1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "block-group.h" 21 #include "space-info.h" 22 #include "zoned.h" 23 #include "inode-item.h" 24 25 /* magic values for the inode_only field in btrfs_log_inode: 26 * 27 * LOG_INODE_ALL means to log everything 28 * LOG_INODE_EXISTS means to log just enough to recreate the inode 29 * during log replay 30 */ 31 enum { 32 LOG_INODE_ALL, 33 LOG_INODE_EXISTS, 34 LOG_OTHER_INODE, 35 LOG_OTHER_INODE_ALL, 36 }; 37 38 /* 39 * directory trouble cases 40 * 41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 42 * log, we must force a full commit before doing an fsync of the directory 43 * where the unlink was done. 44 * ---> record transid of last unlink/rename per directory 45 * 46 * mkdir foo/some_dir 47 * normal commit 48 * rename foo/some_dir foo2/some_dir 49 * mkdir foo/some_dir 50 * fsync foo/some_dir/some_file 51 * 52 * The fsync above will unlink the original some_dir without recording 53 * it in its new location (foo2). After a crash, some_dir will be gone 54 * unless the fsync of some_file forces a full commit 55 * 56 * 2) we must log any new names for any file or dir that is in the fsync 57 * log. ---> check inode while renaming/linking. 58 * 59 * 2a) we must log any new names for any file or dir during rename 60 * when the directory they are being removed from was logged. 61 * ---> check inode and old parent dir during rename 62 * 63 * 2a is actually the more important variant. With the extra logging 64 * a crash might unlink the old name without recreating the new one 65 * 66 * 3) after a crash, we must go through any directories with a link count 67 * of zero and redo the rm -rf 68 * 69 * mkdir f1/foo 70 * normal commit 71 * rm -rf f1/foo 72 * fsync(f1) 73 * 74 * The directory f1 was fully removed from the FS, but fsync was never 75 * called on f1, only its parent dir. After a crash the rm -rf must 76 * be replayed. This must be able to recurse down the entire 77 * directory tree. The inode link count fixup code takes care of the 78 * ugly details. 79 */ 80 81 /* 82 * stages for the tree walking. The first 83 * stage (0) is to only pin down the blocks we find 84 * the second stage (1) is to make sure that all the inodes 85 * we find in the log are created in the subvolume. 86 * 87 * The last stage is to deal with directories and links and extents 88 * and all the other fun semantics 89 */ 90 enum { 91 LOG_WALK_PIN_ONLY, 92 LOG_WALK_REPLAY_INODES, 93 LOG_WALK_REPLAY_DIR_INDEX, 94 LOG_WALK_REPLAY_ALL, 95 }; 96 97 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 98 struct btrfs_inode *inode, 99 int inode_only, 100 struct btrfs_log_ctx *ctx); 101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 102 struct btrfs_root *root, 103 struct btrfs_path *path, u64 objectid); 104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 105 struct btrfs_root *root, 106 struct btrfs_root *log, 107 struct btrfs_path *path, 108 u64 dirid, int del_all); 109 static void wait_log_commit(struct btrfs_root *root, int transid); 110 111 /* 112 * tree logging is a special write ahead log used to make sure that 113 * fsyncs and O_SYNCs can happen without doing full tree commits. 114 * 115 * Full tree commits are expensive because they require commonly 116 * modified blocks to be recowed, creating many dirty pages in the 117 * extent tree an 4x-6x higher write load than ext3. 118 * 119 * Instead of doing a tree commit on every fsync, we use the 120 * key ranges and transaction ids to find items for a given file or directory 121 * that have changed in this transaction. Those items are copied into 122 * a special tree (one per subvolume root), that tree is written to disk 123 * and then the fsync is considered complete. 124 * 125 * After a crash, items are copied out of the log-tree back into the 126 * subvolume tree. Any file data extents found are recorded in the extent 127 * allocation tree, and the log-tree freed. 128 * 129 * The log tree is read three times, once to pin down all the extents it is 130 * using in ram and once, once to create all the inodes logged in the tree 131 * and once to do all the other items. 132 */ 133 134 /* 135 * start a sub transaction and setup the log tree 136 * this increments the log tree writer count to make the people 137 * syncing the tree wait for us to finish 138 */ 139 static int start_log_trans(struct btrfs_trans_handle *trans, 140 struct btrfs_root *root, 141 struct btrfs_log_ctx *ctx) 142 { 143 struct btrfs_fs_info *fs_info = root->fs_info; 144 struct btrfs_root *tree_root = fs_info->tree_root; 145 const bool zoned = btrfs_is_zoned(fs_info); 146 int ret = 0; 147 bool created = false; 148 149 /* 150 * First check if the log root tree was already created. If not, create 151 * it before locking the root's log_mutex, just to keep lockdep happy. 152 */ 153 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { 154 mutex_lock(&tree_root->log_mutex); 155 if (!fs_info->log_root_tree) { 156 ret = btrfs_init_log_root_tree(trans, fs_info); 157 if (!ret) { 158 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); 159 created = true; 160 } 161 } 162 mutex_unlock(&tree_root->log_mutex); 163 if (ret) 164 return ret; 165 } 166 167 mutex_lock(&root->log_mutex); 168 169 again: 170 if (root->log_root) { 171 int index = (root->log_transid + 1) % 2; 172 173 if (btrfs_need_log_full_commit(trans)) { 174 ret = -EAGAIN; 175 goto out; 176 } 177 178 if (zoned && atomic_read(&root->log_commit[index])) { 179 wait_log_commit(root, root->log_transid - 1); 180 goto again; 181 } 182 183 if (!root->log_start_pid) { 184 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 185 root->log_start_pid = current->pid; 186 } else if (root->log_start_pid != current->pid) { 187 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 188 } 189 } else { 190 /* 191 * This means fs_info->log_root_tree was already created 192 * for some other FS trees. Do the full commit not to mix 193 * nodes from multiple log transactions to do sequential 194 * writing. 195 */ 196 if (zoned && !created) { 197 ret = -EAGAIN; 198 goto out; 199 } 200 201 ret = btrfs_add_log_tree(trans, root); 202 if (ret) 203 goto out; 204 205 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 206 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 207 root->log_start_pid = current->pid; 208 } 209 210 atomic_inc(&root->log_writers); 211 if (!ctx->logging_new_name) { 212 int index = root->log_transid % 2; 213 list_add_tail(&ctx->list, &root->log_ctxs[index]); 214 ctx->log_transid = root->log_transid; 215 } 216 217 out: 218 mutex_unlock(&root->log_mutex); 219 return ret; 220 } 221 222 /* 223 * returns 0 if there was a log transaction running and we were able 224 * to join, or returns -ENOENT if there were not transactions 225 * in progress 226 */ 227 static int join_running_log_trans(struct btrfs_root *root) 228 { 229 const bool zoned = btrfs_is_zoned(root->fs_info); 230 int ret = -ENOENT; 231 232 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 233 return ret; 234 235 mutex_lock(&root->log_mutex); 236 again: 237 if (root->log_root) { 238 int index = (root->log_transid + 1) % 2; 239 240 ret = 0; 241 if (zoned && atomic_read(&root->log_commit[index])) { 242 wait_log_commit(root, root->log_transid - 1); 243 goto again; 244 } 245 atomic_inc(&root->log_writers); 246 } 247 mutex_unlock(&root->log_mutex); 248 return ret; 249 } 250 251 /* 252 * This either makes the current running log transaction wait 253 * until you call btrfs_end_log_trans() or it makes any future 254 * log transactions wait until you call btrfs_end_log_trans() 255 */ 256 void btrfs_pin_log_trans(struct btrfs_root *root) 257 { 258 atomic_inc(&root->log_writers); 259 } 260 261 /* 262 * indicate we're done making changes to the log tree 263 * and wake up anyone waiting to do a sync 264 */ 265 void btrfs_end_log_trans(struct btrfs_root *root) 266 { 267 if (atomic_dec_and_test(&root->log_writers)) { 268 /* atomic_dec_and_test implies a barrier */ 269 cond_wake_up_nomb(&root->log_writer_wait); 270 } 271 } 272 273 static int btrfs_write_tree_block(struct extent_buffer *buf) 274 { 275 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 276 buf->start + buf->len - 1); 277 } 278 279 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 280 { 281 filemap_fdatawait_range(buf->pages[0]->mapping, 282 buf->start, buf->start + buf->len - 1); 283 } 284 285 /* 286 * the walk control struct is used to pass state down the chain when 287 * processing the log tree. The stage field tells us which part 288 * of the log tree processing we are currently doing. The others 289 * are state fields used for that specific part 290 */ 291 struct walk_control { 292 /* should we free the extent on disk when done? This is used 293 * at transaction commit time while freeing a log tree 294 */ 295 int free; 296 297 /* should we write out the extent buffer? This is used 298 * while flushing the log tree to disk during a sync 299 */ 300 int write; 301 302 /* should we wait for the extent buffer io to finish? Also used 303 * while flushing the log tree to disk for a sync 304 */ 305 int wait; 306 307 /* pin only walk, we record which extents on disk belong to the 308 * log trees 309 */ 310 int pin; 311 312 /* what stage of the replay code we're currently in */ 313 int stage; 314 315 /* 316 * Ignore any items from the inode currently being processed. Needs 317 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 318 * the LOG_WALK_REPLAY_INODES stage. 319 */ 320 bool ignore_cur_inode; 321 322 /* the root we are currently replaying */ 323 struct btrfs_root *replay_dest; 324 325 /* the trans handle for the current replay */ 326 struct btrfs_trans_handle *trans; 327 328 /* the function that gets used to process blocks we find in the 329 * tree. Note the extent_buffer might not be up to date when it is 330 * passed in, and it must be checked or read if you need the data 331 * inside it 332 */ 333 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 334 struct walk_control *wc, u64 gen, int level); 335 }; 336 337 /* 338 * process_func used to pin down extents, write them or wait on them 339 */ 340 static int process_one_buffer(struct btrfs_root *log, 341 struct extent_buffer *eb, 342 struct walk_control *wc, u64 gen, int level) 343 { 344 struct btrfs_fs_info *fs_info = log->fs_info; 345 int ret = 0; 346 347 /* 348 * If this fs is mixed then we need to be able to process the leaves to 349 * pin down any logged extents, so we have to read the block. 350 */ 351 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 352 ret = btrfs_read_buffer(eb, gen, level, NULL); 353 if (ret) 354 return ret; 355 } 356 357 if (wc->pin) 358 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start, 359 eb->len); 360 361 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 362 if (wc->pin && btrfs_header_level(eb) == 0) 363 ret = btrfs_exclude_logged_extents(eb); 364 if (wc->write) 365 btrfs_write_tree_block(eb); 366 if (wc->wait) 367 btrfs_wait_tree_block_writeback(eb); 368 } 369 return ret; 370 } 371 372 static int do_overwrite_item(struct btrfs_trans_handle *trans, 373 struct btrfs_root *root, 374 struct btrfs_path *path, 375 struct extent_buffer *eb, int slot, 376 struct btrfs_key *key) 377 { 378 int ret; 379 u32 item_size; 380 u64 saved_i_size = 0; 381 int save_old_i_size = 0; 382 unsigned long src_ptr; 383 unsigned long dst_ptr; 384 int overwrite_root = 0; 385 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 386 387 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 388 overwrite_root = 1; 389 390 item_size = btrfs_item_size(eb, slot); 391 src_ptr = btrfs_item_ptr_offset(eb, slot); 392 393 /* Our caller must have done a search for the key for us. */ 394 ASSERT(path->nodes[0] != NULL); 395 396 /* 397 * And the slot must point to the exact key or the slot where the key 398 * should be at (the first item with a key greater than 'key') 399 */ 400 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 401 struct btrfs_key found_key; 402 403 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 404 ret = btrfs_comp_cpu_keys(&found_key, key); 405 ASSERT(ret >= 0); 406 } else { 407 ret = 1; 408 } 409 410 if (ret == 0) { 411 char *src_copy; 412 char *dst_copy; 413 u32 dst_size = btrfs_item_size(path->nodes[0], 414 path->slots[0]); 415 if (dst_size != item_size) 416 goto insert; 417 418 if (item_size == 0) { 419 btrfs_release_path(path); 420 return 0; 421 } 422 dst_copy = kmalloc(item_size, GFP_NOFS); 423 src_copy = kmalloc(item_size, GFP_NOFS); 424 if (!dst_copy || !src_copy) { 425 btrfs_release_path(path); 426 kfree(dst_copy); 427 kfree(src_copy); 428 return -ENOMEM; 429 } 430 431 read_extent_buffer(eb, src_copy, src_ptr, item_size); 432 433 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 434 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 435 item_size); 436 ret = memcmp(dst_copy, src_copy, item_size); 437 438 kfree(dst_copy); 439 kfree(src_copy); 440 /* 441 * they have the same contents, just return, this saves 442 * us from cowing blocks in the destination tree and doing 443 * extra writes that may not have been done by a previous 444 * sync 445 */ 446 if (ret == 0) { 447 btrfs_release_path(path); 448 return 0; 449 } 450 451 /* 452 * We need to load the old nbytes into the inode so when we 453 * replay the extents we've logged we get the right nbytes. 454 */ 455 if (inode_item) { 456 struct btrfs_inode_item *item; 457 u64 nbytes; 458 u32 mode; 459 460 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 461 struct btrfs_inode_item); 462 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 463 item = btrfs_item_ptr(eb, slot, 464 struct btrfs_inode_item); 465 btrfs_set_inode_nbytes(eb, item, nbytes); 466 467 /* 468 * If this is a directory we need to reset the i_size to 469 * 0 so that we can set it up properly when replaying 470 * the rest of the items in this log. 471 */ 472 mode = btrfs_inode_mode(eb, item); 473 if (S_ISDIR(mode)) 474 btrfs_set_inode_size(eb, item, 0); 475 } 476 } else if (inode_item) { 477 struct btrfs_inode_item *item; 478 u32 mode; 479 480 /* 481 * New inode, set nbytes to 0 so that the nbytes comes out 482 * properly when we replay the extents. 483 */ 484 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 485 btrfs_set_inode_nbytes(eb, item, 0); 486 487 /* 488 * If this is a directory we need to reset the i_size to 0 so 489 * that we can set it up properly when replaying the rest of 490 * the items in this log. 491 */ 492 mode = btrfs_inode_mode(eb, item); 493 if (S_ISDIR(mode)) 494 btrfs_set_inode_size(eb, item, 0); 495 } 496 insert: 497 btrfs_release_path(path); 498 /* try to insert the key into the destination tree */ 499 path->skip_release_on_error = 1; 500 ret = btrfs_insert_empty_item(trans, root, path, 501 key, item_size); 502 path->skip_release_on_error = 0; 503 504 /* make sure any existing item is the correct size */ 505 if (ret == -EEXIST || ret == -EOVERFLOW) { 506 u32 found_size; 507 found_size = btrfs_item_size(path->nodes[0], 508 path->slots[0]); 509 if (found_size > item_size) 510 btrfs_truncate_item(path, item_size, 1); 511 else if (found_size < item_size) 512 btrfs_extend_item(path, item_size - found_size); 513 } else if (ret) { 514 return ret; 515 } 516 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 517 path->slots[0]); 518 519 /* don't overwrite an existing inode if the generation number 520 * was logged as zero. This is done when the tree logging code 521 * is just logging an inode to make sure it exists after recovery. 522 * 523 * Also, don't overwrite i_size on directories during replay. 524 * log replay inserts and removes directory items based on the 525 * state of the tree found in the subvolume, and i_size is modified 526 * as it goes 527 */ 528 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 529 struct btrfs_inode_item *src_item; 530 struct btrfs_inode_item *dst_item; 531 532 src_item = (struct btrfs_inode_item *)src_ptr; 533 dst_item = (struct btrfs_inode_item *)dst_ptr; 534 535 if (btrfs_inode_generation(eb, src_item) == 0) { 536 struct extent_buffer *dst_eb = path->nodes[0]; 537 const u64 ino_size = btrfs_inode_size(eb, src_item); 538 539 /* 540 * For regular files an ino_size == 0 is used only when 541 * logging that an inode exists, as part of a directory 542 * fsync, and the inode wasn't fsynced before. In this 543 * case don't set the size of the inode in the fs/subvol 544 * tree, otherwise we would be throwing valid data away. 545 */ 546 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 547 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 548 ino_size != 0) 549 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 550 goto no_copy; 551 } 552 553 if (overwrite_root && 554 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 555 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 556 save_old_i_size = 1; 557 saved_i_size = btrfs_inode_size(path->nodes[0], 558 dst_item); 559 } 560 } 561 562 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 563 src_ptr, item_size); 564 565 if (save_old_i_size) { 566 struct btrfs_inode_item *dst_item; 567 dst_item = (struct btrfs_inode_item *)dst_ptr; 568 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 569 } 570 571 /* make sure the generation is filled in */ 572 if (key->type == BTRFS_INODE_ITEM_KEY) { 573 struct btrfs_inode_item *dst_item; 574 dst_item = (struct btrfs_inode_item *)dst_ptr; 575 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 576 btrfs_set_inode_generation(path->nodes[0], dst_item, 577 trans->transid); 578 } 579 } 580 no_copy: 581 btrfs_mark_buffer_dirty(path->nodes[0]); 582 btrfs_release_path(path); 583 return 0; 584 } 585 586 /* 587 * Item overwrite used by replay and tree logging. eb, slot and key all refer 588 * to the src data we are copying out. 589 * 590 * root is the tree we are copying into, and path is a scratch 591 * path for use in this function (it should be released on entry and 592 * will be released on exit). 593 * 594 * If the key is already in the destination tree the existing item is 595 * overwritten. If the existing item isn't big enough, it is extended. 596 * If it is too large, it is truncated. 597 * 598 * If the key isn't in the destination yet, a new item is inserted. 599 */ 600 static int overwrite_item(struct btrfs_trans_handle *trans, 601 struct btrfs_root *root, 602 struct btrfs_path *path, 603 struct extent_buffer *eb, int slot, 604 struct btrfs_key *key) 605 { 606 int ret; 607 608 /* Look for the key in the destination tree. */ 609 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 610 if (ret < 0) 611 return ret; 612 613 return do_overwrite_item(trans, root, path, eb, slot, key); 614 } 615 616 /* 617 * simple helper to read an inode off the disk from a given root 618 * This can only be called for subvolume roots and not for the log 619 */ 620 static noinline struct inode *read_one_inode(struct btrfs_root *root, 621 u64 objectid) 622 { 623 struct inode *inode; 624 625 inode = btrfs_iget(root->fs_info->sb, objectid, root); 626 if (IS_ERR(inode)) 627 inode = NULL; 628 return inode; 629 } 630 631 /* replays a single extent in 'eb' at 'slot' with 'key' into the 632 * subvolume 'root'. path is released on entry and should be released 633 * on exit. 634 * 635 * extents in the log tree have not been allocated out of the extent 636 * tree yet. So, this completes the allocation, taking a reference 637 * as required if the extent already exists or creating a new extent 638 * if it isn't in the extent allocation tree yet. 639 * 640 * The extent is inserted into the file, dropping any existing extents 641 * from the file that overlap the new one. 642 */ 643 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 644 struct btrfs_root *root, 645 struct btrfs_path *path, 646 struct extent_buffer *eb, int slot, 647 struct btrfs_key *key) 648 { 649 struct btrfs_drop_extents_args drop_args = { 0 }; 650 struct btrfs_fs_info *fs_info = root->fs_info; 651 int found_type; 652 u64 extent_end; 653 u64 start = key->offset; 654 u64 nbytes = 0; 655 struct btrfs_file_extent_item *item; 656 struct inode *inode = NULL; 657 unsigned long size; 658 int ret = 0; 659 660 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 661 found_type = btrfs_file_extent_type(eb, item); 662 663 if (found_type == BTRFS_FILE_EXTENT_REG || 664 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 665 nbytes = btrfs_file_extent_num_bytes(eb, item); 666 extent_end = start + nbytes; 667 668 /* 669 * We don't add to the inodes nbytes if we are prealloc or a 670 * hole. 671 */ 672 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 673 nbytes = 0; 674 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 675 size = btrfs_file_extent_ram_bytes(eb, item); 676 nbytes = btrfs_file_extent_ram_bytes(eb, item); 677 extent_end = ALIGN(start + size, 678 fs_info->sectorsize); 679 } else { 680 ret = 0; 681 goto out; 682 } 683 684 inode = read_one_inode(root, key->objectid); 685 if (!inode) { 686 ret = -EIO; 687 goto out; 688 } 689 690 /* 691 * first check to see if we already have this extent in the 692 * file. This must be done before the btrfs_drop_extents run 693 * so we don't try to drop this extent. 694 */ 695 ret = btrfs_lookup_file_extent(trans, root, path, 696 btrfs_ino(BTRFS_I(inode)), start, 0); 697 698 if (ret == 0 && 699 (found_type == BTRFS_FILE_EXTENT_REG || 700 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 701 struct btrfs_file_extent_item cmp1; 702 struct btrfs_file_extent_item cmp2; 703 struct btrfs_file_extent_item *existing; 704 struct extent_buffer *leaf; 705 706 leaf = path->nodes[0]; 707 existing = btrfs_item_ptr(leaf, path->slots[0], 708 struct btrfs_file_extent_item); 709 710 read_extent_buffer(eb, &cmp1, (unsigned long)item, 711 sizeof(cmp1)); 712 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 713 sizeof(cmp2)); 714 715 /* 716 * we already have a pointer to this exact extent, 717 * we don't have to do anything 718 */ 719 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 720 btrfs_release_path(path); 721 goto out; 722 } 723 } 724 btrfs_release_path(path); 725 726 /* drop any overlapping extents */ 727 drop_args.start = start; 728 drop_args.end = extent_end; 729 drop_args.drop_cache = true; 730 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args); 731 if (ret) 732 goto out; 733 734 if (found_type == BTRFS_FILE_EXTENT_REG || 735 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 736 u64 offset; 737 unsigned long dest_offset; 738 struct btrfs_key ins; 739 740 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 741 btrfs_fs_incompat(fs_info, NO_HOLES)) 742 goto update_inode; 743 744 ret = btrfs_insert_empty_item(trans, root, path, key, 745 sizeof(*item)); 746 if (ret) 747 goto out; 748 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 749 path->slots[0]); 750 copy_extent_buffer(path->nodes[0], eb, dest_offset, 751 (unsigned long)item, sizeof(*item)); 752 753 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 754 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 755 ins.type = BTRFS_EXTENT_ITEM_KEY; 756 offset = key->offset - btrfs_file_extent_offset(eb, item); 757 758 /* 759 * Manually record dirty extent, as here we did a shallow 760 * file extent item copy and skip normal backref update, 761 * but modifying extent tree all by ourselves. 762 * So need to manually record dirty extent for qgroup, 763 * as the owner of the file extent changed from log tree 764 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 765 */ 766 ret = btrfs_qgroup_trace_extent(trans, 767 btrfs_file_extent_disk_bytenr(eb, item), 768 btrfs_file_extent_disk_num_bytes(eb, item), 769 GFP_NOFS); 770 if (ret < 0) 771 goto out; 772 773 if (ins.objectid > 0) { 774 struct btrfs_ref ref = { 0 }; 775 u64 csum_start; 776 u64 csum_end; 777 LIST_HEAD(ordered_sums); 778 779 /* 780 * is this extent already allocated in the extent 781 * allocation tree? If so, just add a reference 782 */ 783 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 784 ins.offset); 785 if (ret < 0) { 786 goto out; 787 } else if (ret == 0) { 788 btrfs_init_generic_ref(&ref, 789 BTRFS_ADD_DELAYED_REF, 790 ins.objectid, ins.offset, 0); 791 btrfs_init_data_ref(&ref, 792 root->root_key.objectid, 793 key->objectid, offset, 0, false); 794 ret = btrfs_inc_extent_ref(trans, &ref); 795 if (ret) 796 goto out; 797 } else { 798 /* 799 * insert the extent pointer in the extent 800 * allocation tree 801 */ 802 ret = btrfs_alloc_logged_file_extent(trans, 803 root->root_key.objectid, 804 key->objectid, offset, &ins); 805 if (ret) 806 goto out; 807 } 808 btrfs_release_path(path); 809 810 if (btrfs_file_extent_compression(eb, item)) { 811 csum_start = ins.objectid; 812 csum_end = csum_start + ins.offset; 813 } else { 814 csum_start = ins.objectid + 815 btrfs_file_extent_offset(eb, item); 816 csum_end = csum_start + 817 btrfs_file_extent_num_bytes(eb, item); 818 } 819 820 ret = btrfs_lookup_csums_range(root->log_root, 821 csum_start, csum_end - 1, 822 &ordered_sums, 0); 823 if (ret) 824 goto out; 825 /* 826 * Now delete all existing cums in the csum root that 827 * cover our range. We do this because we can have an 828 * extent that is completely referenced by one file 829 * extent item and partially referenced by another 830 * file extent item (like after using the clone or 831 * extent_same ioctls). In this case if we end up doing 832 * the replay of the one that partially references the 833 * extent first, and we do not do the csum deletion 834 * below, we can get 2 csum items in the csum tree that 835 * overlap each other. For example, imagine our log has 836 * the two following file extent items: 837 * 838 * key (257 EXTENT_DATA 409600) 839 * extent data disk byte 12845056 nr 102400 840 * extent data offset 20480 nr 20480 ram 102400 841 * 842 * key (257 EXTENT_DATA 819200) 843 * extent data disk byte 12845056 nr 102400 844 * extent data offset 0 nr 102400 ram 102400 845 * 846 * Where the second one fully references the 100K extent 847 * that starts at disk byte 12845056, and the log tree 848 * has a single csum item that covers the entire range 849 * of the extent: 850 * 851 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 852 * 853 * After the first file extent item is replayed, the 854 * csum tree gets the following csum item: 855 * 856 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 857 * 858 * Which covers the 20K sub-range starting at offset 20K 859 * of our extent. Now when we replay the second file 860 * extent item, if we do not delete existing csum items 861 * that cover any of its blocks, we end up getting two 862 * csum items in our csum tree that overlap each other: 863 * 864 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 865 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 866 * 867 * Which is a problem, because after this anyone trying 868 * to lookup up for the checksum of any block of our 869 * extent starting at an offset of 40K or higher, will 870 * end up looking at the second csum item only, which 871 * does not contain the checksum for any block starting 872 * at offset 40K or higher of our extent. 