The link count is incremented here
1596  * so the inode won't go away until we check it
1597  */
1598 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1599 				      struct btrfs_root *root,
1600 				      struct btrfs_path *path,
1601 				      u64 objectid)
1602 {
1603 	struct btrfs_key key;
1604 	int ret = 0;
1605 	struct inode *inode;
1606 
1607 	inode = read_one_inode(root, objectid);
1608 	if (!inode)
1609 		return -EIO;
1610 
1611 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1612 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1613 	key.offset = objectid;
1614 
1615 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1616 
1617 	btrfs_release_path(path);
1618 	if (ret == 0) {
1619 		if (!inode->i_nlink)
1620 			set_nlink(inode, 1);
1621 		else
1622 			inc_nlink(inode);
1623 		ret = btrfs_update_inode(trans, root, inode);
1624 	} else if (ret == -EEXIST) {
1625 		ret = 0;
1626 	} else {
1627 		BUG(); /* Logic Error */
1628 	}
1629 	iput(inode);
1630 
1631 	return ret;
1632 }
1633 
1634 /*
1635  * when replaying the log for a directory, we only insert names
1636  * for inodes that actually exist.  This means an fsync on a directory
1637  * does not implicitly fsync all the new files in it
1638  */
1639 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1640 				    struct btrfs_root *root,
1641 				    u64 dirid, u64 index,
1642 				    char *name, int name_len,
1643 				    struct btrfs_key *location)
1644 {
1645 	struct inode *inode;
1646 	struct inode *dir;
1647 	int ret;
1648 
1649 	inode = read_one_inode(root, location->objectid);
1650 	if (!inode)
1651 		return -ENOENT;
1652 
1653 	dir = read_one_inode(root, dirid);
1654 	if (!dir) {
1655 		iput(inode);
1656 		return -EIO;
1657 	}
1658 
1659 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1660 			name_len, 1, index);
1661 
1662 	/* FIXME, put inode into FIXUP list */
1663 
1664 	iput(inode);
1665 	iput(dir);
1666 	return ret;
1667 }
1668 
1669 /*
1670  * Return true if an inode reference exists in the log for the given name,
1671  * inode and parent inode.
1672  */
1673 static bool name_in_log_ref(struct btrfs_root *log_root,
1674 			    const char *name, const int name_len,
1675 			    const u64 dirid, const u64 ino)
1676 {
1677 	struct btrfs_key search_key;
1678 
1679 	search_key.objectid = ino;
1680 	search_key.type = BTRFS_INODE_REF_KEY;
1681 	search_key.offset = dirid;
1682 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1683 		return true;
1684 
1685 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1686 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1687 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1688 		return true;
1689 
1690 	return false;
1691 }
1692 
1693 /*
1694  * take a single entry in a log directory item and replay it into
1695  * the subvolume.
1696  *
1697  * if a conflicting item exists in the subdirectory already,
1698  * the inode it points to is unlinked and put into the link count
1699  * fix up tree.
1700  *
1701  * If a name from the log points to a file or directory that does
1702  * not exist in the FS, it is skipped.  fsyncs on directories
1703  * do not force down inodes inside that directory, just changes to the
1704  * names or unlinks in a directory.
1705  *
1706  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1707  * non-existing inode) and 1 if the name was replayed.
1708  */
1709 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1710 				    struct btrfs_root *root,
1711 				    struct btrfs_path *path,
1712 				    struct extent_buffer *eb,
1713 				    struct btrfs_dir_item *di,
1714 				    struct btrfs_key *key)
1715 {
1716 	char *name;
1717 	int name_len;
1718 	struct btrfs_dir_item *dst_di;
1719 	struct btrfs_key found_key;
1720 	struct btrfs_key log_key;
1721 	struct inode *dir;
1722 	u8 log_type;
1723 	int exists;
1724 	int ret = 0;
1725 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1726 	bool name_added = false;
1727 
1728 	dir = read_one_inode(root, key->objectid);
1729 	if (!dir)
1730 		return -EIO;
1731 
1732 	name_len = btrfs_dir_name_len(eb, di);
1733 	name = kmalloc(name_len, GFP_NOFS);
1734 	if (!name) {
1735 		ret = -ENOMEM;
1736 		goto out;
1737 	}
1738 
1739 	log_type = btrfs_dir_type(eb, di);
1740 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1741 		   name_len);
1742 
1743 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1744 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1745 	if (exists == 0)
1746 		exists = 1;
1747 	else
1748 		exists = 0;
1749 	btrfs_release_path(path);
1750 
1751 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1752 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1753 				       name, name_len, 1);
1754 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1755 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1756 						     key->objectid,
1757 						     key->offset, name,
1758 						     name_len, 1);
1759 	} else {
1760 		/* Corruption */
1761 		ret = -EINVAL;
1762 		goto out;
1763 	}
1764 	if (IS_ERR_OR_NULL(dst_di)) {
1765 		/* we need a sequence number to insert, so we only
1766 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1767 		 */
1768 		if (key->type != BTRFS_DIR_INDEX_KEY)
1769 			goto out;
1770 		goto insert;
1771 	}
1772 
1773 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1774 	/* the existing item matches the logged item */
1775 	if (found_key.objectid == log_key.objectid &&
1776 	    found_key.type == log_key.type &&
1777 	    found_key.offset == log_key.offset &&
1778 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1779 		update_size = false;
1780 		goto out;
1781 	}
1782 
1783 	/*
1784 	 * don't drop the conflicting directory entry if the inode
1785 	 * for the new entry doesn't exist
1786 	 */
1787 	if (!exists)
1788 		goto out;
1789 
1790 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1791 	if (ret)
1792 		goto out;
1793 
1794 	if (key->type == BTRFS_DIR_INDEX_KEY)
1795 		goto insert;
1796 out:
1797 	btrfs_release_path(path);
1798 	if (!ret && update_size) {
1799 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1800 		ret = btrfs_update_inode(trans, root, dir);
1801 	}
1802 	kfree(name);
1803 	iput(dir);
1804 	if (!ret && name_added)
1805 		ret = 1;
1806 	return ret;
1807 
1808 insert:
1809 	if (name_in_log_ref(root->log_root, name, name_len,
1810 			    key->objectid, log_key.objectid)) {
1811 		/* The dentry will be added later. */
1812 		ret = 0;
1813 		update_size = false;
1814 		goto out;
1815 	}
1816 	btrfs_release_path(path);
1817 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1818 			      name, name_len, &log_key);
1819 	if (ret && ret != -ENOENT && ret != -EEXIST)
1820 		goto out;
1821 	if (!ret)
1822 		name_added = true;
1823 	update_size = false;
1824 	ret = 0;
1825 	goto out;
1826 }
1827 
1828 /*
1829  * find all the names in a directory item and reconcile them into
1830  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1831  * one name in a directory item, but the same code gets used for
1832  * both directory index types
1833  */
1834 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1835 					struct btrfs_root *root,
1836 					struct btrfs_path *path,
1837 					struct extent_buffer *eb, int slot,
1838 					struct btrfs_key *key)
1839 {
1840 	struct btrfs_fs_info *fs_info = root->fs_info;
1841 	int ret = 0;
1842 	u32 item_size = btrfs_item_size_nr(eb, slot);
1843 	struct btrfs_dir_item *di;
1844 	int name_len;
1845 	unsigned long ptr;
1846 	unsigned long ptr_end;
1847 	struct btrfs_path *fixup_path = NULL;
1848 
1849 	ptr = btrfs_item_ptr_offset(eb, slot);
1850 	ptr_end = ptr + item_size;
1851 	while (ptr < ptr_end) {
1852 		di = (struct btrfs_dir_item *)ptr;
1853 		if (verify_dir_item(fs_info, eb, slot, di))
1854 			return -EIO;
1855 		name_len = btrfs_dir_name_len(eb, di);
1856 		ret = replay_one_name(trans, root, path, eb, di, key);
1857 		if (ret < 0)
1858 			break;
1859 		ptr = (unsigned long)(di + 1);
1860 		ptr += name_len;
1861 
1862 		/*
1863 		 * If this entry refers to a non-directory (directories can not
1864 		 * have a link count > 1) and it was added in the transaction
1865 		 * that was not committed, make sure we fixup the link count of
1866 		 * the inode it the entry points to. Otherwise something like
1867 		 * the following would result in a directory pointing to an
1868 		 * inode with a wrong link that does not account for this dir
1869 		 * entry:
1870 		 *
1871 		 * mkdir testdir
1872 		 * touch testdir/foo
1873 		 * touch testdir/bar
1874 		 * sync
1875 		 *
1876 		 * ln testdir/bar testdir/bar_link
1877 		 * ln testdir/foo testdir/foo_link
1878 		 * xfs_io -c "fsync" testdir/bar
1879 		 *
1880 		 * <power failure>
1881 		 *
1882 		 * mount fs, log replay happens
1883 		 *
1884 		 * File foo would remain with a link count of 1 when it has two
1885 		 * entries pointing to it in the directory testdir. This would
1886 		 * make it impossible to ever delete the parent directory has
1887 		 * it would result in stale dentries that can never be deleted.
1888 		 */
1889 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1890 			struct btrfs_key di_key;
1891 
1892 			if (!fixup_path) {
1893 				fixup_path = btrfs_alloc_path();
1894 				if (!fixup_path) {
1895 					ret = -ENOMEM;
1896 					break;
1897 				}
1898 			}
1899 
1900 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1901 			ret = link_to_fixup_dir(trans, root, fixup_path,
1902 						di_key.objectid);
1903 			if (ret)
1904 				break;
1905 		}
1906 		ret = 0;
1907 	}
1908 	btrfs_free_path(fixup_path);
1909 	return ret;
1910 }
1911 
1912 /*
1913  * directory replay has two parts.  There are the standard directory
1914  * items in the log copied from the subvolume, and range items
1915  * created in the log while the subvolume was logged.
1916  *
1917  * The range items tell us which parts of the key space the log
1918  * is authoritative for.  During replay, if a key in the subvolume
1919  * directory is in a logged range item, but not actually in the log
1920  * that means it was deleted from the directory before the fsync
1921  * and should be removed.
1922  */
1923 static noinline int find_dir_range(struct btrfs_root *root,
1924 				   struct btrfs_path *path,
1925 				   u64 dirid, int key_type,
1926 				   u64 *start_ret, u64 *end_ret)
1927 {
1928 	struct btrfs_key key;
1929 	u64 found_end;
1930 	struct btrfs_dir_log_item *item;
1931 	int ret;
1932 	int nritems;
1933 
1934 	if (*start_ret == (u64)-1)
1935 		return 1;
1936 
1937 	key.objectid = dirid;
1938 	key.type = key_type;
1939 	key.offset = *start_ret;
1940 
1941 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1942 	if (ret < 0)
1943 		goto out;
1944 	if (ret > 0) {
1945 		if (path->slots[0] == 0)
1946 			goto out;
1947 		path->slots[0]--;
1948 	}
1949 	if (ret != 0)
1950 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1951 
1952 	if (key.type != key_type || key.objectid != dirid) {
1953 		ret = 1;
1954 		goto next;
1955 	}
1956 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1957 			      struct btrfs_dir_log_item);
1958 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1959 
1960 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1961 		ret = 0;
1962 		*start_ret = key.offset;
1963 		*end_ret = found_end;
1964 		goto out;
1965 	}
1966 	ret = 1;
1967 next:
1968 	/* check the next slot in the tree to see if it is a valid item */
1969 	nritems = btrfs_header_nritems(path->nodes[0]);
1970 	path->slots[0]++;
1971 	if (path->slots[0] >= nritems) {
1972 		ret = btrfs_next_leaf(root, path);
1973 		if (ret)
1974 			goto out;
1975 	}
1976 
1977 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1978 
1979 	if (key.type != key_type || key.objectid != dirid) {
1980 		ret = 1;
1981 		goto out;
1982 	}
1983 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1984 			      struct btrfs_dir_log_item);
1985 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1986 	*start_ret = key.offset;
1987 	*end_ret = found_end;
1988 	ret = 0;
1989 out:
1990 	btrfs_release_path(path);
1991 	return ret;
1992 }
1993 
1994 /*
1995  * this looks for a given directory item in the log.  If the directory
1996  * item is not in the log, the item is removed and the inode it points
1997  * to is unlinked
1998  */
1999 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2000 				      struct btrfs_root *root,
2001 				      struct btrfs_root *log,
2002 				      struct btrfs_path *path,
2003 				      struct btrfs_path *log_path,
2004 				      struct inode *dir,
2005 				      struct btrfs_key *dir_key)
2006 {
2007 	struct btrfs_fs_info *fs_info = root->fs_info;
2008 	int ret;
2009 	struct extent_buffer *eb;
2010 	int slot;
2011 	u32 item_size;
2012 	struct btrfs_dir_item *di;
2013 	struct btrfs_dir_item *log_di;
2014 	int name_len;
2015 	unsigned long ptr;
2016 	unsigned long ptr_end;
2017 	char *name;
2018 	struct inode *inode;
2019 	struct btrfs_key location;
2020 
2021 again:
2022 	eb = path->nodes[0];
2023 	slot = path->slots[0];
2024 	item_size = btrfs_item_size_nr(eb, slot);
2025 	ptr = btrfs_item_ptr_offset(eb, slot);
2026 	ptr_end = ptr + item_size;
2027 	while (ptr < ptr_end) {
2028 		di = (struct btrfs_dir_item *)ptr;
2029 		if (verify_dir_item(fs_info, eb, slot, di)) {
2030 			ret = -EIO;
2031 			goto out;
2032 		}
2033 
2034 		name_len = btrfs_dir_name_len(eb, di);
2035 		name = kmalloc(name_len, GFP_NOFS);
2036 		if (!name) {
2037 			ret = -ENOMEM;
2038 			goto out;
2039 		}
2040 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2041 				  name_len);
2042 		log_di = NULL;
2043 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2044 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2045 						       dir_key->objectid,
2046 						       name, name_len, 0);
2047 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2048 			log_di = btrfs_lookup_dir_index_item(trans, log,
2049 						     log_path,
2050 						     dir_key->objectid,
2051 						     dir_key->offset,
2052 						     name, name_len, 0);
2053 		}
2054 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2055 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2056 			btrfs_release_path(path);
2057 			btrfs_release_path(log_path);
2058 			inode = read_one_inode(root, location.objectid);
2059 			if (!inode) {
2060 				kfree(name);
2061 				return -EIO;
2062 			}
2063 
2064 			ret = link_to_fixup_dir(trans, root,
2065 						path, location.objectid);
2066 			if (ret) {
2067 				kfree(name);
2068 				iput(inode);
2069 				goto out;
2070 			}
2071 
2072 			inc_nlink(inode);
2073 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2074 					BTRFS_I(inode), name, name_len);
2075 			if (!ret)
2076 				ret = btrfs_run_delayed_items(trans, fs_info);
2077 			kfree(name);
2078 			iput(inode);
2079 			if (ret)
2080 				goto out;
2081 
2082 			/* there might still be more names under this key
2083 			 * check and repeat if required
2084 			 */
2085 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2086 						0, 0);
2087 			if (ret == 0)
2088 				goto again;
2089 			ret = 0;
2090 			goto out;
2091 		} else if (IS_ERR(log_di)) {
2092 			kfree(name);
2093 			return PTR_ERR(log_di);
2094 		}
2095 		btrfs_release_path(log_path);
2096 		kfree(name);
2097 
2098 		ptr = (unsigned long)(di + 1);
2099 		ptr += name_len;
2100 	}
2101 	ret = 0;
2102 out:
2103 	btrfs_release_path(path);
2104 	btrfs_release_path(log_path);
2105 	return ret;
2106 }
2107 
2108 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2109 			      struct btrfs_root *root,
2110 			      struct btrfs_root *log,
2111 			      struct btrfs_path *path,
2112 			      const u64 ino)
2113 {
2114 	struct btrfs_fs_info *fs_info = root->fs_info;
2115 	struct btrfs_key search_key;
2116 	struct btrfs_path *log_path;
2117 	int i;
2118 	int nritems;
2119 	int ret;
2120 
2121 	log_path = btrfs_alloc_path();
2122 	if (!log_path)
2123 		return -ENOMEM;
2124 
2125 	search_key.objectid = ino;
2126 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2127 	search_key.offset = 0;
2128 again:
2129 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2130 	if (ret < 0)
2131 		goto out;
2132 process_leaf:
2133 	nritems = btrfs_header_nritems(path->nodes[0]);
2134 	for (i = path->slots[0]; i < nritems; i++) {
2135 		struct btrfs_key key;
2136 		struct btrfs_dir_item *di;
2137 		struct btrfs_dir_item *log_di;
2138 		u32 total_size;
2139 		u32 cur;
2140 
2141 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2142 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2143 			ret = 0;
2144 			goto out;
2145 		}
2146 
2147 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2148 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2149 		cur = 0;
2150 		while (cur < total_size) {
2151 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2152 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2153 			u32 this_len = sizeof(*di) + name_len + data_len;
2154 			char *name;
2155 
2156 			ret = verify_dir_item(fs_info, path->nodes[0], i, di);
2157 			if (ret) {
2158 				ret = -EIO;
2159 				goto out;
2160 			}
2161 			name = kmalloc(name_len, GFP_NOFS);
2162 			if (!name) {
2163 				ret = -ENOMEM;
2164 				goto out;
2165 			}
2166 			read_extent_buffer(path->nodes[0], name,
2167 					   (unsigned long)(di + 1), name_len);
2168 
2169 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2170 						    name, name_len, 0);
2171 			btrfs_release_path(log_path);
2172 			if (!log_di) {
2173 				/* Doesn't exist in log tree, so delete it. */
2174 				btrfs_release_path(path);
2175 				di = btrfs_lookup_xattr(trans, root, path, ino,
2176 							name, name_len, -1);
2177 				kfree(name);
2178 				if (IS_ERR(di)) {
2179 					ret = PTR_ERR(di);
2180 					goto out;
2181 				}
2182 				ASSERT(di);
2183 				ret = btrfs_delete_one_dir_name(trans, root,
2184 								path, di);
2185 				if (ret)
2186 					goto out;
2187 				btrfs_release_path(path);
2188 				search_key = key;
2189 				goto again;
2190 			}
2191 			kfree(name);
2192 			if (IS_ERR(log_di)) {
2193 				ret = PTR_ERR(log_di);
2194 				goto out;
2195 			}
2196 			cur += this_len;
2197 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2198 		}
2199 	}
2200 	ret = btrfs_next_leaf(root, path);
2201 	if (ret > 0)
2202 		ret = 0;
2203 	else if (ret == 0)
2204 		goto process_leaf;
2205 out:
2206 	btrfs_free_path(log_path);
2207 	btrfs_release_path(path);
2208 	return ret;
2209 }
2210 
2211 
2212 /*
2213  * deletion replay happens before we copy any new directory items
2214  * out of the log or out of backreferences from inodes.  It
2215  * scans the log to find ranges of keys that log is authoritative for,
2216  * and then scans the directory to find items in those ranges that are
2217  * not present in the log.