873 */ 874 while (!list_empty(&ordered_sums)) { 875 struct btrfs_ordered_sum *sums; 876 struct btrfs_root *csum_root; 877 878 sums = list_entry(ordered_sums.next, 879 struct btrfs_ordered_sum, 880 list); 881 csum_root = btrfs_csum_root(fs_info, 882 sums->bytenr); 883 if (!ret) 884 ret = btrfs_del_csums(trans, csum_root, 885 sums->bytenr, 886 sums->len); 887 if (!ret) 888 ret = btrfs_csum_file_blocks(trans, 889 csum_root, 890 sums); 891 list_del(&sums->list); 892 kfree(sums); 893 } 894 if (ret) 895 goto out; 896 } else { 897 btrfs_release_path(path); 898 } 899 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 900 /* inline extents are easy, we just overwrite them */ 901 ret = overwrite_item(trans, root, path, eb, slot, key); 902 if (ret) 903 goto out; 904 } 905 906 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, 907 extent_end - start); 908 if (ret) 909 goto out; 910 911 update_inode: 912 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found); 913 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 914 out: 915 if (inode) 916 iput(inode); 917 return ret; 918 } 919 920 /* 921 * when cleaning up conflicts between the directory names in the 922 * subvolume, directory names in the log and directory names in the 923 * inode back references, we may have to unlink inodes from directories. 924 * 925 * This is a helper function to do the unlink of a specific directory 926 * item 927 */ 928 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 929 struct btrfs_path *path, 930 struct btrfs_inode *dir, 931 struct btrfs_dir_item *di) 932 { 933 struct btrfs_root *root = dir->root; 934 struct inode *inode; 935 char *name; 936 int name_len; 937 struct extent_buffer *leaf; 938 struct btrfs_key location; 939 int ret; 940 941 leaf = path->nodes[0]; 942 943 btrfs_dir_item_key_to_cpu(leaf, di, &location); 944 name_len = btrfs_dir_name_len(leaf, di); 945 name = kmalloc(name_len, GFP_NOFS); 946 if (!name) 947 return -ENOMEM; 948 949 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 950 btrfs_release_path(path); 951 952 inode = read_one_inode(root, location.objectid); 953 if (!inode) { 954 ret = -EIO; 955 goto out; 956 } 957 958 ret = link_to_fixup_dir(trans, root, path, location.objectid); 959 if (ret) 960 goto out; 961 962 ret = btrfs_unlink_inode(trans, dir, BTRFS_I(inode), name, 963 name_len); 964 if (ret) 965 goto out; 966 else 967 ret = btrfs_run_delayed_items(trans); 968 out: 969 kfree(name); 970 iput(inode); 971 return ret; 972 } 973 974 /* 975 * See if a given name and sequence number found in an inode back reference are 976 * already in a directory and correctly point to this inode. 977 * 978 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it 979 * exists. 980 */ 981 static noinline int inode_in_dir(struct btrfs_root *root, 982 struct btrfs_path *path, 983 u64 dirid, u64 objectid, u64 index, 984 const char *name, int name_len) 985 { 986 struct btrfs_dir_item *di; 987 struct btrfs_key location; 988 int ret = 0; 989 990 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 991 index, name, name_len, 0); 992 if (IS_ERR(di)) { 993 ret = PTR_ERR(di); 994 goto out; 995 } else if (di) { 996 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 997 if (location.objectid != objectid) 998 goto out; 999 } else { 1000 goto out; 1001 } 1002 1003 btrfs_release_path(path); 1004 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 1005 if (IS_ERR(di)) { 1006 ret = PTR_ERR(di); 1007 goto out; 1008 } else if (di) { 1009 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1010 if (location.objectid == objectid) 1011 ret = 1; 1012 } 1013 out: 1014 btrfs_release_path(path); 1015 return ret; 1016 } 1017 1018 /* 1019 * helper function to check a log tree for a named back reference in 1020 * an inode. This is used to decide if a back reference that is 1021 * found in the subvolume conflicts with what we find in the log. 1022 * 1023 * inode backreferences may have multiple refs in a single item, 1024 * during replay we process one reference at a time, and we don't 1025 * want to delete valid links to a file from the subvolume if that 1026 * link is also in the log. 1027 */ 1028 static noinline int backref_in_log(struct btrfs_root *log, 1029 struct btrfs_key *key, 1030 u64 ref_objectid, 1031 const char *name, int namelen) 1032 { 1033 struct btrfs_path *path; 1034 int ret; 1035 1036 path = btrfs_alloc_path(); 1037 if (!path) 1038 return -ENOMEM; 1039 1040 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 1041 if (ret < 0) { 1042 goto out; 1043 } else if (ret == 1) { 1044 ret = 0; 1045 goto out; 1046 } 1047 1048 if (key->type == BTRFS_INODE_EXTREF_KEY) 1049 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1050 path->slots[0], 1051 ref_objectid, 1052 name, namelen); 1053 else 1054 ret = !!btrfs_find_name_in_backref(path->nodes[0], 1055 path->slots[0], 1056 name, namelen); 1057 out: 1058 btrfs_free_path(path); 1059 return ret; 1060 } 1061 1062 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 1063 struct btrfs_root *root, 1064 struct btrfs_path *path, 1065 struct btrfs_root *log_root, 1066 struct btrfs_inode *dir, 1067 struct btrfs_inode *inode, 1068 u64 inode_objectid, u64 parent_objectid, 1069 u64 ref_index, char *name, int namelen, 1070 int *search_done) 1071 { 1072 int ret; 1073 char *victim_name; 1074 int victim_name_len; 1075 struct extent_buffer *leaf; 1076 struct btrfs_dir_item *di; 1077 struct btrfs_key search_key; 1078 struct btrfs_inode_extref *extref; 1079 1080 again: 1081 /* Search old style refs */ 1082 search_key.objectid = inode_objectid; 1083 search_key.type = BTRFS_INODE_REF_KEY; 1084 search_key.offset = parent_objectid; 1085 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1086 if (ret == 0) { 1087 struct btrfs_inode_ref *victim_ref; 1088 unsigned long ptr; 1089 unsigned long ptr_end; 1090 1091 leaf = path->nodes[0]; 1092 1093 /* are we trying to overwrite a back ref for the root directory 1094 * if so, just jump out, we're done 1095 */ 1096 if (search_key.objectid == search_key.offset) 1097 return 1; 1098 1099 /* check all the names in this back reference to see 1100 * if they are in the log. if so, we allow them to stay 1101 * otherwise they must be unlinked as a conflict 1102 */ 1103 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1104 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]); 1105 while (ptr < ptr_end) { 1106 victim_ref = (struct btrfs_inode_ref *)ptr; 1107 victim_name_len = btrfs_inode_ref_name_len(leaf, 1108 victim_ref); 1109 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1110 if (!victim_name) 1111 return -ENOMEM; 1112 1113 read_extent_buffer(leaf, victim_name, 1114 (unsigned long)(victim_ref + 1), 1115 victim_name_len); 1116 1117 ret = backref_in_log(log_root, &search_key, 1118 parent_objectid, victim_name, 1119 victim_name_len); 1120 if (ret < 0) { 1121 kfree(victim_name); 1122 return ret; 1123 } else if (!ret) { 1124 inc_nlink(&inode->vfs_inode); 1125 btrfs_release_path(path); 1126 1127 ret = btrfs_unlink_inode(trans, dir, inode, 1128 victim_name, victim_name_len); 1129 kfree(victim_name); 1130 if (ret) 1131 return ret; 1132 ret = btrfs_run_delayed_items(trans); 1133 if (ret) 1134 return ret; 1135 *search_done = 1; 1136 goto again; 1137 } 1138 kfree(victim_name); 1139 1140 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1141 } 1142 1143 /* 1144 * NOTE: we have searched root tree and checked the 1145 * corresponding ref, it does not need to check again. 1146 */ 1147 *search_done = 1; 1148 } 1149 btrfs_release_path(path); 1150 1151 /* Same search but for extended refs */ 1152 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1153 inode_objectid, parent_objectid, 0, 1154 0); 1155 if (!IS_ERR_OR_NULL(extref)) { 1156 u32 item_size; 1157 u32 cur_offset = 0; 1158 unsigned long base; 1159 struct inode *victim_parent; 1160 1161 leaf = path->nodes[0]; 1162 1163 item_size = btrfs_item_size(leaf, path->slots[0]); 1164 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1165 1166 while (cur_offset < item_size) { 1167 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1168 1169 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1170 1171 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1172 goto next; 1173 1174 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1175 if (!victim_name) 1176 return -ENOMEM; 1177 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1178 victim_name_len); 1179 1180 search_key.objectid = inode_objectid; 1181 search_key.type = BTRFS_INODE_EXTREF_KEY; 1182 search_key.offset = btrfs_extref_hash(parent_objectid, 1183 victim_name, 1184 victim_name_len); 1185 ret = backref_in_log(log_root, &search_key, 1186 parent_objectid, victim_name, 1187 victim_name_len); 1188 if (ret < 0) { 1189 kfree(victim_name); 1190 return ret; 1191 } else if (!ret) { 1192 ret = -ENOENT; 1193 victim_parent = read_one_inode(root, 1194 parent_objectid); 1195 if (victim_parent) { 1196 inc_nlink(&inode->vfs_inode); 1197 btrfs_release_path(path); 1198 1199 ret = btrfs_unlink_inode(trans, 1200 BTRFS_I(victim_parent), 1201 inode, 1202 victim_name, 1203 victim_name_len); 1204 if (!ret) 1205 ret = btrfs_run_delayed_items( 1206 trans); 1207 } 1208 iput(victim_parent); 1209 kfree(victim_name); 1210 if (ret) 1211 return ret; 1212 *search_done = 1; 1213 goto again; 1214 } 1215 kfree(victim_name); 1216 next: 1217 cur_offset += victim_name_len + sizeof(*extref); 1218 } 1219 *search_done = 1; 1220 } 1221 btrfs_release_path(path); 1222 1223 /* look for a conflicting sequence number */ 1224 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1225 ref_index, name, namelen, 0); 1226 if (IS_ERR(di)) { 1227 return PTR_ERR(di); 1228 } else if (di) { 1229 ret = drop_one_dir_item(trans, path, dir, di); 1230 if (ret) 1231 return ret; 1232 } 1233 btrfs_release_path(path); 1234 1235 /* look for a conflicting name */ 1236 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1237 name, namelen, 0); 1238 if (IS_ERR(di)) { 1239 return PTR_ERR(di); 1240 } else if (di) { 1241 ret = drop_one_dir_item(trans, path, dir, di); 1242 if (ret) 1243 return ret; 1244 } 1245 btrfs_release_path(path); 1246 1247 return 0; 1248 } 1249 1250 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1251 u32 *namelen, char **name, u64 *index, 1252 u64 *parent_objectid) 1253 { 1254 struct btrfs_inode_extref *extref; 1255 1256 extref = (struct btrfs_inode_extref *)ref_ptr; 1257 1258 *namelen = btrfs_inode_extref_name_len(eb, extref); 1259 *name = kmalloc(*namelen, GFP_NOFS); 1260 if (*name == NULL) 1261 return -ENOMEM; 1262 1263 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1264 *namelen); 1265 1266 if (index) 1267 *index = btrfs_inode_extref_index(eb, extref); 1268 if (parent_objectid) 1269 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1270 1271 return 0; 1272 } 1273 1274 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1275 u32 *namelen, char **name, u64 *index) 1276 { 1277 struct btrfs_inode_ref *ref; 1278 1279 ref = (struct btrfs_inode_ref *)ref_ptr; 1280 1281 *namelen = btrfs_inode_ref_name_len(eb, ref); 1282 *name = kmalloc(*namelen, GFP_NOFS); 1283 if (*name == NULL) 1284 return -ENOMEM; 1285 1286 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1287 1288 if (index) 1289 *index = btrfs_inode_ref_index(eb, ref); 1290 1291 return 0; 1292 } 1293 1294 /* 1295 * Take an inode reference item from the log tree and iterate all names from the 1296 * inode reference item in the subvolume tree with the same key (if it exists). 1297 * For any name that is not in the inode reference item from the log tree, do a 1298 * proper unlink of that name (that is, remove its entry from the inode 1299 * reference item and both dir index keys). 1300 */ 1301 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1302 struct btrfs_root *root, 1303 struct btrfs_path *path, 1304 struct btrfs_inode *inode, 1305 struct extent_buffer *log_eb, 1306 int log_slot, 1307 struct btrfs_key *key) 1308 { 1309 int ret; 1310 unsigned long ref_ptr; 1311 unsigned long ref_end; 1312 struct extent_buffer *eb; 1313 1314 again: 1315 btrfs_release_path(path); 1316 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1317 if (ret > 0) { 1318 ret = 0; 1319 goto out; 1320 } 1321 if (ret < 0) 1322 goto out; 1323 1324 eb = path->nodes[0]; 1325 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1326 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]); 1327 while (ref_ptr < ref_end) { 1328 char *name = NULL; 1329 int namelen; 1330 u64 parent_id; 1331 1332 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1333 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1334 NULL, &parent_id); 1335 } else { 1336 parent_id = key->offset; 1337 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1338 NULL); 1339 } 1340 if (ret) 1341 goto out; 1342 1343 if (key->type == BTRFS_INODE_EXTREF_KEY) 1344 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1345 parent_id, name, 1346 namelen); 1347 else 1348 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, 1349 name, namelen); 1350 1351 if (!ret) { 1352 struct inode *dir; 1353 1354 btrfs_release_path(path); 1355 dir = read_one_inode(root, parent_id); 1356 if (!dir) { 1357 ret = -ENOENT; 1358 kfree(name); 1359 goto out; 1360 } 1361 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), 1362 inode, name, namelen); 1363 kfree(name); 1364 iput(dir); 1365 if (ret) 1366 goto out; 1367 goto again; 1368 } 1369 1370 kfree(name); 1371 ref_ptr += namelen; 1372 if (key->type == BTRFS_INODE_EXTREF_KEY) 1373 ref_ptr += sizeof(struct btrfs_inode_extref); 1374 else 1375 ref_ptr += sizeof(struct btrfs_inode_ref); 1376 } 1377 ret = 0; 1378 out: 1379 btrfs_release_path(path); 1380 return ret; 1381 } 1382 1383 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1384 const u8 ref_type, const char *name, 1385 const int namelen) 1386 { 1387 struct btrfs_key key; 1388 struct btrfs_path *path; 1389 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1390 int ret; 1391 1392 path = btrfs_alloc_path(); 1393 if (!path) 1394 return -ENOMEM; 1395 1396 key.objectid = btrfs_ino(BTRFS_I(inode)); 1397 key.type = ref_type; 1398 if (key.type == BTRFS_INODE_REF_KEY) 1399 key.offset = parent_id; 1400 else 1401 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1402 1403 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1404 if (ret < 0) 1405 goto out; 1406 if (ret > 0) { 1407 ret = 0; 1408 goto out; 1409 } 1410 if (key.type == BTRFS_INODE_EXTREF_KEY) 1411 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1412 path->slots[0], parent_id, name, namelen); 1413 else 1414 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1415 name, namelen); 1416 1417 out: 1418 btrfs_free_path(path); 1419 return ret; 1420 } 1421 1422 static int add_link(struct btrfs_trans_handle *trans, 1423 struct inode *dir, struct inode *inode, const char *name, 1424 int namelen, u64 ref_index) 1425 { 1426 struct btrfs_root *root = BTRFS_I(dir)->root; 1427 struct btrfs_dir_item *dir_item; 1428 struct btrfs_key key; 1429 struct btrfs_path *path; 1430 struct inode *other_inode = NULL; 1431 int ret; 1432 1433 path = btrfs_alloc_path(); 1434 if (!path) 1435 return -ENOMEM; 1436 1437 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1438 btrfs_ino(BTRFS_I(dir)), 1439 name, namelen, 0); 1440 if (!dir_item) { 1441 btrfs_release_path(path); 1442 goto add_link; 1443 } else if (IS_ERR(dir_item)) { 1444 ret = PTR_ERR(dir_item); 1445 goto out; 1446 } 1447 1448 /* 1449 * Our inode's dentry collides with the dentry of another inode which is 1450 * in the log but not yet processed since it has a higher inode number. 1451 * So delete that other dentry. 1452 */ 1453 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1454 btrfs_release_path(path); 1455 other_inode = read_one_inode(root, key.objectid); 1456 if (!other_inode) { 1457 ret = -ENOENT; 1458 goto out; 1459 } 1460 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(other_inode), 1461 name, namelen); 1462 if (ret) 1463 goto out; 1464 /* 1465 * If we dropped the link count to 0, bump it so that later the iput() 1466 * on the inode will not free it. We will fixup the link count later. 1467 */ 1468 if (other_inode->i_nlink == 0) 1469 inc_nlink(other_inode); 1470 1471 ret = btrfs_run_delayed_items(trans); 1472 if (ret) 1473 goto out; 1474 add_link: 1475 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1476 name, namelen, 0, ref_index); 1477 out: 1478 iput(other_inode); 1479 btrfs_free_path(path); 1480 1481 return ret; 1482 } 1483 1484 /* 1485 * replay one inode back reference item found in the log tree. 1486 * eb, slot and key refer to the buffer and key found in the log tree. 1487 * root is the destination we are replaying into, and path is for temp 1488 * use by this function. (it should be released on return). 1489 */ 1490 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1491 struct btrfs_root *root, 1492 struct btrfs_root *log, 1493 struct btrfs_path *path, 1494 struct extent_buffer *eb, int slot, 1495 struct btrfs_key *key) 1496 { 1497 struct inode *dir = NULL; 1498 struct inode *inode = NULL; 1499 unsigned long ref_ptr; 1500 unsigned long ref_end; 1501 char *name = NULL; 1502 int namelen; 1503 int ret; 1504 int search_done = 0; 1505 int log_ref_ver = 0; 1506 u64 parent_objectid; 1507 u64 inode_objectid; 1508 u64 ref_index = 0; 1509 int ref_struct_size; 1510 1511 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1512 ref_end = ref_ptr + btrfs_item_size(eb, slot); 1513 1514 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1515 struct btrfs_inode_extref *r; 1516 1517 ref_struct_size = sizeof(struct btrfs_inode_extref); 1518 log_ref_ver = 1; 1519 r = (struct btrfs_inode_extref *)ref_ptr; 1520 parent_objectid = btrfs_inode_extref_parent(eb, r); 1521 } else { 1522 ref_struct_size = sizeof(struct btrfs_inode_ref); 1523 parent_objectid = key->offset; 1524 } 1525 inode_objectid = key->objectid; 1526 1527 /* 1528 * it is possible that we didn't log all the parent directories 1529 * for a given inode. If we don't find the dir, just don't 1530 * copy the back ref in. The link count fixup code will take 1531 * care of the rest 1532 */ 1533 dir = read_one_inode(root, parent_objectid); 1534 if (!dir) { 1535 ret = -ENOENT; 1536 goto out; 1537 } 1538 1539 inode = read_one_inode(root, inode_objectid); 1540 if (!inode) { 1541 ret = -EIO; 1542 goto out; 1543 } 1544 1545 while (ref_ptr < ref_end) { 1546 if (log_ref_ver) { 1547 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1548 &ref_index, &parent_objectid); 1549 /* 1550 * parent object can change from one array 1551 * item to another. 1552 */ 1553 if (!dir) 1554 dir = read_one_inode(root, parent_objectid); 1555 if (!dir) { 1556 ret = -ENOENT; 1557 goto out; 1558 } 1559 } else { 1560 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1561 &ref_index); 1562 } 1563 if (ret) 1564 goto out; 1565 1566 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1567 btrfs_ino(BTRFS_I(inode)), ref_index, 1568 name, namelen); 1569 if (ret < 0) { 1570 goto out; 1571 } else if (ret == 0) { 1572 /* 1573 * look for a conflicting back reference in the 1574 * metadata. if we find one we have to unlink that name 1575 * of the file before we add our new link. Later on, we 1576 * overwrite any existing back reference, and we don't 1577 * want to create dangling pointers in the directory. 1578 */ 1579 1580 if (!search_done) { 1581 ret = __add_inode_ref(trans, root, path, log, 1582 BTRFS_I(dir), 1583 BTRFS_I(inode), 1584 inode_objectid, 1585 parent_objectid, 1586 ref_index, name, namelen, 1587 &search_done); 1588 if (ret) { 1589 if (ret == 1) 1590 ret = 0; 1591 goto out; 1592 } 1593 } 1594 1595 /* 1596 * If a reference item already exists for this inode 1597 * with the same parent and name, but different index, 1598 * drop it and the corresponding directory index entries 1599 * from the parent before adding the new reference item 1600 * and dir index entries, otherwise we would fail with 1601 * -EEXIST returned from btrfs_add_link() below. 1602 */ 1603 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1604 name, namelen); 1605 if (ret > 0) { 1606 ret = btrfs_unlink_inode(trans, 1607 BTRFS_I(dir), 1608 BTRFS_I(inode), 1609 name, namelen); 1610 /* 1611 * If we dropped the link count to 0, bump it so 1612 * that later the iput() on the inode will not 1613 * free it. We will fixup the link count later. 1614 */ 1615 if (!ret && inode->i_nlink == 0) 1616 inc_nlink(inode); 1617 } 1618 if (ret < 0) 1619 goto out; 1620 1621 /* insert our name */ 1622 ret = add_link(trans, dir, inode, name, namelen, 1623 ref_index); 1624 if (ret) 1625 goto out; 1626 1627 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1628 if (ret) 1629 goto out; 1630 } 1631 /* Else, ret == 1, we already have a perfect match, we're done. */ 1632 1633 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1634 kfree(name); 1635 name = NULL; 1636 if (log_ref_ver) { 1637 iput(dir); 1638 dir = NULL; 1639 } 1640 } 1641 1642 /* 1643 * Before we overwrite the inode reference item in the subvolume tree 1644 * with the item from the log tree, we must unlink all names from the 1645 * parent directory that are in the subvolume's tree inode reference 1646 * item, otherwise we end up with an inconsistent subvolume tree where 1647 * dir index entries exist for a name but there is no inode reference 1648 * item with the same name. 1649 */ 1650 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1651 key); 1652 if (ret) 1653 goto out; 1654 1655 /* finally write the back reference in the inode */ 1656 ret = overwrite_item(trans, root, path, eb, slot, key); 1657 out: 1658 btrfs_release_path(path); 1659 kfree(name); 1660 iput(dir); 1661 iput(inode); 1662 return ret; 1663 } 1664 1665 static int count_inode_extrefs(struct btrfs_root *root, 1666 struct btrfs_inode *inode, struct btrfs_path *path) 1667 { 1668 int ret = 0; 1669 int name_len; 1670 unsigned int nlink = 0; 1671 u32 item_size; 1672 u32 cur_offset = 0; 1673 u64 inode_objectid = btrfs_ino(inode); 1674 u64 offset = 0; 1675 unsigned long ptr; 1676 struct btrfs_inode_extref *extref; 1677 struct extent_buffer *leaf; 1678 1679 while (1) { 1680 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1681 &extref, &offset); 1682 if (ret) 1683 break; 1684 1685 leaf = path->nodes[0]; 1686 item_size = btrfs_item_size(leaf, path->slots[0]); 1687 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1688 cur_offset = 0; 1689 1690 while (cur_offset < item_size) { 1691 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1692 name_len = btrfs_inode_extref_name_len(leaf, extref); 1693 1694 nlink++; 1695 1696 cur_offset += name_len + sizeof(*extref); 1697 } 1698 1699 offset++; 1700 btrfs_release_path(path); 1701 } 1702 btrfs_release_path(path); 1703 1704 if (ret < 0 && ret != -ENOENT) 1705 return ret; 1706 return nlink; 1707 } 1708 1709 static int count_inode_refs(struct btrfs_root *root, 1710 struct btrfs_inode *inode, struct btrfs_path *path) 1711 { 1712 int ret; 1713 struct btrfs_key key; 1714 unsigned int nlink = 0; 1715 unsigned long ptr; 1716 unsigned long ptr_end; 1717 int name_len; 1718 u64 ino = btrfs_ino(inode); 1719 1720 key.objectid = ino; 1721 key.type = BTRFS_INODE_REF_KEY; 1722 key.offset = (u64)-1; 1723 1724 while (1) { 1725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1726 if (ret < 0) 1727 break; 1728 if (ret > 0) { 1729 if (path->slots[0] == 0) 1730 break; 1731 path->slots[0]--; 1732 } 1733 process_slot: 1734 btrfs_item_key_to_cpu(path->nodes[0], &key, 1735 path->slots[0]); 1736 if (key.objectid != ino || 1737 key.type != BTRFS_INODE_REF_KEY) 1738 break; 1739 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1740 ptr_end = ptr + btrfs_item_size(path->nodes[0], 1741 path->slots[0]); 1742 while (ptr < ptr_end) { 1743 struct btrfs_inode_ref *ref; 1744 1745 ref = (struct btrfs_inode_ref *)ptr; 1746 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1747 ref); 1748 ptr = (unsigned long)(ref + 1) + name_len; 1749 nlink++; 1750 } 1751 1752 if (key.offset == 0) 1753 break; 1754 if (path->slots[0] > 0) { 1755 path->slots[0]--; 1756 goto process_slot; 1757 } 1758 key.offset--; 1759 btrfs_release_path(path); 1760 } 1761 btrfs_release_path(path); 1762 1763 return nlink; 1764 } 1765 1766 /* 1767 * There are a few corners where the link count of the file can't 1768 * be properly maintained during replay. So, instead of adding 1769 * lots of complexity to the log code, we just scan the backrefs 1770 * for any file that has been through replay. 1771 * 1772 * The scan will update the link count on the inode to reflect the 1773 * number of back refs found. If it goes down to zero, the iput 1774 * will free the inode. 1775 */ 1776 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1777 struct btrfs_root *root, 1778 struct inode *inode) 1779 { 1780 struct btrfs_path *path; 1781 int ret; 1782 u64 nlink = 0; 1783 u64 ino = btrfs_ino(BTRFS_I(inode)); 1784 1785 path = btrfs_alloc_path(); 1786 if (!path) 1787 return -ENOMEM; 1788 1789 ret = count_inode_refs(root, BTRFS_I(inode), path); 1790 if (ret < 0) 1791 goto out; 1792 1793 nlink = ret; 1794 1795 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1796 if (ret < 0) 1797 goto out; 1798 1799 nlink += ret; 1800 1801 ret = 0; 1802 1803 if (nlink != inode->i_nlink) { 1804 set_nlink(inode, nlink); 1805 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1806 if (ret) 1807 goto out; 1808 } 1809 BTRFS_I(inode)->index_cnt = (u64)-1; 1810 1811 if (inode->i_nlink == 0) { 1812 if (S_ISDIR(inode->i_mode)) { 1813 ret = replay_dir_deletes(trans, root, NULL, path, 1814 ino, 1); 1815 if (ret) 1816 goto out; 1817 } 1818 ret = btrfs_insert_orphan_item(trans, root, ino); 1819 if (ret == -EEXIST) 1820 ret = 0; 1821 } 1822 1823 out: 1824 btrfs_free_path(path); 1825 return ret; 1826 } 1827 1828 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1829 struct btrfs_root *root, 1830 struct btrfs_path *path) 1831 { 1832 int ret; 1833 struct btrfs_key key; 1834 struct inode *inode; 1835 1836 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1837 key.type = BTRFS_ORPHAN_ITEM_KEY; 1838 key.offset = (u64)-1; 1839 while (1) { 1840 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1841 if (ret < 0) 1842 break; 1843 1844 if (ret == 1) { 1845 ret = 0; 1846 if (path->slots[0] == 0) 1847 break; 1848 path->slots[0]--; 1849 } 1850 1851 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1852 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1853 key.type != BTRFS_ORPHAN_ITEM_KEY) 1854 break; 1855 1856 ret = btrfs_del_item(trans, root, path); 1857 if (ret) 1858 break; 1859 1860 btrfs_release_path(path); 1861 inode = read_one_inode(root, key.offset); 1862 if (!inode) { 1863 ret = -EIO; 1864 break; 1865 } 1866 1867 ret = fixup_inode_link_count(trans, root, inode); 1868 iput(inode); 1869 if (ret) 1870 break; 1871 1872 /* 1873 * fixup on a directory may create new entries, 1874 * make sure we always look for the highset possible 1875 * offset 1876 */ 1877 key.offset = (u64)-1; 1878 } 1879 btrfs_release_path(path); 1880 return ret; 1881 } 1882 1883 1884 /* 1885 * record a given inode in the fixup dir so we can check its link 1886 * count when replay is done. The link count is incremented here 1887 * so the inode won't go away until we check it 1888 */ 1889 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1890 struct btrfs_root *root, 1891 struct btrfs_path *path, 1892 u64 objectid) 1893 { 1894 struct btrfs_key key; 1895 int ret = 0; 1896 struct inode *inode; 1897 1898 inode = read_one_inode(root, objectid); 1899 if (!inode) 1900 return -EIO; 1901 1902 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1903 key.type = BTRFS_ORPHAN_ITEM_KEY; 1904 key.offset = objectid; 1905 1906 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1907 1908 btrfs_release_path(path); 1909 if (ret == 0) { 1910 if (!inode->i_nlink) 1911 set_nlink(inode, 1); 1912 else 1913 inc_nlink(inode); 1914 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1915 } else if (ret == -EEXIST) { 1916 ret = 0; 1917 } 1918 iput(inode); 1919 1920 return ret; 1921 } 1922 1923 /* 1924 * when replaying the log for a directory, we only insert names 1925 * for inodes that actually exist. This means an fsync on a directory 1926 * does not implicitly fsync all the new files in it 1927 */ 1928 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1929 struct btrfs_root *root, 1930 u64 dirid, u64 index, 1931 char *name, int name_len, 1932 struct btrfs_key *location) 1933 { 1934 struct inode *inode; 1935 struct inode *dir; 1936 int ret; 1937 1938 inode = read_one_inode(root, location->objectid); 1939 if (!inode) 1940 return -ENOENT; 1941 1942 dir = read_one_inode(root, dirid); 1943 if (!dir) { 1944 iput(inode); 1945 return -EIO; 1946 } 1947 1948 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1949 name_len, 1, index); 1950 1951 /* FIXME, put inode into FIXUP list */ 1952 1953 iput(inode); 1954 iput(dir); 1955 return ret; 1956 } 1957 1958 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans, 1959 struct btrfs_inode *dir, 1960 struct btrfs_path *path, 1961 struct btrfs_dir_item *dst_di, 1962 const struct btrfs_key *log_key, 1963 u8 log_type, 1964 bool exists) 1965 { 1966 struct btrfs_key found_key; 1967 1968 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1969 /* The existing dentry points to the same inode, don't delete it. */ 1970 if (found_key.objectid == log_key->objectid && 1971 found_key.type == log_key->type && 1972 found_key.offset == log_key->offset && 1973 btrfs_dir_type(path->nodes[0], dst_di) == log_type) 1974 return 1; 1975 1976 /* 1977 * Don't drop the conflicting directory entry if the inode for the new 1978 * entry doesn't exist. 1979 */ 1980 if (!exists) 1981 return 0; 1982 1983 return drop_one_dir_item(trans, path, dir, dst_di); 1984 } 1985 1986 /* 1987 * take a single entry in a log directory item and replay it into 1988 * the subvolume. 1989 * 1990 * if a conflicting item exists in the subdirectory already, 1991 * the inode it points to is unlinked and put into the link count 1992 * fix up tree. 1993 * 1994 * If a name from the log points to a file or directory that does 1995 * not exist in the FS, it is skipped. fsyncs on directories 1996 * do not force down inodes inside that directory, just changes to the 1997 * names or unlinks in a directory. 1998 * 1999 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 2000 * non-existing inode) and 1 if the name was replayed. 2001 */ 2002 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 2003 struct btrfs_root *root, 2004 struct btrfs_path *path, 2005 struct extent_buffer *eb, 2006 struct btrfs_dir_item *di, 2007 struct btrfs_key *key) 2008 { 2009 char *name; 2010 int name_len; 2011 struct btrfs_dir_item *dir_dst_di; 2012 struct btrfs_dir_item *index_dst_di; 2013 bool dir_dst_matches = false; 2014 bool index_dst_matches = false; 2015 struct btrfs_key log_key; 2016 struct btrfs_key search_key; 2017 struct inode *dir; 2018 u8 log_type; 2019 bool exists; 2020 int ret; 2021 bool update_size = true; 2022 bool name_added = false; 2023 2024 dir = read_one_inode(root, key->objectid); 2025 if (!dir) 2026 return -EIO; 2027 2028 name_len = btrfs_dir_name_len(eb, di); 2029 name = kmalloc(name_len, GFP_NOFS); 2030 if (!name) { 2031 ret = -ENOMEM; 2032 goto out; 2033 } 2034 2035 log_type = btrfs_dir_type(eb, di); 2036 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2037 name_len); 2038 2039 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 2040 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); 2041 btrfs_release_path(path); 2042 if (ret < 0) 2043 goto out; 2044 exists = (ret == 0); 2045 ret = 0; 2046 2047 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 2048 name, name_len, 1); 2049 if (IS_ERR(dir_dst_di)) { 2050 ret = PTR_ERR(dir_dst_di); 2051 goto out; 2052 } else if (dir_dst_di) { 2053 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, 2054 dir_dst_di, &log_key, log_type, 2055 exists); 2056 if (ret < 0) 2057 goto out; 2058 dir_dst_matches = (ret == 1); 2059 } 2060 2061 btrfs_release_path(path); 2062 2063 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path, 2064 key->objectid, key->offset, 2065 name, name_len, 1); 2066 if (IS_ERR(index_dst_di)) { 2067 ret = PTR_ERR(index_dst_di); 2068 goto out; 2069 } else if (index_dst_di) { 2070 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, 2071 index_dst_di, &log_key, 2072 log_type, exists); 2073 if (ret < 0) 2074 goto out; 2075 index_dst_matches = (ret == 1); 2076 } 2077 2078 btrfs_release_path(path); 2079 2080 if (dir_dst_matches && index_dst_matches) { 2081 ret = 0; 2082 update_size = false; 2083 goto out; 2084 } 2085 2086 /* 2087 * Check if the inode reference exists in the log for the given name, 2088 * inode and parent inode 2089 */ 2090 search_key.objectid = log_key.objectid; 2091 search_key.type = BTRFS_INODE_REF_KEY; 2092 search_key.offset = key->objectid; 2093 ret = backref_in_log(root->log_root, &search_key, 0, name, name_len); 2094 if (ret < 0) { 2095 goto out; 2096 } else if (ret) { 2097 /* The dentry will be added later. */ 2098 ret = 0; 2099 update_size = false; 2100 goto out; 2101 } 2102 2103 search_key.objectid = log_key.objectid; 2104 search_key.type = BTRFS_INODE_EXTREF_KEY; 2105 search_key.offset = key->objectid; 2106 ret = backref_in_log(root->log_root, &search_key, key->objectid, name, 2107 name_len); 2108 if (ret < 0) { 2109 goto out; 2110 } else if (ret) { 2111 /* The dentry will be added later. */ 2112 ret = 0; 2113 update_size = false; 2114 goto out; 2115 } 2116 btrfs_release_path(path); 2117 ret = insert_one_name(trans, root, key->objectid, key->offset, 2118 name, name_len, &log_key); 2119 if (ret && ret != -ENOENT && ret != -EEXIST) 2120 goto out; 2121 if (!ret) 2122 name_added = true; 2123 update_size = false; 2124 ret = 0; 2125 2126 out: 2127 if (!ret && update_size) { 2128 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 2129 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 2130 } 2131 kfree(name); 2132 iput(dir); 2133 if (!ret && name_added) 2134 ret = 1; 2135 return ret; 2136 } 2137 2138 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ 2139 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2140 struct btrfs_root *root, 2141 struct btrfs_path *path, 2142 struct extent_buffer *eb, int slot, 2143 struct btrfs_key *key) 2144 { 2145 int ret; 2146 struct btrfs_dir_item *di; 2147 2148 /* We only log dir index keys, which only contain a single dir item. */ 2149 ASSERT(key->type == BTRFS_DIR_INDEX_KEY); 2150 2151 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2152 ret = replay_one_name(trans, root, path, eb, di, key); 2153 if (ret < 0) 2154 return ret; 2155 2156 /* 2157 * If this entry refers to a non-directory (directories can not have a 2158 * link count > 1) and it was added in the transaction that was not 2159 * committed, make sure we fixup the link count of the inode the entry 2160 * points to. Otherwise something like the following would result in a 2161 * directory pointing to an inode with a wrong link that does not account 2162 * for this dir entry: 2163 * 2164 * mkdir testdir 2165 * touch testdir/foo 2166 * touch testdir/bar 2167 * sync 2168 * 2169 * ln testdir/bar testdir/bar_link 2170 * ln testdir/foo testdir/foo_link 2171 * xfs_io -c "fsync" testdir/bar 2172 * 2173 * <power failure> 2174 * 2175 * mount fs, log replay happens 2176 * 2177 * File foo would remain with a link count of 1 when it has two entries 2178 * pointing to it in the directory testdir. This would make it impossible 2179 * to ever delete the parent directory has it would result in stale 2180 * dentries that can never be deleted. 2181 */ 2182 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2183 struct btrfs_path *fixup_path; 2184 struct btrfs_key di_key; 2185 2186 fixup_path = btrfs_alloc_path(); 2187 if (!fixup_path) 2188 return -ENOMEM; 2189 2190 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2191 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid); 2192 btrfs_free_path(fixup_path); 2193 } 2194 2195 return ret; 2196 } 2197 2198 /* 2199 * directory replay has two parts. There are the standard directory 2200 * items in the log copied from the subvolume, and range items 2201 * created in the log while the subvolume was logged. 2202 * 2203 * The range items tell us which parts of the key space the log 2204 * is authoritative for. During replay, if a key in the subvolume 2205 * directory is in a logged range item, but not actually in the log 2206 * that means it was deleted from the directory before the fsync 2207 * and should be removed. 2208 */ 2209 static noinline int find_dir_range(struct btrfs_root *root, 2210 struct btrfs_path *path, 2211 u64 dirid, 2212 u64 *start_ret, u64 *end_ret) 2213 { 2214 struct btrfs_key key; 2215 u64 found_end; 2216 struct btrfs_dir_log_item *item; 2217 int ret; 2218 int nritems; 2219 2220 if (*start_ret == (u64)-1) 2221 return 1; 2222 2223 key.objectid = dirid; 2224 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2225 key.offset = *start_ret; 2226 2227 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2228 if (ret < 0) 2229 goto out; 2230 if (ret > 0) { 2231 if (path->slots[0] == 0) 2232 goto out; 2233 path->slots[0]--; 2234 } 2235 if (ret != 0) 2236 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2237 2238 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2239 ret = 1; 2240 goto next; 2241 } 2242 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2243 struct btrfs_dir_log_item); 2244 found_end = btrfs_dir_log_end(path->nodes[0], item); 2245 2246 if (*start_ret >= key.offset && *start_ret <= found_end) { 2247 ret = 0; 2248 *start_ret = key.offset; 2249 *end_ret = found_end; 2250 goto out; 2251 } 2252 ret = 1; 2253 next: 2254 /* check the next slot in the tree to see if it is a valid item */ 2255 nritems = btrfs_header_nritems(path->nodes[0]); 2256 path->slots[0]++; 2257 if (path->slots[0] >= nritems) { 2258 ret = btrfs_next_leaf(root, path); 2259 if (ret) 2260 goto out; 2261 } 2262 2263 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2264 2265 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2266 ret = 1; 2267 goto out; 2268 } 2269 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2270 struct btrfs_dir_log_item); 2271 found_end = btrfs_dir_log_end(path->nodes[0], item); 2272 *start_ret = key.offset; 2273 *end_ret = found_end; 2274 ret = 0; 2275 out: 2276 btrfs_release_path(path); 2277 return ret; 2278 } 2279 2280 /* 2281 * this looks for a given directory item in the log. If the directory 2282 * item is not in the log, the item is removed and the inode it points 2283 * to is unlinked 2284 */ 2285 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2286 struct btrfs_root *log, 2287 struct btrfs_path *path, 2288 struct btrfs_path *log_path, 2289 struct inode *dir, 2290 struct btrfs_key *dir_key) 2291 { 2292 struct btrfs_root *root = BTRFS_I(dir)->root; 2293 int ret; 2294 struct extent_buffer *eb; 2295 int slot; 2296 struct btrfs_dir_item *di; 2297 int name_len; 2298 char *name; 2299 struct inode *inode = NULL; 2300 struct btrfs_key location; 2301 2302 /* 2303 * Currenly we only log dir index keys. Even if we replay a log created 2304 * by an older kernel that logged both dir index and dir item keys, all 2305 * we need to do is process the dir index keys, we (and our caller) can 2306 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). 2307 */ 2308 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); 2309 2310 eb = path->nodes[0]; 2311 slot = path->slots[0]; 2312 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2313 name_len = btrfs_dir_name_len(eb, di); 2314 name = kmalloc(name_len, GFP_NOFS); 2315 if (!name) { 2316 ret = -ENOMEM; 2317 goto out; 2318 } 2319 2320 read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len); 2321 2322 if (log) { 2323 struct btrfs_dir_item *log_di; 2324 2325 log_di = btrfs_lookup_dir_index_item(trans, log, log_path, 2326 dir_key->objectid, 2327 dir_key->offset, 2328 name, name_len, 0); 2329 if (IS_ERR(log_di)) { 2330 ret = PTR_ERR(log_di); 2331 goto out; 2332 } else if (log_di) { 2333 /* The dentry exists in the log, we have nothing to do. */ 2334 ret = 0; 2335 goto out; 2336 } 2337 } 2338 2339 btrfs_dir_item_key_to_cpu(eb, di, &location); 2340 btrfs_release_path(path); 2341 btrfs_release_path(log_path); 2342 inode = read_one_inode(root, location.objectid); 2343 if (!inode) { 2344 ret = -EIO; 2345 goto out; 2346 } 2347 2348 ret = link_to_fixup_dir(trans, root, path, location.objectid); 2349 if (ret) 2350 goto out; 2351 2352 inc_nlink(inode); 2353 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(inode), name, 2354 name_len); 2355 if (ret) 2356 goto out; 2357 2358 ret = btrfs_run_delayed_items(trans); 2359 if (ret) 2360 goto out; 2361 2362 /* 2363 * Unlike dir item keys, dir index keys can only have one name (entry) in 2364 * them, as there are no key collisions since each key has a unique offset 2365 * (an index number), so we're done. 2366 */ 2367 out: 2368 btrfs_release_path(path); 2369 btrfs_release_path(log_path); 2370 kfree(name); 2371 iput(inode); 2372 return ret; 2373 } 2374 2375 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2376 struct btrfs_root *root, 2377 struct btrfs_root *log, 2378 struct btrfs_path *path, 2379 const u64 ino) 2380 { 2381 struct btrfs_key search_key; 2382 struct btrfs_path *log_path; 2383 int i; 2384 int nritems; 2385 int ret; 2386 2387 log_path = btrfs_alloc_path(); 2388 if (!log_path) 2389 return -ENOMEM; 2390 2391 search_key.objectid = ino; 2392 search_key.type = BTRFS_XATTR_ITEM_KEY; 2393 search_key.offset = 0; 2394 again: 2395 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2396 if (ret < 0) 2397 goto out; 2398 process_leaf: 2399 nritems = btrfs_header_nritems(path->nodes[0]); 2400 for (i = path->slots[0]; i < nritems; i++) { 2401 struct btrfs_key key; 2402 struct btrfs_dir_item *di; 2403 struct btrfs_dir_item *log_di; 2404 u32 total_size; 2405 u32 cur; 2406 2407 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2408 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2409 ret = 0; 2410 goto out; 2411 } 2412 2413 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2414 total_size = btrfs_item_size(path->nodes[0], i); 2415 cur = 0; 2416 while (cur < total_size) { 2417 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2418 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2419 u32 this_len = sizeof(*di) + name_len + data_len; 2420 char *name; 2421 2422 name = kmalloc(name_len, GFP_NOFS); 2423 if (!name) { 2424 ret = -ENOMEM; 2425 goto out; 2426 } 2427 read_extent_buffer(path->nodes[0], name, 2428 (unsigned long)(di + 1), name_len); 2429 2430 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2431 name, name_len, 0); 2432 btrfs_release_path(log_path); 2433 if (!log_di) { 2434 /* Doesn't exist in log tree, so delete it. */ 2435 btrfs_release_path(path); 2436 di = btrfs_lookup_xattr(trans, root, path, ino, 2437 name, name_len, -1); 2438 kfree(name); 2439 if (IS_ERR(di)) { 2440 ret = PTR_ERR(di); 2441 goto out; 2442 } 2443 ASSERT(di); 2444 ret = btrfs_delete_one_dir_name(trans, root, 2445 path, di); 2446 if (ret) 2447 goto out; 2448 btrfs_release_path(path); 2449 search_key = key; 2450 goto again; 2451 } 2452 kfree(name); 2453 if (IS_ERR(log_di)) { 2454 ret = PTR_ERR(log_di); 2455 goto out; 2456 } 2457 cur += this_len; 2458 di = (struct btrfs_dir_item *)((char *)di + this_len); 2459 } 2460 } 2461 ret = btrfs_next_leaf(root, path); 2462 if (ret > 0) 2463 ret = 0; 2464 else if (ret == 0) 2465 goto process_leaf; 2466 out: 2467 btrfs_free_path(log_path); 2468 btrfs_release_path(path); 2469 return ret; 2470 } 2471 2472 2473 /* 2474 * deletion replay happens before we copy any new directory items 2475 * out of the log or out of backreferences from inodes. It 2476 * scans the log to find ranges of keys that log is authoritative for, 2477 * and then scans the directory to find items in those ranges that are 2478 * not present in the log. 2479 * 2480 * Anything we don't find in the log is unlinked and removed from the 2481 * directory. 2482 */ 2483 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2484 struct btrfs_root *root, 2485 struct btrfs_root *log, 2486 struct btrfs_path *path, 2487 u64 dirid, int del_all) 2488 { 2489 u64 range_start; 2490 u64 range_end; 2491 int ret = 0; 2492 struct btrfs_key dir_key; 2493 struct btrfs_key found_key; 2494 struct btrfs_path *log_path; 2495 struct inode *dir; 2496 2497 dir_key.objectid = dirid; 2498 dir_key.type = BTRFS_DIR_INDEX_KEY; 2499 log_path = btrfs_alloc_path(); 2500 if (!log_path) 2501 return -ENOMEM; 2502 2503 dir = read_one_inode(root, dirid); 2504 /* it isn't an error if the inode isn't there, that can happen 2505 * because we replay the deletes before we copy in the inode item 2506 * from the log 2507 */ 2508 if (!dir) { 2509 btrfs_free_path(log_path); 2510 return 0; 2511 } 2512 2513 range_start = 0; 2514 range_end = 0; 2515 while (1) { 2516 if (del_all) 2517 range_end = (u64)-1; 2518 else { 2519 ret = find_dir_range(log, path, dirid, 2520 &range_start, &range_end); 2521 if (ret < 0) 2522 goto out; 2523 else if (ret > 0) 2524 break; 2525 } 2526 2527 dir_key.offset = range_start; 2528 while (1) { 2529 int nritems; 2530 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2531 0, 0); 2532 if (ret < 0) 2533 goto out; 2534 2535 nritems = btrfs_header_nritems(path->nodes[0]); 2536 if (path->slots[0] >= nritems) { 2537 ret = btrfs_next_leaf(root, path); 2538 if (ret == 1) 2539 break; 2540 else if (ret < 0) 2541 goto out; 2542 } 2543 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2544 path->slots[0]); 2545 if (found_key.objectid != dirid || 2546 found_key.type != dir_key.type) { 2547 ret = 0; 2548 goto out; 2549 } 2550 2551 if (found_key.offset > range_end) 2552 break; 2553 2554 ret = check_item_in_log(trans, log, path, 2555 log_path, dir, 2556 &found_key); 2557 if (ret) 2558 goto out; 2559 if (found_key.offset == (u64)-1) 2560 break; 2561 dir_key.offset = found_key.offset + 1; 2562 } 2563 btrfs_release_path(path); 2564 if (range_end == (u64)-1) 2565 break; 2566 range_start = range_end + 1; 2567 } 2568 ret = 0; 2569 out: 2570 btrfs_release_path(path); 2571 btrfs_free_path(log_path); 2572 iput(dir); 2573 return ret; 2574 } 2575 2576 /* 2577 * the process_func used to replay items from the log tree. This 2578 * gets called in two different stages. The first stage just looks 2579 * for inodes and makes sure they are all copied into the subvolume. 2580 * 2581 * The second stage copies all the other item types from the log into 2582 * the subvolume. The two stage approach is slower, but gets rid of 2583 * lots of complexity around inodes referencing other inodes that exist 2584 * only in the log (references come from either directory items or inode 2585 * back refs). 2586 */ 2587 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2588 struct walk_control *wc, u64 gen, int level) 2589 { 2590 int nritems; 2591 struct btrfs_path *path; 2592 struct btrfs_root *root = wc->replay_dest; 2593 struct btrfs_key key; 2594 int i; 2595 int ret; 2596 2597 ret = btrfs_read_buffer(eb, gen, level, NULL); 2598 if (ret) 2599 return ret; 2600 2601 level = btrfs_header_level(eb); 2602 2603 if (level != 0) 2604 return 0; 2605 2606 path = btrfs_alloc_path(); 2607 if (!path) 2608 return -ENOMEM; 2609 2610 nritems = btrfs_header_nritems(eb); 2611 for (i = 0; i < nritems; i++) { 2612 btrfs_item_key_to_cpu(eb, &key, i); 2613 2614 /* inode keys are done during the first stage */ 2615 if (key.type == BTRFS_INODE_ITEM_KEY && 2616 wc->stage == LOG_WALK_REPLAY_INODES) { 2617 struct btrfs_inode_item *inode_item; 2618 u32 mode; 2619 2620 inode_item = btrfs_item_ptr(eb, i, 2621 struct btrfs_inode_item); 2622 /* 2623 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2624 * and never got linked before the fsync, skip it, as 2625 * replaying it is pointless since it would be deleted 2626 * later. We skip logging tmpfiles, but it's always 2627 * possible we are replaying a log created with a kernel 2628 * that used to log tmpfiles. 