2218  *
2219  * Anything we don't find in the log is unlinked and removed from the
2220  * directory.
2221  */
2222 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2223 				       struct btrfs_root *root,
2224 				       struct btrfs_root *log,
2225 				       struct btrfs_path *path,
2226 				       u64 dirid, int del_all)
2227 {
2228 	u64 range_start;
2229 	u64 range_end;
2230 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2231 	int ret = 0;
2232 	struct btrfs_key dir_key;
2233 	struct btrfs_key found_key;
2234 	struct btrfs_path *log_path;
2235 	struct inode *dir;
2236 
2237 	dir_key.objectid = dirid;
2238 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2239 	log_path = btrfs_alloc_path();
2240 	if (!log_path)
2241 		return -ENOMEM;
2242 
2243 	dir = read_one_inode(root, dirid);
2244 	/* it isn't an error if the inode isn't there, that can happen
2245 	 * because we replay the deletes before we copy in the inode item
2246 	 * from the log
2247 	 */
2248 	if (!dir) {
2249 		btrfs_free_path(log_path);
2250 		return 0;
2251 	}
2252 again:
2253 	range_start = 0;
2254 	range_end = 0;
2255 	while (1) {
2256 		if (del_all)
2257 			range_end = (u64)-1;
2258 		else {
2259 			ret = find_dir_range(log, path, dirid, key_type,
2260 					     &range_start, &range_end);
2261 			if (ret != 0)
2262 				break;
2263 		}
2264 
2265 		dir_key.offset = range_start;
2266 		while (1) {
2267 			int nritems;
2268 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2269 						0, 0);
2270 			if (ret < 0)
2271 				goto out;
2272 
2273 			nritems = btrfs_header_nritems(path->nodes[0]);
2274 			if (path->slots[0] >= nritems) {
2275 				ret = btrfs_next_leaf(root, path);
2276 				if (ret)
2277 					break;
2278 			}
2279 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2280 					      path->slots[0]);
2281 			if (found_key.objectid != dirid ||
2282 			    found_key.type != dir_key.type)
2283 				goto next_type;
2284 
2285 			if (found_key.offset > range_end)
2286 				break;
2287 
2288 			ret = check_item_in_log(trans, root, log, path,
2289 						log_path, dir,
2290 						&found_key);
2291 			if (ret)
2292 				goto out;
2293 			if (found_key.offset == (u64)-1)
2294 				break;
2295 			dir_key.offset = found_key.offset + 1;
2296 		}
2297 		btrfs_release_path(path);
2298 		if (range_end == (u64)-1)
2299 			break;
2300 		range_start = range_end + 1;
2301 	}
2302 
2303 next_type:
2304 	ret = 0;
2305 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2306 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2307 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2308 		btrfs_release_path(path);
2309 		goto again;
2310 	}
2311 out:
2312 	btrfs_release_path(path);
2313 	btrfs_free_path(log_path);
2314 	iput(dir);
2315 	return ret;
2316 }
2317 
2318 /*
2319  * the process_func used to replay items from the log tree.  This
2320  * gets called in two different stages.  The first stage just looks
2321  * for inodes and makes sure they are all copied into the subvolume.
2322  *
2323  * The second stage copies all the other item types from the log into
2324  * the subvolume.  The two stage approach is slower, but gets rid of
2325  * lots of complexity around inodes referencing other inodes that exist
2326  * only in the log (references come from either directory items or inode
2327  * back refs).
2328  */
2329 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2330 			     struct walk_control *wc, u64 gen)
2331 {
2332 	int nritems;
2333 	struct btrfs_path *path;
2334 	struct btrfs_root *root = wc->replay_dest;
2335 	struct btrfs_key key;
2336 	int level;
2337 	int i;
2338 	int ret;
2339 
2340 	ret = btrfs_read_buffer(eb, gen);
2341 	if (ret)
2342 		return ret;
2343 
2344 	level = btrfs_header_level(eb);
2345 
2346 	if (level != 0)
2347 		return 0;
2348 
2349 	path = btrfs_alloc_path();
2350 	if (!path)
2351 		return -ENOMEM;
2352 
2353 	nritems = btrfs_header_nritems(eb);
2354 	for (i = 0; i < nritems; i++) {
2355 		btrfs_item_key_to_cpu(eb, &key, i);
2356 
2357 		/* inode keys are done during the first stage */
2358 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2359 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2360 			struct btrfs_inode_item *inode_item;
2361 			u32 mode;
2362 
2363 			inode_item = btrfs_item_ptr(eb, i,
2364 					    struct btrfs_inode_item);
2365 			ret = replay_xattr_deletes(wc->trans, root, log,
2366 						   path, key.objectid);
2367 			if (ret)
2368 				break;
2369 			mode = btrfs_inode_mode(eb, inode_item);
2370 			if (S_ISDIR(mode)) {
2371 				ret = replay_dir_deletes(wc->trans,
2372 					 root, log, path, key.objectid, 0);
2373 				if (ret)
2374 					break;
2375 			}
2376 			ret = overwrite_item(wc->trans, root, path,
2377 					     eb, i, &key);
2378 			if (ret)
2379 				break;
2380 
2381 			/* for regular files, make sure corresponding
2382 			 * orphan item exist. extents past the new EOF
2383 			 * will be truncated later by orphan cleanup.
2384 			 */
2385 			if (S_ISREG(mode)) {
2386 				ret = insert_orphan_item(wc->trans, root,
2387 							 key.objectid);
2388 				if (ret)
2389 					break;
2390 			}
2391 
2392 			ret = link_to_fixup_dir(wc->trans, root,
2393 						path, key.objectid);
2394 			if (ret)
2395 				break;
2396 		}
2397 
2398 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2399 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2400 			ret = replay_one_dir_item(wc->trans, root, path,
2401 						  eb, i, &key);
2402 			if (ret)
2403 				break;
2404 		}
2405 
2406 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2407 			continue;
2408 
2409 		/* these keys are simply copied */
2410 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2411 			ret = overwrite_item(wc->trans, root, path,
2412 					     eb, i, &key);
2413 			if (ret)
2414 				break;
2415 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2416 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2417 			ret = add_inode_ref(wc->trans, root, log, path,
2418 					    eb, i, &key);
2419 			if (ret && ret != -ENOENT)
2420 				break;
2421 			ret = 0;
2422 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2423 			ret = replay_one_extent(wc->trans, root, path,
2424 						eb, i, &key);
2425 			if (ret)
2426 				break;
2427 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2428 			ret = replay_one_dir_item(wc->trans, root, path,
2429 						  eb, i, &key);
2430 			if (ret)
2431 				break;
2432 		}
2433 	}
2434 	btrfs_free_path(path);
2435 	return ret;
2436 }
2437 
2438 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2439 				   struct btrfs_root *root,
2440 				   struct btrfs_path *path, int *level,
2441 				   struct walk_control *wc)
2442 {
2443 	struct btrfs_fs_info *fs_info = root->fs_info;
2444 	u64 root_owner;
2445 	u64 bytenr;
2446 	u64 ptr_gen;
2447 	struct extent_buffer *next;
2448 	struct extent_buffer *cur;
2449 	struct extent_buffer *parent;
2450 	u32 blocksize;
2451 	int ret = 0;
2452 
2453 	WARN_ON(*level < 0);
2454 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2455 
2456 	while (*level > 0) {
2457 		WARN_ON(*level < 0);
2458 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2459 		cur = path->nodes[*level];
2460 
2461 		WARN_ON(btrfs_header_level(cur) != *level);
2462 
2463 		if (path->slots[*level] >=
2464 		    btrfs_header_nritems(cur))
2465 			break;
2466 
2467 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2468 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2469 		blocksize = fs_info->nodesize;
2470 
2471 		parent = path->nodes[*level];
2472 		root_owner = btrfs_header_owner(parent);
2473 
2474 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2475 		if (IS_ERR(next))
2476 			return PTR_ERR(next);
2477 
2478 		if (*level == 1) {
2479 			ret = wc->process_func(root, next, wc, ptr_gen);
2480 			if (ret) {
2481 				free_extent_buffer(next);
2482 				return ret;
2483 			}
2484 
2485 			path->slots[*level]++;
2486 			if (wc->free) {
2487 				ret = btrfs_read_buffer(next, ptr_gen);
2488 				if (ret) {
2489 					free_extent_buffer(next);
2490 					return ret;
2491 				}
2492 
2493 				if (trans) {
2494 					btrfs_tree_lock(next);
2495 					btrfs_set_lock_blocking(next);
2496 					clean_tree_block(fs_info, next);
2497 					btrfs_wait_tree_block_writeback(next);
2498 					btrfs_tree_unlock(next);
2499 				}
2500 
2501 				WARN_ON(root_owner !=
2502 					BTRFS_TREE_LOG_OBJECTID);
2503 				ret = btrfs_free_and_pin_reserved_extent(
2504 							fs_info, bytenr,
2505 							blocksize);
2506 				if (ret) {
2507 					free_extent_buffer(next);
2508 					return ret;
2509 				}
2510 			}
2511 			free_extent_buffer(next);
2512 			continue;
2513 		}
2514 		ret = btrfs_read_buffer(next, ptr_gen);
2515 		if (ret) {
2516 			free_extent_buffer(next);
2517 			return ret;
2518 		}
2519 
2520 		WARN_ON(*level <= 0);
2521 		if (path->nodes[*level-1])
2522 			free_extent_buffer(path->nodes[*level-1]);
2523 		path->nodes[*level-1] = next;
2524 		*level = btrfs_header_level(next);
2525 		path->slots[*level] = 0;
2526 		cond_resched();
2527 	}
2528 	WARN_ON(*level < 0);
2529 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2530 
2531 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2532 
2533 	cond_resched();
2534 	return 0;
2535 }
2536 
2537 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2538 				 struct btrfs_root *root,
2539 				 struct btrfs_path *path, int *level,
2540 				 struct walk_control *wc)
2541 {
2542 	struct btrfs_fs_info *fs_info = root->fs_info;
2543 	u64 root_owner;
2544 	int i;
2545 	int slot;
2546 	int ret;
2547 
2548 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2549 		slot = path->slots[i];
2550 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2551 			path->slots[i]++;
2552 			*level = i;
2553 			WARN_ON(*level == 0);
2554 			return 0;
2555 		} else {
2556 			struct extent_buffer *parent;
2557 			if (path->nodes[*level] == root->node)
2558 				parent = path->nodes[*level];
2559 			else
2560 				parent = path->nodes[*level + 1];
2561 
2562 			root_owner = btrfs_header_owner(parent);
2563 			ret = wc->process_func(root, path->nodes[*level], wc,
2564 				 btrfs_header_generation(path->nodes[*level]));
2565 			if (ret)
2566 				return ret;
2567 
2568 			if (wc->free) {
2569 				struct extent_buffer *next;
2570 
2571 				next = path->nodes[*level];
2572 
2573 				if (trans) {
2574 					btrfs_tree_lock(next);
2575 					btrfs_set_lock_blocking(next);
2576 					clean_tree_block(fs_info, next);
2577 					btrfs_wait_tree_block_writeback(next);
2578 					btrfs_tree_unlock(next);
2579 				}
2580 
2581 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2582 				ret = btrfs_free_and_pin_reserved_extent(
2583 						fs_info,
2584 						path->nodes[*level]->start,
2585 						path->nodes[*level]->len);
2586 				if (ret)
2587 					return ret;
2588 			}
2589 			free_extent_buffer(path->nodes[*level]);
2590 			path->nodes[*level] = NULL;
2591 			*level = i + 1;
2592 		}
2593 	}
2594 	return 1;
2595 }
2596 
2597 /*
2598  * drop the reference count on the tree rooted at 'snap'.  This traverses
2599  * the tree freeing any blocks that have a ref count of zero after being
2600  * decremented.
2601  */
2602 static int walk_log_tree(struct btrfs_trans_handle *trans,
2603 			 struct btrfs_root *log, struct walk_control *wc)
2604 {
2605 	struct btrfs_fs_info *fs_info = log->fs_info;
2606 	int ret = 0;
2607 	int wret;
2608 	int level;
2609 	struct btrfs_path *path;
2610 	int orig_level;
2611 
2612 	path = btrfs_alloc_path();
2613 	if (!path)
2614 		return -ENOMEM;
2615 
2616 	level = btrfs_header_level(log->node);
2617 	orig_level = level;
2618 	path->nodes[level] = log->node;
2619 	extent_buffer_get(log->node);
2620 	path->slots[level] = 0;
2621 
2622 	while (1) {
2623 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2624 		if (wret > 0)
2625 			break;
2626 		if (wret < 0) {
2627 			ret = wret;
2628 			goto out;
2629 		}
2630 
2631 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2632 		if (wret > 0)
2633 			break;
2634 		if (wret < 0) {
2635 			ret = wret;
2636 			goto out;
2637 		}
2638 	}
2639 
2640 	/* was the root node processed? if not, catch it here */
2641 	if (path->nodes[orig_level]) {
2642 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2643 			 btrfs_header_generation(path->nodes[orig_level]));
2644 		if (ret)
2645 			goto out;
2646 		if (wc->free) {
2647 			struct extent_buffer *next;
2648 
2649 			next = path->nodes[orig_level];
2650 
2651 			if (trans) {
2652 				btrfs_tree_lock(next);
2653 				btrfs_set_lock_blocking(next);
2654 				clean_tree_block(fs_info, next);
2655 				btrfs_wait_tree_block_writeback(next);
2656 				btrfs_tree_unlock(next);
2657 			}
2658 
2659 			WARN_ON(log->root_key.objectid !=
2660 				BTRFS_TREE_LOG_OBJECTID);
2661 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2662 							next->start, next->len);
2663 			if (ret)
2664 				goto out;
2665 		}
2666 	}
2667 
2668 out:
2669 	btrfs_free_path(path);
2670 	return ret;
2671 }
2672 
2673 /*
2674  * helper function to update the item for a given subvolumes log root
2675  * in the tree of log roots
2676  */
2677 static int update_log_root(struct btrfs_trans_handle *trans,
2678 			   struct btrfs_root *log)
2679 {
2680 	struct btrfs_fs_info *fs_info = log->fs_info;
2681 	int ret;
2682 
2683 	if (log->log_transid == 1) {
2684 		/* insert root item on the first sync */
2685 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2686 				&log->root_key, &log->root_item);
2687 	} else {
2688 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2689 				&log->root_key, &log->root_item);
2690 	}
2691 	return ret;
2692 }
2693 
2694 static void wait_log_commit(struct btrfs_root *root, int transid)
2695 {
2696 	DEFINE_WAIT(wait);
2697 	int index = transid % 2;
2698 
2699 	/*
2700 	 * we only allow two pending log transactions at a time,
2701 	 * so we know that if ours is more than 2 older than the
2702 	 * current transaction, we're done
2703 	 */
2704 	do {
2705 		prepare_to_wait(&root->log_commit_wait[index],
2706 				&wait, TASK_UNINTERRUPTIBLE);
2707 		mutex_unlock(&root->log_mutex);
2708 
2709 		if (root->log_transid_committed < transid &&
2710 		    atomic_read(&root->log_commit[index]))
2711 			schedule();
2712 
2713 		finish_wait(&root->log_commit_wait[index], &wait);
2714 		mutex_lock(&root->log_mutex);
2715 	} while (root->log_transid_committed < transid &&
2716 		 atomic_read(&root->log_commit[index]));
2717 }
2718 
2719 static void wait_for_writer(struct btrfs_root *root)
2720 {
2721 	DEFINE_WAIT(wait);
2722 
2723 	while (atomic_read(&root->log_writers)) {
2724 		prepare_to_wait(&root->log_writer_wait,
2725 				&wait, TASK_UNINTERRUPTIBLE);
2726 		mutex_unlock(&root->log_mutex);
2727 		if (atomic_read(&root->log_writers))
2728 			schedule();
2729 		finish_wait(&root->log_writer_wait, &wait);
2730 		mutex_lock(&root->log_mutex);
2731 	}
2732 }
2733 
2734 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2735 					struct btrfs_log_ctx *ctx)
2736 {
2737 	if (!ctx)
2738 		return;
2739 
2740 	mutex_lock(&root->log_mutex);
2741 	list_del_init(&ctx->list);
2742 	mutex_unlock(&root->log_mutex);
2743 }
2744 
2745 /*
2746  * Invoked in log mutex context, or be sure there is no other task which
2747  * can access the list.