2629 */ 2630 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2631 wc->ignore_cur_inode = true; 2632 continue; 2633 } else { 2634 wc->ignore_cur_inode = false; 2635 } 2636 ret = replay_xattr_deletes(wc->trans, root, log, 2637 path, key.objectid); 2638 if (ret) 2639 break; 2640 mode = btrfs_inode_mode(eb, inode_item); 2641 if (S_ISDIR(mode)) { 2642 ret = replay_dir_deletes(wc->trans, 2643 root, log, path, key.objectid, 0); 2644 if (ret) 2645 break; 2646 } 2647 ret = overwrite_item(wc->trans, root, path, 2648 eb, i, &key); 2649 if (ret) 2650 break; 2651 2652 /* 2653 * Before replaying extents, truncate the inode to its 2654 * size. We need to do it now and not after log replay 2655 * because before an fsync we can have prealloc extents 2656 * added beyond the inode's i_size. If we did it after, 2657 * through orphan cleanup for example, we would drop 2658 * those prealloc extents just after replaying them. 2659 */ 2660 if (S_ISREG(mode)) { 2661 struct btrfs_drop_extents_args drop_args = { 0 }; 2662 struct inode *inode; 2663 u64 from; 2664 2665 inode = read_one_inode(root, key.objectid); 2666 if (!inode) { 2667 ret = -EIO; 2668 break; 2669 } 2670 from = ALIGN(i_size_read(inode), 2671 root->fs_info->sectorsize); 2672 drop_args.start = from; 2673 drop_args.end = (u64)-1; 2674 drop_args.drop_cache = true; 2675 ret = btrfs_drop_extents(wc->trans, root, 2676 BTRFS_I(inode), 2677 &drop_args); 2678 if (!ret) { 2679 inode_sub_bytes(inode, 2680 drop_args.bytes_found); 2681 /* Update the inode's nbytes. */ 2682 ret = btrfs_update_inode(wc->trans, 2683 root, BTRFS_I(inode)); 2684 } 2685 iput(inode); 2686 if (ret) 2687 break; 2688 } 2689 2690 ret = link_to_fixup_dir(wc->trans, root, 2691 path, key.objectid); 2692 if (ret) 2693 break; 2694 } 2695 2696 if (wc->ignore_cur_inode) 2697 continue; 2698 2699 if (key.type == BTRFS_DIR_INDEX_KEY && 2700 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2701 ret = replay_one_dir_item(wc->trans, root, path, 2702 eb, i, &key); 2703 if (ret) 2704 break; 2705 } 2706 2707 if (wc->stage < LOG_WALK_REPLAY_ALL) 2708 continue; 2709 2710 /* these keys are simply copied */ 2711 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2712 ret = overwrite_item(wc->trans, root, path, 2713 eb, i, &key); 2714 if (ret) 2715 break; 2716 } else if (key.type == BTRFS_INODE_REF_KEY || 2717 key.type == BTRFS_INODE_EXTREF_KEY) { 2718 ret = add_inode_ref(wc->trans, root, log, path, 2719 eb, i, &key); 2720 if (ret && ret != -ENOENT) 2721 break; 2722 ret = 0; 2723 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2724 ret = replay_one_extent(wc->trans, root, path, 2725 eb, i, &key); 2726 if (ret) 2727 break; 2728 } 2729 /* 2730 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the 2731 * BTRFS_DIR_INDEX_KEY items which we use to derive the 2732 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an 2733 * older kernel with such keys, ignore them. 2734 */ 2735 } 2736 btrfs_free_path(path); 2737 return ret; 2738 } 2739 2740 /* 2741 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2742 */ 2743 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2744 { 2745 struct btrfs_block_group *cache; 2746 2747 cache = btrfs_lookup_block_group(fs_info, start); 2748 if (!cache) { 2749 btrfs_err(fs_info, "unable to find block group for %llu", start); 2750 return; 2751 } 2752 2753 spin_lock(&cache->space_info->lock); 2754 spin_lock(&cache->lock); 2755 cache->reserved -= fs_info->nodesize; 2756 cache->space_info->bytes_reserved -= fs_info->nodesize; 2757 spin_unlock(&cache->lock); 2758 spin_unlock(&cache->space_info->lock); 2759 2760 btrfs_put_block_group(cache); 2761 } 2762 2763 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2764 struct btrfs_root *root, 2765 struct btrfs_path *path, int *level, 2766 struct walk_control *wc) 2767 { 2768 struct btrfs_fs_info *fs_info = root->fs_info; 2769 u64 bytenr; 2770 u64 ptr_gen; 2771 struct extent_buffer *next; 2772 struct extent_buffer *cur; 2773 u32 blocksize; 2774 int ret = 0; 2775 2776 while (*level > 0) { 2777 struct btrfs_key first_key; 2778 2779 cur = path->nodes[*level]; 2780 2781 WARN_ON(btrfs_header_level(cur) != *level); 2782 2783 if (path->slots[*level] >= 2784 btrfs_header_nritems(cur)) 2785 break; 2786 2787 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2788 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2789 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2790 blocksize = fs_info->nodesize; 2791 2792 next = btrfs_find_create_tree_block(fs_info, bytenr, 2793 btrfs_header_owner(cur), 2794 *level - 1); 2795 if (IS_ERR(next)) 2796 return PTR_ERR(next); 2797 2798 if (*level == 1) { 2799 ret = wc->process_func(root, next, wc, ptr_gen, 2800 *level - 1); 2801 if (ret) { 2802 free_extent_buffer(next); 2803 return ret; 2804 } 2805 2806 path->slots[*level]++; 2807 if (wc->free) { 2808 ret = btrfs_read_buffer(next, ptr_gen, 2809 *level - 1, &first_key); 2810 if (ret) { 2811 free_extent_buffer(next); 2812 return ret; 2813 } 2814 2815 if (trans) { 2816 btrfs_tree_lock(next); 2817 btrfs_clean_tree_block(next); 2818 btrfs_wait_tree_block_writeback(next); 2819 btrfs_tree_unlock(next); 2820 ret = btrfs_pin_reserved_extent(trans, 2821 bytenr, blocksize); 2822 if (ret) { 2823 free_extent_buffer(next); 2824 return ret; 2825 } 2826 btrfs_redirty_list_add( 2827 trans->transaction, next); 2828 } else { 2829 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2830 clear_extent_buffer_dirty(next); 2831 unaccount_log_buffer(fs_info, bytenr); 2832 } 2833 } 2834 free_extent_buffer(next); 2835 continue; 2836 } 2837 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2838 if (ret) { 2839 free_extent_buffer(next); 2840 return ret; 2841 } 2842 2843 if (path->nodes[*level-1]) 2844 free_extent_buffer(path->nodes[*level-1]); 2845 path->nodes[*level-1] = next; 2846 *level = btrfs_header_level(next); 2847 path->slots[*level] = 0; 2848 cond_resched(); 2849 } 2850 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2851 2852 cond_resched(); 2853 return 0; 2854 } 2855 2856 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2857 struct btrfs_root *root, 2858 struct btrfs_path *path, int *level, 2859 struct walk_control *wc) 2860 { 2861 struct btrfs_fs_info *fs_info = root->fs_info; 2862 int i; 2863 int slot; 2864 int ret; 2865 2866 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2867 slot = path->slots[i]; 2868 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2869 path->slots[i]++; 2870 *level = i; 2871 WARN_ON(*level == 0); 2872 return 0; 2873 } else { 2874 ret = wc->process_func(root, path->nodes[*level], wc, 2875 btrfs_header_generation(path->nodes[*level]), 2876 *level); 2877 if (ret) 2878 return ret; 2879 2880 if (wc->free) { 2881 struct extent_buffer *next; 2882 2883 next = path->nodes[*level]; 2884 2885 if (trans) { 2886 btrfs_tree_lock(next); 2887 btrfs_clean_tree_block(next); 2888 btrfs_wait_tree_block_writeback(next); 2889 btrfs_tree_unlock(next); 2890 ret = btrfs_pin_reserved_extent(trans, 2891 path->nodes[*level]->start, 2892 path->nodes[*level]->len); 2893 if (ret) 2894 return ret; 2895 btrfs_redirty_list_add(trans->transaction, 2896 next); 2897 } else { 2898 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2899 clear_extent_buffer_dirty(next); 2900 2901 unaccount_log_buffer(fs_info, 2902 path->nodes[*level]->start); 2903 } 2904 } 2905 free_extent_buffer(path->nodes[*level]); 2906 path->nodes[*level] = NULL; 2907 *level = i + 1; 2908 } 2909 } 2910 return 1; 2911 } 2912 2913 /* 2914 * drop the reference count on the tree rooted at 'snap'. This traverses 2915 * the tree freeing any blocks that have a ref count of zero after being 2916 * decremented. 2917 */ 2918 static int walk_log_tree(struct btrfs_trans_handle *trans, 2919 struct btrfs_root *log, struct walk_control *wc) 2920 { 2921 struct btrfs_fs_info *fs_info = log->fs_info; 2922 int ret = 0; 2923 int wret; 2924 int level; 2925 struct btrfs_path *path; 2926 int orig_level; 2927 2928 path = btrfs_alloc_path(); 2929 if (!path) 2930 return -ENOMEM; 2931 2932 level = btrfs_header_level(log->node); 2933 orig_level = level; 2934 path->nodes[level] = log->node; 2935 atomic_inc(&log->node->refs); 2936 path->slots[level] = 0; 2937 2938 while (1) { 2939 wret = walk_down_log_tree(trans, log, path, &level, wc); 2940 if (wret > 0) 2941 break; 2942 if (wret < 0) { 2943 ret = wret; 2944 goto out; 2945 } 2946 2947 wret = walk_up_log_tree(trans, log, path, &level, wc); 2948 if (wret > 0) 2949 break; 2950 if (wret < 0) { 2951 ret = wret; 2952 goto out; 2953 } 2954 } 2955 2956 /* was the root node processed? if not, catch it here */ 2957 if (path->nodes[orig_level]) { 2958 ret = wc->process_func(log, path->nodes[orig_level], wc, 2959 btrfs_header_generation(path->nodes[orig_level]), 2960 orig_level); 2961 if (ret) 2962 goto out; 2963 if (wc->free) { 2964 struct extent_buffer *next; 2965 2966 next = path->nodes[orig_level]; 2967 2968 if (trans) { 2969 btrfs_tree_lock(next); 2970 btrfs_clean_tree_block(next); 2971 btrfs_wait_tree_block_writeback(next); 2972 btrfs_tree_unlock(next); 2973 ret = btrfs_pin_reserved_extent(trans, 2974 next->start, next->len); 2975 if (ret) 2976 goto out; 2977 btrfs_redirty_list_add(trans->transaction, next); 2978 } else { 2979 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2980 clear_extent_buffer_dirty(next); 2981 unaccount_log_buffer(fs_info, next->start); 2982 } 2983 } 2984 } 2985 2986 out: 2987 btrfs_free_path(path); 2988 return ret; 2989 } 2990 2991 /* 2992 * helper function to update the item for a given subvolumes log root 2993 * in the tree of log roots 2994 */ 2995 static int update_log_root(struct btrfs_trans_handle *trans, 2996 struct btrfs_root *log, 2997 struct btrfs_root_item *root_item) 2998 { 2999 struct btrfs_fs_info *fs_info = log->fs_info; 3000 int ret; 3001 3002 if (log->log_transid == 1) { 3003 /* insert root item on the first sync */ 3004 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 3005 &log->root_key, root_item); 3006 } else { 3007 ret = btrfs_update_root(trans, fs_info->log_root_tree, 3008 &log->root_key, root_item); 3009 } 3010 return ret; 3011 } 3012 3013 static void wait_log_commit(struct btrfs_root *root, int transid) 3014 { 3015 DEFINE_WAIT(wait); 3016 int index = transid % 2; 3017 3018 /* 3019 * we only allow two pending log transactions at a time, 3020 * so we know that if ours is more than 2 older than the 3021 * current transaction, we're done 3022 */ 3023 for (;;) { 3024 prepare_to_wait(&root->log_commit_wait[index], 3025 &wait, TASK_UNINTERRUPTIBLE); 3026 3027 if (!(root->log_transid_committed < transid && 3028 atomic_read(&root->log_commit[index]))) 3029 break; 3030 3031 mutex_unlock(&root->log_mutex); 3032 schedule(); 3033 mutex_lock(&root->log_mutex); 3034 } 3035 finish_wait(&root->log_commit_wait[index], &wait); 3036 } 3037 3038 static void wait_for_writer(struct btrfs_root *root) 3039 { 3040 DEFINE_WAIT(wait); 3041 3042 for (;;) { 3043 prepare_to_wait(&root->log_writer_wait, &wait, 3044 TASK_UNINTERRUPTIBLE); 3045 if (!atomic_read(&root->log_writers)) 3046 break; 3047 3048 mutex_unlock(&root->log_mutex); 3049 schedule(); 3050 mutex_lock(&root->log_mutex); 3051 } 3052 finish_wait(&root->log_writer_wait, &wait); 3053 } 3054 3055 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 3056 struct btrfs_log_ctx *ctx) 3057 { 3058 mutex_lock(&root->log_mutex); 3059 list_del_init(&ctx->list); 3060 mutex_unlock(&root->log_mutex); 3061 } 3062 3063 /* 3064 * Invoked in log mutex context, or be sure there is no other task which 3065 * can access the list. 3066 */ 3067 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 3068 int index, int error) 3069 { 3070 struct btrfs_log_ctx *ctx; 3071 struct btrfs_log_ctx *safe; 3072 3073 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 3074 list_del_init(&ctx->list); 3075 ctx->log_ret = error; 3076 } 3077 } 3078 3079 /* 3080 * btrfs_sync_log does sends a given tree log down to the disk and 3081 * updates the super blocks to record it. When this call is done, 3082 * you know that any inodes previously logged are safely on disk only 3083 * if it returns 0. 3084 * 3085 * Any other return value means you need to call btrfs_commit_transaction. 3086 * Some of the edge cases for fsyncing directories that have had unlinks 3087 * or renames done in the past mean that sometimes the only safe 3088 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3089 * that has happened. 3090 */ 3091 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3092 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3093 { 3094 int index1; 3095 int index2; 3096 int mark; 3097 int ret; 3098 struct btrfs_fs_info *fs_info = root->fs_info; 3099 struct btrfs_root *log = root->log_root; 3100 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3101 struct btrfs_root_item new_root_item; 3102 int log_transid = 0; 3103 struct btrfs_log_ctx root_log_ctx; 3104 struct blk_plug plug; 3105 u64 log_root_start; 3106 u64 log_root_level; 3107 3108 mutex_lock(&root->log_mutex); 3109 log_transid = ctx->log_transid; 3110 if (root->log_transid_committed >= log_transid) { 3111 mutex_unlock(&root->log_mutex); 3112 return ctx->log_ret; 3113 } 3114 3115 index1 = log_transid % 2; 3116 if (atomic_read(&root->log_commit[index1])) { 3117 wait_log_commit(root, log_transid); 3118 mutex_unlock(&root->log_mutex); 3119 return ctx->log_ret; 3120 } 3121 ASSERT(log_transid == root->log_transid); 3122 atomic_set(&root->log_commit[index1], 1); 3123 3124 /* wait for previous tree log sync to complete */ 3125 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3126 wait_log_commit(root, log_transid - 1); 3127 3128 while (1) { 3129 int batch = atomic_read(&root->log_batch); 3130 /* when we're on an ssd, just kick the log commit out */ 3131 if (!btrfs_test_opt(fs_info, SSD) && 3132 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3133 mutex_unlock(&root->log_mutex); 3134 schedule_timeout_uninterruptible(1); 3135 mutex_lock(&root->log_mutex); 3136 } 3137 wait_for_writer(root); 3138 if (batch == atomic_read(&root->log_batch)) 3139 break; 3140 } 3141 3142 /* bail out if we need to do a full commit */ 3143 if (btrfs_need_log_full_commit(trans)) { 3144 ret = -EAGAIN; 3145 mutex_unlock(&root->log_mutex); 3146 goto out; 3147 } 3148 3149 if (log_transid % 2 == 0) 3150 mark = EXTENT_DIRTY; 3151 else 3152 mark = EXTENT_NEW; 3153 3154 /* we start IO on all the marked extents here, but we don't actually 3155 * wait for them until later. 3156 */ 3157 blk_start_plug(&plug); 3158 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3159 /* 3160 * -EAGAIN happens when someone, e.g., a concurrent transaction 3161 * commit, writes a dirty extent in this tree-log commit. This 3162 * concurrent write will create a hole writing out the extents, 3163 * and we cannot proceed on a zoned filesystem, requiring 3164 * sequential writing. While we can bail out to a full commit 3165 * here, but we can continue hoping the concurrent writing fills 3166 * the hole. 3167 */ 3168 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) 3169 ret = 0; 3170 if (ret) { 3171 blk_finish_plug(&plug); 3172 btrfs_abort_transaction(trans, ret); 3173 btrfs_set_log_full_commit(trans); 3174 mutex_unlock(&root->log_mutex); 3175 goto out; 3176 } 3177 3178 /* 3179 * We _must_ update under the root->log_mutex in order to make sure we 3180 * have a consistent view of the log root we are trying to commit at 3181 * this moment. 3182 * 3183 * We _must_ copy this into a local copy, because we are not holding the 3184 * log_root_tree->log_mutex yet. This is important because when we 3185 * commit the log_root_tree we must have a consistent view of the 3186 * log_root_tree when we update the super block to point at the 3187 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3188 * with the commit and possibly point at the new block which we may not 3189 * have written out. 3190 */ 3191 btrfs_set_root_node(&log->root_item, log->node); 3192 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3193 3194 root->log_transid++; 3195 log->log_transid = root->log_transid; 3196 root->log_start_pid = 0; 3197 /* 3198 * IO has been started, blocks of the log tree have WRITTEN flag set 3199 * in their headers. new modifications of the log will be written to 3200 * new positions. so it's safe to allow log writers to go in. 3201 */ 3202 mutex_unlock(&root->log_mutex); 3203 3204 if (btrfs_is_zoned(fs_info)) { 3205 mutex_lock(&fs_info->tree_root->log_mutex); 3206 if (!log_root_tree->node) { 3207 ret = btrfs_alloc_log_tree_node(trans, log_root_tree); 3208 if (ret) { 3209 mutex_unlock(&fs_info->tree_root->log_mutex); 3210 goto out; 3211 } 3212 } 3213 mutex_unlock(&fs_info->tree_root->log_mutex); 3214 } 3215 3216 btrfs_init_log_ctx(&root_log_ctx, NULL); 3217 3218 mutex_lock(&log_root_tree->log_mutex); 3219 3220 index2 = log_root_tree->log_transid % 2; 3221 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3222 root_log_ctx.log_transid = log_root_tree->log_transid; 3223 3224 /* 3225 * Now we are safe to update the log_root_tree because we're under the 3226 * log_mutex, and we're a current writer so we're holding the commit 3227 * open until we drop the log_mutex. 3228 */ 3229 ret = update_log_root(trans, log, &new_root_item); 3230 if (ret) { 3231 if (!list_empty(&root_log_ctx.list)) 3232 list_del_init(&root_log_ctx.list); 3233 3234 blk_finish_plug(&plug); 3235 btrfs_set_log_full_commit(trans); 3236 3237 if (ret != -ENOSPC) { 3238 btrfs_abort_transaction(trans, ret); 3239 mutex_unlock(&log_root_tree->log_mutex); 3240 goto out; 3241 } 3242 btrfs_wait_tree_log_extents(log, mark); 3243 mutex_unlock(&log_root_tree->log_mutex); 3244 ret = -EAGAIN; 3245 goto out; 3246 } 3247 3248 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3249 blk_finish_plug(&plug); 3250 list_del_init(&root_log_ctx.list); 3251 mutex_unlock(&log_root_tree->log_mutex); 3252 ret = root_log_ctx.log_ret; 3253 goto out; 3254 } 3255 3256 index2 = root_log_ctx.log_transid % 2; 3257 if (atomic_read(&log_root_tree->log_commit[index2])) { 3258 blk_finish_plug(&plug); 3259 ret = btrfs_wait_tree_log_extents(log, mark); 3260 wait_log_commit(log_root_tree, 3261 root_log_ctx.log_transid); 3262 mutex_unlock(&log_root_tree->log_mutex); 3263 if (!ret) 3264 ret = root_log_ctx.log_ret; 3265 goto out; 3266 } 3267 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3268 atomic_set(&log_root_tree->log_commit[index2], 1); 3269 3270 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3271 wait_log_commit(log_root_tree, 3272 root_log_ctx.log_transid - 1); 3273 } 3274 3275 /* 3276 * now that we've moved on to the tree of log tree roots, 3277 * check the full commit flag again 3278 */ 3279 if (btrfs_need_log_full_commit(trans)) { 3280 blk_finish_plug(&plug); 3281 btrfs_wait_tree_log_extents(log, mark); 3282 mutex_unlock(&log_root_tree->log_mutex); 3283 ret = -EAGAIN; 3284 goto out_wake_log_root; 3285 } 3286 3287 ret = btrfs_write_marked_extents(fs_info, 3288 &log_root_tree->dirty_log_pages, 3289 EXTENT_DIRTY | EXTENT_NEW); 3290 blk_finish_plug(&plug); 3291 /* 3292 * As described above, -EAGAIN indicates a hole in the extents. We 3293 * cannot wait for these write outs since the waiting cause a 3294 * deadlock. Bail out to the full commit instead. 3295 */ 3296 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { 3297 btrfs_set_log_full_commit(trans); 3298 btrfs_wait_tree_log_extents(log, mark); 3299 mutex_unlock(&log_root_tree->log_mutex); 3300 goto out_wake_log_root; 3301 } else if (ret) { 3302 btrfs_set_log_full_commit(trans); 3303 btrfs_abort_transaction(trans, ret); 3304 mutex_unlock(&log_root_tree->log_mutex); 3305 goto out_wake_log_root; 3306 } 3307 ret = btrfs_wait_tree_log_extents(log, mark); 3308 if (!ret) 3309 ret = btrfs_wait_tree_log_extents(log_root_tree, 3310 EXTENT_NEW | EXTENT_DIRTY); 3311 if (ret) { 3312 btrfs_set_log_full_commit(trans); 3313 mutex_unlock(&log_root_tree->log_mutex); 3314 goto out_wake_log_root; 3315 } 3316 3317 log_root_start = log_root_tree->node->start; 3318 log_root_level = btrfs_header_level(log_root_tree->node); 3319 log_root_tree->log_transid++; 3320 mutex_unlock(&log_root_tree->log_mutex); 3321 3322 /* 3323 * Here we are guaranteed that nobody is going to write the superblock 3324 * for the current transaction before us and that neither we do write 3325 * our superblock before the previous transaction finishes its commit 3326 * and writes its superblock, because: 3327 * 3328 * 1) We are holding a handle on the current transaction, so no body 3329 * can commit it until we release the handle; 3330 * 3331 * 2) Before writing our superblock we acquire the tree_log_mutex, so 3332 * if the previous transaction is still committing, and hasn't yet 3333 * written its superblock, we wait for it to do it, because a 3334 * transaction commit acquires the tree_log_mutex when the commit 3335 * begins and releases it only after writing its superblock. 3336 */ 3337 mutex_lock(&fs_info->tree_log_mutex); 3338 3339 /* 3340 * The previous transaction writeout phase could have failed, and thus 3341 * marked the fs in an error state. We must not commit here, as we 3342 * could have updated our generation in the super_for_commit and 3343 * writing the super here would result in transid mismatches. If there 3344 * is an error here just bail. 3345 */ 3346 if (BTRFS_FS_ERROR(fs_info)) { 3347 ret = -EIO; 3348 btrfs_set_log_full_commit(trans); 3349 btrfs_abort_transaction(trans, ret); 3350 mutex_unlock(&fs_info->tree_log_mutex); 3351 goto out_wake_log_root; 3352 } 3353 3354 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); 3355 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); 3356 ret = write_all_supers(fs_info, 1); 3357 mutex_unlock(&fs_info->tree_log_mutex); 3358 if (ret) { 3359 btrfs_set_log_full_commit(trans); 3360 btrfs_abort_transaction(trans, ret); 3361 goto out_wake_log_root; 3362 } 3363 3364 /* 3365 * We know there can only be one task here, since we have not yet set 3366 * root->log_commit[index1] to 0 and any task attempting to sync the 3367 * log must wait for the previous log transaction to commit if it's 3368 * still in progress or wait for the current log transaction commit if 3369 * someone else already started it. We use <= and not < because the 3370 * first log transaction has an ID of 0. 3371 */ 3372 ASSERT(root->last_log_commit <= log_transid); 3373 root->last_log_commit = log_transid; 3374 3375 out_wake_log_root: 3376 mutex_lock(&log_root_tree->log_mutex); 3377 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3378 3379 log_root_tree->log_transid_committed++; 3380 atomic_set(&log_root_tree->log_commit[index2], 0); 3381 mutex_unlock(&log_root_tree->log_mutex); 3382 3383 /* 3384 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3385 * all the updates above are seen by the woken threads. It might not be 3386 * necessary, but proving that seems to be hard. 3387 */ 3388 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3389 out: 3390 mutex_lock(&root->log_mutex); 3391 btrfs_remove_all_log_ctxs(root, index1, ret); 3392 root->log_transid_committed++; 3393 atomic_set(&root->log_commit[index1], 0); 3394 mutex_unlock(&root->log_mutex); 3395 3396 /* 3397 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3398 * all the updates above are seen by the woken threads. It might not be 3399 * necessary, but proving that seems to be hard. 3400 */ 3401 cond_wake_up(&root->log_commit_wait[index1]); 3402 return ret; 3403 } 3404 3405 static void free_log_tree(struct btrfs_trans_handle *trans, 3406 struct btrfs_root *log) 3407 { 3408 int ret; 3409 struct walk_control wc = { 3410 .free = 1, 3411 .process_func = process_one_buffer 3412 }; 3413 3414 if (log->node) { 3415 ret = walk_log_tree(trans, log, &wc); 3416 if (ret) { 3417 if (trans) 3418 btrfs_abort_transaction(trans, ret); 3419 else 3420 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3421 } 3422 } 3423 3424 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3425 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3426 extent_io_tree_release(&log->log_csum_range); 3427 3428 btrfs_put_root(log); 3429 } 3430 3431 /* 3432 * free all the extents used by the tree log. This should be called 3433 * at commit time of the full transaction 3434 */ 3435 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3436 { 3437 if (root->log_root) { 3438 free_log_tree(trans, root->log_root); 3439 root->log_root = NULL; 3440 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3441 } 3442 return 0; 3443 } 3444 3445 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3446 struct btrfs_fs_info *fs_info) 3447 { 3448 if (fs_info->log_root_tree) { 3449 free_log_tree(trans, fs_info->log_root_tree); 3450 fs_info->log_root_tree = NULL; 3451 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); 3452 } 3453 return 0; 3454 } 3455 3456 /* 3457 * Check if an inode was logged in the current transaction. This may often 3458 * return some false positives, because logged_trans is an in memory only field, 3459 * not persisted anywhere. This is meant to be used in contexts where a false 3460 * positive has no functional consequences. 3461 */ 3462 static bool inode_logged(struct btrfs_trans_handle *trans, 3463 struct btrfs_inode *inode) 3464 { 3465 if (inode->logged_trans == trans->transid) 3466 return true; 3467 3468 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) 3469 return false; 3470 3471 /* 3472 * The inode's logged_trans is always 0 when we load it (because it is 3473 * not persisted in the inode item or elsewhere). So if it is 0, the 3474 * inode was last modified in the current transaction then the inode may 3475 * have been logged before in the current transaction, then evicted and 3476 * loaded again in the current transaction - or may have never been logged 3477 * in the current transaction, but since we can not be sure, we have to 3478 * assume it was, otherwise our callers can leave an inconsistent log. 3479 */ 3480 if (inode->logged_trans == 0 && 3481 inode->last_trans == trans->transid && 3482 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags)) 3483 return true; 3484 3485 return false; 3486 } 3487 3488 /* 3489 * If both a file and directory are logged, and unlinks or renames are 3490 * mixed in, we have a few interesting corners: 3491 * 3492 * create file X in dir Y 3493 * link file X to X.link in dir Y 3494 * fsync file X 3495 * unlink file X but leave X.link 3496 * fsync dir Y 3497 * 3498 * After a crash we would expect only X.link to exist. But file X 3499 * didn't get fsync'd again so the log has back refs for X and X.link. 3500 * 3501 * We solve this by removing directory entries and inode backrefs from the 3502 * log when a file that was logged in the current transaction is 3503 * unlinked. Any later fsync will include the updated log entries, and 3504 * we'll be able to reconstruct the proper directory items from backrefs. 