2748  */
2749 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2750 					     int index, int error)
2751 {
2752 	struct btrfs_log_ctx *ctx;
2753 	struct btrfs_log_ctx *safe;
2754 
2755 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2756 		list_del_init(&ctx->list);
2757 		ctx->log_ret = error;
2758 	}
2759 
2760 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2761 }
2762 
2763 /*
2764  * btrfs_sync_log does sends a given tree log down to the disk and
2765  * updates the super blocks to record it.  When this call is done,
2766  * you know that any inodes previously logged are safely on disk only
2767  * if it returns 0.
2768  *
2769  * Any other return value means you need to call btrfs_commit_transaction.
2770  * Some of the edge cases for fsyncing directories that have had unlinks
2771  * or renames done in the past mean that sometimes the only safe
2772  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2773  * that has happened.
2774  */
2775 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2776 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2777 {
2778 	int index1;
2779 	int index2;
2780 	int mark;
2781 	int ret;
2782 	struct btrfs_fs_info *fs_info = root->fs_info;
2783 	struct btrfs_root *log = root->log_root;
2784 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2785 	int log_transid = 0;
2786 	struct btrfs_log_ctx root_log_ctx;
2787 	struct blk_plug plug;
2788 
2789 	mutex_lock(&root->log_mutex);
2790 	log_transid = ctx->log_transid;
2791 	if (root->log_transid_committed >= log_transid) {
2792 		mutex_unlock(&root->log_mutex);
2793 		return ctx->log_ret;
2794 	}
2795 
2796 	index1 = log_transid % 2;
2797 	if (atomic_read(&root->log_commit[index1])) {
2798 		wait_log_commit(root, log_transid);
2799 		mutex_unlock(&root->log_mutex);
2800 		return ctx->log_ret;
2801 	}
2802 	ASSERT(log_transid == root->log_transid);
2803 	atomic_set(&root->log_commit[index1], 1);
2804 
2805 	/* wait for previous tree log sync to complete */
2806 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2807 		wait_log_commit(root, log_transid - 1);
2808 
2809 	while (1) {
2810 		int batch = atomic_read(&root->log_batch);
2811 		/* when we're on an ssd, just kick the log commit out */
2812 		if (!btrfs_test_opt(fs_info, SSD) &&
2813 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2814 			mutex_unlock(&root->log_mutex);
2815 			schedule_timeout_uninterruptible(1);
2816 			mutex_lock(&root->log_mutex);
2817 		}
2818 		wait_for_writer(root);
2819 		if (batch == atomic_read(&root->log_batch))
2820 			break;
2821 	}
2822 
2823 	/* bail out if we need to do a full commit */
2824 	if (btrfs_need_log_full_commit(fs_info, trans)) {
2825 		ret = -EAGAIN;
2826 		btrfs_free_logged_extents(log, log_transid);
2827 		mutex_unlock(&root->log_mutex);
2828 		goto out;
2829 	}
2830 
2831 	if (log_transid % 2 == 0)
2832 		mark = EXTENT_DIRTY;
2833 	else
2834 		mark = EXTENT_NEW;
2835 
2836 	/* we start IO on  all the marked extents here, but we don't actually
2837 	 * wait for them until later.
2838 	 */
2839 	blk_start_plug(&plug);
2840 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2841 	if (ret) {
2842 		blk_finish_plug(&plug);
2843 		btrfs_abort_transaction(trans, ret);
2844 		btrfs_free_logged_extents(log, log_transid);
2845 		btrfs_set_log_full_commit(fs_info, trans);
2846 		mutex_unlock(&root->log_mutex);
2847 		goto out;
2848 	}
2849 
2850 	btrfs_set_root_node(&log->root_item, log->node);
2851 
2852 	root->log_transid++;
2853 	log->log_transid = root->log_transid;
2854 	root->log_start_pid = 0;
2855 	/*
2856 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2857 	 * in their headers. new modifications of the log will be written to
2858 	 * new positions. so it's safe to allow log writers to go in.
2859 	 */
2860 	mutex_unlock(&root->log_mutex);
2861 
2862 	btrfs_init_log_ctx(&root_log_ctx, NULL);
2863 
2864 	mutex_lock(&log_root_tree->log_mutex);
2865 	atomic_inc(&log_root_tree->log_batch);
2866 	atomic_inc(&log_root_tree->log_writers);
2867 
2868 	index2 = log_root_tree->log_transid % 2;
2869 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2870 	root_log_ctx.log_transid = log_root_tree->log_transid;
2871 
2872 	mutex_unlock(&log_root_tree->log_mutex);
2873 
2874 	ret = update_log_root(trans, log);
2875 
2876 	mutex_lock(&log_root_tree->log_mutex);
2877 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2878 		/*
2879 		 * Implicit memory barrier after atomic_dec_and_test
2880 		 */
2881 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2882 			wake_up(&log_root_tree->log_writer_wait);
2883 	}
2884 
2885 	if (ret) {
2886 		if (!list_empty(&root_log_ctx.list))
2887 			list_del_init(&root_log_ctx.list);
2888 
2889 		blk_finish_plug(&plug);
2890 		btrfs_set_log_full_commit(fs_info, trans);
2891 
2892 		if (ret != -ENOSPC) {
2893 			btrfs_abort_transaction(trans, ret);
2894 			mutex_unlock(&log_root_tree->log_mutex);
2895 			goto out;
2896 		}
2897 		btrfs_wait_tree_log_extents(log, mark);
2898 		btrfs_free_logged_extents(log, log_transid);
2899 		mutex_unlock(&log_root_tree->log_mutex);
2900 		ret = -EAGAIN;
2901 		goto out;
2902 	}
2903 
2904 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2905 		blk_finish_plug(&plug);
2906 		list_del_init(&root_log_ctx.list);
2907 		mutex_unlock(&log_root_tree->log_mutex);
2908 		ret = root_log_ctx.log_ret;
2909 		goto out;
2910 	}
2911 
2912 	index2 = root_log_ctx.log_transid % 2;
2913 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2914 		blk_finish_plug(&plug);
2915 		ret = btrfs_wait_tree_log_extents(log, mark);
2916 		btrfs_wait_logged_extents(trans, log, log_transid);
2917 		wait_log_commit(log_root_tree,
2918 				root_log_ctx.log_transid);
2919 		mutex_unlock(&log_root_tree->log_mutex);
2920 		if (!ret)
2921 			ret = root_log_ctx.log_ret;
2922 		goto out;
2923 	}
2924 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2925 	atomic_set(&log_root_tree->log_commit[index2], 1);
2926 
2927 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2928 		wait_log_commit(log_root_tree,
2929 				root_log_ctx.log_transid - 1);
2930 	}
2931 
2932 	wait_for_writer(log_root_tree);
2933 
2934 	/*
2935 	 * now that we've moved on to the tree of log tree roots,
2936 	 * check the full commit flag again
2937 	 */
2938 	if (btrfs_need_log_full_commit(fs_info, trans)) {
2939 		blk_finish_plug(&plug);
2940 		btrfs_wait_tree_log_extents(log, mark);
2941 		btrfs_free_logged_extents(log, log_transid);
2942 		mutex_unlock(&log_root_tree->log_mutex);
2943 		ret = -EAGAIN;
2944 		goto out_wake_log_root;
2945 	}
2946 
2947 	ret = btrfs_write_marked_extents(fs_info,
2948 					 &log_root_tree->dirty_log_pages,
2949 					 EXTENT_DIRTY | EXTENT_NEW);
2950 	blk_finish_plug(&plug);
2951 	if (ret) {
2952 		btrfs_set_log_full_commit(fs_info, trans);
2953 		btrfs_abort_transaction(trans, ret);
2954 		btrfs_free_logged_extents(log, log_transid);
2955 		mutex_unlock(&log_root_tree->log_mutex);
2956 		goto out_wake_log_root;
2957 	}
2958 	ret = btrfs_wait_tree_log_extents(log, mark);
2959 	if (!ret)
2960 		ret = btrfs_wait_tree_log_extents(log_root_tree,
2961 						  EXTENT_NEW | EXTENT_DIRTY);
2962 	if (ret) {
2963 		btrfs_set_log_full_commit(fs_info, trans);
2964 		btrfs_free_logged_extents(log, log_transid);
2965 		mutex_unlock(&log_root_tree->log_mutex);
2966 		goto out_wake_log_root;
2967 	}
2968 	btrfs_wait_logged_extents(trans, log, log_transid);
2969 
2970 	btrfs_set_super_log_root(fs_info->super_for_commit,
2971 				 log_root_tree->node->start);
2972 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
2973 				       btrfs_header_level(log_root_tree->node));
2974 
2975 	log_root_tree->log_transid++;
2976 	mutex_unlock(&log_root_tree->log_mutex);
2977 
2978 	/*
2979 	 * nobody else is going to jump in and write the the ctree
2980 	 * super here because the log_commit atomic below is protecting
2981 	 * us.  We must be called with a transaction handle pinning
2982 	 * the running transaction open, so a full commit can't hop
2983 	 * in and cause problems either.
2984 	 */
2985 	ret = write_all_supers(fs_info, 1);
2986 	if (ret) {
2987 		btrfs_set_log_full_commit(fs_info, trans);
2988 		btrfs_abort_transaction(trans, ret);
2989 		goto out_wake_log_root;
2990 	}
2991 
2992 	mutex_lock(&root->log_mutex);
2993 	if (root->last_log_commit < log_transid)
2994 		root->last_log_commit = log_transid;
2995 	mutex_unlock(&root->log_mutex);
2996 
2997 out_wake_log_root:
2998 	mutex_lock(&log_root_tree->log_mutex);
2999 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3000 
3001 	log_root_tree->log_transid_committed++;
3002 	atomic_set(&log_root_tree->log_commit[index2], 0);
3003 	mutex_unlock(&log_root_tree->log_mutex);
3004 
3005 	/*
3006 	 * The barrier before waitqueue_active is implied by mutex_unlock
3007 	 */
3008 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3009 		wake_up(&log_root_tree->log_commit_wait[index2]);
3010 out:
3011 	mutex_lock(&root->log_mutex);
3012 	btrfs_remove_all_log_ctxs(root, index1, ret);
3013 	root->log_transid_committed++;
3014 	atomic_set(&root->log_commit[index1], 0);
3015 	mutex_unlock(&root->log_mutex);
3016 
3017 	/*
3018 	 * The barrier before waitqueue_active is implied by mutex_unlock
3019 	 */
3020 	if (waitqueue_active(&root->log_commit_wait[index1]))
3021 		wake_up(&root->log_commit_wait[index1]);
3022 	return ret;
3023 }
3024 
3025 static void free_log_tree(struct btrfs_trans_handle *trans,
3026 			  struct btrfs_root *log)
3027 {
3028 	int ret;
3029 	u64 start;
3030 	u64 end;
3031 	struct walk_control wc = {
3032 		.free = 1,
3033 		.process_func = process_one_buffer
3034 	};
3035 
3036 	ret = walk_log_tree(trans, log, &wc);
3037 	/* I don't think this can happen but just in case */
3038 	if (ret)
3039 		btrfs_abort_transaction(trans, ret);
3040 
3041 	while (1) {
3042 		ret = find_first_extent_bit(&log->dirty_log_pages,
3043 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3044 				NULL);
3045 		if (ret)
3046 			break;
3047 
3048 		clear_extent_bits(&log->dirty_log_pages, start, end,
3049 				  EXTENT_DIRTY | EXTENT_NEW);
3050 	}
3051 
3052 	/*
3053 	 * We may have short-circuited the log tree with the full commit logic
3054 	 * and left ordered extents on our list, so clear these out to keep us
3055 	 * from leaking inodes and memory.
3056 	 */
3057 	btrfs_free_logged_extents(log, 0);
3058 	btrfs_free_logged_extents(log, 1);
3059 
3060 	free_extent_buffer(log->node);
3061 	kfree(log);
3062 }
3063 
3064 /*
3065  * free all the extents used by the tree log.  This should be called
3066  * at commit time of the full transaction
3067  */
3068 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3069 {
3070 	if (root->log_root) {
3071 		free_log_tree(trans, root->log_root);
3072 		root->log_root = NULL;
3073 	}
3074 	return 0;
3075 }
3076 
3077 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3078 			     struct btrfs_fs_info *fs_info)
3079 {
3080 	if (fs_info->log_root_tree) {
3081 		free_log_tree(trans, fs_info->log_root_tree);
3082 		fs_info->log_root_tree = NULL;
3083 	}
3084 	return 0;
3085 }
3086 
3087 /*
3088  * If both a file and directory are logged, and unlinks or renames are
3089  * mixed in, we have a few interesting corners:
3090  *
3091  * create file X in dir Y
3092  * link file X to X.link in dir Y
3093  * fsync file X
3094  * unlink file X but leave X.link
3095  * fsync dir Y
3096  *
3097  * After a crash we would expect only X.link to exist.  But file X
3098  * didn't get fsync'd again so the log has back refs for X and X.link.
3099  *
3100  * We solve this by removing directory entries and inode backrefs from the
3101  * log when a file that was logged in the current transaction is
3102  * unlinked.  Any later fsync will include the updated log entries, and
3103  * we'll be able to reconstruct the proper directory items from backrefs.
3104  *
3105  * This optimizations allows us to avoid relogging the entire inode
3106  * or the entire directory.
3107  */
3108 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3109 				 struct btrfs_root *root,
3110 				 const char *name, int name_len,
3111 				 struct btrfs_inode *dir, u64 index)
3112 {
3113 	struct btrfs_root *log;
3114 	struct btrfs_dir_item *di;
3115 	struct btrfs_path *path;
3116 	int ret;
3117 	int err = 0;
3118 	int bytes_del = 0;
3119 	u64 dir_ino = btrfs_ino(dir);
3120 
3121 	if (dir->logged_trans < trans->transid)
3122 		return 0;
3123 
3124 	ret = join_running_log_trans(root);
3125 	if (ret)
3126 		return 0;
3127 
3128 	mutex_lock(&dir->log_mutex);
3129 
3130 	log = root->log_root;
3131 	path = btrfs_alloc_path();
3132 	if (!path) {
3133 		err = -ENOMEM;
3134 		goto out_unlock;
3135 	}
3136 
3137 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3138 				   name, name_len, -1);
3139 	if (IS_ERR(di)) {
3140 		err = PTR_ERR(di);
3141 		goto fail;
3142 	}
3143 	if (di) {
3144 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3145 		bytes_del += name_len;
3146 		if (ret) {
3147 			err = ret;
3148 			goto fail;
3149 		}
3150 	}
3151 	btrfs_release_path(path);
3152 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3153 					 index, name, name_len, -1);
3154 	if (IS_ERR(di)) {
3155 		err = PTR_ERR(di);
3156 		goto fail;
3157 	}
3158 	if (di) {
3159 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3160 		bytes_del += name_len;
3161 		if (ret) {
3162 			err = ret;
3163 			goto fail;
3164 		}
3165 	}
3166 
3167 	/* update the directory size in the log to reflect the names
3168 	 * we have removed
3169 	 */
3170 	if (bytes_del) {
3171 		struct btrfs_key key;
3172 
3173 		key.objectid = dir_ino;
3174 		key.offset = 0;
3175 		key.type = BTRFS_INODE_ITEM_KEY;
3176 		btrfs_release_path(path);
3177 
3178 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3179 		if (ret < 0) {
3180 			err = ret;
3181 			goto fail;
3182 		}
3183 		if (ret == 0) {
3184 			struct btrfs_inode_item *item;
3185 			u64 i_size;
3186 
3187 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3188 					      struct btrfs_inode_item);
3189 			i_size = btrfs_inode_size(path->nodes[0], item);
3190 			if (i_size > bytes_del)
3191 				i_size -= bytes_del;
3192 			else
3193 				i_size = 0;
3194 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3195 			btrfs_mark_buffer_dirty(path->nodes[0]);
3196 		} else
3197 			ret = 0;
3198 		btrfs_release_path(path);
3199 	}
3200 fail:
3201 	btrfs_free_path(path);
3202 out_unlock:
3203 	mutex_unlock(&dir->log_mutex);
3204 	if (ret == -ENOSPC) {
3205 		btrfs_set_log_full_commit(root->fs_info, trans);
3206 		ret = 0;
3207 	} else if (ret < 0)
3208 		btrfs_abort_transaction(trans, ret);
3209 
3210 	btrfs_end_log_trans(root);
3211 
3212 	return err;
3213 }
3214 
3215 /* see comments for btrfs_del_dir_entries_in_log */
3216 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3217 			       struct btrfs_root *root,
3218 			       const char *name, int name_len,
3219 			       struct btrfs_inode *inode, u64 dirid)
3220 {
3221 	struct btrfs_fs_info *fs_info = root->fs_info;
3222 	struct btrfs_root *log;
3223 	u64 index;
3224 	int ret;
3225 
3226 	if (inode->logged_trans < trans->transid)
3227 		return 0;
3228 
3229 	ret = join_running_log_trans(root);
3230 	if (ret)
3231 		return 0;
3232 	log = root->log_root;
3233 	mutex_lock(&inode->log_mutex);
3234 
3235 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3236 				  dirid, &index);
3237 	mutex_unlock(&inode->log_mutex);
3238 	if (ret == -ENOSPC) {
3239 		btrfs_set_log_full_commit(fs_info, trans);
3240 		ret = 0;
3241 	} else if (ret < 0 && ret != -ENOENT)
3242 		btrfs_abort_transaction(trans, ret);
3243 	btrfs_end_log_trans(root);
3244 
3245 	return ret;
3246 }
3247 
3248 /*
3249  * creates a range item in the log for 'dirid'.  first_offset and
3250  * last_offset tell us which parts of the key space the log should
3251  * be considered authoritative for.
3252  */
3253 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3254 				       struct btrfs_root *log,
3255 				       struct btrfs_path *path,
3256 				       int key_type, u64 dirid,
3257 				       u64 first_offset, u64 last_offset)
3258 {
3259 	int ret;
3260 	struct btrfs_key key;
3261 	struct btrfs_dir_log_item *item;
3262 
3263 	key.objectid = dirid;
3264 	key.offset = first_offset;
3265 	if (key_type == BTRFS_DIR_ITEM_KEY)
3266 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3267 	else
3268 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3269 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3270 	if (ret)
3271 		return ret;
3272 
3273 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3274 			      struct btrfs_dir_log_item);
3275 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3276 	btrfs_mark_buffer_dirty(path->nodes[0]);
3277 	btrfs_release_path(path);
3278 	return 0;
3279 }
3280 
3281 /*
3282  * log all the items included in the current transaction for a given
3283  * directory.  This also creates the range items in the log tree required
3284  * to replay anything deleted before the fsync
3285  */
3286 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3287 			  struct btrfs_root *root, struct btrfs_inode *inode,
3288 			  struct btrfs_path *path,
3289 			  struct btrfs_path *dst_path, int key_type,
3290 			  struct btrfs_log_ctx *ctx,
3291 			  u64 min_offset, u64 *last_offset_ret)
3292 {
3293 	struct btrfs_key min_key;
3294 	struct btrfs_root *log = root->log_root;
3295 	struct extent_buffer *src;
3296 	int err = 0;
3297 	int ret;
3298 	int i;
3299 	int nritems;
3300 	u64 first_offset = min_offset;
3301 	u64 last_offset = (u64)-1;
3302 	u64 ino = btrfs_ino(inode);
3303 
3304 	log = root->log_root;
3305 
3306 	min_key.objectid = ino;
3307 	min_key.type = key_type;
3308 	min_key.offset = min_offset;
3309 
3310 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3311 
3312 	/*
3313 	 * we didn't find anything from this transaction, see if there
3314 	 * is anything at all
3315 	 */
3316 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3317 		min_key.objectid = ino;
3318 		min_key.type = key_type;
3319 		min_key.offset = (u64)-1;
3320 		btrfs_release_path(path);
3321 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3322 		if (ret < 0) {
3323 			btrfs_release_path(path);
3324 			return ret;
3325 		}
3326 		ret = btrfs_previous_item(root, path, ino, key_type);
3327 
3328 		/* if ret == 0 there are items for this type,
3329 		 * create a range to tell us the last key of this type.
3330 		 * otherwise, there are no items in this directory after
3331 		 * *min_offset, and we create a range to indicate that.
3332 		 */
3333 		if (ret == 0) {
3334 			struct btrfs_key tmp;
3335 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3336 					      path->slots[0]);
3337 			if (key_type == tmp.type)
3338 				first_offset = max(min_offset, tmp.offset) + 1;
3339 		}
3340 		goto done;
3341 	}
3342 
3343 	/* go backward to find any previous key */
3344 	ret = btrfs_previous_item(root, path, ino, key_type);
3345 	if (ret == 0) {
3346 		struct btrfs_key tmp;
3347 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3348 		if (key_type == tmp.type) {
3349 			first_offset = tmp.offset;
3350 			ret = overwrite_item(trans, log, dst_path,
3351 					     path->nodes[0], path->slots[0],
3352 					     &tmp);
3353 			if (ret) {
3354 				err = ret;
3355 				goto done;
3356 			}
3357 		}
3358 	}
3359 	btrfs_release_path(path);
3360 
3361 	/* find the first key from this transaction again */
3362 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3363 	if (WARN_ON(ret != 0))
3364 		goto done;
3365 
3366 	/*
3367 	 * we have a block from this transaction, log every item in it
3368 	 * from our directory
3369 	 */
3370 	while (1) {
3371 		struct btrfs_key tmp;
3372 		src = path->nodes[0];
3373 		nritems = btrfs_header_nritems(src);
3374 		for (i = path->slots[0]; i < nritems; i++) {
3375 			struct btrfs_dir_item *di;
3376 
3377 			btrfs_item_key_to_cpu(src, &min_key, i);
3378 
3379 			if (min_key.objectid != ino || min_key.type != key_type)
3380 				goto done;
3381 			ret = overwrite_item(trans, log, dst_path, src, i,
3382 					     &min_key);
3383 			if (ret) {
3384 				err = ret;
3385 				goto done;
3386 			}
3387 
3388 			/*
3389 			 * We must make sure that when we log a directory entry,
3390 			 * the corresponding inode, after log replay, has a
3391 			 * matching link count. For example:
3392 			 *
3393 			 * touch foo
3394 			 * mkdir mydir
3395 			 * sync
3396 			 * ln foo mydir/bar
3397 			 * xfs_io -c "fsync" mydir
3398 			 * <crash>
3399 			 * <mount fs and log replay>
3400 			 *
3401 			 * Would result in a fsync log that when replayed, our
3402 			 * file inode would have a link count of 1, but we get
3403 			 * two directory entries pointing to the same inode.
3404 			 * After removing one of the names, it would not be
3405 			 * possible to remove the other name, which resulted
3406 			 * always in stale file handle errors, and would not
3407 			 * be possible to rmdir the parent directory, since
3408 			 * its i_size could never decrement to the value
3409 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3410 			 */
3411 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3412 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3413 			if (ctx &&
3414 			    (btrfs_dir_transid(src, di) == trans->transid ||
3415 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3416 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3417 				ctx->log_new_dentries = true;
3418 		}
3419 		path->slots[0] = nritems;
3420 
3421 		/*
3422 		 * look ahead to the next item and see if it is also
3423 		 * from this directory and from this transaction
3424 		 */
3425 		ret = btrfs_next_leaf(root, path);
3426 		if (ret == 1) {
3427 			last_offset = (u64)-1;
3428 			goto done;
3429 		}
3430 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3431 		if (tmp.objectid != ino || tmp.type != key_type) {
3432 			last_offset = (u64)-1;
3433 			goto done;
3434 		}
3435 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3436 			ret = overwrite_item(trans, log, dst_path,
3437 					     path->nodes[0], path->slots[0],
3438 					     &tmp);
3439 			if (ret)
3440 				err = ret;
3441 			else
3442 				last_offset = tmp.offset;
3443 			goto done;
3444 		}
3445 	}
3446 done:
3447 	btrfs_release_path(path);
3448 	btrfs_release_path(dst_path);
3449 
3450 	if (err == 0) {
3451 		*last_offset_ret = last_offset;
3452 		/*
3453 		 * insert the log range keys to indicate where the log
3454 		 * is valid
3455 		 */
3456 		ret = insert_dir_log_key(trans, log, path, key_type,
3457 					 ino, first_offset, last_offset);
3458 		if (ret)
3459 			err = ret;
3460 	}
3461 	return err;
3462 }
3463 
3464 /*
3465  * logging directories is very similar to logging inodes, We find all the items
3466  * from the current transaction and write them to the log.
3467  *
3468  * The recovery code scans the directory in the subvolume, and if it finds a
3469  * key in the range logged that is not present in the log tree, then it means
3470  * that dir entry was unlinked during the transaction.
3471  *
3472  * In order for that scan to work, we must include one key smaller than
3473  * the smallest logged by this transaction and one key larger than the largest
3474  * key logged by this transaction.
3475  */
3476 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3477 			  struct btrfs_root *root, struct btrfs_inode *inode,
3478 			  struct btrfs_path *path,
3479 			  struct btrfs_path *dst_path,
3480 			  struct btrfs_log_ctx *ctx)
3481 {
3482 	u64 min_key;
3483 	u64 max_key;
3484 	int ret;
3485 	int key_type = BTRFS_DIR_ITEM_KEY;
3486 
3487 again:
3488 	min_key = 0;
3489 	max_key = 0;
3490 	while (1) {
3491 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3492 				ctx, min_key, &max_key);
3493 		if (ret)
3494 			return ret;
3495 		if (max_key == (u64)-1)
3496 			break;
3497 		min_key = max_key + 1;
3498 	}
3499 
3500 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3501 		key_type = BTRFS_DIR_INDEX_KEY;
3502 		goto again;
3503 	}
3504 	return 0;
3505 }
3506 
3507 /*
3508  * a helper function to drop items from the log before we relog an
3509  * inode.  max_key_type indicates the highest item type to remove.
3510  * This cannot be run for file data extents because it does not
3511  * free the extents they point to.
3512  */
3513 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3514 				  struct btrfs_root *log,
3515 				  struct btrfs_path *path,
3516 				  u64 objectid, int max_key_type)
3517 {
3518 	int ret;
3519 	struct btrfs_key key;
3520 	struct btrfs_key found_key;
3521 	int start_slot;
3522 
3523 	key.objectid = objectid;
3524 	key.type = max_key_type;
3525 	key.offset = (u64)-1;
3526 
3527 	while (1) {
3528 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3529 		BUG_ON(ret == 0); /* Logic error */
3530 		if (ret < 0)
3531 			break;
3532 
3533 		if (path->slots[0] == 0)
3534 			break;
3535 
3536 		path->slots[0]--;
3537 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3538 				      path->slots[0]);
3539 
3540 		if (found_key.objectid != objectid)
3541 			break;
3542 
3543 		found_key.offset = 0;
3544 		found_key.type = 0;
3545 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3546 				       &start_slot);
3547 
3548 		ret = btrfs_del_items(trans, log, path, start_slot,
3549 				      path->slots[0] - start_slot + 1);
3550 		/*
3551 		 * If start slot isn't 0 then we don't need to re-search, we've
3552 		 * found the last guy with the objectid in this tree.
3553 		 */
3554 		if (ret || start_slot != 0)
3555 			break;
3556 		btrfs_release_path(path);
3557 	}
3558 	btrfs_release_path(path);
3559 	if (ret > 0)
3560 		ret = 0;
3561 	return ret;
3562 }
3563 
3564 static void fill_inode_item(struct btrfs_trans_handle *trans,
3565 			    struct extent_buffer *leaf,
3566 			    struct btrfs_inode_item *item,
3567 			    struct inode *inode, int log_inode_only,
3568 			    u64 logged_isize)
3569 {
3570 	struct btrfs_map_token token;
3571 
3572 	btrfs_init_map_token(&token);
3573 
3574 	if (log_inode_only) {
3575 		/* set the generation to zero so the recover code
3576 		 * can tell the difference between an logging
3577 		 * just to say 'this inode exists' and a logging
3578 		 * to say 'update this inode with these values'
3579 		 */
3580 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3581 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3582 	} else {
3583 		btrfs_set_token_inode_generation(leaf, item,
3584 						 BTRFS_I(inode)->generation,
3585 						 &token);
3586 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3587 	}
3588 
3589 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3590 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3591 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3592 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3593 
3594 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3595 				     inode->i_atime.tv_sec, &token);
3596 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3597 				      inode->i_atime.tv_nsec, &token);
3598 
3599 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3600 				     inode->i_mtime.tv_sec, &token);
3601 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3602 				      inode->i_mtime.tv_nsec, &token);
3603 
3604 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3605 				     inode->i_ctime.tv_sec, &token);
3606 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3607 				      inode->i_ctime.tv_nsec, &token);
3608 
3609 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3610 				     &token);
3611 
3612 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3613 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3614 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3615 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3616 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3617 }
3618 
3619 static int log_inode_item(struct btrfs_trans_handle *trans,
3620 			  struct btrfs_root *log, struct btrfs_path *path,
3621 			  struct btrfs_inode *inode)
3622 {
3623 	struct btrfs_inode_item *inode_item;
3624 	int ret;
3625 
3626 	ret = btrfs_insert_empty_item(trans, log, path,
3627 				      &inode->location, sizeof(*inode_item));
3628 	if (ret && ret != -EEXIST)
3629 		return ret;
3630 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3631 				    struct btrfs_inode_item);
3632 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3633 			0, 0);
3634 	btrfs_release_path(path);
3635 	return 0;
3636 }
3637 
3638 static noinline int copy_items(struct btrfs_trans_handle *trans,
3639 			       struct btrfs_inode *inode,
3640 			       struct btrfs_path *dst_path,
3641 			       struct btrfs_path *src_path, u64 *last_extent,
3642 			       int start_slot, int nr, int inode_only,
3643 			       u64 logged_isize)
3644 {
3645 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3646 	unsigned long src_offset;
3647 	unsigned long dst_offset;
3648 	struct btrfs_root *log = inode->root->log_root;
3649 	struct btrfs_file_extent_item *extent;
3650 	struct btrfs_inode_item *inode_item;
3651 	struct extent_buffer *src = src_path->nodes[0];
3652 	struct btrfs_key first_key, last_key, key;
3653 	int ret;
3654 	struct btrfs_key *ins_keys;
3655 	u32 *ins_sizes;
3656 	char *ins_data;
3657 	int i;
3658 	struct list_head ordered_sums;
3659 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3660 	bool has_extents = false;
3661 	bool need_find_last_extent = true;
3662 	bool done = false;
3663 
3664 	INIT_LIST_HEAD(&ordered_sums);
3665 
3666 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3667 			   nr * sizeof(u32), GFP_NOFS);
3668 	if (!ins_data)
3669 		return -ENOMEM;
3670 
3671 	first_key.objectid = (u64)-1;
3672 
3673 	ins_sizes = (u32 *)ins_data;
3674 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3675 
3676 	for (i = 0; i < nr; i++) {
3677 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3678 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3679 	}
3680 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3681 				       ins_keys, ins_sizes, nr);
3682 	if (ret) {
3683 		kfree(ins_data);
3684 		return ret;
3685 	}
3686 
3687 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3688 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3689 						   dst_path->slots[0]);
3690 
3691 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3692 
3693 		if ((i == (nr - 1)))
3694 			last_key = ins_keys[i];
3695 
3696 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3697 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3698 						    dst_path->slots[0],
3699 						    struct btrfs_inode_item);
3700 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3701 					&inode->vfs_inode,
3702 					inode_only == LOG_INODE_EXISTS,
3703 					logged_isize);
3704 		} else {
3705 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3706 					   src_offset, ins_sizes[i]);
3707 		}
3708 
3709 		/*
3710 		 * We set need_find_last_extent here in case we know we were
3711 		 * processing other items and then walk into the first extent in
3712 		 * the inode.  If we don't hit an extent then nothing changes,
3713 		 * we'll do the last search the next time around.
3714 		 */
3715 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3716 			has_extents = true;
3717 			if (first_key.objectid == (u64)-1)
3718 				first_key = ins_keys[i];
3719 		} else {
3720 			need_find_last_extent = false;
3721 		}
3722 
3723 		/* take a reference on file data extents so that truncates
3724 		 * or deletes of this inode don't have to relog the inode
3725 		 * again
3726 		 */
3727 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3728 		    !skip_csum) {
3729 			int found_type;
3730 			extent = btrfs_item_ptr(src, start_slot + i,
3731 						struct btrfs_file_extent_item);
3732 
3733 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3734 				continue;
3735 
3736 			found_type = btrfs_file_extent_type(src, extent);
3737 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3738 				u64 ds, dl, cs, cl;
3739 				ds = btrfs_file_extent_disk_bytenr(src,
3740 								extent);
3741 				/* ds == 0 is a hole */
3742 				if (ds == 0)
3743 					continue;
3744 
3745 				dl = btrfs_file_extent_disk_num_bytes(src,
3746 								extent);
3747 				cs = btrfs_file_extent_offset(src, extent);
3748 				cl = btrfs_file_extent_num_bytes(src,
3749 								extent);
3750 				if (btrfs_file_extent_compression(src,
3751 								  extent)) {
3752 					cs = 0;
3753 					cl = dl;
3754 				}
3755 
3756 				ret = btrfs_lookup_csums_range(
3757 						fs_info->csum_root,
3758 						ds + cs, ds + cs + cl - 1,
3759 						&ordered_sums, 0);
3760 				if (ret) {
3761 					btrfs_release_path(dst_path);
3762 					kfree(ins_data);
3763 					return ret;
3764 				}
3765 			}
3766 		}
3767 	}
3768 
3769 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3770 	btrfs_release_path(dst_path);
3771 	kfree(ins_data);
3772 
3773 	/*
3774 	 * we have to do this after the loop above to avoid changing the
3775 	 * log tree while trying to change the log tree.