3505 * 3506 * This optimizations allows us to avoid relogging the entire inode 3507 * or the entire directory. 3508 */ 3509 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3510 struct btrfs_root *root, 3511 const char *name, int name_len, 3512 struct btrfs_inode *dir, u64 index) 3513 { 3514 struct btrfs_root *log; 3515 struct btrfs_dir_item *di; 3516 struct btrfs_path *path; 3517 int ret; 3518 int err = 0; 3519 u64 dir_ino = btrfs_ino(dir); 3520 3521 if (!inode_logged(trans, dir)) 3522 return; 3523 3524 ret = join_running_log_trans(root); 3525 if (ret) 3526 return; 3527 3528 mutex_lock(&dir->log_mutex); 3529 3530 log = root->log_root; 3531 path = btrfs_alloc_path(); 3532 if (!path) { 3533 err = -ENOMEM; 3534 goto out_unlock; 3535 } 3536 3537 /* 3538 * We only log dir index items of a directory, so we don't need to look 3539 * for dir item keys. 3540 */ 3541 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3542 index, name, name_len, -1); 3543 if (IS_ERR(di)) { 3544 err = PTR_ERR(di); 3545 goto fail; 3546 } 3547 if (di) { 3548 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3549 if (ret) { 3550 err = ret; 3551 goto fail; 3552 } 3553 } 3554 3555 /* 3556 * We do not need to update the size field of the directory's inode item 3557 * because on log replay we update the field to reflect all existing 3558 * entries in the directory (see overwrite_item()). 3559 */ 3560 fail: 3561 btrfs_free_path(path); 3562 out_unlock: 3563 mutex_unlock(&dir->log_mutex); 3564 if (err < 0) 3565 btrfs_set_log_full_commit(trans); 3566 btrfs_end_log_trans(root); 3567 } 3568 3569 /* see comments for btrfs_del_dir_entries_in_log */ 3570 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3571 struct btrfs_root *root, 3572 const char *name, int name_len, 3573 struct btrfs_inode *inode, u64 dirid) 3574 { 3575 struct btrfs_root *log; 3576 u64 index; 3577 int ret; 3578 3579 if (!inode_logged(trans, inode)) 3580 return; 3581 3582 ret = join_running_log_trans(root); 3583 if (ret) 3584 return; 3585 log = root->log_root; 3586 mutex_lock(&inode->log_mutex); 3587 3588 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3589 dirid, &index); 3590 mutex_unlock(&inode->log_mutex); 3591 if (ret < 0 && ret != -ENOENT) 3592 btrfs_set_log_full_commit(trans); 3593 btrfs_end_log_trans(root); 3594 } 3595 3596 /* 3597 * creates a range item in the log for 'dirid'. first_offset and 3598 * last_offset tell us which parts of the key space the log should 3599 * be considered authoritative for. 3600 */ 3601 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3602 struct btrfs_root *log, 3603 struct btrfs_path *path, 3604 u64 dirid, 3605 u64 first_offset, u64 last_offset) 3606 { 3607 int ret; 3608 struct btrfs_key key; 3609 struct btrfs_dir_log_item *item; 3610 3611 key.objectid = dirid; 3612 key.offset = first_offset; 3613 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3614 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3615 if (ret) 3616 return ret; 3617 3618 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3619 struct btrfs_dir_log_item); 3620 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3621 btrfs_mark_buffer_dirty(path->nodes[0]); 3622 btrfs_release_path(path); 3623 return 0; 3624 } 3625 3626 static int flush_dir_items_batch(struct btrfs_trans_handle *trans, 3627 struct btrfs_root *log, 3628 struct extent_buffer *src, 3629 struct btrfs_path *dst_path, 3630 int start_slot, 3631 int count) 3632 { 3633 char *ins_data = NULL; 3634 struct btrfs_item_batch batch; 3635 struct extent_buffer *dst; 3636 unsigned long src_offset; 3637 unsigned long dst_offset; 3638 struct btrfs_key key; 3639 u32 item_size; 3640 int ret; 3641 int i; 3642 3643 ASSERT(count > 0); 3644 batch.nr = count; 3645 3646 if (count == 1) { 3647 btrfs_item_key_to_cpu(src, &key, start_slot); 3648 item_size = btrfs_item_size(src, start_slot); 3649 batch.keys = &key; 3650 batch.data_sizes = &item_size; 3651 batch.total_data_size = item_size; 3652 } else { 3653 struct btrfs_key *ins_keys; 3654 u32 *ins_sizes; 3655 3656 ins_data = kmalloc(count * sizeof(u32) + 3657 count * sizeof(struct btrfs_key), GFP_NOFS); 3658 if (!ins_data) 3659 return -ENOMEM; 3660 3661 ins_sizes = (u32 *)ins_data; 3662 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); 3663 batch.keys = ins_keys; 3664 batch.data_sizes = ins_sizes; 3665 batch.total_data_size = 0; 3666 3667 for (i = 0; i < count; i++) { 3668 const int slot = start_slot + i; 3669 3670 btrfs_item_key_to_cpu(src, &ins_keys[i], slot); 3671 ins_sizes[i] = btrfs_item_size(src, slot); 3672 batch.total_data_size += ins_sizes[i]; 3673 } 3674 } 3675 3676 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 3677 if (ret) 3678 goto out; 3679 3680 dst = dst_path->nodes[0]; 3681 /* 3682 * Copy all the items in bulk, in a single copy operation. Item data is 3683 * organized such that it's placed at the end of a leaf and from right 3684 * to left. For example, the data for the second item ends at an offset 3685 * that matches the offset where the data for the first item starts, the 3686 * data for the third item ends at an offset that matches the offset 3687 * where the data of the second items starts, and so on. 3688 * Therefore our source and destination start offsets for copy match the 3689 * offsets of the last items (highest slots). 3690 */ 3691 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); 3692 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); 3693 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); 3694 btrfs_release_path(dst_path); 3695 out: 3696 kfree(ins_data); 3697 3698 return ret; 3699 } 3700 3701 static int process_dir_items_leaf(struct btrfs_trans_handle *trans, 3702 struct btrfs_inode *inode, 3703 struct btrfs_path *path, 3704 struct btrfs_path *dst_path, 3705 struct btrfs_log_ctx *ctx) 3706 { 3707 struct btrfs_root *log = inode->root->log_root; 3708 struct extent_buffer *src = path->nodes[0]; 3709 const int nritems = btrfs_header_nritems(src); 3710 const u64 ino = btrfs_ino(inode); 3711 const bool inode_logged_before = inode_logged(trans, inode); 3712 bool last_found = false; 3713 int batch_start = 0; 3714 int batch_size = 0; 3715 int i; 3716 3717 for (i = path->slots[0]; i < nritems; i++) { 3718 struct btrfs_key key; 3719 int ret; 3720 3721 btrfs_item_key_to_cpu(src, &key, i); 3722 3723 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { 3724 last_found = true; 3725 break; 3726 } 3727 3728 ctx->last_dir_item_offset = key.offset; 3729 /* 3730 * We must make sure that when we log a directory entry, the 3731 * corresponding inode, after log replay, has a matching link 3732 * count. For example: 3733 * 3734 * touch foo 3735 * mkdir mydir 3736 * sync 3737 * ln foo mydir/bar 3738 * xfs_io -c "fsync" mydir 3739 * <crash> 3740 * <mount fs and log replay> 3741 * 3742 * Would result in a fsync log that when replayed, our file inode 3743 * would have a link count of 1, but we get two directory entries 3744 * pointing to the same inode. After removing one of the names, 3745 * it would not be possible to remove the other name, which 3746 * resulted always in stale file handle errors, and would not be 3747 * possible to rmdir the parent directory, since its i_size could 3748 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, 3749 * resulting in -ENOTEMPTY errors. 3750 */ 3751 if (!ctx->log_new_dentries) { 3752 struct btrfs_dir_item *di; 3753 struct btrfs_key di_key; 3754 3755 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3756 btrfs_dir_item_key_to_cpu(src, di, &di_key); 3757 if ((btrfs_dir_transid(src, di) == trans->transid || 3758 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3759 di_key.type != BTRFS_ROOT_ITEM_KEY) 3760 ctx->log_new_dentries = true; 3761 } 3762 3763 if (!inode_logged_before) 3764 goto add_to_batch; 3765 3766 /* 3767 * If we were logged before and have logged dir items, we can skip 3768 * checking if any item with a key offset larger than the last one 3769 * we logged is in the log tree, saving time and avoiding adding 3770 * contention on the log tree. 3771 */ 3772 if (key.offset > inode->last_dir_index_offset) 3773 goto add_to_batch; 3774 /* 3775 * Check if the key was already logged before. If not we can add 3776 * it to a batch for bulk insertion. 3777 */ 3778 ret = btrfs_search_slot(NULL, log, &key, dst_path, 0, 0); 3779 if (ret < 0) { 3780 return ret; 3781 } else if (ret > 0) { 3782 btrfs_release_path(dst_path); 3783 goto add_to_batch; 3784 } 3785 3786 /* 3787 * Item exists in the log. Overwrite the item in the log if it 3788 * has different content or do nothing if it has exactly the same 3789 * content. And then flush the current batch if any - do it after 3790 * overwriting the current item, or we would deadlock otherwise, 3791 * since we are holding a path for the existing item. 3792 */ 3793 ret = do_overwrite_item(trans, log, dst_path, src, i, &key); 3794 if (ret < 0) 3795 return ret; 3796 3797 if (batch_size > 0) { 3798 ret = flush_dir_items_batch(trans, log, src, dst_path, 3799 batch_start, batch_size); 3800 if (ret < 0) 3801 return ret; 3802 batch_size = 0; 3803 } 3804 continue; 3805 add_to_batch: 3806 if (batch_size == 0) 3807 batch_start = i; 3808 batch_size++; 3809 } 3810 3811 if (batch_size > 0) { 3812 int ret; 3813 3814 ret = flush_dir_items_batch(trans, log, src, dst_path, 3815 batch_start, batch_size); 3816 if (ret < 0) 3817 return ret; 3818 } 3819 3820 return last_found ? 1 : 0; 3821 } 3822 3823 /* 3824 * log all the items included in the current transaction for a given 3825 * directory. This also creates the range items in the log tree required 3826 * to replay anything deleted before the fsync 3827 */ 3828 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3829 struct btrfs_inode *inode, 3830 struct btrfs_path *path, 3831 struct btrfs_path *dst_path, 3832 struct btrfs_log_ctx *ctx, 3833 u64 min_offset, u64 *last_offset_ret) 3834 { 3835 struct btrfs_key min_key; 3836 struct btrfs_root *root = inode->root; 3837 struct btrfs_root *log = root->log_root; 3838 int err = 0; 3839 int ret; 3840 u64 first_offset = min_offset; 3841 u64 last_offset = (u64)-1; 3842 u64 ino = btrfs_ino(inode); 3843 3844 min_key.objectid = ino; 3845 min_key.type = BTRFS_DIR_INDEX_KEY; 3846 min_key.offset = min_offset; 3847 3848 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3849 3850 /* 3851 * we didn't find anything from this transaction, see if there 3852 * is anything at all 3853 */ 3854 if (ret != 0 || min_key.objectid != ino || 3855 min_key.type != BTRFS_DIR_INDEX_KEY) { 3856 min_key.objectid = ino; 3857 min_key.type = BTRFS_DIR_INDEX_KEY; 3858 min_key.offset = (u64)-1; 3859 btrfs_release_path(path); 3860 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3861 if (ret < 0) { 3862 btrfs_release_path(path); 3863 return ret; 3864 } 3865 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3866 3867 /* if ret == 0 there are items for this type, 3868 * create a range to tell us the last key of this type. 3869 * otherwise, there are no items in this directory after 3870 * *min_offset, and we create a range to indicate that. 3871 */ 3872 if (ret == 0) { 3873 struct btrfs_key tmp; 3874 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3875 path->slots[0]); 3876 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3877 first_offset = max(min_offset, tmp.offset) + 1; 3878 } 3879 goto done; 3880 } 3881 3882 /* go backward to find any previous key */ 3883 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3884 if (ret == 0) { 3885 struct btrfs_key tmp; 3886 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3887 if (tmp.type == BTRFS_DIR_INDEX_KEY) { 3888 first_offset = tmp.offset; 3889 ret = overwrite_item(trans, log, dst_path, 3890 path->nodes[0], path->slots[0], 3891 &tmp); 3892 if (ret) { 3893 err = ret; 3894 goto done; 3895 } 3896 } 3897 } 3898 btrfs_release_path(path); 3899 3900 /* 3901 * Find the first key from this transaction again. See the note for 3902 * log_new_dir_dentries, if we're logging a directory recursively we 3903 * won't be holding its i_mutex, which means we can modify the directory 3904 * while we're logging it. If we remove an entry between our first 3905 * search and this search we'll not find the key again and can just 3906 * bail. 3907 */ 3908 search: 3909 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3910 if (ret != 0) 3911 goto done; 3912 3913 /* 3914 * we have a block from this transaction, log every item in it 3915 * from our directory 3916 */ 3917 while (1) { 3918 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx); 3919 if (ret != 0) { 3920 if (ret < 0) 3921 err = ret; 3922 goto done; 3923 } 3924 path->slots[0] = btrfs_header_nritems(path->nodes[0]); 3925 3926 /* 3927 * look ahead to the next item and see if it is also 3928 * from this directory and from this transaction 3929 */ 3930 ret = btrfs_next_leaf(root, path); 3931 if (ret) { 3932 if (ret == 1) 3933 last_offset = (u64)-1; 3934 else 3935 err = ret; 3936 goto done; 3937 } 3938 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); 3939 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { 3940 last_offset = (u64)-1; 3941 goto done; 3942 } 3943 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3944 ctx->last_dir_item_offset = min_key.offset; 3945 ret = overwrite_item(trans, log, dst_path, 3946 path->nodes[0], path->slots[0], 3947 &min_key); 3948 if (ret) 3949 err = ret; 3950 else 3951 last_offset = min_key.offset; 3952 goto done; 3953 } 3954 if (need_resched()) { 3955 btrfs_release_path(path); 3956 cond_resched(); 3957 goto search; 3958 } 3959 } 3960 done: 3961 btrfs_release_path(path); 3962 btrfs_release_path(dst_path); 3963 3964 if (err == 0) { 3965 *last_offset_ret = last_offset; 3966 /* 3967 * insert the log range keys to indicate where the log 3968 * is valid 3969 */ 3970 ret = insert_dir_log_key(trans, log, path, ino, first_offset, 3971 last_offset); 3972 if (ret) 3973 err = ret; 3974 } 3975 return err; 3976 } 3977 3978 /* 3979 * logging directories is very similar to logging inodes, We find all the items 3980 * from the current transaction and write them to the log. 3981 * 3982 * The recovery code scans the directory in the subvolume, and if it finds a 3983 * key in the range logged that is not present in the log tree, then it means 3984 * that dir entry was unlinked during the transaction. 3985 * 3986 * In order for that scan to work, we must include one key smaller than 3987 * the smallest logged by this transaction and one key larger than the largest 3988 * key logged by this transaction. 3989 */ 3990 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3991 struct btrfs_inode *inode, 3992 struct btrfs_path *path, 3993 struct btrfs_path *dst_path, 3994 struct btrfs_log_ctx *ctx) 3995 { 3996 u64 min_key; 3997 u64 max_key; 3998 int ret; 3999 4000 /* 4001 * If this is the first time we are being logged in the current 4002 * transaction, or we were logged before but the inode was evicted and 4003 * reloaded later, in which case its logged_trans is 0, reset the value 4004 * of the last logged key offset. Note that we don't use the helper 4005 * function inode_logged() here - that is because the function returns 4006 * true after an inode eviction, assuming the worst case as it can not 4007 * know for sure if the inode was logged before. So we can not skip key 4008 * searches in the case the inode was evicted, because it may not have 4009 * been logged in this transaction and may have been logged in a past 4010 * transaction, so we need to reset the last dir index offset to (u64)-1. 4011 */ 4012 if (inode->logged_trans != trans->transid) 4013 inode->last_dir_index_offset = (u64)-1; 4014 4015 min_key = 0; 4016 max_key = 0; 4017 ctx->last_dir_item_offset = inode->last_dir_index_offset; 4018 4019 while (1) { 4020 ret = log_dir_items(trans, inode, path, dst_path, 4021 ctx, min_key, &max_key); 4022 if (ret) 4023 return ret; 4024 if (max_key == (u64)-1) 4025 break; 4026 min_key = max_key + 1; 4027 } 4028 4029 inode->last_dir_index_offset = ctx->last_dir_item_offset; 4030 4031 return 0; 4032 } 4033 4034 /* 4035 * a helper function to drop items from the log before we relog an 4036 * inode. max_key_type indicates the highest item type to remove. 4037 * This cannot be run for file data extents because it does not 4038 * free the extents they point to. 4039 */ 4040 static int drop_inode_items(struct btrfs_trans_handle *trans, 4041 struct btrfs_root *log, 4042 struct btrfs_path *path, 4043 struct btrfs_inode *inode, 4044 int max_key_type) 4045 { 4046 int ret; 4047 struct btrfs_key key; 4048 struct btrfs_key found_key; 4049 int start_slot; 4050 4051 if (!inode_logged(trans, inode)) 4052 return 0; 4053 4054 key.objectid = btrfs_ino(inode); 4055 key.type = max_key_type; 4056 key.offset = (u64)-1; 4057 4058 while (1) { 4059 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 4060 BUG_ON(ret == 0); /* Logic error */ 4061 if (ret < 0) 4062 break; 4063 4064 if (path->slots[0] == 0) 4065 break; 4066 4067 path->slots[0]--; 4068 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4069 path->slots[0]); 4070 4071 if (found_key.objectid != key.objectid) 4072 break; 4073 4074 found_key.offset = 0; 4075 found_key.type = 0; 4076 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot); 4077 if (ret < 0) 4078 break; 4079 4080 ret = btrfs_del_items(trans, log, path, start_slot, 4081 path->slots[0] - start_slot + 1); 4082 /* 4083 * If start slot isn't 0 then we don't need to re-search, we've 4084 * found the last guy with the objectid in this tree. 4085 */ 4086 if (ret || start_slot != 0) 4087 break; 4088 btrfs_release_path(path); 4089 } 4090 btrfs_release_path(path); 4091 if (ret > 0) 4092 ret = 0; 4093 return ret; 4094 } 4095 4096 static int truncate_inode_items(struct btrfs_trans_handle *trans, 4097 struct btrfs_root *log_root, 4098 struct btrfs_inode *inode, 4099 u64 new_size, u32 min_type) 4100 { 4101 struct btrfs_truncate_control control = { 4102 .new_size = new_size, 4103 .ino = btrfs_ino(inode), 4104 .min_type = min_type, 4105 .skip_ref_updates = true, 4106 }; 4107 4108 return btrfs_truncate_inode_items(trans, log_root, &control); 4109 } 4110 4111 static void fill_inode_item(struct btrfs_trans_handle *trans, 4112 struct extent_buffer *leaf, 4113 struct btrfs_inode_item *item, 4114 struct inode *inode, int log_inode_only, 4115 u64 logged_isize) 4116 { 4117 struct btrfs_map_token token; 4118 u64 flags; 4119 4120 btrfs_init_map_token(&token, leaf); 4121 4122 if (log_inode_only) { 4123 /* set the generation to zero so the recover code 4124 * can tell the difference between an logging 4125 * just to say 'this inode exists' and a logging 4126 * to say 'update this inode with these values' 4127 */ 4128 btrfs_set_token_inode_generation(&token, item, 0); 4129 btrfs_set_token_inode_size(&token, item, logged_isize); 4130 } else { 4131 btrfs_set_token_inode_generation(&token, item, 4132 BTRFS_I(inode)->generation); 4133 btrfs_set_token_inode_size(&token, item, inode->i_size); 4134 } 4135 4136 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4137 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4138 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4139 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4140 4141 btrfs_set_token_timespec_sec(&token, &item->atime, 4142 inode->i_atime.tv_sec); 4143 btrfs_set_token_timespec_nsec(&token, &item->atime, 4144 inode->i_atime.tv_nsec); 4145 4146 btrfs_set_token_timespec_sec(&token, &item->mtime, 4147 inode->i_mtime.tv_sec); 4148 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4149 inode->i_mtime.tv_nsec); 4150 4151 btrfs_set_token_timespec_sec(&token, &item->ctime, 4152 inode->i_ctime.tv_sec); 4153 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4154 inode->i_ctime.tv_nsec); 4155 4156 /* 4157 * We do not need to set the nbytes field, in fact during a fast fsync 4158 * its value may not even be correct, since a fast fsync does not wait 4159 * for ordered extent completion, which is where we update nbytes, it 4160 * only waits for writeback to complete. During log replay as we find 4161 * file extent items and replay them, we adjust the nbytes field of the 4162 * inode item in subvolume tree as needed (see overwrite_item()). 4163 */ 4164 4165 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4166 btrfs_set_token_inode_transid(&token, item, trans->transid); 4167 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4168 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4169 BTRFS_I(inode)->ro_flags); 4170 btrfs_set_token_inode_flags(&token, item, flags); 4171 btrfs_set_token_inode_block_group(&token, item, 0); 4172 } 4173 4174 static int log_inode_item(struct btrfs_trans_handle *trans, 4175 struct btrfs_root *log, struct btrfs_path *path, 4176 struct btrfs_inode *inode, bool inode_item_dropped) 4177 { 4178 struct btrfs_inode_item *inode_item; 4179 int ret; 4180 4181 /* 4182 * If we are doing a fast fsync and the inode was logged before in the 4183 * current transaction, then we know the inode was previously logged and 4184 * it exists in the log tree. For performance reasons, in this case use 4185 * btrfs_search_slot() directly with ins_len set to 0 so that we never 4186 * attempt a write lock on the leaf's parent, which adds unnecessary lock 4187 * contention in case there are concurrent fsyncs for other inodes of the 4188 * same subvolume. Using btrfs_insert_empty_item() when the inode item 4189 * already exists can also result in unnecessarily splitting a leaf. 4190 */ 4191 if (!inode_item_dropped && inode->logged_trans == trans->transid) { 4192 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1); 4193 ASSERT(ret <= 0); 4194 if (ret > 0) 4195 ret = -ENOENT; 4196 } else { 4197 /* 4198 * This means it is the first fsync in the current transaction, 4199 * so the inode item is not in the log and we need to insert it. 4200 * We can never get -EEXIST because we are only called for a fast 4201 * fsync and in case an inode eviction happens after the inode was 4202 * logged before in the current transaction, when we load again 4203 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime 4204 * flags and set ->logged_trans to 0. 4205 */ 4206 ret = btrfs_insert_empty_item(trans, log, path, &inode->location, 4207 sizeof(*inode_item)); 4208 ASSERT(ret != -EEXIST); 4209 } 4210 if (ret) 4211 return ret; 4212 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4213 struct btrfs_inode_item); 4214 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 4215 0, 0); 4216 btrfs_release_path(path); 4217 return 0; 4218 } 4219 4220 static int log_csums(struct btrfs_trans_handle *trans, 4221 struct btrfs_inode *inode, 4222 struct btrfs_root *log_root, 4223 struct btrfs_ordered_sum *sums) 4224 { 4225 const u64 lock_end = sums->bytenr + sums->len - 1; 4226 struct extent_state *cached_state = NULL; 4227 int ret; 4228 4229 /* 4230 * If this inode was not used for reflink operations in the current 4231 * transaction with new extents, then do the fast path, no need to 4232 * worry about logging checksum items with overlapping ranges. 4233 */ 4234 if (inode->last_reflink_trans < trans->transid) 4235 return btrfs_csum_file_blocks(trans, log_root, sums); 4236 4237 /* 4238 * Serialize logging for checksums. This is to avoid racing with the 4239 * same checksum being logged by another task that is logging another 4240 * file which happens to refer to the same extent as well. Such races 4241 * can leave checksum items in the log with overlapping ranges. 4242 */ 4243 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr, 4244 lock_end, &cached_state); 4245 if (ret) 4246 return ret; 4247 /* 4248 * Due to extent cloning, we might have logged a csum item that covers a 4249 * subrange of a cloned extent, and later we can end up logging a csum 4250 * item for a larger subrange of the same extent or the entire range. 4251 * This would leave csum items in the log tree that cover the same range 4252 * and break the searches for checksums in the log tree, resulting in 4253 * some checksums missing in the fs/subvolume tree. So just delete (or 4254 * trim and adjust) any existing csum items in the log for this range. 