3776 	 */
3777 	ret = 0;
3778 	while (!list_empty(&ordered_sums)) {
3779 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3780 						   struct btrfs_ordered_sum,
3781 						   list);
3782 		if (!ret)
3783 			ret = btrfs_csum_file_blocks(trans, log, sums);
3784 		list_del(&sums->list);
3785 		kfree(sums);
3786 	}
3787 
3788 	if (!has_extents)
3789 		return ret;
3790 
3791 	if (need_find_last_extent && *last_extent == first_key.offset) {
3792 		/*
3793 		 * We don't have any leafs between our current one and the one
3794 		 * we processed before that can have file extent items for our
3795 		 * inode (and have a generation number smaller than our current
3796 		 * transaction id).
3797 		 */
3798 		need_find_last_extent = false;
3799 	}
3800 
3801 	/*
3802 	 * Because we use btrfs_search_forward we could skip leaves that were
3803 	 * not modified and then assume *last_extent is valid when it really
3804 	 * isn't.  So back up to the previous leaf and read the end of the last
3805 	 * extent before we go and fill in holes.
3806 	 */
3807 	if (need_find_last_extent) {
3808 		u64 len;
3809 
3810 		ret = btrfs_prev_leaf(inode->root, src_path);
3811 		if (ret < 0)
3812 			return ret;
3813 		if (ret)
3814 			goto fill_holes;
3815 		if (src_path->slots[0])
3816 			src_path->slots[0]--;
3817 		src = src_path->nodes[0];
3818 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3819 		if (key.objectid != btrfs_ino(inode) ||
3820 		    key.type != BTRFS_EXTENT_DATA_KEY)
3821 			goto fill_holes;
3822 		extent = btrfs_item_ptr(src, src_path->slots[0],
3823 					struct btrfs_file_extent_item);
3824 		if (btrfs_file_extent_type(src, extent) ==
3825 		    BTRFS_FILE_EXTENT_INLINE) {
3826 			len = btrfs_file_extent_inline_len(src,
3827 							   src_path->slots[0],
3828 							   extent);
3829 			*last_extent = ALIGN(key.offset + len,
3830 					     fs_info->sectorsize);
3831 		} else {
3832 			len = btrfs_file_extent_num_bytes(src, extent);
3833 			*last_extent = key.offset + len;
3834 		}
3835 	}
3836 fill_holes:
3837 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3838 	 * things could have happened
3839 	 *
3840 	 * 1) A merge could have happened, so we could currently be on a leaf
3841 	 * that holds what we were copying in the first place.
3842 	 * 2) A split could have happened, and now not all of the items we want
3843 	 * are on the same leaf.
3844 	 *
3845 	 * So we need to adjust how we search for holes, we need to drop the
3846 	 * path and re-search for the first extent key we found, and then walk
3847 	 * forward until we hit the last one we copied.
3848 	 */
3849 	if (need_find_last_extent) {
3850 		/* btrfs_prev_leaf could return 1 without releasing the path */
3851 		btrfs_release_path(src_path);
3852 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
3853 				src_path, 0, 0);
3854 		if (ret < 0)
3855 			return ret;
3856 		ASSERT(ret == 0);
3857 		src = src_path->nodes[0];
3858 		i = src_path->slots[0];
3859 	} else {
3860 		i = start_slot;
3861 	}
3862 
3863 	/*
3864 	 * Ok so here we need to go through and fill in any holes we may have
3865 	 * to make sure that holes are punched for those areas in case they had
3866 	 * extents previously.
3867 	 */
3868 	while (!done) {
3869 		u64 offset, len;
3870 		u64 extent_end;
3871 
3872 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3873 			ret = btrfs_next_leaf(inode->root, src_path);
3874 			if (ret < 0)
3875 				return ret;
3876 			ASSERT(ret == 0);
3877 			src = src_path->nodes[0];
3878 			i = 0;
3879 		}
3880 
3881 		btrfs_item_key_to_cpu(src, &key, i);
3882 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3883 			done = true;
3884 		if (key.objectid != btrfs_ino(inode) ||
3885 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3886 			i++;
3887 			continue;
3888 		}
3889 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3890 		if (btrfs_file_extent_type(src, extent) ==
3891 		    BTRFS_FILE_EXTENT_INLINE) {
3892 			len = btrfs_file_extent_inline_len(src, i, extent);
3893 			extent_end = ALIGN(key.offset + len,
3894 					   fs_info->sectorsize);
3895 		} else {
3896 			len = btrfs_file_extent_num_bytes(src, extent);
3897 			extent_end = key.offset + len;
3898 		}
3899 		i++;
3900 
3901 		if (*last_extent == key.offset) {
3902 			*last_extent = extent_end;
3903 			continue;
3904 		}
3905 		offset = *last_extent;
3906 		len = key.offset - *last_extent;
3907 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3908 				offset, 0, 0, len, 0, len, 0, 0, 0);
3909 		if (ret)
3910 			break;
3911 		*last_extent = extent_end;
3912 	}
3913 	/*
3914 	 * Need to let the callers know we dropped the path so they should
3915 	 * re-search.
3916 	 */
3917 	if (!ret && need_find_last_extent)
3918 		ret = 1;
3919 	return ret;
3920 }
3921 
3922 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3923 {
3924 	struct extent_map *em1, *em2;
3925 
3926 	em1 = list_entry(a, struct extent_map, list);
3927 	em2 = list_entry(b, struct extent_map, list);
3928 
3929 	if (em1->start < em2->start)
3930 		return -1;
3931 	else if (em1->start > em2->start)
3932 		return 1;
3933 	return 0;
3934 }
3935 
3936 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3937 				struct inode *inode,
3938 				struct btrfs_root *root,
3939 				const struct extent_map *em,
3940 				const struct list_head *logged_list,
3941 				bool *ordered_io_error)
3942 {
3943 	struct btrfs_fs_info *fs_info = root->fs_info;
3944 	struct btrfs_ordered_extent *ordered;
3945 	struct btrfs_root *log = root->log_root;
3946 	u64 mod_start = em->mod_start;
3947 	u64 mod_len = em->mod_len;
3948 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3949 	u64 csum_offset;
3950 	u64 csum_len;
3951 	LIST_HEAD(ordered_sums);
3952 	int ret = 0;
3953 
3954 	*ordered_io_error = false;
3955 
3956 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3957 	    em->block_start == EXTENT_MAP_HOLE)
3958 		return 0;
3959 
3960 	/*
3961 	 * Wait far any ordered extent that covers our extent map. If it
3962 	 * finishes without an error, first check and see if our csums are on
3963 	 * our outstanding ordered extents.
3964 	 */
3965 	list_for_each_entry(ordered, logged_list, log_list) {
3966 		struct btrfs_ordered_sum *sum;
3967 
3968 		if (!mod_len)
3969 			break;
3970 
3971 		if (ordered->file_offset + ordered->len <= mod_start ||
3972 		    mod_start + mod_len <= ordered->file_offset)
3973 			continue;
3974 
3975 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3976 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3977 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3978 			const u64 start = ordered->file_offset;
3979 			const u64 end = ordered->file_offset + ordered->len - 1;
3980 
3981 			WARN_ON(ordered->inode != inode);
3982 			filemap_fdatawrite_range(inode->i_mapping, start, end);
3983 		}
3984 
3985 		wait_event(ordered->wait,
3986 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3987 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3988 
3989 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3990 			/*
3991 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3992 			 * i_mapping flags, so that the next fsync won't get
3993 			 * an outdated io error too.
3994 			 */
3995 			filemap_check_errors(inode->i_mapping);
3996 			*ordered_io_error = true;
3997 			break;
3998 		}
3999 		/*
4000 		 * We are going to copy all the csums on this ordered extent, so
4001 		 * go ahead and adjust mod_start and mod_len in case this
4002 		 * ordered extent has already been logged.
4003 		 */
4004 		if (ordered->file_offset > mod_start) {
4005 			if (ordered->file_offset + ordered->len >=
4006 			    mod_start + mod_len)
4007 				mod_len = ordered->file_offset - mod_start;
4008 			/*
4009 			 * If we have this case
4010 			 *
4011 			 * |--------- logged extent ---------|
4012 			 *       |----- ordered extent ----|
4013 			 *
4014 			 * Just don't mess with mod_start and mod_len, we'll
4015 			 * just end up logging more csums than we need and it
4016 			 * will be ok.
4017 			 */
4018 		} else {
4019 			if (ordered->file_offset + ordered->len <
4020 			    mod_start + mod_len) {
4021 				mod_len = (mod_start + mod_len) -
4022 					(ordered->file_offset + ordered->len);
4023 				mod_start = ordered->file_offset +
4024 					ordered->len;
4025 			} else {
4026 				mod_len = 0;
4027 			}
4028 		}
4029 
4030 		if (skip_csum)
4031 			continue;
4032 
4033 		/*
4034 		 * To keep us from looping for the above case of an ordered
4035 		 * extent that falls inside of the logged extent.
4036 		 */
4037 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4038 				     &ordered->flags))
4039 			continue;
4040 
4041 		list_for_each_entry(sum, &ordered->list, list) {
4042 			ret = btrfs_csum_file_blocks(trans, log, sum);
4043 			if (ret)
4044 				break;
4045 		}
4046 	}
4047 
4048 	if (*ordered_io_error || !mod_len || ret || skip_csum)
4049 		return ret;
4050 
4051 	if (em->compress_type) {
4052 		csum_offset = 0;
4053 		csum_len = max(em->block_len, em->orig_block_len);
4054 	} else {
4055 		csum_offset = mod_start - em->start;
4056 		csum_len = mod_len;
4057 	}
4058 
4059 	/* block start is already adjusted for the file extent offset. */
4060 	ret = btrfs_lookup_csums_range(fs_info->csum_root,
4061 				       em->block_start + csum_offset,
4062 				       em->block_start + csum_offset +
4063 				       csum_len - 1, &ordered_sums, 0);
4064 	if (ret)
4065 		return ret;
4066 
4067 	while (!list_empty(&ordered_sums)) {
4068 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4069 						   struct btrfs_ordered_sum,
4070 						   list);
4071 		if (!ret)
4072 			ret = btrfs_csum_file_blocks(trans, log, sums);
4073 		list_del(&sums->list);
4074 		kfree(sums);
4075 	}
4076 
4077 	return ret;
4078 }
4079 
4080 static int log_one_extent(struct btrfs_trans_handle *trans,
4081 			  struct btrfs_inode *inode, struct btrfs_root *root,
4082 			  const struct extent_map *em,
4083 			  struct btrfs_path *path,
4084 			  const struct list_head *logged_list,
4085 			  struct btrfs_log_ctx *ctx)
4086 {
4087 	struct btrfs_root *log = root->log_root;
4088 	struct btrfs_file_extent_item *fi;
4089 	struct extent_buffer *leaf;
4090 	struct btrfs_map_token token;
4091 	struct btrfs_key key;
4092 	u64 extent_offset = em->start - em->orig_start;
4093 	u64 block_len;
4094 	int ret;
4095 	int extent_inserted = 0;
4096 	bool ordered_io_err = false;
4097 
4098 	ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4099 			logged_list, &ordered_io_err);
4100 	if (ret)
4101 		return ret;
4102 
4103 	if (ordered_io_err) {
4104 		ctx->io_err = -EIO;
4105 		return 0;
4106 	}
4107 
4108 	btrfs_init_map_token(&token);
4109 
4110 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4111 				   em->start + em->len, NULL, 0, 1,
4112 				   sizeof(*fi), &extent_inserted);
4113 	if (ret)
4114 		return ret;
4115 
4116 	if (!extent_inserted) {
4117 		key.objectid = btrfs_ino(inode);
4118 		key.type = BTRFS_EXTENT_DATA_KEY;
4119 		key.offset = em->start;
4120 
4121 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4122 					      sizeof(*fi));
4123 		if (ret)
4124 			return ret;
4125 	}
4126 	leaf = path->nodes[0];
4127 	fi = btrfs_item_ptr(leaf, path->slots[0],
4128 			    struct btrfs_file_extent_item);
4129 
4130 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4131 					       &token);
4132 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4133 		btrfs_set_token_file_extent_type(leaf, fi,
4134 						 BTRFS_FILE_EXTENT_PREALLOC,
4135 						 &token);
4136 	else
4137 		btrfs_set_token_file_extent_type(leaf, fi,
4138 						 BTRFS_FILE_EXTENT_REG,
4139 						 &token);
4140 
4141 	block_len = max(em->block_len, em->orig_block_len);
4142 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4143 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4144 							em->block_start,
4145 							&token);
4146 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4147 							   &token);
4148 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4149 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4150 							em->block_start -
4151 							extent_offset, &token);
4152 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4153 							   &token);
4154 	} else {
4155 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4156 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4157 							   &token);
4158 	}
4159 
4160 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4161 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4162 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4163 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4164 						&token);
4165 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4166 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4167 	btrfs_mark_buffer_dirty(leaf);
4168 
4169 	btrfs_release_path(path);
4170 
4171 	return ret;
4172 }
4173 
4174 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4175 				     struct btrfs_root *root,
4176 				     struct btrfs_inode *inode,
4177 				     struct btrfs_path *path,
4178 				     struct list_head *logged_list,
4179 				     struct btrfs_log_ctx *ctx,
4180 				     const u64 start,
4181 				     const u64 end)
4182 {
4183 	struct extent_map *em, *n;
4184 	struct list_head extents;
4185 	struct extent_map_tree *tree = &inode->extent_tree;
4186 	u64 test_gen;
4187 	int ret = 0;
4188 	int num = 0;
4189 
4190 	INIT_LIST_HEAD(&extents);
4191 
4192 	down_write(&inode->dio_sem);
4193 	write_lock(&tree->lock);
4194 	test_gen = root->fs_info->last_trans_committed;
4195 
4196 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4197 		list_del_init(&em->list);
4198 
4199 		/*
4200 		 * Just an arbitrary number, this can be really CPU intensive
4201 		 * once we start getting a lot of extents, and really once we
4202 		 * have a bunch of extents we just want to commit since it will
4203 		 * be faster.
4204 		 */
4205 		if (++num > 32768) {
4206 			list_del_init(&tree->modified_extents);
4207 			ret = -EFBIG;
4208 			goto process;
4209 		}
4210 
4211 		if (em->generation <= test_gen)
4212 			continue;
4213 		/* Need a ref to keep it from getting evicted from cache */
4214 		refcount_inc(&em->refs);
4215 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4216 		list_add_tail(&em->list, &extents);
4217 		num++;
4218 	}
4219 
4220 	list_sort(NULL, &extents, extent_cmp);
4221 	btrfs_get_logged_extents(inode, logged_list, start, end);
4222 	/*
4223 	 * Some ordered extents started by fsync might have completed
4224 	 * before we could collect them into the list logged_list, which
4225 	 * means they're gone, not in our logged_list nor in the inode's
4226 	 * ordered tree. We want the application/user space to know an
4227 	 * error happened while attempting to persist file data so that
4228 	 * it can take proper action. If such error happened, we leave
4229 	 * without writing to the log tree and the fsync must report the
4230 	 * file data write error and not commit the current transaction.
4231 	 */
4232 	ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4233 	if (ret)
4234 		ctx->io_err = ret;
4235 process:
4236 	while (!list_empty(&extents)) {
4237 		em = list_entry(extents.next, struct extent_map, list);
4238 
4239 		list_del_init(&em->list);
4240 
4241 		/*
4242 		 * If we had an error we just need to delete everybody from our
4243 		 * private list.
4244 		 */
4245 		if (ret) {
4246 			clear_em_logging(tree, em);
4247 			free_extent_map(em);
4248 			continue;
4249 		}
4250 
4251 		write_unlock(&tree->lock);
4252 
4253 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4254 				     ctx);
4255 		write_lock(&tree->lock);
4256 		clear_em_logging(tree, em);
4257 		free_extent_map(em);
4258 	}
4259 	WARN_ON(!list_empty(&extents));
4260 	write_unlock(&tree->lock);
4261 	up_write(&inode->dio_sem);
4262 
4263 	btrfs_release_path(path);
4264 	return ret;
4265 }
4266 
4267 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4268 			     struct btrfs_path *path, u64 *size_ret)
4269 {
4270 	struct btrfs_key key;
4271 	int ret;
4272 
4273 	key.objectid = btrfs_ino(inode);
4274 	key.type = BTRFS_INODE_ITEM_KEY;
4275 	key.offset = 0;
4276 
4277 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4278 	if (ret < 0) {
4279 		return ret;
4280 	} else if (ret > 0) {
4281 		*size_ret = 0;
4282 	} else {
4283 		struct btrfs_inode_item *item;
4284 
4285 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4286 				      struct btrfs_inode_item);
4287 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4288 	}
4289 
4290 	btrfs_release_path(path);
4291 	return 0;
4292 }
4293 
4294 /*
4295  * At the moment we always log all xattrs. This is to figure out at log replay
4296  * time which xattrs must have their deletion replayed. If a xattr is missing
4297  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4298  * because if a xattr is deleted, the inode is fsynced and a power failure
4299  * happens, causing the log to be replayed the next time the fs is mounted,
4300  * we want the xattr to not exist anymore (same behaviour as other filesystems
4301  * with a journal, ext3/4, xfs, f2fs, etc).
4302  */
4303 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4304 				struct btrfs_root *root,
4305 				struct btrfs_inode *inode,
4306 				struct btrfs_path *path,
4307 				struct btrfs_path *dst_path)
4308 {
4309 	int ret;
4310 	struct btrfs_key key;
4311 	const u64 ino = btrfs_ino(inode);
4312 	int ins_nr = 0;
4313 	int start_slot = 0;
4314 
4315 	key.objectid = ino;
4316 	key.type = BTRFS_XATTR_ITEM_KEY;
4317 	key.offset = 0;
4318 
4319 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4320 	if (ret < 0)
4321 		return ret;
4322 
4323 	while (true) {
4324 		int slot = path->slots[0];
4325 		struct extent_buffer *leaf = path->nodes[0];
4326 		int nritems = btrfs_header_nritems(leaf);
4327 
4328 		if (slot >= nritems) {
4329 			if (ins_nr > 0) {
4330 				u64 last_extent = 0;
4331 
4332 				ret = copy_items(trans, inode, dst_path, path,
4333 						 &last_extent, start_slot,
4334 						 ins_nr, 1, 0);
4335 				/* can't be 1, extent items aren't processed */
4336 				ASSERT(ret <= 0);
4337 				if (ret < 0)
4338 					return ret;
4339 				ins_nr = 0;
4340 			}
4341 			ret = btrfs_next_leaf(root, path);
4342 			if (ret < 0)
4343 				return ret;
4344 			else if (ret > 0)
4345 				break;
4346 			continue;
4347 		}
4348 
4349 		btrfs_item_key_to_cpu(leaf, &key, slot);
4350 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4351 			break;
4352 
4353 		if (ins_nr == 0)
4354 			start_slot = slot;
4355 		ins_nr++;
4356 		path->slots[0]++;
4357 		cond_resched();
4358 	}
4359 	if (ins_nr > 0) {
4360 		u64 last_extent = 0;
4361 
4362 		ret = copy_items(trans, inode, dst_path, path,
4363 				 &last_extent, start_slot,
4364 				 ins_nr, 1, 0);
4365 		/* can't be 1, extent items aren't processed */
4366 		ASSERT(ret <= 0);
4367 		if (ret < 0)
4368 			return ret;
4369 	}
4370 
4371 	return 0;
4372 }
4373 
4374 /*
4375  * If the no holes feature is enabled we need to make sure any hole between the
4376  * last extent and the i_size of our inode is explicitly marked in the log. This
4377  * is to make sure that doing something like:
4378  *
4379  *      1) create file with 128Kb of data
4380  *      2) truncate file to 64Kb
4381  *      3) truncate file to 256Kb
4382  *      4) fsync file
4383  *      5) <crash/power failure>
4384  *      6) mount fs and trigger log replay
4385  *
4386  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4387  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4388  * file correspond to a hole. The presence of explicit holes in a log tree is
4389  * what guarantees that log replay will remove/adjust file extent items in the
4390  * fs/subvol tree.
4391  *
4392  * Here we do not need to care about holes between extents, that is already done
4393  * by copy_items(). We also only need to do this in the full sync path, where we
4394  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4395  * lookup the list of modified extent maps and if any represents a hole, we
4396  * insert a corresponding extent representing a hole in the log tree.
4397  */
4398 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4399 				   struct btrfs_root *root,
4400 				   struct btrfs_inode *inode,
4401 				   struct btrfs_path *path)
4402 {
4403 	struct btrfs_fs_info *fs_info = root->fs_info;
4404 	int ret;
4405 	struct btrfs_key key;
4406 	u64 hole_start;
4407 	u64 hole_size;
4408 	struct extent_buffer *leaf;
4409 	struct btrfs_root *log = root->log_root;
4410 	const u64 ino = btrfs_ino(inode);
4411 	const u64 i_size = i_size_read(&inode->vfs_inode);
4412 
4413 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4414 		return 0;
4415 
4416 	key.objectid = ino;
4417 	key.type = BTRFS_EXTENT_DATA_KEY;
4418 	key.offset = (u64)-1;
4419 
4420 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4421 	ASSERT(ret != 0);
4422 	if (ret < 0)
4423 		return ret;
4424 
4425 	ASSERT(path->slots[0] > 0);
4426 	path->slots[0]--;
4427 	leaf = path->nodes[0];
4428 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4429 
4430 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4431 		/* inode does not have any extents */
4432 		hole_start = 0;
4433 		hole_size = i_size;
4434 	} else {
4435 		struct btrfs_file_extent_item *extent;
4436 		u64 len;
4437 
4438 		/*
4439 		 * If there's an extent beyond i_size, an explicit hole was
4440 		 * already inserted by copy_items().
4441 		 */
4442 		if (key.offset >= i_size)
4443 			return 0;
4444 
4445 		extent = btrfs_item_ptr(leaf, path->slots[0],
4446 					struct btrfs_file_extent_item);
4447 
4448 		if (btrfs_file_extent_type(leaf, extent) ==
4449 		    BTRFS_FILE_EXTENT_INLINE) {
4450 			len = btrfs_file_extent_inline_len(leaf,
4451 							   path->slots[0],
4452 							   extent);
4453 			ASSERT(len == i_size);
4454 			return 0;
4455 		}
4456 
4457 		len = btrfs_file_extent_num_bytes(leaf, extent);
4458 		/* Last extent goes beyond i_size, no need to log a hole. */
4459 		if (key.offset + len > i_size)
4460 			return 0;
4461 		hole_start = key.offset + len;
4462 		hole_size = i_size - hole_start;
4463 	}
4464 	btrfs_release_path(path);
4465 
4466 	/* Last extent ends at i_size. */
4467 	if (hole_size == 0)
4468 		return 0;
4469 
4470 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4471 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4472 				       hole_size, 0, hole_size, 0, 0, 0);
4473 	return ret;
4474 }
4475 
4476 /*
4477  * When we are logging a new inode X, check if it doesn't have a reference that
4478  * matches the reference from some other inode Y created in a past transaction
4479  * and that was renamed in the current transaction. If we don't do this, then at
4480  * log replay time we can lose inode Y (and all its files if it's a directory):
4481  *
4482  * mkdir /mnt/x
4483  * echo "hello world" > /mnt/x/foobar
4484  * sync
4485  * mv /mnt/x /mnt/y
4486  * mkdir /mnt/x                 # or touch /mnt/x
4487  * xfs_io -c fsync /mnt/x
4488  * <power fail>
4489  * mount fs, trigger log replay
4490  *
4491  * After the log replay procedure, we would lose the first directory and all its
4492  * files (file foobar).
4493  * For the case where inode Y is not a directory we simply end up losing it:
4494  *
4495  * echo "123" > /mnt/foo
4496  * sync
4497  * mv /mnt/foo /mnt/bar
4498  * echo "abc" > /mnt/foo
4499  * xfs_io -c fsync /mnt/foo
4500  * <power fail>
4501  *
4502  * We also need this for cases where a snapshot entry is replaced by some other
4503  * entry (file or directory) otherwise we end up with an unreplayable log due to
4504  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4505  * if it were a regular entry:
4506  *
4507  * mkdir /mnt/x
4508  * btrfs subvolume snapshot /mnt /mnt/x/snap
4509  * btrfs subvolume delete /mnt/x/snap
4510  * rmdir /mnt/x
4511  * mkdir /mnt/x
4512  * fsync /mnt/x or fsync some new file inside it
4513  * <power fail>
4514  *
4515  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4516  * the same transaction.
4517  */
4518 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4519 					 const int slot,
4520 					 const struct btrfs_key *key,
4521 					 struct btrfs_inode *inode,
4522 					 u64 *other_ino)
4523 {
4524 	int ret;
4525 	struct btrfs_path *search_path;
4526 	char *name = NULL;
4527 	u32 name_len = 0;
4528 	u32 item_size = btrfs_item_size_nr(eb, slot);
4529 	u32 cur_offset = 0;
4530 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4531 
4532 	search_path = btrfs_alloc_path();
4533 	if (!search_path)
4534 		return -ENOMEM;
4535 	search_path->search_commit_root = 1;
4536 	search_path->skip_locking = 1;
4537 
4538 	while (cur_offset < item_size) {
4539 		u64 parent;
4540 		u32 this_name_len;
4541 		u32 this_len;
4542 		unsigned long name_ptr;
4543 		struct btrfs_dir_item *di;
4544 
4545 		if (key->type == BTRFS_INODE_REF_KEY) {
4546 			struct btrfs_inode_ref *iref;
4547 
4548 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4549 			parent = key->offset;
4550 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4551 			name_ptr = (unsigned long)(iref + 1);
4552 			this_len = sizeof(*iref) + this_name_len;
4553 		} else {
4554 			struct btrfs_inode_extref *extref;
4555 
4556 			extref = (struct btrfs_inode_extref *)(ptr +
4557 							       cur_offset);
4558 			parent = btrfs_inode_extref_parent(eb, extref);
4559 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4560 			name_ptr = (unsigned long)&extref->name;
4561 			this_len = sizeof(*extref) + this_name_len;
4562 		}
4563 
4564 		ret = btrfs_is_name_len_valid(eb, slot, name_ptr,
4565 					      this_name_len);
4566 		if (!ret) {
4567 			ret = -EIO;
4568 			goto out;
4569 		}
4570 		if (this_name_len > name_len) {
4571 			char *new_name;
4572 
4573 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4574 			if (!new_name) {
4575 				ret = -ENOMEM;
4576 				goto out;
4577 			}
4578 			name_len = this_name_len;
4579 			name = new_name;
4580 		}
4581 
4582 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4583 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4584 				parent, name, this_name_len, 0);
4585 		if (di && !IS_ERR(di)) {
4586 			struct btrfs_key di_key;
4587 
4588 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4589 						  di, &di_key);
4590 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4591 				ret = 1;
4592 				*other_ino = di_key.objectid;
4593 			} else {
4594 				ret = -EAGAIN;
4595 			}
4596 			goto out;
4597 		} else if (IS_ERR(di)) {
4598 			ret = PTR_ERR(di);
4599 			goto out;
4600 		}
4601 		btrfs_release_path(search_path);
4602 
4603 		cur_offset += this_len;
4604 	}
4605 	ret = 0;
4606 out:
4607 	btrfs_free_path(search_path);
4608 	kfree(name);
4609 	return ret;
4610 }
4611 
4612 /* log a single inode in the tree log.
4613  * At least one parent directory for this inode must exist in the tree
4614  * or be logged already.
4615  *
4616  * Any items from this inode changed by the current transaction are copied
4617  * to the log tree.  An extra reference is taken on any extents in this
4618  * file, allowing us to avoid a whole pile of corner cases around logging
4619  * blocks that have been removed from the tree.
4620  *
4621  * See LOG_INODE_ALL and related defines for a description of what inode_only
4622  * does.
4623  *
4624  * This handles both files and directories.
4625  */
4626 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4627 			   struct btrfs_root *root, struct btrfs_inode *inode,
4628 			   int inode_only,
4629 			   const loff_t start,
4630 			   const loff_t end,
4631 			   struct btrfs_log_ctx *ctx)
4632 {
4633 	struct btrfs_fs_info *fs_info = root->fs_info;
4634 	struct btrfs_path *path;
4635 	struct btrfs_path *dst_path;
4636 	struct btrfs_key min_key;
4637 	struct btrfs_key max_key;
4638 	struct btrfs_root *log = root->log_root;
4639 	struct extent_buffer *src = NULL;
4640 	LIST_HEAD(logged_list);
4641 	u64 last_extent = 0;
4642 	int err = 0;
4643 	int ret;
4644 	int nritems;
4645 	int ins_start_slot = 0;
4646 	int ins_nr;
4647 	bool fast_search = false;
4648 	u64 ino = btrfs_ino(inode);
4649 	struct extent_map_tree *em_tree = &inode->extent_tree;
4650 	u64 logged_isize = 0;
4651 	bool need_log_inode_item = true;
4652 
4653 	path = btrfs_alloc_path();
4654 	if (!path)
4655 		return -ENOMEM;
4656 	dst_path = btrfs_alloc_path();
4657 	if (!dst_path) {
4658 		btrfs_free_path(path);
4659 		return -ENOMEM;
4660 	}
4661 
4662 	min_key.objectid = ino;
4663 	min_key.type = BTRFS_INODE_ITEM_KEY;
4664 	min_key.offset = 0;
4665 
4666 	max_key.objectid = ino;
4667 
4668 
4669 	/* today the code can only do partial logging of directories */
4670 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4671 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4672 		       &inode->runtime_flags) &&
4673 	     inode_only >= LOG_INODE_EXISTS))
4674 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4675 	else
4676 		max_key.type = (u8)-1;
4677 	max_key.offset = (u64)-1;
4678 
4679 	/*
4680 	 * Only run delayed items if we are a dir or a new file.
4681 	 * Otherwise commit the delayed inode only, which is needed in
4682 	 * order for the log replay code to mark inodes for link count
4683 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4684 	 */
4685 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4686 	    inode->generation > fs_info->last_trans_committed)
4687 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4688 	else
4689 		ret = btrfs_commit_inode_delayed_inode(inode);
4690 
4691 	if (ret) {
4692 		btrfs_free_path(path);
4693 		btrfs_free_path(dst_path);
4694 		return ret;
4695 	}
4696 
4697 	if (inode_only == LOG_OTHER_INODE) {
4698 		inode_only = LOG_INODE_EXISTS;
4699 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4700 	} else {
4701 		mutex_lock(&inode->log_mutex);
4702 	}
4703 
4704 	/*
4705 	 * a brute force approach to making sure we get the most uptodate
4706 	 * copies of everything.
4707 	 */
4708 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
4709 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4710 
4711 		if (inode_only == LOG_INODE_EXISTS)
4712 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4713 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4714 	} else {
4715 		if (inode_only == LOG_INODE_EXISTS) {
4716 			/*
4717 			 * Make sure the new inode item we write to the log has
4718 			 * the same isize as the current one (if it exists).
4719 			 * This is necessary to prevent data loss after log
4720 			 * replay, and also to prevent doing a wrong expanding
4721 			 * truncate - for e.g. create file, write 4K into offset
4722 			 * 0, fsync, write 4K into offset 4096, add hard link,
4723 			 * fsync some other file (to sync log), power fail - if
4724 			 * we use the inode's current i_size, after log replay
4725 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4726 			 * (zeroes), as if an expanding truncate happened,
4727 			 * instead of getting a file of 4Kb only.
4728 			 */
4729 			err = logged_inode_size(log, inode, path, &logged_isize);
4730 			if (err)
4731 				goto out_unlock;
4732 		}
4733 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4734 			     &inode->runtime_flags)) {
4735 			if (inode_only == LOG_INODE_EXISTS) {
4736 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4737 				ret = drop_objectid_items(trans, log, path, ino,
4738 							  max_key.type);
4739 			} else {
4740 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4741 					  &inode->runtime_flags);
4742 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4743 					  &inode->runtime_flags);
4744 				while(1) {
4745 					ret = btrfs_truncate_inode_items(trans,
4746 						log, &inode->vfs_inode, 0, 0);
4747 					if (ret != -EAGAIN)
4748 						break;
4749 				}
4750 			}
4751 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4752 					      &inode->runtime_flags) ||
4753 			   inode_only == LOG_INODE_EXISTS) {
4754 			if (inode_only == LOG_INODE_ALL)
4755 				fast_search = true;
4756 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4757 			ret = drop_objectid_items(trans, log, path, ino,
4758 						  max_key.type);
4759 		} else {
4760 			if (inode_only == LOG_INODE_ALL)
4761 				fast_search = true;
4762 			goto log_extents;
4763 		}
4764 
4765 	}
4766 	if (ret) {
4767 		err = ret;
4768 		goto out_unlock;
4769 	}
4770 
4771 	while (1) {
4772 		ins_nr = 0;
4773 		ret = btrfs_search_forward(root, &min_key,
4774 					   path, trans->transid);
4775 		if (ret < 0) {
4776 			err = ret;
4777 			goto out_unlock;
4778 		}
4779 		if (ret != 0)
4780 			break;
4781 again:
4782 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4783 		if (min_key.objectid != ino)
4784 			break;
4785 		if (min_key.type > max_key.type)
4786 			break;
4787 
4788 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4789 			need_log_inode_item = false;
4790 
4791 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4792 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4793 		    inode->generation == trans->transid) {
4794 			u64 other_ino = 0;
4795 
4796 			ret = btrfs_check_ref_name_override(path->nodes[0],
4797 					path->slots[0], &min_key, inode,
4798 					&other_ino);
4799 			if (ret < 0) {
4800 				err = ret;
4801 				goto out_unlock;
4802 			} else if (ret > 0 && ctx &&
4803 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4804 				struct btrfs_key inode_key;
4805 				struct inode *other_inode;
4806 
4807 				if (ins_nr > 0) {
4808 					ins_nr++;
4809 				} else {
4810 					ins_nr = 1;
4811 					ins_start_slot = path->slots[0];
4812 				}
4813 				ret = copy_items(trans, inode, dst_path, path,
4814 						 &last_extent, ins_start_slot,
4815 						 ins_nr, inode_only,
4816 						 logged_isize);
4817 				if (ret < 0) {
4818 					err = ret;
4819 					goto out_unlock;
4820 				}
4821 				ins_nr = 0;
4822 				btrfs_release_path(path);
4823 				inode_key.objectid = other_ino;
4824 				inode_key.type = BTRFS_INODE_ITEM_KEY;
4825 				inode_key.offset = 0;
4826 				other_inode = btrfs_iget(fs_info->sb,
4827 							 &inode_key, root,
4828 							 NULL);
4829 				/*
4830 				 * If the other inode that had a conflicting dir
4831 				 * entry was deleted in the current transaction,
4832 				 * we don't need to do more work nor fallback to
4833 				 * a transaction commit.