4255 */ 4256 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len); 4257 if (!ret) 4258 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4259 4260 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end, 4261 &cached_state); 4262 4263 return ret; 4264 } 4265 4266 static noinline int copy_items(struct btrfs_trans_handle *trans, 4267 struct btrfs_inode *inode, 4268 struct btrfs_path *dst_path, 4269 struct btrfs_path *src_path, 4270 int start_slot, int nr, int inode_only, 4271 u64 logged_isize) 4272 { 4273 struct btrfs_fs_info *fs_info = trans->fs_info; 4274 unsigned long src_offset; 4275 unsigned long dst_offset; 4276 struct btrfs_root *log = inode->root->log_root; 4277 struct btrfs_file_extent_item *extent; 4278 struct btrfs_inode_item *inode_item; 4279 struct extent_buffer *src = src_path->nodes[0]; 4280 int ret; 4281 struct btrfs_key *ins_keys; 4282 u32 *ins_sizes; 4283 struct btrfs_item_batch batch; 4284 char *ins_data; 4285 int i; 4286 struct list_head ordered_sums; 4287 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 4288 4289 INIT_LIST_HEAD(&ordered_sums); 4290 4291 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 4292 nr * sizeof(u32), GFP_NOFS); 4293 if (!ins_data) 4294 return -ENOMEM; 4295 4296 ins_sizes = (u32 *)ins_data; 4297 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 4298 batch.keys = ins_keys; 4299 batch.data_sizes = ins_sizes; 4300 batch.total_data_size = 0; 4301 batch.nr = nr; 4302 4303 for (i = 0; i < nr; i++) { 4304 ins_sizes[i] = btrfs_item_size(src, i + start_slot); 4305 batch.total_data_size += ins_sizes[i]; 4306 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 4307 } 4308 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 4309 if (ret) { 4310 kfree(ins_data); 4311 return ret; 4312 } 4313 4314 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 4315 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 4316 dst_path->slots[0]); 4317 4318 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 4319 4320 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 4321 inode_item = btrfs_item_ptr(dst_path->nodes[0], 4322 dst_path->slots[0], 4323 struct btrfs_inode_item); 4324 fill_inode_item(trans, dst_path->nodes[0], inode_item, 4325 &inode->vfs_inode, 4326 inode_only == LOG_INODE_EXISTS, 4327 logged_isize); 4328 } else { 4329 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4330 src_offset, ins_sizes[i]); 4331 } 4332 4333 /* take a reference on file data extents so that truncates 4334 * or deletes of this inode don't have to relog the inode 4335 * again 4336 */ 4337 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 4338 !skip_csum) { 4339 int found_type; 4340 extent = btrfs_item_ptr(src, start_slot + i, 4341 struct btrfs_file_extent_item); 4342 4343 if (btrfs_file_extent_generation(src, extent) < trans->transid) 4344 continue; 4345 4346 found_type = btrfs_file_extent_type(src, extent); 4347 if (found_type == BTRFS_FILE_EXTENT_REG) { 4348 struct btrfs_root *csum_root; 4349 u64 ds, dl, cs, cl; 4350 ds = btrfs_file_extent_disk_bytenr(src, 4351 extent); 4352 /* ds == 0 is a hole */ 4353 if (ds == 0) 4354 continue; 4355 4356 dl = btrfs_file_extent_disk_num_bytes(src, 4357 extent); 4358 cs = btrfs_file_extent_offset(src, extent); 4359 cl = btrfs_file_extent_num_bytes(src, 4360 extent); 4361 if (btrfs_file_extent_compression(src, 4362 extent)) { 4363 cs = 0; 4364 cl = dl; 4365 } 4366 4367 csum_root = btrfs_csum_root(fs_info, ds); 4368 ret = btrfs_lookup_csums_range(csum_root, 4369 ds + cs, ds + cs + cl - 1, 4370 &ordered_sums, 0); 4371 if (ret) 4372 break; 4373 } 4374 } 4375 } 4376 4377 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4378 btrfs_release_path(dst_path); 4379 kfree(ins_data); 4380 4381 /* 4382 * we have to do this after the loop above to avoid changing the 4383 * log tree while trying to change the log tree. 4384 */ 4385 while (!list_empty(&ordered_sums)) { 4386 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4387 struct btrfs_ordered_sum, 4388 list); 4389 if (!ret) 4390 ret = log_csums(trans, inode, log, sums); 4391 list_del(&sums->list); 4392 kfree(sums); 4393 } 4394 4395 return ret; 4396 } 4397 4398 static int extent_cmp(void *priv, const struct list_head *a, 4399 const struct list_head *b) 4400 { 4401 const struct extent_map *em1, *em2; 4402 4403 em1 = list_entry(a, struct extent_map, list); 4404 em2 = list_entry(b, struct extent_map, list); 4405 4406 if (em1->start < em2->start) 4407 return -1; 4408 else if (em1->start > em2->start) 4409 return 1; 4410 return 0; 4411 } 4412 4413 static int log_extent_csums(struct btrfs_trans_handle *trans, 4414 struct btrfs_inode *inode, 4415 struct btrfs_root *log_root, 4416 const struct extent_map *em, 4417 struct btrfs_log_ctx *ctx) 4418 { 4419 struct btrfs_ordered_extent *ordered; 4420 struct btrfs_root *csum_root; 4421 u64 csum_offset; 4422 u64 csum_len; 4423 u64 mod_start = em->mod_start; 4424 u64 mod_len = em->mod_len; 4425 LIST_HEAD(ordered_sums); 4426 int ret = 0; 4427 4428 if (inode->flags & BTRFS_INODE_NODATASUM || 4429 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4430 em->block_start == EXTENT_MAP_HOLE) 4431 return 0; 4432 4433 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { 4434 const u64 ordered_end = ordered->file_offset + ordered->num_bytes; 4435 const u64 mod_end = mod_start + mod_len; 4436 struct btrfs_ordered_sum *sums; 4437 4438 if (mod_len == 0) 4439 break; 4440 4441 if (ordered_end <= mod_start) 4442 continue; 4443 if (mod_end <= ordered->file_offset) 4444 break; 4445 4446 /* 4447 * We are going to copy all the csums on this ordered extent, so 4448 * go ahead and adjust mod_start and mod_len in case this ordered 4449 * extent has already been logged. 4450 */ 4451 if (ordered->file_offset > mod_start) { 4452 if (ordered_end >= mod_end) 4453 mod_len = ordered->file_offset - mod_start; 4454 /* 4455 * If we have this case 4456 * 4457 * |--------- logged extent ---------| 4458 * |----- ordered extent ----| 4459 * 4460 * Just don't mess with mod_start and mod_len, we'll 4461 * just end up logging more csums than we need and it 4462 * will be ok. 4463 */ 4464 } else { 4465 if (ordered_end < mod_end) { 4466 mod_len = mod_end - ordered_end; 4467 mod_start = ordered_end; 4468 } else { 4469 mod_len = 0; 4470 } 4471 } 4472 4473 /* 4474 * To keep us from looping for the above case of an ordered 4475 * extent that falls inside of the logged extent. 4476 */ 4477 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) 4478 continue; 4479 4480 list_for_each_entry(sums, &ordered->list, list) { 4481 ret = log_csums(trans, inode, log_root, sums); 4482 if (ret) 4483 return ret; 4484 } 4485 } 4486 4487 /* We're done, found all csums in the ordered extents. */ 4488 if (mod_len == 0) 4489 return 0; 4490 4491 /* If we're compressed we have to save the entire range of csums. */ 4492 if (em->compress_type) { 4493 csum_offset = 0; 4494 csum_len = max(em->block_len, em->orig_block_len); 4495 } else { 4496 csum_offset = mod_start - em->start; 4497 csum_len = mod_len; 4498 } 4499 4500 /* block start is already adjusted for the file extent offset. */ 4501 csum_root = btrfs_csum_root(trans->fs_info, em->block_start); 4502 ret = btrfs_lookup_csums_range(csum_root, 4503 em->block_start + csum_offset, 4504 em->block_start + csum_offset + 4505 csum_len - 1, &ordered_sums, 0); 4506 if (ret) 4507 return ret; 4508 4509 while (!list_empty(&ordered_sums)) { 4510 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4511 struct btrfs_ordered_sum, 4512 list); 4513 if (!ret) 4514 ret = log_csums(trans, inode, log_root, sums); 4515 list_del(&sums->list); 4516 kfree(sums); 4517 } 4518 4519 return ret; 4520 } 4521 4522 static int log_one_extent(struct btrfs_trans_handle *trans, 4523 struct btrfs_inode *inode, 4524 const struct extent_map *em, 4525 struct btrfs_path *path, 4526 struct btrfs_log_ctx *ctx) 4527 { 4528 struct btrfs_drop_extents_args drop_args = { 0 }; 4529 struct btrfs_root *log = inode->root->log_root; 4530 struct btrfs_file_extent_item *fi; 4531 struct extent_buffer *leaf; 4532 struct btrfs_map_token token; 4533 struct btrfs_key key; 4534 u64 extent_offset = em->start - em->orig_start; 4535 u64 block_len; 4536 int ret; 4537 4538 ret = log_extent_csums(trans, inode, log, em, ctx); 4539 if (ret) 4540 return ret; 4541 4542 /* 4543 * If this is the first time we are logging the inode in the current 4544 * transaction, we can avoid btrfs_drop_extents(), which is expensive 4545 * because it does a deletion search, which always acquires write locks 4546 * for extent buffers at levels 2, 1 and 0. This not only wastes time 4547 * but also adds significant contention in a log tree, since log trees 4548 * are small, with a root at level 2 or 3 at most, due to their short 4549 * life span. 4550 */ 4551 if (inode_logged(trans, inode)) { 4552 drop_args.path = path; 4553 drop_args.start = em->start; 4554 drop_args.end = em->start + em->len; 4555 drop_args.replace_extent = true; 4556 drop_args.extent_item_size = sizeof(*fi); 4557 ret = btrfs_drop_extents(trans, log, inode, &drop_args); 4558 if (ret) 4559 return ret; 4560 } 4561 4562 if (!drop_args.extent_inserted) { 4563 key.objectid = btrfs_ino(inode); 4564 key.type = BTRFS_EXTENT_DATA_KEY; 4565 key.offset = em->start; 4566 4567 ret = btrfs_insert_empty_item(trans, log, path, &key, 4568 sizeof(*fi)); 4569 if (ret) 4570 return ret; 4571 } 4572 leaf = path->nodes[0]; 4573 btrfs_init_map_token(&token, leaf); 4574 fi = btrfs_item_ptr(leaf, path->slots[0], 4575 struct btrfs_file_extent_item); 4576 4577 btrfs_set_token_file_extent_generation(&token, fi, trans->transid); 4578 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4579 btrfs_set_token_file_extent_type(&token, fi, 4580 BTRFS_FILE_EXTENT_PREALLOC); 4581 else 4582 btrfs_set_token_file_extent_type(&token, fi, 4583 BTRFS_FILE_EXTENT_REG); 4584 4585 block_len = max(em->block_len, em->orig_block_len); 4586 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4587 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4588 em->block_start); 4589 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4590 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4591 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 4592 em->block_start - 4593 extent_offset); 4594 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len); 4595 } else { 4596 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0); 4597 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0); 4598 } 4599 4600 btrfs_set_token_file_extent_offset(&token, fi, extent_offset); 4601 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len); 4602 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes); 4603 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type); 4604 btrfs_set_token_file_extent_encryption(&token, fi, 0); 4605 btrfs_set_token_file_extent_other_encoding(&token, fi, 0); 4606 btrfs_mark_buffer_dirty(leaf); 4607 4608 btrfs_release_path(path); 4609 4610 return ret; 4611 } 4612 4613 /* 4614 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4615 * lose them after doing a fast fsync and replaying the log. We scan the 4616 * subvolume's root instead of iterating the inode's extent map tree because 4617 * otherwise we can log incorrect extent items based on extent map conversion. 4618 * That can happen due to the fact that extent maps are merged when they 4619 * are not in the extent map tree's list of modified extents. 4620 */ 4621 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4622 struct btrfs_inode *inode, 4623 struct btrfs_path *path) 4624 { 4625 struct btrfs_root *root = inode->root; 4626 struct btrfs_key key; 4627 const u64 i_size = i_size_read(&inode->vfs_inode); 4628 const u64 ino = btrfs_ino(inode); 4629 struct btrfs_path *dst_path = NULL; 4630 bool dropped_extents = false; 4631 u64 truncate_offset = i_size; 4632 struct extent_buffer *leaf; 4633 int slot; 4634 int ins_nr = 0; 4635 int start_slot; 4636 int ret; 4637 4638 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4639 return 0; 4640 4641 key.objectid = ino; 4642 key.type = BTRFS_EXTENT_DATA_KEY; 4643 key.offset = i_size; 4644 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4645 if (ret < 0) 4646 goto out; 4647 4648 /* 4649 * We must check if there is a prealloc extent that starts before the 4650 * i_size and crosses the i_size boundary. This is to ensure later we 4651 * truncate down to the end of that extent and not to the i_size, as 4652 * otherwise we end up losing part of the prealloc extent after a log 4653 * replay and with an implicit hole if there is another prealloc extent 4654 * that starts at an offset beyond i_size. 4655 */ 4656 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4657 if (ret < 0) 4658 goto out; 4659 4660 if (ret == 0) { 4661 struct btrfs_file_extent_item *ei; 4662 4663 leaf = path->nodes[0]; 4664 slot = path->slots[0]; 4665 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4666 4667 if (btrfs_file_extent_type(leaf, ei) == 4668 BTRFS_FILE_EXTENT_PREALLOC) { 4669 u64 extent_end; 4670 4671 btrfs_item_key_to_cpu(leaf, &key, slot); 4672 extent_end = key.offset + 4673 btrfs_file_extent_num_bytes(leaf, ei); 4674 4675 if (extent_end > i_size) 4676 truncate_offset = extent_end; 4677 } 4678 } else { 4679 ret = 0; 4680 } 4681 4682 while (true) { 4683 leaf = path->nodes[0]; 4684 slot = path->slots[0]; 4685 4686 if (slot >= btrfs_header_nritems(leaf)) { 4687 if (ins_nr > 0) { 4688 ret = copy_items(trans, inode, dst_path, path, 4689 start_slot, ins_nr, 1, 0); 4690 if (ret < 0) 4691 goto out; 4692 ins_nr = 0; 4693 } 4694 ret = btrfs_next_leaf(root, path); 4695 if (ret < 0) 4696 goto out; 4697 if (ret > 0) { 4698 ret = 0; 4699 break; 4700 } 4701 continue; 4702 } 4703 4704 btrfs_item_key_to_cpu(leaf, &key, slot); 4705 if (key.objectid > ino) 4706 break; 4707 if (WARN_ON_ONCE(key.objectid < ino) || 4708 key.type < BTRFS_EXTENT_DATA_KEY || 4709 key.offset < i_size) { 4710 path->slots[0]++; 4711 continue; 4712 } 4713 if (!dropped_extents) { 4714 /* 4715 * Avoid logging extent items logged in past fsync calls 4716 * and leading to duplicate keys in the log tree. 4717 */ 4718 ret = truncate_inode_items(trans, root->log_root, inode, 4719 truncate_offset, 4720 BTRFS_EXTENT_DATA_KEY); 4721 if (ret) 4722 goto out; 4723 dropped_extents = true; 4724 } 4725 if (ins_nr == 0) 4726 start_slot = slot; 4727 ins_nr++; 4728 path->slots[0]++; 4729 if (!dst_path) { 4730 dst_path = btrfs_alloc_path(); 4731 if (!dst_path) { 4732 ret = -ENOMEM; 4733 goto out; 4734 } 4735 } 4736 } 4737 if (ins_nr > 0) 4738 ret = copy_items(trans, inode, dst_path, path, 4739 start_slot, ins_nr, 1, 0); 4740 out: 4741 btrfs_release_path(path); 4742 btrfs_free_path(dst_path); 4743 return ret; 4744 } 4745 4746 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4747 struct btrfs_inode *inode, 4748 struct btrfs_path *path, 4749 struct btrfs_log_ctx *ctx) 4750 { 4751 struct btrfs_ordered_extent *ordered; 4752 struct btrfs_ordered_extent *tmp; 4753 struct extent_map *em, *n; 4754 struct list_head extents; 4755 struct extent_map_tree *tree = &inode->extent_tree; 4756 int ret = 0; 4757 int num = 0; 4758 4759 INIT_LIST_HEAD(&extents); 4760 4761 write_lock(&tree->lock); 4762 4763 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4764 list_del_init(&em->list); 4765 /* 4766 * Just an arbitrary number, this can be really CPU intensive 4767 * once we start getting a lot of extents, and really once we 4768 * have a bunch of extents we just want to commit since it will 4769 * be faster. 4770 */ 4771 if (++num > 32768) { 4772 list_del_init(&tree->modified_extents); 4773 ret = -EFBIG; 4774 goto process; 4775 } 4776 4777 if (em->generation < trans->transid) 4778 continue; 4779 4780 /* We log prealloc extents beyond eof later. */ 4781 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4782 em->start >= i_size_read(&inode->vfs_inode)) 4783 continue; 4784 4785 /* Need a ref to keep it from getting evicted from cache */ 4786 refcount_inc(&em->refs); 4787 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4788 list_add_tail(&em->list, &extents); 4789 num++; 4790 } 4791 4792 list_sort(NULL, &extents, extent_cmp); 4793 process: 4794 while (!list_empty(&extents)) { 4795 em = list_entry(extents.next, struct extent_map, list); 4796 4797 list_del_init(&em->list); 4798 4799 /* 4800 * If we had an error we just need to delete everybody from our 4801 * private list. 4802 */ 4803 if (ret) { 4804 clear_em_logging(tree, em); 4805 free_extent_map(em); 4806 continue; 4807 } 4808 4809 write_unlock(&tree->lock); 4810 4811 ret = log_one_extent(trans, inode, em, path, ctx); 4812 write_lock(&tree->lock); 4813 clear_em_logging(tree, em); 4814 free_extent_map(em); 4815 } 4816 WARN_ON(!list_empty(&extents)); 4817 write_unlock(&tree->lock); 4818 4819 btrfs_release_path(path); 4820 if (!ret) 4821 ret = btrfs_log_prealloc_extents(trans, inode, path); 4822 if (ret) 4823 return ret; 4824 4825 /* 4826 * We have logged all extents successfully, now make sure the commit of 4827 * the current transaction waits for the ordered extents to complete 4828 * before it commits and wipes out the log trees, otherwise we would 4829 * lose data if an ordered extents completes after the transaction 4830 * commits and a power failure happens after the transaction commit. 4831 */ 4832 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 4833 list_del_init(&ordered->log_list); 4834 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); 4835 4836 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4837 spin_lock_irq(&inode->ordered_tree.lock); 4838 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4839 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 4840 atomic_inc(&trans->transaction->pending_ordered); 4841 } 4842 spin_unlock_irq(&inode->ordered_tree.lock); 4843 } 4844 btrfs_put_ordered_extent(ordered); 4845 } 4846 4847 return 0; 4848 } 4849 4850 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4851 struct btrfs_path *path, u64 *size_ret) 4852 { 4853 struct btrfs_key key; 4854 int ret; 4855 4856 key.objectid = btrfs_ino(inode); 4857 key.type = BTRFS_INODE_ITEM_KEY; 4858 key.offset = 0; 4859 4860 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4861 if (ret < 0) { 4862 return ret; 4863 } else if (ret > 0) { 4864 *size_ret = 0; 4865 } else { 4866 struct btrfs_inode_item *item; 4867 4868 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4869 struct btrfs_inode_item); 4870 *size_ret = btrfs_inode_size(path->nodes[0], item); 4871 /* 4872 * If the in-memory inode's i_size is smaller then the inode 4873 * size stored in the btree, return the inode's i_size, so 4874 * that we get a correct inode size after replaying the log 4875 * when before a power failure we had a shrinking truncate 4876 * followed by addition of a new name (rename / new hard link). 4877 * Otherwise return the inode size from the btree, to avoid 4878 * data loss when replaying a log due to previously doing a 4879 * write that expands the inode's size and logging a new name 4880 * immediately after. 4881 */ 4882 if (*size_ret > inode->vfs_inode.i_size) 4883 *size_ret = inode->vfs_inode.i_size; 4884 } 4885 4886 btrfs_release_path(path); 4887 return 0; 4888 } 4889 4890 /* 4891 * At the moment we always log all xattrs. This is to figure out at log replay 4892 * time which xattrs must have their deletion replayed. If a xattr is missing 4893 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4894 * because if a xattr is deleted, the inode is fsynced and a power failure 4895 * happens, causing the log to be replayed the next time the fs is mounted, 4896 * we want the xattr to not exist anymore (same behaviour as other filesystems 4897 * with a journal, ext3/4, xfs, f2fs, etc). 4898 */ 4899 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4900 struct btrfs_inode *inode, 4901 struct btrfs_path *path, 4902 struct btrfs_path *dst_path) 4903 { 4904 struct btrfs_root *root = inode->root; 4905 int ret; 4906 struct btrfs_key key; 4907 const u64 ino = btrfs_ino(inode); 4908 int ins_nr = 0; 4909 int start_slot = 0; 4910 bool found_xattrs = false; 4911 4912 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) 4913 return 0; 4914 4915 key.objectid = ino; 4916 key.type = BTRFS_XATTR_ITEM_KEY; 4917 key.offset = 0; 4918 4919 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4920 if (ret < 0) 4921 return ret; 4922 4923 while (true) { 4924 int slot = path->slots[0]; 4925 struct extent_buffer *leaf = path->nodes[0]; 4926 int nritems = btrfs_header_nritems(leaf); 4927 4928 if (slot >= nritems) { 4929 if (ins_nr > 0) { 4930 ret = copy_items(trans, inode, dst_path, path, 4931 start_slot, ins_nr, 1, 0); 4932 if (ret < 0) 4933 return ret; 4934 ins_nr = 0; 4935 } 4936 ret = btrfs_next_leaf(root, path); 4937 if (ret < 0) 4938 return ret; 4939 else if (ret > 0) 4940 break; 4941 continue; 4942 } 4943 4944 btrfs_item_key_to_cpu(leaf, &key, slot); 4945 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4946 break; 4947 4948 if (ins_nr == 0) 4949 start_slot = slot; 4950 ins_nr++; 4951 path->slots[0]++; 4952 found_xattrs = true; 4953 cond_resched(); 4954 } 4955 if (ins_nr > 0) { 4956 ret = copy_items(trans, inode, dst_path, path, 4957 start_slot, ins_nr, 1, 0); 4958 if (ret < 0) 4959 return ret; 4960 } 4961 4962 if (!found_xattrs) 4963 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); 4964 4965 return 0; 4966 } 4967 4968 /* 4969 * When using the NO_HOLES feature if we punched a hole that causes the 4970 * deletion of entire leafs or all the extent items of the first leaf (the one 4971 * that contains the inode item and references) we may end up not processing 4972 * any extents, because there are no leafs with a generation matching the 4973 * current transaction that have extent items for our inode. So we need to find 4974 * if any holes exist and then log them. We also need to log holes after any 4975 * truncate operation that changes the inode's size. 4976 */ 4977 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 4978 struct btrfs_inode *inode, 4979 struct btrfs_path *path) 4980 { 4981 struct btrfs_root *root = inode->root; 4982 struct btrfs_fs_info *fs_info = root->fs_info; 4983 struct btrfs_key key; 4984 const u64 ino = btrfs_ino(inode); 4985 const u64 i_size = i_size_read(&inode->vfs_inode); 4986 u64 prev_extent_end = 0; 4987 int ret; 4988 4989 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 4990 return 0; 4991 4992 key.objectid = ino; 4993 key.type = BTRFS_EXTENT_DATA_KEY; 4994 key.offset = 0; 4995 4996 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4997 if (ret < 0) 4998 return ret; 4999 5000 while (true) { 5001 struct extent_buffer *leaf = path->nodes[0]; 5002 5003 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 5004 ret = btrfs_next_leaf(root, path); 5005 if (ret < 0) 5006 return ret; 5007 if (ret > 0) { 5008 ret = 0; 5009 break; 5010 } 5011 leaf = path->nodes[0]; 5012 } 5013 5014 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5015 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 5016 break; 5017 5018 /* We have a hole, log it. */ 5019 if (prev_extent_end < key.offset) { 5020 const u64 hole_len = key.offset - prev_extent_end; 5021 5022 /* 5023 * Release the path to avoid deadlocks with other code 5024 * paths that search the root while holding locks on 5025 * leafs from the log root. 5026 */ 5027 btrfs_release_path(path); 5028 ret = btrfs_insert_file_extent(trans, root->log_root, 5029 ino, prev_extent_end, 0, 5030 0, hole_len, 0, hole_len, 5031 0, 0, 0); 5032 if (ret < 0) 5033 return ret; 5034 5035 /* 5036 * Search for the same key again in the root. Since it's 5037 * an extent item and we are holding the inode lock, the 5038 * key must still exist. If it doesn't just emit warning 5039 * and return an error to fall back to a transaction 5040 * commit. 5041 */ 5042 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5043 if (ret < 0) 5044 return ret; 5045 if (WARN_ON(ret > 0)) 5046 return -ENOENT; 5047 leaf = path->nodes[0]; 5048 } 5049 5050 prev_extent_end = btrfs_file_extent_end(path); 5051 path->slots[0]++; 5052 cond_resched(); 5053 } 5054 5055 if (prev_extent_end < i_size) { 5056 u64 hole_len; 5057 5058 btrfs_release_path(path); 5059 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 5060 ret = btrfs_insert_file_extent(trans, root->log_root, 5061 ino, prev_extent_end, 0, 0, 5062 hole_len, 0, hole_len, 5063 0, 0, 0); 5064 if (ret < 0) 5065 return ret; 5066 } 5067 5068 return 0; 5069 } 5070 5071 /* 5072 * When we are logging a new inode X, check if it doesn't have a reference that 5073 * matches the reference from some other inode Y created in a past transaction 5074 * and that was renamed in the current transaction. If we don't do this, then at 5075 * log replay time we can lose inode Y (and all its files if it's a directory): 5076 * 5077 * mkdir /mnt/x 5078 * echo "hello world" > /mnt/x/foobar 5079 * sync 5080 * mv /mnt/x /mnt/y 5081 * mkdir /mnt/x # or touch /mnt/x 5082 * xfs_io -c fsync /mnt/x 5083 * <power fail> 5084 * mount fs, trigger log replay 5085 * 5086 * After the log replay procedure, we would lose the first directory and all its 5087 * files (file foobar). 5088 * For the case where inode Y is not a directory we simply end up losing it: 5089 * 5090 * echo "123" > /mnt/foo 5091 * sync 5092 * mv /mnt/foo /mnt/bar 5093 * echo "abc" > /mnt/foo 5094 * xfs_io -c fsync /mnt/foo 5095 * <power fail> 5096 * 5097 * We also need this for cases where a snapshot entry is replaced by some other 5098 * entry (file or directory) otherwise we end up with an unreplayable log due to 5099 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 5100 * if it were a regular entry: 5101 * 5102 * mkdir /mnt/x 5103 * btrfs subvolume snapshot /mnt /mnt/x/snap 5104 * btrfs subvolume delete /mnt/x/snap 5105 * rmdir /mnt/x 5106 * mkdir /mnt/x 5107 * fsync /mnt/x or fsync some new file inside it 5108 * <power fail> 5109 * 5110 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 5111 * the same transaction. 