4834 				 */
4835 				if (IS_ERR(other_inode) &&
4836 				    PTR_ERR(other_inode) == -ENOENT) {
4837 					goto next_key;
4838 				} else if (IS_ERR(other_inode)) {
4839 					err = PTR_ERR(other_inode);
4840 					goto out_unlock;
4841 				}
4842 				/*
4843 				 * We are safe logging the other inode without
4844 				 * acquiring its i_mutex as long as we log with
4845 				 * the LOG_INODE_EXISTS mode. We're safe against
4846 				 * concurrent renames of the other inode as well
4847 				 * because during a rename we pin the log and
4848 				 * update the log with the new name before we
4849 				 * unpin it.
4850 				 */
4851 				err = btrfs_log_inode(trans, root,
4852 						BTRFS_I(other_inode),
4853 						LOG_OTHER_INODE, 0, LLONG_MAX,
4854 						ctx);
4855 				iput(other_inode);
4856 				if (err)
4857 					goto out_unlock;
4858 				else
4859 					goto next_key;
4860 			}
4861 		}
4862 
4863 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4864 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4865 			if (ins_nr == 0)
4866 				goto next_slot;
4867 			ret = copy_items(trans, inode, dst_path, path,
4868 					 &last_extent, ins_start_slot,
4869 					 ins_nr, inode_only, logged_isize);
4870 			if (ret < 0) {
4871 				err = ret;
4872 				goto out_unlock;
4873 			}
4874 			ins_nr = 0;
4875 			if (ret) {
4876 				btrfs_release_path(path);
4877 				continue;
4878 			}
4879 			goto next_slot;
4880 		}
4881 
4882 		src = path->nodes[0];
4883 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4884 			ins_nr++;
4885 			goto next_slot;
4886 		} else if (!ins_nr) {
4887 			ins_start_slot = path->slots[0];
4888 			ins_nr = 1;
4889 			goto next_slot;
4890 		}
4891 
4892 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4893 				 ins_start_slot, ins_nr, inode_only,
4894 				 logged_isize);
4895 		if (ret < 0) {
4896 			err = ret;
4897 			goto out_unlock;
4898 		}
4899 		if (ret) {
4900 			ins_nr = 0;
4901 			btrfs_release_path(path);
4902 			continue;
4903 		}
4904 		ins_nr = 1;
4905 		ins_start_slot = path->slots[0];
4906 next_slot:
4907 
4908 		nritems = btrfs_header_nritems(path->nodes[0]);
4909 		path->slots[0]++;
4910 		if (path->slots[0] < nritems) {
4911 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4912 					      path->slots[0]);
4913 			goto again;
4914 		}
4915 		if (ins_nr) {
4916 			ret = copy_items(trans, inode, dst_path, path,
4917 					 &last_extent, ins_start_slot,
4918 					 ins_nr, inode_only, logged_isize);
4919 			if (ret < 0) {
4920 				err = ret;
4921 				goto out_unlock;
4922 			}
4923 			ret = 0;
4924 			ins_nr = 0;
4925 		}
4926 		btrfs_release_path(path);
4927 next_key:
4928 		if (min_key.offset < (u64)-1) {
4929 			min_key.offset++;
4930 		} else if (min_key.type < max_key.type) {
4931 			min_key.type++;
4932 			min_key.offset = 0;
4933 		} else {
4934 			break;
4935 		}
4936 	}
4937 	if (ins_nr) {
4938 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4939 				 ins_start_slot, ins_nr, inode_only,
4940 				 logged_isize);
4941 		if (ret < 0) {
4942 			err = ret;
4943 			goto out_unlock;
4944 		}
4945 		ret = 0;
4946 		ins_nr = 0;
4947 	}
4948 
4949 	btrfs_release_path(path);
4950 	btrfs_release_path(dst_path);
4951 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4952 	if (err)
4953 		goto out_unlock;
4954 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4955 		btrfs_release_path(path);
4956 		btrfs_release_path(dst_path);
4957 		err = btrfs_log_trailing_hole(trans, root, inode, path);
4958 		if (err)
4959 			goto out_unlock;
4960 	}
4961 log_extents:
4962 	btrfs_release_path(path);
4963 	btrfs_release_path(dst_path);
4964 	if (need_log_inode_item) {
4965 		err = log_inode_item(trans, log, dst_path, inode);
4966 		if (err)
4967 			goto out_unlock;
4968 	}
4969 	if (fast_search) {
4970 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4971 						&logged_list, ctx, start, end);
4972 		if (ret) {
4973 			err = ret;
4974 			goto out_unlock;
4975 		}
4976 	} else if (inode_only == LOG_INODE_ALL) {
4977 		struct extent_map *em, *n;
4978 
4979 		write_lock(&em_tree->lock);
4980 		/*
4981 		 * We can't just remove every em if we're called for a ranged
4982 		 * fsync - that is, one that doesn't cover the whole possible
4983 		 * file range (0 to LLONG_MAX). This is because we can have
4984 		 * em's that fall outside the range we're logging and therefore
4985 		 * their ordered operations haven't completed yet
4986 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4987 		 * didn't get their respective file extent item in the fs/subvol
4988 		 * tree yet, and need to let the next fast fsync (one which
4989 		 * consults the list of modified extent maps) find the em so
4990 		 * that it logs a matching file extent item and waits for the
4991 		 * respective ordered operation to complete (if it's still
4992 		 * running).
4993 		 *
4994 		 * Removing every em outside the range we're logging would make
4995 		 * the next fast fsync not log their matching file extent items,
4996 		 * therefore making us lose data after a log replay.
4997 		 */
4998 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4999 					 list) {
5000 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5001 
5002 			if (em->mod_start >= start && mod_end <= end)
5003 				list_del_init(&em->list);
5004 		}
5005 		write_unlock(&em_tree->lock);
5006 	}
5007 
5008 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5009 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5010 					ctx);
5011 		if (ret) {
5012 			err = ret;
5013 			goto out_unlock;
5014 		}
5015 	}
5016 
5017 	spin_lock(&inode->lock);
5018 	inode->logged_trans = trans->transid;
5019 	inode->last_log_commit = inode->last_sub_trans;
5020 	spin_unlock(&inode->lock);
5021 out_unlock:
5022 	if (unlikely(err))
5023 		btrfs_put_logged_extents(&logged_list);
5024 	else
5025 		btrfs_submit_logged_extents(&logged_list, log);
5026 	mutex_unlock(&inode->log_mutex);
5027 
5028 	btrfs_free_path(path);
5029 	btrfs_free_path(dst_path);
5030 	return err;
5031 }
5032 
5033 /*
5034  * Check if we must fallback to a transaction commit when logging an inode.
5035  * This must be called after logging the inode and is used only in the context
5036  * when fsyncing an inode requires the need to log some other inode - in which
5037  * case we can't lock the i_mutex of each other inode we need to log as that
5038  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5039  * log inodes up or down in the hierarchy) or rename operations for example. So
5040  * we take the log_mutex of the inode after we have logged it and then check for
5041  * its last_unlink_trans value - this is safe because any task setting
5042  * last_unlink_trans must take the log_mutex and it must do this before it does
5043  * the actual unlink operation, so if we do this check before a concurrent task
5044  * sets last_unlink_trans it means we've logged a consistent version/state of
5045  * all the inode items, otherwise we are not sure and must do a transaction
5046  * commit (the concurrent task might have only updated last_unlink_trans before
5047  * we logged the inode or it might have also done the unlink).
5048  */
5049 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5050 					  struct btrfs_inode *inode)
5051 {
5052 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5053 	bool ret = false;
5054 
5055 	mutex_lock(&inode->log_mutex);
5056 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5057 		/*
5058 		 * Make sure any commits to the log are forced to be full
5059 		 * commits.
5060 		 */
5061 		btrfs_set_log_full_commit(fs_info, trans);
5062 		ret = true;
5063 	}
5064 	mutex_unlock(&inode->log_mutex);
5065 
5066 	return ret;
5067 }
5068 
5069 /*
5070  * follow the dentry parent pointers up the chain and see if any
5071  * of the directories in it require a full commit before they can
5072  * be logged.  Returns zero if nothing special needs to be done or 1 if
5073  * a full commit is required.
5074  */
5075 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5076 					       struct btrfs_inode *inode,
5077 					       struct dentry *parent,
5078 					       struct super_block *sb,
5079 					       u64 last_committed)
5080 {
5081 	int ret = 0;
5082 	struct dentry *old_parent = NULL;
5083 	struct btrfs_inode *orig_inode = inode;
5084 
5085 	/*
5086 	 * for regular files, if its inode is already on disk, we don't
5087 	 * have to worry about the parents at all.  This is because
5088 	 * we can use the last_unlink_trans field to record renames
5089 	 * and other fun in this file.
5090 	 */
5091 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5092 	    inode->generation <= last_committed &&
5093 	    inode->last_unlink_trans <= last_committed)
5094 		goto out;
5095 
5096 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5097 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5098 			goto out;
5099 		inode = BTRFS_I(d_inode(parent));
5100 	}
5101 
5102 	while (1) {
5103 		/*
5104 		 * If we are logging a directory then we start with our inode,
5105 		 * not our parent's inode, so we need to skip setting the
5106 		 * logged_trans so that further down in the log code we don't
5107 		 * think this inode has already been logged.
5108 		 */
5109 		if (inode != orig_inode)
5110 			inode->logged_trans = trans->transid;
5111 		smp_mb();
5112 
5113 		if (btrfs_must_commit_transaction(trans, inode)) {
5114 			ret = 1;
5115 			break;
5116 		}
5117 
5118 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5119 			break;
5120 
5121 		if (IS_ROOT(parent)) {
5122 			inode = BTRFS_I(d_inode(parent));
5123 			if (btrfs_must_commit_transaction(trans, inode))
5124 				ret = 1;
5125 			break;
5126 		}
5127 
5128 		parent = dget_parent(parent);
5129 		dput(old_parent);
5130 		old_parent = parent;
5131 		inode = BTRFS_I(d_inode(parent));
5132 
5133 	}
5134 	dput(old_parent);
5135 out:
5136 	return ret;
5137 }
5138 
5139 struct btrfs_dir_list {
5140 	u64 ino;
5141 	struct list_head list;
5142 };
5143 
5144 /*
5145  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5146  * details about the why it is needed.
5147  * This is a recursive operation - if an existing dentry corresponds to a
5148  * directory, that directory's new entries are logged too (same behaviour as
5149  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5150  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5151  * complains about the following circular lock dependency / possible deadlock:
5152  *
5153  *        CPU0                                        CPU1
5154  *        ----                                        ----
5155  * lock(&type->i_mutex_dir_key#3/2);
5156  *                                            lock(sb_internal#2);
5157  *                                            lock(&type->i_mutex_dir_key#3/2);
5158  * lock(&sb->s_type->i_mutex_key#14);
5159  *
5160  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5161  * sb_start_intwrite() in btrfs_start_transaction().
5162  * Not locking i_mutex of the inodes is still safe because:
5163  *
5164  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5165  *    that while logging the inode new references (names) are added or removed
5166  *    from the inode, leaving the logged inode item with a link count that does
5167  *    not match the number of logged inode reference items. This is fine because
5168  *    at log replay time we compute the real number of links and correct the
5169  *    link count in the inode item (see replay_one_buffer() and
5170  *    link_to_fixup_dir());
5171  *
5172  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5173  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5174  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5175  *    has a size that doesn't match the sum of the lengths of all the logged
5176  *    names. This does not result in a problem because if a dir_item key is
5177  *    logged but its matching dir_index key is not logged, at log replay time we
5178  *    don't use it to replay the respective name (see replay_one_name()). On the
5179  *    other hand if only the dir_index key ends up being logged, the respective
5180  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5181  *    keys created (see replay_one_name()).
5182  *    The directory's inode item with a wrong i_size is not a problem as well,
5183  *    since we don't use it at log replay time to set the i_size in the inode
5184  *    item of the fs/subvol tree (see overwrite_item()).