5112 */ 5113 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 5114 const int slot, 5115 const struct btrfs_key *key, 5116 struct btrfs_inode *inode, 5117 u64 *other_ino, u64 *other_parent) 5118 { 5119 int ret; 5120 struct btrfs_path *search_path; 5121 char *name = NULL; 5122 u32 name_len = 0; 5123 u32 item_size = btrfs_item_size(eb, slot); 5124 u32 cur_offset = 0; 5125 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 5126 5127 search_path = btrfs_alloc_path(); 5128 if (!search_path) 5129 return -ENOMEM; 5130 search_path->search_commit_root = 1; 5131 search_path->skip_locking = 1; 5132 5133 while (cur_offset < item_size) { 5134 u64 parent; 5135 u32 this_name_len; 5136 u32 this_len; 5137 unsigned long name_ptr; 5138 struct btrfs_dir_item *di; 5139 5140 if (key->type == BTRFS_INODE_REF_KEY) { 5141 struct btrfs_inode_ref *iref; 5142 5143 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 5144 parent = key->offset; 5145 this_name_len = btrfs_inode_ref_name_len(eb, iref); 5146 name_ptr = (unsigned long)(iref + 1); 5147 this_len = sizeof(*iref) + this_name_len; 5148 } else { 5149 struct btrfs_inode_extref *extref; 5150 5151 extref = (struct btrfs_inode_extref *)(ptr + 5152 cur_offset); 5153 parent = btrfs_inode_extref_parent(eb, extref); 5154 this_name_len = btrfs_inode_extref_name_len(eb, extref); 5155 name_ptr = (unsigned long)&extref->name; 5156 this_len = sizeof(*extref) + this_name_len; 5157 } 5158 5159 if (this_name_len > name_len) { 5160 char *new_name; 5161 5162 new_name = krealloc(name, this_name_len, GFP_NOFS); 5163 if (!new_name) { 5164 ret = -ENOMEM; 5165 goto out; 5166 } 5167 name_len = this_name_len; 5168 name = new_name; 5169 } 5170 5171 read_extent_buffer(eb, name, name_ptr, this_name_len); 5172 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 5173 parent, name, this_name_len, 0); 5174 if (di && !IS_ERR(di)) { 5175 struct btrfs_key di_key; 5176 5177 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 5178 di, &di_key); 5179 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 5180 if (di_key.objectid != key->objectid) { 5181 ret = 1; 5182 *other_ino = di_key.objectid; 5183 *other_parent = parent; 5184 } else { 5185 ret = 0; 5186 } 5187 } else { 5188 ret = -EAGAIN; 5189 } 5190 goto out; 5191 } else if (IS_ERR(di)) { 5192 ret = PTR_ERR(di); 5193 goto out; 5194 } 5195 btrfs_release_path(search_path); 5196 5197 cur_offset += this_len; 5198 } 5199 ret = 0; 5200 out: 5201 btrfs_free_path(search_path); 5202 kfree(name); 5203 return ret; 5204 } 5205 5206 struct btrfs_ino_list { 5207 u64 ino; 5208 u64 parent; 5209 struct list_head list; 5210 }; 5211 5212 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 5213 struct btrfs_root *root, 5214 struct btrfs_path *path, 5215 struct btrfs_log_ctx *ctx, 5216 u64 ino, u64 parent) 5217 { 5218 struct btrfs_ino_list *ino_elem; 5219 LIST_HEAD(inode_list); 5220 int ret = 0; 5221 5222 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5223 if (!ino_elem) 5224 return -ENOMEM; 5225 ino_elem->ino = ino; 5226 ino_elem->parent = parent; 5227 list_add_tail(&ino_elem->list, &inode_list); 5228 5229 while (!list_empty(&inode_list)) { 5230 struct btrfs_fs_info *fs_info = root->fs_info; 5231 struct btrfs_key key; 5232 struct inode *inode; 5233 5234 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 5235 list); 5236 ino = ino_elem->ino; 5237 parent = ino_elem->parent; 5238 list_del(&ino_elem->list); 5239 kfree(ino_elem); 5240 if (ret) 5241 continue; 5242 5243 btrfs_release_path(path); 5244 5245 inode = btrfs_iget(fs_info->sb, ino, root); 5246 /* 5247 * If the other inode that had a conflicting dir entry was 5248 * deleted in the current transaction, we need to log its parent 5249 * directory. 5250 */ 5251 if (IS_ERR(inode)) { 5252 ret = PTR_ERR(inode); 5253 if (ret == -ENOENT) { 5254 inode = btrfs_iget(fs_info->sb, parent, root); 5255 if (IS_ERR(inode)) { 5256 ret = PTR_ERR(inode); 5257 } else { 5258 ret = btrfs_log_inode(trans, 5259 BTRFS_I(inode), 5260 LOG_OTHER_INODE_ALL, 5261 ctx); 5262 btrfs_add_delayed_iput(inode); 5263 } 5264 } 5265 continue; 5266 } 5267 /* 5268 * If the inode was already logged skip it - otherwise we can 5269 * hit an infinite loop. Example: 5270 * 5271 * From the commit root (previous transaction) we have the 5272 * following inodes: 5273 * 5274 * inode 257 a directory 5275 * inode 258 with references "zz" and "zz_link" on inode 257 5276 * inode 259 with reference "a" on inode 257 5277 * 5278 * And in the current (uncommitted) transaction we have: 5279 * 5280 * inode 257 a directory, unchanged 5281 * inode 258 with references "a" and "a2" on inode 257 5282 * inode 259 with reference "zz_link" on inode 257 5283 * inode 261 with reference "zz" on inode 257 5284 * 5285 * When logging inode 261 the following infinite loop could 5286 * happen if we don't skip already logged inodes: 5287 * 5288 * - we detect inode 258 as a conflicting inode, with inode 261 5289 * on reference "zz", and log it; 5290 * 5291 * - we detect inode 259 as a conflicting inode, with inode 258 5292 * on reference "a", and log it; 5293 * 5294 * - we detect inode 258 as a conflicting inode, with inode 259 5295 * on reference "zz_link", and log it - again! After this we 5296 * repeat the above steps forever. 5297 */ 5298 spin_lock(&BTRFS_I(inode)->lock); 5299 /* 5300 * Check the inode's logged_trans only instead of 5301 * btrfs_inode_in_log(). This is because the last_log_commit of 5302 * the inode is not updated when we only log that it exists (see 5303 * btrfs_log_inode()). 5304 */ 5305 if (BTRFS_I(inode)->logged_trans == trans->transid) { 5306 spin_unlock(&BTRFS_I(inode)->lock); 5307 btrfs_add_delayed_iput(inode); 5308 continue; 5309 } 5310 spin_unlock(&BTRFS_I(inode)->lock); 5311 /* 5312 * We are safe logging the other inode without acquiring its 5313 * lock as long as we log with the LOG_INODE_EXISTS mode. We 5314 * are safe against concurrent renames of the other inode as 5315 * well because during a rename we pin the log and update the 5316 * log with the new name before we unpin it. 5317 */ 5318 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx); 5319 if (ret) { 5320 btrfs_add_delayed_iput(inode); 5321 continue; 5322 } 5323 5324 key.objectid = ino; 5325 key.type = BTRFS_INODE_REF_KEY; 5326 key.offset = 0; 5327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5328 if (ret < 0) { 5329 btrfs_add_delayed_iput(inode); 5330 continue; 5331 } 5332 5333 while (true) { 5334 struct extent_buffer *leaf = path->nodes[0]; 5335 int slot = path->slots[0]; 5336 u64 other_ino = 0; 5337 u64 other_parent = 0; 5338 5339 if (slot >= btrfs_header_nritems(leaf)) { 5340 ret = btrfs_next_leaf(root, path); 5341 if (ret < 0) { 5342 break; 5343 } else if (ret > 0) { 5344 ret = 0; 5345 break; 5346 } 5347 continue; 5348 } 5349 5350 btrfs_item_key_to_cpu(leaf, &key, slot); 5351 if (key.objectid != ino || 5352 (key.type != BTRFS_INODE_REF_KEY && 5353 key.type != BTRFS_INODE_EXTREF_KEY)) { 5354 ret = 0; 5355 break; 5356 } 5357 5358 ret = btrfs_check_ref_name_override(leaf, slot, &key, 5359 BTRFS_I(inode), &other_ino, 5360 &other_parent); 5361 if (ret < 0) 5362 break; 5363 if (ret > 0) { 5364 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5365 if (!ino_elem) { 5366 ret = -ENOMEM; 5367 break; 5368 } 5369 ino_elem->ino = other_ino; 5370 ino_elem->parent = other_parent; 5371 list_add_tail(&ino_elem->list, &inode_list); 5372 ret = 0; 5373 } 5374 path->slots[0]++; 5375 } 5376 btrfs_add_delayed_iput(inode); 5377 } 5378 5379 return ret; 5380 } 5381 5382 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 5383 struct btrfs_inode *inode, 5384 struct btrfs_key *min_key, 5385 const struct btrfs_key *max_key, 5386 struct btrfs_path *path, 5387 struct btrfs_path *dst_path, 5388 const u64 logged_isize, 5389 const bool recursive_logging, 5390 const int inode_only, 5391 struct btrfs_log_ctx *ctx, 5392 bool *need_log_inode_item) 5393 { 5394 struct btrfs_root *root = inode->root; 5395 int ins_start_slot = 0; 5396 int ins_nr = 0; 5397 int ret; 5398 5399 while (1) { 5400 ret = btrfs_search_forward(root, min_key, path, trans->transid); 5401 if (ret < 0) 5402 return ret; 5403 if (ret > 0) { 5404 ret = 0; 5405 break; 5406 } 5407 again: 5408 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 5409 if (min_key->objectid != max_key->objectid) 5410 break; 5411 if (min_key->type > max_key->type) 5412 break; 5413 5414 if (min_key->type == BTRFS_INODE_ITEM_KEY) 5415 *need_log_inode_item = false; 5416 5417 if ((min_key->type == BTRFS_INODE_REF_KEY || 5418 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5419 inode->generation == trans->transid && 5420 !recursive_logging) { 5421 u64 other_ino = 0; 5422 u64 other_parent = 0; 5423 5424 ret = btrfs_check_ref_name_override(path->nodes[0], 5425 path->slots[0], min_key, inode, 5426 &other_ino, &other_parent); 5427 if (ret < 0) { 5428 return ret; 5429 } else if (ret > 0 && 5430 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5431 if (ins_nr > 0) { 5432 ins_nr++; 5433 } else { 5434 ins_nr = 1; 5435 ins_start_slot = path->slots[0]; 5436 } 5437 ret = copy_items(trans, inode, dst_path, path, 5438 ins_start_slot, ins_nr, 5439 inode_only, logged_isize); 5440 if (ret < 0) 5441 return ret; 5442 ins_nr = 0; 5443 5444 ret = log_conflicting_inodes(trans, root, path, 5445 ctx, other_ino, other_parent); 5446 if (ret) 5447 return ret; 5448 btrfs_release_path(path); 5449 goto next_key; 5450 } 5451 } 5452 5453 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5454 if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5455 if (ins_nr == 0) 5456 goto next_slot; 5457 ret = copy_items(trans, inode, dst_path, path, 5458 ins_start_slot, 5459 ins_nr, inode_only, logged_isize); 5460 if (ret < 0) 5461 return ret; 5462 ins_nr = 0; 5463 goto next_slot; 5464 } 5465 5466 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5467 ins_nr++; 5468 goto next_slot; 5469 } else if (!ins_nr) { 5470 ins_start_slot = path->slots[0]; 5471 ins_nr = 1; 5472 goto next_slot; 5473 } 5474 5475 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5476 ins_nr, inode_only, logged_isize); 5477 if (ret < 0) 5478 return ret; 5479 ins_nr = 1; 5480 ins_start_slot = path->slots[0]; 5481 next_slot: 5482 path->slots[0]++; 5483 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 5484 btrfs_item_key_to_cpu(path->nodes[0], min_key, 5485 path->slots[0]); 5486 goto again; 5487 } 5488 if (ins_nr) { 5489 ret = copy_items(trans, inode, dst_path, path, 5490 ins_start_slot, ins_nr, inode_only, 5491 logged_isize); 5492 if (ret < 0) 5493 return ret; 5494 ins_nr = 0; 5495 } 5496 btrfs_release_path(path); 5497 next_key: 5498 if (min_key->offset < (u64)-1) { 5499 min_key->offset++; 5500 } else if (min_key->type < max_key->type) { 5501 min_key->type++; 5502 min_key->offset = 0; 5503 } else { 5504 break; 5505 } 5506 } 5507 if (ins_nr) 5508 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5509 ins_nr, inode_only, logged_isize); 5510 5511 return ret; 5512 } 5513 5514 /* log a single inode in the tree log. 5515 * At least one parent directory for this inode must exist in the tree 5516 * or be logged already. 5517 * 5518 * Any items from this inode changed by the current transaction are copied 5519 * to the log tree. An extra reference is taken on any extents in this 5520 * file, allowing us to avoid a whole pile of corner cases around logging 5521 * blocks that have been removed from the tree. 5522 * 5523 * See LOG_INODE_ALL and related defines for a description of what inode_only 5524 * does. 5525 * 5526 * This handles both files and directories. 5527 */ 5528 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5529 struct btrfs_inode *inode, 5530 int inode_only, 5531 struct btrfs_log_ctx *ctx) 5532 { 5533 struct btrfs_path *path; 5534 struct btrfs_path *dst_path; 5535 struct btrfs_key min_key; 5536 struct btrfs_key max_key; 5537 struct btrfs_root *log = inode->root->log_root; 5538 int err = 0; 5539 int ret = 0; 5540 bool fast_search = false; 5541 u64 ino = btrfs_ino(inode); 5542 struct extent_map_tree *em_tree = &inode->extent_tree; 5543 u64 logged_isize = 0; 5544 bool need_log_inode_item = true; 5545 bool xattrs_logged = false; 5546 bool recursive_logging = false; 5547 bool inode_item_dropped = true; 5548 5549 path = btrfs_alloc_path(); 5550 if (!path) 5551 return -ENOMEM; 5552 dst_path = btrfs_alloc_path(); 5553 if (!dst_path) { 5554 btrfs_free_path(path); 5555 return -ENOMEM; 5556 } 5557 5558 min_key.objectid = ino; 5559 min_key.type = BTRFS_INODE_ITEM_KEY; 5560 min_key.offset = 0; 5561 5562 max_key.objectid = ino; 5563 5564 5565 /* today the code can only do partial logging of directories */ 5566 if (S_ISDIR(inode->vfs_inode.i_mode) || 5567 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5568 &inode->runtime_flags) && 5569 inode_only >= LOG_INODE_EXISTS)) 5570 max_key.type = BTRFS_XATTR_ITEM_KEY; 5571 else 5572 max_key.type = (u8)-1; 5573 max_key.offset = (u64)-1; 5574 5575 /* 5576 * Only run delayed items if we are a directory. We want to make sure 5577 * all directory indexes hit the fs/subvolume tree so we can find them 5578 * and figure out which index ranges have to be logged. 5579 */ 5580 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5581 err = btrfs_commit_inode_delayed_items(trans, inode); 5582 if (err) 5583 goto out; 5584 } 5585 5586 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5587 recursive_logging = true; 5588 if (inode_only == LOG_OTHER_INODE) 5589 inode_only = LOG_INODE_EXISTS; 5590 else 5591 inode_only = LOG_INODE_ALL; 5592 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5593 } else { 5594 mutex_lock(&inode->log_mutex); 5595 } 5596 5597 /* 5598 * This is for cases where logging a directory could result in losing a 5599 * a file after replaying the log. For example, if we move a file from a 5600 * directory A to a directory B, then fsync directory A, we have no way 5601 * to known the file was moved from A to B, so logging just A would 5602 * result in losing the file after a log replay. 5603 */ 5604 if (S_ISDIR(inode->vfs_inode.i_mode) && 5605 inode_only == LOG_INODE_ALL && 5606 inode->last_unlink_trans >= trans->transid) { 5607 btrfs_set_log_full_commit(trans); 5608 err = 1; 5609 goto out_unlock; 5610 } 5611 5612 /* 5613 * a brute force approach to making sure we get the most uptodate 5614 * copies of everything. 5615 */ 5616 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5617 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5618 5619 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); 5620 if (inode_only == LOG_INODE_EXISTS) 5621 max_key_type = BTRFS_XATTR_ITEM_KEY; 5622 ret = drop_inode_items(trans, log, path, inode, max_key_type); 5623 } else { 5624 if (inode_only == LOG_INODE_EXISTS && inode_logged(trans, inode)) { 5625 /* 5626 * Make sure the new inode item we write to the log has 5627 * the same isize as the current one (if it exists). 5628 * This is necessary to prevent data loss after log 5629 * replay, and also to prevent doing a wrong expanding 5630 * truncate - for e.g. create file, write 4K into offset 5631 * 0, fsync, write 4K into offset 4096, add hard link, 5632 * fsync some other file (to sync log), power fail - if 5633 * we use the inode's current i_size, after log replay 5634 * we get a 8Kb file, with the last 4Kb extent as a hole 5635 * (zeroes), as if an expanding truncate happened, 5636 * instead of getting a file of 4Kb only. 5637 */ 5638 err = logged_inode_size(log, inode, path, &logged_isize); 5639 if (err) 5640 goto out_unlock; 5641 } 5642 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5643 &inode->runtime_flags)) { 5644 if (inode_only == LOG_INODE_EXISTS) { 5645 max_key.type = BTRFS_XATTR_ITEM_KEY; 5646 ret = drop_inode_items(trans, log, path, inode, 5647 max_key.type); 5648 } else { 5649 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5650 &inode->runtime_flags); 5651 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5652 &inode->runtime_flags); 5653 if (inode_logged(trans, inode)) 5654 ret = truncate_inode_items(trans, log, 5655 inode, 0, 0); 5656 } 5657 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5658 &inode->runtime_flags) || 5659 inode_only == LOG_INODE_EXISTS) { 5660 if (inode_only == LOG_INODE_ALL) 5661 fast_search = true; 5662 max_key.type = BTRFS_XATTR_ITEM_KEY; 5663 ret = drop_inode_items(trans, log, path, inode, 5664 max_key.type); 5665 } else { 5666 if (inode_only == LOG_INODE_ALL) 5667 fast_search = true; 5668 inode_item_dropped = false; 5669 goto log_extents; 5670 } 5671 5672 } 5673 if (ret) { 5674 err = ret; 5675 goto out_unlock; 5676 } 5677 5678 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 5679 path, dst_path, logged_isize, 5680 recursive_logging, inode_only, ctx, 5681 &need_log_inode_item); 5682 if (err) 5683 goto out_unlock; 5684 5685 btrfs_release_path(path); 5686 btrfs_release_path(dst_path); 5687 err = btrfs_log_all_xattrs(trans, inode, path, dst_path); 5688 if (err) 5689 goto out_unlock; 5690 xattrs_logged = true; 5691 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5692 btrfs_release_path(path); 5693 btrfs_release_path(dst_path); 5694 err = btrfs_log_holes(trans, inode, path); 5695 if (err) 5696 goto out_unlock; 5697 } 5698 log_extents: 5699 btrfs_release_path(path); 5700 btrfs_release_path(dst_path); 5701 if (need_log_inode_item) { 5702 err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); 5703 if (err) 5704 goto out_unlock; 5705 /* 5706 * If we are doing a fast fsync and the inode was logged before 5707 * in this transaction, we don't need to log the xattrs because 5708 * they were logged before. If xattrs were added, changed or 5709 * deleted since the last time we logged the inode, then we have 5710 * already logged them because the inode had the runtime flag 5711 * BTRFS_INODE_COPY_EVERYTHING set. 5712 */ 5713 if (!xattrs_logged && inode->logged_trans < trans->transid) { 5714 err = btrfs_log_all_xattrs(trans, inode, path, dst_path); 5715 if (err) 5716 goto out_unlock; 5717 btrfs_release_path(path); 5718 } 5719 } 5720 if (fast_search) { 5721 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); 5722 if (ret) { 5723 err = ret; 5724 goto out_unlock; 5725 } 5726 } else if (inode_only == LOG_INODE_ALL) { 5727 struct extent_map *em, *n; 5728 5729 write_lock(&em_tree->lock); 5730 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) 5731 list_del_init(&em->list); 5732 write_unlock(&em_tree->lock); 5733 } 5734 5735 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5736 ret = log_directory_changes(trans, inode, path, dst_path, ctx); 5737 if (ret) { 5738 err = ret; 5739 goto out_unlock; 5740 } 5741 } 5742 5743 spin_lock(&inode->lock); 5744 inode->logged_trans = trans->transid; 5745 /* 5746 * Don't update last_log_commit if we logged that an inode exists. 5747 * We do this for three reasons: 5748 * 5749 * 1) We might have had buffered writes to this inode that were 5750 * flushed and had their ordered extents completed in this 5751 * transaction, but we did not previously log the inode with 5752 * LOG_INODE_ALL. Later the inode was evicted and after that 5753 * it was loaded again and this LOG_INODE_EXISTS log operation 5754 * happened. We must make sure that if an explicit fsync against 5755 * the inode is performed later, it logs the new extents, an 5756 * updated inode item, etc, and syncs the log. The same logic 5757 * applies to direct IO writes instead of buffered writes. 5758 * 5759 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item 5760 * is logged with an i_size of 0 or whatever value was logged 5761 * before. If later the i_size of the inode is increased by a 5762 * truncate operation, the log is synced through an fsync of 5763 * some other inode and then finally an explicit fsync against 5764 * this inode is made, we must make sure this fsync logs the 5765 * inode with the new i_size, the hole between old i_size and 5766 * the new i_size, and syncs the log. 5767 * 5768 * 3) If we are logging that an ancestor inode exists as part of 5769 * logging a new name from a link or rename operation, don't update 5770 * its last_log_commit - otherwise if an explicit fsync is made 5771 * against an ancestor, the fsync considers the inode in the log 5772 * and doesn't sync the log, resulting in the ancestor missing after 5773 * a power failure unless the log was synced as part of an fsync 5774 * against any other unrelated inode. 5775 */ 5776 if (inode_only != LOG_INODE_EXISTS) 5777 inode->last_log_commit = inode->last_sub_trans; 5778 spin_unlock(&inode->lock); 5779 out_unlock: 5780 mutex_unlock(&inode->log_mutex); 5781 out: 5782 btrfs_free_path(path); 5783 btrfs_free_path(dst_path); 5784 return err; 5785 } 5786 5787 /* 5788 * Check if we need to log an inode. This is used in contexts where while 5789 * logging an inode we need to log another inode (either that it exists or in 5790 * full mode). This is used instead of btrfs_inode_in_log() because the later 5791 * requires the inode to be in the log and have the log transaction committed, 5792 * while here we do not care if the log transaction was already committed - our 5793 * caller will commit the log later - and we want to avoid logging an inode 5794 * multiple times when multiple tasks have joined the same log transaction. 5795 */ 5796 static bool need_log_inode(struct btrfs_trans_handle *trans, 5797 struct btrfs_inode *inode) 5798 { 5799 /* 5800 * If a directory was not modified, no dentries added or removed, we can 5801 * and should avoid logging it. 5802 */ 5803 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) 5804 return false; 5805 5806 /* 5807 * If this inode does not have new/updated/deleted xattrs since the last 5808 * time it was logged and is flagged as logged in the current transaction, 5809 * we can skip logging it. As for new/deleted names, those are updated in 5810 * the log by link/unlink/rename operations. 5811 * In case the inode was logged and then evicted and reloaded, its 5812 * logged_trans will be 0, in which case we have to fully log it since 5813 * logged_trans is a transient field, not persisted. 5814 */ 5815 if (inode->logged_trans == trans->transid && 5816 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 5817 return false; 5818 5819 return true; 5820 } 5821 5822 struct btrfs_dir_list { 5823 u64 ino; 5824 struct list_head list; 5825 }; 5826 5827 /* 5828 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5829 * details about the why it is needed. 5830 * This is a recursive operation - if an existing dentry corresponds to a 5831 * directory, that directory's new entries are logged too (same behaviour as 5832 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5833 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5834 * complains about the following circular lock dependency / possible deadlock: 5835 * 5836 * CPU0 CPU1 5837 * ---- ---- 5838 * lock(&type->i_mutex_dir_key#3/2); 5839 * lock(sb_internal#2); 5840 * lock(&type->i_mutex_dir_key#3/2); 5841 * lock(&sb->s_type->i_mutex_key#14); 5842 * 5843 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5844 * sb_start_intwrite() in btrfs_start_transaction(). 5845 * Not locking i_mutex of the inodes is still safe because: 5846 * 5847 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5848 * that while logging the inode new references (names) are added or removed 5849 * from the inode, leaving the logged inode item with a link count that does 5850 * not match the number of logged inode reference items. This is fine because 5851 * at log replay time we compute the real number of links and correct the 5852 * link count in the inode item (see replay_one_buffer() and 5853 * link_to_fixup_dir()); 5854 * 5855 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5856 * while logging the inode's items new index items (key type 5857 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item 5858 * has a size that doesn't match the sum of the lengths of all the logged 5859 * names - this is ok, not a problem, because at log replay time we set the 5860 * directory's i_size to the correct value (see replay_one_name() and 5861 * do_overwrite_item()). 5862 */ 5863 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5864 struct btrfs_root *root, 5865 struct btrfs_inode *start_inode, 5866 struct btrfs_log_ctx *ctx) 5867 { 5868 struct btrfs_fs_info *fs_info = root->fs_info; 5869 struct btrfs_root *log = root->log_root; 5870 struct btrfs_path *path; 5871 LIST_HEAD(dir_list); 5872 struct btrfs_dir_list *dir_elem; 5873 int ret = 0; 5874 5875 /* 5876 * If we are logging a new name, as part of a link or rename operation, 5877 * don't bother logging new dentries, as we just want to log the names 5878 * of an inode and that any new parents exist. 