5185  */
5186 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5187 				struct btrfs_root *root,
5188 				struct btrfs_inode *start_inode,
5189 				struct btrfs_log_ctx *ctx)
5190 {
5191 	struct btrfs_fs_info *fs_info = root->fs_info;
5192 	struct btrfs_root *log = root->log_root;
5193 	struct btrfs_path *path;
5194 	LIST_HEAD(dir_list);
5195 	struct btrfs_dir_list *dir_elem;
5196 	int ret = 0;
5197 
5198 	path = btrfs_alloc_path();
5199 	if (!path)
5200 		return -ENOMEM;
5201 
5202 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5203 	if (!dir_elem) {
5204 		btrfs_free_path(path);
5205 		return -ENOMEM;
5206 	}
5207 	dir_elem->ino = btrfs_ino(start_inode);
5208 	list_add_tail(&dir_elem->list, &dir_list);
5209 
5210 	while (!list_empty(&dir_list)) {
5211 		struct extent_buffer *leaf;
5212 		struct btrfs_key min_key;
5213 		int nritems;
5214 		int i;
5215 
5216 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5217 					    list);
5218 		if (ret)
5219 			goto next_dir_inode;
5220 
5221 		min_key.objectid = dir_elem->ino;
5222 		min_key.type = BTRFS_DIR_ITEM_KEY;
5223 		min_key.offset = 0;
5224 again:
5225 		btrfs_release_path(path);
5226 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5227 		if (ret < 0) {
5228 			goto next_dir_inode;
5229 		} else if (ret > 0) {
5230 			ret = 0;
5231 			goto next_dir_inode;
5232 		}
5233 
5234 process_leaf:
5235 		leaf = path->nodes[0];
5236 		nritems = btrfs_header_nritems(leaf);
5237 		for (i = path->slots[0]; i < nritems; i++) {
5238 			struct btrfs_dir_item *di;
5239 			struct btrfs_key di_key;
5240 			struct inode *di_inode;
5241 			struct btrfs_dir_list *new_dir_elem;
5242 			int log_mode = LOG_INODE_EXISTS;
5243 			int type;
5244 
5245 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5246 			if (min_key.objectid != dir_elem->ino ||
5247 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5248 				goto next_dir_inode;
5249 
5250 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5251 			type = btrfs_dir_type(leaf, di);
5252 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5253 			    type != BTRFS_FT_DIR)
5254 				continue;
5255 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5256 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5257 				continue;
5258 
5259 			btrfs_release_path(path);
5260 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5261 			if (IS_ERR(di_inode)) {
5262 				ret = PTR_ERR(di_inode);
5263 				goto next_dir_inode;
5264 			}
5265 
5266 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5267 				iput(di_inode);
5268 				break;
5269 			}
5270 
5271 			ctx->log_new_dentries = false;
5272 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5273 				log_mode = LOG_INODE_ALL;
5274 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5275 					      log_mode, 0, LLONG_MAX, ctx);
5276 			if (!ret &&
5277 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5278 				ret = 1;
5279 			iput(di_inode);
5280 			if (ret)
5281 				goto next_dir_inode;
5282 			if (ctx->log_new_dentries) {
5283 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5284 						       GFP_NOFS);
5285 				if (!new_dir_elem) {
5286 					ret = -ENOMEM;
5287 					goto next_dir_inode;
5288 				}
5289 				new_dir_elem->ino = di_key.objectid;
5290 				list_add_tail(&new_dir_elem->list, &dir_list);
5291 			}
5292 			break;
5293 		}
5294 		if (i == nritems) {
5295 			ret = btrfs_next_leaf(log, path);
5296 			if (ret < 0) {
5297 				goto next_dir_inode;
5298 			} else if (ret > 0) {
5299 				ret = 0;
5300 				goto next_dir_inode;
5301 			}
5302 			goto process_leaf;
5303 		}
5304 		if (min_key.offset < (u64)-1) {
5305 			min_key.offset++;
5306 			goto again;
5307 		}
5308 next_dir_inode:
5309 		list_del(&dir_elem->list);
5310 		kfree(dir_elem);
5311 	}
5312 
5313 	btrfs_free_path(path);
5314 	return ret;
5315 }
5316 
5317 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5318 				 struct btrfs_inode *inode,
5319 				 struct btrfs_log_ctx *ctx)
5320 {
5321 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5322 	int ret;
5323 	struct btrfs_path *path;
5324 	struct btrfs_key key;
5325 	struct btrfs_root *root = inode->root;
5326 	const u64 ino = btrfs_ino(inode);
5327 
5328 	path = btrfs_alloc_path();
5329 	if (!path)
5330 		return -ENOMEM;
5331 	path->skip_locking = 1;
5332 	path->search_commit_root = 1;
5333 
5334 	key.objectid = ino;
5335 	key.type = BTRFS_INODE_REF_KEY;
5336 	key.offset = 0;
5337 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5338 	if (ret < 0)
5339 		goto out;
5340 
5341 	while (true) {
5342 		struct extent_buffer *leaf = path->nodes[0];
5343 		int slot = path->slots[0];
5344 		u32 cur_offset = 0;
5345 		u32 item_size;
5346 		unsigned long ptr;
5347 
5348 		if (slot >= btrfs_header_nritems(leaf)) {
5349 			ret = btrfs_next_leaf(root, path);
5350 			if (ret < 0)
5351 				goto out;
5352 			else if (ret > 0)
5353 				break;
5354 			continue;
5355 		}
5356 
5357 		btrfs_item_key_to_cpu(leaf, &key, slot);
5358 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5359 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5360 			break;
5361 
5362 		item_size = btrfs_item_size_nr(leaf, slot);
5363 		ptr = btrfs_item_ptr_offset(leaf, slot);
5364 		while (cur_offset < item_size) {
5365 			struct btrfs_key inode_key;
5366 			struct inode *dir_inode;
5367 
5368 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5369 			inode_key.offset = 0;
5370 
5371 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5372 				struct btrfs_inode_extref *extref;
5373 
5374 				extref = (struct btrfs_inode_extref *)
5375 					(ptr + cur_offset);
5376 				inode_key.objectid = btrfs_inode_extref_parent(
5377 					leaf, extref);
5378 				cur_offset += sizeof(*extref);
5379 				cur_offset += btrfs_inode_extref_name_len(leaf,
5380 					extref);
5381 			} else {
5382 				inode_key.objectid = key.offset;
5383 				cur_offset = item_size;
5384 			}
5385 
5386 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5387 					       root, NULL);
5388 			/* If parent inode was deleted, skip it. */
5389 			if (IS_ERR(dir_inode))
5390 				continue;
5391 
5392 			if (ctx)
5393 				ctx->log_new_dentries = false;
5394 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5395 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5396 			if (!ret &&
5397 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5398 				ret = 1;
5399 			if (!ret && ctx && ctx->log_new_dentries)
5400 				ret = log_new_dir_dentries(trans, root,
5401 						   BTRFS_I(dir_inode), ctx);
5402 			iput(dir_inode);
5403 			if (ret)
5404 				goto out;
5405 		}
5406 		path->slots[0]++;
5407 	}
5408 	ret = 0;
5409 out:
5410 	btrfs_free_path(path);
5411 	return ret;
5412 }
5413 
5414 /*
5415  * helper function around btrfs_log_inode to make sure newly created
5416  * parent directories also end up in the log.  A minimal inode and backref
5417  * only logging is done of any parent directories that are older than
5418  * the last committed transaction
5419  */
5420 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5421 				  struct btrfs_root *root,
5422 				  struct btrfs_inode *inode,
5423 				  struct dentry *parent,
5424 				  const loff_t start,
5425 				  const loff_t end,
5426 				  int exists_only,
5427 				  struct btrfs_log_ctx *ctx)
5428 {
5429 	struct btrfs_fs_info *fs_info = root->fs_info;
5430 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5431 	struct super_block *sb;
5432 	struct dentry *old_parent = NULL;
5433 	int ret = 0;
5434 	u64 last_committed = fs_info->last_trans_committed;
5435 	bool log_dentries = false;
5436 	struct btrfs_inode *orig_inode = inode;
5437 
5438 	sb = inode->vfs_inode.i_sb;
5439 
5440 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5441 		ret = 1;
5442 		goto end_no_trans;
5443 	}
5444 
5445 	/*
5446 	 * The prev transaction commit doesn't complete, we need do
5447 	 * full commit by ourselves.
5448 	 */
5449 	if (fs_info->last_trans_log_full_commit >
5450 	    fs_info->last_trans_committed) {
5451 		ret = 1;
5452 		goto end_no_trans;
5453 	}
5454 
5455 	if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) {
5456 		ret = 1;
5457 		goto end_no_trans;
5458 	}
5459 
5460 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5461 			last_committed);
5462 	if (ret)
5463 		goto end_no_trans;
5464 
5465 	if (btrfs_inode_in_log(inode, trans->transid)) {
5466 		ret = BTRFS_NO_LOG_SYNC;
5467 		goto end_no_trans;
5468 	}
5469 
5470 	ret = start_log_trans(trans, root, ctx);
5471 	if (ret)
5472 		goto end_no_trans;
5473 
5474 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5475 	if (ret)
5476 		goto end_trans;
5477 
5478 	/*
5479 	 * for regular files, if its inode is already on disk, we don't
5480 	 * have to worry about the parents at all.  This is because
5481 	 * we can use the last_unlink_trans field to record renames
5482 	 * and other fun in this file.
5483 	 */
5484 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5485 	    inode->generation <= last_committed &&
5486 	    inode->last_unlink_trans <= last_committed) {
5487 		ret = 0;
5488 		goto end_trans;
5489 	}
5490 
5491 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5492 		log_dentries = true;
5493 
5494 	/*
5495 	 * On unlink we must make sure all our current and old parent directory
5496 	 * inodes are fully logged. This is to prevent leaving dangling
5497 	 * directory index entries in directories that were our parents but are
5498 	 * not anymore. Not doing this results in old parent directory being
5499 	 * impossible to delete after log replay (rmdir will always fail with
5500 	 * error -ENOTEMPTY).
5501 	 *
5502 	 * Example 1:
5503 	 *
5504 	 * mkdir testdir
5505 	 * touch testdir/foo
5506 	 * ln testdir/foo testdir/bar
5507 	 * sync
5508 	 * unlink testdir/bar
5509 	 * xfs_io -c fsync testdir/foo
5510 	 * <power failure>
5511 	 * mount fs, triggers log replay
5512 	 *
5513 	 * If we don't log the parent directory (testdir), after log replay the
5514 	 * directory still has an entry pointing to the file inode using the bar
5515 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5516 	 * the file inode has a link count of 1.
5517 	 *
5518 	 * Example 2:
5519 	 *
5520 	 * mkdir testdir
5521 	 * touch foo
5522 	 * ln foo testdir/foo2
5523 	 * ln foo testdir/foo3
5524 	 * sync
5525 	 * unlink testdir/foo3
5526 	 * xfs_io -c fsync foo
5527 	 * <power failure>
5528 	 * mount fs, triggers log replay
5529 	 *
5530 	 * Similar as the first example, after log replay the parent directory
5531 	 * testdir still has an entry pointing to the inode file with name foo3
5532 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5533 	 * and has a link count of 2.
5534 	 */
5535 	if (inode->last_unlink_trans > last_committed) {
5536 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5537 		if (ret)
5538 			goto end_trans;
5539 	}
5540 
5541 	while (1) {
5542 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5543 			break;
5544 
5545 		inode = BTRFS_I(d_inode(parent));
5546 		if (root != inode->root)
5547 			break;
5548 
5549 		if (inode->generation > last_committed) {
5550 			ret = btrfs_log_inode(trans, root, inode,
5551 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5552 			if (ret)
5553 				goto end_trans;
5554 		}
5555 		if (IS_ROOT(parent))
5556 			break;
5557 
5558 		parent = dget_parent(parent);
5559 		dput(old_parent);
5560 		old_parent = parent;
5561 	}
5562 	if (log_dentries)
5563 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5564 	else
5565 		ret = 0;
5566 end_trans:
5567 	dput(old_parent);
5568 	if (ret < 0) {
5569 		btrfs_set_log_full_commit(fs_info, trans);
5570 		ret = 1;
5571 	}
5572 
5573 	if (ret)
5574 		btrfs_remove_log_ctx(root, ctx);
5575 	btrfs_end_log_trans(root);
5576 end_no_trans:
5577 	return ret;
5578 }
5579 
5580 /*
5581  * it is not safe to log dentry if the chunk root has added new
5582  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5583  * If this returns 1, you must commit the transaction to safely get your
5584  * data on disk.
5585  */
5586 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5587 			  struct btrfs_root *root, struct dentry *dentry,
5588 			  const loff_t start,
5589 			  const loff_t end,
5590 			  struct btrfs_log_ctx *ctx)
5591 {
5592 	struct dentry *parent = dget_parent(dentry);
5593 	int ret;
5594 
5595 	ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)),
5596 			parent, start, end, 0, ctx);
5597 	dput(parent);
5598 
5599 	return ret;
5600 }
5601 
5602 /*
5603  * should be called during mount to recover any replay any log trees
5604  * from the FS
5605  */
5606 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5607 {
5608 	int ret;
5609 	struct btrfs_path *path;
5610 	struct btrfs_trans_handle *trans;
5611 	struct btrfs_key key;
5612 	struct btrfs_key found_key;
5613 	struct btrfs_key tmp_key;
5614 	struct btrfs_root *log;
5615 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5616 	struct walk_control wc = {
5617 		.process_func = process_one_buffer,
5618 		.stage = 0,
5619 	};
5620 
5621 	path = btrfs_alloc_path();
5622 	if (!path)
5623 		return -ENOMEM;
5624 
5625 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5626 
5627 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5628 	if (IS_ERR(trans)) {
5629 		ret = PTR_ERR(trans);
5630 		goto error;
5631 	}
5632 
5633 	wc.trans = trans;
5634 	wc.pin = 1;
5635 
5636 	ret = walk_log_tree(trans, log_root_tree, &wc);
5637 	if (ret) {
5638 		btrfs_handle_fs_error(fs_info, ret,
5639 			"Failed to pin buffers while recovering log root tree.");
5640 		goto error;
5641 	}
5642 
5643 again:
5644 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5645 	key.offset = (u64)-1;
5646 	key.type = BTRFS_ROOT_ITEM_KEY;
5647 
5648 	while (1) {
5649 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5650 
5651 		if (ret < 0) {
5652 			btrfs_handle_fs_error(fs_info, ret,
5653 				    "Couldn't find tree log root.");
5654 			goto error;
5655 		}
5656 		if (ret > 0) {
5657 			if (path->slots[0] == 0)
5658 				break;
5659 			path->slots[0]--;
5660 		}
5661 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5662 				      path->slots[0]);
5663 		btrfs_release_path(path);
5664 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5665 			break;
5666 
5667 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5668 		if (IS_ERR(log)) {
5669 			ret = PTR_ERR(log);
5670 			btrfs_handle_fs_error(fs_info, ret,
5671 				    "Couldn't read tree log root.");
5672 			goto error;
5673 		}
5674 
5675 		tmp_key.objectid = found_key.offset;
5676 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5677 		tmp_key.offset = (u64)-1;
5678 
5679 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5680 		if (IS_ERR(wc.replay_dest)) {
5681 			ret = PTR_ERR(wc.replay_dest);
5682 			free_extent_buffer(log->node);
5683 			free_extent_buffer(log->commit_root);
5684 			kfree(log);
5685 			btrfs_handle_fs_error(fs_info, ret,
5686 				"Couldn't read target root for tree log recovery.");
5687 			goto error;
5688 		}
5689 
5690 		wc.replay_dest->log_root = log;
5691 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5692 		ret = walk_log_tree(trans, log, &wc);
5693 
5694 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5695 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5696 						      path);
5697 		}
5698 
5699 		key.offset = found_key.offset - 1;
5700 		wc.replay_dest->log_root = NULL;
5701 		free_extent_buffer(log->node);
5702 		free_extent_buffer(log->commit_root);
5703 		kfree(log);
5704 
5705 		if (ret)
5706 			goto error;
5707 
5708 		if (found_key.offset == 0)
5709 			break;
5710 	}
5711 	btrfs_release_path(path);
5712 
5713 	/* step one is to pin it all, step two is to replay just inodes */
5714 	if (wc.pin) {
5715 		wc.pin = 0;
5716 		wc.process_func = replay_one_buffer;
5717 		wc.stage = LOG_WALK_REPLAY_INODES;
5718 		goto again;
5719 	}
5720 	/* step three is to replay everything */
5721 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5722 		wc.stage++;
5723 		goto again;
5724 	}
5725 
5726 	btrfs_free_path(path);
5727 
5728 	/* step 4: commit the transaction, which also unpins the blocks */
5729 	ret = btrfs_commit_transaction(trans);
5730 	if (ret)
5731 		return ret;
5732 
5733 	free_extent_buffer(log_root_tree->node);
5734 	log_root_tree->log_root = NULL;
5735 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5736 	kfree(log_root_tree);
5737 
5738 	return 0;
5739 error:
5740 	if (wc.trans)
5741 		btrfs_end_transaction(wc.trans);
5742 	btrfs_free_path(path);
5743 	return ret;
5744 }
5745 
5746 /*
5747  * there are some corner cases where we want to force a full
5748  * commit instead of allowing a directory to be logged.
5749  *
5750  * They revolve around files there were unlinked from the directory, and
5751  * this function updates the parent directory so that a full commit is
5752  * properly done if it is fsync'd later after the unlinks are done.
5753  *
5754  * Must be called before the unlink operations (updates to the subvolume tree,
5755  * inodes, etc) are done.
5756  */
5757 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5758 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
5759 			     int for_rename)
5760 {
5761 	/*
5762 	 * when we're logging a file, if it hasn't been renamed
5763 	 * or unlinked, and its inode is fully committed on disk,
5764 	 * we don't have to worry about walking up the directory chain
5765 	 * to log its parents.
5766 	 *
5767 	 * So, we use the last_unlink_trans field to put this transid
5768 	 * into the file.  When the file is logged we check it and
5769 	 * don't log the parents if the file is fully on disk.
5770 	 */
5771 	mutex_lock(&inode->log_mutex);
5772 	inode->last_unlink_trans = trans->transid;
5773 	mutex_unlock(&inode->log_mutex);
5774 
5775 	/*
5776 	 * if this directory was already logged any new
5777 	 * names for this file/dir will get recorded
5778 	 */
5779 	smp_mb();
5780 	if (dir->logged_trans == trans->transid)
5781 		return;
5782 
5783 	/*
5784 	 * if the inode we're about to unlink was logged,
5785 	 * the log will be properly updated for any new names
5786 	 */
5787 	if (inode->logged_trans == trans->transid)
5788 		return;
5789 
5790 	/*
5791 	 * when renaming files across directories, if the directory
5792 	 * there we're unlinking from gets fsync'd later on, there's
5793 	 * no way to find the destination directory later and fsync it
5794 	 * properly.  So, we have to be conservative and force commits
5795 	 * so the new name gets discovered.
5796 	 */
5797 	if (for_rename)
5798 		goto record;
5799 
5800 	/* we can safely do the unlink without any special recording */
5801 	return;
5802 
5803 record:
5804 	mutex_lock(&dir->log_mutex);
5805 	dir->last_unlink_trans = trans->transid;
5806 	mutex_unlock(&dir->log_mutex);
5807 }
5808 
5809 /*
5810  * Make sure that if someone attempts to fsync the parent directory of a deleted
5811  * snapshot, it ends up triggering a transaction commit. This is to guarantee
5812  * that after replaying the log tree of the parent directory's root we will not
5813  * see the snapshot anymore and at log replay time we will not see any log tree
5814  * corresponding to the deleted snapshot's root, which could lead to replaying
5815  * it after replaying the log tree of the parent directory (which would replay
5816  * the snapshot delete operation).
5817  *
5818  * Must be called before the actual snapshot destroy operation (updates to the
5819  * parent root and tree of tree roots trees, etc) are done.
5820  */
5821 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5822 				   struct btrfs_inode *dir)
5823 {
5824 	mutex_lock(&dir->log_mutex);
5825 	dir->last_unlink_trans = trans->transid;
5826 	mutex_unlock(&dir->log_mutex);
5827 }
5828 
5829 /*
5830  * Call this after adding a new name for a file and it will properly
5831  * update the log to reflect the new name.
5832  *
5833  * It will return zero if all goes well, and it will return 1 if a
5834  * full transaction commit is required.
5835  */
5836 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5837 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
5838 			struct dentry *parent)
5839 {
5840 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5841 	struct btrfs_root *root = inode->root;
5842 
5843 	/*
5844 	 * this will force the logging code to walk the dentry chain
5845 	 * up for the file
5846 	 */
5847 	if (S_ISREG(inode->vfs_inode.i_mode))
5848 		inode->last_unlink_trans = trans->transid;
5849 
5850 	/*
5851 	 * if this inode hasn't been logged and directory we're renaming it
5852 	 * from hasn't been logged, we don't need to log it
5853 	 */
5854 	if (inode->logged_trans <= fs_info->last_trans_committed &&
5855 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
5856 		return 0;
5857 
5858 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5859 				      LLONG_MAX, 1, NULL);
5860 }
5861 
5862