5879 */ 5880 if (ctx->logging_new_name) 5881 return 0; 5882 5883 path = btrfs_alloc_path(); 5884 if (!path) 5885 return -ENOMEM; 5886 5887 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5888 if (!dir_elem) { 5889 btrfs_free_path(path); 5890 return -ENOMEM; 5891 } 5892 dir_elem->ino = btrfs_ino(start_inode); 5893 list_add_tail(&dir_elem->list, &dir_list); 5894 5895 while (!list_empty(&dir_list)) { 5896 struct extent_buffer *leaf; 5897 struct btrfs_key min_key; 5898 int nritems; 5899 int i; 5900 5901 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5902 list); 5903 if (ret) 5904 goto next_dir_inode; 5905 5906 min_key.objectid = dir_elem->ino; 5907 min_key.type = BTRFS_DIR_INDEX_KEY; 5908 min_key.offset = 0; 5909 again: 5910 btrfs_release_path(path); 5911 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5912 if (ret < 0) { 5913 goto next_dir_inode; 5914 } else if (ret > 0) { 5915 ret = 0; 5916 goto next_dir_inode; 5917 } 5918 5919 process_leaf: 5920 leaf = path->nodes[0]; 5921 nritems = btrfs_header_nritems(leaf); 5922 for (i = path->slots[0]; i < nritems; i++) { 5923 struct btrfs_dir_item *di; 5924 struct btrfs_key di_key; 5925 struct inode *di_inode; 5926 struct btrfs_dir_list *new_dir_elem; 5927 int log_mode = LOG_INODE_EXISTS; 5928 int type; 5929 5930 btrfs_item_key_to_cpu(leaf, &min_key, i); 5931 if (min_key.objectid != dir_elem->ino || 5932 min_key.type != BTRFS_DIR_INDEX_KEY) 5933 goto next_dir_inode; 5934 5935 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5936 type = btrfs_dir_type(leaf, di); 5937 if (btrfs_dir_transid(leaf, di) < trans->transid && 5938 type != BTRFS_FT_DIR) 5939 continue; 5940 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5941 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5942 continue; 5943 5944 btrfs_release_path(path); 5945 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root); 5946 if (IS_ERR(di_inode)) { 5947 ret = PTR_ERR(di_inode); 5948 goto next_dir_inode; 5949 } 5950 5951 if (!need_log_inode(trans, BTRFS_I(di_inode))) { 5952 btrfs_add_delayed_iput(di_inode); 5953 break; 5954 } 5955 5956 ctx->log_new_dentries = false; 5957 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5958 log_mode = LOG_INODE_ALL; 5959 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), 5960 log_mode, ctx); 5961 btrfs_add_delayed_iput(di_inode); 5962 if (ret) 5963 goto next_dir_inode; 5964 if (ctx->log_new_dentries) { 5965 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5966 GFP_NOFS); 5967 if (!new_dir_elem) { 5968 ret = -ENOMEM; 5969 goto next_dir_inode; 5970 } 5971 new_dir_elem->ino = di_key.objectid; 5972 list_add_tail(&new_dir_elem->list, &dir_list); 5973 } 5974 break; 5975 } 5976 if (i == nritems) { 5977 ret = btrfs_next_leaf(log, path); 5978 if (ret < 0) { 5979 goto next_dir_inode; 5980 } else if (ret > 0) { 5981 ret = 0; 5982 goto next_dir_inode; 5983 } 5984 goto process_leaf; 5985 } 5986 if (min_key.offset < (u64)-1) { 5987 min_key.offset++; 5988 goto again; 5989 } 5990 next_dir_inode: 5991 list_del(&dir_elem->list); 5992 kfree(dir_elem); 5993 } 5994 5995 btrfs_free_path(path); 5996 return ret; 5997 } 5998 5999 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 6000 struct btrfs_inode *inode, 6001 struct btrfs_log_ctx *ctx) 6002 { 6003 struct btrfs_fs_info *fs_info = trans->fs_info; 6004 int ret; 6005 struct btrfs_path *path; 6006 struct btrfs_key key; 6007 struct btrfs_root *root = inode->root; 6008 const u64 ino = btrfs_ino(inode); 6009 6010 path = btrfs_alloc_path(); 6011 if (!path) 6012 return -ENOMEM; 6013 path->skip_locking = 1; 6014 path->search_commit_root = 1; 6015 6016 key.objectid = ino; 6017 key.type = BTRFS_INODE_REF_KEY; 6018 key.offset = 0; 6019 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6020 if (ret < 0) 6021 goto out; 6022 6023 while (true) { 6024 struct extent_buffer *leaf = path->nodes[0]; 6025 int slot = path->slots[0]; 6026 u32 cur_offset = 0; 6027 u32 item_size; 6028 unsigned long ptr; 6029 6030 if (slot >= btrfs_header_nritems(leaf)) { 6031 ret = btrfs_next_leaf(root, path); 6032 if (ret < 0) 6033 goto out; 6034 else if (ret > 0) 6035 break; 6036 continue; 6037 } 6038 6039 btrfs_item_key_to_cpu(leaf, &key, slot); 6040 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 6041 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 6042 break; 6043 6044 item_size = btrfs_item_size(leaf, slot); 6045 ptr = btrfs_item_ptr_offset(leaf, slot); 6046 while (cur_offset < item_size) { 6047 struct btrfs_key inode_key; 6048 struct inode *dir_inode; 6049 6050 inode_key.type = BTRFS_INODE_ITEM_KEY; 6051 inode_key.offset = 0; 6052 6053 if (key.type == BTRFS_INODE_EXTREF_KEY) { 6054 struct btrfs_inode_extref *extref; 6055 6056 extref = (struct btrfs_inode_extref *) 6057 (ptr + cur_offset); 6058 inode_key.objectid = btrfs_inode_extref_parent( 6059 leaf, extref); 6060 cur_offset += sizeof(*extref); 6061 cur_offset += btrfs_inode_extref_name_len(leaf, 6062 extref); 6063 } else { 6064 inode_key.objectid = key.offset; 6065 cur_offset = item_size; 6066 } 6067 6068 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid, 6069 root); 6070 /* 6071 * If the parent inode was deleted, return an error to 6072 * fallback to a transaction commit. This is to prevent 6073 * getting an inode that was moved from one parent A to 6074 * a parent B, got its former parent A deleted and then 6075 * it got fsync'ed, from existing at both parents after 6076 * a log replay (and the old parent still existing). 6077 * Example: 6078 * 6079 * mkdir /mnt/A 6080 * mkdir /mnt/B 6081 * touch /mnt/B/bar 6082 * sync 6083 * mv /mnt/B/bar /mnt/A/bar 6084 * mv -T /mnt/A /mnt/B 6085 * fsync /mnt/B/bar 6086 * <power fail> 6087 * 6088 * If we ignore the old parent B which got deleted, 6089 * after a log replay we would have file bar linked 6090 * at both parents and the old parent B would still 6091 * exist. 6092 */ 6093 if (IS_ERR(dir_inode)) { 6094 ret = PTR_ERR(dir_inode); 6095 goto out; 6096 } 6097 6098 if (!need_log_inode(trans, BTRFS_I(dir_inode))) { 6099 btrfs_add_delayed_iput(dir_inode); 6100 continue; 6101 } 6102 6103 ctx->log_new_dentries = false; 6104 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode), 6105 LOG_INODE_ALL, ctx); 6106 if (!ret && ctx->log_new_dentries) 6107 ret = log_new_dir_dentries(trans, root, 6108 BTRFS_I(dir_inode), ctx); 6109 btrfs_add_delayed_iput(dir_inode); 6110 if (ret) 6111 goto out; 6112 } 6113 path->slots[0]++; 6114 } 6115 ret = 0; 6116 out: 6117 btrfs_free_path(path); 6118 return ret; 6119 } 6120 6121 static int log_new_ancestors(struct btrfs_trans_handle *trans, 6122 struct btrfs_root *root, 6123 struct btrfs_path *path, 6124 struct btrfs_log_ctx *ctx) 6125 { 6126 struct btrfs_key found_key; 6127 6128 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 6129 6130 while (true) { 6131 struct btrfs_fs_info *fs_info = root->fs_info; 6132 struct extent_buffer *leaf = path->nodes[0]; 6133 int slot = path->slots[0]; 6134 struct btrfs_key search_key; 6135 struct inode *inode; 6136 u64 ino; 6137 int ret = 0; 6138 6139 btrfs_release_path(path); 6140 6141 ino = found_key.offset; 6142 6143 search_key.objectid = found_key.offset; 6144 search_key.type = BTRFS_INODE_ITEM_KEY; 6145 search_key.offset = 0; 6146 inode = btrfs_iget(fs_info->sb, ino, root); 6147 if (IS_ERR(inode)) 6148 return PTR_ERR(inode); 6149 6150 if (BTRFS_I(inode)->generation >= trans->transid && 6151 need_log_inode(trans, BTRFS_I(inode))) 6152 ret = btrfs_log_inode(trans, BTRFS_I(inode), 6153 LOG_INODE_EXISTS, ctx); 6154 btrfs_add_delayed_iput(inode); 6155 if (ret) 6156 return ret; 6157 6158 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 6159 break; 6160 6161 search_key.type = BTRFS_INODE_REF_KEY; 6162 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6163 if (ret < 0) 6164 return ret; 6165 6166 leaf = path->nodes[0]; 6167 slot = path->slots[0]; 6168 if (slot >= btrfs_header_nritems(leaf)) { 6169 ret = btrfs_next_leaf(root, path); 6170 if (ret < 0) 6171 return ret; 6172 else if (ret > 0) 6173 return -ENOENT; 6174 leaf = path->nodes[0]; 6175 slot = path->slots[0]; 6176 } 6177 6178 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6179 if (found_key.objectid != search_key.objectid || 6180 found_key.type != BTRFS_INODE_REF_KEY) 6181 return -ENOENT; 6182 } 6183 return 0; 6184 } 6185 6186 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 6187 struct btrfs_inode *inode, 6188 struct dentry *parent, 6189 struct btrfs_log_ctx *ctx) 6190 { 6191 struct btrfs_root *root = inode->root; 6192 struct dentry *old_parent = NULL; 6193 struct super_block *sb = inode->vfs_inode.i_sb; 6194 int ret = 0; 6195 6196 while (true) { 6197 if (!parent || d_really_is_negative(parent) || 6198 sb != parent->d_sb) 6199 break; 6200 6201 inode = BTRFS_I(d_inode(parent)); 6202 if (root != inode->root) 6203 break; 6204 6205 if (inode->generation >= trans->transid && 6206 need_log_inode(trans, inode)) { 6207 ret = btrfs_log_inode(trans, inode, 6208 LOG_INODE_EXISTS, ctx); 6209 if (ret) 6210 break; 6211 } 6212 if (IS_ROOT(parent)) 6213 break; 6214 6215 parent = dget_parent(parent); 6216 dput(old_parent); 6217 old_parent = parent; 6218 } 6219 dput(old_parent); 6220 6221 return ret; 6222 } 6223 6224 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 6225 struct btrfs_inode *inode, 6226 struct dentry *parent, 6227 struct btrfs_log_ctx *ctx) 6228 { 6229 struct btrfs_root *root = inode->root; 6230 const u64 ino = btrfs_ino(inode); 6231 struct btrfs_path *path; 6232 struct btrfs_key search_key; 6233 int ret; 6234 6235 /* 6236 * For a single hard link case, go through a fast path that does not 6237 * need to iterate the fs/subvolume tree. 6238 */ 6239 if (inode->vfs_inode.i_nlink < 2) 6240 return log_new_ancestors_fast(trans, inode, parent, ctx); 6241 6242 path = btrfs_alloc_path(); 6243 if (!path) 6244 return -ENOMEM; 6245 6246 search_key.objectid = ino; 6247 search_key.type = BTRFS_INODE_REF_KEY; 6248 search_key.offset = 0; 6249 again: 6250 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6251 if (ret < 0) 6252 goto out; 6253 if (ret == 0) 6254 path->slots[0]++; 6255 6256 while (true) { 6257 struct extent_buffer *leaf = path->nodes[0]; 6258 int slot = path->slots[0]; 6259 struct btrfs_key found_key; 6260 6261 if (slot >= btrfs_header_nritems(leaf)) { 6262 ret = btrfs_next_leaf(root, path); 6263 if (ret < 0) 6264 goto out; 6265 else if (ret > 0) 6266 break; 6267 continue; 6268 } 6269 6270 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6271 if (found_key.objectid != ino || 6272 found_key.type > BTRFS_INODE_EXTREF_KEY) 6273 break; 6274 6275 /* 6276 * Don't deal with extended references because they are rare 6277 * cases and too complex to deal with (we would need to keep 6278 * track of which subitem we are processing for each item in 6279 * this loop, etc). So just return some error to fallback to 6280 * a transaction commit. 6281 */ 6282 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 6283 ret = -EMLINK; 6284 goto out; 6285 } 6286 6287 /* 6288 * Logging ancestors needs to do more searches on the fs/subvol 6289 * tree, so it releases the path as needed to avoid deadlocks. 6290 * Keep track of the last inode ref key and resume from that key 6291 * after logging all new ancestors for the current hard link. 6292 */ 6293 memcpy(&search_key, &found_key, sizeof(search_key)); 6294 6295 ret = log_new_ancestors(trans, root, path, ctx); 6296 if (ret) 6297 goto out; 6298 btrfs_release_path(path); 6299 goto again; 6300 } 6301 ret = 0; 6302 out: 6303 btrfs_free_path(path); 6304 return ret; 6305 } 6306 6307 /* 6308 * helper function around btrfs_log_inode to make sure newly created 6309 * parent directories also end up in the log. A minimal inode and backref 6310 * only logging is done of any parent directories that are older than 6311 * the last committed transaction 6312 */ 6313 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 6314 struct btrfs_inode *inode, 6315 struct dentry *parent, 6316 int inode_only, 6317 struct btrfs_log_ctx *ctx) 6318 { 6319 struct btrfs_root *root = inode->root; 6320 struct btrfs_fs_info *fs_info = root->fs_info; 6321 int ret = 0; 6322 bool log_dentries = false; 6323 6324 if (btrfs_test_opt(fs_info, NOTREELOG)) { 6325 ret = 1; 6326 goto end_no_trans; 6327 } 6328 6329 if (btrfs_root_refs(&root->root_item) == 0) { 6330 ret = 1; 6331 goto end_no_trans; 6332 } 6333 6334 /* 6335 * Skip already logged inodes or inodes corresponding to tmpfiles 6336 * (since logging them is pointless, a link count of 0 means they 6337 * will never be accessible). 6338 */ 6339 if ((btrfs_inode_in_log(inode, trans->transid) && 6340 list_empty(&ctx->ordered_extents)) || 6341 inode->vfs_inode.i_nlink == 0) { 6342 ret = BTRFS_NO_LOG_SYNC; 6343 goto end_no_trans; 6344 } 6345 6346 ret = start_log_trans(trans, root, ctx); 6347 if (ret) 6348 goto end_no_trans; 6349 6350 ret = btrfs_log_inode(trans, inode, inode_only, ctx); 6351 if (ret) 6352 goto end_trans; 6353 6354 /* 6355 * for regular files, if its inode is already on disk, we don't 6356 * have to worry about the parents at all. This is because 6357 * we can use the last_unlink_trans field to record renames 6358 * and other fun in this file. 6359 */ 6360 if (S_ISREG(inode->vfs_inode.i_mode) && 6361 inode->generation < trans->transid && 6362 inode->last_unlink_trans < trans->transid) { 6363 ret = 0; 6364 goto end_trans; 6365 } 6366 6367 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries) 6368 log_dentries = true; 6369 6370 /* 6371 * On unlink we must make sure all our current and old parent directory 6372 * inodes are fully logged. This is to prevent leaving dangling 6373 * directory index entries in directories that were our parents but are 6374 * not anymore. Not doing this results in old parent directory being 6375 * impossible to delete after log replay (rmdir will always fail with 6376 * error -ENOTEMPTY). 6377 * 6378 * Example 1: 6379 * 6380 * mkdir testdir 6381 * touch testdir/foo 6382 * ln testdir/foo testdir/bar 6383 * sync 6384 * unlink testdir/bar 6385 * xfs_io -c fsync testdir/foo 6386 * <power failure> 6387 * mount fs, triggers log replay 6388 * 6389 * If we don't log the parent directory (testdir), after log replay the 6390 * directory still has an entry pointing to the file inode using the bar 6391 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6392 * the file inode has a link count of 1. 6393 * 6394 * Example 2: 6395 * 6396 * mkdir testdir 6397 * touch foo 6398 * ln foo testdir/foo2 6399 * ln foo testdir/foo3 6400 * sync 6401 * unlink testdir/foo3 6402 * xfs_io -c fsync foo 6403 * <power failure> 6404 * mount fs, triggers log replay 6405 * 6406 * Similar as the first example, after log replay the parent directory 6407 * testdir still has an entry pointing to the inode file with name foo3 6408 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6409 * and has a link count of 2. 6410 */ 6411 if (inode->last_unlink_trans >= trans->transid) { 6412 ret = btrfs_log_all_parents(trans, inode, ctx); 6413 if (ret) 6414 goto end_trans; 6415 } 6416 6417 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6418 if (ret) 6419 goto end_trans; 6420 6421 if (log_dentries) 6422 ret = log_new_dir_dentries(trans, root, inode, ctx); 6423 else 6424 ret = 0; 6425 end_trans: 6426 if (ret < 0) { 6427 btrfs_set_log_full_commit(trans); 6428 ret = 1; 6429 } 6430 6431 if (ret) 6432 btrfs_remove_log_ctx(root, ctx); 6433 btrfs_end_log_trans(root); 6434 end_no_trans: 6435 return ret; 6436 } 6437 6438 /* 6439 * it is not safe to log dentry if the chunk root has added new 6440 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6441 * If this returns 1, you must commit the transaction to safely get your 6442 * data on disk. 6443 */ 6444 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6445 struct dentry *dentry, 6446 struct btrfs_log_ctx *ctx) 6447 { 6448 struct dentry *parent = dget_parent(dentry); 6449 int ret; 6450 6451 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6452 LOG_INODE_ALL, ctx); 6453 dput(parent); 6454 6455 return ret; 6456 } 6457 6458 /* 6459 * should be called during mount to recover any replay any log trees 6460 * from the FS 6461 */ 6462 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6463 { 6464 int ret; 6465 struct btrfs_path *path; 6466 struct btrfs_trans_handle *trans; 6467 struct btrfs_key key; 6468 struct btrfs_key found_key; 6469 struct btrfs_root *log; 6470 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6471 struct walk_control wc = { 6472 .process_func = process_one_buffer, 6473 .stage = LOG_WALK_PIN_ONLY, 6474 }; 6475 6476 path = btrfs_alloc_path(); 6477 if (!path) 6478 return -ENOMEM; 6479 6480 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6481 6482 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6483 if (IS_ERR(trans)) { 6484 ret = PTR_ERR(trans); 6485 goto error; 6486 } 6487 6488 wc.trans = trans; 6489 wc.pin = 1; 6490 6491 ret = walk_log_tree(trans, log_root_tree, &wc); 6492 if (ret) { 6493 btrfs_abort_transaction(trans, ret); 6494 goto error; 6495 } 6496 6497 again: 6498 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6499 key.offset = (u64)-1; 6500 key.type = BTRFS_ROOT_ITEM_KEY; 6501 6502 while (1) { 6503 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6504 6505 if (ret < 0) { 6506 btrfs_abort_transaction(trans, ret); 6507 goto error; 6508 } 6509 if (ret > 0) { 6510 if (path->slots[0] == 0) 6511 break; 6512 path->slots[0]--; 6513 } 6514 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6515 path->slots[0]); 6516 btrfs_release_path(path); 6517 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6518 break; 6519 6520 log = btrfs_read_tree_root(log_root_tree, &found_key); 6521 if (IS_ERR(log)) { 6522 ret = PTR_ERR(log); 6523 btrfs_abort_transaction(trans, ret); 6524 goto error; 6525 } 6526 6527 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 6528 true); 6529 if (IS_ERR(wc.replay_dest)) { 6530 ret = PTR_ERR(wc.replay_dest); 6531 6532 /* 6533 * We didn't find the subvol, likely because it was 6534 * deleted. This is ok, simply skip this log and go to 6535 * the next one. 6536 * 6537 * We need to exclude the root because we can't have 6538 * other log replays overwriting this log as we'll read 6539 * it back in a few more times. This will keep our 6540 * block from being modified, and we'll just bail for 6541 * each subsequent pass. 6542 */ 6543 if (ret == -ENOENT) 6544 ret = btrfs_pin_extent_for_log_replay(trans, 6545 log->node->start, 6546 log->node->len); 6547 btrfs_put_root(log); 6548 6549 if (!ret) 6550 goto next; 6551 btrfs_abort_transaction(trans, ret); 6552 goto error; 6553 } 6554 6555 wc.replay_dest->log_root = log; 6556 ret = btrfs_record_root_in_trans(trans, wc.replay_dest); 6557 if (ret) 6558 /* The loop needs to continue due to the root refs */ 6559 btrfs_abort_transaction(trans, ret); 6560 else 6561 ret = walk_log_tree(trans, log, &wc); 6562 6563 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6564 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6565 path); 6566 if (ret) 6567 btrfs_abort_transaction(trans, ret); 6568 } 6569 6570 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6571 struct btrfs_root *root = wc.replay_dest; 6572 6573 btrfs_release_path(path); 6574 6575 /* 6576 * We have just replayed everything, and the highest 6577 * objectid of fs roots probably has changed in case 6578 * some inode_item's got replayed. 6579 * 6580 * root->objectid_mutex is not acquired as log replay 6581 * could only happen during mount. 6582 */ 6583 ret = btrfs_init_root_free_objectid(root); 6584 if (ret) 6585 btrfs_abort_transaction(trans, ret); 6586 } 6587 6588 wc.replay_dest->log_root = NULL; 6589 btrfs_put_root(wc.replay_dest); 6590 btrfs_put_root(log); 6591 6592 if (ret) 6593 goto error; 6594 next: 6595 if (found_key.offset == 0) 6596 break; 6597 key.offset = found_key.offset - 1; 6598 } 6599 btrfs_release_path(path); 6600 6601 /* step one is to pin it all, step two is to replay just inodes */ 6602 if (wc.pin) { 6603 wc.pin = 0; 6604 wc.process_func = replay_one_buffer; 6605 wc.stage = LOG_WALK_REPLAY_INODES; 6606 goto again; 6607 } 6608 /* step three is to replay everything */ 6609 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6610 wc.stage++; 6611 goto again; 6612 } 6613 6614 btrfs_free_path(path); 6615 6616 /* step 4: commit the transaction, which also unpins the blocks */ 6617 ret = btrfs_commit_transaction(trans); 6618 if (ret) 6619 return ret; 6620 6621 log_root_tree->log_root = NULL; 6622 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6623 btrfs_put_root(log_root_tree); 6624 6625 return 0; 6626 error: 6627 if (wc.trans) 6628 btrfs_end_transaction(wc.trans); 6629 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6630 btrfs_free_path(path); 6631 return ret; 6632 } 6633 6634 /* 6635 * there are some corner cases where we want to force a full 6636 * commit instead of allowing a directory to be logged. 6637 * 6638 * They revolve around files there were unlinked from the directory, and 6639 * this function updates the parent directory so that a full commit is 6640 * properly done if it is fsync'd later after the unlinks are done. 6641 * 6642 * Must be called before the unlink operations (updates to the subvolume tree, 6643 * inodes, etc) are done. 6644 */ 6645 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6646 struct btrfs_inode *dir, struct btrfs_inode *inode, 6647 int for_rename) 6648 { 6649 /* 6650 * when we're logging a file, if it hasn't been renamed 6651 * or unlinked, and its inode is fully committed on disk, 6652 * we don't have to worry about walking up the directory chain 6653 * to log its parents. 6654 * 6655 * So, we use the last_unlink_trans field to put this transid 6656 * into the file. When the file is logged we check it and 6657 * don't log the parents if the file is fully on disk. 6658 */ 6659 mutex_lock(&inode->log_mutex); 6660 inode->last_unlink_trans = trans->transid; 6661 mutex_unlock(&inode->log_mutex); 6662 6663 /* 6664 * if this directory was already logged any new 6665 * names for this file/dir will get recorded 6666 */ 6667 if (dir->logged_trans == trans->transid) 6668 return; 6669 6670 /* 6671 * if the inode we're about to unlink was logged, 6672 * the log will be properly updated for any new names 6673 */ 6674 if (inode->logged_trans == trans->transid) 6675 return; 6676 6677 /* 6678 * when renaming files across directories, if the directory 6679 * there we're unlinking from gets fsync'd later on, there's 6680 * no way to find the destination directory later and fsync it 6681 * properly. So, we have to be conservative and force commits 6682 * so the new name gets discovered. 6683 */ 6684 if (for_rename) 6685 goto record; 6686 6687 /* we can safely do the unlink without any special recording */ 6688 return; 6689 6690 record: 6691 mutex_lock(&dir->log_mutex); 6692 dir->last_unlink_trans = trans->transid; 6693 mutex_unlock(&dir->log_mutex); 6694 } 6695 6696 /* 6697 * Make sure that if someone attempts to fsync the parent directory of a deleted 6698 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6699 * that after replaying the log tree of the parent directory's root we will not 6700 * see the snapshot anymore and at log replay time we will not see any log tree 6701 * corresponding to the deleted snapshot's root, which could lead to replaying 6702 * it after replaying the log tree of the parent directory (which would replay 6703 * the snapshot delete operation). 6704 * 6705 * Must be called before the actual snapshot destroy operation (updates to the 6706 * parent root and tree of tree roots trees, etc) are done. 6707 */ 6708 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6709 struct btrfs_inode *dir) 6710 { 6711 mutex_lock(&dir->log_mutex); 6712 dir->last_unlink_trans = trans->transid; 6713 mutex_unlock(&dir->log_mutex); 6714 } 6715 6716 /* 6717 * Call this after adding a new name for a file and it will properly 6718 * update the log to reflect the new name. 6719 */ 6720 void btrfs_log_new_name(struct btrfs_trans_handle *trans, 6721 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6722 struct dentry *parent) 6723 { 6724 struct btrfs_log_ctx ctx; 6725 6726 /* 6727 * this will force the logging code to walk the dentry chain 6728 * up for the file 6729 */ 6730 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6731 inode->last_unlink_trans = trans->transid; 6732 6733 /* 6734 * if this inode hasn't been logged and directory we're renaming it 6735 * from hasn't been logged, we don't need to log it 6736 */ 6737 if (!inode_logged(trans, inode) && 6738 (!old_dir || !inode_logged(trans, old_dir))) 6739 return; 6740 6741 /* 6742 * If we are doing a rename (old_dir is not NULL) from a directory that 6743 * was previously logged, make sure the next log attempt on the directory 6744 * is not skipped and logs the inode again. This is because the log may 6745 * not currently be authoritative for a range including the old 6746 * BTRFS_DIR_INDEX_KEY key, so we want to make sure after a log replay we 6747 * do not end up with both the new and old dentries around (in case the 6748 * inode is a directory we would have a directory with two hard links and 6749 * 2 inode references for different parents). The next log attempt of 6750 * old_dir will happen at btrfs_log_all_parents(), called through 6751 * btrfs_log_inode_parent() below, because we have previously set 6752 * inode->last_unlink_trans to the current transaction ID, either here or 6753 * at btrfs_record_unlink_dir() in case the inode is a directory. 6754 */ 6755 if (old_dir) 6756 old_dir->logged_trans = 0; 6757 6758 btrfs_init_log_ctx(&ctx, &inode->vfs_inode); 6759 ctx.logging_new_name = true; 6760 /* 6761 * We don't care about the return value. If we fail to log the new name 6762 * then we know the next attempt to sync the log will fallback to a full 6763 * transaction commit (due to a call to btrfs_set_log_full_commit()), so 6764 * we don't need to worry about getting a log committed that has an 6765 * inconsistent state after a rename operation. 6766 */ 6767 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); 6768 } 6769 6770